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Abstract 

 

Tissue mechanics and cellular interactions influence every single cell in our bodies to 

drive the growth and shape of tissues and organs. However, little is known about 

mechanisms by which cells sense physical forces and transduce them from the 

cytoskeleton to the nucleus to control gene expression and stem cell fate. We have 

identified a novel nuclear-mechanosensor complex, consisting of the nuclear 

membrane protein emerin (Emd), actin and non-muscle myosin IIA (NMIIA), that 

regulates transcription, chromatin remodeling and lineage commitment. Force-induced 

enrichment of Emd at the outer nuclear membrane leads to a compensation between 

H3K9me2,3 and H3K27me3 on constitutive heterochromatin. This strain-induced 

epigenetic switch is accompanied by the global rearrangement of chromatin. In 

parallel, forces promote local F-actin polymerization at the outer nuclear membrane, 

which limits the availability of nuclear G-actin. Subsequently, the reduction of nuclear 

G-actin results in attenuated global transcription and therefore increased H3K27me3 

occupancy to reinforce gene silencing. Restoring nuclear actin levels in the presence of 

mechanical strain counteracts PRC2-mediated silencing of transcribed genes. This 

mechanosensory circuit is also observed in vivo. Depletion of NMIIA in mouse 

epidermis leads to decreased H3K27me3 levels and precocious lineage commitment, 

thus abrogating organ growth and patterning. Our results reveal how mechanical 

signals regulate nuclear architecture, chromatin organization and transcription to 

control cell fate decisions.  
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Zusammenfassung  

 

Gewebe mechanisch und zelluläre Interaktionen beeinflussen jede einzelne Zelle in 

unserem Körper, um Wachstum und Form von Gewebe und Organen zu regulieren. Es 

ist jedoch wenig über die Mechanismen bekannt, durch die Zellen mechanische 

Signale erkennen und diese Informationen vom Zytoskelett an den Zellkern 

weitergeben, um Genexpression zu steuern. Wir zeigen, dass mechanische Kräfte eine 

wichtige Rolle bei der Regulation epidermaler Stammzellen / Vorläuferzellen spielen, 

indem sie H3K27me3-gesteuerte Repression der Transcription und die Verdichtung 

von Chromatin induzieren. Diese kraftabhängigen Änderungen sind auf einen 

mechanosensorischen Komplex von Nicht-Muskel-Myosin IIA (NMIIA), das 

Kernmembran-Protein Emerin (Emd) und Aktin zurückzuführen, die auf lokale Kräfte 

an der äußeren Kernmembran reagieren. Diese kraftabhängige Anreicherung von Emd 

an der äußeren Kernmembran führt zum Verlust von H3K9me2,3 bei gleichzeitigen 

Gewinn von H3K27me3 auf Heterochromatin und zu einer Umstrukturierung des 

Chromatins. Zugleich organisiert Emd lokale Aktin-Polymerisation am äußeren 

Kernmembran, um so die Verfügbarkeit von nuklearem Aktin zu begrenzen. Das führt 

zu einer Verringerung der gesamten Transkription und Akkumulation von H3K27me3 

an Promotoren dieser Gene und sichert den Zustand der Repression. Diese 

mechanosensorischen Abläufe finden auch in vivo statt. Die Deletion von NMIIA in 

der Epidermis der Maus führt zur H3K27me3-vermittelten Repression, frühzeitiger 

Differenzierung und schließlich zur Aufhebeung des Organwachstum und 

Strukturierung. Unsere Ergebnisse zeigen, wie mechanische Signale die 

Kernarchitektur, Chromatinorganisation und Transkriptionsregulation beeinflussen 

und den Differenzierungsweg steuern. 
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1. Introduction 

Stem cells have a remarkable capacity to both self-renew and differentiate to specific 

lineages. They serve critical roles during development, regeneration, and tissue 

homeostasis (Tajbakhsh et al., 2009). Based on their properties and capabilities, stem 

cells are classified into totipotent, pluripotent, multipotent, oligopotent and unipotent 

(Wagers and Weissman, 2004). Recent studies have revealed that even complex 

structures such as our tissues can be generated from a pool of homogenous stem cells 

by a self-organization process, in which morphogenesis is driven by cellular 

interactions and local mechanical forces (Sasai, 2013). However, little is known about 

molecular mechanisms involved in this process. Therefore, it is critical to understand 

how mechanical forces regulate stem cell self-organization in order to control tissue 

growth and patterning. 

 

1.1 Mammalian skin as a model system for adult stem cells 

1.1.1 Skin architecture 

The skin is the largest organ that covers the entire body. It functions as a highly 

effective barrier to protect the inner organs from the environment while being 

constantly exposed to external stresses such as injuries, pathogens, radiation, and 

mechanical strain. The skin consists of two main compartments: the epidermis 

comprising mainly of keratinocytes at the outer surface of the skin, and the underlying 

dermis comprising mainly of connective tissue and mesenchymal cells. The two 

compartments are separated by a complex, dense, sheet-like extracellular matrix 

(ECM), called the basement membrane (BM) (Simpson et al., 2011).  

Epidermal keratinocytes are organized into stratified layers, including one basal layer of 

proliferating keratinocytes, and several suprabasal layers of differentiated cells, 

including spinous layers, granular layers and the cornified layers (Fig. 1.1.1). The basal 

keratinocytes, also known as epidermal stem/progenitor cells (EPCs) are attached to the 

BM. They are characterized by their high proliferative potential and ability to give rise 

to differentiated daughter cells.(Simpson et al., 2011)  
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Keratins are the largest group of intermediate filaments in EPCs, providing mechanical 

support for epidermal architecture, cells viability and regulating certain signaling 

pathways. In epidermis, keratins display complex expression patterns. Keratin 5 (K5) 

and K14 are strongly expressed in the basal layer and have been suggested to maintain 

the proliferative potential of basal EPCs. During a stepwise process of stratification and 

terminal differentiation, EPCs switch off the expression of basal markers (K5 and K14) 

and ECM receptors (integrins). They become post-mitotic, detach from the basal layer. 

This is accompanied by the expression of specific markers for spinous layers, granular 

layers and cornified layers such as K10, Lorcrin (Lor) and Filagrin (Flg), respectively 

(Alam et al., 2011; Fuchs, 2008; Moll et al., 1982; Simpson et al., 2011). 

 

 

Fig. 1.1.1. Schematic representation of epidermal architecture. The skin can be 

divided into dermis and epidermis, which are separated by the BM. The epidermis 

consists of stratified layers. Proliferating cells reside at the basal layer, whereas 
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differentiated cells are relocated into the spinous, granular and cornified layers 

(Simpson et al., 2011). 

 

The dermis is a supportive connective tissue between the epidermis and the 

subcutaneous fat layer. It is divided into two subcompartments: the upper papillary 

dermis adjacent to the BM, and the reticular dermis underneath. ECM is the main 

component of the dermis. In addition to ECM, the dermis also contains fibroblasts, 

immune cells and blood vessels. The main function of the dermis is to maintain 

architecture and mechanical properties of the skin (Quan et al., 2013). 

The BM is a 50 – 100 nm layer of specialized ECM. Its composition varies both within 

and between tissues, results in different ECM properties. It serves as an anchoring 

platform for EPCs through several receptors, in which the main component is integrin. 

Although the BM was considered a supportive scaffold for a long time, it becomes 

evident that the BM also regulates cell behavior and fate decisions, thus functioning as 

an essential component of the epidermal stem cell niche (Watt and Fujiwara, 2011; 

Watt and Huck, 2013). 

 

1.1.2 Epidermal homeostasis and stem cells 

A physiological process, in which cells are constantly produced to offset cell death, is 

called tissue homeostasis. Mammalian skin is known to renew itself approximately 

every two weeks continuously throughout life, making the skin one of the most active 

self-renewing organs. Hence, the epidermal homeostasis needs to be tightly regulated to 

maintain tissue function; however, mechanisms that regulate epidermal homeostasis are 

still controversial (Blanpain and Fuchs, 2009; Sotiropoulou and Blanpain, 2012). 

Previous studies have proposed two potential models describing the epidermal 

homeostasis process: an asymmetric cell division model and a stochastic model. The 

asymmetric cell division model represents early embryonic skin development. EPCs 

can undergo symmetric and asymmetric cell divisions. The symmetric divisions allow 

EPCs to expand and increase at the basal layer, whereas the asymmetric model results 



12 

in uncommitted and committed daughter cells. By coupling the asymmetric cell 

divisions with perpendicular spindle orientation to the BM, the committed daughter 

cells can be translocated directly to the suprabasal layers (Blanpain and Fuchs, 2009; 

Poulson and Lechler, 2012). However, this model is found to occur rarely in adult skin. 

Therefore there must be other mechanisms (Clayton et al., 2007). Tracing the fate of 

EPCs in vivo revealed an alternative mechanism. The basal EPCs can undergo an 

unlimited number of cell divisions, and have equal chance to either stay at progenitor 

cells or delaminate to enter the terminal differentiation process. The fate decisions 

occur at rates that ensure epidermal homeostasis (Rompolas et al., 2016). In principle, 

regardless of which model is correct, a stable pool of EPCs needs to exist to replace 

those that are lost during tissue turnover. 

Moreover, the ease of isolation and maintenance in culture together with the ability to 

manipulate differentiation in vitro by controlling calcium concentration have made 

EPCs an excellent model to dissect the cellular and molecular mechanisms of stem cell 

behavior and fate decisions (Watt, 2002).  

 

1.2 Mechanotransduction 

Mechanotransduction describes a cellular process that converts mechanical stimuli into 

biochemical signals to generate responses that, enable cells to adapt to their physical 

surroundings (Jaalouk and Lammerding, 2009). Various studies have shown that every 

complex structure, from a non-living matter to a human being, requires physical forces 

to keep its parts together. Since 1917, when a book of D’Arcy W. Thompson – On 

Growth and Form – was first published, it has been clear that physical forces or 

mechanical interactions are one of the most essential driven forces in determining size 

and geometry in any biological systems (Paluch et al., 2015; Sasai, 2013; Thompson, 

1917). All cells from the simplest form to the most complex organism are 

mechanosensitive (Ingber, 2006; Orr et al., 2006). They are subjected to different types 

of mechanical stimuli in vivo: cyclic stress (heart), shear stress (fluid flow over the cell 

surface), stretch or tensile strain (skin), distension (bladder), compression (bone, 

cartilage). Each of these stimuli plays an specific role in the regulation of proliferation, 

differentiation, migration or morphology of the respective cells (Fig. 1.2) (DuFort et al., 
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2011; Reichelt, 2007). Any disruption or altering cellular response to mechanical 

stimuli can lead to severe human diseases such as deafness, muscular dystrophies, 

premature ageing, developmental disorders and cancer (Jaalouk and Lammerding, 

2009). Therefore, it is important to understand the molecular principles of sensing 

mechanical stimuli and the subsequent cellular response. Although the transmission of 

extrinsic forces from the external environment to the cell, including mechanosensitive 

channels and cytoskeleton, as well as biochemical response is partially understood, the 

molecular principles of how forces control tissue homeostasis are still unclear. 

The epidermis of skin is exposed to constant mechanical stimuli, mostly stretch or 

tensile strain, as the skin has to expand to cover the whole body, for example during 

growth and development, pregnancy, weight gain, or wound healing (Evans et al., 

2013). In addition, EPCs also experience constant changes in their mechanical 

microenvironment, such as ECM stiffness, making them a relevant model system to 

study mechanical stress responses (Reichelt, 2007). 
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Fig. 1.2. Cellular mechanotransduction. Cells are exposed to many types of forces, 

including shear forces through fluid flow over the cell, and tensile forces through the 

ECM. Forces are sensed by membrane surface receptors, such as integrin, focal 

adhesion complex, or ion channels, and transmitted through the actin cytoskeleton to 

the nucleus, which in turn generates cellular responses (Jaalouk and Lammerding, 

2009). 

 

1.2.1 Mechanosensors 

Cells can probe and detect extrinsic mechanical stimuli by numerous cell surface 

receptors including stretch-sensitive ion channels, cadherin complexes, G protein-

coupled receptors, Tyr kinase receptors and integrins (Fig. 1.2) (DuFort et al., 2011; 

Zhu et al., 2000). Among them, integrins have received the most attention because of 

following reasons: 1) they are the main receptors that link the ECM to the cytoskeleton  

(Campbell and Humphries, 2011), 2) they play an essential role in cell proliferation, 

differentiation, migration and survival (Hood and Cheresh, 2002), 3) their ability to 

mediate bi-directional signaling into and from the cells (Radovanac et al., 2013), 4) it 

has been demonstrated that mechanical stimuli are transduced via integrins in various 

cell types and 5) integrins are well-characterized (DuFort et al., 2011; Reichelt, 2007). 
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Each integrin contains a large extracellular region to mediate the interactions between 

cells and the ECM, a short membrane-spanning domain, and a short cytoplasmic tail 

that tightly connected to the cytoskeleton (Campbell and Humphries, 2011). The 

transmission of forces at the cell-ECM interface requires integrins, the actomyosin 

cytoskeleton and many different focal adhesion proteins. In response to mechanical 

stimuli, integrins are activated and undergo conformational changes to promote the 

recruitment of other focal adhesion proteins on the cytoplasmic site of the plasma 

membrane. The assembly of multiprotein complexes upon integrin engagement triggers 

actomyosin contractility to transmit signals to the cells, this also provide a feedback 

loop to reinforce cells adhesion. These bidirectional interactions direct cellular response 

and adhesion strength (Clark et al., 2007; DuFort et al., 2011; Parsons et al., 2010). 

In addition, forces can also be transmitted across cells in tissues to coordinate and 

generate certain responses within a tissue; for example, during development, tissue 

remodeling, cell migration and wound healing. The adherens junctions and tight 

junctions provide important cell-cell adhesive contacts. Despite different components, 

they both connect to the actin cytoskeleton (Hartsock and Nelson, 2008; Niessen et al., 

2011). It was reported that cell-cell adhesions through cadherins can transmit 

mechanical forces (Ganz et al., 2006). Clasical type I cadherins including E-cadherin 

and P-cadherin are widely expressed in epithelial, VE-cadherin in endothelial, and N-

cadherin in other non-epithelial cells (Ladoux et al., 2015). These cadherins bind to β- 

and α -catenin in the cytoplasm, which then links to vinculin and filaments (F)-actin 

network, providing a mechanosensor complex at cell-cell adhesion (Huveneers and de 

Rooij, 2013; Ladoux et al., 2015). 

 

1.2.2 Actomyosin contractility 

The progress in which myosins interact with two parallel actin filaments (F-actin) to 

generate mechanical energy from chemical energy (ATP), is actomyosin contractility 

(Zaidel-Bar et al., 2015). The actomyosin cytoskeleton is critical for generation of 

contractile forces that are required for fundamental processes such as cell shape 

regulation, migration and cell division (Murrell et al., 2015). In addition, the 

actomyosin cytoskeleton acts as a linker between cell adhesion sites and the nucleus, 
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allowing direct force transmission from the extracellular environment to the nucleus 

and eventually to chromatin. The precise molecular mechanisms and functional 

relevance of this direct mechanical link are unclear (Simon and Wilson, 2011).  

1.2.2.1 Non-muscle myosin II 

There are at least 24 different classes, but most myosins belong to class II. They are 

ubiquitously expressed not only in muscle cells but also in non-muscle cells, in which 

they are called non-muscle myosins (NMs). NMs are a family of actin-binding, ATP-

dependent motor proteins that generate forces by moving antiparallel actin filaments 

(Betapudi, 2014; Hartman and Spudich, 2012; Vicente-Manzanares et al., 2009). NMII 

is composed of two heavy chains of 230 kDa (NMHC), two regulatory light chains of 

20 kDa (MLC) which mediate NMII activity, and two essential light chains of 17 kDa 

(ELC) which stabilize the heavy chain structure (Vicente-Manzanares et al., 2009). 

NMHC is organized into three major domains: the globular head, neck and tail. The two 

globular head domains (N-terminal) bind F-actin and use energy released from ATP 

hydrolysis to pull against F-actin, thus generating contractile force. The neck domain, 

which has MLC and ELC binding sites, acts as a level arm to generate movement 

(Korn, 2000; Uyeda et al., 1996). The C-terminal tail domain has binding sites to other 

structures and determines specific role of myosin. This domain dimerizes and form 

coiled-coil helical structure (Fig. 1.2.2.1A) (Korn, 2000). 

In mammals, there are three different NMII isoforms: IIA, IIB and IIC, encoded by 

three separate heavy chain genes, myosin heavy chain 9 (Myh9), Myh10 and Myh14, 

respectively. Importantly, although these three isoforms share approximately 60 – 80% 

identity in amino acid sequence, their in vivo functions do not fully overlap (Clark et 

al., 2007; Vicente-Manzanares et al., 2009). NMIIA and IIB are widely expressed in 

various tissues and cell lines, whereas NMIIC is more restricted (Golomb et al., 2004). 

Constitutive deletion of NMIIA expression leads to early embryonic lethality at E6.5 

because of defects in cell-cell adhesions and visceral endoderm formation (Conti et al., 

2004). Furthermore, previous studies reported that NMIIA is highly expressed in EPCs 

and is required for contact conformation, reinforcement and cadherin clustering (Sarkar 

et al., 2009; Vicente-Manzanares et al., 2009). NMIIB is highly expressed in brain and 

heart, and ablation of NMIIB expression results in severe defects in these tissues (Uren 



17 

et al., 2000). The function of NMIIC has not yet been fully characterized; however, it is 

suggested that this isoform is expressed during postnatal development (Golomb et al., 

2004). In addition to their different expression patterns, the NMII isoforms also have 

different kinetic properties. NMIIA has the highest actin-activated ATPase activity and 

it moves more rapidly among actin filaments, whereas NMIIB is more stably associated 

with actin (Vicente-Manzanares et al., 2009). 

The ELCs are responsible for stabilization of the NMHC structure do not regulate 

activity. The MLCs bind tightly but non-covalently to the NMHCs (Conti and 

Adelstein, 2008). NMII activity is regulated by the reversible phosphorylation on serine 

19 and in some extent threonine 18 of the regulatory light chains (MLC) (Vicente-

Manzanares et al., 2009). MLC is phosphorylated by number of kinases, such as Ca2+-

calmodulin-dependent MLC kinase (MLCK), Rho-kinase, or activated protein kinase. 

Inactive NMII folds into a compact incompetent structure, in which the tail bends and 

interacts with the head of the same myosin. This structure prevents the association with 

other NMIIs. In the presence of P-MLC, NMII is activated and transforms into an 

elongated filament. These elongated NMII filaments further self-assemble into bipolar 

NMII filaments through interaction between their tails, which initiates the interaction 

with actin filaments (Fig. 1.2.2.1B). The phosphorylated MLC can be dephosphorylated 

by myosin phosphatase, which is also regulated by Rho-kinase. Inhibition of myosin 

phosphatase increases NMIIA activity (Conti and Adelstein, 2008; Vicente-Manzanares 

et al., 2009).  
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Fig. 1.2.2.1. Structure of NMII. a. Domain structure of NMII, including two actin-

binding globular head domains, two ELCs and two MLCs. In the absence of MLC 

phosphorylation, NMII forms a compact incompetent structure. Phosphorylation of 

MLC activates NMII into an elongated molecule. b. Activated NMII molecules self-

assembly into bipolar filaments, initiating the interaction with F-actin (Vicente-

Manzanares et al., 2009). 

 

1.2.2.2 Actin dynamics 

The most abundant cytoskeletal protein in various cell types is actin. The basic unit of 

actin is a 43 kDa monomeric globular protein of 375 amino acids (G-actin). Each G-

actin has an enzymatic catalytic binding site for ATP or ADP in the center of the 

molecule, called cleft. The cleft is orientated toward minus end (between subunit 2 and 

4). Actin can hydrolyze ATP to ADP and releases Pi during filament assembly. 

Although F-actin polymerization does not depend on ATP, ATP-bound G-actin 

assembles more rapidly than ADP-bound. As G-actin molecules within a filament all 

orient in the same direction, actin filaments also have polarity (plus and minus ends) 

(Fig. 1.2.2.2). The polarity of F-actin is important both for assembly and direction of 

myosin movement. The plus end has high concentration of ATP-bound actin, whereas 

ADP-bound actin is at minus end. This polarity of actin filaments reflects different rates 

of monomeric assembly, the plus end elongates 5 to 10 times faster than the minus end. 
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The F-actin comprises of two parallel protofilaments that gently twist around each other 

into a right-handed double helix. It is a thin and flexible fiber, which is up to several 

micrometers in length and around 5 – 9 nm in diameter. Actin filaments are organized 

in higher order structure in vivo such as stress fibers or contractile bundles (Alberts et 

al., 2007; Cooper and Hausman, 2013).  

Actin polymerization is reversible, monomeric actin can assemble and disassemble at 

both ends of the filament, allowing actin filaments to be broken down as needed. The 

polymerization of F-actin occurs in three phases: a lag phase, an elongation phase and a 

steady state. During the lag phase, monomeric actin aggregates into dimeric and 

trimeric forms in a head-to-tail fashion, a process called nucleation. After this, actin is 

able to polymerize spontaneously by adding G-actin at both ends. During the growth of 

F-actin, the concentration of G-actin continuously drops until it reaches equilibrium, 

known as the critical concentration. At this concentration, the polymerization of F-actin 

is at the steady state, meaning the rate of assembling G-actin into F-actin equals to the 

rate of disassembly (Alberts et al., 2007; Cooper and Hausman, 2013). 

The polymerization of actin also requires other additional factors to stabilize this 

process. The most common and well-studied factors are Arp2/3 and formins. The 

Arp2/3 complex mediates the nucleation of new side branches on existing actin 

filaments, resulting in a Y-shaped structure. Formins are found at the plus end of 

unbranched filaments, such as stress fibers, to promote the growing of filament. 

Networks of branched actin are stiff enough to resist compression, whereas networks of 

unbranched actin are relatively soft, even at high density. These networks can resist or 

rupture in response to forces, which determined the dynamics of cell and tissue (Alberts 

et al., 2007; Lecuit et al., 2011; Murrell et al., 2015). 
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Fig. 1.2.2.2. Actin dynamics. Monomeric ATP-bound actin spontaneously aggregates 

in a process called nucleation. Once an actin nucleus is formed, the polymerization of 

actin proceeds quickly, with the plus end growing much faster than the minus end. 

During the growing process, actin can hydrolyse ATP to ADP and release phosphate. 

Dissociation of ADP‐actin occurs at the minus end. ADP-actin undergoes nucleotide 

exchange to ATP-actin. Capping proteins can associate with the growing plus end and 

regulate filament elongation (Nurnberg et al., 2011). 

 

1.2.2.3 Force transmission through actomyosin networks 

Force generation and transmission are controlled by actomyosin networks, in particular 

their architecture and mechanics. Any small change in internal or external mechanical 

forces can alter, for example, the stiffness of the actomyosin networks, resulting in 

changing cell shape, behavior or gene expression (Lecuit et al., 2011; Murrell et al., 

2015). The immediate responses of cells to extrinsic mechanical forces involve changes 

in their adhesive and cytoskeletal organization; for example, increasing actomyosin 

activity and stiffness, to serve as a scaffold structure so that the cells can resist and 

adapt to mechanical stress. Thus, forces must be sufficient to drive long-term effects on 
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cell fate specification and differentiation, in which their scale depends on the physical 

properties of the cells. The combination of these responses subsequently drives changes 

in tissue architecture and size (Dmitrieff and Nedelec, 2016; Houben et al., 2007; 

Wozniak and Chen, 2009). 

  

1.3 The nucleus 

In mammalian cells, the nucleus is the largest and stiffest membrane-enclosed 

organelle. It is physically linked to the cell membrane through the cytoskeleton and the 

linker of nucleoskeleton and cytoskeleton (LINC) complex (Wang et al., 2009). This 

physical interaction has been demonstrated to play many essential cellular functions, 

including cell migration, cytoskeletal organization, nuclear movement and positioning 

(Isermann and Lammerding, 2013). It is demonstrated that the nucleus also experiences 

mechanical forces, and has an important role in generating the cellular responses. For 

example, force-induced altered nuclear shape causes changes in chromatin architecture 

and affects gene expression (Dahl et al., 2008; Guilluy and Burridge, 2015), as well as 

feeds back onto the mechanical properties of cells and tissues (Swift and Discher, 

2014). Although some studies suggested that force-induced cellular responses occur 

through some mechanotransduction cascades that alter transcription factors activities 

(e.g. MAL/SRF and/or YAP/TAZ pathways) (Connelly et al., 2010; Dupont et al., 

2011), it is tempting to consider a direct impact of forces across the nuclear envelope 

(NE) on genomic processes and chromatin dynamics (Chang et al., 2015; Fedorchak et 

al., 2014; Schreiner et al., 2015). This type of effects have, however, not been 

experimentally demonstrated. 

The LINC complex is speculated to serve as a conduit to transmit mechanical cues into 

the nucleus (Pederson et al., 2015). Failure of cells to respond to mechanical forces due 

to impaired NE structure or function can result in a broad range of diseases, including 

dystrophy, cardiomyopathy, and premature ageing (Isermann and Lammerding, 2013). 

Importantly, many questions regarding the mechanisms and physiological significance 

of force transduction across the NE remain, and further studies are therefore required to 

unravel these (Fedorchak et al., 2014; Pederson et al., 2015).  
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1.3.1 Nuclear envelope 

The nucleus can be divided into at least two compartments, the NE and the 

nucleoplasm. The nuclear envelope functions as a selective permeable boundary 

between the cytoplasm and the nucleoplasm. It consists of two phospholipid-bilayers, 

the inner (INM) and the outer nuclear membrane (ONM), nuclear pore complexes 

(NPCs) and an underlying nuclear lamina (Fig. 1.3.1). This barrier regulates the 

availability of factors required for chromosomal events, such as DNA replication, 

transcription and processing, and prevents free diffusion of macromolecules in and out 

of the nucleus (Alberts et al., 2007; Cooper and Hausman, 2013).  

The ONM is continuously linked with the rough endoplasmic reticulum (RER). The 

ONM shares similar functions as the RER, and also has ribosomes attached to its 

surface. Both membranes are separated by a 30 nm luminal space, which is fused into 

the RER’s lumen (Hetzer, 2010; Mekhail and Moazed, 2010). The INM is enriched in a 

wide range of proteins that are specific to the nucleus. These proteins are required for 

nuclear structure, chromosome organization, DNA repair machinery and transcriptional 

regulation (Katta et al., 2014). At least 60 proteins have been identified to associate 

with the INM. However, their functions are mostly unknown (Hetzer, 2010). Among 

them, LEM (lamina-associated polypeptides (LAP) – emerin – Man1) domain proteins 

are well characterized. They can both anchor the nuclear lamina to the INM and interact 

with chromatin (Berk et al., 2013; Katta et al., 2014).  

The ONM and INM are fused together at nuclear pores, which are aqueous channels, 

providing gateways for bidirectional trafficking between the nucleus and the cytoplasm. 

Ions and small molecules (< 40 kDa) can freely cross the NE, whereas larger molecules, 

such as proteins and RNA can only be actively transported through the pores. The 

active transportation of macromolecules requires the interaction between the cargo, its 

specific transporter (e.g. exportin, importin, transportin, or karyopherin) and the 

GTPase Ran (Cooper and Hausman, 2013; Kabachinski and Schwartz, 2015; Strambio-

De-Castillia et al., 2010). Although this process is a critical regulator of cellular 

responses for internal and external cues, the mechanisms and regulations of nuclear 

transport machinery remain undefined (Chaumet et al., 2015).  
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The nuclear lamina is a scaffold protein structure comprised of type V intermediate 

filaments called nuclear lamins, which are closely associated with the INM and 

attached to the periphery of NPCs and to chromatin (Dechat et al., 2008). This structure 

provides a mechanical support for the nucleus as well as a scaffold for multiple nuclear 

processes (Isermann and Lammerding, 2013). In mammals, lamins are divided into two 

classes: A and B. Lamin A and C are the most common type of A-type lamins. They are 

derived from LMNA gene by alternative splicing. Two major B-type lamins, B1 and B2, 

are encoded by LMB1 and LMB2, respectively. The expression of lamins depends on 

cell type and developmental stage. All mammalian cells express at least one B-type 

lamin, whereas A-type lamins become expressed later in development (Burke and 

Stewart, 2013; Goldman et al., 2002). For many years, the nuclear lamina has been 

viewed as primarily a structural compartment, contributing to the nuclear integrity, 

particularly in mechanically stress tissues. Recent studies, however, highlight the 

importance of the nuclear lamina in chromatin function and gene expression. 

Importantly, mutations or mislocalization of any components of NE result in numerous 

severe human diseases, emphasizing the crucial role of the NE and its components for 

cell function (Burke and Stewart, 2013; Cohen et al., 2008; Hetzer, 2010).  
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Fig. 1.3.1. Overview of the nuclear envelope. The two phospholipid-bilayers of the NE 

are separated by a luminal space, which is continuous with the ER network. The ONM 

and INM are connected at the nuclear pores. The INM is enriched by a set of integral 

membrane proteins that connect the nuclear envelope to chromatin directly or 

indirectly via chromatin-associated proteins and the nuclear lamina. The chromatin is 

connected to the cytoplasmic cytoskeleton through the LINC complex (Schooley et al., 

2012). 

 

1.3.2 The LINC complex  

1.3.2.1 Nesprins and SUN domain proteins 

The LINC complex is composed of inner and outer nuclear membrane proteins, 

providing a physical link between the nucleus and the cytoskeletal (Fig. 1.3.2.1). It has 

diverse functions in nuclear positioning, chromatin organization, and 

mechanotransduction (Chang et al., 2015). The core components of LINC complex are 

Nesprins (KASH domain proteins) and SUN domain proteins (Kim et al., 2015; 

Lombardi et al., 2011). Emerin and Lamin A/C, other NE proteins have been also 
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considered as peripheral components of the LINC complex (Ostlund et al., 2009; 

Stewart et al., 2007). 

Nesprins are C-terminal Klarsicht, ANC-1 and Syne Homology (KASH) domain 

proteins, located at the ONM. In mammals, four nesprin isoforms have been identified: 

nesprin-1, 2, 3, 4. Nesprin 1 and 2 contain N-terminal actin-binding domains, whereas 

nesprin 3 binds to intermediate filaments through plectin, and nesprin 4 to kinesin-1 

(Kim et al., 2015). It has been shown that nesprin 1 and 2 play important roles in 

maintaining nuclear architecture, sensing mechanical forces and regulating gene 

expression (Guilluy et al., 2014; Lombardi et al., 2011; Zhang et al., 2010). Nesprin’s 

KASH domain consists of a transmembrane region followed by a conserved stretched 

of around 35 amino acids protruding into the perinuclear space. This domain interacts 

with SUN domain proteins, allowing a proper localization of nesprins in the NE 

(Razafsky and Hodzic, 2009; Starr and Fridolfsson, 2010).  

SUN domain proteins are type-II transmembrane proteins with a conserved C-terminal 

SUN domain localizing in the perinuclear space and an N-terminus facing the 

nucleoplasm. In mammals, five SUN domain proteins have been identified: SUN1, 2, 

3, 4, 5. Among them, SUN1 and 2 are widely expressed. The C-terminal region of 

SUN domain interacts directly with KASH domain, whereas its N-terminal region 

binds to A-type lamins (Fridkin et al., 2009; Razafsky and Hodzic, 2009). SUN domain 

proteins are essential to a wide range of cellular processes (Kim et al., 2015). SUN1 is 

required for tethering telomeres to the NE, and together with KASH5, they mediate 

proper pairing of chromosomes during meiosis (Horn et al., 2013). SUN1/2 double 

knockout mice die shortly after birth and can be rescued by expressing Sun1 gene, 

suggesting that SUN proteins play critical but redundant roles (Lei et al., 2009). 

Importantly, KASH domain proteins are recruited by SUN domain proteins, and the 

KASH-SUN interaction is essential for bridging the NE. This model suggests a 

mechanism by which the LINC complex can sense signals bidirectionally at the NE 

(Starr and Fridolfsson, 2010; Tzur et al., 2006).  
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Fig. 1.3.2.1. The LINC complex acts as a bridge linking the chromatin to the 

cytoskeleton. This complex consists of KASH domain, SUN domain proteins, emerin 

and lamin A/C. Nesprin, a KASH domain protein, spans the ONM and interacts with 

the cytoskeleton networks. SUN domain protein and emerin at the INM interact directly 

with lamin A/C and heterochromatin. 

 

1.3.2.2 Emerin 

Emerin (Emd) is a well-conserved type II transmembrane protein consisting of 254 

amino acids. The main sequence of Emd is composed of an N-terminal LEM domain, a 

region rich in hydrophobic amino acids containing the nuclear localization signal, and 

a C-terminal transmembrane region. After synthesis, Emd is inserted into the ER 

system and diffused to the continuously linked-ER ONM. Emd is a relative small 

protein ~29 kDa (34 kDa observed molecular weight), which allows it to diffuse freely 

through the NPC, where the INM and ONM are integrated. At the INM, Emd binds to 

lamins for proper localization and function (Ostlund et al., 2009; Wolff et al., 2001). 
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Emd principally localizes at the INM where it interacts with lamins, barrier-to-

autointergration factor (BAF) and chromosome through its LEM domain. Additionally, 

Emd also interacts with nuclear myosin I, nuclear αII-spectrin, ß-catenin, actin, etc 

(Holaska and Wilson, 2007; Markiewicz et al., 2006). Emd is ubiquitously expressed, 

and has been reported to have multiple functions, including transcriptional regulation, 

cell signaling, and maintaining nuclear and chromatin architecture (Berk et al., 2013; 

Koch and Holaska, 2014; Lammerding et al., 2005). Emd knockout mice show no 

overt pathology, but defects in muscle regeneration and subtle defects in motor 

coordination (Melcon et al., 2006). Interestingly, failure to express or altered the 

localization of Emd in human leads to Emery-Dreifuss Muscular Dystrophy (EDMD) 

which, particularly affects tissues that experience mechanical loads, resulting in 

progressive skeletal muscle weakening, contractures of major tendons and potentially 

fatal cardiac conduction defects (Holaska and Wilson, 2006; Koch and Holaska, 2014). 

Furthermore, Emd has been shown to reside at the interface between the nucleus and 

the cytoplasm, where it binds to other ONM proteins (Crisp and Burke, 2008; 

Salpingidou et al., 2007), as well as to F-actin, and promotes the polymerization of 

actin (Holaska et al., 2004). Recent study suggested that Emd regulates mechanical 

reinforcement of isolated nuclei. Force strongly induces Emd phosphorylation, and 

Emd-deficient-nuclei fail to adapt to force (Guilluy et al., 2014). Together, Emd is 

predicted to play a role in anchoring cortical nuclear actin-myosin networks near the 

NE to provide structural rigidity to the nuclear envelope and to transmit mechanical 

forces from the cytoplasm to the nucleus (Koch and Holaska, 2014). 

 

1.3.3 Chromatin architecture 

The whole human genome consists of 23 chromosome pairs, in total about 2 meters 

physical length of naked DNA. How can this much DNA be packed within the nucleus 

with an average diameter of 6 µm. To achieve this highly compacted order, the DNA 

helix is wrapped 1.7 turns (146 base pairs) around histone proteins, forming 

nucleosomes. The nucleosome structure is highly dynamic and is subjected to change 

by chromatin remodelling complexes. The activity of these complexes is associated 

with the regulation of gene expression, according to the needs of the cell. The string of 
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nucleosomes is further compacted into a 30 nm chromatin fiber. This shortens DNA 

about 40-fold relative to naked DNA. In interphase nuclei, it has been suggested that 

there are at least two higher levels of compacting beyond the 30 nm chromatin fiber 

(Fig. 1.3.3.1) (Alberts et al., 2007; Pollard and Earnshaw, 2007). 

 

Fig. 1.3.3.1. DNA packaging in the nucleus. DNA wraps around the histone core to 

form a nucleosome. Nucleosomes cluster together into 30 nm chromatin fiber The DNA 

packaging allows DNA to fit inside the nucleus. (Rosa and Shaw, 2013). 

 

Based on structural and functional criteria, chromatin is divided into two types: a 

highly condensed form, called heterochromatin, and a less condensed form, known as 

euchromatin. Euchromatin contains all actively transcribed genes. Heterochromatin 

represents a special compact structure of chromatin. There are two types of 

heterochromatin: constitutive and facultative heterochromatin. Constitutive 
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heterochromatin is mainly associated with gene-poor regions and repetitive genetic 

elements, which are packaged close to the nuclear periphery. In contrast, facultative 

heterochromatin is a special term to describe compact genomic regions that can change 

their conformation to an “open” state in certain developmental stages or in a specific 

cell type. The formation of heterochromatin mainly relies on epigenetic mechanisms. 

The eukaryotic euchromatin and heterochromatin are spatially segregated within the 

nucleus, and play important roles in regulation of genome functions. Most nuclei have 

euchromatin residing toward the nuclear interior, while heterochromatin tends to 

localize at the nuclear periphery. In mammals, genome-wide analysis showed that 

lamin-bound heterochromatin builds up to 40% of the genome, and organizes into 

called lamin-associated domains (LADs) that span from several kilobases up to 

megabases. Importantly, euchromatin and heterochromatin segments are alternating, 

which require an orientational folding of chromosome, indicating that the organization 

of chromosomes is non-random and correlates with the functional segments. During 

interphase, each chromosome occupies a distinct region of the nucleus, known as 

chromosome territory, providing a basic feature of nuclear architecture (Fig. 1.3.3.2A) 

(Alberts et al., 2007; Allis and Jenuwein, 2016; Oberdoerffer and Sinclair, 2007; 

Saksouk et al., 2015a; Solovei et al., 2016; Towbin et al., 2012). 

Several recent studies on three-dimensional (3D) structure of the mammalian genomes 

have gained more insight into chromatin dynamics and functions. At the megabase 

scale, the genome can be divided into two compartments: A and B (approximately 3-5 

Mb each) (Fig. 1.3.3.2B). The A compartments are associated with open chromatin 

regions (mostly euchromatin), while the B compartments associate with closed 

chromatin. These two compartment alternate along chromosomes, and tend to interact 

with other same type compartments throughout the genome. They are cell-type specific 

and the changes are associated with gene expression, meaning that they are rather 

gradients than simply two states. The A and B compartments contribute to the genome 

maintenance, gene expression regulation, and transmission of genetic information 

(Dekker et al., 2013; Fortin and Hansen, 2015; Gonzalez-Sandoval and Gasser, 2016).  
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Fig. 1.3.3.2. Chromosome territories and genome compartments. Chromosome 

conformation capture profiles revealed that the mammalian chromatin is organized 

into topologically associating domains (TADs). A TAD is referred as a hard-wired unit 

of chromosome. Groups of adjacent TADSs form either active (A) or inactive (B) 

compartments. These compartments alternate along chromosomes. Each chromosome 

occupies a specific region within the nucleus, known as chromosome territory (Dekker 

et al., 2013; Ea et al., 2015). 

 

Within a compartment, chromatin itself folds into building blocks, known as 

topologically associating domains (TADs), which often span to hundreds of kilobases 

(500-800 kb). TADs can be defined as boundary elements or linear units of chromatin 

that fold into 3D structures. They serve as functional platforms for physical looping 

interactions between genes and proximal as well as distal regulatory elements, e.g. 

enhancer-promoter interactions. TADs are enriched with several genomic elements 

such as CTCF (a transcriptional repressor), especially at TADs boundaries. It has been 

suggested that in some cases, CTCF-bound sites may act as boundary elements, but 

further experiments are required. Unlike A/B compartments, TADs are conserved in 

their positioning patterns across cell types. TADs can be active or inactive, which is 

defined by chromatin environment. The mechanism ensuring the chromatin 
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arrangement within TADs, and how TADs works together and how they integrate with 

other epigenetic marks to regulate nuclear architecture and functions are not yet 

understood (Ciabrelli and Cavalli, 2015; Dekker et al., 2013; Fortin and Hansen, 2015; 

Gonzalez-Sandoval and Gasser, 2016; Pope et al., 2014; Solovei et al., 2016). 

 

1.3.4 Epigenetic regulation of chromatin dynamics 

Epigenetics is defined as the study of heritable changes in genome function that occur 

without alterations the DNA sequence. The epigenetic marks ensure cell identity, and 

determine whether, when and how particular genetic information will be expressed. 

Therefore, epigenetic processes are critical for development and differentiation. The 

molecular basis of epigenetic processes is complex and involves many factors such as 

chromatin modifications, nucleosome remodeling and histone variants. Importantly, 

epigenetic marks are inherited across generations; however, they are reversible upon 

environmental signals (Allis and Jenuwein, 2016; Avgustinova and Benitah, 2016; 

Probst et al., 2009). 

As mentioned, DNA in the nucleus is highly folded and compacted by histones into 

nucleosomes, a unit of chromatin fiber. Each nucleosome contains an octamer of core 

histones: an H3-H4 tetramer and two H2A-H2B dimers. Each histone harbors a 

flexible N-terminal tail protruded from the histone core. The histone tail is important 

for interactions both inside and outside of nucleosome, and is subjected to a variety of 

post-translational modifications (PTMs), including methylation (me), acetylation (ac), 

ubiquitination (ub), phosphorylation (ph), and SUMOylation (su) (Fig. 1.3.4). These 

modifications have essential roles in regulation of chromatin structure, and therefore 

affect gene expression, silencing and many other DNA processes such as replication, 

recombination and repair machinery. The complexity of possible combinations of 

PTMs of histones and the correlation impacts on genomic functions led to the proposal 

of the histone code hypothesis, emphasizing the important role of epigenetic marks to 

the genetic code (Bannister and Kouzarides, 2011; Campos and Reinberg, 2009; 

Jenuwein and Allis, 2001; Pollard and Earnshaw, 2007). 
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Fig. 1.3.4. Schematic of histone PTMs and their interactions. Histone PTMs can 

interact and regulate other modifications. A positive regulation is indicated by an 

arrow head, whereas negative effect is represented by a flat head (Bannister and 

Kouzarides, 2011). 

 

1.3.4.1 Polycomb repressive complexes  

Polycomb group (PcG) proteins were first discovered in Drosophila melanogaster as 

repressors of Hox genes. Genome-wide studies in vertebrates, including humans, 

revealed widespread roles of PcG in epigenetic silencing machinery that is essential for 

gene regulation for normal development, cell identity, and a wide-range of cancers. 

Furthermore, PcG proteins also participate in regulating nuclear architecture, such as 

looping and long-range interactions between TADs, thereby regulating gene expression 

at multiple scales. In mammals, most PcG proteins belong to two transcriptional 

repressive complexes: PRC1 and PRC2 (Blackledge et al., 2015; Entrevan et al., 2016). 

A mammalian PRC1 contains RING1A/B that ubiquitinates lysine 119 (K119) on H2A 

(Fig. 1.3.4.1A), and other subunits, like the chromobox homolog (Cbx), one of six 

polycomb ring fingers. The subunit composition is responsible for recruitment to target 

genes and the catalytic activity of PRC1. The presence of multiple different PcG 

complexes indicates the overlapping and redundant functions of PRC1. Genetic studies 

showed that it is indeed the case. Most PRC1 knockout mice survive during early 
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embryogenesis but show restricted phenotypes at later stages. Although PRC1 has been 

shown to repress transcription and promote chromatin compaction, its mechanism is not 

yet clear (Di Croce and Helin, 2013; Lanzuolo and Orlando, 2012; Laugesen and Helin, 

2014). 

Fig. 1.3.4.1A. Schematic representation of PcG proteins. PRC1 has a core of 4 

subunits, in which RING1A/B is responsible for ubiquitination of K119 on H2A. The 

core subunits of PRC2 contain EZH1/2, which methylates K27 on H3. H3K27me3 and 

H2AK119Ub are important to establish and maintain the polycomb-mediated gene 

repression, and to promote chromatin compaction. 

The core subunits of PRC2 consist of the SET-domain-containing component EZH2 

(and to a lesser extent the paralog protein EZH1), the Zinc finger protein SUZ12, and 

the WD40 protein EED. The core complex interacts with several additional factors, 

such as RBBP4, JARID2 or non-coding RNA. Different partners affect PRC2 activity 

or its recruitment to target genes. A signature activity of PRC2 is to catalyse the mono-

, di- and tri-methylation on K27 of H3 (H3K27me1/2/3) by the EZH2 subunit (Fig. 

1.3.4.1A). Current data shows that the establishment of H3K27me1/2 is very fast, 

whereas H3K27me3 is relatively slow and requires stable binding of PRC2. Therefore, 

H3K27me3 occupancy is usually overlapped with a PRC2 binding signal. H3K27me3 

is a hallmark for gene repression and highly enriched at promoter regions of tissue-

specific genes, which normally have CpG-rich sequences. It is demonstrated to be 

critical for normal development, gene expression and cell identity. Misregulation of 

PRC2 has a global effect on H3K27me3 and can lead to embryonic lethality, and many 

kinds of cancers. In spite of its essential roles, the genes encoding PRC2 components 

are often mutated. Misregulation of PRC2 activity has been thought not to change the 

transcription programs, but rather alter the thresholds for gene activation. This implies 

that the chromatin is more sensitive to environmental stimuli, and therefore regulation 

of chromatin states are critical during fate transitions . Interestingly, genome-wide 



34 

studies revealed overlaps between signals for H3K27me3 and H3K4me3 – a marker 

for active transcription – on some tissue-specific promoters, forming so called bivalent 

domains (Fig. 1.3.4.1B). The bivalency is considered to poise RNA polymerase at 

developmental or lineage genes, thus allowing their timely activation while remaining 

inactive in the absence of differentiation signals (Becker et al., 2016; Di Croce and 

Helin, 2013; Jadhav et al., 2016; Laugesen and Helin, 2014; Richly et al., 2011; Simon 

and Kingston, 2013; Voigt et al., 2013).  

 

Fig. 1.3.4.1B. Functions of PcG proteins. The binding of PRCs contributes to gene 

repression in two ways: 1) it causes chromatin compaction, and 2) it interferes with 

transcription process by pausing RNA polymerase II at the promoter region, known as 

bivalent promoter (Di Croce and Helin, 2013). 

 

Several studies have shown that PcG can interact with histones, DNA and RNA, which 

potentially might play roles in recruitment. Some studies found that the role of PRC2 is 

to block initial transcription, whereas other studies demonstrated that PRC2 is recruited 

upon transcriptional repression, and is required for maintaining the silencing state of 

target genes (Laugesen and Helin, 2014; Riising et al., 2014). It has been also proposed 

that the recruitment of PRC1 depends on PRC2, because the CBX subunit of PRC1 has 

high affinity with H3K27me3. This led to the classical model in which PRC2 is 
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recruited onto target genes to catalyse H3K27me3, which then facilitates the 

recruitment of PRC1, resulting in silencing and chromatin compaction. However, this 

model has been challenged in recent years for several reasons: 1) not all PRC1-bound 

locations require H3K27me3, and 2) the binding of PRC1 and subsequent 

ubiquitination of H2AK119 in some cases trigger the recruitment and stimulate 

H3K27me3 activity of PRC2, suggesting a new hierarchy for PRC recruitment under 

certain circumstances. Collectively, although there are several proposal models, no 

study has been so far able to pin out a clear recruitment mechanism of PcG proteins 

(Blackledge et al., 2015; Laugesen and Helin, 2014; Schwartz and Pirrotta, 2014; van 

den Boom et al., 2016). 

 

1.3.4.2 H3K9 methylation 

Among the epigenetic mechanisms, the formation of heterochromatin is important for 

chromatin stability and cell-type specific silencing of genes. H3K9me2/3 together with 

H3K27me3 are two important epigenetic marks controlling transcriptional repression. 

By using chromatin immunoprecipitation (ChIP) techniques, a genome wide 

distribution of these marks has been revealed. As mentioned, H3K27me3 is enriched at 

facultative heterochromatin, in particular associated with tissue-specific genes, and is 

reversible. In contrast, H3K9me2/3 is detected prominently at constitutive 

heterochromatin, and is considered to be a permanent repression signal. However, 

current studies have observed the enrichment of H3K9me2/3 signal in some cell-type 

specific sites of facultative heterochromatin. These regions increase during 

differentiation in a cell-type specific manner. Importantly, although some 

developmental transcription factor genes are enriched for both H3K9me2/3 and 

H3K27me3, most H3K9me2/3-containing facultative heterochromatin domains are 

distinct from the H3K27me3 domains, indicating different roles of these repressive 

marks. Almost 40% of the genome is associated with the nuclear lamina through LADs, 

and these domains have been demonstrated to correlate with H3K9 methylation from 

worms to human. H3K9 methylation is therefore thought to provide a signal to trigger 

perinuclear anchoring (Becker et al., 2016; Gonzalez-Sandoval and Gasser, 2016; 

Hawkins et al., 2010; Kim and Kim, 2012; Lawrence et al., 2016; Towbin et al., 2012).  
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In mammals, methylation of H3K9 in constitutive heterochromatin, pericentromeric 

and telomeric regions is mainly catalyzed by Suppessor of Variegation 3-9 homolog 1 

and 2 (SUV39H1 and 2). Other methyltransferases, including SET domain bifurcated 1 

(SETDB1) and Euchromatic Histone-Lysine N-Methyltransferase 1 and 2 (EHMT1/2) 

can also methylate H3K9 and are mostly found in euchromatic regions. Also here, the 

mechanism of methylatransferase recruitment remains unclear (Dejardin, 2015; Kim 

and Kim, 2012; Peters et al., 2003). Various proteins have been shown to interact with 

heterochromatin, in particular binding specifically to different level of methylation 

H3K9. Among them, heterochromatin protein 1 (HP1) isoforms are most extensively 

studied. Together with H3K9me2/3, HP1 isoforms are found to occupy constitutive 

heterochromatin as well as LADs. It has been suggested that both HP1 and H3K9 

methylation are essential to establish heterochromatin domains in mammals. However, 

although HP1 and H3K9 methylation signals overlap, recent data shows that HP1 is not 

required for SUV39H recruitment, H3K9me3 spreading and tethering methylated H3K9 

to nuclear lamina, suggesting that the perinuclear anchoring of LADs is mediated by a 

novel class of uncharacterized factors (Bickmore and van Steensel, 2013; Dejardin, 

2015; Towbin et al., 2012). 

 

1.3.5 RNA polymerase II 

Eukaryotic nuclei have three RNA polymerases: RNA polymerase (RNAP) I, II and 

III. They share a common structure and some similar subunits, but they transcribe 

different DNA types. RNAPI and III transcribe genes encoded for transfer RNA, 

ribosomal RNA, and various small RNA, whereas RNAPII is responsible for the 

synthesis of all messenger RNA (mRNA) as well as many non-coding RNA. RNAPII 

consists of twelve subunits, of which RPB1 is the largest. RPB1 has a unique carboxyl-

terminal domain (CTD), which is not required for catalyzing the synthesis of RNA. 

The CTD consists of 26 (yeast) or 52 (human) unusual tandem repeats of the consensus 

heptapeptide sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. The CTD acts as a 

binding scaffold for many nuclear factors involving in all steps of the transcription 

process, such as initiation, elongation, termination, as well as the processing of nascent 
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RNA (Hahn, 2004; Phatnani and Greenleaf, 2006; Pollard and Earnshaw, 2007; Suh et 

al., 2013). 

All the amino acids within the CTD are highly subjected to various PTMs, including 

phosphorylation, glycosylation, cis-trans isomerization and ubiquitination. The roles of 

all PTMs are far from being understood. Among them, phosphorylation of CTD has 

been studied extensively. The pattern of CTD phosphorylation is highly dynamic, and 

its state correlates to the transcription cycle. CTD phosphorylation recruits factors that 

regulate chromatin states and RNA processing, thus integrating transcription with 

genome architecture and stability. Importantly, RNAPII can exist across active and 

inactive genes with different state of CTD phosphorylation suggesting the crucial role 

of CTD PTMs for controlling gene expression state (Fig. 1.3.5) (Brookes and Pombo, 

2009; Phatnani and Greenleaf, 2006). 

Fig. 1.3.5 Phosphorylation of RNAPII CTD during transcription. Average ChIP 

profile for different RNAPII phosphorylation states. Active genes are associated with 

S5p and S7p enrichment peaks near TSS, where as S2p level is increasing throughout 

the gene bodies. For bivalent promoters, S5p is highly enriched around TSS and 

overlapped with PRC, but no signal from S2p. TSS, transcription start site; TES, 

transcription end site (Brookes and Pombo, 2009). 

RNAPII is recruited to promoter regions in a hypophosphorylated state. During 

transcriptional initiation, the CTD becomes phosphorylated at Ser5 (S5p) by 
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transcription factor (TF) IIH. S5p plays direct and important role in recruiting and 

facilitating the capping enzyme, synthesizing the 5’-cap structure on the nascent RNA. 

It also contributes in the recruitment of other factors involving in the transition process 

from initiation to elongation state of RNAPII, early transcription termination, as well 

as histone modification. Shortly after promoter escape, the level of S5p decreases. 

Beside S5p, TFIIH can also phosphorylate S7, which is known to be required for 3’-

end processing of non-coding RNA, however, the role of S7p at the gene body regions 

is still controversial. One study suggested that this mark contributes in recruiting the 

positive transcription elongation factor (P-TEFb), which phosphorylate S2 of CTD. 

S2p increases throughout productive elongation state of RNAPII. This mark helps in 

the recruitment of splicing and polyadenylation factors, as well as H3K36 histone 

methyltransferases, promoting compatible chromatin remodelling for a stable 

transcription process (Brookes and Pombo, 2009; Suh et al., 2013; Tietjen et al., 2010). 

The presence of RNAPII at promoter regions of PRC-repressed genes in association 

with S5p (bivalent promoters) has been recently discovered and a focus of attention. 

This phenomenon is referred as promoter-proximal pausing of RNAPII. The poised 

state is a late step of the transcriptional initiation process, but instead of entering to the 

elongation state, the polymerase is stalled by negative factors, such as PRC2. This state 

is associated with the production of approximately 20 – 50 nucleotides nascent 

transcripts from these poised promoters. Further activation factors are required for the 

poised RNAPII to continue to transcribe. This phenomenon can occur both at highly 

active or at less transcribed genes. Studies of the pausing phenomenon have brought 

more insight to its functions within recent years. It is proposed as a checkpoint for 

transcription to ensure that the nascent RNA is protected and matures into fully 

functional mRNA. Moreover, establishment of poised RNAPII helps to maintain an 

open and accessible chromatin structure as a primed state for transcriptional bursting in 

response to signalling. Genome wide analysis showed a widespread of pausing 

RNAPII state in transcriptional regulation and its important roles during development, 

signalling and response to environmental stress (Adelman and Lis, 2012; Brookes and 

Pombo, 2012; Jadhav et al., 2016; Voigt et al., 2013). 
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1.3.6 Function of actin during transcription process 

Actin and myosin have been studied extensively for their roles in generating 

cytoskeleton and transduced mechanic forces in the cytoplasm. Interestingly, actin is 

constantly shuttled between the cytoplasm and the nucleus specifically in a complex 

with cofilin driven by importin-9 (IPO9), and vice versa in a complex with profilin by 

exportin-6 (XPO6). The cytoplasmic and nuclear pools of actin are dynamically 

connected, and the shuttling rate depends on the available of G-actin (Dopie et al., 

2012; Stüven et al., 2003). Although the conformation of nuclear actin is unclear, it is 

suggested that a nuclear-base mechanism exists to regulate nuclear actin 

polymerization between monomeric G-actin and short oligomeric actin or even long 

actin fibers. The functions of each nuclear actin form are still uncharacterized, 

although cells treated with actin polymerization inhibitors exhibit disrupted nuclear 

actin functions. Since actin is present both in the cytoplasm and the nucleus, it is 

proposed to function as a sensor to transduce extrinsic stimuli to the genome and 

mediate gene expression (Dopie et al., 2012; Percipalle and Visa, 2006; Visa and 

Percipalle, 2010). 

In 1984, for the first time, Jockush and Chambon showed a potential role of actin in 

gene transcription. Since 1998, several independent laboratories have reported that 

actin is indeed involved in many nuclear processes. G-actin has been identified as a 

structural component of ATP-dependent chromatin remodeling complexes, but its 

function within these complexes is unknown (Zhao et al., 1998). Actin can also be 

detected in ribonucleoprotein particles, and found at sites of active transcription. 

Importantly, actin has been shown to associate with all three RNA polymerases, and to 

be directly involved in transcriptional elongation (Kukalev et al., 2005; Percipalle, 

2013). Collectively, although the role of nuclear actin is far from understood, it has 

been suggested to play various functions in the nucleus. Importantly, the nuclear actin 

pool is linked to the cytoplasmic actin, suggesting a novel role of nuclear actin in 

generating cellular responses to mechanical force-induced regulation of cytoplasmic 

actin remodeling. 
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2. Aims of the thesis 

Mechanotransduction is the process by which mechanical stimuli are sensed by the cell 

or its subcompartments, converted into biochemical signals, resulting in changes in cell 

behavior that can regulate a number of cellular signaling pathways. However, the 

molecular mechanisms underlying this process remain unclear. This study aimed to 

understand the role of extrinsic mechanical force in regulating epidermal progenitor 

cell (EPC) fate decisions as well as the responsible mechanosensitive pathways. In 

particular, I want to understand: 

1. What is the impact of force on EPCs during their differentiation? 

2. How can force be transmitted into the nucleus to drive transcriptional responses? 

3. What is the biological consequence of mechanical force on skin homeostasis? 
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3. Methods 

3.1 Cell culture of EPCs 

EPCs (human primary epidermal keratinocytes, CellnTec HPEKp) were grown in 

epithelial growing medium (CellnTec CnT-PR). EPCs were maintained on Collagen-I 

pre-coated 10 cm dish at a density of 25000 viable cells/cm2 in a humidified chamber 

at 37oC and 5 % CO2 until reach 70 – 90% confluent. To get single cell suspension, 

EPCs were rinsed once with 1X PBS and subjected to accutase cell detachment 

solution (Sigma A6964) for 10 min at 37oC. Detached EPCs were suspended in 3 

volumes (V) of CnT-PR medium, followed by centrifugation at 300 x g for 5 min at 

room temperature (RT). For storage, EPCs were resuspended in CnT-PR medium with 

10 % dimethyl sulfoxide (DMSO; Sigma C6164) at the concentration of 1 x 106 viable 

cells/ml. Cells were frozen down in cryovials (Thermo 368632) using freezing 

container (Thermo 5100-0001). EPCs were stored in liquid nitrogen tanks. For 

thawing, EPCs were thawed in 37oC water bath, subsequently diluted in 10 V of CnT-

PR so that the final concentration of DMSO is less than 1 %. EPCs were then placed 

on the pre-coated 10-cm dish as described. 

 

Collagen-I coating medium 

0.02 M  HEPES pH 7,3 (1 M stock, Roth 9105.4) 

0.25 ml Collagen-I, rat tail 3 mg/ml (EMD Millipore 08-115) 

filled up with MEM (Spinners modified, Sigma M8167) to 25 ml. 

 

10X PBS 

80 g  NaCl (Roth 3957.2) 

2 g  KCl (Roth 6781.1) 

14.4 g  Na2HPO4 x H2O (Roth T877.1) 

2 g  KH2PO4 (Roth 3904.1) 

filled up with milli-Q H2O to 1 L, adjusted pH to 7.4 

1X PBS was diluted from 10X PBS with milli-Q water 
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3.2 Mechanical straining 

For mechanical straining, EPCs were placed on a Collagen-I pre-coated silicon 

elastomeric membrane culture plate (Bioflex BF-3001U; FlexCell International 

Corporation) until 70 % confluent. After which, cells were switched to keratinocyte 

differentiation medium and exposed to extrinsic biaxial cyclic mechanical strain using 

the Flexcell Tension System (FX4000T; FlexCell International Corporation). The 

strain’s parameters were set to 10 % elongation at 100 mHz frequency. 

 

Keratinocyte differentiation medium 

110 ml  Ham’s F12 (PAA E15-016) 

5 ml  Pen/Strep (100x, Gibco 15140-122) 

50 µl  Hydrocortison (5 mg/ml, Calbiochem 386698) 

5 µl  Cholera Toxin (1mg/ml, Sigma C8052) 

1.8 mM CaCl2 (stock 100 mM, Roth T885.2) 

filled up with MEM to 500 ml, and sterile filtered. 

 

3.3 RNA sequencing analysis and bioinformatics 

RNA was isolated using the RNeasy Plus Mini Kit (QIAGEN 74134). After 

quantification and quality control of total RNA (Agilent 2200 TapeStation; RIN=10 for 

all samples), total RNA amounts were adjusted to equal levels after which ERCC 

ExFold RNA Spike-In Mixes (Ambion) were added to all samples according to the 

manufacturer’s instructions. Libraries were prepared with NEBNext Ultra Directional 

RNA Library Prep Kit (New England Biolabs) followed by sequencing with HiSeq 

2500 (Illumina) from 3 biological replicates. After preprocessing and read mapping, 

read counts were normalized to ERCC reference RNAs after which differential gene 

expression was analyzed using the DESeq2 R library (R 3.2.0, DESeq2 version 1.8.1). 

Alternatively, differential gene expression was analyzed directly using DESeq2 

without ERCC reference RNAs. 

The quality of the data was analyzed using fastqc (version 0.11.2) after which adapters 

were removed using cutadapt (version 1.5). To allow the mapping of the spike-Ins, the 
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ERCC sequences were added to the human genome and were indexed together. The 

fastq files were subsequently mapped to the combined ERCC and Homo sapiens 

genome (build GRCh37) using the tophat2 algorithm (version v2.0.13) allowing 

unique mapping. Reads were counted from the bam files on exon-level based on the 

gene annotation from Ensembl using the feature counts algorithm from the SubRead 

software package (version 1.4.2), resulting in a read count for each gene. To correct for 

potential transcriptional bias the normalization size factors of the ERCC samples were 

calculated using DESeq2 (R 3.2.0, DESeq2 version 1.8.1). The count data was then 

normalized by the same size factors to estimate the effective library size. After 

calculating the gene dispersion across all samples, the comparison of two different 

conditions resulted in a list of differentially expressed genes. Genes with an adjusted p-

value ≤0.05 were considered significant. Estimation of global polyA+ RNA expression 

was carried out using the erccdashboard package (Bioconductor). 

Gene set enrichment analysis was performed on a pre-ranked gene list (ranked 

according to log2 fold change) and compared to the Broad Institute Molecular 

Signatures Database collection of chemical and genetic perturbations (C2 CGP, a total 

of 3395 gene sets) using the web-based tool available from the Broad Institute. 

Enrichments with an FDR value <0.25 were considered significant.Gene set 

enrichment analysis was performed on a pre-ranked gene list (ranked according to log2 

fold change) and compared to the Broad Institute Molecular Signatures Database 

collection of chemical and genetic perturbations (C2 CGP, a total of 3395 gene sets) 

using the web-based tool available from the Broad Institute. Enrichments with an FDR 

value <0.25 were considered significant. 

 

3.3 Chemical treatments 

Where indicated, EPCs were treated with 5,6-dichlorobenzimidazole 1-β-D-

ribofuranoside (DRB; 100 µM; Sigma D1916) for 12 h. Blebbistatin (10 µM; Sigma 

B0560) or Cytochalasin D (100 nM; Sigma C8273) were added directly prior to 

mechanical straining. The vehicle DMSO was used as a control for all treatments. 
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3.4 Biochemical fractionations, immunoprecipitation and western blotting 

3.4.1 Preparation of histones 

Cells were harvested in 1X phosphate buffered saline (PBS) by scraping, followed by 

centrifugation at 1000 x g for 10 min at 4oC. The pellet was resuspended in lysis buffer 

(0.5% Triton X-100 (Roth 3051.2) in 1X PBS with protease inhibitors). Cells were 

lysed for 30 min on ice and followed by centrifugation at 2000 x g for 10 min at 4oC. 

The pellet was rinsed once with lysis buffer after which histones were extracted 

overnight in 0.2 N HCl (Sigma H1758) at 4°C. Samples were neutralized by adding 1/5 

volume of 1 M NaOH (Merk 106482) and cleared by centrifugation max speed for 10 

min at 4oC. Histones were analyzed by western blot. 

3.4.2 Determining G- to F-actin ratio 

Cells were harvested in cytoskeleton-stabilizing lysis buffer. After centrifugation at 

4°C for 60 min at 150 000 x g, the supernatant was collected as the G-actin fraction. 

The pellet was solubilized in actin depolymerizing buffer, followed by sonication and 

used as the F-actin fraction. Samples were analyzed by western blot. 

Cytoskeleton-stabilizing lysis buffer  

50 mM   PIPES, pH 6.9 (Sigma P8203) 

50 mM   NaCl (Roth 3957.2) 

5 mM   MgCl2 (Roth KK36.3) 

5 mM   EGTA (Sigma E3889) 

0.2 mM  DTT (Sigma 43815) 

0.1%   NP40 (Sigma I18896) 

0.1%   Tween 20 (Sigma P1379) 

5%   glycerol (Roth 7533.3) 

1 mM   ATP (Cayman Chemical 14498) 

EDTA-free protease inhibitors cocktail (Roche 04693159001) 

 

Actin depolymerizing buffer  

50 mM   PIPES, pH 6.9 (Sigma P8203) 

5 mM   MgCl2 (Roth KK36.3) 
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10 mM   CaCl2 (Roth T885.2) 

5 µM   Cytochalasin D (Sigma C8273) 

EDTA-free protease inhibitors cocktail (Roche 04693159001) 

 

3.4.3 Nuclear fractionation 

Cells were harvested in 1X PBS by scraping and centrifuged at 1000 x g for 10 min at 

4°C. The cell pellet was incubated at -80°C for 45 min, and subsequently resuspended 

in ice-cold buffer A. Samples were vortexed for 30 s and centrifuged at 2000 x g for 10 

min at 4°C. The supernatant was collected as the cytoplasmic fraction. The pellet 

containing the nuclei was resuspended in ice-cold buffer B, and homogenized by 

passing through a 20 G needle. After rotation for 90 min at 4°C, insoluble material in 

the nuclear fraction was removed by sedimentation at maximum speed for 30 min at 

4°C. Samples were analyzed by western blot. 

Buffer A 

10 mM   HEPES (1 M stock, Roth 9105.4) 

1.5 mM  MgCl2 (Roth KK36.3) 

10 mM   KCl (Roth 6781.1) 

0.5 mM  DTT (Sigma 43815) 

0.05%   NP40, pH 7.9 (Sigma I18896) 

EDTA-free protease inhibitors cocktail  

 

Buffer B 

5 mM   HEPES (1 M stock, Roth 9105.4) 

1.5 mM  MgCl2 (Roth KK36.3) 

0.2 mM  EDTA (Roth CN06.3) 

0.5 mM  DTT (Sigma 43815) 

26%   glycerol (Roth 7533.3) 

500 mM  NaCl (Roth 3957.2) 

pH was adjusted to 7.9 

EDTA-free protease inhibitors cocktail 
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3.4.5 Immunoprecipitation  

Cells were harvested in IP lysis buffer and cleared by centrifugation max speed for 5 

min at 4oC. After which the supernatant was split equally into 2 parts for 

immunoprecipitation, and 10% of cell lysate was kept as input. Antibodies against 

Emerin (Leica Emerin-CE; 1:100, Cell Signaling 2659; 1:100) were added to the cell 

lysate and incubated for 3 h at 4°C. Isotype-matched IgG antibodies (Cell Signaling 

2759 and 5415) were used as a negative control. Lysates were then incubated with pre-

washed protein G-agarose beads (Roche 11243233001) for 30 min at 4°C. After 3x 

washing with IP lysis buffer, proteins were eluted by laemmli buffer at 95°C for 10 

min and analyzed by western blotting. 

 

IP lysis buffer 

150 mM   NaCl (Roth 3957.2) 

50 mM   Tris-HCl, pH 7.4 (1 M Stock, Roth 9090.3) 

1 mM    EDTA pH 8.0 (Roth CN06.3) 

0.5%    Triton X-100 (Roth 3051.2) 

EDTA-free protease inhibitors cocktail 

Phosphatase Inhibitor Cocktail  (Roche 04906837001) 

 

4x laemmli buffer 

125 mM  Tris-HCl, pH 6.8 

4 %   SDS (Roth CN30.1) 

50 %   glycerol 

0.2 %   bromphenol blue (Roth T116.1) 

5 %   2-mercaptoethanol (Roth 4227.3), freshly added prior to use 

 

3.4.6 Western blotting 

Equipments 

Electrophoresis chambers: Mini-PROTEAN Tetra Cell System, Biorad 

Protein transfer system: Trans-Blot Turbo Transfer System, Biorad 

Developing system: Curix 60, Agfa 
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Microplate spectrophotometer: TECAN Infinite M200 

 

Quantification of protein concentration 

Protein concentration was determined using Bradford assay (self-made). In principle, 

coomassie dye binds to protein under acidic condition, thereby results in an absorbance 

shift of the dye. The coomassie-bound protein has a maximum absorbance at 595 nm. 

Protein concentration is calculated according to a series of protein standard (albumin, 

Pierce 23209). The absorbance was measured using a spectrophotometer. 

SDS-polyacrylamide gel electrophoresis 

This method is used to separate a mixture of denatured and negatively charged protein 

based on their molecular weight. The gels were cast as described below. After 

polymerization, denatured samples were loaded, and electrophoresis was carried on at 

120 V. Samples were denatured in Laemmli buffer (stock 4x) at 95oC for 10 min.  

Western blotting 

Separated proteins by SDS-PAGE were transferred onto a Polyvinylidene fluoride 

membrane (Immobilon-P PVDF transfer membrane, Millipore IPVH00010). The 

PVDF membrane was activated by incubation in methanol for 10 min, followed by 

washing in blotting buffer. The membrane and SDS gel were assembled into a 

sandwich and transferred onto the turbo blot machine. Proteins were transferred at 25 

V, 0.3 A for 60 min at RT. After transfer, the membrane was stained with Ponceau red 

solution (Sigma P7170) to check the quality of transferred process. The membrane was 

then washed in TBS-T and blocked with 5% milk (Roth T145.2) or bovine serum 

albumin (BSA, Serva 11930.03) in TBS-T, according to primary antibody instruction 

for 30 min. Then, specific primary antibodies were applied overnight at 4oC. The 

membrane was then washed with TBS-T several times and subjected to secondary 

antibodies conjugated with HRP for 30 min at RT, followed by washing steps with 

TBS-T. Protein signals were detected using chemiluminescence HRP substrate 

(Millipore WBKLS0500) and exposed on X-ray film (Thermo 34089). 
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Bradford solution 

100 mg   Coomassie Brilliant Blue G250 (Sigma 27815) 

50 ml   Ethanol (Sigma 32205) 

100 ml   Phosphoric acid (Roth 2608.1) 

filled up to 1000 ml with milli-Q water 

filtered through Whatman #1 paper 

 

10x SDS Running buffer 

30.3 g   Tris base (Roth 4855.3) 

144.2 g  glycine (Roth 3908.3) 

50 ml    20 % SDS  

filled up to 1000 ml with milli-Q water 

 

Stacking gel 

2.75 ml   milli-Q water 

3.5 ml    0,5 M Tris-HCl, 0,4 % SDS, pH 6,8 

0.8 ml    acrylamide (Roth 3029.1) 

93.8 µl   10 % APS (Roth 9592.1) 

9.8 µl    TEMED (Roth 2367.1) 

 

Separating gel 

2 ml    milli-Q water 

5.4 ml   acrylamide  

8.4 ml   1.5 M Tris-HCl, 0.4 % SDS, pH 8.8  

135 µl   10 % APS 

13,5 µl   TEMED 

 

10X blotting buffer 

30.3 g    Tris base 

144.1 g   glycine 

filled up to 1000 ml with milli-Q water, store at 4oC 

1X blotting buffer was diluted from 10X blotting buffer and supplemented with 20 % 

methanol (Sigma 32213), stored at 4 °C 
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10X TBS 

60.5 g   Tris base 

87.6 g   NaCl 

filled up to a final volume of 1000 ml distilled water and adjusted pH to 7.5 

1X TBS was diluted from 10X TBS and 0.1 % Tween20 was added 

 

Primary antibodies 

Name Company  Cat. No.  Dilution 

Actin Sigma A2066 1:1000 

Emerin  Leica  Emerin-CE 1:5000 

GAPDH  Calbiochem  1001 1:10000 

H3K27me3 Cell Signaling  9733 1:5000 

H3K9me2,3 Cell Signaling  5327 1:5000 

Lamin A/C Cell Signaling  4777 1:1000 

Loricrin Covance  PRB-145P 1:1000 

NMIIA Covance PRB-440P  1:1000 

P-MLC (Thr18/Ser19) Cell Signaling 3674S 1:1000 

Periplakin Santa Cruz  sc50449 1:1000 

RNAPII-S2p Abcam ab5095 1:1000 

Total H3 Cell Signaling  3638 1:5000 

Transglutaminase 1 Abcam  ab103814  1:1000 

 

Secondary antibodies 

Name Conjugate Company Cat. No.  

Goat anti-mouse IgG HRP BioRad  170-6516 

Goat anti-rabbit IgG HRP BioRad  170-6515 

 

3.5 FACS analysis of apoptosis and proliferation 

Fluorescence-activated cell sorting (FACS) is a method to detect and quantify a 

specific cell type from a mixed cell suspension. In principle, cells can be detected by 

their size, expression of genetically engineered fluorescent proteins or cell surface 

markers. 
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Apoptotic cells were detected by incubation with Annexin-V-FITC antibodies (Abcam 

14085; 1:100) for 30 min at 4°C. This method is based on the binding of Annexin-V to 

phosphatidyl serine (PS) at the outer cellular membrane. In normal cells, PS resides at 

the cytoplasmic side of the plasma membrane, however, in apoptotic cells, PS is 

translocated to the outer surface of cellular membrane, thus can be detected by 

Annexin-V, followed by FACS using a FACSCanto II cytometer equipped with 

FACSDiva Software (BD). 

For measuring proliferation, 5-ethynyl-2’-deoxyuridine (EdU, Invitrogen E10187) was 

added to the culture medium at the onset of straining. EdU is a nucleoside analog of 

thymidine and is incorporated into DNA during DNA synthesis. It can be detected in a 

reaction with azide, catalyzed by copper-I, known as “click” reaction. The product is a 

stable triazole ring, conjugated to a fluorophore. Single-cell suspensions were 

incubated in EdU staining solution for 30 min at room temperature, followed by FACS. 

Cell viability was assessed by FVD eFluor506 (eBioscience 65-0866; 1:1000). 

 

EdU staining solution 

100 mM   Tris pH 8.5 

1 mM    CuSO4 

100 mM   ascorbic acid 

0.5 µM   488-Azide (Invitrogen A10266) 

 

3.6 qPCR 

Quantitative real-time polymerase chain reaction (q-PCR) is a PCR-based method that 

detects and visualizes the amplified DNA product using fluorescent dyes in real time. 

This method was used to quantitatively measure gene expression at the RNA level. 

Firstly, RNA was isolated using the RNeasy Plus Mini Kit (QIAGEN 74134). After 

quantification and quality control, cDNA was synthesized using the High-Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems 4368814). qPCR was 

performed on the StepOne Plus Real Time PCR System (Applied Biosystems 

4376600) or CFX384 Touch Real Time PCR Detection System (Bio-Rad 1855485) 

using the DyNAmo ColorFlash SYBR Green Mix (Thermo F416). Gene expression 
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changes were calculated following normalization to S26 or Gapdh using the 

comparative Ct (cycle threshold) method with primer efficiency correction. 

Efficiency (E) was calculated from the slopes of a cDNA dilution (1:5, 1:10, 1:20) 

calibration curve according to the equation: E= 10 (-1/slope)
. 

The calculation of the ratio was made according to the equation: 

Ratio = ((Etarget) ΔCt target (control-sample)) / ((Ereference) ΔCt reference (control-sample)) 

ΔCt = crossing point difference of cyclic threshold 

 

cDNA synthesis reaction (Applied Biosystems 4368814) 

2 µl  10x RT Buffer 

2 µl  10x random primer 

0.8 µl  25x dNTPs (100 mM) 

1 µl  reverse transcriptase 

0.5 µg  RNA 

adjusted to 20 µl with RNase-free water 

 

cDNA synthesis program 

25 °C  10 min 

37 °C  2 h 

85 °C  5 min 

hold at 4 °C, cDNA was stored at -20 °C  

 

qPCR reaction  

(Measurements were always performed in triplicates or quadruplicates) 

5 µl    2X SYBR Green (DyNAmo Color Flash, Thermo F-416) 

0.5 µl    primers (10 µM) 

0.5 µl    cDNA (diluted 1:5) 

4 µl    nuclease-free water 
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List of oligonucleotides used for qPCR 

Species  Target Forward Reverse 

h CRCT1 TCGGAGTTTGCCCCGTAAAG AAATCACATCGGGGTCAGGG 

h EMD ATTCCCAGATGCTGACGCTT TGATGCTCTGGTAGGCACTG 

h EZH2 TCATGCAACACCCAACACTT TTGGTGGGGTCTTTATCCGC 

h FLG GAGGGCACTGAAAGGCAAAA CTTCCGTGCTGAGAGTGTCT 

h HOXA5 TCTCGTTGCCCTAATTCATCTTT CATTCAGGACAAAGAGATGAACAGAA 

h HOXA9 CTGTCCCACGCTTGACACTC ATAGGGGCACCGCTTTTTCC 

h HOXA13 GGAACGGCCAAATGTACTGC ATTCGTGGCGTATTCCCGTT 

h HOXD10 GAAGATGAACGAGCCCGTGA GAGCCAATTGCTGGTTGGTG 

h IPO9 ATGCCACTTGTTGCTCCTGT GAACTGCTGTACCACGGGAA 

h KRT14 GAGGACGCCCACCTCTCCTCCT CGAAGGACCTGCTCGTGGGTG 

h LCE1A CCTAGAAGAGCAGACTCGGG GGGCATCTCAGCCACTCTTG 

h LOR CTCACCCTTCCTGGTGCTTT GGGTGGGCTGCTTTTTCTGA 

h PPL GAGAATGGAAGGAGCAGCCA GGGTCACTTCTACTTCCGGC 

h S26 GCGAGCGTCTTCGATGCCTATGT GGGGGTGTTCGGTCCTTGCG 

h SOX1 CAGCCTTAGGTTTCCCCTCG AGGCTCACTTTTGGACGGAC 

h SOX2 GGCAGAGAAGAGAGTGTTTGC CGCCGCCGATGATTGTTAT 

h SPRR2D TCGTTCCACAGCTCCACTTG CAGGCCACAGGTTAAGGAGA 

h TGM1 ACACCCCAAGAGACTAGCAG GCAAAAATGAAAGGCGTGTCG 

h XPO6 CGGTACTTACGGCAGAGCTT TTCTCCGCCGTGATGTTCAA 

m Crct1 ACTGCACTTTGATGTTCA CAGGAGGCCTGTTTTGAA 

m Flg TGGCCGCAACTCAACCAA GGATCCGGCCTTTCCAGAAT 

m HoxA9 AGTTCTCTCCTTGGCGGTTG AATGGGCTACCGACCCTAGT 

m HoxA11 CTCACCGACCGTCAAGTCAA CCCTCCCAATTCCAGTAGGC 

m HoxA13 GAACGGCCAAATGTACTGCC CTGAAGGATGGGAGACGACG 

m HoxB13 CCAGCCTATGGCCAGTTACC GACACTGGGCTCTGCAAAC 

m HoxD10 CAGGAGAAGGAAAGCAAAGAGG CAATTCCAGCGTTTGGTGCT 

m Gapdh GGTGTGAACGGATTTGGCCGTATTG CCGTTGAATTTGCCGTGAGTGGAGT 

m K14 ATCGAGGACCTGAAGAGCAA TCGATCTGCAGGAGGACATT 

m Lce1a1 CACTTTAGACAAACCATTCAGGAGAA CCAAGAAGACAAACCCAGCAA 

m Lce1c 
AGATCTCAAACATTCTATGCAGAGGA

A 

TCACAAAATACTGAAGAAGAAAGGGA

TT 

m Lce1l CATGAAGGCTTCAGACAAGCAAT TTGGAATCACAGAAGGAGATGAGAC 
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m Lce1m AGCATTGACTGAAGACCTGCAA GCAAAGCCAATGCATCTCAGA 

m Lor AAGTAAGGTCACCGGGTTGC GGGAAGGGGCGCTTAAAATG 

m Myh9 GTCCACTCGGAAGAACCAGC TGGAAGGCACCCATACCAAC 

m Ppl CCGAGAGTCAACTGGGACAC CACTGTTCTGCTCCTTGTCCT 

m Sox1 GTACAGCCCCATCTCCAACT CTCCGACTTGACCAGAGATCC 

m Sox2 TAGAGCTAGACTCCGGGCGATGA TTGCCTTAAACAAGACCACGAAA 

m Sprr1a TCTCTGAGTATTAGGACCAAGTGC CTTGGTTTTGGGGGCACAAG 

m Sprr2f GAGAACCTGATCCTGAGGCTT CACACCGAGGGAGAACAAGG 

m Tgm1 CTGGCGGCAAGAATATGTGC AGGTTCGTTCGCCAATCTGT 

 

3.7 ChIP analyses  

Chromatin immunoprecipitation (ChIP) is a method to detect a transcription factor, 

cofactor, or any protein associated with DNA. The associated DNA sites can be 

identified by qPCR method. In brief, 106 EPCs were crosslinked by 1% formaldehyde 

(Roth 7398.1) for 10 min at 37oC, followed by quenching with glycine to a final 

concentration of 0.125 M. Subsequently cells were rinsed twice with ice-cold 1X PBS 

and harvested in 1 ml ChIP lysis buffer by using a cell scraper. Cells were subjected to 

sonication (Covaris M220 ultrasonicator) at 15% of duty factor in 12 min at 4oC to 

fragment DNA (200-800 bp). After centrifugation (max speed for 10 min at 4oC), the 

supernatant was split equally into 2 parts for immunoprecipitation. 10% of cell lysate 

was kept as input. 4 µg antibody were added to cell lysate and an isotype-matched IgG 

(Cell Signaling 2759 and 5415) was used as a negative control. Samples were rotated 

gently overnight at 4°C.  

Nest day, samples were incubated with ChIP-Grade Protein A/G magnetic beads 

(Thermo 26162) for 1 h at 4°C, and subsequently washed 2 times for 5 min each in 

following buffers: high salt washing buffer, LiCl washing buffer and TE buffer. 

Chromatin was then eluted in 200 µl of elution buffer for 20 min rotation at RT. After 

which, immunoprecipitated DNA and input DNA were decrosslinked with NaCl (50 

mM final concentration) at 65oC overnight. 
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1 µl of RNaseA (Thermo EN0531) was added and incubated at 37oC for 1 hour, 

followed by 1 µl of Proteinase K (QIAGEN 19131) at 55oC for 30 min. 5 V of ChIP 

DNA binding buffer (~ 1000 µl, Zymo Research D5201) was mixed well with each 

sample and loaded on Zymo spin column (Zymo Research C1003). After 

centrifugation (max speed, 1 min), the column was washed once with DNA wash 

buffer (Zymo Research D4003-2). After which, DNA was eluted by 50 µl of milli-Q 

water, and stored at -20oC. 

 ChIP DNA was analyzed by qPCR. Fold enrichment was calculated by first 

normalizing ChIP DNA to input DNA to get the enrichment as percentage of input. 

This was then normalized to the percentage input of a negative control gene region 

(intergenic region of chromosome 10 for RNAPII-S2p-ChIP, S26 for H3K27me3- and 

H3K9me2,3-ChIP; intergenic region of chromosome 5 for H3K27me3-ChIP in mouse) 

to correct for experiment-to-experiment variation. RNAPII-S2p antibody (ab5095) was 

from Abcam, H3K27me3 (9733), H3K9me2,3 (5327) and isotype-specific IgG control 

(2729 and 5415) were from Cell Signaling.  

% input was calculated according to the equation: 

% input = 2 ΔCt x 100 

ΔCt = Ct ChIP DNA - (Ct input  - DF) 

DF (dilution factor) = log 2 (10%) 

 

ChIP Lysis Buffer: 

50 mM   Tris-HCl, pH 8.0 

10 mM   EDTA, pH 8.0 

1%    SDS (stock 20%) 

EDTA-free protease inhibitors cocktail (Roche 04693159001) 

 

ChIP dilution buffer: 

20 mM   Tris-HCl, pH 8.0 

2 mM    EDTA, pH 8.0 

150 mM   NaCl 

1%    TritonX-100 
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High salt washing buffer: 

20 mM   Tris-HCl, pH 8.0 

2 mM    EDTA, pH 8.0 

500 mM   NaCl 

1%    TritonX-100 

0,1%    SDS 

 

LiCl washing buffer: 

0,25 M   LiCl (Roth P007.1) 

10 mM   Tris-HCl, pH, 8.0 

1 mM    EDTA, pH 8.0 

1%    NP40 

1%    deoxycholic acid (Roth 3484.3) 

 

TE buffer 

10 mM   Tris-HCl, pH 8.0 

1 mM   EDTA, pH 8.0 

 

Elution buffer (fresh): 

0,1 M   NaHCO3 (Roth 6885.1) 

1%   SDS 

 

3.8 FAIRE 

Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) is a method to 

determine nucleosome-depleted regions in the genome. Cells were fixed in 1% 

formaldehyde for 10 min after which cells were lysed in ChIP lysis buffer and 

sonicated (see 3.6). An aliquot of the lysate (10%) was collected from which crosslinks 

were reversed and input DNA was purified by using Zymo-Spin column. 

Phenol/chloroform was added to the remaining lysate and the sample was rigorously 

vortexed for 10 s, followed by centrifugation at max speed for 5 min. The aqueous 

phase was collected and the FAIRE DNA was purified. FAIRE enrichment was 
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analyzed by qPCR and normalized to the input DNA of the specific target gene (see 

3.6). Primers against intergenic regions on chromosomes 10 and 19 were used as 

negative controls.  

 

List of oligonucleotides used for ChIP qPCR and FAIRE-qPCR 

Species  Target Forward Reverse Application 

h ACTIN ACATCTCTTGGGCACTGAGC AGGGCAGTTGCTCTGAAGTC H3K27me3 

h ACTIN CGGACTCGTCATACTCCTGC GTCCCCTTCCCTCCTCAGAT 
RNAPII-S2p, 

FAIRE 

h B2M GGGGCACCATTAGCAAGTCA GCTGGAGGCACATTAAGGCT H3K27me3 

h B2M CTGGCTTGGAGACAGGTGAC GACTCACGCTGGATAGCCTC RNAPII-S2p 

h CDKN2a 
TGAAAACTCCCCAGGAAGCC 

 

GATCCAGGTGGGTAGAGGG

T 

 

H3K27me3 

h CDKN2a 
GCTTTGGAAGCTCTCAGGGT 

 

GCACCAGAGGCAGTAACCAT 

 
RNAPII-S2p 

h 
Chr10 

(LADs) 
AGGCCAGTGTAGGTCATTGC GTGGTTTCCGAGGCTCTTCA 

RNAPII-S2p, 

FAIRE, 

H3K9me2,3 

h 
Chr19 

(LADs) 
CCTCCAGCCCCTACCATAGA TGCAACTGTCCCACACTGTT 

FAIRE, 

H3K9me2,3 

h CRCT1 GTGCATCCCCGTCATCATCT TATGCGATAAGCCTGCTGGG H3K27me3, 

h CRCT1 GCCAGGCTGACTTGTACACT GCGCTCTGTTGAGAGGACAT 
RNAPII-S2p, 

FAIRE 

h GAPDH CACAGTCCAGTCCTGGGAAC TAGTAGCCGGGCCCTACTTT H3K27me3 

h GAPDH GGGAGGTAGAGGGGTGATGT ATGGCATGGACTGTGGTCTG 
RNAPII-S2p, 

FAIRE 

h HOXA13 AGTGGGGACAGGTCAGGTAA GAGGCTCCAAGAAACACCCA H3K27me3 

h HOXA13 TTGGGGGTTGACGTTTGACA ACTGGCATTTTCCTCTCCCG 
RNAPII-S2p, 

FAIRE 

h HOXD10 GGTAGACTCCCCATTTGCCC TCACCCCGGATTAGGGTTCT H3K27me3 

h HOXD10 ATGCAAACCTGTGGACTGCT 
TGGTGGTGAAGGAGCAAGT

G 

RNAPII-S2p, 

FAIRE 

h KLK8 CCAGACTGCTGGATCTCGAC GATACAGACATCAGGCCCCG H3K27me3 
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h KLK8 TGGCTCCCAATCCGTAGAGA CACACATCCCTCATTGCCCT 
RNAPII-S2p, 

FAIRE 

h LCE1A AGAGGGAGCTTCACTAGGCA GAGCTTCCCAGATGGCTGTA H3K27me3 

h LCE1A TTCAGCTCCTGAACACCCAC 
TGACACTGCAGCAGGAAGA

G 

RNAPII-S2p, 

FAIRE 

h LOR AGGTTTAGAGCATTGCCCCG ACTGCTGGGAGCTAGGAAGT H3K27me3 

h LOR GAGGATGGCGATGTTGCCTA 
TGGAAGGGGAGAAGAGAGC

A 

RNAPII-S2p, 

FAIRE 

h PPL TGTGGCTGTGCTCATTCTGT GCCATTGGTCCCAGATCTCC H3K27me3 

h PPL TGAGGGAGAGACATGGCAGA 
GCCTGAAGGGGTACAGGAA

C 

RNAPII-S2p, 

FAIRE 

h 

Major 

satellite 

1 

CACTGTGAGATGAATGCAAACG 

 

GGCTGTGGTGCAAAAGGAAA

TG 

 

H3K9me2,3 

h 

Major 

satellite 

2 

GCTGGCAGATTCCACAGAAAC 

 

AATTGGATCGCTTGGATGCC 

 
H3K9me2,3 

h S26 TGCTGGAGGGAAGGTGAATC AGCATTCAGACCCAGGATGG FAIRE 

h SOX1 GCCTCCTTTAACTGTGGCCT ACTCTGCCCTGTCTTTCGTG H3K27me3 

h SOX1 ATTCCTCTCCGTCTCCCTCC ATCATGCTGTACATCGGGGC 
RNAPII-S2p, 

FAIRE 

h SOX2 TTGAAACTGGGGGCAAGGTT ACACGGTTTCTGAGCCAACA H3K27me3 

h SOX2 TTTGTCGGAG ACGGAGAAGC  GGGCAGCGTGTACTTATCCT 
RNAPII-S2p, 

FAIRE 

h TGM1 ATGAAGAAGCTGCAAGGGCA 
CTGGGCAGGATGAGTTCCA

G 
H3K27me3 

h TGM1 GTGAGTACCATCCAACCGGA TGCACCACCTGTCTTGTGAG 
RNAPII-S2p, 

FAIRE 

m Crct1 
TCTGCCTAGCAGGTGTCAAGTT

C 

GCTACATTCTGGCTGCATCC

TACT 
H3K27me3 

m Chr5 AGGCTCTTGTGGCTTCCAGAT CACCTGGCCCTGTCCTGTA 

H3K27me3 

(negative 

control) 

m Flg 
TCCCTTTTACAGGTGCATACACA

C 

CCTCCTTATCACTGGTTGAG

TATTGTT 
H3K27me3 

m Lce1m AGCATTGACTGAAGACCTGCAA 
GCAAAGCCAATGCATCTCAG

A 
H3K27me3 
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m Tgm1 CTGCTAACCTGTCTCCAGCC CCATCCCTGTGTCGTAGAGC H3K27me3 

 

 

3.9 RNAi 

siRNAs targeting Ezh2 (ID: s4916 and s4918), Xpo6 (ID: s23301 and s23303), Ipo9 

(ID: s31299 and s31301), Emd (ID: s4646 and s225840) and negative control siRNA 

(AM4635) were from Ambion (Silencer Select). Transfections were performed using 

Lipofectamine RNAiMax (Invitrogen 13778075) according to manufacturer’s 

instructions.  

In brief, EPCs were seed until 70% confluent with CnT medium in a 6-well plate 

format. Prior to transfection, cells were changed into MEM (Spinners modified) 

medium, supplemented with 0.292 g/l L-glutamin (Gibco 25030). 7 µl of lipofectamine 

RNAiMAX reagent was diluted in 150 µl of OptiMEM (Gibco 11058-021). 3 µl of 

siRNA mix (10 µM) was diluted in 150 µl of OptiMEM. After which, diluted 

lipofectamine RNAiMAX was added into diluted siRNA mix (1:1) and incubated for 5 

min at RT. 300 µl of siRNA-lipix mix was then added to EPCs (1 well of 6-well plate). 

After 72 h of transfection, cells were harvested and analyzed. 

 

3.10 Immunofluorescence and confocal microscopy 

Cells were fixed in 4% paraformaldehyde (Sigma P6148) or ice-cold methanol, 

permeabilized with 0.3% Triton X-100 or 0.003% digitonin (Sigma D141) in PBS, and 

blocked in 5% BSA. Samples were subsequently incubated overnight in primary 

antibody in 1% BSA, followed by washing and incubation in secondary antibody. 

Nuclei were counterstained with 1 mg/ml DAPI (Roche 10236276001). Finally, 

samples were mounted in Elvanol. All fluorescence images were collected by laser 

scanning confocal microscopy (SP5X or SP8X; Leica) with Leica Application Suite 

software (version 2.7.3.9723), using 40x, 63x or 100x immersion objectives. 

Elvanol 

2.4 g   Mowiol (Roth 0713) 
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7.5 ml   glycerol 

11.7 ml   milli-Q water 

=> stirred for 2 h at RT 

4.8 ml    Tris-HCl, pH 8.5 

=> stirred at 53 °C until dissolved 

0.02 g    Dabco (Roth 0718) 

stored at -20 °C 

 

Primary antibodies 

Name Company  Cat. No.  Dilution 

Actin Sigma A5441 1:800 

Emerin  Leica  Emerin-CE 1:500 

H3K27me3 Cell Signaling  9733 1:500 

Keratin 10 Covance  PRB-155P 1:750 

Keratin 14  Progen GP-CK14 1:500 

Lamin A/C Abcam ab133256 1:500 

Loricrin Covance  PRB-145P 1:500 

NMIIA Covance PRB-440P  1:500 

RNAPII-S2p Abcam ab24758 1:500 

Transglutaminase 1 Abcam  ab103814  1:500 

 

Secondary antibodies 

Name Conjugate Company Cat. No.  

Goat anti-guinea pig IgG A488 Invitrogen 982288 

Goat anti-mouse IgG A488 Invitrogen A11001 

Goat anti-mouse IgG A568 Invitrogen A11004 

Goat anti-mouse IgM A488 Invitrogen A21042 

Goat anti-rabbit IgG A488 Invitrogen A11008 

Goat anti-rabbit IgG A568 Invitrogen A11011 
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Nascent RNA was detected by using 5-Ethylnyl Uridine (EU) incorporation (Click-iT 

RNA Alexa Fluor 488 Imaging Kit, Thermo Fisher C10329), according to 

manufacturer’s instruction. EU is incorporated to newly synthesized RNA. Detection 

of global RNA synthesis through EU incorporation is followed the “click” reaction 

(see 3.4). 

For nuclear imaging, fields were randomly selected based exclusively on the presence 

of nuclei, as assessed by DAPI staining, not on actin, RNAPII-S2p or H3K27me3 

levels. Images were collected with the same settings for control and treated cells. Areas 

of interest were generated using automated thresholding of the DAPI staining, after 

which mean fluorescence intensities of RNAPII-S2p or H3K27me3 stainings were 

quantified within the areas of interest from equatorial confocal planes where the 

intensity of DAPI staining was the highest. 

For quantification of nuclear localization of Emd, maximum projections of confocal 

planes through the entire nucleus were used. Areas of interest were generated based on 

DAPI staining, after which the mean intensity of Emd and Lamin A/C were quantified 

within this area. All image analyses were carried out using ImageJ software. 

For analysis of perinuclear F-actin, cells were initially fixed in 0.5% Triton X-100 and 

0.2% Gluteraldehyde (Serva 23115) in cytoskeleton buffer for 1 min, followed by post-

fixation in 2% Gluteraldehyde for 5 min. Autofluorescence was quenched by NaBH4 (1 

mg/ml, Sigma 71321) for 5 min. Samples were incubated with primary antibody 

against Lamin A/C (Abcam ab133256; 1:500) overnight at 4°C, followed by washing 

and incubation in secondary antibody and A488-conjugated phalloidin (Invitrogen 

A12379). Finally, samples were mounted in elvanol. 

 

Cytoskeleton buffer 

10 mM   MES (Roth 4256.2) 

150 mM  NaCl 

5mM   Glucose (Roth HN06.3) 

5 mM   MgCl2 

pH was adjusted to 6.1 
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3.11 Chromosome FISH 

Kreatech whole chromosome probes against chromosome 1 (KBI-30001R) and 

chromosome 18 (KBI-30018G) were from Leica Biosystems. Cells were fixed twice in 

fresh ice-cold Carnoy’s fixative (3:1, methanol : glacial acetic acid (Roth 3738.2)) for 

2 min and subsequently air-dried. Samples were then pre-treated for 15 min in 2X SSC 

at 37°C, followed by dehydration in a graded ethanol series (70-100%). Probes for 

Chr1 and 18 were diluted 5-fold with FISH hybridization buffer (Kreatech; Leica 

Biosystems), and applied to the sample. Samples and probes were co-denatured on a 

hot plate at 75°C for 10 min, then hybridized at 37°C overnight in a moist chamber. 

Samples were then washed in 0.4X SSC (Promega G329A), 0.3% Triton X-100 for 2 

min at 72°C without agitation, followed by 2X SSC, 0.1% Triton X-100 for 1 min at 

room temperature. Samples were subsequently dehydrated in a graded ethanol series 

(70-100%) and air-dried at room temperature. Finally, a DAPI counterstain was added 

and the sample were mounted on glass coverslip and imaged using a confocal 

microscope (Leica SP8, 63x objective). Full z-scans through entire nuclei were 

obtained. 

For quantification of images, 3D projections of entire nuclei were created using Imaris 

8.1.2 software. Nuclear and chromosome volumes were measured from the 3D raw 

images using the Surface Detection algorithm and used to calculate the percentage of 

chromosome volume in respect to nuclear volume. Chromosome positions were 

measured by determining centres of chromosome mass, and measuring the distance of 

this to the centre of mass of the nucleus using a custom made MatLab script. 

 

3.12 Mouse strains 

To obtain an epidermis-restricted deletion of the Myh9 gene, mice expressing Cre 

under the control of the Keratin 14 promoter were crossed with floxed Myh9 mice37. 

Controls were littermates of Myh9-deficient mice. Genders were distributed randomly 

between genotypes. Mice were analyzed at embryonic stage E16.5 or as newborns 

(P0). All animal experiments were performed according to institutional guidelines and 

animal licence of the State Office North-Rhine Westphalia. No statistical method was 
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used to predetermine sample size, and the experiments were not randomized. As the 

phenotype of Myh9-deficient mice was obvious, it was not meaningful to blind 

investigators to genotype allocation during experiments and outcome assessment. 

3.13 Histology 

Hematoxylin/eosin staining of paraffin-embedded skin sections was performed using 

standard protocols. This method is a standard histological method that allows detection 

of several distinct tissue structures. The principle is based on the application of 

hemalum, an oxidation product of haematoxylin. Hemalum colors nuclei in blue. Eosin 

serves as a counterstain and colors eosinophilic structures, mainly structures that are 

basic, in different shades of red. Images were taken with a Leica DM4000 light 

microscope using a 20x objective. 

For hematoxylin (Shandon Gill3 Hematoxylin) and eosin (Shandon Eosin Y, Aqueous) 

staining, paraffin sections were deparaffinized (2 x 5 min Xylol) followed by 

rehydration (100 % isopropanol, 95 %, 75 %, 50 % ethanol, and milli-Q water; 5 min 

each). Sections were stained for 50 s with Hematoxylin and blued in tap water. 

Sections were counterstained for 10 sec with Eosin and subsequently washed in water. 

Sections were then dehydrated (50 %, 75 %, 95 % ethanol, isopropanol 2 min each), 

washed 2 x 2 min in Xylol, and finally mounted in Entellan (Merck 1.07961.0100). 

 

3.14 Statistics 

Statistical analyses were performed using GraphPad Prism software (GraphPad, 

version 5.0). Statistical significance was determined by the Mann-Whitney U-test, 

unpaired t-test, Kruskal-Wallis ANOVA with Dunn’s post hoc test, linear regression, 

or Spearman’s rank correlation coefficient test as indicated in the corresponding figure 

legends. In all cases where a test for normally distributed data was used, normal 

distribution was confirmed with the Kolmogorov–Smirnov test (α = 0.05). All 

experiments presented were repeated at least in 3 independent experiments/biological 

replicates. 
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4. Results 

4.1 Mechanical strain represses global transcription  

4.1.1 Mechanical strain has no major impact on cell growth 

To understand how mechanical forces are sensed and transmitted to control cell fate, 

EPCs were exposed to biaxial cyclic mechanical strain. A strain at 10% elongation and 

100 mHz was used as it is in the range of physiological strain in vivo that has been 

measured in certain epithelium-covered tissues. Measurements of strain in living skin 

are technically challenging, and therefore reports on strain experienced in this tissue 

are limited and partially conflicting (Blanchard et al., 2009; Evans et al., 2013). 

Therefore, we first examined whether strain at 10%-100 mHz had any impact on cell 

growth or viability. 5-ethylnyl-2’-deoxyuridine (EdU) was added to the culture 

medium prior to strain for a period of 12 h to study the effect of strain on cell 

proliferation. FACS analysis of EdU incorporation showed no significant differences in 

proliferating rate of strained cells compared to control (Fig. 4.1.1A). Furthermore, 

Annexin-V staining also revealed that strain did not induce apoptosis in EPCs (Fig. 

4.1.1B). However, these results did not exclude the possibility that strain can lead to 

nuclear deformation as previously described in fibroblasts (Haase et al., 2016). To 

address this, nuclear shape and volume were quantified in order to detect any 

deformation, which may cause by strain. As expected, strained cells showed no 

differences in nuclear shape and volume compared to control (Fig. 4.1.1C), indicating 

that mechanical strain at 10%-100 mHz did not cause nuclear deformation or damage. 

Importantly, strain also did not lead to detachment of EPCs from the monolayer (Fig. 

4.1.1D). Taken together, these results indicate that mechanical strain at 10%-100 mHz 

does not induce changes in cell density, proliferation, apoptosis or gross nuclear 

structure, excluding the possibility that strain-induced damage and suggesting that it is 

in the physiological range of epidermis. 
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Figure 4.1.1. Mechanical strain has no impact on cell growth or viability. a. FACS 

analysis of proliferating cells (EdU incorporation) shows no differences after 12 h of 

strain (mean + SD, n=3, ns=not significant, Mann-Whitney). b. FACS analysis of 

apoptotic cells (Annexin-V) shows no differences after 12 h of strain (mean + SEM, 

n=6, ns=not significant, Mann-Whitney). c. Quantification of nuclei shows no 

significant differences in circularity and volume after 12 h of strain (mean ± SD, 

n>300 nuclei from 4 independent experiments, ns=not significant, Mann-Whitney). d. 

Quantification of cell density shows no differences after 12 h of strain (mean + SD, 

n=5, ns=not significant, Student’s t-test). 

 

4.1.2 Mechanical strain represses global transcription 

To identify mechanosensitive pathways, EPCs were exposed to 12 h of strain followed 

by a genome wide transcriptional analysis using next generation sequencing (RNA-

seq). External RNA controls consortium (ERCC) spike-in RNA mixtures were 

included in proportion to the concentration of RNA in samples (Fig. 4.1.2A). This 

method has been tested as a robust and accurate approach to quantify differential gene 
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expression and global changes in messenger (m)RNA levels (Jiang et al., 2011; Loven 

et al., 2012). Similar amounts of total RNA in control and strained samples were 

subjected to sequencing. The sequencing data was analyzed by the MPI-AGE 

bioinformatics core facility, using RNA spike-in normalization method. Strikingly, no 

genes were found significantly upregulated (q-value < 0.05), whereas nearly 4000 

downregulated genes were detected in the strained condition (Fig. 4.1.2B). 

Interestingly, by performing regression analysis with the ERCC-dashboard package, 

we also observed a drop in the level of poly-A RNA to 85% of control cells in response 

to strain (Fig. 4.1.2C), suggesting strain-induced global downregulation of mRNA 

transcription. To confirm such an effect, nascent RNA were quantified by 

incorporation of 5-ethynyl-uridine (EU) into EPCs (Jao and Salic, 2008). Quantitative 

analysis of EU incorporation using immunofluorescence showed a reduction in the 

levels of nascent RNA after 12 h of strain to approximately 85% of control levels (Fig. 

4.1.2D). These results indicate that mechanical strain significantly represses 

transcription. 

In order to uncover potential signaling pathways responsible for this global 

transcriptional repression, we performed Gene Set Enrichment Analysis (GSEA) 

(Subramanian et al., 2005). The analysis was carried out on a pre-ranked gene list 

according to log2 fold change from RNA-seq, using a Broad Institute Molecular 

Signatures Database collection of chemical and genetic perturbation. GSEA analysis 

revealed that genes known to carry H3K27me3 as well as genes regulated by the PRC2 

were most significantly over-represented in the dataset (Fig. 4.1.2E, Appendix Table 

1). Collectively, these results suggest that mechanical strain at 10%-100 mHz induces 

transcriptional repression that might be regulated by a PRC2 and H3K27me3-

dependent epigenetic mechanism. 
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Figure 4.1.2. Mechanical strain represses global transcription in a PRC2 dependent 

manner. a. Strategy to identify mechanosensitive gene signatures. b. Heat map of 

normalized read counts (NRC) from RNA-seq (mean, n=3). c. Estimation of global 

mRNA expression changes from ERCC spike-ins (black dots = data points, dotted 

black line = the expected ratio). Regression analysis with the ERCC-dashboard 

package (red solid line) indicates a drop of polyA RNA levels to 85% of control cells in 

response to strain (n=3). d. EU incorporation assay shows reduced levels of nascent 

RNA upon 12 h of strain (scale bars 25 µm). Quantification shows mean ± SD, n>400 

nuclei from 4 independent experiments, *p=0.02, Mann-Whitney. e. GSEA shows 

enrichment of genes marked by H3K27me3 or defined as PRC2 in downregulated 

genes. 
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4.1.3 Mechanical strain mediates H3K27me3 and RNAPII-S2p occupancy 

To validate the hypothesis that strain repressed global transcription through increasing 

PRC2 and H3K27me3-mediated gene silencing, global levels of H3K27me3 and an 

active form of RNAPII, marked by the phosphorylation of serine 2 (RNAPII-S2p), 

were analyzed using immunofluorescence and western blotting. These analyses 

showed that strain lead to an increased signal of H3K27me3 and a decrease in 

RNAPII-S2p (Fig. 4.1.3.1A, B). Consistent with previous reports on the negative 

relationship between PRC occupancy and transcriptional elongation (Brookes et al., 

2012; Brookes and Pombo, 2009), Spearman’s rank correlation coefficient analysis 

showed a negative correlation between H3K27me3 and RNAPII-S2p signals in single 

cells (Fig. 4.1.3.1C). These experiments confirm that strain leads to enhanced PRC2 

and reduced RNAPII-S2p activity. 

To further investigate the effect of strain on H3K27me3 and RNAPII-S2p at the single 

gene level, chromatin immunoprecipitation (ChIP) was used to determine the 

occupancy of these two marks on genes found downregulated in the RNA-seq data, as 

well as on other known PRC2 target genes, in EPCs after 12 h of strain. The results 

showed increased occupancy of H3K27me3 at promoters of lineage-specific PRC2 

target genes such as LOR, TGM1, CRCT1, LCE1A (Consortium, 2012) and 

CDKN2A, previously shown to be a PRC2 target in EPCs (Ezhkova et al., 2009) (Fig. 

4.1.3.2A). A small but consistent enrichment of H3K27me3 was also detected at 

promoters of actively transcribed genes (ACTB, B2M, KLK8, GAPDH), as well as 

non-lineage-specific PRC2 target genes (HOX, SOX) (Fig. 4.1.3.2A). As expected, 

RNAPII-S2p ChIP analysis showed an opposite effect to H3K27me3, a decrease on 

RNAPII-S2p at gene bodies of these genes (Fig. 4.1.3.2B).  
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Figure 4.1.3.1. The effect of strain on H3K27me3 and RNAPII-S2p. a. 

Immunostaining of cells exposed to 12 h of strain shows increased H3K27me3 and a 

parallel decrease in RNAPII-S2p (scale 40 µm, mean ± SD, n≥400 cells from 4 

independent experiments, **p=0.0075, *p=0.021, Mann-Whitney). b. Western blot 

analyses show increased H3K27me3 and decreased RNAPII-S2p levels in cells 

exposed to 12 h of strain. Quantifications show mean + SEM from 4 independent 

experiments. c. Scatter plots display a negative correlation between RNAPII-S2p and 

H3K27me3 signal in single cells (R=Spearman’s rank correlation coefficient, n>150 

cells from 3 independent experiments). 
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Figure 4.1.3.2. ChIP analyses of H3K27me3 and RNAPII-S2p after 12 h of strain. a. 

H3K27me3-ChIP shows increased H3K27me3 levels at promoters of PRC2 target 

genes as well as at constitutively expressed genes after 12 h of strain (mean + SEM, 

n=4). b. RNAPII-S2p-ChIP displays decreased levels of this mark at gene bodies of 

strain-induced enrichment of H3K27me3 genes (mean + SEM, n=3), *downregulated 

in RNA-seq. 

 

Moreover, time scale experiments of mechanical strain after 3, and 6 h revealed that 

the decrease in RNAPII-S2p occupancy was already visible after 3 h, while the 

increase of H3K27me3 became evident after 6 h (Fig. 4.1.3.3A-D). These results 

suggest that mechanical strain first attenuated RNAPII activity, followed by the 

recruitment of PRC2 to promoters of silenced genes to trimethylate H3K27. This is in 

line with a previous study showing that inhibition of transcription is sufficient to 

recruit PRC2 to specific target genes (Riising et al., 2014).  

a

2

6

H
3K

27
m

e3
 C

hI
P

(R
el

at
iv

e 
to

 S
26

)

0

4

TG
M

1*

CR
CT

1

LO
R

PP
L*

KL
K8

G
AP

DH
*

AC
TB

*

HO
XA

13
HO

XD
10

SO
X1

10

8

12

Lineage-specific
PRC targets

Constitutive Non-lineage

LC
E1

A

0

20

40

60

CD
KN

2A
*

B2
M

*

SO
X2

S2
6(

ne
g)

Control H3K27me3
Strain   H3K27me3

Control IgG
Strain   IgG

b

0

2

6

4

8

20

R
N

A
P

II-
S

2p
 C

hI
P 

(R
el

at
iv

e 
to

 C
hr

10
)

15

10

Lineage-specific
PRC targets

Constitutive Non-lineage

TG
M

1*

CR
CT

1

LO
R

PP
L*

KL
K8

G
AP

DH
*

AC
TB

*

HO
XA

13
HO

XD
10

SO
X1

LC
E1

A

CD
KN

2A
*

B2
M

*

SO
X2

Ch
r1

0(
ne

g)

Control RNAPII-S2p
Strain   RNAPII-S2p

Control IgG
Strain   IgG



70 

 

R
N

A
P

II-
S

2p
 C

hI
P

(R
el

at
iv

e 
to

 C
hr

10
)

0

6

4

2

8

0

15

10

5

20

10 25

CR
CT

1

LC
E1

A

TG
M

1

PP
L

LO
R

Ch
r1

0(
ne

g)

HO
XA

13
HO

XD
10

SO
X1

B2
M

G
AP

DH

KL
K8

AC
TB

Control RNAPII-S2p
Strain   RNAPII-S2p

Control IgG
Strain   IgG

Lineage-specific
PRC targets

ConstitutiveNon-lineage

3 h

CR
CT

1
LC

E1
A

TG
M

1

PP
L

LO
R

S2
6(

ne
g)

HO
XA

13
HO

XD
10

SO
X1

B2
M

G
AP

DH

KL
K8

AC
TB

H
3K

27
m

e3
 C

hI
P

(R
el

at
iv

e 
to

 S
26

)

0

1

2

3

4

0

1.5

1.0

0.5

2.0

2.5

3.0

0

15

10

5

20

25

Lineage-specific
PRC targets

ConstitutiveNon-lineage

3 h

5

Control H3K27me3
Strain   H3K27me3

Control IgG
Strain   IgG

G
AP

DH

0

6

4

2

8

Ch
r1

0(
ne

g)

HO
XA

13
HO

XD
10

SO
X1

CR
CT

1
LC

E1
A

TG
M

1

PP
L

LO
R

R
N

A
P

II-
S

2p
 C

hI
P

(R
el

at
iv

e 
to

 C
hr

10
)

Lineage-specific
PRC targets

Non-lineage

0

30

20

10

40

B2
M

KL
K8

AC
TB

Constitutive

6 h Control RNAPII-S2p
Strain   RNAPII-S2p

Control IgG
Strain   IgG

a

b

0

15

10

5

20

0

30

20

10

40

CR
CT

1
LC

E1
A

TG
M

1

PP
L

LO
R

S2
6(

ne
g)

HO
XA

13
HO

XD
10

SO
X1

H
3K

27
m

e3
 C

hI
P

(R
el

at
iv

e 
to

 S
26

)

Lineage-specific
PRC targets

Non-lineage

0

0.5

1.5

1.0

2.0

B2
M

G
AP

DH

KL
K8

AC
TB

Constitutive

6 h Control H3K27me3
Strain   H3K27me3

Control IgG
Strain   IgG

c

d



71 

Figure 4.1.3.3. Strain first attenuates RNAPII activity, followed by enrichment of 

H3K27me3. a. ChIP-qPCR for RNAPII-S2p reveals that decreased occupancy of 

RNAPII-S2p at gene bodies of PRC2 target genes as well as on constitutively 

expressed genes can be detected already after 3 h of strain (mean + SEM, n=3 

independent experiments). b. H3K27me3-ChIP shows no changes of this mark after 3 h 

of strain (mean + SEM, n=3 independent experiments). c. Strain further reduces the 

occupancy of RNAPII-S2p after 6 h (mean + SEM, n=3 independent experiments). d. 

Enrichment of H3K27me3 at promoters becomes visible only after 6 h of strain (mean 

+ SEM, n=3 independent experiments). 

 

As EPCs were exposed to a relatively long period of strain for 12 h, it was of great 

interest to know if the strain-induced H3K27me3 occupancy was stable or reversible. 

To answer this question, EPCs were exposed to strain for 12 h, followed by returning 

them to an unstrained state. ChIP-H3K27me3 data revealed that the enrichment of 

H3K27me3 at promoter region of silenced genes after 12 h of strain was fully restored 

to control levels 24 h post strain (Fig. 4.1.3.4). This indicates that the effects of strain 

on transcription are transient, in agreement with previous reports that all epigenetic 

histone marks are in principle reversible (Tsukada et al., 2006; Whetstine et al., 2006). 
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Figure 4.1.3.4. Enrichment of H3K27me3 upon strain is reversible. H3K27me3-ChIP 

shows no differences in H3K27me3 occupancy at promoters of PRC2 target genes in 

24 h unstrained cells after 12 h of strain (mean + SEM, n=3). 

 

4.1.4 Mechanical strain induces chromatin remodeling  

As nucleosome remodeling and positioning play an essential role in regulating 

transcriptional elongation and promoter-proximal pausing of RNAPII, and thus gene 

expression (Bai and Morozov, 2010; Struhl and Segal, 2013), we next asked if changes 

in H3K27me3 and RNAPII-S2p upon strain were accompanied by changes in 

nucleosome remodeling and positioning. Formaldehyde-assisted isolation of regulatory 

elements (FAIRE) analysis can be used to identify chromatin states, FAIRE separates 

open and closed chromatin states by crosslinking and subsequent differential 

sedimentation of nucleosome occupied and unoccupied DNA fragments. (Giresi et al., 

2007). FAIRE analysis revealed a reduction in open chromatin sites of lineage-specific 

PRC2 target genes as well as constitutive genes in strained EPCs compared to control 

cells (Fig. 4.1.4). Non-lineage genes such as HOX and SOX were used as negative 

control in FAIRE, the result showed no enrichment in gene body of these genes. 

Interestingly, strain further enhanced negative enrichment of these regions (Fig. 4.1.4). 

In summary, the data so far showed that in response to biaxial cyclic mechanical strain, 
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EPCs first attenuated transcription, followed by enhanced H3K27me3 occupancy. 

These processes are associated with chromatin remodeling and compaction.  

 

Figure 4.1.4. FAIRE-qPCR shows decreased open chromatin (dotted line) in cells 

subjected to strain for 12 h (mean + SEM, n=3). 

 

4.2 Mechanosensory complex of Emd-Actin-NMIIA 

4.2.1 Strain induces enrichment of H3K27me3 in an actomyosin dependent 

manner  

To further understand how forces can be transmitted to the nucleus to impact 

chromatin states, we next analyzed changes in the actomyosin cytoskeleton, a structure 

that plays a central role in generating and sensing mechanical forces (Hoffman et al., 

2011; Provenzano and Keely, 2011). Consistent and in agreement with a previous 

report (Guolla et al., 2012), mechanical strain led to increase NMII activity, marked by 

the phosphorylation of its light chain, after 3 h of strain, when changes in RNAPII-S2p 

occupancy were first recorded (Fig. 4.2.1A). Immunofluorescence analysis at this time 

point also revealed an increased level of F-actin stress fibers (Fig. 4.2.1B). 

Surprisingly, strain led to the accumulation of F-actin around the nucleus, and this 

accumulation extended to cover the ER (Fig. 4.2.1C). The perinuclear F-actin 
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polymerization was also accompanied by an enrichment of NMIIA around the nucleus 

upon strain (Fig. 4.2.1D). Furthermore, analysis of the free G- to F-actin ratio showed a 

drop in the monomeric G-actin pool and an increase in F-actin pool after 3 h of strain 

(Fig. 4.2.1E). The effect of strain on reducing of G-actin was offset by blebbistatin 

(Bleb) – an inhibitor of NMII ATPase activity (Kovacs et al., 2004) (Fig. 4.2.1E). 

These results suggest that strain induces extensive F-actin polymerization in a myosin 

II-dependent manner.  

To verify whether the observed increase in global levels of H3K27me3 upon strain was 

downstream of strain-induced myosin activity, EPCs were treated with Bleb and 

exposed to strain. Western blotting of a purified histone fraction showed that blocking 

myosin activity prevented the strain-induced increase in H3K27me3 (Fig. 4.2.1F). 

Together, these data indicate that strain induces enrichment of H3K27me3 in a myosin-

dependent manner.  
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Figure 4.2.1. Strain induces F-actin polymerization and enhances myosin II activity. 

a. Western blot analysis reveals an increase of NMIIA activity upon strain, marked by 

phosphorylated of its light chain (P-MLC2). Heavy chain of NMIIA (NMHCIIA) and 

calnexin are used as loading controls. Graph shows quantification (mean + SEM, 

n=5). b. Immunostaining of the actin cytoskeleton shows increased F-actin stress 

fibers upon 3 h of strain (scale bars 25 µm). c. Immunofluorescence analysis shows 

accumulation of F-actin around the nucleus after 3 h of strain (scale bar 5 µm). d. 

Immunostaining of NMIIA and Emd reveals the accumulation of NMIIA around the 

nucleus upon 3 h of strain (scale bars 7.5 µm). Right panels show line scans through 

the nucleus. e. Western blot analysis of G- and F-actin fractions shows that strain 

decreases G/F-actin ratio in an NMII-dependent manner. Silver staining of SDS-PAGE 

gel is used as loading control (lower panel). Quantification of G/F actin ratio shows 

mean + SEM, n=5 (*p<0.05, Kruskal-Wallis/Dunn’s). f. Western blot of purified 

histones shows increased levels of H3K27me3 upon 12 h of strain. This increase is 

abolished by the NMII inhibitor blebbistatin (Bleb). Quantification shows mean + 

SEM, n=3. 

 

4.2.2 Strain induces enrichment of Emd at the outer nuclear membrane to 

control localized actin remodeling  

Emd has been shown to be phosphorylated in response to extrinsic forces applied to 

isolated nuclei, and to be essential in the mechanical reinforcement of the nuclei to this 

force, suggesting that Emd could play an important role in transmitting mechanical 

forces from the cytoplasm to the nucleus (Guilluy et al., 2014). To investigate the role 

of Emd in response to strain, we first performed immunofluorescence staining of Emd 

in EPCs upon strain. By using two different permeabilization reagents: digitonin and 

triton X-100, the population of Emd at the outer or the inner nuclear membrane can be 

observed, respectively (Griffis et al., 2003). The results showed that strain induced an 

enrichment of Emd at the ONM and the endoplasmic reticulum that is continuous with 

the ONM, and a corresponding decrease of Emd at the INM (Fig. 4.2.2A-B). Lamin 

A/C was used as a control for the INM accessibility after permeabilization. 

Importantly, strain did not change total protein levels of either Emd or lamin A/C (Fig. 
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4.2.2C). These results indicate that mechanical strain leads to redistribution of Emd 

from the INM to the ONM. 

As strain was observed to induce the formation of a perinuclear F-actin ring, we next 

asked if the enhancement of actin polymerization upon strain depends on Emd. This 

seemed plausible as Emd has been shown to bind actin and to possess actin capping 

activity (Holaska et al., 2004). Emd-depleted cells were exposed to mechanical strain 

for 3 h, followed by F-actin staining. The staining showed that depletion of Emd 

prevented the formation of perinuclear F-actin ring in response to mechanical strain 

(Fig. 4.2.2D), indicating that Emd is required for strain-induced localized F-actin 

remodeling. 
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Fig. 4.2.2. Strain induces localized F-actin remodeling in an Emd-dependent 

manner. a. Immunostaining of Emd at the ONM in digitonin-permeabilized cells (left 

panel) and at the INM in Triton-X-permeabilized cells (right panel), scale bars 10 µm. 

Lamin A/C was used as control for the INM accessibility. The results show that strain 

induces an enrichment of Emd at the ONM and a corresponding decrease of Emd at 

the INM. b. Quantification of the intensity ratio of Emd and LaminA/C at the ONM and 

INM reveals the redistribution of Emd from the INM to the ONM (mean + SEM, n=4 

independent experiments with >50 cells/experiment, *p<0.05, Mann-Whitney). c. 

Western blot analysis of total protein levels of LaminA/C and Emd upon strain. 

Depletion of Emd (siEmd) results in efficient reduction of this protein, and has no 



79 

effect on LaminA/C levels (mean + SEM, n=5). d. Immunofluorescence analysis shows 

accumulation of F-actin around the nucleus upon 3 h of strain. Depletion of Emd 

(siEmd) prevents actin polymerization at this site. Scale bars 5 µm.  

 

4.2.3 Emd-actin-NMIIA complex functions as a nuclear force sensor 

Our results so far revealed that strain had a major effect on actin, NMIIA and Emd, 

leading to accumulation of these proteins around the nucleus. We next assessed if 

strain would promote interactions between Emd, actin and NMIIA. Emd 

immunoprecipitation experiments showed co-precipitation of Emd, lamin A/C, actin 

and NMIIA (Fig. 4.2.3). Interestingly, strain increased interactions between Emd, actin 

and an active form of NMIIA (P-MLC2) (Fig. 4.2.3). In contrast, strain decreased an 

interaction between Emd and lamin A/C (Fig. 4.2.3), which further supported our 

observation that strain reduces Emd levels at the INM. These data confirm that: 1) Emd 

can bind to actin and NMIIA. 2) Strain further strengthens interactions between Emd, 

actin and active NMIIA at the ONM. 3) Strain decreases Emd-bound lamin A/C at the 

INM. Together, the results suggest that an Emd-actin-NMIIA complex is established 

upon strain that might serve as a sensor to transmit mechanical forces into the nucleus. 

 

Fig. 4.2.3. Emd-actin-NMIIA complex. Co-immunoprecipitation of Emd shows 

interactions between Emd, actin, NMIIA and Lamin A/C. Strain further enhances Emd-
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bound actin, NMIIA and P-MLC but decreases Emd-bound lamin A/C. Unspecific IgG 

was used as negative control. 

 

4.2.4 Strain regulates RNAPII-S2p and H3K27me3 occupancy through 

Emd-actin-NMIIA complex 

To test whether Emd relocalization was important for force-mediated effects on 

transcriptional silencing, Emd-depleted EPCs were exposed to 12 h of strain, followed 

by immunofluorescence analysis of RNAPII-S2p and H3K27me3. Depletion of Emd 

alone did not alter global RNAPII-S2p and H3K27me3 levels compared to control 

cells, as shown by immunofluorescence analysis (Fig. 4.2.4). However, a combination 

of Emd depletion and mechanical strain prevented strain from repressing transcription 

and enhancing H3K27me3 occupancy (Fig. 4.2.4), indicating that Emd is required to 

transmit the effects of force on chromatin. 
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Fig. 4.2.4. Emd mediates the effect of strain on H3K27me3 and RNAPII-S2p. 

Immunofluorescence analysis of H3K27me3 and RNAPII-S2p shows that depletion of 

Emd blocks the effect of strain on increasing H3K27me3 accumulation and a 

corresponding decrease in RNAPII-S2p levels (scale bars 25 µm, mean ± SD, n>300 

nuclei from 3 independent experiments, *p<0.05, **p<0.01, Kruskal-Wallis/Dunn’s). 
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4.3. Strain induces global chromatin reorganization 

4.3.1 Strain reduces H3K9me2,3 levels 

Previous studies reported that Emd plays a role in tethering heterochromatin to the 

nuclear lamina through H3K9 methylation (Demmerle et al., 2012; Towbin et al., 

2013). As we had observed that strain reduces Emd at the INM, we asked if this could 

impact on the methylation of H3K9 as well as the tethering of heterochromatin to the 

NE. Consistently with previous reports on Emd and H3K9me, western blot analysis of 

Emd-depleted cells showed reduced levels of H3K9me2,3 compared to control cells 

(Fig. 4.3.1A). Analysis of the histone fraction also revealed a decline in H3K9me2,3 

signal in cells exposed to 12 h of strain. Importantly, a combination of Emd depletion 

and strain induced only a minor additive decrease in H3K9me2,3 levels (Fig. 4.3.1A), 

suggesting that strain reduces H3K9me2,3 through Emd. 

Time-scale experiments followed by H3K9me2,3 ChIP revealed that the loss of 

H3K9me2,3 upon strain became first visible after 6 h of strain. As changes in 

transcription were first detected after 3 h of strain, suggesting that the loss of 

H3K9me2,3 is not the cause for the transcriptional repression. Interestingly, decreased 

H3K9me2,3 levels were detected on LADs and major satellites (Fig. 4.3.1B-C), 

implying that mechanical strain may alter global chromatin structure. 
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 Fig. 4.3.1. Strain reduces H3K9me2,3. a. Western blot analysis of nuclear fractions 

shows a decrease in H3K9me2,3 levels both in Emd-depleted cells (siEmd) and in cells 

exposed to 12 h of strain. Quantification (right panel) represents 4 independent 

experiments (mean + SEM). b. No differences in H3K9me2,3 levels at major satellites 

and LADs can be detected after 3 h of strain (mean + SEM, n=3 independent 

experiments). c. ChIP-qPCR shows that strain decreases H3K9me2,3 levels after 6 h of 

strain (mean + SEM, n=3 independent experiments). 
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4.3.2 Strain leads to a compensation between H3K9me2,3 and H3K27me3 

H3K9me2,3 and H3K27me3 are repressive histone marks for constitutive and 

facultative heterochromatin, respectively (Venkatesh and Workman, 2015). Our results 

so far showed that mechanical strain impacts both of them. On one hand, strain 

induced H3K27me3 occupancy at promoters of PRC2 target genes as well as 

constitutive transcribed genes. On the other hand, strain reduced H3K9me2,3 

occupancy on constitutive heterochromatin. We next asked whether strain would 

induce a switch from H3K9me2,3 to H3K27me3 on constitutive heterochromatin 

regions, as it was previously reported that these two repressive marks can compensate 

to ensure genome stability (Walter et al., 2016). To test this hypothesis, we performed 

ChIP experiments for H3K27me3 and H3K9me2,3 in cells exposed to 12 h of strain, 

and  observed enrichment of H3K27me3 at regions where H3K9me2,3 was lost (Fig. 

4.3.2A-B). Consistently, no changes in transcription levels from these regions were 

detected (Fig. 4.3.2C). These data indicate that an epigenetic switch from H3K9me2,3 

to H3K27me3 upon strain is sufficient to maintain gene silencing at these regions. 
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Fig. 4.3.2. Compensation between H3K9me2,3 and H3K27me3 upon strain. a. ChIP-

qPCR reveals reduced occupancy of H3K9me2,3 on LADs upon 12 h of strain (mean + 

SEM, n=3 independent experiments). b. ChIP-qPCR shows that LADs acquire 

H3K27me3 after 12 h of strain (mean + SEM, n=3 independent experiments). c. qPCR 

analysis shows no differences in gene expression levels at LADs after 12 h of strain 

(mean + SEM, n=3 independent experiments, ns=not significant, Mann-Whitney). 
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4.3.3 Strain induces global chromatin reorganization 

Although the switch from H3K9me2,3 to H3K27me3 can ensure longstanding genome 

stability, H3K9me2,3-enriched chromatin is often viewed as a more static compacting 

structure compared to H3K27me3 (Saksouk et al., 2015b; Walter et al., 2016). We 

therefore asked if this epigenetic switch would be accompanied by rearrangements of 

chromatin structure; for example, to a less condensed form of chromatin. To 

investigate this, fluorescence in situ hybridization (FISH) chromosome painting was 

used to visualize chromosome structure. Chromosome 1 contains the epidermal 

differentiation complex (EDC), a locus that harbors a large number of terminal 

differentiation genes for EPCs (Marenholz et al., 2001), and a heterochromatin-rich 

chromosome 18, the lowest gene-density chromosome in humans (Nusbaum et al., 

2005) were chosen for this analysis. 3D analysis of chromosome 1 and 18 showed 

compact and distinct chromosome territories close to the nuclear periphery in control 

cells. In contrast, chromosome 1 and 18 of strained cells displayed dispersed territories, 

which were more centrally distributed (Fig. 4.3.3A-C). Interestingly, chromosome 

painting analysis of Emd-depleted cells also showed dispersed chromosome territories 

similar to strain. A combination of Emd depletion and mechanical strain did not further 

strengthen the effect (Fig. 4.3.3D), suggesting that strain-induced chromatin 

remodeling is mediated through Emd. Collectively, these data indicate that mechanical 

strain regulates chromatin rearrangement through Emd. 
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Fig. 4.3.3. Strain induces chromatin remodeling. a. Chromosome painting of Chr1 

and 18 shows that strain induces diffused chromosome territories (scale bars 7.5 µm). 

b. Quantification shows the ratio of Chr1 and Chr18 volume to total nuclear volume 

(mean ± SD, n≥150 nuclei from 3 independent experiments, *p=0.05, Mann-Whitney). 

c. Quantification shows that strain leads to centrally located to the center of the 

nucleus (mean ± SD, n≥150 nuclei from 3 independent experiments, *p=0.05, Mann-
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Whitney). d. Chromosome painting of Chr1 and 18 show that both strain and depletion 

of Emd cause the chromosome domains more diffused (scale bars 5 µm). Right panels 

show quantification (mean ± SD, n>120 cells from 3 independent experiments, 

*p<0.0237, Kruskal-Wallis/Dunn’s). 

 

4.4 Nuclear actin regulates transcription activity upon strain 

The switch from H3K9me2,3 to H3K27me3 on constitutive heterochromatin and the 

observed chromatin remodeling could partially explain for the strain-induced 

enrichment of H3K27me3; however, it could not account for increased H3K27me3 

occupancy at promoters of PRC2 target genes as well as constitutive actively 

transcribed genes, which had low or no signals of H3K9me2,3 (Fig. 4.4) (Consortium, 

2012). Therefore, the next step was to discover the mechanisms by which strain 

regulates transcribed genes. 
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Fig. 4.4. Different patterns of H3K9me2,3 enrichment on three different gene 

categories. H3K9me2,3-ChIP reveals reduced levels of this mark on major satellites 

(Major sat) and LADs regions upon 12 h of strain. Low levels of H3K9me2,3 is 

detected at promoters of lineage and non-lineage PRC2 target genes (mean + SEM, 

n=3 independent experiments). 
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4.4.1 Strain reduces nuclear actin levels in an Emd-dependent manner 

We showed that strain induces a strong polymerization of actin around the nucleus 

(Fig. 4.2.1D). As nuclear actin has been reported to enhance RNAPII activity (Dopie et 

al., 2012; Hofmann et al., 2004; Kukalev et al., 2005), and play important role in the 

regulation of chromatin structure, and remodeling (Grosse and Vartiainen, 2013; 

Kapoor and Shen, 2014), we asked if strain-induced perinuclear F-actin ring would 

limit the availability of nuclear actin pool, resulting in transcriptional repression. To 

test this, nuclear fractions from EPCs exposed to 12 h of strain were analyzed. The 

results showed that strain indeed reduced nuclear actin levels to 50% of control levels 

(Fig. 4.4.1A-B). This reduction could be prevented by Emd-depletion (Fig. 4.4.1B), 

confirming that Emd mediates the effect of strain. 

Fig. 4.4.1. Strain regulates nuclear actin levels through Emd. Nuclear fractionation 

of cells exposed to 12 h of strain shows a decrease in nuclear actin levels in cells 

exposed to strain. Depletion of Emd prevents the strain-induced decrease in nuclear 

actin. Quantification shows mean + SEM, n=4 independent experiments. 
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4.4.2 Accumulation of nuclear actin reverses the effect of strain on 

transcription and H3K27me3 

To investigate if the reduction in nuclear actin levels would impact transcription, we 

sought to alter nuclear actin pool. Because overexpression of nuclear actin is harmful 

for cells, an alternative approach was used to manipulate nuclear actin levels. It has 

been reported that actin can be shuttled from the cytoplasm to the nucleus specifically 

by importin-9 (IPO9), and vice versa by exportin-6 (XPO6) (Dopie et al., 2012; Stüven 

et al., 2003). As expected, nuclear actin levels were increased by depletion of XPO6 

(Fig. 4.4.2A-B). Moreover, XPO6-depleted cells showed an opposite phenotype 

compared to strained cells. Immunofluorescence analysis of RNAPII-S2p showed that 

an accumulation of nuclear actin led to enhanced RNAPII activity and reduced 

H3K27me3 levels (Fig. 4.4.2C), in agreement with previous reports on nuclear actin 

and its role in regulatory of RNAPII activity (Hofmann et al., 2004; Kukalev et al., 

2005). ChIP analysis of RNAPII-S2p from XPO6-depleted cells revealed increased 

signals of RNAPII-S2p at gene bodies of PRC2 target genes, both lineage and non-

lineage, as well as actively transcribed genes (Fig.4.4.2D), whereas ChIP-H3K27me3 

showed decreased occupancy of H3K27me3 at promoters of these genes (Fig. 4.4.2E), 

indicating that increasing availability of nuclear actin can reverse the effect of 

mechanical strain on transcriptional repression and PRC2 activity. As further evidence, 

inhibiting RNAPII elongation state by 5,6-dichlorobenzimidazole 1-β-D-

ribofuranoside (DRB) offset the effect of nuclear actin on H3K27me3 (Fig. 4.4.2F), 

strengthening our hypothesis that strain regulates H3K27me3 occupancy by 

suppressing of transcriptional elongation. Together, these data suggested that decreased 

nuclear actin levels upon strain attenuate RNAPII activity and this leads to increased 

H3K27me3 accumulation at promoters of silenced genes. 
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Fig. 4.4.2. Nuclear actin mediates the effect of RNAPII-S2p on H3K27me3. a. 

Western blot analysis shows an efficient depletion of Xpo6. b. Nuclear fractionation 

shows that depletion of XPO6 leads to increase nuclear actin levels. Quantification 

shows mean + SEM, n=3 independent experiments. c. Depletion of XPO6 results in 

decreased levels of H3K27me3 and a parallel increase in RNAPII-S2p (scale bars 50 

µm, mean ± SD, n≥200 cells from 4 independent experiments, *p=0.021, Mann-

Whitney). d. H3K27me3-ChIP shows that XPO6-depleted cells have decreased 

occupancy of this mark at promoters of PRC2 target genes (mean + SEM, n=3 

independent experiments). e. RNAPII-S2p-ChIP shows that XPO6 depleting leads to 

increased occupancy of this mark on gene bodies of PRC2 target genes and 

constitutively expressed genes in Xpo6-depleted cells (mean + SEM, n=3 independent 

experiments). f. DRB treatment abolishes the effect of nuclear actin on H3K27me3 

occupancy. (mean + SEM, n=3 independent experiments). 

 

4.4.3 Strain-induced chromatin remodeling is independent on nuclear 

actin-mediated transcription 

As nuclear actin is a component of chromatin remodeling complexes (Kapoor et al., 

2013; Visa and Percipalle, 2010), we next investigated whether strain-induced 

chromatin rearrangements depend on nuclear actin. For this, H3K9me2,3-ChIP was 

performed in XPO6-depleted cells. The result showed that accumulation of actin in the 

nucleus did not alter H3K9me2,3 occupancy on LADs and major satellites (Fig. 4.4.3), 

suggesting that strain-induced epigenetic switch on constitutive heterochromatin is 

independent of nuclear actin. 

Collectively, these experiments indicate that the relocation of Emd upon strain has two 

parallel effects: 1) it mediates the switch from H3K9me2,3 to H3K27me3 on LADs 

and major satellites, thus inducing reorganization of chromatin. 2) Emd together with 

actin and NMIIA limit the availability of nuclear actin, thus repressing RNAPII-driven 

transcription, leading to increased H3K27me3 occupancy at promoters of paused 

RNAPII-driven genes. 
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Fig. 4.4.3. Strain-induced chromatin remodeling is independent on nuclear actin. 

ChIP-qPCR shows no changes in H3K9me2,3 occupancy on LADs and major satellites 

(Major sat) upon Xpo6 depletion (mean + SEM, n=4 independent experiments). 

 

4.5 Strain regulates EPC lineage commitment  

4.5.1 Strain attenuates differentiation gene expression in a myosin 

dependent manner  

To address the functional consequence of strain-induced chromatin remodeling, we 

studied the effect of forces on the expression of the lineage specific PRC2 target genes. 

Immunofluorescence analysis from EPCs exposed to strain revealed that strain 

prevented expression of Tgm1 protein, a marker for EPC differentiation (Fig. 4.5.1A) 

RT-qPCR analysis of EPC basal lineage specification and differentiation genes further 

showed that strained cells would not upregulate these genes in the presence of Ca2+ as 

a differentiation signal after 24 h of strain (Fig. 4.5.1B-C). Importantly, strain did not 

change EPC lineage identity because Keratin 14 (K14), a basal lineage identity gene, 

was not altered. This is in agreement with previous reports showing that PRC2 

selectively regulates terminal differentiation (Ezhkova et al., 2009). 

0

2

8

6

4
H

3K
9m

e2
,3

 C
hI

P
(R

el
at

iv
e 

to
 S

26
)

siScr     IgG
siXpo6  IgG

siScr     H3K9me2,3
siXpo6  H3K9me2,3

Majo
r s

at 
2

Majo
r s

at 
1

Chr1
0 L

AD

Chr1
9 L

AD

S26
(ne

g)



95 

Since myosin activity was required to increase H3K27me3 upon strain, we sought to 

confirm that it is also required to repress transcription of differentiation genes. To this 

end EPCs were exposed to 12h of strain in the presence of Bleb as an inhibitor for 

myosin activity. As expected, inhibition of myosin activity prevented the strain-

induced suppression of EPC differentiation on both gene and protein levels (Fig. 

4.5.1B-C). 

To study whether strain-induced actin polymerization was required for repressing EPC 

differentiation cytochalasin D (CytoD) – an inhibitor of actin polymerization – was 

used (Casella et al., 1981). RT-qPCR analysis of EPC differentiation genes showed 

that CytoD-treated cells with or without strain expressed the same levels of 

differentiation genes as control cells (Fig. 4.5.1D), suggesting that actin polymerization 

and myosin activity are required for strain-induced repression of transcription. 
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Fig. 4.5.1. Force-mediated adjustment of transcription regulates EPC lineage 

commitment. a. Immunofluorescence analysis of Transglutaminase 1 (Tgm1) reveals 

that strain decreases levels of Tgm1 as a marker for EPCs differentiation (scale bars 

100 µm). b. qPCR of basal lineage specification and differentiation genes shows a 

myosin-dependent reduction in late differentiation genes upon strain (mean + SEM, 

n=5 independent experiments, *p<0.1, **p<0.01, Kruskal-Wallis/Dunn’s). c. Western 

blot analysis shows a myosin-dependent reduction in the levels of late-differentiated 

proteins upon strain. Quantification shows mean + SEM, n=3 independent 

experiments. d. qPCR analysis shows that disruption of F-actin stress fibers by CytoD 

treatment prevents repression of differentiation gene expression upon strain (mean + 

SEM, n=5, *p<0.05, **p<0.01, ***p<0.001, Kruskal-Wallis/Dunn’s). 
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4.5.2 PRC2 activity is required for strain-repressed differentiation genes 

expression 

To confirm that strain-induced repression of differentiation genes depends on PRC2 

activity, Ezh2, the methyltransferase of the PRC2 complex, was knocked down prior to 

straining. ChIP-qPCR analysis of H3K27me3 showed that Ezh2-depleted cells failed to 

induce enrichment of H3K27me3 levels at promoters of lineage specific PRC2 target 

genes (Fig. 4.5.2A). RT-qPCR further revealed that without Ezh2, strained cells could 

not repress the expression of differentiation genes (Fig. 4.5.2B). These data confirm 

that PRC2 activity is required to mediate the effect of strain on gene expression.  

 

Fig. 4.5.2. PRC2 activity is required for strain-repressed differentiation genes 

expression. a. Depletion of Ezh2 prevents strain-induced accumulation of H3K27me3 

at promoters of PRC2 targets (mean + SEM, n=3 independent experiments). b. qPCR 

analysis shows that Ezh2 is required to repress the expression of late differentiation 

gene upon strain (mean + SEM, n=4 independent experiments, *p<0.05, **p<0.01, 

Kruskal-Wallis/Dunn’s). 

 

4.5.3 Strain-induced repression of transcription in an Emd-dependent 

manner 

We next asked whether Emd was also necessary to repress the expression of EPC 

lineage genes upon strain. Emd-depleted cells were exposed to strain followed by RT-

**
* ***

**

*

0

1.0

2.0

Fo
ld

 c
ha

ng
e

0.5

1.5

EZH2
LOR

TGM1
PPL

FLG

Control  siScr
Strain    siScr

Control  siEzh2
Strain    siEzh2

ba

10

25

H
3K

27
m

e3
 C

hI
P

(R
el

at
iv

e 
to

 S
26

)

0

20

Control  siScr
Strain    siScr

Control  siEzh2
Strain    siEzh2

LOR
TGM1

PPL
FLG

5

15



98 

qPCR. The result showed that strain repressed the expression of lineage specific genes 

as well as non-lineage genes (Fig. 4.5.3). This was accompanied by accumulation of 

H3K27me3 at promoters of both lineage and non-lineage specific PRC2 target genes. 

Furthermore, depletion of Emd prohibited strain-induced transcription repression (Fig. 

4.5.3), confirming that Emd is required to transmit force to the nucleus to regulate EPC 

lineage commitment. 

 

 

Fig.4.5.3. Strain-induced repression of transcription in an Emd-dependent manner. 

qPCR analysis of PRC2 target genes in Emd-depleted EPCs shows that Emd is 

required for repressing the expression of PRC2 target genes upon strain (mean + 

SEM, n=4 independent experiments, *p<0.05, **p<0.008, Kruskal-Wallis/Dunn’s). 

 

4.5.4 Nuclear actin is required to mediate the adjustment of transcription  

To confirm that nuclear actin mediated the effect of strain on EPC differentiation 

XPO6 knock-down cells were exposed to strain, followed by RT-qPCR analysis of 

differentiation gene expression. The result showed that restoring nuclear actin levels 

upon strain by XPO6 depletion rescued the expression of differentiation genes, such as 

LOR, TGM1, PPL, CRCT1, LCE1A, and SPRR2D, without affecting the expression of 

basal lineage identity K14 (Fig. 4.5.4A). Interestingly, decreasing nuclear actin levels 

by depleting of IPO9 mimicked the effect of strain on late differentiation gene 
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expression (Fig. 4.5.4B). These experiments confirmed that nuclear actin mediates 

transcription. 

Together, these data indicate that strain attenuates EPC differentiation. This effect 

depends on actomyosin, Emd, and PRC2 activity as well as on nuclear actin levels.  

 

 

Fig. 4.5.4. Nuclear actin mediates the effects of strain on gene expression. a. 

Depletion of Xpo6 blocks the attenuation of differentiation gene expression in strained 

cells (mean + SEM, n=4, *p<0.04, **p<0.01, Kruskal-Wallis/Dunn’s). b. Depletion of 

Importin 9 (siIpo9) decreases expression of EPC late differentiation genes (mean + 

SEM, n=3, *p<0.03, Mann-Whitney). 

 

4.6 NMIIA activity regulates terminal differentiation in vivo 

Our data had revealed an important role of the Emd-actin-NMIIA mechanosensory 

complex in relaying extrinsic forces on the nucleus, to regulate EPC lineage 

commitment. To investigate whether this mechanosensory rheostat regulates epidermal 

differentiation and thus morphogenesis in vivo, we first analyzed wild-type mouse 

EPCs for the effect of strain on transcription and PRC2 activity in order to validate the 

usefulness of the mouse as an in vivo model. Immunofluorescence analysis of mouse 

EPCs showed that strain at 10%-100 mHz decreased RNAPII-S2p and increased 

H3K27me3 intensity after 12 h (Fig. 4.6.1A). Furthermore, RT-qPCR analysis 

confirmed that strain repressed the expression of differentiation genes and non-lineage 
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specific genes after 12 h (Fig. 4.6.1B). These experiments indicate that the effect of 

strain is conserved in mouse EPCs.  

 

 

Fig. 4.6.1. The effect of strain is conserved for mouse keratinocytes. a. 

Immunofluorescence analysis of mouse keratinocytes shows increased H3K27me3 and 

decreased RNAPII-S2p after 12 h of strain (scale 30 µm, mean ± SD, n>200 cells from 

4 independent experiments, *p<0.05, Mann-Whitney). b. qPCR analysis shows that 

strain repress the expression of lineage-specific and non-lineage PRC2 target genes in 

mouse keratinocytes after 12 h (mean + SEM, n=6, *p=0.027, **p<0.008, Mann-

Whitney). 
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Our previous data showed that NMIIA displays an important role in regulating the 

response of EPCs upon strain. An epidermis-specific deletion of the myosin heavy 

polypeptide 9 (Myh9EKO) gene encoding for the heavy chain of NMIIA was generated 

by crossing Myh9 floxed/floxed mice (Conti et al., 2004) with mice expressing 

Keratin-14 Cre (Hafner et al., 2004). The mouse experiments described below were 

performed by other laboratory members. 

Epidermis-specific deletion of NMIIA resulted in perinatal lethality. EPCs isolated 

from Myh9EKO showed abnormal cell shape, absence of stress fibers and aberrant 

membrane protrusions (Fig. 4.6.2A), indicating that NMIIA is required for generating 

tension and for organizing the actomyosin cytoskeleton. Hematoxylin/Eosin staining of 

skin revealed, a thinner epidermal layer and the arrest of hair follicle morphogenesis in 

Myh9EKO mice at P0 (Fig. 4.6.2B), indicating defects in epidermal morphogenesis. 

Immunofluorescence analysis using the terminal differentiation marker K10 and the 

progenitor marker K14 showed thinner K10-possitive layers and importantly, presence 

of K10-possitive cells in the progenitor cells layer of Myh9EKO epidermis (Fig. 4.6.2C). 

In addition, staining with loricrin as a marker for the cornified layer revealed the 

absence of a proper spinous layer in Myh9EKO. These data explain the thinner 

epidermis in Myh9-deficient mice, and suggest that NMIIA is required for proper 

timing of terminal differentiation. 

To further analyze the role of NMIIA in regulating epidermal differentiation, the 

expression of lineage specific genes was analyzed. ChIP-qPCR of H3K27me3 analysis 

revealed decreased occupancy of this mark on promoters of differentiation genes (Fig. 

4.6.2D). RT-qPCR showed that these genes were upregulated upon loss of NMIIA 

(Fig. 4.6.2E), confirming that NMIIA plays important role in epidermal differentiation. 

Collectively, these data provide evidences that NMIIA is required for regulating of 

transcription and PRC2 activity, hence playing a vital role for lineage progression 

through epidermal morphogenesis. 
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Fig. 4.6.2. Myh9-deficient mice show defects in epidermal architecture and 

differentiation. a. Immunofluorescence analysis of the actin cytoskeleton of 

keratinocytes isolated from control and Myh9EKO mice show absence of F-actin stress 

fibres and aberrant membrane protrusions in Myh9EKO keratinocytes. Scale bars 50 

µm. b. Hematoxylin/Eosin staining shows a thinner epidermis and arrested hair follicle 

development in Myh9EKO mice (arrows; scale bars 50 µm). Quantification of epidermal 

thickness shows mean + SEM, n=4 mice/genotype, *p=0.0286, Mann-Whitney. c-d. 

Immunofluorescence analysis of E16.5 skin using the EPC marker Keratin 14 (K14), 

K10 as marker of the differentiated spinous layer (c) and Loricrin as a marker for the 

cornified layer (d). The K10-positive layer of Myh9EKO epidermis is thinner and K10-

positive cells can also be detected in the basal r layer (arrowheads). Loricrin 

expression is detected directly above the K14-positive basal layer, indicating absence 

of spinous layer (asterisk) in Myh9EKO epidermis. Scale bars 30 µm. e. qPCR analysis 

of H3K27me3-ChIP shows decreased occupancy of this mark on promoters of 

differentiation genes in Myh9EKO E16.5 epidermis (mean + SEM, n=8 mice/genotype). 

f. qPCR analysis of late differentiation genes in E16.5 epidermis of Myh9EKO and 
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control mice shows upregulation of late differentiation gene expression in Myh9EKO 

(mean + SEM, n=4 mice/genotype, *p<0.02, Mann-Whitney). 
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5. Discussion 

The actomyosin cytoskeleton plays a critical role in force generation and transmission. 

It provides a direct link to transduce mechanical forces through the cytoplasm to the 

nucleus and thus to the chromatin. As a consequence, it can direct cellular responses to 

forces. However, the molecular mechanisms underlying force-driven cellular responses 

have remained elusive. Here we show that extrinsic mechanical strain represses global 

transcription and induces chromatin rearrangements, as summarized in Fig. 5. 

 

 

Fig. 5. A proposed model describing force-induced transcriptional regulation, 

chromatin rearrangement and cell fate decisions. 

In summary, extrinsic cyclic biaxial mechanical strain at 10% elongation and 100 mHz 

mediates actin cytoskeleton remodeling and enhances myosin II activity. The 

actomyosin network in turn, transmits the force to the nucleus. At the NE, mechanical 

strain leads to enrichment of Emd, NMIIA and local actin polymerization. The 

enrichment of Emd at the ONM decreases Emd levels at the INM, resulting in loss of 

H3K9me2,3 on LADs and major satellites. Importantly, cells maintain the silencing at 

these regions by acquiring H3K27me3, a repressive mark catalyzed by PRC2. This is 

accompanied by large-scale chromatin rearrangements. In parallel, Emd and NMIIA 

coordinate peri-nuclear F-actin polymerization, which decreases levels of nuclear G-

actin. As nuclear actin regulates RNAPII activity, its reduction represses transcription 
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and subsequently induces recruitment of PRC2 to promoters of the downregulated 

genes. PRC2 then trimethylates H3K27 at these regions, thereby inducing gene 

silencing. 

 

5.1 Strain induces global transcriptional repression and subsequent 

H3K27me3-mediated gene silencing 

Our data revealed that mechanical strain represses global transcription by attenuating 

RNAPII elongation. In line with a previous report (Riising et al., 2014), we observed 

subsequent enrichment of H3K27me3 at the promoter regions of these repressed genes, 

indicating that transcription regulates PRC2 activity. Interestingly, mechanical strain 

had the strongest effect on lineage-specific PRC2 target genes, thereby preventing 

terminal differentiation of strain-exposed EPCs. As the transcriptional repression was 

global, it is not completely clear why strain specifically impacts these differentiation 

genes. It was reported that epidermal terminal differentiation genes are under direct 

control of PRC2 (Ezhkova et al., 2009), indicating that altering PRC2 activity changes 

the expression of these genes. Importantly, PcG proteins have been shown to play 

crucial roles in maintaining stem cell pluripotency and lineage-specific identity (Morey 

et al., 2015; Yang et al., 2016). Depletion of Suz12 or Ezh2 in embryonic stem cells 

(ESCs) leads to global loss of H3K27me3. Interestingly, these ESCs have almost no 

defects in proliferation ability and viability, but fail to establish a proper differentiation 

program (Pasini et al., 2007; Shen et al., 2008). These reports indicate that PcG 

proteins are not required for SC self-renewal but critical for cell fate determination (Di 

Croce and Helin, 2013). Based on these observations, we hypothesize that the effect of 

strain on differentiation genes is due to EPC fate transition. We induced the 

differentiation process in EPCs by Ca2+ switch prior to strain, as Ca2+ acts as a trigger 

signal for the differentiation of EPCs (Bikle et al., 2012). Despite this strong 

differentiation signals, EPCs failed to switch on their differentiation gene expression 

program. This indicates that the PRC2 competes with RNAPII at promoter regions of 

lineage-specific genes to control their expression, and at promoters where transcription 

is initially low (such as the differentiation genes and non-lineage specific genes), the 

reduced RNAPII activity is sufficient to allow strong PRC2 occupancy and subsequent 
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complete silencing, whereas at constitutive genes the observed ~10% reduction in 

transcription is not substantial enough to allow recruitment of sufficient amounts of 

PRC2. 

Non-lineage-specific genes are also under PRC2 control, they are expressed very low 

levels of mRNAs, known as “leaky” transcription (Alberts et al., 2007); (Consortium, 

2012). It has been suggested that further compaction of chromatin at these regions 

could prevent the leaky transcription (Alberts et al., 2007). We detected a small but 

consistent enrichment of H3K27me3 occupancy at promoters of Hox and Sox genes. 

These enhanced H3K27me levels might prevent strained cells from the “leaky” 

expression of non-lineage genes. This effect was detectable at mRNA levels although it 

was not as strong as the effect on differentiation genes. 

How could strain regulate transcriptional silencing on the molecular level? One 

potential model is that strain could induce the establishment of bivalent promoters, 

particularly at lineage-specific genes. Bivalent promoters have been suggested to 

maintain an open and accessible chromatin state as a checkpoint to ensure that only 

strong and sustained signals are capable of driving transcription (Brookes and Pombo, 

2012; Laugesen and Helin, 2014). This is in line with our RNA-seq data showing a 

profile of strain repressed global transcription, suggesting a force-induced regulation of 

the chromatin state. We propose two potential bivalency models that could take place 

upon strain. 1) Several previous studies suggest that the establishment of bivalency 

allow the timely activation of lineage-specific genes while remaining inactive in the 

absence of differentiation signals. Thus one possibility could be that differentiation 

genes in EPCs exist in a bivalent state and strain-induced increased PRC2 activity 

could strengthen this state. This model could be tested by performing ChIP-seq 

analysis for bivalency in EPCs, Ca2+-treated EPCs and strained EPCs. 2) Alternatively, 

strain could establish bivalent domains de novo at PRC2 lineage-specific genes to 

maintain accessible promoters, allowing EPCs to stay in a plastic and inducible state. 

The bivalency could also explain the effect of strain on different gene categories; 

constitutively transcribed genes do not establish bivalent domains whereas PRC2 target 

genes do (Voigt et al., 2013). Regardless of which model is correct, genome-wide 

distribution of H3K27me3, H3K4me3 (an active histone mark) and RNAPII-S5p will 

help us to further test these hypotheses. 
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Consistent with previous reports on nuclear actin (Miyamoto and Gurdon, 2013), we 

showed that nuclear G-actin regulates RNAPII activity. However, it is unclear how 

nuclear actin affects gene expression, and whether there are some clusters of actin-

driven genes that are more strongly influenced by actin and mechanical force. How 

nuclear actin and PRC2 coordinate their activity in regulating the expression of 

lineage-specific genes is an interesting open question. A genome-wide mapping for 

nuclear actin in addition can bring us more insight into how mechanical strain regulates 

lineage commitment. 

Although no studies so far have been able to elucidate the mechanism of recruitment of 

PRC2, some studies suggest that non-coding (nc)RNAs might play a central role in 

regulating transcription, chromatin remodeling and PcG recruiting (Fang and 

Fullwood, 2016; Quinn and Chang, 2016). Our preliminary data on ncRNAs (data not 

shown) suggests that strain downregulates the expression of many ncRNAs. Therefore 

it is of great interest to study further the role of strain-mediated ncRNAs; for example, 

whether overexpression of some ncRNAs could rescue strain-induced transcription 

repression, or RNA pull-down assays to discover the interaction between ncRNAs, 

RNAPII and PcG proteins upon strain.  

 

5.2 Strain regulates transcription through Emd  

Emd is a nuclear membrane protein, mainly localized at the INM. The N-terminal of 

Emd has a LEM domain, which interacts directly with numerous nuclear proteins, 

including BAF, lamins as well as chromatin-modifying complex, and is required to 

facilitate the formation of repressive heterochromatin at the NE (see 1.3.2.2). 

Furthermore, Emd has been shown to be associated with multiple protein complexes, 

which regulate gene expression and chromatin dynamics such as nuclear co-repressor 

(NCoR) complex (Demmerle et al., 2012), nuclear factor-Y (NF-Y) (Holaska and 

Wilson, 2007) and transcriptional regulation complex (with GCL, Btf and YT521-B) 

(Holaska and Wilson, 2006), suggesting that Emd could play important roles as a 

regulator of nuclear architecture, nuclear assembly and gene expression.  
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It has been suggested that the nucleus is an integral component of the mechanical 

response of the cell (Alam et al., 2014; Chang et al., 2015). Failure of cells to respond 

to mechanical forces due to impaired NE results in a broad range of diseases, for 

example dystrophy, cardiomyopathy, and premature aging (Isermann and Lammerding, 

2013). We observed that mechanical strain leads to Emd retention at the ONM and in 

the ER. However, we do not fully understand the mechanism of Emd redistribution. 

We postulate that strain could promote changes in Emd at the molecular level. In line 

with previous report (Guilluy et al., 2014), our preliminary mass-spectrometry analysis 

on Emd (data not shown) suggests that strain could cause changes in PTMs of Emd. 

Further experiments are required to characterize the function of these PTMs to 

understand whether they contribute to the redistribution of Emd upon strain.  

Emd together with Nesprin and SUN domain proteins establish the LINC complex, 

providing a physical link between the cytoskeleton and the nucleus. They have several 

functions in nuclear positioning, chromatin organization, cell fate decisions and 

migration (Chang et al., 2015; Horn, 2014). Importantly, recent studies also suggest the 

role of Nesprin and SUN domain proteins in force transmission to the chromatin 

(Isermann and Lammerding, 2013; Jahed et al., 2015). We discovered the role of Emd 

in response to force. However, it is still unknown if strain affects Emd alone or in 

complex with Nesprin and SUN domain proteins. It is quite likely that strain impacts 

the whole LINC complex rather than only Emd. How mechanical forces are sensed at 

this site remains an open question. An interesting possibility is that strain regulates 

members of the LINC complex through an allosteric mechanism, as has been shown 

for other mechanosensitive proteins such as α-catenin (Yao et al., 2014; Yonemura et 

al., 2010). In response to force, α -catenin is stretched, changes its conformation, and 

thereby recruits vinculin binding. Vinculin in turn stabilizes the “open” conformation 

of α -catenin, allowing forces to be transmitted to the actin cytoskeleton. We 

hypothesize that LINC complex members could also undergo conformational changes 

in response to strain, increasing their affinity with actin, and thereby perhaps retaining 

Emd at the ONM. Therefore further researches are needed to study the effect of 

mechanical strain on the LINC complex, and the function of each component in 

response to strain. 
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The NPCs could also be a potential member of the nuclear force sensor complex, 

although little is known about its role in mechanotransduction. The NPCs provide 

gateways for exchanging macromolecule between the cytoplasm and the nucleus. 

Interestingly, they interact both with chromatin and the NE (Fedorchak et al., 2014) 

and also regulate many nuclear processes, including cell division, transcriptional 

mediation and histone PTMs (Sood and Brickner, 2014). In addition, as we observed 

changes in nuclear actin, this could also be a result of altered transport. Therefore it 

would be interesting to test whether strain has any impacts on the NPCs, such as 

increasing the pore size or disturbing the interaction between the NPCs and chromatin.  

 

5.3 Strain induces large-scale rearrangement of chromatin through Emd 

We showed that strain-induced retention of Emd at the ONM led to decreased levels of 

H3K29me2,3 at LADs and major satellites region. Importantly, H3K27me3 was 

accumulated at these regions, indicating a compensation between H3K9me2,3 and 

H3K27me3.  

The strain-induced switch of histone PTMs resulted in large-scale chromatin 

rearrangements; the chromosome territories were more dispersed and diffused. It has 

been suggested that in certain circumstances, cells could switch their histone PTMs 

from H3K9me2,3 to H3K27me3 to ensure longstanding genome stability (Walter et al., 

2016). We observed that strain had no effect on cell growth and viability. Importantly, 

no nuclear damage was detected. Therefore, we hypothesize that the compensation 

between H3K9me2,3 and H3K27me3 upon strain could be necessary to maintain 

genome stability during strain. It will be interesting to determine if the switch from 

H3K9me2,3 to H3K27me3 can also be achieved just by depletion of Emd or if it is a 

specific response to mechanical strain. ChIP analysis for H3K9me2,3 and H3K27me3 

in Emd-depleted cells would be necessary to reveal this question. 

LADs are well-known as repressive domains enriched in H3K9me2,3. H3K9me2,3 has 

been implicated as a molecular signal for tethering heterochromatin to the NE (Towbin 

et al., 2012). Loss of H3K9 methyltransferase G9a leads to decreased interactions 

between LADs and the NE (Kind et al., 2013). Intriguingly, both repressive marks 
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H3K9me2,3 and H3K27me3 are found at the LAD borders, and are required for 

maintenance LADs at the nuclear periphery (Guelen et al., 2008; Harr et al., 2015). 

One remaining question in our model is whether strain-induced global chromatin 

remodeling and switching between two repressive marks are associated with 

detachment of LADs from the nuclear lamina. DNA adenine methyltransferase 

identification (DamID) profiles of lamins and Emd from cells exposed to strain would 

therefore be required to provide direct evidence of the association of chromatin with 

the nuclear lamina. DamID has been widely used and provides high-resolution studies 

of genome-nuclear lamina interactions (Guelen et al., 2008; Vogel et al., 2007). Both 

DamID and ChIP are methods to detect interactions between DNA and protein; 

however, DamID is not dependent on crosslinking reagents and antibody specificities 

but based on the low-level expression of a fusion protein composed of the target 

protein and the Dam from E. coli. Because endogenous methylation of adenine does 

not occur in humans, Dam will target and methylate its motif sequence (GATC) near 

the site of fused protein-DNA interaction. These sites can then be amplified and 

detected. With the advancement of next generation sequencing, DamID-seq profiling is 

now possible to be combined with other functional genomic data (Aughey and 

Southall, 2016; Kind et al., 2015). Harnessing the potential of this technique, it is of 

great interest to generate DamID-lamin and DamID-Emd profiles and integrate them 

with H3K27me3 and H3K9me2,3-ChIP-seq data from strained EPCs. These results 

would allow us to gain more knowledge about the effect of mechanical force on 

nuclear architecture, in particular, interactions between chromatin and nuclear lamina 

as well as the roles of these two histone marks.  

The switch from H3K9me2,3 and H3K27me3 upon strain was accompanied by the 

global rearrangement of chromatin. However, it is still unclear if loss of Emd at the 

INM would first mediate the switch from H3K9me2,3 to H3K27me3, followed by 

chromatin rearrangement or vice versa. As mentioned, H3K9me2,3 has been reported 

to be essential for the sequestration of heterochromatin at the NE (Harr et al., 2015; 

Towbin et al., 2012), suggesting that strain first reduces H3K9me2,3 levels, and 

thereby results in chromatin rearrangement and the compensation of H3K27me3. 

Further studies on this epigenetic switch are required for better understanding the 

spatiotemporal sequence of events. 
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The data so far demonstrated the effects of strain on H3K27me3 and H3K9me2,3. In 

light of the global rearrangements of chromosome territories, it seems likely that other 

changes could also occur. Therefore, it would be interesting to determine if strain 

regulates global histone PTMs including H2AK119Ub (a marker for PRC1 activity) 

and H3K4me3. Histone PTMs have various functions, such as transcriptional 

regulation, gene repression, chromatin state, DNA repair, cell cycle progression, as 

well as many unknown functions. Interestingly, the coexistence of several marks can 

lead to crosstalk between histone PTMs (Bannister and Kouzarides, 2011; Du et al., 

2015), and thus their global analyses may shed new light in understanding the 

mechanism of strain-mediated chromatin remodeling and other DNA-related processes. 

This could be achieved for example by performing quantitative mass spectrometry 

(Britton et al., 2011; Zhang et al., 2014).  

 

5.4 Perspective 

Emery-Dreifuss muscular dystrophy (EDMD) is a degenerative disease that mainly 

affects muscle cells. This disease is due to mutations or misregulation of lamin A/C or 

Emd (Koch and Holaska, 2014). Many models have been proposed to explain the 

tissue-specificity of EDMD, suggesting multiple roles of Emd and lamin A/C in tissue-

specific gene expression, signal transduction and mechanical stability. Intriguingly, it 

is becoming evident that no single model can explain the EDMD mechanism entirely, 

but a combination of them, where mechanical signaling pathways that integrate nuclear 

architecture and gene expression could play a central role (Holaska and Wilson, 2006; 

Lammerding et al., 2004). Our results suggest a potential model that explains why 

EDMD mainly affects tissues that undergo high mechanical loading and why these 

tissues display severe phenotypes, including abnormal nuclear structure and apoptosis. 

These phenotypes may be the consequence of an inability to reorganize chromatin 

conformation as a response to mechanical stress as seen in Emd-deficient cells. 
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5.5 Strain-induced Emd-actin-NMIIA nuclear force sensor affects nuclear 

actin availability  

Interestingly, Emd has been shown to function as a nuclear force sensor in isolated-

nuclei (Guilluy et al., 2014). However, it does not provide information on the 

interaction of nuclear-cytoskeleton and the trafficking of molecules between the 

cytoplasm and the nucleus, which only exist in intact cells. In our model, we observed 

that force induces enrichment of Emd, actin and NMIIA at the ONM. Besides, Emd 

has been demonstrated to interact directly with both monomeric and filamentous forms 

of actin (Holaska et al., 2004; Holaska and Wilson, 2007). In line with these 

observations, we showed that actin and NMIIA interacted with Emd. Moreover, strain 

further enhanced this interaction, in particular with the active form of myosin. 

Although it is unknown whether NMIIA binds directly to Emd or through actin, we 

hypothesize the formation of an Emd-actin-NMIIA complex at the ONM that serves as 

a nuclear force sensor. 

We demonstrated that mechanical strain leads to accumulation of Emd at the ONM 

together with actin and NMIIA as a nuclear-force sensor; it is still unclear how this 

structure forms. We expect that the formation of this mechanosensor could be a step-

wise process, in which strain induces the actomyosin remodeling process, especially 

the nuclear actin ring, to prevent the nucleus from deformation. The nuclear actin 

structure is suggested as an immediate cellular response to extrinsic force (Shao et al., 

2015). This actin ring could function as a trap, preventing Emd from diffusion to the 

INM. Besides, actin could also compete against Lamin A/C to interact with Emd based 

on the fact that their binding sites on Emd are overlapped (Berk et al., 2013; Yuan and 

Xue, 2015). Since strain induced strong F-actin stress-fibers polymerization at the 

ONM, this actin structure may not only prevent Emd from diffusion to the INM, but 

also recruit Emd from the INM. Live-cell imaging assay and a competition assay 

between Emd, actin and lamin A/C are therefore required to provide answers to these 

important questions.  

Furthermore, in contrast to the previous report (Shao et al., 2015), we observed that the 

strain-induced nuclear actin ring is stable. This could arise from Emd and NMIIA as 

stabilizing factors for local actin polymerization upon a long period of force 



113 

stimulation. Moreover, we also showed that a pool of nuclear actin is decreased upon 

mechanical strain, which is dependent on Emd, as a component of the nuclear force 

sensor. As mentioned, force also induced a robust local actin polymerization at the 

ONM, suggesting that the strain-induced reduction in nuclear actin is a consequence of 

this local polymerization. This robust polymerization might function as a barrier to 

block the flow of actin to the nucleus and induce monomeric actin recruitment to the 

ONM, thereby affecting the availability of nuclear actin. 

 

5.6 Nuclear actin is required to mediate transcription activity 

Actin is involved in many essential processes in the cell. Recent studies have identified 

the roles of actin in the nucleus. Nuclear actin has been shown to associate with 

transcriptional machinery as well as with nascent transcripts (Dopie et al., 2012; 

Hofmann et al., 2004; Kapoor et al., 2013). However, the precise mechanisms remain 

unclear. It is suggested that nuclear actin modulates the elongation process of RNAPII 

to facilitate the modifications of chromatin structure at this site (Visa and Percipalle, 

2010). In agreement with these observations, our data revealed that strain-induced 

reduction of nuclear actin levels result in the repression of transcriptional activity 

through reduced RNAPII-S2p occupancy at the gene bodies of PRC2-driven-lineage-

specific genes. Lack of transcriptional activity recruited PRC2 to mediate the silencing 

at these genes, thereby regulating lineage progression. Additionally, our findings 

suggest a molecular mechanism for the direct correlation between nuclear actin levels 

and quiescent state (Spencer et al., 2011).  

Although IPO9 and XPO6 were reported to be specific for actin flow between the 

cytoplasm and the nucleus, they also transport other proteins, including cofilin and 

profilin, respectively. These proteins are well known as regulators of actin dynamics. 

This raises a curious question as to how mechanical strain regulates cofilin, profilin, 

and nuclear actin dynamics and whether they are involved in regulating RNAPII 

activity. Thus, methods to precisely regulate nuclear actin levels are required to solve 

this central concern. 
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In summary, we have identified a novel nuclear-mechanosensor that regulates 

transcription, chromatin remodeling and lineage commitment. For the first time, this 

study reveals unknown functions of Emd, and provides a mechanism for the missing 

link as to how extrinsic mechanical forces couple the actomyosin contractile network 

to transduce signals to the nucleus in order to drive cellular responses. However, many 

unsolved questions remain. Further studies will help us to fully understand how forces 

induce transcription repression, chromatin remodeling and cell fate decisions.  

 

  



115 

 

References 

Adelman, K., and Lis, J.T. (2012). Promoter-proximal pausing of RNA polymerase II: emerging roles in 
metazoans. Nat Rev Genet 13, 720-731. 
Alam, H., Sehgal, L., Kundu, S.T., Dalal, S.N., and Vaidya, M.M. (2011). Novel function of keratins 5 
and 14 in proliferation and differentiation of stratified epithelial cells. Mol Biol Cell 22, 4068-4078. 
Alam, S., Lovett, D.B., Dickinson, R.B., Roux, K.J., and Lele, T.P. (2014). Nuclear forces and cell 
mechanosensing. Prog Mol Biol Transl Sci 126, 205-215. 
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2007). Molecular biology of 
the cell, 5th edition. Garland Science. 
Allis, C.D., and Jenuwein, T. (2016). The molecular hallmarks of epigenetic control. Nat Rev Genet 17, 
487-500. 
Aughey, G.N., and Southall, T.D. (2016). Dam it's good! DamID profiling of protein-DNA interactions. 
Wiley Interdiscip Rev Dev Biol 5, 25-37. 
Avgustinova, A., and Benitah, S.A. (2016). Epigenetic control of adult stem cell function. Nat Rev Mol 
Cell Biol. 
Bai, L., and Morozov, A.V. (2010). Gene regulation by nucleosome positioning. Trends Genet 26, 476-
483. 
Bannister, A.J., and Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Res 
21, 381-395. 
Becker, J.S., Nicetto, D., and Zaret, K.S. (2016). H3K9me3-Dependent Heterochromatin: Barrier to Cell 
Fate Changes. Trends Genet 32, 29-41. 
Berk, J.M., Tifft, K.E., and Wilson, K.L. (2013). The nuclear envelope LEM-domain protein emerin. 
Nucleus 4, 298-314. 
Betapudi, V. (2014). Life without double-headed non-muscle myosin II motor proteins. Front Chem 2, 
45. 
Bickmore, W.A., and van Steensel, B. (2013). Genome architecture: domain organization of interphase 
chromosomes. Cell 152, 1270-1284. 
Bikle, D.D., Xie, Z., and Tu, C.L. (2012). Calcium regulation of keratinocyte differentiation. Expert Rev 
Endocrinol Metab 7, 461-472. 
Blackledge, N.P., Rose, N.R., and Klose, R.J. (2015). Targeting Polycomb systems to regulate gene 
expression: modifications to a complex story. Nat Rev Mol Cell Biol 16, 643-649. 
Blanchard, G.B., Kabla, A.J., Schultz, N.L., Butler, L.C., Sanson, B., Gorfinkiel, N., Mahadevan, L., and 
Adams, R.J. (2009). Tissue tectonics: morphogenetic strain rates, cell shape change and intercalation. 
Nat Methods 6, 458-464. 
Blanpain, C., and Fuchs, E. (2009). Epidermal homeostasis: a balancing act of stem cells in the skin. Nat 
Rev Mol Cell Biol 10, 207-217. 
Britton, L.M., Gonzales-Cope, M., Zee, B.M., and Garcia, B.A. (2011). Breaking the histone code with 
quantitative mass spectrometry. Expert Rev Proteomics 8, 631-643. 
Brookes, E., de Santiago, I., Hebenstreit, D., Morris, K.J., Carroll, T., Xie, S.Q., Stock, J.K., 
Heidemann, M., Eick, D., Nozaki, N., et al. (2012). Polycomb associates genome-wide with a specific 
RNA polymerase II variant, and regulates metabolic genes in ESCs. Cell Stem Cell 10, 157-170. 
Brookes, E., and Pombo, A. (2009). Modifications of RNA polymerase II are pivotal in regulating gene 
expression states. EMBO Rep 10, 1213-1219. 
Brookes, E., and Pombo, A. (2012). Code breaking: the RNAPII modification code in pluripotency. Cell 
Cycle 11, 1267-1268. 
Burke, B., and Stewart, C.L. (2013). The nuclear lamins: flexibility in function. Nat Rev Mol Cell Biol 
14, 13-24. 
Campbell, I.D., and Humphries, M.J. (2011). Integrin structure, activation, and interactions. Cold Spring 
Harb Perspect Biol 3. 
Campos, E.I., and Reinberg, D. (2009). Histones: annotating chromatin. Annu Rev Genet 43, 559-599. 
Casella, J.F., Flanagan, M.D., and Lin, S. (1981). Cytochalasin D inhibits actin polymerization and 
induces depolymerization of actin filaments formed during platelet shape change. Nature 293, 302-305. 
Chang, W., Worman, H.J., and Gundersen, G.G. (2015). Accessorizing and anchoring the LINC 
complex for multifunctionality. J Cell Biol 208, 11-22. 
Chaumet, A., Wright, G.D., Seet, S.H., Tham, K.M., Gounko, N.V., and Bard, F. (2015). Nuclear 
envelope-associated endosomes deliver surface proteins to the nucleus. Nat Commun 6, 8218. 



116 

Ciabrelli, F., and Cavalli, G. (2015). Chromatin-driven behavior of topologically associating domains. J 
Mol Biol 427, 608-625. 
Clark, K., Langeslag, M., Figdor, C.G., and van Leeuwen, F.N. (2007). Myosin II and 
mechanotransduction: a balancing act. Trends Cell Biol 17, 178-186. 
Clayton, E., Doupe, D.P., Klein, A.M., Winton, D.J., Simons, B.D., and Jones, P.H. (2007). A single 
type of progenitor cell maintains normal epidermis. Nature 446, 185-189. 
Cohen, T.V., Hernandez, L., and Stewart, C.L. (2008). Functions of the nuclear envelope and lamina in 
development and disease. Biochem Soc Trans 36, 1329-1334. 
Connelly, J.T., Gautrot, J.E., Trappmann, B., Tan, D.W., Donati, G., Huck, W.T., and Watt, F.M. 
(2010). Actin and serum response factor transduce physical cues from the microenvironment to regulate 
epidermal stem cell fate decisions. Nat Cell Biol 12, 711-718. 
Consortium, E.P. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature 
489, 57-74. 
Conti, M.A., and Adelstein, R.S. (2008). Nonmuscle myosin II moves in new directions. J Cell Sci 121, 
11-18. 
Conti, M.A., Even-Ram, S., Liu, C., Yamada, K.M., and Adelstein, R.S. (2004). Defects in cell adhesion 
and the visceral endoderm following ablation of nonmuscle myosin heavy chain II-A in mice. J Biol 
Chem 279, 41263-41266. 
Cooper, G.M., and Hausman, R.E. (2013). The Cell: A Molecular Approach. 6th edition. Sinauer 
Associates: Sunderland. 
Crisp, M., and Burke, B. (2008). The nuclear envelope as an integrator of nuclear and cytoplasmic 
architecture. FEBS Lett 582, 2023-2032. 
Dahl, K.N., Ribeiro, A.J., and Lammerding, J. (2008). Nuclear shape, mechanics, and 
mechanotransduction. Circ Res 102, 1307-1318. 
Dechat, T., Pfleghaar, K., Sengupta, K., Shimi, T., Shumaker, D.K., Solimando, L., and Goldman, R.D. 
(2008). Nuclear lamins: major factors in the structural organization and function of the nucleus and 
chromatin. Genes Dev 22, 832-853. 
Dejardin, J. (2015). Switching between Epigenetic States at Pericentromeric Heterochromatin. Trends 
Genet 31, 661-672. 
Dekker, J., Marti-Renom, M.A., and Mirny, L.A. (2013). Exploring the three-dimensional organization 
of genomes: interpreting chromatin interaction data. Nat Rev Genet 14, 390-403. 
Demmerle, J., Koch, A.J., and Holaska, J.M. (2012). The nuclear envelope protein emerin binds directly 
to histone deacetylase 3 (HDAC3) and activates HDAC3 activity. J Biol Chem 287, 22080-22088. 
Di Croce, L., and Helin, K. (2013). Transcriptional regulation by Polycomb group proteins. Nat Struct 
Mol Biol 20, 1147-1155. 
Dmitrieff, S., and Nedelec, F. (2016). Amplification of actin polymerization forces. J Cell Biol 212, 763-
766. 
Dopie, J., Skarp, K.P., Rajakyla, E.K., Tanhuanpaa, K., and Vartiainen, M.K. (2012). Active 
maintenance of nuclear actin by importin 9 supports transcription. Proc Natl Acad Sci U S A 109, E544-
552. 
Du, J., Johnson, L.M., Jacobsen, S.E., and Patel, D.J. (2015). DNA methylation pathways and their 
crosstalk with histone methylation. Nat Rev Mol Cell Biol 16, 519-532. 
DuFort, C.C., Paszek, M.J., and Weaver, V.M. (2011). Balancing forces: architectural control of 
mechanotransduction. Nat Rev Mol Cell Biol 12, 308-319. 
Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., Zanconato, F., Le Digabel, 
J., Forcato, M., Bicciato, S., et al. (2011). Role of YAP/TAZ in mechanotransduction. Nature 474, 179-
183. 
Ea, V., Baudement, M.O., Lesne, A., and Forne, T. (2015). Contribution of Topological Domains and 
Loop Formation to 3D Chromatin Organization. Genes (Basel) 6, 734-750. 
Entrevan, M., Schuettengruber, B., and Cavalli, G. (2016). Regulation of Genome Architecture and 
Function by Polycomb Proteins. Trends Cell Biol 26, 511-525. 
Evans, N.D., Oreffo, R.O., Healy, E., Thurner, P.J., and Man, Y.H. (2013). Epithelial mechanobiology, 
skin wound healing, and the stem cell niche. J Mech Behav Biomed Mater 28, 397-409. 
Ezhkova, E., Pasolli, H.A., Parker, J.S., Stokes, N., Su, I.H., Hannon, G., Tarakhovsky, A., and Fuchs, 
E. (2009). Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem 
cells. Cell 136, 1122-1135. 
Fang, Y., and Fullwood, M.J. (2016). Roles, Functions, and Mechanisms of Long Non-coding RNAs in 
Cancer. Genomics Proteomics Bioinformatics 14, 42-54. 
Fedorchak, G.R., Kaminski, A., and Lammerding, J. (2014). Cellular mechanosensing: getting to the 
nucleus of it all. Prog Biophys Mol Biol 115, 76-92. 



117 

Fortin, J.P., and Hansen, K.D. (2015). Reconstructing A/B compartments as revealed by Hi-C using 
long-range correlations in epigenetic data. Genome Biol 16, 180. 
Fridkin, A., Penkner, A., Jantsch, V., and Gruenbaum, Y. (2009). SUN-domain and KASH-domain 
proteins during development, meiosis and disease. Cell Mol Life Sci 66, 1518-1533. 
Fuchs, E. (2008). Skin stem cells: rising to the surface. J Cell Biol 180, 273-284. 
Ganz, A., Lambert, M., Saez, A., Silberzan, P., Buguin, A., Mege, R.M., and Ladoux, B. (2006). 
Traction forces exerted through N-cadherin contacts. Biol Cell 98, 721-730. 
Giresi, P.G., Kim, J., McDaniell, R.M., Iyer, V.R., and Lieb, J.D. (2007). FAIRE (Formaldehyde-
Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. 
Genome Res 17, 877-885. 
Goldman, R.D., Gruenbaum, Y., Moir, R.D., Shumaker, D.K., and Spann, T.P. (2002). Nuclear lamins: 
building blocks of nuclear architecture. GENES & DEVELOPMENT 16, 533-547. 
Golomb, E., Ma, X., Jana, S.S., Preston, Y.A., Kawamoto, S., Shoham, N.G., Goldin, E., Conti, M.A., 
Sellers, J.R., and Adelstein, R.S. (2004). Identification and characterization of nonmuscle myosin II-C, a 
new member of the myosin II family. J Biol Chem 279, 2800-2808. 
Gonzalez-Sandoval, A., and Gasser, S.M. (2016). On TADs and LADs: Spatial Control Over Gene 
Expression. Trends Genet 32, 485-495. 
Griffis, E.R., Xu, S., and Powers, M.A. (2003). Nup98 Localizes to Both Nuclear and Cytoplasmic Sides 
of the Nuclear Pore and Binds to Two Distinct Nucleoporin Subcomplexes. Molecular Biology of the 
Cell Vol. 14, 600–610. 
Grosse, R., and Vartiainen, M.K. (2013). To be or not to be assembled: progressing into nuclear actin 
filaments. Nat Rev Mol Cell Biol 14, 693-697. 
Guelen, L., Pagie, L., Brasset, E., Meuleman, W., Faza, M.B., Talhout, W., Eussen, B.H., de Klein, A., 
Wessels, L., de Laat, W., et al. (2008). Domain organization of human chromosomes revealed by 
mapping of nuclear lamina interactions. Nature 453, 948-951. 
Guilluy, C., and Burridge, K. (2015). Nuclear mechanotransduction: forcing the nucleus to respond. 
Nucleus 6, 19-22. 
Guilluy, C., Osborne, L.D., Van Landeghem, L., Sharek, L., Superfine, R., Garcia-Mata, R., and 
Burridge, K. (2014). Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the 
nucleus. Nat Cell Biol 16, 376-381. 
Guolla, L., Bertrand, M., Haase, K., and Pelling, A.E. (2012). Force transduction and strain dynamics in 
actin stress fibres in response to nanonewton forces. J Cell Sci 125, 603-613. 
Haase, K., Macadangdang, J.K., Edrington, C.H., Cuerrier, C.M., Hadjiantoniou, S., Harden, J.L., 
Skerjanc, I.S., and Pelling, A.E. (2016). Extracellular Forces Cause the Nucleus to Deform in a Highly 
Controlled Anisotropic Manner. Sci Rep 6, 21300. 
Hafner, M., Wenk, J., Nenci, A., Pasparakis, M., Scharffetter-Kochanek, K., Smyth, N., Peters, T., Kess, 
D., Holtkotter, O., Shephard, P., et al. (2004). Keratin 14 Cre transgenic mice authenticate keratin 14 as 
an oocyte-expressed protein. Genesis 38, 176-181. 
Hahn, S. (2004). Structure and mechanism of the RNA Polymerase II transcription machinery. Nature 
structural & molecular biology 11, 394-403. 
Harr, J.C., Luperchio, T.R., Wong, X., Cohen, E., Wheelan, S.J., and Reddy, K.L. (2015). Directed 
targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. J Cell 
Biol 208, 33-52. 
Hartman, M.A., and Spudich, J.A. (2012). The myosin superfamily at a glance. J Cell Sci 125, 1627-
1632. 
Hartsock, A., and Nelson, W.J. (2008). Adherens and tight junctions: structure, function and connections 
to the actin cytoskeleton. Biochim Biophys Acta 1778, 660-669. 
Hawkins, R.D., Hon, G.C., Lee, L.K., Ngo, Q., Lister, R., Pelizzola, M., Edsall, L.E., Kuan, S., Luu, Y., 
Klugman, S., et al. (2010). Distinct epigenomic landscapes of pluripotent and lineage-committed human 
cells. Cell Stem Cell 6, 479-491. 
Hetzer, M.W. (2010). The nuclear envelope. Cold Spring Harb Perspect Biol 2, a000539. 
Hoffman, B.D., Grashoff, C., and Schwartz, M.A. (2011). Dynamic molecular processes mediate 
cellular mechanotransduction. Nature 475, 316-323. 
Hofmann, W.A., Stojiljkovic, L., Fuchsova, B., Vargas, G.M., Mavrommatis, E., Philimonenko, V., 
Kysela, K., Goodrich, J.A., Lessard, J.L., Hope, T.J., et al. (2004). Actin is part of pre-initiation 
complexes and is necessary for transcription by RNA polymerase II. Nat Cell Biol 6, 1094-1101. 
Holaska, J.M., Kowalski, A.K., and Wilson, K.L. (2004). Emerin caps the pointed end of actin 
filaments: evidence for an actin cortical network at the nuclear inner membrane. PLoS Biol 2, E231. 
Holaska, J.M., and Wilson, K.L. (2006). Multiple roles for emerin: implications for Emery-Dreifuss 
muscular dystrophy. Anat Rec A Discov Mol Cell Evol Biol 288, 676-680. 



118 

Holaska, J.M., and Wilson, K.L. (2007). An emerin "proteome": purification of distinct emerin-
containing complexes from HeLa cells suggests molecular basis for diverse roles including gene 
regulation, mRNA splicing, signaling, mechanosensing, and nuclear architecture. Biochemistry 46, 
8897-8908. 
Hood, J.D., and Cheresh, D.A. (2002). Role of integrins in cell invasion and migration. Nat Rev Cancer 
2, 91-100. 
Horn, H.F. (2014). LINC complex proteins in development and disease. Curr Top Dev Biol 109, 287-
321. 
Horn, H.F., Kim, D.I., Wright, G.D., Wong, E.S., Stewart, C.L., Burke, B., and Roux, K.J. (2013). A 
mammalian KASH domain protein coupling meiotic chromosomes to the cytoskeleton. J Cell Biol 202, 
1023-1039. 
Houben, F., Ramaekers, F.C., Snoeckx, L.H., and Broers, J.L. (2007). Role of nuclear lamina-
cytoskeleton interactions in the maintenance of cellular strength. Biochim Biophys Acta 1773, 675-686. 
Huveneers, S., and de Rooij, J. (2013). Mechanosensitive systems at the cadherin-F-actin interface. J 
Cell Sci 126, 403-413. 
Ingber, D.E. (2006). Cellular mechanotransduction: putting all the pieces together again. FASEB J 20, 
811-827. 
Isermann, P., and Lammerding, J. (2013). Nuclear mechanics and mechanotransduction in health and 
disease. Curr Biol 23, R1113-1121. 
Jaalouk, D.E., and Lammerding, J. (2009). Mechanotransduction gone awry. Nat Rev Mol Cell Biol 10, 
63-73. 
Jadhav, U., Nalapareddy, K., Saxena, M., O'Neill, N.K., Pinello, L., Yuan, G.C., Orkin, S.H., and 
Shivdasani, R.A. (2016). Acquired Tissue-Specific Promoter Bivalency Is a Basis for PRC2 Necessity in 
Adult Cells. Cell 165, 1389-1400. 
Jahed, Z., Shams, H., and Mofrad, M.R. (2015). A Disulfide Bond Is Required for the Transmission of 
Forces through SUN-KASH Complexes. Biophys J 109, 501-509. 
Jao, C.Y., and Salic, A. (2008). Exploring RNA transcription and turnover in vivo by using click 
chemistry. PNAS 105, 15779-15784. 
Jenuwein, T., and Allis, C.D. (2001). Translating the Histone Code. Science 293, 1074-1080. 
Jiang, L., Schlesinger, F., Davis, C.A., Zhang, Y., Li, R., Salit, M., Gingeras, T.R., and Oliver, B. 
(2011). Synthetic spike-in standards for RNA-seq experiments. Genome Res 21, 1543-1551. 
Kabachinski, G., and Schwartz, T.U. (2015). The nuclear pore complex - structure and function at a 
glance. Journal of Cell Science 128, 423-429. 
Kapoor, P., Chen, M., Winkler, D.D., Luger, K., and Shen, X. (2013). Evidence for monomeric actin 
function in INO80 chromatin remodeling. Nat Struct Mol Biol 20, 426-432. 
Kapoor, P., and Shen, X. (2014). Mechanisms of nuclear actin in chromatin-remodeling complexes. 
Trends Cell Biol 24, 238-246. 
Katta, S.S., Smoyer, C.J., and Jaspersen, S.L. (2014). Destination: inner nuclear membrane. Trends Cell 
Biol 24, 221-229. 
Kim, D.I., Birendra, K.C., and Roux, K.J. (2015). Making the LINC: SUN and KASH protein 
interactions. Biol Chem 396, 295-310. 
Kim, J., and Kim, H. (2012). Recruitment and Biological Consequences of Histone Modification of 
H3K27me3 and H3K9me3. ILAR J 53, 232-239. 
Kind, J., Pagie, L., de Vries, S.S., Nahidiazar, L., Dey, S.S., Bienko, M., Zhan, Y., Lajoie, B., de Graaf, 
C.A., Amendola, M., et al. (2015). Genome-wide maps of nuclear lamina interactions in single human 
cells. Cell 163, 134-147. 
Kind, J., Pagie, L., Ortabozkoyun, H., Boyle, S., de Vries, S.S., Janssen, H., Amendola, M., Nolen, L.D., 
Bickmore, W.A., and van Steensel, B. (2013). Single-cell dynamics of genome-nuclear lamina 
interactions. Cell 153, 178-192. 
Koch, A.J., and Holaska, J.M. (2014). Emerin in health and disease. Semin Cell Dev Biol 29, 95-106. 
Korn, E.D. (2000). Coevolution of head, neck, and tail domains of myosin heavy chains. PNAS 97, 
12559–12564. 
Kovacs, M., Toth, J., Hetenyi, C., Malnasi-Csizmadia, A., and Sellers, J.R. (2004). Mechanism of 
blebbistatin inhibition of myosin II. J Biol Chem 279, 35557-35563. 
Kukalev, A., Nord, Y., Palmberg, C., Bergman, T., and Percipalle, P. (2005). Actin and hnRNP U 
cooperate for productive transcription by RNA polymerase II. Nat Struct Mol Biol 12, 238-244. 
Ladoux, B., Nelson, W.J., Yan, J., and Mege, R.M. (2015). The mechanotransduction machinery at work 
at adherens junctions. Integr Biol (Camb) 7, 1109-1119. 
Lammerding, J., Hsiao, J., Schulze, P.C., Kozlov, S., Stewart, C.L., and Lee, R.T. (2005). Abnormal 
nuclear shape and impaired mechanotransduction in emerin-deficient cells. J Cell Biol 170, 781-791. 



119 

Lammerding, J., Schulze, P.C., Takahashi, T., Kozlov, S., Sullivan, T., Kamm, R.D., Stewart, C.L., and 
Lee, R.T. (2004). Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. 
Journal of Clinical Investigation 113, 370-378. 
Lanzuolo, C., and Orlando, V. (2012). Memories from the polycomb group proteins. Annu Rev Genet 
46, 561-589. 
Laugesen, A., and Helin, K. (2014). Chromatin repressive complexes in stem cells, development, and 
cancer. Cell Stem Cell 14, 735-751. 
Lawrence, M., Daujat, S., and Schneider, R. (2016). Lateral Thinking: How Histone Modifications 
Regulate Gene Expression. Trends Genet 32, 42-56. 
Lecuit, T., Lenne, P.F., and Munro, E. (2011). Force generation, transmission, and integration during 
cell and tissue morphogenesis. Annu Rev Cell Dev Biol 27, 157-184. 
Lei, K., Zhanga, X., Dinga, X., Muyun Chena, X.G., Zhua, B., Xua, T., Zhuanga, Y., Xua, R., and Han, 
M. (2009). SUN1 and SUN2 play critical but partially redundant roles in anchoring nuclei in skeletal 
muscle cells in mice. PNAS 106, 10207–10212. 
Lombardi, M.L., Jaalouk, D.E., Shanahan, C.M., Burke, B., Roux, K.J., and Lammerding, J. (2011). The 
interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission 
between the nucleus and cytoskeleton. J Biol Chem 286, 26743-26753. 
Loven, J., Orlando, D.A., Sigova, A.A., Lin, C.Y., Rahl, P.B., Burge, C.B., Levens, D.L., Lee, T.I., and 
Young, R.A. (2012). Revisiting global gene expression analysis. Cell 151, 476-482. 
Marenholz, I., Zirra, M., Fischer, D.F., Backendorf, C., Ziegler, A., and Mischke, D. (2001). 
Identification of Human Epidermal Differentiation Complex (EDC)-Encoded Genes by Subtractive 
Hybridization of Entire YACs to a Gridded Keratinocyte cDNA Library. Genome Res 11, 341–355. 
Markiewicz, E., Tilgner, K., Barker, N., van de Wetering, M., Clevers, H., Dorobek, M., Hausmanowa‐
Petrusewicz, I., Ramaekers, F.C.S., Broers, J.L.V., Blankesteijn, M.W., et al. (2006). The inner nuclear 
membrane protein Emerin regulates β‐catenin activity by restricting its accumulation in the nucleus. 
The EMBO Journal 25, 3275-3285. 
Mekhail, K., and Moazed, D. (2010). The nuclear envelope in genome organization, expression and 
stability. Nat Rev Mol Cell Biol 11, 317-328. 
Melcon, G., Kozlov, S., Cutler, D.A., Sullivan, T., Hernandez, L., Zhao, P., Mitchell, S., Nader, G., 
Bakay, M., Rottman, J.N., et al. (2006). Loss of emerin at the nuclear envelope disrupts the Rb1/E2F 
and MyoD pathways during muscle regeneration. Hum Mol Genet 15, 637-651. 
Miyamoto, K., and Gurdon, J.B. (2013). Transcriptional regulation and nuclear reprogramming: roles of 
nuclear actin and actin-binding proteins. Cell Mol Life Sci 70, 3289-3302. 
Moll, R., Franke, W.W., Schiller, D.L., Geiger, B., and Krepler, R. (1982). The catalog of human 
cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells. Cell 31, 11-24. 
Morey, L., Santanach, A., and Di Croce, L. (2015). Pluripotency and Epigenetic Factors in Mouse 
Embryonic Stem Cell Fate Regulation. Mol Cell Biol 35, 2716-2728. 
Murrell, M., Oakes, P.W., Lenz, M., and Gardel, M.L. (2015). Forcing cells into shape: the mechanics of 
actomyosin contractility. Nat Rev Mol Cell Biol 16, 486-498. 
Niessen, C.M., Leckband, D., and Yap, A.S. (2011). Tissue organization by cadherin adhesion 
molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 91, 
691-731. 
Nurnberg, A., Kitzing, T., and Grosse, R. (2011). Nucleating actin for invasion. Nat Rev Cancer 11, 
177-187. 
Nusbaum, C., Zody, M.C., Borowsky, M.L., Kamal, M., Kodira, C.D., Taylor, T.D., Whittaker, C.A., 
Chang, J.L., Cuomo, C.A., Dewar, K., et al. (2005). DNA sequence and analysis of human chromosome 
18. Nature 437, 551-555. 
Oberdoerffer, P., and Sinclair, D.A. (2007). The role of nuclear architecture in genomic instability and 
ageing. Nat Rev Mol Cell Biol 8, 692-702. 
Orr, A.W., Helmke, B.P., Blackman, B.R., and Schwartz, M.A. (2006). Mechanisms of 
mechanotransduction. Dev Cell 10, 11-20. 
Ostlund, C., Folker, E.S., Choi, J.C., Gomes, E.R., Gundersen, G.G., and Worman, H.J. (2009). 
Dynamics and molecular interactions of linker of nucleoskeleton and cytoskeleton (LINC) complex 
proteins. J Cell Sci 122, 4099-4108. 
Paluch, E.K., Nelson, C.M., Biais, N., Fabry, B., Moeller, J., Pruitt, B.L., Wollnik, C., Kudryasheva, G., 
Rehfeldt, F., and Federle, W. (2015). Mechanotransduction: use the force(s). BMC Biol 13, 47. 
Parsons, J.T., Horwitz, A.R., and Schwartz, M.A. (2010). Cell adhesion: integrating cytoskeletal 
dynamics and cellular tension. Nat Rev Mol Cell Biol 11, 633-643. 
Pasini, D., Bracken, A.P., Hansen, J.B., Capillo, M., and Helin, K. (2007). The polycomb group protein 
Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol 27, 3769-3779. 



120 

Pederson, T., King, M.C., and Marko, J.F. (2015). Forces, fluctuations, and self-organization in the 
nucleus. Mol Biol Cell 26, 3915-3919. 
Percipalle, P. (2013). Co-transcriptional nuclear actin dynamics. Nucleus 4, 43-52. 
Percipalle, P., and Visa, N. (2006). Molecular functions of nuclear actin in transcription. J Cell Biol 172, 
967-971. 
Peters, A.H.F.M., Kubicek, S., Mechtler, K., O'Sullivan, R.J., Derijck, A.A.H.A., Perez-Burgos, L., 
Kohlmaier, A., Opravil, S., Tachibana, M., Shinkai, Y., et al. (2003). Partitioning and Plasticity of 
Repressive Histone Methylation States in Mammalian Chromatin. Molecular Cell 12, 1577–1589. 
Phatnani, H.P., and Greenleaf, A.L. (2006). Phosphorylation and functions of the RNA polymerase II 
CTD. Genes Dev 20, 2922-2936. 
Pollard, T.D., and Earnshaw, W.C. (2007). Cell Biology, 2nd Edition. Saunders-Elsevier, 928. 
Pope, B.D., Ryba, T., Dileep, V., Yue, F., Wu, W., Denas, O., Vera, D.L., Wang, Y., Hansen, R.S., 
Canfield, T.K., et al. (2014). Topologically associating domains are stable units of replication-timing 
regulation. Nature 515, 402-405. 
Poulson, N.D., and Lechler, T. (2012). Asymmetric cell divisions in the epidermis. Int Rev Cell Mol 
Biol 295, 199-232. 
Probst, A.V., Dunleavy, E., and Almouzni, G. (2009). Epigenetic inheritance during the cell cycle. Nat 
Rev Mol Cell Biol 10, 192-206. 
Provenzano, P.P., and Keely, P.J. (2011). Mechanical signaling through the cytoskeleton regulates cell 
proliferation by coordinated focal adhesion and Rho GTPase signaling. J Cell Sci 124, 1195-1205. 
Quan, T., Wang, F., Shao, Y., Rittie, L., Xia, W., Orringer, J.S., Voorhees, J.J., and Fisher, G.J. (2013). 
Enhancing structural support of the dermal microenvironment activates fibroblasts, endothelial cells, and 
keratinocytes in aged human skin in vivo. J Invest Dermatol 133, 658-667. 
Quinn, J.J., and Chang, H.Y. (2016). Unique features of long non-coding RNA biogenesis and function. 
Nat Rev Genet 17, 47-62. 
Radovanac, K., Morgner, J., Schulz, J.N., Blumbach, K., Patterson, C., Geiger, T., Mann, M., Krieg, T., 
Eckes, B., Fassler, R., et al. (2013). Stabilization of integrin-linked kinase by the Hsp90-CHIP axis 
impacts cellular force generation, migration and the fibrotic response. EMBO J 32, 1409-1424. 
Razafsky, D., and Hodzic, D. (2009). Bringing KASH under the SUN: the many faces of nucleo-
cytoskeletal connections. J Cell Biol 186, 461-472. 
Reichelt, J. (2007). Mechanotransduction of keratinocytes in culture and in the epidermis. Eur J Cell 
Biol 86, 807-816. 
Richly, H., Aloia, L., and Di Croce, L. (2011). Roles of the Polycomb group proteins in stem cells and 
cancer. Cell Death Dis 2, e204. 
Riising, E.M., Comet, I., Leblanc, B., Wu, X., Johansen, J.V., and Helin, K. (2014). Gene silencing 
triggers polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol Cell 55, 347-
360. 
Rompolas, P., Mesa, K.R., Kawaguchi, K., Park, S., Gonzalez, D., Brown, S., Boucher, J., Klein, A.M., 
and Greco, V. (2016). Spatiotemporal coordination of stem cell commitment during epidermal 
homeostasis. Science 352, 1471-1474. 
Rosa, S., and Shaw, P. (2013). Insights into chromatin structure and dynamics in plants. Biology (Basel) 
2, 1378-1410. 
Saksouk, N., Simboeck, E., and Déjardin, J. (2015a). Constitutive heterochromatin formation and 
transcription in mammals. Epigenetics Chromatin 8. 
Saksouk, N., Simboeck, E., and Déjardin, J. (2015b). Constitutive heterochromatin formation and 
transcription in mammals. Epigenetics & Chromatin 8. 
Salpingidou, G., Smertenko, A., Hausmanowa-Petrucewicz, I., Hussey, P.J., and Hutchison, C.J. (2007). 
A novel role for the nuclear membrane protein emerin in association of the centrosome to the outer 
nuclear membrane. J Cell Biol 178, 897-904. 
Sarkar, S., Egelhoff, T., and Baskaran, H. (2009). Insights into the Roles of Non-Muscle Myosin Iia in 
Human Keratinocyte Migration. Cell Mol Bioeng 2, 486-494. 
Sasai, Y. (2013). Cytosystems dynamics in self-organization of tissue architecture. Nature 493, 318-326. 
Schooley, A., Vollmer, B., and Antonin, W. (2012). Building a nuclear envelope at the end of mitosis: 
coordinating membrane reorganization, nuclear pore complex assembly, and chromatin de-condensation. 
Chromosoma 121, 539-554. 
Schreiner, S.M., Koo, P.K., Zhao, Y., Mochrie, S.G., and King, M.C. (2015). The tethering of chromatin 
to the nuclear envelope supports nuclear mechanics. Nat Commun 6, 7159. 
Schwartz, Y.B., and Pirrotta, V. (2014). Ruled by ubiquitylation: a new order for polycomb recruitment. 
Cell Rep 8, 321-325. 



121 

Shao, X., Li, Q., Mogilner, A., Bershadsky, A.D., and Shivashankar, G.V. (2015). Mechanical 
stimulation induces formin-dependent assembly of a perinuclear actin rim. Proc Natl Acad Sci U S A 
112, E2595-2601. 
Shen, X., Liu, Y., Hsu, Y.J., Fujiwara, Y., Kim, J., Mao, X., Yuan, G.C., and Orkin, S.H. (2008). EZH1 
mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity 
and executing pluripotency. Mol Cell 32, 491-502. 
Simon, D.N., and Wilson, K.L. (2011). The nucleoskeleton as a genome-associated dynamic 'network of 
networks'. Nat Rev Mol Cell Biol 12, 695-708. 
Simon, J.A., and Kingston, R.E. (2013). Occupying chromatin: Polycomb mechanisms for getting to 
genomic targets, stopping transcriptional traffic, and staying put. Mol Cell 49, 808-824. 
Simpson, C.L., Patel, D.M., and Green, K.J. (2011). Deconstructing the skin: cytoarchitectural 
determinants of epidermal morphogenesis. Nat Rev Mol Cell Biol 12, 565-580. 
Solovei, I., Thanisch, K., and Feodorova, Y. (2016). How to rule the nucleus: divide et impera. Curr 
Opin Cell Biol 40, 47-59. 
Sood, V., and Brickner, J.H. (2014). Nuclear pore interactions with the genome. Curr Opin Genet Dev 
25, 43-49. 
Sotiropoulou, P.A., and Blanpain, C. (2012). Development and homeostasis of the skin epidermis. Cold 
Spring Harb Perspect Biol 4, a008383. 
Spencer, V.A., Costes, S., Inman, J.L., Xu, R., Chen, J., Hendzel, M.J., and Bissell, M.J. (2011). 
Depletion of nuclear actin is a key mediator of quiescence in epithelial cells. J Cell Sci 124, 123-132. 
Starr, D.A., and Fridolfsson, H.N. (2010). Interactions between nuclei and the cytoskeleton are mediated 
by SUN-KASH nuclear-envelope bridges. Annu Rev Cell Dev Biol 26, 421-444. 
Stewart, C.L., Roux, K.J., and Burke, B. (2007). Blurring the Boundary: The Nuclear Envelope Extends 
Its Reach. Science 318, 1408-1412. 
Strambio-De-Castillia, C., Niepel, M., and Rout, M.P. (2010). The nuclear pore complex: bridging 
nuclear transport and gene regulation. Nat Rev Mol Cell Biol 11, 490-501. 
Struhl, K., and Segal, E. (2013). Determinants of nucleosome positioning. Nat Struct Mol Biol 20, 267-
273. 
Stüven, T., Hartmann, E., and Görlich, D. (2003). Exportin 6: a novel nuclear export receptor that is 
specific for profilin.actin complexes. EMBO J 22, 5928-5940. 
Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Benjamin L. Ebert, Gillette, M.A., 
Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005). Gene set enrichment analysis: A 
knowledge-based approach for interpreting genome-wide expression profiles. PNAS 102, 15547. 
Suh, H., Hazelbaker, D.Z., Soares, L.M., and Buratowski, S. (2013). The C-terminal domain of Rpb1 
functions on other RNA polymerase II subunits. Mol Cell 51, 850-858. 
Swift, J., and Discher, D.E. (2014). The nuclear lamina is mechano-responsive to ECM elasticity in 
mature tissue. J Cell Sci 127, 3005-3015. 
Tajbakhsh, S., Rocheteau, P., and Le Roux, I. (2009). Asymmetric cell divisions and asymmetric cell 
fates. Annu Rev Cell Dev Biol 25, 671-699. 
Thompson, D.W. (1917). On growth and form. Cambridge : University Press. 
Tietjen, J.R., Zhang, D.W., Rodriguez-Molina, J.B., White, B.E., Akhtar, M.S., Heidemann, M., Li, X., 
Chapman, R.D., Shokat, K., Keles, S., et al. (2010). Chemical-genomic dissection of the CTD code. Nat 
Struct Mol Biol 17, 1154-1161. 
Towbin, B.D., Gonzalez-Aguilera, C., Sack, R., Gaidatzis, D., Kalck, V., Meister, P., Askjaer, P., and 
Gasser, S.M. (2012). Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear 
periphery. Cell 150, 934-947. 
Towbin, B.D., Gonzalez-Sandoval, A., and Gasser, S.M. (2013). Mechanisms of heterochromatin 
subnuclear localization. Trends Biochem Sci 38, 356-363. 
Tsukada, Y., Fang, J., Erdjument-Bromage, H., Warren, M.E., Borchers, C.H., Tempst, P., and Zhang, 
Y. (2006). Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811-
816. 
Tzur, Y.B., Wilson, K.L., and Gruenbaum, Y. (2006). SUN-domain proteins: 'Velcro' that links the 
nucleoskeleton to the cytoskeleton. Nature Reviews Molecular Cell Biology 7, 782-788  
Uren, D., Hwang, H.K., Hara, Y., Takeda, K., Kawamoto, S., Tullio, A.N., Yu, Z.X., Ferrans, V.J., 
Tresser, N., Grinberg, A., et al. (2000). Gene dosage affects the cardiac and brain phenotype in 
nonmuscle myosin II-B–depleted mice. J Clin Invest 105, 663-671. 
Uyeda, T.Q., Abramson, P.D., and Spudich, J.A. (1996). The neck region of the myosin motor domain 
acts as a lever arm to generate movement. PNAS 93, 4459–4464. 



122 

van den Boom, V., Maat, H., Geugien, M., Rodriguez Lopez, A., Sotoca, A.M., Jaques, J., Brouwers-
Vos, A.Z., Fusetti, F., Groen, R.W., Yuan, H., et al. (2016). Non-canonical PRC1.1 Targets Active 
Genes Independent of H3K27me3 and Is Essential for Leukemogenesis. Cell Rep 14, 332-346. 
Venkatesh, S., and Workman, J.L. (2015). Histone exchange, chromatin structure and the regulation of 
transcription. Nat Rev Mol Cell Biol 16, 178-189. 
Vicente-Manzanares, M., Ma, X., Adelstein, R.S., and Horwitz, A.R. (2009). Non-muscle myosin II 
takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10, 778-790. 
Visa, N., and Percipalle, P. (2010). Nuclear functions of actin. Cold Spring Harb Perspect Biol 2, 
a000620. 
Vogel, M.J., Peric-Hupkes, D., and van Steensel, B. (2007). Detection of in vivo protein-DNA 
interactions using DamID in mammalian cells. Nat Protoc 2, 1467-1478. 
Voigt, P., Tee, W.W., and Reinberg, D. (2013). A double take on bivalent promoters. Genes Dev 27, 
1318-1338. 
Wagers, A.J., and Weissman, I.L. (2004). Plasticity of Adult Stem Cells. Cell 116, 639–648. 
Walter, M., Teissandier, A., Perez-Palacios, R., and Bourc'his, D. (2016). An epigenetic switch ensures 
transposon repression upon dynamic loss of DNA methylation in embryonic stem cells. Elife 5. 
Wang, N., Tytell, J.D., and Ingber, D.E. (2009). Mechanotransduction at a distance: mechanically 
coupling the extracellular matrix with the nucleus. Nature Reviews Molecular Cell Biology 10, 75-82. 
Watt, F.M. (2002). The stem cell compartment in human interfollicular epidermis. J Dermatol Sci 28, 
173-180. 
Watt, F.M., and Fujiwara, H. (2011). Cell-extracellular matrix interactions in normal and diseased skin. 
Cold Spring Harb Perspect Biol 3. 
Watt, F.M., and Huck, W.T. (2013). Role of the extracellular matrix in regulating stem cell fate. Nat Rev 
Mol Cell Biol 14, 467-473. 
Whetstine, J.R., Nottke, A., Lan, F., Huarte, M., Smolikov, S., Chen, Z., Spooner, E., Li, E., Zhang, G., 
Colaiacovo, M., et al. (2006). Reversal of histone lysine trimethylation by the JMJD2 family of histone 
demethylases. Cell 125, 467-481. 
Wolff, N., Gilquin, B., Courchay, K., Callebaut, I., Worman, H.J., and Zinn-Justin, S. (2001). Structural 
analysis of emerin, an inner nuclear membrane protein mutated in X-linked Emery–Dreifuss muscular 
dystrophy. FEBS Letters 501, 171-176. 
Wozniak, M.A., and Chen, C.S. (2009). Mechanotransduction in development: a growing role for 
contractility. Nat Rev Mol Cell Biol 10, 34-43. 
Yang, C.S., Chang, K.Y., Dang, J., and Rana, T.M. (2016). Polycomb Group Protein Pcgf6 Acts as a 
Master Regulator to Maintain Embryonic Stem Cell Identity. Sci Rep 6, 26899. 
Yao, M., Qiu, W., Liu, R., Efremov, A.K., Cong, P., Seddiki, R., Payre, M., Lim, C.T., Ladoux, B., 
Mege, R.M., et al. (2014). Force-dependent conformational switch of alpha-catenin controls vinculin 
binding. Nat Commun 5, 4525. 
Yonemura, S., Wada, Y., Watanabe, T., Nagafuchi, A., and Shibata, M. (2010). alpha-Catenin as a 
tension transducer that induces adherens junction development. Nat Cell Biol 12, 533-542. 
Yuan, J., and Xue, B. (2015). Role of structural flexibility in the evolution of emerin. J Theor Biol 385, 
102-111. 
Zaidel-Bar, R., Zhenhuan, G., and Luxenburg, C. (2015). The contractome--a systems view of 
actomyosin contractility in non-muscle cells. J Cell Sci 128, 2209-2217. 
Zhang, C., Gao, S., Molascon, A.J., Liu, Y., and Andrews, P.C. (2014). Quantitative proteomics reveals 
histone modifications in crosstalk with H3 lysine 27 methylation. Mol Cell Proteomics 13, 749-759. 
Zhang, J., Felder, A., Liu, Y., Guo, L.T., Lange, S., Dalton, N.D., Gu, Y., Peterson, K.L., Mizisin, A.P., 
Shelton, G.D., et al. (2010). Nesprin 1 is critical for nuclear positioning and anchorage. Hum Mol Genet 
19, 329-341. 
Zhao, K., Wang, W., Rando, O.J., Xue, Y., Swiderek, K., Kuo, A., and Crabtree, G.R. (1998). Rapid and 
Phosphoinositol-Dependent Binding of the SWI/SNF-like BAF Complex to Chromatin after T 
Lymphocyte Receptor Signaling. Cell 95, 625 - 636. 
Zhu, C., Bao, G., and Wang, N. (2000). Cell Mechanics: Mechanical Response, Cell Adhesion, and 
Molecular Deformation. Annual Review of Biomedical Engineering 2, 189-226. 
 

 

 



123 

Appendix 
 

 Gene Set ES NES NOM 

p-val 

FDR 

q-val 

1 Mikkelsen MCV6 HCP with H3K27me3 0.14 3.00 0.000 0.000 

2 Benporath PRC2 targets 0.12 2.98 0.000 0.000 

3 Mikkelsen MEF HCP with H3K27me3 0.11 2.67 0.000 0.001 

4 Kondo prostate cancer with H3K27me3 0.22 2.66 0.004 0.001 

5 Meissner NPC HCP with H3K4me2 and 

H3K27me3 

0.13 2.54 0.000 0.002 

6 Benporath Suz12 targets 0.07 2.34 0.002 0.008 

7 Benporath ES with H3K27me3 0.07 2.17 0.000 0.022 

ES = Enrichment score NES = Normalized enrichment score 

NOM p-val = nominal p-value FDR q-val= false discovery rate q-value 

 

Appendix Table 1. GSEA analysis revealed 7 significantly enriched gene sets (FDR q-

value < 0.025). 
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ABBREVIATIONS 

 

ACTB beta actin 

B2M Beta-2-Microglobulin 

Bleb Blebbistatin 

BM basement membrane 

ChIP chromatin immunoprecipitation 

Chr chromosome 

CRCT1 Cysteine Rich C-Terminal 1 

Cyto D Cytochalasin D 

DMSO dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DRB 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole 

EDMD Emery-Dreifuss muscular dystrophy 

Emd emerin 

EPCs epidermal stem/progenitor cells 

ER endoplasmic reticulum  

ERCC External RNA Controls Consortium 

Ezh2 Enhancer Of Zeste 2 

FAIRE Formaldehyde-assisted isolation of regulatory elements 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

H3K27me3 trimethylation of lysine 27 on histone 3 

H3K9me2,3 di-/tri-methylation of lysine 9 on histone 3 

HOX Homeobox 

INM inner nuclear membrane 

IP immunoprecipitation 

IPO9 importin-9 

K10 / K14 Keratin 10 / 14 

KLK8 Kallikrein Related Peptidase 8 

LADs Lamin-associated domains 

LCE late cornified envelope 

LOR Loricrin 
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mRNA messenger Ribonucleic acid 

Myh9EKO epidermis-specific deletion of Myosin 9 

ncRNA non-coding RNA 

NE nuclear envelop 

neg negative 

NMIIA Non-muscle myosin IIA 

NPC nuclear pore complex 

ONM outer nuclear membrane 

P-MLC Phospho-myosin light chain 

PcG  Polycomb Group 

PPL Periplakin 

PRC Polycomb repressive complex 

PTM post translational modification 

RNAPII-S2p RNA polymerase II – serine 2 phosphorylation 

RT room temperature 

Scr scrambled RNA 

seq sequencing 

siRNA Small interfering RNA 

SOX (Sex-determining Region Y)-box  

SPRR Small Proline Rich Proteins 

TGM1 Transglutaminase 1 

V volume 

XPO6 exportin-6 
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