

ENANTIOSELECTIVE TOTAL SYNTHESIS OF MARINE MERODITERPENES WITH ANTI-INFLAMMATORY AND ANTI-TUMOR ACTIVITY

Inaugural-Dissertation
zur

Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln

vorgelegt von
Isabelle Grimm
aus Birkenfeld

Köln, 2023

Die vorliegende Arbeit wurde im Zeitraum von Dezember 2019 bis Februar 2023 am Institut für Organische Chemie der Universität zu Köln unter der Anleitung von Herrn Prof. Dr. Hans-Günther Schmalz angefertigt.

Berichterstatter:	Prof. Dr. Hans-Günther Schmalz Prof.'in Dr. Stephanie Kath-Schorr
Vorsitzender:	Prof. Dr. Axel Klein
Beisitzer:	PD Dr. Dirk Blunk
Tag der Disputation:	14. Juli 2023

„It was the best of times, it was the worst of times. "

Abstract

During the past decade an increasing number of meroterpenoids have emerged from marine organism that became the main source for interesting, biologically active natural products. Five compounds, dysiherbols A-E, were isolated from marine sponges of genus Dysidea and shown to exhibit cytotoxicity, NF-кB inhibitory and anti-inflammatory activities. Their structures were proposed to display a tetracyclic 6/6/5/6 carbon skeleton with five adjacent stereocenters. This work comprises the first enantioselective total synthesis of dysiherbol A together with the revision of its absolute configuration and its constitution, that was proven to be pentacyclic. Dysiherbol A was synthesized over 12 steps via an enantioselective Cu-catalyzed 1,4-addition/ enolate trapping as asymmetric opening step and a gold-catalyzed twofold cyclization as key step to construct the tetracyclic carbon skeleton. In the final step an acidic-mediated deprotection/ cyclopropane opening occurred under oxy-cyclization to deliver the pentacyclic target molecule. Comparison of both synthesized enantiomers in biological studies revealed naturally occurring (+)-dysiherbol A to show superior apoptosis-inducing potency in lymphoma and leukemia cell lines, even overcoming resistances to conventional cytostatics. Thus, this work highlights the role of total synthesis for structural elucidation and pharmacological investigation.

Furthermore, contributions to the enantioselective total syntheses of dysiherbol B, C and E are reported from common intermediates. (+)-Dysiherbol E was synthesized via carbonylative cross coupling, proton-induced formation of the ether bridge and final ozonolysis.

Moreover, the gold-catalyzed twofold cyclization was further investigated, and the observations support the proposed mechanism via an allylic cation intermediate.

KURZFASSUNG

Im letzten Jahrzehnt wurde eine zunehmende Anzahl von Meroterpenen aus marinen Organismen gewonnen, die eine Hauptquelle für interessante, biologisch aktive Naturstoffe darstellen. Fünf Verbindungen, Dysiherbol A-E, die aus Meeresschwämmen der Gattung Dysidea isoliert wurden, zeigten zytotoxische, NF-кB-hemmende und entzündungshemmende Eigenschaften. Für die Strukturen wurde ursprünglich ein tetracyclisches 6/6/5/6 Ringsystem mit fünf benachbarten Stereozentren vorgeschlagen.

Diese Arbeit beschreibt die erste enantioselektive Totalsynthese von Dysiherbol A zusammen mit der Revision seiner absoluten Konfiguration und seiner Konstitution, die sich als pentacyclisch erwiesen hat. Dysiherbol A wurde in 12 Schritten, über eine enantioselektive Cu-katalysierte 1,4Addition unter Abfangen des Enolats als asymmetrischen Einstieg in die Synthese und eine Goldkatalysierte zweifache Zyklisierung als Schlüsselschritt zum Aufbau des tetrazyklischen Kohlenstoffgerüsts synthetisiert. Im letzter Schritt lieferte eine säure-vermittelte Entschützung/ Cyclopropan-Öffnung unter Oxycyclisierung des resultierenden Kations das pentacyclische Zielmolekül. Der Vergleich der beiden synthetisierten Enantiomere in biologischen Studien ergab, dass das natürlich vorkommende (+)-Dysiherbol A eine überlegene Apoptose-induzierende Wirkung in Lymphom- und Leukämie-Zelllinien, sowie Resistenzüberwindung gegenüber herkömmlichen Zytostatika aufweist. Damit unterstreicht diese Arbeit die Bedeutung der Totalsynthese für sowohl Strukturaufklärung als auch pharmakologische Untersuchung. Darüber hinaus wird über Beiträge zu den enantioselektiven Totalsynthesen von Dysiherbol B, C und E über gemeinsame Intermediate berichtet. (+)-Dysiherbol E konnte über carbonylierende Kreuzkupplung, protoneninduzierte Bildung der Etherbrücke und abschließende Ozonolyse synthetisiert werden.

Darüber hinaus wurde die Gold-katalysierte Zweifach-Cyclisierung weiter untersucht, wobei die Beobachtungen den vorgeschlagenen Mechanismus über ein Allylkation unterstützen.

VORWORT

An dieser Stelle möchte ich mich bedanken und anfangen möchte ich mit dem Mann, durch dessen Unterstützung ich diese Arbeit trotz widriger Umstände anfertigen konnte. Ich danke Prof. Schmalz von Herzen für ganz viel Verständnis und Rückendeckung. Ich hätte mir keinen besseren Doktorvater wünschen können.

Frau Prof.'in Kath-Schorr möchte ich ganz herzlich für die Zweitbetreuung während meiner Promotion danken und darüber hinaus für die Übernahme des Zweitgutachtens. Herrn Prof. Klein danke ich für die Übernahme des Prüfungsvorsitzes. Dirk danke ich für die Übernahme der Schriftführung und außerdem für die Unterstützung und die liebenswerte Art.

Außerdem danke ich natürlich allen Mitarbeitern des Instituts, ohne die wir alle aufgeschmissen wären. Anja Bitners (für Organisation im Arbeitskreis und die Korrekturen), Dr. Jörg-Neudörfl (für die Kristallstrukturen), Dietmar Rutsch, Andreas Wallraf, Andreas Adler (für die HPLC Messungen), Kathrin König, Daniela Naumann, Daniel Friedrich, Philipp Hegemann, Michael Neihs, Wen, Astrid Baum und vielen mehr.

Als Nächstes möchte ich gerne meinen Kollegen danken, ganz besonders der aktuellen und alten Besetzung von Labor 311. Es war mir eine Freude mit euch. Vor allem Pascal, beiden Julians und Finn möchte ich danken. Wie in jeder guten Familie kann man sich auch mal streiten, solange man am Ende wieder an einem Tisch zusammenkommt (am besten mit einem Glas Wein oder einem Kölsch). Ich danke außerdem Mira für die wundervolle Zusammenarbeit im Rahmen der Mediziner Oberassistenz (hier sei auch noch Judith Bruns gedankt!), sowie für deine Hilfe und dein Verständnis. Das werd ich dir nicht vergessen. Außerdem danke ich Pepe, einfach dafür, dass du immer da warst. An dieser Stelle auch danke an Niclas, du hast meine Promotionszeit durch dein Auftauchen extrem bereichert. Und danke an Martin, einfach danke.

Für das Korrekturlesen danke ich beiden Julians, Dominik, Bernhard, Alicia und Pepe.
Außerdem danke ich all meinen Praktikanten und Bacheloranden für die Beiträge zu dieser Arbeit. Hier besonders zu erwähnen sind Finn Dicke, Steffen Schwammborn und Julius Wiener. Zu guter Letzt danke ich den Menschen, die mich durch die letzten drei Jahre getragen haben. Ohne euch würde ich gerade nicht hier sitzen und als letzten Akt einer Dissertation diese Danksagung schreiben. Mama und Papa, ihr habt mir alles mitgegeben, was ich brauche, um meinen Weg zu gehen, egal was kommt. Meiner ganzen Familie möchte ich danken, den Rückhalt und die Liebe, die ich durch euch erfahre, kann man sich nicht ausdenken. Außerdem danke ich meinen Freunden und wenn ich sage „Freunde" meine ich meine Köln-Familie, die über meine zehn Jahre hier stetig gewachsen ist, besonders in Punkto Zusammenhalt. Ohne euch wäre Alles Nichts. Ich würde euch gerne alle aufzählen, aber da ich nur eine Seite schreiben wollte erwähne ich hier stellvertretend (natürlich) Anna und Daria, die beiden Frauen, mit denen mir die Welt gehört!

TABLE OF CONTENTS

1 INTRODUCTION AND BACKGROUND 1
1.1 INTRODUCTION 2
1.2 SESQUITERPENE QUINONES 3
1.2.1 CLASSIFICATION 3
1.2.2 BIOSYNTHESIS 6
1.2.3 TOTAL SYNTHESIS 8
1.2.4 THE DYSIHERBOLS 14
1.3 CATIONIC TWOFOLD CYCLIZATIONS 18
1.4 SPIROCYCLIZATIONS 21
1.5 GOLD-CATALYZED CYCLIZATIONS IN TOTAL SYNTHESIS 23
2 MOTIVATION AND CONCEPTION 26
2.1 TOTAL SYNTHESIS OF THE DYSIHERBOLS 27
2.2 STUDIES ON A GOLD-CATALYZED CYCLIZATION 28
3 RESULTS AND DISCUSSION 30
3.1 TOTAL SYNTHESIS OF THE DYSIHERBOLS 31
3.1.1 DYSIHERBOL A 38
3.1.2 DYSIHERBOL B \& C 45
3.1.3 DYSIHERBOL E 49
3.2 STUDIES ON A GOLD-CATALYZED CYCLIZATION 54
3.3 BIOLOGICAL TESTING 61
4 SUMMARY 64
4.1 TOTAL SYNTHESIS OF THE DYSIHERBOLS 66
4.2 STUDIES ON A GOLD-CATALYZED CYCLIZATION 68
5 EXPERIMENTAL 70
5.1 GENERAL INFORMATION 71
5.1.1 ANALYTICAL METHODS 72
5.1.2 BIOLOGICAL STUDIES 73
5.2 SYNTHETIC PROCEDURES AND ANALYTICAL DATA - 76
TOTAL SYNTHESIS OF THE DYSIHERBOLS 76
5.3 SYNTHETIC PROCEDURES AND ANALYTICAL DATA - 137
STUDIES ON A GOLD-CATALYZED CYCLIZATION 137
6 APPENDIX 175
6.1 NMR SPECTRA 176
6.2 X-RAY CRYSTALLOGRAPHIC DATA 275
6.3 CHIRAL HPLC ANALYSIS 285
6.4 LIST OF ABBREVIATIONS 290
6.5 REFERENCES 293
6.6 EIDESSTATTLICHE ERKLÄRUNG 300
6.7 CURRICULUM VITAE 301

1 INTRODUCTION AND BACKGROUND

1.1 INTRODUCTION
 NATURAL PRODUCTS AND THE ROLE OF TOTAL SYNTHESIS

The existence of all organisms is based on the transformation of a huge number of organic compounds utilizing a variety of enzyme-regulated chemical reactions. To ensure fecundity and survivability, carbohydrates, proteins, fats as well as nucleic acids are of crucial importance, thus considered "primary metabolites". When talking about natural products associated with pharmacologically interesting activity, we usually refer to "secondary metabolites". These compounds are specific to certain organisms, or groups of organisms and not directly involved in growth and reproduction but come with particular advantages in defense or well-being - although in most cases the exact function is yet unknown.[1]

Since ancient times, people all over the world have recognized and used the biological activities of natural products in traditional medicine. Different plant extracts already appear in the 3500 years old Ebers Papyrus, e.g. willow bark was used as a remedy for fever and pain. ${ }^{[2]}$ In 1828, salicin, a chemical precursor of salicylic acid, was isolated from its extract. ${ }^{[3]}$ It provided the basis for the development of acetylsalicylic acid (ASA), better known as Bayer's Aspirin.[1] There are many more examples of such "Molecules that Changed the World" through their discovery. Famous and valued for their outstanding medicinal properties are e.g. quinine ($\mathbf{1}$, anti-malaria), penicillin G (2, antibiotic) and morphine (3, painkiller) (Figure 1). ${ }^{[4]}$

Figure 1 selected natural products together with their biological activity.[4]
Although the hypothesis of Paracelsus (1493-1541) describing the human body as 'chemical laboratory' already indicated the importance of single active components in traditional medicine, it took until the beginning of the $19^{\text {th }}$ century for pure organic compounds to become the main interest in pharmacology. This was the time when the field of organic chemistry arose and the era of natural product-derived medical agents begun. ${ }^{[5]}$ The elucidation of chemical structures is a critical aspect of both, as the knowledge of constitution, conformation and stereochemistry of bioactive agents is necessary. This process is not always easy, e.g. it took a century to decipher the architecture of morphine (3) and strychnine (4) after their isolation in the beginning of the 19th century. Even though great progress has been made in the field of analytical methods, the correct assignment of a newly discovered compound is still not trivial and misassignments are no exception. This is why structural revision is an significant part of natural product research and
the fifty different structures proposed for strychnine are an impressive example.[6] Many cases can be found in literature where total synthesis not only revealed errors but furthermore delivered the correct structures, emphasizing its importance in the context of structural elucidation. ${ }^{[6-7]}$

Total synthesis of natural products also played and still plays an major role in the development of organic chemistry by providing challenging synthetic targets and research opportunities. ${ }^{[8]}$ One of the most famous examples are the Woodward-Hoffmann rules ${ }^{[9]}$ discovered in the course of the synthesis of Vitamin B12, ${ }^{[10]}$ for which Hoffmann and Fukui received the Nobel Prize in 1981.

The field of pharmacology has evolved tremendously in the last century. Between 1980 and 2006, 63% of the newly developed drugs were naturally derived or semisynthetic derivatives of natural products. ${ }^{[11]}$ Even if other approaches like protein structure-based drug design have gained importance since then, natural products still play a major role as starting point for new therapeutics. ${ }^{[12]}$

1.2 SESQUITERPENE QUINONES

1.2.1 CLASSIFICATION

Sesquiterpene (hydro-)quinones represent the most common meroterpenoids found in nature and are characterized by a sesquiterpene unit (C_{15}) connected to a (hydro-)quinone moiety (C_{6}). Various possible connections between the two parts, differences in the sesquiterpene skeleton, as well as versatile substitutions of the benzoquinone/quinol result in a vast number of unprecedented compounds. With this diversity in structure comes a diversity in biological activities, presumably connected to the redox reactivity and electron transfer capacity of the quinone group in combination with the adaptable hydrophobic/hydrophilic properties of the terpene part. ${ }^{[13]}$

Most natural products of this type are found in marine sponges. These invertebrates lack an immune system, a protective shell, or mobility and therefore produce a multitude of chemically unique compounds ensuring their survival and representing potential bioactive agents. ${ }^{[14]}$ Due to the rapid progress made in structural analysis and discovery methods, over 500 new sesquiterpene quinones have emerged in the past decade. ${ }^{[13]}$ The majority of them contain a bicyclic terpenoid system possessing a drimane or rearranged drimane skeleton (Figure 2).[15] This rearrangement occurs by migration of two methyl groups, leading to so called 4,9friedodrimane structures, sometimes also referred to as avaranes to be distinguished from the so called aureanes emerging from only one methyl shift.[15-16]

zonarol (5) [anti-inflammatory]

mamanuthaquinone (6) [cytotoxic]

avarol (7) [anti-HIV, anti-viral, anti-leukemic, anti-inflammatory]

Figure 2 bicyclic sesquiterpene skeletons found in marine products and representatives thereof WITH THEIR BIOLOGICAL ACTIVITIES.[16-17]

The term avaranes originates from the first in 1974 discovered representative avarol (Figure 2), ${ }^{[18]}$ which is to date still intensely studied as potential anti-HIV (stage of clinical the phase II), anti-leukemic and anti-parasitic therapeutic agent and has already found application as medicine against psoriasis, to name only a few of its biological activities. ${ }^{[13]}$

Most commonly, the decalin system (trans- and less common cis-fused ring junction) is bound via a methylene group to the differently functionalized p-benzoquinone or hydroquinone ring at C14 via a C-C bond. Additionally, C-0 bonding of C-8, C-9 or C-10 to a hydroxy group of the aromatic ring forming dihydropyran or -furan rings (Figure $3, \mathbf{8 - 1 1}$) is regularly observed.

dysidphenol A (8) [anti-bacterial]

aureol (9)
[anti-viral, anti-biotic, cytotoxic]

chromazonarol (10) [cytotoxic]

cycloaureone C (14) [anti-bacterial, cytotoxic]

cyclosmenospongine (11) [anti-bacterial, cytotoxic]

dysideanone E (15)
[anti-inflammatory,
cytotoxic]

FIGure 3 TETRACYCLIC SESQUITERPENE (HYDRO)QUINONES FEATURING AN ADDITIONAL C-O (TOP) OR C-C BOND (BOTTOM) BETWEEN THE AROMATIC RING AND THE DECALIN SYSTEM TOGETHER WITH THEIR BIOLOGICAL ACTIVITIES.[19]

Since the first member of this family of tetracyclic meroterpenes, aureol (name-giving for the group of aureanes), was isolated in 1980 by the group of Faulkner, ${ }^{[20]}$ many related compounds bearing one heterocycle have been discovered. Less common are metabolites in which the fourth ring is formed via another carbon-carbon bond between the aromatic moiety and the decalin system (Figure 3, 12-15). The first example, the drimane derivative pelorol (12), was isolated in 2000. ${ }^{[21]}$ The aminoquinone/avarone dysifragilone A (13) was discovered in 2015 by Lin and coworkers. ${ }^{[19 d]}$ In the same year, Kim et al. isolated three new meroterpenoids, cycloaurenone A-C (14), showing a novel 6/6/5/6-tetracyclic carbon skeleton (Figure 3).[19e] [19f]

One year later, Lin and coworkers in turn isolated three additional meroterpenes with this intriguing structural feature and, in 2021, two more of the dysiherbols (see Figure 5, p. 15).[19f, 22] These avaranes can be counted to the subgroup of dysideanones, sharing the two-point C-C connection resulting in a tetracyclic skeleton with a central five- or six-membered ring. The dysideanones are closely related congeners derived from the same marine sponge Dysidea sp. as the dysiherbols and were also first obtained during the past decade by the Lin group. ${ }^{[23]}$ Since 2012 they have isolated over 120 new sesquiterpene quinones, accounting for 80% of all avaranes, and discovered eight new carbon skeletons.[13]

An example for a merosesquiterpenoid bearing an unusual carbon skeleton is shown in Figure 4. Septosone A (16), which was isolated only recently from marine sponge Dysidea septosa, exhibits a novel pentacyclic structure. ${ }^{[24]}$ Since the precedent bispuupehenone in 1983, there have also been reports of dimeric meroterpenoids. ${ }^{[25]}$ One of the latest examples is dysiarenone (17), isolated in 2018. ${ }^{[26]}$ There are many other examples of rearrangements of the sesquiterpenoid carbon skeleton and even more opportunities of modifications of the aromatic group thus resulting in a seemingly endless number of interesting natural products.

Figure 4 merosesquiterpenoids with unusual structural FEATURES TOGETHER WITH THEIR BIOLOGICAL ACTIVIties.[24]

Meroterpenes have not only gained attention because of their chemical diversity, but also due to their variety of biological activities. In particular sponges of the order Dictyceratida deliver a manifold of bioactive meroterpenoids, the majority of which are sesquiterpene quinones/hydroquinones.[19a] The observed biological effects comprise for example antibacterial,[19a, 27] anti-inflammatory, ${ }^{[24, ~ 28]}$ anti-microbial,[19e, 29] anti-HIV[30] activity, as inhibitory
activity against protein tyrosine kinase ${ }^{[17 b, 31]}$ and protein tyrosine phosphatase. ${ }^{[31 b]}$ Furthermore, a range of compounds displayed cytotoxic ${ }^{[19 e}$, 27c, 28b, 29a, 32] and anti-proliferative ${ }^{[32 c, 33]}$ properties, thus offering promising opportunities for the development of new anti-tumor agents. ${ }^{[32 c]}$ It is believed that these anti-cancer activities are caused by the aromatic moiety, as quinones/ hydroquinones are known to be susceptible to redox cycling, forming reactive oxygen species (ROS). ${ }^{[34]}$ But also the oxidation pattern of the decalin system seems to have an important impact on the biological activity.[32e]

1.2.2 BIOSYNTHESIS

The sesquiterpene quinones belong to a class of large variety called meroterpenes that are of mixed biosynthetic origin, partially derived from terpenoids.[29b] When thinking about the biosynthesis of meroterpenoids, one has to consider the hybrid nature of these natural products. Their biogenesis incorporates two different building blocks originating from two different pathways.[35]

Scheme 1 PROPOSED MIXED BIOSYNTHETIC ORIGIN FOR SESQUITERPENE QUINONES AND POSSIBLE REARRANGEMENTS YIELDING DIFFERENT CARBON SKELETONS.[17B, 36]

One is the sesquiterpene subunit belonging to the class of terpenes that consist of a certain number of C_{5} units. Isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) are suitable C_{5} units, coming from the mevalonate or the deoxyxylulose phosphate pathway (MEP pathway) and delivering farnesyl pyrophosphate (FPP, C_{15}), the central precursor of sesquiterpenes. ${ }^{[1,37]}$ The second part is an aromatic core that might be provided by the polyketide pathway, ${ }^{[20,35-36]}$ or the shikimate pathway that produces amino acids and 4-hydroxybenzoic acid (HBA).[1, 17b, 18] Different studies on biosyntheses lead to the assumption that HBA, upon oxidative decarboxylation, delivers a hydroquinone moiety (Scheme 1).[38]

The connection between the two building blocks might be enabled by the enzyme UbiA-type prenyltransferase, which catalyzes a $\mathrm{S}_{\mathrm{E}} A$ r reaction. ${ }^{[38 \mathrm{a}, 38 \mathrm{c}]}$ The thus formed aromatic polyene chain can undergo a cationic cyclization cascade to form the key biosynthetic intermediate 24, most probably catalyzed by a terpenoid cyclase. ${ }^{[18,35]}$ Deprotonation at the resulting decalin scaffold yields the drimane skeleton. A series of stereospecific [1,2]-hydride and methyl shifts can lead to further rearranged carbon skeletons, the aureanes or the avaranes, e.g. avarol (7).[17b, 18] The possibly formed aureane-like cation 26 could be trapped by the adjacent phenolic oxygen (or the electrons of the aromatic ring) to form a tetracyclic structure with a cis-fused decalin ring system, as in aureol (9). ${ }^{[39]}$ Deprotonation would lead to the respective bridgehead olefine, considered to be the biosynthetic precursor of trans-fused tetracyclic decalin systems.[35-36]

Scheme 2 possible biosynthetic transformation of (neo)avarol to the carbon skeleton of the DYSIHERBOLS OR THE DYSIDEANONES.[24, 40]

Bicyclic avarol is believed to be a biosynthetic precursor for more complex tetra- or pentacyclic sesquiterpene quinones with another C-C bond between the two units (Scheme 2).[24, 40] Dehydrogenation at the decalin bridgehead would lead to an unconjugated diene (29), which could undergo a 5-exo-trig Friedel-Crafts cyclization (C21 -> C10) delivering the 6/6/5/6 carbon skeleton of the dysiherbols. The corresponding diene resulting from neoavarol could deliver the

6/6/6/6 fused ring system of the dysideanones as product of a 6-endo-trig cyclization (C-21-> C-1). Final oxidation of the hydroquinone moiety of $\mathbf{3 1}$ would lead to dysideanones, whereas the dysiherbols could result from $\mathbf{3 0}$ by further hydration, dihydroxylation, oxidation and isomerization processes.[40]

1.2.3 TOTAL SYNTHESIS

Meroterpenoid sesquiterpenes exhibit a broad range of pharmacologically promising bioactivities and at the same time unique and diverse structural features, rendering a total synthesis a real challenge, thus attracting the attention of many natural product chemists. In the early days two strategies evolved for the construction of the skeleton which most members have in common.[41] A biomimetic strategy with sequential cyclizations of prenylated hydroquinones as key step evolved, which was already applied in 1973 by Gonzalez et al. for the synthesis of taondiol, ${ }^{[42]}$ as did a two-synthon strategy consecutively building up the different rings, first reported by Corey and Das in 1982.[43]

Two targets of the natural product family many researchers were interested in are avarol (36) and avarone (7). The first racemic synthesis of (\pm)-avarol (7) was published in 1982 by Sarma et $a l .\left[{ }^{[44]}\right.$ and the following enantioselective syntheses (Scheme 3) are all starting from the same building block 32, a known derivative of the Wieland-Miescher ketone, which in turn is a common precursor in the synthesis of terpenes. In these approaches, the bond between the decalin system and the quinone unit is introduced via a "reductive alkylation" under Birch conditions, delivering key intermediate 34 as single diastereomer. ${ }^{[45]}$ High yielding Rh-catalyzed isomerization provided the double bond in the adequate position to obtain avarone (36) and avarol (7) by oxidation and additional reduction, respectively.

SCHEME 3 TOTAL SYNTHETIC APPROACHES TOWARDS AVAROLS AND AVARONES UTILIZING A BIRCH REDUCTIVE ALKYLATION TO CONNECT THE AROMATIC RING AND THE DECALIN SYSTEM.[45]

The same key step was employed in 2010 in Katoh's synthesis for (+)-stachyflin, ${ }^{[46]}$ a first racemic total synthesis was reported in 1998 by Mori et al.[47] In 2002 Katoh already published a methodology for the synthesis of the stachyflin core ${ }^{[48]}$ and in 2011 an alternative synthesis for (+)-stachyflin. ${ }^{[49]}$

Another strategy for the coupling of the aromatic building block to the bicyclic system was introduced in 2002 by Theodorakis and co-workers as a unified synthetic approach based on a radical decarboxylation followed by the addition of a quinone to the $\mathrm{C}-14$ centered radical (Scheme 4). ${ }^{[50]}$ The thus achieved total syntheses of (-)-ilimaquinone (46) (first total synthesis by Snapper in 1995), ${ }^{[30]}$ (+)-avarol (7) and (+)-avarone (36) also utilize ketone 32 as starting material.

Scheme 4 total synthesis of a variety of quinone sesquiterpenes via radical decarboxylation and QUINONE ADDITION. $\left.{ }^{[50 A}, 51\right]$

In 2010 Marcos et al. applied the methodology for the synthesis of four different tetracyclic sesquiterpene (hydro-)quinones (Scheme 4, right). Esterification of carboxylic acids $\mathbf{3 8} \mathbf{~ o r} \mathbf{4 0}$ with 2-mercaptopyridine N-oxide 41 leads to a photolabile intermediate, subsequently employed in the radical decarboxylation and the addition of quinone $\mathbf{4 2}$. The aromatic moiety of the coupling products can be further functionalized, thus allowing access to a wide range of family members (Scheme 4). ${ }^{[51]}$ In contrast to the already discussed approaches, Marcos et al. employed a chiral pool starting material, ent-halimic acid (39). After quinone addition and desulfurization, they either obtained quinol 45 or (-)-neomamanuthaquinone (43) upon additional functionalization
of the quinone. The latter gave tetracyclic (-)-aureol (ent-9) by Lewis acid-mediated cyclization, based on seminal work by Capon and van der Helm.[52]

The same conditions were already used by Katoh et al. to convert (-)-neoavarol (28), (+)-avarol (7) (compare Scheme 3) ${ }^{[45]}$ and (+)-arenarol (50) (Scheme 5), ${ }^{[53]}$ into (+)-aureol (9) via a boronmediated rearrangement/cyclization reaction.

Scheme 5 total synthetic approaches towards aureol and dactyloquinone a utilizing a NUCLEOPHILIC ADDITION TO CONNECT THE AROMATIC RING AND THE DECALIN SYSTEM.[35, 53-54]

In the total syntheses depicted in Scheme 5 the connection between the hydroquinone and the decalin bicycle was achieved by nucleophilic addition of a lithiated arene to an aldehyde. Benzylic reduction delivers the key intermediates, in the case of Katoh's synthesis compound 49, that could be converted into (+)-arenarol (50) over four steps.

A similar synthesis exhibiting the same key transformation was reported in 2012 by George et al. starting from (+)-sclareolide (51).[35] Cyclization of aureane 54 also delivered tetracyclic $(+)$-aureol (9). In contrast to the Katoh synthesis from 2002, there is no rearrangement taking place in the final cyclization step.

Only recently $L i$ and coworkers published a total synthesis for the double bond isomer of dactyloquinone $A(61)$ using the same coupling strategy. The synthesis also features a Lewis acidmediated cyclization/rearrangement step delivering 5-epi-aureol B $\Delta^{3,4}$ (60). Employing AgOTf instead of FeCl_{3}, an inseparable mixture of double bond isomers and epimers was obtained, subsequently leading to the respective mixture containing dactyloquinone A, which could not be separated.[54]

In the course of a bioinspired total synthesis of racemic aureol by Rosales an TiII-mediated reductive epoxide cyclization cascade was used (Scheme 6). ${ }^{[39]}$ Cyclization precursor in this sequence was a racemic mixture of 63. Applying this methodology to a general approach towards the core structure of several polycyclic meroterpenoids, as for example pelorol (12), was already reported by Cuerva et al. in 2004. [41]

Deviating from mother nature's prototype of a cyclization precursor, Magauer and coworkers developed an intriguing polyene cyclization cascade (depicted in Scheme 6) by establishing three rings and setting four consecutive stereocenters in one single step. ${ }^{[36,55]}$ Contrary to the other strategies, the central dihydropyran ring is not constructed in a late-stage cyclization.

(\pm)-aureol (9)

Scheme 6 DIFFERENT APPROACHES UTILIZING CYCLIZATION CASCADES IN THE TOTAL SYNTHESIS OF rac-AUREOL (9) AND (-)-CYCLOSMENOSPONGINE. ${ }^{[39,55]}$

Precursor 65 was synthesized via a convergent three-component coupling utilizing a phenolalkyne addition and a Suzuki-Miyaura cross coupling. The authors originally aimed to synthesize the cis-fused decalin system present in aureol (9), but the threefold cyclization gave exclusively the trans-decalin framework, as in (-)-cyclosmenospongine (11). One year later, the group published another synthesis for (+)-stachyflin with the cis-fused ring system, employing a different sequence of Negishi cross coupling for the formation of the arene-decalin bond and common late-stage $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ cyclization. ${ }^{[56]}$

In 2017 the Magauer group published a divergent approach for the synthesis of several aureanes. ${ }^{[57]}$ The innovative part thereof is the stereoselective construction of the decalin system using an auxiliary-controlled, exo-selective Diels-Alder reaction between dienophile 67 and diene 68 (Scheme 7). For the coupling of the two building blocks the common, already discussed nucleophilic addition was applied.[19b]

Scheme 7 UNIFIEd total synthesis of several aureane type sesquiterpene hydroquinones by MAGAUER ET. AL FROM 2017.[19B]

A new enantioselective approach was disclosed in 2010 by Cramer coming up with a route for the formation of the tetracyclic core of the oxygen-bridged sesquiterpene (hydro)quinones (78), reportedly providing access to the majority of the so-called benzo[d]xanthenes. ${ }^{[58]}$ The key steps of the synthesis are depicted in Scheme 8. The coupling between the substituted arene and the decalin precursor is enantioselective, deploying chiral ligand ent-202 and introducing one methyl group via a 1,4-addition. The resulting enolate is trapped with an electrophile (75). The second key step of the reported sequence is the RuIII-mediated twofold cyclization, affording exclusively the trans-fused ring system as in compound 78 .

Scheme 8 enantio- and diastereoselective construction of the tetracyclic core of sesquiterpene QUINONES VIA A 1,4-ADDITION/ENOLATE TRAPPING ONE POT REACTION BY CRAMER. ${ }^{[58]}$

To date, there are fewer publications dealing with the establishment of a fourth ring via a second carbon-carbon bond between the two entities of the sesquiterpene quinones. Two examples of such total syntheses are shown in Scheme 9.[19c, 59]

SCHEME 9 TOTAL SYNTHESIS OF TETRACYCLIC (+)-DASYSCYPHIN E (83) AND (-)-PELOROL (12) USING DIFFERENT STRATEGIES TO ESTABLISH THE SECOND C-C BOND BETWEEN THE AROMATIC MOIETY AND THE DECALIN.[19C,59]

The first connection between the arene and the decalin was in both cases achieved by a nucleophilic addition of the lithiated aromatic ring to aldehyde 55 or 81, as seen in previous examples. In the case of dasyscyphin E (83), the key step for the closing of the fourth ring is an intramolecular Pd-catalyzed Heck reaction of compound 82, assisted by a remote acetate group. In the upper example the cyclopentane ring of pelorol (12) was constructed by an Lewis acidmediated intramolecular Friedel-Crafts reaction of alcohol 79.[19c]

Another publication addressing the challenging synthesis of such carbon skeletons was published in 2017 by Echavarren (Scheme 10).[60] They developed a formal (3+2) cycloaddition between terminal allenes and aryl-Aul-carbenes generated by a retro-Buchner reaction of 7-substituted 1,3,5-cycloheptatrienes (86).

Scheme 10 Au'-catalyzed synthesis of indenes giving access to cyloaurenone and dysiherbol core STRUCTURES. A NOVEL CYCLOADDITION REACTION IS USED TO ESTABLISH THE FIRST C-C BOND BETWEEN THE TWO SESQUITERPENE SUBUNITS AND A RADICAL CYCLIZATION TO BUILD UP THE DECALIN SYSTEM.[60]

This novel methodology enables the construction of indenes such as rac-87 and was applied for the synthesis of the cis-decalin core structure of cycloaureones as in quinone rac-89 and the transfused carbon skeletons found in the dysiherbols (compound rac-90).

In 2021, $L u$ published the first racemic total synthesis of dysiherbol A (rac-98) and dysideanone B (rac-101), featuring a central five- or six-membered ring (Scheme 11). ${ }^{[40]}$ For the attachment of the aromatic ring they used an α-alkylation of common Wieland-Miescher analogue rac-32. As key step towards dysiherbol A (rac-98) an intramolecular Heck reaction of olefin rac-93 was utilized. The installation of two of the four methyl groups providing the decalin system was achieved via a double Stille coupling of the enol triflate resulting from compound rac-95.

Scheme 11 RACEMIC TOTAL SYNTHESIS OF (\pm)-DYSIHERBOL A VIA α-ALKYLATION AND INTRAMOLECULAR HECK
REACTION, LEADING TO ITS STRUCTURAL REVISION PUBLISHED TOGETHER WITH THE SYNTHESIS OF $(\pm)-$
DYSIDEANONE B VIA THE SAME INTERMEDIATE 92 AND SUBSEQUENT RADICAL CYCLIZATION. $[40]$
The final deprotection step led to pentacyclic rac-98 displaying the revised constitution of dysiherbol A (98). The core structure of dysideanone B was synthesized by methylenation and stereoselective hydrogenation of the common intermediate rac-92 followed by radical cyclization to build up the fourth ring (rac-100). Oxidation and functionalization of the aromatic ring gives the natural product as racemic mixture (rac-101).

1.2.4 THE DYSIHERBOLS

1.2.4.1 STRUCTURE AND ACTIVITY

In 2016 three new tetracyclic avarane hydroquinones were isolated, dysiherbols A-C (Figure 5) from a Dysidea sp. marine sponge found in the South China Sea. ${ }^{[32 e]}$ All three showed interesting
biological activities, but dysiherbol A turned out to be the most potent compound in terms of cytotoxicity against the human myeloma cancer cell line NCI H-929 ($\mathrm{IC}_{50}=0.58 \mu \mathrm{M}$) and NF-кB inhibitory activity $\left(\mathrm{IC}_{50}=0.49 \mu \mathrm{M}\right)$. ${ }^{32 \mathrm{e}]}$ This transcription factor protein complex is of importance for immune response and suspected to be involved in several types of carcinogenic processes as in the process of inflammation. ${ }^{[61]}$ Therefore, dysiherbol A might be a potent precursor for anticancer or anti-inflammatory drugs, what makes it a highly interesting natural product for total synthesis.

Their structures were proposed to be as displayed in the top row of Figure 5 (102-104), based on 2D-NMR experiments and HR-MS. The absolute configuration was determined by the comparison of experimental and computationally calculated CD spectra.

dysiherbol A (102)

dysiherbol B (103)

dysiherbol C (104)

dysiherbol D (107) dysiherbol E (108)

originally proposed structures (2021)
[anti-inflammatory]

dysiherbol E (110)
revised structures (2023)

Figure 5 dYsiherbol a-E and biological activities together with the originally proposed and REVISED STRUCTURES FOR DYSIHERBOL A-C.[19F, 22, 40, 62]

As already discussed in the previous chapter, the first racemic total synthesis of dysiherbol A resulted in the revision of its constitution in 2021 (Scheme 11). ${ }^{[40]}$ Moreover, in the course of this work and the development of the first enantioselective total synthesis of dysiherbol A, the absolute configuration of compound $\mathbf{1 0 2}$ was proven to be opposite to the natural product.[62] Thus, the dysiherbols were elucidated to be pentacyclic exhibiting two C-C bonds and one C-0 bond between the sesquiterpene and the hydroquinone and featuring the absolute configuration indicated in the structures in the bottom row of Figure $5(\mathbf{9 8}, 105+106)$.

Two more dysiherbols (D and E) were isolated in 2021, also showing anti-inflammatory activities from marine sponge Dysidea avara. ${ }^{[22]}$ The absolute configuration was proposed to be identical with the revised dysiherbol A (98), but the constitution was again suggested to be tetracyclic
(structures 107 and 108), but were found to be also characterized by the additional C-0 bond in the course of their total synthesis $(\mathbf{1 0 9}+\mathbf{1 1 0})$.[63]

1.2.4.2 SYNTHETIC STRATEGY

The originally proposed, novel three-dimensional structure of dysiherbol A (102), with five adjacent stereocenters, renders a total synthesis a real challenge and potential grounding for scientific advance in the field of organic chemistry. Based on the retrosynthetic analysis depicted in Scheme 12, Julian Baars was able to establish a sophisticated synthesis to build up the novel tetracyclic 6/6/5/6 fused carbon skeleton of dysiherbol A (Scheme 13).[64]

Scheme 12 RETROSYNTHETIC ANALYSIS OF THE ORIGINALLY PROPOSED DYSIHERBOL A BY BAARS AND SCHMALZ. ${ }^{[64]}$

Introducing the five adjacent stereocenters, with three of them being quaternary, is another challenge of the target. With the first key step of the developed route, both challenges are addressed: a one-pot reaction comprising a copper-catalyzed, stereoselective 1,4-addition, employing a chiral ligand (Scheme 8, p. 12) with subsequent enolate trapping with iodide 116 based on the work of Cramer et al. from 2010. ${ }^{[58]}$ Thus already half of the fused rings composing the dysiherbol A core as well as two of five stereogenic centers can be established. After TBSprotection of ketone 114, the next step in the current synthetic approach employs a Mukaiyama aldol addition to aldehyde 115 (Scheme 13). Subsequent halogen exchange via Finkelstein reaction and t-BuLi-mediated Babier-like cyclization build up the decalin system of compound 113.[64]

Thereby, only one diastereomer is formed, although control of stereochemistry is not necessary in these reactions because the three newly formed stereocenters are destroyed in the following functional group interconversion (deprotection, oxidation, elimination) towards enone 112. Intramolecular Friedel-Crafts type 1,4-addition, resulting in the desired tetracyclic carbon
skeleton (111), can be mediated by POCl_{3}. This reaction also establishes two stereocenters, delivering trans-decalin 111 as single diastereomer.

Scheme 13 SYNTHETIC APPROACHES TOWARDS ORIGINALLY PROPOSED DYSIHERBOL A (102) BY BAARS.[62, 64]
From this key intermediate, Baars developed two possible approaches for the introduction of the two missing methyl groups of the assumed natural product 102. An α-alkylation can be achieved via three steps by formation of enol ether 119, followed by cyclopropanation utilizing the Furukawa variant of the Simmons-Smith reaction, occurring from the α-site of the molecule due to steric hinderance of the β-site. Subsequent acidic cyclopropane opening delivers compound $\mathbf{1 2 0}$. Introducing the last stereocenter by methyl-1,2-addition at the ketone and final deprotection of the quinol moiety might deliver the desired dysiherbol A structure 102.

As intermediate 120 appeared to be sterically and electronically too hindered towards a 1,2addition, the second approach aimed to introduce the two methyl groups at the bottom of $\mathbf{1 0 2}$ the other way around. Ketone $\mathbf{1 1 1}$ is a suitable substrate for a Grignard type addition, yielding olefine 121 upon subsequent elimination. Simmons-Smith cyclopropanation and addition of acid to the resulting cyclopropane delivers mono-deprotected anhydrate of 102, pentacyclic 122, which displays the complete carbon skeleton of the desired natural product. ${ }^{[62,64]}$ At the beginning of the present work the conversion to triol $\mathbf{1 0 2}$ was still under investigation, as the structural revision of the constitution was not published (compare Scheme 11, p. 14 and Figure 5, p. 15)

1.3 CATIONIC TWOFOLD CYCLIZATIONS

The design of cascade reactions is a challenging aspect of organic chemistry, and reaching applicability of such reactions to natural product synthesis is a desirable goal due to their elegance, efficiency, and highly step-economic character. Hence, a manifold of examples of cascade reactions as key steps in total syntheses can be found in the literature. A detailed review on this topic was published in 2006 by Nicolaou.[65]

Corey, van Tamelen

MacMillan

Jacobsen

Corey, Toste

Stork-Eschenmoser, Gagne, Yamamoto,

Carreira, Johnson

Figure 6 overview of previous studies by different chemists towards (twofold) polyene CYCLIZATIONS USING BIOMIMETIC PRECURSORS.[55, 66]

As already indicated in the previous chapter, chemists aim to mimic nature's cationic cyclization for the construction of complex polycyclic terpenoids (compare Scheme 1 and Scheme 6). Studies towards the implementation of such reactions often comprise the use of biomimetic precursors activated by Lewis or Brønsted acids. Due to the substitution pattern of most terpenoids, cyclization precursors with methyl-substituents are the most common substrates. A brief overview of previous studies is shown in Figure $6 .{ }^{[66]}$ Usually a multiple bond or a functional group containing an oxygen is addressed to initiate the reaction.

In 2006, Yamamoto et al. reported a catalytic diastereoselective polycyclization of homo- and polyprenyl analogues bearing terminal siloxyvinyl groups (Scheme 14).[67]

Scheme 14 evolution of a catalytic diastereoselective twofold cyclization of polyprenyl arene ANALOGUES BEARING TERMINAL SILOXYVINYL GROUPS. ${ }^{[67]}$

They found that δ, ε-unsaturated ketones as 123 are too unreactive for catalytic Lewis acid cyclization to alcohol rac-124 with good conversions. However, adding stoichiometric amounts of SnCl_{4} to the mixture of starting material 123 and product rac-124 lead to dehydrated alkenes of type rac-125, while alcohol rac-124 was stable under these conditions (despite epimerization at C-4). They further found aldehydes as 126 capable of this transformation with catalytic amounts of SnCl_{4}, giving secondary alcohol rac-127 in excellent yield. Additionally, monocyclized rac-128 was formed as minor product as mixture of double bond isomers. With aldehydes, there was no selectivity for the stereocenter at C-4 observed. Employing the corresponding silyl, dienol ethers gave the β-isomer almost exclusively. In general, they found the α / β selectivity to be controllable by adjusting the steric hinderance of the silyl group in 129 and by changing the substitution pattern of the aromatic ring. In addition to rac- $\alpha \mathbf{- 1 3 0}$, only small amounts of the corresponding elimination product rac-125 were obtained.

Based on these preliminary results, Hong and coworkers employed a similar twofold cyclization of aldehyde 131 (Scheme 15) in their 2014 total synthesis of (\pm)-cafestol.[68] They also observed a monocyclized side product rac-133 along with undesired ortho-methoxylated rac-132.

Scheme 15 LeWis acid-promoted aldehyde-ene cyclization with subsequent friedel-crafts reaction INCORPORATED IN THE TOTAL SYNTHESIS OF (\pm)-CAFESTOL.[68]

Aiming at the formation of rac-132, they screened for several Lewis acids and achieved the best results with stoichiometric amounts of $\mathrm{Et}_{2} \mathrm{AlCl}$. In contrast to Yamamoto, they reported a selectivity for the formation of the C-4 stereocenter with an aldehyde as cyclization precursor. They proposed an aldehyde-ene cyclization and subsequent Friedel-Crafts reaction as the underlying mechanism.

In 2015, Corey investigated the applicability of functionalized chiral oxiranes of type 134 as starting point for polycyclization reactions. ${ }^{[66 c]}$ They found different Lewis acids to be suitable for the activation of cationic twofold π-cyclizations. Selected results are shown in Scheme 16.

Scheme 16 Study of functionalized chiral oxiranes as initiating groups for cationic twofold CYCLIZATIONS BY COREY.[66C]

An unprecedented combination of Lewis acid activation and iridium-catalyzed allylic substitution is depicted in Scheme 17. This method enables a highly enantioselective polycyclization using racemic mixtures of branched allylic alcohols by employing a chiral phosphoramidite ligand. It was applied to a variety of different aromatic moieties, as in a tricyclization. ${ }^{[66 \mathrm{~h}]}$

Scheme 17 highly enantioselective twofold cyclization using a combination of lewis acid activation and IRIDIUM-CATALYZED ALLYLIC SUBSTITUTION.[66H]

Most polyene-type cyclizations feature epoxides as activating group, but there are also aldehydes employed. One early example is the first nonenzymatic, biomimetic pentacyclization used in the total synthesis of triterpenoid (\pm)-sophoradiol (rac-140), see Scheme 18.[69] During these studies, corresponding acetals were tested as well, giving similar results.

Scheme 18 LEWIS ACID INDUCED PENTACYCLIZATION IN THE TOTAL SYNTHESIS OF SOPHORADIOL (140).[69]
A different mode of activation was used by the MacMillan group in the twofold cyclization shown in Scheme 19. Here, an aldehyde is employed in a radical organo-SOMO catalysis. The process can be performed enantioselectively on account of the applied chiral organocatalyst, condensed to enal 141.

Scheme 19 enantioselective twofold cyclization via organo-somo catalysis.[66i]
Single-electron oxidation of the resulting enamine by a Cu ${ }^{\text {II }}$ oxidant initiates the cascade by α alkylation of the aldehyde. ${ }^{[66 i]}$ This strategy was also applied to pentacyclic systems, giving comparable results.

1.4 SPIROCYCLIZATIONS

Spirocycles are structural features characterized by a unique balance of conformational rigidity and flexibility, which enhances the sphericity of corresponding compounds. These scaffolds can be found in many biologically active natural products from a variety of sources and are becoming more and more prevalent in medicinal research and application. ${ }^{[70]}$ Consequently, many divergent strategies have emerged for the synthesis of these motives, including general methods as well as total synthetic approaches. ${ }^{[71]}$

One of the earliest examples of a spirocyclic natural product is β-vetivone (144) (Scheme 20) isolated in 1939,[72] long mistaken for hydroazulenic compound 143 and structurally revised based on its first total synthesis by Marshall et al. in 1968. ${ }^{[73]}$

β-vetivone (144)
revised structure
(1968)

spironolactone (145)

illudin S (147)

Scheme 20 DIFFERENT COMPOUNDS CONTAINING A SPIROCYCLIC MOIETY.
The next example depicted in Scheme 20, spironolactone (145), can be found on the WHO's list of essential medicines and used as a diuretic and anti-hypertensive drug. ${ }^{[71 d]}$ Chamaecydin (146) is a spiro polycyclic natural product found in a specific family of conifers, the swamp cypress subfamily. ${ }^{[74]}$ The illudins, like illudin S (147), are sesquiterpenoids isolated from fungi and are being investigated for their promising cytotoxic activities. Illudin S was first synthesized by Matsumoto et al. using a basic aldol ring-closing reaction, a strategy often employed for the construction of spiro cycles. ${ }^{[75]}$

The spiroindane natural products cannabispirenone A (151) and cannabispirone (155), shown in Scheme 21, have been isolated from the marijuana plant Cannabis sativa. ${ }^{[76]}$ Crombie et al. likewise applied a basic aldol reaction to intramolecularly close the ring of these compounds (Scheme 21, left side), e.g. (\pm)-cannabispirenone A (rac-151). ${ }^{[77]}$ An asymmetric synthesis was published in 1984 by Natale et al. using a chiral amine and methyl vinyl ketone to establish the stereocenter as in compound rac-149 enantioselectively and subsequently close the spiro cycle by condensation. ${ }^{[78]}$ (\pm)-Cannabispirone (rac-155) was also obtained via an aldol condensation between methyl vinyl ketone and aldehyde rac-153 as key cyclization step in 1981 by El-Feraly et al.[79]

Scheme 21 Syntheses of spiroindane natural products utilizing aldol reactions to construct the SPIRO CENTER.[77, 79]

Despite aldol reactions other acid- or base-promoted spirocyclizations are frequently used. In the total synthesis of (\pm)-acorenone B (rac-159) (Scheme 22, section A) starting from (\pm)-camporone (rac -156) intermediate alcohol rac-157 can be synthesized and converted into spiro compound rac-158 by the addition of formic acid. ${ }^{[80]}$ In a Prins cyclization of aldehyde rac-161 a Lewis acid was employed, delivering both diastereomers of alcohol rac- $\mathbf{1 6 2}$ as intermediate in the racemic total synthesis of $(\pm)-\beta$-vetivone (rac-144) (Scheme 22,section B).[81]

Scheme 22 total synthesis of (\pm)-ACORENONE B (159) (SECTION A), β-VETIVONE (163) (SECTION B) AND POLYCYCLIZATION APPROACH TOWARDS SPIRO TETRACYCLIC FRAMEWORKS AS 164 (SECTION C). ${ }^{[80-82]}$

In section \mathbf{C} a more complex acid-catalyzed domino cyclization for the establishment of spirocyclic frameworks as in tetracyclic rac-164 is illustrated. This approach using propagylic alcohols like rac-163 as cyclization precursor was extended to a wide substrate scope and spiro polycycles like chamaecydin (146) (Scheme 20) natural products. ${ }^{[82]}$

1.5 GOLD-CATALYZED CYCLIZATIONS IN TOTAL SYNTHESIS

The days of gold compounds being considered too precious and inert for the regular use in research, synthesis or even industrial applications are long gone. ${ }^{[83]}$ During the last decades, homogenous gold catalysis evolved as one of the fastest growing areas of organic chemistry due to a range of beneficial properties. ${ }^{[84]}$ Gold complexes are generally air- and moisture-tolerant, often show orthogonal reactivities compared to other transition metal catalysts and have a high functional group tolerance owing to mild reaction conditions and excellent chemoselectivity.[85] Numerous new methodologies emerged exploiting their ability to catalyze a variety of powerful, highly atom economic transformations, often coming along with a tremendous increase in molecular complexity. ${ }^{[86]}$ Advances have been made both in the development of new reactions and in improving known ones, e.g. oxidation, hydroamination, epoxidation and substitution reactions of allylic alcohols. ${ }^{[87]}$ The exceptionally carbophilic and soft Lewis acidic character renders Gold salts extremely efficient in the electrophilic activation of π-bonds. ${ }^{[88]}$ Consideration of relativistic effects is one major aspect in rationalizing the reaction manifold that can be catalyzed by different gold species. ${ }^{[89]}$

Until today, gold catalysis is a prosperous field of organic chemistry with ongoing research and wide-ranging achievements, also in the development of asymmetric variants.[90] It is not surprising that many organic chemists in total synthesis recognized the highly valuable features of gold complexes and increasingly utilized them in key steps towards many different natural products, often comprising cyclization steps to establish new C-C or C-0 bonds. ${ }^{[91]}$

SChEME 23 PART OF THE TOTAL SYNTHESIS OF (-)-ATROP-ABYSSOMICIN C (167) VIA A GOLD-CATALYZED CASCADE CYCLIZATION KEY STEP. ${ }^{[92]}$

In the total synthesis of (-)-atrop-abyssomicin C (167), Saicic and Bihelovic established two of the four rings via a gold(I)-catalyzed cyclization cascade (Scheme 23). Initially, the catalyst might activate the triple bond towards an oxa-Michael addition, followed by photo-induced cis/trans isomerization. Final addition of a base led to ester hydrolysis and lactonization. Resulting tricyclic 166 can be converted to the natural product in eight additional steps. ${ }^{[92]}$

In 2013, Sarkar and coworkers employed AuCl_{3} as catalyst in a one-pot procedure in the presence of TBAF (tetra- n-butylammonium fluoride) and PPTS (pyridinium p-toluenesulfonate). After deprotection gold activated the triple bond to facilitate its reaction with the two hydroxy groups
to consecutively build up two rings. ${ }^{[93]}$ This approach has been applied for the regio- and stereoselective total synthesis of alboatrin (169) (Scheme 24).

Scheme 24 FINAL KEY TRANSFORMATION IN THE TOTAL SYNTHESIS OF ALBOATRIN (169) CONSISTING OF AN ONEPOT DESILYLATION/GOLD-CATALYZED CYCLOISOMERIZATION.[93]

In the same year the group of Echavarren developed a novel tandem cyclization/migration/ cyclopropanation reaction facilitated by a gold (I) complex (Scheme 25).

Scheme 25 complex Gold (I) CAtAlyZed Key step in the first enantioselective total synthesis of (+)-SCHISANWILSONENE A (178). [94]

The triple bond of chiral propagylic ester $\mathbf{1 7 1}$ is activated by the metal complex and a 1,6 -enyne cyclization takes place, yielding bicyclic intermediate 174. After 1,5 -migration of the acetate group towards intermediate 176 , this α, β-unsaturated gold carbene species presumably reacts in a cyclopropanation with disilylether 170. This transformation was employed as the opening key step of the first enantioselective total synthesis of (+)-schisanwilsonene A (178).[94]

Many examples can be found where the stereoselectivity of a gold-catalyzed key step in total syntheses is based on substrate control by employing a chiral starting material. Despite the fact that there is an increasing number of enantioselective gold-catalyzed transformations available, ${ }^{[90 a]}$ the application to total synthesis is currently still limited. ${ }^{[91]}$ One example is shown in Scheme 26 where Rueping and coworkers used a gold (I) complex with a chiral ligand for the enantioselective installation of a quaternary carbon center C-2 by an intramolecular allylic substitution of alcohol $\mathbf{1 7 9}$. ${ }^{[95]}$ Resulting chromane $\mathbf{1 8 0}$ can be converted to the target molecule over two additional steps.

SCHEME 26 TOTAL SYNTHESIS OF $\alpha-\left(2 R, 4^{\prime} R S\right.$, $\left.8^{\prime} R S\right)$-TOCOPHEROL(182) VIA AN INTRAMOLECULAR ALLYLIC SUBSTITUTION MEDIATED BY GOLD (I).[95]

Although the stereo information at C-4' and C-8' is undefined, this work can be seen as formal enantioselective total synthesis of α-tocopherol since the phytyl side chain 181 is available in an enantiopure fashion starting from farnesol following Pfaltz's procedure from 2008.[96]

2 MOTIVATION AND CONCEPTION

2.1 TOTAL SYNTHESIS OF THE DYSIHERBOLS

Natural product synthesis is the art of mimicking mother nature's molecules in the laboratory, where synthetic organic chemists find ways to provide interesting biologically active agents, not only for the sake of drug development. The research field of organic chemistry highly benefits from the discoveries made in the course of total syntheses, as already outlined in chapter 1.1. This involves not only newly discovered methods and reactions, but also structural elucidations, as the synthesis of a molecule is often the only way to gain certainty about its constitution and configuration. ${ }^{[6-7,8]}$

In particular, marine environments have shown promise for the discovery of novel, interesting compounds. Marine sponges are the main source of sesquiterpene quinones, a natural product class of huge structural diversity showing a multitude of different bioactivities (see chapter 1.2.1).[13] For example, the dysiherbols (chapter 1.2.4) all exhibit anti-inflammatory activities. Notably, dysiherbol A showed auspicious sub-micromolar IC_{50} values towards cancer cell line NCI H-929 and protein complex NF-кB involved in the process of inflammation. ${ }^{[19 f]}$ Additionally, the intriguing structures of dysiherbols A-E render them all attractive targets for total synthesis.

In this work, the first goal was the completion and optimization of the total synthesis towards dysiherbol A together with Julian Baars. Based on his seminal work displayed in Scheme 13 (p. 17), an improved synthetic route for the construction of tetracyclic 184 via a twofold cyclization of aldehyde 183 was already developed during my master's thesis.[97] Central tetracyclic ketone 111 can be converted into advanced intermediates $\mathbf{1 2 0}$ or $\mathbf{1 2 2}$ over three or four steps. As the revised constitution and absolute configuration of dysiherbol A (98, Figure 5) was not known at the beginning of this work, their conversion into tetracyclic triol 102 was the goal at this point (indicated with orange dashed lines on the left side of Scheme 27).

Subsequently, the total syntheses of congeners dysiherbol B (105) and C (106) in revised constitution and absolute configuration were targeted (Scheme 27). From a retrosynthetic point of view dysiherbol B(105) might be accessible via diastereoselective reduction of dysiherbol C (106). The epimer of dysiherbol B (3-epi-105) might result from an envisioned deprotection, (acidic) epoxide opening, cyclization cascade employing epoxide ent-186. This diastereomer is believed to be formed based on substate control in the epoxidation of olefin ent-97. This olefin in turn is accessible via Stille coupling of triflate ent-185 (compare Scheme 11),[40] which can be traced back to central ketone ent-111 again.

Scheme 27 total synthetic approach towards the originally proposed structure of dysiherbol a
(102) (LEFT; REMAINING CHALLENGES IN ORANGE DASHED LINES) AND RETROSYNTHETIC ANALYSIS OF DYSIHERBOL B (105), C (106) AND E (110) (RIGHT) WITH COMMON INTERMEDIATE KETONE (ent-) 111.

For the total synthesis of dysiherbol $\mathrm{E}(\mathbf{1 1 0})$ triflate ent-185 was again considered as a precursor for a cross coupling reaction to introduce the $-\left(\mathrm{CH}_{2} \mathrm{OR}\right)$ group. Subsequently, deprotection and protonation of the double bond of ent- $\mathbf{1 8 7} \mathbf{~ m i g h t ~ r e s u l t ~ i n ~ t h e ~ c l o s u r e ~ o f ~ t h e ~ l a s t ~ r i n g ~ a n d ~ t h e r e b y ~}$ lead directly to the desired natural product.

2.2 STUDIES ON A GOLD-CATALYZED CYCLIZATION

In the course of the studies towards the total synthesis of dysiherbol A, a novel twofold cyclization was developed as already depicted in Scheme 27. Among several Lewis acids tested, AuCl_{3} was the only one capable of catalyzing ($4 \mathrm{~mol} \%$) the desired transformation and thereby building up the tetracyclic carbon skeleton of the dysiherbols as in olefin 184, under the elimination of water. Another goal of this work was to further investigate this interesting reaction and gain deeper
insights into the mechanism. For that purpose, different cyclization precursors should be synthesized and treated with AuCl_{3}, as shown in Scheme 28.

Scheme 28 Studies on the AuCl_{3}-CATALYZEd twofold cyclization developed for the total synthesis OF THE DYSIHERBOLS (LEFT, WITH PROPOSED MECHANISM) CONDUCTED ON SIMPLIFIED PRECURSORS AND RESULTING IN A SPIRO CYCLIZATION (RIGHT).

Most of the tested Lewis acids afforded the first cyclization to create the trans-decalin system, but not the subsequent $S_{E} A r$ type connection to the electron rich aromatic ring. $\mathrm{As}_{\mathrm{AuCl}}^{3}$ is known to catalyze substitutions of allylic alcohols (see chapter 1.5) the mechanism depicted in Scheme 28 was proposed as explanation for its unique performance in the observed transformation. The gold (III) salt is supposed to rapidly convert the primary cyclization intermediate 188 into the more stable allylic cation 189 under the formation of known anion $\mathrm{AuCl}_{3}(\mathrm{OH})^{-}$. The allylic cation in turn can then be attacked by the aromatic ring at the bridgehead position, whereas 188 is more prone to result in primary cyclization or benzyl shift products, as observed for other Lewis acids.

To support this hypothesis, allylic alcohols 192 and 193 should be treated with AuCl_{3}, both expected to deliver allylic cation 194 which upon cyclization probably give spirocyclic compound 195. Additionally, allylic alcohol 193 is planned to be synthesized in an enantiopure fashion to test if the stereochemical information is conserved during the reaction. Furthermore, the role of the substitution of the aromatic moiety should be examined by testing different Me-protected phenols. The reaction of simplified aldehyde 190 might provide evidence if the preorganization within aldehyde 183 is necessary for successful cyclization.

3 RESULTS AND DISCUSSION

3.1 TOTAL SYNTHESIS OF THE DYSIHERBOLS

As first key step of the discussed total synthesis the one-pot 1,4-addition enolate trapping sequence developed by Cramer et al. was applied, as already mentioned in the previous chapter (compare Scheme 8). ${ }^{[58]}$ Julian Baars was able to transfer this method to 2,5-dimethoxy benzyl iodide 116, furthermore replacing the originally employed, highly carcinogenic solvent HMPA by related TPPA (204), ${ }^{[64]}$ which was synthesized according to a published protocol.[98] Based on his seminal work the synthesis of ketone 114 depicted in Scheme 29 was conducted and additionally applied to the synthesis of ent-114. The chiral information is introduced by employing Feringa's phosphor amidite ligand 202, ${ }^{[99]}$ both enantiomers were synthesized following a literature known protocol.[100] This ligand is used together with CuTC (copper(I) thiophene-2-carboxylate) as catalyst to enantioselectively introduce a methyl group in an 1,4-addition on enone 74, resulting in enolate (ent-)198. To facilitate the nucleophilic substitution reaction of this enolate on iodide 116, it was treated with MeLi before the iodide was added to the reaction mixture.

Scheme 29 Synthetic transformations for the synthesis of ketone 114 - Enantioselective entry of THE TOTAL SYNTHESIS OF THE DYSIHERBOLS.[64]

Enone 74 was synthesized from rac-2-methylcyclohexanone (rac-196) applying a literature protocol for α-bromination and elimination, but exchanging CCl_{4} for c-Hex as a less toxic solvent in the bromination step.[101]

Benzyl iodide 116 might be prepared starting from methylhydroquinone (205) based on a literature sequence. Starting off with double protection of the hydroquinone the benzylic position is functionalized in the second step via a radical bromination. ${ }^{[102]}$ Subsequent Finkelstein reaction transforms benzylic bromide 207 into benzylic iodide 116. ${ }^{[103]}$ Remarkably, this iodide is prone to decomposition during the purification process due to different side reactions such as polymerization under formation of a black solid mass. Another drawback of this sequence is the work- and time load, especially when considering potentially losing the product in the purification of the last step.

SCHEME 30 SYNTHESIS OF IODINE BUILDING BLOCK 116 STARTING FROM HYDROQUINONE 205.
Therefore, an alternative synthesis for this building block was developed, based on a literature protocol applying a reductive halogenation to 2,5-dimethoxybenzaldehyde (208) using FeCl_{3} as a catalyst. ${ }^{[104]}$ In the cited publication this method was used to synthesize mono-methoxylated benzyl iodide, apparently showing a higher stability as the reaction was conducted in refluxing MeCN, causing decomposition in the case of the more electron rich aromatic compounds (Table 1, entry 1). Lowering the temperature required longer reaction times and higher amounts of reagents (entry $1 \& 2$), but eventually led to full conversion of the starting material (entry 3).

Table 1 conditions screening for reductive halogenation of benzylic aldehyde 208.

entry	$\begin{gathered} \mathrm{FeCl}_{3} \\ {[\mathrm{eq}]} \end{gathered}$	$\begin{gathered} \mathrm{Cl}_{2} \mathrm{MeSiH} \\ {[\mathrm{eq}]} \\ \hline \end{gathered}$	NaI $[\mathrm{eq}]$	T	t	purification	result
1[104]	0.05	1.5	1.5	reflux	1 d	-	decomposition
2	0.05	1.5	1.5	$25^{\circ} \mathrm{C}$	1 w	-	<50\% conversion
3	0.1	3.0	3.0	$25{ }^{\circ} \mathrm{C}$	20 h	extraction	mixture (side products/impurities)
4	0.1	3.0	3.0	$25^{\circ} \mathrm{C}$	20 h	column	decomposition
5	0.1	3.0	3.0	$25^{\circ} \mathrm{C}$	20 h	crystallization	mixture (insoluble polymer)
6	0.1	3.0	3.0	$25^{\circ} \mathrm{C}$	20 h	filtration crystallization MeOH wash	70-80\% isolated yield for 116

Purification via extraction yielded 116 in a mixture with side products, and separation using column chromatography was not feasible due to decomposition. Crystallization by adding water gave 116 together with an insoluble silicon polymer, which could be separated by filtration before crystallization. Thereby, the desired building block 116 is accessible via one single step from benzylic aldehyde 208 in yields ranging from 70-80\%. Polymerization was not observed during the purification process.

Figure 7 products of the 1,4-addition/ α-alkylation shown in Scheme 29.
The reaction with enolate 199 was performed with a good yield of 59% for 114 and 53% for enantiomer ent-114, both obtained with an enantiomeric excess of 96\% (determined by chiral HPLC). Additionally, diastereomers epi-114 and ent-epi-114 were formed during the reaction and separated via column chromatography. The diastereoselectivity for the desired trans-products was approximately 5:1 (according to GC-MS). Measured crystal structures of the products are shown in Figure 7 and confirm the assigned absolute configuration.

Scheme 31 synthesis of cyclization precursor 183 from ketone 114.
As already outlined in the previous chapter, an alternative approach (compared to that shown in Scheme 13) for the construction of the tetracyclic carbon skeleton of the dysiherbols was developed during my master's thesis. ${ }^{[97]}$ The key step of this strategy is the double cyclization of aldehyde $\mathbf{1 8 3}$ (Scheme 32). An optimized route towards this cyclization precursor starting from ketone 114 is displayed in Scheme 31. For the introduction of the C_{4}-unit, TBS-protected homoallylic alcohol 211 is reacted with 9-BBN to be subsequently coupled to enol triflate 209 in a Suzuki-Miyaura cross coupling applying literature known conditions ${ }^{[105]}$ to deliver 213 in excellent yield. The outcome of this reaction depends on the purity of triflate $\mathbf{2 0 9}$ as residual triflation agent was difficult to separate from the product due to similar polarity on column, yields ranging from 78% (amount of PhNTf_{2} in a mixture with 209 > 15\%) to 97% (amount of PhNTf_{2} in a mixture with $\mathbf{2 0 9}<5 \%$). The cleavage of the TBS group was achieved in excellent yield using a very mild and atom economic method with catalytic amounts of $\mathrm{Bi}(\mathrm{OTf})_{3}$ together with water. ${ }^{[106]}$ The resulting alcohol was directly subjected to oxidation using DMP (Dess-Martin periodinane). With this scalable synthesis, up to 15 g of bench-stable aldehyde $\mathbf{1 8 3}$ can be synthesized. The route was also applied to the enantiomeric ketone ent-114, giving comparable yields for all reactions and delivering ent-183, as expected (Scheme 31, right).

With cyclization precursor 183 the gold-catalyzed twofold cyclization depicted in Scheme 32 was elaborated. AuCl_{3} was the only Lewis acid tested that delivered the desired tetracyclic carbon skeleton of olefin 184 as sole major product, transformation proceeding under the elimination of water (for a detailed discussion concerning the mechanism see chapter 3.2). Optimization attempts, e.g. solvent screening, ${ }^{[64]}$ testing of other $\mathrm{Au}($ III $)$-based catalysts and trapping of water did not result in higher selectivity and isolated yield. The best result of 38% isolated yield was achieved on high dilution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Under these conditions, up-scaling was feasible to gram scale without a significant loss in yield.

Scheme 32 GOLD-CATALYZED TWOFOLD CyClization of ALDEHYDE 183 FOR THE CONSTRUCTION OF THE TETRACYCLIC DYSIHERBOL SKELETON (184) TOGETHER WITH ISOLATED SIDE PRODUCTS.

Olefin 184 was obtained together with numerous side products, some of them were isolated and characterized (Scheme 32). Bicyclic ketone 215 is the product of the onefold cyclization of aldehyde $\mathbf{1 8 3}$, a possible mechanism of formation is depicted in Scheme 33. This compound was obtained in almost all cases during the screening for a suitable Lewis acid to build up the 6/6/5/6 tetracyclic carbon skeleton. A possible explanation for the outstanding role of AuCl_{3} might be the formation of an allylic cation (189, see Scheme 28) that is stable enough to undergo the seemingly tricky $S_{E} A r$ connection between the decalin bridgehead and the electron rich aromatic moiety preferentially over side reactions such as benzyl shifts. Nevertheless, such shifts also occur with the gold catalyst. Two resulting side products are also shown in Scheme 32.

Cis-decalin 217 is also a product of a onefold cyclization and probably results from a benzyl shift after the initial cyclization to cation 188 and trapping of the resulting cation 219 by the oxygen, building up an ether bridge (Scheme 33). The decalin system of product 217 is supposed to be forced into its thermodynamically unfavored cis configuration by this additional bond. It was isolated as side product (4% yield) of the cyclization of aldehyde ent-183. A possible mechanism for the formation of its enantiomer ent-217 is also given in Scheme 33.

Scheme 33 isolated side products of the gold-catalyzed twofold cyclization of aldehyde 183 together with possible mechanisms of formation.

Another isolated side product 216 emerges under the elimination of water and a $\mathrm{S}_{\mathrm{E}} \mathrm{Ar}$ reaction, similar to olefin 184. In contrast to $\mathbf{1 8 4}$ it is the product of an additional benzyl and a $1,2 \mathrm{H}$-shift. By trapping the resulting cation 221 the aromatic ring forms another 6/6/5/6 carbon skeleton (216), with both connections to the bridgehead carbon atoms of the decalin system.

As the discussed formation of the tetracyclic core motif proceeded under elimination of water, two additional steps were necessary to synthesize ketone 111, the common intermediate for the envisioned total syntheses of the dysiherbols (compare Scheme 27). The sequence shown in Scheme 34 proceeded smoothly with a very good yield of 83%, given over two steps as the crude product was directly employed in the DMP oxidation (66% over two steps for the enantiomeric series). After hydroboration/oxidation of olefin 184, a sample of the resulting secondary alcohol 222 was purified to determine the configuration of the two newly formed stereocenters by ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-$ NOESY NMR experiments. A crystal structure of desired ketone $\mathbf{1 1 1}$ is also shown in Scheme 34.

Scheme 34 OXidation of tetracyclic olefin 184 To provide common intermediate ketone 111 for the TOTAL SYNTHESIS OF THE DYSIHERBOLS.

In summary, the developed synthetic strategy delivers ketone $\mathbf{1 1 1}$ within seven steps in an overall yield of 22%. In comparison, the previous route counted one step more with a yield of 6%. The difference is the application of the twofold cyclization to construct the tetracyclic core structure versus two single cyclizations in the old route, a Barbier cyclization and an intramolecular 1,4addition (Scheme 35).

Scheme 35 comparison of the two synthetic strategies for the synthesis of ketone 111.

3.1.1 DYSIHERBOL A

The finalization of the first enantioselective total synthesis of dysiherbol A was further pursued together with Julian Baars based on his seminal results shown in Scheme 13. During the preparative work presented here, he discovered that the constitution of targeted natural product needs to be revised, ${ }^{[64]}$ independently from the findings of Chong et al. published in 2021 (Scheme 11).[40] Pentacyclic 98, an anhydride of the originally proposed triol 102, turned out to be the correct structure of the natural product isolated in 2016 (Figure 5, p. 15). Thus, Baars total synthesis depicted in Scheme 13 was completed by simple deprotection of compound 122, but further optimizations of the protocols and analytical characterizations of the synthesized products were still pending.

Scheme 36 synthesis of olefin 121 from ketone 111 via grignard addition/elimination.

Ketone 111 was converted over two steps into olefine 121 via Grignard addition and subsequent elimination with excellent yields. Between the two reactions no purification was necessary.

The following Simmon-Smith cyclopropanation under Furukawa conditions (Scheme 11) is rather challenging as the methylenation of all-carbon tetrasubstituted olefines is not that common.[107] The reaction gave room for improvement as the conversion of $\mathbf{1 2 1}$ to 224 always stopped after approximately 30 min at around 50% (based on GC-MS data), even though the reagents were applied in huge excess. It was hypothesized that this might be explained by the decomposition of the active carbenoid species ("EtZnCH I_{2} "). Therefore, ZnEt_{2} (in hexanes) was successively added to a solution of $\mathbf{1 2 1}$ together with $\mathrm{CH}_{2} \mathrm{I}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, to ensure a continuous generation of the active species, and indeed the SM/product ratio was shifted to 75% at a point of equimolar amounts of the two reagents and even over 80% when more ZnEt_{2} was applied (Table 2, entry 1). Successive simultaneous addition of equimolar amounts of both reagents gave similar results (1.2 equivalents every 20 minutes) and inverting the procedure by successively adding $\mathrm{CH}_{2} \mathrm{I}_{2}$ worsened the result significantly. At higher concertation it was possible to increase the conversion to over 90% and stopped to further proceed at twelve equivalents of the reagents (Table 2, entry 2).

Table 2 conditions screening for the simmon-smith cyclopropanation of olefin 121.

entry	$\begin{gathered} \mathrm{ZnEt}_{2} \\ {[\mathrm{eq}]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CH}_{2} \mathrm{I}_{2} \\ {[\mathrm{eq}]} \\ \hline \end{gathered}$	c [M]	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes	$121^{\text {a }}$	$224{ }^{\text {a }}$	$\begin{gathered} \text { side } \\ \text { products }{ }^{a} \end{gathered}$	note
1	$\begin{gathered} 8 \\ 12 \end{gathered}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	0.045	$\begin{gathered} 2.9: 1 \\ 1.4: 1 \end{gathered}$	$\begin{gathered} 25 \% \\ 20 \% \end{gathered}$	$\begin{aligned} & 75 \% \\ & 80 \% \end{aligned}$		ZnEt 2 successively added
$2^{\text {b }}$	$\begin{gathered} 5 \\ 12 \end{gathered}$	$\begin{gathered} 5 \\ 12 \end{gathered}$	0.45	$\begin{gathered} 1: 2.5 \\ 1: 5 \end{gathered}$	$\begin{gathered} 40 \% \\ 5 \% \end{gathered}$	$\begin{gathered} 60 \% \\ 95 \% \end{gathered}$		Simultaneous addition of ZnEt 2 and $\mathrm{CH}_{2} \mathrm{I}_{2}$
$3^{\text {b }}$	$\begin{gathered} 5 \\ 16 \\ 18 \end{gathered}$	$\begin{gathered} 5 \\ 16 \\ 18 \end{gathered}$	0.45	1:2.5	$\begin{gathered} 40 \% \\ 5 \% \end{gathered}$	$\begin{gathered} 55 \% \\ 65 \% \\ 40 \% \end{gathered}$	$\begin{gathered} 5 \% \\ 30 \% \\ 60 \% \end{gathered}$	Solvent ratio adjusted, 16% isolated yield
4-1 ${ }^{\text {b }}$	5	5	0.45	1:2.2	40%	50%	10%	Extraction at 50% conversion
$4-2{ }^{\text {b }}$	5	5	0.45	1:2.2	15\%	65%	20%	$2^{\text {nd }}$ cycle with crude 4-1
$5-1{ }^{\text {b }}$	5	5	0.45	1:2.3	45%	50%	5%	$1{ }^{\text {st }}$ cycle, 44% isolated yield
$5-2{ }^{\text {b }}$	5	5	0.45	1:2.3	30%	50%	20\%	$2^{\text {nd }}$ cycle, 24% isolated yield

ZnEt2 was added as a solution in hexanes. ${ }^{\text {a Ratio of } 121 \text { to } 224 \text { was determined via integration of suitable GC (TIC) signals. }{ }^{\text {b }} \text { Addition of both }}$ reagents was performed simultaneously, 1.2 eq. each, every 20 min .

As the diminished concentration resulted in a changed ratio of solvents $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes, the speculation arose that the reaction is not proceeding if the amount of hexane exceeds a certain point $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes $=1: 5$ for entry 2$)$. Therefore, in the following experiments the ratio of the solvents was adjusted by adding $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ when adding ZnEt_{2} (in hexanes). Thereby full conversion was achieved, but numerous side products were observed via GC-MS and NMR analysis (Table 2, entry 3, for entry 1 and entry 2 the amount of side products was not determined), also reflected in the poor isolated yield of 16% for cyclopropane 224. Two compounds were isolated but not fully characterized due to rapid decomposition. NMR analysis indicated the reaction of the electron rich aromatic moiety in a cyclopropanation and a Buchner ring expansion reaction as occurring side processes. As the number of undesired products is increasing with time, conversion and amount of reagent added, an additional experiment was performed (entry 4), stopping the reaction at 50% conversion with five equivalents of reagents after 30 minutes. The crude product, a mixture of approximately 40% olefin 121, 50% cyclopropane 224 and 10% side products, was subjected to the same conditions a second time. Unfortunately, no full conversion was achieved, but the previously observed significantly increased side product formation was still a problem. To circumvent this drawback, the best solution was to separate the desired product from the starting material and the side products via column chromatography and employing 121 in another round of cyclopropanation (entry 5), best result over two cycles 53% on a 100 mg scale. The drop in yield between the first and the second cycle might be explained by the halving of the scale size, as exact additions on the smaller size are more difficult.

Since pentacyclic $\mathbf{9 8}$ is believed to be the actual structure of the natural product, a final three-inone reaction was envisioned. Deprotection of 224 under acidic conditions should lead to opening of the cyclopropane and the resulting cation might be trapped by the subjacent phenolic oxygen.

Table 3 Conditions screening for the final deprotection/cyclopropane opening/cyclization REACTION IN THE TOTAL SYNTHESIS OF REVISED, PENTACYCLIC DYSIHERBOL A (98).
 determined via integration of suitable GC (TIC) signals and characteristic NMR signals.

Similar reactivities were already observed by Julian Baars, and if instead of MsOH (see Scheme 13) BBr_{3} is used directly, full demethylation should be possible to deliver dysiherbol A(98) instead of cyclic ether 122, a comparable reaction was also previously observed for alcohol 223.

In Table 3 the results of the screening for this reaction are summarized. With three equivalents of BBr_{3} (entry 1) a mixture of many different products was obtained, containing desired $\mathbf{9 8}$ as main product. However, substantial amounts of still mono-methylated dysiherbol A (methyl ether 122) and other unknown side products remained. Based on NMR analysis of the crude product, one prominent side product seemed to be a demethylated but uncyclized olefin, indicating the necessity of more acidic conditions for the generation of a cation to achieve the final cyclization. Thus, water was added to generate HBr and indeed, the olefinic side product was avoided, but with increased equivalents of water over equivalents of BBr_{3} the second deprotection was difficult (entry 2 \& 3). However, if in turn the ratio $\mathrm{BBr}_{3} / \mathrm{H}_{2} \mathrm{O}$ exceeds a certain point the olefinic side product is again observed (entry 4). Doubling the equivalents of both reagents did not make much difference (compare entry 3 \& 5). Adding BBr_{3} first instead of water raised the formation of the undesired compounds (entry 6). The best reproducible result was achieved with equimolar amounts of water and BBr_{3} with shorter reaction time reducing the amount of side products (entry $7 \& 8$).

Scheme 37 enantioselective total synthesis of (-)-DYSIHERBOL a (98) TOGETHER WITH ITS CRYSTAL STRUCTURE CO-CRYSTALLIZED WITH A METHANOL MOLECULE.

Dysiherbol A (98) could thereby be synthesized from precursor 224 in a three-in-one transformation involving an acidic cyclopropane opening at the decalin system, a demethylation of the hydroquinone and subsequent cyclization between the two moieties. Thus, the first enantioselective total synthesis of dysiherbol A (98) was accomplished within twelve steps with an overall yield of 5\% (Scheme 37).

Figure 8 Crystal structure of synthesized dysiherbol a (98), three molecules connected via hYDROGEN BONDS TO CO-CRYSTALLIZED METHANOL MOLECULES.

Surprisingly, the specific rotation of synthesized dysiherbol A (98) ($[\alpha]^{20_{D}}=-23^{\circ} ; c=0.5$ in MeOH) did not match the one reported for the isolated natural product ($[\alpha]^{22}{ }_{D}=+23^{\circ} ; c=0.1$ in MeOH).[19f] Since the absolute configuration of synthesized (-)-dysiherbol A (98) was ensured by X-ray crystal structures (Figure 8), the assigned absolute configuration (Figure 5, 102) proved to be
wrong. The original configurational assignment was based on the comparison of computational ECD spectra with a measured one of the isolated natural product. That this method led to the false assignment is not surprising, since the computational calculations were based on the wrong constitution of $\mathbf{1 0 2}$ instead of pentacyclic $\mathbf{9 8}$. To further validate this theory, an ECD spectrum of synthesized (-)-dysiherbol A (98) was measured, the comparison with the reported one clearly confirmed it being the enantiomer of natural (+)-dysiherbol A (ent-98) (Figure 9).

Figure 9 Comparison of experimental ecd spectra of natural occurring (+)-DYsiherbol a (ent-98, GREY) ${ }^{[19 F]}$ AND SYNTHESIZED (-)-DYSIHERBOL A (98, BLACK).

As described earlier in this chapter, the enantioselective total synthesis of (-)-dysiherbol A can be easily transferred to (+)-dysiherbol A by just using the opposite enantiomer of ligand $\mathbf{2 0 2}$ in the first key step (compare Scheme 29), since all subsequent reactions proceed substrate controlled (Scheme 37). Nevertheless, the synthesis of (+)-dysiherbol A was pursued because the comparison of the two enantiomers in biological tests might reveal interesting (differing) properties.

As depicted in chapter 0, p. 27 in Scheme 27 olefin ent- 97 might be a suitable precursor for the envisioned total synthesis of dysiherbol B \& C. This olefin should be accessible from triflate $\mathbf{1 8 5}$ by utilizing a Stille cross coupling based on the seminal work by $L u$ and coworkers on a double methylation at the end of their racemic total synthesis for dysiherbol A (Scheme 11). This triflate in turn is considered a good starting point for the synthesis of dysiherbol E (see also chapter $\mathbf{0}, p$. 27 in Scheme 27). All dysiherbols are believed to be naturally occurring with the same absolute configuration as (+)-dysiherbol A (ent-98). Thus, for its synthesis the alternative dysiherbol Aroute towards α-methyl ketone 120 developed by Julian Baars (Scheme 13) ${ }^{[64]}$ was used, since triflate ent-185 and olefin ent-97 are accessible from this intermediate and the latter can be transferred into (+)-dysiherbol (ent-98), as already investigated by Lu (Scheme 11).[40]

Scheme 38 Synthesis of olefin (ent-)97 from common ketone intermediate (ent-)111.
For supply reasons, the described route (Scheme 38) was again performed in both enantiomeric configurations, since precious ketone $\mathbf{1 1 1}$ was still in stock and investigations on advanced intermediates can be performed in either configuration. The three step process (O-methylation, cyclopropanation, acidic cyclopropane opening) for the introduction of the α-methyl group in ketone 120 was performed according to Scheme 13 under minor optimizations regarding procedure and purification, coming with slightly improved yields (57% instead of 48% over three steps).

Figure 10 Crystal structures of α-methyl ketone ent-120 and triflate 185.
After formation of enol triflate 185 in a very good yield of 80%, this intermediate was subjected to the already discussed Stille coupling conditions, delivering desired olefin $\mathbf{9 7}$ with an excellent yield of 91%. In the enantiomeric series, all yields were in a comparable range, although slightly

3. RESULTS AND DISCUSSION

diminished, especially in the case of the Stille coupling, presumably due to the degraded quality of the tin reagent. However, 40% of the starting material ent- $\mathbf{1 8 5}$ could be reisolated.

Scheme 39 deprotection/cyclization reaction of olefin ent-97 to obtain naturally occurring ENANTIOMER (+)-DYSIHERBOL A (ent-98).[40]

To finally obtain (+)-dysiherbol A (ent-98) in its natural absolute configuration, olefin ent-97 was subjected to the deprotection/cyclization conditions depicted in Scheme 11 delivering the desired pentacyclic product with a very good yield of 82% (Lit.: 72\%).[40]

3.1.2 DYSIHERBOL B \& C

Having olefin (ent)-97 in hand, which has already the desired carbon skeleton of the dysiherbols, the total synthesis of dysiherbol B and C was targeted (Scheme 40). Compound ent-186 was envisioned to be easily accessible by epoxidation of this olefin. Subsequently, a cascade reaction similar to the one developed for dysiherbol A (98) (compare Table 3) would lead directly to 3-epidysiherbol B (3-epi-105) via a sequence of epoxide opening, deprotection and cyclization of the ether ring. Oxidation of this pentacyclic alcohol would yield dysiherbol C (106). As the epoxidation of 97 is suspected to occur from the side opposite to the aromatic ring, dysiherbol B(105) in its correct epimeric form might be accessible via reduction of dysiherbol C, as this presumably occurs from the less hindered side as well.

Scheme 40 Retrosynthetic AnAlysis of dysiherbol b \& C GOING BACK TO OLEFIN ent-97.
The following investigations were conducted in the not-naturally occurring enantiomeric series for supply reasons. However, the epoxidation of olefin ent-97 proved to be surprisingly challenging. As depicted in Scheme 41, different tested epoxidation methods did not lead to the expected epoxide 186. Employing $m C P B A$ as oxidation agent delivered allylic alcohol 226 as main product, whereas a dioxirane (in situ generated using trifluoroacetone and Oxone) yielded the rearranged homoallylic alcohol 227 with 67% when stirring at $0^{\circ} \mathrm{C}$ for 16 h . If the reaction was allowed to reach $24^{\circ} \mathrm{C}$, again allylic alcohol 226 was obtained. A putative mechanism for the formation of the two undesired products is drawn in Scheme 42. The initially formed epoxide 186 might open up rapidly under migration of the adjacent methyl group resulting in cation 233, which probably is in equilibrium with the 1,2 -methyl shifted cation 234. Proton elimination delivers either allylic alcohol 226 or homoallylic alcohol 227.

Scheme 41 SYNTHESIS OF UNDESIRED INTERMEDIATES 226 \& 227 AND ATTEMPTS OF THEIR (REARRANGEMENT)/CYCLIZATION TO PROVIDE ent-3-epi-DYSIHERBOL B (ent-3-epi-105).

A similar 1,2-methyl shift was previously studied by Julian Baars for cyclopropane 224 (Scheme 43). These results indicated a reversibility of this process and led to the assumption that under acidic conditions the undesired intermediate $\mathbf{2 2 7}$ might undergo the envisioned ether cyclization. Unfortunately, the conditions shown in Scheme 43 gave elimination product diene 228. To avoid elimination of the alcohol, oxidation prior to treatment with MsOH was considered. Although the desired intermediate ketone was observed via GC-MS and NMR analysis of the crude product, the subsequent reaction with MsOH did not result in rearrangement and cyclization but in a mixture of many different products, neither isolated nor characterized. Deprotection/Lewis acidic conditions adding BBr_{3} delivered comparably unsatisfactory results. The same holds true for allylic alcohol 226 when subjected to these conditions.

Scheme 42 PUTATIVE MECHANISM FOR THE FORMATION OF ALLYLIC ALCOHOL 226 AND HOMOALLYLIC ALCOHOL 227 FROM OLEFIN 97.

Scheme 43 ObSERVATIONS MADE BY JULIAN BAARS FOR A REVERSIBLE ACID MEDIATED 1,2-METHYL SHIFT.[62]
Interestingly, when looking at the literature known epoxidation in Scheme 44 used for the total synthesis of (+)-stachyflin, the tetracyclic structure of olefin 97 seems to have a huge impact on its reactivity. Olefin 231 has a very similar structure, but with the additional connection to the aromatic moiety, epoxide 186 is apparently way more prone to rearrangement compared to 232.

Scheme 44 LIterature known epoxidation of OLEFIN 231 using a peroxide within the total synthesis OF (+)-STACHYFLIN. [49]

The solution for the synthesis of dysiherbol B and C was discovered by cooperation partners from the Nankai University in China simultaneously working on the same topic. $L u$ and coworkers found that changing the configuration of the C-3 hydroxy group is crucial for the subsequent ether cyclization to be feasible (Scheme 45), maybe due to a change in the conformational bias of the cationic intermediates. They also obtained allylic alcohol ent-226 and homoallylic alcohol ent-227 when aiming for the epoxidation of olefin ent-97 under differing reaction time and temperature with m CPBA. Oxidation and subsequent reduction delivered the epimers 3 -epi-ent- 226 and 3 -epi-ent-227, as suspected for the cyclized congener 3-epi-105 in the retrosynthetic analysis shown in Scheme 40. Additionally, they observed that transformation between the two alcohols is possible under acidic conditions. With the correct configuration at $\mathrm{C}-3$, as found in dysiherbol B , the ether ring formation proceeded smoothly with epi-ent-226 and epi-ent-227 under common BBr_{3} conditions. The obtained synthetic dysiherbol B (105) exhibited the same analytical data compared to those reported for the natural product, thus confirming the anticipated revised structure. ${ }^{[22]}$ Converting dysiherbol B into dysiherbol C gave poor yields, but mono methyl protected congener $\mathbf{2 3 5}$ gave dysiherbol C upon oxidation and final deprotection with a yield of 48% over two steps. Spectroscopic and optical rotation data again fitted the reported ones. Noteworthy, they observed diene ent-228 as well when subjecting homo allylic alcohol ent-227

3. RESULTS AND DISCUSSION

to Brønsted or Lewis acidic conditions, also explaining the diminished yield for the BBr_{3} reactions in comparison to those of ent-226.

Scheme 45 synthesis of dysiherbol b \& c developed by cooperation partners around lu from the NANKAI UNIVERSITY IN CHINA. [63]

3.1.3 DYSIHERBOL E

For the total synthesis of dysiherbol E (110) triflate (ent-)185 was considered as a suitable starting point to create the (protected) allylic alcohol ent-187 as cyclization precursor accessible via a cross coupling reaction. Subsequently, under treatment with acidic deprotection conditions, this precursor might give the targeted natural product, as already studied for its congeners.

Scheme 46 RETROSYNTHETIC ANALYSIS OF DYSIHERBOL E (110) STARTING FROM KNOWN TRIFLATE ent-185 VIA (PROTECTED) ALLYLIC ALCOHOL ent-187.

The following studies were again conducted in the enantiomeric series. Initial attempts focused on the synthesis of the unprotected allylic alcohol 236. Literature research revealed a Stille-type cross coupling as promising conditions for the desired transformation of olefin 185 into 236. Unfortunately, various conditions failed in the coupling, showing no conversion of the starting material. The Stille reagent was synthesized following a literature protocol,[108] seemingly decomposing upon the high temperatures necessary for the reaction of triflate 185. Thus, microwave-assisted conditions were applied to eventually enable its conversion at lower temperatures, but to no avail. On the contrary, the analogous methoxy-tin reagent underwent the desired reaction under standard Stille conditions, resisting the elevated temperatures, thereby yielding the methyl protected allylic alcohol 235 with a yield of 43% (Scheme 47).

Scheme 47 SYNTHESIS OF PROTECTED ALLYLIC ALCOHOL 235 AND ITS UNSUCCESSFUL CYCLIZATION TOGETHER WITH UNSUCCESSFUL SYNTHESIS OF ALLYLIC ALCOHOL 236.

Two side products were observed, the minor related to the coupling of one n-butyl residue and the major to that of a hydrogen atom, presumably resulting from residual $n \mathrm{Bu}_{3} \mathrm{SnH}$, the precursor of the synthesized tin reagent. ${ }^{[108]}$ A second approach for the synthesis of $\mathbf{2 3 5}$ employing Molander conditions with the respective trifluoroborate salt $\left(\mathrm{KF}_{3} \mathrm{BCH}_{2} \mathrm{OMe}\right)$ as coupling reagent, synthesized according to published protocols, ${ }^{[109]}$ failed. Unfortunately, subsequent efforts to facilitate the envisioned cyclization of $\mathbf{2 3 5}$ remained unsuccessful. Analysis of the performed experiments indicated the formation of several products related to elimination of the newly introduced $-\mathrm{CH}_{2} \mathrm{OMe}$ group, rearrangements or bromination, likewise decomposition was observed. Comparable results were received under the previously developed conditions for dysiherbol A using MsOH, in the case of olefin 230 resulting in mono deprotection and cyclization (compare Scheme 43). Consequently, allyl methyl ether $\mathbf{2 3 5}$ was considered too unstable under common cyclization conditions.

Scheme 48 RETROSYNTHETIC ANALYSIS OF DYSIHERBOL E (110) STARTING FROM KNOWN TRIFLATE ent-185 VIA ESTER ent-239.

Thus, a new strategy was developed utilizing the presumably more stable ester (ent-)239 in a similar fashion. Despite the opposed polarity present in α, β-unsaturated ester 239, the driving force of the ether cyclization was suspected to potentially overcome this bias. However, ester 239 could also deliver the unprotected allylic alcohol 236 upon reduction.

For the synthesis of ester 239 a carbonylative cross coupling was performed. Initial attempts using amine bases being most prevalent in corresponding literature gave no conversion of the starting material 185 under the literature reported conditions (Table 4, entry 1 \& 2). When switching to LiCl instead of a base, traces of the desired product could be detected via GC-MS (entry 3). The versatile optimization of the reaction set up turned out to be crucial for the successful reaction. Evacuating the balloon filled with CO prior to filling increased the conversion (entry 5), as does extending the reaction surface in contact with the supernatant gas (entry 4).

Table 4 SCREENING OF THE CARBONYLATIVE CROSS COUPLING FOR THE SYNTHESIS OF ESTER 239.

entry	additive	MeOH/DMF	$\mathrm{T}\left[{ }^{\circ} \mathrm{C}\right]$	$\mathrm{t}[\mathrm{h}]$	Change in set up	resulta
1	Et 3 N	$5: 1$	65	16	Schlenk tube	no conversion
2	DIPEA	$3: 1$	120	6		no conversion
3	LiCl	$1: 1$	120	64		traces of $\mathbf{2 3 9}$
4	LiCl	$1: 1$	120	3	larger surface	25% conv. to $\mathbf{2 3 9}$
5	LiCl	$1: 1$	120	8	balloon evacuated	65% isolated yield
6	LiCl	$2: 1$	120	16		45% isolated yield
7	LiCl	$1: 1$	120	16	MeOH reflux assured	90% isolated yield

All reactions were degassed with three freeze-pump-thaw cycles and the atmosphere exchanged with CO. Stirring was continued until no further conversion was observed. ${ }^{\text {a }}$ Conversion was tracked via GC-MS.

Even more improvement in yield was observed when additionally ensuring the condensation of MeOH on the wall of the wide tube by shielding the oil bath with aluminum foil (entry 7). Surprisingly, applying a vigreux column worsened the results, the same holds true when adding more MeOH to the reaction (entry 6). Under steady reflux of MeOH (in a $1: 1$ mixture with DMF) the conditions depicted in Table 4 delivered desired ester 239 in excellent yield of 90% after 16 h .

Employing synthesized ester 239 in the intended cyclization towards pentacyclic 238 resulted in different products, but the desired transformation was not viable. Several test experiments with BBr_{3} were conducted with variations in temperature, time and equivalents added.

Scheme 49 Synthesis of dysiherbol e via allylic alcohol 236, Synthesized from ester 239 and UNSUCCESSFUL CYCLIZATION OF THE LATTER.

Taking together the obtained results, three different products were observed according to GC-MS: Presumably the mono demethylated ester $(m / z=370)$, the double demethylated ester
$(m / z=356)$ and mono deprotected free acid $(m / z=356)$. This assumption was further supported by observations during acid-base extraction, proving the suspected compound to be a free acid. As the second species with the same mass $(m / z=356)$ in contrast was not transferred into the aqueous phase upon treatment with NaOH , this species was assumed to be the double deprotected ester. NMR analysis of a crude sample containing this species as major component clearly showed the characteristic double bond signal of 239 still present. This observation led to the conclusion that the cyclization of the α, β-unsaturated ester is not favored. This demethylated compound as well as ester 239 were subjected to Brønsted acidic conditions (MsOH), only resulting in cleavage of the ester. Another side product detected shows the mass of the species corresponding to decarboxylation. These results demonstrate ester 239 being no suitable precursor for the desired cyclization.

Nevertheless, it could be converted into allylic alcohol 236 (Scheme 49), which turned out to be suitable for the desired transformation into (-)-dysiherbol E (ent-110) as independently discovered for naturally occurring (+)-dysiherbol E (110) by cooperation partners from the $L u$ group. As entry to allylic alcohol ent-236 they used an allylic oxidation of known olefin ent-97.[63]

Scheme 50 RETROSYNTHETIC ANALYSIS OF DYSIHERBOL E (110) STARTING FROM KNOWN TRIFLATE ent-185 VIA DIENE ent-241.

Concurrent to the findings by $L u$ and coworkers, an additional approach towards dysiherbol E (110) was developed, shown in Scheme 50. Stille coupling with the respective tin reagent might introduce a vinyl residue to triflate 185. Resulting 241 upon treatment with common cyclization conditions may give pentacyclic primary olefin 240, a potential substrate for a (reductive) ozonolysis, introducing the primary alcohol of the natural product 110.

Scheme 51 synthesis of diene 241, undesired hbr addition to the terminal double bond under CYCLIZATION WITH BBr3 AND UNSUCCESSFUL ELIMINATION.

The Stille coupling for the synthesis of diene 241 (Scheme 51) proceeded smoothly under standard conditions, with a yield of 75%. Subsequent treatment with BBr_{3} delivered cyclized 242 under addition of HBr to the terminal double bond. Various changes in the reaction conditions and especially in the quenching procedure could not avoid this undesired reaction. Unfortunately, elimination of HBr from 242 was not feasible, presumably due to steric hinderance of this position.

Thus, the idea arose to deprotect diene 241 in the first place, thereby rendering the subsequent cyclization possible under mild acidic conditions, to avoid side reactions. The Stille vinyl coupling was also performed for the enantiomer ent-241 (Scheme 52), and subsequently demethylation conditions developed for dysiherbol A related compounds were applied.[64]

Scheme 52 alternative synthesis route to (+)-DYsiherbol e (110) VIA DIENE ent-241 WITH A REDUCTIVE OZONOLYSIS AS FINAL STEP.

In situ-generated LiSEt in TPPA gave full conversion of the starting material, but still the monomethylated compound ent-244 remained and further conversion stopped at a ratio of approximately $1: 1$ mono-deprotected to fully deprotected. Fortunately, the fully deprotected species turned out to be the already cyclized desired olefin ent-240. Separation of the two compounds via silica column chromatography was rather difficult due to similar polarity. Therefore, a mixture of ent-240 and ent-244 was applied to mild acidic conditions utilizing camphorsulfonic acid (CSA) mediating the cyclization accompanied by the second demethylation of diene ent-244 and thereby delivering olefin ent-240 in 27\% yield over two steps. This terminal olefin was subjected to reductive ozonolysis conditions, yielding (+)-dysiherbol E (110) with a yield of 36%.

3.2 STUDIES ON A GOLD-CATALYZED CYCLIZATION

The observations made for the key twofold cyclization in the total synthesis of dysiherbol A (Scheme 53), already briefly addressed in chapter 3.1, render this reaction an interesting objective for further investigations. Treatment of cyclization precursor 183 with a variety of different Lewis acids only resulted in complex product mixtures, usually containing ketone $\mathbf{2 1 5}$ as a major component. This compound corresponds to the single cyclization of the cationically-activated aldehyde attacked by the electrons of the central double bond, with cation $\mathbf{1 8 8}$ as presumptive intermediate (for a more detailed mechanistic proposal see Scheme 33). AuCl_{3} turned out to be the only catalyst capable of building up the desired tetracyclic carbon skeleton of $\mathbf{1 8 4}$ as a major product under the elimination of water, although still giving a vast number of side products (see Scheme 33) including ketone 215.

Scheme 53 TWOFOLD CYCLIZATION OF ALDEHYDE 183 TO OLEFIN 184 USING AuCl ${ }_{3}$ AS A CATALYST TOGETHER WITH A MECHANISTIC PROPOSAL AND UNDESIRED ONEFOLD CYCLIZATION PRODUCT 215.

This and other undesired side products indicate that the $\mathrm{S}_{\mathrm{E}} \mathrm{Ar}$ reaction is the rate-determining step in the formation of $\mathbf{1 8 4}$. The unique role of AuCl_{3} lead to the assumption that, in contrast to other Lewis acids it seems to be able to convert primary cyclization intermediate $\mathbf{1 8 8}$ into a more stable allylic cation 189, thus preventing alternative reactions like benzyl and hydride shifts, presumably being faster than the desired $\mathrm{S}_{\mathrm{E}} \mathrm{Ar}$. The reason for AuCl_{3} being unique in this transformation might be the formation of the known aurate anion $\mathrm{AuCl}_{3}(\mathrm{OH})$; also explaining the concomitant elimination of water. This ion is also suspected to be formed in substitution reactions of allylic alcohols, a reaction for which AuCl_{3} is known to be a suitable catalyst.[87] Upon protonation the anion releases a water molecule under the regeneration of the catalyst.

Treatment of allylic alcohol 245, synthesized from enone 112 employing Luche reduction conditions as depicted in Scheme 54, ${ }^{[110]}$ with catalytic amounts of AuCl_{3} supposably also results in olefin $\mathbf{1 8 4}$ via allylic cation 189. And indeed, the expected cyclization proceeded, even in an improved yield of 50\%, supporting the mechanistic proposal in Scheme 53.

Scheme 54 Synthesis of Allylic alcohol 245 AND subsequent cyclization catalyzed by AuCl ${ }_{3}$.
To investigate on the possibilities and limitations of such gold-catalyzed reactions, additional cyclization experiments using AuCl_{3} were conducted, the conception is depicted in Scheme 55. One possible substrate is aldehyde 190, the simplified version of the originally designed cyclization precursor 183 broken down to the key functionalities involved in the transformation. Two general onefold cyclization substrates were considered, allylic alcohols 192 and 193. All three precursors are suspected to give the same allylic cation 194 upon treatment with AuCl_{3}. Subsequent $S_{E} A r$ reaction with the superjacent aromatic ring might result in spirocyclic olefins of type 195, as racemates.

SCHEME 55 SIMPLIFIED TWOFOLD (190, TOP) AND DESIGNED ONEFOLD CYCLIZATION PRECURSORS (192, 193) TO STUDY THE GOLD-CATALYZED CYCLIZATION PRESUMABLY PROCEEDING VIA COMMON ALLYLIC CATION 194.

Moreover, different substitution patterns of the aromatic moiety should be employed in the reaction. Another interesting experiment is to transfer the conditions to an enantiopure compound, for example allylic alcohol 193, to check if the stereo information is conserved during the reaction.

The synthesis of the simplified aldehyde 190 is shown in Scheme 56. Starting from 2,5dimethoxybenzaldehyde (208) aldol reaction with acetone gave β-hydroxy ketone $\mathbf{2 4 6}$, following
a literature protocol. ${ }^{[111]}$ After benzylic reduction utilizing a silane and trifluoracetic acid (TFA) ketone $\mathbf{2 4 7}$ was obtained.[110] The following sequence of enol triflate formation, Suzuki coupling, deprotection and oxidation was performed in analogy to the conditions developed for the total synthesis of the dysiherbols (chapter 3.1) finally delivering the desired aldehyde $\mathbf{2 5 0}$. When this precursor was subjected to AuCl_{3}, no cyclization could be observed, neither with catalytic nor with stochiometric amounts of the Lewis acid. The preorganization in 183 (Scheme 53) with the six membered ring seems to be crucial for the success of the cyclization, and $\mathbf{2 5 0}$ seems to have too many degrees of freedom, resulting in degradation and formation of a complex product mixture.

Scheme 56 SYNTHESIS OF SIMPLIFIED TWOFOLD CYCLIZATION PRECURSOR ALDEHYDE 250 STARTING FROM BENZALDEHYDE 208 AND UNSUCCESSFUL GOLD-CATALYZED CYCLIZATION THEREOF.

The synthesis of allylic alcohols of type 192 (Scheme 55) is feasible via Grignard addition of the respective bromides to enone $\mathbf{2 5 6}$. Based on a literature known procedure, ${ }^{[112]}$ allylic alcohols rac$\mathbf{2 5 5}$ and rac-260 could be obtained, albeit in poor yields due to the formation of side products resulting from reduction and Wurtz coupling of the bromides, also previously reported.[113]

[^0]The employed bromides were synthesized over two steps by reduction and Appel reaction starting from the respective carboxylic acids following literature protocols (Scheme 57). ${ }^{[114]}$ The cited protocol was originally developed for the 1,4-Grignard type addition to vinylogous ester 264, synthesized according to a known protocol. ${ }^{[115]}$ Thus, it was also utilized for the synthesis of cyclization precursors of type 193 (Scheme 55). Unfortunately, the literature yield of 73% for the 3,5-dimethoxy derivative 265 could not be reproduced. Moreover, the reaction gave unreliable yields ranging from 9% to 38%, with the best result obtained at tenfold dilution compared to the literature. ${ }^{[112]}$ Diluting the reaction mixture further yielded the cyclized side product rac-283 in 15% yield. For the 2,5-dimethoxy congener the best yield achieved was 19%. Under several tested reduction methods, LiAlH_{4} turned out to be best suited for the reduction of enone 261, thereby yielding cyclization precursor rac-262 in 80\% yield.

Scheme 58 SYNTHESIS OF ENONES 261 AND 265 bY GRIGNARD ADDITION TO VINYLOGOUS ESTER 264, SUBSEQUENT REDUCTION OF 261 AND SIDE PRODUCT IN THE SYNTHESIS OF 265, CYCLIZED 284.

As the poor, unreliable yields for the synthesis of this type of cyclization precursors made further investigations challenging, an alternative protocol for their synthesis was considered. As depicted in Scheme 59, Suzuki-Miyaura cross coupling between styrenes 266 or 269 and triflates 268 or 275 turned out to reliably deliver good yields of the desired coupling products. Thus, four different enones (265, 270, 272 and 276) could be synthesized in good yields of around 70\%, which is in accordance with the cited literature, reporting 76\% for the synthesis of enone 276.[105] Transferring the developed protocol to the synthesis of compound 261 (Scheme 58) gave quantitative yield when using an excess of 2,5-dimethoxy styrene (see chapter 5.3.16). It turned out to be crucial to degas all solvents before usage, otherwise side products resulting from the styrene building blocks were obtained and the desired coupling was inhibited. The involved building blocks were synthesized following common protocols via enol triflate formation to obtain 268 or $275,{ }^{[116]}$ and styrene 266 via Wittig reaction of the respective aldehyde (96\% yield in accordance with literature).[117]

Subsequently, the reduction using LiAlH_{4} was performed to obtain the cyclization precursors, allylic alcohols rac-267, rac-271, rac-273 and rac-277 as racemic mixtures in good to excellent yields.

Scheme 59 SUZUKI COUPLING BETWEEN STYRENES AND ENOL TRIFLATES WITH SUBSEQUENT REDUCTION FOR THE SYNTHESIS OF CYCLIZATION PRECURSORS OF TYPE 193.

The results of the tested AuCl_{3}-catalyzed cyclization reactions are summarized in Scheme 60. Surprisingly, precursor rac-262, representing the simplified form of the already tested allylic alcohol 245 (Scheme 54) gave expected spirocyclic olefin rac-251 in only very low yield and an inseparable mixture of unknown isomers. Same observations were made for the second 2,5dimethoxy substituted precursor of type 192, rac-255.

In contrast to that, all 3,5-dimethoxy substituted precursors underwent the suspected cyclization upon treatment with catalytic amounts of AuCl_{3}. Allylic alcohol rac-267 delivered spirocyclic olefin rac-278 with a yield of $\mathbf{6 4 \%}$, so does the constitutionally different allylic alcohol rac-260 giving even higher yields for the cyclization towards rac-278, of which a crystal structure was obtained (Scheme 60). These results support the suggested mechanism, as for the different positions of the hydroxy group within the six membered ring, the same cation can be formed under the treatment with catalytic amounts of AuCl_{3}. For the discussed onefold cyclization the
yield was remarkably higher compared to the cyclization of $\mathbf{1 8 3}$ in the synthesis of dysiherbol A, certainly due to less possibilities for undesired side reactions, the excluded first cyclization and less steric hinderance. Introducing a methyl group next to the hydroxygroup in the 3,5-dimethoxy cyclization precursor of type $\mathbf{1 9 3}$ resulted in a higher yield for the cyclization of rac-273 to form spirocyclic olefin rac-279, maybe due to higher stability of the intermediate allylic cation.

However, the substitution pattern of the aromatic ring seems to strongly influence the ability to undergo the desired spiro cyclization, as all 2,5-dimethoxy substituted precursors delivered the expected spirocycle rac-251 either in small amounts and inseparable isomeric mixtures or not at all. On the contrary, the 3,5-dimethoxy precursors showed formation of only minor amounts of (isomeric) side products together with good yields for the envisioned $\mathrm{S}_{\mathrm{E}} A r$. The reason might be the higher reactivity of the 3,5 -substituted aromatic ring due to better resonance stabilization with the two methoxy groups in meta position. Furthermore, for the symmetrically substituted 3,5-dimethoxylated precursors, the $\mathrm{S}_{\mathrm{E}} \mathrm{Ar}$ at both possible positions lead to the same product, presumably explaining the enhanced selectivity.

Scheme 60 cyclization experiments of different allylic alcohols using catalytic amounts of auclu.

Diminishing the electron density by using mono-methoxylated cyclization precursors as in rac271 and rac-277 again resulted in a mixture of inseparable isomers, containing spirocyclic compounds rac-280 and rac-281. This might be explained by the lower reactivity in the desired transformation resulting from the reduced electron density within the aromatic ring. For the 4methoxy and 2,5-dimethoxy cyclization precursors there are many competing side reactions occurring, whereas the $3,5-$ substitution pattern almost exclusively resulted in the formation of the five-membered ring delivering spirocyclic rac-278.

Racemic 3,5-methoxy-substituted allylic alcohol rac-267 was chosen to investigate the possible retention of stereoinformation during the reaction. The racemic mixture rac-267 was employed in a kinetic resolution using enzyme CALB (Candida Antarctica lipase B) in combination with an acetylation agent, based on a modified literature procedure (Scheme 61).[118] The assigned absolute configuration is based on the results reported in the cited literature.

Scheme 61 KINETIC RESOLUTION UTILIZING ENZYME CALB AND SUBSEQUENT AuCl ${ }_{3}$ CYCLIZATION RESULTING IN RACEMIZATION REFLECTED IN PRODUCT rac-278.

Afterwards, the two products could be easily separated by column chromatography. The unreacted allylic alcohol (-)-267 showed an ee of 70\% (determined by chiral HPLC), indicating incomplete conversion of rac-267 in the reaction. The acetate (+)-282 was saponified using $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and the enantiomeric allylic alcohol (+)-267 was obtained with 96% and an excellent ee of 98%. This enantiopure compound was subjected to the AuCl_{3} cyclization conditions, delivering spirocyclic olefin rac-278 as a racemic mixture. This result further supports the proposed mechanism in Scheme 53 as the pathway via allylic cation 189 as reactive intermediate would be accompanied by the loss of chiral information.

3.3 BIOLOGICAL TESTING

The following biological data for the synthesized compounds (+)-dysiherbol A (ent-98) and (-)dysiherbol A (98) were provided by Prof. Dr. Aram Prokop and coworkers from the Medical School Hamburg. Antiproliferative and apoptotic activities of dysiherbol A were tested in leukemia (K562, NALM-6) and lymphoma cell lines (BJAB). In anti-tumor therapy the development of resistances against commercial cytostatic drugs limits the efficacy and newly developed drugs need to overcome these resistances. This ability was investigated in cell lines resistant to the anthracyclines doxorubicin (7CCA) and daunorubicin (NiWi, NALM-6/Dau), the Vinca alkaloid vincristine (BiBo, NALM-6/Vcr) and the antimetabolite cytarabine (K562/AraC) as well as in one multiple drug-resistant cell line resistant against both daunorubicin and prednisolone (NaKu).

Figure 11 inhibition of Cell proliferation by (-)-DYSiherbol a (98) in NALM-6 CELLS. CELLS WERE EITHER LEFT UNTREATED AS CONTROL OR INCUBATED WITH DIFFERENT CONCENTRATIONS OF 98. CELL PROLIFERATION WAS DETERMINED AFTER 24 H . INHIBITION OF PROLIFERATION IS GIVEN IN \% OF CONTROL \pm SD $(N=3)$.

To investigate the antiproliferative activity of (-)-dysiherbol A (98), viability and cell count of leukemia cell lines NALM-6 was measured after incubation for 24 h with different concentrations of the agent. (-)-dysiherbol A decreases tumor cell proliferation in a concentration-dependent manner (Figure 11). Inhibition appeared at a concentration of $<25 \mu \mathrm{M}$, was 66% at $25 \mu \mathrm{M}$, and the effect increased to 100% inhibition at $50 \mu \mathrm{M}$ in NALM-6.

Apoptotic cells undergo characteristic morphological changes, such as cell shrinkage, coalescence and margination of chromatin, fragmentation of the cell and the nucleus. After incubation with varying concentrations of (-)-dysiherbol A (98) for 72 h , treated cells showed several apoptotic features. To quantify induction of apoptosis, DNA fragmentation (an accepted hallmark of apoptosis) was determined by flow cytometric measurement of hypodiploid DNA. (-)-dysiherbol A (98) effectively induced apoptosis in lymphoma cell line BJAB, with over 70\% apoptotic cells at $50 \mu \mathrm{M}$ concentration (Figure 12). Moreover, it overcomes resistance against different cytostatics. In vincristine-resistant BJAB cells (BiBo) it shows comparable activity to that in non-resistant parental cells, in doxorubicin-resistant BJAB cells (7CCA) comparable apoptotic effects were observed at $100 \mu \mathrm{M}$ concentration.

Figure 12 (-)-DYsiherbol a induces dna fragmentation in different bjab cells. cells were either LEFT UNTREATED AS CONTROL OR INCUBATED WITH DIFFERENT CONCENTRATIONS OF 98. DNA FRAGMENTATION WAS MEASURED AFTER 72 H . VALUES OF DNA FRAGMENTATION ARE GIVEN IN $\% \pm$ SD $(N=3)$.

The capacity of (-)-dysiherbol A (98) to overcome drug resistances was also investigated in leukemia cell line K562 (Figure 13, left). For cytarabine (AraC)- and daunorubicin-resistant cells (NiWi), as well as for the non-resistant parental cells, (-)-dysiherbol A (98) showed similar apoptotic effects ($\mathrm{LC}_{50}=50 \mu \mathrm{M}$). For the NiWi cell line (Figure 13, orange bars) it shows to be even more effective in the resistant cells than in the non-resistant parental cells. These cell lines were also subjected to the enantiomer (+)-dysiherbol A (ent-98).

FIgure 13 COMPARISON OF (+) AND (-)-DYSIHERBOL A INDUCING DNA FRAGMENTATION IN DIFFERENT K562 CELLS. CELLS WERE EITHER LEFT UNTREATED AS CONTROL OR INCUBATED WITH DIFFERENT CONCENTRATIONS OF (ent-) 98 OR THE RESPECTIVE CYTOSTATICS. DNA FRAGMENTATION WAS MEASURED AFTER 72 H. VALUES OF DNA FRAGMENTATION ARE GIVEN IN $\% \pm$ SD $(N=3)$.

In comparison, naturally occurring (+)-dysiherbol A (ent-98) showed remarkably higher activity with induced apoptosis in up to 80% of cells already at $25 \mu \mathrm{M}$ concentration ($\mathrm{LC}_{50}<25 \mu \mathrm{M}$), while the cells did not respond to daunorubicin (Figure 13, right). With (-)-dysiherbol A (98) similar rates were observed at four times the concentration. (+)-Dysiherbol A (ent-98) was more potent in the daunorubicin-resistant cells than in the non-resistant parental cells as well.

Figure 14 COMPARISON OF (+) AND (-)-DYSIHERBOL A INDUCING DNA FRAGMENTATION IN DIFFERENT NALM-6 CELLS. CELLS WERE EITHER LEFT UNTREATED AS CONTROL OR INCUBATED WITH DIFFERENT CONCENTRATIONS OF (ent-) 98 OR THE RESPECTIVE CYTOSTATICS. DNA FRAGMENTATION WAS MEASURED AFTER 72 H. VALUES OF DNA FRAGMENTATION ARE GIVEN IN $\% \pm$ SD $(N=3)$.

When treating cells of the leukemia cell line NALM-6 in comparison with corresponding cell lines resistant against different commercial cytostatics (and the multiple drug-resistant cell line NaKu resistant against daunorubicin and prednisolone), the superior effect of natural (+)-dysiherbol A (ent-98) was again observed (Figure 14). Both enantiomers not only showed apoptotic effects in the non-resistant parental cells but overcame drug resistances against vincristine, daunorubicin and prednisolone. (+)-Dysiherbol A (ent-98) turned out to be more effective in all cell lines with LC_{50} values between $10 \mu \mathrm{M}$ and $20 \mu \mathrm{M}$ concentration (Figure 14, bottom), whereas (-)-dysiherbol A (98) exhibited no significant effects at $25 \mu \mathrm{M}$ concentration (Figure 14, top).

Leukemia cell line NALM-6 was also used to further study the apoptotic effect of (-)-dysiherbol A (98). In a concentration-dependent manner, the applied agent led to reduced mitochondrial potential in up to 50% of the cells (Figure 15). Healthy cells show a high mitochondrial membrane potential and its decline is evidence for the early stage of apoptosis.

Figure 15 (-)-DYSIHERBOL A INDUCES APOPTOSIS IN DIFFERENT NALM-6 CELLS. CELLS WERE EITHER LEFT UNTREATED AS CONTROL OR INCUBATED WITH DIFFERENT CONCENTRATIONS OF 98. FLUORESCENCE WAS MEASURED AFTER $48 \mathrm{H} . \mathrm{JC}-1$ WAS USED AS DYE TO INDICATE DEPOLARIZED MEMBRANE POTENTIAL. CELLS WITH REDUCED MEMBRANE POTENTIAL ARE GIVEN IN $\% \pm$ SD $(N=3)$.

Taking together these biological results, the synthesized compounds (-)-dysiherbol A (98) and $(+)$-dysiherbol A (ent-98) showed the ability to initiate apoptosis in vitro in tumor cells and to overcome resistances to conventional cytostatics in different leukemia and lymphoma cell lines. Moreover, (-)-dysiherbol A (98) turned out to effectively inhibit tumor cell proliferation in NALM6 cells. In comparison, naturally occurring (+)-dysiherbol A (ent-98) showed superior apoptosisinducing potency in all cell lines examined and a remarkable ability to overcome drug resistances. Additional experiments are ongoing to study its potential as drug candidate for the treatment of drug-refractory malignancies in leukemia.

4 SUMMARY

4.1 TOTAL SYNTHESIS OF THE DYSIHERBOLS

In this thesis, the enantioselective total syntheses of the revised structures of marine natural products dysiherbols A-C and E are described, together with contributions to their structural revision. Studies were conducted in both enantiomeric series. Tetracyclic ketone (ent-)111 served as common intermediate, which is accessible starting from ketone (ent-) $\mathbf{1 1 4}$ via Suzuki-Miyaura coupling and a novel gold-catalyzed twofold cyclization (see Scheme 63) as key steps. Ketone (ent-)114 in turn was synthesized in analogy to Cramer, ${ }^{[58]}$ employing a chiral ligand in an onepot 1,4-addition/enolate trapping sequence for the asymmetric entry into the total synthesis.

Scheme 62 overview of the here discussed total syntheses of dysiherbols a-C and e. Reagents and YIELDS (FOR THE ENANTIOMERIC SERIES IN PARENTHESIS): a) LDA, PhNTf 2 , THF, 84\% (68\%); b) Pd(dppf)Cl2 (3 mol\%), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF, 211, 9-BBN, THF/H2O, 97% (90%); c) $\mathrm{Bi}(\mathrm{OTf})_{3}(4 \mathrm{~mol} \%), \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}, 97 \%$ (98%); d) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 86 \%$ (79%); e) $\mathrm{AuCl}_{3}(4 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}, 38 \%(34 \%)$; f) $\mathrm{BH}_{3} \cdot \mathrm{THF}$, THF, then $\left.\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O} ; \mathrm{g}\right) \mathrm{DMP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 83 \%(66 \%)$; h) LiH , $160^{\circ} \mathrm{C}$, then Mel, $23^{\circ} \mathrm{C}$, TPPA, 76% (71%); i) $\mathrm{ZnEt}_{2}, \mathrm{CH}_{2} \mathrm{I}_{2}$, DCE, 82% (71%); j) aq. $\mathrm{HCI}, \mathrm{MeOH}$, reflux, 91% (83%); k) DTBMP, $\mathrm{Tf}_{2} \mathrm{O}, \mathrm{DCE}, 80 \%(71 \%)$; I) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{LiCl}, \mathrm{CO}, \mathrm{DMF}, 120^{\circ} \mathrm{C}, 90 \%$; m) DIBAL-H, THF, 86%; n) $\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 51 \%$; o) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Me}_{4} \mathrm{Sn}, \mathrm{LiCI}, \mathrm{DMF}, 120^{\circ} \mathrm{C}, 91 \%(35 \%)$; p) trifluoroacetone, Oxone ${ }^{\circledR}, \mathrm{Na}_{2} \mathrm{EDTA}, \mathrm{NaHCO}_{3}, \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}, 67 \%$; q) $\mathrm{CeCl}_{3}, \mathrm{MeLi}, \mathrm{THF}, 97 \%$; r) $p \mathrm{TsOH}$, toluene, $105{ }^{\circ} \mathrm{C}, 93 \%$; s) $\mathrm{ZnEt}_{2}, \mathrm{CH}_{2} \mathrm{I}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2$ cycles, 53%; t) $\mathrm{BBr}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 74 \%$;
 O_{3}, then $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 36 \%$.

Unnatural (-)-dysiherbol A (98) was synthesized from ketone 111 over four steps for the introduction of the two missing methyl groups followed by final deprotection/cyclization.

Natural occurring (+)-dysiherbol A (ent-98) was obtained using another route via triflate ent-185 by Stille cross coupling and similar deprotection/cyclization. ${ }^{[40]}$ Both enantiomers were tested in biological essays, showing cytotoxic activity in lymphoma and leukemia cell lines, while also overcoming resistances to conventional cytostatics. In comparison, naturally occurring $(+)$-dysiherbol A (ent-98) showed superior apoptosis-inducing potency in all examined cell lines.

Studies towards the synthesis of congeners dysiherbol B (105) and C (106) from Stille coupling product (ent-)97 delivered rearranged homoallylic alcohol (ent)-227 under epoxidation conditions. The transformation into natural product 105 turned out to be rather challenging, but could be achieved by cooperation partners from the group of Prof. Z. Lu (Nankai University) by inverting the configuration of the hydroxy group and exploiting a 1,2-methyl shift ${ }^{[64]}$ under known deprotection/cyclization conditions.[63]

Studies concerning the total synthesis of dysiherbol E (110) revealed two different approaches, both utilizing palladium-catalyzed cross couplings starting from (ent-)185. Naturally occurring (+)-dysiherbol E (110) was obtained by ozonolysis of pentacyclic terminal olefin ent-240. This intermediate in turn was accessible via introduction of a vinyl residue to triflate ent-185 by Stille cross coupling, deprotection of the hydroquinone moiety and subsequent acid-mediated oxycyclization. The enantiomer (-)-dysiherbol E (ent-110) was prepared starting from methyl ester 239, obtained in excellent yield by carbonylative cross coupling. Reduction gave the respective homoallylic alcohol, which in turn delivered the target molecule under known deprotection/ cyclization conditions using BBr_{3}.[63]

4.2 STUDIES ON A GOLD-CATALYZED CYCLIZATION

In the course of the studies towards the total synthesis of dysiherbol A (98) a gold-catalyzed twofold cyclization was developed (including a mechanistic rationale) (Scheme 63).

Scheme 63 GOLD-CATALYZED TWOFOLD CYCLIZATION DEVELOPED WITHIN THE TOTAL SYNTHESIS OF THE DYSIHERBOLS TOGETHER WITH A PROPOSED MECHANISM.

Additional experiments were conducted to further study this transformation and to verify the supposed mechanism, which involves the formation of allylic cation 189 as a central intermediate. The reaction of allylic alcohol $\mathbf{2 4 5}$ to form tetracyclic olefin $\mathbf{1 8 4}$ in a onefold cyclization upon treatment with catalytic amounts of AuCl_{3} supported the hypothesis.

Scheme 64 Synthesized 3,5-DIMETHOXY SUBSTITUTED CYCLIZATION PRECURSORS (IN ORANGE BOXES) AND RESULTS OF GOLD-CATALYZED CYCLIZATION.

In addition, different simplified cyclization precursors were designed, which also could form respective allylic cations upon reaction with AuCl_{3}.These cationic intermediates might be trapped by the aromatic moiety in a $S_{E} A r$, delivering spirocyclic compounds.

The 3,5-dimethoxy congeners rac-260 and rac-267 underwent the suspected spiro cyclization delivering rac-278 in good to very good yields (Scheme 64). These results supported the supposed mechanism, as despite differing positions of the hydroxy group the precursors gave comparable results. Introducing an additional methyl group next to the hydroxy group resulted in higher yield for spirocyclic compound rac-279, maybe due to higher stability of the intermediate allylic cation. Subjecting enantiopure allylic alcohol (+)-267 to the developed cyclization conditions resulted in rac-278. This observation is also in agreement with the mechanistic proposal, as the chiral information is lost during the reaction via a cationic intermediate.

While other related substrates with less nucleophilic aryl substituents failed to undergo the goldcatalyzed cyclization, the results summarized in Scheme 64 clearly support the mechanistic rationale of the AuCl3-catalyzed double cyclization as the most remarkable key step in the developed total synthesis of the dysiherbols.

5 EXPERIMENTAL

5.1 GENERAL INFORMATION

MATERIALS

All used chemicals were provided by commercial suppliers Acros Organics, Carbolution, Merck, TCI, ABCR, Alfa-Aesar, BLDPharm and Sigma-Aldrich with purities of $\geq 95 \%$ and applied without further purification, unless otherwise noticed. Absolute $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled over CaCl_{2}. Absolute $\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O} /$ toluene was prepared by distillation over $\mathrm{Na} /$ benzophenone. Other dry solvents were used as provided by commercial suppliers, in septum bottles over molecular sieve. Other solvents were bought in technical quality and distilled before use. Synthesized compounds were stored in a freezer at $-25^{\circ} \mathrm{C}$. The molarity of MeLi, n-BuLi and t-BuLi solutions was determined by titration vs N-benzylbenzamide as an indicator. CAL-B (Lipase on acrylic resin, Novozym435®), recombinant, from Aspergillus niger (>5000 U/g, Lot-No. SLBZ9898) was obtained from Merck (Aldrich).

WORKING TECHNIQUES

Air and moisture sensible reactions were performed applying inert gas technique by flame-drying the evacuated glass ware and adding Ar-atmosphere (BIP argon from Air Products with a purity of 5.7 (99.9997 \%). Sensible chemicals were stored and weighted in an Unilab glovebox by M. Braun Inertgas-Systeme GmbH. O 2 and H 2 O concentration in the glovebox were kept under 1 ppm each. Substances were added through argon-flushed syringes via septa or by addition with reverse argon stream. Solvent evaporation was conducted using a Büchi Rotavapor RE 114 rotary evaporator at $40^{\circ} \mathrm{C}$ unless otherwise noted. Room temperature (rt) corresponds to $25 \pm 2^{\circ} \mathrm{C}$. Lowtemperature reactions were performed in a Dewar vessel filled with a cooling mixture: $\mathrm{H} 2 \mathrm{O} /$ ice $\left(0^{\circ} \mathrm{C}\right)$, acetone/CO2(s) $\left(-78^{\circ} \mathrm{C}\right)$. The ozonolysis was carried out using an ozone generator model 500 of the company Fischer. The required ozone was generated for each experiment at a current of 110 mA and an oxygen flow of $60 \mathrm{~L} / \mathrm{h}$.

COLUMN AND THIN LAYER CHROMATOGRAPHY (TLC)

Purifications using column chromatography were performed using silica gel 60 ($0.020-0.035 \mathrm{~mm}$) provided by Machery Nagel. Ultra pure silica gel was provided by Acros Organics ($40-60 \mu \mathrm{M}, 60 \mathrm{~A}$). For TLC, 60-F254 silica aluminum plates provided by Merck (0.20 mm silica gel) were used. Visualization was accomplished by UV light (at 254 nm) with an aqueous KMnO4 solution or with ceric ammonium molybdate as dying agent. Unless otherwise stated, reaction control was performed using TLC or GC-MS before terminating a reaction.

5.1.1 ANALYTICAL METHODS

NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (NMR)
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ (APT or DEPTQ), ${ }^{31} \mathrm{P}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were measured in CDCl_{3} at room temperature on a Bruker Avance 300 (300 MHz), Bruker Avance II 300 (300 MHz), Bruker Avance II 500 (500 MHz), Bruker Avance III 500 (500 MHz) or Bruker Avance II+ $600(600 \mathrm{MHz})$ spectrometers. Deuterated chloroform with TMS as a standard was used as a solvent. Chemical shifts are given relatively to TMS (${ }^{1} \mathrm{H}, 0 \mathrm{ppm}$) or $\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H} 7.26 \mathrm{ppm},{ }^{13} \mathrm{C}, 77.16 \mathrm{ppm}\right)$. The multiplicity was assigned with singulet (s), dublet (d), triplet (t), quartet (q), quintet (quin) and multiplet (m). The assignments were carried out using 2D NMR spectra (H,H-COSY, H,C-HSQC, H,C-HMBC). The atom numbering shown for signal assignment does not correspond to IUPAC nomenclature.

HIGH RESOLUTION MASS SPECTROMETRY (HR-MS)

HR-MS spectra were measured at a THERMO Scientific LTQ Orbitrap XL mass spectrometer via electron spray ionization and a FTMS Analyzer. ESI conditions were set as 3.4 kV (spray voltage), 3.0 V (capillary voltage), 3.0 V (tube lens voltage) and $275^{\circ} \mathrm{C}$ (capillary temperature). For a stable electrospray, sheath gas and sweep gas were used (Nitrogen $5.0, \geq 99.999 \%$, Linde). In some cases, high resolution mass spectra were obtained using a Thermo Scientific Exactive GC Orbitrap GCMS system (EI mode).

GAS CHROMATOGRAPHY WITH MASS SPECTROSCOPY (GC-MS)

GC-MS spectra were measured at the Aglient HP6890N gas chromatograph using a 5937 N mass detector and an electron ionization chamber. For detection a TIC detector was employed. H_{2} was used as carrier gas and an Optima 1 MS ($30 \mathrm{~mm} \times 0.25 \mathrm{~mm}$) column provided by Machery Nagel was applied. Unless otherwise stated, reaction control was performed using TLC or GC-MS before terminating a reaction.

CHIRAL HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (CHIRAL HPLC)

The enantiomeric excess (ee) was determined using a racemic standard on a VWR Hitachi Chromaster HPLC system with a CHIRALPAK AD-H column (column temperature: $18^{\circ} \mathrm{C}$, detection at 250 nm) or on a HPLC system from Knauer on a Macherey-Nagel Nucleocell column.

FOURIER TRANSFORM INFRARED SPECTROSCOPY (FT-IR)

FT-IR (ATR): \tilde{v} spectra were measured at a Perkin Elmer FTIR-ATR (UATR TWO) at room temperature. Absorption bands are given in cm^{-1} and assigned with broad (br), weak (w), medium (m) and strong (s).

SPECIFIC ROTATION

Specific rotation was measured at $20^{\circ} \mathrm{C}$ in CHCl_{3} or MeOH with an MCP 200 polarimeter from Anton Paar at different wavelengths with a cell length of 10 cm .

MELTING POINT

Melting points were determined on a Büchi B-545 instrument in open capillary tubes and are uncorrected.

X-RAY CRYSTALLOGRAPHY

X-ray data were obtained using a Bruker D8 VENTURE (Kappa geometry, microfocus source (Cu anode), $\lambda=1.54178 \AA$) apparatus with a PHOTON III M14 or PHOTON 100 detector. Structure solution and refinement were performed using SHELXT software. If applicable, supplementary crystallographic data can be obtained free of charge from the Cambridge Crystallographic Data Centre (CCDC) under the indicated deposition numbers shown at the respective crystal structures. The measurements and evaluations were carried out by Dr. J.-M. Neudörfl.

ECD SPECTROSCOPY

The ECD spectrum of (-)-dysiherbol A was measured on a Jasco j-715 CD spectropolarimeter in methanol ($10^{-3} \mathrm{M}$ solution).

5.1.2 BIOLOGICAL STUDIES

MATERIALS AND METHODS

Doxorubicine (Doxo), vincristine (Vcr) and cytarabine (AraC) were provided by the Charité, Berlin, Germany. Drugs were freshly dissolved in DMSO prior to the experiments and diluted with the appropriate medium or buffer during the assay procedures. For each experiment, dysiherbol A was freshly dissolved in $0.4 \% \mathrm{NaCl}$ solution to give a 1 mM stock solution.

CELL LINES AND CELL CULTURE

Doxorubicin-resistant BJAB cells (7CCA) were generated by exposing BJAB cells to increasing doxorubicin concentrations of up to $1 \mu \mathrm{~g} / \mathrm{mL}$. NALM-6 cells (human B-cell precursor leukemia) were provided by AG Henze, Charité, Berlin. To generate a vincristine-resistant Nalm-6 cell line (NALM-6/Vcr), Nalm-6 cells were exposed to increasing concentrations of vincristine up to 30 nM . Cell lines were maintained in $250-\mathrm{mL}$ cell culture flasks at $37^{\circ} \mathrm{C}$. Suspension cells were grown in RPMI 1640 medium (Gibco, Invitrogen, Karlsruhe, Germany) supplemented with heatinactivated fetal calf serum (FCS, $10 \%, \mathrm{v} / \mathrm{v}$), L-glutamine ($0.56 \mathrm{~g} / \mathrm{l}$), penicillin (100,000 i.u.) and streptomycin ($0.1 \mathrm{~g} / \mathrm{l}$). Adherent cells were grown in Dulbecco's modified minimal essential medium (DMEM) supplemented with FCS ($10 \%, \mathrm{v} / \mathrm{v}$) and geniticine ($0.4 \mathrm{~g} / \mathrm{l}$). Cells were passaged $2-3$ times per week by dilution to 1×105 cells $/ \mathrm{mL} .24 \mathrm{~h}$ before the assay setup, cells were adjusted to 3×105 cells $/ \mathrm{mL}$ to ascertain standardized growth conditions. For proliferation and apoptosis assays, cells were diluted to 1×105 cells $/ \mathrm{mL}$ immediately before treatment.

DETERMINATION OF CELL DENSITY AND CELL VIABILITY

Cell count and viability were measured with a CASY® Counter and Analyzer System (Innovatis, Bielefeld, Germany) as described in literature. ${ }^{[119]}$ Parameters measured were adjusted to the requirements of the cells used. With this system, cell density can be analyzed simultaneously in different size ranges: cell debris, dead cells, and viable cells. Cells were seeded at a density of $1 \times$ 105 cells/ mL in 6-well plates and treated with the respective agent in comparison to untreated and DMSO controls. After 24 h incubation at $37^{\circ} \mathrm{C}$, cells were resuspended properly and $100 \mu \mathrm{~L}$ from each well were diluted in CASYton (ready-to-use isotonic saline solution, 10 mL) for immediate cell counting. The frequency of cells in untreated controls was defined as 100% growth. Maximal inhibition of proliferation was achieved when the cell density was not higher than at the beginning of the experiment.

MEASUREMENT OF APOPTOSIS

DNA fragmentation during the late phase of apoptosis was measured by a modified cell cycle analysis as described in literature. ${ }^{[120]}$ After incubation for 72 h or 60 h at $37^{\circ} \mathrm{C}$ in 6 -well plates, cells were collected by centrifugation at 1500 rpm for 5 min , washed with PBS at $4^{\circ} \mathrm{C}$ and fixed in PBS/2\% (v/v) formaldehyde on ice for 30 min . After fixation, cells were pelleted, incubated with ethanol/PBS ($2: 1, \mathrm{v} / \mathrm{v}$) for 15 min , pelleted and resuspended in PBS containing RNase A $(40 \mu \mathrm{~g} / \mathrm{mL})$. RNA was digested for 30 min at $37^{\circ} \mathrm{C}$; cells were pelleted again and resuspended in PBS containing propidium iodide ($50 \mu \mathrm{~g} / \mathrm{mL}$). Nuclear DNA fragmentation was quantified by flow cytometric determination of hypodiploid DNA. Data were collected and analyzed with FACScan (Becton Dickinson, Heidelberg, Germany) instrument with CellQuest software.

STATISTICAL ANALYSIS

The data in the diagrams are shown as mean values from three independent samples of one approach, and standard deviations are given by the error indicators. Data evaluation and statistical calculations were carried out with Microsoft Excel. The evaluation of the flowcytometric measurements was carried out with the CellQuest Pro software.

5.2 SYNTHETIC PROCEDURES AND ANALYTICAL DATA TOTAL SYNTHESIS OF THE DYSIHERBOLS

5.2.1 SYNTHESIS OF rac-2-BROMO-2-METHYLCYCLOHEXANONE (rac-197) ${ }^{\text {[101] }}$

According to a literature procedure, ${ }^{[101]} 35.0 \mathrm{~mL}(32.4 \mathrm{~g}, 289 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) of 2-methyl$ cyclohexanone (rac-196) were added to a suspension of 51.4 g ($289 \mathrm{mmol}, 1.0 \mathrm{eq}$.) of NBS in 1400 mL of c-Hex. After refluxing for 3 h , the reaction mixture was allowed to cool to rt. The colorless precipitate was filtered off and washed with c-Hex. The filtrate was washed with 400 mL of $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (c-Hex/EtOAc $33: 1$) to provide 47.0 g ($246 \mathrm{mmol}, 85 \%$) of rac-2-bromo-2-methylcyclohexanone (rac-201) as a pale yellow oil.

```
M (C77 H11 BrO) = 191.07 g/mol
R}\mathbf{f}(c-Hex/EtOAc 9:1) = 0.43
```


${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=3.20(\mathrm{td}, J=14.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 2.40-2.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3$, H), 2.12 - $2.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5), 1.81(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7), 1.81-1.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}, 4-\mathrm{H}^{\prime}\right), 1.66-1.55$ (m, $1 \mathrm{H}, \mathrm{H}-5^{\prime}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=204.7(\mathrm{C}-1), 65.9(\mathrm{C}-2), 43.6(\mathrm{C}-3), 36.7(\mathrm{C}-6), 28.1(\mathrm{C}-7), 26.9$ (C-5), 22.3 (C-4).

FT (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2998(\mathrm{w}), 2939(\mathrm{~m}), 2867$ (w), 2834 (w), 1713 (s), 1447 (m), 1427 (m), 1378 (w), 1349 (w), 1339 (w), 1317 (w), 1283 (w), 1256 (w), 1235 (w), 1181 (w), 1137 (w), 1126 (w), 1109 (w), 1084 (m), 1067 (w), 1018 (w), 991 (w), 938 (w), 902 (w), 866 (w), 843 (w), 836 (w), 709 (w), 667 (w), 581 (m), 514 (w).

GC-MS (70 eV): $m / z(\%)=190\left(23,[M]^{+}\right), 146(70), 111(60), 83(33), 55(100), 39(43)$.

5.2.2 SYNTHESIS OF 2-METHYL-2-CYCLOHEXENONE (74) ${ }^{[101]}$

According to a literature procedure, ${ }^{[101]}$ to a solution of 42.4 g ($222 \mathrm{mmol}, 1.0 \mathrm{eq}$.) of rac-2-bromo-2-methylcyclohexanone (rac-197) in 670 mL of DMF were added 54.2 g ($733 \mathrm{mmol}, 3.3 \mathrm{eq}$.) of $\mathrm{Li}_{2} \mathrm{CO}_{3}$ and 38.6 g ($444 \mathrm{mmol}, 2.0$ eq.) of LiBr . The stirred reaction mixture was heated to $120^{\circ} \mathrm{C}$ for 50 min before it was allowed to cool to rt. The solids were filtered off, the filtrate was diluted with 400 mL of $\mathrm{H}_{2} \mathrm{O}$ and 300 mL of MTBE and the phases were separated. The aqueous phase was extracted with $3 \times 300 \mathrm{~mL}$ of MTBE, the combined organic phases were washed with $2 \times 200 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by column chromatography (n pentane/MTBE 50:1 to 10:1). The solvent was removed under reduced pressure to give 15.7 g ($131 \mathrm{mmol}, 59 \%$) of 2-methyl-2-cyclohexenone (74) as a yellow oil. Due to the volatility of the product, the rotary evaporator was used at a minimum of 300 mbar at $40^{\circ} \mathrm{C}$ bath temperature until constant loss in mass was reached.
$\mathbf{M}\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}\right)=110.16 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex/EtOAc 9:1) $=0.20$

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.74(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}), 2.44-2.38(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}), 2.34-2.28(\mathrm{~m}$, $2 \mathrm{H}, 4-\mathrm{H}$), 1.97 (quint, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{H}), 1.77-1.76$ (m, 3H, 7-H).
${ }^{13}$ C NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=200.1$ (C-1), 145.7 (C-3), 135.8 (C-2), 38.4 (C-6), 26.1 (C-4), 23.4 (C-5), 16.1 (C-7).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2950(\mathrm{~m}), 2925(\mathrm{~m}), 2885(\mathrm{w}), 2868(\mathrm{w}), 2834(\mathrm{w}), 1664(\mathrm{~s}), 1453(\mathrm{~m})$, 1432 (m), 1359 (m), 1255 (w), 1174 (m), 1139 (w), 1106 (m), 1082 (m), 1022 (m), 902 (m), 880 (m), $860(\mathrm{w}), 801(\mathrm{w}), 708(\mathrm{w}), 685(\mathrm{w}), 524(\mathrm{~m}), 472(\mathrm{w}), 411(\mathrm{~m})$.

GC-MS (70 eV): $m / z(\%)=110\left(70,[M]^{+}\right), 82(100), 54(50), 39(31)$.

5.2.3 SYNTHESIS OF 1,4-DIMETHOXY-2-METHYLBENZENE (206) [102]

According to a literature procedure, ${ }^{[102]}$ in a 2000 mL three-necked round flask equipped with a reflux condenser connected to a gas washing bottle containing 25% aqueous $\mathrm{NH}_{4} \mathrm{OH}, 116 \mathrm{~g}$ ($2.90 \mathrm{~mol}, 8.0$ eq.) of NaOH were dissolved in 420 mL of $\mathrm{H}_{2} \mathrm{O}$. To the solution were added 45.0 g ($362 \mathrm{mmol}, 1.0$ eq.) of 2 -methyl-hydroquinone (205) causing a green to brown coloring. Then, 170 mL ($226 \mathrm{~g}, 1.79 \mathrm{~mol}, 4.9 \mathrm{eq}$.) of $\mathrm{Me}_{2} \mathrm{SO}_{4}$ were added. The reaction mixture was very carefully heated to $55^{\circ} \mathrm{C}$ (CAUTION: the exothermic reaction will start spontaneously and has to be thermally controlled by cooling with an ice bath). Once the reaction was not self-heating anymore, it was stirred at $55^{\circ} \mathrm{C}$ for 6 d , forming an oil film as an upper layer. The reaction was quenched with 500 mL of 25% aqueous $\mathrm{NH}_{4} \mathrm{OH}$ at rt and the suspension was extracted with $3 \times 300 \mathrm{~mL}$ of MTBE. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (c Hex/EtOAc 10:1) to provide 39.6 g ($260 \mathrm{mmol}, 72 \%$; Lit.: 97\%) of 1,4-dimethoxy-2methylbenzene (206) as a pale yellow oil.
$\mathbf{M}\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}\right)=152.19 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex/EtOAc 9:1) $=0.53$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.77(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 6.76$ (s, 1H, $3-\mathrm{H}$), 6.70 (dd, $J=$ 8.6, $3.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{H}), 3.77$ (s, 3H, 9-H), 2.24 (s, 3H, 7-H).
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=153.5$ (C-4), 152.2 (C-1), 128.0 (C-2), 117.2 (C-3), 111.0 (C6), 110.8 (C-5), 56.0 (C-8), 55.8 (C-9), 16.5 (C-7).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2996(\mathrm{w}), 2947(\mathrm{w}), 2907(\mathrm{w}), 2833(\mathrm{w}), 1612(\mathrm{w}), 1593(\mathrm{w}), 1499(\mathrm{~s})$, 1465 (m), 1442 (w), 1419 (w), 1410 (w), 1378 (w), 1305 (w), 1280 (m), 1219 (s), 1190 (w), 1180 (m), 1157 (m), 1130 (w), 1047 (s), 1031 (m), 997 (w), 923 (w), 866 (w), 851 (w), 795 (m), 752 (w), 711 (m), 699 (m), 584 (w), 555 (w).

GC-MS (70 eV): $m / z(\%)=152\left(79,[M]^{+}\right), 137(100), 109(14), 94(11), 77(14)$.

5.2.4 SYNTHESIS OF 2-(BROMOMETHYL)-1,4-DIMETHOXYBENZENE (207) ${ }^{[102]}$

According to a literature procedure, ${ }^{1102]} 20.0 \mathrm{~g}$ ($131 \mathrm{mmol}, 1.0 \mathrm{eq}$.) of 1,4 -dimethoxy-2methylbenzene (206) were dissolved in 470 mL of benzene and 23.4 g ($131 \mathrm{mmol}, 1.0$ eq.) of NBS were added. The stirred suspension was heated to $60^{\circ} \mathrm{C}$, 533 mg ($3.25 \mathrm{mmol}, 0.025 \mathrm{eq}$.) of AIBN were added in portions and the reaction mixture was refluxed for 3.5 h . After the mixture was cooled to $0^{\circ} \mathrm{C}$, the precipitate was separated by filtration and washed with MTBE. The filtrate was washed with $2 \times 200 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}, 2 \times 100 \mathrm{~mL}$ of sat. aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue was recrystallized with 50 mL of c Hex overnight at $5^{\circ} \mathrm{C}$. The resulting solid was washed with c-Hex to obtain $21.1 \mathrm{~g}(91.3 \mathrm{mmol}$, 70%; Lit.: 61\%) of 2-(bromomethyl)-1,4-dimethoxybenzene (207) as off-white needles.
$\mathbf{M}\left(\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{BrO}_{2}\right)=231.09 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex $/$ EtOAc 9:1) $=0.47$
m.p. $=72^{\circ} \mathrm{C}-72^{\circ} \mathrm{C}$

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.90(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 6.85-6.82(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 6.81$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}, 7-\mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=153.5(\mathrm{C}-4), 151.8(\mathrm{C}-1), 127.0(\mathrm{C}-2), 116.5(\mathrm{C}-3), 115.1(\mathrm{C}-$ 5), 112.3 (C-6), 56.3 (C-8), 55.9 (C-9), 29.0 (C-7).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3008(\mathrm{w}), 2936(\mathrm{w}), 2835(\mathrm{w}), 1974(\mathrm{w}), 1839(\mathrm{w}), 1720(\mathrm{w}), 1587(\mathrm{~m})$, 1497 (s , 1458 (m), 1420 (m), 1283 (m), 1223 (s$), 1207$ (s$), 1191$ (m$), 1044$ (s$), 1021$ (s$), 930(\mathrm{~m})$, $870(\mathrm{~m}), 809$ (s , 712 (m), 638 (w), 582 (m), 538 (s$), 508$ (m).

GC-MS (70 eV): $m / z(\%)=230\left(8,[M]^{+}\right), 152(72), 137(100), 121(29), 109(11), 94(11), 77(23)$, 66 (15), 39 (10).

5.2.5 SYNTHESIS OF 2-(IODOMETHYL)-1,4-DIMETHOXYBENZENE (116) [103]

According to a literature procedure, ${ }^{[103]}$ to a solution of $30.0 \mathrm{~g}(130 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) of 2$ -(bromomethyl)-1,4-dimethoxybenzene (207) in 185 mL of acetone were added 38.9 g ($260 \mathrm{mmol}, 2.0$ eq.) of NaI. The suspension was stirred at $23^{\circ} \mathrm{C}$ for 3 h , before the precipitate was separated by filtration. The solvent was removed under reduced pressure (flask wrapped in aluminum foil, $30^{\circ} \mathrm{C}$ bath temperature) to obtain a pale yellow solid, which was immediately quenched with 200 mL of sat. aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (CAUTION: Upon solidification, an accelerating and exothermic decomposition process can occur). 400 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added and the phases were separated. The solvent of the organic layer was removed under reduced pressure (flask wrapped in aluminum foil, $30^{\circ} \mathrm{C}$ bath temperature) and the resulting solid washed with sat. aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$ to give 31.5 g (113 mmol , 87\%; Lit.: 98\%) of 2-(iodomethyl)-1,4dimethoxybenzene (116) as a yellow solid.
$\mathbf{M}\left(\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{IO}_{2}\right)=278.09 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathrm{f}}(c$-Hex/EtOAc 9:1) $=0.53$

decomposition point $=59^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.87(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 6.80(\mathrm{dd}, J=8.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-$ H), 6.76 (d, J = $8.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.46$ (s, 2H, 7-H), 3.87 (s, 3H, 8-H), 3.76 ($\mathrm{s}, 3 \mathrm{H}, 9-\mathrm{H}$).
${ }^{13}$ C NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=153.5$ (C-4), 151.5 (C-1), 128.5 (C-2), 115.8 (C-3), 114.6 (C5), 112.3 (C-6), 56.1 (C-8), 55.9 (C-9), 1.3 (C-7).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3003(\mathrm{w}), 2988(\mathrm{w}), 2959(\mathrm{w}), 2934(\mathrm{w}), 2902(\mathrm{w}), 2832(\mathrm{w}), 1824(\mathrm{w})$, 1605 (w), 1586 (w), 1491 (s), 1467 (m), 1439 (w), 1414 (m), 1318 (w), 1278 (m), 1263 (w), 1225 (s), 1185 (m), 1180 (m), 1148 (m), 1134 (m), 1084 (m), 1043 (s), 1019 (s), 927 (w), 875 (m), 825 (w), 801 (s), 757 (w), 730 (w), 714 (m), 576 (w), 550 (w).

GC-MS (70 eV): $m / z(\%)=278\left(4,[M]^{+}\right), 151(100), 137(99), 121$ (38), 91 (18), 77 (22), 66 (16), 39 (9).

5.2.6 ALTERNATIVE SYNTHESIS OF 2-(IODOMETHYL)-1,4-DIMETHOXYBENZENE (116) ${ }^{[104]}$

According to a literature procedure, ${ }^{[104]}$ an orange-colored solution of 488 mg ($3.01 \mathrm{mmol}, 0.1 \mathrm{eq}$.) of FeCl_{3} in 150 mL of acetonitrile was vigorously stirred at $25^{\circ} \mathrm{C}$ for 2 h before $5 \mathrm{~g}(30.1 \mathrm{mmol}$, 1.0 eq.) of 2,5-dimethoxybenzaldehyde (208) were added. The dark-brown solution was stirred for 35 min and $9.4 \mathrm{~mL}\left(10.3 \mathrm{~g}, 89.5 \mathrm{mmol}, 3.0 \mathrm{eq}\right.$.) of $\mathrm{Cl}_{2} \mathrm{MeSiH}$ were added. The orange-colored solution was stirred at $25^{\circ} \mathrm{C}$ for 10 min before $13.5 \mathrm{~g}(90.1 \mathrm{mmol}, 3.0 \mathrm{eq})$ of NaI were added. The dark brown-greenish suspension was stirred at $23^{\circ} \mathrm{C}$ for 20 h , cooled to $0^{\circ} \mathrm{C}$ and quenched with 15 mL of diluted HCl and 50 mL of sat. aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. Subsequently, 50 mL of sat. aqueous NaHCO_{3} were added and the phases were separated. Crystallization was achieved by adding 50 mL of $\mathrm{H}_{2} \mathrm{O}$ to the organic layer. After addition of 50 mL of sat. aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, the solid was separated by filtration, washed with $\mathrm{H}_{2} \mathrm{O}$ and resolved with EtOAc to separate the product from an insoluble polymer. EtOAc was removed carefully under reduced pressure (flask wrapped in aluminum foil, $30^{\circ} \mathrm{C}$ bath temperature) until crystallization started and 6.68 g ($24.9 \mathrm{mmol}, 80 \%$) of 2-(iodomethyl)-1,4-dimethoxybenzene (116) were obtained as a yellow solid.
$\mathbf{M}\left(\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{IO}_{2}\right)=278.09 \mathrm{~g} / \mathrm{mol}$
See chapter 5.2.5 for analytical data.

5.2.7 SYNTHESIS OF TRIS-(PYRROLIDINYL)-PHOSPHORAMIDE (TPPA, 207) ${ }^{[98]}$

According to a literature procedure, ${ }^{[98]}$ in an argon flushed 1000 mL three-necked round flask equipped with a 300 mL dropping funnel and reflux condenser connected to a bubble counter containing $1 \mathrm{M} \mathrm{NaOH}\left(\right.$ (aq), 48.0 mL ($79.0 \mathrm{~g}, 515 \mathrm{mmol}, 1.0$ eq.) of POCl_{3} were dissolved in 250 mL of dry $\mathrm{Et}_{2} \mathrm{O}$. The stirred solution was cooled in an ice bath and 250 mL ($215 \mathrm{~g}, 3.0 \mathrm{~mol}, 5.8 \mathrm{eq}$.) of pyrrolidine (203) were added slowly over 2 h through the dropping funnel. Upon addition a white precipitate/fume formed immediately (pyrrolidine hydrochloride) and the reaction proceeded in an exothermic fashion. Therefore, the dropping speed was adapted carefully. After complete addition, the white suspension was allowed to reach $23^{\circ} \mathrm{C}$ overnight. Afterwards, the white precipitate was separated by filtration, washed with Et20 and the solvent was removed under reduced pressure to obtain a yellow oil. The crude product was purified by fractional vacuum distillation over CaH_{2} (0.018 mbar , head temperature: $140^{\circ} \mathrm{C}$) to provide 75.6 g ($294 \mathrm{mmol}, 57 \%$; Lit.: 54\%) of TPPA (204) as a colorless, viscous oil.
$\mathbf{M}\left(\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{OP}\right)=257.32 \mathrm{~g} / \mathrm{mol}$

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=3.14(\mathrm{td}, J=6.6,4.2 \mathrm{~Hz}, 12 \mathrm{H}, 1-\mathrm{H}, 4-\mathrm{H}), 1.81-1.78(\mathrm{~m}, 12 \mathrm{H}$, 2-H, 3-H).
${ }^{13} \mathbf{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=46.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.4 \mathrm{~Hz}, \mathrm{C}-1, \mathrm{C}-4\right), 26.5\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=8.0 \mathrm{~Hz}, \mathrm{C}-2, \mathrm{C}-3\right)$.
${ }^{31} \mathbf{P}$ NMR ($\left.121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=14.3$.
FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2960(\mathrm{~m}), 2864(\mathrm{~m}), 1490(\mathrm{w}), 1449(\mathrm{w}), 1345(\mathrm{w}), 1292(\mathrm{w}), 1222(\mathrm{~s})$, 1202 (s), 1126 (m), 1076 (s), 1008 (s), 956 (w), 912 (m), 873 (w), 765 (m), 573 (s), 512 (w).

GC-MS (70 eV): m/z (\%) = 257 (25, [M]+), 187 (54), 145 (8), 118 (9), 89 (7), 70 (100), 41 (11).
5.2.8 SYnthesis of phosphoramidite ligand $(R, S, S) \mathbf{L L}^{*}(\mathbf{2 0 2})^{[100]}$

(R)-BINOL (200)

201

According to a literature procedure, ${ }^{[100]}$ in a flame dried Schlenk flask $1.40 \mathrm{~mL}(2.20 \mathrm{~g}, 16.0 \mathrm{mmol}$, 1.0 eq.) of PCl_{3} were added to $11.0 \mathrm{~mL}\left(8.03 \mathrm{~g}, 79.0 \mathrm{mmol}, 4.9 \mathrm{eq}\right.$.) of $\mathrm{Et}_{3} \mathrm{~N}$. The resulting suspension was cooled to $0^{\circ} \mathrm{C}$ and a solution of $3.65 \mathrm{~g}(16.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) of amine 201 \mathrm{in} 7.0 \mathrm{~mL}$ of dry THF was added over 15 min . The mixture was allowed to reach $23^{\circ} \mathrm{C}$ and stirred for 2.5 h . The suspension was cooled to $0^{\circ} \mathrm{C}$ and a solution of $4.58 \mathrm{~g}(16.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) of (R$)-BINOL (208) in 2.5 mL of dry THF was added. The reaction mixture was allowed to reach $23^{\circ} \mathrm{C}$ again and stirred for 40 h . Afterwards, the white precipitate was filtered off and washed with EtOAc. The solvent was removed under reduced pressure and the crude product was purified by silica gel column chromatography (c-Hex/EtOAc $50: 1$) to provide 4.34 g (8.04 mmol , 50\%; Lit.: 41\%) of phosphoramidite ligand $(R, S, S)-\mathbf{L}^{*}(\mathbf{2 0 2})$ as a colorless foam.
$\mathbf{M}\left(\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{P}\right)=539.61 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex $/ E t O A c 9: 1)=0.46$
m.p.: $>250^{\circ} \mathrm{C}$

${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=7.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10, \mathrm{H}-14), 7.92-7.87(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6$, $\mathrm{H}-20), 7.58(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9 / 15), 7.42(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9 / 15), 7.43-7.36(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-$ 19, H-3/17), 7.27 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}, 3 / 17-\mathrm{H}$), $7.25-7.19$ (m, 2H, H-2, H-18), 7.11 ($\mathrm{s}, 10 \mathrm{H}, \mathrm{H}-23, \mathrm{H}-$ 24, H-25, H-26, H-27, H-31, H-32, H-33, H-34, H-35), 4.56 - 4.43 (m, 2H, H-21, H-29), 1.72 (d, J = 6.6 Hz, 6H, H-28, H-36).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=150.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=7.4 \mathrm{~Hz}, \mathrm{C}-8 / 16\right), 149.7$ (C-8/16), 143.0 (C-22, C-30), 132.94 (d, $J_{C, P}=1.3 \mathrm{~Hz}, \mathrm{C}-4 / 12$), $132.89\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=1.8 \mathrm{~Hz}, \mathrm{C}-4 / 12\right.$), 131.5 ($\mathrm{d}, J_{\mathrm{C}, \mathrm{P}}=1.1 \mathrm{~Hz}, \mathrm{C}-$ $7 / 11$), $130.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=0.7 \mathrm{~Hz}, \mathrm{C}-7 / 11\right), 130.4\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=0.9 \mathrm{~Hz}, \mathrm{C}-10 / 14\right), 129.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{P}}=1.1 \mathrm{~Hz}\right.$, C-10/14), 128.4 (C-6/20), 128.2 (C-6/20), 128.1 (C-23/31, C-27/35), 128.0 (C-23/31, C-27/35), 127.9 (C-24, C-26, C-32, C-34), 127.3 (C-3/17), 127.2 (C-3/17), 126.8 (C-25, C-33), 126.12 (C-2/18), 126.09 (C-2/18), 124.9 (C-1/19), 124.6 (C-1/19), 124.2 (d, J $\mathrm{J}_{\mathrm{P}, \mathrm{P}}=5.3 \mathrm{~Hz}, \mathrm{C}-5 / 13$), 122.6 (C-5/13), 122.5 (d, $J_{C, P}=2.3 \mathrm{~Hz}, \mathrm{C}-9 / 15$), 121.9 ($\mathrm{d}, J_{\mathrm{C}, \mathrm{P}}=2.5 \mathrm{~Hz}, \mathrm{C}-9 / 15$), 52.5 (C-21/29), 52.3 (C-21/29), 22.2 (C-28/36), 22.1 (C-28/36).
${ }^{31} \mathbf{P}$ NMR (121 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=145.3$.

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3061$ (w), 3027 (w), 2985 (w), 2971 (w), 2923 (w), 2902 (w), 2849 (w), 1619 (w), 1590 (w), 1505 (w), 1495 (w), 1463 (w), 1450 (w), 1375 (w), 1327 (w), 1271 (w), 1256 (w), 1230 (m), 1203 (w), 1156 (w), 1134 (w), 1120 (w), 1070 (m), 1050 (w), 1032 (w), 1020 (w), 983 (w), 969 (w), 948 (m), 924 (m), 864 (w), 851 (w), 820 (m), 799 (w), 779 (m), 763 (m), 747 (s), 695 (s), 653 (w), 626 (w), 607 (w), 590 (w), 571 (w), 555 (w), 524 (w).
$[\boldsymbol{\alpha}]^{20}{ }_{\lambda}\left(\mathrm{c}=0.50 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):-870^{\circ}(436 \mathrm{~nm}),-541^{\circ}(546 \mathrm{~nm}),-473^{\circ}(579 \mathrm{~nm}),-453^{\circ}$ (589 nm).

5.2.9 SYNTHESIS OF PHOSPHORAMIDITE LIGAND $(S, R, R)-\mathbf{L}^{*}(e n t-202)^{[100]}$

According to a literature procedure,[100] in a flame-dried Schlenk flask $840 \mu \mathrm{~L}(1.32 \mathrm{~g}, 9.61 \mathrm{mmol}$, 1.0 eq.) of PCl_{3} were added to $6.7 \mathrm{~mL}\left(4.89 \mathrm{~g}, 48.3 \mathrm{mmol}, 5.0\right.$ eq.) of $\mathrm{Et}_{3} \mathrm{~N}$. The resulting suspension was cooled to $0^{\circ} \mathrm{C}$ and a solution of 2.16 g ($9.58 \mathrm{mmol}, 1.0 \mathrm{eq}$.) of amine ent- 209 in 7.0 mL of dry THF was added over 15 min . The mixture was allowed to reach $23^{\circ} \mathrm{C}$ and stirred for 5 h . The suspension was cooled back to $0^{\circ} \mathrm{C}$ and a solution of $2.75 \mathrm{~g}(9.59 \mathrm{mmol}, 1.0 \mathrm{eq}$.) of (S) -BINOL (ent208) and additional 7 mL of dry THF were added. The reaction mixture was allowed to reach $23^{\circ} \mathrm{C}$ again and stirred for 3 d . Afterwards, the white precipitate was separated by filtration and washed with EtOAc. The solvent was removed under reduced pressure and the crude product was purified by silica gel column chromatography (c-Hex/toluene $8: 1$ to $4: 1$) to provide $2.43 \mathrm{~g}(4.50 \mathrm{mmol}$, 47\%; Lit.: 41\%) of phosphoramidite ligand (S, R, R)-L* (ent-202) as a colorless foam.
$\mathbf{M}\left(\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{P}\right)=539.61 \mathrm{~g} / \mathrm{mol}$
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\lambda}\left(\mathrm{c}=0.56 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right): 763^{\circ}(436 \mathrm{~nm}), 464^{\circ}(546 \mathrm{~nm}), 405^{\circ}(579 \mathrm{~nm}), 387^{\circ}(589 \mathrm{~nm})$.

Additional analytical data was in accordance with that recorded for $(R, S, S)-\mathbf{L}^{*}(\mathbf{2 0 2})$ (see chapter 5.2.8).
5.2 .10 SYNTHESIS OF $(2 S, 3 R)-2-(2,5-$ DIMETHOXYBENZYL $)-2,3$-DIMETHYL-
CYCLOHEXANONE $(\mathbf{1 1 4})[58]$

Based on a literature procedure, ${ }^{[58]}$ in a flame dried Schlenk flask 173 mg ($0.908 \mathrm{mmol}, 0.024$ eq.) CuTC and 980 mg ($1.82 \mathrm{mmol}, 0.047 \mathrm{eq}$.) of phosphoramidite ligand (R, S, S)-L* (see chapter 5.3.8) in 100 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ were stirred at $23^{\circ} \mathrm{C}$ for 20 min . The salmon-colored solution was cooled to $-30^{\circ} \mathrm{C}$ and 4.24 g ($38.5 \mathrm{mmol}, 1.0 \mathrm{eq}$.) of enone 74 were added. Then, 27.2 mL (54.5 mmol , 1.4 eq.) of AlMe_{3} (2.0 M in heptane) were added via syringe over a period of 10 min . The reaction mixture was stirred at $-30^{\circ} \mathrm{C}$ for 4.5 h . The solvents were removed in vacuo at $-30^{\circ} \mathrm{C}$ (using the Schlenk line) until a small volume remained, which was dissolved in 40 mL of TPPA before 34.1 mL
 $30^{\circ} \mathrm{C}$). Finally, 20.2 g ($72.6 \mathrm{mmol}, 1.9$ eq.) of iodide 166 were added and the stirred suspension was allowed to slowly warm up to $23^{\circ} \mathrm{C}$ overnight. At this point, GC-MS analysis indicated full conversion of the 1,4 -addition intermediate and a diastereoselectivity of $d r=5: 1$. The reaction mixture was carefully quenched by addition of 20 mL of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ at $0^{\circ} \mathrm{C}$ before 200 mL of $\mathrm{H}_{2} \mathrm{O}$ and 100 mL of sat. aqueous Na K tartrate solution were added (to facilitate phase separation). The aqueous phase was extracted with $4 \times 200 \mathrm{~mL}$ of c-Hex, the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (c-Hex/EtOAc 33:1) to give 6.34 g ($22.9 \mathrm{mmol}, 59 \%$) of the pure trans-product 114 as a pale yellow crystals. This product showed an enantiomeric excess of 96% ee as determined by chiral HPLC using a racemic standard (for details see chapter 6.3). In addition, a sample of the separated cis-byproduct epi-114 was obtained and used for analytical characterization.

trans-product 114:

$\mathbf{M}\left(\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}\right)=276.38 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex/EtOAc 9:1) $=0.32$
m.p.: $50^{\circ} \mathrm{C}-53^{\circ} \mathrm{C}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.74-6.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-12), 6.70-6.68(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-13, \mathrm{H}-15)$, 3.73 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-17$), 3.69 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-16$), 3.18 (d, $J=13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 2.90 (d, $J=13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$) ,
2.73 (ddd, $J=14.5,9.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 2.33 (dt, $J=14.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}$), 2.09 (ddt, $J=13.7,9.1$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 2.01-1.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.89(\mathrm{dtt}, J=14.6,9.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 1.82-1.74$ (m, $\left.1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 1.50$ (dtd, $J=13.4,6.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime}$), 0.91 (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-8$), 0.89 (s, $3 \mathrm{H}, \mathrm{H}-7$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=216.2(\mathrm{C}-1), 153.1(\mathrm{C}-14), 152.3(\mathrm{C}-11), 128.2(\mathrm{C}-10), 118.5$ (C-15), 111.8 (C-13), 111.2 (C-12), 55.7 (C-17), 55.5 (C-16), 53.6 (C-2), 40.2 (C-3), 38.4 (C-6), 37.2 (C-9), 28.7 (C-4), 23.0 (C-5), 18.9 (C-7), 16.4 (C-8).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2988(\mathrm{w}), 2935(\mathrm{~m}), 2871(\mathrm{w}), 2833(\mathrm{w}), 1700(\mathrm{~s}), 1610(\mathrm{w}), 1589(\mathrm{w})$, 1498 (s), 1462 (m), 1426 (w), 1382 (w), 1351 (w), 1313 (w), 1222 (s), 1179 (w), 1158 (w), 1122 (w), 1107 (w), 1091 (w), 1048 (s), 1027 (w), 946 (w), 918 (w), 874 (w), 800 (m), 716 (m), 623 (w), 588 (w), 557 (w), 532 (w).

GC-MS (70 eV): m/z (\%) = 276 (29, [M]+), 151 (100), 121 (22), 91 (12), 77 (9), 65 (6), 55 (9).

HRMS (ESI):

Calc. $\lceil\mathrm{amu}$	Found 「amu]
$277.17982[\mathrm{M}+\mathrm{H}]^{+}$	$277.18007[\mathrm{M}+\mathrm{H}]^{+}$
$299.16177[\mathrm{M}+\mathrm{Na}]^{+}$	$299.16179[\mathrm{M}+\mathrm{Na}]^{+}$

$[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\lambda}\left(\mathrm{c}=0.65 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):+76^{\circ}(436 \mathrm{~nm}),+35^{\circ}(546 \mathrm{~nm}),+29^{\circ}(579 \mathrm{~nm}),+27^{\circ}$ (589 nm).

X-ray crystal structure (CCDC 2077905):

cis-byproduct epi-114:
$\mathbf{M}\left(\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}\right)=276.38 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex $/$ EtOAc 9:1) $=0.25$
m.p.: $61^{\circ} \mathrm{C}-63^{\circ} \mathrm{C}$

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.69-6.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-13), 6.57(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 15), 3.71 (s, 3H, H-17), 3.64 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-16$), 3.22 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 3.06 (td, $J=13.4,6.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6$), 2.60 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9{ }^{\prime}$), $2.36-2.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 2.02$ (ddq, $J=9.3,6.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}$, H-5), 1.84-1.75 (m, 1H, H-4), $1.75-1.68$ (m, 1H, H-3), 1.68 - 1.61 (m, 2H, H-4', H-5'), 1.10 (d, J = $6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-8), 0.88(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7)$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=214.9(\mathrm{C}-1), 153.0(\mathrm{C}-14), 152.1(\mathrm{C}-11), 127.5(\mathrm{C}-10), 118.5$ (C-15), 111.6 (C-13), 110.9 (C-12), 55.7 (C-17), 55.2 (C-16), 53.1 (C-2), 44.7 (C-3), 38.5 (C-6), 31.8 (C-9), 29.8 (C-4), 26.4 (C-5), 19.9 (C-7), 16.1 (C-8).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2964(\mathrm{~m}), 2919(\mathrm{~m}), 2859(\mathrm{w}), 2834(\mathrm{w}), 1696(\mathrm{~s}), 1607(\mathrm{w}), 1501$ (s$)$, 1465 (m), 1450 (m), 1417 (w), 1382 (w), 1371 (w), 1356 (w), 1339 (w), 1323 (w), 1313 (w), 1297 (w), 1267 (w), 1222 (s), 1194 (w), 1179 (m), 1159 (w), 1125 (w), 1099 (w), 1089 (w), 1068 (w), 1037 (s), 1017 (m), 947 (w), 915 (w), 874 (m), 855 (w), 832 (w), 803 (m), 742 (w), 708 (m), 629 (w), 595 (w), 573 (w), 538 (w).

GC-MS (70 eV): m/z (\%) = 276 (27, [M]+), 151 (100), 121 (24), 91 (14), 77 (11), 65 (8), 55 (12).

HRMS (ESI):	Calc. [amul	Found [amul
	$277.17982[\mathrm{M}+\mathrm{H}]^{+}$	$277.18007[\mathrm{M}+\mathrm{H}]^{+}$
	$299.16177[\mathrm{M}+\mathrm{Na}]^{+}$	$299.16179[\mathrm{M}+\mathrm{Na}]^{+}$

$[\alpha]^{20}{ }_{\lambda}\left(c=0.53 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):-111^{\circ}(436 \mathrm{~nm}),-62^{\circ}(546 \mathrm{~nm}),-54^{\circ}(579 \mathrm{~nm}),-53^{\circ}$ (589 nm).

X-ray crystal structure (CCDC 2077912):

5.2.11 SYNTHESIS OF $(2 R, 3 S)-2-(2,5-$ DIMETHOXYBENZYL $)-2,3$-DIMETHYL-
CYCLOHEXANONE $(e n t-114)[58]$ CYCLOHEXANONE (ent-114) ${ }^{[58]}$

Based on a literature procedure, ${ }^{[58]}$ in a flame dried Schlenk flask 145 mg ($0.760 \mathrm{mmol}, 0.022$ eq.) CuTC and 821 mg ($1.52 \mathrm{mmol}, 0.071$ eq.) of phosphoramidite ligand (S, R, R)-L* (see chapter 5.3.9) in 95 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ was stirred at $20^{\circ} \mathrm{C}$ for 35 min . The salmon-colored solution was cooled to $-30^{\circ} \mathrm{C}$ and $2.35 \mathrm{~g}(21.3 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) of enone 74$ were added. Then, $23.0 \mathrm{~mL}(46.0 \mathrm{mmol}, 2.2 \mathrm{eq}$. of AlMe_{3} (2.0 M in hexanes) were added via syringe over a period of 10 min . The reaction mixture was stirred at $-30^{\circ} \mathrm{C}$ for 5 h . The solvents were removed in vacuo at $-30^{\circ} \mathrm{C}$ (using the Schlenk line) until a small volume remained, which was dissolved in 35 mL of TPPA before 32.0 mL (44.8 mmol , 2.1 eq.) of methyllithium (1.4 M in $\mathrm{Et}_{2} \mathrm{O}$) were added over 5 min (still at $-30^{\circ} \mathrm{C}$). Finally, 16.8 g ($60.4 \mathrm{mmol}, 2.8$ eq.) of iodide 166 were added and the stirred suspension was allowed to slowly warm up to $20^{\circ} \mathrm{C}$ and stirred for 21 h . At this point, GC-MS analysis indicated full conversion of the 1,4 -addition intermediate and a diastereoselectivity of $d r=5: 1$. The reaction mixture was carefully quenched by addition of 20 mL of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ at $0^{\circ} \mathrm{C}$ before 200 mL of $\mathrm{H}_{2} \mathrm{O}$ and 100 mL of sat. aqueous Na K tartrate solution were added to facilitate phase separation. The aqueous phase was extracted with $4 \times 200 \mathrm{~mL}$ of c-Hex, the combined organic phases were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (c-Hex/EtOAc $33: 1$) to give $3.11 \mathrm{~g}(11.3 \mathrm{mmol}, 53 \%)$ of trans-product ent-114 as a pale yellow solid. This product showed an enantiomeric excess of 96\% ee as determined by chiral HPLC using a racemic standard (for details see 6.3). In addition, 704 mg ($2.55 \mathrm{mmol}, 12 \%$) of cis-byproduct ent-epi-114 was obtained as yellow crystals

trans-product ent-114:

$\mathbf{M}(\mathrm{C} 17 \mathrm{H} 24 \mathrm{O} 3)=276.38 \mathrm{~g} / \mathrm{mol}$
$[\boldsymbol{\alpha}]^{20}{ }_{\lambda}\left(\mathrm{c}=0.64 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):-59^{\circ}(436 \mathrm{~nm}),-27^{\circ}(546 \mathrm{~nm}),-24^{\circ}(579 \mathrm{~nm}),-23^{\circ}$ (589 nm).

Additional analytical data was in accordance with that recorded for 114 (see chapter 5.2.10).

cis-byproduct ent-epi-114:

$\mathbf{M}\left(\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}\right)=276.38 \mathrm{~g} / \mathrm{mol}$
$[\alpha]^{20}{ }_{\lambda}\left(\mathrm{c}=0.53 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):+111^{\circ}(436 \mathrm{~nm}),+64^{\circ}(546 \mathrm{~nm}),+56^{\circ}(579 \mathrm{~nm}),+53^{\circ}$ (589 nm).

X-ray crystal structure:

Additional analytical data was in accordance with that recorded for epi-114 (see chapter 5.2.10).

5.2.12 SYnthesis of enol triflate 209

In a flame dried Schlenk flask 5.78 g ($54.0 \mathrm{mmol}, 1.7$ eq.) of LDA were partially dissolved in 250 mL of dry THF. The suspension was cooled to $-78^{\circ} \mathrm{C}$ and 8.77 g ($31.7 \mathrm{mmol}, 1.0 \mathrm{eq}$.) of ketone $\mathbf{1 1 4} \mathrm{in}$ 100 mL of dry THF were added. After stirring for 10 min at $-78^{\circ} \mathrm{C}, 19.3 \mathrm{~g}$ ($\left.54.0 \mathrm{mmol}, 1.7 \mathrm{eq}.\right)$ of PhNTf_{2} were added portion wise at that temperature. The reaction mixture was then stirred at $0^{\circ} \mathrm{C}$ for 50 min and at $25^{\circ} \mathrm{C}$ for 2 h . After quenching with sat. aqueous NH 4 Cl , the aqueous phase was extracted with $3 \times 200 \mathrm{~mL}$ of EtOAc. The combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Purification of the crude product by silica gel column chromatography (c-Hex/EtOAc 30:1 to 20:1) afforded 10.7 g ($26.2 \mathrm{mmol}, 83 \%$) of enol triflate $\mathbf{2 0 9}$ as a yellow, viscous oil.
$\mathbf{M}\left(\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}\right)=408.43 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex/EtOAc 20:1) $=0.29$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.77-6.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-12), 6.74-6.72(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-13, \mathrm{H}-15$), 5.77 (dd, $J=5.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 3.74 (s, $3 \mathrm{H}, \mathrm{H}-16$), 3.73 (s, $3 \mathrm{H}, \mathrm{H}-17$), 3.00 (d, $J=13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 2.70 (d, $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime} 9^{\prime}$), 2.08 (dtd, $J=17.8,5.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 1.94$ (dddd, $J=17.8,8.8,5.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 1.64 (dqd, $J=9.8,6.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 1.60-1.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 1.42-1.33(\mathrm{~m}, 1 \mathrm{H}$,
 $\mathrm{H}-4{ }^{\prime}$), 1.11 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-7$), 0.97 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-8$).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=154.5(\mathrm{C}-1), 153.3(\mathrm{C}-14), 152.7(\mathrm{C}-11), 127.2(\mathrm{C}-10), 118.6$ ($q, J_{\mathrm{C}, \mathrm{F}}=319.3 \mathrm{~Hz}, \mathrm{C}-18$), $118.0(\mathrm{C}-6), 117.1(\mathrm{C}-15), 112.7(\mathrm{C}-13), 111.3(\mathrm{C}-12), 55.74(\mathrm{C}-16), 55.65$ (C-17), 43.9 (C-2), 35.2 (C-9), 34.6 (C-3), 26.2 (C-4), 23.3 (C-5), 20.1 (C-7), 16.2 (C-8).
${ }^{19}$ F NMR (282 MHz, CDCl3): $\delta[\mathrm{ppm}]=-75.0$.

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2935$ (br), 2835 (w), 1674 (w), 1609 (w), 1589 (w), 1501 (m), 1465 (m), 1408 (m), 1386 (m), 1347 (w), 1314 (w), 1301 (w), 1284 (w), 1270 (w), 1245 (m), 1208 (s), 1189 (m), 1141 (m), 1103 (w), 1081 (w), 1049 (m), 1029 (m), 1012 (m), 983 (s), 959 (w), 918 (m), 904 (m), 869 (s), 855 (s), 802 (m), 773 (w), 756 (m), 737 (w), 716 (m), 709 (m), 689 (m), 689 (w), 648 (w), 605 (s).

GC-MS (70 eV): m/z (\%) = 408 (20, [M]+), 151 (100), 121 (19), 91 (9), 69 (9), 55 (5).

HRMS (ESI):

Calc. [amu]	Found 「amu]
$431.11105[\mathrm{M}+\mathrm{Na}]^{+}$	$431.11125[\mathrm{M}+\mathrm{Na}]^{+}$

$[\boldsymbol{\alpha}]^{20}{ }_{\lambda}\left(\mathrm{c}=0.59 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):+44^{\circ}(436 \mathrm{~nm}),+26^{\circ}(546 \mathrm{~nm}),+23^{\circ}(579 \mathrm{~nm}),+23^{\circ}$ (589 nm).

5.2.13 SYNTHESIS OF ENOL TRIFLATE ent-209

In a flame dried Schlenk flask, $2.70 \mathrm{~mL}(1.94 \mathrm{~g}, 19.2 \mathrm{mmol}, 1.7 \mathrm{eq}$.$) of diisopropylamine were$ dissolved in 31 mL of dry THF. The suspension was cooled to $-78^{\circ} \mathrm{C}$ and $7.8 \mathrm{~mL}(19.1 \mathrm{mmol}$, 1.7 eq.) of $n \mathrm{BuLi}(2.47 \mathrm{M}$ in THF) were added over 10 min and the resulting mixture stirred for 20 min at $0^{\circ} \mathrm{C}$. After cooling to $-78^{\circ} \mathrm{C}, 3.11 \mathrm{~g}(11.3 \mathrm{mmol}, 1.0$ eq.) of ketone ent- $\mathbf{1 1 4} \mathrm{in} 15 \mathrm{~mL}$ of
dry THF were added. After stirring for 20 min at $-78^{\circ} \mathrm{C}, 6.83 \mathrm{~g}$ ($\left.19.1 \mathrm{mmol}, 1.7 \mathrm{eq}.\right)$ of PhNTf_{2} were added portion wise at that temperature. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and at $20^{\circ} \mathrm{C}$ for 2 h . After quenching with 10 mL of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and addition of $20 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$, the aqueous phase was extracted with $3 \times 100 \mathrm{~mL}$ of EtOAc. The combined organic phases were dried over MgSO_{4} and the solvent was removed under reduced pressure. Purification of the crude product by silica gel column chromatography (c-Hex/EtOAc 30:1 to 20:1) afforded 3.11 g ($7.61 \mathrm{mmol}, 68 \%$) of enol triflate ent-209 as a yellow, viscous oil.
$\mathbf{M}\left(\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}\right)=408.43 \mathrm{~g} / \mathrm{mol}$
$[\alpha]^{20}{ }_{\lambda}\left(\mathrm{c}=0.54 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):-38^{\circ}(436 \mathrm{~nm}),-22^{\circ}(546 \mathrm{~nm}),-19^{\circ}(579 \mathrm{~nm}),-18^{\circ}$ (589 nm).

Additional analytical data was in accordance with that recorded for 209 (see chapter 5.2.12).

5.2.14 SYnthesis of tbs-homoallybic alcohol (211) ${ }^{[121]}$

According to a literature procedure, ${ }^{[121]}$ in an argon-flushed flask $5.89 \mathrm{~mL}(4.94 \mathrm{~g}, 69.3 \mathrm{mmol}$, 1.00 eq.) of homoallylic alcohol (212) were dissolved in 150 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 9.44 g ($139 \mathrm{mmol}, 2.00 \mathrm{eq}$.) of imidazole were added. The suspension was stirred until a clear solution was obtained. Then, 11.5 g ($76.3 \mathrm{mmol}, 1.10 \mathrm{eq}$.) of TBSCl were added and the reaction mixture was stirred for at rt for 2 h .200 mL of $\mathrm{H}_{2} \mathrm{O}$ were added, phases were separated and the aqueous phase was extracted with $2 \times 100 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Filtration through a short plug of silica gel (c-Hex/EtOAc 5:1) afforded 12.3 g ($66.0 \mathrm{mmol}, 95 \%$) of but-3-en-1-yloxy(tert-butyl) dimethylsilane (213) as a volatile, colorless liquid.
$\mathbf{M}\left(\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{OSi}\right)=186.37 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex $/$ EtOAc $3: 1)=0.90$

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=5.81(\mathrm{ddt}, J=17.1,10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.07(\mathrm{dq}, J=17.2$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.03-5.00\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.66(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 2.28(\mathrm{qt}, J=6.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}$, H-3), 0.90 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-7, \mathrm{H}-8$), 0.05 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{H}-9, \mathrm{H}-10$).
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=135.5(\mathrm{C}-2), 116.4(\mathrm{C}-1), 62.9(\mathrm{C}-4), 37.6$ (C-3), 26.1 (C-6, C7, C-8), -5.1 (C-9, C-10).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3080(\mathrm{w}), 2955(\mathrm{w}), 2929$ (m), 2897 (w), 2858 (m), 1642 (w), 1472 (w), 1463 (w), 1432 (w), 1408 (w), 1384 (w), 1361 (w), 1254 (m), 1228 (w), 1096 (s), 1005 (w), 986 (m), 938 (w), 909 (m), 833 (s), 810 (m), $733(\mathrm{w}), 678(\mathrm{w}), 664(\mathrm{w}), 626(\mathrm{w})$.

GC-MS $(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=129(66), 101(100), 89(18), 73(30), 59(16), 41$ (18).

5.2.15 SYNTHESIS OF SILYL ETHER 213

Based on a literature protocol, ${ }^{[105]}$ in a Schlenk flask, a solution of 7.14 g ($38.3 \mathrm{mmol}, 1.5 \mathrm{eq}$. .) of olefin 211 in 55 mL of dry THF was cooled to $0^{\circ} \mathrm{C}$. Then, 92.0 mL ($46.0 \mathrm{mmol}, 1.8$ eq.) of 9 -BBN (0.5 M in THF) were added and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h . The solution was then cooled to $0^{\circ} \mathrm{C}$ before 27.5 mL of $\mathrm{H}_{2} \mathrm{O}$ were added and stirring was continued at $0^{\circ} \mathrm{C}$ for 1 h . This borane solution was then transferred via needle to a second Schlenk flask charged with a solution of 625 mg ($765 \mu \mathrm{~mol}, 0.03$ eq.) of $\mathrm{PdCl}_{2}(\mathrm{dppf}) \times \mathrm{CH}_{2} \mathrm{Cl}_{2}, 20.8 \mathrm{~g}$ ($63.8 \mathrm{mmol}, 2.5 \mathrm{eq}$.) of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and 10.4 g ($25.5 \mathrm{mmol}, 1.0 \mathrm{eq}$.) of the enol triflate 209 in 190 mL of dry DMF at $25^{\circ} \mathrm{C}$. The black reaction mixture was stirred at that temperature for 60 min before 0.40 g of QuadraSil AP ${ }^{\circledR}$ were added as a metal scavenger and the suspension was stirred for further 30 min . Then the solvent was separated by decantation and $\mathrm{H}_{2} \mathrm{O}$ and brine were added to the product solution. After extraction with EtOAc (4 x) the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents were removed under reduced pressure. The residue was purified by silica gel column chromatography (c-Hex/EtOAc 20:1) to yield 11.1 g ($24.8 \mathrm{mmol}, 97 \%$) of silyl ether 213 as a yellow, viscous oil.
$\mathbf{M}\left(\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Si}\right)=446.75 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex/EtOAc 15:1) $=0.42$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.78(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15), 6.75(\mathrm{~d}$,
 $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12), 6.68(\mathrm{dd}, J=8.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13), 5.46(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.75(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-$ 16), 3.72 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-17$), 3.62 ($\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-21$), 2.93 ($\mathrm{d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), $2.66(\mathrm{~d}, J=$
$14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9{ }^{\prime}$), 2.04 (t, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-18$), $2.02-1.91$ (m, 2H, H-5), 1.78 (dtd, $J=12.9,6.5$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 1.70 (quind, $J=7.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $1.59-1.53$ (m, 2H, H-20), $1.53-1.42$ (m, 2H, H-19), $1.40-1.32$ (m, 1H, H-4'), 0.93 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-7$), 0.90 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{H}-25, \mathrm{H}-26, \mathrm{H}-27$), 0.80 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-8), 0.05(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}-22, \mathrm{H}-23)$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=153.1(\mathrm{C}-14), 152.6(\mathrm{C}-11), 143.3(\mathrm{C}-1), 129.6(\mathrm{C}-10), 121.4$ (C-6), 117.3 (C-15), 111.24 (C-12), 111.19 (C-13), 63.5 (C-21), 56.0 (C-16), 55.7 (C-17), 42.0 (C-2), 36.3 (C-9), 33.8 (C-3), 33.3 (C-20), 31.3 (C-18), 26.5 (C-4), 26.1 (C-25, C-26, C-27), 25.5 (C-19), 23.9 (C-5), 21.8 (C-7), 18.5 (C-24), 16.1 (C-8), -5.1 (C-22, C-23).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2951$ (br), 2929 (m), 2906 (w), 2857 (w), 2833 (w), 1609 (w), 1588 (w), 1498 (m), 1463 (m), 1426 (w), 1380 (w), 1360 (w), 1298 (w), 1282 (w), 1254 (m), 1219 (s), 1179 (w), 1158 (w), 1099 (m), 1051 (m), 1030 (m), 1005 (w), 964 (w), 939 (w), 901 (w), 834 (s), 804 (m), 795 (m), 773 (s), 732 (w), 714 (m), 686 (w), 661 (w), 606 (w).

GC-MS (70 eV): m/z (\%) = 446 (17, [M]+), 389 (17), 295 (8), 237 (7), 163 (100), 152 (48), 147 (10), 121 (22), 107 (16), 91 (15), 75 (14).

HRMS (ESI): Calc. [amu] Found [amu]

$$
\begin{array}{ll}
447.32889[\mathrm{M}+\mathrm{H}]^{+} & 447.32930[\mathrm{M}+\mathrm{H}]^{+} \\
469.31084[\mathrm{M}+\mathrm{Na}]^{+} & 469.31088[\mathrm{M}+\mathrm{Na}]^{+}
\end{array}
$$

$[\boldsymbol{\alpha}]^{20}{ }_{\lambda}\left(\mathrm{c}=0.51 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):-51^{\circ}(436 \mathrm{~nm}),-27^{\circ}(546 \mathrm{~nm}),-24^{\circ}(579 \mathrm{~nm}),-21^{\circ}$ $(589 \mathrm{~nm})$.

5.2.16 SYNTHESIS OF SILYL ETHER ent-213

Based on a literature protocol, ${ }^{[105]}$ in a Schlenk flask, a solution of 960 mg ($5.15 \mathrm{mmol}, 2.3$ eq.) of olefin 211 in 7.4 mL of dry THF was cooled to $0^{\circ} \mathrm{C}$. Then, 12.4 mL ($6.20 \mathrm{mmol}, 2.8 \mathrm{eq}$.) of $9-\mathrm{BBN}$ (0.5 M in THF) were added and the mixture was stirred at $23^{\circ} \mathrm{C}$ for 2 h . The solution was then cooled to $0^{\circ} \mathrm{C}$ before 3.7 mL of $\mathrm{H}_{2} \mathrm{O}$ were added and stirring was continued for 60 min at $0^{\circ} \mathrm{C}$. This
borane solution was then transferred via needle to a second Schlenk flask charged with a solution of 84.0 mg ($103 \mu \mathrm{~mol}, 0.05 \mathrm{eq}$.) of PdCl_{2} (dppf) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.70 \mathrm{~g}$ ($8.29 \mathrm{mmol}, 3.7 \mathrm{eq}$.) of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and 914 g ($2.24 \mathrm{mmol}, 1.0 \mathrm{eq}$.) of the enol triflate ent-209 in 30 mL of dry DMF at $23^{\circ} \mathrm{C}$. The black reaction mixture was stirred at that temperature for 60 min before 54.0 mg of QuadraSil AP ${ }^{\circledR}$ were added as a metal scavenger and the suspension was stirred for further 30 min . Then the solids were separated by decantation and 50 mL of $\mathrm{H}_{2} \mathrm{O}$ and brine were added to the product solution. After extraction with $3 \times 50 \mathrm{~mL}$ of EtOAc the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4} and the solvents were removed under reduced pressure. The residue was purified by silica gel column chromatography (c-Hex/EtOAc 20:1) to yield 930 mg ($202 \mathrm{mmol}, 90 \%$) of silyl ether ent-213 as a yellow, viscous oil.
$\mathbf{M}\left(\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Si}\right)=446.75 \mathrm{~g} / \mathrm{mol}$
$[\alpha]^{20}{ }_{\lambda}\left(\mathrm{c}=0.45 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):+57^{\circ}(436 \mathrm{~nm}),+30^{\circ}(546 \mathrm{~nm}),+26^{\circ}(579 \mathrm{~nm}),+25^{\circ}$ (589 nm).

Additional analytical data was in accordance with that recorded for 213 (see chapter 5.2.15).

5.2.17 SYNTHESIS OF ALCOHOL 214

Based on a literature protocol, ${ }^{[106]}$ in an argon-flushed flask 11.1 g ($24.8 \mathrm{mmol}, 1.0 \mathrm{eq}$.) of silyl ether 214 were dissolved in 400 mL of $\mathrm{CH}_{3} \mathrm{CN}$ and $4.5 \mathrm{~mL}\left(4.5 \mathrm{~g}, 250 \mathrm{mmol}, 10 \mathrm{eq}\right.$.) of $\mathrm{H}_{2} \mathrm{O}$. Then, 650 mg ($0.99 \mathrm{mmol}, 0.04 \mathrm{eq}$.) of $\mathrm{Bi}(\mathrm{OTf})_{3}$ were added and the reaction mixture was stirred at rt for 90 min . 200 mL of $\mathrm{H}_{2} \mathrm{O}$ were added and the aqueous phase was extracted with $3 \times 200 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4} and the solvent was removed under reduced pressure. $7.98 \mathrm{~g}(24.0 \mathrm{mmol}, 97 \%)$ of alcohol 214, together with 1.48 g of TBSOH/TBSOTBS were obtained as a pale yellow, viscous oil. The crude alcohol 214 was used for the following reaction without further purification. For analytical characterization, a sample of was purified by silica gel column chromatography (c-Hex/MTBE 2:1).
$\mathbf{M}\left(\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{3}\right)=332.48 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex/EtOAc $4: 1)=0.22$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.77-6.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-15), 6.68$ (dd, $J=8.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13$), 5.47 ($\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 3.75 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-16$), 3.73 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-17$), 3.65 ($\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-21$), 2.92 ($\mathrm{d}, \mathrm{J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$),
 2.66 (d, J = $14.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9{ }^{\prime}$), 2.07 - 2.02 (m, 2H, H-18), 2.02 - 1.92 (m, 2H, H-5), 1.79 (dtd, $J=$ $13.0,6.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 1.71 (quind, $J=7.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $1.65-1.57(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-20)$, 1.57 - $1.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-19), 1.36(\mathrm{td}, J=13.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$) $, 0.93(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7), 0.81(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, 3H, H-8).
${ }^{13}$ C NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=153.1(\mathrm{C}-14), 152.6(\mathrm{C}-11), 143.0(\mathrm{C}-1), 129.6(\mathrm{C}-10), 121.5$ (C-6), 117.5 (C-15), 111.2 (C-12), 111.1 (C-13), 63.2 (C-21), $56.0(\mathrm{C}-16), 55.7$ (C-17), 42.0 (C-2), 36.4 (C-9), 33.8 (C-3), 33.2 (C-20), 31.2 (C-18), 26.4 (C-4), 25.4 (C-19), 23.8 (C-5), 21.8 (C-7), 16.0 (C-8).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3354$ (br), 2933 (br), 2834 (w), 1611 (w), 1592 (w), 1499 (s), 1463 (m), 1379 (w), 1282 (w), 1271 (w), 1221 (s), 1179 (w), 1159 (w), 1126 (w), 1051 (m), 1045 (m), 1029 (m), 878 (w), $800(\mathrm{w}), 717(\mathrm{w})$.

GC-MS (70 eV): m/z (\%) = 332 (40, [M]+), 181 (43), 152 (79), 151 (65), 137 (29), 121 (100), 107 (56), 91 (73), 79 (47), 71 (29), 55 (40).

HRMS (ESI):	Calc. $[\mathrm{amu}]$	Found $[\mathrm{amu}]$
	$355.22437[\mathrm{M}+\mathrm{Na}]^{+}$	$355.22478[\mathrm{M}+\mathrm{Na}]^{+}$

$[\boldsymbol{\alpha}]^{20_{\lambda}}\left(\mathrm{c}=0.67 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):-59^{\circ}(436 \mathrm{~nm}),-30^{\circ}(546 \mathrm{~nm}),-26^{\circ}(579 \mathrm{~nm}),-25^{\circ}$ $(589 \mathrm{~nm})$.

5.2.18 SYNTHESIS OF ALCOHOL ent-214

Based on a literature protocol,[106] in an argon-flushed flask 2.84 g ($6.36 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) of silyl$ ether ent-213 were dissolved in 100 mL of $\mathrm{CH}_{3} \mathrm{CN}$ and 1.2 mL of $\mathrm{H}_{2} \mathrm{O}$. Then, $167 \mathrm{mg}(254 \mu \mathrm{~mol}$, 0.04 eq.) of $\mathrm{Bi}(\mathrm{OTf})_{3}$ were added and the reaction mixture was stirred at rt for 2 h .50 mL of $\mathrm{H}_{2} \mathrm{O}$
were added and the aqueous phase was extracted with $3 \times 50 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4} and the solvent was removed under reduced pressure. $2.07 \mathrm{~g}(6.23 \mathrm{mmol}, 98 \%)$ of alcohol ent-214, together with 230 mg of TBSOH/TBSOTBS were obtained as a pale yellow, viscous oil. The crude alcohol ent-214 was used for the following reaction without further purification. For analytical characterization, a sample was purified by silica gel column chromatography (c-Hex/MTBE 2:1).
$\mathbf{M}\left(\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{3}\right)=332.48 \mathrm{~g} / \mathrm{mol}$
$[\alpha]^{20}{ }_{\lambda}\left(c=0.67 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):+52^{\circ}(436 \mathrm{~nm}),+24^{\circ}(546 \mathrm{~nm}),+17^{\circ}(579 \mathrm{~nm}),+12^{\circ}$ (589 nm).

Additional analytical data was in accordance with that recorded for 214 (see chapter 5.2.17).

5.2.19 SYnthesis of aldehyde $\mathbf{1 8 3}$

A solution of 7.98 g ($24.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) of crude alcohol 214 (in a mixture with 1.48 g of TBSOH/TBSOTBS) were dissolved in 630 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and 21.0 g ($49.6 \mathrm{mmol}, 2.0$ eq.) of Dess-Martin periodinane were added over 5 min and stirring was continued at $0^{\circ} \mathrm{C}$ for 15 min and at rt for 2 h . Then, the mixture was cooled to $0^{\circ} \mathrm{C}$ before 200 mL of $\mathrm{H}_{2} \mathrm{O}$ were added. The phases were separated and the aqueous phase was extracted with 3 x 200 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (ultrapure SiO_{2}, c - $\mathrm{Hex} / \mathrm{EtOAc} 9: 1$) to provide 6.83 g ($20.7 \mathrm{mmol}, 86 \%$) of aldehyde 183 as a yellowish viscous oil.
$\mathbf{M}\left(\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3}\right)=330.47 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex $/ E t O A c 9: 1)=0.27$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=9.77(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, 21-\mathrm{H}), 6.76-$
 $6.74(\mathrm{~m}, 2 \mathrm{H}, 12-\mathrm{H}, 15-\mathrm{H}), 6.68(\mathrm{dd}, J=8.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{H}), 5.48(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 3.75(\mathrm{~s}$, $3 \mathrm{H}, 16-\mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}, 17-\mathrm{H}), 2.90(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 2.64(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}$), $2.46(\mathrm{td}$,
$\mathrm{J}=7.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}, 20-\mathrm{H}), 2.09-2.02(\mathrm{~m}, 2 \mathrm{H}, 18-\mathrm{H}), 2.02-1.92(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}), 1.90-1.77(\mathrm{~m}, 3 \mathrm{H}, 4-$ H, 19-H), 1.73 (mnm,.-, 1H, 3-H), 1.37 (ddt, J = 13.4, 7.5, $6.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}^{\prime}$), $0.92(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{H}), 0.81$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 8-\mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=203.0(\mathrm{C}-21), 153.1(\mathrm{C}-11), 152.6(\mathrm{C}-14), 142.3(\mathrm{C}-1), 129.4$ (C-10), 122.1 (C-6), 117.6 (C-15), 111.2 (C-12/13), 111.1 (C-12/13), 56.0 (C-16), 55.7 (C-17), 44.1 (C-20), 42.0 (C-2), 36.6 (C-9), 33.8 (C-3), 30.9 (C-18), 26.3 (C-4), 23.7 (C-5), 21.8 (C-19), 21.7 (C7), 16.0 (C-8).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2932(\mathrm{br}), 2833(\mathrm{w}), 2718(\mathrm{w}), 1723(\mathrm{~m}), 1608(\mathrm{w}), 1588(\mathrm{w}), 1497(\mathrm{~s})$, 1463 (m), 1425 (w), 1379 (w), 1283 (w), 1268 (w), 1218 (s), 1179 (m), 1158 (w), 1127 (w), 1074 (w), 1048 (s), 1028 (m), 952 (w), 940 (w), 909 (w), 873 (w), $849(\mathrm{w}), 799(\mathrm{~m}), 757(\mathrm{w}), 732(\mathrm{w})$, 714 (m), 687 (w), 637 (w).

GC-MS (70 eV): m/z (\%) = 330 (30, [M]+), 207 (8), 179 (13), 161 (83), 151 (85), 135 (36), 121 (100), 105 (56), 91 (96), 77 (60), 55 (37).

HRMS (ESI): Calc. [amu] Found [amu]

$$
353.20871[\mathrm{M}+\mathrm{Na}]^{+} \quad 353.20897[\mathrm{M}+\mathrm{Na}]^{+}
$$

$[\alpha]^{20}{ }_{\lambda}\left(c=0.57 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):-80^{\circ}(436 \mathrm{~nm}),-41^{\circ}(546 \mathrm{~nm}),-34^{\circ}(579 \mathrm{~nm}),-32^{\circ}$ (589 nm).

5.2.20 SYNTHESIS OF ALDEHYDE ent-216

A solution of 1.42 g ($4.26 \mathrm{mmol}, 1.0 \mathrm{eq}$.) of alcohol ent-215 (in a mixture with 150 mg of TBSOH/TBSOTBS) were dissolved in 105 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and 3.62 g ($8.53 \mathrm{mmol}, 2.0 \mathrm{eq}$.) of Dess-Martin periodinane were added over 5 min and stirring was continued for 15 min at $0^{\circ} \mathrm{C}$ and at rt for 2 h . Then, the mixture was cooled to $0^{\circ} \mathrm{C}$ before 30 mL of $\mathrm{H}_{2} \mathrm{O}$ and 30 mL of sat. aqueous NaHCO_{3} were added. The phases were separated and the aqueous phase was extracted with $3 \times 30 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4} and the solvent was removed under reduced pressure. The
residue was purified by silica gel column chromatography (ultrapure SiO_{2}, c - $\mathrm{Hex} / \mathrm{EtOAc} 9: 1$) to provide 1.11 g ($3.35 \mathrm{mmol}, 79 \%$) of aldehyde ent-216 as a yellow viscous oil.
$\mathbf{M}\left(\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3}\right)=330.47 \mathrm{~g} / \mathrm{mol}$
$[\alpha]^{20}{ }_{\lambda}\left(\mathrm{c}=0.57 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):+66^{\circ}(436 \mathrm{~nm}),+36^{\circ}(546 \mathrm{~nm}),+31^{\circ}(579 \mathrm{~nm}),+29^{\circ}$ (589 nm).

Additional analytical data was in accordance with that recorded for 183 (see chapter 5.2.19).

5.2.21 SYNTHESIS OF TETRACYCLIC OLEFIN $\mathbf{1 8 4}$

A solution of 2.00 g ($6.05 \mathrm{mmol}, 1.0 \mathrm{eq}$.) of aldehyde $\mathbf{1 8 3} \mathrm{in} 605 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (HPLC grade) was cooled to $0^{\circ} \mathrm{C}$ and 100 mg ($330 \mu \mathrm{~mol}, 0.05 \mathrm{eq}$.) of AuCl_{3} were added. The dark green mixture was stirred for 20 min at $0^{\circ} \mathrm{C}$ before 400 mL of $\mathrm{H}_{2} \mathrm{O}$ were added (discoloration). The aqueous phase was extracted with $3 \times 400 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the resulting organic layer dried over MgSO_{4}. The resulting pale brown, viscous oil was purified by silica gel filtration (c-Hex/EtOAc 30:1) to give 1.12 g of a colorless sticky oil, containing approximately $672 \mathrm{mg}(2.15 \mathrm{mmol}, 36 \%)$ of tetracyclic olefin 184 along with (at this stage) inseparable side products, as determined by integration of suitable ${ }^{1} \mathrm{H}$ NMR signals. On a 100 mg scale a yield of 38% of $\mathbf{1 8 4}$ was obtained (37% for a 300 mg scale). The oil crystallizes very slowly at rt. Samples of different side products were also obtained and characterized, but no yield was determined.
olefin 184:
$\mathbf{M}\left(\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{2}\right)=312.45 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex/EtOAc 20:1) $=0.27$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.63(\mathrm{~s}, 2 \mathrm{H}, 12-\mathrm{H}, 13-\mathrm{H}), 5.61(\mathrm{td}, J=3.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}, 18-\mathrm{H})$, 3.78 (s, 3H, 16-H), $3.68(\mathrm{~s}, 3 \mathrm{H}, 17-\mathrm{H}), 2.83(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 2.54\left(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}^{\prime}\right)$, $2.09(\mathrm{dt}, J=13.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 2.05-2.01(\mathrm{~m}, 2 \mathrm{H}, 19-\mathrm{H}), 2.01-1.95(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}$), 1.92 (ddd, $J=12.8,9.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}, 21-\mathrm{H}$), 1.64 (ddtd, $J=12.6,9.4,6.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}, 20-\mathrm{H}$), $1.57-1.49(\mathrm{~m}, 1 \mathrm{H}$,
$\left.20-\mathrm{H}^{\prime}\right), 1.49-1.42\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}, 21-\mathrm{H}^{\prime}\right), 1.36(\mathrm{dq}, J=12.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 1.18(\mathrm{dq}, J=12.9,3.9 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 4-\mathrm{H}^{\prime}\right), 1.00(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{H}), 0.83(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 8-\mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=151.6(\mathrm{C}-14), 150.9(\mathrm{C}-11), 141.2(\mathrm{C}-15), 138.3(\mathrm{C}-6), 131.8$ (C-10), 122.5 (C-18), 110.3 (C-13), 108.8 (C-12), $56.0(\mathrm{C}-17), 55.8(\mathrm{C}-16), 55.4$ (C-1), 52.2 (C-2), 38.4 (C-9), 36.3 (C-3), 35.0 (C-5), 32.5 (C-21), 32.3 (C-4), 25.9 (C-19), 20.3 (C-20), 18.2 (C-8), 14.2 (C-7).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2924$ (br), 2851 (m), $2830(\mathrm{~m}), 1596$ (w), 1491 (s), 1462 (m), 1437 (m), 1379 (w), 1323 (w), 1278 (w), 1254 (s), 1189 (w), 1157 (w), 1141 (w), 1110 (w), 1095 (m), 1070 (m), 1055 (m), 1012 (w), 972 (w), 914 (w), 883 (w), 865 (w), $788(\mathrm{~m}), 715(\mathrm{w}), 669(\mathrm{w}), 638(\mathrm{w})$.

GC-MS (70 eV): m/z (\%) = 312 (100, [M]+), 297 (38), 255 (16), 241 (15), 227 (16), 165 (17), 115 (16), 55 (15).

HRMS (ESI):

Calc. $[\mathrm{amu}]$	Found [amu]
$313.21620[\mathrm{M}+\mathrm{H}]^{+}$	$313.21688[\mathrm{M}+\mathrm{H}]^{+}$

$[\boldsymbol{\alpha}]^{20}{ }_{\lambda}\left(\mathrm{c}=0.45 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):+249^{\circ}(436 \mathrm{~nm}),+131^{\circ}(546 \mathrm{~nm}),+113^{\circ}(579 \mathrm{~nm}),+107^{\circ}$ (589 nm).

X-ray crystal structure (CCDC 207790):

ketone side product 215:

$\mathbf{M}\left(\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3}\right)=330.47 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex/EtOAc 5:1) $=0.36$

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}), 6.71(\mathrm{dd}, J=8.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}, 13-$ H), $6.68(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, 15-\mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}, 17-\mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}, 16-\mathrm{H}), 2.82(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-$ H), $2.62\left(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}^{\prime}\right), 2.46-2.41(\mathrm{~m}, 1 \mathrm{H}, 21-\mathrm{H}), 2.35(\mathrm{ddt}, J=13.6,4.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}, 19-$ H), $2.30-2.22\left(\mathrm{~m}, 1 \mathrm{H}, 19-\mathrm{H}^{\prime}\right), 2.15-2.07(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}, 20-\mathrm{H}), 1.73(\mathrm{dq}, J=13.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H})$,
$1.53-1.49\left(\mathrm{~m}, 1 \mathrm{H}, 20-\mathrm{H}^{\prime}\right), 1.49-1.43\left(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}, 21-\mathrm{H}^{\prime}\right), 1.38-1.30(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 1.23-1.18(\mathrm{~m}$, $1 \mathrm{H}, 1-\mathrm{H}), 1.18-1.10\left(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}^{\prime}\right), 1.10-1.04\left(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}^{\prime}\right), 1.02(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, 8-\mathrm{H}), 0.89(\mathrm{~s}$, $3 \mathrm{H}, 7-\mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=214.2$ (C-18), 152.9 (C-14), 152.8 (C-11), 127.9 (C-10), 119.0 (C-15), 111.3 (C-13), 110.9 (C-12), 55.7 (C-17), 55.5 (C-16), 51.3 (C-6), 47.7 (C-1), 42.1 (C19), 41.8 (C-2), 35.6 (C-9), 35.3 (C-3), 29.9 (C-4), 27.6 (C-21), 26.1 (C-20), 25.2 (C-5), 17.6 (C-8), 14.9 (C-7).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2927(\mathrm{~s}), 2855(\mathrm{~m}), 2837(\mathrm{w}), 1734(\mathrm{w}), 1709(\mathrm{~m}), 1590(\mathrm{w}), 1498(\mathrm{~s})$, 1464 (s), 1400 (w), 1379 (w), 1260 (s), 1221 (s), 1179 (w), 1159 (w), 1090 (m), 1049 (s), 1028 (m), $870(\mathrm{w}), 799(\mathrm{~s}), 715(\mathrm{w})$.

GC-MS (70 eV): m/z (\%) = 330 (72, [M]+), 161 (15), 151 (100), 121 (24), 105 (13), 91 (27), 77 (17).

HRMS (ESI)

Calc. [amu]	Found [amu]
$353.20872[\mathrm{M}+\mathrm{Na}]^{+}$	$353.20896[\mathrm{M}+\mathrm{Na}]^{+}$

$[\boldsymbol{\alpha}]^{20}{ }_{\lambda}\left(\mathrm{c}=0.25 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):-2.7^{\circ}(436 \mathrm{~nm}),+4.7^{\circ}(546 \mathrm{~nm}),+2.7^{\circ}(579 \mathrm{~nm}),-2.7^{\circ}$ (589 nm).

Olefin side product 216:

$\mathbf{M}\left(\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{2}\right)=312.45 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex/EtOAc 9:1) $=0.85$

1H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.63(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{H}), 6.59(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H})$, 3.76 (s, 3H, 16-H), $3.75(\mathrm{~s}, 3 \mathrm{H}, 17-\mathrm{H}), 2.77(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 2.72\left(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}^{\prime}\right)$, 2.06 - 1.99 (m, 1H, 4-H), 1.91 - 1.81 (m, 2H, 4-H', 5-H), $1.75-1.70\left(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}^{\prime}\right), 1.69-1.62(\mathrm{~m}$, $1 \mathrm{H}, 21-\mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{H}), 1.58-1.52(\mathrm{~m}, 1 \mathrm{H}, 21-\mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{H}), 1.47-1.42(\mathrm{~m}, 1 \mathrm{H}, 19-\mathrm{H})$, $1.37-1.32(\mathrm{~m}, 1 \mathrm{H}, 20-\mathrm{H}), 1.32-1.26\left(\mathrm{~m}, 4 \mathrm{H}, 18-\mathrm{H}, 19-\mathrm{H}^{\prime}, 20-\mathrm{H}^{\prime}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=151.4(\mathrm{C}-14), 151.2(\mathrm{C}-11), 140.1(\mathrm{C}-15), 131.3(\mathrm{C}-10), 130.1$ (C-2), 126.9 (C-3), 109.7 (C-13), 108.4 (C-12), 55.9 (C-17), 55.7 (C-16), 50.6 (C-6), $50.0(\mathrm{C}-1), 37.0$ (C-9), 31.7 (C-21), 30.1 (C-4), 29.5 (C-18), 28.9 (C-5), 23.1 (C-20), 22.6 (C-19), 20.3 (C-8), 14.8 (C7).

GC-MS (70 eV): m/z (\%) = 312 (100, [M] ${ }^{+}$), 297 (17), 257 (20), 255 (44), 242 (20), 240 (16), 230 (71), 225 (13), 215 (11), 204 (14), 165 (10), 119 (10).

5.2.22 SYNTHESIS OF TETRACYCLIC OLEFIN ent-184

A solution of 1.11 g ($3.36 \mathrm{mmol}, 1.0$ eq.) of aldehyde ent- $\mathbf{1 8 3}$ in 335 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (HPLC grade) was cooled to $0^{\circ} \mathrm{C}$ and $52 \mathrm{mg}\left(168 \mu \mathrm{~mol}, 0.05 \mathrm{eq}\right.$.) of AuCl_{3} were added. The dark green mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min before 200 mL of $\mathrm{H}_{2} \mathrm{O}$ were added (discoloration). The aqueous phase was extracted with $3 \times 100 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layer dried over MgSO_{4}. The resulting pale brown, viscous oil was purified by silica gel filtration (c-Hex/EtOAc 30:1) to give 1.12 g of a colorless sticky oil, containing approximately 672 mg ($2.15 \mathrm{mmol}, 36 \%$) of tetracyclic olefin ent-184 along with (at this stage) inseparable side products, as determined by integration of suitable ${ }^{1} \mathrm{H}$ NMR signals. The oil crystallizes very slowly at rt. Additionally, 44 mg ($133 \mu \mathrm{~mol}, 4 \%$) of side product 217 were isolated and characterized.

olefin ent-184:

$\mathbf{M}\left(\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{2}\right)=312.45 \mathrm{~g} / \mathrm{mol}$
$[\boldsymbol{\alpha}]^{20}{ }_{\lambda}\left(\mathrm{c}=0.45 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):-240^{\circ}(436 \mathrm{~nm}),-128^{\circ}(546 \mathrm{~nm}),-109^{\circ}(579 \mathrm{~nm}),-105^{\circ}$ (589 nm).

X-ray crystal structure:

Additional analytical data was in accordance with that recorded for 184 (see chapter 5.2.21).
side product 217:
$\mathbf{M}\left(\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3}\right)=330.47 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex $/$ EtOAc 9:1) $=0.50$

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.79-6.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-12), 6.72-6.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-13, \mathrm{H}-15)$, $4.12(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-18), 3.76(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H}-16, \mathrm{H}-17), 2.88(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 2.58$ ($\mathrm{d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$) $), 2.24$ (tdd, $J=13.5,6.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-19$), 1.86 ($\mathrm{ddq}, J=25.0,11.9,6.3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-20$), 1.75 (dt, $J=12.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $1.71(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-6), 1.63(\mathrm{dd}, J=14.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-21$), 1.53 (ddd, $J=20.0,10.2,4.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-19)^{\prime}$), $1.48-1.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{4}^{\prime}\right), 1.34$ ($\mathrm{dt}, J=12.4$, $\left.6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-20^{\prime}\right), 1.25\left(\mathrm{dd}, J=24.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 1.20(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7), 0.92-0.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-21^{\prime}\right)$, $0.84(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-8)$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=153.1$ (C-14), 152.4 (C-11), 130.0 (C-10), 118.0 (C-15), 111.1 (C-12), 110.6 (C-13), 87.1 (C-2), 79.3 (C-18), 55.7 (C-17), 55.6 (C-16), 48.2 (C-1), 47.3 (C-6), 34.4 (C-3), 31.7 (C-21), 31.4 (C-5), 29.9 (C-9), 28.4 (C-4), 24.6 (C-19), 19.2 (C-20), 16.6 (C-8), 14.9 (C-7).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2929(\mathrm{~m}), 2867(\mathrm{w}), 2832(\mathrm{w}), 1727(\mathrm{w}), 1611(\mathrm{w}), 1590(\mathrm{w}), 1499(\mathrm{~s})$, 1463 (m), 1444 (m), 1427 (w), 1377 (w), 1355 (w), 1342 (w), 1330 (w), 1312 (w), 1279 (w), 1264 (w), 1242 (m), 1221 (s), 1193 (w), 1179 (m), 1159 (w), 1121 (w), 1099 (w), 1080 (w), 1051 (m), 1031 (m), 1022 (w), 981 (w), 958 (w), 939 (m), 888 (w), 879 (w), 859 (w), $840(\mathrm{w})$, 799 (w), 735 (w), 715 (w), 706 (w), 524 (w).

GC-MS (70 eV): m/z (\%) = 330 (45, [M]+), 312 (5), 161 (30), 152 (100), 121 (24), 105 (13), 91 (27), 77 (17).

HRMS (EI)

Calc. $[\mathrm{amu}]$	Found $[\mathrm{amu}]$
$330.21895[\mathrm{M}]^{++}$	$330.2189[\mathrm{M}]^{++}$

$[\alpha]^{20}{ }_{\lambda}\left(c=0.55 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):+3.2^{\circ}(436 \mathrm{~nm}),+1.5^{\circ}(546 \mathrm{~nm}),+1.1^{\circ}(579 \mathrm{~nm}),+0.2^{\circ}$ (589 nm).

5.2.23 SYNTHESIS OF TETRACYCLIC ALCOHOL 222

A solution of 644 mg ($2.06 \mathrm{mmol}, 1.0$ eq.) of olefin 184 in 60 mL of dry THF was cooled to $0^{\circ} \mathrm{C}$ and 13.5 mL ($13.5 \mathrm{mmol}, 6.55 \mathrm{eq}$.) of $\mathrm{BH}_{3} \times$ THF (1.0 M in THF) were added. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and at $30^{\circ} \mathrm{C}$ for 7.5 h . Then, the solution was cooled to $0^{\circ} \mathrm{C}$ before 20 mL of 10% (w/w) aqueous NaOH and 40 mL of aqueous $30 \%(\mathrm{w} / \mathrm{V}) \mathrm{H}_{2} \mathrm{O}_{2}$ were slowly added successively (CAUTION: The reaction with NaOH is exothermic!). The stirred mixture was left in the cooling bath overnight to slowly reach $25^{\circ} \mathrm{C}(14 \mathrm{~h})$. After cooling to $0^{\circ} \mathrm{C}$ and careful addition of sat. aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ the mixture was allowed to reach $30^{\circ} \mathrm{C}$ before the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were washed with water and brine, dried over MgSO_{4} and the solvent was removed under reduced pressure to give a colorless, viscous oil. The crude alcohol 222 was used for the following reaction without further purification. For analytical characterization, a sample of the crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / c\right.$-Hex $\left.4: 1\right)$. The configuration of the two newly formed stereocenters was verified by ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{NOESY}$ NMR analysis.
$\mathbf{M}\left(\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3}\right)=330.47 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex $/$ EtOAc $4: 1)=0.41$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.67(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-13), 4.50(\mathrm{td}, J=10.0$,
 $5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-18$), 3.77 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-16$), 3.75 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-17$), 2.77 (d, J = $15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 2.43 (d, $J=$ $15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$ '), 2.17 - 2.10 (m, 1H, H-19), 1.97 - 1.92 (m, 1H, H-5), 1.53 - 1.46 (m, 1H, H-21), 1.46 - 1.39 (m, 3H, H-4, H-20, H-21'), 1.35 - 1.28 (m, 3H, H-3, H-6, H-20'), 1.22 - 1.10 (m, 3H, H-4', H-5', H-19'), 1.02 (s, 3H, H-7), 0.77 (d, J = 6.7 Hz, 3H, H-8).
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=151.3$ (C-11), 150.8 (C-14), 138.8 (C-15), 132.9 (C-10), 109.7 (C-12), 109.2 (C-13), 71.1 (C-18), 59.4 (C-1), 55.8 (C-16), 55.1 (C-17), 50.9 (C-2), 47.4 (C-6), 37.7 (C-9), 36.5 (C-19), 35.2 (C-3), 35.1 (C-21), 32.0 (C-4), 25.6 (C-5), 20.9 (C-20), 18.1 (C-8), 13.3 (C-7).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3363$ (br), 2931 (s), 2854 (m), 2043 (w), 1971 (w), 1735 (br), 1594 (w), 1492 (s), 1462 (m), 1380 (w), 1324 (w), 1281 (w), 1255 (s), 1171 (w), 1148 (w), 1071 (m), 1047 (w), 1034 (w), 1004 (w), 968 (w), 941 (w), 873 (w), 848 (w), 790 (w), 719 (w).

GC-MS (70 eV): m/z (\%) = $330\left(52,[\mathrm{M}]^{+}\right), 312(100), 297(34), 258$ (18), 255 (22), 243 (25), 227 (18), 203 (23), 189 (21).

HRMS (ESI): Calc. [amu] Found [amu]
$353.20872[\mathrm{M}+\mathrm{Na}]^{+} \quad 353.20865[\mathrm{M}+\mathrm{Na}]^{+}$
$[\boldsymbol{\alpha}]^{20_{\lambda}}\left(\mathrm{c}=0.76 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):-75^{\circ}(436 \mathrm{~nm}),-44^{\circ}(546 \mathrm{~nm}),-39^{\circ}(579 \mathrm{~nm}),-37^{\circ}$ (589 nm).

5.2.24 SYNTHESIS OF TETRACYCLIC KETONE 111

A solution of the crude alcohol 222 of the previous reaction ($\leq 2.06 \mathrm{mmol}$) in 72 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (HPLC grade) was cooled to $0^{\circ} \mathrm{C}$ before 2.46 g ($5.80 \mathrm{mmol}, 2.82 \mathrm{eq}$.) of DMP were added over 5 min . The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and at $30^{\circ} \mathrm{C}$ for 75 min . After addition of $\mathrm{H}_{2} \mathrm{O}$, the phases were separated and the aqueous phase was extracted with $3 \mathrm{x} 50 \mathrm{mLCH} \mathrm{Cl}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with sat. NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (c-Hex/EtOAc 9:1) to provide $559 \mathrm{mg}(1.70 \mathrm{mmol}, 83 \%$ over 2 steps) of tetracyclic ketone 111 as a yellow sticky oil, which crystallized very slowly at rt.
$\mathbf{M}\left(\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3}\right)=328.45 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex/EtOAc 9:1) $=0.24$
m.p.: $126.5^{\circ} \mathrm{C}-128.2^{\circ} \mathrm{C}$

${ }^{\mathbf{1}} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.65(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12), 6.61(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13)$, 3.77 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-16 / 17$), 3.56 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-16 / 17$), 2.82 (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 2.53 (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}$, H-9'), 2.47 (ddt, J = 16.6, 5.0, 1.7 Hz, 1H, H-19), $2.24-2.19$ (m, 1H, H-5), $2.19-2.13$ (m, 1H, H-19'), 2.09 - 2.05 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6$), 1.81 - 1.74 (m, 1H, H-21), 1.74 - 1.65 (m, 2H, H-20, H-21'), 1.63 - 1.53 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-20^{\prime}$), $1.47-1.41(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 1.28-1.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.13-1.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 1.05(\mathrm{~s}$, 3H, H-7), $1.04-0.98$ (m, 1H, H-5'), 0.81 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-8$).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=209.6(\mathrm{C}-18), 151.3(\mathrm{C}-11 / 14), 151.2$ (C-11/14), 136.7 (C15), 131.8 (C-10), 109.4 (C-12), 109.2 (C-13), 58.4 (C-1), 55.8 (C-16/17), 53.8 (C-16/17), 51.9 (C6), 50.9 (C-2), 40.4 (C-19), 38.0 (C-9), 35.2 (C-3), 33.4 (C-21), 30.9 (C-4), 22.6 (C-5), 21.1 (C-20), 18.1 (C-8), 12.7 (C-7).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2924$ (br), 2851 (m), 1706 (s), 1597 (w), 1493 (s), 1460 (m), 1381 (w), 1354 (w), 1320 (w), 1293 (w), 1279 (m), 1259 (s), 1251 (s), 1187 (w), 1171 (w), 1146 (w), 1129 (w), 1094 (m), 1083 (m), 1068 (m), 1051 (m), 1024 (w), 1007 (w), 967 (w), 954 (w), 898 (w), 879 (w), $842(\mathrm{w}), 792(\mathrm{~m}), 738(\mathrm{w}), 716(\mathrm{w}), 678(\mathrm{w}), 648(\mathrm{w})$.

GC-MS (70 eV): m/z (\%) = 328 (100, [M] ${ }^{+}$), 297 (97), 285 (100), 258 (31), 243 (49), 227 (18), 201 (22), 189 (20), 115 (21), 91 (12), 55 (16).

HRMS (ESI)

Calc. $[\mathrm{amu}]$	Found [amu]
$329.21112[\mathrm{M}+\mathrm{H}]^{+}$	$329.21094[\mathrm{M}+\mathrm{H}]^{+}$
$351.19307[\mathrm{M}+\mathrm{Na}]^{+}$	$351.19257[\mathrm{M}+\mathrm{Na}]^{+}$

$[\boldsymbol{\alpha}]^{20}{ }_{\lambda}\left(\mathrm{c}=0.55 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):-39^{\circ}(436 \mathrm{~nm}),-20^{\circ}(546 \mathrm{~nm}),-17^{\circ}(579 \mathrm{~nm}),-17^{\circ}$ (589 nm).

X-ray crystal structure (CCDC 2077914):

5.2.25 SYNTHESIS OF TETRACYCLIC ALCOHOL ent-222

A solution of 189 mg ($605 \mu \mathrm{~mol}, 1.0$ eq.) of olefin ent-184 in 18 mL of dry THF was cooled to $0^{\circ} \mathrm{C}$ and 4.0 mL ($4.0 \mathrm{mmol}, 6.6$ eq.) of $\mathrm{BH}_{3} \times$ THF (1.0 M in THF) were added. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and at $20^{\circ} \mathrm{C}$ for 19 h . Then, the solution was cooled to $0^{\circ} \mathrm{C}$ before 8 mL of 10% (w/w) aqueous NaOH and 16 mL of aqueous $30 \%(\mathrm{w} / \mathrm{V}) \mathrm{H}_{2} \mathrm{O}_{2}$ were slowly added successively (CAUTION: The reaction with NaOH is exothermic!). The stirred mixture was stirred at $0^{\circ} \mathrm{C}$ for 20 min and 3 h at $20^{\circ} \mathrm{C}$. After re-cooling to $0^{\circ} \mathrm{C}$ and careful addition of 20 mL of sat. aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ the mixture was allowed to reach $20^{\circ} \mathrm{C}$ again before the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were washed with water and brine, dried over MgSO_{4} and the solvent was removed under reduced pressure to give a colorless, viscous oil. The crude alcohol ent-222 was used for the following reaction without further purification. For analytical characterization, a sample of the crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / c\right.$-Hex $\left.4: 1\right)$. The configuration of the two newly formed stereocenters was verified by ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{NOESY}$ NMR analysis.
$\mathbf{M}\left(\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3}\right)=330.47 \mathrm{~g} / \mathrm{mol}$
$[\alpha]^{20}{ }_{\lambda}\left(\mathrm{c}=0.36 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):+13^{\circ}(436 \mathrm{~nm}),+12^{\circ}(546 \mathrm{~nm}),+10^{\circ}(579 \mathrm{~nm}),+9.3^{\circ}$ (589 nm).

Additional analytical data was in accordance with that recorded for 222 (see chapter 5.3.23).

5.2.26 SYNTHESIS OF TETRACYCLIC KETONE ent-111

A solution of the crude alcohol ent-222 of the previous reaction ($\leq 605 \mathrm{mmol}$) in 18 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (HPLC grade) was cooled to $0^{\circ} \mathrm{C}$ before 536 mg ($1.26 \mathrm{mmol}, 2.08 \mathrm{eq}$.) of DMP were added over 5 min . The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and at $22^{\circ} \mathrm{C}$ for 1.5 h . After addition of 10 mL of $\mathrm{H}_{2} \mathrm{O}$,
the phases were separated and the aqueous phase was extracted with $3 \times 10 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with 10 mL of sat. aqueous NaHCO_{3} and 10 mL of $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (c-Hex/EtOAc 9:1) to provide 131 mg ($399 \mu \mathrm{~mol}, 66 \%$ over 2 steps) of tetracyclic ketone ent-111 as a yellow sticky oil.
$\mathbf{M}\left(\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}^{3}\right)=328.45 \mathrm{~g} / \mathrm{mol}$
$[\alpha]^{20}{ }_{\lambda}\left(\mathrm{c}=0.46 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):+51^{\circ}(436 \mathrm{~nm}),+26^{\circ}(546 \mathrm{~nm}),+23^{\circ}(579 \mathrm{~nm}),+22^{\circ}$ (589 nm).

Additional analytical data was in accordance with that recorded for $\mathbf{1 1 1}$ (see chapter 5.2.24).

5.2.27 SYNTHESIS OF TERTIARY ALCOHOL 223

Based on a literature protocol, ${ }^{[122]}$ a suspension of 880 mg ($3.57 \mathrm{mmol}, 2.3$ eq.) of CeCl_{3} in 20 mL of dry THF was stirred at $24^{\circ} \mathrm{C}$ for 2.5 h . Then, the mixture was cooled to $-78^{\circ} \mathrm{C}$ and 2.2 mL (3.1 mmol , 2.0 eq.) of $\mathrm{MeLi}\left(1.3 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}$) were added over 1 min . After stirring at $-78{ }^{\circ} \mathrm{C}$ for 1 h , 493 mg ($1.50 \mathrm{mmol}, 1.0$ eq.) of ketone 111 in 4.5 mL of dry THF were added and the mixture was stirred for 17 h and allowed to slowly reach $24^{\circ} \mathrm{C}$. Excess reagent was quenched by addition of 20 mL of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and 40 mL of $\mathrm{H}_{2} \mathrm{O}$. After extraction with $3 \times 50 \mathrm{~mL}$ of MTBE the combined organic phases were dried over MgSO_{4} and the solvent was removed under reduced pressure to give $504 \mathrm{mg}(1.46 \mathrm{mmol}, 97 \%)$ of tertiary alcohol 223 as a colorless, crystalline solid.
$\left.\mathbf{M}\left(\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}\right)=344.50 \mathrm{~g} / \mathrm{mol}\right)$
$\mathbf{R}_{\mathbf{f}}(\mathbf{c}$-Hex/EtOAc 3:1) $=0.35$
m.p.: $149^{\circ} \mathrm{C}-151^{\circ} \mathrm{C}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.74(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13), 6.70(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12)$, 6.33 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$), $3.85(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-17$), 3.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-16$), $2.76(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 2.40(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9{ }^{\prime}$), 1.92-1.83 (m, 2H, H-5, H-19), $1.60-1.55$ (m, 1H, H-6), $1.54-1.49$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-$
4), $1.49-1.44$ (m, 3H, H-19', H-21), 1.44-1.37 (m, 1H, H-20), 1.37-1.28 (m, 2H, 3-H, H-20'), 1.25 ($\mathrm{d}, \mathrm{J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-22$), $1.24-1.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{H}-\mathrm{5}^{\prime}\right.$), $0.99(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7), 0.76(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-$ 8).
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=152.0(\mathrm{C}-11), 149.5(\mathrm{C}-14), 139.6(\mathrm{C}-15), 133.6(\mathrm{C}-10), 110.2$ (C-13), 109.2 (C-12), 69.8 (C-18), 59.5 (C-1), 56.2 (C-17), 55.8 (C-16), 52.2 (C-2), 47.5 (C-6), 42.7 (C-19), 37.2 (C-9), 35.8 (C-21), 35.3 (C-3), 33.5 (C-4), 31.2 (C-22), 24.6 (C-5), 19.1 (C-20), 18.0 (C8), 13.6 (C-7).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3462(\mathrm{br}), 2930(\mathrm{~s}), 2873(\mathrm{w}), 2848(\mathrm{w}), 1588(\mathrm{w}), 1490(\mathrm{~s}), 1462(\mathrm{~m})$, 1385 (w), 1374 (w), 1359 (w), 1317 (w), 1298 (w), 1266 (w), 1253 (s), 1190 (w), 1171 (w), 1162 (w), 1149 (w), 1077 (m), 1047 (m), 997 (w), 962 (m), 923 (w), $898(\mathrm{w}), 863(\mathrm{w}), 789(\mathrm{~m}), 726$ (m), 665 (w), 647 (w), $580(\mathrm{w}), 537(\mathrm{w})$.

GC-MS (70 eV): m/z (\%) = 344 (21, [M]+), 326 (11), 269 (19), 259 (100), 243 (8), 203 (22), 189 (16), 71 (9), 55 (13).

HRMS (ESI):

Calc. $[\mathrm{amu}]$	Found $[\mathrm{amu}]$
$367.22437[\mathrm{M}+\mathrm{Na}]^{+}$	$367.22418[\mathrm{M}+\mathrm{Na}]^{+}$

$[\alpha]^{20_{\lambda}}\left(\mathrm{c}=0.40 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):-72^{\circ}(436 \mathrm{~nm}),-42^{\circ}(546 \mathrm{~nm}),-36^{\circ}(579 \mathrm{~nm}),-35^{\circ}$ (589 nm).

X-ray crystal structure (CCDC 2077910):

5.2.28 SYNTHESIS OF TETRASUBSTITUTED OLEFIN 121

A Schlenk flask was charged with 2.2 g of freshly activated MS $3 \AA$ powder before a solution of 504 mg ($1.46 \mathrm{mmol}, 1.0$ eq.) of tertiary alcohol 223 in 42 mL of toluene (HPLC grade) and 2.93 g ($15.4 \mathrm{mmol}, 11 \mathrm{eq}$.) of $p \mathrm{TsOH} \times \mathrm{H}_{2} \mathrm{O}$ were added. Then, the mixture was stirred at $105^{\circ} \mathrm{C}$ for 4 h . After cooling to rt and addition of sat. aqueous NaHCO_{3} the phases were separated and the aqueous phase was extracted twice with EtOAc. The combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (c-Hex/EtOAc 50:1) to afford 442 mg ($1.35 \mathrm{mmol}, 93 \%$) of tetrasubstituted olefin 121 as a colorless, crystalline solid.
$\mathbf{M}\left(\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{2}\right)=326.48 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex/EtOAc 49:1) $=0.39$
m.p.: $77.9^{\circ} \mathrm{C}-80.3^{\circ} \mathrm{C}$

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.61(\mathrm{~s}, 2 \mathrm{H}, 12-\mathrm{H}, \mathrm{H}-13), 3.77(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-16), 3.64$ (s, $3 \mathrm{H}, \mathrm{H}-$ 17), $2.80(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9), 2.61(\mathrm{dt}, J=13.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.52(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9)$, 2.08 - 1.99 (m, 1H, H-19), 1.99 - 1.92 (m, 1H, H-19'), 1.88 (ddd, $J=13.0,10.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-21$), 1.71 (s, 3H, H-22), 1.65 - 1.59 (m, 1H, H-5'), 1.59 - 1.56 (m, 1H, H-20), 1.55 - 1.47 (m, 1H, H-20'), 1.47 - 1.39 (m, 2H, 3-H, H-21'), 1.33 (dq, $J=12.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 1.10 (dtd, $J=13.9,12.6,3.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-4{ }^{\prime}\right), 0.96$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-7$), 0.82 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-8$).

13C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=151.7(\mathrm{C}-14), 150.9(\mathrm{C}-11), 142.0(\mathrm{C}-15), 131.7(\mathrm{C}-10)$, 130.0 (C-6), 126.8 (C-18), 110.4 (C-13), 108.7 (C-12), 56.3 (C-17), 56.1 (C-1), 55.8 (C-16), 52.1 (C2), 38.5 (C-9), 36.4 (C-3), 33.1 (C-19), 32.9 (C-21), 31.5 (C-4), 27.9 (C-5), 20.3 (C-20), 20.2 (C-22), 18.2 (C-8), 14.3 (C-7).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2951(\mathrm{w}), 2931(\mathrm{~m}), 2908(\mathrm{~m}), 2871$ (w), 2852 (m), 2829 (m), 2044 (w), 1973 (w), 1595 (w), 1492 (s), 1463 (m), 1437 (m), 1379 (w), 1325 (w), 1255 (s), 1194 (w), 1172 (w), 1157 (w), 1142 (w), 1125 (w), 1094 (m), 1074 (m), 1057 (m), 1011 (w), 971 (w), 945 (w), 897 (w), 866 (w), 789 (m), 715 (m), 665 (w).

GC-MS (70 eV): $m / z(\%)=326\left(100,[M]^{+}\right), 311(69), 267(19), 258(24), 241(27), 227(11), 225$ (11), 211 (13), 175 (15), 165 (11), 152 (10), 115 (11), 91 (11), 71 (13), 55 (15).

HRMS (ESI):

Calc. $[\mathrm{amu}]$	Found $[\mathrm{amu}]$
$327.23186[\mathrm{M}+\mathrm{H}]^{+}$	$327.23177[\mathrm{M}+\mathrm{H}]^{+}$
$349.21380[\mathrm{M}+\mathrm{Na}]^{+}$	$349.21378[\mathrm{M}+\mathrm{Na}]^{+}$

$[\alpha]^{20}{ }_{\lambda}\left(c=0.49 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):+338^{\circ}(436 \mathrm{~nm}),+180^{\circ}(546 \mathrm{~nm}),+156^{\circ}(579 \mathrm{~nm}),+149^{\circ}$ (589 nm).

X-ray crystal structure (CCDC 2077904):

5.2.29 SYNTHESIS OF CYCLOPROPANE 224

In a flame dried Schlenk flask 105 mg ($0.322 \mathrm{mmol}, 1.0$ eq.) of tetrasubstituted olefin 121 were dissolved in $750 \mu \mathrm{~L}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (HPLC grade). Then, $430 \mu \mathrm{~L}$ ($0.387 \mathrm{mmol}, 1.2$ eq.) of $\mathrm{ZnEtz}_{2}(0.9 \mathrm{M}$ in hexane) and $32.0 \mu \mathrm{~L}$ ($106 \mathrm{mg}, 396 \mu \mathrm{~mol}, 1.2 \mathrm{eq}$.) of $\mathrm{CH}_{2} \mathrm{I}_{2}$ were simultaneously added at $24^{\circ} \mathrm{C}$ and the addition procedure (same amounts) was repeated 3 more times with an interval of 20 minutes. The mixture was stirred at $24^{\circ} \mathrm{C}$ for 1 h before excess reagent was quenched by addition of $\mathrm{H}_{2} \mathrm{O}$ and sat. aqueous NaHCO_{3}. After extraction with EtOAc (2x) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ the combined organic phases were dried over MgSO_{4} and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (c - $\mathrm{Hex} /$ toluene 8:1 to 4:1) to provide 48 mg ($0.14 \mathrm{mmol}, 44 \%$) of cyclopropane 224 besides 40 mg ($0.12 \mathrm{mmol}, 38 \%$) of reisolated olefin 121 which again subjected to the same cyclopropanation procedure. After the two cycles, 58 mg ($0.17 \mathrm{mmol}, 53 \%$) of cyclopropane $\mathbf{2 2 4}$ were obtained as a colorless sticky oil, which solidified very slowly at rt.
$\mathbf{M}\left(\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{2}\right)=340.51 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex/toluene 1:1) $=0.62$
m.p.: $76.1^{\circ} \mathrm{C}-79.9^{\circ} \mathrm{C}$

${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=6.66(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13), 6.64(\mathrm{~d}$,
$J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), 3.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-17$), 3.77 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-16$), 2.70 ($\mathrm{d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 2.46 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9{ }^{\prime}$), 1.73 (ddd, $J=13.9,11.1,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-19$), 1.62 (dd, $J=13.8,8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 19'), 1.58 - 1.47 (m, 2H, H-5, H-21), 1.41 - 1.23 (m, 4H, 3-H, H-4, H-5', H-20), 1.20 (ddd, J = 9.8, 4.6, $3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-20^{\prime}$), 1.14 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-22$), 1.13 - 1.06 (m, 2H, H-4', H-21'), 1.01 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-7$), 0.81 (d, J = $6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-8), 0.72$ (dd, $J=4.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-23$), -0.01 (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-23$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=152.4(\mathrm{C}-14), 151.1$ (C-11), 139.7 (C-15), 132.3 (C-10), 108.8 (C-12), 108.7 (C-13), 55.7 (C-17), 55.6 (C-16), $55.0(\mathrm{C}-1), 51.0(\mathrm{C}-2), 38.5$ (C-9), 36.1 (C-3), 31.4 (C-19), 30.5 (C-5), 30.3 (C-4), 28.5 (C-6), 28.1 (C-21), 23.6 (C-23), 23.4 (C-22), 20.7 (C-18), 18.6 (C-20), 18.2 (C-8), 14.0 (C-7).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3676(\mathrm{br}), 3053(\mathrm{w}), 2946(\mathrm{w}), 2928(\mathrm{~s}), 2904(\mathrm{w}), 2849(\mathrm{w}), 2830(\mathrm{w})$, 1594 (w), 1492 (s), 1462 (m), 1438 (w), 1407 (w), 1395 (w), 1380 (w), 1322 (w), 1255 (s), 1175 (w), 1147 (w), 1085 (m), 1062 (m), 978 (w), 893 (br), 808 (w), 788 (w), 716 (w), 649 (w).

GC-MS (70 eV): $m / z(\%)=340\left(100,[\mathrm{M}]^{+}\right), 272$ (26), 258 (40), 257 (51), 255 (37), 243 (27), 215 (31), 201 (29), 189 (38), 55 (30).

HRMS (EI):	Calc. $[\mathrm{amu}]$	Found $[\mathrm{amu}]$
	$340.23968[\mathrm{M}]^{\bullet+}$	$340.23914[\mathrm{M}]^{\bullet+}$

$[\boldsymbol{\alpha}]^{20}{ }_{\lambda}\left(c=1.00 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):+132^{\circ}(436 \mathrm{~nm}),+73^{\circ}(546 \mathrm{~nm}),+63^{\circ}(579 \mathrm{~nm}),+60^{\circ}$ (589 nm).

5.2.30 SYNTHESIS OF (-)-DYSIHERBOL A (ent-98)

To solution of 43 mg (0.13 mmol , 1.0 eq.) of cyclopropane 224 in 1.6 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added $23 \mu \mathrm{~L}$ ($23 \mathrm{mg}, 1.3 \mathrm{mmol}, 10$ eq.) of $\mathrm{H}_{2} \mathrm{O}$ and 1.6 mL ($1.3 \mathrm{mmol}, 10$ eq.) of BBr_{3} (0.78 M in heptane) and the mixture was stirred at rt for 40 min . After addition of $\mathrm{H}_{2} \mathrm{O}$ the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (c - $\mathrm{Hex} / \mathrm{EtOAc} 20: 1$) to provide 29 mg ($0.092 \mathrm{mmol}, 74 \%$) of (-)dysiherbol $\mathrm{A}(e n t-98)$ as a yellow, sticky oil. Slow evaporation of an $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}$ solution of ent98 at rt delivered crystalline (-)-dysiherbol A (as MeOH complex) as a yellowish, crystalline solid.

```
M (C21 ( }\mp@subsup{\textrm{H}}{28}{}\mp@subsup{\textrm{O}}{2}{})=312.45\textrm{g}/\textrm{mol
R
```

m.p. of ent-Dysiherbol A - MeOH complex: $96.7^{\circ} \mathrm{C}-99.9^{\circ} \mathrm{C}$

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-18), 6.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-19)$, 4.20 (br, 1H, OH), 2.57 (d, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15$), 2.54 (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15$ '), 1.96 (td, $J=14.1$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 1.85(\mathrm{td}, J=12.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 1.68 (dd, $J=14.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ '), $1.54-1.47$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2$), 1.41 - 1.37 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6$), 1.37 - 1.27 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-1^{\prime}, \mathrm{H}^{\prime} \mathrm{2}^{\prime}, \mathrm{H}-6^{\prime}, \mathrm{H}-7$), $1.25-1.17$ (m, 2H, H-7', H-8), 1.22 (s, 3H, H-11), 1.21 (s, 3H, H-12), 1.08 (s, 3H, H-14), 0.83 (d, J = 6.6 Hz, 3H, H-13).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=148.5$ (C-20), 145.7 (C-17), 133.2 (C-21), 126.0 (C-16), 114.4 (C-18), 111.2 (C-19), 82.6 (C-4), 52.0 (C-9), 49.3 (C-10), 39.5 (C-15), 37.4 (C-5), 35.8 (C-3), 35.6 (C-8), 30.1 (C-6), 26.6 (C-7), 26.5 (C-1), 22.1 (C-11), 19.9 (C-2), 18.6 (C-12), 17.9 (C-13), 15.0 (C-14).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3389$ (br), 2929 (s), 2870 (m), 2856 (m), 1710 (br), 1633 (w), 1489 (s), 1461 (s), 1382 (m), 1349 (w), 1324 (w), 1312 (w), 1263 (s), 1196 (m), 1183 (s), 1164 (m), 1131 (w), 1106 (s), 1087 (w), 1061 (w), 1045 (w), 1027 (w), 1010 (w), 988 (w), 959 (s), 937 (w), 911 (w), 887 (w), 869 (s), 800 (s), 763 (w), 738 (m), 704 (w), 594 (w).

GC-MS (70 eV): $m / z(\%)=312(100,[\mathrm{M}]+$), 243 (9), 225 (9), 213 (8), 199 (8), 187 (10), 173 (33), 161 (8), 119 (15), 115 (8), 55 (14).

HRMS (ESI):	Calc. $[\mathrm{amu}]$	Found [amu]
	$313.21620[\mathrm{M}+\mathrm{H}]^{+}$	$313.21688[\mathrm{M}+\mathrm{H}]^{+}$

$[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\lambda}(c=0.50 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{MeOH}):-27^{\circ}(546 \mathrm{~nm}),-24^{\circ}(579 \mathrm{~nm}),-23^{\circ}(589 \mathrm{~nm})$.

X-ray crystal structure (ent-Dysiherbol A - MeOH complex, CCDC 2077913):

5.2.31 SYNTHESIS OF METHYL ENOL ETHER 119

In a flame dried Schlenk flask 195 mg ($595 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) of ketone 111 were dissolved in 2.8 mL of TPPA. 107 mg ($13.5 \mathrm{mmol}, 23.1 \mathrm{eq}$.) of LiH were added and the stirred suspension was heated to $160^{\circ} \mathrm{C}$ for 90 min . Then, the mixture was cooled to $0^{\circ} \mathrm{C}$ and $760 \mu \mathrm{~L}(1.73 \mathrm{~g}, 12.2 \mathrm{mmol}, 20.9 \mathrm{eq}$. $)$ of MeI were added. The mixture was allowed to reach rt and stirred for 16.5 h , before excess LiH was carefully quenched with 5 mL of 25% aqueous $\mathrm{NH}_{4} \mathrm{OH}$. After addition of $60 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and extraction with $3 \times 40 \mathrm{~mL}$ of MTBE the combined organic phases were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (c-Hex/EtOAc 20:1) to provide 155 mg ($453 \mu \mathrm{~mol}, 76 \%$) of enol ether 119 as colorless, crystalline solid.

M C $22 \mathrm{H}_{30} \mathrm{O}_{3}=342.48 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex/EtOAc 9:1) $=0.64$
m.p.: $77.6^{\circ} \mathrm{C}-80.3^{\circ} \mathrm{C}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.62(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-13), 3.77(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-$ 16), 3.66 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-17$), 3.53 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-22$), 2.89 ($\mathrm{dt}, J=13.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$),
 2.83 ($\mathrm{d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 2.51 (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$ '), $2.20-2.10$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-19$), 1.84 (ddd, J $=13.2,10.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-21$), $1.70-1.59(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-20), 1.49\left(\mathrm{tq}, J=13.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right)$, $1.41-1.37\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}, \mathrm{H}-21^{\prime}\right), 1.33(\mathrm{dt}, J=12.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 1.11(\mathrm{qd}, J=12.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-4{ }^{\prime}$), 0.97 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-7$), 0.82 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-8$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=151.7(\mathrm{C}-14), 150.8$ (C-11), 149.0 (C-18), 140.7 (C-15), 131.7 (C-10), 120.3 (C-6), 109.9 (C-13), 108.8 (C-12), 56.8 (C-22), 55.8 (C-16), 55.7 (C-1), 55.6 (C17), 51.7 (C-2), 38.5 (C-9), 36.0 (C-3), 32.2 (C-21), $31.0(\mathrm{C}-4), 25.7$ (C-19), 24.1 (C-5), 20.1 (C-20), 18.2 (C-8), 14.1 (C-7).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2930(\mathrm{~m}), 2909(\mathrm{w}), 2874(\mathrm{w}), 2850(\mathrm{w}), 2830(\mathrm{~m}), 1708(\mathrm{w}), 1673(\mathrm{~m})$, 1595 (w), 1491 (s), 1462 (m), 1437 (m), 1380 (w), 1360 (w), 1326 (w), 1305 (w), 1282 (w), 1253 (s), 1208 (m), 1170 (m), 1149 (m), 1125 (m), 1111 (w), 1093 (m), 1070 (m), 1056 (m), 1022 (m), 971 (m), 945 (w), 936 (w), 907 (w), 871 (w), 854 (w), 789 (m), 737 (w), 715 (m), 666 (w), 646 (w), 518 (w).

GC-MS (70 eV): $m / z(\%)=342\left(30,[M]^{+}\right), 311$ (100), 295 (22), 285 (9), 283 (9), 255 (4), 241 (9), 227 (4).

HRMS (ESI):	Calc. $[\mathrm{amu}]$	Found $[\mathrm{amu}]$
	$343.22677[\mathrm{M}+\mathrm{H}]^{+}$	$343.22754[\mathrm{M}+\mathrm{H}]^{+}$
	$365.20872[\mathrm{M}+\mathrm{Na}]^{+}$	$365.20848[\mathrm{M}+\mathrm{Na}]^{+}$

$[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\lambda}\left(c=0.50 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):+346^{\circ}(436 \mathrm{~nm}),+185^{\circ}(546 \mathrm{~nm}),+159^{\circ}(579 \mathrm{~nm}),+152^{\circ}$ (589 nm).

5.2.32 SYNTHESIS OF METHYL ENOL ETHER ent-119

In a flame dried Schlenk $131 \mathrm{mg}(399 \mu \mathrm{~mol}, 1.0$ eq.) of ketone ent- $\mathbf{1 1 1}$ were dissolved in 1.8 mL of TPPA. 65 mg ($8.18 \mathrm{mmol}, 20 \mathrm{eq}$.) of LiH were added and the stirred suspension was heated to $160^{\circ} \mathrm{C}$ for 3 h . Then, the mixture was cooled to $0^{\circ} \mathrm{C}$ and $497 \mu \mathrm{~L}(1.13 \mathrm{~g}, 7.98 \mathrm{mmol}, 20 \mathrm{eq}$.$) of MeI$ were added. The mixture was allowed to reach $22^{\circ} \mathrm{C}$ and stirred for 16 h , before excess LiH was carefully quenched with 5 mL of 25% aqueous $\mathrm{NH}_{4} \mathrm{OH}$. After addition of $10 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and extraction with $3 \times 10 \mathrm{~mL}$ of MTBE the combined organic phases were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (c-Hex/EtOAc 20:1) to provide $97 \mathrm{mg}(283 \mu \mathrm{~mol}, 71 \%$) of enol ether ent-119 as colorless, crystalline solid.
$\mathbf{M ~ C}_{22} \mathrm{H}_{30} \mathrm{O}_{3}=342.48 \mathrm{~g} / \mathrm{mol}$
$[\boldsymbol{\alpha}]^{20}{ }_{\lambda}\left(c=0.40 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):-270^{\circ}(436 \mathrm{~nm}),-142^{\circ}(546 \mathrm{~nm}),-122^{\circ}(579 \mathrm{~nm}),-117^{\circ}$ (589 nm).

Additional analytical data was in accordance with that recorded for 119 (see chapter 5.2.31).

5.2.33 SYNTHESIS OF CYCLOPROPANE 225

In an argon flushed flask 155 mg ($453 \mu \mathrm{~mol}, 1.0$ eq.) of methyl enol ether 119 were dissolved in 9.8 mL of dry DCE. The solution was cooled to $0^{\circ} \mathrm{C}$ and $1.80 \mathrm{~mL}(1.62 \mathrm{mmol}, 3.58 \mathrm{eq}$.$) of \mathrm{ZnEt}_{2}$ (0.9 M in hexane) were added slowly. Then, $0.30 \mathrm{~mL}\left(1.0 \mathrm{~g}, 3.7 \mathrm{mmol}, 8.2 \mathrm{eq}\right.$.) of $\mathrm{CH}_{2} \mathrm{I}_{2}$ were added and the arising colorless, cloudy suspension was allowed to reach rt and stirred for 1 h . Excess reagent was quenched with 3 mL of sat. aqueous NaHCO_{3}. After addition of 35 mL of $\mathrm{H}_{2} \mathrm{O}$ and extraction with $3 \times 25 \mathrm{~mL}$ of MTBE the combined organic phases were dried over MgSO_{4} and the
solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (c-Hex/EtOAc $50: 1$) to provide 132 mg ($0.370 \mathrm{mmol}, 82 \%$) of cyclopropane $\mathbf{2 2 5}$ as a colorless sticky oil, crystallizing upon repetitive dissolving in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and solvent removal in vacuo.
$\mathbf{M}\left(\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{3}\right)=356.51 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex/EtOAc 19:1) $=0.37$
m.p.: $87.1^{\circ} \mathrm{C}-90.4^{\circ} \mathrm{C}$

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-13), 3.78(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-17), 3.77(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-$ 16), 3.32 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-23$), 2.72 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 2.44 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$ '), $2.08-2.01$ (m , 2H, H-19), $1.56-1.50$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5$), $1.39-1.33$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5^{\prime}, \mathrm{H}-20, \mathrm{H}-21$), $1.27-1.25$ (m, $1 \mathrm{H}, \mathrm{H}-20^{\prime}$), 1.12 ($\mathrm{dd}, J=9.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-21^{\prime}$), $1.00(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7$), $0.82(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-8), 0.65$ (dd, $J=5.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-22$), $0.41\left(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-22^{\prime}\right)$.
${ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=152.4(\mathrm{C}-14), 151.1(\mathrm{C}-11), 139.0(\mathrm{C}-15), 132.1$ (C-10), 109.0 (C-13), 108.9 (C-12), 65.1 (C-18), 55.8 (C-17), 55.5 (C-16), 54.7 (C-1), 53.8 (C-23), 50.9 (C2), 38.5 (C-9), 36.1 (C-3), 32.3 (C-6), 30.4 (C-4), 29.0 (C-5), 27.9 (C-19), 27.5 (C-21), 21.3 (C-22), 18.2 (C-8), 17.1 (C-20), 14.0 (C-7).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3061(\mathrm{w}), 2991(\mathrm{w}), 2931(\mathrm{~m}), 2902(\mathrm{w}), 2874(\mathrm{w}), 2847(\mathrm{w}), 2829(\mathrm{w})$, 1595 (w), 1492 (s), 1459 (m), 1437 (w), 1379 (w), 1353 (w), 1324 (w), 1300 (w), 1282 (w), 1255 (s), 1214 (w), 1201 (w), 1174 (m), 1160 (w), 1135 (w), 1097 (m), 1081 (w), 1049 (m), 1016 (w), 998 (w), 985 (w), 970 (w), 951 (w), 915 (w), 886 (w), 838 (w), 822 (w), 789 (m), 759 (w), 738 (w), 716 (m), 649 (w), 635 (w), $510(\mathrm{w})$.

GC-MS (70 eV): $m / z(\%)=356\left(100,[M]^{+}\right), 324$ (28), 309 (26), 271 (51), 257 (25), 255 (26), 216 (29), 215 (42), 201 (26), 189 (26), 85 (18).

HRMS (ESI):	Calc. $[\mathrm{amu}]$	Found $[\mathrm{amu}]$
	$379.22437[\mathrm{M}+\mathrm{Na}]+$	$379.22467[\mathrm{M}+\mathrm{Na}]^{+}$

$[\boldsymbol{\alpha}]^{20}{ }_{\lambda}\left(c=1.00 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):+71^{\circ}(436 \mathrm{~nm}),+38^{\circ}(546 \mathrm{~nm}),+34^{\circ}(579 \mathrm{~nm}),+30^{\circ}$ (589 nm).

5.2.34 SYNTHESIS OF CYCLOPROPANE ent-225

In an argon flushed flask 78 mg ($228 \mu \mathrm{~mol}$, 1.0 eq.) of enol ether ent $\mathbf{- 1 1 9}$ were dissolved in 4.9 mL of dry DCE. The solution was cooled to $0^{\circ} \mathrm{C}$ and $910 \mu \mathrm{~L}$ ($910 \mu \mathrm{~mol}, 4.0 \mathrm{eq}$.) of ZnEt_{2} (1.0 M in hexane) were added slowly. Then, $150 \mu \mathrm{~L}$ (470 mg , $1.86 \mathrm{mmol}, 8.2$ eq.) of $\mathrm{CH}_{2} \mathrm{I}_{2}$ were added and the arising colorless, cloudy suspension was allowed to reach $25^{\circ} \mathrm{C}$ and stirred for 1.5 h . Excess reagent was quenched with 2 mL of sat. aqueous NaHCO_{3} at $0^{\circ} \mathrm{C}$. After addition of 2 mL of $\mathrm{H}_{2} \mathrm{O}$ and extraction with $3 \times 5 \mathrm{~mL}$ of EtOAc the combined organic phases were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (c-Hex/EtOAc $50: 1$) to provide $58 \mathrm{mg}(163 \mu \mathrm{~mol}, 71 \%)$ of cyclopropane ent-225 as a colorless sticky oil.
$\mathbf{M}\left(\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{3}\right)=356.51 \mathrm{~g} / \mathrm{mol}$
$[\boldsymbol{\alpha}]^{20}{ }_{\lambda}\left(c=1.00 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):-55^{\circ}(436 \mathrm{~nm}),-28^{\circ}(546 \mathrm{~nm}),-26^{\circ}(579 \mathrm{~nm}),-24^{\circ}$ (589 nm).

Additional analytical data was in accordance with that recorded for 225 (see chapter 5.3.33).

5.2.35 SYNTHESIS OF α-METHYL KETONE 120

In an argon-flushed flask $132 \mathrm{mg}(370 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) of cyclopropane 225$ were dissolved in 4.5 mL MeOH (under gentle warming), 4.0 mL of conc. $\mathrm{HCl}_{(\mathrm{aq})}$ were added and the mixture was refluxed for 45 min . The solution was allowed to cool to rt before it was neutralized with 20 mL of sat. aqueous NaHCO_{3}. The aqueous phase was extracted with $3 \times 40 \mathrm{~mL}$ of MTBE, the combined organic phases were dried over MgSO_{4} and the solvent was removed under reduced pressure to provide 115 mg ($336 \mu \mathrm{~mol}$, 91\%) of ketone 120.
$\mathbf{M}\left(\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{3}\right)=342.48 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex/EtOAc 9:1) $=0.24$
m.p.: $124.8^{\circ} \mathrm{C}-128.0^{\circ} \mathrm{C}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.64(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12), 6.59(\mathrm{~d}$,
 $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13$), 3.76 (s, 3H, H-16), 3.55 (s, 3H, H-17), 2.72 (d, J=15.9 Hz, 1H, H-9), $2.55-2.47$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-19$), 2.51 (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$ '), 2.27 (dd, $J=17.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-19$ '), 2.17 (td, $J=13.4$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-21$), 1.97 - 1.91 (m, 1H, H-5), $1.75-1.69$ (m, 1H, H-20), 1.56 - 1.48 (m, 1H, H-20'), 1.45 - 1.37 (m, 4H, H-4, H-5', H-21'), 1.37 - 1.33 (m, 1H, H-3), 1.31 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-22$), 1.15 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-7$), $0.84(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-8)$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=212.2(\mathrm{C}-18), 151.4(\mathrm{C}-14), 151.1$ (C-11), 138.3 (C-15), 131.7 (C-10), 109.20 (C-12), 109.18 (C-13), 59.7 (C-1), 55.7 (C-16), 53.2 (C-17), 50.7 (C-2), 50.3 (C-6), 40.1 (C-9), 36.4 (C-19), 35.1 (C-3), 28.8 (C-5), 27.3 (C-21), 27.2 (C-4), 22.8 (C-22), 20.7 (C20), 17.7 (C-8), 17.4 (C-7).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3028(\mathrm{w}), 2935(\mathrm{~m}), 2881(\mathrm{w}), 2833$ (w), 1701 (s), 1595 (w), 1493 (s), 1460 (m), 1415 (w), 1386 (w), 1347 (w), 1321 (w), 1277 (w), 1256 (s), 1194 (w), 1172 (w), 1151 (w), 1128 (w), 1115 (w), 1091 (m), 1065 (w), 1056 (w), 1045 (m), 1023 (w), 1005 (w), 974 (m), 957 (w), 927 (w), 853 (w), 827 (w), 798 (m), 720 (m), 676 (w), 648 (w), 578 (w), $560(\mathrm{w}), 523$ (w).

GC-MS (70 eV): $m / z(\%)=342(100,[\mathrm{M}]+$), $286(12), 271(8), 257(11), 232(10), 217(9), 203(8)$, 189 (8), 175 (7), 109 (7).

HRMS (ESI):	Calc. $[\mathrm{amu}]$	Found $[\mathrm{amu}]$
	$343.22677[\mathrm{M}+\mathrm{H}]^{+}$	$343.22720[\mathrm{M}+\mathrm{H}]^{+}$
	$365.20872[\mathrm{M}+\mathrm{Na}]^{+}$	$365.20884[\mathrm{M}+\mathrm{Na}]^{+}$

$[\boldsymbol{\alpha}]^{20_{\lambda}}\left(c=0.50 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):+8.6^{\circ}(436 \mathrm{~nm}),+0.9^{\circ}(546 \mathrm{~nm}),+0.4^{\circ}(579 \mathrm{~nm}),+0.0^{\circ}$ (589 nm).

X-ray crystal structure (CCDC 2077908):

5.2.36 SYNTHESIS OF α-METHYL KETONE ent-120

In an argon-flushed flask 66 mg ($186 \mu \mathrm{~mol}, 1.0$ eq.) of cyclopropane ent- 225 were dissolved in 6.5 mL MeOH (under gentle warming), 2.3 mL of conc. aqueous HCl were added and the mixture was refluxed for 50 min . The solution was allowed to cool to rt before it was neutralized with 30 mL of sat. aqueous NaHCO_{3}. The aqueous phase was extracted with $3 \times 20 \mathrm{~mL}$ of MTBE, the combined organic phases were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (c - $\mathrm{Hex} / \mathrm{EtOAc}$ 15:1) to provide $53 \mathrm{mg}(115 \mu \mathrm{~mol}, 83 \%)$ of ketone ent-120.
$\mathbf{M}\left(\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{3}\right)=342.48 \mathrm{~g} / \mathrm{mol}$
$[\boldsymbol{\alpha}]^{20}{ }_{\lambda}\left(c=0.41 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):-11^{\circ}(436 \mathrm{~nm}),-0.7^{\circ}(546 \mathrm{~nm}),-0.0^{\circ}(579 \mathrm{~nm}),-0.5^{\circ}$ (589 nm).

X-ray crystal structure:

Additional analytical data was in accordance with that recorded for $\mathbf{1 2 0}$ (see chapter 5.2.35).

5.2.37 SYNTHESIS OF ENOL TRIFLATE 185

In a flame dried Schlenk flask 115 mg ($336 \mu \mathrm{~mol}, 1.0$ eq.) of ketone $\mathbf{1 2 0}$ were dissolved in 1.6 mL of dry DCE. After the addition of 196 mg ($955 \mu \mathrm{~mol}, 2.8 \mathrm{eq}$.) of DTBMP, the solution was cooled to $0^{\circ} \mathrm{C}$ and $120 \mu \mathrm{~L}$ ($202 \mathrm{mg}, 717 \mu \mathrm{~mol}$, 2.1 eq.) of $\mathrm{Tf}_{2} \mathrm{O}$ were added. The arising suspension was allowed to reach $27^{\circ} \mathrm{C}$ and stirred for 3 h . After quenching with 2 mL of sat. aqueous NaHCO_{3} and addition of 25 mL of $\mathrm{H}_{2} \mathrm{O}$ the aqueous phase was extracted with $3 \times 25 \mathrm{~mL}$ of MTBE. The combined organic phases were dried over MgSO_{4} and the solvent was removed under reduced pressure. Purification of the crude product by silica gel column chromatography (c-Hex/EtOAc 50:1) afforded 127 mg ($268 \mu \mathrm{~mol}, 80 \%$) of enol triflate 185.
$\mathbf{M}\left(\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}\right)=474.54 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathrm{f}}(c$ - Hex/EtOAc 9:1) $=0.80$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.66$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-13$), 5.38 (t , $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-19), 3.77$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-16$), 3.66 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-17$), 2.67 (d, $J=16.2 \mathrm{~Hz}$,
 $1 \mathrm{H}, \mathrm{H}-9$), 2.57 ($\mathrm{d}, \mathrm{J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$ '), 2.13 - 2.02 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-20, \mathrm{H}-21$), $1.81-1.74$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5$), $1.74-1.67$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-20^{\prime}$), $1.60-1.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 1.50-1.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-21^{\prime}\right), 1.42-1.34(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{H}-3, \mathrm{H}-4), 1.40(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-22), 1.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7), 0.81(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-8)$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=157.3$ (C-18), 151.8 (C-14), 151.1 (C-11), 137.7 (C-15), 131.6 (C-10), 118.6 ($\mathrm{q}, \mathrm{J}_{\mathrm{C}, \mathrm{F}}=319.2 \mathrm{~Hz}, \mathrm{C}-23$), 110.5 (C-12), 110.0 (C-19), 109.5 (C-13), 61.4 (C-1), 55.7 (C-16), 55.1 (C-17), 49.5 (C-2), 40.2 (C-9), 40.1 (C-6), 34.5 (C-3), 28.9 (C-5), 27.3 (C-4), 25.2 (C-21), 23.6 (C-22), 22.1 (C-20), 17.4 (C-8), 17.0 (C-7).
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=-75.1$.

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3025(\mathrm{w}), 2956(\mathrm{br}), 2913(\mathrm{w}), 2836(\mathrm{w}), 1683(\mathrm{w}), 1586(\mathrm{w}), 1491(\mathrm{~s})$, 1463 (m), 1439 (w), 1407 (m), 1345 (w), 1313 (w), 1256 (s), 1208 (s), 1177 (w), 1144 (s), 1079 (m), 1063 (w), 1041 (w), 1023 (m), 1000 (m), 981 (m), 944 (m), 910 (w), 885 (m), 792 (m), 740 (w), 720 (w), 687 (w), 652 (w), 616 (w), 600 (m), 516 (w).

GC-MS (70 eV): $m / z(\%)=474(18,[\mathrm{M}]+$), 342 (100), 324 (16), 309 (15), 297 (16), 286 (16), 271 (15), 257 (23), 241 (16), 231 (15), 217 (20), 203 (19), 189 (18), 173 (17), 151 (18), 128 (9), 109 (11).

HRMS (ESI):

> Calc. [amu]
$497.15800[\mathrm{M}+\mathrm{Na}]^{+}$

Found [amu]
$497.15874[\mathrm{M}+\mathrm{Na}]^{+}$
$[\boldsymbol{\alpha}]^{20_{\lambda}}\left(c=0.50 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):+21^{\circ}(436 \mathrm{~nm}),+3.1^{\circ}(546 \mathrm{~nm}),+1.3^{\circ}(579 \mathrm{~nm}),+0.5^{\circ}$ (589 nm).

X-ray crystal structure:

5.2.38 SYNTHESIS OF ENOL TRIFLATE ent-185

In a flame dried Schlenk flask $58.5 \mathrm{mg}(172 \mu \mathrm{~mol}, 1.0$ eq.) of ketone ent-120 were dissolved in $819 \mu \mathrm{~L}$ of dry DCE. After the addition of 99.0 mg ($482 \mu \mathrm{~mol}, 2.8 \mathrm{eq}$.) of DTBMP, the solution was cooled to $0^{\circ} \mathrm{C}$ and $61.0 \mu \mathrm{~L}(102 \mathrm{mg}, 362 \mu \mathrm{~mol}, 2.1 \mathrm{eq}$.$) of \mathrm{Tf}_{2} \mathrm{O}$ were added. The arising suspension was allowed to reach $20^{\circ} \mathrm{C}$ and stirred for 3 h . After quenching with 2 mL of sat. aqueous NaHCO_{3} and addition of 10 mL of $\mathrm{H}_{2} \mathrm{O}$ the aqueous phase was extracted with $3 \times 10 \mathrm{~mL}$ of EtOAc. The combined organic phases were dried over MgSO_{4} and the solvent was removed under reduced pressure. Purification of the crude product by silica gel column chromatography (c - Hex/EtOAc $50: 1)$ afforded $58.0 \mathrm{mg}(122 \mu \mathrm{~mol}, 71 \%)$ of enol triflate ent-185.
$\mathbf{M}\left(\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}\right)=474.54 \mathrm{~g} / \mathrm{mol}$
$[\boldsymbol{\alpha}]^{20}{ }_{\lambda}\left(c=0.29 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):-15^{\circ}(436 \mathrm{~nm}),+2.1^{\circ}(546 \mathrm{~nm}),+3.6^{\circ}(579 \mathrm{~nm}),+3.7^{\circ}$ (589 nm).

Additional analytical data was in accordance with that recorded for 185 (see chapter 5.2.37).

5.2.39 SYNTHESIS OF OLEFIN 97 (PREDYSIHERBOL)

The reaction was performed in analogy to a literature procedure. ${ }^{[40]}$ In a flame dried Schlenk flask 123 mg ($259 \mu \mathrm{~mol}, 1.0$ eq.) of enol triflate 225 were dissolved in 2.0 mL of dry DMF. 57 mg ($1.3 \mathrm{mmol}, 5.0$ eq.) of $\mathrm{LiCl}, 62 \mathrm{mg}$ ($54 \mu \mathrm{~mol}, 0.21$ eq.) of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $74 \mu \mathrm{~L}$ ($95 \mathrm{mg}, 53 \mu \mathrm{~mol}$, 2.0 eq.) of $\mathrm{Me}_{4} \mathrm{Sn}$ were added and the reaction mixture was heated to $120^{\circ} \mathrm{C}$ for 2 h . After cooling to $25^{\circ} \mathrm{C}$, excess reagent was quenched with 10 mL of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous phase was extracted with $3 \times 10 \mathrm{~mL}$ of EtOAc. The combined organic phases were washed with 10 mL of brine, dried over MgSO_{4} and the solvent was removed under reduced pressure. Purification of the crude product by silica gel column chromatography (c-Hex/toluene $5: 1$) afforded 80.0 mg (235 $\mu \mathrm{mol}, 91 \%$) of olefin 121.
$\mathbf{M}\left(\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{2}\right)=340.51 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex/EtOAc $4: 1)=0.41$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.66(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13), 6.63(\mathrm{~d}, \mathrm{~J}$

$=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12), 5.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-19), 3.76(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-16), 3.62(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-17), 2.62(\mathrm{~d}, J=16.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-9$), 2.57 (d, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$ '), $2.10(\mathrm{td}, J=12.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-21$), $1.93-1.85$ (m, 1H, H20), 1.72 - 1.66 (m, 1H, H-5), $1.69-1.67$ (m, 3H, H-23), $1.60-1.54$ (m, 1H, H-20'), $1.54-1.49$ (m, 1H, H-5'), 1.49 - 1.43 (m, 1H, H-4), 1.42 - 1.37 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-21^{\prime}$), $1.35-1.29$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$ '), 1.24 (s, 3H, H-22), 1.10 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-7$), 0.79 (d, J = $6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-8$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=152.4(\mathrm{C}-14), 151.0(\mathrm{C}-11), 144.9(\mathrm{C}-18), 140.3(\mathrm{C}-15)$, 131.9 (C-10), 116.2 (C-19), 111.4 (C-13), 108.9 (C-12), 60.1 (C-1), 55.6 (C-16), 55.6 (C-17), 49.4 (C-2), 40.0 (C-9), 39.2 (C-6), 34.7 (C-3), 30.8 (C-5), 27.9 (C-4), 26.1 (C-21), 24.0 (C-22), 23.9 (C20), 19.2 (C-23), 17.5 (C-8), 17.0 (C-7).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3014(\mathrm{w}), 2940(\mathrm{~s}), 2909(\mathrm{~m}), 2831(\mathrm{~m}), 1585(\mathrm{w}), 1489$ (s), 1463 (m), 1450 (m), 1437 (m), 1385 (w), 1377 (w), 1314 (w), 1254 (s), 1176 (w), 1162 (w), 1149 (w), 1123
(w), 1090 (m), 1074 (m), 1045 (m), 1035 (m), 1017 (w), 997 (w), 988 (w), 969 (w), 904 (w), 878 (w), 790 (m), 742 (w), 720 (w), 663 (w), 651 (w), 515 (w).

GC-MS (70 eV): $m / z(\%)=340\left(100,[M]^{+}\right), 297(64), 271(35), 255(15), 204(21), 199(70), 189$ (37), 152 (16).

HRMS (ESI):

Calc. [amu]
$341.24751[\mathrm{M}+\mathrm{H}]^{+}$

Found [amu]
$341.24774[\mathrm{M}+\mathrm{H}]^{+}$
$[\boldsymbol{\alpha}]^{20_{\lambda}}\left(c=0.40 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):-41^{\circ}(436 \mathrm{~nm}),-26^{\circ}(546 \mathrm{~nm}),-22^{\circ}(579 \mathrm{~nm}),-24^{\circ}$ $(589 \mathrm{~nm})$.

5.2.40 SYNTHESIS OF OLEFIN ent-97

The reaction was performed in analogy to a literature procedure. ${ }^{[40]}$ In a flame dried Schlenk flask 44.0 mg ($92.7 \mu \mathrm{~mol}, 1.0$ eq.) of enol triflate ent- 225 were dissolved in $700 \mu \mathrm{~L}$ of dry DMF. 19.7 mg ($465 \mu \mathrm{~mol}, 5.0$ eq.) of $\mathrm{LiCl}, 21.6 \mathrm{mg}\left(18.7 \mu \mathrm{~mol}, 0.20\right.$ eq.) of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $25.7 \mu \mathrm{~L}$ (33.2 mg , $185 \mu \mathrm{~mol}, 2.0$ eq.) of $\mathrm{Me}_{4} \mathrm{Sn}$ were added and the reaction mixture was heated to $120^{\circ} \mathrm{C}$ for 3.5 h . After cooling to $21^{\circ} \mathrm{C}$, excess reagent was quenched with 3 mL of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous phase was extracted with $3 \times 5 \mathrm{~mL}$ of EtOAc. The combined organic phases were washed with 5 mL of brine, dried over MgSO_{4} and the solvent was removed under reduced pressure. Purification of the crude product by silica gel column chromatography (c-Hex/toluene 5:1) afforded 11.0 mg ($32.3 \mu \mathrm{~mol}, 35 \%$) of olefin ent-97.
$\mathbf{M}\left(\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{2}\right)=340.51 \mathrm{~g} / \mathrm{mol}$
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\lambda}\left(c=0.55 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):+44^{\circ}(436 \mathrm{~nm}),+33^{\circ}(546 \mathrm{~nm}),+28^{\circ}(579 \mathrm{~nm}),+26^{\circ}$ (589 nm).

Additional analytical data was in accordance with that recorded for 97 (see chapter 5.2.28).

5.2.41 SYNTHESIS OF (+)-DYSIHERBOLA (98) [40]

According to a literature procedure, ${ }^{[40]}$ a solution of 11.0 mg ($\left.32.3 \mu \mathrm{~mol}, 1.0 \mathrm{eq}.\right)$ of olefin ent-97 in 1.4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $-78^{\circ} \mathrm{C}$ and $162 \mu \mathrm{~L}\left(162 \mu \mathrm{~mol}, 5.0\right.$ eq.) of $\mathrm{BBr}_{3}\left(1.0 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and the mixture was stirred at $21^{\circ} \mathrm{C}$ for 45 min . After quenching with 8 mL of sat. aqueous NaHCO_{3} the aqueous phase was extracted with $3 \times 5 \mathrm{~mL}^{\text {of } \mathrm{CH}_{2} \mathrm{Cl}_{2} \text {. The combined organic phases were dried }}$ over MgSO_{4} and the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (c-Hex/EtOAc 20:1) to provide $8.30 \mathrm{mg}(26.6 \mu \mathrm{~mol}, 82 \%$; Lit.: 72\%) of (+)-dysiherbol A (98) as a yellow, sticky oil.
$\mathbf{M}\left(\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{2}\right)=312.45 \mathrm{~g} / \mathrm{mol}$
$\left[\boldsymbol{\alpha}^{\mathbf{2 0}}{ }_{\lambda}(c=0.67 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{MeOH}):+31^{\circ}(546 \mathrm{~nm}),+25^{\circ}(579 \mathrm{~nm}),+24^{\circ}(589 \mathrm{~nm})\right.$.

Additional analytical data was in accordance with that recorded for ent-98 (see chapter 5.2.30).

5.2.42 SYNTHESIS OF HOMOALLYLIC ALCOHOL 227

To a solution of 10 mg ($0.029 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) of olefin 97 \mathrm{in} 0.30 \mathrm{~mL}$ of acetonitrile was added a mixture of $0.22 \mathrm{mg}\left(0.59 \mu \mathrm{~mol}, 0.020 \mathrm{eq}\right.$.) of Na_{2} EDTA, $6.0 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}$ and $26 \mu \mathrm{~L}$ ($33 \mathrm{mg}, 0.29 \mathrm{mmol}$, 9.9 eq.) of 1,1,1-trifluoroacetone at $0^{\circ} \mathrm{C}$. Then, a solid mixture of 41 mg ($0.13 \mathrm{mmol}, 4.5 \mathrm{eq}$.) of Oxone ${ }^{\circledR}$ and $17 \mathrm{mg}\left(0.20 \mathrm{mmol}, 6.9\right.$ eq.) of NaHCO_{3} was added at $0^{\circ} \mathrm{C}$ over a period of 20 min . The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 16 h , before the solid was filtered off, the filtrate was diluted with 2 mL of $\mathrm{H}_{2} \mathrm{O}$ and the aqueous phase was extracted with $3 \times 3 \mathrm{mLCH} \mathrm{Cl}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (c-Hex/EtOAc 9:1) to provide 7 mg ($0.02 \mathrm{mmol}, 67 \%$) of homoallylic alcohol 227 as pale yellow, viscous oil.
$\mathbf{M}\left(\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{3}\right)=356.51 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex/EtOAc 4:1) $=0.23$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.61(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-13)$, $5.77(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.48(\mathrm{dd}, J=9.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-19), 3.77(\mathrm{~s}, 3 \mathrm{H}$,
 H-16), 3.66 (s, 3H, H-17), 2.83 ($\mathrm{d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 2.59 ($\mathrm{d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), $2.08-2.01$ (m, 1H, H-4), 2.00-1.94 (m, 1H, H-21), $1.93-1.85$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-20$), 1.67 (ddd, $J=18.5,11.3,3.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-4^{\prime}$), $1.59-1.50\left(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}, \mathrm{H}-21^{\prime}\right), 1.44-1.37$ (m, 1H, H-20'), 1.32 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-22$), 1.12 ($\mathrm{s}, 3 \mathrm{H}$, $\mathrm{H}-23$), 0.85 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-7$), 0.78 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-8$).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=151.4(\mathrm{C}-14), 151.2(\mathrm{C}-11), 144.8(\mathrm{C}-6), 142.2(\mathrm{C}-15), 131.1$ (C-10), 121.7 (C-5), 110.4 (C-12), 109.2 (C-13), 70.93 (C-19), 56.0 (C-17), 55.8 (C-16), 55.0 (C-1), 50.5 (C-2), 40.8 (C-18), 36.6 (C-9), 32.9 (C-4), 30.1 (C-3), 28.05 (C-20), 27.5 (C-23), 27.4 (C-22), 27.2 (C-21), 16.8 (C-8), 12.3 (C-7).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3412$ (br), 2958 (m), 2925 (s), 2855 (m), 1673 (w), 1492 (s), 1463 (m), 1380 (w), 1253 (s), 1176 (w), 1150 (w), 1091 (m), 1062 (m), 1026 (m), 999 (m), 967 (w), 790 (m), 718 (w).

GC-MS (70 eV): $m / z(\%)=356(30,[M]+$), 338 (29), 323 (11), 307 (32), 269 (100), 239 (23), 201 (65), 187 (40), 152 (29).

HRMS (EI): Calc. [amu] Found [amu]
$356.23460[\mathrm{M}]^{\bullet+} \quad 356.23389[\mathrm{M}] \cdot+$
$[\alpha]^{20}{ }_{\lambda}\left(c=0.50 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):+58^{\circ}(436 \mathrm{~nm}),+30^{\circ}(546 \mathrm{~nm}),+26^{\circ}(579 \mathrm{~nm}),+23^{\circ}$ (589 nm).
5.2.43 SYNTHESIS OF ALLYL METHYL ETHER 235

In a flame dried Schlenk flask $12.0 \mathrm{mg}(25.3 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) of enol triflate 185$ were dissolved in $390 \mu \mathrm{~L}$ of dry DMF. 16.3 mg ($38.5 \mathrm{mmol}, 15 \mathrm{eq}$.$) of \mathrm{LiCl}, 17.5 \mathrm{mg}(15.1 \mu \mathrm{~mol}, 0.60 \mathrm{eq}$.$) of \mathrm{Pd}^{\left(\mathrm{PPh}_{3}\right)_{4}}$ and 32.0 mg ($95.5 \mu \mathrm{~mol}, 3.8$ eq.) of $n \mathrm{Bu}_{3} \mathrm{SnCH}_{2} \mathrm{OMe}$ were added and the reaction mixture was heated to $120^{\circ} \mathrm{C}$ for 4.5 h . After cooling to $25^{\circ} \mathrm{C}$, excess reagent was quenched with 0.5 mL of $\mathrm{H}_{2} \mathrm{O}$ and the aqueous phase was extracted with $4 \times 0.5 \mathrm{~mL}$ of EtOAc. The combined organic phases were dried over MgSO_{4} and the solvent was removed under reduced pressure. Purification of the crude product by silica gel column chromatography (c-Hex/EtOAc 50:1) afforded 4.0 mg ($11 \mu \mathrm{~mol}, 43 \%$) of allyl methyl ether 235.
$\mathbf{M}\left(\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{3}\right)=370.53 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex/EtOAc 20:1) $=0.37$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.63(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-13), 5.38(\mathrm{~s}, 1 \mathrm{H}$,

H-19), 4.10 (d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-23$), 3.81 ($\mathrm{d}, \mathrm{J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-23$ '), 3.76 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-16$), 3.57 (s , $3 \mathrm{H}, \mathrm{H}-17$), 3.37 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-24$), 2.63 ($\mathrm{d}, \mathrm{J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 2.57 (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9{ }^{\prime}$), 2.13 (td, $J=12.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-21), 2.02(\mathrm{dt}, J=18.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-20), 1.71(\mathrm{td}, J=13.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5)$, 1.62 (ddd, $J=11.7,5.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-20^{\prime}$), 1.59 - 1.57 (m, 1H, H-5'), 1.52 - 1.49 (m, 1H, H-4), 1.48 - 1.43 (m, 1H, H-21'), 1.40 (d, J= $6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 1.39 - 1.35 (m, 1H, H-4'), 1.33 (s, 3H, H-22), 1.11 (s, 3H, H-7), 0.80 (d, J = 6.5 Hz, 3H, H-8).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=152.2(\mathrm{C}-14), 151.0(\mathrm{C}-11), 144.2$ (C-18), 139.8 (C-15), 131.8 (C-10), 118.3 (C-19), 111.1 (C-13), 108.9 (C-12), 74.6 (C-23), 60.2 (C-1), 58.0 (C-24), 55.6 (C-16), 55.4 (C-17), 49.4 (C-2), 40.1 (C-9), 38.5 (C-6), 34.6 (C-3), 30.1 (C-5), 27.7 (C-4), 26.0 (C21), 25.2 (C-22), 23.8 (C-20), 17.4 (C-8), 17.2 (C-7).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2955$ (s), 2925 (s), 2854 (s), 2160 (s), 2053 (s), 1974 (s), 1669 (s), 1490 (s), 1463 (s), 1378 (s), 1255 (s), 1177 (s), 1138 (s), 1092 (s), 1040 (s), 966 (s), 793 (s), 721 (s), 649 (s), 562 (s), 541 (s).

GC-MS (70 eV): $m / z(\%)=370\left(60,[M]^{+}\right), 338(100), 323(75), 307(40), 281$ (40), 241 (40), 187 (70), 151 (30), 115 (20), 91 (20), 55 (20).

HRMS (EI): Calc. [amu] Found [amu]

$$
370.25025[\mathrm{M}] \cdot+\quad 370.2503[\mathrm{M}] \cdot+
$$

$[\alpha]^{20}{ }_{\lambda}\left(c=0.10 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):-41^{\circ}(436 \mathrm{~nm}),-25^{\circ}(546 \mathrm{~nm}),-25^{\circ}(579 \mathrm{~nm}),-27^{\circ}$ (589 nm).

5.2.44 SYNTHESIS OF METHYL ESTER 239

To a solution of 10 mg ($21 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) of enol triflate 185 in 0.28 mL of DMF were successively added 11 mg ($9.5 \mu \mathrm{~mol}, 0.45$ eq.) of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, 10 \mathrm{mg}(0.24 \mathrm{mmol}, 11 \mathrm{eq}$.) LiCl and 0.28 mL of MeOH . The suspension was degassed with 3 freeze-pump-thaw cycles and stirred under CO atmosphere at $120^{\circ} \mathrm{C}$ for 16 h . The mixture was allowed to reach rt before it was quenched with 0.5 mL of $\mathrm{H}_{2} \mathrm{O}$ and the aqueous phase was extracted with $3 \times 1 \mathrm{~mL}$ EtOAc. The combined organic phases were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (c-Hex/EtOAc $100: 1$ to $50: 1$) to provide 7.3 mg ($0.019 \mathrm{mmol}, 90 \%$) of methyl ester 239 as a pale yellow, viscous oil.
$\mathbf{M}\left(\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{4}\right)=384.52 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex/EtOAc 20:1) $=0.20$
${ }^{1} \mathbf{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=6.64(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12), 6.61(\mathrm{~d}, J$
 $=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13$), 6.53 (dd, $J=4.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-19$), $3.76(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-16), 3.74(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-24), 3.60$ (s, 3H, H-17), 2.65 (d, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 2.58 (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$) , 2.29 ($\mathrm{dt}, J=12.6,3.2 \mathrm{~Hz}$, 1H, H-5), $2.14-2.03$ (m, 2H, 20-H, H-21), $1.75-1.65$ (m, 1H, H-20'), 1.58 (qd, J= 13.2, $3.4 \mathrm{~Hz}, 1 \mathrm{H}$, H-5'), 1.52 - 1.47 (m, 2H, H-4, H-21'), 1.45 (s, 3H, H-22), 1.42 - 1.36 (m, 1H, H-3), 1.36 - 1.34 (m, 1H, H-4'), 1.11 (s, 3H, H-7), 0.80 (d, J = 6.5 Hz, 3H, H-8).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=168.1$ (C-23), 152.4 (C-14), 150.9 (C-11), 141.9 (C-18), 139.1 (C-15), 134.0 (C-19), 131.9 (C-10), 110.3 (C-13), 109.1 (C-12), 60.6 (C-1), 55.7 (C-16), 55.5
(C-17), 51.1 (C-24), 49.8 (C-2), 40.3 (C-9), 38.7 (C-6), 34.6 (C-3), 29.7 (C-5), 28.0 (C-4), 25.2 (C21), 24.9 (C-22), 24.5 (C-20), 17.5 (C-8), 17.3 (C-7).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3019,2947,2858,2831,1709,1638,1586,1488,1461,1436,1385,1377$, $1355,1315,1291,1253,1224,1174,1158,1126,1081,1061,1036,1015,999,989,972,958,948$, $934,912,885,866,852,823,790,772,761,739,720,711,652,599,530,453$.

GC-MS (70 eV): $m / z(\%)=340\left(100,[M]^{+}\right), 297(64), 271(35), 255(15), 204(21), 199(70), 189$ (37), 152 (16).

HRMS (ESI): Calc. [amu] Found [amu]

$$
407.21928[\mathrm{M}+\mathrm{Na}]^{+} \quad 407.21946[\mathrm{M}+\mathrm{Na}]^{+}
$$

$[\boldsymbol{\alpha}]^{20}{ }_{\lambda}\left(c=0.48 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):-31^{\circ}(436 \mathrm{~nm}),-17^{\circ}(546 \mathrm{~nm}),-15^{\circ}(579 \mathrm{~nm}),-14^{\circ}$ (589 nm).

5.2.45 SYNTHESIS OF ALLYLIC ALCOHOL 236

A solution of 5.3 mg ($0.014 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) of ester 239 \mathrm{in} 0.16 \mathrm{~mL}$ of THF was cooled to $0^{\circ} \mathrm{C}$ and $85 \mu \mathrm{~L}$ ($0.085 \mathrm{mmol}, 6.2$ eq.) of DIBAL-H (1.0 M in hexanes) were added dropwise. The solution was stirred for 1.5 h and the reaction was quenched with 0.3 mL of MeOH . After addition of 0.3 mL of aqueous Rochelle's salt solution and 0.3 mL of $\mathrm{H}_{2} \mathrm{O}$ the aqueous phase was extracted with $3 \times 1 \mathrm{~mL}$ EtOAc. The combined organic phases were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (c-Hex/EtOAc 20:1 to 9:1) to provide 4.1 mg ($0.012 \mathrm{mmol}, 86 \%$) of allylic alcohol 236 as colorless, viscous oil.
$\mathbf{M}\left(\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{2}\right)=356.51 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c-\mathrm{Hex} / \mathrm{EtOAc} 9: 1)=0.08$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.72(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13), 6.67(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12), 5.46(\mathrm{dt}, J=3.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-19), 4.28-4.25(\mathrm{~m}, 1 \mathrm{H}$, H-23), 4.18 - 4.14 (m, 1H, H-23'), 3.79 ($s, 3 H, H-16$), 3.67 ($s, 3 H, H-17$), 2.68 (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 2.59 (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H} . \mathrm{H}-9$ '), 2.14 (td, $J=12.6$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-21$), $2.06-2.01$ (m, 1H, H-20), 1.76 (td, $J=13.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$

5), 1.68 - 1.65 (m, 2H, H-5', H-20'), $1.52-1.49$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$), $1.47-1.44$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-21^{\prime}$), $1.43-1.40$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3$), $1.38-1.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 1.33(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-22), 1.13(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7), 0.83(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$, H-8).
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=152.3$ (C-14), 151.4 (C-11), 146.9 (C-18), 139.8 (C-15), 132.0 (C-10), 119.2 (C-19), 112.2 (C-13), 109.2 (C-12), 64.9 (C-23), 60.6 (C-1), 56.2 (C-17), 55.7 (C-16), 49.5 (C-2), 40.2 (C-9), 38.9 (C-6), 34.7 (C- 3), 30.9 (C-5), 27.8 (C-4), 25.9 (C-22), 25.5 (C21), 23.8 (C-20), 17.5 (C-8), 17.4 (C-7).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2955(\mathrm{~m}), 2925(\mathrm{~m}), 2854(\mathrm{~m}), 2160(\mathrm{w}), 2053$ (w), 1974 (w), 1669 (w), 1490 (m), 1463 (m), 1378 (w), 1255 (m), 1177 (w), 1138 (w), 1092 (w), 1040 (w), 966 (w), 793 (w), 721 (w), 649 (w), 562 (w), 541 (w)

GC-MS (70 eV): $m / z(\%)=356[\mathrm{M}]^{+}, 338,323,297,269,255,241,217,204,187,165,151,128$, 115, 91, 69, 55.

HRMS (EI):

$$
\begin{array}{ll}
\text { Calc. [amu] } & \text { Found [amu] } \\
356.23460[\mathrm{M}]^{++} & 356.23480[\mathrm{M}]^{\circ+}
\end{array}
$$

$[\alpha]^{20}{ }_{\lambda}\left(c=0.37 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):-0.3^{\circ}(436 \mathrm{~nm}),-5.1^{\circ}(546 \mathrm{~nm}),-4.4^{\circ}(579 \mathrm{~nm}),-4.7^{\circ}$ (589 nm).
5.2.46 SYNTHESIS OF (-)-DYSIHERBOLE (ent-110)

According to Lu and coworkers, ${ }^{[63]}$ a solution of $4.0 \mathrm{mg}(11.2 \mu \mathrm{~mol}, 1.0$ eq.) of olefin 236 in $750 \mu \mathrm{~L}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $-60^{\circ} \mathrm{C}$ and $56 \mu \mathrm{~L}\left(56 \mu \mathrm{~mol}, 5.0\right.$ eq.) of $\mathrm{BBr}_{3}\left(1.0 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 1.5 h . After quenching with 5 mL of sat. aqueous NaHCO_{3} the
aqueous phase was extracted with $3 \times 5 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (c-Hex/EtOAc 20:1) to provide 1.8 mg ($5.5 \mu \mathrm{~mol}, 49 \%$; Lit.: 55%) of (-)-dysiherbol E (ent-110) as a yellow, sticky oil.
$\mathbf{M}\left(\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3}\right)=328.45 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathrm{f}}(c$-Hex/EtOAc 9:1) $=0.22$

$\mathbf{1}^{\mathbf{H}}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-18), 6.51(\mathrm{~d}, J=$ 8.5 Hz, 1H, H-19), 4.37 (br, 1H, OH), 3.82 (d, $J=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 3.58 (d, $J=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11^{\prime}$), 2.57 (s, 2H, H-15), 2.25 (dd, J = 14.7, 5.9 Hz, 1H, H-3), 1.88 - 1.82 (m, 2H, H-3', H-1), $1.63-1.59$ (m, 2H, H-2), 1.40-1.25 (m, 5H, H-1', H-6, H-7), 1.27 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-12$), 1.23 - 1.22 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-8$), 1.09 (s , $3 \mathrm{H}, \mathrm{H}-14), 0.83(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-13)$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=147.52$ (C-20), 146.2 (C-17), 132.5 (C-21), 125.6 (C-16), 114.5 (C-18), 111.7 (C-19), 81.2 (C-4), 52.0 (C-9) , 49.4 (C-10), 39.4 (C-11), 38.3 (C-5), 35.4 (C-8), 31.9 (C-3), 30.2 (C-6), 26.2 (C-7, C-1), 19.1 (C-2), 19.0 (C-12), 17.7 (C-13), 14.9 (C-14).

GC-MS (70 eV): $m / z(\%)=328\left(5,[M]^{+}\right), 312(100), 296(14), 283(14), 269(18), 227(14), 187$ (11), 173 (41), 156 (11), 119 (14), 91 (14).

5.2.47 SYNTHESIS OF DIENE 241

In a flame dried Schlenk flask 19.8 mg ($41.7 \mu \mathrm{~mol}, 1.0$ eq.) of enol triflate 185 were dissolved in $200 \mu \mathrm{~L}$ of dry DMF. 8.7 mg ($0.21 \mathrm{mmol}, 5.0 \mathrm{eq}$.) of $\mathrm{LiCl}, 10.2 \mathrm{mg}(8.83 \mu \mathrm{~mol}, 0.21 \mathrm{eq}$.$) of \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $50.0 \mu \mathrm{~L}$ ($54.3 \mathrm{mg}, 171 \mu \mathrm{~mol}, 4.1 \mathrm{eq}$.) of $n \mathrm{Bu}_{3} \mathrm{SnCHCH}_{2}$ were added and the reaction mixture was heated to $120^{\circ} \mathrm{C}$ for 2.5 h . After cooling to rt , excess reagent was quenched with 0.5 mL of $\mathrm{H}_{2} \mathrm{O}$ and the aqueous phase was extracted with $4 \times 0.5 \mathrm{~mL}$ of EtOAc. The combined organic phases were dried over MgSO_{4} and the solvent was removed under reduced pressure. Purification of the crude product by silica gel column chromatography (c-Hex/toluene $8: 1$) afforded 11.0 mg ($31.2 \mu \mathrm{~mol}, 75 \%$) of diene 241.
$\mathbf{M}\left(\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{2}\right)=352.52 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c-\mathrm{Hex} / \mathrm{EtOAc} 20: 1)=0.52$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.66(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-13), 6.46-6.39(\mathrm{~m}$, 1H, H-23), $5.53-5.51$ (m, 1H, H-19), 5.34 (dd, $J=17.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-24$), 4.97
 (dd, $J=10.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-24{ }^{\prime}$), 3.79 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-17$), 3.62 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-16$), 2.66 (d, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 2.61 (d, $\left.J=16.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9^{\prime}\right), 2.11$ (td, $J=12.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-21$), 2.01 (dt, $J=18.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-20$), 1.76 (td, $J=12.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 1.68 (dddt, $J=16.1,9.5,6.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-20{ }^{\prime}$), 1.61 (dt, $\left.J=13.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 1.55-1.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-21^{\prime}\right), 1.43-1.34$ (m, 2H, H-3, H-4'), 1.27 (s, $3 \mathrm{H}, \mathrm{H}-22$), 1.12 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-7$), 0.83 (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-8$).
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=152.5(\mathrm{C}-14), 151.0(\mathrm{C}-11), 148.6$ (C-18), 139.9 (C-15), 137.4 (C-23), 131.9 (C-10), 117.3 (C-19), 112.8 (C-24), 111.0 (C-12), 109.0 (C-13), 60.0 (C-1), 55.8 (C-17), 55.7 (C-16), 49.6 (C-2), 40.1 (C-9), 38.9 (C-6), 34.7 (C-3), 31.0 (C-5), 27.9 (C-4), 25.9 (C-21), 25.0 (C-22), 24.1 (C-20), 17.6 (C-8), 17.1 (C-7).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3077(\mathrm{w}), 2941(\mathrm{~m}), 2907(\mathrm{~m}), 2871(\mathrm{~m}), 2830(\mathrm{~m}), 1607(\mathrm{w}), 1586(\mathrm{w})$, 1489 (s), 1461 (m), 1436 (m), 1385 (m), 1349 (w), 1314 (m), 1253 (s), 1175 (m), 1161 (w), 1149 (m), 1133 (m), 1122 (w), 1089 (m), 1077 (m), 1060 (m), 1038 (m), 997 (m), $971(\mathrm{~m})$, $956(\mathrm{w}), 902(\mathrm{~m}), 851(\mathrm{w}), 790(\mathrm{~m}), 734(\mathrm{~m}), 720(\mathrm{~m}), 651(\mathrm{w}), 518(\mathrm{w})$.

GC-MS (70 eV): $m / z(\%)=352\left(70,[M]^{+}\right), 337(15), 297(15), 257(20), 241$ (15), 199 (100), 171 (30), 151 (15), 91 (30), 55 (15).

HRMS (EI):	Calc. $[\mathrm{amu}]$	Found $[\mathrm{amu}]$
	$352.23968[\mathrm{M}]^{\bullet+}$	$352.23929[\mathrm{M}]^{\bullet+}$

$[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\lambda}\left(c=0.55 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):-47^{\circ}(436 \mathrm{~nm}),-31^{\circ}(546 \mathrm{~nm}),-28^{\circ}(579 \mathrm{~nm}),-27^{\circ}$ (589 nm).

5.2.48 SYNTHESIS OF DIENE ent-241

In a flame dried Schlenk flask 20.0 mg ($42.1 \mu \mathrm{~mol}, 1.0$ eq.) of enol triflate ent- $\mathbf{1 8 5}$ were dissolved in $200 \mu \mathrm{~L}$ of dry DMF. 10.7 mg ($0.25 \mathrm{mmol}, 5.9 \mathrm{eq}$) of LiCl, 10.4 mg ($9.00 \mu \mathrm{~mol}, 0.21 \mathrm{eq}$.) of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $49.0 \mu \mathrm{~L}\left(53.2 \mathrm{mg}, 168 \mu \mathrm{~mol}, 4.0\right.$ eq.) of $n \mathrm{Bu}_{3} \mathrm{SnCHCH}_{2}$ were added and the reaction mixture was heated to $120^{\circ} \mathrm{C}$ for 3 h . After cooling to rt , excess reagent was quenched with 0.3 mL of $\mathrm{H}_{2} \mathrm{O}, \mathrm{NaCl}$ was added and the aqueous phase was extracted with $4 \times 0.5 \mathrm{~mL}$ of EtOAc. The combined organic phases were dried over MgSO_{4} and the solvent was removed under reduced pressure. Purification of the crude product by silica gel column chromatography (c-Hex/toluene 5:1) afforded 12.6 mg ($35.7 \mu \mathrm{~mol}, 85 \%$) of diene ent-241.
$\mathbf{M}\left(\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{2}\right)=352.52 \mathrm{~g} / \mathrm{mol}$
$[\alpha]^{20}{ }_{\lambda}\left(c=0.57 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):+24^{\circ}(436 \mathrm{~nm}),+19^{\circ}(546 \mathrm{~nm}),+17^{\circ}(579 \mathrm{~nm}),+16^{\circ}$ (589 nm).

Additional analytical data was in accordance with that recorded for $\mathbf{2 4 1}$ (see chapter 5.2.47).

5.2.49 SYNTHESIS OF PENTACYCLIC BROMIDE 242

A solution of 2.4 mg ($6.8 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) of diene $\mathbf{2 4 1}$ in $190 \mu \mathrm{~L}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $-78^{\circ} \mathrm{C}$ and $34 \mu \mathrm{~L}\left(34 \mu \mathrm{~mol}, 5.0\right.$ eq.) of $\mathrm{BBr}_{3}\left(1.0 \mathrm{M} \mathrm{in} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and the dark brown mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1.5 h . After quenching with solid NaHCO_{3} at this temperature the mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$ and sat. aqueous NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$ were added (decolorization). The aqueous phase was extracted with $3 \times 0.5 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried over MgSO_{4} and the solvent was removed under reduced pressure. The crude product was purified by silica gel
column chromatography (c-Hex/EtOAc 100:1) to provide 1.5 mg ($3.6 \mu \mathrm{~mol}, 53 \%$) of bromide 242 as a yellow, sticky oil.
$\mathbf{M}\left(\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{BrO}_{2}\right)=419.40 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex/EtOAc 20:1) $=0.33$

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.55(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-19), 6.46(\mathrm{~d}, J=$
$8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-20$), 3.77 (m, 1H, H-12), 3.75 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-23$), 3.57 (ddd, $J=12.2,9.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12 \mathrm{C}^{\prime}$), $2.62(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16), 2.56\left(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16^{\prime}\right), 2.40-2.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-11), 2.00$ (ddd, $\left.J=13.7,12.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11^{\prime}\right), 1.89-1.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 1.83$ (td, $J=12.9,5.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3$), 1.59 - 1-54 (m, 2H, H-2), 1.37 (m, 1H, H-1'), 1.21 (s, 3H, H-13), 1.20 (m, 1H, H-8), 1.06 (s, 3H, H15), 0.82 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-14)$.
${ }^{13}{ }^{13}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=150.2$ (C-18), $147.9(\mathrm{C}-21), 133.0(\mathrm{C}-22), 128.1$ (C-17), 110.4 (C-20), 110.2 (C-19), 83.7 (C-4), 55.9 (C-23), 51.7 (C-9), 48.9 (C-10), 39.9 (C-16), 38-3 (C-11), 37.5 (C-5), 35.3 (C-8) ,31.7 (C-3), 29.8 (C-6), 26.4 (C-7), 26.2 (C-1), 19.3 (C-2), 18.4 (C-13), 17.8 (C-14), 14.9 (C-15).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3383(\mathrm{w}), 2925(\mathrm{~s}), 2854(\mathrm{~s}), 1735(\mathrm{~m}), 1492(\mathrm{w}), 1464(\mathrm{~m}), 1378(\mathrm{w})$, 1263 (m), 1177 (w), 1108 (w), 1075 (w), 796 (w), 731 (w), 663 (w).

GC-MS (70 eV): $m / z(\%)=420\left(100,[M]^{+}\right), 338(10), 269(10), 241(10), 227(10), 201$ (15), 187 (90), 173 (10), 107 (15), 91 (10), 69 (10), 55 (20).

HRMS (EI):	Calc. $[\mathrm{amu}]$	Found [amu]
	$418.15019[\mathrm{M}]^{+}$	$418.1503[\mathrm{M}]^{+}$

5.2.50 SYNTHESIS OF PENTACYCLIC OLEFIN ent-240 AND METHYL ETHER ent-244

Based on a literature known procedure, ${ }^{[123]}$ in a flame dried Schlenk flask $170 \mu \mathrm{~L}$ ($578 \mu \mathrm{~mol}$, 14 eq.) of $n \mathrm{BuLi}$ (3.4 M in hexane) were diluted with $780 \mu \mathrm{~L}$ heptane. The solution was cooled to
$0^{\circ} \mathrm{C}$ and $52.0 \mu \mathrm{~L}(43.7 \mathrm{mg}, 710 \mu \mathrm{~mol}, 18 \mathrm{eq}$.$) of \mathrm{EtSH}$ were added. The arising suspension was stirred at $0^{\circ} \mathrm{C}$ for 10 min and at $21^{\circ} \mathrm{C}$ for 30 min . Then, the solvents were removed in vacuo (using Schlenk line) and the residual colorless solid was dried for 1.5 h .14 .2 mg ($40.3 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) of diene ent-241 in heptane were added before the solvent was again removed and the resulting solid dried in vacuo for $1 \mathrm{~h} .300 \mu \mathrm{~L}$ of TPPA were added and the reaction mixture was stirred at $170^{\circ} \mathrm{C}$ for 18 h . After cooling back to $21^{\circ} \mathrm{C}$, the reaction was quenched with 2 mL of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}, 0.3 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}$ were added and the aqueous phase was extracted with $3 \times 0.5 \mathrm{~mL}$ of EtOAc. The combined organic phases were dried over MgSO_{4} and the solvent was removed under reduced pressure. Purification of the crude product by silica gel column chromatography (c-Hex/EtOAc 20:1) afforded 11 mg of an approximately $1: 1$ mixture of pentacyclic olefin ent-240 and methyl ether ent-244 that was used in the following reaction. An aliquot was again subjected to silica gel column chromatography (c-Hex/EtOAc $20: 1$) to separate methyl ether ent-244 for analytical characterization.
$\mathbf{M}\left(\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{2}\right)=338.49 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex/EtOAc 9:1) $=0.26$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.60(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-13), 6.42-6.36(\mathrm{~m}$,
 $1 \mathrm{H}, \mathrm{H}-22$), $5.50-5.47$ (m, 1H, H-18), 5.31 (dd, $J=17.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-23$), 4.95 (dd, $J=10.7,2.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-23$ '), 3.58 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-16$), 2.60 (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 2.53 (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$ '), 2.09 (td, $J=12.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-20), 1.99(\mathrm{dt}, J=18.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-19), 1.74(\mathrm{td}, J=12.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5)$, 1.71 - 1.63 (m, 1H, H-19), 1.58 (dt, $J=13.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), $1.52-1.44$ (m, 1H, H-4), $1.44-1.39$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-20^{\prime}$), $1.39-1.33\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime}\right), 1.24(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-21), 1.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7), 0.80(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{H}-8)$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=152.3(\mathrm{C}-14), 148.4(\mathrm{C}-17), 146.5(\mathrm{C}-11), 139.4(\mathrm{C}-15)$, 137.1 (C-22), 129.0 (C-10), 117.0 (C-18), 112.7 (C-23), 111.9 (C-12,C-13), 59.8 (C-1), 55.7 (C-16), 49.8 (C-2), 39.2 (C-9), 38.7 (C-6), 34.4 (C-3), 30.7 (C-5), 27.7 (C-4), 25.7 (C-20), 24.8 (C-21), 23.8 (C-19), 17.3 (C-8), 16.9 (C-7).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3676(\mathrm{w}), 3363(\mathrm{w}), 2954(\mathrm{~m}), 2926(\mathrm{~m}), 2195(\mathrm{w}), 2156(\mathrm{w}), 2025(\mathrm{w})$, 1973 (w), 1669 (w), 1490 (m), 1461 (m), 1409 (w), 1385 (w), 1257 (m), 1076 (m), 1048 (m), 903 (w), 802 (w), 729 (w), 649 (w).

GC-MS (70 eV): m/z (\%) = 338 (90, [M]+), 323 (20), 283 (20), 243 (30), 227 (20) 201 (35), 185 (100) 157 (40), 115 (20), 91 (30), 77 (20), 55 (25).

HRMS (EI):

Calc. [amu]
338.22403 [M]•+

Found [amu]
338.2240 [M]•+
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\lambda}\left(c=0.20 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):+35^{\circ}(436 \mathrm{~nm}),+22^{\circ}(546 \mathrm{~nm}),+16^{\circ}(579 \mathrm{~nm}),+16^{\circ}$ $(589 \mathrm{~nm})$.

5.2.51 SYNTHESIS OF PENTACYCLIC DIENE ent-240

In an argon flushed flask 11 mg of an approximately $1: 1$ mixture of pentacyclic olefin ent-240 and methyl ether ent- $\mathbf{2 4 4}$ were dissolved in $850 \mu \mathrm{~L}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. At $22{ }^{\circ} \mathrm{C} 52.5 \mathrm{mg}$ ($226 \mu \mathrm{~mol}, 7 \mathrm{eq}$.) of CSA were added and the arising green suspension was stirred for 1 h . The reaction was quenched with 1 mL of sat. aqueous NaHCO_{3} and the aqueous phase was extracted with $3 \times 0.5 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried over MgSO_{4} and the solvent was removed under reduced pressure. Purification of the crude product by silica gel column chromatography (c-Hex/EtOAc $50: 1$) afforded 3.5 mg ($10.8 \mu \mathrm{~mol}, 27 \%$ over 2 steps) of pentacyclic diene ent- $\mathbf{2 4 0}$ as a yellowish viscous oil.
$\mathbf{M}\left(\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{2}\right)=324.46 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex/EtOAc 9:1) $=0.24$
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=6.51(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-19, \mathrm{H}-20), 5.93$
 (dd, $J=17.4,11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11$), 5.36 (dd, $J=17.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), 5.21 (dd, $J=11.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}-12^{\prime}\right), 2.56(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-16), 1.92-1.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 1.61-1.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime}, \mathrm{H}-2\right), 1.36$ $-1.33\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 1.25-1.20(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-8), 1.20(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-13), 1.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-15), 0.83(\mathrm{~d}, \mathrm{~J}=$ 6.6 Hz, 3H, H-14).
${ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=145.9(\mathrm{C}-18), 141.0(\mathrm{C}-21), 138.8(\mathrm{C}-11), 132.6(\mathrm{C}-22)$, 125.6 (C-17), 115.3 (C-12), 114.2 (C-20), 111.4 (C-19), 83.8 (C-11), 52.0 (C-9), 49.0 (C-10), 37.2 (C-5), 35.7 (C-8), 30.2 (C-3), 26.6 (C-1), 26.2 (C-7), 19.3 (C-2), 18.0 (C-13), 17.6 (C-14), 15.7 (C-15).

FT-IR (ATR): $\tilde{\text { r }}$ [cm-1] = 3357 (w), 2929 (s$), 2856$ (m), 2153 (w), 1719 (w), 1631 (w), 1491 (m), 1462 (m), 1384 (w), 1323 (w), 1261 (s), 1195 (w), 1156 (w), 1103 (w), 1083 (w), 1056 (w), 957 (w), 924 (w), 870 (w), 802 (m), 741 (w), 576 (w), 552 (w), 527 (w), 519 (w).

GC-MS (70 eV): $m / z(\%)=324\left(100,[M]^{+}\right), 309(39), 295(71), 253(32), 236(52), 225(66), 187$ (33), 165 (21), 115 (30), 91 (42), 55 (47).

HRMS (EI):

$$
\begin{array}{ll}
\text { Calc. }[\mathrm{amu}] & \text { Found }[\mathrm{amu}] \\
324.20838[\mathrm{M}] \cdot+ & 324.2080[\mathrm{M}]++
\end{array}
$$

$[\alpha]^{20}{ }_{\lambda}\left(c=0.10 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):+92^{\circ}(436 \mathrm{~nm}),+51^{\circ}(546 \mathrm{~nm}),+43^{\circ}(579 \mathrm{~nm}),+34^{\circ}$ (589 nm).

5.2.52 Synthesis of (+)-DySIHERbol E (110)

In Schlenk tube $5.2 \mathrm{mg}(16.0 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) of pentacyclic olefin ent- \mathbf{2 4 0}$ were dissolved in $50 \mu \mathrm{~L}$ of MeOH and the solution was cooled to $-78{ }^{\circ} \mathrm{C}$. The yellowish solution was ozonized for 20 min until discoloration was observed. Residual O_{3} was removed by directing O_{2} through the solution for 15 min . Subsequently, 1.8 mg ($47.6 \mu \mathrm{~mol}, 3.0$ eq.) of NaBH_{4} were added and the solution allowed to stir at $21^{\circ} \mathrm{C}$ for 2.5 h . After adding $100 \mu \mathrm{~L}$ of MeOH the solution was again treated with $\mathrm{O}_{2} . \mathrm{H}_{2} \mathrm{O}$ was added, the aqueous phase extracted with 3 xEtOAc and the combined organic layers dried over MgSO_{4}. The crude product was purified by silica gel column chromatography (c Hex/EtOAc 20:1) to provide $1.9 \mathrm{mg}(5.8 \mu \mathrm{~mol}, 36 \%)$ of (+)-dysiherbol E (110) as a yellow, sticky oil.
$\mathbf{M}\left(\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3}\right)=328.45 \mathrm{~g} / \mathrm{mol}$
Analytical data was in accordance with that recorded for ent-110 (see chapter 5.2.46) and with that reported by $L u$ and coworkers.[63]

5.3 SYNTHETIC PROCEDURES AND ANALYTICAL DATA STUDIES ON A GOLD-CATALYZED CYCLIZATION

5.3.1 SYNTHESIS OF ALLYLIC ALCOHOL 245

In an argon-flushed flask 27 mg ($0.082 \mathrm{mmol}, 1.0 \mathrm{eq}$.) of enone 112 were dissolved in 0.80 mL of MeOH and the solution was cooled to $0^{\circ} \mathrm{C} .37 \mathrm{mg}$ ($0.099 \mathrm{mmol}, 1.2 \mathrm{eq}$.) of $\mathrm{CeCl}_{3} \times 7 \mathrm{H}_{2} \mathrm{O}$ were added and 8.0 mg ($0.21 \mathrm{mmol}, 2.6$ eq.) NaBH_{4} were added over 5 min and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ and the aqueous phase was extracted 3 x with EtOAc. The combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4} and the solvent was removed under reduced pressure to give $25 \mathrm{mg}(0.076 \mathrm{mmol}, 92 \%)$ of a diastereomeric mixture $(d r=4: 3)$ of allylic alcohol 245 as a pale yellow oil.
$\mathbf{M}\left(\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3}\right)=330.47 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\mathbf{f}}(c$-Hex/EtOAc 1:1) $=0.61$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: Major diastereomer: $\delta[\mathrm{ppm}]=6.77(\mathrm{~d}, J=3.6 \mathrm{~Hz}$,
 $1 \mathrm{H}, \mathrm{H}-15), 6.77-6.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-12), 6.70-6.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-13), 3.97(\mathrm{t}, \mathrm{J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-18), 3.76$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-17$), 3.69 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-16$), 2.96 (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$), 2.64 ($\mathrm{d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$) , 2.43 $2.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 2.17-2.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 2.06-1.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right)^{*}, 1.91-1.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-21)^{*}$, $1.77-1.68$ (m, 2H, H-19), $1.74-1.70$ (m, 2H, 3-H, H-5'), 1.67 - 1.54 (m, 2H, H-20), 1.42 - 1.37 (m, $1 \mathrm{H}, \mathrm{H}-21$ ')*, $0.96(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7), 0.81(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-8)$. Minor diastereomer: $\delta[\mathrm{ppm}]=6.77-$ $6.75(\mathrm{~m}, 0.8 \mathrm{H}, \mathrm{H}-12), 6.75(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}, 0.8 \mathrm{H}, \mathrm{H}-15), 6.70-6.66(\mathrm{~m}, 0.8 \mathrm{H}, \mathrm{H}-13), 3.90(\mathrm{t}, J=4.0 \mathrm{~Hz}$, $0.8 \mathrm{H}, \mathrm{H}-18$), 3.753 (s, 2.3H, H-17), 3.749 (s, 2.3H, H-16), 2.95 (d, J = $14.3 \mathrm{~Hz}, 0.8 \mathrm{H}, \mathrm{H}-9$), 2.61 (d, $\left.J=14.3 \mathrm{~Hz}, 0.8 \mathrm{H}, \mathrm{H}-9{ }^{\prime}\right), 2.06-1.98(\mathrm{~m}, 0.8 \mathrm{H}, \mathrm{H}-4)^{*}, 1.95-1.89\left(\mathrm{~m}, 0.8 \mathrm{H}, \mathrm{H}-4^{\prime}\right)^{*}, 1.91-1.85(\mathrm{~m}$, $0.8 \mathrm{H}, \mathrm{H}-21)^{*}, 1.77-1.68(\mathrm{~m}, 1.6 \mathrm{H}, \mathrm{H}-19), 1.71$ - 1.66 (m, 0.8H, H-5)*, $1.70-1.67$ (m, 0.8H, H-3), 1.67 - 1.54 (m, 1.6H, H-20), 1.46 - 1.42 (m, 0.8H, H-5')*, 1.42 - 1.37 (m, 0.8H, H-21')*, 0.92 (s, 2.3H, H-7), $0.80(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2.3 \mathrm{H}, \mathrm{H}-8) . *$ Assignments possibly interconvertible.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl} 3$): Major diastereomer: $\delta[\mathrm{ppm}]=153.2$ (C-14), 152.5 (C-11), 138.9 (C-1), 131.1 (C-6), 129.5 (C-10), 116.1 (C-15), 111.33 (C-12), 111.31 (C-13), 69.3 (C-18), 56.1 (C-17), 55.7 (C-16), 41.4 (C-2), 34.4 (C-9), 33.6 (C-3), 32.3 (C-19), 26.7 (C-5), 26.6 (C-21), 25.6 (C-4), 22.2 (C-7), 19.1 (C-20), 16.2 (C-8). Minor diastereomer: $\delta[\mathrm{ppm}]=153.16(\mathrm{C}-14), 152.6$
(C-11), 138.1 (C-1), 130.7 (C-6), 129.6 (C-10), 117.4 (C-15), 111.6 (C-12), 111.2 (C-13), 69.7 (C-18), 56.2 (C-17), 55.8 (C-16), 41.8 (C-2), 36.8 (C-9), 34.0 (C-3), 32.1 (C-19), 26.2 (C-5), 26.1 (C-21), 25.8 (C-4), 21.5 (C-7), 19.0 (C-20), 16.1 (C-8).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3407$ (br), 2926 (s), 2856 (w), 2834 (w), 1730 (br), 1607 (w), 1589 (w), 1499 (s), 1464 (m), 1380 (m), 1346 (w), 1325 (w), 1274 (w), 1222 (s), 1179 (m), 1159 (w), 1123 (w), 1050 (m), $1030(\mathrm{w}), 996(\mathrm{w}), 926(\mathrm{w}), 880(\mathrm{w}), 868(\mathrm{w}), 803(\mathrm{~m}), 715(\mathrm{~m})$.

GC-MS (70 eV): $m / z(\%)=330\left(1,[\mathrm{M}]^{+}\right), 312(15), 179$ (45), 161 (100), 152 (62), 137 (61), 119 (38), 105 (38), 91 (52).

HRMS (ESI): Calc. [amu] Found [amu]

$$
353.20872[\mathrm{M}+\mathrm{Na}]^{+} \quad 353.20907[\mathrm{M}+\mathrm{Na}]^{+}
$$

$[\boldsymbol{\alpha}]^{20}{ }_{\lambda}\left(c=0.50 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):+0.3^{\circ}(436 \mathrm{~nm}),+0.7^{\circ}(546 \mathrm{~nm}),+0.4^{\circ}(579 \mathrm{~nm}),+0.1^{\circ}$ (589 nm).

5.3.2 SYNTHESIS OF OLEFIN 184 FROM ALLYLIC ALCOHOL 245

In an argon-flushed flask $20 \mathrm{mg}(0.061 \mathrm{mmol}, 1.0 \mathrm{eq}$.) of a diastereomeric mixture ($d r=4: 3$) of allylic alcohol 245 were dissolved in 6.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was cooled to $0{ }^{\circ} \mathrm{C}, 0.73 \mathrm{mg}$ (0.0024 mmol, 0.039 eq.) of AuCl_{3} in $0.66 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added and the green reaction mixture was stirred for 5 min at that temperature. 5 mg of QuadraSil TA® ${ }^{\circledR}$ were added and the suspension was stirred for further 15 min at $0^{\circ} \mathrm{C}$. The solids were separated by filtration and the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (c-Hex/EtOAc $30: 1$) to give 11 mg of a colorless sticky oil, containing approximately 9.4 mg ($0.030 \mathrm{mmol}, 50 \%$) of olefin 184 along with inseparable side products, which was determined by integration of suitable ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signals.
$\mathbf{M}\left(\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{2}\right)=312.45 \mathrm{~g} / \mathrm{mol}$

See chapter 5.2.21 for analytical characterization.
5.3.3 SYNTHESIS OF 4 -(2 ,5-DIMETHOXYPHENYL)-4-
HYDROXYBUTAN-2-ONE $(\mathbf{2 4 6})^{[124]}$

According to a literature procedure, ${ }^{[124]}$ a round bottom flask was charged with $1.00 \mathrm{~g}(6.02 \mathrm{mmol}$, 1.0 eq.) of dimethoxybenzaldehyde $\mathbf{2 0 8}$ together with 1.58 g ($11.4 \mathrm{mmol}, 1.9 \mathrm{eq}$.) of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and the solids were dissolved in 2.00 mL ($27.2 \mathrm{mmol}, 4.5 \mathrm{eq}$.) of acetone. The suspension was stirred for 2 d at rt. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ and the aqueous phase was extracted 3 x with MTBE. The combined organic phases were dried over MgSO_{4} and the solvent was removed under reduced pressure. Purification of the crude product by silica gel column chromatography (c - $\mathrm{Hex} / \mathrm{EtOAc}$ 4:1 to 2:1) afforded 835 mg ($3.72 \mathrm{mmol}, 62 \%$; Lit.: 97%) β-hydroxyketone 246 as a pale yellow oil.
$\mathbf{M}\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4}\right)=224.26 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{f}(\mathrm{cHex} / \mathrm{EtOAc} 4: 1) 0.07$

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=7.05(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.82-6.74(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4)$, $5.40-5.35$ (m, 1H, H-7), 3.79 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-11$), 3.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-12$), 3.43 (d, $J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, 0 \mathrm{OH}$), 2.93 (dd, $J=17.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), 2.76 (dd, $J=17.3,9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$ '), 2.19 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-10$).
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=209.6(\mathrm{C}-9), 154.1(\mathrm{C}-5), 150.0(\mathrm{C}-2), 132.1(\mathrm{C}-1), 113.1(\mathrm{C}-3$, C-4), 112.5 (C-6), 65.7 (C-7), 55.9 (C-11, C-12), 50.5 (C-8), 30.8 (C-10).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3443(\mathrm{br}), 2999(\mathrm{w}), 2941(\mathrm{~m}), 2835.7(\mathrm{~m}), 2063(\mathrm{w}), 1705(\mathrm{~s}), 1610(\mathrm{w})$, 1591 (w), 1493 (vs), 1464 (m), 1428 (m), 1359 (m), 1276 (m), 1213 (vs), 1178 (s), 1156 (s), 1124 (w), 1068 (m), 1042 (vs), 1023 (s), 957 (m), 926 (w), 877 (m), 803 (m), 778 (w), 713 (m), 704 (m), $604(\mathrm{~m}), 558(\mathrm{~m}), 527(\mathrm{~m}), 504(\mathrm{~m})$.
$[\boldsymbol{\alpha}]^{20}{ }_{\lambda} \quad\left(\mathrm{c}=0.51 \mathrm{~g} / 100 \mathrm{~cm}^{3}, \mathrm{CHCl}_{3}\right):-0.06^{\circ}(436 \mathrm{~nm}), 0.46^{\circ}(546 \mathrm{~nm}), 0.20^{\circ}(579 \mathrm{~nm}), 0.39^{\circ}(589$ nm).

5.3.4 SYNTHESIS OF 4-(2,5-DIMETHOXYPHENYL)BUTAN-2-ONE (247)

Based on a literature protocol, ${ }^{[125]}$ in an argon flushed Schlenk flask 402 mg ($\left.1.79 \mathrm{mmol}, 1.0 \mathrm{eq}.\right)$ of 246 were dissolved in 34 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2} .2 .80 \mathrm{~mL}\left(2.04 \mathrm{~g}, 17.5 \mathrm{mmol}, 9.8 \mathrm{eq}\right.$.) $\mathrm{Et}_{3} \mathrm{SiH}$ were added, the mixture was cooled to $0^{\circ} \mathrm{C}$ and $0.69 \mathrm{~mL}(1.02 \mathrm{~g}, 8.95 \mathrm{mmol}, 5.0 \mathrm{eq}$.) of TFA were added over 10 min . After stirring at $0^{\circ} \mathrm{C}$ for 4.5 h the reaction was quenched with sat. aqueous NaHCO_{3} the aqueous phase was extracted 3 x with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases dried over MgSO_{4} and the solvent was removed under reduced pressure. Purification of the crude product by silica gel column chromatography (c-Hex/EtOAc 9:1 to $4: 1$) afforded 147 mg ($706 \mu \mathrm{~mol}, 39 \%$) of ketone 247 as a yellowish oil.
$\mathbf{M}\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}\right)=208.26 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\boldsymbol{f}}(\mathrm{cHex} / \mathrm{EtOAc} 4: 1)=0.37$

${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=6.78-6.68(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-6), 3.78(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-11), 3.75(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{H}-12$), $2.87-2.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7), 2.74-2.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8), 2.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-10^{\prime}\right)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=208.7(\mathrm{C}-9), 153.58(\mathrm{C}-5), 151.8(\mathrm{C}-2), 130.6(\mathrm{C}-1), 116.5$ (C-6), 111.5 (C-3, C-4), 55.9 (C-11, C-12), 43.9 (C-8), 30.1 (C-10), 25.3 (C-7).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2997(\mathrm{w}), 2939(\mathrm{~m}), 2834(\mathrm{~m}), 1970(\mathrm{w}), 1712(\mathrm{~s}), 1609.15(\mathrm{w}), 1590(\mathrm{w})$, 1497 (vs), 1464 (m), 1444 (m), 1427 (m), 1358 (m), 1279 (m), 1219 (vs), 1179 (s), 1158 (s), 1124 (m), 1039 (s), 1022 (s), 967 (w), 926 (w), 872 (w), $840(\mathrm{w}), 800$ (m), 759 (w), 743 (w), 728 (w), 712 (m), 631 (w), 601 (w), 552 (w), 527 (w), 514 (w).

GC-MS (70 eV): $m / z(\%)=208\left(\mathrm{M}^{+}, 100\right), 165(33), 151(56), 138(12), 121$ (25), $91(17), 77(17)$, 43 (26).

5.3.5 SYNTHESIS OF ENOL TRIFLATE 248

In a flame dried Schlenk flask 115 mg ($1.01 \mathrm{mmol}, 1.6$ eq.) of LDA were dissolved in 2.9 mL of dry THF. The suspension was cooled to $-78^{\circ} \mathrm{C}$ and 124 mg ($629 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) of ketone 247 in 1.7 mL of dry THF were added over 10 min . After stirring for 10 min at $-78^{\circ} \mathrm{C}, 364 \mathrm{mg}(1.02 \mathrm{mmol}, 1.7 \mathrm{eq}$. of PhNTf_{2} were added portion wise. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 50 min and at rt for 1 h . After quenching with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ the aqueous phase was extracted 3 x with EtOAc. The combined organic phases were dried over MgSO_{4} and the solvent was removed under reduced pressure. Purification of the crude product by silica gel column chromatography (c-Hex/EtOAc 20:1) afforded 103 mg ($303 \mu \mathrm{~mol}, 48 \%$) of enol triflate $\mathbf{2 4 8}$ as a yellow, viscous oil.
$\mathbf{M}\left(\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}\right)=340.31 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{f}(\mathrm{cHex} / \mathrm{EtOAc} 9: 1)=0.53$
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=6.78(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 6.74$
 - 6.70 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6$), $6.72-6.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 5.08(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H} \mathrm{H}-10), 4.92(\mathrm{dt}, J=3.6$, $\left.1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10^{\prime}\right), 3.78$ (s, 3H, H-12), 3.76 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-11$), $2.85-2.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7$), 2.64-2.60(m, $2 \mathrm{H}, \mathrm{H}-8$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=156.6$ (C-9), 153.6 (C-5), 151.8 (C-2), 129.1 (C-1), 116.5 (C-6), 111.3 (C-3), 111.9 (C-4), 104.7 (C-10), 55.9 (C-11, C-12), 34.1 (C-8), 27.7 (C-7).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3671,3000,2942,2836,1972,1670,1592,1501,1466,1415,1303,1282$, 1248, 1208, 1145, 1050, 1030, 929, 898, 838, 800, 707, 612.

GC-MS (70 eV): $m / z(\%)=340\left(\mathrm{M}^{+}, 20\right), 151$ (100), 121 (35), 91 (18), 69 (23), 51 (8).

HRMS (EI):
Calc. [amu]
340.05868 [M]•+

Found [amu]
340.05835 [M]•+

5.3.6 SYNTHESIS OF SILYL ETHER 249

64\%

Based on a literature protocol[105] in a Schlenk flask, a solution of $79 \mathrm{mg}(434 \mu \mathrm{~mol}, 1.6 \mathrm{eq}$.$) of$ olefin 211 in 0.3 mL of dry THF was cooled to $0^{\circ} \mathrm{C}$. Then, $1.0 \mathrm{~mL}(0.5 \mathrm{mmol}, 1.9 \mathrm{eq}$.) of 9-BBN (0.5 M in THF) were added and the mixture was stirred at rt for 2 h . The solution was then cooled to $0^{\circ} \mathrm{C}$ before 0.3 mL of $\mathrm{H}_{2} \mathrm{O}$ were added and stirring was continued at $0^{\circ} \mathrm{C}$ for 1 h . This borane solution was then transferred via needle to a second Schlenk flask charged with a solution of 11.6 mg ($14.2 \mu \mathrm{~mol}, 0.05$ eq.) of PdCl_{2} (dppf) $\mathrm{xCH}_{2} \mathrm{Cl}_{2}, 218 \mathrm{mg}\left(669 \mu \mathrm{~mol}, 2.5\right.$ eq.) of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and 91.0 mg ($267 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) of the enol triflate 248 in 2.0 mL of dry DMF at rt . The black reaction mixture was stirred at that temperature for 1 h before 7.7 mg of QuadraSil AP^{\circledR} were added as a metal scavenger and the suspension was stirred for further 30 min . Then the solids were separated by decantation and $\mathrm{H}_{2} \mathrm{O}$ and brine were added to the product solution. After extracting $4 x$ with EtOAc the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents were removed under reduced pressure. The residue was purified by silica gel column chromatography (c-Hex/EtOAc 20:1) to yield $65 \mathrm{mg}(172 \mu \mathrm{~mol}, 64 \%)$ of silyl ether 249 as a colorless oil.
$\mathbf{M}\left(\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}\right)=378.63 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\boldsymbol{f}}(\mathrm{cHex} / \mathrm{EtOAc} 9: 1)=0.5$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=6.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3)$,
6.73 (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.69(\mathrm{dd}, J=8.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.76$

(d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10$), 3.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-11$), 3.76 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-12$), $3.64-3.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-16), 2.74-$ $2.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7), 2.30-2.24(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8), 2.08(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-13), 1.56-1.46(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-14$, H-15), 0.89 (s, 9H, H-20), 0.05 (s, 6H, H-17, H-18).
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=153.6(\mathrm{C}-2), 151.9(\mathrm{C}-5), 149.8(\mathrm{C}-9), 132.2(\mathrm{C}-1), 116.3$ (C-6), 111.3 (C-3), 110.9 (C-4), 109.1 (C-10), 63.3 (C-16), 56.1 (C-11, C-12), 36.2 (C-8), 36.2 (C-13), 32.7 (C-15), 29.1 (C-7), 26.1 (C-20, C-21, C-22), 24.1 (C-14), -5.1 (C-17, C-18).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3073(\mathrm{w}), 2992(\mathrm{w}), 2949(\mathrm{~m}), 2929(\mathrm{~s}), 2903(\mathrm{~m}), 2857(\mathrm{~m}), 2833(\mathrm{w})$, 1734 (w), 1644 (w), 1591 (w), 1499 (s), 1463 (m), 1428 (m), 1388 (w), 1360 (w), 1326 (w), 1299
(w), 1279 (m), 1253 (m), 1221 (vs), 1179 (m), 1157 (w), 1100 (s), 1051 (s), 1031 (m), 1006 (m), 977 (w), 938 (w), 887 (m), 834 (vs), 807 (m), 774 (vs), 713 (m), 678 (w), 661 (w), 571 (w).

GC-MS (70 eV): $m / z(\%)=378\left(\mathrm{M}^{+}, 6\right), 321(42), 306(29), 207(18), 151$ (100), 121 (22), 91 (12), 75 (22), 59 (8).

HRMS (EI):

Calc. $[\mathrm{amu}]$	Found $[\mathrm{amu}]$
$378.25847[\mathrm{M}]^{++}$	$378.25790[\mathrm{M}]^{++}$

5.3.7 SYNTHESIS OF PRIMARY ALCOHOL 283

Based on a literature protocol, ${ }^{[106]}$ in an argon flushed flask 55 mg ($\left.145 \mu \mathrm{~mol}, 1.0 \mathrm{eq}.\right)$ of silyl ether 249 were dissolved in 2.3 mL of $\mathrm{CH}_{3} \mathrm{CN}$ and 0.03 mL of $\mathrm{H}_{2} \mathrm{O}$. Then, 4.0 mg ($6.0 \mu \mathrm{~mol}, 0.04$ eq.) of $\mathrm{Bi}(\mathrm{OTf})_{3}$ were added and the reaction mixture was stirred at rt for $5.5 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}$ was added and the aqueous phase was extracted 3 x with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4} and the solvent was removed under reduced pressure to afford 33.0 mg ($125 \mu \mathrm{~mol}, 84 \%$) of alcohol 283 as a colorless oil.
$\mathbf{M}\left(\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}\right)=264.37 \mathrm{~g} / \mathrm{mol}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=6.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 6.76$ (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.71$ (dd, $J=8.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 4.79 (d, $J=$
 $10.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10$), 3.81 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-11$), 3.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-12$), 3.68 ($\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-16$), $2.76-2.71$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-7$), 2.33-2.27(m, 2H, H-8), $2.13(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-13), 1.66-1.51(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-14, \mathrm{H}-15)$.
${ }^{13}{ }^{13}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=153.6(\mathrm{C}-2), 151.9(\mathrm{C}-5), 149.6(\mathrm{C}-9), 132.1(\mathrm{C}-1), 116.4$ (C-6), 111.3 (C-3), 110.9 (C-4), 109.3 (C-10), 63.1 (C-16), 56.1 (C-11, C-12), 36.2 (C-8), 36.1 (C-13), 32.6 (C-15), 29.1 (C-7), 24.0 (C-14).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3361(\mathrm{br}), 3073(\mathrm{w}), 2993(\mathrm{w}), 2933(\mathrm{~m}), 2861(\mathrm{~m}), 2833(\mathrm{~m}), 1716(\mathrm{w})$, 1644 (w), 1608 (w), 1591 (w), 1498 (s), 1464 (m), 1427 (m), 1357 (w), 1325 (w), 1279 (m), 1220 (vs), 1179 (m), 1156 (m), 1121 (m), 1048 (s), 1029 (s), 931 (w), 886 (m), 798 (m), 713 (m), 555 (w).

GC-MS (70 eV): $m / z(\%)=264\left(\mathrm{M}^{+}, 18\right), 191(6), 151(100), 121$ (35), 91 (14), $65(6)$.

HRMS (EI):

Calc. [amu]
$264.17200[\mathrm{M}]^{\bullet+}$

Found [amu]
$264.17178[\mathrm{M}]^{\bullet+}$

5.3.8 SYNTHESIS OF ALDEHYDE 250

A solution of 28.0 mg ($106 \mu \mathrm{~mol}$, 1.0 eq .) of primary alcohol 283 in 2.8 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $0^{\circ} \mathrm{C}$ and 91 mg ($215 \mu \mathrm{~mol}, 2.0$ eq.) of Dess-Martin periodinane were added slowly and stirring was continued at rt for 3 h . Then, the mixture was cooled to $0^{\circ} \mathrm{C}$ before $\mathrm{H}_{2} \mathrm{O}$ was added. The phases were separated and the aqueous phase was extracted 3 x with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (ultrapure SiO_{2}, c-Hex/EtOAc 5:1) to provide $20.0 \mathrm{mg}(76.2 \mu \mathrm{~mol}$, 73%) of aldehyde 250 as a colorless oil.
$\mathbf{M}\left(\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}\right)=262.35 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\boldsymbol{f}}(\mathrm{cHex} / \mathrm{EtOAc} 9: 1)=0.25$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=9.78(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16), 6.77$
(d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 6.73 (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 6.69 (dd, $J=8.7$,

$3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.79$ (d, J = 25.6 Hz, 2H, H-10), 3.78 (s, 3H, H-11), 3.76 (s, 3H, H-12), $2.73-2.68$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-7$), $2.44(\mathrm{td}, J=7.3,1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-15), 2.30-2.24(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8), 2.11(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-13$), 1.81 (quin, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-14$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=202.7(\mathrm{C}-16), 153.6(\mathrm{C}-5), 151.9(\mathrm{C}-2), 148.5(\mathrm{C}-9), 131.8$ (C-1), 116.4 (C-6), 111.3 (C-3), 110.9 (C-4), 110.1 (C-10), 56.0 (C-11, C-12), 43.5 (C-15), 35.9 (C-8), 35.6 (C-13), 31.1 (C-7), 20.1 (C-14).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3073$ (w), 2989 (w), 2935 (m), 2833 (m), 2721 (w), 1722 (m), 1644 (w), 1610 (w), 1590 (w), 1498 (s), 1464 (m), 1454 (m), 1428 (m), 1391 (w), 1279 (m), 1221 (vs), 1179 (m), 1157 (m), 1121 (m), 1048 (s), 1028 (m), 930 (w), 890 (m), 800 (m), 713 (m), 518 (w).

GC-MS (70 eV): $m / z(\%)=262\left(\mathrm{M}^{+}, 18\right), 244(8), 151(100), 137(12), 121$ (38), 91 (18), 77 (15).

HRMS (EI):

Calc. [amu]
262.15635 [M]•+

Found [amu]
262.15604 [M]•+
5.3.9 SYNTHESIS OF 2-(2,5-DIMETHOXYPHENYL)ETHANOL (253)

Based on a literature protocol,[114a] $2.32 \mathrm{~g}(61.2 \mathrm{mmol}, 2.5 \mathrm{eq})$ of LiAlH4 were suspended in 20 mL of dry THF under argon atmosphere and cooled to $0^{\circ} \mathrm{C}$. In another flask, 4.8 g ($24.5 \mathrm{mmol}, 1.0 \mathrm{eq}$.) of 2-(2,5-dimethoxyphenyl)acetic acid (252) was dissolved in 10 mL of dry THF, under argon atmosphere. This solution was slowly added to the stirred LiAlH_{4} suspension and the mixture was refluxed for 2 h . The reaction was cooled to $0^{\circ} \mathrm{C}$ and quenched by carefully adding 40 mL of $\mathrm{H}_{2} \mathrm{O}$. The mixture was brought to $\mathrm{pH} \sim 7$ by addition of 1 M aqueous HCl and the aqueous phase was extracted with $3 \times 100 \mathrm{~mL}$ of EtOAc. The combined organic layers were washed with 100 mL of sat. aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure to obtain 4.07 g ($22.3 \mathrm{mmol}, 91 \%$) of alcohol 253 as a yellowish oil.
$\mathbf{M}\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}\right)=182.22 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{f}(\mathrm{cHex} / \mathrm{EtOAc} 2: 1)=0.25$

${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=6.81-6.70(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-6, \mathrm{H}-8), 3.83(\mathrm{q}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1)$, 3.79 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-9 / 10$), $3.76(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-9 / 10), 2.88(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 1.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$.

GC-MS (70 eV): $m / z(\%)=82\left(\mathrm{M}^{+}, 94\right), 151(100), 137(38), 121$ (57), 107 (6), 91 (25), 77 (29), 66 (12).

5.3.10 SYNTHESIS OF 1-BROMO-2-(2,5-DIMETHOXYPHENYL)ETHANE (254)

Based on a literature protocol, $4.07 \mathrm{~g}(22.3 \mathrm{mmol}, 1.0 \mathrm{eq})$ of alcohol 253 were dissolved in 50 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under argon atmosphere. $9.61 \mathrm{~g}\left(29.0 \mathrm{mmol}, 1.3 \mathrm{eq}\right.$.) of CBr_{4} was added and the solution was cooled to $0{ }^{\circ} \mathrm{C} .7 .61 \mathrm{~g}(29.0 \mathrm{mmol}, 1.3 \mathrm{eq}$.$) of \mathrm{PPh}_{3}$ were added over 10 min upon which the colorless solution turned yellow. The reaction was stirred at rt for 1.5 h before the reaction was poured into 50 mL of $\mathrm{H}_{2} \mathrm{O}$. The mixture was extracted with $3 \times 50 \mathrm{~mL}$ of EtOAc, and the combined organic layers were washed with sat. aqueous NaCl and dried over MgSO_{4}. After evaporation of the solvent under reduced pressure, the crude product was purified by silica gel column chromatography (c-Hex/EtOAc 20:1) to yield 3.65 g ($14.9 \mathrm{mmol}, 67 \%$) of bromide 254 as a colorless oil.
$\mathbf{M}\left(\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2}\right)=245.12 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\boldsymbol{f}}(\mathrm{cHex} / \mathrm{EtOAc} 2: 1)=0.83$

${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=6.81-6.73(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-6, \mathrm{H}-8), 3.79(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-10), 3.77(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{H}-9), 3.57$ (dd, $J=8.1,7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1$), $3.15(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$).
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=153.5(\mathrm{C}-7), 151.9(\mathrm{C}-4), 128.3(\mathrm{C}-3), 117.1$ (C-8), 112.4 (C-6), 111.3 (C-5), 55.9 (C-10), 55.8 (C-9), 34.9 (C-2), 32.1 (C-1).

GC-MS (70 eV): m/z (\%) = $246\left(\mathrm{M}^{+}\right.$(81Br), 95), $246\left(\mathrm{M}^{+}(79 \mathrm{Br}), 100\right), 231$ (12), 229 (11), 166 (20), 151 (66), 135 (21), 121 (27), 91 (17), 77 (10).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2998(\mathrm{w}), 2948(\mathrm{w}), 2908(\mathrm{w}), 2833(\mathrm{w}), 1611(\mathrm{w}), 1591(\mathrm{w}), 1498(\mathrm{~s})$, 1464 (m), 1428 (m), 1272 (m), 1220 (s), 1179 (s), 1158 (m), 1138 (w), 1106 (m), 1046 (s), 1026 (m), 912 (w), 873 (w), 741 (w), 799 (m), 772 (w), 741 (w), 710 (w), 660 (m), 577 (w), 553 (w), 531 (w), 508 (w), 459 (w).

5.3.11 SYNTHESIS OF ALLYLIC ALCOHOL rac-255

Based on a literature protocol, ${ }^{[112]}$ a Schlenk flask charged with Mg turnings ($25 \mathrm{mg}, 1.02 \mathrm{mmol}$, $12 \mathrm{eq})$ was heated under vacuum with a gas torch. The Mg was soaked in 0.5 mL of dry $\mathrm{Et}_{2} \mathrm{O}$. In a separate flask, 50 mg ($0.20 \mathrm{mmol}, 2.3$ eq.) of bromide 254 were dissolved 2.5 mL of $\mathrm{dry}_{\mathrm{Et}}^{2} \mathrm{O}$ and 75 mg ($0.4 \mathrm{mmol}, 4.4$ eq.) of 1,2-dibromoethane were added. This mixture was added to the Mg suspension over 10 min . The slowly darkening mixture was stirred at rt for 100 min . The suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of $9 \mu \mathrm{~L}$ ($9 \mathrm{mg}, 0.09 \mathrm{mmol}, 1.0 \mathrm{eq}$.) of cyclohex-2enone (256) in 1.5 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ was added. The reaction was stirred at rt for 2 h and quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted 3 x with MTBE. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and dried over MgSO_{4}. After removal of the solvent under reduced pressure, the crude product was purified by silica gel column chromatography (c-Hex/EtOAc $15: 1$ to $2: 1$) to yield 6.0 mg ($23 \mu \mathrm{~mol}$, 25%) of allylic alcohol rac-255 as a colorless oil. Additionally, as undesired side products 10 mg ($60 \mu \mathrm{~mol}, 30 \%$ respective to 254) of (2,5-dimethoxy-phenyl)ethane (284) and 4 mg ($12 \mu \mathrm{~mol}$, 12% respective to $\mathbf{2 5 4}$) of 1,4-di(2,5-dimethoxy-phenyl)butane (283) were isolated as yellow oils.

alcohol rac-255:

$\mathbf{M}\left(\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}\right)=262.35 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\boldsymbol{f}}(\mathrm{cHex} / \mathrm{EtOAc} 3: 1)=0.31$

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=6.78-6.73(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-11, \mathrm{H}-14), 6.69(\mathrm{dd}, J=8.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}$, H-12), $5.86-5.79$ (m, 1H, H-3), 5.69 (d, J = $10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-15$), 3.76 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-16$), $2.68(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-8), 2.06-1.93(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4), 1.83-1.68$ (m, 6H, H-5, H-6, H-7).
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=153.7(\mathrm{C}-13), 151.8(\mathrm{C}-10), 132.7(\mathrm{C}-2), 132.5(\mathrm{C}-9), 130.1$ (C-3), 116.2 (C-14), 111.4 (C-11), 111.1 (C-12), 69.9 (C-1), 56.1 (C-15), 55.8 (C-16), 42.5 (C-7), 35.5 (C-6), 25.4 (C-4), 24.7 (C-8), 19.2 (C-5).

1,4-di(2,5-dimethoxyphenyl)butane (283):
$\mathbf{M}\left(\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4}\right)=330.42 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\boldsymbol{f}}(\mathrm{cHex} / \mathrm{EtOAc} 2: 1)=0.73$

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=6.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.72$
(d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), 6.67 (dd, $J=8.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 3.77 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-9$), 3.75 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-10$), 2.61 ($\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$), $1.66-1.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1)$.
${ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=153.6(\mathrm{C}-4), 152.0(\mathrm{C}-7), 132.7(\mathrm{C}-3), 116.4(\mathrm{H}-8), 111.4$ (C-5), 110.8 (C-6), 56.1 (C-9), 55.8 (C-10), 30.2 (C-2), 29.8 (C-1).

GC-MS (70 eV): $m / z(\%)=330\left(\mathrm{M}^{+}, 100\right), 165(12), 151(28), 121$ (15).
(2,5-dimethoxyphenyl)ethane (284):
$\mathbf{M}\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}\right)=166.22 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\boldsymbol{f}}(\mathrm{cHex} / \mathrm{EtOAc} 2: 1)=0.88$

${ }^{1} \mathbf{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=6.78-6.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-8), 6.68(\mathrm{dd}, J=8.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}$, H-6), 3.79 (s, 3H, H-9), 3.77 (s, 3H, H-10), $2.62(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 1.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-1)$.
${ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=153.7(\mathrm{C}-4), 151.8(\mathrm{C}-7), 134.1(\mathrm{C}-3), 115.7(\mathrm{C}-8), 111.3$ (C-5), 110.6 (C-6), 56.1 (C-9), 55.8 (C-10), 23.5 (C-2), 14.3 (C-1).

GC-MS (70 eV): $m / z(\%)=166\left(\mathrm{M}^{+}, 89\right), 151(100), 136(18), 121(17), 108(17), 91(25), 77(18)$.

5.3.12 SYNTHESIS OF 3-ETHOXYCYCLOHEX-2-ENONE (264) [115]

According to a literature protocol, ${ }^{[115]} 2.0 \mathrm{~g}$ (18 mmol, 1.0 eq.) of 1,3-cyclohexadione (263) was dissolved in 20 mL of EtOH and 1.2 mL of conc. aqueous HCl were added. After stirring for 2 d at rt the reaction was quenched with 30 mL of sat. aqueous NaHCO_{3}, despite incomplete conversion indicated by TLC. The mixture was extracted with $3 \times 20 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were washed with $2 \times 20 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and $2 \times 20 \mathrm{~mL}$ of sat. aqueous NaCl and dried over MgSO_{4}.

Evaporation of the solvent under reduced pressure yielded product $1.04 \mathrm{~g}(7.40 \mathrm{mmol}, 41 \%$; Lit: : 96%) of 264 as an slightly orange oil.
$\mathbf{M}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}\right)=140.18 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{f}(\mathrm{cHex} / \mathrm{EtOAc} 2: 1)=0.22$

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=5.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 3.89(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7), 2.39(\mathrm{t}, J=6.3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-6), 2.36-2.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4), 1.97(\mathrm{p}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5), 1.35(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-8)$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=200.0$ (C-1), 178.0 (C-3), 102.9 (C-2), 64.3 (C-7), 36.9 (C-6), 29.2 (C-4), 21.4 (C-5), 14.3 (C-8).

GC-MS (70 eV): $m / z(\%)=140\left(\mathrm{M}^{+}, 76\right), 112(54), 84(100), 68(52), 43(18)$.
FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2982(\mathrm{w}), 2944(\mathrm{w}), 2894(\mathrm{w}), 2834(\mathrm{w}), 1730(\mathrm{w}), 1647(\mathrm{~s}), 1596(\mathrm{~s})$, 1476 (w), 1403 (w), 1429 (w), 1377 (s), 1348 (m), 1328 (m), 1217 (s), 1180 (s), 1135 (s), 1111 (m), 1059 (w), 1029 (m), 967 (w), 929 (m), 869 (w), 814 (m), 759 (w), 658 (w), 606 (m), 549 (w), 510 (m), 485 (w), 447 (w), 429 (w).

5.3.13 SYnthesis of enone $\mathbf{2 6 1}$ via grignard addition

Based on a literature procedure, ${ }^{[112]}$ a flame dried Schlenk flask was charged with 50 mg ($2.02 \mathrm{mmol}, 12 \mathrm{eq}$.) of Mg turnings and heated under vacuum with a gas torch. The Mg was soaked in 1 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ under argon atmosphere. In a second flask, $100 \mathrm{mg}(0.40 \mathrm{mmol}, 2.3 \mathrm{eq}$.) of bromide 254 were dissolved in 5 mL of abs. $\mathrm{Et}_{2} \mathrm{O}$ and $68 \mu \mathrm{~L}(150 \mathrm{mg}, 0.80 \mathrm{mmol}, 4.5 \mathrm{eq}$.$) of 1,2-$ dibromoethane were added. This mixture was added to the Mg suspension over 15 min . The mixture was stirred for 30 min at rt resulting in a grey suspension, which was cooled to $0^{\circ} \mathrm{C}$ and a solution of 26 mg ($0.18 \mathrm{mmol}, 1.0$ eq.) of 3-ethoxycyclohex-2-enone (264) in 3 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ was added upon which the mixture turned yellow. The reaction was stirred for 75 min at rt. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted 3 x with MTBE. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and dried over MgSO_{4}. After evaporation of the solvent under reduced pressure, the crude product was purified by silica gel column chromatography (c-Hex/EtOAc 9:1 to 2:1) to yield $9.0 \mathrm{mg}(35 \mu \mathrm{~mol}, 19 \%)$ of enone 261 as a colorless oil. Additionally, $32 \mathrm{mg}(0.19 \mathrm{mmol}, 48 \%$
respective to 254) of (2,5-dimethoxyphenyl)ethane (284) was obtained as undesired major product as well as 6 mg ($18 \mu \mathrm{~mol}$, 9\% respective to 254) of 1,4-di(2,5-dimethoxyphenyl)butane (283) (for analytical data see 5.3.11).
$\mathbf{M}\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}\right)=260.33 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\boldsymbol{f}}(\mathrm{cHex} / \mathrm{EtOAc} 2: 1)=0.42$

${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=6.77(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11), 6.73-6.67(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-12), 5.89$ ($\mathrm{t}, \mathrm{J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-14$), $3.78(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-15), 3.75(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-16), 2.81-2.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8), 2.51-2.45$ (m, 2H, H-7), $2.38-2.33(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6), 2.32(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 1.99$ (dt, $J=12.4,6.2 \mathrm{~Hz}, 2 \mathrm{H}$, H-5).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=200.1(\mathrm{C}-1), 166.3(\mathrm{C}-3), 153.6$ (C-13), 151.8 (C-10), 130.5 (C-9), 126.0 (C-2), 116.4 (C-14), 111.4 (C-12), 111.3 (C-11), 55.9 (C-15), 55.8 (C-16), 38.3 (C-7), 37.5 (C-6), $30.0(\mathrm{C}-4), 28.4(\mathrm{C}-8), 22.9(\mathrm{C}-5)$.

GC-MS $(70 \mathrm{eV}): m / z(\%)=260\left(\mathrm{M}^{+}, 43\right), 242(40), 151(100), 121(32), 91(15), 77(10)$.

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3475(\mathrm{w}), 2996(\mathrm{w}), 2935(\mathrm{~m}), 2867(\mathrm{w}), 2833(\mathrm{~m}), 1971(\mathrm{w}), 1664(\mathrm{~s})$, 1624 (m), 1591 (m), 1499 (s), 1465 (m), 1453 (m), 1427 (m), 1373 (m), 1347 (m), 1325 (m), 1301 (m), 1280 (m), 1221 (s), 1192 (m), 1180 (m), 1157 (m), 1131 (m), 1118 (m), 1046 (m), $1028(\mathrm{~m}), 965(\mathrm{~m}), 932(\mathrm{w}), 886(\mathrm{~m}), 803(\mathrm{~m}), 756(\mathrm{~m}), 732(\mathrm{w}), 712(\mathrm{~m}), 673(\mathrm{w}), 626(\mathrm{w})$, 594 (w), 554 (w), 488 (m), 464 (w), 426 (w).

5.3.14 SYNTHESIS OF 2,5-DIMETHOXY STYRENE $\mathbf{2 8 5}$

Based on a literature protocol, ${ }^{[117]} 2.73 \mathrm{~g}(7.28 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) of \mathrm{MePPh}_{3} \mathrm{Br}$ were dissolved in 11.5 mL of dry THF. 950 mg ($8.47 \mathrm{mmol}, 1.4 \mathrm{eq}$.) of $\mathrm{KO} t \mathrm{Bu}$ were added, the arising yellow suspension was stirred for 30 min at $21^{\circ} \mathrm{C}$ and cooled to $-60^{\circ} \mathrm{C} .1 .00 \mathrm{~g}(6.02 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) of$ aldehyde 208 dissolved in 6.0 mL dry THF were added over 5 min and the mixture warmed up to $21^{\circ} \mathrm{C}$. After 1 h the reaction was quenched with 2.0 mL of MeOH . After evaporation of the solvents, the crude product was purified by silica column chromatography (c-Hex/EtOAc 20:1) and 934 mg ($5.69 \mathrm{mmol}, 95 \%$) of olefin 285 were obtained.
$\mathbf{M}\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}\right)=164.20 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{f}(c$-Hex $/$ EtOAc 9:1) $=0.48$

1H NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=7.07-6.99(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-7), 6.84-6.77(\mathrm{~m}$,
$2 H, H-4, H-6), 5.73$ (dd, $J=17.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 5.28 (dd, $J=11.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 3.81 (s, 3 H , H-10), 3.79 (s, 3H, H-9).
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=153.8(\mathrm{C}-5), 151.4(\mathrm{C}-8), 131.6(\mathrm{C}-2), 127.7(\mathrm{C}-3), 114.8$ (C-1), 113.9 (C-4/6/7), 112.4 (C-6/7), 112.0 (C-4/6/7), 56.4 (C-9/10), 55.9 (C-9/10).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2998(\mathrm{w}), 2942(\mathrm{w}), 2907(\mathrm{w}), 2833(\mathrm{~m}), 1626(\mathrm{w}), 1581$ (m), 1491 (s), 1463 (m), 1427 (m), 1418 (m), 1307 (m), 1282 (m), 1248 (m), 1216 (s), 1192 (m), 1179 (m), 1161 (m), 1120 (m), 1059 (m), 1038 (s), 1024 (m), 996 (m), 908 (m), 874 (m), $857(\mathrm{~m}), 801(\mathrm{~m})$, 756 (m), 709 (m), 697 (m), 662 (m), 543 (m), 503 (w), 432 (m).

GC-MS (70 eV): $m / z(\%)=164\left(\mathrm{M}^{+}, 100\right), 149(55), 121(56), 106(9), 91(41), 77(2), 63(5)$.

5.3.15 SYNTHESIS OF 3-OXOCYCLOHEX-1-EN-1-YL TRIFLUOROMETHANE SULFONATE (268)

According to a literature protocol, ${ }^{[116]}$ in a flame dried Schlenk flask 501 mg ($4.47 \mathrm{mmol}, 1.0 \mathrm{eq}$.) of dione 263 were dried in vacuo over 5 min and dissolved in 20 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2} .0 .72 \mathrm{~mL}$ ($707 \mathrm{mg}, 8.94 \mathrm{mmol}, 2.0$ eq.) of dry pyridine were added, the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and 1.0 mL ($1.7 \mathrm{~g}, 6.0 \mathrm{mmol}, 1.3 \mathrm{eq}$.) of $\mathrm{Tf}_{2} \mathrm{O}$ was added. After stirring at rt for 2 h the reaction was quenched with 1 M aqueous HCl . The aqueous phase was extracted with $3 \times 30 \mathrm{~mL}$ of EtOAc, the combined organic layers washed with sat. aqueous NaHCO_{3} and sat. aqueous NaCl and dried over $\mathrm{MgSO4}$. After removal of the solvent under reduced pressure the crude product was purified by silica column chromatography (c-Hex/EtOAc 5:1) to yield 778 mg ($3.19 \mathrm{mmol}, 71 \%$) of enol triflate $\mathbf{2 6 8}$ as pale yellow oil.
$\mathbf{M}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}\right)=244.18 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\boldsymbol{f}}(c$-Hex $/$ EtOAc 5:1) $=0.24$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=6.06(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 2.69(\mathrm{td}, J=$ $6.2 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6), 2.45(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 2.13(\mathrm{p}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5)$.
 ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=197.5(\mathrm{C}-1), 167.5(\mathrm{C}-3), 119.4(\mathrm{C}-2), 36.4$ (C-6), 28.6 (C-4), 20.9 (C-5).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=1362(\mathrm{~m}), 1346(\mathrm{~m}), 1328(\mathrm{~m}), 1302(\mathrm{~m}), 1246(\mathrm{~m}), 1206(\mathrm{~s}), 1134(\mathrm{~s})$,
 575 (m), 519 (m), 506 (m), $460(\mathrm{~m}), 429(\mathrm{~m})$.

GC-MS (70 eV): $m / z(\%)=244\left(\mathrm{M}^{+}, 9\right), 216(24), 86(18), 69(100), 55(10)$.

5.3.16 SYnthesis of enone $\mathbf{2 6 1}$ VIA SUZUKI COUPLING

Based on a literature protocol, ${ }^{[105]}$ in a Schlenk flask, a solution of 340 mg ($2.07 \mathrm{mmol}, 1.0$ eq.) of olefin 285 in 4.1 mL of dry, degassed THF was cooled to $0^{\circ} \mathrm{C}$. Then, $8.20 \mathrm{~mL}(4.10 \mathrm{mmol}, 3.3 \mathrm{eq}$.) of 9-BBN (0.5 M in THF) were added and the mixture was stirred at $21^{\circ} \mathrm{C}$ for 6.5 h . The solution was then cooled to $0^{\circ} \mathrm{C}$ before 1.8 mL of degassed $\mathrm{H}_{2} \mathrm{O}$ were added and stirring was continued for 60 min at $0^{\circ} \mathrm{C}$. This borane solution was then transferred via needle to a second Schlenk flask charged with a solution of $86 \mathrm{mg}\left(0.11 \mu \mathrm{~mol}, 0.09 \mathrm{eq}\right.$.) of PdCl_{2} (dppf) $\mathrm{XCH}_{2} \mathrm{Cl}_{2}, 1.33 \mathrm{~g}(4.08 \mathrm{mmol}$, 3.3 eq.) of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and 300 mg ($1.23 \mathrm{mmol}, 1.0$ eq.) of the enol triflate 268 in 14.5 mL of dry, degassed DMF at $21^{\circ} \mathrm{C}$. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 16 h before 30 mg of QuadraSil AP® were added and the suspension was stirred for further 60 min . Then the solids were separated by decantation and $\mathrm{H}_{2} \mathrm{O}$ was added to the product solution. After extraction with EtOAc (4x) the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and sat. aqueous NaCl , dried over MgSO_{4} and the solvents were removed under reduced pressure. The residue was purified by silica gel column chromatography (c-Hex/EtOAc $10: 1$ to $5: 1$) to yield 320 mg ($1.23 \mathrm{mmol}, 100 \%$) of enone 261 as a pale yellow oil.
$\mathbf{M}\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}\right)=260.33 \mathrm{~g} / \mathrm{mol}$
See chapter 5.3.13 for analytical data.

5.3.17 Synthesis of allylic alcohol rac-262

In a flame dried Schlenk flask, 132 mg ($3.48 \mathrm{mmol}, 4.5$ eq.) of LiAlH_{4} were suspended in 17 mL of dry THF and cooled to $0^{\circ} \mathrm{C}$. To this suspension, a solution of 202 mg ($776 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) of enone 261 in 7 mL of dry THF was added. The reaction was stirred at $21^{\circ} \mathrm{C}$ for 3 h before the reaction was terminated by carefully adding 25 mL of $\mathrm{H}_{2} \mathrm{O}$. The mixture was extracted with $3 \times 25 \mathrm{~mL}$ EtOAc and the combined organic layers were dried over MgSO_{4}. Removal of the solvent under reduced pressure gave 162 mg ($617 \mu \mathrm{~mol}, 80 \%$) of allylic alcohol rac-262 as pale yellow oil.

$$
\begin{aligned}
& \mathbf{M}\left(\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}\right)=262.35 \mathrm{~g} / \mathrm{mol} \\
& \mathbf{R}_{f}(c \text {-Hex } / \text { EtOAc 3:1) }=0.23
\end{aligned}
$$

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=6.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-11), 6.72-6.66$
 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-14$), $5.52-5.47$ (m, 1H, H-2), 4.17 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1$), 3.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-15$), 3.76 ($\mathrm{s}, 3 \mathrm{H}$, H-16), 2.72-2.69 (m, 2H, H-8), 2.24-2.21 (m, 2H, H-7), 2.10-1.92 (m, 2H, H-4), 1.82-1.71 (m, 2H, H-5, H-6), 1.63 - 1.55 (m, 2H, H-5', H-6').
${ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=153.5(\mathrm{C}-13), 151.9(\mathrm{C}-10), 142.4(\mathrm{C}-3), 131.9(\mathrm{C}-9), 124.0$ (C-2), 116.4 (C-14), 111.3 (C-11), 111.0 (C-12), 66.0 (C-1), 56.1 (C-15), 55.8 (C-16), 37.7 (C-7), 32.0 (C-8), 28.8 (C-6, C-4), 19.2 (C-5).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3366(\mathrm{br}), 2995$ (w), 2930 (m), 2859 (m), 2832 (m), 1665 (w), 1609 (w), 1591 (w), 1498 (s), 1464 (m), 1452 (m), 1428 (m), 1342 (w), 1279 (m), 1220 (s), 1179 (m), 1157 (m), 1121 (m), 1047 (s), 1028 (m), 958 (m), 932 (w), 906 (m), 870 (m), $800(\mathrm{~m}), 769$ (w), 731 (w), 712 (m), 554 (w), 486 (m), 466 (m), 405 (w).

HRMS (EI):

Calc. [amu]
262.15635 [M] ${ }^{+}$

Found [amu]
262.1562 [M] ${ }^{\bullet+}$

5.3.18 SYNTHESIS OF 2-(3,5-DIMETHOXYPHENYL)ETHANOL (258) [114A]

According to a literature protocol,[114a] 2.31 g ($60.9 \mathrm{mmol}, 2.7 \mathrm{eq}$.$) of \mathrm{LiAlH}_{4}$ were suspended in 20 mL of dry THF under argon atmosphere and cooled to $0^{\circ} \mathrm{C}$. In a second flask, $4.50 \mathrm{~g}(22.9 \mathrm{mmol}$, 1.0 eq.) of 2-(3,5-dimethoxyphenyl)acetic acid (257) were dissolved in 10 mL of dry THF, under argon atmosphere. This solution was slowly added to the stirred LiAlH_{4} suspension and the mixture refluxed for 1 h . The reaction was cooled to $0^{\circ} \mathrm{C}$ and quenched by carefully adding 30 mL of $\mathrm{H}_{2} \mathrm{O}$. The mixture was acidified to $\mathrm{pH} \sim 3$ by addition of 1 M aqueous HCl . The aqueous phase was extracted with $2 \times 100 \mathrm{~mL}$ and $1 \times 50 \mathrm{~mL}$ of EtOAc. The combined organic layers were washed with 100 mL of $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and removed under reduced pressure to obtain $3.86 \mathrm{~g}(21.2 \mathrm{mmol}, 93 \%$; Lit.: 93\%) of alcohol 258 as a colorless oil.
$\mathbf{M}\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}\right)=182.22 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\boldsymbol{f}}(\mathrm{cHex} / \mathrm{EtOAc} 2: 1)=0.25$

${ }^{\mathbf{1}} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=6.38(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 6.34(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.84$ $(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1), 3.78(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}-7), 2.80(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 1.65(\mathrm{~s}, 1 \mathrm{H}, 0 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=161.1(\mathrm{C}-5), 140.9(\mathrm{C}-3), 107.2(\mathrm{C}-4), 98.5(\mathrm{C}-6), 63.6(\mathrm{C}-1)$, 55.4 (C-7), 39.6 (C-2)

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3545.70(\mathrm{br}), 3378.22$ (br), 3000 (w), 2940.22 (m), 2839.01 (m), 2079.86 (w), 1595.46 (vs), 1461.29 (s), 1429.54 (s), 1347.02 (m), 1324.83 (m), 1309.27 (m), 1293.14 (m), 1205.08 (s), 1149.27 (vs), 1067.98 (s), 1056.28 (s), 993.79 (w), 939.36 (w), 924.79 (w), 891.83 (w), 831.39 (m), 696.94 (m), 658.19 (w), 595.04 (w), 540.06 (w).
5.3.19 SYNTHESIS OF 1-BROMO-2-(3,5-DIMETHOXYPHENYL)ETHANE (259) [114b]

According to a literature protocol,[114b] 4.22 g ($23.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.) of alcohol 258 were dissolved in 55 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under argon atmosphere. 9.97 g (30.1 mmol, 1.3 eq.) of CBr_{4} were added
and the solution was cooled to $0^{\circ} \mathrm{C} .7 .89 \mathrm{~g}$ ($30.1 \mathrm{mmol}, 1.3 \mathrm{eq}$.) of PPh_{3} were added over 10 min upon which the colorless solution turned yellow. The reaction was stirred at rt for 1 h and the reaction was poured into 70 mL of $\mathrm{H}_{2} \mathrm{O}$. The mixture was extracted with $3 \times 70 \mathrm{~mL}$ of EtOAc , and the combined organic layers were washed with 70 mL of sat. aqueous NaCl and dried over MgSO_{4}. After evaporation of the solvent under reduced pressure, the crude product was purified by silica gel column chromatography (c-Hex/EtOAc $20: 1$ to $5: 1$) to obtain 3.84 g ($15.7 \mathrm{mmol}, 77 \%$) of bromide 259 as a colorless oil.
$\mathbf{M}\left(\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BrO}_{2}\right)=245.12 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{f}(\mathrm{cHex} / \mathrm{EtOAc} 20: 1)=0.24$

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=6.37(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6), 3.79(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}-7), 3.56(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$, H-1), 3.14-3.07 (m, 2H, H-2).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=161.1(\mathrm{C}-5), 141.3(\mathrm{C}-3), 106.9(\mathrm{C}-4), 98.9(\mathrm{C}-6), 55.4(\mathrm{C}-7)$, 39.8 (C-2), 32.7 (C-1).

GC-MS (70 eV): $m / z(\%)=246\left(\mathrm{M}^{+}\left({ }^{81} \mathrm{Br}\right), 48\right), 246\left(\mathrm{M}^{+}\left({ }^{79} \mathrm{Br}\right), 49\right), 165(100), 151(28), 135$ (10), 121 (10), 105 (13), 91 (13), 77 (13).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3000(\mathrm{w}), 2958(\mathrm{w}), 2938(\mathrm{w}), 2837(\mathrm{w}), 1594(\mathrm{~s}), 1460(\mathrm{~m}), 1429(\mathrm{~m})$, 1348 (m), 1308 (m), 1293 (m), 1251 (w), 1204 (s), 1147 (s), 1057 (s), 993 (w), 969 (w), 922 (w), 830 (m), 712 (m), 690 (m), 624 (w), 589 (w), 536 (w), 485 (w), 422 (w).

5.3.20 SYNTHESIS OF ALLYLIC ALCOHOL rac-260

Based on a literature protocol, ${ }^{[112]}$ a flame dried Schlenk flask was charged with $25 \mathrm{mg}(1.02 \mathrm{mmol}$, 12 eq.) of Mg turnings and heated under vacuum with a gas torch. The Mg was soaked in 0.5 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ under argon atmosphere. In a second flask, 50 mg ($0.20 \mathrm{mmol}, 2.3$ eq.) of bromide $\mathbf{2 5 9}$ were dissolved 2.5 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ and $34 \mu \mathrm{~L}$ ($75 \mathrm{mg}, 0.4 \mathrm{mmol}, 4.5 \mathrm{eq}$.) of 1,2-dibromoethane were added. This mixture was added to the Mg over 10 min . The mixture was stirred for 90 min at rt resulting in darkened suspension which was cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of $9 \mathrm{mg}(9 \mu \mathrm{~L}$, $0.09 \mathrm{mmol}, 1.0$ eq.) of cyclohex-2-enone (256) in 1.5 mL of $\mathrm{dry}_{\mathrm{Et}}^{2} \mathrm{O}$ was added. The reaction was
stirred for 75 min at rt , cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with $\mathrm{H}_{2} \mathrm{O}$. The aqueous phase was extracted 3 x with MTBE and the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and dried over MgSO_{4}. After evaporation of the solvent under reduced pressure, the crude product was purified by silica gel column chromatography (c-Hex/EtOAc $15: 1$ to $2: 1$) to obtain $9 \mathrm{mg}(34 \mu \mathrm{~mol}, 38 \%$) of allylic alcohol rac-260 as a yellow oil. Additionally, as undesired side products 14 mg ($84 \mu \mathrm{~mol}, 42 \%$ respective to 259) of (3,5-dimethoxyphenyl)ethane (287) and 3 mg ($9 \mu \mathrm{~mol}$, 9% respective to 259) of 1,4-di(3,5-dimethoxyphenyl)butane (286) were isolated as yellow oils.
allylic alcohol 255:
$\mathbf{M}\left(\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}\right)=262.35 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\boldsymbol{f}}(\mathrm{cHex} / \mathrm{EtOAc} 3: 1)=0.29$

${ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=6.37(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10), 6.30(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12)$, 5.84 (ddd, $J=10.0,4.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 5.69 (d, $J=10.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$), 3.78 (s, 6H, H-13), 2.70 2.63 (m, 2H, H-8), 2.11 - 1.93 (m, 2H, H-4), 1.91 - 1.66 (m, 6H, H-5, H-6, H-7).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=160.9(\mathrm{C}-11), 145.3(\mathrm{C}-9), 132.5(\mathrm{C}-2), 130.4(\mathrm{C}-3), 106.5$ (C-10), 98.0 (C-12), 69.7 (C-1), 55.4 (C-13), 44.1 (C-7), 35.8 (C-6), 30.4 (C-8), 25.4 (C-4), 19.2 (C-5).

GC-MS (70 eV): $m / z(\%)=262\left(\mathrm{M}^{+}, 3\right), 244(63), 216(100), 201(28), 185(8), 180(11), 166(26)$, 152 (47), 139 (42), 129 (12), 115 (14), 105 (12), 97 (46), 91 (26), 77 (17), 65 (11), 55 (6).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3531$ (br), 3431 (br), 3014 (w), 2998 (w), 2934 (m), 2865.23 (w), 2836(w), 2075 (w), 1705 (w), 1682 (w), 1594 (vs), 1458 (s), 1428 (s), 1344 (m), 1321 (m), 1294 (m), 1273 (w), 1203 (s), 1147 (vs), 1111 (w), 1057 (s), 1005 (w), 992 (w), 963 (m), 939 (m), 925 (m), 830 (m), 733 (m), 686 (m), $640(\mathrm{w}), 598(\mathrm{w}), 572(\mathrm{w}), 533(\mathrm{w}), 512(\mathrm{w})$.

1,4-di(3,5-dimethoxyphenyl)butane (286):

$\mathbf{M}\left(\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4}\right)=330.42 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\boldsymbol{f}}(\mathrm{cHex} / \mathrm{EtOAc} 2: 1)=0.73$

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=6.33(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}-4), 6.29(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6), 3.77$ (s, 12H, H-7), 2.61 - 2.54 (m, 4H, H-2), $1.68-1.62$ (m, 4H, H-1).
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=160.8(\mathrm{C}-5), 145.1(\mathrm{C}-3), 106.6(\mathrm{C}-4), 97.8(\mathrm{C}-6), 55.4(\mathrm{C}-7)$, 36.3 (C-2), 30.9 (C-1).

GC-MS (70 eV): $m / z(\%)=330\left(\mathrm{M}^{+}, 39\right), 165(31), 152(100)$.
(3,5-dimethoxyphenyl)ethane (287):
$\mathbf{M}\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}\right)=166.22 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{f}(\mathrm{cHex} /$ EtOAc 2:1) $=0.77$

${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=6.38(\mathrm{dt}, J=2.3,0.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 6.31(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6)$, $3.79(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}-7), 2.61(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2), 1.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-1)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [ppm] = 160.9 (C-5), 146.8 (C-3), 106.1 (C-4), 97.7 (C-6), 55.3 (C-7), 29.3 (C-2), 15.5 (C-1).

GC-MS (70 eV): $m / z(\%)=166\left(\mathrm{M}^{+}, 100\right), 151(31), 137(12), 121(27), 108(15), 91(13), 78$ (9).

5.3.21 GOLD-CATALYZED CYCLIZATION OF ALLYLIC ALCOHOL rac-260

In a flame dried Schlenk flask, a solution of 11.0 mg ($39.6 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) of allylic alcohol $\mathbf{2 5 5}$ in 3.8 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (HPLC grade) was cooled to $0{ }^{\circ} \mathrm{C}$ and $10 \mu \mathrm{~L}\left(2.0 \mu \mathrm{~mol}, 0.04 \mathrm{eq}\right.$.) of a AuCl_{3} solution (138 mM in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) were added. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h before 4.1 mg of QuadraSil TA® were added, the mixture stirred for further 30 min and the solids were removed by filtration. After evaporation of the solvent, the resulting pale brown, viscous oil was purified by silica gel filtration (c-Hex/EtOAc 30:1) to give $8.0 \mathrm{mg}(33 \mu \mathrm{~mol}, 83 \%$) of spirocycle rac-278 as colorless oil.
$\mathbf{M}\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}\right)=244.33 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\boldsymbol{f}}(\mathrm{cHex} / \mathrm{EtOAc} 9: 1)=0.79$
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=6.36(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 21, \mathrm{H}-14), 6.27(\mathrm{~d}, J=$

$2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), $5.70-5.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 5.64-5.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.78(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-16), 3.74(\mathrm{~s}, 3 \mathrm{H}$, H-15), 2.91-2.76 (m, 2H, H-8), 2.08-2.00 (m, 3H, H-4, H-7), 1.97-1.88 (m, 2H, H-6, H-7'), 1.77 ($\mathrm{d}, \mathrm{J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $1.64-1.59$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-5^{\prime}, \mathrm{H}-6^{\prime}$).
${ }^{13} \mathbf{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=160.6(\mathrm{C}-13), 157.6(\mathrm{C}-11), 146.5(\mathrm{C}-9), 135.8(\mathrm{C}-2), 124.4$ (C-3), 100.8 (C-14), 97.5 (C-12), 55.7 (C-16), 55.5 (C-15), 48.3 (C-1), 39.6 (C-7), 31.9 (C-6), 31.2 (C-8), 24.9 (C-4), 20.9 (C-5).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3012$ (m), 2995 (m), 2927 (s), 2855 (m), 2834 (m), 2253 (w), 1722 (w), 1646 (w), 1593 (s), 1487 (m), 1464 (m), 1455 (m), 1425 (m), 1392 (w), 1379 (w), 1331 (m), 1311 (m), 1276 (m), 1221 (m), 1211 (m), 1197 (m), 1147 (vs), 1098 (m), 1079 (m), 1053 (m), 1018 (w), 985 (w), 967 (w), 932 (w), 913 (w), 864 (w), 826 (m), 741 (w), 729 (w), 699 (w), 673 (w), $662(\mathrm{w}), 635(\mathrm{w}), 547(\mathrm{w})$.

GC-MS (70 eV): $m / z(\%)=244\left(\mathrm{M}^{+}, 78\right), 216(100), 201(57), 175(34), 158(9), 141(18), 115(38)$, 91 (15), 63 (8).

HRMS (EI):	Calc. $[\mathrm{amu}]$	Found [amu]
	$244.14578[\mathrm{M}]^{\bullet+}$	$244.14531[\mathrm{M}]^{\bullet+}$

5.3.2 SYNTHESIS OF ENONE 265 VIA GRIGNARD ADDITION[112]

Based on a literature procedure,[112] a flame dried Schlenk flask was charged with 25 mg ($1.02 \mathrm{mmol}, 12 \mathrm{eq}$.) of Mg turnings and heated under vacuum with a gas torch. The Mg was soaked in 0.5 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ under argon atmosphere. In a second flask, 50 mg ($0.20 \mathrm{mmol}, 2.3 \mathrm{eq}$.) of bromide 259 were dissolved 2.5 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ and $34 \mu \mathrm{~L}$ ($75 \mathrm{mg}, 0.4 \mathrm{mmol}, 4.5 \mathrm{eq}$.) of 1,2-dibromoethane were added. This mixture was added to the Mg over 10 min . The mixture was stirred at rt for 1 h and cooled to $0^{\circ} \mathrm{C}$ and a solution of $13 \mathrm{mg}(0.09 \mathrm{mmol}, 1,0 \mathrm{eq}$.) of 3-ethoxycyclohex-2-enone (264) in 1.5 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ was added. The reaction was stirred at rt for 18 h , cooled to $0^{\circ} \mathrm{C}$ and quenched with 1 M aqueous HCl . The aqueous phase was extracted 3 x with MTBE and the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and dried over MgSO_{4}. After evaporation of the solvent under reduced pressure, the crude product was purified by silica gel column chromatography (c-Hex/EtOAc $9: 1$ to $2: 1$) to obtain $9 \mathrm{mg}(35 \mu \mathrm{~mol}, 38 \%$; Lit.: 73%) of enone 265 as a yellow oil. Additionally, as undesired side products 3 mg ($18 \mu \mathrm{~mol}$, 9% respective to 259) of (3,5-dimethoxyphenyl)ethane (287) and 3 mg ($9 \mu \mathrm{~mol}, 9 \%$ respective to 259) of

1,4-di(3,5-dimethoxyphenyl)butane (286) were isolated as yellow oils (for analytical data see chapter 5.3.20)
$\mathbf{M}\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}\right)=260.33 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\boldsymbol{f}}(\mathrm{cHex} /$ EtOAc $2: 1)=0.40$

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=6.34-6.31(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-10, \mathrm{H}-12), 5.90(\mathrm{t}, \mathrm{J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2)$, 3.78 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{H}-13$), $2.78-2.73(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8), 2.54-2.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7), 2.38-2.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6), 2.30$ ($\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4$), 1.99 (p, J=6.2 Hz, 2H, H-5).
${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=200.0(\mathrm{C}-1), 165.4(\mathrm{C}-3), 161.0(\mathrm{C}-11), 143.3(\mathrm{C}-9), 126.1$ (C-2), 106.5 (C-10), 98.2 (C-12), 55.4 (C-13), 39.6 (C-7), 37.5 (C-6), 33.8 (C-8), 30.0 (C-4), 22.8 (C-5).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3672(\mathrm{w}), 3501(\mathrm{w}), 2988(\mathrm{~m}), 2935(\mathrm{~m}), 2838(\mathrm{~m}), 2223(\mathrm{w}), 1709(\mathrm{~m})$, 1666 (m), 1595 (vs), 1460 (m), 1428 (m), 1347.26 (m), 1324 (m), 1294 (m), 1256 (m), 1204 (s), 1150 (vs), 1065 (s), 966 (w), 938 (w), 923 (w), 888 (w), 832 (m), 759 (w), 695 (w), 599 (w), 538 (w).

GC-MS (70 eV): $m / z(\%)=260\left(\mathrm{M}^{+}, 58\right), 242(18), 227(9), 189(25), 165(62), 151(100), 121(15)$, 106 (9), 91 (28), 77 (28), 65 (19).

5.3.23 UNDESIRED GRIGNARD ADDITION PRODUCT ON HIGH DILUTION (rac-283)

Based on a literature procedure,[112] a flame dried Schlenk flask was charged with 25 mg ($1.02 \mathrm{mmol}, 12 \mathrm{eq}$.) of Mg turnings and heated under vacuum with a gas torch. The Mg was soaked in 1.0 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ under argon atmosphere. In a second flask, 50 mg ($0.20 \mathrm{mmol}, 2.3 \mathrm{eq}$.) of bromide 259 were dissolved 5.0 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ and $34 \mu \mathrm{~L}(75 \mathrm{mg}, 0.4 \mathrm{mmol}, 4.5 \mathrm{eq}$.$) of 1,2-$ dibromoethane were added. This mixture was added to the Mg over 10 min . The mixture was stirred at rt for 1 h and cooled to $0^{\circ} \mathrm{C}$ and a solution of 13 mg ($\left.0.09 \mathrm{mmol}, 1,0 \mathrm{eq}.\right)$ of 3-ethoxycyclohex-2-enone (264) in 3.0 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ was added. The reaction was stirred at rt for 21 h , cooled to $0^{\circ} \mathrm{C}$ and quenched with 1 M aqueous HCl . The aqueous phase was extracted 3 x with MTBE and the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and dried over MgSO_{4}. After
evaporation of the solvent under reduced pressure, the crude product was purified by silica gel column chromatography (c-Hex/EtOAc 9:1 to 2:1) to obtain desired Grignard coupling product 265 (see chapter 5.3.22) in a yield of $2 \mathrm{mg}(8 \mu \mathrm{~mol}, 9 \%)$ and cyclization product rac-283 was obtained in a yield of $3 \mathrm{mg}(12 \mu \mathrm{~mol}, 15 \%)$ as a colorless oil.
$\mathbf{M}\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}\right)=260.33 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\boldsymbol{f}}(\mathrm{cHex} / \mathrm{EtOAc} 2: 1)=0.56$
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=6.36(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10), 6.29(\mathrm{~d}, J=$
 $2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$), 3.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-16$), 3.76 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-15$), 3.02 (dd, $J=14.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 2.93 2.78 (m, 2H, H-8), 2.48 (ddd, $J=13.7,11.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $2.45-2.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6), 2.24$ (dt, $\left.J=14.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 1.98(\mathrm{dp}, J=15.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 1.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7), 1.88-$ 1.77 (m, 1H, H-5').
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=211.9$ (C-1), 160.9 (C-11), 157.4 (C-13), 145.9 (C-9), 128.1 (C-14), 101.1 (C-10), 97.3 (C-12), 55.6 (C-16), 54.9 (C-15), 52.2 (C-3), 50.9 (C-2), 41.3 (C-6), 37.9 (C-7), 34.6 (C-4), 31.0 (C-8), 23.1 (C-5).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3672(\mathrm{w}), 3501(\mathrm{w}), 2988(\mathrm{~m}), 2935(\mathrm{~m}), 2838(\mathrm{~m}), 2223(\mathrm{w}), 1709(\mathrm{~m})$, 1666 (m), 1595 (vs), 1460 (m), 1428 (m), 1347.26 (m), 1324 (m), 1294 (m), 1256 (m), 1204 (s$)$, 1150 (vs), 1065 (s), 966 (w), 938 (w), 923 (w), 888 (w), 832 (m), 759 (w), 695 (w), 599 (w), 538 (w).

GC-MS (70 eV): $m / z(\%)=260\left(\mathrm{M}^{+}, 85\right), 245(25), 217$ (82), 203 (100), 190 (60), 175 (46), 161 (18), 145 (15), 115 (23), 91 (11).

5.3.24 Synthesis of 3,5-DImethoxy Styrene (266) ${ }^{[117]}$

288

96\%

266

According to a literature protocol, ${ }^{[117]} 8.20 \mathrm{~g}$ ($21.0 \mathrm{mmol}, 1.2$ eq.) of $\mathrm{MePPh}_{3} \mathrm{Br}$ were dissolved in 33.5 mL of dry THF. 2.86 g ($25.5 \mathrm{mmol}, 1.4 \mathrm{eq}$.) of KOtBu were added, the arising yellow suspension was stirred at $21^{\circ} \mathrm{C}$ for 30 min and cooled to $-60^{\circ} \mathrm{C} .3 .01 \mathrm{~g}$ ($18.1 \mathrm{mmol}, 1.0$ eq.) of aldehyde $\mathbf{2 8 8}$ dissolved in 16.5 mL dry THF were added over 5 min and the mixture was allowed to warm up to $21^{\circ} \mathrm{C}$. After 1 h the reaction was quenched with 5.0 mL of MeOH . After evaporation
of the solvents, the crude product was purified by silica column chromatography (c - $\mathrm{Hex} / \mathrm{EtOAc}$ $20: 1)$ and 2.84 g ($17.3 \mathrm{mmol}, 96 \%$; Lit.: 96%) of olefin 266 were obtained.
$\mathbf{M}\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}\right)=164.20 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{f}(c$-Hex/toluene 5:1) $=0.13$
m.p. $=80-81^{\circ} \mathrm{C}$

${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=6.65(\mathrm{dd}, J=17.5 \mathrm{~Hz}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5), 6.57(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{H}-3), 6.39(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.67-5.79(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4)^{\prime}\right), 5.20-5.31(\mathrm{~d}, J=10.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-4$), 3.81 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{H}-1$).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=161.0(\mathrm{C}-7), 139.8(\mathrm{C}-6), 137.0(\mathrm{C}-5), 114.5(\mathrm{C}-4), 104.5(\mathrm{C}-3)$, 100.2 (C-2), 55.5 (C-1).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3088(\mathrm{w}), 3002(\mathrm{w}), 2958(\mathrm{w}), 2937(\mathrm{w}), 2836(\mathrm{w}), 2225(\mathrm{w}), 2091(\mathrm{w})$, 1589 (s , 1456 (m), 1428 (m), 1409 (m), 1342 (m), 1314 (m), 1294 (m), 1254 (w), 1204 (s), 1149 (s), 1073 (m), 1058 (m), 1032 (m), 989 (m), 931 (m), $909(\mathrm{~m}), 831(\mathrm{~m}), 718(\mathrm{w}), 665(\mathrm{~m})$, 633 (w), 589 (w), 538 (w), 508 (w), 480 (w), 441 (w), 411 (w).

GC-MS (70 eV): $m / z(\%)=164\left(\mathrm{M}^{+}, 100\right), 135(28), 121$ (9), 105 (11), 91 (23), 77 (17), 63 (8).

5.3.25

 SYnthesis of enone 265 via suzuki coupling

Based on a literature protocol, ${ }^{[105]}$ in a Schlenk flask, a solution of $146 \mathrm{mg}(889 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) of$ olefin 266 in 1.8 mL of dry, degassed THF was cooled to $0^{\circ} \mathrm{C}$. Then, $3.7 \mathrm{~mL}(1.9 \mathrm{mmol}, 2.1 \mathrm{eq}$.$) of$ $9-\mathrm{BBN}(0.5 \mathrm{M}$ in THF) were added and the mixture was stirred at rt for 2.5 h . The solution was then cooled to $0^{\circ} \mathrm{C}$ before 0.8 mL of degassed $\mathrm{H}_{2} \mathrm{O}$ were added and stirring was continued for 60 min at $0^{\circ} \mathrm{C}$. This borane solution was then transferred via needle to a second Schlenk flask charged with a solution of 35 mg ($43 \mu \mathrm{~mol}, 0.05 \mathrm{eq}$.) of PdCl_{2} (dppf) $\mathrm{xCH}_{2} \mathrm{Cl}_{2}, 574 \mathrm{mg}(1.76 \mathrm{mmol}$, 2.0 eq.) of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and 211 mg ($864 \mu \mathrm{~mol}, 1.0$ eq.) of the enol triflate 268 in 6.0 mL of dry, degassed DMF at $25^{\circ} \mathrm{C}$. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 23 h before 10 mg of QuadraSil AP® were added as a metal scavenger and the suspension was stirred for further 50 min . Then the
solids were separated by decantation and $\mathrm{H}_{2} \mathrm{O}$ was added to the product solution. After extraction with EtOAc (4x) the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and sat. aqueous NaHCO_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents were removed under reduced pressure. The residue was purified by silica gel column chromatography (c-Hex/EtOAc 30:1 to 10:1) to yield 163 mg (630 $\mu \mathrm{mol}, 73 \%$) of enone 265 as a pale yellow oil.
$\mathbf{M}\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}\right)=260.33 \mathrm{~g} / \mathrm{mol}$
See chapter 5.3.22 for analytical data.

5.3.2 6 SYNTHESIS OF ALLYLIC ALCOHOL rac-267

In a flame dried Schlenk flask, 180 mg ($4.74 \mathrm{mmol}, 5.9$ eq.) of LiAlH_{4} were suspended in 11 mL of dry THF and cooled to $0^{\circ} \mathrm{C}$. To this suspension, a solution of 210 mg ($807 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) of enone 265 in 22 mL of dry THF was added. The reaction was stirred at $20^{\circ} \mathrm{C}$ for 4 h before the reaction was terminated by carefully adding 25 mL of $\mathrm{H}_{2} \mathrm{O}$. The mixture was extracted with $3 \times 25 \mathrm{~mL}$ EtOAc and the combined organic layers were washed with sat. aqueous NaCl and dried over MgSO_{4}. Removal of the solvent under reduced pressure gave $192 \mathrm{mg}(732 \mu \mathrm{~mol}, 91 \%)$ of allylic alcohol rac-267 as colorless solid.
$\mathbf{M}\left(\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}\right)=262.35 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{f}(c$-Hex $/ E t O A c 3: 1)=0.23$

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=6.34(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10), 6.30(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12)$, 5.52 (s, 1H, H-2), 4.19 (s, 1H, H-1), 3.78 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{H}-13$), $2.72-2.64$ (m, 2H, H-8), $2.32-2.23$ (m, 2H, H-7), 2.07-1.89 (m, 2H, H-4), 1.85-1.71 (m, 2H, H-5, H-6), 1.63-1.55 (m, 2H, H-5', H-6').
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=160.9(\mathrm{C}-11), 144.6(\mathrm{C}-9), 141.9(\mathrm{C}-3), 124.4(\mathrm{C}-2), 106.6$ (C-10), 97.9 (C-12), 66.0 (C-1), 55.4 (C-13), 39.3 (C-7), 34.6 (C-8), 32.0 (C-6), 28.8 (C-4), 19.3 (C-5).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3402(\mathrm{br}), 2999(\mathrm{w}), 2923(\mathrm{~m}), 2860(\mathrm{w}), 2835(\mathrm{w}), 1608(\mathrm{~m}), 1593(\mathrm{~m})$, 1462 (m), 1427 (m), 1342 (m), 1293 (m), 1270 (w), 1203 (s), 1146 (s), 1107 (w), 1058 (m),

1010 (m), 993 (m), 968 (m), 955 (m), 923 (m), 906 (m), 883 (w), 872 (m), 822 (m), 775 (w), 720 (w), 694 (m), 657 (w), 614 (w), 540 (m), 494 (m), 447 (m), 412 (m

GC-MS (70 eV): $m / z(\%)=262\left(\mathrm{M}^{+}, 1\right), 244(62), 229(8), 216(100), 201(25), 171(12), 152(94)$, 139 (23), 115 (12), 91 (20), 77 (18).

HRMS (EI):

Calc. [amu]	Found [amu]
$244.14578\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{\bullet+}$	$244.1459\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{\bullet+}$

5.3.27 GOLD-CATALYZED CYCLIZATION OF ALLYLIC ALCOHOL rac-267

A solution of 40 mg ($152 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) of allylic alcohol rac-267 in 17 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (HPLC grade) was cooled to $0{ }^{\circ} \mathrm{C}$ and 3.0 mg ($9.89 \mu \mathrm{~mol}, 0.06$ eq.) of AuCl_{3} dissolved in 0.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added. The yellow solution was stirred at $0^{\circ} \mathrm{C}$ for 3 h before 5 mL of $\mathrm{H}_{2} \mathrm{O}$ were added (discoloration). The aqueous phase was extracted with $3 \times 10 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers dried over MgSO_{4}. The resulting pale brown, viscous oil was purified by silica gel filtration (c-Hex/EtOAc 30:1) to give 24 mg ($98 \mu \mathrm{~mol}, 64 \%$) of spiro cycle rac-278 as a colorless sticky oil, crystallizing slowly at rt.
$\mathbf{M}\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}\right)=244.33 \mathrm{~g} / \mathrm{mol}$

See chapter 5.3.21 for analytical data.

X-ray crystal structure:

5.3.28 SYNTHESIS OF 2-METHYL-3-OXO-1-CYCLOHEXEN-1-YLTRIFLUOROMETHANESULFONATE (275)

According to a literature protocol, ${ }^{[116]}$ in a flame dried Schlenk flask 390 mg ($3.48 \mathrm{mmol}, 1.0 \mathrm{eq}$.) of dione 274 were dried in vacuo over 5 min and dissolved in 14 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2} .0 .51 \mathrm{~mL}$ ($501 \mathrm{mg}, 6.34 \mathrm{mmol}, 1.8 \mathrm{eq}$.) of dry pyridine were added, the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and $0.69 \mathrm{~mL}(1.2 \mathrm{~g}, 4.3 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) of \mathrm{Tf}_{2} \mathrm{O}$ was added. After stirring at rt for 2 h the reaction was quenched with 1 M aqueous HCl . The aqueous phase was extracted with $3 \times 20 \mathrm{~mL}$ of EtOAc, the combined organic layers washed with sat. aqueous NaHCO_{3} and NaCl and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure the crude product was purified by silica column chromatography (c-Hex/EtOAc 5:1) to yield 592 mg ($2.29 \mathrm{mmol}, 74 \%$) of enol triflate 275 as colorless oil.

```
\(\mathbf{M}\left(\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}\right)=258.21 \mathrm{~g} / \mathrm{mol}\)
```

$\mathbf{R}_{f}(c$-Hex $/$ EtOAc 5:1) $=0.43$

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=2.74(\mathrm{tq}, J=6.2 \mathrm{~Hz}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 2.49(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, H-6), 2.09 (p, J = 6.6 Hz, 2H, H-5), 1.87 (t, J = 2.1 Hz, 3H, H-7).
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=197.9(\mathrm{C}-1), 162.2(\mathrm{C}-3), 128.4(\mathrm{C}-2), 118.28\left(\mathrm{~J}_{\mathrm{C}, \mathrm{F}}=320 \mathrm{~Hz}\right.$, C-8), 36.8 (C-6), 28.9 (C-4), 20.8 (C-5), 9.3 (C-7).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3363(\mathrm{w}), 2965(\mathrm{w}), 2879(\mathrm{w}), 1689(\mathrm{~m}), 1669(\mathrm{~m}), 1554(\mathrm{w}), 1416(\mathrm{~m})$, 1382 (w), 1345 (m), 1330 (w), 1298 (w), 1242 (m), 1206 (s), 1135 (s), 1109 (w), 1056 (m), 1024 (s), 912 (s), 891 (s), 860 (w), 793 (s), 759 (s), 693 (w), 659 (m), 630 (m), 595 (m), 571 (m), 545 (w), 527 (m), 493 (m), 470 (w), 436 (w), 411 (w).

GC-MS (70 eV): m/z (\%) = $258\left(\mathrm{M}^{+}, 1\right), 230(7), 125(31), 69(100), 55(21)$.

Based on a literature protocol, ${ }^{[105]}$ in a Schlenk flask, a solution of $151 \mathrm{mg}(919 \mu \mathrm{~mol}, 1.0$ eq.) of olefin 266 in 1.8 mL of dry, degassed THF was cooled to $0^{\circ} \mathrm{C}$. Then, $3.7 \mathrm{~mL}(1.9 \mathrm{mmol}, 2.1 \mathrm{eq}$.) of $9-\mathrm{BBN}(0.5 \mathrm{M}$ in THF) were added and the mixture was stirred at rt for 3.5 h . The solution was then cooled to $0^{\circ} \mathrm{C}$ before 0.8 mL of degassed $\mathrm{H}_{2} \mathrm{O}$ were added and stirring was continued for 60 min at $0^{\circ} \mathrm{C}$. This borane solution was then transferred via needle to a second Schlenk flask charged with a solution of 38 mg ($47 \mu \mathrm{~mol}, 0.05 \mathrm{eq}$.) of $\mathrm{PdCl}_{2}(\mathrm{dppf}) \times \mathrm{CH}_{2} \mathrm{Cl}_{2}, 595 \mathrm{mg}(1.83 \mathrm{mmol}$, 2.0 eq.) of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and 236 mg ($914 \mu \mathrm{~mol}, 1.0$ eq.) of the enol triflate 275 in 6.0 mL of dry, degassed DMF at rt. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 17 h before 10 mg of QuadraSil AP ${ }^{\circledR}$ were added and the suspension was stirred for further 45 min . Then the solids were separated by decantation and $\mathrm{H}_{2} \mathrm{O}$ was added to the product solution. After extraction with $4 \times 20 \mathrm{~mL}$ of EtOAc the combined organic layers were washed with brine and sat. aqueous NaHCO_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents were removed under reduced pressure. The residue was purified by silica gel column chromatography (c-Hex/EtOAc 20:1 to 5:1) to yield 190 mg ($690 \mu \mathrm{~mol}, 76 \%$) of enone 272 as a pale yellow oil.
$\mathbf{M}\left(\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}\right)=274.36 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{f}(c-\mathrm{Hex} / E t O A c 5: 1)=0.25$

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=6.30-6.36(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-11, \mathrm{H}-13), 3.78(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}-14), 2.70(\mathrm{t}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-9), 2.54(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-8), 2.38(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6), 2.31$ (ddd, $J=8.2 \mathrm{~Hz}$, $J=4.2 \mathrm{~Hz}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 1.91(\mathrm{p}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5), 1.75(\mathrm{t}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-7)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=199.6(\mathrm{C}-1), 161.0(\mathrm{C}-12), 157.9(\mathrm{C}-3), 143.5(\mathrm{C}-10), 131.6$ (C-2), 106.6 (C-11), 98.1 (C-13), 55.4 (C-14), 37.9 (C-6), 37.2 (C-8), 34.0 (C-9), 31.2 (C-4), 22.6 (C-5), 10.7 (C-7).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3005(\mathrm{w}), 1659(\mathrm{~m}), 1594(\mathrm{~s}), 1460(\mathrm{~m}), 1428(\mathrm{~m}), 1379(\mathrm{w}), 1349(\mathrm{~m})$, 1326 (m), 1295 (m), 1204 (m), 1148 (s), 1060 (m), 1041 (m), 991 (w), 974 (w), 942 (w), 923 (w), 862 (w), 851 (m), 832 (m), 808 (m), 714 (w), 709 (w), 691 (m), 675 (m), 670 (m), 662 (w), 636 (w), 611 (w), 592 (w), 578 (m), 572 (m), 563 (w), 546 (m), 528 (m), 522 (w), 513 (w).

GC-MS (70 eV): $m / z(\%)=274\left(\mathrm{M}^{+}, 100\right), 259(37), 231(2)$.

5.3.30 SYNTHESIS OF ALLYLIC ALCOHOL rac-273

In a flame dried Schlenk flask, $60 \mathrm{mg}\left(1.6 \mathrm{mmol}, 6.1\right.$ eq.) of LiAlH_{4} were suspended in 3.7 mL of dry THF and cooled to $0^{\circ} \mathrm{C}$. To this suspension, a solution of $70 \mathrm{mg}(260 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) of enone \mathbf{2 7 2}$ in 7.3 mL of dry THF were added. The reaction was stirred for 5 h in the thawing ice bad before the reaction was terminated by carefully adding $\mathrm{H}_{2} \mathrm{O}$. The mixture was extracted with $3 \times 20 \mathrm{~mL}$ EtOAc and the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and dried over MgSO_{4}. Purification by silica column chromatography (c-Hex/EtOAc 10:1 to 5:1) gave $46 \mathrm{mg}(170 \mu \mathrm{~mol}, 64 \%$) of allylic alcohol rac-273 as pale yellow solid in a mixture of inseparable side products. As separation was not feasible, this mixture was used in the following cyclization experiment without further purification and characterization of rac-273.
$\mathbf{M}\left(\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}\right)=276.38 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{f}(c$-Hex $/$ EtOAc 5:1) $=0.17$

GC-MS (70 eV): $m / z(\%)=276\left(\mathrm{M}^{+}, 1\right), 258(61), 244(24), 230(27), 215$ (10), 199 (21), 175 (19), 152 (100), 139 (33), 128 (9), 107 (42), 91 (49), 77 (37), 55 (22).

5.3.31 GOLD-CATALYZED CYCLIZATION OF ALLYLIC ALCOHOL rac-273

A solution of 25 mg ($90 \mu \mathrm{~mol}, 1.0$ eq.) of allylic alcohol rac-273 in 14 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (HPLC grade) was cooled to $0^{\circ} \mathrm{C}$ and 2.2 mg ($7.3 \mu \mathrm{~mol}, 0.08$ eq.) of AuCl_{3} dissolved in 2.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added. The yellow solution was stirred at $0^{\circ} \mathrm{C}$ for 2 h before 15 mL of $\mathrm{H}_{2} \mathrm{O}$ were added (discoloration). The aqueous phase was extracted with $3 \times 20 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers dried over MgSO_{4}. The resulting pale brown, viscous oil was purified by silica gel filtration (c-Hex/EtOAc 50:1 to 40.1) to give 20 mg ($76 \mu \mathrm{~mol}, 84 \%$) of spiro cycle rac-279 as a colorless oil.
$\mathbf{M}\left(\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{2}\right)=258.36 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\boldsymbol{f}}(c-\mathrm{Hex} / \mathrm{EtOAc} 30: 1)=0.59$
$\mathbf{1}^{\mathbf{H}} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=6.41-6.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 6.26(\mathrm{~d}$,

$J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 5.44 (ddt, $J=5.3 \mathrm{~Hz}, 2.6 \mathrm{~Hz}, 1.2,1 \mathrm{H}, \mathrm{H}-13$), 3.78 (s, $3 \mathrm{H}, \mathrm{H}-16$), 3.73 (s, 3H, H-17), $2.96-2.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 2.87-2.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{C}^{\prime}\right), 2.14-1.94$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-12, \mathrm{H}-8$), 1.93 $1.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-11), 1.74-1.67(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10), 1.68-1.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-10^{\prime}, \mathrm{H}-11^{\prime}\right), 1.44(\mathrm{dt}, J=2.7 \mathrm{~Hz}$, $1.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-15)$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=160.5(\mathrm{C}-1), 157.0(\mathrm{C}-5), 146.6(\mathrm{C}-3), 139.2(\mathrm{C}-14), 129.5$ (C-4), 121.4 (C-13), 100.6 (C-2), $97.0(\mathrm{C}-6), 55.5$ (C-16), 55.3 (C-17), 51.6 (C-9), 36.8 (C-8), 33.0 (C-11), 31.4 (C-7), 25.6 (C-12), 20.6 (C-10), 20.1 (C-15).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3428(\mathrm{w}), 3006(\mathrm{w}), 2942(\mathrm{~m}), 2924(\mathrm{~m}), 2842(\mathrm{~m}), 2660(\mathrm{w}), 2464(\mathrm{w})$, 2080 (w), 1721 (w), 1660 (w), 1604 (m), 1586 (s), 1512 (w), 1488 (m), 1471 (m), 1455 (m), 1443 (m), 1429 (m), 1370 (w), 1327 (s), 1297 (m), 1277 (m), 1246 (m), 1219 (m), 1200 (m), 1177 (m), 1171 (m), 1137 (s), 1089 (m), 1080 (m), 1071 (m), 1045 (m), 1023 (w), 1010 (m), $982(\mathrm{w}), 962(\mathrm{~m}), 942(\mathrm{~m}), 922(\mathrm{w}), 879(\mathrm{w}), 863(\mathrm{w}), 831(\mathrm{~s}), 802(\mathrm{~s}), 734(\mathrm{w}), 679(\mathrm{w}), 632(\mathrm{~m})$, 579 (m), 559 (w), 544 (w), 514 (m).

GC-MS (70 eV): $m / z(\%)=258\left(\mathrm{M}^{+}, 100\right), 244(35), 230(48), 215(23), 190(53), 175(27), 161$ (11), 145 (11), 129 (17), 115 (27), 91 (24), 68 (71), 53 (30).

HRMS (EI):	Calc. $[\mathrm{amu}]$	Found $[\mathrm{amu}]$
	$258.16143[\mathrm{M}]^{\bullet+}$	$258.16144[\mathrm{M}]^{\bullet+}$

5.3.32 SYNTHESIS OF ENONE $\mathbf{2 7 0}$ VIA SUZUKI COUPLING

Based on a literature protocol, ${ }^{[105]}$ in a Schlenk flask, a solution of 280 mg ($2.07 \mathrm{mmol}, 1.0$ eq.) of olefin 269 in 4.1 mL of dry, degassed THF was cooled to $0^{\circ} \mathrm{C}$. Then, 8.20 mL ($4.10 \mathrm{mmol}, 3.3 \mathrm{eq}$.) of 9-BBN (0.5 M in THF) were added and the mixture was stirred at $21^{\circ} \mathrm{C}$ for 6.5 h . The solution was then cooled to $0^{\circ} \mathrm{C}$ before 1.8 mL of degassed $\mathrm{H}_{2} \mathrm{O}$ were added and stirring was continued for

60 min at $0^{\circ} \mathrm{C}$. This borane solution was then transferred via needle to a second Schlenk flask charged with a solution of $86 \mathrm{mg}\left(0.11 \mu \mathrm{~mol}, 0.09 \mathrm{eq}\right.$.) of $\mathrm{PdCl}_{2}(\mathrm{dppf}) \times \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.33 \mathrm{~g}(4.08 \mathrm{mmol}$, 3.3 eq.) of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and 300 mg ($1.23 \mathrm{mmol}, 1.0$ eq.) of the enol triflate 268 in 14.5 mL of dry, degassed DMF at $21^{\circ} \mathrm{C}$. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 16 h before 30 mg of QuadraSil AP® were added and the suspension was stirred for further 60 min . Then the solids were separated by decantation and $\mathrm{H}_{2} \mathrm{O}$ was added to the product solution. After extraction with EtOAc (4x) the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and sat. aqueous NaCl , dried over MgSO_{4} and the solvents were removed under reduced pressure. The residue was purified by silica gel column chromatography (c-Hex/EtOAc 10:1 to 5:1) to yield 191 mg ($829 \mu \mathrm{~mol}, 67 \%$) of enone 270 as a pale yellow oil.
$\mathbf{M}\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2}\right)=230.31 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{f}(c$-Hex $/ E t O A c 5: 1)=0.18$

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=7.12-7.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-10), 6.86-6.79(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-11), 5.89(\mathrm{p}$, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.79(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-13), 2.77(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-8), 2.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7), 2.35$ ($\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6$), $2.28(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-8), 1.96-1.99(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5)$.
${ }^{13} \mathbf{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=200.0(\mathrm{C}-1), 165.6(\mathrm{C}-3), 158.2(\mathrm{C}-12), 132.9(\mathrm{C}-9), 129.3$ (C-10), 126.2 (C-2), 114.1 (C-11), 55.4 (C-4), 40.1 (C-7), 37.5 (C-6), 32.7 (C-8), 30.1 (C-4), 22.8 (C-5).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3483(\mathrm{w}), 2931(\mathrm{w}), 2836(\mathrm{w}), 1664$ (s$), 1624(\mathrm{~m}), 1612(\mathrm{~m}), 1584(\mathrm{w})$, 1511 (s), 1455 (m), 1427 (w), 1374 (w), 1347 (w), 1325 (m), 1301 (m), 1242 (s), 1191 (m), 1177 (m), 1128 (m), 1105 (w), 1033 (m), 965 (m), 885 (m), 829 (m), 753 (w), 701 (w), 661 (w), 638 (w), 591 (w), 535 (m).

GC-MS (70 eV): $m / z(\%)=230\left(\mathrm{M}^{+}, 4\right), 200(3), 172(1), 147(1), 121$ (100), 107 (3), 91 (12), 78 (15), 53 (8).

HRMS (EI): Calc. [amu] Found [amu]

$$
230.13013[\mathrm{M}] \cdot+\quad 230.13013[\mathrm{M}]^{\bullet+}
$$

5.3.33 SYNTHESIS OF ALLYLIC ALCOHOL rac-271

In a flame dried Schlenk flask, 100 mg ($2.64 \mathrm{mmol}, 6.1 \mathrm{eq}$.) of LiAlH_{4} were suspended in 6.0 mL of dry THF and cooled to $0^{\circ} \mathrm{C}$. To this suspension, a solution of $100 \mathrm{mg}(434 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) of enone 257 in 22 mL of dry THF was added. The reaction was stirred at $21^{\circ} \mathrm{C}$ for 3 h before the reaction was terminated by carefully adding 20 mL of $\mathrm{H}_{2} \mathrm{O}$. The mixture was extracted with $3 \times 20 \mathrm{~mL}$ EtOAc and the combined organic layers were dried over MgSO_{4}. Removal of the solvent under reduced pressure gave $78 \mathrm{mg}(336 \mu \mathrm{~mol}, 77 \%)$ of allylic alcohol rac-271 as colorless solid.
$\mathbf{M}\left(\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}\right)=232.32 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\boldsymbol{f}}(c$-Hex $/$ EtOAc 3:1) $=0.30$

${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=7.09(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11), 6.82(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10)$, 5.51 - 5.48 (m, 1H, H-2), $4.21-4.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 3.79(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-13), 2.71-2.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8), 2.27$ - 2.22 (m, 2H, H-7), 2.09-1.90 (m, 2H, H-4), 1.82 - 1.69 (m, 2H, H-5, H-6). 1.61 - 1.55 (m, 2H, H-5', H-6').
${ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=157.9(\mathrm{C}-12), 142.0(\mathrm{C}-3), 134.3(\mathrm{C}-9), 129.4(\mathrm{C}-11), 124.3$ (C-2), 113.9 (C-10), 66.0 (C-1), 55.4 (C-13), 39.8 (C-7), 33.4 (C-8), 32.0 (C-6), 28.8 (C-4), 19.2 (C-5).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3351(\mathrm{w}), 2996(\mathrm{w}), 2929(\mathrm{~m}), 2858(\mathrm{~m}), 2834(\mathrm{w}), 1876(\mathrm{w}), 1759(\mathrm{w})$, 1665 (w), 1612 (m), 1584 (w), 1511 (s), 1464 (m), 1453 (m), 1441 (m), 1342 (w), 1321 (w), 1300 (m), 1243 (s), 1177 (m), 1106 (w), 1059 (m), 1035 (s), 959 (m), 907 (m), 863 (w), 826 (m), 785 (w), 752 (w), 704 (w), 675 (w), 638 (w), 577 (w), 526 (m), 450 (w), 428 (w).

HRMS (EI):

Calc. $[\mathrm{amu}]$	Found [amu]
$232.14578[\mathrm{M}]^{\cdot+}$	$232.1456[\mathrm{M}] \cdot+$

5.3.34 SYNTHESIS OF ENONE 276 VIA SUZUKI COUPLING ${ }^{[105]}$

According to a literature protocol, ${ }^{[105]}$ in a Schlenk flask, a solution of $153 \mathrm{mg}(1.14 \mathrm{mmol}, 1.1 \mathrm{eq}$. of olefin 269 in 2.2 mL of dry, degassed THF was cooled to $0^{\circ} \mathrm{C}$. Then, 4.5 mL ($2.3 \mathrm{mmol}, 2.0 \mathrm{eq}$.) of 9-BBN (0.5 M in THF) were added and the mixture was stirred at rt for 3.5 h . The solution was then cooled to $0^{\circ} \mathrm{C}$ before 1.0 mL of degassed $\mathrm{H}_{2} \mathrm{O}$ were added and stirring was continued for 40 min at $0^{\circ} \mathrm{C}$. This borane solution was then transferred via needle to a second Schlenk flask charged with a solution of 46 mg ($56 \mu \mathrm{~mol}, 0.05$ eq.) of PdCl_{2} (dppf) $\times \mathrm{CH}_{2} \mathrm{Cl}_{2}, 730 \mathrm{mg}(2.24 \mathrm{mmol}$, 2.0 eq.) of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and 289 mg ($1.12 \mathrm{mmol}, 1.0 \mathrm{eq}$.) of the enol triflate 275 in 7.5 mL of dry, degassed DMF at rt. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 17 h before 12 mg of QuadraSil AP^{\circledR} were added as a metal scavenger and the suspension was stirred for further 45 min. Then the solids were separated by decantation and $\mathrm{H}_{2} \mathrm{O}$ was added to the product solution. After extraction with $4 \times 20 \mathrm{~mL}$ of EtOAc the combined organic layers were washed with brine and sat. aqueous NaHCO_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents were removed under reduced pressure. The residue was purified by silica gel column chromatography (c-Hex/EtOAc 20:1 to 5:1) to yield 202mg ($826 \mu \mathrm{~mol}, 74 \%$; Lit.: 76\%) of enone 276 as a pale yellow oil.
$\mathbf{M}\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}\right)=244.33 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\boldsymbol{f}}(c$-Hex $/$ EtOAc 5:1) $=0.29$

${ }^{1} \mathbf{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=7.09(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10), 6.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11)$, 3.79 (s, 3H, H-13), 2.72 (t, J = 8.7 Hz, 2H, H-8), 2.51 (t, J=7.9 Hz, 2H, H-7), 2.37 (t, J = 6.4 Hz, 2H, H-6), 2.31 - 2.26 (m, 2H, H-4), 1.87 - 1.93 (m, 2H, H-5), 1.71 (s, 3H, H-14).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=199.7(\mathrm{C}-1), 158.1(\mathrm{C}-12, \mathrm{C}-3), 133.2(\mathrm{C}-9), 131.6(\mathrm{C}-2), 129.3$ (C-10), 114.0 (C-11), 55.4 (C-13), 37.9 (C-6), 37.7 (C-7), 32.9 (C-8), 31.3 (C-4), 22.6 (C-5), 10.7 (C-14).

FT-IR (ATR): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3379(\mathrm{w}), 2922(\mathrm{~m}), 2861(\mathrm{w}), 2056(\mathrm{w}), 1739(\mathrm{w}), 1661(\mathrm{~m}), 1625(\mathrm{w})$, 1613 (w), 1584 (w), 1512 (m), 1466 (w), 1451 (m), 1412 (m), 1385 (m), 1360 (m), 1340 (m), 1326 (m), 1300 (m), 1244 (m), 1210 (w), 1176 (m), 1110 (w), 1082 (m), 1035 (m), 1008 (m), 978 (m), 954 (w), 937 (w), 915 (w), 876 (m), 845 (w), 819 (m), 809 (m), 756 (w), 727 (w), 700 (m), 675 (m), 656 (w), 593 (w), 540 (m), 527 (m).

GC-MS (70 eV): $m / z(\%)=244\left(\mathrm{M}^{+}, 9\right), 121(100), 91(12), 77(13), 55(3)$.

5.3.35 SYNTHESIS OF ALLYLIC ALCOHOL rac-277

In a flame dried Schlenk flask, 73 mg ($1.9 \mathrm{mmol}, 7.3 \mathrm{eq}$.) of LiAlH_{4} were suspended in 12.3 mL of dry THF and cooled to $0^{\circ} \mathrm{C}$. To this suspension, a solution of $63 \mathrm{mg}(260 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) of enone$ 276 in 7.3 mL of dry THF was added. The reaction was stirred for 5 h in the thawing ice bad before the reaction was terminated by carefully adding $\mathrm{H}_{2} \mathrm{O}$. The mixture was extracted with $3 \times 20 \mathrm{~mL}$ EtOAc and the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and dried over MgSO_{4}. Removal of the solvent under reduced pressure and purification by silica column chromatography (cHex/EtOAc $30: 1$ to $15: 1$) gave 39 mg ($0.16 \mathrm{mmol}, 62 \%$) of allylic alcohol rac-277 as pale yellow solid.
$\mathbf{M}\left(\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2}\right)=246.35 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{\boldsymbol{f}}(c$-Hex $/$ EtOAc 5:1) $=0.18$

$\mathbf{1}^{\mathbf{H}} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=7.00(\mathrm{dd}, J=133.2,8.6 \mathrm{~Hz}), 3.94(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.79$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-13$), 2.61 (m, 2H, H-8), 2.26 (td, $J=7.5 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7$), $2.03-1.89$ (m, 2H, H-4), 1.83 - 1.73 (m, 2H, H-5), 1.67 (s, 3H, H-14), 1.61 - 1.52 (m, 2H, H-6).
${ }^{13} \mathbf{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=157.8(\mathrm{C}-12), 134.5(\mathrm{C}-9), 130.7(\mathrm{C}-2), 129.3(\mathrm{C}-10), 128.7$ (C-3), 113.7 (C-11), $70.0(\mathrm{C}-1), 55.2$ (C-13), 35.8 (C-7), 33.3 (C-8), 32.4 (C-5), 29.9 (C-4), 18.5 (C-6), 16.3 (C-14).

GC-MS (70 eV): $m / z(\%)=246\left(\mathrm{M}^{+}, 3\right), 228(9), 213(3), 134(7), 121$ (100), 107 (4), 91 (19), 77 (15), 64 (3), 51 (4).

5.3.36 KINETIC RESOLUTION OF ALLYLIC ALCOHOL 267

Based on a literature protocol, ${ }^{[118]}$ in a flame dried Schlenk flask $25 \mathrm{mg}(95.3 \mu \mathrm{~mol}, 1.0 \mathrm{eq})$ of a racemic mixture of allylic alcohol rac- 267 together with 3.8 mg ($35.0 \mu \mathrm{~mol}, 0.4$ eq.) of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, 4.8 mg of CAL-B and $21.0 \mu \mathrm{~L}$ ($191 \mu \mathrm{~mol}, 2.0 \mathrm{eq}$.) of isopropenylacetate were dissolved in 0.4 mL of dry toluene. The colorless suspension was stirred at $21^{\circ} \mathrm{C}$ for 3 h before the solid parts were filtered off and the solvent was evaporated. Purification via silica column chromatography (c-Hex/EtOAc 2:1) delivered $7.3 \mathrm{mg}(23.1 \mu \mathrm{~mol}, 24 \%$) of acetate (+)-282 and $10.4 \mathrm{mg}(39.6 \mu \mathrm{~mol}$, 42% of enantioenriched alcohol (-)-267 with an enantiomeric excess of 70% ee determined by chiral HPLC using a racemic standard (see chapter 6.3). The latter crystalized slowly at rt.

acetate (+)-282:

$\mathbf{M}\left(\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4}\right)=304.39 \mathrm{~g} / \mathrm{mol}$
$\mathbf{R}_{f}(c$-Hex/EtOAc 2:1) $=0.51$

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[\mathrm{ppm}]=6.33(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10), 6.30(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12)$, $5.52-5.49(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 5.26(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.78(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}-15), 2.67(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-8)$, $2.31-2.25(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7), 2.07-1.94(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4), 2.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-14), 1.83-1.61(\mathrm{~m}, 4 \mathrm{H}$, H-5, H-6).
${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[\mathrm{ppm}]=171.0(\mathrm{C}-13), 160.9(\mathrm{C}-11), 144.6(\mathrm{C}-9), 141.9(\mathrm{C}-3), 124.4$ (C-2), 106.6 (C-10), 97.9 (C-12), 66.0 (C-1), 55.4 (C-15), 39.3 (C-7), 34.6 (C-8), 32.0 (C-6), 28.8 (C-4), 19.3 (C-5).

FT-IR (ATR): $\tilde{\text { v }}$ [cm-1] = 2937 (m), 2862 (w), 2837 (w), 1726 (m), 1596 (s), 1461 (m), 1429 (m), 1370 (m), 1322 (w), 1293 (w), 1241 (s), 1205 (m), 1151 (s), 1061 (m), 1019 (m), 954 (w), 909 (w), 830 (w), 691 (w), 608 (w).

GC-MS (70 eV): $m / z(\%)=306\left(\mathrm{M}^{+}+\mathrm{H}_{2}, 5\right), 246(5), 203(15), 165(5), 152(100), 121(4), 91$ (10), 77 (10).
$[\boldsymbol{\alpha}]^{20}{ }_{\lambda}\left(c=0.34 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):+234^{\circ}(436 \mathrm{~nm}),+129^{\circ}(546 \mathrm{~nm}),+112^{\circ}(579 \mathrm{~nm}),+107^{\circ}$ $(589 \mathrm{~nm}$).
allylic alcohol (-)-265:
$\mathbf{M}\left(\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}\right)=262.35 \mathrm{~g} / \mathrm{mol}$
$[\alpha]^{20}{ }_{\lambda}\left(c=0.49 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):-39^{\circ}(436 \mathrm{~nm}),-22^{\circ}(546 \mathrm{~nm}),-19^{\circ}(579 \mathrm{~nm}),-19^{\circ}$ (589 nm).

See chapter 5.3.26 for additional analytical data.

5.3.37 SAPONIFICATION OF ACETATE (+)-282

Acetate 278 ($7.0 \mathrm{mg}, 23 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) was dissolved in MeOH (HPLC grade) and 10 mg ($94 \mu \mathrm{~mol}$, 4.1 eq.) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ were added. After stirring at $21^{\circ} \mathrm{C}$ for $20 \mathrm{~h} \mathrm{H}_{2} \mathrm{O}$ was added and the aqueous phase was extracted with 4 x EtOAc. After removal of the solvent $5.8 \mathrm{mg}(22.1 \mu \mathrm{~mol}, 96 \%)$ of enantiopure allylic alcohol (+)-265 was obtained with an enantiomeric excess of 98% ee determined by chiral HPLC using a racemic standard (see chapter 6.3) as colorless oil.
$\mathbf{M}\left(\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}\right)=262.35 \mathrm{~g} / \mathrm{mol}$
$[\alpha]^{20}{ }_{\lambda}\left(c=0.44 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right):+42^{\circ}(436 \mathrm{~nm}),+26^{\circ}(546 \mathrm{~nm}),+22^{\circ}(579 \mathrm{~nm}),+20^{\circ}$ $(589 \mathrm{~nm})$.

See chapter 5.3.26 for additional analytical data.

5.3.3 GOLD-CATALYZED CYCLIZATION OF ENANTIOPURE ALLYLIC ALCOHOL (+)-267

A solution of 3.5 mg ($13 \mu \mathrm{~mol}, 1.0$ eq.) of enantiopure allylic alcohol (+)-267 in 1.3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (HPLC grade) was cooled to $0^{\circ} \mathrm{C}$ and $0.4 \mathrm{mg}\left(1.3 \mu \mathrm{~mol}, 0.1 \mathrm{eq}\right.$.) of AuCl_{3} dissolved in 0.3 mL of
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added. The yellow solution was stirred for 45 min at $0^{\circ} \mathrm{C}$ before $\mathrm{H}_{2} \mathrm{O}$ was added (discoloration). The aqueous phase was extracted 3 x with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers dried over MgSO_{4}. The resulting brown, viscous oil was purified by silica gel filtration (c-Hex/EtOAc 50:1) to give $2.0 \mathrm{mg}(8.2 \mu \mathrm{~mol}, 64 \%)$ of spiro cycle rac-278 as a racemic mixture.
$\mathbf{M}\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}\right)=244.33 \mathrm{~g} / \mathrm{mol}$
See chapter 5.3.21 for analytical data.

6 APPENDIX

6.1 NMR SPECTRA

6.1.1 ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA OF rac-2-BROMO-2METHYLCYCLOHEXANONE (rac-197)

rac-197

6.1.2 ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA OF ENONE 74

74

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
				1			1			$f 1$ (ppm										

6.1.4 ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA OF 2-(BROMOMETHYL)-1,4DIMETHOXYBENZENE (207)

6.1.5 ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA OF 2-(IODOMETHYL)-1,4DIMETHOXYBENZENE (116)

[^1]6.1.6 ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ AND ${ }^{31} \mathrm{P}$ NMR SPECTRA OF TPPA (204)

| 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |
| :--- |
| $f 1(\mathrm{ppm})$ | |

6. APPENDIX
$\stackrel{m}{\square}$

6.1.7 ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR AND ${ }^{31} \mathrm{P}$ SPECTRA OF PHOSPHORAMIDITE LIGAND 202

6.1.8 ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ AND ${ }^{31} \mathrm{P}$ NMR SPECTRA OF PHOSPHORAMIDITE LIGAND (ent-202)


~~~


6.1.9 \({ }^{1} \mathrm{H}\) AND \({ }^{13}\) C NMR SPECTRA OF KETONE 114

6.1.10 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF KETONE epi-114

6.1.11 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF KETONE ent-114

6.1.12 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF KETONE ent-epi-114

6.1.13 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF ENOL TRIFLATE 209

6.1.14 \({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\) NMR AND \({ }^{19} \mathrm{~F}\) SPECTRA OF ENOL TRIFLATE ent-209


\footnotetext{

}
6. APPENDIX


6.1.15 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF HOMOALLYLIC ALCOHOL 211
(
\(\star\) OtBs
211
à
\(\stackrel{\sim}{i} \underset{\sim}{\sim}\)
\(\vec{i}\)
6.1.16 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF SILYL ETHER 213
\begin{tabular}{|c|c|c|}
\hline  & 今̌uy & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline
\end{tabular}

213



6.1.17 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF SILYL ETHER ent-213


ent-213




6.1.18 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF PRIMARY ALCOHOL 214

\(\begin{array}{llllllllllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}\)
6.1.19 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF PRIMARY ALCOHOL ent-214
( A




\footnotetext{

}

\subsection*{6.1.20 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF ALDEHYDE 183}

6.1.21 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF ALDEHYDE ent-183

\(\stackrel{\circ}{\stackrel{\circ}{\text { in }}}\)
永

\(\underbrace{\circ}\) ~~O

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & & & & 170 & & & & & & 1 & & 1 & 1 & 10 & 1 & 5 & 10 & 10 & 1 & & \\
\hline 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \[
\begin{gathered}
110 \\
\mathrm{f} 1_{(\mathrm{ppm}}
\end{gathered}
\] & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{tabular}
6.1.22 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF OLEFIN 184

6.1.23 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF KETONE 215

6.1.24 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF OLEFIN 216

6.1.25 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF OLEFIN ent-184


\subsection*{6.1.26 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF ETHER ent-217}

6.1.27 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF TETRACYCLIC ALCOHOL 222


N

6.1.2 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF TETRACYCLIC ALCOHOL ent-222

6.1.29 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF KETONE 111

6.1.30 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF KETONE ent-111

6.1.31 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF TERTIARY ALCOHOL 223

6.1.32 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF OLEFIN 121

6.1.33 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF CYCLOPROPANE 224

6.1.34 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF (-)-DYSIHERBOL A (ent-98)


(-)-dysiherbol A (ent-98)

```
\(\stackrel{\sim}{m} \stackrel{0}{\sim}\)
```

\(\stackrel{\sim}{\infty}\)



\begin{tabular}{lllllllllllllllllllllllll}
170 & 160 & 150 & 140 & 130 & 120 & 10 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0
\end{tabular}
6.1.35 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF (+)-DYSIHERBOL A (98)


(+)-dysiherbol A
(98)



\footnotetext{
\(\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1_{(\mathrm{ppm})}\end{array}\)
}
6.1.36 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF METHYL ENOL ETHER 119

6.1.37 \({ }^{1} H\) AND \({ }^{13}\) C NMR SPECTRA OF METHYL ENOL ETHER ent- \(\mathbf{1 1 9}\)

6.1.38 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF CYCLOPROPANE 225

6.1.3 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF CYCLOPROPANE ent-225


6.1.40 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF A-METHYL KETONE 120

6.1.41 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF A-METHYL KETONE ent-120

6.1.42 \({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\) AND \({ }^{19} \mathrm{~F}\) NMR SPECTRA OF ENOL TRIFLATE 185


6. APPENDIX

6.1.43 \({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\) AND \({ }^{19} \mathrm{~F}\) NMR SPECTRA OF ENOL TRIFLATE ent-185

6. APPENDIX


\footnotetext{

}
6.1.44 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF OLEFIN 97


6．1．45 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF OLEFIN ent－97
\begin{tabular}{|c|c|c|}
\hline 成吕过 & \％ &  \\
\hline 00 & n &  \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\multirow[t]{13}{*}{}} \\
\hline & & & & & & \\
\hline
\end{tabular}

6.1.46 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF HOMOALLYLIC ALCOHOL 227

6.1.47 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF ALLYL METHYL ETHER 235

6.1.48 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF METHYL ESTER 239

6.1.49 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF ALLYLIC ALCOHOL 236

6.1.50 \({ }^{1} \mathrm{H}, \mathrm{H}, \mathrm{C}-\mathrm{HSQC}\) AND HMBC NMR SPECTRA OF (-)-DYSIHERBOL E (ent-110)



6.1.51 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF DIENE 241

6.1.52 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF DIENE ent-241


\footnotetext{
\(\begin{array}{lllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ f 1_{\left(\mathrm{ppm}_{)}\right.}\end{array}\)
}
6.1.53 \({ }^{1} \mathrm{H}, \mathrm{H}, \mathrm{C}-\mathrm{HSQC}\) AND HMBC AND H, H-COSY NMR SPECTRA OF PENTACYCLIC BROMIDE 242




\subsection*{6.1.54 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF METHYL ETHER ent-244}

6.1.55 \({ }^{1} \mathrm{H}, \mathrm{H}, \mathrm{C}-\mathrm{HSQC}\) AND HMBC AND H,H-COSY NMR SPECTRA OF PENTACYCLIC OLEFIN ent-240

\[
\underset{\sim}{n}
\]
\[
\stackrel{i}{i} \overbrace{i}^{\infty} 0_{i}^{\infty}
\]




6.1.56 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF ALLYLIC ALCOHOL 245

6.1.57 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF 4(2,5-DIMETHOXYPHENYL)-4-HYDROXYBUTAN-2-ONE (246)



6.1.59 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF ENOL TRIFLATE 248
(



6.1.60 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF SILYL ETHER 249


6.1.61 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF PRIMARY ALCOHOL 283






\subsection*{6.1.62 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF ALDEHYDE 250}



\subsection*{6.1.63 \({ }^{1} \mathrm{H}\) NMR SPECTRUM OF 2-(2,5-DIMETHOXYPHENYL) ETHANOL (253)}

6.1.64 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF 1-BROMO-2-(2,5-DIMETHOXY PHENYL)ETHANE (254)
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
 \\

\end{tabular} &  \\
\hline
\end{tabular}

\(\square\)

6.1.65 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF ALLYLIC ALCOHOL rac-255


\subsection*{6.1.66 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF 1,4-DI(2,5-METHOXYPHENYL) BUTANE (283)}


\subsection*{6.1.67 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF (2,5-DIMETHOXYPHENYL) ETHANE (284)}

6.1.68 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF 3-ETHOXYCYCLOHEX-2ENONE (264)

\begin{tabular}{|c|}
\hline \multirow[b]{3}{*}{? 0} \\
\hline \\
\hline \\
\hline
\end{tabular}
6.1.69 \({ }^{1} \mathrm{H} \mathrm{AND}{ }^{13} \mathrm{C}\) NMR SPECTRA OF ENONE 261


\section*{ \\ MNNNNNNNNNNNMNー}


6.1.70 \({ }^{1} \mathrm{H}\) AND \({ }^{13} \mathrm{C}\) NMR SPECTRA OF 2,5-DIMETHOXYSTYRENE (285)

\(\stackrel{\rightarrow \infty}{\infty}\)


285

~~~

先

[^2]6.1.71 ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA OF 3-OXOCYCLOHEX-1-EN-1-YL TRIFLUOROMETHANE SULFONATE (268)

$\stackrel{\square}{\stackrel{9}{1}}$

$\begin{array}{lll}\sim & 0 & a \\ i & \stackrel{\infty}{i} & \stackrel{\rightharpoonup}{1} \\ 1 & 1\end{array}$

6.1.72 ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA OF ALLYLIC ALCOHOL rac-262

6.1.73 ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA OF 2-(3,5-DIMETHOXYPHENYL) ETHANOL (258)

6.1.74 ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA OF 1-BROMO-2-(3,5DIMETHOXYPHENYL) ETHANANE (259)

6.1.75 ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA OF ALLYLIC ALCOHOL rac-260

6.1.76 ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA OF 1,4-DI(3,5-METHOXYPHENYL) BUTANE (286)

6.1.77 ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA OF (3,5-DIMETHOXYPHENYL) ETHANE (287)

287
6.1.78 ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA OF SPIROCYCLIC rac-278

6.1.79 ${ }^{1} \mathrm{H} \mathrm{AND}{ }^{13} \mathrm{C}$ NMR SPECTRA OF ENONE 265

6.1.80 ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA OF SPIROCYCLIC KETONE rac-283

6.1.81 ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA OF 3,5-DIMETHOXYSTYRENE (266)

6.1.82 ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA OF ALLYLIC ALCOHOL rac-267

6.1.83 ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA OF 2-METHYL-3-OXO-1-CYCLOHEXEN-1-YL-TRIFLUOROMETHANESULFONATE (275)

| 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 |
| :--- |

$\begin{array}{cccc}\infty & \infty & \infty & \\ \stackrel{\infty}{\infty} & \stackrel{\infty}{\infty} & \stackrel{\infty}{n} & \infty \\ 1 & 1 & 1 & 1\end{array}$

				170								10	10	70		5	10		1		
210	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ f 1 \end{array}$	100 pm	90	80	70	60	50	40	30	20	10	0

6.1.84 ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA OF ENONE 272

6.1.85 ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA OF SPIROCYCLIC rac-279

6.1.86 ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA OF ENONE 270

6.1.87 ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA OF ALLYLIC ALCOHOL rac-271

6.1.88 ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA OF ENONE 276

6.1.89 ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA OF ALLYLIC ALCOHOL rac-277

6.1.90 ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA OF ACETATE (+)-282

	우우우N	$\stackrel{\infty}{\sim}$	
$\underbrace{0.900000000000}$	nunn	\|	

$(+)-282$

-	∞
$\underset{\sim}{2}$	8
†	\|

$\begin{array}{ll}0 \\ 0 & \text { U } \\ 1 & \tilde{0}\end{array}$
$\stackrel{\sim}{c}$

$\begin{array}{lllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \begin{array}{c}90 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\end{array}$

6.2 X-RAY CRYSTALLOGRAPHIC DATA

6.2.1 DATA OF KETONE 114

TABLE 5 CRYSTAL DATA AND STRUCTURE REFINEMENT FOR KETONE 114

Empirical formula	C17 H24 03
Moiety formula	C17 H24 03
Formula weight	276.36
Temperature	100(2) K
Wavelength	1.54178 Å
Crystal system	Orthorhombic
Space group	$\mathrm{P} 2{ }_{12}{ }_{12}{ }_{1}$
Unit cell dimensions	$\mathrm{a}=7.0055(3) \AA \quad \mathrm{a}=90^{\circ}$
	$b=12.6745(5) \AA \quad b=90^{\circ}$
	$\mathrm{c}=17.0091(6) \AA \quad \mathrm{g}=90^{\circ}$
Volume	1510.26(10) \AA^{3}
Z	4
Density (calculated)	$1.215 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.650 \mathrm{~mm}^{-1}$
F(000)	600
Crystal size	$0.200 \times 0.200 \times 0.060 \mathrm{~mm}^{3}$
range for data collection	4.350 to 72.086°.
Index ranges	$-8<=\mathrm{h}<=8,-15<=\mathrm{k}<=15,-20<=\mathrm{l}<=20$
Reflections collected	45975
Independent reflections	2980 [$\mathrm{R}(\mathrm{int}$) $=0.0348$]
Completeness to $=67.679^{\circ}$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7536 and 0.6732
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2980 / 0 / 186
Goodness-of-fit on \mathbf{F}^{2}	1.072
Final R indices [$\mathrm{I}>2$ (I)]	$\mathrm{R} 1=0.0251, \mathrm{wR} 2=0.0667$
R indices (all data)	$\mathrm{R} 1=0.0253, \mathrm{wR} 2=0.0668$
Absolute structure parameter	0.030(18)
Extinction coefficient	0.0069 (7)
Largest diff. peak and hole	0.215 and -0.166 e. \AA^{-3}

6.2.2 DATA OF KETONE epi-114

Table 6 crystal data and structure refinement for ketone epi-114.

Empirical formula	C17 H24 03
Moiety formula	C17 H24 03
Formula weight	276.36
Temperature	100(2) K
Wavelength	1.54178 Å
Crystal system	Orthorhombic
Space group	P2 $1^{2} 1_{21}$
Unit cell dimensions	$\mathrm{a}=7.0055(3) \AA \quad \mathrm{a}=90^{\circ}$
	$b=12.6745(5) \AA \quad b=90^{\circ}$
	$\mathrm{c}=17.0091(6) \AA \mathrm{g}=90^{\circ}$
Volume	1510.26(10) \AA^{3}
Z	4
Density (calculated)	$1.215 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.650 \mathrm{~mm}^{-1}$
F(000)	600
Crystal size	$0.200 \times 0.200 \times 0.060 \mathrm{~mm}^{3}$
range for data collection	4.350 to 72.086°.
Index ranges	$-8<=\mathrm{h}<=8,-15<=\mathrm{k}<=15,-20<=\mathrm{l}<=20$
Reflections collected	45975
Independent reflections	$2980[\mathrm{R}(\mathrm{int})=0.0348]$
Completeness to $=67.679{ }^{\circ}$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7536 and 0.6732
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2980 / 0 / 186
Goodness-of-fit on $\mathbf{F}^{\mathbf{2}}$	1.072
Final R indices [l>2 (I)]	$\mathrm{R} 1=0.0251, \mathrm{wR} 2=0.0667$
R indices (all data)	$\mathrm{R} 1=0.0253, \mathrm{wR} 2=0.0668$
Absolute structure parameter	0.030(18)
Extinction coefficient	0.0069 (7)
Largest diff. peak and hole	0.215 and -0.166 e. \AA^{-3}

6.2.3 DATA OF KETONE ent-epi-114

Table 7 Crystal data and structure refinement for ketone ent-epi-114.

Empirical formula	C17 H24 03
Moiety formula	C17 H24 03
Formula weight	276.36
Temperature	100(2) K
Wavelength	1.54178 Å
Crystal system	Triclinic
Space group	P1
Unit cell dimensions	$\mathrm{a}=7.3352(7) \AA$
	$\mathrm{b}=9.8566(7) \AA$
	$\mathrm{c}=10.8535(7) \AA$
Volume	762.70 (10) \AA^{3}
Z	2
Density (calculated)	$1.203 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.644 \mathrm{~mm}^{-1}$
F(000)	300
Crystal size	$0.150 \times 0.150 \times 0.020 \mathrm{~mm}^{3}$
Theta range for data collection	4.190 to 72.250°.
Index ranges	$-9<=\mathrm{h}<=9,-12<=\mathrm{k}<=12,-13<=\mathrm{l}<=12$
Reflections collected	23278
Independent reflections	5653 [R(int) $=0.0940$]
Completeness to theta $=67.679^{\circ}$	98.1 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7535 and 0.5928
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	5653 / 3 / 369
Goodness-of-fit on F^{2}	1.050
Final R indices [I >2sigma(I)]	$\mathrm{R} 1=0.0476, \mathrm{wR} 2=0.1080$
R indices (all data)	$\mathrm{R} 1=0.0644, \mathrm{wR} 2=0.1178$
Absolute structure parameter	0.02(18)
Extinction coefficient	n / a
Largest diff. peak and hole	0.229 and -0.230 e. \AA^{-3}

6.2.4 DATA OF OLEFIN 184

184

Table 8 CRYSTAL DATA AND STRUCTURE REFINEMENT FOR OLEFIN 184

Empirical formula	C21 H28 02
Moiety formula	C21 H28 02
Formula weight	312.43
Temperature	100(2) K
Wavelength	1.54178 Å
Crystal system	Hexagonal
Space group	P63
Unit cell dimensions	$a=13.3520(4) \AA \quad a=90^{\circ}$
	$\mathrm{b}=13.3520(4) \AA \quad \mathrm{A}=90^{\circ}$
	$\mathrm{c}=17.1138(7) \AA \quad \mathrm{g}=120^{\circ}$
Volume	2642.22(19) \AA^{3}
Z	6
Density (calculated)	$1.178 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.571 \mathrm{~mm}^{-1}$
F(000)	1020
Crystal size	$0.200 \times 0.100 \times 0.070 \mathrm{~mm}^{3}$
-range for data collection	3.823 to 72.044°.
Index ranges	$-16<=\mathrm{h}<=16,-16<=\mathrm{k}<=16,-21<=\mathrm{l}<=21$
Reflections collected	32133
Independent reflections	3489 [$\mathrm{R}(\mathrm{int}$) $=0.0798$]
Completeness to $=67.679^{\circ}$	100.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7536 and 0.5950
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3489 / 1 / 212
Goodness-of-fit on $\mathrm{F}^{\mathbf{2}}$	1.045
Final R indices [$\mathrm{I}>2$ (I)]	$\mathrm{R} 1=0.0444, \mathrm{wR} 2=0.1030$
R indices (all data)	$\mathrm{R} 1=0.0490, \mathrm{wR} 2=0.1066$
Absolute structure parameter	0.17(12)
Extinction coefficient	n/a
Largest diff. peak and hole	0.487 and -0.212 e. \AA^{-3}

6.2.5 DATA OF OLEFIN ent-184

ent-184

Table 9 Crystal data and structure refinement for olefin ent-184.

Empirical formula	C21 H28 02
Moiety formula	C21 H28 02
Formula weight	312.43
Temperature	100(2) K
Wavelength	1.54178 Å
Crystal system	Hexagonal
Space group	P63
Unit cell dimensions	$\mathrm{a}=13.3658(3) \AA$
	$\mathrm{b}=13.3658(3) \AA$
	$\mathrm{c}=17.1449(7) \AA$
Volume	$2652.50(16) \AA^{3}$
Z	6
Density (calculated)	$1.174 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.569 \mathrm{~mm}^{-1}$
F(000)	1020
Crystal size	$0.070 \times 0.030 \times 0.030 \mathrm{~mm}^{3}$
Theta range for data collection	3.819 to 72.203°.
Index ranges	-16<=h<=16, -16<=k<=16, -21<=l<=21
Reflections collected	92727
Independent reflections	$3505[\mathrm{R}(\mathrm{int})=0.1061]$
Completeness to theta $=67.679^{\circ}$	99.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7536 and 0.6557
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3505 / 1 / 212
Goodness-of-fit on F^{2}	1.032
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0372, \mathrm{wR} 2=0.0980$
R indices (all data)	$\mathrm{R} 1=0.0389, \mathrm{wR} 2=0.0996$
Absolute structure parameter	0.04(9)
Extinction coefficient	n / a
Largest diff. peak and hole	0.318 and -0.163 e. \AA^{-3}

6.2.6 DATA OF KETONE 111

Table 10 Crystal data and structure refinement for ketone 111.

Empirical formula	C21 H28 03
Formula weight	328.43
Temperature	295(2) K
Wavelength	1.54178 Å
Crystal system	Orthorhombic
Space group	P 212121
Unit cell dimensions	$\mathrm{a}=10.6575(2) \AA$
	$\mathrm{b}=11.2368(3) \AA$
	$\mathrm{c}=15.3203(4) \AA$
Volume	1834.70(8) \AA^{3}
Z	4
Density (calculated)	$1.189 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.614 \mathrm{~mm}^{-1}$
F(000)	712
Crystal size	$0.100 \times 0.070 \times 0.050 \mathrm{~mm}^{3}$
Theta range for data collection	4.881 to 72.208°.
Index ranges	$-13<=\mathrm{h}<=11,-13<=\mathrm{k}<=13,-18<=\mathrm{l}<=18$
Reflections collected	40088
Independent reflections	3616 [R(int) $=0.0534]$
Completeness to theta $=67.679^{\circ}$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7536 and 0.5789
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3616 / 0 / 221
Goodness-of-fit on $\mathrm{F}^{\mathbf{2}}$	1.111
Final R indices [$1>2$ sigma(I)]	$\mathrm{R} 1=0.0310, \mathrm{wR} 2=0.0886$
R indices (all data)	$\mathrm{R} 1=0.0386, \mathrm{wR} 2=0.0980$
Absolute structure parameter	0.01(7)
Extinction coefficient	n/a
Largest diff. peak and hole	0.296 and -0.331 e. \AA^{-3}
Empirical formula	C21 H28 03

6.2.7 DATA OF A-METHYL KETONE ent-120

Table 11 CRystal data and structure refinement for α-methyl ketone ent-120.

Empirical formula	C22 H30 03
Moiety formula	C22 H30 03
Formula weight	342.46
Temperature	100(2) K
Wavelength	1.54178 Å
Crystal system	Monoclinic
Space group	P21
Unit cell dimensions	$\mathrm{a}=9.256(2) \AA$
	$\mathrm{b}=12.765(3) \AA$
	c = 15.556(4) \AA
Volume	1820.4(8) \AA^{3}
Z	4
Density (calculated)	$1.250 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.639 \mathrm{~mm}^{-1}$
F(000)	744
Crystal size	$0.070 \times 0.010 \times 0.005 \mathrm{~mm}^{3}$
Theta range for data collection	2.868 to 72.874°.
Index ranges	$-11<=\mathrm{h}<=11,-15<=\mathrm{k}<=14,-19<=\mathrm{l}<=18$
Reflections collected	30701
Independent reflections	7014 [R(int) $=0.2085]$
Completeness to theta $=67.679^{\circ}$	99.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7536 and 0.6178
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	7014 / 1 / 462
Goodness-of-fit on F^{2}	0.949
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0794, \mathrm{wR} 2=0.1620$
R indices (all data)	$\mathrm{R} 1=0.1583, \mathrm{wR} 2=0.2014$
Absolute structure parameter	0.1(4)
Extinction coefficient	0.0117(13)
Largest diff. peak and hole	0.307 and -0.259 e. A^{-3}

6.2.8 DATA OF TRIFLATE $\mathbf{1 8 5}$

Table 12 CRYSTAL DATA AND StRUCTURE REFINEMENT FOR TRIFLATE 185.

Empirical formula	C23 H29 F3 05 S
Moiety formula	C23 H29 F3 05 S
Formula weight	474.52
Temperature	100(2) K
Wavelength	1.54178 Å
Crystal system	Orthorhombic
Space group	$\mathrm{P} 2{ }_{12}{ }_{1} 2_{1}$
Unit cell dimensions	$\mathrm{a}=7.5398(2) \AA$
	$\mathrm{b}=13.1822(4) \AA$
	$\mathrm{c}=22.8490(7) \AA$
Volume	2270.99(11) \AA^{3}
Z	4
Density (calculated)	$1.388 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.774 \mathrm{~mm}^{-1}$
F(000)	1000
Crystal size	$0.070 \times 0.030 \times 0.010 \mathrm{~mm}^{3}$
Theta range for data collection	3.869 to 72.383°.
Index ranges	-9<=h<=9, -16<=k<=16, -28<=l<=28
Reflections collected	96673
Independent reflections	4251 [$\mathrm{R}(\mathrm{int}$) $=0.0827]$
Completeness to theta $=67.679^{\circ}$	95.2 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7536 and 0.5978
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4251 / 0 / 294
Goodness-of-fit on $\mathrm{F}^{\mathbf{2}}$	1.045
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0352, \mathrm{wR} 2=0.0904$
R indices (all data)	$\mathrm{R} 1=0.0371, \mathrm{wR} 2=0.0915$
Absolute structure parameter	0.031(6)
Extinction coefficient	n / a
Largest diff. peak and hole	0.317 and -0.319 e. \AA^{-3}

6.2.9 DATA OF (-)-DYSIHERBOL A (98) — MeOH COMPLEX

(-)-dysiherbol A (98)

Table 13 Crystal data and structure refinement for (-)-DYsiherbol a (98) - MeOH complex.

Empirical formula	C22 H32 03
Moiety formula	C21 H28 02, C H4 O
Formula weight	344.47
Temperature	100(2) K
Wavelength	1.54178 Å
Crystal system	Orthorhombic
Space group	$\mathrm{P} 212{ }_{12}{ }_{1}$
Unit cell dimensions	$\mathrm{a}=9.4931(5) \AA$
	$\mathrm{b}=12.8945(7) \AA$
	c = 15.0694(9) \AA
Volume	1844.63(18) \AA^{3}
Z	4
Density (calculated)	$1.240 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.631 \mathrm{~mm}^{-1}$
F(000)	752
Crystal size	$0.150 \times 0.080 \times 0.080 \mathrm{~mm}^{3}$
Crystal colour	yellowish
Theta range for data collection	4.513 to 72.088°.
Index ranges	$-11<=\mathrm{h}<=11,-14<=\mathrm{k}<=15,-18<=\mathrm{l}<=18$
Reflections collected	108102
Independent reflections	3629 [R(int) $=0.0575$]
Completeness to theta $=67.679^{\circ}$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7536 and 0.6407
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3629 / 0 / 239
Goodness-of-fit on F^{2}	1.081
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0283, \mathrm{wR} 2=0.0770$
R indices (all data)	$\mathrm{R} 1=0.0289, \mathrm{wR} 2=0.0777$
Absolute structure parameter	0.04(3)
Extinction coefficient	n / a

6.2.10 DATA OF SPIROCYCLIC OLEFIN rac-278

Table 14 CRystal data and structure Refinement for spirocyclic olefin rac-278.

Empirical formula	C16 H20 02
Moiety formula	C16 H20 02
Formula weight	244.32
Temperature	100(2) K
Wavelength	1.54178 A
Crystal system	Monoclinic
Space group	P21/c
Unit cell dimensions	$\mathrm{a}=9.6883(12) \AA$
	$\mathrm{b}=21.748(3) \AA$
	$\mathrm{c}=6.4103(8) \AA$
Volume	1321.8(3) ${ }^{\text {® }}$
Z	4
Density (calculated)	$1.228 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.623 \mathrm{~mm}^{-1}$
F(000)	528
Crystal size	$0.100 \times 0.020 \times 0.005 \mathrm{~mm}^{3}$
Theta range for data collection	4.065 to 72.320 ${ }^{\circ}$.
Index ranges	$-11<=\mathrm{h}<=11,-26<=k<=26,-6<=1<=7$
Reflections collected	26751
Independent reflections	2588 [$\mathrm{R}(\mathrm{int})=0.1216]$
Completeness to theta $=67.679^{\circ}$	100.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7536 and 0.5857
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2588/0/166
Goodness-of-fit on F^{2}	1.039
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0635, \mathrm{wR} 2=0.1612$
R indices (all data)	$\mathrm{R} 1=0.0826, \mathrm{wR} 2=0.1757$
Extinction coefficient	0.0029(9)
Largest diff. peak and hole	0.676 and -0.307 e. \AA^{-3}
Empirical formula	C16 H20 02

6.3 CHIRAL HPLC ANALYSIS

Figure 16 hPLC Chromatogram of a racemic sample of (\pm)-114 (TOP) AND AN ENANTIOENRICHED SAMPLE OF 114 (BOTTOM) ON CHIRAL STATIONARY PHASE.

Column: CHIRALPAK AD-H
Column temperature: $18{ }^{\circ} \mathrm{C}$
Solvent: n-hexane/2-propanol 99:1
Flow: $1 \mathrm{~mL} / \mathrm{min}$
Detection: 250 nm
Enantiomeric excess: 96\%

Figure 17 hplc chromatogram of rac-114 (top) and enantioenriched ent-114 (BOTTOM) ON CHIRAL STATIONARY PHASE.

Column: CHIRALPAK AD-H
Column temperature: $18{ }^{\circ} \mathrm{C}$
Solvent: n-hexane/2-propanol 99:1
Flow: $1 \mathrm{~mL} / \mathrm{min}$
Detection: 250 nm
Enantiomeric excess: 96\%

FIGURE 18 HPLC CHROMATOGRAM OF rac-267 (TOP) AND ENANTIOENRICHED (-)-267 (BOTTOM) ON STATIONARY PHASE.

Column: Diacel CHIRALPAK AD-H
Column temperature: rt
Solvent: n-hexane/2-propanol 90:10
Flow: $1 \mathrm{~mL} / \mathrm{min}$
Detection: 254 nm
Enantiomeric excess: 70\%

FIGURE 19 HPLC CHROMATOGRAM OF rac-267 (TOP) AND ENANTIOENRICHED (+)-267 (BOTTOM) ON STATIONARY PHASE.

Column: Diacel CHIRALPAK AD-H
Column temperature: rt
Solvent: n-hexane/2-propanol 95:05
Flow: $0.5 \mathrm{~mL} / \mathrm{min}$
Detection: 254 nm
Enantiomeric excess: 98 \%

FIGURE 20 HPLC CHROMATOGRAM OF rac-278 AFTER CYCLIZATION OF ENANTIOENRICHED (+)-267 (ee = 98\%) WITH AuCl_{3}.

Column: Macherey-Nagel Nucleocell
Column temperature: rt
Solvent: n-hexane/2-propanol 98:02
Flow: $0.1 \mathrm{~mL} / \mathrm{min}$
Detection: 254 nm

6.4 L	ST OF ABBREVIATIONS
AIBN	azobisisobutyronitril
9-BBN	9-borobicyclo[3.3.1]nonane
Ac	acetyl
AcOH	acetic acid
APT	attached proton test
aq.	aqueous
AraC	cytarabine
ASA	acetylsalicylic acid
BINOL	1,1'-bi-2-naphthol
Bn	benzyl
Br	broad (NMR and IR spectra)
brsm	based on reisolation of starting material
Bu	butyl
CALB	Candida antarctica Lipase B
calc.	calculated
CoA	coenzyme A
cod	cycloocta-1,5-diene
conc.	concentrated
conv.	conversion
COSY	correlation spectroscopy
CSA	camphorsulfonic acid
d	doublet (NMR spectra) or day(s) (reaction time)
DABCO	1,4-diazabicyclo[2.2.2] octane
dba	dibenzylideneacetone
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCE DEPTQ	1,2-dichloroethane distorsionless enhancement by polarisation transfer including the detection of quaternary nuclei
dia	diastereomer
DIBAL-H	diisobutylaluminum hydride
DIPEA	N, N-diisopropylethylamine
DMAPP	dimethylallyl pyrophosphate
DME	1,2-Dimethoxyethane
DMEM	Dulbecco's modified minimal essential medium
DMF	N, N-dimethylformamide
DMP	Dess-Martin periodinane
DMS	dimethyl sulfide
DMSO	dimethylsulfoxide
Doxo	doxorubicin
dppe	1,2-bis(diphenylphosphino) ethane
dppf	1,1'-bis(diphenylphosphino) ferrocene
$d r$	diastereomeric ratio
DTBMP	2,6-Di-tert-butylpyridine
ECD	electronic circular dichroism

EDTA $e e$	ethylenediaminetetraacetic acid enantiomeric excess
EI	electron impact ionisation
ent	enantiomer
epi	epimeric
eq.	equivalent(s)
ESI	electron spray ionisation
Et	ethyl
et al.	et altera
FCS	fetal calf serum
FPP	farnesyl pyrophosphate
FT-IR	Fourier-transform infrared spectroscopy
GC	gas chromatography
h	hour(s)
HBA	4-hydroxybenzoic acid
HIV	human immunodeficiency viruses
HMBC	heteronuclear multiple bond correlation
HMBC	heteronuclear multiple bond MS correlation
HMPA	hexamethylphosphoramide
HPLC	high performance liquid MTBE chromatography
HR	high resolution
HSQC	heteronuclear single quantum coherence
HSQC	heteronuclear single quantum coherence
IC50	half maximal inhibitory concentration
IPP	isopentenyl diphosphate
$i \mathrm{Pr}$	iso-propyl
IR	infrared
LDA	lithium N, N-diisopropylamide
lit.	literature
m	medium (IR spectra) or multiplet (NMR spectra)
m.p.	melting point
mCPBA	meta-chloroperbenzoic acid
Me	methyl
MEP	2-C-methyl-D-erythritol 4-phosphate
MRSA	methicillin-resistant Staphylococcus aureus
MS	mass spectrometry or molecular sieves
Ms	methanesulfonyl
MTBE	tert-butyl methyl ether
NBS	N-bromosuccinimide
NF-кB	nuclear factor kappa B
NMR	nuclear magnetic resonance
NOESY	nuclear Overhauser effect correlation spectroscopy
o	ortho
o/n	overnight

p	para
PBS	Phosphate-buffered saline
Ph	phenyl
PPTS	pyridinium p-toluenesulfonate
$p \mathrm{TsOH}$	para-toluenesulfonic acid
q	quartet (NMR spectra)
quint	quintet (NMR spectra)
R	non-defined substituent
rac	racemic
RCM	ring-closing metathesis
ref.	reference
R_{f}	retardation factor
ROS	reactive oxygen species
rt	room temperature
S	strong (IR spectra) or singlet (NMR spectra)
SAR	structure-activity relationship
sat.	saturated
SEAr	electrophilic aromatic substitution
SM	starting material
Sphos	2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl
t	triplet (NMR spectra)
TBAF	tetrabutylammonium fluoride
TBDPS	tert-butyldiphenylsilyl
TBS	tertiary-butyldimethylsilyl
$t \mathrm{Bu}$	tertiary-butyl
TC	thiophene-2-carboxylate
Tf	trifluoromethanesulfonyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TIC	total ion current
TLC	thin layer chromatography
TMS	trimethylsilyl
TPPA	tris(pyrrolidinyl)-phosphoramide
UbiA	4-hydroxybenzoate polyprenyltransferase
UV	ultraviolet
VCr	vincristine
w	weak (IR spectra)
WHO	World Health Organization

6.5 REFERENCES

[1] P. M. Dewick, Medicinal Natural Products: A Biosynthetic Approach, 3rd ed., John Wiley \& Sons, Ltd., 2009.
[2] P. E. H. Gerhard Habermehl, Hans C. Krebs, W. Ternes, Naturstoffchemie, Eine Einführung, Vol. 3, Springer-Verlag Berlin Heidelberg, 2008.
[3] A. Jones, Chemistry, An Introduction for Medical and Health Sciences, John Wiley \& Sons, Ltd., Chichester, 2005.
[4] T. M. K. C. Nicolaou, Molecules that Changed the World, Wiley-VCH, Weinheim, 2008.
[5] G. Klebe, Wirkstoffdesign, 2nd ed., Spektrum Akademischer Verlag, Heidelberg, 2009.
[6] S.-M. Shen, G. Appendino, Y.-W. Guo, Nat. Prod. Rep. 2022, 39, 1803-1832.
[7] a) K. C. Nicolaou, Proc. Math. Phys. Eng. Sci. 2014, 470, 20130690; b) M. E. Maier, Nat. Prod. Rep. 2009, 26, 1105-1124.
[8] K. C. Nicolaou, S. A. Snyder, Proceedings of the National Academy of Sciences of the United States of America 2004, 101, 11929-11936.
[9] R. B. Woodward, R. Hoffmann, J. Am. Chem. Soc. 1965, 87, 395-397.
[10] R. B. Woodward, Pure Appl. Chem. 1973, 33, 145-178.
[11] D. J. Newman, G. M. Cragg, J. Nat. Prod. 2007, 70, 461-477.
[12] M. Feher, J. M. Schmidt, J. Chem. Inf. Comput. Sci. 2003, 43, 218-227.
[13] X.-H. Tian, L.-L. Hong, W.-H. Jiao, H.-W. Lin, Nat. Prod. Rep. 2023.
[14] a) D. Varijakzhan, J.-Y. Loh, W.-S. Yap, K. Yusoff, R. Seboussi, S.-H. E. Lim, K.-S. Lai, C.-M. Chong, Mar. Drugs 2021, 19, 246; b) R. J. Capon, in Stud. Nat. Prod. Chem., Vol. 15 (Ed.: R. Atta ur), Elsevier, 1995, pp. 289-326.
[15] I. S. Marcos, A. Conde, R. F. Moro, P. Basabe, D. Diez, J. G. Urones, Mini-Rev. Org. Chem. 2010, 7, 230-254.
[16] P. A. Garcia, A. P. Hernandez, A. San Feliciano, M. A. Castro, Mar. Drugs 2018, 16.
[17] a) T. Yoon, S. J. Danishefsky, S. de Gala, Angew. Chem. Int. Ed. Engl. 1994, 33, 853-855; b) D. Sladic, M. J. Gasic, Molecules 2006, 11, 1-33; c) T. Namba, R. Kodama, Mar. Drugs 2015, 13, 2376-2389.
[18] L. Minale, R. Riccio, G. Sodano, Tetrahedron Lett. 1974, 15, 3401-3404.
[19] a) X. Zhang, H.-Y. Xu, A.-M. Huang, L. Wang, Q. Wang, P.-Y. Cao, P.-M. Yang, Chem. Pharm. Bull. 2016, 64, 1036-1042; b) R. Wildermuth, K. Speck, F. L. Haut, P. Mayer, B. Karge, M. Bronstrup, T. Magauer, Nat. Commun. 2017, 8, 2083; c) L. Yang, D. E. Williams, A. Mui, C. Ong, G. Krystal, R. van Soest, R. J. Andersen, Org. Lett. 2005, 7, 1073-1076; d) W.-H. Jiao, T.-T. Xu, F. Zhao, H. Gao, G.-H. Shi, J. Wang, L.-L. Hong, H.-B. Yu, Y.-S. Li, F. Yang, H.-W. Lin, Eur. J. Org. Chem. 2015, 2015, 960-966; e) C. K. Kim, J. K. Woo, S. H. Kim, E. Cho, Y. J. Lee, H. S. Lee, C. J. Sim, D. C. Oh, K. B. Oh, J. Shin, J. Nat. Prod. 2015, 78, 2814-2821; f) W. H. Jiao, G. H. Shi, T. T.

Xu, G. D. Chen, B. B. Gu, Z. Wang, S. Peng, S. P. Wang, J. Li, B. N. Han, W. Zhang, H. W. Lin, J. Nat. Prod. 2016, 79, 406-411.
[20] P. Djura, D. B. Stierle, B. Sullivan, D. J. Faulkner, E. V. Arnold, J. Clardy, J. Org. Chem. 1980, 45, 1435-1441.
[21] E. Goclik, G. M. König, A. D. Wright, R. Kaminsky, J. Nat. Prod. 2000, 63, 1150-1152.
[22] L. I. U. Hong-Yan, Z. Mi, S. Ru-Yi, H. Li-Li, W. Guang-Hui, T. Wen-Jing, J. Wei-Hua, C. Hai-Feng, L. I. N. Hou-Wen, Chin. J. Nat. Med. 2021.
[23] W. H. Jiao, T. T. Xu, H. B. Yu, G. D. Chen, X. J. Huang, F. Yang, Y. S. Li, B. N. Han, X. Y. Liu, H. W. Lin, J. Nat. Prod. 2014, 77, 346-350.
[24] Y. H. Gui, W. H. Jiao, M. Zhou, Y. Zhang, D. Q. Zeng, H. R. Zhu, K. C. Liu, F. Sun, H. F. Chen, H. W. Lin, Org. Lett. 2019, 21, 767-770.
[25] P. Amade, L. Chevelot, H. P. Perzanowski, P. J. Scheuer, Helv. Chim. Acta 1983, 66, 1672-1675.
[26] W. H. Jiao, B. H. Cheng, G. D. Chen, G. H. Shi, J. Li, T. Y. Hu, H. W. Lin, Org. Lett. 2018, 20, 30923095.
[27] a) W. H. Jiao, J. Li, Q. Liu, T. T. Xu, G. H. Shi, H. B. Yu, F. Yang, B. N. Han, M. Li, H. W. Lin, Molecules 2014, 19, 18025-18032; b) D. Lee, J. Shin, K.-M. Yoon, T.-I. Kim, S.-H. Lee, H.-S. Lee, K.-B. Oh, Bioorganic \& Medicinal Chemistry Letters 2008, 18, 5377-5380; c) H. M. Nguyen, T. Ito, S. I. Kurimoto, M. Ogawa, N. N. Win, V. Q. Hung, H. T. Nguyen, T. Kubota, J. Kobayashi, H. Morita, Bioorg. Med. Chem. Lett. 2017, 27, 3043-3047.
[28] a) D.-S. Lee, I. H. Hwang, N.-K. Im, G.-S. Jeong, M. Na, Nat. Prod. Sci. 2015, 21; b) J. Li, F. Yang, Z. Wang, W. Wu, L. Liu, S.-P. Wang, B.-X. Zhao, W.-H. Jiao, S.-H. Xu, H.-W. Lin, Org. Biomol. Chem. 2018, 16, 6773-6782.
[29] a) S. S. Ebada, N. de Voogd, R. Kalscheuer, W. E. G. Müller, Chaidir, P. Proksch, Phytochem. Lett. 2017, 22, 154-158; b) M. Menna, C. Imperatore, F. D'Aniello, A. Aiello, Mar. Drugs 2013, 11, 1602-1643; cH. Suzuki, T. Kubota, A. Takahashi-Nakaguchi, J. Fromont, T. Gonoi, J. Kobayashi, Chem Pharm Bull (Tokyo) 2014, 62, 209-212.
[30] S. D. Bruner, H. S. Radeke, J. A. Tallarico, M. L. Snapper, J. Org. Chem. 1995, 60, 1114-1115.
[31] a) K. A. Alvi, M. C. Diaz, P. Crews, D. L. Slate, R. H. Lee, R. Moretti, J. Org. Chem. 1992, 57, 66046607; b) J. Wang, F. R. Mu, W. H. Jiao, J. Huang, L. L. Hong, F. Yang, Y. Xu, S. P. Wang, F. Sun, H. W. Lin, J. Nat. Prod. 2017, 80, 2509-2514.
[32] a) A. Boufridi, S. Petek, L. Evanno, M. A. Beniddir, C. Debitus, D. Buisson, E. Poupon, Tetrahedron Lett. 2016, 57, 4922-4925; b) J. R. Carney, P. J. Scheuer, Tetrahedron Lett. 1993, 34, 3727-3730; c) M. Gordaliza, Mar. Drugs 2010, 8, 2849-2870; d) L. T. Huyen, D. T. Hang, N. X. Nhie, B. H. Tai, H. L. T. Anh, T. H. Quang, P. H. Yen, C. Van Minh, N. Van Dau, P. Van Kiem, Nat Prod Commun 2017, 12, 477-478; e) W. H. Jiao, G. H. Shi, T. T. Xu, G. D. Chen, B. B. Gu, Z. Wang, S. Peng, S. P. Wang, J. Li, B. N. Han, W. Zhang, H. W. Lin, J. Nat. Prod. 2016, 79, 406411; f) S. P. Ovenden, J. L. Nielson, C. H. Liptrot, R. H. Willis, D. M. Tapiolas, A. D. Wright, C. A. Motti, J. Nat. Prod. 2011, 74, 65-68.
[33] a) M. Arai, T. Kawachi, H. Sato, A. Setiawan, M. Kobayashi, Bioorg. Med. Chem. Lett. 2014, 24, 3155-3157; b) P. H. Lu, S. C. Chueh, F. L. Kung, S. L. Pan, Y. C. Shen, J. H. Guh, Eur. J. Pharmacol. 2007, 556, 45-54.
[34] D. M. Pereira, P. Valentão, P. B. Andrade, in Handbook of Anticancer Drugs from Marine Origin (Ed.: S.-K. Kim), Springer International Publishing, Cham, 2015, pp. 423-437.
[35] K. K. W. Kuan, H. P. Pepper, W. M. Bloch, J. H. George, Org. Lett. 2012, 14, 4710-4713.
[36] K. Speck, T. Magauer, Chem. - Eur. J. 2017, 23, 1157-1165.
[37] a) D. J. McGarvey, R. Croteau, The Plant Cell 1995, 7, 1015-1026; b) R. J. Sowden, S. Yasmin, N. H. Rees, S. G. Bell, L.-L. Wong, Org. Biomol. Chem. 2005, 3, 57-64.
$[38]$ a) J. A. Stefely, D. J. Pagliarini, Trends Biochem. Sci. 2017, 42, 824-843; b) Y.-L. Yang, H. Zhou, G. Du, K.-N. Feng, T. Feng, X.-L. Fu, J.-K. Liu, Y. Zeng, Angew. Chem., Int. Ed. 2016, 55, 54635466; c) J. M. Lv, Y. H. Gao, H. Zhao, T. Awakawa, L. Liu, G. D. Chen, X. S. Yao, D. Hu, I. Abe, H. Gao, Angew. Chem., Int. Ed. Engl. 2020, 59, 13531-13536.
[39] A. Rosales, J. Muñoz-Bascón, E. Roldan-Molina, N. Rivas-Bascón, N. M. Padial, R. RodríguezMaecker, I. Rodríguez-García, J. E. Oltra, J. Org. Chem. 2015, 80, 1866-1870.
[40] C. Chong, Q. Zhang, J. Ke, H. Zhang, X. Yang, B. Wang, W. Ding, Z. Lu, Angew. Chem., Int. Ed. 2021, 60, 13807-13813.
[41] J. Justicia, J. E. Oltra, J. M. Cuerva, J. Org. Chem. 2004, 69, 5803-5806.
[42] A. G. González, J. D. Martín, M. L. Rodríguez, Tetrahedron Lett. 1973, 14, 3657-3660.
[43] E. J. Corey, J. Das, J. Am. Chem. Soc. 1982, 104, 5551-5553.
[44] A. S. Sarma, P. Chattopadhyay, J. Org. Chem. 1982, 47, 1727-1731.
$[45]$ a) E. P. Locke, S. M. Hecht, Chem. Commun. 1996, 2717-2718; b) J. An, D. F. Wiemer, J. Org. Chem. 1996, 61, 8775-8779; c) J. Sakurai, T. Oguchi, K. Watanabe, H. Abe, S.-i. Kanno, M. Ishikawa, T. Katoh, Chemistry - A European Journal 2008, 14, 829-837.
[46] K. Watanabe, J. Sakurai, H. Abe, T. Katoh, Chem. Commun. (Cambridge, U. K.) 2010, 46, 40554057.
[47] T. Taishi, S. Takechi, S. Mori, Tetrahedron Lett. 1998, 39, 4347-4350.
[48] M. Nakatani, M. Nakamura, A. Suzuki, M. Inoue, T. Katoh, Org. Lett. 2002, 4, 4483-4486.
[49] J. Sakurai, T. Kikuchi, O. Takahashi, K. Watanabe, T. Katoh, Eur. J. Org. Chem. 2011, 2011, 2948-2957.
[50] a) T. Ling, E. Poupon, E. J. Rueden, S. H. Kim, E. A. Theodorakis, J. Am. Chem. Soc. 2002, 124, 12261-12267; b) T. Ling, E. Poupon, E. J. Rueden, E. A. Theodorakis, Org. Lett. 2002, 4, 819822.
[51] I. S. Marcos, A. Conde, R. F. Moro, P. Basabe, D. Díez, J. G. Urones, Tetrahedron 2010, 66, 82808290.
[52] a) R. J. Capon, J. Nat. Prod. 1990, 53, 753-756; b) S. Urban, R. Capon, Aust. J. Chem. 1994, 47, 1023-1029; cV. Lakshmi, S. P. Gunasekera, F. J. Schmitz, X. Ji, D. Van der Helm, J. Org. Chem. 1990, 55, 4709-4711.
[53] M. Nakamura, A. Suzuki, M. Nakatani, T. Fuchikami, M. Inoue, T. Katoh, Tetrahedron Lett. 2002, 43, 6929-6932.
[54] Y. Wu, X. Du, X. Wang, H. Liu, L. Zhou, Y. Tang, D. Li, Org. Chem. Front. 2022, 9, 4705-4711.
[55] K. Speck, R. Wildermuth, T. Magauer, Angew. Chem., Int. Ed. Engl. 2016, 55, 14131-14135.
[56] F.-L. Haut, K. Speck, R. Wildermuth, K. Möller, P. Mayer, T. Magauer, Tetrahedron 2018, 74, 3348-3357.
[57] R. Wildermuth, K. Speck, F. L. Haut, P. Mayer, B. Karge, M. Bronstrup, T. Magauer, Nat Commun 2017, 8, 2083.
[58] D. T. Ngoc, M. Albicker, L. Schneider, N. Cramer, Org. Biomol. Chem. 2010, 8, 1781-1784.
[59] F. Jiménez, A. Fernández, E. Boulifa, A. I. Mansour, R. Alvarez-Manzaneda, R. Chahboun, E. Alvarez-Manzaneda, J. Org. Chem. 2017, 82, 9550-9559.
[60] X. Yin, M. Mato, A. M. Echavarren, Angew. Chem. Int. Ed. 2017, 56, 14591-14595.
[61] D. Faustman, M. Davis, Nat. Rev. Drug Discovery 2010, 9, 482.
[62] J. Baars, I. Grimm, D. Blunk, J.-M. Neudörfl, H.-G. Schmalz, Angew. Chem., Int. Ed. 2021, 60, 14915-14920.
[63] C. Chong, L. Chang, I. Grimm, Q. Zhang, Y. Kuang, B. Wang, J. Kang, W. Liu, J. Baars, Y. Guo, H. G. Schmalz, Z. Lu, Chemical Science 2023.
[64] J. L. Baars, PhD thesis, University of Cologne 2022.
[65] K. C. Nicolaou, D. J. Edmonds, P. G. Bulger, Angew. Chem., Int. Ed. Engl. 2006, 45, 7134-7186.
$[66]$ a) O. F. Jeker, A. G. Kravina, E. M. Carreira, Angew. Chem., Int. Ed. 2013, 52, 12166-12169; b) Y. Tian, X. Xu, L. Zhang, J. Qu, Org. Lett. 2016, 18, 268-271; c) G. Rajendar, E. J. Corey, J. Am. Chem. Soc. 2015, 137, 5837-5844; d) S. V. Pronin, R. A. Shenvi, Nat. Chem. 2012, 4, 915 ; e) Q. Zhang, K. Tiefenbacher, Nat. Chem. 2015, 7, 197; f) M. J. Geier, M. R. Gagné, J. Am. Chem. Soc. 2014, 136, 3032-3035; g) Z. Yang, H. Li, L. Zhang, M.-T. Zhang, J.-P. Cheng, S. Luo, Chem. - Eur. J. 2015, 21, 14723-14727; h) M. A. Schafroth, D. Sarlah, S. Krautwald, E. M. Carreira, J. Am. Chem. Soc. 2012, 134, 20276-20278; i) S. Rendler, D. W. C. MacMillan, J. Am. Chem. Soc. 2010, 132, 5027-5029; j) S. G. Sethofer, T. Mayer, F. D. Toste, J. Am. Chem. Soc. 2010, 132, 82768277; k) K. Surendra, E. J. Corey, J. Am. Chem. Soc. 2012, 134, 11992-11994; I) R. R. Knowles, S. Lin, E. N. Jacobsen, J. Am. Chem. Soc. 2010, 132, 5030-5032.
[67] M. Uyanik, K. Ishihara, H. Yamamoto, Org. Lett. 2006, 8, 5649-5652.
[68] L. Zhu, J. Luo, R. Hong, Org. Lett. 2014, 16, 2162-2165.
[69] P. V. Fish, W. S. Johnson, J. Org. Chem. 1994, 59, 2324-2335.
[70] a) E. Chupakhin, O. Babich, A. Prosekov, L. Asyakina, M. Krasavin, Molecules 2019, 24, 4165; b) Y. Zheng, C. M. Tice, S. B. Singh, Bioorg. Med. Chem. Lett. 2014, 24, 3673-3682; c) K. Hiesinger, D. Dar'in, E. Proschak, M. Krasavin, J. Med. Chem. 2021, 64, 150-183; d) P. Saraswat, G. Jeyabalan, M. Z. Hassan, M. U. Rahman, N. K. Nyola, Synth. Commun. 2016, 46, 1643-1664.
[71] a) R. Rios, Chem. Soc. Rev. 2012, 41, 1060-1074; b) K. Babar, A. F. Zahoor, S. Ahmad, R. Akhtar, Mol. Diversity 2021, 25, 2487-2532; c) C. Marti, Erick M. Carreira, Eur. J. Org. Chem. 2003, 2003, 2209-2219; dL. K. Smith, I. R. Baxendale, Org. Biomol. Chem. 2015, 13, $9907-$ 9933.
[72] A. St. Pfau, P. A. Plattner, Helv. Chim. Acta 1939, 22, 640-654.
[73] aJ. A. Marshall, P. C. Johnson, J. Am. Chem. Soc. 1967, 89, 2750-2751; bJ. A. Marshall, P. C. Johnson, Chem. Commun. (London) 1968, 391-392.
[74] W.-C. Su, J.-M. Fang, Y.-S. Cheng, Phytochemistry 1993, 34, 779-782.
[75] a) T. Matsumoto, H. Shirahama, A. Ichihara, H. Shin, S. Kagawa, F. Sakan, S. Matsumoto, S. Nishida, J. Am. Chem. Soc. 1968, 90, 3280-3281; b) T. Matsumoto, H. Shirahama, A. Ichihara, H. Shin, S. Kagawa, F. Sakan, K. Miyano, Tetrahedron Lett. 1971, 12, 2049-2052.
[76] C. A. L. Bercht, J. P. C. M. van Dongen, W. Heerma, R. J. J. Ch. Lousberg, F. J. E. M. Küppers, Tetrahedron 1976, 32, 2939-2943.
[77] L. Crombie, P. Tuchinda, M. J. Powell, J. Chem. Soc., Perkin Trans. 1 1982, 1477-1484.
[78] N. R. Natale, B. E. Marron, E. J. Evain, C. D. Dodson, Synth. Commun. 1984, 14, 599-603.
[79] F. S. El-Feraly, Y.-M. Chan, J. Nat. Prod. 1981, 44, 557-561.
[80] H. Wolf, M. Kolleck, Synth. Commun. 1975, 16, 451-454.
[81] P. M. McCurry, R. K. Singh, Tetrahedron Lett. 1973, 14, 3325-3328.
[82] B. Yadav, B. Baire, Adv. Synth. Catal. 2022, 364, 4305-4309.
[83] R. Ciriminna, E. Falletta, C. Della Pina, J. H. Teles, M. Pagliaro, Angew. Chem., Int. Ed. 2016, 55, 14210-14217.
[84] Z. Li, C. Brouwer, C. He, Chem. Rev. 2008, 108, 3239-3265.
[85] S. A. Shahzad, M. A. Sajid, Z. A. Khan, D. Canseco-Gonzalez, Synth. Commun. 2017, 47, 735755.
[86] R. Dorel, A. M. Echavarren, Chem. Rev. 2015, 115, 9028-9072.
[87] a) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211; b) A. Quintavalla, M. Bandini, ChemCatChem 2016, 8, 1437-1453.
[88] A. Fürstner, P. W. Davies, Angew. Chem., Int. Ed. 2007, 46, 3410-3449.
[89] D. J. Gorin, F. D. Toste, Nature 2007, 446, 395-403.
[90] a) W. Zi, F. Dean Toste, Chem. Soc. Rev. 2016, 45, 4567-4589; b) L. Rocchigiani, M. Bochmann, Chem. Rev. 2021, 121, 8364-8451; cX. Zhao, M. Rudolph, A. S. K. Hashmi, Chem. Commun. 2019, 55, 12127-12135.
[91] D. Pflästerer, A. S. K. Hashmi, Chem. Soc. Rev. 2016, 45, 1331-1367.
[92] F. Bihelovic, R. N. Saicic, Angew. Chem., Int. Ed. 2012, 51, 5687-5691.
[93] B. Panda, T. K. Sarkar, J. Org. Chem. 2013, 78, 2413-2421.
[94] M. Gaydou, R. E. Miller, N. Delpont, J. Ceccon, A. M. Echavarren, Angew. Chem., Int. Ed. 2013, 52, 6396-6399.
[95] U. Uria, C. Vila, M.-Y. Lin, M. Rueping, Chem. - Eur. J. 2014, 20, 13913-13917.
[96] A. Wang, B. Wüstenberg, A. Pfaltz, Angew. Chem., Int. Ed. 2008, 47, 2298-2300.
[97] I. Grimm, Master thesis, University of Cologne 2019.
[98] S. R. Wilson, R. N. Misra, G. M. Georgiadis, J. Org. Chem. 1980, 45, 2460-2468.
[99] L. A. Arnold, R. Imbos, A. Mandoli, A. H. M. de Vries, R. Naasz, B. L. Feringa, Tetrahedron 2000, 56, 2865-2878.
[100] M. Vuagnoux-d'Augustin, A. Alexakis, Chem. - Eur. J. 2007, 13, 9647-9662.
[101] D. H. Hua, Y. Chen, H.-S. Sin, M. J. Maroto, P. D. Robinson, S. W. Newell, E. M. Perchellet, J. B. Ladesich, J. A. Freeman, J.-P. Perchellet, P. K. Chiang, J. Org. Chem. 1997, 62, 6888-6896.
[102] U. Sudhir, B. James, S. Joly, M. S. Nair, Res. Chem. Intermed. 2003, 29, 523-532.
[103] H. Z. Kaplan, V. L. Rendina, J. S. Kingsbury, J. Org. Chem. 2013, 78, 4620-4626.
[104] Z. Li, C. Sheng, C. Yang, H. Qiu, Org. Prep. Proced. 2007, 39, 608-611.
[105] D. E. Kim, Y. Zhu, T. R. Newhouse, Org. Biomol. Chem. 2019, 17, 1796-1799.
[106] B. Barnych, J.-M. Vatèle, Synlett 2011, 22, 2048-2052.
[107] J. Furukawa, N. Kawabata, J. Nishimura, Tetrahedron 1968, 24, 53-58.
[108] K. R. R. Rick L. Danheiser, Hiroo Koyama, Stephen K. Gee, Carl R. Johnson, John R. Medich, Org. Synth. 1993, 71.
[109] H. Huo, K. Harms, E. Meggers, J. Am. Chem. Soc. 2016, 138, 6936-6939.
[110] D. L. J. Clive, S. R. Magnuson, H. W. Manning, D. L. Mayhew, J. Org. Chem. 1996, 61, 20952108.
[111] C. Sate B, J. A. Valderrama, R. Tapia, F. Farifia, M. C. Paredes, Synth. Commun. 1992, 22, 955960.
[112] K. Yoshida, Y. Itatsu, Y. Fujino, H. Inoue, K.-i. Takao, Angew. Chem., Int. Ed. 2016, 55, 67346738.
[113] L. Crombie, W. M. L. Crombie, S. V. Jamieson, P. Tuchinda, A. J. Whitaker, J. Chem. Soc., Perkin Trans. 1 1982, 1485-1491.
[114] aR. Sunnapu, S. N. Banoth, R. R. S, A. Thomas, N. Venugopal, G. Rajendar, J. Org. Chem. 2020, 85, 4103-4113; bS. D. Holmbo, S. V. Pronin, J. Am. Chem. Soc. 2018, 140, 5065-5068.
[115] M. J. Petersson, C. Marchal, W. A. Loughlin, I. D. Jenkins, P. C. Healy, A. Almesåker, Tetrahedron 2007, 63, 1395-1401.
[116] C. Kong, N. Jana, C. Jones, T. G. Driver, J. Am. Chem. Soc. 2016, 138, 13271-13280.
[117] N. Jana, S. Nanda, Eur. J. Org. Chem. 2012, 2012, 4313-4320.
[118] R. Lihammar, R. Millet, J.-E. Baeckvall, J. Org. Chem. 2013, 78, 12114-12120.
[119] a) J. Tillner, T. Winckler, T. Dingermann, Pharmazie 1994, 49, 759-761; b) R. Voisard, P. C. Dartsch, U. Seitzer, D. Roth, M. Kochs, V. Hombach, Vasa Suppl. 1991, 33, 140-141.
[120] a) I. Nicoletti, G. Migliorati, M. C. Pagliacci, F. Grignani, C. Riccardi, J. Immunol. Methods 1991, 139, 271-279; b) F. Essmann, T. Wieder, A. Otto, E.-C. Müller, B. Dörken, P. T. Daniel, Biochem. J 2000, 346, 777-783.
[121] S. L. Rössler, B. S. Schreib, M. Ginterseder, J. Y. Hamilton, E. M. Carreira, Org. Lett. 2017, 19, 5533-5536.
[122] T. Imamoto, Y. Sugiura, N. Takiyama, Synth. Commun. 1984, 25, 4233-4236.
[123] J. Cvengroš, S. Neufeind, A. Becker, H.-G. Schmalz, Synlett 2008, 2008, 1993-1998.
[124] M. Hofmann, N. Hampel, T. Kanzian, H. Mayr, Angew. Chem., Int. Ed. 2004, 43, 5402-5405.
[125] S. A. Snyder, D. S. Treitler, A. P. Brucks, J. Am. Chem. Soc. 2010, 132, 14303-14314.

6.6 EIDESSTATTLICHE ERKLÄRUNG

„Hiermit versichere ich an Eides statt, dass ich die vorliegende Dissertation mit dem Titel "Enantioselective total synthesis of marine meroditerpenes with anti-inflammatory and anti-tumor activity" selbstständig und ohne die Benutzung anderer als der angegebenen Hilfsmittel und Literatur angefertigt habe. Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten und nicht veröffentlichten Werken dem Wortlaut oder dem Sinn nach entnommen wurden, sind als solche kenntlich gemacht. Ich versichere an Eides statt, dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie - abgesehen von unten angegebenen Teilpublikationen und eingebundenen Artikeln und Manuskripten - noch nicht veröffentlicht worden ist sowie, dass ich eine Veröffentlichung der Dissertation vor Abschluss der Promotion nicht ohne Genehmigung des Promotionsausschusses vornehmen werde. Die Bestimmungen dieser Ordnung sind mir bekannt. Darüber hinaus erkläre ich hiermit, dass ich die Ordnung zur Sicherung guter wissenschaftlicher Praxis und zum Umgang mit wissenschaftlichem Fehlverhalten der Universität zu Köln gelesen und sie bei der Durchführung der Dissertation zugrundeliegenden Arbeiten und der schriftlich verfassten Dissertation beachtet habe und verpflichte mich hiermit, die dort genannten Vorgaben bei allen wissenschaftlichen Tätigkeiten zu beachten und umzusetzen. Ich versichere, dass die eingereichte elektronische Fassung der eingereichten Druckfassung vollständig entspricht."

Teilpublikationen:

J. Baars, I. Grimm, D. Blunk, J.-M. Neudörfl, H.-G. Schmalz, Angew. Chem., Int. Ed. 2021, 60, 1491514920.
C. Chong, L. Chang, I. Grimm, Q. Zhang, Y. Kuang, B. Wang, J. Kang, W. Liu, J. Baars, Y. Guo, H.-G. Schmalz, Z. Lu, Chem. Sci. 2023, 14, 3302-3310.
28.04.2023, Isabelle Grimm

6.7 CURRICULUM VITAE	
Name	Isabelle Grimm
Date of birth	09.05 .1994
Place of birth	Birkenfeld (Germany)
Nationality	German

Education

12/2019-07/2023 PhD Studies in organic chemistry under supervision of Prof. Dr. Hans-Günther Schmalz, University of Cologne

10/2017-09/2019 Master studies, University of Cologne Master's thesis: „Studies towards the total synthesis of dysiherbol A via cationic twofold cyclization"

10/2013-08/2017 Bachelor studies, University of Cologne Bachelor's thesis: „Synthese eines oxiranverbrückten Peptidmimetikums mit PPII-Helix-Konformation"

08/2004-06/2010 Abitur, Gymnasium Birkenfeld
08/2004-06/2010 Secondary education, Realschule Baumholder

Scholarships

03/2020-03/2023 Jürgen Manchot Foundation
10/2013-09/2019 Kalyandjian-Conrad foundation

[^0]: Scheme 57 Synthesis of allylic alcohols of type 192 VIA grignard addition of the respective BROMIDES SYNTHESIZED FROM THE CARBOXYLIC ACIDS.

[^1]:

[^2]:

