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“Douglas Adams once said that ‘There is an art to flying, or rather a 
knack. The knack lies in learning how to throw yourself at the ground 

and miss.’ Immortality requires learning a similar knack: you must first 
be born and then subsequently avoid dying forever. This is challenging 

in part because there are many different causes of death to avoid […] 
and because our bodies slowly change in ways that make most of these 

causes of death increasingly probable.” 
	

Nicholas Stroustrup  
Measuring and modelling interventions in ageing (Current opinion in cell biology, 2018) 
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ABSTRACT 

This dissertation presents three manuscripts that originated from my work on the age-
ing liver. The first two manuscripts concentrate on integrative multi-omics approaches, 
such as scATAC-seq and scRNA-seq, spatial transcriptomics, CUT&RUN sequencing and 
lipidomics. They reveal distinct ageing signatures within the murine liver, mainly in 
hepatocytes. The third manuscript introduces a new methodology for the analysis of 
spatial sequencing data, which was developed with the ageing liver as an intended ap-
plication. 
 
The first manuscript, "Single-cell resolution unravels spatial alterations in metabo-
lism, transcriptome, and epigenome of ageing liver", establishes how spatial location 
and microenvironmental changes impact the ageing trajectories of hepatocytes within 
liver tissue. Through the integration of spatial transcriptomics, single-cell ATAC- and 
RNA-seq, lipidomics, and functional assays, the study elucidates zonation-specific and 
age-related changes in the epigenome, transcriptome, and metabolic states. We identi-
fied a zonation-dependent shift in the epigenome and show that changing microenvi-
ronments within a tissue exert strong influences on their resident cells that can shape 
epigenetic, metabolic and phenotypic outputs. From a functional perspective, periportal 
hepatocytes exhibited diminished mitochondrial fitness, whereas pericentral hepato-
cytes demonstrated an increased accumulation of large lipid droplets.  
 
The second manuscript, "Ageing is associated with increased chromatin accessibil-
ity and reduced polymerase pausing in liver", examines the chromatin landscape of 
the ageing liver by using CUT&RUN for RNA polymerase mapping, integrated with 
ATAC-seq, RNA-seq, and NET-seq. The study reveals an increase in chromatin accessi-
bility at promoter regions as a characteristic of ageing, which is not accompanied by a 
corresponding increase in transcriptional output. Ageing is also found to be associated 
with a decrease in promoter-proximal pausing of RNA Polymerase II. Our observations 
suggest that alterations in transcriptional regulation associated with ageing may be due 
to decreased stability of the pausing complex. 
 
The third manuscript, "Dimension reduction by spatial components analysis im-
proves pattern detection in multivariate spatial data", introduces SPACO, a new sta-
tistical approach designed to enhance pattern recognition in multivariate spatial se-
quencing data. SPACO stands out by focusing on gene co-regulation and maximising lo-
cal covariance. It provides a more sensitive and accurate test for the identification of 
genes with a spatial expression pattern. Moreover, the use of spatial components for 
gene denoising by SPACO boosts the effective linkage of histological observations with 
gene expression patterns, even in high-noise conditions. 
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1. INTRODUCTION 

This dissertation is structured in a cumulative format and comprises three individual 
parts, each corresponding to a distinct manuscript. These manuscripts collectively con-
tribute to our understanding of the ageing liver and research methods around it. In the 
subsequent parts, we will delve into each part and explore the specific research ques-
tions they address, their methodologies, findings, and the implications of these findings. 
The manuscript in part one is currently in the peer review process but already available 
at bioarxiv (https://doi.org/10.1101/2021.12.14.472593), the manuscript of part two is al-
ready published (https://doi.org/10.15252/msb.202211002). The manuscript of part 
three will be submitted to a journal soon.  

 
1.1. The Biology of Ageing 
The World Health Organization has reported a forecasted shift in global demographics, 
with an ageing population surpassing the younger demographic by 2050. Precisely, it is 
estimated that the population of individuals aged 60 and older will be approximately 2.1 
billion, outnumbering adolescents aged 10–24, who are expected to number around 2.0 
billion. Furthermore, the segment of the population aged 80 years and older is projected 
to triple from its 2020 figure, increasing to 426 million by 2050. Despite improvements 
in longevity, advancements in prolonging the health span of individuals are relatively 
moderate, emphasizing the importance of health promotion during the ageing process 
as this will inevitably pose a great challenge for public health systems around the world 
(Puth et al., 2017). This approach is endorsed by the World Health Organization as a crit-
ical factor in mitigating the adverse effects of an ageing population on a global scale 
(Suzman and Beard, 2011; Rudnicka et al., 2020).  
 
Elucidating the complex biology of ageing is vital for understanding its effects on the 
individual level and identifying intervention vectors to increase health span and longev-
ity. Ageing is typically described as a progressive decline in cellular functionality and ho-
meostasis over time (López-Otín et al., 2013). In recent years, several processes that 
modulate the rate and acceleration of ageing in organisms have been identified. These 
“hallmarks of ageing” are an ever-growing list of biological phenomena, including ge-
nomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, disa-
bled macroautophagy, deregulated nutrient-sensing, mitochondrial dysfunction, cellu-
lar senescence, stem cell exhaustion, altered intercellular communication, chronic in-
flammation, and dysbiosis. The noted processes could be identified across a wide range 
of mammalian and non-mammalian model organisms (Figure 1) (López-Otín et al., 
2013, 2023).  
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Figure 1: This illustration presents the twelve “hallmarks of ageing”: Genomic instability, telomere attri-
tion, epigenetic alterations, loss of proteostasis, disabled macroautophagy, deregulated nutrient-sensing, 
mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, 
chronic inflammation, and dysbiosis. These symptoms of ageing are categorized into three groups: pri-
mary, antagonistic, and integrative. Obtained from López-Otín et al., (2023). 

 
These hallmarks of ageing can be further grouped into three categories primary, antag-
onistic and integrative. These categories impose a kind of hierarchy or rather a depend-
ency structure on the process of ageing, but of course, there is no strictly directed rela-
tionship but rather a complex interplay of factors and phenomena. The primary category 
can be subsumed as the sum of molecular damages and errors that accumulate on a cel-
lular level during the life span of an organism due to cellular metabolism or environmen-
tal exposition that inevitably lead to the ageing process (Gladyshev et al., 2021).  
 
Of particular relevance to this thesis are the hallmarks mitochondrial dysfunction, cel-
lular senescence, stem cell exhaustion and chronic inflammation.  
 
Mitochondrial dysfunction 
The functionality of mitochondria, particularly their ability to provide energy-rich mol-
ecules, is critical for maintaining the health and vitality of cells. This is achieved primar-
ily through the process of oxidative phosphorylation, a metabolic pathway that uses 
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energy released by the oxidation of nutrients to produce ATP, the primary energy carrier 
in cells. 
As cells age and accumulate mtDNA mutations, the mitochondria's capability to effi-
ciently produce ATP can be severely compromised. This is because these mutations re-
sult in defective proteins of the respiratory chain complexes, which are essential for ox-
idative phosphorylation. In essence, a defective respiratory chain can drastically impede 
the cell's ability to produce ATP. Compromised mitochondrial energy production can 
have numerous consequences, as ATP is required for a vast array of cellular processes 
(Druzhyna et al., 2008). 
Emerging evidence suggests that certain mtDNA mutations might lead to an adaptive 
metabolic shift towards glycolysis, an ATP-producing process that does not rely on mi-
tochondria. However, while this shift might help to compensate for reduced ATP pro-
duction in the short term, it is generally less efficient than oxidative phosphorylation 
and can contribute to cellular ageing and pathology in the long run (Chung et al., 2022). 
 
The integrity of the mitochondrial membrane, which is largely determined by its lipid 
composition, is vital for the proper functioning of the mitochondria. 
Mitochondrial membranes are predominantly composed of phospholipids, including 
phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and cardiolipin. 
Among these, cardiolipin, a unique dimeric phospholipid, is of particular importance as 
it is crucial for the stability and function of many proteins that are involved in mitochon-
drial energy metabolism. 
With advancing age, however, the lipid composition of the mitochondrial membrane 
can change significantly. There is often a decrease in cardiolipin and an increase in other 
lipids like cholesterol. This altered lipid profile can affect the membrane's fluidity and 
permeability, which in turn, can disrupt the function of the respiratory chain complexes. 
Consequently, energy production via oxidative phosphorylation can be compromised, 
and the production of reactive oxygen species can be increased, further accelerating cel-
lular damage. 
Age-related changes in lipid metabolism can also contribute to the accumulation of lipid 
peroxides, which can cause oxidative damage to both mtDNA and proteins, leading to 
mitochondrial dysfunction. Moreover, changes in the lipid composition can disrupt the 
dynamics of mitochondrial fusion and fission, essential processes for maintaining a 
healthy mitochondrial network within the cell (Pollard et al., 2017). 
 
Cellular senescence 
One response to genomic instability and other cell damages accumulated over time is 
cellular senescence. In this state, cells become insensitive to growth-promoting stimuli 
and enter cell cycle arrest. They also undergo a fundamental rewiring of key character-
istics such as morphology, metabolism, chromatin architecture, and gene expression, 
leading to the adoption of very heterogeneous, but often pro-inflammatory phenotypes, 
denoted as the senescence-associated secretory phenotype. Ideally, this shift in cell sta-
tus has as a consequence that immune cells are recruited and thereby, the senescent cells 
are removed, but if this response is insufficient, or the immune answer is absent, the 
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result on the tissue microenvironment ultimately can lead to fibrosis (Gorgoulis et al., 
2019; Tuttle et al., 2020).  
 
Stem cell exhaustion 
The immune clearance of senescent cells and of injury is usually followed by a tissue-
specific repair process via stem cells, progenitor cells or dedifferentiated cells. Here 
should be noted that the exact repair process can differ vastly between tissues. During 
ageing, tissue renewal at a steady state is at a progressive loss as stem cells and progen-
itor cells are subjected to the hallmarks of ageing to the same extent as cells with no 
stemness potential (Clevers and Watt, 2018). Further excessive proliferation of stem 
cells can lead to stem cell exhaustion and, thereby, premature ageing (Rera et al., 2011).  
Stem cell exhaustion, dysregulated nutrient sensing, and increased cellular senescent 
are closely connected to altered intercellular communication. During ageing, a progres-
sive increase in noise in cell-to-cell signalling and, thereby, compromise of homeostatic 
as well as hermetic regulation can be observed. Often the most health span and longev-
ity-increasing effects in that context can be linked to insulin-like signalling or stress re-
lated responses (Miller et al., 2020).  
 
Chronic inflammation 
Chronic inflammation or "inflammaging" is a result of ageing, manifesting systemically 
as well as in specific localised pathological phenotypes. This ageing-related inflamma-
tory state is particularly pronounced in the liver, contributing to the development of dis-
eases like Non-Alcoholic Fatty Liver Disease (NAFLD), Non-Alcoholic Steatohepatitis 
(NASH), Alcoholic Steatohepatitis (ASH), and Hepatocellular Carcinoma (HCC) (Loeser, 
2011; Nilsson, 2015). 
 
Inflammaging arises from various hallmarks of ageing. Genomic instability, or the in-
creasing frequency of DNA mutations and epigenetic alterations with age, contributes 
to this. The phenomenon called clonal haematopoiesis of indeterminate potential 
(CHIP) is particularly noteworthy here. In CHIP, certain myeloid cells that carry pro-in-
flammatory properties expand, potentially driving the ageing process in the liver (Wong 
et al., 2023). 
Mutations that lead to CHIP often affect epigenetic modifiers like DNMT3 and TET2, 
which play a crucial role in DNA methylation - a vital process for regulating gene expres-
sion, which will be discussed later in Chapter 1.2. These mutations can foster an environ-
ment that promotes inflammation, potentially accelerating the development of liver dis-
eases (Cobo et al., 2022; Wang et al., 2023). 
Additionally, the immune system's functionality declines with age, further promoting 
inflammaging. Age-associated shifts in T cell populations favour pro-inflammatory re-
sponses while reducing the efficiency of immune surveillance - a balance crucial for 
maintaining liver health (Robinson et al., 2016). 
 
All 12 hallmarks of ageing show a high grade of interdependency and interconnectivity. 
This opens the possibility for a wide vector of interventions in reducing or even reversing 
ageing. For all hallmarks of ageing, several interventions were proposed or even shown 
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and are subject of multidisciplinary research. These can coarsely be grouped into four 
different categories: Genetic interventions, pharmacological, behavioural and dietary 
interventions and through measuring and modelling of ageing biomarkers (Bernardes 
de Jesus et al., 2012; Lee and Longo, 2016; Novelle et al., 2016; Rebelo-Marques et al., 
2018).  
 
The hallmarks of ageing model by López-Otín et al. (2013, 2023), though highly accepted 
in the field, have drawn criticisms. Chief among them is the disputed role of accumu-
lated cellular damage in driving ageing (Gems and de Magalhães, 2021). Alternative the-
ories suggest that biological processes optimised for early life stages could induce phys-
iological dysfunction in later life due to weak influences from natural selection 
(Maklakov and Chapman, 2019). 
Critics question whether these hallmarks cause or result from ageing, emphasising a lack 
of clarity in distinguishing causative factors from consequential changes, and claim that 
the causation between primary, antagonistic, and integrative effects is not always 
proven and that mechanistic links to age-associated diseases are as well not always 
given (Gladyshev and Gladyshev, 2016).  
The selection of hallmarks has been labelled arbitrary, potentially limiting research 
scope and interventions. The recent extension from 9 to 13 hallmarks could support this 
claim or reflect the rapid maturation of ageing research (López-Otín et al., 2013, 2023; 
Gems and de Magalhães, 2021).  
Finally, ageing research's heavy reliance on non-human data raises concerns about its 
applicability to human ageing, given inter-species differences in ageing mechanisms (De 
Magalhães, 2014). 
 
While the hallmarks of ageing paradigm has significantly contributed to the under-
standing of ageing, the criticisms presented underscore the intricate complexities of 
ageing and raise important questions about causality, model selection, and the transla-
tion of findings from non-human models to humans. Given these points of contention 
and the ongoing extension and refinement of the theories, it is clear that the ultimate 
understanding of the ageing process remains an open question. Therefore, further com-
prehensive and integrative research is paramount to unveil the true nature of ageing and 
its associated diseases, which will, in turn, allow us to develop more effective interven-
tions for healthy ageing. 
 

1.2. Epigenetic Alterations of Ageing 

Epigenetic alterations are one primary hallmark of ageing and are also widely acknowl-
edged by its critics for their significance during ageing. I will discuss the topic in more 
detail as it is a central focus of this thesis. Epigenetics is nowadays defined as alterations 
in gene expression that are mitotically (and potentially meiotically) heritable, which do 
not involve alterations in the DNA sequence but modulate chromatin organization by 
various chemical modifications. The major mechanisms of epigenetic regulation are 
DNA methylation, histone modifications, chromatin remodelling and non-coding RNA 
molecules (Retis-Resendiz et al., 2021). The involvement of epigenetic changes in ageing 
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and longevity could be shown across a wide range of model organisms. From unicellular 
eukaryotes like S. cerevisiae (Kaeberlein et al., 1999) over invertebrates (C. elegans 
(González-Aguilera et al., 2014) and D. melanogaster (Rose and Charlesworth, 1980)) to 
vertebrates (D. rerio (Mayne et al., 2020), N. furzeri (Zupkovitz et al., 2021), M. musculus 
(Wagner, 2017) and more). Further, it should be noted that also information encoded in 
the DNA could be identified as a factor for ageing and longevity even in the plant king-
dom (Popov et al., 2022). The epigenetic alterations of ageing are summarized in Figure 
2 and will be described in detail in the following chapter. 
 

 
Figure 2: Epigenetic alterations of ageing are characterized by (A) loss of histones, (B) imbalance of activat-
ing and repressive modifications, (C) transcriptional changes, (D) losses and gains in heterochromatin, (E) 
breakdown of nuclear lamina, (F) global hypomethylation and focal hypermethylation, and (G) chromatin 
remodelling. These changes are heavily dictated by (H) environmental stimuli and (I) nutrient availability 
that in turn (J) alter intracellular metabolite concentrations. Modified from  Sen et al. (2016). 

 

1.2.1 The DNA Methylome 
DNA methylation (DNAm), a critical epigenetic mechanism primarily characterized by 
adding a methyl group to the carbon five position of the cytosine ring within a CpG di-
nucleotide, usually represses gene expression. DNAm is found within about 70-80% of 
the mammalian genome, with CpG islands (CGIs), localized regions rich in G + C bases, 
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being associated with promoter regions. Methylation rates differ depending on tissue 
and cell type (Ben-Hattar and Jiricny, 1988; Deaton and Bird, 2011). 
The ageing process is accompanied by a global loss of methylation marks, or hypometh-
ylation, particularly in repetitive genomic regions, which can lead to genomic instability. 
Conversely, certain gene promoter regions, usually sparsely methylated under normal 
conditions, tend to become aberrantly hypermethylated with age. This phenomenon can 
lead to inappropriate gene silencing and contribute to age-associated gene dysfunction 
(Jones et al., 2015). 
 
DNA hypo- or hyper-methylation has been linked to age-related diseases like cancer and 
Alzheimer's disease. DNAm can be influenced by factors like smoking, diet, and exercise, 
among others and can result in differential methylation patterns, which are then copied 
during DNA replication, leading to long-lasting effects on the genome. Moreover, inher-
ent stochastic errors and a decrease in the capacity of DNA damage repair mechanisms 
with age can further accentuate these changes (Perna et al., 2016; Seale et al., 2022). Age-
related alterations can occur similarly across tissues as well as being tissue-specific 
(Christensen et al., 2009; Day et al., 2013; Hannum et al., 2013). 
 
DNA methylation patterns, due to their relative stability, dynamic range, and ease of as-
sessment, make them an attractive biomarker for estimating biological age. Global 
DNAm can be measured using bisulfite sequencing, which offers single-nucleotide res-
olution, or array-based techniques (Kurdyukov and Bullock, 2016). 
 
The DNAm status' generalizability has led to the creation of "epigenetic clocks", predic-
tive models of biological age, such as the Horvath clock, based on specific DNAm sites. 
Since then, various other ageing clocks designed for multiple tissues and organisms and 
even multispecies and multi-specious clocks have been published (Horvath, 2013; Lu et 
al., 2022). Other examples include Hannum's Clock, PhenoAge, and GrimAge (Hannum 
et al., 2013; Levine et al., 2018; Lu et al., 2019).  
In addition to methylation-based clocks, "transcriptomic clocks" have been introduced 
recently, leveraging transcriptomics data for organisms without a methylome or in set-
tings where DNA methylation cannot be readily assessed (Meyer and Schumacher, 
2021).  
 

1.2.2. Histones and Histone Modifications 
Genomic DNA, if linearised, would extend to about two meters. To fit into the cell nu-
cleus, it is condensed into a chromosomal structure that can be de-condensed as needed. 
This complex, dynamic spatial chromatin organisation allows genome regions to inter-
act and be accessible for various cell functions (Millán-Zambrano et al., 2022). 
 
Nucleosomes, composed of two copies of each core histone H2A, H2B, H3 and H4, play a 
crucial role in this organisation. They can alter their form and position and partially and 
fully disassemble. Their protruding N-terminals and their globular core domains are 
subject to various post-translational modifications (PTMs), including methylation, 
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acetylation and more (Strahl and Allis, 2000). Histone variants can further increase this 
variety (Weber and Henikoff, 2014). 
 
These PTMs can be written, read, and erased, controlling diverse transcriptional out-
comes and linking to metabolic states (Dai et al., 2020). Histone "writers" are enzymes 
that add PTMs to a histone tail. Histone "readers" are proteins that identify specific his-
tone modifications and often trigger cellular responses. These "readers" commonly in-
teract with other proteins for DNA repair, replication, and transcription (Yun et al., 2011). 
"eraser" proteins contribute to the dynamic regulation of histone PTMs by removing his-
tone modifications (Hyun et al., 2017).  
 
PTMs are categorised into two types: indirect, which involve the binding of effector pro-
teins, and active, which directly cause chromatin alterations. Additionally, PTMs can re-
sult from DNA-templated processes such as transcribing polymerase activity, which 
means that transcribing polymerases can promote histone PTMs, which in turn could 
itself cause a downstream event. One example of this is Histone 3 lysine 36 tri-methyla-
tion (H3K36me3) by SETD2 (Millán-Zambrano et al., 2022; Molenaar and van Leeuwen, 
2022). 
 
Histone modifications ("marks") significantly influence chromatin structure and func-
tion, with distinct modifications often correlating with specific genomic regions and 
their respective functionalities: 
 
Acetylation and Deacetylation: 
Histone acetyltransferases and histone deacetylases add and remove acetyl groups to 
histones, resulting in gene activation or repression, respectively (Yun et al., 2011; Seto 
and Yoshida, 2014). 
 
Histone Methylation and Demethylation 
Histone methyltransferases and histone demethylases respectively add and remove me-
thyl groups to histones, respectively, modulating gene expression levels based on the 
specific context and the methylation level (mono-, di-, or tri-methylation) (Rice et al., 
2003; Hyun et al., 2017) 
 
Promoters 
Promoters function as an assembly point for the transcription machinery. Active pro-
moters are frequently marked by histone acetylations, such as at H3 lysine 9, 14 and 27 
(H3K9ac, H3K14ac and H3K27ac) and H4 lysines 5, 8, 12, and 16 (H4K5ac, H4K8ac, 
H4K12ac, H4K16ac). These acetylation marks neutralise the positive charge of histones, 
leading to a weakened interaction between DNA and histones, thus opening the chro-
matin structure for transcription initiation (Akhtar and Becker, 2001; Robinson et al., 
2008). Furthermore, promoters often bear methylation marks of histone H3 on lysines 
4, 36, and 79 (H3K4, H3K36, H3K27). These marks are associated with active transcrip-
tion (Black et al., 2012; Hyun et al., 2017). 
 



  1. Introduction 

 

 

9 

Enhancers 
Specifically for enhancers, histone H3 lysine 27 acetylation (H3K27ac) is a defining mark 
of active enhancers. These regions can be located far from the transcription start site of 
the gene they regulate and yet can loop towards the TSS to mediate transcriptional acti-
vation. The presence of H3K27ac at these enhancers denotes an open chromatin config-
uration that enables the binding of transcription factors and coactivators, ultimately 
leading to increased gene expression. Another histone 3 acetylation to mention here is 
lysine 14 acetylation (H3K14ac). Additionally, mono methylation of histone H3 on lysine 
4 (H3K4me) is associated with both active and poised enhancers (Beacon et al., 2021).  
 
Gene Bodies  
As mentioned above, actively transcribed genes are often marked by tri-methylation of 
histone H3 on lysine 36 (H3K36me3) and lysine 79 (H3K79me3). These modifications 
play crucial roles in the prevention of spurious transcription initiation within the gene 
body and in the elongation phase of transcription, respectively (Millán-Zambrano et al., 
2022). 
 
Centromeres and Telomeres  
These specialised chromosomal regions often exhibit unique histone modification pat-
terns. For instance, pericentric heterochromatin is often marked by methylation of his-
tone H3 on lysine 9 (H3K9me3), while subtelomeric regions are characterised by H3K27 
(H3K27me) methylation (Wong et al., 2011). 
 
Repressed regions 
Genomic regions undergoing transcriptional silencing often bear tri-methylation of his-
tone H3 on lysine 27 (H3K27me3) or lysine 9 (H3K9me3). These marks correlate with 
heterochromatin (Wong et al., 2011). 
 
These diverse modifications, including acetylation and methylation, collectively estab-
lish unique chromatin states at distinct genomic regions, pivotal in gene regulation and 
other DNA-dependent processes. However, the relationships between these histone 
modifications and genomic functions are multifaceted and often context-dependent. 
 
Cis- and trans-acting histone modifications 
Histone post-translational modifications can influence chromatin state locally or at dis-
tant loci, shaping the chromatin landscape. Local or cis-modifications include acetyla-
tion of histone lysine residues, which relax local chromatin structure, while H3K9me3 
and H3K27me3 induce chromatin condensation and transcription repression (Ninova et 
al., 2019; Strahl and Briggs, 2021). Conversely, trans-modifications exert effects at a dis-
tance by creating binding sites for effector proteins or altering higher chromatin order. 
For example, H3K9me and H3K27me generate binding sites for polycomb proteins, 
which can enforce chromatin condensation at neighbouring or distant nucleosomes 
(Bian et al., 2020). 
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Histone modifications and nucleosome occupancy in the context of ageing 
In the context of ageing, global loss of histones, histone modifications and histone mod-
ifiers emerge as contributors and regulators of gene expression changes and patterns as-
sociated with ageing. As stated, H4K16ac impedes chromatin condensation and, with 
that, promotes gene activation. Changes in H4K16ac levels during ageing could be 
shown in various organisms. In mice, a global increase in H4K16ac has been reported 
with ageing, which most likely contributes to the ageing phenotype by loosening chro-
matin structure and function. (Nativio et al., 2018; Oh and Petronis, 2021)  
 
Ageing has detectable effects on histone methylation as well. H3K4me3 reduction at 
gene promoters has been observed in general in ageing mice. H3K4me3 is described as 
promoting gene expression. On the other hand, H3K9me3 and H3K27me3 levels, known 
for gene expression repression, seem to increase and suggest increased transcriptional 
repression. However, these effects seem very tissue and DNA context-specific and more 
research is needed for a clearer picture (McCauley and Dang, 2014).  
 
As already mentioned, the Insulin/IGF-1 signalling pathway is a known regulator of 
lifespan, and lower activity of it is associated with increased longevity across several or-
ganisms. Notably, the SIRT protein family is controlled via the Insulin/IGF-1 signalling 
pathway and Sirtuins act as NAD+-dependent deacetylases, including H4K16. Reduced 
Insulin/IGF-1 signalling pathway activity shifts the NAD+/NADH ratio and thereby acti-
vates Sirtuins, which can, in turn, affect the chromatin architecture and gene expression 
(Dang et al., 2009).  
 

1.2.3. Chromatin Remodelling 
Post-translational modifications of histones and chromatin remodelling often work syn-
ergistically and represent interconnected aspects of epigenetic regulation, determining 
chromatin structure and function. Chromatin remodelling is a key component of DNA 
accessibility, thereby shaping gene regulation and cellular function. 
 
Nucleosome occupancy and spacing 
Nucleosome occupancy refers to the average number of nucleosomes within a specified 
genomic region. For instance, the mouse genome studied in this thesis contains several 
million nucleosomes, while the budding yeast genome has about 60,000 nucleosomes 
(Jiang and Pugh, 2009; Lai and Pugh, 2017). Nucleosome-free regions (NFRs) are typi-
cally found around active promoters, rendering the DNA accessible to various proteins 
and transcriptional machineries. The +1 and -1 nucleosomes define the downstream and 
upstream borders of an NFR, respectively, with subsequent nucleosomes sequentially 
numbered (Rando and Ahmad, 2007). 
 
Nucleosome spacing, the distance between adjacent nucleosomes, is highly dynamic 
and influenced by many factors critical for transcription initiation by modulating RNA 
Pol II access and transcription factor binding potential and vice-versa. The intricate reg-
ulation of nucleosome placement and displacement or eviction of nucleosomes across 
the DNA is mainly performed by ATP-dependent chromatin remodelling complexes. 
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DNA-histone interactions are agitated via ATP-hydrolysis, enabling the sliding or re-
moval of nucleosomes.  
As mentioned above, histone modifications change the charge of histones, impacting 
their interaction with the negatively charged DNA and thereby influencing nucleosome 
positioning.  
DNA methylation, conversely, can influence the preference for nucleosome formation, 
with higher methylation usually correlating with tighter nucleosome spacing (Wong et 
al., 2011; Black et al., 2012). 
Histone variants, which differ in their structural and chemical properties, can also play 
a role by altering the stability of nucleosomes and, thus, their spacing. As an example, 
the histone 2 variant H2A.Z is known to facilitate RNA Pol II passing and transcription 
initiation (Weber et al., 2014)  
Non-coding RNAs (ncRNAs) can mediate the recruitment of chromatin remodelling 
complexes to specific genomic sites, influencing local nucleosome positioning (Patty 
and Hainer, 2020). Additionally, the DNA sequence itself can impact nucleosome for-
mation and positioning, given that specific sequences exhibit a higher or lower affinity 
for histone octamers (Travers et al., 2010). 
 
Chromatin remodelling and its spatiotemporal structuring are vital for maintaining cel-
lular identity and proper cellular function. Alterations in the chromatin architecture can 
lead to cancer, neurodevelopmental disorders and ageing syndromes (López-Otín et al., 
2023).  
Studies focusing on lifespan regulation in mice show that if certain subunits of the chro-
matin remodelling BAF complexes become dysfunctional, they can induce premature 
ageing phenotypes in mouse neural stem cells (Sokpor et al., 2017). This again corrobo-
rates the significance of chromatin remodelling during ageing and highlights that chro-
matin architecture may be a prime modulator for age-associated changes in the gene 
expression landscape. 
 

1.2.4. Non-coding RNAs 
Non-coding RNAs like microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and cir-
cular RNAs (circRNAs) significantly influence epigenetics and ageing. miRNAs such as 
miR-29a alter gene expression impacting protein levels and ageing-related phenotypes, 
including roles in Alzheimer's disease (AD) (Rusu-Nastase et al., 2022). lncRNAs, like 
Neat1, guide transcriptional machinery and interact with mRNAs and miRNAs, with ev-
idence of their expression changes in ageing tissues (Marttila et al., 2020). circRNAs, 
such as Cdr1as, regulate genes through various mechanisms, and their misexpression 
can lead to age-related neurodegenerative disorders. NcRNAs' interaction with chroma-
tin modifiers further emphasises their potential as health span and longevity interven-
tion targets (D’Ambra et al., 2019). 
 

1.2.5. Three-Dimensional Chromatin Organisation 
The complex of DNA, chromatin and its associated proteins is not randomly distributed 
inside the nucleus like a plate of spaghetti Bolognese. Since spatial configuration im-
pacts gene regulation significantly, it is intricately organised.  
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A key element of 3D chromatin organisation are chromatin loops. Looping allows to 
bring genomic regions into close spatial proximity and facilitates interactions between 
promoters and often distant regulatory elements like enhancers and silencers. Loops are 
not static and can dynamically form and fall apart. The guidance of these formations is 
regulated by the Cohesin complex that plays a role in loop extrusion and is bound by 
CTCF proteins (Evans et al., 2019).  
 
The concept of topologically associating domains (TADs) introduces another layer of 3D 
chromatin organisation. They can range from hundreds of kilobases to a few megabases 
and describe genomic regions in which DNA sequences interact to a higher range than 
with regions outside (if at all). Often, they are seen as functional units of chromatin or-
ganisation wherein regulatory elements (e.g., enhancers) interact with their target 
genes. As mentioned above, they are bound by CTCF insulator proteins and Cohesin 
(Bastiaan Holwerda and de Laat, 2013).  
 
Changes in chromatin loop dynamics, unregulated compartment switching and the dis-
ruption of TAD boundaries have been reported during ageing in various cell types. As 
these are substantial 3D chromatin alterations, they can affect gene expression changes 
and can contribute to an ageing phenotype (Sun et al., 2018; Evans et al., 2019).  
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1.3. The Ageing Liver   

One of the primary metabolic organs of mammals is the liver. Its functions are pivotal 
for organisms, including energy metabolism, xenobiotic and endobiotic clearance, and 
synthesis and signalling of essential biomolecules like insulin and albumin. This versa-
tility of tasks can only be facilitated with a specialised organ architecture and unique 
specialisation. The liver is structured into functional zones, but in practice, these units 
are not strictly segregated but rather form a functional continuum. Generally, the liver 
is organised in hepatic lobules. Each lobule is hexagonal, and a portal triad (portal vein, 
hepatic artery, bile duct) is located at each corner of the hexagon (Kalra and Tuma, 
2018). Each lobule is subdivided into three further main zones: Pericentral, mid-lobular, 
and periportal zone. These liver zones, while morphologically similar, serve distinct 
functional roles. Their spatial arrangement corresponds to the axis of oxygen tension in 
the liver, distributing metabolic functions accordingly. The oxygen availability is highest 
in the periportal region, decreases towards the mid-lobular zone, and is lowest in the 
pericentral region. This oxygen gradient corresponds with variations on the protein and 
genetic level, facilitating the identification of signature genes for spatial source determi-
nation of liver cells. Notably, although hepatocytes constitute the majority of liver cells, 
non-parenchymal cell types also demonstrate a spatial pattern that aligns with their mi-
cro-environment (see also: Figure 3) (Cunningham and Porat-Shliom, 2021).  
 
The periportal zone, also called zone one, is adjacent to the portal triad, consisting of the 
hepatic artery and the bile duct. As mentioned above, the periportal zone shows the 
highest oxygen tension and is primarily orchestrating processes that involve high levels 
of ATP, including gluconeogenesis and cholesterol synthesis (Katz and Jungermann, 
1976). Key marker genes in mice for this zone are, among others, Cyp2f2 and Cps1, which 
is involved in the urea cycle (Ben-Moshe et al., 2019).  
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Figure 3: Anatomy of the liver and its fundamental unit, the hepatic lobule. The liver is built from hexago-
nal structures referred to as lobules. Blood, abundant in oxygen and nutrients, flows in a specific direction 
starting from the hepatic vessels (depicted in red) located at the lobule's corners, towards a central vein 
situated in the middle (illustrated in blue). Hepatocytes found near the portal area (zone 1) are at the lob-
ule's exterior, followed by hepatocytes in the middle of the lobule (zone 2), and finally, hepatocytes adja-
cent to the central vein (zone 3) surround it. This diverse microenvironment along the axis from the peri-
portal to the pericentral region results in distinct areas. Modified from Cunningham and Porat-Shliom 
(2021). 

 
The mid-lobular zone, or zone two, is considered an intermediate between the periportal 
and pericentral zone, comprising features of both. Hepatocytes in the mid-lobular zone 
have been shown to adapt dynamically to the body's metabolic needs. One described 
marker for the mid-lobular zone is Hepcidin Antimicrobial Peptide (Hamp) and Hep-
cidin Antimicrobial Peptide two (Hamp2), which regulate hepatic iron homeostasis in 
mice (Cunningham and Porat-Shliom, 2021). 
 
The pericentral zone, or zone three, is around the central vein and characteristically has 
a low oxygen tension. Therefore, as expected, primarily anaerobic processes are localised 
in this area, including glycolysis (Matsumura and Thurman, 1984), lipogenesis (Hijmans 
et al., 2014), glutamine synthesis (Gebhardt et al., 2007) and bile synthesis 
(Cunningham and Porat-Shliom, 2021). 
Similarly, cytochrome P450 enzymes like Cyp2e1 and Cyp1a2 are described as marker 
genes for the pericentral region in mice. They are involved in a variety of mono-oxygen-
ation and hydroxylation of many endogenous and exogenous compounds like steroids, 
prostaglandins, drugs and alcohol (Oinonen and Lindros, 1998).  
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It should be noted that mRNA and protein levels measured in the different liver zones 
also show conflicting expression between protein and mRNA levels, hinting towards ad-
ditional regulation via post translational modification (Ben-Moshe et al., 2019). 
 
The unravelling of the spatial zonation and their genetic and epigenetic organisation has 
significantly advanced the understanding of metabolism and general liver function. This 
will not only help to understand liver pathophysiology in liver diseases but also liver 
ageing.  
 
As the liver is orchestrating a plethora of energy metabolism processes like glucose and 
lipid homeostasis, balancing of steroid levels, and insulin signalling, all are connected to 
the hallmarks of ageing, it is quite obvious that alterations in the liver during ageing have 
implications on an organism-wide level.  
 
The structural ageing phenotype of the liver is described with a gradual decline in size 
from decreased hepatic cell mass, leading to reduced liver volume. This is accompanied 
by vascular modifications, including a decreased number of fenestrations in the endo-
thelial lining and thickening of the vascular walls, leading to decreased hepatic blood 
flow and impeded exchange of molecules between the liver parenchyma and the blood. 
Simultaneously, irregular hepatic lobule contours start to extent, as well as fibrotic septa 
(Ayala-Peña and Torres-Ramos, 2014).  
 
At the cellular level, hepatocytes, the principal cell type of the liver, progressively un-
dergo senescence. This growth arrest, in consequence, leads to hepatocytes adopting a 
senescence-associated secretory phenotype resulting, as discussed in Chapter 1, in a re-
lease of a myriad of factors like pro-inflammatory cytokines, chemokines and proteases. 
This pro-inflammatory environment, together with an increasing number of senescent 
cells, perturbates the changes in the liver architecture and the decline in liver function 
(Radonjić et al., 2022). Hepatocyte polyploidy is also increasing during ageing, but if this 
mechanism is compensatory or detrimental to liver function is not fully understood 
(Matsumoto et al., 2021) 
 
These declines are also having notable compromising effects on the regenerative capac-
ity of the liver, which is a defining characteristic of it. This means that the aged liver be-
comes more vulnerable to injuries and has a reduced capability to recover from insults 
such as surgical procedures, toxic metabolites and environmental toxins or viral infec-
tions. This happens in combination with a decline in the capacity to facilitate detoxifi-
cation and metabolic processes (Guicciardi et al., 2013).  
 
Clinically liver ageing is a significant factor. With age, the probability of several age-re-
lated diseases is increasing. This includes non-alcoholic fatty liver disease, hepatocellu-
lar carcinoma, and liver cirrhosis. Lastly, it is also reported that aged livers show a nota-
ble decline in drug metabolism with a reduced drug clearance that elevates the risks of 
adverse drug reactions (Anantharaju et al., 2002).  
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Energy metabolism in the ageing liver 
The liver performs an extensive variety of indispensable roles in maintaining the body's 
energy metabolism. Among others are the regulation of blood glucose levels, lipogenesis, 
beta-oxidation, processing of dietary nutrients, and coordination of the responses to 
feeding and fasting. Therefore, alterations in the livers' metabolomic capacity have pro-
found impacts on a systemic level (Anantharaju et al., 2002).  
 
The livers' glucose metabolism is central to the homeostasis of blood glucose metabo-
lism. Gluconeogenesis, the process of converting non-carbohydrate precursors like py-
ruvate and others into glucose, becomes compromised during ageing. To mention spe-
cifically here is the reduced activity of key enzymes in gluconeogenesis, including phos-
phoenolpyruvate carboxykinase and glucose-6-phosphatase that is hampering the liv-
ers' capability to produce glucose in fasting states (Wimonwatwatee et al., 1994). In tan-
dem goes a decline in the capability to synthesize hepatic glycogen and its subsequent 
storage, mainly due to the reduced activity of glycogen synthetase. Consequently, gly-
cogenolysis, as the primary source of glucose, is increased during fasting events. This 
leads to the depletion of the hepatic glycogen storage in order to maintain glucose levels, 
thereby impeding the ability to maintain euglycemia during prolonged fasting events 
(Khandelwal et al., 1984). 
 
Lipid metabolism in the ageing liver  
A substantial alteration in lipid metabolism is also observed during the age-related de-
cline in liver function. The liver has an outstanding role in lipid metabolism and is the 
main actor in lipid synthesis, degradation, and lipoprotein assembly and secretion.  
The de novo synthesis of fatty acids (lipogenesis) is particularly affected by ageing via a 
decline in enzymatic activity but also through regulatory mechanisms (Gong et al., 
2017).  
 
Lipogenesis is facilitated by several key enzymes that transform carbohydrates into their 
storage form fatty acids. The ATP citrate lyase first converts citrate into acetyl-CoA. Ac-
etyl-CoA is subsequently carboxylated by the acetyl-CoA carboxylase to form malonyl-
CoA, which is after that covalently bond to two further carbon units by the fatty acid 
synthase to form the 16-carbon saturated fatty acid palmitate which then is further mod-
ified to form a variety of classes of other fatty acids. 
 
A significant change in liver fatty acid composition can be detected during the ageing of 
mice. This is covered in part one of this thesis, where the concepts, methods, and results 
are detailed. In short, an increase in intrahepatic triacylglycerides, several diacylglycer-
ides, and cardiolipins could be found. In contrast, phosphatidylcholines and sphingo-
myelins were decreased, indicating an extensive remodelling of liver lipogenesis during 
ageing.  
This might be connected to recent studies indicating a change also in the activity of other 
factors like liver X receptors, carbohydrate-responsive element-binding protein and the 
insulin-mediated phosphatidylinositol 3-kinase/Akt pathway (Huang et al., 2018). 
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On the opposite of maintaining lipid homeostasis in the liver, there is hepatic lipid deg-
radation via beta-oxidation. During beta-oxidation excess fatty acids are converted into 
energy. During ageing, the capacity of the liver to oxidise fatty acids is altered, like lipo-
genesis. 
The Peroxisome proliferator-activated receptor alpha regulates numerous genes in-
volved in fatty acid transport and beta-oxidation. Its reduced expression has been cor-
related with the reduced expression of its target genes in aged mouse livers, thereby in-
creasing oxidative stress (Erol, 2007).  
Furthermore, Rev-erba, a transcriptional repressor involved in upregulating fatty acid 
oxidation and down-regulating lipogenesis, has also been reported to show reduced ex-
pression during ageing. Hence, the observed imbalances in lipid homeostasis are likely 
caused by a complex web of malfunctioning genes and proteins during ageing (Griffett 
et al., 2020). 
 
Overall, the characterisation of alterations in liver homeostasis is a crucial point of in-
terest for understanding the factors involved during liver ageing. This thesis aims to fur-
ther elucidate the effects on the epigenetic, transcriptional, and intercellular levels to 
provide new insights into the pathogenesis of age-related metabolic disorders in the 
ageing liver 
 
Epigenetic changes in the ageing liver 
So far, it is known that the liver epigenome undergoes profound changes during ageing 
in almost all aspects described before. DNA methylation patterns, histone modifications 
and non-coding RNA profiles contribute to the age-related liver ageing phenotype. 
Changes have been reported for hepatocytes, Kupffer cells, Hepatic stellate cells and 
other cell populations within the liver. This further corroborates the complexity of liver 
ageing. 
 
Hepatocytes, facilitating the majority of metabolic tasks, show a broad spectrum of epi-
genetic changes during ageing. DNA methylation and hypermethylation events have 
been observed around promoter regions of key genes like Elongation of very long chain 
fatty acids protein (Elovl) involved in lipogenesis and PPARA, as mentioned, involved in 
beta-oxidation regulation. Additionally, histone marks, including H3K4me3 and 
H3K36me3, show a decline. These marks are known for transcription activation and in-
dicate a possible decrease in transcriptional activity or transcription initialisation 
(Wang et al., 2022). Also, in the branch of non-coding RNAs are observable for hepato-
cyte-specific miRNAs, such as miR-122, recorded to be of critical importance in lipid and 
glucose metabolism (Willeit et al., 2017). All other liver cell types also undergo various 
epigenetic alterations, but these are out of the scope of this thesis and shall not be dis-
cussed here.  
This shows that cell-specific epigenetic changes shape not only the ageing-liver pheno-
type but also the chromatin landscape of the liver in general. A comprehensive under-
standing of these strongly interconnected processes demands further exploration. They 
hold the potential for a better understanding of liver ageing and new intervention tar-
gets.   
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1.4. Understanding Liver Ageing: Harnessing the 
Power of (Single-Cell) Omics-Methods 

The advent of omics-methodologies – epigenomics, genomics, transcriptomics, prote-
omics, and metabolomics, among others - has revolutionized biological research by al-
lowing comprehensive examination of biological systems. In the field of ageing research, 
especially concerning liver ageing, these approaches hold immense promise. Applying 
omics-technologies to liver ageing research permits a deep and nuanced understanding 
of these complex changes at multiple biological layers. Epigenomics, which explores 
changes in gene activity regulation that don't involve alterations to the genetic code it-
self, is of particular interest in ageing research. It is now widely acknowledged that age-
ing correlates with significant alterations in the epigenome. The highly dynamic nature 
of the epigenome enables it to respond to a multitude of environmental signals, making 
it a critical regulator of age-related changes (Sen et al., 2016) 
 
High-throughput omics-technologies allow simultaneous assessment of these multiple 
dimensions, uncovering the interactions and regulatory feedback loops that exist be-
tween them. Cross-referencing these diverse data types can yield significant insights. 
For instance, integrating epigenomic data with transcriptomic or proteomic data can 
help to delineate how changes in the epigenetic landscape influence gene expression and 
protein abundance during liver ageing (Figure 4) (Lorusso et al., 2018). 
 

 

Figure 4: Understanding ageing and liver Ageing through a multidimensional lens: Ageing and 
liver ageing are complex processes. The emergence of omics-technologies empowers us to exam-
ine these processes from a multifaceted perspective. Each layer of omics data corresponds to a 
vast set of parameters specific to that layer, enabling the acquisition of high-resolution insights 
into various biological states and abstraction levels. These insights can then be integrated to de-
code the multi-layered mechanisms of ageing, with specific emphasis on liver ageing in this the-
sis. The 'Age/environment' axis encompasses both internal factors (such as age) and external fac-
tors (including chemical, physical, and biological agents, along with overall environmental as-
pects). The organization axis refers to various levels of biological structure, spanning from organ-
isms to organs, cells, and organelles. The analysis axis corresponds to a range of high-throughput 
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omics-technologies and their integrative applications across diverse layers including genomics, 
epigenomics, transcriptomics, proteomics, metabolomics, and phenomics. Modified from Kim et 
al., ( 2016) Made with BioRender.com.		

 
Moreover, integrated analysis can guide the unveiling of the causal relationships and the 
sequence of events during the ageing process. It can determine whether a specific epige-
netic modification results in altered gene expression or whether it is a downstream con-
sequence of other molecular changes. Therefore, integrative analyses are invaluable in 
pinpointing critical ageing drivers and potential therapeutic targets. 
 
However, the integration of multiple omics data types poses significant challenges, in-
cluding the need for robust statistical methods, appropriate computational tools, and 
strategies to deal with the high dimensionality of omics data. These hurdles, while sub-
stantial, are not insurmountable, and advancements in bioinformatics are continually 
providing improved methods for multi-omics data integration. 
In conclusion, the application of omics methods, especially with an epigenomic perspec-
tive, to liver ageing research presents an expansive view of the ageing process. By cross-
referencing the results of these methods, researchers can gain a more profound and ho-
listic understanding of ageing, opening the door to novel interventions for age-related 
liver disorders (Singh and Benayoun, 2023). 
 

1.4.1. scATAC-seq 
Since the advent of Transposase-Accessible Chromatin sequencing (ATAC-seq) in the 
Greenleaf lab at Stanford in 2013, the method had a triumphal procession into epigenetic 
labs worldwide (Buenrostro et al., 2013). Since then, the number of studies and data pub-
lished superseded the number of studies published with comparable methods for de-
tecting chromatin accessibility like DNase I hypersensitive sites sequencing, Formalde-
hyde-Assisted Isolation of Regulatory Elements sequencing, micrococcal nuclease diges-
tion with deep sequencing and others by far (Yan et al., 2020). This corroborates its value 
in answering biological questions and the lower amounts of input material needed than 
for other methods, and less time-consuming sample preparation times allow for a 
broader application (Buenrostro et al., 2013). The advances in single-cell technologies as 
well as in microfluidics, allow today to profile the chromatin accessibility for up to mil-
lions of cells via microfluidic and nano-well-based approaches (Buenrostro et al., 2015; 
Cusanovich et al., 2015; Mezger et al., 2018). The details for the library preparation can 
be found in chapter 5.1.  

 
Bioinformatic Analysis of Single-Cell Assay for Transposase-Accessible Chromatin 
Sequencing 
This project is based on the 10x Genomics single-cell ecosystem. After preliminary anal-
ysis of the data in Part one, we observed that biological findings can depend on the 
choice of data processing method – which made us question the reproducibility of the 
results. Therefore, two different analysis approaches were performed to ensure that the 
obtained results offer the best biological interpretability and statistical robustness. Ap-
proach one is based on the CisTopic R package (Bravo González-Blas et al., 2019) and 
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approach two on the Signac R package (Stuart et al., 2021). The general concepts are in-
troduced here, and the mathematical details of these two approaches are discussed in 
Chapter 1.5.1. and Chapter 1.5.2. 
 
Both methods follow the approach to model the scATAC-seq data as commonly applied 
in natural language processing. CisTopic applies a method known as Latent Dirichlet Al-
location (LDA) for dimensionality reduction and downstream analysis. It is a generative 
probabilistic model originally designed to identify “topics” in a corpus of documents.  
In the scATAC-seq data, individual cells represent a document and the “words” are the 
genomic regions which were detected as accessible in a cell. The inference tries to iden-
tify a set of “topics” represented by distinct genomic regions that can, among others, de-
fine a transcription factor binding site, an enhancer region or a cis-regulatory element 
which are co-accessible across a subset of cells (Bravo González-Blas et al., 2019; Stuart 
et al., 2021). 
 
LDA offers some potential advantages over other approaches: It does not necessarily re-
quire peak calling or binarization, hence retains the complete quantitative structure of 
the data. Additionally, it is designed explicitly for data sparsity, as it is very common for 
scATAC-seq data. Finally, the topic probability distributions are a very easy-to-interpret 
way to identify cells with regions of co-accessibility and common regulatory elements. 
All usual downstream processing, including non-linear dimensionality reduction, clus-
tering, the computation of gene activity scores, differential accessibility analysis, tran-
scription factor motif analysis of the topic-defining regions, and integration with single-
cell RNA Sequencing (scRNA-seq) data, can be carried out based on the cell to topic prob-
ability matrix. 
 
Seurat is a single-cell analysis tool for various single cell technologies and applications 
that also has a specialised analysis pipeline for scATAC-seq data called Signac (Hao et 
al., 2021; Stuart et al., 2021). 
The standard Seurat pipeline for transcriptomics and epigenomics analysis can be di-
vided into the following steps: Initial quality control, assessment of highly variable fea-
tures, scaling and normalisation and dimensionality reduction, and differential expres-
sion/accessibility testing. 
 
For scATAC-seq data, the analysis pipeline is tailored and adjusted for the peculiarities 
of ATAC data, as discussed before. Input is here the via 10x Genomics chromium analysis 
pipeline software generated fragment file that contains the peak coordinates and the 
polymerase chain reaction (PCR) duplicate count for the cells detected in the dataset. 
Initial quality control is the starting point of the Signac analysis. In contrast to normali-
sation, scaling and Principal component Analysis (PCA), Latent semantic indexing (LSI) 
(Deerwester et al., 1990) and truncated single value decomposition are used for dimen-
sionality reduction (Stuart et al., 2021).  
 
The LSI approach might come with some limitations as it is based on the peak-level anal-
ysis. This might allow a detailed exploration of chromatin accessibility as well but may 
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be more susceptible to data sparsity. It is even noted by the authors that usually, the first 
dimension of the LSI is strongly correlated with the sequencing depth of the cells and 
should be discarded. This makes the choice of parameters for downstream processing 
more tedious and needs thorough testing for every dataset, requiring a high level of user-
based parameter choices that could potentially skew the results of the analysis and 
might make it less reproducible for others (Stuart et al., 2021).   
 
Taken together, both approaches facilitate scATAC-seq data analysis. They follow differ-
ent strategies coming with their unique focuses and strengths. The downstream pro-
cessing of both approaches remains the same, whereas the initial dimensionality reduc-
tion approach is very different. It should be noted that both methods allow for the inte-
gration of the dimensionality reduction results in one of the other pipelines allowing for 
easy comparison between the two approaches. The choice between one method or the 
other relies on the level of user expertise, the expected complexity of the dataset and the 
specific research question. However, for very sparse datasets, the LDA will likely prove 
superior for exploratory analysis, while for more hypothesis-driven investigations, Si-
gnac might present a higher value.  
 
In conclusion, scATAC-seq is a technology that most likely revolutionised the field of 
studying chromatin dynamics of singular cells. A variety of bioinformatic approaches 
exist to unravel these dynamics, each coming with its unique strengths and limitations. 
Despite their differences, both methods allow for highly valuable contributions to the 
knowledge in the field. Nonetheless, the field of bioinformatic methods to analyse 
scATAC-seq data is far from being saturated and further improvements, benchmarkings, 
and novel tools will be needed and should be the subject of ongoing research in order to 
unravel the intricacies of chromatin dynamics and accessibility.  
 
Employing scATAC-seq as part of the multi-omics analysis, we investigated age-de-
pendent, zonated alterations in chromatin accessibility in murine liver hepatocytes. We 
correlated them with spatial transcriptomics data and could associate specific chroma-
tin alterations with metabolic and transcriptional regulation changes. Details can be 
found in part one of this thesis. 
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1.4.2. CUT & RUN Sequencing  
Protein-DNA interactions, studied through numerous localization and genome-wide 
analysis methods like Electrophoretic Mobility Shift Assay, Yeast One Hybrid, and Chro-
matin Immunoprecipitation Sequencing (ChIP-seq), hold significant research value 
(Dey et al., 2012; Ferraz et al., 2021). However, ChIP-seq has inherent limitations, includ-
ing its requirement for large amounts of input material, making it challenging for certain 
animal tissues or organs, and its reliance on formaldehyde crosslinking which may in-
troduce false positives due to non-specific or indirect DNA-protein interactions 
(Teytelman et al., 2013; Meers et al., 2019) 
cleavage under targets and release using nuclease sequencing (CUT&RUN-seq), pro-
posed by Skene and Henikoff (2017), offers an alternative, circumventing these issues by 
in-situ generation of DNA-protein complexes. Its key component is a micrococcal nucle-
ase (MNase) tailored to target specific interactions. The process comprises four stages: 
immobilizing unfixed nuclei, adding specific antibodies with protein A-MNase fusion 
protein, activating MNase via calcium to facilitate DNA cutting, and retrieving DNA-pro-
tein complexes through cell lysis and centrifugation. The purified DNA fragments are 
prepared for next-generation sequencing. Fragmented spike-in DNA is added to each 
sample to enable quantitative comparison. 
 
The bioinformatics analysis involves quality control, adapter trimming, PCR duplicate 
removal, read sorting and indexing, alignment to the reference genome, normalization, 
and peak calling, particularly using SEACR (Meers et al., 2019). The called peaks contrib-
ute to downstream analysis, visualization, motif discovery, and functional annotation. 
 
CUT&RUN-seq, a cost-effective, low-input method with higher precision than ChIP-seq, 
is crucial for chromatin research and ageing context, aiding our understanding of age-
associated chromatin and transcriptional landscape changes. 
 
In part two, we demonstrated that CUT&RUN-seq is an invaluable tool for understand-
ing age-regulated changes during transcriptional regulation. It could be shown that dur-
ing ageing, the liver exhibits an increase in the accessibility at promoter regions, but this 
does not correspond to an increase in transcriptional output. Further, we could show 
that the promoter proximal pausing of RNA polymerase II (Pol II) decreases during age-
ing and cannot be attributed to reduced transcription initiation. This important finding 
was only possible due to the precision of CUT&RUN-seq. 
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1.4.3. Spatial transcriptomics 
Spatial sequencing, the 2020 method of the year, has revolutionised genomics by adding 
a spatial dimension to RNA expression studies. It illuminates the microenvironment and 
spatial organisation within a tissue, providing an unparalleled view of the transcrip-
tional landscape and enhancing tissue understanding (Marx, 2021) 
 
In contrast to RNA-sequencing techniques like bulk-seq and scRNA-seq that eliminate 
cellular positional context, spatial transcriptomics preserves the original mRNA location 
within tissue sections, allowing multi-layered gene expression analysis. 
 
Spatial transcriptomics broadly falls into three categories: in situ hybridisation (e.g., 
Multiplexed error-robust fluorescence in situ hybridisation (MERFISH), Sequential flu-
orescence in situ Hybridisation (SeqFISH)), in situ sequencing (e.g., Fluorescent in situ 
sequencing (FISSEQ), Spatially-resolved transcript amplicon readout mapping (STAR-
map)), and in situ capturing. The latter captures mRNA molecules for next-generation 
sequencing using positional barcodes, reverse transcription primers, and poly-T mRNA 
capturing sequences (Lee et al., 2015; Wang et al., 2018; Eng et al., 2019; Xia et al., 2019; 
Piñeiro et al., 2022). 
 
The spatial gene expression platform Visium from 10x Genomics uses the library prepa-
ration method similar to scRNA-seq but with modifications for spatial context preserva-
tion. Tissue sections are placed on a designed glass slide with capture spots carrying 
unique barcodes and oligo(dT) sequences. The mRNA bound to these sequences is re-
verse transcribed to cDNA, allowing origin identification and gene expression quantifi-
cation.  
 
Despite the capturing of transcriptional patterns, the technology is limited by the need 
for high-quality tissue samples and its inability to capture mRNAs in single-cell resolu-
tion. Yet, in ageing research, it holds great promise for discovering location-specific age-
ing signatures and new biomarkers, as shown by a recent study on spatiotemporal map-
ping of the ageing mouse brain (Hahn et al., 2022) 
 
Bioinformatic analysis of spatial sequencing data  
To harness the full potential of the multidimensional data generated with spatial se-
quencing, statistically robust and reliable bioinformatic tools are indispensable. The R 
package Seurat, originally developed for scRNA-seq, offers a comprehensive toolbox that 
enables advanced analysis and interpretation of spatial sequencing data (Hao et al., 
2021).  
 
The Seurat pipeline includes data pre-processing, quality assessment, dimensionality 
reduction, spot clustering and detection of spatially variable genes. All these are the key 
steps for deciphering the complex multidimensional gene expression data.  
A standard workflow for spatial data analysis starts with the pre-processing. Raw gene 
expression matrices can be imported, assessed for quality, and technical variability can 
be addressed via normalisation.  
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The normalised genes × spots matrix serves as a basis for all further analysis steps. As 
this matrix still contains unwanted noise and is high-dimensional, dimensionality re-
duction is strongly advised. Commonly this is done with principal component analysis 
(For more details, see chapter 1.5.1 Principal Component Analysis) 
As spatial sequencing data can also be interpreted as scRNA-seq like data, it is also pos-
sible to apply non-linear dimensionality reduction methods like t-Distributed Stochas-
tic Neighbour Embedding or Uniform Manifold Approximation and Projection for 2D 
visualisation neglecting the spatial context of the data. This step allows to visualise 
structures and patterns in the data. 
As common in scRNA-seq clustering, methods like K-nearest neighbour clustering are 
often used to group the spots based on the linear dimensionality reduction. Visualising 
the clusterings on the image of the tissue slide can help to identify biological structures 
and cell populations represented by the clusters. The other way around, clusters in his-
tologically interesting areas can be tracked back into the data and can be used to further 
characterise these areas on a genetic level (For example, the central area of a cancer sam-
ple or the periportal and pericentral zones of liver tissue). Commonly at the end of the 
pipeline, differential gene expression testing is performed between the clusters, fol-
lowed by a biological annotation of the significant genes via, for example, GO-Term 
analysis. However, there are several caveats to this procedure. Firstly, the unsupervised 
clustering of the spots can be severely biased by the user. The number of principal com-
ponents and the parameters used for the clustering can highly influence the cluster as-
signment and, thereby, the result of the differential gene testing. Secondly, in contrast 
to scRNA-seq, the spots from spatial sequencing do not represent individual cells but are 
instead a mixture of the expression of cells in the specific area of the spot. It has to be 
thoroughly evaluated if all the mathematical assumptions for the test of choice still hold. 
Lastly, as the clustering and differential gene testing completely ignore the spatial con-
text of the spots, it is very likely that this approach overlooks spatial trends and patterns 
in the data and thereby, important differences in the tissues' gene expressional land-
scape are non-detectable or overlooked.  
 
Genes varying in a spatially dependent manner are often called spatially variable genes 
(SVG) and typically show significant variation across different spatial locations. In con-
trast to differentially expressed genes, they sometimes do not show a big expression dif-
ference between user-defined clusters but rather a gradient-like distribution across a 
specific tissue area and are, therefore, harder to detect with traditional methods. 
Since the advent of spatial-omics methods, have been proposed to address this problem 
specifically. Among these are spatialDE (Svensson et al., 2018), SPARKX (Zhu et al., 2021) 
and Trendsceek (Edsgärd et al., 2018).  
 
SPARKX (spatial pattern recognition via kernels) is an R package designed specifically 
for identifying spatially variable genes. SPARKX models spatial gene expression patterns 
through a generalised linear mixed model that models non-Gaussian spatial data. The 
random effect in the model is the underlying stationary process. The observed expres-
sion is modelled by a Negative Binomial distribution. The model accounts for spatial au-
tocorrelation and technical noise via a zero-mean stationary Gaussian process. Several 
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kernels are available to approximate the true gene expression pattern as best as possible 
via a Bayesian approach based on a penalised quasi-likelihood algorithm. SPARKX is pro-
posed to work for all three types of spatial transcriptomics categories (Sun et al., 2020; 
Zhu et al., 2021). 
Trendsceek identifies spatially variable genes via a marked point process. It ranks genes 
with dependencies between the spatial distribution of the cells and the gene expression 
in those cells. The approach is non-parametric and is suited to identify non-linear ex-
pression patterns. P-values for each gene are calculated for each gene by comparing the 
observed data to a random permutation-generated null distribution (Edsgärd et al., 
2018).  
Like SPARKX, SpatialDE uses a Gaussian process model to identify spatially variable 
genes. The expression of a gene across all cells is decomposed into spatial and non-spa-
tial variance effect terms that are then tested against a model without the spatial vari-
ance component (Svensson et al., 2018).   
 
The choice of a specific method depends on the research question and the nature of the 
dataset, as every method has its strengths and limitations. New methods are published 
frequently, but so far, no gold standard approach has emerged. In part three of this the-
sis, a novel approach for the detection and identification of spatially variable genes is 
displayed. Spatial Components (SPACO) is designed for 10x Genomics Visium spatial 
data and outperforms existing methods in terms of SVG detection. Further, it proposes 
a flexible framework for data denoising and feature selection. 
 
Further, in part one, we leverage the potential of spatial transcriptomics to elucidate di-
verse ageing trajectories within liver tissue. This vital tool uncovered the zonation of 
age-related alterations, providing a comprehensive view of spatial and molecular shifts 
that occur during ageing. 
Spatial transcriptomics illuminates the previously undisclosed zonation of lipid deposi-
tion in aged livers, associating this phenomenon with DNA accessibility and gene ex-
pression changes in Cidea and Cidec. These genes, integral to lipid droplet dynamics, 
were upregulated specifically in old pericentral hepatocytes, providing potential in-
sights into the distinct lipid accumulation patterns seen in aged liver tissue. 
 
In conclusion, spatial transcriptomics proves indispensable in this study, driving vital 
insights into the spatially resolved molecular alterations during liver ageing. By linking 
zonation of lipid deposition to specific gene expressions, it provides a robust foundation 
for future ageing research  
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1.5. Dimensionality Reduction Methods 

1.5.1. Latent Dirichlet Allocation 
Latent Dirichlet allocation is originally a method developed for natural language pro-
cessing that aims to explain a set of observations through unobserved groups. On the 
other hand, each group explains why some parts of the data are similar. It is a topic 
model that uses words in a corpus of documents. Each word in a document is attributa-
ble to a topic in a document, and every document contains a small number of topics in-
dividually. On a mathematical level, the core assumption for the LDA is that the observed 
accessibility across cells is based on a mixture of underlying “topics”, which can be a cell 
type, a metabolic state or virtually any kind of state causing co-occurring DNA accessi-
bility. The “topics” are assumed to be a probability distribution over all genomic regions, 
and every cell is represented as a probability distribution over these topics. Biologically, 
that means that several processes may influence accessibility in a particular region: the 
ones with higher probability are more likely to do so, while the processes with lower or 
zero probability are unlikely to cause a change in accessibility in that region. Let us as-

sume the following notation: If 𝑍 is the topic assignments, Θ!  the topic proportions for 

each cell ranging from 1 to 𝐾 and 𝜑"  the chromatin region distribution for every topic 

ranging from 1 to 𝐾. The generative process for the LDA takes the following form (For 
plate notation, see also Figure 5):  
 

 

Figure 5: Latent Dirichlet Allocation plate notation with Dirichlet-distributed topic-word distributions. Fig-
ure obtained from Wikimedia commons (Commons Wikimedia, 2009). Explained below. 

 

• 𝑀 denotes the number of documents 

• 𝑁	is number of words in a given document (document 𝑖 has 𝑁! 	words) 

• 𝑉	number	of	words	in	the	vocabular 

• 𝐾	number	of	topics	 
• 𝑍	identity	of	topic	of	word	𝑤	in	document	𝑑 

• 𝑊	topic	origin	of	all	words	in	all	documents	(non	observable) 

• 𝛼 is the parameter of the Dirichlet prior on the per-document topic distributions 
(<<1) 

• 𝛽 is the parameter of the Dirichlet prior on the per-topic word distribution (<<1) 
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• Θ!  is the topic distribution for document 𝑖	
• 𝜑"  is the word distribution for topic 𝑘 

• 𝑧!#  is the topic for the 𝑗-th word in document 𝑖 
• 𝑤!#  is the specific word. 

 
The probability distribution over the topic-word distribution is intuitively sparse as it is 
most likely skewed towards only a few words occurring with high probability in a spe-
cific topic. Therefore, a sparse Dirichlet prior can be used to model the topic-word dis-

tribution. In plate notation in figure 5 𝐾 is the number of topics, which in cisTopic are 
determined by the maximum of the likelihood function for the user defined number of 

topics 1 to 𝐾. 𝜑$… .𝜑"  are 𝑉-dimensional vectors for the number of words 𝑉 with the 
Dirichlet distributed topic-word distributions (Deerwester et al., 1990; Bravo González-
Blas et al., 2019).  
 
For the actual inference it is assumed that the generative process for every document is 
as described in the following: 
 

• Θ!~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼), where𝑖 ∈ 1,… .𝑀. The 𝛼 parameter is usually small (<<1). 
For cisTopic organism specific parameters are suggested. 

• 𝜑"  ~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛽), where𝑘 ∈ 1,… . 𝐾. The 𝛽 parameter is usually small (<<1). 
For cisTopic organism specific parameters are suggested. 

• For each word positions	𝑖, 𝑗, where 𝑖 ∈ 1,… .𝑀 and 𝑗 ∈ 1,… .𝑁!. 
• Choose a topic 𝑧!,#~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(Θ!) 

• Choose a word 𝑤!#~𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 [𝜑&!,#\ 

 
Inferential algorithms such as variational Bayes or Gibbs sampling can be used to esti-
mate the latent variables from the observed data. CisTopic uses a collapsed Gibbs sample 
for variable inference. Initial parameter settings are user defined. However, the authors 
give organism specific recommendations (Bravo González-Blas et al., 2019).  
 

1.5.2. Latent Semantic Indexing and Single Value Decomposition 
Latent semantic indexing was originally, like LDA, developed for Natural Language Pro-
cessing. Again, comparable to LDA for LSI, “documents” represent the individual cells 
and “terms” to genomic regions (peaks). The entirety of the whole dataset is considered 
the “corpus”.  
 
LSI is a two-step procedure. First, a term frequency-inverse document frequency (TF-
IDF) matrix is computed and can be seen as an analogue to data scaling and normalisa-
tion. The Term frequency in Signac is defined as follows:  

𝑇𝐹 = 	𝐶!#/𝐹# , where 𝐶!#is the total number of counts for peak 𝑖 in cell 𝑗	and 𝐹#  is the total 

number of counts for cell 𝑗. 
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The inverse document frequency is defined as: 

𝐼𝐷𝐹 = '
(!

, where 𝑁 is the total number of cells in the dataset and 𝑛!  is the total number 

of counts for peak 𝑖	across all cells (Stuart et al., 2021).	
	
The final TF-IDF matrix is then computed with a modification adjusted to work for 
scATAC-seq data and not text documents: 
 

TF − IDF = log(1 + (TF × IDF) × 10)).	
 
According to the authors, the TF-IDF allows the down-weighting of highly accessible 
loci that are commonly shared across cells (high TF, low IDF) and the up-weighting of 
loci that are distinctively accessible (low TF, high IDF). The resulting matrix of weighted 
genomic regions in each cell favours cell-specific chromatin accessibility, as compared 
to a less informative accessibility landscapes shared among multiple cells (Stuart et al., 
2021).  
 
It is commonly assumed that most of the signal (variability in the data) can be explained 
by only a few (latent/ unknown) variables. Hence, it is further necessary to reduce the 
dimensionality of the data to capture latent variations. This is done by singular value 
decomposition (SVD) of the TF-IDF matrix. The singular value decomposition (Martin 
and Porter, 2012) is represented as follows:  
 

Given a 𝑚	 × 	𝑛  matrix 𝐴, the SVD is a factorisation of 𝐴	 = 	𝑈Σ𝑉*  
Where: 

• 𝑈 is an 𝑚 ×𝑚 real or complex unitary matrix 

• Σ is an 𝑚 × 𝑛 rectangular diagonal matrix with non-negative real numbers on 

the diagonal and are known as the singular values of 𝐴. The number of non-zero 

singular values is equal to the rank of 𝑀. 
• 𝑉 is an 𝑛 × 𝑛 real or complex unitary matrix. 

• 𝑉*  (the conjugate transpose of 𝑉, or simply the transpose if 𝑉 is real) is an 𝑛 × 𝑛 
real or complex unitary matrix.  

 

For any real-valued matrix 𝐴, there exists an SVD with the orthogonal matrices U and V.  
 
Geometric Interpretation  
Geometrically, the SVD can be understood as three linear transformations performed se-

quentially on the space of the original matrix 𝐴. 

• The first transformation is a rotation applied in the input space (n-dimen-

sional). This is achieved by the matrix 𝑉*. The result aligns the basis vectors 
with the principal axes of the original space. Or in other terms, the axes of the 
basis vectors are rotated to line up with the direction that captures the most var-
iability in the data, akin to principal component analysis, which is discussed in 
the next chapter. 
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• Second, a scaling transformation is applied by the diagonal matrix Σ. By the 
transformation, each basis vector is scaled by the corresponding singular value 

of Σ. The singular value can be seen as the magnitude of stretching along each 
axis.  

• Third and final is another rotation in the m-dimensional space defined by U. 
Every data point is now projected on coordinates in this rotated space that cor-
responds to the left singular vectors (Raghavendar et al., 2017).  

 

The diagonal elements of  Σ are the singular values of 𝐴. They can be used as a summary 

of the structure for dimensionality reduction (for instance, by truncating 𝐴 to a subset 
of right and left singular vectors with non-zero singular values etc.). The dimension-re-

duced cells × singular values matrix puts cells in “semantic” space, where the axes are 
related to the patterns of chromatin accessibility that differentiate cells from each other. 
 
For scATAC-seq data, a truncated SVD is applied as often the full SVD is impractical to 
compute as the number r of the non-zero singular values can be large (Stuart et al., 2021). 

The smallest singular values are therefore truncated to compute only	𝑟 non-singular val-
ues. It should be noted that the truncated SVD is no longer an exact decomposition of 

the 𝐴 matrix but rather a low-rank approximation 𝐴n by the matrix of rank 𝑡. The trun-
cated SVD then takes the following form:  
 

𝐴n 	= 	𝑈+Σ+𝑉+*, 
Where: 

• 𝑈+  is a 𝑚	 × 	𝑡 matrix 

• Σ+  is 𝑡	 × 	𝑡 diagonal  

• 𝑉+*  is 𝑡	 × 	𝑛 
 

Hence only the 𝑡 column vectors of 𝑈 and	𝑡 row vectors 𝑉*  corresponding to the largest 

singular values of Σ+are calculated. The whole operation can be solved in less time than 
computing the full SVD (Chicco and Masseroli, 2015).  
 

1.5.1 Principal Component Analysis 
Introduced by Karl Pearson in 1901, Principal component Analysis has most likely be-
come one of the most common dimensionality reduction approaches in computational 
biology (Pearson, 1901). Its main purposes are to extract meaningful information from 
high-dimensional datasets and data visualisation. PCA transforms the original set of 
possibly correlated variables into a new set of uncorrelated variables. These new varia-
bles are called principal components (PCs). These are derived in a decreasing order of 
variance.  

Mathematically, PCA can be divided into several key steps. Considering a dataset with 𝑛 
samples and 𝑝 samples represented by an 𝑛 × 𝑝 matrix 𝑋. With each column centred to 
have mean of zero.  
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Covariance matrix calculation 

The initial step is to calculate the covariance matrix of 𝑥. It is a square matrix 𝑐 that is a 

square 𝑝 × 𝑝 matrix where the element in the 𝑖-th row and 𝑗-th column is the covariance 

between the 𝑖-th and 𝑗-th variables of 𝑋. The covariance matrix for the centred data 𝑋	 =
(𝑥$. . . . 𝑥() Is defined as 

𝐶 = r
1

𝑛 − 1s
∙ 𝑋*𝑋 

 
Eigendecomposition 
The next step is to compute the eigenvalues and eigenvectors of the covariance matrix. 

An eigenvector 𝑣 of 𝐶	and its corresponding eigenvalue λ are defined by the following 
equation: 

𝐶𝑣	 = 	𝜆𝑣 

When sorted from the largest eigenvalue λ to the lowest, the corresponding eigenvectors 
represent the orthogonal directions in the feature space in which the data shows maxi-
mum variance. The eigenvalues represent the amount of variance in that direction 
(Pearson, 1901; Ma and Dai, 2011). 
 
Projection 
Usually during the last step, the original data is projected onto the eigenvectors to obtain 

the principal components. The 𝑖-th coordinate in the principal component space of a 

data point 𝑥 in 𝑋 can be calculated as the dot product between 𝑥	and the	𝑖-th eigenvec-
tor. 
 
Geometrically, PCA can be seen as a rotation and translation of the coordinate system of 
the data. The principal components represent new axes and are oriented into the direc-
tions where the data spreads the most, meaning where the variance of the data is highest 
in decreasing order. Meaning, the first PC corresponds to the direction with the highest 
variance, the second corresponds to the direction with the second highest variance or-
thogonal to the first and so on.  
 
Principal component analysis and singular value decomposition  
From a theoretical perspective, PCA and SVD are closely related. In short, PCA for a (cen-

tred) data matrix 𝑋	𝑐an be performed by calculating the SVD of the corresponding co-

variance matrix 𝜎 = 	𝑋*𝑋. 
 

As described in Chapter 1.5., SVD decomposes a matrix 𝑋 into the product of three sepa-
rate matrices: 
 

𝑋	 = 	𝑈𝛴𝑉*  

Here, 𝑈	and 𝑉 are not only orthogonal but identical matrices, and hence left and right 

singular vectors are identical and called ‘eigenvectors’. Moreover, eigenvalues 𝜆 are non-
negative which allows us to talk about the fraction of explained variance, captured by 
each individual eigenvector. 
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The key relationship between PCA and SVD is that the principal components of 𝑋 are 

equivalent to the right singular vectors in the SVD of 𝑋, and the singular values in Σ are 

related to the square roots of the eigenvalues of the covariance matrix of 𝑋. 
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PART 1: SINGLE-CELL RESOLUTION 
 UNRAVELS SPATIAL ALTERATIONS IN METABOLISM, 

TRANSCRIPTOME AND EPIGENOME OF AGEING LIVER 

 
 
 
1.1. Contribution Statement 

My contributions were primarily in the realm of bioinformatics. I performed 
the bioinformatic analysis of the spatial transcriptomics data following the 
fastq-file generation from the sequencing facility. I also played a practical role 
in the extraction of nuclei from liver tissues in the wet lab for both scATAC-seq 
datasets. Upon the generation of the fastq files from the sequencing facility, I 
handled the bioinformatic analysis of both scATAC-seq datasets. 

In the writing phase, I was responsible for the respective method sections and 
made contributions to the main text of the manuscript. Throughout the pro-
ject, I was actively engaged in conceptualizing and planning the methodology 
of the research. 

 

DOI of the Publication: https://doi.org/10.1038/s43587-023-00513-y 
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PART 2: AGEING IS ASSOCIATED  
WITH INCREASED CHROMATIN ACCESSIBILITY AND 

REDUCED POLYMERASE PAUSING IN LIVER 

 
 
 
2.1. Contribution statement 

My contributions were primarily in the realm of bioinformatics for the CUT & 
RUN experiment. I carried out the complete bioinformatic analysis of the ex-
periment after fastq file generation.  

For the manuscript I authored the respective method section. Moreover, I re-
viewed and edited the main text. 

 

DOI of the Publication: https://doi.org/10.15252/msb.202211002 
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PART 3: DIMENSION REDUCTION 
BY SPATIAL COMPONENTS ANALYSIS IMPROVES PAT-

TERN DETECTION IN MULTIVARIATE SPATIAL DATA 

 
 

 

3.1. Contribution statement 

My contribution to this project was the implementation and evaluation of the 
method. Throughout the project, I was actively engaged in conceptualizing 
and planning the methodology of the research. 

The manuscript was written by me with Achim Tresch.  

 
DOI of the Publication: https://doi.org/10.1101/2023.10.12.562016 
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4. CONCLUSION AND DISCUSSION 

Ageing, defined as the irreversible decrease in cellular and physiological functions with compromised 
genetic integrity, increases mortality risk. This phenomenon, impacting all biological processes across 
all living organisms, is of great scientific attention due to its health and lifespan implications. The "hall-
marks of ageing" represent the core biological effects constituting the ageing process (López-Otín et al., 
2023). Epigenetics – the study of mitotically and/or meiotically heritable changes in gene function with-
out sequence alteration (Dupont et al., 2009) - is a crucial aspect of these hallmarks. Epigenetic mecha-
nisms identified so far (DNA methylation, histone modification, 3D chromatin architecture, non-coding 
RNAs) undergo changes over time, leading to "epigenetic drift", which influences organism health and 
lifespan through significant alterations in gene expression and cell integrity. 
 
While these hallmarks and the concept of 'epigenetic drift' form a general framework for understanding 
ageing across different organisms, it is important to recognise that the ageing process can be highly con-
text-dependent. This variability becomes particularly evident when we look at different organs within 
the same organism. Each organ's ageing process is distinct, influenced by its specific physiological role, 
environmental exposures, cellular makeup, and regenerative capacity. The liver, central to xenobiotic 
detoxification, key plasma protein synthesis, and metabolism, undergoes significant ageing-induced 
changes, impacting overall health. Ageing-related liver alterations include impaired regeneration, in-
flammation, fibrosis, hepatocyte senescence, and reduced blood flow, all of which enhance the risk of 
liver diseases like hepatocellular carcinoma, cirrhosis, and non-alcoholic fatty liver disease (Anantharaju 
et al., 2002; Guicciardi et al., 2013; Radonjić et al., 2022). 
 
In the liver, these ageing-related changes have profound implications not just for the organ itself but also 
for overall health. One of the key players mediating these changes and contributing to the age-related 
decline in liver function is the realm of epigenetics. These epigenetic modifications have a profound in-
fluence on the expression of genes and, ultimately, the functioning of hepatocytes, the primary cells of 
the liver. Epigenetic changes, integral to liver ageing, can disrupt the delicate balance of gene expression 
in ageing cells, leading to aberrant gene expression and cellular dysfunction. This thesis globally analyses 
DNA accessibility and transcriptional regulation changes in hepatocytes, particularly focusing on the im-
pact of ageing on these parameters in relation to hepatocytes' spatial location and microenvironment 
within the liver lobule. 
 
In the first part of this thesis, we identified regions of DNA with altered accessibility due to ageing-asso-
ciated chromatin structural changes, profoundly impacting transcription regulation, as demonstrated 
by the Cide gene loci. Predominantly upregulated in the liver lobule's central area, Cide gene family 
members (Cidea, Cideb, Cidec) regulate LD dynamics and growth. Given prior research (Gong et al., 2011) 
suggests that the increase in Cidea and Cidec expression might be one underlying reason for the increase 
in LD size with age. 
 
Part two of this thesis revealed that liver ageing affects more than just increased DNA accessibility in the 
liver. Transcription initiation and promoter-proximal pausing are also impacted, evidenced by decreased 
pausing complex stability. These findings were demonstrated through techniques such as CUT&RUN-
seq and NET-seq. 
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Based on our previous observations that the spatial organisation and microenvironment of tissues play 
a critical role in the physiological functions and disease states of organs, we turned our focus on spatial 
transcriptomics methodologies to harness the full potential of this technology.  
In part three, I presented our contribution to the fast-growing field of spatial transcriptomics data anal-
ysis. We propose a multivariate approach for pattern recognition, data denoising and SVG detection in 
spatial transcriptomics data. Our method stands out in its ability to mitigate non-spatial variation while 
demonstrating robustness and specificity. 
 
In summary, multi-omics methodologies (including scRNA-seq, scATAC-seq, CUT&RUN sequencing, 
NET-seq and spatial transcriptomics) offer a unique chance to probe the intricate landscape of the ageing 
liver. By cross-referencing diverse cellular components, epigenetic alterations, gene expression changes, 
and spatial interactions, they promise to illuminate the complex factors driving liver ageing. These in-
sights could substantially improve our comprehension of liver physiology, age-associated liver diseases, 
and overall ageing. 
 
In the following, all three parts of this thesis will be discussed in detail separately to weave together the 
findings and the significance of the results of this thesis. I will emphasise the parts of the individual pro-
jects which were my contribution.  
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4.1. Part 1: Single-cell resolution unravels spatial altera-
tions in metabolism, transcriptome and epigenome of age-
ing liver 

Cells are not isolated solitary in tissues, and their location can influence function and, as we showed in 
this study, ageing. Constraints on technology and cost have limited research into this. Traditional meth-
ods of studying cell zonation involved cell sorting or location inference, but these were biased or limited 
and required precise location markers (Halpern et al., 2018; Ben-Moshe et al., 2019). Spatial tran-
scriptomics presents an unbiased approach, detecting genes expressed in specific regions. 
 
The impact of the microenvironment, particularly on tissue-resident stem cells' fate, has been a topic of 
interest. Age-related perturbations of certain features, such as vascular niches, are implicated in the 
functional decline of hematopoietic stem cells and osteoprogenitors (Kusumbe et al., 2016). Recent re-
ports demonstrate widespread attrition of vascularisation across various organs, including the liver 
(Chen et al., 2021), underpinning that tissue microenvironments undergo considerable modifications 
with age. This notion aligns with age-related liver blood flow reduction (Wynne et al., 1989). Given the 
vascular system's role in establishing hepatocytes' functional segregation, the liver is an optimal tissue 
to investigate tissue organisation and location impacts on a specific cell type (Cast et al., 2015). 
 
In liver ageing, spatial transcriptomics, corroborated by scATAC-seq, revealed that ageing is associated 
with zonated changes in metabolic processes, particularly those related to amino acid and lipid metabo-
lism, as well as mitochondrial energy generation. These results, confirmed by Seahorse assays, micros-
copy and lipidomic quantification, reveal the interplay across cellular function layers. This underscores 
the value of integrating molecular cell biology with modern omics-based approaches. 
 
Hepatic ageing includes LD accumulation, particularly around the liver lobule's central vein. Spatial 
transcriptomics showed increased expression of Cide genes, Cidea, Cideb, and Cidec, controlling LD 
growth (Gong et al., 2011). An increase in Cidea and Cidec expression, reflected in the epigenome as ob-
served by scATAC-seq and in independent H3K27ac (enhancer) data, may explain LD size increase with 
age. An increase in Cidea and Cidec expression is also linked to hepatic steatosis development (Zhou et 
al., 2012; Sans et al., 2019) and prolonged hepatic lipid storage potentially results in liver metabolic dys-
function, associated with increased cellular senescence and inflammation (Wang et al., 2009; Ogrodnik 
et al., 2017) 
 
Distinct ageing signatures were observed in hepatocytes, but transcriptional changes did not always 
align with epigenetic alterations, suggesting a decoupling of chromatin and RNA. Genes involved in post-
transcriptional processing were among the top-dispersed genes in the scRNA-seq experiment, hinting at 
deregulation with age. One aspect of this layer involves mRNA splicing. Recent studies have indicated 
that splicing is strongly influenced by age and might contribute to ageing (Lee et al., 2016; Heintz et al., 
2017; Lai and Pugh, 2017). Notably, the role of mRNA stability and storage with ageing remains unex-
plored and highlights again how the integration of more analysis methods could close the knowledge 
gap between these layers. The decoupling mirrors the age-related decoupling of mRNA and protein levels 
(Kelmer Sacramento et al., 2020). The recent publication of the tissue-wide atlas of the ageing effects on 
the murine proteome could be a valuable resource for result validation and cross-referencing our results 
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(Barao et al., 2022). In conclusion, these findings imply a progressive loss of gene expression cohesion 
and initiation, contributing to ageing (Kelmer Sacramento et al., 2020; Bozukova et al., 2022). 
 
Recent research interest in the reproducibility of omics methods in ageing studies, emphasised by Singh 
and Benayoun (2023), necessitates a comprehensive discussion. Omics- approaches, given their com-
plexity, demand sophisticated designs and analysis to ensure robust and reproducible results. Notably, 
we exclusively studied male mice, which given sex-related ageing differences and in relation to drug me-
tabolism—a primary liver function, this is a potential limitation (Uno et al., 2017; Austad, 2019). We con-
trolled the genetic background, known to significantly impact study outcomes, by using a uniform 
mouse strain, C57BL/6M, bred under identical conditions. This approach aligns with the findings of Liao 
et al. (2010), which underscored the profound influence of the genetic background of mice strains on 
results from caloric restriction studies. However, despite our control measures, the same study also sug-
gests that certain aspects of the genetic constitution may still influence our results, pointing to potential 
limitations of our study 
 
Age group selection is critical; hence, our young (4 months) and old (18 months) cohorts were chosen 
based on their reproductive stability and ageing phase, respectively, in concordance with established 
guidelines for animal use in gerontological research, mice in this age bracket (18 months) are considered 
to be in the "ageing" phase, rather than being fully aged (Miller and Nadon, 2000). To ensure reproduc-
ibility, we employed multiple replicates in our study designs. For example, our spatial transcriptomic 
analysis included two individuals per group, and our scATAC-seq experiment pooled four individuals per 
age group for both scATAC-seq experiments. 
 
Library preparation quality can significantly affect experimental outcomes. Using different versions of 
the 10x Genomics Chromium reagent kit revealed reductions in detected nuclei and library complexity. 
Usage of the 10x Genomics Chromium reagent kit version 1.1 (10x Genomics, 2019) resulted in a high-
quality library. However, upon switching to the Chromium version 2 reagent kit for the second scATAC-
seq experiment (10x Genomics, 2021), we noted a reduction in the number of detected nuclei and de-
creased library complexity. Nevertheless, both datasets met quality standards and supported initial find-
ings. 
 
As also the suggested, the pre-processing pipeline (Cellranger ATAC from Version 1.2 vs 2.0) was changed 
together with changes in the chemistry. We also completely reprocessed our first dataset to ensure result 
consistency. This underscores that even minor alterations in the library preparation and pre-processing 
protocol can substantially influence experimental outcomes and, thus, require thorough evaluation. We 
could verify our results with both pre-processing methods.  
 
Additionally, we leveraged two disparate methodologies to model and identify changes in DNA accessi-
bility, namely Latent Dirichlet Allocation and Latent Semantic Indexing. This approach was necessitated 
by the absence of a universally accepted best practice for the analysis of scATAC-seq data at the time of 
our study. The validity of our findings was corroborated via both methodological approaches. 
 
Post-processing challenges, such as the lack of existing methods to address batch effects in spatial tran-
scriptomics datasets, were mitigated using best practice methods from scRNA-seq data. Further, we per-
formed a principal component analysis on the integrated data and intersected the loadings of the first 
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principal component with published liver ageing marker genes. Transcriptional changes in signature 
genes for ageing hepatocytes, taken from public resources (Almanzar et al., 2020; Zhang et al., 2021), 
accounted for majority of the top 50 genes that contributed to the first principal component (35/50).  
 
Result validation, critical for reproducibility, included experimental verification through low-through-
put methods, analysing other omics-layers to verify the crosstalk of these layers and cross-referencing 
with other studies like Tabula Muris Senis (Almanzar et al., 2020). For instance, we used RNAscope to 
verify our periportal and pericentral markers. To validate our findings regarding the zonated expres-
sional changes of the Cide gene family, we compared this with the age-dependent changes of these loci 
in co-accessibility in our scATAC-seq data. Additionally, we used publicly available data for active en-
hancer marks (H3K27ac) and could detect an increase in acetylation marks upstream of Cidea in aged 
mice liver tissue. 
Further, we used microscopy to confirm the changes in pericentral lipid droplet sizes and by cross-refer-
encing these findings with our lipidomics experiment results we discovered a remodelling of the livers 
lipidome. The zonated changes in mitochondrial energy generation potential were verified by functional 
Seahorse assays. 
 
Ensuring long-term usability and reproducibility, all raw and processed data, annotated objects, 
metadata, and the analysis pipeline will be publicly available. Despite certain limitations like using only 
male mice, this study underscores the meticulous approach necessary in ageing research using omics 
methods and highlights the significant influence of biological, technical, and post-processing variables. 
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4.2. Part 2: Ageing is associated with increased chromatin 
accessibility and reduced polymerase pausing in liver 

Omics-technologies have advanced our understanding of age-related epigenomic transcriptional regu-
lation during ageing. Using genome-wide sequencing techniques like NET-seq, ATAC-seq, RNA-seq, 
ChIP-seq and CUT&RUN-seq on mouse liver tissue, we studied the role of chromatin accessibility in tran-
scriptional regulation during ageing through a multi-omics approach. 
 
Earlier studies show variable findings in age-related chromatin landscape change, likely due to tissue-
and cell-type specific alterations. In this study, we could show specific alterations in aged murine liver 
tissue. Despite increased global promoter accessibility, histone gene expression and nucleosome occu-
pancy levels outside of promoter regions remained practically unchanged, as described in other studies 
(Chen et al., 2020), underscoring the value of cross-referencing datasets for a nuanced view of genome-
epigenome interactions. 
 
Minor effects were seen on both nascent and steady-state transcriptomes, implying gene expression 
preservation in ageing liver tissue, as also observed in other studies (Zhang et al., 2021). Minimal overlap 
between differentially expressed and transcribed genes indicates possible post-transcriptional buffering 
mechanisms which is consistent with the results of part one of this thesis (Nikopoulou et al., 2021). 
 
Despite slight transcriptional changes, promoter-proximal Pol II pausing significantly decreased with 
age, potentially due to reduced DSIF subunit SPT4 recruitment. By integrating Net-seq, RNA-seq, and 
CUT&RUN-seq data, we ruled out RNA Pol II loading as a causative factor for this decrease. Notably, with 
the analyses employed in this study it is not possible to distinguish between reduced Pol II transcription 
elongation machinery recruitment or increased dissociation from chromatin. 
 
Our model proposes that ageing correlates with increased global chromatin accessibility at gene promot-
ers, stable polymerase recruitment, and decreased promoter-proximal pausing. A change in the stability 
of the pausing complex with ageing might cause the decrease. However, this hypothesis needs further 
research. Speculatively, decreasing pausing complex stability during increased transcription initiation 
could buffer transcriptional output. 
 
Consistent with the project delineated in part one, the planning and execution of this study placed par-
amount importance on robustness and reproducibility. The investigative approach was restricted to 
male C57BL/6N mice, acknowledged as a constraint of the study, while it also ensures a fixed genetic 
background. Given that variations in transcriptional and regulatory network functionalities between 
sexes have been documented in humans, albeit not in mice (Lopes-Ramos et al., 2020), it is plausible that 
the observed age-associated effects may present differently in female mice or in mice with different ge-
netic background. 
Our samples comprised of mice aged 3, 12, and 18 months were in line with guidelines for ageing mouse 
studies (Miller and Nadon, 2000). All mice were bred under constant conditions and were physiologi-
cally healthy. 
 
In the CUT&RUN-seq experiment, which constituted my area of contribution to this project, we ac-
counted for biological variability and age-related stochastic variance using liver tissue from four (4 
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months old) young and (18 months old) old mice. By incorporating yeast DNA 'spike-in' control, we 
achieved normalization across samples, mitigating potential batch effects. The synchronous generation 
of these samples ensured a consistent experimental context, aiding the reduction of extraneous varia-
bles. 
 
We conducted a comprehensive evaluation of data integrity and library complexity post-sequencing. The 
assessment scrutinized fragment size distribution, read duplication rate, library size, adapter content 
percentage, and alignment rate, ensuring the robustness of the primary data. 
 
We employed recognized CUT&RUN-seq data analysis methods for post-processing, notably the SEACR 
package (Meers et al., 2019). We further validated our findings by incorporating three different antibod-
ies for RNA polymerase II in three distinct phosphorylation states (S2, S5 and CTD phosphorylation). 
 
Our research, combining various omics technologies, offers a comprehensive understanding of age-re-
lated epigenomic alterations, despite focusing only on male mice. We uphold transparency and repro-
ducibility by making all data publicly accessible, fostering further exploration of our findings. 
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4.3. Part 3: Dimension Reduction by Spatial Components 
Analysis improves Pattern Detection in multivariate spatial 
Data 

Through the introduction of SPACO, we propose a pioneering approach for the elucidation of spatial gene 
expression patterns for in situ spatial transcriptomics datasets. Its capabilities surpass competing meth-
ods in robustness and specificity. We offer a comprehensive framework to mitigate variation due to tech-
nical limitations of in situ capture techniques. This includes a meticulously designed suite for dimen-
sionality reduction, denoising and SVG testing. We validated SPACO's effectiveness using synthetic data 
and three different biological spatial transcriptomics datasets.  
 
Rather than focus on individual genes, SPACO accounts for gene co-regulation within distinct regulatory 
networks, integrating established principles of dimensionality reduction and feature extraction from 
PCA into spatial transcriptomics analysis. By maximising local covariance (through Moran's I) instead of 
global variance optimisation, SPACO accurately discerns spatial patterns from spatially independent 
noise. 
 
In our study, we performed a rigorous benchmarking of SPACO's SVG testing procedure against SPARKX. 
SPARKX can be regarded as the reference method with superior statistical power and robustness com-
pared to other SVG analysis methods, as corroborated in both self-reported studies as well as independ-
ent benchmarking reviews (Zhu et al., 2021; Chen et al., 2022). SPACO outperformed SPARKX in sensitiv-
ity and specificity. We found SPACOs SVG test results consistent with known spatially organised pro-
cesses via GO-term analysis, supporting our premise that genes within a common regulatory network 
exhibit similar spatial trends. We also confirmed that SPACO can uncover known SVG and suggest po-
tential new ones. 
 
While Testing SVG detection methods on real data, we noted that random permutation or unrestricted 
bootstrap methodologies could create anticorrelated patterns in the dataset. This observation and the 
high association between per-spot read coverage and gene expression levels underscore the issue of false 
discovery rates in spatial transcriptomics methodologies (Chen et al., 2022). As a consequence, we es-
tablished the coverage-adjusted local bootstrap method to circumvent these artefacts. 
Testing SVG detection methods on real data is challenging due to the lack of "gold standard" datasets. 
Coverage-adjusted local bootstrapping utilises existing knowledge of tissue-specific marker genes. Our 
benchmarking circumvented the lack of standard datasets, using these genes as bona fide true positives 
while mitigating the per-spot coverage artefacts. 
 
With our coverage-adjusted bootstrapping approach, we have shown that the projection of SVG onto the 
relevant spatial components is a reliable denoising method. This capability is particularly advantageous 
when one wants to link histological observations with gene patterns, also possibly for genes with high 
noise levels and dropout rates. 
 
For future applications and implementations, it appears plausible to utilise these denoised profiles to 
calculate local gradient lengths and curvature, vital metrics for edge detection and regional expression 
delineation. These metrics could subsequently be leveraged for the clustering of SVG, thereby facilitating 
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the detection of spatial patterns alongside their corresponding groups of genes. This refinement could 
ultimately enhance the utility of SPACO in dissecting complex spatial gene expression landscapes via 
grouping (trough clustering) of SVG. 
 
By design, SPACO merely relies on a neighbourhood matrix and a count matrix. It assumes that each 
locus represents a full vector of measurements (one count/abundance value for each gene). One obvious 
improvement of the current implementation of SPACO is the extension of SPACO to also be applicable to 
other spatial sequencing data such as MERFISH, SeqFISH or STARmap (Wang et al., 2018; Eng et al., 2019; 
Xia et al., 2019). Currently, there is no implementation to construct a neighbourhood matrix of irregular 
or 3-dimensional coordinate matrices. With an adequate transformation of the coordinates obtained 
from these experiments, SPACO could also be applied to datasets generated with these methods.  
 
As spatial transcriptomics experiments are becoming increasingly affordable, we anticipate a surge in 
projects incorporating numerous consecutive tissue slices from identical tissues or divergent individuals. 
SPACO, in its existing form, is prepared to accommodate these expanding datasets, necessitating only 
the block-diagonal concatenation of neighbourhood matrices for successful implementation. Thus, 
SPACO offers a robust and adaptable framework suitable for addressing the evolving complexity of spa-
tial transcriptomics investigations. 
 
Additionally, we envisage the extension of SPACO's SVG test to standard scRNA-seq data as a viable un-
dertaking. A predominant hurdle in differentially expressed gene testing for scRNA-seq data is the sub-
jective nature of population assignments via clustering, a process notably influenced by user parameter 
choices and complicated by the typically indeterminate number of groups or cell types present in a given 
dataset (Zappia and Oshlack, 2018). Prevalent scRNA-seq workflows routinely employ the Louvain or 
Leiden algorithms for clustering, both of which utilise k-nearest neighbour graphs for scRNA-seq appli-
cations (Stoeckius et al., 2017; Traag et al., 2019). Should such a neighbourhood graph replace the spatial 
neighbourhood matrix in SPACO, it is conceivable that differential expression testing could be performed 
devoid of bias, effectively repurposing SVG as genes that delineate or segregate cell communities. 
This principle can be equivalently applied employing a (weighted) k-nearest neighbour graph as, e.g., 
constructed by Uniform Manifold Approximation and Projection or the similarity graph constructed by 
t-Distributed Stochastic Neighbour Embedding. These considerations not only demonstrate the versa-
tility of the SPACO approach but also highlight its potential applicability to a wider range of bioinfor-
matics contexts. 
 
Outside the realm of transcriptomics, the SPACO algorithm could be applied to any kind of spatial data 
for which a neighbourhood or adjacency matrix can be constructed. Examples include ecology, where it 
can assist in the analysis of spatial patterns in plant or animal distribution, public health for studying 
patterns of disease spread, or social sciences and economics for understanding spatial distribution of 
income levels, unemployment rates, voting patterns, and more. 
 
In conclusion, the development of SPACO offers a novel approach for spatial gene expression pattern 
analysis, enhancing both robustness and specificity. SPACO's focus on gene co-regulation and maximi-
sation of local covariance sets it apart to facilitate accurate discernment of spatial patterns. Its superior-
ity to SPARKX in SVG testing is validated through rigorous benchmarking and supported by its con-
sistency with known spatially organised processes known for the tissues analysed. The establishment of 
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a coverage-adjusted local bootstrapping method mitigates the lack of “gold standard” datasets in real 
data SVG testing benchmarking. Importantly, SPACO's ability to project SVG onto spatial components 
for denoised gene projections holds significant potential for linking histological observations with gene 
expression patterns, even in high-noise conditions. Future extensions of the SPACO library will likely 
extend its applicability towards other established spatial sequencing methods, scRNA-seq and even pos-
sibly beyond the analysis of biological spatial data.  
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5. SUPPLEMENTAL INFORMATION 

5.1 Library Preparation for Single-Cell Assay for Trans-
posase-Accessible Chromatin Sequencing 

Library quality is crucial for meaningful results in single-cell Assay for Transposase-Accessible Chroma-
tin using sequencing (scATAC-seq) experiments. Following tissue extraction, the process begins with 
tissue disaggregation to form a single-cell suspension, typically involving optimised mechanical or en-
zymatic methods. Subsequently, cell lysis and nuclei isolation occur. The critical transposition reaction 
then employs a hyperactive Tn5 transposase to cut and ligate sequencing adapters to the DNA at acces-
sible regions. Sorted into individual oil droplet reaction volumes, nuclei associate with a micro gel bead 
carrying unique barcode sequences for tracking post-sequencing. After droplet-based barcoding, the 
DNA fragments undergo amplification for next-generation sequencing. Final library validation, such as 
TapeStation analysis for fragment size distribution, confirms quality before sequencing. Each stage re-
quires careful optimisation to secure high-quality data and prepare for bioinformatic analysis (10X 
Genomics, 2019; Yan et al., 2020). 
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Figure 4: Understanding Ageing and Liver Ageing through a Multidimensional Lens: Ageing and liver 

ageing are complex processes. The emergence of omics-technologies empowers us to examine these 
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Figure 5: Latent Dirichlet Allocation plate notation with Dirichlet-distributed topic-word distributions. 

Figure obtained from Wikimedia commons (Commons Wikimedia, 2009). Explained below. .............. 26 
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