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Fig.  figure 
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WT wild type 
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Nomenclature 

The wild type genotype is written in italicized capital letters (e.g. FMT). 
The mutant genotype is written in italicized lower case letters (e.g. fmt). 
The polypeptide products of genes are written in non-italicized, capital letters (e.g. FMT). 
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Abstract 

 
Salt stress is known to have severe effects on plant health and fecundity, and 

mitochondria are known to be an essential part of the plant salt stress response.  

Arabidopsis thaliana serves as an excellent model to study the effects of salt stress as 

well as mitochondrial morphology.  Arabidopsis contains several homologues to known 

mitochondrial proteins, including the fission protein FIS1A, and FMT, a homologue of 

the CLU subfamily.  We sought to examine the effects of salt stress on knockout lines of 

FIS1A and FMT, as well as a transgenic line overexpressing FMT (FMT-OE) in 

columella cells in the root cap of Arabidopsis.  fmt mutants displayed defects in both root 

and leaf growth, as well as a delay in flowering time.  These mutants also showed a 

pronounced increase in mitochondrial clustering and number.  FMT-OE mutants 

displayed severe defects in germination, including a decrease in total germination, and an 

increase in the number of days to germination.  fis1A mutants exhibited shorter roots and 

slightly shorter leaves, as well as a tendency towards random mitochondrial clustering in 

root cells.  Salt stress was shown to affect various mitochondrial parameters, including an 

increase in mitochondrial number and clustering, as well as a decrease in mitochondrial 

area.  These results reveal a previously unknown role for FMT in germination and 

flowering in Arabidopsis, as well as insight into the effects of salt stress on mitochondrial 

morphology.  FMT, along with FIS1A, may also help to regulate mitochondrial number 

and clustering, as well as root and leaf growth, under both control and salt-stressed 

conditions.  This has implications for both FMT and FIS1A in whole-plant morphology 

as well as the plant salt stress response. 
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Zusammenfassung 

Salzstress hat schwerwiegende Auswirkungen für die Gesundheit und Fruchtbarkeit von 

Pflanzen, und Mitochondrien sind ein wesentlicher Teil der Salzstressantwort. Die 

Arabidopsis thaliana dient als ein hervorragendes Modell, um die Auswirkungen von 

Salzstress sowie mitochondriale Morphologie zu studieren. Arabidopsis enthält mehrere 

Homologe zu bekannten mitochondrialen Proteinen, einschließlich des Spaltungsproteins 

FIS1A, und FMT, ein Homolog des CLU Unterfamilie. Das Ziel war es, die 

Auswirkungen von Salzstress auf die Knockout-Linien FIS1A und FMT sowie eine 

transgene Linie überexprimierenden FMT (FMT-OE) in Columella-Zellen in der 

Wurzelkappe von Arabidopsis zu untersuchen. Fmt-Mutanten zeigten Defekte im 

Wurzel- und Blattwachstum, sowie eine Verzögerung in der Blütezeit. Diese Mutanten 

zeigten auch eine deutliche Zunahme der mitochondrialen Cluster-Bildung und Anzahl. 

FMT-OE-Mutanten zeigten schwere Defekte in der Keimung, einschließlich einer 

Verringerung der Gesamtkeime und eine Zunahme in der Anzahl der Tage zur Keimung. 

fis1A-Mutanten zeigten kürzere Wurzeln und etwas kürzere Blätter, sowie eine Tendenz 

zur zufälligen mitochondrialen Clustering in Wurzelzellen. Salzstress hatte Einfluss auf 

verschiedene mitochondriale Parameter, einschließlich einer Zunahme der 

Mitochondrienzahl und -gruppierung, sowie eine Abnahme des mitochondrialen 

Bereichs. Diese Ergebnisse zeigen eine bisher unbekannte Rolle für FMT in Keimung 

und Blüte in Arabidopsis, sowie einen Einblick in die Auswirkungen von Salzstress auf 

die mitochondriale Morphologie. FMT, zusammen mit FIS1A, kann auch helfen, 

mitochondriale Anzahl und Cluster-Bildung sowie Wurzel- und Blattwachstum zu 
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regulieren, sowohl unter Kontroll- und Salzstressbedingungen. Dies hat Auswirkungen 

auf beide FMT und FIS1A in Ganzpflanzenmorphologie und für die Salzstressantwort. 
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1. Introduction  

The driving force behind agriculture is an ever-increasing demand to grow food to sustain 

a rapidly increasing global population.  The pressure to continually produce more crops 

in a wider variety of environments further drives the need for scientists to design and 

develop more stress-resistant crop plants.  Crops that can endure the effects of exposure 

to multiple abiotic or biotic stresses while maintaining fecundity will prove to be the most 

useful for farmers operating in the growing global agricultural market.  

 

1.1 Effects of soil salinity on agriculture 

The effects of stress on the proper development and growth of crops currently poses a 

severe threat to agriculture.  One of the most damaging stresses is salinity, or increased 

levels of salt in the soil.  All soil contains some level of salt, and many salts, such as 

nitrates, are essential plant nutrients.  However, the increased use of irrigation and 

brackish water, as well as increased runoff and poor drainage, has led to high levels of 

excess salt in the soil.  Additional sources of excess salt include inorganic fertilizers, 

manure, compost, mineral weathering, seawater intrusion into aquifers, and ice melters 

used on sidewalks and roads (Hasegawa et al., 2000, Carillo et al., 2011).  In addition to 

sodium (Na+), irrigation waters may also contain higher levels calcium (Ca2+) and 

magnesium (Mg2+).  However, when the water evaporates, the Ca2+ and Mg2+ precipitate 

into carbonates, leaving behind high levels of Na+.  Soil is considered saline when 

solution extracted from the soil has an electrical conductivity of 4dS m-1 (decisiemens per 

meter), where 4dS m-1 ≈ 40mM NaCl or more.  In irrigated land, salt levels can vary both 
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spatially and seasonally, and additional factors such as temperature, pressure, and 

humidity, can also affect salt levels (Cardon, 2007).   It has been estimated that more than 

45 million hectares of crops had been damaged by salinization, and 1.5 million hectares 

were deemed unusable each year (Munns & Tester, 2008).  This is predicted to result in 

up to a 50% reduction in arable land by the year 2050 (Pitman & Läuchli, 2002).   

 

1.2 Effects of soil salinity on plants 

Plants can be divided into two major categories for coping with salt tolerance.  

Glycophytes (salt-intolerant plants) evolved under conditions of low soil salinity and 

cannot grow or are severely inhibited at salt concentrations above 150mM NaCl.  Most 

glycophytes can tolerate salt concentrations of ~50mM NaCl and below, although some 

can survive at higher concentrations.  Halophytes (salt-tolerant plants) evolved in places 

with highly salinized soil, and can survive salinity in excess of 300-400mM (Hasegawa et 

al., 2000).  

High salinity affects plants in two main ways: osmotic stress reduces the ability of the 

plant to extract water from the soil, and high concentrations of salts within the plant can 

cause damage to plant structures and impede many physiological and biochemical 

processes.  Initial exposure to salt stress has an immediate effect on the plant, rapidly 

increasing the levels of osmotic and ionic stress.  Osmotic stress occurs as a result of 

excess Na+ ions in the surrounding soil compared to internal concentrations in the root, 

which generates an external osmotic pressure that reduces water influx into the root.  The 

result is a water deficit similar to those seen under drought conditions.  This can lead to 

impaired growth and decreased viability, as water and key nutrients are unable to be 
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transported throughout the plant.  Osmotic stress is believed to occur for the duration of 

salt exposure, resulting in increased stomatal closure and an inhibition of cell division 

and expansion.  Long-term exposure to salt stress can also trigger ionic stress, which 

occurs as a result of increased Na+ accumulation in the leaves, which can disrupt protein 

synthesis and enzymatic activity, often triggering premature senescence in older leaves.  

This reduces the photosynthetic availability of the plant, further impairing plant growth 

(Hasegawa et al., 2000, Carillo et al., 2011).  However, despite the damaging effects of 

salinity, plants have evolved a variety of mechanisms to counter-act salt stress over both 

the short- and long-term. 

 

1.3 Plant responses to salinity 

Plants display a wide variety of responses to salinity, and as a result exhibit several 

whole-organism phenotypic changes.  Some of these changes are side effects, while some 

occur as a direct response to salt stress.  One example of a side-effect-derived change 

occurs when excess Na+ ions are actively shuttled out of the plant shoot and into the 

leaves, in order to allow for K+ accumulation in the shoot to help balance the K+/Na+ ion 

ratio.  However, when Na+ ions reach a critical level in the leaves they begin to stunt 

growth, eventually leading to leaf necrosis and eventual plant death (Hauser & Horie, 

2010).  Direct changes in response to salt stress include the reorganization of root system 

architecture (RSA), which allows for a rapid response to changes in NaCl in the soil 

(Malekpoor Mansoorkhani et al., 2014, Jones & Ljung, 2012).  Other direct responses 

include a suppression of germination or a delay in flowering, most likely as a way of 

waiting until conditions are more ideal to grow or produce offspring seeds (Srivastava et 
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al., 2016, Conti et al., 2008).  The genes and pathways that control these phenotypic 

changes are known in some cases, but the overall etiology underlying the various salt 

stress responses remain elusive.  In addition, the roles of various organelles, including 

mitochondria, which are known to play a role in the stress response, remain poorly 

understood.  Below is a discussion of some of the most well understood plant responses 

to stress, including salinity, and the role of mitochondria in each of these responses.    

    

1.4 Mitochondrial response to stress 

Mitochondria are known to play key roles in a variety of plant responses to salt stress.  

These responses usually involve highly conserved mechanisms, and include the 

hypersensitive response (HR) and programmed cell death (PCD), the SOS Pathway, the 

reorganization of Root System Architecture and salt-avoidance tropism. 

 

1.4.1 The hypersensitive response and programmed cell death 

A common response to stress is the plant hypersensitive response (HR).  In response to 

pathogenic attack, cells will undergo programmed cell death (PCD) in the surrounding 

area under attack, disabling a virus from co-opting host machinery from neighbouring 

cells, eventually rendering the virus unable to reproduce, and thus eventually die.  PCD is 

also a well-characterized mechanism in animals, and many of the basic regulatory 

mechanisms that underlie this response are similar in both plants and animals.  Indeed, 

short-term salinity stress was shown to induce PCD in a manner similarly to animals 

(Andronis & Roubelakis-Angelakis, 2010).  One shared feature between animal and plant 

PCD is the role of the mitochondria in the regulation of PCD.  In both plants and animals, 
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mitochondria may initiate apoptosis in response to changes in various cellular regulators, 

such as cytosolic calcium and cellular pH, or indicators of cellular energy availability, 

such as ATP, ADP, NADH, and NADPH.  Various other proteins may also be activated 

in response to stress and can associate with and modify the permeability of the outer 

mitochondrial membrane (OMM), including the opening of the mitochondrial 

permeability transition pore (mPTP).  This leads to a decrease in the mitochondrial 

membrane potential and the release of various cell death activators from within the 

mitochondrion, including the apoptosis-inducing factor (AIF) and cytochrome c (Lam et 

al., 2001, Morel & Dangl, 1997, Heath, 2000).  

    

1.4.2 The SOS Pathway  

The SOS (Salt Overly Sensitive) pathway was originally identified in a genetic screen to 

find plants that were hypersensitive to salt stress (Wu et al., 1996, Zhu et al., 1998).  The 

sos1, sos2, and sos3 mutants were shown to have severely impaired growth on media 

with an excess of Na+ or Li+ ions, or a deficit of K+ ions, but grew similarly to wild type 

plants under normal growth conditions.  These mutants also grew normally under general 

osmotic or drought stress, which indicates that the SOS genes play a specific role in 

mediating the ionic response to salt stress in plants.  The SOS pathway is activated when 

excess Na+ is sensed by the cell, leading to an increase of cytoplasmic Ca2+.  This Ca2+ 

spike is sensed by SOS3, which activates SOS2, forming a SOS3-SOS2 kinase complex.  

This complex activates SOS1, an Na+/H+ antiporter, which pumps excess Na+ from the 

cytoplasm and into extracellular space or the root medium (Ji et al., 2013).  Mitochondria 

are known to buffer cytosolic calcium following a spike in concentration (Vandecasteele 
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et al., 2001), however, the extent of their role in the SOS pathway has not been well 

studied.   

 

1.4.3 Reorganization of Root System Architecture and salt-avoidance tropism 

The shape and structure of the roots, as well as their spatial configuration within the soil, 

determines the root system architecture (RSA) of a plant.  The RSA of an individual plant 

is determined by the unique and heterogeneous distribution of edaphic resources 

(Malamy, 2005, de Dorlodot et al., 2007).  In response salt stress, the RSA is altered such 

that primary root elongation is inhibited, while lateral root (LR) formation increases in 

response to lower concentrations of NaCl, but is inhibited at higher concentrations (Wang 

et al., 2008, Zolla et al., 2010).  These responses are mediated by changes in cell length 

and number (Duan et al., 2015), and mitochondria are known to play a role in this 

regulation (van der Merwe et al., 2009).   

In addition to changes in RSA, plant roots may change their direction of growth to avoid 

excess salt in the soil.  Roots primarily grow downwards towards the gravity vector, a 

phenomenon known as positive gravitropism, or tropic growth.   Although it is not known 

exactly how roots recognize the gravity vector, the “starch statolith hypothesis” posits 

that amyloplasts in the columella cells of the root cap sediment to the “bottom” of the 

cell, directing the orientation of growth (Fig. 1A,B) (Sato et al., 2015).  When it is 

necessary to avoid NaCl ions in the soil, roots can exhibit negative gravitropism and 

grow against the gravity vector, a process known as salt-avoidance tropism, which helps 

minimize exposure to stress.  How the root is able to sense excess salt and subsequently 

change its direction of growth is not well understood.  Sun et al. (2008) found that, upon 
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exposure of the root to salt stress, two main responses were initiated: 1) rapid degradation 

of amyloplasts, followed by 2) root bending resulting in negative gravitropism.  

Amyloplast degradation may be regulated by the SOS pathway, and root bending is likely 

triggered by PIN2, an auxin efflux carrier, that asymmetrically distributes auxin in the 

root leading to root curvature (Ottenschlager et al., 2003).  However, it is highly likely 

that other proteins, including those involved with mitochondria, act to regulate salt-

avoidance tropism and root bending, as well as reorganization of RSA.  Zhang et al. 

(2015) recently discovered a mitochondrial-localized protein, SSR1, which regulates root 

growth and architecture, and is required for PIN2 trafficking.  This indicates a clear role 

for mitochondria and their associated proteins in the regulation of root system 

architecture, with implications for a role in the changes of this architecture in response to 

salt stress.  
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Figure 1: Mechanistic action of tropic growth in the Arabidopsis thaliana root. A) Following a 90° 
turn, statoliths in columella cells start to fall to the bottom of the cell, and are fully sedimented by 5 min. B) 
Diagram of an Arabidopsis root; columella cells are labelled in green (adapted from Barrada et al. (2015); 
Sato et al. (2015)). Scale bar = 50 µm. 
 

1.5 Mitochondrial clustering in response to stress 

A less well-understood response of mitochondria to stress is that of mitochondrial 

clustering.  Mitochondrial trafficking and movement is known to be essential for proper 

mitochondrial and cellular function, but under stress conditions, mitochondria display 

altered motility and distribution, which can have deleterious consequences for an 

organism (Chen & Chan, 2009, Nunnari & Suomalainen, 2012). In plants, mitochondrial 

clustering and/or arrest of mitochondrial motility has been recognized as a response to 

various abiotic and biotic stresses, including in response to the application of reactive 
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oxygen species, heat shock (Scott & Logan, 2008), methyl jasmonate (Zhang & Xing, 

2008), oxylipin, 9-hydroxy-10,12,15-octadecatrienoic acid (Vellosillo et al., 2013), and 

UV light exposure (Gao et al., 2008).  However, the mechanisms that give rise to this 

mitochondrial clustering are not known.  Knockouts of the highly conserved gene CLU 

(CLUstered mitochondria) was shown to induce mitochondrial clustering in a variety of 

eukaryotes, including Dictyostelium, Saccharomyces cerevisiae, Drosophila, and 

Arabidopsis (Zhu et al., 1997, Fields et al., 1998, Cox & Spradling, 2009, El Zawily et al., 

2014).  However, the role of mitochondrial clustering in plants in response to stress, 

including salt stress, has not previously been investigated.   

 

1.6 The FMT/CLU and FIS1A genes in eukaryotes 

The first member of the CLU family to be identified was cluA in Dictyostelium, and this 

gene was found to be necessary for the correct dispersion of mitochondria within the cell 

(Zhu et al., 1997).  Fields et al. (1998) demonstrated that CLU1, a functional homologue 

of cluA in Saccharomyces cerevisiae (S. cerevisiae), performed a similar function.  clu1∆ 

cells, which had their CLU1 genes deleted, formed loose clusters of mitochondria within 

the cytoplasm.  Cox and Spradling (2009) characterized the CLU gene in Drosophila, 

known as clueless, and found that clueless mutants exhibited mitochondrial clustering 

within cells.  Flies that were homozygous for the clu defect (clud08713 or cluf04554 ) lived for 

only 3-7 days, were smaller than WT flies, sterile, and could not fly.   

The CLU homologue in Arabidopsis, FMT (friendly mitochondria), was originally 

identified by Logan et al. (2003) in a mutant screen to find candidate genes involved in 

mitochondrial dynamics and morphology in higher plants.  FMT is 26% identical and 
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41% similar to the Dictyostelium cluA protein and, like cluA, also contains a TPR 

(tetratricopeptide repeat)-like domain.  FMT is 20% identical and 34% similar to the S. 

cerevisiae Clu1p protein.  All CLU homologues that have been studied posses a TPR 

domain, and it remains the most highly conserved portion of the CLU gene throughout its 

evolution between species.  Tetratricopeptide repeats are found in genes in all species, 

and are known for their ability to mediate protein interactions between partner proteins.  

In plants, they are found in a variety of genes involved in stress and hormone signalling.  

One example is TTL1 (Tetratricopeptide-repeat thioredoxin-like 1), which is known to be 

a positive regulator of the ABA- (abscisic acid) mediated stress response. Knockouts of 

TTL1 increased salt and osmotic sensitivity during seed germination and in later 

development (Rosado et al., 2006).  Drosophila clueless was also found to bind nuclear-

encoded mitochondrial mRNAs through its TPR domain and direct them to the 

mitochondrial outer membrane where they could potentially be positioned for co-

translational import into mitochondria (Sen et al., 2015).   

Electron microscopy analysis of leaf tissue of fmt mutant plants initially revealed the 

similar phenotype of mitochondrial clustering that was observed in other species (Logan 

et al., 2003).  Further analysis by El Zawily et al. (2014) revealed that FMT might play a 

role in intermitochondrial association and quality control.  It was hypothesized that FMT 

may function as a fusion protein, as there are currently no known homologues to 

conserved fusion proteins in plants.  However, plant fission proteins are highly conserved 

in plants, including DRP and FIS1A.  Mitochondrial fission proteins also play an 

important role in the stress response by facilitating the division of a partially damaged 
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mitochondrion into one healthy and one damaged mitochondrion that can be targeted for 

degradation (Youle & van der Bliek, 2012).   

The mitochondrial division machinery used by Arabidopsis is conserved across animals, 

plants, and fungi (for review see Praefcke & McMahon, 2004).  In plants, dynamin-like 

proteins (DLPs) have been shown to be necessary for the division of mitochondria (Aung 

& Hu, 2012).  DRP3A and DRP3B (previously known as ADL2a and ADL2b, 

respectively) in Arabidopsis are homologous to the Dnm1 and Drp1/DLP1 proteins found 

in yeast and mammals, respectively.  These proteins are part of a DRP subclade that is 

well conserved across eukaryotic species and contain the GTPase, MD, and GED 

domains (Miyagishima et al., 2008). DRP3A and DRP3B both localize to mitochondria 

and were shown to play a dual role in the final scission of both organelles (Aung & Hu, 

2012).  Arabidopsis also contains two proteins homologous to FIS1 in S. cerevisiae and 

humans: FIS1A (also known as BIGYIN1), and FIS1B (also known as BIGYIN2) 

(Mozdy et al., 2000, Tieu & Nunnari, 2000, Smirnova et al., 2001, James et al., 2003, 

Youle & Karbowski, 2005).  Similar to their yeast and mammalian counterparts, these 

plant proteins localize to the outer mitochondrial membrane (OMM) and play a key role 

in mitochondrial division (Logan, 2010).   Arabidopsis fis1A mutants had a reduction in 

the number of mitochondria per cell, with simultaneous increases in the size of individual 

mitochondrion in protoplasts and leaves (Scott et al., 2006).  This provides further 

evidence for the role of FIS1A in mitochondrial fission in plants.  However, the role of 

fission and FIS1A during salt stress is not currently known.  
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1.7 Thesis aims 

The plant salt stress response remains an important mechanism for maintaining growth 

and survival under ever-changing environmental conditions, and mitochondria are known 

to be essential for the mediation of this response.  However, how this organelle exerts its 

control, and what proteins are involved, is not well understood.  Two mitochondrial 

proteins, FIS1A, and FMT, are to known be essential for mitochondrial quality control.  

Given the role of mitochondria in the salt stress response, and given the fact that salt 

stress is sensed first in the soil by the roots, we wanted to examine the effects of a 

knockout of either FMT or FIS1A, as well as an overexpression of FMT, in mitochondria 

in columella cells of the roots under both control and salt-stressed conditions.  We also 

wanted to examine the phenotypic effects of these mutants under both control and salt-

stressed conditions.  Additionally, since the effects of salt stress on mitochondrial 

morphology in wild type plants had not previously been characterized, we wanted to 

examine various mitochondrial parameters in the columella cells of the roots of wild type 

plants exposed to salt stress.  The aim is to further our understanding of the role of 

mitochondria in salt stress and as such add to the cannon of knowledge of the salt stress 

response as a whole.   
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2. Material and Methods 

 

2.1 Material 

 

2.1.1. Antibiotics 

Table 1: Antibiotics used in this study 

Antibiotic Solvent Stock concentration 
(mg/ml) 

Working concentration 
(µg/ml) 

Gentamicin H2O 10 50 
Kanamycin H2O 50 50 

Spectinomycin H2O 100 75 

 

2.1.2 Bacterial strains 

E. coli 

One Shot TOP10 (Invitrogen, USA) 

DH5α (Invitrogen, USA) 

Agrobacterium tumefaciens 

GV3101 (pMP90) 

 

2.1.3 Primers for PCR-based amplification methods 

All primers were purchased from the W.M. Keck Foundation (Yale School of Medicine, 

New Haven, CT).  Primer sequences are listed in Table 2.  
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Table 2: Primers used in this study 
 
Primer Name Sequence (5’   3’) Notes 

T-DNA Primers 
LBb1.3 ATTTTGCCGATTTCGGAAC Left border primer for 

T-DNA insertion 
FIS1A LP AAGATCCTCCTTGACCTCGAC Left primer for FIS1A 

(SALK_006512C) 
FIS1A RP GCTGATTGGAGACAAGCTTTG Right primer for FIS1A 

(SALK_006512C) 
FMT LP ATACCTGCAGCAGTTTGCAAC Left primer for FMT 

(SALK_046271C) 
FMT RP CTAGCGCCAACAGCTCTACTG Right primer for FMT 

(SALK_046271C) 
Gateway Primers 

attB1 FP FMT GGGGACAAGTTTGTACAAAAAAGCAG
GCTTCATGGCTGGGAAGTCGAAC 

attB1 Forward primer 
for FMT 

attB1 RP FMT GGGGACCACTTTGTACAAGAAAGCTG
GGTCTTTTTTGGCTTTTTGCTTCTT 

attB1 Reverse primer 
for FMT 

Sequencing Primers 
M13 FP GTAAAACGACGGCCAG Forward sequencing 

primer for pDONR 221 
M13 RP CAGGAAACAGCTATGAC Reverse sequencing 

primer for pDONR 221 
FMT Seq1 ATGGCTGGGAAGTCGAAC FMT Sequencing 

Primer 1 
FMT Seq2 ATCTATCAGAGCGCATGTTCA FMT Sequencing 

Primer 2 
FMT Seq3 GAGCAGAAGAAGCACTTACCA FMT Sequencing 

Primer 3 
FMT Seq4 GCCATAGGGTTGTTGCTCAG FMT Sequencing 

Primer 4 
FMT Seq5 AAGAGGAGATAGCTGCTGATG FMT Sequencing 

Primer 5 
FMT Seq6 TAATCTTTGCCAAAAGGTTGGTG FMT Sequencing 

Primer 6 
FMT Seq7 AAAATGAGAGACTTCTTGGTCCT FMT Sequencing 

Primer 7 
FMT Seq8 AACAGAAAACCTGGCTCCTG FMT Sequencing 

Primer 8 
 

2.1.4 Cloning vectors 

The pDONR 207 (Invitrogen) and pFASTG02 (p*7FWG2, Plant Systems Biology) 

vectors were used for cloning in this study.  
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2.1.5 Plant lines 

All experiments were performed using Arabidopsis thaliana Col-0 wild type plants or 

mutants in the Col-0 background.  fmt homozygous mutants (SALK_046271C), and fis1A 

homozygous mutants (SALK_006512C) were obtained from ABRC (Arabidopsis 

Biological Resource Center, Ohio State University, Columbia, OH, USA).  All 

homozygous mutant lines were confirmed by PCR.   

 

2.1.6 Media, buffers, solutions 

 

Media 

LB Media 

25g LB Broth  

ddH2O to 1L 

For solid medium, 2% Agar was added to the above medium.  

After autoclaving at 121°C for 20 mins and cooling to 55°C, antibiotics were 

added.  

 

MS-Agar Media (pH 5.7) 

4.3g MS Salts 

0.5g MES 

10g Agarose 

ddH2O to 1L 
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After autoclaving at 121°C for 20 mins and cooling to 55°C, media was poured 

into plates.  

 

125mM NaCl Stress Media 

800 ml MS-Agar Media  

7.3g NaCl 

ddH2O to 1L 

After autoclaving at 121°C for 20 mins and cooling to 55°C, media was poured 

into plates.  

 

Buffers 

CTAB Buffer (100mL, pH 5.0) 

2 g CTAB (Hexadecyltrimethylammonium bromide) 

10 ml 1 M Tris pH 8.0 

4 ml 0.5 M EDTA pH 8.0  

28 ml 5 M NaCl 

40 ml ddH2O 

 

Phosphate Buffer Stock A  

27.6g NaH2PO4·H2O 

ddH2O to 1L 
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Phosphate Buffer Stock B  

28.4g/L Na2HPO4·H2O 

ddH2O to 1L 

 

0.2M Phosphate Buffer (pH 6.8) 

51% Phosphate Buffer Stock A  

49% Phosphate Buffer Stock B  

 

Solutions 

Fixative 

 0.5% (wt/vol) formaldehyde 

 3% (wt/vol) gluteraldehyde 

 0.1M Phosphate Buffer (pH 6.8) 

 

1% osmium tetroxide fixative 

 1ml OsO4 (4%) 

 3ml 0.1M Phosphate Buffer (pH 6.8) 

 

2% uranyl acetate staining solution  

 0.4g uranyl acetate 

 20ml H2O 
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2.2 Methods 

 

2.2.1 Plant growth conditions and seed sterilization 

Arabidopsis seeds were sown directly on Fafard #2 soil mixture (Sun Gro Horticulture) 

and were grown under 16-hr light/8-hr dark (long-day) photoperiods at 22°C +/-1°C 

under cool-white light at 100 µmol m-2 s-1. For experiments done on sterilized MS 

(Murashige Skoog)-Agar media, seeds were first surface sterilized by washing in 70% 

(v/v) ethanol for 5 sec, and this wash was replaced by 0.1% triton X-100 in 50% bleach 

(v/v) for 5 sec before five rinses in autoclaved ddH2O.  Seeds were then plated on 100 x 

100 x 15 mm square petri dishes (Ted Pella), and plates were stratified at 4°C for three 

days in the dark to synchronize germination.  Plates were then moved to long-day 

photoperiod conditions at 22°C +/-1°C under cool-white light at 100 µmol m-2 s-1.  Plates 

were placed at an angle to allow for root growth along the surface of the agar.  For salt-

stressed growth conditions on plates, seeds were plated on MS-Agar plates supplemented 

with 125mM NaCl.  For salt-stressed conditions in the soil, the following NaCl 

concentrations were added when the plants were watered, beginning one week after 

germination and increasing every week: 50mM NaCl, 75mM NaCl, 100mM NaCl, 

125mM NaCl, 140mM NaCl.  

 

2.2.2 Genomic DNA extraction from plant material 

Genomic plant DNA was extracted using the CTAB method.  200 mg plant leaf tissue 

was ground in eppendorf tubes and 500µl CTAB Buffer was added.  The mixture was 

incubated for 15 minutes at 55°C and tubes were then centrifuged at 13,000 rpm for 5 
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minutes.  The supernatant was transferred to a new eppendorf tube and 250 µl of 24:1 

chloroform:isopropanol was added and mixed by inversion.  The tubes were spun at 

13,000 rpm for 1 minute.  The upper aqueous phase was transferred to a new eppendorf 

tube and 50 µl of 7.5M ammonium acetate and 500 µl of ice-cold absolute ethanol were 

added. The tubes were mixed slowly by inversion and placed at -20°C for 1 hour to 

precipitate the DNA.  Tubes were then spun at 13,000 rpm for 1 minute to form a pellet.  

The supernatant was removed and the pellets were dried for 15 minutes at room 

temperature.  The pellet was resuspended in 50 µl DNase-free H2O and stored at 4°C. 

 

2.2.3 PCR reaction 

All PCR reactions were done using a Bio Rad C1000 Touch Thermal Cycler.  For 

genotyping, a standard PCR reaction mix was used, using PCR Supermix (Invitrogen).  

The standard PCR reaction mix (Table 3) and standard PCR thermal profile (Table 4) are 

shown below. 

 

Table 3: Standard PCR reaction mix 

Reagent Amount  Concentration 
PCR Supermix 20 µl 1.1X 
Forward Primer 0.5 µl 10 µM 
Reverse Primer 0.5 µl 10 µM 
DNA Template 1 µl 100-150 ng 
H2O 3 µl N/A 
 25 µl  
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Table 4: Standard PCR thermal profile  

Step Temperature Time Cycles 
Initial denaturation 95°C 3 min.  
Denaturation 95°C 30 sec. 20-35 
Annealing 55°C 30 sec. 20-35 
Extension 72°C 20-300 sec. 20-35 
Final extension 72°C 3 min.  
Hold 4°C ∞  
 
 

2.2.4 Mutant screen 

Both FMT and FIS1A were screened for available T-DNA insertion lines on TAIR (The 

Arabidopsis Information Resource, http://www.arabidopsis.org/).  PCR was used to test 

whether the T-DNA was inserted at the predicted insertion site.  All T-DNA insertions 

were confirmed via PCR using left and right primers flanking the genomic sequence, and 

a border primer located within the T-DNA sequence (see Table 2 for primer list).  

 

2.2.5 pFASTG02-FMT reporter construct 

pFASTG02-FMT was constructed by subcloning a FMT cDNA fragment of the expected 

size into the pDONR 221 vector (Gateway, Invitrogen).  In order to PCR amplify the 

cDNA fragment, the following primers were used: forward (attB1 FP FMT),  

5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCTGGGAAGTCGAAC-

3’, and reverse (attB1 RP FMT),  

5’-GGGACCACTTTGTACAAGAAAGCTGGGTCTTTTTTGGCTTTTTGCTTCTT-3’.  

The fragment was subsequently cloned into pFASTG02 (Shimada et al., 2010) according 

to the manufacturer’s protocol (Invitrogen).  This vector construct, pFASTG02-FMT, 

allowed for overexpression of the FMT gene under the control of the cauliflower mosaic 
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virus (CaMV) 35S promoter.  The construct was sequenced to identify an error-free clone 

and subsequently transformed into wild type Col-0 plants by means of Agrobacterium-

mediated transformation using the Agrobacterium tumefaciens strain GV3101 (pMP90).   

 

2.2.6 Sequencing 

All sequencing reactions were done by the W.M. Keck Foundation (Yale School of 

Medicine, New Haven, CT).   

 

2.2.7 Agrobacterium-mediated transformation of Arabidopsis thaliana  

The pFASTG02-FMT vector was transformed into the Agrobacterium tumefaciens strain 

GV3101 via electroporation and colonies were selected on LB media plates 

supplemented with 50 µg/ml spectinomycin.  Single colonies were picked and cultured in 

LB media supplemented with 50 µg/ml spectinomycin and grown to OD600 = 0.6. The 

cultures were then centrifuged at 13,000 rpm for 30 minutes and the pellets were 

resuspended in a 5% sucrose solution. Plants were dipped according to Clough and Bent 

(1998) with the following modifications: Silwet L-77 was added to the sucrose solution 

to a concentration of 0.05% and Arabidopsis plants with emerging flower stems were 

dipped in the solution for five seconds. The plants were then kept under long-day 

photoperiod conditions under transparent covers at 22°C +/- 1°C under cool-white light at 

100 µmol m-2 s-1 for three days. Covers were removed and plants were grown until seed 

was mature.  Mature seeds were collected and screened to identify transgenic seed 

expressing the pFASTG02-FMT vector. 
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2.2.8 Screening and identification of transgenic Arabidopsis seed 

Seeds from transformed plants were collected and screened for transgenic individuals 

containing the pFASTG02-FMT vector by the expression of green fluorescence in the 

seed coat by fluorescence microscopy under 4X magnification with the Zeiss Axioplan 2 

fluorescence microscope (Carl-Zeiss, Germany). Transgenic seeds were then sown to 

produce T2 seeds.  Lines with a single transgene insertion were identified by an ~3:1 

segregation ratio of GFP to no-GFP, respectively.  Seeds from this line were sown to 

identify a homozygous plant (FMT-3), which was identified by T3 seed that exhibited 

100% GFP fluorescence.  Seeds from line FMT-3 were collected and used in subsequent 

experiments.  

 

2.2.9 Phenotypic quantification and statistical analysis 

Arabidopsis plants were grown to three weeks old in the soil under control or salt-

stressed conditions described above.  For leaf length quantification, three leaves were 

selected and measured from the base of each leaf to the tip using a ruler.  For 

quantification of root length under control conditions, Arabidopsis plants were grown on 

control MS-Agar plates and roots were measured using a ruler at days seven and fourteen. 

For quantification of root length under salt-stressed conditions, Arabidopsis plants were 

grown on control MS-Agar plates for one week, and then transplanted to either control or 

125mM NaCl MS-Agar plates for one week and roots were measured at day fourteen.  

For MS-Agar plate experiments, at least 20 replicates were used for each experiment, and 

each experiment was repeated three times.  For soil experiments, at least 10 replicates 

were used for each experiment, and each experiment was repeated three times.  Mutant 
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genotypes were compared to the wild type under both control and salt-stressed conditions.  

Statistical differences were determined using Student’s two tailed t test, one-way analysis 

of variance (ANOVA), or two-way ANOVA, where appropriate.    

 

2.2.10 Transmission electron microscopy 

Arabidopsis seedlings were grown on MS-Agar plates for one week, and were then 

transferred to either 125mM NaCl MS-Agar plates or MS-Agar plates without the 

addition of NaCl for an additional week.  Fixation and embedding of 14-day-old root 

samples was done according to Wu et al. (2012) with the following modifications: 

Durcupan epoxy resin (Sigma) was used for infiltration, tissue was collected on single 

slot copper grids (EMS) coated with formvar, and no post-sectioning heavy metal 

staining was used.  Transverse sections were cut ~30 µM deep into the columella of the 

root and subsequently viewed under a Tecnai 12 Transmission Electron Microscope (FEI, 

USA).  At least ten cells from four biological samples each of WT, fis1A, fmt, and FMT-

OE roots were examined for control experiments, and at least ten cells from two 

biological samples each of WT, fis1A, or fmt roots were examined for salt-stressed 

experiments.  Due to the difficulty in preserving salt-stressed FMT-OE mutants during 

the fixation and embedding process, these mutants were not observed for TEM.   

 

2.2.11 Quantification and analysis of Arabidopsis root cells from transmission 

electron microscopy 

 Using Fiji, an individual cell, nucleus, vacuole, and mitochondria were traced and 

measured to give the following parameters: area, aspect ratio (AR), number of 
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mitochondria per cell, and centroid XY coordinates of each individual mitochondrion.  

Mitochondrial coverage was calculated as a percent using the following formula: 

((Cytoplasmic area–mitochondrial area)*100), where cytoplasmic area = (Cell area–

nuclear area–vacuole area), and mitochondrial area is the sum of all the areas of the 

individual mitochondria within the cell.   

Mitochondrial clustering was calculated using the Nearest Neighbor Distances (NND) 

tool in the BioVoxxel toolbox plugin in Fiji (http://imagej.net/BioVoxxel_Toolbox).  The 

NND tool measures the average nearest neighbor ratio (ANN), which is calculated as the 

distance from the center of a particular particle (in this case a mitochondrion) to the 

center of its nearest neighbor.  The average of all the nearest neighbor distances are then 

taken.  If the average distance is less than the average of a hypothetical random 

distribution, the mitochondria are considered clustered.  If the average distance is greater 

than a hypothetical random distribution, the mitochondria are considered dispersed.  The 

average nearest neighbor ratio (ANN) is given as: 

 

!""  = !!
!!

 
 
where !!is the observed mean distance between each feature and its nearest neighbour: 
 

!!   = !!!
!!!
!

 
 
and !! is the expected mean distance for the features given in a random pattern: 
 

!!  = !.!
!/!
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In the above equations, !!  equals the distance between feature !  and its nearest 

neighboring feature, ! corresponds to the total number of features, and ! is the area of a 

minimum enclosing rectangle around all features.  

The average nearest neighbor z-score for the statistic is calculated as: 

 

! = !!!!!
!"

 
 
 
where:  
 

!" = !.!"#$"
!/!

 
 
 

If the ANN is less than 1, then the pattern exhibits clustering.  If the ANN is greater than 

1, the pattern trends towards dispersion.  If the ANN is exactly 1, the pattern is 

considered to be random (Clark & Evans, 1954, Mitchell, 2005).  Mitochondria were first 

analyzed using the Analyze Particles command in Fiji to analyze and measure the 

individual mitochondria of a single cell.  The NND plugin was then used to calculate the 

ANN of each individual mitochondrion. 
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3. Results 

Arabidopsis plants lacking a functional FMT gene show severe defects in mitochondrial 

distribution and movement, as well as deficits in root growth (El Zawily et al., 2014).  

Plants lacking a functional FIS1A gene have a reduction in the number of mitochondria 

per cell, as well as an increase in the size of individual mitochondria in protoplasts and 

leaves (Scott et al., 2006).  How exactly FMT and FIS1A mediate these changes in 

mitochondria is still unclear.  Given the role of mitochondria in the salt stress response, 

and given the fact that salt stress is sensed first in the soil by the roots, we wanted to 

examine the effects of a knockout of either FMT or FIS1A, as well as an overexpression 

of FMT, in mitochondria in the roots under both control and salt-stressed conditions.  

Additionally, since the effects of salt stress on mitochondrial morphology in wild type 

plants has not previously been characterized, we wanted to examine various 

mitochondrial parameters in the columella cells of the roots of wild type plants exposed 

to salt stress.  These findings will further our understanding of the roles of FMT and 

FIS1A in mitochondrial morphology, as well as their role(s) in the salt stress response.  In 

addition, it will provide insight into the effects of salt stress on mitochondrial 

morphology in wild type plants.    

 

3.1 Identification of the FMT and FIS1A genes 

The FMT gene was originally identified by Logan et al. (2003) and fmt mutants in 

Arabidopsis were shown to have an increased number of clustered mitochondria in the 

leaves.  These mutants were further characterized by El Zawily et al. (2014), and were 
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found to have shorter roots, as well an increase in the association time between 

mitochondria, as well as an increase in mitochondrial matrix mixing.  The FIS1A gene 

was originally characterized by Scott et al. (2006), and fis1A mutants in Arabidopsis were 

found to have a reduced number of mitochondria per cell, but an increase in the size of 

individual mitochondria in protoplasts and leaves.  However, the role of these genes with 

regards to whole-plant morphology, as well as their role in salt stress, has yet to be 

explored.  

 

3.1.1 Expression levels of FMT and FIS1A in response to salt stress  

Expression levels of FMT and FIS1A under salt stress in the Arabidopsis root were 

examined using the Arabidopsis Spatio-Temporal Root Stress eFP Browser 

(http://dinnenylab.info/browser/query).  This browser examines the expression levels of 

~5 day old seedlings exposed to 140mM NaCl from 1 to 48 hours, compared to exposure 

on MS-Agar for 1 and 48 hours.  A comparison of the expression levels of FIS1A and 

FMT to expression levels of the Salt Overly Sensitive genes (SOS1, SOS2, and SOS3), 

which are known to be induced by salt stress, is shown in Figure 2.  It is clear that FMT 

gene expression increases sharply in as little as three hours in the epidermis, with a 

moderate increase in expression in the stele and cortex from 1-48 hours following NaCl 

exposure.  FIS1A is only mildly upregulated in the epidermis in response to salt stress, 

similar to SOS1 expression.  SOS2 has a moderate decrease in expression in the 

epidermis, stele, and cortex, while SOS3 is initially highly upregulated from 1-3 hours, 

with an eventual decrease in expression after 48 hours.  While this eFP Browser is 

informative for short-term exposure at 140mM NaCl, it does not provide information for 
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long-term exposure to NaCl stress at different concentrations.  An in-depth phenotypic 

and functional analysis of both FMT and FIS1A under different salt-stressed conditions is 

therefore essential in furthering our understanding of the role of these genes during salt 

stress.  

     

 
Figure 2: Salt-regulated spatio-temporal expression in the Arabidopsis root. A) FIS1A (left) and FMT 
(right). B) (left to right) SOS1, SOS2, SOS3.  
 

3.2 Overexpression of the FMT gene in Arabidopsis thaliana 

In order to further our understanding of the role of FMT in whole-plant and 

mitochondrial morphology, we created a transgenic Arabidopsis plant line (FMT-OE) 

overexpressing FMT under the control of the cauliflower mosaic virus (CaMV) 35S 

promoter.   Arabidopsis plants were transformed with Agrobacterium containing the 

pFASTG02-FMT overexpression vector.  The pFASTG02 vector carries a screenable 

marker that produces a GFP signal visible in the mature seed coat of transformed plants.  

Transgenic seeds from these plants were then sown to obtain T2 seeds.  Lines with a 

single transgene insertion were identified by an ~3:1 segregation ratio of GFP to no-GFP, 

respectively.  Transgenic GFP seeds from these lines were sown to identify a 
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homozygous plant (FMT-3), which was identified by T3 seed that exhibited 100% GFP 

fluorescence compared to WT seed (Fig. 3).  Seeds from line FMT-3 were collected and 

used in subsequent experiments.  

 

Figure 3: Seeds of Arabidopsis plants transformed with pFASTG02-FMT give green fluorescence.  

A) (right) GFP-expressing T3 generation seeds obtained from FMT-3, a homozygous Arabidopsis plant 
overexpressing the FMT gene in the pFASTG02 vector, (left) non-transformed WT seeds do not give green 
fluorescence. B) The same field view as in (A), but viewed under bright field light. Scale bar = 100 µm. 
 
 

3.3 Phenotypic analyses of the fis1A, fmt, and FMT-OE mutants  

 

3.3.1 fis1A mutants have shorter roots and slightly shorter leaves 

As described above, a homozygous T-DNA insertion line for FIS1A (SALK_006512C) 

was found within the SALK collection.  When using primers spanning the insertion site, 

no transcript could be detected via PCR.  The T-DNA insertion hypothetically leads to a 

block of transcription, rendering a truncated or non-functional FIS1A protein.    

Under control conditions, fis1A mutant plants did not have a significantly different 

germination rate compared to WT plants (98.6% ±3.26% versus 99.2% ±1.88%, 

respectively) (Fig. 4A), nor did they take longer to germinate than WT plants (1.5 days 
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±0.51 days versus 1.24 days ±0.43 days, respectively) (Fig. 4B).  Leaf length was not 

significantly (p=0.0775) shorter in fis1A mutants compared to the WT (1.03 cm ±0.21 cm 

versus 1.23 ±0.25 cm, respectively) (Figs. 4C, 5N).  These mutants also did not display 

differences in days to flowering (29.4 days ±1.99 days) compared to the WT (28.89 days 

± 1.28 days) (Fig. 4D).  However, fis1A mutants did display significantly shorter roots at 

both 7 (0.59 cm ± 0.17 cm) and 14 (0.85 cm ± 0.43 cm) days old under control conditions 

compared to the WT (0.86 cm ±0.27 cm and 1.56 cm ±0.48 cm, respectively) (Figs. 4E,F, 

5B,F).  

 

3.3.2 fmt mutants have shorter roots and leaves and take longer to flower 

As described above, a homozygous T-DNA insertion line for FMT (SALK_046271C) 

was found within the SALK collection.  When using primers spanning the insertion site, 

no transcript could be detected via PCR.  The T-DNA insertion hypothetically leads to a 

block of transcription, rendering a truncated or non-functional FMT protein.   

Under control conditions, fmt mutant plants did not have a significantly different 

germination rate (98.6% ±3.13%) (Fig. 4A) nor did they take longer to germinate (1.33 

days ±0.48 days) compared to WT plants (Fig. 4B).  However, leaf length was 

significantly shorter in fmt mutants (0.93 cm ±0.20 cm) (Fig. 4C, 5O), and these mutants 

also took significantly longer to flower (33.57 days ±2.82 days) compared to the WT 

(Fig. 4D).  fmt mutants also displayed significantly shorter roots at both 7 (0.54 cm ± 0.18 

cm) and 14 (0.85 cm ± 0.33 cm) days old under control conditions compared to the WT 

(Fig. 4E,F, 5C,G). 
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3.3.3 FMT-OE mutants have a lower rate of germination, take longer to germinate, 

and have shorter roots and leaves 

Under control conditions, FMT-OE mutant plants had a much lower rate of germination, 

at only 82.33% ± 9.77% (Fig. 4A).  These plants also took longer to germinate (3.12 days 

±0.64 days) compared to WT, fis1A, and fmt plants (Fig. 4B). Despite this delayed 

germination, these mutants did not take longer to flower (29.83 days ±1.16 days) 

compared to the WT (Fig. 4D).  Similar to fmt mutants, leaf length was significantly 

shorter in FMT-OE mutants (0.90 cm ±0.26 cm) versus the WT (Fig. 4C, 5P).  

Interestingly, FMT-OE mutants displayed significantly shorter roots at 7 days old (0.21 

cm ± 0.10 cm), but not at 14 days old (1.25 cm ±0.51 cm) under control conditions 

compared to the WT (Fig. 4E,F, 5D, H).   
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Figure 4: Phenotypic differences between WT, fis1A, fmt, and FMT-OE lines under control 
conditions. A) % Germination, B) Days to germination, C) Leaf length, D) Days to flowering, E) Root 
length at 7 days old, F) Root length at 14 days old. Statistical analysis indicates significant differences  
(****, P ≤ 0.0001, *** P ≤ 0.001, **, P ≤ 0.01, ns = not significant, P > 0.05) compared with controls using 
one-way ANOVA. 
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Figure 5: Visualization of phenotypic differences between WT, fis1A fmt, and FMT-OE lines under 
control and salt-stressed conditions. A-D) Arabidopsis seedlings at 7 days old under control conditions 
on MS-Agar plates. A) WT, B) fis1A, C) fmt, D) FMT-OE. E-H) Arabidopsis seedlings at 14 days old under 
control conditions on MS-Agar plates. E) WT, F) fis1A, G) fmt, H) FMT-OE. I-L) Arabidopsis seedlings at 
14 days old under salt-stressed conditions on 125mM NaCl MS-Agar plates. I) WT, J) fis1A, K) fmt, L) 
FMT-OE. M-P) Arabidopsis seedlings at 7 days old under control conditions in the soil. M) WT, N) fis1A, 
O) fmt, P) FMT-OE. Scale bar = 1 cm. 
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3.4 Effects of salt stress on fis1A, fmt, and FMT-OE mutants and WT plants 

In order to examine the role of the FIS1A and FMT mitochondrial proteins in response to 

salt stress, fis1A, fmt, and FMT-OE mutants were exposed to either 125mM NaCl stress 

on MS-Agar media, or gradual salt stress ranging from 50-140mM NaCl in the soil.  

Additionally, to examine the effects of salt stress on WT Arabidopsis plants, and to serve 

as a control, these plants were also exposed to salt stress on plates and in the soil.  On 

125mM NaCl MS-Agar plates, WT plants did not have a significant difference in percent 

germination (Fig. 6A), but took longer to germinate compared to control conditions (3.64 

days ±0.43 days compared to 1.24 days ±0.43 days, respectively) (Fig. 6B). These plants 

also had significantly shorter roots compared to WT plants under control conditions (0.99 

cm ±0.33 cm compared to 1.56 cm ±0.48 cm, respectively) (Fig. 6E, 5I).  Under salt-

stressed conditions in the soil, WT leaves were significantly shorter compared to the WT 

control (0.90 cm ±0.15 cm compared to 1.23 cm ±0.25 cm, respectively) (Fig. 6C), and 

these plants took significantly longer to flower compared to WT plants under control 

conditions (31.37 days ±2.21 days compared to 28.89 days ±1.28 days, respectively) (Fig. 

6D).   
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Figure 6: Salt stress affects days to germination and flowering, as well as leaf and root length in wild 
type Arabidopsis. A) % Germination, B) Days to germination, C) Leaf length, D) Days to flowering, E) 
Root length at 14 days old. Black bars indicate control conditions, grey bars indicate salt-stressed 
conditions. Statistical analysis indicates significant differences  (****, P ≤  0.0001, ***, P ≤ 0.001) 
compared with controls using  two-tailed Student’s t test.  
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On 125mM NaCl MS-Agar plates, fis1A mutants germinated at relatively the same rate 

compared to control conditions (96.5% ±4.94% compared to 98.66% ±3.26%, 

respectively) (Fig. 7A), however these plants took longer to germinate compared to 

control conditions (3.84 days ±0.80 days compared to 1.5 days ±0.51 days, respectively) 

(Fig. 7B).  These plants also had significantly shorter roots compared to fis1A plants 

under control conditions (0.64 cm ±0.25 cm compared to 0.85 cm ±0.43 cm, respectively) 

(Fig. 7E, 5J).  Under salt stress conditions in the soil, fis1A leaves were significantly 

shorter compared to controls (0.82 cm ±0.13 cm compared to 1.03 cm ±0.21 cm, 

respectively) (Fig.7C), and these plants took significantly longer to flower compared to 

controls (34.31 days ±2.96 days compared to 29.4 days ±1.99 days, respectively) (Fig. 

7D).   
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Figure 7: Salt stress affects days to germination and flowering, as well as leaf and root length in fis1A 
mutants. A) % Germination, B) Days to germination, C) Leaf length, D) Days to flowering, E) Root length 
at 14 days old. Black bars indicate control conditions, grey bars indicate salt-stressed conditions. Statistical 
analysis indicates significant differences (****, P ≤  0.0001, **, P ≤ 0.01) compared with controls using 
two-tailed Student’s t test.  
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Compared to WT plants under salt-stressed conditions, salt-stressed fis1A mutant plants 

did not have a significantly different germination rate (Fig. 8A), nor did they take longer 

to germinate (Fig. 8B). These mutants also did not have significantly shorter roots at 14 

days old compared to the WT under the same conditions (Fig. 8E).  Under salt-stressed 

conditions in the soil, the leaf length of fis1A mutants was not significantly shorter 

compared to WT plants under the same conditions (Fig. 8C), although the number of days 

to flowering was significantly increased (Fig. 8D). 
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Figure 8: Days to flowering is increased in fis1A mutants compared to the WT under salt-stressed 
conditions. A) % Germination, B) Days to germination, C) Leaf length, D) Days to flowering, E) Root 
length at 14 days old. Black bars indicate control conditions, grey bars indicate salt-stressed conditions. 
Statistical analysis indicates significant differences (**, P ≤ 0.01, ns = not significant, P > 0.05) compared 
with controls using two-tailed Student’s t test (A, B, C) or two-way ANOVA (C, E).  
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On 125mM NaCl MS-Agar plates, fmt mutants germinated at the same rate compared to 

control conditions (98.25% ±2.36% compared to 98.6% ±3.13%, respectively) (Fig. 9A), 

however these plants took much longer to germinate compared to controls (3.84 days 

±0.98 days compared to 1.3 days ±0.48 days, respectively) (Fig. 9B).  These plants did 

not have significantly shorter roots compared to fmt plants under control conditions (0.75 

cm ±0.28 cm compared to 0.85 cm ±0.33 cm, respectively) (Fig. 9E, 7K).  Under salt 

stress conditions in the soil, the leaves of fmt mutants were not significantly shorter 

compared to controls (0.83 cm ±0.16 cm compared to 0.93 cm ±0.20 cm, respectively) 

(Fig. 9C), nor did these plants take longer to flower compared to controls (33.42 days 

±3.24 days compared to 33.57 days ±2.82 days, respectively) (Fig. 9D).   
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Figure 9: Salt stress affects days to germination in fmt mutants. A) % Germination, B) Days to 
germination, C) Leaf length, D) Days to flowering, E) Root length at 14 days old. Black bars indicate 
control conditions, grey bars indicate salt-stressed conditions. . Statistical analysis indicates significant 
differences (****, P ≤  0.0001) compared with controls using two-tailed Student’s t test.  
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Compared to WT plants under salt-stressed conditions, fmt mutant plants did not have a 

significantly different germination rate, nor did they take longer to germinate (Fig. 

10A,B). These mutants also had shorter roots, although it was not statistically significant 

(P= 0.0605) (Fig. 10E). However, under salt-stressed conditions in the soil, leaves of fmt 

mutants were significantly shorter and days to flowering was significantly longer 

compared to WT plants under the same conditions (Fig. 10C,D).  
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Figure 10: Days to flowering is increased and root and leaf length are decreased in fmt mutants 
compared to the WT under salt-stressed conditions. A) % Germination, B) Days to germination, C) 
Leaf length, D) Days to flowering, E) Root length at 14 days old. Black bars indicate control conditions, 
grey bars indicate salt-stressed conditions. Statistical analysis indicates significant differences (*, P ≤ 0.05) 
compared with controls using two-tailed Student’s t test (A, B) or two-way ANOVA (C, D, E).  
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On 125mM NaCl MS-Agar plates, the percent germination of FMT-OE mutants 

decreased further compared to FMT-OE seedlings under control conditions (57.5% 

±3.53% compared to 82.33% ± 9.77%, respectively) (Fig. 11A).  Days to germination 

increased significantly compared to controls (4.46 days ±1.12 days compared to 2.71days 

±0.82 days, respectively) (Fig. 11B).  These plants also had significantly shorter roots 

compared to FMT-OE plants under control conditions (0.53 cm ±0.11 cm compared to 

1.25 cm ±0.51 cm, respectively) (Fig. 11E, 5L).  Under salt-stressed conditions in the 

soil, the leaves of FMT-OE mutants were significantly shorter compared to FMT-OE 

plants under control conditions (0.65 cm ±0.14 cm compared to 0.90 cm ±0.26 cm, 

respectively) (Fig. 11C).  However, these plants did not take longer to flower compared 

to controls (31.9 days ±3.03 days compared to 29.83 days ±1.16 days, respectively) (Fig. 

11D). 
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Figure 11: Salt stress affects percent germination, days to germination, and leaf and root length in 
FMT-OE mutants. A) % Germination, B) Days to germination, C) Leaf length, D) Days to flowering, E) 
Root length. Black bars indicate control conditions, grey bars indicate salt-stressed conditions. Statistical 
analysis indicates significant differences (****, P ≤  0.0001, **, P ≤ 0.01, *, P ≤ 0.05, ns = not significant, 
P > 0.05) compared with controls using two-tailed Student’s t test.  
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Compared to WT plants under salt-stressed conditions, salt-stressed FMT-OE mutants 

had a significantly decreased germination rate (Fig. 12A), and a difference in days to 

germination approached significance (p=0.0739) (Fig. 12B). Root length was also 

significantly shorter (Fig. 12E). Under salt-stressed conditions in the soil, neither the 

length of the leaves nor the days to flowering were significantly different in FMT-OE 

mutants compared to WT plants under the same conditions (Fig. 12D). 
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Figure 12: Germination percentage and root length are decreased in FMT-OE mutants compared to 
the WT under salt-stressed conditions. A) % Germination, B) Days to germination, C) Leaf length, D) 
Days to flowering, E) Root length at 14 days old. Black bars indicate control conditions, grey bars indicate 
salt-stressed conditions.  Statistical analysis indicates significant differences (**, P ≤ 0.01, *, P ≤ 0.05, ns = 
not significant, P > 0.05) compared with controls using two-tailed Student’s t test (D,E) or two-way 
ANOVA (A,B,C).  
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3.5 Electron microscopy analysis of WT, fis1A, fmt, and FMT-OE plants 

Mitochondria are known to play an integral role in the salt stress response.  One response 

to salt stress is salt-avoidance gravitropism, in which amyloplasts from the root cap are 

degraded, and auxin is asymmetrically distributed via PIN2 transport, in order to induce 

root bending.  The mitochondrial FMT protein is known to be upregulated during salt 

stress, and fmt mutants were shown to have significantly decreased root cap/meristematic 

zones in their roots (El Zawily et al., 2014).  Thus, an analysis of the mitochondria in the 

root cap of fmt mutants would provide insight into the role of this gene in root cap 

morphology and the salt stress response.  Furthermore, an analysis of the root cells of 

another mitochondrial mutant, fis1A, as well as FMT-OE mutants, would provide further 

insight into the role of mitochondria in the root.  Thus, we performed an electron 

microscopy analysis of mitochondria in columella cells in fis1A, fmt, and FMT-OE 

mutants and compared these results to WT plants under both control and salt-stressed 

conditions.   

Electron microscopy analysis of the columella cells in the roots of WT, fis1A, fmt, and 

FMT-OE plants under control conditions revealed major differences in the number of 

mitochondria per cell, mitochondrial coverage, and mitochondrial clustering (Fig. 13).  

The wide variation in mitochondrial area (<0.1 µm2 to >0.6 µm2) did not reveal any 

significant differences between the three mutant plants compared to the WT (Fig. 14A).  

WT plants had an average mitochondrial area of 0.276 µm2 ±0.15 µm2, fis1A mutants had 

an average mitochondrial area of 0.279 µm2 ±0.16 µm2, fmt mutants had an average 

mitochondrial area of 0.279 µm2 ±0.14 µm2, and FMT-OE mutants had an average 

mitochondrial area of 0.298 µm2 ±0.15 µm2.   fis1A mutants did not display a significant 
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difference in mitochondrial AR (average 1.70 ±0.05), nor did fmt mutant plants (average 

1.56 ±0.13), or FMT-OE mutants (average 1.85 ±0.13) compared to WT plants (average 

1.71 ±0.05) (Fig. 14B).  fmt mutant plants had a significantly increased average number 

of mitochondria per cell (20.86 ±13.19) compared to the WT (9.21 ± 3.21), fis1A (13.06 

±4.28), and FMT-OE plants (14.23 ±8.15) (Fig. 14C).  Both fis1A and fmt plants had 

increased mitochondrial coverage (15.92% ±8.15% and 16.34% ±9.31%, respectively), 

compared to the WT (7.36% ±2.33%) and FMT-OE plants (11.13% ±5.49%) (Fig. 14D).  
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Figure 13: Differences in mitochondria between WT, fis1A, fmt, and FMT-OE lines under control 
conditions.  A) WT, B) fis1A, C) fmt, D) FMT-OE. Each square represents a 4 µm x 4 µm area selected 
from a representative cell from each genotype. Scale bar = 2 µm. 
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Figure 14: Comparison of various mitochondrial parameters between WT, fis1A, fmt, and FMT-OE 
lines. A) Mitochondrial area, B) Mitochondrial aspect ratio, C) # of mitochondria per cell, D) 
Mitochondrial coverage as a % of cytoplasm. Statistical analysis indicates significant differences            
(***, P ≤  0.001, **, P ≤ 0.01, ns = not significant, P > 0.05) compared with controls using one-way 
ANOVA.  
 
 

3.5.1 Salt stress affects various mitochondrial parameters in WT, fis1A, and fmt  

Electron microscopy analysis of the columella cells in the roots of WT, fis1A, and fmt 

plants under salt-stressed conditions revealed major changes in mitochondrial area, 

number of mitochondria per cell, mitochondrial coverage, and mitochondrial clustering 

(Figs. 15, 16).  Under 125mM NaCl salt-stressed conditions, the average mitochondrial 

area (0.177 µm2 ±0.09 µm2) decreased significantly in the WT compared to control 

conditions (Fig. 17A,B), although AR did not differ significantly (1.56 ±0.09).  Both the 

average number of mitochondria per cell (39.83 ±14.82) and mitochondrial coverage 
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(12.88% ±0.98%), increased significantly (Fig. 17C,D).  In fis1A mutants, the average 

mitochondrial area (0.169 µm2 ±0.08 µm2) decreased significantly, although AR did not 

(1.59 ±0.05) (Fig. 18A,B).  The average number of mitochondria per cell (24.33 ±12.29) 

was significantly increased, while mitochondrial coverage was significantly decreased 

(6.52% ±1.36%) (Fig. 18C,D).  Mitochondria in fmt plants were significantly smaller 

(0.219 µm2 ±0.07 µm2), however, aspect ratio (1.48 ±0.03), the average number of 

mitochondria per cell (22.85 ±7.35), and total mitochondrial coverage (17.34% ±6.45%) 

did not change significantly compared to control conditions (Fig. 19 A,B,C,D).  
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Figure 15: Differences in mitochondria between WT, fis1A, and fmt lines under salt stress. A) WT. B) 
fis1A. C) fmt. Each square represents a 4 µm x 4 µm area selected from a representative cell from each 
genotype. Scale bar = 2 µm. 
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Figure 16: Visualization of the effects of salt stress on WT, fis1A, and fmt lines. A) WT under control 
conditions, B) WT under salt-stressed conditions, C) fis1A under control conditions, D) fis1A under salt-
stressed conditions, E) fmt under control conditions, F) fmt under salt-stressed conditions. Mitochondria are 
shown filled in white. Scale bar = 2 µm. 
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Figure 17: Comparison of various mitochondrial parameters between WT plants under control and 
salt-stressed conditions.  A) Mitochondrial area, B) Mitochondrial aspect ratio, C) # of mitochondria per 
cell, D) Mitochondrial coverage as a % of cytoplasm. Statistical analysis indicates significant differences 
(****, P ≤  0.0001, ***, P ≤  0.001) compared with controls using one-way ANOVA.  
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Figure 18: Comparison of various mitochondrial parameters between fis1A mutants under control 
and salt-stressed conditions.  A) Mitochondrial area, B) Mitochondrial aspect ratio, C) # of mitochondria 
per cell, D) Mitochondrial coverage as a % of cytoplasm. Statistical analysis indicates significant 
differences (****, P ≤  0.0001, **, P ≤ 0.01, *, P ≤ 0.05) compared with controls using one-way ANOVA.  



 57 

 
 

Figure 19: Comparison of various mitochondrial parameters between fmt mutants under control and 
salt-stressed conditions.  A) Mitochondrial area, B) Mitochondrial aspect ratio, C) # of mitochondria per 
cell, D) Mitochondrial coverage as a % of cytoplasm. Statistical analysis indicates significant differences 
(****, P ≤  0.0001, ns = not significant, P > 0.05) compared with controls using one-way ANOVA.  
 
 

3.5.2 Clustering is regulated by FMT and is sensitive to salt stress 

Mutants with a non-functional CLU gene show a significant increase in mitochondrial 

clustering in a variety of species, including slime mold, yeast, and fruit flies (Fields et al., 

1998, Cox & Spradling, 2009, Gao et al., 2014).  In Arabidopsis, it was previously shown 

via electron microscopy that fmt mutants had increased mitochondrial clustering in their 

leaves (El Zawily et al., 2014), but an analysis of clustering in the roots of fmt mutants 

had yet to be done.  Additionally, a similar analysis in fis1A and FMT-OE plants, as well 

as an examination of the effects of clustering under salt-stressed conditions was lacking.  
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We therefore examined mitochondrial clustering in the roots of WT, fis1A, fmt, and FMT-

OE plants under control conditions. Due to difficulties in fixing and embedding salt-

stressed FMT-OE roots, we were only able to analyze the roots of WT, fis1A, and fmt 

plants under salt-stressed conditions.  We examined mitochondrial clustering using the 

average nearest neighbor ratio (ANN) (see Materials and Methods).  If the average ANN 

is less than 1, the mitochondria trend towards clustering.  If the ANN is greater than 1, 

the mitochondria trend towards dispersion.  We found that indeed, mitochondrial 

clustering was evident in fmt mutants (average 0.734 ±0.617) compared to WT plants 

(1.95 ±1.85).  Interestingly, both fis1A and FMT-OE mutants exhibited similar random 

clustering patterns, with an ANN around 1 (1.08 ±0.75, and 1.06 ±0.752, respectively) 

(Fig. 20A).  An analysis of mitochondrial clustering under salt-stressed conditions 

revealed that WT plants had a decreased ANN (0.71 ±0.41) compared to WT plants under 

control conditions, indicating a trend towards mitochondrial clustering under salt stress 

(Fig. 20B).  However, there were no differences in ANN observed in fis1A (0.95 ±0.70) 

or fmt mutant plants (0.72 ±0.44) (Fig. 20C,D) under salt stress conditions compared to 

controls.  
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Figure 20: Clustering patterns in WT, fis1A, fmt, and FMT-OE lines under control and salt-stressed 
conditions. A) Clustering as measured by Average Nearest Neighbor ratio (ANN), B) ANN comparison 
between WT under control and salt-stressed conditions, C) ANN comparison between fis1A under control 
and salt-stressed conditions, D) ANN comparison between fmt under control and salt-stressed conditions. 
Statistical analysis indicates significant differences (****, P ≤  0.0001, ns = not significant, P > 0.05) 
compared with controls using one-way ANOVA.  
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4. Discussion 

Mitochondria are dynamic organelles that orchestrate a variety of cellular functions in all 

eukaryotic organisms.  Although mitochondria from plants and animals have evolved to 

suit the particular needs of the organism, some mitochondrial genes remain highly 

conserved, including CLU/FMT, and FIS1A.  The high degree of conservation between 

these genes across organisms indicates highly conserved and fundamentally important 

functions.  Investigation of these genes in lower organisms such as Arabidopsis can help 

to serve as a simplified model of gene function, which can help to more quickly elucidate 

function in higher organisms.  The function of CLU remains unknown, and while the 

basic function of FIS1A in mitochondrial fission is known, it is not well understood how 

these genes function in response to stress.  Thus, in order to gain further insight into the 

function of these genes and how they regulate mitochondrial and whole-plant 

morphology in response to stress, we performed phenotypic and cellular analyses of FMT 

and FIS1A in Arabidopsis under both control and salt-stressed conditions.   

 

4.1 FMT regulates multiple cellular processes in a variety of organisms 

FMT in Arabidopsis belongs to the CLU (CLUstered mitochondria) family of genes that 

is highly conserved throughout eukaryotes, including yeast, fruit flies, and humans 

(Fields et al., 1998, Cox & Spradling, 2009, Gao et al., 2014).  Knockouts of this gene 

consistently display a phenotype of mitochondrial clustering, leading to the hypothesis 

that this gene was involved in mitochondrial positioning/orientation within the cell.    

However, recent work by Gao et al. (2014) revealed that CLU may in fact function as an 
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RNA-binding protein (RBP) that specifically binds mRNAs of nuclear-encoded 

mitochondrial proteins.  CLU may also specifically bind ribosomes on the surface of the 

mitochondrial outer membrane, in order to help facilitate site-specific mRNA translation 

(Sen & Cox, 2016).  It was also shown that CLU binds TOM20, one component of the 

TOM mitochondrial import complex that is important for the import of proteins into 

mitochondria.  Additionally, Sen et al. (2015) found that CLU may work to negatively 

regulate the interaction between PINK1 and PARKIN in Drosophila, which has 

implications for a role in mitochondrial quality control.  In this model, under control 

conditions, PINK1 is normally imported into the mitochondrial inner membrane where it 

is degraded by PARL, a rhomboid protease. Under conditions of mitochondrial 

membrane depolarization, mitochondrial protein import is halted, and as a result PINK1 

is unable to enter mitochondria.  Instead, PINK1 accumulates on the outer mitochondrial 

membrane, where it is hypothesized to complex with CLU and well as PARKIN. 

PARKIN then targets the depolarized mitochondrion for ubiquitination and subsequent 

degradation.  This pathway is an example of a quality control mechanism employed by 

the cell to prevent unhealthy (i.e. depolarized) mitochondria from accumulating within 

the cytoplasm.  Although Arabidopsis does not possess homologues for PINK1 or 

PARKIN, it seems likely that a type of mitochondrial quality control might exist within 

plants, and may be mediated by FMT.  Plants also possess a TOM20 complex on the 

mitochondrial outer membrane, as well as ubiquitinating enzymes (Duncan et al., 2013).  

It is therefore not unreasonable to hypothesize that plants may also possess a mechanism 

for mitochondrial quality control that is mediated by FMT functioning as an RBP.  
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It was also recently found that the homologue of CLU in humans, CLUH, might serve a 

function in the localization of nuclear proteins.  Ando et al. (2016) showed that CLUH 

can bind viral influenza M1 proteins and transport them into the nucleus, where viral 

progeny synthesis and subsequent nuclear export occur.  This indicates that CLUH is, in 

certain cases, able to bring proteins into the nucleus in a manner that can alter 

transcription.  All of these experiments indicate that CLU has evolved to regulate 

multiple cellular processes in a variety of organisms.  However, it is currently unclear 

whether CLU performs a similar function in Arabidopsis, or if it evolved these functions 

only in higher organisms.  Analysis of FMT in Arabidopsis by El Zawily et al. (2014) 

revealed that fmt mutants had an increased time of association between mitochondria, as 

well as increase in matrix mixing between mitochondria, and an increase in the number 

of transient changes in mitochondrial membrane potential.  The authors take these data to 

indicate deficits in mitochondrial fusion, and imply that FMT may function as a 

mitochondrial fusion protein.  As Arabidopsis lacks any homologues to known 

mitochondrial fusion proteins, it is possible that FMT may serve this function, and in 

higher organisms this function was eventually relegated to other proteins.  Mitochondrial 

fusion mutants, such as those observed in yeast, worms, and flies (for review see 

Westermann, 2010), show an increased number of mitochondria, and an increase in 

numbers of fragmented mitochondria. Although an increase in fragmented mitochondria 

was not observed in fmt mutants in Arabidopsis, these mutants did show an increase in 

mitochondrial number.  This supports the claim that FMT may function as a fusion 

protein in Arabidopsis, but more evidence is needed.  It is also possible that FMT is not a 

fusion protein itself, but in fact regulates some as-yet unknown fusion proteins via 
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mRNA binding. It may also function by negatively regulating the binding of fission 

proteins to the mitochondrial outer membrane, thereby promoting fusion. 

However, considering how similar the phenotypes are between fmt mutants in 

Arabidopsis and higher organisms, and the fact that sequence similarity is highly 

conserved, especially the TPR domain, which was shown to be the RNA binding domain 

of CLU in Drosophila, it seems more likely that FMT and CLU possess similar functions, 

including RNA binding, and possible tethering to the ribosome and mediation of protein 

import into mitochondria.  Additionally, the role of CLUH in influenza subnuclear 

transport indicates a role for FMT during stress.  Biotic stress of plants, including 

infection by viruses or bacteria, can induce a variety of responses involving mitochondria 

(see Introduction).  Thus, it is not unreasonable to posit a role for CLU in the biotic stress 

response in Arabidopsis, as well as abiotic stress responses, including salt stress.   

 

4.2 fmt and FMT-OE mutants show deficits in root and leaf length, and delays in 

flowering and germination 

El Zawily et al. (2014) observed that fmt mutants in Arabidopsis displayed shortened 

roots, an observation that was corroborated by our findings.  Additionally, we also found 

that fmt mutants had shorter leaves, as well as increase in the number of days to 

flowering. Overexpression of FMT in Arabidopsis resulted in a significant deficit in 

percent germination and days to germination, as well as a decrease in leaf length. Roots 

of FMT-OE plants were initially shorter by day 7, but by day 14 had grown to lengths 

comparable to that of the WT, indicating a key role of FMT in regulating root growth.  
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The significant delay in germination and flowering in FMT-OE and fmt mutants, 

respectively, also indicates a clear role for this gene in both of these processes.  

 

4.2.1 Putative role of FMT in germination and flowering control in Arabidopsis  

In plants, the switch from vegetative to reproductive growth triggers flowering, and 

several pathways are known to be involved in the initiation and regulation of this 

transition (for review see Blumel et al., 2015).  Several NAC transcription factors have 

been shown to play a key role in flowering (Sablowski & Meyerowitz, 1998), as well as 

germination (Kim et al., 2008) and stress (Tran et al., 2004, He et al., 2005, Jiang & 

Deyholos, 2006) in Arabidopsis.  NTL8 is a NAC transcription factor belonging to the 

sub-family of NTLs (NTM1-Likes), which are also known to function as membrane-

associated transcription factors (MTFs).  MTFs remain membrane-bound and dormant 

until they are activated and transported to the nucleus.  This mechanism allows for fast 

and efficient regulation of gene expression in response to environmental changes.  MTFs 

are known to be activated by regulated ubiquitin (Ub)/proteasome-dependent processing 

(RUP), in which MTFs are ubiquitinated and partially degraded by the 26S proteasome, 

and subsequently released in transcriptionally active form (Hoppe et al., 2000).  NTL8 is 

unique among other members of the NTL family in that it is highly induced by elevated 

levels of salt, and an overexpression of NTL8 delays flowering in Arabidopsis.  It was 

also found that NTL8 regulates expression of FLOWERING LOCUS T (FT) in salt-

responsive flowering (Kim et al., 2007).  Additionally, NTL8 was shown to modulate 

gibberellic acid (GA)-mediated salt signalling during seed germination (Kim et al., 2008).  

Interestingly, fmt mutants display a similar delay in flowering, although not as severe as 
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ntl8 mutants.  Additionally, FMT was shown to be upregulated during salt exposure (Fig. 

2).  Furthermore, CLU was shown to negatively regulate the interaction between PINK1 

and PARKIN, (Sen et al., 2015), and PARKIN is known to activate a ubiquitin-

proteasome system which targets proteins for degradation by recruitment of the 26S 

proteasome (Aguileta et al., 2015, Um et al., 2010, Livnat-Levanon & Glickman, 2011).  

Additionally, CLUH was shown to bind viral M1 proteins and transport them into the 

nucleus in a manner that can alter transcription.  Thus, it is possible that FMT may be 

able to regulate germination or flowering by mediating RUP and subsequent activation of 

transcription factors that control these processes.  

 

4.3 Changes in FMT expression affect mitochondrial size, number, and clustering in 

columella cells 

In order to gain a more complete understanding of how FMT mediates mitochondrial 

morphology in the roots of Arabidopsis, transmission electron microscopy (TEM) 

analysis was performed in columella cells.  Mitochondria in fmt mutants were not 

significantly different in area compared to WT plants, however they had a significantly 

increased number of mitochondria per cell, leading to increased mitochondrial coverage.  

As expected, these cells also exhibited significant mitochondrial clustering, consistent 

with TEM experiments performed in other species and in the leaves of fmt Arabidopsis 

mutants (El Zawily et al., 2014, Cox & Spradling, 2009). TEM analysis of mitochondrial 

morphology in FMT-OE mutants revealed phenotypes opposite to those observed in fmt 

mutants.  FMT-OE mutants displayed a random clustering pattern and also had fewer 

numbers of mitochondria compared to fmt mutants, and as a result lower mitochondrial 
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coverage, although these values were not significantly different from the WT.  These data 

provide evidence for FMT in the regulation of mitochondria size, number, and 

positioning of columella cells in Arabidopsis roots.  The absence of a “severe” phenotype 

in FMT-OE mutants compared to fmt mutants could be explained by the data suggesting 

that FMT functions as an RBP.  It is possible that excess FMT does not have enough 

ribosomes to bind, and overexpression reaches a certain “threshold” after which point 

excess FMT has little effect.  

 

4.4 fis1A mutants have shorter roots and may regulate mitochondrial clustering 

Mitochondrial fission is essential for cell survival; if a build-up of deleterious 

components, such as mutated mtDNA, accumulates inside the organelle, it can be 

segregated to one side and the mitochondrion can divide, leaving one healthy organelle 

and one bound for autophagy (Youle & van der Bliek, 2012).  Mammals and yeast 

contain only one FIS1 protein, whereas the Arabidopsis FIS1 family (AtFIS1) contains 

two isoforms, FIS1A and FIS1B, which are known to facilitate the division of both 

mitochondria and peroxisomes (Zhang & Hu, 2008).  It was shown that both fis1A and 

fis1B single mutants displayed a decrease in the number of peroxisomes and 

mitochondria.  The fis1A/fis1B double mutant showed a similar phenotype to the fis1A 

single mutant, with an increase in the incidence of clumped mitochondria and 

peroxisomes, as well as a significant increase in size and number of the two organelles, 

indicating a deficit in fission.  However, the total organelle volume was slightly lower in 

the double mutants than in the fis1A single mutant, indicating that these two proteins may 

have overlapping or redundant functions.  Overexpression of either FIS1A or FIS1B 
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increased the abundance of both mitochondria and peroxisomes, but no obvious 

physiological changes were observed (Zhang & Hu, 2008).  While this preliminary 

research helped to determine that Arabidopsis FIS1 proteins have a similar role to their 

mammalian and yeast counterparts, an examination of these proteins in the roots, as well 

as under salt-stressed conditions, had yet to be done.  Since FIS1A and FIS1B were 

shown to have partially redundant roles, and since the fis1A/fis1B double mutant was 

unavailable, we decided to examine the fis1A mutant in Arabidopsis roots, under both 

control and salt-stressed conditions.  The most significant phenotype of fis1A mutants 

was significantly shorter roots, but all other phenotypic characteristics measured did not 

vary significantly from the WT.  Thus, FIS1A may regulate root length, possibly through 

a control of mitochondrial fission.  Interestingly, fis1A mutants did not display a decrease 

in numbers of mitochondria, or an increase in area, as was previously described (Scott et 

al., 2006, Zhang & Hu, 2008). This can be explained by differences in technique; 

previous experiments were done in leaves, while we examined mitochondria in the roots.  

In addition, mitochondria were visualized using a fluorescence-tagged protein under low 

magnification, while we used high-resolution electron microscopy.  As a result, while a 

cluster of fluorescently tagged mitochondria may appear as a large clump and may be 

counted as a single mitochondrion, using our technique we were able to discern 

individual mitochondria within in a single cell, and thus gain a more accurate 

representation of mitochondrial number and size, as well as various other mitochondrial 

parameters not possible with previous techniques.  Although we did not see significant 

differences in mitochondrial size, AR, or number, we did see an increase in mitochondrial 

coverage.  This could be due to a decrease in overall cell size, and thus a decrease in total 
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cytoplasm, although this was not quantified. It is important to note that the FIS1B 

isoform is still functional in fis1A mutants, meaning that mitochondrial fission is not 

totally abolished.  While previous research suggested that fis1A/fis1B double mutants 

have similar phenotypes to fis1A single mutants, it appears that this is not the case on the 

level of individual mitochondrial morphology.  However, fis1A mutants did display a 

tendency towards “random” clustering, as opposed to dispersion, as was observed in the 

WT.  Thus, it appears that FIS1A may have a functional role in controlling mitochondrial 

clustering, likely through control of fission, in columella cells in Arabidopsis roots.    

 

4.5 Salt stress affects various phenotypic and mitochondrial parameters 

While it is well established that salt stress has adverse effects in plants, an analysis of the 

changes to mitochondrial morphology in response to salt stress had yet to be done. 

Additionally, analyses of various phenotypic and mitochondrial parameters in fmt and 

fis1A mutants exposed to salt-stress was lacking.  Salt stress is first sensed in the root, and 

salt-stress-coping mechanisms, such as salt-avoidance tropism, are known to involve the 

root cap.  Additionally, mitochondria are known to play a key role in the salt stress 

response.  As such, we performed an analysis of phenotypic and mitochondrial 

morphology in the Arabidopsis root in WT, fmt, and fis1A mutants under salt-stressed 

conditions.   

Upon exposure to salt stress, WT plants exhibited a decrease in root and leaf length, as 

well as an increase in days to germination and time to flowering.  These same changes 

were observed in fis1A mutants.  fmt mutants exhibited significantly shorter roots 

compared to WT plants under control conditions.  Leaf length was shorter compared to 
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WT plants under salt stress, but not compared to fmt mutants under control conditions.  

Interestingly, there was no increase in days to flowering, as was seen in WT, fis1A, and 

FMT-OE plants under the same salt stress conditions.  In contrast, salt stress further 

exacerbated the decreased germination rate and time to germination of FMT-OE plants.  

Additionally, these plants exhibited an increase in days to flowering and decreases in root 

and leaf length.   

These data indicate that salt stress affects all major phenotypic parameters in Arabidopsis 

wild type plants, although percent germination was unaffected.  However, salt inhibition 

of seed germination (SSG) is a well-known phenomenon (Lee et al., 2010, Yu et al., 

2016), although it is usually known to occur under conditions of high salinity (>150mM 

NaCl).  It is therefore likely that we would see an inhibition of germination if our 

experiments were repeated at a higher level of salt exposure.  The exacerbation of the 

FMT-OE germination suppression phenotypes following salt exposure further implicates 

this gene in regulation of germination, especially during salt stress.  Interestingly, despite 

the fact that fmt mutants displayed an increase in days to flowering under control 

conditions, this phenotype was not exacerbated upon exposure to salt stress. In addition, 

root and leaf length were not significantly increased in fmt mutants under salt-stressed 

conditions. These data indicate that salt stress-induced changes, such as an increase in 

days to flowering and a decrease in leaf and root length, as were observed in the WT, are, 

at least in part, under the control of FMT. 

An observation of the mitochondria of salt-stressed wild type plants under the electron 

microscope revealed a decrease in mitochondrial area as well as an increase in 

mitochondrial number and coverage.  A tendency towards clustering was also observed.   
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fmt mutants displayed a decrease in mitochondrial area while AR, mitochondrial number, 

coverage, and clustering remained unchanged.  fis1A mutant plants displayed a decrease 

in mitochondrial area and coverage, with an increase in mitochondrial number, while 

clustering and AR were not significantly different.   

These data further implicate mitochondria in the salt stress response, as it is clear they 

undergo dynamic changes upon exposure to NaCl.  The dynamic increase in number and 

decrease in size indicates an increased demand for these organelles, possibly through an 

upregulation of fission. Additionally, these data indicate that mitochondrial number and 

clustering may be regulated by FMT and FIS1A during NaCl stress.   

 

4.6 Conclusion and future perspectives 

This study has provided several insights into the roles of the FMT and FIS1A genes in 

whole-plant and mitochondrial morphology.  It was found that FMT may work to regulate 

root and leaf length, as well as flowering, under both control and salt-stressed conditions.  

It was also found that FMT controls mitochondrial organization via clustering, as well as 

mitochondrial number under both control and salt-stressed conditions.  FIS1A was found 

to potentially regulate root length as well as mitochondrial clustering.  Salt stress was 

also found to affect various mitochondrial parameters, including mitochondrial area, 

number, and clustering.  

More work must be done to fully characterize FMT and FIS1A under both control and 

salt-stressed conditions.  Future research will focus on elucidating the mechanisms of 

fission in root length control as well as clustering.  It appears that CLU may function as 

an RNA-binding protein in other species, and it should be seen if this is also true for FMT 
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in Arabidopsis.  The role of FMT in salt-avoidance tropism and amyloplast degradation 

should also be examined.  Putative targets of FMT, such as NTL8 and PIN2, and 

potential ubiquitination of these proteins, should also be explored.   
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