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Abstract

This cumulative dissertation is dedicated to the study of universal behavior in one-dimensional
driven diffusive systems far from equilibrium. To capture essential aspects of such systems we will
make use of modified versions of the paradigmatic totally asymmetric simple exclusion process
(TASEP).

Universality is a well-established central concept of equilibrium physics. Over the last years
indications for its relevance in nonequilibrium systems were found, while a deeper understanding
of mechanisms leading to universality is still lacking. Besides, only a few classes of universal
behavior have been identified so far. The two most prominent examples are the diffusive class
with dynamical exponent z = 2 and the superdiffusive Kardar-Parisi-Zhang (KPZ) class with
z = 3/2. Very recently for systems exhibiting several conservation laws, e.g., anharmonic chains,
a new class with exponent z = 5/3 appeared. Using Nonlinear Fluctuating Hydrodynamics and
Mode Coupling Theory, we show that these nonequilibrium universality classes are only part of
an infinite discrete family. Remarkably, their exponents zα are given by quotients of neighboring
Fibonacci numbers, starting with either z1 = 2 (if a diffusion mode exists) or z1 = 3/2 (if a
KPZ mode is present and no diffusion mode exists). If neither a diffusion nor a KPZ mode are
present, all modes have the golden mean ϕ = (1 +

√
5) as their dynamical exponent zα = ϕ.

The universal scaling functions of these Fibonacci modes are asymmetric Lévy distributions,
while the dynamical exponents and scaling functions are completely fixed by the macroscopic
stationary current-density relation and the compressibility matrix. Using dynamical Monte Carlo
simulations we establish these exponents for a multi-species TASEP, consisting of coupled single-
lane TASEPs. In particular, we show the appearance of superdiffusive modes with exponents
zα = 3/2 (but different from the KPZ class), zα = 5/3, zα = 8/5 and zα = (1 +

√
5)/2. This

phenomenon is believed to be generic for short-ranged driven diffusive systems with more than
one conserved density.

Furthermore, we reconsider the long-standing question of the critical defect hopping rate rc in
the TASEP with a slow bond (defect). For r < rc the system reacts globally and a defect-induced
phase transition is observed due to queuing at the defect site. On the other hand, the defect
for r ≥ rc has only local effects on the stationary state. Mean-field theory predicts a global
influence already for arbitrarily small defect strength, rc = 1. Up to now it was not possible
to verify this prediction using computer simulations. Indeed, a recent numerical study indicated
that a small defect strength would not have a global influence and further rc = 0.80(2) was
suggested. Studying density profiles of parallel evolving systems we improve the numerics to
show that rc > 0.99 and give strong evidence for rc = 1 as predicted by the mean-field theory
and anticipated by recent theoretical findings.
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Kurzzusammenfassung

Diese kumulative Dissertation befasst sich mit der Untersuchung von universellem Verhalten
in eindimensionalen getriebenen diffusiven Systemen fern vom Gleichgewicht. Um wesentliche
Aspekte solcher Systeme zu untersuchen, werden wir modifizierte Versionen des paradigmatischen
“totally asymmetric simple exclusion process” (TASEP) nutzen.

Universalität ist ein etabliertes, zentrales Konzept für die Beschreibung von physikalischen Sys-
temen im Gleichgewicht. In den letzten Jahren wurden Anzeichen ihrer Relevanz auch für Systeme
fern vom Gleichgewicht gefunden. Jedoch fehlt es immer noch an einem tieferen Verständnis von
Mechanismen, die zu Universalität in Nichtgleichgewichtssystemen führen. Außerdem sind bis-
her nur wenige Universalitätsklassen identifiziert worden. Die zwei bekanntesten Beispiele sind
die diffusive Klasse mit dynamischen Exponenten z = 2 und die superdiffusive Kardar-Parisi-
Zhang (KPZ) Klasse mit z = 3/2. Kürzlich ist außerdem eine neue Klasse mit dem Exponenten
z = 5/3 für Systeme mit mehreren Erhaltungsgrößen, wie z.B. anharmonische Ketten, entdeckt
worden. Mit Hilfe der nichtlinearen Fluktiations-Hydrodynamik und der Mode-Coupling Theorie
zeigen wir, dass diese Universalitätsklassen von Nichtgleichgewichtssystemen Teil einer unend-
lich diskreten Familie sind. Bemerkenswerterweise können die Exponenten zα durch Quotien-
ten benachbarter Fibonacci Zahlen dargestellt werden, welche entweder mit z1 = 2 (falls eine
Diffusions-Mode existiert) oder mit z1 = 3/2 (falls eine KPZ-Mode, aber keine Diffusions-Mode
existiert) starten. Ist weder eine Diffusions- noch eine KPZ-Mode vorhanden, so haben alle Mo-
den den goldenen Schnitt ϕ = (1 +

√
5)/2 als dynamischen Exponenten zα = ϕ. Die universellen

Skalenfunktionen dieser Fibonacci-Moden sind asymmetrische Lévy-Verteilungen, wobei die dy-
namischen Exponenten und Skalenfunktionen vollständig durch die makroskopische stationäre
Strom-Dichte Beziehung und die Kompressibilitätsmatrix fixiert sind. Mit Hilfe von dynamischen
Monte Carlo-Simulationen weisen wir diese Konzepte für einen Mehrspur-TASEP nach, der aus
gekoppelten einspurigen TASEPs besteht. Insbesondere werden wir das Auftreten von superdif-
fusiven Moden mit Exponenten zα = 3/2 (verschieden von der KPZ Klasse), zα = 5/3, zα = 8/5
und zα = (1 +

√
5)/2 zeigen. Es ist anzunehmen, dass dieses Verhalten generisch für getrieben

diffusive Systeme mit mehr als einer erhaltenen Dichte gilt.
Darüber hinaus untersuchen wir die kritische Defekt-Sprungrate rc in einem TASEP mit einem

gestörten Gitterplatz (Defekt). Für r < rc reagiert das System global und man kann aufgrund
einer Anstauung an der Defektstelle einen defekt-induzierten Phasenübergang feststellen. Auf der
anderen Seite, für r ≥ rc hat der Defekt nur einen lokalen Effekt auf den stationären Zustand. Die
Meanfield-Theorie sagt einen globalen Einfluss des Defekts schon für beliebig kleine Defektstärken
voraus. Bislang war es nicht möglich, diese Vorhersage mit Computersimulationen zu überprüfen.
Allerdings weist eine aktuelle, numerische Studie darauf hin, dass eine kleine Defektstärke keinen
globalen Einfluss hätte und schlägt rc = 0, 80(2) vor. Durch die Untersuchung der Dichteprofile
von zwei sich parallel entwickelnder Systeme verbessern wir die Numerik um schließlich zu zeigen,
dass rc > 0, 99 gilt und liefern starke Argumente für rc = 1 wie es von der Meanfield-Theorie und
aktuellen theoretischen Arbeiten vorhergesagt wird.
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1. Introduction

The precise description of numerous complex systems appearing in nature1 involves so many
degrees of freedom that it is impossible to consider all of them. In addition, many of them behave
on a phenomenological level in somehow random manner. Concentrating only on a few variables
and regarding the rest as noise with certain presumed distributions, statistical approaches become
a powerful toolbox for qualitative and quantitative studies of such systems. Moreover, universality
has become a central concept of statistical mechanics. Universality, which was established by
the study of specific systems and simple models, asserts that the system’s properties do not
depend on its details such as the precise form of interactions2. Therefore, universality permits
the identification of appropriate variables and simpler underlying mechanisms that are considered
to be essential for the understanding of observations in real systems.

One typically classifies systems in statistical mechanics in two groups: (1) systems in or near
equilibrium, and (2) systems far from equilibrium. There are general frameworks for the statistical
description of systems in or near equilibrium. For the thermodynamic equilibrium, once the
microscopic Hamiltonian H of the system is specified, a state configuration C at the absolute
temperature T occurs with the probability given by the Gibbsian form P (C) ∝ exp (−HC/kBT ),
where HC is the energy corresponding to the configuration C and kB is the Boltzmann constant.

Further, the regression of spontaneous microscopic fluctuations in equilibrium systems is well
understood in terms of linear response theory [76]. Using Onsager’s regression hypothesis, which
states that the relaxation of systems near equilibrium is governed by the same laws as the relax-
ation of fluctuations in equilibrium systems [10], systems near equilibrium become well understood
by the study of equilibrium systems.

While equilibrium systems are limiting cases and rather exceptional in nature, nonequilibrium
systems form the majority of statistical systems. Far from equilibrium the dynamics is governed
by the reaction of the system to the non-zero flux and therefore linear response theory does
not apply anymore. Consequently, nonequilibrium systems are characterized by a non-zero flux
and show in general time dependent distributions P (C, t). For the description of nonequilibrium
systems many theories3 and methods4 have been developed during the last century. In addition,
some structure has emerged in the concept of universality even for nonequilibrium systems [12, 37,
43, 46, 72, 56, 88, 93]. For all that, a deeper understanding of underlying principles is still lacking
and our knowledge of nonequilibrium phenomena is far from complete. Thus, the current state
of statistical description of nonequilibrium systems may be seen as a treasury of accumulated
knowledge and toolboxes, but without a profound common foundation yet.

In fact, nonequilibrium systems contain a large class of systems defined by transition rates
between different configurations for which neither the Hamiltonian nor the Gibbsian equilibrium
exists. This subclass of systems may attain a nonequilibrium steady state, more precisely a state
with nonzero flux and time independent observables. As nonequilibrium steady states are easier to
handle and still cover anomalous transport properties, one promising inroad for the identification
of underlying mechanisms characterizing nonequilibrium phenomena in general is the study of
universal behavior in nonequilibrium steady states.

1e.g., biological systems [62, 64, 94, 95], chemical reactions [51], traffic flow [79, 92], surface growth [3, 45, 57],
economics [41, 54], networks [21, 33, 60]

2This holds especially near critical phase transitions [35, 37, 50, 58]
3e.g., stochastic processes [79], kinetic theories [76, 86, 49], entropy production [42]
4e.g., quantum formalism of the master equation [19, 20, 27, 36, 85], Bethe ansatz [2, 6, 85], matrix product ansatz

[7, 48], density matrix renormalization group methods [11, 31, 63, 82], mean-field and cluster approximations
(structure theory) [1, 8, 14, 28, 83], computer simulations [26, 49, 61], etc.
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1. Introduction

One-dimensional systems of interacting driven particles are typically far from thermal equilib-
rium and show complex behavior with interesting collective properties.

Thus, simple models belonging to the family of truly nonequilibrium driven diffusive systems
[79, 80, 81, 85] such as the totally asymmetric simple exclusion process (TASEP)5 widely serve
as paradigmatic models for the detailed study of nonequilibrium phenomena like superdiffusive
dynamical structure functions [69, 70, 71, 74], current fluctuations [73], boundary or defect-
induced phase transitions [4, 44, 47], spontaneous jam formation [59], symmetry breaking and
hysteresis [68, 77], etc. The investigation of these nonequilibrium phenomena are also relevant
for many applications, especially for interdisciplinary problems like traffic flow on various scales,
ranging from intracellular transport by molecular motors to vehicular traffic. Due to its simplicity,
the richness of supported nonequilibrium phenomena and its relevance for all other traffic models,
the TASEP becomes known as the ’Mother of all traffic models‘[79].

This cumulative dissertation is dedicated to the study of universal behavior in one-dimensional
driven diffusive systems far from equilibrium. The contributed papers can be arranged in two
different groups. Part II of this thesis will study the dynamical phase diagram of multi-species
systems with conserved density fluctuations using analytic mode coupling techniques and com-
paring results to numerical simulations of multi-species TASEPs. Part III will readdress the
long-standing question of a critical defect strength of a single defect site leading to a phase tran-
sition. By using advanced Monte Carlo techniques we will dissolve the contradiction of recent
anticipated theoretical findings and numerical investigations.

In the subsequent sections a brief summary of the most important basic knowledge is provided,
followed by an outline chapter placing the contributed papers into a concept.

5The TASEP was initially introduced by MacDonald et al for the kinetic study of multiple ribosomes translating
the same mRNA [53].
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1.1. Totally Asymmetric Simple Exclusion Process (TASEP)

1.1. Totally Asymmetric Simple Exclusion Process (TASEP)

This section briefly introduces the TASEP, relevant modifications and its technical aspects with-
out celebrating the beauty and richness of this model. For a very detailed discussion of the
TASEP and related results we refer to [79].

The bulk of a TASEP is given by a one-dimensional lattice where particles move to their empty
right neighbor sites with rate p (see Fig. 1.1). There are various ways to modify the update rules
and boundary conditions. In this thesis we will restrict the update rule to the random-sequential
update (RSU). The RSU aims to efficiently approximate continuous time dynamics in computer
simulations. In continuous time models jump attempts are encoded in rates. These rates could
be assigned to sites or even to particles while for our purposes rates will be assigned to sites.
A single RSU is then given by a site k drawn from equidistribution which is updated with the
probability rk/Rmax, where Rmax is the maximal rate appearing in the system. To point out the
macroscopic time scale, ∆t = 1 corresponds to RmaxL RSUs where L is the number of sites which
have to be considered for an update of the model. Therefore, on average each particle attempts
to jump at least once within ∆t = 1 and larger systems allow for a finer time resolution.

A TASEP configuration at time t is typically described in terms of occupation numbers {nk(t)},
telling if site k at time t is occupied, nk(t) = 1, or empty, nk(t) = 0.

Our major interest is the nonequilibrium steady state for various systems. Stationary states are
characterized by a time independent probability distribution P (C) to observe a certain configura-
tion C in the allowed configuration space Σ. Therefore, one gets a time independent expectation
value 〈 f({nk(t)}) 〉 in the steady state ensemble average for any arbitrary function f . Using the
continuity equation one deduces that the system will have a constant particle current j for all
sites, i.e.,

j ≡ 〈 jk(t) 〉 = const. ∀ k, t (1.1)

with the current measure at site k and time t

jk(t) = rk(t)nk(t)(1− nk+1(t)) (1.2)

where rk(t) is the jump rate, nk(t) checks for a particle which might jump and (1 − nk+1(t))
checks the exclusion principle.

For our studies nonequilibrium systems with factorized stationary distributions play an im-
portant role. At this point we will be more precise with the terminology factorized stationary
distribution. A factorized steady state distribution means that each site is occupied, indepen-
dently on other sites, with probability ρ, where ρ ∈ [0, 1] is the particle density. Or in other
words, correlation functions vanish and mean-field theory becomes exact. Due to our main in-
terest in infinite systems we use this terminology simultaneously for finite systems with periodic
boundaries. We have a fixed number of particles for periodic finite systems and the steady state
distribution factorizes only for the grand-canonical ensemble. For a finite system this distribu-
tion is uniform and all allowed configurations are equally likely. Calculating correlation functions
involving multiple sites one has to be aware of finite size effects of order L−1. To demonstrate
the appearance of finite size effects, we calculate the space correlation 〈n0nk 〉 − ρ2 for a periodic
TASEP of length L and density ρ. The uniform stationary distribution tells us that if we measure

p p p p

Figure 1.1.: Dynamics of the TASEP: Particles jump unidirectionally to their empty right neighbor sites
with rate p. The exclusion principle forbids to occupy a site with more than one particle.
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1. Introduction

a particle at site 0 there will be ρL − 1 particles left for L − 1 sites. Thus, we get for the space
correlation

〈n0nk 〉 − ρ2 = ρ(1− ρ)

(
δk,0 −

1− δk,0
L− 1

)
(1.3)

where δk,0 is a Kronecker delta. However, when calculating quantities like currents we will assume
an infinite system and neglect finite-size corrections.

In the published contributions of Part II we study the statistics of steady state density fluc-
tuations for multi-species settings aiming to observe universal behavior6. For this purpose, we
use a multi-species TASEP, consisting of N transversally coupled single-lane TASEPs with peri-
odic boundary conditions. The coupling is designed such that the hopping rates depend on the
occupation of neighboring sites on adjacent lanes, while lane interchanges are forbidden. Being

more precise, the hopping rate r
(λ)
k from site k to k + 1 on lane λ is given by

rλk = bλ +
1

2

∑
{µ:µ 6=λ}

γλµ

(
n

(µ)
k + n

(µ)
k+1

)
(1.4)

where n
(µ)
k measures the number of particles on lane µ and site k, bλ is a species dependent drift

parameter and γλµ = γµλ are symmetric interaction constants. Hopping attempts onto occupied
sites are forbidden by construction. For a two-species setting this will exemplarily look like:

Using that the stationary distribution factorizes for this model [67] we calculate the steady state
current as

jλ = ρλ(1− ρλ)

bλ +
∑
µ:µ6=λ

γλµρµ

 . (1.5)

Here we want to stress that the choice of this model is motivated by two simple reasons. Firstly, the
factorizing stationary distribution allows for exact calculations of indispensable quantities such as
current-density relation jλ(ρ1, . . . , ρN ). Secondly, the nonlinearities of the current-density relation
are of minimal order ρ2

λρµ providing a minimum setting which might support new universality.
In Section 1.2 we provide an introduction of universal behavior in driven diffusive systems of

single and multi-component systems. In Subsection 1.3.2 we introduce our used Monte Carlo
techniques and point out crucial optimizations.

In Part III we investigate a TASEP with open boundaries. In particular, we readdress numeri-
cally the critical strength of a single defect site leading to a global effect on the density profile
and a reduction of the current. An open system is realized by adding an entry and exit reservoir
to the ends of the system of size L. Particles may enter (exit) the system at the first (last) site
with rate α (β) (see. Fig. 1.2). Except for the defect site we choose the bulk hopping rate to be
p = 1. To perform a RSU in an open system we have to consider additionally the update of an

6A detailed introduction to universal behavior for single and multi-species driven diffusive systems is provided in
Section 1.2.
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1.1. Totally Asymmetric Simple Exclusion Process (TASEP)

’entry site’. Therefore, a RSU selects uniformly randomly one site out of L+ 1 sites. In contrast
to bulk sites the entry site is always occupied and does not depend on the bulk dynamics. Note
that performing the limit α → ∞ (β → ∞) would correspond to a replacing of the first (last)
site by a reservoir with rate α = 1 (β = 1). Therefore, it is sufficient to study the phase diagram
for p = 1 and α, β ≤ 1. Depending on the boundary rates the TASEP steady state might show
three different phases (see. Fig. 1.2) which we will discuss in more detail. The open setting
is the firstly in 1968 introduced TASEP setting [53] aiming to study kinetics of ribosomes on
mRNA. Using mean-field theory the authors were able to predict boundary controlled low- and
high-density (LD and HD) phases and additionally for α, β ≤ 1/2 a bulk controlled maximum
current (MC) phase. Anyway, these results were achieved within the mean-field approximation
and a detailed understanding of supported phases was incomplete. Although the TASEP was
introduced two years later to the probabilistic literature by Spitzer [87], it became known to the
statistical physics community only in 1991 by Krug [44], who pointed out that the TASEP shows
a second order boundary induced phase transition from the low-density to the maximum current
phase. Since then the TASEP became a widely studied model in statistical physics. Two years
later in 1993 exact steady state solutions for the open boundary TASEP appeared in [17, 84]
using different approaches. One year before, Derrida et al managed to solve the exact steady
state density profile and current for the maximum current system with α = β = 1 [16]. This
solution shows two interesting characteristics. Firstly, the density profile decays monotonically
decays as 〈nk − 1/2 〉 ∝ k−1/2 at the left end and as 〈nL+1−k − 1/2 〉 ∝ −k−1/2 at the right end.
Secondly, the maximal supported finite-size current was determined as

jα=β=1,L =
1

4

(
1 +

3

1 + 4L

)
. (1.6)

In contrast to that, the steady state for a MC system with α = β = 1/2 factorizes and one
finds a flat density profile ρ = 1/2 and the current jα=β=1/2,L = 1/4 for all system lengths.
Therefore, one finds upper and lower bounds for the steady state current within the MC phase
(1/2 ≤ α, β ≤ 1)

1

4
≤ jα,β ≤

1

4

(
1 +

3

1 + 4L

)
. (1.7)

For an infinite system the current is given by j∞ = 1/4 within the whole maximum current phase.
Motivated by the gap for currents within the MC phase, the question arose if an introduced defect
site (slow bond) in the middle of an open system with α = β = 1 (Fig. 1.3) would have global
or local effects on the system. This is motivated by the fact that a slow bond with hopping rate
r ∈ [rc,L, 1] supports a steady state current jα=β=1,L<∞(r) ≥ 1/4 which ’indicates’ a MC phase
[38] although a defect is present. Taking the limit L→∞ it is unclear if one gets rc = 1 or rc < 1.
Mean-field theory predicts a global influence already for an arbitrarily small defect strength, i.e.,
rc = 1, while its predictions for the defect current j(r) poorly fit simulation results. Although the
phase-diagram became well understood two years after its proposal, the verification of rc and the
identification of the defect current j∞(r) is a challenging problem for the statistical physics and
mathematical community since 1993. In Chapter 7 we provide an introductory article to the defect
setting and its relevance for interdisciplinary applications. In Subsection 1.3.3 we discuss crucial
insights for Monte Carlo simulations which are needed to detect effects of minuscule defects.
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Figure 1.2.: Left: TASEP with open boundaries. Particle enter (exit) the system on the left (right) with
rate α (β). Bulk dynamics is unchanged. Right: Exact phase diagram for open boundary
TASEP with p = 1 and RSU. The low-density (LD) phase is controlled by an inefficient
(α < 1/2) entry rate and an efficient (β > α) exit rate. In contrast to that, the high density
(HD) phase is controlled by an inefficient (β < 1/2) exit- and efficient (α > β) entry-rate.
For an efficient out- and input rate α, β ≥ 1/2 the system is controlled by its bulk dynamics
which shows a saturated maximum current (MC). The dotted line β = 1−α indicates systems
with factorized steady states.

1 8 9 16

p r ppα β

Figure 1.3.: Open boundary TASEP with L = 16 sites and a slow bond (r < 1) in the middle.

1.2. Classification of dynamics in stationary states

This section aims to explain where one can find universal behavior and how to classify dynamics.
Universality groups different kinds of systems into one universality class which show the same
statistical properties for appropriate variables. Dynamical universality classes are typically iden-
tified by some exponents, distributions and scaling functions characterizing fluctuations of these
variables.

To introduce dynamical universality classes we will first study the time evolution of locally
conserved density fluctuations for two paradigmatic one-dimensional lattice gas models in a peri-
odic system of length L with random-sequential update. These models are the above introduced
TASEP and the simple diffusion model where particles jumps with rate q (p) to the left (right).
Comparing the steady state current-density relations j(ρ), one should note that due to the absence
of interactions the diffusion model has a simple linear current-density relation j(ρ) = (p− q)ρ in
contrast to the TASEP showing a quadratic relation j(ρ) = ρ(1− ρ).

To study density fluctuations it is convenient to use the steady state dynamical structure
function7

S̄k(t) = 〈nk(t)n0(0) 〉 − ρ2 (1.8)

where nk(t) measures the number of particles on lattice site k at time t and ρ = 〈nk 〉 is the uniform
steady state density. 〈 · 〉 denotes the expectation value for a steady state ensemble average. One
intuitive picture to understand the dynamical structure function Sk(t) is its interpretation as a
probability distribution for finding a particle at position k and time t under the condition that
there was a particle at position k = 0 and time t = 0. Evolving this distribution in time one
naturally discovers a decay and growth of its amplitude and variance, respectively, caused by the
randomness, while the distribution will drift with constant velocity v = j′(ρ). In the asymptotic
limit (t→∞) this distribution shows a universal self-similar form f(x) and its amplitude decays

7also known as the two-point correlation function

8



1.2. Classification of dynamics in stationary states

v

v
v

v

v

space

am
p
li
tu
d
e

Figure 1.4.: Exemplary space-time propagation of the asymptotic dynamical structure function with
equally spaced time points encoded in the color. The time evolution of the dynamical struc-
ture function shows a self-similar form f(x) with constant drift velocity v. Due to the process’s
randomness the amplitude (red) decays like maxk(Sk(t)) ∼ t−1/z with dynamical exponent
z.

with a universal dynamical exponent z as maxk Sk(t) ∼ t−1/z. Figure 1.4 shows an exemplary
space-time evolution. Accordingly, the asymptotic structure function can be expressed as

S̄k(t) ' K(Et)−1/zf
(

(Et)−1/z(k − vt)
)

(1.9)

with nonuniversal scale parameter E, drift velocity v and conserved compressibility factor K

K =
1

L

〈(
ρL−

∑L
k=1 nk

)2
〉

(1.10)

where K contains information about space correlations and is the nonequilibrium analogue of the
thermodynamic compressibility which measures the response to pressure.

In case of the simple diffusion model, where no interaction between particles is present, one finds
the well known Gaussian scaling function f(x) = exp(−x2)/

√
π and dynamical exponent z = 2. In

contrast to the diffusion model a TASEP includes interaction between particles via the exclusion
principle. Therefore, the TASEP turns out to belong to the universality class of the Kardar-Parisi-
Zhang (KPZ) equation [39] suggested in 1986 to describe the growth of interfaces. Different to
diffusion, the KPZ universality class shows a superdiffusive (z < 2) dynamical structure function
with dynamical exponent z = 3/2. Its nontrivial symmetric scaling function fPS was calculated,
up to numerical precision of 100 digits, by M. Prähofer and H. Spohn studying the TASEP
[74, 75] which came as a major breakthrough. Using the KPZ scaling function provided in [75]
the nonuniversal scale factor is given by

E =
√

2K
∣∣j′′(ρ)

∣∣ . (1.11)

Indeed, simulation results of the TASEP confirm perfectly within error bars the dynamical expo-
nent z = 3/2 and a self-similar form satisfying the Prähofer-Spohn scaling function fPS already
for early and therefore numerically accessible times, see Fig. 1.5.

To understand the universality in more detail, we will investigate the large scale dynamics by
making use of Nonlinear Fluctuating Hydrodynamics (NLFH) theory [89], which describes the
time evolution of density fluctuations in terms of stochastic partial differential equations. To do
so, we switch from a discrete to a hydrodynamic description, where the dynamics is investigated in
terms of the coarse-grained local density field ρ(x, t) and associated current j(x, t). Our starting
point is the continuity equation ∂tρ(x, t) +∂xj(x, t) = 0 expressing mass conservation [40]. Given
the stationary current as a function of local density j(ρ(x, t)) this equation can be rewritten as
follows

∂

∂t
ρ(x, t) +A

∂

∂x
ρ(x, t) = 0 (1.12)
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Figure 1.5.: Scaling plot of the measured TASEP structure function with dynamical exponent z = 3/2.
The data approaches nicely the asymptotic solution Eq. (1.9) with dynamical exponent
z = 3/2 and Prähofer-Spohn KPZ scaling function. Fitting the dynamical exponent within
the time window t ∈ [100, 1300] we find zearly time = 1.505± 0.005 (0.33%) while for t ≥ 1300
no difference to the asymptotic solution could be observed within error bounds. The struc-
ture function is recorded in a periodic system with random-sequential-update, density ρ = 1

2
and length L = 106. The statistical error ε99% with 99% confidence bound is for every
data point Sk(t) smaller than 3.4 · 10−6. The plotted scaling function is obtained without
fitting and is described by Eq. (1.9) with scale factor E =

√
2, drift velocity v = 0 and

compressibility factor K = ρ(1− ρ) = 1/4. Simulation details are discussed in Sec. 1.3.2.

where A is the current Jacobian A = ∂j/∂ρ. Up to now Eq. (1.12), describes the deterministic
time evolution of the density ρ(x, t) under Eulerian scaling [40]. The effects of randomness
occurring on finer time scales are captured by adding phenomenological diffusion ∂2

xDρ(x, t) and
conservative white noise8 ∂xBξ, while the fluctuation dissipation theoremKD+DK = B connects
compressibility, diffusion- and noise-strength. In this framework one expands the local density
ρ(x, t) = ρ+u(x, t) around its stationary value ρ. Using the steady state current-density relation
j(ρ) = (p− q)ρ for the diffusion model we arrive at

∂tu(x, t) = −∂x
(

(p− q)u(x, t)− ∂xDu(x, t) +Bξ(x, t)
)

(1.13)

which is the partial differential equation for diffusion with conservative white noise known to
show a Gaussian scaling function with variance growing linearly in time (z = 2). Doing the same
for the TASEP we first recognize the quadratic current-density relation j(ρ) = ρ(1− ρ) resulting
in

∂tu(x, t) = −∂x
(

(1− 2ρ)u(x, t)− ∂xDu(x, t)− (u(x, t))2 +Bξ(x, t)
)
. (1.14)

This stochastic partial differential equation belongs to the family of the noisy Burgers’ equation
[9]. Comparing Eqs. (1.13) and (1.14), one notices that the difference causing different universality
is the nonlinear term appearing for the TASEP model.

So far, we have derived the fluctuating hydrodynamic description just for two specific models.
Therefore, we will now assume some more general model with local interactions (z > 1), locally
conserved density fields and infinitely differentiable steady state current-density relation j(ρ).
NLFH assumes that in order to capture universal behavior correctly it suffices to expand the

8Gaussian distributed random variable satisfying 〈 ξ(x, t) 〉 = 0, 〈 ξ(x, t)ξ(x′, t′) 〉 = δ(x− x′)δ(t− t′)
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Figure 1.6.: Mapping of TASEP dynamics to a surface growth. The figure shows a TASEP configura-
tion evolving in time, while the color-coded particle will jump within the next time step.
Mapping a particle to a down-slope ( → �) and a hole to a up-slope (# → �) a state
configuration corresponds to some height profile. If a particle jumps a diamond is added to
the surface between the initial and final position. This mapping can be generalized easily to
the asymmetric simple exclusion process (ASEP) where a jump to the left will correspond to
a diamond removal.

current-density relation up to second order [89]. Possible logarithmic corrections arrising from
higher orders [5, 15] are neglected. Consequently, given the current-density relation j(ρ) we obtain
the NLFH equation as

∂tu(x, t) = −∂x
(

j′(ρ)u(x, t)− ∂xDu(x, t) +
1

2
j′′(ρ)(u(x, t))2 +Bξ(x, t)

)
. (1.15)

Going back, we mentioned that the KPZ universality belongs to the KPZ equation, initially
suggested to describe surface growth. Performing the Galilei transformation x→ x− j′(ρ) · t to
get rid of the drift term and then using ∂xh(x, t) = −u(x, t), Eq. (1.15) can be transformed into
the KPZ-equation

∂th(x, t) = ν∇2h+
λ

2
(∇h)2 + η(x, t) (1.16)

with ν = D, λ = j′′(ρ) and η(x, t) = Bξ(x, t). Indeed, one can map the TASEP to a surface
growth process [3, 32, 43, 45, 65] that became known as the single step model (see Fig. 1.6).
This mapping motivates the used substitution ∂xh(x, t) = −u(x, t). Considering that the critical
nonlinear term leading to KPZ universality is λc = 0 [39], we can summarize:

The universality class is encoded in the nonlinear part of the fluctuating hydrodynamic
equation. Therefore, a model with just one locally conserved field belongs either to
the diffusion class (j′′(ρ) = 0) or to the KPZ class (j′′(ρ) 6= 0).

To allow for a richer dynamical phase diagram showing other dynamical exponents
and scaling functions the system should have more than one locally conserved density
field.

Assuming a local interacting system with N locally conserved density fields, the NLFH equations
are derived analogously starting with the system of conservation laws ∂tρλ(x, t) + ∂xjλ(x, t) = 0.
The key steps are again expanding the local density ρλ(x, t) = ρλ + uλ(x, t) and expressing the
associated current jλ(ρ1, . . . , ρn) as a function of densities. Finally, one arrives at

∂t~u = −∂x

(
J~u+

1

2

∑
λ

~uTHλ~u+ ∂xD~u+B~ξ

)
(1.17)
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where J is the Jacobian and Hλ are the Hessians of the current with matrix elements Jλµ =
∂jλ/∂ρµ and (Hλ)µν = ∂2jλ/(∂ρµ∂ρν). Additionally, a phenomenological diffusion matrix D and
normalized white noise ξλ with strength matrix B have been added. Transforming the fluctuation
fields ~u into eigenmodes ~φ = R~u with RJR−1 = diag(vα), the time-evolution of φα := (~φ)α is
governed by

∂tφα = −∂x
(
vαφα + ~φTGα~φ+ ∂x(D̃~φ)α + (B̃~ξ)α

)
(1.18)

with D̃ = RDR−1, B̃ = RB and mode coupling matrices

Gα =
1

2

∑
λ

Rαλ(R−1)THλR−1. (1.19)

To elaborate universal behavior in density fluctuations for multiple conserved quantities we start
with the structure function in density representation

S̄λµ(x, t) = 〈uλ(x, t)uµ(0, 0) 〉. (1.20)

Since the conserved densities interact in general, a perturbation in one component will cause a
nontrivial relaxation of other components. Eq. (1.18) implies that the eigenmode φα will move
with velocity vα through the system. Therefore, a perturbation may split into different peaks
moving with distinct velocities. It is a lot easier to investigate the structure function in eigenmode
representation

Sαβ(x, t) = [RS̄(x, t)RT ]αβ = 〈φα(x, t)φβ(0, 0) 〉. (1.21)

Distinct velocities now tell that off-diagonal terms are expected to decay quickly. For long times
and large distances between the peaks one is left with the diagonal elements which we denote by

Sα(x, t) := Sαα(x, t). (1.22)

Analogously to the one-component case, the asymptotic behavior of the diagonal elements is
expected to show a scaling form

Sα(x, t) ' (Eαt)
−1/zαfα((Eαt)

−1/zα(x− vαt)) (1.23)

with a dynamical exponent zα and scaling function fα that might be different for the N modes,
especially they might differ from the diffusion and KPZ class.

Nonlinear stochastic conservation laws Eqs. (1.15) and (1.18) are difficult, in particular for
multi-component systems. Nevertheless, using mode coupling theory to calculate the asymptotic
dynamical structure function provides an inroad for the evaluation of dynamical exponents and
scaling functions. The basic idea is to capture the combined effects of nonlinearity and noise by a
memory kernel. While it is not clear how to formulate the memory kernel in general, the one-loop
kernel provides a good approximation and might even reveal exact results. Thus, our starting
point for the computation of Sα(x, t) is the mode coupling one-loop approximation in a strictly
hyperbolic (vα 6= vβ) setting

∂tSα(x, t) = (−vα∂x + D̃αα∂
2
x)Sα(x, t) +

∫ t

0
ds

∫
R

dySα(x− y, t− s)∂2
yMαα(y, s) (1.24)

with the memory kernel

Mαα(y, s) = 2
∑
β,γ

(Gαβγ)2Sβ(y, s)Sγ(y, s). (1.25)
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1.2. Classification of dynamics in stationary states

Limiting our interest to the asymptotic solution, the analysis reveals9 for hyperbolic settings that
only the diagonal terms of {Gα} will contribute the dynamical exponent zα and its associated
scaling function fα. Thus, we may further simplify the memory kernel to

Mαα(y, s) = 2
∑
β

(GαββSβ(y, s))2 (1.26)

which clarifies that the dynamical exponents {zα} and scaling functions {fα} are encoded in the
roots of the diagonal elements of {Gα}. For this purpose, we define the set

Iα := {β : Gαββ 6= 0} (1.27)

and summarize the results:

Universality is encoded in the roots of the diagonal elements of the matrices Gα. Very
similar to the one-component case one finds the diffusion (zα = 2) universality class
for Iα = ∅ and the KPZ (zα = 3/2) universality class for α ∈ Iα.

A new universality class will emerge for mode α if the self-coupling term vanishes
(α 6∈ Iα) and a nonlinear coupling to some other mode β is still present (β ∈ Iα). The
dynamical exponent is then given by

zα = min
β∈Iα

[(
1 +

1

zβ

)]
(1.28)

and its associated scaling function is a zα-stable distribution with analytic represen-
tation

Ŝα(p, t) =
1√
2π

exp
{
−ivαpt− Eαt|p|zα

[
1− iAαsgn(p) tan(

πzα
2

)
]}

(1.29)

in the Fourier-space Ŝ(p, t) = (2π)−1/2
∫∞
−∞ S(x, t) exp(−ikx)dx with nonuniversal

scale factor Eα and asymmetry Aα ∈ [−1, 1]. Notably, for the fastest left/right-
moving peak mode coupling theory predicts maximum asymmetry A = ±1. This is
the classical analogue to the Lieb-Robinson bound which is a theoretical upper limit
at which information can propagate in nonrelativistic quantum systems [52]. Starting
with either z = 2 or z = 3/2 the evaluation of Eq. (1.28) yields that all feasible
exponents are ratios of neighboring Fibonacci numbers

zα ∈
{
Fn+3

Fn+2
: n ≤ N

}
(1.30)

where Fn are Fibonacci numbers defined by Fn+2 = Fn+1 + Fn starting with F1 =
F2 = 1. If neither a diffusion nor a KPZ mode are present then the unique solution
to the recursion in Eq. (1.28) is the golden mean zα = ϕ = (

√
5 + 1)/2 for all modes.

Figure 5.1 in Chapter 5 shows some representative examples of the scaling functions
which are quite different in shape.

9For more details see Sec 6.2.2.
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1.3. Monte Carlo simulations

Monte Carlo simulations are, broadly speaking, a huge set of random experiments aiming to
estimate quantities of interest based on the law of large numbers. Highly accurate Monte Carlo
data is essential for the measurement of sensitive quantities such as dynamical exponents or
critical defect strength causing phase transitions. Näıve Monte Carlo approaches often fail to
reach the aspired accuracy which requires the use of advanced Monte Carlo techniques. There is
a broad spectrum of well established and recently developed sampling techniques improving the
accuracy [24, 25, 26, 30, 34, 61]. However, in many fields there is no clear guideline for the most
efficient techniques. Due to the richness of nonequilibrium phenomena each pair of system and
measure comes along with its own strengths, weaknesses and computation bottlenecks one has
to overcome. Therefore, this section briefly discusses the concept of Monte Carlo simulations,
quantifies the uncertainty of its results and gives insights into crucial optimizations we have used
in simulations.

1.3.1. Concept of Monte Carlo simulations for expectation values

Throughout this thesis Monte Carlo simulations are used to calculate expectation values in
nonequilibrium stochastic processes. In this context, a nonequilibrium stochastic system should
be interpreted as a time-dependent probability-weighted path in the system’s configuration space
Σ containing all possible configurations.

Let us assume we are interested in the expectation value of a function f in a system far from
equilibrium. To calculate the expectation value, we need to specify the phase space Ωt ⊆ Σ. This
phase space is for nonequilibrium systems in general time-dependent and takes the evolution of
the conditioned configuration space under the system’s dynamics into account. E.g., Ωt covers
the states arising from the time evolution of some initial state C ∈ Ωt=0 while the time evolution
of Ωt depends on system specific transition probabilities W (C̃ → C) between configuration C̃ and
C. That means

〈 f 〉(t) =
∑
C∈Ωt

P (C, t)f(C) (1.31)

where P (C, t) is the probability to observe configuration C at time t and encodes the time evolution
of the system.

Calculating such quantities in nonequilibrium systems numerically has two major problems.
Firstly, often the sum cannot be reduced to a compact analytical form which is easy to compute.
Also numerically, it is in general a hopeless task since the phase space Ωt is enormous. The second
major problem is the typically unknown probability distribution P (C, t).

Nevertheless, Monte Carlo simulations allow the calculation of such expectation values with, in
principle, arbitrary precision and become powerful tools in many fields since the quality does not
depend on the dimensionality of the problem. The common idea of all Monte Carlo estimators
is to limit the sum to a random sample St ⊆ Ωt where Q(C, t) denotes the probability to create
state C ∈ Ωt at time t. The unbiased Monte Carlo estimator for 〈 f 〉 is given by

YSt =

∑
C∈St

P (C,t)
Q(C,t)f(C)∑

C∈St
P (C,t)
Q(C,t)

(1.32)

and the law of large numbers guarantees

lim
|St|→∞

YSt = 〈 f 〉(t). (1.33)

Knowing the distribution P (C, t) a suitable choice of Q(C, t) might reduce the variance var(YSt)
and therefore allow for better results with less samples. The choice of the most favorable Q(C, t)
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1.3. Monte Carlo simulations

depends on f(C) and P (C, t). Anyway, this will not be the case for our purpose, since we do
not know P (C, t) in general. To get rid of the unknown distribution P (C, t) we have to ensure
Q(C, t) ∝ P (C, t).

This characteristic can be achieved in the context of Markov Chain Monte Carlo (MCMC).
Without going into much detail we define a Markov chain ζ as a time series of configurations
ζ = (Ct) consisting of configurations Ct ∈ Σ of the systems configuration space Σ. Or, in other
words, a Markov chain describes a possible evolution of the system. To apply MCMC the phase
space Ω, the function of interest f and the set of independent Monte Carlo samples S should be
redefined. Therefore, the phase space Ω is now a set of all possible Markov chains starting at
t = 0 in Ω0 and ending at some maximum time which is required by the argument of f . Note that
if f is a time-independent function the Markov chain reduces to length one and we get Ω = Ω0.
The sought expectation value of f is calculated as

〈 f 〉 =
∑
ζ∈Ω

P (ζ)f(ζ) (1.34)

where P (ζ) is the probability to observe ζ. To apply the MCMC approach we define a set S
of independent random samples as a set of Markov chains independently generated from the
distribution Q(ζ). Similar to Eq. (1.32) the unbiased MCMC estimator is given by

YS =

∑
ζ∈S

P (ζ)
Q(ζ)f(ζ)∑

ζ∈S
P (ζ)
Q(ζ)

. (1.35)

To generate a random Markov chain ζ from a distribution Q(ζ) ∝ P (ζ) we will choose a random
initial configuration C0 ∈ Ω0 from the distribution P (C0, t = 0) and generate a Markov chain
by propagating the system under its defined transition probabilities W (C̃ → C). If P (C0, t = 0)
is unknown one can alternatively relax10 the system into its desired random initial condition.
Finally, the Monte Carlo estimator for 〈 f 〉 is given by

YS =
1

|S|
∑
ζ∈S

f(ζ). (1.36)

Assuming a sufficiently large sample S and using the central limit theorem the uncertainty of the
Monte Carlo estimator is quantified as

ε1−α(S) := cα

√
var(f)

|S|
(1.37)

with variance var(f) =
〈
f2
〉
− 〈 f 〉2 and significance parameter cα ensuring a 1 − α confidence

level, i.e.,

P

(
|〈 f 〉 − YS | ≤ cα

√
var(f)

|S|

)
= 1− α. (1.38)

Further, |〈 f 〉 − YS | is expected to be normal distributed with zero mean and standard deviation√
var(f)/|S|. Thus the significance parameter cα is determined by

1− α =
1√
2π

cα∫
−cα

exp

(
−x

2

2

)
dx (1.39)

10A relaxation corresponds to a sufficiently long propagation in time until the steady state is reached.
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= erf

(
cα√

2

)
(1.40)

⇔ cα =
√

2erf−1(1− α) (1.41)

with erf denoting the error function. Throughout this thesis we typically use a confidence level
of at least 99% given by

ε99%(S) = 2.5758 ·

√
var(f)

|S|
(1.42)

and estimate the variance var(f) from the sample

var(f) ≈ 1

|S| − 1

∑
ζ∈S

(f(ζ)− YS)2 . (1.43)

Note that the derived error estimation holds as long as the measures f are generated indepen-
dently from the same distribution. If one is interested in very accurate data, it is advisable to
construct measures f which support a lower variance. For example, in a steady state one can
perform ergodic measurements11 using a steady state Markov chain instead of single states. Fur-
thermore, to reduce the variance it might be useful to evaluate the Monte Carlo estimator on a
set {ζ1, . . . , ζn} of n correlated Markov chains, i.e., f({ζ1, . . . , ζn}). To ensure that the uncer-
tainty statements derived above hold, one should redefine the set of independent measures such
that S becomes a set of sets which are independently generated from the same distribution, i.e.,
{ζ1, . . . , ζn} ∈ S.

Finally, we stress that the Monte Carlo theory holds only for random events without correla-
tions. To produce randomness in computer simulations we are limited to pseudo random number
generators (pRNG) producing a series of deterministic quasi-random numbers. These quasi-
random numbers are supposed to behave randomly but might introduce correlations12. A careful
choice of the pRNG is essential to produce trustworthy results. To verify the quality of ran-
dom number generators many tests have been developed and applied to standard pRNGs [22].
All Monte Carlo data presented in this thesis are generated by a C++ code and the Mersenne
Twister MT19937 pRNG. Every RNG initialization had a different seed value taken from a static
list, once produced by measuring temperature fluctuations of the CPU. For simulations where
analytic results are available we could not notice significant deviations within the simulation
accuracy. For all other cases we could not find untypical behavior indicating pRNG influences.
Therefore, the presented data are assumed to be significant within their errors.

1.3.2. Monte Carlo simulations of density fluctuations

In the published contributions of Part II we study the statistics of steady state density fluctuations
for a multi-species setting aiming to observe universal behavior. Here we will introduce two
different Monte Carlo approaches we have used for the measurement of density fluctuations and
discuss their advantages and disadvantages. To simplify the discussion, we investigate a simple
periodic TASEP with random-sequential update, density ρ = 1/2 and factorizing steady state.
When needed we will point out important details for multi-species systems.

The configuration space ΣL
N for a periodic TASEP with L sites and N = ρ ·L particles is given

by the set of all possible configurations C containing N particles and L−N holes. The stationary

11An ergodic measurement provides an improved estimating function f̃ by performing a time average of f along
the steady state Markov chain.

12e.g., in Fig. 8.5 we compare the results of the measured current using different pRNGs.
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distribution is uniform and therefore all states are equally likely. Further, using the binomial

theorem one can deduce |ΣL
N | =

(
L
N

)
.

The most näıve strategy for a Monte Carlo study of steady state density fluctuations starts
with a uniformly randomly chosen steady state C ∈ ΣL

L/2 where one adds a particle if possible at
position k = 0 at time t = 0. We denote the arising set of all possible initial configurations C0

by Ω0 which is of size |Ω0| = |ΣL
L/2|. Note that by adding a particle whenever it is possible we

have enlarged the possible steady state configuration space to Σ = ΣL
L/2 ∪ ΣL

L/2+1 and therefore
one observes a relaxation until the steady state is reached. For the periodic TASEP this means
all states C ∈ Σ become equally likely so observe.

Computing the density profile for t = 0 one gets

〈nk(t = 0) 〉 =
1

2
+

1

2
δ0k (1.44)

where nk(t) measures for a particle at site k and time t and δ0k is a Kronecker delta. Evolving
the configuration C ∈ Ω0 in time under TASEP update rules, the measure of the time-dependent
density profile will uncover the statistics of steady state density fluctuations which are expected
to have the form

〈nk(t) 〉 '
1

2
+

1

2
(
√

2t)−2/3fPS

(
(
√

2t)−2/3k
)
. (1.45)

Recalling that the asymptotic solution is satisfactory already for quite early times (see Fig. 1.5),
this is a good starting point to discuss the statistics of Monte Carlo simulations.

In computer simulations we use a system of size L, which results in |Ω| = L!/((L/2)!)2 possible
initial states. For a system of size L = 300 this means ≈ 9.4 · 1088 initial configurations. Addi-
tionally, we have to deal with the unknown and complicated time-evolution of the phase space
Ωt and its associated probability P (C, t) to observe a certain configuration C ∈ Ωt ⊆ Σ during
the relaxation process. Already, this setting illustrates why exact solutions are extremely rare for
nonequilibrium systems.

However, Markov chain Monte Carlo simulations will allow to obtain results with satisfactory
precision. First of all, we have to define an independent set S of Monte Carlo samples allowing
the use of the central limit theorem. Since all states in Ω0 are equally likely, each Markov chain
starts at t = 0 with some configuration C ∈ Ω0 drawn from equidistribution. Additionally, we
assign to each Markov chain an independent set of random numbers needed for its time evolution.
Note that we use just one process realization per sample. In the context of variance reduction,
one could produce a set of independent initial configurations and a set of independent pseudo
random number sequences separately. By averaging over all pairs the variance of the estimator
is reduced. However, our Monte Carlo estimator is given by

Yk(t) =
1

|S|
∑
ζ∈S

nk(t)|ζ . (1.46)

The next step is to analytically quantify the uncertainty of our Monte Carlo estimator. The
placed particle will exhibit a lower variance for the estimator inside its peak region than outside
where no signal is present. Thus, we get an upper error bound by computing the uncertainty
outside the peak region

var(nk(t)) ≤
〈

(nk − ρ)2
〉

= 〈nk 〉 − ρ2 = ρ(1− ρ) = 1/4. (1.47)

Using Eq. (1.42) the Monte Carlo error within confidence level 99% is given by

|〈nk(t) 〉 − Yk(t)| ≤
2.5758√

4|S|
. (1.48)

17



1. Introduction

From Eq. (1.45) and using maxxfPS(x) = 0.54246 we can deduce that the amplitude of 〈nk(t) 〉−
1/2 will be of order 0.21528 · t−2/3. Assuming we need data with at least 1% of the amplitude
accuracy for further analysis, the minimum sample size with 99% confidence level is then

|S| & 3.58 · 105 · t4/3 (1.49)

or 4.19 · 108 samples for tmax = 200. Note that each sample requires an independent propagation
of the system up to tmax. Additionally, to guarantee that the peak will not fill the system one

should increase the system size as L ∝ t1/zmax. It is even worse for a multi-species system, since due
to the periodic boundary condition peaks with different velocities overlap again after a certain
time. To exclude this event the minimum system size should scale as L ∝ tmax. Large systems
and the huge amount of required samples make this procedure unsuitable for greater times where
a better agreement with the asymptotic solution is expected.

There is still potential to significantly reduce the variance. For example, as mentioned above,
one can assign multiple initial configurations to the same set of random numbers and propagate
them in parallel. Additionally, one should simulate the system with and without the added
particle in parallel and keep track of their difference. These differences could be detected very
efficiently and especially allow for a very high resolution in the tail regions of the peak. A similar
method and potential improvements are described in the subsequent section about defect effects.
In case one is interested in very precise early time data this is the most promising technique.

Nevertheless, the major problem not reaching the asymptotic limit within computation time
will persist. This is caused by the fact that each simulation run carries the information of only one
placed particle for which we have to simulate a complete system. Furthermore, the computation
time needed for the state propagation will limit us to small systems and in addition we have to
expect finite size effects. Anyway, this procedure inhibits high potentials to generate high quality
early time data.

Next, we discuss a different approach which allows us to reach further into the asymptotic regime.
Especially, this technique allows for precise data in the peak region which is strongly required
for a precise fit of z. The two most costly parts are propagating the system and recording the
observable. To overcome the weaknesses of this technique we investigate the structure function
Eq. (1.8) instead. The structure function tells us basically the same information, but the observ-
able is translation invariant and the system stays in its steady state and thus time-invariant phase
space Ω0. Thus, we can apply an average over the whole system size and perform ergodic mea-
sures to reduce the cost of propagation which is crucial to get far inside the asymptotic regime.
Again, we start with the definition of an independent Monte Carlo sampling set S of Markov
chains. Each Markov chain starts at t = 0 with some randomly chosen steady state configuration
C ∈ Ω0 and got its own set of independent random numbers needed for the propagation in time.
Since Q(C) and P (C) are both uniform distributions our initial state is drawn from the correct
distribution. Therefore, the unbiased Monte Carlo estimator for the structure function is given
by

SMC
k (t) =

1

|S|
∑
ζ∈S

σk(t)|ζ . (1.50)

with an estimating function designed as

σk(t;L, T, τ) =
1

T

T−1∑
j=0

1

L

L−1∑
l=0

nl+k(t+ jτ)nl(jτ)− ρ2 (1.51)

where we made use of translational invariance and included ergodic measures such that interme-
diate propagation results are reused. More precisely, choosing T > 1 will allow for a variance
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1.3. Monte Carlo simulations

reduction which scales as var(σk(t;L, T, τ)) ∼ T−1/2. This is accomplished by introducing ad-
ditional measurements for which we only have to propagate the system with time τ instead of
tmax � τ . Limiting the support points for k to a fixed number (typically 300−500) equally placed
within the peak, an increase of system size brings us in a win-win situation, since increasing the
system size improves statistics var(σk(t;L, T, τ)) ∼ L−1/2 and suppresses finite-size effects. The
achieved optimization turns out to be enormous and crucial to efficiently produce accurate data
far inside the asymptotic regime. However, we have to pay the price for the storage of all inter-
mediate states and restrict the observable time to t ∈ τ · N0. Therefore, one has to find for each
model a good trade-off for tmax, L, τ and T . Although we have achieved massive improvements,
the recording is still expensive and it is advisable to limit the observation times and grid points to
a required minimum. In case one is interested in measuring dynamical exponents we recommend
to increase the observation times exponentially.

Either way, to quantify the uncertainty of this approach we use a 99% confidence level

∣∣SMC
k (t)− Sk(t)

∣∣ ≤ 2.5758

√
var(σk(t;L, T, τ))

|S|
. (1.52)

To demonstrate the potential we compare results of this approach to the näıve version of the first
introduced approach.

In Fig. 1.5 we have already shown simulation data recorded with the Monte Carlo method
described above using the parameters

|S| = 120; L = 106; T = 3000; τ = 100. (1.53)

The statistical error is less than 3.4 · 10−6 for all data points. Using the first technique would
require at least |S1| = 1.4 · 1011 samples to reach the same accuracy, while the system size should
be at least L1 = 5000 guaranteeing that the peak will not fill the whole system. To compare both
methods we calculate an equivalent quantity for the time needed to perform the propagation of
all states. These are E1 = |S1| ·L1 · tmax for the first technique and E2 = |S| ·L · (tmax + (T −1)τ)
for the new technique using translational invariance and ergodic measures. Setting tmax = 8900
as in Fig. 1.5 we get E1 = 6.2 · 1018 or E2 = 3.7 · 1013. The first and second approach shows
already a very huge difference E1/E2 = 1.7 · 105. In case we would have two peaks this would
be even bigger since we should have taken a larger system. This stresses the improvement and
indicates why the use of the first technique is limited to early times.

In case one needs data only for a small amount of time points (n ≤ 10) growing exponentially,
one can avoid memory problems by implementing the next generation of computer code as follows:
Instead of storing all intermediate states one should store only the states for times of interest
and its full random-number generator initialization. This largely reduces the required memory
but comes with the cost of computing the time evolution of n stored frames instead of just
decompressing them from storage. The additional cost for propagation could be compensated
or even reduced by using a smaller τ . The computation time equivalent quantity defined above
would be Enext = |S| · L · (tmax + (T − 1)nτ). Using this kind of code would allow to get further
into the asymptotic regime and simulations of even bigger systems. Especially for the calculation
of dynamical correlation functions in 2D systems this would be of great interest. It will allow to
run simulations in parallel with sufficiently large systems and without filling the whole memory
space. Further improvements can be achieved by evaluating the estimator function for multiple
correlated Markov chains with different initial conditions but generated with the same random
numbers. Extra costs will be negligible since producing high quality random numbers is the most
costly part of propagation.
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1.3.3. Monte Carlo simulations of defect systems

In this section we will explain how to efficiently detect effects of inhomogeneities and defects in
steady states. The system without the defect will be called pure system. We shall define the
steady state phase space Ωp (Ωd) and its associated probability distribution Pp (Pd) for the pure
(defect) system. The major interest for a defect system is often the difference of some observable
f to the pure system, i.e.,

〈 δf 〉d,p := 〈 f 〉d − 〈 f 〉p. (1.54)

The most näıve and simplest Monte Carlo strategy to calculate 〈 δf 〉d,p is running independent
simulations for 〈 f 〉d and 〈 f 〉p. Having said that, it is also the inefficient strategy one can use if one
needs accurate data. In general Ωd and Pd are unknown which means we have to create a state C
with the probability Qd(C) ∝ Pd(C). This is usually achieved by starting with some configuration
C? from the distribution Q?(C?) and propagating the defect system into its steady state. To
improve the statistics our idea is to start with some configuration C? generated with the probability
Q?(C?) ∝ Pp(C?). The crucial step is to take a copy of C? and propagating one configuration with
the defect and the other with the pure update rules in parallel using the same random numbers
until we reach the steady state Cd,0 of the defect system. The obtained configuration Cd,0 is
produced with a probability Qd(Cd,0) ∝ Pd(Cd,0). Thereby, the propagated pure state Cp,0 stays
by construction a steady state generated with a probability Qp(Cp,0) ∝ Pp(Cp,0). In case Pp(C) is
an unknown distribution as well one could start with an initial state from the distribution Q?,
but then one has to ensure that both states are relaxed. Relaxations in computer simulations
are often insufficient and one has to be aware of its finite-time effects. It might be useful to look
for relaxation strategies reducing the finite-time effects. In computer simulations the cost for
the propagation of the second state is negligible since the pRNG is the propagation bottleneck
and expensive random numbers are reused. Taking into account that both systems are in steady
states it is advisable to perform ergodic measurements.

In particular for the defect TASEP with open boundary conditions (Fig. 1.3), we update each
site at exactly the same time and with exactly the same random number needed for the jump
event decision. Although Pp(C) is exactly known for the open boundary TASEP we cannot
produce states according to Q?(C?) ∝ Pp(C?). Our main interest is to discover a phase transition
for small defect strength inside the maximum current phase. Therefore, to exclude errors arising
from relaxation effects we start with a product state where each site is occupied with probability
1/2. This initial state C? corresponds to the factorizing maximum current steady state for a
system with entry and exit rates α = β = 1

2 . To ensure that our measured defect phenomena
are not dominated by relaxation effects we introduce a two level relaxation. Firstly, we drive the
pure system into its steady state while our initial condition guarantees the system to stay inside
the maximum current phase. For the second relaxation we take a copy of the relaxed pure state
and propagate the defect and pure system in parallel until we reach the steady state of the defect
system.

Following this strategy, we ensure that the measured effects are induced by the system’s defect.
The parallel evolution of both system in the second relaxation level secures a covariance between
the systems which is needed for efficient Monte Carlo sampling. In contrast, when performing
independent simulations with independent Markov chains we have to average over many samples
until we see significant differences. These differences might additionally contain some systematic
errors caused by the relaxation process.

The procedure described above can be interpreted as the second level of a Multi-Level Monte
Carlo simulation [24]. Indeed, this idea turned out to be very powerful and we want to discuss
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the achieved improvements. Therefore, the coherently13 generated initial configurations propa-
gated into coherent Markov Chains are denoted as ζd (ζp) for the defect (pure) system and the
set of Monte Carlo samples is given by a set of pairs {ζd, ζp} ∈ S. The set of only pure/defect
states in the sample set S are denoted by Sd/p. The new function of interest is

∆f({ζd, ζp}) := f(ζd)− f(ζp) (1.55)

and the Monte Carlo estimator is given by

YS =
1

|S|
∑

{ζd,ζp}∈S

∆f({ζd, ζp}). (1.56)

Although Ωd and Ωp might be of different size the linearity of Eq. (1.55) guarantees an unbiased
sample

lim
|S|→∞

YS = 〈 δf 〉d,p. (1.57)

To quantify the uncertainty we need to know the variance of ∆f({ζd, ζp}) which can be rewritten
as

vard,p(∆f) = vard(f) + varp(f)− 2covd,p(f, f) (1.58)

with the covariance

covd,p(f, f) = lim
|S|→∞

1

|S|
∑

{ζd,ζp}∈S

f(ζd)f(ζp)− 〈 f 〉d〈 f 〉p. (1.59)

In fact, we cannot calculate the covariance analytically, but one should note that for the trivial
case of identical systems the variance Eq. (1.58) vanishes.

Nevertheless, we will demonstrate the potential of this method by discussing the results for
differences in density profiles in the open boundary TASEP defect system. Subtracting the defect
state from the pure state in parallel evolving systems, differences are encoded in ±1. These
differences can be mapped to two types of second-class particles, which we will call up and
down ’second-class’ particle. ’First-class’ particles correspond to sites which are occupied in both
system’s (Top of Fig. 1.7). Instead of evolving both systems in parallel, it is equivalent to simulate
the system with two classes of particles (Bottom of Fig. 1.7). These particles follow the same
TASEP rules but might interact with each other. A first-class particle will not care about second-
class particles and push them back. Therefore, the dynamics of the first-class particles remains
unchanged. In case a first-class particle cannot cross the defect site it separates into a up-down
pair of second-class particles. When a up and down particle meet each other at any site they
recombine to a ’first-class’ particle. At the entry reservoir we feed in first-class particles which
might remove second-class particles from the system. The exit reservoir does not distinguish
between particle classes and all particles are removed with the same rate. The second-class
particles allow to keep track of defect effects without biasing the dynamics of the pure and defect
systems. This idea is different to the work by Derrida et al [18], where one type of conserved
second-class particles was introduced to measure the shock position.

A weak defect rate r . 1, which is the most interesting case for us, corresponds to a small
birth rate of second-class particles. Since these second-class particles may recover to a first-class

13Coherent is used in the sense that a covariance between states is present.
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Figure 1.7.: Top: Mapping of parallel evolving systems (defect and pure) to a two types second-
class particles system. Here a pair of second-class particle is created at the defect
site (red bond). Differences between the defect and pure system are encoded in
up/down particles. Black and up (down) particles correspond to particles in the
defect (pure) system. Bottom: Site update rules for the two type second-class
particle system. r is the defect strength at the slow bond. Update rules for a pure
bond are obtained for r = 1. P denotes the probability for the indicated event.
Question marks are placeholders to show the exclusion with respect to ’first-class’
particles. The magenta arrow indicates the separation process from a “first-class”
particle into a pair of “second-class“ particles (only at defect site!) while cyan and
green indicate the possible recoveries to a ’first-class’ particle (all sites!).
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Figure 1.8.: Semilog plot for the quotient of the estimator’s standard deviations versus system site k
and different defect hopping rates. We find a lower improvement in the region of the defect
site since the defect reduces the covariance between the parallel evolving systems while in
the vicinity of the boundaries the covariance is reestablished due to the coherent feeding in
process. For a decreasing hopping rate the improvement vanishes within the bulk but persists
next to the boundaries.

particle or may exit the system at its boundaries, we will find only a few of them in a steady state.
Decoding the second-class particle picture into separately evolving systems, their configurations
will show a significant covariance. Therefore, we expect a significant improvement especially for
a small defect strength. The densities are recorded by using ergodic measurements

fk,r =
1

M

M−1∑
m=0

nk(t+m∆t) (1.60)

where r denotes the defect hopping rate, nk(t) measures for a particle at site k and time t, M
number of ergodic measures, ∆t is the time between to measures while ∆t = 1 corresponds to
L+ 1 random-sequential time updates. To compare the näıve and parallel evolving approach we
compute their standard deviations for different system sites and defect hopping rates, i.e.,

ςk,r =
√

var(fk,r) + var(fk,1) (1.61)

σk,r =
√

var(fk,r) + var(fk,1)− 2cov(fk,r, fk,1). (1.62)

The quotient ςk,r/σk,r is equivalent to the quotient of achieved accuracy within the same compu-
tation time. For a weak defect (r = 0.99) the data near the boundary are at least 100 times more
accurate (Fig. 1.8). This means we have to run the näıve approach 104 times longer to achieve
the same accuracy. The produced accuracy is indeed needed to detect significant defect effects in
the vicinity of the boundaries. However, we generated the data for r = 0.99 on our department’s
desktop cluster within 20 hours using 100 CPUs. To produce data with the same accuracy using
the näıve approach would have taken 23 years.

Up to now, we have only discussed the interest in differences of some observable f . Finally, we
will point out another prime example to apply this idea to a bit more general setting. Therefore,
we are interested in 〈 f1 〉s for some system s. The näıve way to estimate 〈 f1 〉s would be

Y =
1

|Ss|
∑
ζs∈Ss

f1(ζs). (1.63)
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But in case one knows 〈 f2 〉s′ and is able to introduce correlations between the functions f1, f2

or the systems s, s′ one should make use of the linearity of the expectation value and simulate

Ȳ =
1

|S|
∑

{ζs,ζs′}∈S

(f1(ζs)− λf2(ζs′)) + λ〈 f2 〉s′ (1.64)

where we have added a control variate λ. Both Monte Carlo estimators are unbiased and will
converge to the sought expectation value 〈 f1 〉s, but comparing their variances one finds

var(Y ) =
var(f1)

|Ss|
(1.65)

var(Ȳ ) =
1

|S|
(
var(f1) + λ2var(f2)− 2λcov(f1, f2)

)
(1.66)

and therefore the choice of λ allows to reduce the variance. The optimal value for λ is given by

λo =
cov(f1, f2)

var(f2)
(1.67)

where one should note the two limiting cases λ = 0 for vanishing and |λ| = 1 and strong covariance
which tells us basically when to use this technique. Using λo the minimum variance becomes

var(Ȳ ) =
1

|S|

(
var(f1)− (cov(f1, f2))2

var(f2)

)
. (1.68)

One could extend these ideas to multiple levels [24, 25] which might allow for further improve-
ments. These ideas apply especially to parameter studies, where one could reduce the simulation
cost by generating only for relatively few simulations accurate data and estimating the other
expectation values using multi-level Monte Carlo. For multi-dimensional parameter studies these
ideas have recently been extended to multi-index Monte Carlo methods [30]. In summary, we have
shown the potential of advanced Monte Carlo techniques and conclude that it is worth investing
some time to get familiar with the broad spectrum of Monte Carlo variance reduction techniques
and create ideas how to introduce correlations in a clever way without biasing the sample but
allowing for better results.
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2.1. Outline of Part II -
Dynamical Universality Classes

Part II contains published articles addressing universal behavior of one-dimensional short-ranged
driven diffusive lattice gases with locally conserved density fields. Dynamical universality classes
characterize transport properties of nonequilibrium systems, such as the steady state fluctuations
and how these decay in time. Until recently the only two known dynamical universality classes
were the diffusive class with dynamical exponent z = 2 along with the superdiffusive KPZ class
with dynamical exponent z = 3/2.

Some years ago the dynamical exponent z = 5/3 was discovered in the context of anharmonic
chains [55] and very general short-ranged one-dimensional Hamiltonian systems [5]. These systems
contain three conservation laws and by symmetry the dynamical exponent z = 5/3 appears for
this so-called heat-mode with collective velocity v = 0. Other sound-modes belong to the KPZ
class (z = 3/2) and move with velocity v = ±c. This raises the question if superdiffusive modes
with dynamical exponent z = 5/3 may exist for driven diffusive systems and if they can be
realized in a minimal required setting with two conservation laws.

As a part of my master’s project, supervised by Vladislav Popkov, Andreas Schadschneider,
and in collaboration with Gunter Schütz, we started to investigate a two-species TASEP which
provides a minimal setting for the support of a z = 5/3 mode.

In Chapter 31, we demonstrate the appearance of a superdiffusive mode with dynamical ex-
ponent z = 5/3 by using mode coupling theory and dynamical Monte Carlo simulations of a
two-species TASEP. When the dynamics is symmetric under the interchange of the lanes we find
for our model a diffusive mode with z = 2 besides a modified KPZ2 mode with exponent z = 3/2.

A crucial hint by Herbert Spohn pointing out the possibility for the golden-mean ϕ = (1+
√

5)/2
universality class with dynamical exponent z = ϕ prior to publication of [90] motivated us to
systematically explore the mode coupling equations and its relevance for driven diffusive systems.
This work, which was supervised by Andreas Schadschneider, Gunter Schütz, and Vladislav
Popkov, was pursued within my PhD project.

In Chapter 43, we extend our results from the previous article and show that all universal-
ity classes predicted by mode coupling theory, for systems with two conservation laws, occur in
two-component driven diffusive systems. The macroscopic current-density relation and the com-
pressibility matrix determine completely all permissible universality classes through the mode
coupling matrices. Using dynamical Monte Carlo simulations we present numerical evidence for
the golden mean universality class (z = ϕ) and the 3/2-Fibonacci class showing the dynamical
exponent z = 3/2 (but different from the KPZ universality class). Both universality classes have
maximally asymmetric z-stable Lévy scaling functions and have not been reported before in the
literature on driven diffusive systems.

Going beyond, we generalize in Chapter 54 our results to an arbitrary number of conservation
laws and find that all feasible dynamical exponents zα are ratios of neighboring Fibonacci num-
bers, starting with either z1 = 3/2 (if a KPZ mode exists) or z1 = 2 (if a diffusive mode is present).
If neither a diffusive nor a KPZ mode are present, all dynamical exponents correspond to the

1Chapter 3 contains an article published with V. Popkov and G. Schütz.
2A modified KPZ class consists of a KPZ mode which couples nonlinear to a diffusion mode (z = 2).
3Chapter 4 contains an article published with V. Popkov and G. Schütz.
4Chapter 5 contains an article published with V. Popkov, A. Schadschneider, and G. Schütz.
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golden mean zα = (1+
√

5)/2. The universal scaling functions of these Fibonacci modes are asym-
metric Lévy distributions, while the dynamical exponents and scaling functions are completely
fixed by the macroscopic stationary current-density relation and the compressibility matrix. Due
to the fact that these Fibonacci modes already occur in systems with nonlinearities of the mini-
mal order ρ2

λρµ in the associated currents we argue that the universality classes predicted by the
mode coupling theory are generic for multi-species driven diffusive systems.

In Chapter 65, we provide a detailed derivation for the dynamical exponents and its associated
scaling functions of the Fibonacci modes by exactly solving the one-loop mode coupling equations
for the strictly hyperbolic setting.

2.2. Outline of Part III -
Defect-Induced Phase Transitions

Local reductions of capacity are one of the most important scenarios for traffic systems. Similar
to boundaries, a local defect can have global influences on the system. Much less is known for
weak inhomogeneities, like sites with reduced hopping rates in a TASEP. One of the most natural
question is “When does a local inhomogeneity lead to global effects in the system?”. The mini-
mal setting addressing this problem is the study of an open boundary TASEP in the maximum
current phase where a single defect hopping rate r (slow bond) is placed in the middle. Intuition
and mean-field calculation reveal that an arbitrarily small defect, i.e., rc = 1, would have a global
effect in the system. Up to now it was not possible to verify this prediction using computer
simulations since subtle defect phenomena are easily lost in fluctuations. Indeed a recent numer-
ical study indicated that a small defect strength would not have a global influence and further
rc = 0.80(2) was suggested. As discussed in Section 1.3.3 we improved the Monte Carlo estimator
such that we may distinguish defect-induced phenomena from fluctuations. This new technique
allows us to show rc > 0.99 and gives strong evidence that it is indeed rc = 1 as predicted by the
mean-field theory and supported by series expansion results [13, 38].

Part III contains two published articles which are a joint work with Andreas Schadschneider
and Vladislav Popkov. The article in Chapter 7 originates from a conference contribution based
on our results in Chapter 8. Chapter 7 aims to introduce the generic nature of defect phenom-
ena and give implications for the analysis of empirical and numerical data. Chapter 8 is more
technical and addresses rc for the TASEP.

5Chapter 3 contains an article published with V. Popkov, A. Schadschneider, and G. Schütz.
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Abstract: Using mode coupling theory and dynamical Monte-Carlo simulations we investigate
the scaling behaviour of the dynamical structure function of a two-species asymmetric simple
exclusion process, consisting of two coupled single-lane asymmetric simple exclusion processes.
We demonstrate the appearence of a superdiffusive mode with dynamical exponent z = 5/3 in
the density fluctuations, along with a KPZ mode with z = 3/2 and argue that this phenomenon
is generic for short-ranged driven diffusive systems with more than one conserved density. When
the dynamics is symmetric under the interchange of the two lanes a diffusive mode with z = 2
appears instead of the non-KPZ superdiffusive mode.
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3. Non-KPZ modes in two-species driven diffusive systems

Transport in one dimension has been known for a long time to be usually anomalous [1, 2].
Signatures of this behaviour are a superdiffusive dynamical structure function and a power law
divergence of transport coefficients with system size, characterized by universal critical exponents.
Unfortunately, however, despite a vast body of work, analytical results for model systems have
remained scarce and numerical results are often inconclusive. Therefore the exact calculation [3]
of the dynamic structure function for the universality class of the Kardar-Parisi-Zhang-equation
[4] with dynamical exponent z = 3/2 some ten years ago came as a major breakthrough. This
function was obtained for a specific driven diffusive system, the asymmetric simple exclusion pro-
cess, which has a single conserved density and hence a single mode, the KPZ-mode. By virtue of
universality then also systems such as growth models [5, 6] or one-dimensional driven fluids [7]
can be described in terms of the KPZ universality class.

More recently it was established in the context of anharmonic chains [8] and very general short-
ranged one-dimensional Hamiltonian systems [9] that in the presence of more than one conserved
quantity the dynamics is richer and other modes have to be expected. In particular, in systems
with three conservation laws a heat mode with z = 5/3 may be present besides two KPZ modes.
The main assumption underlying these conclusions is that the relevant slow variables are the long
wave length Fourier components of the conserved quantities and products of these [2, 9].

Going back to driven diffusive systems we note that somewhat surprisingly there is little infor-
mation about the dynamical structure functions in driven diffusive systems with more than one
conservation law. In one dimension these systems are known to exhibit extremely rich stationary
and dynamical behaviour and they serve widely as paradigmatic models for the detailed study
of non-equilibrium fluctuation phenomena such as shocks [11, 12, 13], spontaneous symmetry
breaking and hysteresis [14, 15], phase separation and coarsening [16, 17, 18], or dynamical phase
transitions [19]. In view of this it is of interest to explore the transport properties of such systems,
in particular which modes govern the fluctuations of the locally conserved slow modes and how
these decay in time.

In this spirit Ferrari et al. [20] studied very recently a two-species exclusion process, using
mode-coupling theory and Monte-Carlo simulations, and found two very clean KPZ-modes, but
no other modes. For a similar model, exact finite size scaling analysis of the spectrum indicates a
dynamical exponent z = 3/2 [21]. In older work on other lattice gas models with two conservation
laws the presence of a KPZ mode and a diffusive mode was observed [22, 12]. So far there has
been no indication of the existence of a heat-like mode with z = 5/3. In the light of the work [9, 8]
on short-ranged Hamiltonian systems this is intriguing and raises the question whether a heat-like
mode can exist in driven diffusive systems, and, if yes, how many conservation laws are required to
generate it. In this letter we answer these questions by using the mode coupling theory developed
in [8, 20] for non-linear fluctuating hydrodynamics and by confirming the analytical findings with
Monte-Carlo simulations of a two-species asymmetric simple exclusion process. It will transpire
that a superdiffusive z = 5/3 mode along with a KPZ mode exists and that two conservation laws
are sufficient to generate the phenomenon. Also a KPZ mode along with a diffusive mode can oc-
cur on a line of higher symmetry, a phenomenon which cannot appear in Hamiltonian systems [10].

We consider the following stochastic lattice gas model. Particles hop randomly on two parallel
chains with N sites each, without exchanging the lane, unidirectionally and with a hard core
exclusion and periodic boundary conditions. We denote the particle occupation number on site

k in lane i by n
(i)
k . A hopping event from site k to site k + 1 on the same lane may happen if

site k is occupied and site k + 1 is empty. The rate of hopping ri in lane i depends on the sum
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Figure 3.1.: Schematic representation of the two-lane totally asymmetric simple exclusion process.
A particle on lane i hops to the neighbouring site (provided this target site is empty)
on the same lane with rate ri that depends on the number of particles on the adjacent
sites of the other lane (marked by a cross).

of particle numbers at sites k, k + 1 on the adjacent lane as follows (Fig. 3.1): Let us denote the

sum of particles on the sites k, k+ 1 of lane i as n(i) := n
(i)
k + n

(i)
k+1. Then the rates ri of hopping

from site k to site k + 1 on lane i are given by

r1 = 1 +
γn(2)

2
, r2 = b+

γn(1)

2
(3.1)

where γ ≥ −min(1, b) is a coupling parameter. For b = 1 we recover the two-lane model of
[25]. Since there is only hopping within lanes, the total number of particles Mi in each lane is
conserved.

The model in a more general multilane geometry was introduced in [23]. It was shown that the
choice of rates (3.1) results in a stationary distribution which is a product measure, both between
lanes and between the sites. For the two-lane system that we study here this leads to stationary
currents

j1(ρ1, ρ2) = ρ1(1− ρ1)(1 + γρ2)

j2(ρ1, ρ2) = ρ2(1− ρ2)(b+ γρ1) (3.2)

where ρ1,2 = M1,2/N are the densities of particles in the first and second lane respectively.
Notice that a product measure corresponds to a grandcanonical ensemble with a fluctuating
particle number. These fluctuations are described by the symmetric compressibility matrix C
with matrix elements

Cij =
1

N
< (Mi − ρiN)(Mj − ρjN) >= ρi(1− ρi)δi,j . (3.3)

The starting point for investigating the large-scale dynamics of this microscopic model is the
system of conservation laws ∂tρi(x, t)+∂xji(x, t) = 0 [24] where ρi(x, t) is the coarse-grained local
density field of component i and ji(x, t) is the associated current, given as a function of the local
densities by (3.2). With the vector ~ρ of densities ρi(x, t) these equations can be written

∂

∂t
~ρ+A

∂

∂x
~ρ = 0 (3.4)

where A is the Jacobian with matrix elements Aij = ∂ji/∂ρj . Its eigenvalues ci are the character-
istic velocities which on microscopic scale are the speeds of local perturbations [25]. As a function
of the ρi the matrix AC is symmetric [26] which guarantees that the system (3.4) is hyperbolic [27].

The hydrodynamic equations (3.4) describe the deterministic time evolution of the density
ρi(x, t) under Eulerian scaling [24]. The effect of fluctuations, which occur on finer space-time
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scales, can be captured by adding phenomenological white noise terms ξi and taking the non-
linear fluctuating hydrodynamics approach together with a mode-coupling analysis of the non-
linear equation [20]. In this framework one expands the local densities around their stationary
values ρi(x, t) = ρi + ui(x, t) and transforms to normal modes ~φ = R~u where A is diagonal. The
transformation matrix R uniquely defined by RAR−1 = diag(ci) and the normalization condition
RCRT = 1. Keeping terms to first non-linear order yields

∂tφi = −∂x
(
ciφi +

1

2
〈~φ,G(i)~φ〉 − ∂x(D~φ)i + (B~ξ)i

)
. (3.5)

Here the angular brackets denote the inner product in component space and

G(i) =
1

2

∑
j

Rij(R
−1)TH(j)R−1. (3.6)

are the mode coupling matrices obtained from the HessianH(i) with matrix elements ∂2ji/(∂ρj∂ρk).
The matrices D (transformed diffusion matrix) and B (transformed noise strength) do not appear
explicitly below.

For strictly hyperbolic systems the normal modes have different speeds and hence their inter-
action becomes very weak for long times. Thus, by identifying φi with the gradient of a height
variable one has to leading order generically two decoupled KPZ-equations with nonlinearity coef-

ficients G
(i)
ii . The other diagonal elements G

(i)
jj provide the leading corrections to the KPZ modes,

the offdiagonal elements result in subleading corrections. We point out the scenarios relevant

to our model, as predicted by mode-coupling theory. (i) If both G
(1)
11 and G

(2)
22 are non-zero we

expect two KPZ modes with z = 3/2. (ii) On the other hand, if e.g. G
(1)
11 = 0, but G

(1)
22 6= 0 and

G
(2)
22 6= 0, then mode coupling theory predicts mode 1 to be a superdiffusive mode with z = 5/3

and mode 2 to be KPZ. (iii) Finally, if both G
(1)
11 = G

(1)
22 = 0 but G

(2)
22 6= 0 then mode 2 remains

KPZ while mode 1 becomes diffusive, up to possible logarithmic corrections which may arise from
cubic couplings to triplets of modes [9, 28].

For our system, the explicit forms of A and H(i) are

A =

(
(1 + γρ2)(1− 2ρ1) γρ1(1− ρ1)

γρ2(1− ρ2) (b+ γρ1)(1− 2ρ2)

)
(3.7)

H(1) =

(
−2(1 + γρ2) γ(1− 2ρ1)
γ(1− 2ρ1) 0

)
(3.8)

H(2) =

(
0 γ(1− 2ρ2)

γ(1− 2ρ2) −2(b+ γρ1)

)
(3.9)

To prove that all three scenarios (i) - (iii) can be realized, we choose ρ1 = ρ2 =: ρ and for conve-
nience we set γ = 1.

Consider first b = 2. Then

R = R0

(
1− ρ −ρ
ρ 1− ρ

)
(3.10)

where R−1
0 =

√
ρ(1− ρ)(ρ2 + (1− ρ)2). The characteristic velocities are

c1 = 1− ρ− 3ρ2, c2 = 2− 3ρ− ρ2 (3.11)
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The matrices G(1), G(2) are symmetric and have matrix elements G
(1)
11 = −2g0(6ρ4 − 8ρ3 +

5ρ2 + ρ − 1), G
(1)
12 = G

(1)
21 = g0(4ρ3 − 10ρ2 + 8ρ − 1), G

(1)
22 = −2g0ρ(1 − ρ)(2ρ2 − 6ρ + 3)

and G
(2)
11 = 4g0ρ(1 − ρ), G

(2)
12 = G

(2)
21 = −g0(1 − 2ρ2)2, G

(2)
22 = 4g0(1 − 3ρ(1 − ρ)) with g0 =

−1/2
[
ρ(1− ρ)/(1− 2ρ(1− ρ))3

]1/2
. Therefore, generically condition (i) for the presence of two

KPZ modes is satisfied. However, while G
(2)
11 6= 0 and G

(2)
22 6= 0 ∀ρ ∈ (0, 1), the self coupling coef-

ficient G
(1)
11 changes sign at ρ∗ = 0.45721 . . . . Since G

(1)
22 (ρ∗) 6= 0, the condition for case (ii), KPZ

mode plus superdiffusive non-KPZ mode, is thus satisfied at density ρ = ρ∗. In fact, diagonalizing
A for arbitrary densities ρ1, ρ2 one can show that for b 6= 1 there is a curve in the space of densi-
ties where condition (ii) is satisfied. On the other hand, there is no density where condition (iii),

G
(1)
11 = G

(1)
22 = 0, is satisfied. Indeed, numerical inspection of the mode coupling matrices for sev-

eral other parameter choices of γ and b suggests that condition (iii) cannot be satisfied when b 6= 1.

Next we study b = 1. In this case the system is symmetric under interchange of the two lanes,
which is reflected in the relation j2(ρ1, ρ2) = j1(ρ2, ρ1) for the currents (3.2). Calculating the
mode coupling matrices for ρ1 = ρ2 =: ρ and γ = 1 yields

G(1) = g̃0(1 + ρ)

(
0 1
1 0

)
, G(2) = g̃0

(
2− ρ 0

0 3ρ

)
(3.12)

with g̃0 = −
√

2ρ(1− ρ). Interestingly, in this case condition (iii) is satisfied for all ρ, i.e., mode
1 is expected to be diffusive and mode 2 is KPZ. The occurrence of a diffusive mode is somewhat
counter-intuitive as both particle species interact and hop in a totally asymmetric fashion which
in the case of the AHR-model prevents the existence of a diffusive mode [20].

In order to check the predictions of mode coupling theory we performed dynamical Monte-
Carlo simulations, using a random sequential update where in each step a random site is chosen
uniformly and jumps are performed, provided the target site is empty, with probabilities obtained
from normalizing the jump rates (3.1) by the largest jump rate. A full Monte Carlo time step
then corresponds to 2N such update steps. The initial distribution is sampled from the uniform
distribution, except for the occupation number at site N/2 which is determined so that the nor-
mal modes can be studied separately [25]. Averages are performed over up to 108 realizations of
the process and N = 300 . . . 600. In order to measure the dynamical exponent, we compute the
first and second moment of the dynamical structure function, from which we obtain the variance
σ(t) ∝ t2/z of the density distribution as a function of time for times where σ(t) is small enough
to avoid finite-size effects.

In order to test the existence of a superdiffusive non-KPZ mode we have chosen γ = −0.52588

and b = 1.3. This yields G
(2)
22 = 0 at ρ∗1 = ρ∗2 = 0.5500003 ≈ 55/100. The matrices G(1), G(2)

become

G(1) =

(
0.2950 0.0717
0.0717 0.3157

)
, G(2) =

(
0.0706 0.2972
0.2972 0

)
which means that mode 2 is expected to be a non-KPZ mode and mode 1 is KPZ. The corre-
sponding characteristic velocities are c1(ρ∗) = −0.2171, c2(ρ∗) = 0.0449. and the eigenvectors are
(−0.7465, 0.6654)T for c2 (non-KPZ mode) and (0.6654, 0.7465)T for c1 (KPZ mode).

The simulations confirm the predictions, see Figs. 3.2 and 3.3. For both modes the measured
velocity differs from the theoretical prediction by less than 0.003. A linear least-square fit on
log-log scale of the simulation results for the variance of the non-KPZ mode 2 yields 2/zMC

2 =
1.19± 0.02, very close to the mode-coupling value 2/z2 = 6/5 = 1.2. For the amplitude ∝ t−1/z
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3. Non-KPZ modes in two-species driven diffusive systems

at the maximum as a function of time we find 1/zMC
2 = 0.58, also in good agreement with

1/z2 = 0.6. The fitted exponent 2/zMC
1 = 1.302 of the KPZ mode 1 deviates slightly from

4/3, which is consistent with the strong coupling to the non-KPZ mode: The matrix element

G
(1)
22 ≈ 0.3157 is larger than the KPZ self-coupling constant G

(1)
11 ≈ 0.2950.
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Figure 3.2.: (Colour online) Case (ii): Case (ii): Dynamical structure functions for particles on
chain 1, for the KPZ mode (top) and the non-KPZ mode (bottom) at different times
from Monte Carlo simulations, averaged over 2.7 · 107(5 · 107) histories for the KPZ
(non-KPZ) mode for N = 600. Statistical errors are smaller than symbol size.
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Figure 3.3.: (Colour online) Case (ii). Variance of the dynamical structure function shown in Fig.
2. as function of time. The lines with the predicted universal slopes 2/z = 4/3 for
KPZ mode (top) and 2/z = 6/5 for the non-KPZ mode (bottom) are guides to the
eye. Error bars (not shown) are approximately symbol size.

In order to test case (iii) (KPZ and diffusive mode), we choose γ = −0.8, b = 1, ρ1 = ρ2 = 0.5.
The characteristic velocities are c1 = −0.2 (eigenvector (1, 1)T /

√
(2)) and c1 = 0.2 (eigenvector

(1,−1)T /
√

(2)). The mode coupling matrices are given by

G1 = 0.2121

(
1 0
0 1

)
, G2 = 0.2121

(
0 1
1 0

)
corresponding to a KPZ mode 1 and diffusive mode 2, see Figs. 4 and 5. The characteristic
velocities agree with the theoretical prediction with an accuracy of better than 1% and also the
measured scaling exponents 2/zMC

1 = 1.343, 2/zMC
2 = 1.030 are in good agreement with the

theoretical prediction 2/z1 = 4/3 and 2/z2 = 1. We have also verified numerically the occurrence
of two KPZ modes for generic values of the densities. This behaviour is expected and data are
not shown here.
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Figure 3.4.: (Colour online) Case (iii): Dynamical structure function of the diffusive mode for
particles on chain 2 with N = 300, with c2 = 0.2 (bottom) at different times t, from
Monte Carlo simulations, averaged over 107 histories. Statistical errors are smaller
than symbol size.
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Figure 3.5.: (Colour online) Case (iii). Variance of the dynamical structure function shown in
Fig. 4. as function of time. The line with the predicted universal slope 2/z = 1
for the diffusive mode (bottom) are guides to the eye. Error bars (not shown) are
approximately symbol size.
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3. Non-KPZ modes in two-species driven diffusive systems

In summary, we have shown that the two-lane asymmetric simple exclusion process with two
conservation laws exhibits anomalous transport and has a superdiffusive non-KPZ mode with
dynamical exponent z = 5/3 on a line in the space of conserved densities (ρ1, ρ2). The heat
mode in Hamiltonian systems [9] is associated with a symmetry for the velocities of the sound
modes, in contrast to our two-component scenario where there is no such symmetry. In the case
of higher internal symmetry, where our model is invariant under lane change, a diffusive mode
can occur instead of the non-KPZ mode. This is surprising as the hopping of both particle species
is totally asymmetric. We did not find any point in parameter space where the KPZ mode would
be completely absent. We argue that the existence of a superdiffusive non-KPZ mode is generic
for driven diffusive systems with more than one conservation law and will generally occur at some
specific manifold in the space of conserved densities ρi. This new universality class for anomalous
transport in driven diffusive systems is expected to result in a novel exponent for the stationary
density profile in open systems [29]. An interesting open problem that is raised by our findings is
the role of symmetries for the suppression of the non-KPZ mode and the occurence of a diffusive
mode.
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[13] V. Popkov and G. M. Schütz, Phys. Rev. E 86, 031139 (2012).
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Abstract: We study time-dependent density fluctuations in the stationary state of driven dif-
fusive systems with two conserved densities ρλ. Using Monte-Carlo simulations of two coupled
single-lane asymmetric simple exclusion processes we present numerical evidence for universality
classes with dynamical exponents z = (1 +

√
5)/2 and z = 3/2 (but different from the Kardar-

Parisi-Zhang (KPZ) universality class), which have not been reported yet for driven diffusive sys-
tems. The numerical asymmetry of the dynamical structure functions converges slowly for some
of the non-KPZ superdiffusive modes for which mode coupling theory predicts maximally asym-
metric z-stable Lévy scaling functions. We show that all universality classes predicted by mode
coupling theory for two conservation laws are generic: They occur in two-component systems
with nonlinearities in the associated currents already of the minimal order ρ2

λρµ. The macro-
scopic stationary current-density relation and the compressibility matrix determine completely
all permissible universality classes through the mode coupling coefficients which we compute ex-
plicitly for general two-component systems.
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4.1. Introduction

Anomalous transport is the hallmark of many one-dimensional non-equilibrium systems even
when interactions are short-ranged [1]. A common way of characterizing 1-d systems that ex-
hibit anomalous transport is through the dynamical structure function which describes the time-
dependent fluctuations of the long-lived modes in the stationary state. In systems with short-
range interactions and one global conservation law (giving rise to one long-lived mode) only two
universality classes are known to exist, the Gaussian universality class with dynamical exponent
z = 2 (also describing diffusive fluctuations in equilibrium stationary states), and the superdif-
fusive Kardar-Parisi-Zhang (KPZ) universality class with dynamical exponent z = 3/2 [2] for
systems driven out of equilibrium. The exact scaling form of the KPZ structure function was
found some 10 years ago by Prähofer and Spohn for the polynuclear growth model [3] and for a
driven diffusive system, viz. the asymmetric simple exclusion process [4]. Since then the scaling
function, which is expected to be universal, has also been observed in various experiments [5, 6].

Superdiffusive fluctuations in systems with more than one conservation law are less well-studied.
Stochastic dynamics have been considered for driven diffusive systems with two conservation laws.
Naively one might expect both modes to be in the KPZ universality class. This guess is indeed
confirmed for the Arndt-Heinzel-Rittenberg model [7] by using exact results for the steady state
combined by fluctuating hydrodynamics and mode coupling theory [8] and also for a general class
of multi-component exclusion processes [9]. It was also known for some time that one mode can
be KPZ, while the other is diffusive, see [10] where exact microscopic and hydrodynamic limit
arguments are used, and numerical work [11, 12] for related results.

Recently van Beijeren [13] studied a system with Hamiltonian dynamics with three conservation
laws. He predicted KPZ-universality for the two sound modes of the system and a novel superdif-
fusive universality class with dynamical exponent z = 5/3 for the heat mode. The occurrence of
a 5/3 mode was subsequently demonstrated for FPU-chains [14, 15] with three conservation laws
and generally for anharmonic chains [16] and a family of exclusion process with two conservation
laws [17]. Also recent mathematically rigorous work indicates non-trivial anomalous behaviour
fluctuations in systems with two conservation laws [18].

Stochastic interacting particle systems with two conservation laws exhibit extremely rich be-
haviour in one dimension, including spontaneous symmetry breaking [7, 19, 20, 21, 22, 23] or
phase separation [7, 20, 24, 25, 26, 27] in nonequilibrium stationary states, see [28] for a review.
Studying the coarse-grained time evolution of two-component systems with an umbilic point one
finds shocks with unusual properties [29, 30]. It is the purpose of this paper to go beyond station-
ary and time-dependent mean properties and consider time-dependent fluctuations. Specifically,
we show that the complete list of dynamical universality classes that, according to mode coupling
theory, can appear in the presence of two conservation laws can be realized in driven diffusive
systems with two conserved densities. To this end we compute the exact mode coupling matrices
for general strictly hyperbolic two-component systems with the stationary current-density rela-
tion and stationary compressibility matrix as the only input. With these input data the scaling
form of the dynamical structure function is completely determined, except in the presence of a
diffusive mode where the phenomenological diffusion coefficient enters the scale factors in the
scaling functions. With these results we use mode coupling theory for computing explicitly the
scaling form of the dynamical structure function for two superdiffusive modes which have been
not reported yet in the literature on driven diffusive systems. We also present simulation data
for a family of exclusion processes which confirm the theoretical predictions.

This paper is organized in the following way. We first introduce the lattice model that we are
going to study numerically (Section 4.2). This is an extended version of the two-lane exclusion
process presented in our earlier work [17] that allows us to relax constraints on the physically
accessible parameter manifold. In Section 4.3 we first present some predictions of mode coupling
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4.2. Two-lane asymmetric simple exclusion process

Figure 4.1.: Schematic representation of the two-lane partially asymmetric simple exclusion pro-
cess. A particle on lane 1 (2) hops to the neighbouring site (provided this target
site is empty) with to the right or left with rates (4.1) that depend on the particle
configuration on the adjacent sites of the other lane that are marked by a cross.

theory and then use the theory to make predictions for our model. The numerical tests of these
predictions and some mode coupling computations are presented in Section 4.4. We finish with
some conclusions in Section 4.5. In the appendix we perform the full computation of the mode
coupling matrices for arbitrary strictly hyperbolic two-component systems.

4.2. Two-lane asymmetric simple exclusion process

We consider a two-lane asymmetric simple exclusion process where particles hop randomly on
two parallel chains with L sites each and periodic boundary conditions. Particles do not change
lanes and they obey the hard core exclusion principle which forbids occupancy of a site by more
than one particle. We denote the particle occupation number on site k in the first (upper) lane

by n
(1)
k ∈ {0, 1} , and on the second (lower) lane by n

(2)
k ∈ {0, 1}. The total particle number is

conserved in each lane and denoted Nλ.
A hopping event from site k to site k+1 on the same lane may happen if site k is occupied and

site k+1 on the same lane is empty. The rate of hopping depends on the particle configuration on
the adjacent lane as follows: Particles on lane λ hop from site k to site k+1 with rate rλ(k, k+1)
and from site k + 1 to site k with rate `λ(k + 1, k) (Figure 4.1). The rates are given by

r1(k, k + 1) = p1 + b1n
(2)
k + c1n

(2)
k+1 + d1n

(2)
k n

(2)
k+1

`1(k + 1, k) = q1 + e1n
(2)
k + f1n

(2)
k+1 + g1n

(2)
k n

(2)
k+1

r2(k, k + 1) = p2 + b2n
(1)
k + c2n

(1)
k+1 + d2n

(1)
k n

(1)
k+1

`2(k + 1, k) = q2 + e2n
(1)
k + f2n

(1)
k+1 + g2n

(1)
k n

(1)
k+1.

(4.1)

The hopping attempts of particles from site k on lane λ to neighbouring sites occur independently
of each other, after an exponentially distributed random time with mean τλ(k) = [rλ(k, k + 1) +
`λ(k, k − 1)]−1 for a jump from site k on lane λ. Hopping attempts on an already occupied site
are rejected.

Using pairwise balance [31] it is easy to verify that for any pair of total particle numbers
Nλ the stationary distribution for this model is the uniform distribution, provided that the
symmetry constraints b1 − e1 = c2 − f2, b2 − e2 = c1 − f1, d1 = g1 and d2 = g2 are met
for the interaction constants between the two lanes. The “bare” hopping rates p1, p2, q1, q2 are
arbitrary. From the canonical uniform measures one constructs stationary grandcanonical product
measures where each site of lane λ is occupied independently of the other sites with probability
ρλ ∈ [0, 1] = Nλ/L. Hence the ρλ are the conserved densities of the grandcanonical stationary
distribution, which, by construction, is the convex combination of all uniform measures with
weight [ρ1/(1− ρ1)]N1 [ρ2/(1− ρ2)]N2 and 0 ≤ Nλ ≤ L.

41



4. Universality classes in two-component driven diffusive systems

From the hopping rates (4.1) and the product form of the grandcanonical distribution one reads
off the corresponding stationary current vector ~j with components

j1(ρ1, ρ2) = ρ1(1− ρ1)(a+ γρ2),
j2(ρ1, ρ2) = ρ2(1− ρ2)(b+ γρ1).

(4.2)

with
a = p1 − q1, b = p2 − q2, γ = b1 + c1 − e1 − f1. (4.3)

Notice that this current-density relation depends on the microscopic details of the model only
through the parameter combinations a, b, γ which can take arbitrary real values. For b = 1 we
recover the totally asymmetric two-lane model of [32] which is a special case of the multi-lane
model of [33]. Throughout this work we set a = 1, γ 6= 0.

The product measure corresponds to a grandcanonical ensemble with a fluctuating particle
number. These fluctuations are described by the symmetric compressibility matrix K with matrix
elements

Kλµ :=
1

L
〈(Nλ − ρλL)(Nµ − ρµL)〉 = ρλ(1− ρλ)δλ,µ. (4.4)

where λ, µ ∈ {1, 2}. In the notation defined in the appendix this corresponds to

κλ := Kλλ = ρλ(1− ρλ), κ̄ := K12 = 0. (4.5)

As discussed below the current density relation ~j given in (4.2) and the compressibility matrix
K given (4.4) are the input data which completely determine the scaling functions describing the
large scale behaviour of the particle system, up to a scale factor if a diffusive mode is relevant.

For the Monte-Carlo simulations presented in this paper we consider the totally asymmetric
version of the model [17] where p1 = 1, p2 = b, qλ = eλ = fλ = gλ = dλ = 0 and bλ =
cλ = γ/2 6= 0 with γ > −min (1, b). Initially we put Nλ particles randomly drawn from the
stationary distribution, i.e., they are placed uniformly on lane λ. For the dynamics we perform
random sequential updates where a site kλ is chosen uniformly and a particle, if present and
allowed to jump, jumps with a normalized probability given by (4.1). One Monte-Carlo time
unit then corresponds to 2L consecutive update attempts. We compute the empirical dynamical

structure function defined by S̄λµk (t) = 1/n
∑n

j=1 1/L
∑L

l=1 n
(λ)
l+k(jτ + t)n

(µ)
l (jτ)− ρλρµ where for

numerical efficiency we exploit translation variance and take a sum over n multiples of τ and over
m Monte-Carlo histories. Time t and system size L are chosen such that finite-size corrections to
the stationary current (which are of order 1/L) and to the structure function (at most of order
1/L1+α with α > 1 as discussed below) are small in absolute terms and negligible compared to
statistical errors.

4.3. Dynamical universality classes

4.3.1. Fluctuating hydrodynamics and mode coupling theory

Following the ideas set out in [34, 35] the starting point for investigating the large-scale dynamics
of a microscopic lattice model is the system of conservation laws

∂

∂t
~ρ(x, t) +

∂

∂x
~j(x, t) = 0 (4.6)

where component ρλ(x, t) of the density vector ~ρ(x, t) is the coarse-grained local density of the
component λ of the system, and the component jλ(x, t) of the current vector ~j(x, t) is the as-
sociated current. The current is a function of x and t only through its dependence on the local
conserved densities. Hence these equations can be rewritten as

∂

∂t
~ρ(x, t) + J

∂

∂x
~ρ(x, t) = 0 (4.7)
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4.3. Dynamical universality classes

where J is the current Jacobian with matrix elements Jλµ = ∂jλ/∂ρµ. The product JK of the
Jacobian with the compressibility matrix (4.4) is symmetric [36] which guarantees that the system
(4.7) is hyperbolic [37]. The eigenvalues vα of J are the characteristic velocities of the system.
If v1 6= v2 the system is called strictly hyperbolic. Notice that in our convention ~ρ and ~j are
regarded as column vectors. Transposition is denoted by a superscript T .

Eq. (4.7) describes the deterministic time evolution of the density under Eulerian scaling where
the lattice spacing a is taken to zero such that x = ka remains finite and at the same time the
microscopic time τ is taken to infinity such that the macroscopic time t = τa is finite. The effect
of fluctuations, which occur on finer space-time scales where t = τaz with dynamical exponent
z > 1, can be captured by adding phenomenological white noise terms ξi and taking the non-
linear fluctuating hydrodynamics approach together with a mode-coupling analysis of the non-
linear equation. Following [16] we summarize here the main ingredients of this well-established
description.

One expands the local densities ρλ(x, t) = ρλ + uλ(x, t) around their long-time stationary
values ρλ and keeps terms to first non-linear order in the fluctuation fields uλ(x, t). For quadratic
nonlinearities (4.7) then yields

∂t~u = −∂x
(
J~u+

1

2
~uT ~H~u−D∂x~u+B~ξ

)
(4.8)

where ~H is a column vector whose entries ( ~H)λ = Hλ are the Hessians with matrix elements
Hλ
µν = ∂2jλ/(∂ρµ∂ρν). The term ~uTHλ~u denotes the inner product in component space. The

diffusion matrix D is a phenomenological quantity. The noise strength B does not appear ex-
plicitly below, but plays an indirect role in the mode-coupling analysis. One recognizes in (4.8)
a system of coupled noisy Burgers equations. If the quadratic non-linearity is absent one has dif-
fusive behaviour, up to possible logarithmic corrections that may arise from cubic non-linearities
[38].

In order to analyze this nonlinear equation we transform to normal modes ~φ = R~u where
RJR−1 = diag(vα) and the transformation matrix R is normalized such that RKRT = 1, see the
appendix. From (4.8) one thus arrives at

∂tφα = −∂x
(
vαφα + ~φTGα~φ− ∂x(D̃~φ)α + (B̃~ξ)α

)
(4.9)

with D̃ = RDR−1, B̃ = RB and

Gα =
1

2

∑
λ

Rαλ(R−1)THλR−1 (4.10)

are the mode coupling matrices.

To make contact of this macroscopic description with the microscopic model we first note that
the current-density relation given by the components of the current vector ~j arises from the
microscopic model by computing the stationary current-density relations jλ(ρ1, ρ2) and then sub-
stituting the stationary conserved densities by the coarse-grained local densities ρλ(x, t) which
are regarded as slow variables. Similarly, the compressibility matrix K is computed from the
stationary distribution. Hence the mode coupling matrices (and with them the dynamical uni-
versality classes as shown below) are completely determined by these two macroscopic stationary
properties of the system. We stress that the exact stationary current-density relations and the
exact stationary compressibilities are required. Approximations obtained e.g. from stationary
mean field theory will, in general, only accidentally provide the information necessary for deter-
mining the dynamical universality classes of the system. In the appendix we compute the mode
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4. Universality classes in two-component driven diffusive systems

coupling matrices of a general two-component system with the current vector and compressibility
matrix as input parameters.

Second, consider the dynamical structure matrix S̄k(t) of the microscopic model defined on the
lattice.1 Its matrix elements are the dynamical structure functions

S̄λµk (t) := 〈 (n(λ)
k (t)− ρλ)(n

(µ)
0 (t)− ρµ) 〉 (4.11)

which measure density fluctuations in the stationary state. This quantity has two different physi-

cal interpretations. On the one hand, one can regard the random variable fλk (t) := n
(λ)
k (t)−ρλ as

a stochastic process and then the dynamical structure function describes the stationary two-time
correlations of this process. The long-time behaviour of the dynamical structure function can
thus be determined from the fluctuation fields uλ(x, t) appearing in the non-linear fluctuating

hydrodynamics approach (4.8), i.e., S̄λµk (t)
k,t→∞→ 〈uλ(x, t)uµ(0, 0) 〉. In a different interpretation

the dynamical structure function measures the time evolution of the expectation of fλk (t) at time

t, i.e., the unnormalized density profiles ρ̄λk(t) := 〈n(λ)
k (t)− ρλ 〉 that at time t = 0 have a delta-

peak at site 0. Since the two conserved quantities interact, an initial perturbation even of only
one component will cause a non-trivial relaxation of both density profiles. In each component the
initial peak will evolve into two separate peaks, which move and spread with time. The char-
acteristic velocities vα are the collective velocities, i.e., the center-of-mass velocities of the two
local perturbations [32]. The variance of the evolving density profiles determines the collective
diffusion coefficient. This second interpretation of the dynamical structure matrix as describing
a relaxation process, completely equivalent to the first fluctuation interpretation, is quite natu-
ral from the viewpoint of regarding (4.8) as a more detailed description of (4.6) in the sense of
describing fluctuation effects on finer space-time scales due to the randomness of the stochastic
process from which (4.6) arises under Eulerian scaling.

Analogously one can regard the transformed modes of the lattice model ~φk(t) = R~fk(t) in
the fluctuation interpretation as stationary processes and the transformed dynamical structure
functions

Sαβk (t) = [RS̄k(t)R
T ]αβ = 〈φαk (t)φβ0 (0) 〉 (4.12)

as the stationary space-time fluctuations. The transformation of the dynamical structure func-
tions to the normal modes ~φk(t) on the lattice, which is important for the numerical simulation of

lattice models, is discussed in more detail in Appendix 4.A. The large-scale behaviour of Sαβk (t) is
given in terms of the normal modes φα(x, t) appearing in (4.9) by Sαβ(x, t) = 〈φα(x, t)φβ(0, 0) 〉.
In the second relaxation interpretation the normal modes are seen as local perturbations of a
stationary distribution with a specific choice of initial amplitudes in each component.

Since for strictly hyperbolic systems the two characteristic velocities are different, one expects
that the off-diagonal elements of S decay quickly. For long times and large distances one is thus
left with the diagonal elements which we denote by

Sα(x, t) := Sαα(x, t) (4.13)

with initial value Sα(x, 0) = δ(x). The large scale behaviour of the diagonal elements is expected
to have the scaling form

Sα(x, t) ∼ t−1/zαfα((x− vαt)zα/t) (4.14)

with a dynamical exponent zα that may be different for the two modes. The exponent in the
power law prefactor follows from mass conservation. In momentum space one has

Ŝα(p, t) ∼ e−ivαptf̂α(pzαt) (4.15)

1We choose the same notation as for the empirical structure function obtained from Monte-Carlo simulations
presented below.
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4.3. Dynamical universality classes

for the Fourier transform

Ŝα(p, t) :=
1√
2π

∫ ∞
−∞

dx e−ipxSα(x, t). (4.16)

Whether the difference of the characteristic speeds vanishes or not plays an important role. For
the case where v1 = v2, i.e., when the system (4.7) has an umbilic point, it was found numerically
in the framework of dynamic roughening of directed lines that the dynamical exponent is z = 3/2,
but the scaling functions are not KPZ [40]. On the other hand, for strictly hyperbolic systems
the normal modes have different speeds and hence their interaction becomes very weak for long
times. By identifying φα with the gradient of a height variable (4.9) then turns generically into
two decoupled KPZ-equations with coefficients Gααα determining the strength of the nonlinearity.

In order to analyze the system of nonlinear stochastic PDE’s in more detail we employ mode
coupling theory [16]. The basic idea is to capture the combined effect of non-linearity and noise
by a memory kernel. Thus the starting point for computing the Sα(x, t) are the mode coupling
equations

∂tSα(x, t) = (−vα∂x +Dα∂
2
x)Sα(x, t) +

∫ t

0
ds

∫ ∞
−∞

dy Sα(x− y, t− s)∂2
yMαα(y, s) (4.17)

with the diagonal element Dα := D̃αα of the phenomenological diffusion matrix and the memory
kernel

Mαα(y, s) = 2
∑
β,γ

(Gαβγ)2Sβ(y, s)Sγ(y, s). (4.18)

The strategy is to plug into this equation, or into its Fourier representation, the scaling ansatz
(4.14) (or (4.15)). One gets equations for the dynamical exponents arising from requiring non-
trivial scaling solutions and using the known results z = 3/2 for KPZ and z = 2 for diffusion. In a
next step one can then solve for the actual scaling functions, see below. Since for v1 6= v2 one has
Sβ(y, s)Sγ(y, s) ≈ 0 for β 6= γ it is clear that the scaling behaviour of the solutions of (4.17) will
be determined largely by the diagonal terms Gαββ of the mode coupling matrices Gα. If a leading
self-coupling term Gααα vanishes, one finds non-KPZ behaviour for mode α. In particular, if all
diagonal terms are zero, the mode is diffusive. A coupling of a diffusive mode to a KPZ-mode
leads to a modified KPZ-mode [39]. Thus the crucial property of the mode coupling matrices is
whether a diagonal element is zero or not.

Some algebra along the lines of [16] involving power counting then yields the complete list
of possible universal classes of strictly hyperbolic two-component systems from the structure of
the mode coupling matrices Gα as shown in Table 4.1, see also [39] where a similar table was
derived independently. The shorthand KPZ represents the KPZ scaling function, while KPZ’
refers to modified KPZ, both with dynamical exponent z = 3/2. D represents a Gaussian scaling
function fα with dynamical exponent zα = 2, zαL represents a zα-stable Lévy distribution as
scaling function fα with dynamical exponent zα, GM (for golden mean) represents ϕL with
ϕ = (1 +

√
5)/2. In what follows we apply these general results to the two-lane model defined

above. It will transpire that all theoretically possible scenarios can actually be realized in this
family of models.

4.3.2. Mode-coupling matrix for the two-lane model

The input data are the current-density relation (4.2) and the compressibility matrix (4.4). From
the current-density relation one computes the current Jacobian and the Hessian, which are used
together with the compressibility matrix to compute the basis for normal modes and finally the
mode coupling matrices, as shown in detail in the appendix in the general case.
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� G1

G2 �
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0
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0

0
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(
•

?

)
(KPZ,KPZ) (KPZ,KPZ) (5

3L,KPZ) (D,KPZ’)(
0

?

)
(KPZ,KPZ) (KPZ,KPZ) (5

3L,KPZ) (D,KPZ)(
•

0

)
(KPZ,5

3L) (KPZ,5
3L) (GM,GM) (D,3

2L)(
0

0

)
(KPZ’,D) (KPZ,D) (3

2L,D) (D,D)

Table 4.1.: Classification of universal behaviour of the two modes by the structure of the mode
coupling matrices Gα. The acronyms denote: KPZ: KPZ universality class (superdif-
fusive), KPZ’: modified KPZ universality class (superdiffusive), D = Gaussian uni-
versality class (normal diffusion), zαL: superdiffusive universality class with zα-stable
Lévy scaling function and GM = ϕL with the golden mean ϕ = (1+

√
5)/2. An bullet

or star in the Gα denotes a non-zero entry, no entry represents an arbitrary value (zero
or non-zero). The selfcoupling terms Gααα are marked as star or boldface 0, resp.

For the present model we remark first that the currents (4.2) are at most quadratic in each
density. Hence no logarithmic corrections to diffusive behaviour are expected in the two-lane
model defined above. Second, as discussed in the appendix, in any coupled two-component
system a vanishing cross compressibility κ̄ = 0 (where λ 6= µ) implies that the cross derivatives
∂jλ/∂ρµ of the currents have to be non-zero except when one of the two components is frozen,
i.e., fully occupied or fully empty.

For our system the explicit form of J is

J =

(
(1 + γρ2)(1− 2ρ1) γρ1(1− ρ1)

γρ2(1− ρ2) (b+ γρ1)(1− 2ρ2)

)
. (4.19)

and the Hessians Hλ are

H1 =

(
−2(1 + γρ2) γ(1− 2ρ1)
γ(1− 2ρ1) 0

)
, H2 =

(
0 γ(1− 2ρ2)

γ(1− 2ρ2) −2(b+ γρ1)

)
. (4.20)

The parameters convenient for theoretical analysis are not the matrix elements of the current
Jacobian and the Hessians, but the parameters u, ω = tanϑ (4.70) and the transformed Hessian
parameters (4.92), (4.93) defined in the appendix to which we refer for the derivation of the
following results. Here we point out only the relevant features of the quantities resulting from
these lengthy but simple computations.

The collective velocities v1,2 are given in (4.54). Notice that J12J21 = γ2ρ1(1−ρ1)ρ2(1−ρ2) ≥ 0
in the whole physical parameter regime of the model. In fact, unless one of the lanes is frozen we
have the strict inequality J12J21 > 0. The frozen case is of no interest since then the dynamics in
the non-frozen lane reduce to the dynamics of a single exclusion process. Hence we shall assume
J12J21 > 0 throughout this paper. Therefore the discriminant of the characteristic polynomial of
J (4.53) is non-zero which implies that the model is strictly hyperbolic in the parameter domain
of interest.
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4.3. Dynamical universality classes

The transformation matrix R involves normalization factors z± (4.69) and the parameters u
and ω = tanϑ defined in (4.70). From (4.19) we find

ω =
1− b− (2 + bγ)ρ1 + (γ + 2b)ρ2

2γ
√
ρ1(1− ρ1)ρ2(1− ρ2)

(
1 +

√
1 +

4γ2(ρ1(1− ρ1)ρ2(1− ρ2))

(1− b− (2 + bγ)ρ1 + (γ + 2b)ρ2)2

)
(4.21)

and

u =

√
ρ1(1− ρ1)

ρ2(1− ρ2)
. (4.22)

For J11 = J22 one has ω = 1.
From the Hessians (4.20) one obtains the mode coupling parameters (4.92), (4.93)

g1
1 = −2(1 + γρ2), g1

2 = 0, ḡ1 = γ

√
ρ2(1− ρ2)

ρ1(1− ρ1)
(1− 2ρ1), (4.23)

and

g2
1 = 0, g2

2 = −2

√
ρ2(1− ρ2)

ρ1(1− ρ1)
(b+ γρ1), ḡ2 = γ(1− 2ρ2). (4.24)

The compressibility matrix enters the mode coupling coefficients only through the normalization
factors z± for which we obtain from (4.75)

z± = 1/
√
κ1 /∈ {0,±∞}. (4.25)

This yields the desired diagonal elements of the mode coupling matrices

Gαββ(ω) = A0D
α
β (ω) (4.26)

with

D1
1(ω) = g1

1 − 2ḡ1ω + 2ḡ2ω2 − g2
2ω

3 (4.27)

D1
2(ω) =

(
2ḡ1 − g2

2

)
ω +

(
g1

1 − 2ḡ2
)
ω2 (4.28)

D2
1(ω) =

(
g1

1 − 2ḡ2
)
ω +

(
g2

2 − 2ḡ1
)
ω2 (4.29)

D2
2(ω) = g2

2 + 2ḡ2ω + 2ḡ1ω2 + g1
1ω

3. (4.30)

and

A0 =
1

2

√
κ1 cos3(ϑ) 6= 0. (4.31)

As discussed in the appendix the vanishing cross-compressibility κ̄ = 0 of our model guarantees
that A0 6= 0. Therefore a diagonal element Gαββ of a mode coupling matrix vanishes if and only if
the polynomial Dα

β defined in (4.27) - (4.30) vanishes. In order to see whether all scenarios listed
in Table 4.1 can be realized by making the appropriate diagonal matrix elements zero we study
all these cases. The relation between vanishing diagonal elements and the universality class as
well as the values of the dynamical exponents follows from straightforward power counting in the
mode coupling equations derived in [16], see below for the two special cases we focus on in this
work.

Purely diffusive case (D,D):

First consider the purely diffusive case (D,D) for which mode coupling theory requires D1
1 =

D1
2 = D2

1 = D2
2 = 0. Demanding that D1

2 = D2
1 = 0 leads to the constraints g1

1 = 2ḡ2 and
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4. Universality classes in two-component driven diffusive systems

g2
2 = 2ḡ1. In terms of the parameters b, γ, ρλ this reads −γ = 1/(1 − ρ2) = b/(1 − ρ1). This is

outside the physical parameter range γ > −min (1, b) of the totally asymmetric model of [17],
but can be realized in the general two-lane model defined in Section 4.2. Plugging this condition
into D1

1 = D2
2 = 0 yields the further conditions that g1

1 = g2
2 = 0, i.e., both Hessians must vanish.

This requires
ρ1 = ρ2 = 1/2, b = 1, γ = −2. (4.32)

The characteristic velocities are then v1,2 = ∓1. It is somewhat counterintuitive that for these
values one has j1 = j2 = 0, i.e., the system appears to be macroscopically in equilibrium, but
the Gaussian mass fluctuations travel with non-zero velocities. A simple parameter choice for
this scenario is p1 = p2 = 1, q1 = d1 = g1 = q2 = d2 = g2 = 0, b1 = c1 = b2 = c2 = −1/2,
e1 = f1 = e2 = f2 = 1/2.

Superdiffusive mixed cases (D,KPZ’), (D,KPZ), (D,3
2L), (KPZ,5

3L):

Consider b = 1 where the hopping rates are completely symmetric with respect to the lane
interchange and take ρ1 = ρ2 =: ρ. Then g1

1 = g2
2 = −2(1 + γρ), g1

2 = g2
1 = 0, ḡ1 = ḡ1 = γ(1− 2ρ)

and u = 1, ω = 1. This yields D1
1 = D1

2 = 0 and D2
2 = 2A0(g1

1 + 2ḡ1), D2
1 = 2A0(g1

1 − 2ḡ1) with
A0 =

√
ρ(1− ρ)/32. Computing the off-diagonal elements from (4.88), (4.91) we find the full

mode coupling matrices

G1 = −4A0(1 + γρ)

(
0 1
1 0

)
, G2 = −4A0

(
1 + γ(1− ρ) 0

0 1− γ(1− 3ρ)

)
(4.33)

Thus generically this line is in the (D,KPZ’) universality class (Figure 4.2).
Notice that at γ = −1/(1 − ρ) one has D2

1 = 0, corresponding to the (D,KPZ) universality
class which can be realized in the generalized two-lane model defined above and that occurs also
in the single-lane multi-component asymmetric simple exclusion process with stationary product
measure [9]. For γ = 1/(1− 3ρ) one has D2

2 = 0, corresponding to the (D,3
2L) scenario, see next

section. If one moves away from the line ρ1 = ρ2, but stays on the curves indicated in Figure 4.2
for special values of γ the self-coupling coefficient G1

11 is non-zero, but G2
22 = 0. This can be

straightforwardly verified by calculating the linear response of the diagonal elements of G1, G2 to
small deviations δρ1, δρ2 from the line ρ1 = ρ2. Hence one has the (KPZ,5

3L) scenario. The three
cases (D,KPZ’), (D,3

2L) and (KPZ,5
3L) can be realized in the totally asymmetric two-lane model.

Golden mean universality class (GM,GM):

Next consider b 6= 1. The formulas for the mode coupling matrices become cumbersome and we
do not present them here in explicit form in full generality. It turns out that one can have that
both self-coupling coefficients Gααα vanish and both subleading diagonal elements Gαββ with β 6= α
are non-zero, corresponding to the (ϕL,ϕL) scenario where both dynamical exponents are the
golden mean ϕ = (1 +

√
5)/2, see Figure 4.3. This can be realized by choosing unequal densities

such that
(1 + γρ2)(1− 2ρ1) = (b+ γρ1)(1− 2ρ2) (4.34)

which corresponds to J11 = J22 and hence ω = 1. Then the requirement D1
1 = D2

2 = 0 yields

ρ1 =
1− b
3γ

, ρ2 =
γ − 1

3γ
(4.35)

which implies γ ∈ (−∞,−1/2]∪[1,∞) and b is in the range between γ and −2γ. For general values
of ω the analytical formulas for the lines G1

11 = G2
22 = 0 in the ρ1 − ρ2 plane are complicated. In
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4.4. Superdiffusive non-KPZ universality classes
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Figure 4.2.: Location of points where G2
22 = 0, G2

11 6= 0 for b = 1 and different values of γ.
In the upper right (lower left) corner the points grouped along curves of increasing
length correspond to γ = 1.5, 2.5, 5 (γ = −0.6,−0.7,−0.85). On these curves one
generically has the (5

3L,KPZ) universality class. On the diagonal line ρ1 = ρ2 one
has G1

11 = G1
22 = 0, generically corresponding to the (D,KPZ’) universality class.

On the intersection of this line with a curve parametrized by γ one has the (D,3
2L)

universality class.

order to demonstrate the existence of solutions we show numerical plots for fixed γ = −3/4 and
various values b in Figure 4.3. Notice also that there are parameter ranges of b without solutions
in the physical range of densities (ρ1, ρ2) ∈ [0, 1]× [0, 1].

In what follows we investigate in more detail the two novel universality classes (D,3
2L) and

(GM,GM) which have not been reported yet in the literature on driven diffusive systems. We
also comment on the shape of the structure function for the 5

3 -mode discussed in [17].

4.4. Superdiffusive non-KPZ universality classes

4.4.1. Diffusive mode and 3/2 - Lévy mode

We consider the case where mode 1 is Gaussian, and mode 2 has non-vanishing cross-coupling,

G1
11 = G1

22 = G2
22 = 0, G2

11 6= 0 (4.36)

The mode coupling equation (4.17) for mode 2 reads in Fourier space

∂tŜ2(p, t) = −ipv2Ŝ2(p, t)− p2D2Ŝ2

−2(G2
11)2p2

∫ t

0
dsŜ2(p, t− s)

∫ ∞
−∞

dqŜ1((p− q, s)Ŝ1((q, s). (4.37)

with D2 = D̃22. For the Gaussian mode 1 the mode coupling equation is obtained by the exchange
1 ↔ 2 in (4.37) and dropping the term containing the integral. Note that we are interested in
the large x behaviour of the scaling function, meaning p→ 0 in Fourier space.
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4. Universality classes in two-component driven diffusive systems
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Figure 4.3.: Location of points where G1
11 = 0 G1

22 6= 0 (crosses in the upper right corner) or
G2

22 = 0 and G2
11 6= 0 (thin bullets), for fixed γ = −3/4 and b = 1.5 (black), b = 1.2

green), b = 0.9 (red), b = 0.8 (blue), corresponding to the order from left to right
in the lower half of the figure and opposite order in the upper part of the figure.
Along the curves indicated by the dots (crosses) one has generically the (5

3L,KPZ)
or (KPZ,5

3L) universality class. At the intersections of curves with the same colour
one has the golden mean universality class (ϕL,ϕL).

We start with the observation that the Gaussian mode has the usual scaling form

S1(x, t) =
1√

4πD1t
e
− (x−v1t)

2

4D1t (4.38)

with Fourier transform Ŝ1(p, t) = 1/
√

2π exp
(
−iv1pt−D1p

2t
)
. Inserting this into (4.37) and

performing the integration over q, we obtain

∂tŜ2(p, t) = −(ipv2 + p2D2)Ŝ2(p, t)− p2
(
G2

11

)2 ∫ t

0
dsŜ2(p, t− s)e−iv1ps−D2p2s/2

√
2πD2s

. (4.39)

This equation can be solved in terms of the Laplace transform S̃2(p, ω) :=
∫∞

0 dte−ωtŜ2(p, t)
which yields

S̃2(p, ω) =
Ŝ2(p, 0)

ω + ipv2 + p2

(
D2 +

(
G2

11

)2 (√
2D2(ω + ipv1 +D2p2/2)

)−1
) . (4.40)

For large times we assume the real-space scaling form S2(x, t) = t−1/zh
(

(x−v2t)z
t

)
with dynam-

ical exponent z > 1. This is equivalent to the scaling forms

Ŝ2(p, t) = e−iv2ptf(|p|zt), S̃2(p, ω) = |p|−zg
(
ω + ipv2

|p|z

)
(4.41)

for the Fourier- and Laplace transforms respectively. By introducing the shifted Laplace param-
eter ω̃ := ω + ipv2 one finds that the leading small-p behaviour of the Laplace transform (4.40)
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4.4. Superdiffusive non-KPZ universality classes

Figure 4.4.: Dynamical structure function S22
k (t) for 3/2-Lévy mode with v2 = 1.3 measured by

Monte Carlo simulation at different times, averaged over 18·107 histories. Parameters:
L = 600, γ = 2.5, b = 1, ρ1 = 0.2, ρ2 = 0.2. Statistical errors are smaller than
symbol size.

comes from the term proportional to v1 − v2 under the square root. This yields z = 3/2 and we
obtain in the limit ω̃ → 0 (with scaling variable ω̃/|p|z kept fixed) after performing the inverse
Laplace transformation

Ŝ2(p, t) =
1√
2π

exp
(
−iv2pt− C0|p|3/2t [1− i sgn(p(v1 − v2))]

)
(4.42)

with

C0 =

(
G2

11

)2
2
√
D1|v2 − v1|

. (4.43)

We recognize here the characteristic function of an α-stable Lévy distribution

φ̂(p;µ, c, α, β) := exp
(
ipµ− |cp|α(1− iβ tan

(πα
2

)
sgn(p))

)
(4.44)

with µ = −v2t, α = 3/2, c = (C0t)
2/3 and maximal asymmetry β = sgn(v1 − v2) = ±1.

We remark that in real space the asymmetric Lévy scaling function has only one heavy tail
decaying as 1/x1+α which in a finite system leads to finite size corrections of order 1/L1+α for
times t � Lα. The other tail, that extends away from the position of the other mode, decays
exponentially. This effect, which defines a kind of light cone, is a classical analogue of the Lieb-
Robinson-bound for the spreading of perturbations in quantum systems [41]. The scaling function
(4.42) is similar to the one found to describe the hydrodynamics of the anharmonic chain in the
case of an ”even potential”, see [16].

Monte-Carlo simulation data for the 3/2-Lévy mode are shown in Figure 4.4 for small times
up to t ≈ 100. The mode moves with a velocity that, numerically, cannot be distinguished from
the theoretical prediction v2 = 1.3. Indeed, one expects the error in the velocity, if at all, to be
small, since the velocity comes from mass conservation and is an exact constant for all times even
on the lattice [32].

The scaling exponent and asymmetry predicted by mode coupling theory are in a good agree-
ment with the Monte Carlo simulations, see Figs. 4.5, 4.6. In Figure 4.5 we show the growth of
the variance V2(t) of the measured 3/2-Lévy mode. This quantity is not infinite for finite times,
since the (single) heavy tail of the asymptotic asymmetric Lévy scaling function (4.42) is cut off
at finite times by the coupling to the other mode at a distance of the order (v2 − v1)t. Thus one
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4. Universality classes in two-component driven diffusive systems

Figure 4.5.: (Color online) Variance V2(t) of the measured dynamical structure function shown in
Fig. 4.4 versus time.

expects the empirical variance V2(t) to be finite but growing in time. Mass conservation together
with dynamical scaling predicts a growth V2(t) ∝ tν with ν = 2/z [17]. The measured exponent
νexp ≈ 1.32 is very close to the theoretical value ν = 4/3 even for the early time regime shown in
the figures.

The only parameter that has slow convergence to the asymptotic value is the asymmetry of
the scaling function. A similar phenomenon is discussed in [16] in terms of corrections to scaling
of the memory kernel for the 5/3-Lévy mode. They are shown to vanish slowly with a power
law decay in time. Here we measure the deviation of the asymmetry from its asymptotic value.
The measured quantity 1 + βexp decreases monotonically with time. The decay is approximately
algebraic with exponent ≈ 1/6, see Fig. 4.7.

4.4.2. Two golden mean modes

We consider now the case where both self-coupling coefficients Gααα of the mode coupling matrix
vanish and both subleading coefficients Gαββ are non-zero and in general unequal. In this case
one cannot use the Gaussian or the KPZ scaling function as an input into the mode coupling
equations. However, the equations give a self-consistency relation which allows one to compute
the scaling function for the two modes, see [39] for the symmetric case where G1

22 = G2
11. For the

generic non-symmetric case G1
22 6= G2

11 the calculation of [39] is not directly applicable. However,
one can adopt a similar philosophy with two scaling functions

Ŝ1(p, t) = e−iv1ptg(b|p|tβ), Ŝ2(p, t) = e−iv2pth(c|p|γt) (4.45)

as input, which, in addition to the a priori unknown dynamical exponents γ and 1/β, have
different scale factors b, c as free variables. With this ansatz one obtains by power counting the
consistency conditions γ = 1 + β and γ = 1/β for the dynamical exponent. From the mode
coupling equations we have computed also the scale factors. These computations are lengthy, but
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4.4. Superdiffusive non-KPZ universality classes

Figure 4.6.: Fit of the dynamical structure function S22
k (t) for time t = 88 with a 3/2-stable Lévy

distribution with asymmetry β = −0.692. For parameters see Fig. 4.4.
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0.32

0.34
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1+ Β

Figure 4.7.: Asymmetry 1+β versus time, obtained by fitting the numerically obtained dynamical
structure function with the PDF of 3/2 Lévy stable law. The line with the power
law ∝ t−1/6 is a guide to the eye. For parameters see Figure 4.4.
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4. Universality classes in two-component driven diffusive systems

Figure 4.8.: Dynamical structure function showing both modes for particles on chain 1, for the
golden mean mode with v2 = 1.183 at different times. Parameters: L = 106, γ =
2.5, b = 0.625, ρ1 = 0.25, ρ2 = 0.2. Statistical errors are smaller than symbol size.

straightforward. With the relabelling Ŝ−(p, t) ≡ Ŝ1(p, t), Ŝ+(p, t) ≡ Ŝ2(p, t) one arrives at

Ŝ±(p, t) =
1√
2π

exp
(
−iv±pt− C±|p|ϕt

[
1± isgn(p(v− − v+)) tan

(πϕ
2

)])
(4.46)

with golden mean γ = ϕ ≡ (1 +
√

5)/2 and the scale factors

C± =
1

2
|v+ − v−|1−

2
ϕ

(
2G1

22G
2
11

ϕ sin
(πϕ

2

))ϕ−1(
G1

22

G2
11

)±(1+ϕ)

. (4.47)

Notice that ϕ− 1 = 1/ϕ.
For numerical simulation of this new universality class we choose the parameter manifold (4.34)

of the two-lane model where one has the characteristic velocities

v± = (1 + γρ2)(1− 2ρ1)± γ
√
ρ1(1− ρ1)ρ2(1− ρ2). (4.48)

We have chosen γ = 2.5, b = 0.625 and ρ1 = 0.25, ρ2 = 0.2 corresponding to the mode coupling
matrices

G1 =

(
0 −0.406416

−0.406416 −0.105726

)
, G2 =

(
−0.812833 −0.052863
−0.052863 0

)
(4.49)

and transformation matrix

R−1 =

(
−0.734553 0.734553
0.678551 0.678551

)
. (4.50)

The columns of R are the eigenmodes with velocities v1 ≡ v− = 0.3170, v2 ≡ v+ = 1.183
respectively. In order to measure the dynamical exponent ϕ ≈ 1.618, which is rather close to
z = 5/3 ≈ 1.667 appearing in the (5/3L,KPZ) scenario studied in [17], we focus on the large-time
regime rather than looking into corrections to scaling for the asymmetry as done above. We use
simulation parameters n = 300, m = 3, τ = 120 and n = 1000, m = 46, τ = 120.

Fig. 4.8 shows the measured dynamical structure function for both golden modes moving on
lattice 1. The peaks are well separated already at the earliest time t = 480 shown in the figure.
The center of mass velocities have no perceptible deviation from the theoretical predictions.

In Fig. 4.9 we plot the maximum of the dynamic structure function for mode 2 (which scale
as t−1/z) as a function of time. A least square fit with 95% confidence bounds gives a measured
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Figure 4.9.: (Color online) Maximum of the dynamical structure function for mode 2 versus time,
plotted in double logarithmic scale. The line with the theoretically predicted slope
(notice: zGM ≡ ϕ ) is a guide to the eye. Model parameters are as in Fig. 4.8.

dynamical exponent z = 1.619, with error bars 1.613 < z < 1.624. This agrees well with the
theoretically predicted golden mean value z = ϕ ≈ 1.618.

To investigate the convergence of the scaling function, we plot both the measured structure
function and the theoretically predicted ϕ-stable distribution for a fixed time, see Fig. 4.10. The
theoretical prediction is well borne out by the simulation. Small deviations are visible in the
right (fast decaying) tail, see also the closeup view shown in the inset of Fig. 4.10. A fit with a
maximally asymmetric 5/3-stable Lévy distribution shows a markedly poorer agreement.

Finally, we remark that the left peak in Figure 4.8 corresponding to mode 1 is considerably less
asymmetric than the peak of mode 2 shown in more detail in Figure 4.10. To get some intuition
for this observation we point out to the numerical values G1

22 and G2
11 (4.49). The ratio of their

square is (G1
22/G

2
11)2 ≈ 0.017, so the coupling strengths differ by almost two orders of magnitude.

If G1
22 was zero, we would be back to the (D,3

2L) scenario discussed in the previous subsection
and mode 1 would be a symmetric Gaussian peak. Therefore one indeed expects for mode 1 at
finite times a more symmetric function than predicted for the asymptotic regime.

4.4.3. KPZ mode and 5/3 - Lévy mode

In [17] we reported the occurrence of the (5
3L,KPZ) universality class for the totally asymmetric

version of the two-lane exclusion process. The measured dynamical exponents were shown to
agree well with the theoretical prediction. Here we expand on these result by briefly discussing
the scaling function. In Figure 4.11 one can see that a reasonable fit of the numerical data can
be obtained with a 5/3-stable Lévy distribution predicted by mode coupling theory [16].

The measured dynamical structure function, however, exhibits an asymmetry much less than
the predicted maximal value. Indeed, for small times its amplitude is rather small. We attribute
this discrepancy to finite-time effects, cf. the argument for the left GM mode of the previous
subsection. In order to substantiate this claim we show in Table 4.2 numerically determined
asymmetries. They grow in time, thus supporting the argument. We do not have a theoretical

55



4. Universality classes in two-component driven diffusive systems

400 500 600 700 800 900
0

1

2

3

4

5

6

7
x 10

−3

k

S
2
2

k
 (

 t
=

6
0

0
 )

700 730 760 790

5

5.5

6

x 10
−3

Figure 4.10.: (Color online) Measured dynamic structure function for mode 2 at time t = 600.
Monte Carlo data correspond to red dots, and black (blue) curves correspond to the
best least square fits of the Monte Carlo data with the z = ϕ (z = 5/3) stable Lévy
distribution with maximal asymmetry, and theoretically predicted center of mass
position. The inset shows a close-up view of the peak region. Model parameters are
as in Fig. 4.8.

Figure 4.11.: (Color online) Measured dynamic structure function for mode 2 at time t = 200. The
curve is a fit with the 5/3-stable Lévy distribution with non-maximal asymmetry..
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prediction of how they should grow.

t 20 40 60 80 100
β -0.0229 -0.0504 -0.0685 -0.0797 -0.0825

t 120 140 160 200
β -0.0872 -0.0918 -0.0916 -0.1000

Table 4.2.: Asymmetry β of a 5/3-Lévy distribution obtained from a fit to the numerical data for
the 5/3-Lévy mode of [17] for different early times t ≤ 200. The predicted asymptotic
value is -1.

4.5. Conclusions

We have studied time-dependent density fluctuations in driven diffusive system with two conser-
vation laws. For one conservation law it is well-established that the appropriate tool to describe
the universal properties of these fluctuations is non-linear fluctuating hydrodynamics (4.9). Re-
cent work, reviewed in [16], shows that the approach can be extended to anharmonic chains
with more than one conservation law and also to Hamiltonian dynamics with three conservation
laws [13]. From the present work and our preliminary results reported in [17] we conclude that
the predictions of the theory apply also to driven diffusive systems with stochastic lattice gas
dynamics with two conservation laws. Specifically, for a two-lane asymmetric simple exclusion
process we argue that all theoretically possible universality classes for two-component systems,
discussed also in [39], can be realized (see Table 4.1). Among these, our Monte-Carlo simulations
of a two-lane asymmetric exclusion process confirm two superdiffusive universality classes which
have gone unnoticed so far in the literature on driven diffusive systems.

Mode coupling theory not only predicts the dynamical exponents z for these universality classes,
but also the scaling forms of the dynamical structure functions for these novel superdiffusive
modes. In most cases these scaling functions are z-stable Lévy distributions with maximal asym-
metry. The numerical simulation confirms these predictions with great accuracy both for the
3/2-mode and a golden mean mode with z = (1 +

√
5)/2 shown to occur also in anharmonic

chains [39]. For some modes the z-stable Lévy distributions provide excellent fits, but with
an effective asymmetry that is not maximal. However, our data show that the numerically fit-
ted asymmetry increases with time in the cases we considered, thus supporting the notion that
asymptotically the maximal value will be reached.

Which universality classes actually occur in a system at given values of the physical parameters
of the model is completely encoded in the stationary current-density relation ~j(ρ1, ρ2), no other
knowledge about a given model is required. The stationary compressibility matrix K(ρ1, ρ2), re-
lated to the current-density relation through a time-reversal symmetry proved in [36], allows for
the prediction also of the scale factors that enter the scaling functions, unless diffusive modes are
relevant. Thus generically the scaling functions are completely determined by two simple station-
ary properties: The current-density relation ~j(ρ1, ρ2) and the compressibility matrix K(ρ1, ρ2).
Going beyond specific lattice gas models, we have computed the mode coupling matrices in general
form for arbitrary input data, i.e., arbitrary current-density relation and compressibility matrix.
From the diagonal matrix elements of these one can then directly read off the scaling functions for
arbitrary two-component systems, except in the presence of the diffusive universality class where
the scale factors contain a phenomenological diffusion coefficient not predicted by the theory and
which may modify the KPZ mode.
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4. Universality classes in two-component driven diffusive systems

It is interesting to notice that all possible scenarios of universality classes (see Table 4.1) can
be realized with the simple current-density relation (4.2). This relation is minimal in the sense
that the non-linearity of the conserved current jλ is only quadratic and the coupling of this non-
linearity to the other conserved quantity is only linear, i.e., ρ2

λρµ for λ 6= µ. Thus it is not necessary
to have a more complicated current-density relation in order to observe all allowed universality
classes. Moreover, this minimal current-density relation has the nice property that one does not
expect logarithmic corrections to diffusive modes [38]. Our two-lane exclusion process, which is
an extension of the model studied by us previously [17], provides a simple microscopic realization
for this minimal current-density relation.

Throughout this discussion we have tacitly assumed that the current-density relation is strictly
hyperbolic, i.e., the collective velocities vα of the two modes are different. This assumption is
crucial for the decoupling argument for the modes that underlies the mode-coupling computations.
Indeed, the nonequilibrium time reversal symmetry (4.58) [36] rules out umbilic points (where
v1 = v2) in any model which has minimal current-density relation and at the same time a
diagonal compressibility matrix. Therefore in the model presented here the issue does not actually
arise. However, umbilic points are a generic feature of more complicated models, either with the
same minimal current-density relation, but a non-diagonal compressibility matrix [29], or for
non-minimal current-density relations [40]. From numerical observations [40] one expects the
dynamical exponent z = 3/2 as for KPZ, but non-KPZ scaling functions. How mode coupling
theory can predict the behaviour at umbilic points is an open problem. It would also be interesting
to extend mode coupling theory to predict the convergence of the finite-time asymmetry in the
Lévy distribution to the asymptotic maximal value.
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Appendix

4.A. Mode coupling matrices for strictly hyperbolic
two-component systems

4.A.1. Notation

We consider a general system with two conservation laws. For definiteness we choose the language
of driven diffusive systems with currents jλ(ρ1, ρ2), λ = 1, 2 for the conserved densities ρλ. We
define the general flux Jacobian

J =

(
J11 J12

J21 J22

)
(4.51)

with matrix elements

Jλµ =
∂jλ
∂ρµ

(4.52)

The transposed matrix is denoted JT .
We define

δ := (J11 − J22)

√
1 +

4J12J21

(J11 − J22)2
(4.53)

which is the signed square root of the discriminant of the characteristic polynomial of J with the
sign given by J11 − J22. The two eigenvalues of J are

v± =
1

2
(J11 + J22 ± δ) . (4.54)

We associate velocity v− with eigenmode 1 and v+ with eigenmode 2, irrespective of the sign of
v− − v+ which is equal to the sign of J22 − J11.

The matrix elements of the Hessians are denoted

Hλ =

(
hλ1 h̄λ

h̄λ hλ2

)
(4.55)

with

hλ1 = (∂1)2jλ, hλ2 = (∂2)2jλ, h̄λ = ∂1∂2jλ. (4.56)

They are symmetric by definition.
The compressibility matrix is denoted

K =

(
κ1 κ̄
κ̄ κ2

)
(4.57)

It is symmetric by definition. Without loss of generality we can assume κ1κ2 6= 0 since a vanishing
self-compressibility corresponds to a “frozen” lane without fluctuations which would reduce the
dynamics of the two-lane system to a dynamics with a single conservation law. Time-reversal
yields the Onsager-type symmetry [36]

JK = KJT (4.58)

which implies

J21κ1 − J12κ2 = (J11 − J22)κ̄. (4.59)
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4. Universality classes in two-component driven diffusive systems

Relation (4.58) also guarantees that the eigenvalues v± of a physical flux Jacobian J are generally
real. A related symmetry relation was noted earlier in the context of classical fluids [34].

We point out the somewhat surprising fact that for any model with κ̄ = 0, i.e., whenever
the stationary distribution factorizes in the conserved quantities, the compressibilities satisfy
J21κ1 = J12κ2. Thus a vanishing cross derivative Jλµ for one of the currents implies a vanishing
cross derivative Jµλ also of the other, without any a priori assumption on the stochastic dynamics.
The same is true also on parameter manifolds where J11 = J22.

4.A.2. Normal modes

We focus on the strictly hyperbolic case v+ 6= v− corresponding to δ 6= 0. Since J is not assumed
to be symmetric we have to distinguish right (column) and left (row) eigenvectors, denoted by
~c± and ~r±, respectively. Here

~c± =

(
c±1
c±2

)
, ~r± =

(
r±1 , r

±
2

)
. (4.60)

We normalize them to obtain a biorthogonal basis with scalar product

~rσ · ~cσ′ := rσ1 c
σ′
1 + rσ2 c

σ′
2 = δσ,σ′ (4.61)

with σ, σ′ ∈ {±}. Using
J22 − J11 − δ

2
√
J12J21

=
2
√
J12J21

J11 − J22 − δ
(4.62)

this yields

~c± =
1

2δy±

(
2J12

J22 − J11 ± δ

)
, (4.63)

~r± =
y±

δ ± (J22 − J11)
(2J21, J22 − J11 ± δ) (4.64)

with arbitrary normalization constants y±.
Next we introduce (bearing in mind that δ 6= 0)

R =

(
r−1 r−2
r+

1 r+
2

)
, R−1 =

(
c−1 c+

1

c−2 c+
2

)
. (4.65)

Biorthogonality and normalization give RR−1 = 1. The fact that R contains the left eigenvectors
as its rows implies RJ = ΛR where Λ = diag(v−, v+). Therefore

RJR−1 = Λ. (4.66)

Then the linearized Eulerian hydrodynamic equations (4.7) read

∂

∂t
~φ+ Λ

∂

∂x
~φ = 0 (4.67)

with ~φ = R~u.
The diagonalizer R is uniquely defined up to multiplication by an invertible diagonal matrix

which is reflected in the arbitrariness of the normalization factors y±. In order to fix these con-
stants we first observe that from (4.58) it follows that R(JK)RT = Λ(RKRT ) = R(KJT )RT =
(RKRT )Λ. Hence RKRT must be diagonal since Λ is diagonal. This allows us to fix the normal-
ization constants y± by demanding

RKRT = 1. (4.68)
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This normalization condition has its origin in the fact that the structure matrix S̄(k, t) (whose
components are the dynamical structure functions (4.11)) is by definition normalized such that∑

k S̄(k, t) = K, see next subsection. For computing the normalization factors we first consider
J12J21 6= 0.

It is convenient to parametrize R by diagonal matrices Z = diag(z−, z+), U = diag(1, u) and
an orthogonal matrix O such that

R = ZOU =

(
z− cosϑ −uz− sinϑ
z+ sinϑ uz+ cosϑ

)
(4.69)

with

tanϑ =
J11 − J22 + δ

2
√
J12J21

, u =

√
J12

J21
. (4.70)

Notice that J12J21 6= 0 implies u 6= 0, sinϑ 6= 0 and cosϑ 6= 0. There are several useful iden-
tities involving the rotation angle ϑ, viz. tan (2ϑ) = 2

√
J12J21/(J22 − J11),

√
J12J21(cos2 ϑ −

sin2 ϑ) = (J22 − J11) cosϑ sinϑ and δ = (J22 − J11)(cos2 ϑ − sin2 ϑ) + 4
√
J12J21 cosϑ sinϑ =

(J22 − J11) cos (2ϑ) + 2
√
J12J21 sin 2ϑ = (J22 − J11)/ cos (2ϑ) = 2

√
J12J21/ sin (2ϑ).

Now we use that for κ̄ 6= 0 one can write

UJU−1 = µUKU + ν1 (4.71)

with

µ =
J21

κ̄
, ν =

1

2

(
J11 + J22 −

J21κ1 + J12κ2

κ̄

)
. (4.72)

Therefore

RKRT = ZOUKUOTZ =
1

µ

(
ZOUJU−1OTZ − νZ2

)
=

1

µ

(
v− − z2

−ν 0
0 v+ − z2

+ν

)
(4.73)

which yields

z2
± =

v± − µ
ν

. (4.74)

By comparing with (4.65) one finds that the normalization factors for the eigenvectors are given
by y− = uz− sinϑ, y+ = uz+ cosϑ. For κ̄ = 0 one obtains directly from (4.59) and (4.69) that

y2
− =

sin2 ϑ

κ2
, y2

+ =
cos2 ϑ

κ2
. (4.75)

Even though not relevant for the two-lane model of this paper we mention for completeness that
some care with limits has to be taken when J12J21 = 0. First notice that in this case the physical
requirement κ1κ2 6= 0 implies κ̄ 6= 0. Specifically for J12 = 0, J21 6= 0 one has δ = J11 − J22,
v− = J11, v+ = J22, J21κ1 = (J11 − J22)κ̄ and

R =

(
z̃− 0
z̃+J21
J22−J11 z̃+

)
(4.76)

with

z̃−2
− = κ1, z̃−2

+ = κ2 −
κ̄2

κ1
. (4.77)
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Notice that here strict hyperbolicity implies J11 6= J22 so that R is well-defined.

Similarly one obtains for J21 = 0, J12 6= 0 with v− = J11 6= v+ = J22 the relation J12κ2 =
(J22 − J11)κ̄ and

R =

(
ẑ−

ẑ−J12
J11−J22

0 ẑ+

)
(4.78)

with

ẑ−2
− = κ1 −

κ̄2

κ2
, ẑ−2

+ = κ2. (4.79)

If J12 = J21 = 0 then J is diagonal. For the strictly hyperbolic case J11 6= J22 one necessarily has
κ̄ = 0 and the normalization condition (4.68) yields R = diag(κ−1

1 , κ−1
2 ).

4.A.3. Normal modes and the microscopic dynamical structure function

In order to explain the origin of the normalization condition and to apply it to the two-lane model.

We define the random variables fλk (t) := n
(λ)
k (t)− ρλ and fλ0 := fλ0 (0) where the random variable

n
(λ)
k (t) is the particle number on site k of lane λ with particle density ρλ at time t. We also

define the two-component column vector ~fk(t) with components fλk (t) and the two-component

row vector ~fT0 := (f1
0 , f

2
0 ). Expectation w.r.t. the stationary distribution is denoted by 〈 · 〉.

By translation invariance and stationarity one has 〈 fλk (t) 〉 = 0. The expectation of a matrix
is understood as the matrix of the expectations of its components. Defining the 2 × 2-matrix
S̄k(t) = ~fk(t) ⊗ ~fT0 (the components of which are random variables) the dynamical structure
matrix with components (4.11) can be written S̄k(t) = 〈 S̄k(t) 〉.

The normalization of the dynamical structure matrix, defined by the sum over the whole lattice,
is given by ∑

k

S̄k(t) = K. (4.80)

It is independent of time because of translation invariance and particle number conservation.
Now we consider the lattice normal modes

~φk(t) = R~fk(t) (4.81)

with components φαk (t) where R is the diagonalizer (4.65). In components

φ1
k(t) = r11f

1
k (t) + r12f

2
k (t), φ2

k(t) = r21f
1
k (t) + r22f

2
k (t) (4.82)

and similarly φα0 := φα0 (0). In terms of the lattice normal modes the structure matrix has the

form Sk(t) := 〈 Sk(t) 〉 with Sk(t) := ~φk(t)⊗ ~φT0 . This yields

Sk(t) = RS̄k(t)R
T (4.83)

with matrix elements Sαβ(k, t) = 〈φαk (t)φβ0 〉. The desired normalization∑
k

Sk(t) = RKRT = 1 (4.84)

leads to the requirement (4.68).
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4.A.4. Computation of the mode-coupling matrices

The mode-coupling coefficients are given by

Gγαβ :=
1

2

∑
λ

Rγλ

[
(R−1)THλR−1

]
αβ
. (4.85)

where Gγαβ = Gγβα. Using the previous results one finds for G1 the matrix elements

G1
11 =

1

2z−

[
cos2 ϑ

(
h1

1 cosϑ− uh2
1 sinϑ

)
+ u−2 sin2 ϑ

(
h1

2 cosϑ− uh2
2 sinϑ

)
−2u−1 cosϑ sinϑ

(
h̄1 cosϑ− uh̄2 sinϑ

)]
(4.86)

G1
22 =

z−
2z2

+

[
sin2 ϑ

(
h1

1 cosϑ− uh2
1 sinϑ

)
+ u−2 cos2 ϑ

(
h1

2 cosϑ− uh2
2 sinϑ

)
+2u−1 cosϑ sinϑ

(
h̄1 cosϑ− uh̄2 sinϑ

)]
(4.87)

G1
12 =

1

2z+

[
cosϑ sinϑ

(
h1

1 cosϑ− uh2
1 sinϑ− u−2h1

2 cosϑ+ u−1h2
2 sinϑ

)
u−1(cos2 ϑ− sin2 ϑ)

(
h̄1 cosϑ− uh̄2 sinϑ

)]
, (4.88)

and for G2 one has

G2
22 =

1

2z+

[
sin2 ϑ

(
h1

1 sinϑ+ uh2
1 cosϑ

)
+ u−2 cos2 ϑ(h1

2 sinϑ+ uh2
2 cosϑ)

+2u−1 cosϑ sinϑ
(
h̄1 sinϑ+ uh̄2 cosϑ

)]
(4.89)

G2
11 =

z+

2z2
−

[
cos2 ϑ

(
h1

1 sinϑ+ uh2
1 cosϑ

)
+ u−2 sin2 ϑ

(
h1

2 sinϑ+ h2
2u cosϑ

)
−2u−1 cosϑ sinϑ

(
h̄1 sinϑ+ uh̄2 cosϑ

)]
(4.90)

G2
12 =

1

2z−

[
cosϑ sinϑ

(
h1

1 sinϑ+ uh2
1 cosϑ− u−2h1

2 sinϑ− u−1h2
2 cosϑ

)
u−1(cos2 ϑ− sin2 ϑ)

(
h̄1 sinϑ+ uh̄2 cosϑ

)]
. (4.91)

In terms of the model parameters a, b, c, d, κ1,2, κ̄ The quantities ϑ and u are given in (4.70) and
the quantities z± are given in (4.74). The parameter δ appearing in (4.70) is given in (4.53).

In order to analyze the manifolds where diagonal elements of the mode coupling matrices vanish
it is convenient to introduce

g1
1 := h1

1, g
1
2 := u−2h1

2, ḡ
1 := u−1h̄1 (4.92)

g2
1 := uh2

1, g
2
2 := u−1h2

2, ḡ
2 := h̄2. (4.93)

and define the polynomials

D1
1(ω) := g1

1 −
(
g2

1 + 2ḡ1
)
ω +

(
g1

2 + 2ḡ2
)
ω2 − g2

2ω
3 (4.94)

D1
2(ω) := g1

2 −
(
g2

2 − 2ḡ1
)
ω +

(
g1

1 − 2ḡ2
)
ω2 − g2

1ω
3 (4.95)

D2
1(ω) := g2

1 +
(
g1

1 − 2ḡ2
)
ω +

(
g2

2 − 2ḡ1
)
ω2 + g1

2ω
3 (4.96)

D2
2(ω) := g2

2 +
(
g1

2 + 2ḡ2
)
ω +

(
g2

1 + 2ḡ1
)
ω2 + g1

1ω
3. (4.97)
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with ω := tanϑ. Only the Hessian and the parameters u and tanϑ given in (4.70) enter these
functions. They do not depend on the compressibilities. Then one has

G1
11 =

cos3 ϑ

2z−
D1

1(ω), G1
22 =

z− cos3 ϑ

2z2
+

D1
2(ω) (4.98)

G2
11 =

z+ cos3 ϑ

2z2
−

D2
1(ω), G2

22 =
cos3 ϑ

2z+
D2

2(ω). (4.99)

Notice the symmetry properties D1
1(ω) = −ω3D2

2(−ω−1) and D1
2(ω) = −ω3D2

1(−ω−1).
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Abstract: Universality is a well-established central concept of equilibrium physics. However,
in systems far away from equilibrium a deeper understanding of its underlying principles is still
lacking. Up to now, a few classes have been identified. Besides the diffusive universality class with
dynamical exponent z = 2 another prominent example is the superdiffusive Kardar-Parisi-Zhang
(KPZ) class with z = 3/2. It appears e.g. in low-dimensional dynamical phenomena far from
thermal equilibrium which exhibit some conservation law. Here we show that both classes are
only part of an infinite discrete family of non-equilibrium universality classes. Remarkably their
dynamical exponents zα are given by ratios of neighbouring Fibonacci numbers, starting with
either z1 = 3/2 (if a KPZ mode exist) or z1 = 2 (if a diffusive mode is present). If neither a
diffusive nor a KPZ mode are present, all dynamical modes have the Golden Mean z = (1+

√
5)/2

as dynamical exponent. The universal scaling functions of these Fibonacci modes are asymmetric
Lévy distributions which are completely fixed by the macroscopic current-density relation and
compressibility matrix of the system and hence accessible to experimental measurement.

Keywords: nonequilibrium physics | universality | dynamical exponent | driven diffusion
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5. The Fibonacci family of dynamical universality classes

Significance

Universality is a well-established central concept of equilibrium physics. It asserts that, espe-
cially near phase transitions, the properties of a physical system do not depend on its details such
as the precise form of interactions. Far from equilibrium such universality has also been observed,
but in contrast to equilibrium a deeper understanding of its underlying principles is still lacking.
We show that the two best-known examples of non-equilibrium universality classes, the diffusive
and KPZ-classes, are only part of an infinite discrete family. The members of this family can
be identified by their dynamical exponent which surprisingly can be expressed by a Kepler ratio
of Fibonacci numbers. This strongly indicates the existence of a simpler underlying mechanism
that determines the different classes.
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The Golden Mean ϕ = 1/2 +
√

5/2 ≈ 1.61803.., also called Divine Proportion, has been
an inspiring number for many centuries. It is widespread in nature, i.e. arrangements of petals
of the flowers and seeds in the sunflower follow the golden rule [1]. Being considered an ideal
proportion, the Golden Mean appears in famous architectural ensembles such as Parthenon in
Greece, Giza Great Pyramids in Egypt, or Notre Dame de Paris in France. Ideal proportions of
the human body follow the Golden Rule.

Mathematically, the beauty of the Golden Mean number is expressed in its continued fraction
representation: All the coefficients in the representation are equal to unity,

ϕ = 1 +
1

1 +
1

1 +
1

1 + .. .

(5.1)

Systematic truncation of the above continued fraction gives the so-called Kepler ratios,
1/1, 2/1, 3/2, 5/3, 8/5, ..., which approximate the Golden Mean. Subsets of denominators (or
numerators) of the Kepler ratios form the celebrated Fibonacci numbers, Fi = 1, 1, 2, 3, 5, 8, ..,
such that Kepler ratios are ratios of two neighbouring Fibonacci numbers. As well as the Golden
Mean, Fibonacci ratios and Fibonacci numbers are widespread in nature [1].

The occurrence of the Golden Mean is not only interesting for aesthetic reasons, but often indi-
cates the existence of some fundamental underlying structure or symmetry. Here we demonstrate
that the Divine Proportion, as well as all the truncations (Kepler ratios) of the continued fraction
(5.1), appear as universal numbers, viz., the dynamical exponents, in low-dimensional dynamical
phenomena far from thermal equilibrium. The two well-known paradigmatic universality classes,
Gaussian diffusion with dynamical exponent z = 2 [2, 3] and the Kardar-Parisi-Zhang (KPZ)
universality class with z = 3/2 [4] enter the Kepler ratios hierarchy as the first two members of
the family.

The universal dynamical exponents in the present context characterize the self-similar space-
time fluctuations of locally conserved quantities, characterizing e.g. mass, momentum or thermal
transport in one-dimensional systems far from thermal equilibrium [5]. The theory of nonlinear
fluctuating hydrodynamics (NLFH), has recently emerged as a powerful and versatile tool to
study space-time fluctuations, and specifically the dynamical structure function which describes
the behaviour of the slow relaxation modes, and from which the dynamical exponents can be
extracted [6].

The KPZ universality class 1 has been shown to explain the dynamical exponent observed in
interface growth processes as diverse as the propagation of flame fronts [10, 11], the growth of
bacterial colonies [12], or the time evolution of droplet shapes such as coffee stains [13] where the
Gaussian theory fails. The dynamical structure function originating from the one-dimensional
KPZ equation has a non-trivial scaling function obtained exactly by Prähofer and Spohn from
the totally asymmetric simple exclusion process (TASEP) and the polynuclear growth model
[14, 15] and was beautifully observed in experiments on turbulent liquid crystals [16, 17]. Also the
theoretical treatment, both numerical and analytical, of generic model systems with Hamiltonian
dynamics [18], anharmonic chains [19, 20] and lattice models for driven diffusive systems [21, 22],
have demonstrated an extraordinary robust universality of fluctuations of the conserved slow
modes in one-dimensional systems.

Despite this apparent ubiquity, frequently dynamical exponents different from z = 2 or z = 3/2
were observed. Usually it is not clear whether this corresponds to genuinely different dynamical
critical behaviour or is just a consequence of imperfections in the experimental setting. Moreover,

1For a nice introduction into the KPZ class and its relevance we refer to [7]. Recent reviews [8, 9] provide a more
detailed account of theoretical and experimental work on the KPZ class.
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recently a new universality class with dynamical exponent z = 5/3 for the heat mode in Hamil-
tonian dynamics [18] was discovered, followed by the discovery of some more universality classes
in anharmonic chains [19, 20] and lattice models for driven diffusive systems [21, 22]. What is
lacking, even in the conceptually simplest case of the effectively one-dimensional systems that we
are considering, is the understanding of the plethora of dynamical non-equilibrium universality
classes within a larger framework. Such a framework exists e.g. for two-dimensional critical
phenomena in equilibrium systems where the spatial symmetry of conformal invariance together
with internal symmetries give rise to discrete families of universality classes in which all critical
exponents are simple rational numbers.

It is the aim of this article to demonstrate that also far from thermal equilibrium discrete
families of universality classes with fractional critical exponents appear. This turns out to be
a hidden feature of the NLFH equations which we extract using mode-coupling theory. It is
remarkable that one finds dynamical exponents zα which are ratios of neighbouring Fibonacci
numbers {1, 1, 2, 3, 5, 8, . . . } defined recursively as Fn = Fn−1 + Fn−2. The first two members
of this family are diffusion (z = 2 = F3/F2) and KPZ (z = 3/2 = F4/F3). The corresponding
universal scaling functions are computed and shown to be (in general asymmetric) zα-stable
Lévy distributions with parameters that can be computed from the macroscopic current-density
relation and compressibility matrix of the corresponding physical system and which thus can
be obtained from experiments without detailed knowledge of the microscopic properties of the
system. The theoretical predictions, obtained by mode coupling theory, are confirmed by Monte-
Carlo simulations of a three-lane asymmetric simple exclusion process which is a model of driven
diffusive transport of three conserved particle species.

5.1. Nonlinear fluctuating hydrodynamics

We consider a rather general interacting non-equilibrium system of length L described macro-
scopically by n conserved order parameters ρλ(x, t) with stationary values ρλ and associated
macroscopic stationary currents jλ(ρ1, . . . , ρn) and compressibility matrix K with matrix ele-

ments Kλµ = 1
L 〈(Nλ − ρλL)(Nµ − ρµL)〉 where Nλ =

∫ L
0 dxρλ(x, t) are the time-independent

conserved quantities.
The starting point for investigating density fluctuations uλ(x, t) := ρλ(x, t) − ρλ in the non-

equilibrium steady state are the NLFH equations [5]

∂t~u = −∂x
(
J~u+

1

2
〈u| ~H|u〉 − ∂xD~u+B~ξ

)
(5.2)

where J is the current Jacobian with matrix elements Jλµ = ∂jλ/∂ρµ, ~H is a column vector

whose entries
(
~H
)
λ

= Hλ are the Hessians with matrix elements Hλ
µν = ∂2jλ/(∂ρµ∂ρν) and

the bra-ket notation represents the inner product in component space 〈u |( ~H)λ|u 〉 = ~uTHλ~u =∑
µν uµuγH

λ
µν with 〈u | = ~uT , |u 〉 = ~u. The diffusion matrix D is a phenomenological quantity.

The noise term B~ξ does not appear explicitly below, but plays an indirect role in the mode-
coupling analysis. The product JK of the Jacobian with the compressibility matrix Kλµ is
symmetric [23] which guarantees a hyperbolic system of conservation laws [24]. We ignore possible
logarithmic corrections arising from cubic contributions [25].

This system of coupled noisy Burgers equations is conveniently treated in terms of normal
modes ~φ = R~u where RJR−1 = diag(vα) and the transformation matrix R is normalized such
that RKRT = 1. The eigenvalues vα of J are the characteristic velocities of the system. From
(5.2) one thus arrives at

∂tφα = −∂x
(
vαφα + 〈φ|Gα|φ〉 − ∂x(D̃~φ)α + (B̃~ξ)α

)
with D̃ = RDR−1, B̃ = RB and the mode
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5.2. Computation of the dynamical structure function

coupling matrices

Gα =
1

2

∑
β

Rαβ(R−1)THβR−1 (5.3)

whose matrix elements we denote by Gαβγ .

5.2. Computation of the dynamical structure function

For α > 1, the dynamical structure function describes the stationary fluctuations of the conserved
slow modes and is thus a key ingredient for understanding the interplay of noise and non-linearity
and their role for transport far from equilibrium. We focus on the case of strict hyperbolicity
where all vα are pairwise different and study the large scale behaviour of the dynamical structure
function Sαβ(x, t) = 〈φα(x, t)φβ(0, 0) 〉. Since all modes have different velocities only the diagonal
elements Sα(x, t) := Sαα(x, t) are non-zero for large times. Mode coupling theory yields [5]

∂tSα(x, t) = (−vα∂x +Dα∂
2
x)Sα(x, t)

+

∫ t

0
ds

∫
R

dySα(x− y, t− s)∂2
yMαα(y, s) (5.4)

with the diagonal elementDα := D̃αα of the phenomenological diffusion matrix for the eigenmodes
and the memory kernel Mαα(y, s) = 2

∑
β,γ(Gαβγ)2Sβ(y, s)Sγ(y, s). The task therefore is to extract

for arbitrary n the large-time and large-distance behaviour from this non-linear integro-differential
equation.

Remarkably, these equations can be solved exactly in the long-wavelength limit and for t →
∞ by Fourier and Laplace transformation (see ”Materials and Methods” and Supplementary
Material). Using a suitable scaling ansatz for the transformed structure function then allows
to analyze the small-p behaviour from which the dynamical exponents can be determined. We
find that different conditions arise depending on which diagonal elements of the mode-coupling
matrices vanish.

5.3. The Fibonacci family of dynamical universality classes

5.3.1. Fibonacci case

First, we consider the case where the self-coupling Gααα is nonzero for one mode only, e.g. G1
11 6=

0. For all other modes α 6= 1 we assume a single nonzero coupling to the previous mode, so
Gαα−1,α−1 6= 0, and Gαβ,β = 0 for β 6= α − 1. Then, as follows from our analysis (see ”Materials
and Methods”), we find the following recursion for the dynamical exponents:

zα = 1 +
1

zα−1
(5.5)

with z1 = 3/2.

The dynamical structure function in momentum space is proportional to the zα-stable Lévy
distribution with maximal asymmetry σα = ±1, see [26] and eq. (5.13) below. The sign of the
asymmetry depends whether the mode (α − 1) has bigger or smaller velocity than the mode α,
σα = −sgn(vα − vα−1). The dynamical exponents (5.5) form a sequence of rational numbers

zα =
Fα+3

Fα+2
(5.6)
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5. The Fibonacci family of dynamical universality classes

which are consecutive ratios of neighbouring Fibonacci numbers Fα, defined by Fα = Fα−1 +Fα−2

with initial values F0 = 0, F1 = 1, which converge exponentially to the Golden Mean ϕ := 1
2(1+√

5) ≈ 1.618, as first observed by Kepler in 1611 in a treatise on snow flakes. In a model with n
conservation laws, one has the Fibonacci modes with dynamical exponents {3/2, 5/3, 8/5, ..., zn}.

Finally, we remark that if mode 1 is diffusive rather than KPZ, then we find the same sequence
(5.6) of exponents except that it starts with z1 = F2 = 2.

In Fig. 5.1 we show some representative examples of the scaling functions which are quite
different in shape. Furthermore the relation between the exponents zα , determined by eq. (5.11)
in ”Materials and Methods”, and the mode coupling matrices Gα is illustrated for the case n = 2.

5.3.2. Golden Mean case

As second representative example we consider the case where all self-coupling coefficients vanish,
Gααα ≡ 0 for all α, while each mode has at least one nonzero coupling to other mode, Gαββ 6= 0 for
some β 6= α. Then, (5.5) reduces to zα = 1+1/zβ for all modes α, β. The unique solution of this
equation is the Golden Mean zα = ϕ = (1 +

√
5)/2 for all α. The scaling functions (see Suppl.

Material) are proportional to ϕ-stable Lévy distributions with parameters fixed by the collective
velocities and the mode-coupling coefficients. The asymmetry of the fastest right-moving (left-
moving) mode is predicted to be β = −1 (β = 1).

5.4. Simulation results

In order to check the theoretical predictions in the two cases we simulate mass transport with
three conservation laws, i.e., three distinct species of particles. To maintain a far-from-equilibrium
situation a driving force is applied that leads to a constant drift superimposed on undirected
diffusive motion. This is a natural setting for transport of charged particles in nanotubes, where
a direct measurement of the stationary particle currents is experimentally possible [27]. However,
due to the universal applicability of NLFH the actual details of the interaction of the particles
with their environment and the driving field are irrelevant for the theoretical description of the
large-scale dynamics. Hence for good statistics we simulate a lattice model for transport which
represents a minimal realization of the essential ingredients, namely a non-linear current-density
relation for all three conserved masses.

Our model is the three-species version of the multi-lane totally asymmetric simple exclusion
process [28]. Particles hop randomly in field direction on three lanes to their neighbouring sites
on a periodic lattice of 3 × L sites with rates that depend on the nearest-neighbour sites. Lane
changes are not allowed so that the total number of particles on each lane is conserved. Due to
excluded-volume interaction each lattice site can be occupied by at most one particle. Thus the

occupation numbers n
(λ)
k of site k on lane λ take only values 0 or 1. The hopping rate r

(λ)
k from

site k on lane λ to site k + 1 on the same lane is given by

r
(λ)
k = bλ +

1

2

∑
{µ:µ 6=λ}

γλµ

(
n

(µ)
k + n

(µ)
k+1

)
(5.7)

with a species dependent drift parameter bλ and symmetric interaction constants γλµ = γµλ.
Hopping attempts onto occupied sites are rejected. The conserved quantities are the three total
numbers of particles Nλ on each lane with corresponding densities ρλ = Nλ/L.

The stationary distribution of this model factorizes [28] and thus allows for the exact compu-
tation of the macroscopic current-density relations jλ(ρ1, ρ2, ρ3) and the compressibility matrix
K(ρ1, ρ2, ρ3). Since there is no particle exchange between lanes the compressibility matrix is
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Figure 5.1.: The scaling functions (bottom) and dynamical exponents are related to the structure
of the mode coupling matrices Gα (top). The table shows the dynamical exponents
zα in the case n = 2, see eq. (5.11). The symbols ∗ and ? denote non-zero elements.
Red symbols correspond to self-coupling, black symbols to couplings to other modes.
Matrix elements not indicated can take any value. The colors in the table correspond
to the colors of the graphs of the scaling functions.
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5. The Fibonacci family of dynamical universality classes

Figure 5.2.: Schematic drawing of three particle species drifting inside a nanotube. Due to the
interaction between the particles and with the walls one expects a non-linear current
density relation.

diagonal with elements denoted by κλ. One has

jλ = ρλ(1− ρλ)

bλ +
∑

{µ:µ 6=λ}

γλµρµ

 (5.8)

κλ = ρλ(1− ρλ). (5.9)

The diagonalization matrix R and the mode-coupling matrices Gα are fully determined by these
quantities.

According to mode-coupling theory three different Fibonacci-modes with z1 = 3/2, z2 =
5/3, z3 = 8/5 occur e.g. when G1

11 6= 0, G2
11 6= 0, G3

22 6= 0, and G2
22 = G2

33 = G3
33 = 0. For

our simulation we compute numerically densities, bare hopping rates and interaction parame-
ters to satisfy these properties as described in ”Materials and Methods”. For this choice the
velocities of the normal modes are v1 = 0.592315, v2 = 0.0281578, v3 = 1.58226 which ensures
a good spatial separation after quite small times. The propagation of the three normal modes
(Fig. 5.3) with the predicted velocities is observed with an error of less than 10−3. Moreover,
the numerically obtained dynamical structure function for mode 3 shows a startling agreement
with the theoretically predicted Lévy scaling function with z = 8/5 and maximal asymmetry,
see Fig. 5.4. It takes longer for the other two modes (KPZ mode and Lévy stable 5/3 mode)
to reach their asymptotic form, which we argue is due to the much smaller respective couplings,
(G1

11/G
3
22)2 � 1, (G2

11/G
3
22)2 � 1.

In order to observe three Golden Mean modes it is sufficient to require that each mode has zero
self-coupling and at least one nonzero coupling to other modes. This can be achieved with the
set of parameters given in ”Materials and Methods” which lead to the velocities v1 = 1.83149,
v2 = 0.762688, v3 = 0.326778 of the normal modes. The propagation of the three normal modes
with the predicted velocities is observed, approaching for large times a very small relative error of
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5.4. Simulation results

Figure 5.3.: Space-time propagation of three normal modes in the three-lane model. The modes
(from left to right) are the Fibonacci mode with z = 8/5 (mode 3), the KPZ mode
with z = 3/2 (mode 1), and the Fibonacci mode with z = 5/3 (mode 2). The physical
and simulation parameters are given in the Appendices.
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Figure 5.4.: Left Panel: Vertical least squares fit of the numerically obtained dynamical structure
function for the Fibonacci 8/5-mode (points), at time t = 1000 with a 8/5-stable Lévy
distribution, maximal asymmetry −1 and theoretical center of mass (line), predicted
by the mode coupling theory. The only fit parameter is the scale parameter of the
Lévy stable distribution. The simulation results agree very well with the asymptotic
theoretical result already for moderate times. Right Panel: Insets show closeups of
the peak region and tail regions, according to a colour code. Every 10-th datapoint
is plotted to improve the visibility of the data. The statistical error ε99% with 99%
confidence bound is for every data point smaller than 1.6299 · 10−5.
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Figure 5.5.: Scaling plot of the measured structure function of mode 1 with dynamical exponent
z ≡ ϕ =

(
1 +
√

5
)
/2 for the Golden Mean case, fitted to a ϕ-stable Lévy distribution

with maximal asymmetry −1 (see Eq. (5.13)). The scale parameter E1 for the Lévy-
stable distribution and the center of mass velocity v1 are obtained by a vertical least
square fit. Fitted parameters are v1,fit = 1.83107 ± 0.00009 and E1,fit = 1.1 ± 0.01.
The fitted velocity v1,fit differs by 0.02% from the theoretical velocity.

about 10−4. The structure function for the fastest mode 1 converges to its asymptotic shape faster
than for the other modes, due to the large coupling coefficient G1

33. In Fig. 5.5 we show a scaling
plot of the measured structure function for mode 1 with dynamical exponent z ≡ ϕ =

(
1 +
√

5
)
/2

together with a fitted to a ϕ-stable Lévy function (5.13) with maximal asymmetry β = −1 as
predicted by the theory. The data collapse shows a striking agreement between the measured
and theoretical scaling function. Alternatively, the dynamical exponent zα can be derived from
the maximum of the structure function, which scales as max(S1(x, t)) = const · t−1/z. We obtain
z ≈ 1.63 which differs from the predicted value z ≡ ϕ = (1 +

√
5)/2 by less than 0.8%.

5.5. Discussion

Our work demonstrates that non-equilibrium phenomena are much richer than just the diffusive
and KPZ universality suggest. We have established that in non-equilibrium phenomena governed
by non-linear fluctuating hydrodynamics with n conservation laws mode coupling theory predicts
a family of dynamical universality classes with dynamical exponents given by the sequence of
consecutive Kepler ratios (5.6) of Fibonacci numbers. With slightly modified initial conditions
on G11

1 this result is easily generalized for the case when the first mode α = 1 is diffusive. Then
the sequence of dynamical exponents becomes shifted by one unit with respect to (5.6). On the
other hand, if all self-couplings vanish, one has as unique solution for all modes α the fixed point
value zα = z∞ = ϕ which is the Golden Mean.

For general mode coupling matrices all critical exponents can be computed (from (5.11) in
”Materials and Methods”). The scaling functions of the non-diffusive and non-KPZ modes are
asymmetric Lévy distributions whose parameters are completely determined by the macroscopic
current-density relation and compressibility matrix of the system.
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For 1+1 dimensional systems out of equilibrium this is the first time an infinite family of
discrete universality classes is found. Recalling that 1+1 dimensional non-equilibrium systems
with short-range interactions can be mapped onto two-dimensional equilibrium systems (with the
time evolution operator playing the role of the transfer matrix) one is reminded of the discrete
families of conformally invariant critical equilibrium systems in two space dimensions [29, 30]. We
do not know whether there is any mathematical link, but the analogy is suggestive in so far as
conformal invariance is a local symmetry of spatially isotropic systems with z = 1 (which happens
to be the lowest order Kepler ratio) while z > 1 corresponds to strongly anisotropic systems for
which also local symmetry groups are known to exist [31].

Since an infinite number of lanes of coupled one-dimensional systems corresponds to a two-
dimensional system, it is intriguing to observe that the Golden Mean is close to the numerical
value z = 1.612−1.618 of the dynamical exponent of the 2+1-dimensional KPZ-equation [32, 33].
The scaling function of the 2 + 1-dimensional KPZ-equation, however, is not Lévy [34].

In order to observe and distinguish between the different new classes highly precise experimental
data will be required. E.g. in the Fibonacci case the dynamical exponents converge quickly to the
Golden Mean. A feature which might be easier to observe experimentally is the scaling function
itself, which for higher Fibonacci ratios 5/3, 8/5, ... usually has a strong asymmetry (see Figs. 5.1,
5.4 and 5.5) while KPZ and Gauss scaling functions are symmetric. Growth processes which can
be mapped on exclusion processes with several conservation laws, might be potentially suitable
candidates for an experimental verification, see e.g. [16, 17] for an example of a system with one
conservation law.
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5. The Fibonacci family of dynamical universality classes

5.6. Materials and Methods

5.6.1. Computation of the dynamical structure function

The mode coupling equations (5.4) can be solved in the scaling limit by applying a Fourier
transform (FT) f(x) → f̃(p) and a Laplace transform (LT) f(t) → f̃(ω). For more details we
refer to [22] where the case n = 2 of two conservation laws has been treated. After making the
scaling ansatz

S̃α(p, ω̃α) = p−zαgα(ζα) (5.10)

for the transformed dynamical structure function where Ŝα(p, 0) = 1/
√

2π and ζα = ω̃α|p|−zα we
are in a position to analyze the small-p behaviour. One has to search for dynamical exponents for
which the limit p→ 0 is non-trivial, which requires a self-consistent treatment of all modes. We
find that different conditions arise depending on which diagonal elements of the mode-coupling
matrices vanish. In order to characterize the possible scenarios we define the set Iα := {β : Gαββ 6=
0} of non-zero diagonal mode coupling coefficients. Through power counting one obtains

zα =


2 if Iα = ∅
3/2 if α ∈ Iα
minβ∈Iα

[(
1 + 1

zβ

)]
else

(5.11)

and the domain

1 < zα ≤ 2 ∀α. (5.12)

for the possible dynamical exponents.

In the Fibonacci case, the dynamical structure function of mode α in momentum space has the
scaling form

Ŝα(p, t) =
1√
2π

e
−ivαpt−Eα|p|zα t

(
1−iσαβp tan (πzα2 )

)
(5.13)

with inverse time scales Eα. The dynamical exponents then satisfy the recursion (5.5). Up to the
normalization 1/

√
2π the scaling form (5.13) is a α-stable Lévy distribution [26].

5.6.2. Simulation algorithm

For the Monte-Carlo simulation of the model we choose a large system size L = 5 · 105 which
avoids finite-size effects. At time t = 0, Nλ particles are placed on each lane according to the
desired initial state. One Monte-Carlo time unit consists of 3 · L · r∗ random sequential update
steps where r∗ = max

{
rk

(λ)
}

: In each update step a bond (k(λ), k(λ) + 1) is chosen randomly

with uniform distribution. If n
(λ)
k

(
1− n(λ)

k+1

)
= 1 then the particle at site k is moved to k + 1

with probability r
(λ)
k /r∗ where r∗ is the maximal value that the r

(λ)
k can take among all possible

particle configurations on the neighbouring lanes. If n
(λ)
k (1−n(λ)

k+1) = 0 the particle configuration
remains unchanged.

5.6.3. Simulation of the dynamical structure function

In order to determine the dynamical structure function we initialize the system by placing Nλ

particles uniformly on each lane λ. This yields a random initial distribution drawn from the
stationary distribution of the process. No relaxation is required.
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Then we use translation invariance and compute the space- and time average

σλµL,k(M, τ, t) =
1

M

M∑
j=1

1

L

L∑
l=1

n
(λ)
l+k(jτ + t)n

(µ)
l (jτ)− ρλρµ. (5.14)

To avoid noisy data of σλµL,k in (5.14) we take the system size L and the time average parameter

M sufficiently large. In order to obtain Sλµk (t) we average over P independently generated and

propagated initial configurations of σλµL,k. The error estimates for Sλµk (t) are calculated from the

P independent measurements. From Sλµk (t) we compute the structure function of the normal
modes by transformation with the diagonalizing matrix R determined by (5.8) and (5.9).

In order to obtain model parameters for three different Fibonacci-modes with z1 = 3/2, z2 =
5/3, z3 = 8/5 we solve the equations given in the text after Eq. (5.9) numerically with a C-program
performing direct minimization of the absolute values of the targeted G-elements until the given
tolerance value (10−6) is reached. The data shown here for the three mode case have been
obtained from simulations with densities ρ1 = 0.2, ρ2 = 0.25, ρ1 = 0.3, bare hopping rates b1 =
0.613185, b2 = 0.425714, b3 = 0.799831 and interaction parameters γ12 = 1.36145, γ23 = 3.69786,
γ13 = 0.143082 for which the needed relations are satisfied. This choice of parameters yields
G1

11 = 0.322507, G2
11 = −0.15, G3

22 = 1.04547, while the the absolute values of G2
22, G

2
33, G

3
33

are smaller than 10−6. Besides these physical parameters, the simulation parameters for the
Fibonacci modes (Fig. 5.3, 5.4) are L = 500.000, τ = 250, M = 1400, P = 98.

For the Golden Mean case (Fig. 5.5) the set of parameters ρ1 = 0.2, ρ2 = ρ3 = 0.25, γ12 =
0.0082334758646, γ23 = 1.68447706968, γ13 = 3.72140740146, and b1 = 0.905073261248, b2 =
0.86, and b3 = 1.18875738638. This leads to G1

22 = 0.405702, G1
33 = 0.929315, G2

11 = −0.104141,
G2

33 = −0.208477, G3
11 = −0.182467, G3

22 = 0.271246, while the absolute value of G1
11, G

2
22, G

3
33

is smaller than 10−6. The simulation parameters for the Golden Mean case are L = 5.000.000,
τ = 750, M = 30 and P = 303.

5.7. Supporting Information

Remarkably, the mode coupling equations eq. (5.4) can be solved exactly in the scaling limit by
Fourier and Laplace transformation. To this end we define the Fourier transform (FT) as

f̂(p) :=
1√
2π

∫ ∞
−∞

dx e−ipxf(x), (5.15)

and the Laplace transform (LT) as

f̃(ω) :=

∫ ∞
0

dt e−ωtf(t). (5.16)

With D̂α(p) = ivαp+Dαp
2 we obtain from eq. (4) of the paper in momentum-frequency space

S̃α(p, ω) =
Ŝα(p, 0)

ω + D̂α(p) + C̃αα(p, ω)
(5.17)

with memory kernel

C̃αα(p, ω) = 2
∑
β,γ

(Gαβγ)2p2

∫ ∞
0

ds e−ωs
∫
R

dqŜβ(q, s)Ŝγ(p− q, s). (5.18)

and Ŝα(p, 0) = 1/
√

2π.
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Next we introduce ω̃α := ω + ivαp and make the scaling ansatz

S̃α(p, ω̃α) = p−zαgα(ζα) (5.19)

with ζα = ω̃α|p|−zα . Having in mind systems with short-range interactions we anticipate that all
modes spread subballistically, i.e., zα > 1 for all α. Using strict hyperbolicity one obtains after
some substitutions of variables

gα(ζα) = lim
p→0

[
ζα +Dα|p|2−zα +Qααζ

2−zα− 1
zα

α |p|3−2zα

+
∑
β 6=α

Qαβ

(
−ivαβp

) 1
zβ
−1
|p|

1+ 1
zβ
−zα

−1

. (5.20)

with vαβp := |vα − vβ|sgn[p(vα − vβ)] and

Qαβ = 2(Gαββ)2Γ

(
1− 1

zβ

)
Ω[Ŝβ] ≥ 0. (5.21)

where

Ω[f̂ ] =

∫ ∞
−∞

dp f̂(p)f̂(−p). (5.22)

With σαβp = sgn[p(vα − vβ)] one has

(
−ivαβp

) 1
zβ
−1

= sin

(
π

2zβ

)
|vα − vβ|

1
zβ
−1
×[

1− iσαβp tan

((
1 +

1

zβ

)
π

2

)]
. (5.23)

Now we are in a position to analyze the small-p behaviour. One has to search for dynamical
exponents for which the limit p→ 0 is non-trivial, which is determined by the smallest power of
p in (5.20). This has to be done self-consistently for all modes. We find that different conditions
arise depending on which diagonal elements of the mode-coupling matrices vanish. In order to
characterize the possible scenarios we define the set Iα := {β : Gαββ 6= 0} of non-zero diagonal mode
coupling coefficients. One obtains from (5.20) through power counting the system of equations

zα =


2 if Iα = ∅
3/2 if α ∈ Iα
minβ∈Iα

[(
1 + 1

zβ

)]
else

(5.24)

and the domain

1 < zα ≤ 2 ∀α. (5.25)

for the possible dynamical exponents.
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1Helmholtz-Institut für Strahlen-und Kernphysik,
Universität Bonn, Nussallee 14-16, 53119 Bonn, Germany
2Institut für Theoretische Physik, Universität zu Köln,
Zülpicher Str. 77, 50937 Cologne, Germany
3Institute of Complex Systems II, Theoretical Soft Matter and Biophysics,
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6.1. Introduction

Recently new insights into the dynamical universality classes of nonequilibrium systems have
been gained. In the presence of slow modes due to locally conserved currents (such as energy,
momentum, density etc.) not only the well-established diffusive and the Kardar-Parisi-Zhang
(KPZ) universality classes arise in one space dimension, but also a heat mode and other long-
lived modes with unexpected scaling properties were discovered [1, 2, 3]. Going further we have
demonstrated in [4] that in the presence of several conserved quantities there is an infinite family of
dynamical universality classes that is characterized by dynamical exponents which take the form
of Kepler ratios zα = Fα+2/Fα+1 where Fα = 1, 1, 2, 3, 5, . . . are the Fibonacci numbers defined
recursively by Fα = Fα−1 + Fα−2 with starting values F1 = F2 = 1. This conclusion was based
on a scaling analysis of the mode coupling equations for non-linear fluctuating hydrodynamics
(NLFH) [5] and supported by extensive Monte-Carlo simulations of multi-lane asymmetric exclu-
sion processes. The first level of the hierarchy (apart from the usual diffusion with z = 2 = z1)
includes the Kardar-Parisi-Zhang (KPZ) universality class with z = 3/2 = z2 which continues
to inspire both due to its links to intriguing mathematical problems and beautiful experimental
results, see e.g. the special issue J. Stat. Phys. 160, (2015) dedicated to it, and in particular the
review by Halpin-Healey and Takeuchi [6]. Also the golden mean, which is the limiting Kepler
ratio z∞ = ϕ ≈ 1.618..., occurs in systems with at least two conservation laws [2, 3].

NLFH has emerged as a universal tool to analyze general one-dimensional systems such Hamil-
tonian dynamics [1, 7], anharmonic chains [5, 3, 8, 9, 10, 11] or driven diffusive systems [4, 2,
12, 13, 14, 15, 16]. The theory is robust. The essential ingredients appear to be only the above-
mentioned locally conserved currents and long-time dynamics dominated by the long wave length
modes of the associated conserved quantities. Mathematically rigorous results for some specific
models support the validity of the theory [17, 18]. It is the purpose of this work to provide a
detailed analysis of the one-loop mode-coupling equations for the dynamical structure function for
an arbitrary number of conservation laws in the strictly hyperbolic setting where all characteristic
velocities are different.

6.2. Computation of the dynamical structure function

6.2.1. Basis of nonlinear fluctuating hydrodynamics

Consider an interacting system with n locally conserved currents jλ associated to physical quan-
tities such as energy, momentum, particle numbers etc. that are conserved under the microscopic
dynamics of the system. The starting point for investigating the large-scale dynamics is the
system of conservation laws

∂

∂t
~ρ(x, t) +

∂

∂x
~j(x, t) = 0 (6.1)

where component ρλ(x, t) of the vector ~ρ(x, t) is a coarse-grained conserved quantity and the
component jλ(x, t) of the current vector ~j(x, t) is the associated locally conserved current. We
shall refer to the ρλ(x, t) as densities. Notice that in our convention ~ρ and ~j are regarded as
column vectors. Transposition is denoted by a superscript T .

This system of conservation laws can be obtained from the law of a large numbers and the
postulate of local equilibrium [19, 20]. Thus the current is a function of x and t only through its
dependence on the local conserved densities. Hence these equations can be rewritten as

∂

∂t
~ρ(x, t) + J̄

∂

∂x
~ρ(x, t) = 0 (6.2)

where J̄ ≡ J̄(~ρ(x, t)) is the current Jacobian with matrix elements J̄λµ = ∂jλ/∂ρµ.
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To get some basic insight we first notice that constant densities ρλ are a (trivial) stationary
solution of (6.2). Stationary fluctuations of the conserved quantities are captured in the covari-
ance matrix K of the conserved quantities that we shall not describe explicitly. However, we have
in mind the generic case where K is positive definite, i.e., we do not allow for vanishing fluctua-
tions of a locally conserved quantity that can occur in systems with slowly decaying stationary
correlations. We shall refer to K as compressibility matrix.

Expanding the local densities ρλ(x, t) = ρλ+uλ(x, t) around their long-time stationary values ρλ
and taking a linear approximation (where J̄ is a constant matrix J ≡ J(~ρ) with matrix elements
determined by the stationary densities ~ρ) leads to a system of coupled linear PDE’s which is
solved by diagonalizing J. One transforms to normal modes ~φ = R~u where RJR−1 = diag(vα)
and the transformation matrix R is normalized such that RKRT = 1. Thus one finds decoupled
equations ∂tφα = vα∂xφα whose solutions are travelling waves φα(x, t) = φ0

α(x− vαt) with initial
data φα(x, 0) = φ0

α(x). This shows that the eigenvalues vα of J play the role of characteristic
speeds.

The product JK of the Jacobian with the compressibility matrix K is symmetric which can
be proved already on microscopic level [21] for sufficiently fast decaying stationary correlations.
This guarantees that on macroscopic scale the full non-linear system (6.2) is hyperbolic [22], i.e.,
all eigenvalues vα of J are guaranteed to be real. If the eigenvalues vα are non-degenerate the
system is called strictly hyperbolic. The occurrence of complex eigenvalues signals macroscopic
phase separation [16], consistent with the absence of fast decaying stationary correlations on
microscopic level, and coarsening dynamics.

Notice that (6.2) is completely deterministic. In the NLFH approach [5] the effect of fluctuations
is captured by adding a phenomenological diffusion matrix D and white noise terms ξλ. This
turns (6.2) into a non-linear stochastic PDE. From renormalization group considerations it is
known that polynomial non-linearities of order higher than 4 are irrelevant for the large-scale
behaviour and order 3 leads at most to logarithmic corrections if the generic quadratic non-
linearity is absent [23]. Thus one expands J̄ around the stationary densities ~ρ but keeps only
quadratic non-linearities so that the fluctuation fields uλ(x, t) satisfy the system of coupled noisy
Burgers equations

∂t~u = −∂x
(
J0~u+

1

2
~uT ~H~u−D∂x~u+B~ξ

)
(6.3)

where ~H is a column vector whose entries ( ~H)λ = Hλ are the Hessians with matrix elements
Hλ
µν = ∂2jλ/(∂ρµ∂ρν). If the quadratic non-linearity is absent one has diffusive behaviour.
Using normal modes one thus arrives at

∂tφα = −∂x
(
vαφα + ~φTGα~φ− ∂x(D̃~φ)α + (B̃~ξ)α

)
(6.4)

with D̃ = RDR−1 and B̃ = RB. The matrices

Gα =
1

2

∑
λ

Rαλ(R−1)THλR−1 (6.5)

are the mode coupling matrices with the mode-coupling coefficients Gαβγ = Gαγβ which are, by
construction, symmetric. From the linear theory one concludes that the fluctuation fields are
peaked around xα(t) = xα(0) + vαt. For short-range interactions fluctuations spread generally
sub-ballistically and therefore the width of the peak grows in sublinearly time, as indeed will be
seen explicitly below.

We stress that the macroscopic current-density relation given by the components of the cur-
rent vector ~j arises from the microscopic model from the stationary current-density relation ~j(~ρ).
Similarly, the compressibility matrix K is computed from the stationary distribution of the mi-
croscopic model. Hence the mode coupling matrices (and with them the dynamical universality
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classes as shown below) are completely determined by these two macroscopic stationary properties
of the system. However, the exact stationary current-density relations and the exact stationary
compressibilities are required.

The main quantity of interest are the dynamical structure functions

Sαβ(x, t) = 〈φα(x, t)φβ(0, 0) 〉 (6.6)

(where 〈 . . . 〉 denotes the stationary ensemble average) which describe the stationary space-time
fluctuations. Since we work with normal modes we have the normalization∫ ∞

−∞
dxSαβ(x, t) = δα,β. (6.7)

For strictly hyperbolic systems the characteristic velocities are all different. As a result the off-
diagonal elements of S decay quickly and for long times and large distances one is left with the
diagonal elements which we denote by

Sα(x, t) := Sαα(x, t). (6.8)

The large scale behaviour of the diagonal elements is expected to have the scaling form

Sα(x, t) ∼ t−1/zαfα(ξα) (6.9)

with the scaling variable

ξα = (x− vαt) t−1/zα (6.10)

and dynamical exponent zα which has to be determined and which indicates the dynamical
universality class of the mode α. The exponent in the power law prefactor follows from the
conservation law. In momentum space, with the Fourier transform convention

Ŝα(k, t) :=
1√
2π

∫ ∞
−∞

dx e−ikxSα(x, t) (6.11)

one has the scaling form

Ŝα(k, t) ∼ e−ivαktf̂α(kt1/zα) (6.12)

where f̂α is the Fourier transform of the scaling function (6.9).

6.2.2. Mode coupling equations

The starting point for computing the diagonal elements of the dynamical structure function are
the mode coupling equations [5]

∂tSα(x, t) = DαSα(x, t) +

∫ t

0
ds

∫ ∞
−∞

dy Sα(x− y, t− s)Mαα(y, s) (6.13)

with diffusion operator

Dα = −vα∂x +Dα∂
2
x (6.14)

and memory term

Mαα(y, s) = 2
∑
β,γ

(Gαβγ)2∂2
ySβ(y, s)Sγ(y, s). (6.15)

Only the diagonal elements Dα := Dαα of the diffusion matrix and of the memory kernel are kept
here.
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In momentum space this reads

∂tŜα(k, t) = −D̂α(k)Ŝα(k, t)−
∫ t

0
ds Ŝα(k, t− s)M̂αα(k, s) (6.16)

with

D̂α(k) = ivαk +Dαk
2 (6.17)

and

M̂αα(k, s) = 2
∑
β,γ

(Gαβγ)2k2

∫ ∞
−∞

dq Ŝβ(q, s)Ŝγ(k − q, s). (6.18)

Finally we perform the Laplace transformation

S̃α(k, ω) :=

∫ ∞
0

dt e−ωtŜα(k, t) (6.19)

by multiplying (6.16) on both sides by e−ωt and integrating over t. This yields

S̃α(k, ω) =
Ŝα(k, 0)

ω + D̂α(k) + C̃αα(k, ω)
(6.20)

with memory kernel

C̃αα(k, ω) = 2
∑
β,γ

(Gαβγ)2k2

∫ ∞
0

ds e−ωs
∫ ∞
−∞

dq Ŝβ(q, s)Ŝγ(k − q, s). (6.21)

and Ŝα(k, 0) = 1/
√

2π.

Remark 6.2.1. For k = 0 the solution is trivial, with the exact result Ŝα(0, t) = 1/
√

2π given by
the Fourier convention (6.11) and the normalization (6.7).

So far this is an exact reformulation of the original mode coupling equations (6.13). In order
to proceed we make impose successively various conditions (Conditions 1 - 3). We stress that
conditions 1 and 2 do not lead to any loss of generality in the subsequent treatment.

Condition 1: Scaling (k 6= 0).

The mode coupling equation (6.16) can be further analyzed using the scaling form (6.12). To this
end we first rewrite (6.20) in terms of ω̃α := ω + ivαk. This yields

S̃α(k, ω̃α) = Ŝα(k, 0)

ω̃α +Dαk
2 + 2

∑
β,γ

(Gαβγ)2Iβγ(k, ω̃α)

−1

(6.22)

with modified memory integral

Iβγ(k, ω̃α) = k2

∫ ∞
0

ds e−(ω̃α−ivαk)s

∫ ∞
−∞

dq Ŝβ(q, s)Ŝγ(k − q, s). (6.23)

Using the scaling ansatz (6.12) we arrive at

Iβγ(k, ω̃α) = k2

∫ ∞
0

ds e−(ω̃α+i(vγ−vα)k)sAβγ(k, s) (6.24)
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= k2

∫ ∞
0

ds e−(ω̃α+i(vβ−vα)k)sAγβ(k, s) (6.25)

with

Aβγ(k, s) =

∫ ∞
−∞

dq ei(vγ−vβ)qsf̂β(qs
1
zβ )f̂γ((k − q)s

1
zγ ). (6.26)

As pointed out above, in the static case k = 0 the constant solution to the mode coupling
equations is exact. Therefore we can focus on the non-static case k 6= 0. With k = |k|sgn(k) and
the substitution of integration variables |k|s→ s we obtain

Iβγ(k, ω̃α) = |k|
∫ ∞

0
ds e−(ω̃α|k|−1+i(vγ−vα)sgn(k))sBβγ(k, s) (6.27)

= |k|
∫ ∞

0
ds e−(ω̃α|k|−1+i(vβ−vα)sgn(k))sBγβ(k, s) (6.28)

with

Bβγ(k, s) =

∫ ∞
−∞

dq ei(vγ−vβ)q|k|−1sf̂β(q|k|
− 1
zβ s

1
zβ )f̂γ((k − q)|k|−

1
zγ s

1
zγ ). (6.29)

Condition 2: Local interactions (zα > 1 ∀α).

As discussed above, for sufficiently fast decaying interaction strength one expects that all modes
spread sub-ballistically around their centers at xα(t), i.e., zα > 1 ∀α. Then the small-k behaviour

of the integral (6.29) simplifies since the term k|k|−
1
z γ in the second argument vanishes. One is

left with

Bβγ(k, s) =

∫ ∞
−∞

dq ei(vγ−vβ)q|k|−1sf̂β(q|k|
− 1
zβ s

1
zβ )f̂γ(−q|k|−

1
z γs

1
z γ ). (6.30)

For vγ = vβ this expression reduces to

Bβγ(k, s) =

∫ ∞
−∞

dq f̂β(q|k|
− 1
zβ s

1
zβ )f̂γ(−q|k|−

1
z γs

1
z γ ). (6.31)

Taking β = γ this yields the diagonal elements

Bββ(k, s) =

∫ ∞
−∞

dq f̂β(q|k|
− 1
zβ s

1
zβ )f̂β(−q|k|−

1
z βs

1
zβ )

= |k|
1
zβ s
− 1
zβ Ω[f̂β] (6.32)

with the functional

Ω[f ] =

∫ ∞
−∞

dk f̂(k)f̂(−k) =

∫ ∞
−∞

dx (f(x))2. (6.33)

Thus we find from (6.27)

Iββ(k, ω̃α) = |k|
1+ 1

zβ Ω[f̂β]

∫ ∞
0

ds s
− 1
zβ e−(ω̃α|k|−1+i(vβ−vα)sgn(k))s. (6.34)

With the scaling variable
ζα = ω̃α|k|−zα (6.35)

and the shorthand notation
vαβk = (vα − vβ) sgn(k) (6.36)
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this reads

Iββ(k, ζα) = |k|
1+ 1

zβ Ω[f̂β]

∫ ∞
0

ds e−(ζα|k|zα−1−ivαβk )ss
− 1
zβ (6.37)

= |k|
1+ 1

zβ Ω[f̂β]Γ

(
1− 1

zβ

)(
ζα|k|zα−1 − ivαβk

) 1
zβ
−1

(6.38)

which also holds for β = α. Here we have used the integral representation

Γ(x) = px
∫ ∞

0
duux−1e−pu = px/x

∫ ∞
0

du e−pu
1/x

(6.39)

for <(x) > 0, <(p) > 0 of the Gamma-function.

Condition 3: Strict hyperbolicity (vβ 6= vγ ∀β 6= γ).

Up to this point the assumption of strict hyperbolicity has only led us to consider the mode-
coupling equations in the form (6.13), but it has not yet entered their analysis. Strict hyperbolicity
plays a role only in (6.30). We make the substitution of integration variables q(s/|k|)x → q where
x = max [ 1

zβ
, 1
z γ

] < 1. Then (6.30) becomes

Bβγ(k, s) = |k/s|x
∫ ∞
−∞

dq ei(vγ−vβ)q|k/s|x−1
f̂β(q|k/s|

x− 1
zβ )f̂γ(−q|k/s|x−

1
z γ ). (6.40)

This leads to a term |k|x−1 →∞ in the exponential. Thus for vγ 6= vβ we have a rapidly oscillating
term and the integral vanishes exponentially fast.

This proves that the leading contributions to the dynamical structure function come from the
diagonal elements β = γ of the mode coupling matrix. Therefore (6.22) reads

S̃α(k, ζα) =
1√
2π
|k|−zαhα(ζα) (6.41)

where from (6.38) we have

hα(ζα) = lim
k→0

[
ζα +Dα|k|2−zα +Qααζ

1
zα
−1

α |k|3−2zα

+
∑
β 6=α

Qαβ

(
ζα|k|zα−1 − ivαβk

) 1
zβ
−1
|k|

1+ 1
zβ
−zα

−1

. (6.42)

with the generally positive constants

Qαβ = 2(Gαββ)2Γ

(
1− 1

zβ

)
Ω[f̂β] ≥ 0. (6.43)

We invoke again strict hyperbolicity and subballistic scaling to deduce that the term ζα|k|zα−1

in (6.42) can be neglected for the long wave length behaviour. This yields for the diagonal terms

hα(ζα) = lim
k→0

[
ζα +Dα|k|2−zα +Qααζ

1
zα
−1

α |k|3−2zα

+
∑
β 6=α

Qαβ

(
−ivαβk

) 1
zβ
−1
|k|

1+ 1
zβ
−zα

−1

. (6.44)
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This is the starting point for the subsequent analysis of the small-k behaviour. We remark that
with the shorthand notation

σαβk = sgn[k(vα − vβ)] (6.45)

we have (
−ivαβk

) 1
zβ
−1

= |vα − vβ|
1
zβ
−1

exp

(
iσαβk

(
1− 1

zβ

)
π

2

)
(6.46)

=
cos
((

1− 1
zβ

)
π
2

)
|vα − vβ|

1− 1
zβ

[
1 + iσαβk tan

((
1− 1

zβ

)
π

2

)]
(6.47)

=
sin
(

π
2zβ

)
|vα − vβ|

1− 1
zβ

[
1− iσαβk tan

((
1 +

1

zβ

)
π

2

)]
(6.48)

In the last line we made use of tan (−x) = − tan (x) and tan(x) = tan (x− π).

6.2.3. Asymptotic analysis

Now one has to search for the dynamical exponents for which the limit k → 0 is non-trivial,
i.e., hα(ζα) finite and hα(ζα) 6= ζα (which would correspond to the δ-peak of the linear theory
which does not exhibit the fluctuations). This has to be done self-consistently for all modes.
Different self-consistency conditions arise depending on which diagonal elements of the mode-
coupling matrices vanish. In the following we consider some fixed mode α and study all possible
scenarios which depend on which is the smallest power in k in (6.44) that yields a non-trivial
scaling form. To this end we define the set

Iα := {β : Gαββ 6= 0} (6.49)

of non-zero diagonal mode coupling coefficients. Thus Iα is the set of modes β that give rise to a
non-linear term in the time-evolution of the mode α that one considers.

Case A: Iα = ∅

If mode α decouples, i.e., if all diagonal terms Gαββ = 0 then one has hα(ζα) =
[
ζα +Dα|k|2−zα

]−1

and therefore

zα = 2 (6.50)

and

Ŝα(k, t) =
1√
2π

e−ivαkt−Dαk
2t (6.51)

which is pure diffusion. (We remind the reader that we ignore possible logarithmic corrections
from cubic contributions to the NLFH equations.)

From (6.51) we read off the scaling function

f̂α(κα) =
1√
2π

e−Dακ
2
α (6.52)

with scaling variable κα = kt1/2. This yields

Ω[f̂α] =
1

2
√

2πDα
for diffusive modes α (6.53)
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and

Qβα =
(Gβαα)2

√
2Dα

for non-diffusive modes β 6= α. (6.54)

Case B: α /∈ Iα, Iα 6= ∅

If Gααα = 0, but some Gαββ 6= 0, then mode α has quadratic contributions from one or more other
modes β. One has

hα(ζα) = lim
k→0

ζα +Dα|k|2−zα +
∑
β 6=α

Qαβ

(
−ivαβk

) 1
zβ
−1
|k|

1+ 1
zβ
−zα

−1

. (6.55)

corresponding to

Ŝα(k, t) =
1√
2π

exp

−ivαkt−
Dαk

2 +
∑
β

Qαβ

(
−ivαβk

) 1
zβ
−1
|k|

1+ 1
zβ

 t
 (6.56)

Since by Condition 2 one has 1 + 1
zβ
< 2 it follows that 2− zα > 1 + 1

zβ
− zα. Hence the diffusive

term in (6.56) is subleading and the dominant terms in (6.56) are those terms proportional to
(Gαββ)2 which have the largest zβ. We shall denote this value by zmaxβ and the define the set
I∗α = {β ∈ Iα : zβ = zmaxβ }. This leads to

zα = min
β∈Iα

[(
1 +

1

zβ

)]
= 1 +

1

zmaxβ

> 1. (6.57)

Hence the assumption of subballistic scaling that arises from Condition 2 is self-consistent. The
dynamical structure (6.56) reduces to

Ŝα(k, t) =
1√
2π

exp

−ivαkt−∑
β∈I∗α

Qαβ

(
−ivαβk

)zα−2
|k|zαt

 (6.58)

where from (6.48) and (6.57) we have

(
−ivαβk

)zα−2
=

sin
(
(zα − 1) π2

)
|vα − vβ|2−zα

(
1− iσαβk tan

(πzα
2

))
. (6.59)

Defining

Eα =
∑
β∈I∗α

Qαβ
sin
(
(zα − 1) π2

)
|vα − vβ|2−zα

(6.60)

Fα =
∑
β∈I∗α

Qαβ
sin
(
(zα − 1) π2

)
|vα − vβ|2−zα

sgn(vα − vβ) (6.61)

Aα =
Fα
Eα

(6.62)

allows us to write

Ŝα(k, t) =
1√
2π

exp
(
−ivαkt− Eα|k|zαt

[
1− iAα tan

(πzα
2

)
sgn(k)

])
. (6.63)
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6. Exact scaling solution of the mode coupling equations

One recognizes in (6.63) an asymmetric α-stable Lévy-distribution with asymmetry Aα ∈ [−1, 1]
which generically has two algebraic tails. If mode α is to the left or right of all modes with
zmaxβ that control it i.e. if vα < vβ∀β ∈ I∗α or if vα > vβ∀β ∈ I∗α (meaning that it is a spatially

extremal mode), then σαβk has the same sign for all β ∈ I∗α and as a consequence Aα = ±1. This
means that then the asymmetry is maximal and as a consequence one has a stretched exponential
decay towards the exterior of the extremal mode, while only towards the interior there is a power
law. This stretched exponential decay is a classical analogue of the Lieb-Robinson bound which
is a theoretical upper limit on the speed at which information can propagate in non-relativistic
quantum systems [24].

From (6.63) we obtain the scaling function

f̂α(κ) =
1√
2π

exp
(
−Eα|κ|zα

[
1− iAαsgn(κ) tan

(πzα
2

)])
(6.64)

which gives (see (6.33) and (6.39))

Ω[f̂α] =
1

πzα
(2Eα)−

1
zα Γ

(
1

zα

)
for Fibonacci modes α. (6.65)

Using the identity

Γ

(
1− 1

x

)
=

π

Γ
(

1
x

)
sin
(
π
x

) (6.66)

one finds

Qαβ =
2(Gαββ)2 (2Eβ)

− 1
zβ

zβ sin
(
π
zβ

) for Fibonacci modes β 6= α (6.67)

for the constant (6.43). We recall that Eα is not a simple constant depending only on mode α,
but a functional that depends on all modes β ∈ I∗α.

The upshot of cases A and B is that if Gααα = 0 one has the bounds

1 < zα ≤ 2 (6.68)

for the dynamical exponents of modes whose self-coupling constant vanishes. The equality z = 2
is attained if and only if all diagonal coupling constants of that mode vanish. The relation (6.57)
determines the dynamical exponents. The scaling functions are asymmetric Lévy functions.

Case C: α ∈ Iα

For Gααα 6= 0, i.e., non-vanishing quadratic self-coupling, imagine first that zβ? > 2 for some mode
β?. Then according to (6.44) a non-trivial scaling form is obtained for the following values of the
dynamical exponent: zα = 1+1/zβ? < 3/2 (from the term proportional to Gαβ?β?), zα = 3/2 (from
the self-coupling term Gααα), or zα = 2 (from the diffusive term). This excludes the possibility
zα > 2 for Gααα 6= 0. Above it was established that zα ≤ 2 for Gααα = 0. Thus we conclude
that for all modes the bounds (6.68) are valid self-consistently. Therefore below we can assume
without loss of generality 1 < zβ ≤ 2.

Next we observe the leading small-k behaviour of (6.44) with non-trivial scaling form is obtained
for zα = min {2, 3/2, 1 + 1/zβ}. Thus

zα = 3/2 (6.69)

because of (6.68).
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Even though the dynamical exponent is uniquely given by zα = 3/2 if Gααα 6= 0, there are two
different families of scaling functions. If zβ < 2 for all modes, i.e., if all modes have at least one
non-zero diagonal element, then

hα(ζα) =

[
ζα +Qααζ

− 1
3

α

]−1

. (6.70)

This corresponds to the usual KPZ-mode where mode-coupling theory is known to be quantitative
quite good but not exact [25, 26]. On the other hand, if zβ = 2 for some diffusive modes from a
set Bdiff , then

hα(ζα) =

ζα +Qααζ
− 1

3
α +

∑
β∈Bdiff

Qαβ

(
−ivαβk

)− 1
2

−1

. (6.71)

This corresponds to a modified KPZ-mode [3] which has not been studied yet in detail.
The constants defined in (6.43) are

Qαβ = 2(Gαββ)2Γ (1/3) Ω[f̂β] for β = KPZ, KPZ’ (6.72)

for a KPZ or modified KPZ mode β. In order to compute ΩKPZ ≡ Ω[f̂KPZ] for β = KPZ we

use the exact scaling form SKPZ(x, t) = (λt)−2/3fKPZ((x − vβt)/(λt)2/3) with λ = 2
√

2|Gβββ | [5].

With the scaling variable ξ = (x− vβt)/t2/3 as defined in (6.10) we obtain the real-space scaling
function fβ(ξ) = λ−2/3fKPZ(λ−2/3ξ). Therefore, by definition we have

ΩKPZ =

∫ ∞
−∞

dξ(fβ(ξ))2 = λ−2/3

∫ ∞
−∞

dx(fKPZ(x))2 =
1

2
(Gβββ)−2/3cPS . (6.73)

For the universal constant

cPS :=

∫ ∞
−∞

dx(fKPZ(x))2 = 0.3898135914137278 (6.74)

we do not have an expression in closed form but its value can be computed numerically with
high precision from the Prähofer-Spohn scaling function fKPZ(x) tabulated in [29]. The double
precision result (sixteen significant digits) shown in (6.74) is numerically exact and was obtained
from the data in [29] by trapezoidal integration.1 The scale factors Eα (6.60) that enter the scaling
functions of Fibonacci modes with non-zero coupling to a KPZ mode are sensitive to cPS and
therefore a precise value is important for numerical fits. For the modified KPZ mode β = KPZ′

the functional ΩKPZ′ has the same form as (6.73), but the numerical value of the integral is not
known since the scaling function fKPZ′(x) for the modified KPZ mode is not known.

6.2.4. Classification of universality classes

We set out to classify the possible universality classes. We summarize the equations that deter-
mine the dynamical exponents for a system with n modes:

zα =


2 if Iα = ∅
3/2 if α ∈ Iα
minβ∈Iα

[(
1 + 1

zβ

)]
else

(6.75)

1Using the data tabulated in [29] one can calculate fKPZ(x) with at least 90 digits accuracy in the interval
x ∈ [−8.5, 8.5]. From this one can achieve with trapezoidal integration a much higher accuracy of cPS than
given here. Notice a small but significant numerical error of just over 10% in the value of cPS given below Eq.
(10) in Ref. [11].
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6. Exact scaling solution of the mode coupling equations

and

1 < zα ≤ 2 ∀α (6.76)

In order to solve the non-linear recursion (6.75) in case B we iterate the recursion to find e.g.
for a five-fold iteration the continued fraction

z5 = 1 +
1

1 +
1

1 +
1

1 + 1
z1

. (6.77)

Here the modes are ordered in such a fashion that the mode that minimizes the exponent of mode
2 is mode 1 and so on. The continued fraction terminates when a set Iβ in this iteration of (6.75)
is empty. Remarkably, for z1 = 1 this is the well-known continued-fraction representation of the
Kepler ratios which implies that if z1 is any Kepler ratio Fα/Fα+1 then zn = Fn+α−1/Fn+α is
also a Kepler ratio. Thus for each parent critical exponent 2 or 3/2 from case A or case C (which
are both Kepler ratios) one generates descendant dynamical exponents which are Kepler ratios
as long as the sets Iβ are non-empty. If there is no coupling from any mode in case B to a mode
from case A or C then the unique solution to the recursion is the golden mean zα = ϕ for all
modes from case B. The golden mean is defined by

ϕ :=
1

2
(
√

5 + 1) . (6.78)

Useful relations are

ϕ−1 =
1

2
(
√

5− 1), ϕ = 1 + ϕ−1, ϕ2 = 1 + ϕ, ϕ−2 = 2− ϕ. (6.79)

The numerical value is ϕ ≈ 1.618.

6.3. Examples

Given as input parameters the diagonal mode-coupling constantsGαββ , the diffusion coefficientsDα

and the KPZ-functionals Ω[f̂KPZ ], Ω[f̂KPZ′ ], the explicit scaling solutions of the mode-coupling
equations are (6.51), (6.63), (6.70) and (6.71). The dynamical exponents zα have to be deter-
mined self-consistently from the sets Iα defined in (6.49), using (6.50), (6.57), (6.68) and (6.69).
The prefactors of the scaling variable Eα for the Fibonacci modes are then given by (6.54), (6.60),
(6.67), (6.72). The asymmetry for the Fibonacci modes is determined by (6.62). We stress that
no assumptions other than strict hyperbolicity and subballistic scaling have been made to arrive
at these results.

6.3.1. Example 1: G1
11 = G1

22 = G2
22 = 0, G2

11 6= 0

Mode 1:

For mode 1 we have case A. Eq. (6.50) gives

z1 = 2 (6.80)

and (6.51) gives

Ŝ1(k, t) =
1√
2π

e−iv1kt−D1k2t (6.81)
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which is diffusion.

Mode 2:

For mode 2 we have case B. Since there is only one other mode, which has z1 = 2, (6.57) gives

z2 = 3/2. (6.82)

From (6.54) we obtain

Q21 =
(G2

11)2

√
2D1

, (6.83)

from (6.60)

E2 = Q21
cos
(
(2− z2) π2

)
|v2 − v1|2−z2

=
(G2

11)2

2
√
D1|v2 − v1|

(6.84)

and from (6.62)
A2 = sgn(v2 − v1) . (6.85)

Since tan (z2π/2) = −1 we arrive at

Ŝ2(k, t) =
1√
2π

exp
(
−iv2kt− E2|k|3/2t (1 + isgn(k(v2 − v1)))

)
(6.86)

which is in agreement with [2].

6.3.2. Example 2: G1
11 = G2

22 = 0, G1
22, G

2
11 6= 0

For both modes we have case B. It is expedient to define

Hα := 2Eα (6.87)

g1 := (G1
22)2 (6.88)

g2 := (G2
11)2 (6.89)

θ :=
4 sin

(
(1− ϕ)π2

)
ϕ sin

(
π
ϕ

)
|v1 − v2|2−ϕ

(6.90)

For modes 1 and 2 we have from (6.57)

z1 = 1 +
1

z2
, z2 = 1 +

1

z1
(6.91)

The solution of these two equations is

z1 = z2 =
1

2
(1 +

√
5) = ϕ (6.92)

(see also the relations (6.79)).
From (6.60) and (6.67) we obtain

H1 = Q12
2 sin

(
(1− ϕ)π2

)
|v1 − v2|2−ϕ

, H2 = Q21
2 sin

(
(1− ϕ)π2

)
|v2 − v1|2−ϕ

(6.93)

Q12 =
2g1H

−1/ϕ
2

ϕ sin
(
π
ϕ

) Q21 =
2g2H

−1/ϕ
1

ϕ sin
(
π
ϕ

) . (6.94)
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This yields

H1 = θg1H
−1/ϕ
2 , H2 = θg2H

−1/ϕ
1 . (6.95)

Solving for H1 gives

H
ϕ− 1

ϕ

1 =
(θg1)ϕ

θg2
. (6.96)

Using the property ϕ− 1/ϕ = 1 of the golden mean we find

E1 =
1

2

(
θ2g1g2

)ϕ−1
2

(
g1

g2

)ϕ+1
2

(6.97)

Next we use the property of the golden mean to obtain

2 sin
(
(1− ϕ)π2

)
sin
(
π
ϕ

) =
sin
(
(1− ϕ)π2

)
sin
(
π
2ϕ

)
cos
(
π
2ϕ

) =
1

sin
(πϕ

2

) . (6.98)

Thus

E1 =
1

2

(
2G1

22G
2
11

ϕ sin
(πϕ

2

)
|v1 − v2|2−ϕ

)ϕ−1(
G1

22

G2
11

)ϕ+1

. (6.99)

With a similar calculation one obtains

E2 =
1

2

(
2G1

22G
2
11

ϕ sin
(πϕ

2

)
|v1 − v2|2−ϕ

)ϕ−1(
G2

11

G1
22

)ϕ+1

. (6.100)

in agreement with [2] since (2− ϕ)(1− ϕ) = 1− 2/ϕ.

Excursion: For λ := G1
22 = G2

11 and c = −v1 = v2 this case was treated in [3] in a different way.
We demonstrate how the amplitude E := E1 = E2 arises from Eqs. (6.11), (6.12) and (6.14) in
[3]. The point to prove is

E = C (6.101)

where C is the amplitude of the scaling variable defined in the first line of (6.14).
Proof: We have to compute C from (6.11) and (6.12). To this end we define

µ := 2(4πλ)2a, ν :=
1

γ
Γ

(
1

γ

)
(6.102)

with
a = (4πc)−1+1/γ π

2Γ
(

1
γ

)
cos
(
π
2γ

) = (4πc)γ−2 π

2γν sin
(πγ

2

) (6.103)

given in (6.11). In the second equality we used cos
(
π
2γ

)
= sin

(πγ
2

)
which follows from 1/γ = γ−1.

Now observe that (6.12) yields
A = (µA)−1/γν. (6.104)

Taking this to the power γ and using γ − 1 = 1/γ yields Aγ = (µA)−1νγ = µ−1+1/γνγ−1A1/γ .
Since γ − 1/γ = 1 we arrive at

A = µ−1(µν)1/γ (6.105)

where according to (6.103)

µν = 2(4πλ)2(4πc)γ−2 π

2γ sin
(πγ

2

) =
4γπ1+γλ2

γ sin
(πγ

2

)cγ−2. (6.106)
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This yields

(µν)1/γ = 4πγ

(
λ2

γ sin
(πγ

2

))1/γ

c1−2/γ . (6.107)

Now we note that by definition ((6.12) and first line of (6.14))

C =
1

2
µ(2π)−γA (6.108)

which gives

C =
1

4
21−γπ−γ(µν)1/γ =

1

21/γ

(
λ2

γ sin
(πγ

2

))1/γ

c1−2/γ (6.109)

Finally we rewrite E in terms of these parameters and ϕ = γ:

E =
1

2

(
2λ2

γ sin
(πγ

2

))1/γ

(2c)1−2/γ =
1

21/γ

(
λ2

γ sin
(πγ

2

))1/γ

c1−2/γ (6.110)

which proves C = E. 2

6.3.3. Example 3: Two KPZ-modes and the heat mode

Consider three conservation laws and label the modes by 0 and σ = ±1. We consider Gσσσ = γs,
G0

00 = 0 and G0
11 = −G0

−1−1 = γh. Furthermore we assume vσ = σv, v0 = 0.
In this case I∗σ = {σ} which means that the two modes σ = ±1 are KPZ. Following [1] they

can be interpreted as sound modes and mode 0 is the heat mode. For the two sound modes one
has [5]

φσ(x, t) = (λst)
−2/3fKPZ((x− σvt)/(λst)2/3) (6.111)

with
λs = 2

√
2|γs| = 23/2|γs|. (6.112)

Notice that λ
−2/3
s = 1/2|γs|−2/3.

For the heat mode we find from (6.72) the constants Q01 = Q0−1 = 2γ2
hΓ (1/3) ΩKPZ . The

structure of the mode-coupling matrices yields I∗0 = {1,−1}. Therefore z0 = 5/3 and from (6.60)
one has E0 = 2Q01 sin (π/3)v−1/3, F0 = 0. Thus (6.62) gives A0 = 0 and

Ŝ0(k, t) =
1√
2π

exp
(
−E0|k|5/3t

)
(6.113)

with

E0 = 2Γ

(
1

3

)
sin
(π

3

)
γ2
hv
−1/3γ−2/3

s cPS . (6.114)

In order to see that this agrees with Eq. (4.12) of Ref. [5] one has to show that E0 = λh(2π)−5/3

with
λh = λ−2/3

s (G0
σσ)2(4π)2(2πc)−1/3 π

2Γ(2/3) cos (π/3)
cPS (6.115)

and v = c. Indeed, one has, using (6.66) with x = 3/2,

λh(2π)−5/3 = 4λ−2/3
s (G0

σσ)2v−1/3 π

2Γ(2/3) cos (π/3)
cPS

= 4γ2
hv
−1/3λ−2/3

s

Γ(1/3) sin (2π/3)

2 cos (π/3)
cPS
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= 4γ2
hv
−1/3λ−2/3

s Γ(1/3) sin (π/3)cPS

= 2γ2
hv
−1/3γ−2/3

s Γ(1/3) sin (π/3)cPS

= E0 (6.116)

which is what needed to be shown.

6.4. Conclusions

We have shown that in the scaling limit the one-loop mode-coupling equations for the dynamical
structure function for an arbitrary number of conservation laws in the strictly hyperbolic setting
can be solved exactly. The solution yields a discrete family of dynamical universality classes with
dynamical exponents that are the Kepler ratios zα = Fα+2/Fα+1 which are in the range 3/2 ≤
zα ≤ 2. The largest exponent z1 = 2 corresponds to a Gaussian diffusive mode, possibly with
logarithmic corrections (that we did not consider). The smallest exponent z2 = 3/2 represents
three distinct universality classes with different scaling forms of the dynamical structure function:
One has the KPZ universality class with the Prähofer-Spohn scaling function [27, 28], a modified
KPZ universality class with unknown scaling function [3], and a Fibonacci mode where the
scaling function is given by the 3/2-Lévy stable distribution [15, 2, 3]. All higher modes α ≥ 3
are Fibonacci modes with zα-Lévy stable distributions as scaling functions, including the golden
mean z∞ = ϕ. In order to have a mode α with dynamical exponent zα one needs at least α − 1
conservation laws, with the exception of the golden mean which requires only two conservation
laws and always appears at least twice.

Which combinations of universality classes are actually realized in a given physical system
depends on which diagonal elements of the mode coupling matrices vanish. This information
is fully contained in the macroscopic stationary current-density relation alone. Symmetries of
the microscopic equations of motion may also encode relevant information about the diagonal
elements of the mode coupling matrices. E.g. for Hamiltonian dynamics as considered in [1]
(with three modes denoted by 0,±) only the four diagonal elements G±±±, G∓±± G±00 and G0

±±
may be non-vanishing by symmetry which generically leads two KPZ modes and a Fibonacci heat
mode with z = 5/3. In anharmonic chains with three conservation laws only three cases of the
classification are realised, viz. (a) 2 KPZ-modes and a Fibonacci 5/3-mode, or 2 diffusive modes
and Fibonacci 3/2-mode, or three golden mean Fibonacci modes [30].

The upshot is that diffusion, KPZ, modified KPZ and the Fibonacci family provide a com-
plete classification of the dynamical universality classes which we expect to be generic for one-
dimensional conservative systems where the long-time dynamics are dominated by the long-wave
length behaviour of the modes associated with the conservation laws.
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Abstract: Bottlenecks, i.e. local reductions of capacity, are one of the most relevant scenarios
of traffic systems. The asymmetric simple exclusion process (ASEP) with a defect is a minimal
model for such a bottleneck scenario. One crucial question is ”What is the critical strength of the
defect that is required to create global effects, i.e. traffic jams localized at the defect position”.
Intuitively one would expect that already an arbitrarily small bottleneck strength leads to global
effects in the system, e.g. a reduction of the maximal current. Therefore it came as a surprise
when, based on computer simulations, it was claimed that the reaction of the system depends in
non-continuous way on the defect strength and weak defects do not have a global influence on the
system. Here we reconcile intuition and simulations by showing that indeed the critical defect
strength is zero. We discuss the implications for the analysis of empirical and numerical data.
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Figure 7.1.: Three corridors of different widths wj . The bottleneck strength is inversely propor-
tional to wj . Lane formation leads to a non-continuous dependence of the current on
the bottleneck strength.

7.1. Introduction

One of the most important scenarios in any traffic system are bottlenecks, i.e. (local) flow limi-
tations. Typical examples are a reduction in the number of lanes on a highway, local speed limits
or narrowing corridors or exits in pedestrian dynamics. The identification of bottlenecks gives
important information about the performance of the system. E.g. in evacuations, egress times
are usually strongly determined by the relevant bottlenecks. Therefore a proper understanding
of bottlenecks and their influence on properties like the flow is highly relevant.

One of the most natural questions is ”When does a bottleneck lead to a traffic jam?” Does any
bottleneck immediately lead to jam formation or is there a minimal bottleneck strength required?
Intuitively one would say that even a small bottleneck strength leads to macroscropically observ-
able effects, like a reduction of the maximal current or jams. However, other scenarios have been
considered as well and have even been part of legal guidelines. One prime example in pedestrian
dynamics is the dependence of the current on the width of a corridor [1, 2]. Originally it was
believed that the current increases stepwise, i.e. non-continuously, with increasing bottleneck
width. This increase was assumed to happen when the corridor width allows an additional lane
of pedestrians to be formed (Fig. 7.1). Taking the corridor width as measure for the bottleneck
strength (rather its inverse) this implies that an increasing bottleneck strength not necessarily
leads to smaller current values or jam formation. In the meantime we know that this scenario is
not correct and the current increases linearly with the width [1]. However it is still possible that
there are situations where lane formation is relevant and this scenario is more adequate, e.g. in
colloidal systems [3].

In the following we will take a theoretical physics point of view by considering a minimal
model for bottlenecks. Experience shows that the results capture the generic nature of bottleneck
transitions.

7.2. Bottlenecks in the ASEP

The Asymmetric Simple Exclusion Process (ASEP) is a paradigmatic model of of nonequilibrium
physics (for reviews, see e.g. [4, 5, 6, 7, 8]) and arguably the simplest model that captures essential
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Figure 7.2.: ASEP with a defect (slow bond) where the hopping probability is r < p. r = p
corresponds to the homogeneous case. Left: Periodic boundary conditions with N =
8 sites, the slow bond is between sites 8 and 1. Right: Open boundary conditions
with N = 16 sites, the slow bond is between sites 8 and 9.

features of traffic systems, i.e. directed motion, volume exclusion and stochastic dynamics. It
describes interacting (biased) random walks on a discrete lattice of N sites, where an exclusion
rule forbids occupation of a site by more than one particle. A particle at site j moves to site
j + 1 with rate p if site j + 1 is not occupied by another particle (Fig. 7.2). In the following we
will mainly use a random-sequential update. If sites are updated synchronously (parallel update)
the model is the vmax = 1 limit of the Nagel-Schreckenberg model [8, 9]. Many exact results
are known for the homogeneous case of the ASEP, e.g. the fundamental diagram and the phase
diagram in case of open boundary conditions [4, 5, 6, 7, 8].

A simple but generic model for a bottleneck is obtained by replacing one of the hopping
probabilities p by a defect, or slow bond, with hopping probability r < p (Fig. 7.2). Many
properties of this defect system have been obtained in a seminal paper by Janowsky and Lebowitz
[10]. They have shown that the shape of the fundamental diagram can be understood by a simple
mean-field theory. In the stationary state the current can be obtained by matching the current
Jhom in the homogeneous system with the current Jdef at the defect. Neglecting correlations at
the defect site one finds that the defect has no influence on the system for low densities ρ < ρ1

and large densities ρ > ρ2
1. The density remains uniform throughout the whole system and the

current is identical to that of the homogeneous system (Fig. 7.3).
For densities ρ1 < ρ < ρ2, on the other hand, the fundamental diagram exhibits a plateau

where the current is independent of the density (Fig. 7.3). The plateau value Jplat corresponds to
the maximal current that is supported by the defect. In this density regime the stationary state
is no longer characterized by a uniform density. Instead phase separation into a high and a low
density region is observed. The high density region corresponds to a jam that is formed at the
defect position (Fig. 7.4). For periodic boundary conditions the length of jam shows characteristic
fluctuations (Fig. 7.4, left) [10].

For the ASEP with periodic boundary conditions, random-sequential update and a defect r
mean-field theory makes quantitative predictions for the phase separated regime [10]. The value
of the current in the plateau region is given by

Jplat =
pr

(p+ r)2
(7.1)

and the densities in the low and high density region by

ρ` =
r

p+ r
. and ρh =

p

p+ r
(7.2)

1For the ASEP, due to particle-hole symmetry, ρ1 = 1− ρ2.
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is independent of the global density ρ for ρ1 < ρ < ρ2. The plateau value Jplat in
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Figure 7.5.: Phase diagram of the ASEP with defect according to [10]. The full line shows the
current at the plateau as function of the defect hopping rate r. Any r < p leads to a
reduction of the maximal current compared to that of the homogeneous system Jmax.
In the phase of uniform density the defect has only local effects.

The critical densities ρ1, ρ2 which determine the plateau regime ρ1 < ρ < ρ2 are simply

ρ1 = ρ` and ρ2 = ρh . (7.3)

The mean-field results are supported by systematic series expansions [11].

Fig. 7.5 shows the resulting phase diagram. For any defect r < p only currents up to the plateau
value Jplat can be realized in the system which then phase separates into a high density region
pinned at the defect and a low density regime. For currents J < Jplat the density is uniform.
The important point is that Jplat < Jmax for any r < p where Jmax is the maximal current in the
homogeneous system. In other words: any bottleneck leads to a reduction of the current and a
phase separated state (at intermediate densities).

7.3. What is the critical bottleneck strength?

Mean-field theory predicts that any bottleneck r < p leads to the formation of a plateau in
the fundamental diagram and the associated phase-separated state [10]. Defining the bottleneck
strength by

∆p =
p− r
p

(7.4)

this implies that the critical bottleneck strength (∆p)c at which the defect has global influence
on the system (e.g. its current or the density) is predicted to be

(∆p)c = 0 , i.e. rc = p . (7.5)

As mentioned in the Introduction this is what is intuitively expected. Therefore it came as quite
a surprise when it was claimed [12], based on extensive computer simulations, that rc ≈ 0.8, i.e.

(∆p)(Ha)
c ≈ 0.2 . (7.6)
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Figure 7.6.: Phase diagram of ASEP with defect according to [12]. Defects with rc < r ≤ p have
no influence on the current J .

The corresponding phase diagram is shown in Fig. 7.6. In contrast to Fig. 7.5, for defects r > rc
all currents up to Jmax can be realized and there is no phase separation at any density for weak
defects! In this case the bottleneck has only local effects which can be observed near the defect,
but not in the whole system.

Due to this apparent contradiction with expectations we have revisited the ASEP defect prob-
lem in [13] based on highly accurate Monte Carlo simulations. Similar to [12] we have simulated
the ASEP with open boundary conditions, random-sequential dynamics (with p = 1) and a de-
fect in the middle of the system (Fig. 7.2). However, choosing α = β = 1

2 as in [12], corresponds
exactly to the phase boundary of the high, low and maximal current phase [5, 6, 8]. Fluctuations
in finite-size systems will systematically underestimate the defect current J (r) [13]. We have
therefore choosen α = β = 1 well inside the maximal current phase which allows to obtain a
much better statistics.

To determine rather subtle bottleneck effects, very good statistics and advanced Monte Carlo
techniques are required. To minimizes errors induced by pseudo-random number generators we
have used the Mersenne Twister [13].

Measurements of bottleneck effects for small defect strengths are easily hidden by fluctuations.
Instead of using independent measurements for each defect strength r the systems are evolved
in parallel, i.e. with the same protocol and the same set of random numbers, which leads to a
strong suppression of fluctuations [13].

In order to minimize finite-size corrections, system lengths of up toN = 200.000 were considered
(Fig. 7.7) which is two orders of magnitude larger than the systems considered in [12].

To estimate the global effects of the defect we first considered the finite-size current J(N, r)
through a system of length N and with a defect r. Due to the fact that finite size corrections
lead to an enhanced current, i.e. J (r,N) > J (r,N =∞), one finds a lower bound for the critical
hopping rate by satisfying J (N, rc)− J (N =∞, r = 1) < 0. However, in this way we only could
derive a lower bound rc ≥ 0.86 for the critical hopping rate (Fig. 7.7). Assuming the existence of
an essential singularity at rc = 1, i.e. j (1)−j (r) ∼ exp (−a/ (1− r)) [11], further improvement of
the lower bound for the critical defect rc by increasing the system length is a hopeless enterprise:
e.g. a numerical proof of rc > 0.9, rc > 0.95, rc > 0.99 would require N > 1010, N > 1022,
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N > 10147, respectively.

A much better quantity to determine the global influence of the defect (see e.g. Fig. 7.4, right)
is the density profile or rather the difference between the density profile of the defect system
with a corresponding homogeneous system (Fig. 7.8). Using the approach of parallel evolving
systems we could clearly show a nonlocal influence on the density profile for defect strengths up
to r = 0.99 (Fig. 7.8). This strongly supports the mean-field prediction rc = 1.

7.4. Discussion and relevance for empirical results

Despite its relevance for applications some fundamental aspects of bottlenecks are not fully un-
derstood. Even for a minimal model like the ASEP with a defect the influence of weak bottlenecks
is rather subtle and can be easily lost in fluctuations.

We have shown how to reconcile computer simulations with the intuition that even small
defects have a global influence on the system. These effects are not easily seen in a reduction
of the current which presumably shows a non-analytic dependence on the bottleneck strength.
Bottlenecks are better identified by their effects on the density profile which spreads throughout
the whole system..

Based on a careful statistical analysis of Monte Carlo simulations we have found strong evidence
that an arbitrarily weak defect ∆p → 0 in the ASEP has a global influence on the system.
Meanwhile a mathematical proof of (∆p)c = 0 has been announced in [14].

These results are believed to be generic for bottleneck systems. As a consequence the iden-
tification of weak bottlenecks in noisy empirical data is extremely difficult. Even for computer
simulations very good statistics is required. Since the effect on the current is rather small, the
density profile might be a better indicator for the presence of weak bottlenecks.
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[6] Schütz, G.M.: Exactly Solvable Models for Many-Body Systems Far from Equilibrium.
in: Phase Transitions and Critical Phenomena, Vol. 19, C. Domb and J. L. Lebowitz Ed.,
Academic Press, San Diego (2001)

[7] Blythe, R.A., Evans, M.R.: Nonequilibrium steady states of matrix product form: a solver’s
guide. J. Phys. A: Math. Gen. 40, R333 (2007)

110



Bibliography

[8] Schadschneider, A., Chowdhury, D., Nishinari, K.: Stochastic Transport in Complex Sys-
tems: From Molecules to Vehicles, Elsevier Science, Amsterdam (2010)

[9] Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I
(France) 2, 2221 (1992)

[10] Janowsky, S.A., Lebowitz, J.L.: Finite-size effects and shock fluctuations in the asymmetric
simple-exclusion process. Phys. Rev. A 45, 618 (1992)

[11] Costin, O., Lebowitz, J.L., Speer, E.R., Troiani, A.: The blockage problem. Bull. Inst. Math.
Acad. Sin. 8, 49 (2013)

[12] Ha, M., Timonen, J., den Nijs, M.: Queuing transitions in the asymmetric simple exclusion
process. Phys. Rev. E 58, 056122 (2003)

[13] Schmidt, J., Popkov, V., Schadschneider, A.: Defect-induced phase transition in the asym-
metric simple exclusion process. EPL 110, 20008 (2015)

[14] Basu, R., Sidoravicius, V., Sly, A.: Last passage percolation with a defect line and the
solution of the slow bond problem. arXiv:1408.3464

111





8. Defect-induced phase transition in the
asymmetric simple exclusion process

Johannes Schmidt1, Vladislav Popkov1,2

and Andreas Schadschneider1

1Institut für Theoretische Physik, Universität zu Köln,
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Abstract: We reconsider the long-standing question of the critical defect hopping rate rc in
the one-dimensional totally asymmetric exclusion process (TASEP) with a slow bond (defect).
For r < rc a phase separated state is observed due to queuing at the defect site whereas for
r ≥ rc the defect site has only local effects on the stationary state of the homogeneous system.
Mean-field theory predicts rc = 1 (when hopping rates outside the defect bond are equal to 1) but
numerical investigations seem to indicate rc ≈ 0.80(2). Here we improve the numerics to show
that rc > 0.99 and give strong evidence that indeed rc = 1 as predicted by mean-field theory, and
anticipated by recent theoretical findings.
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8. Defect-induced phase transition in the asymmetric simple exclusion process

8.1. Introduction

Despite much progress in recent years, our understanding of nonequilibrium stationary states is
far from complete. This especially concerns the effects of disorder and defects in driven diffusive
systems. Although it is well established that in driven systems already a localized defect can have
a global influence on the behavior, many open questions remain. Since e.g. no analogue of the
Harris criterion [1] is known for nonequilibrium situations no general statements on the influence
of weak disorder on the critical behavior can be made [2].

Surprisingly even for the simplest model of driven diffusion, the totally asymmetric exclusion
process (TASEP), the precise influence of a single defect has not been fully clarified for a long
time. It is well-known since the seminal work of Janowsky and Lebowitz [3, 4] that such a
defect has not just a local effect, but changes the nature of the stationary state dramatically (for
reviews, see e.g. [5, 6]). What is not clear up to now is whether a finite critical strength of the
defect is required to create global effects. Mean-field theory predicts a global influence already
for arbitrarily small defect strengths whereas the most accurate numerical investigations up to
date [7] show strong indications that a finite defect strength is required.

Recently the problem has been newly addressed in the mathematical literature, in a series of
works [8, 9, 10, 11]. In [8], based on analytical arguments from series expansions and results
for related systems (e.g. directed polymers) it was argued that an arbitrarily small defect in a
TASEP with open boundaries will have global effects, e.g. on the current and on the density
profile. In [9], the authors claim to have proved rigorously, that the steady current in TASEP
with a slow bond is always affected for any nonzero defect strength.

In view of these new findings, the numerical studies predicting finite critical blockage strength,
appear even more paradoxical, with the rc = 1 problem finally settled. It remains to understand
if the effects of the slow bond are so weak that they cannot be observed in numerics, which
would make the beautiful theoretical result a pure theoretical construction without any practical
content.

It is the purpose of this letter to show that this is not the case, and to provide detailed results
from highly accurate Monte Carlo simulations which strongly support the theory. Moreover, we
also resolve the apparent numerical paradox, revisiting previous numerical studies and pointing
out exactly where the error of the previous numerical studies was.

8.2. Model

The totally asymmetric simple exclusion process (TASEP) is a paradigmatic model of nonequi-
librium physics (for reviews, see e.g. [12, 13, 14, 15, 16, 17, 18]) describes interacting (biased)
random walks on a discrete lattice of N sites, where an exclusion rule forbids occupation of a
site by more than one particle. A particle at site k moves to site k + 1 at rate p if site k + 1 is
not occupied by another particle. The boundary sites k = 1 and k = N are coupled to particle
reservoirs. If site 1 is empty, a particle is inserted at rate α. A particle on site N is removed
from the system at rate β. Sites are updated using random-sequential dynamics. Throughout
the paper, we will set p = 1.

Here we consider a system of two TASEPs of length N/2 coupled by a slow bond between sites
N/2 and N/2 + 1 with reduced hopping rate r ≤ p (Fig. 8.1). This is equivalent to a TASEP of
N sites with a defect site in the middle and defect strength p− r.

For periodic boundary conditions this problem has been analyzed by Janowsky and Lebowitz
[3, 4]. Below a critical rate rc they found a phase separation into high and low density regions
due to queuing at the defect site. The two phases are separated by a shock (domain wall). The
phase separation is also reflected in the current-density relation (fundamental diagram) which
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rα

1 N/2 NN/2+1

Figure 8.1.: Open TASEP with a slow bond (r < 1) in the middle.

shows a density-independent current at intermediate densities due to the current-limiting effect
of the slow bond. A mean-field theory that neglects correlations at the defect site predicts that
rc = 1 [3], i.e. an arbitrarily small defect leads to a phase separated stationary state. This is
supported by series expansions obtained from exact results for small systems [4]. Exact results
have been obtained for the case of sublattice-parallel update with deterministic bulk hopping by
Bethe Ansatz [19] and matrix-product Ansatz [20]. Also in this case rc = 1.

For open boundary conditions, a mean-field treatment of the TASEP with a defect in the
middle of the system yields rc = 1 [21]. Later Ha et al. [7] studied the problem numerically (with
rates p = 1, α = β = 1/2). They suggested that rc = 0.80 (2), see next section for details.

Due to its relevance e.g. for intracellular transport, recently the open TASEP with several
defects has attracted some attention, see e.g. [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33].

8.3. Simulations

In order to analyze the system with a defect we perform Monte Carlo (MC) simulations for an open
TASEP on a chain of large size (N ≤ 200.000), to minimize finite-size effects as much as possible.
Both bulk hopping rates and boundary hopping rates are chosen equal to 1. This corresponds to
a point in the maximal current phase which is characterized by a spatially homogeneous steady
state with bulk density of particles ρbulk = 1/2 and the current j(∞) = ρbulk(1− ρbulk) = 1/4 in
the limit of an infinite system size [13].

Initially N/2 particles are distributed randomly within a homogeneous chain without a defect.
Then, the relaxation of the system is performed for 100N2 single Monte Carlo updates [34],
according to the dynamical rules for α = β = 1.

After the initial relaxation, the weak bond is introduced in the middle of the system, meaning
that a particle hop from site k = N/2 to N/2 + 1 occurs with reduced rate r < 1, see Fig. 8.1.
Then the system is relaxed further for 100N2 single Monte Carlo updates and the average current
is recorded. It can be written as

jFS(r,N, α, β) = j(r,∞) + δFS(r,N, α, β) (8.1)

where δFS are finite-size corrections. The relaxation to steady state is controlled by a comparison
of the finite-size corrections of the current measured numerically with the theoretically-predicted
value, see Fig. 8.2.

We aim at determining a lower bound for the critical rc at which the phase separation starts.
It is well-known [35] that the leading finite-size corrections to the current of the homogeneous
TASEP for α = β = 1 are positive,

jFS(r = 1, N, α = 1, β = 1) = j(r = 1,∞) +
3

8N
+O(N2)

> j(r = 1,∞) . (8.2)

Therefore, if for some defect hopping rate r0 the steady current within the error bars is smaller
than its limiting value, j(r0, N) < 1/4, this would definitely mean that rc > r0. The lower bound
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Figure 8.2.: Finite-size corrections of the steady current for a homogeneous model without slow
bond. Error bars show the 99% confidence bound, the red line marks the exact
leading finite-size correction in 1/N .

r∗ for rc is then calculated as the point where j(r∗, N) = 1/4, accounting also for error bars,
see Fig. 8.3. Note that our reasoning does not involve any a priori assumptions except from the
positiveness of finite-size corrections to the current. In this way, we obtain a lower bound for rc
which depends on the system size. For larger system size, finite-size corrections are smaller and
better estimates for the lower bound can be made, see Fig. 8.3. For system size N = 2 · 105 we
obtain the following lower bound estimate,

rc > 0.86 . (8.3)

It is difficult to improve the lower bound (8.3) by a further increase of the system size N , because
much larger system sizes are not numerically accessible. However, already the lower bound value
0.86 definitely contradicts the result of Ha et al. [7], where rc = 0.80 (2) was found. Their estimate
was based on a different argument. In order to understand the reason for the contradiction, we
repeated Monte Carlo simulations with the same parameters as in [7], and in particular using the
much smaller system size of N = 4100.

The key quantity analyzed by Ha et al., is defined as

∆b ∝
∣∣∣∣ρbulk,segment −

1

2

∣∣∣∣ (8.4)

or
∆b = 2

√
j(r = 1, N)− j(r,N) . (8.5)

It is assumed to obey the scaling form

∆b ∼ (rc − r)−β (8.6)

near the phase boundary. Then, the best straight line fit on the double logarithmic plot of ∆b

versus rc − r, has lead to the conclusion rc = 0.80 (2). We repeated the relevant Monte Carlo
simulations for the parameters chosen in [7]. Fig. 8.4 shows the double logarithmic plot of ∆b

versus rc−r. The square window corresponds to the area shown in the original paper, see Fig. 4a
of [7]. We can see that what might look as a straight line inside the window, certainly fails to
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straighten outside the window. Thus the conclusion of [7] of a phase transition at rc = 0.80 (2) is
not justified.

It is instructive at this point to stress the importance of a choice of an adequate random gener-
ator to perform the Monte Carlo update. This choice is crucial for producing high quality Monte
Carlo data [36]. In Fig. 8.5, Monte Carlo data for the current, produced by different random num-
ber generators, are compared and show systematic differences. For our simulations throughout
this paper we are using Mersenne-Twister-generator which is known for producing high quality
pseudo-random numbers. In Fig. 8.5 it is seen that using the most common Park and Miller
new minimal standard linear congruential generator [37] leads to a systematic overestimation of
the current, and might consequently lead to wrong conclusions in the subtle TASEP blockage
problem.

We also note, that the point α = β = 1/2 as chosen for studying the blockage problem in [7] lies
exactly at the phase boundary between the maximal current, low density and high density phases
[12, 13, 14, 15, 16, 17, 18]. This may lead to further complications and an additional reduction
of the steady current due to fluctuations. We stress that for our study we choose α = β = 1,
i.e. a point well inside the maximal current phase far from the boundaries with the low density
TASEP phase (α = 1/2) and the high density TASEP phase (β = 1/2).

8.4. Effects of a defect in finite systems: parallel evolution

As is already mentioned, both mean-field theory and series expansions arguments hint at rc = 1.
Assuming the existence of an essential singularity at rc = 1, j(1) − j(r) ∼ exp(−a/(1 − r)) [8],
further improvement of the lower bound for the weak bond problem by an increase of the system
size is a hopeless enterprise: e.g. a numerical proof rc > 0.9, rc > 0.95, rc > 0.99) with the direct
method (see Fig. 8.3) would require N > 1010, N > 1022, N > 10147 respectively.

Instead of increasing the system size, we address the problem of a critical blockage strength in
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different way by measuring how a TASEP responds to a slow bond, as discussed below.

After the pre-relaxation performed on the homogeneous system as described above, we make
two copies of the system configuration. Then a slow bond is introduced in one copy whereas
the other remains homogeneous. Both copies evolve in time according to the same protocol, i.e.
using the same set of random numbers for both systems. The averaged density profiles of both
copies are compared after sufficiently large relaxation time. Due to the defect site, one expects a
density gradient forming locally in the vicinity of the blockage for any r < 1. If the disturbance
remains local, the state of the system far from the blockage will not change, with respect to a
homogeneous system. In contrast, a non-local disturbance spreading to the whole system would
lead to a reduction of the global current and to phase separation. Thus the current and the
density profile are sensitive probes for the effects of the slow bond and for the possible occurrence
of a phase separated state.

Performing extensive MC simulations we are able to see a non-local effect of the blockage up
to r = 0.99, both in steady current and in local particle density far away from the blockage, see
Fig. 8.6. Consequently, a presence of the weak bond has a small but systematic effect on both the
current and the local density nk far away from the blockage site. This shows that the blockage
produces perturbations which do not remain local, but spread over the bulk.

8.5. Conclusion

We have revisited a long-standing problem of a TASEP with a weak bond. Since the effects are
small for small defect strength, this is a subtle problem that requires high numerical accuracy in
simulations. We have shown that here even the choice of the random number generator is crucial.
By Monte Carlo simulations performed on large systems (up to 200.000 sites), we have established
a new lower bound for the critical defect strength leading to phase separation. For the current,
we could clearly show a reduction compared to the value j(r = 1) = 1/4 of the homogeneous
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8. Defect-induced phase transition in the asymmetric simple exclusion process

system for defect hopping rates up to r = 0.86. Therefore we conclude that rc > 0.86. Studying
a parallel evolution of two initially identical systems, with and without a weak bond, we find
systematic global effects induced by the weak bond for defect hopping rate up to r ≤ 0.99. Our
study supports the hypothesis that the critical blockage hopping rate is rc = 1, and definitely
rules out a previously obtained critical value rc = 0.80(2). This indicates that the mean-field
theory prediction is indeed correct which is important since it is used quite frequently also in
more complex situations, like flows on networks [38, 39, 40, 41, 42] or as effective models for
highway traffic near ramps [43].
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[13] G.M. Schütz, in Phase Transitions and Critical Phenomena vol 19., C. Domb and
J. L. Lebowitz Ed., Academic Press, San Diego (2001)

[14] R. K. P. Zia and B. Schmittmann, J. Stat. Mech. (2007) P07012

[15] A. Schadschneider, D. Chowdhury, K. Nishinari: Stochastic Transport in Complex Systems:
From Molecules to Vehicles, Elsevier Science, Amsterdam (2010)

[16] P.L. Krapivsky, S. Redner, E. Ben-Naim: A Kinetic View of Statistical Physics, Cambridge
University Press, Cambridge (2010)

[17] R.A. Blythe, M.R. Evans: J. Phys. A: Math. Gen. 40, R333 (2007)

120



Bibliography

[18] B. Derrida: J. Stat. Mech. (2007) P07023
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Conclusions of Part II -
Dynamical Universality Classes

This project started initially with the identifications of new dynamical universality classes,
known from anharmonic chains, in driven diffusive systems. Crucial hints by Herbert
Spohn pointing out the possibility of the golden mean universality class prior to publication
[90] and the richness of supported universality classes in multi-component driven diffusive
systems already for minimal settings motivated us to explore mode coupling equations for
nonlinear fluctuating hydrodynamics more carefully.

We generalized the one-loop mode coupling equations to arbitrary many conservation
laws and solved them exactly in the asymptotic limit for a strictly hyperbolic setting.

The solution reveals an infinite discrete family of dynamical universality classes. Re-
markably, their exponents zα are given by quotients of neighboring Fibonacci numbers,
starting with either z1 = 2 (if a diffusion mode exists) or z1 = 3/2 (if a KPZ mode is
present and no diffusion mode exists). If neither a diffusion nor a KPZ mode are present,
all modes have the golden mean ϕ = (1 +

√
5)/2 as their dynamical exponent zα = ϕ.

In order to have a mode α ≥ 3 with dynamical exponent zα = Fα+2/Fα+1 and Fibonacci
numbers Fα+2 = Fα+1 + Fα+2 starting at F1 = F2 = 1 one needs at least α − 1 conserva-
tion laws. The minimum setting for a golden mean modes requires at least two conserved
fields. All possible exponents are in the range of 3/2 ≤ zα ≤ 2. The largest exponent
z = 2 represents the diffusion class with Gaussian scaling belonging to the family of stable-
distributions. In contrast, the smallest superdiffusive exponent z = 3/2 represents three
different universality classes showing distinct scaling functions. The KPZ universality class
with the Prähofer-Spohn scaling function [74, 75], a modified KPZ universality class with
unknown scaling function [90], and a Fibonacci mode with a scaling function described
by the 3/2-Lévy stable distribution [70, 90]. The universal scaling functions of all higher
(α ≥ 3) Fibonacci modes, including the golden mean case, are asymmetric zα-Lévy stable
distributions.

Notably, the one-loop mode coupling solution reveals that all fastest left or right moving
modes will have maximal asymmetry for Fibonacci modes. Additionally, numerical results
reveal a cutoff of the heavy tails of Fibonacci modes by the fastest right or left moving
mode. This observation is consistent with the fact that information will propagate within
the light cone. In summary, the diffusion, KPZ, modified KPZ, and the Fibonacci family
provide a complete classification of the dynamical universality classes in strictly hyperbolic
systems with locally conserved fluctuation fields. The universality classes realized by the
system are encoded in the zeros of the diagonal mode coupling matrix elements which
are completely fixed by the macroscopic stationary current-density relation alone. In case
of nonexistent diffusive modes the stationary compressibility matrix K(~ρ) allows also the
prediction of the scale factors and asymmetry of the scaling functions.

Moreover, one should note that symmetries of the current-density relations may encode
some information about supported universality classes. Taking, for instance, the two-lane
model with indistinguishable lanes, one mode is fixed to the diffusive mode while the other
might belong to any of the three z = 3/2 classes (Eq. (4.33)). Symmetries also play a major
role for other systems. In anharmonic chains symmetries of the three conservation laws
restrict the system to only three possible cases for the classification: (1) two KPZ-modes
and a 5/3-Fibonacci mode, (2) two diffusion modes and 3/2-Fibonacci mode, and (3) all
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golden mean Fibonacci modes [91]. Short-ranged Hamiltonian systems as considered in
[5] are even more restricted and support generically only two KPZ sound modes and one
5/3-Fibonacci heat mode.

Already minimal models of driven diffusive lattice gases support all possible classification
cases for two and three components. Therefore, we believe the appearance of Fibonacci
universality classes to be generic for driven diffusive systems. We have not checked this
statement for more components in our model, since we are no longer able to diagonalize
the current-density Jacobian analytically and a numerical analysis involves the risk of
errors. However, an identification of the role of symmetries would be of great interest and
might allow the construction of driven diffusive lattice gases supporting certain universality
classes by symmetry. Furthermore, we stress that current-density relations have to be
known exactly. Approximations obtained from, e.g., stationary mean-field theory will, in
general, only accidentally provide the correct dynamical universality classes. Using the
role of symmetries it might be possible to predict the universality classes even for models
with unknown exact current-density relations.

All results achieved so far with respect to dynamical universality classes, both theoreti-
cally and in computer simulations, refer to strongly hyperbolic systems. In other words, all
mode velocities are distinct which allows to neglect, in the asymptotic limit, contributions
from nondiagonal elements of the mode coupling matrices {Gα}. Nondiagonal elements
of {Gα} might play an important role for early time behavior, but their coupling breaks
down when the modes are well separated. Simulation results show a sensitive shape of the
early time structure functions to strong nondiagonal mode couplings. This modified shape
might persist for some time. To access asymptotic behavior of the structure function in
computer simulations it is advisable to choose models with large diagonal and relatively
small nondiagonal terms of the mode coupling matrices {Gα}. Doing so, we were able
to provide numerical evidence for the appearance of the Fibonacci classes with z = 3/2,
z = 5/3, z = 8/5, and z = (1 +

√
5)/2. In case of strong diagonal and negligible nondiag-

onal couplings we found additionally an astonishing agreement with the scaling function
predicted by mode coupling theory. Our asymptotic solutions are obtained within the one-
loop approximation. It is not clear how to formulate the memory kernel in general, but the
one-loop kernel provides a good approximation and might even reveal exact results. Com-
paring fitted nonuniversal scaling factors to the mode coupling scaling factors we find the
same order of magnitude while their differences seem to depend on nondiagonal elements of
the mode coupling matrices. However, the predicted scaling functions could still be exact
except for some corrections to the nonuniversal scaling factors arising from correction to
the one-loop approximation.

Although we learned a lot about dynamical universality classes in driven diffusive systems
some questions are left open.

In order to explore the nonuniversal scaling factors and their sensitivity to nondiagonal
mode coupling-matrix elements, we aim to compare numerical results of our driven diffusive
lattice gas models to numerical results for short range Hamiltonian systems and anharmonic
chains. The idea is to fix the diagonal and allow for different nondiagonal elements of
the mode coupling matrices {Gα}. The comparison of data for different models might
additionally shed some light on the role of symmetries for constructions of corrections
to the one-loop memory kernel. Anyway, the improved mode coupling memory kernel is
likely to become messy and hard to evaluate. The simple structure of the one-loop solution
and the appearance of its predicted dynamical exponents and scaling functions in different
kinds of systems strongly indicates the existence of a simpler underlying mechanism that
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determines different universality classes. Knowing the role of symmetries will provide a
first step for a more general description. The identification of fundamental mechanisms
leading to universality is promising to allow a rigorously proof of the Fibonacci dynamical
exponents and their associated Lévy stable scaling functions.

Furthermore, we plan to investigate systems with the so-called umbilic point , charac-
terized by equal characteristic velocities. For umbilic modes the peaks will not separate
and therefore nondiagonal elements of the mode coupling matrices {Gα} play an important
role. As a result a qualitatively new universality class is expected.

Our numerical results are obtained for coupled single-lane TASEPs with random-sequential
update. The Nagel-Schreckenberg (NaSch) model of traffic flow [59] with a parallel update1

rule contains the TASEP with parallel update as a special case for maximal vehicle velocity
vmax = 1. For vmax > 1, vehicles have an internal degree of freedom and NaSch dynamics
become more complicated. Numerical studies of the dynamics for vmax > 1 revealed a den-
sity dependent dynamical exponent [78]. Using our developed Monte Carlo techniques, we
study the dynamical exponents and scaling factors further inside the asymptotic regime.
These results allow to construct lower boundaries for a proper relaxation time which is
crucial for a trustworthy data analysis since no steady state is known.

1All particles (vehicles) attempt to jump at the same time.
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Conclusions of Part III -
Critical Defect Strength

We have revisited the long standing problem of the critical defect hopping rate rc in the
TASEP with open boundary conditions. For r < rc the current of the system is reduced
and consequently the system reacts globally to the defect. Previously, a purely numerical
analysis [29] predicted rc = 0.80(2). This result came without a theoretical framework and
disagrees with the analytical prediction rc = 1 made by mean-field theory and supported by
series expansion results [13, 38]. To dissolve the contradiction between previous numerical
results and analytic prediction we have addressed rc numerically from different perspectives.
We have shown that the defect current measured in Monte Carlo simulations strongly
depends on the choice of the pseudo random number generator. For the used Mersenne
Twister pseudo random generator we could not find deviations from available analytical
results2 within Monte Carlo errors and therefore the presented data are assumed to be
significant within their errors.

Furthermore, we point out that the choice of boundary conditions is crucial for finite
systems. The choice of α = β = 1/2, as used in [29], seems to be beneficial since the
steady state of the pure system factorizes and therefore supports for all finite systems a
flat steady state density profile and the infinite system maximum current j∞(r) = 1/4.
One should note that the choice α = β = 1/2 lies exactly at the boundaries to the low- and
high-density phase. Fluctuations around the phase boundaries become very important if
we add inhomogeneities in finite systems and significant influences of the boundaries are
to be expected. Measuring the defect current we find a significant reduction already for
r = 0.99 which disagrees with rc = 0.80(2) suggested by [29]. Indeed, rc = 0.80(2) turned
out to be a result of insufficient analyzed data.

To ensure that the measured defect phenomena arise from bulk dynamics and are not
controlled by fluctuations of the boundaries we investigated rc for systems well inside the
maximum current phase with boundary rates α = β = 1. Different to α = β = 1/2, the
steady state current of the pure system is enhanced by finite-size effects [16], i.e.,

jα=β=1,L =
1

4

(
1 +

3

1 + 4L

)
. (8.7)

We defined a lower bound for rc by satisfying jα=β=1,L (rc)−jα=β=1,∞ (r = 1) < 0. However,
in this way, using systems of length L = 200, 000, we could only derive a lower bound
rc ≥ 0.86 for the critical hopping rate. Assuming the existence of an essential singularity
at rc = 1, i.e., j (1) − j (r) ∼ exp (−a/ (1− r)) [13], further improvement of the lower
bound for the critical defect rc by increasing the system length is a hopeless enterprise:
e.g., a numerical proof of rc > 0.9, rc > 0.95, rc > 0.99 would require L > 1010, L > 1022,
L > 10147, respectively. Measuring a defect current jα=β=1,L (r) > jα=β=1,∞ (r = 1) = 1/4
might raise the question if the system recovers from defects and therefore reacts only locally.
Consequently, a much better quantity to determine rc, is the density profile or rather the
difference between the density profiles of the defect system with a corresponding pure
system. The critical rc defect strength is then identified by the defect leading to a global
adjustment of the system to the defect. To achieve a significantly improved bound for

2E.g., steady state currents for the pure system.
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rc we studied the density profiles of two parallel evolving systems with and without the
defect. The established covariance between both systems allows to efficiently distinguish
between fluctuation and defect phenomena. Studying differences for systems with r = 1
and r = 0.99 we improved the computation time by a factor of 10, 000 compared to the
naive approach and allows to generate very precise data. We have shown a significant
global adjustment to the defect for r = 0.99 and therefore established rc > 0.99 which
supports the mean-field prediction. We could not find any anomaly in our data which
supports the existence of rc < 1.

As discussed in Section 1.3.2, parallel evolving systems can be mapped to a system of
first- and second-class particles. These first-class particles may only separate at the defect
site into a pair of nonconserved up and down second-class particles. A pair of different
second-class particles recovers into a first-class particle when meeting each other (see.
Fig. 1.7). Second-class particles are generated only at the defect site in case a first-class
particle cannot jump due to the defect. Taking any steady state configuration of the pure
system we can split any first-class particle, when passing the “slow bond”, into a pair of
second-class particle. This is done only once and we evolve the system containing the pair
of second-class particles according to the pure rules for all sites. This setting corresponds to
an infinitesimal defect rate starting at the extremely rare event where a pair of second-class
particles is generated. Whenever this pair of second-class particles recovers to a first-class
particle, the global current will be unchanged by the defect-event. But in case one second-
class particle leaves at the left and the other at the right boundary, then the current of
the “defect” system will never recover from this introduced defect event. Furthermore, the
steady state density profile for α = β = 1 decays monotonically algebraic and therefore
supports a separation drift of both second-class particles.

This argument is similarly constructed for periodic systems. We assume again an in-
finitesimal small defect rate and artificially introduce a single pair of second-class particles
when a first-class particle tries to pass the “defect” site. Depending on the direction of the
recovery into a first-class particle the current of the “defect” system might never recover
from the defect event.

A more detailed study of second-class particle dynamics in the context of small defects
is very promising to achieve very accurate numerical results allowing to shed some light on
the essential singularity suggested for the defect current [38, 13].

Furthermore, we suggest an alternative way to measure currents in the future. Using
parallel evolving systems we achieved an extremely large covariance in the vicinity of the
boundaries. Instead of measuring the current by averaging over the whole steady state
system, one should use the density difference of both systems at the first (last) site. Since
we know the exact current of the pure system, the defect current is given by

jα=β=1,L(r) =
1

4

(
1 +

3

1 + 4L

)
+ 〈n1 〉p − 〈n1 〉d (8.8)

where 〈n1 〉d (〈n1 〉p) denotes the density at the first site in the defect (pure) system.
Finally, we stress that our developed technique might be easily extended for the study of
multiple inhomogeneities or even bottlenecks.
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