
Depth- and Potential-Based

Supervised Learning

Inauguraldissertation

zur

Erlangung des Doktorgrades

der

Wirtschafts- und Sozialwissenschaftlichen Fakultät

der

Universität zu Köln

2016

vorgelegt von

Oleksii Pokotylo

aus

Kiew, Ukraine

Referent: Prof. Dr. Karl Mosler

Korreferent: Prof. Dr. Jörg Breitung

Tag der Promotion: 17. Oktober 2016

To the memories of my Grandmother

Nina Zamkova

(1921 – 2014)

Acknowledgements

I would like to acknowledge many people for helping and supporting me during my studies.

I would like to express my sincere gratitude to my supervisor Prof. Karl Mosler for the

continuous support, for his patience, motivation, inspiration, and expertise. His guidance

helped me all the time to cope with technical issues of my research and his valuable comments

helped to improve the presentation of my papers and this thesis. I could not imagine having

a better PhD-supervisor. I show heartfelt gratitude to Prof. Tatjana Lange, who introduced

me the field of pattern recognition during my internship at the Hochschule Merseburg. She

taught me a lot and inspired me to continue my research in this field. Further she continuously

supported me through my studies. This thesis would not have been possible without these

people. I appreciate the Cologne Graduate School in Management, Economics and Social

Sciences for funding my research, and personally Dr. Dagmar Weiler for taking care of all CGS

students.

I am extremely grateful to my close friend and colleague Dr. Pavlo Mozharovskyi for his

substantial support from my very first days in Germany and for numerous discussions and valu-

able comments on my papers. Together with Prof. Rainer Dyckerhoff he is also the co-author

of the R-package ddalpha and the corresponding paper. I thank Dr. Ondrej Vencalek from the

Palacky University in Olomouc, Czech Republic, for fruitful cooperation, which led to a joint

paper, and for his rich feedback on the ddalpha package. Daniel Fischer, Dr. Jyrki Möttönen,

Dr. Klaus Nordhausen and Dr. Daniel Vogel are acknowledged for the R-package OjaNP, and

Tommi Ronkainen for his implementation of the exact algorithm for the computation of the

Oja median, that I used to implement the exact bounded algorithm.

I thank all participants of the Research Seminar of the Institute of Statistics and Economet-

rics for active discussions, especially Prof. Jörg Breitung, Prof. Roman Liesenfeld, Prof. Oleg

Badunenko and Dr. Pavel Bazovkin. I appreciate the maintainers of the CHEOPS HPC Cluster,

that was intensely used for simulations in all my projects, the maintainers of The Comprehen-

sive R Archive Network (CRAN) and also the users of the ddalpha package who submitted

their feedback.

Finally, I express my gratitude to my parents Natalia and Oleksandr, my sister Marina

and my wife Katja for providing me with unfailing support and continuous encouragement

throughout my years of study. Thank you from the bottom of my heart.

Contents

1 Introduction 1

1.1 Measuring closeness to a class . 1

1.2 Supervised learning . 4

1.3 Dimension reducing plots . 5

1.4 The structure of the thesis . 6

2 Classification with the pot-pot plot 8

2.1 Introduction . 8

2.2 Classification by maximum potential estimate 10

2.3 Multivariate bandwidth . 11

2.4 Pot-pot plot classification . 13

2.5 Bayes consistency . 15

2.6 Scaling the data . 17

2.7 Experiments . 20

2.7.1 The data . 20

2.7.2 Comparison with depth approaches and traditional classifiers 21

2.7.3 Selection of the optimal bandwidth . 23

2.7.4 Comparison of the classification speed 24

2.8 Conclusion . 25

Appendix. Experimental results . 27

Table of contents

3 Depth and depth-based classification with R-package ddalpha 36

3.1 Introduction . 36

3.1.1 The R-package ddalpha . 37

3.1.2 Comparison to existing implementations 38

3.1.3 Outline of the chapter . 40

3.2 Data depth . 41

3.2.1 The concept . 41

3.2.2 Implemented notions . 42

3.2.3 Computation time . 48

3.2.4 Maximum depth classifier . 49

3.3 Classification in the DD-plot . 51

3.3.1 The DDalpha-separator . 51

3.3.2 Alternative separators in the DD-plot 56

3.4 Outsiders . 56

3.5 An extension to functional data . 58

3.6 Usage of the package . 60

3.6.1 Basic functionality . 60

3.6.2 Custom depths and separators . 64

3.6.3 Additional features . 67

3.6.4 Tuning the classifier . 70

Appendix. The α-procedure . 73

4 Depth-weighted Bayes classification 75

4.1 Introduction . 75

4.2 Bayes classifier, its optimality and a new approach 77

4.2.1 Bayes classifier and the notion of cost function 77

4.2.2 Depth-weighted classifier . 78

4.2.3 Examples . 79

4.3 Difference between the depth-weighted and the Bayes optimal classifiers 80

vi

Table of contents

4.4 Choice of depth function and the rank-weighted classifier 82

4.4.1 Example: differences in classification arising from different depths . . . 83

4.4.2 Rank-weighted classifier . 84

4.4.3 Dealing with outsiders . 85

4.5 Simulation study . 86

4.5.1 Objectives of the simulation study . 86

4.5.2 Simulation settings . 87

4.5.3 Results . 88

4.6 Robustness . 93

4.6.1 An illustrative example . 93

4.6.2 Simulation study on robustness of the depth-based classifiers 94

4.7 Conclusion . 97

Appendix . 98

5 Computation of the Oja median by bounded search 103

5.1 Introduction . 103

5.2 Oja median and depth . 104

5.2.1 Calculating the median according to ROO 106

5.3 A bounding approach . 106

5.4 The algorithm . 110

5.4.1 Formal description of the algorithm . 112

5.5 Numerical experience and conclusions . 116

6 Outlook 121

Appendix. Overview of the local depth notions 123

Bibliography 128

vii

Chapter 1

Introduction

Classification problems arise in many fields of application like economics, biology, medicine.

Naturally, the human brain tends to classify the objects that surround us according to their

properties. There exist numerous classification schemes that separate objects in quite different

ways, depending on the application field and the importance that is assigned to each property.

People teach each other to distinguish one class from another by showing objects from that

classes and indicating the differences between them. The class membership of newly observed

objects may be then determined by their properties using the previously gained knowledge. In

the last decades the increased computing power allowed to automatize this process. A new field

— machine learning — emerged, that inter alia develops algorithms for supervised learning.

The task of supervised learning is to define a data-based rule by which the new objects are

assigned to one of the classes. For this a training data set is used that contains objects with

known class membership. Formally we regard the objects as points in a multivariate space that

is formed by their properties. It is important to determine the properties that are most relevant

for the particular classification problem. Analyzing the training set, a classifier generates a

separating function that determines the class relationship of newly observed objects.

Classification procedures have to determine how close an object is situated with respect to

a class and how typical it is for that class. This is done by studying location, scale, and shape

of the underlying distribution of the classes.

1.1 Measuring closeness to a class

The very basic notions of center regarding univariate data are the mean, that is the mass

center, and the median, that is the 0.5-quantile. The median is a most robust statistic, having

a breakdown point of 50%, and hence is often preferred to the mean. Closeness to a class may be

defined as a measure of distance to a properly defined center, or as a measure of correspondence

to the whole class, like a data depth or a density estimate. The quantile function can also be

used for this purpose.

The simplest way to describe the shape of the data is to assume that it follows some

known family of probability distributions with a fixed set of parameters. If this assumption is

Chapter 1 Measuring closeness to a class

made then it is easy to calculate the probability of future observations after the parameters

have been estimated. Often such a distribution family is not known. Then one may recur to

nonparametric tests of equality of probability distributions like the Kolmogorov-Smirnov test

or the χ2-test. However, parametric approaches are limited to known families of distribution

functions, and thus may be not applicable to real data in general.

With multidimensional data, things become even more complicated. The median, as well as

the quantile function are not directly generalisable to higher dimensions. Therefore semi- and

non-parametric methods were introduced that provide distribution-freeness and are applicable

to multidimensional data of any form.

The kernel density estimator is probably the most well known nonparametric estimator

of density. Consider a data cloud X of points x1, . . . ,xn ∈ Rd, and assume that the cloud

is generated as an independent sample from some probability density f . Let the kernel be

KH(x,xi) = | detH|−1/2K
(
H−1/2 (x− xi)

)
, H be a symmetric and positive definite band-

width matrix, and K : Rd → [0,∞[be a spherical probability density function, K(z) = r(zTz),

with r : [0,∞[→ [0,∞[non-increasing and bounded. Then

f̂X(x) =
1

n

n∑
i=1

KH(x,xi) (1.1)

is a kernel estimator of the density at a point x ∈ Rd with respect to the data cloud X. In

particular, the Gaussian function K(z) = (2π)−d/2 exp
(
−1

2
zTz

)
is widely employed for K.

The method is tuned with the bandwidth matrix H . The kernel density estimator is applied

for classification in Chapter 2.

In 1975 John W. Tukey, in his work on mathematics and the picturing of data, proposed a

novel way of data description, which evolved into a measure of multivariate centrality named

data depth. For a data sample, this statistical function determines centrality, or representa-

tiveness of an arbitrary point in the data, and thus allows for multivariate ordering of data

regarding their centrality. More formally, given a data cloud X = {x1, ...,xn} in Rd, for

a point z of the same space, a depth function D(z|X) measures how close z is located to

some (implicitly defined) center of X. Different concepts of closeness between a point z and

a data cloud X suggest a diversity of possibilities to define such a function and a center as

its maximizer. Naturally, each depth notion concentrates on a certain aspect of X, and thus

possesses various theoretical and computational properties. The concept of a depth function

can be formalized by stating postulates it should satisfy. Following Dyckerhoff (2004) and

Mosler (2013), a depth function is a function D(z|X) : Rd 7→ [0, 1] that is affine invariant,

zero at infinity, monotone on rays from the deepest point z∗ and upper semicontinuous. The

properties ensure that the upper level sets Dα(X) = {z ∈ Rd : D(z|X) ≥ α} are bounded,

closed and star-shaped around z∗.

Data depth is reversely related to outlyingness. In a natural way, it involves a notion of

center that is any point attaining the highest depth value in X; the center is not necessarily

unique. It provides a center-outward ordering of the data, which also allows to define multi-

2

Chapter 1 Measuring closeness to a class

variate quantiles as the upper level sets of the depth function, called depth-trimmed regions.

Being intrinsically nonparametric, a depth function captures the geometrical features of given

data in an affine-invariant way. By that, it appears to be useful for description of data’s loca-

tion, scatter, and shape, allowing for multivariate inference, detection of outliers, ordering of

multivariate distributions, and in particular classification, that recently became an important

and rapidly developing application of the depth machinery. While the parameter-free nature

of data depth ensures attractive theoretical properties of classifiers, its ability to reflect data

topology provides promising predicting results on finite samples. Many depth notions have

arisen during the last decades differing in properties and being suitable for various applica-

tions. Mahalanobis (Mahalanobis, 1936), halfspace (Tukey, 1975), simplicial volume (Oja,

1983), simplicial (Liu, 1990), zonoid (Koshevoy and Mosler, 1997), projection (Zuo and Ser-

fling, 2000), spatial (Vardi and Zhang, 2000) depths can be seen as well developed and most

widely employed notions of depth function. Comprehensive surveys of depth functions can be

e.g. found in Zuo and Serfling (2000) and Mosler (2013). Chapter 3 reviews the concept of

data depth and its fundamental properties, and gives the definitions of seven depth functions

in their empirical versions.

Several notions of multivariate medians have been proposed in the literature. Like the

univariate median most of the multivariate medians can be regarded as maximizers of depth

functions or minimizers of outlyingness functions. Generally, a depth median is not unique but

forms a convex set. Multivariate medians are surveyed by Small (1997) and Oja (2013).

Due to the fact that depth functions are related to one center, they only follow the shape

of unimodal distributions. However, multimodal distributions are widely used in practice.

Therefore, different concepts of local depth (Agostinelli and Romanazzi, 2011, Paindaveine

and Van Bever, 2013) were introduced that generalize data depth to reveal local features of

the distribution. An overview of local depths is found in Appendix at the end of the thesis.

The practical applications require efficient algorithms and fast implementations of depth

functions and their approximations. Chapter 3 is devoted to the R-package ddalpha (Pokotylo

et al., 2016) that provides an implementation for exact and approximate computation of seven

most reasonable and widely applied depth notions: Mahalanobis, halfspace, zonoid, projection,

spatial, simplicial and simplicial volume.

To be applicable to realistic problems, a median must be computable for dimensions d > 2

and at least medium sized data sets. In Chapter 5, we develop an algorithm (Mosler and

Pokotylo, 2015) to calculate the exact value of the Oja median (Oja, 1983). This algorithm is

faster and has lower complexity than the existing ones by Niinimaa et al. (1992) and Ronkainen

et al. (2003). Our main idea is to introduce bounding hyperplanes that iteratively restrict the

area where the median is searched.

3

Chapter 1 Supervised learning

1.2 Supervised learning

The task of the supervised learning is to analyze the training data with known class member-

ship, and to infer a separating function, which can be used to assign new objects to the classes.

Each object in the training set is described by a set of properties (explanatory variables) and

a class label (dependent variable).

Consider the following setting for supervised classification: Given a training sample consist-

ing of q classes X1, ...,Xq, each containing ni, i = 1, ..., q, observations in Rd, their densities

are denoted by fi and prior probabilities by πi. For a new observation x0, a class shall be

determined to which it most probably belongs.

The Bayes classifier minimizes the probability of misclassification and has the following

form:

classB(x) = argmax
i

πifi(x). (1.2)

In practice the densities have to be estimated. A classical nonparametric approach to solve

this task is by kernel density estimates (KDE); see e.g. Silverman (1986). In KDE classification,

the density fi is replaced by a proper kernel estimate f̂i as in (1.1) and a new object is assigned

to a class i at which its estimated potential,

φ̂i(x) = πif̂i(x) =
1∑q

k=1 nk

ni∑
j=1

KHi
(x,xij) , (1.3)

is maximal. It is well known that KDE is Bayes consistent, that means, its expected error

rate converges to the error rate of the Bayes rule for any generating densities. As a practical

procedure, KDE depends largely on the choice of the multivariate kernel and, particularly,

its bandwidth matrix. Wand and Jones (1993) demonstrate that the choice of bandwidth

parameters strongly influences the finite sample behavior of the KDE-classifier. With higher-

dimensional data, it is computationally infeasible to optimize a full bandwidth matrix. In

Chapter 2 we extend the KDE classifier and discuss the selection of the bandwidth matrix.

The Bayes classifier is a useful benchmark in statistical classification. Usually the classifiers

are designed to minimize the empirical error over a certain family of rules and are compared by

their misclassification rate, i.e. the part of errors they make in the test sample. The parameters

of the classifiers are also tuned by means of cross-validation, minimizing the error rate.

The requirement of correct classification of “typical” points, however, might not be met

when using the Bayes classifier, especially in the case of imbalanced data, when a point that is

central w.r.t. one class and rather peripheral to another may still be assigned to the larger one.

In such situations the Bayes classifier (1.2) may be additionally weighted to achieve the desired

misclassification rate for the minor class, but in this case its outliers are also overweighted,

which leads to misclassification of the major class in their neighbourhood.

Points that are close to the center of a class are considered to be more “typical” for this class

than more outlying ones. Data depth generalizes the concept of centrality and outlyingness

for multivariate distributions. In Chapter 4 we suggest to weight the classification errors using

4

Chapter 1 Dimension reducing plots

data depth, so that the misclassification of points close to the center of the data cloud is seen as

a more serious mistake than the misclassification of outlying points, see Vencalek and Pokotylo

(2016). This criterion can also be used to measure the performance of other classifiers and to

tune their parameters by cross-validation.

The k-Nearest Neighbors (k-NN) algorithm is one of the most simple and widely applied

classifiers. For a new object, the classifier finds k nearest neighbors and assigns the object to

the class that is common for most of them. This method strongly depends on a measure of

distance and the scales of the parameters, e.g. measurement units. A natural way to make

the k-NN classifier affine-invariant is to standardize data points with the sample covariance

matrix. A more sophisticated depth-based version of the affine-invariant k-NN was proposed

in Paindaveine and Van Bever (2015). They symmetrize the data around the new object z

and use a depth of the original objects in this symmetrized set to define a z-outward ordering,

which allows to identify the k nearest of them.

Many classification problems consider a huge set of properties. The quality of these prop-

erties is not known in general and some properties may introduce more noise than useful

information to the classification rule. Then separation in the whole space may become com-

plicated and unstable and, thus, poorly classify new observations due to overfitting. This

problem is referred to as the ‘curse of dimensionality’. Vapnik and Chervonenkis (1974) state

that the probability of misclassification of new data is reduced either by enormously increasing

the training sample, or by simplifying the separation, or by reducing the number of properties.

The first two variants provide more stable classifiers, although it is hard to get a big data set

in practice. By reducing the dimension of the space we focus on the most relevant properties

The α-procedure (Vasil’ev and Lange, 1998, Vasil’ev, 2003) is an iterative procedure that

finds a linear solution in the given space. If no good linear solution exists in the original space

it is extended with extra properties, e.g., using polynomial extension. The linear solution in the

extended space leads then to a non-linear solution in the original one. The procedure iteratively

synthesizes the space of features, choosing those minimizing two-dimensional empirical risk in

each step. The α-procedure is more widely described in the Appendix to Chapter 3.

1.3 Dimension reducing plots

Depth-based classification started with the maximum depth classifier (Ghosh and Chaudhuri,

2005b) that assigns an observation x to the class, in which it has maximal depth.

Liu et al. (1999) proposed the DD-(depth versus depth) plot as a graphical tool for com-

paring two given samples by mapping them into a two-dimensional depth space. Later Li et al.

(2012) suggested to perform classification in the DD-plot by selecting a polynomial that mini-

mizes empirical risk. Finding such an optimal polynomial numerically is a very challenging and

computationally involved task, with a solution that in practice can be unstable. In addition,

the polynomial training phase should be done twice, rotating the DD-plot. Nevertheless, the

scheme itself allows to construct optimal classifiers for wider classes of distributions than the

5

Chapter 1 The structure of the thesis

elliptical family. Further, Vencalek (2011) proposed to use k-NN in the DD-plot and Lange

et al. (2014b) proposed the DDα-classifier. The DD-plot also proved to be useful in the

functional setting (Mosler and Mozharovskyi, 2015, Cuesta-Albertos et al., 2016).

Analogously to the DD-plot we define the potential-potential (pot-pot) plot in Chapter 2.

The potential of a class is defined as a kernel density estimate multiplied by the class’s prior

probability (1.3). For each pair of classes, the original data are mapped to a two-dimensional

pot-pot plot and classified there. The pot-pot plot allows for more sophisticated classifiers than

KDE, that corresponds to separating the classes by drawing the diagonal line in the pot-pot

plot. To separate the training classes, we may apply any known classification rule to their

representatives in the pot-pot plot. Such a separating approach, being not restricted to lines

of equal potential, is able to provide better adapted classifiers. Specifically, we propose to use

either the k-NN-classifier or the α-procedure on the plot.

1.4 The structure of the thesis

The thesis contains four main chapters. The second chapter named Classification with the

pot-pot plot introduces a procedure for supervised classification, that is based on potential

functions. The potential of a class is defined as a kernel density estimate multiplied by the

class’s prior probability. The method transforms the data to a potential-potential (pot-pot)

plot, where each data point is mapped to a vector of potentials, similarly to the DD-plot.

Separation of the classes, as well as classification of new data points, is performed on this plot.

For this, either the α-procedure or the k-nearest neighbors classifier is employed. Thus the bias

in kernel density estimates due to insufficiently adapted multivariate kernels is compensated by

a flexible classifier on the pot-pot plot. The potentials depend on the kernel and its bandwidth

used in the density estimate. We investigate several variants of bandwidth selection, including

joint and separate pre-scaling and a bandwidth regression approach. The new method is applied

to benchmark data from the literature, including simulated data sets as well as 50 sets of real

data. It compares favorably to known classification methods such as LDA, QDA, maximal

kernel density estimates, k-NN, and DD-plot classification. This chapter is based on a joint

paper with Prof. Karl Mosler. The proposed method has been implemented in the R-package

ddalpha. The paper has been published in the journal Statistical Papers.

In the third chapter named Depth and depth-based classification with R-package ddalpha we

describe our package ddalpha that provides an implementation for exact and approximate com-

putation of seven most reasonable and widely applied depth notions: Mahalanobis, halfspace,

zonoid, projection, spatial, simplicial and simplicial volume. The main feature of the proposed

methodology on the DD-plot is the DDα-classifier, which is an adaptation of the α-procedure

to the depth space. Except for its efficient and fast implementation, ddalpha suggests other

classification techniques that can be employed in the DD-plot: the original polynomial sepa-

rator and the depth-based k-NN-classifier. Unlike other packages, ddalpha implements various

depth functions and classifiers for multivariate and functional data under one roof. The func-

6

Chapter 1 The structure of the thesis

tional data are transformed into a finite dimensional basis and classified there. ddalpha is the

only package that implements zonoid depth and efficient exact halfspace depth. All depths

in the package are implemented for any dimension d ≥ 2. Except for the projection depth

all implemented algorithms are exact, and supplemented by their approximating versions to

deal with the increasing computational burden for large samples and higher dimensions. The

package is expandable with user-defined custom depth methods and separators. Insights into

data geometry as well as assessing the pattern recognition quality are feasible by functions for

depth visualization and by built-in benchmark procedures. This chapter carries on joint work

with Pavlo Mozharovskyi and Prof. Rainer Dyckerhoff. The paper has been submitted to the

Journal of Statistical Software.

The fourth chapter named Depth-weighted Bayes classification introduces two procedures

for supervised classification that focus on the centers of the classes and are based on data

depth. The classifiers add either a depth or a depth rank term to the objective function of the

Bayes classifier. The cost of misclassification of a point depends not only on its belongingness

to a class but also on its centrality in this class. Classification of more central points is

enforced while outliers are underweighted. The proposed objective function may also be used

to evaluate the performance of other classifiers instead of the usual average misclassification

rate. The usage of the depth function increases the robustness of the new procedures against

big inclusions of contaminated data, which impede the Bayes classifier. At the same time

smaller contaminations distort the outer depth contours only slightly and thus cause only

small changes in the classification procedure. This chapter is a result of a cooperation with

Ondrej Vencalek from Palacky University Olomouc.

The fifth chapter named Computation of the Oja median by bounded search suggests a new

algorithm for the exact calculation of the Oja median. It modifies the algorithm of Ronkainen

et al. (2003) by employing bounded regions which contain the median. The regions are built

using the centered rank function. The new algorithm is faster and has lower complexity than

the previous one and is able to calculate data sets of the same size and dimension. It is mainly

restricted by the amount of RAM, as it needs to store all
(
n
k

)
hyperplanes. It can also be used

for an even faster approximative calculation, although it still needs the same amount of RAM

and is slower than existing approximating algorithms. The new algorithm was implemented

as a part of the R-package OjaNP. The chapter is partially based on a paper with Prof. Karl

Mosler that has been published in the book Modern Nonparametric, Robust and Multivariate

Methods: Festschrift in Honour of Hannu Oja. Some material of the chapter is taken from

our joint paper with Daniel Fischer, Jyrki Möttönen, Klaus Nordhausen and Daniel Vogel,

submitted to the Journal of Statistical Software.

7

Chapter 2

Classification with the pot-pot plot

2.1 Introduction

Statistical classification procedures belong to the most useful and widely applied parts of

statistical methodology. Problems of classification arise in many fields of application like

economics, biology, medicine. In these problems objects are considered that belong to q ≥ 2

classes. Each object has d attributes and is represented by a point in d-space. A finite number

of objects is observed together with their class membership, forming q training classes. Then,

objects are observed whose membership is not known. The task of supervised classification

consists in finding a rule by which any object with unknown membership is assigned to one of

the classes.

A classical nonparametric approach to solve this task is by comparing kernel density esti-

mates (KDE); see e.g. Silverman (1986). The Bayes rule indicates the class of an object x as

argmaxj (pjfj(x)), where pj is the prior probability of class j and fj its generating density. In

KDE classification, the density fj is replaced by a proper kernel estimate f̂j and a new object

is assigned to a class j at which its estimated potential,

φ̂j(x) = pj f̂j(x) , (2.1)

is maximum. It is well known (e.g. Devroye et al. (1996)) that KDE is Bayes consistent, that

means, its expected error rate converges to the error rate of the Bayes rule for any generating

densities.

As a practical procedure, KDE depends largely on the way by which the density estimates

f̂j and the priors pj are obtained. Many variants exist, differing in the choice of the multivariate

kernel and, particularly, its bandwidth matrix. Wand and Jones (1993) demonstrate that the

choice of bandwidth parameters strongly influences the finite sample behavior of the KDE

-classifier. With higher-dimensional data, it is computationally infeasible to optimize a full

bandwidth matrix. Instead, one has to restrict on rather few bandwidth parameters.

In this chapter we modify the KDE approach by introducing a more flexible assignment

rule in place of the maximum potential rule. We transform the data to a low-dimensional

Chapter 2 Introduction

space, in which the classification is performed. Each data point x is mapped to the vector1

(φ1(x), . . . , φq(x))T in Rq
+. The potential-potential plot, shortly pot-pot plot, consists of the

transformed data of all q training classes and the transforms of any possible new data to be

classified. With KDE, according to the maximum potential rule, this plot is separated into q

parts,

{x ∈ Rq
+ : j = argmax

i
(φ̂i(x))} . (2.2)

If only two classes are considered, the pot-pot plot is a subset of R2
+, where the coordinates

correspond to potentials regarding the two classes. Then, KDE corresponds to separating the

classes by drawing the diagonal line in the pot-pot plot.

However, the pot-pot plot allows for more sophisticated classifiers. In representing the

data, it reflects their proximity in terms of differences in potentials. To separate the training

classes, we may apply any known classification rule to their representatives in the pot-pot plot.

Such a separating approach, being not restricted to lines of equal potential, is able to provide

better adapted classifiers. Specifically, we propose to use either the k-NN-classifier or the α-

procedure to be used on the plot. By the pot-pot plot procedure – once the transformation

and the separator have been established – any classification step is performed in q-dimensional

space.

To construct a practical classifier, we first have to determine proper kernel estimates of

the potential functions for each class. In doing this, the choice of a kernel, in particular of

its bandwidth parameters, is a nontrivial task. It requires the analysis and comparison of

many possibilities. We evaluate them by means of the classification error they produce, using

the following cross-validation procedure: Given a bandwidth matrix, one or more points are

continuously excluded from the training data. The classifier is trained on the restricted data

using the selected bandwidth parameter; then its performance is checked with the excluded

points. The average portion of misclassified objects serves as an estimate of the classification

error. Notice that a kernel bandwidth minimizing this criterion may yield estimated densities

that differ significantly from the actual generating densities of the classes.

Then we search for the optimal separation in q-dimensional space of the pot-pot plot. This,

in turn, allows us to keep the number of bandwidth parameters reasonably low, as well as the

number of their values to be checked.

The principal achievements of this approach are:

• The possibly high dimension of original data is reduced by the pot-pot transformation so

that the classification can be done on a low-dimensional space, whose dimension equals

the number of classes.

• The bias in kernel density estimates due to insufficiently adapted multivariate kernels is

compensated by a flexible classifier on the pot-pot plot.

1zT denotes the transpose of z.

9

Chapter 2 Classification by maximum potential estimate

• In case of two classes, the proposed procedures are either always strongly consistent (if

the final classifier is k-NN) or strongly consistent under a slight restriction (if the final

classifier is the α-classifier).

• The two procedures, as well as a variant that scales the classes separately, compare

favourably with known procedures such as linear and quadratic discrimination and DD-

classification based on different depths, particularly for a large choice of real data.

The chapter is structured as follows. Section 2.2 presents density-based classifiers and the

Kernel Discriminant Method. Section 2.3 treats the problem of selecting a kernel bandwidth.

The pot-pot plot is discussed in Section 2.4, and the consistency of the new procedures is

established in Section 2.5. Section 2.6 presents a variant of pre-scaling the data, namely

separate scaling. Experiments with simulated as well as real data are reported in Section 2.7.

Section 2.8 concludes.

2.2 Classification by maximum potential estimate

Comparing kernel estimates of the densities or potentials is a widely applied approach in

classification. Consider a data cloud X of points x1, . . . ,xn ∈ Rd and assume that the cloud

is generated as an independent sample from some probability density f . The potential of a

given point x ∈ Rd regarding the data cloud X is estimated by a kernel estimator.

Let KH(x,xi) = | detH|−1/2K
(
H−1/2 (x− xi)

)
, H be a symmetric and positive definite

bandwidth matrix, H−1/2 be a square root of its inverse, and K : Rd → [0,∞[be a spherical

probability density function, K(z) = r(zTz), with r : [0,∞[→ [0,∞[non-increasing and

bounded. Then

f̂X(x) =
1

n

n∑
i=1

KH(x,xi) (2.3)

=
1

n

n∑
i=1

| detH|−
1
2K
(
H−

1
2 (x− xi)

)
is a kernel estimator of the density of x with respect toX. In particular, the Gaussian function

K(z) = (2π)−d/2 exp
(
−1

2
zTz

)
will be employed below.

Let HX be an affine invariant estimate of the dispersion of X, that is,

HAX+b = AHXA
T for any A of full rank and b ∈ Rd . (2.4)

Then H
− 1

2
AX+b = (AHXA

T)−
1
2 = (AH

1
2
X)−1 = H

− 1
2

X A−1 and

f̂AX+b(Ay + b) =
1

n

n∑
i=1

| detA|−1| detHX |−
1
2K
(
H
− 1

2
X A−1(Ay −Axi)

)
= | detA|−1f̂X(y)

10

Chapter 2 Multivariate bandwidth

Hence, in this case, the potential is affine invariant, besides a constant factor | detA|−1.

Examples

• If HX = h2Σ̂X , (2.4) is satisfied; the potential is affine invariant (besides a factor).

• If HX = h2I and A is orthogonal, we obtain HAX+b = h2I = h2AAT = AHXA
T ,

hence (2.4); the potential is orthogonal invariant.

• If HX = h2diag(σ̂2
1, . . . , σ̂

2
d) and A = diag(a1, . . . , ad), then HAX+b =

h2diag(a2
1σ̂

2
1, . . . , a

2
dσ̂

2
d) = AHXA

T ; the potential is invariant regarding componentwise

scaling.

The selection of the bandwidth matrices H is further discussed in Section 2.3.

Now, consider a classification problem with q training classes X1, . . . ,Xq, generated by

densities f1, . . . , fq, respectively. Let the class Xj consist of points xj1, . . . ,xjnj . The potential

of a point x with respect to Xj is estimated by

φ̂j(x) = pj f̂j(x) =
1

n

nj∑
i=1

KHj
(x,xji), (2.5)

j = 1, . . . , q. Figure 2.1 exhibits the potentials of two classes A1 = {x1,x2,x3} and

A2 = {x4,x5}.

Figure 2.1: Potentials of two classes, {x1,x2,x3} and {x4,x5}.

The Bayes rule yields the class index of an object x as argmaxj (pjfj(x)), where pj is the

prior probability of class j. The potential discriminant rule mimics the Bayes rule: Estimating

the prior probabilities by pj = nj/
∑q

k=1 nk it yields

argmax
j

(pj f̂j(x)) = argmax
j

nj∑
i=1

KHj
(x,xji). (2.6)

2.3 Multivariate bandwidth

The kernel bandwidth controls the range on which the potentials change with a new observa-

tion. Aizerman et al. (1970), among others, use a kernel with bandwidth matrix Hj = h2I

11

Chapter 2 Multivariate bandwidth

for both classes and apply this kernel to the data as given. This means that the kernels are

spherical and treat the neighborhood of each point equally in all directions. However, the dis-

tributions of the data are often not close to spherical, thus with a single-parameter spherical

kernel the estimated potential differs from the real one more in some directions than in the

others (Figure 2.2.a). In order to fit the kernel to the data a proper bandwidth matrix H is

selected (Figure 2.2.b). This matrix H can be decomposed into two parts, one of which follows

the shape of the data, and the other the width of the kernel. Then the first part may be used

to transform the data, while the second is employed as a parameter of the kernel and tuned to

achieve the best separation (Figure 2.2.b,c).

a) b) c)

Figure 2.2: Different ways of fitting a kernel to the data: a) applying a spherical kernel to the
original data; b) applying an elliptical kernel to the original data; c) applying a spherical kernel to
the transformed data.

Wand and Jones (1993) distinguish several types of bandwidth matrices to be used in (2.3)

and (2.5): a spherically symmetric kernel bandwidth matrix H1 = h2I with one parameter;

a matrix with d parameters H2 = diag(h2
1, h

2
2, ..., h

2
d), yielding kernels that are elliptical along

the coordinate axes; and an unrestricted symmetric and positive definite matrix H3 having
d(d+1)

2
parameters, that produces elliptical kernels with an arbitrary orientation. With more

parameters the kernels are more flexible, but require more costly tuning procedures. The data

may also be transformed beforehand using their mean x̄ and either the marginal variances

σ̂2
i or the full empirical covariance matrix Σ̂. These approaches are referred to as scaling

and sphering. They employ the matrices C2 = h2D̂ and C3 = h2Σ̂, respectively, where

D̂ = diag(σ̂2
1, . . . , σ̂

2
d). The matrix C2 is a special case of H2, and the matrix C3 is a special

case of H3. Each has only one tuning parameter h2 and thus the same tuning complexity as

H1, but fits the data much better. Clearly, the bandwidth matrix C3 = h2Σ̂ is equivalent to

the bandwidth matrix H1 = h2I applied to the pre-scaled data x′ = Σ̂
− 1

2 (x− x̄).

Wand and Jones (1993) show by experiments that sphering with one tuning parameter

h2 shows poor results compared to the use of H2 or H3 matrices. Duong (2007) suggests

to employ at least a diagonal bandwidth matrix H2 together with a scaling transformation,

H = Σ̂
1/2
H2Σ̂

1/2
. But, even in this simplified procedure the training time grows exponentially

with the number of tuned parameters, that is the dimension of the data.

12

Chapter 2 Pot-pot plot classification

In density estimation the diagonal bandwidth matrix H2 is often chosen by a rule of thumb

(Härdle et al., 2004),

h2
j =

(
4

d+ 2

)2/(d+4)

n−2/(d+4)σ̂2
j , (2.7)

which is based on an approximative normality assumption, and for the univariate case coincides

with that of Silverman (1986). As the first factor in (2.7) is almost equal to one, the rule is

further simplified to Scott’s rule (Scott, 1992), h2
j = n−2/(d+4)σ̂2

j . If the covariance structure is

not negligible, the generalized Scott’s rule may be used, having matrix

Hs = n−2/(d+4)Σ̂ . (2.8)

Observe that the matrix Hs is of type C3. Equivalently, after sphering the data with Σ̂, a

bandwidth matrix of type H1 is applied with h2 = n−2/(d+4).

Here we propose procedures that employ one-parameter bandwidths combined with spher-

ing transformations of the data. While this yields rather rough density estimates, the impreci-

sion of the potentials is counterbalanced by a sophisticated non-linear classification procedure

on the pot-pot plot. The parameters tuning procedure works as follows: The bandwidth pa-

rameter is systematically varied over some range, and a value is selected that gives smallest

classification error.

2.4 Pot-pot plot classification

In KDE classification a new object is assigned to the class that grants it the largest po-

tential. A pot-pot plot allows for more sophisticated solutions. By this plot, the original

d-dimensional data is transformed to q-dimensional objects. Thus the classification is per-

formed in q-dimensional space.

E.g. for q = 2, denote the two training classes as X1 = {x1, . . . ,xn} and X2 =

{xn+1, . . . ,xn+m}. Each observed item corresponds to a point in Rd. The pot-pot plot Z

consists of the potential values of all data w.r.t. the two classes.

Z = {zi = (zi1, zi2) : zi1 = φ1(xi), zi2 = φ2(xi), i = 1, ..., n+m} .

Obviously, the maximum-potential rule results in a diagonal line separating the classes in the

pot-pot plot.

However, any classifier can be used instead for a more subtle separation of the classes

in the pot-pot plot. Special approaches to separate the data in the pot-pot plot are: using

k-nearest neighbors (k-NN) or linear discriminant analysis (LDA), regressing a polynomial line,

or employing the α-procedure. The α-procedure is a fast heuristic that yields a polynomial

separator; see Lange et al. (2014b). Besides k-NN, which classifies directly to q ≥ 2 classes in

the pot-pot plot, the other procedures classify to q = 2 classes only. If q > 2, several binary

13

Chapter 2 Pot-pot plot classification

classifications have to be performed, either q ‘one against all’ or q(q − 1)/2 ‘one against one’,

and be aggregated by a proper majority rule.

Recall that our choice of the kernel needs a cross-validation of the single bandwidth pa-

rameter h. For each particular pot-pot plot an optimal separation is found by selecting the

appropriate number of neighbors for the k-NN-classifier, or the degree of the α-classifier. For

the α-classifier a selection is performed in the constructed pot-pot plot, by dividing its points

into several subsets, sequentially excluding one of them, training the pot-pot plot classifier

using the others and estimating the classification error in the excluded subset. For the k-NN-

classifier an optimization procedure is used that calculates the distances from each point to

the others, sorts the distances and estimates the classification error for each value of k. The

flexibility of the final classifier compensates for the relative rigidity of the kernel choice.

Our procedure bears an analogy to DD-classification, as it was introduced by Li et al.

(2012). There, for each pair of classes, the original data are mapped to a two-dimensional

depth-depth (DD) plot and classified there. A function x 7→ Dd(x|X) is used that indicates

how central a point x is situated in a set X of data or, more general, in the probability

distribution of a random vector X in Rd. The upper level sets of Dd(·|X) are regarded as

‘central regions’ of the distribution. Dd(·|X) is called a depth function if its level sets are

• closed and bounded,

• affine equivariant, that is, if X is transformed to AX + b with some regular matrix

A ∈ Rd×d and b ∈ Rd, then the level sets are transformed in the same way.

Clearly, a depth function is affine invariant ; Dd(x|X) does not change if both x and X

are subjected to the same affine transformation. For surveys on depth functions and their

properties, see e.g. Zuo and Serfling (2000), Serfling (2006), and Mosler (2013).

More generally, in DD-classification, the depth of all data points is determined with respect

to each of the q classes, and a data point is represented in a q-variateDD-plot by the vector of its

depths. Classification is done on the DD-plot, where different separators can be employed. In

Li et al. (2012) a polynomial line is constructed, while Lange et al. (2014b) use the α-procedure

and Vencalek (2014) suggests to apply k-NN in the depth space. Similar to the polynomial

separator of Li et al. (2012), the α-procedure results in a polynomial separation, but is much

faster and produces more stable results. Therefore we focus on the α-classifier in this chapter.

Note that Fraiman and Meloche (1999) mention a density estimate f̂X(x) as a ‘likelihood

depth’. Of course this ‘depth’ does not satisfy the usual depth postulates. Principally, a depth

relates the data to a ‘center’ or ‘median’, where it is maximal; a ‘local depth’ does the same

regarding several centers. Paindaveine and Van Bever (2013) provide a local depth concept

that bears a connection with local centers. Different from this, a density estimate measures

at a given point how much mass is located around it; it is of a local nature, but not related

to any local centers. This fundamental difference has consequences in the use of these notions

as descriptive tools as well as in their statistical properties, e.g. regarding consistency of the

resulting classifiers; see also Paindaveine and Van Bever (2015). Appendix at the end of the

thesis contains an overview of local depths.

14

Chapter 2 Bayes consistency

Maximum-depth classification with the ‘likelihood depth’ (being weighted with prior prob-

abilities) is the same as KDE. Cuevas et al. (2007) propose an extension of this notion to

functional data, the h-depth that is calculated as D̂d(x) = 1
n

∑n
i=1K

(
m(x,xi)

h

)
, where m is a

distance. The h-depth is used in Cuesta-Albertos et al. (2016), among several genuine depth

approaches, in a generalized DD-plot to classify functional data. However, the DDG classifier

with h-depth applies equal spherical kernels to both classes, with the same parameter h. The

authors also do not discuss about the selection of h, while Cuevas et al. (2007) proposed keeping

it constant for the functional setup. Our contribution differs in many respects from the latter

one: (1) We use Gaussian kernels with data dependent covariance structure and optimize their

bandwidth parameters. (2) The kernel is selected either simultaneously or separately for each

class. (3) When q = 2, in case of separate sphering, a regression between the two bandwidths

is proposed, that allows to restrict the optimization to just one bandwidth parameter (see sec.

2.6). (4) Strong consistency of the procedure is demonstrated (see the next Section). (5) The

procedure is compared with known classification procedures on a large number of real data

sets (see Section 2.7).

2.5 Bayes consistency

We advocate the pot-pot procedure as a data-analytic tool to classify data of unknown origin,

generally being non-normal, asymmetric and multi-modal. Nevertheless, it is of more than

theoretical interest, how the pot-pot procedure behaves when the sample size goes to infinity.

Regarded as a statistical regression approach, Bayes consistency is a desirable property of the

procedure.

We consider the case q = 2. The data are seen as realizations of a random vector (X, Y) ∈
Rd × {1, 2}, that has probability distribution P . A classifier is any function g : Rd → {1, 2}.
Notate pj(x) = P (Y = j|X = x). The Bayes classifier g∗ is given by g∗(x) = 2 if p2(x) >

p1(x) and g∗(x) = 1 otherwise. Its probability of misclassification, P (g∗(X) 6= Y) is the best

achievable risk, which is named the Bayes risk.

We assume that the distributions of (X, 1) and (X, 2) are continuous. Let the potentials

be estimated by a continuous regular kernel (see Definition 10.1 in Devroye et al. (1996)), like

a Gaussian kernel, and let (hn) be a sequence of univariate bandwidths satisfying

hn → 0 and nhdn →∞ . (2.9)

It is well-known (see Theorem 10.1 in Devroye et al. (1996)) that then the maximum potential

rule is strongly Bayes-consistent, that is, its error probability almost surely approaches the

Bayes risk for any continuous distribution of the data. The question remains, whether the

proposed procedures operating on the pot-pot plot attain this risk asymptotically.

We present two theorems about the Bayes consistency of the two variants of the pot-pot

classifier.

15

Chapter 2 Bayes consistency

Theorem 2.1 (k-NN) Assume that (X, 1) and (X, 2) have continuous distributions. Then

the pot-pot procedure is strongly Bayes consistent if the separation on the pot-pot plot is per-

formed by k-nearest neighbor classification with kn →∞ and kn/n→ 0.

Proof: Let us first define a sequence of pot-pot classifiers that satisfies (2.9). We start

with two training classes of sizes n∗1 and n∗2, set n∗ = n∗1+n∗2, and determine a proper bandwidth

h∗ by cross-validation as described above. Then, let n1 → ∞ and n2 → ∞, n = n1 + n2. For

n > n∗ we restrict the search for hn to the interval[
h∗ · n

ε−1
d , h∗ · nδ−1

]
,

with some 0 < ε ≤ δ < 1. It follows that hn → 0 and nhdn → ∞ as n goes to infinity,

which yields the a.s. strong Bayes consistency of the maximum potential rule. The maximum

potential rule corresponds to the diagonal of the pot-pot plot. This separator almost surely

asymptotically attains the Bayes risk.

We have still to demonstrate that the k-nearest neighbor procedure applied to the trans-

formed data on the pot-pot plot yields the same asymptotic risk. Under kn →∞ and kn/n→ 0,

the k-NN procedure on the pot-pot plot is strongly Bayes consistent if either φ1(X) or φ2(X)

is continuously distributed in R2; see Theorem 11.1 and page 190 in Devroye et al. (1996).

But the latter follows from the continuity of the regular kernel. Obviously, the Bayes risk of

classifying the transformed data is the same as that of classifying the original data. It follows

that for any distribution of the original data the pot-pot procedure achieves the Bayes risk

almost surely asymptotically. �

Theorem 2.2 (α-procedure) Assume that (X, 1) and (X, 2) have continuous distributions

and that

P (p1(X) = p2(X)) = 0 . (2.10)

Then the pot-pot procedure is strongly Bayes consistent if the separation on the pot-pot plot is

performed by the α-procedure.

Proof: As in the preceding proof, the maximum potential rule corresponds to the diagonal

of the pot-pot plot, and this separator almost surely asymptotically attains the Bayes risk.

Consider the sign of the difference between the two (estimated) potentials. If the sample size

goes to infinity the number of ’wrong’ signs goes to zero. By assumption (2.10) also the number

of ties (corresponding to points on the diagonal) goes to zero. By definition, the α-procedure

in its first step considers all pairs of features, the original z1 and z2 and possibly polynomials

of them up to some pre-given degree. Then for each pair a separating line is determined

that minimizes the empirical risk; see Lange et al. (2014b). Thus, once the differences of the

potentials have the correct sign, the α-procedure will produce the diagonal of the (z1, z2)-plane

(or a line that separates the same points) in its very first step. �

Compared to these results, the Bayes consistency of depth-depth (DD) plot procedures

is rather limited. It has been established only if both classes follow unimodal elliptically

16

Chapter 2 Scaling the data

symmetric distributions; see Li et al. (2012) and Lange et al. (2014b). The reason is that

depth functions fit primarily to unimodal distributions. Under unimodal ellipticity, since a

depth function is affine invariant, its level sets are ellipsoids that correspond to density level

sets, and the depth is a monotone function of the density.

Note that the distributions of the two training classes, after having been transformed by the

‘sphering transformation’, can be still far away from being spherical. This happens particularly

often with real data. It is well known that with a single parameter the multidimensional poten-

tials are often poorly estimated by their kernel estimates. Then the best separator may differ

considerably from the diagonal of the pot-pot plot as our results will demonstrate, see Figure

2.3. The final classification on the plot compensates the insufficient estimate by searching for

the best separator on the plot.

●● ●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

● ●●●●●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

0e+00 2e−08 4e−08 6e−08 8e−08 1e−07

0e
+

00
2e

−
08

4e
−

08
6e

−
08

8e
−

08
1e

−
07

●

●

●
●

●

●
●

●

● ●●

●●
●●

●
●

●

●

●

●
●

●
●

●

●
●

●

●●●●

●
●

●
●

●

●

●

●● ●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●
● ●●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●●

●

● ● ●
●

●
●

●

●

●
●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●●●

●
●

●

● ●

●

●

●● ●

●

●

●

● ●
●

●●

●

●
●

●
●

● ●
●

●

●●●
●

●

●
●

●
●

●

●

●

● ●

● ●

●

●
●

●●

●

●

● ●●

●

●
●

● ●●

●

●

●
●

●

●
●

●

●
● ●●

●
●

●

●●

● ●

●●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

0.0 0.1 0.2 0.3

0.
0

0.
1

0.
2

0.
3

Figure 2.3: Examples of α-separation in the pot-pot plot. In the left panel (data set ‘tennis’)
the α-classifier coincides with the diagonal, while in the right panel (data set ‘baby’) it provides a
completely different separation. Bandwidth parameters are selected according to best performance of
the α-classifier.

2.6 Scaling the data

In Section 2.3 we have shown that it is convenient to divide the bandwidth matrix into two

parts, one of which is used to scale the data, and the other one to tune the width of a spherical

kernel. The two classes may be scaled jointly or separately, before proper bandwidth parameters

are tuned. Note that Aizerman et al. (1970) do not scale the data and use the same kernel for

both classes.

KDE naturally estimates the densities individually for each class and tunes the bandwidth

matrices separately. On the other hand, SVM scales the classes jointly (Chang and Lin, 2011),

either dividing each attribute by its standard deviation, or scaling it to [0; 1].

17

Chapter 2 Scaling the data

In what follows we consider two approaches: joint and separate scaling. With joint scaling

the data is sphered using a proper estimate Σ̂ of the covariance matrix of the merged classes;

then a spherical kernel of type H1 is applied. This results in potentials

φj(x) = pj f̂j(x) = pj
1

nj

nj∑
i=1

Kh2Σ̂(x− xji) ,

where an estimate Σ̂ of the covariance matrix has to be calculated and one scalar parameter h2

has to be tuned. (Note that Σ̂ is not necessarily the empirical covariance matrix; in particular,

some more robust estimate may be used.) The scaling procedure and the obtained pot-pot plot

are illustrated in Fig. 2.4. Obviously, as the classes differ, the result of joint scaling is far away

from being spherical and the spherical kernel does not fit the two distributions well. However,

these kernels work well when the classes’ overlap is small; in this case the separation is no big

task.

An alternative is separate scaling. It results in potentials

φj(x) = pj f̂j(x) = pj
1

nj

nj∑
i=1

Kh2j Σ̂j
(x− xji) .

With separate scaling the two kernels are built with different bandwidth matrices Hj = C3 =

h2
jΣ̂j to fit the form of each class. We need estimates of two covariance matrices and have

two parameters, h2
1 and h2

2, to tune. Figure 2.5 illustrates the approach. It is clearly seen that

many points receive much less potential with respect to the opposite class.

In case of heavy-tailed data, robustness is achieved by applying the Minimum Covariance

Determinant (MCD) or the Minimum Volume Ellipsoid (MVE) estimates to transform the

data. Note, that in some cases the problem may occur, that the covariance matrix is singular,

e.g. if the dimension is higher than the number of points. In this case one may use a proper

pseudoinverse.

As tuning the parameters comes at high computational costs, we try to simplify the tuning

in the case of separate scaling. Either we use the same parameter, h2
1 = h2

2 for both classes or

we establish some relationship between the two parameters, h2
2 = g(h2

1) where g is a function

of the first bandwidth. After a proper function g is found only one parameter must be tuned.

In our experiments (sec. 7), we observe a relationship between the bandwidth parame-

ters that provide the smallest error rates. For the real data sets we see that, with separate

scaling, close to smallest classification errors are usually achieved on a straight line in the

(log10 h
2
1, log10 h

2
2)-plane (see Fig. 2.7 and the description there). We profit from this observa-

tion and spare the effort of separately tuning the two parameters. Note that the line is not

always the main diagonal. We propose to regress one parameter on the other, evaluating the

error at a few pairs (log10 h
2
1, log10 h

2
2) and using them as sampling points. Specifically, we cal-

culate the error at five sets of five points, with the five-point sets being taken orthogonally to

the main diagonal of the plot; cf. Figures 2.6 and 2.7. Then the minimal error is found in each

18

Chapter 2 Scaling the data

set and a linear or non-linear regression of log10 h
2
2 on log10 h

2
1 is used to find a proper relation

between the bandwidths. Consequently, we combine separate scaling with a linear bandwidth

regression function, g, which simplifies the procedure enormously. Specifically, we use g to

determine h2
2 for every h2

1, cross-validated at 60 possible values, while the full tuning would

involve cross-validation of (h2
1, h

2
2) at 3600 points. Clearly, separate scaling with bandwidth

regression yields the same computational complexity as joint scaling.

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l
l

l
l

l

ll

l

l
l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

-10 -5 0 5 10

-1
0

-5
0

5
1

0

Original data

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l l

ll
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll
l

l
l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

-3 -2 -1 0 1 2

-2
-1

0
1

2

Jointly scaled

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l
l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

0 5 10 15

0
2

4
6

8
1

0
1

2
1

4

pot-pot plot, jointly scaled

w.r.t. red

w
.r

.t
.
b
lu

e

Figure 2.4: The data is jointly scaled. The plots show the original data, the scaled data with their
lines of equal potential, and the corresponding pot-pot plot.

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l
l

l
l

l

ll

l

l
l

l

l

l

l

l

l l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

0 5 10

Original data

l

l

l

l

ll

l

l

l

l

l
ll

l

l

l

l

l

l

l

l l
l

l

l

l

l

l

l

l
ll

l l

l
ll

l

l

l

l

l

l
l

l
l l

l

l

l

l
l

l
l

l

l

l

l
l

l

l

l

l

lll

l

l
l

l

l

l

l

l
l

ll
l

l

l
l

l

l

l

l

l

l
l
l
l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

0 5 10

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l l

l

l

l

ll

l

l
l

l

ll

l
l

l

l

l

l

l
l

l l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
lll

l

l

l

l

l

l

l

l

l
ll

l

l

-6 -4 -2 0 2 4 6

-4
-2

0
2

4
6

ll

l

l

l

l

l

l

l ll

l

l

l

l

ll l

l

l

l l

l

l l

l

l

l

l

l

l

l

lll l

l

l

l

l

l

l

l

l

l

l

llll

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

0 2 4 6

0
2

4
6

8
1

0

pot-pot plot, seperately scaled

ll

l

-10 -5

-1
0

-5
0

5
1
0

-10 -5

-1
0

-5
0

5

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

8 10 12

Separately scaled w.r.t. red

Separately scaled w.r.t. blue

w.r.t. red

w
.r

.t
.
b

lu
e

Figure 2.5: The data is separately scaled. The plots show the original data, the scaled data with
their lines of equal potential, and the corresponding pot-pot plot.

19

Chapter 2 Experiments

2.7 Experiments

We have conducted an experimental survey to check the theoretical implications and to com-

pare the performance of the proposed method with several traditional classifiers and DD-

classification using popular global depths.

In the experiments we consider two classes. We compare joint and separate scaling of the

classes and examine the variants of bandwidth selection. As Figures 2.6 and 2.7 illustrate,

the error functions are multimodal and erratic, and can hardly be minimized in a way other

than iterative search. In our experiments we select the bandwidth within a wide range and use

logarithmic steps.

2.7.1 The data

Simulated as well as real data are considered in the experiments. The first two simulated

series consist of two-dimensional data sets of two normally distributed classes. The classes are

located at different distances, and they are scaled and rotated in different ways:

1. Location: C1 ∼ N
([

0
0

][
1 0
0 1

])
, C2 ∼ N

([
l
0

][
1 0
0 1

])
, l = 1, 2, 3, 4;

2. Scale: C1 ∼ N
([

0
0

][
1 0
0 1

])
, C2 ∼ N

([
3
0

][
1 0
0 s

])
, s = 1, 2, 3, 4, 5;

3. Scale*: C1 ∼ N
([

0
0

][
1 0
0 1

])
, C2 ∼ N

([
3
0

][
s 0
0 1

])
, s = 2, 3, 4, 5;

4. Rotation: C1 ∼ N
([

0
0

][
1 0
0 5

])
, C2 ∼ N

([
3
0

][
1 0
0 5

])
.

Firstly, C1 and C2 are generated. After that C2 is rotated around

µ2 = (3, 0) by α ∈ [0, π/2] in 5 steps, then C2 stays rotated by α = π/2 and C1 is rotated

around µ1 = (0, 0) by the same angles, giving 9 data sets in total.

The training sequence of the first series contains 100 points in each class, while the second

is more asymmetric and contains 1000 resp. 300 points in the two classes. The testing sequence

contains 300 points in each class of the first series, and 1000 resp. 300 points in two classes

of the second series. We use the following acronyms for the data sets: the number of series

(1 for equally, 2 for unequally sized classes), the name of transformation, the number of the

transformation. E.g., 2scale2 means a data set with 1000 and 300 points in the classes,

transformed by ‘scale’ transformation with s = 2.

The third simulated series (Dutta et al., 2012) is generated with uniform distributions on

nested disks. In this case the classes cannot be separated by a simple line or curve. The two

classes are distributed as C1 ∼ Ud(0, 1) + Ud(2, 3) and C2 ∼ Ud(1, 2) + Ud(3, 4), with Ud(r1, r2)

being the uniform distribution on {x ∈ Rd : r1 < ||x|| < r2}. We generate the data sets in

two ways: The first ones, as proposed by Dutta et al. (2012), have an equal number of points

in both classes (n1 = n2 = 100 resp. n1 = n2 = 400). Note that in this case one class is less

densely populated than the other. The second ones are generated so that the points of both

20

Chapter 2 Experiments

classes are equally dense, with n1 = 80, n2 = 120 resp. n1 = 300, n2 = 500. The naming of

these data sets reflects the number of points in the classes.

For the simulated data sets the classification errors are estimated using training and testing

sequences drawn from the same distributions. The procedure is replicated 40 times and the

mean values are taken. The standard deviations of the error rates are mostly around five to

ten times smaller than their values, and this ratio is smaller than two only in one percent of

all cases.

We also use 50 real multivariate binary classification problems, collected and described by

Mozharovskyi et al. (2015). The data sets are available at http://www.wisostat.uni-koeln.

de/de/forschung/software-und-daten/data-for-classification/ and in the R-package

ddalpha (Pokotylo et al., 2016). The data have up to 1 000 points in up to 15 dimensions;

they include asymmetries, fat tails and outliers. As the real data sets have no separate testing

sequence, the cross-validation procedure described in the introduction is used to estimate the

classification errors. We exclude one or more points from the data set, train the classifiers

on the remaining points and check them using the excluded points. The number of excluded

points is chosen to limit the number of such iterations to 200.

2.7.2 Comparison with depth approaches and traditional classifiers

We compare the classifiers with the Bayes classifier for the simulated data and with LDA

for the real data. Note that in this case LDA gave the best results among the traditional

classifiers: linear discriminant analysis (LDA), quadratic discriminate analysis (QDA), and

k-nearest neighbors (k-NN). We introduce an efficiency index as the ratio of the error rates of

the chosen classifier and the referenced one (the Bayes classifier or the LDA, resp.): Iclassifier =

εclassifier/εreference. The index measures the relative efficiency of a classifier compared to the

referenced one for each particular data set. We study the distribution of the efficiency index

for each method over all data sets using box plots, which allows to compare the efficiency of

different methods visually.

We compare our method with kernel density estimation (KDE) and DD-plot classification.

To construct the DD-plots, we apply five most popular global depth functions, that can be

calculated in reasonable time: zonoid, halfspace, Mahalanobis, projection and spatial (=L1)

depth. We do not use simplicial or simplicial volume depth, as they need much more calculation

time, which is not feasible in higher dimensions. For details on these depth notions, see Zuo

and Serfling (2000), Serfling (2006), and Mosler (2013). Then we use α-classification (Lange

et al., 2014b), polynomial (Li et al., 2012) or k-NN-classification on the DD-plot, or take

its diagonal as the separation line. The diagonal separation on the DD-plot corresponds to

the maximum-depth approach. In contrast to this, the α-classifier as well as the polynomial

separator and the k-NN-method produce a non-linear separation of the DD-plot.

The zonoid and halfspace depths vanish outside the convex support of the training data and

the points lying there have zero depth. If a point has zero depth w.r.t. both classes it is called

an outsider ; it cannot be classified on the DD-plot. Lange et al. (2014b) propose a separate

21

http://www.wisostat.uni-koeln.de/de/forschung/software-und-daten/data-for-classification/
http://www.wisostat.uni-koeln.de/de/forschung/software-und-daten/data-for-classification/

Chapter 2 Experiments

outsiders treatment procedure, which classifies outsiders in the original space. However, if

an outsider treatment procedure is used, the obtained error rate is a mixture of that of the

DD-classifier and that of the outsider treatment procedure. In our study we use QDA as an

outsider treatment procedure for the simulated data and LDA for the real data. Note that

the number of outsiders is much larger in the real data sets than in the simulated data. It is

higher than 50% for 2/3 of the real data sets.

We also add the depth-based k-NN of Paindaveine and Van Bever (2015) for comparison,

as it is close in spirit to depth-based classification and to k-NN. Here we apply halfspace and

Mahalanobis depths, and choose k by cross-validation.

On the pot-pot plot we proceed in a similar way. We separate the classes by either the

diagonal line or the α-classifier or k-NN. Clearly, using the diagonal as a separator corresponds

to KDE applied to the original data. This is combined with different bandwidth approaches:

(1) joint scaling and optimizing a single h2, (2) separate scaling and optimizing both h2
1 and h2

2,

(3) separate scaling, regressing h2
2 on h2

1 (where h2
1 belongs to the larger class), and optimizing

the regressor only; see Section 2.7.3.

Tables 2.1 and 2.3 show errors from using the different methods. The methods are grouped

by type, and the best values within each group are marked black. The best classifiers for the

particular data set are underlined. For the DD- and pot-pot classifiers we report the errors

of the α-classifier, averaged over the replications resp. cross-validation runs. For the pot-pot

classifiers we use the errors, obtained with the best bandwidth parameters, and report them for

the joint, separate and regressive separate approaches. The error rate estimating procedure is

stable as the standard errors are very small (not reported in the tables). Figure 2.8 exhibits box

plots of the efficiency index of each of these methods. Here we use the α-classifier to display the

efficiency of different methods. The tables and figures for other separating methods (diagonal,

polynomial and k-NN) are transferred to an Online Appendix to Pokotylo and Mosler (2016).

The experimental results show that the proposed method outperforms all compared meth-

ods on the real data and shows competitive results on the simulated data. We also observe that

separate scaling (pot-pot separate) is more efficient than joint scaling (pot-pot joint). Under

the name pot-pot regressive separate we show results that are obtained with separate scaling

and bandwidth regression.

Tables 2.2 and 2.4 compare the minimal errors obtained with pot-pot classifiers that use

the three separating procedures on the pot-pot plot: diagonal, α, and k-NN. Also additional

bandwidth approaches in estimating the potentials (ROT, mM) are included; see Section 2.7.3

below. Figure 2.9 illustrates the corresponding boxplots of the efficiency index. For the real

data sets, using either α- or k-NN-classifiers on the pot-pot plot shows better classification

results than classical KDE does. The α-classifier usually has a lower error rate than k-NN,

but sometimes k-NN produces unexpectedly good results, as for example in the ‘cloud’ and

some of the ‘crab’ data sets. The error of the maximum-depth classifier slightly outperforms

that of the α- and k-NN-classifiers for the simulated data, but is more dispersed in the case of

separate scaling.

22

Chapter 2 Experiments

The efficiency of the DD-plot classifiers is also compared for each of the five depths.

DDα-, polynomial and k-NN-classifiers are more efficient than the maximum-depth classifier,

and DDα shows best results in most of the cases (see Fig. 2.10). We also observe that DDα

shows almost the same results as the polynomial classifier, and slightly outperforms it for the

real data.

The pot-pot approach performs much better than the other classifiers on real data. For the

first two sets of simulated data, as they are generated by normal distributions, QDA and KDE

are best classifiers under separate scaling (see pot-pot separate diagonal).

To illustrate the performance of the pot-pot classifiers in the higher dimensions we simulated

multidimensional hyperspheres similar to the third simulated series in Section 2.7.1. The points

were generated uniformly in d ∈ {2, 3, 4, 5, 10} and sample length n ∈ {50, 100, 250, 500, 1000}.
With the growth of dimension the volume of the outer spheres increases faster than of the

inner ones. In this case the classes become unbalanced and the probability of the first class is

{0.38, 0.31, 0.26, 0.21, 0.06}, respectively. To make the classes equal we inverted the labeling

in one half of the hypersphere. We observe that with the growth of d the error rate of the

diagonal separation (=KDE) and the DDα grow much faster than the error rate of k-NN, see

Figure 2.13. As shown before, in dimension 10 the hypersphere is divided into two halves,

each containing mostly one class, and therefore the error rates of all classifiers become smaller.

Nevertheless it is still much lower for k-NN, which means that the pot-pot plot allows to

improve the separation even in higher dimensions. As for the real examples, the advantage of

the pot-pot classifiers is bigger in small dimensions, while in the dimensions higher than eight

they mostly perform as good as the diagonal separation, see Table 2.4.

2.7.3 Selection of the optimal bandwidth

We vary the kernel bandwidth parameters over a wide range using logarithmic steps. The

bandwidth selection process is shown on the bandwidths-to-errors plots, which illustrate the

dependencies between the selected kernel bandwidths and the classification errors for particular

data sets using diverse DD-classifiers under joint and separate scaling. See Figures 2.6 and 2.7

and the explanations there. In the joint scaling case the abscissa represents the logarithm of the

bandwidth parameter log10 h
2 , and the ordinate the error rate. For the separate scaling case

the axes present the log10 h
2
i bandwidth of the first and the second classes kernels, respectively.

The colors correspond to the classification errors achieved with these bandwidth combinations,

where red indicates the highest error rate, violet the lowest, and the colors in between are in

the rainbow order.

Experimentally we have found higher and lower bounds for the kernel bandwidth parameters

search. The lower bound of h2 = 10−3 is explained with computational limitations, as the

potential induced by such narrow kernels is too small to be represented with the machine

type ‘double’. Thus, most points cannot be classified on the pot-pot plot, as they obtain zero

potential. Such points are outsiders in DD-classification, where they are classified separately;

see Lange et al. (2014b). When the bandwidth reaches the level of h2 = 103, separation does

23

Chapter 2 Experiments

not improve any more, since the kernels become too flat. As the classification error stabilizes

at this level, we take it as an upper bound.

It is also observed that extremely wide or narrow kernels give fairly good separation errors.

This feature may be used for a fast ‘draft’ estimation of the classification error which could

be reached with the classifier, and possibly for reducing the search intervals of the bandwidth

parameters.

In selecting the kernels’ bandwidths we compare the performance of the generalized Scott’s

rule of thumb (column ROT) and the extreme bandwidths (column mM). The latter means

that we use the bound (either lower or upper) of h2 that gives the smaller error. The rule of

thumb works better for the simulated data sets than for the real ones.

For any pair of normally distributed classes (shifted, scaled, and/or rotated) the optimal

bandwidths are equal for both classes h2
1 = h2

2; they lie around h2 = 1 if the classes have about

the same size. This also holds for the DDα- and k-NN-classifiers if the classes have different

sizes, while for the maximum-depth classifier a shifted line is observed. The results obtained

using the rule of thumb are close to the optimal ones.

We compared the results of the full-bandwidth tuning and the regression approach, de-

scribed in the end of section 2.6. The linear regression is the most reasonable, as higher order

regressions, described under Figure 2.6 did not improve the efficiency of our procedure rela-

tive to simple linear regression, which is illustrated in Figure 2.11. This bandwidth regression

approach is abbreviated as pot-pot regressive separate in the tables and figures. Observe that

the results are close to the minimum obtained by full bandwidth search using separate scaling.

They also outperform the ones provided by joint scaling, as Figures 2.8, 2.9 and 2.11 demon-

strate. This approach works much better on the real data settings, while on simulated data

the difference between joint and separate scaling is not really large. Note that in this approach

the α-classifier shows best results for both simulated and real data.

2.7.4 Comparison of the classification speed

As the experiments have shown, the proposed method has a very good relative performance,

but at the cost of a reduced training speed. The training time of a pot-pot (or DD-) classifier

consists of the time to calculate the potential (resp. the depth) of each point w.r.t. each class

and of the time needed to train the separator; the latter does virtually not depend on the choice

of the space transformation function. If q > 2 and the aggregating procedures are involved,

multiple separators may be trained on the pot-pot plot. The classification time contains only

the time for calculation of the potentials (resp. depths) of a given point w.r.t. each class.

We compare the computation times of potentials and various depth notions by graphics in

Figure 2.12. On the logarithmic time scale, the lines represent the time (in seconds) needed

to compute depth or potential of a single point, averaged over 50 points w.r.t. 60 samples,

varying dimension d ∈ {2, 3, 4, 5} and sample length n ∈ {50, 100, 250, 500, 1000}. Due to the

fact that computation times of the algorithms do not depend on the particular shape of the

data, the data has been drawn from the standard normal distribution. Some of the graphics

24

Chapter 2 Conclusion

are incomplete due to excessive time. Projection and halfspace depths have been approximated

using 1 000 random projections and simplicial depth (if d > 2) has been approximated using

5% of simplices. The other depths have been computed exactly as well as simplicial depth for

d = 2. The calculation of simplicial depth dramatically slows down with the growth of n and

d, therefore we do not include it in the comparison of Section 2.7.2.

We observe that it takes from 0.5ms to 1ms to calculate the potential of one point. The

calculation speed does not depend on the dimension of the data and slightly depends on the

number of points. In big data sets it is only outperformed by Mahalanobis and spatial depths.

This advantage is nevertheless suppressed by the tuning of the bandwidth parameters.

Having kp bandwidth parameters the error rate obtained with each of them is estimated by

cross-validation that repeats the training and classification procedures for ke times. A usual

choice of ke is 10, but in this chapter we set it to 200 to obtain precise estimates. The number

kp of possible values of the bandwidth parameter is set to 60 in the joint scaling case, 3600 in

the separate scaling case, and 25+60 in the regressive separate approach. This means that with

the regressive separate approach we have trained the pot-pot classifier 85∗ 200 = 17 000 times,

and the DD-classifiers only 200 times to estimate the error rate. In practice these numbers

may be seriously reduced by iterating less bandwidth parameters and shortening their range,

and applying less iterations during cross-validation. Note that the classical KDE classification

needs the same number of iterations as the pot-pot classifiers to tune the bandwidth parameters,

given that the same bandwidth matrices are taken in both approaches.

2.8 Conclusion

A new method is proposed that combines ideas of kernel discriminant analysis and depth-

depth-plot classification. Potentials of data points, which amount to weighted kernel-estimated

densities, are used for classification on a potential-potential (pot-pot) plot. Compared with

classical approaches the method shows a very good relative performance, especially on real

data settings.

The two most important aspects of the method of potentials are: Firstly, compared to

classification methods based on depths the method reflects local properties of the distributions

and, thus, gives better results for multimodal and non-elliptical distributions. Secondly, the

use of the pot-pot plot allows for more sophisticated separations than the simple comparison

of estimated densities.

Consequently, the bandwidth parametrization and the selection of bandwidth parameter

values can be kept simple. Instead of scaling the kernels we scale the data separately and apply

a simple spherical kernel to these sphered data. Then the kernel bandwidth itself is tuned using

just one parameter. Joint and separate scaling of the classes are compared. Under separate

scaling the kernels provide a better fit to the classes’ distributions, which clearly improves the

classification.

25

Chapter 2 Conclusion

As our experiments demonstrate, the classification error can be a multimodal and very

erratic function of bandwidth parameters, which makes it difficult to minimize. We search for

a global minimum by iterating over a proper set of possible parameter values (see Fig. 2.6 and

2.7). Our experiments show further that a roughly linear relation between the logarithms of

two bandwidth parameters can be established under which a separation close to the best one

is achieved. This allows us to restrict on tuning a single bandwidth parameter of one class

h2
1, using a linear regression to determine the bandwidth parameter of the second one h2

2. The

bandwidth parameter is selected from the diapason h2 ∈ [10−3; 103] with a logarithmic scale.

The naive KDE approach estimates the potential of a point regarding the classes and

assigns the point to the class of maximum estimated potential. Asymptotically the naive KDE

approach reaches the optimal Bayes risk. However, with finite samples in higher dimensions

these estimates are highly biased (Friedman, 1997) since the kernel bandwidth can only be

roughly adjusted to the dependency structure of the distributions. In contrast our procedure

is asymptotically Bayes-optimal as well, but reduces the influence of the finite-sample bias by

additionally optimizing the line separating the potentials.

If two jointly scaled classes are considered, strong Bayes consistency is shown in general for

pot-pot separation by k-NN, and under a slight restriction for separation by the α-procedure.

Further consistency results may be derived for variants of this along the same lines. E.g. the

data dependent kernels arising with separate scaling and h2-h1-regression are still continuous

and regular; for consistency it is sufficient to warrant that the constant ρ appearing in Theorem

10.1 of Devroye et al. (1996) satisfies ρ = o(n).

The new method has been implemented as part of the R-package ddalpha, which was also

used for the experimental study. The package is described in the next Chapter.

26

Chapter 2 Appendix

Appendix

Experimental results

d
a
ta Joint scaling Separate scaling

DDα k-NN diagonal

2
ro

ta
te

5
2s

ca
le

4
d

is
k
s

10
0x

1
00

Figure 2.6: Examples of bandwidths-to-error plots (simulated data).

Left column of panels (joint scaling):
abscissa =̂ log10 h

2; ordinate =̂ classification error rate;
classifiers: diagonal (blue), k-NN (green), DDα (red).

Other panels (separate scaling):
abscissa =̂ log10 h

2
1; ordinate =̂ log10 h

2
1;

colors: classification error rates from violet to red;
points: black – sample points (grouped orthogonally to the main diagonal);

minima in each test group (red points); global minima (white points);
regressions (h21 is the bandwidth of the larger class):

Linear — log10 h
2
2 = a+ b log10 h

2
1 ;

Quadratic — log10 h
2
2 = a+ b log10 h

2
1 + c(log10 h

2
1)2 ;

Quadratic inverted — log10 h
2
1 = a+ b log10 h

2
2 + c(log10 h

2
2)2 .

See detailed description under Figure 2.7.

27

Chapter 2 Appendix

d
a
ta Joint scaling Separate scaling

DDα k-NN diagonal

b
io

m
ed

ir
is

se
g
m

en
ta

ti
on

Figure 2.7: Examples of bandwidths-to-errors plots (real data).

See the legend under Figure 2.6.
The bandwidths-to-errors plots illustrate the dependencies between the selected kernel bandwidths and the

classification errors for particular data sets using diverse DD-classifiers using joint (left column of panels) and
separate (other panels) scaling.

In the joint scaling case the abscissa represents the logarithm of the bandwidth parameter log10 h
2 , and

the ordinate the error rate. The rule of thumb (ROT) errors are shown in bold.
For the separate scaling case the axes present the log10 h

2
i bandwidth of the first and the second classes

kernels, respectively. The colors correspond to the classification errors achieved with these bandwidth combi-
nations, where red corresponds to the highest error rate, violet to the lowest, and the colors in between are in
the rainbow order. The black points represent the rule of thumb (ROT) bandwidths.

We search for the relationship between the bandwidth parameters using regressions. At first we calculate
the classification error rate at 25 bandwidth points divided into five sets orthogonal to the main diagonal.
Then the minimum is found over each set and a regression is computed to find the proper relation between
the bandwidths. We use the found relationship to estimate error rates along the regression line, iterating one
bandwidth parameter and calculating the other. For comparing the performance of this approach (pot-pot
regressive separate), to joint and separate scaling; see Fig. 2.9.

The minimum errors are found in Table 2.2 for simulated and in Table 2.4 for real data.

28

Chapter 2 Appendix

●

●

●●

●

●

●●

●

sep. (reg.)

separate

joint

pot−pot:

Mahalanobis

halfspace

Dknn:

spatial

projection

Mahalanobis

halfspace

zonoid

DD:

KNN

QDA

LDA

1.0 1.2 1.4 1.6 1.8 2.0

●●●

●● ● ●●

●

●● ●● ●●

●●

●● ●●● ● ●●●●●●● ●●

●●●

●● ●●

sep. (reg.)

separate

joint

pot−pot:

Mahalanobis

halfspace

Dknn:

spatial

projection

Mahalanobis

halfspace

zonoid

DD:

KNN

QDA

LDA

0.0 0.5 1.0 1.5 2.0 2.5

a) simulated elliptical data b) real data

Figure 2.8: Efficiency of the methods. For the DD- and pot-pot classifiers the errors of the
α-classifier are given.

The index is the relation of the error rates of the chosen classifier and the reference classifier. Here and in
the following figures we take the Bayes risk as the reference for the simulated data and LDA – for the real data.
The index measures the relative efficiency of a classifier compared to the reference for a particular data set (the
more efficient classifier has smaller index). For each classifier a boxplot is built that illustrates the distribution
of the efficiency index over all data sets.

●

●

●

●

●

●●● ●

●

●●

k−NN

alpha

diag.

mM

ROT

k−NN

alpha

diag.

mM

ROT

k−NN

alpha

diag.

1.00 1.05 1.10 1.15 1.20 1.25 1.30

jo
in

t
se

pa
ra

te
se

pa
ra

te
re

gr
es

si
on

●

●

●●●

●●●●

k−NN

alpha

diag.

mM

ROT

k−NN

alpha

diag.

mM

ROT

k−NN

alpha

diag.

0.0 0.5 1.0 1.5 2.0

jo
in

t
se

pa
ra

te
se

pa
ra

te
re

gr
es

si
on

a) simulated elliptical data b) real data

Figure 2.9: Efficiency of the pot-pot classifiers.

29

Chapter 2 Appendix

●●●

●●

●

●●●

● ●

●●

knn
pol

alpha
maxD

knn
pol

alpha
maxD

knn
pol

alpha
maxD

knn
pol

alpha
maxD

knn
pol

alpha
maxD

1.0 1.2 1.4 1.6 1.8 2.0 2.2

zo
no

id
ha

lfs
pa

ce
M

ah
al

an
ob

is
pr

oj
ec

tio
n

sp
at

ia
l

●● ● ●●●

●● ● ●●

●●

● ● ●●

●

●●

●● ●● ●●

●

● ●●

●●

●

●● ●●●● ●● ● ●●

● ● ●●● ● ●●●●● ●●

●● ●●● ● ●●●●●● ● ●●

●● ● ●●● ● ●●●●● ●●

knn
pol

alpha
maxD

knn
pol

alpha
maxD

knn
pol

alpha
maxD

knn
pol

alpha
maxD

knn
pol

alpha
maxD

0.5 1.0 1.5 2.0

zo
no

id
ha

lfs
pa

ce
M

ah
al

an
ob

is
pr

oj
ec

tio
n

sp
at

ia
l

a) simulated elliptical data b) real data

Figure 2.10: Efficiency of DD-classifiers.

● ●●

● ●

● ● ● ●●

● ●●● ●

Joint

Quadratic
inverted

Quadratic

Linear

Global
minimum

0.85 0.90 0.95 1.00 1.05 1.10 1.15

●● ●●● ●●● ●●●● ●●● ●● ● ●

●● ●● ●● ●●●●●●●

●●● ●●●●●●● ●●

●●●●●●●●●●

Joint

Quadratic
inverted

Quadratic

Linear

Global
minimum

0.6 0.8 1.0 1.2 1.4

a) simulated elliptical data b) real data

Figure 2.11: Efficiency of separate scaling with different bandwidth regressions over joint scaling.

The boxplots show minimal errors using the same bandwidth regressions as in the description of Figure 2.6.
The first and the last rows show the global minima for resp. separate and joint scaling.
The classifier using joint scaling is taken as the reference.

30

Chapter 2 Appendix

d: 2 d: 3 d: 4 d: 5

0.1 ms

1 ms

10 ms

0.1 s

1 s

50 100 250 500 100050 100 250 500 100050 100 250 500 100050 100 250 500 1000
Number of points

T
im

e,
 s

ec
.

— potential, — zonoid, - - halfspace,

— Mahalanobis, - - spatial, — projection, - - simplicial

Figure 2.12: Calculation time of a single data point for various depth functions and potential, on the
logarithmic time scale. Here the approximative versions are used, for the exact versions see Fig. 3.4.

N: 50 N: 100 N: 250 N: 500 N: 1000

0.1

0.2

0.3

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
d

E
rr

or
 r

at
e

— diagonal, — k-NN, — DDα

Figure 2.13: Performance of the KDE and the pot-pot classifiers in the multidimensional space.

31

Chapter 2 Appendix

Tables 2.1 and 2.3 show errors from using the different methods. The methods are grouped by type, and the

best values within each group are marked black. The best classifiers for the particular data set are underlined.

In the tables we use the following abbreviations for the data depths: HS for halfspace, Mah for Mahalanobis,

Proj for projection and Spat for spatial. Dknn abbreviates the depth-based k-NN of Paindaveine and Van

Bever (2015).

Table 2.1: Error rates (in %) of different classifiers for simulated data sets.

Columns (6) – (10) and (13) – (15): α-classifier in the DD- and pot-pot plots.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Dknn Dknn pot-pot pot-pot pot-pot
dataset Bayes LDA QDA KNN Zonoid HS Mah Proj Spat HS Mah joint separate regress.

separate
1dist1 30.9 31.1 31.3 31.8 35.8 35.8 31.9 35.7 31.9 32.4 32.4 32.2 31.8 31.8
1dist2 15.8 15.8 16.0 16.6 21.1 20.9 16.6 20.9 16.7 16.8 16.8 16.7 16.3 16.6
1dist3 6.7 6.9 6.8 7.4 12.5 12.6 7.1 12.6 7.2 7.3 7.4 7.1 6.9 6.9
1dist4 2.0 2.1 2.2 2.5 8.5 8.4 2.6 8.4 2.7 2.3 2.4 2.8 2.5 2.5

1rotate1 6.7 6.9 6.8 8.7 12.5 12.6 7.1 12.5 7.2 7.3 7.4 7.1 6.9 6.9
1rotate2 12.5 14.6 12.6 14.8 18.5 18.4 13.6 18.2 13.4 14.2 14.3 13.6 13.2 13.2
1rotate3 13.0 24.3 13.1 15.3 20.1 20.0 13.6 20.0 13.7 15.3 15.2 13.9 13.2 13.2
1rotate4 11.7 27.5 11.8 13.3 18.8 18.6 12.4 18.6 12.1 13.7 13.4 12.8 12.1 12.1
1rotate5 11.0 25.2 11.0 13.2 18.4 18.5 11.6 18.4 11.6 13.5 13.2 12.2 11.5 11.6
1rotate6 12.0 25.9 12.1 14.0 19.3 19.1 12.7 19.1 12.9 14.2 14.4 13.3 12.1 12.2
1rotate7 15.3 28.5 15.4 17.6 21.8 22.2 15.7 22.0 15.9 17.4 17.4 16.7 15.3 15.4
1rotate8 23.4 33.8 23.6 28.7 29.7 29.7 24.3 29.9 24.1 26.4 26.6 25.2 24.5 24.5
1rotate9 38.0 38.3 38.4 39.4 42.5 42.5 38.9 42.5 39.0 39.9 39.8 39.2 39.7 39.7
1scale1 6.7 6.9 6.8 7.5 12.5 12.6 7.1 12.6 7.2 7.4 7.4 7.1 6.9 6.9
1scale2 5.8 6.8 5.9 6.5 11.8 11.7 6.4 11.6 6.5 7.0 6.6 6.4 6.1 6.1
1scale3 4.9 6.8 5.0 5.7 10.9 10.7 5.6 10.7 5.5 6.3 5.8 5.5 5.1 5.1
1scale4 4.3 6.8 4.2 4.9 10.3 10.3 4.8 10.3 4.7 5.7 5.2 4.9 4.5 4.6
1scale5 3.7 6.8 3.8 4.5 9.9 9.9 4.2 9.9 4.0 5.4 4.8 4.5 4.0 4.0

1scale*1 6.6 6.7 6.8 7.1 12.2 12.3 7.3 12.3 7.1 7.0 7.1 7.1 7.0 7.0
1scale*2 14.4 14.7 14.6 15.2 19.8 19.8 15.4 19.8 15.3 15.6 15.4 14.9 15.2 15.2
1scale*3 17.0 19.0 17.4 19.0 22.6 22.8 18.2 22.8 18.1 20.5 20.0 19.2 17.6 17.8
1scale*4 16.6 21.8 17.0 18.3 22.2 22.2 17.8 22.2 17.7 22.0 21.0 19.7 17.3 17.3
1scale*5 15.2 24.3 15.3 16.7 20.9 20.9 16.4 21.0 16.2 20.9 19.8 18.9 15.8 15.8

2dist1 20.7 20.8 20.8 21.3 21.9 22.0 21.1 22.0 21.4 21.6 21.5 21.0 21.2 21.2
2dist2 12.1 12.1 12.1 12.4 13.2 13.2 12.4 13.2 12.4 12.8 12.7 12.4 12.6 12.6
2dist3 5.2 5.2 5.2 5.5 6.5 6.5 5.4 6.5 5.4 5.9 5.7 5.4 5.7 5.7
2dist4 1.9 1.9 1.9 2.0 3.1 3.1 2.0 3.1 2.0 2.3 2.1 1.9 2.0 2.0

2rotate1 5.2 5.2 5.2 5.9 6.5 6.5 5.4 6.5 5.4 5.9 5.7 5.4 5.7 5.7
2rotate2 8.7 9.6 8.8 9.3 10.1 10.1 9.1 10.1 9.1 9.3 9.3 9.2 9.2 9.2
2rotate3 9.0 15.0 9.1 9.6 10.6 10.6 9.4 10.6 9.3 9.6 9.5 9.4 9.4 9.4
2rotate4 8.0 21.3 8.0 8.5 9.7 9.7 8.4 9.7 8.4 8.5 8.4 8.4 8.4 8.4
2rotate5 7.7 25.5 7.7 8.1 9.3 9.4 8.0 9.4 7.9 8.1 8.0 8.1 8.2 8.2
2rotate6 8.3 25.5 8.4 8.7 9.9 9.9 8.6 10.0 8.6 8.8 8.7 8.7 8.7 8.8
2rotate7 10.5 25.3 10.5 11.1 12.1 12.1 10.9 12.1 10.8 11.1 11.0 10.8 10.7 10.7
2rotate8 16.2 24.6 16.2 17.1 17.6 17.6 16.5 17.6 16.4 16.9 16.8 16.0 16.1 16.1
2rotate9 22.9 22.9 22.9 23.3 23.8 24.0 23.2 23.9 23.2 23.3 23.2 23.1 23.0 23.0
2scale1 5.2 5.2 5.2 5.5 6.5 6.6 5.4 6.5 5.4 5.9 5.7 5.4 5.7 5.7
2scale2 4.6 5.2 4.7 4.9 6.0 6.0 4.8 5.9 4.8 4.9 4.8 4.8 5.0 5.0
2scale3 4.1 5.2 4.1 4.2 5.4 5.4 4.2 5.4 4.2 4.1 4.2 4.3 4.3 4.3
2scale4 3.7 5.2 3.7 3.8 5.1 5.0 3.8 5.0 3.8 3.8 3.9 3.9 3.8 3.8
2scale5 3.3 5.2 3.4 3.4 4.7 4.7 3.5 4.7 3.4 3.5 3.6 3.6 3.4 3.5

2scale*1 5.2 5.2 5.3 5.5 6.5 6.5 5.5 6.5 5.5 5.8 5.6 5.4 5.6 5.6
2scale*2 15.0 15.9 15.0 15.5 16.0 16.1 15.4 16.1 15.4 15.9 15.8 15.3 15.5 15.5
2scale*3 19.1 26.6 19.1 19.5 20.2 20.4 19.4 20.4 19.4 20.8 20.8 20.2 19.3 19.3
2scale*4 18.8 27.2 18.9 19.6 20.0 20.1 19.1 20.1 19.2 20.3 20.7 20.0 19.1 19.1
2scale*5 17.4 25.6 17.5 17.9 18.8 18.7 17.9 18.8 17.8 19.1 19.2 18.7 17.7 17.7

disks 100x100 0.0 49.3 35.5 13.0 24.2 24.2 21.1 24.2 20.5 15.3 16.0 11.6 11.3 13.0
disks 300x500 0.0 37.5 29.3 5.7 16.3 16.3 14.1 16.3 12.7 6.6 7.1 5.2 5.0 5.2
disks 400x400 0.0 49.9 30.8 6.1 18.5 18.4 17.5 18.4 16.7 7.0 7.4 5.7 5.5 5.5
disks 80x120 0.0 36.7 26.2 11.8 24.1 24.1 16.5 24.1 16.4 14.8 15.8 10.9 10.8 11.6

32

Chapter 2 Appendix

Table 2.2: Error rates (in %) of the pot-pot classifiers for simulated data sets.

dataset Bayes
Joint Separate Regressive separate

diag. α k-NN ROT mM diag. α k-NN ROT mM diag. α k-NN
1dist1 30.9 31.4 32.2 33.3 32.7 31.4 31.2 31.8 33.2 32.3 31.2 31.2 31.8 33.2
1dist2 15.8 16.2 16.7 16.9 16.7 16.2 16.0 16.3 16.5 16.4 16.0 16.0 16.6 16.5
1dist3 6.7 6.8 7.1 7.2 7.1 6.8 6.7 6.9 7.0 7.0 6.8 6.8 6.9 7.1
1dist4 2.0 2.4 2.8 2.7 2.5 2.5 2.3 2.5 2.5 2.4 2.4 2.3 2.5 2.6

1rotate1 6.7 6.8 7.1 7.2 7.1 6.8 6.7 6.9 7.0 7.0 6.8 6.8 6.9 7.1
1rotate2 12.5 13.4 13.6 14.3 13.5 14.4 13.0 13.2 13.9 13.6 13.0 13.0 13.2 14.0
1rotate3 13.0 13.8 13.9 15.3 14.0 16.6 13.1 13.2 13.8 13.4 13.1 13.1 13.2 13.8
1rotate4 11.7 12.5 12.8 14.1 12.8 15.3 11.6 12.1 12.6 11.9 11.6 11.6 12.1 12.7
1rotate5 11.0 12.2 12.2 13.7 12.3 14.8 11.2 11.5 11.8 11.5 11.2 11.2 11.6 11.9
1rotate6 12.0 13.0 13.3 14.5 13.2 16.0 11.9 12.1 12.8 12.3 12.0 11.9 12.2 12.8
1rotate7 15.3 16.2 16.7 18.1 16.2 19.9 15.0 15.3 16.0 15.3 15.1 15.0 15.4 16.2
1rotate8 23.4 25.0 25.2 26.7 25.0 30.2 23.8 24.5 25.4 24.3 23.9 23.8 24.5 25.4
1rotate9 38.0 38.6 39.2 40.8 40.3 38.7 39.5 39.7 42.1 40.7 39.5 39.5 39.7 42.1
1scale1 6.7 6.8 7.1 7.2 7.1 6.8 6.7 6.9 7.0 7.0 6.8 6.8 6.9 7.1
1scale2 5.8 6.2 6.4 6.5 6.2 6.7 6.0 6.1 6.1 6.4 6.2 6.2 6.1 6.1
1scale3 4.9 5.3 5.5 5.5 5.4 5.8 5.0 5.1 5.1 5.4 5.2 5.6 5.1 5.1
1scale4 4.3 4.7 4.9 4.9 4.9 5.2 4.2 4.5 4.4 4.8 4.6 5.4 4.6 4.4
1scale5 3.7 4.3 4.5 4.5 4.5 4.8 3.8 4.0 4.1 4.4 4.0 5.1 4.0 4.2

1scale*1 6.6 6.9 7.1 7.2 7.0 6.9 6.7 7.0 7.1 7.3 6.7 6.7 7.0 7.1
1scale*2 14.4 14.9 14.9 15.4 14.9 15.0 15.0 15.2 15.3 16.0 15.3 16.4 15.2 15.3
1scale*3 17.0 19.0 19.2 20.1 19.1 19.5 17.8 17.6 18.2 18.7 17.9 17.8 17.8 18.2
1scale*4 16.6 18.9 19.7 20.1 19.9 21.9 17.3 17.3 18.1 19.0 17.4 17.9 17.3 18.1
1scale*5 15.2 17.9 18.9 18.7 19.1 21.6 15.7 15.8 16.6 17.2 16.0 16.7 15.8 16.7

2dist1 20.7 21.1 21.0 21.7 21.2 21.0 21.4 21.2 21.7 21.5 21.3 21.5 21.2 21.7
2dist2 12.1 12.4 12.4 12.6 12.5 12.5 12.5 12.6 12.6 12.5 12.7 12.5 12.6 12.6
2dist3 5.2 5.4 5.4 5.6 5.4 5.4 5.6 5.7 5.7 5.6 5.7 5.6 5.7 5.7
2dist4 1.9 1.9 1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.1 2.1 2.0 2.0 2.2

2rotate1 5.2 5.4 5.4 5.6 5.4 5.4 5.6 5.7 5.7 5.6 5.7 5.6 5.7 5.7
2rotate2 8.7 9.0 9.2 9.3 9.1 9.6 9.1 9.2 9.4 9.1 9.3 9.2 9.2 9.4
2rotate3 9.0 9.2 9.4 9.7 9.4 12.0 9.3 9.4 9.5 9.4 9.5 9.4 9.4 9.6
2rotate4 8.0 8.3 8.4 8.7 8.4 10.5 8.4 8.4 8.5 8.4 8.4 8.4 8.4 8.6
2rotate5 7.7 8.0 8.1 8.4 8.2 10.1 8.1 8.2 8.2 8.1 8.2 8.1 8.2 8.2
2rotate6 8.3 8.5 8.7 8.9 8.7 10.7 8.7 8.7 8.8 8.7 8.8 8.7 8.8 8.9
2rotate7 10.5 10.6 10.8 11.0 10.8 13.4 10.7 10.7 10.9 10.8 10.8 10.8 10.7 10.9
2rotate8 16.2 16.0 16.0 16.5 16.0 20.0 16.2 16.1 16.2 16.2 16.2 16.2 16.1 16.3
2rotate9 22.9 23.0 23.1 23.2 23.2 23.1 22.9 23.0 23.1 23.2 23.1 23.0 23.0 23.1
2scale1 5.2 5.4 5.4 5.6 5.4 5.4 5.6 5.7 5.7 5.6 5.7 5.6 5.7 5.7
2scale2 4.6 4.8 4.8 5.0 4.8 5.0 5.4 5.0 5.1 5.1 5.1 5.5 5.0 5.2
2scale3 4.1 4.2 4.3 4.5 4.3 4.5 4.7 4.3 4.4 4.4 4.3 5.1 4.3 4.6
2scale4 3.7 3.9 3.9 4.2 3.9 4.4 4.1 3.8 3.8 3.9 3.9 4.3 3.8 4.0
2scale5 3.3 3.6 3.6 3.9 3.6 4.3 3.8 3.4 3.5 3.5 3.5 4.3 3.5 3.7

2scale*1 5.2 5.5 5.4 5.6 5.5 5.4 5.6 5.6 5.7 5.6 5.7 5.7 5.6 5.7
2scale*2 15.0 15.4 15.3 15.8 15.4 15.4 17.7 15.5 15.7 15.8 15.7 19.0 15.5 15.7
2scale*3 19.1 20.2 20.2 20.6 20.2 21.0 20.4 19.3 19.9 19.6 19.3 21.6 19.3 20.0
2scale*4 18.8 20.1 20.0 20.2 20.5 21.1 19.8 19.1 19.5 19.3 19.2 20.6 19.1 19.6
2scale*5 17.4 18.6 18.7 19.1 19.0 20.8 18.5 17.7 18.1 18.0 17.7 18.8 17.7 18.1

disks 100x100 0.0 11.5 11.6 7.8 22.9 7.8 11.8 11.3 7.9 22.3 8.1 12.4 13.0 8.1
disks 300x500 0.0 5.6 5.2 2.9 9.4 2.9 4.8 5.0 3.4 9.3 3.7 5.0 5.2 3.5
disks 400x400 0.0 5.7 5.7 4.0 10.8 4.0 5.7 5.5 3.6 11.8 3.8 5.8 5.5 3.8
disks 80x120 0.0 10.9 10.9 6.7 18.6 6.7 10.4 10.8 7.0 17.7 7.2 11.5 11.6 7.2

33

Chapter 2 Appendix

Table 2.3: Error rates (in %) of different classifiers for real data sets.

Columns (7) – (11) and (14) – (16): α-classifier in the DD- and pot-pot plots.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Dknn Dknn pot-pot pot-pot pot-pot
dataset N d LDA QDA KNN Zonoid HS Mah Proj Spat HS Mah joint separate regress.

separate
baby 247 5 22.3 22.3 21.5 22.7 22.7 24.7 21.5 25.5 29.1 32.8 20.2 23.1 24.3

banknoten 200 6 0.5 0.5 0.5 0.5 0.5 1.0 0.5 1.0 2.0 5.0 0.5 0.0 0.0
biomed 194 4 16.0 12.4 12.4 13.4 11.3 12.4 12.9 13.4 26.8 17.5 13.4 9.3 9.8

bloodtransfusion 748 3 23.0 22.3 21.3 23.1 24.3 20.5 23.5 21.8 21.3 20.7 19.9 19.0 19.7
breast cancer wisconsin 699 9 4.0 4.9 3.1 19.3 14.9 3.6 15.7 3.7 27.6 31.8 0.9 0.7 0.7

bupa 345 6 30.1 40.6 30.7 30.7 30.4 29.9 27.8 29.9 30.7 31.3 29.9 29.0 29.9
chemdiab 1vs2 112 5 3.6 7.1 9.8 3.6 3.6 3.6 3.6 3.6 11.6 8.0 1.8 2.4 3.3
chemdiab 1vs3 69 5 10.1 8.7 8.7 10.1 8.7 10.1 7.2 7.2 8.7 11.6 8.7 5.8 7.2
chemdiab 2vs3 109 5 3.7 0.9 0.9 3.7 3.7 1.8 3.7 1.8 6.4 11.0 0.9 0.0 0.0

cloud 108 7 54.6 47.2 54.6 54.6 50.9 46.3 52.8 48.1 40.7 50.0 39.8 32.4 39.8
crabB MvsF 200 5 9.0 10.0 14.0 9.0 8.0 6.0 8.0 6.0 9.0 16.0 5.0 5.0 6.0
crabF BvsO 200 5 0.0 1.0 5.0 0.0 0.0 1.0 0.0 1.0 2.0 1.0 0.0 0.0 0.0
crabM BvsO 100 5 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 2.0 3.0 0.0 0.0 0.0
crabO MvsF 100 5 3.0 2.0 8.0 3.0 3.0 2.0 3.0 2.0 4.0 5.0 2.0 1.0 2.0

crab BvsO 100 5 0.0 0.0 3.5 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.0 0.0 0.0
crab MvsF 100 5 4.0 5.0 9.0 4.0 3.5 4.5 3.0 3.5 6.0 7.0 4.0 3.5 4.0

cricket CvsP 156 4 68.6 64.1 63.5 59.6 62.8 64.7 64.1 60.9 56.4 55.1 56.4 47.4 47.4
diabetes 768 8 22.4 26.6 25.1 33.9 30.1 24.6 29.4 24.7 28.6 29.3 22.1 22.4 24.2

ecoli cpvsim 220 5 1.4 1.8 1.8 1.4 2.3 1.4 2.3 1.4 14.5 9.5 0.9 0.9 1.8
ecoli cpvspp 195 5 3.1 4.1 3.6 4.1 4.6 4.6 4.6 5.1 14.4 9.2 3.1 3.6 3.6
ecoli imvspp 129 5 5.4 3.9 6.2 5.4 5.4 2.3 5.4 3.9 4.7 6.2 2.3 1.0 1.1

gemsen MvsF 1349 6 19.1 14.2 14.1 14.8 16.4 14.8 16.5 14.0 10.8 12.5 10.9 10.3 10.7
glass 146 9 27.4 39.7 18.5 27.4 30.8 30.1 33.6 28.1 33.6 30.8 23.4 17.8 23.3

groessen MvsF 230 3 10.9 10.4 15.7 10.0 12.6 10.9 12.2 10.9 12.6 12.2 10.4 7.8 9.6
haberman 306 3 25.2 24.5 24.5 26.8 28.1 27.1 26.5 25.5 28.8 29.7 23.9 23.9 25.2

heart 270 13 16.3 16.7 35.2 16.3 25.9 19.6 24.4 19.3 30.4 30.0 3.4 0.0 0.0
hemophilia 75 2 14.7 16.0 18.7 16.0 13.3 17.3 13.3 16.0 16.0 13.3 12.0 12.0 12.0

indian liver patient 1vs2 579 10 29.7 44.6 32.0 29.4 30.4 30.7 30.1 28.5 28.2 28.3 27.9 25.0 26.5
indian liver patient FvsM 579 9 24.5 63.0 25.4 24.9 24.9 24.7 26.1 25.7 24.7 24.2 24.4 22.7 22.7

iris setosavsversicolor 100 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
iris setosavsvirginica 100 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

iris versicolorvsvirginica 100 4 3.0 4.0 6.0 3.0 3.0 3.0 3.0 6.0 3.0 7.0 2.0 2.0 3.0
irish ed MvsF 500 5 45.0 43.4 47.0 42.0 40.4 45.2 40.6 45.6 43.0 44.2 39.8 37.4 37.6

kidney 76 5 28.9 28.9 32.9 28.9 30.3 30.3 30.3 31.6 30.3 38.2 23.7 15.8 17.1
pima 200 7 24.5 27.5 29.5 25.5 27.5 28.5 26.0 30.0 30.5 35.5 25.0 23.0 23.5

plasma retinol MvsF 315 13 14.3 14.0 13.7 14.3 15.9 14.6 17.1 14.3 13.7 12.7 12.0 9.1 9.2
segmentation 660 10 8.2 9.4 4.5 6.8 6.1 9.2 4.8 8.8 5.9 4.2 2.7 2.7 2.7
socmob IvsNI 1156 5 33.2 34.3 32.5 27.9 33.6 31.6 33.3 30.4 35.3 46.6 33.6 28.8 29.5
socmob WvsB 1156 5 28.1 29.2 18.9 17.5 18.3 19.9 18.4 19.5 17.3 31.1 28.3 16.4 16.7

tae 151 5 17.2 19.9 24.5 11.9 13.2 17.2 17.2 17.2 25.8 18.5 13.2 13.9 14.6
tennis MvsF 87 15 41.4 44.8 43.7 41.4 44.8 36.8 46.0 36.8 48.3 46.0 31.2 20.0 20.0

tips DvsN 244 6 6.1 3.7 7.8 10.7 8.2 3.3 9.0 3.7 9.4 8.6 3.7 2.9 3.3
tips MvsF 244 6 36.5 38.5 32.4 41.4 44.3 36.5 43.0 38.1 34.8 34.4 32.8 28.7 32.4

uscrime SvsN 47 13 17.0 19.1 10.6 17.0 17.0 19.1 17.0 19.1 17.0 27.7 0.0 0.0 0.0
vertebral column 310 6 15.5 17.4 16.5 15.8 15.8 14.5 17.4 15.8 15.8 16.5 15.2 13.5 14.5

veteran lung cancer 137 7 64.2 51.8 50.4 62.0 57.7 47.4 57.7 50.4 48.9 48.2 40.1 29.2 39.4
vowel MvsF 990 13 0.1 0.7 0.0 0.1 24.0 0.4 24.8 0.5 0.3 0.2 0.0 0.0 0.0

wine 1vs2 130 13 0.0 0.8 5.4 0.0 3.1 1.5 2.3 1.5 6.9 38.5 0.0 0.0 0.0
wine 1vs3 107 13 0.0 0.0 13.1 0.0 0.9 0.0 1.9 0.0 4.7 19.6 0.0 0.0 0.0
wine 2vs3 119 13 0.8 0.0 23.5 0.8 4.2 0.0 4.2 0.0 10.1 11.8 0.0 0.0 0.0

34

Chapter 2 Appendix

Table 2.4: Error rates (in %) of the pot-pot classifiers for real data sets.

dataset N d
Joint Separate Regressive separate

diag. α k-NN ROT mM diag. α k-NN ROT mM diag. α k-NN
baby 247 5 25.9 20.2 24.3 31.6 21.5 24.3 23.1 23.1 33.2 23.9 25.1 24.3 23.1

banknoten 200 6 0.5 0.5 0.0 2.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
biomed 194 4 14.4 13.4 14.9 16.5 14.4 10.8 9.3 10.8 11.9 12.4 13.4 9.8 10.8

bloodtransfusion 748 3 21.3 19.9 20.5 20.7 21.4 20.1 19.0 20.5 20.5 21.5 20.1 19.7 20.9
breast cancer wisconsin 699 9 0.9 0.9 3.6 4.1 0.9 0.7 0.7 3.0 8.0 2.5 0.7 0.7 3.9

bupa 345 6 30.1 29.9 30.4 31.3 32.2 30.1 29.0 30.1 31.9 31.0 32.8 29.9 30.1
chemdiab 1vs2 112 5 3.9 1.8 2.7 8.0 3.9 2.4 2.4 3.6 7.1 3.3 2.5 3.3 4.5
chemdiab 1vs3 69 5 11.6 8.7 8.7 13.0 8.7 5.8 5.8 4.3 13.0 7.2 7.2 7.2 7.2
chemdiab 2vs3 109 5 4.8 0.9 3.7 6.4 0.9 0.0 0.0 0.0 8.3 0.0 0.0 0.0 0.0

cloud 108 7 40.7 39.8 0.0 42.6 0.0 38.9 32.4 0.0 38.0 0.0 38.9 39.8 17.1
crabB MvsF 200 5 10.0 5.0 0.0 12.0 0.0 6.0 5.0 0.0 10.0 0.0 9.0 6.0 0.0
crabF BvsO 200 5 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
crabM BvsO 100 5 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
crabO MvsF 100 5 3.0 2.0 0.0 4.0 0.0 1.0 1.0 0.0 3.0 0.0 2.0 2.0 0.0

crab BvsO 100 5 0.6 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
crab MvsF 100 5 5.0 4.0 0.0 6.5 0.0 4.0 3.5 0.0 6.5 0.0 5.0 4.0 0.0

cricket CvsP 156 4 67.9 56.4 34.8 73.7 34.8 48.1 47.4 34.8 74.4 34.8 48.7 47.4 54.5
diabetes 768 8 26.2 22.1 23.0 27.6 22.7 24.3 22.4 23.8 28.5 24.9 25.5 24.2 24.7

ecoli cpvsim 220 5 2.7 0.9 1.8 3.2 0.9 1.4 0.9 0.9 2.7 2.3 1.8 1.8 1.8
ecoli cpvspp 195 5 3.6 3.1 3.6 3.6 4.1 3.6 3.6 3.6 4.6 4.1 3.6 3.6 3.6
ecoli imvspp 129 5 2.9 2.3 3.1 3.9 2.9 1.0 1.0 3.1 3.1 1.1 1.1 1.1 3.1

gemsen MvsF 1349 6 10.6 10.9 10.5 10.5 13.3 10.2 10.3 10.5 10.2 13.4 11.0 10.7 10.5
glass 146 9 24.1 23.4 21.5 24.1 27.1 22.4 17.8 25.3 26.9 27.8 26.2 23.3 25.3

groessen MvsF 230 3 10.0 10.4 9.6 10.9 10.4 8.3 7.8 7.4 11.7 10.0 9.1 9.6 9.6
haberman 306 3 25.8 23.9 23.9 27.1 25.5 24.5 23.9 23.9 25.5 26.1 25.2 25.2 24.8

heart 270 13 3.4 3.4 17.4 23.7 5.3 0.0 0.0 12.5 23.7 0.0 0.0 0.0 12.5
hemophilia 75 2 12.0 12.0 9.3 12.0 14.7 13.3 12.0 9.3 13.3 16.0 13.3 12.0 10.7

indian liver patient 1vs2 579 10 28.4 27.9 27.8 29.1 28.5 26.0 25.0 25.9 26.8 28.5 26.3 26.5 26.3
indian liver patient FvsM 579 9 24.2 24.4 24.2 24.4 24.2 22.7 22.7 22.8 24.3 24.0 22.7 22.7 23.5

iris setosavsversicolor 100 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
iris setosavsvirginica 100 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

iris versicolorvsvirginica 100 4 2.0 2.0 0.0 4.0 0.0 3.8 2.0 0.0 5.0 0.0 3.8 3.0 0.0
irish ed MvsF 500 5 42.8 39.8 38.5 42.6 38.5 39.2 37.4 38.4 40.0 40.0 41.0 37.6 39.0

kidney 76 5 26.0 23.7 14.9 23.7 14.9 13.2 15.8 13.8 25.0 13.8 13.2 17.1 13.8
pima 200 7 25.5 25.0 20.7 28.5 20.7 25.5 23.0 21.4 30.5 22.0 25.5 23.5 21.4

plasma retinol MvsF 315 13 12.0 12.0 8.3 16.2 12.7 9.1 9.1 9.1 14.3 13.3 9.2 9.2 9.2
segmentation 660 10 2.7 2.7 4.5 5.0 2.7 2.7 2.7 5.0 5.2 2.8 2.7 2.7 5.0
socmob IvsNI 1156 5 40.3 33.6 32.4 45.9 33.7 31.1 28.8 30.6 30.4 31.7 31.2 29.5 30.6
socmob WvsB 1156 5 30.5 28.3 28.4 29.5 28.7 17.1 16.4 17.0 17.0 20.8 17.7 16.7 17.0

tae 151 5 16.6 13.2 13.9 15.9 14.4 14.6 13.9 12.6 15.2 14.5 14.6 14.6 13.2
tennis MvsF 87 15 31.2 31.2 32.2 36.8 31.2 20.0 20.0 26.3 34.5 30.0 20.0 20.0 26.3

tips DvsN 244 6 4.1 3.7 4.5 6.6 3.7 3.7 2.9 2.9 5.3 3.3 4.1 3.3 4.5
tips MvsF 244 6 35.7 32.8 33.8 43.0 33.8 33.2 28.7 32.0 39.8 33.6 33.6 32.4 32.8

uscrime SvsN 47 13 0.0 0.0 0.0 17.0 12.8 0.0 0.0 0.0 19.1 17.0 0.0 0.0 0.0
vertebral column 10 6 17.4 15.2 16.5 17.4 15.2 16.5 13.5 14.2 17.1 15.2 19.7 14.5 14.2

veteran lung cancer 37 7 43.0 40.1 40.9 43.1 44.6 42.1 29.2 33.6 43.1 44.5 42.4 39.4 35.0
vowel MvsF 990 13 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.1

wine 1vs2 130 13 0.0 0.0 0.8 6.9 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 0.0
wine 1vs3 107 13 0.0 0.0 0.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
wine 2vs3 119 13 0.0 0.0 1.7 5.0 1.7 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0

35

Chapter 3

Depth and depth-based classification

with R-package ddalpha

3.1 Introduction

Consider the following setting for supervised classification: Given a training sample consisting

of q classes X1, ...,Xq, each containing ni, i = 1, ..., q, observations in Rd. For a new observa-

tion x0, a class should be determined, to which it most probably belongs. Depth-based learning

started with plug-in type classifiers. Ghosh and Chaudhuri (2005b) construct a depth-based

classifier, which, in its näıve form, assigns the observation x0 to the class in which it has max-

imal depth. They suggest an extension of the classifier, that is consistent w.r.t. Bayes risk for

classes stemming from elliptically symmetric distributions. Further Dutta and Ghosh (2011,

2012) suggest a robust classifier and a classifier for Lp-symmetric distributions, see also Cui

et al. (2008), Mosler and Hoberg (2006), and additionally Jörnsten (2004) for unsupervised

classification.

A novel way to perform depth-based classification has been suggested by Li et al. (2012):

first map a pair of training classes into a two-dimensional depth space, which is called the

DD-plot, and then perform classification by selecting a polynomial that minimizes empirical

risk. Finding such an optimal polynomial numerically is a very challenging and — when

done appropriately — computationally involved task, with a solution that in practice can

be unstable (see Mozharovskyi, 2015, Section 1.2.2 for examples). In addition, the DD-plot

should be rotated and the polynomial training phase should be done twice. Nevertheless,

the scheme itself allows to construct optimal classifiers for wider classes of distributions than

the elliptical family. Being further developed and applied by Vencalek (2011), Lange et al.

(2014b), Mozharovskyi et al. (2015) it proved to be useful in practice, also in the functional

setting (Mosler and Mozharovskyi, 2015, Cuesta-Albertos et al., 2016).

The general depth-based supervised classification framework implemented in the R-package

ddalpha can be described as follows. In the first part of the training phase, each point of the

training sample is mapped into the q-variate space of its depth values with respect to each of

the classes xi 7→ (D(xi|X1), ..., D(xi|Xq)). In the second part of the training phase, a low-

Chapter 3 Introduction

dimensional classifier, flexible enough to account for the change in data topology due to the

depth transform, is employed in the depth space. We suggest to use the α-procedure, which is a

nonparametric, robust, and computationally efficient separator. When classifying an unknown

point x0, the first part is the same as in the training phase, (x0 7→ (D(x0|X1), ..., D(x0|Xq))),

and in the second part the trained q-variate separator assigns the depth-transformed point to

one of the classes. Depth notions best reflecting data geometry share the common feature to

attain value zero immediately beyond the convex hull of the data cloud. Thus, if such a data

depth is used in the first phase, it may happen that x0 is mapped to the origin of the depth

space, and thus cannot be readily classified. We call such a point an outsider and suggest

to apply a special treatment to assign it. If the data is of functional nature, a finitization

step based on the location-slope (LS-) transform precedes the above described process. Depth

transform, α-procedure, outsider treatment, and the preceding LS-transform constitute the

DDα-classifier. This together with the depth-calculating machinery constitutes the heart of

the R-package ddalpha.

3.1.1 The R-package ddalpha

The R-package ddalpha is a software directed to fuse experience of the applicant with re-

cent theoretical and computational achievements in the area of data depth and depth-based

classification. It provides an implementation for exact and approximate computation of seven

most reasonable and widely applied depth notions: Mahalanobis, halfspace, zonoid, projection,

spatial, simplicial and simplicial volume depths. The variety of depth-calculating procedures

includes functions for computation of data depth of one or more points w.r.t. a data set, con-

struction of the classification-ready q-dimensional depth space, visualization of the bivariate

depth function for a sample in the form of upper-level contours and of a 3D-surface.

The main feature of the proposed methodology on the DD-plot is the DDα-classifier,

which is an adaptation of the α-procedure to the depth space. Except for its efficient and

fast implementation, ddalpha suggests other classification techniques that can be employed

in the DD-plot: the original polynomial separator by Li et al. (2012) and the depth-based

k-NN-classifier proposed by Vencalek (2011).

Halfspace, zonoid and simplicial depths vanish beyond the convex hull of the sample, and

thus cause outsiders during classification. For this case, ddalpha offers a number of outsider

treatments and a mechanism for their management.

If it is decided to employ the DD-classifier, its constituents are to be chosen: data depth,

classification technique in the depth space, and, if needed, outsider treatment and aggregation

scheme for multi-class classification. Their parameters, such as type and subset size of the

variance-covariance estimator for Mahalanobis and spatial depth, number of approximating

directions for halfspace and projection depth or fraction of simplices for approximating sim-

plicial and simplicial volume depths, degree of polynomial extension for the α-procedure or

the polynomial classifier, number of nearest neighbors in the depth space or for an outsider

treatment, etc. must be set. Rich built-in benchmark procedures allow to estimate the empir-

37

Chapter 3 Introduction

ical risk and error rates of the DD-classifier and the portion of outsiders help in making the

decision concerning the settings.

ddalpha possesses tools for immediate classification of functional data in which the measure-

ments are first brought onto a finite dimensional basis, and then fed to the depth-classifier. In

addition, the componentwise classification technique by Delaigle et al. (2012) is implemented.

Unlike other packages, ddalpha implements various depth functions and classifiers for mul-

tivariate and functional data under one roof. ddalpha is the only package that implements

zonoid depth and efficient exact halfspace depth. All depths in the package are implemented

for any dimension d ≥ 2; except for the projection depth all implemented algorithms are exact,

and supplemented by their approximating versions to deal with the increasing computational

burden for large samples and higher dimensions. It also supports user-friendly definitions

of depths and classifiers. In addition, the package contains 50 multivariate and 4 functional

ready-to-use classification problems and data generators for a palette of distributions.

Most of the functions of the package are programmed in C++, in order to be fast and effi-

cient. The package has a module structure, which makes it expandable and allows user-defined

custom depth methods and separators. ddalpha employs boost (package BH Eddelbuettel,

Emerson and Kane (2016)), a well known fast and widely applied library, and resorts to Rcpp

(Eddelbuettel, Francois, Allaire, Ushey, Kou, Bates and Chambers, 2016) allowing for calls of

R functions from C++.

3.1.2 Comparison to existing implementations

Having proved to be useful in many areas, data depth and its applications find implementation

in a number of R-packages: aplpack (Wolf, 2014), depth (Genest et al., 2012), localdepth

(Agostinelli et al., 2013), fda.usc (Febrero-Bande and Oviedo de la Fuente, 2012), rsdepth

(Mustafa et al., 2014), depthTools (Lopez-Pintado and Torrente, 2013), MFHD (Hubert and

Vakili, 2013), depth.plot (Mahalanobish and Karmakar, 2015), DepthProc (Kosiorowski et al.,

2016), WMTregions (Bazovkin, 2013), modQR (Šiman and Boček, 2016), OjaNP (Fischer

et al., 2016), and MATLAB-packages: CompPD (Liu and Zuo, 2015) and modQR (Boček and

Šiman, 2016), which suggest substantial possibilities. Out of this diversity, we concentrate on

the two main aspects to which the package ddalpha is devoted, namely computation of the

multivariate data depth function and depth-based supervised classification.

Regarding the depth calculation, the wide range of the possibilities of the package ddalpha

can be better seen in comparison with the existing functionality on calculation of data depth.

Being a monotone transformation of the Mahalanobis distance, Mahalanobis depth can be

programmed in a few script lines, and due to its wide spread is implemented in numerous

software packages, among others, e.g., DepthProc, localdepth, fda.usc from the above list.

The R-package ddalpha adds a possibility to compute robust Mahalanobis depth using MCD

estimates for mean and covariance matrix. Spatial depth can be computed using the R-package

depth.plot that also provides spatial ranks and constructs corresponding DD-plots; different

to it ddalpha allows to compute affine-invariant spatial depth, while the affine invariance can

38

Chapter 3 Introduction

be accounted for in a robust way. Simplicial depth can be calculated exactly by the R-packages

depth and fda.usc for bivariate data sets, and by the R-package localdepth in higher dimen-

sions, while depth also provides an implementation for exact simplicial volume depth in any

dimension. To avoid the enormous burden of exact computation, ddalpha additionally sug-

gests a possibility to approximate both depths, either keeping computation time constant

(in n, given d) or maintaining calculation precision on the same level. Projection depth and

associated estimators can be computed exactly using the MATLAB-package CompPD. While

exact computation of the projection depth even for moderate data sets is infeasible, one can

make use of its approximation by minimizing over univariate projections on random directions,

implemented in the R-packages DepthProc and fda.usc. ddalpha only approximates the pro-

jection depth, but does it not only by random projections but using a fast local optimization

algorithm as well.

Most distinctive is the computation of the halfspace and zonoid depths. For d ≤ 3, exact

halfspace depth can be calculated by the R-package depth. Pioneering for d > 3, Liu and

Zuo (2014a) construct an exact algorithm which regards all necessary halfspaces exploiting

the idea of the cone segmentation of the Euclidean space, whose MATLAB-implementation can

be obtained upon request from the authors. Regarding these halfspaces in a combinatorial

order, Dyckerhoff and Mozharovskyi (2016) propose an entire family of algorithms, which are

sizeably more efficient (e.g., 16.1 seconds on Intel Core i7-2600 3.4 GHz against 10 hours on

Intel Pentium Duo 2.0 GHz when computing depth of a single point w.r.t. a sample of n = 160

and d = 5) and do not require data to be in general position. Three most important cases of

this family are implemented in ddalpha. ddalpha is the only software providing an (efficient)

exact implementation for zonoid depth, by means of linear programming (Dyckerhoff et al.,

1996).

ddalpha not only contains a comprehensive implementation of seven most popular depth

notions, but also provides a possibility to define a new (or extend an existing) depth function

corresponding exactly to the user’s needs, and integrates this in a generic way in further

procedures implemented in the package. Thus for any depth function, ddalpha plots depth

contours and the surface of the depth function for bivariate data set, but also provides the

entire implemented classification machinery. It is worth to note here that computation of

depth contours for d ≥ 3, as well as their visualization, are implemented for the weighted-

mean trimmed regions (R-package WMTregions) and zonoid depth as their particular case,

multiple-output regression quantiles (MATLAB- and R-packages modQR and halfspace depth

as their particular case and projection depth (MATLAB-package CompPD). Further, ddalpha

does not include median-search algorithms (i.e., finding the deepest location(s)) implemented,

e.g., in OjaNP for simlplicial volume depth, rsdepth for the ray shooting depth, MFHD for

bivariate functional halfspace depth. Depth notions and accompanying statistics developed

for functional data can be calculated in such R-packages as DepthProc, fda.usc, depthTools,

MFHD, and do not constitute the content of the current thesis.

39

Chapter 3 Introduction

The main feature of ddalpha is the unified DD-plot based framework for depth-based clas-

sification, which allows for choosing the data depth to construct the DD-plot, the multivariate

classifier to employ there, the treatment for points not handled by the depth if this is the case,

and the discretization scheme for projection of functional data onto a finite-dimensional basis

and the aggregation scheme for multi-class classification if needed. Together with a variety

of depths, multivariate separators, and outsider treatments, ddalpha contains tools for visu-

alization and validation of classification results, and has by that no analogs. DD-plot-based

techniques employing functional depths and suited for supervised classification of functional

data are implemented in the R-package fda.usc.

3.1.3 Outline of the chapter

To facilitate understanding and keep the presentation solid, the functionality of the R-package

ddalpha is illustrated through the chapter on the same functional data set “ECG Five Days”

from Chen et al. (2015), which is a long ECG time series constituting two classes. The data

set originally contains 890 objects. We took a subset consisting of 70 objects only (35 from

each of the days) which best demonstrates the general and complete aspects of the proposed

procedures (e.g., existence of outliers in its bivariate projection or necessity of three features

in the α-procedure).

0 20 40 60 80 100 120 140

−
6

−
4

−
2

0
2

4
6

time

lo
ca

tio
n

0 20 40 60 80 100 120 140

−
6

−
4

−
2

0
2

4

time

sl
op

e

Figure 3.1: ECG Five Days data (left) and their derivatives (right).

In Section 3.5 functional data are transformed into a finite dimensional space using the

LS-transform, as it is shown in Figure 3.1 presenting the functions and their derivatives. In

this example we choose L = S = 1, and thus the LS-transform produces the two-dimensional

discrete space, where each function is described by the area under the function and under its

derivative as it is shown in Figure 3.6, left. Then in Section 3.2, the depth is calculated in

this two-dimensional space (Figure 3.6, middle) and the DD-plot is constructed in Section 3.3

(Figure 3.6, right). The classification is performed by the DDα-separator in the DD-plot. The

steps of the α-procedure are illustrated in Figure 3.7.

Section 3.2 presents a theoretical description of the data depth and the depth notions im-

plemented in the package. In addition, it compares their computation time and performance

40

Chapter 3 Data depth

when employed in the maximum depth classifier. Section 3.3 includes a comprehensive algo-

rithmic description of the DDα-classifier with a real-data illustration. Further, it discusses

other classification techniques that can be employed in the DD-plot. The questions whether

one should choose a depth that avoids outsiders or should allow for outsiders and classify them

separately, and in which way, are considered in Section 3.4. Section 3.5 addresses the classi-

fication of functional data. In Section 3.6, the basic structure and concepts of the R-package

user interface are presented, along with a discussion of their usage for configuring the classifier

and examples for calling its functions.

3.2 Data depth

This section regards depth functions. First (Section 3.2.1), we briefly review the concept of

data depth and its fundamental properties. Then (Section 3.2.2), we give the definitions in

their empirical versions for several depth notions: Mahalanobis, projection, spatial, halfspace,

simplicial, simplicial volume, zonoid depths. For each notion, we shortly discuss relevant com-

putational aspects, leaving motivations, ideas, and details to the corresponding literature and

the software manual. We do not touch the question of computation of depth-trimmed regions

for the following reasons: first, for a number of depth notions there exist no algorithms; then,

for some depth notions these can be computed using different R-packages, e.g., WMTregions

for the family of weighted-mean regions including zonoid depth (Bazovkin and Mosler, 2012) or

modQR for multiple-output quantile regression including halfspace depth as a particular case;

finally, this is not required in classification. After having introduced depth notions, we compare

the speed of the implemented exact algorithms by means of simulated data (Section 3.2.3).

The section is concluded (Section 3.2.4) by a comparison of error rates of the näıve maximum

depth classifier, paving a bridge to the more developed DD-plot classification which is covered

in the following sections.

3.2.1 The concept

Consider a point z ∈ Rd and a data sample X = (x1, ...,xn)> in the d-dimensional Euclidean

space, with X being a (n× d)-matrix and > being the transposition operation. A data depth

is a function D(z|X) : Rd 7→ [0, 1] that describes how deep, or central, the observation z is

located w.r.t. X. In a natural way, it involves some notion of center. This is any point of the

space attaining the highest depth value in X, and not necessarily a single one. In this view,

depth can be seen as a center-outward ordering, i.e., points closer to the center have a higher

depth, and those more outlying a smaller one.

The concept of a depth function can be formalized by stating postulates (requirements) it

should satisfy. Following Dyckerhoff (2004) and Mosler (2013), a depth function is a function

D(z|X) : Rd 7→ [0, 1] that is:

41

Chapter 3 Data depth

(D1) translation invariant : D(z+b|X+1nb
>) = D(z|X) for all b ∈ Rd (here 1n = (1, ..., 1)>),

(D2) linear invariant : D(Az|XA>) = D(z|X) for every nonsingular d× d matrix A,

(D3) zero at infinity : lim‖z‖→∞D(z|X) = 0,

(D4) monotone on rays : Let z∗ = argmaxz∈Rd D(z|X), then for all r ∈ Sd−1 the function

β 7→ D(z∗ + βr|X) decreases in the weak sense, for β > 0,

(D5) upper semicontinuous : the upper level sets Dα(X) = {z ∈ Rd : D(z|X) ≥ α} are closed

for all α.

For slightly different postulates see Liu (1992) and Zuo and Serfling (2000).

The first two properties state that D(·|X) is affine invariant. A in (D2) can be weakened to

isometric linear transformations, which yields an orthogonal invariant depth. Taking instead

of A some constant λ > 0 gives a scale invariant depth function. (D3) ensures that the upper

level sets Dα, α > 0, are bounded. According to (D4), the upper level sets are starshaped

around z∗, and Dmax
z∈Rd D(z|X)(X) is convex. (D4) can be strengthened by requiring D(·|X)

to be a quasiconcave function. In this case, the upper level sets are convex for all α > 0. (D5)

is a useful technical restriction.

Upper level sets Dα(X) = {x ∈ Rd : D(x|X) ≥ α} of a depth function are also called

depth-trimmed or central regions. They describe the distribution’s location, dispersion, and

shape. For given X, the sets Dα(X) constitute a nested family of trimming regions. Note that

due to (D1) and (D2) the central regions are affine equivariant, due to (D3) bounded, due to

(D5) closed, and due to (D4) star-shaped (respectively convex, if quasiconcaveness of D(·|X)

is additionally required).

3.2.2 Implemented notions

The R-package ddalpha implements a number of depths. Below we consider their empirical

versions. For each implemented notion of data depth, the depth surface (left) and depth

contours (right) are plotted in Figures 3.2 and 3.3 for bivariate data used in Section 3.5.

Mahalanobis depth is based on an outlyingness measure, viz. the Mahalanobis distance

(Mahalanobis, 1936) between z and a center of X, µ(X) say:

d2
Mah

(
z;µ(X),Σ(X)

)
=
(
z − µ(X)

)>
Σ(X)−1

(
z − µ(X)

)
.

The depth of a point z w.r.t. X is then defined as (Liu, 1992)

DMah(z|X) =
1

1 + d2
Mah

(
z;µ(X),Σ(X)

) , (3.1)

where µ(X) and Σ(X) are appropriate estimates of mean and covariance of X. This depth

function obviously satisfies all the above postulates and is quasi-concave, too. It can be re-

garded as a parametric depth as it is defined by a finite number of parameters (namely d(d+1)
2

).

Based on the two first moments, its depth contours are always ellipsoids centered at µ(X), and

42

Chapter 3 Data depth

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.006 −0.004 −0.002 0.000

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

data

Bivariate data

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.006 −0.004 −0.002 0.000

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

Mahalanobis

Mahalanobis depth

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.006 −0.004 −0.002 0.000

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

projection

Projection depth

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.006 −0.004 −0.002 0.000

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

spatial

Spatial depth

Figure 3.2: Depth plots and contours of bivariate data.

43

Chapter 3 Data depth

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.006 −0.004 −0.002 0.000

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

zonoid

Zonoid depth

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.006 −0.004 −0.002 0.000

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

halfspace

Halfspace depth

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.006 −0.004 −0.002 0.000

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

simplicial

Simplicial depth

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.006 −0.004 −0.002 0.000

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

simplicialVolume

Simplicial volume depth

Figure 3.3: Depth plots and contours of bivariate data.

44

Chapter 3 Data depth

thus independent of the shape of X. If µ(X) and Σ(X) are chosen to be moment estimates,

i.e., µ(X) = 1
n
X>1n being the traditional average and Σ(X) = 1

n−1
(X − 1nµ(X)>)>(X −

1nµ(X)>) being the empirical covariance matrix, the corresponding depth may be sensitive to

outliers. A more robust depth is obtained with the minimum covariance determinant (MCD)

estimator, see Rousseeuw and Leroy (1987).

Calculation of the Mahalanobis depth consists in estimation of the center vector µ(X) and

the inverse of the scatter matrix Σ(X). In the simplest case of traditional moment estimates

the time complexity amounts to O(nd2 +d3) only. Rousseeuw and Van Driessen (1999) develop

an efficient algorithm for computing robust MCD estimates.

Projection depth , similar to Mahalanobis depth, is based on a measure of outlyingness.

See Stahel (1981), Donoho (1982), and also Liu (1992), Zuo and Serfling (2000). The worst case

outlyingness is obtained by maximizing an outlyingness measure over all univariate projections:

oprj(z|X) = sup
u∈Sd−1

|z>u−m(X>u)|
σ(X>u)

,

with m(y) and σ(y) being any location and scatter estimates of a univariate sample y. Taking

m(y) as the mean and σ(y) as the standard deviation one gets the Mahalanobis outlyingness,

due to the projection property (Dyckerhoff, 2004). In the literature and in practice most

often median, med(y) = y(bn+1c
2), and median absolute deviation from the median, MAD(y) =

med(|y −med(y)1n|), are used, as they are robust. Projection depth is then obtained as

Dprj(z|X) =
1

1 + oprj(z|X)
. (3.2)

This depth satisfies all the above postulates and quasiconcavity. By involving the symmet-

ric scale factor MAD its contours are centrally symmetric and thus are not well suited for

describing skewed data.

Exact computation of the projection depth is a nontrivial task, which fast becomes in-

tractable for large n and d. Liu and Zuo (2014b) suggest an algorithm (and a MATLAB im-

plementation, see Liu and Zuo, 2015). In practice one may approximate the projection depth

from above by minimizing it over projections on k random lines, which has time complexity

O(knd). It can be shown that finding the exact value is a zero-probability event though.

Spatial depth (also L1-depth) is a distance-based depth formulated by Vardi and Zhang

(2000) and Serfling (2002), exploiting the idea of spatial quantiles of Chaudhuri (1996) and

Koltchinskii (1997). For a point z ∈ Rd, it is defined as one minus the length of the average

direction from X to z:

Dspt(z|X) = 1−
∥∥∥ 1

n

n∑
i=1

v
(
Σ−

1
2 (X)(z − xi)

)∥∥∥, (3.3)

with v(y) = y
‖y‖ if y 6= 0, and v(0) = 0. The scatter matrix Σ(X) provides the affine

invariance.

45

Chapter 3 Data depth

Affine invariant spatial depth satisfies all the above postulates, but is not quasiconcave. Its

maximum is referred to as the spatial median. In the one-dimensional case it coincides with

the halfspace depth, defined below.

Spatial depth can be efficiently computed even for large samples amounting in the simplest

case to time complexity O(nd2 + d3); for calculation of Σ−
1
2 (X) see the above discussion of

the Mahalanobis depth.

Halfspace depth follows the idea of Tukey (1975), see also Donoho and Gasko (1992).

The Tukey (=halfspace, location) depth of z w.r.t. X is determined as:

Dhs(z|X) = min
u∈Sd−1

1

n
#{i : x>i u ≤ z>u; i = 1, ..., n}. (3.4)

Halfspace depth satisfies all the postulates of a depth function. In addition, it is quasicon-

cave, and equals zero outside the convex hull of the support of X. For any X, there exists at

least one point having depth not smaller than 1
1+d

(Mizera, 2002). For empirical distributions,

halfspace depth is a discrete function of z, and the set of depth-maximizing locations — the

halfspace median — can consist of more than one point (to obtain a unique median, an average

of this deepest trimmed region can be calculated). Halfspace depth determines the empirical

distribution uniquely (Struyf and Rousseeuw, 1999, Koshevoy, 2002).

Dyckerhoff and Mozharovskyi (2016) develop a family of algorithms (for each d > 1) pos-

sessing time complexity O(nd−1 log n) and O(nd) (the last has proven to be computationally

more efficient for larger d and small n). These algorithms are applicable for moderate n and d.

For large n or d and (or) if the depth has to be computed many times, approximation by mini-

mizing over projections on random lines can be performed (Dyckerhoff, 2004, Cuesta-Albertos

and Nieto-Reyes, 2008). By that, Dhs(z|X) is approximated from above with time complexity

O(knd), and Dhs(X|X) with time complexity O
(
kn(d + log n)

)
, using k random directions

(see also Mozharovskyi et al., 2015).

Simplicial depth (Liu, 1990) is defined as the portion of simplices having vertices from

X which contain z:

Dsim(z|X) =
1(
n
d+1

) ∑
1≤i1<i2<...<id+1≤n

I
(
z ∈ conv(xi1 ,xi2 , ...,xid+1

)
)

(3.5)

with conv(Y) being the convex hull of Y and I(Y) standing for the indicator function, which

equals 1 if Y is true and 0 otherwise.

It satisfies postulates (D1), (D2), (D3), and (D5). The set of depth-maximizing locations

is not a singleton, but, different to the halfspace depth, it is not convex (in fact it is not even

necessarily connected) and thus simplicial depths fails to satisfy (D4). It characterizes the

empirical measure if the data, i.e. the rows of X, are in general position, and is, as well as

the halfspace depth, due to its nature rather insensitive to outliers, but vanishes beyond the

convex hull of the data conv(X).

46

Chapter 3 Data depth

Exact computation of the simplicial depth has time complexity of O(nd+1d3). Approxima-

tions accounting for a part of simplices can lead to time complexity O(kd3) only when drawing

k random (d+1)-tuples from X, or reduce real computational burden with the same time com-

plexity, but keeping precision when drawing a constant portion of
(
n
d+1

)
. For R2, Rousseeuw

and Ruts (1996) proposed an exact efficient algorithm with time complexity O(n log n) .

Simplicial volume depth (Oja, 1983) is defined via the average volume of the simplex

with d vertices from X and one being z:

Dsimv(z|X) =
1

1 + 1

(nd)
√

det
(
Σ(X)

) ∑1≤i1<i2<...<id≤n vol
(
conv(z,xi1 ,xi2 , ...,xid)

) (3.6)

with vol(Y) being the Lebesgue measure of Y .

It satisfies all above postulates, is quasiconcave, determines X uniquely (Koshevoy, 2003),

and has a nonunique median.

Time complexity of the exact computation of the simplicial volume depth amounts to

O(ndd3), and thus approximations similar to the simplicial depth may be necessary.

Zonoid depth has been first introduced by Koshevoy and Mosler (1997), see also Mosler

(2002) for a discussion in detail. The zonoid depth function is most simply defined by means of

depth contours — the zonoid trimmed regions. The zonoid α-trimmed region of an empirical

distribution is defined as follows: For α ∈
[
k
n
, k+1

n

]
, k = 1, ..., n−1 the zonoid region is defined

as

Zα(X) = conv
{ 1

αn

k∑
j=1

xij +
(

1− k

αn

)
xik+1

: {i1, ..., ik+1} ⊂ {1, ..., n}
}
,

and for α ∈
[
0, 1

n

)
Zα(X) = conv(X).

Thus, e.g., Z 3
n
(X) is the convex hull of the set of all possible averages involving three points

of X, and Z0(X) is just the convex hull of X.

The zonoid depth of a point z w.r.t. X is then defined as the largest α ∈ [0, 1] such that

Zα(X) contains z if z ∈ conv(X) and 0 otherwise:

Dzon(z|X) = sup{α ∈ [0, 1] : z ∈ Zα(X)}, (3.7)

where sup of ∅ is defined to be 0.

The zonoid depth belongs to the class of weighted-mean depths, see Dyckerhoff and Mosler

(2011). It satisfies all the above postulates and is quasiconcave. As well as halfspace and

simplicial depth, zonoid depth vanishes beyond the convex hull of X. Its maximum (always

equaling 1) is located at the mean of the data, thus this depth is not robust.

Its exact computation with the algorithm of Dyckerhoff et al. (1996), based on linear pro-

gramming and exploiting the idea of Danzig-Wolf decomposition, appears to be fast enough

for large n and d, not to need approximation.

47

Chapter 3 Data depth

A common property of the considered above depth notions is that they concentrate on

global features of the data ignoring local specifics of sample geometry. Thus they are unable

to reflect multimodality of the underlying distribution. Several depths have been proposed in

the literature to overcome this difficulty. Two of them were introduced in the classification

context, localized extension of the spatial depth (Dutta and Ghosh, 2015) and the data poten-

tial (Pokotylo and Mosler, 2016). They are also implemented in the R-package ddalpha. The

performance of these depths and of the classifiers exploiting them depends on the type of the

kernel and its bandwidth. While the behaviour of these two notions substantially differs from

the seven depth notions mentioned above, we leave them beyond the scope of this chapter and

relegate to the corresponding literature for theoretical and experimental results.

3.2.3 Computation time

To give insights into the speed of exactly calculating various depth notions we indicate computa-

tion times by graphics in Figure 3.4. On the logarithmic time scale, the lines represent the time

(in seconds) needed to compute the depth of a single point, averaged over 50 points w.r.t. 60

samples, varying dimension d ∈ {2, 3, 4, 5} and sample length n ∈ {50, 100, 250, 500, 1000}.
Due to the fact that computation times of the algorithms do not depend on the particular

shape of the data, the data has been drawn from the standard normal distribution. Some of

the graphics are incomplete due to excessive time. Projection depth has been approximated

using 10 000 000/n random projections, all other depths have been computed exactly. Here we

used one kernel of the Intel Core i7-4770 (3.4 GHz) processor having enough physical memory.

One can see that, for all considered depths and n ≤ 1 000, computation of the two-

dimensional depth never oversteps one second. For halfspace and simplicial depth this can

be explained by the fact that in the bivariate case both depths depend only on the angles

between the lines connecting z with the data points xi and the abscissa. Computing these

angles and sorting them has a complexity of O(n log n) which determines the complexity of

the bivariate algorithms. As expected, halfspace, simplicial, and simplicial volume depths,

being of combinatorial nature, have exponential time growth in (n, d). Somewhat surpris-

ing, zonoid depth being computed by linear programming, seems to be way less sensitive to

dimension. One can conclude that in applications with restricted computational resources,

halfspace, projection, simplicial and simplicial volume depths may be rather approximated in

higher dimensions, while exact algorithms can still be used in the low-dimensional framework,

e.g. when computing time cuts of multivariate functional depths, or to assess the performance

of approximation algorithms.

48

Chapter 3 Data depth

d: 2 d: 3 d: 4 d: 5

1 ms

0.1 s

1 s

10 s

1 m

10 m

1 h

10 h

50 100 250 500 100050 100 250 500 100050 100 250 500 100050 100 250 500 1000
Number of points

T
im

e,
 s

ec
.

— zonoid, - - halfspace, — Mahalanobis, - - spatial,

— projection, — simplicial, - - simplicial volume

Figure 3.4: Calculation time of various depth functions, on the logarithmic time scale. For the
approximative versions see Section 2.7.4 and Figure 2.12.

3.2.4 Maximum depth classifier

To demonstrate the differing finite-sample behavior of the above depth notions and to construct

a bridge to supervised classification, in this section we compare the depths in the frame of the

maximum depth classifier. This is obtained by simply choosing the class in which x0 has the

highest depth (breaking ties at random):

class(x0) = argmax
i∈{1,...,q}

D(x0|Xi). (3.8)

Ghosh and Chaudhuri (2005b) have proven that its misclassification rate converges to the op-

timal Bayes risk if each X i, i = 1, ..., q, is sampled from a unimodal elliptically symmetric

distribution having a common nonincreasing density function, a prior probability 1
q
, and differ-

ing in location parameter only (location-shift model), for halfspace, simplicial, and projection

depths, and under additional assumptions for spatial and simplicial volume depths. Setting

q = 2, and n = 24, 50, 100, 250, 500, 1000, ni = n/2, i = 1, 2, we sample X i from a Student-t

distribution with location parameters µ1 = [0, 0], µ2 = [1, 1] and common scale parameter

Σ = [1 1
1 4], setting the degrees of freedom to t = 1, 5, 10,∞. Average error rates over 250 sam-

ples each checked on 1000 observations are indicated in Figure 3.5. The testing observations

49

Chapter 3 Data depth

were sampled inside the convex hull of the training set. The problem of outsiders is addressed

in Section 3.4. For n = 1000, experiments have not been conducted with the simplicial depth

due to high computation time.

As expected, with increasing n and t classification error and difference between various

depths decrease. As the classes stem from elliptical family, depths accounting explicitly for

ellipticity (Mahalanobis and spatial due to covariance matrix), symmetry of the data (projec-

tion), and also volume, form the error frontier. On the other hand, except for the projection

depth, they are nonrobust and perform poorly for Cauchy distribution. While projection depth,

even being approximated, behaves excellent in all the experiments, it may perform poorly if

distributions of X i retain asymmetry due to inability to reflect this.

t1 t5

t10 normal

32

34

36

38

40

42

44

46

48

32

34

36

38

40

42

44

46

48

10005002501005024 10005002501005024
Number of points

E
rr

or
s,

 %

— zonoid, - - halfspace, — Mahalanobis, - - spatial,

— projection, — simplicial, - - simplicial volume

Figure 3.5: Average error rates of the maximum depth classifier with different data depths. The
samples are simulated from the Student-t distribution possessing 1, 5, 10, and ∞ degrees of freedom.

50

Chapter 3 Classification in the DD-plot

3.3 Classification in the DD-plot

In Section 3.2.4, we have already considered the naive way of depth-based classification — the

maximum depth classifier. Its extension beyond the equal-prior location-shift model, e.g., to

account for differing shape matrices of the two classes, or unequal prior probabilities, is some-

what cumbersome, cf. Ghosh and Chaudhuri (2005a), Cui et al. (2008). A simpler way, namely

to use the DD-plot (or, more general, a q-dimensional depth space), has been proposed by Li

et al. (2012). For a training sample consisting of X1, ...,Xq, the depth space is constructed

by applying the mapping Rd → [0, 1]q : x 7→
(
D(x|X1), ..., D(x|Xq)

)
to each of the obser-

vations. Then the classification is performed in this low-dimensional space of depth-extracted

information, which, e.g., for q = 2 is just a unit square. The core idea of the DDα-classifier is

the DDα-separator, a fast heuristic for the DD-plot. This is presented in Section 3.3.1, where

we slightly abuse the notation introduced before. This is done in an intuitive way for the sake

of understandability and closeness to the implementation. Further, in Section 3.3.2 we discuss

application of alternative techniques in the depth space.

3.3.1 The DDα-separator

The DDα-separator (Lange and Mozharovskyi, 2014) is an extension of the α-procedure to

the depth space, see Vasil’ev (2003), Vasil’ev and Lange (1998) and Appendix to Chapter 3.

It iteratively synthesizes the space of features, coordinate axes of the depth space or their

(polynomial) extensions, choosing features minimizing a two-dimensional empirical risk in each

step. The process of space enlargement stops when adding features does not further reduce

the empirical risk. Here we give its comprehensive description.

Regard the two-class sample illustrated on Figure 3.6, left, representing discretizations of

the electrocardiogram curves. Explanation of the data is given in Section 3.1.3, we postpone

the explanation of the discretization scheme till Section 3.5 and consider a binary classification

in the DD-plot for the moment. Figure 3.6, middle, represents the depth contours of each class

computed using the spatial depth. The DD-plot is obtained as a depth mapping (X1,X2) 7→
Z = {zi = (Di,1, Di,2), i = 1, ..., n1 + n2}, when the first class is indexed by i = 1, ..., n1

and the second by i = n1 + 1, ..., n2, and writing Dspt(xi|X1) (respectively Dspt(xi|X2)) by

Di,1 (respectively Di,2) for shortness. Further, to enable for nonlinear separation in the depth

space, but to employ linear discrimination in the synthesized subspaces, the kernel trick is

applied. As the DDα-separator explicitly works with the dimensions (space axis), a finite-

dimensional resulting space is required. We choose the space extension degree by means of a

fast cross-validation, which is performed over a small range and in the depth space only. The

high computation speed of the DDα-separator allows for this.

We use polynomial extension of degree p, which results in r =
(
p+q
q

)
− 1 dimensions

(by default, we choose p among {1, 2, 3} using 10-fold cross-validation); truncated series

or another finitized basis of general reproducing kernel Hilbert spaces can be used alterna-

tively. This extended depth space serves as the input to the DDα-separator. For q = 2,

51

Chapter 3 Classification in the DD-plot

and taking p = 3, one gets the extended depth space Z(p) consisting of observations

z
(p)
i = (Di,1, Di,2, D2

i,1, Di,1 ×Di,2, D2
i,2, D3

i,1, D2
i,1 ×Di,2, Di,1 ×D2

i,2, D3
i,2) ∈ Rr.

After initializations, on the 1st step, the DDα-separator starts with choosing the pair of

extended properties minimizing the empirical risk. For this, it searches through all coordinate

subspaces Z(k,l) = {z(k,l)
i | z(k,l)

i = (z
(p)
ik , z

(p)
il), i = 1, ..., n1 + n2} for all 1 ≤ k < l ≤ r, i.e. all

pairs of coordinate axis of Z(p). For each of them, the angle α
(k,l)
1 minimizing the empirical

risk is found

α
(k,l)
1 ∈ argmin

α∈[0;2π)

∆(k,l)(α) (3.9)

with

∆(k,l)(α) =

n1∑
i=1

I(z
(p)
ik cosα− z(p)

il sinα < 0) +

n1+n2∑
i=n1+1

I(z
(p)
ik cosα− z(p)

il sinα > 0). (3.10)

For the regarded example, this is demonstrated in Figure 3.7 by the upper triangle of the

considered subspaces. Computationally, it is reasonable to check only those α corresponding

to (radial) intervals between points and to choose α
(k,l)
1 as an average angle between two

points from Z(k,l) in case there is a choice, as it is implemented in procedure GetMinError.

Computational demand is further reduced by skipping uninformative pairs, e.g., if one feature

is a power of another one and, therefore, the bivariate plot is collapsed to a line, as shown in

Figure 3.7. Finally, a triplet is chosen:

(α
(k∗,l∗)
1 , k∗, l∗) ∈ argmin

1≤k<l≤r, α∈[0;2π)

∆(k,l)(α), (3.11)

i.e. a two-dimensional coordinate subspace Z(k∗,l∗) in which the minimal empirical risk over

all such subspaces is achieved, and the corresponding angle α
(k∗,l∗)
1 minimizing this. Among

all the minimizing triplets (there may be several as empirical risk is discrete) it is reasonable

to choose k∗ and l∗ with the smallest polynomial degree, the simplest model. Using α
(k∗,l∗)
1 ,

Z(k∗,l∗) is convoluted to a real line

z(1∗) = {zi | zi = z
(p)
ik∗ cosα

(k∗,l∗)
1 − z(p)

il∗ sinα
(k∗,l∗)
1 , i = 1, ..., n1 + n2}, (3.12)

— first feature of the synthesized space.

On each following s-step (s ≥ 2), the DDα-separator proceeds as follows. The feature,

obtained by the convolution on the previous (s − 1)-step, is coupled with each of the ex-

tended properties of the depth space, such that a space Z((s−1)∗,k) = {z((s−1)∗,k)
i | z((s−1)∗,k)

i =

(z
((s−1)∗)
i , z

(p)
ik), i = 1, ..., n1 +n2} is regarded, for all k used in no convolution before. For each

Z((s−1)∗,k), ∆((s−1)∗,k)(α
(k)
s) and the corresponding empirical-risk-minimizing angle α

(k)
s are ob-

tained using (3.9) and (3.10). Out of all considered k, the one minimizing ∆((s−1)∗,k)(α
(k)
s) is

chosen, as in (3.11), and the corresponding Z((s−1)∗,k) is convoluted to z(s∗), as in (3.12). The

second part of Figure 3.7 illustrates a possible second step of the algorithm.

52

Chapter 3 Classification in the DD-plot

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

−0.008 −0.006 −0.004 −0.002 0.000 0.002

−
0.

01
5

−
0.

00
5

0.
00

0
0.

00
5

Discrete space

area under function

ar
ea

 u
nd

er
 d

er
iv

at
iv

e

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

−0.008 −0.006 −0.004 −0.002 0.000 0.002

−
0.

01
5

−
0.

00
5

0.
00

0
0.

00
5

Discrete space with depth contours

area under function

ar
ea

 u
nd

er
 d

er
iv

at
iv

e ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Original DD−plot

x

y

Figure 3.6: The discretized space (left), the depth contours with the separating rule (middle) and
the DD-plot with the separating line in it (right), using spatial depth. Here we denote the depth of
a point w.r.t. red and blue classes by x and y, respectively.

y x2 xy y2 x3 x2y xy2 y3

x ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 16

x

y

16

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 26

x

x^
2

26

●

●● ●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 23

x

xy

23
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 19

x

y^
2

19

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●
●● ●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●
●●

●

●
●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 26

x

x^
3

26

●

●● ●
●

●

●

● ●●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●●
● ●

●
● ●

●

●●● ●●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 23

x

x^
2y

23

●

●● ●●

●●

● ●●
●

●

●

●

●

●

●

●

●●●

●

●

●

●●● ● ●● ●

●

●
●

●
●
●

●

●

●
●

●

●

●
●

●

●
●

● ●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 23

x

xy
^2

23

●

●● ●●

●

●

● ●●●
●

●

●

●

●

●

●

●●●

●

●

●

●●● ● ●● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 21

x

y^
3

21

y

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 18

y

x^
2

18

●

●

● ●●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 26

y

xy

26

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 23

y

y^
2

23

● ●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●
●● ● ●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●
●●

●

●
●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 19

y

x^
3

19

●

●

● ●●
●

●

●

●● ●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●●
● ●

●
●●

●

● ●● ● ●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 26

y

x^
2y

26

●

●

● ●●●

● ●

●● ●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●●● ●● ●●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 23

y

xy
^2

23

●

●

● ●●●

●

●

●● ●●
●

●

●

●

●

●

●

● ●●

●

●

●

●●● ●● ●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 23

y

y^
3

23

x2

●

●

●● ●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 16

x^2

xy

16

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 16

x^2

y^
2

16

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●
●● ●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●
●●

●

●
●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 26

x^2

x^
3

26

●

●

●● ●
●

●

●

● ●●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●●
● ●

●
● ●

●

●●● ●●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 23

x^2

x^
2y

23

●

●

●● ●●

●●

● ●●
●

●

●

●

●

●

●

●

●●●

●

●

●

●●● ● ●● ●

●

●
●

●
●
●

●

●

●
●

●

●

●
●

●

●
●

● ●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 19

x^2

xy
^2

19

●

●

●● ●●

●

●

● ●●●
●

●

●

●

●

●

●

●●●

●

●

●

●●● ● ●● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 17

x^2

y^
3

17

xy
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 16

xy

y^
2

16

● ●

●
●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●
●● ●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●
●●

●

●
●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 18

xy

x^
3

18

●

●

●●●
●

●

●

●●●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●●
● ●

●
●●

●

●●● ●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 26

xy

x^
2y

26

●

●

●●●●

●●

●●●
●

●

●

●

●

●

●

●

●●●

●

●

●

●●● ● ●●●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 23

xy

xy
^2

23

●

●

●●●●

●

●

●●●●
●

●

●

●

●

●

●

●●●

●

●

●

●●● ● ●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 19

xy

y^
3

19

y2

● ●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●● ● ●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●
●●

●

●
●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 17

y^2

x^
3

17

●

●

● ●●
●

●

●

●● ●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●●
●●

●
●●

●

● ●● ● ●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 18

y^2

x^
2y

18

●

●

● ●●●

● ●

●● ●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●●●●●●●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 26

y^2

xy
^2

26

●

●

● ●●●

●

●

●● ●●
●

●

●

●

●

●

●

● ●●

●

●

●

●●●●●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 23

y^2

y^
3

23

x3

●

●

●●●
●

●

●

● ●●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●●
●●

●
● ●

●

●●●●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 16

x^3

x^
2y

16

●

●

●●●●

●●

● ●●
●

●

●

●

●

●

●

●

●●●

●

●

●

●●●● ●● ●

●

●
●
●
●
●

●

●

●
●

●

●

●
●

●

●
●

● ●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 16

x^3

xy
^2

16

●

●

●●●●

●

●

● ●●●
●

●

●

●

●

●

●

●●●

●

●

●

●●●● ●● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 16

x^3

y^
3

16

x2y

●

●

●●●●

●●

●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●●

●

●
●

●
●
●

●

●

●
●

●

●

●
●

●

●
●

●●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 16

x^2y

xy
^2

16

●

●

●●●●

●

●

●●●●
●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 16

x^2y

y^
3

16

xy2

●

●

●●●●

●

●

●●●●
●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1st step. error: 16

xy^2

y^
3

16

F1

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

2st step. error: 15

feature 1

x^
2

15
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

2st step. error: 16

feature 1

xy

16

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

2st step. error: 16

feature 1

y^
2

16

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●

●
● ●●● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●●

●

●

●

●
●

●

●

●
●

●

●●

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

2st step. error: 13

feature 1

x^
3

13

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6

0.
0

0.
1

0.
2

0.
3

0.
4

2st step. error: 15

feature 1

x^
2y

15

●

●

●● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●
● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6

0.
0

0.
1

0.
2

0.
3

0.
4

2st step. error: 16

feature 1

xy
^2

16

●

●

●● ●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●● ●

●

●

●

●●●● ●● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

2st step. error: 16

feature 1

y^
3

16

Figure 3.7: The steps of the α-procedure. The number of errors is shown in the left top corner of
each plot. The two-dimensional spaces are shown for each pair of properties. On the first step all
pairs of properties are considered, on the second step the remaining features are taken together with
the first feature F1. In this example properties x and y are selected on the first step and x3 on the
second.

53

Chapter 3 Classification in the DD-plot

Here we present the algorithm of the DDα-separator:

The main procedure

Input: X̃ = {x̃1, ..., x̃n}, x̃i ∈ Rd,

{y1, ..., yn}, yi ∈ {−1, 1} for all i = 1, ...,m = m−1 +m+1.

1. X = X̃
T

= {x1, ...,xd}, xi ∈ Rn.

2. Initialize arrays:

(a) array of available properties P ← {1..d};
(b) array of constructed features F ← ∅;
(c) for a feature f ∈ F denote f.p and f.α the number of the used property and the

optimal angle.

3. 1st step: Find the first features:

(a) select optimal starting features considering all pairs from P :

(opt1, opt2, emin, α) = arg ming∈G g.e with

G = {(p1, p2, e, α) : (e, α) = GetMinError(xp1 ,xp2), p1, p2 ∈ P , p1 < p2}
(b) F ← F ∪ {(opt1, 0), (opt2, α)}
(c) P ← P \ {opt1, opt2}
(d) set current feature f ′ = xopt1 × cos(α) + xopt2 × sin(α)

4. Following steps: Search an optimal feature space while empirical error rate decreases

while emin 6= 0 and P 6= ∅ do

(a) select next optimal feature considering all properties from P :

(opt, ẽmin, α) = arg ming∈G g.e with

G = {(p, e, α) : (e, α) = GetMinError(f ′,xp), p ∈ P }
(b) Check if the new feature improves the separation:

if ẽmin < emin then
emin = ẽmin

F ← F ∪ (opt, α)

P ← P \ opt
update current feature f ′ = f ′ × cos(α) + xopt × sin(α)

else break

5. Get the normal vector of the separating hyperplane:

(a) Declare a vector r ∈ Rd, ri = 0 for all i = 1, ..., d. Set a = 1.

(b) Calculate the vector components as rF i.p =
∏]F

j=i+1

(
cos(F j.α)

)
sin(F i.α):

for all i ∈ {]F ..2} do
rF i.p = a× sin(F i.α)

a = a× cos(F i.α)
rF 1.p = a

(c) Project the points on the ray: pi.y = yi, pi.x = r · x̃i
(d) Sort p w.r.t. p·.x in ascending order.

54

Chapter 3 Classification in the DD-plot

(e) Count the cardinalities before the separation plane

ml− =]{i : pi.y = −1,pi.x ≤ 0},
ml+ =]{i : pi.y = +1,pi.x ≤ 0}

(f) Count the errors

e− = ml+ +m− −ml−,

e+ = ml− +m+ −ml+

(g) if e− > e+ then

r ← −r

Output: the normal vector of the separating hyperplane r.

Procedure GetMinError

Input: current feature f ∈ Rn, property x ∈ Rn.

1. Obtain angles:

(a) Calculate αi = arctan xi
fj

, i = 1, ..., n, with arctan 0
0

= 0.

(b) Aggregate angles into set A. Denote Ai.α = αi and Ai.y = yi the angle and the

pattern of the corresponding point. Set Ai.y to 0 for the points having both xi = 0

and fi = 0.

(c) Sort A w.r.t. A·.α in ascending order.

2. Look for the optimal threshold:

(a) Define iopt = arg maxi

(
|
∑i

1Ai.y|+ |
∑n

i+1Ai.y|
)

as the place of the optimal thresh-

old and emin = n −maxi

(
|
∑i

1Ai.y|+ |
∑n

i+1Ai.y|
)

as the minimal number of in-

correctly classified points

(b) Define the optimal angle αopt = 1
2
(Aiopt+1.α +Aiopt+2.α)− π

2
.

Output: min error emin, optimal angle αopt

From the practical point of view, the routine DDα-separator has high computation speed

as in each plane it has the complexity of the quick-sort procedure: O
(∑q

i=1 ni log(
∑q

i=1 ni)
)
.

While minimizing empirical risk in two-dimensional coordinate subspaces and due to the

choice of efficient for classification features, the DDα-separator tends to be close to the op-

timal risk-minimizing hyperplane in the extended space. To a large extent, this explains the

performance of the DDα-procedure on finite samples.

The robustness of the procedure is twofold: First, regarding points, as the depth-space is

compact, the outlyingness of the points in it is restricted, and the DDα-separator is robust due

to its risk-minimizing nature, i.e. by the discrete (zero-or-one) loss function. And second, re-

garding features, the separator is not entirely driven by the exact points’ location, but accounts

for importance of features of the (extended) depth space. By that, the model complexity is

kept low; in practice a few features are selected only, see, e.g., Section 5.2 of Mozharovskyi

et al. (2015).

For theoretical results on the DDα-procedure the reader is referred to Section 4 of Lange

et al. (2014b). Mozharovskyi et al. (2015) provide an extensive comparative empirical study

55

Chapter 3 Outsiders

of its performance with a variety of data sets and for different depth notions and outsider

treatments, while Lange et al. (2014a) conduct a simulation study on asymmetric and heavy-

tailed distributions.

3.3.2 Alternative separators in the DD-plot

Besides the DDα-separator, the package ddalpha allows for two alternative separators in the

depth space: a polynomial rule and the k-nearest-neighbor (k-NN) procedure.

When Li et al. (2012) introduce the DD-classifier, they suggest to use a polynomial of

certain degree passing through the origin of the DD-plot to separate the two training classes.

Based on the fact that by choosing the polynomial order appropriately the empirical risk can

be approximated arbitrarily well, they prove the consistency of the DD-classifier for a wide

range of distributions including some important cases of the elliptically symmetric family. In

practice, the minimal error is searched by smoothing the empirical loss with a logistic function

and then optimizing the parameter of this function. This strategy has sources of instability

such as choice of the smoothing constant and multimodality of the loss function. The authors

(partially) solve the last issue by varying the starting point for optimization and multiply

running the entire procedure, which increases computation time. For theoretical derivations

and implementation details see Sections 4 and 5 of Li et al. (2012). For a simulation comparison

of the polynomial rule in the DD-plot and the DDα-separator see Section 5 of Lange et al.

(2014b).

In his PhD-thesis, Vencalek (2011) suggests to perform the k-NN classification in the depth

space, and proves its consistency for elliptically distributed classes with identical radial den-

sities. For theoretical details and a simulation study see Sections 3.4.3 and 3.7 of Vencalek

(2011), respectively. It is worth to notice that the k-NN-separator has another advantage —

it is directly extendable to more than two classes.

3.4 Outsiders

For a number of depth notions like halfspace, zonoid, or simplicial depth, the depth of a point

vanishes beyond the convex hull of the data. This leads to the problem that new points (to be

classified) lying beyond the convex hull of each of the training classes have depth zero w.r.t. all

of them. By that, they are depth-mapped to the origin of the DD-plot, and thus cannot be

readily classified. We call these points outsiders (Lange et al., 2014b).

Regard Figure 3.8, where three green points are to be classified. Point “1” has positive

depth in both classes, and based on its location in the DD-plot will be assigned to the less

scattered “red” class. Point “2” has zero depth in the “red” class, but a positive one in the

more scattered “blue” class, to which it will be assigned based on the classification rule in the

DD-plot. Point “3” on the other hand has zero depth w.r.t. both training classes, and thus

classification rule in the DD-plot is helpless. Nevertheless, visually it clearly belongs to the

“blue” class, and most probably would be correctly classified by a very simple classifier, say a

56

Chapter 3 Outsiders

−10 −5 0 5 10

−
1
0

−
5

0
5

1
0

x

y

23

0.0 0.1 0.2 0.3 0.4 0.5

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

D(|X1)

D
(
|X

2
)

1

2

3

.

.

11

Figure 3.8: Points to be classified (green) in the original (left) and depth (right) space.

poorly tuned k-NN (e.g. 1NN). The suggestion thus is to apply an additional fast classifier to

the outsiders.

The R-package ddalpha implements a number of outsider treatments: linear (LDA) and

quadratic (QDA) discriminant analysis, k-NN, maximum depth classifier based on Mahalanobis

depth; and additionally random classification or identification of outsiders for statistical anal-

ysis or passing to another procedure. For the same experimental setting as in Section 3.2.4, we

contrast these treatments in Figure 3.9, comparing classification errors on outsiders only. One

can see that for the heavy-tailed Cauchy distribution, where classes may be rather mixed, no

outsider treatment performs significantly better than random assignment. The situation im-

proves with increasing number of degrees of freedom of the Student-t distribution, with LDA

forming the classification error frontier, as the classes differ in location only. On the other

hand, with increasing ni, difference between the treatment becomes negligible. For an exten-

sive comparative study of different outsider treatments the reader is referred to Mozharovskyi

et al. (2015).

If outsiders pose a serious problem, one can go for a nowhere-vanishing depth. But in

general, the property of generating outsiders should not necessarily be seen as a shortfall, as it

allows for additional information when assessing the configured classifier or a data point to be

classified. If too many points are identified as outsiders (what can be checked by a validation

procedure), this may point onto inappropriate tuning. On the other hand, if outsiders appear

extremely rarely in the classification phase (or, e.g., during online learning), an outsider may

be an atypical observation not fitting to the data topology in which case one may not want to

classify it at all but rather label indicatively.

57

Chapter 3 An extension to functional data

t1 t5

t10 normal

0
5

10
15
20
25
30
35
40
45
50
55
60

0
5

10
15
20
25
30
35
40
45
50
55
60

24 50 100 250 500 1000 24 50 100 250 500 1000
Number of points

E
rr

or
s,

 %

— number of outsiders, — random, — LDA, — QDA, — k-NN, — Mahalanobis max depth

Figure 3.9: Error rates of various outsiders treatment. Only outsiders are classified.

3.5 An extension to functional data

Similar to Section 3.3, consider a binary classification problem in the space of real valued

functions defined on a compact interval, which are continuous and smooth everywhere ex-

cept for a finite number of points, i.e. given two classes of functions: F1 = {f1, ..., fn1} and

F2 = {f1, ..., fn2}, again indexing observations by i = 1, ..., n1, n1 + 1, ..., n1 + n2 for conve-

nience. (An aggregation scheme extends this binary classification to the multiple one.) The

natural extension of the depth-based classification to the functional setting consists in defining

a proper depth transform (F1,F2) 7→ Z = {zi = (D(fi|F1), D(fi|F2)), i = 1, ..., n1+n2} sim-

ilar to that in Section 3.3. For this, a proper functional depth should be employed (see Mosler

and Polyakova, 2012, Nieto-Reyes and Battey, 2016, and references therein for an overview),

followed by the suitable classification technique in the (finite dimensional) depth space. As the

functional data depth reduces space dimensionality from infinity to one, the final performance

is sensitive to the choice of the depth representation and of the finite-dimensional separator,

and thus both constituents should be chosen very carefully. Potentially, this lacks quantita-

tive flexibility because of the finite set of existing components. Nevertheless, in many cases

this solution provides satisfactory results; see a comprehensive discussion by Cuesta-Albertos

58

Chapter 3 An extension to functional data

et al. (2016) with experimental comparisons involving a number of functional depth notions

and q-dimensional classifiers, as well as their implementation in the R-package fda.usc. Corre-

sponding functional depth procedures can also be used with R-package ddalpha, see Section 3.6

for a detailed explanation.

ddalpha suggests two implementations of the strategy of immediate functional data pro-

jection onto a finite-dimensional space with further application of a multivariate depth-based

classifier: componentwise classification by Delaigle et al. (2012) and LS-transform proposed

by Mosler and Mozharovskyi (2015). Both methodologies allow to control for the quality of

classification in a quantitative way (i.e. by tuning parameters) when constructing the multi-

variate space, which in addition enables consistency derivations. For the first one the reader

is referred to the literature; the second one we present right below.

In application, functional data is usually given in a form of discretely observed

paths f̃ i = [fi(ti1), fi(ti2), ..., fi(tiNi)], which are the measurements at ordered (time) points

ti1 < ti2 < ... < tiNi , i = 1, ..., n1 + n2, not necessarily equidistant nor same for all i. Fitting

these to a basis is avoided as the choice of such a basis turns out to be crucial for classification

and thus should better not be independently selected prior to it. Instead, a simple scheme is

suggested based on integrating linearly extrapolated data and their derivatives over a chosen

number of intervals. Let mini ti1 = 0 and let T = maxi tiNi , then one obtains the following

finite-dimensional transform:

f̂i 7→ xi =
[∫ T/L

0

f̂i(t)dt, . . . ,

∫ T

T (L−1)/L

f̂i(t)dt,

∫ T/S

0

f̂ ′i(t)dt, . . . ,

∫ T

T (S−1)/S

f̂ ′i(t)dt
]
, (3.13)

with f̂i(t) being the function obtained by connecting the points (tij, fi(tij)), j = 1, . . . , Ni with

line segments and setting f̂i(t) = fi(ti1) when 0 ≤ t ≤ ti1 and f̂i(t) = fi(tiki) when tiNi ≤ t ≤ T ,

f̂ ′i(t) being its derivative, and L, S ≥ 0, L+ S ≥ 2 being integers. L and S are the numbers of

intervals of equivalent length to integrate over the location and the slope of the function, and

have to be tuned. One can use intervals of different length or take into account higher-order

derivatives (constructed as differences, say), but the suggested way appears to be simple and

flexible enough. Moreover it does not introduce any spurious information. The set of considered

LS-pairs can be chosen on the basis of some prior knowledge about the nature of the functions

or just by properly restricting the dimension of the constructed space by dmin ≤ L+S ≤ dmax.

Cross-validation is then used to choose the best LS-pair. ddalpha suggests to reduce the set

of cross-validated LS-pairs by employing the Vapnik-Chervonenkis bound. The idea behind is

that, while being conservative, the bound can still provide insightful ordering of the LS-pairs,

especially in the case when the empirical risk and the bound have the same order of magnitude.

Given a set of considerable pairs S = {(li, si)|i = 1, ..., Nls}, for each its element calcu-

late the Vapnik-Chervonenkis bound (see Mosler and Mozharovskyi, 2015, for this particular

derivation)

bV Ci = ε
(
c, F̂ (li,si)

1 , F̂ (li,si)

2

)
+

√
ln 2

∑li+si−1
k=0

(
n1+n2−1

k

)
− ln η

2(n1 + n2)
, (3.14)

59

Chapter 3 Usage of the package

where ε
(
c, F̂ (li,si)

1 , F̂ (li,si)

2

)
is the empirical risk achieved by a linear classifier c on the data

transformed according to (3.13) with L = li, S = si and 1− η is the chosen reliability level. In

ddalpha we set η = 1
n1+n2

, and choose c to be the LDA for its simplicity and speed. Then a sub-

set SCV ⊂ S is chosen possessing the smallest values of bV Ci :
(
(lj, sj) ∈ SCV , (lk, sk) ∈ S \SCV

)
⇒ (bV Cj < bV Ck), and cross-validation is performed over all (l, s) ∈ SCV . For the subsam-

ple referenced in introduction, the functions’ levels and slopes are shown in Figure 3.1; the

LS-representation is selected by reduced cross-validation due to (3.13) having (L, S) = (1, 1),

and is depicted in Figure 3.6, left.

3.6 Usage of the package

The package ddalpha is a structured solution that provides computational machinery for a

number of depth functions and classifiers for multivariate and functional data. It also allows

for user-defined depth functions and separators in the DD-plot (further DD-separators). The

structure of the package is presented in Figure 3.10.

DD-plot

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l
l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

0 5 10 15

0
2

4
6

8
1
0

1
2

1
4

w.r.t. 1

w
.r

.t
.

2

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l l

ll
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll
l

l
l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

-3 -2 -1 0 1 2

-2
-1

0
1

2

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l l

ll
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll
l

l
l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

-3 -2 -1 0 1 2

-2
-1

0
1

2

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l
l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

0 5 10 15

0
2

4
6

8
1
0

1
2

1
4

w.r.t. 1

w
.r

.t
.

2
Depth

transform Separation

Outsider
treatment

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l l

ll
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll
l

l
l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

-3 -2 -1 0 1 2

-2
-1

0
1

2

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l l

ll
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll
l

l
l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

-3 -2 -1 0 1 2

-2
-1

0
1

2

Rule in the
original space

Rule in the
DD-plot

Multivariate
data

5 10 15

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

Age, years

H
e
ig

h
t,
 c

m

Functional
data

L-S transform

DHB12

DD-classifier’s
parameters tuning

Functional classifier’s
parameters tuning

Statistical
inference

l llllll lll llllllll lll l

l llllll lll llllllll ll ll ll l lllllll

l

Benchmark

Figure 3.10: The structure of the package.

3.6.1 Basic functionality

Primary aims of the package are calculation of data depth and depth-classification.

Data depth is calculated by calling

R> depths <- depth.(x, data, notion = <depthName>, ...)

R> depths <- depth.<depthName>(x, data, ...)

Parameter notion specifies the used depth (<depthName>), data is a matrix with each row

being a d-variate point, and x is a matrix of objects whose depth is to be calculated. Additional

arguments (...) differ between depth notions. The output of the function is a vector of depths

of points from x. Most of the depth functions possess both exact and approximative versions

60

Chapter 3 Usage of the package

Table 3.1: Implemented depth algorithms.

Depth Exact Approximative Parameter
Mahalanobis moment mah.estimate

MCD

spatial moment mah.estimate

MCD

none

projection random method

linearize

halfspace recursive Sunif.1D method

plane

line

simplicial + + exact

simplicial volume + + exact

zonoid +

that are toggled with parameters exact and method, see Table 3.1. The exact algorithms of

Mahalanobis, spatial, and zonoid depths are very fast and thus exclude the need of approxi-

mation. Mahalanobis and spatial depths use either traditional moment or MCD estimates of

mean and covariance matrix. Methods random for projection depth and Sunif.1D for half-

space depth approximate the depth as the minimum univariate depth of the data projected

on num.directions directions uniformly distributed on Sd−1. The exact algorithms for the

halfspace depth implement the framework described in Section 3.2.2, where the dimensionality

k of the combinatorial space is specified as follows: k = 1 for method recursive, k = d−2 for

plane and k = d− 1 for line, see additionally Dyckerhoff and Mozharovskyi (2016). The sec-

ond approximating algorithm for projection depth is linearize — the Nelder-Mead method

for function minimization, taken from Nelder and Mead (1965) and originally implemented in

R by Subhajit Dutta. For simplicial and simplicial volume depths, parameter k specifies the

number (if k > 1) or portion (if 0 < k < 1) of simplices chosen randomly among all possible

simplices for approximation.

In addition, calculation of the entire DD-plot at once is possible by

R> dspace <- depth.space.(data, cardinalities, notion = <depthName>, ...)

R> dspace <- depth.space.<depthName>(data, cardinalities, ...)

The matrix data consists of q stacked training classes, and cardinalities is a vector contain-

ing numbers of objects in each class. The method returns a matrix with q columns representing

the depths of each point w.r.t. each class.

Classification can be performed either in two steps — training the classifier with the

function ddalpha.train and using it for classification in ddalpha.classify or predict, or

in one step — by function ddalpha.test(learn, test, ...) that trains the classifier with

learn sample and checks it on the test one. Other parameters are the same as for function

ddalpha.train and are described right below.

61

Chapter 3 Usage of the package

Function ddalpha.train is the main function of the package. Its structure is shown on the

right part of Figure 3.10.

R> ddalpha <- ddalpha.train(formula, data, subset,

+ depth = "halfspace", separator = "alpha",

+ outsider.methods = "LDA", outsider.settings = NULL,

+ aggregation.method = "majority",

+ use.convex = FALSE,

+ seed = 0, ...)

R> classes <- ddalpha.classify(ddalpha, objects,

+ outsider.method, use.convex)

R> classes <- predict(ddalpha, objects,

+ outsider.method, use.convex, ...)

The training set is passed either through data in a form of a matrix or a data set with each row

being a d-variate point and the last column being the class label, or using formula. In the latter

case the variables from the formula are found either in data or in the environment. The result-

ing set of columns is printed in the output. The used part of the observations may be addition-

ally specified with subset. The notion of the depth function and the DD-separator are speci-

fied with the parameters depth and separator, respectively. Parameter aggregation.method

determines the method applied to aggregate outcomes of binary classifiers during multiclass

classification. When "majority", q(q − 1)/2 binary one-against-one classifiers are trained,

and for "sequent", q binary one-against-all classifiers are taught. During classification, the

results are aggregated using the majority voting, where classes with larger proportions in the

training sample are preferred when tied (by that implementing both aggregating schemes at

once). Additional parameters of the chosen depth function and DD-separator are passed using

the dots, and are described in the help sections of the corresponding R-functions. Also, the

function allows to use a pre-calculated DD-plot by choosing depth = "ddplot". For each

depth function and depth-separator, a validator is implemented — a special R-function that

specifies the default values and checks the received parameters allowing by that definition of

custom depths and separators; see Section 3.6.2 for details.

Outsider treatment is a supplementary classifier for data that lie outside the convex

hulls of all q training classes. It is only needed during classification when the used data

depth produces outsiders or obtains zero values in the neighborhood of the data. Parameter

use.convex of ddalpha.train indicates whether outsiders should be determined as the points

not contained in any of the convex hulls of the classes from the training sample (TRUE) or those

having zero depth w.r.t. each class from the training sample (FALSE); the difference is ex-

plained by the depth approximation error. The following methods are available: "LDA", "QDA"

and "kNN"; affine-invariant k-NN ("kNNAff"), i.e. k-NN with Euclidean distance normalized

by the pooled covariance matrix, suited only for binary classification and using aggregation

with multiple classes and not accounting for ties, but very fast; maximum Mahalanobis depth

classifier ("depth.Mahalanobis"); equal and proportional randomization ("RandEqual" and

62

Chapter 3 Usage of the package

"RandProp") and ignoring ("Ignore") — a string “Ignored” is returned for the outsiders. Out-

sider treatment is set by means of parameters outsider.methods and outsider.settings in

ddalpha.train. Multiple methods may be trained and then the particular method is se-

lected in ddalpha.classify by passing its name to parameter outsider.method. Parameter

outsider.methods of ddalpha.train accepts a vector of names of basic outsider methods

that are applied with the default settings. Parameter outsider.settings allows to train

a list of outsider treatments, whose elements specify the names of the methods (used in

ddalpha.classify later) and their parameters.

Functional classification is performed with functions ddalphaf.train implementing

LS-transform (Mosler and Mozharovskyi, 2015) and compclassf.train implementing compo-

nentwise classification (Delaigle et al., 2012).

R> ddalphaf <- ddalphaf.train(dataf, labels,

+ adc.args = list(instance = "avr",

+ numFcn = -1,

+ numDer = -1),

+ classifier.type = c("ddalpha", "maxdepth",

+ "knnaff", "lda", "qda"),

+ cv.complete = FALSE,

+ maxNumIntervals = min(25, ceiling(length(dataf[[1]]$args)/2)), $ closing dollar, MUST NOT BE PRINTED

+ seed = 0, ...)

R> classes <- ddalphaf.classify(ddalphaf, objectsf, ...)

R> classes <- predict(ddalphaf, objectsf, ...)

R> compclassf <- compclassf.train(dataf, labels,

+ to.equalize = TRUE, to.reduce = TRUE,

+ classifier.type = c("ddalpha", "maxdepth",

+ "knnaff", "lda", "qda"),

+ ...)

R> classes <- compclassf.classify(compclassf, objectsf, ...)

R> classes <- predict(compclassf, objectsf, ...)

In both functions, dataf is a list of functional observations, each having two vectors: "args" for

arguments sorted in ascending order and "vals" for the corresponding functional evaluations;

labels is a list of class labels of the functional observations; classifier.type selects the

classifier that separates the finitized data, and additional parameters are passed to this selected

classifier with dots. In the componentwise classification, to.equalize specifies whether the

data is adjusted to have equal (the largest) argument interval, and to.reduce indicates whether

the data has to be projected onto a low-dimensional space via the principal components analysis

(PCA) in case their affine dimension after finitization is lower than expected. (Both parameters

are recommended to be set true.)

63

Chapter 3 Usage of the package

The LS-transform converts functional data into multidimensional ones by averaging over

intervals or evaluating values on equally-spaced grid for each function and its derivative on L

(respectively S) equal nonoverlapping covering intervals. The dimension of the multivariate

space then equals L + S. Parameter adc.args is a list that specifies: instance — the type

of discretization of the functions having values "avr" for averaging over intervals of the same

length and "val" for taking values on equally-spaced grid; numFcn (L) is the number of function

intervals, and numDer (S) is the number of first-derivative intervals.

The parameters L and S may be set explicitly or may be automatically cross-validated.

The cross-validation is turned on by setting numFcn = -1 and numDer = -1, or by passing a

list of adc.args objects to adc.args — the range of (L, S)-pairs to be checked. In the first

case all possible pairs of L and S are considered up to the maximal dimension that is set in

maxNumIntervals, while in the latter case only the pairs from the list are considered. The

parameter cv.complete toggles the complete cross-validation; if cv.complete is set to false

the Vapnik-Chervonenkis bound is applied, which enormously accelerates the cross-validation,

as described in Mosler and Mozharovskyi (2015) in detail. The optimal values of L and S are

stored in the ddalphaf object, that is returned from ddalphaf.train.

3.6.2 Custom depths and separators

As mentioned above, the user can amplify the existing variety by defining his own depth

functions and separators. Custom depth functions and separators are defined by implement-

ing three functions: parameters validator, learning, and calculating functions, see Tables 3.2

and 3.3. Usage examples are found in the manual of the package ddalpha.

Validator is a nonmandatory function that validates the input parameters and checks if

the depth calculating procedure is applicable to the data. All the parameters of a user-defined

depth or separator must be returned by a validator as a named list, otherwise they will not be

saved in the ddalpha object.

Definition of a custom depth function is done as follows: The depth-training func-

tion .<name>_learn(ddalpha) calculates any data-based statistics that the depth function

needs (e.g., mean and covariance matrix for Mahalanobis depth) and then calculates the

depths of the training classes, e.g., by calling for each pattern i the depth-calculating func-

tion .<name>_depths(ddalpha, objects = ddalpha$patterns[[i]]$points) that calcu-

lates the depth of each point in objects w.r.t. each pattern in ddalpha and returns a matrix

with q columns. The learning function returns a ddalpha object, where the calculated statis-

tics and parameters are stored. All stored objects, including the parameters returned by the

validator, are accessible through the ddalpha object, on each stage. After having defined these

functions, the user only has to specify depth = "<name>" in ddalpha.train and pass the

required parameters there. (The functions are then linked via the match.fun method.)

Definition of a custom separator is similar. Recall that there exist binary separators

applicable to two classes, and multiclass ones that separate more than two classes at once.

In case if the custom method is binary, the package takes care of the voting procedures, and

64

Chapter 3 Usage of the package

Table 3.2: Definition of a custom depth function.

.<name>_validate

validates parameters passed to ddalpha.train and passes them to the ddalpha object.

IN:
ddalpha the ddalpha object, containing the data and settings
<custom params> parameters that are passed to the user-defined method
... other parameters (mandatory)

OUT:
list() list of output parameters, after the validation is finished

these parameters are stored in the ddalpha object
.<name>_learn

trains the depth

IN:
ddalpha the ddalpha object containing the data and settings

MODIFIES:
ddalpha store the calculated statistics in the ddalpha object
depths calculate the depths of each pattern, e.g.

R> for (i in 1:ddalpha$numPatterns)

+ ddalpha$patterns[[i]]$depths =

+ .<name>_depths(ddalpha, ddalpha$patterns[[i]]$points)

OUT:
ddalpha the updated ddalpha object
.<name>_depths

calculates the depths

IN:
ddalpha the ddalpha object containing the data and settings
objects the objects for which the depths are calculated

OUT:
depths the calculated depths for each object (rows),

with respect to each class (columns)
Usage: ddalpha.train(data, depth = "<name>", <custom params>, ...)

the user only has to implement a method that separates two classes. The training method for

a binary separator .<name>_learn(ddalpha, index1, index2, depths1, depths2) accepts

the depths of the objects w.r.t. two classes and returns a trained classifier. A multiclass sepa-

rator has to implement another interface: .<name>_learn(ddalpha), accessing the depths of

the different classes via ddalpha$patterns[[i]]$depths. The binary classifier can utilize the

whole depth space (i.e. depths w.r.t. other classes than the two currently under consideration)

to get more information like the α-separator does, or restrict to the DD-plot w.r.t. the two given

classes like the polynomial separator, by accessing depths1 and depths2 matrices. The classi-

fying function .<name>_classify(ddalpha, classifier, objects) accepts the previously

65

Chapter 3 Usage of the package

Table 3.3: Definition of a custom separator.

.<name>_validate

validates parameters passed to ddalpha.train and passes them to the ddalpha object

IN:
ddalpha the ddalpha object containing the data and settings
<custom params> parameters that are passed to the user-defined method
... other parameters (mandatory)

OUT:
list() list of output parameters, after the validation is finished,

these parameters are stored in the ddalpha object.

methodSeparatorBinary = F in case of a multiclass classifier
.<name>_learn

trains the classifier. Is different for binary and multiclass classifiers.

IN:
ddalpha the ddalpha object, containing the data and settings
index1 (only for binary) index of the first class
index2 (only for binary) index of the second class
depths1 (only for binary) depths of the first class w.r.t. all classes
depths2 (only for binary) depths of the second class w.r.t. all classes

depths w.r.t. only given classes are received by
depths1[,c(index1, index2)]

for multiclass separator the depths are accessible via
ddalpha$patterns[[i]]$depths

OUT:
classifier the trained classifier object
.<name>_classify

classifies the objects

IN:
ddalpha the ddalpha object, containing the data and global settings
classifier the previously trained classifier
objects the objects (depths) that are classified

OUT:
result a vector with classification results:

positive values for class "classifier$index1" (binary) or
the indices of a pattern in ddalpha (multiclass)

Usage:
binary R> ddalpha <- ddalpha.train(data, separator = "<name>",

+ aggregation.method = <any>, <custom params>, ...)

multiclass R> ddalpha <- ddalpha.train(data, separator = "<name>",

+ aggregation.method = "none", <custom params>, ...)

66

Chapter 3 Usage of the package

trained classifier and the depths of the objects that are classified. For a binary classi-

fier, the indices of the currently classified patterns are accessible as classifier$index1 and

classifier$index2. A binary classifier shall return a vector with positive values for the ob-

jects from the first class, and the multiclass classifier shall assign to each object to be classified

the index of the corresponding pattern in ddalpha. Similarly to the depth function, the defined

separator is accessible by ddalpha.train by specifying separator = "<name>". If a nonbinary

method is used, it is important to set aggregation.method = "none" or (preferred but more

complicated) to return ddalpha$methodSeparatorBinary = F from the validator, otherwise

the method will be treated as a binary one, as by default aggregation.method = "majority".

3.6.3 Additional features

A number of additional functions are implemented in the package to facilitate assessing qual-

ity and time of classification, handle multimodally distributed classes, and visualize depth

statistics.

Benchmark procedures implemented in the package allow for estimating expected error

rate and training time:

R> ddalpha.test(learn, test, ...)

R> ddalpha.getErrorRateCV(data, numchunks = 10, ...)

R> ddalpha.getErrorRatePart(data, size = 0.3, times = 10, ...)

The first function trains the classifier on the learn sample, checks it on the test one, and

reports the error rate, the training time and other related values such as the numbers of cor-

rectly and incorrectly classified points, number of ignored outsiders, etc. The second function

performs a cross-validation procedure over the given data. On each step, every numchunksth

observation is removed from the data, the classifier is trained on these data and tested on the

removed observations. The procedure is performed until all points are used for testing. Setting

numchunks to n leads to the leave-one-out cross-validation (=jackknife) that is a consistent

estimate of the expected error rate. The procedure returns the error rate, i.e. the total number

of incorrectly classified objects divided by the total number of objects. The third function

performs a benchmark procedure by partitioning the given data. On each of times steps, ran-

domly picked size observations are removed from the data, the classifier is trained on these

data and tested on the removed observations. The outputs of this function are the vector of

errors, their mean and standard deviation. Additionally, both functions report mean training

time and its standard deviation. In all three functions, dots denote the additional parameters

passed to ddalpha.train. Benchmark procedures may be used to tune the classifier by setting

different values and assessing the error rate. The function ddalpha.test is more appropriate

for simulated data, while the two others are more suitable for subsampling learning with real

data and testing sequences from it. Analogs of these procedures for a functional setting are

present in the package as well:

R> ddalphaf.test(learn, learnlabels, test, testlabels, disc.type, ...)

67

Chapter 3 Usage of the package

R> ddalphaf.getErrorRateCV(dataf, labels, numchunks, disc.type, ...)

R> ddalphaf.getErrorRatePart(dataf, labels, size, times, disc.type, ...)

The discretization scheme is chosen with parameter disc.type setting it to "LS" or "comp".

Note that these procedures are made to assess the error rates and the learning time for a single

set of parameters. If the LS-transform is used, the parameters L and S shall be explicitly set

with adc.args rather then cross-validated.

Several approaches reflecting multimodality of the underlying distribution are im-

plemented in the package. These methods appear to be useful if the data substantially deviate

from elliptical symmetry (e.g. having nonconvex or nonconnected support) and the classi-

fication based on a global depth fails to achieve close to optimal error rates. The methods

need more complicated and fine parameter tuning, whose detailed description we leave to the

corresponding articles.

The potential-potential (pot-pot) plot (Pokotylo and Mosler, 2016) bears the analogy to the

DD-plot and thus can be directly used in DD-classification as well. The potential of a class

j is defined as a kernel density estimate multiplied by the class’s prior probability and is used

in the same way as a depth

φ̂j(x) = pj f̂j(x) =
1

n

nj∑
i=1

KHj
(x,xji),

with a Gaussian kernel KH(x) and bandwidth matrix H = h2Σ̂(X). The bandwidth pa-

rameter h (called kernel.bandwidth in the package) is separately tuned for each class. The

parameters have to be properly tuned, using the following benchmark procedures:

R> min_error = list(a = NA, error = 1)

R> for (h in list(c(h_11, h_21), ... , c(h_1k, h_2k)))

+ {

+ error = ddalpha.getErrorRateCV(data, numchunks = <nc>,

+ separator = <sep>, depth = "potential", kernel.bandwidth = h,

+ pretransform = "NMahMom")

+ if(error < min_error$error)

+ min_error = list(a = a, error = error)

+ }

Localized spatial depth and a classifier based on it, proposed by Dutta and Ghosh (2015), can

be seen as a DD-classifier. The global spatial depth calculates the average of the unit vectors

pointing from the points fromX in direction z. We rewrite (3.3) denoting ti = Σ−
1
2 (X)(z−xi)

Dspt(z|X) = 1−
∥∥∥ 1

n

n∑
i=1

v
(
ti
)∥∥∥.

68

Chapter 3 Usage of the package

The local version is obtained by kernelizing the distances

DLspt(z|X) =
∥∥∥ 1

n

n∑
i=1

Kh(ti)
∥∥∥− ∥∥∥ 1

n

n∑
i=1

Kh(ti)v(ti)
∥∥∥,

with the Gaussian kernel function Kh(x). The bandwidth parameter h defines the localization

rate. (If h > 1, the depth is multiplied by hd.)

The depth-based k-NN (Paindaveine and Van Bever, 2015) is an affine-invariant version

of the k-nearest-neighbor procedure. This method is different, in the sense that it is not

using the DD-plot. It is accessible through functions dknn.train, dknn.classify and

dknn.classify.trained. For each point x0 to be classified, data points are appended by

their reflection w.r.t. x0, which results in the extended centrally symmetric data set of size

2n. Then the depth of each data point is calculated in this extended data cloud, and x0 is

assigned to the most representable class among k points with the highest depth value, breaking

ties randomly. Each depth notion may be inserted. Training the classifier constitutes in its

tuning by the leave-one-out cross-validation. The method is integrated into the benchmark

procedures, accessible there by setting separator = "Dknn".

Depth visualization functions applicable to the two-dimensional data are also imple-

mented in the package. To visualize a depth function as a three-dimensional landscape, use

R> depth.graph(data, depth_f,

+ main, xlim, ylim, zlim, xnum, ynum, theta, phi, bold = F, ...)

The function accepts additional parameters: plot-limiting parameters xlim, ylim, zlim are

calculated automatically, parameters xnum, ynum control the resolution of the plot, parameters

theta and phi rotate the plot, and with parameter bold equal to TRUE the data points are

drawn in bold face.

Depth contours are pictured by the following functions:

R> depth.contours(data, depth, main, xlab, ylab, drawplot = T,

+ frequency=100, levels = 10, col, ...)

R> depth.contours.ddalpha(ddalpha, main, xlab, ylab, drawplot = T,

+ frequency=100, levels = 10, drawsep = TRUE, ...)

Function depth.contours calculates and draws the depth contours Dα for given data. Param-

eter frequency controls the resolution of the plot, and parameter levels controls the vector

of depth values of α for which the contours are drawn. Note that a single value set as levels

defines either the depth of a single contour (0 < levels ≤ 1) or the number (as its ceiling)

of contours that are equally gridded between zero and maximal depth value (levels > 1).

To combine the contours of several data sets or several different depth notions in one plot,

parameter drawplot should be set to FALSE for all but the first plot and the color should be

set individually through col. It is also possible to draw depth contours for a previously trained

ddalpha classifier. In this case classes will differ in colors and the separation will be drawn.

69

Chapter 3 Usage of the package

Figures 3.2 and 3.3 show depth surface (left) and depth contours (right) for each of the im-

plemented depth notions. The two plots, e.g. for Mahalanobis depth, correspond (without ad-

ditional parameters that orientate the plot) to the calls depth.graph(data, "Mahalanobis")

and depth.contours(data, "Mahalanobis").

Another useful function draws the DD-plot either from the trained DDα-classifier or from

the depth space, additionally indicating the separation between the classes:

R> draw.ddplot(ddalpha, depth.space, cardinalities,

+ main = "DD plot", xlab = "C1", ylab = "C2",

+ classes = c(1, 2), colors = c("red", "blue", "green"), drawsep = T)

To facilitate saving the default parameters for the plots and resetting them, which may

become annoying when done often, function par(resetPar()) can be used.

Multivariate and functional data sets and data generators have been included in

the package ddalpha to make the empirical comparison of different classifiers and data depths

easier. 50 real multivariate binary classification problems were gathered and described by

Mozharovskyi et al. (2015) and are also available at http://www.wisostat.uni-koeln.de/

de/forschung/software-und-daten/data-for-classification/. The data can be loaded

to a separate variable with function variable = getdata("<name>"). Class labels are in

the last column of each data set. Functional data sets are accessible through functions

dataf.<name>() and contain four functional data sets and two generators from Cuevas et al.

(2007). A functional data object contains a list of functional observations, each characterized

by two vectors of coordinates, the arguments vector args and the values vector vals, and a

list of class labels. Although this format is clear, visualization of such data can be a nontrivial

task, which is solved by function plotf.

3.6.4 Tuning the classifier

Classification performance depends on many aspects: chosen depth function, separator, out-

sider treatment, and their parameters.

When selecting a depth function, such properties as ability to reflect asymmetry and shape

of the data, robustness, vanishing beyond the convex hull of the data, and computational

burden have to be considered.

Depth contours of Mahalanobis depth are elliptically symmetric and those of projection

depth are centrally symmetric, thus both are not well suited for skewed data. Contours of

spatial depth are also rounded, but fit substantially closer to the data, which can also be said

about simplicial volume depth. Being intrinsically nonparametric, halfspace, simplicial, and

zonoid depths fit closest to the geometry of the data cloud, but vanish beyond its convex

hull, and thus produce outsiders during classification. All these depths are global and not

able to reflect localities possibly present in the data. Local spatial depth as well as potentials

compensate for this by fitting multimodal distributions well, which is bought at the price of

computational burden for tuning a parameter due to an application specific criteria.

70

http://www.wisostat.uni-koeln.de/de/forschung/software-und-daten/data-for-classification/
http://www.wisostat.uni-koeln.de/de/forschung/software-und-daten/data-for-classification/

Chapter 3 Usage of the package

Halfspace, simplicial, and projection depths are robust, while outlier sensitivity of Maha-

lanobis and spatial depths depends on the underlying estimate of the covariance matrix. To

obtain their robust versions, the MCD estimator is applied in package ddalpha. Parameter

mah.parMcd used with Mahalanobis and spatial depths corresponds to the portion of the data

for which the covariance determinant is minimized. Simplicial volume and zonoid depths, being

based on volume and mean, fail to be robust in general as well.

Halfspace, zonoid, and simplicial depths produce outsiders; their depth contours are also

not smooth, and the contours of the simplicial depth are even star-shaped. These depths must

not be considered if a substantial portion of points lies on the convex hull of the data cloud; in

some cases, especially in high dimensions, this may reach 100%, see also Mozharovskyi et al.

(2015).

Most quickly computable are Mahalanobis, spatial, and zonoid depths. Their calculation

speed depends minorly on data dimension and moderately on the size of the data set, while

computation time for simplicial, simplicial volume, and exact halfspace depths dramatically

increases with the number of points and dimension of the data. Approximating algorithms

balance between calculation speed and precision depending on their parameters. Random

halfspace and projection depths are driven by parameter num.directions, i.e. the number of

directions used in the approximation. The approximations of simplicial and simplicial volume

depths depend on the number of simplices picked, which is set with parameter k. If a fixed

number of simplices k > 1 is given the algorithmic complexity is polynomial in d but is inde-

pendent of n, given k. If a proportion of simplices is given (0 < k < 1), then the corresponding

portion of all simplices is used and the algorithmic complexity is exponential in n, but one

can assume that the approximation precision is kept on the same level when n changes. Note

that in R2, the exact efficient algorithm of Rousseeuw and Ruts (1996) is used to calculate

simplicial depth.

Based on the empirical study using real data (Pokotylo and Mosler, 2016), the classifiers’

error rates grow in the following order: DDα, polynomial classifier, k-NN; although DDα and

the polynomial classifier provide similar polynomial solutions and k-NN sometimes delivers

good results when the other two fail. The degree of the DDα and the polynomial classifier

and the number of nearest neighbors are automatically cross-validated, but maximal values

may be set manually. To gain more insights, depth-transformed data may be plotted (using

draw.ddplot).

The outsider treatment should not be regarded as the one that gives the best separation

of the classes in the original space, but rather be seen as a computationally cheap solution for

points right beyond their convex hulls.

In functional classification, parameters L and S can be set by the experience-guided appli-

cant or determined automatically by means of cross-validation. The ranges for cross-validation

can be based on previous knowledge of the area or conservatively calculated.

Benchmark procedures that we included in the package may be used for empirical param-

eters’ tuning, by iterating the parameters values and estimating the error rates. For example,

71

Chapter 3 Usage of the package

the following code fragment searches for the separator, depth, and some other parameters,

which deliver best classification:

R> min_error = list(error = 1, par = NULL)

R> for (par in list(par_set_1, ... , par_set_k))

+ {

+ error = ddalpha.getErrorRateCV(data, numchunks = <nc>,

+ separator = par$sep, depth = par$depth,

+ other_par = par$other_par)

+ if(error < min_error$error)

+ min_error = list(error = error, par = par)

+ }

72

Chapter 3 Appendix

Appendix

The α-procedure

The α-procedure Vasil’ev and Lange (1998), Vasil’ev (2003) is an iterative procedure that

finds a linear solution in the given properties space. If no good linear solution exists in the

original space it be extended with extra properties, e.g., using polynomial extension. The

linear solution in the extended space leads then to a non-linear solution in the original one.

The procedure iteratively synthesizes the space of features, choosing those minimizing two-

dimensional empirical risk in each step as it is illustrated on Figure 3.11.

On the first step all pairs of properties are considered and the one leading to the best

linear separation in its two-dimensional space is taken. This first solution is characterized by

properties p(1) and p(2) and the angle α1 of the normal vector of the separating line. The

points are then projected to the normal vector and form a feature f1 (Figure 3.11.a). On the

following s-steps s ≥ 2, the feature fs−1, obtained on the previous (s− 1)-step, is coupled with

each of the properties that were not included to the solution. Again we select the property

p(s+1) leading to the best linear separation in the two-dimensional space with fs−1, and find

the angle αs and the feature fs (Figure 3.11.b). The procedure is performed as long as the new

features improve the separation by reducing the empirical risk. The final separating hyperplane

is orthogonal to the last feature fs (Figure 3.11.c), and is characterized by the set of properties

{p(j)}, j = 1, ..., s + 1, the direction vector r and the distance from the space origin to the

separating hyperplane t (Figure 3.11.d).

The direction vector r of the separating hyperplane is decomposed along the properties p(j)

and is found as

r =

(
s∏
i=1

cos(αi); sin(α1)
s∏
i=2

cos(αi); ... ; sin(αq)
s∏

i=q+1

cos(αi); ... ; sin(αk)

)
,

where the length of r equals to one, each coordinate of r is measured along the corresponding

property and αi is the angle obtained on step i as illustrated on Figure 3.12. This procedure

is most reasonably done iteratively as in step 5 of the algorithm of the DDα-separator (see

Section 3.3.1).

73

Chapter 3 Appendix

11αααα
p (1)

p (2)

f1

. a

11αααα

α2

p (1)

p (2)

f1
f2

p (3)

. b

11αααα

α2

p (1)

p (2)

f1
f2

p (3)

. c

p (1)

p (2)

p (3)

r

t
{

. d

Figure 3.11: Steps of the α procedure. The solution is first found in a space of properties p(1) and
p(2) and a feature f1 is formed (a), then in a space spanned by the feature f1 and p(3) forming f2 (b).
The final separating hyperplane is orthogonal to the last feature f2 (c), and is characterized by the
set of properties p(j), the direction vector r and the distance t (d).

11αααα

α2

p (1)

p (2) f1

f2

p (3)

|r|=1

11αααα

α2

p (1)

p (2) f1

f2

p (3)

cos()α2

sin()α2

|r|=1

11αααα

α2

p (1)

p (2) f1

p (3)

cos()α2

sin()α2

cos()α2 cos()α 1

cos()α2 sin()α1

Figure 3.12: Retrieving components of the direction vector.

74

Chapter 4

Depth-weighted Bayes classification

4.1 Introduction

Let us consider a classification problem which consists in creating a rule for assigning new

observations to one of two (or more) distributions. For this moment let us assume that the

distributions are known and that their supports are overlapping. Then there does not exist

any rule with zero probability of misclassification. A very natural request is to classify at least

the “typical” points correctly. For example, we seamlessly accept wrong classification of the

point x = 4.417 which comes from P1 = N(0, 1), as P (|x| > 4.417|x ∼ P1) ≈ 10−5. On the

other hand the points “close to zero” should be assigned to this distribution.

The requirement of correct classification of “typical” points might not be met when using

the (Bayes) classifier which guarantees the minimal probability of misclassification, especially in

case of imbalanced data. For example, if P1 = N(0, 1), P2 = N(1, 1) and the prior probabilities

of these distributions are π1 = 0.7, π2 = 0.3, then the point x = 1 will be assigned to P1 by

the Bayes classifier although it is the center (mode=med=mean) of the distribution P2, as it

is more likely that the point x = 1 comes from P1 than from P2. In such situations the Bayes

classifier may be additionally weighted to achieve the desired misclassification rate for the

minor class, but in this case its outliers are also overweighted which leads to misclassification

of the major class in their neighbourhood.

What do we mean by the term “typical”? In the previous example nobody doubts that

the point x = 1 plays a central role for the distribution N(1, 1). Hence, typical points are

those that are close to the center whereas outliers represent rather atypical cases. But still, the

term center should be discussed in detail. The term is clear for symmetric distributions where

the center is the point of symmetry. Note that the point of symmetry defines the median for

univariate variables. The median can be considered to be the center of distribution even if the

distribution is not symmetric. On the other hand the notion of quantile can be used to define

outlyingness. The whole concept might be generalized for multivariate distributions using the

notion of data depth, see e.g. Mosler (2013). Depth function provides a measure of centrality.

The point with the highest depth is a multivariate analogy to the median, while points far

from the center have small depth.

Chapter 4 Introduction

It is important to become aware of similarities as well as differences between the Bayes

classifier which uses the density function and any other approach based on a depth function. In

a simple, but fundamental, case of a unimodal elliptically symmetric distribution the level sets

of a depth function correspond to those of the density function. However the correspondence

disappears as soon as the assumption of unimodality or symmetry is not fulfilled. One can

argue that the assumption of unimodality is justified in the context of classification (a class

which is a location mixture might be decomposed into several unimodal subclasses), however

there is no justification for the assumption of symmetry. And the difference between depth

and density might be substantial when the distribution is skewed. Let us consider a simple

example of a lognormal distribution which logarithm is standard N(0,1), see Figure 4.1. Let

q0.05 be 5% quantile of N(0, 1). Note that −q0.05 is 95% quantile of N(0, 1). Consider points

x1 = exp(q0.05) and x2 = exp(−q0.05). Both x1 and x2 determine areas of 5% of extreme

values (low in case of x1 and high in case of x2), so that they have exactly the same (non)-

central location. This is manifested in the fact that their depth1 is equal. However there is

an immense difference in density in these points: f(x1) = 0.53, f(x2) = 0.02, indeed f(x1) is

almost 26 times greater than f(x2). So the correct classification of the point x1 is much more

important than the correct classification of the point x2 from the classical point of view, but

it is equally important from the point of view based on centrality of the points.

x

d
e
n
si
ty

x1 x22 4 6 8

f(x2)

f(x1)

0.2

0.4

0.6

Figure 4.1: The lognormal distribution. Points x1 and x2 determine areas of 5% of extreme values
and thus have the same outlyingness, although the density is much higher in x1.

In recent years several classifiers using different notions of data depth were proposed. The

maximum-depth classifier and its improvement (Ghosh and Chaudhuri, 2005b), the DD-plot

classifier (Liu et al., 1999), the k-NN in the DD-plot (Vencalek, 2014) and the DD-alpha pro-

cedure (Lange et al., 2014b) are examples of such classifiers. Although the concept of these

classifiers is different from that of the Bayes classifier, they were traditionally compared to

it. In some cases the average misclassification rate (an empirical version of the probability

of misclassification) of the depth-based classifiers have been proven to be asymptotically ap-

proaching the error rate of the Bayes classifier. But these are rather special cases, e.g. when

the considered distributions are elliptically symmetric (Ghosh and Chaudhuri, 2005b). Depth-

based classifiers are not primarily constructed to minimize total probability of misclassification

1more precisely: halfspace depth

76

Chapter 4 Bayes classifier, its optimality and a new approach

(or the average misclassification rate). In the current chapter we discuss another measure of

performance that can be used for the evaluation of the depth-based (as well as any other)

classifier.

The discussion about alternative measures of classifiers’ performance leads directly to in-

troduction of the depth-weighted and the depth-rank weighted classifiers. Instead of the global

weighting of the classes we propose the depth weights of the misclassification cost, such that

the outlying points get less weight than the central ones. Analysis of the properties of the

newly proposed classifiers is the objective of this chapter.

The chapter is structured as follows. Section 4.2 presents the Bayes classifier and introduces

the depth-weighted classifier. Section 4.3 discusses the relationship between the newly proposed

classifier and the Bayes classifier, their possible coincidence as well as their maximal possible

difference. Discussion about the choice of the depth function included in Section 4.4 leads

to the introduction of the rank-weighted classifier. A broad simulation study conducted to

explore behaviour of newly proposed classifiers is reported in Section 4.5. The robustness of

the method is inspected in Section 4.6. Section 4.7 concludes.

4.2 Bayes classifier, its optimality and a new approach

In this section we briefly recall the Bayes classifier and the notion of cost function in context

of classification. Later we introduce a new criterion of optimality and the classifier which is

optimal for this criterion.

Let X be a d-dimensional random variable which follows one of the K ≥ 2 absolutely

continuous distributions Pi, i = 1, . . . , K, defined on Rd. Their densities are denoted by fi and

prior probabilities by πi. A classifier divides the space Rd into K disjoint parts Ai, i = 1, . . . , K,⋃K
i=1Ai = Rd such that any x ∈ Rd is assigned to Pi iff x ∈ Ai. Equivalently we can write

class(x) = i⇔ x ∈ Ai.

4.2.1 Bayes classifier and the notion of cost function

The Bayes classifier has the following form:

classB(x) = argmax
i

fi(x)πi. (4.1)

It can be easily shown that the Bayes classifier minimizes the probability of misclassification

(Devroye et al., 1996). However, it can be also viewed as the classifier minimizing the expected

cost for a particular cost function

cij(x) =

1 if j 6= i,

0 if j = i,

where cij(x) denotes cost of classifying object x to the distribution Pj while it comes from Pi.

77

Chapter 4 Bayes classifier, its optimality and a new approach

The overall expected cost L can be expressed in terms of conditional expected costs Li and

prior probabilities πi:

L =
K∑
i=1

Liπi =
K∑
i=1

K∑
j=1

∫
Aj

cij(x)fi(x)πidx. (4.2)

Minimization of the overall expected cost simplifies substantially when the cost function cij is

zero when the classification is correct (j = i) and does not depend on j otherwise, so that it

has the following form:

cij(x) =

ci(x) if j 6= i,

0 if j = i.

In this case the equation (4.2) can be rewritten as

L =
K∑
i=1

∑
j 6=i

∫
Aj

ci(x)fi(x)πidx

=
K∑
i=1

K∑
j=1

∫
Aj

ci(x)fi(x)πidx−
K∑
i=1

∫
Ai

ci(x)fi(x)πidx

=
K∑
i=1

∫
Rd
ci(x)fi(x)πidx−

K∑
i=1

∫
Ai

ci(x)fi(x)πidx.

Since the first term does not depend on the classifier, the minimization of overall expected cost

L is equivalent to the maximization of the second term
∑K

i=1

∫
Ai
ci(x)fi(x)πidx.

The classifier minimizing overall expected loss is then

class(x) = argmax
i

ci(x)fi(x)πi.

4.2.2 Depth-weighted classifier

We are suggesting to use the depth of a point x with respect to the distribution from which it

comes as a cost of misclassification, that is

cij(x) =

Di(x) if j 6= i,

0 if j = i,
(4.3)

where Di(x) is the depth of x w.r.t. Pi. Any depth function can be used here. Instead of Di

itself one can also use more general weight wiDi, where the parameter wi may be tuned for

the imbalanced data to achieve the desired misclassification rate in one of the classes. In what

follows we assume wi = 1 and drop this term.

It is important to realize that the misclassification cost is not the same for all points of a

certain group, but is specific for each point and depends on its position with respect to the

78

Chapter 4 Bayes classifier, its optimality and a new approach

distribution from which it is sampled. Here, the misclassification of the points close to the

center of the data cloud is seen as a more serious mistake than the misclassification of the

outlying points. The main idea is thus to weight the errors using data depth.

The classifier that minimizes the total expected cost assigns a new observation x to the

group, where the product of its depth, density and prior probability is maximal:

classD(x) = argmax
i

Di(x)fi(x)πi. (4.4)

In what follows we call the classifier (4.4) the depth-weighted classifier and abbreviate it

in tables and figures as DW. We will demonstrate practical consequences of this approach by

several examples in Section 4.2.3.

4.2.3 Examples

Let us now illustrate differences between the Bayes classifier and the newly proposed depth-

weighted classifier on two simple examples. For simplicity, both examples deal with univariate

random variables. We use halfspace depth here. The difference of the two considered ap-

proaches is illustrated in Figure 4.2.

1. Let us consider two uniform distributions with partly overlapping supports P1 =

Unif [0, 100], P2 = Unif [50, 250] and equal priors π1 = π2 = 0.5. The Bayes classi-

fier will classify all points from the overlapping part to P1, since f1(x)π1 > f2(x)π2 for all

x ∈ [50, 100]. The depth-weighted classifier differs from the Bayes classifier on an interval

(90, 100], which is classified to P2, as the interval is closer to its center, corresponding to

the 20-25% quantiles of P2 and only to the 90% and higher quantiles of P1.

2. Let us consider two normal distributions differing in location and priors, but with the

same scale parameters: P1 = N(0, 502), P2 = N(100, 502), π1 = 0.75, π2 = 0.25. The

Bayes classifier will classify x to P1 iff x < 50 + 25 · log 0.75
0.25
≈ 77.47. If the priors were

equal, the point separating the classes would be placed right in the middle between the

centers of the distributions (x = 50). In the considered case it is shifted closer to the

center of the distribution with the smaller prior probability (P2). Thus the probability

of misclassification is higher if the point is generated from P2: P (class(x) 6= 2|x ∈ P2) ≈
0.326, P (class(x) 6= 1|x ∈ P1) ≈ 0.061.

The separating point of the depth-weighted classifier can be computed numerically. Its

value is about 60.87. As before it is shifted from the middle point closer to the dis-

tribution with the smaller probability, but now the shift is smaller. The difference

in misclassification rates will not be so high now: P (class(x) 6= 2|x ∈ P2) ≈ 0.217,

P (class(x) 6= 1|x ∈ P1) ≈ 0.112.

79

Chapter 4 Difference between the depth-weighted and the Bayes optimal classifiers

0 50 100 150 200 250

−
0

.2
0

.0
0

.2
0

.4

x
0 50 100 150 200 250

−
0

.2
0

.0
0

.2
0

.4

x

d
e
p
th

s

0 50 100 150 200 250

−
0

.2
0

.0
0

.2
0

.4

x

o
b
je

c
ti
ve

 f
u
n
c
ti
o
n
s

d
e
n
s
it
ie

s

Example 1

−200 −100 0 100 200

−
0

.2
0

.0
0

.2
0

.4

−200 −100 0 100 200

−
0

.2
0

.0
0

.2
0

.4

−200 −100 0 100 200

−
0

.2
0

.0
0

.2
0

.4

x x

d
e
p
th

s

x

o
b
je

c
ti
ve

 f
u
n
c
ti
o
n
s

d
e
n
s
it
ie

s

Example 2

Figure 4.2: Illustration to the examples 1 and 2: densities of P1 and P2 (left), depths of points
w.r.t P1 and P2 (middle) and objective functions of the Bayes classifier f1(x)π1−f1(x)π2 (green) and
depth-weighted classifier D1(x)f1(x)π1 −D2(x)f1(x)π2 (orange) (right).

4.3 Difference between the depth-weighted and the

Bayes optimal classifiers

Let us now investigate properties of the newly defined depth-weighted classifier. We will

compare it to the Bayes optimal classifier in the two-classes problem when the distributions

are elliptically symmetric.

In what follows it is assumed that the distributions Pi have the following two properties:

(P1) They are elliptical of the same radial type, that is, have the same radial density

up to scale. Technically this means that their densities fi can be expressed as

fi(x) = kig(Mi(x)), where g is a decreasing function, ki > 0 are constants, and

Mi(x) =
(
(x−αi)′B−1

i (x−αi)
) 1

2 with Bi positive definite, αi ∈ Rd, denotes the gen-

eralized distance of the point x from the center of the distribution Pi.

(P2) D(x) is an affine invariant depth. Then, given (P1), Di(x) = D(x|Pi) is a fixed decreas-

ing function of generalized distance, that can be expressed as Di(x) = h(Mi(x)), where

h is some decreasing function.

Note that the assumptions are fulfilled for example for Pi = N(µi,Σi). The first assumption

is fulfilled while fi(x) = ((2π)d|Σi|)−
1
2 exp(−1

2
(x − µi)′Σ−1

i (x − µi)) = ki exp(−1
2
M2

i (x)) and

the second because of affine invariance and monotonicity of the depth function.

First we define situations where the depth-weighted classifier differs from the Bayes clas-

sifier, and those where they lead to the same classification rule. We introduce the following

80

Chapter 4 Difference between the depth-weighted and the Bayes optimal classifiers

notation G(x) = k1g(M1(x))
k2g(M2(x))

as likelihood ratio, H(x) = h(M1(x))
h(M2(x))

as depth ratio and π = π2
π1

as

inverse prior ratio and rewrite the classifiers in terms of these functions:

• The Bayes classifier assigns x to P1 if G(x) > π (to P2 if G(x) < π),

• The depth-weighted classifier assigns x to P1 if H(x)G(x) > π (to P2 if H(x)G(x) < π).

It is worthwhile to note that the relationship between H(x)G(x) and G(x) depends on the

generalized distances of x from P1 and P2:

M1(x) < M2(x) ⇒ H(x)G(x) > G(x) >
k1

k2

, (4.5)

M1(x) > M2(x) ⇒ H(x)G(x) < G(x) <
k1

k2

. (4.6)

These inequalities together with their relation to the considered classifiers are illustrated

in Figure 4.3. The classifiers differ when π is between G(x) and H(x)G(x). For the fixed π,

the region where the classifiers differ can be expressed as

RD(π) =
{
x ∈ Rd : H(x)G(x) < π < G(x) or G(x) < π < H(x)G(x)

}
.

G(x)H(x)G(x)
π

G(x) H(x)G(x)

x: M (x)<M (x)

π

x: M (x)>M (x)1 2

1 2

0

0

2k / k1

2k / k1

Figure 4.3: Dependence of the Bayes (gray) and the depth-weighted (black) classifiers on the prior
probabilities and the position of x w.r.t. P1 and P2. Coloured are the regions assigned to P1, e.g.
for x : M1(x) < M2(x): if π < G(x), both rules assign to P1; if G(x) < π < H(x)G(x), the Bayes
classifier assigns to P2 and the depth-weighted classifier assigns to P1; π > H(x)G(x), both rules
assign to P2.

Theorem 4.1 Let (P1) and (P2) hold for P1 and P2. Then

P (classB(X) 6= classD(X)) = 0⇔ π1k1 = π2k2.

Roughly speaking, the theorem states necessary and sufficient condition for prior probabilities

to let the Bayes and depth-weighted classifier be the same in the considered situation of two

elliptically symmetric distributions.

Proof : Equation π1k1 = π2k2 can be rewritten as π = k1
k2

. From (4.5) and (4.6) it follows

that P (RD(k1/k2)) = 0. For any other π > 0, it holds RD(π) 6= ∅ and P (RD(π)) > 0. �

Let us further investigate the case of highly unequal prior probabilities (π1 → 0 or π1 → 1).

We will show that the probability of different classification by Bayes and depth-weighted clas-

sifier is small (goes to zero).

81

Chapter 4 Choice of depth function and the rank-weighted classifier

Theorem 4.2 Let (P1) and (P2) hold for P1 and P2. Then

P (classB(X) 6= classD(X))→ 0 for π1 → 0 or π1 → 1.

Proof : The proof will be done for the case π1 → 0 (π →∞). Similar reasoning holds also

for the other case, i.e for π1 → 1 (π → 0).

Let us consider d-dimensional closed intervals In = [−n, n] × . . . × [−n, n]. For any fixed

n ∈ N we can find π ∈ R+ such that maxx∈In H(x)G(x) < π. Thus all points from In will be

assigned to P2 by both Bayes and depth-weighted classifier. The theorem directly follows from

the fact that P (X ∈ In)→ 1 for n→∞. �

The next theorem extends our knowledge about the area where the Bayes classifier and

depth-weighted classifier are equal.

Theorem 4.3 Let (P1) and (P2) hold for P1 and P2. If π < k1
k2

(i.e. π1k1 > π2k2) then

1. M1(x) < M2(x)⇒ classB(x) = classD(x) = 1 and

2. f1(x)π1 < f2(x)π2 ⇒ classB(x) = classD(x) = 2.

Note that a similar proposition holds for π > k1
k2

. It is enough to exchange the group labels.

Proof : π < k1
k2
⇒ π1k1 > π2k2.

From M1(x) < M2(x) it follows that D1(x) > D2(x) and g(M1(x)) > g(M2(x)). Thus

D1(x)g(M1(x))k1π1 > D2(x)g(M2(x))k2π2 and so classD(x) = 1; similarly g(M1(x))k1π1 >

g(M2(x))k2π2 and so classB(x) = 1.

From f1(x)π1 < f2(x)π2 it directly follows that classB(x) = 2. When writing

the inequality in terms of ki and g we have k1g(M1(x))π1 < k2g(M2(x))π2 and thus

k1g(M1(x))/k2g(M2(x)) < π2/π1 < k1/k2, which implies M1(x) > M2(x) and hence D1(x) <

D2(x). Finally we have D1(x)g(M1(x))k1π1 < D2(x)g(M2(x))k2π2 and so classD(x) = 2. �

From the second implication of the Theorem 4.3 it is clear that compared to the Bayes

classifier, just one group will receive more assignments by the depth-weighted classifier, i.e.

the separating line moves strictly towards one of the groups.

4.4 Choice of depth function and the rank-weighted

classifier

The definition of depth-weighted classifier is general in the sense that any depth function might

be used as a cost function, see formula (4.3). This universality is important because it allows

to choose any of the commonly used depth functions found in e.g. Zuo and Serfling (2000) and

Mosler (2013). However, use of different depth functions leads to possible differences in the

classification rule. Here we discuss various aspects of the choice of the depth function in the

classifier (4.4).

82

Chapter 4 Choice of depth function and the rank-weighted classifier

Next we form a list of aspects that should be taken into account when choosing a depth

function: Firstly, adding the weights shall improve the robustness of the classifier. The problem

of outsiders is also of big importance: if the depth function vanishes beyond the convex support

of the data, the observations get zero depth there and cannot be classified. The calculation

speed is also important to deal with big data sets, therefore we refer only to computationally

efficient depths. The depth shall also follow the shape of non-elliptical and skewed distributions.

For this reason we mainly concentrate on the spatial depth (Vardi and Zhang, 2000), as it meets

all these requirements. On the contrary, Mahalanobis depth (Mahalanobis, 1936) has always

elliptically symmetric level sets; halfspace (Tukey, 1975) and zonoid (Koshevoy and Mosler,

1997) depths produce outsiders; projection depth (Zuo and Serfling, 2000) has contours that

are symmetric to the center and, thus, is less suited for skewed data.

A natural question is how much the final classifier depends on the depth function which

is used. In the Section 4.4.1 we use one of the examples from Section 4.2.3 to show that the

difference between two depth-weighted classifiers which use different depth functions might be

not negligible. Dependence of the depth-weighted classifier on the used depth function might be

considered as undesirable in some cases. In the Section 4.4.2 we propose a slight modification

of the cost function which partly remedies the problem. Dependence of the classifier on the

choice of depth is precluded by this modification in elliptically symmetric data.

4.4.1 Example illustrating differences in classification

arising from different depths

Let us recall the first example from the Section 4.2.3. Two uniform distributions with partly

overlapping supports P1 = Unif [0, 100], P2 = Unif [50, 250] and equal priors π1 = π2 = 0.5

are considered. It was shown that the depth-weighted classifier has the following form:

class(x) =

1 if x < 90,

2 if x > 90.
(4.7)

The separation point x = 90 is computed as a solution of equation D1(x)f1(x)π1 =

D2(x)f2(x)π2 on the interval (50,100), where f1(x) = 1/100, f2(x) = 1/200, π1 = π2 = 1/2

and finally, using the halfspace depth,

D1(x) = − 1

100
x+

1

2
; D2(x) =

1

200
x− 1

4
.

Now it can be easily shown that the depth-weighted classifier differs quite a lot if the pro-

jection depth is used instead of the halfspace depth. In this case the depth-weighted classifier

has the following form:

class(x) = 1 for all x < 100. (4.8)

83

Chapter 4 Choice of depth function and the rank-weighted classifier

This is because the fact, that D1(x)f1(x)π1 > D2(x)f2(x)π2 for all x ∈ (50, 100) when consider-

ing projection depth. Let us recall that the projection depth is defined (in the one dimensional

case) as a fraction 1
1+o(x)

, where o(x) denotes “outlyingness” of x, which can be computed as
|x−median(X)|

MAD(X)
, where MAD(X) = median(|X − median(X)|) is the median absolute deviation.

Thus in this example for all x ∈ (50, 100) it holds

D1(x) =
1

1 + x−50
25

; D2(x) =
1

1 + 150−x
50

.

The difference between the depth functions which results to the difference in classification

is illustrated in Figure 4.4.

0 50 100 150 200 250

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

D(x)f(x)π for the halfspace depth

x

D
(x

)f
(x

)π

0 50 100 150 200 250

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

D(x)f(x)π for the projection depth

x

D
(x

)f
(x

)π

Example 1

Figure 4.4: Difference between the depth-based classifiers using halfspace and projection depths.

4.4.2 Rank-weighted classifier

The problem illustrated in the preceding section arises from the fact that different depth

functions have different ranges of their values. While the halfspace depth has values between

zero and one-half, the values of projection depth are always positive, approaching zero for only

very distant points that do not occur in practice, with the maximal value equal to one. Such a

difference might lead to different classification rules. In case of depth functions with virtually

equal ranges their growth behavior may also differ, yielding different classification results. To

make the procedure less dependent on choice of the depth function we suggest to use the rank

function based on depth instead of the depth itself.

The main purpose of depth functions is the ordering of points in multidimensional space.

What more matters is thus the rank of a point based on depth, not the value of the depth

itself. Any given point might be characterized by the proportion of points having lower depth.

84

Chapter 4 Choice of depth function and the rank-weighted classifier

The empirical version of this proportion is (up to a multiplicative constant), depth-based rank

of the observation.

Thus for a point x coming from the i-th distribution Pi whose depth with respect to this

distribution is equal to Di(x) we suggest to use the proportion of points with lower depth

than Di(x) as a cost of its eventual misclassification. More precisely, the cost function has the

following form:

cij(x) =

Fi(Di(x)) if j 6= i,

0 if j = i,
(4.9)

where Di(x) is the depth of x w.r.t. Pi and Fi(·) is the cumulative distribution function of

Di(X), where X ∼ Pi . As before, any depth function can be used here.

Similar to the depth-weighted cost, the rank weighted cost of misclassification of a point

which is close to the center of the distribution is high since a big part of points has lower depth.

To minimize the overall expected cost for the cost function (4.9) the new observation x is

assigned according to the following rule:

classR(x) = argmax
i

Fi(Di(x))fi(x)πi. (4.10)

The notation is the same as in (4.4) and (4.9).

We call the classifier defined by (4.10) the rank-weighted classifier and abbreviate it in

tables and figures as RW.

The following theorem points out the independence of the rank-weighted classifier on the

choice of the depth function in the situation described in the Section 4.3, i.e. when the con-

sidered distributions are elliptical of the same radial type and the depth functions are affine

invariant.

Theorem 4.4 Let (P1) and (P2) hold for P1 and P2 and any two depth functions D(·) and

D∗(·). Then classR(x) is the same for both D(·) and D∗(·) with probability one.

Proof : From (P2) there is some decreasing function h(·) such that Di(x) = h(Mi(x)) and

some decreasing function h∗(·) such that D∗i (x) = h∗(Mi(x)) for i = 1, 2. Thus Fi(Di(x)) =

Pi(Di(X) < Di(x)) = Pi(Mi(X) > Mi(x)) = F ∗i (D∗i (x)) for i = 1, 2. The claim immediately

follows. �

Note, that in non-elliptical distributions the level sets of various depth functions are very

different and, therefore, the rank orders based on these depths are not equal. The other

disadvantage of this method is that it produces outsiders for the depths that do not produce

them originally.

4.4.3 Dealing with outsiders

As the other depth-based classifiers, the introduced method suffers from the problem of out-

siders. The empirical versions of some notions of data depth like halfspace and zonoid depths

85

Chapter 4 Simulation study

are not defined outside of the convex hull of the data. If a point lies outside the convex hulls

of all classes, its depth w.r.t. each of them is zero and a point cannot be classified by the

introduced method. The common problem arises when using the rank-weighted classifier. One

of the possible solutions is to compare the priors-weighted densities of the outsiders w.r.t. all

classes. For the points lying far from the data, however, these may also be numerically equal

to zero. Nevertheless, outsider treatment procedures may be used, e.g. classification with other

known methods like LDA as in Lange et al. (2014b).

4.5 Simulation study

To explore properties of the newly proposed classifiers we conducted a broad simulation study.

The study has two parts with different objectives. While the first part focused on properties of

the “population versions” of the new classifiers (in this part prior probabilities, densities and

depth function were assumed to be known), the second part dealt with “empirical versions” of

the classifiers concentrating mainly on the effect of estimation, which is needed in practice.

4.5.1 Objectives of the simulation study

The first part of the simulation compares “population versions” of the newly proposed classifiers

(4.4) and (4.10) with the Bayes classifier (4.1). In practice the density function as well as the

depth function are unknown and need to be estimated. Nevertheless, “population versions” of

the classifiers which are defined by means of these functions shall be studied first. The density

function as well as the depth function are now assumed to be known and thus the role of the

simulation might be considered redundant. Use of the simulation has two reasons – absence of

explicit formulae for evaluation of the depth function and difficulty of integration in nontrivial

cases. From these reasons the simulation is unavoidable here. In the Section 4.3 we have shown

that in some particular cases the population versions of the depth-weighted classifier and Bayes

classifier coincide. We have also shown in Theorem 4.4 that the depth-weighted classifier and

rank-weighted classifier coincide in some situations. Now we are questioning about the cases

where the classifiers differ. Particularly we are interested in the following questions:

Q1 How much might the new classifiers differ from the Bayes classifier? How big might the

corresponding difference be in the average misclassification rate?

Q2 How much might the depth-weighted classifier differ from the rank-weighted classifier?

Q3 How much depends the performance of the new classifiers on the choice of the depth

function? Is the rank-weighted classifier really less dependent on the choice of the depth

function? Which depth function leads to the smallest or biggest differences from the

Bayes classifier?

Later on we refer to these questions in the results.

86

Chapter 4 Simulation study

The second part of the simulation is devoted to the comparison of “empirical versions” of

the newly proposed classifiers and the Bayes classifier. Since in practice prior probabilities,

density and depth functions are not known, they need to be estimated from data. Here we

want to study the effect of estimation on performance of considered classifiers. We hypothesize

that the presence of the depth-term in the classifier may lead to a better performance of the

classifier in cases where the estimation of the density is problematic. Recalling the original

motivation of the new approaches we hypothesize that the misclassification rates in particular

groups will be more equal for depth-based classifiers than for the Bayes classifier. The objective

of the second part of the simulation study is to “test” our hypotheses in practice.

4.5.2 Simulation settings

In the simulation study we considered eight different pairs of bivariate distributions. The

first four settings are elliptically symmetric distributions, and the other four are non-elliptical

distributions. Most of the distributional settings were used in Lange et al. (2014b) and Li

et al. (2012), the case of skewed normal distributions was used in Vencalek (2013). Details on

skewed normal distributions can be found in Azzalini (2013). The examples considered in the

simulation study are summarized in the Table 4.1. The variance matrix Σ0 used in Examples

1-4 has the following form: Σ0 = (1 1
1 4) . Five different prior probabilities were considered:

π1 = {0.1, 0.3, 0.5, 0.7, 0.9}. Note that for location-shift models in Examples 1 and 3 the prior

probability π1 = 0.1 corresponds directly to the prior probability π1 = 0.9 and, similarly,

π1 = 0.3 corresponds to π1 = 0.7.

Table 4.1: Examples used in the simulation study

Group 1 Group 2
Ex. Distribution Parameters Distribution Parameters
1 Normal 0,Σ0 Normal 1,Σ0

2 Normal 0,Σ0 Normal 1, 4Σ0

3 Cauchy 0,Σ0 Cauchy 1,Σ0

4 Cauchy 0,Σ0 Cauchy 1, 4Σ0

5 Bivar. exponential 1, 1 Shifted bivar. expon. (+1) 1, 1
6 Bivar. exponential 1, 1/2 Shifted bivar. expon. (+1) 1/2, 1
7 Normal 0, I Bivar. exponential 1, 1
8 Skewed normal (1

2) , (1 0
0 7) ,

(−2
−5

)
Skewed normal (0

−1) , (1 0
0 5) , (1

5)

In the first part of the simulation study, a training set of 5 000 points was considered for each

setting to estimate the data depths, and the “true densities” were used. We afford the large

number of points since we do not simulate real-life data here. The simulation is used instead of

an exact enumeration, and thus the estimates need to be as precise as possible. The training set

in the second part of the simulation study is smaller containing “only” 2 000 points. Although

it is clear that the quality of estimation depends on the size of the training set, we considered

only this sample size. The main reason was to prevent an extensive labyrinth of results. We

also realized that the estimation of the density term might be very difficult even for such a

large data set. In this chapter we do not discuss the density estimation and bandwidth tuning

87

Chapter 4 Simulation study

techniques, as there is a bunch of literature on this topic; see Silverman (1986), Scott (1992),

Li and Racine (2007). We estimated the densities in a standard way, viz. with the npudens

function from the R-package np (Hayfield and Racine, 2008), tuning the kernel bandwidths

with likelihood cross-validation (function npudensbw). In both parts of the simulation study

we used a set of 10 000 points to evaluate the performance of the considered classifiers and

their eventual differences in classification.

For a given pair of distributions (named Example further on) and given prior probabilities,

100 data sets (training sets + test sets) were generated. For a given data set the Bayes classifier,

depth-weighted classifier and rank-weighted classifier were trained and subsequently tested.

The latter two classifiers were fitted for three different notions of depth – halfspace depth,

projection depth and the affine invariant version of spatial depth. Average misclassification

rates as well as both costs considered in this chapter were recorded. We also recorded the

number of points classified differently by different classifiers.

4.5.3 Results

Results are presented separately for both parts of the simulation study. We abbreviate the

depth-weighted classifier as DW, the rank-weighted classifier as RW and the Bayes classifier

as B in the tables and figures.

Population version of the classifiers

Percentages of points classified differently by the depth-based classifiers and the Bayes classifier

are plotted in Figure 4.9. Two bars are plotted for each combination of distributional settings,

prior probabilities and depth function. Their heights correspond to the percentage of points,

that are classified differently by the depth-weighted classifier and the Bayes classifier (left bar)

and percentage of points classified differently by the rank-weighted classifier and the Bayes

classifier (right bar). Both bars are divided into two parts; in the lower part both depth-based

classifiers contradict the Bayes, while in the upper part they classify differently from each

other. Note, that in the upper part the other classifier agrees with the Bayes. From this graph

several observations might be made:

• (Ad Q1) In most of the cases the proportion of points classified differently by the depth-

based classifiers compared to the Bayes classifier is less than 15%. The biggest difference

was found in the case of Cauchy distributions differing in location as well as in scales

with unequal priors (Experiment 4, π1 = 0.7), which was almost 30%.

• (Ad Q2, Q3) The rank-weighted classifier is less dependent on the choice of the depth

function than the depth-weighted classifiers. It can be nicely seen for elliptically symmet-

ric distributions (Ex. 1-4), where three bars indicate the difference of the rank-weighted

classifier and the Bayes classifier for a given experiment and prior probabilities, but dif-

ferent depth functions yield virtually equal heights. See for example the graph dealing

with Experiment 2, where π1 = 0.7.

88

Chapter 4 Simulation study

• (Ad Q2) In some cases the difference between the depth-weighted classifier and the rank-

weighted classifier is very small (e.g. Ex. 4), but in some cases the difference is large,

usually for a specific depth function (e.g. Ex. 2, π1 ≥ 0.7 for projection depth or Ex. 10,

π1 ≤ 0.5 for halfspace depth), which is explained by the difference in ranges of depths.

• (Ad Q3) The depth-weighted classifier differs more from the Bayes classifier than the

rank-weighted classifier with halfspace depth, while for the projection and spatial depths

the opposite is true. For the spatial depth, however, the difference between the depth-

based classifiers is smaller.

These results are further supported by Table 4.5. In this table, for each of the 40 classifica-

tion problems (defined by eight distributional settings and five prior probabilities), we recorded

several characteristics. Namely: for each depth function we recorded if the depth-based classi-

fiers differ from the Bayes classifier and which of them differs more (according to the number

of points classified differently). For each of the two depth-based classifiers we compared depth

functions according to the difference of the classifiers from the Bayes classifier. The mark X

is used if the corresponding inequality was observed in at least 95 of the 100 simulation runs.

We observed that:

• For halfspace depth both classifiers differ from the Bayes in 38 out of 40 situations. The

depth-weighted classifier is more different from Bayes than the rank-weighted classifier

with only one exception.

• For projection depth both classifiers differ from the Bayes in 28 out of 40 cases. In 8

out of the 12 situations, where they do not differ from the Bayes, they also do not differ

for the spatial depth. The rank-weighted classifier differs more from the Bayes than the

depth-weighted classifier in 23 out of 28 cases, where they differ from Bayes.

• For spatial depth both classifiers differ from the Bayes in 30 (32 respectively) out of

40 cases. The rank-weighted classifier differs from the Bayes classifier more than the

depth-weighted classifier in 17 out of the 30 cases and in only two cases opposite is true.

The simulation study included also situations for which theoretical results were provided

in sections 4.3 and 4.4. Assumptions of Theorem 4.1 are fulfilled in Example 1 for π1 = 0.5.

According to this theorem there should be no difference between the depth-weighted classifier

and the Bayes classifier. The observed difference is really very small. Theorem 4.3 dealing

with elliptically symmetric distributions can be applied in Examples 1-4. In Examples 1 and

3 the ratio k1/k2 = 1. Thus for π1 < 0.5 it should hold classB(x) = 1 ⇒ classD(x) = 1

while for π1 > 0.5 it should hold classB(x) = 2 ⇒ classD(x) = 2. In Examples 2 and 4 the

ratio k1/k2 = 4. Thus for π1 < 0.2 it should hold classB(x) = 1 ⇒ classD(x) = 1 while for

π1 > 0.2 it should hold classB(x) = 2 ⇒ classD(x) = 2. These implications were confirmed

by simulation. The few points for which the implications were not fulfilled lied close to the

separating lines. The difference was probably caused by estimation of depth.

89

Chapter 4 Simulation study

The Table 4.5 provides practical evidence for Theorem 4.4, which deals with rank-weighted

classifier for elliptically symmetric distributions (Examples 1-4). Indeed in these cases classi-

fication does not depend on used depth function – there are no X marks in corresponding

places in the table with only two exceptions, where the difference was very small, probably

caused by depth estimation.

We also wanted to compare average misclassification rates (AMRs) of the depth-based

classifiers and the Bayes classifier. Since the Bayes classifier is constructed to minimize AMR,

it is clear that the depth-based classifiers can not lead to a lower AMR. Our aim here is to

explore how much larger their AMRs might be. The comparison is summarized in Figure 4.10.

The partial graphs of this figure are arranged in the same way as the partial graphs in Figure

4.9. Heights of the plotted bars correspond now to the AMRs. For a given distributional

settings and prior probabilities the minimal possible AMR (attained by the Bayes classifier)

is plotted as horizontal line dividing each of the six bars in the corresponding partial graph.

Thus the difference between the minimal attainable AMR and the AMR of a given depth-based

classifier can be directly seen from the graph.

Here are some observations on differences in AMRs:

• The most important observation is that the increase in AMR produced by depth-based

classifiers is not dramatic and it is much smaller than the percentage of points in which

the classification differ from the Bayes classifier. For example the depth-weighted clas-

sifier which uses spatial depth classifies about 10% of points differently from the Bayes

classifier in Examples 4 and 8 for equal priors, but the increase in AMR is only 1%. This

phenomenon is further illustrated in Figure 4.5.

• Increase in AMR higher than 5% was recorded in only 7 out of 240 settings. In all 7

situations depth-weighted classifier with halfspace depth was used. The highest difference

was in Example 2: 8.2% for π1 = 0.7, 7.2% for π1 = 0.9 and 5.5% for π1 = 0.5. The

remaining four situations were Examples 6 and 7 for π1 = 0.3 and π1 = 0.5 where the

difference in AMR was between 5.4 and 6.1%.

• The highest AMRs were recorded for depth-weighted classifier using halfspace depth (in

33 out of 40 situations).

• Although the difference in AMR might be quite small, the relative increase might be

non-negligible. We evaluated only the situations where the Bayes misclassification rate

was at least 5%. The highest relative increase in AMR (ratio of AMR for the depth-based

classifier and Bayes classifier) was 2.01 for the depth-weighted classifier using halfspace-

depth in Example 2 for π1 = 0.9. The ratio was higher than 1.5 in 9 out of 216 cases.

• Some observations on proportion of points classified differently from the Bayes classifier

hold also for AMRs. For example, small dependence of AMR on the choice of the depth

function for rank-weighted classifier when the distributions are elliptically symmetric.

90

Chapter 4 Simulation study

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20 25 30

0
2

4
6

8
halfspace depth

Percentage of points
 classified differently

di
ffe

re
nc

e
in

 A
M

R
 (

%
)

●

●

●

●

●
●●●

●

●●

●
●

●

●●

●

●

●

●

●

●
●

●

●●
●

●

●

●●●●●

●

●
●

●
●

●

0 5 10 15 20 25 30

0
2

4
6

8

projection depth

Percentage of points
 classified differently

di
ffe

re
nc

e
in

 A
M

R
 (

%
)

● depth−optimal class. rank−optimal class.

● ●

●

●●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●●●

●

●

●

●

●

●

●

0 5 10 15 20 25 30

0
2

4
6

8

spatial depth

Percentage of points
 classified differently

di
ffe

re
nc

e
in

 A
M

R
 (

%
)

Figure 4.5: Comparison of percentage of points classified differently by depth-based classifiers than
by the Bayes classifier and difference in average misclassification rates.

Empirical version of the classifiers

The difference between AMRs for theoretical and empirical versions of all three considered

classifiers is visualized in Figure 4.11. The figure is plotted using spatial depth in the depth-

based classifiers. We do not present the analogous figures using other depth functions since

the main observations are similar. The halfspace depth provides smaller difference from the

theoretical results than both projection and spatial depths for 25 out of 40 data sets and smaller

than one of them in 33 cases.

The heights of particular bars now correspond to the AMRs of the empirical versions of

considered classifiers and the thick lines show AMRs for the corresponding theoretical classi-

fiers. More precisely, we are presenting medians gained from 100 simulation runs. Thus the

effect of estimation which is needed in practice can be directly observed.

The main observation on effect of estimation can be summarized as follows:

• For normal distributions (Examples 1, 2) and skewed normal distributions (Ex. 8) the

difference between empirical and theoretical results are negligible, while for the fat tailed

distributions (Ex. 3, 4) and non-elliptical distributions (Ex. 5-7) the empirical misclassi-

fication rate is higher than the theoretical one, as the estimated densities strongly differ

from the real ones.

• The most important observation is that the differences between AMRs of depth-based

classifiers and the Bayes classifier for empirical classifiers are even smaller than for theo-

retical versions. It can even happen (as in Example 4 for π1 = 0.3 or π1 = 0.5) that the

AMRs of the empirical depth-based classifiers are lower than the corresponding AMR of

the empirical Bayes classifier.

91

Chapter 4 Simulation study

• The effect of estimation is similar for the depth-weighted and the rank-weighted classifiers.

• A remarkable situation occurred in Example 4 for π1 = 0.7. The AMRs for empirical

depth-weighted classifiers are there smaller than their theoretical equivalents. However,

this situation is rather exceptional.

Let us now concentrate on the empirical versions of the classifiers themselves. The results

are similar to those of the theoretical classifiers. The observations are documented by number

of cases (out of 40 = 8 times 5 distributional settings) where the given phenomenon is observed

in at least 95 out of 100 simulation runs:

• Projection depth commonly leads to the smallest AMRs, while halfspace depth yealds

the highest AMRs for both depth-based classifiers. The difference among depth functions

is bigger for the depth-based classifier than for the rank-weighted classifier.

We observed that for the depth-weighted classifier the halfspace depth led to higher

AMR than spatial depth in 27 cases (the opposite was true only in one case), and it led

to higher AMR than projection depth in 25 cases (the opposite was not observed in any

situation). Spatial depth led to higher AMR than projection depth in 14 cases (opposite

was true only in 3 cases). Similarly for the rank-weighted classifier the halfspace depth

led to higher AMR than spatial depth in 12 cases (opposite was true in 2 cases), and it

led to higher AMR than projection depth in 10 cases (the opposite was true in 2 cases).

Spatial depth led to higher AMR than projection depth in 5 cases (opposite was true in

3 cases).

• The depth-weighted classifier leads to higher AMR than the rank-weighted classifier when

the halfspace depth is used; for the other two depth functions the opposite is true. The

numbers of cases where the observed inequalities hold are summarized in Table 4.2. This

table also provides a comparison of empirical depth-based classifiers to the empirical

Bayes classifier. An interesting fact is that the empirical depth-weighted classifier for the

projection depth is comparable to the empirical Bayes classifier according to AMR: it

leads to the higher AMR only in 7 cases while in 6 cases opposite is true.

Table 4.2: Difference between the empirical classifiers. Number of situations (out of 40) where the
observed inequality in AMR is observed in at least 95 of 100 cases.

depth DW < B DW > B RW < B RW > B RW < DW RW > DW
halfspace 2 29 2 22 27 1
spatial 7 18 4 20 1 16
projection 6 7 5 19 2 18

92

Chapter 4 Robustness

4.6 Robustness

Procedures based on data depth are usually expected to be robust, here we discuss robustness

of the newly proposed depth-weighted classifier. Any statistical procedure is said to be robust

if its performance is not strongly influenced by the presence of outliers. The key issue here

is how to measure the performance of classification procedures. In the present chapter we

stress that there are several possible measures of classifier performance, including average

misclassification rate, error rate in smaller group, maximum of error rates in particular groups

or total cost i.e. sum of depth-weighted errors as proposed in chapter 2.1.

Although the formula for the classifier that minimizes total probability of misclassification

– the Bayes classifier (4.1) – looks simple, in practice the density must be estimated. This can

be done either by a procedure which has restrictive assumptions or by some more universal

procedure, which is often highly sensitive to the presence of contamination (local clusters of

points) in the training set. On the contrary, most of the depth functions are robust as discussed

e.g. by Donoho and Gasko (1992). Thus we hypothesize that the inclusion of a depth weight

in the classification rule might improve the robustness of the classification procedure.

Let us first summarize several thoughts supporting a positive effect of the depth term in

formula (4.4) on the robustness of the classifier. The depth term included in the classifier (4.4)

can be viewed as a weight. In this way the outliers are underweighted – being located far from

the center of the class, the outliers have much smaller misclassification cost than the central

points. Moreover, with a robust depth the outliers influence only the outer depth contours.

Robustness of the classification procedure in thus increased.

4.6.1 An illustrative example

We illustrate advantages gained by adding the depth term in the following (rather artificial)

example.

Let us consider two triangular symmetric distributions P1 and P2 with disjoint supports

supp(P1) = (0, 2z) and supp(P2) = (2z, 4z), where z is some fixed positive constant. In the

considered situation perfect separation of the groups is possible. Now let the training sample of

the distribution P1 contain an α-part of contaminated points, where the contamination comes

from the symmetric triangular distribution centered in 3z (hence having the same center as

P2). The situation is shown in Figure 4.6. The probability mass is divided among these three

subgroups in the following way: (1− α)π1 for P1, απ1 for the contamination of P1 and π2 for

the noncontaminated P2.

In an extreme case we can consider the contamination with the triangular symmetric dis-

tribution on (2z, 4z), i.e. z0 = z. If π2 < απ1 then for the densities f1 and f2 it holds

f2(x)π2 < f1(x)π1 for all x ∈ (2z, 4z). Thus all new observations (either from P1 or P2) will be

assigned to P1 by the Bayes classifier. Misclassification rate in the second group is thus 100%.

It can be easily shown that the depth-weighted classifier assigns points that are smaller

than 2z +
√

2π2z to P1 and all other points to P2. The misclassification rate for the second

93

Chapter 4 Robustness

x

d
e
n
si
ty

0 z 2z 3z 4z3z+z03z−z0

Figure 4.6: Posterior densities of the distributions P1 and P2

group is thus Err2 = P2(X < 2z +
√

2π2z) = π2. The depth-weighted classifier alleviated

substantially the problem which arose from the presence of contamination in the training set

– the error rate for the P2 was decreased from 1 to π2.

This means that the depth-weighted classifier is able to filter the big contamination inclu-

sions, but at the same time it shifts the separation.

4.6.2 Simulation study on robustness of the depth-based classifiers

For a deeper insight into the problem of robustness of the depth-based classifiers we conducted

a short simulation study in which we address a two-class problem (denoting the distributions

P1 and P2) where the training set of P1 contains contamination. The main objective of the

simulation study is to compare depth-based classifiers with an empirical Bayes classifier from

the perspective of their robustness. The depth-based classifiers use spatial depth here. For the

density estimation we use one of the broadly applicable kernel procedures, as in the section 2.7.

The test set contained a total number of 2 000 points. The simulation was repeated 100

times. The distributional settings are described as follows:

• P1 = N((0, 0)′, I), P2 = N((3, 0)′, I).

• The training set of the group 1 includes 10% of contamination, which is generated from

the distribution N(µc, sI). The shrinkage coefficient is s = 0.1, and µc is a location

parameter.

• Four different choices of the location parameter µc define four different simulation set-

tings. The four considered values are (3, 0)′, (4, 0)′, (5, 0)′ and (9, 0)′. Since the second

coordinate is always zero, we characterize the shift by its first coordinate (3, 4, 5, or 9).

• As the fifth setting we consider the situation in which 10% of points generated from P2

are mislabeled in the training set.

• Three different priors are considered: π1 = {0.25, 0.5, 0.75}.

• The AMR is calculated on a test set that is generated without contamination.

94

Chapter 4 Robustness

Although the newly proposed depth-weighted classifiers are designed to optimize the depth-

weighted cost functions we measure their performance by AMR in this study since this is widely

used. AMRs are reported as medians of the AMRs over 100 repetitions.

Results of the simulation study are presented in Figure 4.7. Different locations of the

contamination are distinguished by the columns, while different prior probabilities are dis-

tinguished by rows. In each subgraph the AMRs of four different classifiers are mutually

compared. The first considered classifier is the Bayes optimal classifier, which is not available

in practice. It serves here as a benchmark. The remaining three classifiers are: the empirical

Bayes classifier, the depth-weighted classifier DW and the rank-weighted classifier RW. For

each classifier its AMR is represented by the height of the corresponding bar. The black lines

show the AMR of the classifiers trained without contamination.

shift: 3 shift: 4 shift: 5 shift: 9 shift: mislab.

0.000

0.025

0.050

0.075

0.000

0.025

0.050

0.075

0.000

0.025

0.050

0.075

pi1: 0.25
pi1: 0.5

pi1: 0.75

A
ve

ra
ge

 m
is

cl
as

si
fic

at
io

n
ra

te

Classifier
BayesT

Bayes

DW

RW

Figure 4.7: Robustness under different types of contamination. The classifiers are trained on the
contaminated data and tested on clean ones. The black lines show the AMR of the classifiers trained
without contamination.

We distinguish two situations based on Figure 4.7:

1. Cases in which the Bayes classifier is only slightly influenced by the contamination (in-

crease in AMR is less than 3%), see Table 4.3. In this case the density of the first class

in the contaminated area remains lower than the density of the second class, or the con-

tamination is far from the data. On the other hand, the outliers cause deformation of

the outer depth contours of the first class, and the separation of the depth-weighted clas-

sifiers is slightly shifted towards the contamination, see Figure 4.8 (left). Empirically we

observe that the depth-based classifiers are slightly more influenced than the empirical

Bayes classifier, nevertheless the influence is not strong – it ranges from -3 to +7%.

95

Chapter 4 Robustness

−2 0 2 4 6

−
3

−
2

−
1

0
1

2
3

pi1: 0.25; shift: 3

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●● ●

●

●

●

●

●

●

● ●

●

●

−2 0 2 4 6
−

3
−

2
−

1
0

1
2

3

pi1: 0.75; shift: 4

●

●

●

●●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●
● ●

●

●●

●
●

●

●●

● ●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●
●

●

●
● ●

●
●

● ●●

●

●
●●

●

●
●

●

●● ●

● ●
●

●
●

●

●

●●

● ●●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

● ●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

−2 0 2 4 6

−
3

−
2

−
1

0
1

2
3

pi1: 0.75; shift: 5

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●● ●
●●

●

●

●

●

●

● ●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

● ●●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●

●●

●●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

● ●●

●

●

●

●

●

●
●

●

●

●

● ●

●●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●
●

Separation: — Theoretical Bayes, — Empirical Bayes, — DW, — RW

The DB classifiers are shifted to-
wards the contamination (left)

The Bayes classifier deteriorates,
while DW reduces and RW com-
pletely filters the contamination
(middle)

The contamination is not fil-
tered by any of DB classifiers
(right).

Figure 4.8: The three plots illustrate the behaviour of the depth-weighted classifiers.

2. Cases in which the Bayes classifier is influenced by the contamination (increase in AMR

is more than 10%), see Table 4.4. In this case the density of the first class in the

contaminated area becomes higher than the density of the second class. We divide these

cases again into two groups:

In the first group the depth w.r.t. the second class is high and the depth-based classifiers

filter the contamination (see Figure 4.8, middle). For example, when π1 = 0.75, shift = 3;

π1 = 0.75, shift = 4; and π1 = 0.50, shift = 4, the contamination is big and lies in the

center of P2. In these cases AMR of the Bayes classifier increases by 52%, 43%, 25%

respectively, while for the depth-based classifiers the increase is only about -2%, +3%,

+3% respectively. An illustrative explanation of this phenomenon can be found in Fig-

ure 4.8 (middle). In the contaminated area the density of P1 is (falsely) higher than

that of P2 and Bayes classifier fails in this area. On the contrary, the depth-weighted

classifier substantially reduces the problematic area and the rank-weighted classifier to-

tally overcomes the problem. The case of mislabeling with π1 = 0.75 is also interesting

since empirical Bayes deteriorates (AMR increases by more than 5%) while AMRs of

rank-weighted classifier even decreases.

In the second group the contamination lies in the peripheral of the second class and the

depth w.r.t. the second class is low and cannot compensate the high difference in densities

(see Figure 4.8, right). For example, with shift equal to 5 the AMR of the Bayes and the

depth-weighted classifiers increases by about 15-20%.

Generally, the depth-weighted classifiers are shifted towards the outliers as the depth con-

tours are distorted, but at the same time it is capable of filtering big groups of outliers lying

inside of the second class, where the Bayes classifier deteriorates. The difference is even greater

96

Chapter 4 Conclusion

if the contaminated class is the bigger one. This means that the depth-based methods are

slightly less robust than the Bayes classifier if the outliers are well-spread and do not induce

high density around them, but much more robust in case of big groups of outliers that break

the Bayes rule.

Table 4.3: Results of the simulation study –
changes in AMRs (in %), when the Bayes clas-
sifier is only slightly influenced.

shift π1 BayesT Bayes DW RW
3 0.25 1.50 2.60 4.00 5.80
3 0.50 0.70 1.20 2.10 2.30
4 0.25 1.10 2.00 4.20 5.30
9 0.25 0.70 2.40 6.40 7.10
9 0.50 -0.50 0.20 4.00 4.00
9 0.75 -0.60 -0.10 -0.90 -3.40
mislab. 0.25 0.70 1.30 5.40 6.70
mislab. 0.50 -0.10 0.70 2.90 3.40

Table 4.4: Results of the simulation study –
changes in AMRs (in %), when the Bayes clas-
sifier is strongly influenced.

shift π1 BayesT Bayes DW RW
3 0.75 51.80 65.60 -1.10 -3.20
4 0.50 24.70 6.80 2.80 3.40
4 0.75 43.50 53.30 6.90 -3.10
5 0.25 16.10 11.10 11.10 12.70
5 0.50 18.80 21.60 21.30 20.60
5 0.75 17.80 23.40 19.60 16.30
mislab. 0.75 1.20 5.50 0.40 -1.60

4.7 Conclusion

In this chapter we introduced two alternative measures of classifiers’ performance based on

data depth and focused on the centers of the classes. The first one incorporates a depth term

into the cost function of the Bayes classifier, while the second one incorporates the rank of the

depth. We proposed classifiers that minimize the introduced misclassification cost functions,

namely the depth-weighted and the rank-weighted classifiers. Both classifiers include weights

of misclassification that depend on the location of the points. They force correct classification

of the central points and underweight the outliers. This also decreases the misclassification

rate in the smaller class, unless it is situated close to the center of the bigger one. The depth-

weighted classifier depends on the selected depth function, while the rank-weighted one does

not depend on the depth function for elliptically symmetric distributions.

The methods were theoretically and empirically compared with the Bayes classifier. For

elliptically symmetric distributions we derived the regions where they mutually differ as well

as conditions for their correspondence.

By construction, the average misclassification rate of the depth-based classifiers is higher

than the one of the Bayes classifier. Nevertheless, the difference is rather low and is much

lower than the number of differently classified points, as the depth-based classifiers change the

misclassification rates in both classes.

The usage of a depth function also increases the robustness of the depth-based methods

against big inclusions of contaminated data, that destroy the classification rule of the Bayes

classifier. At the same time smaller contaminations distort the outer depth contours and

slightly shift the separation.

97

Chapter 4 Appendix

Appendix

Table 4.5: Difference in classification rules of the classifiers.

The significant difference according to the number of differently classified points is marked with X

DW, RW: this classifier significantly differs from the Bayes classifier

DW > RW, DW < RW: one classifier differs from the Bayes classifier more than the other

h, p, s: for the halfspace, projection and spatial depths

H > P, ... : the classifier with one depth differs from the Bayes classifier more than with the other

1, 2: for DW and RW

DW RW DW > RW DW < RW H > P H > S S > P H < P H < S S < P
exp π1 h p s h p s h p s h p s 1 2 1 2 1 2 1 2 1 2 1 2
1 0.1 X X X X X X X X X X X X
1 0.3 X X X X X X X X X X X
1 0.5 X X X X X X X X X X
1 0.7 X X X X X X X X X X X
1 0.9 X X X X X X X X X X X X
2 0.1 X X X X
2 0.3 X X X X X X X X X X X X
2 0.5 X X X X X X X X X X X X
2 0.7 X X X X X X X X X X X X
2 0.9 X X X X X X X X X X X X
3 0.1 X X X X X
3 0.3 X X X X X X X
3 0.5 X X X X X X X X X X X X
3 0.7 X X X X X X X
3 0.9 X X
4 0.1 X X X X
4 0.3 X X X X X X X X X
4 0.5 X X X X X X X X
4 0.7 X X X X X X X X X
4 0.9 X X X
5 0.1 X X X X X X X
5 0.3 X X X X X X X
5 0.5 X X X X X X X X X X
5 0.7 X X X X X X X X X X X X
5 0.9 X X X X X X X X X X X X X X X
6 0.1 X X X X X X X X X X X X X X
6 0.3 X X X X X X X X X X X X X X X
6 0.5 X X X X X X X X X X X X X X X
6 0.7 X X X X X X X X X X X X X X X
6 0.9 X X X X X X X X X X X X X
7 0.1 X X X X X X X
7 0.3 X X X X X X X
7 0.5 X X X X X X X X X X X X
7 0.7 X X X X X X X X X X X X X X
7 0.9 X X X X X X X X X X X X X X
8 0.1 X X X X X X X X X X X X X X X
8 0.3 X X X X X X X X X X X X X
8 0.5 X X X X X X X X X X X X X X
8 0.7 X X X X X X X X X X X X X
8 0.9 X X X X X X X X X X X X X∑

40 38 28 30 38 28 32 37 1 2 1 23 17 33 16 32 16 22 12 1 3 2 3 1 3

98

Chapter 4 Appendix

E
xa

m
pl

e
1

E
xa

m
pl

e
2

E
xa

m
pl

e
3

E
xa

m
pl

e
4

E
xa

m
pl

e
5

E
xa

m
pl

e
6

E
xa

m
pl

e
7

E
xa

m
pl

e
8

0102030 0102030 0102030 0102030 0102030

pi1: 0.1 pi1: 0.3 pi1: 0.5 pi1: 0.7 pi1: 0.9

ha
lfs

pa
ce

pr
oj

ec
tio

n
sp

at
ia

l
ha

lfs
pa

ce
pr

oj
ec

tio
n

sp
at

ia
l

ha
lfs

pa
ce

pr
oj

ec
tio

n
sp

at
ia

l
ha

lfs
pa

ce
pr

oj
ec

tio
n

sp
at

ia
l

ha
lfs

pa
ce

pr
oj

ec
tio

n
sp

at
ia

l
ha

lfs
pa

ce
pr

oj
ec

tio
n

sp
at

ia
l

ha
lfs

pa
ce

pr
oj

ec
tio

n
sp

at
ia

l
ha

lfs
pa

ce
pr

oj
ec

tio
n

sp
at

ia
l

de
pt

h

Different classification, %

cl
as

si
fie

r
D

W

R
W

F
ig
u
re

4
.9
:

D
iff

er
en

ce
in

cl
as

si
fi

ca
ti

on
ru

le
s

of
th

e
cl

as
si

fi
er

s.

99

Chapter 4 Appendix

E
xa

m
pl

e
1

E
xa

m
pl

e
2

E
xa

m
pl

e
3

E
xa

m
pl

e
4

E
xa

m
pl

e
5

E
xa

m
pl

e
6

E
xa

m
pl

e
7

E
xa

m
pl

e
8

0.
0

0.
1

0.
2

0.
3

0.
0

0.
1

0.
2

0.
3

0.
0

0.
1

0.
2

0.
3

0.
0

0.
1

0.
2

0.
3

0.
0

0.
1

0.
2

0.
3

pi1: 0.1 pi1: 0.3 pi1: 0.5 pi1: 0.7 pi1: 0.9

ha
lfs

pa
ce

pr
oj

ec
tio

n
sp

at
ia

l
ha

lfs
pa

ce
pr

oj
ec

tio
n

sp
at

ia
l

ha
lfs

pa
ce

pr
oj

ec
tio

n
sp

at
ia

l
ha

lfs
pa

ce
pr

oj
ec

tio
n

sp
at

ia
l

ha
lfs

pa
ce

pr
oj

ec
tio

n
sp

at
ia

l
ha

lfs
pa

ce
pr

oj
ec

tio
n

sp
at

ia
l

ha
lfs

pa
ce

pr
oj

ec
tio

n
sp

at
ia

l
ha

lfs
pa

ce
pr

oj
ec

tio
n

sp
at

ia
l

D
ep

th

Average misclassification rate

cl
as

si
fie

r
D

W

R
W

F
ig
u
re

4
.1
0
:

A
ve

ra
ge

m
is

cl
as

si
fi

ca
ti

on
ra

te
.

T
h

e
b

la
ck

li
n

e
sh

ow
s

A
M

R
of

th
e

B
ay

es
cl

as
si

fi
er

.

100

Chapter 4 Appendix

E
xa

m
pl

e
1

E
xa

m
pl

e
2

E
xa

m
pl

e
3

E
xa

m
pl

e
4

E
xa

m
pl

e
5

E
xa

m
pl

e
6

E
xa

m
pl

e
7

E
xa

m
pl

e
8

0.
0

0.
2

0.
4

0.
0

0.
2

0.
4

0.
0

0.
2

0.
4

0.
0

0.
2

0.
4

0.
0

0.
2

0.
4

pi1: 0.1 pi1: 0.3 pi1: 0.5 pi1: 0.7 pi1: 0.9

B
ay

es
D

W
R

W
B

ay
es

D
W

R
W

B
ay

es
D

W
R

W
B

ay
es

D
W

R
W

B
ay

es
D

W
R

W
B

ay
es

D
W

R
W

B
ay

es
D

W
R

W
B

ay
es

D
W

R
W

sp
at

ia
l d

ep
th

Average misclassification rate

F
ig
u
re

4
.1
1
:

A
ve

ra
g
e

m
is

cl
as

si
fi

ca
ti

on
ra

te
of

th
eo

re
ti

ca
l

(f
at

li
n

e)
an

d
em

p
ir

ic
al

(t
h

in
li

n
e)

cl
as

si
fi

er
s

fo
r

sp
at

ia
l

d
ep

th
.

101

Chapter 4 Appendix

E
xa

m
pl

e
1

E
xa

m
pl

e
2

E
xa

m
pl

e
3

E
xa

m
pl

e
4

E
xa

m
pl

e
5

E
xa

m
pl

e
6

E
xa

m
pl

e
7

E
xa

m
pl

e
8

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

pi1: 0.1 pi1: 0.3 pi1: 0.5 pi1: 0.7 pi1: 0.9

B
ay

es
D

W
R

W
B

ay
es

D
W

R
W

B
ay

es
D

W
R

W
B

ay
es

D
W

R
W

B
ay

es
D

W
R

W
B

ay
es

D
W

R
W

B
ay

es
D

W
R

W
B

ay
es

D
W

R
W

sp
at

ia
l d

ep
th

Misclassification rate

cl
as

s 1 2

F
ig
u
re

4
.1
2
:

M
is

cl
as

si
fi

ca
ti

on
ra

te
s

b
y

cl
as

se
s

of
th

eo
re

ti
ca

l
(f

at
li

n
e)

an
d

em
p

ir
ic

al
(t

h
in

li
n

e)
cl

as
si

fi
er

s
fo

r
sp

at
ia

l
d

ep
th

.

102

Chapter 5

Computation of the Oja median

by bounded search

5.1 Introduction

A basic task in multivariate analysis is to describe the general location of data by some point

in their middle. Several notions of multivariate medians have been proposed in the litera-

ture. They extend different properties and characterizations of the usual univariate median

to Euclidean k-space. Besides these defining characterizations the multivariate medians may

be distinguished by their invariance properties. These include invariances against monotone

transformations of the marginals (like the componentwise median), against spherical transfor-

mations (like the spatial median), against affine transformations (like the Oja median, proposed

in the seminal paper (Oja, 1983)), and combinatorial invariance. The latter means that the

data may be varied in their compartments without changing the median. Examples are the

Tukey median (Tukey, 1975) and the simplicial median by Liu (1988). These medians are, at

least in some sense, more robust against outlying data than the arithmetic mean, which is the

center of gravity. Multivariate medians are surveyed by Small (1997) and Oja (2013).

Like the univariate median most of the multivariate medians can be regarded as maximizers

of goal functions, so called data depths, the Tukey depth, the simplicial depth, the Oja depth,

and the spatial depth, among others. See Mosler (2013) for a recent survey.

To be applicable to realistic problems, a median must be computable for dimensions k > 2

and at least medium sized data sets. Here we develop an algorithm to calculate the exact

value of the Oja median and demonstrate that it is faster, having also less complexity, than

the existing ones by Niinimaa et al. (1992) and Ronkainen et al. (2003), ROO hereafter. The

exact algorithm can also serve as a benchmark for faster heuristic procedures. In principle, the

computation of the Oja median involves repeated checking of all intersections of hyperplanes

generated by the data. Our main idea is to introduce bounding hyperplanes that iteratively

restrict the area where the median is searched.

The chapter is structured as follows: Section 2 introduces the Oja median and depth and

some basic notions and properties connected with them, it also sketches the algorithm of

Chapter 5 Oja median and depth

Ronkainen et al. (2003) for exact calculation of the Oja median. In Section 3 the ideas of the

new bounding procedure are discussed, followed by a description of the algorithm in Section

4. Finally, in Section 5 numerical experience is reported regarding data in Rk for k up to

dimension seven.

5.2 Oja median and depth

Let X = {x1, ...,xn} be a data set of observations in Rk. Each k observations xi1 , ...,xik
generate an observation hyperplane passing through them, which is notated by p = (i1, ..., ik),

1 ≤ i1 < ... < ik ≤ n. Let P denote the set of all
(
n
k

)
observation hyperplanes.

k observations together with a given point x ∈ Rk span a simplex in k-space. Its k-

dimensional volume is found as

Vp(x) := V (xi1 , ...,xik ,x) =
1

k!
abs

(∣∣∣∣∣ 1 ... 1 1

xi1 ... xik x

∣∣∣∣∣
)

=
1

k!
abs(d0p + dp

>x).

Here d0p is the distance of the hyperplane p from the origin, and dp is its normal, given by the

vector of cofactors of x in the determinant. The average of all such volumes is mentioned as

the Oja outlyingness function of x,

O(x|X) = avei1<...<ik (V (xi1 , ...,xik ,x))

= avei1<...<ik

(
1

k!
abs

(∣∣∣∣∣ 1 ... 1 1

xi1 ... xik x

∣∣∣∣∣
))

=
1

k!
avep∈P

(
abs(d0p + d>p x)

)
. (5.1)

It is clear from (5.1) that the Oja outlyingness function is piecewise linear and convex on x as

well as continuous on x and the data in X. The minimizer of the outlyingness function is the

Oja median, Med(X). Generally, this median is not unique but forms a convex set. The Oja

median is a measure of location and affine equivariant regarding X,

Med(Y) = AMed(X) + b , (5.2)

if Y = {Ax1 +b, . . . ,Axn +b} with some matrix A of full rank k and b ∈ Rk; see Oja (1983).

The outlyingness function can be made affine invariant (to simultaneous transformation of x

and X) by multiplying it with a proper scale factor, viz. (detS(X))−1/2, where S(X) is a

positive definite k× k matrix depending on X and measuring the dispersion of the data cloud

X in an affine equivariant way, that is, with Y as above, satisfying

S(Y) = A>S(X)A. (5.3)

104

Chapter 5 Oja median and depth

In particular, the usual covariance matrix of X can serve as S(X). The Oja depth function is

defined as (Zuo and Serfling, 2000)

depth(x|X) =
1

1 +O(x|X)(detS(X))−1/2
. (5.4)

Observe that the Oja depth function is affine invariant and continuous. It is maximal at the

Oja median of X and vanishes for ||x|| → ∞. Given X, the depth function is a strictly

decreasing transformation of the outlyingness function and, thus, the contour lines of the two

functions coincide, though at different values. As the function O(·|X) is convex, all its contour

lines are convex. Hence the level sets of the Oja depth are convex and compact sets in Rk.

Moreover, the Oja depth decreases monotonically on rays from each point in the median set.

In the case of a centrally symmetric distribution the median set includes the center of

symmetry. It can be shown that the Oja depth function determines the data cloud X uniquely

(Koshevoy, 2003). The usual breakdown point of the Oja depth is zero, while a slightly different

notion of breakdown appears to be positive (Niinimaa et al., 1990).

Given X, the centered rank function R is defined by

R(x) =
1

k!
avep∈P (Sp(x)dp) ,

where

Sp(x) = sign(d0p + dp
>x),

indicates on which side of the hyperplane p the point x is located. Note that R(x) is the

derivative of (5.1), at all x at which O(·|X) is smooth. Hence, as O(·|X) is convex, the

centered rank function is a subgradient of the outlyingness function, at all x ∈ Rk. Below,

−R(x) will be used as a direction of descent at point x. It is easily seen from (5.1) that the

outlyingness function is also represented as

O(x) =
1

k!

(
avep∈P (Sp(x)d0p) + avep∈P (Sp(x)dp

>x)
)

=
1

k!

1(
n
k

) (D0(x) +D(x)>x)
)
, (5.5)

where the sums,

D0(x) =
∑
p∈P

Sp(x)d0p , D(x) =
∑
p∈P

Sp(x)dp , (5.6)

are piecewise constant. They change by 2d0p and 2dp, respectively, when a hyperplane p is

crossed.

105

Chapter 5 A bounding approach

5.2.1 Calculating the median according to ROO

In what follows we assume that the data are in general position. Hettmansperger et al. (1999)

have shown that a version of the Oja median is always found among the intersection points of

observation hyperplanes. The exact algorithm of ROO iteratively optimizes the outlyingness

function along the intersection lines of k− 1 observation hyperplanes, called observation lines.

At first a searching line is randomly selected among the observation lines and the outlyingness

function is optimized along the line. When the point of the minimum is found, the next

searching line through this point is chosen. The possible choices of lines depend on the type of

the point: the smallest number of lines is obtained if the point is an intersection of hyperplanes

that have no common observation points, the largest number is obtained if the point coincides

with one of the observation points; see also the discussion before subsection 5.4.1.

Minimizing the outlyingness function along the searching line is the most time consuming

task. The chosen line L is intersected with all hyperplanes and the outlyingness function (5.1)

is calculated at each intersection point. At the first intersection point the constant terms d0p

and dp are summed up along with the signs Sp(xm), yielding the sums D0, and D according

to (5.6). Then the other intersections are considered step by step. The outlyingness function

is calculated as in (5.5). In each new point one of the hyperplanes changes its sign and the

sums Dp and D are updated. Note, that there are
(
n
k

)
intersections, almost all of which have

to be considered, which causes the great complexity of the algorithm.

This algorithm finds just one of the vertices of the median set. While searching for the

median, the algorithm may pass through several vertices of the median set, although it is not

guaranteed that it visits all of them. The reason is that, while minimizing the outlyingness

function along the searching line, only the first of possibly two points having highest Oja depth

is taken as x∗c . However, in case of a non-unique median, there exist two such points lying

on an edge of the median set. To deliver all vertices of the median set, the algorithm can be

modified as follows: it has to store both points as vertices and, in addition, check all lines

passing through them.

5.3 A bounding approach

The centered rank function is a subgradient of the outlyingness function. Note that no unique

gradient exists at intersections of the observation hyperplanes, hence the centered rank func-

tion will in general not vanish at the Oja median. The negative rank function (= negative

subgradient) −R(x) is a vector that points in a direction of descent of the outlyingness func-

tion, hence ascent of the depth function. It defines a hyperplane through x, which separates

the space into two halfspaces. The positive side of the hyperplane is indicated by the negative

subgradient, which equals the negative rank function. Therefore, the Oja median is always

found on the positive side of these hyperplanes.

106

Chapter 5 A bounding approach

Figure 5.1: An example of Oja depth contours with values of the negative rank function. The
median (unique) is shown at the intersection of the observation lines as a bold point, together with
its subgradient.

Regarding the Oja depth function, observe that its subgradients have the same direction

as the negative subgradients of the Oja outlyingness function,

grad depth(x) = −R(x) (detS(X))−1/2 (depth(x))2 .

Their contour lines coincide since the depth function is a strictly decreasing transform of the

outlyingness function.

An example of Oja depth contours and subgradients of the depth function is shown in Figure

5.1. As expected, all negative subgradients point to the halfspace containing the median, and

the gradients are perpendicular to the depth contours.

The halfspaces defined by the negative rank function can be used to build a bounded

region that contains the median. In our algorithm we select those halfspaces in an iterative

way and restrict the further search to their intersection. The hyperplanes bordering such a

search region will be called bounding hyperplanes or simply bounds. The bounded regions

reduce the complexity of the searching procedure by reducing the number of hyperplanes that

cross the searching lines as well as the number of their intersections actually considered in the

minimization procedure.

The obtained hyperplanes form a bounded region, which is the intersection of the positive

sides of the hyperplanes. Actually, such a bounded region is determined by part of these

hyperplanes only, as bounds lying outside the region provide no additional information. In our

algorithm, we adjust the bounded regions step by step. We begin with a rectangular region

limited by hyperplanes that are perpendicular to the coordinate axes and go through the

maximal and minimal coordinates of the data points on these axes. Then we add hyperplanes

as new bounds. For each added new bound it is checked whether it is efficient, that is, actually

crosses the bounded region, and thus reduces it. Then the intersection of the new hyperplane

with the bounded region is determined, and all bounds that are made inefficient by the new

one are removed. To check whether a hyperplane crosses the bounded region, it suffices to

check if there exist any two bounds’ intersections lying on different sides of the hyperplane. As

107

Chapter 5 A bounding approach

the calculation of the Oja rank function is itself a rather expensive operation, we will try to

obtain the smallest possible central region by performing as few calculation as possible.

We have developed several approaches of the iterative bounds search. The divisive approach

(A) is the simplest solution.

Approach A:

The bounded region is iteratively reduced by a divisive approach (A) viz. by it-

eratively adding hyperplanes that go through a properly chosen central point of

the region and have their normal vectors equal to the corresponding negative rank

function. The central point should be selected to cut a large amount of volume

from the bounded region, and shall ideally be the center of the volume, so that

any hyperplane through this point will approximately cut off half of the bounded

region’s volume. Here, we select the mean value of the bounds’ intersection points

as a central point. As the region is reduced by a hyperplane through the central

point, it is expected that its volume shall become (on an average) twice smaller at

each step. Ideally, after nine such steps, in any dimension k, a subspace volume

of approximately 0.1% of the initial one should be obtained. The experiments in

section 5.5 show that the volumes decrease slower in concrete calculations.

The divisive approach (A) considers only the directions of the subgradients, although their

lengths also give the information about the location of the median. Another solution (approach

B) consists in moving along the subgradients as it is shown in Figure 5.2.a. The length of R(x)

decreases as x moves towards the median.

Approach B:

1) Start with i = 0. Select an initial point x0. Specifically, we choose the compo-

nentwise median of all observations.

2) Determine the subgradient −R(xi).

3) Add the subgradient vector, xi+1 = xi −R(xi), and continue.

We continue building such gradients, each time getting closer to the median, until

they become either zero or increase in length. The zero case means that the point

xi lies in the median set, where the Oja depth assumes its minimal value. As it is

seen in Figure 5.1, the subgradient’s length depends not only on the distance from

the median, but also on the subspace, formed by hyperplanes, that contains xi.

Thus if the gradients become longer, their lengths may be restricted to the length

of the shortest one, and this bound will consequently decrease.

Several of the gradients found may be used to build the bounded searching region,

containing the median. The points having shortest gradients are closest to the

median. An example of a bounded region built on such gradients is shown in

Figure 5.2.b.

108

Chapter 5 A bounding approach

Start

. a . b

Figure 5.2: A gradient path (a) and a bounded region (b), built using the gradients. The subspaces,
cut off by each of the bounds are shaded.

The divisive approach needs an almost constant number of calculations to reach the in-

tended volume. However, the efficiency of moving along the subgradients (approach A) strongly

depends on the form of the data. In most cases, the subsequent gradients extend in rather

different directions, and the volume of the bounded region decreases fast. But in certain cases,

especially with asymmetric datasets, this is not true. The subgradients in the sequence may

approach the median in a more common direction and thus leave too much space inside the

bounded region. The gradients may also end outside the bounded region or jump between two

subsets formed by the observation hyperplanes, providing not much information on each step.

It is therefore reasonable to start with moving along the subgradients, and then, as soon as

this procedure slows down, shift to the divisive procedure, until the needed volume is reached:

Approach C:

This yields the following hybrid approach, where the next cutting point may be

defined as the end of the subgradient, xi+1 = xi −R(xi), as long as it lies inside

of the bounded region, or as the center of the bounded region otherwise.

Approach D:

Also the direction of the subgradients can be used to define the next cutting point as

a central point of the segment between the subgradient’s origin and its intersection

with the bound.

Further, the calculation can be accelerated by using rougher bounds, viz. enlarging the

given bounded region by a circumscribed k-variate box. Then a fortiori a point lies outside

the bounded region if it lies outside the circumscribed box.

Once a bounded region is defined, the observation hyperplanes lying outside of it are ex-

cluded from the searching process, which decreases the number of intersections when mini-

mizing on a line. A problem may occur if the bounded region contains no path through the

intersections of the observation lines from the initial searching line to the line containing the

median. Such a path connecting any two observation lines may be provided by including the

109

Chapter 5 The algorithm

A

B

C

D

E

F

M

Figure 5.3: A path through the observation lines (thin) and the bounds (bold). We start from
taking one of the bounds AB as the initial line, and find a minimum point B. Then the outlyingness
function is minimized along the next line through this point. As it is seen from the line CE, the point
of minimum E is not necessarily the closest one (D) to the median, and the selected path may be not
the shortest one. The paths BC and EFM are isolated, as there are no observation lines inside the
bounded region to connect them, but they are connected with the bound CE.

bounds themselves into the searching process as ordinary observation hyperplanes. Figure 5.3

shows an example of a path from the initial line through the observation lines and bounds to

the median.

The bounding method may also be used to find the median in an approximative way with

some given precision. The space may be cut until the bounded region has the proper size and

its center may be taken as an approximation of the median. It is clear, that the median cannot

lie outside the bounded region, so its center can be assumed to be the median with precision

equal to half of the region’s size. As the method considers all observation hyperplanes, it

cannot be more efficient than existing approximative methods that consider subsamples of the

data.

5.4 The algorithm

To start with, the first bounded region is created as described in the previous section. The

desired size of the bounded region is selected as a part of the original volume. Here the volume is

calculated as the volume of a minimal multivariate circumscribed rectangle with edges parallel

to the coordinate axes. In subsequent iterations the first bounded region is reduced until the

desired volume is reached. Here, the divisive approach (A) is considered, as it shows the best

results in experiments (see section 5.5). Note that the bounds may cut off some of the vertices

of the median set. Moreover, if the central point of the bounded region lies in the median set,

its negative rank function is zero, and this point is directly returned as a median.

Next the initial line is determined. In a two-dimensional space any of the observation lines

crossing the bounded region may be selected. In higher dimensions the search of the initial

line is more complicated. All intersections of (k − 1) hyperplanes are inspected until a first

intersection line that crosses the bounded region is found. For this, we start with the lines that

border the initial bounded region, which makes the search for a fitting line much easier.

110

Chapter 5 The algorithm

It is clear that all points inside the bounded region lie on the same side of any hyperplane

which does not cross this region. Therefore, the respective parts of the sums in (5.6) can be

calculated beforehand, which significantly decreases the number of calculations on each step.

Thus, on every searching line we may restrict ourselves to iterating the remaining hyperplanes.

The bounded region reduces the procedure of minimization along a line to its part lying

inside the region. The searching line is usually intersected by most of the bounds. Therefore

the two bounds that cut the bounding region at the intersection line are of primary interest.

In order to find these bounds, all bounds are sorted according to their intersections with the

searching line. Then the intersection point of the first bound with the searching line is taken as

a reference point. The first bound which has the reference point on its positive side is selected

as well as the previous one. If the searching line goes through the bounded region, all other

bounds must have the reference point on the positive side. This property is used to determine

whether a searching line hits the bounded region in dimensions higher than two, as there exist

hyperplanes that are crossing the bounded region, but whose intersection line lies outside of

it, as it is shown in Figure 5.4 for a two-dimensional example and in Figure 5.5 for a higher

dimensional one.

Bounded region

reference
points

1

2

Figure 5.4: Two lines: crossing the bounded region (1) and lying outside of it (2). The arrows show
the positive sides of the hyperplanes. The segments between the bounds, one having the reference
point on the negative and another one on the positive side, are shown in bold. A line that hits the
bounded region has only one such segment.

The searching line is intersected with the included hyperplanes, and the outlyingness func-

tion (5.1) is calculated at every intersection point that lies between the two bounds, found on

the previous step. At first, the hyperplanes that intersect the line outside the rougher, i.e.

more liberal, bound are filtered out and added to (5.6). Then the first bound’s intersection is

taken as a median candidate, and as a starting point for the minimization procedure. The left

hyperplanes are added to (5.6) with the sign they have in the first bound’s intersection. The

intersection points are iterated, the corresponding hyperplanes change the sign in the sum (5.6)

and the outlyingness function is calculated as in (5.5). The outlyingness function is also calcu-

111

Chapter 5 The algorithm

Figure 5.5: An example of an observation line lying outside of the bounded region (shown as a
sphere) formed by two hyperplanes crossing the bounded region in a higher dimensional space.

lated at the intersections with the bounds. When the second bound’s intersection is reached,

the procedure is terminated. The outlyingness function has convex contours and therefore is

unimodal on any line. However, in practice the outlyingness function may slightly fluctuate

when it is optimized along a line. In this case, as soon as the outlyingness value begins to

increase by a certain threshold amount, the minimization along the line is terminated.

When the minimum is found on the searching line, the next observation line is chosen among

the lines that contain the minimum. In the simplest case, k hyperplanes, each defined by k

unique observation points, define a point at their intersection and produce k observation lines

through this point. More complex cases occur when some of the hyperplanes have observation

points in common, and their intersection point lies in an affine subspace of dimension d < k,

generated by these common points. Such a point may then be described by all possible obser-

vation hyperplanes that have the same common points, and thus the number of observation

lines increases. If the number of observation lines exceeds the predefined maximum number

maxnL , ROO propose either to stop, or to take a random subset of these lines. Fischer et al.

(2016) in their R-package OjaNP used to choose a new initial line in such cases.

If the minimum is defined with one or more bounds, we treat them like ordinary hyperplanes.

In order to explicitly determine the bounded region’s boarding lines and corners, the bounds

are identified by k unique points that are found as intersections with the coordinate axes. If

a bound is parallel to some of the axes, the diagonal axes in the space are taken. Thus the

bounds do not have identifying points in common, and each intersection of the bounds and

observation hyperplanes produces a minimum possible number of observation lines.

5.4.1 Formal description of the algorithm

The formal description has modifies the one of Ronkainen et al. (2003, A.1, A.2) and includes

parts of it to make the comparison easier. In particular, Procedure 1 extends A.1 with the

bounded region search (steps 2–14), and Procedure 3 modifies the minimization algorithm A.2

to be used in a bounded region (added steps 1-6, modified steps 18-31). Procedure 2 describes

the bounded region construction as in the divisive approach A.

112

Chapter 5 The algorithm

Procedure 1. Compute the exact Oja median.

Input: Data set X = {x1, ...,xn} in Rk.

The desired size s of the bounded box, s = bounded box volume
original volume

.

Max number of observation lines to scan maxnL .

Output: Exact Oja median T = Med(X).

1: Precalculate all observation hyperplanes p = (i1, ..., ik), 1 ≤ i1 < ... < ik ≤ n.

2: Build the bounded region B, that is, the set of bounds defining it, using procedure 2.

Chose the initial line L:

3: for all subsets Bs ⊂ B with |Bs| = k − 1 do . find lines

4: Set L←
⋂
Bs.

5: Sort the bounds b ∈ B according to their intersection points with L as ROO do in A.2,

i.e. if L = {L0 +βuL : β ∈ R} and we have bi∩L = {L0 +βiuL} and bj∩L = {L0 +βjuL}
for some bi, bj ∈ B, then i < j ⇐⇒ βi < βj. Denote the order b(1), b(2), ..., b(nb), where

nb = |B|.
6: Set y1 ← L ∩ b(1).

7: i← smallest i at which Sb(i)(y1) = 1.

8: if ∃j : j > i, Sb(j)(y1) 6= 1 then

9: Continue . the line is out of bounds

10: else

11: Break . the line is found

12: end if

13: end for

14: Precalculate 1
k!
× the common part of (5.6), for given t in the bounded region:

H ←
∑

p/∈B
1
k!
Sp(t)dp,

H0 ←
∑

p/∈B
1
k!
Sp(t)d0p.

15: Compute T̂ ← arg mint∈LO(t) using procedure 3.

16: Set the median candidate T ← T̂ .

17: Initialize the collection of investigated lines L ← {L}.
18: Let nL be the number of the observation lines containing T̂ .

19: if nL > maxnL then

20: There are too many possibilities. Goto 3.

21: end if

22: Construct the observation lines L′ ← L1, . . . LnL .

23: Set L′ ← L′ \ L.

24: while L′ 6= ∅ do

25: Find the line L ∈ L′ of deepest descent.

26: Compute T̂ ← arg mint∈LO(t) using procedure 3.

27: Update L ← L ∪ {L} and L′ ← L′ \ {L}

113

Chapter 5 The algorithm

28: if O(T̂) < O(T) then

29: T ← T̂

30: Goto 16.

31: end if

32: end while

33: return T

Procedure 2. Build the bounded region as in the divisive approach A, sec 5.3.

Input: Data set X = {x1, ...,xn} in Rk.

Precalculated observation hyperplanes P .

The desired size s of the bounded box, s = bounded box volume
original volume

.

Output: The bounded region B.

Enclosing box E.

1: Define B ← ∅. . the set of bounds

2: Define C ← ∅. . the set of bounds’ intersections

Build the Initial Box:

3: for d = 1, ..., k do . index (−d) means all coordinates from 1 to k except of d

4: Set the seed of a bound od ← max{x1d, ..., xnd}, o−d ← 0.

5: Set the normal vector nd ← −1, n−d ← 0.

6: Define bound b with o and n.

7: AddBound(b)

8: Set the seed of a bound od ← min{x1d, ..., xnd}, o−d ← 0.

9: Set the normal vector nd ← +1, n−d ← 0.

10: Define bound b with o and n.

11: AddBound(b)

12: end for . the Initial Box is now built

Proceed with the following divisions:

13: Calculate the original volume of the space as

OriginalV olume =
∏k

d=1 (max {x1d, ..., xnd} −min {x1d, ..., xnd})
14: while NewV olume/OriginalV olume > s do

15: Define the center of B as C̄.

16: Calculate the negative rank function g = −R(C̄).

17: Define bound b with C̄ and g.

18: AddBound(b)

19: Calculate NewV olume =
∏k

d=1

(
max {C1d, ...,C |C|d} −min {C1d, ...,C |C|d}

)
using the

updated intersection points.

20: end while

114

Chapter 5 The algorithm

21: function AddBound(new bound b)

. here (b · x) is the dot product of a point x and the normal vector of b

22: if (Initial Box is built) and

(sign(b · c1) = sign(b · c2)∀c1, c2 ∈ C) then

23: exit without changes . b lies outside of B

24: end if

25: for all subsets Bs ⊂ B with |Bs| = k − 1 do . find new intersections

26: Set c←
⋂

(Bs ∪ b)
27: if ∀b ∈ B sign(b · c)! = −1 then

28: Add the new crossing point C ← C ∪ c.
29: end if

30: end for

31: Add the new bound B ← B ∪ b.
32: C ← C \ {c : c ∈ C, sign(b · c) = −1}. . Remove the cut off intersections

33: B ← B \ {b ∈ B : sign(b · c1) = sign(b · c2)∀c1, c2 ∈ C}.
34: end function

Procedure 3. Minimize the outlyingness function O on the chosen line.

Input: Precalculated observation hyperplanes P .

Searching line L.

The bounded region B.

Enclosing box E.

Output: The minimum T̂ ← arg mint∈LO(t) or an empty point if L ∩B = ∅.
1: Sort bounds b ∈ B according to their intersection points with L as in procedure 1.5,

b(1), b(2), ..., b(nb), where nb = |B|.
2: Set y1 ← L ∩ b(1).

3: Set yb1 ← L ∩ b(i−1) and yb2 ← L ∩ b(i) where i = arg mini(Sb(i)(y1) = 1)

4: if ∃j : j > i, Sb(j)(y1) 6= 1 then

5: return empty point. . the line is out of bounds

6: end if

7: Chose any point t0 ∈ B ∩ L (e.g. t0 = yb1).

8: Initialize D ←H , D0 ← H0, H ← ∅.
9: for all p ∈ B do . Compute the sum for hyperplanes, crossing L outside of E.

10: if p ∩ L ⊂ E then

11: H ← H∪ p
12: else

13: D ←D + 1
k!
Sp(t0)dp

14: D0 ← D0 + 1
k!
Sp(t0)d0p.

15: end if

16: end for

115

Chapter 5 Numerical experience and conclusions

17: Sort hyperplane indexes p ∈ H according to their intersection points with L as ROO do in

A.2, p(1) ≤ p(2) ≤ ... ≤ p(np), where np = |H| and < resp. ≤ denote the order of intersection

points.

18: Define H1 ← {p : p ∈ H, p ∩ L < yb1},
H2 ← H \H1,

H3 ← {p : p ∈ H2, p ∩ L ≤ yb2}.
19: Set y1 ← L ∩ p(1) and ynp ← L ∩ p(np).

20: Compute D ←D +
∑

p∈H1

1
k!
Sp(ynp)dp +

∑
p∈H2

1
k!
Sp(y1)dp and

D0 ← D0 +
∑

p∈H1

1
k!
Sp(ynp)d0p +

∑
p∈H2

1
k!
Sp(y1)d0p.

21: Set potential minimum T̂ ← yb1.

22: Evaluate O(T̂) = D>T̂ +D0.

23: for all {i : p(i) ∈ H3} do

24: Set D ←D − 1
k!
Sp(i−1)

(y1)dp(i−1)
+ 1

k!
Sp(i−1)

(ynp)dp(i−1)
,

25: Set D0 ← D0 − 1
k!
Sp(i−1)

(y1)d0p(i−1)
+ 1

k!
Sp(i−1)

(ynp)d0p(i−1)
.

26: Set t← L ∩ p(i).

27: Evaluate O(t) = D>t+D0

28: if O(t) < O(T̂) then

29: Set T̂ ← t and O(T̂)← O(t).

30: end if

31: end for

32: return T̂ .

5.5 Numerical experience and conclusions

The new algorithm was implemented as a part of the R-package OjaNP of Fischer et al. (2016).

A function ojaMedianExB was implemented to be used in place of the previous ojaMedianEx

by ROO. A parameter alg="exact_bounded" was added to the function ojaMedian, and the

corresponding C++ routines were modified. The benchmark values were measured inside the

C++ routines, using file logging. This allows to easily compare the efficiency of the original

and modified algorithms, excluding the data transformation and hyperplanes generation time.

The desired volume of the bounded region was set, and the calculation time was determined

for the new exact algorithm as well as for the ROO procedure. Best results were received at

around 10−8 of the original volume in most of tried datasets. The new algorithm showed to be

three to six times faster than the one by ROO.

The new algorithm is able to calculate data sets of the same size and dimension as the

ROO algorithm. It is mainly restricted by the amount of RAM, as it needs to store all
(
n
k

)
hyperplanes. E.g. the calculation of the median in a data set of size 5×100 needs 12 GB RAM.

A PC with an Intel Core i7-4770 (3.4 GHz) processor and 32 GB RAM was employed in the

experimental studies. Only one processor core was used. The algorithm was able to find the

116

Chapter 5 Numerical experience and conclusions

median in data sets of sizes 3× 750, 4× 150, 5 × 75, 6 × 50 in less than half an hour, and of

sizes 4× 200, 5× 100 in less than an hour.

In constructing the bounded regions we have tried the different variants proposed in section

5.3. As it was observed, all proposed approaches (B, C, D) that use the subgradient’s ending

point or direction to define the next cutting point converge extremely slow, compared to the

simple divisive approach (A). Although the subgradients may sometimes produce really good

cutting points, which strongly reduce the bounded region, they often stick at the angles of the

bounded region, so that the next steps reduce the bounded region by a narrow slice only, which

is close to an existing bound. Particularly in higher dimensions, the subgradients also appear

to be too short, so that the amount of the volume cut in each step becomes unsatisfying.

Therefore in out search we desist from the lengths of the subgradients and use only their

directions. All the numerical results provided in this chapter were received using the divisive

approach starting with the initial rectangular bounded region. The number of cuts needed to

obtain the desired volume appears to depend only moderately on the size and dimensionality

of the data.

For both algorithms, the ROO and the new one, the performance of the searching procedure

strictly depends on the selected initial line. As ROO select this line at random, their calculation

times differ significantly between different launches. Our bounding algorithm selects the firstly

found border line of the bounded region as the initial line, which makes the searching path

completely deterministic, although in general not the fastest possible.

Employing bounds considerably decreases the complexity of the algorithm. The minimiza-

tion along a line produces most of the complexity of the ROO algorithm. The line is intersected

with H =
(
n
k

)
hyperplanes, the intersections are sorted and all of them iterated, which has

a complexity of O(H2 logH). The bounding algorithm leaves a smaller amount h < H of

hyperplanes. Only b hyperplanes, b < h, that have intersections between the bounds remain

to be considered. The rougher bound also strongly decreases the number of hyperplanes which

need to be sorted to s : b < s < h. This provides a complexity of O(b× h log s) only.

Tables 5.1, 5.2 and 5.3 exhibit a few exemplary results. The experimental data is an even

mixture of two multidimensional normal distributions N([15, 0, ..., 0]k, diag([1, 25, 1, ..., 1]k))

and N(0k, diag(1k)) although the conclusions are the same for the data having other form

and for the real data sets. They show how the performance parameters listed below depend on

the data dimension and size, given the intended volume equal to 10−8 (for Tables 5.1 and 5.2),

where #Cuts is the number of cuts needed to reach the intended volume using the divisive

approach, HP(%) is the percent of the hyperplanes intersecting the bounded region, #Steps

is the number of minimization steps needed to find the median, and time periods needed to:

determine the bounded region Tbounds, calculate the median (after the bounded region is deter-

mined) Tcount, perform the whole procedure Ttotal, and to find the median using the algorithm

by ROO Toriginal. The given times do not include the generation of all observation hyperplanes,

which is the same for both algorithms.

117

Chapter 5 Numerical experience and conclusions

Table 5.1: The performance parameters for n ∈ {50, 75} and intended volume 10−8.

k n #Cuts HP(%) #Steps Tbounds Tcount Ttotal Toriginal

2 50 29 0.16 3 0.009 0.001 0.010 0.018
3 50 39 0.64 9 0.216 0.053 0.269 0.557
4 50 42 3.33 34 3.015 2.433 5.448 25.529
5 50 42 9.65 45 31.359 42.876 74.235 476.600
6 50 45 17.65 77 345.128 774.382 1119.510 3149.010

2 75 32 0.11 2 0.023 0.002 0.025 0.038
3 75 36 0.34 14 0.658 0.243 0.901 3.033
4 75 42 2.11 39 15.353 13.720 29.073 110.291
5 75 45 7.17 70 281.888 474.461 756.349 2667.890

Table 5.2: The performance parameters for k ∈ {4, 5} and intended volume 10−8.

k n #Cuts HP(%) #Steps Tbounds Tcount Ttotal Toriginal

4 25 38 3.26 25 0.159 0.095 0.254 0.707
4 50 42 3.33 34 3.015 2.433 5.448 25.529
4 75 42 2.11 39 15.353 13.720 29.073 110.291
4 100 43 2.60 35 49.360 41.691 91.051 338.950

5 25 44 11.77 39 0.930 0.932 1.862 6.171
5 50 42 9.65 45 31.359 42.876 74.235 476.600
5 75 45 7.17 70 281.888 474.461 756.349 2667.890
5 100 43 8.53 71 1166.930 2220.330 3387.260 9803.730

The part of the hyperplanes crossing the bounded region of the given volume grows quickly

with dimension, as it is seen in Tables 5.1 and 5.3. On the other hand, the part of these hyper-

planes that take part in the minimization process decreases, since many of their intersections

with a searching line lie outside the bounded region. Note that the bounded region, being

located in the middle of the data cloud, is intersected by most of the hyperplanes, so that the

part of the included hyperplanes is much larger than the part of the final volume, compared to

the initial one. Our calculations demonstrate that the part of included hyperplanes strongly

depends on the dimensionality and the number of observations, which is also shown in Figure

5.6. However, the number of observations has less influence than the dimension.

These three tables also show that the new exact bounding algorithm finds the median much

faster than the one of ROO. We observe that for each given data set the number of necessary

minimization steps is almost the same in both algorithms. As the intended volume is reduced,

the time needed to build the bounded region increases, while the minimization time decreases

along with the number of hyperplanes and their intersections involved, and the total time

also decreases (Table 5.3, Figure 5.7). However, beyond some point, usually at around 10−08

of the volume, this procedure becomes less efficient, and the total time increases. A smaller

118

Chapter 5 Numerical experience and conclusions

Table 5.3: The performance parameters for data sets 4 × 100 and 6 × 50, with different intended
volumes. Volume equal to one corresponds to the ROO algorithm.

k n Volume #Cuts HP(%) #Steps Tbounds Tcount Ttotal

4 100 1 36 338.950
4 100 10−02 14 67.45 50 17.648 283.936 301.584
4 100 10−03 18 46.62 49 23.216 201.245 224.461
4 100 10−04 22 28.47 39 28.304 112.429 140.733
4 100 10−05 27 14.23 48 33.403 97.364 130.767
4 100 10−06 31 9.76 29 37.707 49.499 87.206
4 100 10−07 37 5.47 38 44.391 55.032 99.423
4 100 10−08 43 2.60 35 49.360 41.691 91.051
4 100 10−09 47 1.64 33 57.209 37.402 94.611
4 100 10−10 52 0.83 33 59.709 35.347 95.056
4 100 10−20 97 <0.01 22 108.205 21.089 129.294
4 100 10−30 100 <0.01 13 109.004 12.778 121.782

6 50 1 73 3149.010
6 50 10−05 31 53.86 91 215.747 1842.733 2058.480
6 50 10−06 36 35.61 71 270.619 1272.041 1542.660
6 50 10−07 40 26.68 75 301.413 885.707 1187.120
6 50 10−08 45 17.65 77 345.128 774.382 1119.510
6 50 10−09 49 12.97 70 373.170 545.055 918.225
6 50 10−10 53 9.14 94 378.424 705.386 1083.810

volume may also contain a higher amount of isolated routes through the observation lines,

which involves travelling along the bounds and additionally slows the procedure down.

If the volume is small enough, any point of it (e.g. the average of the bounds’ intersections)

may be taken as an approximate value of a median. For example, for a four-dimensional

dataset bounded by a cube of side length 10, 10−8 of the volume was reached in 43 cuts,

and the center of the final bounded region equalled the median ±0.05 by each coordinate,

which is quite precise. The precision of this approximative method depends on the volume

of the bounded region and is controlled by it. The method yields as precise results as the

approximative methods provided in the OjaNP R-package. In general, the approximate value

of the median is found much faster than the exact one. We searched an approximative median

with precision equal to half of the bounded region’s volume, the computation times of which

are given in the column Tbounds of Table 5.3. However, this approximation method is not really

useful, as it considers all observation hyperplanes and is therefore largely outperformed by the

approximative methods of ROO.

119

Chapter 5 Numerical experience and conclusions

-5 -6 -7 -8 -9 -10

0
.0

5
0
.1

0
.2

0
.5

1
2

5
1
0

5
0

Remaining volume

%
 o

f
h
yp

e
rp

la
n
e
s

25
50
75

100

7
6
5

4

3

2

10 10 10 1010 10

k:

n:

2
0

Figure 5.6: The dependence of the part of hyperplanes crossing the bounded region (log scale) on
the size of the region for k ∈ [2..7] and n ∈ {25, 50, 75, 100}.

Remaining volume

count

5
0

1
0

0
1

5
0

2
0

0
2

5
0

T
im

e

bounds

totalT

T

T

-5 -10 -15 -20 -25 -30
10 10 10 1010 10

Figure 5.7: The dependence of calculation time on the size of the bounded region. Note that the
ROO algorithm has total time of ca. 340 seconds.

120

Chapter 6

Outlook

The thesis has been devoted to depth and potential based classification and to the exact

calculation of the Oja median. In Chapter 2, we introduced the pot-pot classification that may

be seen as a combination of DD-classification and density-based classification. The DD-plot

employs depth functions, that are focused on the center of a class. On the contrary, the density

measures the mass of the data and is of a local nature. Further, local depths can be applied

to build the DD-plots, by making allowance for local centers. Local depths allow to vary the

rate of localization. Unlike density estimates they do not depend on bandwidth matrices that

have many parameters, and thus the parameter tuning may be easier.

Chapter 3 is devoted to the R-Package ddalpha that implements various depth functions and

classifiers for multivariate and functional data under one roof. The functionality of the package

may be further extended with the implementations of other depth notions and separators, and

data visualization instruments. The package is made expandable with user-defined custom

depth methods and separators, which simplifies the usage of the package for scholars that

implement their own methods and want to combine or compare them with those that are

implemented in the package.

In Chapters 2 and 3 the α-procedure was applied in its DD-version. However, the α-

procedure is itself interesting, as it efficiently reduces the space by selecting the most relevant

properties. With slight modifications it can be successfully applied to the data with missing

values. The α-procedure produces a linear solution in the extended space, and a polynomial

solution in the original space. Together with Pavlo Mozharovskyi we are further exploring

the α-procedure and space extension techniques. The idea of the kernel trick is to work in

a rich extended space of features while performing the computation with kernel functions

in the original lower-dimensional space. By introducing kernels to the generalized portrait

method (now known as Support Vector Machine, SVM), Vapnik (1998) has demonstrated the

power of kernels, which gave rise to numerous applications of the methodology. We introduce

kernels to the α-procedure by employing it in a finite-dimensional explicit approximation of

a reproducing kernel Hilbert space (RKHS). By its inductive character and robustness, the

α-procedure selects a subspace of RKHS and evades the weights of misclassified observations.

Chapter 6 Outlook

The preliminary results were presented on the European Conference on Data Analysis 2015 in

Colchester.

In Chapter 4 we propose a new objective function for classification, that weights the mis-

classified points with their depth. This approach focuses on the centers of the classes and

enforces classification of more central points, that are more ‘typical’ for their classes. This

objective function can also be used to measure the performance of other classifiers and in the

cross-validation tuning procedures. We also introduced classifiers that minimize this objective

function. We investigated the properties of these classifiers and compared them with those

of the Bayes classifier for a two-class problem. The theoretical results may be extended to

a more general classification problem with more classes and to multimodal and non-elliptical

distributions. Also the class-specific weights shall be added and the behavior of the depth-

weighted classifier shall be compared with that of the Bayes classifier. We hypothesize that

due to underweighting the outliers of the minor class, the depth-weighted classifier shall not

lead to misclassification of the major class in their neighbourhood, unlike the Bayes classifier.

In Chapter 5 we modified the algorithm of Ronkainen et al. (2003) for the exact calculation

of the Oja median by employing bounded regions which contain the median. Employing bounds

considerably decreases the complexity of the algorithm. Similar approaches can be used to

accelerate the search of the medians based on other depth notions.

122

Chapter 6 Appendix

Appendix

Overview of local depth notions

Unlike the global depths, a local depth refers to local centers of the data, which allows to cope

with multimodal distributions. Here I give an overview of the local depth notions found in the

literature and present their population versions.

Local depths may be divided into two groups: restricted depths, and kernelized depths.

Restricted depths in some way obtain a subsample around the point x, where the depth is

calculated. Kernelized depths apply kernels to weight the measure used by the depth function,

or to weight the space around x, or to find the depth in the reproduced kernel Hilbert space.

Restricted local depths

Agostinelli and Romanazzi (2011) introduced local variants of global depth functions, referring

to the types coined by Zuo and Serfling (2000).

Type A depth functions are defined by the average closeness of x to r points x1, . . . ,xr,

measured by some bounded nonnegative function h(x;x1, . . . ,xr):

D(x|X) = Eh(x;X1, . . . , Xr),

where X1, . . . , Xr is a random sample from X ∈ Rd.

Type B depth functions are defined by the reciprocal average distance from x to r

points x1, . . . ,xr, the distance being measured by any unbounded nonnegative function

g(x;x1, . . . ,xr):

D(x|X) =
(
1− Eg(x;X1, . . . , Xr)

)−1
.

Types A and B local depth functions are obtained by selecting these r points only in the

neighbourhood of x. For example, for simplicial and simplicial volume depths the volumes of

the simplices built on d+ 1 points are restricted by some value τ . Simplicial depth (type A)

is defined as DS(x|X) = E(I{x ∈ Sd+1}) = P (Sd+1|x ∈ Sd+1), with Sd+1 = S[X1, . . . , Xd+1].

Defining the volume of the corresponding simplex as v(Sd+1), the local form is

LDS(x|X) = P (Sd+1 | x ∈ Sd+1 ∧ v(Sd+1) ≤ τ),

The global Oja’s simplicial volume depth (type B) is defined as

DO(x|X) =
(
1− E(v(S[x, X1, . . . , Xd]))

)−1
. Its local form is

LDO(x|X) =
(
1− E(v(S[x, X1, . . . , Xd])) | v(S[x, X1, . . . , Xd]) ≤ τ)

)−1
.

Type D depth functions are defined as

D(x|X) = inf
S∈S

P (S|x ∈ S),

123

Chapter 6 Appendix

where S is a suitable family of closed sets. A local version is obtained by employing proper sub-

sets of S. The global halfspace depth is defined as DH(x|X) = inf ||u||=1 P (z ∈ Rd|u>z ≥ u>x).

Replacing hyperspaces with closed slabs of width τ formed with two parallel hyperplanes, one

of which goes through x, we obtain a local version

LDH(x|X) = inf
||u||=1

P (z ∈ Rd | u>x ≤ u>z ≤ u>x+ τ).

In the limit, as τ tends to infinity, this local halfspace depth coincides with the global one.

Another version of a local halfspace depth using weighted probability in the halfspace was

proposed by Hlubinka et al. (2010), Kot́ık (2014). They denote a measurable and bounded

weight function by w : Rd × Sd → [0,∞). Then the generalized halfspace depth function is

defined as

WD(x|X) = inf
||u||=1

EPw(X − x,u).

It is also assumed to be symmetric and piecewise continuous. And the two variants of weighted

halfspace ratio depth are defined as

WRD1(x|X) = inf
||u||=1

EPw(X − x,u)

EPw(X − x,−u)
,

WRD2(x|X) = inf
||u||=1

EPw(X − x,u)

EPw(X − x,u) + EPw(X − x,−u)
,

where 0/0 = 1 and 0/(0+0) = 1/2. All these variants are equivalent in sense of the multivariate

ordering: WRD1(x1|X) < WRD1(x2|X)⇔ WRD2(x1|X) < WRD2(x2|X), the same as with

WD(x|X).

Usually a spherically symmetric about u function is chosen as a weight function, that is

w(x,u) = h(||x− 〈u,x〉u||, 〈u,x〉) = h(
√
||x||2 − 〈u,x〉2, 〈u,x〉). All the weighted functions

used below and illustrated in Figure A.1 are spherically symmetric.

The halfspace depth DH(x) is equal to WD(x) and WRD2(x) with w(x,u) ≡ I{uTx ≥ 0}
for the absolutely continuous distributions.

The cylindrical weight function is defined as

w(x,u) = I{||x− 〈x,u〉u|| ≤ h, 〈x,u〉 ≥ 0}.

Here cylinders with radius h > 0 are built along unit vectors extending from x.

The cone weight function is similar to the cylindric one. It is defined as

w(x,u) = I{∠(x,u) ≤ α},

for an angle α ∈ [0, π/2]. For a continuous distribution DH equals WD for α = π/2.

124

Chapter 6 Appendix

xx τ h

w(x,u)

w(x,-u)

x

w(x,u)

w(x,-u)

α

u

u

x
u

u

a) b)

c) d)
w(x,u)

Figure A.1: The restricted subspaces for the lo-
cal halfspace depths: a) of Agostinelli and Ro-
manazzi; b-d)of Hlubinka, Kot́ık and Venćalek
with the following weight functions b) cylindrical,
c) cone, d) conic section.

x

w(x,u)

w(x,-u)

x

w(x,-u)

u

u

a) b)

w(x,u)

x

w(x,u)

x

w(x,u)

w(x,-u)

u

a)

c)

x

w(x,u)

w(x,-u)

u

x

w(x,u)

w(x,-u)

u

d)

Figure A.2: The kernelized halfspace depths
of Hlubinka, Kot́ık and Venćalek using the next
weight functions: a) kernel cylinder with constant
kernel bandwidth, b) kernel cylinder with band-
width dependent on x, c) kernel cone, d) local
kernel.

The conic section weight function is defined using a conic section C(u, t) (sphere, ellipsoid,

paraboloid or hyperboloid) instead of a halfspace, with its major axis in the direction of u and

with the focus in the point tu:

w(x,u) = I{x ∈ C(u, t)}.

The conic section radius function re(x,u) = ||x|| − e〈x,u〉 is used to describe conic sections.

Here e ≥ 0 is the eccentricity: e = 0 for a sphere, e < 1 for an ellipsoid, e = 1 for a paraboloid,

e > 1 for a hyperboloid and e = +∞ for a halfspace. The conic section weight function for the

given radius l may be now rewritten as

w(x,u) = I{re(x,u) ≤ l}.

A completely different notion of a restricted local depth is given by Paindaveine and

Van Bever (2013), whose approach allows to turn any global depth into a local one. The

produced depth provides a measure of local centrality at any level of localization. First the

data is symmetrized around x, so that Px = 1
2
PX + 1

2
P 2x−X . Then a neighbourhood of

x is defined in this symmetrized data by the smallest depth region Rβ
x(P) = Rβ(Px) with

Px-probability greater or equal to the localization level β ∈ [0, 1]. Finally the local depth is

calculated as a global depth of x restricted to this Rβ
x(P) region,

LDβ(x;P) = D(x;P β
x),

where P β
x is the conditional distribution of P on Rβ

x(P). Figure A.3 shows this process.

125

Chapter 6 Appendix

Figure A.3: The Local depth of Paindaveine and Van Bever: left – the original data; right – the
symmetrized data, the depth contours and the restricted region Rβx(P) (grey) in which the global
depth of x is calculated.

Kernelized local depths

The restricted local depths consider a subsample or subspace depending on x, where the depth

is calculated. Instead, a kernelized depth at some point x includes, as a weight, a kernel

estimate e.g. of a difference with or distance to x.

Dutta and Ghosh (2015) proposed localized spatial depth. The global spatial depth cal-

culates the expectation of the unit vectors, pointing from the point x in the directions of the

data points DSP (x|X) = 1−||E(u(t))||, where t = Σ−1/2(x−X), u(t) = ti
||t|| is the unit vector

in the direction of X, and Σ is the covariance matrix of X. The local version is obtained by

kernelizing the distances

LDSP (x|X) = E[Kh(t)]− ||E[Kh(t)u(t)]||

with some spherical kernel Kh(x) having a single parameter h. If h > 1, this depth has to be

multiplied by hd. For the classification task the classes are scaled (using sphering transforma-

tion) separately, but the same bandwidth parameter h is used for both of them. In the left

part of Figure A.4 the average of the unit vectors is black, and the unit vectors pointing to the

data points are gray. In the right part the kernelized versions are shown.

Figure A.4: Global and local spatial depth.

126

Chapter 6 Appendix

The weighted halfspace depth (Hlubinka et al., 2010) also employs kernel weight functions.

For example, the kernel cylinder weight function weights the points in the halfspaces, so that

the points lying in the neighbourhood of the axis u get more weight

w(x,u) = I{〈x,u〉 ≥ 0}Kh(||x− 〈x,u〉u||).

The other given weight functions may also be kernelized. The kernel cone weight function is

w(x,u) = I{〈x,u〉 ≥ 0}Kh(∠(x,u)),

and the kernel conic section weight function is defined as

w(x,u) = Kh(re(x,u)).

The local kernel weight function w(x,u) = Kh(x) does not depend on u and WD(x|X) equals

the density estimated using this kernel. In these examples the kernel bandwidth may be either

constant, or dependent on x. The weight functions are shown in Figure A.2.

Another approach is using global depths in the Reproducing Kernel Hilbert Space (RKHS)

as for example, the Mahalanobis depth in RHKS of Hu et al. (2011). Let X have an empirical

distribution. The global Mahalanobis depth is defined as

MD(x|X) =
(
1 + dm2

Σ(x, X)
)−1

,

where dm2
Σ(x, X) = (x − X)TΣ−1(x − X), is the Mahalanobis distance to the mean X and

Σ is the covariance matrix. This requires Σ to be invertible. Hu et al. (2011) cope with this

problem using the singular value decomposition of ATA, where A = (X1−X, . . . , Xn−X)T , X

is the sample mean. Let the rank of ATA be r, then σ2
i and vi are respectively its ith eigenvalue

and eigenvector, i ≤ r. Then the generalized Mahalanobis depth is

GMD(x|X) =

(
1 +

r∑
i=1

(
(x−X)Tvi

)2

σ2
i

)−1

.

The generalized Mahalanobis depth is then used in the Hilbert space HK , generated by a

mapping function φ : Rp → HK , that is associated with some kernel function

K(x,y) =< φ(x), φ(y) >:

GMD(φ(x)|X) =

(
1 +

r∑
i=1

(
(φ(x)− φ(X))Tvi

)2

σ2
i

)−1

=

(
1 +

r∑
i=1

(
S(x,xj)

j=1,...,n
1×n ui

)2

σ4
i

)−1

,

where S(x,xj) = K(x,xj) − 1
n

∑n
l=1K(x,xl) − 1

n

∑n
l=1K(xj,xl) + 1

n2

∑n
k=1

∑n
l=1K(xk,xl),

σ2
i is a nonzero eigenvalue of S(xk,xl)

k,l=1,...,n
n×n with eigenvector ui, and r is the rank of

S(xk,xl)
k,l=1,...,n
n×n .

127

Bibliography

Agostinelli, C. and Romanazzi, M. (2011). Local depth, Journal of Statistical Planning and

Inference 141: 817–830.

Agostinelli, C., Romanazzi, M. and SLATEC Common Mathematical Library (2013).

localdepth: Local depth. R package version 0.5-7.

URL: http://CRAN.R-project.org/package=localdepth

Aizerman, M. A., Braverman, E. M. and Rozonoer, L. I. (1970). The Method of Potential

Functions in the Theory of Machine Learning, Nauka, Moscow.

Azzalini, A. (2013). The Skew-Normal and Related Families, Cambridge University Press.

Bazovkin, P. (2013). WMTregions: Exact calculation of WMTR. R package version 3.2.6.

URL: http://CRAN.R-project.org/package=WMTregions

Bazovkin, P. and Mosler, K. (2012). An exact algorithm for weighted-mean trimmed regions

in any dimension, Journal of Statistical Software 47: 1–29.

URL: http://www.jstatsoft.org/v47/i13/

Boček, P. and Šiman, M. (2016). Directional quantile regression in octave (and matlab),

Kybernetika 52: 28–51.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines, ACM

Transactions on Intelligent Systems and Technology 2: 27:1–27:27.

URL: Software available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm

Chaudhuri, P. (1996). On a geometric notion of quantiles for multivariate data, Journal of the

American Statistical Association 91: 862–872.

Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A. and Batista, G. (2015). The

UCR time series classification archive.

URL: http://www.cs.ucr.edu/˜eamonn/time series data/

Cuesta-Albertos, J. A., Febrero-Bande, M. and de la Fuente, M. O. (2016). The DDG-classifier

in the functional setting, arXiv:1501.00372 .

Cuesta-Albertos, J. A. and Nieto-Reyes, A. (2008). The random Tukey depth, Computational

Statistics and Data Analysis 52: 4979–4988.

Bibliography

Cuevas, A., Febrero, M. and Fraiman, R. (2007). Robust estimation and classification for

functional data via projection-based depth notions, Computational Statistics 22(3): 481–

496.

Cui, X., Lin, L. and Yang, G. (2008). An extended projection data depth and its applications

to discrimination, Communications in Statistics – Theory and Methods 37: 2276–2290.

Delaigle, A., Hall, P. and Bathia, N. (2012). Componentwise classification and clustering of

functional data, Biometrika 99: 299–313.

Devroye, L., Györfi, L. and Lugosi, G. (1996). A Probabilistic Theory of Pattern Recognition,

Springer. New York.

Donoho, D. (1982). Breakdown Properties of Multivariate Location Estimators, PhD thesis,

Harvard University.

Donoho, D. L. and Gasko, M. (1992). Breakdown properties of location estimates based on

halfspace depth and projected outlyingness, The Annals of Statistics 20: 1803–1827.

Duong, T. (2007). ks: Kernel density estimation and kernel discriminant analysis for multi-

variate data in R, Journal of Statistical Software 21: 1–16.

URL: http://www.jstatsoft.org/v021/i07/

Dutta, S., Chaudhuri, P. and Ghosh, A. K. (2012). Classification using localized spatial depth

with multiple localization, Mimeo .

Dutta, S. and Ghosh, A. K. (2011). On classification based on Lp depth with an adaptive

choice of p, Technical Report R5/2011, Statistics and Mathematics Unit, Indian Statistical

Institute.

Dutta, S. and Ghosh, A. K. (2012). On robust classification using projection depth, Annals of

the Institute of Statistical Mathematics 64: 657–676.

Dutta, S. and Ghosh, A. K. (2015). Multi-scale classification using localized spatial depth,

arXiv:1504.03804 .

Dyckerhoff, R. (2004). Data depths satisfying the projection property, AStA – Advances in

Statistical Analysis 88: 163–190.

Dyckerhoff, R. and Mosler, K. (2011). Weighted-mean trimming of multivariate data, Journal

of Multivariate Analysis 102: 405–421.

Dyckerhoff, R., Mosler, K. and Koshevoy, G. (1996). Zonoid data depth: Theory and computa-

tion, in A. Prat (ed.), COMPSTAT ’96 – Proceedings in Computational Statistics, Springer,

pp. 235–240.

129

Bibliography

Dyckerhoff, R. and Mozharovskyi, P. (2016). Exact computation of the halfspace depth, Com-

putational Statistics and Data Analysis 98: 19–30.

Eddelbuettel, D., Emerson, J. W. and Kane, M. J. (2016). BH: Boost C++ header files.

R package version 1.60.0-2.

URL: http://CRAN.R-project.org/package=BH

Eddelbuettel, D., Francois, R., Allaire, J., Ushey, K., Kou, Q., Bates, D. and Chambers, J.

(2016). Rcpp: Seamless R and C++ Integration. R package version 0.12.5.

URL: http://CRAN.R-project.org/package=Rcpp

Febrero-Bande, M. and Oviedo de la Fuente, M. (2012). Statistical computing in functional

data analysis: The R package fda.usc, Journal of Statistical Software 51(4): 1–28.

URL: http://www.jstatsoft.org/v51/i04/

Fischer, D., Mosler, K., Möttönen, J., Nordhausen, K., Pokotylo, O. and Vogel, D. (2016).

Computing the Oja median in R: The package OjaNP, arXiv:1606.07620 .

Fraiman, R. and Meloche, J. (1999). Multivariate L-estimation, Test 8: 255–317.

Friedman, J. H. (1997). On bias, variance, 0/1-loss, and the curse-of-dimensionality, Data

Mining and Knowledge Discovery 1: 55–77.

Genest, M., Masse, J.-C. and Plante, J.-F. (2012). depth: Depth functions tools for multivariate

analysis. R package version 2.0-0.

URL: http://CRAN.R-project.org/package=depth

Ghosh, A. K. and Chaudhuri, P. (2005a). On data depth and distribution-free discriminant

analysis using separating surfaces, Bernoulli 11: 1–27.

Ghosh, A. K. and Chaudhuri, P. (2005b). On maximum depth and related classifiers, Scandi-

navian Journal of Statistics 32: 327–350.

Härdle, W., Müller, M., Sperlich, S. and Werwatz, A. (2004). Nonparametric and Semipara-

metric Models, Springer. New York.

Hayfield, T. and Racine, J. S. (2008). Nonparametric econometrics: The np package, Journal

of Statistical Software 27.

URL: http://www.jstatsoft.org/v27/i05/

Hettmansperger, T. P., Möttönen, J. and Oja, H. (1999). The geometry of the affine invariant

multivariate sign and rank methods, Journal of Nonparametric Statistics 11: 271–285.

Hlubinka, D., Kot́ık, L. and Vencalek, O. (2010). Weighted halfspace depth, Kybernetika

46: 125–148.

130

Bibliography

Hu, Y., Wang, Y., Wu, Y., Li, Q. and Hou, C. (2011). Generalized Mahalanobis depth in the

reproducing kernel Hilbert space, Statistical Papers 52: 511–522.

Hubert, M. and Vakili, K. (2013). MFHD: Multivariate Functional Halfspace Depth. R package

version 0.0.1.

URL: http://CRAN.R-project.org/package=MFHD

Jörnsten, R. (2004). Clustering and classification based on the L1 data depth, Journal of

Multivariate Analysis 90: 67–89.

Koltchinskii, V. (1997). M-estimation, convexity and quantiles, The Annals of Statistics

25: 435–477.

Koshevoy, G. (2002). The Tukey depth characterizes the atomic measure, Journal of Multi-

variate Analysis 83: 360–364.

Koshevoy, G. (2003). Lift-zonoid and multivariate depths, in R. Dutter, P. Filzmoser, U. Gather

and P. Rousseeuw (eds), Developments in Robust Statistics, Physica-Verlag, Heidelberg,

pp. 194–202.

Koshevoy, G. and Mosler, K. (1997). Zonoid trimming for multivariate distributions, The

Annals of Statistics 25: 1998–2017.

Kosiorowski, D., Bocian, M., Wegrzynkiewicz, A. and Zawadzki, Z. (2016). DepthProc: Sta-

tistical depth functions for multivariate analysis. R package version 1.0.7.

URL: http://CRAN.R-project.org/package=DepthProc

Kot́ık, L. (2014). Weighted halfspace depths and their properties, PhD thesis, Charles Univer-

sity, Prague.

Lange, T., Mosler, K. and Mozharovskyi, P. (2014a). DDα-classification of asymmetric and

fat-tailed data, in M. Spiliopoulou, L. Schmidt-Thieme and R. Janning (eds), Data Analysis,

Machine Learning and Knowledge Discovery, Springer. Berlin, pp. 71–78.

Lange, T., Mosler, K. and Mozharovskyi, P. (2014b). Fast nonparametric classification based

on data depth, Statistical Papers 55: 49–69.

Lange, T. and Mozharovskyi, P. (2014). The alpha-procedure – a nonparametric invariant

method for automatic classification of d-dimensional objects., in M. Spiliopoulou, L. Schmidt-

Thieme and R. Janning (eds), Data Analysis, Machine Learning and Knowledge Discovery,

Springer-Verlag, Berlin Heidelberg, pp. 79–86.

Li, J., Cuesta-Albertos, J. A. and Liu, R. Y. (2012). DD-classifier: Nonparametric classification

procedure based on DD-plot, Journal of the American Statistical Association 107: 737–753.

Li, Q. and Racine, J. S. (2007). Nonparametric Econometrics: Theory and Practice, Princeton

University Press.

131

Bibliography

Liu, R. Y. (1988). On a notion of simplicial depth, Proceedings of the National Academy of

Sciences 85: 1732–1734.

Liu, R. Y. (1990). On a notion of data depth based on random simplices, The Annals of

Statistics 18: 405–414.

Liu, R. Y. (1992). Data depth and multivariate rank tests, in Y. Dodge (ed.), L1-Statistical

Analysis and Related Methods, Elsevier, Amsterdam, pp. 279–294.

Liu, R. Y., Parelius, J. M. and Singh, K. (1999). Multivariate analysis by data depth: Descrip-

tive statistics, graphics and inference, (with discussion and a rejoinder by Liu and Singh),

The Annals of Statistics 27: 783–858.

Liu, X. and Zuo, Y. (2014a). Computing halfspace depth and regression depth, Communica-

tions in Statistics - Simulation and Computation 43: 969–985.

Liu, X. and Zuo, Y. (2014b). Computing projection depth and its associated estimators,

Statistics and Computing 24: 51–63.

Liu, X. and Zuo, Y. (2015). CompPD: A MATLAB package for computing projection depth,

Journal of Statistical Software 65: 1–21.

URL: http://www.jstatsoft.org/v65/i02/

Lopez-Pintado, S. and Torrente, A. (2013). depthTools: Depth tools package. R package

version 0.4.

URL: http://CRAN.R-project.org/package=depthTools

Mahalanobis, P. C. (1936). On the generalized distance in statistics, Proceedings of the National

Institute of Sciences of India 12: 49–55.

Mahalanobish, O. and Karmakar, S. (2015). depth.plot: Multivariate analogy of quantiles.

R package version 0.1.

URL: http://CRAN.R-project.org/package=depth.plot

Mizera, I. (2002). On depth and deep points: a calculus, The Annals of Statistics 30: 1681–

1736.

Mosler, K. (2002). Multivariate Dispersion, Central Regions, and Depth: The Lift Zonoid

Approach, Springer-Verlag, New York.

Mosler, K. (2013). Depth statistics, in C. Becker, R. Fried and S. Kuhnt (eds), Robustness

and Complex Data Structures: Festschrift in Honour of Ursula Gather, Springer. Berlin,

pp. 17–34.

Mosler, K. and Hoberg, R. (2006). Data analysis and classification with the zonoid depth,

DIMACS. Data Depth: Robust Multivariate Analysis, Computational Geometry and Appli-

cations pp. 49–59.

132

Bibliography

Mosler, K. and Mozharovskyi, P. (2015). Fast DD-classification of functional data, Statistical

Papers, to appear .

Mosler, K. and Pokotylo, O. (2015). Computation of the Oja Median by Bounded Search,

in K. Nordhausen and S. Taskinen (eds), Modern Nonparametric, Robust and Multivariate

Methods, Springer-Verlag, pp. 185–203.

Mosler, K. and Polyakova, Y. (2012). General notions of depth for functional data,

arXiv:1208.1981 .

Mozharovskyi, P. (2015). Contributions to Depth-based Classification and Computation of the

Tukey Depth, Verlag Dr. Kovač, Hamburg.

Mozharovskyi, P., Mosler, K. and Lange, T. (2015). Classifying real-world data with the

DDα-procedure, Advances in Data Analysis and Classification 9: 287–314.

Mustafa, N., Ray, S. and Shabbir, M. (2014). rsdepth: Ray Shooting Depth (i.e. RS Depth)

functions for bivariate analysis. R package version 0.1-5.

URL: http://CRAN.R-project.org/package=rsdepth

Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization, The Computer

Journal 7: 308–313.

Nieto-Reyes, A. and Battey, H. (2016). A topologically valid definition of depth for functional

data, Statistical Science 31: 61–79.

Niinimaa, A., Oja, H. and Nyblom, J. (1992). Algorithm AS 277: the Oja bivariate median,

Journal of the Royal Statistical Society. Series C (Applied Statistics) 41: 611–617.

Niinimaa, A., Oja, H. and Tableman, M. (1990). The finite-sample breakdown point of the

oja bivariate median and of the corresponding half-samples version, Statistics & Probability

Letters 10: 325–328.

Oja, H. (1983). Descriptive statistics for multivariate distributions, Statistics and Probability

Letters 1: 327–332.

Oja, H. (2013). Multivariate median, in C. Becker, R. Fried and S. Kuhnt (eds), Robustness

and Complex Data Structures: Festschrift in Honour of Ursula Gather, Springer, pp. 3–15.

Paindaveine, D. and Van Bever, G. (2013). From depth to local depth: a focus on centrality,

Journal of the American Statistical Association 108: 1105–1119.

Paindaveine, D. and Van Bever, G. (2015). Nonparametrically consistent depth-based classi-

fiers, Bernoulli 21: 62–82.

Pokotylo, O. and Mosler, K. (2016). Classification with the pot-pot plot, Statistical Papers .

133

Bibliography

Pokotylo, O., Mozharovskyi, P. and Dyckerhoff, R. (2016). Depth and depth-based classifica-

tion with R-package ddalpha, arXiv:1608.04109 .

Ronkainen, T., Oja, H. and Orponen, P. (2003). Computation of the multivariate oja median,

in R. Dutter (ed.), Developments in robust statistics, Springer, pp. 344–359.

Rousseeuw, P. J. and Leroy, A. M. (1987). Robust Regression and Outlier Detection, Wiley,

New York.

Rousseeuw, P. J. and Ruts, I. (1996). Algorithm as 307: Bivariate location depth, Journal of

the Royal Statistical Society. Series C (Applied Statistics) 45: 516–526.

Rousseeuw, P. J. and Van Driessen, K. (1999). A fast algorithm for the minimum covariance

determinant estimator, Technometrics 41: 212–223.

Scott, D. W. (1992). Multivariate Density Estimation: Theory, Practice, and Visualization,

John Wiley & Sons.

Serfling, R. (2002). A depth function and a scale curve based on spatial quantiles, in Y. Dodge

(ed.), Statistical Data Analysis Based on the L1-Norm and Related Methods, Birkhäuser-

Verlag, Basel, pp. 25–38.

Serfling, R. (2006). Depth functions in nonparametric multivariate inference, DIMACS Series

in Discrete Mathematics and Theoretical Computer Science 72.

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis, Chapman and

Hall. London.

Šiman, M. and Boček, P. (2016). modQR: Multiple-output directional quantile regression.

R package version 0.1.1.

URL: http://CRAN.R-project.org/package=modQR

Small, C. G. (1997). Multidimensional medians arising from geodesics on graphs, The Annals

of Statistics pp. 478–494.

Stahel, W. (1981). Robust Estimation: Infinitesimal Optimality and Covariance Matrix Esti-

mators (In German), PhD thesis, Swiss Federal Institute of Technology in Zurich.

Struyf, A. J. and Rousseeuw, P. J. (1999). Halfspace depth and regression depth characterize

the empirical distribution, Journal of Multivariate Analysis 69: 135–153.

Tukey, J. W. (1975). Mathematics and the picturing of data, in R. James (ed.), Proceedings

of the International Congress of Mathematicians, Vol. 2, Canadian Mathematical Congress,

pp. 523–531.

Vapnik, V. N. (1998). Statistical Learning Theory, Vol. 1, Wiley, New York.

134

Bibliography

Vapnik, V. N. and Chervonenkis, A. J. (1974). Theory of Pattern Recognition (in Russian),

Nauka, Moscow.

Vardi, Y. and Zhang, C. (2000). The multivariate L1-median and associated data depth,

Proceedings of the National Academy of Sciences of the United States of America 97: 1423–

1426.

Vasil’ev, V. (2003). The reduction principle in problems of revealing regularities i., Cybernetics

and Systems Analysis 39: 686–694.

Vasil’ev, V. and Lange, T. (1998). The duality principle in learning for pattern recognition (in

russian), Kibernetika i Vytschislitelnaya Technika 121: 7–16.

Vencalek, O. (2011). Weighted Data Depth and Depth Based Discrimination, PhD thesis,

Charles University. Prague.

Vencalek, O. (2013). k-depth-nearest neighbour method and its performance on skew-normal

distributons, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium.

Mathematica 52: 121–129.

Vencalek, O. (2014). New depth-based modification of the k-nearest neighbour method, SOP

Transactions on Statistics and Analysis 1: 131–138.

Vencalek, O. and Pokotylo, O. (2016). Depth-weighted bayes classification, Mimeo .

Wand, M. P. and Jones, M. C. (1993). Comparison of smoothing parameterizations in bivariate

kernel density estimation, Journal of the American Statistical Association 88: 520–528.

Wolf, H. P. (2014). aplpack: Another Plot PACKage: stem.leaf, bagplot, faces, spin3R, plot-

summary, plothulls, and some slider functions. R package version 1.3.0.

URL: http://CRAN.R-project.org/package=aplpack1.3.0

Zuo, Y. and Serfling, R. (2000). General notions of statistical depth function, The Annals of

Statistics 28: 461–482.

135

	Introduction
	Measuring closeness to a class
	Supervised learning
	Dimension reducing plots
	The structure of the thesis

	Classification with the pot-pot plot
	Introduction
	Classification by maximum potential estimate
	Multivariate bandwidth
	Pot-pot plot classification
	Bayes consistency
	Scaling the data
	Experiments
	The data
	Comparison with depth approaches and traditional classifiers
	Selection of the optimal bandwidth
	Comparison of the classification speed

	Conclusion
	Appendix. Experimental results

	Depth and depth-based classification with R-package ddalpha
	Introduction
	The R-package ddalpha
	Comparison to existing implementations
	Outline of the chapter

	Data depth
	The concept
	Implemented notions
	Computation time
	Maximum depth classifier

	Classification in the DD-plot
	The DDalpha-separator
	Alternative separators in the DD-plot

	Outsiders
	An extension to functional data
	Usage of the package
	Basic functionality
	Custom depths and separators
	Additional features
	Tuning the classifier

	Appendix. The -procedure

	Depth-weighted Bayes classification
	Introduction
	Bayes classifier, its optimality and a new approach
	Bayes classifier and the notion of cost function
	Depth-weighted classifier
	Examples

	Difference between the depth-weighted and the Bayes optimal classifiers
	Choice of depth function and the rank-weighted classifier
	Example: differences in classification arising from different depths
	Rank-weighted classifier
	Dealing with outsiders

	Simulation study
	Objectives of the simulation study
	Simulation settings
	Results

	Robustness
	An illustrative example
	Simulation study on robustness of the depth-based classifiers

	Conclusion
	Appendix

	Computation of the Oja median by bounded search
	Introduction
	Oja median and depth
	Calculating the median according to ROO

	A bounding approach
	The algorithm
	Formal description of the algorithm

	Numerical experience and conclusions

	Outlook
	Appendix. Overview of the local depth notions

	Bibliography

