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Kurzzusammenfassung 

Adeno-assoziierte virale (AAV) Vektoren sind eine der am häufigsten verwendeten Gentransfersys-

teme in der Grundlagen- und der präklinischen Forschung und wurden bereits in mehr als 160 klini-

schen Studien angewendet. Üblicherweise werden sie durch Kotransfektion eines sogenannten Vek-

torplasmids und zweier, oder wie in meiner Arbeit, eines Helferplasmids in einer Produktionszelllinie 

hergestellt. Das Vektorplasmid enthält die Transgenexpressionskassette („transgene cassette of inte-

rest“ (TEC)) flankiert von den viralen „inverted terminal repeats“ (ITRs), palindromischen Sequenzen, 

die als Verpackungssignale fungieren, während das Helferplasmid die notwendigen AAV- und Hel-

fervirusgene in trans bereitstellt. Ein entscheidender Aspekt der AAV-Vektorologie ist die Herstellung 

von AAV-Vektoren frei von durch den Produktionsprozess anfallenden Unreinheiten. Zu diesen Un-

reinheiten gehören AAV-Kapside, die prokaryotische Sequenzen wie z.B. antibiotische Resistenzge-

ne enthalten, die von den Ausgangsplasmiden stammen.   

Das Ziel des ersten Teils dieser Arbeit war die Verbesserung der Sicherheit von AAV-Vektoren. Da 

es nicht möglich ist, in AAV-Kapside verpackte prokaryotische Sequenzen durch Standard-

Reinigungsprotokolle zu entfernen, wurde untersucht, ob die Ausgansplasmide für die Vektorproduk-

tion durch „Minicircles“ (MCs) ersetzt werden können. MCs sind zirkuläre DNS-Konstrukte die keine 

funktionalen oder kodierenden prokaryotischen Sequenzen beinhalten; sie bestehen nur aus der 

TEC und einem kurzen Abschnitt der für ihre Herstellung und Aufreinigung nötig ist. Ein Vektor-MC 

als Gegenstück für ein Vektorplasmid das für das enhanced green fluorescent (eGFP) Protein kodiert 

und ein Helfer-MC als Gegenstück für das Helferplasmid welches für die Gene von AAV Serotyp 2 

(AAV2) und die Gene des Helfervirus Adenovirus Typ 5 kodiert, wurden von PlasmidFactory (Biele-

feld, Germany) entwickelt und produziert. Die vier möglichen Kombinationen von MCs und Plasmiden 

wurden anschließend verwendet, um einzelsträngige („single-stranded“) AAV2-Vektoren (ssAAV) 

und self-complementary” AAV-Vektoren (scAAV) herzustellen. Die Vektorpräparationen wurden ge-

mäß Vektorquantität, –qualität und –funktionalität charakterisiert. Diese Analysen zeigten, dass die 

Vektor- und Helferplasmide durch MCs ersetzt werden können, ohne die Effizienz der Vektorproduk-

tion oder die Vektorqualität zu verringern. MC-basierte scAAV-Vektorpräparationen wiesen im Ver-

gleich zu Plasmid-basierten Präparationen sogar eine bis zu 30-fach verbesserte Transduktionseffi-

zienz auf. Durch Verwendung der verschiedenen Kombinationen von Plasmiden und MCs konnte 

das Vektorplasmid als Hauptquelle der falsch in Kapside verpackten prokaryotischen Sequenzen 

identifiziert werden. Bemerkenswerterweise beinhalteten die Plasmid-basierten scAAV-

Vektorpräparationen eine beträchtlich höhere Menge prokaryotischer Sequenzen (bis zu 26,1 %, im 

Verhältnis zur TEC) als ssAAV-Vektorpräparationen (bis zu 2,9 %). Durch Ersetzen beider Plasmide 

durch MC wurde die Menge an kodierenden prokaryotischen Sequenzen unter die Nachweisgrenze 

reduziert. Weitere Analysen zeigten, dass scAAV-Vektoren im Allgemeinen einen höheren Anteil 

weiterer DNS-Unreinheiten (wie z.B. adenovirale Sequenzen) als ssAAV-Vektoren aufwiesen. So-
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wohl ssAAV- als auch scAAV-Vektorpräparationen die mit MCs hergestellt wurden tendierten dazu, 

kleinere Mengen Fremd-DNS zu beinhalten als Vektorpräparationen die mit Plasmiden hergestellt 

wurden. Keine der getesteten Vektorpräparationen induzierte Immunogenität. Somit lässt sich zu-

sammenfassend sagen, dass die Qualität von AAV-Vektorpräparationen signifikant verbessert wird, 

wenn statt Plasmiden MCs zur Herstellung verwendet werden.   

Nach erfolgreicher Zelltransduktion bilden die AAV-Vektorgenome überwiegend doppelsträngige 

DNS-Ringe oder DNS-Konkatemere aus. Diese episomalen Moleküle persistieren in post-mitotischen 

Zellen und vermitteln so langfristige Transgenexpression, gehen jedoch in proliferierenden Zellen mit 

fortschreitender Zellteilung verloren. Für den zweiten Teil dieser Arbeit wurde, in Kooperation mit 

Claudia Hagedorn und Hans J. Lipps (Universität Witten/Herdecke), ein AAV-Vektor mit einem auto-

nom replizierenden Element (Scaffold/matrix attachment region (S/MAR)) ausgestattet. Vektor AAV-

S/MAR, kodierend für eGFP und ein Blasticidin-Resistenzgen und ein Kontrollvektor mit der gleichen 

TEC, aber ohne das S/MAR-Element wurden produziert und in schnell proliferierende HeLa-Zellen 

transduziert. Durch Inkubation mit dem Antibiotikum Blasticidin wurden die Zellen selektioniert die 

das Vektorgenom stabil bewahrten. AAV-S/MAR-transduzierte Zellen wiesen eine höhere Anzahl an 

überlebenden Zellkolonien auf als AAV-ΔS/MAR-transduzierte Zellen. Zellkolonien beider Vektoren 

wurden isoliert und kultiviert. Sie blieben bis zu 70 Tage (maximaler Kultivierungszeitraum) eGFP-

positiv – ohne Selektionsdruck durch Antibiotikagabe. Erstaunlicherweise war die mitotische Stabilität 

sowohl von AAV-S/MAR als auch des Kontrollvektors AAV-ΔS/MAR ein Resultat episomaler Persis-

tenz des jeweiligen Vektorgenoms. Diese Ergebnisse lassen die Annahme zu, dass „gewöhnliche“ 

AAV-Vektorgenome unter spezifischen Bedingungen, wie durch den verwendeten milden Selektions-

druck, episomal persistieren können. Unter diesen Umständen erhöht das S/MAR-Element die Häu-

figkeit der Etablierung des stabilen Episoms, ist aber keine Grundvoraussetzung.  
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Abstract 

Adeno-associated viral (AAV) vectors are among the most widely used gene transfer systems in 

basic and pre-clinical research and have been employed in more than 160 clinical trials. AAV vectors 

are commonly produced in producer cell lines like HEK293 by co-transfection with a so-called vector 

plasmid and one (in this work) or two so-called helper plasmids. The vector plasmid contains the 

transgene cassette of interest (TEC) flanked by AAV’s inverted terminal repeats (ITRs) which serve 

as packaging signals, whereas the helper plasmid provides the required AAV and helper virus func-

tions in trans. A pivotal aspect of AAV vectorology is the manufacturing of AAV vectors free from im-

purities arising during the production process. These impurities include AAV vector preparations that 

contain capsids containing prokaryotic sequences, e.g. antibiotic resistance genes originating from 

the producer plasmids.   

In the first part of the thesis we aimed at improving the safety of AAV vectors. As we found that en-

capsidated prokaryotic sequences (using the ampicillin resistance gene as indicator) cannot be re-

moved by standard purification methods we investigated whether the producer plasmids could be 

replaced by Minicircles (MCs). MCs are circular DNA constructs which contain no functional or cod-

ing prokaryotic sequences; they only consist of the TEC and a short sequence required for produc-

tion and purification. MC counterparts of a vector plasmid encoding for enhanced green fluorescent 

(eGFP) protein and a helper plasmid encoding for AAV serotype 2 (AAV2) and helper Adenovirus 

(Ad) genes were designed and produced by PlasmidFactory (Bielefeld, Germany). Using all four pos-

sible combinations of plasmid and MCs, single-stranded AAV2 vectors (ssAAV) and self-

complementary AAV vectors (scAAV) were produced and characterized for vector quantity, quality 

and functionality. The analyses showed that plasmids can be replaced by MCs without decreasing 

the efficiency of vector production and vector quality. MC-derived scAAV vector preparations even 

exceeded plasmid-derived preparations, as they displayed up to 30-fold improved transduction effi-

ciencies. Using MCs as tools, we found that the vector plasmid is the main source of encapsidated 

prokaryotic sequences. Remarkably, we found that plasmid-derived scAAV vector preparations con-

tained a much higher relative amount of prokaryotic sequences (up to 26.1 %, relative to TEC) com-

pared to ssAAV vector preparations (up to 2.9 %). By replacing both plasmids by MCs the amount of 

functional prokaryotic sequences could be decreased to below the limit of quantification. Additional 

analyses for DNA impurities other than prokaryotic sequences showed that scAAV vectors generally 

contained a higher amount of non-vector DNA (e.g. adenoviral sequences) than ssAAV vectors. For 

both, ssAAV and scAAV vector preparations, MC-derived vectors tended to contain lower amounts of 

foreign DNA. None of the vectors tested could be shown to induce immunogenicity. In summary we 

could demonstrate that the quality of AAV vector preparations could be significantly improved by re-

placing producer plasmids by MCs.  
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Upon transduction of a target tissue, AAV vector genomes predominantly remain in an episomal 

state, as duplex DNA circles or concatemers. These episomal forms mediate long-term transgene 

expression in terminally differentiated cells, but are lost in proliferating cells due to cell division. 

Therefore, in the second part of the thesis, in cooperation with Claudia Hagedorn and Hans J. Lipps 

(University Witten/Herdecke) an AAV vector genome was equipped with an autonomous replication 

element (Scaffold/matrix attachment region (S/MAR)). AAV-S/MAR encoding for eGFP and a blasti-

cidin resistance gene and a control vector with the same TEC but lacking the S/MAR element (AAV-

ΔS/MAR) were produced and transduced into highly proliferative HeLa cells. Antibiotic pressure was 

employed to select for cells stably maintaining the vector genome. AAV-S/MAR transduced cells 

yielded a higher number of colonies than AAV-ΔS/MAR-transduced cells. Colonies derived from each 

vector transduction were picked and cultured further. They remained eGFP-positive (up to 70 days, 

maximum cultivation period) even in the absence of antibiotic selection pressure. Interestingly, the 

mitotic stability of both AAV-S/MAR and control vector AAV-ΔS/MAR was found to be a result of epi-

somal maintenance of the vector genome. This finding indicates that, under specific conditions such 

as the mild selection pressure we employed, “common” AAV vectors persist episomally. Thus, the 

S/MAR element increases the establishment frequency of stable episomes, but is not a prerequisite.  

.
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1 Introduction 

1.1 Adeno-associated virus 

1.1.1 Classification 

Adeno-associated virus (AAV) belongs to the parvovirus family (Parvoviridae), which comprises all 

small, isometric, non-enveloped DNA viruses with a linear single-stranded genome. Parvoviruses are 

divided into the subfamilies Parvovirinae, infecting vertebrates, and Densovirinae, infecting arthro-

pods.1 With capsid diameters of just around 25 nm, Parvoviridae contain only a short DNA sequence 

of about 5 kb. Because of the resulting genetic simplicity Parvoviridae are greatly dependent on their 

host cell to support their life cycle. AAV additionally relies on functions provided by more intricate 

helper viruses, such as adenovirus (Ad), human papillomavirus (HPV), and members of the herpes 

virus family, including herpes simplex virus (HSV) -1 and -2, human cytomegalovirus, Epstein-Barr 

virus and varicella virus to foster its propagation.2–6 Thus, AAV is classified in the genus Dependo-

virus within the Parvovirinae. 

Since its discovery in 1965 2, 7 at least twelve AAV serotypes differing in tissue tropism and originat-

ing from humans and non-human primates have been described.8 Moreover, more than 100 AAV 

genomic variants have been found in human and non-human primate tissues.9 This reflects the wide-

spread dissemination of AAV: up to 80% of humans (population-to-population variation, region-

dependent) possess anti-AAV antibodies to serotypes 1, 2, 3 and 5, with up to 60 % harboring neu-

tralizing antibodies.10, 11 Given the high prevalence of AAV, reports of AAV-induced pathology are 

scarce. Except for reports associating early AAV infection in pregnancy with spontaneous abortion,12 

AAV is considered as non-pathogenic.13 Recently, Nault and colleagues found integrated AAV2 se-

quences in hepatocellular carcinoma driver genes, which led them to propose that insertional muta-

genesis of AAV2 may cause malignant transformation in the liver.14 Yet, in the meantime, this report 

has been challenged regarding methodology of the analyses, the conclusions drawn from the data, 

and the implications of the findings.15–17 On the other side, researchers have put forward that AAV 

may actually be beneficial for its host. This hypothesis is based on the finding that AAV inhibits repli-

cation of its pathogenic helper viruses.18, 19 Indeed, possibly due to AAV impeding replication of HPV, 

serological studies reported a negative correlation of AAV with cervical carcinoma.13, 20  
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1.1.2 Genome and proteins 

Limited to a genome size of a mere 4.7 kb, AAV2 evolved alternative splicing and alternative open 

reading frames (ORF) to increase its coding capacity. Structurally, the AAV2 genome contains ORFs 

rep, cap and AAP in sense orientation, flanked by inverted terminal repeats (ITRs) (Figure 1).  

 

 

Figure 1 Genome organization of AAV2. (a) The single stranded DNA genome of AAV2 has a length of 4.7kb, divided 

into 100 map units. The positions of promoters p5, p19 and p40 (named according to their map position) are indicated as 
solid triangles, the polyadenylation signal (polyA) at position 96 is indicated as solid circle. The inverted terminal repeats 
(ITRs) are represented by ellipses (not to scale). The transcripts from the three promoters are shown below the genome 
map. Open reading frames (ORF) are depicted by rectangles (in black for rep ORF, white for cap ORF 

21
 and light grey for 

AAP ORF 
22

), untranslated regions by thin solid lines and introns as nicks. (b) Secondary structure of an AAV2 ITR. The 

AAV2 ITR is composed of two palindromic regions (B-B’ and C-C’) within a stem palindrome (A-A’), and a single-stranded D 
region. The ITR can fold in a flip (depicted here) or flop conformation, with the B-B’ or C-C’ palindrome closest to the 3’ end, 
respectively. The rectangles mark the binding motif for Rep proteins at the A-A’ stem (Rep-binding element, RBE) and the 
apex of the ITR hairpin (HP) structure (RBE’).

23–25
 The triangle indicates the terminal resolution site (trs), the specific nicking 

site of Rep protein. Depiction of the ITR structure is based on Mfold analysis.
26
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The ITRs consist of two 125 nucleotide (nt) palindromes with six segments (A-A’, B-B’, C-C’) forming 

a T-shaped hairpin (HP) structure, and a 20 nt D sequence (Figure 1b). AAV’s origin of replication, 

the terminal resolution site (trs), is located between the A and D sequences.27, 28 The ITRs act as self-

priming HP during genome replication 29 (see Figure 5) and as signals for packaging and integra-

tion.30–32 

The rep ORF codes for four non-structural proteins named Rep78, Rep68, Rep52 and Rep40, ac-

cording to their molecular mass (Figure 1a). Transcription of Rep78 and Rep68 is initiated at promot-

er site p5, while transcription of Rep52 and Rep40 starts at promoter p19. The smaller Rep proteins 

of each transcript, Rep68 and Rep40 are generated by splicing of the same intron sequence.21 The 

large Rep proteins, Rep78 and Rep68, which possess DNA binding, helicase and site-specific endo-

nuclease activity, are the main protagonists of transcriptional regulation, AAV DNA replication and 

site-specific integration.33–38 Rep52 and Rep40 do not seem to be required for DNA replication,39 but 

are necessary for generation or accumulation of replicated single-stranded viral DNA in the host 

cell.40 Ultimately, Rep52 and Rep40 mediate the packaging of viral DNA into the preformed cap-

sids.32, 41 The cap ORF encodes the capsid structural proteins VP1, VP2 and VP3. They all share a 

common C-terminus and the complete VP3 sequence of 62kDa. VP1 (87kDa) and VP2 (73kDa) pos-

sess additional N-terminal sequences. The N-terminus of VP1 contains motifs which are required for 

infection (see below); whereas to date, no function of VP2’s N-terminus has been determined.42 

Since VP1 is the product of a minor splice transcript and the initiation codon of VP2 is a non-

traditional ACG which is frequently skipped, both VP1 and VP2 are translated at lower levels than 

VP3. Therefore, the AAV capsid consists of 90% VP3, with VP1 and VP2 contributing the remaining 

10%.43, 44 Nested within the cap ORF lies an alternative ORF which codes for the assembly activating 

protein (AAP).22 AAP targets capsid proteins to the nucleolus and interacts with capsid proteins to 

provide an assembly scaffold.45  

The AAV capsid is formed by 60 subunits as an icosahedron,46 which is characterized by three levels 

of rotational symmetry, namely fifteen 2-fold axes, ten 3-fold axes and six 5-fold axes (Figure 2). The 

outward protrusions (red in Figure 2) and adjacent plateau regions at the 3-fold symmetry axes de-

fine the interaction of the AAV capsid with cell receptors and represent the capsid’s epitope struc-

tures.10, 47–52 At the 5-fold axes, pentameric pores are located (surrounded by elevated rim structures, 

depicted in yellow in Figure 2). These pores function as channels connecting the capsid inside to the 

environment and act as portals for externalization of the N-terminal sequences of VP1 and packaging 

of progeny AAV genomes into the pre-formed capsids.32, 53 
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Figure 2 Capsid of AAV2. The capsid is shown as space-filling surface representation model with coloring of the amino 

acids according to the relative distance from the center of the capsid (blue-cyan-green-yellow-red: ~ 110-130 Å). The white 
triangle indicates the approximate boundary of one viral asymmetric subunit (60 of which compose the capsid).The apex of 
the triangle touches a pentameric pore at a 5-fold symmetry axis. The outward vertices touch the protrusions (at the right) 
and plateau regions (at the left) of a 3-fold symmetry axis. The midpoint of the base side touches a 2-fold symmetry axis. 
This model was generated from the crystal structure of AAV2 (RCSB PDB #1LP3)

46
 using Chimera software.

54
 

 

Research into the transcriptome and proteome of AAV is ongoing. Recently, further gene products 

involved in different stages of AAV’s life cycle have been proposed, such as an additional ORF 

termed X under the control of a promoter at map position 81, as well as novel transcripts and splice 

variants, which are involved in specific stages of viral replication.19, 55  

 

1.1.3 Life cycle 

AAV harnesses different types of glycans as primary receptors for initial attachment to the host cell, 

followed by interaction with a secondary receptor which facilitates cell entry. AAV2 uses heparan 

sulfate proteoglycan (HSPG) as attachment receptor.56 HSPG binding possibly triggers changes in 

capsid conformation, thus increasing the affinity to a receptor which mediates uptake.57 As secondary 

receptors, fibroblast growth factor receptor 1 (FGFR-1),58 hepatocyte growth factor receptor (HGFR)59 

and laminin receptor,60 and integrins αvβ5 61 and α5β1 57 have been proposed, although at least the 

role of αvβ5 integrin, FGFR-1 and HGFR in AAV2 cell entry has been challenged.62, 63 For other AAV 

serotypes different sets of primary and secondary receptors were described, thus accounting for the 

differences in tissue tropisms.8 

Very recently, Pillay et al. identified a previously unknown receptor which is essential for AAV infec-

tion in a range of mammalian cell types: transmembrane protein KIAA0319L, which was termed AAV 
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receptor (AAVR). AAVR is assumed to function as universal receptor for AAV, as infection by sero-

types 1-9 is dependent on its presence.63 It is not clear yet which ubiquitous viral structures partake 

in the AAV-AAVR interaction or at which stage of infection this interaction takes place. AAVR could 

act as cell entry receptor, either as monomer, dimer or in a multimeric complex with other receptors, 

or promote later steps in the virus life cycle.64  

The major pathway for AAV2 internalization is believed to be clathrin-mediated dynamin-dependent 

endocytosis.65, 66 In addition, AAV is capable of exploiting several other entry strategies, such as the 

clathrin-independent carrier mediated/glycosylphosphatidylinositol-anchored protein- enriched endo-

somal compartment-associated (CLIC/GEEC) endocytic pathway and macropinocytosis.67–70 For ef-

fective infection AAV processing to an acidified compartment is essential, irrespective of the route of 

cell entry.65 In the course of a productive pathway, AAV travels in endosomes toward the nucleus via 

the cytoskeletal network.67, 68, 71–73 AAV trafficking to the trans-Golgi network (TGN) and the Golgi 

apparatus has been proposed,63, 74, 75 although this also may not be an absolute requirement.64 Grad-

ual acidification of the endosomal compartment, possibly with assistance of cellular proteases such 

as cathepsins B and L,76 induces conformational changes of the AAV capsid. Thus, the N-terminus of 

VP1 (VP1 unique region, VP1u) is exposed to the capsid outside.77 VP1u contains a phospholipase 

A2 (PLA2) domain78 and nuclear localization signals.79, 80 The PLA2 domain then mediates virion es-

cape from the endosome into the cytoplasm.81 Translocation into the nucleus likely occurs through 

nuclear pore complexes (NPC)65,82 in an active transport process supported by cellular karyopher-

ins,83 although NPC-independent entry mechanisms have been proposed as well.84 Several studies 

suggest that AAV2 enters the nucleus as intact particle,65, 77, 85 while other researchers proposed that 

uncoating and release of the viral genome already occurs before or during nuclear entry.86 
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Figure 3 Schematic model of AAV2 infection. (a) AAV2 binds to heparan sulfate, a glycan chain of heparan sulfate pro-

teoglycan (HSPG) which serve as AAV2’s primary receptor. This binding possibly induces conformational changes to the 
capsid. Binding to an uptake receptor (see text) initiates endocytosis. The major pathway for AAV2 endocytosis is believed 
to be clathrin-mediated and dynamin-dependent; but additional other entry mechanisms have been reported. (b) AAV2 

traffics toward the nucleus through the endosomal system. Sorting toward the trans-Golgi network (TGN) has been pro-
posed, but may not be an absolute requirement and/or cell-type specific. (c) Acidification of the endosome triggers the ex-

ternalization of VP1u (VP1 unique region) which contains a phospholipase domain (PLA2) and nuclear localization signals. 
PLA2 mediates endosomal escape into the cytoplasm. (d) Nuclear localization signals target the virion to the nucleus where 

entry likely occurs via the nuclear pore complex (NPC). It is not yet clear whether AAV2 uncoats in the nucleus or before or 
during nuclear entry.  

 

Upon arrival in the nucleus the further fate of AAV depends on whether a helper virus co-infects. In 

the absence of helper viral functions, only minimal gene expression takes place and Rep gene prod-

ucts negatively regulate further gene expression and viral DNA replication.37 AAV establishes a latent 
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infection by persisting episomally 87 or by integration into the host genome. Thereby, AAV2 is unique 

among eukaryotic viruses as it exhibits a preference for integration in a specific locus, on chromo-

some 19 (19q13.4)88 at a site termed AAVS189 possessing homology to sequences within the ITR. 

This process of targeted integration is mediated by Rep78 and Rep68.31, 90 Super-infection with a 

helper virus creates a cellular environment which favors AAV replication and propagation. Subse-

quently AAV enters the productive phase of infection: the suppression of AAV gene expression is 

relieved, the viral genome is rescued from the integrated state, DNA replication ensues (Figure 5a-f) 

and progeny viruses are produced.37, 38, 91  

Even in absence of helper virus infection, however, the factors required for AAV replication can be 

provided by specific cellular conditions. Such conditions include cellular stress induced by genotoxic 

treatments, such as UV irradiation 92 or carcinogenic agents.93, 94 Furthermore, autonomous replica-

tion of AAV has been observed in differentiating keratinocytes.95  

 

1.2 AAV vectorology  

AAV’s hallmark features of non-pathogenicity and ability to persist in a host cell, in addition to its abil-

ity to produce high yields of progeny, prompted interest in exploring AAV as gene delivery platform.96 

By 1982 the complete AAV2 genome had been cloned into a plasmid vector. This enabled production 

of AAV in Ad-infected cells upon transfection.97 First experiments with a recombinant AAV (rAAV) in 

which the cap/AAP gene was replaced by a neomycin resistance cassette showed that rAAV could 

be used to transduce non-AAV DNA into mammalian cells.98 Subsequently, it was demonstrated that 

the ITRs are the only viral sequences which are required in cis to generate rAAV particles, while rep 

and cap/AAP functions can be provided in trans.30 This finding paved the way for the development of 

“gut-less” AAV vectors containing no coding viral sequences. Instead, a transgene cassette of inter-

est (TEC) of up to 4.9kb could be placed between the ITR sequences and be packaged as genetic 

payload into the viral vector particle.99 Today, AAV vectors are considered as one of the most promis-

ing delivery systems in human gene therapy, especially for in vivo administration into post-mitotic 

tissues, such as liver, muscle, eye and brain.100–103 More than 160 clinical trials using AAV vectors 

have been conducted.104 In 2012 Glybera® (alipogene tiparvovec) an rAAV1-based therapeutic en-

coding a hyperactive variant of lipoprotein lipase (LPLS447X)105 for treatment for lipoprotein lipase defi-

ciency was granted marketing authorization by the European Medicines Agency as first gene thera-

peutic medicine.106  
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1.2.1 Production 

The production process is a critical aspect of AAV vectorology. To obtain AAV vectors suitable in 

quality and quantity for gene therapy applications different strategies are employed for production 

und purification.  

1.2.1.1 Upstream processing 

The upstream process of AAV vector production encompasses the bioprocess, that is, all steps of 

cell culture work up to harvesting of producer cells. At laboratory scale, transient transfection is the 

most commonly used method, as it is easily set up and flexible to changes of vector genome and 

capsid (Figure 4). The vector plasmid containing the TEC flanked by the ITRs serves as template for 

vector genome replication. AAV genes rep and cap/AAP are provided in trans by co-transfection of 

an AAV helper plasmid. Earlier in development of AAV vector production, host cells were infected 

with Ad helper virus to initiate vector replication.107 This created the need to remove infectious Ad 

contaminants in AAV vector stocks, in addition to Ad infection diminishing host cell viability. To obvi-

ate helper virus infection, plasmids have been constructed, which encode the Ad genes E2A, E4 and 

VA RNA,108 or which contain both Ad and AAV helper genes on a single AAV/Ad helper plasmid.109 

For DNA transfer, the most commonly used methods are DNA co-precipitation with calcium phos-

phate, polycations such as polyethylenimine or cationic lipids.110 As producer cells, HEK293 are usu-

ally used. They have been transformed with Ad5 DNA and stably express E1A and E1B,111 and thus 

complete the essential set of Ad functions. Inherently, transfection methods based on adherent 

HEK293 cells are challenging to scale-up. To generate a more readily scalable production platform 

Grieger et al. recently adapted HEK293 to grow in suspension.112  

 

Figure 4 AAV vector production by transient transfection. (a) HEK293 cells are transfected with the vector plasmid 
containing the TEC flanked by ITRs and plasmids providing AAV and Ad helper functions. (b) Upon replication, the AAV 
vector genome is rescued from the plasmid, and the capsids are assembled. (c) The vector genomes are packaged into the 

capsids. Cells are harvested and lysed 48 hrs after transfection. Figure shows schematic depiction of a cell with no distinc-
tion between cytoplasm and nucleus.  
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Other production strategies include generation of stable cell lines. So-called packaging cell lines con-

tain rep and cap/AAP as integrated copies, while so-called producer cell lines further contain the vec-

tor genome to be packaged. AAV vector production is initiated by infection with a helper virus, usually 

Ad, and, in case of packaging cell lines, by co-infection with an additional virus providing the vector 

genome.113 Further, HSV’s ability to provide helper functions is harnessed for manufacturing of AAV 

vectors. Commonly, mammalian cells are simultaneous infected with two replication-deficient recom-

binant HSV, one carrying AAV genes and one transporting the vector genome.114 As yet another 

concept, a baculovirus (BV)-based platform in insect cells was implemented. For AAV vector produc-

tion, one or two BVs encoding the AAV genes under the control of BV-specific promoters and a BV 

containing the TEC are co-infected, commonly in Sf9 (from Sodoptera frugiperda).113 Alternatively, 

stable Sf9 cell lines have been developed. They contain integrated copies of AAV genes which are 

activated upon infection with the BV containing the TEC.115 A BV-expression vector system has been 

used for the production of Glybera. All methods relying on helper virus infections, albeit scalable, 

maintain the risk of contaminating helper virus in the AAV vector preparations. 

 

1.2.1.2 Downstream processing 

The downstream process encompasses the recovery of AAV vectors from the producer cells and 

subsequent purification protocols. The specific goal is the removal of process- and product-related 

impurities. Process-related impurities stem from the materials and components used for manufacture, 

including host cell nucleic acids and proteins, residue plasmid DNA, components of the cell culture 

medium and buffers. Product-related impurities are structurally similar to the vector product, but do 

not meet the specifications for safety and efficacy. Such impurities are empty AAV capsids, AAV 

capsids containing DNA other than the TEC or replication-competent AAV.116  

In the first step, upon harvest of producer cells, host cell membranes are disrupted to release the 

produced AAV vectors into a cell lysate. At laboratory scale, cells are commonly subjected to repeti-

tive freeze thaw cycles or ultrasonication. Next, the vector-containing lysate is incubated with a nu-

clease to remove contaminating nucleic acids from the production process, followed by removal of 

cellular debris by centrifugation. In some protocols a precipitation step using polyethylene glycol be-

fore or after nuclease treatment is included.117, 118 Large scale approaches employ chemical agents 

such as surfactants or mechanical protocols such as microfluidizers or homogenizers and clarify the 

lysate by microfiltration.113 Subsequent purification methods harness specific characteristics of AAV 

particles for their isolation. As the AAV capsid provides high particle stability in temperatures up to 

65°C 119 and pH between 2.5 and 8,120 vector preparations can sustain sophisticated purification pro-

tocols.  
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At laboratory scale, vector-containing cell lysates are commonly purified by density gradient ultracen-

trifugation: The cleared lysate in a centrifuge tube is mixed with cesium chloride (CsCl) or sub-

layered with solutions containing increasing concentrations of iodixanol. While CsCl is a cytotoxic 

agent and must be removed carefully, iodixanol is a non-toxic contrast agent,121 which is tolerated by 

some cell types. After applying high centrifugal force, TEC-containing AAV particles accumulate in 

specific phases of density and can be harvested. Density gradient ultracentrifugation is applicable to 

any AAV serotype. Importantly, this method removes a large portion of empty capsids from the vector 

lysate, as these accumulate in phases of lower density.118, 121 For further purification, or as alternative 

approaches, column-based protocols have been implemented, many of which are commercially 

available. Affinity chromatography utilizes the chemical properties of the capsid surface, such as the 

heparin binding of AAV2, to enrich vector particles.121 Further, an immunoaffinity column (AVB col-

umn) carrying an anti-AAV single domain antibody specific for a surface-exposed epitope region on 

the capsid which is common to several serotypes122 has been developed. Ion-exchange chromatog-

raphy is based on the isoelectric point (IEP), i.e. the pH at which a particular molecule has a neutral 

net charge. When the pH is lower than the IEP of a target molecule, it is protonated and binds to a 

cation exchanger (a negatively charged ion exchange resin, such as sulfonic acid groups). With the 

buffer pH value approaching the IEP, the target molecule’s net change becomes charge-neutral 

which allows it to dissociate from the resin and elute from the column. Vice versa, the target molecule 

carries a negative charge when the pH is higher as it its IEP and thus binds to a positively charged 

anion exchange resin, such as quaternary ammonium groups. By lowering the pH to the specific val-

ue of IEP, elution takes place. As empty AAV capsids have an IEP of 6.3, as opposed to the IEP of 

5.9 of capsids containing DNA,123 ion-exchange chromatography is broadly used to specifically enrich 

the latter. Different protocols using cation exchanger resin, anion exchanger resin, two-step and dual 

exchange membrane chromatography have been described.120, 124–128 Another advantage of this 

method is the broad applicability to different serotypes. Other column-based methods rely on capsid 

modifications, such as genetic insertion of histidine-tags (his-tags). Capsids with inserted his-tag are 

purified using immobilized metal affinity chromatography (IMAC) with nickel columns.129, 130  

As final polishing methods, size-exclusion chromatography (e.g. gel filtration), ultrafiltration or tangen-

tial flow filtration are commonly used for buffer exchange or to concentrate the vector suspension. 

The final AAV vector product can be stored frozen or even lyophilized without losing infectivity.131 

 

1.2.1.3 Challenges  

As mentioned above, vector preparations may contain process- and product-related impurities. In an 

assessment of type and significance of process-related impurities, J. Fraser Wright concludes that 

these are similar to those arising in the production of established biologics, and can therefore be re-
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solved by appropriate established procedures. Product-related impurities, in contrast, are unique to 

AAV vector production, pose specific risks to safety and efficacy and so closely resemble the vector 

product as such, that it becomes challenging to remove them.116  

Regardless of production method, empty capsids are present in abundance in AAV vector prepara-

tions, constituting <50 to > 98 % of total AAV particles.128, 132, 133 The variation in relative empty capsid 

content depends on size and sequence of vector genome, cell culture system or transfection efficien-

cy; additionally, since lot-to-lot variability has been observed, other, yet unidentified factors are in 

involved.126, 132 For most applications, the presence of large numbers of empty capsids is highly un-

desirable, as they form a source of antigenic material which may induce or contribute to a capsid-

triggered anti-AAV immune response.134, 135 Moreover, they may competitively inhibit transduction 

and induce capsid particle aggregation.126 As empty capsids differ from DNA-containing capsids in 

density and IEP, they can be largely removed by density centrifugation and ion exchange chromatog-

raphy.  

Additionally, capsids containing non-vector DNA are present in vector preparations. Replication-

competent AAVs (rcAAV) are capsids containing the wild type (wt) AAV rep and cap/AAP genes 

flanked by ITRs. They are generated by recombination events between the ITRs of the vector ge-

nome cassette with rep and cap/AAP sequences provided on helper constructs. Indeed, wtAAV is 

largely regarded as non-pathogenic (see 1.1.1). Yet, unintended transfer of viral DNA may result in 

production of AAV proteins, which possess helicase or DNA nickase activity,33, 34 or induce cytotoxic 

T lymphocyte reactions.136 Several strategies to prevent the generation of rcAAV have been reported, 

including the elimination of sequence homologues within vector and helper plasmids,137 replacing the 

p5 promoter which is implicated in recombination events,109 placing rep and cap/AAP genes in op-

posing transcriptional orientations138 or generating an oversized rep-cap helper plasmid.139 Further, 

fragments of host cellular DNA and helper sequences may get packaged into capsids. In Glybera, for 

example, encapsidated baculovirus DNA stemming from the production system was specified as im-

purity and as of major concern in the EMEA assessment report.140  

In vectors derived from plasmid transfection, encapsidated prokaryotic backbone sequences, e.g. 

antibiotic resistance genes have been reported as substantial impurity, ranging from 1-8 % of pack-

aged genomic particles.116, 141–143 Although prokaryotic promoter sequences are not functional in 

mammals, transfer of plasmid backbone sequences should nevertheless be avoided, since they con-

tain motifs that are recognized by the cell-autonomous immune system and are thus prone to induce 

inflammatory responses or gene silencing.144, 145 In addition, antibiotic resistance genes have been 

found to get integrated into the target genome,141, 146 thus bearing the risk to come under the control 

of eukaryotic promoters. In an approach to reduce the packaging of prokaryotic sequences Hauck 

and colleagues inserted a stuffer into the vector plasmid backbone to render it too large to be pack-
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aged. This reduced the packaging of plasmid backbone sequences 7.6-fold, but did not completely 

avoid it.143  

 

1.3 AAV vector transduction and optimization 

The success of AAV vector transduction depends on the target cell type; in some, AAV vector trans-

duction is rather inefficient and requires high particle numbers, while others are altogether refractory. 

Researchers aim to identify and overcome bottlenecks by modifying both the capsid and the vector 

genome.  

1.3.1 Vector tropism and immunogenicity 

AAV2 is the most extensively studied serotype and is widely used for gene transfer applications, but 

increasingly vectors based on other AAV serotypes are harnessed for their differential tissue tropism 

and partially lower immunogenicity.8 Conveniently, it is possible to package a vector genome with 

ITRs stemming from one serotype into a capsid of another serotype, a process referred to as 

pseudotyping.147 For treatment of hemophilia B in a human clinical phase I/II trial148 for example, a 

codon-optimized human factor IX (FIX) transgene flanked by AAV2 ITRs was packaged in capsids of 

AAV8, since the capsid of the latter has a strong tropism for the liver and a lower seroprevalence in 

humans than the capsid of AAV2.11 This pseudoytped vector achieved long-term expression of the 

FIX transgene at therapeutic levels.148  Moreover, capsid-engineering approaches using rational de-

sign or directed evolution aim to increase the efficiency and specificity of AAV vector transduction. 

Non-genetic approaches target the capsid to a specific receptor by equipping it with a suitable ligand 

by chemical binding or via bi-specific linkers.149 In genetic targeting, the ligands are directly incorpo-

rated into the capsid structure. Hereby, the ligand DNA sequence is cloned within the cap ORF at 

specific sites where the ligand does not interfere with capsid assembly and vector genome packag-

ing. Insertion of short peptides (up to 34 amino acids) into amino acid position 587 of the VP3 both 

interrupts the binding motif for HSPG,49, 51 thereby abolishing the natural tropism of AAV2, and estab-

lishes novel ligand-receptor interactions.150 Larger peptides can be inserted into the N-terminus of 

VP2.42, 86 Using this position, Münch and colleagues incorporated designed ankyrin repeat proteins 

(DARPins) specific for Her2/neu or CD4, thus targeting human Her2/neu-positive tumors or CD4-

positive lymphocytes in vivo, without off-targeting activity.151  

Directed evolution strategies were developed to generate targeting vectors, even if a receptor to be 

targeted or the cell-specific factors hampering transduction are not known. In these approaches, tar-

get cells are infected with libraries of capsid mutants carrying random peptide insertions. The mu-

tants achieving successful infection are used for subsequent selection rounds to finally obtain the 

optimal transducing capsid variant.149, 152, 153 Employing the directed evolution strategy, Sallach et al. 
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obtained an AAV2-based capsid variant which efficiently and selectively transduced human keratino-

cytes, a cell type which is refractory to transduction with AAV2 vectors.154  

 

1.3.2 Intracellular trafficking 

Upon cellular uptake, AAV vectors assumedly follow the same pathway(s) as wtAAV. The acidifica-

tion required to enable endosomal escape was reported to be cell-type dependent.68 In the cyto-

plasm, the AAV capsids may be subjected to phosphorylation which marks them for ubiquitination 

and proteasome-mediated degradation. Both proteasome inhibiting drugs68, 155–157 and site-directed 

mutagenesis of tyrosine residues on the capsid surface, representing the target sites for phosphory-

lation, significantly increase AAV vector transduction.158  

SUMOylation is another post-translational modification which participates in regulation of a variety of 

cellular processes by covalently attaching small ubiquitin-like modifier (SUMO) proteins to target pro-

teins.159 Recently, Hölscher et al. reported that this mechanism negatively affects AAV vector trans-

duction.160 Thus, targeting SUMOylation might be an additional strategy to enhance AAV vector 

transduction. 

 

1.3.3 Vector genome fate in the nucleus 

1.3.3.1 Interaction with DNA damage response proteins 

In the nucleus the DNA damage response (DDR) senses damage to the genome and activates sev-

eral downstream pathways to induce cell cycle arrest, DNA repair or, ultimately, apoptotic signaling. 

Players of the cellular DDR also recognize and process incoming AAV vector genomes. The interac-

tions seem to be provoked by AAV’s ITRs161–163 and involve protagonists of the two major pathways 

for repair of DNA double strand breaks (DSB), homologous recombination (HR) and non-homologous 

end joining (NHEJ). HR, which requires a sister chromatid to perform repair of DSB, takes place in 

dividing cells and in S phase, whereas NHEJ functions in both dividing and non-dividing cells inde-

pendent of cell cycle.164 Shortly after nuclear entry of AAV vectors, the MRN (Mre11, Rad50 and 

Nbs1) complex, which acts as sensor of DSB and stalled replication forks,165 is recruited to the vector 

genome.166 Possibly by physical interaction of the DNA binding domain of Mre11,163 gene expression 

from AAV vector genomes is suppressed.  

A primary responder kinase of the HR pathway, Ataxia telangiectasia mutated (ATM), is recruited by 

the MRN to sites of DSB.164 ATM was found to inhibit gene expression from AAV vector genomes in 

both the native single-stranded and the self-complementary (see chapter 1.3.3.2) conformation. A 

similar effect is exerted by kinase ATM and RAD3-related (ATR), another enzyme of HR, on single-
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stranded, but not self-complementary vector genomes.167 DNA-PK a serine/threonine kinase consist-

ing of a catalytic subunit (DNA-PKcs) and a heterodimer (Ku70/80) is a crucial player of NHEJ. 

Somewhat contradictory, DNA-PKcs was reported to enhance transduction of AAV vectors in vitro,167 

while another report states that AAV vector transduction is increased in Ku80-defective cells.168  

In presence of a helper virus, the inhibition imposed by DSB repair proteins is at least partially re-

leased. Since Ad is also inhibited by the MRN complex, it has evolved several mechanisms for its 

inactivation, including degradation of its members.169 This Ad-mediated abrogation of inhibition in-

creases AAV transduction and replication.161 HSV, on the other hand, utilizes the MRN complex for 

its own replication.170, 171 Currently it is not known how this benefits AAV. It was proposed that the 

MRN complex has an actual positive effect on AAV replication in presence of HSV-1.172 Additionally, 

it is conceivable, that HSV sequesters the MRN complex, thus diverting it from the AAV genome.163 

Interestingly, as is the case with wtAAV replication, (see chapter 1.1.3) in absence of helper virus 

functions, AAV vectors benefit from specific types of DNA damage. Genotoxic agents, such as UV, 

DNA synthesis inhibitors aphidicolin and hydroxyurea and topoisomerase inhibitors were found to 

increase AAV vector transduction.173–175 In line, Mano and colleagues demonstrated that a high num-

ber of siRNAs which induced cellular permissiveness to AAV also directly induced cellular DNA dam-

age and activation of a cell cycle checkpoint.176 These observations could be explained by diversion 

of inhibitory DDR proteins away from the AAV vector genome.166, 176 An in vivo study found that exit 

from the cell cycle, which is connected with downregulation of DDR proteins, particularly the MRN 

complex, increased permissiveness toward AAV vector transduction.177 Furthermore, AAV vector 

transduction was increased in vitro upon administration of drugs which induce transient cell-cycle 

arrest.178 An earlier study, however, reported that cells in S-phase are 200-fold better transduced 

than non-dividing cells,179 which may likely be connected to the higher activity of beneficial DDR pro-

teins at this stage of the cell cycle. All in all, the actual role of the cell cycle for AAV vector transduc-

tion is not clear yet.  

 

1.3.3.2 Double strand synthesis  

From the single-stranded vector genome, the double-stranded template required for transgene ex-

pression is generated by second-strand synthesis, or – if higher amounts of vector genomes are 

available in the nucleus – by annealing of two vector genomes of opposite polarity.180 In de novo 

second strand synthesis, the 3’ITR provides the 3’OH-primer for the host cell DNA replication ma-

chinery (Figure 5 a-c). As second-strand synthesis is hampered in some cell types, thus restricting 

transduction,181, 182 self-annealing vector genomes were developed. To generate these so-called self-

complementary (sc) genomes, the trs of one ITR sequence is deleted.183, 184 Thus, Rep cannot pro-

cess the ITR and the whole vector genome is replicated as inverted dimer (Figure 5 g-l). Upon un-
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coating this molecule can fold onto itself to generate a double-stranded vector genome. Although 

scAAV vectors possess only half the cloning capacity of the ssAAV genome (ca 2.3kb) they are wide-

ly used, due to their higher transduction efficiencies.185, 186 

 

Figure 5 AAV genome replication and generation of self-complementary AAV vector genomes. (a) The 3' ITR of the 

single-stranded AAV genome acts as primer for the host cell DNA replication machinery, including DNA polymerase delta, 
replication factor C, proliferating cell nuclear antigen, and the minichromosome maintenance complex.

187, 188
 (b) The ge-

nome is replicated through the 5’ITR, thus displacing the original 5’-ITR. This generates a double-stranded intermediate. (c) 
Both ITRs fold into hairpins (HP) and (d) the newly synthesized ITR functions as new 3' OH primer for DNA synthesis of the 
AAV genome. At the same time, Rep nicks the terminal resolution site (trs) of the lower strand. (e) At this new 3’ OH end, a 
second DNA replication complex copies the original 3’ITR. (f) One round of replication generates two products: the single-
stranded vector genome, ready to be encapsidated, and the double-stranded intermediate as in (b) which serves as tem-
plate for further replication rounds. (g) To generate a self-complementary vector genome the D sequence, including the trs 
of one ITR, is deleted. Therefore, Rep cannot nick the lower strand. (h) In this case, replication continues through the mu-
tated ITR (i) and creates a dimeric double-stranded DNA. At the intact ITR, Rep nicks at the trs, creating a new 3’OH end. 
(j) As in (e), this new 3’OH end serves as primer for the copying of the intact left ITR. (k) The newly synthesized ITR folds 
into HP conformation and replication continues back into the vector genome. (l) One round of replication generates one 

self-complementary vector genome and a dimeric double stranded template for further replication  
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1.3.3.3 Long-term persistence 

As AAV vectors usually do not contain Rep, no site-specific integration occurs. Yet, as with other 

transgenic DNA, vector integration in mammalian genomes takes place, albeit at very low levels. In a 

partial hepatectomy study in mice, between 0.06 and 0.2 integrated vector genomes/cell were esti-

mated.189 In contrast a study conducted in mouse muscle found no integrated AAV vector genomes 

at all.190 Integration has been proposed to occur at pre-existing chromosomal breakage sites, during 

or caused by repair of DSB by DDR.191, 192 In line with this hypothesis, DNA-damaging agents in-

crease the rates of vector integration.175, 193 Regarding the role of individual DDR protagonists, re-

ports are conflicting as to whether DNA-PKcs of the NHEJ pathway would increase167, 192, 194 or inhibit 

195 integration. Likewise it is disputed whether ATM fosters or hampers integration of the AAV vector 

genome.167, 193 Several integration studies reported preferred integrational sites such as ribosomal 

DNA repeats, transcriptionally active genes, DNA palindromes, CpG islands and nearby transcription 

start sites.196–198 Kaeppel and colleagues analyzed muscle biopsies of five patients who received in-

tramuscular injections of Glybera (AAV1-LPLS447X), the first gene therapy medicine (see chapter 1.2.). 

They estimated the integration frequency to range from ca. 1 × 10−4 to 1 × 10−5, and found no prefer-

ence for specific integration sites.199 

Chiefly, AAV vector genomes remain in an episomal state. As primary persistent form, duplex vector 

DNA molecules200 rapidly circularize via the ITRs. Increasingly with time, circular multimers, so-called 

concatemers are formed.180, 201–203 Vector genome circularization seems to be largely mediated by 

proteins of the NHEJ pathway, specifically DNA-PKcs, in in vivo tissues including mouse skeletal 

muscle, heart and kidney,201, 204–206 although undefined DNA-PKcs-independent pathways have been 

proposed in the liver.204 Interestingly, in dividing cells in vitro, players of HR such as members of the 

MRN complex and ATM are supporting the establishment of circular long-term forms of the vector 

genome.201 Regarding the detrimental effects on gene expression exerted by proteins of the HR 

pathway, interaction with the NHEJ seems to be more beneficial for AAV vector transduction and 

persistence.167 This may be one explanation for the success of gene therapy in non-dividing cells 

(see below). Further exploration of the mechanisms of host nucleus protein interaction with AAV vec-

tor genomes may reveal possibilities to circumvent or manipulate the interactions with proteins of 

DDR to improve AAV vector transduction and maintenance in both non-dividing and dividing cells.  

The episomal circles and concatemers formed in non-dividing tissues have been demonstrated to 

persist and to mediate long-term transgene expression, e.g. in respiratory epithelium,207, 208 skeletal 

muscle,190, 202, 203, 205, 209 brain210 and liver.189 
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2 Aim of the study 

2.1 Aim of study I: Improving safety of AAV vectors 

As described in chapter 1.2.1.3, AAV vectors derived from plasmid transfection were found to contain 

encapsidated prokaryotic sequences, such as antibiotic resistance genes. While these sequences 

constitute a minor population (1-8 %)116, 141–143 in viral vector preparations, non-viral plasmid vectors 

always transfer prokaryotic backbone sequences upon administration.211 To circumvent the potential 

risks mentioned above and to thus improve safety of non-viral vectors, as well as efficiency and dura-

tion of cell modification, the minicircle (MC) technology was developed.212–215 MCs are circular DNA 

expression cassettes which do not contain functional or coding prokaryotic sequences. They origi-

nate from parental plasmids harboring at least the selection marker, an origin of replication and two 

recombination sites flanking the TEC. Following amplification in Escherichia coli, the parental plasmid 

is split enzymatically by a cis-recombination reaction resulting in two circular supercoiled and mono-

meric molecules: a miniplasmid with all the unwanted bacterial sequences and the MC containing the 

TEC and a small additional sequence, termed sequence for chromatography, affinity and recombina-

tion (SCAR), which represents one recombination sequence and a tag for affinity purifica-

tion.211, 216, 217 Given the lack of functional prokaryotic sequences in MCs, we reasoned that the MC 

technology might be an easy and straightforward strategy for the production of AAV vector prepara-

tions devoid of antibiotic resistance genes.  

In this study we wanted to investigate whether MC constructs could replace plasmids of a dual plas-

mid system for AAV2 vector production. MC constructs for substitution of plasmids for production of 

ssAAV2 were generated and produced by PlasmidFactory. By using all four possible combinations of 

MCs and plasmids it should be determined if and which plasmids could be replaced by MC without 

decreasing AAV vector quantity and functionality. Most importantly it was to be determined whether 

the MC approach decreased encapsidation of prokaryotic sequences. If functional and pure ssAAV 

vectors could be generated, the system was to be expanded to production and characterization of 

scAAV2 (see 1.3.3.2) vectors. Further, as AAV vectors were reported to activate Toll-like-receptor 9 

(TLR9),218, 219 a sensor for unmethylated CpG sequences in foreign DNA molecules,220 both ssAAV 

and scAAV derived from dual plasmid and dual MC transfection were to be tested on a model cell 

line expressing TLR9 to measure TLR9 activation.  
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2.2 Aim of study II: Establishment of episomal maintenance 

As elaborated in chapter 1.3.3.3, AAV vectors are highly suitable for gene transfer into post-mitotic 

tissues. In dividing or proliferating cells, however, episomal AAV vector genomes are lost over time 

and cell divisions.189, 221, 222 We hypothesized that episomal replication and thus mitotic stability of 

AAV vector genomes could be achieved by equipping AAV vectors with a scaffold/matrix attachment 

region (S/MAR). S/MARs are organizational DNA units within eukaryotic genomes. They interact with 

the nuclear matrix, thus structuring chromosome domains and participating in the regulation of gene 

expression.223, 224 In the pioneer S/MAR plasmid vector pEPI, a 2kb S/MAR derived from the 5’ region 

of human β-interferon gene mediates interaction of the nuclear matrix via matrix protein SAF-A, thus 

mediating episomal gene expression over hundreds of generations.225, 226 Accordingly it was of inter-

est to apply and investigate this system in an AAV context.  

The aim of this study was to develop an AAV vector which would be capable to persist episomally in 

dividing cells. In cooperation with C. Hagedorn and H.J. Lipps of University Witten/Herdecke an AAV 

vector plasmid containing the S/MAR sequence and a plasmid containing a control vector genome 

without the S/MAR were to be produced and packaged into AAV2 capsids. Both vectors were to be 

transduced in parallel into highly proliferative HeLa cells and examined for maintenance of the AAV 

vector genome. In colony forming assays, transduced cells were to be selected for cells stably main-

taining the vector genome. Upon termination of selection the number of surviving colonies was to be 

quantified. Additionally, surviving colonies were to be cultivated further in absence of selection to 

determine the stability of vector genome retention. If the vector genome was mitotically stable it 

should be determined whether this resulted from episomal maintenance or vector integration.  
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3 Materials 

3.1 Chemicals, reagents and enzymes  

All common laboratory chemicals and reagents were purchased from Sigma-Aldrich (Taufkirchen, 

Germany), Carl Roth GmbH & Co. KG (Karlsruhe, Germany), AppliChem (Darmstadt, Germany) or 

Merck (Darmstadt, Germany). 

Optiprep density gradient medium (Iodixanol) was purchased from Sigma-Aldrich (Taufkirchen, Ger-

many). Benzonase endonuclease was purchased from Merck (Darmstadt, Germany). DNA restriction 

enzymes and MassRuler DNA Ladder Mix were purchased from Thermo Fisher Scientific Fermentas 

(Braunschweig, Germany). 

 

3.2 Commercial kits  

Product Manufacturer 

DNeasy Blood & Tissue Kit Qiagen, Hilden, Germany 

EndoFree Plasmid Kits (Mini, Maxi, Giga) Qiagen, Hilden, Germany 

AAV2 Titration ELISA Progen, Heidelberg, Germany 

LightCycler 480 SYBERGreen Master Roche, Mannheim, Germany 

LightCycler Fast Start DNA Master SYBER Green I Roche, Mannheim, Germany 

RNase-free DNase set Qiagen, Hilden, Germany 

RNeasy Tissue Kit Qiagen, Hilden, Germany 

SuperScript TM  III First-Strand Synthesis  
SuperMix for qRT-PCR 

Invitrogen, Karlsruhe, Germany 

 

 

3.3 Cell culture media and supplements 

Product Manufacturer 

Blasticidin – for HEK blue hTLR9 cell culture  

Blasticidin – for HeLa cell selection  

Invivogen, San Diego, USA  

Thermo Fisher, Scientific, Braun-

schweig, Germany 

DMEM+GlutaMAX-I Invitrogen, Karlsruhe, Germany  

FCS  Invitrogen, Karlsruhe, Germany  

Normocin Invivogen, San Diego, USA  
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Product Manufacturer 

PBS Invitrogen, Karlsruhe, Germany  

Penicillin/Streptomycin  Invitrogen, Karlsruhe, Germany  

Trypsin/EDTA   Invitrogen, Karlsruhe, Germany  

Zeocin Invivogen, San Diego, USA  

 

3.4 Plasmids and MC 

Helper plasmids 

pXX6-80: Helper plasmid encoding Ad proteins VA, E2A and E4. Kindly provided by R.J. Samulski108  

pRC: Helper plasmid containing AAV2 rep and cap/AAP under the control of wt promoters, but lack-

ing AAV ITRs150 

pDP2rs: Combined AAV and Ad helper plasmid containing Ad E2A, E4 and VA and AAV2 ORFs rep 

and cap/AAP. Native p5 promoter of rep OFR is exchanged by mouse mammary tumor virus long 

terminal repeat (MMTV-LTR) promoter. Additionally encodes for red fluorescent protein (RFP) 

gene.227 

Vector plasmids: encoding TEC(s), flanked by ITRs  

pAAV-S/MAR: human CMV enhancer/human elongation factor 1 alpha promoter (hCMV/EF1P), en-

codes eGFP and blasticidin S deaminase gene (BSD) from Aspergillus terreus separated by an 

IRES. Contains the 2kb S/MAR element derived from the 5’ region of human β-interferon gene  

pAAV-ΔS/MAR: as pAAV-S/MAR, but lacking the S/MAR element.  

pAAV-ssGFP: TEC 1: human  cytomegalovirus (CMV) promoter and eGFP cDNA; TEC 2: thymidine 

kinase promoter and hygromycin resistance gene (pGFP in 228) 

pAAV-scGFP: TEC 1 of pAAV-ssGFP, contains a deletion in the D sequence (including the trs) of 

one ITR, resulting in packaging of a single stranded vector genome with two complementary stands 

which anneal to form a ds vector genome (pscAAV/EGFP in 229) 

MCs 

MC are based on the indicated plasmids. Except for a short sequence for chromatography, affinity 

and recombination (SCAR) no prokaryotic sequences are contained.  

MC.AAV-ssGFP: MC based on pAAV-ssGFP  

MC.AAV-scGFP: MC based on pAAV-scGFP  

MC.DP2rs : MC based on pDP2rs  

 

pDP2rs, pAAV-ssGFP, pAAV-scGFP and all MC used in this work were produced by PlasmidFactory, 

Bielefeld, Germany.  
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3.5 Primers for qPCR  

All primers were purchased from Invitrogen. 

Target sequence forward (5’-3’) reverse (5’-3’) 

AAV rep ATTAAGGTCCCCAGCG GGAAGTAGCTCTCTCCC 

Ad E4 GTTACGAGTCCTGGGC GTGGCGACCCCTCATA 

ampR ATCCCGTATTGACGCC CGCTCGTCGTTTGGTA 

eGFP CACAACGTCTATATCATGGC TGTGATCGCGCTTCTC 

F1 ori GCGTGATGGACAGACT GTCGAGGTGCCGTAAAG 

kanR GCCCTGAATGAACTGC CCATCCGAGTACGTGC 

SCAR AACCCATAATTGTGAGCG CATTAAGGTCGGGAAAATGC 

ori TACCGGGTTGGACTCA CCCGACAGGACTATAAAG 

Human PLAT ACCTAGACTGGATTCGTG AGAGGCTAGTGTGCAT 

Human GAPDH GGTATCGTGGAAGGACT   GGGTGTCGCTGTTGAA  

Human IL-8 AAGAACTTAGATGTCAGTGC ACTTCTCCACAACCCT 

 

3.6 Eukaryotic cell lines 

HEK293: human embryonic kidney cell line; transformed with Ad5, contains E1a, E1b; ATCC CRL-

1573.111  

HeLa: Human epithelial cervix adenocarcinoma cells; ATCC CCL-2.230  

HEK blue hTLR9: HEK 293 cells, which stably express hTLR9 and secreted embryonic alkaline 

phosphatase (SEAP) under the control of the interferon (IFN)-β minimal promoter fused to five nucle-

ar factor kappa B (NF-κB) and activator protein (AP)-1 binding sites, were purchased from Invivogen 

(San Diego, USA).   

 

3.7 Bacteria strain 

Escherichia coli (E.coli) DH5α: 

F-, lac1-, recA1, endA1, hsdR17, Δ(lacZYA-argF), U169, F80dlacZΔM15, supE44, thi-1,  

gyrA96, relA1. 231 
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3.8 Laboratory equipment 

 

AAV vector production and purification 

Product Manufacturer 

Crimper tube sealing system   Thermo Fisher Scientific Sorvall, Braun-
schweig, Germany  

Silicone tubing, tubing connectors GE Healthcare, Freiburg, Germany 

Peristaltic pump P-1  GE Healthcare, Freiburg, Germany 
Syringes and cannulas B. Braun, Melsungen, Germany 

Ultrcrimp ultracentrifuge tubes  Thermo Fisher Scientific, Braunschweig, 
Germany 

AVB Sepharose HP column GE Healthcare, Freiburg, Germany 

HiTrap Heparin HP column   GE Healthcare, Freiburg, Germany 
Amicon Ultra-15 centrifugal filter units Merck Millipore, Darmstadt, Germany  

Sephadex G50 packed illustra NICK column GE Healthcare, Freiburg, Germany 

 

Analytical instruments and equipment 

Product Manufacturer 

BiodocAnalyze live imaging system Analytik Jena AG, Jena, Germany 

FACS Canto I Becton Dickinson, Heidelberg, Germany  

FACS tubes  Becton Dickinson, Heidelberg, Germany  

LightCycler 480 II  Roche, Mannheim Germany  

LightCycler 96 multiwell plates and foils  Roche, Mannheim Germany  

Capillary LightCycler  Roche, Mannheim Germany  

LightCycler capillaries Roche, Mannheim Germany  

LightCycler carousel centrifuge  Roche, Mannheim Germany  

Mini sub GT gel electrophoresis unit   BioRad, München, Germany  

PowerWave 340 microplate reader BioTek Instruments Inc., Winooski, USA 

Mini trans-blot electrophoretic transfer cell  BioRad, München, Germany  

Nitrocellulose membrane (Hybond ECL) GE Healthcare, Freiburg, Germany 

Whatman filter paper Schleicher&Schuell, Dassel, Germany 

Amersham Hyperfilm ECL GE Healthcare, Freiburg, Germany 

 

Cell culture equipment and disposables 

Product Manufacturer 

Cell culture plastic ware  TPP AG, Trasadingen, Switzerland  

Cell scrapers  Corning Incorporated, New York, USA  

CO2 Incubator MCO-20AIC Sanyo, Munich, Germany  

Cryotube vials Thermo Fisher Scientific, Braunschweig, 
Germany 

Laminar Air Flow BioWizard Golden Line Kojair, Vilppula, Finland 

Laminar Air Flow BioWizard Xtra Kojair, Vilppula, Finland  

Microscope  Olympus, Hamburg, Germany  
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Centrifuges  

Product Manufacturer 

Beckman Coulter Rotor Type E70Ti   Beckman Coulter GmbH, Krefeld, Germany 
Beckman Coulter Optima L-80 XP Ultracentri-
fuge  

Beckman Coulter GmbH, Krefeld, Germany 

Centrifuge Avanti J-E  Beckman Coulter GmbH, Krefeld, Germany 

 

Analytical instruments and equipment 

Product Manufacturer 

Balance Adventurer Pro  Ohaus, NJ, USA  

Hera -80°C Freezer  Thermo Fisher Scientific, Braunschweig, 
Germany 

Heater/Magnetic stirrer Heidolph MR 3001 Heidolph Instruments, Schwabach, Germany 

Incubator Shaker Multitron Standard Infors HAT, Bottmingen-Basel, Switzerland  

NanoDropTM 1000 spectrophotometer  Thermo Fisher Scientific, Braunschweig, 
Germany  

Parafilm  Pechinery Plastic Packaging, Chicago, USA 

pH Meter Seven Easy  Mettler-Toledo, Schwerzenbach, Switzerland 

Pipette tips Sarstedt, Nümbrecht, Germany  

Pipettes  Eppendorf, Hamburg, Germany  

Reaction tubes (1.5 ml, 2 ml)  Eppendorf, Hamburg, Germany  

Serological pipets Sarstedt, Nümbrecht, Germany 

Reaction tubes (15 ml, 50 ml)   Sarstedt, Nümbrecht, Germany  

Thermocycler T3000   Biometra, Göttingen, Germany  

Thermomixer Comfort  Eppendorf, Hamburg, Germany  

Vortex Genie 2   Scientific Industries, NY, USA   

Waterbath Medingen W6   Medingen, Freital, Germany  

General laboratory ware  VWR, Darmstadt, Germany  

 

 

3.9 Data treating software  

Adobe Illustrator, ApE-A plasmid editor, Clone Manager, Inkscape 0.91, Microsoft Excel, R/RStudio, 

specific software for respective instruments 
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4 Methods 

4.1 Bacteria Culture 

4.1.1 Cultivation 

E.coli were grown overnight at 37°C in LB medium while shaking. LB medium for culturing of trans-

formed bacteria was supplemented with 100 mg/l ampicillin or 50 mg/l kanamycin.  

LB medium:  

 

 

 

4.1.2 Preparation of competent bacteria 

The day before preparation, the CaCl2 solution was sterilized and cooled to 4°C. E.coli were grown 

overnight at 37°C in 5 ml LB. The next morning, 400 ml LB medium were added to the overnight cul-

ture. The culture was grown further to an optical density (OD590) of 0.4. The bacteria suspension 

was chilled for 10 min. All subsequent preparation and incubation steps were conducted on ice and 

all centrifugation steps were conducted at 4°C. The suspension was centrifuged at 1600 x g for 

7 min. The pellet was resuspended in 10 ml CaCl2 solution, followed by centrifugation for 1100 x g for 

5 min. The pellet was resuspended in 8 ml CaCl2 solution and incubated on ice. The last centrifuga-

tion step was conducted at 1100 x g for 5 min. The pellet was again resuspended in 8 ml ice-cold 

CaCl2 solution. Aliquots of 100 µl were shock frozen in liquid nitrogen and stored at -80°C.  

CaCl2 solution:  

 

 

4.1.3 Transformation 

Competent bacteria were thawed on ice. 100-500 ng transforming plasmid DNA (pDNA) were added 

to the bacteria and mixed. Following incubation on ice for 10 min, the suspension was subjected to 

heat shock at 42°C for 90 sec. Thereafter, the bacteria suspension was placed on ice for 2 min. 

500 µl of LB medium were added and the suspension was shaken for 1 h at 37°C. Bacteria were 

plated on a LB agar plate containing the respective selective antibiotic and incubated overnight at 

37°C.  

10 g  Tryptone 
  5 g  Yeast 
  5 g NaCl 
15 g Agar (for plates) 
ad 1L  distilled H2O 

60 mM CaCl2 
10 mM PIPES 
10% Glycerin 
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4.2 Nucleic acid techniques 

4.2.1 pDNA amplification and extraction 

Single clones of successfully transformed bacteria were picked from the plates and amplified over-

night in LB medium containing the selective antibiotic. According to the desired yield of pDNA, the 

protocol of the respective Qiagen plasmid kit was used (“mini”: up to 20 µg, “maxi”: up to 500 µg, 

“mega”: up to 2.5 mg). 

4.2.2 DNA extraction from eukaryotic cells 

From eukaryotic cells, DNA was extracted using the DNeasy Blood & Tissue Kit, according to the 

provided “Purification of Total DNA from Animal Blood or Cell” protocol. Deviating from manufactur-

er’s instructions, DNA was eluted in 10 mM Tris/HCl pH 8.5.  

4.2.3 RNA extraction from eukaryotic cells  

RNA was extracted using the RNeasy Mini Kit, according to the provided “Purification of Total RNA 

from Animal Cell” protocol. A DNA digestion step was included in the RNA extraction protocol, using 

the RNase-free DNAse set according to the manufacturer’s instructions.  

4.2.4 Determination of pDNA and RNA concentration  

pDNA and RNA concentration was determined using a spectrophotometer and a wavelength of 260 

nm or 280 nm, respectively. Purity of DNA preparations was assessed by the ratio abs. 260nm/abs 

280nm (A260/280, absorbance of protein impurities), with a ratio of 1.8 indicating high purity. Lower val-

ues for A260/280 point to protein contaminations, higher values point to contamination with RNA.  

4.2.5 Restriction enzyme digest 

pDNA digestion with restriction enzymes was performed according to the manufacturer’s protocol 

using 1-10 units of restriction enzyme per 1 µg DNA.  

 

4.2.6 Agarose gel electrophoresis 

4.2.6.1 Neutral  

Analytic agarose electrophoreses were performed in 1xTAE buffer with agarose concentrations of 

between 0.8 and 1.2 %. The agarose was added to 1xTAE and boiled until dissolved. Ethidium bro-

mide was added (0.5 µg/1 ml gel volume) to the gel solution before pouring onto the casting plate. 

Approximately 500 ng DNA or DNA fragments from restriction digest were used. Commercial DNA 

ladders were used for size reference.  
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50x TAE electrophoresis buffer: 

 

 

4.2.6.2 Denaturing  

Denaturing conditions for gel electrophoresis were established by alkalinity. In neutral gel buffer, 

0.8% agarose was boiled until dissolved and cast. After solidifying for 30 min, the gel was immersed 

in alkaline electrophoresis buffer for 1 to 1.5 hrs. Samples and ladder were mixed with 6x alkaline 

loading buffer, heated at 70°C for 5 min and quickly chilled on ice for 3 min before loading. Electro-

phoresis was performed at low voltage (30-40 volt) for 3-6 hrs. After electrophoresis, the gel was im-

mersed in 300 ml of 0.5 M Tris-HCl, pH 7.5. Thereafter the gel was stained in a 0.5 µg/ml ethidium 

bromide solution for 30 min and visualized under UV light.  

Neutral gel buffer:   

 

Alkaline electrophoresis   
buffer: 

 

 6x alkaline loading buffer: 

 

 

 

4.2.7 cDNA synthesis 

cDNA was synthesized from RNA in a maximum volume of 8 µL using the SuperScript TM III First-

Strand Synthesis SuperMix for qRT-PCR according to manufacturer’s instructions. 

 

4.2.8 Quantitative real-time PCR  

qPCR was employed to determine the concentration of vector genomes and DNA impurities in AAV 

vector preparations. Samples were prepared with LightCycler 480 SYBR Green Master kit for meas-

urement on a 96 mulitwell plate for LightCycler 480 II, or with LightCycler FastStart DNA Master 

SYBR Green I kit for measurement on the Capillary LightCycler. Concentrations were calculated from 

a standard curve generated by serial dilutions of a plasmid or a MC containing the gene of interest. 

2 M Tris base 
1 M Glacial acetic acid 
50mM EDTA solution, pH 8.0 

30 mM NaCl 
  2 mM EDTA, pH 7.5 

30 mM NaOH 
  2 mM EDTA 

180 mM  NaOH 

    6 mM EDTA 

   18 %  Ficoll 400 

0.05 %  Bromcresol green 
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Commonly, particle concentrations in the range of 2 x 102 to 2 x 108 per 2 µL sample preparation 

were quantified. Specificity of the quantified product was confirmed by melting peak analysis.  

Pipetting scheme:  

 Per well of 96-well plate Per Capillary 

Template DNA 2 µl 2 µl 

20 µM forward primer 1 µl 1 µl 

20 µM reverse primer 1 µl 1 µl 

Reaction mix (including FastStart Taq DNA po-
lymerase, reaction buffer, dNTPs, SYBRGreen I 
dye, MgCl2)  

10 µl 4 µl 

H2O 6 µl 12 µl 

 

qPCR program 

Program Cycles Analysis 
Mode 

Target 
(°C) 

Acquisition 
mode  

Duration Ramp Rate 
(°C/s) 

Acquisitions 
(per °C)  

Denatu-
ration 

1 None  95 None 00:05:00 4.4  

Amplifi-
cation 

40 Quantifica-
tion 

95 None 00:00:15 4.4  

  60 None 00:00:10 2.2  
   72 Single  00:00:15 4.4  
Melting 1 Melting 

Curve 
95 None 00:00:01 4.4  

  68 None 00:00:15 2.2  
   95 Continuous   5 

Cooling 1  40? None 00:00:30 2.2  

 

 

4.3 Protein techniques 

4.3.1 ELISA  

To determine the capsid titers of AAV vector preparations, the AAV 2 Titration ELISA kit was used 

according to the manufacturer’s protocol. The color reaction was quantified on a microplate reader.  

4.3.2 Western Blot 

Western Blot was performed to investigate the composition of the VP proteins. To samples contain-

ing approximately 5x1010 vector capsids, Laemmli buffer was added. After incubation at 95°C for 

7 min, the samples were loaded onto a gel, consisting of a 5 % stacking and an 8 % resolving gel. 

Electrophoresis was performed in Running Buffer at 80 V for 30 min, then at 100 V for approximately 
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2-3 hrs, to separate the proteins by size. The proteins were transferred from the gel to a nitrocellu-

lose membrane using an electrophoretic transfer cell in Blotting Buffer for 1 h at 400 mA. After blot-

ting, the membrane was incubated in blocking buffer overnight at 4°C while shaking. The next day 

the membrane was incubated with B1 primary antibody solution (recognizes C-terminus of VP1, VP2 

and VP3, kindly provided by Martin Müller, DKFZ Heidelberg, Germany; dilution of 1:10) for 1 h at 

RT. The membrane was washed three times with 0.1 % Tween20 in PBS before incubation with sec-

ondary antibody (donkey anti-mouse IgG-HRP, Jackson ImmunoResearch Ltd., Suffolk, UK; dilution 

of 1:2500) for 1 h. After removal of the secondary antibody the washing procedure was repeated. 

Western Lightning Chemiluminescence Reagent Plus (PerkinElmer, Waltham, USA), the substrate 

solution for the peroxidase-conjugated secondary antibody was pipetted onto the membrane and 

incubated at RT for 1 min. Finally a radiographic film was exposed to the membrane and subsequent-

ly developed.  

 

 6x Laemmli buffer:  

 

 

 

 

 

 

Running Buffer: 

 

 

 

 

Blotting Buffer, pH 8.3:  

 

 

 

 

Blocking Buffer:  

 

 

 

 

 

 

60 mM  Tris, pH 6.8 

9.3 mg/ml DTT 

12 %  SDS 

47 %  Glycerol 

0.6 mg/ml Bromophenol Blue 

25 mM Tris Base  

192 mM  Glycin 

0.1 % SDS 

0.3 %  Tris Base  

1.44 % Glycin 

0.02 %  SDS 

5 %  Milk powder 

0.1 %  Tween20 

 in PBS 
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Electrophoresis gel  

 5 % stacking gel 8 % resolving gel 

distilled H2O 4.1 ml 6.9 ml 

acrylamide stock solution, 30%  1 ml 4.0 ml 

1 M Tris (pH 6.8) 0.75 ml  -  

1.5 M Tris (pH 8.8)  -  3.8 ml 

10% SDS 60 µl 150 µl 

10% APS 60 µl 150 µl 

TEMED 6 µl 9 µl 

 

 

 

4.4 Eukaryotic cell culture 

4.4.1 Cultivation conditions 

HeLa and HEK293 cells were cultivated in Dulbecco’s modified Eagle’s medium (DMEM) with Gluta-

MAX-I supplemented with 10 % FCS, 100 IU/ml of penicillin and 100 µg/ml of streptomycin.  

HEK-Blue-hTLR9 were subcultured in DMEM supplemented with 10 % FCS, 50 IU/ml of penicillin, 

50 µg/ml of streptomycin, 100 µg/ml normocin, 10 µg/ml blasticidin and 100 µg/ml zeocin. 

All cell lines were maintained in cell culture flasks or plates in a humidified incubator at 37°C and 5 % 

CO2.  

4.4.2 Passaging, counting and seeding 

All cell lines used were grown in adherent cultures. Prior to detachment, cells were washed with PBS. 

HeLa and HEK293 were incubated with trypsin (0.05 %). HEK-BLUE-TLR9 cells were shortly incu-

bated in PBS at 37°C and then detached by tapping. For further cultivation, cells were diluted to a 

suitable concentration and transferred into a cell culture vessel. For counting, 10 µl of cell suspension 

were pipetted into a hemocytometer. A minimum of four squares was counted. The concentration of 

cells per ml was calculated from the mean value of cell counts, multiplied by 104. Cells were seeded 

at the desired density in plates or dishes.  

4.4.3 Freezing and thawing 

Cells were detached, suspended in medium and pelleted at 1000 rpm for 5 min. The cell pellet was 

resuspended in the respective freezing medium (standard: 90 % FCS, 10 % DMSO; HEK blue 

hTLR9: 70 % DMEM, 20 % FCS, 10 % DMSO) and aliquoted into cryovials. The cryovials were 

stored overnight at -80°C in a freezing container. After 24 hrs, the frozen cells could be transferred to 

liquid nitrogen for long-term storage. For thawing, the frozen cell suspension was briefly incubated at 
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37°C and transferred into pre-warmed medium. To remove DMSO the cell suspension was pelleted 

as described above. Cells were resuspended in fresh medium and plated in cell culture dishes.  

 

4.5 AAV vector production  

7.5 x 106 HEK293 producer cells were seeded in 15 cm² cell culture plates. 24 hrs later, at cell con-

fluency of approximately 80 %, medium was exchanged. Two hours thereafter, cells were transfected 

using the calcium phosphate method (see below).  

Transfection scheme for 1 plate:  

Triple plasmid transfection (equimolar ratio):  

7.5 µg vector plasmid 

7.5 µg pRC 

22.5 µg pXX6-80 

Dual transfections:  

single-stranded (molar ratio of 1:1.3)  

30 µg pDPrs OR 27.6 µg MC.DP2rs 

7.5 µg pAAV-ssGFP OR 4.3 µg MC.AAV-ssGFP  

Self-complementary (molar ration of 1:1.3) 

38.7 µg pDP2rs OR 35.8 µg MC.DP2rs 

7.5 µg pAAV-scGFP OR 3.2 µg MC.AAV-scGFP 

 

For one plate, DNA constructs were pipetted into 1 ml 250 mM CaCl2. 1 ml HBS puffer was added 

dropwise. The suspension was mixed, incubated for 2 min and then pipetted onto the plate. Trans-

fected cells were incubated at 37°C and 5% CO2. 24 hrs after transfection, medium was exchanged 

for DMEM containing only 2 % FCS to reduce cell proliferation. 48 hrs after transfection, cells were 

harvested by scraping and pelleted by centrifugation at 1200 rpm for 20 min at 4°C. The cell pellet 

was resuspended in Lysis buffer. Cells were lysed by three freeze/thaw cycles using liquid nitrogen 

and a water bath at 37°C. To remove cellular nucleic acids as well as non-packaged pDNA the cell 

suspension was treated with 50 U/ml Benzonase for 30 min at 37°C. Subsequently, the suspension 

was centrifuged for 1 h at 4000 rpm at 4°C. The supernatant contained the vector particles. 
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 HBS buffer, pH 7.2:  

 

 

 Lysis buffer, pH 8.5  

 

 

 

4.6 AAV vector purification 

4.6.1 Iodixanol density gradient 

The supernatant of lysed cells (see chapter 4.5) was transferred into an ultracentrifugation tube. A 

peristaltic pump was used to underlay the vector suspension, via a cannula connected to a tube sys-

tem, with the different iodixanol phases in the following order: 9 ml 15 % phase, 6 ml 25 % phase, 

5 ml 40 % phase, 5 ml 60 % phase. The ultracentrifugation tube was filled up with PBS supplement-

ed with 1 mM MgCl2 and 2.5 mM KCl (PBS-MK), sealed and centrifuged at 60,000 rpm for 2 hrs at 

4°C. Upon centrifugation, the 40% phase containing the vector particles was harvested using a can-

nula and a syringe.  

 15 % 25 % 40 % 60 % 

10xPBS 5 ml 5 ml 5 ml - 

1M MgCl2 50 µl 50 µl 50 µl 50 µl 

2.5M KCl 50 µl 50 µl 50 µl 50 µl 

5M NaCl 10 ml - - - 

Optiprep 12.5 ml 20 ml 33.3 ml 50 ml 

0.5 % phenol red 50 µL 80 µL - 25 µl 

H2O ad 50 ml ad 50 ml ad 50 ml ad 50 ml 

 

 

4.6.2 Affinity chromatography 

The affinity chromatography column was equilibrated with the appropriate binding buffer (hiTrap 

Heparin column: PBS-MK, AVB column: PBS). AAV vector preparations isolated from iodixanol den-

sity gradient were diluted approximately 1:10 with binding buffer and applied to the column twice. The 

  50 mM HEPES 

280 mM NaCl 

 1.5 mM  Na2HPO4 2H20 

150 mM  NaCl 

  50 mM Tris-HCl 
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column was washed with 10 column volumes binding buffer. The bound vector particles were eluted 

using the appropriate elution buffer (hiTrap Heparin column: PBS-MK + 1 M NaCl, AVB column: 

PBS + 2.5 M MgCl2). AVB columns were performed by Elke Barczak, Hannover Medical School.  

4.6.3 Centrifugal filtration 

PBS-MK was added to the vector suspension to a total volume of 15 ml and ultrafiltrated using 

Amicon Ultra-15 centrifugal filter units (MWCO 100 kDa). The Amicon tube was centrifuged until the 

vector suspension was concentrated to approximately 1 ml. The retentate was filled up to 15 ml with 

PBS-MK and centrifuged again. This step was repeated twice (total of three cycles). In the last cen-

trifugation step, the vector suspension was concentrated to 200 to 500 µl.  

4.6.4 Gel filtration  

The Sephadex G50 packed illustra NICK column was equilibrated with 5 ml PBS-MK. 200 µl of the 

vector preparation was applied to the column. The vector was eluted using PBS-MK in fractions of 

100 µl. From each fraction, vector DNA was extracted and quantified. The fractions containing the 

highest vector concentrations were pooled.  

 

4.7 AAV vector characterization 

4.7.1 Genomic titer 

From an aliquot of a vector preparation (usually 10 µl) vector DNA was extracted as described in 

chapter 4.2.2. The genomic titer, i.e., the concentration of TEC-containing particles was determined 

by qPCR using TEC-specific primers (see chapter 4.2.8).  

4.7.2 Transducing titer 

HeLa cells were transduced with a serial dilution (1:3 steps) of a vector preparation. 48 hrs post-

transduction (p.t.), the number of cells per well was determined and the number of eGFP+ cells was 

measured by flow cytometry. The vector serial dilution was used to determine the linear range, i.e. 

the range in which the dilution factor of the vector preparation correlates to the respective fold-

decrease in eGFP expression. Using the total cell number per well and the dilution factors and corre-

sponding percentages of eGFP-positive cells within the linear range, the transducing titer was calcu-

lated. Alternatively, the transducing titer was determined from the vector dilution which resulted in a 

single transduction event (approximately 10 % eGFP+ cells).232  
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4.7.3 Capsid titer and composition  

The concentration of AAV2 capsids of a vector preparation was determined by ELISA as described in 

4.3.1. The composition of capsid proteins VP1, VP2 and VP3 was determined by Western Blot as 

described in 4.3.2.  

4.7.4 DNA impurity content 

Vector genome DNA (see chapter 4.7.1), was examined for content of DNA other than the TEC by 

qPCR, using primers as specified in 3.5.  

 

4.8 Cell transduction by AAV vectors 

4.8.1 TLR9 activation assays  

Activation of HEK blue hTLR9 was monitored by two different methods.  

4.8.1.1 Quantification of SEAP protein levels 

For production of mock inoculum pXX6-80 and pAAV-scGFP were transfected into HEK293 cells. 

Cells were harvested and the lysate purified using IDGC as described above (chapter 4.6.1). The 

mock inoculum harvested from the 40 % phase served as negative control. As positive control TLR9 

agonist ODN2006 (Invivogen) at a concentration of 5 µM was used. 20 µL of sample (vector prepara-

tion, mock negative control or positive control) was added to the bottom of a flat-bottomed 96-well 

plate. HEK blue hTLR9 cells were detached and suspended in HEK-Blue detection medium. 4 x 104 

cells in 180 µl volume were added to the samples and the plates were incubated at 37°C in 5 % CO2 

for 20 hrs.  

4.8.1.2 Quantification of IL8 transcription levels 

7.5 x 104 were seeded in a 48-Well plate. The following day, cells were incubated with AAV vectors at 

a genomic particle per cell ratio (GOI) of 105. As negative control, cells were incubated with mock-

inoculum using a volume equal to the highest volume applied for the AAV vectors. 5 µM ODN 2006 

served as positive control. 3 hrs p.t. RNA was extracted and reverse-transcribed as described above 

(chapters 4.2.3, 4.2.7). Gene expression levels of IL8 vs. reference gene GAPDH were determined 

by qPCR using specific primers (chapters 4.2.8, 3.5).  

 

4.8.2 Colony forming assay 

1 x 105 HeLa cells were seeded in a 6-well plate. 24 hrs later cells were transduced with AAV-S/MAR 

or AAV-ΔS/MAR at a GOI of 5000. 24 hrs p.t., the percentage of eGFP-positive (eGFP+) cells was 

determined by flow cytometry. A minimum of 10,000 cells was counted, with the background fluores-
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cence set to 1 %. For a standard experiment, the cell suspension containing a mixture of eGFP+ and 

eGFP- cells was seeded to yield 105 eGFP+ cells per 15 cm² dish or 150 cm² flask. For Experiment 3 

described in Figure 17 the cell suspension was sorted for eGFP expressing cells by the CMMC 

FACS facility service using a FACS ARIA III (Becton Dickinson) to seed only eGFP+ cells at a density 

of 105 cells per plate. 24 hrs after seeding 2 µg/ml blasticidin was added. With the next medium ex-

change the blasticidin concentration was increased to a concentration of 2.5 µg/ml. Cells were se-

lected for 3 to 4 weeks. This time span was chosen to guarantee that cell survival was due to stable 

establishment of vector genomes. Thereafter the blasticidin-resistant colonies were either picked and 

cultured further without blasticidin, or the plates were stained for colony count. Before the staining 

procedure cells were washed twice with ice-cold PBS. Cells were incubated in fixing solution 

(1% formaldehyde in PBS) for 15 min at room temperature while agitating gently. The fixing solution 

was removed and cells were incubated with staining solution (0.5 % crystal violet, 25 % methanol in 

PBS) for 10 min at room temperature. The dishes were rinsed carefully with H2O to remove staining 

solution and dried. The colonies were quantified by C. Hagedorn (University Witten/Herdecke) using 

Fiji ImageJ software setting the threshold for colony size to 200 pixel2. 

 

4.9 Statistical Analysis 

Data are presented as mean ± standard deviation (SD). Quantitative data was log2-transformed and 

tested with t-test or ANOVA, followed by Tukey Test. Calculated p-values below 0.05 were consid-

ered statistically significant.  

Statistical analyses shown in Tables 1-6 and Figures 9 and 11 were conducted by B. Kracher (MPI 

for Plant Breeding Research, Cologne, Germany). Statistical analysis shown in Figure 17 was con-

ducted by C. Hagedorn (University Witten/Herdecke).  
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5 Results  

5.1 Improving the purity of AAV vector preparations using DNA Minicircle (MC) 

technology 

5.1.1 Encapsidated prokaryotic sequences in AAV vector preparations cannot be re-

moved by standard purification methods  

Several laboratories using different production methods reported nuclease-resistant DNA impurities 

in AAV vector preparations.141–143 We examined single-stranded AAV (ssAAV) vector preparations, 

which were produced and purified by standard protocols, for the presence of nuclease-resistant 

plasmid backbone sequences. Thereby, the ampicillin resistance gene (ampR) bla, encoding for 

TEM-1 β-lactamase was used as marker, as it is contained in all used vector and helper plasmids. 

For vector production, HEK293 producer cells were transfected using the triple plasmid method. 

48 hrs after transfection, cells were harvested and lysed. The cell lysate was treated with Benzonase 

to remove all non-encapsidated nucleic acids and loaded onto a discontinuous iodixanol density gra-

dient (IDGC). Thereafter, vector preparations #1 and #2 were purified by affinity chromatography 

utilizing an anti-AAV single-domain antibody (AVB column), followed by centrifugal filtration. Vector 

preparation #3 was instead purified by affinity chromatography harnessing the heparin binding ability 

of AAV2, followed by gel filtration. For each step in the process, vector DNA was extracted from the 

vector preparations and analyzed by qPCR. The quantity of vector genomes was determined by pri-

mers specific for enhanced green fluorescent (eGFP) protein, the TEC intended to be packaged, 

while primers specific for ampR were employed to indicate the presence of plasmid backbone se-

quences. The majority of encapsidated sequences (> 98 % for all preparations) matched the intended 

transgene (Figure 6a). However, ampR sequences were detected in each IDGC-purified vector prep-

aration, ranging from 0.5 % (vector preparations #3) to 1.8 % (vector preparation #2) relative to TEC 

(eGFP) sequences. None of the employed purification methods succeeded in removing the plasmid 

backbone sequences from the vector preparations (ampR concentrations relative to TEC: vector 

preparation #1: IDGC 1.3 % vs. AC-AVB 1.1 %, vector preparation #2: IDGC 1.8 % vs. AC-AVB 

1.7 %, vector preparation #3: IDGC 0.5 % vs. AC-Heparin 0.6 %). 
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Figure 6 Antibiotic resistance gene (ampR) sequences in standard AAV vector preparations. (a) Quantification of 

DNA sequences contained in AAV vector preparations. Lysates of vector producing cells were purified by discontinuous 
iodixanol density gradient centrifugation (IDGC). AAV vector particles were harvested from the 40 %-phase and further 
purified by either affinity chromatography using AVB column (AC-AVB) or Heparin column (AC-Hep), followed by centrifugal 
filtration (CF) or gel filtration (GF). At each step of purification, total DNA from aliquots was isolated and analyzed by qPCR 
using indicated primers. (b) Benzonase protection assay. Two aliquots of AAV vector preparation #3 encoding for eGFP 

were spiked with 400 ng of a plasmid encoding for the kanamycin/neomycin resistance gene (kanR). One aliquot was treat-
ed with Benzonase. Total DNA of the treated and an untreated second aliquot was isolated and analyzed by qPCR using 
indicated primers. qPCR analyses described in (a) and (b) were performed three times independently. Figure was published 

in (Schnödt et al.).
233

 

 

To determine whether these DNA impurities are protected by the viral capsid and thus tightly associ-

ated or encapsidated, a Benzonase protection assay was performed. Two aliquots of vector prepara-

tion #3 were spiked with 400 ng of a plasmid containing the kanamycin/neomycin resistance gene 

cassette (kanR) instead of ampR. One aliquot was treated with Benzonase. Total DNA was extracted 

from both aliquots and analyzed by qPCR (Figure 6b) Benzonase treatment did not affect the quanti-

ty of TEC nor ampR-specific sequences, but removed > 99.9% of input control plasmid sequences. 

Accordingly, it can be assumed that both TEC and ampR sequences are contained within or at least 

closely associated to the viral capsid and thus protected from enzymatic digestion. Therefore, the 

prokaryotic DNA contained in AAV vector preparations is Benzonase-resistant and cannot be re-

moved by standard purification methods.  



Results 

37 

 

5.1.2 Evaluation of MC constructs for ssAAV vector production 

In order to develop a strategy to decrease or even avoid packaging of prokaryotic sequences into 

AAV vectors, we tested whether the plasmids for AAV2 vector production can be replaced by MC 

constructs. MCs are circular DNA expression cassettes devoid of coding prokaryotic sequences. 

They are generated from a parental plasmid which contains, in addition to all necessary elements for 

plasmid propagation, the TEC(s) flanked by recombination sites and the parA resolvase gene under 

the control of an inducible promoter. Upon induction of cis-recombination the MC is separated from 

the functional prokaryotic sequences. The only prokaryotic remainder is a small sequence for chro-

matography, affinity and recombination (SCAR), which represents one recombination sequence and 

a tag for affinity purification.211, 216, 217  In AAV vector production by dual transfection, one plasmid 

provides the TEC flanked by ITRs (pAAV-ssGFP, Figure 7a), while a second plasmid provides all 

required helper functions (pDP2rs, Figure 7b). The corresponding MC constructs (MC.ssGFP and 

MC DP2rs, Figure 7c and d) were designed, generated and produced by PlasmidFactory (Bielefeld, 

Germany).  

 

Figure 7 ssAAV vector and AAV/Ad helper plasmids and thereof derived MC constructs. (a) pAAV-ssGFP contains 
two TECs flanked by ITRs and the plasmid backbone including ampR, bacterial ori (pUC-ori) and f1 ori. (b) pDP2rs is a 
combined AAV and Ad helper plasmid providing rep, cap/AAP and Ad E2A, E4 and VA functions, plus a red fluorescent 
protein (RFP). (c) MC.AAV-ssGFP consists of the TECs of pAAV-ssGFP, plus a residual SCAR sequence (213 bp). (d) 

MC.DP2rs contains all helper genes and RFP of pDP2rs, plus a residual SCAR sequence. All constructs shown were pro-
vided by PlasmidFactory. Figure was published in (Schnödt et al.).

233
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We performed a side-by-side comparison of the four possible combinations of MCs and plasmids for 

packaging of ssAAV vectors. After production and IDGC-purification, vector preparations were char-

acterized by qPCR, Western Blotting and ELISA. With all four combinations AAV vector preparations 

of comparable yield could be obtained (Table 1). Comparable physical particle titers (capsids per ml) 

(analysis of variance (ANOVA), not significant (n.s.)) and an identical capsid composition (Figure 8) 

was determined for all preparations. qPCR analyses showed that the capsids contained vector ge-

nomes (TEC) and that MC-based vector preparations yielded a genomic particle titer, i.e. Benzo-

nase-resistant TEC-containing particles per ml, which did not differ negatively from those obtained by 

the dual plasmid packaging system (ANOVA; Tukey post hoc tests vs. dual plasmid, n.s.). On the 

contrary, the highest genomic particle titers were measured for those preparations that were pro-

duced using MC.AAV-ssGFP. Thus, MC.AAV-ssGFP served as efficient template for vector genome 

replication, although the ITRs are separated by only 213 bp (Figure 7c).  

 

 Vector 

construct 

Helper 

construct 

Dup-

licate 

Physical 

particles 

(vp)* 

TEC 

(vg)* 

Tukey 

groups: 

TEC 

Ratio 

vp:vg 

Tukey 

groups: 

vp:gv 

plasmid plasmid 1 637.2 ± 213.5 153.0 ± 86.6 A. B 4.2 A. B 

  2 500.8 ±   34.7 130.6 ± 43.0  3.8  

plasmid MC 1 698.8 ± 353.7   93.5 ± 43.2 A 7.5 B 

  2 788.5 ± 343.2 101.4 ± 53.6  7.8  

MC plasmid 1 934.8 ± 258.6 295.5 ± 265.0 B 3.2 A 

  2 604.4 ± 343.2 269.4 ± 146.4  2.2  

MC MC 1 628.0 ± 330.2 309.6 ± 117.2 B 2 A 

  2 612.2 ± 387.3 210.3 ± 60.1  2.9  

* x 109 ml-1 

Table 1 Particle titer and packaging efficiency of ssAAV vector preparations. ssAAV vectors were produced side-by-

side using all four possible combinations of plasmids and MCs as technical duplicates in a 4 x 15 cm² format. Preparations 
were purified by IDGC of Benzonase-treated cell lysate. The amount of physical particles (empty and DNA-containing cap-
sids = capsid titer, vp) per ml was determined by ELISA. TEC-containing vector genomes (vg) were quantified by qPCR. 
The ratio vp:vg represents the packaging efficiency. All analyses were performed in parallel for all vector preparations. All 
analyses were performed three times independently. The effect of the different MC and plasmid combinations on physical 
and TEC genomic particles (per ml) and ratio vp:vg was assessed using analysis of variance (ANOVA) (physical particles: 
p=0.7288; TEC genomes: p=0.0249; ratio vp:vg: p=0.0098; transducing units: p<0.0001; ratio vp:tu: p=0.0731) and subse-
quent Tukey post hoc tests (Appendix A). Preparations that were not significantly different in the Tukey tests are marked 

with a common letter, while groups that were significantly different (p<0.05) do not contain a common letter in the Tukey 
groups column. Table content was published in (Schnödt et al.).
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As volume independent measure, the packaging efficiency, which is defined as the ratio of capsid 

titer to genomic (=TEC) particle titer (vp:vg), was calculated. A ratio of 50 and below is judged as a 

wild type phenotype,49 while higher values indicate that either replication of vector genomes and/or 

the packaging process itself occurred inefficiently. In none of the cases in which plasmids were ex-

changed by MCs, a significant negative impact on the packaging efficiency was observed (ANOVA; 

Tukey post hoc tests vs. dual plasmid, n.s.). On the contrary, the lowest value, i.e. the highest pack-

aging efficiency, was determined for preparations in which MC.AAV-ssGFP was used (Table 1). 

 

 

Figure 8 Western Blot analysis of ssAAV vector preparations. 5 x 10
10

 capsids were applied for each preparation and 

separated by SDS-PAGE. After Western blotting, the membrane was incubated with antibody B1 detecting the C-terminus 
of all three AAV capsid proteins. The figure shows the technical duplicates of vector preparations derived from transfection 
using the dual plasmid system (lanes 1,2), plasmid-helper: MC-vector constructs (lanes 3,4), MC-helper: plasmid-vector 
constructs (lanes 5,6) and dual MC system (lanes 7,8).  

 

 

Next, the cervix carcinoma cell line HeLa, which is highly permissive for AAV2, was incubated with a 

serial dilution of the ssAAV vector preparations, followed by assessment of eGFP-expressing cells by 

flow cytometric measurements 48 hrs post-transduction (p.t.) to determine the transducing titers 

(Table 2).  
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Vector 

construct 
Helper 

construct 
Dup-

licate 
Physical  

particles (vp)* 
Transducing 

units (tu)* 

Tukey 

groups: tu 
Ratio 

vp:tu 
plasmid plasmid 1 637.2 ± 213.5 1.7 ± 0.2 A. B 365.5 

  2 500.8 ±   34.7 1.2 ± 0.2 
 

405.1 

plasmid MC 1 698.8 ± 353.7 1.5 ± 0.6 A 474.0 

  2 788.5 ± 343.2 0.9 ± 0.4 
 

856.2 

MC plasmid 1 934.8 ± 258.6 6.2 ± 2.6 C 149.9 

  2 604.4 ± 343.2 2.9 ± 0.4 
 

208.2 

MC MC 1 628.0 ± 330.2 2.7 ± 0.2 B 233.7 
  2 612.2 ± 387.3 1.4 ± 0.1  439.7 

* x 109 ml-1 

Table 2 Transducing titer and transduction efficiency of ssAAV preparations. The amount of physical particles was 

determined by ELISA (Table 1). Transducing particle titers (tu) were determined by FACS analysis measuring transgene-
expressing cells after transduction of HeLa cells with a serial dilution of indicated preparations. The ratio vp:tu represents 
the transduction efficiency, e.g. the number of physical particles that need to be applied to successfully transduce HeLa 
cells. All analyses were performed in parallel for all vector preparations. All analyses were performed three times inde-
pendently. The effect of the different MC and plasmid combinations on transducing units (per ml), and vp:tu ratios was as-
sessed using ANOVA (transducing units: p<0.0001; ratio vp:tu: p=0.0731) and subsequent Tukey post hoc tests (Appen-

dix A). Preparations that were not significantly different in the Tukey tests are marked with a common letter, while groups 
that were significantly different (p<0.05) do not contain a common letter in the Tukey groups column. Table content was 
published in (Schnödt et al.).
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No significant negative impact on AAV vector production was observed when either or both packag-

ing plasmids were exchanged for MCs (ANOVA; Tukey post hoc tests). MC-based preparations 

tended to show a higher transducing titer, with preparations produced by combining pDP2rs and 

MC.AAV-ssGFP being superior to the dual MC system (ANOVA; Tukey post hoc tests, p<0.001). 

However, in a subsequently performed repetition experiment in which specifically ssAAV vector 

preparations produced by MC.AAV-ssGFP either in combination with pDP2rs or with MC.DP2rs were 

compared, transducing titers did not differ significantly (MC.AAV-ssGFP+ pDP2rs: 6.2 x 108 ± 

2.3 x 108 per ml; MC.AAV-ssGFP+MC.DP2rs: 5.3 x 108 ± 2.1 x 108  per ml, t-test: n.s.). As volume-

independent measure the transduction efficiency, which indicates the number of particles per cell 

required to obtain an infectious unit, was calculated. A ratio below 104 is defined as wild type pheno-

type,49  and was reached by all preparations (Table 2). Thus, ssAAV vector preparations produced by 

transfection of MCs demonstrated an at least comparable overall yield, packaging and transduction 

efficiency compared to ssAAV vector preparations produced by transfection of vector and AAV/Ad 

helper plasmids. 
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5.1.3 Vector plasmids are the main source of encapsidated prokaryotic sequences  

Using qPCR analysis we determined 3.2 and 4.6 x 109 ampR-specific sequences per ml in the prepa-

rations produced by the dual plasmid strategy (Figure 9). This corresponds to approximately one 

ampR sequence per 150 particles, or an approximate 1:40 ratio of ampR- to TEC-containing parti-

cles. Replacing the helper plasmid by MC.DPrs had no beneficial effect (ANOVA; Tukey post hoc test 

vs. dual plasmid, n.s.). In contrast, replacing the vector plasmid by MC.AAV-ssGFP reduced the 

number of ampR-containing and thus falsely packaged particles, by more than two orders of magni-

tude. Under these conditions, the ratio of ampR to TEC-containing particles was reduced to less than 

1:6000 (ANOVA; Tukey post hoc test vs. dual plasmid, p=0.0021). A further decrease in the frequen-

cy of ampR sequences was observed in preparations produced by the dual MC approach, for which 

the frequency of ampR particles was lowered to 0.004 % or less relative to TEC (ANOVA; Tukey post 

hoc test vs. dual plasmid, p<0.001). Thus, by replacing packaging plasmids for respective MC con-

structs, ampR DNA impurities can be reduced to background levels.  

 

Figure 9 ampR sequences in ssAAV preparations. DNA isolated from vector preparations was quantified for ampR se-

quences by qPCR. All analyses were performed in parallel for all vector preparations. All analyses were performed three 
times independently. Differences in ampR content between preparations were assessed using ANOVA (p < 0.0001) and 
subsequent Tukey post hoc tests. # < Limit of quantification (LOQ). Figure was published in (Schnödt et al.).
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5.1.4 Proximity to ITRs rather than a specific sequence element is decisive for pack-

aging of backbone sequences 

As cause for ampR DNA impurities, the presence of a weak packaging signal was proposed.234 To 

test this hypothesis and to gain insight into the mechanism of false packaging, the dual plasmid-

based preparations were analyzed for the presence of further plasmid backbone sequences. Specifi-

cally, we chose the bacterial origin of replication (ori) and the f1 origin (f1 ori) of replication, which are 

neighboring the left and the right ITR, respectively (Figure 7a) for qPCR analyses. Both sequences 
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were present with a frequency that correlated with the findings for ampR: we detected 2.0 to 2.3 % 

and 2.5 to 3.0 % of ori- and f1 ori-containing relative to TEC-containing particles, respectively (Table 

3). Thus, prokaryotic sequences located in cis to the ITRs are packaged independent of a specific 

sequence element.  

Duplicate ampR particles* f1 ori particles* ori particles* 

1 4.6 ± 1.7 (2.9 %) 4.7 ± 0.6 (3.0%) 3.2 ± 1.1 (2.0%) 

2 3.2 ± 0.3 (2.3%) 3.3 ± 0.8 (2.5%) 3.1 ± 0.7 (2.3%) 

* x 109 ml-1 

Table 3 Quantification of prokaryotic DNA in the dual plasmid preparations. DNA isolated from vector preparations 

produced by the dual plasmid strategy was quantified for the presence of ampR, f1 origin (f1 ori) of replication and pUC ori 
(ori) sequences by qPCR. All analyses were performed three times independently. The values in parentheses show the 
percentage of indicated prokaryotic sequences relative to summated TEC and indicated prokaryotic sequences. Table was 
published in (Schnödt et al.).
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Based on this result, we next evaluated whether the short prokaryotic non-coding SCAR sequence 

which remains present in MC constructs becomes encapsidated as well (Figure 7c). qPCR quantifi-

cation showed that this DNA sequence is indeed being packaged into viral capsids when MC.AAV-

ssGFP, containing this sequence in cis, was used for vector production. Up to 1.3 % of SCAR relative 

to TEC-containing particles were found, with no significant difference in content between vectors pro-

duced with either MC.DP2rs or pDP2rs (Table 4, t-test n.s.) further confirming that backbone se-

quences are packaged independent of a specific motif.  

 

Vector construct Helper construct Duplicate SCAR particles* 

MC plasmid 1 3.1 ± 1.3 (1.0 %) 

  

2 3.7 ± 2.4 (1.3 %) 

MC MC 1 1.5 ± 1.1 (0.5 %) 

  

2 2.5 ± 1.1 (1.2 %) 

* x 109 ml-1 

Table 4 Quantification of SCAR sequences in ssAAV vector preparations. DNA isolated from indicated vector prepara-

tions were quantified for the presence of SCAR sequence by qPCR. All analyses were performed three times independent-
ly. Differences in SCAR content between vector preparations produced with either MC.DP2rs or helper plasmids were ana-
lyzed using t-test (p=0.1361, n.s.). The values in parentheses indicate the percentage of SCAR sequences relative to sum-
mated TEC and SCAR containing particles. Table was published in (Schnödt et al.).
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5.1.5 Self-complementary AAV (scAAV) vector preparations produced by MC con-

structs show improved transduction efficiencies and contain no ampR DNA im-

purities 

Given the preferred use of scAAV vectors for in vivo applications, an easy to implement strategy to 

avoid unintended transfer of functional prokaryotic sequence is needed for this vector type as well.  

 

 

Figure 10 scAAV vector plasmid and thereof derived MC construct. (a) Plasmid pAAV-scGFP contains one TEC. One 
ITR has been mutated to generate a self-complementary vector genome. (b) Minicircle MC.AAV-scGFP consists of the TEC 

of pAAV-scGFP plus a residual SCAR sequence (213 bp). Both constructs were provided by PlasmidFactory. Figure was 
published in (Schnödt et al.).
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As source, we decided for pAAV-scGFP, which encodes for eGFP and results in production of self-

complementary vector genomes due to the deletion of the trs of the left ITR sequence (Figure 10, for 

mechanism, see Figure 5). The corresponding MC.scGFP was designed, cloned and produced by 

PlasmidFactory.  

As with the ssAAV vector preparations, all four possible combinations of vector (pAAV-scGFP, 

MC.AAV-scGFP) and helper constructs (pDP2rs and MC.DP2rs) were packaged and analyzed side-

by-side. In line with the results for the ssAAV vector preparations (see Table 1), MC constructs were 

as efficient as plasmids in physical particle production (vp per ml) (ANOVA, n.s.). Replacing plasmids 

by MC constructs, however, beneficially impacted on genomic (TEC) particle titer and packaging effi-

ciency, although here, statistical significance was not reached (ANOVA, Tukey post hoc tests) (Table 

5).  
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Vector 

construct 
Helper 

construct 
Triplicate Physical par-

ticles (vp) * 
TEC (vg) * Tukey 

Groups TEC 
Ratio vp:vg 

plasmid plasmid 1   367.9 13.6 
A,B 

27.1 
  2 1320.2 34.4 38.4 
  3   603.2 20.5 29.4 

plasmid MC 1   409.0 10.6 
A 

38.6 
  2   167.1   4.5 37.2 
  3 1153.7 18.1 63.7 

MC plasmid 1   587.4 87.4 
C 

  6.7 
  2 1140.9 95.8 11.9 
  3 1986.5 84.7 23.5 

MC MC 1   785.7 52.0 
B,C 

15.1 
  2   395.8 51.8   7.6 

  3 2306.4 71.0 32.5 
* x 109 ml-1 

Table 5 Particle titer and packaging efficiency of scAAV vector preparations. scAAV vector preparations were pro-

duced side-by-side employing all four possible combinations of MCs and plasmids in a 3x15 cm² format three times inde-
pendently. Preparations were purified by IDGC of Benzonase-treated cell lysate. Capsid titers (physical particles, vp) and 
genomic titers (TEC vector genomes, vg) were determined as described above (Table 1) The ratio vp:vg represents the 

packaging efficiency. All analyses were performed in parallel for all vector preparations. The effect of the different MC and 
plasmid combinations on particle numbers, genomic titer and ratio vp:vg was assessed using ANOVA (physical particles: 
p=0.5269; eGFP genomes: p<0.0001; ratio vp:vg: p=0.04725) and subsequent Tukey post hoc tests (Appendix B). Prepara-
tions that were not significantly different in the Tukey tests are marked with a common letter, while groups that were signifi-
cantly different (p < 0.05) do not contain a common letter in the Tukey groups column. Table content was published in 
(Schnödt et al.).
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The most remarkable difference between MC-based and plasmid-based scAAV vector preparations 

was observed in the biological activity of the preparations: up to 30-fold improved transducing titers 

on HeLa (ANOVA, Tukey post hoc tests vs. dual plasmid, p<0.001) and as a consequence a signifi-

cantly higher transduction efficiency (vp:tu) were determined for vector preparations generated using 

MC.scGFP (Table 6). 
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Vector 

construct 
Helper 

construct 
Tripli-

cate 
Physical  

particles 

(vp) * 

Transducing 

units (tu) * 
Tukey 

Groups tu 
Ratio 

vp:tu 
Tukey 

Groups 

Ratio vp:tu 

plasmid plasmid 1   367.9   0.7 
A 

  558.8 
B   2 1320.2   0.8 1617.0 

  3   603.2   0.6 1068.5 
plasmid MC 1   409.0   0.8 

A 

  491.0 
B   2   167.1   0.3   562.7 

  3 1153.7   0.7 1709.9 
MC plasmid 1   587.4   9.5 

B 

  62.0 
A   2 1140.9 23.7   48.2 

  3 1986.5 32.5   61.1 
MC MC 1   785.7   5.8 

B 

136.0 
A   2   395.8 13.9   28.4 

  3 2306.4   8.9 259.2 
* x 109 ml-1 

Table 6 Transducing titer and transduction efficiency of scAAV vector preparations. The amount of physical particles 

was determined by ELISA (Table 4). Transducing particle titers (tu) were determined by FACS analysis measuring 
transgene-expressing cells after transduction of HeLa cells with a serial dilution of indicated preparations. The ratio vp:tu 
represents the transduction efficiency. All analyses were performed in parallel for all vector preparations. The effect of the 
different MC and plasmid combinations on transducing units (per ml), and vp:tu ratios was assessed using ANOVA (trans-
ducing units: p<0.0001; ratio vp:tu: p=0.002471) and subsequent Tukey post hoc tests (Appendix B). Preparations that were 
not significantly different in the Tukey tests are marked with a common letter, while groups that were significantly different (p 
< 0.05) do not contain a common letter in the Tukey groups column. Table content was published in (Schnödt et al.).
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Again using ampR as marker, the amount of prokaryotic DNA contaminations was determined. Sur-

prisingly, scAAV vector preparations were found to contain significantly higher amounts of ampR se-

quences than ssAAV vector preparations, relative to TEC. Specifically, 4.8 x 109 – 1.1 x 1010 ampR-

specific sequences per ml were measured (Figure 11). This corresponds to approximately one ampR 

sequence per 100 particles or an approximate 1:3 ratio of ampR- to TEC-containing particles. Re-

placing just the helper plasmid by the helper MC had, again, no beneficial effect (ANOVA; Tukey post 

hoc test vs. dual plasmid, n.s.), while, solely by replacing the vector construct, ampR-containing par-

ticles were decreased to 0.2 % or less relative to TEC (ANOVA; Tukey post hoc test vs. dual plasmid, 

p<0.001). Replacing both vector and helper plasmid by MCs resulted in scAAV vector preparation 

free of ampR-containing particles (Figure 11, below limit of quantification) providing further proof that 

firstly, packaging of functional prokaryotic sequences can be avoided by employing the MC technolo-
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gy, and secondly, that the helper plasmid contributes to packaging of DNA impurities in AAV vector 

preparations.  

 

 

Figure 11 ampR sequences in scAAV preparations. DNA isolated from vector preparations was quantified for ampR 

sequences by qPCR. Analysis was performed in parallel for all vector preparations. Differences in ampR content between 
preparations were assessed using ANOVA (p < 0.0001) and subsequent Tukey post hoc tests. # < Limit of quantification 

(LOQ). Figure was published in (Schnödt et al.).
233

 

 

 

5.1.6 Further characterization of plasmid and MC-derived ssAAV and scAAV vectors  

For further analyses new batches of ssAAV and scAAV vectors were produced, using the dual plas-

mid (pDP2rs or pAAV-ssGFP or pAAV-scGFP) and the dual MC (MC.DP2rs and MC.AAV-ssGFP or 

MC.AAV-scGFP) system side-by-side, and applying the same conditions and protocols as before. 

Vector DNA was isolated and analyzed by denaturing gel electrophoresis. Under denaturing condi-

tions, any secondary DNA structure is disrupted and the vector genome unfolds into a linear single-

stranded sequence. For both ssAAV and scAAV, MC-based and plasmid-based vector preparations 

showed a comparable appearance (Figure 12). Thus, agarose gel electrophoresis confirmed homo-

geneity of genomes contained in our preparations, as well as the correct size. 



Results 

47 

 

 

Figure 12 Analysis of ssAAV and scAAV vector genomes by denaturing gel electrophoresis.(a) ssAAV vector prepa-
rations. Lane 1 dual plasmid preparation, lane 2 dual MC preparation. (b) scAAV vector preparations. Lane 3 dual plasmid 

preparation, lane 4 dual MC preparation. M standard DNA marker. 

 

 

Further, these vector preparations were analyzed for DNA impurities other than prokaryotic sequenc-

es ampR, ori and f1ori. qPCR analyses were performed for cellular genomic DNA (Tissue plasmino-

gen activator, PLAT), adenoviral gene sequences (Ad E4) and AAV helper gene sequences (AAV2 

rep). All preparations were free of cellular genomic DNA (below quantification limit, LOQ), while ade-

noviral and AAV viral sequences were detected (Table 7a,b).  

 

 ssAAV 

Reference 

sequence 

Dual plasmid 

vector 

Dual MC vector 

TEC (eGFP) 2873.33 ± 181.48* 2260.00 ± 140.00* 

ampR   150.32 ± 5.16* (5.0 %)       0.03 ± 0.01* (< 0.002 %) 

AAV2 Rep        1.14 ± 0.06* (0.04 %)       0.54 ± 0.08* (0.02 %) 

Ad E4        1.47 ± 0.03* (0.05 %)       0.69 ± 0.05* (0.03 %) 

PLAT      < LOQ       < LOQ 

 

 

a 
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 scAAV 

Reference 

sequence 

Dual plasmid 

vector 

Dual MC vector 

TEC (eGFP)   317.00 ± 14.11 *   188.67 ± 44.84 * 

ampR   197.33 ± 17.79* (38.4 %)       < LOQ 

AAV2 Rep        0.76 ± 0.04* (0.24 %)      0.18 ± 0.08* (0.10 %) 

Ad E4        1.00 ± 0.09* (0.31 %)      0.21 ± 0.12* (0.11 %) 

PLAT        < LOQ       < LOQ 

* x 109 ml-1 

Table 7 Further DNA impurities in ssAAV and scAAV vector preparations. (a) ssAAV and (b) scAAV vectors were 

produced using the dual plasmid or the dual MC strategy. Vector genomes were isolated three times independently and 
quantified by qPCR for vector genomic titers (TEC, eGFP), and encapsidated ampR, AAV2 rep, Ad E4 and PLAT sequenc-
es. All analyses were performed in parallel for dual plasmid and dual MC-derived vector preparations. <

 
LOQ = below limit 

of quantification. 

 

Overall, scAAV vectors produced by dual plasmid transfection contained, besides ampR, higher lev-

els of other non-TEC DNA. For both ssAAV and scAAV vectors, MC-based vector preparations tend-

ed to contain lower amounts of DNA impurities compared to plasmid-based preparations. 

 

5.1.7 AAV vectors do not activate Toll-like receptor 9 in vitro 

Researchers aiming to identify and characterize the interactions of AAV vectors with the host immune 

system proposed that the AAV vector genome is recognized by Toll-like receptor 9 (TLR9), a patho-

gen recognition receptor (PRR) of the innate immune system which senses unmethylated CpG se-

quences in DNA molecules.218 Moreover, activation of TLR9 was reported to be enhanced with 

scAAV vector genomes.219 As we detected a significantly higher content of prokaryotic sequences in 

scAAV compared to ssAAV vector preparations, we wondered whether this may be the reason for the 

higher immunogenicity of the former and, furthermore, whether MC-derived AAV vectors might acti-

vate TLR9 to a lesser degree than vectors produced by the standard plasmid transfection.  

We used HEK blue hTLR9 cells to assay our ssAAV and scAAV vector preparations for TLR9 activa-

tion. This commercially available HEK293-derived cell line stably expresses human TLR9 and the 

reporter gene secreted embryonic alkaline phosphatase (SEAP). The SEAP reporter gene is under 

b 
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the control of an interferon (IFN)-β minimal promoter fused to binding sites for transcription factors 

nuclear factor kappa B (NF-κB) and activator protein (AP-)1. Stimulation with a TLR9 ligand activates 

NF-κB and AP1, which induces the production of SEAP. During stimulation, the cells are maintained 

in a cell culture medium which contains a SEAP color substrate. Thus, the magnitude of TLR9 activa-

tion can be detected colorimetrically. The ssAAV and scAAV vector preparations characterized in 

Table 7 were incubated on HEK blue hTLR9 cells for 20 hrs using a GOI of 105. The scAAV vector 

produced by dual plasmid transfection contained a high amount of prokaryotic sequences (38.4 % 

ampR, relative to TEC) compared to the ssAAV vectors produced by either method (dual plasmid: 

5.0 %, dual MC < 0.002 %). In the scAAV vector produced by dual MC transfection, no ampR-specific 

sequences were detected. Yet, neither tested vector preparation induced a SEAP gene expression 

above background (mock-treated cells), whereas incubation of cells with a CpG oligonucleotide posi-

tive control (ODN2006) induced a strong color reaction (Figure 13). 

 

 

Figure 13 SEAP production of HEK blue hTLR9 cells upon transduction. 4 x 10
4
 HEK blue hTLR9 cells were incubated 

with AAV2ssGFP and AAV2scGFP produced by dual transfection of indicated constructs at GOI 10
5
, or challenged with 

5µM ODN2006 (TLR9 agonist). As negative control, cells were incubated with mock inoculum using a volume equal to the 
highest volume used for the AAV vectors. SEAP gene expression was determined at 20 hrs p.t. using a spectrophotometer 
at 620 nm. The results are expressed as fold-increase over mock-treated cells. Each sample was applied in triplicate. Dif-
ferences in SEAP levels between samples were assessed using ANOVA (p < 0.0001) and subsequent Tukey post hoc test. 

 

As we speculated that the SEAP assay might not be sensitive enough, we repeated the transduction 

experiments and, instead of measuring SEAP after 20 hrs, we evaluated the gene expression levels 

of pro-inflammatory chemokine interleukin 8 (IL8) 3 hrs p.t. in HEK blue hTLR9 cells, as established 

previously in HEK293-TLR9 cells.134 New batches of AAVscGFP were produced using either the dual 

plasmid method or the combination pDP2rs+MC.scGFP and concentrated in PBS-MK using centrifu-

gal filtration. AAV2scGFP (dual plasmid) contained 27.5 % ampR-specific sequences, whereas 

AAV2scGFP (pDP2rs+MC.AAV-scGFP) contained 0.02 % ampR-specific sequences. In parallel, 
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cells were transduced with standard eGFP-encoding vectors ssAAV (2.8 % ampR) and scAAV 

(20.5 % ampR), produced by triple plasmid transfection. In cells treated with the positive control 

ODN2006 a robust elevation in IL8 gene expression was observed (Figure 14). In contrast, no in-

crease of IL8 gene expression over background (PBS-MK or mock-transduced cells) was detected 

upon transduction with either vector preparation. Therefore, using two different assays, TLR9 activa-

tion by AAV vectors of either single-stranded or self-complementary genome conformation could not 

be confirmed.  

 

 

Figure 14 IL8 gene expression of HEK blue hTLR9 cells upon transduction. 7.5 x 10
4
 HEK blue hTLR9 cells were 

incubated with AAV vectors produced by (a) dual transfection or (b) triple transfection (triple transf.) at GOI 10
5 

or chal-
lenged with 5 µM TLR9 agonist ODN2006. As negative control, cells were incubated with (a) PBS-MK or (b) mock inocu-

lum, using a volume equal to the highest volume used for the AAV vectors. IL8 gene expression was determined by RT-
qPCR at 3 hrs p.t. and normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) reference gene. The results 
are expressed as fold-increase over (a) PBS-MK- or (b) mock-treated cells. Each sample was applied in triplicate. One 

representative experiment out of three independent experiments is shown. Differences in relative IL8 levels between sam-
ples were assessed using ANOVA (p < 0.0001) and subsequent Tukey post hoc test.  
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5.2 Establishment of episomal maintenance of AAV vectors 

5.2.1 Colony forming assay 

In this study we aimed at developing an AAV vector which is able to persist in proliferating cells as a 

replicating episome. For that purpose, the AAV vector genome was equipped with a 2 kb S/MAR el-

ement derived from the 5’ region of the human β-interferon gene.225 Therefore, a bicistronic AAV vec-

tor plasmid pAAV-S/MAR encoding eGFP and a blasticidin resistance gene (BSD) containing the 

S/MAR element flanked by AAV2 ITRs, (Figure 15a) was constructed by Claudia Hagedorn (Universi-

ty Witten/Herdecke) and used for producing AAV-S/MAR. As a control vector genome, plasmid 

pAAV-ΔS/MAR containing the same TEC as pAAV-S/MAR but lacking the S/MAR sequence (Figure 

15 b) was packaged as AAV-ΔS/MAR.  

 

 

Figure 15 Plasmid maps of pAAV-S/MAR and pAAV-ΔS/MAR. (a) vector plasmid pAAV-S/MAR containing a TEC encod-

ing for eGFP and blasticidin resistance gene (BSD), separated by an internal ribosomal entry site (IRES) and the S/MAR 
element derived from the human β-interferon gene. (b) vector plasmid pAAV-ΔS/MAR containing all elements of pAAV-

S/MAR but the S/MAR sequence. Both plasmids were cloned by Claudia Hagedorn, University Witten/Herdecke.  

 

HeLa cells were transduced with AAV-S/MAR or AAV-ΔS/MAR at a GOI of 1000. Twenty-four hrs p.t. 

transduced cells were sorted for transgene expression and 105 eGFP-expressing cells of the respec-

tive vector were seeded into cell culture flasks. The cells were cultured further and split regularly. 

Soon after initiation of the experiment, the eGFP gene expression of cells declined to the level of 

non-transduced cells (≤ 1%, Figure 16) 
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Figure 16 Cultivation of AAV-S/MAR and AAV-ΔS/MAR-transduced cells in absence of selection. HeLa cells were 
transduced with (a) AAV-S/MAR and (b) AAV-ΔS/MAR at a GOI of 1000. 24 hrs p.t. cells were sorted and 10

5
 eGFP-

positive cells were seeded in 25 cm² flasks. Cells were cultured in normal cell culture medium without adding the selection 
antibiotic blasticidin and measured for eGFP gene expression at indicated time points. Data points represent mean of tripli-
cates.   

 

Therefore we performed colony forming assays in which we employed selection pressure to select for 

cells stably maintaining the vector genome. HeLa cells were transduced with either AAV-S/MAR or 

AAV-∆S/MAR at a GOI of 5000. Twenty-four hrs p.t. the percentage of transduced cells was deter-

mined by measuring eGFP by flow cytometry. Subsequently, the cell suspension consisting of a mix-

ture of eGFP+ and eGFP- cells was seeded to contain 105 eGFP+ cells per dish. Selection for cells 

which maintained the vector genome was initiated 24 hrs after re-seeding, by addition of blasticidin to 

the culture medium. An optimized blasticidin concentration of 2 µg per ml cell medium, to be raised to 

2.5 µg/ml with the next medium exchange, was determined in preliminary experiments. Using these 

concentrations, non-transduced HeLa cells were killed within one week. After three to four weeks of 

selection, the surviving colonies were quantified by C. Hagedorn using imaging software. We found 

that HeLa cells transduced with AAV-S/MAR resulted in a significantly higher number of blasticidin-

resistant colonies compared to cells treated with control AAV-∆S/MAR (Figure 17; Experiment 1: 

AAV-S/MAR 66 ± 25, AAV-∆S/MAR 12 ± 6, p=0.0013, n=5; Experiment 2: AAV-S/MAR 291 ± 82, 

AAV-∆S/MAR 114 ± 89, p=0.011, n=5). However, when cells were sorted for eGFP expression prior 

to selection, to seed only those cells which were successfully transduced by the respective AAV vec-

tor, no significant difference in colony formation could be observed after selection (Figure 17; Exper-

iment 3: AAV-S/MAR 27 ± 28, AAV-∆S/MAR 23 ±22 p=0.75).  
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Figure 17 Colony count of blasticidin-resistant cells. HeLa cells were transduced with AAV2-SMAR or AAV-∆S/MAR at 

a GOI of 5000. 24h p.t. 10
5
 eGFP

+
 cells were seeded into 15cm² dishes or 150 cm² flasks. For Experiment 1 and 2 a mixed 

suspension of eGFP
+
 and eGFP

- 
was seeded to contain 10

5
 eGFP

+ 
cells per dish. For Experiment 3, cells expressing high 

levels and low levels of eGFP expression were sorted separately in 15 cm² dishes. 24 hrs after seeding, blasticidin was 
added at a concentration of 2 µg/mL and, with the next medium change, increased to 2.5 µg/ml. After 3 to 4 weeks of selec-
tion, the cells on plates or flasks were fixed and stained with crystal violet. Cell colonies were quantified and analyzed by 
C. Hagedorn. Experiment 1: ** p = 0.0013, Experiment 2: * p = 0.011.  

 

 

5.2.2 Mitotic stability of AAV-S/MAR vector genomes in HeLa cells 

AAV-S/MAR-derived HeLa cell colonies from two independent experiments were picked and ana-

lyzed for eGFP expression. Of a total of 18 colonies, 14 were highly positive for eGFP (> 96 % eGFP 

gene expression, mean fluorescence intensity (MFI) > 841, Figure 18).  

 

 

Figure 18 Transgene expression of AAV-S/MAR-derived colonies. After performing colony forming assays as described 

in chapter 5.2.1, colonies were picked from the dishes. At the same day or up to 10 days after picking, colonies were ana-
lyzed by flow cytometry for eGFP expression (white bars) and mean fluorescence intensity (MFI) (grey bars). 
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Seven eGFP+ colonies were cultivated further in absence of selection pressure. Over a time span of 

up to 70 days the eGFP expression remained stable at high levels (Figure 19). 

 

 

Figure 19 Long-term transgene expression of AAV-S/MAR-derived colonies in absence of selection. Picked colonies 

were cultivated further without addition of blasticidin. eGFP expression was measured by FACS analysis at indicated time 
points.  

 

To determine whether this mitotic stability was a result of episomal maintenance or integration of vec-

tor genomes, Southern blot analyses were then performed by C. Hagedorn. For that purpose cellular 

DNA was isolated, digested with a single-cut restriction enzyme and probed for the presence of the 

CMV-eGFP-IRES-BSD cassette. For colonies #2, #4, #6 and #12 a 4.6 kb band was detected (Figure 

20), indicative for either a single circular episome, or a head-to-tail concatemer (see scheme in Fig-

ure 20). The colonies #7, #10 and #18 showed bands at 7.9 kb, indicative for tail-to-tail or head-to-

head-concatemers. Integration of vector genomes, which would be expected to result in multiple 

bands on the Southern Blot 235 was not observed. 

To investigate the vector genome status of eGFP-negative colonies, colony #3 (see Figure 18) was 

included in the Southern Blot analysis and showed no signal for the vector genome (Figure 20). In 

line, qPCR analysis of cells of colony #3 did not show an eGFP-specific signal. Thus, some HeLa 

cells which were not transduced or had lost the vector genome were capable of spontaneously de-

veloping a resistance toward the selection antibiotic blasticidin.  
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Figure 20 Episomal maintenance of AAV-S/MAR vector genomes in HeLa cells (I). Southern blot analyses of colonies 

of Figure 19. Asterisks indicate the positions of bands. Schematic depiction shows the expected bands of a single vector 
genome and head-to-tail and head-to-head/tail-to-tail concatemers. Southern Blot analyses were conducted by C. Hage-
dorn. Images were kindly provided by C. Hagedorn. 

 

The episomal status of AAV-S/MAR vector genomes was confirmed by fluorescence in situ hybridiza-

tion (FISH) on metaphase spreads of these colonies, conducted by C. Hagedorn. This method ena-

bles detection of even rare integration signals on both sister chromatids, whereas a signal on only 

one of the sister chromatid indicates an episomal association with the host chromosome.236 For each 

clone, at least three different metaphase plates were analyzed. FISH analyzes confirmed the epi-

somal status of AAV-S/MAR vector genomes in the analyzed colonies (Figure 21) and enabled esti-

mation of an average of 1-2 vector genomes per cell, (C. Hagedorn, personal communication) which 

was confirmed by qPCR analysis of colonies #4, #6 and #7 (eGFP vector genomes vs. PLAT refer-

ence gene).  
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Figure 21 Episomal maintenance of AAV-S/MAR vector genomes in HeLa cells (II). FISH analyses on metaphase 

chromosomes of colonies of Figure 19. Green dots represent AAV-S/MAR vector genomes. White boxes show an image 
enlargement. Representative images are shown. FISH analyses were conducted by C. Hagedorn. Images were kindly pro-
vided by C. Hagedorn.  
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5.2.3 Mitotic stability of AAV-∆S/MAR vector genomes in HeLa cells 

As described for AAV-S/MAR, we also picked blasticidin-resistant cell colonies derived from cells 

transduced with control vector AAV-S/MAR and measured their eGFP expression. Of 14 colonies 

from two independent experiments, cells of 7 colonies were eGFP-positive, with 6 colonies being 

highly positive for eGFP (> 94 % eGFP gene expression, MFI > 3262, Figure 22)  

 

 

Figure 22 Transgene expression of AAV-ΔS/MAR-derived colonies. After performing colony forming assays as de-

scribed in chapter 5.2.1, colonies were picked from the dishes. At the same day or 5 days after picking colonies were ana-
lyzed by flow cytometry for eGFP expression (white bars) and MFI (grey bars). 

 

Similar to AAV-S/MAR-derived colonies, eGFP-positive AAV-S/MAR-derived colonies also main-

tained long-term high-level eGFP expression after further cultivation in absence of selection pressure 

(Figure 23).  

 

 

Figure 23 Long-term transgene expression of AAV-∆S/MAR-derived colonies in absence of selection. Picked colo-

nies of colony forming experiments were cultivated further in absence of selection pressure. eGFP expression was meas-
ured by FACS analysis at indicated time points. 
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Accordingly, the same analyses for vector genome status as described above were then conducted 

by C. Hagedorn. Southern Blot analyses showed episomal signals for eGFP+ colonies as single cir-

cular episomes or head-to-tail concatemers (2.6 kb, colonies 4 and 11, Figure 24) or head-to-

head/tail-to-tail concatemers (4.8 kb, colony 5). As was the case with the AAV-S/MAR colony #3 

described above, one eGFP-negative colony which was analyzed in parallel gave no signal in the 

Southern Blot analysis (Δ 1, Figure 24) and qPCR, although surviving blasticidin selection.  

 

 

Figure 24 Episomal maintenance of AAV-∆S/MAR vector genomes in HeLa cells (I). Southern blot analyses of colonies 

of Figure 23. Asterisks indicate the positions of bands.  Schematic depiction shows the expected bands of a single vector 
genome and head-to-tail and head-to-head/tail-to-tail concatemers. Southern Blot analyses were conducted by C. Hage-
dorn. Images were kindly provided by C. Hagedorn. 

 

Additionally, the cells were analyzed by FISH on metaphase spreads. This time, FISH on colony 11 

revealed rare integration signals (Figure 25, indicated by a white bracket) in addition to episomal sig-

nals, indicating that rare integration events occur in absence of S/MAR. For the other colonies, hy-

bridization signals concur with solely episomal maintenance of vector genomes (Figure 25). Based 

on FISH analyses, an average of 3 AAV-S/MAR genomes per cell was estimated (C. Hagedorn, 

personal communication). Summing up, we demonstrated that a standard AAV vector genome is 

maintained episomally in proliferating cells after an initial selection phase. By including an S/MAR 

element in the TEC cassette, the establishment frequency of stable episomes is increased.  
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Figure 25 Episomal maintenance of AAV-∆S/MAR vector genomes in HeLa cells (II). FISH analyses on metaphase 

chromosomes of colonies of Figure 23. Green dots represent AAV-∆S/MAR vector genomes. White bracket indicates inte-
grated vector genomes. White boxes show image enlargement. Representative images are shown. FISH analyses were 
conducted by C. Hagedorn. Images were kindly provided by C. Hagedorn. 
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6 Discussion 

6.1 MC technology for AAV vector production 

6.1.1 Prokaryotic DNA is encapsidated during AAV vector production 

AAV vectors are developed for ex vivo or in vivo gene therapy or to contribute to answering basic 

biological questions. In line with previous reports, we observed that AAV vector preparations pro-

duced by transient plasmid transfection of HEK293 cells contained DNA other than the intended TEC 

as genetic payload (Figure 6, 116, 128, 141–143, 234). Benzonase protection assays conducted on purified 

vector preparations indicated that these DNA impurities are protected from nuclease digestion, point-

ing toward their encapsidation, or at least to a close enough association with the viral capsid to pro-

tect them from degradation. We detected up to 1.8 % of plasmid backbone sequences in our ssAAV 

vector preparations, which could not be removed by standard purification protocols (Figure 6). These 

values for prokaryotic DNA impurities, as well as those determined in the plasmid-derived vectors of 

the side-by-side comparison (up to 3.0 %, Table 3; 5.0 %, Table 7a) are within the range of those 

which have been reported (1-8 %) elsewhere for ssAAV.116, 141–143 In contrast, we found that scAAV 

vector preparations, which are preferentially used for in vivo gene transfer and modification of prima-

ry cells,185 contain a much higher amount of encapsidated prokaryotic sequences (up to 26.1 %, Fig-

ure 11; 38.4 %, Table 7). These plasmid backbone sequences are transferred in vivo upon admin-

istration of the vector preparations and are delivered into the target tissue, presumably with half-lives 

comparable to AAV vectors delivering the intended TEC.141 Although Hauck and colleagues provided 

evidence that these sequences are not being transcribed,143 it cannot be excluded that they trigger 

immune responses. The latter have been reported to limit long-term expression of TEC delivered by 

non-viral vectors.237, 238 Furthermore, the long-term consequences of co-delivered antibiotic re-

sistance genes cannot be predicted. Accordingly, it is highly desirable to remove or at least exten-

sively reduce these elements in vector preparations. As removal of prokaryotic DNA impurities from a 

vector preparation appears impossible once the packaging has occurred, we employed vector pro-

duction by MCs as a strategy that precludes packaging of these sequences in the first place.  

 

6.1.2 Comparison of plasmid and MC-derived AAV vector preparations 

The MC technology was implemented to remove antibiotic resistance genes and other functional pro-

karyotic sequences from therapeutic non-viral vectors.212–215 Due to their significantly reduced size 

compared to plasmids and the absence of CpG motifs, MCs achieve an increased transgene expres-

sion level.211 As they are considered as substantial improvement in non-viral vector technology they 

are currently employed in a number of in vivo studies.239 Both the vector plasmids for ssAAV and 
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scAAV vector genomes and the combined AAV/Ad helper plasmid (Figure 7, Figure 10) were gener-

ated as MCs by PlasmidFactory. A side-by-side comparison revealed that MC constructs are at least 

as potent as plasmids in AAV vector production: for both ssAAV and scAAV vector production, each 

component of the standard dual plasmid system could be replaced by a MC without impairing total 

genomic particle yield, capsid titer and composition and genomic titer (Table 1, Figure 8, Table 2, 

Table 5, Table 6). Further, both MC- and plasmid-based ssAAV and scAAV vector preparations con-

tained packaged vector DNA of comparable size and homogeneity (Figure 12). Vectors produced by 

transfection of MC.AAV-ssGFP or MC.AAVscGFP and either helper (MC.DP2rs or pDP2rs) yielded 

preparations in which packaging of functional prokaryotic sequences was significantly reduced or 

even avoided, and thus in preparations with improved packaging efficiency compared to the dual 

plasmid system (Table 1, Table 5). Furthermore, regarding transducing titers and transduction effi-

ciency, MC.AAV-ssGFP-based vector preparations did not differ for the worse (Table 2), while 

MC.AAV-scGFP-based vector preparations significantly outperformed the vector preparations pro-

duced by standard dual plasmid transfection system (Table 6).  

 

6.1.3 Model for packaging of prokaryotic sequences  

Using the MC constructs as tools (Figure 9, Figure 11), we obtained data supporting Chadeuf and 

coworkers, who provided evidence for the vector plasmid being the main source of antibiotic re-

sistance gene sequences found in AAV vector preparations, while the helper plasmid contributes only 

to a minor extent.141 To better understand what causes the packaging of plasmid backbone se-

quence, we quantified our ssAAV preparations produced by the dual plasmid strategy for the pres-

ence of ori and f1 ori located in the plasmid backbone neighboring either ITR (Figure 7a). We found 

that f1 ori and pUC ori are present in AAV vector preparations to a similar extent as ampR (Table 3). 

Thus, it is unlikely that a specific sequence contained in ampR fosters its encapsidation. The more 

intriguing explanation would be that sequences of the plasmid backbone are being packaged by vir-

tue of location in cis to the ITRs, as a side product during vector genome rescue/replication from a 

circular plasmid (see below). In line with this assumption, we observed that the SCAR also becomes 

encapsidated (Table 4). This sequence is the sole non-vector genome element in MC.AAV-ssGFP 

(Figure 7c). It does not contain a Rep binding site or functional element, but is surrounded by the two 

ITR sequences.  

The ITR consists of palindromic sequences A-A’, B-B’, C-C’ forming a HP structure and a single-

stranded D sequence (Figure 26a, see Figure 1b for detailed sequence). Between the A segment 

and the D sequence resides AAV’s origin of replication, the terminal resolution site (trs), which is rec-

ognized by the viral Rep proteins.240 In order to replicate integrated AAV proviruses or – in case of 

vector production – to replicate AAV vector genomes provided on vector plasmids, viral/vector ge-
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nome templates have to be rescued. The rescue process is postulated to be initiated by Rep-

mediated nicking of one strand of the duplex DNA at the trs (Figure 26b).33, 36 The partially single-

stranded GC-rich palindromic sequence of the ITR then forms a T-shaped HP (Figure 26c) - stabi-

lized by Rep binding to a Rep binding element (RBE’) at the apex of the HP structure25 – and serves 

as primer for genome replication. Replication initially ensues along the displaced strand. Upon reach-

ing the 3’-end, Rep helicase activity resolves the duplex, which allows the newly synthesized ITR to 

fold upon itself and serve as primer for replication back into the AAV vector genome (Figure 26d). At 

the second ITR, the same event takes place, thus generating a single-stranded vector genome with 

intact ITRs that can serve as further template for viral/vector genome replication (Figure 26e).241 If the 

trs of the second ITR is not nicked prior to arrival of the replication complex, replication continues 

beyond the ITR structures, thus producing a large vector genome-plasmid backbone molecule 

(Figure 26f). This duplex DNA molecule can be processed – again Rep-dependent – into two single-

stranded DNA molecules,241 none of which containing two fully intact ITRs. Specifically, the vector 

genome containing the TEC possesses one intact ITR and the D sequence of the second ITR, while 

the plasmid backbone sequence contains one ITR or, if replication covers the entire plasmid back-

bone, two ITRs, both without the D sequence (Figure 26g). The defective ITR of the vector genome 

can be repaired through a panhandle intermediate involving base pairing of the two D sequences 

flanking the vector genome by using the intact ITR as template (Figure 26h).242  
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Figure 26 Model of proposed rescue mechanism. Circular plasmid genome is represented as linearized. (a) Schematic 
representation of AAV2 ITR. The triangle represents the nicking activity of Rep at the trs. (b)  Rep nicks at trs and creates a 
single-strand break. (c) The template strand folds into a hairpin (HP) conformation thus enabling replication along the dis-
placed strand. (d) The newly generated ITR folds into the HP conformation which allows for replication into the vector ge-
nome sequence. (e) Upon the nicking event at the trs of the second ITR, the single-stranded AAV vector genome is creat-
ed. (f) If the second ITR is not nicked before the arrival of the replication machinery a large replicon encompassing TEC and 
backbone sequences is generated. (g) The TEC genome can be rescued by Rep nickase activity which then creates the 

TEC with one intact ITR and an additional D sequence and the prokaryotic backbone sequences with two ITRs lacking the 
D sequence. (h) The defect ITR of the TEC genome can be repaired by a panhandle mechanism, thus generating an intact 

AAV vector genome. RBE: Rep protein binding element, trs: terminal resolution site. Figure adapted from Ward et al. 
241

 
and published in (Schnödt et al.).
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While the presence of one HP structure is sufficient to rescue AAV vector genomes and to induce 

replication, the efficiency of vector genome replication, and in particular, the packaging of vector ge-

nomes into viral capsids depends on the presence of the D sequence in cis.243, 244 Based on the latter 

observation Wang and coworkers postulated the D sequence to function as actual packaging signal 

for AAV.244 Thus, the presence of the D sequence - independent of the pathway followed for its pro-
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duction (Figure 26) – is the likely reason for the so obviously preferred packaging of the TEC-

containing vector genomes.243–245  

To generate vector plasmids harboring scAAV vector genomes, the trs, including the D sequence, of 

the left ITR is deleted (Figure 5, Figure 10). Our data demonstrates that this modification of the ITR 

structure in pAAV-scGFP considerably increases the encapsidation of prokaryotic sequences (Figure 

11). According to our model, this increase is the product of a run-through replication that occurs more 

frequently in scAAV compared to ssAAV vector production, as specific nicking of Rep at the trs of the 

mutated ITR cannot occur (Figure 26 f-h).  

 

6.1.4 DNA impurities in AAV vector preparations 

Lecomte and coworkers quantified DNA impurities in a ssAAV vector preparation with next genera-

tion sequencing (NGS) and reported a clear ranking with vector plasmid backbone being the most 

frequent one (0.84–5.97 %), followed by the helper plasmid (0.01–0.08 %) and human genome se-

quences (0.04–0.30 %).142 In line, we (Figure 9, Figure 11 and Table 3, Table 4) and others141 ob-

served a striking preference for backbone sequences derived from the vector plasmid or the corre-

sponding MC construct. Yet, we also found specific DNA impurities stemming from the helper plas-

mid in our vector preparations (Table 7). Values for ssAAV vector preparations were comparable to 

those reported by Lecomte et al.142 (dual plasmid preparation: 0.04-0.05 %, dual MC preparation: 

0.02-0.03 %). Remarkably, scAAV vectors were found to contain, in addition to vector plasmid-

derived sequences, more helper plasmid-specific sequences than ssAAV vectors (dual plasmid 

preparation: 0.24-0.31 %, dual MC preparation: 0.10-0.11 %). For ssAAV and even more so for 

scAAV vector preparations, MC-based vector preparations tended to contain lower amounts of DNA 

impurities compared to plasmid-based preparations, which may be another possible effect of an im-

proved vector genome packaging when the vector plasmid is replaced by a vector MC. However, in 

contrast to Lecomte et al., we did not detect human genome sequences in our vector preparations 

(PLAT < LOQ for all tested vector preparations). This discrepancy may be accounted for by the dif-

ferences in vector production and purification (IDGC vs. CsCl gradient ultracentrifugation or affinity 

chromatography) and analytical methodology (qPCR vs. NGS).142 

According to the rescue model proposed above, plasmid backbone sequences of vector plasmids 

could become rescued and equipped with HP structures (Figure 26g). As Rep proteins bind to RBE’ 

at the apex of the HP structure25 as well as to the pores at the 5-fold symmetry axis of the capsid 

through which newly produced genomes are channeled,32, 53 HP-flanked plasmid backbone contain-

ing sequences may become connected and eventually packaged. In support of this model Chadeuf 

and coworkers isolated ITR-plasmid junctions from AAV vector stocks and AAV-transduced tissue 



Discussion 

65 

 

that showed a preferential retention of the A region containing the RBS within the otherwise damaged 

ITRs. However, they also observed partially retained D-sequences, including the trs,141 which argues 

for mechanisms other than those postulated in Figure 26 through which undesired DNA sequences 

additionally become equipped with signals that foster packaging.242, 246 Such events may explain how 

DNA sequences other than those contained in the vector plasmid, such as helper plasmid sequenc-

es, become targets for encapsidation. Additionally, it is possible that the DNA binding and helicase 

activity of Rep leads to unspecific packaging events, even in absence of DNA replication. 

 

6.1.5 Interaction of AAV vectors with the innate immune system 

When confronted with foreign structure or pathogens, host organisms evoke various immune re-

sponses for protection. Recognition of evolutionary conserved pathogen-associated molecular pat-

terns (PAMPs) by pathogen recognition receptors (PRRs) activates the innate immune system. In its 

course of action, secretion of cytokines and chemokines is induced, immune cells are recruited to the 

site of infection, the complement cascade is initiated and the highly specific adaptive immune system 

is activated and modulated. For AAV vectors, two members of the TLR family, TLR2 and TLR9, have 

been described as PRRs. TLR2 senses the AAV capsid in primary human liver cells (sinusoidal en-

dothelial cells and Kupffer cells) and activated macrovascular endothelial cells from human umbilical 

veins.134 TLR9, a sensor of unmethylated CpG motifs,220 was reported to be activated by AAV vector 

genomes in murine and human plasmacytoid dendritic cells (pDC). In vivo, the TRL9-MyD88 pathway 

was found to be crucial for activation of CD8+ T cell responses against both transgene and AAV cap-

sid, which ultimately led to loss of transgene expression and generation of neutralizing antibodies 

against AAV vectors.218 Remarkably, TLR9-dependent activation of innate immunity was reported to 

be increased if scAAV vectors were used.219 To explain this phenomenon, two hypotheses were put 

forward. Firstly it was proposed that the capsids of scAAV vectors are less stable in the endosome, 

and thus prone to release the vector genome more readily, which exposes the latter to TLR9 sens-

ing.219 Secondly, the additional ITR sequence present in scAAV vector genomes (see Figure 5l) has 

been implicated.247 This hypothesis is supported by the finding that adaptive immune responses are 

reduced when AAV vectors in which the TEC was depleted from CpG sequences were used.248 

We wondered whether the reason for the higher immunogenicity of scAAV vectors may lie in their 

significantly increased content of prokaryotic DNA sequences. However, using two different assays in 

vitro, no TLR9 activation at all was observed upon transduction of a TLR9-expressing cell line with 

both ssAAV and scAAV vectors at a high GOI of 105 (Figure 13, Figure 14). While a TLR9 agonist 

showed strong and reproducible induction of TLR9-mediated SEAP and IL8 gene expression, AAV 

vectors with high or low content of prokaryotic sequences in plasmid- or MC-derived vector prepara-

tions, respectively, showed no increase over non- or mock-transduced cells. Previously our group 
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has shown a small (2-3-fold) but significant increase in TLR9 activation by scAAV vectors over mock-

transduced cells in vitro, with TLR9 activation by a scAAV vector being in the range of activation by a 

TLR9 agonist.134 In addition to differences in experimental setup (model cell lines HEK blue TLR9 vs. 

293/TLR9, possible differences in vector dosage, different TLR9 agonists), the reason for the diver-

gent findings regarding TLR9 activation may be the only very short and transient nature of TLR9 acti-

vation by AAV vectors,249, 250 which might make detection and quantification in vitro very difficult. Pos-

sibly, a longer incubation time or a kinetic study spanning a range from 1 h to 20 hrs might elucidate 

this question. Interestingly, in vivo interaction of AAV vectors with TLR9 seems to be context-

dependent, e.g. genetic background of mouse model, or i.v. vs. i.m. vector administration.218, 251 

In the future, evaluation of MC- versus plasmid-derived AAV vectors in an animal model using estab-

lished conditions may show more conclusively whether MC-derived AAV vectors, specifically those 

containing a self-complementary genome, are of lesser immunogenicity than plasmid-derived AAV 

vectors.  

 

6.1.6 Challenges and chances of using MC for AAV vector production  

As ampR signals in a low range remained detectable in some dual MC vector preparations (technical 

duplicate #2 in Figure 9: < 1000 particles over background; ssAAV vector in Table 7: < 2100 particles 

over background), we analyzed the MC preparations which were used for packaging using ampR-

specific primers. While MC.ssGFP contained only marginal amounts of ampR-specific sequences 

(<0.0005 %, relative to TEC), we found ampR particles ranging from 0.03-5.35 % (relative to AAV 

rep) in different batches of MC.DP2rs. With exception of the SCAR sequence, which contains signifi-

cantly less CpG and has been shown to be safe for in vivo applications211, 252 MC constructs contain 

neither an antibiotic resistance gene sequence nor any other sequence that is not intended to be 

transferred. The identification of contaminating ampR sequences highlights the requirement of so-

phisticated production procedures including single-use material and preferably a dedicated facility to 

generate MC preparations free of any kind of contamination.  

The second issue concerns the elaborate production process itself. Up-scaling of the MC production 

and purification to produce large batches of AAV vectors may present a challenge for the combined 

AAV/Ad helper constructs owing to their size and the high quantities required for vector production. 

This limitation, however, could be overcome by shifting to the triple transfection strategy, where AAV 

and Ad helper functions are provided on separate and thus smaller plasmids. MCs from these plas-

mids are smaller in size and, at least at present, easier to produce.  
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In overcoming these limitations, the MC technology offers an elegant and potent strategy to avoid 

unintended transfer of functional prokaryotic plasmid backbone sequences and may represent a key 

step in the development of safe AAV vectors for gene therapy in human patients.  

 

6.2 Episomal maintenance of AAV vectors 

Upon successful transduction of a target tissue, AAV vector genomes remain predominantly in an 

episomal state, as duplex DNA circles or concatemers.180, 200–203 These episomal DNA forms mediate 

long-term transgene expression in post-mitotic tissues,189, 190, 202, 203, 205, 207–210 but are diluted out by 

cell division in proliferating cells.189, 221, 222 We therefore aimed at finding a strategy which would ena-

ble AAV vector genomes to persist episomally in dividing cells, i.e. an approach other than integration 

which establishes persistence of the vector genome and its distribution to the daughter cells during 

mitosis. For this purpose we incorporated an S/MAR sequences into the TEC cassette.  

 

6.2.1 S/MAR-based vectors for gene therapy 

S/MARs are specific genomic DNA segments which hook onto the nuclear matrix.223 This attachment 

contributes to the spatial organization of the chromatin and the functional regulation of gene expres-

sion and replication. Due to these important structural and functional roles in the nucleus and the 

association of S/MARs with chromosomal origins of replication, researchers aimed to explore these 

sequences as auxiliary elements in plasmid vectors.253–255       

Pioneer S/MAR plasmid vector pEPI combined a transcription unit containing GFP and a kanamycin 

resistance gene with a 2kb S/MAR derived from the 5’ region of human β-interferon gene. After an 

initial antibiotic selection phase pEPI established itself as stable episome, mediated by the S/MAR 

sequence. Episomal pEPI was retained in vitro over hundreds of generations in the absence of selec-

tion.225 Subsequently, second generation plasmid vector pEPito was developed as promoter-

optimized and CpG-depleted improved version of pEPI, and achieved higher transgene expression in 

vitro and more prolonged gene expression in vivo.256 Due to the success of pEPI and its derivatives, 

S/MAR elements are routinely included in plasmid vectors for gene therapeutic applications.254, 255 

Aiming to combine the nuclear persistence mediated by S/MARs with the efficiency of viral delivery, 

hybrid vector systems were developed. Voigtlander and colleagues designed a two-vector system 

based on high capacity adenoviral vectors (HCAdV): HCAdV-pEPito-FRT² contained the pEPito 

plasmid sequence whereas HCAdV-FLPe delivered the FLPe recombinase. Upon co-transduction, 

the FLPe recombinase excises and circularizes the pEPito-based replicon. Using this co-delivery 

strategy, episomal maintenance of the replicon for six months in vivo could be achieved.257 Further-
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more, Verghese and colleagues inserted the pEPI/pEPito S/MAR sequence into a non-integrating 

lentiviral vector to stabilize the episomal DNA circles formed via the vector’s long terminal repeats. 

The thus generated anchored non-integrating lentiviral vector (aniLV) established episomes in 

HEK293T cells which were stable for more than a hundred cell divisions without the requirement of 

an initial selection. Additionally, aniLV was able to modify murine hematopoietic progenitor cells in 

vitro and in vivo for up to 10 weeks.258 

 

6.2.2 Episomal AAV-S/MAR and AAV-ΔS/MAR vector genomes 

The aim of this study was to investigate whether the S/MAR technology, which has been successfully 

applied for plasmid vectors and other viral vectors, could be harnessed to generate episomally per-

sistent AAV vector genomes in dividing cells. For that purpose an AAV vector was packaged with the 

gene expression cassette of pEPito (eGFP-IRES-BSD-S/MAR),256 in parallel with an AAV vector con-

taining the same TEC but without the S/MAR sequence (Figure 15).  

Both vectors were transduced into highly proliferative HeLa cells. Antibiotic selection pressure was 

applied to select for cells which stably maintained the AAV vector genome. When cells of a mixed 

population, that is, in a mixture of transduced and non-transduced cells were seeded and selected, 

AAV-S/MAR-transduced cells yielded higher colony forming numbers than AAV-ΔS/MAR-transduced 

cells (Figure 17). However, when cells were sorted using flow cytometry so that only successfully 

transduced cells underwent the selection process, no difference in colony forming numbers between 

the two vectors was observed. This finding suggests an establishment advantage of AAV-S/MAR in a 

competing environment with non-transduced cells over the control vector.  

Colonies surviving the selection were picked and cultivated further in the absence of selection. For 

both vectors, cells derived from colonies which were highly eGFP-positive after ending selection 

maintained high transgene expression levels over a time span of up to 70 days, even in absence of 

selection pressure (Figure 19, Figure 23). Some colonies, however, which had survived antibiotic 

selection did not contain the vector genome at the end of the selection phase (Figure 18, Figure 22) 

pointing to development of spontaneous resistance toward the selection antibiotic. While this phe-

nomenon has been observed before in HeLa cells treated with other selection antibiotics,259 it is re-

markable that colonies derived from AAV-S/MAR transduction seemed to have a higher likelihood of 

actually maintaining the vector genome, compared to colonies derived from AAV-ΔS/MAR: Only 4 out 

of 18 S/MAR-derived colonies surviving selection were negative for eGFP expression (approximately 

one fourth of colonies, Figure 18), while half of the picked ΔS/MAR-derived colonies were eGFP-

negative (7 out of 14, Figure 22). Taking this into account, the colony forming assay might be slightly 
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biased against AAV-S/MAR-derived colonies, with the true colony forming ability being more in favor 

of AAV-S/MAR-transduced cells.  

For eGFP+ colonies derived from AAV-S/MAR transduction, both Southern Blot and FISH analyses 

demonstrated episomal maintenance of the vector genome (Figure 20, Figure 21). Surprisingly, we 

found that the mitotic stability of eGFP+ colonies derived from the control vector AAV-ΔS/MAR was 

also predominantly a result of episomal maintenance (Figure 24, Figure 25), with only one of the 

AAV–ΔS/MAR-derived colonies containing integrated vector genomes. This finding is all the more 

surprising as previous studies commonly employed antibiotic selection to induce AAV vector genome 

integration in vitro.30, 179, 260 The protocols employed by the former studies differ from our approach as 

they used a rather high selection pressure, while we used only moderate concentrations of antibiotic 

(up to 2.5 µg/mL blasticidin, 4-fold less than the manufacturer recommends for selection of HeLa 

cells). Under these conditions, AAV vector genomes were capable to establish stable episomes, with 

the S/MAR sequence increasing the frequency of the event.  

 

6.2.3 Conditions for establishment of stable AAV vector episomes 

Kymäläinen and colleagues have tried before to combine AAV vectors and S/MAR, using a truncated 

version of the β-interferon S/MAR sequence. Yet, neither this AAV-S/MAR hybrid nor an AAV vector 

lacking the S/MAR achieved stable establishment in vitro, and rAAV-transduced cells were lost with 

cell proliferation.261 As a key difference to our work, no antibiotic selection was employed in the for-

mer study.  

In our setting the selection pressure can potentially serve two purposes. Firstly, the initial antibiotic 

selection conveys the survival advantage to transduced cells in a competing environment with non-

transduced cells. This survival advantage is crucial in the context of plasmid-based S/MAR vectors 

where antibiotic selection compensates for the low establishment efficiencies of the plasmid epi-

somes.262, 263 Likewise, when transduced HeLa cells were cultured in absence of selection pressure, 

non-transduced cells and/or cells which had lost the vector genome rapidly overgrew cells which 

maintained the vector genome (Figure 16). Once established both plasmid-based S/MAR vectors and 

AAV-S/MAR are stably maintained in the absence of selection. Episomal maintenance in dividing 

cells requires constant replication and distribution during mitosis. To date, pEPI is the only S/MAR-

based vector system which was examined regarding the mechanisms behind these processes. Upon 

establishment pEPI is associated with highly transcribed nuclear domains and early replicating chro-

matin.262 Replication of pEPI occurs in synchrony with these foci,262 once per cell cycle in a semicon-

servative fashion, with the origin recognition complex assembling at various regions of the vector.226 

By interacting with the nuclear matrix protein scaffold attachment factor A (SAF-A) the plasmid epi-

some is able to co-segregate with the chromosomes during mitotic division.262, 264 Although it remains 
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to be shown whether these processes also occur when the S/MAR sequence is combined with an 

AAV vector, it is possible that the S/MAR element mediates replication and segregation of episomal 

AAV-S/MAR vector genomes in the same manner.  

Surprisingly, we observed long-term episomal maintenance not only for AAV-S/MAR but also for 

AAV-ΔS/MAR vector genomes. Most likely this is mediated by the ITRs, the only viral elements re-

maining in the vector genome. The ITRs serve as origins of replication, but usually require AAV Rep 

proteins and helper viral functions.265–268 Under specific conditions, however, no viral gene products 

are required. Thus, Yalkinoglu and colleagues reported on replication of isolated ITR sequences in 

carcinogen-treated mammalian cells in absence of AAV Rep and helper virus proteins.269 Mild selec-

tion pressure, as employed in our study, might create similar cellular conditions as treatment with 

genotoxic agents.  

Therefore, antibiotic selection pressure may serve the additional or alternative purpose of altering the 

cellular environment to facilitate episomal maintenance of AAV vectors independent of an S/MAR 

unit. 

Further another explanation for episomal maintenance of “common” AAV vectors is conceivable; as 

described in chapter 1.1.3, genotoxic treatment supports wtAAV replication in absence of a helper 

virus. Moreover, in absence of both helper virus functions and genotoxic agents Yakobson and col-

leagues detected wtDNA synthesis in 0.1 % of cells which were synchronized by mitotic detach-

ment.93 Based on this observation, Peter Ward hypothesized that a small fraction of a cell population, 

which is for example in a specific transient state such as repairing DNA, is able to synthesize AAV 

DNA. If this is the case, genotoxic treatment might support AAV replication by increasing the per-

centage of cells in this specific state.270 The notion that the antibiotic treatment, in analogy to the pro-

cess proposed above for genotoxic treatment, might have enriched a sub-species of cells which are 

capable of low but constant replication of AAV vector genomes, is quite fascinating. However, as the 

described study by Yakobson et al. was conducted with wtAAV not with AAV vectors, the findings 

thereof cannot be readily extrapolated.  

 

6.2.4 Outlook 

Further work should firstly aim to elucidate the mechanisms underlying episomal maintenance of 

AAV vectors with and without the S/MAR sequence and secondly advance the development and op-

timization of S/MAR-based AAV vectors.  

In investigating the mechanisms one essential question is whether antibiotic selection assures the 

survival advantage of the small number of cells which are capable of replicating the AAV vector ge-

nome (with our without S/MAR), or whether antibiotic treatment actually creates the conditions for 
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AAV’s episomal maintenance. To examine this question, transduced cells could be cultivated for 

longer time periods without selection pressure. Using flow cytometric sorting, cells expressing the 

vector genome could be enriched repeatedly. If this approach ultimately leads to the isolation of a cell 

population which maintains constant transgene expression, the hypothesis that selection pressure 

compensates for the low establishment efficiency of the AAV vector episome would be supported. To 

identify cellular factors contributing to the occurring processes AAV-S/MAR and AAV-ΔS/MAR could 

be tested in cell lines containing knockouts in DDR enzymes which were implicated in AAV vector 

genome circularization which is essential for episome formation, such as DNA-PKcs, members of the 

MRN complex or ATM (see chapter 1.3.3.3). 

As next step toward developing AAV-S/MAR as a gene therapy vector, a self-complementary AAV-

S/MAR could be generated and tested. Since the S/MAR used in this study is too large for packaging 

in a self-complementary vector genome cassette (coding capacity ca. 2.3 kb), a smaller S/MAR ele-

ment271 would have to be incorporated and tested. 
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Appendix  

A. Significance values of Tukey post hoc comparison of means for ssAAV vectors 

 

1. eGFP genomes 

Vector preparation Plasmid-Vector + 

Plasmid-Helper 

Plasmid-Vector + 

MC-Helper 

MC-Vector +  

Plasmid-Helper 

Plasmid-Vector + 

Plasmid-Helper 

 0.6691 0.4343 

Plasmid-Vector + 

MC-Helper 

0.6691  0.0412 * 

MC-Vector +  

Plasmid-Helper 

0.4343 0.0412 *  

MC-Vector +  

MC-Helper 

0.2290 0.0129 *  0.9795 

 

 

2. Ratio vp:vg  

Vector preparation Plasmid-Vector + 

Plasmid-Helper 

Plasmid-Vector + 

MC-Helper 

MC-Vector +  

Plasmid-Helper 

Plasmid-Vector + 

Plasmid-Helper 

 0.0732 0.2497 

Plasmid-Vector + 

MC-Helper 

0.0732  0.0145 * 

MC-Vector +  

Plasmid-Helper 

0.2497 0.0145 *  

MC-Vector +  

MC-Helper 

0.1534 0.0105 *  0.9515 

 

 

 



 

95 

 

3. Transducing units (tu)  

Vector preparation Plasmid-Vector + 

Plasmid-Helper 

Plasmid-Vector + 

MC-Helper 

MC-Vector +  

Plasmid-Helper 

Plasmid-Vector + 

Plasmid-Helper 

 0.238 < 0.001 *** 

Plasmid-Vector + 

MC-Helper 

0.238  < 0.001 *** 

MC-Vector +  

Plasmid-Helper 

< 0.001 *** < 0.001 ***  

MC-Vector +  

MC-Helper 

0.234 < 0.001 *** < 0.001 *** 
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B. Significance values of Tukey post hoc comparison of means for scAAV vectors 

 

1. eGFP genomes 

Vector preparation MC-Vector + 

MC-Helper 

Plasmid-Vector + 

MC-Helper 

MC-Vector +  

Plasmid-Helper 

MC-Vector +  

MC-Helper 

 0.00395 ** 0.62261 

Plasmid-Vector + 

MC-Helper 

0.00395 **  0.00109 ** 

MC-Vector +  

Plasmid-Helper 

0.62261 0.00109 **  

Plasmid-Vector + 

Plasmid-Helper 

0.08486 0.18322 0.01515 * 

 

 

2. Ratio vp:vg  

Vector preparation MC-Vector +  

MC-Helper 

Plasmid-Vector + 

MC-Helper 

MC-Vector +  

Plasmid-Helper 

MC-Vector +  

MC-Helper 

 0.1243 0.9441 

Plasmid-Vector + 

MC-Helper 

0.1243  0.0578 

MC-Vector +  

Plasmid-Helper 

0.9441 0.0578  

Plasmid-Vector + 

Plasmid-Helper 

0.3923 0.8181 0.1949 
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3. Transducing units (tu)  

Vector preparation MC-Vector +  

MC-Helper 

Plasmid-Vector + 

MC-Helper 

MC-Vector +  

Plasmid-Helper 

MC-Vector +  

MC-Helper 

 < 0.001 *** 0.276 

Plasmid-Vector + 

MC-Helper 

< 0.001 ***  < 0.001 *** 

MC-Vector +  

Plasmid-Helper 

0.276 < 0.001 ***  

Plasmid-Vector + 

Plasmid-Helper 

< 0.001 *** 0.956 < 0.001 *** 

 

 

4. Ratio vp:tu  

Vector preparation MC-Vector +  

MC-Helper 

Plasmid-Vector + 

MC-Helper 

MC-Vector +  

Plasmid-Helper 

MC-Vector +  

MC-Helper 

 0.03318 * 0.77174 

Plasmid-Vector + 

MC-Helper 

0.03318 *  0.00909 ** 

MC-Vector +  

Plasmid-Helper 

0.77174 0.00909 **  

Plasmid-Vector + 

Plasmid-Helper 

0.01898 * 0.97593 0.00562 ** 
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