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Abstract

In this thesis we explore the framework of the percolation theory
and we analyse two models. We investigate the level set of the Gaus-
sian free field on a supercritical Galton—Watson tree conditioned on non-
extinction with random conductances, showing that the critical param-
eter h, is deterministic and strictly positive, that the level set contains
almost surely a transient component for some h > 0 and it is stable
under perturbation via small quenched noise.

Then we study an infection model with recovery on fractal graphs as
the Sierpinski gaskets and carpets and show the survival of the infection
for small recovery parameter. To prove the result, we generalize the
concept of Lsipschitz surface for the lattice to fractal graphs, and we
show the existence and certain connectivity properties of what we call a
Lipschitz cutset.
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Chapter I

Introduction

In this introduction, we intend to present the framework of the widely studied per-
colation theory and state the first results in the field, which will allow us to consider
more complex models. In the first and easiest formulations, there is no correlation
involved between the variables, contrary to the two models which we will consider in
the following chapters. Let us start presenting the well-known Bernoulli percolation.

I.1 Background

In the field of percolation theory, one usually considers a locally finite graph. We
can start by assuming the graph to be deterministic, and in the first case we will
restrict to the integer lattice Z¢. The graph (Z?, E) is defined as the set of vertices
in Z% with two points x, y sharing an edge if |z —y|; = 1, and we say that 2 and y are
neighbors or equivalently x ~ y if they share an edge. Successively, in the classical
site percolation the vertices in a random subset @ < Z¢ are declared open; in bond
percolation the edges in a random subset O’ < E are declared open. One may try
to understand various properties of those subsets O or (', first of all whether they
contain an unbounded and connected component.

The first model introduced in [BH57] deal with bond percolation on (Z%, E). One
defines on some probability space a family of Bernoulli random variables (Be)cep
which are independent and identically distributed with some parameter p € [0,1]
under some probability measure P,, and declares an edge e open if the Bernoulli
variable on the bond satisfies { B, = 1}. One may wonder whether it is possible to
find an unbounded cluster inside O := {e € E: B, = 1}, as the parameter p of the
model varies. It is easy to verify that the probability of finding such unbounded
cluster is non-decreasing in p: for example one could couple the Bernoulli variables
with a family of uniform random variables in [0, 1] so that the set O is itself non-
decreasing in p. We can hence define

px := inf {p: P,(O contains an infinite cluster) > 0}. (I.1.1)

In the case p < p, there exists no unbounded cluster a.s. and this is usually
called the subcritical phase, while the supercritical phase corresponds to p > p,. The
critical parameter in various models is an object of high interest and one tries to
gather information about its value or the behavior of the system in the two phases.

While it is trivial to see that in dimension one the problem is not interesting as
one immediately gets p, = 1, the problem is harder in higher dimensions. For bond
percolation in dimension d = 2, first Harris in [Har60] showed the inequality p, > %,

7



8 CHAPTER I. INTRODUCTION

and later Kesten in [Kes80] obtained the equality p, = % The latter article uses
a property of the lattice valid in two dimensions, namely the self duality. Given a
planar graph, one can define the dual graph where the vertices corresponds to the
“faces” of the original graph and the edges between two vertices are drawn if the
corresponding faces share an edge. The lattice Z? has the key property of being
its own dual graph, providing one of the few cases where the critical parameter is
known exactly.

In higher dimensions, or different graphs, or even the site percolation, one is
interested in proving the weaker result of existence of the phase transition, which
in the case of independent Bernoulli percolation translates to ps € (0,1). A classical
result for various models achieved through 0-1 laws or ergodic theory is

P, (O contains an infinite cluster) € {0, 1}. (L.1.2)

The previous equation in the case in which p, < % gives rise to phenomenon of
coexistence for p, < p < 1 — p,, meaning that is possible to find two unbounded
clusters, one in O and one in its complement O°.

Other natural questions deal with the uniqueness of the unbounded cluster in
the supercritical phase p > p., or the tails of the distribution of the size of the
connected component containing the origin, P(|C(0)| > k), where C(0) denote the
connected component of O containing 0. Other quantities of interest are the critical
exponent near the critical regime, i.e. the exponent of |p — p.| in the asymptotic
behavior of E[|C(0)|] as p T ps« and of P(|C(0)| = o) as p | px. For more details we
refer to the monograph [Gri99].

Independent percolation on lattices was the first model explored, but numerous
variations have been studied. Is possible to consider different graphs: for instance
graphs with conductances to obtain weighted graphs or random graphs, or one can
consider the more challenging problem of considering various type of correlations
between the sites. In this thesis we will consider weighted graphs, the supercritical
Galton—Watson tree (cf. Subsection I11.2.1) and subdiffusive graphs (cf. Subsection
I.1.4), and involve correlations through the Gaussian free field (cf. next subsection
and Subsection 11.2.3) and Poisson random walks (cf. Subsection I11.2.4).

I.1.1 Gaussian free field

The first model we consider is a Gaussian field with long range correlations, the
Gaussian free field. The first result for the percolation of the associated level set
was proven in [BLM87], and from then it has caught a lot of attention. In particular
a lot of results have been obtained thanks to the relation first shown in [Szn12a] with
an other object called random interlacements. The major obstacle when treating
the Gaussian free field resides in the presence of correlations of the variables, so
that various techniques that work for independent systems need to be improved or
substituted.

We consider a graph (G, E) and maintain the notation = ~ y for adjacent vertices,
i.e. (z,y) € E, and we consider the weights A := (A, ), z, y € G with the assumptions
Azy = Aygand Ay y > 0if z ~ y and 0 otherwise, we define forz € G A, := Zy% Azyy
and we call (G, \) a weighted graph. Let (Xj)gen be a random walk on the graph
starting in xp under some measure P, with transition rates from z € G to y ~ =

’\;’y and we assume (G, \) to be transient. We can hence define the Green

T

given by
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function as

1 - 1 ©

Y k=0 Y k=0
i.e. the expected number of visits in the point y starting from x. The assumption
of transience assures the finiteness of g(x,y), which is proven to be symmetric and
positive definite. Hence we can define the Gaussian free field (¢ )zec as the Gaussian
field under the measure PS with

EG [9090] =0
ES [¢apy] = g(,y)

for all z,y € G. We mentioned the percolation of the Gaussian free field referring to
the percolation of its level set: consider for h € R

E*h = {zeG: p, = h}.

It is natural to see E=" as the set O of the previous subsection, that means declaring
a site x “open” when the Gaussian free field in x is bigger than h. A often used
metaphor to visualize consist in the analogy between a realization of the field and
a landscape, seeing the random set E=" as the “land above see level h”. As for the
case of Bernoulli independent percolation one defines the critical parameter

hy :=sup {h € R: PY(E>" contains an unbounded cluster) > 0}.

The analogy with the landscape allows immediately to see that, contrary to the
Bernoulli case, h < h, corresponds to the supercritical phase, while h > h, to the
subcritical phase. Results about the critical parameter on Z% — with d > 3 to assure
transience — include hy > 0 from [BLMS87], finiteness and asymptotics for large d
in [RS13b] which in particular gives the occurrence of a phase transition. On the
lattice Z¢ it holds h4 > 0 from [DPRI18b], and the strict positivity was also shown
for d—regular trees in [Sznl6] and for Galton—Watson trees whose mean offspring
size satisfies m > 2 in [AS18].

Other critical parameters have been introduced. The value h determines the
strong supercritical phase. It was introduced in [DRS14b] and proven to be posi-
tive in [DPR18a] — giving a fortiori hy, > 0 — for a large class of graphs which
satisfy certain conditions on the volume growth, the random walk dimension and
isoperimetric condition (we refer to Subsection 1.1.4 for precise definitions of those
assumptions). An other critical value, hy, determines the strong subcritical phase,
and was shown in [DC+20] that the three critical parameters actually coincide.
This equality implies for example, that as soon as we are in the subcritical phase
h > hyy = hy, clusters are exponentially small, and that in the supercritical phase
h < h = hy clusters are locally connected, which on a heuristic levels means that
two non-small clusters in some ball belongs to the same cluster in a larger ball (we
refer to [DPR18a] for a precise definition of the strong supercritical phase).

A lot of the proofs of those results made strong use of an other object which
shares a relation with the Gaussian free field, specifically an isomorphism theorem.
Let us then introduce it.

I.1.2 Random interlacements

The process of random interlacements was introduced by Sznitman in [Szn10] and
later generalized to transient graphs in [Tei09]. We give a short definition here of the
process, and refer to Section I1.2.4 and the monograph [DRS14a] for more details.
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Given a transient weighted graph (G, \), one can define the space of doubly
infinite nearest-neighbor trajectories

7 = {T: 2G| wk)~T(k—1)and |k: D(k) = 2| < 0, Yz e G}.

This set is usually indicated with W, but we stick to the notation of subsection 11.2.4,
where the letter Z was chosen in place of W as the latter will be used for another
object introduced later called “watershed”. One can consider the relation ~ in 7,
for which two trajectories are equivalent if one is the time-shifted version of the
other, and define the quotient space Z* := Z/ ~. It was proven that there exists a
measure v on Z* such that, for each K < GG and x € K the measure v of trajectories
hitting K in £ modulo time shift is proportional to the probability that the trajectory
is at = at time 0 and never returns to K before time 0, cf. (II.2.14). The random
interlacements process w is defined as the Poisson point process on Z* x Rt with
intensity measure v ® A, where A is the 1-dimensional Lebesgue measure, and the
random interlacements set Z" is the set of vertices in G visited by the trajectories
in w which have label in (0, u).

From the point of view of percolation, the set Z" is not interesting, since on
any transient graph it contains a infinite connected component for every value of u
since random walk trajectories are connected. It is interesting however to observe
the complement V%, the so-called vacant set. Defining the critical parameter u* as
the smallest value for which every component of V* is bounded, it was first shown
in [SS09] that u* € (0,00) on the lattice Z¢, d > 3, and a later a shorter proof was
presented in [R4t15]. The case of Galton—Watson trees has been treated by [Tas10],
which showed that the critical parameter u* is deterministic, non-trivial and an
explicit formula was there provided.

We mentioned already a connection between the Gaussian free field and random
interlacements: it consists of a Ray—-Knight type isomorphism theorem, first shown
in [Sznl12al.

It states that for all x € G and u € R

1 1
5@2 + {4 has the same law as 5(% _ m)2

where ¢, ,, is the occupation time of the random interlacements at level u and ¢, is
a Gaussian free field independent of the random interlacements process. A strong
improvement of the theorem was the generalization to a continuous structure built
around the graph, the so-called cable system, started by [Lupl6] and improved in
[Szn16]. Although we will not use explicitly the cable system in Chapter II, it is
actually necessary and a key ingredient for the use of the isomorphism theorem.
The cable system is defined as follows. Given a weighted graph (G, ), to each
edge {z,y} corresponds a compact interval I, < R of length ﬁ, where the
endpoints of the interval are identified and glued to x and y. The obtained continuous
metric structure is denoted with G and it is possible to define the Gaussian free
field ($.), .~ and the random interlacements & on the cable system. For a precise
construction we refer to [Lupl6], but we provide a quick intuition on the method.
One can define a diffusion X on CNJ, whose restriction to G behaves like a continuous
time random walk and inside the cables I, like a Brownian motion. The field
($2),c¢ is then defined as the Gaussian field with covariance g(z,w), which is the

Green function associated to X ; similarly the random interlacements process @ is
the Poisson point process of trajectories distributed as X modulo time shifts; the
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restriction of ($.), s to G has the law of (¢;)zeq. Alternatively one can construct
($2),ce from (¢z)zec adding to edges {z,y} independent Brownian bridges between
¢z and ¢y. Finally it has been shown that the isomorphism holds for the cable
system: there exists a coupling between ¢, and & such that for all z € Gand u>0

Pl =2 (5 - V2u)h (L1.4)

Using equation (I.1.4) we can easily infer the result hy = 0: for each u > 0 the
set {z: Zz,u > 0} contains an unbounded connected component and thus there exists
an unbounded connected component of {z € G: @. — v/2u # 0}. By continuity in
z of ¢, and since (¢;) is the restriction of @, to G, we can find for each u > 0 an
unbounded cluster either in {z € G: ¢, > v/2u} or in {x € G: v, < v/2u}, and by
symmetry both imply h, = 0.

One can define the critical parameter h, for the percolation of the level set of
the Gaussian free field ($.) on the cable system in the same way of hy for (¢z). By
restriction, it is immediate to see that By < hs, and the same argument actually
shows h, > 0. It was shown in [Lup16] that on Z% it holds h, = 0 (in contrast with
hs« > 0 as already mentioned). In [DPR22] a rather weak condition named (Cap) is
provided for hy < 0 to hold. In [Pré23], Prévost shows that (Cap) is not necessary
for ?L* < 0 and gives an example of tree with exponentially small conductances where
actually hy = 0.

Assuming that hy = 0, so that every component of {z € G: P, > V2u} is
bounded for any u > 0, then the same argument below (I.1.4) gives that Iv <
{z € G: $. < v/2u} and, by taking complements and restricting to the graph,
{reG: o, >+/2u} € V¥, which gives

he < A/ 2Us.

This inequality is actually strict in the context of trees, as proven in [Sznl6] and
[AS18].

We mentioned that the first result about w,, in particular its non-triviality for
Z%, d = 3 was proven in [SS09] using a renormalization scheme. Those arguments,
also known as multi-scale have been proven useful in a variety of situations.

I[.1.3 Multi-scale arguments

In various works a multi-scale strategy has been adopted. The various proofs of
course differ from each other in the details, but we can sketch a general overview of
the similarities between very different models. In the case of the lattice Z%, a coarse-
grained (or equivalently a renormalization) approach consist, generally speaking, in
the partitioning of the graph in various “boxes” of some fixed side length, and
requiring some properties of the boxes: this allows to classify boxes as either “good”
or “bad”. If the probability of being “good” is large enough — where enough depends
on the model and the geometry— one should be able to recover a macro-structure
of the “good” boxes which allows to conclude.

Sometimes a single partition is not enough and it is necessary to define different
scales. At each scale, the graph is partitioned in boxes whose side length is given by
the scale and each box is then further partitioned in “boxes” of smaller scale. The
classification into “good” or “bad” boxes remains, but it is not excluded that the
notion or the probability of goodness depend on the scale.
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A (non exhaustive) list of multi-scale arguments applied to different models in-
cludes the following works: the already mentioned percolation of the vacant set in
[SS09], upper bound on the speed and shape theorems for spread of infection of Pois-
son random walks [KS05; KS06], positive speed of multi-particle diffusion limited
aggregation [SS19], existence of phase transition for activated Random Walk [ST17]
and classical Bernoulli percolation [CT18].

Multi-scale arguments can become quite involved and technical, and often needs
to be recreated tailor-made for the treated model. A new tool, called Lipschitz
surface for independent Bernoulli percolation was introduced in [Dir+10] and further
deepened in [GH12], and Gracar and Stauffer in [GS19a] extended the Lipschitz
surface in the space-time graph Z? x Z for non-independent percolation of time-
dependent processes. The surface is constructed with a multi-scale argument, but
is quite robust and can be applied to various frameworks, such as the spread of an
infections, choosing a suitable local, increasing and translation invariant event F
accordingly to the model A similar structure was constructed by the authors for the

torus T? in [GS18], however most works in the field concentrate on the lattice graph
A

I.1.4 Subdiffusive graphs

The lattice graph Z¢ has been widely studied and is well understood from the point
of view of random walks. The goal of this subsection is to present a class of graphs
which differ substantially from the lattice. To this aim, let us recall some properties
which might be considered natural or even trivial.

Let (X,)n>0 be a discrete time simple random walk on Z? starting in zo € Z<.
Some familiar facts about random walks include that

E[|X,.|2] = n for all d > 1;

denoting with d( , ) the graph distance, B,(x) the open ball of radius » > 0 and
center x € Z%, and H, := min{n € N: X,, € A} the hitting time of a set A < Z¢
(with the usual convention of min ¢ = c0), that

Eao[Hp, (55):] = r* for all d > 1, (I.1.5)

where = means that the ratio between the two sides is bounded from above and
below by some positive constant independent of the other variables. Equation (I.1.5)
can be easily shown stopping the martingale M,, := (X,)2 —n, n > 0 at 7, :=
min{n: d(zg, X,,) = r}.

Furthermore letting p,,(z,y) := P.(X, = y), for z,y € Z%,n > 0 be the transition
density, the following Gaussian estimates for d(z,y) < n are well known (see for
example [Woe00, Corollary 13.11])

2
pr(x,y) = n=% exp ( - M), (I.1.6)
cn

where ¢; is some other constant which might differ for the upper and lower bound.
Similar estimates hold true for continuous time random walks and the Brownian

motion on R?. For a metric measure space let V;.(z) the measure of the open ball of

radius 7 and center z. Li and Yau [LY86] showed that on a complete manifold with

non-negative Ricci curvature which satisfies

Vi(z) ~ r, (L.1.7)
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and in particular R? with a = d, the heat kernel p;(z, y) satisfies

2
pe(z,y) ~ 172 exp ( — W), (I.1.8)
where py(z,y) := f(t,z — y) is there defined in terms of the fundamental solution f
of the heat equation %{ =Af.
Equations (I.1.5), (I.1.6), (I.1.8) seem to suggest that on the lattice and on the
Euclidean space, informally
time = space2.

One may wonder whether this “ratio” is valid on any graph or there are counterex-
amples where, for example, Gaussian estimates as in (I.1.6) do not hold.

We are now going to consider more general graphs: let (G,)\) be a weighted
graph as defined in Subsection I1.1.1.

Some results in this direction were first obtained looking at fractals set such as
the Sierpiriski gasket K in R? and the associated fractal graph, the Sierpiiski graph
G? (we refer to Section I11.2 for a precise definition). In [Kus87; Gol87; BPS88| a
diffusion process was constructed via finer and finer approximation of random walks
on a fractal lattice. In particular, the transition density p;(x,y) of the constructed
Brownian motion satisfies sub-Gaussian estimates

df

pe(w,y) ~t 4w exp ( - (

|x—y|dw>1/(dw1)), (119)

ct

for all ,y € K,t > 0 and where |z — y| is the Euclidean distance in K, dy = log,(3)
is the Hausdorff dimension of the fractal K and d,, = logy(5) is the walk dimension.

Similar result have been obtained for (generalized) Sierpiriski carpets SC4 (I, mp)
— we refer to Section II1.8 for precise definitions. Those include the construction
of Brownian motion in [BB89] on SC?(3,8) and sub-Gaussian estimates similar to
(I.1.9) in [BB92; BB99a] with appropriate values of the fractal dimension d, and
walk dimension d,,. When the walk dimension satisfies d,, > 2 those estimates
exhibit a sub-Gaussian behavior; this is the reason why those fractal graphs are
often referred to as subdiffusive.

Successive works aimed at obtaining transition density estimates for random
walks as in (I.1.6) for graphs with a “fractal-line” structure, with the same self
similarities properties in a macro level. The following estimates for the heat kernel
pr(x,y) = iPn(Xn = y) were obtained for the Sierpiriski gasket by [Jon96] with

dy = logy(3), dy = logy(5) for all 2,y € G and n > d(z,vy)

dw _
pn(z,y) = " exp ( - (M)U(dw l)>, (HKB(dy, dw))
Ccon

In [BB99Db], equation (HKB(d,,d,,)) is proven for generalized Sierpinski carpets for
all z,y € SCHlp,mp), n = d(z,y) if n and d(z,y) both odd or both even, for some
value d, and d,,. More general estimates were obtained on fractal graphs in [HK04],
including (HKB(d,, d,,)) for recurrent nested fractal graphs.

Let us define similarly to (I.1.7) the volume dimension d,, for a general graph G
as the value — if exists — such that

Vi(z) =r% forallze G r>0 (V(dy))

where V,.(z) is the measure of a ball of radius r and center x € G with respect to
the graph distance, i.e. Vi(z) = M(By(2)) := Xcp, (s Ay- The walk dimension dy,
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similarly to (I.1.5), is the value —if exists — such that the mean exit time from a
ball satisfies
E[Hp, ()] = r® for all z € G, 7 > 0. (E(dy))

While showing the existence of a value d, as in (V(d,)) is easily done not much
differently from evaluating the Hausdorff dimension of the fractal (see Section I11.B
for a proof in the Sierpiriski graph G?), the existence of a value d,, is proven through
the construction of the Brownian motion and follows from (I.1.9). In [GY18] they
instead evaluated the walk dimension d,, of G¢ with an alternative method without
using the diffusion. Hence, in view of (1.1.9), (HKB(d,, dw)), (E(dy)), we can observe
at an informal level
time = spacedw.

Equations (HKB(d,, d.)), (V(d,)) and (E(d,,)) are clearly related and with the
use of the same notation d, and d,, we silently suggested their correspondence.
Before explicitly stating this equivalence and some other results, we introduce further
conditions on the graph G.

The first assumption for a weighted graph (G, \) we consider is the following:
there exists pg > 0

A
pwy)i= 52 = po, forall o~ . (m)
T

We say that (G, \) satisfies a volume doubling condition if there exists Cy such that
forall € G and R >0
Var(z) < C1VR(z). (VD)

Recalling the definition of the Green function in (I.1.3) consider the condition
g(a,y) = (d(z,y)) """, o #yeG. (G(dy — du))

Recalling that a function h: G — R is harmonic on A < G if Ah(xz) = 0 for all
x € A, where
1
Ah(a) == 1= 3 Ay (hly) — h(x),
e~
we say that the graph (G, \) satisfies an elliptic Harnack Inequality if there exists
C5 > 0 such that for all z € G, R > 1 and non-negative h: G — R harmonic in
BQR(w)
sup h < Cy inf h. (EHI)
BR(;U) B2R(x)
The graph satisfies a parabolic Harnack inequality with parameter d,, if there exists
Cs > 0 such that for all x € G, R > 1 and non-negative h: G x R — R solving the
heat equation % = Ah(x,t) in Bag(x) x (0,4R?) it holds that

sup h(z,t) < Cs inf h(z,t). (PH(dw))
BR(Z)X[Rdw ,2Rdw] BR(z)X[SRdeRdw]

Previous conditions are related in the following way. The authors in [GTO01]
showed that for d, > d,,, any infinite connected weighted graph (G, \) satisfying

(o)
(V(dy)) + (G(dy — dy)) <= (HKB(dy, dy)),

and it is known that for d, > dy,

(G(dy — dw)) = (E(dw)).
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The inequality d,, > d,, clearly does not cover all ranges of possible values of d,, and
dy : for example in Z¢ this holds only for d > 2.

However, not every choice (d,,d,) € (Ry)? is possible: it is known that if an
infinite connected weighted graph satisfies (pg), (V(dy)), (E(dy)) then d, = 1 and

2<dy <1+dy,

and a proof can be found in [Bar04]; there is also proven that for any d, > 1,
2 < dy < 1+d,, there exists an infinite connected locally finite graph which satisfies
(V(dy)), (E(dy)) and (EHI). Furthermore, if d, > d, then the graph is recurrent
[Bar04, Proposition 3].

So, including wider ranges of the parameters, in [GT02, Theorem 3.1] the fol-
lowing equivalences are proven for any d,, > 2

(HKB(dy, dw)) + (V(dy)) <= (PH(dy)) <= (VD) + (EHI) + (E(dw)).

As those graphs differ substantially from the diffusive lattice Z¢, arises the nat-
ural question of whether percolation results for dependent or independent fields can
be obtained.

1.2 Percolation in correlated systems

In this Section we introduce the results which we will prove in Chapters I and 111
which correspond respectively to [DGP22] and [DGG23]. We gave an overview of
known results for the percolation of the level set E>" of the Gaussian free field, and
in particular we mentioned that the critical parameter h, is positive in the case of
Galton-Watson trees conditioned on survival with mean offspring size m > 2, as
proven in [AS18].

The Galton—Watson tree is the primary example of branching process. We can
briefly define it here and refer for more detail to subsection I1.2.1: consider a prob-
ability distribution v on N, and starting from a vertex ¢ called root, generate
Zgz-many vertices, where Zg is a random variable distributed according to v and
connect them with an edge to ¢J. For each of those vertices, generate offspring inde-
pendently again according to v, and iterate the procedure. One then obtain a graph
T with the structure of a tree, i.e. for each vertex x € 7, there is only a unique
shortest path of vertices connecting x to the root ¢ and a natural orientation, i.e.
x~ is the parent of the vertex x, the vertex closer to the root. It is well-known (see
[LP16]) that the process has a positive probability to generate an infinite graph if
the mean m := EGW [Zz] > 1, and otherwise is finite a.s.. If the tree is infinite, one
easily obtains transience, but note that (V(d,)) does not hold for any d,.

Since m = 1 is the critical value for Galton—Watson tree, one may wonder if
the result h, > 0 from [AS18], valid only for m € (2,00), holds as well in the
whole supercritical phase, i.e. for all m € (1,00). We will answer positively to the
question in Chapter II through a new construction of the graph via watersheds:
consider under some probability PGV a Galton-Watson tree 7 with mean m > 1
conditioned on survival, and equip the edges {x, y} with conductances X, , such that
the family {A\yy: y~ =2, y € Tlyer is i.id. and E[} . Az y] < 0. We show that
hy(T) is PSW-a.s. constant and

hy(T) > 0. (I.2.1)

The result is somehow surprising if compared to the independent case. Let T
be a Galton—Watson tree conditioned on survival, for simplicity with conductances
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identically 1, and let (Y;)ze7 be a centered Gaussian field with variance 1 and
covariance 0, which in particular means it is an independent field. Independent
Bernoulli percolation is well understood, and the critical parameter p, for Galton—
Watson trees is known explicitly and equals %, which is usually proved observing
that the subtree {y € 7: B, = 1} constitutes a Galton-Watson tree and hence is
supercritical when the mean of its offspring distribution is larger than 1. So for
h > 0 we can consider

E[{ly~z:Y, > h}‘] = mF(—h),

with F' being the probability distribution function of a standard normal variable.
Since we assumed h > 0 F(—h) > % and it approaches % as h — 0. In particular if
and only if we assume m > 2 we can find a value h; > 0 depending on m such that
mE(—hy) > 1, so that with positive probability there exists an unbounded cluster

with Y > h, for any h < hq. This means that hy(Y) is positive only for m > 2.

h

Figure I.1: A visual representation of the values of h, for the independent field Y (in blue)
and the Gaussian free field ¢ (in violet) as the mean offspring size m varies. While it is
easy to obtain that hy(Y) = —F~!(:t) for the independent field, for the critical value h
it is only known to be positive and less than w,, so the graph for hy(y) is not accurate,
and in particular it is unclear if an intersection is absent (as conjectured) or not. Our result
hy > 0 for all m highlights the violet area, showing a strict inequality hy(Y) < hy(p) for
m € (1,2) which is new in particular for m = 2. The value h = 0 is then now supercritical
for the Gaussian free field.

The statement in (1.2.1) for all m > 1, implies that the correlated field percolates
more easily than the independent one, and that in particular h = 0 is a value
belonging to the supercritical phase for the percolation of the level set of ¢ but
subcritical for level set of Y, showing one of the first example in which the mantra
“positive correlation helps percolation” was actually seen to hold (see Figure 1.1).

The proof of (I.2.1) is reasonably easier when m € (2,00). In that range, even
if ¢ is a strong correlated field, one uses the previous argument where a spatial
Markov property and a clever construction allows to work around the dependencies,
as we explain in Section I1.3. Our proof instead works for any m > 1 and for any
distribution of the conductances with E[>] _, Az 4] < o0, and uses the isomorphism
with random interlacements. However, in order to deal with the random environment
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and random interlacements on it, we had to provide a new method for generating
the tree and random interlacements simultaneously.

As a byproduct of this construction we are able to prove 2 other results. The
random interlacements set Z%, which contains trivially an unbounded cluster can be
perturbed with some Bernoulli noise, i.e. a i.i.d. family (B,)ze7 of Bernoulli vari-
ables of parameter p. We show that for each level u > 0 we can find a high intensity
p such that Z% n {B, = 1} still contains an unbounded component, extending the
result known for Z? from [RS13a].

For the second result we required the conductances to be elliptic, i.e. there exists
€y, C such that for all x ~ y

Cy) < )‘Ly < 61\. (I.2.2)

Then, we can find u > 0,h > 0,p € (0,1) such that the graphs Z" n {B, = 1} and
E?h A {B, = 1} are almost surely transient, again generalizing the result for Z¢ of
[RS13a].

In Chapter II we concentrated on trees; a popular and often more challenging
choice are graphs with polynomial growth. We already mentioned that in [DPR18a]
the inequalities A > 0 and wus > 0 are proven for a large class of graphs: precisely,
they assume (pg), the volume growth (V(d,)) (where d, is there called «), the Green
function decay (G(d, —d,)) (with d,, called ) and weak sectional isoperimetric
condition.

As discussed in the previous section, this class includes in particular fractal-like
graphs such as Sierpinski gaskets and carpets. Therefore, we asked ourselves if it was
possible to extend the concept of Lipschitz surface as in [GS19a] to those graphs.

We present in Chapter III our results about existence and properties of the
Lipschitz cutset, the analogous of the Lipschitz surface for G* and S(Cd(l r,mp). One
defines a coarse-graining of the space-time graph G? x Z, subdividing it into space
-time cell Ry (¢, 7) indexed by some (¢, 7). According to the model in consideration,
one define a suitable event F(¢,7) which needs to be increasing and “restricted to
a cell Ri(t,7)” (cf. Definition I11.2.6 for a proper definition of “restricted”). If the
probability of E(¢,7) is high enough for all (¢, 7) then there exist a set F' of cells
where the event E happens for all cells in F. Unlike its analogous in the lattice,
the Lipschitz cutset cannot hope to have such a strong connectivity property due
to “holes in the fractal”, but it will still satisfy a Lipschitz-like condition in the
time component. However it still behaves as a cutset, meaning that any sequence of
adjacent cells with distance from the origin going to infinity intersects the Lipschitz
cutset F. Furthermore we show in Theorem (II1.2.13), that F' surrounds the origin
at distance ¢ with exponentially high probability. Those properties together allow to
prove various facts about the models in consideration. As an example of a possible
application, we present in Section I11.9 the survival of an infection with recovery for
small intensity of the recovery parameter.
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II.1 Introduction

The main subject of this article is the study of level set percolation for the Gaussian
free field on supercritical Galton—Watson trees. Due to the strong correlations inher-
ent to the model, the problem of level set percolation induced by the Gaussian free
field is quite intricate and significantly harder to understand than that of Bernoulli
percolation. In the setting of fairly general transient graphs, the model has received
increased attention in the last decade, as it is an important showcase for percolation
problems with long-range correlations. A fundamental question in this context is
to show the positivity of the associated critical parameter h, — see (I1.1.4) below
for its definition — which entails a coexistence phase for h > 0 close to zero. It has
been investigated on Z?, d > 3, in [BLMS87; RS13b; DPR18b], and on more general
graphs with polynomial growth in [DPR18a]. Of particular relevance for us is the
setting of the Gaussian free field on trees, which has been studied in [Szn16; ASI1S;
AC20a]. More precisely, in [AS18, Section 5], Abécherli and Sznitman consider the
particular case of the Gaussian free field on supercritical Galton—Watson trees with
mean offspring distribution m € (1, 00), and prove that h, € [0, 00) for all m € (1, 00),
as well as the strict inequality h, > 0 when m > 2.

The main goal of the current article is to extend this result h, > 0 to all super-
critical Galton—Watson trees, i.e. with offspring mean m € (1, ), which along the
way solves an open question of [AS18, Remark 5.6]. Moreover, we additionally allow
the edges of the tree to be equipped with random conductances with finite mean,
and show that the associated critical parameter hy is still deterministic and strictly
positive.

It is intriguing to compare our main result with Bernoulli site percolation on
supercritical Galton—Watson trees 7, for which — conditioned on survival — the
associated critical parameter is known to almost surely equal the inverse of the off-
spring mean, i.e., p.(7) = 1/m; see [Lyo90] or [LP16, Proposition 5.9]. Contrasting
this well-known result with the inequality h.(7) > 0 is particularly interesting in
the newly investigated range m € (1,2] in our article. Indeed, in this range we
have that the density of Bernoulli percolation at the critical parameter is given by
pe(T) = 1/m = 1/2, whereas the density of percolation for the Gaussian free field
level sets at the critical parameter is strictly smaller than 1/2, since h.(7) > 0.
Therefore, when m € (1, 2] the positive correlations of the Gaussian free field make
percolation easier. This is a behavior expected for many percolation models, see
in particular [Pra+92] as well as [MLO06] for numerical reasonings concerning the
setting of percolation with long-range correlations. To the best of our knowledge,
the only other class of transient graphs where an inequality between densities at
criticality of Gaussian free field and independent percolation has been rigorously
proven are d-regular trees, see [Sznl6, Corollary 4.5], but it is conjectured to hold
for a large class of transient graphs.

A key tool in our proof is based on a construction of the Galton—Watson tree
and random walks on it at the same time, see Section I1.4. Each random walk will
explore a portion of the tree below its starting point, and we call such a subset of the
tree a “watershed”. The specific exploration via watersheds will prevent the random
walks from “predicting the future of the tree” during its construction; that is, we
construct each watershed on a part of the Galton—-Watson tree while preserving the
independence of the rest of the tree. The main feature of the explored tree is its
stability to perturbation by small quenched noise. The desired positivity of hy will
then be obtained by means of a Dynkin-type isomorphism theorem between the
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Gaussian free field and random walks, see [Eis+00], or more precisely with random
interlacements, a random soup of random walks, see [Szn12a; Lup16]. Moreover, we
expect that our exploration procedure of the Galton—Watson tree via watersheds can
also be used to obtain other interesting results. A first manifestation of this is already
provided by the results on noise-stability and transience for the interlacements set
as well as for the level sets of the Gaussian free field above small positive levels, see
Theorem 11.1.2 and I1.1.3 below.

I1.1.1 Main results

Let us now explain our setting and results in more detail. We consider a

Galton—Watson random tree 7 with mean offspring

I1.1.1
distribution m > 1, conditioned on survival, ( )

and denote the underlying probability measure by PV, We endow the natural graph
structure induced by 7 with positive random conductances A\, * ~ y, such that,
conditionally on 7T, and denoting by y~ the parent of y € T, with y different from
the root 7,

the family {\,, : y€ 7 and y~ = x}se7, is i.i.d. and
EGW[)\:EF"] <o VYzeT, where \; ; := Z Aoy (I1.1.2)

Yy~ =x

note that this setting is slightly more general than endowing the edges of the Galton—
Watson tree with independent conductances. In particular, when the conductances
Az,y, T ~ Yy, are constant equal to 1, we recover the usual Galton-Watson tree, and
in this case condition (II.1.2) simply boils down to the mean offspring distribution
m being finite. In a slight abuse of notation, we also denote by 7 the weighted
graph with the conductances A, and will explicitly mention when we consider the
tree T to be weightless as in (II.1.1) to avoid confusion. We refer to Section I1.2.1
for precise notation and definitions.

It is known that the random tree 7 is almost surely transient, cf. Proposi-
tion I1.2.1, and conditionally on its realization, we denote by g7 the Green function
associated to the random walk on T, see below (I1.2.10).

Conditionally on the realization of 7, we then define the Gaussian free field
(¢2)zeT under some probability measure IPL(% as the centered Gaussian field with
covariance function g7, see Section I1.2.3 for further details. Note that this is a
Gaussian free field in a random environment, that is we first generate the Galton—
Watson tree 7 with random conductances and then — conditionally on the surviving
Galton—Watson tree 7 — we generate a Gaussian free field on 7.

We will study the percolative properties of the level sets or excursion sets of the
Gaussian free field on T, i.e., of the random set

E?h = BPMT)={xeT:p.>h}, heR (I1.1.3)

We observe that the level set is clearly decreasing in h, and we define the critical
parameter

hy :=hs(T) :=inf{h e R : ]P’g;-—a.s. all connected components of Ezh(T) are bounded}
(IL.1.4)
for the corresponding percolation problem.
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A priori, it is not known if h, is deterministic, nor whether the phase transition
is nontrivial, i.e., whether hy € R. For unitary conductances, the former is proved in
[AS18, Lemma 5.1], and the latter — more precisely the inequality 0 < hy, < 00 — is
proved in [AS18, Proposition 5.2|, taking advantage of [Tas10]. The result hy > 0 is
shown to hold in [AS18] for constant conductances under the additional assumption
m € (2,00); however, it seems that the assumption of finite mean is not essential
to their proof. Let us also note in passing that even for Galton—Watson trees with
random 1i.i.d. conductances, hy(7T) is still deterministic, see Appendix I1.A.2. We
now state our main result.

Theorem I1.1.1. Under (I1.1.1) and (11.1.2), there exists h > 0 such that E>"
contains ESW[PS(+)]-almost surely an unbounded connected component, and hence

h«(T) > 0.

Note that Theorem II.1.1 does not yet imply that the phase transition is non-
trivial, that is h.(7) < c0. Indeed, this finiteness property does hold true for i.i.d.
weights, but it may fail without this condition — we refer to the discussion below
(I1.1.6) for details.

In the case m > 2, the assumption ESW[)\, ;] < oo from (I1.1.2) is not nec-
essary to prove the inequality hys > 0 as explained at the end of Section I1.3 (for
unitary conductances this also follows from [AS18, Theorem 5.5]). In view of Theo-
rem II.1.1, a natural question then is whether h, > 0 under the broader assumptions
ESW[A; 1] = 00 and m € (1,2].

We will now put our result into the context of previous literature on percolation
for the Gaussian free field. The study of this percolation problem for unitary con-
ductances had been initiated by Bricmont, Lebowitz and Maes in [BLM87] on the
Euclidean lattice Z% in transient dimensions d > 3. Using a soft but quite robust
contour approach, they proved that h4(Z%) = 0 for all d > 3, as well as h4(Z?) < 0.
More recently, on Z9, it has been established in [RS13b] that h.(Z¢) < oo for all
d = 3, as well as h4(Z%) > 0 for all sufficiently large d; in [DPRI18b] it has then
subsequently been shown that h.(Z%) > 0 for all d > 3. For trees with unitary
conductances, the parameter h, € (0,00) was first characterized in [Sznl6] on d-
regular trees, d > 3, and subsequently in [AS18] for a larger class of transient trees,
including supercritical Galton—Watson trees with mean m > 2.

In [AC20a], further percolative properties for d-regular trees have then been
studied in the super- and sub-critical regime. In [DPR18a], hy, > 0, and in fact local
uniqueness of the infinite cluster at a positive level, has been shown for a larger class
of graphs with polynomial growth. This class of graphs actually include Z¢, d > 3,
with bounded conductances as a special case, which was further studied in [CN21].
We also refer to [Sznl5; AC20b; DC+20; GRS22; Con21; Cer21] for further recent
progress in this area.

Our proof crucially relies on another important object: the random interlace-
ments set Z%, u > 0, which has been introduced in Z? d > 3, by [Szn10]. Later
on, it has been generalized to transient weighted graphs in [Tei09]. It is related to
the Gaussian free field via Ray-Knight type isomorphism theorems, first obtained in
[Szn12a], and later on extended in a series of works [Lupl6; Szn16; DPR22]. From
a heuristic point of view, random interlacements is a random soup of doubly infinite
transient random walks, and the union Z% of their traces thus trivially has an un-
bounded connected component (and hence percolates). On Z¢, d > 3, it was proved
in [RS13a] that Z" still percolates when perturbed by a small quenched noise, and
this property was essential in the proof of h, > 0 from [DPR18b]. Although our
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approach to proving h,; > 0 on Galton—Watson trees is quite different from that of
[DPR18b], the stability of Z* to perturbation via small quenched noise will still play
an essential role in our proof of Theorem II.1.1. Note that in the context of random
Galton—Watson trees, we will see Z" as a quenched random interlacements on the
realization of the tree 7; see Section 11.2.4 for details.

We now describe this stability property — which is of independent interest, see its
implications in Theorem I1.1.3 below — in more detail. Again conditionally on the
realization of the tree T, for some p € (0, 1), denote by B,, x € T, an independent
family of i.i.d. Bernoulli random variables with parameter p and let

By,:={xeT:B,=1}. (I1.1.5)

Theorem II.1.2. Under (I1.1.1) and (I11.1.2), for all u > 0, there exists p € (0,1)
such that " n B, contains almost surely an infinite connected component. Moreover,
there exist h > 0 and p € (0,1) such that EZ" n B,, contains almost surely an infinite
connected component.

In [RS13a], the question of stability of the vacant set V* := (Z*) to perturbation
by small quenched noise on Z¢ has also been studied. In a similar vein, on Galton—
Watson trees one can also easily prove that V* n B, percolates for p large enough,
see Remark 11.2.3. In [RS13a], the proof of stability of Z* to perturbation by small
quenched noise involves some local connectivity result for random interlacements,
which can also be used to prove transience of the interlacements set [RS11], or of
I" n By, see [RS13a]. It turns out that, although our proof of Theorem II.1.2 is
entirely different from that of [RS13a], it can also be employed to show transience
of 7 n By, or of E>h A By, at small, but positive, levels, under some additional
assumptions on the conductances.

Theorem II.1.3. Assume (I1.1.1), (II.1.2) and that, conditionally on the non-
weighted graph T, (Mg y)z~yeT are i.i.d. conductances with compact support in (0, 00).
Then for all w > 0, there exists p € (0,1) such that " n B, contains almost surely a
transient connected component. Moreover, there exist h > 0 and p € (0,1) such that
E>l B, contains almost surely a transient connected component.

For the reader’s convenience we refer to the discussion above (I1.6.1) for the
precise definition of what means in our context that, conditionally on the non-
weighted graph T, (Azy)z~ye7 arei.i.d. conductances with compact support in (0, o)
— which, in fact, is arguably the “natural” way of endowing a tree with i.i.d. random
conductances, but less general when compared to (I1.1.2).

Let us finish this subsection with some comments on percolation for the vacant
set of random interlacements, and the finiteness of h,. The random interlacements
set T always percolates since the trace of a transient random walk is an unbounded
connected set; one may, however, wonder if the same holds true for its complement
the vacant set V* when the intensity parameter varies.

Denoting by u. the critical parameter associated to the percolation of V%, u > 0,
the isomorphism between random interlacements and the Gaussian free field, see
Proposition I1.2.5 below (which can be used in our context in view of Proposi-
tion I1.5.8), implies similarly as in [Lup16, Theorem 3] that

he < /2. (11.1.6)

The inequality (II.1.6) combined with Theorem II.1.1 implies uy > 0, but note that
the inequality u, > 0 could be proved via easier means, see Remark I1.2.3. Let us
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note here that in the special case of unitary conductances, an explicit formula for
uy has been derived in [Tas10]. The proof of [Tas10, Theorem 1] can be adapted to
random conductances as long as (Azy)z~ye7 are i.i.d. conductances conditionally on
the non-weighted graph 7. In particular, u, < oo under the same conditions, and
thus hy < o0 as well by (I1.1.6). However, if we allow the weights (A; y)z~ye7 to nOt
be i.i.d. conditionally on the non-weighted graph 7 — but still satisfying the usual
setup of (II.1.2) — one can find Galton-Watson trees where h, = o0, see (I1.3.4).

The weak inequality (I1.1.6) can actually be improved to hy < 1/2uy on d-regular
trees, d = 3, see [Sznl6]. In [AS18], the authors provide general enough conditions
to obtain h, < 4/2u, on transient trees, and in particular for Galton—Watson trees
with unitary conductances this strict inequality holds under additional hypotheses
on exponential moments of the offspring distribution, see [AS18, Theorem 5.4]. They
also provide an example, namely the tree where each vertex has an offspring size
equal to its distance to the root, where actually 0 = hy = 1/2us. Note that this entails
that Theorem II.1.1 does not hold when removing the assumption ESW[\, ,] < o0
from (I1.1.2), as well as the assumption that the distribution of the number of
children does not depend on the generation.

11.1.2 Outline of the proof

We now comment on the proofs of Theorems I1.1.1, 11.1.2 and I1.1.3 in more detail.
Let us first elaborate on the fact that Theorem I1.1.2 is useful to obtain Theo-
rem [1.1.1. The isomorphism between random interlacements and the Gaussian free
field, see Proposition I1.2.5, implies that for each v > 0, random interlacements and
the Gaussian free field on T can be coupled in such a way that

almost surely, % c EZ~V2, (I1.1.7)

This implies in particular that E>—V2u percolates for all © > 0, and taking v | 0
we infer that hy > 0. Note that the validity of the inclusion (II.1.7) requires some
condition on the tree to be fulfilled — see (I1.2.20) — but we will actually show in
Proposition I1.5.8 that this condition is always satisfied in our context. In [DPR18b;
DPRI18a], an extension of the inclusion (II.1.7) to a continuous metric structure
associated with the discrete graph, the so-called cable system, was used to lift the
inclusion (I1.1.7) — when the field was taking not too high values — to level sets
of the Gaussian free field at positive levels, which then yielded the desired strict
inequality hy > 0. Here, we follow a simpler approach, that is we use an extension of
the inclusion (I1.1.7), see Proposition 11.2.5 below, which includes information about
the exact values of the free field, as well as the local times of random interlacements.
Proposition I1.2.5 is proven using the cable system, cf. [Lupl6] for further details.
The proposition readily implies that there exists a coupling such that for each u > 0,

almost surely, " n A, ¢ E>V?", (I1.1.8)

where EZV24 has the same law as EZV2%, see (I1.1.3), and
Ay = {1: €T: & >4dulg or |pz| > 2\/2u}, (I1.1.9)
for some i.i.d. exponential random variables (£,),e7 with parameter one, indepen-

dent of the Gaussian free field ¢ and the interlacements set Z". Note that A, in-
creases a.s. to 7 as u — 0, and one can thus interpret the intersection with A, as
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applying a small quenched noise. Theorem II.1.2 then suggests that 7% n A, might
percolate for v small enough, which again would imply Theorem II.1.1 by (II.1.8).

However, one cannot directly use Theorem I1.1.2 for proving Theorem II.1.1 for
two reasons: first, the variables {x € A,}, x € T, are not independent, and second,
the probability that = € A, depends on the parameter u of the interlacements set,
and thus, contrary to p in Theorem II.1.2, it cannot be taken arbitrarily close to
one for a fixed u. The first problem will be essentially solved by lower bounding
the probability that = € A, conditionally on {y € A,}, y # x, using the Markov
property of the free field, see (I1.5.25). To solve the second problem, we will make
the dependency of p on u in Theorem I1.1.2 explicit, that is, we find a function p(u),
with p(u) 1 1 as u — 0, such that Z" n Biyu) percolates for all u > 0, and we show
that the probability that x € A, is larger than p(u) for u small enough, see the proof
of Proposition I1.5.7.

Therefore, in order to obtain Theorem II.1.1, it is essentially enough to show
that 7% n B, percolates, where p(u) is smaller than the probability that = € A,
for u small enough. The main difficulty is that, when u is small, there are two
competing effects at play in this percolation problem. On the one hand, in the
u > 0 small regime, the interlacements set Z" consists of few trajectories, and hence
is less well-connected; i.e., intersecting 7" with B;,, might break its infinite connected
components into finite pieces. This is particularly problematic when m is close to
one, since the tree tends to contain long stretches which locally look like Z, and hence
the connectivity of such components turns out to be sensitive to an independent
noise. On the other hand, as u — 0, for each x € T, the probability that x is in A,
tends to one, and it thus becomes less likely to break a fixed connected component
of Z* into finite pieces when intersecting with B,,,). The proof of Theorem II.1.1
therefore requires a subtle comparison of the influences of these two opposite effects
as u — 0. We now provide a short explanation of how this is done.

The probability that a vertex x is contained in AS can be easily upper bounded
by ug/z)\?;/27 see (I1.5.25) below, and we can thus take p(u) = 1 — W22 for u
small enough. To prove percolation of Z" n B ,), we use a description of the
trajectories in Z" via their highest (i.e., minimal distance to the root) visited vertex,
Theorem I1.2.2, which can be seen as a generalization of [Tei09, Theorem 5.1]. This
description entails that Z" can be generated by starting, for each vertex x € 7, an
independent Poissonian number I',, of random walks starting at x going down the
tree. Here, the Poisson distribution underlying I', has parameter uéy(z), where
ér(x) — see (I1.2.16) — is a parameter depending on the subtree rooted at x, which
bears some similarity with the square of the conductance from x to infinity.

Now in the simpler case where each vertex in the tree 7 always had at least
two children and the conductances were bounded, one could finish the proof by
first conditioning on 7 and by then proceeding as follows. One can under these
conditions easily show that €7 (z) is of constant order, uniformly in 2 € 7. Thus,
when I'; > 1, with high probability, starting a random walk at = going down the
tree up to the first time it has visited C'/u vertices, for a large constant C, there are
at least two vertices y with I'y, > 1 which are not visited by the walk, but children
of vertices visited by the walk (the existence of such vertices is guaranteed by the
fact that each vertex visited by the walk has at least two children). We will say
that such a point y corresponds to a free point, see (I1.4.12). Moreover, again with
high probability as u — 0, all the vertices visited by this walk are contained in

B

p(u)s With p(u) =1— u3/ 2/\2/ 2, and in particular there is a path between x and y in
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" N By(y)- One can now iterate this procedure starting a new trajectory at each y
corresponding to a new free point, and show that the tree of free points contains a
d-ary tree, see Proposition I1.5.5. In particular it percolates, which directly implies

the percolation of 7" n By, also.

In this approach, we thus first generate 7, and then construct an infinite cluster
in 7% N B,y on the now fixed tree 7. However, when the mean offspring number m
is close to one, or the conductances are not bounded, then the tree 7 will contain
some connected components of vertices, each with exactly one child, with size more
than C/u, on which the above approach is bound to fail. Note, however, that as
u — 0, condition (I1.1.2) in combination with the Marcinkiewicz-Zygmund law of
large numbers implies that these bad sequences in 7 become rarer when the tree is
generated, see (I1.5.7). In order to benefit from this information, we are going to
generate the interlacements set Z" and the Galton—Watson tree 7 simultaneously.
Generating the two processes at the same time is of considerable importance as it
allows us to operate with the interlacements process without being forced to generate
the whole tree beforehand.

To generate these two processes at the same time, we will explore the Galton—
Watson tree using random walks, in the form of an object that we will call watershed,
as is explained in Section 1.4 in more detail. The previously mentioned description
of random interlacement trajectories via their highest visited vertex then implies
that for each vertex x, if a Poisson random variable with parameter u takes the
value at least one, one can start a watershed at x, that is a walk starting at x
and exploring the tree below x, which is included in random interlacements at level
u/e{x}% (x), see Proposition 11.4.2; here, €{z},7, 18 the equilibrium measure of the
set {z} for the subtree 7, of T rooted in z, see (II.2.12). Now, for each vertex z,
we will first generate a portion of the tree to make sure that e, 7. (¥) > ce for
some constant c., see (11.5.19), and then start a watershed at z if a Poisson random
variable with parameter u is at least one, which will thus be included in random
interlacements at level u/ce, see Proposition 11.5.6. We can now use the additional
randomness of the tree — which in particular entails that with high probability there
are no large components of vertices each with exactly one child — to show that, for
u > 0 small enough, the intersection of all the watersheds and B,,/.,) percolates
for each m > 1, and thus E>" percolates for h small enough as well; see Section I1.5
for details.

Finally, in order to prove Theorem II.1.3, we note that, for uniformly bounded
weights, the trace of a random walk on the watersheds is essentially a coarse-grained
random walk on the tree of free points with a drift, see (11.6.4). Using an argument
from [Col06], we deduce that such a random walk is transient, which finishes the
proof using the isomorphism (II.1.8) again.

The structure of the article is as follows: in Section II.2 we will define the
main objects and set up notation. In Section I1.3 we provide a short and simple
proof of Theorem II.1.1 under the additional assumption m > 2 — this will turn
out instructive for the proof of the general result also. Furthermore, we provide
examples of Galton—Watson trees with h, = oo0. In Section 1.4 we will introduce
the exploration of the Galton—Watson tree through random walks, which is used
in Section IL.5 to prove Theorems I1.1.1 and I[.1.2. In Section I1.6, we use similar
methods to prove Theorem I1.1.3. Finally, we prove in Appendix II.A.2 that h, is
deterministic in our setting.
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I1.2 Notation and definitions

In Sections I1.2.1 and I1.2.2 we introduce the Galton—Watson trees which we will
be considering. Subsequently, Sections I1.2.3 and I1.2.4 are then devoted to random
walks, the Gaussian free field, as well as random interlacements on trees. In Sec-
tion I1.2.5 we introduce the isomorphism theorem between random interlacements
and the Gaussian free field.

I1.2.1 Galton—Watson trees

We will investigate trees using the Ulam-Harris labeling. For this purpose, consider
the space

a0
xq= N, (I1.2.1)
=0

where N is the set of positive integers, Ny the set of non-negative integers and N°
is defined as {@F}. For i,j € N as well as z,y € X such that x = (x1,...,2;) €
N and y = (y1,...,9;) € N/, we define the concatenation of z and y as zy =
(z1,..., T, y1,...,Y;) € NI < X. Moreover, for A € X and z € X we introduce
x - A:={xy : y € A}; note that in contrast to pointwise concatenation we put an
additional dot for aesthetic reasons. For all z = (z1,...,2;) € X, i € N, we define
x~ = (x1,...,2—1), the parent of x, with the convention () = . For aset Ac X
we define its (interior) boundary as 0A := {x e A: By e A, y~ = z}. Note that this
is not exactly the natural topological boundary, but this slightly modified definition
will turn out useful for our purposes. We moreover introduce, for A € X and = € A,
the set of children of x in A as

GA={yeA |y~ =a}. (I1.2.2)

We call T < X a tree if for each x € T\{J}, we have = € T and |GL] < oo.
We then say that z € T\{J} is a child of y € T if = = y. If the tree 7" under
consideration is clear from the context, for all x,y € T, we write © ~ y if either
x =y~ ory = x . One can also view a tree T as a graph with edges between x
and y if and only if x ~ y. On this graph, we denote by dr(z,y) the usual graph
distance. We say that T is a weighted tree if each edge between x and y is endowed
with a symmetric conductance A\, = Ay, € (0,00). For 2 € T' we also define A\,  as
in (I1.1.2). Since weights are not encoded in X', a weighted tree is not a subset of X'.
However, to simplify notation, we will often implicitly identify a weighted tree with
its set of vertices, a subset of X. Note that most of the previous notation depends
on the choice of the tree T', which will always be clear from the context. For x € T,
we write T, for the subtree of 1" consisting of x and all descendants of z, endowed
with the same conductances as in the underlying tree 7. In this article, we think
of trees as growing from top to bottom, so we sometimes refer to the points in the
subtree T as the points below x. A priori, T, may consist of finitely many nodes
only, but with a standard pruning procedure, we will actually soon reduce ourselves
to the case of infinite Galton—Watson trees, see Section 11.2.2.

We now explain how to define a Galton—Watson tree with random weights as a
random weighted tree 7. We consider a probability measure v on [0, )Y, which will
form a canonical probability space, in order to describe the offspring distribution
as well as the associated conductances. More precisely, we consider v such that if
the sequence (\;)ien on [0,00)N has law v, then there exists d € N such that v-a.s.,
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Ai >0 for all i < d and \; =0 for all i > d. We will soon use v to assign weights to
the edges of the tree by means of a vector (A; zi)7~,, distributed according to v for
each vertex x. Throughout this article, except in Section I1.3, we moreover assume
that the law of the conductances satisfies

E’[A+] < o0, where Ay = > 1A (I1.2.3)

essentially, this is just a reformulation of the second condition in (I1.1.2). Note that
we do not assume the conductances to be bounded away from zero or infinity, nor
that the conductances \;, i € N, are independent under v. Defining the function
7: [0,00)N — Ny via (A\)ien — |{i € N: \; > 0}|, we introduce the pushforward
probability measure

pi=vor ! (I1.2.4)

on Ny. As it corresponds to the law of the number of edges with conductances
different from 0, it will play the role of the offspring distribution. We will assume
from now on that the mean of the offspring distribution satisfies

m = i ip(i) > 1, (I1.2.5)
i=0

which will correspond to the case of supercritical Galton—Watson trees.

On some rich enough probability space we define the Galton—Watson tree 7 by
constructing 7 n N¥(c X), endowed with conductances on the (undirected) edges
with the vertices in 7 n N¥71| recursively in k. For k = 0, we simply start with
the vertex @ € N0 < X called the root. For k > 0, once the tree 7 has been
generated up to generation k, for each vertex € N¥ A T we generate independently
a random vector (A z;)ien with law v. The vertex x has m((Ay gi)ien) children, and
we endow the edge from x to its child x4, 1 <@ < 7((Ag 2i)ien), with the conductance
Az.zi € (0,00). This defines 7 n NF+1 and its conductances with vertices in 7 n N,
The union over k € Ny of these sets, endowed with the respective conductances, is
denoted by T, the weighted Galton—Watson tree. Note that the structure of the tree
is completely determined by the weights A, and that an edge between two vertices
is present if and only if the conductance between them is non-zero. Under our
standing assumption (I1.2.5), the tree becomes extinct with probability ¢ < 1 (cf.
for instance the discussion below [LP16, Proposition 5.4]). Hence, it has a positive
probability to survive indefinitely, and in order to avoid trivial situations, we will
always condition the Galton—Watson tree on this event of survival in what follows.
We denote by PSW the probability measure underlying the Galton-Watson tree
constructed above, conditioned on survival.

Let us also define here already the canonical o-algebras that we consider through-
out the article, and which only become relevant at later points in this article. The
set X' is endowed with the o-algebra o({z}, x € X'), and the space of subsets of X
is endowed with the o-algebra generated by the coordinate functions A +— 1¢,cqy,
zeX. If T c X, we will often regard (A\;y)z~yer € (0,00) 17V 2>V} ag an element
of [0,00)**¥ endowed with the product of the Borel-o-algebras, by taking A, = 0
if either x ¢ T or y ¢ T, or else if x and y are not neighbors in 7'

I1.2.2 Pruning of the tree

In this subsection we describe a useful pruning procedure for the tree conditioned on
survival, which corresponds to chopping all finite branches of the tree — the remaining
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subtree is known as the reduced subtree in the literature, see e.g. [LP16]. In order
to simplify our investigations, we will then observe that the conditioned chopped
Galton—Watson tree can also be constructed as a Galton—Watson tree with modified
offspring distribution and which then survives almost surely, see (I1.2.6). For this
purpose, we define the reduced subtree 7® of T as consisting of those vertices of T°
which have an infinite line of descendants:

T*:={xeT: T,is infinite},
where we recall that the notation 7, has been introduced in the paragraph below
(11.2.2).
Then [LP16, Proposition 5.28 (i)] entails that 7*, which can be seen as a tree
in X', has — possibly after relabeling and conditionally on survival — the same law as

a Galton—Watson tree 7* with offspring distribution p*. The latter is characterized
by its probability generating function

« flg+s(1—q) —q
fr(s) = -

, where ¢ is the probability that 7 is finite, and

f is the probability generating function of p.
(I1.2.6)

Note that f*(0) = 0, hence p*(0) = 0, i.e.points in 7* have zero probability of
generating no children, and that p* has the same mean m as the law p associated
to T.

The behavior of the law of the conductances under pruning is slightly more
involved. Indeed, conditionally on 7 and for each x € T, conditionally on its number
of children |G7|, the weights (\;,)y~z are independent of the event {zr € T*}.
Therefore, one can find a probability measure v* on [0,0)N with v* o 771 = p*
such that the weighted tree 7% has — after relabeling — the same law conditionally
on survival as a weighted Galton—Watson tree 7 obtained from the probability v*.
The law of v* is the same as the law of v restricted to P positive coordinates chosen
uniformly at random among the K + P positive coordinates of v, where P has law
p* and K has the law of the number of children of the root which do not survive,
given that the root has P surviving children (its probability generating function is
described in [LP16, Proposition 5.28 (iv)]).

Note that even under v* it holds true that BV [Y, .y Ai] < 0. Indeed, we first
condition on survival which is an event of positive probability, and then we delete
those points not belonging to 7®, which can only decrease the respective expected
conductance.

We already remark at this point that the above pruning procedure does not
change the critical parameter h, we are interested in, as the Gaussian free field
restricted to 7% has the same law on the pruned tree, and similarly for random
interlacements. In particular, Theorems I1.1.1, I1.1.2 and II.1.3 can be proven equiv-
alently on the initial tree or on the pruned tree, and we refer to Remark 11.2.4 for
further details.

Therefore, without loss of generality, from now on we always work under the
standing assumption that

v is a probability measure such that F((/\i)igN) > 1 v-a.s.;

pGW (SA)

i.e., under all z € T have a.s. an infinite line of descendants.

In particular, under (SA), PSW is the law of a Galton-Watson tree without condi-

tioning on survival, since survival occurs with probability one.
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I1.2.3 Gaussian free field

Let us now define one of our main objects of interest, the Gaussian free field. We
start with some general definitions related to random walks. Let T be a weighted
tree with positive weights (Azy)z~yer- For zg € T' we define a random walk (X, )pnen,
on 1" under Pg; as the Markov chain on its canonical space Ny starting in xy with
transition probabilities

Az
PCCT0 (Xn+1 =y | Xy =2) = )\—’y forall x ~yeT, (I1.2.7)

T

where the total weight A\, at x is defined as

Ao = D Aayi (I1.2.8)

Y~z

note that the total weight, unlike A; 4 in (IL.1.2), sums over the conductance A, ,-
also. For a set U < T, the hitting and return times of X, respectively, are denoted

Hy(X):= Hy :=inf{n >0 : X, e U} and Hy(X) := Hy := inf{n > 1 : X,, e U},
(I1.2.9)

respectively, with the convention inf ¢f = c0. In the case of a single point U := {z},
we will write H, and H, in place of Hy, and ﬁf{x}.

In this section, we assume that the random walk X on 7T is transient, an as-
sumption which will in particular be satisfied for supercritical Galton—Watson trees
conditioned on survival, see Proposition 11.2.1. For U < T, the Green function
associated to X, killed upon exiting U under P’ is given by

1 HT\U_I
g (x,y) = )\—E:ET[ Z 1{Xk:y}] for all x,y e T. (I1.2.10)
Y k=0

In particular, we note that gg(x, y) = 0 if either x ¢ U or y ¢ U. In addition, we write
g'(z,y) := ,\%EE[ZZOZO 1(x,—y}), where z,y € T for the Green function associated
to X onT.

Then g7 is symmetric positive definite, and we can hence consider a probability
measure ]P’% on RT endowed with the canonical o-algebra generated by the coordinate
maps (¢z)zer such that

(¢z)zer 1s a centered Gaussian field

with covariance given by ]E% [pzpy] = g (z,y), z,yeT.

We call ¢ the Gaussian free field on the tree T. Let us now recall the Markov
property for ¢, see for instance [Sznl12b, Proposition 2.3]. For a finite set K < T
and U := T\K, define for all z € T,

BY = El[oxy, Veewy] and o7 =, — Y. (I1.2.11)

Then

(Y).er is a centered Gaussian field with covariance function ES [@ngﬁg | = gt (z,w),
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which vanishes in K and is independent of o (., z € K). Note moreover that gV is
o(pz, z € K)-measurable, and thus independent of Y.

Putting the previous general considerations in our context of interest, we note
that for almost all realizations of a weighted Galton-Watson tree 7, under PSW the
Green function g7 is finite since the random walk is transient: the proof in [Gan+12,
Proposition 2.1] can be straightforwardly adapted to our case, i.e. the case where
for each x € X, the family (A;y)y~z, is not necessarily independent. This yields the
following result.

Proposition I1.2.1 ([Gan+12]). PSW_almost surely, the random walk on the tree
T with conductances (Azy)ayeT o~y 1S transient.

Hence, for almost all realizations of the Galton—Watson tree 7, we can define
the Gaussian free field on T as the field ¢ under IP’?—.

I1.2.4 Random interlacements

The random interlacements process has been introduced by Sznitman [Szn10] for
Z% (see [DRS14a] and [CT12] for introductory texts) and it has subsequently been
generalized to transient weighted graphs in [Tei09]. For a transient weighted tree T
with conductances (A y)z~yer, We define the equilibrium measure and capacity of
a finite set K < T as

exr(x) = Ligery Ao PY (H = 0) and capp(K) = Y. exr(z). (11.2.12)
zeK
We also define the capacity of an infinite set F' € T as the limit of the capacity of
F, as n — o0, where (F),)nen is a sequence of finite sets increasing to F'; we refer for
instance to the end of [DPR22, Section 2.2] for as to why this limit exists and does
not depend on the choice of the exhausting sequence (F},),en. We further introduce
the set

Zr:={W: Ny - T| @, ~ @py1 for all n > 0 and dp(F, T,,) — 0 as n — o}
of transient nearest neighbor trajectories on 71" as well as the set

Zp={T: % —T| Wy~ Wns1 for all n € Z and dp (&, @p) — 0 asn — +o0}

(I1.2.13)
of doubly infinite transient nearest neighbor trajectories. In the literature, the set
Zrin (I1.2.13) is usually denoted by W; in this article, however, in a self-suggestive
manner, we reserve W for the notion of watersheds, a key object which will be defined
in Section II.4. Denote by X the identity map on 7T, and we indicate with X
and X the forward and backward trajectories

(Yn)neNo = (?n)neNo and (Yn)neNo = (Y—n)neNo-

Let ?T and ?T be the associated o-algebras on 7T and 7T generated by the
coordinate functions. On (7T, ‘Z 1) we consider the family of measures QL. KcT
finite, which is characterized by the identities

Q;(((Yn)neN e A, Xy =u, (in)nEN € B) :PE(A, ﬁK = OO))‘ng(B)l{mEK}

11.2.12 ~
W22 (A | Hy = o0)excr(x) P (B)
(I1.2.14)
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for all A,B € ?T, x € T'; here, Hy is the return time to K defined in (11.2.9).

Following [Tei09], one can then show that there exists a unique measure p7 on
the quotient space Z7 of trajectories in 7T modulo time shift, whose restriction
to the trajectories hitting K is the pushforward of the measures Q% by projection
onto Z7. Under some probability measure IP’%I, the random interlacements process
on T is then defined as the Poisson point process

Z 0w u;) O Z7 x [0,00) with intensity measure up ® A, (I1.2.15)
1eN
where A is the one-dimensional Lebesgue measure restricted to [0, ). For u € (0, )
we define the random interlacements process w,, at level u as the sum of 6, over all
i € N with u; € [0, u], and the random interlacements set Z* at level u as the subset
of T visited by the (equivalence classes of) random walks w} in the support of w,.
We now present an alternative construction of the random interlacements process
on trees, which will turn out useful for our purposes. It consists of partitioning the
space 7T into subsets according to the highest visited vertex of the contained
trajectories. For this purpose, for x € T' define the quantity

&r(z) == PT(H, = o0, Hy- = )\, P (H, = ), (11.2.16)

where we recall that H, and I:i’x are the hitting and return times, respectively, of x,
defined in (I1.2.9). If z = &J, we take the convention that H,- = o0 occurs almost
surely. We also define the law of a doubly infinite random walk with the point = at
smallest distance from the root ¢, and which is reached for the first time at time 0,

by

7T ~
Qy (X)nen € A, (X)nen € B) := PY(A|H, = o0, H,- = 0)PT(B| H,- = ),
(I1.2.17)
for all A, B € Z7. Here, we use the convention H,- = o a.s. if x = (. Note that

- =T . . . . .
er(J )Qg = Q% We now show that this alternative construction provides us with
a random interlacements process as desired.

Theorem I1.2.2. Denote by T' a transient weighted tree with conductances (Azy)g~yet-
Let uw > 0, and independently for each x € T, let I',, be a Poi(uér(x))-distributed ran-
dom variable. Furthermore, let X, ;, i € N, be an independent i.i.d. family of doubly

infinite random walks on T with common law @z Denote by X;i the trajectory
Xz, modulo time-shift. Then

Iy
Z Z Sx* has the same law as w, under PR
x,1
zeT i=1

Proof. For x € T' we denote by 711 the subset of 7T, see (I1.2.13), which contains
only those doubly infinite trajectories with highest point equal to x, reached for the
first time at time 0, i.e.,

D o = {X e Zr: Xo=a,H, (X)=H, (X) = H,(X) = oo}.

Write Z:}T for the quotient space of 7963 modulo time shift. Since trajectories on
a tree have a unique highest point, the family of sets Z ., z € T, forms a partition
of Z7.
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For any measure M and measurable set A, write M | , for the restriction M(An -)

to A. Recalling the definitions of Q% &r and @Zj in (I1.2.14), (I1.2.16) and (11.2.17),
we have for all events A, B € Z that

Qley| . (Knhne € A, (Xn)ners € B)
= PE(A,HI_ = o, Hy = 0) A\, PL (B, H,- = )
= &r(ax)PY(A| H,- = 0, H, = )P (B | H,- = ©)
er(2)Qn (Xn)nen € A, (X )nen € B).

Next, write (@:)* for the pushforward of @z into the quotient space. If a trajectory
X, € 7T is such that X} € Z;T, then Q?x}—a.s. we have X, € 75,;1, so we see that

—T . . . . .
#@) MT’ 7, = (Q,)*. Hence, since I';, is a Poisson random variable with parameter
z,

uép(x) we deduce that

Iy
Z 0 X*, is a Poisson point process on Z7 with intensity measure uuT‘ z*
i=1 ’
(I1.2.18)
Using the restriction property and the mapping theorem for Poisson point pro-
cesses in order to first remove the trajectories with label bigger than u and then
the labels themselves, we see that the interlacements process w, as defined below
(I1.2.15) has the law of a Poisson point process with intensity measure upur.
Furthermore, since the subsets Z;“’T, x € T, form a partition of Z7, due to the
superposition theorem for Poisson point processes, taking the sum of (I1.2.18) over
x € T yields the law of a Poisson point process with intensity uur, i.e. of w,, and
the proof is complete. O

The representation of random interlacements via the highest vertex visited by
its trajectories, Theorem I1.2.2, will be the base of our construction of the Galton—
Watson tree via random interlacements, cf. Proposition 11.4.2.

Remark I1.2.3. Theorem I1.2.2 can be seen as a generalization of [Tei09, The-
orem 5.1]. Indeed, if x € T is such that either z= € V" := (Z%)¢ or z = (J,
then x € V" if and only if there are no trajectories in 7x,T in the support of w,,.
By Theorem I1.2.2, this happens independently for each x € T with probability
PT, = 0 = exp(—uép(z)). In other words, the cluster of ¢J in V" has the same law
as the cluster of ¢ when opening each vertex z of T' independently with probability
exp(—uér(z)). Moreover, ér(x) is equal to the function fy(z) from [Tei09, (5.1)],
and [Tei09, Theorem 5.1] follows readily after rerooting.

Similarly to [Tei09], this can be used to prove the P¢WV-a.s. inequality u(7) > 0,
where u, (7)) is the critical parameter associated to the percolation of V* under IP’7R—I.
Indeed, this follows from the following facts:

e the inequality é7(7) < A\p < Ap - + Ay 1 Lzzg), and

e the fact that the cluster of ¢J for Bernoulli percolation on 7 with parameter
6*2“01{,\m7+<o}, x € T, is a Galton-Watson tree since A\, 1, x € T, are i.i.d.
random variables, which is supercritical for first choosing C' large enough and
then v > 0 small enough.
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Note that the inequality u(7) > 0 can also be seen as a consequence of Theo-
rem II.1.1 as noted below (II.1.6). One can furthermore also similarly prove that
V* N By, — see (I1.1.5) for notation — percolates for « > 0 small enough and p € (0, 1)
large enough, since it is minorized by Bernoulli percolation on 7 with parameter
pe‘2ucl{)\z c<cH TET.

Remark I1.2.4. Note that the trace random walk on 7 of the random walk on T
is a random walk on 7%, as follows from instance from [Szn12b, Proposition 1.11].
Therefore, as in [AS18, (1.30), (1.31)], the restriction of ¢ to 7% has the same law
as the Gaussian free field on 7%, and so the critical parameters for level set per-
colation of the Gaussian free field on 7 and 7% coincide — note that this remains
true in the case of weighted trees. In particular, one can substitute v by v* when
proving Theorem II.1.1. Moreover, one can easily prove that Z% n T — where Z%
is the random interlacements set on 7 — has the same law as the random interlace-
ments set on the graph 7% (note to this effect that A\, PT(A, Hx = o0) is equal
to D e7e )\x,yPyT(A,HK = o0) for each z € K in (I1.2.14)), and thus one can also
substitute v by v* when proving Theorems I1.1.2 and 11.1.3.

I1.2.5 An isomorphism theorem

A key tool in our investigations is provided by certain Ray-Knight isomorphism the-
orems relating the Gaussian free field to random interlacements. Such results have
a long history, dating back to Dynkin’s isomorphism theorem and, less explicitly,
even earlier work by Symanzik [Sym66] as well as Brydges, Frohlich and Spencer
[BFS82]. The exact isomorphism that we are going to use here has been developed
in [Sznl12a], [Lupl6], [Szn16], and then [DPR22].

As before, we still assume some transient weighted tree T" to be given. Recalling
the definition below (II.2.15) of the random interlacements process w, at level u, for
x €T and u > 0 let us denote by

N, (u) the sum over all equivalence classes of trajectories w*

in w, of the total number of times w* visits z.

On some possibly extended probability space, let Eg(ck), x €T and kK € N, be an

i.i.d. family of exponential random variables with parameter one, independent of
the random interlacements. The local time (¢4 4,)zer, of random interlacements at
level u can then be defined as

Na(u)
1
by = o Z for all z € T. (I1.2.19)

We can now state the isomorphism theorem; note that here and below, we use the
convention that Hg- = o0 holds PI'-almost surely for any tree 7' and z € 7.
Proposition 11.2.5. Assume that T is a transient tree verifying that for all x € T,

capr({Xi,ieN}) = PI(.|H,- = ©)-a.s. (I1.2.20)

Then for each u > 0, there exists a coupling Q% of two Gaussian free fields ¢ and
v on T, a random interlacements process w, on T at level u, and i.i.d. exponential
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random vartables &Ek), x €T and k € N, with parameter one such that o, &Y and

wy are independent, and Q%-a.s.,

Yo = N2t Ups + 2 forallzeT", (1.2.21)

where Uy 4, is defined as in (11.2.19) and Z" as below (I11.2.15).

Proof. The isomorphism theorem on the so-called cable system, see [Lupl6, Propo-
sition 6.3] or [Sznl2a, (0.4)] on general graphs, states that

Yz + V2u| = \/m forall z e T. (I1.2.22)

Here, T denotes the cable system associated to T, and 7, » and Eu correspond to
Gaussian free fields and local times of random interlacements on 1. We restrain
from introducing the cable system T in this article, as this metric structure will
be only used in this proof; see [Lupl6] for references. We only note that 7' < T,
and that the restrictions ~, ¢ and £., of ¥, ¢ and Zu to T have the same laws as
the corresponding fields from Proposition 11.2.5. In order to deduce (I1.2.21) from
(I1.2.22), we note that

each trajectory w* of w, is either included in a connected component of
(zeT: %, >—V2u}orof {zeT:%, <—\2u},

which is a simple consequence of [DPR22, (3.19)]. Moreover, by [DPR22, Theo-
rem 1.1, (1)] and symmetry it holds that

(I1.2.23)

all the connected components of {x eT: Yo < —\/@} have finite capacity.
(11.2.24)
Under hypothesis (I1.2.20), for each trajectory w* of w,, it follows from Theo-
rem 11.2.2 that the capacity of w* is PRl-a.s. infinite, and thus by (I1.2.23) and
(I1.2.24), w* must be included in {x € T : v, > —v/2u}. The identity (I1.2.21) then
follows readily from (I1.2.22). O

Actually Proposition I1.2.5 remains true on any locally finite graph, but we will
only need it on trees in this paper. We will prove that the hypothesis (I1.2.20)
holds when T = T is the Galton—Watson tree introduced in Section II[.2.1, see
Proposition I1.5.8. Therefore, in our context, Proposition 11.2.5 will readily imply
the inclusion (I1.1.8) (defining E>V2u therein as the level sets of the field 7v), which
is the first step in the proof of Theorem II.1.1 as explained in Section I1.1.2.

Remark II.2.6. Following the proof of [AS18, Proposition 5.2], one can easily
show that a version of the isomorphism (I1.2.21) holds on Galton-Watson trees
with unitary conductances and finite mean offspring distribution m. They prove
this isomorphism using conditions different from (I1.2.20), namely that the sign
clusters of the Gaussian free field on the cable system are bounded and a certain
boundedness condition of the Green function; in view of [DPR22, Theorem 1.1,
(2)], the boundedness of the sign clusters is actually sufficient. It turns out that
in the context of random conductances (and in particular, if the mean offspring
distribution m is infinite or if (A\;y)z~ye7 are not i.i.d. conductances conditionally
on the non-weighted graph 7), it will be easier to deduce the isomorphism (I1.2.21)
from condition (I1.2.20) instead. Indeed, we will prove that condition (I1.2.20) holds
in Proposition 11.5.8 using tools very similar to the proof Theorem I1.1.2.
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I1.3 Warm up: a first proof in an easier setting

In this section we give a simple proof of the inequality h.(7) > 0 under the stronger
assumption that m > 2. Note that this is also proved via different means in the
setting of Galton-Watson trees with unit weights in [AS18]. The proof in [AS18]
could be adapted to the setting of random weights, but it is currently not clear to us
how to adapt it to the setting m € (1, 2]. Moreover, we believe that our proof in this
section for m > 2 is simpler, and at the same time it exhibits the difficulties that are
showing up when proving Theorem II.1.1 for the case m € (1,2]. What is more, our
proof will also provide us with an example of a weighted Galton—-Watson tree where
hy = 0, see (I1.3.4), showing that the phase transition is not always non-trivial in
our context.

In order to introduce our setup, we consider the weighted Galton—Watson tree
T < X from Subsection I1.2.1. Recall that the law of the weights below each vertex
is a probability measure v on [0, 0)Y, and these weights are chosen independently for
different vertices, and that the function 7((\;)ien) denotes the number of offspring,
with mean m, see (I1.2.4) and (I1.2.5). Contrary to the rest of this article, in this
section we do not make the usual assumption (II.2.3) on the weights A, but keep the
assumption m > 1. In the following, by F' we denote the cumulative distribution
function of a standard normal variable.

Proposition I1.3.1. For all h = 0 such that there exists M > 0 with
EY [m((Ai)ien) gy n<any | F(=hV2M) > 1, (11.3.1)
we have hy = h.

Proof. In this proof, we use the construction of the Gaussian free field as in [ACQOa,
Section 2.1] through independent standard normal variables, extended to our case
of non-regular trees. Let (Z,)zex be a family of independent standard normal
variables under P. Then, conditionally on the realization of the tree 7T, define

vz :=/g" (&, ) Zy and, recursively in the distance from the root, we set

¢ 1= D] (H,- < 00)p,— + /9T (2,7)Zs.

Using the Markov property (I1.2.11) with U = 7., one can check that the field
(pz)ze7 defined this way has the law of a Gaussian free field on 7. Moreover, using
the bound 977; (x,z) = i, conditioned on the realization of the weighted tree 7, the
previous display then entails the implication

{Zs > hn/ A, o > h} = {@z > h}, (I1.3.2)

with the convention ¢,- > h a.s. if x = .
We define now the random set S(h, M) < T as

S(h, M) :={@} v {z e T\{@}: Z,- > WV2M, A, . < M},

Note that on the event x € 7T, the mean number of children the vertex x has in
S(h, M) satisfies

ECV @ B[|GE"M)| |z e T] = ESW [w(()\x,m)ieN)1{>\w,+<M}P(Zx > hV2M) |z e T]

= BY[7((M)ien) Ly, x| F(—=hV2M).
(I1.3.3)
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Moreover, for each z € T, the number of children of x in S(h, M) only depends
on (Aggi)ien and Z,, which are independent in x. Therefore, the connected com-
ponent of ¢ in S(h, M) has the law of a Galton—-Watson tree with mean given by
(I1.3.3). Due to assumption (I1.3.1), this mean is strictly larger than one and thus
this Galton—Watson tree has a positive probability to be infinite. Finally, it follows
easily from (I1.3.2) and the inequality A\, < Az 4 + A,- 4 that ¢,— > h for each
x # & in the connected component of J in S(h, M), and we can conclude. O

Let us now present two interesting assumptions on the mean offspring m and on
the distribution of the weights (\;);en, under which (I1.3.3) is satisfied.

o Assumem > 2. We can find some M > 0 such that E,, [ﬂ-(()\i)iEN)l{ZieN AisM}] >
2 since the left hand side converges to m as M — o0, and then a positive level

h such that F(—h+/2M) is close enough to 3, so that (I1.3.3) is bigger than 1,
providing us with A, > 0.

e Let N be a random variable taking values in N with infinite mean under v.
Define (\;)ien via A; = 1/N for all i < N and A\; = 0 for all ¢ > N. Then
YienAi = 1 and m = co. Hence for each h > 0 since F(—h+/2) > 0 we have
that the left-hand side of (II.3.1) is infinite for M = 1, that is

hy = 0. (11.3.4)

Note that we have not taken advantage of the assumption (II1.1.2) in this section;
as a consequence, the inequality hy > 0 from Theorem II.1.1 holds when m > 2 even
without this assumption. It is not clear whether this assumption is necessary when
m e (1,2].

II.4 A simultaneous exploration of the tree via random
interlacements

In this section we introduce an explorative construction procedure for supercriti-
cal Galton—Watson trees via random interlacements, which is tailor-made for our
purposes. To the best of our knowledge, previous approaches to problems related
to random interlacements on random graphs generated the random interlacements
process only after having complete information on the realization of the graph. In
our setting, however — in order to gain a better control on both, the Gaussian free
field and the local times of random interlacements — we generate the underlying
graph T and the random interlacements process simultaneously. In some sense, this
construction provides us with independence properties that will turn out useful in
creating coarse-grained “good” parts of the interlacements set and the level sets of
an independent Gaussian free field.

In particular, in Subsection [1.4.1 we will first construct a “single small piece”
of the tree. This piece will consist of the trace of a finite random walk trajectory
exploring the Galton—Watson tree at each vertex visited by the walk. We will call
a piece of the tree constructed in this way a watershed. Repeating this procedure
iteratively for boundary vertices of previously constructed watersheds, in Subsec-
tion 11.4.2 we will then patch together all watersheds constructed in this way, as
well as some remaining ends; the resulting object will be denoted by TW. It turns
out that 7Y will be a tree with the following properties: it is a weighted Galton—
Watson tree, and the random walk trajectories used to construct its watersheds can
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be interpreted as part of a random interlacements process on 7 V. This last property
will be shown in Subsection 11.4.3 with the help of Theorem 11.2.2.

I1.4.1 Watersheds

We now introduce the notion of a watershed starting at a vertex x € X\{J}, with
parameters L € N, L > 2, and & € [0,00), on which all the objects constructed in
this subsection will depend implicitly (the case x = J is excluded for technical
reasons). A watershed will form a finite subtree of a Galton-Watson tree, and it
will be constructed as the trace of a random walk that is visiting vertices starting at
the root x of a subtree of X', until — if successful — at least L vertices of the subtree
are explored in a suitable way. The parameter s will represent the conductance of
the edge between x and x—, which is thus fixed. In order to facilitate readability,
we will denote objects pertaining to watersheds by boldface letters throughout.
The watershed will be defined by means of a sequence of triplets

(Thy (Ny2)y~zy, 2Ty > Xk ) keNo
such that, for each k € Ny, we have that
e T, — X is connected,
e the A, ; € (0,00) are (symmetric) weights on the edges {y, z} of T}, and
e X, is a random variable with X; € T}.

In order to construct this sequence, we first fix

(Agk))ieN, k € Ng, an i.i.d. family of random variables with common law v,

(I1.4.1)

and proceed by induction. We start with T as being characterized uniquely by the
specification of its vertex set {x~,x} (mind that z~ is well-defined as we assumed
r # (J), as well as the conductance A, - , := x and the almost sure equality Xg := .
We first define the the triplet (T4, (Ay2)y~z,y,2eT; » Xk) until some stopping time
V1(X), that we will define in (I1.4.3), and thus assume that this triplet is given for
some non-negative integer k < V7,(X). Recalling the definition below (I1.2.1) of the
boundary 07 for a tree T, we then define (Ty41, (Ay,2)y~z,y,2€T), 1> Xk+1) as follows:

e if X} € 0Ty, we proceed as follows. Let Ny := [{Xo, ..., X}|, and construct
the offspring of X, via ANE) More precisely, in Ulam-Harris notation, define
T1 as the union of Ty with the set of offspring of Xy, that is with {Xi,1 <
i < ﬂ((AEN’“))EN)}, so T41 again is a tree. By definition, the number of
offspring of Xy in Ty has distribution p. Furthermore, the weights A on
Ty,.q1 are the same as on Ty, where in addition we now attribute weights
AX, X,i 1= )\EN’“) for 1 <i < ﬂ((AENk))ieN) to the edges which are contained
in Tg,q1 but not in Tkg.

o if X; ¢ 0T, then we set Ty, 1 := Tk, and the weights A on Ty, 1 are the same
as on TYy.

In both of the above cases, in order to construct X1, we consider a random
walk transition of Xj on Tj1; hence, independently of everything else, we define
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the random variable X1 as a neighbor of Xy in Ty, which is equal to y ~ X,
y € Tj41, with probability Ax, ,/Ax,, where Ax, is a normalizing constant defined
similarly to (I1.2.8). Note that, as long as =~ is not reached by X, the event {Xj €
0Ty} above corresponds to the event {Xj ¢ {Xo,..., Xg_1}}-

We iterate the above procedure in k until reaching the stopping time ‘N/L(X) that
we are about to define. For this purpose, set H,—(X) to be the first hitting time of
x~ by X, defined similarly as in (I1.2.9), and

Vi o= Vi(X) :=inf{k > 0: [{Xo,...,Xp}| = L} A H, (X) (IL4.2)

the first time at which the random walk X has visited L different vertices, or z~ is
hit. Then let

VL = VL(X) =

RN {inf {n=Vvp: X, =Xy } i Vi(X) < H,- (X), (14.3)
H,-(X) if Vi.(X) = H,-(X),

where we always use the convention inf &5 = 0. In words, V7, (X) is the first time the
parent of Xy, is visited if H,- > Vr,, and otherwise it equals H,-. That is, we stop
our recursive construction the first time either x~ is visited by X, or X has visited
L vertices at time V7, and then X‘_/L is hit. Note that it is possible that neither ™,

nor X(/L after time Vp, are visited, and in this case V; = o0, i.e., we continue our

recursive construction indefinitely. Otherwise, we stop the recursion at time YN/L, and
for each k = Vi, we define (Tk, ()\y,z)y~z,y,zeTk7Xk) = (T‘N/L’ (Ay,z)y~z,y,z€T‘~/ ’X‘N/L)‘
We also abbreviate (T, A, X) := (Tg, (Ay2)y~zy,2eTys Xk )keN,- Lhis concludes the
recursive construction of this triplet.

The process (T, A, X) is called watershed process, and we denote by

%L the law of the watershed process (T, X, X) (I1.4.4)

starting at = € X\{J}, with parameters L € N and « > 0. Similarly to the above, if
we replace the evolving state space of X by a fixed tree T, under the law P! of the
simple random walk X from (IL.2.7), we define V;, = V;(X) similarly as in (11.4.3).
In the following proposition, we explain how the process (T, A, X) can be considered
a random walk exploration of the initial Galton—Watson tree 7 from Section I1.2.1.

Proposition I1.4.1. For allxz € X\{J}, K > 0, and L € N, the process (T, X, X) un-
der Q%Y has the same law as (T (Ay,z)y’zen)i% s X ni, JheNy  under

k/\\7L7
EGW[PJ:T() ‘ Am,x* =K, T € 7_], where:

e conditionally on (T, (Nyz)y,.cT), the process (Xy) is the random walk on T
defined in Subsection I1.2.35.

o forkeN, the set T\ :={z€T : z~ X, for some i <k — 1} is the subset of
T adjacent to the trace of {X1,..., Xp_1}.

Proof. At time k, for 1 < k < TN/L, we sample the offspring of X _; independently of
everything else via their conductances according to v if it is the first time X;_; was
visited by X; therefore, T}, is a Galton—Watson tree restricted to the offspring of the
vertices explored by X before time k& — 1, union with the edge Ty = {z~,z}. After
time V7, (if it is finite), T stays constant equal to Tf/L’ and X, constant equal to
XVL'
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Similarly, when X at time 1 < k < Vi performs a jump, the offspring of the point
X1 has already been generated according to v, either at step k or in a preceding
step, and then X;_1 jumps to X with the probability

AX) 1 Xy,

)

}‘Xk—1

which is analogous to (I1.2.7). Hence both X and X behave like a random walk
on their respective trees until time ‘N/L, and ‘~/L corresponds for both walks to the
first time either ™ is hit, or L different vertices have been visited by the walk, and
then, denoting by y the last of these L vertices, y~ has been hit. One can easily
conclude. O

Let us finish this section with an observation which will be essential in the proof
of Lemma I1.5.3 below. For this purpose, first define under QQ’L the watershed W
as the path of X until V;, — 1, that is

W = {Xp,..., Xy, _1}. (11.4.5)
Using the convention A, ,; = 0 if yi ¢ T, by (I1.4.2), (I1.4.3) and the construction of
the weights A, ., y ~ z € T}, we have under ngL that
(Avai)ien = AM)iew, and if V;(X) < H,—(X), then
{Oyyidien : ye Wz} = {AM)ien: ke {2,..., L —1}},
which follows simply from the fact that the conductances (Ayyi)ien are equal to

A¥)),e if y is the k-th vertex visited by X.

7

(11.4.6)

I1.4.2 Patching together watersheds

In the previous subsection we explained how to construct a watershed process
(T, A, X) starting at an arbitrary vertex. We will now iteratively patch together
watersheds at the endpoints of previously generated watersheds. The union 7V of
such watersheds will already constitute a transient subset of the random interlace-
ments set on the Galton-Watson tree. Embellishing 7V with some further “ends”
will yield a tree 7W which has the law of the weighted Galton-Watson tree we are
interested in.

We will now give an informal description of this procedure and provide mathe-
matical details below. To patch the watersheds together, we will introduce another
tree F), the tree of free points. This tree encodes the points at which watersheds will
be patched together in the construction outlined above, i.e. F'is a tree in X and, at
the same time, to each free point a € F' we associate another point @ € X — which
will turn out to also be an element of the tree TW to be constructed — at which
we will start a new watershed. Patching up the watersheds through their vertices
corresponding to free points, we will then be able to construct inductively the tree
TW. We refer to Figure II.1 for an illustration.

We will define the weighted tree F' with weights denoted by /\f wr a~a €F,
through a recursively defined sequence (Fj) of weighted trees, such that to each
a € Fj_1 we associate a watershed (T?, A% X) starting in @ as defined in the last
subsection, and to each vertex a € F), we associate another vertex a € X.

As explained above, this construction of F' as well as the corresponding water-
sheds, will depend on a parameter L € N, that we fix for the rest of this section. We
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The tree TV The tree F' of free points

@]
@] (€] (¢] (] (]
1 2 3 4 5
o o
11 111121 112111 131111 132211 11 12 31 51

Figure II.1: (A finite subset of) the tree 7V, on the left, has some highlighted
vertices, denoted by a coding @, at which a new watershed is generated. Those points
correspond to points in (a finite subset of) the tree of free points F' on the right,
where they have a different coding a. For instance 72 = 132211. We highlighted with
different colors each a € F on the right and on the left the corresponding point a
and the path on 7V visited by the random walk X@, which generates the watershed
below a. On the right, the points 5 and 6 are part of the tree of free points, but the
corresponding vertices 5 and 6 do not appear yet on the left since they are below
the 6th generation.

denote by PEV the probability measure under which these objects are constructed.
For technical reasons, we will start the first watershed in the point 1 instead of (7.

First set F_1 := J, Fy := {J} take @ = 1, and generate some weights (Agi)ieN
with law v. Now assume Fj_q1 and Fj are given for some k € Ny, and that each
point a € F}y is associated to a point a € X. We define Fj, as follows. For each
a € Fy\Fj_1, we generate

F

AL
an independent watershed (T, A%, X®) with law Q. (I1.4.7)

as defined in (I1.4.4). Note that ¢~ is not well-defined, but for a = ¢ we will take
the convention

A=A (I1.4.8)

The watershed (T%, A% X%) will be used to encode the set of free points via the
following set

S := (0T, )\{X7, }; (I1.4.9)

in other words, apart from X“L, the set §, corresponds to the vertices on the bound-
ary of the tree T® once the walk has either visited L vertices or hit a~. The vertex
XY, 1s excluded from this set since, by definition of Vz, the first generation of the
tree below X{, has already been explored by T“. Equivalently, the points in §,
are vertices not visited by the random walk X%, 1 < k < Vi, but adjacent to its
trace, and which have thus already been generated during the construction of the
watershed. We will then generate new watersheds from the vertices in §,. We can
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now define the next generation of the tree of free points

[3a

!
Fep=Foo () (J{a (I1.4.10)

aeFp\Fy, 1 1=2

In other words, the sets of points Fg, a € kak_l, are used to build the (k + 1)-st
level of the tree of free points, and we define ai as the i-th element (in lexicographic
order) of §, for each 1 < i < |§4|. Note that the union over i starts at 2 for
technical reasons, cf. property ii) in Definition I1.5.1, and the explanation in the
second paragraph thereafter. In particular, al is well-defined but not part of the
tree F, for instance 1 = 1111 in Figure I1.1.

We moreover define the conductance of the edge above the vertex ai for Fjq as

Y (I1.4.11)

whereas the conductances on Fy < Fj.q stay the same as before. This concludes
the inductive definition of the sequence (F}), and the tree of free points is simply
defined via
F = U F, (I1.4.12)
keNg

endowed with the same conductances as the F}, k € Ng.

Let us now explain how to construct a Galton—Watson tree by gluing together
the watersheds (T%, A%, X?), a € F. We first set

TV = {2 n () e o U T (I1.4.13)

aeF

in other words, 7V consists of a first generation with weights ()\%Vj)jeN, and the

union of the watersheds T¢, a € I; note that the root J belongs to T by (I11.4.7)
and the convention @ = 1, cf. (I1.4.8) also, and in particular ¢ € 7W. One can
view TW as a tree in X', and we endow each of its edges {z,y} such that x,y € T®
for some a € F with the conductance Az . Note that each edge {r,y} of TW is

also an edge of T? for some a € F, and in fact, for each a € F, T% and T® have
exactly one edge in common: {a~,a}. Moreover, in view of (I1.4.7) and (I1.4.11),
a

6-a = )\f 0= )\g;a, hence the conductances of the tree 7V are uniquely defined.

Observe that the tree 7V is not yet a Galton-Watson tree with the desired
offspring distribution since for some vertices z € TV we did not construct their
descendants: this is the case if z = al for some a € F (see (I1.4.10)), or if = is in the
boundary of T%L\T%/L (since no vertices correspond to free points in this part of the
watershed). Therefore, we now add some ends to those points in order to complete
the construction of the Galton—Watson tree. More precisely, define independently
of everything else

an independent family of Galton—Watson trees (77)zex,

11.4.14
each 7% with the same law as z - 7 under PEW. ( )

In other words, 7% is a Galton-Watson tree rooted at x. We now define 7% as the
weighted tree obtained from the union of 7.V with the 7%, z € 07V, endowed with
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their respective conductances, and we denote by AW the conductances on TW. We
then have that for all L € N,

TW has the same law under PY as the Galton-Watson tree 7 under PSW;

(I1.4.15)
indeed, it follows from Proposition 11.4.1 and (I1.4.7) that, conditionally on T,
a' € Fj_q, a single watershed T%, a € F}\Fj_1, has the same law as a Galton—
Watson tree restricted to this watershed, conditionally on )\‘a‘,ya = Af —a Since
)\5,7(1 = Aj- 4(= A3- ;) by (IL4.7) and (IL4.11) we obtain that the conductances
between each vertex € TW\0T W and its offspring are distributed independently
according to v. Note that, for each z € TV, the subtree T,V := (TW), equals T
with the desired offspring distribution by definition in (I1.4.14) and below, and we
conclude that (I1.4.15) holds true.

I1.4.3 Watersheds and random interlacements

In the previous subsections, we generated simultaneously the Galton—Watson tree
and random walks on it through the structure of watersheds. The next goal now
is to interpret these random walks as a part of a random interlacements process,
which will essentially follow from Theorem I1.2.2 and some additional conditions as
in (I1.4.18). Under some probability measure ]P’g, u >0, let

(T'z)zex be an ii.d. family of Poi(u%) random variables. (I1.4.16)

We denote by P%/ﬁ the product measure PE/ ® Pg, under which the tree 7W and
the Poisson random variables (I';),ex are independent. Furthermore, for a € F let

W= {X} : ke{0,..., V(X)) —1}}. (11.4.17)
Recall the definition of ex 7 from (I1.2.12).

Proposition 11.4.2. Let w,u > 0 and L € N. On some extension of the probability
space corresponding to P?fa, one can couple TV defined in (11.4.15) and a set T*
in such a way that conditionally on TW, the set T" is an interlacements set at level
uwon TW, and for all a € F, if

~

u

I'; =1, VL(XG) =, and U= ————+,
ey, (@)

(I1.4.18)

where Taw is the subtree of TV below @, then
We < 7%

Proof. Conditionally on TVZ, for each a € F, define Xa as a process on T W such
that X, = X¢ for 0 < k < V7,(X%), and such that, if V,(X®) < oo, the process X},
k> Vi (X%), is a random walk on 7W starting in X (Xa)° On some extension of the
L
probability space corresponding to sza, conditionally on TW, start independently
from each z € TW i.i.d. random walks X% i > 2, each with law PZ—W( | Hy- = 0),
with the convention Hg- = c0. Moreover, take X#l = X if = g for some a € F
and H;— (X") = o0, and otherwise let X*! be some other independent walk with law

PT W( -| H,— = o0). Taking advantage of the thinning property for Poisson random
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variables and Proposition II.4.1, one can easily prove that, conditionally on TW
and for each a € F, the probability P} (I'z > 1, H- (X*) = o) is smaller than or
equal to the probability that a Poi(ﬁPg— W (H;- = o0))-distributed random variable
is larger or equal to one. Noting that V7 (X®) = oo implies H;-(X") = oo, and
taking advantage of the equality

~y (11.2.12) W
eay (@) = MY P, (Hy = o)
(11.2.16) érw(a)

W PTY(H; =0, H, =0 :
a a ( a a ) Pgw(Ha—ZW)

one can construct conditionally on 7W for each € TW a Poisson random variable
I'". with parameter uéyw (z) such that for each a € F, the properties in (II.4.18)
already entail that I'; > 1.

Moreover, conditionally on 7V, introduce Y“, 1 = 1, as doubly infinite ran-
dom walk trajectories on 7Y, whose forward part is defined to be X** and whose
backward part is an independent random walk with law P7 " (-| H,- = o0, H, = o)

for each € TW. By Proposition 11.4.1, conditionally on 7%, the process X" has
_TW
law QZ for each i > 1, see (I1.2.17). We can now define Z* as the set of vertices

visited by any of the trajectories YW, ie{l,...,I"} and x € TW, which has the
same law conditionally on 7W as under IP’?_IW by Theorem I1.2.2. Since (I1.4.18) im-

plies I > 1 and XZ’I = X, for each k € Ng, we can easily conclude by the definition
(I1.4.17) of W*.
O

I1.5 Percolation of the level set

In this section we prove Theorems I1.1.1 and I1.1.2. We first define a set of “good”
properties, see Definition I1.5.1 below, which can be satisfied by a vertex a in the
tree of free points F, as defined in Section 11.4.2. We will show in Lemma I1.5.3
that a is good with not too small probability. Our notion of goodness is chosen so
that on the one hand, the watershed associated to each good free point is included
in the interlacements set Z% from Proposition I1.4.2, see Proposition 11.5.5, and also
included in the set A, from (II.1.9) with high probability, see Proposition I1.5.7;
on the other hand, it also ensures that the tree of good free points survives, see
Proposition I1.5.5. We refer to the discussion below Definition I1.5.1 for more details.
This readily yields the percolation of the set A, n Z"%, and an application of the
inclusion (II.1.8), which follows from Proposition I1.2.5 and Proposition I1.5.8 below,
completes the proof of Theorems II.1.1 and II.1.2.

Let us now define the properties which make a free point good. For this purpose,
recall the watershed (T, A%, X?) from (I1.4.7), where a € F, with F the tree of free
points defined in (I1.4.12). We recall that in this watershed, X is a random walk
stopped at time V7, (X%), see (11.4.3), and for K < T* we denote by Hp (X®) the
hitting time of K for this stopped random walk similarly to (I1.2.9). Recall also the
definition of the set W from (I1.4.17) and of the Poisson random variable I'; from
(I1.4.16). Also recall that when x € 0T, the tree 7%, see (I1.4.14), is equal to the
Galton-Watson tree below z in 7 V. Finally, recall that for a set A = X, by G4 we
denote the set of children of z in A, see (I1.2.2), and for a transient tree T, by g7
we denote the Green function on T, see below (I1.2.10).
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Definition IL5.1. Let u, B, cy, Cp, C4 be positive real numbers, L € N and
cy € (0,1]. Under PK&: we say that a € F' is (L, B, cy, Cy, Cy, ¢f)-good if the cor-
responding watershed (T? A% X%), the weighted tree T and the Poisson random
variable I'; satisfy the following properties:

i) The Poisson variable I'; satisfies I' > 1.

ii) The watershed satisfies
G2 =2, Al > cx and (A5 1 < Ch, (I1.5.1)
and the weighted tree 7% satisfies

g™ (a1,a1) < C,. (IL5.2)
iii) The trajectory X® satisfies
H- a1y(X%) = V1.(X%) = .
iv) The set of children of the vertex a in the tree of free points F' satisfies

[{d" € GE. )\57@/ < Cp}| = ¢ L.

v) The conductances A* on W? satisfy

LY i<n (I15.3)
L> yeWe

We now explain how the good properties defined above can be combined in order
to deduce the percolation of A, N Z%, see (I1.1.9). The first three properties imply
that the conditions in (I1.4.18) are verified, see the proof of Proposition I1.5.6, and
S0, in view of Proposition 11.4.2, the set W% of the watershed associated to a good
free point a € F' is included in the coupled interlacements set Z“. More precisely,
property i) implies the first condition in (I1.4.18); property ii) will imply a lower
bound on CayTW (@), and thus that the third assumption in (II.4.18) is satisfied for
u of the same order as w, see (I[.5.19); and property iii) implies that the second
condition in (II.4.18) is satisfied. Property iv) ensures the creation of many new
free points with bounded conductances to their parent, which will imply — using
Lemma I1.5.4 below — that the tree of good free points contains a d-ary tree for
arbitrarily large d, see Proposition I1.5.5. Finally, using (I1.5.25), property v) will
provide us with a good bound on the probability that W® < A,. Combining these
five properties we will thus obtain percolation of the free points a € F' such that
W® < A, nZI"*, and thus percolation of A, nZ", see Proposition 11.5.7.

One of the main difficulties in the previous steps is to understand how property
ii) in our notion of goodness is used to bound the equilibrium measure e (@}, 7V (@)
from below, which implies that we can find @ and u of the same order verifying the
third assumption (I1.4.18), and, consequently, that there is a random interlacements
trajectory starting in @ when a is good. When/&i is not visited by X%, which is
the case when a is good by property iii), then (al) = @l, so no new watershed is
generated starting from al in view of (I1.4.10), and thus al € 07 WV. Therefore, by
the construction of the tree TW above (I1.4.15), we obtain that if a is good, then
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T is the tree below al in TW. The bound on the Green function on 7%! combined
with (II.5.1) in property ii) will then imply the desired lower bound on e (@) T (@),
see (I1.5.22) for details. In other words, the reason we excluded al from the tree of
free points in (I1.4.10) is to make sure that 7% is the tree below al in TW, and
thus that we can use the independent tree 72! to bound e (@ TV (@) without using

any information on the other watersheds in TW.

We now provide lower bounds on the probabilities of the previous properties
in the following lemma. Note that in items ii) to v) below we do not consider
exactly the same kind of events as in Definition I1.5.1; they do, however, present
the advantage of having more independence and we will show in Lemma I1.5.3 (see
for instance (I1.5.9)) that the probabilities of the events from Definition I1.5.1 are
larger than those of the events from Lemma I1.5.2. Recall that (I';).cx are Poisson
random variables with parameter & under of PL, see (I1.4.16), that (););>0 under v
represents the law of the weights below any vertex, and that Qg’L denotes the law
of the watershed introduced in Section I1.4.1, see (I1.4.4). Recall also the definition
of the (interior) boundary 0A of a set A < X from the paragraph below (I1.2.1),
and to simplify notation for B < A we will write 0A\B for (0A) n B€.

Lemma I1.5.2. There exist positive constants cx,Ca,Cy,cy,cs € (0,00) such that
for each € € (0,1) and B > 0, there exists Lo = Lo(B,e) € N such that for all
e X\{&}, L = Lo, k < Cyp and u > 0, the following properties hold true:

i) PL(Ty > 1) = 1 — exp(—1),
M’) V<7T((>\i)i€N) = 2>)\1 > C)\7)\2 > Cx, >‘+ < CA) = %(1 - M(l)))

PGW(gxl’T(xl,xl) <Cy) = %,

GW C)\)\:UZ,a:?l T (17 _ _ A > —
m) E [QC'A(QCA n /\z2,+)Px21(VL_2 Hyo = 0) ’x €T, T((Azzi)ien) = 2]

w) Q (Hy € Ty, \{z1,Xv, }: Ay~ < Ca}| < erL, Vi(X) = oo) <e,
U)Q < 3 SZB,VL(X)—OO><5
Lz yeW

Proof. i) This is immediate from the definition in (I1.4.16).

ii) First note that v(m((Ai)ien) = 2) = 1 — pu(1) by definition (I1.2.4) of p in
combination with our assumption (SA) in Subsection I1.2.2. Moreover, T is
PGW_a.s. transient due to Proposition I1.2.1. Therefore, the Green function
gV 7 (x1, x1) associated to the tree T rooted at x1 is P¢W-a.s. finite, and its law
does not depend on the choice of . Since probability measures are continuous
from below, by definition of the conductances in (II.1.2) and above, one can
find a small enough positive constant ¢y as well as large enough finite constants
Cy and Cy, independent of x, such that ii) holds uniformly in = € X.

iii) Note that for each y € T\{{J}, since the subtree 7,- is a.s. transient, for
almost all realizations of 7, the probability PyT (H,- = 0) is strictly positive.
Therefore, using the strong Markov property at time Vp_s — which is finite
and larger than H,, with positive probability under ngl, see its definition in
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(I1.4.2) — and using the previous with y = Xy, ,, it follows from the definition

of Vj_s in (I1.4.3) that the variable appearing in the PSW-expectation of iii)
is a.s. positive, and we can conclude.

We will use twice the weak law of large numbers for the i.i.d. sequence of
weights (Agk))ieN, k = 2, from (I1.4.1). For this purpose, from the proof of ii)
we recall that v(7((\i)ieny) = 2) = 1—p(1) > 0. As a consequence, the sequence
of random variables [{k € {2,...,L} : W((Agk))ieN) > 2}|/L, L € N, converges
to 1 — p(1) in probability as L — oo by (II.4.1). Fixing cf € (0, (1 — p(1))/2),
we obtain for L large enough that

’;’L(|{k e {2, L—1}: m(AM)in) = 2} < 2ch) < % (IL5.4)
Similarly, fixing C large enough so that
V(Z)\Z' <Cp)>1-cp,
we have by (I1.4.1) that for L large enough
(ke -1 YA <Gl < (U-epL) <. (155)

ieN

Recalling the notation W from (I1.4.5), and that Ay 4 = >}, 5 Ay,yi» see (11.1.2),
. K,L
our goal is now to prove that, under Qg

if {ye W\{z}: Ay 1 <Cr}|=(1—cy)L

and |{y e W\{z} : |Gy *| > 2}| > 2Ley, (IL.5.6)
then Hy € 0Ty, \{z1, Xy, } : A~ < CA}‘ > ¢rL;

indeed, in view of (I1.4.6), on the event Vi (X) = oo, which implies Vi (X) <
H,-(X), we can take advantage of (I1.5.6) in order to use (I1.5.4) and (I1.5.5)

to upper bound the probability of the event appearing in iv) of Lemma I1.5.2,
and we can conclude.

To prove (I1.5.6), let us define A := {y € W\{z} : |GyTVL| > 2} the set of ver-
tices in W\{z} with at least two children in Ty, . Observe that [0Ty, \GEVL | >
|A| + 1, which can easily be proved recursively on |W| starting at [W| = 2. In
addition, for each y € 8TVL\G3VL we have y~ € W\{z} and A, ,- < A, .,
and so Ay~ = Cp for at most cyL different y € 0TVL\GEVL on the first

event of the first line of (I1.5.6). Therefore, since the second event in the first
line of (II.5.6) implies |A| > 2Lcy, we have at least c¢fL + 1 many vertices

y e dTy,\Gs '+ with A, ,— < Cy, which finishes the proof of (IL5.6).

Here we can use the Marcinkiewicz-Zygmund law of large numbers, which
states that, if (Y% )ken is a sequence of i.i.d. random variables with E[|Y;|"] < o
for some 0 < r < 1, then
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A proof of this classical result can be found in [Loe77, Section 17.4, p.254]. We

can take Yy := (3, )\Z(k))% and r = 2 since the expectation of Yk% under Q*
is then equal to E¥[);; A\;], which is finite by our assumption (II.1.2) (see also
(I1.2.3)). By (I1.4.6), this then entails that L~/ 2ye W\ {z} Yk converges a.s. to
0 as L — o0, and hence for all € € (0,1) and B > 0 there exists Ly = Lo(B,¢)
so that for all L > Ly,

L-1

1 3 B
QL <3 S (OIAM)E > 6) <e. (IL.5.7)
Lz ;=) e
Our goal is now to prove that for L > Lo(B,¢),
1 3 B 1 3
if =5 DAz < & then I D (A2 < B; (IL.5.8)
yeW yeW

indeed, in view of (I1.4.6), on the event V7 (X) = o0, we can use (IL5.8) and
then (I1.5.7) to upper bound the probability of the event appearing in v) of
Lemma I1.5.3, so that we can conclude To prove (I1.5.8), we use the bounds
(Ay)? < VB((Ay4)2+(A,, )2) for all y € W, the bound A, < A, for all
y € W\{z}, the 1nequahty )\m 2— = Kk < Ch, the fact that {y cye W\{z}} <
W, and take Lo(B,e) much larger than Cy/B%5.

O

Let us now show that the bounds obtained in Lemma I1.5.2 can be combined to
lower bound the probability that a vertex a € F' is good, see Definition I1.5.1. Recall
that PEVTL is the probability measure underlying our tree of free points constructed
in Section I1.4.2, see also below (IL.4.16).

Lemma I1.5.3. Let cy, Cp, Cy and ¢y be as in Lemma I1.5.2. There exists ¢, > 0
such that for all B > 0, there exists Lo(B) € N such that for all a € X, L > Lo(B)
and U > 0, on the event {\L' < Cp} we have

P}fj (a is (L, B,cy, Ca, Cy, cy) good’)\ ac€ F) =cp(l—e™).

a,a”’

Proof. We will check the properties of Definition I1.5.1. In the first part of the proof,
we show that the event appearing in Lemma 11.5.2 iii) implies that Definition I1.5.1
iii) is fulfilled with positive conditional probabilities under the appropriate condi-
tions. More precisely, we have for all a € F' that

: F
if )‘fi,+ < COp Ay - < Cp and )\g7a2 > c)

=~ CAAG2,a21
then PY " (Hyg- a1y = Vi = 62,8 PLY (Viy = Hay =
en I3 ( {a—,al} L OO) QCA(20A+>\QQ +) a21 ( L-2 2 )
(IL5.9)
indeed, under the conditions from (IL.5.9), noting that Af ;. = AP by (I14.11),

and thus Af < 2C), we have that

a a
Ad a2)‘a2 ,a21 CAAG2 ,a21

Xo =a21 > .
( 2T )= Ai(AG a2 T AG2y)  2C0(2CA + AGs 1)

Therefore, (I1.5.9) follows easily by using the Markov property at time 2, noting
that, under PaTW and on the event {Xy = @21}, in view of (I1.4.2) and (I1.4.3), we
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have Vi_o((Xp+2)r=0) = VL((Xk)r=0). Furthermore, if @2 is never visited after time
2, then al and @~ are never visited by X. Moreover, note that the random variable
on the right-hand side of the inequality of the second line of (I1.5.9) is independent
of 741 T, (AG ai)ien and )\ia_. Combining Proposition I1.4.1, (I1.4.7), Lemma I1.5.2
iii) and (I1.5.9), we thus have on the intersection of the events {A§ ;5 > ca}, {A§ , <

CA} and {)\fa, < CA}, that

P (H{af,m}(Xa) =V (X?) = i (M g)ien, T A ae F) > cy
(I1.5.10)

In this second part of the proof, we aim at combining the estimates from
Lemma I1.5.2 in order to infer the general lower bound ¢, (1 —e~%) on the probabil-
ity for a to be good. Obtaining a lower bound on the intersection of the events i),
ii) and iii) in Definition I1.5.1 is easy by independence, Lemma 11.5.2 and (I1.5.10).
More care is required for the other properties though.

It is not difficult to combine Lemma I1.5.2 iv) and v), since the complements
of the events there happen with high probability, as we now explain. On the event
{Aia_ < Ch}, using the estimates from Lemma I1.5.2 iv), v) for ¢ = %M,
and writing them in the form of Definition I1.5.1 — see (11.4.7), (11.4.9), (IL.4.11) and
the deﬁnition of the tree of free points from (I1.4.10) and below — we thus have for
all L > , with Lo(B) = Lo(B,¢) from Lemma I1.5.2 for this choice of € that

aeGF Ay < Cal| = erL,

| Ta T g

3 ~ s aelF
2 )2 B} »Hig- a1y (X*) = Vi,(X*) = v

(IL5.11)

Here, we used that both, the event H;- 53(X%) = Vi(X%) = o0 and the events in
Definition I1.5.1 iv) and v), are (T%, A%, X*)-measurable, and thus independent of I';
and 7%, and that {a: a € GI'} = (?T%/L(Xa)\{al, X(\I/L(Xa)} when Hig- 513(X?) =
in view of (I1.4.9), (I1.4.10).
Now we can further combine (II.5.10) with the equation in the first line of ii)
of Lemma I1.5.2 (recall that the number of children |GaT(11} of @ in TY is equal to
T((A§ai)ien)). One can combine this with (I1.5.11) thanks to the dependence of
the bound (I1.5.11) on ey (1 — p(1))/2, noting also that the event in the first line
of Definition I1.5.1 ii) is independent of I'; and 7% to obtain that on the event
{)\ia, < Cp}, for all L = Ly(B) we have

HCLIGGE: )\i CAH CfL

_3 a\ 3 X
pW | LT3 3 (N)? < B, Hig-an) (X) = Vi(X) = 0, | o Apar @€ F
’ yeWa
}G;ftll‘ 2, Ada > ox AL, <Gy
S Lev(@—p())
3 2

(I1.5.12)

Finally, for the good events in i) and the second line of ii) in Definition I11.5.1,
conditionally on a € F' and )\5 o the random variables I'z and T have respective
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laws PL(T'; € -) and PSW(@1-T € -), (see, respectively, below (I1.4.16) and (11.4.14)),
and are independent. Therefore, the two estimates provided by Lemma I1.5.2 1) and
the second line of ii), yield that for all & > 0 one has

ae F) > %(1 ~exp(—7).  (IL5.13)

a,a”’

PY; (Ta > 1,97 @1,a1) < ¢, | AL

Combining (I1.5.12) and (II.5.13), we can readily conclude by taking ¢, = cy (1 —
pu(1))/12. O

We now want to show that the set of good free points introduced in Defini-
tion I1.5.1 percolates with the help of Lemma I1.5.3. This set can be interpreted as
a random subset in X, endowed with the o-algebra introduced at the end of Sec-
tion 11.2.1. Recall the definition GZ' of the number of children of z in A ¢ X from
(I1.2.2). In the following technical lemma, we say that a tree is d-ary if it contains
&5 and every vertex has exactly d children. While it seems like a standard result,
we were not able to locate it in the literature and therefore provide a proof here.

Lemma I1.5.4. There exists a function d : [0,00) — Ny such that d(t) — o as
t — oo and the following holds. Under some probability measure P, let S < X be a
random set containing & almost surely, such that for some N € N and p € [0,1], for
allve X

]P(|Gf| >N | ]{,;) = p on the event {x € S}; (I1.5.14)

here, Fr = 0(L1yesy,y € X\(x - (X\{T}))) is the o-algebra generated by the restric-
tion of S to wvertices which are not descendants of x. Then, S contains with positive
probability, depending only on p and N, a d(Np)-ary tree.

Proof. In this proof, we say that a random subset of X is a weightless Galton—
Watson tree with offspring distribution pdyx + (1 — p)dy if, after possible reordering
of the labels, this set has the same law as the tree T seen as a subset of X' (that is
removing the weights), introduced in Section I1.2.1 when the offspring distribution
p from (I1.2.4) is pdn + (1 — p)do. Note that since we discard the weights here, the
law of this tree is entirely determined by its offspring distribution.

Let us first show that we can couple S and a weightless Galton—Watson tree
with offspring distribution pdy + (1 — p)dp, such that S is included in this tree. For
this purpose, fix a sequence xg, x1, ... exhausting X and such that {xg,...,z5_1} C
(x - X)¢ for each k € Np. The result will follow once we have that, under some
probability measure Iﬁ’, there exist an i.i.d. family of Bernoulli random variables (g, ,
k € Ng with parameter p, and random sets §k, k € Np, with the following properties:
S is an increasing sequence of sets, each with the same law as Sy := {x € S :
x ~ w; for some i < k} under P, and if ¢, = 1 and zj, € Sk, then \Gif:\ > N
(in order to facilitate reading, the construction of these random variables will take
place in the last paragraph of the proof). Indeed, defining S as the union of §k,
k € Ny, one obtains that S has the same law as S under P. Furthermore, the tree T’
obtained recursively by keeping exactly N children in S of z € S each time G =1,
and keeping zero children otherwise, is then a Galton—Watson tree with offspring
distribution pdy + (1 — p)dp, which is contained in S.

In order to conclude, we still need to show that for each de Ny, there exists
t = t(d) € (0,00) such that for each p € [0,1] and N € N with pN > ¢, a weightless
Galton-Watson tree with offspring distribution péy +(1—p)do contains with positive
probability a d-ary tree, and then take d(s) := sup{d eNp: t(d) < s} for all s > 0,
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with the convention sup & = 0. This can be easily proven by noting that, if G5 is
the function from [LP16, Theorem 5.29], then G'3(0) > 0 and G3(1 —p/2) < 1 —p/2
if pN >t for some t large enough. We leave the details to the reader.

It therefore remains to construct construct the sequences §k and (g, , k € Ng. We
have xg = &, and (I1.5.14) applied to x = implies that one can indeed define a
Bernoulli random variable (g with parameter p and So such that S[) has the same law

as {reS: x~ I}, and (g = 1 implies \G®0| > N. Assume now that (;,, 1 < k—1,
and §k_1 are constructed. Let §k be the union of gk_l and some children of xj,
constructed so that, conditionally on N(Ca:,-)iskfl and §k,1, the law of §k is the same
as law of Sy conditionally on Si_1 = Si_1. Then (I1.5.14) implies that, conditionally
on ((z;)i<k—1 and gk,l, 1{’G§]§’ > N} stochastically dominates a Bernoulli random
variable with parameter p on the event {xj € §k_1}. Hence, up to extending the
probability space Iﬁ’, we can define a Bernoulli random variable (,, with parameter
p, independent of (;,, i < k — 1, and §k,1, and such that if (;, =1 and xj, € §k,1
then ]Gf’;] > N. This concludes the induction, and the proof that S contains a.s. a
weightless Galton—Watson tree with offspring distribution poyx + (1 — p)do. O

We now prove that with positive probability, the tree of (L, B, cy, Ca, Cy,cf)-
good free points contains a d-ary tree for suitable choices of the parameters. To
do so, observe that on the one hand, the probability for a free point to be good
is bounded from below due to Lemma I1.5.3. On the other hand, property iv) of
Definition I1.5.1 will let us tune the parameter L in such a way that a good free point
has many children. We will then be able to use Lemma I1.5.4 in order to conclude.

Proposition I1.5.5. Let c), Cp, Cy and ¢y be as in Lemma I11.5.2, ¢, as in
Lemma I1.5.3, and the function d as in Lemma I1.5.}. For all B > 0, there exists
Lo(B) € N such that for all L = Lo(B) and @ > 0, the set

F9:={g}u{ae F\{Z}|a™ is (L, B,c\, Ca,Cy,cy)-good and Aia_ < Ch}
(IL5.15)
contains with positive PV probability a d(Lq(%))-ary tree, where q(W) = cep(1 —

e~ ),

Proof. Let B > 0. Fix ¢y, Ca, Cy, cf, and Lo(B) as in Lemma I1.5.3, and
fix L > Lyo(B) and @ > 0. Throughout the proof we write “good” instead of
“(L, B, cy,Cp, Cy, cg)-good” to simplify notation, keeping the implicit dependence
on the parameters in mind. Let us first extend the definition of the weights A
from {{a,a”} : a € F\{J}} to {{a,a™} : a € X\{T}} by letting Aia, = 0 if
a € X\F. For each a € X\ F, we also fix arbitrarily some a € X, so that a # a for
all a # o € X. This way, we can also define (T% A% X%), a € X\F, as a family

AL
of independent watersheds with law Q.“ ** , see (I1.4.7). Note that for a ¢ F' we
never actually use the additional watershed (T%, A% X?) nor the notation a, they
are however necessary to define the following o-algebra

W = (T(Fa, Xa, ()\gﬂ)zwyeTa? (Ag}y)x~y€7~‘7‘1) for all a € X,

where A% are the weights of the tree 7@! which was defined in (I1.4.14); also recall
that X A% and \%! are random variables whose canonical o-algebras on their re-
spective state spaces have been defined at the end of Section I1.2.1. By construction,
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(T A% | X9), ’7?%1, the weight /\5_ 0= AL, see (IL4.11), as well as the event
a ) )
{ae F} = {AI" >0} are W* -measurable. Therefore, in view of Definition I1.5.1

{ae F9} e W* forallae X, (IL.5.16)

where we recall F9 from (I1.5.15), and with the convention W9~ := o({}) is
the trivial o-algebra. By (I1.4.7), a watershed depends on the previous watersheds
only through the weights Ai . that is W* and WY, d ¢ a-X, are independent
conditionally on )\5 . for all a € F\{Z}. Therefore, defining for each a € & the
o-algebra

Foi=oW " d ¢a- (X\{@)}) = oW, d ¢a-X), (IL.5.17)
we have that for all a € F,

acF), (I1.5.18)

a,a”?

PXY&(CL is good | FY) = PXV (a is good | A

with the convention /\g g = 0. Note that, in view of (IL.5.16), the o-algebra Fd
contains the o-algebra F, from Lemma I1.5.4 when S = F9. By property iv) of
Definition I1.5.1, we moreover have |GL?| = |{a' € GL : )\5 <Ch}| =cfLifae F
is good. Thus since {)\5@, < Cp} c {a € F9} € F§ by (I15.16) and (I1.5.17), w

have that on the event {a € F9},
PNA(GE | = ¢fL| F2) = P)Vi(a is good | FY) = ¢p(1 — ™),

where we used Lemma I1.5.3 and (IL.5.18) in the last inequality. Using (I1.5.17) and
Lemma I1.5.4 for S = F9, we can conclude.
O

With the help of Proposition 11.4.2, we now show that for a suitable choice of
the parameters u,u > 0, under PE/ , for each (L, B, cy, Ca, Cy, cf)-good free point
a € F, one can include the watershed W¢ in the random interlacements set Z% from
Proposition 11.4.2. For this purpose, we need to verify that all the assumptions of
(I1.4.18) are verified for good free points.

Proposition I1.5.6. Let u, B,cy,cp,Cy,cp >0, LeEN, a€ F and

C)

U = uc., where cp := —>—.
@ c c\Cy +1

(11.5.19)

Then, under the extension of the probability space P%/ﬁ from Proposition I1.4.2,
W I" for all (L, B, cy, ca, Cy, cf)-good vertices a € F. (I1.5.20)

Proof. Fix some (L, B, ¢y, ca, Cy, cy)-good vertex a € F. First note that by properties
i) and iii) of Definition I1.5.1, the first and second condition in (II.4.18) are satisfied,
and thus by Proposition 11.4.2,

W cT" once we show u > LA (I1.5.21)

e{a}’ftiw (G)

To bound the parameter ey rw(a) from below we will use property ii) of Defini-
tion I1.5.1. We use the analogy to electrical circuits, and note that by Rayleigh’s
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Monotonicity Principle [LP16, (2.5) and Sections 2.3 and 2.4], we have that
AYYA

g7 (@,a) < glan (a,a), where 7:3“1/ denotes the subtree of T,V consisting only
of a and ’7}1‘{" Moreover, using a series transformation [LP16, Subsection 2.3.I],
equations (I1.5.1) and (I1.5.2) imply that g%\f‘{ (a,a) < Cy + é since, on the event
H;1(X%) = oo which is implied by property iii) of Definition I1.5.1, 7@ is the subtree
Ta‘{V of TW below @l as explained in the second paragraph below Definition I1.5.1.
Thus, the equilibrium measure at a for ’7}LW is bounded from below by

1 C)\

. a) = > = Ce. 11.5.22
e (0= = g e (115.22)
We can conclude by combining (I1.5.19), (I1.5.21) and (I1.5.22).

O

If g(u)L is large enough, combining Propositions I1.5.5 and I1.5.6 provides us
with an infinite tree of good free points a satisfying W < Z%. Taking advantage of
property v) from Definition I1.5.1, we are now ready to prove percolation for the set
on the left-hand side of (I1.1.8). For each p € (0, 1), under some probability ]P’g, let
(€x)zex be an independent family of exponential random variables with parameter
one, and (B;)zex the independent family of Bernoulli random variables defined above
(I1.1.5). Recall that ¢ is a Gaussian free field on 7' under PG, see Section 11.2.3,
that 7" is a random interlacements set on 71" under }P’%I, see Section 11.2.4, that T
is a Galton-Watson tree under PV see Section 11.2.1, and let B, be as in (I1.1.5)
and A, as in (II.1.9).

Proposition I1.5.7. There exists ug > 0 such that for each u € (0,ug], there exists
p € (0,1) so that the set A, n By N I* contains E¢V[PH ® P$ @ IPE(')]—(I.S. an
unbounded cluster.

Proof. Under EXV [IP’,C,}.W ® IP’]];D(-)], for some L € N and % > 0, consider the event

AW .= {ac eTW: & > 4u\W or |p,| > 2\/2u} n{ze TW: B, = 1}, (IL5.23)

For a € F, we now evaluate the probability, conditioned on the value of ¢;-, that
We < AW (recall (11.4.17)). For £ and B, simple estimates for exponential and
Bernoulli variables will be sufficient, while for the Gaussian free field we take advan-
tage of the Markov property (I1.2.11) applied to the set U, := Taw. For each y € Uy,
one can decompose the field as ¢, = wyU“ + Bg“; here, wyU“ is a centered Gaussian

field, independent of ﬁg @ and ¢;-, and with variance gguw (y,y), which by (I1.2.10)
satisfies

w 1
9l (1) > 1y for all y € Us.
Y

Thus, for all y € U, we have — using the symmetry and unimodality of the distribu-
tion of 1/15 ¢ to obtain the first inequality — that

Pf(;'-w(‘@y‘ < 2\/%‘90&7) = P?—w(‘lbga +,8§[a < 2\/%‘(,0&7)

44/2
< PO (00| <2vam) < Y2 (IL5.24)

4/27r/)\1‘jv.
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Therefore, for all a € F,
P BE(W < A [ ;)
(11.5.23)
2 1T B8, = 1)(1 - Phw @By (| (el <2v2u) 0 (6, <4un)} |0 )

yeWe yeWae
> p" <1 — > PSw(leyl <2v2u| @5-)Pp (&, < 4uA;’V)>
yeWeae
I1.5.24 4y ) 2urV
T (1- g (e
27
yeWa
1
> (1- 2t ¥ o),
71'
yeWa

(11.5.25)

taking advantage of the inequality 1 —e™ < z for z > 0 in order to obtain the last
inequality.

We now fix the parameters and start with choosing cy, Cy, Cy, ¢y, ¢, > 0 as well
as Lo(B), with B to be fixed later on, as the parameters from Proposition I11.5.5,
and c. as the parameter from (I1.5.19). Finally, for u > 0 define

t(u) := uce, L(u, B) := [3(1 _Cz—uce) <?£>§—‘ v Lo(B) and p(u, B) = 9 T,
(IL.5.26)

Using the bound 1 — e™® > z/2 for z > 0 small enough, we can now find vy =
ug(ce, B) > 0 such that

L(u,B) < 1<ﬁ>§ for all u € (0, ug] (I1.5.27)
") u\32B ok o

Then for all u € (0, ug), under P}:‘?u B) ()’ for each (L(u, B), B, cx,C, Cy, cf)-good
vertex a € F, we can continue the chain of inequalities in (I1.5.25) to obtain

(11.5.25)

a uw 16 3 3
Piw @ P, ) (W = AV [¢a) > p(u, B)HP) (1 Nk PENE)
yeWa
(11.5.3) L(w.B) 16 s
>" p(u, B) (1 - =Bl (u, B))z)

(11.5.26),(I1.5.27)
=

1
1

N | =

1
3
(I1.5.28)
With our choice of parameters, see in particular (I1.5.26), we can use Proposi-
tion I1.5.5 to show that the set F'9 from (I1.5.15) contains with positive probability
a d(cqB~?%?)-ary tree that we denote by F9°, where d(cqB~?%?) will be large (cf.
(IL5.31)), and cq := cecpep(+//32)%/3/3. Conditionally on the realization of the
Galton-Watson tree 7Y, and on the event that F9° exists, we write

F9= {5} U {a e FO\{Z} : W < AXV} and

i / (I1.5.29)
FI = U(l{w(a’)‘cAuW}’a € (F\F,) u {a})
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for all a € F, where F,, the subtree below a, was defined in the paragraph below
(I1.2.2), and where we use the convention W<~ = (. Taking advantage of the
Markov property, see (I1.2.11) and below, under IF’S},W and conditionally on ¢;-, the
field ¢ wa is independent of g and Pl for all a’ € (F\F,) u {a}. Thus, for all

u € (0,up) and a € X, on the event that F90 exists and a € F9' (which implies in
particular that a is good), we have that

1 _
Prw ®P1};:(u,3)(’G5g | = d(caB*?) | I, %)
11.5.30)
(11.5.28) 1 (

=Piw ®P, 5 (Wi AV [p5-) = T

Therefore, conditionally on the realization of the Galton-Watson tree 7% and on

the event that F9Y exists, by Lemma IL1.5.4, the set F9' contains with positive

]P’gw ® ]P’E(%B)(‘|g0@)—probability (not depending on ¢g) a d(d(cqB~%/3)/4)-ary
tree. Moreover, since

d(d(caB%?)/4) — 0 as B — 0, (IL.5.31)

taking B small enough we get that, under EEV(U B).iiu) [Pg’,w ® P]];:(u’ B)( ‘| ¢z)], the
set F9' contains an infinite subtree with positive probability that we denote by d,
and which does not depend on .

Write p(u) = p(u, B) and L(u) = L(u, B) for this choice of B. For each a € F9!,
we have W% < AW ~ 7% by (I1.5.15), (I1.5.20) and (I1.5.29). Since a € W¢
and a~ € W% by construction, and so W and W? are adjacent in TV (i.e.
ming o= cwa drw (r,y) = 1) the infinite connected tree in F9' yields an in-

finite connected subset | J,cpo1 W® in TV which is included in AW n Z%. Since
(TW, AV 1) undeGrWEE;(’%)ﬁ(u)E}P%iw E)IP’E(“)(-)] has the same law as (7,4, N
By, I") under E¥Y[PF ® PF ® ]P’p(u)(‘)] by (II.1.9), (I1.4.15) and (I1.5.23),
we proved that the root is included in an unbounded connected component of
Ay N By 0 I" with positive probability.

In order to conclude, we still need to prove that percolation occurs almost surely.
The strategy will be to construct a Galton-Watson tree 72 such that there are con-
ditionally independent copies of the tree F9! from (I1.5.29) whose associated water-
sheds can all be embedded into 7. Since each of these copies of F9! is infinite with
probability at least J, at least one of them will be infinite a.s., and we can conclude.
We now explain how to do this construction in detail. Under some probability mea-
sure ]P’f, let (Zk)ren be an i.i.d. sequence of subtrees in X', with the same law as the

subtree
™ U 7@
acF: Vp,(X8)=Hgzq (X8)=00
of TW under Pz‘?u) i(uy Where TW is defined in (I1.4.13) and 7% in (I1.4.14). Since

TW is constructed by the use of watersheds, in a slight abuse of language we will also
call watersheds the respective subsets of Z, corresponding to watersheds in 7.V, if
no confusion is to arise from this. Let us now define recursively a sequence of trees
7;€Z, k € N, with 677€Z # @, a.s. as follows: first take 7,7 = Z;. Note that 0Z; # @

a.s. since either V7,(X9) = o0, and then 0Z; contains any point of 8(T@\T%(Xg)),
which is a.s. non-empty; or otherwise if V7 (X9) < o0 then ol e oz, (which does
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not always corresponds to %) 1) since we did not add the tree 79! in the definition
of Z; and 1 € 0TW by (IL4.10).

To define EZ recursively, assume that 7}5 1 is defined with 87;{ 1 # 9. Let 2,
be the first vertex in 07,7 (in lexicographic order in Ulam-Harris notation). We
then define 7;2 as the union of 7;{ , and xy, - Zy, which also verifies é’EZ #* .

Let 72 be the union of 7;€Z, k € N, and 72 be the union of 74 and some
additional independent Galton-Watson trees below each x € 074, each with the
same law as = - 7 under PSW. Then, by construction, 72 has the same law as the
usual Galton-Watson tree 7 under PSW. Define Fkgo and W¢, a € F,fo, similarly as
above (I1.5.29) and in (I1.4.17), but corresponding to Zj, which are i.i.d. copies of
F99 and W@, a e F9 in k € N. Moreover, under P? := Ef[[P’?Z ®P§<u)(-)], define
AZ similarly as in (I1.5.23), but with TW replaced by 774, and for each k € N,
take FY' = {a e F*: z,- W{ < AZ}, similarly as in (I1.5.29). Then by Markov’s
property for the Gaussian free field, conditionally on ¢, , F}/ lis independent of FY 1,
i < k, and thus for each u € (0,up) we have

PZ(|FI' = | F' i < k) = BZ[PZ(|FY = 0| wu) | 7' i < k] = 65 (11.5.32)

here, the last inequality follows from the fact that, for each a € R, the law of F, ,fl
conditionally on ¢, = a under PZ is the same as the law of F9! conditionally on
¢z = a under EX‘(’u)’ﬁ( )[ ®IP’E( )( )], and ¢ is the constant introduced below
(I1.5.30). Using the tower property recursively on k € N, one can easily show that
(I1.5.32) implies that there exists PZ-a.s. kg € N such that |F,fol| = 0. Note moreover
that one can use Proposition I1.4.2 similarly as in the proof of Proposition I1.5.6, to
obtain an interlacements Z% on 74 with xy, - W < 1% for each a € FkgO and k € N.
To this effect, note in particular that (I1.5.22) still holds on 7Z since for each k € N
and a € F,fo, the subtree 7;5@1 of T2 below z,-al is the copy 77?1 of T4 associated

to Zy, translated by . Therefore, for each u € (0, ug), the set Fg1 is PZ-a.s. infinite
and its associated watersheds Wi ', a € F, kgol, are included in Z% n AZ and we can

conclude.
O

In order to deduce Theorem I1.1.1 from Proposition I1.5.7, we are going to use the
isomorphism (I1.2.21) between the Gaussian free field and random interlacements.
We first show that condition (I1.2.20) — which entails the validity of the isomorphism
(I1.2.21) by Proposition 11.2.5 — holds P¢WV-a.s. for the Galton-Watson tree 7.

Proposition I1.5.8. PSW_glmost surely we have that for all z € T,
PI(-|H, = o©)-almost surely, capr({Xi,ieN}) =

Proof. Let x € X and L € N. Under some probability QZ, we now define a tree T
with weights denoted by )\y 2 Y, 2 € T, y ~ z, as some extension of the tree Ty,
starting at x from Section I1.4.1, by completing its remaining ends so that Tis a
Galton—Watson tree conditioned on z € T. More precisely, first define T\Tw7 that
is the part of the tree T which is not below z, with the same law as T\T under
PSW(. |z e T), endowed with the corresponding weights. Then, attach to = a copy

X,- L . .
of the tree Ty, with the same law as under Q,;” '* , as defined in Section II.4.1.
With a slight abuse of notation, we see Ty, as a subset of T. Finally for each
remaining point y € 0Ty, , attach to y an independent copy of y - 7. Let X be
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T ,x?

a process with the same law as (XjAv, )ren, under Qi , it follows easily from
Proposition I1.4.1 that (T, X) under Q% has the same law as (T, (Xkav, )keN,) under
ECW[PT () |x e T].

Similarly as in the proof of Lemma II.5.2 iv), one can show that there exist
positive constants ¢y and cy so that, for each € > 0, if L is large enough, then

QF([{ye oTv, s X,y = e} < oL Vi(X) < H,- (X)) <.

Indeed, this follows easily from (I1.4.6) and a reasoning similar to the one in (I1.5.4),
(I1.5.5) and (IL5.6), replacing {3,y A < Cy} by Fie N: AP > ¢4,

Since, conditionally on Ty, , gTy (y,y), y € 0Ty, , are i.i.d. with the same law as
g7 (D, D), by the law of large number and the bound on the Green function from
Lemma I1.5.2 ii) we deduce that for L large enough

Q£(|{y €Ty, : Ayy = cr, g 0 (yy) <Cy Y| < %L,VL(X) < Hx_(f()> < 2.

Note that the event {’N\y,y* > cy, gTy (y,y) < Cg4} implies by a similar reasoning
to above (I1.5.22) that ¢ Tv (y~,y7) < Cy + % Let W = {Xo,... ,XVL}. Recalling
the definition of the equilibrium measure from (I1.2.12), we moreover have that
e\TV,’i“(Z) = e{z}jﬂz(z) = (gT#(2,2))7! for each z € OW\{x}. Since y~ € W for each
y € 0Ty, by construction, we deduce that for L large enough

Q W) < — 3 3
Qy (capT(W) <1c,+ l/c,\)L’VL(X) <H,- (X)) < 9.

Since W has the same law under Qg(, Vi(X) < H,-(X)) as the first L points
visited by X under ESWV[PT (-, Vi(X) < H,- (X)) |z € T, letting first L — oo and
then ¢ — 0, and noting that {V7(X) < H,-(X)} decreases to {H,-(X) = w0}, we
readily obtain (I1.5.8). O

We can now deduce Theorem II.1.1 from Proposition I1.5.7 using the isomor-
phism from Proposition 11.2.5 combined with Proposition 11.5.8.

Proof of Theorem II.1.1. Consider the probability space Q4 from Proposition I1.2.5.

Abbreviating &, := E;El), we have €, > A L€, for all x € ZU by (11.2.19). In view of
Proposition 11.5.8, we can apply the isomorphism (II.2.21), and we get Q%-a.s. for
allzeZ"n A,

(I1.1.9)
Yo = —V2Uu—+ /2054 + @2 = —V2u + AS20TLEL + 02 = —V2u+ 2V2u = V2u.

This yields (I1.1.8) by defining E>Y2* = {x € T : v, > v/2u}. By Proposition I11.5.7,
for all u € (0,ug) there is Q%-a.s. an unbounded component for A, nZ*, and so also
for the level set E>V24. This readily implies hy > 0 since E>V2% has the same law
as E>V2u, O

Remark I1.5.9. Rather surprisingly, our proof does not work anymore if one tries to
replace the inclusion (I1.1.8) by any of the simpler inclusions Z% n{z: &, > 4dul,} <
E>V2u o T A {z: |pz| > 2v2u} < E>Y2u_Tn other words, we need to use both the
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local times of random interlacements and the Gaussian free field ¢ in the isomor-
phism (I1.2.21), and not just one of the two. Indeed, in view of Proposition I1.5.5,
one needs to take L at least equal to C/u for some large constant C' < o0 in order
for FY9 to percolate. For instance for constant conductances and small enough u,
the probability that W® c {z: &, > 4ul,} is at least 1 — CuL, and the probabil-
ity that W < {z: |pz]| > 2¢/2u),} is of order 1 — Cy/uL in view of (I1.5.24), for
some constant C' < o0. These bounds are not interesting for the previous choice of
L = C/u. However combining them gives that the probability that W < A, is of
order 1 — Cu?2L, see (I1.5.25), which goes to one for the previous choice of L when
u — 0.

Proof of Theorem I1.1.2. The statement for random interlacements follows trivially
from Proposition I1.5.7 for u < ug by the inclusion 7 n A, n B, € Z" n B,,. Using
the monotonicity in u of interlacements we obtain the statement for all © > 0. The
statement for the Gaussian free field also follows from Propositions I1.5.7, 11.2.5 and
I1.5.8 similarly as in the proof of Theorem II.1.1. O

Remark I1.5.10. An interesting open question is whether Theorem I1.1.2 is true
in the whole supercritical phase of the Gaussian free field, that is for each h < hy,
does there exist p € (0,1) such that E=" n B, percolates, or is transient even?

I1.6 Transience of the level sets

In this section we prove Theorem II.1.3, that is that both, the interlacements set
and the level sets of the Gaussian free field above small positive levels, are tran-
sient — even when intersected with a small Bernoulli noise. More precisely, we prove
that the random walk on the tree of very good watersheds is transient, see Propo-
sition I1.6.3, and use arguments similar to the proof of Theorem II.1.1 to conclude.
The notion of very goodness we use here is a refinement of the one introduced in
Definition I1.5.1, see (iv)") below, and is adapted in order to ensure that the random
walk on the tree of very good watersheds can be compared to a random walk on a
Galton—Watson with a constant drift, see (I1.6.4). We then follow the strategy of
the proof of [Col06, Theorem 1] in order to deduce transience. In addition to the
usual assumption (I1.1.2), we assume throughout this section that, conditionally on
the non-weighted tree 7, the family (A;y)z~ye7 is i.i.d. and has compact support.
In terms of the construction of the Galton—Watson tree in Section I1.2.1, this is
equivalent to assuming that, under v and conditionally on 7((};);en), the family
(Ai)1<i<n((A))ier) 18 11.d., that the law of A; does not depend on 7((A;)jen), and that
there exist 0 < ¢, < Cp < o such that v-a.s.

ey <\ <Oy forall 1 <i<m((\j)jen). (I1.6.1)

We use the independence of the conductances when referring to [Gan+12] in the
proof of Lemma I1.6.1, and the assumption (I1.6.1) in (I1.6.4). Note that (I1.2.3)
and (I1.6.1) imply that the mean offspring distribution m is finite.

Let us now define a notion of goodness which is stronger than the one introduced
in Definition I1.5.1: in this section, we say that a point a € F is (L, B,Cy, ¢y, cr)-
very good if it verifies the conditions 1) to iii) with ¢y = ¢y and Cy = Cp (which
simplifies these conditions in view of (II.6.1)), and v) of Definition I1.5.1, as well as
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iv)" the set of children of the vertex a in the tree of free points F satisfies

o € GFs dyw(@,d) > erL}] >

where we recall that dw denotes the graph distance within TW. Note that the
inequality )\i o < Cp = Cy is trivially satisfied under (IL.6.1) by taking Cy = Ch,
and thus iv)" is stronger than iv) in Definition I1.5.1 (up to changing the constant
cf). We now follow a strategy inspired by that of Section IL.5 in order to show
that the tree of very good free points contains a d-ary tree. We first evaluate the
probability for a point to verify the property iv)’, analogously to Lemma I1.5.2 iv).
Recall the construction of the trees Ty, k € Ny, under the probability measure QZ’L
from Section I1.4.1, as well as the stopping time Vz(X) and Vj(X) from (I1.4.2) and
(I1.4.3). In what follows we abbreviate V, = V1,(X) to simplify notation.

Lemma I1.6.1. Let ¢y be as in Lemma I1.5.2. There exists c;, > 0 such that for all
e > 0, there exists Lo = Lo(¢) € N such that for allx € X, L = Lo and k < C},

ngL(|{y € 0Ty, \{21, Xy, } : dry, (2,y) > crL}| < ¢fL/2, Vi(X) = 00) <e.

Proof. Tt is known, see [LP16, Theorem 17.13|, that the speed of a random walk
on a Galton-Watson tree 7 with unit conductances is PSW-a.s. strictly positive
and deterministic; i.e., the limit v := limg_, o W > ( exists and is a constant.
This result was generalized in [Gan+12] to Galton-Watson trees with finite mean
for the offspring distribution and i.i.d. conductances verifying (I1.1.2). In view of
Proposition I1.4.1, the process X under Q5™ ( -, V(X) = c0) has the same law as a
random walk X on 7 under P ( - ,VL(X) = 0|\, .- = k). Therefore, for all € > 0
we can find a kg = ko(¢) such that for all k > ko, L€ N, z € X and k < Cy, we have

QEF(In =k dr, (Xn,w) < 0k/2,Vi(X) = ) < /3. (I1.6.2)

In order to find enough vertices in §, at distance at least ¢y from z, we note that
T T
Tel < 1Twl = Seix,,..xy, ) {2} v Ga Y|, and that {G; ™ : z € {X1,..., Xy, }}

is an i.i.d. family of cardinality k if V, = o0, k < L, similarly as in (I1.4.6). Since
m < o0, by the weak law of large number we can find Cp > 0 such that for all ¢ > 0,
there exists ky € N such that for all k > kg, L > k, z € X and k > 0

QE(|Tk| = Cpk, Vi(X) = 0) < £/3. (11.6.3)

Applying (11.6.2) and (I1.6.3) with k = 2CC—fPL7 for L large enough so that k > kg, we

obtain that with probability at most 2¢/3, on the event V7 (X) = o0, there are more
than cyL/2 points in Ty, at distance less than cy L from z, where ¢, := %. We
can then conclude by combining this with Lemma I1.5.2 iv) for /3.

O

Recall the definition of AW in (I1.5.23). We can now prove analogously to the
proof of Proposition I1.5.7 that (L, B, Cy, ¢, cr)-very good points, whose associated
watershed is included in AW, contain a supercritical Galton—Watson tree.

Proposition I1.6.2. Let ¢y = ¢\, Cy and cy be as in Lemma I1.5.2, c. as in
(I1.5.19), and cr, as in Lemma I1.6.1. For each d € N, there exist B > 0 and ug > 0,
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such that, for each u € (0,uq), there exist L € N and p € (0,1), so that under
EE{&[IP’?_W QPE(- | px)], with T = uce, the tree

91/:={®} U {a e F\{d}: a” is (L, B,Cy,cy,cr)-very good,

drw(@,a=) = c,L and W* < AXV}

contains with positive probability, not depending on @y, a d-ary tree.

Proof. Using Lemma I1.6.1 in place of Lemma I1.5.2 iv), and adding the condition
drw (a,c;:) > crL in the definition (I1.5.15) — which is possible in view of the
condition iv)" — one can easily prove similarly as below (I1.5.30) that for each B > 0
there exists ug = ug(B), such that for all u € (0,ug), there exists L = L(u, B) and
p = p(u, B) as in (I1.5.26), so that F9' contains a d(d(ch*Q/g)/él)—ary tree, and we
can conclude in view of (I1.5.31).

O

We prove now transience using the argument of [Col06, Theorem 1].

Proposition I1.6.3. There exists B > 0, u > 0, L € N and p € (0,1), such that
under E%Vuc [P 7qw Q@ PE(-|¢g)], the connected component of & in the tree with
verter set
Tgl/ — U W
acF9t’

is transient with positive probability, not depending on pg.

Proof. Consider a random walk X on 79" starting in . We proceed by contra-
diction, and assume that 79V is recurrent, that is, the walk X comes back to the
root almost surely. We introduce the following color scheme: & is white, and
a vertex ai € F 9l ig white if a is white and ai is visited by X in the interval
[H,inf{k > Xy = a” }] We want to show that there is an infinite number
of white Vertlces w1th positive probability; indeed, since then there would in partic-
ular be an infinite connected component of white vertices, this would constitute a
contradiction as the watershed associated to each white vertex in the connected com-
ponent of (J is visited by X in the interval [Hwe)e, inf{k > Hwe)e 1 X = T}
by definition.

For a fixed vertex ai € Fg1 , we evaluate the probability, starting from a, to
visit @i before returning to a~. Because of recurrence, for the comp\utatlon of this
probability, we can restrict ourselves to the only path connecting a= to ai and we
compute its effective conductance C (see [LP16, (2.4)]). Both the distances between
a— and @, and the one between @ and ai are at least ¢z, L by definition of F9''| and at
most L by definition of watersheds, see in particular (I1.4.2) and (I1.4.9). Therefore,
using the series law (see [LP16, Subsection 2.3.1]) we obtain that the probability of

a random walk starting from @, to visit ai before returning to a—, is equal to

C@G < a) - (Zgge(a k= ) B 61 & ep
Cla= - d)+C@G o ai) (qua . ) < o )*1 ~ Ch2

(11.6.4)
where (z,y] denotes the unique path connecting z to y, minus z. For each d € N,
it follows from Proposition I1.6.2 that for an appropriate choice of B,u, L and p,



I1.6. TRANSIENCE OF THE LEVEL SETS 61

the tree of white vertices contains with positive probability a weightless Galton—

Watson tree with mean offspring distribution larger than d-2- <& . Taking d = [éLCA 1,
Cp 2 CACL
this tree of white vertices is infinite with positive probability, which concludes the

proof. O

Proof of Theorem I1.1.3. Similarly to the proofs of Theorems I1.1.1 and I1.1.2 at the
end of Section IL.5, one can use the isomorphism (I1.2.21), which holds by Proposi-
tion I1.5.8 similarly as in the proof of Theorem II.1.1, as well as Proposition 11.5.6
to show that the component of & in the tree 79! from Proposition I1.6.3 can be
included in Z% " B,, or E>V2u By, proving the transience of those sets with positive
probability by Rayleigh’s Monotonicity Principle (see [LP16, Section 2.4]). To show
that transience occurs almost surely for some component, one can proceed similarly
to the end of the proof of Theorem I1.5.7 by considering the Galton—Watson tree
77 on which there are infinitely many conditionally independent copies of 79, and
thus one of these copies is transient a.s. O



62 CHAPTER II. GAUSSIAN FREE FIELD ON GALTON-WATSON TREES

II.A The critical parameters are deterministic

In this section we prove that:
Theorem II.A.1. Under PSW

T — ux(T) is a.s. constant (IL.A.1)
T — h«(T) is a.s. constant (IL.A.2)

Those results are known from [Tas10] and [AS18] in the case of deterministic
unit conductances. We provide here the generalizations for the case of random
conductances.

The proofs are based on the 0-1 law for inherited properties from [LP16, Chapter
5], which we will shortly recall here. For this purpose, we start with introducing the
following definition.

Definition II.A.2. A property P is called inherited if
e All finite trees satisfy property P, and

o if a tree 7 with root = has the property P, then all the descendant trees 7,
with y € GT have P.

Since we are dealing with different trees, in this section we underline the depen-
dence on the graph writing ]P’f(ﬁ and P?—I for the law of the Gaussian free field and
random interlacements on the tree T .

There exists a 0-1 law for surviving Galton-Watson trees [LP16, Proposition 5.6].
We generalize it here for our context of Galton-Watson trees with random conduc-
tances verifying (SA).

Theorem I1.A.3. If P is an inherited property, then
PSW(T has P) € {0,1}.

Proof. We write PGW for the law of the unpruned weighted Galton-Watson tree
under v, while we coherently use PSW for the pruned tree conditioned on surviving.
Denote by A the set of trees satisfying property P, and by G we denote the first
generation’s size of the Galton-Watson tree, which is a random variable with law p

(cf. (I1.2.4)). Then
PSWY(T e A) = ESV[PSW(T e A| G1)] < ESV[PSVY(Vi=1,...,G1, Tie A|G1)],

where the inequality follows from the fact that P is inherited. Now since condition-
ally on G4, the subtrees 7;, i = 1,...,G1, are independent and have the same law
as T, we can continue the above to get

PWV(T € A) < ESV[PIV(T € A)91] = F(BEV(T € A)),

where f(s) := ESW[s%1], for s € [0,1], is the probability generating function of the
tree under v.

It is known that if m > 1 the function f is strictly convex with two fixed points
q = PSW(T is finite) and 1. Together with the inequality PGV (T € A) < f(PSWV(T e
A)) this implies that P¢WV(T € A) € [0,q] U {1}. But since all finite trees are in A,
we infer that PSW (7 e A) € {¢,1}. Rewriting this in terms of the pruned measure,
we infer

PEV(T € A, |T| = )
PEW(IT] = o)
and this finishes the proof. d

PSW(T e A) = e {0,1},
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II.LA.1 The critical parameter u, is constant

We generalize now the proof from [Tas10] of (II.A.1).
For u > 0, define the property P" as follows: we say that 7 has the property P“
if either

T is finite, or IP’?U(\C@\ =00)=0
where Cg is the cluster of the root ¢ in V.
Lemma I1.A.4. For each u > 0 the property P" is inherited.
Proof. Finite trees have P" by definition, so we show that
dx ~ &: T, has Py, = T has P,,.
Let x ~ (J such that the subtree 7, has not P, i.e.
P (ICa| = o0) > 0. (IL.A.3)

We use, as in [Tasl0], a result from Teixeira:

Proposition I1.A.5 ([Tei09, Theorem 5.1]). Let T be a transient weighted tree with
locally bounded degree. Define for a fixred x € T the functon h: T, — [0,1]

g (2) = PI*(H,- = o0) P (H, = 0)A\. 1,00y

Then, conditionally on {x € V}, Cp 0Ty, under PR has the same law as open cluster
containing x of independent Bernoulli percolation with parameter p,(z) = e~ UM, (2)

By definition, for all z € T;\{z}, h¥- (2) = h¥-(2), and this implies that
P (ICo nTal =0 |z e V") =P (ICs| = o0 |z e VY). (IL.A.4)

Again, by definition, for all z € T;\{z}, h%-(z) = h?- (z), and the last Proposition im-
plies that the law of Cyx n T, under P?{u(- | O, x € V*) is the same as the law of
Cz N Ty under IP’?U(- | 2 € V*) and this implies that
P (ICq N Ta| = 0| &2 e V) =P (ICo n To| = 0 |z € V). (IL.A.5)
Then, using the capacity of sets, it holds
P (&, x e V) = e7eapr@ol) >, (IL.A.6)
Altogether
P (ICql = 0) = PF(ICe N Ta| = 0 | &, € VIPF (&, 2 € VY)
=PH (ICx N To| = 0 | &,z € V)PF (T, x € V)
WAD PRI (10, A To| = 00|z € VPR (1,2 € V)

(11.2.4) P%7u(|cz‘| - o | re VU)P'I%%M(@?‘/E c Vu)

ILA.3),(ILA.6
( )>( ) 0

which proves that P, is inherited. O
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With the previous 0-1 law and the hereditary property P*, we can prove (IT.A.1):
since P* is inherited, by Theorem I1.A.3, PSW (T has P,) € {0,1}. Hence for every
s in Q%, there exist a set Ay with PSW(A,) = 1, where I{PRI(|CQ‘=CD)=O} is con-
stant on A,. Taking intersection over Q%1, on the set A := ) seq+- all the functions

1{P$‘—fu(|Cg |=o0)=0} AT€ constant.

Now, since the function u — P?{u(|C@| = o0) is decreasing, the function
T — inf {PF(ICz| = ) = 0}
seQt ’

is well defined and constant on A. Hence

ul = inf {PF,(ICy| = o) = 0}
seQt

= inf {P¥ (|Cx| = 0) =0
inf {P7(ICq| = )

is PSW_a.s. constant.

II.A.2 The critical parameter h, is constant

We show (II.A.2) in a similar way to what done for u,. Define for each h € R the
property P" by saying that a tree T rooted at z satisfies P if T, is transient for all
yeT and

PG (|EZ"] = ) =0,

where for y € T" we denote by Eyzh the connected component of y in {z € T : ¢, = h}.
We now need to prove that the property P" is inherited, which has been done in the
setting of unit conductances in [AS18, Lemma 5.1]. For the reader’s convenience we
now present a proof in our setting inspired by [Tas10].

Lemma II.A.6. For each h € R, the property P" is inherited.

Proof. Assume that T is a tree rooted at x verifying P". For any y € T with y € GL
we have

PE(|EZ" = 0) = PE(|E;" N Ty| = 00,00 > h) > PE(|EZ" A T,| = 00)PF (g2 > h),

where the second inequality is a consequence of the finite dimensional FKG inequal-
ity for Gaussian fields, see [Pit82], and a classical limiting procedure. Since the
second factor on the right-hand side is non-zero, P%(|th| = oo) = 0 implies for
each y e GT
PE(|EZ" A T,| = ) = 0.

What is left to do is to show that the previous equation holds also for the
Gaussian free field on the subtree T,. By disintegration, we observe that for A-
almost all b € R we have

PG (|B7" A 1Ty| = 0] oy = b) = 0.

From the Markov property applied to the set K = {y}, it follows that the restriction
of the Gaussian free field under P$ (- | ¢, = b) to T}, has the same law as the Gaussian
free field under IP’% (-|py = b). Hence we obtain that for each y € G and A-almost
all b e R we have
G =h
PE, (|E7" = | ¢y =b) = 0.

Integrating again we obtain IP)% (‘Ejh’ = oo) = 0, proving that P" is inherited. [
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With the previous 0-1 law and the inherited property P", we can prove (IL.A.2).

Proof of (I1.A.2). Since the property P" is inherited by Lemma II.A.6, it follows
from Theorem I1.A.3 that PSW (T has P,) € {0,1} for each h € R. Moreover by
Proposition I1.2.1 and since T has the same law as 2 - 7 under PGV see (SA), T,
is transient for all z € 7 PSW_a.s. Hence for every s € Q, there exists an event A
with PSW(A,) = 1 such that 7 — 1{P$;_(‘E35|:OO):0} is constant on Ag. Thus on the

event A := ﬂse(@ Ay, all the functions 1{PcT;(‘EgS|:OO):O}, s € Q, are constant. Now,

since the function h — IP’%(]E%"] = o0) is decreasing, the function
T inf (P55 = o0) = 0} = inf (P (15| = ) = 0)

is well defined and constant on A, and we can conclude by (II.1.4) and FKG in-
equality. O



66 CHAPTER II. GAUSSIAN FREE FIELD ON GALTON-WATSON TREES



Chapter 111

The Lipschitz cutset on fractal
graphs

67



68 CHAPTER III. THE LIPSCHITZ CUTSET ON FRACTAL GRAPHS

I11.1 Introduction

Consider a collection of particles on an infinite (connected) graph, where a Poisson
distributed number of particles are placed at each vertex of the graph. Then, over
time, each particle performs an independent continuous time simple random walk
on the graph. Assume that at time 0 a single additional infected particle is placed
somewhere on the graph and consider the infection dynamics to be as follows: when-
ever a particle shares a vertex with an infected particle, it instantaneously becomes
infected itself. Infected particles can also recover and become healthy /susceptible
again, which occurs independently for each infected particle at some exponentially
distributed random time. Due to the infection mechanism outlined above, a particle
can only truly recover when it is the sole particle at a vertex - otherwise it gets
reinfected straight away by one of the other particles sharing its location.

This problem has been studied in various forms among others by Kesten and
Sidoravicius. In [KS05] the authors consider the graph to be the nearest neighbour
square lattice Z¢ and treat the case where infected particles never recover. They
show that for large times and with high probability, the sites of Z? that have already
been visited by an infected particle contain a ball of radius proportional to time
around the site where the infection started. They also prove that these sites are
themselves completely contained in a bigger ball of radius that is also proportional
to time, again with high probability. In [KS08] they refine this result and prove
a shape theorem for the infection under suitable rescaling of space. In a parallel
paper [KS06], they study the case of infection with recovery on Z¢ and prove the
existence of a phase transition with respect to the recovery rate of the particles -
for rates higher than a critical threshold, the infection will almost surely go extinct
(i.e. no infected particle remains after some finite time), whereas for rates below
this threshold, the infection will with positive probability survive indefinitely.

More recently, Gracar and Stauffer [GS19a; GS19b] have developed a general
framework with which they were able to prove that on the weighted graph (Z<, A),
with edges equipped with uniformly elliptic conductances A; ,, the infection still
spreads with positive speed. They also showed that in the case of infection with
recovery, the infection not only survives indefinitely with positive probability, but
also spreads with positive speed - a question that was left unanswered previously.
A further application of this framework can be found in [BS23], where it is shown
that in the case of infection with recovery, conditioned on the infection surviving,
the origin of Z? (i.e. where the infection is started) is visited by an infected particle
at arbitrarily large times. The key benefit of the framework used in these works
is that it can be applied to different variations of the Poisson random walks and
infection models, and that the multi-scale analysis which is done in order to set
up the framework does not need to be redone from scratch when the type of event
studied changes. Given a local, translation invariant, increasing event with a high
enough probability, the framework gives the existence of a connected surface in space-
time where the event holds and which acts as a cutset in space-time, separating the
origin from infinity, so that any particle which visits the origin has to intersect the
surface at some later time.

In this work, we adapt the framework to an entirely new class of graphs — sub-
diffusive fractal lattice graphs. In particular, we study the behaviour of a particle
system on the Sierpinski gasket and on generalized Sierpinski carpets. Intuitively,
these are the graphs of the famous triangle and square based fractals, where instead
of repeating the construction recursively inwards, one instead expands outwards,
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by attaching copies of the current stage of the graph recursively. A key difference
between the standard Euclidean lattice (Z? as well as for example the triangle or
hexagonal lattice nearest neighbour graph) and the graphs we study is that random
walks on the latter exhibit subdiffusive behaviour. L.e., random walks move through
the graph much more slowly than e.g. on the Euclidean lattice, and it takes on
average r% amount of time to leave a ball of radius r, where d,, > 2 is a constant
that depends on the dimension of the graph, and on which parts of the graph are
missing. Compared to Euclidean lattices, where this average is of order 2 regardless
of the dimension of the lattice, this shows that on such fractal graphs random walks
exhibit a quantitatively different behaviour. Crucially, this slower movement of the
particles makes it unclear whether the dynamics of the infection process remain
unchanged or whether the infection has a harder or easier time surviving over time.
Our main result provides an answer to this question.

In order to state it, we quickly formalize some of the concepts above. Let G be
either the Sierpinski gasket graph or a generalized Sierpiniski carpet graph (defined
precisely in Sections II1.2.1 and II1.8. See also the corresponding Figures II1.1 and
II1.8). In our first result we adapt the so-called Lipschitz surface framework from
[GS19a] to the fractal graph case. Notably, although the framework remains the
same in spirit, it requires changes across the board due to the significantly changed
geometry of the graph, starting with the analogue of the Lipschitz surface for fractal
graphs. On Z¢, the framework gives rise to a discrete, Lipschitz connected surface in
(a coarse-grained) space-time graph Z4*!. On the fractal graphs we study we cannot
hope for such a strong connectivity property. However, as we define in Subsection
I11.2.5 and prove in Section II1.3, the corresponding object still acts as a cutset on
the coarse-graining of the space-time graph, meaning that any path escaping toward
infinity must intersect this cutset (cf. Definition I11.2.9). Furthermore it is in some
sense minimal and still retains the Lipschitz connectivity property along the time
dimension (cf. Corollary I11.3.5). We call this object the Lipschitz cutset. We prove
in Theorem II1.2.12 that such a Lipschitz cutset exists a.s. and in Theorem I11.2.13
that it surrounds the origin within a finite distance a.s..

The Lipschitz cutset retains the flexibility of the Lipschitz surface and can be
used to prove various statements; we present one as an example. Consider the
infection process with recovery as outlined above, where at the beginning there is
an independent Poisson distributed with intensity pog number of particles at each
vertex of the graph, and ~ is the rate at which infected particles recover. We say
that the infection survives if for every time ¢ > 0 there exists at least one infected
particle somewhere on the graph. We then have the following result.

Theorem II1.1.1. For any py > 0 there exists vy > 0 such that for all v € (0, 7o)
the infection with recovery on G survives with positive probability.

Theorem III.1.1 is a direct consequence of Proposition II1.9.1 which gives the
above statement even in the case where the fractal graph is equipped with uniformly
elliptic conductances, and it is proven as an application of the Lipschitz cutset from
Theorems I11.2.12 and I11.2.13, and the property of “Lipschitz in the time dimension”
from Corollary II1.3.5.

This paper is structured as follows. In Section III.2 we define the Sierpinski
gasket graph and formalize the definitions and basic properties outlined above. We
also state the two main technical Theorems I11.2.12 and I11.2.13 which give the
existence and key properties of the Lipschitz cutset. In Section I11.3 we construct
the Lipschitz cutset and provide a sufficient condition for its existence, as well as
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prove its key geometric properties. Section I11.4 covers the tool used in our multi-
scale analysis, a mixing theorem that allows us under the right conditions to resample
particles independently. In Section II1.5 we define the multi-scale tessellation of the
space-time graph and its properties which lead to the proof of Theorem II11.2.12 in
Section II1.6. We prove Theorem II1.2.13 in Section III.7 with an extension of the
multi-scale argument developed before. Section II1.8 covers the adaptation of the
results which are written with the Sierpinski gasket graph in mind to the case of
generalized Sierpinski carpet graphs. The paper concludes with Section II1.9 with
the application of Theorems I11.2.12 and II1.2.13 in order to prove Theorem III.1.1.
Throughout this work we will denote constant with cg,c1,... and Cq,Co,. ...
Important constant that should be kept track off will be denoted differently: this in-
cludes Cy, Cpnix, Cy and the constants in mixing Theorem I11.4.6: My, Ms, M3, My, ©.

III.2 Settings and definitions

We start by defining the Sierpiriski graph and the coarse-graining which we will use
throughout the paper. We then proceed to formally define the particle system we
will be studying before stating the two main results of this paper.

II1.2.1 The Sierpinski gasket graph

The Sierpinski gasket is a fractal which was introduced in [Siel5]. Here we define
the Sierpinski graph or Sierpiniski prefractal based on the Sierpinski fractal with a
recursive construction as presented in [Del02]. Consider any of the graphs obtained
from the d-dimensional unit side-length regular simplex in R%, d > 2, by placing
one vertex in the origin. Fix such a graph and denote it with A?. More precisely,
A := (V,E) where V are the d + 1 vertices corresponding to the corners of the
simplex and E is the set of all undirected pairs of vertices which share an edge in
the simplex. For d = 2, this is the graph induced by the equilateral triangle with
unit length sides, motivating the notation A?. In d = 3, the graph is induced by
the equilateral tetrahedron. We furthermore assume the graph to be weighted with
conductances A := (A ) (z,y}eE, Which are positive symmetric and we assume the
existence of a constant C) such that the conductances are uniformly elliptic, i.e.

1
— <Ay <O (I11.2.1)
C

Define now Ag := A% and iteratively the graph of scale n, for n > 1, as

A= ] @+Aly), (I11.2.2)

ze2n—1Ad

taking care of identifying overlapping vertices at the junctions; edges carry the same
conductance as in Ag, ie.foranyn =1,z € 2”_1Ag and x,y € Ag, the conductance
on the edge (z + x,z +y) is Ayy. The d-dimensional Sierpiiski graph G? is the
graph obtained by taking the union of A% over n € Ng. We write & ~ y if there is an
edge between z and y, and let A, := >, A;,. We will denote by (G, (A y)a~y)
the weighted graph G? with conductances (Azy)z~y-

We introduce the set

y~z

B .= {ve G4: 1+ A¢ is a subgraph of Gd}, (I11.2.3)
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which intuitively contains those vertices in G? which are the “lower left” corner
of some translation of the simplex A% in G?. Note that this set is stable under
multiplication with powers of 2 in the sense that for all m € Ny and ¢ € B,

2™ + A% is a subgraph of G, 111.2.4
m

We consider the natural graph distance d(-,-) on G¢ and define the distance
between sets as the usual minimum of the distances between vertices contained
therein. For a finite set A we define the volume Vol(A) := |A| as the cardinality
of the set A. Define the ball of radius r > 0 with center x € G¢ as B,(z) := {y €
G?: d(z,y) < r}, and the volume of such balls Vol,(z) := Vol(B,(x)) as the number
of vertices contained in it. Note that the conductances do not affect d(-,-) or the
volume.

A A A AN A
AVXVA AVXVA AVXVA A'xVA AVXVA AVXVA AVxVA AVxVA
(a) d =2

Figure III.1: The first six stages of the Sierpinski Gasket.

It can be shown that for each d > 2, there exist constants ¢y, Cvol > 0 (depend-
ing on the dimension) such that for all z € G and r > 1

Cyol T < Vol () < Cyg 7%, (Vol(dy))

and we call d,, the volume dimension of the graph. We refer to the discussion below
(E(dy)) for a brief list of the different names of d, in the literature. It is well-
known that in dimension two d, = log,(3). To show that (Vol(d,)) holds in any
dimension d, it is not hard to generalize the proof in [Bar98] in order to obtain that
dy = logy(d + 1).

We now present a regular coarse graining—referred to as tesselation—of the
space-time space G% x Z which we need in order to state the theorems. This definition
will be in line with the more complex tessellation presented in Subsection II1.5.1.

I11.2.2 First level tessellation

Definition II1.2.1. For a given value ¢ € Ny, we tessellate the graph G? into tiles
S1(1) := 128 + AY, for + € BY, so that each tile is indexed by ¢ and has side length
equal to 2¢.

For a given value 5 > 0, we tessellate R (which will play the role of time) into
intervals T1(7) := [75, (T + 1)), indexed by 7 € Z.

We then define the (space-time) cell indexed by (¢, 7) as Ri(¢,7) := S1(¢) x T1(7).
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When referring to subsets of the spatial graph in general, such as tiles, unions of
tiles or balls on the graph, we will refer to them as regions or subregions when the
distinction between the kind of subset does not play a role.

Later on, we might refer to cells with shorter notation such as simply u or v when
we do not need to specify the indices of the cell. This will usually be in conjunction
with some set of cells, where we will write u € A as a shorthand for Ry (¢, 7) € A (see
for example (II1.2.8) and the text immediately thereafter).

Definition ITI.2.2. We say two cells Ry(t1,71) # Ri(t2,72) are adjacent if either
11 =19 and |11 — 12| < 1 or else if d(S1(t1),S1(t2)) =0 and 71 = 7o.

Remark III.2.3. We could alternatively define S1(¢) to be “half-open” in the sense
that only the “corner” corresponding to ¢ is in S7(¢) while all other corners are not,
making the tiles disjoint. This distinction makes no difference for the combinatorial
arguments we will use; it could however be important for the lowest level events one
could consider (cf. Definition I11.2.8) in the application of our framework.

We will use this space-time tessellation in order to define a dependent percolation
model where space-time cells will be good or bad depending on whether a given
event dependent on the particle behaviour occurs roughly in the region defined by
the corresponding S1(¢) during the time interval 77 (7). More precisely however, the
events that we will consider will not be limited to events localized entirely within
S1(¢). Instead, they will involve larger regions which in particular may intersect for
different pairs (¢, 7) and (¢/, 7). To this end we introduce the following extension.

Definition ITI1.2.4. Let n € N. For € B? we define the super-tile

Stw= |y s,

VeBe: d(u,)<n

and for 7 € Z the super-interval Ty () := [71, (T + 1n)B1), as well as the super-cell
R(¢,7) as S](v) x T(7).

I11.2.3 Random walks on the Sierpinski graph

We will study Poisson random walks and for this purpose we start by analyzing
properties of the simple random walk on Sierpinski gaskets. We call a stochastic
process (X;)i=0 taking values in G? a (continuous time simple) random walk on G¢
under the probability measure Py, if Xo = x¢ holds Py,-a.s., and while at z € G4, it
jumps to y ~ x with rate \;,/\.. We say that a function f: G4 xR — R is caloric
if satisfies the discrete heat equation

i) = 2 25 (1) — 1)

y~x Aa

and it is easy to verify that the heat kernel p;(z,y) := )\—EPI(Xt = y) seen as a
function of y and ¢, with x fixed, satisfies it.

It is well known that the transition probabilities for a random walk on Z¢ satisfy
Gaussian estimates. Instead, the Sierpiniski gasket falls into the class of nested
fractals studied in [HK04, Corollary 4.13], which shows the validity of sharp upper
and lower bounds for the heat kernel: denoting by p,(z,y) := i]P’x(Xn = y) the
heat kernel for the discrete time random walk, it holds

pn(z,y) = n exp ( — <W) de_l)) (II1.2.5)
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for n > d(x,y), where = indicates that the ratio of the two sides is bounded from
above and below by positive constants independent of z,y and n. The result was
first shown on G? in [Jon96]. Using the fact that the continuous time random walk
X; has jump rate 1, one can generalize the proof of [LL10, Theorem 2.5.6] to obtain
a continuous time version of (I11.2.5): for all z,y € G and t > 0 with d(x,y) < t it
holds that

a d(z, )b\ 1 (dw1)
pe(z,y) =t % exp ( - ((Ci)) ) (HKB(dy, dy))

We say that the Parabolic Harnack inequality holds for the graph G¢ if there
exists a constant C3 > 0 such that for all z € G¢, R > 1 and non-negative h: G% x
R — R caloric in Bygp(x) x (0,4R%) satisfies

sup h(z,t) < Cs inf h(z,t). PH(d,,
Br(2)x[Rdw 2Rdw] ( ) Br(2)x[3Rw 4Rdw] ( ( ))

Next, we introduce the walk dimension, and for this purpose, for any subset B
of the graph G¢ we write Hp := inf{t > 0: X; € B}. We say that the graph has walk
dimension d,,, if

E; [HB,«(m)C] = (E(dw))

for all € G¥. In the literature, the volume dimension (Vol(d,)) and walk dimension
(E(dw)) are often referred to by different symbols: for example [Bar98] uses dy and
dy, respectively, [Bar04] uses o and 3, [Jon96] 4w and d,,, and [Del02] uses d; for
the volume dimension.

It is proven that the gasket in dimension d = 2 has walk dimension d,, = logy(5)
(see for example [Bar98] or [GY18]).

For any dimension, the validity of (E(d,)) and (PH(d,,)) follows from the fol-
lowing: from Theorem 3.1 of [GT02] the following implications hold:

(Vol(dy)) + (HKB(dy, dw)) <= (PH(dw)) = (E(dw)),

and in particular the Sierpiriski gasket G¢ satisfies (PH(d,,)) and (E(d,,)) for some
value dy, (dependent on the dimension d).

Volume and walk dimensions are related: a simple inequality, which is valid for
any graph which satisfies (Vol(d,)) and (E(d,,)), is given by

2 < dy < dy + 1; (I11.2.6)

and a proof can e.g. be found in [Bar04, Theorem 1].

We will also need the following folklore estimate on the confinement probability,
which is a direct consequence of the estimates on the exit probability ¥, (z, R) in
[GTO1, Proposition 7.1] on a graph with arbitrary random walk dimension.

Lemma IT1.2.5. Let (Xy) be a random walk on (G, \) starting from xzo and A,z > 0
such that (E(dy,)) holds true. Then there exist c5, cg, c7 > 0 such that for all A > c7z
the event

Conf(B., A) := {X; € B.(z¢) for all t € [0,A]}

satisfies
1

2w \ Ty =1
P(Conf(Bs, A)) > 1 — cze o (%a7) ™ (Conf(dy))
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I11.2.4 Poisson particle system

We define a particle configuration Il as a random function in (NO)Gd, where TI(z)
is to be interpreted as the number of particles at z € G% We denote by ¢, the
coordinate map of II defined by ¢, (II) = II(z) and call F the o-algebra generated
by the coordinate maps.

We define a particle system as a family of particle configurations (Il;),r €
(Q, F'), with Q := {f: (=00, +0) — (Ng)®'} and F' := F® the product sigma
algebra of F over R. We define (II;) under a probability measure v, as a Poisson
point process of random walkers with intensity given by cu(z) := cug, for x € G¢
and some po > 0,c € (0, 1]. Tt is easy to verify that the particle system is stationary
(in fact, even reversible) in the sense that at any time ¢ € R, the particles remain
distributed according to a Poisson point process with intensity cu. This system is
often referred to as Poisson random walks.

We say that an event E' € F' is increasing for the particle system (II;)cg if the
fact that E holds for (II;);er implies that E holds for all particle systems (II}):cr
with I, > Tl for all s > 0, where II, > Il indicates that IT)(z) > Ils(x) for all
z e G

We now define what it means for an event to be measurable with respect to a
particle system. Although one could define this for an arbitrary particle system, we
will consider events that are measurable with respect to the more restrictive Poisson
random walks particle system from above. In particular, this means that we will
consider events that are measurable with respect not only to the locations of the
particles at different times, but also their movements over time.

Definition I11.2.6. Let A < G?% and tg € R and t; > 0. Denoting with Py =

(px,t07i)1j:(f) the set of particles (including their movements over time) that are located
at = at time to and with P4, ;(t) the position of particle p, s, at time ¢, we say
that an event E is restricted to A and a time interval [tg, to + t1] if it is measurable
with respect to o{Pyy,i(t),i € {1,...,Il(z)},z € A, t € (to,to + t1)}.

Definition ITI1.2.7. Let r > 0. We say that a particle is confined inside B, during
[to, to +t1] if during the time interval [to, to + 1] it stays inside the ball B,.(z), where
x is the location of the particle at time ¢g.

The probability of being confined has been estimated in (Conf(d,,)). We define
now the probability associated to an event FE.

Definition II1.2.8. For c € (0, 1], u(x) = ppAz and an increasing event E restricted
to A < G? and [0,t], we define

vi(cp, A, By, t) := vg, (E|the particles in A at 0 are confined inside B, during [0, ]).

I11.2.5 Main results

We now provide the final definitions necessary to state the main theorems. For each
(t,7) € B? x Z we will call E(1,7) an increasing event restricted to the super-cell
Rl(1,7). We will call the cell Ry(t,7) bad if the event E(i,7) does not hold, and
good otherwise. We next introduce a base of the space-time graph G¢ x Z. Recalling
the definition of the gasket via A? in (II1.2.2), we consider the d — 1-dimensional
subgraph A%~! of (d — 1) points including the origin defined in the same way, and
letting n — o0 we obtain the (d — 1)-dimensional Sierpiniski gasket G?~!, which
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by construction is a subgraph of G¢. Intuitively, this corresponds to the Euclidean
space identification of the square lattice Z? with the subgraph Z? x {0} of Z* and
the origin of Z? with the origin in Z3. Just like in the square lattice case, the choice
of which subgraph of G? to identify with G¢! is not unique and can be chosen
arbitrarily among the ones admissible.

We now define the base of the space-time tessellation as

Ly:=G¥1x2Z (I11.2.7)
seen as a subgraph of G% x Z as explained above, and the base of cells

Ly := U {Ri1(t,7)}. (I11.2.8)

(t,7)eLon(BExZ)
We will often consider the distance

d(R1(t,7), Lg) := i d(z,
(Rafor)Lo)i= iy d(e.)
between a cell R1(1,7) € G% x Z and the base Lo, which we will refer to as the height
of the cell; it helps to visualize the base Ly to lie “horizontally” as a subgraph of
G?% x Z. We can now finally define the Lipschitz cutset. Recall the definition of
adjacent cells from Definition I11.2.2.

Definition ITI.2.9. A Lipschitz cutset F is a set of cells in G? x Z such that the
following property is fulfilled: any sequence {R; (i, 7;)} en inside G¢ x Z of adjacent
cells, which we will refer to from now on as a path, starting in any cell v € L1, with
d(Ri(vj,75), Lo) — oo, intersects F.

Definition I11.2.9 is stable under taking unions, and in particular the entire graph
G% x Z seen as a union of all cells satisfies the definition. To prevent such undesired
examples, we introduce the following condition.

Definition IT1.2.10. We say that a Lipschitz cutset F' is minimal if, for each F' < F
we have that F’ is not a Lipschitz cutset.

Remark II1.2.11. The minimal Lipschitz cutset we will end up constructing is the
analogue for fractal graphs of the “Lipschitz surface” in the lattice settings of Z¢, see
[Dir+10; DSW15; GS19a]. There, a Lipschitz surface is #-connected, or equivalently,
for any point (b,0) in the base of Z? one finds the corresponding height » = F(b) of
the Lipschitz surface, which satisfies a Lipschitz condition of type |F(b2)—F(b1)| < 1
whenever |by — by |1 < 1.

For the geometry of the fractal, we cannot hope for such a strong connectivity
property of the surface. Seeing the fractal graph as a subset of the triangular lattice,
we could define the height h as the coordinate of one dimension of the lattice; in
this case however, not every cell (b, h) in the triangular lattice would belong to the
fractal graph G¢, since it may lie in one of the “holes”. In particular we cannot
require for any be such that ||by — b1[1 < 1 that |F(b2) — F(b1)| < 1, since not every
point (ba, ha) is in G%. In other words, this property remains true for the points
belonging to the cutset, but not everywhere because of the “holes” in the fractal.
However the key property which remains true is that an appropriately’ constructed
minimal Lipschitz cutset F separates the origin (0,0) € G¢ x Z from infinity in the
sense of Definition II1.2.9 in the fashion of a cutset and it retains some mild Lipschitz
continuity properties, so we opted to use the name Lipschitz cutset.

1See Proposition I11.3.4 and Corollary I11.3.5.
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We can now state our first technical result.

Theorem II1.2.12. Let G? be the d—dimensional Sierpiriski gasket with conduc-
tances satisfying (I111.2.1). Let £ € N and let B € N be large enough. Furthermore,
letneN, e€ (0,1) and ¢ € (0,0) such that

1 _
¢ = 5 " [ 1og (32)]™ 0,

and tessellate G x 7 into space-time cells as described above. Let E := E(1,T) be
an increasing event restricted to the super cell R](t,T) whose associated probability
ve((1 —e)p, S{(¢,7), Bee,nB) has a uniform lower bound across all (¢,7) € B x Z
denoted with

ve((1—e)p, Sy, Bee,nB).

Then there exists ag € (0,00) such that if

62,11/02611’[

1/)1(57H07£777) = mln{ 7—10g (1 - VE((]- - 5)>\,S¥,B§g,77/6))} 2 ap,

A

there exists almost surely a minimal Lipschitz cutset F' with the property that E(t,T)
occurs for all Ry(t,7) € F.

We can prove a further property of the Lipschitz cutset, which gives us control
on the distance of F' from any cell Ry(¢,7) € Ly, without loss of generality and in
particular from the R;(0,0), the cell containing the origin: for a fixed radius r we
look if the Lipschitz cutset F' at distance r surrounds the origin. More precisely,
for a Lipschitz cutset F' and r > 0, we say that the event S(F,r) holds if any
path {v;}7_; of adjacent cells from R;(0,0) with d(vn, R1(0,0)) > r intersects with
F'. Note that this event is considerably more restrictive than the one in Definition
I11.2.9; if S(F,r) holds, it implies in particular that the Lipschitz cutset does not
only have finite distance from Lg, but essentially “surrounds” the cell R;(0,0) and
prevents paths from obtaining arbitrary lengths while keeping their distance to Lg
small.

Theorem 111.2.13. Under the conditions of Theorem I11.2.12, let F' be the Lipschitz
cutset from Theorem I11.2.12 on which, in particular, the event E holds. Then there
exists Cqy > 0 such that for ro large enough

]P’(S(F, To)c) < Z pdvtl exp{ — C4TCS},

r=rQ

dy 1
dy+1 2°

with 0 < ¢s <

The theorem implies that in particular, the Lipschitz cutset surrounds R;(0,0)
at an almost surely finite distance, or equivalently, any path of cells starting from
R1(0,0) that contains a cell v with d(R;(0,0),u) larger than some almost surely
finite value intersects the Lipschitz cutset, even if all cells of the path have their
distance to Lg small.
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Strategy of the proof. The existence of a Lipschitz cutset of good cells is equiv-
alent to having all paths of bad cells having only finite lengths. However, simply
estimating the number and the probability of bad paths does not work; even in the
simplest case where n = 0 (i.e. the super-cells would be just the cells themselves and
therefore non-intersecting), two events E(¢, 7) and E(i/, 7') can be heavily correlated
whenever 7 # 7/ and especially if the two corresponding tiles are close to each other.
As an example, knowing that there were no particles present in the tile ¢ during
the time interval 7 increases the probability that all spatially close tiles will have
fewer than expected particles for some time to come. On the other hand, as long as
the occurrence of E(t,7) depends principally on the particle system behaving “typ-
ically”, it becomes more probable that the event will occur if the cells are all made
bigger. Just blowing everything up is not enough however, since this would not re-
solve the correlation and combinatorial issues, so we adopt a multi-scale argument.
For each scale we estimate the probability of a cell of that scale to be “multi-scale
bad”, knowing that at a larger scale the particles were behaving typically up until
shortly before; this property is defined precisely in (I11.5.35). For a given time hori-
zon we choose a maximal scale k, the largest scale that we will consider, and show
that the probability to be “multi-scale good” is exponentially close to 1 at this large
scale k and consequentially, as long as there are only sub-exponentially many cells of
scale k within the space-time region we consider, we have that at this largest scale,
all cells are “multi-scale good” with arbitrarily large probability. By partitioning
space-time into cells of ever smaller scale until reaching scale 1, this gives rise to a
space-time dependent fractal percolation problem on which we want to count the
number of paths of bad cells. Using the fractal percolation nature of the setup and
the alluded property that large cells are much less likely to be bad than even all
of their “descendant” cells being bad at once, we consider paths of bad cells across
multiple scales. This makes the combinatorial arguments more involved, but gives
much better bounds on the probabilities of individual paths existing. After some
additional path surgery to consider only the most vital cells of a path and the use of
a mixing result to decouple the remaining space-time cells of a path, combined with
a clever union bound for the probability of finding a path of cells of various scales
then gives the result.

II1.3 Constructing the Lipschitz cutset

Recall the definitions of adjacent cells from Definition I11.2.2, of Ly and Li from
(IT1.2.7), (II1.2.8) and of bad cells at the very start of subsection II1.2.5, where
we considered a cell Ry(¢,7) bad if the event F(t,7) does not hold. To construct
the Lipschitz cutset we will make use of the concept of d-paths of cells, hills and
mountains which we now define.

Definition ITI.3.1 (d-path). A d-path in G x Z is a sequence {uy}ren of adjacent
cells starting with a bad cell ug € L; such that for each k£ € N one of the following
holds true:

e increasing move: ugyq is bad and d(Lg, ugy1) = d(Lo, ug)
e diagonal move: d(Lg,ur+1) < d(Lo,ug)

A d-path is defined in a way that it can increase or maintain the distance to the
base Ly only by moving to a bad cell in the next step, and otherwise can go “down”
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towards Ly with the so-called diagonal move, independently of the state of the cell
it is moving to.

Remark III1.3.2. We kept the name diagonal move as in the lattice setting of
[GS19a] for consistency and in order to distinguish a connection in the path that
can only go toward Ly regardless of the state of the cell. Furthermore, in the
carpet setting it will revert to a x—neighbors connection (cf. Definition I11.8.3), thus
rendering the term diagonal more meaningful.

To describe the set of cells which can be reached via d-paths we introduce hills
and mountains.

Definition I11.3.3 (Hill and Mountain). For any two cells u,v € G x Z, we write
u — v if u is a bad cell and there is a d-path from u to v. For a cell u € L; define
the hill H, and mountain M,, around v € L; as

H, = U {v} and M, := U H,,

v u—v veLy: ueH,

with the convention that if u is good, then the hill H, is defined to be the empty
set.

For a set of cells S, i.e. of the form S = | J,.;/{R1(;,7:)} for some index set I,
define for u € S
rad,(S) := sup{d(u,v): v e S}, (I11.3.1)

and

OextS 1= U {’LL},

ueSe: Jves
v adjacent to u

where S¢ is the set of all cells not belonging to S. We then obtain the following
result.

Proposition II1.3.4. If for all we L,

D rH P(rad, (Hy) > 1) < o0, (I11.3.2)

r=1

then the set
F = aext( U Mu) v Ll\(UUEL1 Mu)

uEL1

s a.s. within a finite distance from Lg, is a Lipschitz cutset and all cells u € F are
good.

Proof. L1\(Uuer, My,) is trivially within finite distance from Lo and the cells in
it contained are good since they would otherwise be contained in some hills and
therefore not in L1\(Uyer, My).

Next, we prove that cells in Ocxt (| e I M,,) are good. Suppose by contradiction
that for some u € L1, a cell v € Ooxy My, is bad. By definition of eyt M, there exist
a cell v € M, adjacent to v and v’ can be reached by a d-path since it lies in the
mountain M,,. If d(Lg,v) = d(Lg,v"), since v is bad, the d-path reaching v can be
extended to v with an increasing move. Otherwise, if d(Lg,v) < d(Lg,v"), v can be
reached by a diagonal move from v (independently of the state of v), and in both
cases therefore v ¢ Oyt My, .
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\A 4 vy

(a) An illustration of possible mountains (in  (b) The resulting minimal Lipschitz cutset

yellow) with bad cells highlighted with a  F*° as obtained in Corollary I11.3.5. The re-

darker tone. In dark blue the cells belonging  moved cells are left blank as, even though

to the Lipschitz cutset F'. they are good, we are ignoring this informa-
tion.

Figure II1.2: Constructing the minimal Lipschitz cutset: a slab in G? x {0}.

To prove that Oext (| ,c I M,) is within a finite distance from Ly, it is sufficient
to show that for any cell u € L; we have rad, (M,) < oo, since, by construction of
mountains with the diagonal moves, if the radius of a mountain was infinite, then it
would be infinite for all mountains. We therefore calculate

P(rad,(M,) > 1) < 2 P(ueH,, rad,(H,) > r — d(u,v))

veL1
= Z P(u e Hy, rad,(H,) > r — d(u, v)) + Z P(u € Hy).
velq : velq :
d(u,w)<r/2 d(u,w)=r/2

Writing B,.(z) for the ball of radius » and center z inside Ly € G?~! x Z, we can
upper bound the previous by

Vol(B, 5 (u))P(rad,(H,) > r/2) + > Vol(dBs(u))P(rad,(H,) > s).

s=r/2

Since by (Vol(d,)) the volume of a ball in G¢ x Z can be upper bounded by Cyg 7%+,
by the assumption in the proposition both summands tend to 0 as r increases.

It remains to show that F is a Lipschitz cutset, i.e. it intersects any path {u;} en
of cells starting from L; with d(u;, Lg) — 0. Note that L;\(Uyer, M,,) and a fortiori
F intersects any path that starts in a cell contained in Li\(Uyer, My,), so it remains
to argue the case of paths that start in L1 N (Uyer, My). The claim is a consequence
of the definition of external boundary. Since F' is a.s. within finite distance from
Ly, a path starting in a cell in L; and distance from Ly going to infinity contains
a cell u; which is the first cell outside Uyer, M, . In particular, for some v € Ly,
uj—1 € My, uj ¢ Uyer, My, and u; ~ uj_1 so u; € aext(UueLl M,), i.e. the path
intersects the Lipschitz cutset F. O

Before turning to the multi-scale arguments, we prove a further property of the
Lipschitz cutset. We already highlighted in Remark II1.2.11 that on a fractal graph
we cannot hope for a general Lipschitz condition. However, a Lipschitz connectivity
property holds in the “time dimension” in the following sense.
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AA A
AA

Figure IT1.3: A possible evolution of the minimal Lipschitz cutset F° over 5 sequen-
tial time steps. Black tiles represent the cells of the minimal Lipschitz cutset at the
current time index 7, the light blue tiles represent the cells of the minimal Lipschitz
cutset during at the previous time index 7 — 1. The two are connected with dashed
lines to help visualize the relationship.

Corollary II1.3.5. Let F' be as in Proposition I11.5.4 and consider

F° = N F.
F'cF:
F’ is a Lipschitz cutset
Then F° is a minimal Lipschitz cutset and for all Ry (1, 7) € F°, there exist t_1,141 €
B such that S1(1_1) and Sy(t41) are individually either adjacent or equal to Sy(1),
and

Ri(t—1,7—1) and Ry(t41,7+ 1) € F°

An example of cells of F' which were removed in F° is depicted in Figure I11.2(b).
The Lipschitz continuity in the time dimension is illustrated in Figure III.3.

Proof. F° is a Lipschitz cutset as a consequence of the definition of F' as we now
argue. Let m := {u;};eny be any path of cells starting from L such that d(u;, Lg) — o0
as 1 — o0. We construct a path «/ with the help of 7 as follows. Let u be the last
cell in the intersection of m and F. Such a cell u exists, since every cell of F' is
either in Ly or it is part of the external boundary of some mountain, which is by
Proposition I11.3.4 a.s. finite. Define now 7’ to be the part of 7 from the last visit of
u (including u) onward; and by the definition of F' as external boundary of a union
of mountains, we can extend 7’ before u by some arbitrary (finite) path of cells from
L1 to u which does not intersect F': for example we can use a d-path that ends in a
cell neighbouring u. Since any Lipschitz cutset F/ < F needs to intersect any such
path and in particular 7’ and F’ € F we have v € F’, and thus u € F°. Since 7™ was
an arbitrary path starting in L; with d(m;, Lg) — o0 as i — 00, we obtain that F*° is
a Lipschitz cutset.

The minimality is straightforward due to the definition of F° and it remains to
show the temporal Lipschitz connectivity claim.

For this purpose, let Ry(t,7) € F° be arbitrary, and we show the claim only for
t+1 and 7+ 1, the other case being identical. Suppose that such ¢, does not exists.
We show now that it would be possible to construct a sequence {u;}; of adjacent
cells which includes some of the cells in

7. | R, T):Te{r, T+ 1},i=1
Ri(,7) = { or such that Si(¢) is adjacent to S1(7) MR (7)),

starts from L, with d(u;, Lg) — o0 and does not intersect F°. Note that by our
supposition, none of the cells in R;(¢,7) are in F°.
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We construct the sequence of adjacent cells {u;}; so that it starts from L; and
reaches Ri(t,7) without intersecting F°; otherwise this would contradict the as-
sumption of minimality of F*°. Similarly, the sequence {u;}; can be extended from
Ri(¢,7) without intersecting F° and with d(uj, Lyg) — oo. Since all of the cells
in Ri(¢,7) are adjacent, the resulting sequence {u;}; contradicts the definition of
Lipschitz cutset, and proves the claim. ]

The next three sections are devoted to the multi-scale argument which will es-
tablish the assumption (II1.3.2).

II1.4 Mixing Theorem

We begin by proving that when (PH(d,,)) holds, random walks started from vertices
close to each other have similar probability distributions at sufficiently large times.
More precisely, we have the following fluctuation inequality. Recall the definition of
the weighted graph (G%, (A, y)z~y) from Subsection I11.2.1.

Proposition II1.4.1. Let g € G¢ be arbitrary and suppose that (PH(dy,)) holds
with constant C3 > 1 for Q(zo, R) := Bagr(xg) x (0,4R%) for all R > 1. Let
O :=logy(C3/(C3 — 1)) and define for x,y e G4

p(zo,z,y) := d(xo, ) v d(x0,y).

Then, there exists a constant Cs > 0 such that the following holds. Let ro = 2 and
suppose that u is caloric in Q(zo,70). Then, for any x1,x2 € B, 5(w0) and any t1,t2

for which rg“’ — plzg, 21, T2)% < ty,ty < rg , we have that

u(z1, t1) — u(z2, t2)] < Cs (plxo, 21, 22)/r0)®  sup  u(a, )],
(t7x)€Q+(x07T0)

where Q1 (g, 70) := By (z0) x [3rdw, 4rdv].

Proof. In addition to @ and @+, we define Q_(zo,70) := By, (z0) X [7“0 ,2r0 ]. Next,
define 71, := 27y and set

Q(k) == 4(rg” — i) + Q(o. 74),
Q. (k) := 4(r§» —ri) + Q4 (20,71), and
Q- (k) = A(rg" = 1) + Q4 (w0, ),

where the summation is to be seen as a shift of the time interval of @ (resp. @4 and
(@—). A quick calculation using that d,, > 2 then yields that Q(k) € Q4+ (k—1). Take
now k > 1 small enough so that rp > 2. We can without loss of generality consider
the shifted interval Q(k) with the functions —u + supg ) u and u —infgo u. To see
why, note that under the change of time variable  := ¢ + 4(7“3 r,‘iw) the function
(z,t) := u(zx,t) remains caloric. Since (PH(d,,)) holds for any non-negative caloric
function on Q(xo, rx), it therefore holds for —a + supgy) v and @ — info) u, and in
particular also for —u + supg ) v and u — infoy u on Q(k). Applying (PH(dy)) to
these two functions then gives the inequalities

— 1nf u+ supu < C3(— sup u + sup u)
Q- (k) Q(k) Q+ (k) Q(k)
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and

sup u— inf u < C3( inf u — inf u),
Q—(k) Q(k) Q+ (k) Q(k)

respectively. Adding the two together and using that supg_(pyu — infg_gu =0
leads to

supu — inf u < C3(supu — inf u) — C3( sup v — inf wu).
Q(k) Q(k) 3(Q(k) Q(k) ) 3(Q+(k) Q+ (k) )

If we define now the oscillation of u inside A as Osc(u, A) := sup, u — inf4 u and
set 0 := C3' € (0,0), we get

Osc(u, Q4 (k)) < (1 —0) Osc(u, Q(k)).

Take now the largest m such that r,, = p(xo, z1,z2). Applying the above oscillation
inequality on Q(1) > Q(2) o --- © Q(m), we get since (x1,%1), (x2,t2) € Q(m) that

(
[uar, 1) — (@, 12)] < Ose(u, Q(m)) < (1 — 6™ Osc(u, Q(1).
Using that (1 — 8)™ = 27™® < (2p(x0, 21, 22)/r0)® we get the claim. O

Next, we state a result of Popov and Teixeira [PT15], which will let us couple the
locations of our particle system after they have moved with an independent Poisson
point process on G.

Proposition I11.4.2 (Soft local times). Let J € N and let (Z;) < be a collection of
J independent points distributed on G according to a family of probability density
functions g; : G? - R, j < J. Define for all y € G the soft local time function
Hj(y) = ijl €;9;(y), where the §; are i.i.d. exponential random variables of mean
1. Let ¢ be a Poisson point process on G¢ with intensity measure p : G¢ — R and
define the event E := {the particles belonging to 1 are a subset of (Z;);<s}. Then
there exists a coupling between (Z;)j<j and v, such that

P(E) > P (Hyy) > ply), Yy G").

Proof. The coupling is introduced in [PT15, Section 4] and proven in [PT15, Corol-
lary 4.4]. A reformulation of the construction for particles on a graph can be found
in [Hil+15, Appendix A], and our claim corresponds to [Hil4-15, Corollary A.3]. [

Proposition II1.4.3. Consider elliptic conductances A, satisfying (I11.2.1) for
some Cy > 0. For each My > 0 there exist constants My, M3, My, © € (0,00) such
that the following holds.

Let K > 1 >0 and € > 0. Given a region Sk tessellated into sub-regions SZ; of
side length | such that at time 0 there is a collection of particles where each sub-
region S; contains at least 5Zyeszi Ay > My particles for some 6 > 0. Let A, K' >0
with

4
A= Ag:= Mtz o (IT1.4.1)
K~ K' > Ms(A)w, (I1L.4.2)

and denote by Y} the location of the j—th particle at time A.
Then, there exists a coupling Q of a Poisson Point Process = with intensity
measure 6(1 — &)\, y € Sk, and (Y;); such that

dy
QECS (Y))) 21— 3 e Monsat, (I11.4.3)
yESK/
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Proof. Using Proposition I11.4.2, there exists a coupling Q of an independent Pois-
son point process ¥ on G with intensity measure ((y) = §(1 — €)\, and the loca-
tions of the particles Y}, which are distributed according to the density functions
fa(zj,y) := pa(z;,y)Ay, such that the particles belonging to ¥ are a subset of (Y});
with probability at least

Q(HJ(y) = (5)\y(1 — 5), Vy S SK/),

where H;(y) = 23'121 §ifal(zj,y), (§)j<s are iid. exponential random variables
with parameter 1, and J is the number of particles inside Sk at time A.
We first observe that the probability of the converse event is

Q@y e S Hi(y) <A1 -8) < Y, QH(y) <dr(1-9)
yeS g

< 2 €7Ay5(1_E)EQ [exp{—vH s(y)}],
yeSyr

for any v > 0 by a simple application of the exponential Chebychev inequality.
Let M3 now be a large positive constant that we will fix later and set

dy—1
R:= M3AYdwz"dy (I11.4.4)

Next, let J' be any subset of {1,...,J} such that exactly [} ! d\y| particles from
J' are inside S! for every sub-region S! of Sk. For y € G, define also J'(y) < J' to
be the set of all indices j € J' for which d(z;,y) < R and define H'(y) as H;(y),
but with the sum in the definition restricted to the indices j € J'(y). By definition,
Hj(y) = H'(y) and therefore

Eglexp{—vH(y)}] < Eglexp{—vH'(y)}].

Since the ; in the definition of H are independent exponential random variables
of parameter 1, we can calculate further

Eglexp{—vH'(1)}] = [ ] Eolexp{—¢falz;,y)}]
jeJ (y)
=[] G +vfalzy)

jed'(y)

Furthermore, by setting the constant My large enough, we have by (HKB(d,,d,))
that for all z with d(z,y) < R, pa(z,y) < csA~%/% for some constant cg. In
particular this holds for all y € S and all z € | J S}, where the union runs across all
Sf for which there exists j € J'(y) such that z; € S!. Setting now v = 408ch AL/ dw
gives

sup Yfa(z,y) = sup YApa(z,y) < sCryA~ P/ < g/4, (I1.4.5)
z€SR(y) xzeSR(y)

For this value of v and using that for |z| < % we have by Taylor’s expansion that
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log(1 + x) = = — 22, it further holds that

[T O+vfat@iy)™ < [[ epf{-—vfale;.v)d—vfalz;.y)}

jed'(y) jeJ'(y)

< eXp{ - (1 — sup va(w,y)) > ’YfA(xj,y)}

z€BR(y) jed'(y)
(I11.4.5)
< eXp{ —y(1—g/4) )] fA(irj,y)}-
jeJ'(y)
We claim now (and prove below) that
D1 falzjy) =00, (1 &/2), (I11.4.6)

jed'(y)

which then gives us that

Q(y e Sk : Hy(y) < 0ry(1—2)) <exp{yA,0(1 — &) — (1 —&/4)6\,(1 — £/2)}

<
< exp{—y0A,E/4}.

Using the definition 7 then yields the claim. We therefore proceed to prove (I11.4.6).
For each S} and each particle z; € S, let 2; € S} be such that fa(a},y) =
max, gt fa(w,y). Then, we can bound

> fainy) = Y (fal@)y) = |fal@)y) = fale;y)]) -

jed'(y) jed'(y)

We will look at the first summand: for each Sf, it holds that

Z fa(x ],y maXway Z 1

jeJ' (y) i€’ (y)
JJJGSZ $J€Sl

which by definition of J’' can be lower bounded by

maXfA w,y) [Z oA ] > Z X fa(z,y).

zeSl Z€S£

Set R(y) to be the set of all sites z of Sk for which d(z,y) < R. Note that the
right side of this equation is always positive since R is by its definition in (II1.4.4)
proportional to [ and M3 is assumed to be large. Furthermore, note that if z € R(y)
then for all particles x; with 2, = 2 and j € J' we have that j € J'(y). It also holds
that Afa(z,y) = Afa(y, z), which combined with the preceding calculation yields
for each S

. falhy) = > A.falzy)

jeJ'(y) zeR(y)
=Ny, Y, fa(y,?)
z€R(y)
> A\ P(Conf(R, A)).
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By Lemma II1.2.5 we have that there exists constants c; and cg so as to lower bound
the previous expression by

1
57y (1 — ese=es (&) ™7y 5 60, (1 — /),

where the last inequality holds by setting R (cf. (I11.4.4)) through M3 large enough
with respect to c5 and cg.

It remains to find an upper bound for the second addend Zje Ty |fA( X y) —
fa(zj,y)|. Let I be the set of all i for which Q! contains a particle x] from the set
(:L‘j)jeJ’(y)' Then

1 fal@hy) = fal@nnl =Y, > |fal@)y) = falzs,y)l
jeJ' (y) el jeJ’é@é)

=X D Ipa@)y) — pala;,y)l.
el JGJ’ )
acJGSl
Since the heat kernel p;(z,-) is caloric, the parabolic Harnack inequality and conse-
quently Proposition I11.4.1 with rgw = A can be applied. We can also use the upper
heat kernel bound (HKB(d,,d,,)) to the resulting supremum term. Writing C5 for
the constant from the application of Proposition I11.4.1 and Cg for the constant
resulting from upper bounding the supremum term, we get

Cgl®
WYY ca

iel jeJ'(y)
CIZJESZ

WA
<A Z Z G “AO/dw oy Cs A/
i€l ges! (I11.4.7)

= 00y C6C5 Y| > Agl® AT FO)/dw

1€l meSé

where the last inequality follows from the assumption that A > Ay, the definitions
of Ay and R, and by setting Ms sufficiently large with respect to the constants
Cg, C5, Cyol, and Cy. Combining all of the stated inequalities completes the proof.

O

The statement of Proposition I11.4.3 does not depend on particles located outside
of the region Sk at time 0. However, since the particles can move in an unrestricted
way, repeated applications of the theorem across multiple regions of time and space
(cf. Sections II1.2.2 and II1.3) still exhibit long distance correlations that we would
like to avoid. To that end, we will prove a version of Proposition 111.4.3 also for
particle systems conditioned on having the particle movement confined (cf. Lemma
I11.2.5). The main difficulty is that by conditioning the particles in this way, their
transition probabilities do not necessarily satisfy (HKB(d,,d,)) and by extension
(PH(d,)) any longer. It turns out however that these probabilities are still quanti-
tatively the same under some mild modifications of the assumptions, which we prove
in the following lemma.
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Lemma II1.4.4. Let A\, satisfy (111.2.1). Then there exist constants cg and cig
so that the following holds. Consider a region S; with | > 0. Let A > col®™ and
p = cro(Alogd = (A) V4w, Consider a random walk Y that moves along G for
time A conditioned on being confined to B, during the entire time interval [0, A].
Let x,y € S; with x being the starting point of the random walk, and define

9(x,y) := Pe(Ya = y|Y is confined to B, during [0, A]).

Then there exists a constant C' > 2 such that for x,y,z € S; we have

9=.y) 9= Y| _ g A—(d+0)/du
)\y )\y b .

Remark II1.4.5. It is important to note that the above bound is of the same form
as the bound we used in (I11.4.7) for the unconditioned random walk. Consequently,
we will use this lemma to prove a conditioned version of Proposition 111.4.3 without
having to directly use (PH(d,)), which as mentioned above might not necessarily
hold in this case.

Proof. Denote by pg(p) the probability that a random walk started at x is confined
to B, during [0, A]. Using Lemma III1.2.5, we have for some positive constants
cs5, cg that

1
1 —pe(p) < cw*%’(pdw/A) TT

Next, writing h(z,y) := Pp(Ya = y|Y exits B,j(x) during [0, A]) and fa(x,y) =
P.(YA = y), we can write

From this, we can immediately obtain the bound

1

We can then write

9(z.y) 9=y _4 9z, y) _ 9(z9)
)\y )\y {g(z.y)>g(zy)} >\ )\

+ Lig(a)<g(z )} (g Ay : y)
<1 (fA(:E 'Y) fA(z Y) N h(z,y)(1 —m(ﬂ)))
{9(z.y)>9(2,9)} Aol A,pa(p) pE(p)Ay

fa(z y _ falzy) | h(z,y)(1 —pe(p)
T Howm<on) (A PE AypE(p) PE(P)Ay )
_ lpaly;z) —paly, = + max{h(:v y), h(z,9)}(1 — pE(p))
h pE(p) pE(P)Ay '

(I11.4.8)

Next, observe that we can write h(z,y) as Ex[fa—-(w,y) |7 < A] with 7 being
the first time Y exits B,»(x) and w the random vertex at the boundary of B(z, p/2)

where Y is at time 7. Since the weights X, , satisfy (II1.2.1) we can bound M%iw’y)
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from above by some positive constant C7. This is because either A — 7 is larger
than d(w, y), which allows us to use (HKB(d,, d)), or A —7 is smaller than d(w, y),
so that fa(w,y) is bounded above by the probability that a random walk jumps
at least d(w,y) steps in time A — 7, which is small enough since d(w,y) is large.

Therefore we have that max{h(x’y;)’ggf)’)?’;\)j(lfp 5) s at most Cg. This together with

the bound on 1 — pg(p) yields

max{h(z, y);)f;((;)?i\l}(l —pe(p) _ g;(pc; expl{—co(p™ /A )TET)

< 08 * Cy
pe(p)

exp{ — cG(Cfg’%l logQ(A))}.

We now return to (I11.4.8). By setting cj¢ (and by extension p) large enough and
using the bound for 1 — pr(p), pe(p) can be bounded from below by 1/2. Applying
Proposition I11.4.1 to the term |pa(y, z) — pa(y, 2)|, using (HKB(d,, d,,)) to bound
the resultin% supremum term, and finally setting c1gp even larger if necessary for

exp{—cs(ciy " logy(A))} to be smaller than A~%/%w concludes the proof. O

We now state the version of Proposition I11.4.3 for particles that are confined.
Note that the statement remains essentially unchanged, other than having a stronger
condition on K — K’ than before. This is also the statement of the result that we
will rely on to conduct our multi-scale analysis (cf. Lemma I11.6.1).

Theorem II1.4.6. Consider elliptic conductances A,y satisfying (I11.2.1) for some
Cy > 0. For each My > 0 there exist Mo, M3, My, © such that the following holds.
Let K > 1 >0 and € > 0. Given a region Sk tessellated into sub-regions Sf of
side length | such that at time 0 there is a collection of particles where each sub-
region S; contains at least (52%% Ay > My particles for some 6 > 0. Let A and

K’ > 0 with
4
A > Ag:= Myl¥e"o (I11.4.9)
K — K' > Ms(A(log, A)de—1)an, 111.4.10
g2

and denote with Y; the location of the j—th particle at time A conditioned on being
confined to S(x_g+y during [0, A].

Then, there exists a coupling Q of a Poisson Point Process = with intensity
measure 6(1 — &)\, for y € Sgr and the family (Y;); such that

dy
QECS (V))) 21— Y e MidnZat (IT1.4.11)

yESK/

Proof. Using Lemma I11.4.4 and the upper bound on g(x,y) from its proof when
setting ~y, the proof proceeds the same as in Proposition II1.4.3. The independence
from the graph outside of Sx_f) follows from the fact that we consider only
particles which are confined in B _g+ and ended in S, so they never left Sk
during [0, A]. O

II1.5 Multi-scale setup

In this section we define the multi-scale set-up for the construction. For some (large)
k € N, we will define for each 1 < k < k cells at scale k: in the fractal graph, spatial
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tiles will be denoted by Sj(¢) and indexed by some ¢ € B? the time line R will be
subdivided into intervals Tk (7) and indexed by 7 € Z. The space-time cells Rg(¢,7)
will simply be the Cartesian product Sk (¢) x Tk (7). We will also need to introduce, for
each scale k, extensions of the cells which do not need to be of the same scale. Those
cells will be necessary to work with the dependencies between adjacent cells. Scale
1 will correspond to and agree with the first tessellation introduced in Definition
II1.2.1. The value k instead is the largest scale that we will consider. The reader
might want to think of x to be fixed for the moment. It will be determined later in
the proof of Proposition I11.6.5: roughly speaking, if the paths we consider have to
leave the region B;(0) x [—t,t], then we will consider k = O(4/log(t)).

IT1.5.1 Multi-scale tessellation

Space tessellation. We start by defining the space tessellation on the graph G.
After the full definition of all relevant tiles and intervals and a statement of useful
properties, we refer for the end of this paragraph for a short motivation and intuition
regarding the roles of the different tiles introduced here.

Let € € (0,1) and ¢, m, a be positive (large) integers which we will fix later. Set
by := ¢ —m and let

b i=a(k — 1) +m(k —1) + L. (I1L.5.1)

Define the space tiles at scale k € N indexed by « € B? (cf. (I11.2.3)) as the subgraphs
of G¢ with vertex sets
Sk(1) = 2% + AF (I11.5.2)

and induced edges, which are well-defined in view of (II1.2.4). We say that two cells
Sk(t1) # Sk(t2) are adjacent if d(Sk(t1), Sk(t2)) = 0. It is easy to verify that

Sk(1) has side length of 2% (I11.5.3)
Sj+1(1) is the union of exactly 2% r+170) — (4 4 1)29k=aF+m tileg of scale k.
(IIL5.4)

Next, we introduce a hierarchy of the space tiles. We define for k,j > 0 the
function ﬂ,(j ) by

W}(Cj)(b) - - Sk(t) € Sk i(V), (IT1.5.5)

and we say that Sp/ (/) is an ancestor of Sk(¢) (or equivalently that Sk(¢) is a de-

scendant of Sy (¢/)) if ﬂ]ik/_k)(L) = /. Note the map is well-defined by (I11.5.5), and
that any cell is also a descendant and an ancestor of itself.

We define for £ > 0 and b(k) := ak>t 8w m2™ the base, the area of influence,
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and for k > 1 the extension, the support and the extended support as

Shase() .= U Si(1), (I1L.5.6)
5 d(Sk(),Sk (1)) <b(k)
Sinf(,y .= U Si(), (I11.5.7)
V5 d(Sk(V),5(1)<2b(k)
SE%E(,) = U s, (I1L.5.8)
ro (D) oy
Jomp (V)=
SEP (1) = U Spa1(t), (II11.5.9)
V5 d(S1 (V) Sk (m (1)) <m
S (1) 1= U S (V). (I11.5.10)

U d(Spr1 (), (m) () <Bmt 1

The choice of b(k) will be made clear later in (II1.6.3). Recalling the value 7 from
Definition I11.2.4, we also assume that b(1) > 7, which holds if we choose a large
enough. See Figure I11.4 for an illustration of how the different tile extensions relate
to each other.

Figure I11.4: Tllustration of SP2¢(;) and S$** (W%l)(b)). The thin line triangles repre-
sent the many tiles S; of scale 1, the thick black line triangles are tiles Sy of scale
2. The black triangle represents the specific tile Sj(¢), while the dark blue region is

Sbase(;) and the light red is S§¥(m; (1 )( ). Sinf(1) is not represented in order to keep
the image legible.

We now state some properties of the above defined sets and the relations of the
different tiles. It is easy to check that for all (k,:) € Ny x B¢ it holds Sj() <
Spase(,) < Sinf(,) and

S]l?ase( ) c Sgi%(ﬂ—l(q )(L)) (111.5.11)

Since b(k) is increasing in k, it also holds that

SH1) < S (0).
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Further simple properties of space tiles can easily be inferred: we will use later that
SPase(,) contains at most Cyy b(k)® tiles of scale k; and (IT1.5.12)

S4(1) contains at most Cypr(b(k — 1) + 2%)% tiles of scale k — 1,  (IIL1.5.13)

which both follow from (Vol(d,)).

We now look at the properties of the larger scales. Comparing the exponential
growth of Si in (II1.5.4) with the polynomial growth of b(k) in (II1.5.7), one sees
that for a,m large enough, for all £ and ¢, it holds that

Sinf(1) < SP™ (). (I11.5.14)

Remark IIL.5.1. The assumption b(k) > 7 implies that Sb®°(;), and a fortiori
S$¥t(1), contains the super-tile S7(¢) defined in Definition I11.2.4.

We now quickly motivate the introduction of the different tiles. The tiles Si(¢)
constitute the basic tiles at each scale. The introduction of the multi-scale argument
suggests that we will introduce a notion of goodness for every scale k: this is related
to Sp°(.) and SPXY (ﬂgl)(a)), as well as to the events DP*¢ and D which we are
going to define in (II1.5.28) and (II1.5.27).

Furthermore, S™ which is defined as SP*¢ but with a slightly larger border, will
help us to keep tiles apart: if for two tiles the areas of influence do not intersect, we
will call these tiles well-separated and we will be able to treat the tiles as essentially
independent. Finally, we introduced S5"P and S¥SUP so that tiles whose (extended)
supports intersect each other, even if otherwise well-separated, are still close enough
to be part of a very general kind of path, the ScD-path (see Definition I11.5.5).

Temporal tessellation. We now turn to the temporal tessellation of R. The tes-
sellation itself is easier than the previous one introduced for space, and it corresponds
to the one in [GS19a]. Define for k > 2

Br = Conix(E2) (206-1) ™ (IIL5.15)
where Ciix is a constant larger than 8%/ © My, © and M, are constants from Theorem
[11.4.6 and € is from the beginning of Subsection III1.5.1. Set as well § := ) :=
Chnix %, assuming m large enough so that Cpix = 84/ V1, still holds. On first
reading, one should not be distracted by the constant Cpix or the fine-tuning power
k®© in B, and instead focus on the leading term 2%-1 which is raised to the power
dy. As discussed before, the term d,, represent the power scaling between time and
space from the perspective of the random walkers. That is a major difference from
the lattice Z? where the “walk dimension” d,, equals 2 for every dimension d of the
lattice. Note in particular that ratios between two consecutive time-scales satisfy

ﬁ;ﬂ — (k£L1y8/6 (g20k—3atm)du, (I11.5.16)
k

Define the time intervals at scale k € N as the intervals
Ti(7) = [7Bk, (T + 1)Bx), TELZ, (I1L.5.17)

and we say that two intervals Ty (71) # Tk (72) with 71, 79 € Z are adjacent if |71 —72| <
1. We now introduce a hierarchy over time, which is more complex than the spatial
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one. While for space, a parent contains its children and descendants, since “time
flows forward”, parents with respect to time will still have larger intervals than
their children, but will lie to the left (i.e. “before”): see Figure II1.5. Formally, let

79 (r) = 7, and for j > 1 define

W)y =1 it A1) By € Teay (7' + 1),

see Figure I11.5 for visualization. In analogy with the terminology introduced in the
spatial setting, we say that Ty (7') is an ancestor of T (7) or equivalently that T (7)
is a descendant of Ty (7') if yl(gklfk) (1) = 7’ and it still holds that any time interval
is also a descendant and an ancestor of itself. Note that due to the “time drift” it

does not contain its own descendants of any scale as subintervals.

YW (1) ¥ (1) B,
scale 3 ' \A”(vs—l)\l ; v (1)
weors . ([T TR

(t-1)p—/\ 1
-1 B

Figure II1.5: Temporal tessellation and its hierarchy structure. Image from [GS19a).

As we did for space, we define for each scale k larger intervals that we will need:

T (r) = (1 (7)Bo, (7 + 1 A 2)B1], (I1L5.18)
Tt (r) = 17 (1), (7 + 2)B4), (TIL.5.19)
8
TSP(r) = U Te1 (M (7) = 3 +4), (IT1.5.20)
12:60
TP (r) o= | Tha () (7) — 12 + ). (IT1.5.21)
i=0

We now claim and prove that the time analogue of (III.5.14) still holds true.

Lemma II1.5.2. Let Ty/(7') be a descendant of Ty(7), and let Ty (7") be adjacent
to Ty (7"). Then for a,m large enough

T (7") = T, (7).

Proof. Recall that T (7") < [fy,(;)(T”)Bk/H,(T” + 2 A n)B], the definition of

T ()= (0 (1) = 3)Bir1, (1 (1) + 5)Br1)), in (I115.20), amd |7 — 7/| < 1 by
adjacency.

It is easy to verify the inequality (7,(61)(7) —3)Bry1 < ’}/,(;)(7', — 1)B 41, S0 we
concentrate on the right delimiters of the intervals. To prove the other inequality,
note that for any interval Ty (7'), we have 7/ < ’YIE;})(T/)/B,I{;/J,_l + 2841 so iterating

this k — k&’ times we obtain

k—k'

' B < %(jfk )(T/)ﬁk +2 Z Br1j-
j=1
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We can bound using that &’ > 1

k—kK k

2 Brr4j < Z Bj = Cmixzkl (‘12)4/@2%@1 = Chix c—4/© Zk: j8/@2dw(a(j—2)2+m(j—2)+é)
Jj=1 =2 j=2

j=2

which by induction is smaller than
Coi €~ YO218/09dw(alk=12+m(k-1)+0) _ 93
Hence, we have

(T"+2vn)By <(T'+1+2v 77)5/%’

kK
< s +22ﬁk'+] (1+2vn)by
j=1

< 7Bk + 48k + (1 +2 v )by,
and since 40, + (1 +2 v n)Br < (5 + 2 v )Pk < Pr+1 for a,m large enough, this is
further smaller than

Bk + Bry1 < ('Y/r(f )( ) +5)Br1,

proving the lemma. O

Space-time tessellation. We can now define the space-time tessellation at dif-
ferent scales via the Cartesian products

R(L, )ZSk()XTk( )
Rll’l (L, ) mf( ) « Tll’lf( )’
Ry (1, 7) := S (1) x T (),

R (1,7) 1= S (1) x T (7).

\]

\]

We say two cells Ry(t1,71) and Rp(t2,72) of same scale are adjacent if either
d(Sk(t1),Sk(t2)) = 0 and 71 = 79, or else if 11 = 12 and |73 — 72| < 1. We extend
the mappings 7 and  to a hierarchy of space-time cells. We say that Ry(¢,7) is an
ancestor of Ry (J/,7') if Sk(1) is an ancestor of Sp/(/) and Ty (7) is an ancestor of
T (T).

We observe, combining (II1.5.14) and Lemma II1.5.2, for any cell Ry (¢, 7) and
any cell Ry (", 7") which is adjacent to a descendant of Ry (¢, 7) of scale £/, it holds
that

RV ") < RY™ (1, 7). (I11.5.22)

In particular, for any two cells Ri (¢, 7) and Ry (¢/, '),
RMu7r)nREN( T3 = R™17)n Ry, 7)) # D, (I11.5.23)

which means that if the areas of influence of two cells intersect then also the supports
intersect.

Note that we defined the extended supports (II11.5.10) and (II1.5.21) in a way
that it holds for two cells Ry, (¢1,71) and Ry, (2, 72) with ki < ko,

Ry®(,m) n B2, m) # @ = Ri>™(i,m) 2 BypP(in,m),  (1IL5.24)

which means that if the supports of two cells intersect, then the bigger extended
support contains the smaller support.
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II1.5.2 Fractal percolation

We now introduce several events to define new notions of goodness for each scale
k. Having multi-scale levels of goodness is the link to the theory of fractal percola-
tion. We will provide details about the analogy and an intuitive explanation of the
following definitions at the end of the subsection.

Let € > 0 as in Theorem II1.2.12, we define the sequence

=
2k2’

Recalling the definition of S and S°** in (II11.5.6) and (I11.5.8), as well as the par-
ticle system under consideration (see Section I11.2.4), define the following indicator
random variables:

01 := ¢, Opy1 1= O k=1 (111.5.25)

if all tiles Sg_1(¢/) € Sk(¢) contain at least

Dy(e,7) =1 (1 — Dk),uo Zyesk_l(u) Ayparticles at time 73,

(I11.5.26)
if all tiles Sy_1 (/) € SP¥*(1) contain at least
(1 — Ok),uo Zyesk,l(u) Ayparticles at time 7/,

that are confined during |7, (T + 2) 5]
inside B,

DX (1,7) =1 (I1L.5.27)

(k—1)2%—1>

if all tiles Si(1) S SP2°(1) contain at least
(1 — ak+1)ﬂo Zyesk(L') Ayparticles at time 7](€1)(T)5k+1

that are confined during ['ylil) (7)Br+1, 7Bk]
inside Byt -

Dbase 1,T) = 1 I11.5.28
k

Since Sy < S, trivially D$*(.,7) = 1 implies Dj(:,7) = 1. Noting that
Spase(,) < Sg’jrtl(wél)(b)) as mentioned in (II1.5.11) and that [’y,(cl)(T)BkH,Tﬁk] c
[’y}gl)(T)Bk+1, (vlgl)(T) + 2)Bk+1] we have by definition

et (W, V) =1 = D7) =1 V¥(k,7)eNxBxZ,
(I11.5.29)
and the goal of Lemma II1.6.1 below will be to show that with exponentially large
probability, {DP#¢(,,7) = 1} implies {D$* (s, 7) = 1}. To this end, we define

A1(e,7) = max{lg( ), 1 — DY (1, 1)}, (II1.5.30)
Ag(e,7) := max{D{* (s, 7), 1 — DP*°(s, 7)}, (IT1.5.31)
Ag(t,7) := D1, ), (111.5.32)
and .
A7) = [ [ AV 0,4V (7)), (I1.5.33)
k=1

The first-time reader should think that Ag(¢,7) = 0 intuitively indicates that “in
the chain of space-time cells that are ancestors of Rp(t,7), the particles misbe-
haved at scale k”: more precisely, Ax(¢,7) = 0 if, even despite the favorable event
Dgase(b, 7) = 1, according to which the particle were in a good state inherited from
higher scales, it resulted in D (¢, 7) = 0. As already mentioned above (II1.5.30),
we will prove that the previous situation happens with small probability in Lemma
I11.6.1.
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We can now define the notions of goodness that we will consider. Recall that we
defined at the very start of subsection I11.2.5 that

a cell Ry(¢,7) is bad if 15, ;) = 0. (I11.5.34)
We consider now a stronger notion of bad cells for any scale 1 < k < K :
a cell Ry(¢,7) is multi-scale bad if Ap(c,7) = 0. (IT1.5.35)

Note that for the scale 1 this definition is stricter then the definition of being bad:
as a simple consequence of (II1.5.30), a multi-scale bad cell is also bad. Finally, we
say for scale 1 cells that that

a cell Ry(¢,7) has bad ancestry if A(t,7) =0, (111.5.36)

or equivalently that the cell has a multi-scale bad ancestor.
In particular, a bad cell of scale 1 has bad ancestry, as we prove in the following
lemma.

Lemma II1.5.3. For a cell Ri(t,7) it holds 1, -y = A(t,7). Equivalently, a scale
1 cell which is bad, in particular has bad ancestry.

Proof. Suppose that A(t,7) = 1. By (II1.5.33), it therefore holds for all 1 < k < &,
that
k—1 k—1
Ax(m 0. T ) = 1

In particular Dt (wg'{_l)(a), 7£H_1)(T)) = 1, so applying the property in
(I11.5.29) we obtain Dbase (755_2) (¢), 7£K_2) (1)) = 1. Since A1 (W%H_Q) (¢), ’yiﬁ_z) (1))
1 and it is defined as a maximum, the first argument need to be a 1, and we obtain

ex K—2 K—2
Dext (7‘(‘% )(L),’)é )(7')) =1.

rk—1
Repeating this argument for all scales down to scale 1, we need the first argument
in the maximum of A;(¢,7) to be 1, i.e it must hold that 1, -y = 1. O

Intuition. We conclude this subsection by explaining the analogy of our setup to
fractal percolation, whose framework has inspired this proof. For simplicity, we will
explain the arguments on R? instead of the Sierpinski gasket.

Fix some value r € N. Consider the unit hyper-cube and subdivide it into r?
cubes of side length % Then, for some value p € [0, 1], declare them open indepen-
dently with probability p and closed otherwise. Then, subdivide again each of the
open cubes into 7% cubes of side length %2, and each of the second-level cubes is
open with probability p and closed otherwise. Note that each level-1 cube that was
closed is not further subdivided and so it is entirely closed. One can then repeat
the above procedure with further subdivisions, see Figure I11.6. This recursive con-
struction introduces correlations into the system that one would not see in standard
Bernoulli percolation - whether two different cubes of some arbitrary size are both
simultaneously open is heavily influenced by how far back in the subdivisions their
common “ancestor” cube that was open is.

The similarity with our case is straightforward. To obtain A(:,7) = 1 we need a
cell and all its ancestors to be multi-scale good, similarly to the fractal percolation
where the cubes must be open at every level-k in order to be open at the last and
smallest level. In view of Lemma II1.5.3, a cell with A(¢,7) = 1 is then good, in the
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(a) (b) (c)

Figure II1.6: An example of fractal percolation in R?. Image from [GS19a].

sense below Definition II1.2.8. It may seem now that directly performing a single-
level percolation at scale k& = 1 might be easier, but unlike the fractal percolation
described above, cells in our setting have further dependencies beyond the ones
introduced by the subdivisions. In particular, note that knowing a cell of some scale
k is bad reveals information not only about its descendent cells, but also any other
cells that are spatially and temporally close enough to be affected by the behaviour
of the particles from the cell in question. The other difference is that the percolation
parameter p will not be kept constant: in our case the probability to be a multi-
scale good cell P(Ag(¢,7) = 1) is higher at larger scales, as we will prove in Lemma
I11.6.1. The proof there involves the events DF** and D};ase defined above in (I11.5.27)
and (I11.5.28), and in particular the strategy is as follows: assuming the favorable
event D§**(s,7) = 1, using the mixing Theorem IIL.4.6, if we restrict to a slightly
smaller cell (so from S&(1) to SP#¢(,)) and “wait a bit”, we are able to resample
the particles according an independent Poisson point process with only a slightly
smaller intensity. This resampling allows us to essentially treat the configuration of
the particles in the space-time cell in question as independent of the configuration
elsewhere, thus roughly recovering the fractal percolation setup outlined above and
taking care of both types of correlations mentioned at once.

I11.5.3 Paths of cells

We next define the two notions of “paths of cells” that we will consider. As we
will see momentarily, both notions are strongly related to d-paths from Definition
II1.3.1.

Recall that, in line with Definition II1.2.2, two cells Ry (t1,71) # Ri(t2,72) of
same scale are called adjacent if either d(Sk(¢1),Sk(t2)) = 0 and 71 = T2, or ¢1 = 12
and |7 —72| < 1. We now extend this to cells of different scales. Two cells Ry, (¢1,71),
and Ry, (t2,72) with scales k; > ko are called adjacent if Ry, (¢1,71), is adjacent to
Ry, (WZ;_]” (2), 7,1521_]“2 (2)). Note that in particular, a cell is not adjacent to any of
its ancestors.

We say for two scale 1 cells Ry (¢, 7) and Ry (¢, 7") that Ry (¢, 7) is diagonally con-
nected to Ry(//, ') if there exists a sequence of adjacent cells { Ry (t1,71), .., R1(tn, ™)}
of scale 1 such that Ry (¢, 7) = Ri(t1,71), forallj e {1,...,n—1}, d(Ri(¢j+1, Tj+1), Lo) <
d(R1(¢j,75), Lo) and Ry(in,T,) is either equal or adjacent to Ry(:/, 7). When re-
ferring to the cells Ri(¢j,75), j € {1,...,n — 1} (and Ry(tn, ) if it differs from
R1(/, 7)) we will call them diagonal steps.

For two cells Ry, (t1,71) and Ry, (12, 72) of not necessarily different scales we say
that Ry, (t1,71) is diagonally connected to Ry, (12, T2) if there exist two cells Ry (71, 71)
and R (T2, 72) of scale 1, respectively descendants of Ry, (t1,71) and Rk, (2, 72), so
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that Ry(71,71) is diagonally connected to Ry (72, 72).

Definition ITI.5.4. We define a D-path as a sequence of cells of arbitrary scale,
where each cell is either adjacent or diagonally connected to the next cell in the
sequence.

The reader will note the analogy to the definition of d-path in Definition II1.3.1.
Fix a cell v = Ry (ty,7y) € L1 and define for any (large) ¢ > 0

Q1 (v — t) (I11.5.37)

the set of all D-paths of cells of scale 1 for which the first cell of the path is v and
the last cell is the only cell not contained in B;(S1(ty)) x [—t + Ty, Ty + t], where

Bt(Sl(Lv)) = Um€S1(LU)Bt(x)'
The next notion of path involves instead cells of multiple scales.

Definition IT1.5.5. We define as ScD-path (support connected with diagonal paths)
a sequence of cells of possibly different scales { R, (¢t1,71), ..., R, (t2,72)} for some
z € N, with the following properties:

e each pair of cells is well-separated, meaning that their areas of influence do not
intersect; i.e. for any pair Ry (7,7), R; (i, 7)

RM@,%) n RM(0,7) = &,
e two consecutive cells Ry, (¢, 7;) and Ry, ,(¢j1+1,7j41) are either
+ adi ‘- REsup( ) ')ﬁRESHp( ) ) )¢®
support adjacent: Ry (14, 7 kjp1 \Li+1s Tj+1

or

there exist two scale 1 cells, respectively
subsets of the extended supports of Ry, (¢5,7;)
and Ry, (tj+1,7j+1), so that the first cell is
diagonally connected to the second.

support connected with diagonals:

For v e L and ¢t > 0, we define
QP (v —t) (I11.5.38)

as the set of all ScD-paths of cells of scale at most k so that the extended support
of the first cell of the path contains v and the last cell is the only cell whose extended
support is not contained in B.(S1(ty)) X [—t + Ty, Ty + t] with ¢, 7, as before.
Define the bad cluster around v € L as

Ky, := {R1(7,7): there exists a D-path of bad cells from v to Ry (7,7)}. (I11.5.39)
We can relate D-paths and ScD-paths via the following technical lemma.
Lemma IT1.5.6. For anyt > 0 and v € Ly, it holds that

IP’(HP € Qi (v —t) of cells with bad ancestry)
<P(AP € QP (v — t) of multi-scale bad cells).
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Remark III.5.7. Note that for a path P € Q(v — t) of cells with bad ancestry,
the property of having a bad ancestor is required only for the cells of P and not
for the cells constituting the diagonal steps in the diagonal connections of P. This
is in line with Definition II1.3.1, where diagonal moves of d-paths do not impose
any requirements on the state of the cells. The same is of course true also for
P e QP (v — t), where being multi-scale bad is not required for the cells constituting
diagonal connections.

Proof. We split the proof into two steps. Defining (v — t) as the set of D-paths
of cells of scale at most «, where the first cell is an ancestor of v and the last cell
is the only cell whose support is not contained in B;(S1(ty)) X [—t + 74, Ty + t], We
prove in the two steps that

P(3P € (v — t) of cells with bad ancestry)
< P(3P € Q. (v — t) of multi-scale bad cells)
< P(3P € ' (v — t) of multi-scale bad cells).

Step 1. Consider a D-path P = (Rl(bj,Tj))jzl € Q(v — t) of cells with

bad ancestry. By definition, for each cell of P it holds that A(cj,7;) = 0, so
k-1 K —1

there exists k; such that Ay (m” (5),7" (75)) = 0, so that Ry (7;,7;) :=

J

k' —1 K —1
Ri,(m” (¢5),m’ (7)) is a multi-scale bad cell. From the sequence P’ :=
{R%j (Zj,75)};21 construct a subsequence P := {Rk;((l,;{ \ T )};‘l1 taking in the same

order of the cells from P’ but removing all cells indexed by j which are the descen-

dant of some other cell in the path P’ with index jp, with jo < j. Furthermore,

if there is a cell Rg_(fj,?j) before the last one whose support is not contained in
J

Bi(S1(ty)) % [—t + Ty, Tw + t], we remove from P” all following cells.

We claim that P” € Q,(v — t), which will conclude step 1. This path starts
with an ancestor of v and by construction the last cell’s support is not contained
in Bi(S1(ty)) x [—t + Ty, 7w + t]. Note that every cell in P has exactly 1 ancestor
in P”. Consider now two cells Ri(¢j,7;) and Ri(tj+1,7j41) with different ancestors
in P". If Ry(¢j,7;) is diagonally connected to Ri(tj+1,7;+1), then the ancestor of
R (v, ;) is either diagonally connected or adjacent to the ancestor of Ry (tj41,7Tj+1);
if Rq(¢j,7;) and Rq(tj41,7j4+1) are adjacent, then their ancestors are adjacent, since
two non-adjacent cells cannot have two adjacent descendants. Finally, every cell of
P” is multi-scale bad by how P” was constructed.

Step 2. We now prove the second inequality, that is, starting from P” we can
obtain a path P of multi-scale bad cells which are well-separated and in which every
sequential pair of cells is either support adjacent or the first cell of the pair is support
connected with diagonals to the second.

First define a sequence L of cells from P”, but where the cells are ordered in the
following way: we first order cells by scale, where cells of bigger scale come first, and
within cells of the same scale we maintain the original order of P”. We construct P
and create a relation between P” and P in the following way. Following the order
of L, and in particular starting with scale k, we perform the following operations.
Assuming the first cell of scale k in the list L is Ry(Z,7) we

e add Ry(i,7) to P;

e remove Ry(i,7) from L;
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) A possible D-path with adjacent and diagonally connected cells.
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) A D-path of multi-scale bad cells (in red
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Figure II1.7: From D-paths to ScD-paths. Note that this example is on G without
the time component in order to make the visualisation easier. In practice, the
procedure is conducted on cells of G x Z.

e associate Ry(i,7) in P” with itself in P;

e remove from L all cells R (7, 7) which are not well-separated from Ry (i, 7) and

7)
associate them all with Rk(i 7)in P.

Repeating this procedure until L is empty, we obtained a sequence of cells P,
and all cells in P” are associated to some cell in P. Before proceeding, we reorder p
according to the ordering in P”, thus making P apath (which we will verify below).
In particular, a cell v in P appears before a different cell u of P if according to the
ordering of P”, there exists a cell of P” associated to v that appears before any cell
of P” associated to u. Since the multi-scale bad property follows trivially from P”,
we are only left to show that

Pe Q5% (v — t). (I11.5.40)
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First, let Ry (i1,71) € P be the cell which Ry (if, 1) € P"is associated to. In the
non-trivial case, R (i1,71) is not associated to itself, so R (i1,71) and Ry (o7, 77)
are not well-separated and therefore their areas of influence intersect. By (I11.5.23)
their supports intersect as well. By (II1.5.24), Rgfup(il, 71) 2 Rzl,ll,p(b'l’, /), and since
Ry (¢1, 71') contains v by definition of P, we obtain that Rgfup(il, 71) contains v as
desired.

Secondly, we can argue in the same way to show that the extended support of
the cell which Ry, (2., 7/,) is associated to is not contained in the space-time ball
Bi(S1(ty)) % [—t + Ty, 70 + 1]

Finally, we need to show that sequential pairs of cells of P are either support ad-
jacent or the first cell of the pair is support connected with diagonals to the second.
Consider Rk]_ (2j,75) € P, and let Rk»j,“(bj//, 7;j») be the first cell of P” (in the original
ordering of P") which is associated to R,;Cj (£j,75). Next, take Ry, (tjn—1,77-1) €

P" and let R 1(Ej_1,%j_1) e P be the cell which it is associated to. We claim

i

that Rkj’(ij,fj) and R];j_l(ij,l,f'j,l) are either support adjacent or Rifj—l is sup-

port connected with diagonals to R; (ij,7;) based on whether Rkj//(bj//,’]'ju) and
7

Ry, (tjr—1,7jn—1) € P" are adjacent or whether Ry,  (tjn—1,7j7—1) is connected

with diagonals to Ry, (e, Tjn).

If Ry, (¢jr—1,Tjn_1) and Ry, (tj», jn) are adjacent, we can suppose without loss
of generality that k;»_; < kj», and by definition there exists a cell Rkj,, (Tir—1,Tjr—1),
which is an ancestor of Rkj,,il(bj/lfl,Tjufl) and adjacent to Rkj,,(bj//,Tj//). Hence
applying (II1.5.22) twice we obtain that

Ry, (o, 7jn) € R® (T -1, Fyr1)
and (IT1.5.41)

inf sup (~ ~

R, (jr—1, 1) © By ) (Gr -1, Tjr—1)-

Since Ry, (¢jn,7jn) is associated to R; (ij,7;), they are not well-separated and thus
J

their areas of influence intersect. Therefore (II1.5.41) implies that R} > (Tjn_1,7jr_1)
J
intersects Rg;_f(ij,%j) and by (II1.5.22) intersects Rzl;p(ij,f'j); since k > kj», ap-

plylng (111524), we have R];ESUP(ZJ,'%]) > RZ?S(Zj”—lgﬁ”fl)Q R}CI;'{/,1 (Lj”flv’rj”fl)

where the last inclusion is due to (IIL5.41). Since the cells Ry, (¢jr—1,7jn—1)

and R,%j_l(ij,l,%j,l) are not well-separated, repeating the same argument below
Esup . .

(111540) we have R]%jéff(Lj_l,Tj_l) 2 R21]111771 (Lj”—lvTj”—l) 2 R}Cr;flil(l’j”—h,rj”—l)?

where the last inclusion follows from (II1.5.22). This shows that the two extended

supports intersect.

If instead Rkj,/_l(bj//_l, Tjn_1) is connected with diagonals to Ry, (tjn,Tjn), then
by definition they contain respectively two cells Ry(Tjn_1,Tj7—1) and Ri(Tj»,Tjn)
such that Ry(Zj»_1,7j»_1) is connected with diagonals to Ry(Zj»,7;»). Additionally,
since Rkj,,(ajn, T;») is associated to Rkj(Zj, 7;), they are not well-separated and by

the argument below (I11.5.40) we have Ry(Zj»,7Tj») < RZ‘;E(Lj//,Tjn) c jo?up(ij,%j).
With the same argument, Ry (Tjr_1,Tjn_1) S RkEsup(Zj,l,%j,l). This shows that
Jj—1
R (£j-1,7j—1) is support connected with diagonals to R; (i;,7;), which concludes
J— J
the proof. O
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I11.6 Multi-scale analysis

We will now use the multi-scale set-up introduced above in order to bound the
probability of having paths of multi-scale bad cells. Recall that ¢ € (0, 0) is defined
in Theorem II1.2.12 as the value used at the scale 1 tessellation that imposes the
confinement of particle movement at that scale. We now define what will essentially
be the “weight” of a cell as

) 62 2dU€
V(e o, €) 1= min { LE=—, —10g (1 - v ((1 = )\, S}, Ber.nB) ) },
2 2Mk3 (IIL.6.1)
wk(‘gv,u(]ve) = MT? k> 27

which we will use as a reference for both the probability of a cell of scale k£ to be
bad, and for the number of ScD-paths which contain a cell of scale k.

I11.6.1 Probability of a multi-scale bad ScD-path

We want to estimate the probability for a cell to be multi-scale bad. As close cells are
heavily dependent on each other, we want to obtain a bound even conditioning on
cells which are “not too close”, in a spatial or temporal sense. Recall the definitions
of St and Tj*f in (I11.5.7) and (I11.5.19). We define Fj(:,7) be the o-algebra
generated by all the Ag/(¢/,7") for which either:

(2) TR(') A [ (7)Brr1, 0) = B, or

(b) 7B < 7Bk and SPE(1) N SIE(S) = &

Intuitively, this is information about the behaviour of particles in space-time cells
that are either far enough in the past so that we can ignore them due to the start-
ing assumptions guaranteed by {D,Ease(a, 7) = 1}, or which are happening roughly
concurrently, but far enough away not to be able to influence the occurrence of the
event {Ag(t,7) = 0} due to the confinement of the random walks under considera-
tion. Recall that the intensity of the Poisson point process is p; = poAs.

Lemma II1.6.1. Let €,(,n be as in Theorem I11.2.12 with

1, o 1due
¢=7 x/[élog (8ee) )™y, (I11.6.2)

If a and m are large enough, then there exist Cy and ag = (e, ¥, po) such that if
1 > ag, then for allk =1,...,k, all cells Ri(t,7) and any F € Fy(¢,T)

P(Ag(t,7) = 0| F) < e v,
Furthermore, we have for scale k that
P(A,(t,7) = 0) < e” ot
Proof. We start by proving the result for 2 < k < k — 1. Let F' € Fy(¢, 7). Since

P(Ak(t,7) = 0| F) = P(D{X (1, 7) = 0, Dp°(1,7) = 1| F),



II1.6. MULTI-SCALE ANALYSIS 101

if {Dgase(b, 7) =1} n F = J, such probability is 0 and the lemma trivially holds, so
we can assume {DP?°(;,7) = 1} n F # & and obtain

P(Ay(t,7) = 0| F) S B(DF(1,7) = 0| F, DR™*(u,7) = 1),

Recall that the event Db#¢(s, 7) = 1 (see (I11.5.28)) ensures that there are enough

particles in SP#¢(,) confined in By, ()2t during ['y]g,l)(T)ﬁkH, 7Pk]. By definition F
does not reveal further information about those particles because either

o by (a), (7" + 2)fp < ’y,i”ﬂkH and so the time interval relevant to A (¢, 7")
does not intersect Ag(¢,7), or

e by (b), SH(/) n SINf(1) = &, so the particles in SP2°(¢) confined in Byt
cannot leave S (:/) and thus cannot enter S (.) before /By
Conditioned on the event DP*¢(;,7) = 1 (defined in (I11.5.28)), we apply Theo-
rem I11.4.6 to SPas°(, 7), with the choices
K := side length of SP*°(1) = 2b(k)2% + 2%
K’ such that K — K’ = b(k)2%,
l:= 28’“,
6 = (1 — dp41) o,

A = length([v\" (7)Brs1, 78k]) = 78k — 1" (1) Brr1 € [Brs1, 28k11], and
E

8k2’
We check now that the conditions of Theorem II1.4.6 are satisfied, starting with
1
checking that K — K’ > M;z(A(logy A)%~1)dw . Since K — K' = b(k)2% and
A < 20,1 we need to verify that

g .=

1

b(k)2" > My (%5 (logy 252 )he ) 2o,
which by definition of 8, in (IT1.5.15) is implied by b(k)2% > 092&“&376% for some
constant Cy. Comparing it to the definition of ¢; in (II1.5.1) it holds true if we set

b(k) := ak?* 8dwma™, (IIL.6.3)

and assume @ and m are large enough. To check that A > Myl%z %€ we use
2
that A > Bryy = Coupx (EEL2) YO (20) % by definition of B4 in (IT15.15), and the

inequality holds as Cpix = M,8%©. We finally note that
K' = K — b(k)2%
= b(k)2% + 2%
> (2b(k — 1))2%-1 4 2%,
which is the side length of S¢¥(¢).
We can therefore apply Theorem I11.4.6 and we obtain a coupling between the
particle system at time 7 inside S{**(:) and a Poisson point process Z with in-

tensity (1 — dp41)po(1 — €)A, where the inclusion of Theorem II1.4.6 holds with

probability at least
1— Z 67M4(170k),u0)\y§2AdU/dw .

yeSPxt (1)
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Using that A > Bry1 > Cumix 2%% and the definitions of f8;, from (II1.5.15), the
quantity in the previous display is bigger than

1— Z 67010(1*0;9)/140)\7!522‘171516
yeSs¥t (1)
O 0o\ o —Cir1(1=0g ) poCy - Ex 200t
> 1— (2b(k — 1)2%-1 4 2) e Onmm)no0y i (IT16.4)
1— 2dv(1+€k)e—012(1—5)u00;1%idefk

\%

2

The last step holds for k = 2 since v (g, 110, £) and therefore also (e, po, £) is large
enough by assumption; the inequality for £ > 2 follows from it by setting a,m large
enough.

To obtain D (k,:t) = 1 we need to check the confinement requirement. To
this end, define a Poisson point process = made of the particles of = that are
confined during the time [7f5, (T + 2)5%] inside By j—1y2ts—1- Using the definition
of confinement from Lemma II1.2.5, this happens for each particle independently
with probability P(Conf(Bb(k_l)Qek_l,26k)). By the thinning property of Poisson

processes, =’ is therefore a Poisson point process with intensity measure
P( Conf(Bb(k_1)2€k71 ) 2616)) (1 - ok-i-l),u()(l - E)Ay

which we can estimate using (Conf(d,,)) as being bigger than

N e L
(1 — Ccse 2B}, )(1 — 0p41)po(1 — 8%)/\y

111.5.15 bk=1)% o \40) dw—T
e (1 - e oo ") )(1 — % )po(1 — gz) Ay
248 dw
(a(k—l) Odw m2m) £4/© ﬁ
I11.6.3 —Cis w
(IIL6.3) (1 — c5e ( KO C, ) )(1 — V1) o (1 — 8%))‘?%
and using that Cpix = 2!%54/ ©9mdw which can be obtained by setting 81 = /3 in

(IT1.5.15), this is bigger than

2wt w w ﬁ
(1 - ez (T E0m) ™Y 41— )y
Setting m large enough with respect to €, £ and 3, this is then bigger than

(1= 52) (1 = s )o(1 = gz) Ay
= (1 - 45?)(1 - ak+1)u0)\y.

Conditioning on the coupling above, we obtain using a union bound that the proba-
bility that all S_1(i') inside Sp**(¢) have at least (1 —dx)uo Xyes, (i) Ay Particles
which are confined during [7f, (T + 2)5k] inside By _1)ate—1 18 at least

1— > Q(E'(Sk-1(1") < (1 = 0)pt0 Lyes, (i) M) (I11.6.5)
Sp—1(#)SS5¥ (1)
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Using the Chernov bound (III.A.1) with x given by

(1 = 0p) k0 Dyes, (i) M

! (1= g2) (L = D)0 2oyes, (1) My
(= ) (L = 0gpn) — (1 —0g)

(1= g72)(1 = 0p41)
> (1= 752) (1 —0p41) — (1 —0g)

> (D -0 ) _ i — i
=R T IR T k2 T a2
we obtain the following lower bound for (II1.6.5):
1
1= Y e - 50 - ) 0= )i es, o M
Sp—1(i")SS5* (1)
(111.5.3) g2 1o B
> - Z exp{ — (1= D=2 (@) }
Sp—1(1)S5¢x (1)
2
> 1 Cyor (b(k — 1) + 2~ fe1)® eXP{ - 3;?(1 - - %)MOC)\_Ideek_l}
> 1 Le~Cutn,
2

(I11.6.6)
where the last inequality follows from the same argument as after (I11.6.4) since 1,
is assumed large enough.

Combining (I11.6.4) and (II1.6.6) proves the claim for 1 < k < k.

For k = k the argument is easier, as there is no need to use the mixing theorem
and one can simply use (II1.6.6), and prove both the conditional and unconditional
statements.

For k = 1, we recall that the event A; (¢, 7) was defined differently (cf. (I11.5.30))
We use again the mixing Theorem to obtain a coupling with a Poisson point process =
which succeeds with probability (II1.6.4) with the choice k = 1. To obtain 1, ;) =
1, we recall that the event E(i,7) is measurable with respect to the o-algebra of
particles inside S7(¢), which is contained in SP2°(;) by Remark II1.5.1, and the
particles are confined in B¢y, during [7f1, (T + n)f1]. Using Lemma II1.2.5 we
obtain

1

—ca<w> Wl 111.6.2)
P(Conf(Bgs,,mb1)) = 1 — cse " > 1- 3%
Hence, the Poisson point process Z’ of the particles with Conf(Bcy,,n/51) has inten-

sity at least
P(Conf(By_yygne 1+ 260)) (L-02)pio(1-8), > (1= ) (15 )0 (1= )y = (1-e)oy,
and since E(t,7) is increasing, we have
P(1pi-) = 1| F,Dy*(,,7) = 1) < 1= vg((1 — )X, S, Ber,npr) < e,
which concludes the proof. O

Now that we have a bound on the probability that a single cell Ry (¢, 7) is multi-
scale bad, we can obtain an upper bound on the probability that all multi-scale cells
in a given ScD-path are multi-scale bad. Recall the definition of the weights v in
(II1.6.1) and the value ag defined in Lemma II1.6.1.
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Corollary II1.6.2. Let ¢ as in (II1.6.2), 11 > «g and consider an ScD-path
{Rk,(t1,71)s... Ry (ts,72)}. Then

([0 (g7) = 03) s O,
j=1

where Cy, is the constant from Lemma I11.6.1.

Proof. We first need to order the cells in a temporal order. To this end, consider any
order < of the indices of the cells 1, ..., z such that if j; < jo then leﬁk < T]2,3k
The corollary will be a simple consequence of Lemma II1.6.1 once we prove that for
every 1 < j < z, the cells Ry, (15, 7;) with j < j are Fi; (5, 7j)-measurable.

We therefore consider two cells Ry, (¢, 7;,) and Rk (L, Tjy) With j1 < j2, so
that 7;, Bkjl < Tj, 51%- By definition of an ScD-path cells are well-separated, so

R}gfl (L1, Tj) N lelli (45, Tj) = &, meaning that:
e cither T,?jlf(le) N T,i,?f (1j,) = & and thus (a) is satisfied;
1 2
e or ng‘f (tj,) N S’}Cr;i (tj,) = & and thus (b) is satisfied.

Here, (a) and (b) are as they appear at the beginning of this subsection. Hence,
using the standard chain conditioning and applying Lemma II1.6.1 z-many times we
obtain that

P(JQ{Akj(l’j’Tj)_o}) HP(Ak 175 70’ﬂ{Ak i) = 0)) < ¢ CvTia vy,

J<Jj

which is the desired claim. O

I11.6.2 Number of ScD-paths

In the previous section we established the probability for a given path of z cells of
scales k1,...,k, to be made of multi-scale bad cells. We want now to count the
number of such paths. Recall the definition of ScD-path in Definition II1.5.5, and
of Qi'P(v — t) in (I11.5.38). We will now give an upper bound for the number of
paths in QP (v — t), given a fixed number of cells and their scales. As we will see,
k and t are going to be linked with each other, so our first bound can omit these
two values, as we are for the time working with given scales.

Lemma II1.6.3. For a fized length z € N, fixed scales ki,...,k, and v € Ly, the
number of ScD-paths of cells of scales ki, ...k, where the extended support of the
first cell contains v is at most

exp {2 2 o).

where Cw s the same constant as in Lemma I11.6.1.

Proof. Recall that two consecutive cells Ry, (¢1,71) and Ry, (t2,72) in a ScD-path
are either support adjacent or Ry, (t1,71) is support connected with diagonals to
Ry, (12, m2). We will prove the result in three steps: first, we will bound the number
of ScD-paths where each cell is support adjacent to the next one, i.e. we don’t allow
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diagonal connections. In the second step, we will show the result for the case in
which the beginning and end of the (scale 1) diagonal steps are fixed relative to
each other; in the third step we will obtain the bound where this last restriction is
removed.

Step 1. We define the maximum number of scale k' cells which are support
adjacent to a cell of scale k

Dy p = r(na>)< {Ry (¢, 7"): Ry(1,7) is support adjacent to Ry (//,7)}|  (IIL6.7)
L,T

and the number of cells of scale k whose extended support (defined in (II1.5.10) and
(II1.5.21)) contains v

Xi = (B, ) BP0, 7) 2 0}, (111.6.8)

so clearly the number of support adjacent only D-paths in Q3™ (v — t) of cells with
scales k1, ...k, is bounded above by

z
Xk H Dy k-
j=2

We start by deriving a bound for xj. Since the extended support of a cell of
scale k contains at most 27 Cyp1(3m + 1)% cells of scale k + 1, there exist at most
27 Cyvo1(3m + 1)% different extended supports of a cell of scale k that contain the
distinct cell of scale k£ + 1 containing v, and thus v itself. By (I11.5.4) and (II1.5.16)
each cell of scale k + 1 contains 2L 2dv(lr1—lr) < 98+du(2ak—3atm)+dy(2ak—atm) cellg
of scale k, which is therefore also the number of scale k cells that share the same
extended support. We therefore have

C
i < 27 CV0](37TL + 1)dv28+dw(2ak73a+m)+dv(2ak7a+m) < eXp{Tgwk} (11169)

where the last inequality holds trivially for m,a and ag large enough.

We now bound @ . A cell of scale £’ can only be support adjacent to a cell
Ry, (11, m1) if it is inside B,.(p) x A, where p € Sk (1), 7 := (3m+2)2%+1 4+ (3m+2) 20w +1
and A an interval centered around Ty (71) of width 28(Sk+1 + Bkr+1). Consequently,
Py, j» can be bounded by the number of scale k" cells inside this Cartesian product.
If k > k' then the terms 2°+1 and B, are negligible (or of the same size) in com-
parison to 2%+ and f1, and the spatial region contains at most Cye(2(3m +2))%
cells of scale k + 1, and by (II1.5.4), each one of those contains exactly 2ty (lr+1—Lyr)
cells of scale k’, so

if k> k’/ (bk,k’ < (CV01(2(3m + 2))dv2dv(£k+l_‘€k/)> (56@>
B

If instead k < K’ we have similarly

B

Combining the two and using (I11.5.16) we have that

&, 0 <Cys2% (6m+4) ody (a(kv k)2 +m(kvE))odw2a(kv k) +dwm
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and for a, m, ag large it holds trivially that this is further smaller than

eXp‘{ii§¢Kkka}-

Hence we obtain with (II1.6.9)
z z Cy 9 Oy s
Xk‘l Hijfl,k‘j < H (ewakJ> < eT Zj:l wk]
Jj=2 j=1

Step 2. In this step, we consider Ry, (t1,71) to be support connected with diago-
nals to Ry, (12, 72), which, as defined in Definition I11.5.5, means that there exist two
cells R1(71,71) and Ry(Z2,7T2) contained in their respective extended supports such
that Ry(71,71) is diagonally connected to Ry(Z2,72). We denote by (71 — 72,71 — T2)
the relative position of the cell Ry(71,71) with respect to Ry (72, 72) and write (0,0)
for the relative position of the cells Ry, (¢1,71) and Ry, (t2, 72) when they are adja-
cent. In this step we consider the relative positions to be fixed, and we will show
a bound for the number of different possible relative positions in the next step. In
analogy with step 1, we define

Ry, (12,m2): with diagonals to Ry, (12, 72) with fixed relative
position of Ry (71,71) with respect to Ry (72, T2)
(I11.6.10)
The case when the relative position is (0,0) was treated in the previous step, so
in that case we have

{ Ry, (t1,71) is support adjacent or support connected }'

C

P
@thg < eﬁd’klw@.

In the case of diagonally connected cells, since the relative position is fixed, the
possible combinations are determined by the product of all the possible positions of
the cell Ry (71, 71) inside the extended support of the cell Ry, (¢1,71) and the number
of cells of scale 1 contained in the extended support of Ry, (t2,72). Using the bound
from the previous step we have

* T X
k k
(I),ﬂ’]€2 < e16 Yk1e16 Yk,

Combining the two equations yields

C C c
DF 4 < e TP S S X
Hence the number of ScD-path where the z cells have fixed relative position is
bounded by

z C z
i [ [ ®F ok, < exp {Tw 3 %} (IT1.6.11)
j=2 J=1

Step 3. In the final step, we bound the number of combinations of different
relative positions in a ScD-path. For two given cells of scales k; and k; 1 where the
first is support connected with diagonals to the second, let R(c1,71) and Ry (2, 72)
be the corresponding two scale 1 cells for which Rj(¢1,7) is diagonally connected to
Ri(t2,12) with relative position (11 — t2, 71 — 72). Let h be the (absolute) difference
between the distances of Rj(t1,71) and Rj(te,72) from Lo, which we refer to as
“difference in height”; see the discussion below (II1.2.8). Define A(h) to be the
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number of cells that Rj(c1,71) can be diagonally connected to, where the “difference
in height” is h. More precisely, define

A(h) := max

(¢1,m1)

{Rl(Q’TQ): Ry (t1,71) is diagonally connected to Ry(t2,72) }'

with |d (Lo, R1(11,71)) — d (Lo, Ri(t2,72)) | = h

As defined, A(h) is also an upper bound on the number of different relative positions
(t1 — t2, 7 — 72) which result in a height difference of h.

We next note that, by definition of the diagonal steps, we can bound A(h) by
the number of cells of scale 1 at distance h from a given cell of scale 1. Recalling
(Vol(d,)), we can therefore use the very generous bound

A(h) < Cy R+, (I11.6.12)

where the +1 term comes from having to also consider the time dimension.

Recall from Subsection I11.5.3 that when a scale 1 cell is diagonally connected
to another scale 1 cell, the height of the second cell can be at most that of the first
cell. We can thus obtain easily an upper bound on the number of diagonal steps and
equivalently on the total height difference. Define Hj as the side length of SESUP
divided by the side length of Sy, that is

Hy, i= (3m + 1)20K°+mk (I11.6.13)

Then, using that a diagonal step by definition leads to a decrease of the distance
to Lg, the maximum number of diagonal steps in an ScD-path of cells of scales
ki,...,k, is at most the combined distance from L that the cells of scales k1, ..., k,
can contribute to an ScD-path, i.e.

H= Z Hy,.
=1

Hence, the number of different configurations of the diagonal steps, and in par-
ticular different relative positions, is at most

H

DI Alhe+ DA(hs +1).. A(hz + 1),

1=0  ha,..hs

ha+-+h.=l

where h; represent the (absolute) height difference between the i-th and (i — 1)-th
cell; the +1 accounts for the fact that the final scale 1 cell of a diagonal connection
might be adjacent and not equal to the next cell of the path, as per definition
of being diagonally connected. Using the method of Lagrange multipliers, this is
smaller than

é h}.lhz (A(Zl_1+1>)z_l.

ho+--+h.=l
Using (II1.6.12) and that the total number of combinations of z — 1 values h; = 0

which sum to [ is (ZJZ;Z), this is smaller still than

H
l4+2-2 i,
(107 cu oty s e
—o \ * 7

H
l+2z—-1 e (z—1)(dv+1)
<§)< L >CV01(Z_1+1)
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and using repeatedly Pascal’s rule we can further bound this by

H a—
(z+ >Cv01(2£1 +1)( 1)(dv+1)

z

(z+ H)?

(z—1)(dv+1)
< Tclﬁ(zljl + 1) .

Since g is big by the assumption that ¢ is large enough, we finally get that this is
smaller than

(z+ H)? 3H\ (z—1)(dv+1)
ey Ce(E)
< (3+ 3H/2)7Cg(BL)*HY

< (Cl7g)QZ(d+l)

for some constant C77 > 0 depending only on d; we used in the first inequality that
dy < d, which is a simple consequence of the fact that the graph can be embedded
into the d-dimensional triangular lattlce which has volume growth dimension d. To
obtain that (Cy7H/z)*@+1) < exp( >i—1¥k;) and thus to conclude Step 3 and
the proof, we can equivalently show that

(d + 1)(log(CrrH /) < - Cw 2 V- (111.6.14)

Comparing Hy, from (I11.6.13) and 1y from (II1.6.1) and setting m and «q (and thus
?) large enough we can obtain Hj < S(dfl ook for all k, and therefore (I11.6.14)

holds. O

In the previous two lemmas, we showed the relationship between ScD-paths
and the sum of the weights ;. We show now that if we consider an ScD-path in
Q%P(v — t) (defined in (I11.5.38)) of cells of scales ki, ..., k, for some ¢t > 0, then
the sum of the weights 1 is at least of order ¢%.

Lemma II1.6.4. Suppose that the largest scale k we consider satisfies Kk =
O( log(t)). Then, if i1 is large enough, there exist tg and Cig > 0 such that

for any t > tg, v € L1 and any path {Rkj (Lj,Tj)}Jz.:l e NP (v—1)

4
D vk, = Cust®,
=

where the positive constant cs is as defined in Theorem I11.2.13.

Proof. Let diamy, denote the diameter of the extended support of a cell of scale k.
The key observation to prove the lemma is that

z
t
> diamy, > 3 (I11.6.15)

since by definition of Qx'P(v — t) in (II1.5.38) the path exits from B;(S1(ty)) X
[—t + 7y, Ty + t] and with an argument similar to the one surrounding (II1.6.13), the
distance that can be covered by diagonal steps is at most the sum of the side lengths
of the cells. Therefore, we only need to compare diamy with .
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For the geometry of the fractal, the diameter of the tile is equal to the side
length; hence, for 1 < k < k, we note that

< (6m 4 3)2%+1 4+ 276;11

< (6m 4 3)20ktatmobe 4 (), 2% )dw
< Cpg22™ gakoduly,
<

01922m+ak2(dv +1)4g

diamg

)

where in the last step we made use of (II1.2.6). For k > 2

82 MO 2dU€k_1

Yy = e
B 62H02dv€k
T k49dy(ak—a+m)
2
€° 1o 1 om+ako(dy+1)0\ 7257
— 0192 m AT k) dy+1
k49dy(ak—a+m) (01922m+ak)d:i1( )

2
€7 o ‘ Cw
- 020]{42611, (ak+2m) (dlamk ) dy+1

For k = 1 we can fix a constant ¢;; > 0 depending on &, g, a, m, £ and vg, but
crucially not on ¢, such that 1 > ¢11(diam; )%/ (d+1),

Since we assumed that k = O(4/log(t)), we have that there exists ¢12 such that
k < c124/log(t) for all k < k and thus summing over all cells of the path, (I11.6.15)

gives

z 2
€7 o _dv
¥ = Cn {dv+l
jzl J 1Og2(t)2dvaq/log(t)
which for ¢ large is larger than Cjgt. O

I11.6.3 Size of bad clusters

Let ¢ > 0 large, v € L1 and define

St (v) := {Sk(u); /e BY, Si(d) A By(S1 (1)) # @} ,

Tt (v) := {TH(T'); 7 el el A VG =1, TiFE) AT +t] # @}
and
R}, (v) :={SxT: SeS(v),TeT(v)},

where ¢, 7, and B:(S1(¢y)) are as defined previously below (I11.5.37). Recall also
the definition of the bad cluster K, from (III.5.39).

Proposition II1.6.5. Let ¢ as in (I11.6.2), oo as in Lemma I11.6.1 and ty as in
Lemma I11.6.4. Then there exists a constant Cag independent of t such that for any

(ONS] L1
P(K, ¢ Ri(v)) < e 2", (111.6.16)

for all t > to.
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Proof. Using Lemma I11.5.3

P(K, ¢ R{(v)) (3P € Qi (v — t) of bad cells)

<P
<P(3P € Q4(v — t) of cells with bad ancestry)

and by Lemma II1.5.6 this is smaller than

P(3P € 0" (v — t) of multi-scale bad cells),

for any arbitrary choice of k; we will fix it momentarily.
Define now the event H, to be the event that A, (¢, 7) holds for all cells in RE (v),
ie.

He= (] {4 =1}

Ry (t,7)eERL (v)

Recalling how the event A (¢, 7) is defined in (II1.5.32) for the largest scale x, using
a union bound and Lemma II1.6.1 we obtain directly that

P(H.(v)) =1 — [RL(v)|e" ¥,

We choose now « to be the smallest integer such that i, > t. Using the definition of
Yy in (II1.6.1) one can see that k = O(4/log(t)); note that this choice satisfies the
assumption of Lemma II1.6.4. Since the cardinality of R (v) satisfies

R0 < Can(55)” (5):

we can use this to find some constant c¢i3 such that
P(H.(v)) > 1 — et
We now continue the previous chain of inequalities

P(IP € O} (v — t) of multi-scale bad cells)

< P3P € O (v — t) of multi-scale bad cells N H,(v)) + P(H.(v)¢) (I11L.6.17)
< P(AP e QP (v — t) of multi-scale bad cells) + e~ 3",
Since ¢; < % — % < 1, the term e~“13! is of a smaller order than the claimed

bound of e~ €22t

, SO we can ignore it from here on out.
We now want to bound the remaining probability. If we fix the length of the
path z € N and the scales k1, ..., k, we can use Corollary I11.6.2 and Lemma I11.6.3

to obtain

P(3P € QP (v — t) of z multi-scale bad cells of scales ki, ..., k)

2 Sy sz Sy 5z Sy -
< 6—C¢ ijl wkje B) Zj:l wkj — 6_ P} Zj:l wkj g e—TC’lgtCs

)

where the last step follows from Lemma II1.6.4 since x and therefore also k — 1 =
O(y/Iog(t).

It only remains to estimate the number of different possible lengths and weights
of a path. We rewrite the weight of a path as the sum of the weights of cells of
different scales, namely 2;21 g, = Z;;i hir, where hy is the number of cells of
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scale k. Hence, for fixed hq, ..., hs_1, the number of possible ways to order the cells
is

(h1+ -+ + hy—1)! hi+ -4 he 1) [(ha+ 4 he Pt
= . . (I11.6.18

hilho!. .. hy_q! h1 ho hyk—1 ( )
By the bounds provided by Lemma I11.6.4, there exists k € {1,...,x — 1} such that

hy = (Siglt;;k. Define now

H = {(hh...,,hﬁ_l)e(NO)ﬁ—l;Hle{l,...,n_n hl>%}.

We can then write

P(IP € Q' (v — t) of multi-scale bad cells)

such that for each £k = 1,...k — 1, P is made )

sup _ .
S ;P(HP e (v—1): of hj, multi-scale bad cells of scale k

< Ze‘cTwZZ;%hkwk (h1+ -+ he)!
= o hilha! .. he_q!

Applying (IT1.A.2) £ — 1 times to the right-hand side of (I11.6.18) we can bound this
further by

C
Z e~ I hk(%wwk)7
H
and using that ag,a, m are large enough twice, this is finally smaller than

)

Z e_cTw SRt hate < e~ C22t®s
H
which concludes the proof. O

I11.6.4 Proof of Theorem I11.2.12

Proof. By Proposition 111.3.4 we need to show for all v € L; that

D r®FP(rad, (Hy) > r) < oo,

r=1
Recalling the definition of R} (v) above Proposition II1.6.5 and letting v =
Ri(w, 7y), we note that R (v) contains only cells Ry (¢, 7') with d(S1 (), S1()) < &
and |1, — 7| < % Hence, if 7, T satisfy

1 1
T<— 7) <
26 + 0242(11”[ "

for some constant Cyy, it holds that

Ri (v) € {Ri(/,7): (¢, 7) e B x Z, d(Ri(d,7),v) <r}.
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Define therefore T'(r) := (2—11Z + m)_lr, and let g be as in Lemma I11.6.4 and g
such that T'(r9) > to. Then

S r 1 P(rad, (H < 3 P (H ¢RIV ()
=70 =70

< 3 e (K € RUV ()

=70

III.
( 616 Z Td +1 exp{ 022T( )cs}

=70

Since this series converges, the Lipschitz cutset exists almost surely as stated in
Proposition III.3.4. O

I11.7 Proof of Theorem I111.2.13

The main tool for the proof of Theorem III.2.13 are DU-paths, which we define
next. They are in essence a symmetric version of D-paths, in the sense that diagonal
connections can go “backwards”; equivalently, being connected by a DU-path is a
symmetric relationship unlike before.

I1I1.7.1 Dd-paths

Recall from Subsection II1.5.3 the definitions of adjacent cells; we repeat the def-
inition of being diagonally connected: we say for two scale 1 cells Ry(¢,7) and
Ry (V,7") that Ry(¢,7) is diagonally connected to Ry(:/,7") if there exists a sequence
of scale 1 cells {Ry(t1,71),...,Ri(tn,Tn)} such that Ri(:,7) = Ri(t1,71), for all
je{l,...,n—1}, d(Ri(tj+1,7j+1), Lo) < d(Ri(5,7j), Lo) and Ri(tn,Ty) is either
equal or adjacent to Ry(¢/, 7). In addition, we define here two cells to be diagonally
linked if the first case occurs, i.e. if Ry(tp, ) = R1(¢/, 7).

We say that two scale 1 cells Ry (¢, 7) and Ry (), 7') are single diagonally connected
if Ry (¢, 7) is diagonally connected to Ry (¢, 7") or if Ry(//,7") is diagonally connected
to Ry(¢, 7). We say that two scale 1 cells Ry(¢,7) and Ry(/,7') are double diago-
nally connected if there exists Ry (7, 7) such that Ri(¢,7) is diagonally connected to
Ry (7,7), Ri(¢, 7') is diagonally connected to Ry (Z,7), and either Ry (¢, 7) or Ry(¢/,7")
is diagonally linked to R (7, 7). Note that being single diagonally connected or dou-
ble diagonally connected is a symmetric relationship.

As done in Subsection I11.5.3, we extend these new definitions to cells of arbitrary
scale Ry, (t1,71) and Ry, (12, 72) by requiring that they respectively contain two scale
1 cells which satisfy the corresponding definition of the connectedness above. In
analogy to Definition I11.5.4 we introduce a new type of paths.

Definition II1.7.1. We define a Dd-path as a sequence {Rj,(1;,7;)}}_; of cells
where for all j = 2,...,n, the cells Ry, ,(1j—1,7j-1) and Ry, (j,7;) are either adja-
cent, single diagonally connected or double-diagonally connected.

Similarly to (I11.5.37), for some ¢t > 0 and v € L1, we define
Qv — t) (IL.7.1)

to be the set of all DU-paths of cells of scale 1 for which the first cell of the path
is v or v is single diagonally connected to the first cell, and the last cell is the only
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cell not contained in the space-time ball By(S1(ty)) x [t + Ty, 7w + t]. We stress
that, contrary to Q1 (v — t), v must not necessarily be part of the Dd-path; it can
be that v is only single diagonally connected to the path and not an actual cell of
the Dd-path.

We define now ScDd-paths, the support connected version of DU-paths. Re-
call the definition of well-separated cells and support adjacent cells from Definition
II1.5.5. We say that two cells Ry, (¢1,71) and Ry, (12, T2) are support connected with
single diagonal if there exist two scale 1 cells respectively contained in the extended
supports of Ry, (¢1,71) and Ry, (2, 72) which are single diagonally connected. Sim-
ilarly, we say that two cells Ry, (t1,71) and Ry, (t2,72) are support connected with
double diagonal if there exist two scale 1 cells respectively contained in the extended
supports of Ry, (t1,71) and Ry, (12, 72) which are double diagonally connected.

Definition II1.7.2. We define as ScDU-path (support connected DU-path) a se-
quence of well-separated cells {Ry,(¢;,7;)}5_; for some 2z € N where for all j =
2,...,2 the cells Ry,  (1j—1,7j-1) and Ry, (t;,7;) are either support adjacent, sup-
port connected with single diagonal or support connected with double-diagonals.

For t > 0 and v € Ly, we define
QAP (v — t)

the set of all ScDU-paths of cells of scale at most k so that the extended support
of the first cell of the path contains v or v is single diagonally connected to a scale
1 cell that is contained in the extended support of the first cell, and the last cell
is the only cell whose extended support is not contained in the space-time ball
Bi(S1(ty)) x [t + Ty, Ty + t]. Again, we highlight the difference with Qi (v — t),
where instead v must be contained in the extended support, whereas here it can be
only single diagonally connected to it.
Finally we define the analogue of the bad cluster K, from (II1.5.39):

K :={Ry(/,7"): there exists a Dd-path of bad cells from v to Ry(¢/,7")}
(I11.7.2)
Repeating the arguments of Lemma I11.5.6, we can easily obtain its analogue for
Dd-paths.

Lemma II1.7.3. It holds that

IP(HP € Q1 (v —t) of cells with bad ancestry)
< P(3P € QY™ (v — t) of multi-scale bad cells).

I11.7.2 Multi-scale analysis of DU-paths

We want to show that the Lipschitz cutset intersects the base Ly within distance
r from the origin with high probability. If the opposite was true, then we would
be able to find a nearest-neighbor path in L;\F which leaves a ball of radius r. We
will show that this implies the existence of a DU-path from the origin that exits
such a ball and we will use similar arguments to before to prove such DU-paths are
improbable.

We follow the structure of Section II1.6 and write in detail only the parts where
the proofs for Dd-paths differ from the ones for D-paths. Lemma I11.6.1 and Corol-
lary TI1.6.2 still hold and and can be applied unchanged. We need to show the
analogue of Lemma I11.6.3.
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Lemma II1.7.4. For a fized length z € N, fixed scales ki,...,k, and v € Ly, the
number of ScDA -paths of cells of scale k1, ..., k, where the first cells either contains
v or is v is single diagonally connected to a scale 1 cell contained in the extended
support of the first cell, is at most

exp {2 z o),

where Cy, is the same constant as in Lemma I11.6.1.

Proof. We follow the proof of Lemma I11.6.3. For Step 1, we need to make a small
change. Compare the definitions of Qp'"(v — t) and QU@'P(v — ¢): in the latter
we also allow v to be single diagonally connected to a scale 1 cell contained in the
extended support of the first cell in the Dd-path. To account for this, note that we
can fix the relative position of v and the scale 1 cell in the extended support of the
first cell in the DU-path, and we are only left to control the number of the possible
relative position which is done in Step 3.

Step 2 remains unchanged, and we can turn to Step 3.

Consider two consecutive cells in the DU-path which are single diagonally con-
nected. We can define similarly to before

o _ Ri(t1,m) is single diagonally connected to Ry (i, 7o)
Ah) = (i) {R1(62,7'2)- with |d(Lo, Ri(u1,71)) — d(Lo, Ri(t2,72))| = h }

For two cells Ry(t1,71) and Ry(t2,72) in the DA-path which are double diagonally
connected, let R;(Z,7) be the cell of the double diagonal that Ry(t1,71) or Ry(t2,72)
is diagonally linked to. Letting h; be the height difference between Rj(c1,71) and
R1(7,7) and hg the height difference between Ry(t2,72) and Ry(Z,7), we can upper
bound the number of different relative positions between Ry (t1,71) and Ry (2, 72) for
which the respective height differences to Ry (7, 7) are hy and hg by A(h1+1)A(ha+1).

Let Hj be as in (II1.6.13); similarly to what was done for D-paths, we can
bound the total number of diagonal steps in a DU-path with the maximal attainable
distance from Lg, within the path, i.e. by

H= 22 Hy,,
=1

where we added the factor 2 to account for the diagonal step to the previous and
the following cell. For simplicity, when two cells are double diagonally connected we
consider also the cell Ry(7,7), to which both cells are diagonally connected as part
of the path. So, letting h;, ¢ = 1,...,2z — 1 be the height difference between two
diagonally connected cells, the number of diagonal steps is at most

H
> A(hy + 1)A(hg +1) ... A(hg.—1 + 1).

=0 h1,~--h2z—1
hi+-+ha,_1=l

We can then repeat the remaining calculations as in Lemma II1.6.3, substituting z
with 2z and obtain the same result. O

We also have the analogue of Lemma I11.6.4:
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Lemma II1.7.5. Suppose that the largest scale k satisfies k = O(y/log(t)). Then
if Y1 is large enough, there exist tg and Cig > 0 such that for any t > ty and any
v e Ly and any ScDA -path { Ry, (1, 75) i, € QAP (v — t)

z
> Wk, = Cust.
j=1

Proof. The proof is unchanged from the one of Lemma II1.6.4 except that in
(II1.6.15) we have to substitute t/2 with ¢/3 since we now consider 2 diagonals for
each cell instead of only one. The rest remains identical. O

Recall now the definition of K in (II1.7.2). The analogue of Proposition II1.6.5
is then argued in the same way.

Proposition II1.7.6. Let ¢ as in (I11.6.2), oo as in Lemma I11.6.1 and ty as in
Lemma I11.6.4. Then there exists a constant Cag independent of t such that for any

(NS L1
P(K; & Ri(v)) < e @,

for allt > tg, with cs as in Theorem I11.2.13.

Recall the concept of hills from Definition I11.3.3. In the following, we will say
that two hills H,, and H,, are adjacent if there exist v; € ij, J = 1,2 that are
adjacent, and call them intersecting if there exists v € H,, n H,, .

Lemma II1.7.7. Let F be the Lipschitz cutset from Theorem I[11.2.12. Let m =
{u;}7_o with uj € Li\F be a sequence of sequentially pairwise adjacent cells.

Then there exists a sequence of hills H := {H,, }§=07 k < n, such that every u;
is contained in some hill Hj and two consecutive hills of the sequence are either
adjacent or intersecting.

Furthermore there exists a DA -path which starts in ug and ends in u,.

Proof. We start with the first claim. For each u; € 7, we have by assumption that
uj ¢ F, so there exists a hill H,; 3 u;. Furthermore, for all j =1,...,n, u;_; and
u; are adjacent and so the respective hills H,, , and H,, are either adjacent or they
intersect. The sequence of hills {H,, }?:0 may contain repetitions of the same hills,
so by removing all but the first appearance of those which appears multiple times,
we end up with a sequence of k < n different elements.

We prove now the existence of the DU-path. Consider the sequence of hills
{H,, }?:0 from the previous step, and denote with ; € H,, for j = 1,...,n the
cell (chosen in some arbitrary manner, for example lexicographically) that is either
contained in or adjacent to a cell contained in H,, , . By definition of a hill, there
exist a d-path from vy to ug and a d-path from vy to either 1 or to a cell adjacent
to it. Similarly, there exist a d-path from v; to 0 ; and a d-path from v; to v ;41
(or a cell adjacent to it). Repeating this, we obtain a sequence of cells

< <
Uug, Vo, V1,01, U2y...,0Vk, Un

where for each pair of consecutive cells there exists a d-path from the first to the
second or from the second to the first.

Note that, just like D-paths, d-paths are also DU-paths. Secondly, if a certain
sequence is a DU-path, then the reverse sequence is also a DU-path, as a simple
consequence of the fact that being adjacent, single diagonally connected or double
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diagonally connected is a symmetric relation. Thirdly, if there exist a D{-path from
a cell uy to us and one from usy to uz we can concatenate them and obtain a DU-path
from uq to ug.

We can thus construct a Dd-path for the sequence ug, vo, 0 1,v1, Vo, ..., Uk, Un,
concluding the lemma. O

We can now prove Theorem I11.2.13.

Proof of Theorem II1.2.13. By Theorem I11.2.12, a Lipschitz cutset F' exists a.s.,
so we need to show that it surrounds the origin at some distance r. Suppose the
converse.

This means that there exists a sequence of cells {u;}7_, with u; 1= Ri(¢5, 7)) €
Li\F and such that ugp = R1(0,0) and d(un,up) > r. Applying Lemma IIL.7.7 we
obtain the existence of a Dd-path from R;(0,0) to u,.

By Proposition I11.7.6, for ¢ > tg, the probability that such a path exists is
smaller than

P(K() ) & Ri(0,0)) < e” ™.

Setting again t = (2—1[ + )~!r as in the proof in Subsection II1.6.4 concludes

1
C24de£
the proof for rg := (2% + m)to. O

II1.8 Generalized Sierpinski carpets

In this section we show how to adapt the previous arguments for the Sierpinski
gasket to a further class of fractal graphs, the Sierpinski carpets. We start by
introducing the graph and then stating the results. As we will see, other than changes
to constants and parameters, the work done for the gasket can be applied mostly
without further changes necessary, so we will only highlight selected statements to
show how they work in the carpet case.
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Figure II1.8: Examples of generalized Sierpinski Carpet.
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II1.8.1 Setup and statement

We consider the class of fractal graphs of [BB99b]. We state the definition for
completeness and refer to [BB99b] for more details.

Let d > 2, lp >3, and 1 < mp < (Ip)? Next, let Fy := [0,1] and for n € Z
Sy, be the collection of closed cubes of side (Iz)"™ and corner vertices in the lattice
(Ip)"Z%. For A € RY let S,(A) := {S € S,: S < A}. For S € S,, let ¥Ug be the
orientation preserving affine map which maps Fy onto S.

Let F; be the union of mp distinct cubes of S_;(Fp) satisfying the following
conditions:

(H1) Symmetry: F is preserved by all the isometries of Fj.

(H2) Connectedness: the interior Int(F}) is connected, and contains a path connect-
ing the hyperplane {x; = 0} and {x; = 1}.

(H3) Non-diagonality: For any cube B in Fy which is the union of 2¢ distinct
elements of S_1, if Int(F; n B) is non-empty, it is connected.

(H4) Borders included: F; contains the segment {x: 0 < x; < l,z0 = ...,= 24 =
0}.

Given F,, F,4+1 is obtained by removing the same pattern from each of the
squares in S_, (F},), so that Fj,11 is the union of (mp)™ squares in S_, (Fp); formally

Fopi= | Ws(R)
SeS_n(Fy)

and F = ﬂ;’fzo F,, is called a generalized Sierpinski carpet. The Hausdorff dimen-

sion of F is d,, := 1?5;815)) (see [BB99b]) and references therein). We now define the
pre-fractal graph.
For any cube S_,, call the lower-left corner the vertex x with x; < y; for each

1=1,...,dand y e S_,. Let [J, be the collection of lower-left corners of the cubes

in (Ip)"F,, and
)
V = U D’ru
n=0

see Figure III.9.

We define the generalized Sierpiriski carpet graph SC? := S(Cd(l r,mp) as the
graph with vertex set V and edges E := {{z,y} e V x V: |z —y|1 = 1}.

Similarly to Sierpinski gaskets, one can easily prove the volume estimate

cvol T < Vol (z) < Cyor 7, (I11.8.1)

with d, := l?ogg((TFF)). Theorem 1.5 in [BB99b| shows that upper and lower bounds

for the heat kernels (HKB(d,,d,)) hold for some value d,,. Similarly to gaskets,
applying [GT02, Theorem 3.1] gives that the mean exit time satisfies

Ey[Hp, (2)c] = rie, (IT1.8.2)

and that the parabolic Harnack inequality (PH(d,,)) with parameter d,, holds. Fur-
thermore Lemma II1.2.5 also holds due to the above.
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Figure II1.9: [y, [Je and [J3 with d = 2,lp = 3, mr = 8 and corresponding edges.
Note that the first 2 pictures are scaled up by a factor of 32 and 3! respectively.

Now that the graph has been defined, we can define the tessellation of the carpets,
in order to formulate the analogues of Theorems I11.2.12 and II1.2.13. We define the
tiles Sk(¢) as

Sk(1) = L(lp)gk + e s

1 € SC? which is the union of l;l;)(é’“ ~k-1)

Define just like before £ to be

-many (k — 1) tiles.

Bk = Cmix(lg)% (l%—l)dw

with the walk dimension d,, from (III.8.2) and we define the time interval Tj(7),
T € Z, as before. Similarly, we define space-time cells as the cross product of spatial
tiles with the time intervals.

Like in the gasket case, we define Lo and L; as in (II11.2.7) and (II1.2.8) to be the
“hyperplane” subgraph and its corresponding collection of cells. Note that in order
to define Lg, one needs to consider a subgraph S(Cd_l(lF,mF) with the same [p
but an appropriately changed mp. As an example, in the case of the 3 dimensional
Sierpinski carpet from Figure II1.8, mp must be changed from 20 in d = 3 to
mp=8ind=2.

We define two scale 1 cells R;(c1,71) and Rj(t2, ™) to be adjacent if d(i1,t2) +
|71 — 12| = 1. With this adaptation, we can define the Lipschitz cutset F as in
Definition I11.2.9, and state the main theorem.

Remark III.8.1. The change in how adjacency is defined is due to the “disjoint”
nature of how the pre-fractal is constructed (recall that with the gasket, the corners
of the triangles were shared). With this new definition of adjacency, we recover the
same behaviour in the sense that two cells are adjacent if either they are spatially
the same and only one time interval away from each other, or if they share the time
interval and are spatially nearest neighbours, i.e. have norm 1 distance equal to 1.

Theorem II1.8.2. Let d > 2, Ir > 3,1 < mp < (Ip)? and S(Cd(lp,mp) be a
d—dimensional generalized Sierpinski carpet. Let £ € N and let f € N be large
enough. Furthermore, let n € N, e € (0,1) and ¢ € (0,0) such that

1 -
”</ Llog (52)]™ s,

and tessellate G x Z into space-time cells as described above, and let E(1,T) be
an increasing event restricted to the super cell R](t,T) whose associated probability
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vie((1—e)p, S7(¢,7), Bee,nB) has a uniform lower bound across all (1, 7) € SCY x 7
denoted with

VE((l - 5)/") S?a B§£a 776)
Then there exists ag such that if

€2M02dv4

(e, po, b) = min{ , — log (1 —vp((1—e)A, S?,ng,nﬁ))} > ag

A

there exists almost surely a Lipschitz cutset F' where the event FE(t,T) holds for all
(t,,7) € F.
Furthermore there exists Cy > 0 such that for rq large enough

IP(S(F, ro)c) < Z put1g=Cares.

=70

for ¢ € (0, % — 3) and S(F,ro) was defined above Theorem II1.2.13.

I11.8.2 Proof of Theorem I11.8.2

To adapt the proof, only a single notable change beyond the changes in the preceding
definitions is necessary. Similar to those, this change is essentially substituting the
base 2 that appeared in the gasket case with [, as we have seen in the definitions
of Sg(¢) and Bj. From here onward we will repeatedly:

Substitute every base 2 exponential with a base [r exponential. (Subst)

Recall the definition of adjacent scale 1 cells above Remark I11.8.1. We generalize
this to cells of arbitrary scale: two cells Ry(t1,71) and Rg(t2,72) of the same scale
are called adjacent if d(v1,i2) + |11 — 72| < 1, where d(-,-) is as before the graph
distance. Seeing SC? x Z as a subgraph of Z*1, we define two cells Rj(¢1,71) and
Ry(12,m2) to be x-neighbors if ||(t1,71) — (t2,72)]ls0c < 1. We next define d-paths for
carpets.

Definition II1.8.3 (d-path). A d-path in G% x Z is a sequence {ur}p_o of
#—neighboring cells in SC? x R from a bad cell ug € L; such that for each wuy
and ug,1 one of the following holds:

e increasing move: ug4q is bad and d(Lg, ugy1) = d(Lo, ug)
e diagonal move: d(Lg,ur+1) < d(Lo,ug)

We say for two scale 1 cells Ri(¢,7) and Ry(/,7") that Ry(c,7) is diago-
nally connected to Ri(¢/,7') if there exists a sequence of #-neighbor scale 1 cells
{R1(t1,71),..., Ri(tn, )} such that Ri(¢,7) = Ri(t1,71), for all j € {1,...,n— 1},
d(R1(tj+1,Tj+1), Lo) < d(Rq(tj,75), Lo) and Ry(tn,Ty) is either equal or adjacent to
R1 (L/, 7'/).

Lemma II1.5.6 then still applies using the change (Subst). Similarly, the defini-
tion of 1, is subject to (Subst). In this way, Lemma II1.6.1 can be proven in the
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same way by again applying the mixing Theorem I11.4.6 with the choices
K := side length of SP*°(1) = 2b(k)I% + 1%,
K’ such that K — K’ = b(k)I%,
L= 1%,
6 1= (1 = dp11)Ho,

A = length([7\" (1) Brs1, 7Be]) = 78k — 1" (7)Ber1, and
&

8k2’

Lemmas I11.6.3 and 111.6.4, Proposition I11.6.5 and the proof of Theorem II11.2.12
go through by applying (Subst), and therefore the first half of Theorem III.8.2 is
shown.

Similarly, Section III1.7 can be proven in the same way after using (Subst) and
in particular we obtain the bound
P(S(F,r0)%) < Y| r¥tle @,

=70

€=

I11.9 Survival of the infection

We now give an application of the Lipschitz cutset framework to show that for an
infection with recovery on a particle system as defined in Subsection I11.2.4, the
infection survives indefinitely with positive probability.

Consider either the Sierpinski gasket G? or a generalized Sierpiniski carpet
SC4 (1, my) and the particle system defined in Subsection I11.2.4 given by a Poisson
point process with intensity pu(z) := oM. Assume furthermore that at time 0, there
is an infected particle at the origin of the graph?. We next describe the dynamics
of the infection.

Any particle of the process gets instantaneously infected when it shares a site
with an infected particle. For a second parameter v > 0, suppose that an infected
particle recovers independently at rate 7, but can get infected again afterwards. In
particular, we allow for a particle to get immediately reinfected if it recovers while
sharing a site with an infected particle, i.e. recovery is impossible when a particle
shares a site with a different particle. However, our application works also in the
case where infections can only occur when particles change sites, i.e. when a healthy
particle jumps to a site with an infected particle or vice versa. To model recovery,
consider a collection of Poisson point processes (Rﬁ’n)xeGd’neN on R with intensity
7, which we refer to as the recovery marks. As in [BS23], we view the process Ry"
as the recovery marks of the random walk (X;”");>0, where X" is the location of
n-th particle located at z at time 0 at time ¢. A particle (X}); recovers at time s if
it is alone i.e. II;(X?) =1 and s € RY".

We say that the infection survives if for every ¢ > 0 there exists at least one
infected particle at time ¢ somewhere on the graph. We denote with P,/ the distri-
bution of the process with intensity p and recovery rate 7.

Proposition ITI1.9.1. For any puo > 0 there exists y9 > 0 such that for all0 < v < g
the infection survives with positive probability.

2The choice of the site where the infection starts is arbitrary as all of the bounds we use are
uniform across the graph. Note however that the local geometry of the origin is in fact different
from that of any other site in the graph.
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We will follow the approach introduced in [GS19b] and refined in [BS23]. To
prove the result we will define a suitable event E(¢,7) and apply Theorem IT1.2.12.
We will then be able to infer from the definition of E(¢,7) and the connectivity
properties of the Lipschitz cutset that the infection survives indefinitely almost surely
once the infection has entered the Lipschitz cutset, therefore surviving indefinitely
as long as the infection does not recover before this. The event E(¢,7) will then
consist of two phases - in the first phase we will use (some) of the already infected
particles to infect a sufficiently large number of the particles in the cell Ry(¢,7).
In the second phase, we will use these newly infected particles to propagate the
infection to the surrounding cells.

Fix the value £ € N and consider a value 5, depending on ¢, so that the ratio

1
Zd‘%l is fixed. We define T := 2% ~3) the time point between the two phases.
Define the following condition: we say that a cell R(¢,7) is acceptable if

(A1) for every = € Si(¢,7) with II;5(x) > 0 there exists a path denoted with 7%,
which starts at x, and does not exit the super-tile S?(L) and has no recovery
marks up to time 75 + T.

(A2) for each S1(¢/) < S3(¢) and each x € Sy(v) with II,5(z) > 0, there exists a
particle which stays inside the super-tile S5 (1) and does not have any recovery
marks up to time (7 + 1), is inside S;(¢/) at time (7 + 1)3 and intersects® the
path 7% during the time interval [78, 78 + T'].

We now claim

/3
P, (R1(e, 7) satisfies (A1), (A2)) > 1 —exp {ngoe’vﬁgdwﬂ } 7 (I11.9.1)

the proof of which we relegate to Appendix III.C since it is an easy adaptation of
the work done in [GS19b; BS23].

Remark II1.9.2. One might be tempted to think that using the event
E(v,7) := {R1(¢,7) is acceptable}

and Theorem II1.2.12 would yield our claim. This would be true if the infection
were to enter the Lipschitz cutset from the time dimension®. Then by definition
of acceptable, the infection enters from the time dimension in all cells in R3(,T)
appearing in (A2), including the one in the Lipschitz cutset due to Corollary I11.3.5,
and thus survives indefinitely. The next definition takes care of the case in which the
infection does not enter from the time dimension when it first enters the Lipschitz
cutset.

For each cell Ry(t,7) and each x € Si(¢) fix an independent realization of a
random walk path (75)e[0,-5) With 75 = x. We say that a cell Rq(t,7) is decent if

(D3) for every x € S1(¢) the path 77 has no recovery marks and for every jump time
t of (7%)seqo,-p) there exists a tile S1(¢/) = S1(1) such that

3We say that a particle intersects a path if the path and the particle path intersect in space-time,
i.e. have the same position at the same time at least once.

“The infection enters a cell R1(t,7) from the time dimension if there is an infected particle in
S1(t) at time 75. We say that the infection enters the cell Ri(¢,7) from the spatial dimension, if
there are no infected particles inside S1(¢) at time 73 and there is an infected particle which enters
S1(e) at some time t € (78, (7 + 1)3).
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(D3a) if t < (7 + 1)8 — T there exists a particle which has no recovery marks
and stays inside R}(z,7), is at time (7 + 1)3 inside S1(¢/) and intersects
the path (75_;)sefr,1+) during the time interval [¢,¢ + T;

(D3a) if (1+1)8—T <t < (r+1)3 it holds Tyt € S1(4).
We refer again to Appendix II1.C for the proof of

03
P (R1(t,7) is decent) > 1 — exp{—C263} — exp{—Cary} — exp {C’gguoe”YBZdw*l }

(I11.9.2)
as the arguments remain very similar to [BS23].

Remark IT1.9.3. We note that unlike done in [BS23], where the authors introduce
a single random walk path 70 for each space-time cell, which they then translate to
x as needed, our graphs lack translation invariance and we must therefore consider
different paths for each . This however has no bearing on the rest of the argument.

Proof of Theorem I11.9.1. We introduce an alternative construction of the process
using the additional paths (77);. We fix the tessellation and observe a cell Ry (¢, T).
If at time 7/ there are infected particles inside Si(¢), we do not use the paths
(7%), x € S1(v). If instead there are no infected particles in S1(¢) at 7/3, we observe
the process on adjacent tiles and consider the first infected particle which enters
the tile S1(¢) at some site y during T1(7), if it exists, and let this particle follow
the path ¢ until (7 4+ 1) or until it the same rule applies for some adjacent cell,
whichever happens first. Then, as simple concatenations of random walks, with this
new construction the process maintains the same distribution as the original process.
We can now define the event

E(1,7) := {all cells Ry(¢/,7") adjacent to R;(t,T) are acceptable and decent}

Then the event E(i,7) is increasing, restricted to the super-cell R{(:,7) and using
the volume estimates (Vol(d,)) for ¢ large enough and ~ small enough we can find
ap such that P (E(:,7)) = 1—e 0,

Then Theorem II1.2.12 gives the existence of a Lipschitz cutset F° where the
event F(t,7) holds and Theorem II1.2.13 gives that it surrounds the origin at some
finite distance r almost surely, hence an initially infected particle starting at the
origin has a positive probability of entering a cell in F° before recovery.

Suppose that this infected particle enters the Lipschitz cutset from the time
dimension: then it suffices to consider (A1) and (A2) to obtain that the infection
spreads to all cells in Ri(:,7). Since by Corollary I11.3.5 for every cell Ry(t,7) in
F° there exists a cell R1(//,7 +1) € F° with d(S1(¢), S1())) = 0, by definition of
acceptable cells once the infection enters the Lipschitz cutset it spreads to neigh-
boring cells inside F°. Since this observation can then be inductively repeated, the
infection now survives almost surely by spreading along cells of F°.

Suppose instead that the infected particle enters a decent cell Ry(¢,7) from the
spatial dimension. Since the cell is decent, the infection spreads to at least one cell
Ri(V,7") € R}(1,7) which is acceptable by the definition of E(s, 7). Note that this
cell might not necessarily be part of F°. However, since it is acceptable it spreads
the infection to all cells Ry (", 7") € R3(//, 7). By Corollary I11.3.5 and since n = 3
there exists in particular at least cell Ry(.”,7") < R3(//,7’) that is inside F°. By
definition of acceptable cells, the infection enters this cell from the time dimension,
and the infection survives indefinitely by the previous argument.
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Since every cell of F° is acceptable and decent by construction and the Lipschitz
cutset surrounds the origin at almost surely finite distance, this yields the claim. [
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ITITI.A Standard Results

Lemma ITII.A.1 (Chernoff Bound). Let P a Poisson random variable with param-
eter \. Then, for § € (0,1)

P(P(\) < (1—6)\) < e (ITL.A.1)

Lemma ITI.A.2. Let z,y € N. Then, for any a,b > 1

(x + y)eaxby < e—(a=Da—(b-1)y (ITLA.2)
)

III.B Volume estimates for Sierpinski gasket graph

Lemma IIL.B.1. Let G%, d > 2 the Sierpiniski gasket. There exists cyo1, Cvol > 0,
such that for all x € G, r > 1 it holds

Cyol 7™ < Vol () < Cyyp 7, (ITL.B.1)

Proof. We generalize the proof in dimension 2 from [Bar98]. For notation conve-
nience, call any translation of A% a “n-triangle”.
First observe that any n-triangle contains

(5 )+ (57)

vertices, which can be verified by induction observing that Ad := A9 has d + 1

vertices, and when constructing AZ 41 from A we place d + 1 copies of A% but we
identify (d'gl) couples of them since they are in the same position.

For r > 1, let n such that 2" < r < 2"+

We start with the upper bound. For any z, B,.(z) can intersect at most (d + 2)
(n + 1)-triangles, which are the (n + 1)-triangle which contains x and its d + 1

neighbors. So

B0 <@+ | ada < @S+ (55)

< (d+2)%(d+1)" < (d+2)32%" < (d + 2)*r¢

For the lower bound, since every n-triangle has diameter 2", B,.(z) must contain
at least one n-triangle. So

1 1 1
|Br()| = | A | > §(d+ 1)n+1§2d”(”+1) > ird“,

which complete the proof. ]

III.C Probability of acceptable and decent cells

In this appendix we prove equations (I11.9.1) and (II1.9.2) adapting the proofs of

1
[GS19b; BS23]. Recall that the ratio Qd‘# is fixed and that T := 254w =3),
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Acceptable. We start by showing (I11.9.1).

Lemma III.C.1 ([GS19b, Lemma 2]). Assume that the particles in Si(t) are a
Poisson point process of intensity ciapioy for some c14 > 0. For xz € Si(¢v), let
7 a path of an (infected) particle which starts in x and stays inside S3(1) during
[78,78 + T]. Then, for £ large enough, the number of particles in S3 (1) at time 73

which intersect by time 75 + T is a Poisson random variable with mean at least
1/3
C29M02€(dw*1)

Proof. The proof is a simple adaptation of [GS19b, Lemma 2], using (HKB(d,, d,,))
1_ 13
and splitting time into sub-intervals of length W := 9tdw=3-7,-1), O

Lemma II1.C.2 ([GS19b, Lemma 3]). Given a set of N € N particles in S3(1) at
time 78 + T and a tile S1(/') < S3(1), the probability that at least one of the N
particles is in S1(!') at time (7 + 1) is at least 1 — exp{—Nc,} for some constant
cp > 0 and ¢ large enough.

Proof. One can define a suitable binomial variable B with parameters N and p €
(0,1), the latter being the minimal probability for a particle to be in Si(¢/) after
moving for § — T amount of time, so that the probability in the statement is at
least P(B > 1) > 1 — exp{—Np}. The estimate p > ¢, then follows from applying
(HKB(d,, d,)) in the time interval [T, (7 + 1)[]. O

With the help of Lemma II1.2.5, we can combine the previous two statements
with the help of Chernoff’s bound into the following result.

Lemma III.C.3 ([GS19b, Lemma 4]). Assume that the particles inside S3(i) at
time T8 are a Poisson process of intensity ciapighy and let © be the path from
Lemma II1.C.1. The probability that at time (T + 1) there is at least one particle

in every tile S1(/') < S3(1) which intersected ™ during [t8,78 + T] is at least
/3
1 — exp{—Csopp2dw—1}.

Lemma III.C.3 with the use of a simple union bound across all paths 7* for
x € S3(1) and (Conf(d,,)) for (A1) yields

(R (1, 7) satisfies (A1), (A2)) > 1= 3 (esexp{ — co21} + exp { Cropo2e 1 })
zeS3 (1)
=>1- exp{ - CgLU()Qdi/El}.

Applying a further thinning on all of the particles appearing in the previous
arguments (as done in detail in [BS23, Lemma 3.1]), preventing them from recovering
during the time interval [73, (7+1)[], one obtains the analogous result with recovery
(I11.9.1).

Decent. We now bound the probability of a cell to be decent and show (I11.9.2).
The probability that a path has no recovery marks during an interval of length 3 is
e~ 7% and it holds for any random walk that

2
P(Conf(Bp,A)) > 1 - CypR™ exp { - 033%}, (IIL.C.1)
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(see for example [GTO01, (4.1)]).

We now evaluate the probability of (D3b) for fixed x,t. We observe the time
interval [t, (7 +1)p]: if the length (74 1)8 —t is bigger then 2¢ we can apply Lemma
I11.2.5; if instead (7 4+ 1) —t < 2¢ then we can apply (II1.C.1) with R = 2¢ and
A < 2¢, which yields a lower bound of 1 — exp{—C342¢}. All together

¢/3
P(the pair 7%, ¢ satisfy (D3b)) > 1 — ¢5 exp{—cs2@w—1} — exp{—C342}.

For (D3a), we adapt a strategy similar to acceptable cells. Lemma III.C.1 still
applies. Lemma II1.C.2 still holds as before if (7 + 1) —t — T > 2¢ . if instead
(1+1)B—t—T < 2° we need to use (II1.C.1) instead of (HKB(d,,d,)) in the
proof of Lemma III.C.2. Then Lemma III.C.3 applies with appropriately modified
exponential bounds. Hence, for fixed = and ¢ the probability of (D3a) under Pg is

l/3
at least exp{035uo2ﬁ}.

Note now that the probability that a path has no recovery marks during an
interval of length /3 is e 7?. The probability that a path jumps more than 33 times
during a time interval of length § is bounded by e by a simple Poisson bound.
Combined, we obtain

/3
Pg(Rl(b,T) is decent) > 1 — Z (6_75 +e P 438 exp { — Ca5p02dw=1}
z€S1 (1)

¢/3
+ 3fcs exp{—ce2dw-1} + 33 exp{—0342€}).

With the thinning property of Poisson point processes we can adapt the calcu-
lation for the recovery marks as in [BS23], and (Vol(d,)) then yields (I11.9.2) for ¢

large enough since the ratio Z%w is fixed.



Chapter IV

Conclusion

In this thesis we investigated mostly two models, namely the Gaussian free field on
supercritical Galton—Watson trees and Poisson random walks on fractal graphs.

The statements about the critical parameter h, and the stability under small
perturbation are interesting but not at all exhaustive. In this precise setting of
weighted Glaton—Watson trees further research may investigate the speed of the
random walk on the infinite cluster and the critical parameters h, and h. An other
possible research path is the question about the relation of independent and depen-
dent percolation, as we sketched in Figure I.1, and it would be extremely interesting
to pursue the rigorous proof of the mantra “positive correlation makes percolation
easier”, in both current and related settings: first of all to show the conjecture that
the critical parameter associated to the independent field is smaller than the one
relative to the positive correlated field for all values of m, and more ambitiously to
understand if this holds on other graphs.

For the model of Poisson random walks we constructed the Lipschitz cutset,
the analogous of the Lipschitz Surface for fractal graph. This object allowed us to
obtain the survival of the infection for small intensity of the recovery parameter,
but we believe that other consequences could be inferred from it. For example, in
Z% it was possible to obtain (see [BS23]) that the infection survives locally, i.e. the
set of times for which the origin contains an infected particle is unbounded. Still
on Z%, it was shown in [GS19b] that the infection spreads with positive speeds. It
would be thus interesting to obtain those results for the fractal graphs we considered,
and we believe that the Lipschitz cutset could yield both statement if some further
connectivity properties within L; could be shown.
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