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Abstract 

Regulation of gene expression allows for cells to execute highly specialized functions and 

orchestrate a variety of responses to stimuli. Impaired coordination of gene expression is linked 

to several diseases – including ageing – highlighting the relevance of comprehensively 

understanding gene expression coordination. However, current models of gene expression 

coordination are often limited to specific biological conditions or focused on individual cellular 

processes. 

Here, we report a transcriptional regulatory model, derived from more than 1000 expression 

datasets, able to capture tissue- and cell-type-specific gene-gene relationships, as well as global 

(cross-tissue) relationships. 

We take advantage of the wide applicability of this model to tackle two distinct biological problems. 

The first concerns the computational estimation of missing values in single-cell RNA-sequencing 

(scRNA-seq) data. scRNA-seq methods are typically unable to quantify the expression levels of 

all genes in a cell (dropout events). Several methods have been proposed for the estimation of 

dropout expression (dropout imputation), with no clear method outperforming others across 

datasets and downstream analyses. We propose a new method that makes use of the 

transcriptional regulatory model to estimate the expression of dropouts and show it outperforms 

published state-of-the-art methods, especially for lowly expressed genes, including cell-type-

specific transcriptional regulators. We observed gene- and dataset-dependent performance of the 

methods we tested, leading us to implement an R package, ADImpute, that automatically 

determines the best imputation method for each gene in a dataset. This work represents a 

paradigm shift by demonstrating that there is no single best imputation method. Instead, we 

propose that imputation should maximally exploit external information and be adapted to gene-

specific features, such as expression level and expression variation across cells. 

The second problem addressed in this work was the impact of ageing on gene expression 

coordination. We use existing RNA-seq data of human tissues at different ages to investigate the 

impact of ageing on the gene-gene relationships captured in the transcriptional regulatory model. 

We observed age-related changes towards both a strengthening and a loosening of gene-gene 

relationships with age, mostly impacting genes with mitochondrial functions and cell cycle 

regulation. We detected age-related changes in relationships between genes involved in the same 

functional module, as well as genes in distinct functional modules, highlighting the impact of 

ageing on the coordination of cellular processes. This work demonstrates the importance of 

zooming out of the effect of ageing on individual genes or cellular processes and investigating 

how their crosstalk is affected at a systems level. 

Put together, the work presented here shows that transcriptional gene-gene relationships can be 

‘learned’ from a rather limited set of example datasets and subsequently applied to a wide range 

of cell- and tissue types, where pathological breakdown of gene-gene relationships can be 

investigated. 
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1. General Introduction 

1.1 Regulation of gene expression 

Although DNA content is practically the same across all cells in an organism, different cell types 

can execute different functions. This is possible due to an extensive regulation of the several 

processes involved in the synthesis of a functional product from the information encoded in the 

respective DNA region. This chapter describes such regulatory processes in eukaryotes with a 

focus on the first step of genetic information flow in the cell: transcription. 

1.1.1 Transcription 

Transcription consists of the synthesis of an RNA molecule (transcript) from a gene, i.e., a DNA 

region coding either for the mRNA encoding a polypeptide chain or for a functional RNA molecule. 

This process is executed by the RNA polymerase enzyme in three stages. Firstly, during initiation, 

the RNA polymerase binds a DNA region upstream of the gene body, the promoter, and unwinds 

the double helix structure of the DNA. Secondly, during elongation, the RNA polymerase uses 

one of the DNA strands as a template for the synthesis of the nascent RNA, one ribonucleotide 

at a time. Lastly, termination involves the release of the polymerase and the nascent RNA from 

the DNA template. Depending on the type of gene being transcribed (and thus RNA polymerase 

being used), termination can occur once a termination sequence in the DNA is encountered or 

through more complex mechanisms related to 3’ processing and not yet completely understood 

[1]. As it is transcribed, the nascent RNA undergoes processing through 3’ capping, 5’ 

polyadenylation and splicing. The resulting messenger RNA (mRNA) is then often translated into 

a protein [2]. 

1.1.2 Transcriptional regulation of gene expression 

Transcription, while effected by RNA polymerase, is under intricate regulation. Much of this 

regulation is mediated by transcription factors (TFs), proteins with the ability to bind specific DNA 

sequences (motifs). TF binding to motifs within the promoter enables transcription, but motifs can 

also be found in distal regions. For instance, TF binding to enhancer regions can lead to the 

formation of DNA loops that bring the TF physically close to the promoter, with a regulatory effect 

on transcription (by stabilizing RNA polymerase binding or other mechanisms) [3]. 

Regulatory relationships between transcription factors and their targets are remarkably complex. 

Firstly, a single TF usually regulates the transcription of more than one gene. Secondly, TF activity 

is itself regulated as well, for instance through post-translational modifications in response to 

stimuli, which can change TF subcellular localization, stability and protein-protein interactions [4]. 

Thirdly, TFs are known to collaborate in multiple ways, either indirectly or through protein-protein 

interactions. Examples of this behaviour include the formation of TF dimers with a higher binding 

affinity to DNA, or a cooperative impact on local chromatin structure that facilitates exposure of 

DNA for binding [5]. 

In addition to the activity of transcription factors, epigenetic modifications, such as DNA 

methylation and histone modifications, also contribute to transcriptional regulation, due to their 
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impact on DNA accessibility to TFs and the transcriptional machinery. DNA methylation, that is, 

the methylation of cytosines – mostly located 5’ to a guanine (CpGs) – can have different impacts 

on expression depending on the position relative to the gene body [6]. For instance, promoter 

methylation mostly leads to decreased expression of the affected genes [7], [8]. However, 

methylation at the gene body has been reported to lead to both repression [9] and activation of 

gene expression [10]–[13]. 

On the other hand, histone proteins can also be modified, with impact on the conformation of 

chromatin. Chromatin is a 3D DNA-protein complex, whose repeating unit is the nucleosome, an 

octamer of histone proteins with DNA tightly coiled around it. Nucleosomes are further coiled into 

higher order structures of varying accessibility. Both this higher order structure and the 

organization into nucleosomes pose a physical barrier for the transcription factor machinery and 

TFs to contact with the DNA and carry out transcription. Histones possess an exposed ‘tail’ of 

residues which can be suffer post-translational modifications, such as acetylation, methylation or 

phosphorylation, with diverse consequences on chromatin structure. For instance, acetylation of 

histone H4 on lysine 16 (H4K16ac) leads to more lose chromatin [14], which in turn leads to 

increased accessibility and transcription. In addition, histone modifications also contribute to 

recruit or disturb the binding of specific proteins to chromatin [15], [16]. 

DNA methylation and chromatin conformation have also been shown to be linked. For instance, 

hypermethylated regions that are transcriptionally inactive also show histone modifications 

leading to a more compact chromatin conformation, and DNA methyltransferases are known to 

interact with histone modifying enzymes [17].  

In summary, transcription factor activity, chromatin conformation and DNA methylation play a role 

in regulating gene expression. The impact of each of these factors on gene expression is not 

independent, greatly increasing the complexity of the gene regulatory landscape. 

1.1.3 Non-transcriptional regulation of gene expression 

The mechanisms of gene expression regulation covered so far focused on the regulation of the 

process of transcription. However, gene expression can also be regulated at post-transcriptional, 

translational or post-translational stages through diverse mechanisms. This is well exemplified by 

the inclusion of intronic sequences in mRNAs through alternative splicing, often leading to the 

presence of premature termination codons in the mRNA and its subsequent degradation [18]. 

Another example is the regulatory role of microRNAs (miRNAs), small non-coding RNAs with 

regulatory roles mostly mediated by their binding to the 3’ untranslated region (UTR) of mRNAs 

to induce their degradation or repress their translation [19]. 

 

In this section, mechanisms of gene expression regulation were briefly covered, with a focus on 

transcriptional regulation. While many regulatory mechanisms are still not well understood, it is 

evident that final gene products (e.g., an active protein) are the result of a complex interplay 

between diverse fine-tuned mechanisms. 

 



3 
 

1.2 Inference of gene regulatory relationships 

Due to the complexity of gene expression regulation, highlighted in Chapter 1, systems 

approaches are required to model regulatory relationships on a genome-wide scale. In this 

chapter, different data and methodologies used for the inference of gene regulatory relationships 

are presented and compared, with an emphasis on regularized linear regression applied to 

transcriptome data. 

1.2.1 Inference of gene regulatory relationships based on transcriptome data 

Due to the increasing accessibility of transcriptome profiling data, mainly from RNA-sequencing 

(RNA-seq), approaches to infer gene regulatory relationships often rely on this source of data 

alone. The underlying assumption of these approaches is that similar profiles of expression are 

indicative of a similar underlying mechanism of regulation. 

Gene co-expression networks [20] are the most common of such approaches and are frequently 

applied to predict gene functions or find putative pathway members. Such methods are based on 

metrics of similarity, computed between the expression profile of each possible gene pair. 

Although here we focus on the use of transcriptome data, this approach can also be applied to 

other molecular layers, such as protein abundances [21] or metabolic data. Pearson correlation 

and Mutual Information (MI) are common choices of similarity metric for gene co-expression 

network inference. Multiple of the tools readily available for network inference are based in MI, 

including the well-known ARACNE algorithm [22]. While MI provides the advantage of detecting 

non-linear relationships between the expression profiles, comparison of co-expression measures 

concluded it provides little advantage over correlation [23], [24], while having the disadvantage of 

requiring larger sample sizes and being computationally more challenging. 

However, the analysis of pairwise similarity presents limitations. Firstly, gene expression is 

regulated by a combination of multiple factors, but gene-gene similarity is limited to independent 

analysis of gene pairs. Secondly, metrics of similarity cannot be used for quantitative predictions. 

The use of linear regression approaches can overcome these limitations by modelling 

quantitatively the impact of multiple genes (predictors) on the expression of another (target) gene. 

In this case, it is assumed that the contribution of each predictor is independent, and that the 

expression profile of the target gene is a weighted linear combination of the expression profiles 

of the predictor genes. Due to the vast search space for possible predictor genes (the entire 

transcriptome), this approach is usually combined with feature selection. Feature selection can 

be based on external information (for instance, by limiting potential predictors to known 

transcription factors) or in a data-driven way (for instance, using regularization approaches). 

Regularized regression adds additional constraints to the least squares problem in linear 

regression. In particular, Lasso regression adds a penalty on the sum of the absolute values of 

the linear regression coefficients, setting most to zero [25]. The obtained linear model is thus very 

sparse and contains only the most predictive explanatory variables. Thus, regularized regression 

can be used for feature selection, and has been employed in the learning of gene regulatory 

relationships [26], [27]. 

Additionally, the incorporation of stability selection [28], consisting of several runs of the linear 

model adjustment, each with a random subset of the training data and the explanatory variables, 

has been shown to improve performance [29]. This improved performance can be explained by 
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the fact that this procedure results in the selection of robust predictors that are informative through 

variations in the training data. 

The models described above have the limitation that they do not reflect direct regulatory 

relationships between genes. While computational approaches have been proposed to remove 

indirect relationships between genes, this is more commonly achieved by the addition of other 

molecular layers of information beyond transcript abundance. 

1.2.2 Integrative inference of gene regulatory relationships 

The role of the epigenetic landscape in gene expression regulation, highlighted in section 1.1.2, 

can be leveraged to improve gene regulatory relationship inference. 

Transcription factor binding events can be captured through chromatin immunoprecipitation, 

followed by sequencing (ChIP-seq) [30]. Briefly, proteins transiently bound to the DNA are fixed 

to it through a crosslinking step. This is followed by the fragmentation of chromatin and 

immunoprecipitation, where an antibody against the protein of interest (a given TF) is used to 

isolate its target TF and the DNA fragments it is bound to. The resulting DNA fragments then 

undergo next generation sequencing. This procedure makes it possible to identify transcription 

factor binding events in the studied conditions. While co-expression can be observed for genes 

that are not under the same regulator (transcription factor), the observation of binding of that TF 

to binding sites upstream of the target genes allows to infer direct regulation [31].  

Together with other epigenomic profiling methods [32], ChIP-seq  data have been used to inform 

on gene regulation in combination with transcriptome data [33]. One disadvantage of this 

approach is that a large fraction of the binding events detected (30-40%) is context-dependent 

and thus cannot be extrapolated to other cell types or conditions [34].  

 

In this section, different approaches to model gene regulatory relationships have been presented 

and compared. While this is not a comprehensive review of existing literature, it provides an 

overview of the most common approaches.  
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1.3 Single-cell RNA-sequencing 

Transcriptome profiling is a commonly employed technique to understand cellular and tissue 

activity at a molecular level. On one hand, it offers a dynamic picture of activity when compared 

to the static measurements of genomic data. On the other hand, RNA-profiling technologies allow 

for a more comprehensive picture of the molecular composition of the cells and tissues at hand 

than current state-of-the-art protein expression profiling. In this section, an overview of different 

methodologies for profiling the transcriptome of individual cells is provided, along with a 

discussion of common challenges in the computational analysis of the resulting data. 

1.3.1 Overview of single-cell RNA-sequencing methodologies 

Several methods have been proposed for profiling the transcriptome of individual cells ([35]–[38], 

among many others, reviewed in [39]–[41]), each with their individual strengths and preferred 

applications. Despite their differences, all these methods follow common steps. Firstly, cells must 

be isolated from their tissue of origin, and then lysed to release their RNA content. This is followed 

by RNA capture, usually by poly(A)+ selection, which targets mRNA, or ribosomal RNA depletion, 

to remove the rRNA fraction (over 80% of the RNA molecules in a cell) [42]. This step ensures 

that sequencing efforts are focused on the RNA species of interest. RNA capture efficiency is 

consistently low across different methods – around 10-20% – which leads to the loss of many of 

the RNA molecules originally present in the cell. Upon capture, RNA molecules are reverse-

transcribed into cDNA, a more stable molecule. cDNA fragments are then amplified via PCR or in 

vitro transcription and tagmented into a cDNA library ready for sequencing. 

Different approaches exist for the first step of isolation of individual cells. The most popular 

scRNA-seq methods are often based on flow-activated cell sorting (FACS) or microdroplet-based 

microfluidics. FACS-based approaches allow for the isolation of cells of interest using 

fluorescently labelled antibodies against cell-surface markers of interest. Droplet-based 

approaches rely on dispersing aqueous droplets, containing individual cells and the necessary 

reagents for cell lysis, reverse transcription and amplification, in an oil phase within a microfluidics 

device [43], [44]. Whereas droplet-based approaches have the disadvantage of requiring a 

dedicated platform, they allow for a higher cell throughput than FACS-based approaches. 

Additionally, the use of microdroplets may lead to issues in downstream analysis, related to the 

presence of more than one cell per droplet, or contamination from ambient RNA. 

Another main difference between scRNA-seq methods, with impact in the distribution of the 

resulting data, is the inclusion of Unique Molecular Identifiers (UMIs). UMIs consist of short 

random sequences of nucleotides which are ligated to the cDNA prior amplification and allow to 

track, throughout all downstream analyses, the identity of the original RNA molecule [36], [45]. 

Upon sequencing, the different fragments generated by amplification can be collapsed back into 

the original molecule, avoiding excessive technical noise originating from the amplification step. 

The use of UMIs is commonly paired with 3’ end sequencing of the cDNA fragments, as to capture 

the UMI sequence. This comes at the expense of full-length coverage, which allows for the 

distinction between different transcript isoforms, or identification of RNA editing events. Notably, 

the recently developed Smart-seq3 protocol combines UMI use with full-length sequencing [46]. 
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1.3.2 Computational challenges of single-cell RNA-sequencing data analysis 

Several challenges in the analysis of scRNA-sequencing data depend on the methodology used 

to generate them [47]. Library preparation steps can have a downstream consequence on the 

analysis steps, such as the use of droplets to encapsulate individual cells versus other isolation 

techniques, the use of UMIs, and sequencing of the 3’ end versus full-length of the cDNA 

fragment. 

The use of UMIs can avoid amplification bias resulting from PCR amplification of small quantities 

of RNA. Discussions in the field [48]–[50] have resulted in the consensus that UMI data does not 

suffer from zero inflation (i.e., an excessive amount of zeros compared to the negative binomial 

model), whereas data without UMIs is best modelled by zero-inflated negative binomial 

distributions. In fact, such distributions have been used by several methods for the statistical 

analysis of scRNA-seq data ([51], [52], among others) and are one approach to handle the 

excessive amount of dropouts. Another approach is to computationally estimate the true 

expression levels of genes that drop out. This is complicated by the fact that some genes are not 

expressed in the cell (biological zeros), while others are expressed but not captured (technical 

zeros). Dropout imputation is introduced and discussed in greater detail in Chapter 3. 

Other challenges in the analysis of scRNA-seq data are common throughout different sequencing 

methodologies. This is the case for biological sources of variation between cells of the same cell 

type. Among these sources are differences in the cell cycle stage of individual cells, or 

transcriptional bursts, corresponding to a stochastic activation and inactivation of transcription.  

 

Existing work presented in this section highlights how the advent of scRNA-sequencing motivated 

the development of a growing body of computational tools to tackle several of the challenges 

associated to these data. In Chapter 3, original work adding to this community effort is presented. 
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1.4 Gene regulation changes during ageing 

Ageing is the primary risk factor for multiple diseases, making it an attractive biomedical target 

[53]. Given the ease with which transcriptomes can currently be profiled, a wide range of research 

has been focused on the impact of ageing on the transcriptome of individual tissues and cells. An 

emerging observation from these studies is that ageing-related changes in the transcriptome 

seem to be tissue-specific [54]. However, global trends have also been uncovered, including a 

downregulation of genes encoding for mitochondrial proteins  and protein synthesis machinery, a 

dysregulation of immune system genes, reduction in growth factor signalling, constitutive 

responses to stress and DNA damage and a dysregulation of gene expression and mRNA 

processing [55]–[58]. In addition to average expression level changes with age, an age-related 

increase in expression heterogeneity has also been repeatedly reported. This is commonly 

referred to as ‘transcriptional noise’ and encompasses different concepts explored by different 

groups, which are explored in this section. 

1.4.1 Cell-to-cell variability 

The first type of ‘noise’ corresponds to expression variability between cells, either at the level of 

individual genes or the whole transcriptome. Examples of noise quantification per gene can be 

found in earlier research work, dating back to 2006. Bahar and colleagues first reported an 

increase in cell-to-cell variation of the expression levels of a panel of genes, quantified by RT-

PCR from individual cardiomyocytes isolated from young (6 months) and old (27 months) mice 

[59]. The considered genes served diverse functions: seven housekeeping genes, three heart-

specific genes, two protease-encoding genes and three mitochondrial genes. The authors 

reported an increase in cell-to-cell variation of expression levels of all nuclear genes tested, 

measured as variance between cells isolated from mice of each age group. Later, Warren and 

colleagues built upon this work by quantifying expression levels of six medium-to-high abundance 

genes with qRT-PCR in four hematopoietic cell types, purified with flow cytometry from young and 

old mice. The authors quantified the cell-to-cell variability of each gene with different metrics, such 

as the coefficient of variation (CV), the inter-quartile range (IQR) and the geometric standard 

deviation. When comparing cell-to-cell variability of the chosen genes in these cell types, the 

authors found no difference with age. Furthermore, when quantifying the coupling of the 

expression levels of correlated ribosomal genes Rpl5 and Rpl19, the authors found no age-related 

de-coupling of expression [60]. 

With the advent of high-throughput sequencing technologies at the single cell level, it became 

possible to investigate cell-to-cell variability in expression for the whole transcriptome rather than 

only a small panel of genes. Enge and colleagues were the first to take advantage of these data 

for the interrogation of cell-to-cell expression variability in 2017. Among different approaches used 

by the authors to quantify noise is one based on the similarity (Euclidean distance or Pearson 

correlation) of the whole transcriptome of each individual cell compared to the mean of the cell 

type. This similarity is computed based on the mRNA molecules (biological noise) and ERCC 

spike-ins (technical noise) to compute a ratio of biological to technical noise. The authors applied 

this approach to scRNA-seq data of pancreata from eight human donors of ages 1 month to 54 

years and reported increased noise levels in the old adult group compared to children and young 

adults [61]. Angelidis and colleagues later applied a similar approach to scRNA-seq data from 

lungs of young (3 months) and old (24 months) mice, reporting an increase in transcriptional noise 

with age in most lung cell types [62]. More recently, Marti and colleagues developed a parametric 
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approach to separate technical and biological noise in scRNA-seq data and reported cases of 

both increase (in genes involved in antigen presenting) and decrease (for genes involved in 

oxidative phosphorylation) in transcriptional noise with age [63]. 

1.4.2 Transcriptomic coordination 

A conceptually different definition of ‘noise’ is focused on the coordination of gene expression 

across the transcriptome. This has been addressed by Southworth and colleagues by comparing 

co-expression networks derived from young (16 month old) and old (24 month old) mice. The 

authors observed a trend towards correlation decline with age impacting modules of genes 

involved in ribosome biogenesis, transcriptional regulation and mitochondrial functions. The 

authors combined this co-expression analysis with a computational identification of targets of the 

transcription factor NK-KappaB, to show concerted downregulation of these targets [64]. More 

recently, Levy and colleagues made use of publicly available scRNA-seq data to interrogate 

changes in coordination of gene expression with age. To this end, the authors developed a 

transcriptome-wide metric of gene expression coordination, agnostic to gene-gene regulatory 

relationships and based on the average dependency levels between random gene subsets. This 

work also revealed a decrease in transcriptional coordination in aged cells across different 

organisms and cell types. 

1.4.3 Potential mechanisms of gene regulation changes during ageing 

Following reports of age-related increase in transcriptional noise, explored in the previous 

sections, significant effort has been made towards understanding the underlying mechanisms 

behind this observation. 

One possibility explored in the literature is that the observed transcriptional noise stems from 

accumulated DNA damage in the affected genes. This possibility has been addressed by Enge 

and colleagues, who explored the link between mutational load and transcriptional noise using 

scRNA-seq data from the human pancreas. In this study, the authors found no link between 

mutation accumulation and transcriptional noise [61]. This is in contrast with the results reported 

by Levy and colleagues, showing a link between loss of transcriptional coordination and the 

accumulation of an age-related mutational signature [65].  

Another possibility is that transcriptional noise originates from an age-related increase in 

epigenetic deregulation. Changes in epigenetic features such as DNA methylation, chromatin 

compactness and histone modifications have been reported with age (reviewed in [66]–[68]), with 

impact on gene regulation. Cheung and colleagues have addressed this topic by determining 

chromatin modifications at the single cell level using mass spectrometry. The authors report 

increased variability of chromatin modifications in older adults compared to young, and use a twin 

cohort to show that the observed age-related chromatin changes are mostly driven by non-

heritable factors [69]. 

 

The literature mentioned in this section provides evidence for an age-related disruption of gene 

regulation. This can have multiple downstream consequences, such as the impairment of cell-

type-specific responses [70] and loss of cellular identity [61], which compromise the function of 

individual cells and, as a consequence, of tissues and organisms.  
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2. Aims of the project 

As described in Chapter 1, regulation of gene expression is fundamental for cellular integrity and 

function, and has been shown to be affected during ageing. 

In this work, we make use of a transcriptional regulatory network to i) investigate the similarity of 

gene-gene relationships across tissues and cell types, ii) improve the estimation of uncaptured 

gene expression levels (dropout imputation) in scRNA-seq, and iii) explore gene expression 

regulation changes taking place during human ageing using bulk RNA-seq. 
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3. Regulatory network-based imputation of dropouts in 

single-cell RNA sequencing data 

3.1 Introduction 

Single-cell RNA sequencing (scRNA-seq) has become a routine method, revolutionizing our 

understanding of biological processes as diverse as tumor evolution, embryonic development, 

and ageing. However, current technologies still suffer from the problem that large numbers of 

genes remain undetected in single cells, although they actually are expressed (dropout events). 

Although dropouts are enriched among lowly expressed genes, relatively highly expressed genes 

can be affected as well. Of course, the dropout rate is also dependent on the sampling depth, i.e. 

the number of reads or transcript molecules (determined with unique molecular identifiers, UMIs) 

quantified in a given cell. Imputing dropouts is necessary for fully resolving the molecular state of 

the given cell at the time of the measurement. In particular, genes with regulatory functions - e.g. 

transcription factors, kinases, regulatory non-coding RNAs (ncRNAs) - are typically lowly 

expressed and hence particularly prone to be missed in scRNA-seq experiments. This poses 

problems for the interpretation of the experiments if one aims at understanding the regulatory 

processes responsible for the transcriptional makeup of the given cell. 

The task of correctly imputing dropouts is further complicated by the fact that not all undetected 

genes are undetected for the same reasons. Some genes are originally expressed in the cell but 

fail to be detected due to incomplete RNA capturing. These are commonly referred to as technical 

dropouts. However, some genes are originally not expressed in the cell, and thus not detected 

(biological zeros). Biological zeros carry information about cell types and states, and incorrect 

estimation of non-zero expression in these cases may confound cellular profiles [71], [72]. Thus, 

computational methods for dropout imputation face two distinct challenges: on the one hand, to 

correctly call technical dropouts and, on the other hand, estimate their expression level. If not 

done carefully, dropout imputation can introduce false positive results in downstream analyses 

and amplify confounding signals such as batch effects [73]. 

Most dropout imputation methods are based on the underlying (explicit or implicit) assumption 

that detected and undetected genes are subject to the same regulatory processes, and hence 

detected genes can serve as a kind of 'fingerprint' of the state at which the cell was at the time of 

lysis. Several popular methods are based on some type of grouping (clustering) of cells based on 

the similarity of their expression patterns. Missing values are then imputed as a (weighted) 

average across those similar cells where the respective gene was detected [74]–[77]. For 

example, the Markov Affinity-based Graph Imputation of Cells (MAGIC) algorithm [74] creates a 

network of cells by linking cells with similar gene expression signatures. Missing values are 

subsequently imputed by computing an average over linked cells, where cells get weighted based 

on how similar or dissimilar their expression signatures are compared to the target cell. DrImpute 

[76], scImpute [75] and k-nearest neighbor smoothing (kNN-smoothing) [78] have further 

developed this notion and have been shown to outperform MAGIC in recent comparisons[73]. 

These methods rest on two important assumptions: (1) the global expression pattern of a cell (i.e. 

across the subset of detected genes) is predictive for all genes; (2) the (weighted) average of co-

clustering (i.e. similar) cells is a good estimator of the missing value. The first assumption is 

violated if the expression of a dropout gene is driven by only a small subset of genes and hence 

the global expression pattern does not accurately reflect the state of the relevant sub-network. 
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Any global similarity measure of the whole transcriptome will be dominated by the majority of 

genes [73]. The second assumption is violated if the data is scarce, i.e. when either only few 

similar cells were measured or if the particular gene was detected in only a small subset of cells. 

In that case the average is computed across a relatively small number of observations and hence 

unstable. 

Methods like Single-cell Analysis Via Expression Recovery (SAVER) [79], or Sparse Gene Graph 

of Smooth Signals (G2S3) [80, p. 3], employ a different strategy that can overcome some of these 

limitations. Instead of using the whole transcriptome of a cell to predict the expression level of a 

given gene, these methods learn gene-gene relationships from the dataset and use only the 

specific subset of genes that are expected to be predictive for the particular gene at hand. For 

example, SAVER learns gene-gene relationships using a penalized regression model, whereas 

G2S3 optimizes a sparse gene graph. However, if the scRNA-seq dataset at hand is sparse, the 

usefulness of the gene-gene relationships learnt from that dataset can be limited. 

Single Cell RNA-Seq imputAtion constrained By BuLk RNAsEq data(SCRABBLE) [81] is different 

compared to all of the other methods mentioned above, because it can use bulk sequencing data 

to assist in the imputation. SCRABBLE combines a de-noising step with a moderated imputation 

moving the sample means towards the observed (bulk-derived) mean expression values. 

Limitations of this approach are that first, a matching bulk RNA sequencing data set needs to be 

available and second that the method only uses external data to adapt the distribution of the single 

cell data, but does not use it to inform gene-gene relationships. 

Here, we compare published approaches that are representative for current state-of-the-art 

methods to two fundamentally different approaches. The first is a very simple baseline method 

that we use as a reference approach: we estimate missing values as the average of the 

expression level of the given gene across all cells in the dataset where the respective gene was 

detected. Initially intended to serve just as a reference for minimal expected performance, this 

sample-wide averaging approach turned out to perform surprisingly well and in many instances 

even better than state-of-the-art methods. The simple explanation is that estimating the average 

using all cells is a much more robust estimator of the true mean than using only a small set of 

similar cells, especially when the gene was detected in only few cells and/or if the gene’s 

expression does not vary much across cells. 

The second new approach avoids using a global similarity measure comparing entire 

transcriptomes. Instead, similar to SAVER or G2S3 it rests on the notion that genes are part of 

regulatory networks and only a small set of correlated or functionally associated genes should be 

used to predict the state of undetected genes. However, unlike other methods, we propose to use 

transcriptional regulatory networks trained on independent (bulk seq) data to rigorously quantify 

the transcriptional relationships between genes. Missing values are then imputed using the 

expression states of linked genes in the transcriptional regulatory network and exploiting the 

known quantitative relationships between genes. This approach allows imputing missing states 

of genes even in cases where the respective gene was not detected in any cell or in only extremely 

few cells. This second new approach rests on the assumption that the network describes the true 

regulatory relationships in the cells at hand with sufficient accuracy. Here, we show that this is 

indeed the case and that combining the two new approaches with published state-of-the-art 

methods drastically improves the imputation of scRNA-seq dropouts. Importantly, the 

performance of an imputation method is dependent on the ‘character’ of a gene (e.g. its 

expression level or the variability of expression between cells). Hence, we implemented an R-



12 
 

package (Adaptive Dropout Imputer, or ADImpute) that determines the best imputation method 

for each gene through a cross-validation approach. 
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3.2 Results 

3.2.1 Imputing dropouts using a transcriptional regulatory network 

In order to understand whether the inclusion of external gene regulatory information allows for 

more accurate scRNA-seq dropout imputation, we derived a regulatory network from bulk gene 

expression data in 1,376 cancer cell lines with known karyotypes. While the expression levels of 

genes in this data will be cell type-specific, the relationships between genes (e.g. concerted up-

regulation of a transcription factor and its targets) are frequently conserved across cell types, 

allowing us to pool the data together to learn a generic gene regulatory network. For this purpose, 

we modelled the change (compared to average across all samples) of each gene as a function of 

its own copy number state and changes in predictive genes: 

𝑦𝑖 =  𝛼𝑖 ⋅ 𝑐𝑖 + ∑ 𝛼𝑖𝑗𝑗 ≠ 𝑖 ⋅ 𝑦𝑗 + 𝜀𝑖,  (3.1) 

where 𝑦𝑖 is the expression deviation (log fold change) of gene 𝑖 from the global average, 𝑐𝑖 is the 

known (measured) copy number state of gene 𝑖, 𝛼 the vector of regression coefficients, 𝑦𝑗the 

observed change in expression of gene 𝑗 and 𝜀𝑖 the i.i.d. error of the model. To estimate a set of 

predictive genes j, we made use of Least Absolute Shrinkage and Selection Operator (LASSO) 

regression [25], which penalizes the L1 norm of the regression coefficients to determine a sparse 

solution. LASSO was combined with stability selection [82] to further restrict the set of predictive 

genes to stable variables and to control the false discovery rate (Methods). This approach ensures 

that the algorithm only selects gene-gene relationships that are invariant across most or all 

training data. Thus, interactions that would be specific to a single cell type will be excluded from 

the model. Using the training data, models were fit for 24,641 genes, including 3,696 non-coding 

genes. The copy number state was only used during the training of the model, since copy number 

alterations are frequent in cancer and can influence the expression of affected genes. If copy 

number states are known, they can of course also be used during the dropout imputation phase. 

Using cell line data for the model training has the advantage that the within-sample heterogeneity 

is much smaller than in tissue-based samples [27]. However, in order to evaluate the general 

applicability of the model across a wide range of conditions, we validated its predictive power on 

a diverse set of tissue-based bulk-seq expression datasets from the The Cancer Genome Atlas 

(4,548 samples from 13 different cohorts; see Methods and Supplementary Figure 3.1) and the 

Genotype-Tissue Expression (17,382 samples from 30 different healthy tissues; see Methods and 

Supplementary Figure 3.2). 

Such a model allows us to estimate the expression of a gene that is not quantified in a given cell 

based on the expression of its predictors in the same cell. Here, the difficulty lies in the fact that 

imputed dropout genes might themselves be predictors for other dropout genes, i.e. the imputed 

expression of one gene might depend on the imputed expression of another gene. In order to 

derive the imputation scheme based on the model from equation (3.1), we revert to an algebraic 

expression of the problem, 

𝑌 = 𝐴𝑌,   (3.2) 

where 𝐴 is the adjacency matrix of the transcriptional network, with its entries 𝛼𝑖𝑗being fitted using 

the regression approach described above, and 𝑌is the vector of gene expression deviations from 

the mean across all cells in a given cell. In the current implementation we assume no copy number 
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changes and hence, we exclude the 𝑐𝑖term from equation (3.1). Like in equation (3.1), we omit 

the intercept since we are predicting the deviation from the mean. Subsequently, imputed values 

are re-centered using those means to shift imputed values back to the original scale (see 

Methods). Further note that we drop the error term 𝜀 from equation (3.1), because this is now a 

prediction task (and not a regression). Here, we exclusively aim to predict dropout values, and 

(unlike SAVER) our goal is not to improve measured gene expression values. Hence, measured 

values remain unchanged. It is therefore convenient to further split 𝑌into two sub-vectors 𝑌𝑚and 

𝑌𝑛, representing the measured and non-measured expression levels, respectively. Likewise, 𝐴 is 

reduced to the rows corresponding to non-measured expression levels and split into 𝐴𝑚 

(dimensionality |𝑛| × |𝑚|) and 𝐴𝑛 (dimensionality |𝑛| × |𝑛|), accounting for the contributions of 

measured and non-measured genes, respectively. The imputation problem is then reduced to: 

𝑌𝑛 = 𝐴𝑛𝑌𝑛 + 𝐴𝑚𝑌𝑚  (3.3) 

As 𝑌𝑚 is known (measured) and will not be updated by our imputation procedure, the last term 

can be condensed in a fixed contribution, 𝐹 = 𝐴𝑚𝑌𝑚, accounting for measured predictors: 

𝑌𝑛 = 𝐴𝑛𝑌𝑛 + 𝐹  (3.4) 

The solution 𝑌𝑛 for this problem is given by: 

𝑌𝑛 = (𝐼 − 𝐴𝑛)−1𝐹  (3.5) 

The matrix (𝐼 − 𝐴𝑛) may not be invertible, or if it is invertible, the inverse may be unstable. 

Therefore, we computed the pseudoinverse (𝐼 − 𝐴𝑛)+ using the Moore-Penrose inversion. 

Computing this pseudoinverse for every cell is a computationally expensive operation. Thus, we 

implemented an additional algorithm finding a solution in an iterative manner (Methods). Although 

this iterative second approach is not guaranteed to converge, it did work well in practice (see 

Supplementary Figure 3.3, Methods). While our R-package implements both approaches, 

subsequent results are based on the iterative procedure. 

3.2.2 Transcriptional regulatory network information improves scRNA-seq dropout 

imputation 

To assess the performance of our network-based imputation method and compare it to that of 

previously published methods, we considered eight different single-cell RNA-sequencing datasets 

[83]–[87], covering a wide range of sequencing techniques (Smart-seq versions 1, 2 and 3 and 

droplet-based method 10X) and biological contexts (healthy tissue, cancer, stem cell 

differentiation and Human Embryonic Kidney - HEK - cells). A summary of the dataset 

characteristics, including number of cells and average number of quantified genes per cell, is 

provided in Supplementary Table 3.1. It was important to include a range of different healthy cell 

types in the evaluation, because the transcriptional regulatory network was trained on cancer cell 

line data. Thus, by including data from non-cancerous tissues, we could evaluate possible 

restrictions induced by the model training data. 

In order to quantify the performance of both proposed and previously published imputation 

methods, we randomly set a fraction of the quantified values in the test data to zero according to 

two different schemes (Methods) and stored the original values for later comparison with the 

imputed values. Imputation was then performed on the masked dataset using our network-based 

approach, DrImpute [76], kNN-smoothing [78], SAVER [79], scImpute [75] and SCRABBLE [81]. 
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Those methods were chosen since they were shown to be among the top-performing state-of-

the-art dropout imputation methods [88], [89]. For masked entries imputed by all tested methods, 

the quality of imputation was assessed for each gene, using two approaches: computing the 

correlation between observed and imputed values for each gene, and computing the Mean 

Squared Error (MSE) of imputation (Methods). 

According to the correlation quality measure our network-based approach (called ‘Network’) 

mostly outperformed other methods (Figure 3.1), especially in UMI-based datasets. We quantified 

the percentage of genes in the transcriptome of each dataset best imputed by each method 

(highest correlation) and verified that in six out of our eight test datasets, the network-based 

approach resulted in the highest performance for most genes (Table 3.1). Additionally, we 

observed that Network was less affected by low average expression levels compared to all other 

imputation methods (Figures 3.1 and S3.4, expression quartiles Q1 and Q2). This was expected 

since our network-based approach relies on information external to the dataset for dropout 

imputation, while other methods require sufficient observations of a gene to learn its expression 

characteristics from the single cell data itself. This result is in line with, for instance, a previous 

observation that scImpute is sensitive to missing information about genes across cells [88]. 

SCRABBLE is able to incorporate the average expression in matched bulk RNA-seq data to aid 

imputation, effectively taking advantage of external information like Network. Although this 

information is not available for most scRNA-seq datasets, it was available for the human 

embryonic stem cell (hESC) dataset, prompting us to use it in an additional SCRABBLE test 

(Figures 3.1, S3.4, and S3.5). We observed that SCRABBLE’s performance was not improved 

when incorporating this additional information. 

As the network-based approach uses information regarding other genes contained in the same 

cell, we hypothesized its accuracy might be more affected by increasingly sparse information per 

cell when compared to other methods. However, the relative performance differences between 

methods were largely invariant to the number of missing genes per cell (Supplementary Figure 

3.7), suggesting that other methods also suffer from the scarcity of information for cells with low 

sampling efficiency. The sensitivity of the imputation to the proportions of missing values was 

dependent on a multitude of factors, including the quality of the data, the specific gene(s) 

expressed in the cell type(s) at hand, the number of missing values, variability of expression/cell 

type heterogeneity within the study and possibly many others. Further, the network-based method 

performed well over a range of different cell types and showed decreased performance upon 

randomization of the transcriptional network (Methods, Supplementary Figure 3.8). Thus, the 

diversity of cell lines used in the training data seemed to capture a large fraction of all possible 

regulatory relationships in the human transcriptome. 
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Figure 3.1: Imputation performance of Network (blue), DrImpute (green), kNN-smoothing (pink), SAVER 
(yellow), scImpute (turquoise), SCRABBLE (purple) and Ensemble (orange). A) Distribution of average expression 
levels (per gene) in each dataset. Quartiles are represented by vertical lines. B) Pearson correlation coefficient, for 
each gene, between the imputation by the specified method and the original values before masking. Only values that 
could be imputed by all methods (non-zero imputation) were considered. Correlations per gene across cells were 
computed for all genes for which at least 10 imputation values were available for analysis. Expression quartiles were 

determined for each dataset separately, on the masked data. 

We additionally evaluated imputation performance using the mean squared error (MSE) between 

original and imputed values. In this analysis, we included a ‘Baseline’ method, which imputes 

dropouts with the average expression value of the gene across all cells, as a reference. Using the 

MSE as an alternative metric of performance, we also observed that Network outperformed 

previously published methods across all tested datasets and expression quartiles (Supplementary 

Figure 3.6). However, the performance of the Baseline method (Supplementary Figure 3.6, grey 

violin), which does not account for any expression variation between cells, was surprising to us. 

While SAVER showed a poor performance in comparison to all other methods (also described in 

[88]), it should be noted that this method aims to estimate the true value for all genes, not only for 

the dropout genes. This results in a change of both dropout and quantified values, which explains 

the good correlation performance but relatively high MSE. 
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Table 3.1: Percentage of genes best imputed by each method (highest Pearson correlation coefficient) in the 
seven test datasets restricted to values that could be imputed by all individual methods. 
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hESC differentiation 14.0% 31.0% 13.2% 5.9% 7.5% 22.0% 6.3% 

hESC time course 16.6% 29.0% 22.7% 6.7% 9.2% 10.4% 5.5% 

Oligodendroglioma 29.3% 18.4% - - 15.0% 20.1% 17.1% 

Lung Atlas (10X) 58.4% 11.7% 6.0% - 14.4% 2.3% 7.2% 

Lung Atlas (FACS) 31.5% 13.5% 14.7% - 17.8% 15.1% 7.4% 

Renal Cell 
Carcinoma 

63.2% 5.3% 3.1% - 12.2% 2.0% 14.2% 

Smart-seq3 (reads) 26.8% 11.3% 12.1% - 18.1% 19.4% 12.3% 

Smart-seq3 (UMIs) 32.3% 12.8% 12.4% - 18.2% 11.5% 12.9% 

 

Taken together, these results indicate that Network often – but not always - leads to more accurate 

imputations than state-of-the-art imputation methods (Supplementary Figure 3.6), while 

preserving variation across cells as captured by the correlation analysis (Figures 3.1 and S3.4). 

However, our analysis also uncovered that the advantage of using specific methods varies 

between datasets and expression quartiles, suggesting that there is no universally best 

performing method that outperforms the others in all cases. This motivated us to develop an 

ensemble approach, where we determine in a cross-validation scheme the best imputation 

method for each gene in the dataset at hand. We tested its performance (Figures 3.1, S3.4, and 

S3.6) and observed that the ensemble method tends to approach the performance of the best 

performing method. 

3.2.3 Gene features determine the best performing imputation method  

To better understand what gene features drive the performance differences between methods, 

we characterized the genes best imputed by each of the methods. We determined, for each gene 

in each test dataset, the method resulting in the highest correlation between imputed and original 

values (Table 3.1). Methods with performance close to the best (correlation difference of 0.1, see 

Methods) were considered to be “top performers”. We chose this approach because some 

methods apply similar strategies for dropout imputation and thus are expected to perform best for 

the same set of genes. Our analysis allows to capture these similarities between methods. The 

genes for which a given method was among the “top performers” were compared against a 

background including all genes for which all methods were able to perform imputations (Figures 

3.2 and S3.10). As expected, methods relying on the similarity of cellular transcriptomes 

(scImpute, DrImpute and kNN-smoothing) performed best for more frequently detected genes 

(lower percentage of NAs per gene across cells). Conversely, the Network (and, to some extent, 

SAVER and SCRABBLE) were among the top performers especially on genes with many missing 

values. SAVER and Network are model-based methods, not relying on the comparison of entire 

transcriptomes between cells. SCRABBLE and Network are methods using external information 

for the imputation. Based on the above results we conclude that both aspects (model-based 
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imputation and using external information) are advantageous for the imputation of rarely detected 

genes. We also determined the top performing methods for each gene based on the MSE instead 

of correlations. We observed that, as expected, the Baseline method performed best for genes 

with low expression levels and low variance (Supplementary Figure S3.11).  

 

Figure 3.2: Characterization of the genes best predicted by Network (blue), DrImpute (green), kNN-smoothing 

(pink), SCRABBLE (bulk and single cell data as reference; purple) and SAVER (yellow) in the Lung Atlas 10X 

dataset. A) Determination of the top best performing methods for each gene. Methods performing best and close to 

the best method (correlation not smaller than 0.1 – best method) were selected as top performers. Genes for which all 

methods were top performers were included in the background but not in the foreground. B) Distribution of missing 

values per gene, average expression levels and variance of the genes for which a given method is one of the top 

performers, compared against all tested genes (background). Average gene expression is shown as log2-transformed 

normalized expression. Too few genes were best predicted by scImpute, so no distributions were drawn for this method. 
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3.2.4 Network-based imputation aids downstream analyses 

Cell trajectory inference 

scRNA-seq data is particularly suitable for the study of dynamic processes such as development 

or differentiation, due to the high numbers of individual cells sequenced and differences in 

progression along the dynamic process of choice between them [90]. Here, we make use of a 

time course hESC differentiation dataset [84] containing six distinct timepoints to infer cell 

trajectories through the course of differentiation, in order to assess the impact of dropout 

imputation on the inferred trajectories. To this end, we computed cell trajectories before and after 

imputation with slingshot [91], a method well evaluated in an independent work [89], and 

compared them to the known timepoint labels of the dataset (Figure 3.3). Imputation with any of 

the tested methods led to a better agreement between timepoint labels and inferred pseudotime, 

highlighting the usefulness of dropout imputation for downstream analyses such as trajectory 

inference. Additionally, Baseline and bulk-based SCRABBLE imputations showed the worst 

performance among the compared methods. Baseline’s poor performance was expected, as 

signals across the whole dataset were averaged for dropout imputation, which dilutes the 

progressive changes across the course of differentiation. However, it was surprising to us that 

using Baseline was still better than not performing any dropout imputation. A possible explanation 

might be that leaving technical zeros in the data introduces additional noise thereby complicating 

the correct positioning of cells on the pseudo time trajectory. Bulk-based SCRABBLE’s poor 

performance may be explained by the small number of samples per time point available in the 

bulk reference (n = 2 or 3). An average across such few samples is unstable, and it remains to 

be seen whether a more reliable bulk reference results in better performance for SCRABBLE. 

Finally, our results support the use of an Ensemble method where the best performing method is 

picked for each gene via a cross-validation approach, as the performance of this Ensemble 

method was practically indistinguishable from the best performing method. 

Data visualization 

Another popular application of scRNA-seq is the identification of discrete sub-populations of cells 

in a sample in order to, for example, identify new cell types. The clustering of cells and the visual 

2D representation of single-cell data is affected by the choice of the dropout imputation method13. 

Therefore, we assessed the impact of dropout imputation on data visualization using Uniform 

Manifold Approximation and Projection (UMAP) [92] on the hESC data before and after imputation 

by all methods. The snapshot hESC dataset was particularly suitable in this case, because it was 

of high quality and it consisted of six well-annotated distinct cell types. This analysis confirmed 

that the choice of the imputation method impacts on the grouping/clustering of cells 

(Supplementary Figure 3.12). Application of other dimensionality reduction techniques (t-

distributed stochastic neighbor embedding, t-SNE, and Zero-Inflated Negative Binomial-based 

Wanted Variation Extraction ZINB-WaVE) showed varying results depending on the chosen 

method, suggesting that visual clustering upon dimensionality reduction is an inconclusive 

criterion for evaluating dropout imputation (Supplementary Figure 3.13). 

 

https://paperpile.com/c/OLkHHZ/oSsb
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Figure 3.3: Comparison of impact of different imputation methods on cell trajectory inference for time course 

hESC differentiation data. Cells were projected onto the trajectories determined with slingshot to compute a 

pseudotime of differentiation. The pseudotime assigned to each individual cell (y-axis) is then compared to the time 

point label of the sample (x-axis). Colored points represent the mean pseudotime per known time point. In the title, the 

Pearson’s r between pseudotime and time point labels (and the respective p-value) are shown. Note that slingshot 

always fails to correctly position the sample at time point 0, suggesting an artifact in the original data. 

Cluster marker detection 

We next asked to what extent the detection of cluster markers would be affected by the choice of 

the imputation method. Thus, we applied Seurat [93] to the hESC differentiation dataset, which 

was composed of a well-defined set of distinct cell types, before and after imputation. We then 

defined genes that were significantly differentially expressed between one cluster and all the 

others as cluster markers (Methods). We observed a considerable overlap between markers 
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detected before and after applying the tested imputation methods (Figure 3.4.A, horizontal dashed 

line), suggesting a common core of detected cluster markers across methods. Additionally, the 

numbers of significant markers detected after Network and Baseline imputations were lower than 

for other imputation methods (Figure 3.4.A). Imputation with kNN-smoothing, scImpute and, to a 

smaller extent, with DrImpute, led to the highest number of significant markers (Figure 3.4.A). We 

hypothesized that many of these marker genes may result from artefactual clustering of cells. In 

order to test that notion we first determined all Gene Ontology (GO) biological process terms that 

were enriched in the respective cell clusters without any dropout imputation. We termed them 

‘high confidence GO terms’ since they are independent of the choice of the imputation method. It 

turned out that kNN-smoothing, scImpute and DrImpute had the weakest enrichments in high 

confidence GO biological process terms (Figure 3.4.B and 3.4.C; Methods; Supplementary Table 

3.4), suggesting that the extra markers found upon applying scImpute and DrImpute contained 

many false positives, which diluted biological signals. Conversely, Network and SCRABBLE led 

to the strongest enrichments in high confidence GO biological process terms (Figure 3.4.B and 

3.4.C). 

Determining transcriptional regulators 

Genes with regulatory functions are particularly important for understanding and explaining the 

transcriptional state of a cell. However, since genes with regulatory functions are often lowly 

expressed [94], they are frequently subject to dropouts. Since our analysis had shown that the 

network-based approach is especially helpful for lowly expressed genes (Figure 3.2), we 

hypothesized that the imputation of transcript levels of regulatory genes would be particularly 

improved. In order to test this hypothesis, we further characterized those cluster markers that 

were exclusively detected using the network-based method. Indeed, we observed regulatory 

genes to be enriched among those markers (Figure 3.5.A). The transcription factor ETS 

Homologous Factor (EHF) was the second most significant trophoblast-specific among these 

markers exclusively detected upon network-based imputation. EHF is a known epithelium-specific 

transcription factor that has been described to control epithelial differentiation [95] and to be 

expressed in trophoblasts (TB) [96], even though at very low levels (EHF expression was found 

among the first quintile of bulk TB RNA-seq data from the same authors). While EHF transcripts 

were not well captured in TB single-cell RNA-seq data (only detected in 39 out of 775 TB cells), 

a trophoblast-specific expression pattern was recovered after network-based imputation (Figure 

3.5.B, upper panel), but not with any of the other tested imputation methods (Supplementary 

Figure 3.14). Similarly, Odd-Skipped Related Transcription Factor 1 (OSR1) has been described 

as a relevant fibroblast-specific transcription factor [97] which failed to be detected without 

imputation. Imputing with Network lead to the strongest fibroblast-specific expression pattern of 

OSR1 (Figures 3.5.B, lower panel, and S3.14). Interestingly, TWIST2 and PRRX1, described by 

Tomaru et al. [97] to interact with OSR1, also showed fibroblast-specific expression 

(Supplementary Figure 3.15). Taken together, these results suggest that imputation based on 

transcriptional regulatory networks can recover the expression levels of relevant, lowly expressed 

regulators affected by dropouts. 
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Figure 3.4: Detection of cell type-specific markers before and after imputation. A) Number of significant (FDR < 

0.05, |log2FC| > 0.25) cell type markers detected with no dropout imputation and using the tested imputation methods. 

Horizontal dashed lines correspond to the number of markers detected irrespectively of imputation. The fraction of the 

bar in a darker shade corresponds to the number of markers detected exclusively when using a given imputation 

approach. B) and C) fraction of captured high confidence terms, defined as significantly enriched (p.value < 0.001 and 

log2Enrichment > 0.5, Methods) GO biological process terms among the cluster markers detected without imputation. 

B) Sensitivity: fraction of high confidence terms detected as significantly enriched (p.value < 0.001 and log2Enrichment 

> 0.5) among the cluster markers detected with each imputation method. C) log2-enrichment of all high confidence 

terms among the cluster markers detected with each imputation method. DEC: definitive endoderm cells; EC: 

endothelial cells; H9: undifferentiated human embryonic stem cells; HFF: human foreskin fibroblasts; NPC: neural 

progenitor cells; TB: trophoblast-like cells. 
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Figure 3.5: Detection of cell type-specific transcription factors is improved upon network-based imputation. A) 

Enrichment score in GO term “DNA-binding transcription factor activity” among the genes uniquely detected after each 

imputation approach. B) Projection of cells onto a low dimension representation of the data before imputation, using 

ZINB-WaVE [98]. Color represents normalized expression levels of EHF (top) and OSR1 (bottom) before and after 

Network-based imputation. DEC: definitive endoderm cells; EC: endothelial cells; H9: undifferentiated human 

embryonic stem cells; HFF: human foreskin fibroblasts; NPC: neural progenitor cells; TB: trophoblast-like cells. 
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3.3 Methods 

Pre-processing of cancer cell line data for transcriptional regulatory network inference 

Entrez IDs and corresponding gene symbols were retrieved from the NCBI 

(https://www.ncbi.nlm.nih.gov/gene/?term=human%5Borgn%5D). Genome annotation was 

obtained from Ensembl (Biomart). Finally, genes of biotype in protein coding, ncRNA, snoRNA, 

scRNA, snRNA were used for network inference. For CCLE [99], 768 cell lines that were used in 

Seifert et al. [27] were used. Raw CEL files were downloaded from 

https://portals.broadinstitute.org/ccle/ and processed using the R package RMA in combination 

with a BrainArray design file (HGU133Plus2_Hs_ENTREZG_21.0.0). Final expression values 

were in log2 scale. Expression levels and CNV data set from RNA-seq were downloaded from 

Klijn et al. [100]. Before combining, each dataset is log2 transformed and scaled to (0,1) for all 

genes in each sample using R function scale. Then datasets were merged and the function 

ComBat from the sva R package [101] was used to remove batch effect of the data source. The 

final combined data set contains 24641 genes in 1443 cell lines. Finally, expression levels of 

genes were subtracted by the average expression level across all cell lines of the corresponding 

gene. 

Network inference based on stability selection 

The network inference problem can be solved by inferring independent gene-specific sub-

networks. We used the linear regression model from equation (3.1) to model the change in a 

target gene as dependent on the combination of the gene-specific CNA and changes in all other 

genes. Here the intercept is not included because the data is assumed to be centered. We used 

LASSO with stability selection [82] to find optimal model parameters 𝛼𝑖𝑗. 

The R package stabs was employed to implement stability selection and the glmnet package was 

used to fit the generalized linear model. Two parameters regarding error bounds were set with 

the cutoff value being 0.6 and the per-family error rate being 0.05. A set of stable variables were 

defined by LASSO in combination with stability selection. Then coefficients of the selected 

variables were estimated by fitting generalized linear models using the R function glm. 

Network validation using TCGA and GTEx data 

Gene expression and gene copy number data of 14 different tumor cohorts (4548 tumor patients 

in total) from TCGA collected in a previous study [27] were used for validation. We examined the 

predictive power of our inferred networks on each TCGA cohort by predicting the expression level 

of each gene for each tumor using the corresponding copy number and gene expression data.  

Additionally, in order to validate the applicability of the learnt network to healthy tissues, we further 

leveraged gene expression data from the Genotype-Tissue Expression (GTEx) Project. Read 

counts were downloaded from the portal website (version 8), normalized using the R package 

DESeq2 and centered gene-wise across tissues. 

For each TCGA cohort or GTEx tissue, the expression levels of each gene were predicted using 

the network and expression quantification of the interacting genes in the same sample. The 

predicted value was then compared to the observed value, present in the original dataset. The 

quality of prediction for each TCGA cohort or GTEx tissue was quantified as either the correlation 

https://www.ncbi.nlm.nih.gov/gene/?term=human%5Borgn%5D
https://portals.broadinstitute.org/ccle/
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between predicted and observed expression of a gene across all samples or the MSE of prediction 

of a gene across all samples. A strong positive correlation or low MSE for a gene suggests high 

predictive power by the network on the respective gene. 

Single-cell test data processing 

Human embryonic stem cell differentiation data [84] were downloaded from the Gene Expression 

Omnibus (GEO, accession number GSE75748) in the format of expected counts. The 

downloaded data were converted to RPM (reads per million). Renal cell carcinoma data [87], in 

the format of normalized UMI counts, and corresponding metadata, were download via the Single 

Cell Portal. Data was reduced to cells from patient P915. Cells with library sizes more than 3 

median absolute deviations above the median were removed as potential doublets. 2000 cells 

were randomly selected for further analysis and underwent reversion of the log-transformation. 

Human embryonic kidney (HEK) cell read and UMI data, sequenced with Smart-seq3 [83, p. 3], 

were downloaded from ArrayExpress (accession code E-MTAB-8735). Ensembl IDs were 

converted to gene symbol and data was normalized for library size (RPM). Oligodendroglioma 

data [85] were downloaded from GEO (accession number GSE70630) as log2(TPM/10+1) and 

converted back to TPM. Lung Atlas 10X and Smart-seq2 data [86], together with corresponding 

metadata, were downloaded from Synapse (ID syn21041850). For both sequencing methods, 

data was restricted to cells from the lung of patient 1. Potential doublets (cells with library sizes 

above the median) were removed from the 10X data. For this dataset, library sizes above the 

median were considered potential doublets due to the bi-modal distribution of library sizes below 

the usual threshold of median+(3*MAD). After doublet removal, 2000 cells were randomly 

selected for RPM normalization and further analysis for both sequencing methods. 

Dropout imputation 

Version 0.0.9 of scImpute [75] was used for dropout imputation, in “TPM” mode for the 

oligodendroglioma dataset and “count” mode for all other datasets, without specifying cell type 

labels. The parameters were left as default, except for drop_thre = 0.3 (upon artificial masking), 

as the default of 0.5 resulted in no imputations performed. Cell cluster number (Kcluster) was left 

at the default value of 2 for imputation of all datasets except for the hESC differentiation datasets 

(snapshot and timecourse), where it was set to 6 in order to match the number of cell clusters 

identified by the authors [84], and the Smart-seq3 dataset, where it was set to 1 because only 

one cell type was sequenced. SAVER 1.1.1 was used with size.factors = 1. SCRABBLE 0.0.1 

was run with the parameters suggested by the authors and using by default the average gene 

expression across cells as the bulk reference. In the case of the hESC differentiation dataset, 

bulk data from the same study was available, and thus was also used as reference. kNN-

smoothing [78] (python implementation v. 2.1) was run on the data before library size 

normalization, as this method performs a different correction. Since the Oligodendroglioma data 

was retrieved in TPM format, kNN-smoothing was not included in the method comparison for this 

dataset. For all other imputation methods, the data was log2-transformed with a pseudocount of 

1. DrImpute 1.0 was run using the default parameters. For dropout imputation by average 

expression (‘Baseline’), gene expression levels were log2-transformed with a pseudocount of 1 

and the average expression of each gene across all cells, excluding zeros, was used for 

imputation. For network-based imputation, expression values were log2-transformed with a 

pseudocount of 1 and centered gene-wise across all cells. The original centers were stored for 

posterior re-conversion. Subsequently, cell-specific deviations of expression levels from those 
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centers were predicted using either equation (3.5) or the following iterative procedure. During the 

iteration genes were first predicted using all measured predictors. Subsequently, genes with 

dropout predictors were re-predicted using the imputed values from the previous iteration. This 

was repeated for at most 50 iterations. The obtained values were added to the gene-wise centers. 

We note that the values after imputation cannot be interpreted as TPMs/RPMs, as the sum of the 

expression levels per sample is no longer guaranteed to be the same across samples. However, 

one could still perform a new normalization by total signal (sum over all genes) to overcome this 

issue. 

Masking procedures 

In order to compare the imputation error of the tested methods, we randomly masked (set to zero) 

some of the values for each gene, using two different approaches. 

The first approach consisted of setting a fraction of the quantified, uniformly sampled values to 

zero for each gene (Figure 3.1, S3.4, and S3.5) - 35% for the hESC differentiation and Smart-

seq3 datasets, 10% for the oligodendroglioma and Lung Atlas (FACS-sorted) datasets and 8% 

for the Renal Cell Carcinoma and Lung Atlas 10X datasets. In case of Supplementary Figure 3.6 

30% of the cells (not genes) were sampled. This unbiased masking scheme is in agreement with 

previous work [102]. The differing percentages of masked values per gene in each dataset result 

in a comparable sparsity of the data after masking. 

As an alternative masking procedure that represents more closely a downsampling process, we 

modelled for each gene its probability to be an observed zero in the following way: the fraction of 

cells where each gene was not captured (zero in the original data) was modelled as a function of 

its average expression across cells (Supplementary Figure 3.8). For this, a cubic spline was used, 

with knots at each 10% quantile of the average expression levels, excluding the 0% and 100% 

quantiles. A cubic spline was chosen so that it could properly fit to both UMI-based and non UMI-

based datasets. With this model, a ‘dropout probability’ p was computed for each gene from its 

mean expression. The masking procedure then consisted of, for each entry, sampling a Bernoulli 

distribution with probability of success 1-p, where 0 corresponds to a mask (the entry is set to 0) 

and 1 to leaving the data as it is. Thus, each entry in the data matrix may be masked with a 

probability p, which is gene-specific and based on the observed dropout rates in the dataset at 

hand. 

We observed the same relative performance of the imputation methods under this alternative 

masking scheme (Supplementary Figure 3.9), and for this reason present the results obtained 

with the first masking approach. 

Imputation performance analysis 

Imputation was performed with each of the four tested methods separately and the imputed 

masked entries were then compared to the original ones. For genes where at least 10 values 

were imputed (non-zero after imputation, zero after masking) by all methods, the Pearson 

correlation between original and imputed values across cells was computed for each gene 

individually. 

Additionally, we used the mean of the squared imputation error across all imputations for a given 

gene: 
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∑(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙−𝑖𝑚𝑝𝑢𝑡𝑒𝑑)2

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠
  (3.1) 

In order to avoid higher errors for more highly expressed genes, we split the genes into expression 

quartiles when reporting the imputation error. 

Top performing methods 

For each gene, the best performing method (highest correlation / lowest MSE) was computed. 

For the correlation-based analysis, methods with a correlation difference to the maximum no 

bigger than 0.1 were considered to be top performing. If all methods for a given gene were within 

this range (all top performers), the gene was not included in the foreground of Figures 3.2 and 

S3.10. For the MSE-based analysis, the maximum MSE difference to the best performer was 

computed for each gene individually, since the MSE range can be quite different from gene to 

gene. The maximum MSE difference was determined as 5% of the MSE range, in order to make 

it comparable to the threshold used in the correlation-based analysis and thus, methods in the 

top 5% of the gene-specific MSE range were considered to be top performing. 

Cell trajectory inference 

Trajectory inference was performed on the original and imputed hESC time course dataset, using 

the R package slingshot (v. 1.8.0). Dimensionality reduction was done via PCA without scaling, 

as advised by the authors. The first 2 Principal Components were used, as retaining more did not 

change the relative performance of the methods. Since specifying the start and/or end of clusters 

sometimes resulted in branched trajectories, cluster labels were not given as input in order to 

avoid branching (branching was not expected in this dataset). The Pearson correlation between 

the obtained pseudotime and the known timepoint labels of the dataset was used for evaluation. 

Dimensionality reduction 

Dimensionality reduction on the original hESC differentiation data (Figure 3.5.B) was performed 

using ZINBWaVe, t-SNE and UMAP (Supplementary Figures 3.12 and 3.13). H1 and TB cells in 

Batch 3 were removed to avoid confounding batch effects and dimensionality reduction was 

performed for the remaining cells. UMAP was performed on the first 5 principal components 

obtained from the top 1000 most variable genes in the hESC differentiation data (normalized, 

log2-transformed) before and after imputation (Supplementary Figure 3.12) using the Seurat R 

package [93], version 4.0.4, with parameters umap.method = “umap-learn” and metric = 

“correlation”. ZINB-WaVE, implemented in the R package zinbwave [98], was used to extract 2 

latent variables from the information contained in the top 1000 genes with highest variance across 

cells. Batch information and the default intercepts were included in the ZINB-WaVE model, using 

epsilon = 1000 (Supplementary Figure 3.13). K-means clustering (k = 6) on the 2 latent variables 

strongly matched the annotated cell type labels (0.977 accuracy), confirming the reliability of this 

approach. t-SNE was performed on the normalized and log2-transformed data using the Rtsne R 

package with default settings (Supplementary Figure 3.13). 

Marker detection 

Cluster-specific markers were detected from the log2-transformed normalized data using Seurat 

version 4.0.4. Detection rate was regressed out using the ScaleData function with vars.to.regress 
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= nGene. Markers were detected with the FindAllMarkers function, using MAST [103] test and 

setting logfc.threshold and min.pct to 0, and min.cells.gene to 1. 

GO term enrichment and transcription factor analyses 

All GO term enrichment analyses were performed with the topGO R package [104]. Enrichment 

in GO biological process terms among cluster-specific markers (Figures 3.4.B and 3.4.C) was 

performed for each cell cluster and (no) imputation method separately, using as foreground the 

set of significant cluster markers detected by Seurat, with FDR < 0.05 and |logFC| > 0.25, and as 

background all genes in the Seurat result (both significant and non-significant). The classic 

algorithm was used, in combination with Fisher test, and log2 enrichment was quantified as the 

log2 of the ratio between the number of significant and expected genes in each term. Significantly 

enriched (p-value < 0.001 and log2 enrichment > 0.5) GO biological process terms within each set 

of cluster markers, as detected in the original data (no masking, no imputation), were defined as 

“high confidence” terms. 

For regulatory GO molecular function term enrichment analyses (Figure 3.5.A), significant (FDR 

< 0.05 and |logFC| > 0.25) markers uniquely detected without / with each imputation method were 

combined across all clusters and tested for enrichment in the term “DNA-binding transcription 

factor activity” against the background of all genes obtained as the result of Seurat (both 

significant and non-significant). The classic algorithm was used, in combination with Fisher test, 

and log2 enrichment was quantified as the log2 of the ratio between the number of significant and 

expected genes in each term. 

To identify transcription factors (TFs) among cluster markers exclusively detected using the 

network-based method, a curated TF list was downloaded from http://tfcheckpoint.org/ . 

Determination of the optimal imputation method per gene 

In order to determine the best performing imputation method for each gene, 70% of the cells in 

each dataset were used as training data, where a percentage of the expression values were 

masked, as previously described. In the Smart-seq3 dataset, where only around 100 cells were 

available, the training was done in 98% of the dataset The remaining cells were used for testing. 

After masking, each of the tested imputation methods was applied to the training data and the 

imputed values of masked entries were then compared to the measured values. The Pearson 

correlation coefficient was computed for each gene with at least 10 imputed (with a non-zero 

value) masked entries. For each gene, the method leading to the highest correlation coefficient 

was chosen as optimal. When no decision could be done, the Baseline method was used as a 

default. 

The ADImpute R package 

The ADImpute R package is composed of two main functions, EvaluateMethods and Impute. 

EvaluateMethods determines, for each gene, the method resulting in the best imputation 

performance, in a cross-validation procedure. Impute performs dropout imputation according to 

the choice of method provided by the user. Currently supported methods are scImpute, DrImpute, 

SAVER, SCRABBLE, the Baseline and Network methods described in this manuscript and an 

Ensemble method, which takes the results from EvaluateMethods to select the imputation results 

from the gene-specific best method. Additionally, the user can choose to estimate the probability 

http://tfcheckpoint.org/


29 
 

that each dropout value is a true zero, according to the approach used by scImpute, and leave 

the values unimputed if their probability of being a true zero falls above a user-defined threshold. 
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3.4 Discussion 

This work has led to the following key findings: (i) a model-based approach using external data is 

particularly powerful for the imputation of rarely detected genes; (ii) based on the MSE criterion 

the expression of surprisingly many genes is best predicted by simply using their average 

expression across cells (‘Baseline’); (iii) not all genes are equally well predicted by a single 

imputation approach; instead, one should adapt the imputation method to the specific gene in a 

given dataset. In addition, our work confirmed earlier findings, such as the artifactual clustering 

resulting from some imputation methods. 

The consideration of external gene co-expression information for the dropout imputation 

substantially improved the performance in many cases, especially for lowly expressed genes. 

Since genes with regulatory functions are often lowly expressed [94], imputation of those genes 

might be critical for explaining expression variation between cells.  Of note, cell type-specific 

regulatory genes were successfully imputed using information from our global gene co-expression 

network (Figure 3.5). This observation, together with the demonstrated predictive capacity of our 

network across cancer and healthy human data from a wide range of tissues, highlights the 

transferability of the gene-gene relationships learnt by our network. scImpute, kNN-smoothing 

and DrImpute elevated the number of cluster markers found in downstream DE analysis (Figure 

3.4), but these additional markers seemed to dilute the true biological signal in the data. A similar 

behaviour has been described elsewhere for scImpute [73]. Similarly to our network-based 

approach, SAVER makes use of gene-gene relationships for imputation. However, SAVER learns 

these relationships in the dataset at hand, while Network makes use of externally trained 

relationships. The fact that Network outperforms SAVER in our comparisons suggests that the 

scRNA-seq data at hand may often be too sparse for relationships to be adequately learnt.  

A potential limitation of our approach is that a transcriptional network derived from bulk-seq data 

may not fully capture gene-gene relationships that are detectable from single cell data. For 

example, gene regulatory relationships that are specific to a small sub-population of cells in a bulk 

tissue may not be correctly captured, because the signal would be too weak. A second example 

would be genes regulated during the cell cycle. Bulk tissue is usually not synchronized, i.e. it 

consists of a mix of cells at different cell cycle stages, which may prevent the detection of those 

relationships. To some extent these limitations were alleviated by using cell line data rather than 

actual tissue data for training the network. Of course, the network that we used here is still 

imperfect. However, despite that imperfection it demonstrated the power of our approach. Using 

it was clearly advantageous over not using it in most dropout imputation tests, and we showed its 

predictive power across independent datasets from cancer, healthy human tissue and cell lines. 

A surprising finding of our analysis is the fact that the sample-wide average expression 

(‘Baseline’) performs well for the imputation of many genes when using the MSE as a performance 

measure (Supplementary Table 3.3). Originally, we developed Baseline only as a benchmark of 

a minimalistic approach in order to compare the performance gain of more sophisticated 

approaches against this one. Much to our surprise, many genes could not be imputed better by 

any of the competing approaches. As expected, genes whose expression levels were best 

imputed by Baseline were characterized by lower variance across cells and by remaining 

undetected in relatively many cells (Supplementary Figure 3.11). A potential problem of methods 

based on co-clustering cells is that the number of observations per cluster can get very small, 

which makes the estimation of the true mean more unstable. Thus, averaging across all cells is 
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preferred when the gene was detected in only few cells and/or if the gene’s expression does not 

vary much across cells. Further, our findings imply that cell-to-cell expression variation of many 

genes is negligible or at least within the limits of technical measurement noise. Obviously, 

Baseline does not support the identification of differentially expressed genes between different 

groups of cells. However, it may help reducing artifacts resulting from the clustering of cells with 

technical zeros (Figure 3.3). 

The third -- and maybe most important -- conclusion is that the best performing imputation method 

is gene- and dataset-dependent. That is, there is no single best performing method. If the number 

of observations is high (many cells with detected expression) and if the expression quantification 

is sufficiently good, scImpute and DrImpute outperformed other methods. Importantly, the 

technical quality of the quantification depends on the read counts, which in turn depends on 

sampling efficiency, gene expression, transcript length and mappability – i.e. multiple factors 

beyond expression. If however, gene expression is low and/or too imprecise, scImpute and 

DrImpute were outcompeted by other methods, since expression data across neighboring cells is 

not informative in this case. This finding led us to conclude that a combination of imputation 

methods would be optimal. Hence, we developed an R-package that determines ‘on the fly’ for 

each gene the best performing imputation method by masking observed values (i.e. via cross 

validation). This approach has the benefit that it self-adapts to the specificities of the dataset at 

hand. For example, the network-based approach might perform well in cell types where the 

assumptions of the co-expression model are fulfilled, whereas it might fail (for the same gene) in 

other cell types, where these assumptions are not met. Hence, the optimal imputation approach 

is gene- and dataset-dependent. An adaptive method selection better handles such situations. 

Another benefit of this approach is that the cross validation imputation performance can be used 

as a quantitative guide on how ‘imputable’ a given gene is in a specific scRNA-seq dataset. We 

have therefore implemented and tested this approach (see Figures 3.1, S3.4, and S3.5). The 

resulting R-package (called ADImpute) is open to the inclusion of future methods and user-

provided gene networks, includes scImpute’s estimation of dropout probability and it can be 

downloaded from https://bioconductor.org/packages/release/bioc/html/ADImpute.html. While, by 

default, ADImpute makes use of the transcriptional regulatory network described here, the user 

can provide any desired gene network e.g. for a different species, similarly to [105]. Our network 

has been trained on a large set of human cancer cell lines and thus is expected to capture much 

of the possible regulatory interactions of interest to many users; however, ADImpute facilitates 

the use of custom-made more specialized networks. 

We believe that this work presents a paradigm shift in the sense that we should no longer search 

for the single best imputation approach. Rather, the task for the future will be to find the best 

method for a particular combination of gene and experimental condition. 

  

https://bioconductor.org/packages/release/bioc/html/ADImpute.html
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3.5 Contributions 

The work described in this chapter is available in the following peer-reviewed publication: 

Leote AC, Wu X, Beyer A (2022) Regulatory network-based imputation of dropouts in single-cell 

RNA sequencing data. PLOS Computational Biology 18(2): e1009849. 
https://doi.org/10.1371/journal.pcbi.1009849 

X.W. trained the regulatory model on transcriptomic and copy number data in cancer cell lines. I 

implemented the dropout imputation approach, compared the performance to that of previously 

published methods and developed the ADImpute R package. I wrote the manuscript together with 

A.B. 

  

https://doi.org/10.1371/journal.pcbi.1009849
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3.6 Supporting Information 

Supplementary Table 3.1: Characteristics of the test datasets. 

Authors Tissue 
Sequencing 

method 
# cells 

Avg. quantified 
genes / cell 

Hagemann-
Jensen et al. 

Human Embryonic Kidney 
(HEK) cells 

Smart-seq3 117 
10,743 (read 

counts) 

Hagemann-
Jensen et al. 

Human Embryonic Kidney 
(HEK) cells 

Smart-seq3 117 9,539 (UMI counts) 

Chu et al. hESC differentiation Smart-seq/C1 1,018 (snapshot) 9,617 (snapshot) 

Chu et al. hESC differentiation Smart-seq/C1 758 (time course) 8,695 (time course) 

Tirosh et al. 
Oligodendroglioma, 6 

donors 
Smart-seq2 4,347 5,169 

Travaglini et al. 
Healthy lung, 3 donors’ lung 

and blood 
10X 

Smart-seq2 

7,524 (10X, donor 1 
lung) 

3,235 (Smart-seq2, 
donor 1 lung) 

3,003 (Smart-seq2, 
donor 1 lung) 

Travaglini et al. 
Healthy lung, 3 donors’ lung 

and blood 
10X 

Smart-seq2 

7,524 (10X, donor 1 
lung) 

3,235 (Smart-seq2, 
donor 1 lung) 

2,105 (10X, donor 1 
lung) 

Bi et al. 
Clear cell renal cell 

carcinoma, 8 donors 
10X 6,541 (donor P915) 1,473 (donor P915) 

 

Supplementary Table 3.2: Spearman rank correlation between original values and 

imputation results after masking. Correlation was computed between the vector of original 

entries and imputations common to all methods. 
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Smart-seq3 (reads) 0.79 0.71 0.77 0.75 0.78 - 0.72 0.79 

Smart-seq3 (UMIs) 0.77 0.72 0.77 0.75 0.74 - 0.70 0.77 

hESC differentiation 0.65 0.64 0.66 0.51 0.63 0.39 0.52 0.65 

hESC timecourse 0.68 0.66 0.69 0.53 0.56 0.48 0.54 0.67 

Oligodendroglioma 0.65 0.41 - 0.29 0.43 - 0.45 0.64 

Lung Atlas (10X) 0.70 0.64 0.57 0.51 0.50 - 0.50 0.73 

Lung Atlas (FACS) 0.52 0.41 0.49 0.34 0.39 - 0.41 0.53 

ccRCC 0.68 0.63 0.54 0.60 0.54 - 0.48 0.73 
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Supplementary Table 3.3: Percentage of masked dropouts imputed by each method in 

the tested datasets. 
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Smart-seq3 (reads) 81.8% 79.9% 79.2% 81.8% 80.7% - 82.2% 75.7% 

Smart-seq3 (UMIs) 80.6% 78.4% 80.5% 80.6% 72.8% - 81.6% 77.7% 

hESC differentiation 84.1% 83.7% 83.5% 84.1% 78.9% 63.5% 37.8% 87.7% 

hESC timecourse 83.9% 83.4% 83.2% 83.9% 74.4% 68.5% 41.8% 87.5% 

Oligodendroglioma 84.8% 84.1% - 84.8% 80.6% - 24.9% 85.2% 

Lung Atlas (10X) 51.1% 49.3% 20.9% 51.1% 20.0% - 18.8% 68.6% 

Lung Atlas (FACS) 65.6% 64.8% 62.7% 65.6% 62.3% - 15.6% 71.2% 

ccRCC 59.7% 58.4% 27.1% 59.7% 29.1% - 19.5% 73.7% 

 

Supplementary Table 3.4: Percentage of genes best imputed by each method (lowest 

MSE) in the tested datasets restricted to values that could be imputed by all methods. 
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Smart-seq3 (reads) 45.2% 0% 1.0% 0% 9.6% - 1.7% 42.5% 

Smart-seq3 (UMIs) 48.8% 0% 3.5% 0% 0% - 0.3% 48.8% 

hESC differentiation 31.1% 0.5% 0.3% 0.1% 21.6% 5.2% 6.2% 34.9% 

hESC timecourse 41.8% 0.3% 1.3% 0% 0% 4.1% 6.9% 45.6% 

Oligodendroglioma 47.8% 0.2% - 0% 4.6% - 1.9% 45.5% 

Lung Atlas (10X) 12.1% 0% 13.8% 0% 0% - 0.1% 74.0% 

Lung Atlas (FACS) 35.6% 0% 5.5% 0% 2.5% - 6.9% 49.4% 

ccRCC 11.3% 0.2% 4.7% 0% 0% - 0.3% 83.6% 
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Supplementary Figure 3.1: Correlation between network predictions (using the model from Seifert et al. [27] 

(light purple) and the improved network described here (blue)) and measured gene expression in diverse TCGA 

datasets. For each gene its expression was predicted in a given tumor sample using the measured expression values 

of all detected predictors in the model. Subsequently, observed and predicted values were correlated across all samples 

from one cohort. The plots show the distributions of Pearson’s correlation scores across all genes common between 

the network model and the respective TCGA dataset. Although there is variation with respect to how well genes in 

different tumor entities can be predicted, the distributions are always strongly skewed in favour of positive correlations. 

This trend is enhanced with the new model presented here.  AML - Acute Myeloid Leukemia; BRCA - Breast Invasive 

Carcinoma; COAD - Colon Adenocarcinoma; GBM - Glioblastoma Multiforme; HNSC - Head and Neck Squamous Cell 

Carcinoma; KIRC - Kidney Renal Clear Cell Carcinoma; LUAD - Lung Adenocarcinoma; LUSC - Lung Squamous Cell 

Carcinoma; OV - Ovarian Serous Cystadenocarcinoma; READ - Rectum Adenocarcinoma; SKCM - Skin Cutaneous 

Melanoma; STAD - Stomach Adenocarcinoma; THCA - Thyroid Carcinoma. 
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Supplementary Figure 3.2: Correlation between network predictions (using the network described here – blue 

- , a partially randomized network - light blue - and a fully randomized network – grey) and measured gene 

expression in diverse healthy tissues from the GTEx consortium. For each gene its expression was predicted in 

a given healthy tissue sample using the measured expression values of all detected predictors in the model. 

Subsequently, observed and predicted values were correlated across all samples from one tissue. The plots show the 

distributions of Pearson’s correlation scores across all genes common between the network model and the GTEx data. 
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Supplementary Figure 3.3: Comparison between results of the network-based imputation using the iterative 

approach and the Moore-Penrose pseudoinversion (MP) with varying tolerance thresholds in a random subset 

of 20 cells from the hESC differentiation dataset. A) Correlation between the results of the iterative approach (x 

axis) and the Moore-Penrose pseudoinversion (y-axis), across the 20 random cells. B) Imputation performance per 

gene using the iterative approach and MP with different tolerance thresholds (Pearson correlation, top, and MSE, 

bottom), separated by expression quartile on the masked data. The higher the tolerance threshold, the fewer singular 

values are used for the pseudoinversion. Results were limited to imputations performed by all methods. 
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Supplementary Figure 3.4: Imputation performance of Network (blue), DrImpute (green), kNN-smoothing (pink), 

SAVER (yellow), scImpute (turquoise), SCRABBLE (with bulk or single-cell data as reference; purple) and 

Ensemble (orange), stratified by expression quartiles, on additional datasets. A) Distribution of average 

expression levels in each dataset. Quartiles are represented by vertical lines. B) Pearson correlation coefficient, for 

each gene, between the imputation by the specified method and the original values before masking. Only values that 

could be imputed by all methods were used for correlation computation. Expression quartiles are determined for each 

dataset separately, on the masked data. 
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Supplementary Figure 3.5: Imputation error of Baseline (slate grey), Network (blue), DrImpute (green), kNN-

smoothing (pink), SAVER (yellow), scImpute (turquoise), SCRABBLE (with bulk or single-cell data as reference; 

purple) and Ensemble (orange), stratified by expression quartiles. Only values that could be imputed by all 

methods were used for MSE computation. Expression quartiles are determined for each dataset separately, on the 

masked data. The x axis is presented log-transformed and was cropped at 0.1 to exclude the low-MSE tail from 

visualization and facilitate result comparison. 
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Supplementary Figure 3.6: Imputation performance of Baseline (slate grey), Network (blue), DrImpute (green), 

kNN-smoothing (pink), SAVER (yellow), scImpute (turquoise) and SCRABBLE (purple) methods in the hESC 

differentiation dataset, upon cellwise masking. Correlation coefficient between imputed and original values (top) 

and MSE of imputation (bottom), upon random masking of 30% of the quantified genes in each cell in the hESC 

differentiation dataset. The Baseline method computes the average expression of a gene across all cells and it is not 

using the information of any other genes. Hence, one would assume that its error should be independent of the number 

of missing genes per cell. This is however not the case due to a biased gene sampling: cells with few detected genes 

will preferentially report values for highly expressed genes, whereas cells with many detected genes will represent a 

less biased sample of the whole transcriptome. This is affecting the performance, which thus is slightly dependent on 

the number of missing genes per cell. Values were restricted to imputations performed by all tested methods. 
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Supplementary Figure 3.7: Imputation performance of the Network method upon randomization in the hESC 

differentiation dataset. Dropout imputation was performed using the network described here (blue), a partially 

randomized network (light blue) and a fully randomized network (grey).  
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Supplementary Figure 3.8: Comparison of the two masking procedures employed in this work: a uniform 

masking procedure which sets to zero the same number of entries per gene (UniformMask) and a model-based 

procedure which sets entries to zero with a gene-specific probability obtained from the data. Comparisons were 

done on representative datasets of non-UMI data (A), C), E), G)) and UMI data (B), D), F), H)). A) and B) Fit of the 

spline model (Methods) to the original data. C) and D) Fraction of zeros in the data before (Original) and after 

(UniformMask, ModelMask) masking, compared to original average gene expression,. E) and F) Distribution of mean 

expression and expression variance before  and after masking, compared to original average gene expression. G) and 

H) Mean-variance trend before and after masking.  
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Supplementary Figure 3.9: Imputation performance of Baseline (slate grey), Network (blue), DrImpute (green), 

SAVER (yellow), scImpute (turquoise) and SCRABBLE (purple) methods in the hESC differentiation dataset, 

using a gene-specific masking procedure (Methods). Correlation coefficient between imputed and original values 

(top) and MSE of imputation (bottom), upon random masking of 30% of the quantified genes in each cell in the hESC 

differentiation dataset. Only values that could be imputed by all methods were used for performance analysis. 

Expression quartiles are determined on the masked data. The MSE axis is presented log-transformed and was cropped 

at 0.1 to exclude the low-MSE tail from visualization and facilitate result comparison. kNN-smoothing is not included in 

the comparison since no imputations could be performed by this method. 
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Supplementary Figure 3.10: Characterization of the genes best predicted by Network (blue), DrImpute (green), 

kNN-smoothing (pink), SCRABBLE (single cell and bulk data as reference; purple), scImpute (turquoise) and 

SAVER (yellow) in the hESC differentiation dataset. Distribution of missing values per gene, average expression 

levels and variance of the genes for which a given method is one of the top performers, compared against all tested 

genes (background). Average gene expression is shown as log2-transformed normalized expression. Methods with 

close performance to the best method (correlation not smaller than 0.1 – best method) are selected as top best 

performing. Genes for which all methods are best performers are included in the background but not in the foreground.  
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Supplementary Figure 3.11: Characterization of the genes best predicted by Network (blue), DrImpute (green), 

SCRABBLE (single cell and bulk data as reference; purple) and scImpute (turquoise) in the hESC differentiation 

dataset, using imputation error to quantify performance. Distribution of missing values per gene, average 

expression levels and variance of the genes for which a given method is one of the top performers, compared against 

all tested genes (background). Average gene expression is shown as log2-transformed normalized expression. Methods 

with close performance to the best method (MSE not higher than 1/20 of the MSE range for that given gene) are 

selected as top best performing. Genes for which all methods are best performers are included in the background but 

not in the foreground. 
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Supplementary Figure 3.12: Effect of imputation with Baseline, DrImpute, kNN-smoothing, SAVER, scImpute, 

SCRABBLE and Network methods on UMAP plots. Data was subject to: no masking (left column), relaxed masking 

(35% of quantified entries per gene were set to zero, middle column), stringent masking (60% of quantified entries set 

to zero, right column). The plot in the upper left reflects the clustering on the original, unchanged data. Imputation was 

performed for actually missing values in the original data (all columns) and on masked values (columns 2 & 3). Colors 

represent cell type label annotations from the original publication. DEC: definitive endoderm cells; EC: endothelial cells; 

H9: undifferentiated human embryonic stem cells; HFF: human foreskin fibroblasts; NPC: neural progenitor cells; TB: 

trophoblast-like cells. 
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Supplementary Figure 3.13: Dimensionality reduction results with different techniques: ZINBWaVe and t-SNE 

on the hESC dataset. Data was not subject to any masking. Colors represent cell type label annotations from the 

original publication. DEC: definitive endoderm cells; EC: endothelial cells; H9: undifferentiated human embryonic stem 

cells; HFF: human foreskin fibroblasts; NPC: neural progenitor cells; TB: trophoblast-like cells. 
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Supplementary Figure 3.14: EHF and OSR1 expression levels before and after dropout imputation, across cell 

types. DEC: definitive endoderm cells; EC: endothelial cells; H9: undifferentiated human embryonic stem cells; HFF: 

human foreskin fibroblasts; NPC: neural progenitor cells; TB: trophoblast-like cells. 
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Supplementary Figure 3.15: PRRX1 and TWIST2 expression levels before dropout imputation, across cell 

types. DEC: definitive endoderm cells; EC: endothelial cells; H9: undifferentiated human embryonic stem cells; HFF: 

human foreskin fibroblasts; NPC: neural progenitor cells; TB: trophoblast-like cells.  
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4. Age-related changes in gene expression regulation 

across human tissues 

4.1 Introduction 

Investigation of transcriptomic signatures of ageing has uncovered alterations in several 

processes, either as possible causes of cellular damage or as adaptive responses to age-related 

functional decline [106]. These include accumulation of DNA damage, loss of proteostasis, 

deregulated nutrient sensing, impaired mitochondrial function, accumulation of senescent cells, 

exhaustion of stem cell niches and altered intercellular communication. Although age-related 

changes within each of these processes have become better understood, many of the 

unanswered questions now revolve around the impact of ageing on the regulation of each of these 

processes individually, and in synchrony with other processes. 

One of the standing questions in the field is how universal is age-related gene expression de-

regulation, if it takes place at all. Early work has reported an age-related increase in the variability 

(noise) of expression levels of individual genes across cells in some cell types, but not others [59], 

[60]. Further work making use of single-cell RNA-sequencing data has led to the conclusion that 

increased cell-to-cell variation is not universally observed across all genes and cell-types [61]–

[63]. 

Another open question is to what extent synchrony of gene expression becomes impaired with 

age. Since genes operate in functional modules [107], [108], expression coordination within and 

between gene modules is required to orchestrate a functional cellular response. For instance, 

impact of ageing on the coordination of T cell activation in response to stimuli has been addressed 

using single-cell RNA-sequencing data to show that T cell activation is impaired (weaker and 

more variable) in old mice compared to young [70]. Given the complexity of regulatory interactions 

between cellular processes, addressing the impact of ageing on within-and between-module 

coordination requires a systems-level approach. In this direction, Southworth and colleagues 

compared co-expression networks of young and aged mice [64] and found a tendency for a global 

decrease in pairwise gene correlations in old mice, impacting ribosome biogenesis, transcriptional 

regulation and mitochondrial functions, along with an increase in correlations between DNA-

damage genes. More recently, Levy and colleagues developed a metric of overall transcriptomic 

coordination, which decreased with age in different organisms and cell types [65]. However, a 

comprehensive, cross-tissue analysis of the impact of ageing on the crosstalk between individual 

gene modules is still lacking. 

Here, we describe an approach for the identification of alterations in gene-gene relationships with 

age in humans. First, we report a regulatory model, derived from more than one thousand 

expression data sets, that is capable of capturing tissue-specific and global (cross-tissue) gene-

gene relationships. Motivated by this wide applicability, we use existing RNA-sequencing data of 

human tissues at different ages to investigate age-related changes in gene-gene relationships. 

We observe age-related changes in both directions – towards gain and loss in gene-gene 

relationship strength – and characterize differences, as well as similarities, between tissues. We 

observe the most widespread changes in genes involved in mitochondrial respiration and cell 

cycle regulation, and provide examples of age-related regulation changes in tissue-specific 

functions, as well as in the crosstalk between different cellular functions.  
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4.2 Results 

4.2.1 Capture of gene-gene relationships from transcriptome data 

In order to illustrate the modular nature of gene co-expression, we made use of RNA-seq data 

collected postmortem by the GTEx consortium [109] from 30 different human tissues, spanning 

948 donors. We hand-picked 5 sets of genes, constructed based on GO term membership, and 

computed all pairwise Pearson correlations in two tissues with clear differences in cellular 

composition and function – Brain and Blood. In both tissues, we observed strong within-set 

correlations (Figure 4.1.B, diagonal blocks), in line with a modular organization of gene 

expression. Additionally, we observed between-set correlations (Figure 4.1.B, off-diagonal 

blocks), particularly between genes encoding for members of the mitochondrial respiratory chain 

and RNA polymerase II (Pol-II) core complex (in orange and light green, respectively), 

representative of regulatory crosstalk between functional modules. Notably, we observed 

differences in within- and between-module correlation between Brain and Blood. 

Next, we aimed to investigate the extent to which this gene expression coordination within and 

between modules is conserved across tissues and cell types. To capture robust regulatory 

relationships that explain expression coordination across different tissues, we inferred gene-gene 

relationships using transcriptomic data collected from 1443 cancer cell lines [110], [111]. In order 

to derive these relationships from large transcriptomic datasets, we have devised a procedure 

that selects a small set of genes whose expression patterns are, as a linear combination, most 

predictive for the expression of a given target gene. These expression patterns correspond to the 

relative deviation, in each sample, with respect to the cross-sample (global) average. The network 

resulting from this procedure is much sparser than computing all pairwise correlations between 

all genes: only a very small fraction (0.04%) of gene pairs have non-zero relationships (ignoring 

directionality). These gene-gene relationships do not exclusively represent causal relationships 

between regulators and their targets. Instead they represent gene pairs that are robustly co-

expressed across a wide range of human tissues and cell types [111]. 

Using the gene-gene relationships captured by our regulatory model, we reconstructed the 

expression pattern of each gene across samples of the same tissue (Figure 4.1.A, Methods). 

Thus, the reconstructed data consists of the expected (predicted) pattern for each gene given the 

expression pattern observed for its regulatory neighbours (i.e. directly connected genes in the 

network, corresponding to the most strongly co-regulated gene pairs). We observed that tissue-

specific differences in the gene-gene correlation patterns observed in the original data (Figure 

4.1.B) were largely preserved in the reconstructed data (Figure 4.1.C) – for instance, the strong 

anti-correlation between some of the extracellular matrix components in Brain, but not in Blood. 

This was true not only for within-module correlations, but also for correlations between different 

modules, as is the case between genes encoding for peptide antigen binding partners and other 

modules. This observation confirms that our network captures regulatory neighbourhoods that are 

conserved across cell types and tissues, and – at the same time – enables prediction of tissue-

specific expression levels. 

We note that the capacity of our model to correctly capture relevant regulatory neighbourhoods 

is dependent on the gene and dataset at hand [111]. To gain a better understanding of the 

limitations of our model, we identified genes whose observed expression profiles differ strongly 

from the predicted based on their regulatory neighbourhood (Methods). Further analyses revealed 
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that most of the poorly predicted genes fell into one of two groups. The first group consisted of 

lowly expressed genes with few regulatory neighbours, which themselves were also lowly 

expressed (Supplementary Figure 4.1). Thus, these genes correspond to network regions that 

were essentially turned off in the respective tissue or cell type and therefore the observed 

expression variation reflected mostly background noise. The second group corresponded to 

highly expressed genes with extremely low variance and ubiquitous expression across tissues 

(Supplementary Figure 4.1), suggesting that these are housekeeping genes with essentially 

constant expression patterns. Since our model tries to explain expression variation across 

samples (i.e. relative differences in expression between different samples), a constant expression 

pattern results in virtually no relative differences between samples and is thus hard to model. 

 

Figure 4.1: Representative gene-gene relationships captured by pairwise correlation and a gene regulatory 

network (GRN)-based approach. A) Methodological approach used to capture gene-gene relationships in our 

regulatory model. Through a combination of regularized linear regression (Lasso) and stability selection, we identify 

stable predictors for each gene in the transcriptome, i.e., genes whose expression pattern across the training data 

(cancer cell line transcriptomic data) is informative of the expression pattern of the target gene. A linear model is then 

fit to the explain the expression pattern of the target gene (a) based on the pattern of the stable predictors (b and c). 

The weights of this linear model can then be used in other datasets to reconstruct the expression pattern of the target 

gene a based on the expression pattern of the stable predictors b and c observed in those datasets. B), C) Pairwise 

Pearson correlation coefficients, separated by gene set, for selected cellular functions. Correlations were computed 

based on the original expression data (B) or using the reconstructed expression values based on model predictions 

from Panel A (C). For illustrative purposes, gene sets were restricted to the following functions: respiratory chain 

complex members I to IV (GO:0045271, GO:0005749, GO:0005750, GO:0005751, orange), components of collagen-

containing extracellular matrix (GO:0062023, yellow), polymerase II core complex members (GO:0005665, light green), 

nucleosome members (GO:0000786, dark green) and peptide antigen binding partners (GO:0042605, blue). 

4.2.2 Age-related changes in gene-gene relationships across tissues 

We next took advantage of the wide applicability of our model to investigate age-related changes 

in expression regulation across multiple human tissues. 

Our first step was to establish a metric of (de)regulation, based on the extent of agreement 

between the expression profile of a given gene in the data and the reconstructed profile according 
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to its regulatory neighbourhood (i.e. comparing observed versus predicted expression levels). To 

quantify this agreement, we used Spearman’s rho, computed between the expected and observed 

expression of a gene across samples. We refer to this metric as the “predictability” of a gene in 

each group of samples (Figure 4.2.A). Our choice of Spearman over Pearson correlation was 

based on its lower sensitivity to outliers, which avoids that a few individuals with outlying 

expression of the target gene dictate the overall predictability.  

To capture age-related changes in predictability, we made use of the wide age range of the donors 

in the GTEx dataset. We restricted our analysis to the 20 tissues with highest sample number and 

split the data into 6 similarly sized age groups, defined as age decades (20-29 up to 70-79, 

Methods). Splitting the samples by decade resulted in 30 to 62 samples per tissue and age split 

(Supplementary Table 4.1). We then computed the predictability of each gene in every tissue-age 

split and restricted our analysis to genes showing sufficiently high average predictability across 

age groups (Methods). This resulted in the selection of 3291 to 5830 genes per tissue 

(Supplementary Table 4.3).  We then regressed predictability of these genes as a function of age 

using a linear model (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ~ 𝐴𝑔𝑒). This procedure resulted in one slope for each gene 

in each tissue, quantifying the change of its predictability with age. To determine the statistical 

significance of the resulting predictability slopes, we compared the p-value distribution for the 

obtained regression slope with the null p-value distribution, obtained after repeatedly shuffling the 

age groups (Methods). We observed large differences in the predictability signatures of different 

tissues, with some tissues showing an enrichment in small p-values, but not others 

(Supplementary Figure 4.2). We focused our subsequent analysis on 8 tissues with substantially 

more genes showing an age-dependent predictability change than expected by chance, i.e. those 

tissues with an inflation of small p-values (Adipose – Visceral, Artery – Tibial, Blood, Brain, Breast 

– Mammary Tissue, Esophagus – Mucosa, Testis and Thyroid, Supplementary Table 4.1, Figure 

4.1). When comparing the predictability slopes of individual genes across these tissues, we 

observed that many genes showed increasing or decreasing predictability changes consistently 

across multiple tissues (Figure 4.2.C). We selected for further analysis in each tissue the 100 

genes with the most significant predictability changes with age (lowest regression p-values), 

independent of the direction of that change. Here we also observed considerable differences 

between tissues, with Blood, Thyroid and Adipose Tissue showing mostly decreases in 

predictability with age, and Testis, Breast, Brain and Esophagus showing mostly increases in 

predictability (Figure 4.2.D). To exclude that these differences between tissues are due to 

artefacts in our analysis, we repeated our analysis with similar sample numbers (n = 30) across 

tissues and age groups (Supplementary Figure 4.2, Supplementary Table 4.2), which removed 

differences between tissues due to different sample sizes. This resulted in statistical significance 

(Supplementary Figure 4.2.B) and slope directions (Supplementary Figure 4.2.D) consistent to 

those obtained with larger sample sizes. Finally, we also repeated our analysis excluding the age 

group 70-79, as the smaller number of samples in this group might have influenced the 

predictability values and skewed the regression slope (Supplementary Table 4.1). However, we 

once again observed consistent statistical significance (Supplementary Figure 4.3.B) and 

preference towards positive or negative slopes (Supplementary Figure 4.3.D) upon exclusion of 

this age group. Put together, these results suggest that predictability is affected by age in some 

tissues more than others, and that the direction of this effect varies between tissues. 

We next asked which cellular functions were most affected by the observed age-related 

predictability changes. To identify network regions that are enriched for genes with age-

associated predictability changes, we performed network propagation of the predictability slopes 
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using a Random Walk with Restart algorithm [112] (Methods). We then performed Gene Set 

Enrichment Analysis [113] (GSEA) on the slopes after propagation, to identify gene sets with 

significant enrichment in age-related predictability changes in each tissue (Methods). We focused 

our analysis on gene sets (hallmarks, Figure 4.2.E or GO terms, Supplementary Figure 4.4) 

showing a significant enrichment in at least one tissue. Our analysis revealed that genes involved 

in oxidative phosphorylation were among the most affected by predictability changes across 

several tissues, showing a predictability decrease in all tissues apart from Brain and Testis (Figure 

4.2.E, Supplementary Figure 4.4). Additionally, genes involved in the G2M checkpoint and E2F 

targets were identified as consistently enriched in predictability changes (mostly a decrease) 

across tissues. The G2M checkpoint leads to a cell cycle arrest at gap phase G2, before mitosis 

(M), in case of DNA damage, while E2F transcription factors regulate the expression of genes 

involved in the transition between the G1 and S (DNA synthesis) phases of the cell cycle. The 

identification of these two gene sets suggests an age-related predictability decrease, across 

several tissues, in genes involved in cell cycle regulation. On the other hand, targets of the 

oncogene MYC and genes involved in epithelial-mesenchymal transition (a phenomenon 

occurring during development, tissue repair and carcinogenesis [114]) showed different 

predictability trends in different tissues (Figure 4.2.E). In Esophagus and, to a smaller extent, 

Thyroid, Adipose Tissue and Blood, predictability of these genes decreased with age. We 

observed a trend in the opposite direction for Testis, Brain, Artery and Breast. Of note, gene sets 

with tissue-specific functions also showed age-related predictability changes in the respective 

tissue. Among these, we highlight the enrichment in predictability decrease among fatty acid 

metabolism genes in Adipose Tissue (Figure 4.2.E), the increased predictability of coagulation 

genes in Blood (Figure 4.2.E) and the decreased predictability of synaptic genes in Brain 

(Supplementary Figure 4.4). 



55 
 

 

Figure 4.2: Transcriptome-wide predictability changes with age across tissues. A) Computational approach used 

to identify predictability changes with age. Predictability is quantified as the Spearman correlation between the observed 

expression patterns (in the original data) and the predicted expression patterns (in the reconstructed data), 

corresponding to the expected pattern given the expression of regulatory neighbours. A high correlation indicates that 

the expression pattern of a gene fits the regulatory relationships captured by the model (top left), while a low correlation 

indicates the opposite. Predictability is quantified for groups of samples at 6 different age groups: the decades spanning 

20-29 to 70-79. For each gene, predictability is modelled as a linear function of age. B) Distribution of p-values for the 

regression of predictability values within each age group against the mean age of the age group. Red line: p-value 

distribution obtained from the real data. Grey background: average p-value distribution across 100 permutations of the 

age groups. Black lines: 5 individual permutations randomly picked from the background. The dashed vertical line 

indicates the highest p-value among the genes considered statistically significant in each tissue (orange and blue bars 

in D). The number of genes included in each tissue-specific analysis can be found in Supplementary Table 4.3. C) 

Heatmap of the predictability slopes across all 376 genes, independently of significance level, for which the regression 

analysis was performed in all 8 tissues. These 376 genes had a high average predictability in all 8 tissues 

(Supplementary Table 4.3). D) Number of genes with predictability increase (blue) and decrease (orange) among the 

top 100 most significant genes per tissue. E) Hallmark gene sets enriched in age-related gene-gene relationship 

changes, captured by Gene Set Enrichment Analysis. The heatmap shows all hallmarks with statistically significant 

(FDR < 0.1) enrichment in at least one tissue. 
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4.2.3 Regulatory relationship changes with age  

Different factors can impact the predictability of a gene. One of such factors is the average 

expression level of the gene at hand: if average gene expression levels are low, the quantification 

becomes noisier (fewer reads per gene), resulting in lower predictability (Figure 4.3.A, “Low 

expression”). Another factor is gene expression variance, as a small range of expression values 

impairs correlation quantification and thus predictability (Figure 4.3.A, “Low variance”).  inally, 

low predictability can also result from changes in the structure of the regulatory model itself, i.e. if 

the regulatory relationships captured by our model are not met. This can be quantitatively 

captured as a low correlation between the gene at hand and its regulatory neighbourhood (Figure 

4.3.A, “Correlation loss”). 

First, we quantified average expression level and variance changes with age. We observed a 

clear trend towards variance increase with age across all tissues except of Artery (Figure 4.3.B, 

y-axis), in line with earlier reports of increased inter-individual transcriptomic variability with age 

[115], [116]. The direction of average expression changes with age varied across tissues, with 

Artery, Brain and Breast showing mostly expression decrease with age, Thyroid showing mostly 

expression increase, and the remaining tissues showing comparable expression changes in both 

directions (Figure 4.3.B, x-axis). We found the quantification of average expression and variance 

changes with age to be influenced by the 70-79 age group in some tissues (Supplementary Figure 

4.5 versus Figure 4.3.B). For this reason, the process described below for the identification of 

genes with predictability, average expression, variance, or correlation changes is limited to genes 

showing the same trend when including and excluding the 70-79 age group (Methods). 

To quantify the contribution of the factors in Figure 4.3.A (average expression, variance, and 

correlation to regulatory neighbourhood) to age-associated predictability changes, we compared 

age-related changes in each of the 3 factors with age-related predictability changes. We applied 

a cut-off on the absolute values of the expression fold changes or variance slopes with age 

(0.001), and then counted the number of predictability hits (either increase or decrease in 

predictability) that also showed age-related changes in expression levels (Figure 4.3.C, 

“Expression changes”) and in expression variance ( igure 4.3.C, “ ariance changes”).  

To capture correlation changes between the target gene and its regulatory neighbours, we 

regressed each of the correlation coefficients (one per neighbour) in each age group against the 

average age of the group (𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ~ 𝐴𝑔𝑒). We applied a cut-off on the absolute values of the 

slopes (0.005) and took a weighted average of the slopes passing this cut-off (with weights 

corresponding to the weights of the respective neighbour in the regulatory model, Figure 4.1.A). 

We then compared the number of predictability hits (either increase or decrease in predictability) 

with the number of positive versus negative averaged correlation slopes (Figure 4.3.C, 

“Correlation changes”). 

We observed relatively few genes whose age-associated expression changes were linked to 

predictability changes (Figure 4.3.C, “Expression change”), suggesting that age-related 

differences in expression levels do not explain the predictability changes captured by our 

approach. Genes with increased variance with age almost always increased their predictability 

and, conversely, genes with decreased variance mostly decreased their predictability with age 

(Figure 4.3.C, “ ariance change”), suggesting that age-related changes in gene expression 

variance influence changes in predictability. Correlation changes were the most strongly linked to 

predictability changes (Figure 4.3.C, “Correlation change”) – in all tissues analysed, predictability 
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hits showed stronger age-related changes in correlation with their regulatory neighbours than in 

average expression levels or variance. Furthermore, the direction of correlation change matched 

the direction of predictability change: genes with decreasing predictability showed decreasing 

correlation to their regulatory neighbours, and the opposite trend was observed for genes with 

increased predictability. 

Put together, our analyses suggest that predictability changes captured by our regulatory model 

are rarely explained by age-related changes in expression levels. Instead, the relationships 

between genes (between targets and their predictors) seem to change with age for a large number 

of genes. 

 

Figure 4.3: Factors underlying age-related predictability changes. A) Possible factors explaining observations of 

low predictability, and resulting comparisons of observed values (in the original data, x-axis) versus predicted values 

(data reconstructed with our regulatory model, y-axis). Top left: low average expression of the target gene results in 

noisy quantifications. Top right: low variance of the target gene results in almost constant expression values. Correlation 

approaches thus capture noisy fluctuations around the mean. Bottom left: Loss of correlation with the regulatory 

neighbourhood results in a failure of the model to correctly capture the expression pattern of the target gene.  B) 

Expression slope across age (x-axis) against variance slope across age (y-axis) for background genes (small light grey 

points), top significant genes with predictability increase (large blue points) and decrease (large orange points) with 

age. C) Number of genes with predictability decrease (orange) or increase (blue) in each of the 3 scenarios tested: 

“Expression change”, “ ariance change” or “Correlation change”. The total number of predictability hits is shown in 

“Total” as a reference. 

To assess whether age-related predictability changes tend to impact individual genes or are 

spread throughout a wider regulatory neighbourhood, we focused on the subnetworks created by 

the 20 strongest (highest absolute value of age slopes) predictability hits in each tissue and their 

immediate regulatory neighbours. We observed both disconnected subnetworks, where one or 

very few genes showed strong predictability changes with age (exemplified in Supplementary 

Figure 4.6), and larger subnetworks connecting several genes with strong predictability changes 

(exemplified in Figure 4.4.A,F). 
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We then selected for further analysis two of the obtained subnetworks, showing distinct age-

related behaviours and each captured in a different tissue. 

The first subnetwork (Figure 4.4.A) is centred on mTOR signalling, which is a well known 

contributor to age-related phenotypes and involved in lifespan extension [117], [118]. This 

subnetwork included the predictability hit LAMTOR5, a gene encoding for a member of the 

Ragulator complex, located in the lysosomal membrane and involved in mTORC1 activation upon 

nutrient sensing. In nutrient rich conditions, mTORC1 is recruited to the lysosomal membrane 

[119], resulting in the promotion of cellular growth and proliferation, coupled to translation and 

biosynthesis [120, p. 1]. In our analysis, LAMTOR5 showed a loss of correlation with most of its 

regulatory neighbours in Artery - Tibial: cytochrome C oxidases COX14 and COX6B1, NADH 

dehydrogenase complex member NDUFB3, vacuolar ATPase cytosolic (V1) domain subunit 

ATP6V1F and oligosaccharyl transferase complex subunit OST4 (Figure 4.4.B). This loss of 

correlation took place in parallel with a decrease in predictability with age (Figure 4.4.C). 

Interestingly, also in Artery - Tibial, we observed age-related changes in the predictability of 

another vacuolar ATPase (v-ATPase) subunit (in the transmembrane domain, Supplementary 

Figure 4.6), also linked to another Ragulator complex member, LAMTOR1. v-ATPases are 

located on the membrane of multiple organelles, including the lysosome, where they pump 

protons into the lumen and acidify it [121]. The observed relationships between Ragulator 

subunits (LAMTOR1 and LAMTOR5) and v-ATPase subunits in both the transmembrane and 

cytosolic domains (ATP6V1F, ATP6V0D1, ATP6V0C, ATP6V1H, ATP6V1D and ATP6V1A) are 

consistent with the knowledge that v-ATPases are required for mTORC1 activation by aminoacids 

[122]. Furthermore, v-ATPases have been described to physically interact with the Ragulator 

complex through LAMTOR1 [122], in line with the relationship observed between this gene and 

multiple of the v-ATPase subunits (Supplementary Figure 4.6). 

In addition, we observed tight gene-gene relationships between Ragulator complex members and 

electron transport chain members (NDUFB3, COX14 and COX6B1 as direct neighbours of 

LAMTOR5; UQCRFS1, COX6A1, COX8A, COX17 and COX7A2 as indirect neighbours). These 

observations are in line with previous work showing that mTORC1 promotes the expression of 

mitochondrial regulators such as TFAM and electron transport chain components [123]. These 

gene-gene relationships were also altered with age, as exemplified by the age-related loss of 

correlation between LAMTOR5 and its direct electron transport chain neighbours NDUFB3, 

COX14 and COX6B1 (Figure 4.4.B). 

WDR61 is another direct network neighbour of NADH dehydrogenase complex member NDUFB3, 

also showing an age-related predictability decrease (Figure 4.4.E). WDR61 is a subunit of the 

superkiller complex SKI, involved in co-translational mRNA surveillance [124]. We observed an 

age-related loss of correlation to its regulatory neighbours, including TBC1D7. TBC1D7 is a 

member of the TSC-TBC complex, a negative regulator of the mTORC1 signalling cascade [125]–

[127], highlighting the crosstalk between the different cellular processes captured in this 

subnetwork.  

The second subnetwork is composed of serum-specific proteins, most of which showed increased 

predictability with age in Blood (Figure 4.4.F). This subnetwork included apolipoproteins APOA1, 

APOA2, APOB and APOH, involved in lipid transport between tissues, members of the 

coagulation cascade F2 (thrombin), FGA (a subunit of fibrinogen) and F11 (coagulation factor XI), 

inter-alpha-trypsin inhibitor chains ITIH2 and AMBP, and serine protease HABP2, involved in 



59 
 

hyaluronic acid binding. Inter-alpha-inhibitor activity is required for the formation of the hyaluronan 

coat surrounding some cell types [128], supporting the observed crosstalk between these 

functions. 

We observed an age-related increase of ITIH2 predictability (Figure 4.4.H), in parallel with an 

increased correlation to its regulatory neighbours (Figure 4.4.G) and increased variance across 

individuals. Inter-alpha inhibitors suppress proinflammatory responses and have been shown to 

improve the outcome of ischemic stroke [129], which may point towards an adaptive response to 

an age-related increase in inflammation. In the neighbourhood of ITIH2, and also undergoing an 

increase in predictability with age is ALB, encoding for albumin (Figure 4.4.I,J), a major transporter 

in the plasma and the most abundant protein in human blood. Both ITIH2 and ALB show an age-

related increase in the correlation to their regulatory neighbourhood, which includes several 

members of the coagulation cascade (F2, FGA and F11). These observations are in line with an 

increasing blood coagulation potential during healthy ageing [130]. 

Put together, our analyses have uncovered gene-gene relationships that seem to be affected by 

the aging process. The weakening of gene-gene relationships between mTOR regulators, v-

ATPase subunits and electron transport chain members may suggest an age-related de-coupling 

of these processes, which should be coordinated to ensure appropriate response to cellular 

growth cues. On the other hand, the strengthening of gene-gene relationships between diverse 

serum proteins may reflect an age-related increase in the coordination of the coagulation cascade 

and an adaptive response to increased inflammation. 
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Figure 4.4: Regulatory relationships altered with age. A,F) Subnetwork of the neighbourhood of genes with age-

related predictability changes. Nodes represent genes, colored by predictability slope in the respective tissue. 

Connections between nodes represent gene-gene relationships captured by the regulatory model. A) Neighbourhood 

of LAMTOR5 and WDR61, colored by predictability slope with age in Artery - Tibial. F) Neighbourhood of ITIH2 and 

ALB, colored by predicatability slope with age in Blood. B), D), G), I) Correlation between expression of genes with 

predictability changes (LAMTOR5 in B, WDR61 in D, ITIH2 in G and ALB in I) and regulatory neighbours across age 

groups. C), E), H), J) Comparison of expression of genes LAMTOR5 (C), WDR61 (E), ITIH2 (H) and ALB (J) in the 

original data (observed expression, x-axis) and reconstructed expression based on the regulatory neighbourhood 

(predicted expression, y-axis). 
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4.3 Methods 

Analyses were conducted on R-4.0.3. 

Gene regulatory network training 

The gene regulatory network was trained as previously described [111]. A combination of 

regularized linear regression and stability selection was used to identify genes whose expression 

pattern is informative (predictive) of the expression pattern of a given gene. The expression 

pattern of each gene was then modelled as a linear function of the expression patterns of 

informative genes. This procedure was applied to 1,376 cancer cell lines with known karyotypes 

[131], [132]. The weights of this linear model, learnt in the cancer cell line data, capture the 

direction and strength of the relationship between the predictor and target genes. 

Network processing 

Firstly, residual edges were removed. This was done by computing, for each edge pair (i,j) (j,i), 

the ratio of between the lowest and the sum of the absolute edge weights. When this ratio was 

below 0.1, the weakest edge (lowest absolute value) was removed from the network. To avoid 

effects captured by the network which are not due to regulatory interactions between genes but 

rather local effects (e.g. both genes impacted by a copy number change in the training data), we 

removed predictors located in the same chromosome arm as the target. The largest connected 

component of the resulting network was then determined using the function components() from 

the igraph R package (v. 1.2.6), with default parameters. All subsequent analyses were performed 

on the largest connected component. 

Genotype-Tissue Expression (GTEx) data preprocessing 

Data download 

Read counts were downloaded from the GTEx portal (version 8). 

Data preprocessing 

Genes were filtered based on biotype and average expression across the whole dataset. Biotypes 

were limited to protein coding, lincRNA, snRNA, miRNA and snoRNA. Genes with average read 

count below 100 across the whole dataset were excluded. 

Filtered data were normalized using DESeq2 v.1.30.1. Sample size factors were estimated with 

the function estimateSizeFactors() and normalization was done with the counts() function, with 

normalized = TRUE.  Normalized expression levels were log-transformed (base 2 with 

pseudocount of 1). 

To regress out the effect of confounding variables on gene expression levels, expression levels 

across samples of each tissue (SMTSD) were modelled as a function of ischemic time 

(SMTSISCH), batch (SMGEBTCH), Hardy scale (DTHHRDY) and sex (SEX), using base R’s lm() 

function. For Testis and Breast samples, sex was left out of the linear model. The residuals of the 

linear regression were used as batch-corrected data. 

Subsetting 

To assure the same number of samples in each age group, each age group was downsampled 

to the size of the smallest age group (determined excluding the 70-79 group). Samples from 
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different regions of the brain were grouped into the same tissue by selecting, for each subregion 

in each age group, 5 samples. For groups of similar regions (cerebellar cortex and cerebellum, 

different regions of the cortex, and different regions of the basal ganglia), 3 samples from each of 

the subregions were picked instead of 5. The selection of the 3 or 5 samples per region and age 

group was done in a way that maximizes sampling across different donors. Within each age group, 

donors with the least available brain samples (across all regions) were prioritized and after each 

round of sample selection (one round per region), the selected donors acquired the lowest priority. 

The age group 70-79 was included provided that at least 10 samples were available. 

To assure the same number of samples for each tissue (SMSTD) and in each age group (same-

sized subset analyses, Supplementary Figure 4.2, Supplementary Tables 4.2 and 4.4), 30 

samples were randomly selected per age group. Brain samples were handled in the same way 

as described above, with the exception that 3 samples were chosen per region and age group, 

except for regions in groups of similar regions, for which 2 samples were chosen per age group. 

The age group 70-79 was included provided that at least 10 samples were available. 

Expression profile reconstruction using the regulatory model 

The training procedure in the cancer cell line data resulted in a set of robust predictors and 

respective weights, for each gene. To reconstruct profiles based on the regulatory relationships 

captured by the model, the expression data were centered at 0 for each gene and the relative 

expression pattern of the predictor genes was multiplied by the respective weights from the 

regulatory model. 

Identification of poorly predicted genes 

Poorly predicted genes (Supplementary Figure 4.1) were identified based on the Spearman 

correlation between the observed expression levels (original data after normalization and batch 

correction) and the predicted expression levels (reconstructed data based on the regulatory 

model). Genes with average Spearman correlation coefficient across tissues below 0.2 were 

identified as poorly predicted. 

Gene filtering based on average predictability across age groups 

The analysis of age-related changes in predictability was restricted to genes with average 

predictability across age groups above tissue-specific thresholds. To determine the tissue-specific 

thresholds, gene-gene relationships in the regulatory model were first randomized. This was 

achieved by randomly choosing two predictor-target gene pairs and swapping the two targets and 

repeating this procedure to cover all gene pairs in the regulatory model. The randomized 

regulatory model is expected to hold no biological significance, while maintaining the topological 

properties of the original model. The randomized model was then used to reconstruct the 

expression profiles of tissue-specific subsets including donors of all ages. The Spearman 

correlation was computed between the reconstructed (predicted) and observed expression 

patterns of each gene in each tissue. For each tissue, the distribution of Spearman correlation 

coefficients across all genes was computed, and the right-side tail containing the top 5% values 

was determined. The value, for each tissue, corresponding to the definition of that 5% tail in the 

randomized model was then used as threshold for the average predictability of the original model 

across age groups. Threshold values varied between 0.39 (Thyroid) and 0.76 (Colon – 
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Transverse). Genes with average predictability across age groups below this threshold were 

excluded from the analysis in that tissue. 

Background distribution of predictability slopes 

Background distributions of predictability slopes were generated by repeated (100) random 

permutation of the age vector used as explanatory variable in the linear regression. 

Network propagation of predictability slopes 

Network propagation was done using the R package BioNetSmooth 

(https://github.com/beyergroup/BioNetSmooth) with alpha = 0.2 and a user-defined network. The 

network defined by our regulatory model was made undirected, by summing the weights the 

weights of edge pairs between two nodes (edge 𝑖 → 𝑗 and edge 𝑗 → 𝑖), to capture the full strength 

of the relationship between gene pairs. The adjacency matrix of the resulting network was then 

row-normalized by dividing each row by the sum of all its entries (each node by its degree). This 

avoids that highly connected nodes dominate the represented topology [133]. 

Gene Set Enrichment Analysis 

Gene Set Enrichment Analysis [113] was performed with the graphical interface of the GSEA 

software v4.2.3 for Linux in PreRanked mode. For each tissue, genes were ranked according to 

their age-related predictability slope. The Molecular Signature Database (MSigDB) [134] 

(v2022.1, updated August 2022) was used to retrieve Hallmark and Gene Ontology (including 

Biological Processes, Molecular Functions and Cellular Components) gene sets. 

Quantification of age-related expression and variance changes 

Age-related expression and variance changes were computed after preprocessing of the GTEx 

data (filtering, normalization and batch correction). For the quantification of expression level 

changes with age, we used the R package limma [135] to fit a linear model with age as explanatory 

variable, using the function lm.fit()  followed by empirical Bayes moderation with the function 

eBayes(). For the quantification of variance changes with age, we computed the variance within 

each group and fit a linear model with age as explanatory variable, using R’s base lm() function. 

In both analyses, age was represented numerically, as the average of the corresponding age 

group (e.g. 25 for the age group 20-29). 

  

https://github.com/beyergroup/BioNetSmooth
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4.4 Discussion 

Our analyses show that our regulatory model, trained on expression data from a wide collection 

of cancer cell lines, successfully captures gene-gene relationships that explain the expression 

pattern of individual genes based on the expression of their regulatory neighbourhood (Figure 

4.1). Notably, our model was able to capture tissue-specific differences in relationships between 

genes involved in the same function, as well as genes involved in different functions, across 30 

healthy human tissues [111]. At first, it may seem surprising that our model predicts tissue-specific 

gene co-expression patterns, because the model itself was not adapted to the tissue. The 

explanation for this finding is as follows: whereas the regulatory structure remains invariant across 

tissues, predictors (i.e. regulatory neighbours) have different expression levels in different tissues. 

As a consequence, predicted expression levels of their targets will also be tissue-specific. 

Based on this regulatory model, we were able to quantify age-related changes in the relationship 

between individual genes and their regulatory neighbours. Our approach has the advantage of 

providing such a score for each gene, unlike global approaches based on the whole 

transcriptome. Additionally, by using robust gene-gene relationships trained on external data, our 

model captures the transcriptomic constraints common to all observed samples. Thus, our metric 

of predictability corresponds to the extent to which the gene-gene relationships of a given gene 

fit those captured in the training data. This is conceptually different from a differential co-

expression analysis, where gene-gene relationships are compared in two conditions (old versus 

young), without any external information. It should be noted that our regulatory model reflects only 

a part of the complete space of gene-gene relationships that can take place. In particular, the 

captured relationships are those that are common between the GTEx dataset and the different 

cancer cell lines in the training dataset. This means that we cannot rule out the possibility that 

observations of low predictability come from a gain in correlation with different regulatory 

neighbours that were not captured by the training data, rather than a complete loss of regulatory 

control. 

Using the regulatory relationships captured in our model to quantify changes in regulation 

(predictability), we observed substantial difference in the ageing patterns of different tissues. Not 

all tissues showed significant changes in predictability (Supplementary Figure 4.2) and, among 

those that did, the direction of the global predictability trends sometimes differed between tissues. 

It is important to note that changes in the signal strength between tissues may originate from 

differences in data quality or confounding factors that we could not fully correct for, despite our 

pre-processing efforts. 

Predictability changes that were consistent across tissues mostly linked to mitochondrial functions 

and cell cycle regulation. Mitochondrial dysfunction is an established hallmark of ageing [106] and 

a decrease in ATP production has been reported with age [136], along with alterations in 

mitochondrial morphology and mitochondrial protein expression [137]. In parallel to age-related 

deregulation of mitochondrial functions, we also observed a deregulation of genes involved in the 

cell cycle (E2F targets and G2M checkpoint, Figure 4.2.E). We note that our regulatory model has 

been trained in cancer cell lines (proliferating, often with mutations in the tumour-suppressor p53 

and oncogene MYC), which requires some caution when analysing results concerning genes 

involved in cell cycle regulation. Our analysis of age-related predictability changes only includes 

genes with high average predictability across age groups, which excludes genes whose 

regulatory relationships are exclusively valid in the context of cancer data but not healthy tissues. 
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Thus, the observed predictability gain of cell cycle genes cannot be attributed to a poor predictive 

performance of the model for such genes at young ages. 

We observed that, for most tissues, the largest contribution to the observed predictability trends 

came from the gain or loss of correlation with regulatory neighbours in the tissue at hand (Figure 

4.3.C). One exception to this was Testis, where genes with increased age-related predictability 

showed decreased expression. This would point towards a concerted (regulated) down-regulation 

of specific transcriptional programmes, mainly related to cell cycle (Figure 4.2.E, E2F targets and 

G2M checkpoint). These results can be explained by an exhaustion of the stem cell niche 

sustaining spermatogenesis [138]. In all other tissues, increased variance was linked to no 

predictability changes, or increased predictability, which would correspond to genes composing 

regulated responses, possibly as an adaptive response to the ageing process, with different levels 

of activity in different individuals. 

An advantage of our approach is that it can capture gene-gene relationships both within and 

between different functional gene modules (Figure 4.1). We detected age-related changes in 

gene-gene relationships in both cases. The impact of ageing on the crosstalk between cellular 

processes was exemplified in Figure 4.4.A, for a subnetwork of genes centred on mTOR 

signalling. The variety of processes captured in this subnetwork is in line with the known 

mechanisms of mTORC1 activation and its role in the regulation of cellular growth, which requires 

the coordination of distinct cellular processes. In our subnetwork, the connection between 

mTORC1 activation and mitochondrial functions was particularly evident. The observed loss of 

correlation between all these interconnected cellular processes suggests that, with age, cells are 

no longer able to coordinate different processes to put in place an integrated, complex response 

such as cellular growth. This result is particularly interesting in the context of the role of mTOR 

signalling in ageing and longevity. Inhibition of mTOR with rapamycin is well known to extend 

lifespan across species [139], [140], and an increase in mTOR activation has been reported with 

ageing in some tissues [141]. Our results suggest a decoupling between the mechanistic 

activation of mTORC1 and some of its downstream target pathways that may be linked to an 

inability of the cell to sustain cellular growth. 

Finally, we note that we use bulk RNA-seq data, which consists of a mixture of the transcriptome 

of the different cells present within the tissue. Thus, our approach cannot capture transcriptional 

noise resulting from random expression in individual cells. In our case, such noise would be 

averaged out across the different cells in the tissue. This is in line with the fact that we barely 

observe any genes with increased variance and decreased predictability with age (Figure 4.3.B). 

We hypothesize that the gene-gene regulation changes we find may in part be driven by age-

related alterations in the cell type composition of the tissues, or by a rewiring of the relationships 

in one leading cell type within the tissue. Single-cell RNA-seq data from multiple human tissues 

is beginning to accumulate. Once this data covers a sufficiently large age range, we will be able 

to quantify age-related changes in predictability in a cell-type-specific manner and elucidate the 

contribution of different cell types to the results described here. 

Our work highlights the importance of zooming out of the effect of ageing in individual genes or 

cellular processes and investigating how their crosstalk is affected at a systems level. Given the 

complex and multifactorial nature of ageing, we expect that approaches such as the one 

presented here will contribute to a better understanding of the global alterations in functional 

coordination that take place with age. 
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4.5 Contributions 

F. Lopes preprocessed the GTEx data (filtering, normalization and batch correction). I performed 

all the analysis of pairwise correlation (Figure 4.1) and predictability (Figures 4.2 to 4.4) changes 

with age. I wrote the manuscript together with A. Beyer. 
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4.6 Supporting Information 

Supplementary Table 4.1: Number of samples per tissue and age group for computation of 

predictability within age group (Figure 4.2). 

Tissue 20-29 30-39 40-49 50-59 60-69 70-79 

Adipose – Visceral 42 42 42 42 42 16 

Artery - Tibial 54 54 54 54 54 18 

Blood 62 62 62 62 62 21 

Brain 46 42 49 49 49 48 

Breast – Mammary Tissue 36 36 36 36 36 15 

Esophagus - Mucosa 51 51 51 51 51 12 

Testis 30 30 30 30 30 - 

Thyroid 44 44 44 44 44 20 

 

Supplementary Table 4.2: Number of samples per tissue and age group, after randomly 

selecting similar sample numbers per tissue and age group (Supplementary Figure 4.2). 

Tissue 20-29 30-39 40-49 50-59 60-69 70-79 

Adipose - Subcutaneous 30 30 30 30 30 18 

Adipose – Visceral 30 30 30 30 30 16 

Artery - Tibial 30 30 30 30 30 18 

Blood 30 30 30 30 30 21 

Brain 30 30 30 30 30 48 

Breast – Mammary Tissue 30 30 30 30 30 15 

Colon - Transverse 30 30 30 30 30 - 

Esophagus - Mucosa 30 30 30 30 30 12 

Esophagus - Muscularis 30 30 30 30 30 - 

Lung 30 30 30 30 30 17 

Muscle - Skeletal 30 30 30 30 30 26 

Nerve - Tibial 30 30 30 30 30 18 

Skin – Not sun exposed 30 30 30 30 30 22 

Skin – Sun exposed 30 30 30 30 30 26 

Testis 30 30 30 30 30 - 

Thyroid 30 30 30 30 30 20 

 

Supplementary Table 4.3: Number of genes for which predictability trends with age were 

computed (Figure 4.2). 

Tissue #  genes 

Adipose – Visceral 4691 

Artery - Tibial 3964 

Blood 4768 

Brain 3728 

Breast – Mammary Tissue 4709 

Esophagus - Mucosa 5830 

Testis 3291 

Thyroid 4984 
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Supplementary Table 4.4: Number of genes for which predictability trends with age were 

computed, after randomly selecting similar sample numbers per tissue and age group 

(Supplementary Figure 4.2). 

Tissue # genes 

Adipose - Subcutaneous 4569 

Adipose – Visceral 4593 

Artery - Tibial 4008 

Blood 4641 

Brain 3708 

Breast – Mammary Tissue 4873 

Colon - Transverse 2407 

Esophagus - Mucosa 5890 

Esophagus - Muscularis 4149 

Lung 5120 

Muscle - Skeletal 2726 

Nerve - Tibial 3854 

Skin – Not sun exposed 5038 

Skin – Sun exposed 5498 

Testis 3111 

Thyroid 5179 
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Supplementary Figure 4.1: Characterization of genes poorly predicted by the regulatory 

model. Poorly predicted genes were defined as having an average Spearman’s rho across all 3  

tissues < 0.2 and split into 2 groups according to their average expression levels across GTEx 

tissues: lowly expressed genes (light pink) and highly expressed genes (dark orange). A) Average 

expression levels across all GTEx samples. B) Expression variance across all GTEx samples. C) 

Histogram of number of predictors (genes with expression profiles informative for the target gene). 

D) Histogram of number of tissues where the target gene is expressed (average normalized 

expression within tissue > 2). E) Distribution of the fraction of predictors of a given target that are 

expressed (average normalized expression across tissues > 2). Histogram bars in C and D are 

stacked.   
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Supplementary Figure 4.2: Transcriptome-wide predictability changes with age: expanded 

for all 16 tissues. Across all tissues, age groups were downsampled to 30 samples. The age 

group 70-79 was included in the analysis, with as many samples as were available. For sample 

size details see Supplementary Table 4.2. A) Distribution of p-values for the regression of 

predictability values within each age group against the mean age of the age group. Red line: p-

value distribution obtained from the real data. Grey background: average p-value distribution 

across 100 permutations of the age groups. Black lines: 5 individual permutations randomly 

picked from the background. The dashed vertical line indicates the highest p-value among the 

genes considered statistically significant in each tissue (orange and blue bars in C). The number 

of genes included in each tissue-specific analysis can be found in Supplementary Table 4.4. B) 

Heatmap of the predictability slopes across all genes, independently of significance level, for 

which the regression analysis was performed in all 16 tissues. These genes had a high average 

predictability in all 16 tissues (Supplementary Table 4.4). C) Number of genes with predictability 

increase (blue) and decrease (orange) among the top 100 most significant genes per tissue.  
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Supplementary Figure 4.3: Transcriptome-wide predictability changes with age: excluding 

the age group of 70-79. A) Distribution of p-values for the regression of predictability values 

within each age group against the mean age of the age group. Red line: p-value distribution 

obtained from the real data. Grey background: average p-value distribution across 100 

permutations of the age groups. Black lines: 5 individual permutations randomly picked from the 

background. The dashed vertical line indicates the highest p-value among the genes considered 

statistically significant in each tissue (orange and blue bars in C). B) Heatmap of the predictability 

slopes across all genes, independently of significance level, for which the regression analysis was 

performed in all 8 tissues. These genes had a high average predictability in all 8 tissues. C) 

Number of genes with predictability increase (blue) and decrease (orange) among the top 100 

most significant genes per tissue.  
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Supplementary Figure 4.4: GO terms enriched in age-related gene-gene relationship 

changes, captured by Gene Set Enrichment Analysis. The heatmap shows all GO terms with 

statistically significant (FDR < 0.1) enrichment in at least one tissue.  
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Supplementary Figure 4.5: Expression slope across age (x-axis) against variance slope 

across age (y-axis), excluding the 70-79 age group. Background genes are represented as 

small light grey points and top significant genes with age-related predictability changes as large 

colored points (predictability increase in blue and decrease in orange).  
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Supplementary Figure 4.6: Regulatory neighbourhood of ATP6V0D1. This gene encodes for 

a subunit of the transmembrane (V0) domain of vacuolar ATPase. Nodes represent genes, 

colored by predictability slope in Artery - Tibial. Connections between nodes represent gene-gene 

relationships captured by the regulatory model. 
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5. General Discussion 

Modelling gene regulation is key to understanding cellular behaviours in response to internal and 

external stimuli. In the work presented here, we have made use of a global transcriptional 

regulatory model to estimate expression of uncaptured (dropout) genes in scRNA-seq data – 

Chapter 3 – and to investigate age-related changes in gene-gene relationships – Chapter 4. 

5.1 Similarity of gene regulatory relationships across tissues and cell types 

A common observation underlying the work described in this dissertation is that gene-gene 

relationships captured by our model are valid across different tissues and cell types 

(Supplementary Figures 3.1 and 3.2). This suggests that, while different cell types have distinct, 

specialized transcriptomes, gene-gene relationships are more global. Our results additionally 

show that these consistent relationships go beyond housekeeping genes and that our model 

correctly captures gene expression patterns of cell type markers (Figure 3.5) and tissue-specific 

regulatory subnetworks (Figure 4.4.F). 

A vast portion of the efforts in transcriptional regulatory network inference so far have focused on 

training specialized regulatory networks that capture gene-gene relationships observed in the 

context of a given tissue or disease. However, some studies have emerged suggesting the 

existence of a ‘core network’, with regulatory relationships common across different cell types. 

Evidence in this direction can be found in a study based on scRNA-seq from brain cell types, 

showing that gene co-expression patterns are mostly preserved across the different cell types 

[142]. In this context, the work described in this dissertation exemplifies the potential of harnessing 

such ‘core networks’. 

On the other hand, recent work using co-expression networks trained for individual cell types in 

the fruit fly has found a small set of overlapping edges across cell-type-specific networks, mainly 

enriched in genes encoding for ribosomal proteins [143]. The disparity between these results and 

ours can be partially explained by the fact that we look for such a ‘core network’ by learning gene-

gene relationships in different biological conditions (cancer cell lines) simultaneously. This 

facilitates the detection of relationships between genes whose variation is small within biological 

conditions, but larger between conditions, as can be expected for cell-type-specific genes. 

Another conclusion that can be drawn from our work is that gene expression is modular (Figure 

4.1). This is in line with observations of the topology of regulatory networks, inferred from 

transcriptome or metabolome data [20], [144]. The concept of modular gene expression has been 

explored in recent years using single-cell RNA-sequencing data: in this context, functional 

modules (referred to as ‘regulons’) are determined as sets of co-regulated genes under the 

regulatory influence of a transcription factor [108]. Of note, activity of such regulons in single cells 

has been shown to be sufficient to distinguish between different types [145], in line with the idea 

that cell type identity is determined based on the level to which such modules are active, rather 

than on the composition of the modules themselves. 

5.1.1 Limitations 

Since our global transcriptional regulatory model is based on gene expression levels, gene-gene 

relationships are not indicative of a direct causal regulatory relationship. For this reason, our 
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model cannot be used to investigate the molecular mechanisms behind the loss or gain of specific 

gene-gene relationships. 

Additionally, our model has been trained on transcriptome data at the gene level. As mentioned 

in section 1.1.3, alternative splicing plays a relevant role in the regulation of gene expression. 

This role of alternative splicing, as well as other regulatory mechanisms not detectable at the 

transcript level (e.g., protein activation by post-translational modifications), is not included in our 

global regulatory model. 

Of further note, our model has been trained in cancer cell lines. While this provides advantages 

in terms of heterogeneity of expression levels compared to bulk RNA-seq data from human 

tissues, and robustness of expression quantification compared to scRNA-seq, it also results in 

limitations. Since these are proliferating cells, this can introduce a bias in the relationships 

captured for cell cycle genes. Additionally, mutations observed across multiple cancer cell lines 

(e.g., p53 mutations) may influence the structure of our model. However, due to the variety of 

cancer cell lines used to train our model, we expect this to be the case only for the subset of 

genes mutated across a wide range of the cancer cell lines. 

5.1.2 Future work 

As mentioned in the previous section, gene-gene relationships in our global transcriptional model 

do not reflect direct regulatory relationships. In order to add such information to the model, other 

sources of information would have to be integrated. Genomic perturbation data, making use of 

natural or engineered [146] genetic variation, could provide causal information by observing the 

effect of genomic perturbations of a given gene on the expression profile of others. DNA binding 

events of specific transcription factors captured through ChIP-seq are commonly used in the 

context of regulatory network inference, and another example source of causal information. 

Message-passing algorithms can be a tool for integrating data from distinct sources [147] and 

have been used to integrate co-expression, protein-protein interaction and TF-target information 

[148]. 

5.2 Application of gene regulatory relationships to single-cell RNA-

sequencing data processing 

The results described in Chapter 3 show the advantage of utilizing information external to the 

dataset at hand for the estimation of missing expression values in scRNA-seq data (dropout 

imputation). The use of external data avoids amplification of the signal within the dataset, which 

has been shown to introduce false positives in downstream analyses such as differential 

expression [73].  

Given the limitations of the regulatory model discussed in the previous section, the ADImpute R 

package does not rely solely on network-based imputation. Instead, it can determine which 

imputation method, out of a preselected set, performs the best for each gene in the dataset at 

hand. For highly sparse genes, inclusion of external information is usually beneficial, and the 

method based on the regulatory model is chosen. However, if the regulatory relationships in the 

model do not correctly capture the expression patterns of the gene being imputed, other methods, 

based on information internal to the dataset, can be used. 
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The relevance of our work must be placed in the context of current discussions questioning the 

necessity for dropout imputation (section 1.3.2). On one hand, as scRNA-seq technologies 

improve, data sparsity is expected to be reduced. On the other hand, tools have been developed 

to overcome this excessive sparsity, meaning that dropout imputation is not always required for 

any type of downstream analysis [149]. In this context, we propose that our method is particularly 

relevant for studies where the expression of lowly expressed genes of especial interest to the 

researcher. 

5.2.1 Limitations 

Besides the discussed limitations of our global transcriptional regulatory model, we note that the 

ensemble approach included in our R package is limited in the number of methods it can compare. 

This is due to two factors: the high number of existing dropout imputation approaches, and the 

fact that, for performance comparison, the code of each tool must be integrated in our package. 

We have strived to select popular methods with distinct approaches to the imputation task, but 

the growing number of proposed methods complicates this task. 

5.2.2 Future prospects 

Our results show that imputation methods taking advantage of information contained in the 

dataset at hand can outperform our network-based method for well detected genes. This suggests 

that the global transcriptional regulatory network is not always successful at capturing dataset-

specific relationships. Efforts to overcome this – for instance, by combining the gene-gene 

relationships observed in the dataset with the backbone of the global transcriptional network – 

could greatly improve the performance of our network-based method. 

The ADImpute R package is well suited for the use of any type of user-provided network. By 

default, the package uses the global transcriptional regulatory network described in this 

dissertation, which is only valid for human. In the future, ADImpute’s applicability could be 

extended by incorporating networks from other organisms. 

5.3 Gene expression regulation changes during ageing 

The results described in Chapter 4 demonstrate the advantage of using our model of gene-gene 

relationships to address the complex and multifactorial problem of human ageing. This is 

particularly highlighted by our findings of age-related changes in gene-gene relationships both 

within and between functional modules. Within-module changes, particularly towards an age-

related decrease of gene-gene relationships, can be linked to reports of stoichiometry loss 

affecting protein complexes with age [150]. On the other hand, between-module changes can be 

associated to affected crosstalk between cellular functions. This is well exemplified in Figure 

4.4.A, for a subnetwork of genes involved in mTOR signalling and cellular functions under its 

regulation. 

5.3.1 Limitations 

While recent literature focuses on the investigation of age-related ‘transcriptional noise’, 

corresponding to random fluctuations in gene expression levels across individual cells (section 

1.4.2), this work is based on bulk RNA-seq, where such noise would be averaged out across the 

different cells. 
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Additionally, our global transcriptional regulatory model has been trained on a limited (although 

vast) set of transcriptomes. For this reason, we cannot assume that all possible gene-gene 

relationships have been captured. Thus, cases of gene-gene relationship loss cannot be directly 

interpreted as deregulation. 

We further note that our study is based on bulk RNA-seq data, which does not allow for a 

dissection of which cell populations contribute to the observed changes in gene-gene 

relationships and the disentangling of the contribution of cell composition changes with age. 

Finally, by focusing on the transcriptome exclusively, our study cannot distinguish between 

adaptive responses to ageing (for instance, in response to accumulated damage) and events 

contributing to further cellular and organismal deterioration with progressing age. 

5.3.2 Future prospects 

Potential integration of other information layers for causal information, discussed in section 5.1.2, 

would allow for more mechanistical insights into the alteration of gene-gene relationships. An 

open question that this would help address is whether the age-related changes in gene-gene 

relationships that we observe – in particular gene-gene relationship loss – stem from a loss of 

transcriptional regulation of specific genes or rather from a lack of ability of the cell to synchronize 

different cellular programmes. 

Additionally, with the accumulation of scRNA-seq data across different tissues and age ranges, it 

will become possible to address the limitations posed by the use of bulk RNA-seq data and identify 

cell-type-specific changes in gene-gene relationships. 

5.4 Concluding remarks 

Differential expression analysis is commonly employed to quantify and identify differentially 

expressed genes across different biological conditions and diseases. Despite the usefulness of 

this approach, it ignores the complexity of gene-gene relationships. The work described in this 

dissertation shows that such gene-gene relationships can be inferred from example datasets and 

subsequently applied to a wide range of cell- and tissue types. This work has further exemplified 

the power of this approach by using the inferred gene-gene relationships to aid in the processing 

of scRNA-seq data and investigate the age-related breakdown of gene-gene relationships. 

We expect this work to contribute to a better understanding of gene expression coordination in 

health and its breakdown in disease. 
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