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Abstract

On its path towards computational advantage, quantum computing hardware still is at an
early prototypical stage, not yet allowing the use of error correction codes and algorithms
that are provably more performant than their classical competitors. Even so, it might be
the case that the current noisy quantum devices can be used for relevant computations
that are out of reach for current classical computers, if only for a few specific applications,
and without any performance guarantees. The question is thus whether the quantum de-
vices in the near future can be promoted to more than a mere bridge technology, which
gave rise to the field of research on noisy intermediate-scale quantum (NISQ) algorithms.
A substantial part of these research efforts, and also the main topic of this thesis, concerns
variational quantum algorithms (VQAs), which aim at using NISQ devices in a hybrid setup
together with classical computers. In such a setup, a computational problem is encoded
in terms of an observable, typically a Hamiltonian, such that determining the minimal
energy (or the corresponding ground state) would yield the solution. With the purpose
of generating candidates for the ground state, a classical computer selects a quantum cir-
cuit from a family of circuits and the quantum device executes the circuit to prepare the
corresponding state. The family of circuits is typically defined in form of a parametrized
quantum circuit (PQC) and a particular circuit can be chosen by fixing its parameters. In
return the classical computer receives measurement outcomes of selected observables on
the candidate states. The algorithm proceeds by optimizing over the parameter space in
order to find for (a useful approximation of) the target state.

There are many variants and proposed use cases for VQAs which has led to a modular
structure of the algorithms. In this thesis, the first chapter focuses on derivative estimators
for objective functions that are based on PQCs, which is a subroutine commonly used in
the optimization within VQAs. It begins with a review of (componentwise) differentiation
methods for PQC-based objective functions, followed by a detailed comparison of these
methods using the example of a ubiquitous class of PQCs. This comparison confirms and
complements recent results on the topic and has implications for gradient estimation in
practice.

The second chapter continues on the theme of gradient estimation for optimization,
and covers so-called parameter-shift rules, a particular class of derivative estimators. It
starts with a brief review of the literature, followed by an extension of said estimators to a
specific class of gates for quantum chemistry calculations, which was published as part of a
larger manuscript. The main part of the chapter is a publication about the generalization of
the parameter-shift rule to a larger class of quantum gates.It presents derivative estimators
for various gates, some of which have been shown in the literature to be optimal, together
with a thorough cost analysis for both classical simulators and quantum hardware.

The third and final chapter gives a short outline of VQAs and provides the context for a
second publication, which analyses different algorithms for the optimization task in VQAs.
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It compares the quantum natural gradient optimizer (QNG) to two established gradient-
based methods from classical non-convex optimization. This is done with numerical ex-
periments, in which QNG shows favourable convergence properties and enhanced robust-
ness against symmetry-breaking PQCs for highly structured problems. This work uses the
variational quantum eigensolver (VQE), a popular example of a VQA, on spin chain Hamil-
tonians as its benchmark problem and the experiments are based on extensive classical
simulations.

A promising direction for future work is to investigate individual building blocks of
the large VQA construct separately and to develop metrics for these blocks that allow to
predict their usefulness in practice. This may reduce the complexity of single research
efforts and lead to insights that are as modular as VQAs themselves.



Contents

Acronyms vi

Symbols and Notation vii

Introduction ix

1 Parametrized Quantum Circuits 1
1.1 Qubits, circuits and objective functions . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Differentiation of PQC-based functions . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Costs of derivative estimators . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Finite differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.3 Parameter-shift rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.4 Antisymmetric two-term recipes . . . . . . . . . . . . . . . . . . . . . 20
1.2.5 Linear combination of unitaries . . . . . . . . . . . . . . . . . . . . . . 21
1.2.6 Simultaneous perturbation stochastic approximation . . . . . . . . . 28
1.2.7 Differentiation on classical simulators . . . . . . . . . . . . . . . . . . 28
1.2.8 Estimator comparison for R = 1 . . . . . . . . . . . . . . . . . . . . . 32

2 Parameter-shift rules 45
2.1 Literature discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2 Four-term shift rule for quantum chemistry gates . . . . . . . . . . . . . . . 48

2.2.1 Introduction to the four-term rule . . . . . . . . . . . . . . . . . . . . 48
2.2.2 Two-term rule and shift tuning . . . . . . . . . . . . . . . . . . . . . . 48
2.2.3 Four-term parameter-shift rule . . . . . . . . . . . . . . . . . . . . . . 49
2.2.4 Minimizing the variance . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3 Contributions to the first publication . . . . . . . . . . . . . . . . . . . . . . . 54
2.4 Publication: General parameter-shift rules for quantum gradients . . . . . 56

3 Variational Quantum Algorithms 83
3.1 Ansätze, initializations and optimizers . . . . . . . . . . . . . . . . . . . . . . 83
3.2 Contributions to the second publication . . . . . . . . . . . . . . . . . . . . . 86
3.3 Publication: Avoiding local minima in variational quantum eigensolvers

with the natural gradient optimizer . . . . . . . . . . . . . . . . . . . . . . . . 86

Conclusion 105

Acknowledgements 107

Bibliography 109

Formalia 121

v



vi CONTENTS

Acronyms

ADAPT-VQE adaptive derivative-assembled pseudo-Trotter ansatz VQE

BFGS Broyden-Fletcher-Goldfarb-Shanno

DFT discrete Fourier transform

LCU linear combination of unitaries

LHS left hand side

MSE mean squared error

NISQ noisy intermediate-scale quantum

PQC parametrized quantum circuit

QAD quantum analytic descent

QAOA quantum approximate optimization algorithm

QML quantum machine learning

QNG quantum natural gradient optimizer

QPU quantum processing unit

RAM random access memory

SPSA simultaneous perturbation stochastic approximation

UCC unitary coupled cluster

VQA variational quantum algorithm

VQE variational quantum eigensolver



CONTENTS vii

Symbols and Notation

Symbol Meaning
aℓ Coefficients of even part of Ek
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Introduction

In the research field on quantum computing, most effort originally used to be spent on con-
cepts for fault-tolerant quantum information processing. This includes the development
of fault-tolerant algorithms, error correction codes and complexity theoretic proofs to cat-
egorize the power of error-correcting quantum computers. The requirements imposed on
quantum processing units (QPUs) by this paradigm are harsh, considering today’s hard-
ware [1, 2]. Three key metrics commonly used to illustrate this are: first, the number of
quantum bits, or qubits, that are needed to realize the redundant information storage un-
derlying error correction codes in order to compensate the flaws of each single physical
qubit. Second, the largest allowed error rates in the information storage and in the op-
erations that implement the computation before error correction methods lose the upper
hand. Third, the connectivity of a QPU architecture, i.e. the number of qubits that are con-
sidered close to each other in the network of controllable qubit interactions. These and
other requirements are not independent but can be balanced against each other; in any
scenario, the realization of a fault-tolerant quantum computer poses a major scientific and
technological challenge. This original approach to quantum computing is concerned with
algorithms that can be proven mathematically to perform better than their classical (non-
quantum, that is) counterparts for sufficiently large problems. The price for this guarantee
on increased computational power is the above canon of requirements on the quantum
computing hardware. In addition, coprocessing algorithms need to be run on powerful
classical computers to realize error correction sufficiently quickly for large QPUs.

By now, the field has seen first experimental realizations of QPUs with a few qubits,
based on different physical principles to store and manipulate the quantum information.
These principles include the charge, current, spin, polarization or energy of the used phys-
ical system, as well as time binning of photon measurements or the photonic occupation
number [3]. The corresponding architectures used in the realizations vary widely, too.
They include superconducting circuits, trapped ions, quantum dots, spin qubits in silicon,
nitrogen vacancies in diamonds and linear optics networks. Following up on these first
demonstrators, QPUs with a few more, and few dozens of, qubits are being built and used
in research already [4, 5, 6, 7]. This marks the advent of a different paradigm in quantum
information processing, which is commonly dubbed the noisy intermediate-scale quan-
tum (NISQ) [8] regime and has received a lot of attention in recent years. NISQ algorithms
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x INTRODUCTION

attempt to solve computationally hard problems while being realizable on existing or near-
future quantum hardware. This strongly limits the resources these algorithms may as-
sume, like the number and connectivity of the qubits, and in particular they cannot make
use of full error correction. In addition, noise affects all stages of information processing
in a NISQ device, which restricts the number of operations that can be executed within a
single computation, demands the algorithms to be robust against said noise, and requires
mitigation protocols to reduce the distortion of the results without consuming too many
additional resources. Despite these shortcomings, NISQ devices are of interest in various re-
gards. They can of course simply be seen as a necessary step towards large error-corrected
QPUs or as tools for basic research on the devices and the exploited physical principles
themselves. In this thesis, however, I am concerned with using them for computations
that may be realizable while lying out of reach for classical algorithms [9, 10].

As opposed to fault-tolerant quantum algorithms, proving computational advantage
is typically neither achievable nor the primary goal for NISQ algorithms. Two reasons that
often make such proofs hard in practice are that the computations contain subroutines for
which no performance guarantees are known, like non-convex optimization, and that it
is difficult to predict and model the impact of noise in the QPU in a general setting. Fur-
thermore, proving computational advantage is usually not the primary goal because NISQ

devices cannot be scaled up easily but it is essential to work with whatever devices exist.
This means that the constants and sub-leading factors in the computational cost – should
an expression thereof be available – might be as relevant as the impact of the leading order
in the problem size when comparing NISQ to classical algorithms. This is in contrast to the
perspective of complexity theory, which attempts to show that there is some problem size
at which a certain algorithm performs favourably by making statements about asymptotic
behaviour. Furthermore, proofs of computational complexity often are concerned with
worst-case or average-case performance across some class of problems, which might not
necessarily capture the behaviour for applications. This gap between provable guarantees
and behaviour in practice is not a specific feature of quantum algorithms but can also be
found in classical computer science.

A substantial part of research on NISQ algorithms is concerned with variational quan-
tum algorithms (VQAs) [11, 12] that attempt to use QPUs in tandem with classical copro-
cessors to prepare interesting quantum states and extract practically relevant properties
of the states afterwards. This includes NISQ algorithms for combinatorial optimization,
some variants of quantum machine learning (QML) as well as variational quantum eigen-
solvers (VQEs), whose purpose is to find certain eigenstates of a – typically quantum –
physical system. The “variational” in VQAs stems from the variational method in quan-
tum mechanics in the context of finding energy eigenstates of a quantum system, i.e. from
the envisioned application of VQEs, but (by now) also refers more generally to the use of
so-called parametrized quantum circuits (PQCs). These circuit families allow for search-
ing a subspace of the full state space, or Hilbert space, that are (expected to be) accessible



xi

at reasonable cost on a NISQ device. The hope then lies in being able to construct such
parametrizations that contain the sought-after quantum states – or states that resemble
them in some physical quantity and/or significantly overlap with them – and to find the
parameters that correspond to those target states. For the latter step typically some objec-
tive or cost function depending on the PQC is considered, which can be evaluated by run-
ning the circuit on a NISQ device. Using these evaluations, optionally together with some
auxiliary quantities from the QPU, an optimization algorithm is then run on a classical com-
puter to minimize the objective. An important class of these algorithms are gradient-based
optimization algorithms.

VQAs and the use of gradient-based subroutines in the optimization step make up the
context of this thesis. As the title suggests, it treats two topics in particular: estimating the
gradient of PQC-based objective functions for the use in optimizers for VQAs and analysing
a selection of these gradient-based optimization strategies. The structure of the thesis is as
follows:

Chap. 1 introduces PQCs together with relevant basic concepts in Sec. 1.1 and discusses
most of the established estimators in the literature for gradients of PQC-based functions in
Sec. 1.2. This discussion includes “hardware-ready” methods that can be implemented on
QPUs directly as well as algorithms that are tailored to classical simulators of QPUs and can-
not be readily run on NISQ devices. It concludes with a comparison of the hardware-ready
methods for a particular, simple yet ubiquitous class of PQCs that shows that the budget of
circuit repetitions, or shots, strongly influences which gradient estimator should be used
in practice. A particular result is that the somewhat naı̈ve finite difference method can
outperform the so-called parameter-shift rule, a special purpose estimator, by far – pro-
vided it is used with appropriate parameters. This chapter moreover discusses known
gradient estimators and results on their properties from the literature, but also new per-
spectives and variants thereof together with unpublished insights such as the comparison
mentioned above, which includes a newly conducted numerical experiment.

Chap. 2 treats the parameter-shift rule in detail, beginning with a literature review
in Sec. 2.1. Afterwards Sec. 2.2 presents a generalization of the shift rule, which is part
of Ref. [13], to a specific type of operations in the quantum circuit. The core part of the
chapter is a full reprint of a publication on further generalizations of the shift rule [14],
preceded by a short commentary in Sec. 2.3.

Chap. 3 briefly introduces VQAs in Sec. 3.1 to provide the context for the reprint of a
second publication [15], again preceded by a short commentary in Sec. 3.2. As said publi-
cation itself introduces the particular PQC architectures, or ansätze, problem Hamiltonians
and optimization techniques, there is no separate review, but the reader is referred to cor-
responding reviews in the literature.

The thesis concludes with a brief summary of the results together with some comments
on how to potentially extend the presented work.
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Chapter 1

Parametrized Quantum Circuits

In this chapter I introduce parametrized quantum circuits (PQCs) and the objective func-
tions they give rise to. These circuits and objective functions are key ingredients of varia-
tional quantum algorithms (VQAs), the main subject of Chap. 3. Here, the focus lies on the
differentiation of PQC-based objective functions, on both quantum hardware and classical
simulators.

This chapter is structured as follows: Sec. 1.1 contains basic definitions of quantum
circuits and the type of parametrized gates we will be concerned with in this work. That
is, I will not aim at the most general definitions but only include relevant circuit classes for
the presented publications and additional results.

In Sec. 1.2 I discuss the differentiation of functions based on PQCs and complement the
publication in Chap. 2 on parameter-shift rules with analyses of other differentiation tech-
niques. This section contains unpublished results that I hope provide a useful overview of
differentiation techniques, as well as an introduction to their practical evaluation.

1.1 Qubits, circuits and objective functions

The quantum systems we will discuss are qubit registers, i.e. compositions of two-level
quantum systems, and we denote the number of qubits in a register asN . The appropriate
mathematical description for the state space of such a system is the 2N − 1-dimensional
complex projective space. However, it will be sufficient for this thesis to consider the
complex vector space C2N , i.e. assume states to be normalized (in 2-norm), and “manually”
identify states that only differ by a global phase, i.e. a factor exp(iφ) with φ ∈ R.

A quantum gateU , or simply a gate, acting onm qubits is a unitary matrix in C2m×2m , i.e.

U ∈ C2m×2m and U †U = I. (1.1)

Such an m-qubit gate acts on a register with N ≥ m qubits by forming the Kronecker
product, or tensor product, with the identity matrix on the remaining N −m qubits and

1



2 CHAPTER 1. PARAMETRIZED QUANTUM CIRCUITS

performing standard matrix-vector multiplication. This identification is assumed through-
out the thesis, including the publications, and we will not denote it explicitly. While the
word gate is sometimes used to refer only to the most elementary operations, or matrices,
we will not make this restriction here.

A parametrized gate U is a function that maps a real-valued parameter x to a gate U(x).
For this thesis, we will restrict parametrized gates to the form U(x) = exp(i(xG+F )) with
(not necessarily commuting) Hermitian matrices G and F . For most of the gates, F will
vanish, leaving us with one-parameter groups U(x) = exp(ixG). G is called the generator
of the gate, and F can be understood as a perturbation. This definition is more restrictive
than it has to be, as gates with multiple arguments or different functional forms could be
considered.

Common examples for parametrized gates stem from applications and implement use-
ful operations for specific tasks, or they are of interest because they are native to (some)
quantum computing architectures. Examples of the former include the building blocks
of the quantum approximate optimization algorithm (QAOA) [16] and gates for applica-
tions in quantum chemistry that preserve symmetries, or quantum numbers [13, 17, 18].
Commonly used hardware-friendly parametrized gates are the single-qubit Pauli rotations
RX , RY , RZ and – depending on the hardware – CNOT gates [19], two-qubit rotations like
RZZ(x) = exp(−ixZ ⊗ Z/2) [20] and RXX(x) [21], or parametrized (fermionic) SWAP

gates [22].
A quantum circuit C is a sequence of quantum gates, each assigned to act on a specified

set of qubits in a register. As usual, the qubits a circuit acts on are simply all qubits on
which at least one of the gates acts. Moreover, circuits (and parts of circuits) are identi-
fied with unitary matrices via matrix multiplication of the constituents (in reverse order,
and again by building the tensor product of each gate with the identity if m < N ). As
one might notice, this makes telling circuits from gates conceptually difficult, which is by
design: we can easily switch between gates and their decompositions, i.e. circuits with typ-
ically “more elementary” gates that have the same matrix as the gate. We write C[j:k] for
the circuit consisting of the jth (inclusive) to kth (exclusive) gate and if j is the smallest
possible or k is the biggest possible index, we skip it1.

Unless stated otherwise, we will consider a qubit register to be in the state |0⟩⊗N before
any circuit is applied. We will abbreviate this, and in fact |0⟩⊗m for any m, as |0⟩ when the
number of qubits is clear from the context. Introducing a certain ambiguity, we will say
that a circuit prepares a quantum state, which refers to applying it to the initial state |0⟩.

A parametrized quantum circuit is a map C from n real-valued parameters θ to a quan-
tum circuit C(θ). We do not assume anything about the structure of this map, and in par-
ticular allow that a given parameter is fed into multiple gates at any locations in the circuit.
Note that in contrast to gates and circuits, a PQC cannot be interpreted as a parametrized
gate in general because we restricted those to be of the form exp(i(xG + F )). For some

1 This is the slicing notation used in Python.



1.1. QUBITS, CIRCUITS AND OBJECTIVE FUNCTIONS 3

PQCs with a single input (n = 1), however, such an equivalence exists and the circuit is a
decomposition of the corresponding parametrized gate in this case. We sometimes denote
the state prepared by a PQC as |ψ(θ)⟩ := C(θ) |0⟩.

From circuits to objective functions Ultimately, we will be interested in a real-valued
function that originates from estimating, or measuring, the (physical) expectation value
⟨H⟩ of some observable H in the quantum state prepared by a PQC. This measurement
results in a map

E : Rn → R (1.2)

θ 7→ E(θ) := ⟨0|C(θ)†HC(θ) |0⟩ , (1.3)

which is called the objective function or energy. I first consider the functional form of such
objective functions and then briefly discuss the statistical experiments realized on quan-
tum processing units (QPUs) to estimate E(θ).

It can be shown that E is a (perturbed) Fourier series in its n input parameters θ where
the frequency spectrum is determined by the gate generators and locations, and the per-
turbations (with bounded Fourier spectrum) are caused by the perturbation terms of the
gates. A derivation for unperturbed gates is given in Sec. 2.1 of the publication in Chap. 2,
also consider the educational example below. The coefficients of the series depend on the
circuit structure and on H . This observation has been made repeatedly in the literature
and was exploited in various ways: first, it allows to understand PQCs on the footing of
established Fourier theory. Second, it enables the design of PQCs [23, 24], differentiation
techniques [25, 26, 27] (also see Sec. 1.2 and Chap. 2) and optimization strategies with
favourable properties for VQAs [25, 28, 29, 30, 31, 32]. Third, it inspires tactics for noise
mitigation in experiments [33], and yields an exact classical model of E that can be con-
structed (approximately) from function evaluations on a QPU [28, 34, 35]. Differentiation
of functions based on PQCs that contain perturbed gates has been studied in [36, 37]. In
the discussion here and in Sec. 1.2 we will consider the unperturbed case unless stated
otherwise.

We will frequently consider a univariate restriction of E to a single parameter. For ease
of notation, we will abbreviate

Ek(x) := E(θ + xek), (1.4)

where ek is the kth canonical basis vector for Rn and we omitted θ entirely on the left hand
side, as it usually is clear from the context2. We extend this notation to the expectation

2 If it is not, we stick to the explicit notation.



4 CHAPTER 1. PARAMETRIZED QUANTUM CIRCUITS

value of other observables O and write

⟨O⟩k (x) := ⟨0|C(θ + xek)
†OC(θ + xek) |0⟩ . (1.5)

The univariate restriction (in the above sense) of a multi-dimensional Fourier series is
a one-dimensional finite Fourier series, for which we use the following notation (in the
unperturbed case):

Ek(x) = a0 +
R∑
ℓ=1

aℓ cos(Ωℓx) + bℓ sin(Ωℓx). (1.6)

The frequencies Ωℓ depend on the (combination of) used gates in the PQC and its structure,
but not on the measured observable.

In some works, and indeed in the publication in Chap. 2, all gates that depend on a
given parameter θk are assumed to be executed successively, but it is important to note
that the univariate restriction in Eq. (1.4) is a Fourier series even if these gates are dis-
tributed across the circuit. Such a setup is relevant in particular for quantum machine
learning (QML), e.g. when using data reuploading [34, 38]. If multiple gates are controlled
by a parameter, the frequency spectrum {Ωℓ} of the restriction contains the sums and dif-
ferences of the frequencies contributed by the separate gates. As the spectrum for each
separate gate contains the frequency 0, these sums and differences include the gate fre-
quencies themselves.

In order to illustrate the concepts introduced above, I give a toy example of a PQC and
an objective function arising from it. The PQC we consider is

C(θ) = CNOT(1,2) R
(2)
Y (θ2) R

(1)
Y (θ1) (1.7)

where the superscript denotes the qubits the gates act on, RY (x) = exp(ix(−Y/2)) is the
Pauli-Y rotation gate, and CNOT = |0⟩⟨0|⊗ I+ |1⟩⟨1|⊗X . The circuit acts on N = 2 qubits
and takes an n = 2-dimensional argument θ. The problem Hamiltonian is

H =
3

4
Z(2) +

1

4
X(1) =

3

4
I⊗ Z +

1

4
X ⊗ I. (1.8)

A standard way to denote this setup is via a quantum circuit diagram:

E(θ) =

|0⟩ RY (θ1)

H

|0⟩ RY (θ2)

Complementary to the derivation in Chap. 2 mentioned above, we here compute the
objective function by directly evaluating the transformation of the quantum state caused
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by the circuit:

|ψ(θ)⟩ = C(θ)


1

0

0

0

 =


cos(θ1/2) cos(θ2/2)

sin(θ1/2) cos(θ2/2)

sin(θ1/2) sin(θ2/2)

cos(θ1/2) sin(θ2/2)

 . (1.9)

When contracting this state with the Hamiltonian above, we obtain the objective function

E(θ) =
3

4
cos(θ1) cos(θ2) +

1

4
sin(θ1) sin(θ2). (1.10)

As we can see, the two Pauli-Y rotations yield the frequency 1 and there is no constant
term for this particular choice of C and H . The univariate restriction defined in Eq. (1.4)
e.g. for θ = (π/4, π/3)T and k = 2 reads

E2(x) = E(θ + xe2) =
3 +

√
3

8
√
2

cos(x) +
1− 3

√
3

8
√
2

sin(x). (1.11)

To demonstrate how more complicated frequency spectra arise, we also consider a repara-
metrized version of the above circuit, namely with a single new parameter θ̃ and the map-
ping θ(θ̃) = (θ̃, θ̃2)

T . Using trigonometric identities, this gives rise to the objective function

Ẽ(θ̃) =
1

2
cos

(
θ̃

2

)
+

1

4
cos

(
3θ̃

2

)
. (1.12)

On the level of the PQC, the reparametrization means that we replace the two Pauli-Y
rotations by the two-qubit gate UY Y (θ̃) = exp

(
iθ̃ (−Y ⊗ I/2− I⊗ Y/4)

)
generated by a

sum of two rescaled Pauli words. The analysis in Chap. 2 shows that this gate in general
could contribute an additional term with the frequency 1, which vanishes in the example
above.

Objective function estimation Here I briefly discuss for completeness how to measure
the objective functionE, sticking to a basic approach. The analysis of derivative estimators
in the rest of the chapter treats this measurement process as a “black box” that can be
queried for a specified number of measurements. This approach makes sense because
the functional dependence of the measurement statistics on the variational parameters,
which is the only property we will use in our derivations, is not affected by choosing a
measurement recipe. Additional care needs to be taken when using derivative estimators
that pose special conditions on the measured observable and thus force us to decompose
the Hamiltonian further.

A common method to represent H is to decompose it into a sum of Pauli words, i.e. ten-
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sor products of the Pauli operators (and identity) {X,Y, Z, I}, denoted as

H =
K∑
i=1

hiPi. (1.13)

In practice, H is then measured by grouping (pairwise) commuting Pauli words together,
according to sets Iℓ ⊂ {1, . . . ,K}. This allows to measure the terms ⟨Hℓ⟩ :=

∑
i∈Iℓ hi ⟨Pi⟩

of the Hamiltonian independently. For this, the prepared quantum state is rotated into the
common eigenbasis of the words {Pi}i∈Iℓ , the register is measured in the computational
basis, and the eigenvalues ofHℓ corresponding to the obtained basis states are determined
(classically). The rotation only requires up to N additional single-qubit gates that can be
effected simultaneously, which we assume to be a negligible overhead.

For each set Iℓ, the circuit with the appended rotations is configured on the device and
executed sℓ times, obtaining an estimator for ⟨Hℓ⟩ by averaging the computed eigenvalues.
This means that the number of Pauli word sets, or of bases to measure in, impacts the cost
of estimating ⟨H⟩ significantly. As an example, consider the single-qubit Hamiltonian
H = h1P1+h2P2 with [P1, P2] = 0, which we could measure simultaneously or separately.
Assuming a total budget of s shots, measuring simultaneously yields the variance3

V
[
Êsim

]
=

1

s

[
h21(1− ⟨P1⟩2) + h22(1− ⟨P2⟩2) + 2h1h2(⟨P1P2⟩ − ⟨P1⟩ ⟨P2⟩)

]
, (1.14)

whereas separate measurements (with equally allocated shots) result in

V
[
Êsep

]
=

1

s

[
2h21(1− ⟨P1⟩2) + 2h22(1− ⟨P2⟩2)

]
(1.15)

= V
[
Êsim

]
+ V

[
D̂sim

]
with D = ⟨h1P1 − h2P2⟩ (1.16)

≥ V
[
Êsim

]
, (1.17)

where the last term is non-negative, because it is a variance. This makes the former mea-
surement scheme favourable in terms of precision and tells us to measure two Pauli words
simultaneously if we can.

However, for more terms in H the situation quickly becomes complicated. First, there
is not one unique grouping into mutually commuting words and finding a grouping into
fewest possible sets of words is a computationally hard problem [39]. Second, the opti-
mal measurement grouping depends on the weights hi, which are known, as well as the
(co)variances of the Pauli words with respect to the quantum state, which are not known
a priori. Even worse, it turns out that minimizing the number of sets does not necessarily
minimize the variance of the overall energy measurement [40, 41, 42].

It should also be noted that the number of Pauli words – or other operators that can be
measured easily – in H differs strongly between the envisioned applications of PQCs. As

3 See p. 7 for details on the used notation.
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extreme examples, quantum embedding kernels use an overlap measurement between
pure states as cost function [43], which corresponds to measuring the single projector
|0⟩⟨0|, whereas Hamiltonians arising from electronic structure calculations e.g. for quan-
tum chemistry generically contain O(N4) Pauli words for N orbitals [40].

The described strategy to measure H by measuring sets of commuting Pauli words
is straightforward and does not inflict any additional cost beyond the rotation gates into
the eigenbases of the sets. Other measurement strategies are known and can be shown
to have favourable statistical properties [44], drastically reduce the number of separately
measured Hamiltonian terms [42] and/or allow for error mitigation protocols [44, 45, 46,
47]. However, these methods come at the cost of additional auxiliary qubits and/or multi-
qubit gates, which in turn require enhanced qubit connectivity and longer coherence times.
We will not discuss the challenge of grouping the Pauli words of a Hamiltonian for the
energy measurement further, but point out the references [39, 42, 48, 49, 50, 51, 52, 53, 54,
55] that suggest and review methods to approach this challenge on different levels of the
computational pipeline, in particular for electronic structure calculations. In this work we
will assume the simple measurement based on a grouping of the Pauli words.

When measuring the mutually commuting Pauli words in a set {Pi}i∈Iℓ , the layer of lo-
cal rotation gates V into the eigenbasis is executed after the PQC and a computational basis
state |k⟩ is sampled from the qubit register. The eigenvalue λℓ,k :=

∑
i∈Iℓ hi ⟨k|V PiV

†|k⟩
can then be computed classically4 and with sℓ repetitions of this sampling procedure we
obtain the estimator5

Êℓ(θ) =
1

s

s∑
j=1

λ̂
(j)
ℓ (θ), λ̂

(j)
ℓ (θ) = λℓ,k with probability | ⟨k|V |ψ(θ)⟩ |2. (1.18)

This means that all single-measurement random variables follow the indicated probability
induced by the PQC and are independent. We construct the estimator Ê(θ) for the full
energy by summing over the sets of Pauli words, i.e. the different measurement bases.
This estimator is unbiased because each λ̂(j)ℓ is:

E
[
λ̂
(j)
ℓ (θ)

]
=

2N∑
k=1

⟨ψ(θ)|V † |k⟩λℓ,k ⟨k| V |ψ(θ)⟩ (1.19)

=
∑
i∈Iℓ

hi ⟨ψ(θ)|Pi |ψ(θ)⟩ (1.20)

= ⟨Hℓ⟩ (θ). (1.21)

4 Note that V is not unique because there is no canonical eigenstate ordering, and that λℓ,k therefore de-
pends on the choice of V together with k.

5 This notation collides with the one for univariate restrictions of E(θ). We will not use it outside of this
section.
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The variance of the ℓth term is

V
[
Êℓ(θ)

]
=

1

s

[
⟨ψ(θ)|H2

ℓ |ψ(θ)⟩ − Eℓ(θ)
2
]
, (1.22)

and their sum is the variance for Ê(θ). Occasionally it will be useful to write

σ2
[
Êℓ(θ)

]
:= sV

[
Êℓ(θ)

]
=
[
⟨ψ(θ)|H2

ℓ |ψ(θ)⟩ − Eℓ(θ)
2
]
, (1.23)

separating the variance of the operator from the number of shots (also see Sec. 1.2.1. Note
that this variance of Ê(θ) differs from the physical variance ⟨H2⟩−⟨H⟩2 of the full Hamilto-
nian by covariance terms ⟨HℓHℓ′⟩ − ⟨Hℓ⟩ ⟨Hℓ′⟩ with ℓ ̸= ℓ′. As the measurement procedure
essentially samples eigenstates of a specific observable Hℓ and the corresponding eigen-
values are accumulated classically, an estimate of the variance can be computed during
the sampling process, allowing for dynamic methods that adapt the number s of collected
samples.

Due to the first term ⟨H2
ℓ ⟩ in Eq. (1.22) being an expectation value, it again is a Fourier

series with the same frequencies as ⟨Hℓ⟩, whereas the second term will contain pairwise
sums and differences of the original frequencies and thus extends the frequency spectrum
of V

[
Ê(θ)

]
compared to E

[
Ê(θ)

]
.

While the above description in terms of random variables is the correct approach for
computations run on quantum computers, we will also frequently come back to exact
expectation values, which are attained in the limit s → ∞. This is the correct setting to
derive differentiation rules for E, but also represents the situation encountered in most
classical simulators for quantum circuits.

1.2 Differentiation of PQC-based functions

Many optimization routines for VQAs are gradient-based. Besides evaluating the objective
function E itself, these optimizers require an estimate of its gradient ∇E. There are multi-
ple estimators for the entries of ∇E, which differ significantly in their statistical properties
and the extent to which they exploit the structure of E. For convenience I first list some
existing comparisons between these methods in the literature. Afterwards I move on to
introduce and discuss the gradient estimators in detail, including methods that are only
available on classical simulators of quantum computers. These “software-only” methods
differ fundamentally from the quantum “hardware-ready” techniques and are particularly
interesting for research based on numerical experiments.

Literature comparing differentiation methods Here I discuss a few other works that
investigated different derivative estimators and compared them. Ref. [56] performs a
detailed comparison of the forward and central difference (see Sec. 1.2.2) with the two-
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term parameter-shift rule (Sec. 1.2.3). The authors discuss the bias-variance tradeoff im-
plemented in the finite difference methods and introduce a rescaled parameter-shift rule,
which is the unique derivative estimator based on two shifted evaluations that minimizes
the mean squared error (MSE). I will present a rather similar discussion in Sec. 1.2.8 but
with a different perspective that is tailored to the trigonometric nature of the objective
functions and treats the central difference and the parameter-shift rule as particular choices
of a larger family of estimators. Furthermore I include additional derivative estimators
that do not use two shifted evaluations, namely higher-order finite differences and the
linear combination of unitaries (LCU)-based estimator from Sec. 1.2.5. These turn out to
not be favourable for the investigated example circuit, and the optimal estimator I find is
the same as the one in [56]. Nonetheless I think that the new perspective presented here
might be useful and in particular leads to methods that provide the optimal estimator in
practice, given sufficiently “representative” data on the PQC and objective function. If no
data is available, my results contradict [56] for small shot budgets.

Shortly before I finished this thesis, Ref. [57] appeared online, introducing a Bayesian
learning framework that optimizes the derivative estimator with respect to the MSE during
the training loop which typically is used in VQAs. This is complemented with an analysis
of the average Fourier coefficients in a PQC that allows to obtain gradient estimators which
perform well on average. One of the conclusions is that finite differences are favourable in
the regime of few shots per measurement, which also is the result of Sec. 1.2.8.

In [27] the entire family of parameter-shift rules for (unperturbed) PQC-based functions
is analysed within a measure theoretic mathematical framework, leading to existence and
optimality proofs, as well as computational methods to obtain new shift rules.

1.2.1 Costs of derivative estimators

For most parts of this section, we will consider the gradient entries

E′
k(0) =

∂

∂xk
E(θ + xkek)

∣∣
xk=0

(1.24)

separately and therefore consider the univariate restrictions Ek of the objective function.
To increase readability, we drop the index k and denote derivative recipes as ∂[·].

Mean squared error In order to evaluate estimators for E′(0), we will discuss their total
deviation from the exact value in terms of the mean squared error (MSE)

ε2
[
∂[·]Ê(0)

]
:= E

[(
∂[·]Ê(0)− E′(0)

)2]
= V

[
∂[·]Ê(0)

]
+
(
E
[
∂[·]Ê(0)

]
− E′(0)

)2
, (1.25)
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which – as usual – is composed of the variance and the squared systematic error, or
squared bias. Some estimators will be unbiased, so that

ε2
[
∂[·]Ê(0)

]
= V

[
∂[·]Ê(0)

]
= σ2

[
∂[·]Ê(0)

]
/s. (1.26)

We focus on the variance of certain schemes of estimators and trigonometric objective
functions like those produced by PQCs, and briefly look at their bias afterwards.

Some of the derivative estimators will make use of estimates for E at positions shifted
away from 0, so that the variance at these positions influences the analysis:

∂[·]E(0) =
∑
µ

yµE(xµ) ⇒ V
[
∂[·]Ê(0)

]
=
∑
µ

y2µ
sµ
σ2
[
Ê(xµ)

]
, (1.27)

where sµ is the number of shots used to evaluate Ê(xµ). As mentioned before, the variance
is a Fourier series similar to E itself but typically has additional frequencies, because it is
not only composed of ⟨H2⟩, which takes the form Eq. (1.6), but also includes E2. At xµ it
is given by

σ2
[
Ê(xµ)

]
=ã0 +

R∑
ℓ=1

(
ãℓ cos(Ωℓxµ) + b̃ℓ sin(Ωℓxµ)

)
(1.28)

−
[
a0 +

R∑
ℓ=1

aℓ cos(Ωℓxµ) + bℓ sin(Ωℓxµ)

]2
, (1.29)

where we denoted the Fourier coefficients of ⟨H2⟩ with ·̃ . We will call a recipe of the form
in Eq. (1.27) antisymmetric if it uses pairs of shifts x±µ = ±xµ together with coefficient pairs
y±µ = ±yµ. For such a recipe it will be useful to know that

∑
χ∈{±1}

σ2
[
Ê(χxµ)

]
=2ã0 + 2

R∑
ℓ=1

ãℓ cos(Ωℓxµ) (1.30)

− 2

[
a0 +

R∑
ℓ=1

aℓ cos(Ωℓxµ)

]2
− 2

[
R∑
ℓ=1

bℓ sin(Ωℓxµ)

]2
. (1.31)

Often we are not interested in the error at a single point, but in its average across all x,
because we want to evaluate the cost of the estimators more generally than for a particular
parameter position. Therefore we will occasionally replace the local variance V

[
Ê(xµ)

]
by its average σ2/sµ across the domain of θk, where sµ is the number of samples used to
estimate Ê(xµ). Effectively this means that we evaluate the derivative recipe averaging
over θk while keeping all other θℓ, ℓ ̸= k, fixed. Note that this approach assumes the MSE

of ∂[·]Ê(0) to depend linearly on the individual variances at the shifted positions, which
is not true in general. In fact, for finite differences the standard tradeoff between bias
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and variance will make the dependency non-linear. We will anyways make use of the
replacement V

[
Ê(xµ)

]
7→ σ2/sµ, considering it an approximation to the true behaviour

(see Sec. 1.2.2 for details). Moreover, this approximation also arises whenever we allocate
shots independently of the Fourier coefficients, as explained below. This allocation often
makes sense because we set out to measure those coefficients and therefore will not know
them beforehand.

Regarding the bias, we observe that E′(0) = Ω · b (c.f. Eq. (1.6)) and that an antisym-
metric derivative recipe yields

∂[·]E(0) =
∑
µ>0

2yµ

R∑
ℓ=1

bℓ sin(Ωℓxµ), so that (1.32)

∂[·]E(0)− E′(0) =
R∑
ℓ=1

bℓ

∑
µ>0

2yµ sin(Ωℓxµ)− Ωℓ

 . (1.33)

This means that the magnitude of the Fourier coefficients bℓ, as compared to those of the
variance, will be a decisive quantity when evaluating bias-variance tradeoffs.

Shot allocation For derivative estimators composed of multiple estimators Ê(xµ), the
total budget of s shots needs to be allocated appropriately. The optimal allocation follows
the absolute value of the weighted standard deviations:

sµ = s
|yµ| σ

[
Ê(xµ)

]
∑

ν |yν | σ
[
Ê(xν)

] , (1.34)

which can be shown e.g. via Lagrange multipliers. The resulting variance is

V
[
∂[·]Ê(0)

]
=

1

s

(∑
µ

|yµ| σ
[
Ê(xµ)

])2

. (1.35)

A crucial disadvantage of the optimal shot allocation is its dependence on the un-
known variances, and therefore on the sought-after Fourier coefficients, at the shifted po-
sitions, which prevents us from computing the allocation beforehand. Three approaches
to alleviate this problem are commonly used: first, one can decide to only account for the
influence of the known weights yµ and choose sµ = s|yµ|/ ∥y∥1. This allocation, which
we call practical allocation, also minimizes the variance on average across all (univariate) pa-
rameter positions if we use a fixed derivative recipe, and we will frequently make use of
it as it is a feasible allocation strategy. The resulting total variance is

V
[
∂[·]Ê(0)

]
=

∥y∥1
s

∑
µ

|yµ|σ2
[
Ê(xµ)

]
. (1.36)
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Second, the variances could be computed using other, approximate methods, e.g. on a clas-
sical computer [42]. This makes sense whenever we want to measure the energy derivative
to a very high precision and the auxiliary methods deliver coarse variance estimates at low
computational cost. A third approach is to first measure the objective function values at
the shifted positions with a fraction of the total shot budget, estimate their variances based
on these preliminary samples, and then use the estimates for the optimal shot allocation
in Eq. (1.34) [58, 59, 60].

1.2.2 Finite differences

The first derivative estimators we consider are the forward and central differences with
shift parameter h:

∂forwE(0) :=
E(h)− E(0)

h
, (1.37)

∂centE(0) :=
E(h)− E(−h)

2h
. (1.38)

This technique likely is the most straightforward and simple approach; it is easily ap-
plied as numerical differentiation method for arbitrary (well-behaved) functions and does
not make any assumptions about the structure of the function E. However, it therefore
also cannot exploit additional information we have about E. The recipes require one and
two evaluations of E per parameter, respectively, and the forward difference additionally
reuses the value E(θ) for all entries of the gradient. Importantly, these finite differences
are not exact even when we evaluate E without uncertainty; their systematic error and
hence the bias of the corresponding estimators is typically characterized to leading order
in h, assuming that h≪ 1:

∂forwE(0)− E′(0) =
h

2
E′′(0) +O(h2), (1.39)

∂centE(0)− E′(0) =
h2

6
E(3)(0) +O(h3). (1.40)

Consequently, using an infinitesimally small shift h would be optimal if we were able to
evaluate E to infinite precision. However, in practice we always use a representation with
finite precision, leading to a tradeoff between rounding errors and the above systematic
error, which implies an optimal shift h∗ > 0. On classical computers the numerical preci-
sion is very high, which leads to h∗ ≪ 1 and hence justifies the assumption made for the
expansion of the bias to leading order in h. On the contrary, the precision with which we
measure E on a quantum computer is much lower, increasing the variance contribution
to the MSE and the optimal shift h∗, so that it might not satisfy h∗ ≪ 1 any longer. As
also discussed in [56], we are therefore interested in the regime h ≪̸ 1 as well. Lifting the
assumption h ≪ 1 additionally enables us to discuss the central difference in the same



1.2. DIFFERENTIATION OF PQC-BASED FUNCTIONS 13

framework as the two-term parameter-shift rule (see Sec. 1.2.3). However, it also means
that the leading order term of the bias will not approximate it well, so that we instead have
to look at its full expression. For the forward and central difference we compute them to
be

∂forwE(0)− E′(0) =
1

h

R∑
ℓ=1

aℓ (cos(Ωℓh)− 1) + bℓ (sin(Ωℓh)− hΩℓ) (1.41)

∂centE(0)− E′(0) =
1

h

R∑
ℓ=1

bℓ (sin(Ωℓh)− Ωℓh) , (1.42)

and observe that the leading-order description in general6 will overestimate them (in mag-
nitude).

Higher-order stencils The generalization of the forward and central difference above
leads to so-called finite difference stencils that take the form

∂FDÊ(0) =

q∑
µ=1

αµ

h
E(mµh), (1.43)

with constant coefficients αµ ∈ R and shift multipliers mµ ∈ R. This differentiation rule is
of the form in Eq. (1.27) with yµ = αµ/h and xµ = mµh, which yields the variance

V
[
∂FDÊ(0)

]
=

q∑
µ=1

α2
µ

sµh2
σ2µ =

 1
sh2

(∑q
µ=1 |αµ|σµ

)2
optimal allocation

∥α∥1
sh2

∑q
µ=1 |αµ|σ2µ practical allocation,

(1.44)

where we again abbreviated σµ = σ
[
Ê(mµh)

]
.

What is the structure of the stencil coefficients α? Assume we are given q unique
shifts m. Then we want the first-order term of the Taylor expansion of E to be reproduced
exactly, i.e. m · α = 1, and we want the zeroth order to vanish, like as many higher-
order terms as possible. This can be written as

∑
µ αµ = 0 and m⊙j · α = 0 for as many

consecutive j ≥ 2 as possible, with m⊙j denoting the jth elementwise power. As we have
q coefficients, we may hope that this works up to j = q − 1, so that α satisfies q linear
equations. A short expression for these conditions is

V (m)α = e2, (V (m))jµ = mj
µ, 0 ≤ j ≤ q − 1, (1.45)

where e again denotes a canonical basis vector and V is the (square) Vandermonde matrix
of m 7. Indeed V (m) is invertible (because the shifts are unique) so that a solution for

6 In the sense of “in many realistic scenarios”.
7 Some definitions of the Vandermonde matrix start with the power j = 1, this one starts with j = 0. Yet

other definitions consider the transpose of this definition.
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α satisfying all q conditions exists. The column V (m)−1e2 we are interested in is given
by [61]

αµ =
(
V −1e2

)
µ
=

 q∏
τ=1
τ ̸=µ

1

mτ −mµ

 q∑
ν=1
ν ̸=µ

q∏
τ=1

µ ̸=τ ̸=ν

mτ (1.46)

That means we do not need a general matrix inversion algorithm but the coefficients are
known explicitly8. The leading order term of the bias for this stencil is O(hq−1) instead
of O(hq), because of the prefactor 1

h in Eq. (1.43), but we will not restrict ourselves to the
domain of small shifts, as discussed for the forward and central difference above.

There is a small bonus the stencil has to offer, still. Consider the sum of reciprocals of
all mν but one, i.e.

Sµ :=

q∑
ν=1
ν ̸=µ

1

mν
. (1.47)

If one of the shifts in m9 vanishes, say w.l.o.g. m1, only S1 is well-defined. In this case, we
have

αµ =


S1 for µ = 1

− 1
mµ

∏q
τ=2
µ ̸=τ

mτ
mτ−mµ

for µ > 1
(1.48)

and therefore αµ is finite for all µ > 1. If S1 vanishes, so does α1 and we do not actually
use the function evaluation at m1 = 0 for the derivative. If it is not contained in the set
of shifts already, we may include the shift mq+1 = −S−1

1 as additional term in the recipe,
which explicitly sets S1 + m−1

q+1 = 0 and therefore does not increase the number of used
shifts while raising the order of the stencil by 1.

If none of the shifts are zero, we may rewrite

αµ = Sµ

q∏
τ=1
τ ̸=µ

mτ

mτ −mµ
(1.49)

and see that αµ vanishes exactly if Sµ does. If one particular Sµ, say S1, vanishes, we know
that no other Sν can, because that would imply 1

m1
= 1

mν
, i.e. that two shifts were equal in

the first place. If none of the Sµ vanish, we again may add another shiftmq+1 in an attempt
to increase the precision of the stencil without increasing the number of used shifts. This
will succeed either if

∑
ν m

−1
ν = 0 (any mq+1 will have αq+1 = 0) or if one of the potential

new shifts
{
−S−1

µ

}q
µ=1

is not contained in m already.

8 Albeit in a somewhat cumbersome expression.
9 And exactly one, by uniqueness of the shifts.
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In summary, we know that one coefficient in α vanishes for suitably chosen shifts,
effectively reducing the number of shifts q by one. Conversely, again for suitable m, we
can “silently” add a shift mq+1 without increasing the number of used shifts, because it
will have the coefficient αq+1 = 0 or set the coefficient for one of the other shifts to zero.
The resulting stencil will have leading order bias O(hq) (instead of O(hq−1)).

A particular choice of shifts is mµ = µ for −p ≤ µ ≤ p, where we changed the summa-
tion range to {−p,−p+ 1, . . . , p}, with the coefficients

α0 = 0, αµ =
(−1)µ+1(p!)2

(p+ µ)!(p− µ)!µ
, ∀ − p ≤ µ ≤ p, µ ̸= 0. (1.50)

The shifts satisfy α0 = S0 = 0 and therefore we effectively use only 2p shifts. This gen-
eralized central difference stencil10 is an antisymmetric derivative recipe as introduced in
Sec. 1.2.1 and therefore incurs the bias

∂FD,pE(0)− E′(0) =
1

h

R∑
ℓ=1

bℓ

p∑
µ=1

2αµ (sin(µhΩℓ)− µhΩℓ) , (1.51)

for a Fourier series withR frequencies, where we used α·m = 1. To quantify the variance,
as discussed in Sec. 1.2.1, we will need the norm

∥α∥1 =
p∑

µ=−p

|αµ| (1.52)

= 2

p∑
µ=1

(p!)2

(p− µ)!(p+ µ)!µ
(1.53)

=
2(
2p
p

) p∑
µ=1

(
2p

p+ µ

)
1

µ
(1.54)

= Hp, (1.55)

with the pth harmonic numberHp. We compute at the end of this section. We can interpret
∂FD,p as linear combination11 of copies of ∂cent with different shifts µh, using coefficients
that sum to 1:

∂FD,p =

p∑
µ=1

2µαµ∂
[µh]
cent . (1.56)

From this perspective it is clear that the bias of the stencil is just the same linear combi-
nation of the biases of ∂[µh]cent and that the variances are summed together with prefactors
4s
sµ
(µαµ)

2 where sµ is the shot budget allocated to the µth central difference in the combi-

10 For p = 1 we get back ∂cent with α±1 = ±1/2.
11 The linear combination of gradient recipes is defined canonically: It is applied to a function by applying

each of its rules and summing the results weighted with the coefficients of the combination.
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nation.

If the variance is the dominating source of error, it will be crucial to minimize it by
allocating all shots at the optimal shift size h∗ rather than splitting them among (the op-
timal and) suboptimal shift sizes {h, 2h, . . . , ph} in order to reduce the bias. This means
that higher-order stencils hardly offer an advantage in this domain, and the optimal shot
allocation would mostly sample the shifts ±h∗, effectively ignoring the other terms of a
stencil. However, the optimal allocation typically is not available and the practical shot
allocation does not lead to this concentration on evaluations at h∗. Consequently, higher-
order stencils will allocate too many shots to the unfavourable shifts {2h∗, 3h∗ . . . } and
perform poorly compared to the simpler central difference at the optimal shift. This effect
will also become apparent in the numerical experiments in Sec. 1.2.8.

To finalize this section we compute the norm ∥α∥1 as announced above, using induc-
tion in p. For this we explicitly write α = αp and note ∥α1∥1 = 1 = H1, so that the
statement in Eqs. (1.52-1.55) holds for p = 1. Then we compute

∥αp+1∥1 − ∥αp∥1 =
2(

2p+2
p+1

)
 1

p+ 1
+

p∑
µ=1

1

µ

((
2p+ 2

p+ 1 + µ

)
−
(

2p

p+ µ

)(2p+2
p+1

)(
2p
p

) )
 (1.57)

=
2(

2p+2
p+1

)
 1

p+ 1
+

p∑
µ=1

(
2p+ 2

p+ 1 + µ

)
1

µ

(
1− (p+ 1 + µ)(p+ 1− µ)

(p+ 1)2

)
=

2(
2p+2
p+1

)
(p+ 1)2

p+1∑
µ=1

(
2p+ 2

p+ 1 + µ

)
µ (1.58)

=
1

p+ 1
, (1.59)

which together with the induction hypothesis implies that

∥αp+1∥1 = ∥αp∥1 +
1

p+ 1
= Hp +

1

p+ 1
= Hp+1 (1.60)

and consequently ∥αp∥1 = Hp for all p ∈ N.

1.2.3 Parameter-shift rules

The second differentiation method we consider is the so-called parameter-shift rule. This
technique makes use of the fact that the objective function E(θ) is a (finite) Fourier series,
and in essence executes a discrete Fourier transform (DFT) ofE in each parameter direction
separately. The frequency spectrum of the series, which is required for the DFT, can be com-
puted efficiently from the parametrized gates used in the PQC, assuming that these gates
act only on logarithmically many qubits. For larger gates, either the resulting frequency
spectrum (or a superset thereof) can be obtained from a structural analysis of the gate, or
the gate can be decomposed and differentiated via the product rule. Note that in order
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to apply a gate that is not native to the used hardware, such a decomposition is required
anyways, so that the latter approach usually does not pose any additional constraints on
the used gates. For digital quantum computers we may assume that native gates do not
act on many qubits and hence are easy to analyse with respect to the resulting frequency
spectrum.

The publication enclosed in Chap. 2 focuses on the parameter-shift rule and its general-
ization to unitaries of the form U(x) = exp(i(xG+F )) with arbitrary Hermitian operators
G and F . The perturbed case F ̸= 0 is treated using the concept of a stochastic shift rule
introduced in [36], leading to “improper” shift rules12 that modify the PQC, not just its
parameters. For derivations and detailed computations I refer the reader to the paper. In
addition, Sec. 2.1 discusses the coverage of parameter-shift rules in the literature. Here
we give a few results for completeness and discuss the relation to the central difference
introduced above. As this section is an introductory summary, the contents are taken from
the literature, from the publication in Chap. 2, or are immediate conclusions based on the
former.

Consider a gate U(x) = exp(ixG) whose generator satisfies G2 = I (but is not the
identity). In this case, the restriction of E to the parameter corresponding to U takes the
form

E(x) = a0 + a1 cos(x) + b1 sin(x), (1.61)

where a0, a1 and b1 are unknown real-valued coefficients. The main example of this class of
gates is a Pauli rotation, i.e.G is a Pauli word. For this cost function the original parameter-
shift rule [62] reads

∂PSE(0) =
1

2

[
E
(π
2

)
− E

(
−π
2

)]
, (1.62)

which is an exact expression. It can also be used with shift values ±h other than ±π
2 , and

for any gate whose generator has two unique eigenvalues. In this case the rule is

∂PSE(0) =
Ω

2 sin(Ωh)
[E(h)− E(−h)] , (1.63)

where Ω := |ω2 − ω1| is the (positive) difference of the two eigenvalues of G. For arbi-
trary generators G of the parametrized gate (and keeping F = 0), the restricted objective
function E has the form

E(x) = a0 +

R∑
ℓ=1

aℓ cos(Ωℓx) + bℓ sin(Ωℓx), (1.64)

where {Ωℓ}ℓ are the unique, positive differences of eigenvalue pairs of G, and R is the

12 As opposed to the “proper” shift rules in [37].
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Gate class |Λ(G)| R

RP (x) 2 1
c-RP (x) 3 2∏M

j=1RPj (x) M + 1 M∏M
j=1RPj (cjx), cj ̸= 0 M + 1 ≤ |Λ(G)| ≤ 2M M ≤ R ≤ 2M − 1

U(x) = exp(ixG) ∈ C2m 1 ≤ |Λ(G)| ≤ 2m 0 ≤ R ≤ 4m−2m

2

Table 1.1: Some classes of gates, the spectrum size |Λ(G)| of their generator G and the
number of frequenciesR in the resulting Fourier series when using the gate in an objective
function based on an expectation value. RP denotes a Pauli rotation, i.e. a gate RP (x) =
exp(ixP ) with P a Pauli word, and c-RP is such a rotation controlled by an arbitrary
number of other qubits. Products of Pauli rotations typically occur in form of layers of
single-qubit rotations on distinct qubits, but for rows three and four we only assume that
none of the rotations can be combined into an operation with reduced frequency spectrum;
|Λ(G)| and R may be smaller, should this be possible. If all Pauli words involved in such
a product of rotations commute, the generator of the unitary is the sum of the words. This
is not true if the {Pj} do not commute, but the frequency spectrum will remain the same.

number of these differences. Both the structure of these frequencies Ωℓ and R depend
heavily on details of G and will be relevant when assessing the cost of the parameter-shift
rule. For U acting on m qubits, we have 0 ≤ R ≤ 4m−2m

2 .

In the following we discuss a few examples of gates and the corresponding number R
of frequencies in the spectrum; some classes of gates are summarized in Tab. 1.1. While
exponentially large frequency spectra (in m) are possible in principle, most practically rel-
evant gates result in much smallerR: Pauli rotations, as mentioned above, yieldR = 1 and
controlled Pauli rotations contributeR = 2 frequencies while both may act on any number
m ≤ N of qubits. In section 5.1 of the publication in Chap. 2 we discuss parametrized
layers of quantum gates in QAOA, which act on all N qubits but obey Reven = N and
Rodd ≤ ⌊N2

4 ⌋ for the considered optimization problem.

While these gates result in polynomially many frequencies, it is easy to construct ex-
amples that actually have exponentially many frequencies: A layer of single-qubit Pauli-Z
rotations with rescaled inputs 2jx

U(x) =

m⊗
j=1

R
(j)
Z (2jx) is generated by G =

m∑
j=1

2jZ(j). (1.65)

G has 2m eigenvalues
{∑m

j=1 kj2
j
∣∣kj ∈ {±1}∀1 ≤ j ≤ m

}
, from which we can generate

2m − 1 positive differences

{Ωℓ}ℓ =


m∑
j=1

kj2
j

∣∣∣∣kj ∈ {0, 2} ∀1 ≤ j ≤ m,k ̸= 0

 . (1.66)

Gates that saturate the bound R ≤ 22m−1 − 2m cannot be constructed from products of
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Pauli rotations13. An example of such a gate would be the one generated by an operator
with spectrum Λ(G) = {2j |1 ≤ j ≤ 2m}.

For the general objective function in Eq. (1.64), the parameter-shift rule from the pub-
lication in Chap. 2 reads

∂PSE(0) =
R∑

µ=1

yµ [E(xµ)− E(−xµ)] , (1.67)

where ±xµ are the used shifts and yµ are the coefficients e.g. resulting from the DFT that is
underlying the shift rule for equidistant frequencies. In principle, the shifts do not have
to be chosen symmetrically around 0, but doing so reduces the number of shifts by one.
In [27] the author proves that optimal shift rules for any frequency spectrum with 2R shifts
exist. It is not shown that they need to be antisymmetric as in Eq. (1.67) above, but we can,
should this provide an advantage, antisymmetrize a parameter-shift rule at the cost of
using more unique shifts, by subtracting the rule with ({−xµ} , {yµ}) from the original
one that uses ({xµ} , {yµ}). While this will not increase the average MSE of the rule, the
resulting number of shifts will of course be larger than 2R. As parameter-shift rules are
exact, the MSE of the above estimator consists of the variance alone:

ε2
[
∂PSÊ(0)

]
= V

[
∂PSÊ(0)

]
(1.68)

=
R∑

µ=1

y2µ

[
V
[
Ê(xµ)

]
+ V

[
Ê(−xµ)

]]
(1.69)

= σ2
R∑

µ=1

2y2µ

(
1

sµ,+
+

1

sµ,−

)
(1.70)

=
4 ∥y∥21 σ2

s
. (1.71)

Here we again averaged the variance of Ê(x) over the domain of E and assumed the
optimal shot allocation to the 2R function evaluations. The former step is justified because
the variances at the shifted positions contribute linearly to ε2

[
∂PSÊ(0)

]
and we aim at

a variant of the parameter-shift rule that performs best on average, but maybe not at a
specific parameter position. The optimal shot allocation for this average rule is the same as
the practical allocation so that it can be implemented in practice because it only depends on
the known coefficients y and no longer on σ. When treating shift rules as (Borel) measures
as in [27, 37], the variance arises from the total variation norm of the considered shift rule.

As the frequencies Ωℓ and the shifts xµ in general do not have any particular structure,
there is no closed form expression for the coefficients yµ or their norm ∥y∥1. However,
for the special case of equidistant frequencies Ωℓ = ℓΩ with some base frequency Ω and

13 This can be shown by looking at the combinations of eigenvalues of rescaled Pauli operators directly,
which are too regular to create O(4m) distinct frequencies.
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equidistant shifts xµ = 2µ−1
2RΩ π, the DFT coefficients are known and we have

yµ =
(−1)µ−1Ω

4R sin2
(
2µ−1
4R π

) , (1.72)

which can be shown to be optimal [27]. In App. A.4 of the publication in Chap. 2 we
compute14 ∥y∥1 = RΩ for this recipe and arrive at

ε2
[
∂PSÊ(0)

]
=
σ2R2Ω2

s
. (1.73)

As we can see, the error grows linearly with the largest frequency RΩ. In contrast to
the order of the finite difference stencil, neither R nor Ω are freely chosen parameters,
but are dictated by the gates used in the PQC and their generators. It can be shown that
this is optimal, and that the largest frequency also dictates the cost of an optimal shift
rule if the frequency spectrum is not equidistant as above, and even if the frequencies are
incommensurable [27]. Eq. (1.73) therefore holds for the optimal rule more generally, even
though there need not be a closed-form expression for the shifts {xµ} or coefficients {yµ}.

We leave all further details on the parameter-shift rule, as well as extensions to higher-
order derivatives in one and two parameter dimensions, to the publication in Chap. 2 and
references therein. More details on the literature presented a variety of perspectives and
differentiation rules can be found in Sec. 2.1. The following section presents a perspective
on the central difference and the two-term shift rule as special choices from a larger family
of differentiation recipes, and Sec. 1.2.8 contains a numerical comparison of differentiation
techniques regarding their MSE.

1.2.4 Antisymmetric two-term recipes

In this section we look at derivative estimators based on antisymmetric recipes using two
shifts, allowing us to analyse the central difference and the two-term parameter-shift rule
as subsets of a two-parameter family of derivative recipes, as anticipated e.g. in [56]. One
might notice that the central difference recipe in Eq. (1.38) and the two-term parameter-
shift rule with variable shift in Eq. (1.63) have the same functional form, which more gen-
erally can be written as

∂two-termE(0) := y1 (E(h)− E(−h)) , (1.74)

i.e. they are antisymmetric recipes with two terms for a particular relation between y1 and
h, namely y1(h) = 1/(2h) and y1(h) = Ω/(2 sin(Ωh)) for ∂cent and ∂PS, respectively. The

14 The factor Ω was set to 1 in the publication, here we write it out explicitly.
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MSE of these antisymmetric two-term recipes is

ε2
[
∂two-termÊ(0)

]
=

(
R∑
ℓ=1

bℓ (2y1 sin(Ωℓh)− Ωℓ)

)2

+ y21

σ2
[
Ê(h)

]
s+

+
σ2
[
Ê(−h)

]
s−

 .

(1.75)

The central difference is unique in this family in that it computes the lowest-order contri-
bution of the derivative correctly, whereas the parameter-shift rule is the unique unbiased
choice for cost functions with a single frequency in the Fourier series.

In [56] the authors discuss the comparison between these two recipes as well, and
consider an additional tradeoff which reduces its variance at the cost of introducing a bias.
To this end, the parameter-shift rule is rescaled and the authors continue to show that the
optimal parameters are15

y1(h) =
1

2

sin(Ωh)

sin2(Ωh) + σ2

sb21

and h =
π

2Ω
, (1.76)

assuming for the optimal shift that the variance of Ê is constant, or alternatively that we
use the practical shot allocation strategy introduced above. We denote this optimal anti-
symmetric two-term recipe as ∂opt. If we investigate the MSE of the recipe on average over
the parameter domain, we indeed obtain the same result as if we had replaced the local
variance by its average right away. For the parameter-shift rule both shot allocation strate-
gies are equivalent so that the analysis can be transferred to the optimal allocation, but for
any other

(
h, y1(h) ̸= Ω

2 sin(Ωh)

)
the strategies differ16. We will compare the anti-symmetric

two-term recipes to higher-order finite differences and the LCU-based estimator (see next
section) for the case of a single frequency (R = 1) in E in Sec. 1.2.8.

1.2.5 Linear combination of unitaries

In the previous sections we discussed finite differences, which do not take the functional
form of the differentiated function into account. We also discussed parameter-shift rules,
which make use of the fact that E is a Fourier series with known frequency spectrum but
do not consider or modify the structure of the PQC. There is another differentiation method
that is more specific to quantum circuits and is based on a generalization of the Hadamard
test to compute quantum state overlaps [63, 64, 65]. We will refer to this method as linear
combination of unitaries (LCU). To understand this method, we take a step back and look

15 The appropriate translation from [56] to our notation is 2N 7→ s, s 7→ h and g2j 7→ b21Ω
2, where we inserted

the frequency Ω in the required places.
16 This means that we choose to analyse the MSE as encountered in practice where we do not know the

Fourier coefficients. However, should there be a way to estimate the coefficients as discussed e.g. in [57], this
analysis might be slightly too pessimistic.
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at how the objective function E came to be:

E(θ) = ⟨0|C(θ)†HC(θ) |0⟩ . (1.77)

For the previous methods, it did not make a difference whether a given parameter θk
contributes to the circuit in a single unitary of the form exp(ixG) or in multiple such gates,
because we only used the functional form of the resulting objective function E. Here we
assume the former, and thus each gate carries a unique variable θk and is differentiated
separately. Assuming this structure, we have

Ek(x) = ⟨0|C†
[:k+1]U(x)†C†

[k+1:]HC[k+1:]U(x)C[:k+1] |0⟩ (1.78)

= ⟨ϕ|U(x)†BU(x) |ϕ⟩ , (1.79)

where |ϕ⟩ := C[:k+1] |0⟩ is the state prepared by all gates up to (including) U(θk) and
B := C†

[k+1:]HC[k+1:] is the Hermitian obtained by applying all gates after U to H in the
Heisenberg picture. Then the derivative is

E′
k(0) = −2Im [⟨ϕ|BG |ϕ⟩] . (1.80)

We now drop the index k as we did before. Consider the following expression using N +1

qubits

∂LCUE(0) := −2 ⟨+| ⟨ϕ| c-G†(Y ⊗B)c-G |+⟩ |ϕ⟩ (1.81)

= i (⟨ϕ|BG |ϕ⟩ − ⟨ϕ|GB |ϕ⟩) (1.82)

= E′(0). (1.83)

Here we wrote c-G for the controlled generator, i.e. c-G = |0⟩⟨0| ⊗ I+ |1⟩⟨1| ⊗G.

This estimator can be realized in the following way (see Fig. 1.1): add a single auxiliary
qubit to the circuit, which is prepared in the state |+⟩. The original circuit is executed on
the N -qubit register as for the computation of E itself, but after executing the differen-
tiated gate U(θk), the generator is applied controlled by the auxiliary qubit, i.e. c-G is in-
serted after U(θk). The auxiliary qubit is then measured in the Pauli-Y basis along with the
Hamiltonian terms on the main register. This method was proposed e.g. in [66]. Alterna-
tively we may apply the HamiltonianH to theN -qubit register, controlled on the auxiliary
qubit, once the original circuit is completed and only measure the auxiliary qubit [67, 68].
This is equivalent because

(I⊕H)(Y ⊗ I)(I⊕H) = (Y ⊗ I)(H ⊕H) = Y ⊗H, (1.84)

which means applying the controlled gate c-H before measuring Y on the auxiliary qubit
is the same as measuring Y ⊗H on all N +1 qubits. Considering a grouping of H into sets
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∂LCUÊ(0) = −2×
N

|+⟩
Y ⊗H

|0⟩ C[:k+1] G C[k+1:]

∂LCU’Ê(0) = −2×
N

|+⟩ Y

|0⟩ C[:k+1] G C[k+1:] H
Error

mitigation

Figure 1.1: Quantum circuits to compute the derivative of an objective function based
on a PQC C, using an auxiliary qubit and the controlled application of the generator, c-
G. For the first approach, only one controlled operation is required, and the observable
Y ⊗ H is measured in the end. For the second approach, the measurement is preceded
by a controlled application of the terms in an LCU of the Hamiltonian H and only Y is
measured on the auxiliary qubit, leaving room for error mitigation protocols on the main
register.

of commuting Pauli words (c.f. Sec. 1.1), the first implementation allows us to measure the
derivative using the same grouping. The second approach, as it requires H to be unitary,
only supports one Pauli word (or another unitary from an LCU of H) to be measured per
circuit execution. Alternatively, a grouping into sets of anticommuting Pauli words may
be used to construct a decomposition of H into fewer unitaries. Another disadvantage of
the second implementation of the Hadamard test is the need to apply the controlled gate
c-H , or an LCU thereof, which increases the multi-qubit gate count and poses additional
hardware constraints in terms of connectivity; the first method only requires some auxil-
iary qubit to be connected to the qubits on which the differentiated gate acts. To implement
c-H for the second method, however, the qubits of each unitary term in the Hamiltonian
need to be reachable from such an auxiliary qubit in addition.

An advantage of the second method is that the main N -qubit register can be used for
error mitigation protocols, such as echo verification, or verified phase estimation [45, 46,
47]. As an alternative to a grouping into Pauli words, other decompositions of H into
unitaries are possible, and indeed favourable for the statistics of LCU-based measurement
strategies [44].

The circuits for both approaches are shown in Fig. 1.1. There, we do not explicitly in-
dicate the grouping of H into commuting sets of Pauli words or unitaries for the first and
second approach respectively, but implicitly assume that H is measured or c-H is applied
via a suitable decomposition, respectively. Both methods for the LCU-based derivative
only yield a valid circuit if G is unitary, or equivalently G2 = GG† = I (due to Hermiticity
and unitarity). Note that scalar prefactors can simply be accounted for in classical post-
processing and a global phase in U does not matter physically. With these two relations
the condition G2 = I becomes equivalent to |Λ(G)| = 2, the condition for the original
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parameter-shift rule to hold (see Sec. 1.2.3). We will discuss possible extensions of the
estimator to more general G further below.

The expression in Eq. (1.81) is exact, and therefore the estimator ∂LCUÊ(0) is unbiased.
Its variance can be calculated via

V
[
∂LCUÊ(0)

]
=
4

s
⟨+| ⟨ϕ| c-G†(I⊗B2)c-G |+⟩ |ϕ⟩ − 1

s
E′(0)2 (1.85)

=
2

s

(
⟨ϕ| ⊕ ⟨ϕ|G†

)
(B2 ⊕B2) (|ϕ⟩ ⊕G |ϕ⟩)− 1

s
E′(0)2 (1.86)

=
2

s

(
⟨0|C(θ)†H2C(θ) |0⟩+ ⟨0|CG(θ)

†H2CG(θ) |0⟩
)
− 1

s
E′(0)2 (1.87)

=
1

s
⟨H2⟩′′ (0) + 4

s
⟨H2⟩ (0)− 1

s
E′(0)2, (1.88)

where CG denotes the original PQC with the generator G inserted after U , and we used
G2 = I in the last step. Note that there is only a single circuit to be executed per Hamilto-
nian term, so that the shots for the derivative do not need to be split up further than for
measuring E itself.

The constraint forG (together with its Hermiticity, and excluding the global phase gate
with G ∝ I) moreover implies that Ω = 2, i.e. the two generator eigenvalues differ by 2.
Therefore we know that ⟨H2⟩ (x) = ã0 + ã1 cos(2x) + b̃1 sin(2x) and that E takes the same
functional form with coefficients a0, a1 and b1. In practice we are interested in the point
x = 0 when computing a single derivative, but like before we here want to evaluate the
derivative estimator on average over the domain of θk, and therefore write

V
[
∂LCUÊ(x)

]
=
4

s

(
−ã1 cos(2x)− b̃1 sin(2x) + ã0 + ã1 cos(2x) + b̃1 sin(2x)

)
− 1

s
(−2a1 sin(2x) + 2b1 cos(2x))

2 (1.89)

=
4

s

[
ã0 − (a1 sin(2x)− b1 cos(2x))

2
]
. (1.90)

Averaging over the domain [0, π], we get a variance of

ε2
[
∂LCUÊ(0)

]
=

4

s

[
ã0 −

a21 + b21
2

]
(1.91)

for the LCU-based derivative. For gates with Ω ̸= 2 that need to be rescaled in order to
admit this differentiation technique we get an additional factor of Ω2/4 in this variance, i.e.

ε2
[
∂LCUÊ(0)

]
=

Ω2

s

[
ã0 −

a21 + b21
2

]
=

Ω2

s
(σ2 + a20) ≥ ε2

[
∂PSÊ(0)

]
, (1.92)

with the average variance σ2/s of Ê(x) itself.

For the second variant of the LCU-based estimator the shot budget needs to be split
among the unitary terms that composeH . The resulting variance differs from the variance
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of the first LCU-based approach by covariances, and by the deviating prefactors due to the
shot allocation. Furthermore, it depends on the decomposition of H which need not be
the same as the grouping into sets of commuting Pauli words. All this makes an analytic
comparison to the other estimators difficult. Should H be unitary itself, the variances of
the two LCU-based approaches become the same:

V
[
∂LCU’Ê(0)

]
=
4

s

(
⟨+| ⟨ϕ| c-G†C†

[k+1:]c-H†
)
(Y ⊗ I)2

(
c-HC[k+1:]c-G |+⟩ |ϕ⟩

)
−1

s
E′(0)2 (1.93)

=
1

s

(
4− E′(0)2

)
(1.94)

=
4

s

(
⟨+| ⟨ϕ| c-G†

)
(I⊗B2) (c-G |+⟩ |ϕ⟩)− 1

s
E′(0)2 (1.95)

=V
[
∂LCUÊ(0)

]
. (1.96)

As an alternative to using an auxiliary qubit, there is the possibility to use a quantum state
within the original register as reference state, as long as it is not used in the computation
itself [42, 69]. This is of relevance in circuits that leave certain parts of the state space
untouched because they respect symmetry sectors of the Hamiltonian, e.g. in applications
for quantum chemistry.

As discussed, the LCU-based derivative estimator described above only is applicable to
gates with G2 = I. However, there is a straightforward extension using a decomposition
of G into a sum of Hermitian unitaries17

G =
K−1∑
r=0

γ̃rPr, (1.97)

and the fact that Eq. (1.80) is linear in G (ignoring that G is used to prepare |ϕ⟩, of course).
The estimator in Eq. (1.81) is then applied to each Pr and the terms are combined classically
including the (real-valued) weights γ̃r. The available shot budget has to be allocated to the
different estimators according to their variance and the weights. As discussed before,
the variance is not known beforehand. For shifted evaluations of E, averaging over the
parameter space removed this problem, because then all evaluations have the same mean
variance. For the different terms in G, however, this is not possible and we are not able
to predict the relation between the average variances that we try to balance with the shot
allocation. Therefore, we allocate the shots in proportion to the weights γr = |γ̃r| alone

17 This again is an LCU, but not the one that gives this estimator its name.
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∂LCU,genÊ(0) = −2 ∥γ∥× ⌈log2 K⌉

N

|+⟩

Y ⊗ I⊗H|γ⟩
VG

|0⟩ C[:k+1] C[k+1:]

with =

N N

VG

χ0P0 χ1P1 χ2P2 χ3P3

Figure 1.2: Quantum circuit similar to the first circuit in Fig. 1.1, but for nonunitary G

that can be decomposed as G =
∑K

r=1 γrχrPr with γr > 0, χr ∈ {±1} and unitaries
Pr. For K terms in the decomposition ⌈log2K⌉ additional qubits and K multi-controlled
operations are needed; the operation VG is shown for K = 4. Similar to ∂LCU’ for unitary
G, the measurement of Y ⊗ I⊗H can be replaced by applying the operation c-(I⊗H) and
measuring Y on the first auxiliary qubit alone.

and obtain the variance

V
[
∂LCUÊ(0)

]
=

∥γ∥1
s

K−1∑
r=0

γr

[
2
(
⟨H2⟩+ ⟨0|CPr(θ)

†H2CPr(θ) |0⟩
)

(1.98)

− (−2Im [⟨ϕ|BPr |ϕ⟩])2
]

(1.99)

=
2 ∥γ∥21
s

⟨H2⟩+ 2 ∥γ∥1
s

K−1∑
r=0

γr

(
⟨H2⟩Pr

− 2Im [⟨ϕ|BPr |ϕ⟩]2
)
, (1.100)

where ⟨·⟩Pr
abbreviates the expectation value with respect to the modified circuit CPr .

Another option is to implement the decomposition of G on the quantum computer it-
self, using additional ⌈log2(K)⌉ auxiliary qubits. The additional qubits are used to imple-
ment the summands {Pr} in proportion to

{√
γr
}

, and the first auxiliary qubit implements
the generalized Hadamard test itself as before. This construction is shown in Fig. 1.2 and
can be found in a similar form e.g. in [70, Fig. 3]. It does not decompose G as in Eq. (1.97)
but via

G =
K−1∑
r=0

γrχrPr, with χr = sgn(γ̃r). (1.101)
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The multi-controlled operations as well as the auxiliary weights state are summarized by

VG := |0⟩ ⟨0| ⊗ I⊗ I+ |1⟩ ⟨1| ⊗
K−1∑
r=0

(|r⟩ ⟨r| ⊗ (χrPr)) , (1.102)

|γ⟩ :=
√
∥γ∥−1

1

∑
r

√
γr |r⟩ , (1.103)

where the tensor product in VG is between the auxiliary qubit for the Hadamard test, the
“term selection qubits”, and the original qubit register. The gradient estimator realized in
this circuit, multiplied by −2 ∥γ∥1, is

E
[
∂LCU,genÊ(0)

]
= −2 ∥γ∥1 ⟨+| ⟨γ| ⟨ϕ|V †

G(Y ⊗ I⊗B)VG |+⟩ |γ⟩ |ϕ⟩ (1.104)

= i

K−1∑
r=0

√
γr

2
[
⟨ϕ|B (χrPr |ϕ⟩)−

(
⟨ϕ|χrP

†
r

)
B |ϕ⟩

]
(1.105)

= −2Im [⟨ϕ|BG |ϕ⟩] . (1.106)

Both the preparation of the weighted state |γ⟩ and the K multi-controlled gates in VG may
pose serious challenges for near-term quantum computing hardware, depending on K

and the structure of γ. In this approach, the shot budget is allocated like for the energy
measurement, leading to the variance

V
[
∂LCU,genÊ(0)

]
=

4 ∥γ∥21
s

⟨+| ⟨γ| ⟨ϕ|V †
G(I⊗ I⊗B2)VG |+⟩ |γ⟩ |ϕ⟩ (1.107)

− 1

s
E′(0)2 (1.108)

=
2 ∥γ∥21
s

⟨H2⟩+ 2 ∥γ∥1
s

K−1∑
r=0

γr ⟨H2⟩Pr
− 1

s
E′(0)2. (1.109)

We observe that the first two terms are identical to the variance of the classically combined
estimators for each Pr in Eq. (1.100) but the third terms differ. To compare them, we write

gr := −2Im [⟨ϕ|BχrPr |ϕ⟩] (1.110)

⇒ E′(0) = γ · g (1.111)

V
[
∂LCU,genÊ(0)

]
− V

[
∂LCUÊ(0)

]
=

1

s

(
∥γ∥1 γ · g⊙2 − (γ · g)2

)
(1.112)

=
1

s

∑
r<q

γrγq(gr − gq)
2 ≥ 0, (1.113)

where the inequality holds because γr > 0, ∀0 ≤ r ≤ K − 1. We therefore get a larger (or
equal) variance from the generalized LCU-based estimator, which also comes at the cost
of additional auxiliary qubits and potentially very NISQ-unfriendly multi-control opera-
tions and connectivity requirements. As any decomposition that can be implemented in
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this way also can be computed from separate circuits for each Pr together with classical
postprocessing, we conclude that this approach (Fig. 1.2) is not favourable for measuring
gradients.

1.2.6 Simultaneous perturbation stochastic approximation

Another estimator for derivatives of PQC-based functions can be implemented using the
simultaneous perturbation stochastic approximation (SPSA) [71], which – similar to finite
differences – does not use the structure of the objective function. However, this estimator
differs from the ones discussed above in that it aims at estimating the multivariate deriva-
tive as a single object instead of its separate components. The core idea is to repeatedly
shift (or perturb, considering the method’s name) all input parameters simultaneously ac-
cording to some suitable probability distribution, and to compute correlated estimates for
all components of the gradient from the evaluations at these shifted positions. We will
not review this method in detail but note that SPSA has been employed in the context of
VQAs repeatedly [72, 73, 74] and has been extended to the computation of the Fubini-Study
metric, allowing an SPSA-based computation of the quantum natural gradient [75]. In our
analysis in Sec. 1.2.8 we will not include SPSA either, because there we will focus on ele-
mentwise estimation of the gradient.

1.2.7 Differentiation on classical simulators

In addition to the methods discussed in Sec. 1.2.2 to 1.2.6, which mostly can be executed
on quantum machines with no or minor additional hardware requirements, there are ad-
ditional methods for differentiating PQCs when simulating them on classical computers.

Simulating PQCs and variational algorithms is still a major part of NISQ research. There-
fore, while these differentiation methods on simulators are unlikely to be of interest for
quantum computing at larger scales, they offer relevant performance improvements in
today’s numerical experiments.

I will first present two simulator-only differentiation techniques that are computation-
ally cheaper than simulating the hardware-compatible methods directly. For this we as-
sume a (to numeric precision) exact calculation of all quantities. Afterwards I discuss the
emulation of shot-noisy gradients on classical simulators, which poses an interesting chal-
lenge for near-term simulations.

Automatic differentiation A powerful technique on classical computers is automatic
differentiation, sometimes abbreviated as autodiff. It can be understood as the computer
implementation of symbolic differentiation in non-symbolic programming languages and
mimics differentiation on paper by using the chain rule iteratively. As such, it does not
introduce truncation errors beyond the numerical precision cutoff present in straightfor-
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ward function evaluations and often exhibits much better performance than finite differ-
ence schemes.

Autodiff is an essential tool in most programs in machine learning and one of the core
functionalities of major machine learning programming libraries like Tensorflow [76], Py-
Torch [77], JAX [78] and autodiff (C++) [79]. This wide availability made it easy for quan-
tum simulation frameworks to integrate autodiff functionalities early on, prominent ex-
amples include PennyLane [80], Yao.jl [81], Tensorflow Quantum [82] and Qiskit [83].

There are two generic modes to compute the full derivative of a function f : Rn → Rp

with autodiff, dubbed forward and reverse mode. In essence they differ by the order in which
the iterative chain rule is resolved, which makes their computational cost dependent on
the number of inputs n and outputs p.

The forward mode sweeps through the computational graph in the same order as the
original computation of f(θ). This has to be done once for each input dimension, calculat-
ing one column of the Jacobian ∂fi/∂θj per sweep. In contrast, the reverse mode starts at
the output value of f and resolves the chain rule while moving towards the input nodes of
the computational graph. This corresponds to computing the Jacobian row by row, and in
particular, it requires only one pass through the computational graph of f if p = 1, i.e. for
scalar output functions like the objective function E(θ).

While this makes reverse mode a fast technique for PQC-based functions, it requires a
significant amount of additional memory in order to store intermediate results of the com-
putation. This is particularly problematic for simulators of full quantum registers because
these intermediate results are complex-valued state vectors with 2N components. This sig-
nificantly limits the system size for which a typical gradient computation fits into the fast
random access memory (RAM) of a classical computer. The memory overhead typically
scales with n, the number of (input) parameters [84], so that we may expect a memory re-
quirement of O(n2N ). For reversible computations, to which quantum circuits belong, the
memory overhead can be reduced to a constant overhead [85], which is exploited e.g. in
the library Yao.jl [81] and leads us to the following method for simulators:

Adjoint method A second differentiation method that is available on state vector simu-
lators but not on quantum computing hardware is the so-called adjoint method [81, 86].
Due to its relation to autodiff techniques for reversible computations, it is also called “re-
verse mode”, but here we adapt the name “adjoint method” in order to separate it from
the method in the paragraph above. The adjoint method makes use of the reversibility of
quantum circuits and the structure of PQC-based functions, achieving computational cost
and memory requirements similar to those for evaluations of the objective function itself18.

The core idea of the method is as follows: first, compute the state |ψ(θ)⟩ prepared

18 At the highest density of parametrized gates in the circuit and when combined optimally with the com-
putation of E itself, it requires leading-order additional cost of 3n applications of gate-like matrices, as well
as 2 additional state vectors of memory.
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by the original PQC – or retrieve it from cache if E(θ) itself was computed before – and
copy it. Second, apply the Hamiltonian to one of the copies of |ψ(θ)⟩, obtaining |ϕ⟩ =

H |ψ(θ)⟩. If E was not computed yet, it can be obtained at this point, at the cost of a
single inner product between |ϕ⟩ and the second copy of |ψ(θ)⟩. Third, iteratively apply
the inverses of the gates from the PQC in reverse order to both |ψ(θ)⟩ and |ϕ⟩. Whenever
a parametrized gate is encountered during this process, copy one of the states, apply the
generator of the parametrized gate to it, and compute the inner product with the other
state. This inner product corresponds to the gradient entry up to a constant that depends
on notation conventions and the choice of state to which the generator was applied. The
copy may be discarded/overwritten after computing the inner product. Ref. [86] includes
a pedagogic demonstration of the idea behind the adjoint method and discusses a series
of extensions to more general operations, observables and to density matrix simulators.
Interested readers may refer to this technical note and its references for details on the
method.

To the best of my knowledge, the adjoint method is the fastest differentiation method
on classical simulators of exact PQC-based objective functions that does not require im-
practical amounts of memory, in particular for the domain with more than ∼20 qubits [76,
80, 81]. Not only the asymptotic scaling of the adjoint method but also its costs for small
numbers of qubits and parameters are competitive to other methods. Nonetheless, dif-
ferentiation methods based on shifted evaluations of the unmodified objective function
like the parameter-shift rule or finite differences may be advantageous for small N and
n, depending on details of the implementation, programming language and use case. For
example just-in-time compilation, the usage profile of computing E and ∇E respectively,
and the cost of manipulating state vectors outside of a valid quantum circuit structure may
have a significant impact on the performance in practice.

Computing gradients with shot noise State vector simulators usually compute the (nu-
merically) exact probability distribution associated with the quantum state that is pre-
pared by the simulated PQC, and produce a statistical estimator by sampling from the
obtained distribution. That is, we obtain exact quantities and have to do additional work
in order to get a realistic shot-noisy estimator of these quantities. There are exceptions
to this behaviour of simulators, such as the tensor network-based simulator TN1 by AWS
Braket [87]. On a real QPU, the situation is reversed and we only ever have access to noisy
estimates for the quantities of interest, so that we require larger shot budgets to obtain
more accurate approximations.

When investigating noisy intermediate-scale quantum (NISQ) algorithms, optimally
both the statistical uncertainties and the noise inflicted by the quantum device should
be considered and included in simulations. In particular the latter source of noise often
is excluded in research when examining full optimization workflows because it requires a
full density matrix simulation, which costs much more time and memory than state vec-
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tor simulations19. Effectively, this separates investigations of higher-level algorithms from
research on error mitigation and similar protocols. While it is not guaranteed that there
are no strong interactions between, say, an optimization algorithm and noise mitigation
techniques, this separation makes numerical experiments of relevant size possible in the
first place.

The statistical error, or shot noise, is an essential property of the estimators obtained
from quantum devices and the required precision to which objectives are measured cru-
cially determine the cost of quantum algorithms. Consequently an analysis using numeri-
cally exact expectation values differs from one that considers realistic statistical properties
of the used estimators: On one hand, statistical fluctuations make the output of e.g. the
objective function less precise and allocating measurements optimally to different (steps
of) subroutines of a NISQ algorithm is a difficult task but crucially influences the runtime
(scaling) [60]. The number of required samples is considered one of the major challenges
e.g. for variational quantum eigensolvers (VQEs) [12, 42, 51, 52]. Therefore, running simu-
lations without any statistical noise may drastically overestimate the performance of NISQ

algorithms and in particular the accuracy of the final result. On the other hand, fluctua-
tions of computed quantities can be beneficial e.g. for optimization routines [88], which
are essential in many VQAs, so that shot-free simulation might actually underestimate con-
vergence properties or the stability with respect to initial conditions of the optimization.
The impact of these two discrepancies between shot-free simulations and shot-based es-
timators, simulated or from a QPU, is unknown and accordingly it is desirable to include
shot noise whenever feasible. Nonetheless, it is frequently omitted in application-oriented
research that spans full optimization workflows because of the additional computational
cost, as is the case in the publication attached in Chap. 3.

But why are shot-based simulations so much more costly than numerically exact ex-
periments? For algorithms involving the differentiation of PQCs, the answer lies in the
shortcuts offered by the simulator-only differentiation techniques introduced in this sec-
tion: For (numerically) exact experiments, or equivalently for very large numbers of shots,
the expectation values of the estimators become the only relevant quantity. The deriva-
tives in this case can be computed via automatic differentiation or the adjoint method and
thus faster than by simulating any of the hardware-ready methods. However, if we are in-
terested in the shot-noisy estimator, these simulator-only methods do not give us access to
the underlying probability distributions, which would be necessary for a fast simulation
of the statistical estimator at finite shot numbers. This forces numerical experimentalists
to use hardware-ready methods on classical simulators and increases the costs for simula-
tions of shot-noisy derivatives.

We could relax our goal of reproducing the full statistics and just demand that we
obtain the correct expectation value and variance for each estimator, thus merely “emu-
lating” the shot noise. This is reasonable for sufficiently large shot numbers because the

19 The additional factor for naı̈ve dense matrix simulators is 2N both in time and space.



32 CHAPTER 1. PARAMETRIZED QUANTUM CIRCUITS

central limit theorem tells us to treat the estimator of the mean, which is typically the
form our objective function (derivative) comes in, as a normal random variable in that
regime. Even for this relaxed goal, the task remains difficult and to the best of my knowl-
edge there is no method to emulate shot-noisy derivatives at (approximately) the same
cost as computing their numerically exact counterparts while reproducing the variance of
hardware-ready methods.

In conclusion, simulating gradient-based quantum algorithms is more expensive with
shot noise than without. Finding a method to compute the shot-noisy gradient at the cost
of, say, the adjoint method would allow researchers to include shot noise in larger scale
investigations, which in turn might be very helpful in understanding and characterizing
NISQ algorithms and subroutines.

1.2.8 Estimator comparison for R = 1

In this section I will present a detailed comparison of the hardware-ready derivative es-
timators introduced in the previous sections for single-frequency (R = 1) objective func-
tions. More precisely, we will consider the central difference ∂cent (Eq. (1.37)), higher-
order central differences ∂FD,p (Eq. (1.43)) with p ∈ {2, 4, 10}, the parameter-shift rule ∂PS

(Eq. (1.63)), the optimal antisymmetric two-term recipe ∂opt (Eq. (1.76)) and the LCU-based
estimator ∂LCU (Eq. (1.81)). As also analysed in [56], the optimal recipe ∂opt will be a
rescaled variant of the parameter-shift rule. We will assume throughout this section that
the practical shot allocation is used, as it does not require any knowledge that we actually
try to obtain (also see Sec. 1.2.4).

We begin with an analysis of antisymmetric two-term recipes for single-frequency
functions. The variance at a shifted point in this case is (c.f. Eq. (1.28))

σ2
[
Ê(±h)

]
= ã0 + ã1 cos(Ωh)± b̃1 sin(Ωh) (1.114)

− (a0 + a1 cos(Ωh)± b1 sin(Ωh))
2 . (1.115)

Now assume that we fix the shift parameter h, i.e. we do not adapt it dynamically to the
computation, but at most to a specific parameter index in the circuit. As we consider the
practical rather than the optimal shot allocation, we distribute the shots evenly between
the two shifted evaluations so that s± = s/2. It makes sense to look at the average MSE

across the univariate domain X = [0, 2π/Ω]. While averaging across the entire parameter
space×k[0, 2π/Ωk] requires knowledge of the full circuit and hence seems unfeasible an-
alytically20, the simple structure of E as a function of one parameter makes it possible to
determine the univariate average. Given the Fourier coefficients a0, a1, b1 at 0, E takes the
same functional form at any other x ∈ X , with a0(x) = a0, a1(x) = a1 cos(Ωx) + b1 sin(Ωx)

20 Some progress in this direction is nonetheless made in [57].
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and b1(x) = b1 cos(Ωx)− a1 sin(Ωx), so that the average variance becomes

σ2
[
Ê(±h)

]
=

Ω

2π

∫ 2π/Ω

0

{
ã0 +

(
ã1 cos(Ωx) + b̃1 sin(Ωx)

)
cos(Ωh) (1.116)

±
(
b̃1 cos(Ωx)− ã1 sin(Ωx)

)
sin(Ωh) (1.117)

−
[
a0 + (a1 cos(Ωx) + b1 sin(Ωx)) cos(Ωh) (1.118)

± (b1 cos(Ωx)− a1 sin(Ωx)) sin(Ωh)
]2}

dx (1.119)

=ã0 − a20 −
a21 + b21

2
(1.120)

=:σ2. (1.121)

Furthermore the average (squared) bias of the antisymmetric two-term recipe is

(∂two-termE(0)− E′(0))2 =
Ω

2π

∫ 2π/Ω

0
(b1 cos(Ωx)− a1 sin(Ωx))

2 (2y1 sin(Ωh)− Ω)2 dx

(1.122)

= (2y1 sin(Ωh)− Ω)2
a21 + b21

2
, (1.123)

so that the average MSE for a function E with R = 1 reads

ε2two-term =



σ2

s
Ω2

sin2(Ωh)
parameter-shift rule

σ2

sh2

(
1 + s

ρ (sin(Ωh)− hΩ)2
)

central difference
σ2

s
Ω2

sin2(Ωh)+ρ/s
optimal two-term recipe

σ2

s

(
4y21 +

s
ρ (2y1 sin(Ωh)− Ω)2

)
general two-term recipe.

(1.124)

Here we defined the fraction ρ := 2σ2

(a21+b21)
, which does not depend on h, Ω or s, skipped E

and the evaluation point 0 in the notation on the LHS, and used the shifts

y1(h) =



Ω
/
(2 sin(Ωh)) parameter-shift rule

1/(2h) central difference

Ωsin(Ωh)
/ (

2 sin2(Ωh) + 2ρ/s
)

optimal two-term recipe

y1 general two-term recipe.

(1.125)

There is an additional simplification if we consider the parameter position θ to be sampled
from a translation invariant probability (as we will do in our numerical experiment); sam-
pling θ + π

2Ωek instead of θ yields the replacement (a1, b1) 7→ (b1,−a1) so that a21+b21
2 = b21

and σ2 = ã20 − a20 − b21 on average. With this identification the fraction introduced above
becomes ρ = σ2

b21
and the coefficient for the optimal two-term recipe in the third row of
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Eq. (1.125) is the same as in Eq. (1.76), the optimal coefficient from [56]. Note that the
optimal shift for both the parameter-shift rule and the optimal two-term recipe is π/(2Ω),
whereas the optimal shift for the central difference does not have a closed-form expression
but satisfies

(x− sin(x)) (sin(x)− x cos(x)) =
ρ

s
, with x = Ωh∗cent. (1.126)

In summary, the parameter-shift rule and finite difference depend on the shift value h
alone, with an optimum at π/(2Ω) and some implicit h∗cent, respectively, whereas the op-
timal two-term recipe additionally depends on ρ via its coefficient, but again has its op-
timum at the constant shift h∗opt = π/(2Ω). This dependence on ρ, which is given by the
Fourier coefficients of E, prevents us from using the optimal recipe in practice, unless an
estimate for ρ is available.

In addition to the two-term recipes above, we consider the generalized central differ-
ence introduced in Sec. 1.2.2

∂FD,pE(0) =

p∑
µ=1

αµ

h
(E(µh)− E(−µh)) with αµ =

(−1)µ+1

µ

(
2p
p−µ

)(
2p
p

) , (1.127)

which has the average MSE

ε2FD,p =
σ2

sh2

H2
p +

s

ρ

 p∑
µ=1

2αµ (sin(µΩh)− µΩh)

2 . (1.128)

For this we combined Eq. (1.44) with Eq. (1.51) for R = 1 and the practical shot alloca-
tion sµ = s|αµ|/ ∥α∥1 and used the previously computed average σ2 and squared bias
in Eqs. 1.116 and 1.122. We stress once again that for all two-term shifts, and the finite
difference stencils, we assumed the practical shot allocation, which is proportional to the
known coefficients |y1| and {|αµ|}pµ=1, respectively. Note that this only is the same as the
optimal allocation (on average) for the parameter-shift rule.

In the comparison of the estimators, the fraction ρ/s = σ2/(sb21) will play an important
role, as it determines the relation between the variance and the bias contributions to the
MSE of all shift-based derivative estimators. We observe some limiting behaviour in this
parameter, using the fixed optimal shift h∗PS = π/(2Ω) of the parameter-shift rule:

ε2PS
ε2cent

→
ρ/s→∞

(hcentΩ)
2 ,

ε2PS
ε2cent

→
ρ/s→0

(
1− sin(hcentΩ)

hcentΩ

)−2

> 1 . (1.129)

As we can see, the central difference becomes favourable compared to the parameter-shift
rule for h > 1/Ω in the limit of a large variance (including the factor 1/s) but has a strictly
larger MSE in the limit of a small variance. The crossing point between the best parameter-
shift rule and the best central difference does not have a closed-form expression, but can
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be located numerically at

h∗cent ≈
1.242

Ω
, s× ≈ 6.211ρ. (1.130)

While the methods have the same precision at this configuration, they do not have the
same shift parameter or coefficient y1. As also discussed in [56], the best parameter-shift
rule equals the best two-term recipe up to the factor (1 + ρ/s)−1 in the coefficient, which
approaches 0 and 1 in the limits of large and small variances, respectively. As for the
comparison of the central difference and the optimal two-term recipe (with optimal shifts
h∗opt = π/(2Ω) and h∗cent = x/Ω satisfying Eq. (1.126)) we obtain

ε2cent

ε2opt
=

1

x2

[
1 + (x− sin(x))

(
x− x cos(x) +

1

sin(x)− x cos(x)

)]
, (1.131)

which has a unique minimum at (π/2, 1), i.e. the two rules coincide if hcent = h∗opt = π/(2Ω)

and su = 2ρ
π−2 .

Furthermore we find, as anticipated on p. 16, that higher-order finite differences have
a strictly larger MSE than the central difference in the low shot (i.e. high variance) regime.
This is because the higher-order stencils are linear combinations of the central difference at
different shifts {µh}pµ=1, including h itself, which prevents allocating all shots to the opti-
mal shift. Instead, the stencils fuse in contributions of the central difference at suboptimal
h. Even worse, the variance is increased further because ∥αp∥1 = Hp, creating a large
contribution to the MSE while the bias reduction is irrelevant in the low-shot regime:

ε2FD,p

ε2cent
→

ρ/s→∞
H2

p >
p>1

1. (1.132)

Finally, the MSE of the LCU-based estimator is (see Sec. 1.2.5)

ε2LCU =
Ω2σ2

s

(
1 +

a20
σ2

)
, (1.133)

which is larger or equal to the (minimal) parameter-shift MSE. We include it in the follow-
ing analysis and find that the MSE nonetheless is not necessarily a reason to discard this
estimator21.

Numerical experiment Here I numerically investigate the hardware-compatible deriva-
tive estimators discussed above. The performance of the various estimators in general may
depend on the details of the PQC-based objective function, including the circuit ansatz C,
the problem Hamiltonian H , the parameter position θ, and the measurement strategy. In
the present experiment, we choose a generic combination of circuit ansatz and Hamilto-

21 While other aspects like the additional hardware requirements might be very good reasons.
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Figure 1.3: Quantum circuit used in the numerical experiment, for N = 6. The block of
gates marked with the dashed line is repeated N/2 times with independent parameters in
the single-qubit gates, and the Hamiltonian H measured at the end is sampled randomly
as described in the main text.

nian, average across a number of random circuit parameter positions and treat the mea-
surement setup as a black box. In addition, we choose circuits that allow for a particularly
convenient treatment using the analyses in the previous sections, namely circuits with
Pauli rotations as parametrized gates that lead to univariate objective functions Ek with a
single frequency. I do not aim for a statistically exhaustive study for the particular circuit
and Hamiltonian but consider this numerical experiment a demonstration of the results
above which illustrates the situation for a practical example.

We start by constructing a PQC template, depicted in Fig. 1.3, which has n = N2 pa-
rameters for N qubits and will lead to single-frequency objective functions with Ω = 1 in
each parameter. In addition we sample an observable

H =
K∑
i=1

hiPi, (1.134)

with K random Pauli words Pi and coefficients hi ∈ [0, 1] as well as L random positions
θ ∈ [−π, π]n. All used distributions for these sampling processes are uniform and we
note that this does not necessarily represent the distributions encountered in applications.
Random sampling of initial parameters, for example, makes VQAs prone to the vanishing
gradient problem, also called barren plateaus [89], and Hamiltonians in applications usu-
ally possess more structure than reflected in the random samples used here. After sam-
pling all required quantities as described, we compute the Fourier coefficients of Ek(x)

and ⟨H2⟩k (x) via a numerically exact state vector simulation using PennyLane [80]. This
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is done for each sampled parameter position θ and each parameter index k, and we obtain
nL sets of Fourier coefficients F(θ, k) = {a0, a1, b1, ã0, ã1, b̃1}(θ, k). In the following we
will consider the average MSE over these nL coefficient sets as the objective by which we
evaluate the estimators:

∆2
[·] :=

L∑
j=1

n∑
k=1

ε2
[
∂[·]Ê(θj + xek)

∣∣
x=0

]
. (1.135)

This means we discard information about the parameter values θ and the parameter index
k that determines e.g. the position of the respective gate in the circuit. For applications,
one could consider parameters that differ, say, by the position of the associated gate in the
circuit separately. To obtain the average MSEs, we compute the average variance, squared
derivative22 and squared offset

σ2◦ :=
∑
j,k

[
ã0(θj , k)− a0(θj , k)

2 − 1

2

(
a1(θj , k)

2 + b1(θj , k)
2
)]
, (1.136)

E′
◦
2 :=

1

2

∑
j,k

a1(θj , k)
2 + b1(θj , k)

2, (1.137)

a2◦ :=
∑
j,k

a0(θj , k)
2. (1.138)

Recall that the optimal two-term recipe depends on E via the fraction ρ, which leads
to an individual optimal coefficient y∗1opt(h,θ, k) for each of the parameter positions and
indices. In practice it is likely that we want to minimize the MSE on average and that an
estimate for the constituents of ρ is given on average as well. Therefore it is useful to
consider the two-term recipe that minimizes the objective ∆2, i.e. the average MSE, with a
fixed y◦1(h) ̸= y◦1(θ, k) that can be computed from the fraction of averages ρ◦ := σ2◦/E

′
◦
2.

Note that
∑

θ,k y
∗
1(h,θ, k) ̸= y◦1(h) due to the involved nonlinear dependencies. However,

in the described numerical experiment, the achieved ∆2 of the individual y∗1(h,θ, k) and of
y◦1 are very similar. This is an important insight, because it tells us that choosing one y◦1(h)
based on the average data (σ2◦, E

′
◦
2) for a circuit is almost as good as choosing y∗1(h,θ, k)

for each specific parameter k and position θ. The former not only yields a much simpler,
static, recipe. In addition, the required Fourier information for the latter is not available in
practice, whereas estimators for the average σ◦ andE′

◦
2 might be given. Thus, we will skip

the impractical recipe with y∗1 and only include the one with y◦1 in the following analysis.

From here on, the average data across the θ and k will be all the information we need
about the investigated circuit, and we will only make use of σ2◦ , E′

◦
2 and a2◦. Except for

the LCU-based derivative all estimators have a shift parameter h, which we sweep across
the range (0, π). At each combination of (h, y1, s) we calculate the MSE for each method.

22 As discussed above, we will have a2
1 = b21 on average across the parameter space, therefore we compute

the average derivative using both a1 and b1.
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Figure 1.4: mean squared errors ∆2 for the discussed derivative estimators (different col-
ors) applied to the selected circuit for N = 6 qubits, averaged over L = 20 parameter
positions and the n = 36 parameters. The first three panels show the dependence of the
MSEs on the shift parameter h for a low (a), medium (b) and large (c) shot budget s. ∆2

LCU
does not have a shift parameter and accordingly is depicted as a constant. In (a) the central
difference with shifts increased by π and 2π are depicted as shaded red lines. The lower
right panels show the dependence of the MSEs on the shot budget s after minimizing over
h ∈ (0, π), for each recipe and shot number independently. Panel (d) shows the absolute
errors whereas (e) shows the relation to the MSE of the optimal two-term recipe, for which
we use the coefficient y◦1 as described in the main text. The solid vertical lines indicate the
shot numbers of the first three panels, the dashed vertical lines mark the shot budget su at
which the central difference is the best two-term recipe and s× for which ∆2

PS = ∆2
cent.
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Above we discussed the role of ρ for the analysis of the estimators. The variance and bias
contribution to the average MSEs ∆2 are linear in σ2◦ and E′

◦
2, respectively. By dividing

the averages we computed above, we obtain an estimate for ρ that is compatible with the
objective ∆2

[·] and can be used to obtain y◦, as well as the constant that determines the MSE

of the LCU-based estimator:

ρ◦ =
σ2◦
E′◦

2 ≈



32 N = 4

150 N = 6

509 N = 8

2514 N = 10

a2◦
σ2◦

≈



5.3× 10−2 N = 4

7.4× 10−3 N = 6

2.9× 10−3 N = 8

4.1× 10−4 N = 10.

(1.139)

These values tell us that the bias plays a much smaller role than the variance for a signifi-
cant range of shot budgets s× < 6.211ρ◦, and we conclude that estimators which minimize
the variance perform better (in terms of the MSE) in this regime than those that are unbi-
ased at the cost of a larger variance. This is illustrated by the numerical results for ∆2 I
show in the following.

In Fig. 1.4 I show the MSEs for selected s and all h (a-c), as well as for the full range
of shots at the respective minimizing shifts h∗ (d, e). The shows results are for N = 6

qubits, K = 12 terms in the Hamiltonian, and L = 20 parameter positions to average over,
and the selected shot budgets for (a-c) are s ∈ {10, 103, 106}. For small s = 10 (ρ/s ≫ 1,
Fig. 1.4a), the central difference has a lower MSE than the parameter-shift rule for all shifts
h, which matches our expectation based on the analysis above (in particular Eq. (1.129))
and the values we obtained for ρ. Similarly, we confirm that higher-order stencils have
a strictly increased MSE over the central difference and that the optimal shift value for all
finite differences lies outside of the considered range (0, π), as indicated for the central
difference by the shaded red lines. The optimal two-term recipe with y1 = y◦1(h) performs
orders of magnitude better than all other methods. As shown in Fig. 1.5, the numerically
optimized coefficient y◦1 attains a very small value in the few-shot regime, suggesting to
estimate an almost vanishing derivative. This estimator may be impractical and might not
useful for our purposes, but this ultimately depends on whether ∆2 is the only relevant
criterion to rate the estimator. All finite difference recipes reproduce this solution for small
s if we send h → ∞, which we did not allow in our analysis. In particular one could
consider the central difference with shifts hj = h0 + jπ, which produces estimators with
decreasing ∆2 for increasing j until it reaches h∗cent. In this case the implemented function
evaluations on the QPU do not change due to the periodicity of E, but only the prefactor
y1 is modified, converging towards the optimal coefficient. This means that instead of
looking at h > π we may just reduce the coefficient in classical postprocessing.

For medium s = 103 (ρ/s ≈ 1, Fig. 1.4b) we see that all tested derivative estimators
achieve similar minimal errors, at different shifts h, but also that the parameter-shift rule
becomes favourable over the central difference and any other tested finite difference sten-
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Figure 1.5: Optimal parameters for the derivative estimators MSEs presented in Fig. 1.4,
which are used to obtain the best ∆2 per recipe and per shot budget s shown in Fig. 1.4(d).
The optimal shift h∗ is π/2 for all s, as is also apparent from Eq. (1.124), whereas the opti-
mal choice for finite difference methods varies with the shot budget due to the relationship
between y1 and h. The optimal recipe approaches the parameter-shift rule for large s but
for small shot budgets it is better to rescale its coefficient. The finite difference methods are
truncated artificially in h∗ and y∗1 for small shots because we only considered h ∈ (0, π), as
discussed in the main text. Again the solid vertical lines indicate the s from Fig. 1.4(a-c)
and the dashed vertical lines mark su, where the optimal two-term recipe and the central
difference are the same, and s× for which ∆2

PS = ∆2
cent but h and y1 differ between the

two methods. Furthermore, we remark that the higher-order stencils have more coeffi-
cients than just y1 and that the LCU-based estimator is missing here as it does not have
parameters.
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cil. This means that this shot budget is very close to s×. Importantly, the parameter-shift
rule (at its optimal shift size h∗PS = π/(2Ω)) already performs close to optimal out of all
antisymmetric two-term recipes in this regime, i.e. y◦1(h

∗
opt) ≈ 1/2.

For large s = 106 (ρ/s≪ 1, Fig. 1.4c), the bias dominates the MSE of all finite difference
stencils, and the higher-order stencils gain performance by reducing it at the cost of an
increased variance. Both the best achieved ∆2 and the optimal h depend (for the shown
data) monotonously on p. As expected, the parameter-shift rule becomes the optimal two-
term differentiation strategy in this shot number regime, as it is unbiased and the variance
is strongly suppressed by s.

Panel (d) shows the dependency of ∆2
[·](h

∗
[·]) at its respective minimizing shift on the

number of shots s for each method. This is complemented by panel (e), which displays
the overhead factor ∆2

[·](h
∗
[·])
/
∆2

opt(h
∗
opt) with respect to the optimal two-term recipe. At

low shot budgets the performance of all finite-difference methods is artificially reduced
because we restricted the minimization to h ∈ (0, π). The unique shot budget for which
the central difference is the same as the optimal recipe is su ≈ 263 for this circuit, which
matches23 the prediction 2ρ◦

π−2 ≈ 263. Furthermore, we observe that the parameter-shift rule
exhibits a better scaling with s than the central difference at h∗cent and becomes favourable
at s× ≈ 934 ≈ 6.211ρ◦, indeed close to the situation shown in panel (b). For s → ∞ the
parameter-shift rule approaches the optimal two-term recipe as expected. The scaling of
∆2

FD,p with s is improved by increasing the order 2p, so that it approaches the asymptotic
behaviour of the parameter-shift rule. For the given data this only pays off above s× so
that there is no regime in which a generalized finite difference is favourable.

So far we have not looked at the LCU-based derivative estimator, which is shown as a
constant line in Fig. 1.4(a-c) because it does not have a shift parameter. The MSE is the same
as for the parameter-shift rule at h∗PS, up to the factor 1+a20/σ

2. As we computed above, a2◦
turned out to be much smaller than σ2◦ for the investigated circuit, so that the MSEs become
approximately equal and all statements for the parameter-shift rule at h∗PS can be made for
this estimator as well, up to the prefactor slightly larger than 1.

Based on this numerical experiment, we conclude the following: first that higher or-
der stencils are not favourable in any shot number regime, but considering antisymmetric
two-term rules is sufficient within our scope24. Second, for low shot numbers the central
difference has significantly better properties than the parameter-shift rule, but for large
shot numbers the latter becomes increasingly better and is asymptotically equal to the
optimal two-term recipe. Third, in the regime of low shots the optimal two-term recipe
becomes a somewhat pathological solution to the minimization problem and does not
necessarily yield a useful estimator, depending on the use case. In any case, the optimal
shift for this estimator is h∗opt = π/(2Ω), so that the best estimator is given by executing

23 Note that this match between prediction and data does not testify the validity of any assumptions we
made, but rather of the performed calculations.

24 This of course only covers the investigated derivative estimators and does not imply a statement about
other possible estimators.
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the parameter-shift rule and multiplying with the prefactor (1 + ρ/s)−1 as also discussed
in [56]. In this regime the central difference matches the optimal two-term recipe in perfor-
mance for some rather large h > π. Finally, the additional MSE of the LCUs-based estimator,
as compared to the parameter-shift rule, is only marginal for the investigated circuit, but
given that it requires additional qubits, connectivity and compiling it seems reasonable to
not choose this estimator in common use cases.

In practice, these insights lead to the following guidelines for gradient estimation, as-
suming that no adaptive methods are employed and respecting the limitations discussed
further below: If the average Fourier coefficients ofE, over a relevant ensemble of parame-
ter positions and indices, are not known, the central difference and the original parameter-
shift rule should be used for small and large shot budgets, respectively. Determining the
exact transition point again requires an estimate for the average Fourier coefficients. If
those are known, the best gradient estimator is the optimal antisymmetric two-term recipe
with

hopt =
π

2Ω
, y◦1 =

Ω

2 + 2ρ◦/s
. (1.140)

The number of shots is not the only relevant quantity when assessing the cost of the
derivative estimators. In practice a time cost model is needed that respects all levels of
the used quantum hardware stack. In addition to the number of shots one can expect the
number of unique circuits, i.e. unique parameter settings, to have a sizeable impact on
most hardware architectures even when classical communication, queueing and compil-
ing are reduced to an O(1) overhead when computing a gradient. As we mostly found
gradient estimators based on two shifted evaluations to be of interest and the overhead
due to circuit configurations will be equal for all these estimators, we will not pursue this
discussion further, but note that it should be relevant when comparing derivative estima-
tors in other scenarios e.g. the generalized parameter-shift rule for largerR and the central
difference.

Regarding the scope of the presented analysis, there is a number of limitations: first,
we selected a few commonly used gradient estimators, excluding other approaches that
also are popular in practice, like SPSA (see Sec. 1.2.6). Second, we only considered the esti-
mation of the gradient entries regarding the MSE. For applications it might be interesting to
look at other quantities like the quantum natural gradient [90] or the (approximate) Hes-
sian [91, 92, 93, 94], and to consider other error metrics, like the gradient direction rather
than its elementwise precision. An investigation building on [57] that includes more gen-
eral estimators, estimated quantities and error metrics could be performed to address these
first two limitations. Third, the numerical data I used stems from a specific, somewhat ar-
bitrary circuit structure leading to single-frequency objective functions. Moreover, I used
parameter positions sampled uniformly at random, which likely is not a representative
distribution of positions seen during an optimization workflow. Extending the analysis to
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larger Fourier spectra requires some work but should be possible in a direct generalization
of the analysis. Similarly, there should be no conceptual hurdle to consider the Fourier co-
efficients witnessed during an optimization of interest and comparing them to the data
from positions sampled uniformly at random. Lastly, we did not consider device noise
in the analysis, which e.g. may be addressed by combining the analysis with the ideas
presented in [35].

The computer programs for the presented analysis and figures can be found in [95].
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Chapter 2

Parameter-shift rules

This chapter contains a literature discussion regarding parameter-shift rules, an appendix
I contributed to Ref. [13] and the first complete publication, which treats generalizations
of the parameter-shift rule.

2.1 Literature discussion

The parameter-shift rule has been the topic of various research works, some of which
appeared simultaneously (at the time scale of research projects) and others of which seem
to have taken more time to become known in the community. This led to duplications and
rediscoveries and I would like to give the corresponding references and a brief review of
the literature.

The first mention of the original rule for Pauli rotation gates, i.e. gates generated by a
Pauli word rescaled by 1

2 , to the best of my knowledge is in [62], in the context of quantum
optimal control. Shortly after that it was transferred to expectation values of parametrized
quantum circuits (PQCs) in [96], and [97] applied it to probability distributions created by
PQCs. An extension to arbitrary operators with eigenvalues ±Ω

2 together with parameter-
shift rules for continuous-variable architectures was presented in [98].

All of the above works used the operator identity

i[G, ρ] = U(π/4)ρU †(π/4)− U(−π/4)ρU †(−π/4) (2.1)

for the derivation of the parameter-shift rule for the case Ω = 1, as resulting from the
standard Pauli rotation gates exp(ixP/2). The first work considering the structure of the
PQC-based objective function itself was [25]. This made it possible to use the large estab-
lished toolbox of Fourier transforms and signal processing, and in [25] the authors derived
a parameter-shift rule for all gates whose generator has eigenvalues Ωki for natural num-
bers ki, which is based on the discrete Fourier transform (DFT). For R frequencies in the
cost function, this leads to 2R + 1 evaluations, but for R ∈ {1, 2} the authors improve

45
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the rule to 2R evaluations. This reproduces the original shift rule, but using an arbitrary
shift ±h, and is the first derivation of the four-term parameter-shift rule for gates with 3

unique eigenvalues. This is complemented by the later suggestion of [99] that proposes a
one-rule-fits-all approach that decomposes two-qubit gates and arrives at 30 shifted terms
to differentiate such a gate. The approach by [25] requires at most 13 shifted evaluations1,
even if we do not assume any structure on the eigenvalues of G.

A new direction was explored by [36], which considers perturbed gates of the form
U(x) = exp(i(xG + F )) with [G,F ] ̸= 0 and derives a stochastic parameter-shift rule that
produces the correct derivative on expectation over a (classical) random distribution of
shift values, assuming access to exp(iπG/4). Without this access, the authors show that
the derivative can be approximated using a parametrized version exp(it(xG + F )) of the
original gate. The generalization to use arbitrary shift values was rediscovered in [56],
an article that also is discussed in more detail at the beginning of Sec. 1.2. Furthermore,
the authors investigate the extension of parameter-shift rules to higher-order derivatives
of PQC-based functions, including the Hessian and the metric tensor, which can be inter-
preted as the Hessian of an auxiliary function function. The Hessian also is considered
(with fixed shift values) in [100].

A parameter-shift rule for gates used in unitary coupled cluster (UCC) PQCs for quan-
tum chemistry was developed in [101]. It involves four unique circuit evaluations that do
not only use shifted parameters but also insert modified gates, which can be constructed
under reasonable assumptions in the application setting of quantum chemistry. If the
quantum state prepared by the UCC circuit is real-valued2, the rule can be reduced to two
modified circuit executions instead. In App. F of [13], which also is included in Sec. 2.2 of
this thesis, I derived a four-term parameter-shift rule for gates with three unique eigenval-
ues using a operator-based approach similar to Eq. (2.1). This reproduced the four-term
rule from [25], which was unknown to me at the time. A further analysis of univariate shift
rules, in particular with comparison to finite differences and for Hessians, was provided
in [102] (also see Sec. 1.2).

In the publication included in this chapter [14] we considered a similar setting as in [25]
but also looked at more general frequency spectra, higher-order single-parameter and
multivariate derivatives and performed a thorough cost analysis. Our focus in the main
text are cost functions with equidistant Fourier spectra and we show that the generalized
shift rule can be combined straightforwardly with the stochastic shift rule from [36]. At the
same time the article [103] appeared, also providing generalized parameter-shift rules but
with a focus on the operator decomposition level and using the linearity of the derivative
in the generator G3. The resulting differentiation technique seems to be complementary to
our shift rules from [14] in the sense that it offers derivative estimation at reasonable cost

1 At most 4 (unique) eigenvalues, at most 6 frequencies and hence at most 13 shifts.
2 Meaning that a global phase can be chosen such that all entries of the state vector are real-valued.
3 Of course the generator does not only appear in the commutator in the derivative but also in the circuit

itself. The latter occurrence is ignored here.
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for quantum gates for which our technique is particularly costly. Furthermore, Ref. [26]
appeared online at the same time as well, deriving essentially the same first-order shift
rules, but focusing on the generality of the Fourier transform approach and on two-qubit
and qutrit examples and not on shift rules for equidistant frequency spectra, for which the
coefficients can be computed explicitly.

In [27] the author set up a rigorous mathematical framework for parameter-shift rules
based on Borel measures, enabling an existence proof for arbitrary generator spectra, an
optimality proof for the corresponding shift rules, including those for equidistant spec-
tra from the attached publication, and leading to convex optimization approaches to find
these optimal shift rules. Following up on this, [37] extends the framework to treat per-
turbed gates exp(i(xG + F )) as in [36] but without requiring a changed circuit structure,
including a truncation scheme that allows for practical implementation of approximate
shift rules for perturbed gates. However, it is also proven that the largest required shift
will scale polynomially in the desired accuracy, posing challenges on quantum hardware
regarding control precision, gate durations and coherence times.

This discussion shows that parameter-shift rules have drawn a lot of attention in the
last five years, and that significant progress has been made in setting up a general math-
ematical framework, deriving explicit shift rules and developing heuristics to implement
derivative estimators in a hardware-friendly way. At the same time, the numerous publi-
cations and preprints on shift rules and the field of near-term quantum computing more
generally has made it difficult for authors to keep an overview over recent works. A par-
ticular example is Ref. [25] which contains a very clean and simple derivation of rather
general parameter-shift rules but unfortunately only became known in the community
later on4. This work also suggests to use coordinate descent based on a reconstruction
of the Fourier series E for optimization in VQAs, which then was rediscovered at least
three more times as sequential minimal optmization [29], Jacobi-1 [28] and Rotosolve [30], re-
spectively, and turned out to be a good optimization method for various PQC-based func-
tions [29, 30, 104, 105], though not for all [106].

4 This statement is based on citations and personal correspondence with researchers in the field.
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2.2 Four-term shift rule for quantum chemistry gates

As mentioned above, I developed a four-term parameter-shift rule in the specific context
of quantum chemistry gates before working on the more general rules presented in the
publication attached to this chapter. This rule was published as Appendix F of [13], which
is presented in the following section in a slightly modified version. Both content and pre-
sentation are my own work (up to comments on the text by my coauthors). I believe that
it can be useful and encouraging to see this partial progress before discovering a broader
framework. In addition it may show the limitations of the perspective taken in the follow-
ing section.

2.2.1 Introduction to the four-term rule

In order to compute the derivative of expectation values with respect to quantum gate
parameters, the so-called parameter-shift rule has been established as a tool to avoid finite
difference derivatives, which become unstable under the influence of noise from both,
measurements and circuit imperfections [62]. In addition to the original concept, multiple
efforts have been made to analyse and generalize the parameter-shift rule [36, 56, 96, 98,
107]. In this section we introduce the concept of tuning the shift angle in parameter-shift
rules for a minor algorithmic advantage (Sec. 2.2.2), a new four-term parameter-shift rule
for gates with three distinct eigenvalues (Sec. 2.2.3) and exclude a further generalization
of this type of parameter-shift rules based on the perspective taken here (Sec. 29). We
also compare our new four-term rule to the one recently presented in [101] (Sec. 29) and
extend the variance minimization strategy from [56] to both four-term rules. This four
term shift rule is applicable to all of the quantum number-preserving gates introduced
in [13], except for the spin adapted QNPOR gate, which can be analytically differentiated
by applying shift rules to the Givens rotations and using the chain rule.

2.2.2 Two-term rule and shift tuning

We briefly recap the derivation of the standard parameter-shift rule without fixing the shift
angle, leading to a free parameter in the rule. Consider a parametrized gate of the form

U(x) = exp
(
i
x

2
P
)
, (2.2)

where P 2 = I, as is the case e.g. for Pauli rotation gates. In a circuit with an arbitrary
number of parameters, let’s single out the parameter of the gate U above and write our
cost function of interest as

E(x) = ⟨ψ(x)|H |ψ(x)⟩ =: ⟨ϕ|U(x)†BU(x) |ϕ⟩ , (2.3)



2.2. FOUR-TERM SHIFT RULE FOR QUANTUM CHEMISTRY GATES 49

where the part of the PQC before the gate U has been absorbed into |ϕ⟩ and the part after
U is absorbed in B. Then the derivative is, by the product rule, given by

∂

∂x
E(x) = ⟨ϕ|U(x)†

(
i

2
[B,P ]

)
U(x) |ϕ⟩ . (2.4)

Now look at the conjugation of B by U at arbitrary shift angles ±x1:

U(±x1)(B) := U(±x1)†BU(±x1) (2.5)

= U(±x1)†B
(
cos
(x1
2

)
I± i sin

(x1
2

)
P
)

(2.6)

= cos
(x1
2

)2
B + sin

(x1
2

)2
PBP ± i

2
sin(x1)[B,P ]. (2.7)

Subtracting U(−x1)(B) from U(x1)(B) and excluding multiples of π as values for x1, we
obtain the generalized two-term parameter-shift rule

U(x1)(B)− U(−x1)(B) = i sin(x1)[B,P ] (2.8)

⇒ ∂E

∂x
(x) =

1

2 sin(x1)

(
E(x+ x1)− E(x− x1)

)
, (2.9)

where the original parameter-shift rule corresponds to choosing x1 = π/2. We note that
the concept of shift tuning was independently discovered in [56] and introduced in the
quantum computing software package PennyLane [80].

Reducing the gate count In particular, the general form of Eq. (2.8) allows us – provided
that x is not a multiple of π – to choose x1 = −x, making the first of the cost function
evaluations E(0) and therefore reducing the gate count because U(0) = I can be skipped
in the circuit. This may lead to an additional gate count reduction if the neighbouring
gates on both sides of U can be merged, which is true e.g. in circuits for the quantum
approximate optimization algorithm (QAOA).

2.2.3 Four-term parameter-shift rule

Here we derive a four-term parameter-shift rule for gates that do not fulfil the two-term
rule, e.g. controlled Pauli rotation gates like c-RZ(x) or many of the quantum number-
preserving gates with one parameter in [13]. Consider a gate

U(x) = exp
(
i
x

2
Q
)

(2.10)

with Q3 = Q, as is true for any operator that has spectrum {−1, 0, 1}, but not necessarily
with Q2 = I. Then the exponential series of the gate can be rewritten as

U(x) = I+
(
cos
(x
2

)
− 1
)
Q2 + i sin

(x
2

)
Q, (2.11)
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and a computation similar to the one above leads to

U(xµ)(B)− U(−xµ)(B) = 2i sin
(xµ
2

) [
[B,Q] +

(
cos
(xµ
2

)
− 1
)
[Q,QBQ]

]
. (2.12)

We can then obtain the commutator by linearly combining this difference with itself for
two angles x1 and x2, so that

i

2
[B,Q] =

(
y1 (U(x1)− U(−x1)) + y2 (U(x2)− U(−x2))

)
(B), (2.13)

which holds if the angles xµ and the prefactors yµ satisfy

1

4
= y1 sin

(x1
2

)
+ y2 sin

(x2
2

)
(2.14)

1

2
= y1 sin (x1) + y2 sin (x2) . (2.15)

Therefore, we get the four-term parameter-shift rule

∂E

∂x
(x) = y1 (E(x+ x1)− E(x− x1)) + y2 (E(x+ x2)− E(x− x2)) , (2.16)

where we again can choose x1 or x2 such that one of the function evaluations skips the
gate U . A particularly symmetric solution of Eq. (2.14) and (2.15) is

y1 =
1

2
, y2 =

1−
√
2

4
, x1 =

π

2
, x2 = π. (2.17)

In general, any gate for which the spectrum of the generator is {−a+ c, c, a+ c} obeys
the four-term parameter-shift rule as the shift c can be absorbed into a global phase that
does not contribute to the gradient and a can be absorbed into the variational parameter
of the gate.

As an example, the four-term rule is applicable to (multi-)controlled Pauli rotations
c-RP (x) for which Q is the zero matrix except for the Pauli operator P on the target qubit.
For multiple control qubits and the quantum number-preserving gates, this may lead to
fewer circuit evaluations than using the chain rule and applying the two-term rule to the
gate decomposition5

In order to find out whether anm-qubit single-parameter gate U satisfies the four-term
rule, one can compute

Q =
∂U

∂x
(x)

∣∣∣∣
x=0

, Q := Q− 1

2n
tr(Q), (2.18)

and test if there is an a ∈ R such that Q3
= a2Q. This is a sufficient condition, as the only

property we needed for the four term rule to apply was this one of the generator spectrum.

5 The original appendix of [13] stated that this is always the case, which is not true.
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Relation to another four-term rule

Previous work showed the existence of a four-term parameter-shift rule [101] for gates of
the form in Eq. (2.10), which is implemented with only one shift angle but requires the two
additional gates

V± = exp

(
∓ ix1π

4
P0

)
with P0 = I−Q2. (2.19)

There are four relevant aspects when comparing this rule to the one in Eq. (2.16): First,
our four-term rule does not require any additional gates like V±, which add overhead to
the gradient evaluation circuits. While the authors bound the additional cost by the cost of
the differentiated gate itself, it might more crucially be non-trivial to construct V± for gates
that do not have an obvious fermionic representation like the gates considered in [101].

Second, the shift tuning technique for gate count reduction in Sec. 2.2.2 can easily be
extended to both our four-term rule and the rule derived in [101], provided one has access
to the parametrized versions of V±. As the construction of V± for fermion-based gates is
based on rotations, this access can be assumed for these gates whenever V± themselves
can be implemented.

Third, it was shown in [101] that their four-term rule reduces to a standard two-term
rule up to the insertions of the V± operators whenever both the circuit of interest and the
measured observables are purely real-valued. This is the case for virtually all molecular
Hamiltonians and most of the circuits proposed for quantum chemistry problems – in-
cluding the circuit structures in [13] – such that gradients of highly complex gates may be
computed with just two circuit executions including the gates V± using the rule in [101].

Fourth, the variances of the derivative estimators given by the two rules can be min-
imized to the same value by choosing the shift angles optimally, as shown in Sec. 2.2.4.
This means that for a given budget of circuit executions, the precision of the estimated
derivative is the same, even though the number of unique circuits differs.

In summary, the specialized two-term parameter-shift rule in [101] is preferable if the
following three criteria hold: First, the circuit and observable need to be real-valued. Sec-
ond, the auxiliary gates V± have to be available. Third, the number of unique circuits in-
stead of the measurement budget must be the relevant cost metric of the computation, so
that the reduction from four to two shifts provides an advantage which is larger than the
overhead of adding V±. In all other scenarios the four-term rule Eq. (2.16) with the optimal
parameters in Eq. (2.31) and (2.32) requires slightly fewer gates and the same number of
shots.

Impossibility of some further shift rules

One may wonder whether a three shift rule is possible for gates whose generators have
just three distinct eigenvalues and whether shift rules exist for gates with more distinct
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eigenvalues. We present some insights on these questions in the following.

During the derivation of the four-term parameter-shift rule we chose to first linearly
combine U(±x1)(B) and U(±x2)(B) with the same prefactors, respectively. Alternatively
one may try to combine U(xµ)(B) at three shift angles {xµ}µ linearly and demand the
result to fulfil

3∑
µ=1

yµ U(xµ)(B)
!
=
i

2
[B,Q]. (2.20)

This leads to the system of equations

0 = y1[c1 − c3] + y2 [c2 − c3] , (2.21)

0 = y1
[
s21 − s23

]
+ y2

[
s22 − s23

]
, (2.22)

1 = 2y1[s1 − s3] + 2y2 [s2 − s3] , (2.23)

1 = y1 [sin (x1)− sin (x3)] + y2 [sin (x2)− sin (x3)] , (2.24)

with cµ = cos
(xµ

2

)
and sµ = sin

(xµ

2

)
, which we conjecture to not have a solution.

Considering the generalization of the (standard) two-term shift rule to the four-term
rule in Eq. (2.16) and their requirement on the gate generator, i.e. Q2 = I and Q3 = Q, it
seems a natural question whether further generalization is possible to gates that, e.g. fulfil
Q5 = Q. We show next that this is not the case.

Consider the generalized conditionQk = Qℓ, k ̸= ℓ for the generator of a d-dimensional
one-parameter gate. We recall that we may absorb shifts and scaling prefactors of the spec-
trum of Q into a global phase gate and the variational parameter, respectively, which may
be used to obtain gates satisfying the generalized condition Qk = Qℓ. In the eigenbasis
of the Hermitian matrix Q, this condition becomes λki = λℓi ∀1 ≤ i ≤ d, which only ever
is solved by −1, 0 and 1 over R (in which the spectrum of Q must be contained) with the
additional condition k − ℓ mod 2 = 0 for λi = −1. This means that Q already satisfies
Q3 = Q, allowing for the four-term rule to be applied.

Consequently, a direct6 generalization of the four-term rule is not possible. Note that
this does not exclude the existence of other schemes to compute the derivative of an ex-
pectation value w.r.t. parametrized states that are based on linear combinations of shifted
expectation values.

2.2.4 Minimizing the variance

If we approximate the physical variance of the expectation value to be independent of x,
i.e. σ2

[
Ê(x)

]
= σ2, the variance of measuringE at a given parameter for sufficiently many

measurements s is σ2/s. The resulting variance of the two-term shift rule derivative for a

6 In the sense of the above attempt.
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budget of s measurements is

σ2PS2 =
σ2

s sin2(x1)
, (2.25)

where we chose the optimal allocation of s/2 measurements to each of the two terms in
the shift rule7. We may optimize the shift angle in the two-term rule w.r.t. this variance,
which yields the standard choice π/2 for the shift, because

argmin
x1∈(0,π)

σ2

s sin2(x1)
=
π

2
. (2.26)

The variance can be reduced further by introducing a multiplicative bias to the estima-
tor, as presented in [56]; the optimal choice of the prefactor depends on the value and the
variance of the derivative and is given by

λ∗ =
(
1 +

σ2

s(E′(x))2

)−1

. (2.27)

Note that λ∗ has to be approximated because σ2 and E′(x) are not known exactly. The
optimal choice of the shift parameter remains π

2 .

For the four-term rule in Eq. (2.16), the optimal shot allocation8 is proportional to |yµ|
and leads to the variance

σ2PS4 = 4(|y1|+ |y2|)2
σ2

s
. (2.28)

As for the two-term parameter-shift rule, we may minimize this variance w.r.t. x1 and
x2 via y1 and y2, which can be found to be

y2 =
1

4 sin(x2/2)

1− cos(x1/2)

cos(x2/2)− cos(x1/2)
, (2.29)

y1 =
1

sin(x1)

(
1

2
+ y2 sin(x2)

)
, (2.30)

using Eq. (2.14) and (2.15). This results in

y1 =
1 +

√
2

4
√
2
, x1 =

π

2
, (2.31)

y2 =
1−

√
2

4
√
2
, x2 =

3π

2
(2.32)

and three equivalent solutions based on the symmetries of Eq. (2.14) and (2.15).

7 In Chap. 1, this allocation is called practical allocation, but on average it equals the optimal allocation
because the shift rule is unbiased.

8 Again: on average.
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The variance then is σ2PS4 = σ2/s like it is for the optimal two-term rule9 and again
it may be further reduced by introducing a bias via a multiplicative prefactor λ, with the
same optimal λ∗ as before. For both the specialized four-term and two-term rules in [101],
the minimal variance is σ2[101] = σ2/s, as the prefactors are equally large and sum to one.

In conclusion, under the constant variance assumption, the variance for all discussed
two- and four-term parameter-shift rules is the same at a given measurement budget. This
shows that they are equally expensive on a quantum device, for which the number of
measurements instead of the number of distinct circuits is relevant.

2.3 Contributions to the first publication

Here I describe my contributions to the attached publication, which was published in the
journal Quantum [14] and is freely available online, with functioning (hyper)links. Over-
all, the core idea of using trigonometric Lagrange interpolation and Fourier analysis on
PQC-based objective functions was developed and discussed within the team of authors,
starting at some (but unfortunately not all) of the literature mentioned above. This means
that it is difficult to discern my contribution to the core idea from those of the other au-
thors. The following parts, however, were mainly carried out by me: first, computing the
shift rule cost in detail, including the analysis of shot cost and number of unique circuits,
and comparing them to differentiation via decomposition and existing shift rules. Second,
the full generalization to arbitrary frequency spectra and perturbed unitaries requiring the
stochastic shift rule. Third, the application to the metric tensor and its comparison to other
methods of computing the tensor. Fourth, the application to QAOA and the relation to Ro-
tosolve and quantum analytic descent (QAD), including the generalized QAD code and a
program to estimate the required resources for QAOA. Finally, I wrote the majority of the
manuscript, but of course in collaboration with the other authors, and implemented the
general shift rules and the generalized version of Rotosolve in PennyLane [80], except for
the parts contributed by Robert A. Lang.

Compared to the main text, the changes and additions to the notation shown in Tab. 2.1
are used in the publication. Additionally there are some specific notations used locally in
single sections as defined therein.

9 This is not a contradiction to Eq. (1.73) in Chap. 1 because the definitions here imply Ω = 1 for two-term
gates and Ω = 1/2 for four-term gates, so that R2Ω2 is the same.
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Symbol in main text Meaning
a, b — Graph vertex
bjk — Matrix entry of B in eigenbasis of a gate
cℓ / cjk

1
2 (aℓ − ibℓ) (Complex) Fourier coefficient of E

d 2N Hilbert space dimension
F — Metric tensor of a PQC
G(V, E) — Graph with vertices V and edges E
G(x)[·] i[(xG+ F, ·] Generator channel
H — Hessian of E
HP H Hamiltonian (of a MAXCUT instance)
K — Degree of a regular graph
k — Halved degree ⌊K/2⌋
M — Number of edges in a graph
N s Shot budget
UM/P — Mixer/problem layer in QAOA
P — Number of Pauli rotations in a decomposition
r |Λ(G)| Number of unique generator eigenvalues
v e Canonical basis vector
x θ Parameters of a PQC
|ψ⟩ |ϕ⟩ Quantum state prepared by part of a PQC
∆ — Linear combination of estimators of E
ε2 V [·] Variance of an estimator
[d] — The set {1, . . . , d} for an integer d
[d]0 — {0} ∪ [d]

Table 2.1: Notation changes and additions of the following publication compared to the
main text of this thesis.
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Variational quantum algorithms are ubiq-
uitous in applications of noisy intermediate-
scale quantum computers. Due to the struc-
ture of conventional parametrized quantum
gates, the evaluated functions typically are fi-
nite Fourier series of the input parameters. In
this work, we use this fact to derive new, gen-
eral parameter-shift rules for single-parameter
gates, and provide closed-form expressions to
apply them. These rules are then extended
to multi-parameter quantum gates by combin-
ing them with the stochastic parameter-shift
rule. We perform a systematic analysis of
quantum resource requirements for each rule,
and show that a reduction in resources is possi-
ble for higher-order derivatives. Using the ex-
ample of the quantum approximate optimiza-
tion algorithm, we show that the generalized
parameter-shift rule can reduce the number of
circuit evaluations significantly when comput-
ing derivatives with respect to parameters that
feed into many gates. Our approach addition-
ally reproduces reconstructions of the evalu-
ated function up to a chosen order, leading to
known generalizations of the Rotosolve opti-
mizer and new extensions of the quantum an-
alytic descent optimization algorithm.

1 Introduction
With the advent of accessible, near-term quantum
hardware, the ability to rapidly test and prototype
quantum algorithms has never been as approachable
[1, 2, 3, 4]. However, many of the canonical quan-
tum algorithms developed over the last three decades
remain unreachable in practice — requiring a large
number of error corrected qubits and significant cir-
cuit depth. As a result, a new class of quantum al-
gorithms — variational quantum algorithms (VQAs)
[5, 6] — have come to shape the noisy intermediate-
scale quantum (NISQ) era. First rising to promi-
nence with the introduction of the variational quan-
tum eigensolver (VQE) [7], they have evolved to cover
topics such as optimization [8], quantum chemistry
[9, 10, 11, 12, 13], integer factorization [14], compi-
lation [15], quantum control [16], matrix diagonaliza-

David Wierichs: wierichs@thp.uni-koeln.de

tion [17, 18], and variational quantum machine learn-
ing [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31].

These algorithms have a common structure: a
parametrized circuit is executed and a cost func-
tion is composed from expectation values measured
in the resulting state. A classical optimization rou-
tine is then used to optimize the circuit parameters
by minimizing said cost function. Initially, gradient-
free optimization methods, such as Nelder-Mead and
COBYLA, were common. However, gradient-based
optimization provides significant advantages, from
convergence guarantees [32] to the availability of
workhorse algorithms (e.g., stochastic gradient de-
scent) and software tooling developed for machine
learning [33, 34, 35, 36, 37].

The so-called parameter-shift rule [16, 23, 38, 39]
can be used to estimate the gradient for these op-
timization techniques, without additional hardware
requirements and — in contrast to näıve numeri-
cal methods — without bias; the cost function is
evaluated at two shifted parameter positions, and
the rescaled difference of the results forms an unbi-
ased estimate of the derivative. However, this two-
term parameter-shift rule is restricted to gates with
two distinct eigenvalues, potentially requiring expen-
sive decompositions in order to compute hardware-
compatible quantum gradients [40]. While various ex-
tensions to the shift rule have been discovered, they
remain restricted to gates with a particular number
of distinct eigenvalues [10, 41].

In this manuscript, we use the observation that the
restriction of a variational cost function to a single
parameter is a finite Fourier series [42, 43, 44, 45];
as a result, the restricted cost function can be recon-
structed from circuit evaluations at shifted positions
using a discrete Fourier transform (DFT). By analyt-
ically computing the derivatives of the Fourier series,
we extract general parameter-shift rules for arbitrary
quantum gates and provide closed-form expressions
to apply them. In the specific case of unitaries with
equidistant eigenvalues, the general parameter-shift
rule recovers known parameter-shift rules from the
literature, including the original two-term parameter-
shift rule. We then generalize our approach in two
steps: first from equidistant to arbitrary eigenvalues
of the quantum gate, and from there — by making use
of stochastic parameter shifts — to more complicated
unitaries like multi-parameter gates. This enables us
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Figure 1: Overview of existing and new parameter-shift rules
for first-order univariate derivatives as Venn diagram on the
space of quantum gates. Each rule produces the analytic
derivative for a set of gates, with more general rules re-
producing the more specific ones. For gates of the form
U(x) = exp(ixG) the rules are deterministic (left) whereas
more involved gates of the form UF = exp(i(xG + F )) re-
quire stochastic evaluations of shifted values (right). See
Sec. 2.2 for a summary of previously known shift rules. The
fermionic four-term shift rule in Ref. [41] covers the same
gates as the shown four-term rule (purple).

to cover all practically relevant quantum gates. An
overview of the existing parameter-shift rules and our
new results is shown in Fig. 1.

Afterwards, we perform an extensive resource anal-
ysis to compare the computational expenses required
by both the general shift rule presented here, and
decomposition-based approaches. In particular, we
note that evaluating the cost of gradient recipes by
comparing the number of unique executed circuits
leads to fundamentally different conclusions on the
optimal differentiation technique than when compar-
ing the total number of measurements.

Our analysis not only is fruitful for understanding
the structure of variational cost functions, but also
has several practical advantages. Firstly, second-order
derivatives (such as the Hessian [46] and the Fubini-
Study metric tensor [47, 48]) can be computed with
fewer evaluations compared to näıvely iterating the
two-term parameter-shift rule. We also show, using
the example of the quantum approximate optimization
algorithm (QAOA), that the generalized parameter-
shift rule can reduce the number of quantum circuit
evaluations required for ansätze with repeated param-
eters.

Finally, we generalize the quantum analytic descent
(QAD) algorithm [49] using the reconstruction of vari-
ational cost functions discussed here. We also repro-
duce the known generalizations of Rotosolve [50, 51]
from single Pauli rotations to groups of rotations con-
trolled by the same parameter [42, 45]; reconstruct-

ing functions with arbitrary spectrum extends this al-
gorithm even further. Furthermore, the cost reduc-
tion for the gradient we present in the context of
QAOA applies to Rotosolve as well. Similarly, fu-
ture improvements that reduce the cost for gradient
computations might improve the efficiency of these
model-based algorithms, based on the analysis pre-
sented here.

This manuscript is structured as follows. In Sec. 2,
we lay out the setting for our results by deriving the
general functional form for variational cost functions,
followed by a survey of existing parameter-shift rules.
In Sec. 3 we show how to fully reconstruct univari-
ate variational cost functions from a finite number of
evaluations assuming an equidistant frequency spec-
trum, and derive parameter-shift rules for arbitrary-
order univariate derivatives, including a generaliza-
tion of the stochastic parameter-shift rule. In Sec. 4
we demonstrate how to compute second-order deriva-
tives, in particular the Hessian and the metric ten-
sor, more cheaply compared to existing methods. In
Sec. 5 we discuss applications, applying the new gen-
eralized parameter-shift rules to QAOA, and using
the full univariate reconstruction to extend existing
model-based optimization methods. We end the main
text in Sec. 6 with a discussion of our work and po-
tential future directions. Finally, in the appendix we
summarize some technical derivations (App. A), and
extend the results to more general frequency spectra
(App. B). The general stochastic parameter-shift rule
and details on quantum analytic descent can be found
in Apps. C and D.

Related work: In Ref. [42], the functions of VQAs
were considered as Fourier series and parameter-shift
rules were derived. Regarding the shift rules, the au-
thors of Ref. [42] consider integer eigenvalues and de-
rive a rule with 2R + 1 evaluations for equidistant
eigenvalues. In particular, the two-term and four-
term shift rules are reviewed and formulated as spe-
cial cases with fewer evaluations than the general re-
sult presented there. In contrast, our work results in
the exact generalization of those shift rules, which re-
quires 2R evaluations. Remarkably, Refs. [42, 45] also
propose a generalized Rotosolve algorithm prior to its
eponymous paper.

In addition, during the final stages of preparation
of this work, a related work considering algebraic ex-
tensions of the parameter-shift rule appeared online
[52]. The general description of quantum expecta-
tion values in Sec. 2.1 of the present work, along
with its initial consequences in Sec. 3.1, are shown
in Sec. II A of this preprint. We present a simpler
derivation and further explore the implications this
description has. The generalization of the parameter-
shift rule in Ref. [52] is obtained by decomposing the
gate generator using Cartan subalgebras, which can
yield fewer shifted evaluations than decompositions
of the gate itself. In particular, decompositions into
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non-commuting terms, which do not lead to a gate de-
composition into native quantum gates directly, can
be used in this approach.

At a similar time, yet another work appeared
[53], presenting a derivation similar to Sec. 2.1 and
parameter-shift rules for the first order derivative.
These rules are based on the ideas discussed here in
Secs. 3.1 and 3.2.

2 Background
We start by deriving the form of a VQA cost function
of a single parameter for a general single-parameter
quantum gate. Then we review known parameter-
shift rules and briefly discuss resource measures to
compare these gradient recipes.

2.1 Cost functions arising from quantum gates
Let us first consider the expectation value for a gen-
eral gate U(x) = exp(ixG), defined by a Hermitian
generator G and parametrized by a single parameter
x. Let |ψ〉 denote the quantum state that U is applied
to, and B the measured observable1. The eigenvalues
of U(x) are given by {exp(iωjx)}j∈[d] with real-valued

{ωj}j∈[d] where we denote [d] := {1, . . . , d} and have
sorted the ωj to be non-decreasing. Thus, we have:

E(x) := 〈ψ|U†(x)BU(x) |ψ〉 (1)

=
d∑

j,k=1
ψjeiωjxbjkψke

iωkx (2)

=
d∑

j,k=1
j<k

[
ψjbjkψke

i(ωk−ωj)x (3)

+ ψjbjkψkei(ωk−ωj)x
]

+
d∑

j=1
|ψj |2bjj ,

where we have expanded B and |ψ〉 in the eigenbasis
of U , denoted by bjk and ψj , respectively.

We can collect the x-independent part into coeffi-
cients cjk := ψjbjkψk and introduce the R unique pos-
itive differences {Ω`}`∈[R] := {ωk − ωj |j, k ∈ [d], ωk >
ωj}. Note that the differences are not necessar-
ily equidistant, and that for r =

∣∣{ωj}j∈[d]
∣∣ unique

eigenvalues of the gate generator, there are at most

R ≤ r(r−1)
2 unique differences. However, many quan-

tum gates will yield R ≤ r equidistant differences in-

1Here we consider any pure state in the Hilbert space; in the
context of VQAs, |ψ〉 is the state prepared by the subcircuit
prior to U(x). Similarly, B includes the subcircuit following up
on U(x).

stead; a common example for this is

G =
P∑

k=1
±Pk (4)

for commuting Pauli words Pk (PkPk′ = Pk′Pk),
which yields the frequencies [P] and thus R = P.

In the following, we implicitly assume a mapping
between the two indices j, k ∈ [d] and the frequency
index ` ∈ [R] such that c` = c`(j,k) is well-defined2.
We can then write the expectation value as a trigono-
metric polynomial (a finite-term Fourier series):

E(x) = a0 +
R∑

`=1
c`e

iΩ`x +
R∑

`=1
c`e
−iΩ`x (5)

= a0 +
R∑

`=1
a` cos(Ω`x) + b` sin(Ω`x), (6)

with frequencies given by the differences {Ω`}, where
we defined c` =: 1

2 (a` − ib`) ∀` ∈ [R] with a`, b` ∈ R,
and a0 :=

∑
j |ψj |2bjj ∈ R.

Since E(x) is a finite-term Fourier series, the co-
efficients {a`} and {b`} can be obtained from a fi-
nite number of evaluations of E(x) through a discrete
Fourier transform. This observation (and variations
thereof in Sec. 3) forms the core of this work: we can
obtain the full functional form of E(x) from a finite
number of evaluations of E(x), from which we can
compute arbitrary order derivatives.

2.2 Known parameter-shift rules
Parameter-shift rules relate derivatives of a quantum
function to evaluations of the function itself at dif-
ferent points. In this subsection, we survey known
parameter-shift rules in the literature.

For functions of the form (6) with a single frequency
Ω1 = Ω (i.e., G has two eigenvalues), the derivative
can be computed via the parameter-shift rule [16, 23,
38]

E′(0) = Ω
2 sin(Ωx1) [E(x1)− E(−x1)], (7)

where x1 is a freely chosen shift angle from (0, π) 3.
This rule was generalized to gates with eigenval-

ues {−1, 0, 1}, which leads to R = 2 frequencies,
in Refs. [41, 10] in two distinct ways. The rule in
Ref. [10] is an immediate generalization of the one
above:

E′(0) = y1[E(x1)− E(−x1)] (8)
− y2[E(x2)− E(−x2)],

2That is, `(j, k) = `(j′, k′)⇔ ωk − ωj = ωk′ − ωj′ .
3The position 0 for the derivative is chosen for convenience

but the rule can be applied at any position. To see this, note
that shifting the argument of E does not change its functional
form.
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with freely chosen shift angles x1,2 and corresponding
coefficients y1,2, requiring four evaluations to obtain
E′(0). A particularly symmetric choice of shift angles

is x1,2 = π/2∓ π/4 with coefficients y1,2 =
√

2±1
2
√

2 . In

contrast, the rule in Ref. [41] makes use of an auxiliary
gate to implement slightly altered circuits, leading to
a structurally different rule:

E′(0) = 1
4[E+

+ − E+
− + E−+ − E−− ], (9)

where Eα± is the measured energy when replacing the
gate U(x) in question by U(x ± π/2) exp(∓αiπ4P0)
and P0 is the projector onto the zero-eigenspace of
the generator of U . Remarkably, this structure allows
a reduction of the number of distinct circuit evalu-
ations to two if the circuit and the Hamiltonian are
real-valued, which is often the case for simulations of
fermionic systems and forms a unique feature of this
approach. This second rule is preferable whenever this
condition is fulfilled, the auxiliary gates exp(±iπ4P0)
are available, and simultaneously the number of dis-
tinct circuits is the relevant resource measure.

Furthermore, the two-term parameter-shift rule
Eq. (7) was generalized to gates with the more com-
plicated gate structure UF (x) = exp(i(xG + F )) via
the stochastic parameter-shift rule [39]

E′(x0) = Ω
2 sin(Ωx1)

∫ 1

0
[E+(t)− E−(t)]dt. (10)

Here, E±(t) is the energy measured in the state pre-
pared by a modified circuit that splits UF (x0) into
UF (tx0) and UF ((1− t)x0), and interleaves these two
gates with UF=0(±x1). See Sec. 3.6 and App. C for
details. The first-order parameter-shift rules summa-
rized here and their relationship to each other is also
visualized in Fig. 1.

A parameter-shift rule for higher-order derivatives
based on repeatedly applying the original rule has
been proposed in Ref. [46]. The shift can be cho-
sen smartly so that two function evaluations suffice
to obtain the second-order derivative:

E′′(0) = 1
2[E(π)− E(0)], (11)

which like Eq. (7) is valid for single-frequency gates.
Various expressions to compute combinations of
derivatives with few evaluations were explored in
Ref. [54].

2.3 Resource measures for shift rules
While the original parameter-shift rule Eq. (7) pro-
vides a unique, unbiased method to estimate the
derivative E′(0) via evaluations of E if it contains
a single frequency, we will need to compare different
shift rules for the general case. To this end, we con-
sider two resource measures. Firstly, the number of
distinct circuits that need to be evaluated to obtain all

terms of a shift rule, Neval. This is a meaningful quan-
tity on both, simulators that readily produce many
measurement samples after executing each unique cir-
cuit once, as well as quantum hardware devices that
are available via cloud services. In the latter case,
quantum hardware devices are typically billed and
queued per unique circuit, and as a result Neval often
dictates both the financial and time cost. Note that
overhead due to circuit compilation and optimization
scale with this quantity as well.

Secondly, we consider the overall number N of mea-
surements — or shots — irrespective of the number
of unique circuits they are distributed across. To this
end, we approximate the physical (one-shot) variance
σ2 of the cost function E to be constant across its do-
main4. For an arbitrary quantity ∆ computed from
M values of E via a shift rule,

∆ =
M∑

µ

yµE(xµ), (12)

we obtain the variance for the estimate of ∆ as

ε2 =
M∑

µ

|yµ|2
σ2

Nµ
, (13)

where Nµ expresses the number of shots used to mea-
sure E(xµ). For a total budget of N shots, the opti-
mal shot allocation is Nµ = N |yµ|/‖y‖1 such that

N = σ2‖y‖21
ε2 . (14)

This can be understood as the number of shots needed
to compute ∆ to a tolerable standard deviation ε.

The number of shots N is a meaningful quantity for
simulators whose runtime scales primarily with the
number of requested samples (e.g., Amazon Braket’s
TN1 tensor network simulator [1]), and for actual
quantum devices when artificial resource measures
like pricing per unique circuit and queueing time do
not play a role.

In this work we will mostly use Neval to compare
the requirements of different parameter-shift rules as
it is more accessible, does not rely on the assumption
of constant physical variance like N does, and the
coefficients y to estimate N are simply not known
analytically in most general cases. For the case of
equidistant frequencies and shift angles as discussed
in Sec. 3.4 we will additionally compare the number
of shots N in Sec. 3.5.

3 Univariate cost functions
In this section we study how a quantum cost func-
tion, which in general depends on multiple parame-
ters, varies if only one of these parameters is changed.

4As it is impossible in general to compute σ2 analytically, we
are forced to make this potentially very rough approximation.
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The results of this section will be sufficient to evaluate
the gradient as well as the diagonal of the Hessian of a
quantum function. We restrict ourselves to functions
that can be written as the expectation value of an ob-
servable with respect to a state that is prepared using
a unitary U(x) = exp(ixG) — capturing the full de-
pendence on x. That is, all parameters but x are fixed
and the operations they control are considered as part
of the prepared state and the observable. As shown in
Sec. 2.1, this yields a trigonometric polynomial, i.e.,

E(x) = a0 +
R∑

`=1
a` cos(Ω`x) + b` sin(Ω`x). (15)

In the following, we will assume the frequencies to be
equidistant, i.e., Ω` = `Ω, and generalize to arbitrary
frequencies in App. B. While it is easy to construct
gate sequences that do not lead to equidistant fre-
quencies, many conventional gates and layers of gates
do yield such a regular spectrum. The equidistant
frequency case has two major advantages over the
general case: we can derive closed-form parameter-
shift rules (Sec. 3.4); and the number of circuits re-
quired for the parameter-shift rule scales much better
(Sec. 3.5).

Without loss of generality, we further restrict the
frequencies to integer values, i.e., Ω` = `. For Ω 6=
1, we may rescale the function argument to achieve
Ω` = ` and once we reconstruct the rescaled function,
the original function is available, too.

3.1 Determining the full dependence on x

As we have seen, the functional form of E(x) is known
exactly. We can thus determine the function by com-
puting the 2R + 1 coefficients {a`} and {b`}. This is
the well-studied problem of trigonometric interpola-
tion (see e.g., [55, Chapter X]).

To determine E(x) completely, we can simply eval-
uate it at 2R + 1 distinct points xµ ∈ [−π, π). We
obtain a set of 2R+ 1 equations

E(xµ) = a0 +
R∑

`=1
a` cos(`xµ) + b` sin(`xµ), µ ∈ [2R]0

where we denote [2R]0 := {0, 1, . . . , 2R}. We can then
solve these linear equations for {a`} and {b`}; this pro-
cess is in fact a nonuniform discrete Fourier transform
(DFT).

A reasonable choice is xµ = 2πµ
2R+1 , µ = −R, . . . , R,

in which case the transform is the usual (uniform)
DFT. For this choice, an explicit reconstruction for E
follows directly from [55, Chapter X]; we reproduce it
in App. A.1.1.

3.2 Determining the odd part of E(x)

It is often the case in applications that we only need
to determine the odd part of E,

Eodd(x) = 1
2(E(x)− E(−x)) (16)

=
R∑

`=1
b` sin(`x). (17)

For example, calculating odd-order derivatives of
E(x) at x = 0 only requires knowledge of Eodd(x),
since those derivatives of the even part vanish. Note
that the reference point with respect to which Eodd is
odd may be chosen arbitrarily, and does not have to
be 0.

The coefficients in Eodd can be determined by eval-
uating Eodd at R distinct points xµ with 0 < xµ < π.
This gives us a system of R equations

Eodd(xµ) =
R∑

`=1
b` sin(`xµ), µ ∈ [R] (18)

which we can use to solve for the R coefficients {b`}.
Using Eq. (16) we see that each evaluation of Eodd

can be done with two evaluations of E(x). Thus, the
odd part of E can be completely determined with 2R
evaluations of E, saving one evaluation compared to
the general case. Note however that the saved E(0)
evaluation is evaluated regardless in many applica-
tions, and may be used to recover the full reconstruc-
tion — so, in effect, this saving does not have a sig-
nificant impact5.

3.3 Determining the even part of E(x)

We might similarly want to obtain the even part of
E,

Eeven(x) = 1
2(E(x) + E(−x)) (19)

= a0 +
R∑

`=1
a` cos(`x), (20)

which can be used to compute even-order derivatives
of E.

Determining Eeven(x) requires R+ 1 evaluations of
Eeven, which leads to 2R+1 evaluations of E for arbi-
trary frequencies. However, in the case where Ω` are
integers, R + 1 evaluations of Eeven can be obtained

5If E(0) is available, we can recover the full function, al-
lowing us to, for example, evaluate its second derivative E′′(0)
“for free”. However, in practice many more repetitions may be
needed for reasonable accuracy. This fact was already noted in
[46] for the R = 1 case.
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with 2R evaluations of E(x) by using periodicity:

Eeven(0) = E(0) (21)

Eeven(xµ) = 1
2(E(xµ) + E(−xµ)), (22)

0 < xµ < π, µ ∈ [R− 1]
Eeven(π) = E(π). (23)

Thus, in this case 2R evaluations of E(x) suffice to
determine its even part, saving one evaluation over
the general case. In contrast to the odd part, this
saving genuinely reduces the required computations as
E(0) is also used in the cheaper computation of {a`};
therefore, if E(0) is already known, we only require
2R− 1 new evaluations.

We note that even though both the odd and the
even part of E(x) require 2R evaluations, the full
function can be obtained at the price of 2R + 1 eval-
uations.

3.4 Explicit parameter-shift formulas
Consider again the task of determining Eodd (Eeven)
based on its value at the shifted points {xµ} with
µ ∈ [R] (µ ∈ [R]0). This can be done by linearly com-
bining elementary functions that vanish on all but one
of the {xµ}, i.e., kernel functions, using the evalua-
tion E(xµ) as coefficients. If we restrict ourselves to
evenly spaced points xµ = 2µ−1

2R π (xµ = µ
Rπ), we can

choose these functions to be Dirichlet kernels. In ad-
dition to a straightforward reconstruction of the odd
(even) function this delivers the general parameter-
shift rules, which we derive in App. A.1:

E′(0) =
2R∑

µ=1
E

(
2µ− 1

2R π

)
(−1)µ−1

4R sin2 ( 2µ−1
4R π

) , (24)

E′′(0) = −E(0)2R2 + 1
6 +

2R−1∑

µ=1
E
(µπ
R

) (−1)µ−1

2 sin2 (µπ
2R
) .

(25)
We remark that derivatives of higher order can be

obtained in an analogous manner, and with the same
function evaluations for all odd (even) orders. Fur-
thermore, this result reduces to the known two-term
(Eq. (7)) and four-term (Eq. (8)) parameter-shift rules
for R = 1 and R = 2, respectively, as well as the
second-order derivative for R = 1 (Eq. (11)).

We again note that the formulas above use differ-
ent evaluation points for the first and second deriva-
tives (2R evaluations for each derivative). Closed-
form parameter-shift rules that use 2R + 1 shared
points can be obtained by differentiating the recon-
struction formula Eq. (57).

3.5 Resource comparison
As any unitary may be compiled from (single-qubit)
Pauli rotations, which satisfy the original parameter-

shift rule, and CNOT gates, an alternative approach
to compute E′(0) is to decompose U(x) into such
gates and combine the derivatives based on the el-
ementary gates. As rotation gates about any multi-
qubit Pauli word satisfy the original parameter-shift
rule as well, a more coarse-grained decomposition
might be possible and yield fewer evaluations for this
approach.

For instance, for the MaxCut QAOA ansatz6 on a
graph G = (V, E) with vertices V and edges E , one of
the operations is to evolve under the problem Hamil-
tonian:

UP (x) ∝ exp


−ix2

∑

(a,b)∈E
ZaZb


 (26)

=
∏

(a,b)∈E
exp

(
−ix2ZaZb

)
. (27)

Eq. (26) treats UP (x) as a single operation with at
most M = |E| frequencies 1, . . . , R ≤ M , and we can
apply the generalized parameter-shift rules of this sec-
tion. Alternatively, we could decompose UP (x) with
Eq. (27), apply the two-term parameter-shift rule to
each RZZ rotation, and sum up the contributions us-
ing the chain rule.

3.5.1 Number of unique circuits

If there are P gates that depend on x in the decompo-
sition, this approach requires 2P unique circuit eval-
uations; as a result, the general parameter-shift rule
is cheaper if R < P. The evaluations used in the
decomposition-based approach cannot be expressed
by E directly because the parameter is shifted only
in one of the P gates per evaluation, which makes the
general parameter-shift rule more convenient and may
reduce compilation overhead for quantum hardware,
and the number of operations on simulators.

In order to compute E′′(0) via the decomposition,
we need to obtain and sum the full Hessian of all
elementary gates that depend on x (see App. A.4.2),
which requires 2P2−P+1 evaluations, including E(0),
and thus is significantly more expensive than the 2R
evaluations for the general parameter-shift rule.

While the derivatives can be calculated from the
functional form of Eodd or Eeven, the converse is not
true for R > 1, i.e., the full functional dependence
on x cannot be extracted from the first and second
derivative alone. Therefore, the decomposition-based
approach would demand a full multivariate recon-
struction for all P parametrized elementary gates to
obtain this dependence, requiring O(2P) evaluations.
The approach shown here allows us to compute the
dependence in 2R+1 evaluations and thus is the only
method for which the univariate reconstruction is vi-
able.

6A more detailed description of the QAOA ansatz can be
found in Sec. 5.1.
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3.5.2 Number of shots

For equidistant evaluation points, we explicitly know
the coefficients of the first and second-order shift rule
given in Eqs. (24, 25), and thus can compare the vari-
ance of the derivatives in the context and under the
assumptions of Sec. 2.3.

The coefficients satisfy (see App. A.4.1)

2R∑

µ=1

(
4R sin2

(
2µ− 1

4R π

))−1
= R

2R2 + 1
6 +

2R−1∑

µ=1

(
2 sin2

(µπ
2R

))−1
= R2.

This means that the variance-minimizing shot alloca-
tion requires a shot budget of

NgenPS, 1 = σ2R2

ε2 (28)

NgenPS, 2 = σ2R4

ε2 (29)

using the generalized parameter-shift rule for the first
and second derivative, respectively.

Assuming integer-valued frequencies in the cost
function typically means, in the decomposition-based
approach, that x enters the elementary gates without
any additional prefactors7. Thus, optimally all evalu-
ations for the first-order derivative rule are performed
with the same portion of shots; whereas the second-
order derivative requires an adapted shot allocation
which, in particular, measures E(0) with high preci-
sion as it enters E′′(0) with the prefactor P/2. This
yields (see App. A.4.2)

Ndecomp, 1 = σ2P2

ε2 (30)

Ndecomp, 2 = σ2P4

ε2 . (31)

Comparing with NgenPS, 1 and NgenPS, 2 above, we see
that the shot budgets are equal at P = R. That is,
for both the first and second derivative, the general
parameter-shift rule does not show lower shot require-
ments in general, in contrast to the previous analysis
that showed a significantly smaller number of unique
circuits for the second derivative. This shows that
the comparison of recipes for gradients and higher-
order derivatives crucially depends on the chosen re-
source measure. In specific cases we may be able to
give tighter upper bounds on R so that R < P (see
Sec. 5.1) and the general shift rule becomes favourable
regarding the shot count as well.

3.6 General stochastic parameter-shift rule
Next, we will apply the stochastic parameter-shift rule
to our general shift rule. For this section we do not

7Of course, one can construct less efficient decompositions
that do not satisfy this rule of thumb.

assume the frequencies to be equidistant but address
arbitrary spectra directly. Additionally we make the
reference point x0 at which the derivative is computed
explicit.

In Ref. [39], the authors derive the stochastic
parameter-shift rule for gates of the form

UF (x) = exp(i(xG+ F )) (32)

where G is a Hermitian operator with eigenvalues ±1
(so that G2 = 1), e.g., a Pauli word. F is any other
Hermitian operator, which may not necessarily com-
mute with G8. Key to the derivation of the stochastic
rule is an identity relating the derivative of the quan-
tum channel UF (x)[ρ] = U†F (x)ρUF (x) to the deriva-
tive of the generator channel G(x)[ρ] = i[(xG+F ), ρ].
We may extend this directly to the general parameter-
shift rule for the case when G2 = 1 is no longer satis-
fied (see App. C for the derivation):

E′(x0) =
∫ 1

0

R∑

µ=1
yµ[Eµ(x0, t)− E−µ(x0, t)]dt

(33)
E±µ(x0, t) := 〈B〉UF (tx0)U(±xµ)UF ((1−t)x0)|ψ〉.

The integration is implemented in practice by sam-
pling values for t for each measurement of Eµ(x0, t)
and E−µ(x0, t).

The stochastic parameter-shift rule in combination
with the generalized shift rule in Eq. (24) allows for
the differentiation of any unitary with equidistant fre-
quencies. As F in UF (x) above is allowed to con-
tain terms that depend on other variational parame-
ters, this includes multi-parameter gates in particular.
Furthermore, combining Eq. (33) with the generalized
shift rule for arbitrary frequencies in Eq. (90) allows
us to compute the derivative of any quantum gate as
long as the frequencies of UF=0(x) are known. We
thus obtain an improved rule for UF 6=0(x) over the
original stochastic shift rule whenever the generalized
shift rule is beneficial for U(x) = UF=0(x), compared
to the decomposition-based approach.

4 Second-order derivatives
As noted in Sec. 3.3, higher-order derivatives of uni-
variate functions are easily computed using the even
or odd part of the function. In the following sec-
tions, we will extend our discussion to multivariate
functions E(x), where derivatives may be taken with
respect to different variables. Each single parameter
dependence is assumed to be of the form Eq. (5), with
equidistant (and by rescaling integer-valued) frequen-

cies {Ω(k)
` }`∈[Rk] = [Rk] for the kth parameter. We

8If GF = FG, the exponential may be split into exp(ixG)
and exp(iF ) and we are back at the situation exp(ixG).
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may collect the numbers of frequencies in a vector
(R)k = Rk. It will again be useful in the following to
make the reference point x0, at which these deriva-
tives are computed, explicit.

4.1 Diagonal shift rule for the Hessian
Here we show how to compute the Hessian H of a
multivariate function E(x) at some reference point x0
using the Fourier series representation of E. We al-
low for single-parameter gates U(x) = exp(ixG) with
equidistant frequencies and will use fewer evaluations
of E than known schemes. An indication that this
may be possible for gates with two eigenvalues was
made in [54, Eq. (37)].

First, for the kth diagonal entry Hkk = ∂2
kE(x0) of

the Hessian, we previously noted in Sec. 3.3 that 2Rk
evaluations are sufficient as it is the second derivative
of a univariate restriction of E. Recall that one of
the 2Rk evaluations is E(x0); we can reuse this eval-
uation for all diagonal entries of H, and thus require
1 +

∑n
k=1(2Rk − 1) = 2‖R‖1 − n + 1 evaluations for

the full diagonal. Further, if we compute the Hessian
diagonal (∇�2E)k := ∂2

kE in addition to the gradient,
we may reuse the 2‖R‖1 evaluations computed for the
gradient, only requiring a single additional function
value, namely E(x0). In this case, we do not make
use of the periodicity E(x0 + πvk) = E(x0 − πvk),
where vk is the kth canonical basis vector, because
this shift is not used in the gradient evaluation (see
Sec. 3.2).

Next, for an off-diagonal entry Hkm = ∂k∂mE(x0),
consider the univariate trigonometric function that
shifts the two parameters xk and xm simultaneously :

E(km)(x) := E(x0 + xvk,m), (34)

where we abbreviated vk,m := vk + vm. We show
in App. A.2 that E(km) again is a Fourier series of x
with Rkm = Rk + Rm equidistant frequencies. This

means that we can compute E(km)′′(0) via Eq. (25)
with R = Rkm, using 2Rkm − 1 evaluations of E (as
we may reuse E(x0) from the diagonal computation).
Note that

d2

dx2E
(km)(x)

∣∣∣∣
x=0

= Hkk +Hmm + 2Hkm, (35)

and that we have already computed the diagonal en-
tries. We thus may obtain Hkm via the diagonal
parameter-shift rule

Hkm = 1
2

(
E(km)′′(0)−Hkk −Hmm

)
. (36)

In Fig. 2, we visually compare the computation of
Hkm via the diagonal shift rule to the chained appli-
cation of univariate parameter-shift rules for xk and
xm.

As an example, consider the case when Rk = Rm =
1 (e.g., where all parametrized gates are of the form

Figure 2: Visual representation of two approaches to compute
a Hessian entry Hkm at the position x0 (red cross). The
parameters xk and xm lie on the coordinate axes and the
heatmap displays the cost function E(x). We may either
combine the general shift rule for xk and xm (grey triangles)
or compute the univariate derivative E(km)′′(0) and extract
Hkm via Eq. (36) (green circles).

exp(ixkGk/2) with G2
k = 1). By setting R = 2 in

Eq. (25), we obtain the explicit formula for E(km)′′(0),

E(km)′′(0) = −3
2E(x0)− 1

2E(x0 + πvk,m) (37)

+ E
(

x0 + π

2 vk,m

)
+ E

(
x0 −

π

2 vk,m

)

which can be combined with Eq. (36) to give an ex-
plicit formula for the Hessian. This formula (for Rk =
Rm = 1) was already discovered in [54, Eq. (37)].

The computation of Hkm along the main diagonal
in the xk-xm-plane can be modified by making use of
the second diagonal as well: define vk,m := vk − vm

and E
(km)(x) := E(x0 + xvk,m), and compute

d2

dx2E
(km)(x)

∣∣∣∣
x=0

= Hkk +Hmm − 2Hkm, (38)

Hkm = 1
4

(
E(km)′′(0)− E(km)′′(0)

)
.

This means we can replace the dependence on the di-
agonal elements Hkk and Hmm by another univariate
second-order derivative on the second diagonal. We
will not analyze the resources required by this method
in detail but note that for many applications it forms
a compromise between the two approaches shown in
Fig. 2.

We note that an idea similar to the ones presented
here can be used for higher-order derivatives, but pos-
sibly requires more than one additional univariate re-
construction per derivative.
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4.2 Resource comparison
For the Hessian computation, we will again look at
the number of unique circuit evaluations Neval and
the number of shots N , as introduced in Sec. 2.3.

4.2.1 Number of unique circuits

In Tab. 1, we summarize the number of distinct circuit
evaluations required to compute several combinations
of derivatives of E(x), either by decomposing the gate
or by using the general parameter-shift rule together
with the diagonal shift rule for the Hessian. We also
include the generalized case of non-equidistant fre-
quencies covered in App. B.2 for completeness. To
obtain the cost for the repeated general shift rule,
i.e., without the diagonal shift rule for the Hessian
or decomposition, simply replace P by R in the left
column.

For equidistant frequencies, the diagonal shift rule
for Hkm requires 2(Rk + Rm) − 1 evaluations, as-
suming the diagonal and thus E(x0) to be known
already. Like the gradient, Hkm may instead be com-
puted by decomposing Uk(xk) and Um(xm) into Pk
and Pm elementary gates, respectively, and repeat-
ing the parameter-shift rule twice [46, 56]. All com-
binations of parameter shifts are required, leading
to 4PkPm evaluations. Finally, as a third option,
one may repeat the general parameter-shift rule in
Eq. (24) twice, leading to 4RkRm evaluations9.

The repeated general shift rule requires strictly
more circuit evaluations than the diagonal shift rule,
since

2‖R‖21 − ‖R‖1 + 1 > 2n‖R‖1 −
1
2(n2 + n− 2).

(39)

Similar to the discussion for the scaling of gradient
computations, the optimal approach depends on Rk,m
and Pk,m, but P and R often have a linear relation
so that the diagonal shift rule will be significantly
cheaper for many cost functions than decomposing
the unitaries.

4.2.2 Number of shots

Next we compare the numbers of measurements re-
quired to reach a precision ε. While the approach
via repeated shift rules uses distinct circuit evalua-
tions for each Hessian entry, the diagonal shift rule in
Eq. (36) reuses entries of the Hessian and thus corre-
lates the optimal shot allocations and the statistical
errors of the Hessian entries. We therefore consider
an error measure on the full Hessian matrix instead
of a single entry, namely the root mean square of the
Frobenius norm of the difference between the true and
the estimated Hessian. This norm is computed in

9These 4RkRm shifted evaluations are not simultaneous
shifts in both directions of the form Eq. (34).

App. A.5 for the three presented approaches, and we
conclude the number of shots required to achieve a
norm of ε to be

Ndiag = σ2

2ε2

[(√
n+ 1 + n− 2

)
‖R‖22 + ‖R‖21

]2

(40)

NgenPS = σ2

2ε2

[(√
2− 1

)
‖R‖22 + ‖R‖21

]2
(41)

Ndecomp = σ2

2ε2

[(√
2− 1

)
‖P‖22 + ‖P‖21

]2
(42)

In general, the diagonal shift rule for the Hessian is
significantly less efficient than the repeated execution
of the general parameter-shift rule if the shot count is
the relevant resource measure. This is in sharp con-
trast to the number of unique circuits, which is strictly
smaller for the diagonal shift rule. We note that the
two resource measures yield incompatible recommen-
dations for the computation of the Hessian. The over-
head of the diagonal shift rule reduces to a (to leading
order in n) constant prefactor if Rk = R for all k ∈ [n]:
in this case, we know ‖R‖1 = n = ‖R‖22 and therefore

Ndiag

NgenPS
= 2n+

√
n+ 1− 2

n+
√

2− 1
−→
n→∞

2. (43)

4.3 Metric tensor
The Fubini-Study metric tensor F is the natural met-
ric on the manifold of (parametrized) quantum states,
and the key ingredient in quantum natural gradient
descent [48]. The component of the metric belonging
to the parameters xk and xm can be written as

Fkm(x0) =Re{〈∂kψ(x)|∂mψ(x)〉}
∣∣∣
x=x0

(44)

− 〈∂kψ(x)|ψ(x)〉 〈ψ(x)|∂mψ(x)〉
∣∣∣
x=x0

,

or, alternatively, as a Hessian [46]:

Fkm(x0) = −1
2∂k∂m|〈ψ(x)|ψ(x0)〉|2

∣∣∣
x=x0

=: ∂k∂mf(x0). (45)

It follows that we can compute the metric using the
same method as for the Hessian, with f(x) as the cost
function. We know the value of f without shift as

f(x0) = −1
2 |〈ψ(x0)|ψ(x0)〉|2 = −1

2 . (46)

The values with shifted argument can be calculated as
the probability of the zero bitstring 0 when measuring
the state V †(x)V (x0) |0〉 in the computational basis,
which requires circuits with up to doubled depth com-
pared to the original circuit V (x). Alternatively, we
may use a Hadamard test to implement f , requir-
ing an auxiliary qubit, two operations controlled by
that qubit as well as a measurement on it, but only
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Quantity Decomposition Gen. shift rule, equidistant Gen. shift rule
E(x0) 1 1 1
∂kE(x0) 2Pk 2Rk 2Rk
∇E(x0) 2‖P‖1 2‖R‖1 2‖R‖1
∂2
kE(x0) 2P2

k − Pk + 1 2Rk 2Rk + 1
∇�2E(x0) 2‖P‖22 − ‖P‖1 + 1 2‖R‖1 − n+ 1 2‖R‖1 + 1
∂k∂mE(x0) 4PkPm 2(Rk +Rm)− 1(∗) 4RkRm + 2Rk + 2Rm − 4(∗)

∇⊗2E(x0) 2‖P‖21 − ‖P‖1 + 1 2n‖R‖1 − 1
2 (n2 + n− 2) 2

(
‖R‖21 − ‖R‖22 + n‖R‖1

)

−2n(n− 1) + 1
∂kE(x0) & ∂2

kE(x0) 2P2
k + 1 2Rk + 1 2Rk + 1

∇E(x0) & ∇�2E(x0) 2‖P‖22 + 1 2‖R‖1 + 1 2‖R‖1 + 1

∇E(x0) & ∇⊗2E(x0) 2‖P‖21 + 1 2n‖R‖1 − 1
2 (n2 − n− 2) 2

(
‖R‖21 − ‖R‖22 + n‖R‖1

)

−2n(n− 1) + 1

Table 1: Number of distinct circuit evaluations Neval for measuring combinations of derivatives of a parametrized expectation
value function E at parameter position x0. The compared approaches include decomposition of the unitaries together with the
original parameter-shift rule (left), and the generalized parameter-shift rule Eq. (24) together with the diagonal shift rule for
the Hessian in Eq. (36). The requirements for the latter differ significantly for equidistant (center) and arbitrary frequencies
(right, see App. B.2). A third approach is to repeat the general parameter-shift rule, the cost of which can be read off by
replacing P by R in the left column. Here, n is the number of parameters in the circuit, Pk is the number of elementary
gates with two eigenvalues in the decomposition of the kth parametrized unitary, and Rk denotes the number of frequencies
for the kth parameter. The asterisk (∗) indicates that the derivatives ∂2

kE and ∂2
mE need to be known in order to obtain the

mixed derivative at the shown price (see main text). The evaluation numbers take savings into account that are based on
using evaluated energies for multiple derivative quantities; hence, they are not additive in general.

halved depth on average (see App. A.3). With ei-
ther of these methods, the terms for the shift rule in
Eq. (36) and thus the metric tensor can be computed
via the parameter-shift rule.

The metric can also be computed analytically with-
out parameter shifts via a linear combination of uni-
taries (LCU) [57, 58], which also employs Hadamard
tests. As it uses the generator as an operation in the
circuit, any non-unitary generator needs to be decom-
posed into Pauli words for this method to be available
on quantum hardware, similar to a gate decomposi-
tion. Afterwards, this method uses one circuit evalu-
ation per pair of Pauli words from the kth and mth
generator to compute the entry Fkm. A modification
of all approaches that use a Hadamard test is possible
by replacing it with projective measurements [56].

Metric entries that belong to operations that com-
mute within the circuit10 can be computed block-wise
without any auxiliary qubits, additional operations or
deeper circuits [48]. For a given block, we execute the
subcircuit V1 prior to the group of mutually commut-
ing gates and measure the covariance matrix of the
generators {Gk} of these gates:

Fkm = 〈0|V †1 GkGmV1 |0〉 (47)
− 〈0|V †1 GkV1 |0〉 〈0|V †1 GmV1 |0〉 .

By grouping the measurement bases of all {GkGm}
10For example, operations on distinct wires commute in gen-

eral but not necessarily within the circuit if entangling opera-
tions are carried out between them.

and {Gk} of the block, the covariance matrix can typ-
ically be measured with only a few unique circuit eval-
uations11, making this method the best choice for the
block-diagonal. One may then either use the result
as an approximation to the full metric tensor, or use
one of the other methods to compute the off-block-
diagonal entries; the approximation has been shown
to work well for some circuit structures [48], but not
for others [59]. The methods to obtain the metric
tensor and their resource requirements are shown in
Tab. 2.

Since we run a different circuit for the metric tensor
than for the cost function itself, the 2Rk − 1 evalua-
tions at shifted positions needed for the kth diagonal
entry cannot reuse any prior circuit evaluations, as is
the case for the cost function Hessian. Consequen-
tially, the natural gradient of a (single term) expecta-
tion value function E,

∇n E(x) := F−1(x)∇E(x), (48)

with ∇E referring to the Euclidean gradient, requires
more circuit evaluations than its Hessian and gradient
together.

However, the utility of the metric tensor becomes
apparent upon observing that it depends solely on the
ansatz, and not the observable being measured. This

11For a layer of simultaneous single-qubit rotations on all
N qubits, even a single measurement basis is sufficient for the
corresponding N ×N block.
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Parameter shift rule LCU Covariance
Overlap Hadamard

Aux. qubits 0 1 1 0
off-block-diag. X X X
Depth (avg) ∼ 4

3DV ∼ 2
3DV ∼ 2

3DV
2
3DV

Depth (max) 2DV ∼ DV ∼ DV DV

Neval(Fkk)
{

2Rk − 1
2Rk

Qk ≤ 1
2 (P2

k − Pk) Pk ≤ Pk

Neval(Fkm)
{

2(Rk +Rm)− 1
2(2RkRm +Rk +Rm − 2)

PkPm Pkm ≤ PkPm

Neval(F)
{

2n‖R‖1 − 1
2 (n2 + n)

2
(
‖R‖21 − ‖R‖22 + n(‖R‖1 − n+ 1)

) 1
2
(
‖P‖21 − ‖P‖22

)
+ ‖Q‖1 —

Table 2: Quantum hardware-ready methods to compute the Fubini-Study metric tensor and their resource requirements. The
cost function f(x) (see Eq. (45)) for the parameter-shift rule can be implemented with increased depth by applying the adjoint
of the original circuit to directly realize the overlap (left) or with an auxiliary qubit and Hadamard tests (center left, App. A.3).
The LCU method (center right) is based on Hadamard tests as well and both these methods can spare the auxiliary qubit
and instead employ projective measurements [56]. The cheapest method is via measurements of the covariance of generators
(right) but it can only be used for the block-diagonal of the tensor, i.e., not for all Fkm. We denote the depth of the original
circuit V by DV and the number of Pauli words in the decomposition of Gk and its square with Pk and Qk, respectively.
The Pk Pauli words of Gk can be grouped into Pk groups of pairwise commuting words; the number of groups of pairwise
commuting Pauli words in the product GkGm similarly is Pkm. For the covariance-based approach, we overestimate the
number of required circuits, as typically many of the measurement bases of the entries in the same block will be compatible.
The number of unique circuits to be evaluated for a diagonal element Fkk, an off-diagonal element Fkm, and the full tensor
F is given in terms of the number of frequencies Rk and of Qk, Pk Pk and Pkm. The entries for Neval in the first and second
row of the braces refer to equidistant (main text) and arbitrary frequencies (see App. B.2), respectively.

means that if a cost function has multiple terms, like
in VQEs, the metric only needs to be computed once
per epoch, rather than once per term, as is the case
of the cost function Hessian. Therefore, an epoch of
quantum natural gradient descent can be cheaper for
such cost functions than an epoch of optimizers us-
ing the Hessian of the cost function. In addition, the
block-diagonal of the metric tensor can be obtained
with few circuit evaluations per block for conventional
gates without any further requirements and with re-
duced average circuit depth.

5 Applications
In this section, we will present QAOA as concrete ap-
plication for our general parameter-shift rule, which
reduces the required resources significantly when com-
puting derivatives. Afterwards, we use the approach
of trigonometric interpolation to generalize the Roto-
solve algorithm. This makes it applicable to arbitrary
quantum gates with equidistant frequencies, which re-
produces the results in Refs. [42, 45], and extends
them further to more general frequency spectra. In
addition, we make quantum analytic descent (QAD)
available for arbitrary quantum gates with equidis-
tant frequencies, which previously required a higher-
dimensional Fourier reconstruction and thus was in-
feasible.

5.1 QAOA and Hamiltonian time evolution
In Eq. (24) we presented a generalized parameter-shift
rule that makes use of 2R function evaluations for R
frequencies in E. A particular example for single-
parameter unitaries with many frequencies are layers
of single- or two-qubit rotation gates, as can be found
e.g., in QAOA circuits or digitized Hamiltonian time
evolution algorithms.

The quantum approximate optimization algorithm
(QAOA) was first proposed in 2014 by Farhi, Gold-
stone and Gutmann to solve classical combinatorial
optimization problems on near-term quantum devices
[8]. Since then, it has been investigated analytically
[60, 61, 62], numerically [63, 64], and on quantum
computers [65, 66].

In general, given a problem Hamiltonian HP that
encodes the solution to the problem of interest onto
N qubits, QAOA applies two types of layers alternat-
ingly to an initial state |+〉⊗N :

VQAOA(x) =
1∏

j=p
UM (x2j)UP (x2j−1), (49)

where p is the number of blocks which determines
the depth of the circuit, UM (x) = exp (−ixHM ) with

HM =
∑N
k=1Xk is the so-called mixing layer, and

UP (x) = exp(−ixHP ) is the time evolution underHP .
The parameters x can then be optimized to try to
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minimize the objective function

E(x) = 〈+|⊗N V †QAOA(x)HPVQAOA(x) |+〉⊗N . (50)

Here we focus on the layer UP , and we look at the
example of MaxCut in particular. The correspond-
ing problem Hamiltonian for an unweighted graph
G = (V, E) with N vertices V and M edges E reads

HP =
∑

(a,b)∈E

1
2(1− ZaZb), (51)

and UP correspondingly contains M two-qubit Pauli-
Z rotations RZZ .

We note that HM has eigenvalues −N,−N +
2, · · · , N , which means the corresponding frequen-
cies (differences of eigenvalues) are 2, · · · , 2N . Thus,
treating UM (x2j) as a single operation, Eq. (6) implies
that E(x) can be considered an N -order trigonomet-
ric polynomial in x2j , and the parameter-shift rules
we derive in Sec. 3 will apply with R = N . Similarly,
HP has corresponding frequencies in the set [M ], and
it will obey the parameter-shift rule for R = M , al-
though we may be able to give better upper bounds
λ for R. Thus the unique positive differences {Ω`}
for those layers, i.e., the frequencies of E(x) with re-
spect to the parameter {x2j−1}j∈[p], take integer val-
ues within the interval [0, λ] as well. We may therefore
use Eq. (24), with the knowledge that R ≤ λ ≤M .

Note that knowing all frequencies of E(x) requires
knowledge of the full spectrum of HP — and in partic-
ular of λ — which in turn is the solution of MaxCut
itself. As a consequence, the motivation for perform-
ing QAOA becomes obsolete. Therefore, in general
we cannot assume to know {Ω`} (or even R), but in-
stead require upper bounds ϕ(G) ≥MaxCut(G) = λ
which can be used to bound the largest frequency, and
thus the number of frequencies R and subsequently
the number of terms in the parameter-shift rule. It
is noteworthy that even if the largest frequency λ is
known exactly via a tight bound — which restricts
the Fourier spectrum to the integers [λ] — not all in-
tegers smaller than λ need to be present in the set of
frequencies {Ω`}, so that the estimate for R may be
too large12.

One way to obtain an upper bound uses analytic
results based on the Laplacian of the graph of in-
terest [67, 68], for which automatic bound generat-
ing programs exist [69]. An alternative approach uses
semi-definite programs (SDPs) that solve relaxations
of the MaxCut problem, the most prominent being
the Goemans-Williamson (GW) algorithm [70] and
recent extensions thereof that provide tighter upper
bounds [71, 72]. The largest eigenvalue is guaranteed
to be within ∼ 0.878 of these SDP upper bounds.

12A simple example for this is the case of 2k-regular graphs;
here, HP only has even eigenvalues, and therefore all frequen-
cies are even as well. Given an upper bound ϕ, we thus know
the number of frequencies to satisfy R ≤ ϕ/2.

To demonstrate the above strategy, we summarize
the number of evaluations required for the gradient
and Hessian of an n-parameter QAOA circuit on N
qubits for MaxCut in Tab. 3, comparing the ap-
proach via decomposing the circuit, to the one de-
tailed above based on ϕ and the improved Hessian
measurement scheme in Sec. 4.1. Here, we take into
account that half of the layers are of the form UP ,
and the other half are mixing layers with R = N fre-
quencies. We systematically observe the number of
evaluations for the gradient to be cut in half, and the
those for the gradient and Hessian together to scale
with halved order in N (and k, for regular graphs).

In addition, we display the numbers of circuit eval-
uations from Tab. 3 together with SDP-based bounds
for λ and the true minimal number of evaluations re-
quired for the parameter-shift rule in Fig. 3. For this,
we sampled random unweighted graphs of the corre-
sponding type and size and ran the GW algorithm
as well as an improvement thereof to obtain tighter
bounds [71]. On one hand we observe the advan-
tage of the generalized parameter-shift rule and the
cheaper Hessian method that can be read off already
from the scalings in Tab. 3. On the other hand, we
find both SDP-based upper bounds to provide an ex-
act estimate of the largest eigenvalue in the N ≤ 20
regime, as can be seen from the cut values obtained
from the GW algorithm that coincide with the up-
per bound. In cases in which the frequencies {Ω`}
occupy all integers in [R], this leads to an exact esti-
mate of R and the evaluations in the shift rule. For
all graph types but complete graphs, the SDP-based
upper bounds yield a better estimate for the number
of terms than the respective analytic bound ϕ, which
improves the generalized shift rule further.

In summary, we find the generalized parameter-
shift rule to offer a constant prefactor improvement
when computing the gradient and an improvement
of at least O(N) when computing both the gradient
and the Hessian. For certain graph types, knowledge
about the structure of the spectrum and tight ana-
lytic bounds provide this advantage already, whereas
for other graph types the SDP-based bounds reduce
the evaluation numbers significantly.

5.2 Rotosolve
The Rotosolve algorithm is a coordinate descent al-
gorithm for minimizing quantum cost functions. It
has been independently discovered multiple times
[42, 45, 51, 50], with [50] giving the algorithm its name
but only (along with [51]) considering parametrized
Pauli rotations, and [42, 45] covering other unitaries
with integer-valued generator eigenvalues.

The Rotosolve algorithm optimizes the rotation an-
gles sequentially: for one variational parameter xk at
a time, the cost function is reconstructed as a function
of that parameter using 2Rk+1 evaluations, the mini-
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Graph type Decomposition-based Gen. shift rule
∇E ∇E&∇⊗2E Bound ϕ ∇E ∇E&∇⊗2E

General (M +N)n O(n2(M +N)2) ϕ n(ϕ+N) O(n2(ϕ+N))
Complete 1

2n(N2 +N) O(n2N4)
⌊
N2

4

⌋
n
(⌊

N2

4

⌋
+N

)
O(n2N2)

2k-regular (k + 1)nN O(k2n2N2) kN k+2
2 nN O(kn2N)

(2k+1)-regular 2k+3
2 nN O(k2n2N2) 2k+1

2 N 2k+3
2 nN O(kn2N)

Table 3: Evaluation numbers for the gradient, or both the gradient and the Hessian, for QAOA circuits for MaxCut on
several types of graphs. Each graph has N vertices and a graph type-specific number M of edges, and the (even) number
of parameters is denoted as n. For K-regular graphs, we know M = min{(N2 −N)/2,KN/2}, and the latter value is used
in the displayed evaluation costs; if the former value forms the minimum, the graph is in fact complete. The left column is
based on decomposing the circuit, applying the conventional two-term parameter-shift rule per elementary gate and iterating
it for the Hessian. The right column employs the generalized parameter-shift rule Eq. (24) combined with an upper bound ϕ
for the largest eigenvalue λ of the problem Hamiltonian, as well as the reduced number of evaluations for Hessian off-diagonal
terms from Sec. 4.1. The bound ϕ for complete graphs can be found in Ref. [67].

mum of the reconstruction is calculated, and then the
parameter is updated to the minimizing angle. For
the case of Pauli rotation gates this minimum can be
found via a closed-form expression. Recent studies
have shown such coordinate descent methods to work
well on many tasks [73, 50, 45, 74], although there are
limited cases where these methods fail [75].

While Rotosolve is not gradient-based, our cost re-
duction for the gradient presented in Sec. 5.1 stems
from a cost reduction for function reconstruction, and
hence is applicable to Rotosolve as well.

As shown in Sec. 3.1, the univariate objective
function can also be fully reconstructed if the
parametrized unitaries are more complicated than
Pauli rotations, using the function value itself and
the evaluations from the generalized parameter-shift
rule. Since the generalized parameter-shift rule also
applies for non-equidistant frequencies (see App. B),
the reconstruction works in the same way for arbi-
trary single-parameter gates. This extends our gener-
alization of Rotosolve beyond the previously known
integer-frequency case [42, 45], although the num-
ber of frequencies—and thus the cost—for the recon-
struction are typically significantly increased for non-
integer frequencies. While the minimizing angle might
not be straightforward to express in a closed form as it
is the case for a single frequency, the one-dimensional
minimization can efficiently be carried out numeri-
cally to high precision, via grid search or semi-definite
programming [76, Chapter 4.2].

5.3 Quantum analytic descent
Quantum analytic descent (QAD) [49] also ap-
proaches the optimization problem in VQAs via
trigonometric interpolation. In contrast to Roto-
solve, it considers a model of all parameters simul-
taneously and includes second-order derivatives, but
this model only is a local approximation of the full
cost function. Additionally, QAD has been developed
for circuits that exclusively contain Pauli rotations as

parametrized gates.
The algorithm evaluates the cost function E at

2n2 + n + 1 points around a reference point x0, and
then constructs a trigonometric model of the form13

Ê(x0 + x) = A(x)
[
E(A) + 2E(B) · tan

(x

2

)

+ 2E(C) · tan
(x

2

)�2
(52)

+4 tan
(x

2

)
· E(D) · tan

(x

2

)]
,

Here, we introduced A(x) :=
∏
k cos2 (xk

2
)

and the
element-wise square of a vector v, (v�2)k := v2

k as for
the Hessian diagonal. The coefficients E(A/B/C/D)

are derived from the circuit evaluations, taking the
form of a scalar, two vectors and an upper triangular
matrix. More precisely, the expansion basis is chosen
such that E(B) = ∇E(x0), E(C) = ∇�2E(x0), and
E(D) is the strictly upper triangular part of the Hes-
sian. Note that for this model 2n2 +n+ 1 evaluations
are used to obtain n2/2+3n/2+1 parameters. In the
presence of statistical noise from these evaluations, it
turns out that building the model to a desired pre-
cision and inferring modelled gradients close to the
reference point x0 has resource requirements similar
to measuring the gradient directly [49].

This model coincides with E(x) at x0 up to second
order, and in the vicinity its error scales with the third
order of the largest parameter deviation [49]. After
the construction phase, the model cost is minimized in
an inner optimization loop, which only requires clas-
sical operations. For an implementation and demon-
stration of the optimization, we also refer the reader
to [77] and [78].

In the light of the parameter-shift rules and re-
construction methods, we propose three (alternative)
modifications of QAD. The first change is to reduce
the required number of evaluations. As the coeffi-

13We slightly modify the trigonometric basis functions from
Ref. [49] to have leading order coefficients 1.
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Figure 3: Evaluation numbers Neval for the gradient (left)
or both the gradient and the Hessian (right) for n = 6 pa-
rameter QAOA circuits for MaxCut on graphs of several
types and sizes. Using numerical upper bounds together with
our new parameter-shift rule (GW – purple triangles and its
generalization – dashed turquoise) reduces the resource re-
quirements for both quantities significantly, compared to the
previously available decomposition-based method (solid or-
ange). The rows correspond to the various considered graph
types (top to bottom): complete, 5-regular, 6-regular and
(up to) 4N randomly sampled edges. The requirements for
the decomposition-based approach and the analytic upper
bound (dotted blue) correspond to the results in the left and
right column of Tab. 3, respectively. The numerical upper
bounds both use the minimized objective value of SDPs for
relaxations of MaxCut to obtain the bound ϕ, which de-
pends on the graph instance. The GW-based lower bound
(pink triangles) is obtained by randomly mapping the output
state of the GW algorithm to 10 valid cuts and choosing the
one with the largest cut value. Note that K-regular graphs
are only defined for N > K and NK mod 2 = 0 and that
graphs with κN sampled edges are complete for N ≤ 2κ+1,
leading to a change in the qualitative behaviour in the last
row at N = 2κ+ 2 = 10.

cients E(A/B/C/D) consist of the gradient and Hes-
sian, they allow us to exploit the reduced resource
requirements presented in Tab. 1 14. In the case orig-
inally considered by the authors, i.e., for Pauli ro-
tations only, this reduces the number of evaluations
from 2n2 + n+ 1 to (3n2 + n)/2 + 1.

A second, alternative modification of QAD is to
keep all evaluations as originally proposed to obtain
the full second-order terms, i.e., we may combine the
shift angles for each pair of parameters, and use them
for coefficients of additional higher-order terms. This
extended model (see App. D.1) has the form

E̊(x0 + x) = Ê(x0 + x) + 4A(x) tan
(x

2

)�2
(53)

·
[
E(F ) · tan

(x

2

)
+ E(G) · tan

(x

2

)�2
]
,

where E(F ) is symmetric with zeros on its diagonal
and E(G) is a strictly upper triangular matrix. This
extended model has 2n2 +1 degrees of freedom, which
matches the number of evaluations exactly.

While the QAD model reconstructs the univariate
restrictions of E to the coordinate axes correctly, the
extended model E̊ does so for the bivariate restric-
tions to the plane spanned by any pair of coordinate
axes. It remains to investigate whether and for which
applications the extension yields a better optimization
behaviour; for functions in which pairs of parameters
yield a good local approximation of the landscape, it
might provide an improvement.

The third modification we consider is to generalize
the previous, extended QAD model to general single-
parameter quantum gates. This can be done via a full
trigonometric interpolation to second order, which is
detailed in App. D.2, exactly reconstructing the en-
ergy function when restricted to any coordinate plane
at the price of 2(‖R‖21−‖R‖22+‖R‖1)+1 evaluations.

Using toy model circuits and Hamiltonians, we
demonstrate the qualitative difference between the
QAD model, its extension E̊, and the generalization
to multiple frequencies in Fig. 4.

6 Discussion
In this work, we derive interpolation rules to exactly
express quantum functions E(x) as a linear combina-
tion of evaluations E(xµ), assuming E(x) derives from
parametrized gates of the form U(x) = exp(ixG). Our
method relies on the observation that E(x) can be
expressed as trigonometric polynomial in x, charac-
terized by a set of R frequencies that correspond to
distinct differences in the eigenvalues of G. This ob-
servation allows us to derive our results using trigono-
metric interpolation methods.

14In addition, we may skip the n evaluations with shift an-
gle π proposed in Ref. [49], and instead measure the Hessian
diagonal as discussed in Sec. 4.1.
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Figure 4: The QAD model (left), its extension E̊, see Eq. (53), that includes full second-order terms (center left), and the
second-order trigonometric interpolation model (center right), as well as the original expectation value E (right). The original
function is generated from toy Hamiltonians in a two-parameter example circuit, with one frequency (top) and two frequencies
(bottom) per parameter. The QAD model produces a local approximation to E that deviates away from x0 at a slow rate for
R = 1 but faster for R = 2. The extension E̊ reuses evaluations made for the Hessian to capture the full bivariate dependence
for a single frequency but is not apt to model multiple frequencies either. Finally, the trigonometric interpolation generalizes
E̊. This means it coincides with E̊ for R = 1, but also reproduces the full bivariate function for R > 1.

In addition to a full reconstruction of E(x), the
presented approach offers parameter-shift rules for
derivatives of arbitrary order and recipes to evalu-
ate multivariate derivatives more cheaply. Using the
concept of the stochastic parameter-shift rule, quan-
tum gates of the form UF (x) = exp(i(xG + F )) can
be differentiated as well.

Nevertheless, much remains unknown about the
practicality of our new parameter-shift rules. For the
common case that we have R equidistant frequencies,
Sec. 3.5 shows that the scaling of the required re-
sources is similar between näıvely applying our gener-
alized parameter-shift rules, and applying parameter-
shift rules to a decomposition of U(x). This holds for
the first derivative and also for the required shot bud-
get when computing the second derivative, whereas
the number of unique circuits is significantly smaller
for the new, generalized shift rule.

Our observations lead to several open questions:

• In which situations can we obtain better bounds
on the number of frequencies? We investigated an
example for QAOA in Sec. 5.1, but are there other
examples?

• For general G (e.g., G =
∑
j cjPj with real cj and

Pauli words Pj), the frequencies will not be equidis-
tant, and in fact R may scale quadratically in the
size of U . Näıvely applied, our method would then
scale poorly compared to decomposing G. Can we

apply an approximate or stochastic parameter-shift
rule with a better scaling?

• Would it ever make sense to truncate these
parameter-shift rules to keep only terms corre-
sponding to smaller frequencies? This is inspired
by the idea of using low-pass filters to smooth out
rapid changes of a signal.

• Our work on function reconstruction extends QAD
to all gates with equidistant frequencies. Similarly,
it allows Rotosolve, which has been shown to work
remarkably well on some applications, to be used
on all quantum gates with arbitrary frequencies. Is
there a classification of problems on which these
model-based algorithms work well? And can we
reduce the optimization cost based on the above
ideas?

• More generally, can we apply the machinery of
Fourier analysis more broadly, e.g., to improve op-
timization methods in the presence of noise?

We hope that this work serves as an impetus for future
work that will further apply signal processing meth-
ods to the burgeoning field of variational quantum
computing.
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A Technical derivations
A.1 Derivation of explicit parameter-shift rules
Here we derive the trigonometric interpolation via
Dirichlet kernels.

A.1.1 Full reconstruction

We start out by exactly determining E(x) given its
value at points {xµ = 2µ

2R+1π}, µ ∈ {−R, · · · , R}.
This is a well-known problem [55, Chapter X]; we re-
produce the result below for completeness.

Consider the Dirichlet kernel

D(x) = 1
2R+ 1 + 2

2R+ 1

R∑

`=1
cos(`x) (54)

=
sin
( 2R+1

2 x
)

(2R+ 1) sin
( 1

2x
) (55)

where the limit x→ 0 is taken when evaluating D(0).
The functionsD(x−xµ) are linear combinations of the
basis functions {sin(`x)}`∈[R], {cos(`x)}`∈[R]0 , and
they satisfy D(xµ′ − xµ) = δµµ′ . Therefore it is evi-
dent that

E(x) =
R∑

µ=−R
E(xµ)D(x− xµ) (56)

=
sin
( 2R+1

2 x
)

2R+ 1

R∑

µ=−R
E (xµ) (−1)µ

sin
(
x−xµ

2

) . (57)

As an example, for R = 1 (e.g., when the generator
G satisfies G2 = 1) we have the formula

E(x) =
sin
( 3

2x
)

3

[
− E(− 2

3π)
sin(x2 + π

3 ) (58)

+ E(0)
sin(x2 ) −

E( 2
3π)

sin(x2 − π
3 )

]
.

Derivatives of E(x) can be straightforwardly ex-
tracted from this full reconstruction.

A.1.2 Odd kernels

We now consider the case of determining Eodd given
its value at evenly spaced points {xµ = 2µ−1

2R π}µ∈[R]
15. Consider the modified Dirichlet kernel :

D∗(x) = 1
2R + 1

2R cos(Rx) + 1
R

R−1∑

`=1
cos(`x) (59)

= sin(Rx)
2R tan

( 1
2x
) (60)

where we again assume the limit x→ 0 is taken when
evaluating D∗(0). This kernel satisfies the relations

D∗(xµ′ − xµ) = δµµ′ , D∗(xµ′ + xµ) = 0, (61)

but unfortunately, D∗(x) is a linear combination of
cosines, not sines; it’s an even function, not an odd
function. We therefore instead consider the linear
combinations

D̃µ(x) := D∗(x− xµ)−D∗(x+ xµ) (62)

= sin(R(x− xµ))
2R tan

( 1
2 (x− xµ)

) − sin(R(x+ xµ))
2R tan

( 1
2 (x+ xµ)

)

= 1
R

cos(xµ)
[

1
2 sin(Rx) +

R−1∑

`=1
sin(`x)

]
.

15Unlike Sec. A.1.1, we are not aware of a prior reference
for the derivations for this subsection (reconstructing the odd
part) and the next (reconstructing the even part).
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Similarly to D∗, this kernel satisfies D̃µ(xµ′) = δµµ′
but it’s a linear combination of the odd basis functions
sin(`x), ` ∈ [R]. Following from these two properties,
we know that

Eodd(x) =
R∑

µ=1
Eodd(xµ)D̃µ(x) (63)

=
R∑

µ=1

Eodd(xµ)
2R

×
[

sin(R(x− xµ))
tan

( 1
2 (x− xµ)

) − sin(R(x+ xµ))
tan

( 1
2 (x+ xµ)

)
]

and we thus can reconstruct Eodd with the R evalua-
tions Eodd(xµ).

We also can extract from here a closed-form formula
for the derivative at x = 0, as it only depends on the
odd part of E. We arrive at the general parameter-
shift rule:

E′(0) =
R∑

µ=1
Eodd(xµ)D̃′µ(0) (64)

=
R∑

µ=1
Eodd(xµ) sin(Rxµ)

2R sin2( 1
2xµ)

(65)

=
R∑

µ=1
Eodd

(
2µ− 1

2R π

)
(−1)µ−1

2R sin2 ( 2µ−1
4R π

) .

Similarly, as the higher-order derivatives of D̃µ can
be computed analytically, we may obtain derivatives
of E of higher odd orders.

A.1.3 Even kernels

Next we reconstruct the even part Eeven again using
the kernel D∗(x) from above but choosing the R + 1
points xµ = µπ/R for µ ∈ [R]0. As the spacing be-
tween these points is the same as between the previous
{xµ}, we again have D∗(xµ′−xµ) = δµµ′ ; but note we
cannot directly use D∗(x− xµ) as our kernel because
D∗(x − xµ) is an even function in x − xµ but not in
x. Instead we take the even linear combination

D̂µ(x) :=





D∗(x) if µ = 0
D∗(x− xµ) +D∗(x+ xµ) if 0 < µ < R

D∗(x− π) if µ = R .

Then the D̂µ are even functions and satisfy D̂µ(xµ′) =
δµµ′ , leading to

Eeven(x) =
R∑

µ=0
Eeven(xµ)D̂µ(x). (66)

The second derivative of D∗ is

D∗′′(x) =
sin(Rx)

[
1− 2R2 sin2( 1

2x)
]

4R tan( 1
2x) sin2( 1

2x)
− cos(Rx)

2 sin2 ( 1
2x
)

and if we take the limit x→ 0:

D∗′′(0) = −2R2 + 1
6 . (67)

This yields the explicit parameter-shift rule for the
second derivative:

E′′(0) = −Eeven(0)2R2 + 1
6 + Eeven(π) (−1)R−1

2

+
R−1∑

µ=1
Eeven

(µπ
R

) (−1)µ−1

sin2 (µπ
2R
) . (68)

Again, derivatives of E of higher even order can be
computed in a similar manner, using the same evalu-
ations Eeven

(
µπ
R

)
.

A.2 Hessian parameter-shift rule
Here we consider the spectrum of the function

E(km)(x) := E(x0 + xvk,m), (69)

with vk,m = vk + vm. Without loss of generality,
we assume Uk to act first within the circuit and set
x0 = 0. As for the univariate case in Sec. 2.1, we may
explicitly write the cost function as

E(km)(x) = 〈ψ|U†k(x)V †U†m(x)BUm(x)V Uk(x) |ψ〉

=
d∑

j1,...j4=1
ψj1vj2j1bj2j3vj3j4ψj4 (70)

× exp
(
i
(
ω

(k)
j4
− ω(k)

j1
+ ω

(m)
j3
− ω(m)

j2

)
x
)
,

where ω(k,m) are the eigenvalues of the generators of
Uk and Um, respectively, and we denoted the entries
of matrices by lowercase letters as before. We may
read off the occuring frequencies in this Fourier se-
ries in terms of the unique positive differences Ω(k,m),

leading to δΩl1l2 = ±Ω(k)
l1
± Ω(m)

l2
. We again only

collect the positive values as they come in pairs16.

In case of integer-valued frequencies, there are
Rkm = Rk + Rm such positive frequencies, namely
all integers in [Rk + Rm]. For arbitrary frequen-
cies, all {δΩ} might be unique and we obtain up to
Rkm = 2RkRm +Rk +Rm frequencies. Rescaling the
smallest frequency enforces a small degree of redun-
dancy so that Rkm = 2RkRm+Rk+Rm−2 is always
achievable; for some scenarios specific rescaling fac-
tors might drastically reduce Rkm

17.

16That is, for any δΩ, we also have −δΩ in the Fourier series,
and the representation as real-valued function subsums the two
frequencies.

17Recall that we used rescaling for the equidistant frequency
case to arrive at integer-valued {Ω}, which in turn made the
significant reduction above possible.
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|+〉 X • X • H

|0〉 U1 Uk−1 Uk(x) Uk Um(x)

|+〉 X • X • S†

|0〉 U1 Uk−1 Uk(x) Uk Um(x)

Figure 5: Circuits for the Hadamard tests to measure the
overlap in Eq. (71), adapted from [57, Fig. 5]. The basis ro-
tation in the last operation on the auxiliary qubit determines
whether the real (top) or the imaginary (bottom) part of
〈ψ(x0 + xvk,m)|ψ(x0)〉 is calculated. All unitaries without
argument are understood as Uj = Uj((x0)j).

A.3 Hadamard tests for the metric tensor
In order to compute the metric tensor as the Hessian
of the overlap f(x) = − 1

2 |〈ψ(x)|ψ(x0)〉|2, we need to
evaluate it at shifted positions x = x0 + xvk,m. This
can be done by executing the circuit V (x0) and the
adjoint circuit V †(x) at the shifted position, and re-
turning the probability to measure the 0 bitstring in
the computational basis. As all operations after the
latter of the two parametrized gates of interest can-
cel between the two circuits, those operations can be
spared, but the maximal depth is (almost) the dou-
bled depth of V .

Alternatively, we may use a Hadamard test as
derived in the appendix of Ref. [57]. There,
it was designed to realize the derivative overlaps
Re{〈∂kψ(x)|∂mψ(x)〉} for the metric tensor directly,
assuming the generator to be a Pauli word and there-
fore unitary. However, it can also be used to calculate
the real or imaginary part of

〈ψ(x)|ψ(x0)〉 = 〈0|U†1 ((x0)1) · · ·U†k((x0)k + x)
· · ·U†m−1((x0)m−1)U†m(x)Um−1((x0)m−1)
· · ·U1((x0)1) |0〉 . (71)

by measuring the auxiliary qubit in the Z or Y basis.
The corresponding circuit is shown in Fig. 5.

While the original proposal has to split up the gen-
erators into Pauli words and implement one circuit
per combination of Pauli words from xk and xm, the
number of circuits here is dictated by the number of
evaluations in the parameter-shift rule. In order to
measure f(x), the real and the imaginary part both
have to be measured, doubling the number of circuits.

A.4 Coefficient norms for univariate deriva-
tives via equidistant shifts
The `1-norm of the coefficients in parameter-shift
rules dictates the number of shots required to reach
certain precision (see Sec. 2.3). Here, we explic-
itly compute this norm for both the general and
decomposition-based parameter-shift rule for the first-
and second-order univariate derivative. For the entire

analysis, we approximate the single-shot variance σ2

to be constant as detailed in the main text.

A.4.1 Norm for general parameter-shift rule

For the case of equidistant shift angles, we can com-
pute the norm of the coefficient vector y(1,2) in the
parameter-shift rules in Eqs. (24,25) explicitly, in or-
der to estimate the required shot budget for the ob-
tained derivative. For the first order, we note that the
evaluations of E come in pairs, with the same coeffi-
cient up to a relative sign. This yields (recalling that
xµ = 2µ−1

4R π):

‖y(1)‖1 = 1
2R

R∑

µ=1

1
sin2(xµ)

= R, (72)

which follows from sin−2(xµ) = cot2(xµ) + 1 and [80,
Formula (445)]:

R∑

µ=1
cot2(xµ) = 2R2 −R. (73)

A derivation for Eq. (73) can be adapted from
Ref. [81], which we present below for completeness:

−i(−1)µ = exp(i2Rxµ)

=
(

cos(xµ) + i sin(xµ)
)2R

=
2R∑

r=0

(
2R
r

)
(cos(xµ))2R−r (i sin(xµ))r

⇒ 0 =
R∑

r=0

(
2R
2r

)
(cos(xµ))2R−2r (i sin(xµ))2r

=
R∑

r=0

(
2R
2r

)(
− cot2(xµ)

)R−r

Here we have applied the binomial theorem, extracted
the real part, and divided by (i sin(xµ))2R (note that
0 < xµ < π/2). From the last equation above, we
see that cot2(xµ) is a root of the function g(χ) =∑R
r=0

(2R
2r
)
(−χ)R−r for all µ ∈ [R]. As g is a polyno-

mial of degree R, we thus know all its roots and may
use the simplest of Vieta’s formulas:

R∑

µ=1
τµ = −gR−1

gR
(74)

with roots {τµ}µ of g, and gj the jth order Taylor
coefficient of g. Plugging in the known roots and co-
efficients we get

R∑

µ=1
cot2(xµ) = − (−1)R−1(2R

2
)

(−1)R
(2R

0
) (75)

= 2R2 −R. (76)
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For the second order we may repeat the above
computation with small modifications18, arriving at
g(χ) =

∑R−1
r=0

( 2R
2r+1

)
(−χ)R−r and therefore at

‖y(2)
1 ‖ = 2R2 + 1

6 + 1
2 + (R− 1)− (−1)R−1(2R

3
)

(−1)R
(2R

1
)

= R2. (77)

A.4.2 Norm for decomposition

If we compute the first- and second-order derivatives
via a decomposition that contains P parametrized ele-
mentary gates, we need to apply the original two-term
parameter-shift rule to each of these gates separately.
For the first-order derivative, we simply sum all ele-
mentary derivatives. For integer-valued frequencies,
x typically feeds without prefactor into the gates in
the decomposition, so that the decomposition-based
shift rule reads

E′(0) = 1
2 sin(x1)

P∑

k=1
[E(k)(x1)− E(k)(−x1)], (78)

where E(k) denotes the cost function based on the
decomposition, in which only the parameter of the kth
elementary gate is set to the shifted angle x1 and to
0 in all other gates. To maximize sin(x1), we choose
x1 = π/2, and as a reuslt all 2P coefficients have
magnitude 1/2, and therefore

‖y(1)
decomp‖1 = P. (79)

Due to all coefficients being equal, the optimal shot
allocation is N/(2P) for all terms.

For the second-order derivative, the full Hessian has
to be computed from the decomposition as described
in Ref. [46] and all elements have to be summed19:

E′′(0) = 1
2 sin2(x1)

P∑

k,m=1
k<m

(80)

[
E(km)(x1, x1)− E(km)(−x1, x1)

− E(km)(x1,−x1) + E(km)(−x1,−x1)
]

+ 1
2

P∑

k=1
[E(k)(π)− E(0)]

where E(km)(x1, x2) is defined analogously to E(k) but
the shift angles put into the kth and mth elemen-
tary gate may differ. Fixing the shift angle to π/2
again, we have 2P(P − 1) coefficients of magnitude

18Recall that the angles differ between the two derivatives.
19Here we do not anticipate the cheaper Hessian evaluation

from Sec. 4.1.

1/2 for the off-diagonal terms, P coefficients of mag-
nitude 1/2 for the E(k)(π) and one coefficient with
magnitude P/2 for E(0), summing to

‖y(1)
decomp‖1 = 2P(P − 1)1

2 + P 1
2 + P2 = P2. (81)

Here the optimal shot allocation is to measure all
shifted terms with N/(2P2) shots, and E(0) with
N/(2P) shots.

A.5 Coefficient norms for the Hessian
Similar to the previous section, we compute the coef-
ficient norms for three methods to compute the Hes-
sian for equidistant frequencies and shifts: We may
use the diagonal shift rule in Eq. (36), repeat the
general parameter-shift rule, or decompose the circuit
and repeat the original parameter-shift rule. For the
first approach, the diagonal entries of the Hessian—
and thus the shifted evaluations for those entries—are
reused to compute the off-diagonal ones, whereas the
shifted evaluations for the repeated shift rule are dis-
tinct for all Hessian entries. This difference makes
the cost comparison for a single Hessian entry diffi-
cult. We therefore consider the root mean square of
the Frobenius norm of the difference between the true
and the estimated Hessian as quality measure. The
matrix of expected deviations is given by the standard
deviations σkm so that we need to compute

ε =

√√√√
n∑

k,m=1
σ2
km =

√√√√
n∑

k=1
σ2
k +

∑

k<m

2σ2
km . (82)

A.5.1 Hessian shift rule

The variance for a Hessian diagonal entry Hkk is
σ2R4

k/Nkk if we use Nkk shots to estimate it (see
Eq. (29))20. For an off-diagonal element Hkm com-
puted via the diagonal shift rule in Eq. (36), the vari-
ance is

σ2
km = 1

4

(
σ2(Rk +Rm)4

Nkm
+ σ2R4

k

Nkk
+ σ2R4

m

Nmm

)
, (83)

where we used that Rkm = Rk + Rm for equidistant
frequencies. Overall, this yields

ε2 =
n∑

k=1

σ2R4
k

Nkk

n+ 1
2 +

∑

k<m

σ2(Rk +Rm)4

2Nkm
(84)

If we allocate Ndiag shots optimally, that is Nkm is
proportional to the square root of the coefficient of
N−1
km, we require

Ndiag = σ2

ε2

[
n∑

k=1
R2
k

√
n+ 1

2 +
∑

k<m

1√
2

(Rk +Rm)2

]2

= σ2

2ε2

[(√
n+ 1 + n− 2

)
‖R‖22 + ‖R‖21

]2
(85)

shots to estimate H to a precision of ε.

20Recall that σ2 is the single-shot variance.
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A.5.2 Repeated general parameter-shift rule

Without the diagonal shift rule, we compute Hkm by
executing the univariate general parameter-shift rule
in Eq. (24) for xk and xm successively, i.e., we apply
the rule for xm to all terms from the rule for xk. This
leads to 4RkRm terms with their coefficients arising
from the first-order shift rule coefficients by multiply-
ing them together:

‖y(km)‖1 = 1
4RkRm

Rk∑

µ=1

1
sin2(xµ)

Rm∑

µ′=1

1
sin2(xµ′)

= RkRm, (86)

where we used Eq. (72). Correspondingly, the vari-
ance for Hkm computed by this methods with an
optimal shot allocation of Nkm shots is σ2

km =
σ2R2

kR
2
m/Nkm. The mean square of the Frobenius

norm then is

ε2 =
n∑

k=1

σ2R4
k

Nkk
+
∑

k<m

2σ2R2
kR

2
m

Nkm
(87)

and an optimal shot allocation across the entries of
the Hessian to achieve a precision of ε will require

NgenPS = σ2

ε2

[
n∑

k=1
R2
k +

∑

k<m

√
2RkRm

]2

= σ2

2ε2

[(√
2− 1

)
‖R‖22 + ‖R‖21

]2
(88)

shots in total.

A.5.3 Decomposition and repeated original shift rule

For the third approach, we only require the obser-
vation that again all (unique) Hessian entries are es-
timated independently and that the coefficients arise
from all products of two coefficients from the separate
shift rules for xk and xm. This yields 4PkPm coeffi-
cients with magnitude 1/4, so that the calculation of
ε is the same as for the previous approach, replacing
R by P. The required shot budget for a precision of
ε is thus

Ndecomp = σ2

2ε2

[(√
2− 1

)
‖P‖22 + ‖P‖21

]2
(89)

B Generalization to arbitrary spectra
Throughout this work, we mostly focused on cost
functions E with equidistant — and thus, by rescal-
ing, integer-valued — frequencies {Ω`}. Here we will
discuss the generalization to arbitrary frequencies,
mostly considering the changed cost.

B.1 Univariate functions
The nonuniform DFT used to reconstruct the full
function E in Sec. 3.1, and its modifications for the

odd and even part in Secs. 3.2 and 3.3, can be used
straightforwardly for arbitrary frequencies. How-
ever, choosing equidistant shift angles {xµ} will no
longer make the DFT uniform, as was the case for
equidistant frequencies. Correspondingly, the explicit
parameter-shift rules for E′(0) and E′′(0) in Eqs. (24,
25) do not apply and in general we do not know a
closed-form expression for the DFT or the parameter-
shift rules. Symbolically, the parameter-shift rule
takes the form

E′(0) =
R∑

µ=1
y(1)
µ [E(xµ)− E(−xµ)] (90)

E′′(0) = y
(2)
0 E(0) +

R∑

µ=1
y(2)
µ [E(xµ) + E(−xµ)]. (91)

Regarding the evaluation cost, the odd part and
thus odd-order derivatives can be obtained at the
same price of 2R evaluations of E as before, but the
even part might no longer be periodic in general; as a
consequence,

Eeven(π) = 1
2(E(π) + E(−π)) 6= E(π) (92)

actually may require two evaluations of E, leading to
2R + 1 evaluations overall. If the even part is pe-
riodic, which is equivalent to all involved frequencies
being commensurable, with some period T , evaluating
Eeven(T/2) allows to skip the additional evaluation.

When comparing to the first derivative based on a
decomposition into P parametrized elementary gates,
the break-even point for the number of unique circuits
remains at R = P as for equidistant frequencies, but
we note that e.g., a decomposition of the form

U(x) =
P∏

k=1
Uk(βkx), (93)

namely where x is rescaled individually in each ele-
mentary gate by some βk ∈ R, in general will result in
R = P2 frequencies of E, making the decomposition-
based parameter-shift rule beneficial. For the second-
order derivative, the number of evaluations 2R + 1
might be quadratic in P in the same way, but the de-
composition requires 2P2 −P + 1 as well, so that the
requirements are similar if R = P.

Regarding the required number of shots, we can-
not make concrete statements for the general case as
we don’t have a closed-form expression for the coef-
ficients y, but note that for the decomposition ap-
proach, rescaling factors like the {βk} in Eq. (93)
above have to be factored in via the chain rule, leading
to a modified shot requirement.

An example for unitaries with non-equidistant fre-
quencies would be the QAOA layer that implements
the time evolution under the problem Hamiltonian
(see Eq. (26)) for MaxCut on weighted graphs with
non-integer weights.
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For the stochastic parameter-shift rule in Sec. 3.6
we did not restrict ourselves to equidistant frequencies
and derive it in App. C for general unitaries of the
form UF = exp(i(xG+ F )) directly.

B.2 Multivariate functions

While the univariate functions do not differ strongly
for equidistant and arbitrary frequencies in E and
mostly the expected relation between R and P
changes, the shift rule for the Hessian and the metric
tensor are affected heavily by generalizing the spec-
trum. First, the univariate restriction E(km)(x) in
Eq. (34) still can be used to compute the off-diagonal
entry Hkm of the Hessian but this may require up to
2Rkm+ 1 = 4RkRm+ 2Rk + 2Rm−3 evaluations (see
App. A.2), in contrast to 2Rkm = 2(Rk +Rm) in the
equidistant case. Compared to the resource require-
ments of the decomposition-based approach, 4PkPm,
this makes our general parameter-shift rule more ex-
pensive if Rk & Pk.

As we use the same method to obtain the metric
tensor F , the number of evaluations grows in the same
manner, making the decomposition-based shift rule
more feasible for unitaries with non-equidistant fre-
quencies. As f(x0) does not have to be evaluated,
an off-diagonal element Fkm requires one evaluation
fewer than Hkm, namely 4RkRm + 2Rk + 2Rm − 4.

C General stochastic shift rule

In this section we describe a stochastic variant of
the general parameter-shift rule which follows imme-
diately from combining the rule for single-parameter
gates in Eq. (90) with the result from Ref. [39].

First, note that any shift rule

E′(x0) =
∑

µ

yµE(x0 + xµ), (94)

with coefficients {yµ} and shift angles {xµ} for a uni-
tary U(x) = exp(ixG), implies that we can implement
the commutator with G:

i[G, ρ] =
∑

µ

yµU(xµ)ρU†(xµ), (95)

since the commutator between G and the Hamiltonian
directly expresses the derivative of the expectation
value E′(0) on the operator level, and shift rules hold
for arbitrary states.

Now consider the extension UF (x) = exp(i(xG +
F )) of the above unitary. In the original stochastic

parameter-shift rule, the authors show21

E′(x0) =
∫ 1

0
dt tr

{
U†F (tx0)B UF (tx0) (96)

× i
[
G , UF

(
(1− t)x0

)
|ψ〉〈ψ|U†F

(
(1− t)x0

)]}

where we again denoted the state prepared by the cir-
cuit before UF by |ψ〉 and the observable transformed
by the circuit following UF by B. By using Eq. (95)
to express the commutator, we obtain

E′(x0) =
∫ 1

0
dt
∑

µ

yµ tr
{
U†F (tx0)B UF (tx0) (97)

× U(xµ)UF
(
(1− t)x0

)
|ψ〉〈ψ|U†F

(
(1− t)x0

)
U†(xµ)

}
.

We abbreviate the interleaved unitaries

UF,µ(x0, t) := UF (tx0)U(xµ)UF
(
(1− t)x0

)
(98)

and denote the cost function that uses UF,µ(x0, t) in-
stead of UF (x0) as

Eµ(x0, t) := tr
{
B U†F,µ(x0, t) |ψ〉〈ψ|UF,µ(x0, t)

}
.

Rewriting Eq. (97) then yields the generalized stochas-
tic parameter-shift rule

E′(x0) =
∫ 1

0
dt
∑

µ

yµEµ(x0, t). (99)

It can be implemented by sampling values for the
splitting time t, combining the shifted energies
Eµ(x0, t) for each sampled t with the coefficients yµ,
and averaging over the results.

D Details on QAD
In this section we provide details on the latter two
of the three modifications of the QAD algorithm dis-
cussed in Sec. 5.3.

D.1 Extended QAD model for Pauli rotations
The QAD model introduced in Ref. [49] contains
trigonometric functions up to second (leading) order.
The free parameters of the model cannot be extracted
with one function evaluation per degree of freedom,
because unlike standard monomials in a Taylor expan-
sion, the trigonometric basis functions mix the orders
in the input parameters. This leads to the mismatch
of 2n2 +n+ 1 (original QAD) or 3n2/2 +n/2 + 1 (see
above) evaluations to obtain n2/2+3n/2+1 model pa-
rameters. We note that the QAD model contains full
univariate reconstructions at optimal cost, extracting

21To be precise, we here combine Eqs. (11-13) in Ref. [39]
into a general expression for E′.
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the 2n + 1 model parameters E(A), E(B) and E(C)

from 2n+ 1 function evaluations. The doubly shifted
evaluations, however, are used for the Hessian entry
only:

E
(D)
km = 1

4
[
E++
km − E+−

km − E−+
km + E−−km

]
, (100)

where E±±km = E(x0± π
2 vk± π

2 vm) and we recall that
this QAD model is restricted to Pauli rotations only.

Let us now consider a slightly larger truncation of
the cost function than the one presented in App. A 2
in [49]:

E̊(x0 + x) = A(x)
[
E(A)

+ 2E(B) · tan
(x

2

)
+ 2E(C) · tan

(x

2

)�2

+ 4 tan
(x

2

)
E(D) tan

(x

2

)
(101)

+ 4 tan
(x

2

)
E(F ) tan2

(x

2

)

+ 4 tan2
(x

2

)
E(G) tan2

(x

2

)]

with A(x) =
∏
k cos2(xk/2). E(F ) and E(G) have ze-

ros on their diagonals because there are no terms of
the form sin3(xk/2) or sin4(xk/2) in the cost func-
tion, and for E(G) we only require the strictly upper
triangular entries due to symmetry. The higher-order
terms contain at least three distinct variables xk, xl
and xm because all bivariate terms are captured in
the above truncation. Using

A
(
±π4 vk ±

π

4 vm

)
= 1

4 and tan
(
±π4

)
= ±1,

we now can compute:

E++
km − E−+

km + E+−
km − E−−km = E

(B)
k + E

(F )
km

E++
km + E−+

km + E+−
km + E−−km = E(A) + 2E(C)

k

+ 2E(C)
m + 4E(G)

km .

This means that the 4 function evaluations E±±km that

are used for E
(D)
km in the original QAD can be recy-

cled to obtain the 3 parameters E
(F )
km , E

(F )
mk and E

(G)
km .

The corresponding model is of the form Eq. (101)
and therefore includes all terms that depend on two
parameters only. Consequentially, the constructed
model exactly reproduces the cost function not only
on the coordinate axes but also on all coordinate
planes spanned by any two of the axes. The num-
ber of model parameters is 2n2 + 1, which matches
the total number of function evaluations.

D.2 Trigonometric interpolation for QAD
Both the original QAD algorithm, and the extension
introduced above, assume the parametrized quantum

circuit to consist of Pauli rotation gates exclusively.
In the spirit of the generalized function reconstruction
and parameter-shift rule, we would like to relax this
assumption and generalize the QAD model. However,
there is no obvious unique way to do this, because the
correspondence between the gradient and E(B) and
between the Hessian and E(C,D) is not preserved for
multiple frequencies. Instead, the uni- and bivariate
Fourier coefficients of E form the model parameters
and the derivative quantities are contractions with the
frequencies thereof. There are multiple ways in which
we could generalize QAD to multiple frequencies.

The first way to generalize QAD is to compute the
gradient and Hessian with the generalized parameter-
shift rule Eq. (24) and the shift rule for Hessian entries
Eq. (36) and to construct a single-frequency model as
in original QAD. Even though we know the original
energy function to contain multiple frequencies, this
would yield a local model with the correct second-
order expansion at x0 that exploits the evaluations
savings shown in this work. As QAD is supposed to
use the model only in the neighbourhood of x0, this
might be sufficient for the optimization.

As a second generalization we propose a full
trigonometric interpolation of E up to second order,
similar to the univariate reconstruction in Sec. 3.1.
First we consider the univariate part of the model:
Start by evaluating E at positions shifted in the kth
coordinate by equidistant points and subtract E(x0),

E(k)
µ := E(x0 + xµvk)− E(x0) (102)

xµ := 2µπ
2Rk + 1 , µ ∈ [2Rk]. (103)

Then consider the (shifted) Dirichlet kernels

D(k)
µ (x) = 1

2Rk + 1

(
1 + 2

Rk∑

`=1
cos(`(x− xµ))

)

(104)

=
sin
( 1

2 (2Rk + 1)(x− xµ)
)

(2Rk + 1) sin
( 1

2 (x− xµ)
) (105)

which satisfy D
(k)
µ (xµ′) = δµµ′ and are Fourier se-

ries with integer frequencies up to Rk. Therefore, the
function22

Ê(k)(x) =
2Rk∑

µ=1
E(k)
µ D(k)

µ (x) (106)

coincides with E(x0 +xvk)−E(x0) at 2Rk+1 points
and is a trigonometric polynomial with the same Rk
frequencies.

22One might be wondering why to subtract E(x0) just to add
it manually back into the reconstruction now. This is because
we need to avoid duplicating this term when adding up the
univariate and bivariate terms of all parameters later on.
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Similarly, the product kernels D
(km)
µµ′ (xk, xm) =

D
(k)
µ (xk)D(m)

µ′ (xm) can be used to reconstruct the bi-
variate restriction of E to the xk−xm plane. For this,
evaluate the function at doubly shifted positions and
subtract both, E(x0) and the univariate parts:

E
(km)
µµ′ := E(x0 + xµvk + xµ′vm) (107)

− Ê(k)(xµ)− Ê(m)(xµ′)− E(x0) (108)

Then, the bivariate Fourier series

Ê(km)(xk, xm) =
2Rk,2Rm∑

µ,µ′=1
E

(km)
µµ′ D

(km)
µµ′ (xk, xm)

(109)

coincides with E(x0 + xkvk + xmvm) − E(x0) −
Ê(k)(xk) − Ê(m)(xm) on the entire coordinate plane
spanned by vk and vm.

As we constructed the terms such that they do not
contain the respective lower order terms, we finally
can combine them to the full trigonometric interpola-
tion:

Êinterp(x) = E(x0) +
n∑

k=1
Ê(k)(xk) (110)

+
∑

k<m

Ê(km)(xk, xm).

This model has as many parameters as function evalu-
ations, namely 2(‖R‖21−‖R‖22 +‖R‖1)+1, and there-
fore, the trigonometric interpolation is the generaliza-
tion of the extended QAD model in App. D.1. Indeed,
for Rk = 1 for all k we get back 2(n2 − n+ n) + 1 =
2n2 + 1 evaluations and model parameters.

We note that the trigonometric interpolation can
be implemented for non-equidistant evaluation points
in a similar manner and with the same number of
evaluations, although the elementary functions are no
longer Dirichlet kernels but take the form

D̊(k)
µ (x) =

sin
( 1

2x
)

sin
( 1

2xµ
)

2Rk∏

µ′=1

sin
( 1

2 (x− xµ′)
)

sin
( 1

2 (xµ − xµ′)
) . (111)
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Chapter 3

Variational Quantum Algorithms

This chapter contains the second publication and a brief introduction to provide some
context for it. I will not review variational quantum algorithms (VQAs) in depth but give
additional references that provide detailed information and reviews. A review on VQAs

and on the variational quantum eigensolver (VQE) for quantum chemistry can be found
in [11] and [12], respectively. The problem Hamiltonians, optimization algorithms and
circuit ansätze that are relevant for [15] in particular are introduced and discussed within
the publication itself.

3.1 Ansätze, initializations and optimizers

Variational quantum algorithms aim at solving problems on NISQ computers that are hard
to solve using classical computers. An archetypical structure for these algorithms is the
following: starting from a problem to be solved, which is given in the form of a Hamilto-
nian H , choose a parametrized quantum circuit (PQC) C, a measurement scheme to eval-
uate the objective function E(θ) = ⟨0|C(θ)†HC(θ) |0⟩, and initial input parameters θ0 to
the circuit. Afterwards, modify the parameters to find a minimum of E, by running an
optimization strategy on a classical computer that is given access to evaluations of E and
optionally other related quantities like the gradient ∇E, (co)variances e.g. between H and
auxiliary observables, or geometric information about the prepared quantum state like the
metric tensor F . Often all these quantities are supposed to be computed on the quantum
processing unit (QPU), but there also are proposals to evaluate some auxiliary quantities
approximately, e.g. to support the measurement strategy for the objective function [42].

Ansätze The choice of circuit, or ansatz, can but does not have to depend on the Hamilto-
nian. For example, in the quantum approximate optimization algorithm (QAOA) [16] and
the related Hamiltonian variational ansatz [108], the Hamiltonian itself is used in the PQC,
similar to adiabatic time evolution protocols. Other ansätze do not implement H itself but
are heavily influenced by it, e.g. because they respect its symmetries [13, 15, 17, 109, 110].
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Alternatively there are ansätze that are particularly convenient to implement on hard-
ware [72], that show favourable training [89, 111] or generalization [24, 112] properties,
or that are part of the problem formulation itself, like in variational compilation into a
desired gate set or structure [113, 114].

Initialization The initialization of the variational parameters θ may seem like a rather
insignificant detail in the larger scheme of VQAs, but turns out to influence the performance
of the algorithms heavily [15, 89, 115]. For some applications the initial parameters can
be chosen to resemble computational schemes from non-universal quantum processors
like adiabatic protocols [116, 117] or we may inherit solutions of other problem instances
of the same class, or of smaller size [118, 119, 120]. In other cases designated starting
positions already correspond to approximate solutions to the problem in a bigger scheme,
like in VQEs that start with the Hartree-Fock state, so that a generic initialization point
is known. Initializing a sufficiently deep and unstructured PQC1 uniformly at random
across the parameter domain will lead to poor performance in the subsequent updating
procedure due to vanishing gradients – or barren plateaus [89, 122] – and when in doubt,
initializing a PQC close to the origin often is favourable over an initialization uniformly at
random.

Optimizers The updating step(s) of the PQC parameters can be performed in many dif-
ferent ways and a lot of research has been put into coming up with new optimizers and
evaluating them alongside with established algorithms e.g. from machine learning. This
is also the subject of the publication attached in this chapter. I will not attempt summarize
let alone review all relevant optimization strategies but give a few examples to reflect the
spectrum of options. For more detailed reviews refer to e.g. [11, 73] and [12, Chap. 7].

While there are a lot of strategies to choose from, one class of commonly used optimiz-
ers are those that employ the gradient of the objective function and iteratively modify the
parameters with an update rule of the form

θt+1 = θt − f(∇E(θt)), (3.1)

where f is some function that processes the gradient before applying the update, which
may or may not involve additional quantities computed on the quantum processor and
also can depend on so-called hyperparameters, the parameter position θ itself or past up-
date steps. The basic variant of this is gradient descent, for which fGD(x, η) = ηx for some
fixed learning rate η > 0. More complex variants include Adam [123] and the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm [91, 92, 93, 94]. The former uses memory across
past updates to compute what can be understood as momentum in parameter space to-

1 Or a shallow PQC for a nonlocal cost function [121].



3.1. ANSÄTZE, INITIALIZATIONS AND OPTIMIZERS 85

gether with an adaptive learning rate:

fAdam(x) = η
(

⊙
√
vt(x) + ϵ

)−1
⊙mt(x). (3.2)

Here mt and vt are the first and second moment (power of the gradient) at the current
step with exponentially decaying memory from past updates and ϵ is a regularization
parameter. The latter algorithm also makes use of information from past update steps, but
in contrast to the elementwise update rule of Adam it constructs an approximation to the
Hessian of E from past evaluations of ∇E. This is paired with a line search to achieve
improved, dynamic step sizes. The corresponding update rule reads

fBFGS(x) = η∗(x)H̃−1
t x, (3.3)

where η∗(x) is the learning rate that is determined to be optimal and H̃t is the approximate
Hessian of E. An optimizer that uses geometric information about the quantum state is
the quantum natural gradient optimizer (QNG) with the update rule

fQNG(x) = η (Ft + ϵ)−1 x, (3.4)

where Ft is the Fubini-Study metric tensor, or quantum Fisher information, of |ψ(θt)⟩ and ϵ

again regularizes the update.
Popular optimizers that do not use the gradient include the Nelder-Mead (simplex)

method [124], which is also widely used for other tasks, and Rotosolve [25, 28, 29, 30],
which is a variant of coordinate descent which exploits that E is a (typically finite) Fourier
series. Other optimizers aim at constructing (classical) local models of the objective func-
tion landscape, e.g. by fitting a quadratic function to evaluations ofE as in Modelgrad [125]
(quadratic in polynomial basis) or quantum analytic descent (QAD) [31] (quadratic in trigono-
metric polynomial basis).

Another type of optimization scheme breaks with the archetype of a VQA outlined
above: in adaptive optimizers like adaptive derivative-assembled pseudo-Trotter ansatz VQE
(ADAPT-VQE) [126], Rotoselect [30] or the recently proposed generalized sequential quantum
optimizer [32] but also in the methods proposed in [127, 128] the structure of the PQC itself
is modified during the optimization. This is done e.g. by selecting good candidates for
extending the circuit from a pool of gates, by increasing the depth of a layered ansatz in
a systematic manner, or by extending a circuit based on the Riemannian gradient flow of
the special unitary group to which quantum circuits belong.
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3.2 Contributions to the second publication

Here I describe my contributions to the enclosed publication, which was published in
the journal Physical Review Research [15] and is freely available online, with functioning
(hyper)links.

The entire project was predominantly carried out, and the manuscript written, by me,
with the following exceptions: Christian Gogolin helped me with porting the created com-
puter programs to a high-performance cluster by Covestro Deutschland AG and with exe-
cuting them. Michael Kastoryano and Christian Gogolin wrote substantial parts of the ab-
stract, introduction and conclusion of the manuscript. Of course the publication required
many discussions and I received a lot of support and advice from both coauthors.

Compared to the main text, the following changes and additions to the notation are
used in the publication. Additionally there are some specific notations used locally in
single sections as defined therein.

Symbol in main text Meaning

F (t) — Metric tensor at tth optimization step
H(t) H̃ Approximation of Hessian in BFGS algorithm
L⋆

∏N
k=1R

(k)
⋆ Layer of Pauli rotations with Pauli word ⋆

tx — Time scale in optimization cost
β1,2 — Decay rates in Adam optimizer
δ — Relative error of the variational energy
ε ϵ Regularization parameter in an optimizer
φ, ϑ θk Specific parameters in PQC
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We compare the BFGS optimizer, ADAM and NatGrad in the context of VQES. We systematically analyze their
performance on the QAOA ansatz for the transverse field Ising and the XXZ model as well as on overparametrized
circuits with the ability to break the symmetry of the Hamiltonian. The BFGS algorithm is frequently unable to
find a global minimum for systems beyond about 20 spins and ADAM easily gets trapped in local minima or
exhibits infeasible optimization durations. NatGrad on the other hand shows stable performance on all considered
system sizes, rewarding its higher cost per epoch with reliability and competitive total run times. In sharp contrast
to most classical gradient-based learning, the performance of all optimizers decreases upon seemingly benign
overparametrization of the ansatz class, with BFGS and ADAM failing more often and more severely than NatGrad.
This does not only stress the necessity for good ansatz circuits but also means that overparametrization, an
established remedy for avoiding local minima in machine learning, does not seem to be a viable option in the
context of VQES. The behavior in both investigated spin chains is similar, in particular the problems of BFGS

and ADAM surface in both systems, even though their effective Hilbert space dimensions differ significantly.
Overall our observations stress the importance of avoiding redundant degrees of freedom in ansatz circuits and
to put established optimization algorithms and attached heuristics to test on larger system sizes. Natural gradient
descent emerges as a promising choice to optimize large VQES.

DOI: 10.1103/PhysRevResearch.2.043246

I. INTRODUCTION

Variational quantum algorithms such as the variational
quantum eigensolver (VQE) or the quantum approximate
optimization algorithm (QAOA) [1] have received a lot of
attention of late. They are promising candidates for gaining
a quantum advantage already with noisy intermediate-scale
quantum (NISQ) computers in areas such as quantum chem-
istry [2], condensed matter simulations [3], and discrete
optimization tasks [4]. A major open problem is that of finding
good classical optimizers which are able to guide such hybrid
quantum-classical algorithms to desirable minima and to do
this with the smallest possible number of calls to a quantum
computer backend. In classical machine learning, the adaptive
moment estimation (ADAM) optimizer [5] is among the most
widely used and recommended algorithms [6,7], and has been
one of the most important enablers of progress in deep learn-
ing in recent years. Such an accurate and versatile optimizer
for quantum variational algorithms is yet to be found.

*wierichs@thp.uni-koeln.de
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We are here mostly interested in variational algorithms
for quantum many-body problems. To make progress towards
finding an efficient and reliable optimizer for this domain, we
concentrate on cost functions derived from typical quantum
many-body Hamiltonians such as the transverse field Ising
(TFIM) and the XXZ model (XXZM) for two reasons. First,
their system size can be varied allowing us to systematically
study scaling effects. Second, for integrable systems, the exact
ground states are known and for the TFIM it is possible to
construct ansatz classes for VQE circuits that provably contain
the global minimum and can be simulated efficiently. Such
systems thus allow us to distinguish between the performance
of the optimizers and the expressiveness of the ansatz.

As a first result we show that the commonly used
optimization strategies ADAM [8] and Broyden-Fletcher-
Goldfarb-Shanno (BFGS) [9–18] both run into convergence
problems when the system size of a VQE is increased. This
happens already for system sizes within the reach of cur-
rent and near future NISQ devices, which underlines the
importance to a systematic search for suitable optimization
strategies. The performance of ADAM is shown to depend
strongly on the learning rate (the scaling prefactor determin-
ing the size of parameter update steps) via multiple effects and
the number of epochs required for convergence increases fast
with the problem size. Convergence can be improved but only
with an expensive fine-tuning of the hyperparameters.

We then study the performance of an optimization strategy
known as the quantum natural gradient or NatGrad [19–21]

2643-1564/2020/2(4)/043246(18) 043246-1 Published by the American Physical Society
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and introduce Tikhonov regularization to the classical pro-
cessing step in the VQE [22]. The key characteristic of
NatGrad is that it uses the canonical metric on Hilbert space,
the Fubini-Study metric, to determine improved updates to
the variational parameters. While the proposal of NatGrad for
VQES includes numerical experiments comparing it to several
established optimizers as well as an ADAM variant that uses
the natural gradient [19], the presented results extend this
comparison in multiple directions: First, we include the BFGS
optimizer which is widely used throughout the VQE literature.
Second, different models are considered here, each of which
is more complex than the example in Ref. [19] as they contain
more than one two-qubit term. This extension is essential as
is visible by the fact that no qualitative difference between
the diagonal approximation of the Fubini-Study metric and
the full metric was seen in Ref. [19] but the optimization
problems presented here are not solvable with the diagonal
approximation at all. Third, we extend the considered problem
size from maximally 11 qubits to 40 qubits for the TFIM and
14 qubits for the XXZM. Fourth, our analysis includes the ro-
bustness of the investigated optimization algorithms regarding
overparametrization, which can be expected to be of relevance
in applications. We find that NatGrad does consistently find a
global optimum for the largest system sizes we test (40 qubits)
and requires significantly fewer epochs to do so than ADAM
(in the cases where ADAM converges at all).

Our second set of results concerns the effect of over-
parametrization in VQES. We study the impact of adding
redundant layers to the ideal circuit ansatz. This over-
parametrization not only increases the optimization cost, it
actually appears to make finding the optimum significantly
harder. The BFGS algorithm but also the ADAM optimizer,
designed to thrive on additional degrees of freedom, fail fre-
quently in this setting. This cannot easily be mitigated by
increasing the epoch budget and reducing the learning rate
of the ADAM optimizer. While also affected, NatGrad shows
much higher resilience against this effect, compensating its
higher cost per epoch with a higher chance to succeed. In
applications on a relevant scale the circuit ansatz cannot be
expected to be minimal making this resilience essential for
the success of an optimizer for VQES. This also demonstrates
the importance of understanding the role of redundant de-
grees of freedom in the variational class. When restricting
the additional degrees of freedom to the symmetry sector of
the model, ADAM does not profit from overparametrization
and the BFGS optimizer performs worse whereas NatGrad
reliably converges globally.

Our results are in sharp contrast to the usually very good
performance of the ADAM optimizer and related (stochas-
tic) gradient descend based techniques in the optimization
of classical neural networks. A possible explanation for this
good performance in usually overparametrized settings is the
following: For common activation functions and random ini-
tialization, increasing overparametrization tends to transform
local minima into saddle points [23,24]. The optimizer then
mainly needs to follow a deep and narrow valley with com-
parably flat bottom to find a global minimum. The ADAM
optimizer is perfectly suitable to pursue this path as it has indi-
vidual learning rates per parameter that also take into account
the average of recent updates (see Sec. II B for details). In this

way it avoids side-to-side oscillations in the valley and can
build up momentum to slide down the relatively flat bottom of
the valley.

The energy landscapes of typical variational quantum al-
gorithms however look very different. First, having deep and
wide circuits with many parametrized gates is prohibitive on
NISQ computers, which excludes overparametrization as a
tool to make the variational space more accessible. Second,
the variational parameters usually feed into gates as prefactors
of exponentials of Pauli words and thus the cost function is
ultimately a combination of trigonometric functions of the
parameters. It appears that NatGrad is able to effectively use
the information about the ansatz class to navigate the resulting
energy landscape with many local minima. Third, it is known
that large parts of the parameter space form so-called barren
plateaus with very small gradients [25]. A random initial-
ization of the parameters in reasonably deep VQES is thus
almost certainly going to leave one stuck in such a plateau. Of
course this also implies that one must prevent the optimizer
from jumping to a random location in parameter space during
optimization. This can be achieved in NatGrad by inhibiting
unsuitably large steps by means of Tikhonov regularization.
Finally, due to the small number of variational parameters in
VQE, the added (classical) computational cost of inverting the
Fubini-Study metric, which is used to determine the parameter
updates (see Sec. II B), is negligible as compared to the cost
of sampling from the quantum backend. This fact, combined
with the highly correlated nature of the learning landscape
in quantum many-body problems [26], might render second-
order methods such as NatGrad more amenable to quantum
than to classical settings, where samples are cheap, but there
are many variational parameters.

In order to generalize our results, we consider the XXZM

together with the Trotterized time evolution operator as circuit
ansatz. Indeed we find BFGS to experience the same diffi-
culties in high-dimensional parameter spaces and ADAM to
exhibit a similar behavior of the required number of epochs as
for the TFIM. The performance of NatGrad mostly is as reliable
for this model as for the TFIM.

A. Informal summary of the results

Our main results are the following. First, NatGrad is the
most reliable optimization method. This is due to the ca-
pability to maneuver high-dimensional search spaces driven
by the Natural gradient and its relatively high resilience to
overparametrization, both within and outside of the sym-
metry sector of the solution. The BFGS optimizer fails to
navigate towards global minima in large spaces and in the
presence of redundant degrees of freedom even in small sys-
tems. ADAM suffers significantly from symmetry-breaking
overparametrization and is not able to use additional degrees
of freedom within the symmetry sector for improved perfor-
mance.

Second, NatGrad has larger quantum computation cost per
epoch than the other algorithms by design but the improved
learning strategy remedies this via small epoch counts to
convergence. Meanwhile, BFGS takes few epochs to conver-
gence at low cost per epoch but produces low-quality results,
including local minima and positions in very shallow plateaus

043246-2
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in the cost function. ADAM also has low cost per epoch but
for large and complicated problems it takes many epochs to
converge and this duration is hard to predict.

Third, the above properties generalize to a certain level.
That is, the failure of BFGS and the rapid increase in cost
of ADAM appeared at similar parameter counts for different
models and ansatz circuits and NatGrad tackled both spin
chain systems successfully.

The practical conclusions from the presented work are
twofold: On one hand, when solving the ground state energy
problem with a VQE on an application-relevant scale, Nat-
Grad appears to be the optimizer of choice for the classical
processing step. This holds for both investigated spin chain
models and, given the asymptotically vanishing cost over-
head of NatGrad for Hamiltonians with many noncommuting
terms, probably even more so for quantum chemical systems.

Finally, we observed decisive differences in the cost func-
tion landscape and optimizer performance from classical
machine learning beyond obvious deviations like the dimen-
sion of the parameter space. This implies that heuristics and
established methods from machine learning require new eval-
uation and additional research in order to optimally utilize
them for VQES.

II. METHODS

A. Variational quantum eigensolver

The framework of our work is the VQE, a proposal to use
parametrized circuits on a quantum computer in combination
with classical optimization routines to prepare the ground
state of a target Hamiltonian H . In the first part of a VQE,
one constructs a quantum circuit that contains parametrized
gates. Given input parameters θ for the circuit, a quantum
computer can then prepare the corresponding ansatz state and
measure an objective function, chosen to be the energy of the
Hamiltonian

E (θ ) := 〈ψ (θ )|H |ψ (θ )〉 (1)

and for benchmark problems with known ground state energy
E0, the relative error δ can be calculated as

δ(θ ) := E (θ ) − E0

|E0| . (2)

Additionally one can prepare modified versions of the cir-
cuit to determine auxiliary quantities like the energy gradient
in the parameter space [27]. The second part of the VQE
scheme is an optimization strategy on a classical computer
which is granted access to the quantum black box just con-
structed. In the most straightforward scenario this is a black
box minimization scheme, but using auxiliary quantities, more
sophisticated optimization methods can be realized as well.

There are two main theoretical challenges for successfully
applying VQE. First, the construction of a sufficiently com-
plex, but not overly expensive, circuit that gives rise to an
ansatz class containing the ground state-expressivity. Second,
the choice of a suitable optimizer that is able to search for
the ground state within the created parameter space efficiency.
The two challenges are often seen as independent, but explicit
algorithms using information gathered about the variational
space during optimization phases for adjusting the ansatz have

been proposed as well, some of which are inspired by concrete
applications in quantum chemistry or by evolutionary strate-
gies [8,16,28,29].

We now establish some notation for the general VQE set-
ting where we assume the most common objective: Finding
the ground state energy of a Hamiltonian H . Starting from
an initial product state |ψ̄〉, we apply parametrized unitaries
{Uj (θ j )}1� j�n to construct the ansatz state

|ψ (θ )〉 :=
1∏

j=n

Uj (θ j )|ψ̄〉. (3)

The parameters are typically initialized randomly close to zero
to avoid the barren plateau problem [25]. For this work, the
unitaries are going to be translationally invariant layers of one-
or two-qubit rotations; consider, for instance,

Lzz(θ j ) :=
N∏

k=1

exp

[
− iθ j

2
Z (k)Z (k+1)

]
(4)

= exp

[
− iθ j

2

N∑
k=1

Z (k)Z (k+1)

]
, (5)

where we identified the qubits with index 1 and N + 1, i.e.,
we adopt periodic boundary conditions. The ordering of the
gates within a layer is not relevant because they commute but
for convenience we write them such that terms acting on the
first qubits are applied first. Z (k) is the Pauli Z operator acting
on the kth qubit and we tacitly assume the tensor product
between operators that act on distinct qubits as well as the
missing tensor factors of identities. Compared to proposed
ansatz circuits that employ full Hamiltonian time evolution
exp(−iθH ) (see Sec. II A 1 a), such a layer is rather easily
implemented on present quantum machines because it only
requires linear connectivity and one type of two-qubit ro-
tation. There have been many proposed circuits to generate
ansatz classes for a variety of problems, all of which can be
boiled down to combining rotational gates and possibly other
fixed gates such as the CNOT or SWAP gate (see Sec. II A 1).
For the presented optimization methods the derivatives with
respect to the variational parameters {θ j} j are important and
for the above example we observe the special structure of
translationally symmetric layers of Pauli rotation gates:

∂

∂θ j
Lzz(θ j ) =

(
− i

2

N∑
k=1

Z (k)Z (k+1)

)
Lzz(θ j ). (6)

The derivative only produces an operator-valued prefactor,
and all prefactors can be summarized because the single gates
commute. While the basic gates composing a unitary Uj (θ j )
typically take the form of (local) Pauli rotations, the full
unitary often is more complex than the above layer and in
particular the terms in Uj do not need to commute. However,
the structure of rotations enables us in general to evaluate
required expressions involving derivatives on a quantum com-
puter, either via measurements of rotation generators or via
ancilla qubit schemes.
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1. A selection of ansatz classes

Among the ansatz families proposed in the literature we
present the following which are used frequently and are di-
rectly connected to this work:

(a) QAOA. The quantum approximate optimization algo-
rithm was first proposed by Farhi, Goldstone and Gutmann
[1] in 2014 for approximate solutions to (classical) optimiza-
tion problems by mapping them to a spin chain Hamiltonian.
The algorithm looks similar to adiabatic time evolution meth-
ods with an inhomogeneous time resolution, which is rather
coarse for typical circuit depths. A lot of work has been put
into proving properties of the QAOA both in general and
for certain problem types, including extensions to quantum
cost Hamiltonians [30–33]. At the same time the algorithm
has been refined, extended, and characterized on the basis of
heuristics and numerical experiments, gaining insight into its
properties beyond rigorous statements [14,34–37].

The QAOA circuit is constructed as follows. For a cost
Hamiltonian HS and a so-called mixing Hamiltonian HB

one alternatingly applies the unitaries exp (−iϑ jHS ) and
exp (−iϕ jHB) p times, giving rise to a VQE ansatz class
with “time” parameters {ϑ j, ϕ j}1� j�p. Originally, the system
Hamiltonian would encode a classical optimization problem
and thus be diagonal while the mixing Hamiltonian was
chosen to be off-diagonal and specifically has been kept
fixed to the original HB = ∑N

k=1 X (k) for many investigations.
However, new choices of mixers have been proposed and
investigated as well, giving rise to the more general quantum
alternating operator ansatz (QAOa) [15,37,38].

Note that for quantum systems, the terms comprising the
Hamiltonian HS do not commute in general such that very
large gate sequences would be necessary to realize the exact
QAOA approach including exp (−iϑHS ). In practice these
blocks commonly are broken up in a Trotter-like fashion in-
stead, yielding circuits that are implemented more readily but
deviating from the original ansatz. For the TFIM, such a modi-
fied QAOA ansatz has been studied intensively [14,34,35] and
we are going to use it as a starting point for our investigations.

(b) Adaptive Ansätze. Most prominently for this type of
Ansätze, ADAPT-VQE tackles both the construction of a suit-
able ansatz class and the optimization within the constructed
parameter space [16].

Instead of a fixed ansatz circuit layout, ADAPT-VQE takes
a pool of gates as input and iterates the two steps of the
VQE scheme: After rating all gates the most promising one
is appended to the circuit (construction) and afterwards all
the circuit parameters are optimized (minimization). The op-
timized parameters from the previous step are then used for
both the rating of the gates for the next construction step and
the initialization for the following optimization, where newly
added gates are initialized close to the identity. For both the
concept of allowed gates and the gate rating criteria, there are
multiple options and we refer the reader to [16,28] for more
detailed descriptions.

Besides ADAPT-VQE, multiple other methods which grow
the ansatz circuit in interplay with the optimization have been
proposed and demonstrated, including ROTOSELECT [8] and
EVQE [29]. These demonstrations include the solution of
five-qubit spin chains and small molecules (lithium hydride,

beryllium dihydride, and a hydrogen chain) to chemical pre-
cision using simulations with and without sampling noise or
quantum hardware.

We will not be using any adaptive scheme in our work, but
our results on stability and overparametrization raise serious
doubts as to the reliability of any adaptive ansatz method (see
Sec. III B).

B. Optimizers

A variety of optimizers have been used in the context of
variational quantum algorithms. These optimizers are inspired
by classical machine learning and can be sorted according
to the order of information required about the cost function.
Zeroth-order or direct optimization methods only evaluate the
function itself, first-order methods need access to the gradient,
and second-order optimization need access to the Hessian of
the cost function, or some other metric reflecting the local
curvature of the learning landscape. As direct optimization is
not scalable to problem sizes of relevance we do not include
it in our studies. A parameter update step of the optimizer—
corresponding to one iteration at the algorithmic level—is
called an epoch and corresponds to one execution of the up-
date rules described in the following [see Eqs. (7), (10), (11),
and (13)]. Most optimization algorithms have one or more
hyperparameters, the most common being the learning rate η,
which is a scalar prefactor rescaling the parameter update at
each epoch.

1. First-order gradient descent

Optimization techniques using the gradient of the cost
function are at this point the most widely used in machine
learning. Starting from the simple gradient descent method
that updates the parameters according to the gradient and a
fixed learning rate, a whole family of minimization strategies
has been developed. The improved routines are inspired by
physical processes like momentum, based on heuristics like
adaptive learning rate schedules, or a smart processing of the
gradient information as in the Nesterov accelerated gradient.
A review of this development can be found e.g., in Ref. [7],
here we just present the first-order method we are going to
use, the ADAM optimizer.

ADAM, which was proposed in 2014 [5], is probably the
most prevalent optimization strategy for deep feed-forward
neural networks [6] and has been used in VQE settings as
well [8]. For completeness, we briefly outline the ADAM
optimizer: Given the cost function E (θ ), where θ recollects
all variational parameters, a starting point θ (0) and a learning
rate η, Gradient Descent computes the gradient ∇E (θ (t ) ) at
the current position and accordingly updates the parameters
rescaled by η:

θ (t+1) = θ (t ) − η∇E (θ (t ) ). (7)

As the gradient points in the direction of steepest ascend, the
parameter update is directed towards the steepest descend of
the cost function and for η small enough, the convergence
towards a minimum can be understood intuitively. Small
learning rates yield slow convergence which increases the
cost of the optimization whereas choosing η too large leads
to overshooting and oscillations which might prevent con-
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vergence. Furthermore, although the optimizer will diagnose
convergence to a minimum due to a vanishing gradient, it
cannot distinguish between local and global minima.

In order to fix both issues, i.e., the need for an optimally
scheduled learning rate and the liability of getting stuck in
local minima, various improvements have been proposed and
ADAM uses several of these upgrades. The first feature is
an adaptive, componentwise learning rate, which was intro-
duced in ADAGRAD [39] and improved in RMSPROP [40] to
avoid suppressed learning. The second feature ADAM uses
is momentum, which is inspired by the physical momentum
of a ball in a landscape with friction. This is realized by
reusing past parameter upgrades weighted with an exponen-
tial decay towards the past and enables ADAM to overcome
some local minima. The final form of the ADAM algorithm
is as follows: Initialize with hyperparameters {η, β1, β2, ε},
momentum m(0) = 0, average squared gradient v(0) = 0 and
initial position θ (0). At the t th step, compute the gradient and
update the momentum and the cumulated squared gradient as

m(t ) = β1 − βt
1

1 − βt
1

m(t−1) + 1 − β1

1 − βt
1

∇E (θ (t ) ), (8)

v(t ) = β2 − βt
2

1 − βt
2

v(t−1) + 1 − β2

1 − βt
2

(∇E (θ (t ) ))�2, (9)

where x�2 denotes the elementwise square of a vector x.
The parameter update then is computed from these updated
quantities via

θ (t+1) = θ (t ) − η
�√

v(t ) + ε
m(t ) (10)

with the square root of v(t ) taken elementwise. Besides the
learning rate η, we identify the hyperparameters β1 and β2

as exponential memory decay factors of m and v respectively
and the small constant ε as regularizer, which avoids unrea-
sonably large updates in flat regions and division by zero at
initialization or for irrelevant parameters.

Because of the advanced features that ADAM uses, it has
been very successful at many tasks and even though there are
applications for which more basic gradient-based optimizers
can be advantageous, we choose ADAM to represent the fam-
ily of local first-order optimizers.

2. BFGS optimizer

The second optimizer we look at is the BFGS algorithm,
which was proposed by its four authors independently in 1970
[9–12]. Using first-order resources only it approximates the
Hessian of the cost function and performs global line searches
in the direction of the gradient transformed by the Hessian
inverse. Therefore it is a global quasi second-order method
using local first-order information and its categorization is not
obvious. The algorithm is initialized with the starting point
θ (0) and a first guess for the approximate Hessian H (0) of
the cost function E , which usually is set to the identity. At
each step of the optimization one determines the gradient,
computes the direction

n(t ) = H (t )−1∇E (θ (t ) ) (11)

and performs a line search on {θ (t ) + η n(t )|η ∈ R} which
yields the optimal update in that direction and can optionally

be restricted to a bounded parameter subspace. Given the new
point in parameter space, θ (t+1), the change in the gradient
D(t ) = ∇E (θ (t+1)) − ∇E (θ (t ) ) is calculated and used to up-
date the approximate Hessian via

H (t+1) = H (t ) + D(t )D(t )T

η(t )D(t )T n(t )
− H (t )n(t )n(t )T

H (t )

n(t )T H (t )n(t )
.

As the parameter updates are found via line searches, the
BFGS algorithm is not strictly local but due to its use of
local higher-order information, the global search is much
more efficient than direct optimization. The method has been
successful in many applications and currently is of widespread
use for VQES [13–18].

3. Natural gradient descent

The third optimization strategy we use is the NatGrad
[19–21], which due to its increased cost per epoch is not
adopted very often in machine learning settings itself but
is connected to some successful methods. As an example,
stochastic reconfiguration which is closely related to Nat-
Grad [41] recently has been shown to work well for training
restricted Boltzmann machines (RBMs) to describe ground
states of spin models [42]. Despite this success, the insights
into why and under which conditions the method works re-
main limited and recent work has been put into understanding
the learning process for the mentioned application of RBMs
and the natural gradient descent [26]. Before discussing Nat-
Grad and its role in the VQE setting, we outline its update
rule. Given a starting point θ (0) and a learning rate η, a step is
performed by first constructing the Fubini-Study metric of the
ansatz class

(F (t ) )i j := Re{〈∂iψ
(t )|∂ jψ

(t )〉} − 〈∂iψ
(t )|ψ (t )〉〈ψ (t )|∂ jψ

(t )〉
(12)

at the current position and then updating the parameters via

θ (t+1) = θ (t ) − η F (t )−1∇E (θ (t ) ), (13)

where we abbreviated |ψ (t ) )〉 := |ψ (θ (t ) )〉 and |∂iψ
(t )〉 :=

∂
∂θi

|ψ (θ (t ) )〉.
The Fubini-Study metric is the quantum analog of the

Fisher information matrix in the classical natural gradient
[20]. It describes the curvature of the ansatz class rather than
the learning landscape, but often performs just as well as
Hessian based methods. In order to avoid unreasonably large
updates caused by very small eigenvalues of F in standard
natural gradient descent η has to be chosen very small for an
unpredictable number of initial learning steps. Alternatively
one can use Tikhonov regularization which amounts to adding
a small constant to the diagonal of F before inverting it, also
see Sec. II E.

Even though NatGrad is simple from an operational view-
point, it is epochwise the most expensive optimizer of the
three presented here (also see Sec. II C). This is due to the
fact that it not only uses the gradient but, in order to con-
struct the (Hermitian) matrix F for n parameters, one also
needs to evaluate 1

2 (n2 + 3n) pairwise overlaps of the set
{|ψ〉, |∂1ψ〉, . . . , |∂nψ〉} (all but 〈ψ |ψ〉 = 1). Depending on
the gates in the ansatz circuit, each of these overlaps requires
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at least one and possibly many individual circuit executions.
For circuits containing ñ simple one- or two-qubit Pauli ro-
tation gates, the number of circuits required is 1

2 (ñ2 + 3ñ),
independent of the number of shared parameters. Symmetries
of the circuit may reduce the number of distinct terms in which
case fewer quantum machine runs suffice.

Taking the jth parametrized unitary to have Kj Hermitian
generators Pj,k j , e.g., Pauli words up to prefactors {c j,k j }, the
factors in the second expression of F take the shape of an
expectation value [see also Eq. (6)]

〈ψ |∂ jψ〉 = 〈ψ̄ |
j−1∏
l=1

U †
l

⎡
⎣ Kj∑

k j=1

c j,k j Pj,k j

⎤
⎦ 1∏

l= j−1

Ul |ψ̄〉. (14)

The first term in Eq. (12) requires slightly more complex cir-
cuits using one ancilla qubit and a depth which depends on the
indices of the matrix entry [13,17,43,44]. Both for simulation
work and for applications on real quantum machines, the con-
struction of the Fubini matrix is expected to take much more
time than inverting it—in sharp contrast to typical classical
machine learning problems. Given the scaling of the number
of required circuits above and the fact that for a fixed number
of qubits the depth has to grow at least linearly with the
number of parameters, an asymptotic scaling of O(ñ3) is a
lower bound for the construction of the full matrix. Standard
matrix inversion algorithms do not only show smaller or equal
scaling but also exhibit as prefactor the time cost of a FLOP
whereas computing the matrix elements scales with prefactors
based on sampling for expectation values.

As the number of parameters in a typical VQE circuit is
considerably smaller than in neural networks and the circuit
chosen in this work exhibits beneficial symmetries, the high
cost of the method are expected to be less problematic for
our setting and bearable for VQE applications. Indeed, there
have been some demonstrations of the natural gradient descent
and the imaginary time evolution for small VQE instances
[19,45,46] as well as comparisons to standard gradient de-
scent methods and imaginary time evolution for one- and
two-qubit systems [47]. Inspired by the classical machine
learning context and aiming for reduced cost, modifications of
natural gradient descent have been proposed such as a (block)
diagonal approximation to the Fubini-Study matrix [19]. We
will later show that such simplifications have to be performed
with caution and can disturb the optimization.

Finally we want to mention optimizers that treat the vari-
ational parameters sequentially, updating only one parameter
at each epoch. While such algorithms can be designed to use
information about the ansatz class and use the parametrization
directly (see, e.g., Ref. [48]), we expect them to behave differ-
ently than optimizers updating all parameters simultaneously
on which we focus our studies.

C. Optimization cost

To make a fair comparison between the optimization
schemes, we briefly lay out the scaling of the required op-
erations and the resulting cost per epoch.

We will use the following notation during the comparison.
There are n variational parameters in the circuit, KH terms in
the Hamiltonian and on average K = ∑n

j=1 Kj/n Pauli gener-

ators per variational parameter, with an average of NM samples
required for each expectation value. In practice, one of course
would measure whole sets of operators both from the Hamil-
tonian and from the Pauli generator set simultaneously, such
that K and KH essentially are numbers of bases in which
measurements are required. For entries of the Fubini matrix,
we assume Na samples for sufficiently precise measurements,
which has been shown to be smaller than NM numerically;1

for further discussion see Ref. [45]. Finally, we introduce the
timescales

tx := d

x
tgate + twrap (15)

for integers x that capture effects of averaging the depths
of used auxiliary circuits. tgate is the time required by each
layer of parallelized gates and twrap includes the needed time
for initializing and measuring the quantum register. Evalu-
ating the gradient of the energy function can be done with
different methods yielding a trade-off between precision and
cost. On one hand, the analytic gradient can be evaluated
up to measurement precision at the expense of an ancilla
qubit and a scaling prefactor Kn. On the other hand there
is the standard finite difference method, which can be per-
formed symmetrically, asymmetrically or via simultaneous
perturbation stochastic approximation (SPSA) [52], with cost
prefactors 2n, n + 1 and 2, respectively. This means that
robustness to imprecise gradients in general is a relevant
property of any optimization scheme used for VQES because
these gradients are much cheaper to evaluate. Computing
the Fubini-Study metric requires two terms and although the
measurement cost scales with O((Kn)2) for the first and with
O(Kn) for the second, we keep both terms in the overall
cost scaling because the VQE regime implies moderate values
of Kn.

For the scalings presented in Table I, we assume a homo-
geneous distribution of the variational gates in the circuit and
that similar numbers of samples NM are required to measure
expectation values of the Hamiltonian terms within one basis
and each derivative for all gradient methods.

For the full optimization algorithms, the cost are given per
epoch as we do not have access to generic scaling of epochs
to convergence. Using the cost per epoch one can rescale
the optimization cost from epochs to estimated run time on
a quantum computer beyond estimates that are based on the
classical simulation run times. For the BFGS algorithm, we
can not predict the number γ of energy evaluations that are
required for the line searches but our numeric experiments
and the linear scaling of the cost for nonSPSA gradients
suggest that it can be neglected as compared to the gradient
computation.

For the quantum run time scalings shown in Figs. 3, 5
and 8, we give the time in units of teval = NMKHt1, assumed
NM/Na ≈ 10 [45] and approximated t1 ≈ t2 ≈ t3.

1After submission of this manuscript, analytic bounds on the rel-
ative measurement cost of the gradient and the Fubini matrix have
been presented in Ref. [60], underlining the numerical results in
Ref. [45].
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TABLE I. Cost on a quantum computer for selected VQE optimization methods and their subroutines. The optimizer cost are given per
epoch, enabling us to compare the techniques beyond their simulation times with different scaling. We neglected terms which are small for
d, n 	 1 and used the timescales tx defined in Eq. (15). The remaining scaling parameters {NM , K, KH , Na} are defined in the paragraph above
Eq. (15).

Operation Quantum cost

teval Energy evaluation NMKHt1 Depending on measurement bases

Analytic gradient (Kn)NMKHt1 Ancilla qubit required
2(Kn)NMKHt1 Parameter shift rule [27,49,50]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Numeric gradient (sym.) 2nNMKHt1 Sensitive to noise
tgrad Numeric gradient (asym.) (n + 1)NMKHt1

SPSA gradient 2NMKHt1 Additional samples improve precision

tFubini Fubini matrix (Kn)2Nat3 + (Kn)Nat2 Ancilla qubit required{
2(Kn)2Nat3 + (Kn)Nat2 via projective measurements [51]

BFGS tgrad + γ teval γ = O(n0�y<1) expected
ADAM tgrad

NatGrad tgrad + tFubini Cost for inverting F can be neglected

1. Epoch count and quantum run time

When comparing the cost of optimizers that access the
same resources, the epoch count Nepoch is a sufficient figure
of merit. The presented algorithms, however, use distinct sets
of quantities such that the quantum run time tQ is a better
measure to compare them. It is important to keep the system
specific scaling of computing the gradient and the Fubini
matrix in mind. The presented spin chain systems and ansätze
with translation symmetry contain O(1) terms to be measured
in the Hamiltonian leading to O(n) cost for the gradient for
n parameters in the ansatz. The layered structure and the
symmetry of the used circuits leads to O(n3) measurements
for the Fubini matrix, generating a large overhead in NatGrad.
On the other hand, chemical Hamiltonians, which constitute
an important application of VQES, contain O(N4) terms for
N electrons, which can be measured roughly in O(N3) bases
[53,54] implying cost O(nN3) of measuring the gradient.
Meanwhile, typical circuit types contain gates with a mod-
erate constant number of generators, leading to O(n2) cost of
measuring the Fubini matrix, which is considerably smaller
than O(nN3) for any realistic circuit depth.

In summary, we consider the quantum run time tQ to deliver
a more meaningful comparison between different optimizers
but report Nepoch as well to characterize the algorithms in a
less system-dependent measure. Assuming the epoch count to
behave similarly in various VQE landscapes, this enables us
to estimate the relative cost of the optimizers when applied to,
e.g., quantum chemistry.

D. Models

1. Transverse field Ising model

Our main model is the TFIM on a spin chain with periodic
boundary conditions (PBC). Its Hamiltonian reads

HTFI = HS + HB := −
N∑

k=1

Z (k)Z (k+1) − t
N∑

k=1

X (k), (16)

where we identify the sites 1 and N + 1 because of the PBC
and t is the transverse field. For t = 0, the system is the
classical Ising chain, which is also called ring of disagrees and

is a special case of the MAXCUT problem [1,34]. For t 
= 0,

the problem is no longer motivated by a classical optimization
task and for the critical point t = 1, the ground state exhibits
long-ranged correlations.

The ground state of the TFIM is found analytically by
mapping it to a system of noninteracting fermions, where the
transformed Hamiltonian can be diagonalized exactly [55].
The translational invariance of the Hamiltonian is crucial for
this step and it will be important that only a small number
of different (Pauli) terms can be mapped to noninteracting
fermions simultaneously. We show the explicit computation
via the Jordan-Wigner transformation in Appendix A, it can
also be found in, e.g., Ref. [34]. Here we summarize the action
of the mapping on the terms in the Hamiltonian which also
generate the QAOA circuit [see Eq. (20) for the definition
of αq]:

N∑
k=1

Z (k)Z (k+1)

−→ (N − 2r) + 2
r⊕

q=1

[cos αq Z + sin αq Y ], (17)

N∑
k=1

X (k) −→ (N − 2r) + 2
r⊕

q=1

Z (18)

where the expressions on the right are understood in a
fermionic operator basis and the number of fermions is given
by r = �N

2 . The ground state of HTFI is just the product of the
single-fermion ground states in momentum basis and we can
write out the state and its energy as

E0 = −E ′ − 2
r∑

q=1

√
1 + t2 + 2t cos αq with (19)

αq :=
{

(2q − 1)π/N for N even
2qπ/N for N odd , (20)

E ′ :=
{

0 for N even
1 + h for N odd . (21)
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FIG. 1. The QAOA circuit for the TFIM on 4 qubits including an
overparametrizing layer Ly(κ ). The first numerical experiment is per-
formed without any Pauli Y layers Ly and in the second experiment
overparametrization is investigated using one or two such layers.

Because of the free fermion mapping, we can not only
obtain the exact ground state of the system but also justify
the success of the modified QAOA circuit for the TFIM. As
mentioned in Sec. II A 1 a, the original QAOA proposal would
use the system Hamiltonian and a mixing term as generators
for the parametrized gates. For the TFIM, however, separating
the nearest-neighbour interaction terms HS from the transverse
field terms HB recombines the latter with the mixing unitary
next to it absorbing one variational parameter per block. The
resulting parametrized circuit contains two types of transla-
tionally invariant layers, Lx(ϕ) and Lzz(ϑ ), of one- and two-
qubit rotation gates, respectively. Starting in the ground state
of HB, that is |ψ̄〉 = |+〉⊗N , we alternatingly apply these two
layers p times starting with Lzz. The resulting QAOA circuit is
shown in Fig. 1. In the free fermion picture, this translates to
|ψ̄〉 = |0〉⊗r and to rotations of the r fermionic states about
the z axis (Lx) and an axis eq = (0, sin αq, cos αq)T which
depends on the fermion momentum q (Lzz).

For t = 0, one can prove that this circuit can prepare the
ground state exactly if and only if p � r [14], whereas for
the case t 
= 0 only numerical evidence and a nonrigorous
explanation support this claim [35]. This explanation com-
pares the number of independent parameters, 2p to the number
of constraints from fixing the state of r free fermions, 2r.
While solvability would be implied for a linear system, the
given problem is nonlinear and the argument remains on a
nonrigorous level.

Finally, the equivalence to a system of free fermions has a
practical implication for our simulations of the QAOA circuit:
Storing the state of r free fermions just requires memory
for 2r complex numbers. Applying the entire circuit needs
2pr two-dimensional matrix-vector multiplications, which is
contrasted by 2pN matrix-vector multiplications in 2N dimen-
sions for a full circuit simulation in the qubit picture. Using
the fermionic basis for numerical simulations, results on the
VQE optimization problem for up to N = 200 and p > 120
have been obtained for t = 0 [14].

2. Heisenberg XXZ model

As a second model we consider the 1D XXZM with PBC
which is defined by

HXXZ =
N∑

k=1

[X (k)X (k+1) + Y (k)Y (k+1) + �Z (k)Z (k+1)]. (22)

� is the anisotropy parameter. As in the TFIM, the sites 1 and
N + 1 are identified. The Bethe ansatz reduces the eigenvalue
problem for the XXZM to a system of N/2 nonlinear equa-
tions that can be solved numerically with an iterative scheme
[56,57]. This results in polynomial cost for computing the
ground state energy but does not yield a simple ansatz class
to construct the ground state on a quantum computer or a
simulation scheme of reduced complexity.

We therefore use the XXZM as a second benchmark which
models the application case more closely: We do not know a
finite gate sequence that contains the ground state but instead
employ circuits composed of symmetry-preserving layers
which we found to be relatively successful in experiments.
The ansatz we choose is the first-order Trotterized version
of the unitary time evolution with the system Hamiltonian
applied to a antiferromagnetic ground state:

|ψ (θ )〉 =
1∏

j=L

Lzz(ϑ j )Lyy(κ j )Lxx(ϕ j )|ψ̄〉, (23)

|ψ̄〉 = 1√
2

(|01〉⊗N/2 ± |10〉⊗N/2), (24)

where we only treat even N and |ψ̄〉 is chosen symmetric
under translation for (N mod 4) = 0 and antisymmetric for
(N mod 4) = 2 in anticipation of the exact solution via the
Bethe ansatz. We found this circuit to be more successful at
finding the ground state than the QAOA circuit. Even though
the terms

∑N
k=1 X (k)X (k+1) and

∑N
k=1 Y (k)Y (k+1) do not pre-

serve the magnetization in the Z-basis in general they do so
within the sector of the above ansatz.

E. Simulation details

The simulations of the QAOA circuit for the TFIM are done
in the free fermion picture yielding a quadratic scaling of the
energy evaluation in N . The circuits including Ly layers and
for the XXZM do not obey the same symmetries and therefore
are implemented as a full circuit simulation using PROJECTQ

[58]. The depth of the QAOA circuit for the TFIM is fixed to
the smallest value containing the exact ground state p = N/2,
which gives us N variational parameters with one added per
Ly in the second main experiment. For the XXZ model, we
choose p = N resulting in 3N variational parameters. All cir-
cuit simulations are performed exactly, i.e., without noise or
sampling. Furthermore we use the SCIPY implementation [59]
of the BFGS algorithm and in-house routines for ADAM and
NatGrad. All variational parameters are initialized uniformly
i.i.d. over the interval [0.0001, 0.05] as this corresponds to
initializing the circuit close to the identity and symmetric ran-
domization around 0 has shown slightly worse performance in
our experiments.

We bound the BFGS optimization to one period of the rota-
tion parameters as this improves the line search efficiency and
found only a small dependence on the position of the interval.
For the ADAM optimizer we fixed β1 = 0.9, β2 = 0.999, and
ε = 10−7 and vary η in [0.005, 0.5] trying to build heuristics
for the particular problems. We found nontrivial behavior of
ADAM with respect to the learning rate, observing a strong in-
fluence on the optimization duration, for details see Sec. III A.
Furthermore, an increased regularization constant ε did not
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yield any improvements of ADAM. For NATGRAD, we use
learning rates of 0.5, 0.05, and 0.2 and fix the Tikhonov reg-
ularization constant to εT = 10−4 and 10−3 for the TFIM and
XXZM, respectively. This is a choice based on numerical exper-
iments in which we explored the hyperparameter spaces of the
optimizers. Even though we did not perform a full study on the
impact of εT regarding the convergence quality or duration,
we gained the following intuitive insight on the regularization:
Choosing εT to be very small or even deactivating the regu-
larization may lead to very large eigenvalues of F−1, which
ultimately are bounded artificially by the method of (pseudo-)
inverting F . Consequentially, the Natural Gradient might lead
to unreasonably large updates when choosing a fixed moderate
learning rate η. We confirmed this numerically and observed
the jumps generated by this effect to significantly degrade the
optimization quality. Choosing a strong regularization on the
other hand reduces the impact of the Fubini-Study metric and
the (renormalized) limit εT → ∞ corresponds to the standard
gradient descent in Eq. (7). We therefore chose εT such that
NatGrad did not perform excessive jumps in our preliminary
experiments while maintaining a significant contribution of F
to the optimizer.

Employing (block) diagonal approximations to the Fubini-
Study matrix as suggested in [19] was not successful due to
long-range correlations between the variational parameters in
the circuit.

III. MAIN RESULTS

In this section, we state and assess the main numerical re-
sults of the paper. For a detailed description of the optimizers
and circuit models, see the Methods section above (Sec. II).

A. QAOA circuits for the TFIM

We start our numerical investigation with the QAOA circuit
for the TFIM on N qubits with critical transverse field t = 1
and analyze the accuracy, speed and stability of all three
optimizers BFGS, ADAM and NatGrad (see Sec. II A 1 a for
the ansatz and Sec. II D 1 for the model). We consider cir-
cuits with a depth of p = N/2 blocks corresponding to n = N
parameters, which are sufficiently expressive to contain the
ground state and respect the symmetries of the Hamiltonian.
For each system size, we sample 20 points close to the ori-
gin in parameter space and initialize each optimizer at these
positions (see Sec. II E for simulation details). This leads to
statistically distributed performances of the algorithms and as
we perform exact simulations without sampling and noise it
is the only source of stochasticity. The minimal relative error
δmin and the number of required epochs for each initial point
and optimizer are shown in Fig. 2.

Before we analyze the results, recall that the optimization
problem can be solved exactly, i.e., the ansatz contains the true
ground state. This enables us to identify optimization results
with precisions δmin � 10−3 as local minima and we consider
them to be unsuccessful as they deviate from the ground state
on a physically relevant scale. In practical applications, the
precision reached in both local and global minima would
be much lower and in particular results with δ ≈ 10−10 are
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FIG. 2. Relative error δmin and epoch count Nepoch for the three
optimizers initialized at 20 randomly chosen points close to the
origin for the QAOA circuit with n = N variational parameters.
The ADAM optimizer is chosen with a learning rate of η = 0.06.
(a) NatGrad reaches the ground state for all instances and all system
sizes, while BFGS and ADAM start systematically getting stuck in
local minima close to the first excited state (dashed line) beyond a
system size of N = 20. (b) The monomial fits to the mean number
of epochs to global minimization yield the scalings N2.1 (BFGS),
N2.3 (ADAM), and N2.1 (NatGrad). ADAM experiences a transition
around N = 22 qubits, where the number of epochs to convergence
jumps by an order of magnitude (separated by dotted line).

unreasonable to measure in quantum machines. This choice of
benchmark is made in order to clearly reveal intrinsic features
of the optimizers. For realistic applications, a systematic study
of noise needs to be taken into account as well.

Our first observation is that the BFGS optimizer systemat-
ically fails to converge for systems sizes larger than N = 20.
For small system sizes, however, it reaches a global minimum
in the smallest number of epochs and at low cost per epoch
(see Table I). The fast convergence is preserved for failed runs,
which demonstrates that BFGS gets stuck in local minima,
and can be attributed to the flexible parameter update size
based on the line search subroutine. The runs of BFGS in-
terrupted at a δ < 10−6 level could be improved to reach the
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goal of δ = 10−10 by tuning the interrupt criterion. Therefore
these runs are considered successful.

For ADAM, we here show the optimization results with
η = 0.06, which similarly display a deterioration in accuracy
for system sizes beyond N = 26. It is important to note that
the failed ADAM runs are interrupted after 5 × 104 epochs
and convergence with additional run time is not excluded in
general. The question is then: How many update steps are
needed for convergence? We observe a polynomial scaling of
the required epochs in the system size up to a transition point
N∗(η), which depends on the chosen learning rate. Above this
system size both successful and failing runs take much longer
and exceed the set budget of 5 × 104 epochs.

The learning rate η imposes two main effects on the run
time of the ADAM optimizer: On one hand, the transition
point described above marks the system size at which a given
learning rate leads to unpredictably high epoch numbers and
increasing η shifts this point to smaller system sizes. On
the other hand, a reduced learning rate slows down the op-
timization significantly, prolonging the optimization duration
unnecessarily for all N < N∗(η). This makes the choice of
the learning rate for ADAM a system-dependent fine tuning
problem, requiring additional heuristics and hyperparameter
optimization. We present a more detailed analysis of the in-
fluence of the learning rate on the performance of ADAM in
Appendix B.

In Fig. 2, we present the ADAM runs for a medium learn-
ing rate in order to demonstrate the described behavior but not
the best possible performance of the ADAM optimizer.

NatGrad shows reliable convergence to a global minimum
for all sampled initial parameters. The number of epochs to
convergence scales polynomially with the system size and
there is little variance in the required number of epochs.

For most of the unsuccessful runs, the relative error is very
close to the (relative) gap of the Hamiltonian demonstrating
that these local minima of the energy landscape correspond to
excited states. This has been observed before in the context
of digitized quantum annealing and QAOA [4] where the
transition from ground to excited state is caused by a small
energy gap of the (time-dependent) annealing Hamiltonian.
The convergence to a local minimum reproduces this transi-
tion and demonstrates that the failed optimization runs yield
deviations from the ground state not only on a level of numer-
ical imprecisions but on a physically relevant scale, leading
to wrong results of the VQE. For transverse fields other than
t = 1, the similarity between the gap and the error due to
local minima was not confirmed (see Appendix C) and, in
particular, the latter is too small for the presented optimizer
comparison for t > 1 and the optimization becomes too easy
for t < 1.

Using the scalings as discussed in Sec. II C and taking
the translation symmetry of the TFIM into account, we show
the expected optimization durations on a quantum computer
in Fig. 3. Due to the increased cost per epoch and a similar
scaling of the number of epochs for all optimizers, the cost
for NatGrad are considerably higher than those for BFGS and
ADAM in the regimes in which they converge and ADAM
does not suffer from the sudden increase in required epochs.
We expect the scaling for ADAM, which is truncated in
Fig. 2 due to our epoch budget, to yield quantum run times
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FIG. 3. Estimated run times tQ on a quantum computer for the
optimization runs shown in Fig. 2 based on the scalings in Table I.
We note that none of the ADAM optimizations for N � 30 attained
the full precision of 10−10 such that the scaling is truncated based on
the epoch budget.

comparable to those of NatGrad. As we show in Appendix B,
reducing the learning rate makes bigger system sizes accessi-
ble to ADAM, but also rather drastically increases run times
because of slower convergence.

In summary, we find the BFGS optimizer to run into con-
vergence problems already for medium sized systems, ADAM
to take a large number of epochs with a transition into unpre-
dictable cost at a certain system size and NatGrad to exhibit
reliable convergence. While the estimated cost for running
NatGrad on a real quantum computer are high, the number
of epochs is much smaller than for ADAM. This implies
that in applications like quantum chemistry which exhibit a
more favourable scaling for measuring the Fubini matrix as
compared to the gradient, NatGrad can be expected to be
significantly cheaper overall (cf. Sec. II C 1).

Furthermore, the success of both commonly used opti-
mizers, BFGS and ADAM, strongly depends on the initial
parameters whereas NatGrad shows stable convergence and
a small variance of the optimization duration.

B. Overparametrization by adding Y layers

We now extend the optimal QAOA circuit for the TFIM

by adding redundant layers of Pauli Y rotations. These addi-
tional rotations can be deactivated by setting their variational
parameter κ to zero. This means in particular that the new
ansatz classes still contain the ground state and simply in-
troduce a form of overparametrization. Alternatively one can
introduce additional degrees of freedom to the circuit by using
more blocks in the QAOA circuit than minimally required,
maintaining the symmetry of the model, which is shown in
Sec. III C.

As single-qubit Pauli Y rotations cannot be represented in
the free fermion basis of the Hamiltonian [see Eq. (17)], the
overparametrized class can be seen as breaking a symmetry.
This means that for any given κ 
= 0, the ansatz state will not
be a global minimum and it will be crucial for an optimization
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algorithm to find the subspace with κ = 0. This is clear for
a single additional layer of gates, but we expect it to hold
for multiple nonadjacent layers as well. Although the present
situation is artificially constructed and the broken symmetry
is manifest, similar behavior is expected in systems where we
do not have an analytical solution. More generally, even for
an ansatz class which is suitable to express the ground state
a very specific configuration of the variational parameters
is necessary to find that state and the chosen optimization
algorithm consequentially should be resilient to local minima.

Our choice of overparametrization leads to such local min-
ima, constructing an optimization problem that can be used
as a test for the resilience of the optimizer. It furthermore is
comparable to overparametrizing a classical neural network
respecting translational symmetry but outside of the sector
equivalent to free fermions as presented in, e.g., Ref. [42]. The
presented experiment thus can be used to compare the opti-
mizer performance for classical machine learning of quantum
states and VQES.

We look at two configurations of the extended cir-
cuits with y-rotation layers included at positions {�N

4 } and
{�N

4 , �N
2  − 1}, respectively. With this choice we avoid spe-

cial points in the circuit and expect these setups to properly
emulate the problem of (additional) local minima.

Again we sample 20 positions in parameter space close to
the origin and initialize the three optimizers at these points,
resulting in the precisions and success ratios shown in Fig. 4
together with the estimated quantum computer run times in
Fig. 5. We observe a clear distinction between the optimiza-
tions that succeed to find a global minimum and those which
converge to a local minimum only, which makes the success
ratio for this numerical experiment well-defined. In contrast
to the results for the minimal QAOA circuit, no intermediate
precisions caused by a finite epoch budget occur. All optimiz-
ers suffer from the introduced gates as they show convergence
to local minima for system sizes they tackled successfully
without overparametrization. The error of these attained local
minima lies on a relevant scale but is smaller than the gap of
the model by a factor of ∼0.4.

For BFGS, this effect appears for some system sizes for
one layer of Pauli Y rotations but is much stronger for two
additional layers, reducing the fraction of globally minimized
runs to less than 50% for multiple system sizes. We do not
claim a scaling behavior with the system size but note an
alternating pattern for the configuration with two Y layers,
demonstrating large fluctuations of the success ratio (cf. in
particular system sizes 10 and 12 for two Y layers).

For the ADAM optimizer, we use a comparably small
learning rate of η = 0.02, which pushes the jump of the op-
timization duration that we observed before well out of the
treated system size range. Nonetheless, we observe runs stuck
in local minima already for small systems without exceeding
the epoch budget so in contrast to Sec. III A allowing for a
longer run time would not improve the performance. Also for
ADAM, the fraction of successful instances fluctuates with the
system size but in particular for two Pauli Y rotation layers the
effect becomes stronger for bigger systems and no successful
runs were observed for N � 14.

The performance of NatGrad on the other hand, for which
we reduced the learning rate to η = 0.05, is more reliable
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FIG. 4. (a) Achieved precisions δmin and (b) fraction of success-
ful optimizations out of 20 runs with the three optimizers on QAOA
circuits extended by one or two Pauli Y -rotation layers. Successful
optimization runs and those only converging locally are separated by
a gap in the attained minimal precision, which is smaller but on the
scale of the gap of the model, and in contrast to Fig. 2 the epoch
budget is almost never consumed entirely. Instead the optimization is
completed, yielding either a global or a local minimum.

and the success rate is the best for most of the circuits, with
few exceptions. In particular, there are only few system sizes
with local convergence for one and two additional degrees of
freedom each and overall the success rate of NatGrad does
not drop below 60%. For 10 and 18 qubits and two additional
layers, NatGrad solves 85% and 60% of the task instances,
respectively, while BFGS and ADAM fail in all of them.

For all optimizers, we confirm that successful runs deac-
tivate the additional Pauli Y rotation layers by setting the
corresponding parameters to 0 and that all optimizations with
worse precision failed to do so, leading to a local minimization
only. The quantum run times demonstrate the expected scaling
with NatGrad as the most expensive optimizer, where the
small epoch count compensates the increased cost per epoch
for small systems. However, the increased effort is rewarded
with significantly higher success rates, making NatGrad a
strong choice for (potentially) overparametrized VQE opti-
mization. We want to stress that the relative cost of the Fubini
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FIG. 5. Estimated run times tQ on a quantum computer for the
optimizations in Fig. 4 based on Table I and the same assumptions as
in Fig. 3. For the ADAM optimizer the lower branch of data points
corresponds to successful minimizations.

matrix are high for spin chain systems and that the reduced
number of epochs required by NatGrad will have a bigger
impact in other systems (see also Sec. II C 1).

Overall our numerical experiments with the extended
QAOA circuits for the TFIM demonstrate the fragility of the
three tested optimizers to perturbations of the ansatz class.
A significant decrease in performance is caused by over-
parametrization outside of the symmetry sector of the model
and the QAOA ansatz class. All algorithms were successful
for the original QAOA circuits on the considered system sizes
implying that the reduced success ratio can directly be at-
tributed to the extension of the ansatz class. This is in contrast
to machine learning settings where heavy overparametrization
is essential to make the cost function landscape tractable to
local optimizers like ADAM. The strong fluctuations over the
tested system sizes indicate that more repetitions of the opti-
mization would be required to resolve systematic behavior.

We note that the BFGS algorithm in some instances con-
verges to a local minimum although it has access to nonlocal
information via its line search subroutine. In particular, in the
presence of two misleading parameters in the search space, the
local information determining the one-dimensional subspace
does not seem to suffice any longer to find the global mini-
mum, even though the approximated Hessian is used. For the
ADAM optimizer, the initial gradient leads to an activation of
symmetry breaking layers and due to the restriction to local
information the algorithm is not able to leave the resulting
sector of the search space with local minima it enters initially.
NatGrad also is affected by the limitation to local information
but because of the access to geometric properties of the ansatz
state class it was on average less likely to leave the Pauli
Y -rotation layers activated. We attribute this to the fact that
NatGrad performs the optimization in the locally undeformed
Hilbert space by extracting the influence of the parametriza-
tion. As a consequence the optimizer does not follow the
incentive to activate the Pauli Y rotations at the beginning
when given the same gradient as ADAM, but stays within
the minimal parameter subspace. A better foundation for this
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FIG. 6. Minimal attained relative errors δmin for the TFIM as
in Fig. 2 but with the enlarged QAOA circuit containing 2 addi-
tional blocks. The empty markers show the results from Fig. 2 for
comparison.

intuition and the observed exceptions will be subject to further
investigations of NatGrad.

Our results also hint at possible hurdles for adaptive
optimization strategies which construct the circuit ansatz it-
eratively: to obtain viable scaling with the problem size and
parameter count, such algorithms have to rate the available
gates based on local information in order to estimate their
usefulness for the VQE. This rating however might suggest
gates which introduce problematic local minima as in the case
demonstrated here. When testing ADAPT-VQE [16] for the
TFIM we indeed observed that rating gate layers by their gra-
dient suggests using Ly, which—as demonstrated above—is
harmful for the VQE.

C. Symmetry-preserving overparametrization

Here we discuss the effect of overparametrizing the QAOA
ansatz for the TFIM with symmetry-preserving layers, i.e., by
choosing the number of blocks p bigger than the minimum
�N

2  required to achieve the exact solution. To this end, we
optimized the QAOA ansatz on the critical TFIM with two
additional blocks, corresponding to four additional variational
parameters while keeping all hyper- and simulation parame-
ters fixed and present the attained relative precisions in Fig. 6.

All optimizers perform similarly to the optimizations of
the minimal QAOA circuit (displayed with empty markers).
The BFGS optimizer achieves slightly less precise results,
ADAM obtains similar precisions within statistical fluctu-
ations, showing singular improved convergence but many
results with worse precision, and NatGrad solves all instances
to requested precision as before. In particular, this means that
overparametrization does not facilitate the optimization task
but even tends to make it more difficult for the established
optimizers. For the BFGS algorithm, this is in accordance with
the intuition for large systems which links the poor perfor-
mance to the high dimensionality of the parameter space and
the unfit information access via line searches (see Sec. III A).
For ADAM however, the results show a decisive difference
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FIG. 7. (a) Minimal achieved precisions and (b) epoch count
of the three optimizers and 20 runs on the ansatz in Eq. (23) for
the XXZM at depth p = N . The circuit contains n = 3N parameters
and the learning rates are 0.03 and 0.2 for ADAM and NATGRAD,
respectively. The epoch count is displayed on a logarithmic scale for
these results.

between the classical machine learning setting and VQE as
ADAM thrives on overparametrization in classical cost func-
tions but struggles to exploit additional degrees of freedom in
the ansatz circuit. Results of experiments on smaller systems
(up to N = 24) indicate, that the optimizers behave as de-
scribed above for stronger overparametrization (up to n = 4N

3 )
as well.

D. Results on the Heisenberg model

To complement the study on scaling and overparametriza-
tion in the integrable TFIM, we present here numerical results
on the XXZM with the ansatz discussed in detail in Sec. II D 2.
The performance of the three optimizers, again initialized at
20 distinct points close to 0, is shown in Fig. 7 together with
the number of epochs.

The BFGS optimizer shows problems in convergence for
increasing circuit sizes but there seems to be a continuous
transition between local and global minimum precisions such
that a success rate can not be defined as easily. The low

number of epochs to convergence required by BFGS—for
both global minima and low-quality results—makes it the
cheapest optimizer but the unreliable optimization outcomes
underline its infeasibility for large-scale VQES.

The behavior of ADAM is comparable to the one observed
on the TFIM when using sufficiently small learning rates (cf.
Appendix B): while the target precision of 10−5 is reached
systematically for all problem sizes, the epoch count exhibits
a rapid increase. It does not only appear to be exponential but
additionally shows abrupt jumps e.g., when increasing the size
from 6 to 8 and from 10 to 12 qubits.

The number of variational parameters at which the loss
of precision of BFGS and the increase in epochs for ADAM
occur is similar to that in the TFIM: The BFGS optimizer starts
failing to reach the target precision at n = 24 and n = 22 for
the XXZM and the TFIM, respectively. Likewise the cost of
ADAM in Fig. 7 jumps abruptly at n = 24 and n = 36 and
the runs with comparable learning rate for the TFIM show
(less clear) transitions at n = 26 and n = 30 (see Fig. 9).
The Hilbert space dimension however clearly differs at the
transition points. While it is intuitively clear that the main
influence should be due to the properties of the parameter
space, the physical system size in general could affect the
performance, too.

The reliable performance of NatGrad was confirmed for the
XXZM, failing to converge globally only once for 10 qubits.
These high quality results were obtained by modifying the
regularization constant εT from 10−4 to 10−3 and setting
the learning rate η = 0.2. This improvement is based on the
observation that runs with a smaller learning rate and regu-
larization were interrupted prematurely due to slow learning.
We would like to emphasize that the presented choice is not
the result of an extensive hyperparameter optimization but the
best of a few tested settings, out of which only two were
benchmarked on the full set of optimization tasks. The epoch
count for the NatGrad optimizer shows more fluctuations than
before but is much smaller than for ADAM. For 14 qubits,
ADAM takes between 8721 and 20 000 epochs, while the
count for NatGrad ranges from 132 to 361.

For a fair comparison of the optimizer cost, we again look
at the estimated quantum computing run times tQ in Fig. 8.
Due to the small epoch count and comparably low cost per
epoch, the unsuccessful BFGS runs clearly are cheapest. More
interestingly, the difference in the number of epochs between
NatGrad and ADAM discussed above equalizes the overhead
in the cost per epoch of NatGrad due to the Fubini-Study
matrix computation. This trend was indicated in the minimal
QAOA circuit results for the TFIM (cf. Fig. 3) but distorted by
the finite epoch budget.

The results for the Heisenberg model overall confirm the
observations on the TFIM: NatGrad exhibits a favourable scal-
ing in the epoch count which remedies the increased effort per
epoch that is required to determine the Fubini matrix as com-
pared to ADAM. Meanwhile, ADAM shows unpredictable
behavior in its optimization cost but consistently attains the
target precision whereas BFGS suffers from high dimensional
search spaces, rendering it a cheap but unreliable method for
VQES. We emphasize that the relative cost for measuring the
Fubini-Study matrix in NatGrad is smaller for Hamiltonians
with many terms as discussed in Sec. II C 1. This means that
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FIG. 8. Estimated quantum run times tQ for the optimization
tasks in Fig. 7 based on Table I and the same assumptions as in Fig. 3
and 5.

the quantum run times for NatGrad can be significantly better
for such systems and the relative scaling of tQ is comparable
to the drastic distinction seen for Nepoch in Fig. 7 as the cost
per epoch approach the ones for any gradient-based method.

IV. CONCLUSION

Our first main result shows that the BFGS optimizer, while
quick and reliably for small systems, has an increased chance
getting stuck in local minima already in medium sized VQES

that are comparable to present day and near future NISQ
devices. This may be surprising as it has access to nonlocal
information due to its line search subroutine. We suspect that
this aspect of the algorithm becomes less helpful for finding
a global minimum because of its sparsity in high-dimensional
parameter spaces.

The ADAM optimizer on the other hand is able to find
global minima also in larger parameter spaces (up to 42) for
suitably small learning rates but this comes at the cost of a
quickly increasing number of epochs to complete the opti-
mization. In particular we observed two effects of the learning
rate η on the run time of ADAM: On the one hand, there
is a threshold size of the parameter space that depends on η

above which the epoch count rapidly increases, which means
that a small enough value of the learning rate is essential to
avoid extremely long run times. On the other hand, the opti-
mization duration for sizes below the threshold is significantly
increased when reducing η making it undesirable to choose
the learning rate smaller than strictly necessary. It thus appears
that tedious hyperparameter tuning is necessary to balance
these two effects.

The NatGrad optimizer recently proposed for VQE shows
very reliable convergence to a global minimum for all tested
system sizes within fewer epochs but at high cost per epoch.
The problem of jumping into barren plateaus even after a suit-
able initialization can be fixed via Tikhonov regularization,
which can be tuned with a continuous parameter to gradually
trade the benefit from the information geometry for stability.
This makes the algorithm a promising, although more ex-

pensive, candidate for the optimization of future VQES. The
increased cost for determining the Fubini matrix at each step
have a particularly strong effect on the estimated quantum
run time for spin chain systems, for other systems with more
favourable scaling NatGrad might not only be more reliable
but additionally exhibit lower cost.

Our second main experiment treats overparametrization
in VQE ansatz classes including an example of additional
rotation gates that break the symmetry of the Hamiltonian as
well as symmetry-preserving overparametrization. The BFGS
optimizer fails to find a global minimum in some instances
even for very small systems and in general exhibits a strongly
fluctuating performance which decreases considerably with
the number of additional gate layers.

Also ADAM showed strong susceptibility to the additional
degrees of freedom. Beyond the implications on applications,
this is interesting because overparametrization is heavily used
in machine learning to make the cost function tractable for
optimizers like ADAM and we therefore appear to observe
a fundamental difference between classical machine learning
and VQES.

Finally, NatGrad showed some failed optimization runs for
selected system sizes as well but mostly remained successful
even for multiple additional gate layers. It therefore rewards
its increased cost per epoch with higher success rates and is
the only tested optimization strategy that showed resilience
to both big search spaces and local minima caused by over-
parametrization.

We therefore conclude that overparametrization which ex-
tends the effective Hilbert space is a serious problem for
standard optimizers and even NatGrad as most resilient algo-
rithm is disturbed by this issue. The simulation cost restricted
the maximal system size for this second experiment but there
is no reason to assume that a stronger overparametrization
with more symmetry breaking layers would resolve these
problems. This implies difficulties for adaptive ansatz tech-
niques because standard rating strategies cannot detect this
property and the gate set therefore has to be minimal in order
to prevent this type of overparametrization.

For overparametrized ansatz classes within the symme-
try sector of the TFIM, all optimizers behave similar to the
minimal parametrization or show slightly worse convergence.
This demonstrates that the optimization problem within VQES

differs significantly from optimizations in classical machine
learning, where overparametrization enhances the perfor-
mance of ADAM.

In general, one could expect the cost function of VQES to
behave differently than those in common machine learning
models as the parameters enter in a very nonlinear manner
via rotation gates. The restriction of NISQ devices to rather
shallow circuits implies much smaller numbers of variational
parameters than in machine learning and therefore NatGrad
can be considered a viable option for VQE optimization while
using second order resources.

The extension of our analysis to the XXZM confirmed the
problems of the BFGS optimizer with big search spaces and
the rapid run time growth for ADAM. NatGrad performed
reliably on the XXZM as well and the reduced number of
epochs compensates the cost per epoch such that the cost of
the convergent optimizers ADAM and NatGrad are similar for
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the tested system sizes. Additional experiments are in order to
show further generalization to nonintegrable models, which
would imply that a full VQE optimization on big systems in
general is most affordable using NatGrad.

Our investigations have shown that NatGrad might enable
VQES to solve more complex and bigger problems as it per-
forms well on a test model with challenges representative of
those in potential future applications of VQES. If reliability is
more important than minimizing the quantum run time of a
single optimization run we recommend NatGrad as optimizer
of choice. Alternatively, whenever the Hamiltonian of interest
contains many terms and thus is expensive to measure, the
relative additional cost of obtaining the Fubini matrix become
small (see Sec. II C 1) and the high reliability and low number
of required epochs of NatGrad again make it the best method.

The observed differences between classical machine learn-
ing and VQES show that insights and heuristics from the former
do not necessarily apply in the latter case and demonstrate
the importance of understanding the optimization problem in
VQES and the properties of the optimization algorithms.
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APPENDIX A: EXACT SOLUTION OF THE TFIM

Here we derive the analytic solution of the TFIM by map-
ping it to noninteracting fermions, also see Ref. [15]. We start
with the linear combinations ak := 1

2 (Z (k) + iY (k) ), which ful-
fill

X (k) = 2a†
kak − 1 , Z (k) = a†

k + ak (A1)

and map them to the operators

bk :=
k−1∏
l=1

Nl ak , Nl := exp[iπa†
l al ], (A2)

which satisfy fermionic anticommutation relations:

{b†
k, bl} = δkl , {bk, bl} = {b†

k, b†
l } = 0. (A3)

For the transformation of the Hamiltonians HS and HB, which
comprise both the TFIM Hamiltonian and the generators for the
unitaries in the QAOA ansatz, note that

N 2
l = 1 , N †

l = Nl = N −1
l , (A4)

Nkbk = bk , Nkb†
k = −b†

k . (A5)

Using Eq. (A1) and the above properties the transformed
Hamiltonians read

HS = −
[

N−1∑
k=1

(b†
k − bk )b†

k+1 − (b†
N − bN )b†

1 G
]

+ H.c.,

(A6)

HB = −t
N∑

k=1

2b†
kbk − 1, (A7)

where we denote by G := ∏N
l=1 Nl the gauge factor in the

term generated by the periodic boundary conditions and the
nonlocal transformation (A3), which also has a reversed sign.
G interacts with the initial state of the QAOA ansatz |ψ̄〉 and
the Hamiltonian terms in the following way:

G|ψ̄〉 = exp

[
iπ

2

(
−1

t
HB + N

)]
|+〉⊗N = eiπN |ψ̄〉, (A8)

[G, HB] = 0 = [G, HS], (A9)

where we used the ground state energy −tN of HB and
Eq. (A5). This means that the reversed sign is canceled for
odd N . Therefore we introduce an additional phase via the
transformation

ck := eikνbk , ν :=
{
π/N for N even
0 for N odd , (A10)

HS = −
[

N∑
k=1

eiν
(
c†

kei2kν − ck
)
c†

k+1

]
+ H.c. , (A11)

HB = −t
N∑

k=1

2c†
kck − 1, (A12)

where we defined ν such that the result holds for both odd and
even N . The last mapping we perform is a Fourier transforma-
tion with shifted momenta:

dq := 1√
N

N∑
k=1

e2π i(q−1)k/N ck , (A13)

HS = −
[

N∑
q=1

e−iαq d†
q d†

−q − eiαq dqd†
q

]
+ H.c. , (A14)

HB = t
N∑

q=1

2d†
q dq − 1 (A15)

with mode-dependent angles and relabeled Fourier modes

αq :=
{

(2q − 1)π/N for N even
2qπ/N for N odd , (A16)

d−q :=
{

dN+1−q for N even
dN+2−q for N odd . (A17)

We finally can split up the sums, recollect the terms corre-
sponding to the pairs {dq, d−q} and rewrite the Hamiltonians
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in a fermionic operator basis:

HS = H ′
S − 2

[
r∑

q=1

cos αq
(
d†

q dq − d−qd†
−q

)

− i sin αq
(
d†

q d†
−q − d−qdq

)]
(A18)

= −2
r∑

q=1

(
d†

q d−q
)( cos αq −i sin αq

i sin αq − cos αq

)(
dq

d†
−q

)
+ H ′

S,

(A19)

HB = H ′
B − 2t

r∑
q=1

d†
q dq − d−qd†

−q (A20)

= H ′
B − 2t

r∑
q=1

(
d†

q d−q
)(1 0

0 −1

)(
dq

d†
−q

)
, (A21)

where H ′
B = H ′

S = 0 and HB/t = H ′
S = −1 for even and odd

N , respectively, using d†
1 d1|ψ̄〉 = 1 and d1d†

1 |ψ̄〉 = 0 for the
odd case.

In this shape, the simple structure of the model becomes
apparent as we identify r = �N

2  pairs of fermionic modes in
momentum space which interact within but not between the
pairs. The Hamiltonian can thus be written as a direct sum

HTFI = −2
r⊕

q=1

(t + cos αq)Z + sin αqY

− (1 + t )(N − 2r). (A22)

Due to the fact that HB and HS not only constitute HTFI but
also generate the (modified) QAOA ansatz, the simulation
of the circuit can be carried out on a 2r-dimensional space
that decomposes into the direct sum above. On the Bloch
spheres of the free fermions, the two time evolution operators
e−iϑHS and e−iϕHB correspond to rotations about the individ-
ual axes eq = (0, sin αq, cos αq) and the z axis, respectively.
Furthermore we can manually solve for the ground state of
the TFIM by computing the ground state in each subspace
individually:

E0 = E ′ − 2
r∑

q=1

Eq, |ψ0〉 =
r⊕

q=1

|ψq,0〉, (A23)

Eq =
√

1 + t2 + 2t cos αq, (A24)

|ψq,0〉 = 1√
2Eq(Eq − cos αq − t )

(
i sin αq

Eq − cos αq − t

)
(A25)

where E ′ is the eigenvalue of H ′
B + H ′

S .

APPENDIX B: LEARNING RATE INFLUENCE ON
PERFORMANCE OF ADAM

In order to evaluate the systematically large optimization
durations of the ADAM optimizer for the QAOA circuit of the
TFIM, we tested it at multiple learning rates from the interval
[0.005, 0.1] observing a major influence on the run time,
see Fig. 9. For a given learning rate η, the required number
of epochs grows polynomially with the system size up to a
size N∗ above which ADAM takes much longer, exceeding
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h
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FIG. 9. Minimal attained relative errors δmin and epoch count
Nepoch for the ADAM optimizer initialized at 20 distinct points close
to zero and with different learning rates η. (a) The threshold size
beyond which ADAM fails can be shifted by reducing η, delaying
local convergence and output of an excited state (dashed line) to
bigger systems. (b) The shown fits are based on filtered data in order
to determine the apparent scaling for small system sizes and thus
do not aim at describing the entire data. The biggest system size
partially included in the fit is marked. For the shown learning rates in
descending order, we obtain the exponents 2.3, 2.3, 1.9, and 1.4 but
prefactors 1.8, 1.9, 7.3, and 74.7.

the budget of 5 × 104 epochs. In this second phase, we find
the optimizer to require excessively many epochs both when
succeeding and when getting stuck in a local minimum (see,
e.g., η = 0.06), which prevents us from systematically dis-
tinguishing the two cases before convergence. The observed
transition point N∗(η) can be shifted towards bigger system
sizes by decreasing the learning rate, i.e., N∗(η) is monotoni-
cally decreasing. Meanwhile, reducing η increases the epoch
count significantly for smaller system sizes without disrupting
the convergence as is expected for well-behaved systems.
Even though the scaling exponent is smaller for lower learning
rates the optimization requires more epochs which is due to a
large prefactor, increasing the cost for all system sizes before
the jump. The observed dependencies of the run time on η

result in a system size dependent optimal learning rate which
trades off the systematically increased epoch counts for small
η against the position of the jump in optimization duration.
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FIG. 10. Minimal attained relative errors δmin for the TFIM at sub-
(t = 0.5) and supercritical (t = 2) transverse fields and energy gap �

of the supercritical model.

This demonstrates that heuristics for ADAM are needed in
order to achieve systematic global optimization and that the
required number of optimization steps can be unpredictably
large depending on the hyperparameters.

APPENDIX C: NONCRITICAL TFIM

In this section, we present numerical results for the opti-
mization of the QAOA ansatz for the noncritical TFIM and
demonstrate why the critical transverse field strength was
chosen for the main investigations. As these experiments are
performed for exploratory purposes, the maximal system size
is reduced to 30, we choose one field strength for each phase
and we sample 5 (instead of 20) initial parameter positions.
As shown in Fig. 10, all optimizers succeed in finding global
minima to the required precision for the subcritical transverse
field strength but the supercritical model is harder to solve
than both the sub- and the critical model. Convergence to local
minima is observed at t = 2 for systems as small as 10 spins.
However, we found that the error caused by convergence to
local minima is three to five orders of magnitude smaller than
the gap of the model, whereas optimizations for the critical
model show errors very close to the gap (see Fig. 2). This im-
proved separation of successful and failed optimization runs
in the critical model makes it more suitable for the optimizer
comparison.
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Conclusion

In this chapter, I present a succinct summary of the main results. The interested reader
may find more extensive summaries in the publications in Chap. 2 and 3. The first part of
this thesis is concerned with the differentiation of functions that stem from the expectation
value of some observable with respect to the quantum state prepared by a parametrized
quantum circuit (PQC). Significant effort in the research community has been put into
deriving parameter-shift rules and understanding the underlying structure of PQC-based
functions, highlighting their trigonometric nature. Although this is a development within
the last four years, this perspective has already been used to approach other relevant as-
pects of PQCs, such as their expressivity, classical surrogate models, tailored optimization
methods or error mitigation. It is to be expected that the analysis of PQCs using Fourier
analysis will continue to deliver insights into their computational power in practice and
lead to heuristics for both circuit architectures and optimization procedures for variational
quantum algorithms (VQAs).

Regarding the differentiation of PQCs itself, parameter-shift rules for many relevant
classes of gates are covered in the literature by now, including existence and optimal-
ity proofs enabled by a proper mathematical foundation. As discussed in Sec. 2.1, there
have been numerous works on shift rules with partially overlapping contributions, which
makes it difficult to separate the included publication in Chap. 2 from the literature. Con-
cretely, my work contributes to the optimal differentiation of a wide range of PQCs, which
improves existing approaches, and the extension to non-equidistant Fourier spectra. Ad-
ditionally, I analysed the cost of the generalized shift rules thoroughly for both quantum
processing units (QPUs) and classical simulators. A specific result is that QAOA benefits
from this gradient estimator and that bounds obtained with classical methods can be used
to reduce the required resources in the quantum computation. The perspective on higher-
order derivatives, concretely the Hessian and the metric tensor, of PQCs with gates other
than Pauli rotations is a new contribution as well. It is a subject of current research to
compare unbiased gradient estimators, like the parameter-shift rule, to established biased
estimators and to more involved methods that exploit e.g. knowledge from past function
and gradient evaluations. In connection to the latter, shot-frugal heuristics for VQAs that
take the full optimization procedure into account have been investigated as well.

Considering VQAs in end-to-end analyses leads to strong dependencies on the consid-
ered benchmark problems and on many choices in the algorithm design, making it difficult
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to arrive at statements that hold in general. Therefore it is an important open question to
find metrics for the quality of gradient estimators – and of other subroutines – that hint
at their usefulness in the algorithms and can be used as surrogates for benchmark simula-
tions. This would allow for separating the choice of the estimator from the optimization
and for evaluating the former without considering the complete VQA workflow. A rather
generic metric, the (elementwise) mean squared error (MSE) of the gradient, is widely used
to date2, even though it does not cover some estimators that are commonly used in prac-
tice such as simultaneous perturbation stochastic approximation (SPSA). Moreover, it is
not clear that minimizing the elementwise MSE actually leads to the most useful gradient
estimator. Solving these shortcomings is a promising subject for future work.

The second part of this thesis is concerned with VQAs in a broader scope and the sec-
ond publication addresses the choice of optimization algorithm in the variational quantum
eigensolver (VQE) for spin chain problems. In this work I conducted several numerical ex-
periments for a large range of hyperparameters and problem sizes in order to investigate
the performance of two optimizers established in classical computing and of the quantum
natural gradient optimizer (QNG). This offered early insights into the strengths of QNG

and its behaviour in full VQA runs. Another key aspect of this publication is the consid-
eration of symmetry-breaking gates in otherwise symmetry-preserving PQCs and of their
impact on the optimization performance. Finally, I observed some relevant differences in
optimization behaviour with respect to overparametrization in PQCs as compared to classi-
cal machine learning applications. This becomes especially clear for the Adam optimizer,
which is widely used for the training of e.g. deep neural networks. As mentioned above,
experiments like those presented in this publication require us to make a series of choices
for the particular benchmark simulations. This limits the scope of the obtained insights
and makes it difficult to extract reproducible statements that hold more generally and for
a wide range of the many involved (hyper)parameters.

A review of the literature introducing and discussing new optimization techniques for
VQAs goes well beyond the scope of this conclusion, but a particular example of the sensi-
tivity to details is Ref. [129]. This work contains numerical experiments with notable sim-
ilarity to my work in [15] regarding the considered PQC, optimizers and problem Hamil-
tonians, and leads to somewhat conflicting statements about the optimization behaviour
if generalized carelessly. This demonstrates the importance of separating the evaluation
of optimization routines from other aspects of the full VQA and analysing them indepen-
dently in order to arrive at a robust characterization – much like for estimation subroutines
discussed above. I will not aim for a broader conclusion regarding VQAs, as they are the
topic of a large area of research. Whether or for which task they offer computational ad-
vantage over classical methods is an open key question that may decide whether noisy
intermediate-scale quantum devices will be of practical use in applications or remain a
bridge technology towards fault-tolerant quantum computing.

2 In Chap. 1, for example.
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Formalia

Zusammenfassung in deutscher Sprache

Universelles Quantenrechnen auf fehlerkorrigierenden Rechnern verspricht maßgebliche,
beweisbare Vorteile gegenüber klassischen Rechnern. Auf dem Weg zu diesem Ziel befin-
det sich die heutige Quantentechnologie jedoch noch in der Frühphase. Nichtsdestotrotz
könnte es sein, dass die fehlerbehafteten Quantengeräte, die in der nahen Zukunft gebaut
werden werden, bereits relevante Berechnungen durchführen können, welche klassische
Methoden in ihrer zeitlichen, räumlichen oder Energieeffizienz überbieten. Diese Frage,
ob die ersten Quantengeräte neben ihrer Funktion als Brückentechnologie auch für An-
wendungen nutzbar sein könnten, begründet die Forschung an sogenannten verrauschten
Quantengeräten und -algorithmen der Übergangsgröße (NISQ-Geräte und -Algorithmen).
Ein Großteil dieser Forschung behandelt variationelle Quantenalgorithmen (VQA), welche
diese Geräte mit klassischen Rechnern zu einer hybriden Technologie verknüpfen. Dabei
wird das zu lösende Problem als Observable, üblicherweise als Hamilton-Operator, for-
muliert, sodass eine Lösung gefunden würde, indem man den Grundzustand (oder seine
Energie) ermittelte. Für die Suche nach einem geeigneten Zustand wählt der klassische
Rechner einen Quantenschaltkreis aus einer Schar von Schaltkreisen aus und der Quan-
tenrechner führt diesen aus, um den zugehörigen Zustand herzustellen. Eine solche Schar
von Schaltkreisen ist gewöhnlich durch einen parametrisierten Quantenschaltkreis (PQS)
gegeben, und die Wahl eines Schaltkreises entspricht einer Konfiguration seiner Para-
meter. Als Antwort auf eine Konfiguration erhält der klassische Rechner vom Quan-
tengerät die Ergebnisse von Messungen ausgewählter Observablen. Im Anschluss opti-
miert der variationelle Algorithmus die Parameter anhand der erhaltenen Messwerte, um
den Lösungszustand – oder eine hinreichende Näherung dessen – zu erhalten. Mittler-
weile gibt es viele Varianten von VQA, die sich durch die verwendeten Teilmethoden sowie
ihre Anwendungsfälle unterscheiden und zu einer modularen Struktur der Algorithmen
geführt haben.

Das erste Kapitel dieser Arbeit behandelt Schätzer für Gradienten von Zielfunktionen,
die auf PQS basieren. Dazu wird zu Beginn eine Reihe (komponentenweiser) Schätzer
eingeführt und anschließend anhand einer weit verbreiteten Beispielklasse von PQS ver-
glichen. Die Schlussfolgerungen aus diesem Kapitel decken sich mit denen aus aktuellen
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Forschungsergebnissen und sind von Relevanz für die Praxis des Schätzens von Gradien-
ten für VQA.

Das zweite Kapitel führt das Thema der Schätzung von Ableitungen weiter und befasst
sich mit Ableitungen durch Parameterrückung, beginnend mit einer Diskussion der Liter-
atur. Der anschließende Teil enthält eine Erweiterung dieser Methode zur Anwendung auf
spezifische Quantengatter, die in Rechnungen zur Quantenchemie Verwendungen finden.
Den Hauptteil des Kapitels stellt der Abdruck einer Publikation dar, welche weitere Verall-
gemeinerungen der Ableitung durch Parameterrückung behandelt. Ein besonderer Fokus
liegt dabei auf der Analyse der Kosten für diese Schätzer, mit Bezug auf die Verwendung
auf klassischen Simulatoren sowie auf Quantengeräten.

Das dritte und letzte Kapitel beginnt mit einer kurzen Einführung von VQA, welche
den Zusammenhang zu einer zweiten Publikation herstellt. Letztere analysiert eine Reihe
von Algorithmen, die in VQA in der Optimierungsphase auf dem klassischen Rechner Ver-
wendung finden. Insbesondere werden anhand von numerischen Experimenten etablierte
Methoden der klassischen nicht-konvexen Optimierung und des maschinellen Lernens
mit dem Gradientenverfahren mittels des sogenannten natürlichen Gradienten verglichen.
Dabei zeigt die spezialisierte Methode, die den natürlichen Gradienten nutzt, ein zu-
verlässigeres Verhalten während der Optimierung, indem sie die Konvergenz zu lokalen
Minima vermeidet und auch symmetriebrechende Quantenschaltkreise erfolgreich opti-
miert. Die vorgestellten Experimente untersuchen dabei ein weit verbreitetes Beispiel
eines VQA, den variationellen Eigenwertlöser (VQE), angewendet auf Spinkettensysteme
als Testproblem.

Vielversprechende Themen für die zukünftige Forschung sind zum Einen die Un-
tersuchung einzelner Bausteine von VQA und zum Anderen die Entwicklung akkurater
Deskriptoren für diese Bausteine, die eine Vorhersage ihrer Eigenschaften im Kontext
des gesamten Algorithmus ermöglichen. Dadurch könnten die Komplexität einzelner
Forschungsfragen reduziert und Erkenntnisse ermöglicht werden, die an die modulare
Struktur von VQA angepasst sind.
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