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“ Now, here, you see, it takes all the running you can do, to
keep in the same place. If you want to get somewhere else,
you must run at least twice as fast as that!

Through the Looking-Glass
— LEWIS CARROLL





ABSTRACT

This thesis is concerned with change point analysis for time series, i.e. with detection of
structural breaks in time-ordered, random data. This long-standing research field regai-
ned popularity over the last few years and is still undergoing, as statistical analysis in
general, a transformation to high-dimensional problems. We focus on the fundamental
»change in the mean« problem and provide extensions of the classical non-parametric
Darling-Erdős-type cumulative sum (CUSUM) testing and estimation theory within high-
dimensional Hilbert space settings.

In the first part we contribute to (long run) principal component based testing
methods for Hilbert space valued time series under a rather broad (abrupt, epidemic,
gradual, multiple) change setting and under dependence. For the dependence structure
we consider either traditional m-dependence assumptions or more recently developed
m-approximability conditions which cover, e.g., MA, AR and ARCH models. We derive
Gumbel and Brownian bridge type approximations of the distribution of the test statistic
under the null hypothesis of no change and consistency conditions under the alternative.
A new formulation of the test statistic using projections on subspaces allows us to
simplify the standard proof techniques and to weaken common assumptions on the
covariance structure. Furthermore, we propose to adjust the principal components by
an implicit estimation of a (possible) change direction. This approach adds flexibility
to projection based methods, weakens typical technical conditions and provides better
consistency properties under the alternative.

In the second part we contribute to estimation methods for common changes in
the means of panels of Hilbert space valued time series. We analyze weighted CUSUM
estimates within a recently proposed »high-dimensional low sample size (HDLSS)«
framework, where the sample size is fixed but the number of panels increases. We
derive sharp conditions on »pointwise asymptotic accuracy« or »uniform asymptotic
accuracy« of those estimates in terms of the weighting function. Particularly, we prove
that a covariance-based correction of Darling-Erdős-type CUSUM estimates is required to
guarantee uniform asymptotic accuracy under moderate dependence conditions within
panels and that these conditions are fulfilled, e.g., by any MA(1) time series. As a
counterexample we show that for AR(1) time series, close to the non-stationary case,
the dependence is too strong and uniform asymptotic accuracy cannot be ensured.

Finally, we conduct simulations to demonstrate that our results are practically appli-
cable and that our methodological suggestions are advantageous.

vii





ZUSAMMENFASSUNG

Diese Arbeit beschäftigt sich mit der Changepoint-Analyse von Zeitreihen, d.h. mit der
Aufdeckung von Strukturbrüchen in zeitlich angeordneten Zufallsdaten. Dies ist ein seit
langem bestehender Forschungsbereich, welcher in den letzten Jahren an Popularität
wiedererlangt hat, und, wie die statistische Analyse im Allgemeinen, eine Transformati-
on hin zu hochdimensionalen Problemstellungen vollzieht. Wir betrachten das grund-
legende Problem einer »Änderung des Erwartungswertes« und erweitern die klassische
Theorie der nichtparameterischen Cumulative Sum (CUSUM) Test- und Schätzverfahren
vom Darling-Erdős-Typ auf hochdimensionale Hilbertraum-Modelle.

Im ersten Teil liefern wir Beiträge zu Testverfahren für Hilbertraum-wertige Zeitrei-
hen basierend auf (long run) Hauptkomponenten unter einem breiten Spektrum an Än-
derungsmodellen (abrupt, epidemisch, graduell, mehrfach) sowie unter Abhängigkeiten.
Als Abhängigkeitsstruktur betrachten wir die traditionellen Annahmen der m-Abhän-
gigkeit sowie die neueren Bedingungen der m-Approximierbarkeit, welche insgesamt
z.B. die MA-, AR- und ARCH-Modelle abdecken. Unter der Nullhypothese leiten wir Ap-
proximationen der Testverteilung sowohl vom Gumbel-Typ als auch mittels Brownscher
Brücken her und unter der Alternativhypothese weisen wir Konsistenzbedingungen nach.
Eine neue Formulierung der Teststatistik unter Verwendung von Projektionen auf Teil-
räume ermöglicht uns, die gängige Beweistechnik zu vereinfachen und die üblichen
Bedingungen an die Kovarianzstruktur abzuschwächen. Des Weiteren schlagen wir vor,
die Hauptkomponenten durch implizite Schätzung der (eventuellen) Änderungsrich-
tung der Erwartungswerte zu korrigieren. Dieser Ansatz bringt mehr Flexibilität für
projektionsbasierte Methoden, ermöglicht es die üblichen technischen Bedingungen
abzuschwächen und liefert bessere Konsistenzeigenschaften unter der Alternative.

Im zweiten Teil liefern wir Beiträge zu Schätzverfahren für gleichzeitige Änderungen
in Erwartungswerten von Paneldaten Hilbertraum-wertiger Zeitreihen. Wir analysieren
gewichtete CUSUM Schätzer im einem erst kürzlich vorgeschlagenem »high-dimensional
low sample size (HDLSS)« Setting. In diesem bleibt der Stichprobenumfang fix und le-
diglich die Anzahl der Panels wächst an. Wir leiten scharfe Bedingungen an die »punkt-
weise asymptotische Exaktheit« sowie an die »gleichmäßige asymptotische Exaktheit«
der Schätzer in Abhängigkeit von der Gewichtsfunktion her. Insbesondere weisen wir
nach, dass eine Kovarianz-basierte Korrektur der Darling-Erdős-Typ CUSUM Schätzer
benötigt wird, um gleichmäßige asymptotische Exaktheit unter moderaten Bedingungen
an Abhängigkeiten innerhalb einzelner Panels sicherzustellen, und zeigen, dass diese
Bedingungen von beliebigen MA(1) Zeitreihen erfüllt werden. Als Gegenbeispiel zeigen
wir, dass AR(1) Zeitreihen nahe der Nichtstationarität schon eine zu hohe Abhängigkeit
aufweisen und somit eine gleichmäßige asymptotische Exaktheit der Schätzung nicht
vorliegen kann.

In Simulationen zeigen wir, dass unsere Resultate sowohl praktisch anwendbar sind
als auch, dass unsere methodischen Vorschläge vorteilhaft sind.
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NOTATION

For convenience of the reader, we provide a list of some frequently used notations,
symbols and abbreviations in this thesis.

General notation

N,N0,Z N = {1, 2, 3, . . .} are the natural numbers and N0 = N ∪ {0}.
Z = {. . . ,−2, −1, 0, 1, 2, . . .} are the integers . . . . . . . . . . . . . . . .

R,R+, R̄ R are real numbers, R+ = [0,∞) are non-negative real num-
bers and R̄ = R ∪ {−∞,∞} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B Borel sigma-algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δi,j Kronecker’s delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x′ Transpose of a vector x ∈ Rd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bxc, dxe Floor function bxc = max{m ∈ Z |m ≤ x} and ceiling func-
tion bxc = min{m ∈ Z |m ≥ x} for any x ∈ R . . . . . . . . . . . . . .

Γ Gamma function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1,1M (x) Vector 1 = [1, . . . , 1]′ ∈ Rd and the indicator function 1M de-
fined for a subset M ⊆ R by 1M (x) = 1 if x ∈ M and by
1M (x) = 0 otherwise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xn ↓ a The sequence xn converges monotonically decreasing towards
a ∈ R̄. The case xn ↑ a is defined analogously . . . . . . . . . . . . .

fa(x) fa(x) := [f(x)]a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .∫ ∫
:=
∫

[0,1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

zα(X) α-quantile of a generic random variable X . . . . . . . . . . . . . . . .

|x|2 Euclidean norm |x|2 = (x′x)1/2 of a vector x ∈ Rd. We use
the abbreviation |x| = |x|2, whenever no confusion is possi-
ble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

|x|Σ Energy norm |x|Σ = (x′Σ−1x)1/2 = |Σ−1/2x| for a vector x ∈
Rd where the matrix Σ ∈ Rd×d is supposed to be symmetric
and positive definite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

|A|F Frobenius norm |A|F = (
∑m

i=1

∑n
j=1 a

2
i,j)

1/2 of a matrix A ∈
Rm×n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Notation for Hilbert spaces for Chapter 2 and Chapter 3

H,L2[0, 1] A generic real Hilbert space H and the specific Hilbert space
L2[0, 1] = L2([0, 1],B[0,1], λ[0,1]) of real-valued functions with
domain [0, 1] that are measurable with respect to the Borel
sigma-algebra B[0,1] and are square integrable with respect to
the Lebesgue-measure λ[0,1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dH ,NH dH ∈ N∪{∞} is the dimension of the Hilbert space H. We set
NH = {1, . . . , dH − 1} if dH ∈ N and NH = N if dH =∞ . .

〈v, w〉H , ‖v‖H Hilbert space inner product 〈v, w〉H of two elements v, w ∈ H
and the corresponding norm ‖v‖H . . . . . . . . . . . . . . . . . . . . . . . . .

〈H ,K 〉S , ‖H ‖S 〈H ,K 〉S =
∑dH

i=1〈H (ei),K (ei)〉H is the Hilbert-Schmidt in-
ner product of two linear operators H ,K : H → H where
{e1, e2, . . .} is a basis of a separable Hilbert space H. ‖H ‖S
denotes the corresponding norm . . . . . . . . . . . . . . . . . . . . . . . . . . . .

‖H ‖L Operator norm of a linear operator H : H → H . . . . . . . . . . .

f ⊗ g Tensor product of f, g ∈ H defined by (f ⊗ g)h := f〈g, h〉H ,
h ∈ H, which is a rank-one Hilbert-Schmidt operator on H.
The mapping is linear in all arguments f, g, h ∈ H. We use
the notation E[f ⊗ g]h = E[(f ⊗ g)h] for H-valued random
elements f, g and h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Notation for CUSUM testing via long run principal components in Chapter 2

The notation below will be used in Subsection 2.3.2 and Subsection 2.3.3. In the intro-
ductory Chapter 1 and in the preliminary discussions of Subsection 2.3.1 we use some
of this notation slightly different.

Yi, εi,mi Yi = εi + mi, 1 ≤ i ≤ n, is a Hilbert space valued signal plus
noise model. εi’s are the random noise terms and mi’s are the
deterministic means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C ,Cr, Ĉ , Ĉr Long run covariance operator C =
∑

r∈Z Cr, where Cr =
E[ε0 ⊗ εr], r ∈ Z, are the lagged covariance operators. Ĉ =∑n

r=−n K (r/h)Ĉr is the corresponding Bartlett-type estimate
with cross-covariance operator estimates Ĉr =

∑n−r
i=1 [ε̂i ⊗

ε̂i+r]/n for r ≥ 0 and Ĉr =
∑n+r

i=1 [ε̂i−r ⊗ ε̂i]/n for r < 0,
where ε̂i = Yi − Ȳn. K is the kernel and h is the band-
width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



G (gi, gj),G (gj),Ggj We set G (gi, gj) =
∫ 1

0 gi(x)gj(x)dx−
∫ 1

0 gi(x)dx
∫ 1

0 gj(x)dx
and G (gj) = G (gj , gj) for piecewise Lipschitz continuous trend
functions gj(x), x ∈ [0, 1], 1 ≤ j ≤ % (cf. p. 26 and 43). More-
over, we define Ggj (x) =

∫ x
0 gj(y)dy − x

∫ 1
0 gj(y)dy, x ∈ [0, 1],

for 1 ≤ j ≤ % . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cα,β We set Cα,β = αC +
∑%

i,j=1 βi,j [∆i ⊗∆j ] under HA and for-
mally C1,0 := C under H0. Cα,β is a perturbed version of
the long run covariance operator C in the former case. The
∆j ’s are the % change directions, α ∈ R+ is a scalar and
β = βhβKβG is a matrix-valued parameter. The factors βh =
(2h + 1) and βK =

∫∞
0 K (x)dx are scalars that depend on

the bandwidth h and on the kernel K of the Bartlett-type
estimate Ĉ . Furthermore, the matrix βG = (G (gi, gj))i,j=1,...,%

depends on the % ∈ NH piecewise Lipschitz continuous trend
functions gj . (See p. 26 for the definition of the latter and for
the formulation of the testing hypotheses H0 and HA.) . . . .

(λj , vj), (λ̂j , v̂j) (λj , vj) are the eigenelements of the operator Cα,β given by
the spectral decomposition. λj are the eigenvalues and vj are
the corresponding eigenvectors. In case of C1,0 = C these
are the population long run principal components. (λ̂j , v̂j)
are eigenelements of the Bartlett-type estimate Ĉ given by
the spectral decomposition. These are the empirical long run
principal components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y, ŷ, ŷ∆ y represents the sequence yi = [〈Yi, v1〉, . . . , 〈Yi, vd〉]′ of the
population principal component scores, ŷ represents the se-
quence ŷi = [〈Yi, v̂1〉, . . . , 〈Yi, v̂d〉]′ of their empirical counter-
parts and finally ŷ∆ represents their change-aligned empir-
ical version ŷ∆i = [〈Yi, v̂∆1 〉, 〈Yi, v̂2〉, . . . , 〈Yi, v̂d〉]′. (See p. 55
for the construction of v̂∆1 .) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Σ, Σ̂ Σ =
∑

r∈Z Cov(y0,yr) is the (formal) long run covariance ma-
trix of the time series {yi}i∈Z of long run principal component
scores, where Cov(y0,yr) = E[(y0−Ey0)(yr−Eyr)′]. A corre-
sponding estimate is given by Σ̂ = diag(|λ̂1|, . . . , |λ̂d|), where
λ̂j ’s are eigenelements of the Bartlett-type estimate Ĉ . . . . . .

w(x) Darling-Erdős-type weighting function w(x) = [x(1− x)]−1/2

for x ∈ (0, 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sn(x; ε),S′n(x; ε) Partial sum Sn(x; ε) =
∑bnxc

j=1 (εj − ε̄n)/n1/2 and a modifica-
tion S′n(x; ε) = (

∑bnxc
j=1 εj − x

∑n
i=1 εi)/n

1/2, where ε repre-
sents any Hilbert space valued time series {εi} . . . . . . . . . . . . .



T (x), T̂ (x), T̂ ∆(x) T (x) = T (x;y) = |Sn(x;y)|Σ is a CUSUM detector based on
population long run principal components y. T̂ (x) = T̂ (x; ŷ)
= |Sn(x; ŷ)|Σ̂ is a CUSUM detector based on empirical, i.e.
estimated, long run principal component scores ŷ. Finally,
T̂ ∆(x) = T̂ ∆(x; ŷ∆) = |Sn(x; ŷ∆)|Σ̂ is a CUSUM detector
that is based on empirical change-aligned principal component
scores ŷ∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mn, M̂n, M̂∆
n Mn=Mn(y)=max1≤k<nw(k/n)T (k/n) is the Darling-Erdős-

type CUSUM statistic based on population long run principal
components y. M̂n = M̂n(ŷ) = max1≤k<nw(k/n)T̂ (k/n)
is the Darling-Erdős-type CUSUM statistic based on empir-
ical, i.e. estimated, long run principal component scores ŷ.
M̂∆

n = M̂n(ŷ∆) = max1≤k<nw(k/n)T̂ ∆(k/n) is the Darling-
Erdős-type CUSUM statistic based on empirical change-aligned
principal component scores ŷ∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

W (t) Standard d-dimensional Wiener process, i.e. a centered Gaus-
sian process W (t) = [W1(t), . . . ,Wd(t)]

′ with covariance func-
tion Cov(Wi(t),Wj(s)) = δi,j min(t, s) for every t, s ∈ [0,∞).
The Wi are standard univariate Wiener processes . . . . . . . . . .

B(t) Standard d-dimensional Brownian bridge, i.e. a centered Gaus-
sian process B(t) = [B1(t), . . . , Bd(t)]

′ with covariance func-
tion Cov(Bi(t), Bj(s)) = δi,j [min(t, s) − ts] for every t, s ∈
[0, 1]. The Bi are standard univariate Brownian bridges . . . . .

U(t) Standard d-dimensional Ornstein-Uhlenbeck process, i.e. a cen-
tered Gaussian process U(t) = [U1(t), . . . , Ud(t)]

′ with covari-
ance function Cov(Ui(t), Uj(s)) = δi,j exp(−|t − s|/2) for all
t, s ∈ (−∞,∞). The components Ui are standard univariate
Ornstein-Uhlenbeck processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Notation for CUSUM based estimation in panel data in Chapter 3

Yi,k, εi,k,mi,k, ζi, γk Yi,k = εi,k + mi,k + γkζi, 1 ≤ i ≤ n, 1 ≤ k ≤ d, is a Hilbert
space valued signal plus noise model. εi,k ’s are the noise terms,
mi,k ’s are the means, ζi’s are the common factors and γk ’s are
the corresponding factor loadings. k represents the panels
and i the time points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In, x In = {1/n, 2/n, . . . , (n − 1)/n}, n ∈ N, is the discrete, time-
rescaled domain. x = xn is a discrete variable with values
restricted to the grid In. We use this notation to distinguish
between discrete-time and continuous-time arguments. For the
latter we use x which can take any value in [0, 1] . . . . . . . . . . .



Sn,k(x ; ε) Sn,k(x ; ε) =
∑bnxc

j=1 (εj,k − ε̄n,k)/n1/2 with ε̄n,k =
∑n

i=1 εi,k/n
and x ∈ In are the centered partial sums of the noise se-
quences {εi,k}i=1,...,n for 1 ≤ k ≤ d. Note that ε represents
the noise array {εi,k}1≤i≤n,1≤k≤d . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ, σ,∆,∆k, ∆̄d Rescaled noise-to-change ratio ρ(∆,σ, n) = σ2/(n∆), where
∆ = limd→∞ ∆̄d ∈ (0,∞) is the total average change, ∆̄d =∑d

k=1 ‖∆k‖2H/d is the average change and σ2 = E‖εi,k‖2 are
the second moments. Parameter σ ∈ (0,∞) is the same for
all 1 ≤ i ≤ n, 1 ≤ k ≤ d. (See p. 99 for the formulation of the
common change point setting and p. 100 for the definition of
changes ∆k.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V (x) V 2(x) = (E‖Sn,1(x ; ε)‖2H)/σ2, x ∈ In, is the variance of the
cumulated noises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

w(x), wγ(x), w?(x) w(x), x ∈ In, is an arbitrary positive weighting function. wγ(x)
= [x(1 − x)]−γ , x ∈ In, are the classical CUSUM weighting
functions with γ ∈ [0, 1/2]. Finally, w?(x) = w1/2(x)/h(x), x ∈
In, is a covariance-based weighting function, where h(x) =
1/V (x), x ∈ In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C(x ; y , ρ),H(x , y) Critical function C(x ; y , ρ) = w2(x)[V 2(x)ρ+H2(x , y)], x , y ∈
In, where H(x , y) = min{x , y}(1−max{x , y}) . . . . . . . . . . . . . .

T (x) CUSUM detector T (x) = (
∑d

k=1 ‖Sn,k(x ;Y )‖2H)1/2, x ∈ In . .

u, û, s, ς Any û ∈ arg max1≤i<nw(i/n)T (i/n) is a CUSUM estimate of
a common change point u. (See p. 99 for the formulation of
the corresponding change point setting.) Furthermore, we set
s = u/n and ς(s) = max{s, 1− s} . . . . . . . . . . . . . . . . . . . . . . . . . .

Σ, γ(k, l) Σ = (γ(k, r))k,l=1,...,n with γ(k, r) = E〈εk,1, εr,1〉H . It is a co-
variance matrix if all εk,1’s are univariate and real-valued . . .

Σ̂, Σ̂′ Σ̂ and Σ̂′ are estimates of Σ. (See p. 113.) . . . . . . . . . . . . . . . .

F(x), �x F(x) = x(1 − x)[�x + �1−x − �1]/σ2, x ∈ In. Furthermore,
�x =

∑bnxc
k,r=1 γ(k, r)/bnxc for x ∈ In . . . . . . . . . . . . . . . . . . . . . . . .

R(x , s),F (x),G(x , s) R(x , s) = [G(x , s) − G(s, s)]/[F (s) − F (x)], where F (x) =
[w(x)V (x)]2, G(x , s) = [w(x)H(x , s)]2, x , s ∈ In . . . . . . . . . . . . .

λ Shrinkage parameter λ in the penalty term of the penalized
least squares and of the corresponding group fused LASSO
estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Û(λ), β̂(λ), Ê (λ) Û(λ) and β̂(λ) are solutions of the penalized least squares
and of the corresponding group fused LASSO approaches. Ê (λ)
is the resulting set of common change point estimates . . . . . .



Some abbreviations

CUSUM Cumulative sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HDLSS High-dimension low sample size (framework) . . . . . . . . . . . . . .

KKT Karush-Kuhn-Tucker (conditions) . . . . . . . . . . . . . . . . . . . . . . . . . . .

LASSO Least absolute shrinkage and selection operator . . . . . . . . . . . . .

Abbreviations for time series models:

WN White noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

AR, FAR Autoregressive and functional autoregressive (time series) . . .

MA Moving average (time series) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ARMA Autoregressive moving average (time series) . . . . . . . . . . . . . . . .

ARCH Autoregressive conditional heteroscedastic (time series) . . . .







CHAPTER1
GENERAL INTRODUCTION

“ Change point analysis (...) originated in the 1940s and ini-
tially focused on data-driven quality control techniques. Over
time, methods in change point analysis have been developed to
address data analytic questions in fields ranging from biology to
finance, and in many cases such methodology has become stan-
dard.

— HORVÁTH & RICE (2014, P. 220)

Data can be collected nowadays with ease all the time and everywhere. As a conse-
quence a lot of data in practice comes in modern high-dimensional data types. Two
prominent examples are infinite dimensional functional time series and high-dimen-
sional panel data. This thesis will contribute to change point analysis techniques for
both data types.

Change point analysis is a broad statistical testing and estimation methodology that
provides answers to questions of parameter stability in random data. According to
Brodsky & Darkhovsky (1993, p. 11): »The change point problem can be considered to be
one of the central problems of statistical inference, linking together statistical control theory,
the theory of estimation and testing hypotheses, classical and Bayesian approaches, and
fixed sample and sequential procedures.« Among the early milestones are, e.g., the famous
articles by Page (1954, 1955) that are concerned with quality control problems. Since
then, change point analysis has evolved into a dynamic research field that covers many
different disciplines with a huge amount of different approaches and well-developed
theory. For a systematic introduction to (some) theoretical foundations we refer, e.g., to
two well-known books by Brodsky & Darkhovsky (1993) and Csörgő & Horváth (1997).
Especially the latter is of importance for this thesis and contains Darling-Erdős-type
limit theorems that set the stage for our own theoretical results.

In this thesis we focus on Darling-Erdős-type cumulative sum (CUSUM) procedures
and we contribute to change point testing and estimation theory for functional time
series and for panel data. Modern developments in change point analysis within these
environments are reviewed, e.g., by Aue & Horváth (2013), by Jandhyala et al.(2013)
and in a discussion paper by Horváth & Rice (2014). The latter address functional



2

data, panel data, as well as Darling-Erdős-type laws, separately, and provide references
to relevant literature. Aue & Horváth (2013) focus on CUSUM-type procedures for
time series. Jandhyala et al. (2013) provide an overview of estimation methods for
multiple change points including the total variation denoising approach that we will
also contribute to. A survey of change point literature within different fields that range
from econometrics to machine learning is collected in Frick et al.(2014).

Note that our research is to a large extent inspired by the book of Horváth &
Kokoszka (2012). It contains a variety of results on change point methodology for
functional data and is an excellent starting point to get familiar with the Hilbert space
change point setting that we are working with. (For overviews of general functional
data analysis we refer, e.g., to Ramsay & Silverman, 2005, Ferraty & Vieu, 2006 and to
Ramsay et al., 2009.)
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1.1A standard change point
testing and estimation problem

For a discussion of recent research developments in change point analysis and of our
contributions to this research we will introduce some notation and be slightly more
formal in the following. We begin with a setting that is a central building block of our
research and that will be important throughout the whole thesis. Consider a multivariate
Rd-valued time series

Yi = mi + ei, i ∈ Z, (1.1.1)

in a signal plus noise model where ei, i ∈ Z, are some random error terms, i.e. the
noises, and mi = EYi, i ∈ Z, are the expectations, i.e. the signals. A basic question of
parameter stability, which we will work on, is to decide whether an observable sample
Y1, . . . ,Yn has constantly same means m1, . . . ,mn or whether these means change
over time. In terms of hypothesis testing the aim is to decide whether we are under the
null hypothesis

H0 : m1 = . . . = mn

or under the alternative HA that H0 does not hold. If the null hypothesis is rejected,
then one typically is interested in estimating the time point of the change, or more
generally speaking, in estimating the change pattern. A lot of testing and estimation
theory is concerned with, or is motivated by, the idealized abrupt change setting

Habrupt
A : m1 = . . . = mu 6= mu+1 = . . . = mn (1.1.2)

that is also the focus of this thesis. One standard approach to test H0 against Habrupt
A ,

e.g., in stationary weakly dependent settings, is to work with maximum-type CUSUM
test statistics

Mn(Y ) = max
1≤k<n

w(k/n)T (k/n), (1.1.3)

where T (x) is a detector given by

T (x) = T (x;Y ) = |Σ−1/2Sn(x;Y )| = |Sn(x;Y )|Σ (1.1.4)

and where w(x), x ∈ (0, 1), is a weighting function that will be specified further below.
Moreover, Y is an abbreviation for {Yi}i∈Z, Σ is the long run covariance matrix of
{Yi}i∈Z, Sn(x;Y ) =

∑bnxc
i=1 (Yi − Ȳn)/n1/2, | · | is the Euclidean norm and | · |Σ =

|Σ−1/2 · |.
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A standard way to estimate changes under Habrupt
A is to rely on

û ∈ arg max
1≤k<n

w(k/n)T (k/n) (1.1.5)

using the same detector and same weighting function as for the test statistic before.1

The detector T (x) relies essentially on a weighted comparison of means[
1

(k/n)(1− k/n)

]
Sn(k/n;Y ) =

[1

k

k∑
i=1

Yi −
1

n− k

n∑
i=k+1

Yi

]
n1/2 (1.1.6)

over all possible change locations 1 ≤ k < n. This relation indicates why the statistic
Mn(Y ) is heuristically reasonable for testing of H0 against Habrupt

A for large sample
sizes n. Under H0 the difference of means in (1.1.6) is likely to be small for all k
whereas under Habrupt

A it is expected to be comparably large for k ≈ u where u is
the actual change point. Moreover, in the latter situation it is likely to have a peak (i.e.
the largest difference) around u which indicates why the estimate û is a reasonable
choice.

The weighting function w, in (1.1.3) and in (1.1.5), controls the fluctuations of
mean differences (1.1.6) at borders, i.e. for k ≈ 1 and k ≈ n. The behavior of (1.1.6)
in these regions is more erratic which may lead by pure chance, on the one hand, to
false rejections with Mn(Y ) under the null hypothesis and, on the other hand, to
incorrect estimation with û under the alternative (if, e.g., the true abrupt change lies
rather centered). Generally, the weighting function w can be chosen quite flexible but
among all the possibilities the weighting function

w(x) = [x(1− x)]−1/2, (1.1.7)

x ∈ (0, 1), has an outstanding position: the statistic (1.1.3) and the estimate (1.1.5) with
this particular weighting arise, e.g., via the quasi-maximum likelihood approach(es) and
they are commonly referred to as being of Darling-Erdős-type.2 This is due to their large
sample asymptotics which rely on the already mentioned class of Darling-Erdős-type
limit theorems that can be traced back to Darling & Erdős (1956) (cf., e.g., Csörgő &
Horváth, 1997 and our discussion on p. 48). Note that, for simplicity, we will also call
(1.1.7) a Darling-Erdős-type weighting function. This specific weighting function will
be of a particular importance throughout this thesis for testing and for estimation.

We are now in a position to explain the concept of this thesis and to highlight
our contributions in the next paragraphs. Additional details on our contributions are
given in the introductions of the main chapters.

1 Note that argmax is defined here as a set. Above notation means that any element û within this set
may be chosen as an estimate.

2 Note that (1.1.5) with weighting function (1.1.7) is also the least squares estimate.
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1.2Extensions of standard methodology
A lot of research on change point analysis focuses on extensions of standard method-
ology that was developed for the above multivariate abrupt change setting. In the
following we discuss three directions that are important within this thesis.

I. Extensions to high-dimensional data

The first direction of extensions is the adaptation of methods to signal plus noise mod-
els (1.1.1) for modern high-dimensional data types such as functional and panel data
which are the focus of change point analysis over the last five to fifteen years (cf., e.g.,
Bai, 2010, Aue & Horváth, 2013 and Horváth & Rice, 2014). Some early works on
change point problems in functional data settings are by Berkes et al.(2009), Hörmann
& Kokoszka (2010) and Aston & Kirch (2012a), which all serve as a basis for our consid-
erations.1,2 According to Bai (2010) and to Horváth & Hušková (2012), change point
analysis for panel data gained some attention in the early 2000s but goes back at least
to Joseph & Wolfson (1992, 1993). In this thesis we are interested in a more recent
high-dimensional low sample size (HDLSS) panel data setting where the number of
observations in the time domain n ∈ N is fixed but the amount of panels d ∈ N, i.e.
the dimension, tends to infinity. This new HDLSS asymptotic framework is interesting
because it demonstrates effects for high dimensions d that fade out if we let n → ∞.
For change point problems this setting was considered first by Bai (2010) and Bleakley
& Vert (2010, 2011a) relying on least squares approaches. (The latter adapted a modern
penalized least squares estimation procedure from the machine learning community.)
Even more recently, this setting was picked up for CUSUM-type procedures, e.g., by
Peštová & Pešta (2015) and by Horváth et al.(2016).

We will contribute to change point methods for infinite dimensional functional data
in Chapter 2 (cf. Figure 1.1, below) and for HDLSS panel data in Chapter 3 (cf. Fig-
ure 1.2, below). In both chapters we work on abstract Hilbert space valued time series,
i.e. particularly covering the popular L2[0, 1] scenario.

1. In the functional data setting of Chapter 2 we are concerned with testing. We base
our research upon the principal component dimension reduction approach sug-
gested by Berkes et al.(2009) in a non-parametric setting for CUSUM procedures.
We extend their non-parametric methodology to the Darling-Erdős-type case of
w(x) = [x(1 − x)]−1/2, x ∈ (0, 1). (Note that Darling-Erdős-type procedures are
also considered by Zhou (2011) in a Gaussian special case.) Furthermore, we
suggest to use a new tensor based formulation of CUSUM statistics using projec-
tions on whole principal component subspaces rather than separate projections on
principal component directions. This formulation has advantages: for one thing, it
simplifies and clarifies the proofs, and, for another, it allows to weaken the usual

1 Note that they are all formulated for L2[0, 1]-valued data.
2 The functional two-sample testing problem has been considered even earlier. (Cf. Berkes et al., 2009.)
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Figure 1.1: This figure indicates the functional signal plus noise model of Chapter 2. The top
panel shows a subset of observations from a functional time series of length n = 1500. (We
will get back to the whole time series in Remark 1.3 and in Figure 1.3, below.) The middle
panel shows the corresponding signals (or means) that have abrupt changes at time points
i = 400 and at i = 1000. The lower panel shows the corresponding random functional
noise.

assumptions on eigenvalue separation using the results of Reimherr (2015). More-
over, it clarifies the relation between projection based procedures and traditional
multivariate approaches.

2. In the panel data setting of Chapter 3 we work on estimation of common change
points and base our research upon Bleakley & Vert (2010, 2011a) but our results
complement the findings of Bai (2010), Peštová & Pešta (2015) and Horváth et al.
(2016), as well. We investigate the relation of the weighted penalized least squares
approach of Bleakley & Vert (2010, 2011a) to the traditional weighted CUSUM
estimates in a single change point framework and show that they coincide under
mild assumptions. For instance, this connects the work of Bai (2010) with the
works of Bleakley & Vert (2010, 2011a). Relying on this observation we propose
to study a general class of weighted CUSUM-type estimates in the HDLSS setting
with a focus on their accuracy for d→∞. Moreover, we propose to study panels
of Hilbert space valued time series which, to the best of our knowledge, is new
in the change point panel data context. Intuitively, one would expect accuracy
to increase if we add more panels that share a common change point, i.e. if
we have more data with more information about the change position. However,
as observed by Bleakley & Vert (2010) estimation might be (surprisingly) less
accurate. Bleakley & Vert (2010, 2011a) study a penalized least squares approach
using weighting functions w(x) = 1 or w(x) = [x(1 − x)]−1/2, x ∈ (0, 1), and
derive sharp bounds on the change-to-noise ratio that leads to accurate estimation
under Gaussianity and under i.i.d. assumptions. (These bounds are functions of
change magnitudes and of change locations.) We continue their study for CUSUM
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Figure 1.2: This figure indicates the signal plus noise model in the panel data setting of
Chapter 3. It shows a subset of eight panels of univariate real-valued time series of length
n = 1000 with a common change point at time point i = 400.

estimates and consider a class of common CUSUM weighting functions

wγ(x) = [x(1− x)]−γ , (1.2.1)

x ∈ (0, 1), γ ∈ (0, 1/2), that contains the weighting functions of Bleakley & Vert
(2010, 2011a) as limiting cases for γ = 0 and γ = 1/2. Weights (1.2.1) are
a well-known choice in classical CUSUM theory but were not considered in the
HDLSS panel data setting before.

II. Extensions to dependent data

The second aim of this thesis is the adaptation of existing theory to more general dis-
tributional assumptions and, particularly, the extension to more (modern) dependence
concepts.1 We are working on test statistics and estimates, (1.1.3) and (1.1.5), that have
been well-known for a long time. Their asymptotic properties are thoroughly studied for
univariate and multivariate settings with linear and nonlinear time series and a variety
of classical dependence conditions (cf., e.g., Csörgő & Horváth, 1997). However, the
situation is different for corresponding dimension reduction based tests in functional
data and for estimation theory in high-dimensional panel data that we are looking
at. For functional data Berkes et al. (2009) considered dimension reduction via static
principal components in an i.i.d. setting. This was then extended under stationarity
within the weak dependence concept of m-approximability by Hörmann & Kokoszka
(2010), Aston & Kirch (2012a) and, using long run principal components, by Horváth

1 Note that new methods are often developed under i.i.d. and normality assumptions which are later on
typically replaced by stationarity together with some weak dependence concept.
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et al. (2014).1 For panel data Bai (2010) and Horváth & Hušková (2012) considered
linear time series under dependence conditions formulated in terms of the coefficients
decay. More recently, on the one hand, rather flexible moment type conditions were
considered by Horváth et al. (2016) and, on the other hand, Peštová & Pešta (2015)
contributed to testing and estimation within a HDLSS framework under certain mono-
tonicity conditions on the autocovariances.2 Finally, note that Bleakley & Vert (2010,
2011a) considered an i.i.d. HDLSS framework under Gaussianity.

We will extend the Darling-Erdős-type functional and panel data procedures to weak
dependence concepts and avoid the normality assumptions of Bleakley & Vert (2010,
2011a) in the latter panel data setting.

1. For functional data in Chapter 2 we will consider Darling-Erdős-type procedures
under m-dependence or m-approximability and work, as Berkes et al.(2013), with
long run principal components in both cases. We will introduce these dependence
concepts in detail in Section 1.3.3

2. For panel data in Chapter 3 we will adapt the theory of Bleakley & Vert (2010,
2011a) to the time series context and, additionally, incorporate common factors
into the signal plus noise model. (The latter are highly popular in the econometric
literature.) Bleakley & Vert (2011a) showed that the Darling-Erdős-type weighting
is »optimal« in the following sense: accuracy of change estimation always increases
if we consider more panels with same change position and (on average) same
change magnitudes across those panels. However, as we will see, this result is
limited to the i.i.d. case. Under dependence we may lose precision instead of
benefiting from additional information if the noise is too dominant or the change
is too small. We show that under dependence »optimality« may be (re-)obtained
by taking the autocovariance structure of panels into account. More precisely, we
introduce a new weighting function w? that combines the traditional Darling-
Erdős-type weighting function w1/2 with a non-trivial covariance-based correction
term h as follows:

w?(i/n) = w1/2(i/n)/h(i/n),

i = 1, . . . , n. Note that the correction term h may have a strong influence and
thus the weights w? may be surprisingly different from the traditional Darling-
Erdős-type weights w1/2 in finite samples (cf. (1.1.7) or (1.2.1)).

III. Extensions to general change models

A third direction of extensions that is important for our research are more general al-
ternatives than Habrupt

A . Popular frameworks that go beyond the abrupt change point
setting are, e.g., multiple changes or gradual changes. These are well-studied in tradi-
tional settings. (Cf., e.g., Brodsky & Darkhovsky, 1993, Csörgő & Horváth, 1997 and

1 Note that Aston & Kirch (2012a) considered also some mixing type conditions.
2 Their setting as well as their findings are related to our results.
3 The consideration of m-dependence is largely motivated by Horváth et al.(1999).
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Jandhyala et al., 2013.) Again, the situation is different for new high-dimensional set-
tings where less literature is available.

1. In Chapter 2 we consider a multi-directional change point alternative in functional
data context (cf. Figure 1.1) which extends the setting of Horváth et al. (2014)
in a straightforward way and allows for gradual changes.1 On the one hand,
we derive conditions under which our method is consistent. On the other hand,
we propose a new methodology of change-aligned principal components which
ensures consistency in finite and infinite dimensional Hilbert spaces for all possible
changes that are under consideration. This is achieved by incorporating a fully-
functional estimate of an abrupt change.2 Additionally, a remarkable property
of this approach is that we may use a one-directional test for multi-directional
changes. (Note that one-directional tests are also considered, e.g., by Aston &
Kirch (2014).)

2. The research in Chapter 3 is inspired by a method that was developed by Har-
chaoui & Lévy-Leduc (2008) for multiple changes of means in univariate time
series and then extended by Bleakley & Vert (2010, 2011a) to high-dimensional
frameworks (cf. Figure 1.2). We will develop our theory as Bleakley & Vert (2010,
2011a) under a single abrupt change setting but it is worth noting that extensions
to multiple change point scenarios are also possible (cf., e.g., Torgovitski, 2015b)
and are part of ongoing research.

Overall, we consider generalizations of the signal plus noise setting (1.1.1) and of
the change in the mean problems for (weakly) dependent finite or infinite dimensional
Hilbert space data where we essentially rely on modifications of the test statistic (1.1.3)
and of the estimate (1.1.5). An important goal of this thesis is to extend existing change
point methodology such that more changes can be tested and accurately estimated in
modern settings where the dimension is either infinite or finite (but high).

We finish this paragraph by a few remarks which indicate some similarities and
some differences between the high-dimensional settings of Chapter 2 and Chapter 3.

Remark 1.1. Chapter 2 is motivated by the infinite dimensional functional setting of
L2[0, 1] and by the (functional) principal component analysis, yet we formulated our
theory in a general Hilbert space including also classical multivariate data. One reason
for this is that our theory does not use any specific functional structure and thus directly
covers the multivariate case - using dimension reduction - as well.3 Moreover, the
abstract Hilbert space notation appears to be more concise and elegant in the sense
that parallels between the traditional multivariate and the infinite dimensional settings
become evident. In Chapter 3 we have the opposite situation. We are rather interested
in panels of univariate real-valued time series but the theory (mostly) extends to panels
of Hilbert space time series and thus is presented in this generality.

1 The consideration of gradual changes is, again, motivated by Horváth et al.(1999).
2 We work with this estimate even if the actual change is more complex.
3 Note that we tacitly assume that the dimension of finite dimensional data is too high for traditional

multivariate approaches (in which case dimension reduction, e.g., via principal components becomes
appealing).
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Figure 1.3: We represent the functional time series from Figure 1.1 as panel data via
whitened projections on principal components and show the first nine panels. The two
changes in the functional signals in Figure 1.1 at time points i = 400 and i = 1000
correspond here to common changes in the means across the panels at the same time points.

Remark 1.2. The settings of Chapter 2 and Chapter 3 are both high-dimensional (cf.
previous remark) but the asymptotic frameworks are different. On the one hand, in
Chapter 2 we consider a projection based approach to a modern infinite dimensional
time series model in a traditional asymptotic setting, where the dimension d of the
projection subspace is fixed and only the sample size n tends to infinity (i.e. d ∈
N, n→∞). On the other hand, in Chapter 3 we consider a more traditional multivariate
panel data model in the modern HDLSS framework, where the sample size n is fixed
and the number of panels d, which is the dimension, tends to infinity (i.e. n ∈ N, d→
∞).

Remark 1.3 (Functional data interpreted as panel data). Our functional framework
of Chapter 2 is interconnected with our panel data framework of Chapter 3 and we
indicate this connection informally below. In Chapter 2 we use principal components
as a dimension reduction technique. The projections of the original functional data on
the principal components may be interpreted as panels of time series. (Each row of the
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projected data in Table 2.1, below, corresponds to a panel.) Assuming independence of
the observed functional data and assuming Gaussianity we obtain independent projected
panels that fit well (after a suitable normalization) into the HDLSS panel data framework
of Chapter 3 for the following reason: in the infinite dimensional functional setting we
may pick (theoretically) an arbitrarily large number of projections d. Hence, we may
actually consider d→∞ asymptotics for the projected panels. Moreover, multiple
abrupt changes in functional data necessarily correspond to common changes in panels
(see Figure 1.3) for which the method of Bleakley & Vert (2011a) is designed. This
interpretation was our first motivation to work on estimation in panel data that is
presented in Chapter 3. (Obviously, this interpretation has limitations. For instance,
we lose independence between panels if we do not assume Gaussianity. Moreover, the
conditions on change magnitudes, that we will impose in Chapter 3, will be generally
too restrictive for this panel data approach within a functional setting.)

Remark 1.4 (Simulations). We demonstrate the performance of the change point tests
for functional data and of the estimates for change points in panel data by conducting
simulations in R.1 The utilized packages are indicated in the corresponding sections
later on. (All R scripts can be obtained on request from the author.2 Additionally, a
small demonstration application for panel data is implemented in MATLAB which is
also available from the author or can be downloaded from www.mi.uni-koeln.de/
~ltorgovi.)

1 R version 3.2.3 (Wooden Christmas-Tree, 2015-12-10).
2 Email: ltorgovi@math.uni-koeln.de

www.mi.uni-koeln.de/~ltorgovi
www.mi.uni-koeln.de/~ltorgovi
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1.3Preliminaries on Hilbert space data
and on dependence concepts

We start with a brief formal description of Hilbert space valued time series (including
functional data) and then turn to the concepts of short range dependence that will be
under consideration in this thesis.

Hilbert space data and functional time series

Let H be a real finite or infinite dimensional Hilbert space with an inner product
〈x, y〉H for x, y ∈ H and with a corresponding norm ‖x‖H = 〈x, x〉1/2H .1 Furthermore,
let BH be the associated Borel sigma-algebra. A Hilbert space time series {Xi}i∈Z is
formally a collection of random elements (i.e. measurable mappings)

Xi : (Ω,A, P )→ (H,BH) (1.3.1)

defined on some common probability space (Ω,A, P ). (Thus, the Xi’s are random
variables but with a more abstract state space.) In this thesis we study finite and infi-
nite dimensional Hilbert space valued time series simultaneously which cover the two
following important situations: 1.) Multivariate Rd-valued time series. 2.) Functional
L2[0, 1]-valued time series. Since the latter functional time series is an abstract object,
we provide a somewhat more intuitive interpretation in the next remark.

Remark 1.5 (Real-valued processes interpreted as functional data). Assume a se-
quence of real-valued random processes {εi(t), t ∈ [0, 1]}i∈Z, where for each i ∈ Z
we have a collection of random variables εi(t), t ∈ [0, 1] that are defined on some
common probability space (Ω,A, P ). A condition which allows us to interpret these
processes as an L2[0, 1]-valued time series is given, e.g., in Hsing & Eubank (2015, The-
orem 7.4.1): for all i ∈ Z the sample paths εi(·) are in L2[0, 1] and the variables
εi(t) = εi(t, ω) are jointly measurable in (t, ω).

Remark 1.6 (A historic remark). The functional point-of-view gained popularity within
the statistical community over the last two decades and a rich statistical theory has been
developed. (Cf., e.g., the timeline in Section 1.1 of Cuevas, 2014.) A sometimes over-
looked fact is that the foundations of functional data analysis lie rather far back in time.
According to Wang (2015, p. 2): »(...) the term “functional data analysis” was coined by
Ramsay (1982) and Ramsay & Dalzell (1991), [but] the history of this area is much older
and dates back to Grenander (1950) and Rao (1958)«. Note also the pioneering works
of the French school on probability theory in function spaces which are dating back
to (roughly) the same time-period (e.g. Fortet & Mourier, 1955 and Mourier, 1956).
Taking a more abstract position we can even go further back in time. As formulated by
Mas (2008, p. 136): »It turns out that probabilists have studied such random elements for

1 For the sake of readability, we will suppress the subscript H if the context allows us to do so.
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a much longer time than statisticians (first works on the Brownian motion date back to the
XIXth century), the first monograph dedicated to functional data was published in 1991«.

We proceed by describing two closely related frameworks of short range dependence
for Hilbert space valued data which we will study subsequently in Chapter 2. The first
concept is that of m-dependent time series which is then used to define the broad class
of so-called Lκ-m-approximable time series.

m-dependent time series

As usual, m-dependence is defined via the pairwise independence of sufficiently distant
sigma-algebras. We worked with this concept and with the following definition already
in Torgovitski (2015a).

Definition 1.7 (m-dependence). Let H be a Hilbert space. An H-valued time se-
ries {εi}i∈Z is called m-dependent if all sigma-algebras σ{. . . , εj−2, εj−1, εj} and
σ{εk, εk+1, εk+2, . . .} that are separated by k − j > m are independent.

The concept of m-dependence may be interpreted as a (first) straightforward de-
viation from the independence assumption where the latter, obviously, corresponds to
m = 0. As should be expected, there exists a rich literature dedicated to m-dependent
time series that ranges from rather classical limit theorems of probability theory up
to more specific statistical applications. (Cf., e.g., Hoeffding & Robbins (1948) for the
former and, e.g., Horváth et al.(1999) or Choudhury et al.(1999) for the latter.) Hence,
studying procedures under m-dependence we may rely on a generally well-developed
machinery. Prominent statistical models for this dependence concept are linear MA(q)
time series (m = q) and examples of real-life data that can be reasonably approx-
imated by MA(q), q = 1, 2, 3, series are given, e.g., in the textbook of Shumway &
Stoffer (2011, cf. Examples 3.32, 3.38 and 3.40). The following quote by Choudhury
et al. (1999, p. 347, partly cited in Gombay, 2010), stated in a regression context, un-
derpins that studying MA(q) time series and thus the framework of m-dependence is
of importance: »Historically, the inability to use OLS to obtain parameter estimates for
MA(q) and ARMA(p, q) models discouraged practitioners from using such models. (...) In
fact, the computational ease with which AR error processes are handled is arguably the
main reason why AR error models have become the paradigm for economic modeling (...),
even though the MA error model frequently is more plausible (...).«

Remark 1.8 (Estimating the order of MA(q) time series). Even though the depen-
dence parameter q is rarely known exactly in practice some reasonable estimates for
q can be identified, e.g., either ad-hoc by visual inspection of the sample autocorrelation
together with the partial autocorrelation functions or more scientifically by fitting dif-
ferent MA(q̂) time series and choosing their order q̂ via some common model-selection
criteria such as, e.g., the AIC or the BIC. Examples of real-life applications where q
is known exactly also exist as, e.g., time series that have been preprocessed by some
averaging filter. (Cf. the related discussion in Torgovitski, 2015a.)
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Remark 1.9 (Infinite dependence). Many popular time series models that are used in
practice and extensively studied in theory (e.g., the already mentioned autoregressive
models) depend on innovations from the infinite past or possibly also from the (infinite)
future and thus do not fit into an m-dependent framework. Such processes are covered
in Chapter 2 by the study of m-approximable time series which are introduced further
below.

m-approximable time series

The concept of Lκ-m-approximability (or m-approximability for short) gained a lot of
attention in recent literature. It was popularized - amongst many others - by Aue et al.
(2009) and Hörmann & Kokoszka (2010) where the former considered a multivariate
and the latter a functional setting. (Cf. also Chochola et al., 2013, Jirak, 2013 and
Hörmann & Kidziński, 2015.) An appealing aspect of this approach is that it covers
many relevant strictly stationary models including, e.g., ARMA and ARCH time series.
Before we state the precise definition of this concept, we recall that for an H-valued
random element X (cf. (1.3.1)), where H is a Hilbert space, the Lκ(Ω,P )-norms are
defined via

νκ(X) = [E‖X‖κH ]1/κ (1.3.2)

for any κ ≥ 1. Loosely speaking, Lκ-m-approximable time series are Lκ-limits of suit-
able m-dependent approximations. We already worked with this particular formulation
in Torgovitski (2016, Definition 2.1) and also used it in Torgovitski (2015c).

Definition 1.10 (m-approximability). Let H be a Hilbert space. An H-valued time
series {εi}i∈Z is Lκ-m-approximable with an approximation rate function δ : N0 → R+,
if E‖εi‖κH <∞, for some κ ≥ 1, and, if the following conditions hold true:

1. Bernoulli shift representation: It holds that εi = f(. . . , ηi+2, ηi+1, ηi, ηi−1, ηi−2, . . .),
where f : SZ → H is a measurable mapping from some measurable space S and
{ηi}i∈Z is a sequence of i.i.d. S-valued random elements.

2. Lκ-approximability via an m-dependent coupling: Let m-dependent copies of εi be
defined for all m ∈ N0, m′ = bm/2c by

ε
(m)
i = f(. . . , η

(m,i)
i+m′+1, η

(m,i)
i+m′ ,ηi+m′−1, . . . , ηi,

. . . , ηi−m′+1, η
(m,i)
i−m′ , η

(m,i)
i−m′−1, . . .),

(1.3.3)

using a family {ηr, η(k,j)
i , i, j, r, k ∈ Z} of i.i.d. random variables.1 Using defini-

tion (1.3.2) it holds that

νκ
(
ε0 − ε(m)

0

)
≤ cδ(m) (1.3.4)

for all m ∈ N0, δ(0) = 1, some c > 0 and with
∑∞

m=0 δ(m) <∞.

1 We formally set ε
(m)
i = f(. . . , η

(m,i)
i+1 , η

(m,i)
i , η

(m,i)
i−1 , . . .) for m = 0, 1, i.e. for m′ = 0.
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Figure 1.4: This figure gives an impression of L2[0, 1]-valued time series that are m-
dependent or m-approximable. The top row shows a functional i.i.d. innovation sequence.
The panel in the middle shows (1-dependent) observations of an MA(1) time series which
are generated as averages of the i.i.d. sequence from the top panel. Finally, the bottom panel
shows an m-approximable functional AR(1) time series generated from the same innovation
sequence, using a Wiener kernel (cf., e.g., Horváth & Kokoszka, 2012).

Remark 1.11 (Typical rates of decay). The decay rate δ(m), m ∈ N, quantifies the
intensity of weak dependence via (1.3.4) and is directly related to the decay of lagged
correlations. The latter is the underlying reason why many widely used functional and
multivariate time series models do have an exponential rate of decay, i.e. δ(m) =
exp(−νm) with some ν > 0 (cf., e.g., Aue et al., 2009, Horváth & Kokoszka, 2012 and
Hörmann et al., 2013). In this thesis we will work (mostly) with a polynomial rate
δ(m) = m−ν for some ν > 1.

We finish this chapter by two remarks, which, on the one hand, explain the relation
of m-approximability to other dependence concepts that are commonly found in liter-
ature and, on the other hand, indicate why we consider a non-causal formulation in
Definition 1.7 and in Definition 1.10.

Remark 1.12 (Related weak dependence concepts). It is important to note that the
ideas behind the concept of Lκ-m-approximability may be found in a variety of related
approaches like the famous concept of near-epoch dependent (NED) time series that goes
back to the works of Billingsley and McLeish in the 1960’s and 1970’s (cf., e.g., Ling,
2007), or to that of Lp-approximability of Pötscher & Prucha (1997) (given that the
underlying and defining so-termed basis series are i.i.d. in both cases).1 It is also closely
related to the concept of »physical dependence (measure)« of Wu (2011). Contrary to the
general near-epoch dependent approach, one key idea of Lκ-m-approximability and of

1 The motivation of the Lκ-m-approximability concept, its relation to NED and (some of) its advantages
over mixing type concepts are discussed in detail in Hörmann (2009), Hörmann & Kokoszka (2010) and
in Berkes et al.(2011). For further information on Bernoulli shifts and on weak dependence concepts we
refer to Doukhan et al.(2003) and to Dedecker et al.(2007).
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the approach of Wu (2011) is to restrict the framework to i.i.d. basis series, i.e. to shifts
of an i.i.d. sequence {ηi}i∈Z, which allows for an explicit and convenient construction
of m-dependent approximating sequences (1.3.3). Note that some authors treat Lκ-m-
approximability and the physical dependence concept of Wu (2011) simultaneously as
»filters« (cf., e.g., Jirak, 2013). (But even though they share the same idea it is important
to point out that within the concept of Wu (2011) the approximating sequences are
constructed differently replacing only one innovation at a time instead of replacing an
infinite number of innovations simultaneously.)

Remark 1.13 (Causal and non-causal time series). The consideration of m-approx-
imable time series that are based on two-sided shifts (as in our situation of Definition 1.7
and Definition 1.10) is generally by no means just of purely theoretical interest. Davis &
Wu (2010, p. 98) highlight that »[non-causal time series] arise frequently in the modeling
of real data« and they also provide a real-life example. However, the motivation to study
non-causal series in this thesis is different: Some of the presented proof techniques
in Chapter 2 involve time-reversion of time series and thus non-causal shifts emerge
anyway even if we worked (only) under causality, i.e. have

εi = f(ηi, ηi−1, ηi−2, . . .) (1.3.5)

instead of the two-sided shift in Definition 1.10.
Note that within the m-approximable framework we will rely on literature where

often only a causal representation is assumed for analogues of Definition 1.10. To this
end Hörmann & Kokoszka (2010, p. 1851) pointed out that »(...) only a straightforward
modification is necessary in order to generalize the theory (...) to non-causal processes
(...)«. Hence, wherever we could apply some (straightforward) modifications we state
our results under the general non-causal setting (cf., e.g., Remarks 2.37, 2.64 and Re-
mark 2.66). In a few more complicated cases we restrict ourselves to the often assumed
one-sided shifts (cf., e.g., Theorem 2.45 and Theorem 2.51).
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1.4Structure of the thesis
This thesis is subdivided into this introductory Chapter 1 and two subsequent main
Chapters 2 and 3. Chapter 2 is on testing in Hilbert space data and Chapter 3 is on
estimation in Hilbert space panel data. The proofs are always postponed to the end of
each chapter. (Note that Section 1.3 introduces Hilbert space data and some dependence
concepts for time series. Furthermore, for convenience of the reader, we summarize the
most important notation at the beginning of this thesis on page xvii.)

Relation of this thesis to previous publications (and preprints)

In this thesis we present the results that were obtained during the years as a post-
graduate student at the University of Cologne in the working group of Prof. J. G.
Steinebach. We combine and generalize the results of our »Teilpublikationen«1 Tor-
govitski (2015a,b,c,d, 2016) and embed them in an overall context in a Hilbert space
time series framework. The relations of the theoretical results of Chapter 2 to Torgov-
itski (2015a,c, 2016) and of Chapter 3 to Torgovitski (2015b,d) are explained at the
beginning of both chapters and complemented by detailed references at the end of both
chapters in Section 2.6 and in Section 3.6, respectively. (Note that additional references
are provided at the beginning of the proofs.)

1 Preprints, submitted articles and published articles.
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CHAPTER2
CHANGE POINT TESTING FOR
HILBERT SPACE VALUED DATA

“ An increasing number of applications from biology to image se-
quences in medical imaging involve data that can be well represented
as functional time series. This has led to a rapid progression of theory
associated with functional data.

— ASTON & KIRCH (2012B, P. 1906)

2.1Introduction
In this chapter we focus on testing for changes in means in a non-parametric, large
sample size framework for high-dimensional Hilbert space valued data.1 Change point
analysis for high-dimensional settings developed rapidly over the last decade and a lot
of literature, especially in the infinite dimensional functional setting, focuses on pro-
jection based CUSUM-type procedures using principal components (see Remark 2.3,
below). We aim to extend, refine and combine our own results on projection based
CUSUM procedures from Torgovitski (2015a,c, 2016) towards a more general, unifying
framework.2 The theory is developed for Darling-Erdős-type procedures within a multi-
directional change framework in a general Hilbert space setting including the infinite
dimensional and the finite dimensional cases. We derive asymptotic distributions of
Darling-Erdős-type test statistics under the null hypothesis of no change in the mean
and conditions for consistency under the alternative. Moreover, we use the tensor-based
CUSUM formulation of the recent article Torgovitski (2015c) and verify that change
alignment is advantageous for Darling-Erdős-type procedures as well.3 The simulations
in Section 2.4 complement those in Torgovitski (2015a,c, 2016). Finally, note that the

1 In the sense of Remark 1.1.
2 Note that the combined and extended results are shown by the same proof techniques which therefore

partly differ from either of the proof techniques used in Torgovitski (2015a,c, 2016).
3 Note that we looked at a differently weighted CUSUM procedure in Torgovitski (2015c).
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main theoretical part of this chapter is contained in Section 2.3 and subdivided into
a Subsection 2.3.2 on long run covariance and principal component estimation and a
Subsection 2.3.3 on testing based on those estimates.

For convenience of the reader, we explain some main differences and similarities
of Torgovitski (2015a,c, 2016). The results of Torgovitski (2015a, 2016) are originally
both stated for Darling-Erdős-type CUSUM procedures in the L2[0, 1]-valued functional
framework under a one-directional change setting, working with long run principal
components. Despite these similarities there are the following differences: the former
article considers a gradual (piecewise linear) change scenario under m-dependence
whereas the latter article considers an abrupt change scenario under the more sophis-
ticated dependence concept of m-approximability. In Torgovitski (2015c) we look at a
differently weighted CUSUM procedure within an abstract, infinite dimensional Hilbert
space framework and (essentially) in a one-directional gradual change setting which
is more general than that of Torgovitski (2015a, 2016). As in Torgovitski (2016) we
consider m-approximability and indicate extensions to the multi-directional change
alternative but without rigorous proofs. Overall, the setting of Torgovitski (2015c) is
closest to this thesis but, as already mentioned, it considers a different test statistic and
does not include the multivariate case.

It is also worth mentioning that in Torgovitski (2015a, 2016) we focus on adapta-
tions of techniques that were already available in the change point respectively two-
sample testing context for related (but different) settings and test statistics.1 In Tor-
govitski (2015c) we suggest new methodology. For instance, we propose to work with
change-aligned projections which simplify conditions on detectability of changes and
that allow us to detect changes which are less likely to be captured by the leading princi-
pal components. (Detectability particularly increases when working with static principal
components. The latter are appealing due to optimality properties, as will be discussed
in Remark 2.19, below.) These findings are to the best of our knowledge not only new
in the infinite dimensional setting but are also new in the multivariate context. Tor-
govitski (2015c) additionally contains a new, already mentioned, tensor-based CUSUM
formulation which allows for a more direct proof technique than in the previous articles
Torgovitski (2015a, 2016) and enables us to avoid conditions on eigenvalue separation
as well as some technicalities in the proofs.2

More details on the relation between the results of this chapter and the results
in Torgovitski (2015a,c, 2016) will be provided at the end of this chapter in Section 2.6.

Remark 2.1 (Dependence assumptions). In this chapter we will distinguish between
the assumptions of m-dependence and m-approximability. The reasons for doing so are
manifold: we already mentioned that the results of this chapter under m-dependence
(see Assumption M1, below) are derived for more restricted linear alternatives in Torgov-
itski (2015a) whereas the results under m-approximability (see Assumption M2, below)
are partly contained in Torgovitski (2015c, 2016). As we will see in Subsection 2.3.2
and Subsection 2.3.3, our procedures under m-dependence allow us the use of (slightly)

1 See our Remark 2.3, below, and cf., e.g., Berkes et al.(2009), Hörmann & Kokoszka (2010), Aston &
Kirch (2012a), Horváth et al.(2013) and Horváth et al.(2014).

2 This contribution is essentially based on a recent result by Reimherr (2015).
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different long run covariance estimates and long run principal component estimates
than the corresponding procedures under m-approximability. Also, the asymptotics for
change point testing rely on different versions of strong approximations for both situa-
tions. Hence, the theoretical results in both subsections will be formulated side-by-side
for both concepts to illustrate similarities and differences. The results on m-approxima-
bility do have a broader applicability. However, the assumption of m-dependence yields
sharper results for long run covariance estimation under the null hypothesis (as should
be expected) and also a different asymptotic stabilization behavior of these estimates
under the alternative. Moreover, it provides »Brownian bridge type« approximations for
the test statistic which are beyond the scope of this thesis under the assumption of
m-approximability.

Remark 2.2. To the best of our knowledge Torgovitski (2015a) is the first contribution
to the functional setting where non-parametric Darling-Erdős-type CUSUM-procedures
are studied, where piecewise linear change alternatives are considered and where less
than fourth moments are assumed.1 It is also the first contribution under temporal
dependence where long run functional principal components, as suggested by Horváth
et al.(2013) in a two-sample testing setting, are incorporated into functional CUSUM-
type procedures. These studies are continued by Torgovitski (2016, arXiv:1407.3625v1),
which, again to the best of our knowledge, is the first contribution which considers
Darling-Erdős-type CUSUM-procedures under the concept of m-approximability. Finally,
note that in Torgovitski (2015c) we introduce change-aligned principal components and
a subspace based formulation of dimension reduction based CUSUM statistics.

Remark 2.3. For change point problems in the specific Hilbert space L2[0, 1] the basis
given by the (empirical) functional principal components was considered by several
authors for related CUSUM-type statistics. Under temporal independence it was used
by Berkes et al.(2009) for the weighting w0 and under Gaussianity by Zhou (2011) for
our Darling-Erdős-type weighting w1/2 (cf. (1.2.1) for the definitions of the weights).
Later on, this basis was used by Hörmann & Kokoszka (2010) and by Aston & Kirch
(2012a), again for the weighting w0, under temporal dependence within the concept of
m-approximability, which is the concept that we are also working with. As already men-
tioned, Horváth et al.(2013) considered long run principal components for two-sample
testing under m-approximability and Horváth et al. (2014) extended this approach
to change point testing (for CUSUM statistics with the weighting w0) under similar
dependence assumptions.

Consistency of Bartlett-type long run covariance estimates and of the corresponding
long run principal components has been proven for functional m-approximable time
series by Horváth et al. (2013) in the L2[0, 1] setting. Note that convergence rates in
m-approximable functional and Hilbert space settings were meanwhile also obtained by,
e.g., Horváth et al.(2014), Hörmann et al.(2015) and Berkes et al.(2016). In subsequent
sections we will contribute to the existing theory and obtain polynomial convergence
rates under rather mild assumptions. Our technique for the proof may be (retrospec-
tively) interpreted as a combination of the aforementioned literature. Finally, note that
logarithmic convergence rates of long run covariance estimation are mandatory for
asymptotics of Darling-Erdős-type CUSUM procedures.

1 For an abrupt-change setting under Gaussianity we refer, again, to Zhou (2011).
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Structure of the chapter

The structure of this chapter is as follows. We begin by introducing our signal plus
noise model and the change point testing problem in Section 2.2. In Section 2.3 we
explain the testing approach in general Hilbert spaces and provide some necessary pre-
liminaries on dimension reduction and on (long run or static) principal components in
Subsection 2.3.1. We present our theoretical results in Subsection 2.3.2 and in Subsec-
tion 2.3.3: the former one addresses estimation of the long run principal components
and the latter one focuses on asymptotics for CUSUM tests based on those estimates
and additionally on change-aligned extensions. All proofs are postponed to Section 2.5
which is subdivided into three parts: Subsection 2.5.1 treats, again, the estimation of
the principal components, Subsection 2.5.2 provides the proofs for CUSUM tests based
on those estimated principal components and Subsection 2.5.3 contains some auxiliary
results. (Following a mathematical tradition we close this chapter with some notes in
Section 2.6 that show the relation of this chapter to our own previous publications and
preprints.1)

1 Cf., e.g., Csörgő & Horváth (1997), Bosq (2000) or Tavakoli (2014).
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2.2A change point problem
Assumption 2.4. Unless stated otherwise, throughout Chapter 2 we will assume {Yi}i∈Z
to be an observable time series of H-valued random elements where H is a separa-
ble, real Hilbert space with dimension dH ∈ N ∪ {∞}, dH > 1. We use the notation
NH = {1, . . . , dH − 1} for the finite dimensional case dH <∞ and stick to the con-
vention NH = N for the infinite dimensional case dH =∞.1

2.2.1Signal plus noise model

We assume that the time series {Yi}i∈Z follows a Hilbert space signal plus noise model

Yi = mi + εi, (2.2.1)

for i ∈ Z, where mi ∈ H are the deterministic Hilbert space signals and εi ∈ H
are random Hilbert space noises that shall fulfill Assumption S1 and either one of the
Assumptions M1 or M2, given below. Throughout this chapter we assume stationarity
of {εi}i∈Z and at least E‖ε1‖ <∞ in which case the expectation Eε1 is well-defined
and characterized as the unique solution of E〈ε1, v〉 = 〈Eε1, v〉 for all v ∈ H.2

Assumption S1. The sequence {εi}i∈Z is H-valued centered, strictly stationary and
E‖ε1‖κ <∞ holds true for some κ > 2.

Assumption M1. The sequence {εi}i∈Z fulfills Assumption S1 and is m-dependent.

Assumption M2. The sequence {εi}i∈Z fulfills Assumption S1 and is m-approximable.

We continue with a remark on the relation between Assumptions S1 and M2 as well
as by clarifying the interaction between Assumptions M1 and M2.

Remark 2.5 (Parallel structure). For the sake of a parallel structure in this chapter, we
accept some redundancy in above Assumptions S1 and M2 which is that an Lκ-m-ap-
proximable series is always strictly stationary and always fulfills a moment condition.

It is of some interest to discuss briefly whether Assumption M1 is an implication of
Assumption M2 or only intersects with the latter. The relation of these two concepts
is somewhat surprisingly not entirely transparent and some facts that can be found in
literature are explained in the remark below.

1 We consider NH = {1, . . . , dH − 1} instead of NH = {1, . . . , dH}, for 1 < dH <∞, only for nota-
tional reasons: we need to ensure that λd+1 is well-defined in Assumption E3 (below) within a multivari-
ate setting. All considerations are also restricted to dH ≥ 2 to exclude the case NH = ∅ for dH = 1.

2 See also the discussion in the Section 3.1 of Cuevas (2014) for more general definitions of expectations
in Banach spaces and for a convenient pointwise definition for expectations of random functions. Moreover,
cf. Section 4.1 of Cuevas (2014) for a further intuitive distance-based interpretation.



2 . 2 . A C H A N G E P O I N T P R O B L E M 2 6

Remark 2.6 (Relation of m-dependence and m-approximability).

1. Strictly stationary m-dependent series form evidently the basis of m-approxima-
bility. Thus, constructing a series that fulfills both Assumptions M1 and M2 is
straightforward. A series that satisfies the first assumption of Definition 1.10 with
representation

εi = f(ηi+k, . . . , ηi, . . . , ηi−k), (2.2.2)

k ∈ N, is 2k-dependent and thus given that E‖ε0‖κ <∞ also fulfills (1.3.4) with
the trivial rate function δ(m) = 0 for m ≥ 2(k + 1).

2. Constructing a series that only fulfills Assumption M1 is far less trivial. In Berkes
et al.(2011) it is claimed that stationary m-dependent processes without a shift
representation exist and thus in this case Assumption M1 is fulfilled whereas
Assumption M2 is not. It is likely a correct statement but (nevertheless) we were
not able to find an explicit and rigorous proof for this claim (at least) within the
referenced literature.1

3. It is certainly true that not all strictly stationary m-dependent series do have
a truncated shift representation (2.2.2) with an i.i.d. sequence {ηi}i∈Z. For in-
stance, Burton et al.(1993) provide a counterexample that does not have a finite
shift representation as given in (2.2.2) for any finite k ∈ N. Such series can only
be (if at all possible) m-approximable with an infinite shift representation (in
which case the determination of a decay rate δ(m) would remain an additional
issue).

2.2.2The testing problem

Our aim is to test the null hypothesis of no change in the Hilbert space means

H0 : m1 = . . . = mn, (2.2.3)

mi ∈ H, against the multi-directional change alternative of

HA : mi = m+

%∑
j=1

gj(i/n)∆j , (2.2.4)

for 1 ≤ i ≤ n, n ∈ N, % ∈ N and m ∈ H.2 The ∆j ∈ H are orthonormal change-
directions and the gj are piecewise Lipschitz continuous trend-functions on [0, 1] for
which we assume gj(0) = 0 for all 1 ≤ j ≤ %.3 Furthermore, we assume gj(tj) 6= 0
for some tj ∈ (0, 1), again, for all 1 ≤ j ≤ %. Our conditions on gj ’s imply that
gj(1/n) = gj(2/n) = . . . = gj((n−1)/n) = gj(n/n) cannot hold true for each 1 ≤ j ≤ %

1 Note that in Berkes et al.(2011) the stationarity of an m-dependent series is not explicitly required. It
seems to be implicitly assumed since otherwise counterexamples are trivial.

2 cf. Section 6 in Torgovitski (2015c).
3 The domain of the gj ’s can be partitioned into a finite number of non-empty intervals on which the

functions are Lipschitz continuous.
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and all n > n0 with some n0 ∈ N. This ensures that HA does not coincide with H0 for
% > 0 if n > n0. (Note that the case % = 0 formally corresponds to H0.) Overall, the
multi-directional change term

∑%
j=1 gj(t)∆j quantifies the deviation from m and thus

from the null-hypothesis in time via gj and in space via ∆j (cf. Figure 1.1). Finally,
note that we assume m, ∆j , gj and % to be unknown.

Remark 2.7. The alternative (2.2.4) may be interpreted in the multivariate setting as a
multivariate regression with fixed design and thus as a special case of Gombay (2010).
(For related high-dimensional settings we refer to Aston & Kirch, 2014.)

Remark 2.8 (Popular change settings). Horváth et al.(2014) considered a one-direc-
tional piecewise Lipschitz continuous alternative (2.2.4) in the functional setting for
CUSUM tests which are related to the tests considered in Section 2.3, below. Further-
more, the following popular special cases g1 ∈ {a · gA, a · gE , a · gL}, a ∈ R\{0}, % = 1
were studied for analogous tests in one-directional functional frameworks previously:

1. abrupt change gA(x; θ1) = 1(θ1,1](x),

2. epidemic change gE(x; θ1, θ2) = 1(θ1,θ2](x),

3. piecewise linear change gL(x; θ1, θ2) = 1(θ1,θ2](x)h(x) + 1(θ2,1](x),

with h(x) = (x − θ1)/(θ2 − θ1), x ∈ [0, 1], and where 0 < θ1 < θ2 ≤ 1. The case of
an abrupt alternative gA(x; θ1) was considered first in the functional setting by Berkes
et al.(2009), the epidemic change case gE(x; θ1, θ2) by Aston & Kirch (2012a) and the
piecewise linear alternative case gL(x; θ1, θ2) by Torgovitski (2015a)1.

Remark 2.9 (Abrupt change setting). In the subsequent Section 2.3 we will consider
a statistic that is tailored to test H0 against the single abrupt change in the mean
alternative

Habrupt
A : m1 = . . . = mu 6= mu+1 = . . . = mn, (2.2.5)

where the position u is unknown. For asymptotic theory u is typically assumed to be
proportional to the sample size, i.e. u = bnθc for some (again unknown) parameter
θ ∈ (0, 1).2 Under this assumption the latter case of u = bnθc corresponds to (2.2.4)
with % = 1 and with the trend function g1(x) = gA(x; θ) from Remark 2.8. Consider-
ation of a broader class of changes in (2.2.4) is important to reassure that our CUSUM
test in Section 2.3, below, is sensitive to more realistic deviations from H0 than the
single abrupt change (2.2.5), e.g. to multiple and possibly smooth changes in various
directions.3

1 The piecewise linear setting results of Torgovitski (2015a) with g = a · gL, a ∈ R\{0} were submitted
in March 2013 and published in March 2014 whereas Horváth et al.(2014) was published online later in
June 2014.

2 As indicated in the introductory Section 1.1 this is a widely accepted and probably most studied type
of alternatives in the change point context.

3 For related results on such robustness for the one-directional case of % = 1 we refer to Horváth et al.
(1999, 2014), Aston & Kirch (2012a) and to Torgovitski (2015a).
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Remark 2.10 (Further extensions of our change setting). Our results on change-
aligned testing (cf. p. 56, below) can be theoretically extended to a more flexible ∞-
directional setting, where % = ∞ in (2.2.4) and where gj fulfill some additional
assumptions. However, this case is beyond the scope of this thesis and will be studied
elsewhere.
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2.3Testing for change points
with weighted CUSUM procedures

(using principal components)
We begin this section by introducing the test statistic together with a preliminary dis-
cussion of a dimension reduction technique that is based on (long run) principal com-
ponents, i.e. on the Karhunen-Loève expansion. Note that according to Panaretos &
Tavakoli (2013, p. 2780): »The Karhunen-Loève expansion representation has become
both the object of and the means for much of the statistical methodology developed for
functional data. It has defined what today is accepted as the canonical framework for func-
tional data analysis and has provided a bridge allowing for a technology transfer of tools
from multivariate statistics to problems of functional statistics.«

2.3.1Preliminaries on dimension reduction
(and on long run principal components)

Assumption 2.11 (on weak dependence). Throughout Subsection 2.3.1 we will tacitly
assume the signal plus noise model (2.2.1) and that either Assumption M1 or Assump-
tion M2 on weak dependence holds true. Both assumptions imply that E‖ε0 ⊗ ε0‖S =
E‖ε0‖2 <∞ and that

∑
r∈Z ‖E[ε0 ⊗ εr]‖S <∞ hold true.1

Given any orthonormal basis {vj} of H we can always represent each Yi in a
generalized Fourier expansion

Yi =

dH∑
j=1

〈Yi, vj〉vj , (2.3.1)

dH ∈ NH (cf. Assumption 2.4), where in the infinite dimensional case the convergence of
these series is meant with respect to the underlying norm ‖ · ‖H . To obtain a lower finite
dimensional approximation of Yi the usual practice is to truncate the expansion (2.3.1)
by Yi ≈

∑d
j=1〈Yi, vj〉vj with some finite d ∈ NH , which is an orthogonal projection

on the subspace spanned by {v1, . . . , vd}. Note that all information on the Yi’s, with
respect to the chosen subspace, is now captured by the multivariate projections yi =
[〈Yi, v1〉, . . . , 〈Yi, vd〉]′, which consist of the so-called scores 〈Yi, vj〉 (cf. the scheme in
Table 2.1, below).

A usual practice for high-dimensional data (either it is finite or infinite dimensional),
is to apply classical multivariate analysis techniques directly to the lower dimensional
projected time series {yi}i∈Z. For our testing problem, which we introduced in the
previous Section 2.2, we will base the analysis on the multivariate weighted CUSUM

1 Cf. Hörmann et al.(2015) (and also Horváth et al., 2013).
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statistic introduced in (1.1.3) and given by

Mn(y) = max
1≤k<n

w(k/n)T (k/n) (2.3.2)

with a detector

T (x) = T (x;y) = |Σ−1/2Sn(x;y)| = |Sn(x;y)|Σ. (2.3.3)

Throughout this chapter w(x) = w1/2(x) = [x(1− x)]−1/2, x ∈ (0, 1), is the specific
Darling-Erdős-type weighting function which we introduced in (1.1.7),

Σ =
∑
r∈Z

Cov(y0,yr) (2.3.4)

is the long run covariance matrix of {yi}i∈Z with Cov(y0,yr) = E[(y0 − Ey0)(yr −
Eyr)

′] and as before Sn(x;y) =
∑bnxc

i=1 (yi − ȳn)/n1/2. Finally, | · | is the Euclidean
norm and | · |Σ = |Σ−1/2 · |. This statistic is designed to test for an abrupt change in the
mean but is known to detect some broader classes of alternatives with still reasonable
power (cf., e.g., Horváth et al. (1999) in a finite dimensional setting). Our aim is to
study the asymptotics for (2.3.2) under H0 and under HA and simultaneously in
infinite and finite dimensional Hilbert spaces with respect to the alternative of multi-
directional changes (2.2.4). Obviously, the choice of the appropriate basis functions vj
and of the dimension d is crucial and needs to be done carefully to provide accurate
low-dimensional approximations which capture sufficient »relevant« information of the
observations Yi. In our case it is certainly desirable if the basis functions are approxi-
mately aligned - and at least not all orthogonal - with the change in the mean directions
∆j . (We will get back to this issue in Remarks 2.47, 2.48 and 2.49, below.)

Remark 2.12 (on principal components). A recommendation for the choice of vj ’s
that is found in a vast amount of literature on general high-dimensional (particularly
functional) data analysis is to rely on the basis given by the data-driven principal
components. Those are appealing due to the well-known optimality properties which
will be discussed briefly in Remark 2.19 further below. (Note that we will follow the
terminology of Hörmann et al.(2015) and call this basis the »static principal components«
to be able to distinguish between other related bases.)

Subsequently, we will define and discuss the basis of static principal components and
the basis of »long run principal components« that takes additionally autocorrelation into
account. The former choice is well-established in change point literature on functional
data whereas the latter approach turns out to be mathematically more convenient for our
purposes and becomes quite popular in change point literature as well (cf. Remark 2.18,
below).1

1 We will also briefly mention the »dynamic principal components« in Remark 2.20, below. However, they
are not in the scope of this thesis.
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Static and long run principal components

Assumption 2.13 (on the spectral decomposition). Let H be any self-adjoint Hilbert-
Schmidt operator on a separable Hilbert space H. Then, H possesses a »spectral decom-
position«

H =

dH∑
j=1

γj(ej ⊗ ej)

into real-valued eigenvalues γj and rank one operators (ej ⊗ ej). The eigenvectors
ej form an orthonormal basis of H. We call (γj , ej) the »eigenelements«1 and always
assume |γi| ≥ |γj | for all i > j.

Definition 2.14 (Static principal components). The static principal components of an
H-valued random element Y0 are given by the eigenelements (λj , vj) of the covariance
operator2

C0 = E[ε0 ⊗ ε0]. (2.3.5)

It is a positive, self-adjoint Hilbert-Schmidt operator with a spectral decomposition
C0 =

∑dH
j=1 λj(vj ⊗ vj). (Cf. Remark 2.16, below.)

Definition 2.15 (Long run principal components). The long run principal compo-
nents of an H-valued time series {Yi}i∈Z are given by the eigenelements (λj , vj) of
the long run covariance operator

C =
∑
r∈Z

Cr, Cr = E[ε0 ⊗ εr], (2.3.6)

which is also a positive, self-adjoint Hilbert-Schmidt operator and thus has a spectral
decomposition C =

∑dH
j=1 λj(vj ⊗ vj). (Again, see Remark 2.16, below.)

Remark 2.16 (Properties of the covariance operators). We consider the covariance
operator (2.3.5) first. Due to E‖ε0 ⊗ ε0‖S <∞ it is well defined and via

〈C0(x), y〉 = E〈ε0, y〉〈ε0, x〉, (2.3.7)

for any x, y ∈ H, it is straightforward to see that it is self-adjoint and positive. Further-
more, (2.3.7) yields E〈ε0, vi〉〈ε0, vj〉 = δi,jλi. Now, we turn to the long run covariance
operator (2.3.6). In view of

∑
r∈Z ‖E[ε0 ⊗ εr]‖S <∞ it is well defined, too. To see that

(2.3.6) is self-adjoint with non-negative eigenvalues λj it is sufficient to observe the
identity

〈C (x), y〉 =
∑
r∈Z

E〈ε0, y〉〈εr, x〉, (2.3.8)

1 This notation and terminology for eigenvalues and eigenvectors is used, e.g., in Bosq (2000).
2 Note that in the multivariate case of H = Rd (and using the Euclidean inner product) this operator

corresponds to the mapping C0(x) = E[〈ε0, x〉ε0] = E[ε0ε
′
0]x = Cov(ε0)x.
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which can be easily verified for any x, y ∈ H.1 Using (2.3.8) we see that 〈C (x), x〉 ≥ 0
holds true for all x ∈ H since it is the long run variance of the projected series
{〈εr, x〉}r∈Z. Moreover, by stationarity, we obtain 〈C (x), y〉 = 〈C (y), x〉 for any x,
y ∈ H and this verifies that C is self-adjoint. Finally, 〈C (vi), vj〉 = δi,jλi implies∑

r∈ZE〈ε0, vi〉〈εr, vj〉 = δi,jλi.

Y1 Y2 · · · Yn 1. Start with an H-valued time series.

↓ ↓ ↓ 2. Project on a basis v1, v2, . . .

y1 y2 · · · yn 3. Work with a d-dimensional time series.

= = =

〈Y1, v1〉 〈Y2, v1〉 · · · 〈Yn, v1〉
〈Y1, v2〉 〈Y2, v2〉 · · · 〈Yn, v2〉
〈Y1, v3〉 〈Y2, v3〉 · · · 〈Yn, v3〉
...

...
...

〈Y1, vd〉 〈Y2, vd〉 · · · 〈Yn, vd〉

〈Y1, vd+1〉 〈Y2, vd+1〉 · · · 〈Yn, vd+1〉 This part of the expansion (2.3.1)
is considered to be less informative...

... · · ·
... and is neglected.

Table 2.1: A scheme of the projection based approach with d ∈ NH .

Since our aim is to develop non-parametric procedures, we need estimates of the
static and of the long run principal components. The general approach to obtain them
is to rely on eigenelements (λ̂j , v̂j) of empirical counterparts Ĉ0 and Ĉ of the
operators C0 and C . They will be defined subsequently and convergence properties
will be obtained later on in Subsection 2.3.2.

Definition 2.17 (Empirical static and long run principal components).

1. The covariance operator C0 is estimated via

Ĉ0 =

n∑
i=1

[ε̂i ⊗ ε̂i]/n

based on the residuals ε̂i = Yi− Ȳn. Ĉ0 is a self-adjoint, positive, Hilbert-Schmidt
operator with a spectral decomposition Ĉ0 =

∑dH
j=1 λ̂j(v̂j⊗v̂j). The eigenelements

(λ̂j , v̂j) are called the »empirical static principal components« and are estimates of
the population counterparts.

1 We may interchange the summation, the inner product and the expectation due to the definition of
expectation in Hilbert spaces and by the continuity of inner products.
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2. To estimate the long run covariance operator C we will work with »Bartlett-type«
estimates Ĉ defined in a straightforward manner by

Ĉ =

n∑
r=−n

K (r/h)Ĉr (2.3.9)

and based on weights K (r/h), where K (x) is a symmetric »window« function
with bounded support and h ∈ N is the »bandwidth«. Both will be specified later
on in Subsection 2.3.2 and will differ under Assumption M1 and Assumption M2.
The Ĉr are plug-in estimates for the »lagged cross-covariance operators« Cr and
are naturally defined by

Ĉr =

{∑n−r
i=1 [ε̂i ⊗ ε̂i+r]/n, r ≥ 0,∑n+r
i=1 [ε̂i−r ⊗ ε̂i]/n, r < 0,

with ε̂i = Yi − Ȳn. It is, again, easy to verify that Ĉ is a self-adjoint (however,
not necessarily positive) Hilbert-Schmidt operator which therefore has a spectral
decomposition

Ĉ =

dH∑
j=1

λ̂j(v̂j ⊗ v̂j). (2.3.10)

The eigenelements (λ̂j , v̂j) are called the »empirical long run principal compo-
nents«.

Remark 2.18 (Properties of the principal components I). Recall that our CUSUM
statistic involves the long run covariance matrix of the projected time series for a suitable
standardization in (2.3.3).

1. In view of Remark 2.16 it holds that Σ = diag(λ1, . . . , λd), if we rely on static
principal components and if we are in the i.i.d. case. A convenient estimate is then
given by Σ̂ = diag(λ̂1, . . . , λ̂d) using the empirical static principal components.
However, this does not hold true in the general time dependent situation since we
have correlations within the projected scores.1 To estimate the long run covariance
of the projected data we may use, e.g., Bartlett-type estimates as suggested by
Hörmann & Kokoszka (2010, Proposition 4.1). The authors point out that the
proof is »delicate« which is due to the data-driven projection setting and the
corresponding sign issues.

2. If we rely on long run principal components, as suggested by Horváth et al.(2013)
in a two-sample context, then, in view of Remark 2.16, the long run covariance
matrix (2.3.4) equals

Σ = diag(λ1, . . . , λd). (2.3.11)

A convenient estimate for Σ is now given, again, by Σ̂ = diag(λ̂1, . . . , λ̂d) using
the empirical long run principal components. Note that we are working with Σ−1/2

in (2.3.2) and (2.3.3). A corresponding regularity condition will be imposed in
Assumption E2, below.

1 Cf., e.g., the discussion in Hörmann et al.(2015, p. 320).
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Remark 2.19 (Properties of the principal components II). According to Remark 2.18
we may work with both static and long run principal components. However, under the
considered dependence structure working with CUSUM statistics based on (empirical)
long run principal components is mathematically more convenient whereas the use of
static principal components becomes more technical. For that reason we will stick to
the former approach throughout this thesis. (Note that under independence both static
and long run principal components coincide.)

Nevertheless, we want to point out two features that make the static principal com-
ponents generally appealing and which are the fundamental reasons for functional static
principal components being one of the most important tools in functional data analysis:
the scores 〈ε0, vk〉 are uncorrelated in k and the truncated series represents the data
optimally in the mean-square sense, i.e.

E‖ε0 −
d∑
j=1

〈ε0, vj〉vj‖2 = E‖
dH∑

j=d+1

〈ε0, vj〉vj‖2 =

dH∑
j=d+1

Var [〈ε0, vj〉] =

dH∑
j=d+1

λj (2.3.12)

is minimal amongst all possible projections on arbitrary orthonormal systems for any
fixed finite d ∈ NH (d < dH). Note that (2.3.12) follows directly by Parsevals’s identity
and by

λj = 〈C0(vj), vj〉 = Var [〈ε0, vj〉].

In other words (2.3.12) states that the leading static principal components v1, . . . , vd
capture as most of the variation of ε0 as is possible by projections in a d-dimensional
subspace. This follows, e.g., analogously to the explanations in Section 3 of Horváth &
Kokoszka (2012).

Finally, we would like to mention another appealing dimension reduction possibility
that is not the focus of this thesis.

Remark 2.20 (Dimension reduction via dynamic principal components). Hörmann
et al.(2015) study Hilbert space spectral density operators Fθ, θ ∈ [−π, π], which obvi-
ously coincide with (2.3.6) at frequency zero, i.e. F0 = C . They use the eigenelements
of these operators to construct »functional dynamic principal component scores« via the
so-called »filters«. These dynamic principal component scores generalize the long run
principal component scores. On the one hand, they also ensure the diagonal structure
of the long run covariance matrix of the d-dimensional time series. On the other hand,
they provide »optimal« finite dimensional representation under dependence - in a sense
similar to (2.3.12) (cf. Theorem 2 and Proposition 3 of Hörmann et al., 2015).

In an introductory discussion the authors mention an extension of CUSUM-type
statistics within their dynamic setup (but without being rigorous). Furthermore, they
point out the general importance of a diagonal long run covariance matrix for this
purpose (cf. also Remark 2.18).
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Fully empirical CUSUM based on long run principal components

The CUSUM statistic that we will work with is a fully empirical version of (2.3.2) and
is defined as follows

M̂n = M̂n(ŷ) = max
1≤k<n

w(k/n)T̂ (k/n), (2.3.13)

with the same Darling-Erdős-type weighting function w(x) = [x(1− x)]−1/2, x ∈ (0, 1),
and the detector

T̂ (x) = T̂ (x; ŷ) = |Σ̂−1/2Sn(x; ŷ)| = |Sn(x; ŷ)|Σ̂.

It is based on the empirical long run principal components (λ̂j , v̂j) via empirical pro-
jections ŷi = [〈Yi, v̂1〉, . . . , 〈Yi, v̂d〉]′, for some finite d ∈ NH , and with an estimate
Σ̂ = diag(|λ̂1|, . . . , |λ̂d|). An equivalent and mathematically sometimes more convenient
»tensor-based« formulation of (2.3.13) is given by

M̂n = M̂ ′
n(Y ) = max

1≤k<n
w(k/n)T̂ ′(k/n) (2.3.14)

with

T̂ ′(x) = T̂ ′(x;Y ) = ‖Ĉ−1/2,dSn(x;Y )‖ (2.3.15)

and using

Ĉ−1/2,d =
d∑
j=1

|λ̂j |−1/2(v̂j ⊗ v̂j). (2.3.16)

The operator Ĉ−1/2,d, d ∈ NH , is a truncated inverse square root of Ĉ . This formu-
lation of the CUSUM statistic has been suggested by Torgovitski (2015c) and therein
studied for the case w(x) = 1, x ∈ (0, 1), whereas in this thesis we consider the Darling-
Erdős-type weighting. The identity between (2.3.13) and (2.3.14) can be verified by
Parseval’s identity.

Remark 2.21 (Regularization). For the long run covariance estimation we use Σ̂ =
diag(|λ̂1|, . . . , |λ̂d|) as a simple ad-hoc regularization of the naive choice Σ̂ = diag(λ̂1,
. . . , λ̂d). Note that the eigenvalues λ̂j may be negative since the positivity of Ĉ is
generally not guaranteed.1 By using the absolute values the matrix Σ̂−1/2, the mapping
| · |Σ̂ and the operator Ĉ−1/2,d remain well-defined as long as Σ̂ has full rank. To cope
with the singular case, i.e. with zero eigenvalues, we can formally set M̂n :=∞ in that
situation.

1 For instance, estimates Ĉ with flat-top kernels K (cf. Example 2.23, below) are known to violate
this condition.



2 . 3 . T E S T I N G F O R C H A N G E P O I N T S W I T H W E I G H T E D C U S U M P R O C E D U R E S 3 6

Perturbed long run covariance operator

We finish this subsection by introducing the »perturbed long run covariance operator«
Cα,β as a finite rank perturbation of a rescaled C (if β 6= 0). It will allow us a concise
discussion of the asymptotic behavior of Ĉ and correspondingly of its eigenelements
simultaneously under the null and under the alternative.1 Under the null hypothesis we
set formally

C1,0 := C (2.3.17)

whereas under the alternative we define the operator Cα,β by the following linear
combination

Cα,β = αC +

%∑
i,j=1

βi,j(∆i ⊗∆j) (2.3.18)

of the long run covariance operator C and of the tensor products of all % change di-
rections ∆i⊗∆j .2 The parameter β ∈ R%×% stands for a symmetric matrix and α ∈ R+

for a non-negative scalar. (Both parameters will be specified in Subsection 2.3.2, be-
low.) The finite rank perturbation Cα,β − αC in (2.3.18) is determined by the change
directions ∆j and is a self-adjoint Hilbert-Schmidt operator. Moreover, as we already
discussed, C is a self-adjoint Hilbert-Schmidt operator, too. Thus, Cα,β must be also
self-adjoint Hilbert-Schmidt and therefore Cα,β has a spectral decomposition

Cα,β =

dH∑
j=1

λj(vj ⊗ vj) (2.3.19)

in both cases (2.3.17) and (2.3.18). (Under the null hypothesis this coincides with the
spectral decomposition in Definition 2.15.)

The following truncated operator C
−1/2,d
α,β will turn out to be useful in the next

subsection for analyzing the asymptotic behavior of Ĉ−1/2,d, cf. (2.3.16), and of our
test statistic. It is constructed using the eigenelements of Cα,β by formally setting

C
−1/2,d
α,β =

d∑
j=1

λ
−1/2
j (vj ⊗ vj), (2.3.20)

d ∈ NH . Finally, we state and briefly discuss various conditions on eigenvalues of Cα,β
that will be of importance in this chapter.

Assumption E1 (Positive definiteness). It holds that λ1 ≥ λ2 ≥ . . . ≥ 0.

Assumption E2 (Data dimensionality). It holds that λ1 ≥ λ2 ≥ . . . ≥ λd > 0, d ∈ NH .

1 The limiting operator of Ĉ will correspond to Cα,β with α = 1 and β = 0 under the null hypothesis
and with β 6= 0 (and some α > 0) under the alternative.

2 Note that we distinguish between the null hypothesis and the alternative in the definition of Cα,β
because the change directions ∆j ’s are only defined in the latter situation.
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Assumption E3 (Complete separation of eigenvalues). It holds that λ1 > λ2 > . . . >
λd′ > λd′+1 ≥ 0 for some d′ ≤ d, where d ∈ NH .

Assumption E3’ (Spectral gap). It holds that λ1 ≥ λ2 ≥ . . . ≥ λd′ > λd′+1 ≥ 0 for
some d′ ≤ d, where d ∈ NH .

Assumption E1 is a technical condition that imposes positive definiteness on Cα,β.
Assumption E2 will be used under H0, i.e. for C1,0, to ensure that the data is at least
d-dimensional and that the long run covariance matrix Σ has full rank. (It cannot be
avoided.) The complete separation Assumption E3 will be used under H0, as usual
with d′ = d, and under HA with d′ ≤ d. Under the alternative this assumption is
slightly weaker than the usual assumptions in the literature. (For instance for static
principal components d′ = d is typically required as under the null in Assumption E2.)
Broadly speaking the purpose of this assumption is to ensure that the directions of each
v1, . . . , vd′ can be estimated separately. The substantial weakening of Assumption E3’
(if compared to Assumption E3) relies on the recent work of Reimherr (2015) and is
introduced for CUSUM-type procedures by Torgovitski (2015c). It will be used under
H0 and under HA in Remarks 2.28 and 2.35, below.

Finally, to fix the notation and to avoid ambiguities throughout this chapter we state
the next assumption on the notation.

Notation for dimension parameters. Throughout this Chapter 2 the number dH de-
notes the dimension of the separable Hilbert space H, the number % ∈ NH denotes
the number of change-directions ∆j and the number d ∈ NH denotes the dimension
of the finite dimensional subspace of H which is used to construct the CUSUM statistics
(2.3.2) or (2.3.13), respectively, in order to detect the structural changes. In particular
the case % > d is possible.

2.3.2Limit theorems for long run principal components
(and estimation of the long run covariance operator)

To understand the behavior of our statistic M̂n(ŷ) under the null and under the alter-
native hypotheses we begin with a study of the asymptotic behavior of Ĉ and of its
eigenstructure for both scenarios. We will derive consistency with convergence rates
under the null (which is necessary for the Darling-Erdős-type weighting) and show that
this estimate is not consistent under the alternative. As already pointed out in the lit-
erature, e.g., by Aston & Kirch (2012a,b) and by Horváth et al. (2014), the estimates
are affected under the alternative by the change in such a way that their asymptotic
behavior (especially of the eigenvectors v̂j) becomes advantageous for a principal com-
ponent based dimension reduction approach: the aforementioned authors show for the
one-directional change setting that more changes become detectable (if compared to a
consistent estimate) due to implicit alignment of v̂1 with the particular change direc-
tion ∆1. This comes as a surprise because usually one would rather try to construct
estimates that are not only consistent under the null but also under the alternative. We
will discuss this issue in Subsection 2.3.3, below.
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Estimation under the null hypothesis

As already mentioned we will distinguish between Assumption M1 and Assumption M2.
In the former case we may use a more tailored estimate Ĉ . Hence, the results are dif-
ferent and sharper than under the latter assumptions. Moreover, notice that Remark 2.6
indicates that Assumption M1 covers cases which are not included by Assumption M2.

In the m-dependent setting of Assumption M1 it holds that Cr = 0 for r > m
which follows immediately due to 〈Cr(x), y〉 = E〈ε0, y〉〈εr, y〉 for all x, y ∈ H. Hence,
knowing m, it seems natural to only estimate the »truncated« long run covariance
operator C =

∑
|r|≤m Cr, i.e. to avoid estimation of zeros. This is reasonably done

by the following plug-in estimate which is a Hilbert space analogue of the estimate
considered, e.g., by Horváth et al.(1999, p. 100).

Assumption K1 (Kernel and bandwidth under Assumption M1). In the m-dependent
setting we use the estimate Ĉ , defined in (2.3.9), with K (x) = 1[−1,1](x), x ∈ R and
with a fixed »bandwidth« h ≥ m, h ∈ N.

Note that we allow for a »misspecified« h > m which, as it turns out, has some
theoretical advantages for our CUSUM testing procedure that will be discussed later on.
In fact some »moderate overfitting« can increase the power. In the next Proposition 2.22
we obtain convergence rates for the estimate Ĉ under m-dependence based on a
Marcinkiewicz-Zygmund type law of large numbers which allows us to assume less than
four moments.

Proposition 2.22. Let Assumption M1 and Assumption K1 hold true and C1,0 be defined
as in (2.3.17). Under H0 it holds that, as n→∞,

‖Ĉ − C1,0‖S = OP (rn)

with the rate rn = n−1+2/min{κ,4}.

In the general case of m-approximable time series of Assumption M2 we need
(necessarily) to estimate the complete long run covariance operator C =

∑
r∈Z Cr if

we aim to work with the long run principal components rather than with the static ones.
A typical class of candidates for such estimates is given next.

Assumption K2 (Kernel and bandwidth under Assumption M2). In the m-approx-
imable setting we use the estimate Ĉ , defined in (2.3.9), with a bandwidth h → ∞,
h = o(n) as n→∞, h ∈ N, and with a window K for which we assume:

1. boundedness, K (0) = 1 and |K (x)| ≤ 1 for any x,

2. symmetry, K (x) = K (1− x) for all x ∈ R,

3. a bounded support, K (x) = 0 for all |x| > a for some a > 0,

4. continuity, K (x) is piecewise continuous,
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5. and a convergence rate, limx↓0 |K (x)− 1|/xς exists and is finite for some ς ≥ 1.

Above assumptions are common (cf., e.g., Andrews (1991) in a finite-dimensional
setup and, e.g., Horváth et al. (2013, 2014) and Berkes et al. (2016) in related func-
tional data frameworks). The fifth condition implies continuity of K (x) at x = 0 and
the largest number ς that provides a non-zero limit is the so-termed »characteristic
exponent« of K (cf., e.g., Parzen, 1957 and Andrews, 1991).

Example 2.23 (Popular windows). Some typically used window functions are

1. Plain-window: K (x) = 1[−a,a](x) for some a > 0,

2. Flat-top-window: K (x) = min{max{a− |x|, 0}, 1} for some a > 1,

3. Bartlett-window: K (x) = max{1− |x|, 0}.

The first two windows provide the finiteness of limx↓0 |K (x)− 1|/xς for any ς ≥ 1
and the third for ς = 1. For further common examples we refer to Brockwell & Davis
(1991) and to Andrews (1991). Notice that some of their examples are not included in
our considerations. As pointed out in the latter article some popular kernels, such as the
»Quadratic-spectral« window, have an unbounded support and thus do not belong to the
class defined by Assumption K2.

To prove convergence rates under m-approximability our proof techniques require
higher moment assumptions compared to Proposition 2.22 (since we work with the
variance of the estimates in this case) and, as should be expected, the obtained rates
in the more general setting are also weaker. The next theorem contributes, e.g., to
the results of Horváth et al. (2013, Theorem 2), Aston & Kirch (2012a, Lemma 2.3),
Hörmann & Kokoszka (2010, Theorem 3.1) and Hörmann et al.(2015, Proposition 4).

Theorem 2.24. Let Assumption M2 be fulfilled with κ = 4. Furthermore, let Assump-
tion K2 hold true and C1,0 be defined as in (2.3.17). Then it holds under H0 that, as
n→∞,

‖Ĉ − C1,0‖S = OP
(
rn
)

(2.3.21)

with the rate

rn = (h/n)1/2h+ (1/n)
m∑
r=1

r‖Cr‖S + (1/hς)
m∑
r=1

rς‖Cr‖S

+
∞∑

r=m+1

δ(r) +mδ(m)

(2.3.22)

for any sequence m = mn → ∞, m ∈ N, m ≤ h and with h = o(n) as n → ∞. (The
kernel-parameter ς is specified in Assumption K2.)
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Above rate (2.3.22) tends to zero if h = o(n1/3) given that
∑∞

m=1m
ςδ(m) <∞.

(The latter condition ensures convergence of the second, third, fourth and fifth terms in
(2.3.22) since the bound ‖Cr‖S ≤ c δ(r) holds true with some c > 0 that is independent
of r.)

Note that this rate reflects, as expected, the typical trade-off between the variance
and the bias in kernel estimation: a larger bandwidth yields higher variance on the price
of a smaller bias and vice versa. Moreover, a higher smoothness parameter ς lowers the
bias contribution, too.

Remark 2.25 (Comparison to Hörmann et al., 2015). Let us briefly compare our
results to the findings of Hörmann et al. (2015) for the Bartlett-window K (x) =
max{1− |x|, 0} and therefore consider ς = 1 and m = h which simplifies (2.3.22) to

rn = O
(

(h/n)1/2h+ (1/h)
h∑
r=1

rδ(r) +
∞∑

r=h+1

δ(r) +mδ(m)
)
. (2.3.23)

In Hörmann et al. (2015) the authors showed a slightly better (but surprisingly essen-
tially the same) rate

rn = (h/n)1/2h+ (1/h)
h∑
r=1

r‖Cr‖S +
∞∑

r=h+1

‖Cr‖S

= O
(

(h/n)1/2h+ (1/h)

h∑
r=1

rδ(r) +

∞∑
r=h+1

δ(r)
)
, (2.3.24)

where (2.3.24) corresponds to the order of (2.3.23) but without the (usually negligible)
term mδ(m).1 They use a different but related approach where they rely on uniform
bounds for lagged estimates Ĉr.

For the clarity of our exposition it will be convenient to restrict ourselves subse-
quently to polynomial bandwidths.

Assumption PB (Polynomial bandwidths). We use the estimate Ĉ , defined in (2.3.9),
with a kernel K that fulfills the Assumption K2 and we assume a bandwidth h =
bn1/µc for any µ > 3.

Corollary 2.26. Let Assumption M2 be fulfilled with δ(m) = m−ν , ν > ς + 1 and with
κ = 4. Furthermore, let Assumption PB be fulfilled, too. Then (2.3.21) holds true with a
polynomial rate of convergence rn = O(n−ε) for some ε > 0.

1 Hörmann et al. (2015) was published online on 18th of July 2014 but Hörmann et al. (2015,
arXiv:1210.7192v1), a preprint of the latter article, was previously available on arXiv.org since 26th of
October 2012 and, as it turns out, already contained these rates (implicitly) in the proof of Proposition 11
of Appendix B. In the final and in the updated preprint version Hörmann et al.(2015, arXiv:1210.7192v3)
this result was shifted to the main part of the articles and became Proposition 4. Our proof technique is
different but it is also worth emphasizing that we were not aware of the results in Hörmann et al.(2015)
and of the latter restructured presentations when Torgovitski (2016, arXiv:1407.3625v1), i.e. the first
version of Torgovitski (2016), was published on arXiv.org on 14th of July 2014.
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Corollary 2.27. Let the assumptions of Proposition 2.22 or the assumptions of Corol-
lary 2.26 hold true. Furthermore, let (λj , vj) be the eigenelements of C1,0, which is
defined in (2.3.17). Under H0 and the Assumption E2 it holds that, as n→∞,

max
1≤k≤d

|λ̂k − λk| = oP
(
n−ε1

)
(2.3.25)

and under the additional Assumption E3 it holds with ŝk = sign〈v̂k, vk〉 that

max
1≤k≤d′

‖ŝkv̂k − vk‖ = oP
(
n−ε1

)
(2.3.26)

for some ε1 > 0. In the latter case we have that

‖Ĉ−1/2,d′ − C
−1/2,d′

1,0 ‖S = oP
(
n−ε2

)
(2.3.27)

for some ε2 > 0, where the operators Ĉ−1/2,d′ and C
−1/2,d′

1,0 are defined in (2.3.16)
and in (2.3.20).

Note that related results on convergence rates (2.3.25) and (2.3.26) for principal
components of functional data go back at least to the famous work of Dauxois et al.
(1982). For further related results under different dependence assumptions and with
different rates we refer, e.g., to Hörmann & Kokoszka (2010, Theorem 3.2), to Aston
& Kirch (2012a, Lemma 2.3), to Horváth & Kokoszka (2012, Chapter 2) and to Bosq
(2000, Chapter 4).

Remark 2.28 (Eigenvalue separation I). If Ĉ is positive definite (or if dH is finite),
then relation (2.3.27) holds also true under the more general Assumption E3’ instead
of Assumption E3. We will give a proof in Subsection 2.5.1 on p. 70.

Note that we have positive definiteness of Ĉ for instance under the assumptions
of Proposition 2.22 if we are in the 0-dependent (i.i.d.) setting and if we work with
the sample covariance estimate Ĉ with h = 0. (Recall that the long run principal
components coincide with the static ones in this scenario.) Furthermore, positivity may
be ensured under the assumptions of Corollary 2.26 by an appropriate kernel function
K : if we consider 〈Ĉx, x〉 for any fixed x ∈ H and evaluate it similarly to (2.3.8),
then we see that the same class of kernels provides positive definite estimates as in the
univariate setting.1 Finally, note that our testing approach is not restricted to Bartlett-
type estimates at all. We could also work with any other estimates or positive definite
modifications instead.2 (However, we would need to provide convergence rates as in
(2.3.21).)

The literature on long run covariance estimation has a long tradition. A dominat-
ing amount of literature that deals particularly with convergence rates assumes the
finiteness of fourth moments which then allows to study the mean squared error of the
estimates Ĉ . It would be desirable to have convergence rates for these estimates in our
theoretical settings with less than finite fourth moments, since our Darling-Erdős-type
CUSUM (such as various other statistical procedures), do not intrinsically rely on such

1 Examples for the latter are given in Andrews (1991). For instance, the Bartlett-kernel is included in
this class.

2 Research in this direction is announced in Berkes et al.(2016).
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a moment assumption. In finite dimensional cases it is known that the long run covari-
ance matrix may be estimated with suitable rates assuming only finite 2 + δ-moments
with any δ > 0. Notable results in this direction are, e.g., Steinebach (1995) or Antoch
et al.(1997). The latter have shown the rate r′n = (h/n)1/2(h log h)1/2 + 1/h in a uni-
variate linear time series setup using a Bartlett-window and relying on a Marcinkiewicz-
Zygmund type law of large numbers. Steinebach (1995) showed polynomial rates for
another class of the so-called »batch-mean« estimates. The theory in the latter article
relies mainly on suitable strong invariance principles - which are available under a
variety of weak dependence assumptions - and the convergence rates depend on the
approximation rates of those invariance principles.1

Steinebach (1995) and Antoch et al. (1997) can be restated to a large extent for
weakly dependent multivariate time series in a straightforward manner and similar re-
sults should also hold true for some restricted classes of functional time series as well.
The extension of the results of Steinebach (1995) or of Antoch et al.(1997) to general
linear and nonlinear time series in our Hilbert space m-approximable framework is
beyond the scope of this thesis and could be part of future research.

Meanwhile, amongst others, Horváth et al.(2014) and Berkes et al.(2016) have stud-
ied the estimate Ĉ in a similar framework.2 The results of Horváth et al.(2014) and of
Berkes et al.(2016) appear stronger since they study asymptotic normality, derive mean
squared error rates of order (h/n)1/2 + 1/hς (with a parameter ς as in Assumption K2)
and provide guidance on the selection of the bandwidth h, too. First of all, it is impor-
tant to point out that we use a different technique compared to Horváth et al.(2014) and
Berkes et al.(2016) which is an interesting aspect of our results. Moreover, our results
are not directly comparable due to differences in the assumptions. Our result does not
require ν > 4 for polynomial rates of approximation δ(m) = m−ν as is required in
Horváth et al.(2014). We also do not require the existence of more than the fourth mo-
ment which is required in Berkes et al.(2016). Therein, either E‖ε1‖8 <∞ is assumed,
in which case h = bn1/µc with any µ > 1 is admissible, or E‖ε1‖4+δ1 <∞ for some
δ1 > 0 is required, in which case the bandwidth is constrained by µ > (4 + 2δ1)/δ1 and
thus µ→∞ as δ1 → 0.

Remark 2.29 (Cumulant-based results). For the sake of completeness, we would like
to mention that results on consistency of long run covariance estimates are often derived
based on »cumulant-type« conditions (cf., e.g., the classical results in Andrews (1991)
or the newer results of Hörmann & Kokoszka (2010) in the m-approximable setting).
It is claimed in Horváth et al.(2014) that cumulant-type conditions are typically rather
difficult to verify which is the motivation of the authors to provide, on the one hand, a
»simplified cumulant« condition, and on the other hand, to show how the latter can be
verified indirectly but more conveniently via m-approximability.

1 In this context, it is worth to highlight the recent and striking result of Berkes et al.(2015). The authors
showed optimal Komlós-Major-Tusnády type invariance principles in a dependent univariate framework of
Wu (2011) - a dependence setting that is closely related to m-approximability.

2 Note that Horváth et al.(2014) was published online on 12th of June 2014 whereas Torgovitski (2016,
arXiv:1407.3625v1) was published shortly after on 14th of July 2014.
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Remark 2.30 (Bartlett-type estimates under m-dependence). So far, we have for-
mally used different estimates under m-dependence and under m-approximability.
Clearly, it is also reasonable to use the general estimates Ĉ from Assumption K2
in the m-dependent setting of Assumption M1, as well. Many results of this chapter that
are stated under Assumptions M2 and K2 could then be restated under Assumptions M1
and K2 but our proofs and most theorems that we rely on would require some minor
modifications (cf. the discussion on p. 26). To avoid confusion we do not consider this
case explicitly.

Estimation under the alternative hypothesis

We show how the limiting behavior of Ĉ and of its eigenelements (λ̂j , v̂j) is character-
ized by the contaminated operator Cα,β, defined via (2.3.18), and by its eigenelements
(λj , vj). We will see that the parameters α and β are affected by the directions of
the changes ∆j , the shape of the trend-functions gj , the shape of the window K
and also by the chosen bandwidth h. The results of this subsection are extensions
of Torgovitski (2015a,c, 2016). They coincide for dH =∞ with the counterparts in
Berkes et al. (2009) and Aston & Kirch (2012a) for a one-directional abrupt change
(or also an epidemic change in the latter article) if we are in the special setting of
Proposition 2.22 with h = m = 0 and κ = 4, i.e. if we are in the independent case
and work in L2[0, 1] with the functional static principal components under finite fourth
moment assumptions. The following mapping is important not only for this but also for
the subsequent sections. We set

G (gi, gj) =
[∫ 1

0
gi(x)gj(x)dx

]
−
[∫ 1

0
gi(x)dx

∫ 1

0
gj(x)dx

]
, (2.3.28)

where gi are the piecewise Lipschitz continuous »trend-change« functions that describe
the deviations under the alternative in (2.2.4). Note that G (gi) := G (gi, gi) is positive
under HA since gi is assumed to be non-constant.

Remark 2.31 (Evaluation of G for popular change settings). For the abrupt, epi-
demic and piecewise linear change functions gA, gE and gL from Remark 2.8 we
have

G (gA) = f(θ1),

G (gE) = f(θ2 − θ1),

G (gL) = f((θ2 + θ1)/2)− (θ2 − θ1)/6,

with f(x) = x(1− x) and 0 < θ1 < θ2 ≤ 1.

Theorem 2.32. Let the assumptions of Proposition 2.22 or the assumptions of Corol-
lary 2.26 hold true and C1,β be defined as in (2.3.18). Under HA it holds that, as
n→∞,

‖Ĉ − C1,β‖S = oP (βh), (2.3.29)
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where we use β = βhβKβG with

βK =

∫ ∞
0
K (x)dx, βh = 2h+ 1, βG ∈ R%×%, (2.3.30)

with matrix entries (βG)i,j = G (gi, gj) as defined in (2.3.28).

This theorem contributes to and extends, e.g., the results of Horváth et al. (2013,
Theorem 7), Horváth et al.(2014, Lemma B.2) and Aston & Kirch (2012a, Lemma 2.4).

Example 2.33 (The parameter matrix βG and the operator C1,β). Consider a multiple
two-directional change setting (2.2.4) with abrupt changes g1(x) = gA(x, θ1), g2(x) =
gA(x, θ2), 0 < θ1 < θ2 < 1 in some orthonormal directions ∆1 and ∆2 (cf. Remark 2.8).
In this case we obtain

βG =

[
θ1(1− θ1) θ1(1− θ2)
θ1(1− θ2) θ2(1− θ2)

]
for (2.3.30) which yields

C1,β = C + (2h+ 1)

∫ ∞
0

K (x)dx
[
θ1(1− θ1)∆1 ⊗∆1 + θ2(1− θ2)∆2 ⊗∆2 +

θ1(1− θ2)
(
∆1 ⊗∆2 +∆2 ⊗∆1

)]
as the operator in (2.3.29).

Note that under the assumptions of Proposition 2.22 the bandwidth h is fixed
and that

∫∞
0 K (x)dx = 1 since we work with the plain window K (x) = 1[−1,1](x)

(cf. Assumption K1). Whereas, under the assumptions of Theorem 2.24 the bandwidth
necessarily must increase with the sample size to capture the correlation structure (yet
the choice of the windows is more flexible).

We see a structurally different behavior of estimates if the bandwidth tends to infin-
ity: the estimate Ĉ does not stabilize without an appropriate rescaling since βh in
(2.3.30) tends to infinity. This might appear as a drawback at first sight but in fact this
turns out to be an advantage if we look at the behavior of the eigenstructure (cf., e.g.,
Aston & Kirch, 2012a,b, Horváth et al., 2014 and the related discussions in Remark 2.47,
below).

The next corollary contributes to and extends, e.g., Lemma 1 of Berkes et al.(2009)
and Theorem 2.1 of Aston & Kirch (2012a).1

Corollary 2.34. Let the assumptions of Proposition 2.22 or the assumptions of Corol-
lary 2.26 hold true and let (λj , vj) be the eigenelements of Cα,βKβG , which is defined in
(2.3.18). Moreover, let α = limn→∞ 1/βh and βh, βK, βG be set as in (2.3.30). Under
HA and the Assumptions E1 and E3 it holds that, as n→∞,

max
1≤k≤d′

|λ̂k/βh − λk| = oP (1) (2.3.31)

1 Cf. also Horváth et al.(2014).
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and with ŝk = sign〈v̂k, vk〉 that

max
1≤k≤d′

‖ŝkv̂k − vk‖ = oP (1). (2.3.32)

Furthermore, it holds that

‖Ĉ−1/2,d′β
1/2
h − C

−1/2,d′

α,βKβG
‖S = oP

(
1
)
, (2.3.33)

where the operators Ĉ−1/2,d′ and C
−1/2,d′

α,βKβG
are defined in (2.3.16) and in (2.3.20).

We would like to point out the notation within the preceding corollary. We have

α = lim
n→∞

1/βh =

{
1/βh, under the Assumptions of Proposition 2.22,
0, under the Assumptions of Corollary 2.26.

(Recall that we set βh = 2h+ 1. On the one hand, h is fixed in the first case, and, on
the other hand, h tends to infinity in the second one.)

Remark 2.35 (Eigenvalue separation II). Assume that Ĉ is positive definite and that
Assumption E1 holds true. Then (2.3.33) holds also true under Assumption E3’ instead
of the stronger Assumption E3. The verification is similar as for Remark 2.28 and relies
on Proposition 2.54. (Regarding positivity of Ĉ we refer to Remark 2.28, too.)

2.3.3Limit theorems for weighted CUSUM tests
(based on long run principal components)

Before we present our theoretical results on principal component based Darling-Erdős-
type tests (starting on p. 49) we would like to begin with a preliminary discussion
that explains and summarizes some theoretical foundations of this section. This should
provide a basic intuition for our results. For the sake of a clearer presentation, let us
introduce the multivariate special cases of Assumptions S1, M1 and M2.

Assumption S1’. The sequence {ei}i∈Z is Rd-valued, centered and strictly stationary
with E|e1|κ <∞ for some κ > 2.

For the moment, we will assume the sequence {ei}i∈Z to have a full rank long run
covariance matrix Σ in which case we may (without loss of generality) rescale the
time series and thus assume that the long run covariance matrix is the identity matrix.

Assumption M1’. The sequence {ei}i∈Z fulfills Assumption S1’ and is m-dependent
with the identity matrix as the long run covariance matrix.

Assumption M2’. The sequence {ei}i∈Z fulfills Assumption S1’ and is m-approximable
with the identity matrix as the long run covariance matrix.
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The asymptotic theory for Darling-Erdős-type CUSUM procedures relies essentially
on (strong) invariance principles that provide the connection between weighted tied-
down partial sums

Mn(e) = max
1≤k<n

w(k/n)T (k/n),

with T (k/n) = |Sn(k/n; e)|, and functionals of continuous-time multivariate Gaussian
processes (cf., e.g., Proposition 2.57, below). For the latter the asymptotic behavior (for
n → ∞) as well as convenient tail approximations are well-known. These processes
and asymptotics will be discussed subsequently followed by a paragraph on appropriate
invariance principles in our situations of Assumption M1’ or of Assumption M2’.

I. Preliminaries on multivariate Gaussian processes
(Extreme value asymptotics and tail approximations)

Let

W = W (d) = [W1, . . . ,Wd]
′

denote a standard d-dimensional »Wiener process« (cf. p. xx) where all coordinates con-
sist of independent standard Wiener processes {Wi(t), t ∈ [0,∞)} , 1 ≤ i ≤ d. Define

B = B(d) = [B1, . . . , Bd]
′,

U = U (d) = [U1, . . . , Ud]
′,

where the {Bi(t), t ∈ [0, 1]} are independent standard »Brownian bridges« and where
the latter {Ui(t), t ∈ (−∞,∞)} are independent »Ornstein-Uhlenbeck processes« (cf. p.
xx, too). Above processes are known to be transformations of each other. For instance,
the relation

{W (et)/et/2, t ∈ R}
D
= {U(t), t ∈ R}
D
= {B(et/(1 + et))(1 + et)/et/2, t ∈ R}

(2.3.34)

follows by a direct comparison of the covariance structure (cf., e.g., Section 1.9 of
Csörgő & Révész, 1981). A well-known fundamental observation, on which our theory
on CUSUM testing essentially relies, is that the supremum of the Euclidean norm of a
multivariate Ornstein-Uhlenbeck process has a »Gumbel type« limit distribution

lim
T→∞

P
(
a(T ) sup

t∈[0,T ]
|U (d)(t)| − b∗d(T ) ≤ x

)
= exp(−2 exp(−x)) (2.3.35)

utilizing suitable correction functions

a(t) = (2 log t)1/2,

bd(t) = (2 log t) + (d/2)log log t− logΓ (d/2),

b∗d(t) = (2 log t) + (d/2)log log t− logΓ (d/2)− log(2) = bd(t)− log(2)

(2.3.36)
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and where Γ stands for the usual Gamma function.1 As a consequence, the supremum
of the Euclidean norms of a multivariate Wiener process and of a Brownian bridge fulfill

lim
n→∞

P
(
an sup

t∈[1,n]
|W (d)(t)|/t1/2 − b∗n,d ≤ x

)
= exp(−2 exp(−x)), (2.3.37)

lim
n→∞

P
(
an sup
t∈[h,1−h]

|B(d)(t)|/(t(1− t))1/2 − bn,d ≤ x
)

= exp(−2 exp(−x)), (2.3.38)

for all x ∈ R, using (2.3.36) as follows

an = a(log n),

bn,d = bd(log n),

b∗n,d = b∗d(log n),

(2.3.39)

with sequences h = hn ≥ 1/n that fulfill

h = O(exp((log n)1−ε)/n), (2.3.40)

for some ε ∈ (0, 1) and as n→∞. Finally, let us mention a well-known tail approxi-
mation by Vostrikova (1981) (recall (2.3.34)) as a complement to (2.3.38). It states for
0 < h < 1/2, that

P
(

sup
t∈[h,1−h]

|B(d)(t)|/(t(1− t))1/2 ≥ x
)

=
xd exp(−x2/2)

2d/2Γ (d/2)
R(x;h, d) (2.3.41)

holds true with R(x;h, d) = (1−d/x2) log[(1/h−1)2] + 4/x2 +O(1/x4) and as x→∞.

Remark 2.36 (References for above results). The asymptotics in (2.3.35) are dis-
cussed in Theorem A.3.2 in Csörgő & Horváth (1997). The asymptotics in (2.3.37) and
(2.3.38) follow essentially from (2.3.34) together with (2.3.35). Note that for the latter
(2.3.38) one has to repeat the steps of Corollary A.3.1 of Csörgő & Horváth (1997) and
therein take Theorem A.3.4 of Csörgő & Horváth (1997) into account.

II. Preliminaries on invariance principles
(Gumbel type and Brownian bridge type approximations)

Let {ei}i∈Z fulfill either Assumption M1’ or Assumption M2’ with at least a polynomial
rate of decay of order ν > 2. In both cases a d-dimensional standard Wiener process
exists such that

|
n∑
i=1

ei −W (n)| = O(n1/2−η) a.s. (2.3.42)

holds true as n→∞ for some η > 0 (cf. Remark 2.37, below).2 The existence of
such a strong approximation (2.3.42) is under both assumptions sufficient to derive the

1 Cf., e.g., Schmitz (2011).
2 In the construction of such an approximation it is assumed that the sequence {ei}i∈Z is redefined on

a richer new probability space leaving the distribution unchanged. As common, the probability space and
the sequences are denoted as before.
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following limiting distribution of the multivariate Darling-Erdős-type CUSUM statistic
as

lim
n→∞

P
(
anMn(e)− bn,d ≤ x

)
= exp(−2 exp(−x)), (2.3.43)

for all x ∈ R. (Cf. Proposition 2.57, below.) As will be discussed later on, this is based
on the fundamental limit theorems for multivariate Gaussian processes of the last para-
graph and forms the basis of all our tests. A reason for Mn(e) to be commonly referred
to as the »Darling-Erdős-type CUSUM« detector is that the univariate version of (2.3.43)
can be traced back essentially to the work of Darling & Erdős (1956). This is demon-
strated in Csörgő & Horváth (1993, p. 256). Some additional insight into the behavior
of Mn(e) and an another proof of (2.3.43) (cf. Remark 2.38, below) may be gained
by subsequent Brownian bridge type approximations. Let

V (χ;h) := sup
x∈[h,1−h]

χ(x, d), (2.3.44)

with

χ(x, d) := w(x)|B(d)(x)| = |B(d)(x)|/(x(1− x))1/2. (2.3.45)

Under Assumption M1’ it is possible to show that

Mn(e) = V (χn;h) + oP
(

exp(−(log n)1−ε)
)
, (2.3.46)

holds true, as n→∞, for a sequence h ≥ 1/n chosen according to (2.3.40) and
where

{χn(t, d), t ∈ (0, 1)} D= {χ(t, d), t ∈ (0, 1)}, (2.3.47)

for n ∈ N.1 The notation (2.3.44) will be convenient and contribute to the clarity of our
statements and of the corresponding proofs. In particular it emphasizes that χ2(x, d)
has for each x ∈ (0, 1) a chi-square distribution with d degrees of freedom.

Remark 2.37 (References for the above strong approximation). Under Assump-
tion M1’ the approximation (2.3.42) is shown in Horváth et al. (1999, Lemma 4.1),
via an application of general invariance principles of Eberlein (1986, Theorem 1) which
in turn are based on the fundamental results of Berkes & Philipp (1979). Note that
the work of Berkes & Philipp (1979) is also essential for Aue et al. (2014, Theorem
S2.1) which states (2.3.42) under Assumption M2’ in the causal case. We checked that
(2.3.42) may be restated in the non-causal setting via Aue et al.(2014, Theorem S2.1),
as well, by taking decomposition (2.5.66), below, into account.

Remark 2.38 (References for the Gumbel type approximation). The general tech-
niques to obtain (2.3.43) are, e.g., sketched for univariate mixing linear processes in
Theorem 4.1.3 of Csörgő & Horváth (1997) based on (2.3.42). Techniques to obtain this
limit relying on somewhat more sophisticated Brownian bridge type approximations

1 This should also be possible under Assumption M2’ but is beyond the scope of this thesis.
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(similar to (2.3.46)) are presented in detail in Schmitz (2011). Brownian bridge type
approximations (2.3.46), themselves, are derived

1. in the multivariate i.i.d. case, e.g., in Theorems 1.1.2, 1.3.1 and 1.3.2 of Csörgő
& Horváth (1997),

2. for multivariate m-dependent stationary processes, e.g., in Horváth et al.(1999).1

Extension and adaptation of the above results to our situation will be an important
part of our Theorem 2.40 and Theorem 2.43, below.2 Therein, the limit of the test
statistic follows essentially on combining (2.3.42) with (2.3.37).

Remark 2.39. The common distinction between »Brownian bridge type approxima-
tions« and »Gumbel type approximations« is somewhat misleading since the derivation
of the latter (typically) involves some Brownian bridge approximation(s), as well.3

Asymptotics under the null hypothesis

Recall that we are interested in the CUSUM test statistic M̂n(ŷ) based on projections
on empirical long run principal components in a non-parametric setting. (Cf. (2.3.13)
for the traditional and (2.3.14) for a more recent tensor based formulation of this
statistic.) The aim of this paragraph is to derive asymptotically correct critical values
for the corresponding test for n → ∞. The results are based, on the one hand, on
asymptotics for the statistic Mn(y) and, on the other hand, on replacement of the
unobservable scores y by the empirical scores ŷ. The asymptotics for Mn(y) follow
by verifying and utilizing the Gumbel type limit theorems and the Brownian bridge type
approximations indicated for Mn(e) in (2.3.43) and in (2.3.46). (The structure of this
paragraph follows Torgovitski, 2015a.)

Theorem 2.40. Let the assumptions of Proposition 2.22 or the assumptions of Corol-
lary 2.26 hold true. Let (λj , vj) be the eigenelements of C1,0, which is defined in (2.3.17),
and assume that Assumption E3 holds true with d′ = d, i.e. particularly with λd > 0. Then
under H0 it holds that

lim
n→∞

P
(
anM̂n(ŷ)− bn,d ≤ x

)
= exp(−2 exp(−x)) (2.3.48)

for all x ∈ R. The sequences an and bn,d are given in (2.3.39).

Remark 2.41 (Eigenvalue separation III). The proof of Theorem 2.40 (p. 74) relies
on the asymptotics for Ĉ−1/2,d − C

−1/2,d
1,0 in (2.3.27). Hence, if Ĉ is positive definite,

1 For linear univariate processes such approximations may be derived, e.g., via the Beveridge-Nelson
decomposition in Berkes et al. (2009). The approximation (2.3.42) follows then, e.g., via Lemma 3.1 of
Berkes et al.(2009). However, a linear time series setting is not the focus of our work.

2 Note that Theorems 1.3.1, 1.3.2 and Theorem 4.1.3 of Csörgő & Horváth (1997) use slightly differ-
ent »truncation arguments«. For the sake of consistency, we will use the same truncation arguments for
Theorem 2.40 and Theorem 2.43, below.

3 Cf., e.g., Csörgő & Horváth (1997) and Schmitz (2011).
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we may follow Remark 2.28 and replace Assumption E3 in Theorem 2.40 by the weaker
Assumption E3’. (The same applies to Corollary 2.42, to Theorem 2.43 and to Corol-
lary 2.50, below.)

Based on (2.3.48) we may use quantiles of the limiting Gumbel distribution as
critical values

cn(α) = [− log(− log(1− α)/2) + bd,n]/an (2.3.49)

to test H0 versus HA via M̂n(ŷ) at a significance level of α. Unfortunately, such
critical values provide a reasonable approximation to the actual ones only for large
sample sizes and small dimensions whereas this approximation is poor in moderate and
higher dimensions.1 This is indicated in the top panel of Figure 2.1: the approximations
cn(α) are (heavily) decreasing for increasing d due to the Γ (d/2) term in the nor-
malizing bd,n sequence. The approximations for larger d are far away from the exact
ones, since we know that the exact critical values for M̂n(ŷ) must be monotonically
increasing in d.

At first sight these facts seem to prohibit to use the principal component based
Darling-Erdős-type statistic in practical applications. However, there is another (more
direct) approach to derive critical values for M̂n(ŷ) which we will discuss before
turning to the results under the alternative. This approach relies on Corollary 2.42,
below, and yields substantially better critical values c′n(α) in our simulations than
cn(α) based on (2.3.48). (Cf. the bottom panel of Figure 2.1 and also Gombay &
Horváth (1996) for results in a multivariate setup.)

Notice that we use zα(X) to denote α-quantiles of a random variable X in the
next corollary.

Corollary 2.42. Under the assumptions of Theorem 2.40 and for sequences h = hn ≥ 1/n
that fulfill (2.3.40) it holds under H0 that

lim
n→∞

P
(
M̂n(ŷ) ≤ zα

(
V (χ;h)

))
= α, (2.3.50)

where V (χ;h) and χ = χ(x, d) are defined (via Brownian bridges) in (2.3.44) and in
(2.3.45). Moreover, it holds that

zα(M̂n(ŷ)) = zα(V (χ;h)) + o
(
(log log n)−1/2

)
,

for all α ∈ (0, 1) and as n→∞.

This corollary implies that reasonable critical values for testing at the significance
level of α are provided directly by c′n(α) = z1−α(V (χ;h)) which in turn may be
computed via the already mentioned approximation (2.3.41) of Vostrikova. Even though
the latter corollary ensures asymptotic correctness and a rate for the approximating
quantiles of V (χ;h) we would like, analogously to Gombay & Horváth (1996) and
Gombay (2010), to underpin and motivate the good performance of the approximation
(2.3.50), that we observe in our simulations, by the next Theorem 2.43 that corresponds

1 Cf. also the related comments in Horváth et al. (1999, p. 106) and in Gombay & Horváth (1996, p.
126).
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Figure 2.1: The top panel shows the critical values cn(α) based on the Gumbel type
approximations (2.3.48) and (2.3.49) for different sample sizes n and different dimensions
d. The bottom panel shows critical values c′n(α) obtained via the Brownian bridge type
approximation (2.3.50) together with Vostrikova’s expansion (2.3.41). We use the sequence
h = (logn)3/2/n which is suggested by Gombay & Horváth (1996). Note that cn(α) and
c′n(α) must converge to each other (and to the actual critical value), as n→∞, in view of
(2.3.38) and of (2.3.48).

to Theorem 4.2 of Torgovitski (2015a). It shows a quite strong rate and thus indicates
the closeness of the approximating random variables V (χn;hn) to M̂n(ŷ).

In our setting we need an extension of results of Gombay & Horváth (1996) to the
multivariate m-dependent case and additionally we have to take the estimation of the
Hilbert space principal components into account. Note that under the assumptions of
Proposition 2.22 this yields also an alternative proof of (2.3.48) via (2.3.38).

Theorem 2.43. Let the assumptions of Proposition 2.22 hold true and let h = hn ≥ 1/n
be a sequence that fulfills (2.3.40). Moreover, let (λj , vj) be the eigenelements of C1,0,
which is defined in (2.3.17), and assume that Assumption E3 holds true with d′ = d. Then
it holds under H0 that, as n→∞,

M̂n(ŷ) = V (χn;h) + oP
(

exp(−(log n)1−ε)
)

(2.3.51)

for all ε ∈ (0, 1) and for some χn = χn(x, d) that fulfill (2.3.47) via (2.3.45). V (χn;h)
is defined in (2.3.44).

Remark 2.44. Theorem 3.1 of Gombay & Horváth (1996) corresponds to our Corol-
lary 2.42 where the former relies on Theorem 2.2 of Gombay & Horváth (1996) and
which in turn is the multivariate counterpart of our Theorem 2.43. Note, that as a by-
product we showed that Theorem 2.43 is not necessarily needed to prove Corollary 2.42
and thus also Theorem 3.1 of Gombay & Horváth (1996) may be shown without invok-
ing Theorem 2.2 of Gombay & Horváth (1996), too.
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Asymptotics under the alternative hypothesis

We proceed with the study of »consistency« under the alternative. In this context consis-
tency means that the probability to reject the null hypothesis tends asymptotically to 1
at any level of significance. Towards this end we need to define the functions

Ggj (x) =

∫ x

0
gj(y)dy − x

∫ 1

0
gj(y)dy (2.3.52)

for 1 ≤ j ≤ % (cf., e.g., Section 3.3 of Horváth et al., 2014). The gj ’s are the trend-
functions from the alternative hypothesis (2.2.4). It holds that all Ggj are non-constant
since the trend functions gj are assumed to be non-constant. Following a projection
based dimension-reduction approach it is evident that detection of (possibly multiple
and gradual) changes under HA is only feasible if those changes are visible in the
subspace spanned by the estimates {v̂1, . . . , v̂d}. Taking Corollary 2.34 into account
this motivates the following »asymptotic visibility and tractability« assumption.

Assumption G (The interplay between changes and principal components).
(λj , vj) are the eigenelements of Cα,βKβG with α = limn→∞ 1/βh, where βh, βK, βG are
defined as in (2.3.30).

i. We assume that Assumption E1 and Assumption E3 hold true with some d′ ≤ d.

ii. We assume that

%∑
k=1

Ggk(x)〈∆k, vj〉 6= 0 (2.3.53)

holds true for some 1 ≤ j ≤ d′ and some x ∈ [0, 1]. (d′ is the same as under i.)

A general bottleneck of condition (2.3.53) is that it requires us to know the trend-
functions, the change-directions and the eigenfunctions of the contaminated limiting
operator. We will get back to this assumption in Remark 2.47 and Remark 2.48, below,
but later on, we will consider change-aligned principal components which will allow us
to avoid (2.3.53) in all situations under consideration and in this sense be mathemati-
cally more convenient.

The next theorem shows that our test with the critical values obtained via Theo-
rem 2.40 or Corollary 2.42 is consistent, i.e. it rejects asymptotically under HA at any
significance level.1

Theorem 2.45. Let the assumptions of Proposition 2.22 or the assumptions of Corol-
lary 2.26 together with (1.3.5) hold true and Assumption G be fulfilled. Then under HA

it holds that, as n→∞,

(log log n)−1/2M̂n(ŷ)
P−→∞.

1 This theorem is a Darling-Erdős-type analogue, e.g., of Berkes et al.(2009, Corollary 1) and Aston &
Kirch (2012a, Theorem 3.2). See also Hörmann & Kokoszka (2010, Theorem 5.2).
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Remark 2.46 (Eigenvalue separation IV). For positive definite Ĉ we may follow Re-
mark 2.35 and replace Assumption E3 of Theorem 2.45, which is implicitly assumed in
Assumption G, by the weaker Assumption E3’. (This is analogous to Remark 2.41.)

It is important to gain some insight into Assumption G and to verify that it is fulfilled
under some reasonable constellations. In the spirit of the observations in Aston & Kirch
(2012a, Theorem 4.1) and in Horváth et al.(2014) we formulate the following remark
which states that »dominant changes must be eventually detectable«.1

Remark 2.47 (Improved visibility due to dominant trends). Consider the situation
of % ∈ N trend directions in (2.2.4) and set

g1(t) = ag(t), (2.3.54)

a ∈ R+, with some piecewise Lipschitz continuous function g that fulfills g(0) = 0 but
is non-constant. (The other trend-functions gj , 2 ≤ j ≤ %, do not depend on a.) Let
(λj , vj) be the eigenelements of the operator Cα,βKβG with α = limn→∞ 1/βh, where
βh, βK, βG are set as in (2.3.30). Furthermore, let Assumption E1 be fulfilled. Our claim
is that Assumption G is always satisfied with d′ = 1 given that a is sufficiently large,
i.e. if the trend in direction of the first change ∆1 is dominant. Hence, we need to show
that λ1 > λ2 and that

sup
x∈[0,1]

|
%∑

k=1

Ggk(x)〈∆k, v1〉| > 0 (2.3.55)

hold true for a being large.2 To this end we observe that

lim
a→∞

G (gk, gj)/G (g1) =

{
1, k = j = 1,

0, otherwise,

holds true for G defined in (2.3.28) and this immediately implies

lim
a→∞

‖
%∑

k,j=1

G (gk, gj)

G (g1)
[∆k ⊗∆j ]− [∆1 ⊗∆1]‖S = 0. (2.3.56)

Clearly, we have also lima→∞ ‖αC ‖S/G (g1) = 0 and recalling (2.3.18) together with
the normalization assumption on ∆1 we arrive at lima→∞ λ1/G (g1) = 1 and at
lima→∞ λ2/G (g1) = 0, i.e. λ1 > λ2 holds true for large a. This ensures the separation of
the first one-dimensional subspace associated with v1 and yields lima→∞ ‖s1v1−∆1‖ =
0 with s1 = sign〈v1, ∆1〉, e.g., via Lemma 2.3 of Horváth & Kokoszka (2012). Now, due
to the orthonormality of ∆j

′s, we observe that, as a→∞,

sup
x∈[0,1]

|
%∑

k=1

Ggk(x)〈∆k, v1〉|/a = sup
x∈[0,1]

|
%∑

k=1

Ggk(x)〈∆k, ∆1〉|/a+ o(1)

1 According to Horváth et al. (2014) our Assumption G (i & ii) is always satisfied with d′ = 1 in the
m-approximable setting of Theorem 2.45 if % = 1. However, this does not hold true in the m-dependent
setting of Theorem 2.45.

2 The situation is less clear if we have more than one dominant trend-direction. In the latter situation
the limiting operator in (2.3.56) would not be of rank-one anymore.
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= sup
x∈[0,1]

|Gg1(x)|/a+ o(1) = sup
x∈[0,1]

|Gg(x)|+ o(1).

Hence, (2.3.55) follows for large a, i.e. for a dominant trend g1 (see (2.3.54)).

We continue with two (rather counterintuitive) remarks related to Remark 4.5 of
Torgovitski (2015a) regarding the one-directional m-dependent setting. Loosely speak-
ing the message of the first remark is that estimating principal components is better
than knowing them. The message of the second is that »overfitting« the bandwidth has
also some advantage.

Remark 2.48 (Improved visibility due to perturbation). Theorem 4.1 of Aston &
Kirch (2012a) may be restated in our one-directional % = 1 situation under the m-
dependent setting of Theorem 2.45. To verify this we need only to observe that the
»rank one« perturbation term G (g1)[∆1 ⊗∆1] is a positive, self-adjoint Hilbert-Schmidt
operator.

This minor adaptation of Theorem 4.1 of Aston & Kirch (2012a) implies an impor-
tant observation: all one-directional changes that fulfill (2.3.53) of Assumption G with
respect to the eigenfunctions of C , will fulfill the same assumption with respect to the
eigenfunctions of Cα,β with α = 1/βh and β = G (g1) (cf. Corollary 2.34), i.e. the
visibility of a change with respect to the subspace generated by v1, . . . , vd improves
under the alternative due to the perturbed estimation of these principal components via
Ĉ .1

Remark 2.49 (Improved visibility due to misspecification). Let us consider again the
one-directional % = 1 situation within the m-dependent setting of Theorem 2.45. It
turns out that Ĉ based on a misspecified parameter h� m is beneficial asymptot-
ically under HA, as n→∞, despite being a worse estimate of C under H0. The
reasoning is similar to Remark 2.47. A larger h yields a smaller value α = 1/βh (cf.
Corollary 2.34 and the proof of Theorem 2.45, below) and the rank-one perturbation,
i.e. the change contribution, becomes the dominating part in the sum (2.3.18). This
implies that v1 gradually aligns with the subspace that is associated with ∆1, as
h→∞, and thus (2.3.53) in Assumption G is asymptotically fulfilled.

Testing via change-aligned principal components

In this paragraph we will show how Assumption G (ii) of Theorem 2.45 may be avoided
under HA while preserving the convergence in Theorem 2.40 and also in Corol-
lary 2.42 under H0. As introduced in Torgovitski (2015c) we propose to adjust the
principal components such that the first direction captures enough information on any
multi-directional change. As a consequence we may test with only one direction, i.e.
using d = 1. This enables us to draw conclusions about infinite dimensional random

1 For multi-directional changes the verification of Theorem 4.1 of Aston & Kirch (2012a) is more intricate
since even the verification of positivity of the perturbation term C1/βh,βKβG − C /βh in Corollary 2.34
(with a rank being higher than 1) is generally not obvious anymore. The case of multi-directional changes
under m-approximability is also unclear for the same reason.
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objects by means of proper chosen one-dimensional subspaces. This is heuristically rea-
sonable because we do not focus on the whole distribution but solely on level-shifts
which are less complex objects.

Recall our statistic M̂n(ŷ) = max1≤k<nw(k/n)T̂ (k/n) and the detector

T̂ (x) = T̂ (x; ŷ) = |Σ̂−1/2Sn(x; ŷ)|,

that is based on projected data ŷi = [〈Yi, v̂1〉, . . . , 〈Yi, v̂d〉]′. We will consider a slightly
different »change-aligned« statistic

M̂n(ŷ∆) = max
1≤k<n

w(k/n)T̂ ∆(k/n) (2.3.57)

with a corrected detector

T̂ ∆(x) = T̂ (x; ŷ∆).

The first score in the projected data ŷ∆i = [〈Yi, v̂∆1 〉, 〈Yi, v̂2〉, . . . , 〈Yi, v̂d〉]′ is modified
by a change-aligned direction

v̂∆1 = z/‖z‖ = z̃/‖z̃‖,

with

z = z(v̂1, γ, n) = v̂1/n
γ + ŝû (2.3.58)

or with

z̃ = z̃(v̂1, γ, n) = v̂1 + ŝ(nγ û).

The direction z (or z̃) is constructed as follows:

1. First, we choose any k̂ such that ‖Sn(k̂/n;Y )‖ = max1≤k<n ‖Sn(k/n;Y )‖ holds
true.

2. This »estimate« is then used to define û = Sn(k̂/n;Y )/n1/2.

3. The sign ŝ = sign〈v̂1, û〉 prevents the cancellation of v̂1 and û in (2.3.58)
which would occur in cases where both align in the same direction (e.g., in the
direction of a one-directional change and given that nγ is not too large).

4. The parameter γ ∈ (0, 1/2) controls the influence of the change-direction esti-
mate û under H0 and under HA.

If, for the sake of argument, we restrict the considerations to a single abrupt change
point setting, then our approach combines a fully-functional estimate of a (possible)
change point with a principal component based testing procedure. Consistency and
further distributional properties of the fully-functional estimate are derived recently by
Aue et al.(2015). Interestingly, our proofs do not rely on the consistency of this estimate
explicitly which allows us to extend the theory to multi-directional trends where there
is no single change point and no single change direction, i.e. where consistency (in the
usual sense) becomes meaningless.

We formulate the direct analogues of Theorem 2.40 and of Theorem 2.45. They
adapt the results of Corollary 5.1 and of Theorem 5.2 of Torgovitski (2015c) to the
Darling-Erdős-type situation. (The derivation of Corollary 2.42 is then straightforward
and thus skipped.)
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Corollary 2.50. Let the assumptions of Proposition 2.22 or the assumptions of Corol-
lary 2.26 together with (1.3.5) hold true. Let (λj , vj) be the eigenelements of C1,0, which
is defined in (2.3.17), and assume that Assumption E3 holds true with d′ = d. Then under
H0 it holds that

lim
n→∞

P
(
anM̂n(ŷ∆)− bn,d ≤ x

)
= exp(−2 exp(−x))

for all x ∈ R. The sequences an and bn,d are given in (2.3.39).

Theorem 2.51. Let the assumptions of Proposition 2.22 or the assumptions of Corol-
lary 2.26 together with (1.3.5) hold true and Assumption G (i) be fulfilled.1 Then under
HA it holds that, as n→∞,

(log log n)−1/2M̂n(ŷ∆)
P−→∞.

Remark 2.52 (Change-alignment as regularization). Typical principal component
based CUSUM approaches have all in common that eigenelements (λj , vj)’s have to
be estimated and that inverses λ̂

−1/2
j ’s are then used for standardization. (Note that

fully-functional CUSUM approaches usually still involve estimation of λj ’s to simu-
late the limiting distribution.) Estimation of eigenelements is known to be difficult in
high(er) dimensions and estimation of eigenvalues close to zero may be troublesome.
Change-alignment allow us to rely on a single direction, i.e. to work with d = 1, and
thus to avoid some of the estimation issues.

1 Note that we avoid condition (2.3.53) of Assumption G (ii).
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2.4A small simulation study
In this section we provide a simulation study based on synthetically generated data
to gain some empirical insight on the performance of the Darling-Erdős-type CUSUM
statistics M̂n(ŷ) = max1≤k<nw(k/n)T̂ (k/n) and on the effect of change-alignment
for the corresponding corrected test statistics M̂n(ŷ∆) = max1≤k<n w(k/n)T̂ ∆(k/n).
(Cf. (2.3.13) and (2.3.57).) We consider L2[0, 1]-valued functional time series which
serve as the standard example for infinite dimensional Hilbert space valued data.

Remark 2.53 (Parameter selection). The principal component based Darling-Erdős-
type CUSUM statistics M̂n(ŷ) and M̂n(ŷ∆) offer a class of tests where we have several
degrees of freedom that will be specified later on:

1. We have to choose the subspace dimension d ∈ NH that is used for testing, i.e.
we need to select the number of long run principal components (λj , vj).

2. We need to specify the long run covariance operator estimate Ĉ which defines
the estimates of the long run principal components (λ̂j , v̂j). This requires the
selection of a kernel K and of a bandwidth h.

3. We have to decide whether critical values are computed relying on a Gumbel
type approximation, i.e. using (2.3.48) and (2.3.49), or via Brownian bridge type
approximations, i.e. relying on (2.3.50) in combination with (2.3.41). (The latter
approach involves a bandwidth selection as well.)

4. Finally, we have to specify the correction parameter γ (cf. (2.3.58)).

Performance for synthetic data

We consider the L2[0, 1]-version of the Hilbert space signal plus noise model (2.2.1):

Yi(t) = mi(t) + εi(t),

t ∈ [0, 1], 1 ≤ i ≤ n, with the L2[0, 1]-valued means {mi(·)} and the L2[0, 1]-valued
noise {εi(·)}. We show simulation results for the following two settings: in the first set-
ting we assume i.i.d. εi’s which are modeled as paths of independent standard Brownian
motions (cf. Remark 1.5). In the second setting we assume the εi’s to be a functional
AR(1) time series which is generated by an L2[0, 1]-valued i.i.d. sequence and where
the latter innovations are also modeled by paths of independent standard Brownian
motions. The implementation details are similar to Torgovitski (2015a). We simulate
the paths of a Brownian motion using the {e1071}-R-package. For our further imple-
mentation we use the approach of Berkes et al. (2009) and work with the convenient
{fda}-R-package to represent the discrete data as functional objects using 25 B-spline
basis functions (of order 4). A detailed description of the generation process for the
functional AR(1) time series is provided in Torgovitski (2016, Section 5) and involves a

https://cran.r-project.org/web/packages/e1071/
https://cran.r-project.org/web/packages/fda/
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usual burn-in approach.1 We consider a functional autoregressive time series that has a
»parabolic kernel«

Ψ(t, s) =
[
−4
(
(t+ 1/2)2 + (s+ 1/2)2

)
+ 2
]
ψ,

t, s ∈ [0, 1], where ψ > 0 is chosen such that the L2([0, 1]× [0, 1]) norm of Ψ(·, ·) is
1/4. (Cf., e.g., Horváth & Kokoszka, 2012, p. 201 and Torgovitski, 2016.) In the first i.i.d.
setting we may rely on the theoretical framework of Chapter 2 under Assumption M1
and work with static principal components, i.e. with eigenelements of the covariance
operator. This corresponds to h = 0 in Assumption K1. The second autoregressive
setting fits into the framework of Assumption M2 and in this case we work with long
run principal components, i.e. with eigenelements of the long run covariance opera-
tor. In that case, we choose the kernel K (x) = 1[−1,1](x) and set the bandwidth for
demonstration purposes to h = 2.

We consider the following simulation scenarios where we assume (2.2.3) with
m1 = . . . = mn = 0 under the null hypothesis and (2.2.4) with m = 0 under the
alternative. Note that our scenarios contain the one-directional, i.e. % = 1, and the
two-directional, i.e. % = 2, change models involving abrupt, epidemic or linear changes
(see also Remark 2.8):

H0 (% = 0): no change,

SIN (% = 1): ∆1(t) = c sin(t) with an abrupt model g1(x) = gA(x; 1/2)/ξ,

T (% = 1): ∆1(t) = c̃ t with an abrupt model g1(x) = gA(x; 1/2)/ξ,

BM3 (% = 1): ∆1(t) = u3(t) with an abrupt model g1(x) = gA(x; 1/2)/ξ,

BM10 (% = 1): ∆1(t) = u10(t) with an abrupt model g1(x) = gA(x; 1/2)/ξ,

BM15 (% = 1): ∆1(t) = u15(t) with an abrupt model g1(x) = gA(x; 1/2)/ξ,

MULT-E (% = 2): ∆1(t) = u10(t) and ∆2(t) = u15(t) with two epidemic change func-
tions g1(x) = gE(x; 1/4, 2/3)/(4ξ), g2(x) = gE(x; 1/5, 1/3)/(4ξ),

MULT-G (% = 2): ∆1(t) = u10(t) and ∆2(t) = u15(t) with linear and epidemic change
functions g1(x) = gL(x; 1/5, 1/2)/(4ξ), g2(x) = gE(x; 1/3, 2/3)/(4ξ).

The orthonormal functions uj(t) = 21/2 sin((j − 1/2)πt), t ∈ [0, 1], stem from the
Karhunen-Loève expansion of a Brownian motion, i.e. are exactly the static principal
components in our i.i.d. scenario. The constants c, c̃ > 0 in the SIN and T settings are
implicitly determined by our normalization assumption ‖∆1‖ = 1. Furthermore, we use
a scaling constant ξ = 5 for the i.i.d. setting and ξ = 7.5 for the functional autoregres-
sive case. (We use different values to demonstrate the effect of change-alignment. The
power is too high for this purpose using ξ = 5 in the autoregressive setting because the
Bartlett-type estimate enhances the detectability.)

1 In our simulations we use a burn-in length of 50.
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Figures 2.2 - 2.5 show the performance of the Darling-Erdős-type tests for different
dimensions d = 1, 2, 3, 4, 5 of principal component subspaces, for different sample sizes
n = 100, 500, 1000 and for various types of change models that were specified above.
The empirical rejection rates are reported based on 1000 repetitions and the theoretical
significance level is set to α = 10%. Also, note that the critical values are obtained,
as in Figure 2.1, via the Brownian bridge type approximation (2.3.50) together with
Vostrikova’s expansion (2.3.41) using the sequence h = (log n)3/2/n as is suggested
by Gombay & Horváth (1996).

Figure 2.2 and Figure 2.3 show the results for the i.i.d. setting where the results
for the latter were obtained using the change-alignment method. Figure 2.4 and Fig-
ure 2.5 contain the corresponding results for the functional AR(1) case where, again,
the alignment approach is shown in the latter figure. The first main observation is that
the Darling-Erdős-type testing approaches work well for reasonable sample sizes: we
have approximately 10% of rejections under the null hypothesis and we have asymp-
totic consistency under a variety of alternatives, namely abrupt, epidemic, gradual and
multiple changes. We observe that the change-alignment has a positive effect under
the alternative hypothesis which is stronger than the negative impact under the null
hypothesis. Particularly, we see the most benefit if we work in the i.i.d. setting with static
principal components and if we use only the first dimension. Furthermore, Figure 2.2
and Figure 2.3 show that the effect on higher frequency changes (e.g. for BM10 and
BM15) is stronger than on lower frequency changes (e.g. for SIN, T and BM3). Note that
the effect of change-alignment is less visible in the functional AR(1) setting of Figure 2.2
and Figure 2.3 than in the i.i.d. setting of Figure 2.2 and Figure 2.3. The reason is that
the long run principal components already tend to align in the direction of the change
(cf., e.g., Horváth et al., 2014). Nevertheless, we see a substantial increase in the power,
e.g., for d = 1 and n = 1000.
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Figure 2.2: Empirical rejection rates for the Darling-Erdős-type CUSUM test based on M̂n(ŷ)
and in the setting of a functional i.i.d. error sequence {εi}, working with (empirical) static
principal components. As a critical value we use c′n(10%).
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Figure 2.3: Empirical rejection rates for the change-aligned Darling-Erdős-type CUSUM test
based on M̂n(ŷ

∆) and in the setting of a functional i.i.d. error sequence {εi}, working with
(empirical) static principal components. We use γ = 0.49 for alignment and as a critical
value we use c′n(10%).
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Figure 2.4: Empirical rejection rates for the Darling-Erdős-type CUSUM test based on M̂n(ŷ)
and in the setting of a functional AR(1) error sequence {εi}, working with (empirical)
long run principal components. The principal components are computed using the kernel
K (x) = 1[−1,1](x) with bandwidth h = 2. As a critical value we use c′n(10%).
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Figure 2.5: Empirical rejection rates for the change-aligned Darling-Erdős-type CUSUM test
based on M̂n(ŷ

∆) and in the setting of a functional AR(1) error sequence {εi}, working
with (empirical) long run principal components. The principal components are computed
using the kernel K (x) = 1[−1,1](x) with bandwidth h = 2. We use γ = 0.49 for alignment
and as a critical value we use c′n(10%).
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2.5Proofs
2.5.1Proofs for Subsection 2.3.2 (on covariance estimation)

For convenience of the reader, let us recall the definition (2.3.9) of Ĉ and also define
a corresponding analogue Ê as follows:

Ĉ =

n∑
r=−n

K (r/h)Ĉr, Ĉr =

{∑n−r
i=1 [ε̂i ⊗ ε̂i+r]/n, r ≥ 0,∑n+r
i=1 [ε̂i−r ⊗ ε̂i]/n, r < 0,

(2.5.1)

Ê =
n∑

r=−n
K (r/h)Êr, Êr =

{∑n−r
i=1 [εi ⊗ εi+r]/n, r ≥ 0,∑n+r
i=1 [εi−r ⊗ εi]/n, r < 0.

Note that the estimate Ê is based on the unobservable (mean zero) errors εi whereas
Ĉ is based on the observable (empirically centered) residuals ε̂i = Yi − Ȳn.

We begin with estimation of the long run covariance structure under the null-
hypothesis and continue with the proofs for the test statistic later on. The next proof of
Proposition 2.22 is an application of rather standard techniques.

Proof of Proposition 2.22. We give a detailed Hilbert space version of the proof of Tor-
govitski (2015a, Proposition 3.1) where we distinguish between the cases κ ∈ (2, 4) and
κ ≥ 4. First, let us assume that κ ∈ (2, 4). Using a Hilbert space Marcinkiewicz-Zygmund
type strong law of large numbers (cf., e.g., Remark 1 and Theorem 9 of Dedecker &
Merlevède, 2008) we observe that

‖Ê − C1,0‖S = O
(
n−1+2/κ

)
a.s. (2.5.2)

holds true as n→∞. Next, assume that κ ≥ 4. Using stationarity, m-dependence and
Proposition 2.65 (below) with ν = 0 we see that E‖

∑n−r
i=1 εi ⊗ εi+r‖2S = O(n) for

any fixed r ∈ {1, . . . , h}. Hence, proceeding straightforward as for (2.5.2) we obtain
‖Ê − C1,0‖S = OP

(
n−1/2). Finally, we observe ‖Ĉ − Ê ‖S = OP (n−1), e.g. by mimicking

the corresponding steps in the proof of Horváth et al. (2013, Theorem 2) under the
Assumption M1 and Assumption K1, which completes our proof.1

Proof of Theorem 2.24. This is a generalized and extended Hilbert space version of the
proof of Torgovitski (2016, Theorem 4.1). First, we observe ‖Ê0 − C0‖ = OP (n−1/2)
on using Proposition 2.65 or by invoking Hörmann & Kokoszka (2010, Theorem 3.1).
The latter can be applied in our case of non-causality in a straightforward manner
via modifications similar to (2.5.66), below. Hence, it remains to investigate only the
(lagged) long run part of the estimate Ĉ . Moreover, due to symmetry it suffices to
consider only the term Ĉ f =

∑n
i=1 K (i/h)Ĉi of (2.5.1).

1 Recall that we do not assume a shift representation in this case and that we assume the bandwidth
h ≥ m to be fixed.
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In the following we will work with the decomposition:

Ĉ f − C f = Ĉ f − E f

=
[
Ê f,(m) − EÊ f,(m)

]
+
[
EÊ f,(m) − E f,(m)

]
+
[
Ê f − Ê f,(m)

]
+
[
E f,(m) − E f

]
+
[
Ĉ f − Ê f

]
=: A1 +A2 +A3 +A4 +A5,

where we set

C f = E f =
∞∑
i=1

Ei, C f,(m) = E f,(m) =
m∑
i=1

E
(m)
i ,

Ĉ f =
n∑
i=1

K (i/h)Ĉi, Ê f =
n∑
i=1

K (i/h)Êi, Ê f,(m) =
n∑
i=1

K (i/h)Ê
(m)
i ,

Ĉi =

n−i∑
j=1

[ε̂j ⊗ ε̂j+i]/n, Êi =

n−i∑
j=1

[εj ⊗ εj+i]/n, Ê
(m)
i =

n−i∑
j=1

[ε
(m)
j ⊗ ε(m)

j+i ]/n,

using Ei = E[ε0 ⊗ εi] and E
(m)
i = E[ε

(m)
0 ⊗ ε(m)

i ]. Furthermore, we use ε̂i = Yi − Ȳn
and the superscript indicates the m-dependent quantities (cf. (1.3.3)). Let us briefly
explain the terms A1 - A5 beginning with the last term: A5 captures the bias of the
transition from the observable Yj ’s to the unobservable εj ’s. The term A4 is then the
bias due to the neglected covariances for lags larger than m, whereas A3 captures the
bias due to estimation of the covariance structure of the m-dependent approximations
{ε(m)
i }i∈Z. To derive bounds for these three terms we borrow results of Horváth et al.

(2013, proof of Theorem 2) with the necessary straightforward modifications in view of
non-causality. The crucial calculations are for the first terms A1 and A2 via E‖A1‖2S
and E‖A2‖S which are the »variance« and the bias of the estimate Ê f,(m). Note that our
main extension of the proof of Horváth et al.(2013) is the introduction of the additional
term Ê f,(m) and that we use a dynamic approximation where the dependency of
Ê f,(m) increases with the sample size, since we require m = mn →∞ as n → ∞.
(Recall also that the sequences m and h = hn fulfill m = o(h) as n→∞.)

Rates for A1: Evaluating E‖A1‖2S we have at most (nh)2 non-zero terms (which all
contain the factor n−2) and a naive bound is thus E‖A1‖2S = O(h2). The point of
subsequent considerations is that it may be improved to O(h3/n) = O(h2(h/n)) by
taking m-dependence into account. First, we observe via the Cauchy-Schwarz inequality
that [

E〈ε(m)
k ⊗ ε(m)

k+i, ε
(m)
r ⊗ ε(m)

r+j〉S
]2 ≤ E‖ε(m)

k ⊗ ε(m)
k+i‖

2
SE‖ε(m)

r ⊗ ε(m)
r+j‖

2
S

=
[
E‖ε(m)

k ‖
2
H‖ε

(m)
k+i‖

2
H

][
E‖ε(m)

r ‖2H‖ε
(m)
r+j‖

2
H

]
≤
[
E‖ε(m)

0 ‖4H
]2

=
[
E‖ε0‖4H

]2
.
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(Cf. analogous arguments in the proof of Lemma 4 in the arXiv:1210.7192v3 version of
Hörmann et al., 2015.) Hence, in view of |K (x)| ≤ 1 we obtain

E‖Ê f,(m)‖2S ≤
bchc∑
i,j=1

|E〈Ê (m)
i , Ê

(m)
j 〉S |

≤
bchc∑
i,j=1

n∑
k,r=1

|E〈ε(m)
k ⊗ ε(m)

k+i, ε
(m)
r ⊗ ε(m)

r+j〉S |/n
2

≤ E‖ε0‖4
bchc∑
i,j=1

n∑
k,r=1

δi,jk,r/n
2

for some c > 0. Here, we take into account that K (x) = 0 for x > c̃ for some c̃ > 0
and we define δi,jk,r as

δi,jk,r :=


0, r − (k + i) > m, r ≥ k,
0, k − (r + j) > m, r ≤ k,
1, r − (k + i) ≤ m, r ≥ k,
1, k − (r + j) ≤ m, r ≤ k,

which count the zero terms that appear due to m-dependence and which simplify to

δi,jk,r =


1, 0 ≤ r − k ≤ m+ i,

1, 0 ≤ k − r ≤ m+ j,

0, otherwise.

Since the values δi,jk,r depend only on i, j and on the difference of |k − r|, we have

bchc∑
i,j=1

n∑
k,r=1

δi,jk,r ≤
bchc∑
i,j=1

n∑
z=1

[ n∑
q=0

δi,jz,z+q +
n∑
q=0

δi,jz+q,z

]

=

bchc∑
i,j=1

n∑
z=1

[ n∑
q=0

δi,j0,q +

n∑
q=0

δi,jq,0

]

≤ n
bchc∑
i,j=1

(2m+ i+ j) ≤ c′nh3

for some c′ > 0. (Recall that m ≤ h.) From above considerations we obtain

E‖Ê f,(m) − EÊ f,(m)‖2S ≤ E‖Ê f,(m)‖2S = O(h3/n).

Rates for A2: Using limn→∞ |K (m/h)− 1|(m/h)−s = O(1) and stationarity, we see
that, as n→∞,

‖EÊ f,(m) − E f,(m)‖S

=
∥∥ m∑
i=1

[
K (i/h)(1− i/n)− 1

]
E

(m)
i

∥∥
S
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≤ c
[ m∑
i=1

i‖E (m)
i ‖S/n+

(
max

1≤r≤m
|K (r/h)− 1|(h/r)ς

)
(1/h)ς

m∑
i=1

iς‖E (m)
i ‖S

]
= O

(
(1/n)

m∑
i=1

i‖E (m)
i ‖S + (1/h)ς

m∑
i=1

iς‖E (m)
i ‖S

)
(2.5.3)

for some c > 0.

Rates for A3: By Horváth et al.(2013, proof of Theorem 2) we observe that

E‖Ê f − Ê f,(m)‖S = O
(
m
[
E‖ε0 − ε(m)

0 ‖2
]1/2

+
∞∑

i=m+1

[
E‖ε0 − ε(i)

0 ‖
2
]1/2 )

= O
(
mδ(m) +

∞∑
i=m+1

δ(i)
)
.

Rates for A4: Similarly to (2.5.66), below, we have

E
(m)
i − Ei = E

(
ε

(m)
0 ⊗

[
ε

(m)
i − εi

]
+
[
ε

(m)
0 − ε0

]
⊗ εi

)
. (2.5.4)

Using this decomposition (2.5.4) twice and taking the independence of ε
(i)
0 and ε

(i)
i

into account, we get via stationarity that

‖E (m)
f − Ef‖S

≤ ‖
m∑
i=1

(E
(m)
i − Ei)‖S + ‖

∞∑
i=m+1

Ei‖S

= O
(
m
[
E‖ε0 − ε(m)

0 ‖2
]1/2

+ ‖
∞∑

i=m+1

E
[(
ε0 − ε(i)

0

)
⊗ εi + ε

(i)
0 ⊗

(
εi − ε(i)

i

)]
‖S
)

= O
(
m
[
E‖ε0 − ε(m)

0 ‖2
]1/2

+
∞∑

i=m+1

[
E‖ε0 − ε(i)

0 ‖
2
]1/2)

= O
(
mδ(m) +

∞∑
i=m+1

δ(i)
)
,

as n→∞.

Rates for A5: Finally, we recall that

‖Ĉ f − Ê f‖S = OP (h/n) = OP ((h/n)1/2)

which can be shown (after obvious modifications) as in the proof of Theorem 2 of
Horváth et al.(2013).

To finish our proof we have to replace the m-dependent E
(m)
i in (2.5.3) by their

original counterparts Ei. This is straightforward and we observe via (2.5.4) that by
stationarity and by the Cauchy-Schwarz inequality it holds that

m∑
i=1

iς‖(E (m)
i − Ei)‖S ≤ 2(E‖ε0‖2)1/2

m∑
i=1

iς(E‖ε(m)
0 − ε0‖2)1/2

= O
(
mς+1δ(m)

)
for any ς ∈ [1,∞). (Note that h−ςmς+1δ(m) = O(mδ(m)).)
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As already mentioned in Remark 2.25 the above proof is related to Hörmann et al.
(2015). The convergence rate is comparable but the incorporation of m-dependence is
different. Horváth et al.(2014) and, more recently, Berkes et al.(2016) showed OP (h/n)
rates under the same dependence concept for H = L2[0, 1]. They worked with slightly
different assumptions using m-dependent approximations with some fixed but arbitrary
large m ∈ N (and by far more subtle arguments).

Proof of Corollary 2.26. The assertion follows from Theorem 2.24 by setting m = bhε′c
for some 0 < ε′ < 1.

Proof of Corollary 2.27. Due to Assumption E3, we may formally assume that λ̂j > 0
holds true for 1 ≤ j ≤ d′ ≤ d since the probability of this situation is asymptotically 1
as n→∞. To prove (2.3.27) it is sufficient to show the following two bounds

‖
d′∑
j=1

λ
−1/2
j (v̂j ⊗ v̂j)−

d′∑
j=1

λ
−1/2
j (vj ⊗ vj)‖S = OP (n−ε2) (2.5.5)

and

‖
d′∑
j=1

λ̂
−1/2
j (v̂j ⊗ v̂j)−

d′∑
j=1

λ
−1/2
j (v̂j ⊗ v̂j)‖S = OP (n−ε2) (2.5.6)

for some ε2 > 0. (Notice that we use ε1 > 0 in (2.3.26).) We begin with the first bound
(2.5.5) and observe that

‖(v̂j ⊗ v̂j)− (vj ⊗ vj)‖S
= ‖(ŝj v̂j ⊗ ŝj v̂j)− (vj ⊗ vj)‖S
≤ ‖(ŝj v̂j ⊗ ŝj v̂j)− (ŝj v̂j ⊗ vj)‖S + ‖(ŝj v̂j ⊗ vj)− (vj ⊗ vj)‖S
= ‖ŝj v̂j‖H‖ŝj v̂j − vj‖H + ‖ŝj v̂j − vj‖H‖vj‖H ,

(2.5.7)

where ŝj = sign〈v̂j , vj〉. Hence, relation (2.5.5) follows by combining (2.5.7) with
(2.3.26). For the second bound (2.5.6) we get

‖
d′∑
j=1

λ̂
−1/2
j (v̂j ⊗ v̂j)−

d′∑
j=1

λ
−1/2
j (v̂j ⊗ v̂j)‖2S =

d′∑
j=1

(λ̂
−1/2
j − λ−1/2

j )2 (2.5.8)

via Parseval’s identity (cf., e.g., Lemma 3.2 of Reimherr, 2015). Now, since we are under
Assumption E3, relation (2.5.6) follows from (2.3.25) together with (2.5.8). (Recall
that Proposition 2.22 provides a polynomial rate of convergence for the estimates Ĉ
and thus also for their eigenelements in Corollary 2.27 under the Assumption M1.
Analogously, Corollary 2.26 ensures a polynomial rate of convergence of the operators
and of their eigenelements under the Assumption M2.)

The following proposition is implicitly contained in the proof of Proposition 4.2
in Torgovitski (2015c) and is based on the findings of Reimherr (2015, Lemmas 3.1
and 3.2). It provides a mathematically convenient relation between the convergence of
Ĉ−1/2,d′ − C

−1/2,d′

α,β and the convergence of Ĉ − Cα,β.
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Proposition 2.54. Consider Ĉ and Cα,β as defined in (2.3.9) and in (2.3.18) with
spectral decompositions in (2.3.10) and in (2.3.19). Let Ĉ−1/2,d and C

−1/2,d
α,β be their

truncated (inverse square root) counterparts as defined in (2.3.16) and in (2.3.20). Let
Assumption E1 and Assumption E3’ hold true. Moreover, assume that Ĉ is positive definite
with λ̂d′ > λ̂d′+1. Then it holds that

‖
d′∑
j=1

λ
−1/2
j (vj ⊗ vj)−

d′∑
j=1

λ
−1/2
j (v̂j ⊗ v̂j)‖2S ≤ f1(d′)‖Ĉ − Cα,β‖2S

and

‖
d′∑
j=1

λ
−1/2
j (v̂j ⊗ v̂j)−

d′∑
j=1

λ̂
−1/2
j (v̂j ⊗ v̂j)‖2S ≤ f2(d′)‖Ĉ − Cα,β‖2S ,

where

f1(r) = 4r

(
(λr − λr+1)−2 + (λ̂r − λ̂r+1)−2 + λ−2

r

)
/λr, f2(r) = r/min{λ̂r, λr}3.

Proof of Proposition 2.54. This follows by carefully repeating Lemmas 3.1 and 3.2 of
Reimherr (2015). (Note that we consider the general case of parameters α and β.
Under H0 we have α = 1 and β = 0 and Assumption E1 is then automatically
fulfilled for the long run covariance operator.)

Using this proposition we are able to provide a proof for Remark 2.28.

Proof of Remark 2.28. Under Assumption E3’ and under positive definiteness of Ĉ we
know that λ̂d′ > λ̂d′+1 ≥ 0 is asymptotically valid with probability tending to 1. Hence,
we obtain the same bounds as in (2.5.5) and (2.5.6) by using Proposition 2.54 together
with Proposition 2.22, Corollary 2.26 and (2.3.25).

Note that our need to impose positive definiteness of Ĉ in Remark 2.28 stems from
Proposition 2.54: If dH = ∞ and Assumption E3 or Assumption E3’ hold true then,
on the one hand, we know that the probability of a fixed finite number of eigenvalues
fulfilling λ̂j ≥ 0 for 1 ≤ j ≤ d′ is asymptotically 1, but, on the other hand, we can-
not guarantee that the probability of infinitely many eigenvalues fulfilling λ̂j ≥ 0 for
j ∈ N is asymptotically 1, as well, i.e. that the covariance estimate becomes eventually
positive definite. (However, in the multivariate case, where dH is finite, we do not en-
counter asymptotically any such problems under the null hypothesis given that λdH > 0

since the probability of Ĉ being positive definite tends to 1.)

We proceed with the estimation of the long run covariance structure under the
alternative and particularly with the corresponding proofs of Theorem 2.32 and Corol-
lary 2.34. They are both applications of Theorem 2.56 which shows under HA how the
behavior of Ĉ deviates from consistent estimation of C1,0 = C and is itself based on
the following Lemma 2.55. Note that Lemma 2.55 extends Lemma 8.2 from Torgovitski
(2015c), that Theorem 2.56 extends Theorem 8.3 from Torgovitski (2015c) and that
these results are only indicated therein in this generality.
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Lemma 2.55. Set βn,i,j = gj(i/n)−
∫ 1

0 gj(x)dx and G (gi, gj) according to (2.3.28)
and assume that all gj are Lipschitz continuous. It holds that, as n→∞,

max
0≤r≤h

∣∣ n−r∑
i=1

βn,i,kβn,i+r,j/n− G (gk, gj)
∣∣ = o(1),

for 1 ≤ k, j ≤ %, where h→∞ with h = o(n) as n→∞.

Theorem 2.56. Let the assumptions of Proposition 2.22 or the assumptions of Corol-
lary 2.26 hold true. It holds under HA that, as n→∞,

∥∥(Ĉ − C1,0)−
n∑

r=−n
K (r/h)

%∑
k,j=1

G (gk, gj)[∆k ⊗∆j ]
∥∥
S = oP (h), (2.5.9)

where G (gk, gj) is defined in (2.3.28).

Proof of Lemma 2.55. We present a version of the proof of Torgovitski (2015c, Lemma
8.2) for the multi-directional change case. It holds that, as n→∞,

max
0≤r≤h

|
n−r∑
i=1

βn,i,kβn,i+r,j/n− G (gk, gj)|

≤ max
0≤r≤h

∣∣ n−r∑
i=1

βn,i,kβn,i,j/n− G (gk, gj)
∣∣+ max

0≤r≤h

( n−r∑
i=1

|βn,i,k||βn,i,j − βn,i+r,j |/n
)

≤
∣∣ n∑
i=1

βn,i,kβn,i,j/n− G (gk, gj)
∣∣+ max

0≤r≤h

∣∣ n∑
i=n−r+1

βn,i,kβn,i,j
∣∣/n

+ c
(

max
0≤r≤h

max
1≤i≤n−r

|βn,i,j − βn,i+r,j |
)( n∑

i=1

|βn,i,k|/n
)

= o(1) +O(h)O(1/n) +O(h/n)O(1) = o(1),

with some c > 0, which finishes the proof. (The last relation follows from the Lipschitz
continuity of g(x) for x ∈ [0, 1]. It implies also the boundedness |βn,i+r,k| ≤ c′ for all
n ∈ N, 1 ≤ i+ r ≤ n and 1 ≤ k ≤ % with some c′ > 0.)

Proof of Theorem 2.56. This is a more detailed multi-directional version of the proof of
Torgovitski (2015c, Theorem 8.3).1 We assume that g is Lipschitz continuous since
the piecewise Lipschitz continuous case can be handled in an analogous manner. Set
βn,i,k = gk(i/n)−

∫ 1
0 gk(x)dx and observe that

Yi+r − Ȳn = εi+r − ε̄n +

%∑
j=1

[
gj((i+ r)/n)−

n∑
l=1

gj(l/n)/n
]
∆j

= εi+r − ε̄n +

%∑
j=1

βn,i,j∆j + rn,

(2.5.10)

1 For the special case of a gradual piecewise linear change in an m-dependent framework a simpler
version is given in Torgovitski (2015a, Proof of Lemma 3.3).
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where rn = o(1), as n→∞, and where the convergence depends only on n, i.e. is
uniform in i and r. We consider the decomposition

(Yi − Ȳn)⊗ (Yi+r − Ȳn)

=
[
(εi − ε̄n)⊗ (εi+r − ε̄n) +

%∑
k,j=1

βn,i,kβn,i+r,j(∆k ⊗∆j)
]

(2.5.11)

+

%∑
j=1

[
βn,i+r,j(εi ⊗∆j) + βn,i,j(∆j ⊗ εi+r)

− βn,i+r,j(ε̄n ⊗∆j)− βn,i,j(∆j ⊗ ε̄n) (2.5.12)

+ βn,i+r,j(rn ⊗∆j) + βn,i,j(∆j ⊗ rn)
]

+ εi ⊗ rn + rn ⊗ εi+r − ε̄n ⊗ rn − rn ⊗ ε̄n + rn ⊗ rn. (2.5.13)

The contribution of the first term in (2.5.11) is covered by Proposition 2.22 or Corol-
lary 2.26, respectively, and yields the term C1,0 in (2.5.9). Next, we will see that only
the second term in (2.5.11) does additionally contribute to the overall asymptotics of
Ĉ by showing that the remaining terms vanish asymptotically. Therefore, it is sufficient
to restrict our considerations to the contribution of the third term (and to consider any
1 ≤ j ≤ %) since all subsequent terms can be treated in a similar fashion. Due to the
boundedness of |K (x)| ≤ 1, x ∈ R, and due to ‖∆j‖ = 1 we obtain

∥∥ n∑
r=1

K (r/h)

n−r∑
i=1

βn,i+r,j(εi ⊗∆j)/n
∥∥
S

≤
bchc∑
r=1

∥∥ n−r∑
i=1

βn,i+r,jεi
∥∥/n

≤ bchc max
1≤r≤bchc

∥∥ n−r∑
i=1

βn,i,jεi
∥∥/n+

bchc∑
r=1

( n−r∑
i=1

|βn,i,j − βn,i+r,j |‖εi‖/n
)

(2.5.14)

≤ bchc max
1≤r≤bchc

∥∥ n−r∑
i=1

βn,i,jεi
∥∥/n

+ bchc max
1≤r≤bchc

(
max

1≤i≤n−r
|βn,i,j − βn,i+r,j |

) n∑
i=1

‖εi‖/n

for some c > 0. Using Proposition 2.65 (which is postponed to Subsection 2.5.3) and
E(
∑n

i=n−bchc+1 |βn,i,j |‖εi‖) = O(h) we observe that

max
1≤r≤bchc

∥∥ n−r∑
i=1

βn,i,jεi
∥∥/n

≤
∥∥ n∑
i=1

βn,i,jεi
∥∥/n+ max

1≤r≤bchc

∥∥ n∑
i=n−r+1

βn,i,jεi
∥∥/n

≤
∥∥ n∑
i=1

βn,i,jεi
∥∥/n+

n∑
i=n−bchc+1

|βn,i,j |‖εi‖/n = oP (1) +OP (h/n) = oP (1).
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By the Lipschitz continuity and the law of large numbers we get

max
1≤r≤bchc

[
max

1≤i≤n−r
|βn,i,j − βn,i+r,j |

][ n∑
i=1

‖εi‖/n
]

= O(h/n)OP (1) = oP (1),

as n→∞, and altogether, we obtain

∥∥ n∑
r=1

K (r/h)
n−r∑
i=1

βn,i+r,j
[
εi ⊗∆j

]
/n
∥∥
S = oP (h).

The remaining terms in (2.5.12) and the term (2.5.13) are also all of order oP (h) since
rn = o(1) converges uniformly (cf. (2.5.10)) and since

∑n
i=1 βn,i,jεi/n = oP (1) holds

true in view of Proposition 2.65. Finally, we use Lemma 2.55 to obtain

n∑
r=0

|K (r/h)|
∥∥∥ n−r∑
i=1

%∑
k,j=1

βn,i,kβn,i+r,j [∆k ⊗∆j ]/n

−
%∑

k,j=1

G (gk, gj)[∆k ⊗∆j ]
∥∥∥
S

= o(h).

Note, that if gj are piecewise Lipschitz continuous then the arguments are analogous
but require a technical modification: for instance, we would have to exclude some terms
in the last sum of (2.5.14) for all of discontinuities of gj (the number of which is finite).
However, all skipped terms are uniformly bounded by c̃/n for some c̃ > 0 and thus
the last sum still vanishes asymptotically at the rate oP (h). Also we have to adapt the
proof of Lemma 2.55 accordingly. We avoid those straightforward modifications to keep
the presentation clear and compact.

Proof of Theorem 2.32. The assertion follows from Theorem 2.56 by taking following
two considerations into account: under the Assumptions of Proposition 2.22 the band-
width h ≥ m is fixed and we get

∑n
r=−n K (r/h)/(2h + 1) = 1 =

∫∞
0 K (x)dx.

Whereas, under the assumptions of Corollary 2.26 we use that K is piecewise contin-
uous, symmetric and that it has a bounded support to obtain

lim
n→∞

n∑
r=−n

K (r/h)/(2h+ 1) =

∫ ∞
−∞

K (x)dx/2 =

∫ ∞
0
K (x)dx

with a well-defined integral.

Proof of Corollary 2.34. The first and the second statements (2.3.31) and (2.3.32) are
immediate consequences of Theorem 2.32. The last statement (2.3.33) follows then as
in the proof of Corollary 2.27 on p. 69.
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2.5.2Proofs for Subsection 2.3.3 (on testing with CUSUM)

We proceed to study the CUSUM procedure and the replacement of the population
Hilbert space principal components by their empirical counterparts. Let (λj , vj) be
the eigenelements of C1,0 and (λ̂j , v̂j) be the eigenelements of Ĉ . We recall the
definition of the projection scores

yi =
[
Yi,1, . . . , Yi,d

]′
, Yi,r = 〈Yi, vr〉,

ŷi =
[
Ŷi,1, . . . , Ŷi,d

]′
, Ŷi,r = 〈Yi, v̂r〉

and additionally introduce

εi =
[
εi,1, . . . , εi,d

]′
, εi,r = 〈εi, vr〉, (2.5.15)

ε̂i =
[
ε̂i,1, . . . , ε̂i,d

]′
, ε̂i,r = 〈εi, v̂r〉.

The corresponding test statistics are

Mn(y) = max
1≤k<n

w(k/n)|Sn(k/n;y)|Σ,

M̂n(ŷ) = max
1≤k<n

w(k/n)|Sn(k/n; ŷ)|Σ̂,

Mn(ε) = max
1≤k<n

w(k/n)|Sn(k/n; ε)|Σ,

M̂n(ε̂) = max
1≤k<n

w(k/n)|Sn(k/n; ε̂)|Σ̂,

(2.5.16)

where Σ̂ = diag(|λ̂1|, . . . , |λ̂d|) and Σ = diag(λ1, . . . , λd).
1

Proposition 2.57. Let Assumption M1 or Assumption M2 hold true with δ(m) = m−ν

for some ν > 2. Furthermore, let (λj , vj) be the eigenelements of C1,0 = C , which is
defined in (2.3.17), and assume that Assumption E2 holds true. Then under H0 it holds
that

lim
n→∞

P (anMn(ε)− bn,d ≤ x) = exp(−2 exp(−x)), (2.5.17)

for all x ∈ R, where Mn(ε) is defined via (2.5.15) and (2.5.16).

Showing that (2.5.17) is still true for M̂n(ŷ) is straightforward if we work with
simultaneous projections on subspaces. Notice that without having this approach we
would need a series of (interconnected) lemmas as in Torgovitski (2015a).

Proof of Theorem 2.40. Let Mn(ε) be defined via (2.5.15) and (2.5.16). Closely follow-
ing the proof of Torgovitski (2015c, Theorem 4.3) we observe, using the tensor based
CUSUM representation (2.3.15), that

|Mn(ε)− M̂n(ŷ)|
=
∣∣ max

1≤k<n
w(k/n)|Σ−1/2Sn(k/n; ε)| − max

1≤k<n
w(k/n)|Σ̂−1/2Sn(k/n; ε̂)|

∣∣
1 Note a subtle difference between Mn(e), defined in the preliminary discussion of Subsection 2.3.3,

and the principal component based Mn(ε), defined in (2.5.16). (This should not lead to any confusion.)
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= | max
1≤k<n

w(k/n)‖C−1/2,d
1,0 Sn(k/n; ε)‖ − max

1≤k<n
w(k/n)‖Ĉ−1/2,dSn(k/n; ε)‖|

≤ max
1≤k<n

w(k/n)‖[C−1/2,d
1,0 − Ĉ−1/2,d]Sn(k/n; ε)‖ (2.5.18)

≤ ‖C−1/2,d
1,0 − Ĉ−1/2,d‖L max

1≤k<n
w(k/n)‖Sn(k/n; ε)‖.

It holds for the operator and the Hilbert-Schmidt norms that ‖C−1/2,d
1,0 − Ĉ−1/2,d‖L ≤

‖C−1/2,d
1,0 − Ĉ−1/2,d‖S and the proof is finished if, on the one hand, we combine Propo-

sition 2.57 with (2.5.18) and if, on the other hand, we use the rates for weighted partial
sums in Proposition 2.63 (see Subsection 2.5.3) together with the rates of estimation
for truncated (inverse square root) operators of Corollary 2.27.

Proof of Proposition 2.57. This is a combined, modified and more detailed version of
the proofs for Lemma 6.3 in Torgovitski (2015a) and for Theorem 3.10 in Torgovit-
ski (2016).1 First, we observe that the orthogonal projection εi 7→ εi is a measurable,
bounded linear mapping. This implies that the εi’s are centered and that they inherit the
strict stationarity and the overall dependence structure from the Hilbert space valued
εi’s. Hence, they remain centered and strictly stationary m-dependent in the case of
Assumption M1 and Lκ-m-approximable - with the same rate δ(m) and the same κ -
in the case of Assumption M2 (but now as a sequence in Rd). As already mentioned in
(2.3.11) the long run covariance matrix of {εi}i∈Z is given by diag(λ1, . . . , λd), which
has full rank due to Assumption E2. Hence, for convenience, we will tacitly assume that
this long run covariance matrix is the identity matrix, i.e. that the error sequence is
rescaled.2

In the case of Assumption M1 the assertion follows immediately by (Horváth et al.,
1999, Theorem 1.3). In the case of Assumption M2 this requires more effort and may
be obtained following Csörgő & Horváth (1997, Theorem 4.1.3) and combining the
latter with Schmitz (2011). Note that a related proof is also indicated in Kamgaing &
Kirch (2016). We provide a detailed proof and introduce the »truncation and shifting
techniques« that will be (re)used, e.g., in the proof of Theorem 2.43 later on but in a
continuous-time setup. Set

sn = bexp((log n)1−ε)c,
un = bn/(log n)c

for any ε ∈ (0, 1) and observe that

[(log log un)/(log log n)]1/2 = 1 + o(1),

[(log log sn)/(log log n)]1/2 = (1− ε)1/2 + o(1),
(2.5.19)

as n→∞. Subsequently, we tacitly assume that n ≥ n0 ∈ N, which is chosen such
that sn < un for all n ≥ n0. Recall also that we assume δ(m) = m−ν for some ν > 2.
Hence, by the invariance principle (2.3.42) we obtain that, as n→∞,

max
1≤k<n

|
k∑
i=1

εi −W (k)|/k1/2 = OP (1), (2.5.20)

1 In Torgovitski (2016, Theorem 3.10) we considered formally only the causal case. Here, we allow for
two-sided shifts as well.

2 Cf., e.g., the discussion on p. 45.
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max
sn≤k≤n

|
k∑
i=1

εi −W (k)|/k1/2 = oP ((log log n)−1/2), (2.5.21)

max
un≤k≤n

|
k∑
i=1

εi −W (k)|/k1/2−η1 = oP (1) (2.5.22)

for some η1 > 0. Following the proof of Schmitz (2011, Theorem 2.1.4) we obtain by
using (2.5.22) that

lim
n→∞

P
[
a(wn) max

un<k<n−un
w(k/n)|Sn(k/n; ε)| − b∗d(wn) ≤ x

]
= exp(−2 exp(−x)) (2.5.23)

for all x ∈ R and with wn = 2 log((log n)− 1). Note that the polynomial rate of ap-
proximation in the invariance principle is crucial in the proof of Schmitz (2011, Theorem
2.1.4). Subsequently, we will explain why the following Darling-Erdős-type results

lim
n→∞

P
[
an max

1≤k≤un
w(k/n)|Sn(k/n; ε)| − b∗n,d ≤ x

]
= exp(−2 exp(−x)), (2.5.24)

lim
n→∞

P
[
an max
n−un≤k<n

w(k/n)|Sn(k/n; ε)| − b∗n,d ≤ x
]

= exp(−2 exp(−x)), (2.5.25)

for all x ∈ R, hold true under our dependence assumptions. Before we turn to the
proofs, we note that above asymptotics (2.5.23), (2.5.24) and (2.5.25) imply that

(2 log log n)−1/2 max
un<k<n−un

w(k/n)|Sn(k/n; ε)| = oP (1),

(2 log log n)−1/2 max
1≤k≤un

w(k/n)|Sn(k/n; ε)| = 1 + oP (1),

(2 log log n)−1/2 max
n−un≤k<n

w(k/n)|Sn(k/n; ε)| = 1 + oP (1).

(2.5.26)

Hence, the overall assertion would follow from (2.5.24), (2.5.25) and (2.5.26) after
showing the following asymptotic independence

lim
n→∞

P
[
an max

1≤k≤un
w(k/n)|Sn(k/n; ε)| − bn,d ≤ t,

an max
n−un≤k<n

w(k/n)|Sn(k/n; ε)| − bn,d ≤ s
]

= lim
n→∞

P
[
an max

1≤k≤un
w(k/n)|Sn(k/n; ε)| − bn,d ≤ t

]
× lim
n→∞

P
[
an max
n−un≤k<n

w(k/n)|Sn(k/n; ε)| − bn,d ≤ s
]
.

(2.5.27)

We proceed by showing (2.5.24) and (2.5.25) first and verifying (2.5.27) afterwards.
From Lemma 2.2 of Horváth (1993) (see also (2.3.37)) we observe via W (k) =∑k

i=1[W (i)−W (i− 1)] (a.s.) that

lim
n→∞

P
[
a(logwn) max

1≤k≤wn
|W (k)|/k1/2 − b∗(logwn) ≤ x

]
= exp(−2 exp(−x)), (2.5.28)

(2 log log n)−1/2 max
1≤k≤un

|W (k)|/k1/2 = 1 + oP (1), (2.5.29)

(2 log log n)−1/2 max
1≤k≤sn

|W (k)|/k1/2 = (1− ε)1/2 + oP (1) (2.5.30)
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for any wn → ∞, wn ∈ N (cf. (2.5.19)). Via the first invariance principle (2.5.20)
relations (2.5.29) and (2.5.30) yield that

(2 log log n)−1/2 max
1≤k≤un

|
k∑
i=1

εi|/k1/2 = 1 + oP (1),

(2 log log n)−1/2 max
1≤k≤sn

|
k∑
i=1

εi|/k1/2 = (1− ε)1/2 + oP (1).
(2.5.31)

Choose any dn, gn ∈ [1, un] ∩ N such that

max
1≤k≤un

|W (k)|/k1/2 = |W (dn)|/d1/2
n ,

max
1≤k≤un

|
k∑
i=1

εi|/k1/2 = |
gn∑
i=1

εi|/g1/2
n

and observe from (2.5.29), (2.5.30) and (2.5.31) that

lim
n→∞

P (dn, gn ∈ [sn, un]) = 1. (2.5.32)

A direct application of (2.5.21) yields

∣∣ max
sn≤k≤un

|
k∑
i=1

εi|/k1/2 −max
sn≤k≤un

|W (k)|/k1/2
∣∣ = oP ((log log n)−1/2)

and by taking (2.5.32) into account this implies

∣∣ max
1≤k≤un

|
k∑
i=1

εi|/k1/2 −max
1≤k≤un

|W (k)|/k1/2
∣∣ = oP ((log log n)−1/2). (2.5.33)

Using (2.5.33) together with (2.5.29), we arrive at

max
1≤k≤un

w(k/n)|Sn(k/n; ε)| = max
1≤k≤un

|
k∑
i=1

εi|/k1/2 + oP ((log logn)−1/2), (2.5.34)

which then combined with (2.5.28) and (2.5.33) yields

lim
n→∞

P
[
a(log un) max

1≤k≤un
|
k∑
i=1

εi|/k1/2 − b∗d(log un) ≤ x
]

= exp(−2 exp(−x)), (2.5.35)

for all x ∈ R, and thus shows (2.5.24). Note that the precise calculations for (2.5.34)
and the transition from (2.5.35) to (2.5.24) are routine and skipped since a detailed
explanation in the univariate case can be found in Lemma 2.1.5 and under (2.1.67) and
(2.1.68) of Schmitz (2011). Note that, therein, the backward invariance principle may
be replaced by the law of the iterated logarithm (which is implied by the invariance
principle) after invoking stationarity using similar arguments as for the subsequent
considerations.

To cope with (2.5.25) we set z(n)
i := εn−i+1 and observe that for all fixed n the

sequences {z(n)
i }i∈N are Lκ-m-approximable with same κ and same rate δ(m). We

may repeat all considerations with respect to the time-inversed series {z(1)
i }i∈N which



2 . 5 . P R O O F S 7 8

also satisfies the invariance principles (2.5.20), (2.5.21) and (2.5.22) but with a dif-
ferent Wiener process. Thus, via stationarity and symmetry we obtain from (2.5.24)
that

max
n−un≤k<n

w(k/n)|Sn(k/n; ε)|

= max
1≤k≤un

w(k/n)|Sn(k/n; z(n))|

D
= max

1≤k≤un
w(k/n)|Sn(k/n; z(1))|

= max
1≤k≤un

|
k∑
i=1

z
(1)
i |/k

1/2 + oP ((log log n)−1/2) (2.5.36)

D
= max
n−un≤k<n

|
n∑

i=k+1

εi|/(n− k)1/2 + oP ((log logn)−1/2) (2.5.37)

with a slight abuse of notation in the last step where the equality in distribution is
only meant for the maximum of the partial sums (and not for the oP terms). Note that
(2.5.36) follows by repeating the verification of (2.5.34). Via (2.5.35) and (2.5.36) we
obtain (2.5.25). Now, we use (2.5.34) and (2.5.37) to show (2.5.27). Therefore, we
will adapt the approach of Csörgő & Horváth (1997, Theorem 4.1.3) by considering
m-dependent copies ε

(m)
i as in (1.3.3) and by setting m = mn = bn− 3unc/2. This

sequence is chosen such that [ε
(m)
1 , . . . , ε

(m)
un ] and [ε

(m)
n−un , . . . , ε

(m)
n ] are independent

for all sufficiently large n. The representation of εi’s as a shift of i.i.d. random vari-
ables and the construction of the ε(m)

i ’s ensures that Zk,r := εk,r − ε
(m)
k,r are equally

distributed for all k. Hence, it holds that

E|Zk,r|2 = E|Z0,r|2 = O(δ2(m)) = O(m−2γ)

as n→∞ for all k ∈ Z and all 1 ≤ r ≤ d. Furthermore, we observe

∣∣ max
1≤k≤un

|
k∑
i=1

εi|/k1/2 − max
1≤k≤un

|
k∑
i=1

ε
(m)
i |/k

1/2
∣∣

≤ max
1≤k≤un

∣∣ k∑
i=1

(
εi − ε(m)

i

)∣∣/k1/2 ≤
d∑
r=1

max
1≤k≤un

∣∣ k∑
i=1

Zi,r
∣∣/k1/2.

An application of the Hájek-Rényi type inequality of Kounias & Weng (1969, Theorem
2) yields that

P
(

max
1≤k≤un

∣∣ k∑
i=1

Zi,r
∣∣/k1/2 > (log n)−1/2

)
≤
[
(log n)1/2

un∑
k=1

(
E|Zk,r|2

)1/2
/k1/2

]2

= (log n)E|Z0,r|2
[ un∑
k=1

k−1/2
]2

= O((log n)m−2νun) = O(n1−2ν),

which implies

max
1≤k≤un

|
n∑

i=k+1

εi|/k1/2 = max
1≤k≤un

|
n∑

i=k+1

ε
(m)
i |/k

1/2 + oP ((log log n)−1/2),
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max
n−un≤k<n

|
n∑

i=k+1

εi|/(n− k)1/2 = max
n−un≤k<n

|
n∑

i=k+1

ε
(m)
i |/(n− k)1/2 + oP ((log log n)−1/2),

where the second relation follows exactly as the first. The proof of (2.5.27) follows by
taking (2.5.24), (2.5.25), (2.5.34), (2.5.37) and Davidson (1994, Lemma 29.5) into
account. This completes the proof of the whole proposition.

Proof of Corollary 2.42. This is a slightly more detailed version of the proof of Torgov-
itski (2015a, Corollary 4.3). First, we want to clarify that V (χ;h) has a continuous
distribution function. This is often tacitly assumed in the literature (cf., e.g., Gombay
& Horváth, 1996). One way to verify this continuity is to start with the fact that the
dual norm of the Euclidean norm is the Euclidean norm itself. Thus, following Piterbarg
(2012, p. 115) we may write

V (χ;h) = sup
t∈[h,1−h]

|B(t)|/
(
t(1− t)

)1/2
= sup
t∈[h,1−h]

[
sup
u∈S
|G(t,u)|

]
= sup

(t,u)∈[h,1−h]×S
G(t,u),

where G(t,u) = 〈B(t),u〉/
(
t(1− t)

)1/2 is now a Gaussian random field and S is a
d-dimensional unit sphere in Rd. Now, it is also easy to check that Var(G(t,u)) = 1
holds true for all (t,u) ∈ [h, 1− h]× S. Therefore, all conditions of Tsirelson (1976,
Theorem 3) are fulfilled (cf. Proposition 2 in Lifshits, 1984), which implies a contin-
uous distribution function of sup(t,u)∈[h,1−h]×SG(t,u). Hence, we may always find a
sequence ξn that satisfies P (V (χ;h) ≤ ξn) = α. From (2.3.38) and Remark 2.36 we
know that

lim
n→∞

P (anV (χ;h)− bn,d ≤ x) = exp(−2 exp(−x)) (2.5.38)

holds true, where h = hn. Altogether, a combination of Theorem 2.40 with (2.5.38)
states that, as n→∞,∣∣P (M̂n(ŷ) ≤ ξn)− α

∣∣
=
∣∣P (M̂n(ŷ) ≤ ξn)− P (V (χ;h) ≤ ξn)

∣∣
≤ sup

x∈R

∣∣P (anM̂n(ŷ)− bn,d ≤ x
)
− P

(
anV (χ;h)− bn,d ≤ x

)∣∣
≤ sup

x∈R

∣∣P (anM̂n(ŷ)− bn,d ≤ x
)
− exp(−2 exp(−x))

∣∣
+ sup
x∈R

∣∣P (anV (χ;h)− bn,d ≤ x
)
− exp(−2 exp(−x))

∣∣ = o(1).

The uniform convergence in the last step is justified by the continuity of the limiting
Gumbel distribution. Again, on using Theorem 2.40 and (2.5.38) we obtain

lim
n→∞

(anc
′
n(α)− bn,d) = lim

n→∞
zα(anV (χ;h)− bn,d)

= lim
n→∞

zα(anM̂n(ŷ)− bn,d) = lim
n→∞

(ancn(α)− bn,d).
(2.5.39)

Here, we used that zα(aX + b) = azα(X) + b, a > 0 for any random variable X and
the fact that convergence in distribution implies convergence of quantiles at continuity
points of the quantile function, as well. (Recall, that the limiting distribution is continu-
ous in our case.) Clearly, (2.5.39) implies c′n(α)− cn(α) = o(bn,d/an) as n→∞, which
finishes the proof.
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Proof of Theorem 2.43. We present a modified and more detailed proof of Torgovitski
(2015a, Theorem 4.2). The strategy of the proof follows Csörgő & Horváth (1997,
Theorem 1.3.2) but is based on the invariance principle in Horváth et al.(1999, Lemma
4.3) for m-dependent sequences. Before we continue, let us assume that h = hn fulfills
(2.3.40) for some ε∗ ∈ (0, 1) and define the intervals

J = Jn = [1/n, 1− 1/n],

I = In = [h, 1− h],

J1 = J1
n = [s, 1− s],

J2 = J2
n = J ln ∪ Jrn,

where J ln = [1/n, s) and Jrn = (1− s, 1− 1/n] with the sequence

s = sn = bexp((log n)1−ε1)c/n

for arbitrary ε1 ∈ (0, ε∗). Note that the following inclusions

J1 ⊂ I ⊂ J (2.5.40)

hold true by construction and by the choice of ε1. Furthermore, we set

Tn(t) = w(t)|S′n(t; ε)|Σ,

T ′n(t) = w(bntc/n)|S′n(bntc/n; ε)|Σ = w(bntc/n)|Sn(t; ε)|Σ,

with {εi} defined via (2.5.15), with | · |Σ = |Σ−1/2 · | and where S′n(t; ε) = (
∑bntc

i=1 εi−
t
∑n

i=1 εi)/n
1/2 is a minor modification of Sn(t; ε). Note the subtle difference that

Sn(t; ε) is piece-wise constant in t whereas S′n(t; ε) is not. As in the proof of Propo-
sition 2.57 we will tacitly assume that the long run covariance matrix Σ is the identity
matrix, i.e. that the error sequence is rescaled.

Horváth et al.(1999, Lemma 4.3) states that for strictly stationary and m-dependent
sequences, {εi}, there exist equivalent processes {χn(t, d), t ∈ (0, 1)}D={χ(t, d), t ∈
(0, 1)} (with χ(t, d) being defined via Brownian bridges as in (2.3.44)) such that

nα sup
t∈J

[t(1− t)]α|T 2
n(t)− χ2

n(t, d)| = OP (1) (2.5.41)

holds true for all α ∈ [0, δ] and some δ > 0. This yields

sup
t∈J1

|T 2
n(t)− χ2

n(t, d)| ≤ sup
t∈J1

[t(1− t)]−α
[

sup
t∈J1

[t(1− t)]α|T 2
n(t)− χ2

n(t, d)|
]

= OP ((ns)−α)

= OP (exp(−α(log n)1−ε1))

(2.5.42)

for some α > 0. From Csörgő & Horváth (1997, Theorem A.3.4) we know that

(2 log log n)−1/2 sup
t∈J1

χn(t, d) = 1 + oP (1),

(2 log log n)−1/2 sup
t∈J2

χn(t, d) = (1− ε1)1/2 + oP (1)
(2.5.43)
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hold true. On account of (2.5.41) with α = 0, we get from (2.5.43), that

(2 log log n)−1/2 sup
t∈J1

Tn(t) = 1 + oP (1),

(2 log log n)−1/2 sup
t∈J2

Tn(t) = (1− ε1)1/2 + oP (1)
(2.5.44)

and, as we will show further below, also that

(2 log log n)−1/2 sup
t∈J1

T ′n(t) = 1 + oP (1), (2.5.45)

(2 log log n)−1/2 sup
t∈J2

T ′n(t) = (1− ε1)1/2 + oP (1). (2.5.46)

Now, we choose any δn, γn and γ′n that fulfill

sup
t∈J

χn(t, d) = χn(δn, d),

sup
t∈J

Tn(t) = Tn(γn),

sup
t∈J

T ′n(t) = T ′n(γ′n)

and observe from (2.5.43) - (2.5.46) that

lim
n→∞

P (δn, γn, γ
′
n ∈ J1) = 1. (2.5.47)

Furthermore, (2.5.42) yields, in view of the first relation in (2.5.43), that

∣∣ sup
t∈J1

Tn(t)− sup
t∈J1

χn(t, d)
∣∣ = OP (exp(−(log n)1−ε2)), (2.5.48)

with any ε2 ∈ (ε1, ε
∗). This rate is slightly weaker since we have squared terms in

(2.5.42) and since the logarithmic sequence in (2.5.43) needs to be compensated to get
the rates for the non-squared expressions. The latter (2.5.48) implies

∣∣ sup
t∈J1

T ′n(t)− sup
t∈J1

χn(t, d)
∣∣ = OP (exp(−(log n)1−ε3)),

for any ε3 ∈ (ε2, ε
∗) due to∣∣ sup

t∈J1

T ′n(t)− sup
t∈J1

Tn(t)
∣∣ = OP ((log logn)1/2 exp(−(log n)1−ε1))

= OP (exp(−(log n)1−ε3)),
(2.5.49)

which will be shown further below. In view of (2.5.47) and (2.5.40) we can replace J1

with I or J in (2.5.49), respectively, and end up with

∣∣Mn(ε)− sup
t∈I

χn(t, d)
∣∣ =

∣∣ sup
t∈J

T ′n(t)− sup
t∈I

χn(t, d)
∣∣ = OP (exp(−(log n)1−ε3)).

The assertions follow now on replacing Mn(ε) by M̂n(ŷ) using (2.5.18), Corol-
lary 2.27 and Proposition 2.63 (see Subsection 2.5.3, below). Furthermore, we have to
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take the subsequent discussion into account. (Note that ε1 < ε2 < ε3 can be chosen
arbitrarily small and thus (2.3.51) holds true with any ε ∈ (0, 1).)

To complete the proof we need to justify relations (2.5.45), (2.5.46) and (2.5.49).
We observe that

sup
t∈J

w(bntc/n)
∣∣S′n(bntc/n; ε)− S′n(t; ε)

∣∣
≤
∣∣ n∑
i=1

εi
∣∣/n1/2

(
sup
t∈J
|bntc − t|/n

)(
sup
t∈J

w(bntc/n)
)

= OP (1)O(1/n)O(n1/2) = OP (n−1/2)

(2.5.50)

holds true by the central limit theorem. It remains to study

sup
t∈J1

∣∣w(bntc/n)S′n(t; ε)− w(t)S′n(t; ε)
∣∣

≤
(

sup
t∈J1

|w(bntc/n)/w(t)− 1|
)(

sup
t∈J

w(t)|S′n(t; ε)|
)
,

(2.5.51)

where supt∈J w(t)|S′n(t; ε)| = OP ((log logn)1/2) which follows from Horváth et al.(1999,
disp. (4.28)). Note that it holds that

sup
t∈J1

|w(bntc/n)/w(t)− 1|

≤ |w(bnsc/n)/w(s)− 1| = O(|[w(bnsc/n)/w(s)]2 − 1|).
(2.5.52)

Now, we set zn = bnsc and ξ = ns− bnsc and get

[w(zn/n)/w((zn + ξ)/n)]2 − 1

= [(zn + ξ)(n− zn − ξ)− zn(n− zn)]/[zn(n− zn)]

= [−2znξ + ξ(n− ξ)]/[zn(n− zn)]

= −2ξ/(n− zn) + [ξ/zn][(n− ξ)/(n− zn)] = O(1/zn) = O(1/(ns))

(2.5.53)

since |ξ| ≤ 1 and zn = o(n). Furthermore, it holds that

(log log n)1/2 exp(−(log n)1−ε1) ≤ exp(−(log n)1−ε3)

is equivalent to log((log log n)1/2) ≤ (log n)1−ε1(1 − (log n)ε1−ε3) and the latter is ful-
filled for sufficiently large n since ε3 > ε1. Hence, above relations (2.5.50) and
(2.5.51) combined with (2.5.52) and (2.5.53) yield (2.5.49) which then together with
(2.5.44) implies (2.5.45). It remains to show (2.5.46). Since |Sn(bntc/n; ε)| is a ran-
dom non-negative step function in t, and due to convexity of w(t), we have the relation

sup
t∈J l

w(bntc/n)|S′n(bntc/n; ε)|

= sup
t∈J l

w(t)|S′n(bntc/n; ε)|

= sup
t∈J l

w(t)|S′n(t; ε)|+OP (n−1/2),

(2.5.54)

where, in the last step, we tacitly repeated the arguments of (2.5.50). The second
relation of (2.5.44) holds also true if we replace the two-sided set J2 by the one-sided
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set J l. Hence, (2.5.54) together with the one-sided modification of (2.5.44) yield, in
probability and as n→∞,

(2 log log n)−1/2 sup
t∈J l

w(bntc/n)|S′n(bntc/n; ε)| = (1− ε1)1/2 + oP (1). (2.5.55)

Finally, to show (2.5.46), it remains to conclude that

(2 log log n)−1/2 sup
t∈Jr

w(bntc/n)|S′n(bntc/n; ε)| = (1− ε1)1/2 + oP (1) (2.5.56)

holds true. This follows on account of stationarity and symmetry similar to Propo-
sition 2.63 (cf. Subsection 2.5.3, below). Therefore, we define z

(n)
i := εn−i+1 and

observe that for all fixed n the sequences {z(n)
i }i∈N are strictly stationary and m-

dependent. Hence,

sup
t∈Jr

w(bntc/n)|S′n(bntc/n; ε)|

= sup
t∈J l

w(bntc/n)|S′n(bntc/n; z(n))|

D
= sup

t∈J l
w(bntc/n)|S′n(bntc/n; z(1))|

and (2.5.56) follows immediately via (2.5.55).

We turn to the behavior of M̂n(ŷ) under HA. The next proposition and corollary
form extensions of Berkes et al.(2009, Lemma 2), Aston & Kirch (2012a, Lemma 3.2),
Horváth et al.(2014) and Torgovitski (2015c, (8.12)). Proposition 2.58 will be used to
show consistency of our test under m-dependence and m-approximability.

Proposition 2.58. Let Assumption M1 or Assumption M2 together with the causal repre-
sentation (1.3.5) (in the latter case) hold true. It holds under HA that, as n→∞,

sup
x∈[0,1]

∥∥Sn(x;Y )/n1/2 −
%∑
j=1

Ggj (x)∆j

∥∥ = OP (n−1/2), (2.5.57)

where Ggj are defined in (2.3.52). Furthermore, it holds that

sup
x∈[0,1]

∥∥ %∑
j=1

Ggj (x)∆j

∥∥2
= sup

x∈[0,1]

[ %∑
j=1

G2
gj (x)

]
> 0. (2.5.58)

Proof of Proposition 2.58. Using, e.g., Jirak (2013) we observe under Assumption M2
that

sup
x∈[0,1]

‖Sn(x; ε)‖ = OP (1) (2.5.59)

holds true, as n→∞. Under Assumption M1 we can deduce (2.5.59) from the i.i.d.
case, e.g., by repeating the steps in the proof of Proposition 2.59 on p. 89, below. In
both cases (2.5.59) implies

sup
x∈[0,1]

∥∥( bnxc∑
i=1

Yi − (bnxc/n)
n∑
i=1

Yi
)
/n−

%∑
j=1

Ggj (x)∆j

∥∥
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≤ sup
x∈[0,1]

∥∥ bnxc∑
i=1

εi − (bnxc/n)

n∑
i=1

εi
∥∥/n

+

%∑
j=1

sup
x∈[0,1]

∣∣( bnxc∑
i=1

gj(i/n)− (bnxc/n)

n∑
i=1

gj(i/n)
)
/n− Ggj (x)

∣∣
= OP (n−1/2)

by the piecewise Lipschitz continuity of the gj ’s. Parseval’s identity yields (2.5.58).

Proof of Theorem 2.45. We proceed similarly as in the proof of Torgovitski (2016, Theo-
rem 3.7) but in a more general setting, using operators Ĉ−1/2,d. (Cf. also Torgovitski,
2015c, Theorem 4.7.) First, we observe

M̂n(ŷ) = max
1≤k<n

w(k/n)‖Ĉ−1/2,dSn(k/n;Y )‖

≥ max
1≤k<n

w(k/n)‖Ĉ−1/2,d′Sn(k/n;Y )‖

≥ w(1/2) max
1≤k<n

∣∣∣‖[Ĉ−1/2,d′β
1/2
h − C

−1/2,d′

α,βKβG

]
Sn(k/n;Y )/n1/2‖

− ‖C−1/2,d′

α,βKβG
Sn(k/n;Y )/n1/2‖

∣∣∣[n1/2(log log n)1/2

β
1/2
h (log log n)1/2

]
(2.5.60)

≥ w(1/2)
∣∣∣ max

1≤k<n
‖
[
Ĉ−1/2,d′β

1/2
h − C

−1/2,d′

α,βKβG

]
Sn(k/n;Y )/n1/2‖

− max
1≤k<n

‖C−1/2,d′

α,βKβG
Sn(k/n;Y )/n1/2‖

∣∣∣[ n1/2

β
1/2
h (log log n)1/2

]
(log log n)1/2.

Now, on the one hand, we get in view of Proposition 2.58

sup
x∈[0,1]

‖C−1/2,d′

α,βKβG
Sn(x;Y )/n1/2 − C

−1/2,d′

α,βKβG

%∑
j=1

Ggj (x)∆j‖ = oP (1),

and due to Assumption G (ii) we obtain

sup
x∈[0,1]

‖C−1/2,d′

α,βKβG

%∑
j=1

Ggj (x)∆j‖2 = sup
x∈[0,1]

d′∑
r=1

λ−1
r 〈

%∑
j=1

Ggj (x)∆j , vr〉2 > 0.

We get, on the other hand, that

max
1≤k<n

‖
[
Ĉ−1/2,d′β

1/2
h − C

−1/2,d′

α,βKβG

]
Sn(k/n;Y )‖/n1/2

≤ ‖Ĉ−1/2,d′β
1/2
h − C

−1/2,d′

α,βKβG
‖L max

1≤k<n
‖Sn(k/n;Y )‖/n1/2

≤ ‖Ĉ−1/2,d′β
1/2
h − C

−1/2,d′

α,βKβG
‖S max

1≤k<n
‖Sn(k/n;Y )‖/n1/2 = oP (1).

The last relation holds true in view of Corollary 2.34 and, again, due to Proposition 2.58.
The proof is finished since we have βh = oP (n/(log log n)) in (2.5.60).
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Proof of Corollary 2.50 (as given in Corollary 5.1 of Torgovitski, 2015c). The change cor-
rected statistic M̂n(ŷ∆) only differs in the first component of the scores from the origi-
nal statistic M̂n(ŷ). Hence, we obtain via the Cauchy-Schwarz inequality that

|M̂n(ŷ)− M̂n(ŷ∆)|
≤ max

1≤k<n
w(k/n)|Sn(k/n; ε̂)− Sn(k/n; ε̂∆)|Σ̂

= max
1≤k<n

w(k/n)‖Sn(k/n; ε)‖‖v̂1 − v̂∆1 ‖/|λ̂1|1/2

≤ max
1≤k<n

w(k/n)‖Sn(k/n; ε)‖‖v̂1‖|1− ‖v̂1 + nγ ŝû‖|+ ‖nγ û‖
‖v̂1 + nγ ŝû‖

1

|λ̂1|1/2

≤ 2 max
1≤k<n

w(k/n)‖Sn(k/n; ε)‖ ‖nγ û‖
‖v̂1 + nγ ŝû‖

1

|λ̂1|1/2
(2.5.61)

= OP ((log n)1/2n−1/2+γ) = oP ((log log n)−1/2), (2.5.62)

where we rely on Proposition 2.63 (cf. Subsection 2.5.3, below). In (2.5.61) we used
that

|1− ‖v̂1 + nγ ŝû‖| = |‖v̂1‖ − ‖v̂1 + nγ ŝû‖| ≤ ‖nγ û‖

and that the eigenfunctions are normalized, i.e. ‖v̂1‖ = 1. Furthermore, we have

‖nγ û‖ = max
1≤k<n

‖Sn(k/n; ε)‖n−1/2+γ = OP (n−1/2+γ) = oP (1)

in view of (2.5.59) and since γ < 1/2. Finally, note that the first step in (2.5.62) holds
true due to λ̂1 = λ1 + oP (1) and due to ‖v̂1‖ = ‖v1‖ + oP (1) = 1 + oP (1) , which are
both consequences of ‖C − Ĉ ‖S = oP (1).

Proof of Theorem 2.51 (as given in Theorem 5.2 of Torgovitski, 2015c). The relations in
(2.5.57) and (2.5.58) yield that

‖û‖ = max
1≤k<n

‖Sn(k/n;Y )/n1/2‖ = sup
x∈[0,1]

[ %∑
j=1

G2
gj (x)

]1/2
+ oP (1) =: S + oP (1)

and, similarly, that ‖v̂1/n
γ + ŝû‖ = S + oP (1) with S > 0 since γ > 0 and ‖v̂1‖ =

1. It is sufficient to consider the behavior of the statistic in the first direction which
corresponds to

M̂n(ŷ∆)

≥ max
1≤k<n

w(k/n)|〈Sn(k/n;Y )/n1/2, v̂1/n
γ + ŝû〉|

× |(n/ log logn)/λ̂1|1/2

‖v̂1/nγ + ŝû‖
(log log n)1/2

≥ w(1/2)
∣∣∣ max

1≤k<n
|〈Sn(k/n;Y )/n1/2, v̂1/n

γ〉|

− max
1≤k<n

|〈Sn(k/n;Y )/n1/2, û〉|
∣∣∣ |(n/ log log n)/βh|1/2|βh/λ̂1|1/2

‖v̂1/nγ + ŝû‖
(log log n)1/2.



2 . 5 . P R O O F S 8 6

Via (2.5.57) we observe, on the one hand, that

max
1≤k<n

|〈Sn(k/n;Y )/n1/2, v̂1/n
γ〉|

‖v̂1/nγ + ŝû‖
≤ ‖û‖
‖v̂1/nγ + ŝû‖

‖v̂1‖
nγ

= OP (1)OP (n−γ)

and, on the other hand, by evaluating at k = k̂, that

max
1≤k<n

|〈Sn(k/n;Y )/n1/2, û〉|
‖v̂1/nγ + ŝû‖

≥ ‖û‖ ‖û‖
‖v̂1/nγ + û‖

= S + oP (1).

Finally, let (λj , vj) be the eigenelements of Cα,βKβG with α = limn→∞ 1/βh, where
βh, βK, βG are set as in (2.3.30) and recall the convergence of the first eigenvalue λ̂1

due to (2.3.31) in Corollary 2.34. The assertion follows by (n/ log logn)/βh →∞ and
by P (|λ̂1/βh| < 2λ1)→ 1, as n→∞, where λ1 > 0 in view of Assumption G (i).

2.5.3Auxiliary results for proofs
(Convergence rates for partial sums of Hilbert space time series)

This section contains limit theorems for weighted partial sums that were used in the
previous subsection. All proofs are given at the end of this section.

Proposition 2.59. Let {εi}i∈Z fulfill Assumption M1 with κ = 2.1 Then it holds that, as
n→∞,

max
1≤k≤n

∥∥ k∑
i=1

εi
∥∥/k1/2 = OP

(
(log log n)1/2

)
and, similarly, the time-inversed partial sums fulfill

max
1≤k<n

‖
k∑
i=1

ε−i‖/k1/2 = OP
(
(log log n)1/2

)
since {ε−i}i∈Z fulfills Assumption M1 with κ = 2, too.

Proposition 2.59 is proven under Assumption M1 using the law of the iterated
logarithm.2 We need also an analogue of this result under Assumption M2. However, it
seems that no law of iterated logarithm is proven in the infinite dimensional setting, i.e.
when dH =∞, under the generality of Assumption M2. To this end we follow another
rather general and well known approach to state a result in Proposition 2.62 which
is similar to Proposition 2.59 by using a combination of theorems of Móricz (1976),

1 Note that Assumption M1 relies on Assumption S1 which was formally restricted to κ > 2 for the
sake of a clearer presentation in Subsection 2.3.3. In this section we may tacitly assume κ = 2 to be also
admissible.

2 Note that in finite dimensional frameworks the (log log n)1/2-rate is implied by Darling-Erdős-type
results. We are not aware of any suitable extensions of finite-dimensional Darling-Erdős-type results to our
infinite dimensional situation of dH =∞.
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Fazekas & Klesov (2001) and of Berkes et al.(2011). The rates are slightly weaker but
the result is still interesting on its own. Proposition 2.62 will be a consequence of the
next Proposition 2.60 together with Proposition 2.61 and is essentially based on rates
for moments of unweighted partial sums. To be more specific, we will assume that

E
∥∥ n∑
i=1

εi
∥∥κ = O(nκ/2) (2.5.63)

holds true for some κ > 2 and as n→∞. We begin with a proposition under broad
conditions to provide a connection of (2.5.63) to maxima of partial sums.

Proposition 2.60. Let {εi}i∈Z be an H-valued time series such that (2.5.63) holds true
for some κ > 2. Then it holds that, as n→∞,

max
1≤k≤n

∥∥ k∑
i=1

εi
∥∥/k1/2 = OP

(
(log n)1/κ

)
. (2.5.64)

Proposition 2.61. Let {εi}i∈Z fulfill Assumption M2 with some κ ≥ 2. Then (2.5.63)
holds true.

Proposition 2.62. Let {εi}i∈Z fulfill Assumption M2 with some κ > 2. Then it holds
that, as n→∞,

max
1≤k<n

‖
k∑
i=1

εi‖/k1/2 = OP ((log n)1/2)

and similarly the time-inversed partial sums fulfill

max
1≤k<n

‖
k∑
i=1

ε−i‖/k1/2 = OP ((log n)1/2)

since {ε−i}i∈Z fulfills Assumption M2 with same parameter κ, too.

The next proposition is a consequence of the previous Proposition 2.59 and Proposi-
tion 2.62.

Proposition 2.63. It holds under Assumption M1 or Assumption M2 that, as n→∞,

max
1≤k<n

w(k/n)‖Sn(k/n; ε)‖ = OP (g(n)),

with g(n) = (log log n)1/2 in the former and g(n) = (log n)1/2 in the latter situation.

Remark 2.64. Rates such as (2.5.63) are shown in the functional framework by Berkes
et al. (2013, cf. Theorems 3.1 and 3.3) for causal m-approximable time series with
any κ ∈ (2, 3) in which case (2.5.64) holds true. Since we need (2.5.64) also for time-
inversed series {ε−i}i∈Z in Subsection 2.5.2, we state a corresponding extension of
Berkes et al.(2013, Theorem 3.3) for the non-causal case in Proposition 2.61.
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Furthermore, note that Berkes et al.(2013, Theorem 3.3) is stated without an explicit
proof. The authors refer instead to the related proof of Theorem 3.1 which deals with
m-dependent approximations and is not adequate for our purposes. It could be possible
to adapt Theorem 3.3 of Berkes et al.(2013) to the non-causal case via Theorem 3.1 but,
on the one hand, it would be an unnecessary detour, and on the other hand, it is easy
to see that substantial modifications would be required. Thus, it appears to be more
transparent and simpler to rely directly on Berkes et al. (2011, Proposition 4) for our
purposes. The latter is a univariate two-sided version of Berkes et al. (2013, Theorem
3.3).

The next proposition is not related to the previous Propositions 2.59-2.63 but is used
in Subsection 2.5.2 as well.

Proposition 2.65. Let {εi}i∈Z be an H-valued, centered time series such that

n∑
i,j=1

|E〈εi, εj〉| = O(n) (2.5.65)

holds true as n→∞. Furthermore, let {an,i}n,i∈N, an,i ∈ R, be an array which fulfills

nν/2 max
1≤i≤n

|an,i| = O(1),

ν ≥ 0, as n→∞. Then it holds that E‖
∑n

i=1 an,iεi‖2 = O(n1−ν) as n→∞.

Remark 2.66 (on condition (2.5.65) of Proposition 2.65). Condition (2.5.65) holds
true in both cases of Assumption M1 and Assumption M2 for the following reasons.
Under stationarity we have

n∑
i,j=1

|E〈εi, εj〉| ≤ n
n∑
r=1

|E〈ε0, εr〉|

and |E〈ε0, εr〉| ≤ E‖ε0‖2. Now, on the one hand, |E〈ε0, εr〉| = 0 holds true for r > m
under Assumption M1 due to m-dependence. On the other hand, |E〈ε0, εr〉| ≤ cδ(r),
c > 0, holds true in the setting of Assumption M2. The latter follows via the basic
decomposition

〈ε0, εj〉 = 〈ε0 − ε(j)
0 , εj〉+ 〈ε(j)

0 , εj − ε(j)
j 〉+ 〈ε(j)

0 , ε
(j)
j 〉 (2.5.66)

which yields

|E〈ε0, εj〉| ≤ E‖ε0 − ε(j)
0 ‖‖εj‖+ E‖εj − ε(j)

j ‖‖ε
(j)
0 ‖+ E〈ε(j)

0 , ε
(j)
j 〉

≤ 2
[
E‖ε0 − ε(j)

0 ‖
2E‖ε0‖2

]1/2
≤ cδ(j)

for all j ∈ N and some c > 0.

We turn to the proofs of Propositions 2.59 - 2.65.
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Proof of Proposition 2.59. For any k ∈ N we decompose

k∑
i=1

εi =

Nk,1∑
j=1

ε̃j,1 + . . .+

Nk,m+1∑
j=1

ε̃j,m+1

into (m+ 1) partial sums of i.i.d. random variables ε̃j,r := ε(j−1)(m+1)+r and where
Nk,1, . . . , Nk,m+1 ∈ N are set in an obvious manner. We observe

max
1≤k≤n

‖
k∑
i=1

εi‖/k1/2 ≤ max
1≤i≤(m+1)

[
max

1≤k≤n
1{Nk,i 6=0}‖

Nk,i∑
j=1

ε̃j,i‖/N1/2
k,i

]
× (m+ 1) max

1≤i≤(m+1)

[
max

1≤k≤n
Nk,i/k

]1/2

≤ (m+ 1) max
1≤i≤(m+1)

max
1≤k≤n

‖
k∑
j=1

ε̃j,i‖/k1/2.

Hence, an application of the law of iterated logarithm for i.i.d. Hilbert space random
elements (cf., e.g., Theorem 8.6 of Ledoux & Talagrand, 1991) completes the proof.

Proof of Proposition 2.60. This is a simplified »in expectation« version of the correspond-
ing proof of Torgovitski (2016, Proposition 3.11). The well-known results of Móricz
(1976) state that moment inequalities for partial sums yield analogous moment inequal-
ities for maxima of partial sums. As shown, e.g., in Section B.1 of Kirch (2006) those
results may be combined with Fazekas & Klesov (2001, Theorem 1.1) to obtain Hájek-
Rényi type inequalities for weighted maxima of partial sums. The mentioned results
are stated for univariate real-valued random variables. However, carefully inspecting
the proofs of Móricz (1976, Theorem 1) and of Fazekas & Klesov (2001, Theorem 1.1)
we observe that they can be restated in our Hilbert space setting with κ > 2, as well.
Therefore, Móricz (1976, Theorem 1) together with assumption (2.5.63) yield

E
[

max
1≤k≤n

∥∥ k∑
i=1

εi
∥∥κ] ≤ c1n

κ/2

for all n ∈ N and some c1 > 0. Next, we use nκ/2 = O(
∑n

k=1 k
κ/2−1) and apply

Fazekas & Klesov (2001, Theorem 1.1), taking (2.5.63) into account, to obtain,

E
[

max
1≤k≤n

∥∥ k∑
i=1

εi
∥∥κ/k1/2

]
≤ c2

n∑
k=1

k−1 ≤ c3 log n,

for all n ∈ N and some c2, c3 > 0 which finishes the proof.

Proof of Proposition 2.61. The assertion follows directly by a straightforward extension
of Berkes et al.(2011, Proposition 4). More details on this extension were given previ-
ously in Proposition 3.9 of Torgovitski (2016, arXiv:1407.3625v1) under the restriction
of κ ∈ [2, 3), which relies on Berkes et al. (2013, Lemma 3.1). One of the authors (G.
Rice, in a private communication) pointed out that the application of the latter lemma
can be easily avoided in our situation and thus the result holds true for all κ ≥ 2 (cf.
also Section A of Aue et al., 2015).



2 . 5 . P R O O F S 9 0

Proof of Proposition 2.63. We adapt the proof of Torgovitski (2015a, Lemma 6.2) to
both m-dependent and m-approximable scenarios. In the following we use (again) the
shifting technique that helped us several times within this chapter. Set z

(n)
i := εn−i+1

and observe that for any fixed n ∈ N the sequences {z(n)
i }i∈N are again strictly sta-

tionary and fulfill Assumption M1 or Assumption M2, respectively. Now, observe that
due to symmetry and stationarity we obtain

max
1≤k<n

w(k/n)
∥∥Sn(k/n; ε)

∥∥
≤ max

1≤k≤n/2
w(k/n)

∥∥Sn(k/n; ε)
∥∥+ max

n/2≤k<n
w(k/n)

∥∥Sn(k/n; ε)
∥∥

≤ max
1≤k≤n/2

w(k/n)
∥∥Sn(k/n; ε)

∥∥+ max
1≤k≤n/2

w(k/n)
∥∥Sn(k/n; z(n))

∥∥,
where

max
1≤k≤n/2

w(k/n)
∥∥Sn(k/n; z(n))

∥∥ D= max
1≤k≤n/2

w(k/n)
∥∥Sn(k/n; z(1))

∥∥,
and also that

max
1≤k≤n/2

w(k/n)
∥∥Sn(k/n; ε)

∥∥
≤ max

1≤k≤n/2
(n/(n− k))1/2

∥∥ k∑
i=1

εi
∥∥/k1/2

+ max
1≤k≤n/2

(n/(n− k))1/2(k/n)1/2
∥∥ n∑
i=1

εi
∥∥/n1/2

≤ 4 max
1≤k≤n

∥∥ k∑
i=1

εi
∥∥/k1/2 (2.5.67)

holds true for all n ∈ N. In the situation of Assumption M2 we obtain the OP (g(n))
bound for (2.5.67) via Proposition 2.62 and in the situation of Assumption M1 we may
rely on Proposition 2.59. Finally, the same rate applies to

max
1≤k≤n/2

w(k/n)‖Sn(k/n; z(1))‖

and thus the proof is complete.

Proof of Proposition 2.65. It holds that E‖
∑n

i=1 an,iεi‖2 ≤
∑n

i,j=1 |an,i||an,j ||E〈εi, εj〉|,
which directly implies the assertion.
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2.6Notes
(Relation of this chapter to previous

publications and preprints)
As explained in the general introduction of Chapter 1 (and in the introduction in Section 2.1 of Chapter 2)
within this chapter we combined and extended the findings of Torgovitski (2015a, 2016, 2015c) to establish
a unifying theory and to embed all our results of this chapter in the same Hilbert space change point setting.
For the sake of clarity and for convenience we provide the details of the relations between this chapter and
Torgovitski (2015a, 2016, 2015c), below. Many results are new derivations from the aforementioned works
and also their presentation is different. Furthermore, note that some proofs in this chapter are substantial
modifications and extensions (with notational adaptations) of the proofs presented in the latter articles,
whereas others are only notational or technical adaptations. For this reason several proofs in Section 2.5
contain separate references to the previous publications, as well.

Assumptions: Assumption 2.4 and Assumption G are new. Assumptions S1, M1 and M2 combine
our general assumptions in Torgovitski (2015c) with Assumption M in Torgovitski
(2016) and Assumption 1 in Torgovitski (2015a). Assumption S1’, Assumption M1’
and Assumption M2’ are implicitly contained in Torgovitski (2015a, 2016, 2015c). As-
sumption 2.11 is implicitly contained in (3.1) in Torgovitski (2015c). Assumption 2.13
and Assumption E2 are implicitly contained in Torgovitski (2015a, 2016, 2015c). As-
sumption E1 is implicitly assumed in Torgovitski (2015c). Assumption E3 corresponds
to (3.5) of Torgovitski (2015a). Assumption E3’ extends Assumption 4.1 from Tor-
govitski (2015c). Assumption K1 originates from (3.2) of Torgovitski (2015a) and its
counterpart Assumption K2 is closely related to assumptions of Torgovitski (2016, Sec-
tion 4) and Torgovitski (2015c, p. 6). Assumption PB is partly contained in Theorem
4.1 of Torgovitski (2016).

Definitions: The Definitions 2.14, 2.15 and 2.17 are implicitly used in Torgovitski (2015a, 2016)
and in Torgovitski (2015c).

Theorems: Theorem 2.24 extends Theorem 4.1 of Torgovitski (2016). Theorem 2.32 extends
both Theorem 8.3 of Torgovitski (2015c) and Lemma 3.3 of Torgovitski (2015a) and
is indicated in this generality in the former article. Theorem 2.40 combines Theorem
4.1 of Torgovitski (2015a) with Theorem 3.4 of Torgovitski (2016). Theorem 2.43
corresponds to Theorem 4.2 of Torgovitski (2015a). Theorem 2.45 combines and
extends Theorem 4.4 of Torgovitski (2015a), Theorem 3.7 of Torgovitski (2016) as
well as Propositions 4.6 and 4.7 of Torgovitski (2015c). Theorem 2.51 adapts Theorem
5.2 of Torgovitski (2015c). Theorem 2.56 extends Theorem 8.3 from Torgovitski
(2015c) and is indicated therein in this generality.

Propositions: Proposition 2.22 corresponds to Proposition 3.1 of Torgovitski (2015a). Proposi-
tion 2.54 is implicitly contained in Proposition 4.2 of Torgovitski (2015c). Propo-
sition 2.57 combines Lemma 6.3 of Torgovitski (2015a) and (3.7) with Theorem 3.10
of Torgovitski (2015c). Proposition 2.58 extends Torgovitski (2015c, (8.12)) and is
indicated therein in this generality. (Cf. also Torgovitski, 2015a, Lemma 6.8.) Proposi-
tion 2.59 is contained in Lemma 6.2 of Torgovitski (2015a). Propositions 2.60, 2.61,
2.62 and 2.63 extend Propositions 3.11 and 3.12 as well as Corollary 3.13 of Torgovit-
ski (2016) and Lemma 6.2 of Torgovitski (2015a). Proposition 2.65 slightly extends
Proposition 8.1 from Torgovitski (2015c). Note that a similar argument was used in
the proof of Torgovitski (2015a, Lemma 3.3).

Lemmas: Lemma 2.55 extends Lemma 8.2 from Torgovitski (2015c) and is indicated therein in
this generality.

Corollaries: Corollary 2.26 extends Theorem 4.1 (and the subsequent discussion) of Torgovitski
(2016). Corollary 2.27 is new and merges Theorem 4.1 of Torgovitski (2016) with
Corollary 3.2 of Torgovitski (2015a) and with Proposition 4.2 of Torgovitski (2015c).
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Corollary 2.34 extends Lemma 3.3 of Torgovitski (2015a). The one-directional case is
used implicitly in Proposition 4.7 of Torgovitski (2015c). Corollary 2.42 corresponds
to Corollary 4.3 of Torgovitski (2015a) and is indicated in Torgovitski (2016). Corol-
lary 2.50 adapts Corollary 5.1 of Torgovitski (2015c).

Examples: Example 2.23 is new but is implicitly contained in Section 4 of Torgovitski (2016).
Example 2.33 is new.

Remarks: Remarks 2.1, 2.2, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.12, 2.19, 2.20, 2.25, 2.28, 2.29, 2.30,
2.31, 2.35, 2.39, 2.41, 2.44, 2.46, 2.47 and 2.52 are new. Remark 2.3 stays close to
the introduction in Torgovitski (2015a). Remarks 2.53, 2.16 and 2.18 are implicitly
contained in Torgovitski (2015a, 2016) and in Torgovitski (2015c). Remark 2.21 is im-
plicitly used in Torgovitski (2015c) and in Torgovitski (2016). Remarks 2.36, 2.37 and
2.38 are partly (implicitly) contained in Torgovitski (2015a, 2016). Remark 2.48 and
Remark 2.49 are new but related to Remark 4.5 of Torgovitski (2015a). Remark 2.64
is close to Torgovitski (2016, p. 9). Remark 2.66 was implicitly used in Theorem 8.3
of Torgovitski (2015c).

Figures and Tables: Figure 2.1 is new. Figures 2.2, 2.3, 2.4 and 2.5 are also new but related to the Tables
in Torgovitski (2015a, 2016). Finally, Table 2.1 is new.



CHAPTER3
CHANGE POINT ESTIMATION FOR

HILBERT SPACE VALUED DATA

“ Common breaks in panel data are wide spread phenomena. For ex-
ample, a credit crunch or debt crisis may affect every company’s stock
returns, and an oil price shock may impact every country’s output. A
tax policy change may alter each firm’s investment incentive. A fad or
fashion can influence a large section of the society.

— BAI (2010, P. 78)

3.1Introduction
In this chapter we assume a model of d ∈ N panels

{Y1,k, . . . , Yn,k}k=1,...,d (3.1.1)

of similarly structured time series of length n ∈ N and we focus on a »common change
in the means« model, where we assume that a change occurs simultaneously within
some fraction of the panels (3.1.1) at the same time point u ∈ {1, . . . , n− 1}. Moreover,
we assume that all affected panels have on average a comparable change magnitude
(see (3.2.6) and (3.2.9), below). Bleakley & Vert (2011a, p. 1) emphasize that such
settings, and especially multiple change point extensions thereof, are important in many
applications (e.g. in image processing and for the analysis of genomic profiles). Our
interest is, as in the latter article, to study »accuracy« of a change point estimate û for
a common change point u, where accuracy denotes P (û = u). We consider a HDLSS
asymptotic framework, where the sample size n is fixed and the dimension d, i.e. the
number of panels, increases. Asymptotic accuracy of change point estimates û = ûd
in such an asymptotic framework, i.e. limd→∞ P (û = u), was only recently addressed
in the literature and to the best of our knowledge first results are by Bai (2010) and
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by the already mentioned Bleakley & Vert (2010, 2011a).1 Motivated by studies of
segmentation methods for genomic profile data, Bleakley & Vert (2010) sought for
multiple change point estimates that provide a trade-off between, on the one hand,
the faster but less accurate local methods (such as binary segmentation) and, on the
other hand, the slower but more accurate global approaches (such as least squares
methods). As a solution Bleakley & Vert (2010, 2011a) came up with a global »total
variation denoising« method2 which is a multivariate extension of the LASSO-type
suggestion of Harchaoui & Lévy-Leduc (2008). Empirical studies in Bleakley & Vert
(2011a) demonstrate promising computational properties and a rather high accuracy
of this estimate. (Note that the contributions of this chapter rely largely on the latter
work.)

Analogously to Chapter 2 this chapter combines and extends the results of Torgovit-
ski (2015d) and of the corresponding preprints Torgovitski (2015d, arXiv:1501.00177v1,
1501.00177v2). The theory of the latter articles is furthermore simplified and presented
in more detail. The various directions of generalizations will be explained later on. First,
note that we focus on a class of weighted CUSUM estimates whereas Bleakley & Vert
(2010, 2011a) consider weighted, penalized least squares estimates. We will discuss
that both types of estimates are equivalent for panels of real-valued univariate time
series under a single change point scenario (see p. 114, below), which is a known result
in the traditional real-valued univariate setting. Due to this equivalence most of our
results for CUSUM estimates - restricted to the real-valued univariate setting - apply to
the total variation denoising approach and vice versa, i.e. the results of Bleakley & Vert
(2010, 2011a) may be interpreted for the CUSUM estimates as well. Note that Bleakley
& Vert (2010, 2011a) consider an i.i.d. single change point setting under Gaussianity
and derive sharp conditions on change point locations and change sizes that ensure
limd→∞ P (û = u) = 1 for the weighting w0, which is defined in (1.2.1). Furthermore,
Bleakley & Vert (2011a) show that the Darling-Erdős-type weighting function w1/2,
which is also defined in (1.2.1), leads asymptotically to a higher accuracy than w0 and
ensures

lim
d→∞

P (û = u) = 1 (3.1.2)

under broad assumptions on change point locations and change sizes. In this thesis we
will extend the findings of Bleakley & Vert (2010, 2011a) to a non-parametric setting
of panels of weakly dependent Hilbert space valued time series that share the same
autocovariance structure. First, we will show for weighted CUSUM estimates that the
asymptotic accuracy properties (3.1.2) are determined analytically by the shape of the
so-called »critical function« C (cf. Definition 3.5, below, and see also Torgovitski, 2015d,
arXiv:1501.00177v1). Based on this observation we derive sharp bounds for asymp-
totic accuracy of estimates with traditional CUSUM weights wγ , γ ∈ (0, 1/2) (as set in
(1.2.1)), which extend the bounds for w0 and w1/2 of Bleakley & Vert (2011a). More-
over, we propose a new covariance-based weighting scheme w? that ensures (3.1.2)
within a rather broad range of dependence models under the same assumptions on the
change locations and magnitudes as required for the weighting w1/2 in the i.i.d. setting.
(In this sense these weights w? are optimal.) The admissible dependence models are

1 See also Hadri et al.(2012) and Kim (2014).
2 A penalized least squares method with a »total variation penalty«.
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characterized by a monotonicity property of the so-called »variance of cumulated noises«.
This property holds true for panels of MA(1) time series and for further (small) devi-
ations from the i.i.d. assumption. Furthermore, we will see that weights w? coincide
with the Darling-Erdős-type weights w1/2 in a white noise setting but outperform the
latter weights in terms of asymptotic accuracy for dependent data under the mentioned
monotonicity condition. Note that w1/2 necessarily leads to spurious estimation under
dependence if the change is sufficiently small. Finally, notice that we indicate in Torgov-
itski (2015b,d) that our findings are applicable to random changes, to multiple changes
and to spatial data settings, as well. Particularly, our findings may serve as a motivation
for further studies of covariance-based weightings for the group fused LASSO approach
in multiple change point settings.

As in Section 2.1 and for convenience of the reader, we explain some main similari-
ties and differences between this chapter, Torgovitski (2015d) and Torgovitski (2015d,
arXiv:1501.00177v1, 1501.00177v2, 1501.00177v3). First, note that the final publica-
tion Torgovitski (2015d) includes a common factor model which is not contained in the
corresponding preprints. Also note that the signal plus noise model in the latter article is
only stated for panels of univariate time series but that a Hilbert space panel data model
is indicated in the preprints Torgovitski (2015d, arXiv:1501.00177v1, 1501.00177v2).
In all these publications, monotonicity conditions for uniform accuracy are only eval-
uated for MA(1) time series. Finally, note that the estimation of the covariance-based
weighting scheme is, for one thing, only discussed informally in all previous publications
and, for another, restricted to a univariate setting. In this chapter most of the results
of Torgovitski (2015d) and of the corresponding preprints are extended to panels of
Hilbert space valued time series including common factors. Our theoretical results are
stated in a more convenient time-rescaled setting which simplifies the presentation sub-
stantially. Furthermore, we provide a convenient expression for the covariance-based
weighting function w? which clarifies its relation to the Darling-Erdős-type weighting
function w1/2 and also allows for an elegant verification of the monotonicity conditions.
The latter conditions are evaluated for MA(q) and AR(1) time series. Particularly the
AR(1) case provides new counterexamples that show the limits of the presented theory.

We will provide additional details on the relation between the results of this chapter
and the results in Torgovitski (2015d) at the end of this chapter in Section 3.6.
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Structure of the chapter

We begin by introducing our common change point panel model in Section 3.2 where
we start with a Hilbert space signal plus noise setting, present our general assumptions
in Subsection 3.2.1 and proceed with CUSUM estimates in Subsection 3.2.2. The corre-
sponding theory is presented in Section 3.3. Here, we start with our key result on the
»critical function« in Theorem 3.6 which involves the »variance of cumulated noises« and
forms the basis for most of the subsequent considerations. Properties of the variance
of cumulated noises are discussed in Subsection 3.3.1 and then consistency properties
of estimates are derived in Subsection 3.3.2. The first part of the latter subsection is
on pointwise asymptotic accuracy of classical weightings whereas the second part is on
uniform asymptotic accuracy of new covariance-based weightings as well as on consis-
tency of their estimates. This section is complemented by a discussion of the relation
between the weighted CUSUM and the weighted »group fused LASSO« approaches in
Subsection 3.3.3. Some simulation results are shown in Section 3.4. All proofs are given
at the end of this chapter in Section 3.5. Finally, some notes on the relation to the
previous publications and preprints complement this chapter in Section 3.6.
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3.2A change point problem
3.2.1Signal plus noise model (with common factors)

We assume a signal plus noise panel design with Hilbert space valued time series and
with common factors given byY1,1 · · · Y1,d

...
. . .

...
Yn,1 · · · Yn,d


=

m1,1 · · · m1,d
...

. . .
...

mn,1 · · · mn,d

+

ε1,1 · · · ε1,d
...

. . .
...

εn,1 · · · εn,d

+

γ1ζ1 · · · γdζ1
...

. . .
...

γ1ζn · · · γdζn

,
(3.2.1)

where n is the time parameter and d is the number of panels.1 The εi,k ’s are centered
noise terms, the mi,k ’s are means (or signals), the ζi’s are »common factors« and the γk ’s
are »factor loadings«. Beside the scalars γk ∈ R, we assume that all random elements
are Hilbert space valued and that the underlying Hilbert space H is the same within
all panels. (As before, the inner product is denoted by 〈v, w〉H for v, w ∈ H and the
corresponding norm by ‖v‖H . The subscripts will be suppressed if the context allows
us to do so.) We may also allow for a »mixed panel« setting, i.e. the state spaces to be
different in different panels. However, this would lead to more notation and distract
from our main ideas. We will get back to this more flexible setting briefly in Remark 3.8,
below.2

The presented theory is motivated by the penalized least squares method of Bleakley
& Vert (2010, 2011a) that is designed for a multiple (common) change point model

mi,k =


µ1,k, i = 1, . . . , u1,

µ2,k, i = u1 + 1, . . . , u2,

. . . , . . . ,

µp+1,k, i = up + 1, . . . , n,

(3.2.2)

where 1 ≤ p < n, 1 ≤ k ≤ d and n ≥ 3.3 The ur (for 1 ≤ r ≤ p) are change points for
which level-shifts µr,l 6= µr+1,l hold true for some panels 1 ≤ l ≤ d and where l may
depend on r. Bleakley & Vert (2010) study their method theoretically in a (restricted)
single common change point scenario, i.e. for p = 1, and within this setting it turns
out to correspond to a traditional CUSUM approach. (Cf. Subsection 3.3.3, below.) Our
theory extends Bleakley & Vert (2011a) and is restricted to the single common change
point framework as well. Since we are focusing on CUSUM procedures in this thesis,

1 This is a generalization of Torgovitski (2015d) where panels are univariate. The Hilbert space setting
is briefly sketched in Torgovitski (2015d, arXiv:1501.00177v2) but without common factors.

2 Cf. Section 2.4 of Torgovitski (2015d, arXiv:1501.00177v2).
3 The penalized least squares method of Bleakley & Vert (2010, 2011a) extends the class of total variation

denoising approaches and is reformulated as a group fused LASSO method, i.e. as a regression problem.
(Cf. Subsection 3.3.3, below.)
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we state our theory with respect to CUSUM-type estimates and justify the relation to
the penalized least squares approach of Bleakley & Vert (2011a) afterwards. (Note that
the latter approach is restricted to a univariate real-valued panel data setting.)

Notation 3.1 (Signal plus noise model in the matrix notation). Our primary interest
is to study estimates ûr for change points ur for fixed n and as d→∞. Particularly,
we will focus on traditional weighted CUSUM estimates that will be introduced in (3.2.7)
and (3.2.8), below. Later on in Subsection 3.3.3, we will take a closer look at the total
variation denoising approach of Bleakley & Vert (2010, 2011a) where a (re-)formulation
of the signal plus noise model (3.2.1) in the matrix notation

Y =M+ E (3.2.3)

with entries Mi,k = mi,k and Ei,k = εi,k + γkζi will be useful. Furthermore, we will
use Y•,k = [Y1,k, . . . , Yn,k]

′, E•,k = [E1,k, . . . , En,k]′ and Yi,• = [Yi,1, . . . , Yi,d], Ei,• =
[Ei,1, . . . , Ei,d] to denote the columns and the rows of the matrices Y and E . We already
worked with this matrix notation in Torgovitski (2015d) (cf. also Bleakley & Vert, 2010).

To state our basic conditions on the panels more precisely, we follow Torgovitski
(2015d) and introduce the »cumulated noises«

Sn(x ; E) =

bnxc∑
j=1

(Ej,• − Ēn,•)/n1/2 = [Sn,1(x ; ε), . . . ,Sn,d(x ; ε)]′

with Ēn,• =
∑n

i=1 Ei,•/n. The contribution of the k-th panel is here defined by

Sn,k(x ; ε) =

bnxc∑
j=1

(εj,k − ε̄n,k)/n1/2

with ε̄n,k =
∑n

i=1 εi,k/n for all k ∈ N. Furthermore, the variable x ∈ In denotes values
on the grid In, where

In = {1/n, 2/n, . . . , (n− 1)/n} ⊂ (0, 1) (3.2.4)

is a discrete time domain. (We will explain why we work with Sn,k(x ; ε), x ∈ In, rather
than with Sn,k(x; ε), x ∈ (0, 1), in Remark 3.11, below.1)

Assumption N1 (on the noise).

1. The noise terms {εi,k}i,k∈N are centered with same second moments E‖εi,k‖2 =
σ2, σ ∈ (0,∞), for all i, k ∈ N, and have uniformly bounded finite fourth moments

sup
i,k∈N

E‖εi,k‖4 <∞.

1 One should be aware that the domain of x always depends on n but that this dependence is sup-
pressed in the notation of x .
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2. The second moments of cumulated noises are independent of the panel k and of
the time point x , i.e.

E‖Sn,1(x ; ε)‖2 = E‖Sn,k(x ; ε)‖2

for all k ∈ N and all x ∈ In. We define

V (x) = (E‖Sn,1(x ; ε)‖2)1/2/σ (3.2.5)

for all x ∈ In and call V 2 the standardized »variance of cumulated noises«1.

Assumption CF (on common factors). The array of noises {εi,k}i,k∈N and the se-
quence of common factors {ζi}i∈N are independent of each other. The latter sequence
is mean zero and fulfills E‖ζi‖4 <∞ for all i ∈ N. Furthermore, the factor loadings
γk satisfy, as d→∞,

d∑
k=1

γ2
k/d = o(1).

3.2.2The estimation problem

As indicated previously, we work in a single common change point scenario where we
assume the means to follow the model

mi,k =

{
µ1,k, i = 1, . . . , u,

µ2,k, i = u+ 1, . . . , n
(3.2.6)

in all panels 1 ≤ k ≤ d and with n ≥ 3. The time point u is called a »common change
point« since it is the only possible location for a jump in the mean µ1,k 6= µ2,k. Note
that for real-valued and univariate panels this corresponds to the multivariate abrupt
change alternative introduced in (1.1.2).

Notation 3.2 (Change point location). Instead of working with u ∈ {1, . . . , n−1}, we
will often use the rescaled time domain (3.2.4) and thus work with the rescaled common
change point that will be denoted by s = u/n ∈ In. (Notice also the symmetric version
ς(s) = max{s, 1− s} that we will use, e.g., in Proposition 3.20, below.)

As an estimate û for the change point u, we consider a Hilbert space version of a
classical weighted CUSUM estimate which is defined to be any element

û ∈ arg max
1≤i<n

w(i/n)T (i/n) (3.2.7)

and where the detector is defined as

T (x) = T (x ;Y ) = ‖Sn(x ;Y )‖2,H =
[ d∑
k=1

∥∥Sn,k(x ;Y )
∥∥2
]1/2
, (3.2.8)

1 This terminology is motivated by the univariate real-valued setting where V (x)= Var(Sn,1(x ; ε))1/2/σ.
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using the product norm ‖x‖2,H = [
∑d

k=1 ‖xk‖2H ]1/2 for x = (x1, . . . , xd)
′ ∈ Hd. The

general weighting function w(x) > 0 is defined formally only on a discrete domain,
i.e. only for all x ∈ In. Notice that our detector (3.2.8) is an analogue of the detectors
in (1.1.4) and in (2.3.3) but now for Hilbert space valued panel data. (Furthermore,
notice that estimates (3.2.7) and (1.1.5) coincide if we neglect the common factors and
if the Rd-valued error sequence {E•,i}i=1,...,n is i.i.d. with Cov(E•,i) = diag(1, . . . , 1),
i.e. with σ = 1 in Assumption N1.)

Remark 3.3 (Definition of argmax). The definition of arg max as a set is a minor
but necessary technicality (cf. also (1.1.5)): if we define it as usual to be the smallest
argument for which the maximum is attained, then (3.3.5), below, is generally not valid
anymore. Note that our results for û will not depend on the actual choice in (3.2.7).

It is evident that not all changes can be detected with (3.2.7). For instance, a change
in only one panel in (3.2.6) will be not detectable as its contribution fades out asymp-
totically for d→∞. For this reason we define the »total average change« as

∆ = lim
d→∞

∆̄d ∈ (0,∞), ∆̄d =

d∑
k=1

‖∆k‖2/d (3.2.9)

with ∆k = µ2,k − µ1,k (cf. (3.2.6)). On the one hand, this definition quantifies the
magnitude of common changes via ∆̄d and, on the other hand, imposes an asymptotic
condition on the magnitude and on the size of changes ∆ ∈ (0,∞) that we will work
with in the following.

Remark 3.4 (Conditions on the change for different asymptotics). In the fixed d
and n → ∞ setting, it is usually assumed that the change location s = sn (or equiv-
alently u = un) is asymptotically proportional to the sample size n (cf. Remark 2.9),
i.e.

lim
n→∞

sn = lim
n→∞

un/n ∈ (0, 1),

and that the magnitude of the change may be arbitrary, as long it is non-zero. Opposed to
this, in our fixed n and d→∞ setting, we require ∆ ∈ (0,∞), i.e. that the squared
change magnitudes have to be proportional to the number of panels d (cf. (3.2.9)) but
the change point position s ∈ In may be arbitrary instead.
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3.3Estimating change points
with weighted CUSUM procedures

In the following we will study the influence of different weighting functions w, several
distributions of the panels and, in particular, various parameters ∆, σ, u and n on the
asymptotic accuracy (or consistency) of the change point estimate û, i.e. we investigate
whether P (û = u) → 1 holds true as d→∞ or not. The results depend on the
behavior of the following critical function which is related to Bleakley & Vert (2011a,
disp. (11)).

Definition 3.5 (of the critical function). We define a »critical function« as

C(x ; y , ρ) = w2(x)
[
V 2(x)ρ+ H2(x , y)

]
(3.3.1)

on the discrete domain x , y ∈ In with V (x) as in (3.2.5), with the »noise to change«
ratio

ρ = ρ(∆,σ, n) =
1

n

σ2

∆

and with H(x , y) = min{x , y}[1−max{x , y}].

Note that in Definition 3.5 we implicitly restrict ourselves to ρ ∈ (0,∞) since we
already assumed σ ∈ (0,∞) in Assumption N1 and ∆ ∈ (0,∞) in (3.2.9) before.
The next theorem extends Lemma 1 and Theorem 3 of Bleakley & Vert (2011a) as
well as Theorem 2.9 of Torgovitski (2015d) to a dependent Hilbert space setting (with
common factors) and is our main tool for the analysis of accuracy in the following
sections. Particularly, conditions (3.3.3) and (3.3.4) are different compared to (2.13)
from Torgovitski (2015d) which is a consequence of the Hilbert space setting.

Theorem 3.6. Let Assumption N1 and Assumption CF be fulfilled. Assume that it holds
that

lim
d→∞

d∑
k,r=1

∣∣Cov
(
〈εj,k, εh,k〉, 〈εl,r, εp,r〉

)∣∣/d2 = 0, (3.3.2)

lim
d→∞

d∑
k,r=1

∣∣E(〈∆k, εj,k〉〈∆r, εl,r〉
)∣∣/d2 = 0, (3.3.3)

lim
d→∞

d∑
k,r=1

|γkγr|
∣∣E(〈εj,k, εl,r〉)∣∣/d2 = 0 (3.3.4)

for all 1 ≤ j, h, l, p ≤ n. Then, for any change point s ∈ In and any ratio ρ ∈ (0,∞)
it holds that

lim
d→∞

P
(
û ∈ arg max

x∈In
C(x ; s, ρ)

)
= 1. (3.3.5)
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Remark 3.7 (on conditions of Theorem 3.6). Assume that the panels {εi,k; i ∈ N}k∈N
are independent. A repeated application of the Cauchy-Schwarz inequality shows that
Assumption N1 and Assumption CF together with ∆ ∈ (0,∞) imply that conditions
(3.3.2)-(3.3.4) are fulfilled. Evidently, some minor deviations beyond this independence
assumption are possible.

Theorem 3.6 states, under rather mild assumptions, that consistent estimation is
determined by the shape of the critical function C, i.e. by the interplay between the
functions V , H and the weights w. We proceed with a detailed study of C and begin
by analyzing V with respect to different underlying distributions.

Remark 3.8 (Mixed panels). Notice that if we assume our model to be without common
factors, then, as already mentioned in the introduction, all our results can be extended
to panels in different Hilbert spaces. Towards this end we would have to adapt the
norms in (3.2.8) appropriately for each k. Having this »generality« in mind we prefer
to keep the notation simple and the presentation clear and thus we continue to restrict
ourselves to some common Hilbert space within all panels.

3.3.1Preliminaries on the variance of cumulated noises

In this subsection we analyze the function V , defined in Assumption N1, more detailed.
First, we derive different representations for V and establish conditions for positivity
and symmetry which will be important for our investigations in the following sections.
Afterwards, we present further results on the shape of V for different distributions of
{εi,k} covering the three basic models: panels of uncorrelated, moving average and
autoregressive noises. Each of these examples will play a major role in our subsequent
analysis. Before we study the shape of V we introduce some notation and define the
matrix

Σ =

γ(1, 1) · · · γ(1, n)
...

. . .
...

γ(n, 1) · · · γ(n, n)

 (3.3.6)

with γ(k, r) = E〈εk,1, εr,1〉. Furthermore, we define the function

F(x) = x(1− x)
[
�x + �1−x − �1

]
/σ2 (3.3.7)

with

�x = �
(n)
x =

bnxc∑
k,r=1

γ(k, r)/bnxc, (3.3.8)

where x ∈ In. Finally, we need to introduce the quadratic forms

fi,n(Σ) = a(i)Σa(i)′/σ2, (3.3.9)
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Model Variance of cumulated noises Correction term

WN V 2(x) = x(1− x)
MA(1) c1 V

2(x) = x(1− x)α(φ)−R(φ) α(φ) = (n/2)[1 + φ2] + φ+ φn
AR(1) c2 V

2(x) = x(1− x)α(φ)−R(φ, x) α(φ) = (n/2)[1− φ2] + φ− φn+1

Table 3.1: Representation of the variance of cumulated noises V
2 for Examples

3.12, 3.13 and 3.14, i.e. under different dependence assumptions. The terms for
R(φ) and R(φ, x) are provided within the respective examples. Furthermore, c1
and c2 are some positive constants that are independent of x . (WN is the usual
abbreviation for a white noise model.)

which are based on vectors a(i) given by

a(i) = (a
(i)
1 , . . . , a

(i)
i | a

(i)
i+1, . . . , a

(i)
n ) = (n− i, . . . , n− i | − i, . . . ,−i)/n3/2. (3.3.10)

We suppress the dependence of a(i)’s on n which shall not lead to any confusion.

Remark 3.9. Note that within the real-valued univariate case the matrix Σ is the
usual covariance matrix of (ε1,1, . . . , εn,1)′ and that �x corresponds to the variance
of
∑bnxc

r=1 εr,1/bnxc1/2.

The next lemma states the connection between the functions V ,F and fi,n. We will
call V »symmetric« whenever V (x) = V (1− x) holds true for all x ∈ In and »positive«
whenever V (x) > 0 holds true for all x ∈ In. (Note that V is always non-negative.)

Lemma 3.10. Under Assumption N1 it holds that

V 2(i/n) = fi,n(Σ) (3.3.11)

for 1 ≤ i < n and where fi,n(Σ) is defined in (3.3.9) by using (3.3.6). Hence, a pos-
itive definite matrix Σ implies a positive function V . Furthermore, if the time series
{εr,1}r=1,...,n is additionally weakly stationary, then we obtain

V 2(i/n) = F(i/n) (3.3.12)

for 1 ≤ i < n and where F is defined in (3.3.7). Note that V is symmetric in this case.

Remark 3.11 (The necessity of a discrete domain). If V (x) = (E‖Sn,1(x ; ε)‖2)1/2/σ
is symmetric on the discrete time domain, i.e. for x ∈ In, it does not imply V (x) =
(E‖Sn,1(x; ε)‖2)1/2/σ to be symmetric on the time continuous domain, i.e. for all x ∈
[0, 1]. This subtle difference is one reason for the restriction of our considerations to In.

We proceed with a few examples that illustrate the function V for different de-
pendence structures by making use of Lemma 3.10 and in particular of the expression
(3.3.7). We will specify V only up to some scalar factor c > 0 that is negligible since
our results will be invariant under such rescaling. (Note that the verification of all ex-
pressions of V given in these examples is postponed to Section 3.5 and that some
expressions are additionally summarized in Table 3.1.)
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Example 3.12 (for white noise). Let {εi,k} be an array of Hilbert space valued random
variables with γ(l, r) = 0 for l 6= r and such that part 1 of Assumption N1 holds true.
We observe that

V 2(x) = x(1− x) (3.3.13)

for all x ∈ In since �x ≡ �1−x ≡ �1 = σ2 holds true for any x ∈ In (cf. (3.3.12)). The
function V is obviously symmetric and positive on the whole domain In.

For the next three (more general) Examples 3.13, 3.14 and 3.18 we assume {ηi,k}
to consist of i.i.d. centered Hilbert space valued random variables with E‖η1,1‖4 <∞
and E‖η1,1‖2 = σ̃2 for σ̃2 ∈ (0,∞).

Example 3.13 (for moving average noise I). Let {εi,k}i∈Z, k ∈ N, be identically dis-
tributed MA(1) time series, defined via

εi,k = ηi,k + φηi−1,k,

for some φ ∈ R. It holds that

c V 2(x) = x(1− x)α(φ)−R(φ), (3.3.14)

for all x ∈ In, with some c > 0 (that depends on n), with

α(φ) = (n/2)[1 + φ2] + [φ+ φn]

and with a remainder term R(φ) = φ. Based on Lemma 3.10 we conclude that V is
positive which follows due to the positive definiteness of Σ (cf. (3.3.6)). The latter is easily
verified, since the matrix is irreducibly diagonally dominant and thus invertible for any
parameter φ (cf., e.g., Theorem 1.21 of Varga, 2000). Notice that the term α(φ) may be
zero (for some negative φ) or even become negative for some φ close to −1. Hence, V
may be a convex, a concave or even a constant function.

Example 3.14 (for autoregressive noise). Let {εi,k}i∈Z, k ∈ N, be identically dis-
tributed AR(1) time series, defined via

εi,k =

∞∑
j=0

φjηi−j,k

for some φ ∈ (−1, 1). It holds that

c V 2(x) = x(1− x)α(φ)−R(φ, x), (3.3.15)

for all x ∈ In, with some c > 0 (that depends on φ and n), with

α(φ) = (n/2)[1− φ2] + [φ− φn+1]

and with a remainder term

R(φ, x) = φ− (1− x)φnx+1 − xφn(1−x)+1.

Again, using Lemma 3.10, we conclude that V is positive. This follows by the matrix Σ
in (3.3.6) being positive definite for any φ ∈ (−1, 1) (cf., e.g., disp. (1.1) of Sutradhar &
Kumar, 2003). We will observe later on that V is generally oscillating and thus neither
convex nor concave.



1 0 5 3 . 3 . E S T I M AT I N G C H A N G E P O I N T S W I T H W E I G H T E D C U S U M P R O C E D U R E S

In Subsection 3.3.2 it will turn out to be important whether V (x)/x is (strictly)
decreasing in the domain In or not. The following lemma slightly simplifies this verifi-
cation and will help us with Example 3.13 in Lemma 3.16 below.

Lemma 3.15. Let V be positive, strictly concave and fulfill V (z)/z > V (y)/y for z =
1/n and all y ∈ In with y > z . Then V (x)/x is strictly decreasing for x ∈ In.

The next lemma shows that V (x)/x remains strictly decreasing for larger deviations
from (3.3.13).

Lemma 3.16. In the MA(1) situation of Example 3.13 it holds that V (x)/x is strictly
decreasing for x ∈ In and any parameter φ ∈ R.

V (x)/x depends continuously on Σ and is strictly decreasing in the i.i.d. case (cf.
(3.3.13)). Hence, by continuity, it must necessarily be strictly decreasing for a variety of
minor deviations from this scenario (beyond moving averages). In the AR(1) situation
of Example 3.14 this is, e.g., the case for any φ ∈ (−δn, δn) for some appropriate
δn ∈ (0, 1). However, the same AR(1) model provides interesting counterexamples
where V (x)/x does not decrease strictly monotonically.

Due to the finite panel length n it is difficult to derive sharp conditions on the
violation of our monotonicity assumption. Hence, we restrict ourselves to some specific
asymptotic considerations of φ→ −1 or of a sufficiently large n.

Counterexample 3.17 (for autoregressive noise). Let {εi,k}i∈Z, k ∈ N, be identically
distributed AR(1) time series as in Example 3.14.

1. The first counterexample is given by observing that

lim
n→∞

[
V ((n− 2)/n)

(n− 2)/n

]2

−
[
V ((n− 1)/n)

(n− 1)/n

]2

= c (1− 3φ2 + 2φ3)

holds true for some c > 0. The right-hand side is negative for any φ ∈ (−1,−1/2)
which implies that V (x)/x is non decreasing for x ∈ {1− 2/n, 1− 1/n} and such
φ′s, given a sufficiently large sample size n.

2. The second counterexample is given by assuming that n is even and observing that

lim
φ→−1

c V 2(x) = 1 + (−1)nx+1 (3.3.16)

holds true for all x ∈ In and with some c > 0. The right-hand side is oscillating
between 0 and 1 and, as a consequence, V (x)/x cannot be monotonically de-
creasing on In for φ sufficiently close to −1 (and for n being even). Notice that
the limit in (3.3.16) would be different for n being odd but would still provide a
counterexample (cf., Figure 3.2, below).

For the sake of generality, we close this subsection by mentioning a concise expres-
sion for V in case of general MA(q) time series (which extends (3.3.14)).
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Example 3.18 (for moving average noise II). Let {εi,k}i∈Z, k ∈ N, be identically dis-
tributed MA(q) time series with 1 < q < n/2 defined via

εi,k =

∞∑
j=0

φjηi−j,k

for some φj ∈ R with φ0 = 1 and φj = 0 for j > q.1 For discrete valued

x ∈ (q/n, 1− q/n) ∩ In (3.3.17)

it holds that

c V 2(x) = x(1− x)α(φ1, φ2, . . .)−R(φ1, φ2, . . .) (3.3.18)

for some c > 0 (that depends on n) and with

α(φ1, φ2, . . .) = (n/2)

q∑
j=0

φ2
j + n

q∑
k=1

q∑
j=0

φjφj+k +R(φ1, φ2, . . .),

R(φ1, φ2, . . .) =

q∑
k=1

q∑
j=0

k(φjφj+k). (3.3.19)

The compact expressions (3.3.18) - (3.3.19) do not hold true on the whole domain In.
(However, the general expression in (3.3.12) with (3.3.7) is still valid and holds true for
arbitrary q ∈ N.)

3.3.2Limit theorems for weighted CUSUM estimates

Pointwise accurate estimation

The aim of this section is to study the pointwise accuracy (or consistency) of û. Given
that (3.3.5) holds true, the estimate û of a change point u with a change to noise
ratio ρ > 0 is accurate, i.e. limd→∞ P (û = u) = 1, if the following Assumption U1
holds true and is not accurate if Assumption U2 holds true instead. The former is the
analogue of Assumption A1 of Torgovitski (2015d).

Assumption U1 (on the interplay between the change point and C). Let the critical
function C be defined as in (3.3.1). For a change at s = u/n it holds that C(s; s, ρ) >
C(x ; s, ρ) for all x 6= s, x ∈ In.

Assumption U2 (as a counterpart to Assumption U1). Let the critical function C

be defined as in (3.3.1). For a change at s = u/n there is some x ∈ In such that
C(s; s, ρ) < C(x ; s, ρ) holds true.

1 Recall the definition of {ηi,k} on p. 104.
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Neither of the Assumptions U1 or U2 is fulfilled if C(x ; s, ρ) has a non-unique max-
imum as a function of x ∈ In. This situation is not of interest in this thesis since in
that case asymptotic accuracy may neither be proven nor disproven based on (3.3.5)
without additional information.

Let us define

R(x , s) := [G(x , s)− G(s, s)]/[F (s)− F (x)] (3.3.20)

with F (x) = [w(x)V (x)]2, G(x , s) = [w(x)H(x , s)]2 and set

ρmin(s) := sup
x∈In,

F (x)<F (s)

R(x , s), ρmax(s) := inf
x∈In,

F (x)>F (s)

R(x , s) (3.3.21)

with sup ∅ = −∞ and inf ∅ = ∞, x , s ∈ In. (Cf. Definition 3.5.) The next two propo-
sitions are straightforward to verify and are generalized versions of Theorem 2.16 of
Torgovitski (2015d).

Proposition 3.19. Assume that for all x 6= s , x ∈ In, either F (x) 6= F (s) or F (x) = F (s)
with G(x , s) < G(s, s) holds true, where F and G are defined in (3.3.20). For a change
at s = u/n it holds that

1. Assumption U1 is fulfilled for all ρ ∈ (0,∞) ∩
(
ρmin(s), ρmax(s)

)
,

2. Assumption U2 is fulfilled for all ρ ∈ (0,∞) \
(
ρmin(s), ρmax(s)

)
,

where we set (ρmin, ρmax) = ∅ for ρmin ≥ ρmax (cf. (3.3.21)).

Note that if F (s) = F (x) and G(x , s) < G(s, s) hold true for all x 6= s, x ∈ In,
then we have (ρmin(s), ρmax(s)) = R and thus Assumption U1 is fulfilled for all ρ ∈
(0,∞) ∩ R = (0,∞). (On the other hand, Assumption U2 is fulfilled for all ρ ∈ (0,∞),
if F (s) = F (x) and G(x , s) > G(s, s) hold true for some x 6= s, x ∈ In.1)

Proposition 3.20. Assume that the variance of cumulated noises V 2, defined in (3.2.5),
and the weighting w are symmetric and that F , defined in (3.3.20), is strictly concave.
Furthermore, assume that w(x)x is strictly increasing and w(x)(1− x) is strictly de-
creasing for x ∈ In. Then it holds that

ρmin(s) < 0 < ρmax(s) = inf
1/2≤x<ς,

x∈In

R(x , ς),

where ς(s) = max{s, 1− s}. Furthermore, we have {1/2 ≤ x < ς, x ∈ In} = ∅ if and
only if ς = dn/2e/n.

1 Notice that this case is not included in Proposition 3.19.
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Pointwise accurate estimation with classical weighting schemes

It is straightforward to verify that all assumptions of Proposition 3.20 are satisfied for
the variance of cumulated noises V 2(x) = x(1 − x) (cf. Example 3.12) together with
the weights w given by the well-known class of weighting functions

wγ(x) =
[
x(1− x)

]−γ
,

x ∈ In, where γ ∈ (0, 1/2). We introduced this class already in (1.2.1). Notice that the
excluded limiting cases of weightings w1/2 and w0 were studied in related settings
by Bleakley & Vert (2010, 2011a) and that w1/2 was studied independently by Bai
(2010). Altogether, Bleakley & Vert (2011a, Theorem 3) and Bai (2010, Theorem 3.1)
showed, on the one hand, that ρmax(s) =∞ holds true for the weighting w1/2 for any
change point s and, on the other hand, Bleakley & Vert (2011a, Theorem 2) derived a
closed-form expression of ρmax(s) for the weighting w0.

The next theorem of Torgovitski (2015d) is restated in a more convenient and
insightful manner. It extends the latter results of Bleakley & Vert (2011a) and Bai (2010)
and provides a closed-form expression for ρmax(s) for the weightings wγ within the
whole range γ ∈ (0, 1/2).

Theorem 3.21. Let V 2(x) = x(1− x) and assume that we use wγ with γ ∈ (0, 1/2). It
holds that

ρmax(s) = inf
1/2≤x<ς,

x∈In

R(x , ς)

{
= R(ς − 1/n, ς), 1/2 + 1/n < ς ≤ B(γ),

< R(ς − 1/n, ς), B(γ) + 2/n < ς < 1,

where R(x , y) is defined in (3.3.20), ρmax is defined in (3.3.21), ς(s) = max{s, 1 − s}
and where the bound B(γ) is defined as

B(γ) =
(4γ2 + 6γ3/2 − 3γ1/2 − 1)

(8γ2 + 8γ3/2 − 4γ1/2 − 1)− 2γ
(3.3.22)

for γ ∈ (0, 1/2). B is continuous and B(γ) ↓ B(1/2) = 2−1/2 as γ ↑ 1/2.

To get a feeling for the magnitude of ρmax(s) it is proposed by Torgovitski (2015d)
to evaluate R(ς − 1/n, ς) for n→∞ and a change point that is proportional to the
sample size, i.e. that satisfies ς = bnθc/n with some θ ∈ (1/2, 1). We observe that

lim
n→∞

R(ς − 1/n, ς) = 2θ[θ − f(γ)]f(θ) (3.3.23)

with f(x) = (1− x)/(1− 2x) which is according to Theorem 3.21 an asymptotic ex-
pression for ρmax(s) if θ ∈ (1/2,B(γ)] yet generally not the correct asymptotic ex-
pression for ρmax(s) if θ ∈ (B(γ), 1) (cf. Proposition 3.22 and Figure 3.1, below). In
the following proposition, that corresponds to Torgovitski (2015d, Proposition 2.18), we
show an explicit representation for θ ∈ (B(γ), 1/2) for γ = 1/4 based on a different
approach that does not rely on the evaluation of R(ς − 1/n, ς). (It is, however, not clear
how to extend this approach to other values of γ.)



1 0 9 3 . 3 . E S T I M AT I N G C H A N G E P O I N T S W I T H W E I G H T E D C U S U M P R O C E D U R E S

−4

0

4

0.5 0.6 0.7 0.8 0.9 1.0
 

line types
≤ ( ) 

> ( ) 

0.05
0.15
0.25
0.35
0.45
0.49

Asymptotic accuracy bounds

= 0.25 

 

Figure 3.1: This figure shows log(2θ[θ − f(γ)]f(θ)), i.e. the logarithm of the expression
(3.3.23). We use solid lines for θ ≤ B(γ) and dotted lines for θ > B(γ). The solid part
corresponds to parameters for which equality holds true in (3.3.22) in the limit, i.e. as
n→∞. For the special case of γ = 0.25 we use a dashed line to show the logarithm of the
expression (3.3.24) for all parameters θ ∈ (1/2, 1). We see that (3.3.22) is generally not
a valid expression for θ > B(γ) since the dashed and the dotted lines for γ = 0.25 are
different.

Proposition 3.22. Let V 2(x) = x(1 − x), x ∈ In, and assume that we use wγ with
γ = 1/4. Let ρmax be defined as in (3.3.21), B(γ) as in (3.3.22) and set ς(s) =
max{s, 1− s}. Further, assume that ς = bnθc/n with θ ∈ (1/2, 1). Then it holds that

lim
n→∞

ρmax(s) = (1−θ)2


(3−2θ)θ
(1−θ)(2θ−1) , θ ∈ (1/2,B(1/4)],
2θ(θ+1)+θ(1−θ)1/2−2(1−θ)1/2−2

2θ(θ−1)+θ(1−θ)1/2 , θ ∈ (B(1/4), 1).
(3.3.24)

(The right-hand side is a continuously differentiable function for all θ ∈ (1/2, 1).)

Remark 3.23 (Spurious estimation under H0). Assume that there is no change in all
panels, i.e. that we have µ1,k = µ2,k for all k ∈ N in (3.2.6), and that V 2(x) = x(1−x),
x ∈ In, holds true. It is pointed out in Torgovitski (2015d, Remark 2.19) that our
change point estimate û, with weights wγ and γ ∈ [0, 1/2), lies asymptotically in
the set S′ = {bn/2c, dn/2e}, i.e. P (û ∈ S′) → 1 as d → ∞. In Torgovitski (2015b)
we indicated how such a spurious estimation may be used as a building block for
accurate estimation of multiple common changes via a scanning-type approach yet these
considerations are not the focus of this thesis and will be studied further elsewhere.
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Uniformly accurate estimation
(Estimation with covariance-corrected weighting schemes)

A striking feature of the weighting w1/2, in case of panels with white noise, is that
pointwise asymptotic accuracy, i.e.

lim
d→∞

P (û = u) = 1, (3.3.25)

holds true uniformly in the sense that (3.3.25) is independent of the change position
u and independent of the change to noise ratio ρ ∈ (0,∞). We call this property
»uniform asymptotic accuracy« and in this section we are concerned with conditions
on the dependence structure of panel data under which this property holds true for
estimates û. We will see that in a wide dependence framework uniform asymptotic
accuracy requires a weighting function w(x) = cw?(x) with

w?(x) = 1/V (x) = w1/2(x)/h(x), (3.3.26)

where c > 0 is an arbitrary constant, where x ∈ In and where h(x) is specified
in (3.3.27), below. (In other words the inference on change-locations with w1/2 is
misleading without an appropriate correction term.) The second equality in (3.3.26)
holds true due to (3.3.12) since V (x) may be represented via the standard Darling-
Erdős-type weighting scheme w1/2 corrected by a covariance-based term

h(x) = [�x + �1−x − �1]1/2/σ. (3.3.27)

Furthermore, note that the latter term collapses to h(x) = 1, x ∈ In, in the white noise
case and thus we obtain w?(x) = w1/2(x) in (3.3.26) for this specific situation.

To study uniform asymptotic accuracy, we need to check whether Assumption U1
holds true for arbitrary s ∈ In and all ρ ∈ (0,∞) or whether Assumption U2 is satis-
fied instead.

Theorem 3.24. Let the matrix Σ from (3.3.6) be positive definite, i.e. (according to
Lemma 3.10) let the function V from (3.2.5) be positive. If Assumption U1 holds true for
all change points s = u/n ∈ In (i.e. for all u = 1, . . . , n−1) and all change to noise ratios
ρ ∈ (0,∞), then w = cw?, where c is an arbitrary, positive constant. If w 6= cw? for
all c > 0, then there is some change point s ∈ In and some ratio ρ ∈ (0,∞) such that
Assumption U2 holds true.

To state a sufficient condition we need a stronger assumption on the noise sequence
and on the function V .

Theorem 3.25. Let the matrix Σ from (3.3.6) be positive definite and the noise sequence
{εi,1} be weakly stationary, i.e. (according to Lemma 3.10) let the function V from (3.2.5)
be positive and symmetric. Assumption U1 is fulfilled for w = cw? with any constant
c > 0 for all change points s ∈ In and all ratios ρ ∈ (0,∞) if and only if V (x)/x is
strictly decreasing for x ∈ In.



1 1 1 3 . 3 . E S T I M AT I N G C H A N G E P O I N T S W I T H W E I G H T E D C U S U M P R O C E D U R E S

Peštová & Pešta (2015) study a related (but different) specific change point estimate
for real-valued univariate panels. In a second updated version Peštová & Pešta (2016)
consider a general class of weighted estimates for real-valued univariate panels as in
this thesis and as in Torgovitski (2015d). They have a somewhat different focus on
the consistency problem and thus obtain different but closely related monotonicity
conditions on the variance of cumulated noises in their framework, too.

Remark 3.26 (on admissible oscillations of V ). A strictly decreasing V (x)/x , x ∈ In,
restricts the possible oscillations of V in Theorem 3.25 and thus may be interpreted as
a smoothness condition. Moreover, due to the symmetry of V , Theorem 3.25 implies
the following additional restrictions on the function V :

α1(x)V (x) < V (x + 1/n) < α2(x)V (x)

with α1(x) = 1− [n(1− x)]−1 < 1, α2(x) = 1 + (nx)−1 > 1 for all x ∈ In, x < 1− 1/n.

Panels based on MA(1) noise, specified in Example 3.13, and on AR(1) noise, speci-
fied in Example 3.14, fulfill Assumption N1. As discussed in Lemma 3.16, the respective
functions V (x)/x , x ∈ In, satisfy the monotonicity criterion of Theorem 3.25 for all pa-
rameters φ in the MA(1) case and for some parameters φ in the AR(1) case. Thus, e.g.,
for MA(1) panels that satisfy Assumption CF on the common factors, relation (3.3.5)
holds true and we have uniform asymptotic accuracy for arbitrary parameters φ if
we use w = cw? with c > 0. On the contrary, as follows from Counterexample 3.17,
AR(1) panels that satisfy Assumption CF immediately yield counterexamples to uniform
asymptotic accuracy for parameters φ close to −1 or for large sample sizes n. (Cf.
Figure 3.2.)

Remark 3.27. As a final remark, we would like to point out that the difficulties in the
evaluation of V (x) via Lemma 3.10, using �x , stem from the facts that n is finite and
that x ∈ In depends on n. (Note that for weakly stationary time series {εr,1}r∈Z with∑∞

r=0 |γ(1, 1 + r)| <∞ the limit limn→∞ �bnxc/n does not depend on x ∈ [0, 1].)
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Figure 3.2: The upper panels show the covariance-based weights w = cw? from Theo-
rem 3.25 for MA(1) noise and based on (3.3.14) and the lower panels show the same type
of weights for AR(1) noise based on (3.3.15). In both cases c = (max1≤i<n w?(i/n))

−1 is
used as a scaling for the sake of comparison and in both cases φ = 0 corresponds to the
Darling-Erdős-type weights.
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Estimation of the covariance-based correction term

So far, we know w? only theoretically and the computation requires the knowledge of
the underlying time series model. In practice this information is often not available and
we need to estimate w? which will be briefly dealt with in this subsection closely fol-
lowing Torgovitski (2015d). First, note that the problem of estimating w? is essentially
the problem of estimating Σ, defined in (3.3.6), which follows by Lemma 3.10.

The aim of this subsection is to summarize conditions under which the entries Σj,k
can be estimated using the basic plug-in estimate

Σ̂j,k =
d∑
p=1

〈
Yj,p − Ȳj,d, Yk,p − Ȳk,d

〉
/d, (3.3.28)

for 1 ≤ j, k ≤ n with means Ȳj,d =
∑d

p=1 Yj,p/d.

Assumption N2 (on the noise). The weak law of large numbers holds true for the
noise sequences {εj,k}k∈N and {〈εj,k, εl,k〉}k∈N for any j and any l. The preceding
Assumption N1 and Assumption CF hold true and the matrix Σ is positive definite.

The next proposition describes further conditions on the means, shows that esti-
mation is theoretically possible and that the influence of the common factors to such
estimation is negligible. (Cf. also Remark 3.30, below.)

Proposition 3.28. Let Assumption N2 hold true and assume that mi,k = ci holds for each
time point 1 ≤ i ≤ n, for some ci ∈ R and for all k ∈ N, i.e. that the means, at any time
point, are equal in all panels. Then it holds that Σ̂

P−→ Σ, as d→∞.

The basic estimate (3.3.28) provides only rough approximations for small d. Two
standard techniques can be used to improve this estimate, e.g., for MA(q) panels. On the
one hand, we may average estimates across different time points. On the other hand, we
may incorporate banding of Σ̂ to reduce the variability by neglecting estimates of zero
covariances. Let us assume a so-called training period {n1, . . . , n2} ⊂ {1, . . . , n} such
that mi,k = ci holds true for any n1 ≤ i ≤ n2 and for all k ∈ N. We follow Torgovitski
(2015d) and define a banded and averaged estimate via

Σ̂′j,j+r = Σ̂′j+r,j =
1

n2 − n1 − r + 1

{∑n2−r
i=n1

Σ̂i,i+r, r ∈ {0, . . . , r̃j},
0, r ∈ {r̃j + 1, . . . , n− j}

for 1 ≤ j ≤ n and with r̃j = min{h, n− j}. The parameter h ∈ {0, . . . , n2 − n1} is
the so-called bandwidth.

Corollary 3.29. Assume MA(q) panels defined in Example 3.18. Let Assumption N1 and
Assumption CF hold true and assume that mi,k = ci holds for each time point 1 ≤ i ≤ n
for some ci ∈ R and independent of k ∈ N. Then it holds that Σ̂′

P−→ Σ, as d→∞
and for 0 ≤ q ≤ h.
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Remark 3.30. Proposition 3.28 and Corollary 3.29 require rather restrictive assump-
tions on the means mi,k for 1 ≤ i ≤ n and k ∈ N. We discussed in Torgovitski (2015d)
how these conditions may be ensured (approximatively) by an appropriate panel-wise
centering and demonstrated in the corresponding simulations that this approach is
beneficial in practice.

Remark 3.31 (Differencing of time series). Consider MA(1) panels defined in Exam-
ple 3.18. The estimation of w? or equivalently of Σ can be handled differently by
using a differencing approach which we describe informally: after taking the differ-
ences within all panels of time series, the resulting panels are all mean zero (up to
the one location of the common change point which needs to be excluded from fur-
ther calculations). Hence, this allows to proceed similarly as under Proposition 3.28
or under Corollary 3.29 and to estimate the parameter φ which can then be used to
estimate the tridiagonal matrix Σ. (This approach can be applied to MA(q) panels in a
straightforward way.)

Remark 3.32 (Positive weights). Only strictly positive weighting schemes are reason-
able for the estimate (3.2.7). Hence, estimates of weighting schemes shall be strictly pos-
itive, too, which is asymptotically ensured in Proposition 3.28 with probability tending
to 1 by Σ being positive definite and the corresponding estimate Σ̂ being consistent.

3.3.3Relation between weighted CUSUM and LASSO estimates

We already explained in Section 3.2 that this chapter is motivated by Bleakley & Vert
(2010, 2011a) and that our results are built upon their findings. They propose exten-
sions of the weighted total variation denoising (or weighted LASSO) estimates in a
multiple change point setting and present their theory under the single change point as-
sumption in a high-dimensional low sample size scenario (i.e. for fixed n and d→∞).
We describe their procedure for a real-valued univariate panel data setting and show
for the single change point case (cf. Proposition 3.36, below) that the multivariate
weighted LASSO approach coincides with the weighted CUSUM estimates under mini-
mal restrictions. Hence, in such a single change point scenario, all results on uniformly
asymptotic accurate estimation regarding CUSUM hold for weighted LASSO as well.
Note that Bleakley & Vert (2011a) were (slightly) more concerned with algorithmic and
computational aspects (and limited their framework to the i.i.d. setting) while our focus
is more on the probabilistic aspects of a time series setting.

In the following we use the matrix terminology from Notation 3.1 and additionally
write ‖ · ‖ = ‖ · ‖2 for the Euclidean norm to distinguish it from the Frobenius norm
‖ · ‖F .
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Weighted penalized least squares estimates

Consider the multiple common change point problem (3.2.2) for panels of univariate
real-valued time series (3.2.1) in the matrix notation (3.2.3). Bleakley & Vert (2011a)
propose to use global change point estimates that are obtained via the following penal-
ized minimization problem

Minimize
U∈Rn×d

1

2
‖Y − U‖2F + λ

n−1∑
i=1

‖Ui+1,• − Ui,•‖2/w(i/n) (3.3.29)

with weights w(x) > 0, x ∈ In, and a »shrinkage« parameter λ ≥ 0 as the »degrees of
freedom«. As in Torgovitski (2015d) we use

Û(λ) = (Û(λ)l,r)l=1,...,n, r=1,...,d

to denote a matrix-valued solution of (3.3.29) for a chosen λ. Then, each time point
v with Ûv,j(λ) 6= Ûv+1,j(λ) in the solution of (3.3.29) is called a »jump« (in the j-th
panel) and a jump corresponds, independently of j, to an estimate of a change point at
v. More precisely, the set of change point estimates is defined via

Ê (λ) = {v | Ûv,•(λ) 6= Ûv+1,•(λ)}, (3.3.30)

where the number of estimates is controlled by λ (cf. Notation 3.1). The minimization
problem (3.3.29) aims to fit a »piecewise constant signal« to each panel such that all sig-
nals tend to have (common) jumps at the same positions. Therefore, (3.3.29) balances
via λ between the first term that ensures a close fit of Û and Y and the second term
which controls the complexity (sparseness) of the model, i.e. controls the number of
jumps or equivalently of estimates.

Remark 3.33 (Uniqueness of the solution). The solution of (3.3.29) is unique which
follows due to the strict convexity of the objective function (the first term is strictly
convex and the second term is convex) and by taking into account that the unbounded
minimization domain may be formally redefined to be a compact set.

Some remarks on the shrinkage parameter

Via the shrinkage parameter λ one may control the number of estimated jumps. While
λ increases less changes are identified - or in other words more estimates are fused.
Seeking for p change points we want to select a λ such that (3.3.30) yields exactly
p estimates. However, one has to be aware of following problematic and (at least)
ambiguous situations:

1. A λ that yields exactly p change points might not exist. This may be observed
already in the trivial case where Yi,k ≡ Yj,r holds true for all 1 ≤ i, j ≤ n, 1 ≤
k, r ≤ d since Ê (λ) = ∅ holds in this case for all λ (cf., e.g., Remark 2.2 of
Torgovitski, 2015d).
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2. The set Ê (λ) is generally non-monotonic in λ for d > 1 (cf., e.g., Figure 1 of
Torgovitski, 2015d). Hence, different λ’s that lead to p estimated jumps might
lead to different estimated jump locations, i.e. the choice of λ might be not
»well-defined«.

To avoid such problems - at least in the single change point scenario - we will define an
unambiguous estimate under mild assumptions. These assumptions ensure, on the one
hand, that a λ′ which yields exactly one change point estimate exists and is identifiable,
and, on the other hand, that the set Ê (λ) behaves monotonically in λ around that λ′.

Weighted group fused LASSO estimates

We begin by summarizing how Bleakley & Vert (2011a) restate (3.3.29) as a group
fused LASSO. Note that this idea was applied previously by Harchaoui & Lévy-Leduc
(2008) to the univariate case and substitutes the minimization problem (3.3.29) with
the equivalent LASSO version

Minimize
β∈R(n−1)×d

1

2
‖Ȳ − D̄β‖2F + λ

n−1∑
i=1

‖βi,•‖2, (3.3.31)

where λ is chosen as in (3.3.29). Here, D ∈ Rn×(n−1) is a fixed design matrix defined
through the weighting scheme w via

D =



0 0 0 . . . 0
w(1/n) 0 0

w(1/n) w(2/n) 0
. . .

...

w(1/n) w(2/n) w(3/n)
. . .

...
...,

...
...

. . . 0 0
w(1/n) w(2/n) w(3/n) . . . w(1− 2/n) 0
w(1/n) w(2/n) w(3/n) . . . w(1− 2/n) w(1− 1/n)


(3.3.32)

and D̄ is the corresponding column-wise centered version of D, i.e. D̄i,• = Di,• −∑n
j=1Dj,•/n for 1 ≤ i ≤ n. Similarly, Ȳ denotes the column-wise centered version of

Y. The two minimization problems of (3.3.29) and (3.3.31) are equivalent in the sense
that any solution Û = Û(λ) of (3.3.29) yields a solution of (3.3.31) via

β̂i,• = (Ûi+1,• − Ûi,•)/w(i/n)

and, vice versa, any solution β̂ = β̂(λ) of (3.3.31) yields a solution of (3.3.29) via

Û = 1γ̂ +Dβ̂,

where γ̂ = 1′(Y −Dβ̂)/n. Hence, we obtain the correspondence

Ê (λ) = {u | Ûu,•(λ) 6= 0} = {u | β̂u,•(λ) 6= 0}
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for the set of estimated change points. Furthermore, a β solves (3.3.31) if and only if
the following Karush-Kuhn-Tucker (KKT) conditions are jointly satisfied:

D̄′•,i(Ȳ − D̄β) = λβi,•/‖βi,•‖ holds for all i with rows βi,• 6= 0. (KKT1)

‖D̄′•,i(Ȳ − D̄β)‖ ≤ λ holds for all i with rows βi,• = 0. (KKT2)

Weighted group fused LASSO in the single change point scenario

The next proposition extends Proposition 5.1 of Torgovitski (2015d). Recall that we only
consider univariate real-valued panels in this subsection and that we write ‖ · ‖ = ‖ · ‖2.

Proposition 3.34. Consider the random matrix ĉ = D̄′Ȳ , where the fixed design matrix
D is defined in (3.3.32) and the observable random matrix Y is defined in (3.2.1). Set
ti = ‖ĉi,•‖ for i = 1, . . . , n−1 and assume that ti1 ≤ ti2 ≤ . . . ≤ tin−1 for ik 6= ir with
k 6= r. Then we obtain for M = in−1 and m = in−2 that:

1. For any λ ∈ [tM ,∞) the matrix β = 0 fulfills conditions (KKT1) and (KKT2).
Thus, it is a solution of (3.3.31) and we obtain Ê (λ) = {∅}.

2. For any λ ∈ (λmin, tM ), where λmin ∈ (tm, tM ) is random and tm < tM (i.e.
{ti}i=1,...,n−1 has a unique maximum), the matrix β with rows

βi,• = αM

{
ĉM,•, i = M,

0, i 6= M
(3.3.33)

and αM = (tM − λ)/((D̄•,M )′D̄•,M tM ) fulfills conditions (KKT1) and (KKT2). Thus
it is a solution of (3.3.31) and we obtain Ê (λ) = {M}.

3. For any λ ∈ [λmin, tM ), where λmin ∈ [0, tM ) is random and given that tm = tM
with ĉm,• = ĉM,•, there is no matrix β with rows

βi,•

{
6= 0, i = m or i = M,

= 0, otherwise,

which fulfills both conditions (KKT1) and (KKT2) at the same time, given that

ξ := 1− ((D̄•,m̃)′D̄•,M̃ )/((D̄•,M̃ )′D̄•,M̃ ) > 0 (3.3.34)

holds true for m̃ = min{m,M} and M̃ = max{m,M}.

Remark 3.35 (Selection of λ in the single change point scenario). The first and
the second statement of Proposition 3.34 show monotonicity of Ê (λ) with respect to
large λ. In the case of tM > tm we see that any λ ∈ (λmin, tM ) results in the same
unambiguous estimate Ê (λ) = {M} of a single change point at position M .
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Finally, we are in the position to show the relation of the weighted LASSO to the
weighted CUSUM estimates. The following proposition is given in Torgovitski (2015d,
Proposition 2.4).

Proposition 3.36. Assume that {ti}i=1,...,n−1 has a unique maximum1 and that λ is
selected according to Remark 3.35. Then it holds that

arg max
1≤i<n

w(i/n)T (i/n) = Ê (λ). (3.3.35)

The CUSUM estimate on the left-hand side is specified in (3.2.7) and the group fused LASSO
estimate on the right-hand side is specified in Remark 3.35. (We assume that we use the
same weighting function w for both estimates.)

Remark 3.37. Proposition 3.36 states the identity (3.3.35) assuming that {ti}i=1,...,n−1

has a unique maximum. Proposition 3.34 adds a minor clarification of the behavior
of the group fused LASSO in the opposite case. Let {ti}i=1,...,n−1 have a non-unique
maximum and consider the following situation tin−1 = tM = tm = tin−2 > tin−3 (see
the notation in Proposition 3.34). If (3.3.34) is fulfilled, then the third statement of
Proposition 3.34 implies that there is some random λmin such that no λ ∈ (λmin, tM )
provides a single change point estimate Ê (λ) = {m} or Ê (λ) = {M}. (The latter
condition is fulfilled, e.g., for the weighting w0 ≡ 1 which follows immediately by
((D̄•,m)′D̄•,M )/((D̄•,M )′D̄•,M ) = [m(n −M)]/[M(n −M)] = m/M ∈ (0, 1) in case of
m < M .)

1 This means that tM > tm holds true in Proposition 3.34.
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3.4A small simulation study
The aim of this section is to demonstrate that the CUSUM estimates û from (3.2.7) with
a covariance-based weighting function w? outperform the traditional estimates with a
Darling-Erdős-type weighting function w1/2 in the HDLSS panel data framework under
some moderate temporal dependence.1 For simplicity we restrict ourselves to univariate
real-valued panels

Yi,k = mi,k + εi,k, (3.4.1)

with 1 ≤ i ≤ n, 1 ≤ k ≤ d. Moreover, we do not take any common factors into account
by formally setting γk = 0 for all 1 ≤ k ≤ d in (3.2.1). For the sake of a clearer
presentation, we assume a simple common change point model

mi,k =

{
0, i = 1, . . . , u,

m, i = u+ 1, . . . , n,

with the same change magnitude m > 0 across all panels, i.e. with ∆ = m2 (cf. (3.2.6)
and (3.2.9)). For the noise terms {εi,k} in (3.4.1) we consider the MA(1) and AR(1)
settings from Examples 3.13 and 3.14, i.e. the noise sequence is either given by

εi,k = ηi,k + φηi−1,k (3.4.2)

or by

εi,k =

∞∑
j=0

φjηi−j,k, (3.4.3)

for all 1 ≤ i ≤ n, 1 ≤ k ≤ d. For the innovation sequence {ηi,k} we use in both cases
independent and standard normally distributed random variables.

In this section we complement the thorough simulation study on accuracy for MA(1)
panels in Torgovitski (2015d) and add the AR(1) case. Our simulations are implemented
in R where we simulate both (3.4.2) and (3.4.3) using the arima.sim function from the
basic {stats}-R-package. Figure 3.3 and Figure 3.4 show the accuracy of the CUSUM
estimates for various dimensions d, for a range of parameters φ and for different
weighting functions wγ , where all reported results base on 1000 repetitions. Both figures
show a matrix of plots where the columns correspond to different dimensions and the
rows to different weighting functions. Each plot in this matrix shows the accuracy
for a range of parameters φ. For example, the leftmost plot in the top panel shows the
accuracy for the combination of w0 with d = 1. Note that for the sake of a more concise
notation, we denote w? by wγ with γ := ?. (Recall that the weighting w? is shown in
Figure 3.2 for different sample sizes and different parameters φ and also that convenient
formulas for this weighting are summarized in Table 3.1.) Our simulation results show
that estimates weighted by w? are asymptotically more accurate than those weighted
by w0 or by w1/2 and that the accuracy of estimates weighted by w? increases, as
d→∞. These observations are in accordance with the theoretical results of this section.

1 We choose û as the smallest element in argmax1≤i<n w(i/n)T (i/n).

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/arima.sim.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html
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Note that w0 and w1/2 show a complementary behavior for the chosen parameters:
CUSUM estimates with w0 have high accuracy whenever w1/2 yields low accuracy and
vice versa. For instance, we see in Figure 3.3 that using w0 is better for parameters
φ ≤ 0 whereas using w1/2 is advantageous for φ > 0. We observe a similar pattern in
Figure 3.3. In the demonstrated simulations the covariance-based weighting w? seems
to combine the good properties of w0 for negative φ and of w1/2 for positive φ. The
reason, at least in the MA(1) case, is that w? indeed approximates w0 for parameters
φ close to −1 and approximates w1/2 for positive parameters φ (cf. Figure 3.2). We
finish our discussion by two observations. In Figure 3.3 and in Figure 3.4 we see that
a weaker dependence structure yields higher accuracy for estimates weighted by w?
and that w0 leads to spurious estimation in the i.i.d situation of φ = 0. (The latter was
already observed by Bleakley & Vert, 2011a.)
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Figure 3.3: CUSUM estimates û weighted by wγ in the MA(1) setting. The sample size is
n = 100, the common change point is at u = 75 and the change magnitude is m = 1/5.
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Figure 3.4: CUSUM estimates û weighted by wγ in the AR(1) setting. The sample size is
n = 100, the common change point is at u = 75 and the change magnitude is m = 1/5.
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3.5Proofs
Proof of Theorem 3.6. We provide a detailed version of the proof of Torgovitski (2015d,
Theorem 2.9) that is also extended to the Hilbert space valued setting (cf. also Torgov-
itski, 2015d, arXiv:1501.00177v2, Theorem 2.18). Let x = i/n be the rescaled time
point for any fixed 1 ≤ i ≤ n. First, we decompose the partial sums into the contribu-
tions of the noise, the common factors and the changes, i.e.

Sn,k(x ;Y ) = Sn,k(x ; ε) + γkSn,k(x ; ζ)− n1/2∆kH(x , s). (3.5.1)

In the following we will write Sn(x ; ζ) = Sn,k(x ; ζ) since the partial sum of common
factors is independent of k and use the notation from (3.2.9) for ∆. For the squared
norm of (3.5.1) we have

‖Sn,k(x ;Y )‖2

= ‖Sn,k(x ; ε) + γkSn(x ; ζ)‖2

− 2〈Sn,k(x ; ε) + γkSn(x ; ζ), ∆k〉n1/2H(x , s) + n‖∆k‖2H2(x , s)

= ‖Sn,k(x ; ε)‖2 + 2〈γkSn,k(x ; ε),Sn(x ; ζ)〉+ γ2
k‖Sn(x ; ζ)‖2

− 2〈Sn,k(x ; ε), ∆k〉n1/2H(x , s)− 2〈Sn(x ; ζ), γk∆k〉n1/2H(x , s)

+ n‖∆k‖2H2(x , s).

(3.5.2)

Applying the Cauchy-Schwarz inequality twice, we obtain

E‖Sn(x ; ζ)‖2 =
n∑

j,q=1

a
(i)
j a

(i)
q E〈ζj , ζq〉 ≤

n∑
j,q=1

a
(i)
j a

(i)
q

[
E‖ζj‖2E‖ζq‖2

]1/2
<∞, (3.5.3)

where the coefficients a(i)
j are defined via (3.3.10) and x = i/n. Similarly, we get that

E‖Sn,k(x ; ε)‖2 < ∞, where in both cases we use that {ζj} and {εj,k} have finite
second moments. Since Sn,k(x ; ε) and Sn(x ; ζ) are independent and centered, we
observe, using (3.5.2) and (3.5.3), that

E‖Sn,k(x ;Y )‖2

= E‖Sn,k(x ; ε) + γkSn(x ; ζ)‖2

− 2〈E[Sn,k(x ; ε) + γkSn(x ; ζ)], ∆k〉n1/2H(x , s) + n‖∆k‖2H2(x , s)

= E‖Sn,k(x ; ε)‖2 + γ2
kE‖Sn(x ; ζ)‖2 + n‖∆k‖2H2(x , s).

This yields, as d→∞,

E
d∑

k=1

‖Sn,k(x ;Y )‖2/d

=

d∑
k=1

E‖Sn,k(x ; ε)‖2/d

+
[ d∑
k=1

γ2
k/d
]
E‖Sn(x ; ζ)‖2 +

[ d∑
k=1

‖∆k‖2/d
]
nH2(x , s)

= V 2(x)σ2 + H2(x , s)(n∆) + o(1),

(3.5.4)
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for any x ∈ In, where in the last line we used Assumption N1, Assumption CF and
(3.2.9). In the next step we show that the convergence (3.5.4) also holds in probability.
Therefore, by Chebyshev’s inequality, it is sufficient to show that

Var

( d∑
k=1

‖Sn,k(x ;Y )‖2/d
)

= o(1) (3.5.5)

holds true for any x ∈ In, as d→∞. Below, we will show that

Var
( d∑
k=1

‖Sn,k(x ; ε)‖2
)

= o(d2), (V1)

Var
(〈
Sn(x ; ζ),

d∑
k=1

γkSn,k(x ; ε)
〉)

= o(d2), (V2)

Var
( d∑
k=1

γ2
k‖Sn(x ; ζ)‖2

)
= o(d2), (V3)

Var
( d∑
k=1

〈∆k,Sn,k(x ; ε)〉
)

= o(d2), (V4)

Var
( d∑
k=1

〈∆kγk,Sn(x ; ζ)〉
)

= o(d2) (V5)

hold true for any x ∈ In and therefore (3.5.5) follows via (3.5.2) by the Cauchy-
Schwarz inequality.

Bound for (V1): From ‖Sn,k(x ; ε)‖2 =
∑n

j,q=1 a
(i)
j a

(i)
q 〈εj,k, εq,k〉, x = i/n, we obtain

Var
( d∑
k=1

‖Sn,k(x ; ε)‖2
)

=
d∑

k,r=1

n∑
j,q,l,m=1

a
(i)
j a

(i)
q a

(i)
l a

(i)
m Cov

(
〈εj,k, εq,k〉, 〈εl,r, εm,r〉

)

=

n∑
j,q,l,m=1

a
(i)
j a

(i)
q a

(i)
l a

(i)
m

d∑
k,r=1

Cov
(
〈εj,k, εq,k〉, 〈εl,r, εm,r〉

)
and hence (3.3.2) implies (V1).

Bound for (V2): Since Sn(x ; ζ) and Sn,k(x ; ε) are independent, centered and due to
(3.5.3), we obtain

Var
(〈
Sn(x ; ζ),

d∑
k=1

γkSn,k(x ; ε)
〉)

= E〈Sn(x ; ζ),
d∑

k=1

γkSn,k(x ; ε)〉2

≤ E‖Sn(x ; ζ)‖2E‖
d∑

k=1

γkSn,k(x ; ε)‖2
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= E‖Sn(x ; ζ)‖2
d∑

k,r=1

|γkγr|E〈Sn,k(x ; ε),Sn,k(x ; ε)〉

= E‖Sn(x ; ζ)‖2
n∑

j,q=1

ajaq

d∑
k,r=1

|γkγr|E〈εj,k, εq,r〉

and thus (V2) follows in view of (3.3.4).

Bound for (V3): Analogously to (3.5.3), we obtain by the finiteness of E(‖ζi‖4) that

Var
(
‖Sn(x ; ζ)‖2

)
=

n∑
j,q,l,m=1

a
(i)
j a

(i)
q a

(i)
l a

(i)
m Cov

(
〈ζj , ζq〉, 〈ζl, ζm〉

)
≤

n∑
j,q,l,m=1

a
(i)
j a

(i)
q a

(i)
l a

(i)
m

[
Var

(
‖ζj‖‖ζq‖

)
Var

(
‖ζl‖‖ζm‖

)]1/2
<∞

(3.5.6)

and (V3) follows from

Var
( d∑
k=1

γ2
k‖Sn(x ; ζ)‖2

)
=

[ d∑
k=1

γ2
k

]2

Var
(
‖Sn(x ; ζ)‖2

)
combined with Assumption CF.

Bound for (V4): It holds that

Var
( d∑
k=1

〈∆k,Sn,k(x ; ε)〉
)

=
n∑

j,q=1

a
(i)
j a

(i)
l

d∑
k,r=1

E
(
〈∆k, εj,k〉〈∆r, εl,r〉

)
and therefore (3.3.3) implies (V4).

Bound for (V5): Our assumptions on ∆k (cf. (3.2.9)) and Assumption CF yield, via
the Cauchy-Schwarz inequality, that, as d→∞,

Var
( d∑
k=1

〈∆kγk,Sn(x ; ζ)〉
)
≤
[ d∑
k=1

|γk|‖∆k‖
]2

Var
(
‖Sn(x ; ζ)‖

)
≤
[ d∑
k=1

γ2
k

][ d∑
k=1

‖∆k‖2
]

Var
(
‖Sn(x ; ζ)‖

)
= o(d)O(d) Var

(
‖Sn(x ; ζ)‖

)
.

Hence, (V5) follows in view of (3.5.6).

Altogether, the relations (V1)-(V5) imply (3.5.5) and making use of (3.5.4) we obtain

[n∆d]−1

[
w2(x)

d∑
k=1

‖Sn(x ;Y )‖2
]

P−→ C(x ; s, ρ), (3.5.7)
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as d→∞. To finish our proof we set S = arg max1≤i<n C(i/n; s, ρ) and tacitly as-
sume that S ( {1, . . . , n− 1} because the case of S = {1, . . . , n− 1} is trivial. Rela-
tion (3.5.7) now yields that, as d→∞,

P
(

arg max
1≤i<n

w(i/n)T (i/n) ⊆ S
)
≥ P

(
max
i∈S

w(i/n)T (i/n) > max
j 6∈S

w(j/n)T (j/n)
)

→ P
(

max
i∈S

C(i/n; s, ρ) > max
j 6∈S

C(j/n; s, ρ)
)

= 1

and the assertion follows.

Proof of Lemma 3.10. Straightforward calculations yield

c V 2(i/n) = E
∥∥(n− i)

i∑
j=1

εj,1 − i
n∑

j=i+1

εj,1
∥∥2

= (n− i)2
i∑

k,r=1

E〈εk,1, εr,1〉+ i2
n∑

k,r=i+1

E〈εk,1, εr,1〉

− 2(n− i)i
i∑

k=1

n∑
r=i+1

E〈εk,1, εr,1〉

= [n(n− i)]
i∑

k,r=1

E〈εk,1, εr,1〉+ [ni]
n∑

k,r=i+1

E〈εk,1, εr,1〉

− [i(n− i)]
n∑

k,r=1

E〈εk,1, εr,1〉,

which shows (3.3.11) for c = σ2n3. Under weak stationarity of {εr,1}r=1,...,n the last
expression shows that

c V 2(i/n) = [n(n− i)]
(
i�i/n

)
+ [ni]

(
(n− i)�1−i/n

)
− [i(n− i)]

(
n�1

)
holds true with �x defined in (3.3.8) and this in turn verifies (3.3.12).

Based on Lemma 3.10 we are able to show a different and simpler proof for the
MA(1)-Example 3.13 than in Torgovitski (2015d). Similar considerations then extend
to the autoregressive and the MA(q) cases.

Proof of Example 3.13. First, notice that

c �i/n =
[
(1 + φ2)i+ 2(i− 1)φ

]
/i = (1 + φ2 + 2φ)− 2φ/i

holds true for some c > 0. We use formula (3.3.7) to obtain

cF(i/n) = (i/n)(1− i/n)
(

[1 + φ2 + 2φ]− 2[φ/i+ φ/(n− i)] + 2φ/n
)

and the assertion follows via Lemma 3.10 since 1/i+1/(n−i) = [n(i/n)(1−i/n)]−1.

We continue with the variance of cumulated noises in the AR(1) case.
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Proof of Example 3.14. Standard calculations yield

c �i/n =
i∑

r=1

i∑
j=1

γ(r, j)/i

=
i∑

r=1

( i−r∑
j=0

φj +
r−1∑
j=0

φj − φ0

)
/i

= 2

i∑
r=1

r−1∑
j=0

φj/i− 1

= 2(1− φ)−1 − 2(φ− φi+1)(1− φ)−2/i− 1

= [(1− φ2)− 2(φ− φi+1)/i](1− φ)−2

for some c > 0. Thus, c̃ �i/n = (1− φ2)− 2(φ− φi+1)/i for some c̃ > 0 and we finish
the proof by using formula (3.3.7) together with Lemma 3.10.

Proof of Lemma 3.15 (as given in Lemma 2.13 in Torgovitski, 2015d). We may define for
any s a strictly concave function fs(x) = V (x)/V (s) and a linearly increasing function
gs(x) = x/s. It holds that fs(s) = gs(s) and that fs(1/n) > gs(1/n). Hence, strict con-
cavity yields fs(x) > gs(x) for all x < s which finishes the proof.

Proof of Lemma 3.16. We begin with the MA(1) case and show a slightly modified proof
of Remark 2.14 of Torgovitski (2015d). We treat the cases α(φ) > 0 and α(φ) ≤ 0 sep-
arately to illustrate how Lemma 3.15 may be applied in the former »concave« situation.

α(φ) > 0: According to Lemma 3.15 it suffices to verify the positivity of[
V 2(1/n)/(1/n)2 − V 2(y)/y2

]
= c (ny − 1)

[
φ2ny − 2φ(1− y) + ny

]
/y2 (3.5.8)

= c (ny − 1)
[
(ny + nyφ2 − 2φ) + 2φy

]
/y2 (3.5.9)

for y = 2/n, . . . , (n− 1)/n, where c > 0 is some positive constant. The term on the
right-hand side of (3.5.8) is positive for all φ ≤ 0 and the term on the right-hand side
of (3.5.9) is positive for all φ ≥ 0 since (ny + nyφ2 − 2φ) > 1 + φ2 − 2φ ≥ 0.

α(φ) ≤ 0: We consider the function

h(x) := [x(1− x)α(φ)−R(φ)]/x2,

where x takes values in the whole domain x ∈ (0, 1), and show that the derivative
∂xh(x) is negative which then implies the assertion. It holds that

cx3∂xh(x) = −α(φ)x+ 2φ < −α(φ) + 2φ

for some c > 0 and all x ∈ (0, 1). Now, the assertion follows since the right-hand side
is negative if 1 + φ2 > (2− 2/n)φ, which is fulfilled because α(φ) ≤ 0 implies φ < 0.
(Note that we may apply a similar argument in the first case of α(φ) > 0 without
making use of Lemma 3.15.)

The next proof is for the variance of cumulated noises within the MA(q) case.
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Proof of Example 3.18. After some basic calculations we arrive at

c�i/n =

q∑
j=0

φ2
j + 2

i−1∑
k=1

(1− k/i)
q∑
j=0

φjφj+k,

for 1 ≤ i ≤ n, which simplifies to

c�i/n =

q∑
j=0

φ2
j + 2

q∑
k=1

(1− k/i)
q∑
j=0

φjφj+k

=
[ q∑
j=0

φ2
j + 2

q∑
k=1

q∑
j=0

φjφj+k

]
−
[
2

q∑
k=1

q∑
j=0

k(φjφj+k)
]
/i

for q < i (cf. (3.3.17)) and for some c > 0. As before, we use formula (3.3.7) and
Lemma 3.10 to finish the proof.

Remark 3.38. Recall the Definition 3.5 of C(x ; ς, ρ) and, furthermore, that we consider
wγ(x) = [x(1 − x)]−γ , γ ∈ (0, 1/2) and V 2(x) = x(1 − x) in the subsequent proofs of
Theorem 3.21 and of Proposition 3.22.

For the following proofs it is convenient to define the differentiable versions of the
discrete critical function C(x ; ς, ρ) and of (3.3.20), namely

C (x; ρ) := F (x)ρ+ G (x, ς)

and

R(x, s) := [G (x, s)− G (s, s)]/[F (s)−F (x)]

with F (x) = [x(1− x)]1−2γ and G (x, s) = [x(1− x)]−2γ [x(1− s)]2, where x ∈ [0, 1).
Notice that the identity C (x; ρ) ≡ C(x; ς, ρ) holds only for x ∈ [0, ς]∩ In, where ς(s) =
max{s, 1− s} is defined as before, and that by definition we have

inf
1/2≤x<ς

R(x , ς) = inf
1/2≤x<ς

R(x , ς) = inf{ρ |C (x ; ρ) = C (ς; ρ), 1/2 ≤ x < ς}.

Proof of Theorem 3.21. This is a detailed version of the proof of Theorem 2.17 in Tor-
govitski (2015d) but developed in a (as it turns out more convenient) time-rescaled
setting to clarify the ideas. We consider the partial derivative

∂xC (x; ρ+ ε) = ∂xC (x; ρ) + ε∂xF (x), (3.5.10)

for ρ > 0, ε > 0, and the function

P(x, ρ) := h(x)∂xC (x; ρ),

where h(x) = (x(1− x))2γ+1/x and P(x, ρ) are restricted to x ∈ (0, 1). Notice that
the derivative ∂xC (x; ρ) and the rescaled derivative P(x, ρ) have the same zeros as
functions of x since h(x) > 0.

A combination of the following properties P1) - P3) (essentially) yields the assertion:
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P1) It holds that C (0; ρ) = 0 and that C (x; ρ) ↑ ∞ for x ↑ 1. Hence, by the continu-
ity of C , a (strict) local maximum of C (x; ρ) at some xmax(ρ) ∈ (0, 1) implies
the existence of a a (strict) local minimum at some xmin(ρ) ∈ (xmax(ρ), 1) and
vice versa. Since P(x, ρ) is a polynomial in x with degree 2, C (x; ρ) may have
on x ∈ (0, 1) either one isolated critical point as a saddle point or two isolated
critical points, i.e. exactly one strict local maximum and one strict local minimum.

P2) Since ρmax(s) <∞, we know by P1 that ∂xC (x∗; ρ∗) = 0 holds true for some
isolated saddle point x∗ ∈ (0, 1) given some ρ∗ > 0. Hence, a strict local maximum
and a strict local minimum of C (x; ρ∗ + ε), restricted to x ∈ (0, 1), are always
located for ρ = ρ∗ + ε, ε > 0 at some

0 < xmax(ρ) < x∗(ρ∗) < xmin(ρ) < 1.

This follows again from property P1 in combination with (3.5.10) and due to

∂xC (x∗; ρ∗ + ε) < 0

for any ε > 0.

P3) The discriminant of P(x, ρ), denoted by D(ρ), is independent of x. It is itself a
polynomial in ρ with degree 2 and its roots are given by

ρ1 =
−(2γ + 2) + 4γ1/2

2γ − 1
(1− ς)2, ρ2 =

−(2γ + 2)− 4γ1/2

2γ − 1
(1− ς)2,

where ρ2 denotes the larger root. We observe that x1 = B(γ) ∈ (1/2, 1) is the
unique solution of P(x, ρ2) = 0 and therefore also of ∂xC (x; ρ2) = 0. (Note that
the properties of B(γ), stated in this Theorem 3.21, follow by an application of
l’Hôpital’s rule.) Furthermore, notice that there are no critical points of C (x; ρ)
for ρ ∈ [0, ρ2) : P2 implies that D(ρ) must be positive for ρ ∈ (ρ2,∞), negative
for ρ ∈ (ρ1, ρ2) and again positive for ρ ∈ [0, ρ1). Hence, ∂xC (x; ρ) = 0 does not
have a solution for ρ ∈ (ρ1, ρ2). By P2, ∂xC (x; ρ) = 0 for some ρ ∈ [0, ρ1] implies
the existence of a local maximum for some ρ ∈ (ρ1, ρ2) which is a contradiction.
Hence, ∂xC (x; ρ) = 0 does not have a solution for ρ ∈ [0, ρ1) either.

In conclusion, combining P1-P3, we have no critical points of C (x; ρ) (restricted to
x ∈ (0, 1)) for ρ < ρ1 and exactly two critical points - a strict local maximum and a
strict local minimum - at some

0 < xmax(ρ) < B(γ) < xmin(ρ) < 1

for ρ ∈ (ρ2,∞). Based on this, we observe the following two cases that finish our proof:

Case 1: Let dn/2e/n < ς ≤ B(γ) and ρa > 0. If C (x ; ρa) = (>)C (ς; ρa) for some
1/2 ≤ x < ς − 1/n, x ∈ In, then C (ς − 1/n; ρa) ≥ (>)C (ς; ρa) holds true
since we have an isolated saddle point at B(γ) and since xmin > B(γ). If
C (ς − 1/n; ρa) < C (ς; ρa), then we have C (x ; ρa) < C (ς; ρa) for all 1/2 ≤ x <
ς − 1/n, x ∈ In.

Case 2: Let B(γ) + 2/n < ς < 1 and ρa > 0. If we have C (ς − 1/n; ρa) = C (ς; ρa)
then we necessarily obtain C (ς − 2/n; ρa) > C (ς − 1/n; ρa) since we have an
isolated saddle point at B(γ) and xmin > B(γ).
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Proof of Proposition 3.22. We present an extended version of the proof of Proposition
2.18 of Torgovitski (2015d) in a time-rescaled setting. The case of θ ∈ (1/2, 3/4] is
already shown in (3.3.23) in Theorem 3.21 and we continue with θ ∈ (3/4, 1). First,
we define

ρ?(s) := inf
x∈(1−ς,ς)

R(x, ς) = inf
x∈[1/2,ς)

R(x, ς) ≤ inf
1/2<x<ς,

x∈In

R(x , ς) = ρmax(s).

Notice that the function R(x, ς) is well-defined and differentiable on x ∈ (1 − ς, ς)
and that R(x, ς) < R(1− x, ς) for x ∈ (1/2, ς) which yields the second equality. In
the following we assume that n is sufficiently large such that B(γ) + 2/n < ς holds
true in which case we know from previous considerations that R(x, ς) must have a
(strict) local minimum within [1/2, ς). It holds that

∂xR(x, ς) = −x(1− ς)2

2

(
ς(1− ς)
x(1− x)

)1/2 f1(x, ς)− g1(x, ς)

[f2(x, ς)− g2(x, ς)]2
(3.5.11)

with

f1(x, ς) = 2x[x(1− x)]1/2[ς(1− ς)]1/2,
g1(x, ς) = 2ςx2 + ς2 − 3ςx,

f2(x, ς) = x(1− x)[ς(1− ς)]1/2,
g2(x, ς) = ς(1− ς)[x(1− x)]1/2,

defined on x ∈ (1− ς, ς). Notice that f2(x, ς) = g2(x, ς) is equivalent to

x(1− x) = ς(1− ς)

which is impossible for x ∈ (1− ς, ς), i.e. the above expression (3.5.11) is well-defined
for all x ∈ (1− ς, ς).

We have ∂xR(x, ς) = 0 for x ∈ (1− ς, ς) if and only if f1(x, ς) = g1(x, ς) holds
true. Further, we observe that

−ς(4x2 − 4x+ ς)(ς − x)2 = f2
1 (x, ς)− g2

1(x, ς) = 0

has the solutions

x1,2 = [1± (1− ς)1/2]/2.

Notice that x? = [1 + (1− ς)1/2]/2 is the only critical point that fulfills x? ∈ [1/2, ς).
Hence, we conclude that this is necessarily the sought argument of the local minimum,
i.e. ρ?(s) = R(x?, ς), and see that ρ?(s) converges to the right-hand side of (3.3.24)
due to limn→∞ ς = θ and due to the continuity of R(x, y). It holds that

ρmax(s) = inf
1/2≤x<ς

R(x , ς) = inf
1/2≤x<ς

R(x , ς) = min{R(bnx?c/n, ς),R(dnx?e/n, ς)}

since x? is the only critical point of R(bnx?c/n, ς) in [1/2, ς). By the mean value
theorem, we obtain, as n→∞,

|ρmax(s)− ρ?(s)| = |min{R(bnx?c/n, ς),R(dnx?e/n, ς)} −R(x?, ς)|
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≤ sup
δ∈[−1/n,1/n],
x?+δ∈[1/2,ς)

∣∣∣R(x? + δ, ς)−R(x?, ς)
∣∣∣

≤ c sup
δ∈[−1/n,1/n],
x?+δ∈[1/2,ς)

∣∣∣∂xR(x? + δ, ς)
∣∣∣/n = o(1)

for some c > 0, which proves (3.3.24) for ρmax(s), too. Finally, the smoothness prop-
erties follow on applying l’Hôpital’s rule. (Notice that if we could solve ∂xR(x, ς) = 0
for values of γ other than 1/4, then this Proposition 3.22 may be extended to these
cases, too.)

Proof of Theorem 3.24 (as in Theorem 2.11 of Torgovitski, 2015d). The critical function
C(·; s, ρ) is positive. It has a maximum at x = s for all ratios ρ > 0 if and only if

1 ≤ C(s; s, ρ)/C(x ; s, ρ) (3.5.12)

holds true for all ρ > 0 and all x ∈ In. This can only be fulfilled if

1 ≤ lim
ρ→∞

C(s; s, ρ)/C(x ; s, ρ) =
[
(w(s)V (s))/(w(x)V (x))

]2 (3.5.13)

holds true for every x . Notice that the weights w = cw? fulfill this constraint for any
c > 0. Now, recall, that we require that w is positive. Hence, if w = cw? does not
hold with some c > 0, then

1 < (w(z)V (z))/(w(y)V (y))

must hold true for some z 6= y which contradicts condition (3.5.13) for s = y and
x = z and therefore also contradicts (3.5.12) for some ρ > 0.

Proof of Theorem 3.25 (as given in Theorem 2.12 of Torgovitski, 2015d). The weights w
= cw? imply that the difference

C(s; s, ρ)−C(x ; s, ρ)=
[
w(s)s(1− s)

]2−[w(x) min{x , s}(1−max{x , s})
]2 (3.5.14)

does not depend on ρ for all x 6= s. A unique maximum of C(x ; s, ρ) is obviously at
x = s if and only if the right-hand side of (3.5.14) is positive for all x 6= s which in
turn is the case if and only if

w(s)/w(x) >

{
x/s, x < s,

(1− x)/(1− s), x > s

holds true for all x 6= s, x ∈ In. For x < s this is equivalent to

V (x)/x > V (s)/s (3.5.15)

and, due to symmetry, for x > s it is equivalent to

V (1− x)/(1− x) > V (1− s)/(1− s). (3.5.16)

On the one hand, if V (x)/x is strictly decreasing, then (3.5.15) and (3.5.16) follow
for any combination of x and s. On the other hand, if (3.5.15) holds true for any s

and for all x < s, then V (x)/x is necessarily strictly decreasing which completes the
proof.
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Proof of Proposition 3.28. It holds that

Σ̂j,k =
d∑
p=1

〈
(Yj,p − Ȳj,d), (Yk,p − Ȳk,d)

〉
/d,

=
d∑
p=1

〈
(εj,p − ε̄j,d) + (γp − γ̄d)ζj , (εk,p − ε̄k,d) + (γp − γ̄d)ζk

〉
/d

=

d∑
p=1

〈
(εj,p − ε̄j,d), (εk,p − ε̄k,d)

〉
/d+ 〈ζj , ζk〉

[ d∑
p=1

(γp − γ̄d)2/d
]

+
〈
ζj ,

d∑
p=1

(γp − γ̄d)(εk,p − ε̄k,d)/d
〉

+
〈 d∑
p=1

(γp − γ̄d)(εj,p − ε̄j,d)/d, ζk
〉
,

=: A1 +A2 +A3 +A4,

where γ̄d =
∑d

p=1 γp/d. Assumption N2 ensures that Σj,k = A1 + oP (1) as d → ∞.
Hence, it remains to verify that the terms A2, A3 and A4, which involve the common
factors, are asymptotically negligible. It holds that

d∑
p=1

(γp − γ̄d)2/d =
[ d∑
p=1

γ2
p/d
]
−
[ d∑
p=1

γp/d
]2

(3.5.17)

and

‖
d∑
p=1

(γp − γ̄d)(εk,p − ε̄k,d)/d‖

≤
d∑
p=1

γp‖εk,p‖/d+
[ d∑
p=1

γp/d
]
‖ε̄k,d‖

≤
[ d∑
p=1

γ2
p/d
]1/2[ d∑

p=1

‖εk,p‖2/d
]1/2

+
[ d∑
p=1

γp/d
]
‖ε̄k,d‖.

(3.5.18)

A combination of Assumption CF together with Assumption N2 and Jensen’s inequality
yields that (3.5.17) and (3.5.18) are of order o(1) and oP (1), as d→∞. An application
of the Cauchy-Schwarz inequality, using the finiteness of the second moments of ζj ,
yields A2 +A3 +A4 = oP (1), which finishes the proof.

Proof of Proposition 3.34. We treat the three cases separately. The proofs for the first
two cases were already shown in Torgovitski (2015d) whereas the proof of the third
case has not been published previously.

Case 1: We assume that λ ∈ [tM ,∞) and that β = 0. Hence, condition (KKT1) is
fulfilled. Condition (KKT2) directly translates to tM = max1≤i<n ‖ĉi,•‖ =
max1≤i<n ‖(D̄•,i)′Ȳ ‖ ≤ λ and is also satisfied.

Case 2: We assume λ ∈ (tm, tM ) and that β is set according to (3.3.33). We rear-
range (KKT1) and observe that it is equivalent to

ĉM,• = λβM,•/‖βM,•‖+ (D̄•,M )′D̄βM,•

=
(
λ/‖βM,•‖+ (D̄•,M )′D̄•,M

)
βM,•,

(3.5.19)
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which is satisfied since ‖βM,•‖ = (tM − λ)/((D̄•,M )′D̄•,M ) holds true. Next,
we observe that (KKT2) is fulfilled whenever it holds that

tm = max
i 6=M
‖(D̄•,i)′Ȳ ‖ ≤ λ− ‖D̄β‖,

which is the case for all λ ∈ (λmin, tM ) with some λmin ∈ (tm, tM ) since
β → 0 as λ ↑ tM .

Case 3: We assume that λ ∈ (0, tm). Furthermore, we may assume without loss of
generality that m < M. Proceeding as under (3.5.19) we observe that β has
to be defined according to (3.3.33) to fulfill (KKT1). This contradicts condition
(KKT2) which may be seen as follows: assumption ĉm,• = ĉM,• implies that

‖(D̄•,m)′(Ȳ − D̄β)‖ = ‖(D̄•,m)′Ȳ − (D̄•,m)′(D̄•,MβM,•)‖
= ‖ĉm,• − (D̄•,m)′D̄•,M (αM ĉM,•)‖
= |1− αM (D̄•,m)′D̄•,M |‖ĉM,•‖
= |1− αM (D̄•,m)′D̄•,M |tM

and (KKT2) requires that ‖(D̄•,m)′(Ȳ − D̄β)‖ ≤ λ. If λ is sufficiently close
to tM , this is equivalent to ξtM ≤ ξλ with

ξ = 1− (D̄•,m)′D̄•,M )/((D̄•,M )′D̄•,M ).

Thus, if ξ > 0, we end up with tM ≤ λ which contradicts our previously
made assumption of λ < tM .

Now, Proposition 3.36 is a direct implication of Proposition 3.34.

Proof of Proposition 3.36 (as given in Proposition 2.4 of Torgovitski, 2015d). An evalua-
tion of ĉ = D̄′Ȳ yields

ti = ‖ĉi,•‖ = w(i/n)‖
i∑

j=1

(Yj,• − Ȳn,•)‖ = n1/2w(i/n)T (i/n)

for all 1 ≤ i < n and the second statement of Proposition 3.34 yields the assertion.
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3.6Notes
(Relation of this chapter to previous

publications and preprints)
The theory presented and developed within this chapter is based essentially on Torgovitski (2015d) and
on the corresponding preprints Torgovitski (2015d, arXiv:1501.00177). As explained in the general in-
troduction in Chapter 1 (and in Section 3.1 of this Chapter 3) the theory is refined and extended in
manifold ways. Moreover, the presentation of the results is structured differently. For the sake of clarity,
we summarize the relations between this chapter and the results in Torgovitski (2015d), below. Note that
the proofs in this chapter are modifications and extensions (with notational adaptations) of the proofs
presented in Torgovitski (2015d) and also in the corresponding previous arXiv.org versions Torgovitski
(2015d, arXiv:1501.00177). (For this reason the proofs in Section 3.5 contain additional references, as
well.)

Assumptions: Assumption N1, Assumption CF, Assumption N2 correspond to Assumptions 2.5, 2.6
and also to Assumptions of Section 2.2.4 in Torgovitski (2015d). Assumption U1 and
Assumption U2 both correspond to Assumption A1 of Torgovitski (2015d).

Definitions: Definition 3.5 is a time-rescaled Hilbert space version of (2.11) of Torgovitski (2015d).
(Cf. also Section 2.4 of Torgovitski, 2015d, arXiv:1501.00177v2.)

Theorems: Theorems 3.6, 3.21, 3.24 and 3.25 correspond to Theorems 2.9, 2.17, 2.11 and 2.12
of Torgovitski (2015d). Particularly, (3.3.23) is a new more compact representation of
the limit (2.23) in Torgovitski (2015d).

Propositions: Propositions 3.22 and 3.28 correspond to Proposition 2.18 and the informally stated
results of Section 2.2.4 in Torgovitski (2015d). Proposition 3.19 is new whereas Propo-
sition 3.20 is related to Theorem 2.16 of Torgovitski (2015d). Proposition 3.34 extends
Proposition 5.1 of Torgovitski (2015d) and Proposition 3.36 corresponds to Proposi-
tion 2.4 of Torgovitski (2015d).

Lemmas: Lemma 3.10 is a substantial extension of (2.27) of Torgovitski (2015d). Lemma 3.15
and Lemma 3.16 correspond to Lemma 2.13 and Remark 2.14 of Torgovitski (2015d).

Corollaries: Corollary 3.29 is new but implicitly contained as a discussion in Section 2.2.4 of
Torgovitski (2015d).

Examples: Examples 3.12 and 3.13, for WN and MA(1) panels, correspond to Examples 2.7 and
2.8 of Torgovitski (2015d). Examples 3.14 and 3.18, for AR(1) and MA(q) panels, are
entirely new. Furthermore, Counterexample 3.17 is new, too.

Remarks: Remarks 3.4, 3.9, 3.11, 3.26, 3.27, 3.31 and 3.38 are new. Remarks 3.3, 3.7, 3.23,
3.32 and 3.33 correspond to Footnote 7, to Remarks 2.10, 2.19, 2.20 and to Footnote
4 of Torgovitski (2015d). Remark 3.8 is related to Section 2.4 of Torgovitski (2015d,
arXiv:1501.00177v2). Remarks 3.30 and 3.35 are implicitly contained in Section
2 of Torgovitski (2015d). Remark 3.37 refines the explanation in Section 2.2.1 of
Torgovitski (2015d).

Notations: Notation 3.1 is borrowed from Torgovitski (2015d). Notation 3.2 is new.

Figures and Tables: Figure 3.1 and Figure 3.2 are new. Figure 3.3 and Figure 3.4 are new but related to
Torgovitski (2015d, Figures 3 and 4). Finally, Table 3.1 is new.
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