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Abstract

In this thesis we explore the framework of the percolation theory
and we analyse two models. We investigate the level set of the Gaus-
sian free field on a supercritical Galton–Watson tree conditioned on non-
extinction with random conductances, showing that the critical param-
eter h˚ is deterministic and strictly positive, that the level set contains
almost surely a transient component for some h ą 0 and it is stable
under perturbation via small quenched noise.

Then we study an infection model with recovery on fractal graphs as
the Sierpiński gaskets and carpets and show the survival of the infection
for small recovery parameter. To prove the result, we generalize the
concept of Lsipschitz surface for the lattice to fractal graphs, and we
show the existence and certain connectivity properties of what we call a
Lipschitz cutset.
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Chapter I

Introduction

In this introduction, we intend to present the framework of the widely studied per-
colation theory and state the first results in the field, which will allow us to consider
more complex models. In the first and easiest formulations, there is no correlation
involved between the variables, contrary to the two models which we will consider in
the following chapters. Let us start presenting the well-known Bernoulli percolation.

I.1 Background

In the field of percolation theory, one usually considers a locally finite graph. We
can start by assuming the graph to be deterministic, and in the first case we will
restrict to the integer lattice Zd. The graph pZd, Eq is defined as the set of vertices
in Zd with two points x, y sharing an edge if |x´y|1 “ 1, and we say that x and y are
neighbors or equivalently x „ y if they share an edge. Successively, in the classical
site percolation the vertices in a random subset O Ď Zd are declared open; in bond
percolation the edges in a random subset O1 Ď E are declared open. One may try
to understand various properties of those subsets O or O1, first of all whether they
contain an unbounded and connected component.

The first model introduced in [BH57] deal with bond percolation on pZd, Eq. One
defines on some probability space a family of Bernoulli random variables pBeqePE
which are independent and identically distributed with some parameter p P r0, 1s
under some probability measure Pp, and declares an edge e open if the Bernoulli
variable on the bond satisfies tBe “ 1u. One may wonder whether it is possible to
find an unbounded cluster inside O :“ te P E : Be “ 1u, as the parameter p of the
model varies. It is easy to verify that the probability of finding such unbounded
cluster is non-decreasing in p: for example one could couple the Bernoulli variables
with a family of uniform random variables in r0, 1s so that the set O is itself non-
decreasing in p. We can hence define

p˚ :“ inf
 

p : PppO contains an infinite clusterq ą 0
(

. (I.1.1)

In the case p ă p˚ there exists no unbounded cluster a.s. and this is usually
called the subcritical phase, while the supercritical phase corresponds to p ą p˚. The
critical parameter in various models is an object of high interest and one tries to
gather information about its value or the behavior of the system in the two phases.

While it is trivial to see that in dimension one the problem is not interesting as
one immediately gets p˚ “ 1, the problem is harder in higher dimensions. For bond
percolation in dimension d “ 2, first Harris in [Har60] showed the inequality p˚ ě

1
2 ,

7
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and later Kesten in [Kes80] obtained the equality p˚ “
1
2 . The latter article uses

a property of the lattice valid in two dimensions, namely the self duality. Given a
planar graph, one can define the dual graph where the vertices corresponds to the
“faces” of the original graph and the edges between two vertices are drawn if the
corresponding faces share an edge. The lattice Z2 has the key property of being
its own dual graph, providing one of the few cases where the critical parameter is
known exactly.

In higher dimensions, or different graphs, or even the site percolation, one is
interested in proving the weaker result of existence of the phase transition, which
in the case of independent Bernoulli percolation translates to p˚ P p0, 1q. A classical
result for various models achieved through 0-1 laws or ergodic theory is

PppO contains an infinite clusterq P t0, 1u. (I.1.2)

The previous equation in the case in which p˚ ă
1
2 gives rise to phenomenon of

coexistence for p˚ ă p ă 1 ´ p˚, meaning that is possible to find two unbounded
clusters, one in O and one in its complement Oc.

Other natural questions deal with the uniqueness of the unbounded cluster in
the supercritical phase p ą p˚, or the tails of the distribution of the size of the
connected component containing the origin, Pp|Cp0q| ą kq, where Cp0q denote the
connected component of O containing 0. Other quantities of interest are the critical
exponent near the critical regime, i.e. the exponent of |p ´ p˚| in the asymptotic
behavior of Er|Cp0q|s as p Ò p˚ and of Pp|Cp0q| “ 8q as p Ó p˚. For more details we
refer to the monograph [Gri99].

Independent percolation on lattices was the first model explored, but numerous
variations have been studied. Is possible to consider different graphs: for instance
graphs with conductances to obtain weighted graphs or random graphs, or one can
consider the more challenging problem of considering various type of correlations
between the sites. In this thesis we will consider weighted graphs, the supercritical
Galton–Watson tree (cf. Subsection II.2.1) and subdiffusive graphs (cf. Subsection
I.1.4), and involve correlations through the Gaussian free field (cf. next subsection
and Subsection II.2.3) and Poisson random walks (cf. Subsection III.2.4).

I.1.1 Gaussian free field

The first model we consider is a Gaussian field with long range correlations, the
Gaussian free field. The first result for the percolation of the associated level set
was proven in [BLM87], and from then it has caught a lot of attention. In particular
a lot of results have been obtained thanks to the relation first shown in [Szn12a] with
an other object called random interlacements. The major obstacle when treating
the Gaussian free field resides in the presence of correlations of the variables, so
that various techniques that work for independent systems need to be improved or
substituted.

We consider a graph pG,Eq and maintain the notation x „ y for adjacent vertices,
i.e. px, yq P E, and we consider the weights λ :“ pλx,yq, x, y P G with the assumptions
λx,y “ λy,x and λx,y ą 0 if x „ y and 0 otherwise, we define for x P G λx :“

ř

y„x λx,y
and we call pG,λq a weighted graph. Let pXkqkPN be a random walk on the graph
starting in x0 under some measure Px0 with transition rates from x P G to y „ x

given by
λx,y
λx

and we assume pG,λq to be transient. We can hence define the Green
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function as

gpx, yq :“
1

λy
Ex

”

8
ÿ

k“0

1tXk“yu

ı

“
1

λy

8
ÿ

k“0

PxpXk “ yq, (I.1.3)

i.e. the expected number of visits in the point y starting from x. The assumption
of transience assures the finiteness of gpx, yq, which is proven to be symmetric and
positive definite. Hence we can define the Gaussian free field pϕxqxPG as the Gaussian
field under the measure PG with

EG rϕxs “ 0

EG rϕxϕys “ gpx, yq

for all x, y P G. We mentioned the percolation of the Gaussian free field referring to
the percolation of its level set : consider for h P R

Eěh :“ tx P G : ϕx ě hu.

It is natural to see Eěh as the set O of the previous subsection, that means declaring
a site x “open” when the Gaussian free field in x is bigger than h. A often used
metaphor to visualize consist in the analogy between a realization of the field and
a landscape, seeing the random set Eěh as the “land above see level h”. As for the
case of Bernoulli independent percolation one defines the critical parameter

h˚ :“ sup
 

h P R : PGpEěh contains an unbounded clusterq ą 0
(

.

The analogy with the landscape allows immediately to see that, contrary to the
Bernoulli case, h ă h˚ corresponds to the supercritical phase, while h ą h˚ to the
subcritical phase. Results about the critical parameter on Zd — with d ě 3 to assure
transience — include h˚ ě 0 from [BLM87], finiteness and asymptotics for large d
in [RS13b] which in particular gives the occurrence of a phase transition. On the
lattice Zd it holds h˚ ą 0 from [DPR18b], and the strict positivity was also shown
for d´regular trees in [Szn16] and for Galton–Watson trees whose mean offspring
size satisfies m ą 2 in [AS18].

Other critical parameters have been introduced. The value h̄ determines the
strong supercritical phase. It was introduced in [DRS14b] and proven to be posi-
tive in [DPR18a] — giving a fortiori h˚ ą 0 — for a large class of graphs which
satisfy certain conditions on the volume growth, the random walk dimension and
isoperimetric condition (we refer to Subsection I.1.4 for precise definitions of those
assumptions). An other critical value, h˚˚ determines the strong subcritical phase,
and was shown in [DC+20] that the three critical parameters actually coincide.
This equality implies for example, that as soon as we are in the subcritical phase
h ą h˚˚ “ h˚, clusters are exponentially small, and that in the supercritical phase
h ă h̄ “ h˚ clusters are locally connected, which on a heuristic levels means that
two non-small clusters in some ball belongs to the same cluster in a larger ball (we
refer to [DPR18a] for a precise definition of the strong supercritical phase).

A lot of the proofs of those results made strong use of an other object which
shares a relation with the Gaussian free field, specifically an isomorphism theorem.
Let us then introduce it.

I.1.2 Random interlacements

The process of random interlacements was introduced by Sznitman in [Szn10] and
later generalized to transient graphs in [Tei09]. We give a short definition here of the
process, and refer to Section II.2.4 and the monograph [DRS14a] for more details.
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Given a transient weighted graph pG,λq, one can define the space of doubly
infinite nearest-neighbor trajectories

ÐÑ
Z :“ tÐÑw : ZÑ G

ˇ

ˇ

ÐÑw pkq „ ÐÝw pk ´ 1q and |k : ÐÑw pkq “ x| ă 8, @x P Gu.

This set is usually indicated with W , but we stick to the notation of subsection II.2.4,
where the letter Z was chosen in place of W as the latter will be used for another
object introduced later called “watershed”. One can consider the relation „ in

ÐÑ
Z ,

for which two trajectories are equivalent if one is the time-shifted version of the
other, and define the quotient space Z˚ :“ Z{ „. It was proven that there exists a
measure ν on Z˚ such that, for each K Ď G and x P K the measure ν of trajectories
hitting K in x modulo time shift is proportional to the probability that the trajectory
is at x at time 0 and never returns to K before time 0, cf. (II.2.14). The random
interlacements process ω is defined as the Poisson point process on Z˚ ˆ R` with
intensity measure ν b λ, where λ is the 1-dimensional Lebesgue measure, and the
random interlacements set Iu is the set of vertices in G visited by the trajectories
in ω which have label in p0, uq.

From the point of view of percolation, the set Iu is not interesting, since on
any transient graph it contains a infinite connected component for every value of u
since random walk trajectories are connected. It is interesting however to observe
the complement Vu, the so-called vacant set. Defining the critical parameter u˚ as
the smallest value for which every component of Vu is bounded, it was first shown
in [SS09] that u˚ P p0,8q on the lattice Zd, d ě 3, and a later a shorter proof was
presented in [Rát15]. The case of Galton–Watson trees has been treated by [Tas10],
which showed that the critical parameter u˚ is deterministic, non-trivial and an
explicit formula was there provided.

We mentioned already a connection between the Gaussian free field and random
interlacements: it consists of a Ray–Knight type isomorphism theorem, first shown
in [Szn12a].

It states that for all x P G and u P R`

1

2
ϕ2
x ` `x,u has the same law as

1

2

`

ϕx ´
?

2u
˘2

where `x,u is the occupation time of the random interlacements at level u and ϕx is
a Gaussian free field independent of the random interlacements process. A strong
improvement of the theorem was the generalization to a continuous structure built
around the graph, the so-called cable system, started by [Lup16] and improved in
[Szn16]. Although we will not use explicitly the cable system in Chapter II, it is
actually necessary and a key ingredient for the use of the isomorphism theorem.

The cable system is defined as follows. Given a weighted graph pG,λq, to each
edge tx, yu corresponds a compact interval Ix,y Ď R of length 1

2λx,y
, where the

endpoints of the interval are identified and glued to x and y. The obtained continuous
metric structure is denoted with rG and it is possible to define the Gaussian free
field prϕzqzP rG and the random interlacements rω on the cable system. For a precise
construction we refer to [Lup16], but we provide a quick intuition on the method.
One can define a diffusion rX on rG, whose restriction to G behaves like a continuous
time random walk and inside the cables Ix,y like a Brownian motion. The field
prϕzqzP rG is then defined as the Gaussian field with covariance rgpz, wq, which is the

Green function associated to rX; similarly the random interlacements process rω is
the Poisson point process of trajectories distributed as rX modulo time shifts; the
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restriction of prϕzqzP rG to G has the law of pϕxqxPG. Alternatively one can construct
prϕzqzP rG from pϕxqxPG adding to edges tx, yu independent Brownian bridges between
ϕx and ϕy. Finally it has been shown that the isomorphism holds for the cable

system: there exists a coupling between rϕz and rω such that for all z P rG and u ą 0

1

2
rϕ2
z `

r`z,u “
1

2

`

rϕz ´
?

2u
˘2
. (I.1.4)

Using equation (I.1.4) we can easily infer the result h˚ ě 0: for each u ą 0 the
set tz : r`z,u ą 0u contains an unbounded connected component and thus there exists

an unbounded connected component of tz P rG : rϕz ´
?

2u ‰ 0u. By continuity in
z of rϕz and since pϕxq is the restriction of rϕz to G, we can find for each u ą 0 an
unbounded cluster either in tx P G : ϕx ą

?
2uu or in tx P G : ϕx ă

?
2uu, and by

symmetry both imply h˚ ě 0.

One can define the critical parameter rh˚ for the percolation of the level set of
the Gaussian free field prϕzq on the cable system in the same way of h˚ for pϕxq. By
restriction, it is immediate to see that rh˚ ď h˚, and the same argument actually
shows rh˚ ě 0. It was shown in [Lup16] that on Zd it holds rh˚ “ 0 (in contrast with
h˚ ą 0 as already mentioned). In [DPR22] a rather weak condition named (Cap) is
provided for rh˚ ď 0 to hold. In [Pré23], Prévost shows that (Cap) is not necessary
for rh˚ ď 0 and gives an example of tree with exponentially small conductances where
actually rh˚ “ 8.

Assuming that rh˚ “ 0, so that every component of tz P rG : rϕz ą
?

2uu is
bounded for any u ą 0, then the same argument below (I.1.4) gives that rIu Ď
tz P rG : rϕz ă

?
2uu and, by taking complements and restricting to the graph,

tx P G : ϕx ą
?

2uu Ď Vu, which gives

h˚ ď
?

2u˚.

This inequality is actually strict in the context of trees, as proven in [Szn16] and
[AS18].

We mentioned that the first result about u˚, in particular its non-triviality for
Zd, d ě 3 was proven in [SS09] using a renormalization scheme. Those arguments,
also known as multi-scale have been proven useful in a variety of situations.

I.1.3 Multi-scale arguments

In various works a multi-scale strategy has been adopted. The various proofs of
course differ from each other in the details, but we can sketch a general overview of
the similarities between very different models. In the case of the lattice Zd, a coarse-
grained (or equivalently a renormalization) approach consist, generally speaking, in
the partitioning of the graph in various “boxes” of some fixed side length, and
requiring some properties of the boxes: this allows to classify boxes as either “good”
or “bad”. If the probability of being “good” is large enough — where enough depends
on the model and the geometry— one should be able to recover a macro-structure
of the “good” boxes which allows to conclude.

Sometimes a single partition is not enough and it is necessary to define different
scales. At each scale, the graph is partitioned in boxes whose side length is given by
the scale and each box is then further partitioned in “boxes” of smaller scale. The
classification into “good” or “bad” boxes remains, but it is not excluded that the
notion or the probability of goodness depend on the scale.
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A (non exhaustive) list of multi-scale arguments applied to different models in-
cludes the following works: the already mentioned percolation of the vacant set in
[SS09], upper bound on the speed and shape theorems for spread of infection of Pois-
son random walks [KS05; KS06], positive speed of multi-particle diffusion limited
aggregation [SS19], existence of phase transition for activated Random Walk [ST17]
and classical Bernoulli percolation [CT18].

Multi-scale arguments can become quite involved and technical, and often needs
to be recreated tailor-made for the treated model. A new tool, called Lipschitz
surface for independent Bernoulli percolation was introduced in [Dir+10] and further
deepened in [GH12], and Gracar and Stauffer in [GS19a] extended the Lipschitz
surface in the space-time graph Zd ˆ Z for non-independent percolation of time-
dependent processes. The surface is constructed with a multi-scale argument, but
is quite robust and can be applied to various frameworks, such as the spread of an
infections, choosing a suitable local, increasing and translation invariant event E
accordingly to the model A similar structure was constructed by the authors for the
torus Td in [GS18], however most works in the field concentrate on the lattice graph
Zd.

I.1.4 Subdiffusive graphs

The lattice graph Zd has been widely studied and is well understood from the point
of view of random walks. The goal of this subsection is to present a class of graphs
which differ substantially from the lattice. To this aim, let us recall some properties
which might be considered natural or even trivial.

Let pXnqně0 be a discrete time simple random walk on Zd starting in x0 P Zd.
Some familiar facts about random walks include that

Er}Xn}
2
2s “ n for all d ě 1;

denoting with dp , q the graph distance, Brpxq the open ball of radius r ą 0 and
center x P Zd, and HA :“ mintn P N : Xn P Au the hitting time of a set A Ď Zd
(with the usual convention of minH “ 8), that

Ex0rHBrpx0qcs — r2 for all d ě 1, (I.1.5)

where — means that the ratio between the two sides is bounded from above and
below by some positive constant independent of the other variables. Equation (I.1.5)
can be easily shown stopping the martingale Mn :“ pXnq

2 ´ n, n ě 0 at τr :“
mintn : dpx0, Xnq “ ru.

Furthermore letting pnpx, yq :“ PxpXn “ yq, for x, y P Zd, n ě 0 be the transition
density, the following Gaussian estimates for dpx, yq ď n are well known (see for
example [Woe00, Corollary 13.11])

pnpx, yq — n´
d
2 exp

´

´
dpx, yq2

c1n

¯

, (I.1.6)

where c1 is some other constant which might differ for the upper and lower bound.
Similar estimates hold true for continuous time random walks and the Brownian

motion on Rd. For a metric measure space let Vrpxq the measure of the open ball of
radius r and center x. Li and Yau [LY86] showed that on a complete manifold with
non-negative Ricci curvature which satisfies

Vrpxq » rα, (I.1.7)
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and in particular Rd with α “ d, the heat kernel ptpx, yq satisfies

ptpx, yq » t´
α
2 exp

´

´
dpx, yq2

ct

¯

, (I.1.8)

where ptpx, yq :“ fpt, x´ yq is there defined in terms of the fundamental solution f
of the heat equation Bf

Bt “ ∆f.
Equations (I.1.5), (I.1.6), (I.1.8) seem to suggest that on the lattice and on the

Euclidean space, informally
time « space2.

One may wonder whether this “ratio” is valid on any graph or there are counterex-
amples where, for example, Gaussian estimates as in (I.1.6) do not hold.

We are now going to consider more general graphs: let pG,λq be a weighted
graph as defined in Subsection I.1.1.

Some results in this direction were first obtained looking at fractals set such as
the Sierpiński gasket K in R2 and the associated fractal graph, the Sierpiński graph
G2 (we refer to Section III.2 for a precise definition). In [Kus87; Gol87; BP88] a
diffusion process was constructed via finer and finer approximation of random walks
on a fractal lattice. In particular, the transition density ptpx, yq of the constructed
Brownian motion satisfies sub-Gaussian estimates

ptpx, yq » t´
df
dw exp

´

´

´

|x´ y|dw

ct

¯1{pdw´1q¯

, (I.1.9)

for all x, y P K, t ą 0 and where |x´ y| is the Euclidean distance in K, df “ log2p3q
is the Hausdorff dimension of the fractal K and dw “ log2p5q is the walk dimension.

Similar result have been obtained for (generalized) Sierpiński carpets SCdplF ,mF q

— we refer to Section III.8 for precise definitions. Those include the construction
of Brownian motion in [BB89] on SC2p3, 8q and sub-Gaussian estimates similar to
(I.1.9) in [BB92; BB99a] with appropriate values of the fractal dimension dv and
walk dimension dw. When the walk dimension satisfies dw ą 2 those estimates
exhibit a sub-Gaussian behavior; this is the reason why those fractal graphs are
often referred to as subdiffusive.

Successive works aimed at obtaining transition density estimates for random
walks as in (I.1.6) for graphs with a “fractal-line” structure, with the same self
similarities properties in a macro level. The following estimates for the heat kernel
pnpx, yq :“ 1

λy
PnpXn “ yq were obtained for the Sierpiński gasket by [Jon96] with

dv “ log2p3q, dw “ log2p5q for all x, y P G2 and n ě dpx, yq

pnpx, yq — n´
dv
dw exp

´

´

´dpx, yqdw

c2n

¯1{pdw´1q¯

. (HKB(dv, dwq)

In [BB99b], equation (HKB(dv, dwq) is proven for generalized Sierpiński carpets for
all x, y P SCdplF ,mF q, n ě dpx, yq if n and dpx, yq both odd or both even, for some
value dv and dw. More general estimates were obtained on fractal graphs in [HK04],
including (HKB(dv, dwq) for recurrent nested fractal graphs.

Let us define similarly to (I.1.7) the volume dimension dv for a general graph G
as the value — if exists — such that

Vrpxq — rdv , for all x P G, r ą 0 (Vpdvq)

where Vrpxq is the measure of a ball of radius r and center x P G with respect to
the graph distance, i.e. Vrpxq “ λpBrpxqq :“

ř

yPBrpxq
λy. The walk dimension dw,
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similarly to (I.1.5), is the value —if exists — such that the mean exit time from a
ball satisfies

ErHBrpxqcs — rdw , for all x P G, r ą 0. (Epdwq)

While showing the existence of a value dv as in (Vpdvq) is easily done not much
differently from evaluating the Hausdorff dimension of the fractal (see Section III.B
for a proof in the Sierpiński graph Gd), the existence of a value dw is proven through
the construction of the Brownian motion and follows from (I.1.9). In [GY18] they
instead evaluated the walk dimension dw of Gd with an alternative method without
using the diffusion. Hence, in view of (I.1.9), (HKB(dv, dwq), (Epdwq), we can observe
at an informal level

time « spacedw .

Equations (HKB(dv, dwq), (Vpdvq) and (Epdwq) are clearly related and with the
use of the same notation dv and dw we silently suggested their correspondence.
Before explicitly stating this equivalence and some other results, we introduce further
conditions on the graph G.

The first assumption for a weighted graph pG,λq we consider is the following:
there exists p0 ą 0

ppx, yq :“
λxy
λx

ě p0, for all x „ y. (p0)

We say that pG,λq satisfies a volume doubling condition if there exists C1 such that
for all x P G and R ą 0

V2Rpxq ď C1VRpxq. (VD)

Recalling the definition of the Green function in (I.1.3) consider the condition

gpx, yq — pdpx, yqq´dv`dw , x ‰ y P G. (Gpdv ´ dwq)

Recalling that a function h : G Ñ R is harmonic on A Ď G if ∆hpxq “ 0 for all
x P A, where

∆hpxq :“
1

λx

ÿ

y„x

λxyphpyq ´ hpxqq,

we say that the graph pG,λq satisfies an elliptic Harnack Inequality if there exists
C2 ą 0 such that for all x P G, R ě 1 and non-negative h : G Ñ R harmonic in
B2Rpxq

sup
BRpxq

h ď C2 inf
B2Rpxq

h. (EHI)

The graph satisfies a parabolic Harnack inequality with parameter dw if there exists
C3 ą 0 such that for all x P G, R ě 1 and non-negative h : G ˆ R Ñ R solving the
heat equation Bhpx,tq

Bt “ ∆hpx, tq in B2Rpxq ˆ p0, 4R
2q it holds that

sup
BRpzqˆrRdw ,2Rdw s

hpx, tq ď C3 inf
BRpzqˆr3Rdw ,4Rdw s

hpx, tq. (PH(dw))

Previous conditions are related in the following way. The authors in [GT01]
showed that for dv ą dw, any infinite connected weighted graph pG,λq satisfying
(p0)

(Vpdvq) ` (Gpdv ´ dwq) ðñ (HKB(dv, dwq),

and it is known that for dv ą dw

(Gpdv ´ dwq) ùñ (Epdwq).
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The inequality dv ą dw clearly does not cover all ranges of possible values of dv and
dw : for example in Zd this holds only for d ą 2.

However, not every choice pdv, dwq P pR`q2 is possible: it is known that if an
infinite connected weighted graph satisfies (p0), (Vpdvq), (Epdwq) then dv ě 1 and

2 ď dw ď 1` dv,

and a proof can be found in [Bar04]; there is also proven that for any dv ě 1,
2 ď dw ď 1`dv, there exists an infinite connected locally finite graph which satisfies
(Vpdvq), (Epdwq) and (EHI). Furthermore, if dw ě dv then the graph is recurrent
[Bar04, Proposition 3].

So, including wider ranges of the parameters, in [GT02, Theorem 3.1] the fol-
lowing equivalences are proven for any dw ě 2

(HKB(dv, dwq) ` (Vpdvq) ðñ (PH(dw)) ðñ (VD)` (EHI)` (Epdwq).

As those graphs differ substantially from the diffusive lattice Zd, arises the nat-
ural question of whether percolation results for dependent or independent fields can
be obtained.

I.2 Percolation in correlated systems

In this Section we introduce the results which we will prove in Chapters II and III
which correspond respectively to [DGP22] and [DGG23]. We gave an overview of
known results for the percolation of the level set Eěh of the Gaussian free field, and
in particular we mentioned that the critical parameter h˚ is positive in the case of
Galton–Watson trees conditioned on survival with mean offspring size m ą 2, as
proven in [AS18].

The Galton–Watson tree is the primary example of branching process. We can
briefly define it here and refer for more detail to subsection II.2.1: consider a prob-
ability distribution ν on N, and starting from a vertex H called root, generate
ZH-many vertices, where ZH is a random variable distributed according to ν and
connect them with an edge to H. For each of those vertices, generate offspring inde-
pendently again according to ν, and iterate the procedure. One then obtain a graph
T with the structure of a tree, i.e. for each vertex x P T , there is only a unique
shortest path of vertices connecting x to the root H and a natural orientation, i.e.
x´ is the parent of the vertex x, the vertex closer to the root. It is well-known (see
[LP16]) that the process has a positive probability to generate an infinite graph if
the mean m :“ EGWrZHs ą 1, and otherwise is finite a.s.. If the tree is infinite, one
easily obtains transience, but note that (Vpdvq) does not hold for any dv.

Since m “ 1 is the critical value for Galton–Watson tree, one may wonder if
the result h˚ ą 0 from [AS18], valid only for m P p2,8q, holds as well in the
whole supercritical phase, i.e. for all m P p1,8q. We will answer positively to the
question in Chapter II through a new construction of the graph via watersheds:
consider under some probability PGW a Galton–Watson tree T with mean m ą 1
conditioned on survival, and equip the edges tx, yu with conductances λx,y such that
the family tλx,y : y´ “ x, y P T uxPT is i.i.d. and Er

ř

y„x λx,ys ă 8. We show that

h˚pT q is PGW-a.s. constant and
h˚pT q ą 0. (I.2.1)

The result is somehow surprising if compared to the independent case. Let T
be a Galton–Watson tree conditioned on survival, for simplicity with conductances
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identically 1, and let pYxqxPT be a centered Gaussian field with variance 1 and
covariance 0, which in particular means it is an independent field. Independent
Bernoulli percolation is well understood, and the critical parameter p˚ for Galton–
Watson trees is known explicitly and equals 1

m , which is usually proved observing
that the subtree ty P T : By “ 1u constitutes a Galton–Watson tree and hence is
supercritical when the mean of its offspring distribution is larger than 1. So for
h ą 0 we can consider

E
“ ˇ

ˇty „ x : Yy ě hu
ˇ

ˇ

ı

“ mF p´hq,

with F being the probability distribution function of a standard normal variable.
Since we assumed h ą 0 F p´hq ą 1

2 and it approaches 1
2 as hÑ 0. In particular if

and only if we assume m ą 2 we can find a value h1 ą 0 depending on m such that
mF p´h1q ą 1, so that with positive probability there exists an unbounded cluster
with Y ą h, for any h ď h1. This means that h˚pY q is positive only for m ą 2.

Figure I.1: A visual representation of the values of h˚ for the independent field Y (in blue)
and the Gaussian free field ϕ (in violet) as the mean offspring size m varies. While it is
easy to obtain that h˚pY q “ ´F

´1p 1
m q for the independent field, for the critical value h˚

it is only known to be positive and less than u˚, so the graph for h˚pϕq is not accurate,
and in particular it is unclear if an intersection is absent (as conjectured) or not. Our result
h˚ ą 0 for all m highlights the violet area, showing a strict inequality h˚pY q ă h˚pϕq for
m P p1, 2q which is new in particular for m “ 2. The value h “ 0 is then now supercritical
for the Gaussian free field.

The statement in (I.2.1) for all m ą 1, implies that the correlated field percolates
more easily than the independent one, and that in particular h “ 0 is a value
belonging to the supercritical phase for the percolation of the level set of ϕ but
subcritical for level set of Y, showing one of the first example in which the mantra
“positive correlation helps percolation” was actually seen to hold (see Figure I.1).

The proof of (I.2.1) is reasonably easier when m P p2,8q. In that range, even
if ϕ is a strong correlated field, one uses the previous argument where a spatial
Markov property and a clever construction allows to work around the dependencies,
as we explain in Section II.3. Our proof instead works for any m ą 1 and for any
distribution of the conductances with Er

ř

y„x λx,ys ă 8, and uses the isomorphism
with random interlacements. However, in order to deal with the random environment
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and random interlacements on it, we had to provide a new method for generating
the tree and random interlacements simultaneously.

As a byproduct of this construction we are able to prove 2 other results. The
random interlacements set Iu, which contains trivially an unbounded cluster can be
perturbed with some Bernoulli noise, i.e. a i.i.d. family pBxqxPT of Bernoulli vari-
ables of parameter p. We show that for each level u ą 0 we can find a high intensity
p such that Iu X tBx “ 1u still contains an unbounded component, extending the
result known for Zd from [RS13a].

For the second result we required the conductances to be elliptic, i.e. there exists
cλ, CΛ such that for all x „ y

cλ ă λx,y ă CΛ. (I.2.2)

Then, we can find u ą 0, h ą 0, p P p0, 1q such that the graphs Iu X tBx “ 1u and
Eěh X tBx “ 1u are almost surely transient, again generalizing the result for Zd of
[RS13a].

In Chapter II we concentrated on trees; a popular and often more challenging
choice are graphs with polynomial growth. We already mentioned that in [DPR18a]
the inequalities h̄ ą 0 and u˚ ą 0 are proven for a large class of graphs: precisely,
they assume (p0), the volume growth (Vpdvq) (where dv is there called α), the Green
function decay (Gpdv ´ dwq) (with dw called β) and weak sectional isoperimetric
condition.

As discussed in the previous section, this class includes in particular fractal-like
graphs such as Sierpiński gaskets and carpets. Therefore, we asked ourselves if it was
possible to extend the concept of Lipschitz surface as in [GS19a] to those graphs.

We present in Chapter III our results about existence and properties of the
Lipschitz cutset, the analogous of the Lipschitz surface for Gd and SCdplF ,mF q. One
defines a coarse-graining of the space-time graph Gd ˆ Z, subdividing it into space
-time cell R1pι, τq indexed by some pι, τq. According to the model in consideration,
one define a suitable event Epι, τq which needs to be increasing and “restricted to
a cell R1pι, τq” (cf. Definition III.2.6 for a proper definition of “restricted”). If the
probability of Epι, τq is high enough for all pι, τq then there exist a set F of cells
where the event E happens for all cells in F . Unlike its analogous in the lattice,
the Lipschitz cutset cannot hope to have such a strong connectivity property due
to “holes in the fractal”, but it will still satisfy a Lipschitz-like condition in the
time component. However it still behaves as a cutset, meaning that any sequence of
adjacent cells with distance from the origin going to infinity intersects the Lipschitz
cutset F. Furthermore we show in Theorem (III.2.13), that F surrounds the origin
at distance t with exponentially high probability. Those properties together allow to
prove various facts about the models in consideration. As an example of a possible
application, we present in Section III.9 the survival of an infection with recovery for
small intensity of the recovery parameter.
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Chapter II

Generating Galton–Watson
trees using random walks and
percolation for the Gaussian
free field
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II.1 Introduction

The main subject of this article is the study of level set percolation for the Gaussian
free field on supercritical Galton–Watson trees. Due to the strong correlations inher-
ent to the model, the problem of level set percolation induced by the Gaussian free
field is quite intricate and significantly harder to understand than that of Bernoulli
percolation. In the setting of fairly general transient graphs, the model has received
increased attention in the last decade, as it is an important showcase for percolation
problems with long-range correlations. A fundamental question in this context is
to show the positivity of the associated critical parameter h˚ – see (II.1.4) below
for its definition – which entails a coexistence phase for h ą 0 close to zero. It has
been investigated on Zd, d ě 3, in [BLM87; RS13b; DPR18b], and on more general
graphs with polynomial growth in [DPR18a]. Of particular relevance for us is the
setting of the Gaussian free field on trees, which has been studied in [Szn16; AS18;
AČ20a]. More precisely, in [AS18, Section 5], Abächerli and Sznitman consider the
particular case of the Gaussian free field on supercritical Galton–Watson trees with
mean offspring distribution m P p1,8q, and prove that h˚ P r0,8q for all m P p1,8q,
as well as the strict inequality h˚ ą 0 when m ą 2.

The main goal of the current article is to extend this result h˚ ą 0 to all super-
critical Galton–Watson trees, i.e. with offspring mean m P p1,8q, which along the
way solves an open question of [AS18, Remark 5.6]. Moreover, we additionally allow
the edges of the tree to be equipped with random conductances with finite mean,
and show that the associated critical parameter h˚ is still deterministic and strictly
positive.

It is intriguing to compare our main result with Bernoulli site percolation on
supercritical Galton–Watson trees T , for which – conditioned on survival – the
associated critical parameter is known to almost surely equal the inverse of the off-
spring mean, i.e., pcpT q “ 1{m; see [Lyo90] or [LP16, Proposition 5.9]. Contrasting
this well-known result with the inequality h˚pT q ą 0 is particularly interesting in
the newly investigated range m P p1, 2s in our article. Indeed, in this range we
have that the density of Bernoulli percolation at the critical parameter is given by
pcpT q “ 1{m ě 1{2, whereas the density of percolation for the Gaussian free field
level sets at the critical parameter is strictly smaller than 1{2, since h˚pT q ą 0.
Therefore, when m P p1, 2s the positive correlations of the Gaussian free field make
percolation easier. This is a behavior expected for many percolation models, see
in particular [Pra+92] as well as [ML06] for numerical reasonings concerning the
setting of percolation with long-range correlations. To the best of our knowledge,
the only other class of transient graphs where an inequality between densities at
criticality of Gaussian free field and independent percolation has been rigorously
proven are d-regular trees, see [Szn16, Corollary 4.5], but it is conjectured to hold
for a large class of transient graphs.

A key tool in our proof is based on a construction of the Galton–Watson tree
and random walks on it at the same time, see Section II.4. Each random walk will
explore a portion of the tree below its starting point, and we call such a subset of the
tree a “watershed”. The specific exploration via watersheds will prevent the random
walks from “predicting the future of the tree” during its construction; that is, we
construct each watershed on a part of the Galton–Watson tree while preserving the
independence of the rest of the tree. The main feature of the explored tree is its
stability to perturbation by small quenched noise. The desired positivity of h˚ will
then be obtained by means of a Dynkin-type isomorphism theorem between the
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Gaussian free field and random walks, see [Eis+00], or more precisely with random
interlacements, a random soup of random walks, see [Szn12a; Lup16]. Moreover, we
expect that our exploration procedure of the Galton–Watson tree via watersheds can
also be used to obtain other interesting results. A first manifestation of this is already
provided by the results on noise-stability and transience for the interlacements set
as well as for the level sets of the Gaussian free field above small positive levels, see
Theorem II.1.2 and II.1.3 below.

II.1.1 Main results

Let us now explain our setting and results in more detail. We consider a

Galton–Watson random tree T with mean offspring
distribution m ą 1, conditioned on survival,

(II.1.1)

and denote the underlying probability measure by PGW. We endow the natural graph
structure induced by T with positive random conductances λx,y, x „ y, such that,
conditionally on T , and denoting by y´ the parent of y P T , with y different from
the root H,

the family tλx,y : y P T and y´ “ xuxPT , is i.i.d. and

EGWrλx,`s ă 8 @x P T , where λx,` :“
ÿ

y: y´“x

λx,y; (II.1.2)

note that this setting is slightly more general than endowing the edges of the Galton–
Watson tree with independent conductances. In particular, when the conductances
λx,y, x „ y, are constant equal to 1, we recover the usual Galton–Watson tree, and
in this case condition (II.1.2) simply boils down to the mean offspring distribution
m being finite. In a slight abuse of notation, we also denote by T the weighted
graph with the conductances λ, and will explicitly mention when we consider the
tree T to be weightless as in (II.1.1) to avoid confusion. We refer to Section II.2.1
for precise notation and definitions.

It is known that the random tree T is almost surely transient, cf. Proposi-
tion II.2.1, and conditionally on its realization, we denote by gT the Green function
associated to the random walk on T , see below (II.2.10).

Conditionally on the realization of T , we then define the Gaussian free field
pϕxqxPT under some probability measure PG

T as the centered Gaussian field with
covariance function gT , see Section II.2.3 for further details. Note that this is a
Gaussian free field in a random environment, that is we first generate the Galton–
Watson tree T with random conductances and then – conditionally on the surviving
Galton–Watson tree T – we generate a Gaussian free field on T .

We will study the percolative properties of the level sets or excursion sets of the
Gaussian free field on T , i.e., of the random set

Eěh :“ EěhpT q “ tx P T : ϕx ě hu, h P R. (II.1.3)

We observe that the level set is clearly decreasing in h, and we define the critical
parameter

h˚ :“ h˚pT q :“ infth P R : PG
T -a.s. all connected components of EěhpT q are boundedu

(II.1.4)
for the corresponding percolation problem.
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A priori, it is not known if h˚ is deterministic, nor whether the phase transition
is nontrivial, i.e., whether h˚ P R. For unitary conductances, the former is proved in
[AS18, Lemma 5.1], and the latter – more precisely the inequality 0 ď h˚ ă 8 – is
proved in [AS18, Proposition 5.2], taking advantage of [Tas10]. The result h˚ ą 0 is
shown to hold in [AS18] for constant conductances under the additional assumption
m P p2,8q; however, it seems that the assumption of finite mean is not essential
to their proof. Let us also note in passing that even for Galton–Watson trees with
random i.i.d. conductances, h˚pT q is still deterministic, see Appendix II.A.2. We
now state our main result.

Theorem II.1.1. Under (II.1.1) and (II.1.2), there exists h ą 0 such that Eěh

contains EGWrPG
T p¨qs-almost surely an unbounded connected component, and hence

h˚pT q ą 0.

Note that Theorem II.1.1 does not yet imply that the phase transition is non-
trivial, that is h˚pT q ă 8. Indeed, this finiteness property does hold true for i.i.d.
weights, but it may fail without this condition – we refer to the discussion below
(II.1.6) for details.

In the case m ą 2, the assumption EGWrλx,`s ă 8 from (II.1.2) is not nec-
essary to prove the inequality h˚ ą 0 as explained at the end of Section II.3 (for
unitary conductances this also follows from [AS18, Theorem 5.5]). In view of Theo-
rem II.1.1, a natural question then is whether h˚ ą 0 under the broader assumptions
EGWrλx,`s “ 8 and m P p1, 2s.

We will now put our result into the context of previous literature on percolation
for the Gaussian free field. The study of this percolation problem for unitary con-
ductances had been initiated by Bricmont, Lebowitz and Maes in [BLM87] on the
Euclidean lattice Zd in transient dimensions d ě 3. Using a soft but quite robust
contour approach, they proved that h˚pZdq ě 0 for all d ě 3, as well as h˚pZ3q ă 8.
More recently, on Zd, it has been established in [RS13b] that h˚pZdq ă 8 for all
d ě 3, as well as h˚pZdq ą 0 for all sufficiently large d; in [DPR18b] it has then
subsequently been shown that h˚pZdq ą 0 for all d ě 3. For trees with unitary
conductances, the parameter h˚ P p0,8q was first characterized in [Szn16] on d-
regular trees, d ě 3, and subsequently in [AS18] for a larger class of transient trees,
including supercritical Galton–Watson trees with mean m ą 2.

In [AČ20a], further percolative properties for d-regular trees have then been
studied in the super- and sub-critical regime. In [DPR18a], h˚ ą 0, and in fact local
uniqueness of the infinite cluster at a positive level, has been shown for a larger class
of graphs with polynomial growth. This class of graphs actually include Zd, d ě 3,
with bounded conductances as a special case, which was further studied in [CN21].
We also refer to [Szn15; AČ20b; DC+20; GRS22; Con21; Čer21] for further recent
progress in this area.

Our proof crucially relies on another important object: the random interlace-
ments set Iu, u ą 0, which has been introduced in Zd, d ě 3, by [Szn10]. Later
on, it has been generalized to transient weighted graphs in [Tei09]. It is related to
the Gaussian free field via Ray-Knight type isomorphism theorems, first obtained in
[Szn12a], and later on extended in a series of works [Lup16; Szn16; DPR22]. From
a heuristic point of view, random interlacements is a random soup of doubly infinite
transient random walks, and the union Iu of their traces thus trivially has an un-
bounded connected component (and hence percolates). On Zd, d ě 3, it was proved
in [RS13a] that Iu still percolates when perturbed by a small quenched noise, and
this property was essential in the proof of h˚ ą 0 from [DPR18b]. Although our
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approach to proving h˚ ą 0 on Galton–Watson trees is quite different from that of
[DPR18b], the stability of Iu to perturbation via small quenched noise will still play
an essential role in our proof of Theorem II.1.1. Note that in the context of random
Galton–Watson trees, we will see Iu as a quenched random interlacements on the
realization of the tree T ; see Section II.2.4 for details.

We now describe this stability property – which is of independent interest, see its
implications in Theorem II.1.3 below – in more detail. Again conditionally on the
realization of the tree T , for some p P p0, 1q, denote by Bx, x P T , an independent
family of i.i.d. Bernoulli random variables with parameter p and let

Bp :“ tx P T : Bx “ 1u. (II.1.5)

Theorem II.1.2. Under (II.1.1) and (II.1.2), for all u ą 0, there exists p P p0, 1q
such that IuXBp contains almost surely an infinite connected component. Moreover,
there exist h ą 0 and p P p0, 1q such that EěhXBp contains almost surely an infinite
connected component.

In [RS13a], the question of stability of the vacant set Vu :“ pIuqc to perturbation
by small quenched noise on Zd has also been studied. In a similar vein, on Galton–
Watson trees one can also easily prove that Vu X Bp percolates for p large enough,
see Remark II.2.3. In [RS13a], the proof of stability of Iu to perturbation by small
quenched noise involves some local connectivity result for random interlacements,
which can also be used to prove transience of the interlacements set [RS11], or of
Iu X Bp, see [RS13a]. It turns out that, although our proof of Theorem II.1.2 is
entirely different from that of [RS13a], it can also be employed to show transience
of Iu X Bp, or of Eěh X Bp at small, but positive, levels, under some additional
assumptions on the conductances.

Theorem II.1.3. Assume (II.1.1), (II.1.2) and that, conditionally on the non-
weighted graph T , pλx,yqx„yPT are i.i.d. conductances with compact support in p0,8q.
Then for all u ą 0, there exists p P p0, 1q such that IuXBp contains almost surely a
transient connected component. Moreover, there exist h ą 0 and p P p0, 1q such that
Eěh XBp contains almost surely a transient connected component.

For the reader’s convenience we refer to the discussion above (II.6.1) for the
precise definition of what means in our context that, conditionally on the non-
weighted graph T , pλx,yqx„yPT are i.i.d. conductances with compact support in p0,8q
– which, in fact, is arguably the “natural” way of endowing a tree with i.i.d. random
conductances, but less general when compared to (II.1.2).

Let us finish this subsection with some comments on percolation for the vacant
set of random interlacements, and the finiteness of h˚. The random interlacements
set Iu always percolates since the trace of a transient random walk is an unbounded
connected set; one may, however, wonder if the same holds true for its complement
the vacant set Vu when the intensity parameter varies.

Denoting by u˚ the critical parameter associated to the percolation of Vu, u ą 0,
the isomorphism between random interlacements and the Gaussian free field, see
Proposition II.2.5 below (which can be used in our context in view of Proposi-
tion II.5.8), implies similarly as in [Lup16, Theorem 3] that

h˚ ď
?

2u˚. (II.1.6)

The inequality (II.1.6) combined with Theorem II.1.1 implies u˚ ą 0, but note that
the inequality u˚ ą 0 could be proved via easier means, see Remark II.2.3. Let us
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note here that in the special case of unitary conductances, an explicit formula for
u˚ has been derived in [Tas10]. The proof of [Tas10, Theorem 1] can be adapted to
random conductances as long as pλx,yqx„yPT are i.i.d. conductances conditionally on
the non-weighted graph T . In particular, u˚ ă 8 under the same conditions, and
thus h˚ ă 8 as well by (II.1.6). However, if we allow the weights pλx,yqx„yPT to not
be i.i.d. conditionally on the non-weighted graph T – but still satisfying the usual
setup of (II.1.2) – one can find Galton–Watson trees where h˚ “ 8, see (II.3.4).

The weak inequality (II.1.6) can actually be improved to h˚ ă
?

2u˚ on d-regular
trees, d ě 3, see [Szn16]. In [AS18], the authors provide general enough conditions
to obtain h˚ ă

?
2u˚ on transient trees, and in particular for Galton–Watson trees

with unitary conductances this strict inequality holds under additional hypotheses
on exponential moments of the offspring distribution, see [AS18, Theorem 5.4]. They
also provide an example, namely the tree where each vertex has an offspring size
equal to its distance to the root, where actually 0 “ h˚ “

?
2u˚.Note that this entails

that Theorem II.1.1 does not hold when removing the assumption EGWrλx,`s ă 8
from (II.1.2), as well as the assumption that the distribution of the number of
children does not depend on the generation.

II.1.2 Outline of the proof

We now comment on the proofs of Theorems II.1.1, II.1.2 and II.1.3 in more detail.
Let us first elaborate on the fact that Theorem II.1.2 is useful to obtain Theo-
rem II.1.1. The isomorphism between random interlacements and the Gaussian free
field, see Proposition II.2.5, implies that for each u ą 0, random interlacements and
the Gaussian free field on T can be coupled in such a way that

almost surely, Iu Ă Eě´
?

2u. (II.1.7)

This implies in particular that Eě´
?

2u percolates for all u ą 0, and taking u Ó 0
we infer that h˚ ě 0. Note that the validity of the inclusion (II.1.7) requires some
condition on the tree to be fulfilled – see (II.2.20) – but we will actually show in
Proposition II.5.8 that this condition is always satisfied in our context. In [DPR18b;
DPR18a], an extension of the inclusion (II.1.7) to a continuous metric structure
associated with the discrete graph, the so-called cable system, was used to lift the
inclusion (II.1.7) – when the field was taking not too high values – to level sets
of the Gaussian free field at positive levels, which then yielded the desired strict
inequality h˚ ą 0. Here, we follow a simpler approach, that is we use an extension of
the inclusion (II.1.7), see Proposition II.2.5 below, which includes information about
the exact values of the free field, as well as the local times of random interlacements.
Proposition II.2.5 is proven using the cable system, cf. [Lup16] for further details.
The proposition readily implies that there exists a coupling such that for each u ą 0,

almost surely, Iu XAu Ă pEě
?

2u, (II.1.8)

where pEě
?

2u has the same law as Eě
?

2u, see (II.1.3), and

Au :“
!

x P T : Ex ą 4uλx or |ϕx| ą 2
?

2u
)

, (II.1.9)

for some i.i.d. exponential random variables pExqxPT with parameter one, indepen-
dent of the Gaussian free field ϕ and the interlacements set Iu. Note that Au in-
creases a.s. to T as u Ñ 0, and one can thus interpret the intersection with Au as
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applying a small quenched noise. Theorem II.1.2 then suggests that Iu XAu might
percolate for u small enough, which again would imply Theorem II.1.1 by (II.1.8).

However, one cannot directly use Theorem II.1.2 for proving Theorem II.1.1 for
two reasons: first, the variables tx P Auu, x P T , are not independent, and second,
the probability that x P Au depends on the parameter u of the interlacements set,
and thus, contrary to p in Theorem II.1.2, it cannot be taken arbitrarily close to
one for a fixed u. The first problem will be essentially solved by lower bounding
the probability that x P Au conditionally on ty P Auu, y ‰ x, using the Markov
property of the free field, see (II.5.25). To solve the second problem, we will make
the dependency of p on u in Theorem II.1.2 explicit, that is, we find a function ppuq,
with ppuq Ò 1 as u Ñ 0, such that Iu X Bppuq percolates for all u ą 0, and we show
that the probability that x P Au is larger than ppuq for u small enough, see the proof
of Proposition II.5.7.

Therefore, in order to obtain Theorem II.1.1, it is essentially enough to show
that Iu X Bppuq percolates, where ppuq is smaller than the probability that x P Au
for u small enough. The main difficulty is that, when u is small, there are two
competing effects at play in this percolation problem. On the one hand, in the
u ą 0 small regime, the interlacements set Iu consists of few trajectories, and hence
is less well-connected; i.e., intersecting Iu with Bp might break its infinite connected
components into finite pieces. This is particularly problematic when m is close to
one, since the tree tends to contain long stretches which locally look like Z, and hence
the connectivity of such components turns out to be sensitive to an independent
noise. On the other hand, as uÑ 0, for each x P T , the probability that x is in Au
tends to one, and it thus becomes less likely to break a fixed connected component
of Iu into finite pieces when intersecting with Bppuq. The proof of Theorem II.1.1
therefore requires a subtle comparison of the influences of these two opposite effects
as uÑ 0. We now provide a short explanation of how this is done.

The probability that a vertex x is contained in Acu can be easily upper bounded

by u3{2λ
3{2
x , see (II.5.25) below, and we can thus take ppuq “ 1 ´ u3{2λ

3{2
x for u

small enough. To prove percolation of Iu X Bppuq, we use a description of the
trajectories in Iu via their highest (i.e., minimal distance to the root) visited vertex,
Theorem II.2.2, which can be seen as a generalization of [Tei09, Theorem 5.1]. This
description entails that Iu can be generated by starting, for each vertex x P T , an
independent Poissonian number Γx of random walks starting at x going down the
tree. Here, the Poisson distribution underlying Γx has parameter uqeT pxq, where
qeT pxq – see (II.2.16) – is a parameter depending on the subtree rooted at x, which
bears some similarity with the square of the conductance from x to infinity.

Now in the simpler case where each vertex in the tree T always had at least
two children and the conductances were bounded, one could finish the proof by
first conditioning on T and by then proceeding as follows. One can under these
conditions easily show that qeT pxq is of constant order, uniformly in x P T . Thus,
when Γx ě 1, with high probability, starting a random walk at x going down the
tree up to the first time it has visited C{u vertices, for a large constant C, there are
at least two vertices y with Γy ě 1 which are not visited by the walk, but children
of vertices visited by the walk (the existence of such vertices is guaranteed by the
fact that each vertex visited by the walk has at least two children). We will say
that such a point y corresponds to a free point, see (II.4.12). Moreover, again with
high probability as u Ñ 0, all the vertices visited by this walk are contained in

Bppuq, with ppuq “ 1´u3{2λ
3{2
x , and in particular there is a path between x and y in
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Iu XBppuq. One can now iterate this procedure starting a new trajectory at each y
corresponding to a new free point, and show that the tree of free points contains a
d-ary tree, see Proposition II.5.5. In particular it percolates, which directly implies
the percolation of Iu XBppuq also.

In this approach, we thus first generate T , and then construct an infinite cluster
in IuXBppuq on the now fixed tree T . However, when the mean offspring number m
is close to one, or the conductances are not bounded, then the tree T will contain
some connected components of vertices, each with exactly one child, with size more
than C{u, on which the above approach is bound to fail. Note, however, that as
u Ñ 0, condition (II.1.2) in combination with the Marcinkiewicz-Zygmund law of
large numbers implies that these bad sequences in T become rarer when the tree is
generated, see (II.5.7). In order to benefit from this information, we are going to
generate the interlacements set Iu and the Galton–Watson tree T simultaneously.
Generating the two processes at the same time is of considerable importance as it
allows us to operate with the interlacements process without being forced to generate
the whole tree beforehand.

To generate these two processes at the same time, we will explore the Galton–
Watson tree using random walks, in the form of an object that we will call watershed,
as is explained in Section II.4 in more detail. The previously mentioned description
of random interlacement trajectories via their highest visited vertex then implies
that for each vertex x, if a Poisson random variable with parameter u takes the
value at least one, one can start a watershed at x, that is a walk starting at x
and exploring the tree below x, which is included in random interlacements at level
u{etxu,Txpxq, see Proposition II.4.2; here, etxu,Tx is the equilibrium measure of the
set txu for the subtree Tx of T rooted in x, see (II.2.12). Now, for each vertex x,
we will first generate a portion of the tree to make sure that etxu,Txpxq ě ce for
some constant ce, see (II.5.19), and then start a watershed at x if a Poisson random
variable with parameter u is at least one, which will thus be included in random
interlacements at level u{ce, see Proposition II.5.6. We can now use the additional
randomness of the tree – which in particular entails that with high probability there
are no large components of vertices each with exactly one child – to show that, for
u ą 0 small enough, the intersection of all the watersheds and Bppu{ceq percolates

for each m ą 1, and thus Eěh percolates for h small enough as well; see Section II.5
for details.

Finally, in order to prove Theorem II.1.3, we note that, for uniformly bounded
weights, the trace of a random walk on the watersheds is essentially a coarse-grained
random walk on the tree of free points with a drift, see (II.6.4). Using an argument
from [Col06], we deduce that such a random walk is transient, which finishes the
proof using the isomorphism (II.1.8) again.

The structure of the article is as follows: in Section II.2 we will define the
main objects and set up notation. In Section II.3 we provide a short and simple
proof of Theorem II.1.1 under the additional assumption m ą 2 – this will turn
out instructive for the proof of the general result also. Furthermore, we provide
examples of Galton–Watson trees with h˚ “ 8. In Section II.4 we will introduce
the exploration of the Galton–Watson tree through random walks, which is used
in Section II.5 to prove Theorems II.1.1 and II.1.2. In Section II.6, we use similar
methods to prove Theorem II.1.3. Finally, we prove in Appendix II.A.2 that h˚ is
deterministic in our setting.
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II.2 Notation and definitions

In Sections II.2.1 and II.2.2 we introduce the Galton–Watson trees which we will
be considering. Subsequently, Sections II.2.3 and II.2.4 are then devoted to random
walks, the Gaussian free field, as well as random interlacements on trees. In Sec-
tion II.2.5 we introduce the isomorphism theorem between random interlacements
and the Gaussian free field.

II.2.1 Galton–Watson trees

We will investigate trees using the Ulam-Harris labeling. For this purpose, consider
the space

X :“
8
ď

i“0

Ni, (II.2.1)

where N is the set of positive integers, N0 the set of non-negative integers and N0

is defined as tHu. For i, j P N as well as x, y P X such that x “ px1, . . . , xiq P
Ni and y “ py1, . . . , yjq P Nj , we define the concatenation of x and y as xy “
px1, . . . , xi, y1, . . . , yjq P Ni`j Ď X . Moreover, for A Ď X and x P X we introduce
x ¨ A :“ txy : y P Au; note that in contrast to pointwise concatenation we put an
additional dot for aesthetic reasons. For all x “ px1, . . . , xiq P X , i P N, we define
x´ :“ px1, . . . , xi´1q, the parent of x, with the convention pq “ H. For a set A Ď X
we define its (interior) boundary as BA :“ tx P A : E y P A, y´ “ xu. Note that this
is not exactly the natural topological boundary, but this slightly modified definition
will turn out useful for our purposes. We moreover introduce, for A Ď X and x P A,
the set of children of x in A as

GAx :“ ty P A
ˇ

ˇ y´ “ xu. (II.2.2)

We call T Ă X a tree if for each x P T ztHu, we have x´ P T and |GTx | ă 8.
We then say that x P T ztHu is a child of y P T if x´ “ y. If the tree T under
consideration is clear from the context, for all x, y P T, we write x „ y if either
x “ y´ or y “ x´. One can also view a tree T as a graph with edges between x
and y if and only if x „ y. On this graph, we denote by dT px, yq the usual graph
distance. We say that T is a weighted tree if each edge between x and y is endowed
with a symmetric conductance λx,y “ λy,x P p0,8q. For x P T we also define λx,` as
in (II.1.2). Since weights are not encoded in X , a weighted tree is not a subset of X .
However, to simplify notation, we will often implicitly identify a weighted tree with
its set of vertices, a subset of X . Note that most of the previous notation depends
on the choice of the tree T, which will always be clear from the context. For x P T ,
we write Tx for the subtree of T consisting of x and all descendants of x, endowed
with the same conductances as in the underlying tree T. In this article, we think
of trees as growing from top to bottom, so we sometimes refer to the points in the
subtree Tx as the points below x. A priori, Tx may consist of finitely many nodes
only, but with a standard pruning procedure, we will actually soon reduce ourselves
to the case of infinite Galton–Watson trees, see Section II.2.2.

We now explain how to define a Galton–Watson tree with random weights as a
random weighted tree T . We consider a probability measure ν on r0,8qN, which will
form a canonical probability space, in order to describe the offspring distribution
as well as the associated conductances. More precisely, we consider ν such that if
the sequence pλiqiPN on r0,8qN has law ν, then there exists d P N such that ν-a.s.,
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λi ą 0 for all i ă d and λi “ 0 for all i ě d. We will soon use ν to assign weights to
the edges of the tree by means of a vector pλx,xiq

8
i“1, distributed according to ν for

each vertex x. Throughout this article, except in Section II.3, we moreover assume
that the law of the conductances satisfies

Eν
“

λ`
‰

ă 8, where λ` “
ÿ

i

λi; (II.2.3)

essentially, this is just a reformulation of the second condition in (II.1.2). Note that
we do not assume the conductances to be bounded away from zero or infinity, nor
that the conductances λi, i P N, are independent under ν. Defining the function
π : r0,8qN Ñ N0 via pλiqiPN ÞÑ |ti P N : λi ą 0u|, we introduce the pushforward
probability measure

µ :“ ν ˝ π´1 (II.2.4)

on N0. As it corresponds to the law of the number of edges with conductances
different from 0, it will play the role of the offspring distribution. We will assume
from now on that the mean of the offspring distribution satisfies

m :“
8
ÿ

i“0

iµpiq ą 1, (II.2.5)

which will correspond to the case of supercritical Galton–Watson trees.
On some rich enough probability space we define the Galton–Watson tree T by

constructing T X NkpĂ X q, endowed with conductances on the (undirected) edges
with the vertices in T X Nk´1, recursively in k. For k “ 0, we simply start with
the vertex H P N0 Ď X called the root. For k ě 0, once the tree T has been
generated up to generation k, for each vertex x P NkXT we generate independently
a random vector pλx,xiqiPN with law ν. The vertex x has πppλx,xiqiPNq children, and
we endow the edge from x to its child xi, 1 ď i ď πppλx,xiqiPNq, with the conductance
λx,xi P p0,8q. This defines T X Nk`1 and its conductances with vertices in T X Nk.
The union over k P N0 of these sets, endowed with the respective conductances, is
denoted by T , the weighted Galton–Watson tree. Note that the structure of the tree
is completely determined by the weights λ, and that an edge between two vertices
is present if and only if the conductance between them is non-zero. Under our
standing assumption (II.2.5), the tree becomes extinct with probability q ă 1 (cf.
for instance the discussion below [LP16, Proposition 5.4]). Hence, it has a positive
probability to survive indefinitely, and in order to avoid trivial situations, we will
always condition the Galton–Watson tree on this event of survival in what follows.
We denote by PGW the probability measure underlying the Galton–Watson tree
constructed above, conditioned on survival.

Let us also define here already the canonical σ-algebras that we consider through-
out the article, and which only become relevant at later points in this article. The
set X is endowed with the σ-algebra σptxu, x P X q, and the space of subsets of X
is endowed with the σ-algebra generated by the coordinate functions A ÞÑ 1txPAu,

x P X . If T Ă X , we will often regard pλx,yqx„yPT P p0,8q
tx,yPT :x„yu as an element

of r0,8qXˆX , endowed with the product of the Borel-σ-algebras, by taking λx,y “ 0
if either x R T or y R T, or else if x and y are not neighbors in T.

II.2.2 Pruning of the tree

In this subsection we describe a useful pruning procedure for the tree conditioned on
survival, which corresponds to chopping all finite branches of the tree – the remaining
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subtree is known as the reduced subtree in the literature, see e.g. [LP16]. In order
to simplify our investigations, we will then observe that the conditioned chopped
Galton–Watson tree can also be constructed as a Galton–Watson tree with modified
offspring distribution and which then survives almost surely, see (II.2.6). For this
purpose, we define the reduced subtree T 8 of T as consisting of those vertices of T
which have an infinite line of descendants:

T 8 :“ tx P T : Tx is infiniteu,

where we recall that the notation Tx has been introduced in the paragraph below
(II.2.2).

Then [LP16, Proposition 5.28 (i)] entails that T 8, which can be seen as a tree
in X , has – possibly after relabeling and conditionally on survival – the same law as
a Galton–Watson tree T ˚ with offspring distribution µ˚. The latter is characterized
by its probability generating function

f˚psq “
fpq ` sp1´ qqq ´ q

1´ q
, where q is the probability that T is finite, and

f is the probability generating function of µ.

(II.2.6)

Note that f˚p0q “ 0, hence µ˚p0q “ 0, i.e. points in T ˚ have zero probability of
generating no children, and that µ˚ has the same mean m as the law µ associated
to T .

The behavior of the law of the conductances under pruning is slightly more
involved. Indeed, conditionally on T and for each x P T , conditionally on its number
of children |GT

x |, the weights pλx,yqy„x are independent of the event tx P T 8u.
Therefore, one can find a probability measure ν˚ on r0,8qN with ν˚ ˝ π´1 “ µ˚

such that the weighted tree T 8 has – after relabeling – the same law conditionally
on survival as a weighted Galton–Watson tree T obtained from the probability ν˚.
The law of ν˚ is the same as the law of ν restricted to P positive coordinates chosen
uniformly at random among the K ` P positive coordinates of ν, where P has law
µ˚ and K has the law of the number of children of the root which do not survive,
given that the root has P surviving children (its probability generating function is
described in [LP16, Proposition 5.28 (iv)]).

Note that even under ν˚ it holds true that Eν˚r
ř

iPN λis ă 8. Indeed, we first
condition on survival which is an event of positive probability, and then we delete
those points not belonging to T 8, which can only decrease the respective expected
conductance.

We already remark at this point that the above pruning procedure does not
change the critical parameter h˚ we are interested in, as the Gaussian free field
restricted to T 8 has the same law on the pruned tree, and similarly for random
interlacements. In particular, Theorems II.1.1, II.1.2 and II.1.3 can be proven equiv-
alently on the initial tree or on the pruned tree, and we refer to Remark II.2.4 for
further details.

Therefore, without loss of generality, from now on we always work under the
standing assumption that

ν is a probability measure such that π
`

pλiqiPN
˘

ě 1 ν-a.s.;

i.e., under PGW all x P T have a.s. an infinite line of descendants.
(SA)

In particular, under (SA), PGW is the law of a Galton–Watson tree without condi-
tioning on survival, since survival occurs with probability one.
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II.2.3 Gaussian free field

Let us now define one of our main objects of interest, the Gaussian free field. We
start with some general definitions related to random walks. Let T be a weighted
tree with positive weights pλx,yqx„yPT . For x0 P T we define a random walk pXnqnPN0

on T under P Tx0
as the Markov chain on its canonical space N0 starting in x0 with

transition probabilities

P Tx0
pXn`1 “ y

ˇ

ˇXn “ xq “
λx,y
λx

for all x „ y P T, (II.2.7)

where the total weight λx at x is defined as

λx “
ÿ

y„x

λxy; (II.2.8)

note that the total weight, unlike λx,` in (II.1.2), sums over the conductance λx,x´
also. For a set U Ď T , the hitting and return times of X, respectively, are denoted
by

HU pXq :“ HU :“ inftn ě 0 : Xn P Uu and rHU pXq :“ rHU :“ inftn ě 1 : Xn P Uu,

(II.2.9)

respectively, with the convention infH “ 8. In the case of a single point U :“ txu,
we will write Hx and rHx in place of Htxu and rHtxu.

In this section, we assume that the random walk X on T is transient, an as-
sumption which will in particular be satisfied for supercritical Galton–Watson trees
conditioned on survival, see Proposition II.2.1. For U Ă T, the Green function
associated to X, killed upon exiting U under P T¨ , is given by

gTU px, yq :“
1

λy
ETx

”

HT zU´1
ÿ

k“0

1tXk“yu

ı

for all x, y P T. (II.2.10)

In particular, we note that gTU px, yq “ 0 if either x R U or y R U. In addition, we write
gT px, yq :“ 1

λy
ETx r

ř8
k“0 1tXk“yus, where x, y P T, for the Green function associated

to X on T.

Then gT is symmetric positive definite, and we can hence consider a probability
measure PG

T on RT endowed with the canonical σ-algebra generated by the coordinate
maps pϕxqxPT such that

pϕxqxPT is a centered Gaussian field

with covariance given by EG
T rϕxϕys “ gT px, yq, x, y P T.

We call ϕ the Gaussian free field on the tree T. Let us now recall the Markov
property for ϕ, see for instance [Szn12b, Proposition 2.3]. For a finite set K Ď T
and U :“ T zK, define for all z P T,

βUz :“ ETz
“

ϕXHK 1tHKă8u
‰

and ψUz :“ ϕz ´ β
U
z . (II.2.11)

Then

pψUz qzPT is a centered Gaussian field with covariance function EG
T

“

ψUz ψ
U
w

‰

“ gTU pz, wq,
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which vanishes in K and is independent of σpϕz, z P Kq. Note moreover that βU is
σpϕz, z P Kq-measurable, and thus independent of ψU .

Putting the previous general considerations in our context of interest, we note
that for almost all realizations of a weighted Galton–Watson tree T , under PGW the
Green function gT is finite since the random walk is transient: the proof in [Gan+12,
Proposition 2.1] can be straightforwardly adapted to our case, i.e. the case where
for each x P X , the family pλx,yqy„x, is not necessarily independent. This yields the
following result.

Proposition II.2.1 ([Gan+12]). PGW-almost surely, the random walk on the tree
T with conductances pλx,yqx,yPT ,x„y is transient.

Hence, for almost all realizations of the Galton–Watson tree T , we can define
the Gaussian free field on T as the field ϕ under PG

T .

II.2.4 Random interlacements

The random interlacements process has been introduced by Sznitman [Szn10] for
Zd (see [DRS14a] and [ČT12] for introductory texts) and it has subsequently been
generalized to transient weighted graphs in [Tei09]. For a transient weighted tree T
with conductances pλx,yqx„yPT , we define the equilibrium measure and capacity of
a finite set K Ď T as

eK,T pxq :“ 1txPKuλxP
T
x p

rHK “ 8q and capT pKq :“
ÿ

xPK

eK,T pxq. (II.2.12)

We also define the capacity of an infinite set F Ď T as the limit of the capacity of
Fn as nÑ8, where pFnqnPN is a sequence of finite sets increasing to F ; we refer for
instance to the end of [DPR22, Section 2.2] for as to why this limit exists and does
not depend on the choice of the exhausting sequence pFnqnPN. We further introduce
the set

ÝÑ
Z T :“ tÝÑw : N0 Ñ T

ˇ

ˇ

ÝÑw n „
ÝÑw n`1 for all n ě 0 and dT pH,ÝÑw nq Ñ 8 as nÑ8u

of transient nearest neighbor trajectories on T as well as the set

ÐÑ
Z T :“

 

ÐÑw : ZÑ T
ˇ

ˇ

ÐÑw n „
ÐÑw n`1 for all n P Z and dT pH,ÐÑw nq Ñ 8 as nÑ ˘8

(

(II.2.13)
of doubly infinite transient nearest neighbor trajectories. In the literature, the set
ÐÑ
Z T in (II.2.13) is usually denoted by W ; in this article, however, in a self-suggestive
manner, we reserveW for the notion of watersheds, a key object which will be defined
in Section II.4. Denote by

ÐÑ
X the identity map on

ÐÑ
Z T , and we indicate with

ÝÑ
X

and
ÐÝ
X the forward and backward trajectories

p
ÝÑ
XnqnPN0 :“ p

ÐÑ
X nqnPN0 and p

ÐÝ
XnqnPN0 :“ p

ÐÑ
X ´nqnPN0 .

Let
ÝÑZ T and

ÐÑZ T be the associated σ-algebras on
ÝÑ
Z T and

ÐÑ
Z T generated by the

coordinate functions. On p
ÐÑ
Z T ,

ÐÑZ T q we consider the family of measures QTK , K Ď T
finite, which is characterized by the identities

QTK
`

p
ÐÝ
XnqnPN P A, X0 “ x, p

ÝÑ
XnqnPN P B

˘

“P Tx
`

A, rHK “ 8
˘

λxP
T
x pBq1txPKu

(II.2.12)
“ P Tx

`

A
ˇ

ˇ rHK “ 8
˘

eK,T pxqP
T
x pBq

(II.2.14)
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for all A,B P
ÝÑZ T , x P T ; here, rHK is the return time to K defined in (II.2.9).

Following [Tei09], one can then show that there exists a unique measure µT on
the quotient space Z˚T of trajectories in

ÐÑ
Z T modulo time shift, whose restriction

to the trajectories hitting K is the pushforward of the measures QTK by projection
onto Z˚T . Under some probability measure PRI

T , the random interlacements process
on T is then defined as the Poisson point process

ÿ

iPN
δpw˚i ,uiq

on Z˚T ˆ r0,8q with intensity measure µT b λ, (II.2.15)

where λ is the one-dimensional Lebesgue measure restricted to r0,8q. For u P p0,8q
we define the random interlacements process ωu at level u as the sum of δw˚i

over all

i P N with ui P r0, us, and the random interlacements set Iu at level u as the subset
of T visited by the (equivalence classes of) random walks w˚i in the support of ωu.

We now present an alternative construction of the random interlacements process
on trees, which will turn out useful for our purposes. It consists of partitioning the
space

ÐÑ
Z T into subsets according to the highest visited vertex of the contained

trajectories. For this purpose, for x P T define the quantity

qeT pxq :“ P Tx
`

rHx “ 8, Hx´ “ 8
˘

λxP
T
x pHx´ “ 8q, (II.2.16)

where we recall that Hx and rHx are the hitting and return times, respectively, of x,
defined in (II.2.9). If x “ H, we take the convention that Hx´ “ 8 occurs almost
surely. We also define the law of a doubly infinite random walk with the point x at
smallest distance from the root H, and which is reached for the first time at time 0,
by

Q
T
x

`

p
ÐÝ
XnqnPN P A, p

ÝÑ
XnqnPN P B

˘

:“ P Tx pA |
rHx “ 8, Hx´ “ 8qP

T
x pB |Hx´ “ 8q,

(II.2.17)
for all A,B P

ÝÑZ T . Here, we use the convention Hx´ “ 8 a.s. if x “ H. Note that

qeT pHqQ
T
H “ QTH. We now show that this alternative construction provides us with

a random interlacements process as desired.

Theorem II.2.2. Denote by T a transient weighted tree with conductances pλx,yqx„yPT .
Let u ą 0, and independently for each x P T, let Γx be a PoipuqeT pxqq-distributed ran-
dom variable. Furthermore, let Xx,i, i P N, be an independent i.i.d. family of doubly

infinite random walks on T with common law Q
T
x . Denote by X˚x,i the trajectory

Xx,i modulo time-shift. Then

ÿ

xPT

Γx
ÿ

i“1

δX˚x,i
has the same law as ωu under PRI

T .

Proof. For x P T we denote by
ÐÑ
Z x,T the subset of

ÐÑ
Z T , see (II.2.13), which contains

only those doubly infinite trajectories with highest point equal to x, reached for the
first time at time 0, i.e.,

ÐÑ
Z x,T :“

!

X P
ÐÑ
Z T : X0 “ x,Hx´p

ÝÑ
X q “ Hx´p

ÐÝ
X q “ rHxp

ÐÝ
X q “ 8

)

.

Write Z˚x,T for the quotient space of
ÐÑ
Z x,T modulo time shift. Since trajectories on

a tree have a unique highest point, the family of sets Z˚x,T , x P T , forms a partition
of Z˚T .
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For any measure M and measurable set A, write M
ˇ

ˇ

A
for the restriction MpAX ¨ q

to A. Recalling the definitions of QTK , qeT and Q
T
x in (II.2.14), (II.2.16) and (II.2.17),

we have for all events A,B P
ÝÑZ that

QTtxu

ˇ

ˇ

ˇÐÑ
Z x,T

`

p
ÐÝ
XnqnPN P A, p

ÝÑ
XnqnPN P B

˘

“ P Tx
`

A,Hx´ “ 8, rHx “ 8
˘

λxP
T
x pB,Hx´ “ 8q

“ qeT pxqP
T
x

`

A
ˇ

ˇHx´ “ 8, rHx “ 8
˘

P Tx pB
ˇ

ˇHx´ “ 8q

“ qeT pxqQ
T
x

`

p
ÐÝ
XnqnPN P A, p

ÝÑ
XnqnPN P B

˘

.

Next, write pQ
T
x q
˚ for the pushforward of Q

T
x into the quotient space. If a trajectory

Xx P
ÐÑ
Z T is such that X˚x P Z

˚
x,T , then QT

txu-a.s. we have Xx P
ÐÑ
Z x,T , so we see that

1
qeT pxq

µT
ˇ

ˇ

Z˚x,T
“ pQ

T
x q
˚. Hence, since Γx is a Poisson random variable with parameter

uqeT pxq we deduce that

Γx
ÿ

i“1

δX˚x,i
is a Poisson point process on Z˚T with intensity measure uµT

ˇ

ˇ

Z˚x,T
.

(II.2.18)

Using the restriction property and the mapping theorem for Poisson point pro-
cesses in order to first remove the trajectories with label bigger than u and then
the labels themselves, we see that the interlacements process ωu as defined below
(II.2.15) has the law of a Poisson point process with intensity measure uµT .

Furthermore, since the subsets Z˚x,T , x P T, form a partition of Z˚T , due to the
superposition theorem for Poisson point processes, taking the sum of (II.2.18) over
x P T yields the law of a Poisson point process with intensity uµT , i.e. of ωu, and
the proof is complete.

The representation of random interlacements via the highest vertex visited by
its trajectories, Theorem II.2.2, will be the base of our construction of the Galton–
Watson tree via random interlacements, cf. Proposition II.4.2.

Remark II.2.3. Theorem II.2.2 can be seen as a generalization of [Tei09, The-
orem 5.1]. Indeed, if x P T is such that either x´ P Vu :“ pIuqc or x “ H,
then x P Vu if and only if there are no trajectories in

ÐÑ
Z x,T in the support of ωu.

By Theorem II.2.2, this happens independently for each x P T with probability
PΓx “ 0 “ expp´uqeT pxqq. In other words, the cluster of H in Vu has the same law
as the cluster of H when opening each vertex x of T independently with probability
expp´uqeT pxqq. Moreover, qeT pxq is equal to the function fHpxq from [Tei09, (5.1)],
and [Tei09, Theorem 5.1] follows readily after rerooting.

Similarly to [Tei09], this can be used to prove the PGW-a.s. inequality u˚pT q ą 0,
where u˚pT q is the critical parameter associated to the percolation of Vu under PRI

T .
Indeed, this follows from the following facts:

• the inequality qeT pxq ď λx ď λx,` ` λx´,`1tx‰Hu, and

• the fact that the cluster of H for Bernoulli percolation on T with parameter
e´2uC1tλx,`ďCu, x P T , is a Galton–Watson tree since λx,`, x P T , are i.i.d.
random variables, which is supercritical for first choosing C large enough and
then u ą 0 small enough.
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Note that the inequality u˚pT q ą 0 can also be seen as a consequence of Theo-
rem II.1.1 as noted below (II.1.6). One can furthermore also similarly prove that
VuXBp – see (II.1.5) for notation – percolates for u ą 0 small enough and p P p0, 1q
large enough, since it is minorized by Bernoulli percolation on T with parameter
pe´2uC1tλx,`ďCu, x P T .

Remark II.2.4. Note that the trace random walk on T 8 of the random walk on T
is a random walk on T 8, as follows from instance from [Szn12b, Proposition 1.11].
Therefore, as in [AS18, (1.30), (1.31)], the restriction of ϕ to T 8 has the same law
as the Gaussian free field on T 8, and so the critical parameters for level set per-
colation of the Gaussian free field on T and T 8 coincide – note that this remains
true in the case of weighted trees. In particular, one can substitute ν by ν˚ when
proving Theorem II.1.1. Moreover, one can easily prove that Iu X T 8 – where Iu
is the random interlacements set on T – has the same law as the random interlace-
ments set on the graph T 8 (note to this effect that λxP

T
x pA,

rHK “ 8q is equal
to

ř

yPT 8 λx,yP
T
y pA,HK “ 8q for each x P K in (II.2.14)), and thus one can also

substitute ν by ν˚ when proving Theorems II.1.2 and II.1.3.

II.2.5 An isomorphism theorem

A key tool in our investigations is provided by certain Ray-Knight isomorphism the-
orems relating the Gaussian free field to random interlacements. Such results have
a long history, dating back to Dynkin’s isomorphism theorem and, less explicitly,
even earlier work by Symanzik [Sym66] as well as Brydges, Fröhlich and Spencer
[BFS82]. The exact isomorphism that we are going to use here has been developed
in [Szn12a], [Lup16], [Szn16], and then [DPR22].

As before, we still assume some transient weighted tree T to be given. Recalling
the definition below (II.2.15) of the random interlacements process ωu at level u, for
x P T and u ą 0 let us denote by

Nxpuq the sum over all equivalence classes of trajectories w˚

in ωu of the total number of times w˚ visits x.

On some possibly extended probability space, let Epkqx , x P T and k P N, be an
i.i.d. family of exponential random variables with parameter one, independent of
the random interlacements. The local time p`x,uqxPT , of random interlacements at
level u can then be defined as

`x,u :“
1

λx

Nxpuq
ÿ

k“1

Epkqx for all x P T. (II.2.19)

We can now state the isomorphism theorem; note that here and below, we use the
convention that HH´ “ 8 holds P Tx -almost surely for any tree T and x P T.

Proposition II.2.5. Assume that T is a transient tree verifying that for all x P T,

capT ptXi, i P Nuq “ 8 P Tx p ¨ |Hx´ “ 8q-a.s. (II.2.20)

Then for each u ą 0, there exists a coupling Qu
T of two Gaussian free fields ϕ and

γ on T, a random interlacements process ωu on T at level u, and i.i.d. exponential
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random variables Epkqx , x P T and k P N, with parameter one such that ϕ, Ep¨q¨ and
ωu are independent, and Qu

T -a.s.,

γx “ ´
?

2u`
b

2`x,u ` ϕ2
x for all x P Iu, (II.2.21)

where `x,u is defined as in (II.2.19) and Iu as below (II.2.15).

Proof. The isomorphism theorem on the so-called cable system, see [Lup16, Propo-
sition 6.3] or [Szn12a, (0.4)] on general graphs, states that

|rγx `
?

2u| “

b

2r`x,u ` rϕ2
x for all x P rT . (II.2.22)

Here, rT denotes the cable system associated to T, and rγ, rϕ and r`¨,u correspond to

Gaussian free fields and local times of random interlacements on rT . We restrain
from introducing the cable system rT in this article, as this metric structure will
be only used in this proof; see [Lup16] for references. We only note that T Ă rT ,
and that the restrictions γ, ϕ and `¨,u of rγ, rϕ and r`¨,u to T have the same laws as
the corresponding fields from Proposition II.2.5. In order to deduce (II.2.21) from
(II.2.22), we note that

each trajectory w˚ of ωu is either included in a connected component of

tx P rT : rγx ą ´
?

2uu or of tx P rT : rγx ă ´
?

2uu,
(II.2.23)

which is a simple consequence of [DPR22, (3.19)]. Moreover, by [DPR22, Theo-
rem 1.1, (1)] and symmetry it holds that

all the connected components of
 

x P rT : rγx ă ´
?

2u
(

have finite capacity.
(II.2.24)

Under hypothesis (II.2.20), for each trajectory w˚ of ωu, it follows from Theo-
rem II.2.2 that the capacity of w˚ is PRI-a.s. infinite, and thus by (II.2.23) and
(II.2.24), w˚ must be included in tx P T : γx ą ´

?
2uu. The identity (II.2.21) then

follows readily from (II.2.22).

Actually Proposition II.2.5 remains true on any locally finite graph, but we will
only need it on trees in this paper. We will prove that the hypothesis (II.2.20)
holds when T “ T is the Galton–Watson tree introduced in Section II.2.1, see
Proposition II.5.8. Therefore, in our context, Proposition II.2.5 will readily imply
the inclusion (II.1.8) (defining pEě

?
2u therein as the level sets of the field γ), which

is the first step in the proof of Theorem II.1.1 as explained in Section II.1.2.

Remark II.2.6. Following the proof of [AS18, Proposition 5.2], one can easily
show that a version of the isomorphism (II.2.21) holds on Galton–Watson trees
with unitary conductances and finite mean offspring distribution m. They prove
this isomorphism using conditions different from (II.2.20), namely that the sign
clusters of the Gaussian free field on the cable system are bounded and a certain
boundedness condition of the Green function; in view of [DPR22, Theorem 1.1,
(2)], the boundedness of the sign clusters is actually sufficient. It turns out that
in the context of random conductances (and in particular, if the mean offspring
distribution m is infinite or if pλx,yqx„yPT are not i.i.d. conductances conditionally
on the non-weighted graph T ), it will be easier to deduce the isomorphism (II.2.21)
from condition (II.2.20) instead. Indeed, we will prove that condition (II.2.20) holds
in Proposition II.5.8 using tools very similar to the proof Theorem II.1.2.
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II.3 Warm up: a first proof in an easier setting

In this section we give a simple proof of the inequality h˚pT q ą 0 under the stronger
assumption that m ą 2. Note that this is also proved via different means in the
setting of Galton–Watson trees with unit weights in [AS18]. The proof in [AS18]
could be adapted to the setting of random weights, but it is currently not clear to us
how to adapt it to the setting m P p1, 2s. Moreover, we believe that our proof in this
section for m ą 2 is simpler, and at the same time it exhibits the difficulties that are
showing up when proving Theorem II.1.1 for the case m P p1, 2s. What is more, our
proof will also provide us with an example of a weighted Galton–Watson tree where
h˚ “ 8, see (II.3.4), showing that the phase transition is not always non-trivial in
our context.

In order to introduce our setup, we consider the weighted Galton–Watson tree
T Ď X from Subsection II.2.1. Recall that the law of the weights below each vertex
is a probability measure ν on r0,8qN, and these weights are chosen independently for
different vertices, and that the function πppλiqiPNq denotes the number of offspring,
with mean m, see (II.2.4) and (II.2.5). Contrary to the rest of this article, in this
section we do not make the usual assumption (II.2.3) on the weights λ, but keep the
assumption m ą 1. In the following, by F we denote the cumulative distribution
function of a standard normal variable.

Proposition II.3.1. For all h ě 0 such that there exists M ą 0 with

Eν
“

πppλiqiPNq1t
ř

iPN λiďMu

‰

F p´h
?

2Mq ą 1, (II.3.1)

we have h˚ ě h.

Proof. In this proof, we use the construction of the Gaussian free field as in [AČ20a,
Section 2.1] through independent standard normal variables, extended to our case
of non-regular trees. Let pZxqxPX be a family of independent standard normal
variables under P. Then, conditionally on the realization of the tree T , define
ϕH :“

a

gT pH,HqZH and, recursively in the distance from the root, we set

ϕx :“ P T
x pHx´ ă 8qϕx´ `

b

gTTxpx, xqZx.

Using the Markov property (II.2.11) with U “ Tx, one can check that the field
pϕxqxPT defined this way has the law of a Gaussian free field on T . Moreover, using
the bound gTTxpx, xq ě

1
λx

, conditioned on the realization of the weighted tree T , the
previous display then entails the implication

tZx ą h
a

λx, ϕx´ ą hu ñ tϕx ą hu, (II.3.2)

with the convention ϕx´ ą h a.s. if x “ H.
We define now the random set Sph,Mq Ď T as

Sph,Mq :“ tHu Y tx P T ztHu : Zx´ ą h
?

2M,λx´,` ďMu.

Note that on the event x P T , the mean number of children the vertex x has in
Sph,Mq satisfies

EGW b E
“

|GSph,Mqx |
ˇ

ˇx P T
‰

“ EGW
”

πppλx,xiqiPNq1tλx,`ďMuP
`

Zx ą h
?

2M
˘ ˇ

ˇx P T
ı

“ Eν
“

πppλiqiPNq1t
ř

iPN λiďMu

‰

F p´h
?

2Mq.

(II.3.3)
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Moreover, for each x P T , the number of children of x in Sph,Mq only depends
on pλx,xiqiPN and Zx, which are independent in x. Therefore, the connected com-
ponent of H in Sph,Mq has the law of a Galton–Watson tree with mean given by
(II.3.3). Due to assumption (II.3.1), this mean is strictly larger than one and thus
this Galton–Watson tree has a positive probability to be infinite. Finally, it follows
easily from (II.3.2) and the inequality λx ď λx,` ` λx´,` that ϕx´ ě h for each
x ‰ H in the connected component of H in Sph,Mq, and we can conclude.

Let us now present two interesting assumptions on the mean offspring m and on
the distribution of the weights pλiqiPN, under which (II.3.3) is satisfied.

• Assumem ą 2. We can find someM ą 0 such that Eν
“

πppλiqiPNq1t
ř

iPN λiďMu

‰

ą

2 since the left hand side converges to m as M Ñ8, and then a positive level
h such that F p´h

?
2Mq is close enough to 1

2 , so that (II.3.3) is bigger than 1,
providing us with h˚ ą 0.

• Let N be a random variable taking values in N with infinite mean under ν.
Define pλiqiPN via λi “ 1{N for all i ď N and λi “ 0 for all i ą N. Then
ř

iPN λi “ 1 and m “ 8. Hence for each h ą 0 since F p´h
?

2q ą 0 we have
that the left-hand side of (II.3.1) is infinite for M “ 1, that is

h˚ “ 8. (II.3.4)

Note that we have not taken advantage of the assumption (II.1.2) in this section;
as a consequence, the inequality h˚ ą 0 from Theorem II.1.1 holds when m ą 2 even
without this assumption. It is not clear whether this assumption is necessary when
m P p1, 2s.

II.4 A simultaneous exploration of the tree via random
interlacements

In this section we introduce an explorative construction procedure for supercriti-
cal Galton–Watson trees via random interlacements, which is tailor-made for our
purposes. To the best of our knowledge, previous approaches to problems related
to random interlacements on random graphs generated the random interlacements
process only after having complete information on the realization of the graph. In
our setting, however – in order to gain a better control on both, the Gaussian free
field and the local times of random interlacements – we generate the underlying
graph T and the random interlacements process simultaneously. In some sense, this
construction provides us with independence properties that will turn out useful in
creating coarse-grained “good” parts of the interlacements set and the level sets of
an independent Gaussian free field.

In particular, in Subsection II.4.1 we will first construct a “single small piece”
of the tree. This piece will consist of the trace of a finite random walk trajectory
exploring the Galton–Watson tree at each vertex visited by the walk. We will call
a piece of the tree constructed in this way a watershed. Repeating this procedure
iteratively for boundary vertices of previously constructed watersheds, in Subsec-
tion II.4.2 we will then patch together all watersheds constructed in this way, as
well as some remaining ends; the resulting object will be denoted by T W. It turns
out that T W will be a tree with the following properties: it is a weighted Galton–
Watson tree, and the random walk trajectories used to construct its watersheds can
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be interpreted as part of a random interlacements process on T W. This last property
will be shown in Subsection II.4.3 with the help of Theorem II.2.2.

II.4.1 Watersheds

We now introduce the notion of a watershed starting at a vertex x P X ztHu, with
parameters L P N, L ě 2, and κ P r0,8q, on which all the objects constructed in
this subsection will depend implicitly (the case x “ H is excluded for technical
reasons). A watershed will form a finite subtree of a Galton–Watson tree, and it
will be constructed as the trace of a random walk that is visiting vertices starting at
the root x of a subtree of X , until – if successful – at least L vertices of the subtree
are explored in a suitable way. The parameter κ will represent the conductance of
the edge between x and x´, which is thus fixed. In order to facilitate readability,
we will denote objects pertaining to watersheds by boldface letters throughout.

The watershed will be defined by means of a sequence of triplets

pTk, pλy,zqy„z,y,zPTk ,XkqkPN0 ,

such that, for each k P N0, we have that

• Tk Ă X is connected,

• the λy,z P p0,8q are (symmetric) weights on the edges ty, zu of Tk, and

• Xk is a random variable with Xk P Tk.

In order to construct this sequence, we first fix

pλ
pkq
i qiPN, k P N0, an i.i.d. family of random variables with common law ν,

(II.4.1)
and proceed by induction. We start with T0 as being characterized uniquely by the
specification of its vertex set tx´, xu (mind that x´ is well-defined as we assumed
x ‰ H), as well as the conductance λx´,x :“ κ and the almost sure equality X0 :“ x.

We first define the the triplet pTk, pλy,zqy„z,y,zPTk ,Xkq until some stopping time
rVLpXq, that we will define in (II.4.3), and thus assume that this triplet is given for
some non-negative integer k ă rVLpXq. Recalling the definition below (II.2.1) of the
boundary BT for a tree T , we then define pTk`1, pλy,zqy„z,y,zPTk`1

,Xk`1q as follows:

• if Xk P BTk, we proceed as follows. Let Nk :“ |tX0, . . . ,Xku|, and construct
the offspring of Xk via λpNkq. More precisely, in Ulam-Harris notation, define
Tk`1 as the union of Tk with the set of offspring of Xk, that is with tXki, 1 ď

i ď πppλ
pNkq

i qiPNqu, so Tk`1 again is a tree. By definition, the number of
offspring of Xk in Tk`1 has distribution µ. Furthermore, the weights λ on
Tk`1 are the same as on Tk, where in addition we now attribute weights

λXk,Xki :“ λ
pNkq

i for 1 ď i ď πppλ
pNkq

i qiPNq to the edges which are contained
in Tk`1 but not in Tk.

• if Xk R BTk, then we set Tk`1 :“ Tk, and the weights λ on Tk`1 are the same
as on Tk.

In both of the above cases, in order to construct Xk`1, we consider a random
walk transition of Xk on Tk`1; hence, independently of everything else, we define
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the random variable Xk`1 as a neighbor of Xk in Tk`1, which is equal to y „ Xk,
y P Tk`1, with probability λXk,y{λXk

, where λXk
is a normalizing constant defined

similarly to (II.2.8). Note that, as long as x´ is not reached by X, the event tXk P

BTku above corresponds to the event tXk R tX0, . . . ,Xk´1uu.
We iterate the above procedure in k until reaching the stopping time rVLpXq that

we are about to define. For this purpose, set Hx´pXq to be the first hitting time of
x´ by X, defined similarly as in (II.2.9), and

VL :“ VLpXq :“ inftk ě 0 : |tX0, . . . ,Xku| ě Lu ^Hx´pXq (II.4.2)

the first time at which the random walk X has visited L different vertices, or x´ is
hit. Then let

rVL :“ rVLpXq :“

#

inf
 

n ě VL : Xn “ X´
VL

(

if VLpXq ă Hx´pXq,

Hx´pXq if VLpXq “ Hx´pXq,
(II.4.3)

where we always use the convention infH “ 8. In words, rVLpXq is the first time the
parent of XVL is visited if Hx´ ą VL, and otherwise it equals Hx´ . That is, we stop
our recursive construction the first time either x´ is visited by X, or X has visited
L vertices at time VL, and then X´

VL
is hit. Note that it is possible that neither x´,

nor X´
VL

after time VL, are visited, and in this case rVL “ 8, i.e., we continue our

recursive construction indefinitely. Otherwise, we stop the recursion at time rVL, and
for each k ě rVL we define pTk, pλy,zqy„z,y,zPTk ,Xkq :“ pT

rVL
, pλy,zqy„z,y,zPT

rVL
,X

rVL
q.

We also abbreviate pT,λ,Xq :“ pTk, pλy,zqy„z,y,zPTk ,XkqkPN0 . This concludes the
recursive construction of this triplet.

The process pT,λ,Xq is called watershed process, and we denote by

Qκ,L
x the law of the watershed process pT,λ,Xq (II.4.4)

starting at x P X ztHu, with parameters L P N and κ ą 0. Similarly to the above, if
we replace the evolving state space of X by a fixed tree T , under the law P Tx of the
simple random walk X from (II.2.7), we define rVL “ rVLpXq similarly as in (II.4.3).
In the following proposition, we explain how the process pT,λ,Xq can be considered
a random walk exploration of the initial Galton–Watson tree T from Section II.2.1.

Proposition II.4.1. For all x P X ztHu, κ ą 0, and L P N, the process pT,λ,Xq un-
der Qκ,L

x has the same law as pT X
k^rVL

, pλy,zqy,zPT X
k^ rVL

, X
k^rVL

qkPN0 under

EGWrP T
x p¨q |λx,x´ “ κ, x P T s, where:

• conditionally on pT , pλy,zqy,zPT q, the process pXnq is the random walk on T
defined in Subsection II.2.3.

• for k P N, the set T X
k :“ tz P T : z „ Xi for some i ď k ´ 1u is the subset of

T adjacent to the trace of tX1, . . . , Xk´1u.

Proof. At time k, for 1 ď k ď rVL, we sample the offspring of Xk´1 independently of
everything else via their conductances according to ν if it is the first time Xk´1 was
visited by X; therefore, Tk is a Galton–Watson tree restricted to the offspring of the
vertices explored by X before time k ´ 1, union with the edge T0 “ tx

´, xu. After
time rVL (if it is finite), Tk stays constant equal to T

rVL
, and Xk constant equal to

X
rVL
.
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Similarly, when X at time 1 ď k ď rVL performs a jump, the offspring of the point
Xk´1 has already been generated according to ν, either at step k or in a preceding
step, and then Xk´1 jumps to Xk with the probability

λXk´1,Xk

λXk´1

,

which is analogous to (II.2.7). Hence both X and X behave like a random walk
on their respective trees until time rVL, and rVL corresponds for both walks to the
first time either x´ is hit, or L different vertices have been visited by the walk, and
then, denoting by y the last of these L vertices, y´ has been hit. One can easily
conclude.

Let us finish this section with an observation which will be essential in the proof
of Lemma II.5.3 below. For this purpose, first define under Qκ,L

x the watershed W
as the path of X until VL ´ 1, that is

W :“ tX0, . . . ,XVL´1u. (II.4.5)

Using the convention λy,yi “ 0 if yi R T, by (II.4.2), (II.4.3) and the construction of

the weights λy,z, y „ z P Tk, we have under Qκ,L
x that

pλx,xiqiPN “ pλ
p1q
i qiPN, and if VLpXq ă Hx´pXq, then

 

pλy,yiqiPN : y P Wztxu
(

“
 

pλ
pkq
i qiPN : k P t2, . . . , L´ 1u

(

,
(II.4.6)

which follows simply from the fact that the conductances pλy,yiqiPN are equal to

pλ
pkq
i qiPN if y is the k-th vertex visited by X.

II.4.2 Patching together watersheds

In the previous subsection we explained how to construct a watershed process
pT,λ,Xq starting at an arbitrary vertex. We will now iteratively patch together
watersheds at the endpoints of previously generated watersheds. The union T W

´ of
such watersheds will already constitute a transient subset of the random interlace-
ments set on the Galton–Watson tree. Embellishing T W

´ with some further “ends”
will yield a tree T W which has the law of the weighted Galton–Watson tree we are
interested in.

We will now give an informal description of this procedure and provide mathe-
matical details below. To patch the watersheds together, we will introduce another
tree F, the tree of free points. This tree encodes the points at which watersheds will
be patched together in the construction outlined above, i.e. F is a tree in X and, at
the same time, to each free point a P F we associate another point pa P X – which
will turn out to also be an element of the tree T W to be constructed – at which
we will start a new watershed. Patching up the watersheds through their vertices
corresponding to free points, we will then be able to construct inductively the tree
T W
´ . We refer to Figure II.1 for an illustration.

We will define the weighted tree F with weights denoted by λFa,a1 , a „ a1 P F,
through a recursively defined sequence pFkq of weighted trees, such that to each
a P Fk´1 we associate a watershed pTa,λa,Xaq starting in pa as defined in the last
subsection, and to each vertex a P Fk we associate another vertex pa P X .

As explained above, this construction of F as well as the corresponding water-
sheds, will depend on a parameter L P N, that we fix for the rest of this section. We
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The tree T W
´ The tree F of free points

Figure II.1: (A finite subset of) the tree T W
´ , on the left, has some highlighted

vertices, denoted by a coding pa, at which a new watershed is generated. Those points
correspond to points in (a finite subset of) the tree of free points F on the right,
where they have a different coding a. For instance x72 “ 132211. We highlighted with
different colors each a P F on the right and on the left the corresponding point pa
and the path on T W

´ visited by the random walk Xa, which generates the watershed
below pa. On the right, the points 5 and 6 are part of the tree of free points, but the
corresponding vertices p5 and p6 do not appear yet on the left since they are below
the 6th generation.

denote by PW
L the probability measure under which these objects are constructed.

For technical reasons, we will start the first watershed in the point 1 instead of H.

First set F´1 :“ H, F0 :“ tHu take pH “ 1, and generate some weights pλW
H,iqiPN

with law ν. Now assume Fk´1 and Fk are given for some k P N0, and that each
point a P Fk is associated to a point pa P X . We define Fk`1 as follows. For each
a P FkzFk´1, we generate

an independent watershed pTa,λa,Xaq with law Q
λF
a´,a

,L

pa , (II.4.7)

as defined in (II.4.4). Note that H´ is not well-defined, but for a “ H we will take
the convention

λFa´,a :“ λW
H,1. (II.4.8)

The watershed pTa,λa,Xaq will be used to encode the set of free points via the
following set

Fa :“ pBTa
VL
qztXa

VL
u; (II.4.9)

in other words, apart from Xa
VL
, the set Fa corresponds to the vertices on the bound-

ary of the tree Ta once the walk has either visited L vertices or hit pa´. The vertex
Xa
VL

is excluded from this set since, by definition of VL, the first generation of the
tree below Xa

VL
has already been explored by Ta. Equivalently, the points in Fa

are vertices not visited by the random walk Xa
k, 1 ď k ď VL, but adjacent to its

trace, and which have thus already been generated during the construction of the
watershed. We will then generate new watersheds from the vertices in Fa. We can
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now define the next generation of the tree of free points

Fk`1 :“ Fk Y
ď

aPFkzFk´1

|Fa|
ď

i“2

taiu. (II.4.10)

In other words, the sets of points Fa, a P FkzFk´1, are used to build the pk ` 1q-st
level of the tree of free points, and we define xai as the i-th element (in lexicographic
order) of Fa for each 1 ď i ď |Fa|. Note that the union over i starts at 2 for
technical reasons, cf. property ii) in Definition II.5.1, and the explanation in the
second paragraph thereafter. In particular, pa1 is well-defined but not part of the
tree F, for instance p1 “ 1111 in Figure II.1.

We moreover define the conductance of the edge above the vertex ai for Fk`1 as

λFa,ai :“ λa
pxai q´,xai

, (II.4.11)

whereas the conductances on Fk Ă Fk`1 stay the same as before. This concludes
the inductive definition of the sequence pFkq, and the tree of free points is simply
defined via

F :“
ď

kPN0

Fk, (II.4.12)

endowed with the same conductances as the Fk, k P N0.

Let us now explain how to construct a Galton–Watson tree by gluing together
the watersheds pTa,λa,Xaq, a P F. We first set

T W
´ :“

!

2, . . . , π
``

λW
H,j

˘

jPN
˘

)

Y
ď

aPF

Ta; (II.4.13)

in other words, T W
´ consists of a first generation with weights pλW

H,jqjPN, and the

union of the watersheds Ta, a P F ; note that the root H belongs to TH by (II.4.7)
and the convention pH “ 1, cf. (II.4.8) also, and in particular H P T W

´ . One can
view T W

´ as a tree in X , and we endow each of its edges tx, yu such that x, y P Ta

for some a P F with the conductance λax,y. Note that each edge tx, yu of T W
´ is

also an edge of Ta for some a P F, and in fact, for each a P F, Ta and Ta´ have
exactly one edge in common: tpa´,pau. Moreover, in view of (II.4.7) and (II.4.11),

λa
pa´,pa “ λFa´,a “ λa

´

pa´,pa, hence the conductances of the tree T W
´ are uniquely defined.

Observe that the tree T W
´ is not yet a Galton–Watson tree with the desired

offspring distribution since for some vertices x P T W
´ we did not construct their

descendants: this is the case if x “ xa1 for some a P F (see (II.4.10)), or if x is in the
boundary of Ta

rVL
zTa

VL
(since no vertices correspond to free points in this part of the

watershed). Therefore, we now add some ends to those points in order to complete
the construction of the Galton–Watson tree. More precisely, define independently
of everything else

an independent family of Galton–Watson trees pT xqxPX ,

each T x with the same law as x ¨ T under PGW.
(II.4.14)

In other words, T x is a Galton–Watson tree rooted at x. We now define T W as the
weighted tree obtained from the union of T W

´ with the T x, x P BT W
´ , endowed with
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their respective conductances, and we denote by λW the conductances on T W. We
then have that for all L P N,

T W has the same law under PW
L as the Galton–Watson tree T under PGW;

(II.4.15)
indeed, it follows from Proposition II.4.1 and (II.4.7) that, conditionally on Ta1 ,
a1 P Fk´1, a single watershed Ta, a P FkzFk´1, has the same law as a Galton–
Watson tree restricted to this watershed, conditionally on λa

pa´,pa “ λFa´,a. Since

λFa´,a “ λa
´

pa´,pap“ λa
pa´,paq by (II.4.7) and (II.4.11) we obtain that the conductances

between each vertex x P T W
´ zBT W

´ and its offspring are distributed independently
according to ν. Note that, for each x P BT W

´ , the subtree T W
x :“ pT Wqx equals T x

with the desired offspring distribution by definition in (II.4.14) and below, and we
conclude that (II.4.15) holds true.

II.4.3 Watersheds and random interlacements

In the previous subsections, we generated simultaneously the Galton–Watson tree
and random walks on it through the structure of watersheds. The next goal now
is to interpret these random walks as a part of a random interlacements process,
which will essentially follow from Theorem II.2.2 and some additional conditions as
in (II.4.18). Under some probability measure PΓ

ru, ru ą 0, let

pΓxqxPX be an i.i.d. family of Poipruq random variables. (II.4.16)

We denote by PW
L,ru the product measure PW

L b PΓ
ru, under which the tree T W and

the Poisson random variables pΓxqxPX are independent. Furthermore, for a P F let

Wa :“
 

Xa
k : k P t0, . . . , VLpX

aq ´ 1u
(

. (II.4.17)

Recall the definition of eK,T from (II.2.12).

Proposition II.4.2. Let ru, u ą 0 and L P N. On some extension of the probability
space corresponding to PW

L,ru, one can couple T W defined in (II.4.15) and a set Iu

in such a way that conditionally on T W, the set Iu is an interlacements set at level
u on T W, and for all a P F, if

Γ
pa ě 1, rVLpX

aq “ 8, and u ě
ru

etpau,T W
pa
ppaq

, (II.4.18)

where T W
pa is the subtree of T W below pa, then

Wa Ă Iu.

Proof. Conditionally on T W, for each a P F, define X
a

as a process on T W such
that X

a
k “ Xa

k for 0 ď k ď rVLpX
aq, and such that, if rVLpX

aq ă 8, the process X
a
k,

k ě rVLpX
aq, is a random walk on T W starting in Xa

rVLpXaq
. On some extension of the

probability space corresponding to PW
L,ru, conditionally on T W, start independently

from each x P T W i.i.d. random walks Xx,i, i ě 2, each with law P T W

x p ¨ |Hx´ “ 8q,
with the convention HH´ “ 8. Moreover, take Xx,1 “ X

a
if x “ pa for some a P F

and H
pa´pX

a
q “ 8, and otherwise let Xx,1 be some other independent walk with law

P T W

x p ¨ |Hx´ “ 8q. Taking advantage of the thinning property for Poisson random
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variables and Proposition II.4.1, one can easily prove that, conditionally on T W

and for each a P F, the probability PW
L,rupΓpa ě 1, H

pa´pX
a
q “ 8q is smaller than or

equal to the probability that a PoipruP T W

pa pH
pa´ “ 8qq-distributed random variable

is larger or equal to one. Noting that rVLpX
aq “ 8 implies H

pa´pX
a
q “ 8, and

taking advantage of the equality

etpau,T W
pa
ppaq

(II.2.12)
“ λW

pa,`P
T W
pa

pa p rH
pa “ 8q

“λW
pa P T W

pa p rH
pa “ 8, H

pa´ “ 8q
(II.2.16)
“

qeT Wppaq

P T W

pa pH
pa´ “ 8q

,

one can construct conditionally on T W for each x P T W a Poisson random variable
Γ1x with parameter uqeT Wpxq such that for each a P F, the properties in (II.4.18)
already entail that Γ1

pa ě 1.

Moreover, conditionally on T W, introduce
ÐÑ
X

x,i
, i ě 1, as doubly infinite ran-

dom walk trajectories on T W, whose forward part is defined to be Xx,i, and whose
backward part is an independent random walk with law P T W

x p ¨ |Hx´ “ 8, rHx “ 8q

for each x P T W. By Proposition II.4.1, conditionally on T W, the process
ÐÑ
X

x,i
has

law Q
T W

x for each i ě 1, see (II.2.17). We can now define Iu as the set of vertices

visited by any of the trajectories
ÐÑ
X

x,i
, i P t1, . . . ,Γ1xu and x P T W, which has the

same law conditionally on T W as under PRI
T W by Theorem II.2.2. Since (II.4.18) im-

plies Γ1
pa ě 1 and Xpa,1

k “ Xa
k for each k P N0, we can easily conclude by the definition

(II.4.17) of Wa.

II.5 Percolation of the level set

In this section we prove Theorems II.1.1 and II.1.2. We first define a set of “good”
properties, see Definition II.5.1 below, which can be satisfied by a vertex a in the
tree of free points F, as defined in Section II.4.2. We will show in Lemma II.5.3
that a is good with not too small probability. Our notion of goodness is chosen so
that on the one hand, the watershed associated to each good free point is included
in the interlacements set Iu from Proposition II.4.2, see Proposition II.5.5, and also
included in the set Au from (II.1.9) with high probability, see Proposition II.5.7;
on the other hand, it also ensures that the tree of good free points survives, see
Proposition II.5.5. We refer to the discussion below Definition II.5.1 for more details.
This readily yields the percolation of the set Au X Iu, and an application of the
inclusion (II.1.8), which follows from Proposition II.2.5 and Proposition II.5.8 below,
completes the proof of Theorems II.1.1 and II.1.2.

Let us now define the properties which make a free point good. For this purpose,
recall the watershed pTa,λa,Xaq from (II.4.7), where a P F, with F the tree of free
points defined in (II.4.12). We recall that in this watershed, Xa is a random walk
stopped at time rVLpX

aq, see (II.4.3), and for K Ă Ta we denote by HKpX
aq the

hitting time of K for this stopped random walk similarly to (II.2.9). Recall also the
definition of the set Wa from (II.4.17) and of the Poisson random variable Γ

pa from
(II.4.16). Also recall that when x P BT W

´ , the tree T x, see (II.4.14), is equal to the
Galton–Watson tree below x in T W. Finally, recall that for a set A Ă X , by GAx we
denote the set of children of x in A, see (II.2.2), and for a transient tree T, by gT

we denote the Green function on T, see below (II.2.10).
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Definition II.5.1. Let ru, B, cλ, CΛ, Cg be positive real numbers, L P N and
cf P p0, 1s. Under PW

L,ru, we say that a P F is pL,B, cλ, CΛ, Cg, cf q-good if the cor-

responding watershed pTa,λa,Xaq, the weighted tree T pa1 and the Poisson random
variable Γ

pa satisfy the following properties:

i) The Poisson variable Γ
pa satisfies Γ

pa ě 1.

ii) The watershed satisfies

ˇ

ˇGTa

pa

ˇ

ˇ ě 2, λa
pa,pa1 ą cλ and pλaq

pa,` ď CΛ, (II.5.1)

and the weighted tree T pa1 satisfies

gT
pa1
ppa1,pa1q ď Cg. (II.5.2)

iii) The trajectory Xa satisfies

Htpa´,pa1upX
aq “ rVLpX

aq “ 8.

iv) The set of children of the vertex a in the tree of free points F satisfies

ˇ

ˇ

 

a1 P GFa : λFa,a1 ď CΛ

(ˇ

ˇ ě cfL.

v) The conductances λa on Wa satisfy

1

L
3
2

ÿ

yPWa

pλayq
3
2 ă B. (II.5.3)

We now explain how the good properties defined above can be combined in order
to deduce the percolation of Au X Iu, see (II.1.9). The first three properties imply
that the conditions in (II.4.18) are verified, see the proof of Proposition II.5.6, and
so, in view of Proposition II.4.2, the set Wa of the watershed associated to a good
free point a P F is included in the coupled interlacements set Iu. More precisely,
property i) implies the first condition in (II.4.18); property ii) will imply a lower
bound on etpau,T W

pa
ppaq, and thus that the third assumption in (II.4.18) is satisfied for

u of the same order as ru, see (II.5.19); and property iii) implies that the second
condition in (II.4.18) is satisfied. Property iv) ensures the creation of many new
free points with bounded conductances to their parent, which will imply – using
Lemma II.5.4 below – that the tree of good free points contains a d-ary tree for
arbitrarily large d, see Proposition II.5.5. Finally, using (II.5.25), property v) will
provide us with a good bound on the probability that Wa Ă Au. Combining these
five properties we will thus obtain percolation of the free points a P F such that
Wa Ă Au X Iu, and thus percolation of Au X Iu, see Proposition II.5.7.

One of the main difficulties in the previous steps is to understand how property
ii) in our notion of goodness is used to bound the equilibrium measure etpau,T W

pa
ppaq

from below, which implies that we can find ru and u of the same order verifying the
third assumption (II.4.18), and, consequently, that there is a random interlacements
trajectory starting in pa when a is good. When pa1 is not visited by Xa, which is

the case when a is good by property iii), then ypa1q “ pa1, so no new watershed is
generated starting from pa1 in view of (II.4.10), and thus pa1 P BT W

´ . Therefore, by
the construction of the tree T W above (II.4.15), we obtain that if a is good, then
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T pa1 is the tree below pa1 in T W. The bound on the Green function on T pa1 combined
with (II.5.1) in property ii) will then imply the desired lower bound on etpau,T W

pa
ppaq,

see (II.5.22) for details. In other words, the reason we excluded a1 from the tree of
free points in (II.4.10) is to make sure that T pa1 is the tree below pa1 in T W, and
thus that we can use the independent tree T pa1 to bound etpau,T W

pa
ppaq without using

any information on the other watersheds in T W.
We now provide lower bounds on the probabilities of the previous properties

in the following lemma. Note that in items ii) to v) below we do not consider
exactly the same kind of events as in Definition II.5.1; they do, however, present
the advantage of having more independence and we will show in Lemma II.5.3 (see
for instance (II.5.9)) that the probabilities of the events from Definition II.5.1 are
larger than those of the events from Lemma II.5.2. Recall that pΓxqxPX are Poisson
random variables with parameter ru under of PΓ

ru, see (II.4.16), that pλiqiě0 under ν

represents the law of the weights below any vertex, and that Qκ,L
x denotes the law

of the watershed introduced in Section II.4.1, see (II.4.4). Recall also the definition
of the (interior) boundary BA of a set A Ă X from the paragraph below (II.2.1),
and to simplify notation for B Ă A we will write BAzB for pBAq XBc.

Lemma II.5.2. There exist positive constants cλ, CΛ, Cg, cV , cf P p0,8q such that
for each ε P p0, 1q and B ą 0, there exists L0 “ L0pB, εq P N such that for all
x P X ztHu, L ě L0, κ ď CΛ and ru ą 0, the following properties hold true:

i) PΓ
rupΓx ě 1q “ 1´ expp´ruq,

ii) ν
´

πppλiqiPNq ě 2, λ1 ą cλ, λ2 ą cλ, λ` ď CΛ

¯

ě 1
2p1´ µp1qq,

PGW
`

gx1¨T px1, x1q ď Cg
˘

ě 1
2 ,

iii) EGW
” cλλx2,x21

2CΛp2CΛ ` λx2,`q
P T
x21p

rVL´2 “ Hx2 “ 8q
ˇ

ˇx P T , πppλx,xiqiPNq ě 2
ı

“

cV ,

iv) Qκ,L
x

´

ˇ

ˇ

 

y P BTVLztx1,XVLu : λy,y´ ď CΛ

(
ˇ

ˇ ă cfL, rVLpXq “ 8
¯

ď ε,

v) Qκ,L
x

ˆ

1

L
3
2

ÿ

yPW

`

λy
˘

3
2 ě B, rVLpXq “ 8

˙

ď ε.

Proof. i) This is immediate from the definition in (II.4.16).

ii) First note that ν
`

πppλiqiPNq ě 2
˘

“ 1 ´ µp1q by definition (II.2.4) of µ in
combination with our assumption (SA) in Subsection II.2.2. Moreover, T is
PGW-a.s. transient due to Proposition II.2.1. Therefore, the Green function
gx1¨T px1, x1q associated to the tree T rooted at x1 is PGW-a.s. finite, and its law
does not depend on the choice of x. Since probability measures are continuous
from below, by definition of the conductances in (II.1.2) and above, one can
find a small enough positive constant cλ as well as large enough finite constants
CΛ and Cg, independent of x, such that ii) holds uniformly in x P X .

iii) Note that for each y P T ztHu, since the subtree Ty´ is a.s. transient, for
almost all realizations of T , the probability P T

y pHy´ “ 8q is strictly positive.
Therefore, using the strong Markov property at time VL´2 – which is finite
and larger than Hx2 with positive probability under P T

x21, see its definition in
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(II.4.2) – and using the previous with y “ XVL´2
, it follows from the definition

of rVL´2 in (II.4.3) that the variable appearing in the PGW-expectation of iii)
is a.s. positive, and we can conclude.

iv) We will use twice the weak law of large numbers for the i.i.d. sequence of

weights pλ
pkq
i qiPN, k ě 2, from (II.4.1). For this purpose, from the proof of ii)

we recall that νpπppλiqiPNq ě 2q “ 1´µp1q ą 0. As a consequence, the sequence

of random variables |tk P t2, . . . , Lu : πppλ
pkq
i qiPNq ě 2u|{L, L P N, converges

to 1´ µp1q in probability as LÑ 8 by (II.4.1). Fixing cf P p0, p1´ µp1qq{2q,
we obtain for L large enough that

Qκ,L
x

´

ˇ

ˇ

 

k P t2, . . . , L´ 1u : πppλ
pkq
i qiPNq ě 2

(ˇ

ˇ ă 2Lcf

¯

ď
ε

2
. (II.5.4)

Similarly, fixing CΛ large enough so that

ν
´

ÿ

i

λi ď CΛ

¯

ą 1´ cf ,

we have by (II.4.1) that for L large enough

Qκ,L
x

´

ˇ

ˇ

 

k P t2, . . . , L´ 1u :
ÿ

iPN
λ
pkq
i ď CΛ

(ˇ

ˇ ă p1´ cf qL
¯

ď
ε

2
. (II.5.5)

Recalling the notation W from (II.4.5), and that λy,` “
ř

iPN λy,yi, see (II.1.2),

our goal is now to prove that, under Qκ,L
x ,

if
ˇ

ˇ

 

y P Wztxu : λy,` ď CΛ

(ˇ

ˇ ě p1´ cf qL

and
ˇ

ˇ

 

y P Wztxu :
ˇ

ˇG
TVL
y

ˇ

ˇ ě 2
(ˇ

ˇ ě 2Lcf ,

then
ˇ

ˇ

 

y P BTVLztx1,XVLu : λy,y´ ď CΛ

(ˇ

ˇ ě cfL;

(II.5.6)

indeed, in view of (II.4.6), on the event rVLpXq “ 8, which implies VLpXq ă
Hx´pXq, we can take advantage of (II.5.6) in order to use (II.5.4) and (II.5.5)
to upper bound the probability of the event appearing in iv) of Lemma II.5.2,
and we can conclude.

To prove (II.5.6), let us define A :“ ty P Wztxu : |G
TVL
y | ě 2u the set of ver-

tices in Wztxu with at least two children in TVL . Observe that |BTVLzG
TVL
x | ě

|A| ` 1, which can easily be proved recursively on |W| starting at |W| “ 2. In

addition, for each y P BTVLzG
TVL
x we have y´ P Wztxu and λy,y´ ď λy´,`,

and so λy,y´ ě CΛ for at most cfL different y P BTVLzG
TVL
x on the first

event of the first line of (II.5.6). Therefore, since the second event in the first
line of (II.5.6) implies |A| ě 2Lcf , we have at least cfL ` 1 many vertices

y P BTVLzG
TVL
x with λy,y´ ď CΛ, which finishes the proof of (II.5.6).

v) Here we can use the Marcinkiewicz-Zygmund law of large numbers, which
states that, if pYkqkPN is a sequence of i.i.d. random variables with Er|Y1|

r
s ă 8

for some 0 ă r ă 1, then

1

n1{r

n
ÿ

k“1

Yk
a.s.
ÝÝÝÑ
nÑ8

0.
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A proof of this classical result can be found in [Loè77, Section 17.4, p.254]. We

can take Yk :“ p
ř

i λ
pkq
i q

3
2 and r “ 2

3 since the expectation of Y
2
3
k under Qκ,L

x

is then equal to Eνr
ř

i λis, which is finite by our assumption (II.1.2) (see also
(II.2.3)). By (II.4.6), this then entails that L´3{2

ř

yPWztxu Yk converges a.s. to
0 as LÑ8, and hence for all ε P p0, 1q and B ą 0 there exists L0 “ L0pB, εq
so that for all L ě L0,

Qκ,L
x

ˆ

1

L
3
2

L´1
ÿ

k“1

`

ÿ

iPN
λ
pkq
i

˘
3
2 ě

B

6

˙

ď ε. (II.5.7)

Our goal is now to prove that for L ě L0pB, εq,

if
1

L
3
2

ÿ

yPW

pλy,`q
3
2 ă

B

6
, then

1

L
3
2

ÿ

yPW

pλyq
3
2 ă B; (II.5.8)

indeed, in view of (II.4.6), on the event rVLpXq “ 8, we can use (II.5.8) and
then (II.5.7) to upper bound the probability of the event appearing in v) of
Lemma II.5.3, so that we can conclude. To prove (II.5.8), we use the bounds

pλyq
3
2 ď

?
8ppλy,`q

3
2 `pλy,y´q

3
2 q for all y P W, the bound λy,y´ ď λy´,` for all

y P Wztxu, the inequality λx,x´ “ κ ď CΛ, the fact that ty´ : y P Wztxuu Ă

W, and take L0pB, εq much larger than CΛ{B
2{3.

Let us now show that the bounds obtained in Lemma II.5.2 can be combined to
lower bound the probability that a vertex a P F is good, see Definition II.5.1. Recall
that PW

L,ru is the probability measure underlying our tree of free points constructed
in Section II.4.2, see also below (II.4.16).

Lemma II.5.3. Let cλ, CΛ, Cg and cf be as in Lemma II.5.2. There exists cp ą 0
such that for all B ą 0, there exists L0pBq P N such that for all a P X , L ě L0pBq
and ru ą 0, on the event tλFa,a´ ď CΛu we have

PW
L,ru

´

a is pL,B, cλ, CΛ, Cg, cf q-good
ˇ

ˇλFa,a´ , a P F
¯

ě cpp1´ e
´ruq.

Proof. We will check the properties of Definition II.5.1. In the first part of the proof,
we show that the event appearing in Lemma II.5.2 iii) implies that Definition II.5.1
iii) is fulfilled with positive conditional probabilities under the appropriate condi-
tions. More precisely, we have for all a P F that

if λa
pa,` ď CΛ, λ

F
a,a´ ď CΛ and λa

pa,pa2 ą cλ

then P T W

pa

`

Htpa´,pa1u “
rVL “ 8

˘

ě
cλλ

a
pa2,pa21

2CΛp2CΛ ` λa
pa2,`q

P T W

pa21 p
rVL´2 “ H

pa2 “ 8q;

(II.5.9)
indeed, under the conditions from (II.5.9), noting that λa

pa,pa´ “ λFa,a´ by (II.4.11),
and thus λa

pa ď 2CΛ, we have that

P T W

pa pX2 “ pa21q “
λa
pa,pa2λ

a
pa2,pa21

λa
papλ

a
pa,pa2 ` λa

pa2,`q
ě

cλλ
a
pa2,pa21

2CΛp2CΛ ` λa
pa2,`q

.

Therefore, (II.5.9) follows easily by using the Markov property at time 2, noting

that, under P T W

pa and on the event tX2 “ pa21u, in view of (II.4.2) and (II.4.3), we
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have rVL´2ppXk`2qkě0q “ rVLppXkqkě0q. Furthermore, if pa2 is never visited after time
2, then pa1 and pa´ are never visited by X. Moreover, note that the random variable
on the right-hand side of the inequality of the second line of (II.5.9) is independent
of T pa1, Γ

pa, pλ
a
pa,paiqiPN and λFa,a´ . Combining Proposition II.4.1, (II.4.7), Lemma II.5.2

iii) and (II.5.9), we thus have on the intersection of the events tλa
pa,pa2 ą cΛu, tλ

a
pa,` ď

CΛu and tλFa,a´ ď CΛu, that

PW
L,ru

´

Htpa´,pa1upX
aq “ rVLpX

aq “ 8

ˇ

ˇ

ˇ
Γ
pa, pλ

a
pa,paiqiPN, T

pa1, λFa,a´ , a P F
¯

ě cV .

(II.5.10)
In this second part of the proof, we aim at combining the estimates from

Lemma II.5.2 in order to infer the general lower bound cpp1´ e
´ruq on the probabil-

ity for a to be good. Obtaining a lower bound on the intersection of the events i),
ii) and iii) in Definition II.5.1 is easy by independence, Lemma II.5.2 and (II.5.10).
More care is required for the other properties though.

It is not difficult to combine Lemma II.5.2 iv) and v), since the complements
of the events there happen with high probability, as we now explain. On the event
tλFa,a´ ď CΛu, using the estimates from Lemma II.5.2 iv), v) for ε “ 1

3
cV p1´µp1qq

2 ,

and writing them in the form of Definition II.5.1 – see (II.4.7), (II.4.9), (II.4.11) and
the definition of the tree of free points from (II.4.10) and below – we thus have for
all L ě L0pBq, with L0pBq “ L0pB, εq from Lemma II.5.2 for this choice of ε that

PW
L,ru

¨

˚

˚

˝

!

ˇ

ˇ

 

a1 P GFa : λFa,a1 ď CΛ

(ˇ

ˇ ě cfL,

L´
3
2

ÿ

yPWa

pλayq
3
2 ă B

)c
, Htpa´,pa1upX

aq “ rVLpX
aq “ 8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Γ
pa, T pa1, λFa,a´ , a P F

˛

‹

‹

‚

ď
2

3

cV p1´ µp1qq

2
.

(II.5.11)

Here, we used that both, the event Htpa´,pa1upX
aq “ rVLpX

aq “ 8 and the events in
Definition II.5.1 iv) and v), are pTa,λa,Xaq-measurable, and thus independent of Γ

pa

and T pa1, and that tpa : a P GFa u “ BT
a
VLpXaq

ztpa1,Xa
VLpXaq

u when Htpa´,pa1upX
aq “ 8

in view of (II.4.9), (II.4.10).
Now we can further combine (II.5.10) with the equation in the first line of ii)

of Lemma II.5.2 (recall that the number of children
ˇ

ˇG
Ta1
pa

ˇ

ˇ of pa in Ta
1 is equal to

πppλa
pa,paiqiPNq). One can combine this with (II.5.11) thanks to the dependence of

the bound (II.5.11) on cV p1 ´ µp1qq{2, noting also that the event in the first line
of Definition II.5.1 ii) is independent of Γ

pa and T pa1, to obtain that on the event
tλFa,a´ ď CΛu, for all L ě L0pBq we have

PW
L,ru

¨

˚

˚

˚

˚

˝

ˇ

ˇ

 

a1 P GFa : λFa,a1 ď CΛ

(
ˇ

ˇ ě cfL,

L´
3
2

ÿ

yPWa

pλayq
3
2 ă B, Htpa´,pa1upX

aq “ rVLpX
aq “ 8,

ˇ

ˇG
Ta1
pa

ˇ

ˇ ě 2, λa
pa,pa1 ą cλ, λ

a
pa,` ď CΛ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Γ
pa, T pa1, λFa,a´ , a P F

˛

‹

‹

‹

‹

‚

ě
1

3

cV p1´ µp1qq

2
.

(II.5.12)

Finally, for the good events in i) and the second line of ii) in Definition II.5.1,
conditionally on a P F and λFa,a´ , the random variables Γ

pa and T pa1 have respective
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laws PΓ
rupΓpa P ¨q and PGWppa1 ¨T P ¨q, (see, respectively, below (II.4.16) and (II.4.14)),

and are independent. Therefore, the two estimates provided by Lemma II.5.2 i) and
the second line of ii), yield that for all ru ą 0 one has

PW
L,ru

´

Γ
pa ě 1, gT

pa1
ppa1,pa1q ď Cg

ˇ

ˇ

ˇ
λFa,a´ , a P F

¯

ě
1

2
p1´ expp´ruqq. (II.5.13)

Combining (II.5.12) and (II.5.13), we can readily conclude by taking cp “ cV p1 ´
µp1qq{12.

We now want to show that the set of good free points introduced in Defini-
tion II.5.1 percolates with the help of Lemma II.5.3. This set can be interpreted as
a random subset in X , endowed with the σ-algebra introduced at the end of Sec-
tion II.2.1. Recall the definition GAx of the number of children of x in A Ă X from
(II.2.2). In the following technical lemma, we say that a tree is d-ary if it contains
H and every vertex has exactly d children. While it seems like a standard result,
we were not able to locate it in the literature and therefore provide a proof here.

Lemma II.5.4. There exists a function d : r0,8q Ñ N0 such that dptq Ñ 8 as
t Ñ 8 and the following holds. Under some probability measure P, let S Ă X be a
random set containing H almost surely, such that for some N P N and p P r0, 1s, for
all x P X

P
´

|GSx | ě N
ˇ

ˇ Fx
¯

ě p on the event tx P Su; (II.5.14)

here, Fx “ σp1tyPSu, y P X zpx ¨ pX ztHuqqq is the σ-algebra generated by the restric-
tion of S to vertices which are not descendants of x. Then, S contains with positive
probability, depending only on p and N, a dpNpq-ary tree.

Proof. In this proof, we say that a random subset of X is a weightless Galton–
Watson tree with offspring distribution pδN ` p1´ pqδ0 if, after possible reordering
of the labels, this set has the same law as the tree T seen as a subset of X (that is
removing the weights), introduced in Section II.2.1 when the offspring distribution
µ from (II.2.4) is pδN ` p1´ pqδ0. Note that since we discard the weights here, the
law of this tree is entirely determined by its offspring distribution.

Let us first show that we can couple S and a weightless Galton–Watson tree
with offspring distribution pδN ` p1´ pqδ0, such that S is included in this tree. For
this purpose, fix a sequence x0, x1, . . . exhausting X and such that tx0, . . . , xk´1u Ă

pxk ¨ X qc for each k P N0. The result will follow once we have that, under some
probability measure rP, there exist an i.i.d. family of Bernoulli random variables ζxk ,

k P N0 with parameter p, and random sets rSk, k P N0, with the following properties:
rSk is an increasing sequence of sets, each with the same law as Sk :“ tx P S :

x „ xi for some i ď ku under P, and if ζxk “ 1 and xk P rSk, then |G
rSk
xk
| ě N

(in order to facilitate reading, the construction of these random variables will take
place in the last paragraph of the proof). Indeed, defining rS as the union of rSk,
k P N0, one obtains that rS has the same law as S under P. Furthermore, the tree T
obtained recursively by keeping exactly N children in rS of x P rS each time ζx “ 1,
and keeping zero children otherwise, is then a Galton–Watson tree with offspring
distribution pδN ` p1´ pqδ0, which is contained in rS.

In order to conclude, we still need to show that for each rd P N0, there exists
t “ tprdq P p0,8q such that for each p P r0, 1s and N P N with pN ě t, a weightless
Galton–Watson tree with offspring distribution pδN`p1´pqδ0 contains with positive
probability a rd-ary tree, and then take dpsq :“ suptrd P N0 : tprdq ď su for all s ą 0,



II.5. PERCOLATION OF THE LEVEL SET 51

with the convention supH “ 0. This can be easily proven by noting that, if G
rd

is
the function from [LP16, Theorem 5.29], then G

rd
p0q ą 0 and G

rd
p1´ p{2q ă 1´ p{2

if pN ě t for some t large enough. We leave the details to the reader.

It therefore remains to construct construct the sequences rSk and ζxk , k P N0. We
have x0 “ H, and (II.5.14) applied to x “ H implies that one can indeed define a
Bernoulli random variable ζH with parameter p and rS0 such that rS0 has the same law

as tx P S : x „ Hu, and ζH “ 1 implies |G
rS0
H
| ě N. Assume now that ζxi , i ď k´ 1,

and rSk´1 are constructed. Let rSk be the union of rSk´1 and some children of xk,
constructed so that, conditionally on pζxiqiďk´1 and rSk´1, the law of rSk is the same
as law of Sk conditionally on Sk´1 “ rSk´1. Then (II.5.14) implies that, conditionally

on pζxiqiďk´1 and rSk´1, 1
 

|G
rSk
xk
| ě N

(

stochastically dominates a Bernoulli random

variable with parameter p on the event txk P rSk´1u. Hence, up to extending the
probability space rP, we can define a Bernoulli random variable ζxk with parameter

p, independent of ζxi , i ď k ´ 1, and rSk´1, and such that if ζxk “ 1 and xk P rSk´1

then |G
rSk
xk
| ě N. This concludes the induction, and the proof that rS contains a.s. a

weightless Galton–Watson tree with offspring distribution pδN ` p1´ pqδ0.

We now prove that with positive probability, the tree of pL,B, cλ, CΛ, Cg, cf q-
good free points contains a d-ary tree for suitable choices of the parameters. To
do so, observe that on the one hand, the probability for a free point to be good
is bounded from below due to Lemma II.5.3. On the other hand, property iv) of
Definition II.5.1 will let us tune the parameter L in such a way that a good free point
has many children. We will then be able to use Lemma II.5.4 in order to conclude.

Proposition II.5.5. Let cλ, CΛ, Cg and cf be as in Lemma II.5.2, cp as in
Lemma II.5.3, and the function d as in Lemma II.5.4. For all B ą 0, there exists
L0pBq P N such that for all L ě L0pBq and ru ą 0, the set

F g :“ tHu Y
 

a P F ztHu
ˇ

ˇ a´ is pL,B, cλ, CΛ, Cg, cf q-good and λFa,a´ ď CΛ

(

(II.5.15)
contains with positive PW

L,ru probability a dpLqpruqq-ary tree, where qpruq “ cfcpp1 ´

e´ruq.

Proof. Let B ą 0. Fix cλ, CΛ, Cg, cf , and L0pBq as in Lemma II.5.3, and
fix L ě L0pBq and ru ą 0. Throughout the proof we write “good” instead of
“pL,B, cλ, CΛ, Cg, cf q-good” to simplify notation, keeping the implicit dependence
on the parameters in mind. Let us first extend the definition of the weights λF

from tta, a´u : a P F ztHuu to tta, a´u : a P X ztHuu by letting λFa,a´ “ 0 if

a P X zF . For each a P X zF , we also fix arbitrarily some pa P X , so that pa ‰ pa1 for
all a ‰ a1 P X . This way, we can also define pTa,λa,Xaq, a P X zF, as a family

of independent watersheds with law Q
λF
a´,a

,L

pa , see (II.4.7). Note that for a R F we
never actually use the additional watershed pTa,λa,Xaq nor the notation pa, they
are however necessary to define the following σ-algebra

Wa :“ σ
`

Γ
pa,X

a, pλax,yqx„yPTa , pλ
pa1
x,yqx„yPT pa1

˘

for all a P X ,

where λpa1 are the weights of the tree T pa1 which was defined in (II.4.14); also recall
that Xa, λa and λpa1 are random variables whose canonical σ-algebras on their re-
spective state spaces have been defined at the end of Section II.2.1. By construction,
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pTa´ ,λa
´

,Xa´q, T W

pxa´q1
, the weight λFa´,a “ λa

´

pa,pa´ , see (II.4.11), as well as the event

ta P F u “ tλFa´,a ą 0u are Wa´-measurable. Therefore, in view of Definition II.5.1

ta P F gu PWa´ for all a P X , (II.5.16)

where we recall F g from (II.5.15), and with the convention WH´ :“ σptHuq is
the trivial σ-algebra. By (II.4.7), a watershed depends on the previous watersheds
only through the weights λFa,a´ , that is Wa and Wa1 , a1 R a ¨ X , are independent

conditionally on λFa,a´ for all a P F ztHu. Therefore, defining for each a P X the
σ-algebra

Fg
a :“ σ

`

Wpa1q´ , a1 R a ¨ pX ztHuq
˘

“ σpWa1 , a1 R a ¨ X q, (II.5.17)

we have that for all a P F,

PW
L,rupa is good |Fg

a q “ PW
L,rupa is good |λFa,a´ , a P F q, (II.5.18)

with the convention λF
H,H´ “ 0. Note that, in view of (II.5.16), the σ-algebra Fg

a

contains the σ-algebra Fa from Lemma II.5.4 when S “ F g. By property iv) of
Definition II.5.1, we moreover have |GF

g

a | “ |ta
1 P GFa : λFa,a1 ď CΛu| ě cfL if a P F

is good. Thus since tλFa,a´ ď CΛu Ă ta P F
gu P Fg

a by (II.5.16) and (II.5.17), we

have that on the event ta P F gu,

PW
L,rup|G

F g

a | ě cfL |Fg
a q ě PW

L,rupa is good |Fg
a q ě cpp1´ e

´ruq,

where we used Lemma II.5.3 and (II.5.18) in the last inequality. Using (II.5.17) and
Lemma II.5.4 for S “ F g, we can conclude.

With the help of Proposition II.4.2, we now show that for a suitable choice of
the parameters u, ru ą 0, under PW

L,ru, for each pL,B, cλ, CΛ, Cg, cf q-good free point
a P F, one can include the watershed Wa in the random interlacements set Iu from
Proposition II.4.2. For this purpose, we need to verify that all the assumptions of
(II.4.18) are verified for good free points.

Proposition II.5.6. Let u,B, cλ, cΛ, Cg, cf ą 0, L P N, a P F and

ru “ uce, where ce :“
cλ

cλCg ` 1
. (II.5.19)

Then, under the extension of the probability space PW
L,ru from Proposition II.4.2,

Wa Ă Iu for all pL,B, cλ, cΛ, Cg, cf q-good vertices a P F. (II.5.20)

Proof. Fix some pL,B, cλ, cΛ, Cg, cf q-good vertex a P F. First note that by properties
i) and iii) of Definition II.5.1, the first and second condition in (II.4.18) are satisfied,
and thus by Proposition II.4.2,

Wa Ă Iu once we show u ě
ru

etpau,T W
pa
ppaq

. (II.5.21)

To bound the parameter etpau,T W
pa
ppaq from below we will use property ii) of Defini-

tion II.5.1. We use the analogy to electrical circuits, and note that by Rayleigh’s
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Monotonicity Principle [LP16, (2.5) and Sections 2.3 and 2.4], we have that

gT
W
pa ppa,paq ď gT

W

pa,1 ppa,paq, where T W

pa,1 denotes the subtree of T W
pa consisting only

of pa and T W
pa1 . Moreover, using a series transformation [LP16, Subsection 2.3.I],

equations (II.5.1) and (II.5.2) imply that gT
W
pa,1 ppa,paq ď Cg `

1
cλ

since, on the event

H
pa1pX

paq “ 8 which is implied by property iii) of Definition II.5.1, T pa1 is the subtree
T W
pa1 of T W below pa1 as explained in the second paragraph below Definition II.5.1.

Thus, the equilibrium measure at pa for T W
pa is bounded from below by

etpau,T W
pa
ppaq “

1

gT
W
pa ppa,paq

ě
cλ

cλCg ` 1
“: ce. (II.5.22)

We can conclude by combining (II.5.19), (II.5.21) and (II.5.22).

If qpruqL is large enough, combining Propositions II.5.5 and II.5.6 provides us
with an infinite tree of good free points a satisfying Wa Ă Iu. Taking advantage of
property v) from Definition II.5.1, we are now ready to prove percolation for the set
on the left-hand side of (II.1.8). For each p P p0, 1q, under some probability PE

p , let
pExqxPX be an independent family of exponential random variables with parameter
one, and pBxqxPX the independent family of Bernoulli random variables defined above
(II.1.5). Recall that ϕ is a Gaussian free field on T under PG

T , see Section II.2.3,
that Iu is a random interlacements set on T under PRI

T , see Section II.2.4, that T
is a Galton–Watson tree under PGW, see Section II.2.1, and let Bp be as in (II.1.5)
and Au as in (II.1.9).

Proposition II.5.7. There exists u0 ą 0 such that for each u P p0, u0s, there exists
p P p0, 1q so that the set Au X Bp X Iu contains EGWrPRI

T b PG
T b PE

p p¨qs-a.s. an
unbounded cluster.

Proof. Under EW
L,rurP

G
T W b PE

p p¨qs, for some L P N and ru ą 0, consider the event

AW
u :“

!

x P T W : Ex ą 4uλW
x or |ϕx| ą 2

?
2u

)

X
 

x P T W : Bx “ 1
(

. (II.5.23)

For a P F, we now evaluate the probability, conditioned on the value of ϕ
pa´ , that

Wa Ă AW
u (recall (II.4.17)). For E and B, simple estimates for exponential and

Bernoulli variables will be sufficient, while for the Gaussian free field we take advan-
tage of the Markov property (II.2.11) applied to the set Ua :“ T W

pa . For each y P Ua,
one can decompose the field as ϕy “ ψUay ` βUay ; here, ψUay is a centered Gaussian

field, independent of βUay and ϕ
pa´ , and with variance gT

W

Ua
py, yq, which by (II.2.10)

satisfies

gT
W

Ua py, yq ě
1

λW
y

for all y P Ua.

Thus, for all y P Ua we have – using the symmetry and unimodality of the distribu-
tion of ψUay to obtain the first inequality – that

PG
T W

`

|ϕy| ď 2
?

2u
ˇ

ˇ ϕ
pa´
˘

“ PG
T W

`
ˇ

ˇψUay ` βUay
ˇ

ˇ ď 2
?

2u
ˇ

ˇ ϕ
pa´
˘

ď PG
T W

` ˇ

ˇψUay
ˇ

ˇ ď 2
?

2u
˘

ď
4
?

2u
b

2π{λW
y

.
(II.5.24)
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Therefore, for all a P F,

PG
T W b PE

p

`

Wa Ă AW
u

ˇ

ˇ ϕ
pa´
˘

(II.5.23)
“

ź

yPWa

PE
p pBy “ 1q

´

1´ PG
T W b PE

p

´

ď

yPWa

t|ϕy| ď 2
?

2uu X tEy ď 4uλW
y u

ˇ

ˇ

ˇ
ϕ
pa´

¯¯

ě pL
ˆ

1´
ÿ

yPWa

PG
T W

`

|ϕy| ď 2
?

2u
ˇ

ˇ ϕ
pa´
˘

PE
p

`

Ey ď 4uλW
y

˘

˙

(II.5.24)
ě pL

ˆ

1´
ÿ

yPWa

4
b

2uλW
y

?
2π

´

1´ e´4uλW
y

¯

˙

ě pL
ˆ

1´
16
?
π
u

3
2

ÿ

yPWa

pλW
y q

3
2

˙

,

(II.5.25)

taking advantage of the inequality 1´ e´x ď x for x ą 0 in order to obtain the last
inequality.

We now fix the parameters and start with choosing cλ, CΛ, Cg, cf , cp ą 0 as well
as L0pBq, with B to be fixed later on, as the parameters from Proposition II.5.5,
and ce as the parameter from (II.5.19). Finally, for u ą 0 define

rupuq :“ uce, Lpu,Bq :“

R

ce
3p1´ e´uceq

´

?
π

32B

¯
2
3

V

_ L0pBq and ppu,Bq “ 2
´ 1
Lpu,Bq .

(II.5.26)
Using the bound 1 ´ e´x ě x{2 for x ą 0 small enough, we can now find u0 “

u0pce, Bq ą 0 such that

Lpu,Bq ď
1

u

´

?
π

32B

¯
2
3

for all u P p0, u0s. (II.5.27)

Then for all u P p0, u0q, under PW
Lpu,Bq,rupuq, for each pLpu,Bq, B, cλ, CΛ, Cg, cf q-good

vertex a P F, we can continue the chain of inequalities in (II.5.25) to obtain

PG
T W b PE

ppu,Bq

`

Wa Ă AW
u

ˇ

ˇ ϕ
pa´
˘

(II.5.25)
ě ppu,BqLpu,Bq

´

1´
16
?
π
u

3
2

ÿ

yPWa

pλW
y q

3
2

¯

(II.5.3)
ě ppu,BqLpu,Bq

´

1´
16
?
π
BpuLpu,Bqq

3
2

¯

(II.5.26),(II.5.27)
ě

1

2
¨

1

2
“

1

4
.

(II.5.28)

With our choice of parameters, see in particular (II.5.26), we can use Proposi-
tion II.5.5 to show that the set F g from (II.5.15) contains with positive probability
a dpcdB

´2{3q-ary tree that we denote by F g0, where dpcdB
´2{3q will be large (cf.

(II.5.31)), and cd :“ cecpcf p
?
π{32q2{3{3. Conditionally on the realization of the

Galton–Watson tree T W, and on the event that F g0 exists, we write

F g1 :“ tHu Y
!

a P F g0ztHu : Wa´ Ă AW
u

)

and

Fg1
a :“ σ

`

1
tWpa1q´ĂAW

u u
, a1 P pF zFaq Y tau

˘

(II.5.29)
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for all a P F, where Fa, the subtree below a, was defined in the paragraph below
(II.2.2), and where we use the convention WH´ “ H. Taking advantage of the
Markov property, see (II.2.11) and below, under PG

T W and conditionally on ϕ
pa´ , the

field ϕ|Wa is independent of ϕH and ϕ
|Wpa1q´ for all a1 P pF zFaq Y tau. Thus, for all

u P p0, u0q and a P X , on the event that F g0 exists and a P F g1 (which implies in
particular that a is good), we have that

PG
T W b PE

ppu,Bq

´

ˇ

ˇGF
g1

a

ˇ

ˇ ě dpcdB
´2{3q

ˇ

ˇ Fg1
a , ϕH

¯

“ PG
T W b PE

ppu,BqpW
a Ă AW

u |ϕ
pa´q

(II.5.28)
ě

1

4
.

(II.5.30)

Therefore, conditionally on the realization of the Galton–Watson tree T W and on
the event that F g0 exists, by Lemma II.5.4, the set F g1 contains with positive
PG
T W b PE

ppu,Bqp ¨ |ϕHq-probability (not depending on ϕH) a d
`

dpcdB
´2{3q{4

˘

-ary
tree. Moreover, since

d
`

dpcdB
´2{3q{4

˘

Ñ8 as B Ñ 0, (II.5.31)

taking B small enough we get that, under EW
Lpu,Bq,rupuqrP

G
T W b PE

ppu,Bqp ¨ |ϕHqs, the

set F g1 contains an infinite subtree with positive probability that we denote by δ,
and which does not depend on ϕH.

Write ppuq “ ppu,Bq and Lpuq “ Lpu,Bq for this choice of B. For each a P F g1,
we have Wa´ Ă AW

u X Iu by (II.5.15), (II.5.20) and (II.5.29). Since pa P Wa

and pa´ P Wa´ by construction, and so Wa and Wa´ are adjacent in T W (i.e.
min

xPWa´ , yPWa dT Wpx, yq “ 1) the infinite connected tree in F g1 yields an in-

finite connected subset
Ť

aPF g1 Wa in T W which is included in AW
u X Iu. Since

pT W, AW
u , Iuq under EW

Lpuq,rupuqrP
G
T W b PE

ppuqp¨qs has the same law as pT , Au X
Bppuq, Iuq under EGWrPRI

T b PG
T b PE

ppuqp¨qs by (II.1.9), (II.4.15) and (II.5.23),
we proved that the root is included in an unbounded connected component of
Au XBp X Iu with positive probability.

In order to conclude, we still need to prove that percolation occurs almost surely.
The strategy will be to construct a Galton–Watson tree T Z such that there are con-
ditionally independent copies of the tree F g1 from (II.5.29) whose associated water-
sheds can all be embedded into T Z . Since each of these copies of F g1 is infinite with
probability at least δ, at least one of them will be infinite a.s., and we can conclude.
We now explain how to do this construction in detail. Under some probability mea-
sure PZu , let pZkqkPN be an i.i.d. sequence of subtrees in X , with the same law as the
subtree

T W
´ Y

ď

aPF : rVLpXaq“H
pa1pXaq“8

T pa1

of T W under PW
Lpuq,rupuq, where T W

´ is defined in (II.4.13) and T x in (II.4.14). Since

T W
´ is constructed by the use of watersheds, in a slight abuse of language we will also

call watersheds the respective subsets of Zk corresponding to watersheds in T W
´ , if

no confusion is to arise from this. Let us now define recursively a sequence of trees
T Z
k , k P N, with BT Z

k ‰ ∅, a.s. as follows: first take T Z
1 “ Z1. Note that BZ1 ‰ ∅

a.s. since either rVLpX
Hq “ 8, and then BZ1 contains any point of BpTHzTH

VLpXHq
q,

which is a.s. non-empty; or otherwise if rVLpX
Hq ă 8 then yH1 P BZ1 (which does
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not always corresponds to pH1) since we did not add the tree T xH1 in the definition

of Z1 and yH1 P BT W
´ by (II.4.10).

To define T Z
k recursively, assume that T Z

k´1 is defined with BT Z
k´1 ‰ ∅. Let xk

be the first vertex in BT Z
k´1 (in lexicographic order in Ulam-Harris notation). We

then define T Z
k as the union of T Z

k´1 and xk ¨ Zk, which also verifies BT Z
k ‰ ∅.

Let T Z
´ be the union of T Z

k , k P N, and T Z be the union of T Z
´ and some

additional independent Galton–Watson trees below each x P BT Z
´ , each with the

same law as x ¨ T under PGW. Then, by construction, T Z has the same law as the
usual Galton–Watson tree T under PGW. Define F g0k and Wa

k, a P F
g0
k , similarly as

above (II.5.29) and in (II.4.17), but corresponding to Zk, which are i.i.d. copies of
F g0 and Wa, a P F g0, in k P N. Moreover, under PZu :“ EZu rPG

T Z b PE
ppuqp¨qs, define

AZu similarly as in (II.5.23), but with T W replaced by T Z , and for each k P N,
take F g1k “ ta P F g0k : xk ¨W

a´

k Ă AZu u, similarly as in (II.5.29). Then by Markov’s

property for the Gaussian free field, conditionally on ϕxk , F
g1
k is independent of F g1i ,

i ă k, and thus for each u P p0, u0q we have

PZu
`

|F g1k | “ 8 |F
g1
i , i ă k

˘

“ EZu
“

PZu p|F
g1
k | “ 8 |ϕxkq |F

g1
i , i ă k

‰

ě δ; (II.5.32)

here, the last inequality follows from the fact that, for each a P R, the law of F g1k
conditionally on ϕxk “ a under PZu is the same as the law of F g1 conditionally on
ϕH “ a under EW

Lpuq,rupuqrP
G
T W b PE

ppuqp¨qs, and δ is the constant introduced below

(II.5.30). Using the tower property recursively on k P N, one can easily show that
(II.5.32) implies that there exists PZu -a.s. k0 P N such that |F g1k0

| “ 8. Note moreover
that one can use Proposition II.4.2 similarly as in the proof of Proposition II.5.6, to
obtain an interlacements Iu on T Z with xk ¨W

a
k Ă Iu for each a P F g0k and k P N.

To this effect, note in particular that (II.5.22) still holds on T Z since for each k P N
and a P F g0k , the subtree T Z

xk¨pa1 of T Z below xk ¨pa1 is the copy T pa1
k of T pa1 associated

to Zk, translated by xk. Therefore, for each u P p0, u0q, the set F g1k0
is PZu -a.s. infinite

and its associated watersheds Wa
k0
, a P F g1k0

, are included in Iu X AZu , and we can
conclude.

In order to deduce Theorem II.1.1 from Proposition II.5.7, we are going to use the
isomorphism (II.2.21) between the Gaussian free field and random interlacements.
We first show that condition (II.2.20) – which entails the validity of the isomorphism
(II.2.21) by Proposition II.2.5 – holds PGW-a.s. for the Galton–Watson tree T .

Proposition II.5.8. PGW-almost surely we have that for all x P T ,

P T
x p ¨ |Hx´ “ 8q-almost surely, capT ptXi, i P Nuq “ 8.

Proof. Let x P X and L P N. Under some probability rQL
x , we now define a tree rT,

with weights denoted by rλy,z, y, z P rT, y „ z, as some extension of the tree TVL

starting at x from Section II.4.1, by completing its remaining ends so that rT is a
Galton–Watson tree conditioned on x P rT. More precisely, first define rTzrTx, that
is the part of the tree rT which is not below x, with the same law as T zTx under
PGWp ¨ |x P T q, endowed with the corresponding weights. Then, attach to x a copy

of the tree TVL with the same law as under Q
rλx´,x,L
x , as defined in Section II.4.1.

With a slight abuse of notation, we see TVL as a subset of rT. Finally for each

remaining point y P BTVL , attach to y an independent copy of y ¨ T . Let rX be
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a process with the same law as pXk^VLqkPN0 under Q
rλx´,x,L
x , it follows easily from

Proposition II.4.1 that prT, rXq under rQL
x has the same law as pT , pXk^VLqkPN0q under

EGWrP T
x p¨q |x P T s.

Similarly as in the proof of Lemma II.5.2 iv), one can show that there exist
positive constants cλ and cf so that, for each ε ą 0, if L is large enough, then

rQL
x

´

ˇ

ˇ

 

y P BTVL : rλy,y´ ě cλ
(ˇ

ˇ ă cfL, VLprXq ă Hx´p
rXq

¯

ď ε.

Indeed, this follows easily from (II.4.6) and a reasoning similar to the one in (II.5.4),

(II.5.5) and (II.5.6), replacing t
ř

iPN λ
pkq
i ď CΛu by tD i P N : λ

pkq
i ě cΛu.

Since, conditionally on TVL , g
rTypy, yq, y P BTVL , are i.i.d. with the same law as

gT pH,Hq, by the law of large number and the bound on the Green function from
Lemma II.5.2 ii) we deduce that for L large enough

rQL
x

´

ˇ

ˇ

 

y P BTVL : rλy,y´ ě cλ, g
rTypy, yq ď Cg

(ˇ

ˇ ă
cf
4
L, VLprXq ă Hx´p

rXq
¯

ď 2ε.

Note that the event trλy,y´ ě cλ, g
rTypy, yq ď Cgu implies by a similar reasoning

to above (II.5.22) that g
rTy´ py´, y´q ď Cg `

1
cλ
. Let ĂW “ trX0, . . . , rXVLu. Recalling

the definition of the equilibrium measure from (II.2.12), we moreover have that

e
ĂW,rT

pzq “ e
tzu,rTz

pzq “ pg
rTzpz, zqq´1 for each z P BĂWztxu. Since y´ P BĂW for each

y P BTVL by construction, we deduce that for L large enough

rQL
x

´

cap
rT
pĂWq ă

cf
4pCg ` 1{cλq

L, VLprXq ă Hx´p
rXq

¯

ď 2ε.

Since ĂW has the same law under rQL
x p¨, VLp

rXq ă Hx´p
rXqq as the first L points

visited by X under EGWrP T
x p¨, VLpXq ă Hx´pXqq |x P T s, letting first LÑ 8 and

then ε Ñ 0, and noting that tVLpXq ă Hx´pXqu decreases to tHx´pXq “ 8u, we
readily obtain (II.5.8).

We can now deduce Theorem II.1.1 from Proposition II.5.7 using the isomor-
phism from Proposition II.2.5 combined with Proposition II.5.8.

Proof of Theorem II.1.1. Consider the probability space Qu
T from Proposition II.2.5.

Abbreviating Ex :“ Ep1qx , we have `x,u ě λ´1
x Ex for all x P Iu by (II.2.19). In view of

Proposition II.5.8, we can apply the isomorphism (II.2.21), and we get Qu
T -a.s. for

all x P Iu XAu

γx “ ´
?

2u`
b

2`x,u ` ϕ2
x ě ´

?
2u`

b

2λ´1
x Ex ` ϕ2

x

(II.1.9)
ě ´

?
2u` 2

?
2u “

?
2u.

This yields (II.1.8) by defining pEě
?

2u “ tx P T : γx ě
?

2uu. By Proposition II.5.7,
for all u P p0, u0q there is Qu

T -a.s. an unbounded component for AuXIu, and so also

for the level set pEě
?

2u. This readily implies h˚ ą 0 since pEě
?

2u has the same law
as Eě

?
2u.

Remark II.5.9. Rather surprisingly, our proof does not work anymore if one tries to
replace the inclusion (II.1.8) by any of the simpler inclusions IuXtx : Ex ą 4uλxu Ă
pEě
?

2u or IuX
 

x : |ϕx| ą 2
?

2u
(

Ă pEě
?

2u. In other words, we need to use both the
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local times of random interlacements and the Gaussian free field ϕ in the isomor-
phism (II.2.21), and not just one of the two. Indeed, in view of Proposition II.5.5,
one needs to take L at least equal to C{u for some large constant C ă 8 in order
for F g to percolate. For instance for constant conductances and small enough u,
the probability that Wa Ă tx : Ex ą 4uλxu is at least 1 ´ CuL, and the probabil-
ity that Wa Ă

 

x : |ϕx| ą 2
?

2uλx
(

is of order 1 ´ C
?
uL in view of (II.5.24), for

some constant C ă 8. These bounds are not interesting for the previous choice of
L “ C{u. However combining them gives that the probability that Wa Ă Au is of
order 1´Cu3{2L, see (II.5.25), which goes to one for the previous choice of L when
uÑ 0.

Proof of Theorem II.1.2. The statement for random interlacements follows trivially
from Proposition II.5.7 for u ď u0 by the inclusion Iu XAu XBp Ď Iu XBp. Using
the monotonicity in u of interlacements we obtain the statement for all u ą 0. The
statement for the Gaussian free field also follows from Propositions II.5.7, II.2.5 and
II.5.8 similarly as in the proof of Theorem II.1.1.

Remark II.5.10. An interesting open question is whether Theorem II.1.2 is true
in the whole supercritical phase of the Gaussian free field, that is for each h ă h˚,
does there exist p P p0, 1q such that Eěh XBp percolates, or is transient even?

II.6 Transience of the level sets

In this section we prove Theorem II.1.3, that is that both, the interlacements set
and the level sets of the Gaussian free field above small positive levels, are tran-
sient – even when intersected with a small Bernoulli noise. More precisely, we prove
that the random walk on the tree of very good watersheds is transient, see Propo-
sition II.6.3, and use arguments similar to the proof of Theorem II.1.1 to conclude.
The notion of very goodness we use here is a refinement of the one introduced in
Definition II.5.1, see (ivq1) below, and is adapted in order to ensure that the random
walk on the tree of very good watersheds can be compared to a random walk on a
Galton–Watson with a constant drift, see (II.6.4). We then follow the strategy of
the proof of [Col06, Theorem 1] in order to deduce transience. In addition to the
usual assumption (II.1.2), we assume throughout this section that, conditionally on
the non-weighted tree T , the family pλx,yqx„yPT is i.i.d. and has compact support.
In terms of the construction of the Galton–Watson tree in Section II.2.1, this is
equivalent to assuming that, under ν and conditionally on πppλjqjPNq, the family
pλiq1ďiďπppλjqiPNq is i.i.d., that the law of λ1 does not depend on πppλjqjPNq, and that

there exist 0 ă cλ ă CΛ ă 8 such that ν-a.s.

cλ ă λi ă CΛ for all 1 ď i ď πppλjqjPNq. (II.6.1)

We use the independence of the conductances when referring to [Gan+12] in the
proof of Lemma II.6.1, and the assumption (II.6.1) in (II.6.4). Note that (II.2.3)
and (II.6.1) imply that the mean offspring distribution m is finite.

Let us now define a notion of goodness which is stronger than the one introduced
in Definition II.5.1: in this section, we say that a point a P F is pL,B,Cg, cf , cLq-
very good if it verifies the conditions i) to iii) with cλ “ cλ and CΛ “ CΛ (which
simplifies these conditions in view of (II.6.1)), and v) of Definition II.5.1, as well as
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ivq1 the set of children of the vertex a in the tree of free points F satisfies

ˇ

ˇ

 

a1 P GFa : dT Wppa, pa1q ě cLL
(
ˇ

ˇ ě
cfL

2
,

where we recall that dT W denotes the graph distance within T W. Note that the
inequality λFa,a1 ď CΛ “ CΛ is trivially satisfied under (II.6.1) by taking CΛ “ CΛ,
and thus ivq1 is stronger than iv) in Definition II.5.1 (up to changing the constant
cf ). We now follow a strategy inspired by that of Section II.5 in order to show
that the tree of very good free points contains a d-ary tree. We first evaluate the
probability for a point to verify the property ivq1, analogously to Lemma II.5.2 iv).
Recall the construction of the trees Tk, k P N0, under the probability measure Qκ,L

x

from Section II.4.1, as well as the stopping time VLpXq and rVLpXq from (II.4.2) and
(II.4.3). In what follows we abbreviate VL “ VLpXq to simplify notation.

Lemma II.6.1. Let cf be as in Lemma II.5.2. There exists cL ą 0 such that for all
ε ą 0, there exists L0 “ L0pεq P N such that for all x P X , L ě L0 and κ ď CΛ,

Qκ,L
x

´

ˇ

ˇ

 

y P BTVLztx1,XVLu : dTVL
px, yq ě cLL

(
ˇ

ˇ ă cfL{2, rVLpXq “ 8
¯

ď ε.

Proof. It is known, see [LP16, Theorem 17.13], that the speed of a random walk
on a Galton–Watson tree T with unit conductances is PGW-a.s. strictly positive
and deterministic; i.e., the limit v :“ limkÑ8

dT pH,Xkq
k ą 0 exists and is a constant.

This result was generalized in [Gan+12] to Galton–Watson trees with finite mean
for the offspring distribution and i.i.d. conductances verifying (II.1.2). In view of
Proposition II.4.1, the process X under Qκ,L

x p ¨ , rVLpXq “ 8q has the same law as a
random walk X on T under P T

x p ¨ ,
rVLpXq “ 8 |λx,x´ “ κq. Therefore, for all ε ą 0

we can find a k0 “ k0pεq such that for all k ą k0, L P N, x P X and κ ď CΛ, we have

Qκ,L
x

´

Dn ě k : dT
rVL
pXn, xq ď vk{2, rVLpXq “ 8

¯

ď ε{3. (II.6.2)

In order to find enough vertices in Fa at distance at least cL from x, we note that

|Tk| ď |TVk | “
ř

xPtX1,...,XVk
u |txu Y G

TVk
x |, and that tG

TVk
x : x P tX1, . . . , XVkuu

is an i.i.d. family of cardinality k if rVL “ 8, k ď L, similarly as in (II.4.6). Since
m ă 8, by the weak law of large number we can find CP ą 0 such that for all ε ą 0,
there exists k0 P N such that for all k ą k0, L ě k, x P X and κ ą 0

Qκ,L
x p|Tk| ě CPk, rVLpXq “ 8q ď ε{3. (II.6.3)

Applying (II.6.2) and (II.6.3) with k “
cf

2CP
L, for L large enough so that k ě k0, we

obtain that with probability at most 2ε{3, on the event rVLpXq “ 8, there are more
than cfL{2 points in TVL at distance less than cLL from x, where cL :“

vcf
4CP

. We
can then conclude by combining this with Lemma II.5.2 iv) for ε{3.

Recall the definition of AW
u in (II.5.23). We can now prove analogously to the

proof of Proposition II.5.7 that pL,B,Cg, cf , cLq-very good points, whose associated
watershed is included in AW

u , contain a supercritical Galton–Watson tree.

Proposition II.6.2. Let cλ “ cλ, Cg and cf be as in Lemma II.5.2, ce as in
(II.5.19), and cL as in Lemma II.6.1. For each d P N, there exist B ą 0 and u0 ą 0,



60 CHAPTER II. GAUSSIAN FREE FIELD ON GALTON–WATSON TREES

such that, for each u P p0, u0q, there exist L P N and p P p0, 1q, so that under
EW
L,rurP

G
T W b PE

p p ¨ |ϕHqs, with ru “ uce, the tree

F g1
1

:“tHu Y
!

a P F ztHu : a´ is pL,B,Cg, cf , cLq-very good,

dT Wppa,xa´q ě cLL and Wa´ Ď AW
u

)

contains with positive probability, not depending on ϕH, a d-ary tree.

Proof. Using Lemma II.6.1 in place of Lemma II.5.2 iv), and adding the condition

dT Wppa,xa´q ě cLL in the definition (II.5.15) – which is possible in view of the
condition ivq1 – one can easily prove similarly as below (II.5.30) that for each B ą 0
there exists u0 “ u0pBq, such that for all u P p0, u0q, there exists L “ Lpu,Bq and
p “ ppu,Bq as in (II.5.26), so that F g1

1

contains a d
`

dpcdB
´2{3q{4

˘

-ary tree, and we
can conclude in view of (II.5.31).

We prove now transience using the argument of [Col06, Theorem 1].

Proposition II.6.3. There exists B ą 0, u ą 0, L P N and p P p0, 1q, such that
under EW

L,uce
rPG

T W b PE
p p ¨ |ϕHqs, the connected component of H in the tree with

vertex set
T g11 :“

ď

aPF g11

Wa

is transient with positive probability, not depending on ϕH.

Proof. Consider a random walk X on T g11 starting in H. We proceed by contra-
diction, and assume that T g11 is recurrent, that is, the walk X comes back to the
root almost surely. We introduce the following color scheme: H is white, and
a vertex ai P F g1

1

is white if a is white and xai is visited by X in the interval
rH

pa, inftk ě H
pa : Xk “

xa´us. We want to show that there is an infinite number
of white vertices with positive probability; indeed, since then there would in partic-
ular be an infinite connected component of white vertices, this would constitute a
contradiction as the watershed associated to each white vertex in the connected com-
ponent of H is visited by X in the interval rHpWHqc , inftk ě HpWHqc : Xk “ Hus

by definition.
For a fixed vertex ai P F g1

1

, we evaluate the probability, starting from pa, to
visit xai before returning to xa´. Because of recurrence, for the computation of this
probability, we can restrict ourselves to the only path connecting xa´ to xai and we
compute its effective conductance C (see [LP16, (2.4)]). Both the distances between
xa´ and pa, and the one between pa and xai are at least cLL by definition of F g1

1

, and at
most L by definition of watersheds, see in particular (II.4.2) and (II.4.9). Therefore,
using the series law (see [LP16, Subsection 2.3.I]) we obtain that the probability of

a random walk starting from pa, to visit xai before returning to xa´, is equal to

CppaØ xai q

Cpxa´ Ø paq ` CppaØ xai q
“

´

ř

xPppa,xai s
1

λx´,x

¯´1

´

ř

xPpxa´,pas
1

λx´,x

¯´1
`

´

ř

xPppa,xai s
1

λx´,x

¯´1

(II.6.1)
ě

cλ

CΛ

cL
2
,

(II.6.4)
where px, ys denotes the unique path connecting x to y, minus x. For each d P N,
it follows from Proposition II.6.2 that for an appropriate choice of B, u, L and p,
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the tree of white vertices contains with positive probability a weightless Galton–

Watson tree with mean offspring distribution larger than d cλ
CΛ

cL
2 . Taking d “ r4 CΛ

cλcL
s,

this tree of white vertices is infinite with positive probability, which concludes the
proof.

Proof of Theorem II.1.3. Similarly to the proofs of Theorems II.1.1 and II.1.2 at the
end of Section II.5, one can use the isomorphism (II.2.21), which holds by Proposi-
tion II.5.8 similarly as in the proof of Theorem II.1.1, as well as Proposition II.5.6
to show that the component of H in the tree T g11 from Proposition II.6.3 can be
included in IuXBp or pEě

?
2uXBp, proving the transience of those sets with positive

probability by Rayleigh’s Monotonicity Principle (see [LP16, Section 2.4]). To show
that transience occurs almost surely for some component, one can proceed similarly
to the end of the proof of Theorem II.5.7 by considering the Galton–Watson tree
T Z on which there are infinitely many conditionally independent copies of T g11 , and
thus one of these copies is transient a.s.
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II.A The critical parameters are deterministic

In this section we prove that:

Theorem II.A.1. Under PGW

T ÞÑ u˚pT q is a.s. constant (II.A.1)

T ÞÑ h˚pT q is a.s. constant (II.A.2)

Those results are known from [Tas10] and [AS18] in the case of deterministic
unit conductances. We provide here the generalizations for the case of random
conductances.

The proofs are based on the 0-1 law for inherited properties from [LP16, Chapter
5], which we will shortly recall here. For this purpose, we start with introducing the
following definition.

Definition II.A.2. A property P is called inherited if

• All finite trees satisfy property P, and

• if a tree T with root x has the property P, then all the descendant trees Ty
with y P GT

x have P.

Since we are dealing with different trees, in this section we underline the depen-
dence on the graph writing PG

T and PRI
T for the law of the Gaussian free field and

random interlacements on the tree T .
There exists a 0-1 law for surviving Galton-Watson trees [LP16, Proposition 5.6].

We generalize it here for our context of Galton-Watson trees with random conduc-
tances verifying (SA).

Theorem II.A.3. If P is an inherited property, then

PGWpT has Pq P t0, 1u.

Proof. We write PGW
˚ for the law of the unpruned weighted Galton-Watson tree

under ν, while we coherently use PGW for the pruned tree conditioned on surviving.
Denote by A the set of trees satisfying property P, and by G1 we denote the first
generation’s size of the Galton-Watson tree, which is a random variable with law µ
(cf. (II.2.4)). Then

PGW
˚ pT P Aq “ EGW

˚ rPGW
˚ pT P A

ˇ

ˇG1qs ď EGW
˚ rPGW

˚ p@i “ 1, . . . , G1, Ti P A
ˇ

ˇG1qs,

where the inequality follows from the fact that P is inherited. Now since condition-
ally on G1, the subtrees Ti, i “ 1, . . . , G1, are independent and have the same law
as T , we can continue the above to get

PGW
˚ pT P Aq ď EGW

˚ rPGW
˚ pT P AqG1s “ fpPGW

˚ pT P Aqq,

where fpsq :“ EGW
˚ rsG1s, for s P r0, 1s, is the probability generating function of the

tree under ν.
It is known that if m ą 1 the function f is strictly convex with two fixed points

q “ PGW
˚ pT is finiteq and 1. Together with the inequality PGW

˚ pT P Aq ď fpPGW
˚ pT P

Aqq this implies that PGW
˚ pT P Aq P r0, qs Y t1u. But since all finite trees are in A,

we infer that PGW
˚ pT P Aq P tq, 1u. Rewriting this in terms of the pruned measure,

we infer

PGWpT P Aq “ PGW
˚ pT P A, |T | “ 8q

PGW
˚ p|T | “ 8q

P t0, 1u,

and this finishes the proof.
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II.A.1 The critical parameter u˚ is constant

We generalize now the proof from [Tas10] of (II.A.1).
For u ą 0, define the property Pu as follows: we say that T has the property Pu

if either

T is finite, or PRI
T ,up|CH| “ 8q “ 0

where CH is the cluster of the root H in Vu.

Lemma II.A.4. For each u ą 0 the property Pu is inherited.

Proof. Finite trees have Pu by definition, so we show that

Dx „ H : Tx has Pu ñ TH has Pu.

Let x „ H such that the subtree Tx has not Pu, i.e.

PRI
Tx,up|Cx| “ 8q ą 0. (II.A.3)

We use, as in [Tas10], a result from Teixeira:

Proposition II.A.5 ([Tei09, Theorem 5.1]). Let T be a transient weighted tree with
locally bounded degree. Define for a fixed x P T the functon h : Tx Ñ r0, 1s

hxTxpzq “ P Txz p
rHz´ “ 8qP

Tx
z pHz “ 8qλz1tz‰xu.

Then, conditionally on tx P Vuu, CxXTx under PRI
u has the same law as open cluster

containing x of independent Bernoulli percolation with parameter pupzq “ e´uh
x
Tx
pzq.

By definition, for all z P Txztxu, hxTxpzq “ hxT pzq, and this implies that

PRI
T ,up|Cx X Tx| “ 8

ˇ

ˇ x P Vuq “ PRI
Tx,up|Cx| “ 8

ˇ

ˇ x P Vuq. (II.A.4)

Again, by definition, for all z P Txztxu, hxT pzq “ hHT pzq, and the last Proposition im-
plies that the law of CH X Tx under PRI

T ,up¨
ˇ

ˇH, x P Vuq is the same as the law of

Cx X Tx under PRI
T ,up¨

ˇ

ˇ x P Vuq and this implies that

PRI
T ,up|CH X Tx| “ 8

ˇ

ˇH, x P Vuq “ PRI
T ,up|Cx X Tx| “ 8

ˇ

ˇ x P Vuq. (II.A.5)

Then, using the capacity of sets, it holds

PRI
T ,upH, x P Vuq “ e´u capT ptH,xuq ą 0. (II.A.6)

Altogether

PRI
T ,up|CH| “ 8q ě PRI

T ,up|Cx X Tx| “ 8
ˇ

ˇH, x P VuqPRI
T ,upH, x P Vuq

“ PRI
T ,up|CH X Tx| “ 8

ˇ

ˇH, x P VuqPRI
T ,upH, x P Vuq

(II.A.5)
“ PRI

T ,up|Cx X Tx| “ 8
ˇ

ˇ x P VuqPRI
T ,upH, x P Vuq

(II.A.4)
“ PRI

Tx,up|Cx| “ 8
ˇ

ˇ x P VuqPRI
T ,upH, x P Vuq

(II.A.3),(II.A.6)
ą 0

which proves that Pu is inherited.
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With the previous 0-1 law and the hereditary property Pu, we can prove (II.A.1):
since Pu is inherited, by Theorem II.A.3, PGWpT has Puq P t0, 1u. Hence for every
s in Q`, there exist a set As with PGWpAsq “ 1, where 1

tPRI
u p|CH|“8q“0u is con-

stant on As. Taking intersection over Q`, on the set A :“
Ş

sPQ` , all the functions
1
tPRI

T ,up|CH|“8q“0u are constant.

Now, since the function u ÞÑ PRI
T ,up|CH| “ 8q is decreasing, the function

T ÞÑ inf
sPQ`

tPRI
T ,sp|CH| “ 8q “ 0u

is well defined and constant on A. Hence

uT˚ “ inf
sPQ`

tPRI
T ,sp|CH| “ 8q “ 0u

“ inf
sPR`

tPRI
T ,sp|CH| “ 8q “ 0

is PGW-a.s. constant.

II.A.2 The critical parameter h˚ is constant

We show (II.A.2) in a similar way to what done for u˚. Define for each h P R the
property Ph by saying that a tree T rooted at x satisfies Ph if Ty is transient for all
y P T and

PG
T

`
ˇ

ˇEěhx
ˇ

ˇ “ 8
˘

“ 0,

where for y P T we denote by Eěhy the connected component of y in tz P T : ϕz ě hu.

We now need to prove that the property Ph is inherited, which has been done in the
setting of unit conductances in [AS18, Lemma 5.1]. For the reader’s convenience we
now present a proof in our setting inspired by [Tas10].

Lemma II.A.6. For each h P R, the property Ph is inherited.

Proof. Assume that T is a tree rooted at x verifying Ph. For any y P T with y P GTx
we have

PG
T

`ˇ

ˇEěhx
ˇ

ˇ “ 8
˘

ě PG
T

`ˇ

ˇEěhy X Ty
ˇ

ˇ “ 8, ϕx ě h
˘

ě PG
T

`ˇ

ˇEěhy X Ty
ˇ

ˇ “ 8
˘

PG
T pϕx ě hq,

where the second inequality is a consequence of the finite dimensional FKG inequal-
ity for Gaussian fields, see [Pit82], and a classical limiting procedure. Since the
second factor on the right-hand side is non-zero, PG

T

`ˇ

ˇEěhx
ˇ

ˇ “ 8
˘

“ 0 implies for
each y P GTx

PG
T

`
ˇ

ˇEěhy X Ty
ˇ

ˇ “ 8
˘

“ 0.

What is left to do is to show that the previous equation holds also for the
Gaussian free field on the subtree Ty. By disintegration, we observe that for λ-
almost all b P R we have

PG
T

´

ˇ

ˇEěhy X Ty
ˇ

ˇ “ 8
ˇ

ˇ ϕy “ b
¯

“ 0.

From the Markov property applied to the set K “ tyu, it follows that the restriction
of the Gaussian free field under PG

T p ¨ |ϕy “ bq to Ty has the same law as the Gaussian
free field under PG

Ty
p ¨ |ϕy “ bq . Hence we obtain that for each y P GTx and λ-almost

all b P R we have
PG
Ty

´

ˇ

ˇEěhy
ˇ

ˇ “ 8
ˇ

ˇ ϕy “ b
¯

“ 0.

Integrating again we obtain PG
Ty

`
ˇ

ˇEěhy
ˇ

ˇ “ 8
˘

“ 0, proving that Ph is inherited.
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With the previous 0-1 law and the inherited property Ph, we can prove (II.A.2).

Proof of (II.A.2). Since the property Ph is inherited by Lemma II.A.6, it follows
from Theorem II.A.3 that PGWpT has Phq P t0, 1u for each h P R. Moreover by
Proposition II.2.1 and since Tx has the same law as x ¨ T under PGW, see (SA), Tx
is transient for all x P T PGW-a.s. Hence for every s P Q, there exists an event As
with PGWpAsq “ 1 such that T ÞÑ 1tPG

T p|E
ěs
H
|“8q“0u is constant on As. Thus on the

event A :“
Ş

sPQAs, all the functions 1tPG
T p|E

ěs
H
|“8q“0u, s P Q, are constant. Now,

since the function h ÞÑ PG
T p|E

ěh
H
| “ 8q is decreasing, the function

T ÞÑ inf
sPQ
tPG

T p|E
ěs
H
| “ 8q “ 0u “ inf

hPR
tPG

T p|E
ěh
H
| “ 8q “ 0u

is well defined and constant on A, and we can conclude by (II.1.4) and FKG in-
equality.
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Chapter III

The Lipschitz cutset on fractal
graphs

67
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III.1 Introduction

Consider a collection of particles on an infinite (connected) graph, where a Poisson
distributed number of particles are placed at each vertex of the graph. Then, over
time, each particle performs an independent continuous time simple random walk
on the graph. Assume that at time 0 a single additional infected particle is placed
somewhere on the graph and consider the infection dynamics to be as follows: when-
ever a particle shares a vertex with an infected particle, it instantaneously becomes
infected itself. Infected particles can also recover and become healthy/susceptible
again, which occurs independently for each infected particle at some exponentially
distributed random time. Due to the infection mechanism outlined above, a particle
can only truly recover when it is the sole particle at a vertex - otherwise it gets
reinfected straight away by one of the other particles sharing its location.

This problem has been studied in various forms among others by Kesten and
Sidoravicius. In [KS05] the authors consider the graph to be the nearest neighbour
square lattice Zd and treat the case where infected particles never recover. They
show that for large times and with high probability, the sites of Zd that have already
been visited by an infected particle contain a ball of radius proportional to time
around the site where the infection started. They also prove that these sites are
themselves completely contained in a bigger ball of radius that is also proportional
to time, again with high probability. In [KS08] they refine this result and prove
a shape theorem for the infection under suitable rescaling of space. In a parallel
paper [KS06], they study the case of infection with recovery on Zd and prove the
existence of a phase transition with respect to the recovery rate of the particles -
for rates higher than a critical threshold, the infection will almost surely go extinct
(i.e. no infected particle remains after some finite time), whereas for rates below
this threshold, the infection will with positive probability survive indefinitely.

More recently, Gracar and Stauffer [GS19a; GS19b] have developed a general
framework with which they were able to prove that on the weighted graph pZd, λq,
with edges equipped with uniformly elliptic conductances λx,y, the infection still
spreads with positive speed. They also showed that in the case of infection with
recovery, the infection not only survives indefinitely with positive probability, but
also spreads with positive speed - a question that was left unanswered previously.
A further application of this framework can be found in [BS23], where it is shown
that in the case of infection with recovery, conditioned on the infection surviving,
the origin of Zd (i.e. where the infection is started) is visited by an infected particle
at arbitrarily large times. The key benefit of the framework used in these works
is that it can be applied to different variations of the Poisson random walks and
infection models, and that the multi-scale analysis which is done in order to set
up the framework does not need to be redone from scratch when the type of event
studied changes. Given a local, translation invariant, increasing event with a high
enough probability, the framework gives the existence of a connected surface in space-
time where the event holds and which acts as a cutset in space-time, separating the
origin from infinity, so that any particle which visits the origin has to intersect the
surface at some later time.

In this work, we adapt the framework to an entirely new class of graphs — sub-
diffusive fractal lattice graphs. In particular, we study the behaviour of a particle
system on the Sierpiński gasket and on generalized Sierpiński carpets. Intuitively,
these are the graphs of the famous triangle and square based fractals, where instead
of repeating the construction recursively inwards, one instead expands outwards,
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by attaching copies of the current stage of the graph recursively. A key difference
between the standard Euclidean lattice (Zd as well as for example the triangle or
hexagonal lattice nearest neighbour graph) and the graphs we study is that random
walks on the latter exhibit subdiffusive behaviour. I.e., random walks move through
the graph much more slowly than e.g. on the Euclidean lattice, and it takes on
average rdw amount of time to leave a ball of radius r, where dw ą 2 is a constant
that depends on the dimension of the graph, and on which parts of the graph are
missing. Compared to Euclidean lattices, where this average is of order r2 regardless
of the dimension of the lattice, this shows that on such fractal graphs random walks
exhibit a quantitatively different behaviour. Crucially, this slower movement of the
particles makes it unclear whether the dynamics of the infection process remain
unchanged or whether the infection has a harder or easier time surviving over time.
Our main result provides an answer to this question.

In order to state it, we quickly formalize some of the concepts above. Let G be
either the Sierpiński gasket graph or a generalized Sierpiński carpet graph (defined
precisely in Sections III.2.1 and III.8. See also the corresponding Figures III.1 and
III.8). In our first result we adapt the so-called Lipschitz surface framework from
[GS19a] to the fractal graph case. Notably, although the framework remains the
same in spirit, it requires changes across the board due to the significantly changed
geometry of the graph, starting with the analogue of the Lipschitz surface for fractal
graphs. On Zd, the framework gives rise to a discrete, Lipschitz connected surface in
(a coarse-grained) space-time graph Zd`1. On the fractal graphs we study we cannot
hope for such a strong connectivity property. However, as we define in Subsection
III.2.5 and prove in Section III.3, the corresponding object still acts as a cutset on
the coarse-graining of the space-time graph, meaning that any path escaping toward
infinity must intersect this cutset (cf. Definition III.2.9). Furthermore it is in some
sense minimal and still retains the Lipschitz connectivity property along the time
dimension (cf. Corollary III.3.5). We call this object the Lipschitz cutset. We prove
in Theorem III.2.12 that such a Lipschitz cutset exists a.s. and in Theorem III.2.13
that it surrounds the origin within a finite distance a.s..

The Lipschitz cutset retains the flexibility of the Lipschitz surface and can be
used to prove various statements; we present one as an example. Consider the
infection process with recovery as outlined above, where at the beginning there is
an independent Poisson distributed with intensity µ0 number of particles at each
vertex of the graph, and γ is the rate at which infected particles recover. We say
that the infection survives if for every time t ě 0 there exists at least one infected
particle somewhere on the graph. We then have the following result.

Theorem III.1.1. For any µ0 ą 0 there exists γ0 ą 0 such that for all γ P p0, γ0q

the infection with recovery on G survives with positive probability.

Theorem III.1.1 is a direct consequence of Proposition III.9.1 which gives the
above statement even in the case where the fractal graph is equipped with uniformly
elliptic conductances, and it is proven as an application of the Lipschitz cutset from
Theorems III.2.12 and III.2.13, and the property of “Lipschitz in the time dimension”
from Corollary III.3.5.

This paper is structured as follows. In Section III.2 we define the Sierpiński
gasket graph and formalize the definitions and basic properties outlined above. We
also state the two main technical Theorems III.2.12 and III.2.13 which give the
existence and key properties of the Lipschitz cutset. In Section III.3 we construct
the Lipschitz cutset and provide a sufficient condition for its existence, as well as
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prove its key geometric properties. Section III.4 covers the tool used in our multi-
scale analysis, a mixing theorem that allows us under the right conditions to resample
particles independently. In Section III.5 we define the multi-scale tessellation of the
space-time graph and its properties which lead to the proof of Theorem III.2.12 in
Section III.6. We prove Theorem III.2.13 in Section III.7 with an extension of the
multi-scale argument developed before. Section III.8 covers the adaptation of the
results which are written with the Sierpiński gasket graph in mind to the case of
generalized Sierpiński carpet graphs. The paper concludes with Section III.9 with
the application of Theorems III.2.12 and III.2.13 in order to prove Theorem III.1.1.

Throughout this work we will denote constant with c0, c1, . . . and C1, C2, . . . .
Important constant that should be kept track off will be denoted differently: this in-
cludes Cλ, Cmix, Cψ and the constants in mixing Theorem III.4.6: M1,M2,M3,M4,Θ.

III.2 Settings and definitions

We start by defining the Sierpiński graph and the coarse-graining which we will use
throughout the paper. We then proceed to formally define the particle system we
will be studying before stating the two main results of this paper.

III.2.1 The Sierpiński gasket graph

The Sierpiński gasket is a fractal which was introduced in [Sie15]. Here we define
the Sierpiński graph or Sierpiński prefractal based on the Sierpiński fractal with a
recursive construction as presented in [Del02]. Consider any of the graphs obtained
from the d-dimensional unit side-length regular simplex in Rd, d ě 2, by placing
one vertex in the origin. Fix such a graph and denote it with 4d. More precisely,
4d :“ pV,Eq where V are the d ` 1 vertices corresponding to the corners of the
simplex and E is the set of all undirected pairs of vertices which share an edge in
the simplex. For d “ 2, this is the graph induced by the equilateral triangle with
unit length sides, motivating the notation 4d. In d “ 3, the graph is induced by
the equilateral tetrahedron. We furthermore assume the graph to be weighted with
conductances λ :“ pλx,yqtx,yuPE , which are positive symmetric and we assume the
existence of a constant Cλ such that the conductances are uniformly elliptic, i.e.

1

Cλ
ď λx,y ď Cλ. (III.2.1)

Define now 4d
0 :“ 4d and iteratively the graph of scale n, for n ě 1, as

4d
n :“

ď

xP2n´14d
0

`

x`4d
n´1

˘

, (III.2.2)

taking care of identifying overlapping vertices at the junctions; edges carry the same
conductance as in 4d

0, i.e. for any n ě 1, z P 2n´14d
0 and x, y P 4d

0, the conductance
on the edge pz ` x, z ` yq is λx,y. The d-dimensional Sierpiński graph Gd is the
graph obtained by taking the union of 4d

n over n P N0. We write x „ y if there is an
edge between x and y, and let λx :“

ř

y„x λx,y. We will denote by pGd, pλx,yqx„yq

the weighted graph Gd with conductances pλx,yqx„y.
We introduce the set

Bd :“
 

ι P Gd : ι`4d
0 is a subgraph of Gd

(

, (III.2.3)
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which intuitively contains those vertices in Gd which are the “lower left” corner
of some translation of the simplex 4d in Gd. Note that this set is stable under
multiplication with powers of 2 in the sense that for all m P N0 and ι P Bd,

ι2m `4d
m is a subgraph of Gd. (III.2.4)

We consider the natural graph distance dp¨, ¨q on Gd and define the distance
between sets as the usual minimum of the distances between vertices contained
therein. For a finite set A we define the volume VolpAq :“ |A| as the cardinality
of the set A. Define the ball of radius r ě 0 with center x P Gd as Brpxq :“ ty P
Gd : dpx, yq ď ru, and the volume of such balls Volrpxq :“ VolpBrpxqq as the number
of vertices contained in it. Note that the conductances do not affect dp¨, ¨q or the
volume.

(a) d “ 2 (b) d “ 3

Figure III.1: The first six stages of the Sierpiński Gasket.

It can be shown that for each d ě 2, there exist constants cvol,CVol ą 0 (depend-
ing on the dimension) such that for all x P Gd and r ě 1

cvol r
dv ď Volrpxq ď CVol r

dv , (Vol(dvq)

and we call dv the volume dimension of the graph. We refer to the discussion below
(Epdwq) for a brief list of the different names of dv in the literature. It is well-
known that in dimension two dv “ log2p3q. To show that (Vol(dvq) holds in any
dimension d, it is not hard to generalize the proof in [Bar98] in order to obtain that
dv “ log2pd` 1q.

We now present a regular coarse graining—referred to as tesselation—of the
space-time space GdˆZ which we need in order to state the theorems. This definition
will be in line with the more complex tessellation presented in Subsection III.5.1.

III.2.2 First level tessellation

Definition III.2.1. For a given value ` P N0, we tessellate the graph Gd into tiles
S1pιq :“ ι2` `4d

` , for ι P Bd, so that each tile is indexed by ι and has side length
equal to 2`.

For a given value β ą 0, we tessellate R (which will play the role of time) into
intervals T1pτq :“ rτβ, pτ ` 1qβq, indexed by τ P Z.

We then define the (space-time) cell indexed by pι, τq as R1pι, τq :“ S1pιqˆT1pτq.
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When referring to subsets of the spatial graph in general, such as tiles, unions of
tiles or balls on the graph, we will refer to them as regions or subregions when the
distinction between the kind of subset does not play a role.

Later on, we might refer to cells with shorter notation such as simply u or v when
we do not need to specify the indices of the cell. This will usually be in conjunction
with some set of cells, where we will write u P A as a shorthand for R1pι, τq P A (see
for example (III.2.8) and the text immediately thereafter).

Definition III.2.2. We say two cells R1pι1, τ1q ‰ R1pι2, τ2q are adjacent if either
ι1 “ ι2 and |τ1 ´ τ2| ď 1 or else if dpS1pι1q, S1pι2qq “ 0 and τ1 “ τ2.

Remark III.2.3. We could alternatively define S1pιq to be “half-open” in the sense
that only the “corner” corresponding to ι is in S1pιq while all other corners are not,
making the tiles disjoint. This distinction makes no difference for the combinatorial
arguments we will use; it could however be important for the lowest level events one
could consider (cf. Definition III.2.8) in the application of our framework.

We will use this space-time tessellation in order to define a dependent percolation
model where space-time cells will be good or bad depending on whether a given
event dependent on the particle behaviour occurs roughly in the region defined by
the corresponding S1pιq during the time interval T1pτq. More precisely however, the
events that we will consider will not be limited to events localized entirely within
S1pιq. Instead, they will involve larger regions which in particular may intersect for
different pairs pι, τq and pι1, τ 1q. To this end we introduce the following extension.

Definition III.2.4. Let η P N. For ι P Bd we define the super-tile

Sη1 pιq :“
ď

ι1PBd : dpι,ι1qďη

S1pι
1q,

and for τ P Z the super-interval T η1 pτq :“ rτβ1, pτ ` ηqβ1q, as well as the super-cell
Rη1pι, τq as Sη1 pιq ˆ T

η
1 pτq.

III.2.3 Random walks on the Sierpiński graph

We will study Poisson random walks and for this purpose we start by analyzing
properties of the simple random walk on Sierpiński gaskets. We call a stochastic
process pXtqtě0 taking values in Gd a (continuous time simple) random walk on Gd

under the probability measure Px0 , if X0 “ x0 holds Px0-a.s., and while at x P Gd, it
jumps to y „ x with rate λx,y{λx. We say that a function f : Gd ˆRÑ R is caloric
if satisfies the discrete heat equation

B

Bt
fpx, tq “

ÿ

y„x

λx,y
λx
pfpy, tq ´ fpx, tqq

and it is easy to verify that the heat kernel ptpx, yq :“ 1
λy
PxpXt “ yq seen as a

function of y and t, with x fixed, satisfies it.
It is well known that the transition probabilities for a random walk on Zd satisfy

Gaussian estimates. Instead, the Sierpiński gasket falls into the class of nested
fractals studied in [HK04, Corollary 4.13], which shows the validity of sharp upper
and lower bounds for the heat kernel: denoting by pnpx, yq :“ 1

λy
PxpXn “ yq the

heat kernel for the discrete time random walk, it holds

pnpx, yq — n´
dv
dw exp

´

´

´dpx, yqdw

c3n

¯1{pdw´1q¯

(III.2.5)
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for n ą dpx, yq, where — indicates that the ratio of the two sides is bounded from
above and below by positive constants independent of x, y and n. The result was
first shown on G2 in [Jon96]. Using the fact that the continuous time random walk
Xt has jump rate 1, one can generalize the proof of [LL10, Theorem 2.5.6] to obtain
a continuous time version of (III.2.5): for all x, y P Gd and t ą 0 with dpx, yq ă t it
holds that

ptpx, yq — t´
dv
dw exp

´

´

´dpx, yqdw

c4t

¯1{pdw´1q¯

. (HKB(dv, dwq)

We say that the Parabolic Harnack inequality holds for the graph Gd if there
exists a constant C3 ą 0 such that for all x P Gd, R ě 1 and non-negative h : Gd ˆ

RÑ R caloric in B2Rpxq ˆ p0, 4R
dwq satisfies

sup
BRpzqˆrRdw ,2Rdw s

hpx, tq ď C3 inf
BRpzqˆr3Rdw ,4Rdw s

hpx, tq. (PH(dw))

Next, we introduce the walk dimension, and for this purpose, for any subset B
of the graph Gd we write HB :“ inftt ą 0: Xt P Bu. We say that the graph has walk
dimension dw, if

ExrHBrpxqcs — rdw (Epdwq)

for all x P Gd. In the literature, the volume dimension (Vol(dvq) and walk dimension
(Epdwq) are often referred to by different symbols: for example [Bar98] uses df and
dw respectively, [Bar04] uses α and β, [Jon96] dsdw

2 and dw, and [Del02] uses df for
the volume dimension.

It is proven that the gasket in dimension d “ 2 has walk dimension dw “ log2p5q
(see for example [Bar98] or [GY18]).

For any dimension, the validity of (Epdwq) and (PH(dw)) follows from the fol-
lowing: from Theorem 3.1 of [GT02] the following implications hold:

(Vol(dvq)` (HKB(dv, dwq) ðñ (PH(dw)) ùñ (Epdwq),

and in particular the Sierpiński gasket Gd satisfies (PH(dw)) and (Epdwq) for some
value dw (dependent on the dimension d).

Volume and walk dimensions are related: a simple inequality, which is valid for
any graph which satisfies (Vol(dvq) and (Epdwq), is given by

2 ď dw ď dv ` 1; (III.2.6)

and a proof can e.g. be found in [Bar04, Theorem 1].

We will also need the following folklore estimate on the confinement probability,
which is a direct consequence of the estimates on the exit probability Ψnpx,Rq in
[GT01, Proposition 7.1] on a graph with arbitrary random walk dimension.

Lemma III.2.5. Let pXtq be a random walk on pG,λq starting from x0 and ∆, z ą 0
such that (Epdwq) holds true. Then there exist c5, c6, c7 ą 0 such that for all ∆ ą c7z
the event

ConfpBz,∆q :“
 

Xt P Bzpx0q for all t P r0,∆s
(

satisfies

P
`

ConfpBz,∆q
˘

ě 1´ c5e
´c6

`

zdw

∆

˘ 1
dw´1

. (Conf(dwq)
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III.2.4 Poisson particle system

We define a particle configuration Π as a random function in pN0q
Gd , where Πpxq

is to be interpreted as the number of particles at x P Gd. We denote by ϕx the
coordinate map of Π defined by ϕxpΠq “ Πpxq and call F the σ-algebra generated
by the coordinate maps.

We define a particle system as a family of particle configurations pΠtqtPR P

pΩ,F 1q, with Ω :“ tf : p´8,`8q Ñ pN0q
Gdu and F 1 :“ FbR the product sigma

algebra of F over R. We define pΠtq under a probability measure νcµ as a Poisson
point process of random walkers with intensity given by cµpxq :“ cµ0λx for x P Gd

and some µ0 ą 0, c P p0, 1s. It is easy to verify that the particle system is stationary
(in fact, even reversible) in the sense that at any time t P R, the particles remain
distributed according to a Poisson point process with intensity cµ. This system is
often referred to as Poisson random walks.

We say that an event E P F 1 is increasing for the particle system pΠtqtPR if the
fact that E holds for pΠtqtPR implies that E holds for all particle systems pΠ1tqtPR
with Π1s ě Πs for all s ě 0, where Π1s ě Πs indicates that Π1spxq ě Πspxq for all
x P Gd.

We now define what it means for an event to be measurable with respect to a
particle system. Although one could define this for an arbitrary particle system, we
will consider events that are measurable with respect to the more restrictive Poisson
random walks particle system from above. In particular, this means that we will
consider events that are measurable with respect not only to the locations of the
particles at different times, but also their movements over time.

Definition III.2.6. Let A Ď Gd and t0 P R and t1 ą 0. Denoting with Px,t0 :“

ppx,t0,iq
Πpxq
i“1 the set of particles (including their movements over time) that are located

at x at time t0 and with Px,t0,iptq the position of particle px,t0,i at time t, we say
that an event E is restricted to A and a time interval rt0, t0 ` t1s if it is measurable
with respect to σ

 

Px,t0,iptq, i P t1, . . . ,Πpxqu, x P A, t P pt0, t0 ` t1q
(

.

Definition III.2.7. Let r ą 0. We say that a particle is confined inside Br during
rt0, t0` t1s if during the time interval rt0, t0` t1s it stays inside the ball Brpxq, where
x is the location of the particle at time t0.

The probability of being confined has been estimated in (Conf(dwq). We define
now the probability associated to an event E.

Definition III.2.8. For c P p0, 1s, µpxq “ µ0λx and an increasing event E restricted
to A Ď Gd and r0, ts, we define

νEpcµ,A,Br, tq :“ νcµ
`

E
ˇ

ˇthe particles in A at 0 are confined inside Br during r0, ts
˘

.

III.2.5 Main results

We now provide the final definitions necessary to state the main theorems. For each
pι, τq P Bd ˆ Z we will call Epι, τq an increasing event restricted to the super-cell
Rη1pι, τq. We will call the cell R1pι, τq bad if the event Epι, τq does not hold, and
good otherwise. We next introduce a base of the space-time graph GdˆZ. Recalling
the definition of the gasket via 4d in (III.2.2), we consider the d ´ 1-dimensional
subgraph 4d´1 of pd ´ 1q points including the origin defined in the same way, and
letting n Ñ 8 we obtain the pd ´ 1q-dimensional Sierpiński gasket Gd´1, which
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by construction is a subgraph of Gd. Intuitively, this corresponds to the Euclidean
space identification of the square lattice Z2 with the subgraph Z2 ˆ t0u of Z3 and
the origin of Z2 with the origin in Z3. Just like in the square lattice case, the choice
of which subgraph of Gd to identify with Gd´1 is not unique and can be chosen
arbitrarily among the ones admissible.

We now define the base of the space-time tessellation as

L0 :“ Gd´1 ˆ Z (III.2.7)

seen as a subgraph of Gd ˆ Z as explained above, and the base of cells

L1 :“
ď

pι,τqPL0XpBdˆZq

tR1pι, τqu. (III.2.8)

We will often consider the distance

dpR1pι, τq, L0q :“ min
xPR1pι,τq, yPL0

dpx, yq

between a cell R1pι, τq Ď GdˆZ and the base L0, which we will refer to as the height
of the cell; it helps to visualize the base L0 to lie “horizontally” as a subgraph of
Gd ˆ Z. We can now finally define the Lipschitz cutset. Recall the definition of
adjacent cells from Definition III.2.2.

Definition III.2.9. A Lipschitz cutset F is a set of cells in Gd ˆ Z such that the
following property is fulfilled: any sequence tR1pιj , τjqujPN inside GdˆZ of adjacent
cells, which we will refer to from now on as a path, starting in any cell v P L1, with
dpR1pιj , τjq, L0q Ñ 8, intersects F .

Definition III.2.9 is stable under taking unions, and in particular the entire graph
GdˆZ seen as a union of all cells satisfies the definition. To prevent such undesired
examples, we introduce the following condition.

Definition III.2.10. We say that a Lipschitz cutset F is minimal if, for each F 1 Ă F
we have that F 1 is not a Lipschitz cutset.

Remark III.2.11. The minimal Lipschitz cutset we will end up constructing is the
analogue for fractal graphs of the “Lipschitz surface” in the lattice settings of Zd, see
[Dir+10; DSW15; GS19a]. There, a Lipschitz surface is ˚-connected, or equivalently,
for any point pb, 0q in the base of Zd one finds the corresponding height h “ F pbq of
the Lipschitz surface, which satisfies a Lipschitz condition of type |F pb2q´F pb1q| ď 1
whenever }b2 ´ b1}1 ď 1.

For the geometry of the fractal, we cannot hope for such a strong connectivity
property of the surface. Seeing the fractal graph as a subset of the triangular lattice,
we could define the height h as the coordinate of one dimension of the lattice; in
this case however, not every cell pb, hq in the triangular lattice would belong to the
fractal graph Gd, since it may lie in one of the “holes”. In particular we cannot
require for any b2 such that }b2 ´ b1}1 ď 1 that |F pb2q ´ F pb1q| ď 1, since not every
point pb2, h2q is in Gd. In other words, this property remains true for the points
belonging to the cutset, but not everywhere because of the “holes” in the fractal.
However the key property which remains true is that an appropriately1 constructed
minimal Lipschitz cutset F separates the origin p0, 0q P Gd ˆ Z from infinity in the
sense of Definition III.2.9 in the fashion of a cutset and it retains some mild Lipschitz
continuity properties, so we opted to use the name Lipschitz cutset.

1See Proposition III.3.4 and Corollary III.3.5.
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We can now state our first technical result.

Theorem III.2.12. Let Gd be the d´dimensional Sierpiński gasket with conduc-
tances satisfying (III.2.1). Let ` P N and let β P N be large enough. Furthermore,
let η P N, ε P p0, 1q and ζ P p0,8q such that

ζ ě
1

`
dw

b

“

1
c6

log
`

8c5
3ε

˘‰dw´1
ηβ,

and tessellate Gd ˆ Z into space-time cells as described above. Let E :“ Epι, τq be
an increasing event restricted to the super cell Rη1pι, τq whose associated probability
νE

`

p1 ´ εqµ, Sη1 pι, τq, Bζ`, ηβ
˘

has a uniform lower bound across all pι, τq P Bd ˆ Z
denoted with

νE
`

p1´ εqµ, Sη1 , Bζ`, ηβ
˘

.

Then there exists α0 P p0,8q such that if

ψ1pε, µ0, `, ηq :“ min
!ε2µ02dv`

Cλ
,´ log

´

1´ νE
`

p1´ εqλ, Sη1 , Bζ`, ηβ
˘

¯)

ě α0,

there exists almost surely a minimal Lipschitz cutset F with the property that Epι, τq
occurs for all R1pι, τq P F .

We can prove a further property of the Lipschitz cutset, which gives us control
on the distance of F from any cell R1pι, τq P L1, without loss of generality and in
particular from the R1p0, 0q, the cell containing the origin: for a fixed radius r we
look if the Lipschitz cutset F at distance r surrounds the origin. More precisely,
for a Lipschitz cutset F and r ą 0, we say that the event SpF, rq holds if any
path tvju

n
j“1 of adjacent cells from R1p0, 0q with d

`

vn, R1p0, 0q
˘

ą r intersects with
F . Note that this event is considerably more restrictive than the one in Definition
III.2.9; if SpF, rq holds, it implies in particular that the Lipschitz cutset does not
only have finite distance from L0, but essentially “surrounds” the cell R1p0, 0q and
prevents paths from obtaining arbitrary lengths while keeping their distance to L0

small.

Theorem III.2.13. Under the conditions of Theorem III.2.12, let F be the Lipschitz
cutset from Theorem III.2.12 on which, in particular, the event E holds. Then there
exists C4 ą 0 such that for r0 large enough

P
`

SpF, r0q
c
˘

ď
ÿ

rěr0

rdv`1 exp
 

´ C4r
cs
(

,

with 0 ă cs ă
dv
dv`1 ´

1
2 .

The theorem implies that in particular, the Lipschitz cutset surrounds R1p0, 0q
at an almost surely finite distance, or equivalently, any path of cells starting from
R1p0, 0q that contains a cell u with dpR1p0, 0q, uq larger than some almost surely
finite value intersects the Lipschitz cutset, even if all cells of the path have their
distance to L0 small.
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Strategy of the proof. The existence of a Lipschitz cutset of good cells is equiv-
alent to having all paths of bad cells having only finite lengths. However, simply
estimating the number and the probability of bad paths does not work; even in the
simplest case where η “ 0 (i.e. the super-cells would be just the cells themselves and
therefore non-intersecting), two events Epι, τq and Epι1, τ 1q can be heavily correlated
whenever τ ‰ τ 1 and especially if the two corresponding tiles are close to each other.
As an example, knowing that there were no particles present in the tile ι during
the time interval τ increases the probability that all spatially close tiles will have
fewer than expected particles for some time to come. On the other hand, as long as
the occurrence of Epι, τq depends principally on the particle system behaving “typ-
ically”, it becomes more probable that the event will occur if the cells are all made
bigger. Just blowing everything up is not enough however, since this would not re-
solve the correlation and combinatorial issues, so we adopt a multi-scale argument.
For each scale we estimate the probability of a cell of that scale to be “multi-scale
bad”, knowing that at a larger scale the particles were behaving typically up until
shortly before; this property is defined precisely in (III.5.35). For a given time hori-
zon we choose a maximal scale κ, the largest scale that we will consider, and show
that the probability to be “multi-scale good” is exponentially close to 1 at this large
scale κ and consequentially, as long as there are only sub-exponentially many cells of
scale κ within the space-time region we consider, we have that at this largest scale,
all cells are “multi-scale good” with arbitrarily large probability. By partitioning
space-time into cells of ever smaller scale until reaching scale 1, this gives rise to a
space-time dependent fractal percolation problem on which we want to count the
number of paths of bad cells. Using the fractal percolation nature of the setup and
the alluded property that large cells are much less likely to be bad than even all
of their “descendant” cells being bad at once, we consider paths of bad cells across
multiple scales. This makes the combinatorial arguments more involved, but gives
much better bounds on the probabilities of individual paths existing. After some
additional path surgery to consider only the most vital cells of a path and the use of
a mixing result to decouple the remaining space-time cells of a path, combined with
a clever union bound for the probability of finding a path of cells of various scales
then gives the result.

III.3 Constructing the Lipschitz cutset

Recall the definitions of adjacent cells from Definition III.2.2, of L0 and L1 from
(III.2.7), (III.2.8) and of bad cells at the very start of subsection III.2.5, where
we considered a cell R1pι, τq bad if the event Epι, τq does not hold. To construct
the Lipschitz cutset we will make use of the concept of d-paths of cells, hills and
mountains which we now define.

Definition III.3.1 (d-path). A d-path in Gd ˆZ is a sequence tukukPN of adjacent
cells starting with a bad cell u0 P L1 such that for each k P N one of the following
holds true:

• increasing move: uk`1 is bad and dpL0, uk`1q ě dpL0, ukq

• diagonal move: dpL0, uk`1q ă dpL0, ukq

A d-path is defined in a way that it can increase or maintain the distance to the
base L0 only by moving to a bad cell in the next step, and otherwise can go “down”
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towards L0 with the so-called diagonal move, independently of the state of the cell
it is moving to.

Remark III.3.2. We kept the name diagonal move as in the lattice setting of
[GS19a] for consistency and in order to distinguish a connection in the path that
can only go toward L0 regardless of the state of the cell. Furthermore, in the
carpet setting it will revert to a ˚´neighbors connection (cf. Definition III.8.3), thus
rendering the term diagonal more meaningful.

To describe the set of cells which can be reached via d-paths we introduce hills
and mountains.

Definition III.3.3 (Hill and Mountain). For any two cells u, v Ď Gd ˆZ, we write
u Ñ v if u is a bad cell and there is a d-path from u to v. For a cell u P L1 define
the hill Hu and mountain Mu around u P L1 as

Hu :“
ď

v : uÑv

tvu and Mu :“
ď

vPL1 : uPHv

Hv,

with the convention that if u is good, then the hill Hu is defined to be the empty
set.

For a set of cells S, i.e. of the form S “
Ť

iPItR1pιi, τiqu for some index set I,
define for u P S

radupSq :“ suptdpu, vq : v P Su, (III.3.1)

and
BextS :“

ď

uPSc : DvPS
v adjacent to u

tuu,

where Sc is the set of all cells not belonging to S. We then obtain the following
result.

Proposition III.3.4. If for all u P L1,

ÿ

rě1

rdv`1P pradupHuq ą rq ă 8, (III.3.2)

then the set
F :“ Bext

´

ď

uPL1

Mu

¯

Y L1zpYuPL1 Muq

is a.s. within a finite distance from L0, is a Lipschitz cutset and all cells u Ď F are
good.

Proof. L1zpYuPL1 Muq is trivially within finite distance from L0 and the cells in
it contained are good since they would otherwise be contained in some hills and
therefore not in L1zpYuPL1 Muq.

Next, we prove that cells in Bextp
Ť

uPL1
Muq are good. Suppose by contradiction

that for some u P L1, a cell v P Bext Mu is bad. By definition of Bext Mu there exist
a cell v1 P Mu adjacent to v and v1 can be reached by a d-path since it lies in the
mountain Mu. If dpL0, vq ě dpL0, v

1q, since v is bad, the d-path reaching v1 can be
extended to v with an increasing move. Otherwise, if dpL0, vq ă dpL0, v

1q, v can be
reached by a diagonal move from v1 (independently of the state of v), and in both
cases therefore v R Bext Mu .
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(a) An illustration of possible mountains (in
yellow) with bad cells highlighted with a
darker tone. In dark blue the cells belonging
to the Lipschitz cutset F .

(b) The resulting minimal Lipschitz cutset
F o as obtained in Corollary III.3.5. The re-
moved cells are left blank as, even though
they are good, we are ignoring this informa-
tion.

Figure III.2: Constructing the minimal Lipschitz cutset: a slab in G2 ˆ t0u.

To prove that Bextp
Ť

uPL1
Muq is within a finite distance from L0, it is sufficient

to show that for any cell u P L1 we have radupMuq ă 8, since, by construction of
mountains with the diagonal moves, if the radius of a mountain was infinite, then it
would be infinite for all mountains. We therefore calculate

P pradupMuq ą rq ď
ÿ

vPL1

P
`

u P Hv, radvpHvq ą r ´ dpu, vq
˘

“
ÿ

vPL1 :
dpu,vqďr{2

P
`

u P Hv, radvpHvq ą r ´ dpu, vq
˘

`
ÿ

vPL1 :
dpu,vqěr{2

P pu P Hvq.

Writing Brpxq for the ball of radius r and center x inside L0 Ď Gd´1 ˆ Z, we can
upper bound the previous by

VolpBr{2puqqP pradvpHvq ą r{2q `
ÿ

sěr{2

VolpBBspuqqP pradvpHvq ą sq.

Since by (Vol(dvq) the volume of a ball in GdˆZ can be upper bounded by CVol r
d`1,

by the assumption in the proposition both summands tend to 0 as r increases.

It remains to show that F is a Lipschitz cutset, i.e. it intersects any path tujujPN
of cells starting from L1 with dpuj , L0q Ñ 8. Note that L1zpYuPL1 Muq and a fortiori
F intersects any path that starts in a cell contained in L1zpYuPL1 Muq, so it remains
to argue the case of paths that start in L1XpYuPL1 Muq. The claim is a consequence
of the definition of external boundary. Since F is a.s. within finite distance from
L0, a path starting in a cell in L1 and distance from L0 going to infinity contains
a cell uj which is the first cell outside YuPL1 Mu . In particular, for some v P L1,
uj´1 P Mv, uj R YuPL1 Mu, and uj „ uj´1 so uj P Bextp

Ť

uPL1
Muq, i.e. the path

intersects the Lipschitz cutset F.

Before turning to the multi-scale arguments, we prove a further property of the
Lipschitz cutset. We already highlighted in Remark III.2.11 that on a fractal graph
we cannot hope for a general Lipschitz condition. However, a Lipschitz connectivity
property holds in the “time dimension” in the following sense.
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Figure III.3: A possible evolution of the minimal Lipschitz cutset F o over 5 sequen-
tial time steps. Black tiles represent the cells of the minimal Lipschitz cutset at the
current time index τ , the light blue tiles represent the cells of the minimal Lipschitz
cutset during at the previous time index τ ´ 1. The two are connected with dashed
lines to help visualize the relationship.

Corollary III.3.5. Let F be as in Proposition III.3.4 and consider

F o :“
č

F 1ĎF :
F 1 is a Lipschitz cutset

F 1.

Then F o is a minimal Lipschitz cutset and for all R1pι, τq P F
o, there exist ι´1, ι`1 P

Bd such that S1pι´1q and S1pι`1q are individually either adjacent or equal to S1pιq,
and

R1pι´1, τ ´ 1q and R1pι`1, τ ` 1q P F o

An example of cells of F which were removed in F o is depicted in Figure III.2(b).
The Lipschitz continuity in the time dimension is illustrated in Figure III.3.

Proof. F o is a Lipschitz cutset as a consequence of the definition of F as we now
argue. Let π :“ tuiuiPN be any path of cells starting from L1 such that dpui, L0q Ñ 8

as i Ñ 8. We construct a path π1 with the help of π as follows. Let u be the last
cell in the intersection of π and F . Such a cell u exists, since every cell of F is
either in L1 or it is part of the external boundary of some mountain, which is by
Proposition III.3.4 a.s. finite. Define now π1 to be the part of π from the last visit of
u (including u) onward; and by the definition of F as external boundary of a union
of mountains, we can extend π1 before u by some arbitrary (finite) path of cells from
L1 to u which does not intersect F : for example we can use a d-path that ends in a
cell neighbouring u. Since any Lipschitz cutset F 1 Ă F needs to intersect any such
path and in particular π1 and F 1 Ď F we have u P F 1, and thus u P F o. Since π was
an arbitrary path starting in L1 with dpπi, L0q Ñ 8 as iÑ8, we obtain that F o is
a Lipschitz cutset.

The minimality is straightforward due to the definition of F o and it remains to
show the temporal Lipschitz connectivity claim.

For this purpose, let R1pι, τq P F
o be arbitrary, and we show the claim only for

ι`1 and τ ` 1, the other case being identical. Suppose that such ι`1 does not exists.
We show now that it would be possible to construct a sequence tujuj of adjacent
cells which includes some of the cells in

R1pι, τq :“

"

R1pῑ, τ̄q : τ̄ P tτ, τ ` 1u, ῑ “ ι
or such that S1pιq is adjacent to S1pῑq

*

ztR1pι, τqu,

starts from L1, with dpuj , L0q Ñ 8 and does not intersect F o. Note that by our
supposition, none of the cells in R1pι, τq are in F o.
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We construct the sequence of adjacent cells tujuj so that it starts from L1 and
reaches R1pι, τq without intersecting F o; otherwise this would contradict the as-
sumption of minimality of F o. Similarly, the sequence tujuj can be extended from
R1pι, τq without intersecting F o and with dpuj , L0q Ñ 8. Since all of the cells
in R1pι, τq are adjacent, the resulting sequence tujuj contradicts the definition of
Lipschitz cutset, and proves the claim.

The next three sections are devoted to the multi-scale argument which will es-
tablish the assumption (III.3.2).

III.4 Mixing Theorem

We begin by proving that when (PH(dw)) holds, random walks started from vertices
close to each other have similar probability distributions at sufficiently large times.
More precisely, we have the following fluctuation inequality. Recall the definition of
the weighted graph pGd, pλx,yqx„yq from Subsection III.2.1.

Proposition III.4.1. Let x0 P Gd be arbitrary and suppose that (PH(dw)) holds
with constant C3 ą 1 for Qpx0, Rq :“ B2Rpx0q ˆ p0, 4R

dwq for all R ě 1. Let
Θ :“ log2pC3{pC3 ´ 1qq and define for x, y P Gd

ρpx0, x, yq :“ dpx0, xq _ dpx0, yq.

Then, there exists a constant C5 ą 0 such that the following holds. Let r0 ě 2 and
suppose that u is caloric in Qpx0, r0q. Then, for any x1, x2 P Br0{2px0q and any t1, t2

for which rdw0 ´ ρpx0, x1, x2q
dw ď t1, t2 ď rdw0 , we have that

|upx1, t1q ´ upx2, t2q| ď C5 pρpx0, x1, x2q{r0q
Θ sup
pt,xqPQ`px0,r0q

|upx, tq|,

where Q`px0, r0q :“ Br0px0q ˆ r3r
dw
0 , 4rdw0 s.

Proof. In addition to Q and Q`, we define Q´px0, r0q :“ Br0px0qˆrr
dw
0 , 2rdw0 s. Next,

define rk :“ 2´kr0 and set

Qpkq :“ 4prdw0 ´ rdwk q `Qpx0, rkq,

Q`pkq :“ 4prdw0 ´ rdwk q `Q`px0, rkq, and

Q´pkq :“ 4prdw0 ´ rdwk q `Q`px0, rkq,

where the summation is to be seen as a shift of the time interval of Q (resp. Q` and
Q´). A quick calculation using that dw ě 2 then yields that Qpkq Ă Q`pk´1q. Take
now k ě 1 small enough so that rk ě 2. We can without loss of generality consider
the shifted interval Qpkq with the functions ´u` supQpkq u and u´ infQpkq u. To see

why, note that under the change of time variable t̂ :“ t` 4prdw0 ´ rdwk q, the function
ûpx, tq :“ upx, t̂q remains caloric. Since (PH(dw)) holds for any non-negative caloric
function on Qpx0, rkq, it therefore holds for ´û` supQpkq u and û´ infQpkq u, and in
particular also for ´u` supQpkq u and u´ infQpkq u on Qpkq. Applying (PH(dw)) to
these two functions then gives the inequalities

´ inf
Q´pkq

u` sup
Qpkq

u ď C3p´ sup
Q`pkq

u` sup
Qpkq

uq
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and
sup
Q´pkq

u´ inf
Qpkq

u ď C3p inf
Q`pkq

u´ inf
Qpkq

uq,

respectively. Adding the two together and using that supQ´pkq u ´ infQ´pkq u ě 0
leads to

sup
Qpkq

u´ inf
Qpkq

u ď C3psup
Qpkq

u´ inf
Qpkq

uq ´ C3p sup
Q`pkq

u´ inf
Q`pkq

uq.

If we define now the oscillation of u inside A as Oscpu,Aq :“ supA u ´ infA u and
set δ :“ C´1

3 P p0,8q, we get

Oscpu,Q`pkqq ď p1´ δqOscpu,Qpkqq.

Take now the largest m such that rm ě ρpx0, x1, x2q. Applying the above oscillation
inequality on Qp1q Ą Qp2q Ą ¨ ¨ ¨ Ą Qpmq, we get since px1, t1q, px2, t2q P Qpmq that

|upx1, t1q ´ upx2, t2q| ď Oscpu,Qpmqq ď p1´ δqm´1 Oscpu,Qp1qq.

Using that p1´ δqm “ 2´mΘ ď p2ρpx0, x1, x2q{r0q
Θ we get the claim.

Next, we state a result of Popov and Teixeira [PT15], which will let us couple the
locations of our particle system after they have moved with an independent Poisson
point process on G.

Proposition III.4.2 (Soft local times). Let J P N and let pZjqjďJ be a collection of
J independent points distributed on Gd according to a family of probability density
functions gj : Gd Ñ R, j ď J . Define for all y P Gd the soft local time function

HJpyq “
řJ
j“1 ξjgjpyq, where the ξj are i.i.d. exponential random variables of mean

1. Let ψ be a Poisson point process on Gd with intensity measure ρ : Gd Ñ R and
define the event E :“ tthe particles belonging to ψ are a subset of pZjqjďJu . Then
there exists a coupling between pZjqjďJ and ψ, such that

P pEq ě P
´

HJpyq ě ρpyq, @y P Gd
¯

.

Proof. The coupling is introduced in [PT15, Section 4] and proven in [PT15, Corol-
lary 4.4]. A reformulation of the construction for particles on a graph can be found
in [Hil+15, Appendix A], and our claim corresponds to [Hil+15, Corollary A.3].

Proposition III.4.3. Consider elliptic conductances λx,y satisfying (III.2.1) for
some Cλ ą 0. For each M1 ą 0 there exist constants M2,M3,M4,Θ P p0,8q such
that the following holds.

Let K ą l ą 0 and ε̄ ą 0. Given a region SK tessellated into sub-regions Sli of
side length l such that at time 0 there is a collection of particles where each sub-
region Sl contains at least δ

ř

yPS`i
λy ąM1 particles for some δ ą 0. Let ∆,K 1 ą 0

with

∆ ě ∆0 :“M2l
dw ε̄´

4
Θ (III.4.1)

K ´K 1 ěM3p∆q
1
dw , (III.4.2)

and denote by Yj the location of the j´th particle at time ∆.
Then, there exists a coupling Q of a Poisson Point Process Ξ with intensity

measure δp1´ ε̄qλy, y P SK1 , and pYjqj such that

Q
`

Ξ Ď pYjqj
˘

ě 1´
ÿ

yPSK1

e´M4δλy ε̄2∆
dv
dw . (III.4.3)
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Proof. Using Proposition III.4.2, there exists a coupling Q of an independent Pois-
son point process Ψ on G with intensity measure ζpyq “ δp1 ´ ε̄qλy and the loca-
tions of the particles Yj , which are distributed according to the density functions
f∆pxj , yq :“ p∆pxj , yqλy, such that the particles belonging to Ψ are a subset of pYjqj
with probability at least

QpHJpyq ě δλyp1´ ε̄q, @y P SK1q,

where HJpyq “
řJ
j“1 ξjf∆pxj , yq, pξjqjďJ are i.i.d. exponential random variables

with parameter 1, and J is the number of particles inside SK1 at time ∆.

We first observe that the probability of the converse event is

QpDy P SK1 : HJpyq ă δλyp1´ ε̄qq ď
ÿ

yPSK1

Q
`

HJpyq ă δλyp1´ ε̄q
˘

ď
ÿ

yPSK1

eγλyδp1´ε̄qEQrexpt´γHJpyqus,

for any γ ą 0 by a simple application of the exponential Chebychev inequality.

Let M3 now be a large positive constant that we will fix later and set

R :“M3∆
1{dw ε̄

´
dw´1
dw . (III.4.4)

Next, let J 1 be any subset of t1, . . . , Ju such that exactly r
ř

yPSli
δλys particles from

J 1 are inside Sli for every sub-region Sli of SK . For y P G, define also J 1pyq Ď J 1 to
be the set of all indices j P J 1 for which dpxj , yq ď R and define H 1pyq as HJpyq,
but with the sum in the definition restricted to the indices j P J 1pyq. By definition,
HJpyq ě H 1pyq and therefore

EQrexpt´γHJpyqus ď EQrexpt´γH 1pyqus.

Since the ξj in the definition of H are independent exponential random variables
of parameter 1, we can calculate further

EQrexpt´γH 1pyqus “
ź

jPJ 1pyq

EQ
“

expt´γξjf∆pxj , yqu
‰

“
ź

jPJ 1pyq

p1` γf∆pxj , yqq
´1.

Furthermore, by setting the constant M2 large enough, we have by (HKB(dv, dwq)
that for all x with dpx, yq ď R, p∆px, yq ď c8∆

´dv{dw for some constant c8. In
particular this holds for all y P SK1 and all x P

Ť

Sli, where the union runs across all
Sli for which there exists j P J 1pyq such that xj P S

l
i. Setting now γ “ 1

4c8Cλ
ε̄∆dv{dw

gives

sup
xPSRpyq

γf∆px, yq “ sup
xPSRpyq

γλyp∆px, yq ď c8Cλγ∆´dv{dw ă ε̄{4. (III.4.5)

For this value of γ and using that for |x| ď 1
2 we have by Taylor’s expansion that
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logp1` xq ě x´ x2, it further holds that

ź

jPJ 1pyq

p1` γf∆pxj , yqq
´1 ď

ź

jPJ 1pyq

expt´γf∆pxj , yqp1´ γf∆pxj , yqqu

ď exp
!

´

´

1´ sup
xPBRpyq

γf∆px, yq
¯

ÿ

jPJ 1pyq

γf∆pxj , yq
)

(III.4.5)
ď exp

!

´ γp1´ ε̄{4q
ÿ

jPJ 1pyq

f∆pxj , yq
)

.

We claim now (and prove below) that

ÿ

jPJ 1pyq

f∆pxj , yq ě δλyp1´ ε̄{2q, (III.4.6)

which then gives us that

Q
`

Dy P SK1 : HJpyq ă δλyp1´ ε̄q
˘

ď exp
 

γλyδp1´ ε̄q ´ γp1´ ε̄{4qδλyp1´ ε̄{2q
(

ď expt´γδλy ε̄{4u.

Using the definition γ then yields the claim. We therefore proceed to prove (III.4.6).

For each Sli and each particle xj P S
l
i, let x1j P S

l
i be such that f∆px

1
j , yq “

maxwPSli
f∆pw, yq. Then, we can bound

ÿ

jPJ 1pyq

f∆pxj , yq ě
ÿ

jPJ 1pyq

`

f∆px
1
j , yq ´ |f∆px

1
j , yq ´ f∆pxj , yq|

˘

.

We will look at the first summand: for each Sli, it holds that

ÿ

jPJ 1pyq

xjPS
l
i

f∆px
1
j , yq “ max

wPSli

f∆pw, yq
ÿ

jPJ 1pyq

xjPS
l
i

1

which by definition of J 1 can be lower bounded by

max
wPSli

f∆pw, yq
Q

ÿ

zPSli

δλz

U

ě
ÿ

zPSli

δλzf∆pz, yq.

Set Rpyq to be the set of all sites z of SK for which dpz, yq ď R. Note that the
right side of this equation is always positive since R is by its definition in (III.4.4)
proportional to l and M3 is assumed to be large. Furthermore, note that if z P Rpyq
then for all particles xj with x1j “ z and j P J 1 we have that j P J 1pyq. It also holds
that λf∆pz, yq “ λf∆py, zq, which combined with the preceding calculation yields
for each Sli

ÿ

jPJ 1pyq

f∆px
1
j , yq ě

ÿ

zPRpyq

δλzf∆pz, yq

“ δλy
ÿ

zPRpyq

f∆py, zq

ě δλyPpConfpR,∆qq.



III.4. MIXING THEOREM 85

By Lemma III.2.5 we have that there exists constants c5 and c6 so as to lower bound
the previous expression by

δλy
`

1´ c5e
´c6

`

Rdw

∆

˘ 1
dw´1 ˘

ě δλyp1´ ε̄{4q,

where the last inequality holds by setting R (cf. (III.4.4)) through M3 large enough
with respect to c5 and c6.

It remains to find an upper bound for the second addend
ř

jPJ 1pyq |f∆px
1
j , yq ´

f∆pxj , yq|. Let I be the set of all i for which Qli contains a particle xj from the set
pxjqjPJ 1pyq. Then

ÿ

jPJ 1pyq

|f∆px
1
j , yq ´ f∆pxj , yq| “

ÿ

iPI

ÿ

jPJ 1pyq

xjPS
l
i

|f∆px
1
j , yq ´ f∆pxj , yq|

“ λy
ÿ

iPI

ÿ

jPJ 1pyq

xjPS
l
i

|p∆px
1
j , yq ´ p∆pxj , yq|.

Since the heat kernel ptpx, ¨q is caloric, the parabolic Harnack inequality and conse-
quently Proposition III.4.1 with rdw0 “ ∆ can be applied. We can also use the upper
heat kernel bound (HKB(dv, dwq) to the resulting supremum term. Writing C5 for
the constant from the application of Proposition III.4.1 and C6 for the constant
resulting from upper bounding the supremum term, we get

λy
ÿ

iPI

ÿ

jPJ 1pyq

xjPS
l
i

C6l
Θ

∆Θ{dw
C5∆

´dv{dw

ď λy
ÿ

iPI

ÿ

xPSli

C6δλxl
Θ

∆Θ{dw
C5∆

´dv{dw

“ δλyC6C5

ÿ

iPI

ÿ

xPSli

λxl
Θ∆´pdv`Θq{dw

(Vol(dvq)
ď δλyC6C5 CVolCλR

dv lΘ∆´pdv`Θq{dw

ď δλy ε̄{4,

(III.4.7)

where the last inequality follows from the assumption that ∆ ě ∆0, the definitions
of ∆0 and R, and by setting M3 sufficiently large with respect to the constants
C6, C5,CVol, and Cλ. Combining all of the stated inequalities completes the proof.

The statement of Proposition III.4.3 does not depend on particles located outside
of the region SK at time 0. However, since the particles can move in an unrestricted
way, repeated applications of the theorem across multiple regions of time and space
(cf. Sections III.2.2 and III.3) still exhibit long distance correlations that we would
like to avoid. To that end, we will prove a version of Proposition III.4.3 also for
particle systems conditioned on having the particle movement confined (cf. Lemma
III.2.5). The main difficulty is that by conditioning the particles in this way, their
transition probabilities do not necessarily satisfy (HKB(dv, dwq) and by extension
(PH(dw)) any longer. It turns out however that these probabilities are still quanti-
tatively the same under some mild modifications of the assumptions, which we prove
in the following lemma.
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Lemma III.4.4. Let λx,y satisfy (III.2.1). Then there exist constants c9 and c10

so that the following holds. Consider a region Sl with l ą 0. Let ∆ ą c9l
dw and

ρ ě c10p∆ logdw´1
2 p∆qq1{dw . Consider a random walk Y that moves along Gd for

time ∆ conditioned on being confined to Bρ{2 during the entire time interval r0,∆s.
Let x, y P Sl with x being the starting point of the random walk, and define

gpx, yq :“ PxpY∆ “ y |Y is confined to Bρ{2 during r0,∆sq.

Then there exists a constant C ą 2 such that for x, y, z P Sl we have

ˇ

ˇ

ˇ

ˇ

gpx, yq

λy
´
gpz, yq

λy

ˇ

ˇ

ˇ

ˇ

ď ClΘ∆´pdv`Θq{dw .

Remark III.4.5. It is important to note that the above bound is of the same form
as the bound we used in (III.4.7) for the unconditioned random walk. Consequently,
we will use this lemma to prove a conditioned version of Proposition III.4.3 without
having to directly use (PH(dw)), which as mentioned above might not necessarily
hold in this case.

Proof. Denote by pEpρq the probability that a random walk started at x is confined
to Bρ{2 during r0,∆s. Using Lemma III.2.5, we have for some positive constants
c5, c6 that

1´ pEpρq ď c5e
´c6pρdw {∆q

1
dw´1

.

Next, writing hpx, yq :“ PxpY∆ “ y |Y exits Bρ{2pxq during r0,∆sq and f∆px, yq “
PxpY∆ “ yq, we can write

f∆px, yq “ gpx, yqpEpρq ` hpx, yqp1´ pEpρqq.

From this, we can immediately obtain the bound

gpx, yq ď f∆px, yq
1

pEpρq
.

We can then write
ˇ

ˇ

ˇ

ˇ

gpx, yq

λy
´
gpz, yq

λy

ˇ

ˇ

ˇ

ˇ

“ 1tgpx,yqągpz,yqu

ˆ

gpx, yq

λy
´
gpz, yq

λy

˙

` 1tgpx,yqďgpz,yqu

ˆ

gpz, yq

λy
´
gpx, yq

λy

˙

ď 1tgpx,yqągpz,yqu

ˆ

f∆px, yq

λypEpρq
´
f∆pz, yq

λypEpρq
`
hpz, yqp1´ pEpρqq

pEpρqλy

˙

` 1tgpx,yqďgpz,yqu

ˆ

f∆pz, yq

λypEpρq
´
f∆px, yq

λypEpρq
`
hpx, yqp1´ pEpρqq

pEpρqλy

˙

ď
|p∆py, xq ´ p∆py, zq|

pEpρq
`

maxthpx, yq, hpz, yqup1´ pEpρqq

pEpρqλy
.

(III.4.8)

Next, observe that we can write hpx, yq as Exrf∆´τ pw, yq | τ ă ∆s with τ being
the first time Y exits Bρ{2pxq and w the random vertex at the boundary of Bpx, ρ{2q

where Y is at time τ . Since the weights λx,y satisfy (III.2.1) we can bound
f∆´τ pw,yq

λy
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from above by some positive constant C7. This is because either ∆ ´ τ is larger
than dpw, yq, which allows us to use (HKB(dv, dwq), or ∆´τ is smaller than dpw, yq,
so that f∆pw, yq is bounded above by the probability that a random walk jumps
at least dpw, yq steps in time ∆ ´ τ , which is small enough since dpw, yq is large.

Therefore we have that maxthpx,yq,hpz,yqup1´pEpρqq
pEpρqλy

is at most C8. This together with

the bound on 1´ pEpρq yields

maxthpx, yq, hpz, yqup1´ pEpρqq

pEpρqλy
ď
C8 ¨ c5

pEpρq
expt´c6pρ

dw{∆q
1

dw´1 u

ď
C8 ¨ c5

pEpρq
exp

 

´ c6pc
1

dw´1

10 log2p∆qq
(

.

We now return to (III.4.8). By setting c10 (and by extension ρ) large enough and
using the bound for 1´ pEpρq, pEpρq can be bounded from below by 1{2. Applying
Proposition III.4.1 to the term |p∆py, xq ´ p∆py, zq|, using (HKB(dv, dwq) to bound
the resulting supremum term, and finally setting c10 even larger if necessary for

expt´c6pc
1

dw´1

10 log2p∆qqu to be smaller than ∆´dv{dw concludes the proof.

We now state the version of Proposition III.4.3 for particles that are confined.
Note that the statement remains essentially unchanged, other than having a stronger
condition on K ´K 1 than before. This is also the statement of the result that we
will rely on to conduct our multi-scale analysis (cf. Lemma III.6.1).

Theorem III.4.6. Consider elliptic conductances λx,y satisfying (III.2.1) for some
Cλ ą 0. For each M1 ą 0 there exist M2,M3,M4,Θ such that the following holds.

Let K ą l ą 0 and ε̄ ą 0. Given a region SK tessellated into sub-regions Sli of
side length l such that at time 0 there is a collection of particles where each sub-
region Sl contains at least δ

ř

yPS`i
λy ą M1 particles for some δ ą 0. Let ∆ and

K 1 ą 0 with

∆ ě ∆0 :“M2l
dw ε̄´

4
Θ (III.4.9)

K ´K 1 ěM3p∆plog2 ∆qdw´1q
1
dw , (III.4.10)

and denote with Yj the location of the j´th particle at time ∆ conditioned on being
confined to SpK´K1q during r0,∆s.

Then, there exists a coupling Q of a Poisson Point Process Ξ with intensity
measure δp1´ ε̄qλy for y P SK1 and the family pYjqj such that

Q
`

Ξ Ď pYjqj
˘

ě 1´
ÿ

yPSK1

e´M4δλy ε̄2∆
dv
dw . (III.4.11)

Proof. Using Lemma III.4.4 and the upper bound on gpx, yq from its proof when
setting γ, the proof proceeds the same as in Proposition III.4.3. The independence
from the graph outside of Sp2K´K1q follows from the fact that we consider only
particles which are confined in BpK´K1q and ended in S1K , so they never left SK
during r0,∆s.

III.5 Multi-scale setup

In this section we define the multi-scale set-up for the construction. For some (large)
κ P N, we will define for each 1 ď k ď κ cells at scale k: in the fractal graph, spatial
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tiles will be denoted by Skpιq and indexed by some ι P Bd; the time line R will be
subdivided into intervals Tkpτq and indexed by τ P Z. The space-time cells Rkpι, τq
will simply be the Cartesian product SkpιqˆTkpτq. We will also need to introduce, for
each scale k, extensions of the cells which do not need to be of the same scale. Those
cells will be necessary to work with the dependencies between adjacent cells. Scale
1 will correspond to and agree with the first tessellation introduced in Definition
III.2.1. The value κ instead is the largest scale that we will consider. The reader
might want to think of κ to be fixed for the moment. It will be determined later in
the proof of Proposition III.6.5: roughly speaking, if the paths we consider have to
leave the region Btp0q ˆ r´t, ts, then we will consider κ “ Op

a

logptqq.

III.5.1 Multi-scale tessellation

Space tessellation. We start by defining the space tessellation on the graph Gd.
After the full definition of all relevant tiles and intervals and a statement of useful
properties, we refer for the end of this paragraph for a short motivation and intuition
regarding the roles of the different tiles introduced here.

Let ε P p0, 1q and `,m, a be positive (large) integers which we will fix later. Set
`0 :“ `´m and let

`k :“ apk ´ 1q2 `mpk ´ 1q ` `. (III.5.1)

Define the space tiles at scale k P N indexed by ι P Bd (cf. (III.2.3)) as the subgraphs
of Gd with vertex sets

Skpιq :“ ι2`k `4d
`k
, (III.5.2)

and induced edges, which are well-defined in view of (III.2.4). We say that two cells
Skpι1q ‰ Skpι2q are adjacent if dpSkpι1q, Skpι2qq “ 0. It is easy to verify that

Skpιq has side length of 2`k (III.5.3)

Sk`1pιq is the union of exactly 2dvp`k`1´`kq “ pd` 1q2ak´a`m tiles of scale k.
(III.5.4)

Next, we introduce a hierarchy of the space tiles. We define for k, j ě 0 the

function π
pjq
k by

π
pjq
k pιq “ ι1 ô Skpιq Ď Sk`jpι

1q, (III.5.5)

and we say that Sk1pι
1q is an ancestor of Skpιq (or equivalently that Skpιq is a de-

scendant of Sk1pι
1q) if π

pk1´kq
k pιq “ ι1. Note the map is well-defined by (III.5.5), and

that any cell is also a descendant and an ancestor of itself.

We define for k ě 0 and bpkq :“ ak2` 8
Θdwm2m the base, the area of influence,



III.5. MULTI-SCALE SETUP 89

and for k ě 1 the extension, the support and the extended support as

Sbase
k pιq :“

ď

ι1 : dpSkpι1q,Skpιqqďbpkq

Skpι
1q, (III.5.6)

Sinf
k pιq :“

ď

ι1 : dpSkpι1q,Skpιqqď2bpkq

Skpι
1q, (III.5.7)

Sext
k pιq :“

ď

ι1 : π
p1q
k´1pι

1q“ι

Sbase
k´1 pι

1q, (III.5.8)

Ssup
k pιq :“

ď

ι1 : dpSk`1pι1q,Sk`1pπ
p1q
k pιqqqďm

Sk`1pι
1q, (III.5.9)

SEsup
k pιq :“

ď

ι1 : dpSk`1pι1q,Sk`1pπ
p1q
k pιqqqď3m`1

Sk`1pι
1q. (III.5.10)

The choice of bpkq will be made clear later in (III.6.3). Recalling the value η from
Definition III.2.4, we also assume that bp1q ě η, which holds if we choose a large
enough. See Figure III.4 for an illustration of how the different tile extensions relate
to each other.

Figure III.4: Illustration of Sbase
1 pιq and Sext

2 pπ
p1q
1 pιqq. The thin line triangles repre-

sent the many tiles S1 of scale 1, the thick black line triangles are tiles S2 of scale
2. The black triangle represents the specific tile S1pιq, while the dark blue region is

Sbase
1 pιq and the light red is Sext

2 pπ
p1q
1 pιqq. Sinf

1 pιq is not represented in order to keep
the image legible.

We now state some properties of the above defined sets and the relations of the
different tiles. It is easy to check that for all pk, ιq P N0 ˆ Bd it holds Skpιq Ď
Sbase
k pιq Ď Sinf

k pιq and

Sbase
k pιq Ď Sext

k`1pπ
p1q
k pιqq. (III.5.11)

Since bpkq is increasing in k, it also holds that

Sext
k pιq Ď Sbase

k pιq.
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Further simple properties of space tiles can easily be inferred: we will use later that

Sbase
k pιq contains at most CVol bpkq

dv tiles of scale k; and (III.5.12)

Sext
k pιq contains at most CVolpbpk ´ 1q ` 2`kqdv tiles of scale k ´ 1, (III.5.13)

which both follow from (Vol(dvq).
We now look at the properties of the larger scales. Comparing the exponential

growth of Sk in (III.5.4) with the polynomial growth of bpkq in (III.5.7), one sees
that for a,m large enough, for all k and ι, it holds that

Sinf
k pιq Ď Ssup

k pιq. (III.5.14)

Remark III.5.1. The assumption bpkq ě η implies that Sbase
1 pιq, and a fortiori

Sext
1 pιq, contains the super-tile Sη1 pιq defined in Definition III.2.4.

We now quickly motivate the introduction of the different tiles. The tiles Skpιq
constitute the basic tiles at each scale. The introduction of the multi-scale argument
suggests that we will introduce a notion of goodness for every scale k: this is related

to Sbase
k pιq and Sext

k`1pπ
p1q
1 pιqq, as well as to the events Dbase and Dext which we are

going to define in (III.5.28) and (III.5.27).
Furthermore, Sinf , which is defined as Sbase but with a slightly larger border, will

help us to keep tiles apart: if for two tiles the areas of influence do not intersect, we
will call these tiles well-separated and we will be able to treat the tiles as essentially
independent. Finally, we introduced Ssup and SEsup so that tiles whose (extended)
supports intersect each other, even if otherwise well-separated, are still close enough
to be part of a very general kind of path, the ScD-path (see Definition III.5.5).

Temporal tessellation. We now turn to the temporal tessellation of R. The tes-
sellation itself is easier than the previous one introduced for space, and it corresponds
to the one in [GS19a]. Define for k ě 2

βk :“ Cmixp
k2

ε q
4
Θ

`

2`k´1
˘dw (III.5.15)

where Cmix is a constant larger than 84{ΘM2, Θ and M2 are constants from Theorem
III.4.6 and ε is from the beginning of Subsection III.5.1. Set as well β :“ β1 :“

Cmix
2dwp`´mq

ε4{Θ
, assuming m large enough so that Cmix ě 84{ΘM2 still holds. On first

reading, one should not be distracted by the constant Cmix or the fine-tuning power
k8{Θ in βk and instead focus on the leading term 2`k´1 which is raised to the power
dw. As discussed before, the term dw represent the power scaling between time and
space from the perspective of the random walkers. That is a major difference from
the lattice Zd where the “walk dimension” dw equals 2 for every dimension d of the
lattice. Note in particular that ratios between two consecutive time-scales satisfy

βk`1

βk
“ pk`1

k q
8{Θ

`

22ak´3a`m
˘dw . (III.5.16)

Define the time intervals at scale k P N as the intervals

Tkpτq “ rτβk, pτ ` 1qβkq, τ P Z, (III.5.17)

and we say that two intervals Tkpτ1q ‰ Tkpτ2q with τ1, τ2 P Z are adjacent if |τ1´τ2| ď

1. We now introduce a hierarchy over time, which is more complex than the spatial
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one. While for space, a parent contains its children and descendants, since “time
flows forward”, parents with respect to time will still have larger intervals than
their children, but will lie to the left (i.e. “before”): see Figure III.5. Formally, let

γ
p0q
k pτq “ τ, and for j ě 1 define

γ
pjq
k pτq :“ τ 1 if γ

pj´1q
k pτqβk`j´1 P Tk`jpτ

1 ` 1q,

see Figure III.5 for visualization. In analogy with the terminology introduced in the
spatial setting, we say that Tk1pτ

1q is an ancestor of Tkpτq or equivalently that Tkpτq

is a descendant of Tk1pτ
1q if γ

pk1´kq
k pτq “ τ 1 and it still holds that any time interval

is also a descendant and an ancestor of itself. Note that due to the “time drift” it
does not contain its own descendants of any scale as subintervals.

Figure III.5: Temporal tessellation and its hierarchy structure. Image from [GS19a].

As we did for space, we define for each scale k larger intervals that we will need:

T inf
1 pτq :“ rγ

p1q
1 pτqβ2, pτ ` η ^ 2qβ1s, (III.5.18)

T inf
k pτq :“ rγ

p1q
1 pτqβ2, pτ ` 2qβks, (III.5.19)

T sup
k pτq :“

8
ď

i“0

Tk`1pγ
p1q
k pτq ´ 3` iq, (III.5.20)

TEsup
k pτq :“

26
ď

i“0

Tk`1pγ
p1q
k pτq ´ 12` iq. (III.5.21)

We now claim and prove that the time analogue of (III.5.14) still holds true.

Lemma III.5.2. Let Tk1pτ
1q be a descendant of Tkpτq, and let Tk1pτ

2q be adjacent
to Tk1pτ

1q. Then for a,m large enough

T inf
k1 pτ

2q Ď T sup
k pτq.

Proof. Recall that T inf
k1 pτ

2q Ď rγ
p1q
k1 pτ

2qβk1`1, pτ
2 ` 2 ^ ηqβk1s, the definition of

T sup
k pτq“ ppγ

p1q
k pτq ´ 3qβk`1, pγ

p1q
k pτq ` 5qβk`1qq, in (III.5.20), and |τ2 ´ τ 1| ď 1 by

adjacency.

It is easy to verify the inequality pγ
p1q
k pτq ´ 3qβk`1 ď γ

p1q
k1 pτ

1 ´ 1qβk1`1, so we
concentrate on the right delimiters of the intervals. To prove the other inequality,

note that for any interval Tk1pτ
1q, we have τ 1βk1 ď γ

p1q
k1 pτ

1qβk1`1` 2βk1`1 so iterating
this k ´ k1 times we obtain

τ 1βk1 ď γ
pk´k1q
k1 pτ 1qβk ` 2

k´k1
ÿ

j“1

βk1`j .
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We can bound using that k1 ě 1

k´k1
ÿ

j“1

βk1`j ď
k
ÿ

j“2

βj “Cmix

k
ÿ

j“2

´j2

ε

¯4{Θ
2dw`j´1 “ Cmix ε

´4{Θ
k
ÿ

j“2

j8{Θ2dwpapj´2q2`mpj´2q``q

which by induction is smaller than

Cmix ε
´4{Θ2k8{Θ2dwpapk´1q2`mpk´1q``q “ 2βk.

Hence, we have

pτ2 ` 2_ ηqβk1 ď pτ
1 ` 1` 2_ ηqβk1

ď γ
pk´k1q
k1 pτ 1qβk ` 2

k
ÿ

j“1

βk1`j ` p1` 2_ ηqβk1

ď τβk ` 4βk ` p1` 2_ ηqβk1 ,

and since 4βk ` p1` 2_ ηqβk1 ď p5` 2_ ηqβk ď βk`1 for a,m large enough, this is
further smaller than

τβk ` βk`1 ď pγ
p1q
k pτq ` 5qβk`1,

proving the lemma.

Space-time tessellation. We can now define the space-time tessellation at dif-
ferent scales via the Cartesian products

Rkpι, τq :“ Skpιq ˆ Tkpτq,

Rinf
k pι, τq :“ Sinf

k pιq ˆ T
inf
k pτq,

Rsup
k pι, τq :“ Ssup

k pιq ˆ T sup
k pτq,

REsup
k pι, τq :“ SEsup

k pιq ˆ TEsup
k pτq.

We say two cells Rkpι1, τ1q and Rkpι2, τ2q of same scale are adjacent if either
dpSkpι1q, Skpι2qq “ 0 and τ1 “ τ2, or else if ι1 “ ι2 and |τ1 ´ τ2| ď 1. We extend
the mappings π and γ to a hierarchy of space-time cells. We say that Rkpι, τq is an
ancestor of Rk1pι

1, τ 1q if Skpιq is an ancestor of Sk1pι
1q and Tkpτq is an ancestor of

Tk1pτ
1q.

We observe, combining (III.5.14) and Lemma III.5.2, for any cell Rkpι, τq and
any cell Rk1pι

2, τ2q which is adjacent to a descendant of Rkpι, τq of scale k1, it holds
that

Rinf
k1 pι

2, τ2q Ď Rsup
k pι, τq. (III.5.22)

In particular, for any two cells Rkpι, τq and Rk1pι
1, τ 1q,

Rinf
k pι, τq XR

inf
k1 pι

1, τ 1q ‰ H ñ Rsup
k pι, τq XRsup

k1 pι
1, τ 1q ‰ H, (III.5.23)

which means that if the areas of influence of two cells intersect then also the supports
intersect.

Note that we defined the extended supports (III.5.10) and (III.5.21) in a way
that it holds for two cells Rk1pι1, τ1q and Rk2pι2, τ2q with k1 ď k2,

Rsup
k1
pι1, τ1q XR

sup
k2
pι2, τ2q ‰ H ñ REsup

k2
pι2, τ2q Ě Rsup

k1
pι1, τ1q, (III.5.24)

which means that if the supports of two cells intersect, then the bigger extended
support contains the smaller support.
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III.5.2 Fractal percolation

We now introduce several events to define new notions of goodness for each scale
k. Having multi-scale levels of goodness is the link to the theory of fractal percola-
tion. We will provide details about the analogy and an intuitive explanation of the
following definitions at the end of the subsection.

Let ε ą 0 as in Theorem III.2.12, we define the sequence

d1 :“ ε, dk`1 :“ dk ´
ε

2k2
, k ě 1. (III.5.25)

Recalling the definition of Sbase and Sext in (III.5.6) and (III.5.8), as well as the par-
ticle system under consideration (see Section III.2.4), define the following indicator
random variables:

Dkpι, τq “ 1
if all tiles Sk´1pι

1q Ď Skpιq contain at least
`

1´ dk
˘

µ0
ř

yPSk´1pι1q
λyparticles at time τβk,

(III.5.26)

Dext
k pι, τq “ 1

if all tiles Sk´1pι
1q Ď Sext

k pιq contain at least
`

1´ dk
˘

µ0
ř

yPSk´1pι1q
λyparticles at time τβk

that are confined during rτβk, pτ ` 2qβks
inside B

bpk´1q2`k´1 ,

(III.5.27)

Dbase
k pι, τq “ 1

if all tiles Skpι
1q Ď Sbase

k pιq contain at least
`

1´ dk`1

˘

µ0
ř

yPSkpι1q
λyparticles at time γ

p1q
k pτqβk`1

that are confined during rγ
p1q
k pτqβk`1, τβks

inside Bbpkq2`k .

(III.5.28)

Since Sk Ď Sext
k , trivially Dext

k pι, τq “ 1 implies Dkpι, τq “ 1. Noting that

Sbase
k pιq Ď Sext

k`1pπ
p1q
k pιqq as mentioned in (III.5.11) and that rγ

p1q
k pτqβk`1, τβks Ă

rγ
p1q
k pτqβk`1, pγ

p1q
k pτq ` 2qβk`1s we have by definition

Dext
k`1

`

π
p1q
k pιq, γ

p1q
k pτq

˘

“ 1 ñ Dbase
k pι, τq “ 1 @pk, ι, τq P Nˆ Bd ˆ Z,

(III.5.29)
and the goal of Lemma III.6.1 below will be to show that with exponentially large
probability, tDbase

k pι, τq “ 1u implies tDext
k pι, τq “ 1u. To this end, we define

A1pι, τq :“ maxt1Epι,τq, 1´D
base
1 pι, τqu, (III.5.30)

Akpι, τq :“ maxtDext
k pι, τq, 1´Dbase

k pι, τqu, (III.5.31)

Aκpι, τq :“ Dext
κ pι, τq, (III.5.32)

and

Apι, τq :“
κ
ź

k“1

Akpπ
pk´1q
1 pιq, γ

pk´1q
1 pτqq. (III.5.33)

The first-time reader should think that Akpι, τq “ 0 intuitively indicates that “in
the chain of space-time cells that are ancestors of R1pι, τq, the particles misbe-
haved at scale k”: more precisely, Akpι, τq “ 0 if, even despite the favorable event
Dbase
k pι, τq “ 1, according to which the particle were in a good state inherited from

higher scales, it resulted in Dext
k pι, τq “ 0. As already mentioned above (III.5.30),

we will prove that the previous situation happens with small probability in Lemma
III.6.1.
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We can now define the notions of goodness that we will consider. Recall that we
defined at the very start of subsection III.2.5 that

a cell R1pι, τq is bad if 1Epι,τq “ 0. (III.5.34)

We consider now a stronger notion of bad cells for any scale 1 ď k ď κ :

a cell Rkpι, τq is multi-scale bad if Akpι, τq “ 0. (III.5.35)

Note that for the scale 1 this definition is stricter then the definition of being bad :
as a simple consequence of (III.5.30), a multi-scale bad cell is also bad. Finally, we
say for scale 1 cells that that

a cell R1pι, τq has bad ancestry if Apι, τq “ 0, (III.5.36)

or equivalently that the cell has a multi-scale bad ancestor.

In particular, a bad cell of scale 1 has bad ancestry, as we prove in the following
lemma.

Lemma III.5.3. For a cell R1pι, τq it holds 1Epι,τq ě Apι, τq. Equivalently, a scale
1 cell which is bad, in particular has bad ancestry.

Proof. Suppose that Apι, τq “ 1. By (III.5.33), it therefore holds for all 1 ď k ď κ,
that

Ak
`

π
pk´1q
1 pιq, γ

pk´1q
1 pτq

˘

“ 1.

In particular Dext
κ

`

π
pκ´1q
1 pιq, γ

pκ´1q
1 pτq

˘

“ 1, so applying the property in

(III.5.29) we obtainDbase
κ´1

`

π
pκ´2q
1 pιq, γ

pκ´2q
1 pτq

˘

“ 1. SinceAκ´1

`

π
pκ´2q
1 pιq, γ

pκ´2q
1 pτq

˘

“

1 and it is defined as a maximum, the first argument need to be a 1, and we obtain

Dext
κ´1

`

π
pκ´2q
1 pιq, γ

pκ´2q
1 pτq

˘

“ 1.

Repeating this argument for all scales down to scale 1, we need the first argument
in the maximum of A1pι, τq to be 1, i.e it must hold that 1Epι,τq “ 1.

Intuition. We conclude this subsection by explaining the analogy of our setup to
fractal percolation, whose framework has inspired this proof. For simplicity, we will
explain the arguments on Rd instead of the Sierpiński gasket.

Fix some value r P N. Consider the unit hyper-cube and subdivide it into rd

cubes of side length 1
r . Then, for some value p P r0, 1s, declare them open indepen-

dently with probability p and closed otherwise. Then, subdivide again each of the
open cubes into rd cubes of side length 1

r2 , and each of the second-level cubes is
open with probability p and closed otherwise. Note that each level-1 cube that was
closed is not further subdivided and so it is entirely closed. One can then repeat
the above procedure with further subdivisions, see Figure III.6. This recursive con-
struction introduces correlations into the system that one would not see in standard
Bernoulli percolation - whether two different cubes of some arbitrary size are both
simultaneously open is heavily influenced by how far back in the subdivisions their
common “ancestor” cube that was open is.

The similarity with our case is straightforward. To obtain Apι, τq “ 1 we need a
cell and all its ancestors to be multi-scale good, similarly to the fractal percolation
where the cubes must be open at every level-k in order to be open at the last and
smallest level. In view of Lemma III.5.3, a cell with Apι, τq “ 1 is then good, in the
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Figure III.6: An example of fractal percolation in R2. Image from [GS19a].

sense below Definition III.2.8. It may seem now that directly performing a single-
level percolation at scale k “ 1 might be easier, but unlike the fractal percolation
described above, cells in our setting have further dependencies beyond the ones
introduced by the subdivisions. In particular, note that knowing a cell of some scale
k is bad reveals information not only about its descendent cells, but also any other
cells that are spatially and temporally close enough to be affected by the behaviour
of the particles from the cell in question. The other difference is that the percolation
parameter p will not be kept constant: in our case the probability to be a multi-
scale good cell PpAkpι, τq “ 1q is higher at larger scales, as we will prove in Lemma
III.6.1. The proof there involves the events Dext

k and Dbase
k defined above in (III.5.27)

and (III.5.28), and in particular the strategy is as follows: assuming the favorable
event Dext

k pι, τq “ 1, using the mixing Theorem III.4.6, if we restrict to a slightly
smaller cell (so from Sext

k pιq to Sbase
k pιq) and “wait a bit”, we are able to resample

the particles according an independent Poisson point process with only a slightly
smaller intensity. This resampling allows us to essentially treat the configuration of
the particles in the space-time cell in question as independent of the configuration
elsewhere, thus roughly recovering the fractal percolation setup outlined above and
taking care of both types of correlations mentioned at once.

III.5.3 Paths of cells

We next define the two notions of “paths of cells” that we will consider. As we
will see momentarily, both notions are strongly related to d-paths from Definition
III.3.1.

Recall that, in line with Definition III.2.2, two cells Rkpι1, τ1q ‰ Rkpι2, τ2q of
same scale are called adjacent if either dpSkpι1q, Skpι2qq “ 0 and τ1 “ τ2, or ι1 “ ι2
and |τ1´τ2| ď 1. We now extend this to cells of different scales. Two cells Rk1pι1, τ1q,
and Rk2pι2, τ2q with scales k1 ą k2 are called adjacent if Rk1pι1, τ1q, is adjacent to
Rk1

`

πk1´k2
k2

pι2q, γ
k1´k2
k2

pτ2q
˘

. Note that in particular, a cell is not adjacent to any of
its ancestors.

We say for two scale 1 cells R1pι, τq and R1pι
1, τ 1q that R1pι, τq is diagonally con-

nected toR1pι
1, τ 1q if there exists a sequence of adjacent cells tR1pι1, τ1q, . . . , R1pιn, τnqu

of scale 1 such thatR1pι, τq “ R1pι1, τ1q, for all j P t1, . . . , n´1u, dpR1pιj`1, τj`1q, L0q ă

dpR1pιj , τjq, L0q and R1pιn, τnq is either equal or adjacent to R1pι
1, τ 1q. When re-

ferring to the cells R1pιj , τjq, j P t1, . . . , n ´ 1u (and R1pιn, τnq if it differs from
R1pι

1, τ 1q) we will call them diagonal steps.

For two cells Rk1pι1, τ1q and Rk2pι2, τ2q of not necessarily different scales we say
that Rk1pι1, τ1q is diagonally connected to Rk2pι2, τ2q if there exist two cells R1prι1, rτ1q

and R1prι2, rτ2q of scale 1, respectively descendants of Rk1pι1, τ1q and Rk2pι2, τ2q, so
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that R1prι1, rτ1q is diagonally connected to R1prι2, rτ2q.

Definition III.5.4. We define a D-path as a sequence of cells of arbitrary scale,
where each cell is either adjacent or diagonally connected to the next cell in the
sequence.

The reader will note the analogy to the definition of d-path in Definition III.3.1.
Fix a cell v “ R1pιv, τvq P L1 and define for any (large) t ą 0

Ω1pv Ñ tq (III.5.37)

the set of all D-paths of cells of scale 1 for which the first cell of the path is v and
the last cell is the only cell not contained in BtpS1pιvqq ˆ r´t ` τv, τv ` ts, where
BtpS1pιvqq :“ YxPS1pιvqBtpxq.

The next notion of path involves instead cells of multiple scales.

Definition III.5.5. We define as ScD-path (support connected with diagonal paths)
a sequence of cells of possibly different scales tRk1pι1, τ1q, . . . , Rkzpιz, τzqu for some
z P N, with the following properties:

• each pair of cells is well-separated, meaning that their areas of influence do not
intersect; i.e. for any pair R

rk
prι, rτq, Rk̂pι̂, τ̂q

Rinf
rk
prι, rτq XRinf

k̂
pι̂, τ̂q “ H,

• two consecutive cells Rkj pιj , τjq and Rkj`1
pιj`1, τj`1q are either

support adjacent : REsup
kj

pιj , τjq XR
Esup
kj`1

pιj`1, τj`1q ‰ H

or

support connected with diagonals :

there exist two scale 1 cells, respectively
subsets of the extended supports of Rkj pιj , τjq

and Rkj`1
pιj`1, τj`1q, so that the first cell is

diagonally connected to the second.

For v P L1 and t ą 0, we define

Ωsup
κ pv Ñ tq (III.5.38)

as the set of all ScD-paths of cells of scale at most κ so that the extended support
of the first cell of the path contains v and the last cell is the only cell whose extended
support is not contained in BtpS1pιvqq ˆ r´t` τv, τv ` ts with ιv, τv as before.

Define the bad cluster around v P L1 as

Kv :“
 

R1prι, rτq : there exists a D-path of bad cells from v to R1prι, rτq
(

. (III.5.39)

We can relate D-paths and ScD-paths via the following technical lemma.

Lemma III.5.6. For any t ą 0 and v P L1, it holds that

P
`

DP P Ω1pv Ñ tq of cells with bad ancestry
˘

ď P
`

DP P Ωsup
κ pv Ñ tq of multi-scale bad cells

˘

.
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Remark III.5.7. Note that for a path P P Ω1pv Ñ tq of cells with bad ancestry,
the property of having a bad ancestor is required only for the cells of P and not
for the cells constituting the diagonal steps in the diagonal connections of P . This
is in line with Definition III.3.1, where diagonal moves of d-paths do not impose
any requirements on the state of the cells. The same is of course true also for
P P Ωsup

κ pv Ñ tq, where being multi-scale bad is not required for the cells constituting
diagonal connections.

Proof. We split the proof into two steps. Defining Ωκpv Ñ tq as the set of D-paths
of cells of scale at most κ, where the first cell is an ancestor of v and the last cell
is the only cell whose support is not contained in BtpS1pιvqq ˆ r´t` τv, τv ` ts, we
prove in the two steps that

P
`

DP P Ω1pv Ñ tq of cells with bad ancestry
˘

ď P
`

DP P Ωκpv Ñ tq of multi-scale bad cells
˘

ď P
`

DP P Ωsup
κ pv Ñ tq of multi-scale bad cells

˘

.

Step 1. Consider a D-path P “
`

R1pιj , τjq
˘z

j“1
P Ω1pv Ñ tq of cells with

bad ancestry. By definition, for each cell of P it holds that Apιj , τjq “ 0, so

there exists kj such that Akj pπ
k1j´1

1 pιjq, γ
k1j´1

1 pτjqq “ 0, so that R
rkj
prιj , rτjq :“

Rkj
`

π
k1j´1

1 pιjq, γ
k1j´1

1 pτjq
˘

is a multi-scale bad cell. From the sequence P 1 :“

tR
rkj
prιj , rτjqu

z
j“1 construct a subsequence P 2 :“ tRk2j pι

2
j , τ

2
j qu

z2
j“1 taking in the same

order of the cells from P 1 but removing all cells indexed by ĵ which are the descen-
dant of some other cell in the path P 1 with index j0, with j0 ă ĵ. Furthermore,
if there is a cell R

rkj
prιj , rτjq before the last one whose support is not contained in

BtpS1pιvqq ˆ r´t` τv, τv ` ts, we remove from P 2 all following cells.

We claim that P 2 P Ωκpv Ñ tq, which will conclude step 1. This path starts
with an ancestor of v and by construction the last cell’s support is not contained
in BtpS1pιvqq ˆ r´t ` τv, τv ` ts. Note that every cell in P has exactly 1 ancestor
in P 2. Consider now two cells R1pιj , τjq and R1pιj`1, τj`1q with different ancestors
in P 2. If R1pιj , τjq is diagonally connected to R1pιj`1, τj`1q, then the ancestor of
R1pιj , τjq is either diagonally connected or adjacent to the ancestor of R1pιj`1, τj`1q;
if R1pιj , τjq and R1pιj`1, τj`1q are adjacent, then their ancestors are adjacent, since
two non-adjacent cells cannot have two adjacent descendants. Finally, every cell of
P 2 is multi-scale bad by how P 2 was constructed.

Step 2. We now prove the second inequality, that is, starting from P 2 we can
obtain a path P̂ of multi-scale bad cells which are well-separated and in which every
sequential pair of cells is either support adjacent or the first cell of the pair is support
connected with diagonals to the second.

First define a sequence L of cells from P 2, but where the cells are ordered in the
following way: we first order cells by scale, where cells of bigger scale come first, and
within cells of the same scale we maintain the original order of P 2. We construct P̂
and create a relation between P 2 and P̂ in the following way. Following the order
of L, and in particular starting with scale κ, we perform the following operations.
Assuming the first cell of scale k in the list L is Rkpι̂, τ̂q we

• add Rkpι̂, τ̂q to P̂ ;

• remove Rkpι̂, τ̂q from L;
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(a) A possible D-path with adjacent and diagonally connected cells.

(b) A D-path of multi-scale bad cells (in red
with a thicker border) in comparison with
the D-path (in blue) of the previous image.
Note that many cells of scale 1 correspond
to the same cell in this image.

(c) The corresponding ScD-path (in black),
where some cells were discarded as they were
not well-separated. We highlight (respec-
tively in blue, red and green) the extended
supports and (in black) the diagonal of 2
cells which are support connected with diag-
onal.

Figure III.7: From D-paths to ScD-paths. Note that this example is on G without
the time component in order to make the visualisation easier. In practice, the
procedure is conducted on cells of Gˆ Z.

• associate Rkpι̂, τ̂q in P 2 with itself in P̂ ;

• remove from L all cells R
rk
prι, rτq which are not well-separated from Rkpι̂, τ̂q and

associate them all with Rkpι̂, τ̂q in P̂ .

Repeating this procedure until L is empty, we obtained a sequence of cells P̂ ,
and all cells in P 2 are associated to some cell in P̂ . Before proceeding, we reorder P̂
according to the ordering in P 2, thus making P̂ a path (which we will verify below).
In particular, a cell v in P̂ appears before a different cell u of P̂ if according to the
ordering of P 2, there exists a cell of P 2 associated to v that appears before any cell
of P 2 associated to u. Since the multi-scale bad property follows trivially from P 2,
we are only left to show that

P̂ P Ωsup
κ pv Ñ tq. (III.5.40)
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First, let Rk̂1
pι̂1, τ̂1q P P̂ be the cell which Rk21 pι

2
1, τ

2
1 q P P

2 is associated to. In the
non-trivial case, Rk̂1

pι̂1, τ̂1q is not associated to itself, so Rk̂1
pι̂1, τ̂1q and Rk21 pι

2
1, τ

2
1 q

are not well-separated and therefore their areas of influence intersect. By (III.5.23)
their supports intersect as well. By (III.5.24), REsup

k̂1
pι̂1, τ̂1q Ě Rsup

k21
pι21, τ

2
1 q, and since

Rk21 pι
2
1, τ

2
1 q contains v by definition of P 2, we obtain that REsup

k̂1
pι̂1, τ̂1q contains v as

desired.

Secondly, we can argue in the same way to show that the extended support of
the cell which Rk2

z2
pι2z2 , τ

2
z2q is associated to is not contained in the space-time ball

BtpS1pιvqq ˆ r´t` τv, τv ` ts.

Finally, we need to show that sequential pairs of cells of P̂ are either support ad-
jacent or the first cell of the pair is support connected with diagonals to the second.
Consider Rk̂j pι̂j , τ̂jq P P̂ , and let Rkj2 ,pιj2 , τj2q be the first cell of P 2 (in the original

ordering of P 2) which is associated to Rk̂j pι̂j , τ̂jq. Next, take Rkj2´1
pιj2´1, τj2´1q P

P 2 and let Rk̂j´1
pι̂j´1, τ̂j´1q P P̂ be the cell which it is associated to. We claim

that Rk̂j ,pι̂j , τ̂jq and Rk̂j´1
pι̂j´1, τ̂j´1q are either support adjacent or Rk̂j´1

is sup-

port connected with diagonals to Rk̂j ,pι̂j , τ̂jq based on whether Rkj2 pιj2 , τj2q and

Rkj2´1
pιj2´1, τj2´1q P P

2 are adjacent or whether Rkj2´1
pιj2´1, τj2´1q is connected

with diagonals to Rkj2 pιj2 , τj2q.

IfRkj2´1
pιj2´1, τj2´1q andRkj2 pιj2 , τj2q are adjacent, we can suppose without loss

of generality that kj2´1 ď kj2 , and by definition there exists a cell Rkj2 prιj2´1, rτj2´1q,
which is an ancestor of Rkj2´1

pιj2´1, τj2´1q and adjacent to Rkj2 pιj2 , τj2q. Hence
applying (III.5.22) twice we obtain that

Rinf
kj2
pιj2 , τj2q Ď Rsup

kj2
prιj2´1, rτj2´1q

and

Rinf
kj2´1

pιj2´1, τj2´1q Ď Rsup
kj2
prιj2´1, rτj2´1q.

(III.5.41)

Since Rkj2 pιj2 , τj2q is associated to Rk̂j pι̂j , τ̂jq, they are not well-separated and thus

their areas of influence intersect. Therefore (III.5.41) implies that Rsup
kj2
prιj2´1, rτj2´1q

intersects Rinf
k̂j
pι̂j , τ̂jq and by (III.5.22) intersects Rsup

k̂j
pι̂j , τ̂jq; since k̂ ě kj2 , ap-

plying (III.5.24), we have REsup

k̂j
pι̂j , τ̂jq Ě Rsup

kj2
prιj2´1, rτj2´1qĚ Rinf

kj2´1
pιj2´1, τj2´1q

where the last inclusion is due to (III.5.41). Since the cells Rkj2´1
pιj2´1, τj2´1q

and Rk̂j´1
pι̂j´1, τ̂j´1q are not well-separated, repeating the same argument below

(III.5.40) we have REsup

k̂j´1
pι̂j´1, τ̂j´1q Ě Rsup

kj2´1
pιj2´1, τj2´1q Ě Rinf

kj2´1
pιj2´1, τj2´1q,

where the last inclusion follows from (III.5.22). This shows that the two extended
supports intersect.

If instead Rkj2´1
pιj2´1, τj2´1q is connected with diagonals to Rkj2 pιj2 , τj2q, then

by definition they contain respectively two cells R1prιj2´1, rτj2´1q and R1prιj2 , rτj2q
such that R1prιj2´1, rτj2´1q is connected with diagonals to R1prιj2 , rτj2q. Additionally,
since Rkj2 pιj2 , τj2q is associated to Rk̂j pι̂j , τ̂jq, they are not well-separated and by

the argument below (III.5.40) we have R1prιj2 , rτj2q Ď Rsup
kj2
pιj2 , τj2q Ď REsup

k̂j
pι̂j , τ̂jq.

With the same argument, R1prιj2´1, rτj2´1q Ď REsup

k̂j´1
pι̂j´1, τ̂j´1q. This shows that

Rk̂j´1
pι̂j´1, τ̂j´1q is support connected with diagonals to Rk̂j pι̂j , τ̂jq, which concludes

the proof.
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III.6 Multi-scale analysis

We will now use the multi-scale set-up introduced above in order to bound the
probability of having paths of multi-scale bad cells. Recall that ζ P p0,8q is defined
in Theorem III.2.12 as the value used at the scale 1 tessellation that imposes the
confinement of particle movement at that scale. We now define what will essentially
be the “weight” of a cell as

ψ1pε, µ0, `q :“ min
!ε2µ02dv`

Cλ
,´ log

´

1´ νE
`

p1´ εqλ, Sη1 , Bζ`, ηβ
˘

¯)

,

ψkpε, µ0, `q :“
ε2µ02dv`k´1

k4
, k ě 2,

(III.6.1)

which we will use as a reference for both the probability of a cell of scale k to be
bad, and for the number of ScD-paths which contain a cell of scale k.

III.6.1 Probability of a multi-scale bad ScD-path

We want to estimate the probability for a cell to be multi-scale bad. As close cells are
heavily dependent on each other, we want to obtain a bound even conditioning on
cells which are “not too close”, in a spatial or temporal sense. Recall the definitions
of Sinf

k and T inf
k in (III.5.7) and (III.5.19). We define Fkpι, τq be the σ-algebra

generated by all the Ak1pι
1, τ 1q for which either:

(a) T inf
k1 pτ

1q X rγ
p1q
k pτqβk`1,8q “ H, or

(b) τ 1βk1 ď τβk and Sinf
k pιq X S

inf
k1 pι

1q “ H.

Intuitively, this is information about the behaviour of particles in space-time cells
that are either far enough in the past so that we can ignore them due to the start-
ing assumptions guaranteed by tDbase

k pι, τq “ 1u, or which are happening roughly
concurrently, but far enough away not to be able to influence the occurrence of the
event tAkpι, τq “ 0u due to the confinement of the random walks under considera-
tion. Recall that the intensity of the Poisson point process is µx “ µ0λx.

Lemma III.6.1. Let ε, ζ, η be as in Theorem III.2.12 with

ζ ě
1

`
dw

b

“

1
c6

log
`

8c5
3ε

˘‰dw´1
ηβ. (III.6.2)

If a and m are large enough, then there exist Cψ and α0 “ α0pε, `, µ0q such that if
ψ1 ą α0, then for all k “ 1, . . . , κ, all cells Rkpι, τq and any F P Fkpι, τq

PpAkpι, τq “ 0
ˇ

ˇ F q ď e´Cψψk .

Furthermore, we have for scale κ that

PpAκpι, τq “ 0q ď e´Cψψκ .

Proof. We start by proving the result for 2 ď k ď κ´ 1. Let F P Fkpι, τq. Since

PpAkpι, τq “ 0
ˇ

ˇ F q “ PpDext
k pι, τq “ 0, Dbase

k pι, τq “ 1
ˇ

ˇ F q,
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if tDbase
k pι, τq “ 1uXF “ H, such probability is 0 and the lemma trivially holds, so

we can assume tDbase
k pι, τq “ 1u X F ‰ H and obtain

PpAkpι, τq “ 0
ˇ

ˇ F q ď PpDext
k pι, τq “ 0

ˇ

ˇ F,Dbase
k pι, τq “ 1q,

Recall that the event Dbase
k pι, τq “ 1 (see (III.5.28)) ensures that there are enough

particles in Sbase
k pιq confined in Bbpkq2`k during rγ

p1q
k pτqβk`1, τβks. By definition F

does not reveal further information about those particles because either

• by (a), pτ 1 ` 2qβk1 ď γ
p1q
k βk`1 and so the time interval relevant to Ak1pι

1, τ 1q
does not intersect Akpι, τq, or

• by (b), Sinf
k1 pι

1q X Sinf
k pιq “ H, so the particles in Sbase

k1 pι1q confined in Bbpkq2`k
cannot leave Sinf

k1 pι
1q and thus cannot enter Sinf

k pιq before τ 1βk1 .

Conditioned on the event Dbase
k pι, τq “ 1 (defined in (III.5.28)), we apply Theo-

rem III.4.6 to Sbase
k pι, τq, with the choices

K :“ side length of Sbase
k pιq “ 2bpkq2`k ` 2`k ,

K 1 such that K ´K 1 “ bpkq2`k ,

l :“ 2`k ,

δ :“ p1´ dk`1qµ0,

∆ :“ length
`

rγ
p1q
k pτqβk`1, τβks

˘

“ τβk ´ γ
p1q
k pτqβk`1 P rβk`1, 2βk`1s, and

ε̄ :“
ε

8k2
.

We check now that the conditions of Theorem III.4.6 are satisfied, starting with

checking that K ´ K 1 ě M3

`

∆plog2 ∆qdw´1
˘

1
dw . Since K ´ K 1 “ bpkq2`k and

∆ ď 2βk`1 we need to verify that

bpkq2`k ěM3

`βk`1

2 plog2
βk`1

2 qdw´1
˘

1
dw ,

which by definition of βk in (III.5.15) is implied by bpkq2`k ě C92`k`kk
8

Θdw for some
constant C9. Comparing it to the definition of `k in (III.5.1) it holds true if we set

bpkq :“ ak2` 8
Θdwm2m, (III.6.3)

and assume a and m are large enough. To check that ∆ ě M2l
dw ε̄´4{Θ, we use

that ∆ ě βk`1 “ Cmix

`

pk`1q2

ε

˘4{Θ`
2`k

˘dw by definition of βk`1 in (III.5.15), and the

inequality holds as Cmix ěM284{Θ. We finally note that

K 1 “ K ´ bpkq2`k

“ bpkq2`k ` 2`k

ě
`

2bpk ´ 1q
˘

2`k´1 ` 2`k ,

which is the side length of Sext
k pιq.

We can therefore apply Theorem III.4.6 and we obtain a coupling between the
particle system at time τβk inside Sext

k pιq and a Poisson point process Ξ with in-
tensity

`

1 ´ dk`1

˘

µ0p1 ´ εqλy where the inclusion of Theorem III.4.6 holds with
probability at least

1´
ÿ

yPSext
k pιq

e´M4p1´dkqµ0λy ε̄2∆dv{dw
.
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Using that ∆ ě βk`1 ą Cmix 2dw`k and the definitions of βk from (III.5.15), the
quantity in the previous display is bigger than

1´
ÿ

yPSext
k pιq

e´C10p1´dkqµ0λy ε̄22dv`k

ě 1´
`

2bpk ´ 1q2`k´1 ` 2`k
˘dve´C11p1´dkqµ0C

´1
λ

ε2

k4 2dv`k

ě 1´ 2dvp1``kqe´C12p1´εqµ0C
´1
λ

ε2

k4 2dv`k

ě 1´
1

2
e´Cψ ψk .

(III.6.4)

The last step holds for k “ 2 since ψ1pε, µ0, `q and therefore also ψ2pε, µ0, `q is large
enough by assumption; the inequality for k ą 2 follows from it by setting a,m large
enough.

To obtain Dext
k pκ, ιq “ 1 we need to check the confinement requirement. To

this end, define a Poisson point process Ξ1 made of the particles of Ξ that are
confined during the time rτβk, pτ ` 2qβks inside B

bpk´1q2`k´1 . Using the definition

of confinement from Lemma III.2.5, this happens for each particle independently
with probability PpConfpB

bpk´1q2`k´1 , 2βkqq. By the thinning property of Poisson

processes, Ξ1 is therefore a Poisson point process with intensity measure

P
`

ConfpB
bpk´1q2`k´1 , 2βkq

˘

p1´ dk`1qµ0p1´ ε̄qλy

which we can estimate using (Conf(dwq) as being bigger than

´

1´ c5e
´c6

`

pbpk´1q2
`k´1 qdw

2βk

˘ 1
dw´1 ¯

p1´ dk`1qµ0p1´
ε

8k2 qλy

(III.5.15)
“

´

1´ c5e
´c6

`

bpk´1qdw

2 Cmix
p ε
k2 q

4{Θ
˘ 1
dw´1 ¯

p1´ dk`1qµ0p1´
ε

8k2 qλy

(III.6.3)
“

´

1´ c5e
´C13

`

`

apk´1q
2` 8

Θdw m2m
˘dw

ε4{Θ

k8{Θ Cmix

˘ 1
dw´1 ¯

p1´ dk`1qµ0p1´
ε

8k2 qλy

and using that Cmix “
β

2dw`
ε4{Θ2mdw which can be obtained by setting β1 “ β in

(III.5.15), this is bigger than

´

1´ c5e
´C14

`

2dw`

β
adw pk´1q2dwm

˘ 1
dw´1

¯

p1´ dk`1qµ0p1´
ε

8k2 qλy.

Setting m large enough with respect to ε, ` and β, this is then bigger than

p1´ ε
8k2 qp1´ dk`1qµ0p1´

ε
8k2 qλy

ě p1´ ε
4k2 qp1´ dk`1qµ0λy.

Conditioning on the coupling above, we obtain using a union bound that the proba-
bility that all Sk´1pi

1q inside Sext
k pιq have at least p1´ dkqµ0

ř

yPSk´1pi1q
λy particles

which are confined during rτβk, pτ ` 2qβks inside B
bpk´1q2`k´1 is at least

1´
ÿ

Sk´1pi1qĎS
ext
k pιq

Q
`

Ξ1pSk´1pi
1qq ď p1´ dkqµ0

ř

yPSk´1pi1q
λy
˘

. (III.6.5)
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Using the Chernov bound (III.A.1) with χ given by

1´
p1´ dkqµ0

ř

yPSk´1pi1q
λy

p1´ ε
4k2 qp1´ dk`1qµ0

ř

yPSk´1pi1q
λy

“
p1´ ε

4k2 qp1´ dk`1q ´ p1´ dkq

p1´ ε
4k2 qp1´ dk`1q

ě p1´ ε
4k2 qp1´ dk`1q ´ p1´ dkq

ě pdk ´ dk`1q ´
ε

4k2
“

ε

4k2

we obtain the following lower bound for (III.6.5):

1´
ÿ

Sk´1pi1qĎS
ext
k pιq

exp
!

´
1

2
p ε

4k2 q
2p1´ ε

4k2 qp1´ dk`1qµ0
ř

yPSk´1pi1q
λy

)

(III.5.3)
ě 1´

ÿ

Sk´1pi1qĎS
ext
k pιq

exp
!

´
ε2

32k4
p1´ ε

4qp1´ d2qµ0Cλ
´1p2`k´1qdv

)

ě 1´ CVol

`

bpk ´ 1q ` 2`k´`k´1
˘dv exp

!

´
ε2

32k4
p1´ ε

4qp1´
ε
2qµ0Cλ

´12dv`k´1

)

ě 1´
1

2
e´Cψψk ,

(III.6.6)
where the last inequality follows from the same argument as after (III.6.4) since ψ1

is assumed large enough.
Combining (III.6.4) and (III.6.6) proves the claim for 1 ă k ă κ.
For k “ κ the argument is easier, as there is no need to use the mixing theorem

and one can simply use (III.6.6), and prove both the conditional and unconditional
statements.

For k “ 1, we recall that the event A1pι, τq was defined differently (cf. (III.5.30))
We use again the mixing Theorem to obtain a coupling with a Poisson point process Ξ
which succeeds with probability (III.6.4) with the choice k “ 1. To obtain 1Epι,τq “
1, we recall that the event Epι, τq is measurable with respect to the σ-algebra of
particles inside Sη1 pιq, which is contained in Sbase

1 pιq by Remark III.5.1, and the
particles are confined in Bζ`1 during rτβ1, pτ ` ηqβ1s. Using Lemma III.2.5 we
obtain

P
`

ConfpBζ`1 , ηβ1q
˘

ě 1´ c5e
´c6

´

pζ`1q
dw

ηβ1

¯ 1
dw´1

(III.6.2)
ě 1´ 3ε

8 .

Hence, the Poisson point process Ξ1 of the particles with ConfpBζ`1 , ηβ1q has inten-
sity at least

P
`

ConfpB
bpk´1q2`k´1 , 2βkq

˘

p1´d2qµ0p1´ε̄qλy ě p1´
3ε
8 qp1´

ε
2qµ0p1´

ε
8qλy ě p1´εqµ0λy,

and since Epι, τq is increasing, we have

Pp1Epi,τq “ 1
ˇ

ˇ F,Dbase
1 pι, τq “ 1q ď 1´ νE

`

p1´ εqλ, Sη1 , Bζ`, ηβ1

˘

ď e´α0 ,

which concludes the proof.

Now that we have a bound on the probability that a single cell Rkpι, τq is multi-
scale bad, we can obtain an upper bound on the probability that all multi-scale cells
in a given ScD-path are multi-scale bad. Recall the definition of the weights ψk in
(III.6.1) and the value α0 defined in Lemma III.6.1.
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Corollary III.6.2. Let ζ as in (III.6.2), ψ1 ą α0 and consider an ScD-path
tRk1pι1, τ1q, . . . , Rkzpιz, τzqu. Then

P
´

z
č

j“1

tAkj pιj , τjq “ 0u
¯

ď e
´Cψ

řz
j“1 ψkj .

where Cψ is the constant from Lemma III.6.1.

Proof. We first need to order the cells in a temporal order. To this end, consider any
order ă of the indices of the cells 1, . . . , z such that if j1 ă j2 then τj1βkj1 ď τj2βkj2 .
The corollary will be a simple consequence of Lemma III.6.1 once we prove that for
every 1 ď j̄ ď z, the cells Rkj pιj , τjq with j ă j̄ are Fkj̄ pιj̄ , τj̄q-measurable.

We therefore consider two cells Rkj1 pιj1 , τj1q and Rkj1 pιj2 , τj2q with j1 ă j2, so
that τj1βkj1 ď τj2βkj2 . By definition of an ScD-path cells are well-separated, so

Rinf
kj1
pιj1 , τj1q XR

inf
kj2
pij2 , τj2q “ H, meaning that:

• either T inf
kj1
pτj1q X T

inf
kj2
pτj2q “ H and thus (a) is satisfied;

• or Sinf
kj1
pιj1q X S

inf
kj2
pιj2q “ H and thus (b) is satisfied.

Here, (a) and (b) are as they appear at the beginning of this subsection. Hence,
using the standard chain conditioning and applying Lemma III.6.1 z-many times we
obtain that

P
´

z
č

j“1

 

Akj pιj , τjq “ 0
(

¯

ď

z
ź

j“1

P
´

Akj pιj , τjq “ 0
ˇ

ˇ

ˇ

č

j̄ăj

 

Akj̄ pιj̄ , τj̄q “ 0u
¯

ď e
´Cψ

řz
j“1 ψkj ,

which is the desired claim.

III.6.2 Number of ScD-paths

In the previous section we established the probability for a given path of z cells of
scales k1, . . . , kz to be made of multi-scale bad cells. We want now to count the
number of such paths. Recall the definition of ScD-path in Definition III.5.5, and
of Ωsup

κ pv Ñ tq in (III.5.38). We will now give an upper bound for the number of
paths in Ωsup

κ pv Ñ tq, given a fixed number of cells and their scales. As we will see,
κ and t are going to be linked with each other, so our first bound can omit these
two values, as we are for the time working with given scales.

Lemma III.6.3. For a fixed length z P N, fixed scales k1, . . . , kz and v P L1, the
number of ScD-paths of cells of scales k1, . . . , kz where the extended support of the
first cell contains v is at most

exp
!Cψ

2

z
ÿ

j“1

ψkj

)

,

where Cψ is the same constant as in Lemma III.6.1.

Proof. Recall that two consecutive cells Rk1pι1, τ1q and Rk2pι2, τ2q in a ScD-path
are either support adjacent or Rk1pι1, τ1q is support connected with diagonals to
Rk2pι2, τ2q. We will prove the result in three steps: first, we will bound the number
of ScD-paths where each cell is support adjacent to the next one, i.e. we don’t allow
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diagonal connections. In the second step, we will show the result for the case in
which the beginning and end of the (scale 1) diagonal steps are fixed relative to
each other; in the third step we will obtain the bound where this last restriction is
removed.

Step 1. We define the maximum number of scale k1 cells which are support
adjacent to a cell of scale k

Φk,k1 :“ max
pι,τq

ˇ

ˇtRk1pι
1, τ 1q : Rkpι, τq is support adjacent to Rk1pι

1, τ 1qu
ˇ

ˇ (III.6.7)

and the number of cells of scale k whose extended support (defined in (III.5.10) and
(III.5.21)) contains v

χk :“
ˇ

ˇtRkpι, τq : R
Esup
k pi, τq Ě vu

ˇ

ˇ, (III.6.8)

so clearly the number of support adjacent only D-paths in Ωsup
κ pv Ñ tq of cells with

scales k1, . . . kz is bounded above by

χk1

z
ź

j“2

Φkj´1,kj .

We start by deriving a bound for χk. Since the extended support of a cell of
scale k contains at most 27 CVolp3m ` 1qdv cells of scale k ` 1, there exist at most
27 CVolp3m ` 1qdv different extended supports of a cell of scale k that contain the
distinct cell of scale k` 1 containing v, and thus v itself. By (III.5.4) and (III.5.16)

each cell of scale k`1 contains
βk`1

βk
2dvp`k`1´`kq ď 28`dwp2ak´3a`mq`dvp2ak´a`mq cells

of scale k, which is therefore also the number of scale k cells that share the same
extended support. We therefore have

χk ď 27 CVolp3m` 1qdv28`dwp2ak´3a`mq`dvp2ak´a`mq ď exp
!Cψ

16
ψk

)

(III.6.9)

where the last inequality holds trivially for m, a and α0 large enough.
We now bound Φk,k1 . A cell of scale k1 can only be support adjacent to a cell

Rkpι1, τ1q if it is inside BrppqˆA, where p P Skpι1q, r :“ p3m`2q2`k`1`p3m`2q2`k1`1

and A an interval centered around Tkpτ1q of width 28pβk`1 ` βk1`1q. Consequently,
Φk,k1 can be bounded by the number of scale k1 cells inside this Cartesian product.
If k ě k1 then the terms 2`k1`1 and βk1`1 are negligible (or of the same size) in com-
parison to 2`k`1 and βk`1, and the spatial region contains at most CVolp2p3m`2qqdv

cells of scale k ` 1, and by (III.5.4), each one of those contains exactly 2dvp`k`1´`k1 q

cells of scale k1, so

if k ě k1 Φk,k1 ď

´

CVolp2p3m` 2qqdv2dvp`k`1´`k1 q
¯´

56
βk`1

βk1

¯

If instead k ă k1 we have similarly

if k ă k1 Φk,k1 ď

´

CVolp2p3m` 2qqdv2dvp`k1`1´`k1 q
¯´

56
βk1`1

βk1

¯

.

Combining the two and using (III.5.16) we have that

Φk,k1 ďC152dvp6m`4q2dvpapk_k
1q2`mpk_k1qq2dw2apk_k1q`dwm
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and for a,m, α0 large it holds trivially that this is further smaller than

exp
!Cψ

16
ψpk_k1q

)

.

Hence we obtain with (III.6.9)

χk1

z
ź

j“2

Φkj´1,kj ď

z
ź

j“1

´

e
Cψ
16
ψkj

¯2
ď e

Cψ
8

řz
j“1 ψkj .

Step 2. In this step, we consider Rk1pι1, τ1q to be support connected with diago-
nals to Rk2pι2, τ2q, which, as defined in Definition III.5.5, means that there exist two
cells R1prι1, rτ1q and R1prι2, rτ2q contained in their respective extended supports such
that R1prι1, rτ1q is diagonally connected to R1prι2, rτ2q. We denote by prι1 ´ rι2, rτ1 ´ rτ2q

the relative position of the cell R1prι1, rτ1q with respect to R1prι2, rτ2q and write p0, 0q
for the relative position of the cells Rk1pι1, τ1q and Rk2pι2, τ2q when they are adja-
cent. In this step we consider the relative positions to be fixed, and we will show
a bound for the number of different possible relative positions in the next step. In
analogy with step 1, we define

Φ˚k1,k2
:“ max

pι1,τ1q

ˇ

ˇ

ˇ

ˇ

ˇ

#

Rk2pι2, τ2q :
Rk1pι1, τ1q is support adjacent or support connected
with diagonals to Rk2pι2, τ2q with fixed relative
position of R1prι1, rτ1q with respect to R1prι2, rτ2q

+
ˇ

ˇ

ˇ

ˇ

ˇ

.

(III.6.10)
The case when the relative position is p0, 0q was treated in the previous step, so

in that case we have

Φ˚k1,k2
ď e

Cψ
16
ψk1_k2 .

In the case of diagonally connected cells, since the relative position is fixed, the
possible combinations are determined by the product of all the possible positions of
the cell R1prι1, rτ1q inside the extended support of the cell Rk1pι1, τ1q and the number
of cells of scale 1 contained in the extended support of Rk2pι2, τ2q. Using the bound
from the previous step we have

Φ˚k1,k2
ď e

Cψ
16
ψk1e

Cψ
16
ψk2 .

Combining the two equations yields

Φ˚k1,k2
ď e

Cψ
16
ψk1e

Cψ
16
ψk2 ` e

Cψ
16
ψk1_k2 .

Hence the number of ScD-path where the z cells have fixed relative position is
bounded by

χk1

z
ź

j“2

Φ˚kj´1,kj
ď exp

!Cψ
4

z
ÿ

j“1

ψkj

)

(III.6.11)

Step 3. In the final step, we bound the number of combinations of different
relative positions in a ScD-path. For two given cells of scales kj and kj`1 where the
first is support connected with diagonals to the second, let R1pι1, τ1q and R1pι2, τ2q

be the corresponding two scale 1 cells for which R1pι1, τ1q is diagonally connected to
R1pι2, τ2q with relative position pι1 ´ ι2, τ1 ´ τ2q. Let h be the (absolute) difference
between the distances of R1pι1, τ1q and R1pι2, τ2q from L0, which we refer to as
“difference in height”; see the discussion below (III.2.8). Define Aphq to be the
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number of cells that R1pι1, τ1q can be diagonally connected to, where the “difference
in height” is h. More precisely, define

Aphq :“ max
pι1,τ1q

ˇ

ˇ

ˇ

ˇ

!

R1pι2, τ2q :
R1pι1, τ1q is diagonally connected to R1pι2, τ2q

with
ˇ

ˇd pL0, R1pι1, τ1qq ´ d pL0, R1pι2, τ2qq
ˇ

ˇ “ h

)

ˇ

ˇ

ˇ

ˇ

.

As defined, Aphq is also an upper bound on the number of different relative positions
pι1 ´ ι2, τ1 ´ τ2q which result in a height difference of h.

We next note that, by definition of the diagonal steps, we can bound Aphq by
the number of cells of scale 1 at distance h from a given cell of scale 1. Recalling
(Vol(dvq), we can therefore use the very generous bound

Aphq ă CVol h
dv`1, (III.6.12)

where the `1 term comes from having to also consider the time dimension.
Recall from Subsection III.5.3 that when a scale 1 cell is diagonally connected

to another scale 1 cell, the height of the second cell can be at most that of the first
cell. We can thus obtain easily an upper bound on the number of diagonal steps and
equivalently on the total height difference. Define Hk as the side length of SEsup

k

divided by the side length of S1, that is

Hk :“ p3m` 1q2ak
2`mk. (III.6.13)

Then, using that a diagonal step by definition leads to a decrease of the distance
to L0, the maximum number of diagonal steps in an ScD-path of cells of scales
k1, . . . , kz is at most the combined distance from L0 that the cells of scales k1, . . . , kz
can contribute to an ScD-path, i.e.

H “

z
ÿ

i“1

Hki .

Hence, the number of different configurations of the diagonal steps, and in par-
ticular different relative positions, is at most

H
ÿ

l“0

ÿ

h2,...hz
h2`¨¨¨`hz“l

Aph2 ` 1qAph3 ` 1q . . . Aphz ` 1q,

where hi represent the (absolute) height difference between the i-th and pi ´ 1)-th
cell; the `1 accounts for the fact that the final scale 1 cell of a diagonal connection
might be adjacent and not equal to the next cell of the path, as per definition
of being diagonally connected. Using the method of Lagrange multipliers, this is
smaller than

H
ÿ

l“0

ÿ

h2,...hz
h2`¨¨¨`hz“l

ˆ

A
´ l

z ´ 1
` 1

¯

˙z´1

.

Using (III.6.12) and that the total number of combinations of z ´ 1 values hi ě 0
which sum to l is

`

l`z´2
z´2

˘

, this is smaller still than

H
ÿ

l“0

ˆ

l ` z ´ 2

z ´ 2

˙

CVol

`

l
z´1 ` 1

˘pz´1qpdv`1q

ď

H
ÿ

l“0

ˆ

l ` z ´ 1

z ´ 1

˙

CVol

`

l
z´1 ` 1

˘pz´1qpdv`1q
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and using repeatedly Pascal’s rule we can further bound this by
ˆ

z `H

z

˙

CVol

`

H
z´1 ` 1

˘pz´1qpdv`1q

ď
pz `Hqz

z!
C16

`

H
z´1 ` 1

˘pz´1qpdv`1q
.

Since H
z is big by the assumption that ψ1 is large enough, we finally get that this is

smaller than

pz `Hqz

pz{3qz
C16

`

3H
z

˘pz´1qpdv`1q

ď p3` 3H{zqzC16

`

3H
z

˘zpd`1q

ď
`

C17
H
z

˘2zpd`1q

for some constant C17 ą 0 depending only on d; we used in the first inequality that
dv ď d, which is a simple consequence of the fact that the graph can be embedded
into the d-dimensional triangular lattice which has volume growth dimension d. To
obtain that pC17H{zq

2zpd`1q ď expp
Cψ
8

řz
j“1 ψkj q and thus to conclude Step 3 and

the proof, we can equivalently show that

pd` 1qplogpC17H{zq ď
1

z

Cψ
8

z
ÿ

j“1

ψkj . (III.6.14)

Comparing Hk from (III.6.13) and ψk from (III.6.1) and setting m and α0 (and thus

`) large enough we can obtain Hk ď
Cψ

8pd`1qC17
ψk for all k, and therefore (III.6.14)

holds.

In the previous two lemmas, we showed the relationship between ScD-paths
and the sum of the weights ψk. We show now that if we consider an ScD-path in
Ωsup
κ pv Ñ tq (defined in (III.5.38)) of cells of scales k1, . . . , kz for some t ą 0, then

the sum of the weights ψk is at least of order tcs .

Lemma III.6.4. Suppose that the largest scale κ we consider satisfies κ “

O
`
a

logptq
˘

. Then, if ψ1 is large enough, there exist t0 and C18 ą 0 such that
for any t ą t0, v P L1 and any path

 

Rkj pιj , τjq
(z

j“1
P Ωsup

k pv Ñ tq

z
ÿ

j“1

ψkj ě C18t
cs ,

where the positive constant cs is as defined in Theorem III.2.13.

Proof. Let diamk denote the diameter of the extended support of a cell of scale k.
The key observation to prove the lemma is that

z
ÿ

j“1

diamkj ě
t

2
(III.6.15)

since by definition of Ωsup
κ pv Ñ tq in (III.5.38) the path exits from BtpS1pιvqq ˆ

r´t` τv, τv ` ts and with an argument similar to the one surrounding (III.6.13), the
distance that can be covered by diagonal steps is at most the sum of the side lengths
of the cells. Therefore, we only need to compare diamk with ψk.
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For the geometry of the fractal, the diameter of the tile is equal to the side
length; hence, for 1 ď k ď κ, we note that

diamk ď p6m` 3q2`k`1 ` 27βk`1

ď p6m` 3q2ak`a`m2`k ` pCmix 2`kqdw

ď C1922m 2ak2dw`k

ď C1922m`ak2pdv`1q`k ,

where in the last step we made use of (III.2.6). For k ě 2

ψk “
ε2µ02dv`k´1

k4

“
ε2µ02dv`k

k42dvpak´a`mq

“
ε2µ0

k42dvpak´a`mq
1

`

C1922m`ak
˘

dv
dv`1

`

C1922m`ak2pdv`1q`k
˘

dv
dv`1

ě
ε2µ0

C20k42dvpak`2mq

`

diamk

˘
dv
dv`1 .

For k “ 1 we can fix a constant c11 ą 0 depending on ε, µ0, a,m, ` and νE , but
crucially not on t, such that ψ1 ě c11pdiam1q

dv{pdv`1q.

Since we assumed that κ “ Op
a

logptqq, we have that there exists c12 such that
k ď c12

a

logptq for all k ď κ and thus summing over all cells of the path, (III.6.15)
gives

z
ÿ

j“1

ψj ě C21
ε2µ0

log2ptq2dva
?

logptq
t
dv
dv`1

which for t large is larger than C18t
cs .

III.6.3 Size of bad clusters

Let t ą 0 large, v P L1 and define

Stkpvq :“
!

Skpι
1q : ι1 P Bd, Skpι1q XBtpS1pιvqq ‰ H

)

,

Tt
kpvq :“

!

Tκpτ
1q : τ 1 P Z, Dτ̄ P Z : γ

pk´1q
1 pτ̄q “ τ 1, T1pτ̄q X rτ, τ ` ts ‰ H

)

and

Rt
kpvq :“

 

S ˆ T : S P Stkpvq, T P Tt
kpvq

(

,

where ιv, τv and BtpS1pιvqq are as defined previously below (III.5.37). Recall also
the definition of the bad cluster Kv from (III.5.39).

Proposition III.6.5. Let ζ as in (III.6.2), α0 as in Lemma III.6.1 and t0 as in
Lemma III.6.4. Then there exists a constant C22 independent of t such that for any
v P L1

P
`

Kv Ę Rt
1pvq

˘

ď e´C22tcs , (III.6.16)

for all t ą t0.



110 CHAPTER III. THE LIPSCHITZ CUTSET ON FRACTAL GRAPHS

Proof. Using Lemma III.5.3

P
`

Kv Ę Rt
1pvq

˘

ď P
`

DP P Ω1pv Ñ tq of bad cells
˘

ď P
`

DP P Ω1pv Ñ tq of cells with bad ancestry
˘

and by Lemma III.5.6 this is smaller than

P
`

DP P Ωsup
κ pv Ñ tq of multi-scale bad cells

˘

,

for any arbitrary choice of κ; we will fix it momentarily.

Define now the event Hκ to be the event that Aκpι, τq holds for all cells in Rt
κpvq,

i.e.

Hκ :“
č

Rκpι,τqPRt
κpvq

tAκpι, τq “ 1u

Recalling how the event Aκpι, τq is defined in (III.5.32) for the largest scale κ, using
a union bound and Lemma III.6.1 we obtain directly that

P
`

Hκpvq
˘

ě 1´
ˇ

ˇRt
κpvq

ˇ

ˇe´Cψψκ .

We choose now κ to be the smallest integer such that ψκ ě t. Using the definition of
ψk in (III.6.1) one can see that κ “ Op

a

logptqq; note that this choice satisfies the
assumption of Lemma III.6.4. Since the cardinality of Rt

κpvq satisfies

ˇ

ˇRt
κpvq

ˇ

ˇ ď C23

´ t

2`k

¯dv´ t

βk

¯

,

we can use this to find some constant c13 such that

P
`

Hκpvq
˘

ě 1´ ec13t.

We now continue the previous chain of inequalities

PpDP P Ωsup
κ pv Ñ tq of multi-scale bad cellsq

ď PpDP P Ωsup
κ pv Ñ tq of multi-scale bad cellsXHκpvqq ` P

`

Hκpvq
c
˘

ď PpDP P Ωsup
κ´1pv Ñ tq of multi-scale bad cellsq ` e´c13t.

(III.6.17)

Since cs ă
dv
dv`1 ´

1
2 ă 1, the term e´c13t is of a smaller order than the claimed

bound of e´C22tcs , so we can ignore it from here on out.

We now want to bound the remaining probability. If we fix the length of the
path z P N and the scales k1, . . . , kz we can use Corollary III.6.2 and Lemma III.6.3
to obtain

P
`

DP P Ωsup
κ´1pv Ñ tq of z multi-scale bad cells of scales k1, . . . , kz

˘

ď e
´Cψ

řz
j“1 ψkj e

Cψ
2

řz
j“1 ψkj “ e

´
Cψ
2

řz
j“1 ψkj ď e´

Cψ
2
C18tcs ,

where the last step follows from Lemma III.6.4 since κ and therefore also κ ´ 1 “
Op

a

logptqq.

It only remains to estimate the number of different possible lengths and weights
of a path. We rewrite the weight of a path as the sum of the weights of cells of
different scales, namely

řz
j“1 ψkj “

řκ´1
k“1 hkψk, where hk is the number of cells of
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scale k. Hence, for fixed h1, . . . , hκ´1, the number of possible ways to order the cells
is

ph1 ` ¨ ¨ ¨ ` hκ´1q!

h1!h2! . . . hκ´1!
“

ˆ

h1 ` ¨ ¨ ¨ ` hκ´1

h1

˙ˆ

h2 ` ¨ ¨ ¨ ` hκ´1

h2

˙

. . .

ˆ

hκ´1

hκ´1

˙

. (III.6.18)

By the bounds provided by Lemma III.6.4, there exists k P t1, . . . , κ´ 1u such that
hk ě

C18tcs

pκ´1qψk
. Define now

H :“
!

ph1, . . . , , hκ´1q P pN0q
κ´1 : Dl P t1, . . . , κ´ 1u hl ě

C18tcs

pκ´1qψl

)

.

We can then write

PpDP P Ωsup
κ´1pv Ñ tq of multi-scale bad cellsq

ď
ÿ

H
P
´

DP P Ωsup
κ´1pv Ñ tq :

such that for each k “ 1, . . . κ´ 1, P is made
of hk multi-scale bad cells of scale k

¯

ď
ÿ

H
e´

Cψ
2

řκ´1
k“1 hkψk

ph1 ` ¨ ¨ ¨ ` hκ´1q!

h1!h2! . . . hκ´1!
.

Applying (III.A.2) κ´1 times to the right-hand side of (III.6.18) we can bound this
further by

ÿ

H
e´

řκ´1
k“1 hkp

Cψ
2
ψk´kq,

and using that α0, a,m are large enough twice, this is finally smaller than

ÿ

H
e´

Cψ
3

řκ´1
k“1 hkψk ď e´C22tcs ,

which concludes the proof.

III.6.4 Proof of Theorem III.2.12

Proof. By Proposition III.3.4 we need to show for all v P L1 that

ÿ

rě1

rdv`1P pradvpHvq ą rq ă 8.

Recalling the definition of Rt
kpvq above Proposition III.6.5 and letting v “

R1pιv, τvq, we note that Rt
1pvq contains only cells R1pι

1, τ 1q with dpS1pιvq, S1pι
1qq ď t

2`

and |τv ´ τ
1| ď t

β . Hence, if r, T satisfy

T
´ 1

2`
`

1

C242dw`

¯

ď r

for some constant C24, it holds that

RT
1 pvq Ď

 

R1pι
1, τ 1q : pι1, τ 1q P Bd ˆ Z, d

`

R1pι
1, τ 1q, v

˘

ď r
(

.
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Define therefore T prq :“ p 1
2`
` 1

C242dw`
q´1r, and let t0 be as in Lemma III.6.4 and r0

such that T pr0q ą t0. Then

ÿ

rěr0

rdv`1P pradvpHvq ą rq ď
ÿ

rěr0

rdv`1P
´

Hv Ę R
T prq
1 pvq

¯

ď
ÿ

rěr0

rdv`1P
´

Kv Ę R
T prq
1 pvq

¯

(III.6.16)
ď

ÿ

rěr0

rdv`1 exp
 

´ C22T prq
cs
(

.

Since this series converges, the Lipschitz cutset exists almost surely as stated in
Proposition III.3.4.

III.7 Proof of Theorem III.2.13

The main tool for the proof of Theorem III.2.13 are D

D

-paths, which we define
next. They are in essence a symmetric version of D-paths, in the sense that diagonal
connections can go “backwards”; equivalently, being connected by a D

D

-path is a
symmetric relationship unlike before.

III.7.1 D

D

-paths

Recall from Subsection III.5.3 the definitions of adjacent cells; we repeat the def-
inition of being diagonally connected: we say for two scale 1 cells R1pι, τq and
R1pι

1, τ 1q that R1pι, τq is diagonally connected to R1pι
1, τ 1q if there exists a sequence

of scale 1 cells tR1pι1, τ1q, . . . , R1pιn, τnqu such that R1pι, τq “ R1pι1, τ1q, for all
j P t1, . . . , n ´ 1u, dpR1pιj`1, τj`1q, L0q ă dpR1pιj , τjq, L0q and R1pιn, τnq is either
equal or adjacent to R1pι

1, τ 1q. In addition, we define here two cells to be diagonally
linked if the first case occurs, i.e. if R1pιn, τnq “ R1pι

1, τ 1q.
We say that two scale 1 cells R1pι, τq and R1pι

1, τ 1q are single diagonally connected
if R1pι, τq is diagonally connected to R1pι

1, τ 1q or if R1pι
1, τ 1q is diagonally connected

to R1pι, τq. We say that two scale 1 cells R1pι, τq and R1pι
1, τ 1q are double diago-

nally connected if there exists R1prι, rτq such that R1pι, τq is diagonally connected to
R1prι, rτq, R1pι

1, τ 1q is diagonally connected to R1prι, rτq, and either R1pι, τq or R1pι
1, τ 1q

is diagonally linked to R1prι, rτq. Note that being single diagonally connected or dou-
ble diagonally connected is a symmetric relationship.

As done in Subsection III.5.3, we extend these new definitions to cells of arbitrary
scale Rk1pι1, τ1q and Rk2pι2, τ2q by requiring that they respectively contain two scale
1 cells which satisfy the corresponding definition of the connectedness above. In
analogy to Definition III.5.4 we introduce a new type of paths.

Definition III.7.1. We define a D

D

-path as a sequence tRkj pιj , τjqu
n
j“1 of cells

where for all j “ 2, . . . , n, the cells Rkj´1
pιj´1, τj´1q and Rkj pιj , τjq are either adja-

cent, single diagonally connected or double-diagonally connected.

Similarly to (III.5.37), for some t ą 0 and v P L1, we define

Ω

D

1pv Ñ tq (III.7.1)

to be the set of all D

D

-paths of cells of scale 1 for which the first cell of the path
is v or v is single diagonally connected to the first cell, and the last cell is the only
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cell not contained in the space-time ball BtpS1pιvqq ˆ r´t ` τv, τv ` ts. We stress
that, contrary to Ω1pv Ñ tq, v must not necessarily be part of the D

D

-path; it can
be that v is only single diagonally connected to the path and not an actual cell of
the D

D

-path.
We define now ScD

D

-paths, the support connected version of D

D

-paths. Re-
call the definition of well-separated cells and support adjacent cells from Definition
III.5.5. We say that two cells Rk1pι1, τ1q and Rk2pι2, τ2q are support connected with
single diagonal if there exist two scale 1 cells respectively contained in the extended
supports of Rk1pι1, τ1q and Rk2pι2, τ2q which are single diagonally connected. Sim-
ilarly, we say that two cells Rk1pι1, τ1q and Rk2pι2, τ2q are support connected with
double diagonal if there exist two scale 1 cells respectively contained in the extended
supports of Rk1pι1, τ1q and Rk2pι2, τ2q which are double diagonally connected.

Definition III.7.2. We define as ScD

D

-path (support connected D

D

-path) a se-
quence of well-separated cells tRkj pιj , τjqu

z
j“1 for some z P N where for all j “

2, . . . , z the cells Rkj´1
pιj´1, τj´1q and Rkj pιj , τjq are either support adjacent, sup-

port connected with single diagonal or support connected with double-diagonals.

For t ą 0 and v P L1, we define

Ω

Dsup
κ pv Ñ tq

the set of all ScD

D

-paths of cells of scale at most κ so that the extended support
of the first cell of the path contains v or v is single diagonally connected to a scale
1 cell that is contained in the extended support of the first cell, and the last cell
is the only cell whose extended support is not contained in the space-time ball
BtpS1pιvqq ˆ r´t ` τv, τv ` ts. Again, we highlight the difference with Ωsup

κ pv Ñ tq,
where instead v must be contained in the extended support, whereas here it can be
only single diagonally connected to it.

Finally we define the analogue of the bad cluster Kv from (III.5.39):

K˚
v :“ tR1pι

1, τ 1q : there exists a D

D

-path of bad cells from v to R1pι
1, τ 1qu

(III.7.2)
Repeating the arguments of Lemma III.5.6, we can easily obtain its analogue for

D

D

-paths.

Lemma III.7.3. It holds that

P
`

DP P Ω

D

1pv Ñ tq of cells with bad ancestry
˘

ď P
`

DP P Ω

Dsup
κ pv Ñ tq of multi-scale bad cells

˘

.

III.7.2 Multi-scale analysis of D

D

-paths

We want to show that the Lipschitz cutset intersects the base L0 within distance
r from the origin with high probability. If the opposite was true, then we would
be able to find a nearest-neighbor path in L1zF which leaves a ball of radius r. We
will show that this implies the existence of a D

D

-path from the origin that exits
such a ball and we will use similar arguments to before to prove such D

D

-paths are
improbable.

We follow the structure of Section III.6 and write in detail only the parts where
the proofs for D

D

-paths differ from the ones for D-paths. Lemma III.6.1 and Corol-
lary III.6.2 still hold and and can be applied unchanged. We need to show the
analogue of Lemma III.6.3.
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Lemma III.7.4. For a fixed length z P N, fixed scales k1, . . . , kz and v P L1, the
number of ScD

D

-paths of cells of scale k1, . . . , kz where the first cells either contains
v or is v is single diagonally connected to a scale 1 cell contained in the extended
support of the first cell, is at most

exp
!Cψ

2

z
ÿ

j“1

ψkj

)

,

where Cψ is the same constant as in Lemma III.6.1.

Proof. We follow the proof of Lemma III.6.3. For Step 1, we need to make a small
change. Compare the definitions of Ωsup

κ pv Ñ tq and Ω

Dsup
κ pv Ñ tq: in the latter

we also allow v to be single diagonally connected to a scale 1 cell contained in the
extended support of the first cell in the D

D

-path. To account for this, note that we
can fix the relative position of v and the scale 1 cell in the extended support of the
first cell in the D

D

-path, and we are only left to control the number of the possible
relative position which is done in Step 3.

Step 2 remains unchanged, and we can turn to Step 3.

Consider two consecutive cells in the D

D

-path which are single diagonally con-
nected. We can define similarly to before

Aphq :“ max
pι1,τ1q

ˇ

ˇ

ˇ

ˇ

!

R1pι2, τ2q :
R1pι1, τ1q is single diagonally connected to R1pι2, τ2q

with
ˇ

ˇdpL0, R1pι1, τ1qq ´ dpL0, R1pι2, τ2qq
ˇ

ˇ “ h

)

ˇ

ˇ

ˇ

ˇ

.

For two cells R1pι1, τ1q and R1pι2, τ2q in the D

D

-path which are double diagonally
connected, let R1prι, rτq be the cell of the double diagonal that R1pι1, τ1q or R1pι2, τ2q

is diagonally linked to. Letting h1 be the height difference between R1pι1, τ1q and
R1prι, rτq and h2 the height difference between R1pι2, τ2q and R1prι, rτq, we can upper
bound the number of different relative positions between R1pι1, τ1q and R1pι2, τ2q for
which the respective height differences to R1prι, rτq are h1 and h2 by Aph1`1qAph2`1q.

Let Hk be as in (III.6.13); similarly to what was done for D-paths, we can
bound the total number of diagonal steps in a D

D

-path with the maximal attainable
distance from L0, within the path, i.e. by

H “ 2
z
ÿ

i“1

Hki ,

where we added the factor 2 to account for the diagonal step to the previous and
the following cell. For simplicity, when two cells are double diagonally connected we
consider also the cell R1prι, rτq, to which both cells are diagonally connected as part
of the path. So, letting hi, i “ 1, . . . , 2z ´ 1 be the height difference between two
diagonally connected cells, the number of diagonal steps is at most

H
ÿ

l“0

ÿ

h1,...h2z´1
h1`¨¨¨`h2z´1“l

Aph1 ` 1qAph2 ` 1q . . . Aph2z´1 ` 1q.

We can then repeat the remaining calculations as in Lemma III.6.3, substituting z
with 2z and obtain the same result.

We also have the analogue of Lemma III.6.4:
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Lemma III.7.5. Suppose that the largest scale κ satisfies κ “ Op
a

logptqq. Then
if ψ1 is large enough, there exist t0 and C18 ą 0 such that for any t ą t0 and any
v P L1 and any ScD

D

-path tRkj pιj , τjqu
z
j“1 P Ω

Dsup
k pv Ñ tq

z
ÿ

j“1

ψkj ě C18t
cs .

Proof. The proof is unchanged from the one of Lemma III.6.4 except that in
(III.6.15) we have to substitute t{2 with t{3 since we now consider 2 diagonals for
each cell instead of only one. The rest remains identical.

Recall now the definition of K˚
v in (III.7.2). The analogue of Proposition III.6.5

is then argued in the same way.

Proposition III.7.6. Let ζ as in (III.6.2), α0 as in Lemma III.6.1 and t0 as in
Lemma III.6.4. Then there exists a constant C22 independent of t such that for any
v P L1

PpK˚
v Ę Rt

1pvqq ď e´C22tcs ,

for all t ą t0, with cs as in Theorem III.2.13.

Recall the concept of hills from Definition III.3.3. In the following, we will say
that two hills Hv1 and Hv2 are adjacent if there exist v1j P Hvj , j “ 1, 2 that are
adjacent, and call them intersecting if there exists rv P Hv1 XHv2 .

Lemma III.7.7. Let F be the Lipschitz cutset from Theorem III.2.12. Let π “
tuju

n
j“0 with uj P L1zF be a sequence of sequentially pairwise adjacent cells.

Then there exists a sequence of hills H :“ tHvju
k
j“0, k ď n, such that every uj

is contained in some hill Hj1 and two consecutive hills of the sequence are either
adjacent or intersecting.

Furthermore there exists a D

D

-path which starts in u0 and ends in un.

Proof. We start with the first claim. For each uj P π, we have by assumption that
uj R F , so there exists a hill Hvj Q uj . Furthermore, for all j “ 1, . . . , n, uj´1 and
uj are adjacent and so the respective hills Hvj´1 and Hvj are either adjacent or they
intersect. The sequence of hills tHvju

n
j“0 may contain repetitions of the same hills,

so by removing all but the first appearance of those which appears multiple times,
we end up with a sequence of k ď n different elements.

We prove now the existence of the D

D

-path. Consider the sequence of hills
tHvju

k
j“0 from the previous step, and denote with ÐÝv j P Hvj for j “ 1, . . . , n the

cell (chosen in some arbitrary manner, for example lexicographically) that is either
contained in or adjacent to a cell contained in Hvj´1 . By definition of a hill, there
exist a d-path from v0 to u0 and a d-path from v0 to either ÐÝv 1 or to a cell adjacent
to it. Similarly, there exist a d-path from vj to ÐÝv j and a d-path from vj to ÐÝv j`1

(or a cell adjacent to it). Repeating this, we obtain a sequence of cells

u0, v0,ÐÝv 1, v1,ÐÝv 2, . . . , vk, un

where for each pair of consecutive cells there exists a d-path from the first to the
second or from the second to the first.

Note that, just like D-paths, d-paths are also D

D

-paths. Secondly, if a certain
sequence is a D

D

-path, then the reverse sequence is also a D

D

-path, as a simple
consequence of the fact that being adjacent, single diagonally connected or double
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diagonally connected is a symmetric relation. Thirdly, if there exist a D

D

-path from
a cell u1 to u2 and one from u2 to u3 we can concatenate them and obtain a D

D

-path
from u1 to u3.

We can thus construct a D

D

-path for the sequence u0, v0,ÐÝv 1, v1,ÐÝv 2, . . . , vk, un,
concluding the lemma.

We can now prove Theorem III.2.13.

Proof of Theorem III.2.13. By Theorem III.2.12, a Lipschitz cutset F exists a.s.,
so we need to show that it surrounds the origin at some distance r. Suppose the
converse.

This means that there exists a sequence of cells tuju
n
j“0 with uj :“ R1pιj , τjq P

L1zF and such that u0 “ R1p0, 0q and dpun, u0q ą r. Applying Lemma III.7.7 we
obtain the existence of a D

D

-path from R1p0, 0q to un.

By Proposition III.7.6, for t ą t0, the probability that such a path exists is
smaller than

PpK˚
p0,0q Ę Rt

1p0, 0qq ď e´C22tcs .

Setting again t “ p 1
2`
` 1

C242dw`
q´1r as in the proof in Subsection III.6.4 concludes

the proof for r0 :“ p 1
2`
` 1

C242dw`
qt0.

III.8 Generalized Sierpiński carpets

In this section we show how to adapt the previous arguments for the Sierpiński
gasket to a further class of fractal graphs, the Sierpiński carpets. We start by
introducing the graph and then stating the results. As we will see, other than changes
to constants and parameters, the work done for the gasket can be applied mostly
without further changes necessary, so we will only highlight selected statements to
show how they work in the carpet case.

(a) d “ 2 (b) d “ 3

Figure III.8: Examples of generalized Sierpiński Carpet.
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III.8.1 Setup and statement

We consider the class of fractal graphs of [BB99b]. We state the definition for
completeness and refer to [BB99b] for more details.

Let d ě 2, lF ě 3, and 1 ď mF ď plF q
d. Next, let F0 :“ r0, 1sd and for n P Z

Sn be the collection of closed cubes of side plF q
n and corner vertices in the lattice

plF q
nZd. For A Ď Rd let SnpAq :“ tS P Sn : S Ď Au. For S P Sn, let ΨS be the

orientation preserving affine map which maps F0 onto S.

Let F1 be the union of mF distinct cubes of S´1pF0q satisfying the following
conditions:

(H1) Symmetry : F1 is preserved by all the isometries of F0.

(H2) Connectedness: the interior IntpF1q is connected, and contains a path connect-
ing the hyperplane tx1 “ 0u and tx1 “ 1u.

(H3) Non-diagonality : For any cube B in F0 which is the union of 2d distinct
elements of S´1, if IntpF1 XBq is non-empty, it is connected.

(H4) Borders included: F1 contains the segment tx : 0 ď x1 ď 1, x2 “ . . . ,“ xd “
0u.

Given Fn, Fn`1 is obtained by removing the same pattern from each of the
squares in S´npFnq, so that Fn`1 is the union of pmF q

n squares in S´npF0q; formally

Fn`1 :“
ď

SPS´npFnq
ΨSpF1q

and F :“
Ş8
n“0 Fn is called a generalized Sierpiński carpet. The Hausdorff dimen-

sion of F is dv :“ logpmF q
logplF q

(see [BB99b]) and references therein). We now define the
pre-fractal graph.

For any cube S´n, call the lower-left corner the vertex x with xi ď yi for each
i “ 1, . . . , d and y P S´n. Let ln be the collection of lower-left corners of the cubes
in plF q

nFn, and

V :“
8
ď

n“0

ln,

see Figure III.9.

We define the generalized Sierpiński carpet graph SCd :“ SCdplF ,mF q as the
graph with vertex set V and edges E :“ ttx, yu P V ˆ V : }x´ y}1 “ 1u.

Similarly to Sierpiński gaskets, one can easily prove the volume estimate

cvol r
dv ď Volrpxq ď CVol r

dv , (III.8.1)

with dv :“ logpmF q
logplF q

. Theorem 1.5 in [BB99b] shows that upper and lower bounds

for the heat kernels (HKB(dv, dwq) hold for some value dw. Similarly to gaskets,
applying [GT02, Theorem 3.1] gives that the mean exit time satisfies

ExrHBrpxqcs — rdw , (III.8.2)

and that the parabolic Harnack inequality (PH(dw)) with parameter dw holds. Fur-
thermore Lemma III.2.5 also holds due to the above.
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Figure III.9: l1, l2 and l3 with d “ 2, lF “ 3, mF “ 8 and corresponding edges.
Note that the first 2 pictures are scaled up by a factor of 32 and 31 respectively.

Now that the graph has been defined, we can define the tessellation of the carpets,
in order to formulate the analogues of Theorems III.2.12 and III.2.13. We define the
tiles Skpιq as

Skpιq :“ ιplF q
`k `l`k ,

ι P SCd which is the union of l
dvp`k´`k´1q

F -many pk ´ 1q tiles.
Define just like before βk to be

βk :“ Cmixp
k2

ε q
4
Θ

`

l
`k´1

F

˘dw

with the walk dimension dw from (III.8.2) and we define the time interval Tkpτq,
τ P Z, as before. Similarly, we define space-time cells as the cross product of spatial
tiles with the time intervals.

Like in the gasket case, we define L0 and L1 as in (III.2.7) and (III.2.8) to be the
“hyperplane” subgraph and its corresponding collection of cells. Note that in order
to define L0, one needs to consider a subgraph SCd´1plF ,mF q with the same lF
but an appropriately changed mF . As an example, in the case of the 3 dimensional
Sierpiński carpet from Figure III.8, mF must be changed from 20 in d “ 3 to
mF “ 8 in d “ 2.

We define two scale 1 cells R1pι1, τ1q and R1pι2, τ2q to be adjacent if dpι1, ι2q `
|τ1 ´ τ2| “ 1. With this adaptation, we can define the Lipschitz cutset F as in
Definition III.2.9, and state the main theorem.

Remark III.8.1. The change in how adjacency is defined is due to the “disjoint”
nature of how the pre-fractal is constructed (recall that with the gasket, the corners
of the triangles were shared). With this new definition of adjacency, we recover the
same behaviour in the sense that two cells are adjacent if either they are spatially
the same and only one time interval away from each other, or if they share the time
interval and are spatially nearest neighbours, i.e. have norm 1 distance equal to 1.

Theorem III.8.2. Let d ě 2, lF ě 3, 1 ď mF ď plF q
d and SCdplF ,mF q be a

d´dimensional generalized Sierpiński carpet. Let ` P N and let β P N be large
enough. Furthermore, let η P N, ε P p0, 1q and ζ P p0,8q such that

ζ ě
1

`
dw

b

“

1
c6

log
`

8c5
3ε

˘‰dw´1
ηβ,

and tessellate Gd ˆ Z into space-time cells as described above, and let Epι, τq be
an increasing event restricted to the super cell Rη1pι, τq whose associated probability
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νE
`

p1´ εqµ, Sη1 pι, τq, Bζ`, ηβ
˘

has a uniform lower bound across all pι, τq P SCd ˆZ
denoted with

νE
`

p1´ εqµ, Sη1 , Bζ`, ηβ
˘

.

Then there exists α0 such that if

ψ1pε, µ0, `q :“ min
!ε2µ02dv`

Cλ
,´ log

´

1´ νE
`

p1´ εqλ, Sη1 , Bζ`, ηβ
˘

¯)

ě α0

there exists almost surely a Lipschitz cutset F where the event Epι, τq holds for all
pι, τq P F .

Furthermore there exists C4 ą 0 such that for r0 large enough

P
`

SpF, r0q
c
˘

ď
ÿ

rěr0

rdv`1e´C4rcs ,

for cs P
`

0, dv
dv`1 ´

1
2

˘

and SpF, r0q was defined above Theorem III.2.13.

III.8.2 Proof of Theorem III.8.2

To adapt the proof, only a single notable change beyond the changes in the preceding
definitions is necessary. Similar to those, this change is essentially substituting the
base 2 that appeared in the gasket case with lF , as we have seen in the definitions
of Skpιq and βk. From here onward we will repeatedly:

Substitute every base 2 exponential with a base lF exponential. (Subst)

Recall the definition of adjacent scale 1 cells above Remark III.8.1. We generalize
this to cells of arbitrary scale: two cells Rkpι1, τ1q and Rkpι2, τ2q of the same scale
are called adjacent if dpι1, ι2q ` |τ1 ´ τ2| ď 1, where dp¨, ¨q is as before the graph
distance. Seeing SCd ˆ Z as a subgraph of Zd`1, we define two cells Rkpι1, τ1q and
Rkpι2, τ2q to be ˚-neighbors if }pι1, τ1q ´ pι2, τ2q}8 ď 1. We next define d-paths for
carpets.

Definition III.8.3 (d-path). A d-path in Gd ˆ Z is a sequence tuku
n
k“0 of

˚´neighboring cells in SCd ˆ R from a bad cell u0 P L1 such that for each uk
and uk`1 one of the following holds:

• increasing move: uk`1 is bad and dpL0, uk`1q ě dpL0, ukq

• diagonal move: dpL0, uk`1q ă dpL0, ukq

We say for two scale 1 cells R1pι, τq and R1pι
1, τ 1q that R1pι, τq is diago-

nally connected to R1pι
1, τ 1q if there exists a sequence of ˚-neighbor scale 1 cells

tR1pι1, τ1q, . . . , R1pιn, τnqu such that R1pι, τq “ R1pι1, τ1q, for all j P t1, . . . , n´ 1u,
dpR1pιj`1, τj`1q, L0q ă dpR1pιj , τjq, L0q and R1pιn, τnq is either equal or adjacent to
R1pι

1, τ 1q.

Lemma III.5.6 then still applies using the change (Subst). Similarly, the defini-
tion of ψk is subject to (Subst). In this way, Lemma III.6.1 can be proven in the
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same way by again applying the mixing Theorem III.4.6 with the choices

K :“ side length of Sbase
k pιq “ 2bpkql`kF ` l

`k
F ,

K 1 such that K ´K 1 “ bpkql`kF ,

l :“ l`kF ,

δ :“ p1´ dk`1qµ0,

∆ :“ lengthprγ
p1q
k pτqβk`1, τβksq “ τβk ´ γ

p1q
k pτqβk`1, and

ε̄ :“
ε

8k2
.

Lemmas III.6.3 and III.6.4, Proposition III.6.5 and the proof of Theorem III.2.12
go through by applying (Subst), and therefore the first half of Theorem III.8.2 is
shown.

Similarly, Section III.7 can be proven in the same way after using (Subst) and
in particular we obtain the bound

P
`

SpF, r0q
c
˘

ď
ÿ

rěr0

rdv`1e´C4rcs .

III.9 Survival of the infection

We now give an application of the Lipschitz cutset framework to show that for an
infection with recovery on a particle system as defined in Subsection III.2.4, the
infection survives indefinitely with positive probability.

Consider either the Sierpiński gasket Gd or a generalized Sierpiński carpet
SCdplF ,mF q and the particle system defined in Subsection III.2.4 given by a Poisson
point process with intensity µpxq :“ µ0λx. Assume furthermore that at time 0, there
is an infected particle at the origin of the graph2. We next describe the dynamics
of the infection.

Any particle of the process gets instantaneously infected when it shares a site
with an infected particle. For a second parameter γ ą 0, suppose that an infected
particle recovers independently at rate γ, but can get infected again afterwards. In
particular, we allow for a particle to get immediately reinfected if it recovers while
sharing a site with an infected particle, i.e. recovery is impossible when a particle
shares a site with a different particle. However, our application works also in the
case where infections can only occur when particles change sites, i.e. when a healthy
particle jumps to a site with an infected particle or vice versa. To model recovery,
consider a collection of Poisson point processes pRx,nγ qxPGd,nPN on R` with intensity
γ, which we refer to as the recovery marks. As in [BS23], we view the process Rx,nγ
as the recovery marks of the random walk pXx,n

t qtě0, where Xx,n
t is the location of

n-th particle located at x at time 0 at time t. A particle pXx
t qt recovers at time s if

it is alone i.e. ΠspX
x
s q “ 1 and s P Rx,nγ .

We say that the infection survives if for every t ą 0 there exists at least one
infected particle at time t somewhere on the graph. We denote with P γµ the distri-
bution of the process with intensity µ and recovery rate γ.

Proposition III.9.1. For any µ0 ą 0 there exists γ0 ą 0 such that for all 0 ă γ ă γ0

the infection survives with positive probability.

2The choice of the site where the infection starts is arbitrary as all of the bounds we use are
uniform across the graph. Note however that the local geometry of the origin is in fact different
from that of any other site in the graph.
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We will follow the approach introduced in [GS19b] and refined in [BS23]. To
prove the result we will define a suitable event Epι, τq and apply Theorem III.2.12.
We will then be able to infer from the definition of Epι, τq and the connectivity
properties of the Lipschitz cutset that the infection survives indefinitely almost surely
once the infection has entered the Lipschitz cutset, therefore surviving indefinitely
as long as the infection does not recover before this. The event Epι, τq will then
consist of two phases - in the first phase we will use (some) of the already infected
particles to infect a sufficiently large number of the particles in the cell R1pι, τq.
In the second phase, we will use these newly infected particles to propagate the
infection to the surrounding cells.

Fix the value ` P N and consider a value β, depending on `, so that the ratio
2dw`

β is fixed. We define T :“ 2`pdw´
1
3 q the time point between the two phases.

Define the following condition: we say that a cell R1pι, τq is acceptable if

(A1) for every x P S1pι, τq with Πτβpxq ą 0 there exists a path denoted with πx,
which starts at x, and does not exit the super-tile S3

1pιq and has no recovery
marks up to time τβ ` T .

(A2) for each S1pι
1q Ď S3

1pιq and each x P S1pιq with Πτβpxq ą 0, there exists a
particle which stays inside the super-tile S3

1pιq and does not have any recovery
marks up to time pτ ` 1qβ, is inside S1pι

1q at time pτ ` 1qβ and intersects3 the
path πx during the time interval rτβ, τβ ` T s.

We now claim

Pγµ
`

R1pι, τq satisfies (A1), (A2)
˘

ě 1´ exp

#

C25µ0e
´γβ2

`{3
dw´1

+

, (III.9.1)

the proof of which we relegate to Appendix III.C since it is an easy adaptation of
the work done in [GS19b; BS23].

Remark III.9.2. One might be tempted to think that using the event

Epι, τq :“ tR1pι, τq is acceptableu

and Theorem III.2.12 would yield our claim. This would be true if the infection
were to enter the Lipschitz cutset from the time dimension4. Then by definition
of acceptable, the infection enters from the time dimension in all cells in R3

1pι, τq
appearing in (A2), including the one in the Lipschitz cutset due to Corollary III.3.5,
and thus survives indefinitely. The next definition takes care of the case in which the
infection does not enter from the time dimension when it first enters the Lipschitz
cutset.

For each cell R1pι, τq and each x P S1pιq fix an independent realization of a
random walk path pπxs qsPr0,τβs with πx0 “ x. We say that a cell R1pι, τq is decent if

(D3) for every x P S1pιq the path πxs has no recovery marks and for every jump time
t of pπxs qsPr0,τβs there exists a tile S1pι

1q Ď S1
1pιq such that

3We say that a particle intersects a path if the path and the particle path intersect in space-time,
i.e. have the same position at the same time at least once.

4The infection enters a cell R1pι, τq from the time dimension if there is an infected particle in
S1pιq at time τβ. We say that the infection enters the cell R1pι, τq from the spatial dimension, if
there are no infected particles inside S1pιq at time τβ and there is an infected particle which enters
S1pιq at some time t P pτβ, pτ ` 1qβq.
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(D3a) if t ă pτ ` 1qβ ´ T there exists a particle which has no recovery marks
and stays inside R1

1pι, τq, is at time pτ ` 1qβ inside S1pι
1q and intersects

the path pπxs´tqsPrt,t`T s during the time interval rt, t` T s;

(D3a) if pτ ` 1qβ ´ T ď t ď pτ ` 1qβ it holds πx
pτ`1qβ´t P S1pι

1q.

We refer again to Appendix III.C for the proof of

PγµpR1pι, τq is decentq ě 1´ expt´C26βu ´ expt´C27γβu ´ exp
 

C28µ0e
´γβ2

`{3
dw´1

(

,
(III.9.2)

as the arguments remain very similar to [BS23].

Remark III.9.3. We note that unlike done in [BS23], where the authors introduce
a single random walk path π0 for each space-time cell, which they then translate to
x as needed, our graphs lack translation invariance and we must therefore consider
different paths for each x. This however has no bearing on the rest of the argument.

Proof of Theorem III.9.1. We introduce an alternative construction of the process
using the additional paths pπxs qs. We fix the tessellation and observe a cell R1pι, τq.
If at time τβ there are infected particles inside S1pιq, we do not use the paths
pπxs q, x P S1pιq. If instead there are no infected particles in S1pιq at τβ, we observe
the process on adjacent tiles and consider the first infected particle which enters
the tile S1pιq at some site y during T1pτq, if it exists, and let this particle follow
the path πys until pτ ` 1qβ or until it the same rule applies for some adjacent cell,
whichever happens first. Then, as simple concatenations of random walks, with this
new construction the process maintains the same distribution as the original process.

We can now define the event

Epι, τq :“ tall cells R1pι
1, τ 1q adjacent to R1pι, τq are acceptable and decentu

Then the event Epι, τq is increasing, restricted to the super-cell R4
1pι, τq and using

the volume estimates (Vol(dvq) for ` large enough and γ small enough we can find
α0 such that P γµ pEpι, τqq ě 1´ e´α0 .

Then Theorem III.2.12 gives the existence of a Lipschitz cutset F o where the
event Epι, τq holds and Theorem III.2.13 gives that it surrounds the origin at some
finite distance r almost surely, hence an initially infected particle starting at the
origin has a positive probability of entering a cell in F o before recovery.

Suppose that this infected particle enters the Lipschitz cutset from the time
dimension: then it suffices to consider (A1) and (A2) to obtain that the infection
spreads to all cells in R1

1pι, τq. Since by Corollary III.3.5 for every cell R1pι, τq in
F o there exists a cell R1pι

1, τ ` 1q Ď F o with dpS1pιq, S1pι
1qq “ 0, by definition of

acceptable cells once the infection enters the Lipschitz cutset it spreads to neigh-
boring cells inside F o. Since this observation can then be inductively repeated, the
infection now survives almost surely by spreading along cells of F o.

Suppose instead that the infected particle enters a decent cell R1pι, τq from the
spatial dimension. Since the cell is decent, the infection spreads to at least one cell
R1pι

1, τ 1q Ď R1
1pι, τq which is acceptable by the definition of Epι, τq. Note that this

cell might not necessarily be part of F o. However, since it is acceptable it spreads
the infection to all cells R1pι

2, τ2q Ď R3
1pι
1, τ 1q. By Corollary III.3.5 and since η “ 3

there exists in particular at least cell R1pι
2, τ2q Ď R3

1pι
1, τ 1q that is inside F o. By

definition of acceptable cells, the infection enters this cell from the time dimension,
and the infection survives indefinitely by the previous argument.
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Since every cell of F o is acceptable and decent by construction and the Lipschitz
cutset surrounds the origin at almost surely finite distance, this yields the claim.
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III.A Standard Results

Lemma III.A.1 (Chernoff Bound). Let P a Poisson random variable with param-
eter λ. Then, for δ P p0, 1q

PpP pλq ă p1´ δqλq ă e´λ
δ2

2 (III.A.1)

Lemma III.A.2. Let x, y P N. Then, for any a, b ą 1

ˆ

x` y

y

˙

e´ax´by ď e´pa´1qx´pb´1qy (III.A.2)

III.B Volume estimates for Sierpiński gasket graph

Lemma III.B.1. Let Gd, d ě 2 the Sierpiński gasket. There exists cvol,CVol ą 0,
such that for all x P Gd, r ě 1 it holds

cvol r
dv ď Volrpxq ď CVol r

dv , (III.B.1)

Proof. We generalize the proof in dimension 2 from [Bar98]. For notation conve-
nience, call any translation of 4d

n a “n-triangle”.

First observe that any n-triangle contains

´d` 1

2

¯

pd` 1qn `
´d` 1

2

¯

vertices, which can be verified by induction observing that 4d
0 :“ 4d has d ` 1

vertices, and when constructing 4d
n`1 from 4d

n we place d` 1 copies of 4d
n but we

identify
`

d`1
2

˘

couples of them since they are in the same position.

For r ě 1, let n such that 2n ă r ď 2n`1.

We start with the upper bound. For any x, Brpxq can intersect at most pd` 2q
pn ` 1q-triangles, which are the pn ` 1q-triangle which contains x and its d ` 1
neighbors. So

|Brpxq| ď pd` 2q |4d
n`1 | ď pd` 2q

´

`d` 1

2

˘

pd` 1qn`1 `
`d` 1

2

˘

¯

ă pd` 2q3pd` 1qn ď pd` 2q32dvn ă pd` 2q3rdv

For the lower bound, since every n-triangle has diameter 2n, Brpxq must contain
at least one n-triangle. So

|Brpxq| ě |4d
n | ą

1

2
pd` 1qn`1 1

2
2dvpn`1q ě

1

2
rdv ,

which complete the proof.

III.C Probability of acceptable and decent cells

In this appendix we prove equations (III.9.1) and (III.9.2) adapting the proofs of

[GS19b; BS23]. Recall that the ratio 2dw`

β is fixed and that T :“ 2`pdw´
1
3 q.
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Acceptable. We start by showing (III.9.1).

Lemma III.C.1 ([GS19b, Lemma 2]). Assume that the particles in S1pιq are a
Poisson point process of intensity c14µ0λx for some c14 ą 0. For x P S1pιq, let
πx a path of an (infected) particle which starts in x and stays inside S3

1pιq during
rτβ, τβ ` T s. Then, for ` large enough, the number of particles in S3

1pιq at time τβ
which intersect πxby time τβ ` T is a Poisson random variable with mean at least

C29µ02
`p

1{3
dw´1 q

Proof. The proof is a simple adaptation of [GS19b, Lemma 2], using (HKB(dv, dwq)

and splitting time into sub-intervals of length W :“ 2
`pdw´

1
3´

1{3
dw´1 q.

Lemma III.C.2 ([GS19b, Lemma 3]). Given a set of N P N particles in S3
1pιq at

time τβ ` T and a tile S1pι
1q Ď S3

1pιq, the probability that at least one of the N
particles is in S1pι

1q at time pτ ` 1qβ is at least 1 ´ expt´Ncpu for some constant
cp ą 0 and ` large enough.

Proof. One can define a suitable binomial variable B with parameters N and p P
p0, 1q, the latter being the minimal probability for a particle to be in S1pι

1q after
moving for β ´ T amount of time, so that the probability in the statement is at
least PpB ě 1q ě 1 ´ expt´Npu. The estimate p ą cp then follows from applying
(HKB(dv, dwq) in the time interval rT, pτ ` 1qβs.

With the help of Lemma III.2.5, we can combine the previous two statements
with the help of Chernoff’s bound into the following result.

Lemma III.C.3 ([GS19b, Lemma 4]). Assume that the particles inside S3
1pιq at

time τβ are a Poisson process of intensity c14µ0λx and let πx be the path from
Lemma III.C.1. The probability that at time pτ ` 1qβ there is at least one particle
in every tile S1pι

1q Ď S3
1pιq which intersected πx during rτβ, τβ ` T s is at least

1´ expt´C30µ02
`{3
dw´1 u.

Lemma III.C.3 with the use of a simple union bound across all paths πx for
x P S3

1pιq and (Conf(dwq) for (A1) yields

P0
µpR1pι, τq satisfies (A1), (A2)q ě 1´

ÿ

xPS3
1pιq

´

c5 exp
!

´ c62
`{3
dw´1

)

` exp
!

C30µ02
`{3
dw´1

)¯

ě 1´ exp
!

´ C31µ02
`{3
dw´1

)

.

Applying a further thinning on all of the particles appearing in the previous
arguments (as done in detail in [BS23, Lemma 3.1]), preventing them from recovering
during the time interval rτβ, pτ`1qβs, one obtains the analogous result with recovery
(III.9.1).

Decent. We now bound the probability of a cell to be decent and show (III.9.2).
The probability that a path has no recovery marks during an interval of length β is
e´γβ and it holds for any random walk that

P
`

ConfpBR,∆q
˘

ě 1´ C32R
dv exp

!

´ C33
R2

∆

)

, (III.C.1)
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(see for example [GT01, (4.1)]).
We now evaluate the probability of (D3b) for fixed x, t. We observe the time

interval rt, pτ `1qβs: if the length pτ `1qβ´ t is bigger then 2` we can apply Lemma
III.2.5; if instead pτ ` 1qβ ´ t ă 2` then we can apply (III.C.1) with R “ 2` and
∆ ď 2`, which yields a lower bound of 1´ expt´C342`u. All together

P
`

the pair πx, t satisfy (D3b)
˘

ě 1´ c5 expt´c62
`{3
dw´1 u ´ expt´C342`u.

For (D3a), we adapt a strategy similar to acceptable cells. Lemma III.C.1 still
applies. Lemma III.C.2 still holds as before if pτ ` 1qβ ´ t ´ T ą 2`, if instead
pτ ` 1qβ ´ t ´ T ă 2`, we need to use (III.C.1) instead of (HKB(dv, dwq) in the
proof of Lemma III.C.2. Then Lemma III.C.3 applies with appropriately modified
exponential bounds. Hence, for fixed x and t the probability of (D3a) under P0

µ is

at least exptC35µ02
`{3
dw´1 u.

Note now that the probability that a path has no recovery marks during an
interval of length β is e´γβ. The probability that a path jumps more than 3β times
during a time interval of length β is bounded by e´β by a simple Poisson bound.
Combined, we obtain

P0
µpR1pι, τq is decentq ě 1´

ÿ

xPS1pιq

´

e´γβ ` e´β ` 3β exp
 

´ C35µ02
`{3
dw´1

(

` 3βc5 expt´c62
`{3
dw´1 u ` 3β expt´C342`u

¯

.

With the thinning property of Poisson point processes we can adapt the calcu-
lation for the recovery marks as in [BS23], and (Vol(dvq) then yields (III.9.2) for `

large enough since the ratio `dw
β is fixed.



Chapter IV

Conclusion

In this thesis we investigated mostly two models, namely the Gaussian free field on
supercritical Galton–Watson trees and Poisson random walks on fractal graphs.

The statements about the critical parameter h˚ and the stability under small
perturbation are interesting but not at all exhaustive. In this precise setting of
weighted Glaton–Watson trees further research may investigate the speed of the
random walk on the infinite cluster and the critical parameters h˚˚ and h̄. An other
possible research path is the question about the relation of independent and depen-
dent percolation, as we sketched in Figure I.1, and it would be extremely interesting
to pursue the rigorous proof of the mantra “positive correlation makes percolation
easier”, in both current and related settings: first of all to show the conjecture that
the critical parameter associated to the independent field is smaller than the one
relative to the positive correlated field for all values of m, and more ambitiously to
understand if this holds on other graphs.

For the model of Poisson random walks we constructed the Lipschitz cutset,
the analogous of the Lipschitz Surface for fractal graph. This object allowed us to
obtain the survival of the infection for small intensity of the recovery parameter,
but we believe that other consequences could be inferred from it. For example, in
Zd it was possible to obtain (see [BS23]) that the infection survives locally, i.e. the
set of times for which the origin contains an infected particle is unbounded. Still
on Zd, it was shown in [GS19b] that the infection spreads with positive speeds. It
would be thus interesting to obtain those results for the fractal graphs we considered,
and we believe that the Lipschitz cutset could yield both statement if some further
connectivity properties within L1 could be shown.
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solo fisicamente. Gli amici, in particolare Pietro, Fabio e Sergio, che mi hanno
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[RS13a] Balázs Ráth and Artëm Sapozhnikov. “The effect of small quenched
noise on connectivity properties of random interlacements”. In: Electron.
J. Probab. 18 (2013), no. 4, 20.

[RS13b] Pierre-François Rodriguez and Alain-Sol Sznitman. “Phase transition
and level-set percolation for the Gaussian free field”. In: Comm. Math.
Phys. 320.2 (2013), pp. 571–601.

[SS19] Vladas Sidoravicius and Alexandre Stauffer. “Multi-particle diffusion
limited aggregation”. In: Invent. Math. 218.2 (2019), pp. 491–571.

[SS09] Vladas Sidoravicius and Alain-Sol Sznitman. “Percolation for the vacant
set of random interlacements”. In: Comm. Pure Appl. Math. 62.6 (2009),
pp. 831–858.

[ST17] Vladas Sidoravicius and Augusto Teixeira. “Absorbing-state transition
for stochastic sandpiles and activated random walks”. In: Electron. J.
Probab. 22 (2017), Paper No. 33, 35.

[Sie15] W. Sierpinski. “Sur une courbe dont tout point est un point de ramifi-
cation”. In: C. R. Acad. Sci. Paris 160 (1915), pp. 302–305.

[Sym66] K. Symanzik. “Euclidean quantum field theory. I. Equations for a scalar
model”. In: J. Mathematical Phys. 7 (1966), pp. 510–525.

[Szn10] Alain-Sol Sznitman. “Vacant set of random interlacements and percola-
tion”. In: Ann. of Math. (2) 171.3 (2010), pp. 2039–2087.

[Szn12a] Alain-Sol Sznitman. “An isomorphism theorem for random interlace-
ments”. In: Electron. Commun. Probab. 17 (2012), no. 9, 9.



138 BIBLIOGRAPHY

[Szn12b] Alain-Sol Sznitman. Topics in occupation times and Gaussian free fields.
Zurich Lectures in Advanced Mathematics. European Mathematical So-
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