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Abstract

A nowhere vanishing vector fieldX on a manifoldM is called geodesible if there exists
a Riemannian metric on M for which X is of unit length and such that the orbits of
X are geodesics. After discussing some examples of such vector fields, we extend an
existence result of Gluck and Hajduk–Walczak about geodesible vector fields on odd-
dimensional manifolds using open books. Furthermore, we provide a construction of
geodesible vector fields on round 1-handlebodies and, as an application, prove the
existence of geodesible vector fields on a certain family of manifolds not covered by
the previous constructions. We provide some new conditions on the sectional or Ricci
curvatures of geodesic vector fields on 3-manifolds that are necessary or sufficient
for the orthogonal distribution to define a contact structure or foliation. We give
sufficient conditions for a geodesible vector field on a 3-manifold to be realisable as
the Reeb vector field of a contact form or stable Hamiltonian structure. Specifically,
we consider geodesic vector fields on flat 3-manifolds, and show that these vector
fields are tangent to a 2-dimensional totally geodesic foliation in case the underlying
manifold is a nontrivial quotient of E3. Using this, we derive a condition in terms
of induced contact structures for these vector fields to be realisable as Reeb vector
fields, and we show that the underlying contact structure is always universally tight.
Finally, we present a detailed proof of a theorem by Scott about the geometrisation of
Seifert fibred 3-manifolds. We show further that — with respect to these geometries
— the fibres are geodesics and that their orthogonal distribution defines a universally
tight contact structure if and only if the Euler number is nonzero. In particular, we
deduce that a contact structure admitting a Reeb vector field tangent to the fibres
of a Seifert fibration is necessarily universally tight.





Zusammenfassung

Ein nirgends verschwindendes Vektorfeld X auf einer Mannigfaltigkeit M heißt
geodisierbar, falls es eine Riemannsche Metrik auf M gibt, bezüglich welcher X
von konstanter Länge 1 ist, und so dass die Bahnen von X Geodätische sind.
Wir stellen zunächst einige Beispiele solcher Vektorfelder vor und erweitern an-
schließend ein Existenzresultat von Gluck und Hajduk–Walczak über geodisier-
bare Vektorfelder auf ungerade-dimensionalen Mannigfaltigkeiten mithilfe von of-
fenen Büchern. Des Weiteren beschreiben wir eine Konstruktion geodisierbarer Vek-
torfelder auf runden 1-Henkelkörpern, und zeigen damit die Existenz geodisier-
barer Vektorfelder auf einer gewissen Familie von Mannigfaltigkeiten, auf welche
die vorherigen Konstruktionen nicht anwendbar sind. Anschließend leiten wir einige
neue geometrische Bedingungen an die Schnitt- oder Ricci-Krümmungen geodätis-
cher Vektorfelder auf 3-Mannigfaltigkeiten her, die notwendig oder hinreichend dafür
sind, dass das orthogonale Ebenenfeld eine Kontaktstruktur oder eine Blätterung
definiert. Wir zeigen, unter welchen Bedingungen ein geodisierbares Vektorfeld auf
einer 3-Mannigfaltigkeit als Reeb-Vektorfeld einer Kontaktform oder stabilen Hamil-
tonschen Struktur realisiert werden kann. Insbesondere betrachten wir geodätische
Vektorfelder auf flachen 3-Mannigfaltigkeiten und zeigen, dass diese tangential an
eine 2-dimensionale total geodätische Blätterung sind, falls die gegebene Mannig-
faltigkeit ein nichttrivialer Quotient von E3 ist. Daraus leiten wir eine Bedingung in
Bezug auf induzierte Kontaktstrukturen dafür her, dass ein solches Vektorfeld als
Reeb-Vektorfeld einer Kontaktform realisiert werden kann, und zeigen zudem, dass
die zugehörige Kontaktstruktur notwendigerweise universell straff ist. Abschließend
präsentieren wir einen detaillierten Beweis eines Satzes von Scott über die Geometri-
sierung Seifert-gefaserter 3-Mannigfaltigkeiten. Darüber hinaus zeigen wir, dass die
Fasern Geodätische bezüglich dieser Geometrien sind, und dass das Ebenenfeld or-
thogonal zu den Fasern genau dann eine universell straffe Kontaktstruktur definiert,
wenn die Euler-Zahl ungleich Null ist. Insbesondere folgern wir, dass eine Kon-
taktstruktur, die ein Reeb-Vektorfeld tangential an eine Seifert-Faserung zulässt,
notwendigerweise universell straff ist.
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Introduction

In his 1972 publication, Epstein proved the following, nowadays classical theorem:
If all orbits of a flow on a compact 3-manifold are closed, then they share a common
period [21]. In other words, the flow is periodic, that is to say there is an S1-action
with the same orbits. This remarkable result turns out to be false in higher dimen-
sions; there are examples of flows on compact 5-manifolds with closed orbits only,
but unbounded minimal period [68]. In 1974, Wadsley extended Epstein’s result in
his Ph.D. thesis for manifolds of arbitrary dimension under an additional geometric
assumption. Namely, he proved that a flow all of whose orbits are closed is periodic
if and only if there is a Riemannian metric for which all flow lines are geodesics
[77]. A flow with this property is called geodesible, a notion that was introduced by
Gluck in the early 1980s, who was interested in the question of whether or not a
given manifold can be ‘filled’ by geodesics, and under which circumstances a given
1-dimensional foliation can be realised as a foliation by geodesics [33].

Apart from periodic flows, examples of geodesible vector fields (or flows) appear
naturally in different areas of geometry: Reeb vector fields of contact forms, suspen-
sion flows or Killing vector fields — to name a few — are always geodesible. There
is a useful characterisation of geodesible vector fields due to Wadsley and Sullivan,
which we are going to prove in Section 1.1: a vector field X is geodesible if and only
if there is transverse hyperplane field preserved by the flow of X (Proposition 1.1.2
in this thesis). For example, in the case of a Reeb vector field, this hyperplane field
is given by the underlying contact structure.

Despite the abundance of examples, the existence question for geodesible vector
fields has not been answered completely. In Chapter 1, we will address this question
and discuss and extend a result originally stated by Gluck and proved by Hajduk
and Walczak on the existence of geodesible vector fields on closed, orientable odd-
dimensional manifolds (Theorem 1.2.2). The proof makes use of the existence of
so-called open book decompositions of these manifolds. Motivated by the notion of
supporting open book decompositions for contact structures due to Giroux [32], we
introduce the notion of supporting open books for geodesible vector fields. In fact,
the construction of Hajduk and Walczak produces geodesible vector fields supported
by an open book decomposition of a given odd-dimensional manifold. Moving on, we
address the existence question in even dimensions. We give a brief introduction to the
theory of round handle decompositions due to Asimov to then prove the existence of
geodesible vector fields on round 1-handlebodies of arbitrary dimension. The vector
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2 Introduction

fields we construct turn out to be tangent to the boundary, and their restrictions to
the boundary are supported by an open book decomposition. As an application, we
prove the existence of geodesible vector fields on a certain family of manifolds (of
arbitrary dimension) not covered by the previous constructions (Proposition 1.5.1
and Theorem 1.5.4).

In Chapter 2, we study geodesic vector fields on 3-manifolds with a given Rie-
mannian metric. In that case, one can consider the orthogonal plane field which
is preserved under the flow of the geodesic vector field. One question of interest
is under which assumptions (for example, on the sectional or Ricci curvature) this
plane field defines a contact structure, i.e. a maximally non-integrable plane field.
In this case, we say that the given geodesic vector field induces a contact structure.
Secondly, one can ask about the properties of contact structures arising this way, for
example tightness in dimension 3. A known result in this direction is due to Gluck:
a geodesic vector field on the standard round 3-sphere always induces a contact
structure, and this contact structure is diffeomorphic to the standard one (Theo-
rem 2.2.3). Similar results for geodesic vector fields on flat 3-space were obtained by
Harrison (Theorem 2.2.6) and Geiges and the author (Theorem 2.2.7). The proofs of
these statements rely on topological and geometrical features of fibrations by great
circles or lines. We will provide alternative proofs for some of these statements in
a more general setting (Theorem 2.3.5) using the notion of adapted Jacobi fields,
which we will introduce in Section 2.3. Another known result is due to Aazami and,
independently, Harris and Paternain, stating that a geodesic vector field X on a
closed Riemannian 3-manifoldM induces a contact structure if X has positive Ricci
curvature everywhere (Theorem 2.2.4). We obtain a slight generalisation of this re-
sult in Section 2.2 by weakening the assumption on the Ricci curvature (Theorem
2.2.13). Then we turn our attention to geodesic vector fields whose so-called Jacobi
tensor is parallel along flow lines. Examples of this type are given by Killing vector
fields or geodesic vector fields on locally symmetric 3-manifolds. Given such a vector
field X, we show that X induces a contact structure if it satisfies a certain nonde-
generacy condition, and if the minimal sectional curvature of planes containing X
is nonnegative everywhere; see Theorem 2.4.3 for the precise statement. The con-
dition on the sectional curvature is weaker than RicX > 0, so that Theorem 2.4.3
can be seen as a generalisation of Theorem 2.2.13 within the class of geodesic vector
fields with parallel Jacobi tensor. Then, in Section 2.5, we investigate geodesic vector
fields whose orthogonal plane field is integrable, i.e. tangent to a foliation. This can
be thought of as the other end of a spectrum, where one end is given by geodesic
vector fields inducing contact structures (which are maximally non-integrable). In
particular, we derive a bound on the ‘total Ricci curvature’ of a geodesic vector field
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whose orthogonal distribution is integrable (Theorem 2.5.6).
Now if a geodesic vector field induces a contact structure, then it is not hard

to show that it defines the Reeb vector field of its dual (contact) 1-form. More
generally, one can ask whether or not a given geodesible vector field X can be
realised by the Reeb vector field of a contact form, where the contact structure is
not necessarily orthogonal to X. We will address this question in Chapter 3. Using
a modified version of the construction of geodesible vector fields on open books,
we first show that every closed orientable 3-manifold admits geodesible vector fields
that are not realisable as Reeb vector fields of contact forms or, more generally,
stable Hamiltonian structures (Proposition 3.1.2). Then, using basic cohomology
and a notion of volume for geodesible vector fields, we obtain a criterion for the
‘Reebability’ of geodesible vector fields (Proposition 3.3.5). As an application, we
recover a result by Kegel and Lange, which states that a vector field whose flow
defines a Seifert fibration can be realised by a Reeb vector field if and only if the
Euler number of the Seifert fibration is nonzero (Corollary 3.4.3). After that, we
focus on geodesic vector fields on flat 3-manifolds. We show in Section 3.5 that
geodesic vector fields on flat 3-manifolds given by nontrivial quotients of E3 must
be of a very simple ‘1-parameter’ type, that is, they are tangent to a codimension-1
foliation whose leaves are totally geodesic (Theorem 3.5.1). In Section 3.6 we use this
characterisation to provide a necessary and sufficient condition for the Reebability
of such vector fields in terms of induced contact structures (Theorem 3.6.2), in
particular proving that the underlying contact structure must lift to the standard
one on R3 (up to diffeomorphism). Finally, we show that a geodesic vector field on
E3 is always — up to rescaling by a positive function — given by the Reeb vector
field of a contact form, and that the associated contact structure is necessarily tight
(Corollary 3.7.2 and Theorem 3.7.4). The latter generalises an earlier result obtained
in [5]. The contents of Sections 3.5, 3.6 and 3.7 are based on the article [4].

In the final Chapter 4, we study a specific class of geodesible fibrations given
by Seifert fibrations of 3-manifolds. We provide a detailed proof of a theorem by
Scott about the geometrisation of Seifert manifolds, stating that a Seifert manifold
can be equipped with a locally homogeneous metric (Theorem 4.4.6). Furthermore,
we show that the Seifert fibres are geodesics with respect to this metric (unless the
manifold is a lens space), and that the plane field orthogonal to the fibres defines
a universally tight contact structure if and only if the Euler number of the Seifert
fibration is nonzero (Theorem 4.0.1). As a consequence, we deduce that if a Reeb
vector field of a contact form is tangent to the Seifert fibres, then the corresponding
contact structure is universally tight (Corollary 4.0.3).





1

Geodesible vector fields

In this chapter, we introduce geodesible vector fields (or foliations), the central object
of this thesis. We start by discussing some important characterisations and review-
ing a number of examples. In Section 1.2, we introduce open book decompositions
in order to prove a theorem of Gluck on the existence of geodesible vector fields on
closed, orientable, odd-dimensional manifolds (Theorem 1.2.2). This theorem was
already partly proven by Hajduk and Walczak [38]. In Section 1.4, we introduce
round handle decompositions (due to Asimov [2]) to prove the existence of geodesi-
ble vector fields on round 1-handlebodies in Section 1.5 (Proposition 1.5.1). As an
application, we prove the existence of geodesible vector fields on a certain family of
manifolds of arbitrary dimension (Theorem 1.5.4).

Throughout this thesis, all manifolds, vector fields, functions etc. are assumed
to be smooth unless stated otherwise.

1.1 Definitions and examples

Definition 1.1.1. Let M be a smooth manifold, and X a nowhere-vanishing vector
field on M . Then X is said to be geodesible if there exists a Riemannian metric g
such that X is of unit length and its integral curves are geodesics for g. In other
words, X has to satisfy

|X| = 1 and ∇XX = 0,

where ∇ is the Levi-Civita connection associated with g.
If the metric g is given, X is called geodesic. Similarly, a 1-dimensional foliation

is called geodesible (respectively geodesic) if there exists a geodesible (respectively
geodesic) vector field spanning it.

The following important characterisation of geodesible vector fields is due to
Wadsley [77]. A purely geometric proof of the equivalence of conditions (i) and (ii)
was given by Sullivan [69]. The proof presented here is based on [17].

Proposition 1.1.2 (Wadsley, Sullivan). Let X be a nowhere vanishing vector field
on a manifold M . Then the following are equivalent.

(i) X is geodesible;

5



6 Geodesible vector fields

(ii) There is a 1-form α on M such that α(X) = 1 and iXdα = 0;

(iii) There is a hyperplane field η transverse to X and invariant under the flow of
X.

In this case, the 1-form α and the Riemannian metric g for which X is geodesic are
related by α = iXg, and η is given as the orthogonal complement of X.

In order to prove Proposition 1.1.2, we need the following lemma.

Lemma 1.1.3. Let X be a vector field on a Riemannian manifold M , and let α :=

iXg. Then

dα(X, ·) = g(∇XX, ·)−
1

2
d(|X|2).

Proof. Let Y be an arbitrary vector field. Then

dα(X, Y ) = X(α(Y ))− Y (α(X))− α([X, Y ])

= X(g(X, Y ))− Y (|X|2)− g(X, [X, Y ])

= g(∇XX, Y ) + g(X,∇XY − [X, Y ])− Y (|X|2)

= g(∇XX, Y ) + g(X,∇YX)− Y (|X|2)

= g(∇XX, Y )− 1

2
d(|X|2)(Y ),

hence, dα(X, ·) = g(∇XX, ·)− d(|X|2)/2, as was claimed.

Proof of Proposition 1.1.2. We start by proving the equivalence of (i) and (ii). As-
sume that X is geodesic for some metric g, and let α := iXg. Then, by Lemma 1.1.3,
iXdα = 0 (since the right-hand side of the equation vanishes), and α(X) = |X|2 = 1,
which proves (ii).

Conversely, assume that there is a 1-form α such that α(X) = 1 and iXdα = 0.
Define a metric g by first choosing an arbitrary metric on kerα, then setting |X| ≡ 1

and declaringX and kerα to be orthogonal. Of course, there are many ways to define
such a metric, but the specific choice is not important for the argument. Given such
a metric g, by Lemma 1.1.3, we have that

0 = iXdα = g(∇XX, ·)−
1

2
d(|X|2) = g(∇XX, ·),

which implies that ∇XX must vanish identically, since g is nondegenerate. Hence,
X is geodesic with respect to g.

Next, we show that (ii) implies (iii). Given α, we define η to be the hyperplane
field given by kerα. Then, Lemma 1.1.3 implies that

LXα = d(α(X)︸ ︷︷ ︸
≡1

) + iXdα = 0,
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hence, α is invariant under the flow, and so is η = kerα. Conversely, if such a
hyperplane field η is given, take any 1-form α such that α(X) = 1 and kerα = η.
Then, using Cartan’s formula, by the invariance of η we obtain

iXdα = LXα = λα,

where λ is some function M → R. Plugging X into both sides of this equation, we
see that λ = 0, hence iXdα = 0. This finishes the proof.

Remark 1.1.4. Given a geodesible vector field X and a hyperplane field η as in
Proposition 1.1.2, it follows from the above proof that the space of Riemannian
metrics for which X is geodesic is at least as large as the space of Riemannian
metrics on η.

Definition 1.1.5. Let X be a geodesible vector field. Any 1-form α satisfying
α(X) = 1 and iXdα = 0 (as in Proposition 1.1.2) is called connection 1-form
of X. The pair (X,α) is called geodesible pair.

In dimension three, there is another interesting characterisation of geodesible vec-
tor fields due to Rechtman [61]. Let (M, g) be an orientable Riemannian 3-manifold,
and let µ be an arbitrary volume form on M . For a vector field X, its curl (with
respect to µ) is defined to be the unique vector field curlX that satisfies the equation

icurlXµ = d(iXg). (1.1)

Note that if X is geodesic for g, then, by Lemma 1.1.3, we have that iXd(iXg) = 0.
It then follows from equation (1.1) that X must be parallel to its curl, that is,
curlX = λX, where λ is some (perhaps vanishing) function. Conversely, suppose
there is some volume form µ for which curlX and X are parallel. Again, by equation
(1.1), this implies that iXd(iXg) = 0, and therefore, by Lemma 1.1.3, X is geodesic
after normalisation. Thus, we have proven the following.

Proposition 1.1.6 (Rechtman [61]). Let M be an orientable 3-manifold, and X a
nowhere vanishing vector field on M . Then X is geodesible if and only if there is a
volume form µ and a function λ ∈ C∞(M) such that curlX = λX.

Remark 1.1.7. A divergence-free vector field that is parallel to its own curl is also
called Beltrami field. These vector fields play an important role in the theory of
hydrodynamics, where they appear as solutions of the steady-state Euler equations,
cf. [23].

For the sake of completeness, let us mention another characterisation of geodesi-
ble vector fields due to Sullivan [69] in terms of so-called foliation currents. He shows
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that a nowhere vanishing vector field X is geodesible if and only if no foliation cycle
can be arbitrarily well approximated by a 2-chain tangent to X. We refer the reader
to [10] for a profound introduction to the theory of foliation currents, and to [33]
for a very nice discussion of Sullivan’s characterisation.

Now let us review some examples of geodesible vector fields.

Example 1.1.8 (Hopf fibration). Let S3 be the 3-sphere, thought of as the unit
sphere in C2. Consider the quotient map S3 → CP 1 ∼= S2, where CP 1 is being
identified with the quotient space of S3 under the equivalence relation that identifies
a point (z1, z2) ∈ S3 with (λz1, λz2) for every λ ∈ S1 ⊂ C. This quotient map is in
fact a fibre bundle with S1-fibres, and is called the Hopf fibration. More precisely,
consider a point z = (z1, z2) ∈ S3, and let Cz be the fibre through z. Then Cz can
be written as

Cz = {cosϕ (z1, z2) + sinϕ (iz1, iz2) ∈ S3 : ϕ ∈ R/2πZ},

which is clearly a great circle (that is, the intersection of S3 with some plane through
the origin). Hence, the fibres of the Hopf fibration are geodesics of S3, equipped with
the standard round metric, so it defines a geodesic fibration.

Now say we are given a linear isomorphism L ∈ GL(4,R). For a Hopf fibre C,
let P be the plane in R4 whose intersection with S3 is C. Then L(P ) is a plane
through the origin whose intersection with S3 defines another great circle C ′. The
union of all such great circles yields another fibration of S3 by oriented great circles,
and fibrations of these type are called skew Hopf fibrations (see [35]). The space
of all great circle fibrations of S3, however, is much larger: In particular, there are
examples of great circle fibrations which are not given as skew Hopf fibrations [35,
Section 3].

Example 1.1.9 (Geodesic flows). Let (M, g) be a Riemannian manifold and STM
its unit tangent bundle, that is,

STM := {v ∈ TM : |v| = 1}.

The geodesic flow of M is a (local) flow on STM defined as follows. For any open,
relatively compact neighbourhood U ⊂ STM , it is given by

G : U × (−ε, ε) −→ STM, (v, t) 7−→ γ̇v(t),

where γv is the unique geodesic satisfying the initial conditions γv(0) = π(v) and
γ̇v(0) = v. Here, π : STM → M is the natural projection. Moreover, the value of
ε > 0 is chosen small enough so that geodesics in M whose initial velocity is some
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vector in U exist for time at least ε. Note that this is a global flow if and only if M
is geodesically complete.

The Sasaki metric is a natural Riemannian metric gS on TM induced by g,
which can be defined as follows. If X, Y : (−δ, δ)→ TM are smooth curves, that is,
smooth vector fields on M along curves γX := π ◦X and γY := π ◦ Y , respectively,
we set

gS(Ẋ, Ẏ ) := g(γ̇X , γ̇Y ) + g(∇γ̇XX,∇γ̇Y Y ).

In fact, this corresponds to the decomposition of tangent vectors of TM into a
vertical and a horizontal part (where the horizontal part is defined by the Levi-
Civita connection); this is explained more carefully in Appendix B. Let us show
now that the flow lines of the geodesic flow are geodesics with respect to the Sasaki
metric. One way to see this is by showing that these flow lines are locally length-
minimising. First, let Y : (−δ, δ)→ STM be any curve, and let γ = π◦Y (i.e. Y is a
vector field along γ). Denote by L(Y ) and L(γ) the lengths of Y and γ, respectively.
Then

L(Y ) =

∫ δ

−δ
|Ẏ (t)|gS dt =

∫ δ

−δ

√
|γ̇(t)|2g + |∇γ̇(t)Y |2g dt ≥

∫ δ

−δ
|γ̇(t)|g dt = L(γ).

In particular, Y is (locally) length-minimising if γ is (locally) length-minimising
in M and ∇γ̇Y = 0. Now, if t 7→ Y (t) is a flow line of the geodesic flow, then
Y (t) = γ̇(t) for some geodesic γ = π ◦ Y , and therefore, ∇γ̇Y = ∇γ̇ γ̇ = 0. Hence, Y
is (locally) length-minimising and therefore a geodesic.

Example 1.1.10 (Reeb vector fields). Let M be a (2n + 1)-dimensional manifold,
α a contact form on M and Rα its Reeb vector field (see Section 2.1 for definitions).
Then Rα is geodesible by Proposition 1.1.2, simply by taking α as connection 1-form
for Rα.

More generally, one can consider a stable Hamiltonian structure (SHS),
which is a pair (ω, α) consisting of a closed 2-form ω and a 1-form α such that
α ∧ ωn is nowhere vanishing, and kerω ⊂ ker dα. Again, there is a unique Reeb
vector field R satisfying iRω = 0 and α(R) = 1. Now since kerω ⊂ ker dα, we obtain
that iRdα = 0, so that R is geodesible with connection 1-form α.

Conversely, there are geodesible vector fields on odd-dimensional manifolds that
cannot be realised as Reeb vector fields of contact forms or stable Hamiltonian
structures, see Section 3.1.

Example 1.1.11 (Flows-with-section). A section of a flow is a compact hyper-
surface Σ ⊂ M without boundary that intersects each flow line transversely and at
least once. Such a flow is called flow-with-section. We want to show that flows-
with-section on closed manifolds are geodesible, following [33]. Given a section Σ,
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by Theorem A.1 and the subsequent Corollary A.2 in Appendix A, we can write M
as the mapping torus of some diffeomorphism φ : Σ→ Σ, that is,

M ∼= Σ(φ) = (Σ× [0, 1])/(x, 1) ∼ (φ(x), 0).

Let X be the vector field on Σ(φ) obtained by pushing forward the vector ∂t on
Σ × [0, 1] by the quotient map, where t is the coordinate of the second factor. In
other words, the flow defined by X is the suspension flow corresponding to φ. Now
let Ψ: [0, 1] → [0, 1] be a smooth function such that Ψ(t) = 0 for t near 0 and
Ψ(t) = 1 for t near 1. Let g be any Riemannian metric on Σ, and define a metric g̃
on Σ× [0, 1] by

g̃ = (1−Ψ(t))g + Ψ(t)φ∗g + (dt)2.

Then the constant vector field ∂t is geodesic with respect to g̃ (this follows from
Proposition 1.1.2, as i∂tg̃ = dt). Furthermore, the metric g̃ descends to a (well-
defined) metric on the quotient M , so that X is a geodesic vector field with respect
to that metric.

Note that one could also argue without constructing an explicit metric, using
Proposition 1.1.2: simply take the push-forward of the 1-form dt as connection form
for X.

Example 1.1.12 (Killing vector fields). Let (M, g) be a Riemannian manifold. A
Killing vector field is a vector field X on M whose flow induces a 1-parameter
family of isometries. The claim is that a Killing vector field of unit length is geodesic.
To see this, pick any point p ∈ M and let v ∈ TpM be an arbitrary tangent vector.
Choose a small disc D through p and transverse to X, and identify a neighbourhood
of p with D× (−ε, ε) using the flow of X. Extend v in an arbitrary way to a vector
field defined on D×{0}, and then to a vector field on U by pushing forward via the
flow of X. This way, we obtain a local vector field V invariant under the flow of X.
Hence [X, V ] = 0, so that ∇XV = ∇VX. Then, since X is Killing, we have that

0 = X(g(X, V ))

= g(∇XX, V ) + g(X,∇XV )

= g(∇XX, V ) + g(X,∇VX)

= g(∇XX, V ) +
1

2
V (|X|2︸︷︷︸

≡1

)

= g(∇XX, V ).

Evaluating this at p yields ∇XX(p) = 0, since v can be chosen arbitrarily. Hence,
∇XX vanishes identically, and X is geodesic.
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If X is a Killing vector field that is not of unit length, then after replacing the
Riemannian metric g by g̃ := (1/|X|2) g, one can check easily that X is still Killing
for the new metric g̃, but now of unit length and therefore geodesic. In particular,
every Killing vector field is geodesic for a metric that is conformally equivalent to
the original one.

Example 1.1.13 (Left-invariant vector fields on compact Lie groups). Let G be a
compact Lie group. Then G admits a bi-invariant Riemannian metric g, i.e. left and
right multiplication by any element of G define isometries of (G, g) (see [16, Proposi-
tion 3.16]). Now let X be a left-invariant vector field on G (that is, dρLρ1(Xρ) = Xρ1ρ

for every ρ, ρ1 ∈ G). Then X is of constant length and its flow lines are geodesics [16,
Corollary 3.19]. Hence it defines (up to rescaling by a constant) a geodesic vector
field.

Example 1.1.14 (Compact Lie group actions). Suppose G is a compact Lie group
acting on a manifold M , and X is a vector field whose flow defines a 1-parameter
subgroup of G. Then X is geodesible, which can be seen as follows. First, pick an
arbitrary Riemannian metric g on M . Let µ be a Haar measure on G, and define a
new metric g̃ by

g̃ =

∫
G

(Lρ)
∗g dµ,

where Lρ denotes left-multiplication by ρ ∈ G. Then g̃ is left-invariant under the
action of G. In particular, X is a Killing vector field for g̃, hence, by Example 1.1.12,
X is geodesible.

The simplest instance of this example is that of an S1-action. That is, a vector
field whose flow defines an S1-action is always geodesible. In dimension 3, by a
classical result of Epstein [21], given any flow with closed orbits only, there is an
S1-action with the same orbits. Hence every vector field on a 3-manifold with closed
orbits only is (up to rescaling) geodesible. In particular, every Seifert fibration is
geodesible. We will discuss this class of examples more thoroughly in Chapter 4.

Example 1.1.15 (Gradient vector fields). Let (M, g) be a Riemannian manifold
and f : M → R a smooth function whose gradient gradX (with respect to g) is
nowhere vanishing (this is of course only possible if M is open). Then the vector
field X = grad f/| grad f |2 is geodesic, since its dual 1-form is given by α = df

which satisfies α(X) = 1 and, of course, iXdα = 0.
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1.2 Existence of geodesible vector fields

The basic question we want to address in this section is the following:

Given a manifold M , does it admit a geodesible vector field?

Despite being interesting in its own right, this question is particularly relevant in
the context of so-called Reeb embeddings that were studied by Cardona et al. in
[14]. Given a manifold M , an embedding e : M ↪→ (N, ξ) of M into some contact
manifold (N, ξ) is called Reeb embedding if e(M) is an invariant subset of some
Reeb flow associated with ξ. In other words, there is a defining contact form α for
ξ such that Re(p) ∈ Te(p)M for all p ∈ M , where R denotes the Reeb vector field
of α (see Section 2.1 for definitions). It was shown by Cardona et al. that if M
admits a geodesible vector field, there is a Reeb embedding M ↪→ (N, ξ) into some
contact manifold N of dimension ≥ 3 dimM + 1 [14, Corollary 3.9]. Conversely, if
M ↪→ (N, ξ) is a Reeb embedding with corresponding Reeb vector field R, then the
induced vector field on M is geodesible, where the connection 1-form is given by
the pullback of the corresponding contact form. Hence the existence of a geodesible
vector field on M is equivalent to the existence of a Reeb embedding of M .

Of course, an obvious necessary condition for the existence of a geodesible vector
field is the existence of a nonsingular vector field. This is no obstruction if M is an
open manifold (i.e. non-compact or with nonempty boundary). In this case, we can
find a function f : M → R without critical points (see [44, Theorem 4.8]), and a
gradient vector field of f is (up to rescaling) geodesible by Example 1.1.15. Hence
we have proven the following.

Proposition 1.2.1. If M is an open manifold, then it admits a geodesible vector
field.

On the other hand, if M is closed, the existence of a nowhere-vanishing vector
field is equivalent to the Euler characteristic χ(M) being zero. By Poincaré duality,
this is always true if M is orientable and the dimension of M is odd. For example,
every orientable closed 3-manifold admits a contact form by a theorem of Martinet
[57]. The corresponding Reeb vector field is geodesible (Example 1.1.10), hence ev-
ery closed orientable 3-manifold admits a geodesible vector field. This argument,
however, does not work in higher dimensions, since there are manifolds of odd di-
mension ≥ 5 that do not admit contact structures. Nevertheless, it turns out that
every closed orientable odd-dimensional manifold admits a geodesible vector field,
see Theorem 1.2.2 below. This was originally announced by Gluck [33], whose proof
has never been published. A proof of the first part was given by Hajduk and Walczak
[38], using the existence of open book decompositions (see Section 1.3), as suggested
by Gluck. We complete it by providing a proof for the second part.
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Theorem 1.2.2. Let M be a closed orientable odd-dimensional manifold. Then:

(i) M admits a geodesible vector field X;

(ii) If S1
1 , . . . , S

1
n ↪→M are disjointly embedded circles, X can be chosen such that

the S1
i are orbits of X.

Remark 1.2.3. By recent work of Cardona [12], one can find a vector field X as
in Theorem 1.2.2 in every homotopy class of nowhere vanishing vector fields on M ;
furthermore, the vector field X may be chosen so as to preserve some volume form
on M .

1.3 Geodesible vector fields on open books

An open book decomposition is, roughly speaking, a way to decompose a manifold
as the union of (infintely many) codimension-1 submanifolds with boundary, called
pages, that are glued together along a codimension-2 submanifold, called binding. A
precise definition is given below.

Definition 1.3.1 (Open book decomposition). Let M be an n-manifold and B

an (n − 2)-dimensional submanifold of M . Let π : M \ B → S1 be a fibration and
νB ∼= B×D2 a tubular neighbourhood of B with polar coordinates (r, θ) onD2, such
that π|νB = θ. Then the pair (B, π) is called an open book decomposition (short:
OBD) of M . The submanifold B is called binding, and the (n − 1)-dimensional
submanifolds π−1(θ) (whose boundaries are given by B) are called pages of the
open book.

An alternative, more abstract way of defining an open book is the following.

Definition 1.3.2 ((Abstract) open book). Let Σ be a (n−1)-manifold with bound-
ary ∂Σ 6= ∅, and let φ : Σ → Σ be a diffeomorphism that restricts to the identity
near ∂Σ. The (abstract) open book defined by φ is the n-manifold

M(φ) := Σ(φ) ∪id (∂Σ×D2),

where Σ(φ) is the mapping torus of φ, that is, the quotient of Σ × [0, 2π] under
the relation (x, 2π) ∼ (φ(x), 0). Here, Σ(φ) and ∂Σ × D2 are identified along their
boundary via the identity map

id : ∂(Σ(φ)) = ∂Σ× S1 −→ ∂Σ× S1 = ∂(∂Σ×D2).

The codimension-1 submanifolds

Σθ := Σ× {θ} ⊂ Σ(φ) ⊂M(φ)
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are called pages, and the codimension-2 submanifold

B := ∂Σ× {0} ⊂ ∂Σ×D2 ⊂M(φ)

is called binding of the open book.

It is not hard to show that these definitions are equivalent; that is, every abstract
open book admits an open book decomposition π : M \ B → S1; conversely, every
open book decomposition (B, π) gives rise to an abstract open book (cf. [28, pp.
149–150]).

Example 1.3.3. (i) Consider the 3-sphere S3 = R3 ∪ {∞}, viewed as the one-
point compactification of R3. Let (r, θ, z) be cylindrical coordinates of R3 and
let B = {r = 0} ∪ {∞} ∼= S1 ⊂ S3. Then

π : S3 \B = R3 \ {r = 0} −→ S1, (r, θ, z) 7−→ θ

defines an open book decomposition of S3 with binding B, whose pages are
given by Σθ0 = {r ≥ 0, θ = θ0} ∪ {∞} ∼= D2. This is depicted in Figure 1.1
below.

B

Σθ0

θ

Figure 1.1: An open book decomposition of S3.

(ii) Consider M = S2 and B = {N,S} ⊂ S2, where N and S are any two points.
Then S2 \ B ∼= S1 × (−1, 1), and the projection onto the S1-factor clearly
describes an open book decomposition with binding B.

Then given any closed manifold N , the product M := N ×S2 admits an open
book decomposition with binding N ×B, given by projection onto the second
factor of M \ (N ×B) ∼= N × S1 × (−1, 1).
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By work of Winkelnkemper, Lawson and Quinn [78, 53, 60], we have the following
existence result for open book decompositions in odd dimensions.

Theorem 1.3.4 (Winkelnkemper, Lawson, Quinn). Every closed, orientable odd-
dimensional manifold admits an open book decomposition.

For contact forms, there is a notion of supporting open book decompositions,
going back to Giroux [32]. Let M be an oriented, odd-dimensional manifold with
an open book decomposition (B, π) such that B is also oriented. Then a contact
structure ξ on M is said to be supported by the OBD (B, π) if there is a defining
contact form α whose Reeb vector field is tangent to B and positively transverse
to the pages (note that this is not the standard definition, but an equivalent one,
see [22, Lemma 3.5]). Similarly, we can define supporting open books for geodesible
vector fields.

Definition 1.3.5. Let (X,α) be a geodesible pair on a manifold M equipped with
an open book decomposition (B, π). Then (X,α) is said to be supported by (B, π)

if the following holds true.

(1) X is tangent to the binding B;

(2) there is a tubular neighbourhood νB ⊂ M of B such that α|M\νB = π∗dθ,
where θ is the angular coordinate of S1.

Remark 1.3.6. The second point implies thatX is positively transverse to the pages
outside the tubular neighbourhood νB, as for the Reeb vector field of a contact form
supported by (B, π). It should be noted, however, that our Definition 1.3.5 is not
really a generalisation of the definition of supporting OBD’s for contact forms, since
the connection 1-form α in Definition 1.3.5 can never be a contact form (as it is
required to be closed on M \ νB).

Proof of Theorem 1.2.2. The proof of the first part presented here is due to Hajduk
and Walczak [38]. The proof is by induction over the dimension of M . In fact,
we will inductively construct a geodesible pair supported by a given open book
decomposition. If dimM = 1, then M is the topological sum of copies of S1, so
M clearly admits a geodesible vector field. Now assume that dimM = 2n + 1, and
assume further that the claim holds for every closed orientable manifold of odd
dimension ≤ 2n − 1. By Theorem 1.3.4, M admits an open book decomposition,
that is, it can be written as an abstract open book. Thus, we may write M as

M ∼= M(φ) = Σ(φ) ∪id (∂Σ×D2)
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for some diffeomorphism φ : Σ→ Σ. By the induction hypothesis, there is a geode-
sible pair (XB, αB) on the binding B = ∂Σ× {0} ⊂M(φ). We now want to extend
this to a geodesible pair (X,α) onM(φ). On Σ(φ), we set X equal to ∂θ and α equal
to dθ, where θ is the coordinate of Σ(φ) = (Σ × [0, 2π])/ ∼ corresponding to the
second factor of Σ× [0, 2π]. On ∂Σ×D2, we make the ansatz

X = f1(r) ∂θ + f2(r)XB, α = g(r) dθ + (1− g(r))αB,

where r is the radial coordinate of D2, and f1, f2, g : [0, 1] → [0, 1] are smooth
functions such that f1 = g = 0, f2 = 1 near r = 0, and f1 = g = 1, f2 = 0 near
r = 1. Then

α(X) = f1 g + f2 (1− g),

and
iXdα = (f2 − f1) g′ dr.

Now choose f1, f2 and g such that f1 = f2 = 1 on {g′ 6= 0}, f2 = 1 on {g = 0}, and
f1 = 1 on {g = 1} (see Figure 1.2). Then α(X) = 1 and iXdα = 0. Hence (X,α) is
a geodesible pair on M supported by the open book decomposition (B, π).

1

1

f1 g f2

Figure 1.2: Functions f1, f2 and g.

Now we come to the proof of part (ii). To keep notation simple, we prove the
claim for a single closed curve γ : [0, 1] → M only, but everything we do can be
easily generalised to the case of more than one curve. We will use the notation γ

synonymously for the explicit parametrisation as well as the trace of the curve as a
subset ofM . The proof will be carried out in two steps. The first step is to prove the
claim under the assumption that γ is contained in Σ(φ) and is positively transverse
to the pages, meaning that dθ(γ′) > 0 everywhere. The second step is to prove that
this can actually always be assumed, by constructing an isotopy of M that sends γ
to such a curve.
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Let us begin with the first step. Identify a collar neighbourhood of ∂Σ in Σ

with [−2, 0] × ∂Σ, and assume that the monodromy φ is given as the identity on
this collar neighbourhood. Hence there is a trivially fibred collar neighbourhood
[−2, 0] × ∂Σ × S1 of ∂Σ × S1 ⊂ Σ(φ). We may choose this collar neighbourhood
small enough so that

γ ⊂ W := Σ(φ) \ ([−2, 0]× ∂Σ× S1) ⊂ Σ(φ).

Choose open tubular neighbourhoods U and V of γ such that

γ ⊂ U ⊂ U ⊂ V ⊂ W.

Let X and α be as in the first part of the proof. Let µ : M → [0, 1] be a bump
function that is equal to 1 on U and equal to 0 outside V . Then, on V , replace X
by

X̂ = µ γ′ + (1− µ)X,

where γ′ is the velocity vector field of γ, extended to a positively transverse vector
field on V . Now X̂ clearly extends to all of M so that X and X̂ agree on M \ V .
Since α|W = dθ and X|W = ∂θ by construction, we find that

α|W (X̂) = µ dθ(γ′)︸ ︷︷ ︸
>0

+(1− µ) dθ(∂θ)︸ ︷︷ ︸
=1

> 0,

and of course iX̂(dα|W ) ≡ 0, as α is closed on W . Thus, after replacing X̂ by
(1/α(X̂))X̂, we obtain a geodesible pair with γ as an integral curve.

For the second step, we first show how to isotope γ so that it is contained in
Σ(φ) ⊂M(φ). For this, we write

M(φ) := Σ(φ) ∪id (∂Σ×D2)

as in Definition 1.3.2. First note that since dimB + dim γ = dimM − 1, we may
isotope γ so that γ ∩ B = ∅. Then an isotopy pushing γ into Σ(φ) can be found,
for example, as the time-1 flow of a vector field on M(φ) that is equal to 2r ∂/∂r

on ∂Σ ×D2 (extended to M(φ) in an arbitrary way). Now, after applying another
isotopy, we may assume that there are only finitely many isolated points at which γ
is tangent to the pages. In other words, we find a subdivision 0 = t1 < . . . < tk = 1

such that γi := γ|(ti,ti+1) is transverse to the pages for each i. If every γi is positively
transverse, we can apply another isotopy to remove possible saddle points and we
are done. So assume there is some γi which is negatively transverse. Possibly after
refining the subdivision we may assume that

(1) γi is contained in a trivial neighbourhood of the form Σ × [θ0, θ1] ⊂ Σ(φ) for
some angles θ0 < θ1.
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(2) The subset
Σ \ pr1(γ ∩ (Σ× [θ0, θ1])) ⊂ Σ

is path-connected, where pr1 : Σ× [θ0, θ1]→ Σ is the projection onto the first
factor.

Now (2) implies that there is a point q ∈ ∂Σ and curves

β0, β1 : [0, 1] −→ Σ \ pr1(γ ∩ (Σ× [θ0, θ1]))

such that β0(0) = γi(ti+1), β1(0) = γi(ti) and β0(1) = β1(1) = q. Now consider the
curves δ0, δ1 : [0, 1]→M defined by

δ0(t) = (β0(1− t), θ0 + (t− 1) ε), δ1(t) = (β1(t), θ1 + t ε),

for some small ε > 0, so that δ0 and δ1 both are positively transverse to the pages.
Note that δ0(0) = (q, θ0 − ε) and δ1(1) = (q, θ1 + ε) are both contained in the disc
{q} × D2 ⊂ ∂Σ × D2. Now choose a third curve δ2 : [0, 1] → {q} × D2, positively
transverse to the pages, with δ2(0) = (q, θ1 + ε) and δ2(1) = (q, θ0 − ε) (for this δ2

has to go around the binding, see Figure 1.3 below).

B

δ1

δ0

δ2

γi

(q, θ1 + ε)

(q, θ0 − ε)

(q, θ0 − ε)

(q, θ1 + ε)

Σ× [θ0 − ε, θ1 + ε] {q} ×D2

Figure 1.3: The negatively transverse part γi (in green) and the positively transverse
curve δ = δ1 δ2 δ0 (in orange) bound a disc which does not intersect γ in its interior.
Thus, we can isotope γi to δ leaving the rest of γ invariant.

Then, using property (2) above, the curves γi, δ0, δ1 and δ2 bound a disc which
does not intersect γ in its interior. In particular, we find an (continuous) isotopy of
γ that sends γi to the product curve δ := δ1 δ2 δ0, and does not move any part of
γ \ γi. The curve δ is, by construction, a piecewise smooth curve that is transverse
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to the pages of M(φ). Applying this procedure successively, we can isotope γ to a
piecewise smooth curve whose smooth parts are positively transverse to the pages of
the OBD. After smoothening and applying the isotopy extension theorem, we have
constructed an isotopy of M sending γ to a smooth, positively transverse curve as
desired.

1.4 Round handle decompositions

One might ask if Theorem 1.2.2 can be extended to even-dimensional manifolds,
under the additional assumption that the Euler characteristic vanishes. The first
problem, however, is that these manifolds do not, in general, carry an open book
decomposition. Furthermore, even if the manifold in question admits an open book
decomposition, this is perhaps not the case for its binding, so that the inductive
argument used in the proof of Theorem 1.2.2 does not work. Hence one has to use
a different type of structure. The so-called round handle decomposition, introduced
by Asimov in 1975, seems to be a suitable candidate. In this section, we will give a
brief introduction to the theory of round handles. We refer the reader to Asimov’s
original article [2] or the survey article [18] for a more detailed discussion.

A round handle is simply the product of an ordinary handle with S1, and a round
handle decomposition is defined similarly as for ordinary handles. Below we will give
a precise definition.

Definition 1.4.1. An n-dimensional round handle of index k (or round k-
handle, for short) is a copy of S1 ×Dk ×Dn−k−1, denoted by Rk. In other words,
Rk = S1×Hk, where Hk = Dk×Dn−k−1 is an ordinary (n−1)-dimensional k-handle.
We write ∂Rk = ∂−Rk ∪ ∂+Rk, where

∂−Rk := S1 × Sk−1 ×Dn−k−1

and
∂+Rk := S1 ×Dk × Sn−k−2.

As for ordinary handles, one says that the manifold W ′ is obtained from W by
attaching a round k-handle if there is a smooth embedding h : ∂−Rk ↪→ ∂W such
that W ′ can be written as

W ′ = W ∪h Rk := (W +Rk)/ ∼,

where ‘+’ denotes the topological sum, and x ∈ ∂−Rk is being identified with h(x) ∈
∂W ⊂ W . Note that ∂−R0 = ∅. Hence, attaching a round 0-handle toW corresponds
to taking the topological sum W ′ := W + R0 (in particular, one can make sense of
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attaching R0 to the empty set; the resulting manifold is just R0). As in the case of
ordinary handles, the manifold resulting from attaching a round handle does only
depend (up to diffeomorphism) on the isotopy type of the attaching map h.

We will often omit the attaching map in the notation and simply write W ∪Rk

instead of W ∪h Rk.

Definition 1.4.2. Let W be an n-dimensional manifold whose boundary is given
by ∂W = ∂−W ∪ ∂+W . A round handle decomposition of W relative to ∂−W
is an identification of W with

∂−W × [0, 1] ∪ {round k-handles}

where each round handle is attached on the side of ∂−W × {1}. W is called round
k-handlebody if it admits a round handle decomposition relative to the empty set,
consisting of round handles of index ≤ k.

Asimov showed how to obtain round handles from ordinary ones, and vice versa,
as follows.

Lemma 1.4.3 (Fundamental Lemma of Round Handles [2]). Let W be a manifold
with boundary ∂W 6= ∅. Assume that W ′ is obtained from W by attaching one
(ordinary) k-handle and one (k + 1)-handle, i.e. W ′ = W ∪ Hk ∪ Hk+1, where Hk

and Hk+1 are attached independently (that is, ∂+Hk ∩ ∂−Hk+1 = ∅, where ∂+HK =

Dk × Sn−k−1 and ∂−Hk+1 = Sk ×Dn−k−1). Then W ′ ∼= W ∪Rk.

Clearly, every round handle (and also its boundary) has vanishing Euler char-
acteristic. Hence if a manifold W admits a round handle decomposition relative to
∂−W , then χ(W ) = χ(∂−W ). Using his Fundamental Lemma, Asimov showed that
this condition is also sufficient in dimensions ≥ 4.

Theorem 1.4.4 (Asimov [2]). Let W be a compact manifold of dimension ≥ 4 with
boundary ∂W = ∂−W∪∂+W . ThenW admits a round handle decomposition relative
to ∂−W if and only if χ(W ) = χ(∂−W ).

Remark 1.4.5. The cases ∂−W = ∅ or ∂+W = ∅ (or both) are not excluded in the
theorem above. In particular, a closed manifold W of dimension ≥ 4 admits a round
handle decomposition (relative to the empty set) if and only if χ(W ) = 0.

Some important existence results of certain geometric structures on manifolds
with vanishing Euler characteristic were proved using round handle decompositions.
Asimov himself developed round handle decompositions in order to prove the ex-
istence of nonsingular Morse-Smale flows on manifolds with vanishing Euler char-
acteristic [2]. Later, Thurston used them to prove the existence of codimension-1
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foliations on these manifolds [71]. More recently, Vogel used round handles to prove
the existence of Engel structures on parallelisable 4-manifolds [76].

It seems natural to try to use round handle decompositions in order to prove
the existence of geodesible vector fields, as every round handle admits an obvious
geodesible vector field, namely the one spanning the S1-factor. The problematic part
is of course the attachment of the handles, as it is not clear a priori if (and how)
one can extend a given geodesible pair to an attached round handle. It turns out
that this can be done at least in the case of round 1-handles, as we will see in the
following section.

1.5 Geodesible vector fields on round 1-handlebodies

The goal of this section is to construct geodesible pairs on round 1-handlebodies.
As an application, we prove the existence of geodesible vector fields on certain even-
dimensional manifolds (Theorem 1.5.4).

Proposition 1.5.1. Let N be an n-dimensional round 1-handlebody. Then N admits
a geodesible pair (X,α) such that X is tangent to the boundary of N . Furthermore,
(X,α)|∂N is supported by an open book decomposition of ∂N .

We start by constructing suitable geodesible pairs on round 0-handles.

Lemma 1.5.2. An n-dimensional round 0-handle R0 admits a geodesible pair (X,α)

such that (X,α)|∂R0
is supported by an open book decomposition of ∂R0.

Proof. Let R0 := S1 × Dn−1 be a round 0-handle. Then ∂R0 = S1 × Sn−2 admits
an open book decomposition, which can be described as follows. Let ϕ denote the
coordinate for the S1-factor, and (x1, . . . , xn−1) be (Cartesian) coordinates for the
Dn−1-factor of R0. Let B := S1 × Sn−4 ⊂ S1 × Sn−2, where

Sn−4 := {(x1, . . . , xn−1) ∈ Sn−2 : x1 = x2 = 0}.

Then

π : (S1 × Sn−2) \B −→ S1, (ϕ, x1, . . . , xn−1) 7−→ (x2
1 + x2

2)−1/2 (x1, x2)

defines an open book decomposition of S1 × Sn−2 with binding B. We will now
construct a geodesible pair (X0, α0) on R0 whose restriction to ∂R0 is supported by
this open book decomposition. Consider smooth functions f, g : R→ [0, 1] with the
following properties:
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• f(t) = g(t) = 0 for t ≤ 1/4, and f(t) = g(t) = 1 for t ≥ 3/4;

• if f ′(t) 6= 0 or f(t) 6= 0, then g(t) = 1;

see Figure 1.4 below.

13
4

1
4

1

fg

Figure 1.4: Functions f and g.

For coordinates (ϕ, x1, . . . , xn−1) of S1 ×Dn−1 as above, let

ρ :=
√
x2

1 + x2
2 and r :=

√
x2

1 + . . . x2
n−1.

Now define X0 and α0 on R0 by

X0 = ∂ϕ + g(ρ)g(r) ∂θ, α0 = (1− f(ρ)f(r)) dϕ+ f(ρ)f(r) dθ,

where θ denotes the angular coordinate of the base S1, pulled back to S1×Sn−2 \B
via π. We compute

dα0 = [f ′(ρ)f(r)dρ+ f(ρ)f ′(r)dr] ∧ (dθ − dϕ),

hence

iX0dα0 = f ′(ρ)f(r)
(
1− g(ρ)g(r)

)︸ ︷︷ ︸
≡0

dρ+ f(ρ)f ′(r)
(
1− g(ρ)g(r)

)︸ ︷︷ ︸
≡0

dr = 0.

Furthermore,
α0(X0) = 1 + f(ρ)f(r)

(
g(ρ)g(r)− 1

)︸ ︷︷ ︸
≡0

= 1,

hence α0 is a connection form for X0. On the boundary ∂R0 = {r = 1} we have that
X0 = ∂ϕ + g(ρ) ∂θ and α0 = (1− f(ρ))dϕ+ f(ρ) dθ. Thus, taking νB := {ρ ≤ 3/4},
we see that the pair (X0, α0)|∂R0

is supported by the open book decomposition
described above.
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The second step is to show how to ‘geodesibly’ attach round 1-handles, keeping
track of the open book decomposition of the boundary.

Lemma 1.5.3. Let N be an n-dimensional manifold with boundary ∂N 6= ∅ and
(X,α) a geodesible pair on N such that (X,α)|∂N is tangent to ∂N and supported
by an open book decomposition of ∂N with binding B. Let N̂ = N ∪ R1 be obtained
from N by attaching a round 1-handle. Then N̂ admits a geodesible pair (X̂, α̂) that
coincides with (X,α) outside a small open neighbourhood of R1, and such that (X̂, α̂)

is tangent to ∂N̂ and supported by an open book decomposition of ∂N̂ with binding
B.

Proof. Write N̂ = N ∪R1, where R1 = S1×D1×Dn−2 is being attached to ∂N via
an embedding

h : ∂−R1 = S1 × S0 ×Dn−2 −→ ∂N.

Write S0 = {−1, 1} and hj := h|S1×{j}×Dn−2 for j = −1, 1. Now consider the two
core circles Cj := hj(S

1×{j}×{0}) ⊂ ∂N , j = −1, 1, with orientation given by some
fixed orientation of S1 (note that this orientation does not agree with the boundary
orientation of S1 × {j} × {0} ⊂ S1 ×D1 × {0}!). As in the proof of Theorem 1.2.2
(ii), we may isotope the Cj in ∂N so that they are both contained in ∂N \ νB and
positively transverse to the pages of (B, π). In fact, by a similar argument, we may
apply an additional isotopy so that C−1 and C1 make the same number of k ∈ Z\{0}
turns around the binding (that is,

∫
C−1

dθ =
∫
C1

dθ = k). Indeed, consider a short
segment γi of γ satisfying properties (1) and (2) as in the proof of Theorem 1.2.2
(ii). Of course in this case, γi is already positively transverse to the pages. As in the
proof of Theorem 1.2.2, we find curves

β0, β1 : [0, 1] −→ Σ \ pr1(γ ∩ (Σ× [θ0, θ1]))

such that β0(0) = γi(ti), β1(0) = γi(ti+1) and β0(1) = β1(1) = q. Now consider the
curves δ0, δ1 : [0, 1]→M defined by

δ0(t) = (β0(t), θ0 + tε), δ1(t) = (β1(1− t), θ1 + (t− 1)ε).

Choose a disc-like neighbourhood U of q in ∂Σ ∼= B and a curve δ2 in U × D2,
positively transverse to the pages, with δ2(0) = (q, θ0 + ε) and δ2(1) = (q, θ1 − ε)
(see Figure 1.5, where the 3-dimensional case is depicted). Now we can isotope γi
(keeping endpoints fixed) to the product curve δ0 δ2 δ1, so that after smoothening
the resulting piecewise smooth curve, the winding number

∫
Cj

dθ is increased by
1. Geometrically, we simply introduce an additional twist of Cj around one of the
binding components. This way we can increase the winding numbers of C1 and C−1

arbitrarily, hence we may assume that they are the same.
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(q, θ1 − ε)

(q, θ0 + ε)

(q, θ0 + ε) (q, θ1 − ε)

δ2

B

Σ× [θ0, θ1] U ×D2

γi

δ1

δ0

Figure 1.5: Increasing the winding number around the binding by introducing an
additional twist.

We may further assume that Imhj ∼= S1×Dn−2 ⊂ ∂N\νB. Arguing now as in the
proof of the Theorem 1.2.2 (ii), we may change X inside the tubular neighbourhood
Imhj of Cj so that

(h−1
j )∗X =

1

k
∂ϑ, h∗jα = k dϑ, j = −1, 1

for suitably chosen coordinates (ϑ, t, x1, . . . , xn−2) on R1 = S1× I×Dn−2. Hence we
can extend the pair (X,α) to R1 by setting (X,α)|R1

:= (1/k ∂ϑ, k dϑ). To finish the
proof, let us show that this extended geodesible pair on N̂ is supported by an open
book decomposition of ∂N̂ . First note that ∂N̂ = (∂N \ h(∂−R1)) ∪ ∂+R1. Then,
using the map

∂+R1 −→ S1, (ϑ, t, x1, . . . , xn−2) 7−→ k ϑ,

we extend π : ∂N \B → S1 to a (well-defined) map

π̂ : ∂N̂ \B = ((∂N \B) \ h(∂−R1)) ∪ ∂+R1 −→ S1,

which yields the required supporting open book decomposition of ∂N̂ with binding
B.

Proof of Proposition 1.5.1. On the round 0-handles, choose a geodesible pair as in
Lemma 1.5.2. Then using Lemma 1.5.3, we can successively attach the round 1-
handles and extend the geodesible pair and the open book decomposition in each
step.

As an application of Proposition 1.5.1, we can prove the existence of geodesible
vector fields on a certain family of manifolds (of arbitrary dimension).
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Theorem 1.5.4. For every n, k ≥ 1, the manifold

N :=
(

#
k

(
S1 × Sn−1

) )
#
(

#
k−1

(
S2 × Sn−2

) )
admits a geodesible vector field.

Before proving Theorem 1.5.4, we need two preparatory lemmas. Recall that ifM
and N are two n-dimensional manifolds with nonempty boundaries, their boundary
connected sum M \N is defined as follows. Choose two embedded (n − 1)-discs
D1 ⊂ ∂M and D2 ⊂ ∂N . Then M \N := (M + N) ∪ H1, where the 1-handle
H1 = [0, 1]×Dn−1 is attached toM+N by gluing {0}×Dn−1 to D1 and {1}×Dn−1

to D2 (via the identity). As in the case of ordinary connected sums, this operation
is independent of the choice of discs D1 and D2, and the resulting space admits a
smooth structure.

Secondly, recall that the double DM of a manifold M with ∂M 6= ∅ is defined
by taking two copies of M and gluing them along their boundaries via the identity
map.

Lemma 1.5.5. LetM1 andM2 be two n-dimensional manifolds with ∂M1, ∂M2 6= ∅.
Then

DM1#DM2
∼= D(M1 \M2).

Proof. Identify tubular neighbourhoods Ui of ∂Mi ⊂ DMi with [−1, 1] × ∂Mi, for
i = 1, 2, such that ∂Mi is identified with {0} × ∂Mi. Choose embedded open balls
Bn−1
i ⊂ ∂Mi ⊂ Ui, and let Bn

i := (−1/2, 1/2) × Bn−1
i ⊂ Ui, as well as B̂n

i :=

(−1/2, 0]×Bn−1
i . Write ∂(Mi \ B̂n

i ) = M1
i ∪M2

i , where

M1
i = ∂Mi \Bn−1

i , M2
i = ∂(Mi \ B̂n

i ) \M1
i ,

see Figure 1.6 below. Then

DM1#DM2 = (DM1 \Bn
1 ) ∪∂ (DM1 \Bn

2 )

=
[
(M1 \ B̂n

1 ) ∪M1
1

(M1 \ B̂n
1 )
]
∪∂
[
(M2 \ B̂n

2 ) ∪M1
2

(M2 \ B̂n
2 )
]

∼=
[(
M1 \ B̂n

1

)
∪M2

i

(
M2 \ B̂n

2

)]
︸ ︷︷ ︸

∼=M1 \M2

∪∂
[(
M1 \ B̂n

1

)
∪M2

i

(
M2 \ B̂n

2

)]
︸ ︷︷ ︸

∼=M1 \M2

∼= D(M1 \M2).
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M1
iB̂n

i

M2
i

Mi

Figure 1.6: Decomposition of the boundary of Mi \ B̂n
i .

Lemma 1.5.6. Let M be an n-dimensional manifold with ∂M 6= ∅. Then

M \ (S1 ×Dn−1) \ (S2 ×Dn−2) ∼= M ∪R1.

Proof. Write S1 ×Dn−1 = D1
+ ×Dn−1 ∪D1

− ×Dn−1, where D1
+ and D1

− denote the
upper and lower hemisphere, respectively. Then

M \ (S1 ×Dn−1) = M \ (D1
+ ×Dn−1 ∪D1

− ×Dn−1)

∼= (M \ (D1
+ ×Dn−1)︸ ︷︷ ︸
∼=M

) ∪D1
− ×Dn−1

∼= M ∪H1,

hence taking the boundary connected sum with S1×Dn−1 amounts to attaching an
(ordinary) 1-handle. Similarly, writing S2 × Dn−2 = D2

+ × Dn−2 ∪ D2
− × Dn−2, we

see that
M \ (S2 ×Dn−2) ∼= M ∪ (D2

− ×Dn−2) ∼= M ∪H2,

so that taking the boundary connected sum with S2×Dn−2 amounts to attaching a
2-handle. Then M \ (S1×Dn−1) \ (S2×Dn−2) is obtained from M by independently
attaching a 1- and a 2-handle, so that M ∼= M ∪ R1 by the fundamental lemma of
round handles (Lemma 1.4.3).

Proof of Theorem 1.5.4. Write

S1 × Sn−1 = D(S1 ×Dn−1), S2 × Sn−2 = D(S2 ×Dn−2).
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Then, by Lemma 1.5.5,

N =
(

#
k

(
S1 × Sn−1

) )
#
(

#
k−1

(
S2 × Sn−2

) )
∼= D

((
\
k

S1 ×Dn−1
)
\
(
\
k−1

S2 ×Dn−2
))

∼= D
(
S1 ×Dn−1︸ ︷︷ ︸

=:R0

\
(
\
k−1

(
S1 ×Dn−1

)
\
(
S2 ×Dn−2

)))

∼= D
(
R0 ∪

k−1⋃
j=1

Rj
1

)
,

where the last diffeomorphism is obtained from Lemma 1.5.6. NowM := R0 ∪
⋃
j R

j
1

admits a geodesible pair (X,α) tangent to ∂M by Proposition 1.5.1. Hence we can
glue two copies of (M,X,α) in the obvious way to obtain a geodesible pair on
N = DM .
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Induced contact structures and foliations

In Chapter 1, we have seen two basic examples of geodesic vector fields (or flows): the
Hopf flow of S3, and the geodesic flow on the unit tangent bundle of any Riemannian
manifold. In both of these examples, the codimension-1 distribution X⊥ consisting
of tangent vectors orthogonal to X (where X is the unit vector field defining the
flow) defines a contact structure; in fact, these contact structures are the standard
one on S3 and the natural one on STM . As we shall see, one may replace the Hopf
fibration by any fibration of oriented great circles of S3; the orthogonal distribution
will always define a contact structure.

This motivates the question of whether or not the orthogonal distribution of a
general geodesic vector field defines a contact structure. More precisely, we ask:

(1) Given a geodesic vector field X, are there suitable geometric assumptions
which guarantee X⊥ to define a contact structure?

(2) If X⊥ defines a contact structure, what are its properties?

Here, geometric assumptions are meant to be assumptions on the geometry of M
and X (for example, on the sectional curvature of M or the Ricci curvature of X).

We will mainly focus on the 3-dimensional case. The main reason is that in
dimension 3, the contact condition assumes a much simpler form: A (nowhere van-
ishing) 1-form α onM3 is contact if and only if the 2-form dα is non-vanishing when
restricted to kerα. In this case, regarding question (2), one might ask if the contact
structure kerα is tight or overtwisted, see Definition 2.1.11.

We will start in Section 2.1 by recalling some basic facts from contact geometry
needed in the later parts. In Section 2.2, we will first review some known results
concerning questions (1) and (2) above. For example, by a result of Aazami and
Harris–Paternain [1, 40], if X is a geodesic vector field with positive Ricci curvature,
then it always induces a contact structure (Theorem 2.2.4). We then show how to
improve these results (Theorem 2.2.13 and Corollary 2.2.14). In Section 2.3, we first
introduce the notion of adapted Jacobi fields and derive some basic facts about them.
This allows us to reprove theorems by Gluck and Harrison about geodesic vector
fields on space forms in a more general context (see Theorem 2.3.5 and Corollary
2.3.6). In Section 2.4, we define the Jacobi tensor of a geodesic vector field and prove a
more general version of Theorem 2.2.13 for geodesic vector fields whose Jacobi tensor

28
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is parallel along flow lines. A particular example of these types of vector fields is
given by geodesic vector fields on (locally) symmetric manifolds, which are — apart
from space forms — the simplest type of Riemannian manifolds. We conclude in
Section 2.5 with a discussion of geodesic vector fields whose orthogonal complement
is integrable. In this case, we derive a bound on the total Ricci curvature of X with
respect to an invariant measure in terms of a certain operator associated with X

(Theorem 2.5.6).

2.1 Basic contact geometry

In this section we introduce some basic notions of contact geometry, mainly following
[28].

Definition 2.1.1. Let M be a manifold of dimension 2n+1. A contact structure
is a maximally non-integrable hyperplane field ξ ⊂ TM . That is, writing ξ locally as
ξ = kerα for some (local) 1-form α, then α∧(dα)n is a volume form, i.e. α∧(dα)n 6= 0

everywhere. The latter is called contact condition. Any such 1-form α is called
contact form.

Remark 2.1.2. (i) In dimension 3, if α is a 1-form such that α ∧ dα ≡ 0, then
kerα is integrable by Frobenius’ theorem [26], i.e. there is a codimension-1
foliation whose leaves are everywhere tangent to ξ. In the case of a contact
structure, the situation is completely opposite, since we require α ∧ dα to be
nowhere vanishing. Therefore, a contact structure is in some sense as far from
being integrable as possible, hence the terminology maximally non-integrable.

(ii) In general, it is not possible to find a global 1-form α such that ξ = kerα. The
existence of such a 1-form is equivalent to ξ being coorientable, meaning that
the line bundle TM/ξ is trivial.

Example 2.1.3. (i) Consider R2n+1 with coordinates (x1, y1, . . . , xn, yn, z) and
the 1-form αst := dz +

∑n
i=1 xi dyi. Then

αst ∧ (dαst)
n = n! dx1 ∧ dy1 ∧ . . . ∧ dxn ∧ dyn ∧ dz,

hence kerαst defines a contact structure. It is called the standard contact
structure on R2n+1, see Figure 2.1.

(ii) Let (M, g) be a Riemannian manifold and TM its tangent bundle. Using the
Riemannian metric g, there is a bundle isomorphism between TM and the
cotangent bundle T ∗M , namely TM 3 u 7→ g(u, ·) ∈ T ∗M . This induces a
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bundle metric g∗ on T ∗M by pushing forward the bundle metric g. Then one
can consider the unit cotangent bundle ST ∗M := {λ ∈ STM : |λ|g∗ = 1}.
Denote by π : ST ∗M →M the natural projection and dπ : T (ST ∗M)→ TM

its differential. Then, the tautological 1-form λ on ST ∗M , defined as λu :=

u ◦ duπ for u ∈ ST ∗M , defines a contact form on ST ∗M (see [28, Theorem
1.5.2]).

Figure 2.1: The standard contact structure on R3.
(Created by user Msr657, Wikipedia, retrieved 22 September 2023 at

https://en.wikipedia.org/wiki/File:Standard_contact_structure.svg)

Definition 2.1.4. Let α be a contact form on M2n+1. Then the vector field Rα,
uniquely determined by the equations

iRαdα = 0, α(Rα) = 1,

is called the Reeb vector field of α.

Note that a Reeb vector field is associated with a contact form rather than a
contact structure. If ξ = kerα is a contact structure, and α̃ is another contact form
defining ξ, then α̃ = λα for some function λ : M → R\{0}. Then dα̃ = dλ∧α+λ dα,
so that iRαdα̃ = dλ(Rα)α−dλ, which is nonzero in general. In fact, the Reeb vector
fields of α and α̃ will have completely different dynamics in general, cf. [28, Example
2.2.5].

Example 2.1.5. (i) Consider the standard contact form on R2n+1 as defined in
Example 2.1.3. Its Reeb vector field is given by ∂z. In particular, the Reeb
vector field spans a fibration by oriented, pairwise parallel lines.

(ii) Let
S3 = {(x1, y1, x2, y2) ∈ R4 : x2

1 + y2
1 + x2

2 + y2
2 = 1} ⊂ R4

https://en.wikipedia.org/wiki/File:Standard_contact_structure.svg
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be the unit sphere in R4. Then the 1-form α on R4, defined by

α =
1

2
(x1dy1 − y1dx1 + x2dy2 − y2dx2) ,

restricts to a contact form on TS3, since

r dr ∧ α ∧ dα = dx1 ∧ dy1 ∧ dx2 ∧ dy2

is a volume form on R4, where r2 := x2
1 + y2

1 + x2
2 + y2

2. The contact structure
ξ := ker α|TS3 is called standard contact structure on S3. Its Reeb vector
field is given by

R = 2 (x1∂y1 − y1∂x1 + x2∂y2 − y2∂x2)

The claim is now that R spans the fibres of the Hopf fibration (Example 1.1.8).
In particular, this means that R is (up to rescaling by a constant) a geodesic
vector field. Indeed, the Hopf fibre through (z1, z2) = (x1 + iy1, x2 + iy2) ∈
S3 ⊂ C2 can be parametrised by t 7→ (eitz1, e

itz2) =: γ(t), so that

γ̇(0) = iγ(0) = (ix1 − y1, ix2 − y2),

hence γ̇(0) = 1
2
R.

(iii) Consider the unit cotangent bundle ST ∗M of a Riemannian manifold (M, g)

equipped with its tautological (contact) 1-form λ (Example 2.1.3 (ii)). Using
the identification STM ∼= ST ∗M induced by g, we can think of λ as a contact
form on STM . Now equip STM with the Sasaki metric gS (see Definition
B.8). Then one can show that λ = gS(G, ·), where G denotes the (horizontal)
geodesic vector field on STM , see [59, Lemma 1.37] for a proof, and Example
1.1.9 or Definition B.13 for the definition of the geodesic vector field on STM .
In particular, the Reeb vector field of λ is given by G (see Remark 2.2.2).

Remark 2.1.6. In Examples 2.1.5 (ii) and (iii), the Reeb vector field R is geodesic,
and the corresponding contact structure is given by its orthogonal complement.
These are the first two examples of contact structures induced by geodesic vector
fields, a concept that is going to be discussed in Section 2.2.

Definition 2.1.7. Two contact manifolds (M1, ξ1) and (M2, ξ2) are called contac-
tomorphic if there is a contactomorphism between them, that is, a diffeomor-
phism h : M1 → M2 such that dhp((ξ1)p) = (ξ2)h(p) for every p ∈ M1. Equivalently,
if ξ1 = kerα1 and ξ2 = kerα2, then h∗α2 = λα1 for some function λ : M1 → R\{0}.
If λ ≡ 1, then h is called a strict contactomorphism between the strict contact
manifolds (M1, α1) and (M2, α2).
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Example 2.1.8. (i) On R2n+1 with coordinates (x1, y1, . . . , xn, yn, z), consider
the contact form

α := dz +
n∑
j=1

r2
j dϕj = dz +

n∑
j=1

(xj dyj − yj dxj),

where (rj, ϕj) are polar coordinates of the (xj, yj)-plane, j = 1, . . . , n. Consider
the diffeomorphism

h : (x,y, z) 7−→
(
x + y

2
,
y− x

2
, z +

xy
2

)
,

where x := (x1, . . . , xn), y := (y1, . . . , yn) and xy :=
∑n

j=1 xjyj [28, Example
2.1.3]. Then h∗α = αst, hence h defines a strict contactomorphism between
(R2n+1, α) and (R2n+1, αst). The contact structure kerα is often called standard
cylindrically symmetric contact structure.

(ii) Let θ : R → R be a strictly monotone function (i.e. θ′ 6= 0 everywhere).
Consider the contact form α := sin θ(z) dx+ cos θ(z) dy on R3, and let αst :=

dz + x dy denote the standard contact form on R3. Then, the diffeomorphism

(x, y, z) 7−→
(
z sin θ(y)− x cos θ(y)

θ′(y)
, z cos θ(y) +

x sin θ(y)

θ′(y)
, y

)
.

pulls back α to αst, hence (R3, α) and (R3, αst) are strictly contactomorphic.

Using Moser’s trick, one can show that on closed manifolds there are no non-
trivial deformations of contact structures.

Theorem 2.1.9 (Gray stability). Let M be a closed manifold and ξt, t ∈ [0, 1] a
smooth family of contact structures on M . Then there is an isotopy (Ψt)t∈[0,1] of M
such that dΨt(ξ0) = ξt. In particular, there is a contactomorphism between (M, ξ0)

and (M, ξt) for every t ∈ [0, 1].

Proof. See [28, Theorem 2.2.2].

Remark 2.1.10. Note that Gray stability holds for contact structures but not for
contact forms, which can be seen again in terms of the dynamics of Reeb vector
fields [28, Example 2.2.5].

In dimension 3, there is an important dichotomy of tight and overtwisted contact
structures, which we are now going to define.

Definition 2.1.11. Let (M, ξ) be a 3-dimensional contact manifold. An embedded
disc ∆ ⊂M is called overtwisted if for all p ∈ ∂∆, the contact plane at p coincides
with the tangent plane of ∆ at p, that is, ξp = Tp∆.

A contact 3-manifold (M, ξ) is called overtwisted if it contains an embedded
overtwisted disc. Otherwise, it is called tight.



2.1. Basic contact geometry 33

Figure 2.2: The contact structure ξot with the overtwisted disc ∆.
(Created by user Pmassot, Wikimedia Commons, retrieved 22 September 2023 at

https://commons.wikimedia.org/wiki/File:Overtwisted_contact_structure.png)

Example 2.1.12. (1) Consider R3 with cylindrical coordinates (r, θ, z). Let

αot = cos r dz + r sin r dθ = cos r dz + f(r)r2 dθ,

where f is the smooth function

f : r 7−→

 sin r
r
, if r 6= 0,

1, if r = 0.

Then αot defines a smooth 1-form on R3 (since the 1-form r2 dθ is smooth).
One computes

αot ∧ dαot = (1 + f(r) cos r)r dr ∧ dθ ∧ dz = (1 + f(r) cos r)︸ ︷︷ ︸
6=0

dx ∧ dy ∧ dz,

hence αot is a contact form defining the contact structure ξot := kerαot. Now
consider the disc ∆ := {z = 0, r ≤ π} ⊂ R3. Then αot|∂∆ = −dz, hence
ξot|∂∆ = T∂∆, so that ∆ is an overtwisted disc for ξot. See also Figure 2.2.

(2) The standard contact structures on R3 and S3 (Examples 2.1.3 and 2.1.5 (ii))
are both tight. This is a highly non-trivial fact, see [28, Remark 4.6.37 and
Corollary 6.5.10].

The notion of overtwistedness was introduced by Eliashberg in his seminal work
[19], where he provided a complete classification of overtwisted contact structures:
two overtwisted contact structures are isotopic (through contact structures) if and

https://commons.wikimedia.org/wiki/File:Overtwisted_contact_structure.png
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only if they are isotopic as plane fields. In contrast, tight contact structures are usu-
ally hard to classify. On R3 and S3, however, there is only one tight contact structure
up to contactomorphism. This is due to Eliashberg [20]; see also [28, Theorem 4.10.1].

Theorem 2.1.13 (Eliashberg). The manifolds S3 and R3 admit a unique tight con-
tact structure up to isotopy.

Overtwisted discs also play an important role in the context of the prominent
Weinstein conjecture, which asserts that the Reeb vector field of a contact form on
a closed manifold always admits at least one periodic orbit. Hofer showed that the
Weinstein conjecture is true for overtwisted contact structures on closed 3-manifolds;
in this case, the Reeb vector field always admits a contractible periodic orbit [45]. In
dimension 3, the Weinstein conjecture has been proven to be true in full generality
by Taubes [70]; see also [47] for a nice survey on the topic.

There is also a boundary version of Hofer’s result, which we record here for future
reference.

Theorem 2.1.14 (Etnyre–Ghrist [24, Theorem 5.8]). Let M be a 3-manifold with
boundary and ξ = kerα an overtwisted contact structure on M such that the Reeb
vector field Rα is tangent to the boundary of M . Then Rα admits a contractible
periodic orbit.

2.2 Contact structures induced by geodesic vector fields

Definition 2.2.1. Let X be a geodesic vector field on a Riemannian manifold
(M2n+1, g). We say that X induces a contact structure if the orthogonal plane
field X⊥ defines a contact structure. Equivalently, if α = iXg, then X induces a
contact structure if and only if α ∧ (dα)n 6= 0 everywhere.

Remark 2.2.2. Note that if X induces a contact structure, then X is the Reeb
vector field of its dual (contact) 1-form α = iXg. Indeed, we have that iXdα = 0 by
the proof of Wadsley’s characterisation (Proposition 1.1.2), and α(X) = |X|2 = 1.

As discussed at the beginning of this chapter, the question now is whether or not
a given geodesic vector field X induces a contact structure, given some (geometric)
information on X or the underlying manifold. To start off, we present some known
results. The first one is due to Gluck.

Theorem 2.2.3 (Gluck [34]). Let X be a geodesic vector field on the round 3-sphere,
i.e. X spans a fibration by oriented great circles. Then X induces a contact structure
which is diffeomorphic to the standard one.
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The proof of the first part of the theorem uses a description of great circle
fibrations as certain submanifolds of the Grassmannian Gr2(R4) found in [35]. For
the second part of the theorem, one uses the fact that every fibration of S3 by
oriented great circles may be isotoped through such fibrations to a Hopf fibration
[35, Theorem D]; the statement then follows from Gray stability (Theorem 2.1.9).

Concerning the first part of Theorem 2.2.3, we actually have the following more
general result, which is due to Aazami and, independently, Harris and Paternain.

Theorem 2.2.4 (Aazami [1], Harris–Paternain [40]). Let M be a compact Rieman-
nian 3-manifold and X a geodesic vector field on M . If RicX > 0 everywhere, then
X induces a contact structure.

Remark 2.2.5. (1) Harris and Paternain show in fact that if X is a geodesic
vector field and X⊥ is not contact at some point p ∈ M , then the orbit of X
through p must be free of conjugate points. This, however, is not compatible
with the assumption RicXp > 0 (cf. [15, Theorem 2.12]).

(2) The assumption of RicX > 0 is of course much weaker than having constant
sectional curvature. It is not known yet whether or not, under this weaker
assumption, the induced contact structure is tight. More specifically, if one
assumes M3 to have positive Ricci curvature everywhere (in which case the
assumption of Theorem 2.2.4 is satisfied), then the universal cover of M is dif-
feomorphic to S3 by a theorem of Hamilton [39]. Then, one might ask whether
the induced contact structure lifts to the standard one on S3. For example, if
one assumes the metric to be compatible with the contact structure ξ = kerα

(i.e. ?dα = cα for some constant c, where α is the unit contact form defining ξ
and ? denotes the Hodge star operator), and the sectional curvature is positive
and 1/4-pinched, then ξ lifts to the standard contact structure on S3. This is
known as the ‘1/4-pinched contact sphere theorem’, which was first proven
by Etnyre, Komendarczyk and Massot for a 5/9-pinched metric [25], and was
later improved by Ge and Huang to the case of a 1/4-pinching constant [27].
Now it is not hard to show that the Reeb vector field Rα of a compatible (unit)
contact form is geodesic and orthogonal to the contact structure [25, Lemma
2.3]. In particular, the contact structure ξ is induced by the geodesic vector
field Rα. One might ask now if the 1/4-pinched contact sphere theorem is still
true in the more general setting of contact structures induced by geodesic vec-
tor fields. To the best of the author’s knowledge, this question is still open,
even for pinching constants larger than 1/4.

For flat 3-manifolds, there is a result by Harrison similar to the one by Gluck.
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Theorem 2.2.6 (Harrison [42, 43]). Let X be a geodesic vector field on 3-dimensional
Euclidean space E3 (or, more generally, any complete flat 3-manifold). Then X in-
duces a contact structure if and only if for all p ∈ E3, the map X⊥p 3 v 7→ ∇vX(p)

is non-zero.

We provide a proof for Theorems 2.2.3 and 2.2.6 in Section 2.3 (see Theorem
2.3.5 and Corollary 2.3.6) that is similar to the proof given in [43]. However, our
proof is in the context of more general geodesic foliations, and we avoid using special
geometric features of great circle or line fibrations.

Let us remark that Theorems 2.2.3 and 2.2.6 are not true in higher odd dimen-
sions; see [36] for the case of great circle fibrations, and [3], [43] for the case of line
fibrations.

As in Theorem 2.2.3, we again have the following standardness result.

Theorem 2.2.7 (Harrison [42], Becker–Geiges [5]). Let X be a geodesic vector field
on E3. If X induces a contact structure ξ, then ξ is diffeomorphic to the standard
contact structure on R3.

Harrison proved the statement above in the case where the given line fibration
admits a fibre that is not parallel to any other fibre. The general case was proved
in [5]. There, the authors show that if the fibration does not have the mentioned
geometric feature, then it must already be of a simple ‘1-parameter’ type (see Section
3.5 and Figure 3.2), in which case the induced contact structure can be described
explicitly (see also Example 2.1.8 (ii)).

We will in fact prove a more general statement in Section 3.7 (Theorem 3.7.4):
If X is a geodesic vector field on E3 that is given (up to rescaling) as the Reeb
vector field of a contact form, then the corresponding contact structure is tight and
therefore diffeomorphic to the standard one by Theorem 2.1.13.

In order to strengthen some of the results above, we first need to derive some
equivalent formulations of the contact condition for plane fields orthogonal to geo-
desic fields. Let X be a geodesic vector field on an orientable Riemannian 3-manifold
(M, g = 〈·, ·〉) and α = iXg its dual 1-form. To start off, consider a point p ∈M and
tangent vectors v, w ∈ X⊥p . Extend v and W arbitrarily to local vector fields V and
W . Then

dα(V,W ) = V (α(W ))−W (α(V ))− α([V,W ])

= V 〈X,W 〉 −W 〈X, V 〉 − 〈X, [V,W ]〉

= 〈∇VX,W 〉 − 〈∇WX, V 〉+ 〈X,∇VW −∇WV − [V,W ]︸ ︷︷ ︸
=0

〉

= 〈∇VX,W 〉 − 〈∇WX, V 〉.



2.2. Contact structures induced by geodesic vector fields 37

Evaluating this at p yields

dαp(v, w) = 〈(∇vX)p, w〉 − 〈(∇wX)p, v〉. (2.1)

Now, define the linear bundle morphism

β := ∇X : X⊥ −→ X⊥, v 7−→ ∇vX.

Note that since 〈X,X〉 ≡ 1 we have that 0 = X〈X,X〉 = 2〈β(X), X〉, hence the
image of β is indeed contained in X⊥. Then (2.1) translates into

dα(v, w) = 〈β(v), w〉 − 〈v, β(w)〉. (2.2)

Now fix an orientation ofM . For p ∈M , consider the endomorphism Jp : X⊥p → X⊥p
defined by Jp(v) := w and Jp(w) := −v, where v, w is an oriented orthonormal basis
of X⊥p . Here, the orientation of X⊥p is chosen so that Xp, v, w form an oriented basis
of TpM .

Proposition 2.2.8. Let X be a geodesic vector field on an oriented Riemannian
3-manifold (M, g = 〈·, ·〉), and α = iXg its dual 1-form. Then, for any point p ∈M ,
the following are equivalent.

(1) (α ∧ dα)p = 0;

(2) βp is self-adjoint;

(3) tr (βp ◦ Jp) = 0;

(4) 〈curlXp, Xp〉 = 0;

(5) curlXp = 0.

Proof. The equivalence of (1) and (2) follows directly from (2.2), since (α∧dα)p = 0

if and only if dαp = 0 (since α(X) = 1 and iXdα = 0). By definition of Jp, we have

tr (βp ◦ Jp) = 〈βp ◦ Jp(v), v〉+ 〈βp ◦ Jp(w), w〉 = 〈βp(w), v〉 − 〈βp(v), w〉 = dαp(w, v),

from which the equivalence of (1) and (3) follows. The equivalence of (4) and (5)
follows from the fact that curlX and X are multiples of each other (Proposition
1.1.6). Now, we are going to prove the equivalence of (1) and (4) which will finish
the proof. Let vol g denote the Riemannian volume form on M (which exists since
M is assumed to be oriented). Write

α ∧ dα = λ vol g
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for some function λ ∈ C∞(M). Plugging curlX = 〈curlX,X〉X into both sides of
this equation yields (by definition of the curl)

〈curlX,X〉 dα = λ dα,

hence λ = 〈curlX,X〉. Therefore, (α∧dα)p = 0 if and only if 〈curlXp, Xp〉 = 0.

Remark 2.2.9. For a given point p ∈M , denote by OrbX(p) the orbit of X through
p. Then the fact that LXα = 0 implies that X⊥ is contact either at every or at none
of the points in OrbX(p).

Example 2.2.10. (i) Let Σ be an orientable (not necessarily closed) surface and
STΣ its unit tangent bundle, equipped with the Sasaki metric. Let V be the
geodesic vector field on STM spanning the (oriented) vertical fibres of STM
(see Definition B.14 in Appendix B). Then Vu = (Ju)v for u ∈ TpM , where J
denotes the almost complex structure on TΣ given by rotation by π/2. Hence,
by Proposition B.9,

βu(u
h) =

(
∇S
uhV
)
u

=
1

2
(Rp(u, Ju)u)hu ,

and
βu((Ju)h) =

(
∇S

(Ju)hV
)
u

=
1

2
(Rp(u, Ju)Ju)hu .

hence if α = gs(V , ·) denotes the 1-form dual to V , then by (2.2),

dαu(u
h, (Ju)h) =

1

2
(Rp(u, Ju, u, Ju)−Rp(u, Ju, Ju, u)) = −Kp, (2.3)

where Kp = Rp(u, Ju, Ju, u) denotes the Gauß curvature of Σ at p. Now let G
denote the (horizontal) geodesic vector field on STM and consider the contact
forms λ1 = gS(G, ·) and λ2 = gS(JG, ·) (where J is thought of as an almost
complex structure on HM using the identification HM ∼= TM). Recall that
Gu = uh for u ∈ TpM . Then iVdα = 0 implies that dα is a multiple of λ1 ∧ λ2,
and (2.3) shows that in fact

dα = −π∗K λ1 ∧ λ2.

This is known as one of Cartan’s structural equations, see [67, Section 7.2].
In particular, it follows that V induces a contact structure if and only if the
Gauß curvature of Σ is nowhere vanishing.

(ii) Let G be a compact Lie group equipped with a bi-invariant metric, and X a
left-invariant vector field on G. Then X is geodesic (Example 1.1.13), and
the sectional curvatures of planes containing X are given by K(X, V ) =
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1/4
∣∣[X, V ]

∣∣2 for any vector field V (see [16, Corollary 3.19]). Now let ρ ∈ G
and v ∈ X⊥ρ , |v| = 1. Extend v to a local vector field V invariant under the
flow of X as in Example 1.1.12. Then

K(Xρ, v) =
1

4

∣∣[X, V ]ρ
∣∣2 =

1

4

∣∣(∇vX)ρ
∣∣2 =

1

4

∣∣βρ(v)
∣∣2 ≥ 0.

Hence, using Theorem 2.2.4, X induces a contact structure if and only if
βρ 6= 0, or equivalently, Ric(Xρ) > 0 for every ρ ∈ G.

The following proposition gives a relation between the map β and the Ricci
curvature of X that will be crucial for the remainder of the chapter.

Proposition 2.2.11. Assume that X⊥ is not contact at p ∈ M . Then, β is self-
adjoint along OrbX(p) and

X(tr β) = −(RicX + λ2 + µ2),

where λ and µ are the (real) eigenvalues of β.

For the proof we need the following result by Harris and Paternain. Here, β′ :=

∇Xβ denotes the covariant derivative of β in the direction of X.

Proposition 2.2.12 (Harris–Paternain [40]). Let X be a geodesic vector field. Then
β satisfies the Riccati equation

β′ + β2 +R(·, X)X = 0. (2.4)

Proof. This is a pointwise statement, hence it is enough to show that for every
p ∈ M and v ∈ TpM we have that β′(v) + β2(v) + R(v,Xp)Xp = 0. Extend v to a
parallel vector field V along the integral curve of X through p. Then, we compute

R(V,X)X = ∇V ∇XX︸ ︷︷ ︸
=0

−∇X∇VX −∇[V,X]X

= −∇X∇VX −∇∇VXX +∇∇XV︸︷︷︸
=0

X

= −∇X(β(V ))− β2(V )

= −β′(V )− β(∇XV︸ ︷︷ ︸
=0

)− β2(V ).

Proof of Proposition 2.2.11. The first part follows from Proposition 2.2.8. Note that
if β is self-adjoint, then both of its eigenvalues λ and µ are real. Taking the trace
on both sides of equation (2.4), we obtain

tr β′ + tr β2 + RicX = 0.
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Since β is self-adjoint with eigenvalues λ and µ, the eigenvalues of β2 are given
by λ2 and µ2, so that tr β2 = λ2 + µ2. Hence, the only thing left to show is that
tr β′ = X(tr β). Let p ∈ M and let E1, E2 be parallel vector fields along OrbX(p)

such that E1,q, E2,q form an orthonormal basis of X⊥q for every q ∈ OrbX(p). Then

tr β′ = 〈β′(E1), E1〉+ 〈β′(E2), E2〉

= 〈∇X(β(E1)), E1〉+ 〈β(∇XE1︸ ︷︷ ︸
=0

), E1〉+ 〈∇X(β(E2)), E2〉+ 〈β(∇XE2︸ ︷︷ ︸
=0

), E2〉

= 〈∇X(∇E1X), E1〉+ 〈∇X(∇E2X), E2〉

= X(tr β)− 〈∇E1X,∇XE1︸ ︷︷ ︸
=0

〉 − 〈∇E2X,∇XE2︸ ︷︷ ︸
=0

〉.

Theorem 2.2.13. Let X be a complete geodesic vector field on a (not necessarily
closed) Riemannian 3-manifold M . Assume that

RicX +
|λ− µ|2

2
≥ 0

everywhere, where λ and µ are the (complex) eigenvalues of β. Then, if X⊥ is not
contact at p ∈M , either one of the following is true:

(1) Ric(Xp) < 0, or

(2) Ric(Xp) = 0 and βp = 0.

Corollary 2.2.14. Let X be a complete geodesic vector field on a (not necessarily
closed) Riemannian 3-manifold M . Assume that Ric(X) ≥ 0 everywhere and βp 6= 0

if Ric(Xp) = 0. Then X induces a contact structure.

Proof of Corollary 2.2.14. This follows immediately from Theorem 2.2.13, since X
satisfies the assumption in the theorem.

Proof of Theorem 2.2.13. The idea of the proof is similar to that of [1, Proposition
1], making use of Proposition 2.2.11. Assume that X⊥ is not contact at p ∈ M .
Parametrise the orbit through p by t 7→ γ(t), where γ(0) = p. Consider the one-
parameter family t 7→ βt := βγ(t). Then, by Proposition 2.2.11,

X(tr β) = −
(
Ric(X) + λ2 + µ2

)
= −

(
Ric(X) +

(λ− µ)2

2
+

(tr β)2

2

)
≤ −(tr β)2

2
.

(2.5)
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Now, assume for the moment that there is some t0 ∈ R such that tr βt0 6= 0. After
replacing X by −X, if necessary, we may assume that tr βt0 < 0. Now let f be the
unique solution of the initial value problemf ′ + 1

2
f 2 = 0,

f(0) = tr βt0 .
(2.6)

Then, comparing (2.5) and (2.6), we see that tr β ≤ f everywhere, and f is given
by f(t) = ((t/2) + (1/f(0)))−1. Thus f(t) → −∞ as t → 2, and therefore also
tr βt → −∞ as t → 2. But this cannot happen since X is assumed to be complete.
It follows that tr βt ≡ 0. Hence, by (2.5), Ric(X) + (λ − µ)2/2 = 0 along γ. In
particular we have that either Ric(Xp) < 0 or Ric(Xp) = 0 and λp = µp. In the
second case, since 0 = tr βp = λp + µp, we obtain that λp = µp = 0, thus βp = 0

which proves the claim.

2.3 Adapted Jacobi fields and space forms

In this section, we present an alternative proof of Theorems 2.2.3 and 2.2.6 using a
notion of adapted Jacobi fields, which can be described as follows. Let X be a com-
plete geodesic vector field on a Riemannian manifold (of any dimension). Consider
a geodesic variation Γ consisting of integral curves of X, i.e.

Γ: (−ε, ε)× R −→M, Γ(s, t) = φt(expp(sv)), (2.7)

where p ∈ M , v ∈ TpM and φt is the time-t flow of X. Here, ε is chosen small
enough so that expp(sv) is defined for |s| < ε.

Definition 2.3.1. A Jacobi field J is called adapted to X if it is given as the
variational field of a variation through integral curves of X, i.e. J(t) = ∂s|s=0 Γ(s, t),
with Γ as in (2.7).

Adapted Jacobi fields (although not under this name) were already studied by
Godoy and Salvai in [37]. For a Jacobi field J , denote by J ′ := ∇XJ the covariant
derivative of J in the direction of X. The following was first observed in [37].

Proposition 2.3.2. If J is a Jacobi field adapted to a geodesic vector field, then
J ′ = β(J).

Proof. Let Γ be as in (2.7) and set γ := Γ(0, ·). Then

J ′(t) = Dt ∂s|s=0Γ(s, t) = Ds|s=0 ∂tΓ(s, t) = Ds|s=0 XΓ(s,t) = (∇J(t)X)γ(t) = βγ(t)(J(t)),

where in the second equation, we used the symmetry lemma [55, Lemma 6.3].
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Corollary 2.3.3. If J is a Jacobi field adapted to a geodesic vector field X, then J
and X commute, i.e. [J,X] = 0.

Proof. Using Proposition 2.3.2, we obtain ∇XJ = β(J) = ∇JX, hence [J,X] =

∇JX −∇XJ = 0.

Corollary 2.3.4. Let J be a Jacobi field adapted to the geodesic vector field X.
Then J ≡ 0 if and only if J(t0) = 0 for some t0 ∈ R.

Proof. The Jacobi field J solves the differential equation J ′′ + R(J,X)X = 0. In
particular, J is determined completely by the values of J and J ′ at any given point.
From Proposition 2.3.2 it follows that J ′ is determined by J , which proves the
claim.

Now, assume thatM is a 3-dimensional space form, i.e.M has constant sectional
curvature. Then we obtain the following.

Theorem 2.3.5. Let X be a geodesic vector field on a Riemannian 3-manifold M
of constant sectional curvature c, and βp = ∇X : X⊥p → X⊥p , p ∈M . Then:

• If c > 0, then βp does not admit any real eigenvalues.

• If c = 0 and λ is a real eigenvalue of βp, then λ = 0.

• If c < 0 and λ is a real eigenvalue of βp, then |λ| ≤
√
|c|.

Proof. Assume that βp has a real eigenvalue λ for some p ∈M , and let v ∈ X⊥p be a
corresponding eigenvector of unit length. Let γ be the integral curve of X through p.
Let J be the Jacobi field along γ adapted to X with initial condition J(0) = v. Then,
by Proposition 2.3.2, J ′(0) = β(J(0)) = λv. Now, since M has constant sectional
curvature equal to c, the Jacobi equation translates into J ′′ + cJ = 0. Hence, for
c > 0, J is given by

J(t) =

(
cos(
√
ct) +

λ√
c

sin(
√
ct)

)
E(t),

where E is the parallel vector field along γ satisfying E(0) = v. We should stress
at this point that the λ above is a constant in this case (it is the eigenvalue of βp),
rather than a function of t as in the proof of Theorem 2.2.13. Now we have J(t0) = 0

for
t0 =

1√
c

arccot

(
−λ√
c

)
,

hence J ≡ 0 by Corollary 2.3.4, contradicting the fact that J(0) = v 6= 0.
If c = 0, then J is given by J(t) = (1 + λ t)E(t) with E as before. If λ 6= 0, then

J(−1/λ) = 0, which contradicts Corollary 2.3.4 again.
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Finally, assume that c < 0. Then J is given by

J(t) =

(
cosh(

√
|c|t) +

λ√
|c|

sinh(
√
|c|t)

)
E(t),

with E as before. Then, if |λ| >
√
|c|, we have that J(t0) = 0 for

t0 =
1√
|c|

arcoth

(
−λ√
|c|

)
which contradicts Corollary 2.3.4 again. Therefore, we must have |λ| ≤

√
|c|. This

finishes the proof.

Together with Proposition 2.2.8, we obtain the following statement, (partly)
reproducing Theorems 2.2.3 and 2.2.6.

Corollary 2.3.6. Let M be a Riemannian 3-manifold of constant sectional curva-
ture c and let X be a geodesic vector field on M . Then:

• If c > 0, then X induces a contact structure.

• If c = 0, then X induces a contact structure if and only if β is nowhere
vanishing.

• If c < 0, then X induces a contact structure if and only if for all p ∈M , there is
no orthonormal basis of X⊥p consisting of eigenvectors of βp with corresponding
eigenvalues of absolute value ≤

√
|c|.

Proof. If X⊥ is not contact at p, then βp is self-adjoint by Proposition 2.2.8, hence
there is an orthonormal basis of X⊥p consisting of eigenvectors of βp corresponding
to real eigenvalues λp and µp. If c > 0 then this contradicts Theorem 2.3.5, hence
X⊥ is contact in this case. If c = 0 then λp = µp = 0 by Theorem 2.3.5, hence
βp = 0. If c < 0, then |λ|, |µ| ≤

√
|c|.

In the latter two cases, the conditions are clearly necessary by (2.2).

2.4 Geodesic vector fields with parallel Jacobi tensor

Given a geodesic vector field X, consider the Jacobi tensor RX defined by

RX : X⊥ −→ X⊥, v 7−→ RX(v) := R(v,X)X.,

where R denotes the Riemann curvature tensor. We begin with the following simple
observation.
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Lemma 2.4.1. RX is a self-adjoint operator. In particular, for every p ∈M , there
is an orthonormal basis e1, e2 of X⊥p consisting of eigenvectors of RXp with corre-
sponding eigenvalues

∆ = max
u∈X⊥p \{0}

K(u,Xp), δ = min
u∈X⊥p \{0}

K(u,Xp).

Proof. Write R(v, w, y, z) := 〈R(v, w)y, z〉. From the symmetry properties of the
curvature tensor R (cf. [55, Proposition 7.4]) we see that

〈RX(v), w〉 = R(v,X,X,w) = R(X,w, v,X)

= −R(w,X, v,X)

= R(w,X,X, v)

= 〈RX(w), v〉,

hence RX is self-adjoint. The rest follows from basic linear algebra.

Now assume that RX is parallel along orbits of X, i.e. if ∇XRX = 0. Then the
Jacobi equations assume a much simpler form.

Lemma 2.4.2. Let X be a geodesic vector field such that RX is parallel along orbits
of X, and let J be a Jacobi field adapted to X. Let e1, e2 ∈ X⊥p and ∆, δ ∈ R be
as in Lemma 2.4.1. Extend e1 and e2 to vector fields E1 and E2 parallel along the
integral curve of X through p. Then writing J = J1E1 + J2E2, we have thatJ ′′1 + ∆J1 = 0,

J ′′2 + δJ2 = 0.
(2.8)

Proof. Using the fact that RX is parallel we obtain

0 = (∇XRX)(Ei) = ∇X(RX(Ei))−RX(∇XEi︸ ︷︷ ︸
=0

) = ∇X(RX(Ei)),

hence the vector fields RX(Ei) are parallel, too. Since RX(e1) = ∆e1, it follows that
RX(E1) = ∆E1, and similarly, RX(E2) = δE2. Now given any adapted Jacobi field
J = J1E1 +J2E2 through p, we have that RX(J) = ∆J1E1 +δJ2E2, hence the Jacobi
equations become

0 = J ′′ +RX(J) = (J ′′1 + ∆J1)E1 + (J ′′2 + δJ2)E2,

hence J ′′1 + ∆J1 = 0 and J ′′2 + δJ2 = 0.

We are now ready to prove the main result of this section, generalising Theorem
2.2.13 and Corollary 2.2.14 for geodesic vector fields whose Jacobi tensor is parallel
along flow lines.
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Theorem 2.4.3. Let X be a complete geodesic vector field on a Riemannian 3-
manifold M . Assume that ∇XRX = 0 and for every p ∈ M , either one of the
following holds:

(i) max
v∈X⊥p \{0}

K(v,Xp) > 0, or

(ii) max
v∈X⊥p \{0}

K(v,Xp) = 0 and rank βp = 2,

where K(·, ·) denotes the sectional curvature. Then X induces a contact structure.

Remark 2.4.4. The condition ∇XRX = 0 in the theorem above is satisfied for
example if X is a Killing vector field, or if M is a locally symmetric space, i.e. if
∇R = 0. In the latter case, however, we do not really produce new examples. This
is because the universal cover of a complete 3-dimensional locally symmetric space
is either a space form (in which case Theorem 2.3.5 applies), or equal to S2 × R or
H2 × R (see [7, Corollary 7.74 and Theorem 7.76]). In the case of S2 × R, we do
not know whether there are non-trivial geodesic foliations (see Proposition 2.4.7 and
the remark thereafter). In the case of H2 × R, a geodesic vector field X satisfying
maxK(·, Xp) ≥ 0 for every p would need to be tangent to the H2-fibres; however, in
that case rank β ≤ 1, so that Theorem 2.4.3 does not apply.

Proof of Theorem 2.4.3. We argue by contradiction. Assume that X⊥ is not contact
at p. Let ∆ and δ be as in Lemma 2.4.1. Then, by assumption, ∆ ≥ 0. We may
also assume that δ < 0, for otherwise RicXp ≥ 0, in which case Corollary 2.2.14
applies. As before, X⊥p admits an orthonormal basis v, w consisting of eigenvectors
of βp corresponding to real eigenvalues λ and µ. Now let J and J̃ be the unique
Jacobi fields through p adapted to X such that J(0) = v and J̃(0) = w. Then, by
Proposition 2.3.2,

J ′(0) = βp(v) = λv

and

J̃ ′(0) = βp(w) = µw.

Now, let us assume first that ∆ > 0. Writing J = J1E1 +J2E2 and J̃ = J̃1E1 + J̃2E2

as in Lemma 2.4.2, we obtain (by the same lemma)
J1 = v1

(
cos(
√

∆t) + λ√
∆

sin(
√

∆t)
)
,

J2 = v2

(
cosh(

√
|δ|t) + λ√

|δ|
sinh(

√
|δ|t)

)
,
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and similarly, 
J̃1 = w1

(
cos(
√

∆t) + µ√
∆

sin(
√

∆t)
)
,

J̃2 = w2

(
cosh(

√
|δ|t) + µ√

|δ|
sinh(

√
|δ|t)

)
.

Now consider the function

R 3 t 7−→ φ(t) := det

(
J1(t) J̃1(t)

J2(t) J̃2(t)

)
. (2.9)

Using sinh(t) = (et − e−t)/2 and cosh(t) = (et + e−t)/2, we compute

φ(t) =
e
√
|δ|t

2

(
c+

1 cos(
√

∆t) + c+
2 sin(

√
∆t)
)

+
e−
√
|δ|t

2

(
c−1 cos(

√
∆t) + c−2 sin(

√
δt)
)
,

where

c±1 = 1± v1w2µ− v2w1λ√
|δ|

, c±2 =
v1w2λ− v2w1µ√

∆
± λµ√

∆|δ|
.

Note that since φ does not vanish identically (since φ(0) = 1), one of the constants
c±1 , c

±
2 is nonzero. Say c+

1 > 0 (the other cases being similar), then φ(tn) < 0 for
tn := (π + 2πn)/

√
∆ and n > 0 large. Hence, by the intermediate value theorem,

there is t0 ∈ R with φ(t0) = 0, i.e. J(t0) and J̃(t0) are linearly dependent. But then
it follows from Corollary 2.3.4 that J(t) and J̃(t) are linearly dependent for every t,
which is a contradiction.

Now consider the case ∆ = 0. In this case, it follows from Lemma 2.4.2 that
J1 = v1 (1 + λt) ,

J2 = v2

(
cosh(

√
|δ|t) + λ√

|δ|
sinh(

√
|δ|t)

)
,

as well as 
J̃1 = w1 (1 + µt) ,

J̃2 = w2

(
cosh(

√
|δ|t) + µ√

|δ|
sinh(

√
|δ|t)

)
.

Then

φ(t) =
e
√
|δ|t

2

(
c+

1 + c+
2 t
)

+
e−
√
|δ|t

2

(
c−1 + c−2 t

)
,

where now

c±1 = 1± v1w2µ− v2w1λ√
|δ|

, c±2 = v1w2λ− v2w1µ±
λµ√
|δ|
.
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It follows that c+
2 ≥ 0 and c−2 ≤ 0 (otherwise, one can argue again that φ has to

take negative values, which yields a contradiction). Hence

2λµ√
∆|δ|

= c+
2 − c−2 ≥ 0 =⇒ λµ ≥ 0.

Now let t 7→ γ(t) be the parametrised orbit of X through p. We know that X⊥ is
not contact along all of γ (Remark 2.2.9). Hence, if λt, µt denote the eigenvalues of
βt = βγ(t), then the argument above shows that

λtµt ≥ 0 for all t ∈ R. (2.10)

On the other hand, by Lemma 2.4.5 below, φ is given by φ(t) = eB(t), where B is a
primitive of t 7→ tr βt. Comparing these two description yields

e
√
|δ|t

2

(
c+

1 + c+
2 t
)

+
e−
√
|δ|t

2

(
c−1 + c−2 t

)
= eB(t). (2.11)

Taking derivatives on both sides, we obtain

e
√
|δ|t

2

(√
|δ|
(
c+

1 + c+
2 t
)

+ c+
2

)
+

e−
√
|δ|t

2

(
c−2 −

√
|δ|
(
c−1 + c−2 t

))
= (tr βt) eB(t),

hence

tr βt =

e
√
|δ|t

2

(√
|δ|
(
c+

1 + c+
2 t
)

+ c+
2

)
+ e−

√
|δ|t

2

(
c−2 −

√
|δ|
(
c−1 + c−2 t

))
eB(t)

. (2.12)

Recall that c+
2 ≥ 0 and c−2 ≤ 0. At this point, we have to distinguish several cases.

Case 1: c+
2 > 0 and c−2 < 0. In that case, by (2.12), tr βt takes positive values for

large positive t and negative values for large negative t. In particular, tr βt = 0 for
some t. But then λt = −µt, hence, using (2.10),

0 ≤ λtµt = −λ2
t =⇒ λt = µt = 0,

so βt = 0 which yields a contradiction.

Case 2: c+
2 = 0 and c−2 < 0. In that case we must have c+

1 > 0 for otherwise φ takes
negative values for large positive t, which gives a contradiction as before. But then
again we have that tr βt > 0 for t > 0 large, and tr βt < 0 for t < 0 large, which
gives the same contradiction as in the first case.

Case 3: c+
2 > 0 and c−2 = 0. This is completely analogous to Case 2.

Case 4: c+
2 = 0 and c−2 = 0. In that case we have that

0 = c+
2 − c−2 =

2λµ√
∆
√
δ

=⇒ λµ = 0,

hence λ = 0 or µ = 0, so that rank β ≤ 1, contradicting the assumption.
These are all possible cases, thus the proof is finished.
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Lemma 2.4.5. Assume that X⊥ is not contact at p and let φ be as in (2.9). Then
φ(t) = exp

(∫ t
0
tr β(s)ds

)
.

Proof. Since α is invariant under the flow of X, the plane field X⊥ is not contact
along the whole orbit γ through p. Hence, by Proposition 2.2.8, for every t ∈ R there
is an orthonormal basis V = Vt, W = Wt of X⊥γ(t) consisting of eigenvectors of βt
corresponding to real eigenvalues λ = λt and µ = µt, respectively. Let us assume for
the moment that we can choose V and W to depend smoothly on t. Then

0 = X〈V,X〉 = 〈∇XV,X〉

as well as
0 = X〈V, V 〉 = 2〈∇XV, V 〉.

It follows that ∇XV = aW for some function t 7→ a(t). Since

0 = X〈V,W 〉 = a+ 〈V,∇XW 〉

we find that ∇XW = −aV . Now write

J = J1V + J2W, J̃ = J̃1V + J̃2W.

Then
λJ1V + µJ2W = β(J) = J ′ = (J ′1 − aJ2)V + (J ′2 + aJ1)W,

so J ′1 = λJ1 + aJ2.

J ′2 = −aJ1 + µJ2.
(2.13)

Similarly, we obtain J̃ ′1 = λJ̃1 + aJ̃2.

J̃ ′2 = −aJ̃1 + µJ̃2.

Therefore,
φ′ = J ′1J̃2 + J1J̃

′
2 − J ′2J̃1 − J2J̃

′
1

= (λ+ µ)φ(t)

= (tr β)φ.

(2.14)

At this point we still have to deal with the issue of smoothness of the vector fields V
andW . It turns out that we cannot, in general, choose V andW to depend smoothly
on t for all t ∈ R, but only on an open, dense subset U ⊂ R (which we are going
to define in a second). But this is already good enough for our purpose, because in
this case, by continuity, φ satisfies (2.14) on all of R. Then, since φ(0) = 1, we must
have

φ(t) = exp

(∫ t

0

tr β(s)ds

)
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globally, as claimed. In order to find the subset U , let A := {t ∈ R : λ(t) 6= µ(t)}.
Then, for all t ∈ A, there is a unique decomposition of X⊥γ(t) into eigenspaces of
β. Then V and W can be chosen to depend smoothly on t for all t ∈ A (see [54,
Chapter 9, Theorem 8]). On the open subset B := R \ A we have that λ(t) = µ(t)

and β = λ id, so that every vector is an eigenvector. So on B, too, we can choose V
and W smoothly. Then U := A tB does the job.

The following two examples show that we cannot, in general, drop the assump-
tions maxK(v,X) ≥ 0 or rank β = 2 if K(v,X) = 0 in Theorem 2.4.3.

Example 2.4.6. (i) ConsiderM = H2×R, where we use the Poincaré half-plane
model for H2, that is, H2 = {(x1, x2) ∈ R2 : x2 > 0} with the metric

g =
dx2

1 + dx2
2

x2
2

,

and M is equipped with the product metric. Let x3 be the R-coordinate and
consider the geodesic vector field X = x2∂x2 . Then X⊥ is spanned by ∂x1 and
∂x3 , hence it is tangent to the fibration of affine planes given by {x2 = const.}.
Note that K(∂x3 , X) = 0, so X satisfies the condition maxK(X, ·) = 0 in
Theorem 2.4.3 (ii). Now an easy computation shows that with respect to the
basis x1, x2, x3, the relevant Christoffel symbols are given by Γki3 = 0 for i 6= k

or i = k = 3 and Γ1
12 = −x−1

1 . Hence

β(∂x1) = −x−1
2 ∂x1 , β(∂z) = 0,

so that rank β = 1. Now since X⊥ does not define a contact structure, this
shows that we do need β to have full rank in Theorem 2.4.3 (ii).

(ii) Consider the half-space model of hyperbolic 3-space, that is,

H3 := {(x1, x2, x3) ∈ R3 : x3 > 0}

equipped with the metric

g :=
dx2

1 + dx2
2 + dx2

3

x2
3

.

Let X be the geodesic vector field on H3 defined by X := x3 ∂x3 . Then X⊥ is
spanned by ∂x1 and ∂x2 and hence tangent to the affine planes {x3 = const.}.
Furthermore, one computes β(∂x1) = −∂x1 and β(∂x2) = −∂x2 , hence β = − id

(in particular, rank β = 2). However, X does not satisfy the assumption on the
sectional curvature in Theorem 2.4.3, since K(∂x2 , X) = K(∂x3 , X) = −1 < 0.

We conclude this section with the following proposition.
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Proposition 2.4.7. Consider M = S2 × S1, equipped with the standard product
metric, and let X be a geodesic vector field on M . Then X is everywhere tangent to
the S1-factor. In other words, the only geodesic foliation of S2 × S1 is given by the
trivial S1-fibration whose fibres are of the form {p} × S1.

Proof. Let X be a geodesic vector field onM . Using the splitting TM = TS2⊕TS1,
we can writeX uniquely asX = X1+X2, whereX1(p, θ) ∈ TpS2 andX2(p, θ) ∈ TθS1

for every (p, θ) ∈ S2 × S1. Consider the (continuous) functions

`1 : M −→ [0, 1], `1(p, θ) = |X1(p, θ)|

and

`2 : M −→ [0, 1], `2(p, θ) = |X2(p, θ)|.

Note that `2
1 + `2

2 ≡ 1, since X is of unit length. Now it suffices to show that `1

(and then also `2) is constant. Indeed, if `1 ≡ c1 and `2 ≡ c2, then c1 must be equal
to zero; otherwise, the vector field π∗(X2|S2×{∗}) (where π : S2 × S1 → S2 is the
projection on the first factor) would give a nowhere vanishing vector field on S2.
Hence `2 ≡ 1 and the claim would follow. Therefore, for the sake of contradiction,
assume that `1 and `2 are not constant. Then, by the intermediate value theorem,
there is a point (p, θ) ∈ S2×S1 such that `1(p, θ)/`2(p, θ) ∈ R\Q. Let γ = (γ1, γ2) be
the orbit of X through (p, θ). Then γ1 parametrises the great circle through p ∈ S2

with initial velocity X1(p, θ). Now consider the torus T := C × S1 ⊂ S2 × S1. Since
`1(p, θ)/`2(p, θ) ∈ R \ Q, the geodesic γ does not close up; in fact, it sits densely
inside T . Hence, by continuity, T is invariant under the flow of X, and every orbit
contained in T is dense in T . Note that T divides S2 × S1 into two solid tori. Let
U denote the interior of one of these solid tori. Consider a point (p̃, θ̃) ∈ U , and
let γ̃ = (γ̃1, γ̃2) denote the corresponding orbit of X. Then γ̃1 is either constant
or parametrises another great circle C̃ in S2. In the latter case, note that the two
great circles C and C̃ intersect; hence γ̃ must intersect T transversely in some point,
which is a contradiction (since X is tangent to T ). Therefore, γ̃1 is constant, and γ̃
is of the form γ̃(t) = (0, t). That is, X|U = ∂θ. But then also X|T = ∂θ, which is a
contradiction.

Remark 2.4.8. It does not seem to be clear whether or not S2×R (equipped with
the product metric) admits a nontrivial fibration by geodesics (compare this also to
Theorem 3.5.1 and Remark 3.5.3).
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2.5 Geodesic vector fields with integrable orthogonal
distribution

So far, we have discussed criteria for the orthogonal distribution of a geodesic vector
field to define a contact structure, in other words, being maximally non-integrable.
In this section, we will discuss the other extreme case; namely, we will consider
geodesic vector fields whose orthogonal distribution is integrable, that is, there is a
codimension-1 foliation tangent to X⊥. It turns out that this has strong implications
on the topology and geometry of the underlying manifold. The first one we are going
to prove is a direct consequence of a theorem by Tischler.

Proposition 2.5.1. Let X be a geodesic vector field on a closed Riemannian mani-
fold whose orthogonal distribution X⊥ is integrable. Then, there is a fibration
π : M → S1 such that X is transverse to the fibres of π.

Proof. Denote by α = iXg the 1-form dual to X. Then, since iXdα ≡ 0, the inte-
grability of X⊥ is equivalent to dα|X⊥ = 0, hence dα = 0, which means that α is a
closed, nowhere vanishing 1-form. Then by Tischler’s theorem [74, Theorem 1], for
every ε > 0 there is a fibration π : M → S1 such that |π∗dϕ−α| < ε, where ϕ is the
S1-coordinate. In particular, if ε < 1, this implies that π∗dϕ(X) > 0, which means
that X is transverse to the fibres of π.

Turning to the geometric side, by Remark 2.2.5 (i), we have the following.

Corollary 2.5.2. If X is a geodesic vector field with integrable orthogonal distribu-
tion, then every orbit of X is free of conjugate points.

Remark 2.5.3. By results of Ruggiero [63], the statements of Proposition 2.5.1 and
Corollary 2.5.2 remain true if the vector field X is assumed to be continuous rather
than smooth (or C1).

Recall that a Riemannian foliation F of a Riemannian manifold (M, g) is a
foliation such that g is bundle-like for the tangent bundle TF , which means that
the local submersions defining F can be chosen to be Riemannian submersions; see
[62] or [75] for the precise definition. It turns out that there is a duality between
geodesic and Riemannian foliations, as follows.

Theorem 2.5.4 (cf. [49, Theorem 1.6]). Let X be a geodesic vector field on a Rie-
mannian manifold (M, g) whose orthogonal distribution X⊥ is integrable. Then, the
foliation spanned by X⊥ is Riemannian. Conversely, if F is an oriented Rieman-
nian foliation of codimension 1, then the (positively) orthogonal unit vector field X
is geodesic.
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The second statement actually follows from the following observation of Reinhart
[62, Proposition 2]: If F is a Riemannian foliation and γ a geodesic that is somewhere
orthogonal to F , then γ is everywhere orthogonal to F . Now let X be a unit vector
field orthogonal to F , and take any point p ∈ M . Then the integral curve of X
through p is, of course, everywhere orthogonal to F ; on the other hand, the unique
geodesic γ with γ(0) = p and γ̇(0) = X(p) must be orthogonal to F as well. Hence
these two curves coincide, and it follows that X is geodesic.

Remark 2.5.5. In fact Theorem 2.5.4 is true for totally geodesic and Riemannian
foliations of any (co-)dimension. For a further discussion of the geometric conse-
quences of this duality, we refer the reader to [49].

As another geometric consequence of the integrability of X⊥, we will prove the
following, which is in contrast to Theorems 2.2.4 and 2.2.13.

Theorem 2.5.6. Let X be a geodesic vector field on a closed Riemannian manifold
whose orthogonal distribution X⊥ is integrable. Let m be a finite measure on M

invariant under the flow of X. Then
∫
M

(RicX + tr β2) dm = 0.

Proof. Since X⊥ is integrable, Proposition 2.2.8 tells us that βp is self-adjoint for
every p ∈ M . Denote by λp and µp the eigenvalues of βp and consider the function
p 7→ ψ(p) := RicXp+λ2

p+µ2
p. First note that ψ(p) = RicXp+ tr β2

p . Indeed, take an
orthonormal basis of eigenvectors of β, so that β can be represented by the matrix
diag(λ, µ), hence β2 = diag(λ2, µ2) and tr β2 = λ2 +µ2. Now, by Proposition 2.2.11,
the function

p 7−→ (tr β)′(p) + ψ(p) (2.15)

vanishes identically (where (tr β)′ := X(tr β)). It follows that, for every p ∈ M and
δ > 0,

0 =
1

δ

∫ δ

0

(
(tr β)′(φt(p)) + ψ(φt(p))

)
dt (2.16)

=
1

δ

(
tr β(φδ(p))− tr β(p) +

∫ δ

0

ψ(φt(p)) dt

)
(2.17)

Now let m be an finite measure on M invariant under φ. Then integrating (2.16)
against m yields

0 =
1

δ

∫
M

(
tr β ◦ φδ − tr β

)
dm︸ ︷︷ ︸

=0

+

∫
M

(
1

δ

∫ δ

0

ψ(φt(·)) dt

)
dm, (2.18)

where
∫
M

(
tr β ◦ φδ − tr β

)
dm = 0 since m is invariant under the flow of X. Now

let ε > 0. By uniform continuity, there is a δ > 0 such that

sup
p∈M

∣∣∣∣ψ(p)− 1

δ

∫ δ

0

ψ(φt(p)) dt

∣∣∣∣ < ε.
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Using this and (2.18), it follows that∫
M

ψ dm =

∫
M

(
ψ − 1

δ

∫ δ

0

ψ(φt(·)) dt

)
dm < ε

∫
M

dm

Taking ε→ 0 yields
∫
M
ψ dm = 0, which was the claimed identity.

Remark 2.5.7. (1) Using Theorem 2.2.13, we know that if X⊥ is integrable, then
RicX + |λ− µ|2/2 ≤ 0 everywhere. But since

RicX + tr β2 = RicX + |λ− µ|2/2 + |λ+ µ|2/2,

we do not know whether or not RicX + tr β2 is positive or negative. Hence,
the statement in Theorem 2.5.6 gives more than what we can deduce solely
from Theorem 2.2.13.

(2) If M is locally isometric to a product U × I, and X a geodesic vector field
given as ∂t in this local description (where t is the coordinate of the I-factor),
then X⊥ is integrable and RicX ≡ 0. In that case, of course, the statement of
Theorem 2.5.6 is trivially satisfied. There are, however, examples of geodesic
vector fields with integrable orthogonal distribution and strictly negative total
Ricci curvature (see Example 2.4.6).
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Geodesible versus Reeb vector fields

We have seen in Example 1.1.10 that the Reeb vector field of a contact form (or,
more generally, a stable Hamiltonian structure) is always geodesible. In this chapter,
we want to address the converse question:

Given a geodesible vector field on an odd-dimensional manifold, can it be realised
as the Reeb vector field of a contact form or a stable Hamiltonian structure?

In other words, the question is whether or not a geodesible vector field is ‘Reebable’.
This is not always the case, not even in the 3-dimensional case, as we will see in
Section 3.1 below.

The rest of the chapter is organised as follows. In Section 3.2, we discuss the
notion of volume of a geodesible vector field, following [30]. For example, the Reeb
vector field of a contact form always has nonzero volume, which is not true for geode-
sible vector fields in general. Then, we will introduce basic cohomology in Section
3.3, which is the cohomology of differential forms adapted to a given (geodesible) fo-
liation in a certain way, and use that in Section 3.4 to give an answer to the question
above for some special types of geodesible vector fields: Killing vector fields (in par-
ticular, periodic vector fields) and vector fields whose flow is transitive. In Sections
3.5, 3.6 and 3.7 (which are mainly based on the article [4]), we focus on geodesic
vector fields on flat 3-manifolds. We will show that every fibration of E3 by ori-
ented lines can be realised as a Reeb fibration (Corollary 3.7.2), and that every such
contact structure is necessarily tight (Theorem 3.7.4). Furthermore, we will show
that geodesic vector fields on flat 3-manifolds not equal to E3 are always tangent to
a codimension-1 foliation whose leaves are totally geodesic, and use that to derive
a criterion for the Reebability of geodesic vector fields on closed flat 3-manifolds
(Theorem 3.6.2).

3.1 Constructing non-Reeb geodesible vector fields

Let M be a (2n+ 1)-dimensional manifold. Recall that a stable Hamiltonian struc-
ture is a pair (ω, α), where ω a closed 2-form and α a 1-form such that α ∧ ωn 6= 0

everywhere, and kerω ⊂ ker dα (Example 1.1.10). Its Reeb vector field is, by defi-
nition, the unique vector field R satisfying iRω = 0 (in particular, iXdα = 0) and

54
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α(R) = 1. If ω = dα, then α is a contact form, hence stable Hamiltonian structures
can be viewed as generalisations of contact forms. Now consider the following sets
of vector fields on M :

R(M) := {Reeb vector fields of contact forms}
RS(M) := {Reeb vector fields of stable Hamiltonian structures}
G(M) := {Geodesible vector fields}

Then we have inclusions R(M) ⊂ RS(M) ⊂ G(M). Note that these inclusions are
strict in general. For example, consider M = S2 × S1 and X = ∂θ, where θ is the
S1-coordinate. Then X is clearly geodesible; in fact it is the Reeb vector field of the
stable Hamiltonian structure (ω, dθ), where ω is some area form on S2. ButX cannot
be realised as the Reeb vector field of a contact form, not even up to rescaling: If
there were a contact form α on M such that X = Rα, then Rα would be positively
transverse to S2 × {θ} for every θ ∈ S1, hence dα would restrict to a positive area
form on S2 × {θ}, which is not possible by Stokes’ theorem. More generally, a flow-
with-section (or suspension flow, see Example 1.1.11) is always geodesible, but never
the Reeb vector field of a contact form.

In Proposition 3.1.2 below, we will prove that in fact for every closed orientable
3-manifold, both inclusions R(M) ⊂ RS(M) and RS(M) ⊂ G(M) are strict. We
begin with the following simple observation.

Proposition 3.1.1 ([17, Corollary 2.3]). Let M be a closed orientable 3-manifold,
and let X ∈ G(M) be a geodesible vector field. Then X ∈ RS(M) if and only if
there is volume form µ on M such that the flow of X preserves µ, that is, LXµ = 0.

Proof. If X is the Reeb vector field of the stable Hamiltonian structure (ω, α), then
the flow of X preserves the volume form µ := α ∧ ω. Conversely, if µ is a volume
form preserved by the flow of X, set ω := iXµ and let α be a connection 1-form for
X. Writing α ∧ ω = fµ for some function f : M → R and contracting both sides
with X, we see that f ≡ 1; in particular, α ∧ ω is a volume form. Furthermore,
X ∈ ker dα spans the 1-dimensional kernel of ω, hence kerω ⊂ ker dα. Thus (ω, α)

is a stable Hamiltonian structure with Reeb vector field X.

Proposition 3.1.2. Let M be a closed orientable 3-manifold. Then

∅ 6= R(M) ( RS(M) ( G(M).

Proof. By Martinet’s theorem [57], the set of contact forms on M is nonempty;
hence R(M) 6= ∅. The inclusions hold by the discussion in Example 1.1.10. To see
that they are strict, we are going to adjust the construction in the proof of Theorem
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1.2.2 to provide vector fields X1 ∈ RS(M) \ RM and X2 ∈ G(M) \ RS(M). We
begin with the construction of X1. As in the proof of Theorem 1.2.2, consider an
open book decomposition (B, π) of M , where in this case, the binding B consists
of a number of disjointly embedded circles. To simplify notation, we assume that B
is connected, hence B ∼= S1. Let ϕ be the angular coordinate for B, and let θ be
the angular coordinate corresponding to the fibration π : M \ B → S1. Consider a
tubular neighbourhood νB ∼= S1×D2 on which π is given by the angular coordinate
of the D2-factor whose radial coordinate we denote by r. As in the construction of
Theorem 1.2.2, let X1 = f1(r) ∂ϕ + f2(r) ∂θ and α1 = (1− g(r)) dϕ+ g(r) dθ, where
this time f1, f2 and g are as depicted in Figure 3.1. On the interval [1/3−ε, 1/3+ε],
f1 and f2 satisfy the relation f2 = (1 + f1)/2. Note that f1 = f2 on the set {g′ 6= 0},
hence iX1dα1 = (f1− f2)g′dr = 0. Furthermore, one can easily check that α1(X1) =

(1−g)f1 +gf2 = 1 (this is clear if f1(r) = f2(r) = 1; everywhere else, g is constantly
equal to 0, 1 or 2, and the condition translates into f1 = 1, f2 = 1 or f2 = (1+f1)/2,
respectively). Thus (X1, α1) defines a geodesible pair. To see that X1 ∈ RS(M), we
claim that X1 preserves a volume form, arguing as in [12, Theorem 3.10]. On νB,
the volume form µ := r dr ∧ dϕ ∧ dθ is clearly invariant under the flow of X1. Now
pick a page Σθ0 := π−1(θ0), and extend the area form r dr ∧ dϕ on Σθ0 ∩ νB to an
area form defined on all of Σθ0 . This area form extends to a θ-invariant 2-form ω on
M such that ω = r dr ∧ dϕ on νB. Thus µ extends as ω ∧ dθ to M \ νB which is
clearly invariant under the flow of X1. Therefore, X1 ∈ RS(M) by Proposition 3.1.1.
However, X1 cannot be realised as the Reeb vector field of a contact form, because
in νB, when going in radial direction, X1 makes half a twist in one direction, and
then half a twist in the other direction (as X1(r = 0) = ∂θ, X1(r = 1/3) = −∂θ
and X1(r = 2/3) = ∂θ), which is incompatible with the property of being Reeb for
a contact form; for the precise argument we refer to the proof of Proposition 3.6.6,
(i)⇒ (ii), or Remark 3.6.7.

For the construction of X2, start with X1 as above (or any geodesible vector field
of the form X = f1 ∂ϕ + f2 ∂θ, for that matter) and introduce a small perturbation
on νB by setting X2 := X1 −Ψ(r) ∂r, where Ψ: [0, 1]→ [0, 1] is a smooth function
equal to 0 near r = 0 and r = 1, and positive for r ∈ [ε, 2ε], for some ε > 0. Then,
for ε chosen small enough, α1 is still a connection form for X2, hence X2 ∈ G(M).
To see that X2 /∈ RS(M), consider the solid torus S1 × D2

ε ⊂ S1 × D2 ∼= νB,
where D2

ε denotes the disc of radius ε. If φ1 denotes the time-1 flow of X, then
φ1(S1 × D2

ε) ⊂ S1 × D2
r for r < ε. This is of course not compatible with the

preservation of a volume form, hence X2 /∈ RS(M) by Proposition 3.1.1.
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Figure 3.1: Interpolation functions f1, f2 and g for constructing non-Reeb geodesible
fields.

Note that in the proof above we have constructed X2 by a C∞-small perturbation
of an element of RS(M) or R(M) (by choosing Ψ C∞-small). Hence we have the
following.

Proposition 3.1.3. For any given closed 3-manifold M , the subsets R(M) and
RS(M) are not C∞-open in G(M).

In comparison, Cardona has recently proven the following.

Theorem 3.1.4 (Cardona [13]). For any given closed 3-manifold M , R(M) is not
C1-dense in RS(M) (or, more generally, the space of vector fields preserving a
volume form).

3.2 The volume of a geodesible vector field

In this section, we introduce the notion of volume for a geodesible vector field,
following [30].

Definition/Lemma 3.2.1. Let X be a geodesible vector field on a closed (2n+ 1)-
dimensional manifold M with connection form α. Then, the real number

volX :=

∫
M

α ∧ (dα)n

does not depend on the choice of α. It is called the volume of X.
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Proof. The following equation holds for arbitrary 1-forms α and β (see [30, Lemma
1.1]):

α∧(dα)n − β ∧ (dβ)n

= (α− β) ∧
n∑
j=0

(dα)j ∧ (dβ)n−j + d
(
α ∧ β ∧

n−1∑
j=1

(dα)j ∧ (dβ)n−1−j
)
.

(3.1)

Now if α and β are connection 1-forms for X, then the first n summands of the
right-hand side of the equation above vanish (which can be seen by contracting with
X), and the remainder is an exact form which integrates to zero by Stokes’ Theorem.
It follows that ∫

M

α ∧ (dα)n =

∫
M

β ∧ (dβ)n.

Remark 3.2.2. In dimension 3, if X is a geodesic vector field on an orientable
Riemannian manifold (M, g), we have seen in the proof of Proposition 2.2.8 that
α ∧ dα = 〈curlX,X〉 vol g. Hence volX =

∫
M
〈curlX,X〉 vol g. This is also known as

the helicity of X, a quantity that appears in plasma physics and fluid dynamics
(see, for example, [6, 11, 58]).

Example 3.2.3. (i) Let π : M → Σ be a Seifert fibration with Euler number e
(see Definition 4.1.6), defined by a (geodesible) vector field X whose period
along the regular fibres is equal to 1. Then volX = −e [30, Corollary 6.3].

(ii) Let α be a contact form on a (2n+ 1)-dimensional manifold and Rα its Reeb
vector field. Then Rα is geodesible and thus has a well-defined volume, which
is necessarily non-zero since α ∧ (dα)n is a volume form.

The following proposition is a slight generalisation of Proposition 2.1 in [30], in
the sense that in our case the two Reeb vector fields need not be the same, only
up to rescaling by a positive function. Before giving the statement, let us introduce
some notation.

Notation. For two nowhere vanishing vector fields X and Y on a manifoldM , write
X ∼ Y if there is a function λ : M → R+ such that Y = λX.

Proposition 3.2.4. Let M be a closed 3-manifold and let α0 and α1 be two contact
forms on M such that Rα0 ∼ Rα1. Then, the volumes of Rα0 and Rα1 have the same
sign. Furthermore, the contact structures kerα0 and kerα1 are diffeomorphic.

Proof. The first statement is equivalent to saying that the orientations defined by
the volume forms α0∧dα0 and α1∧dα1 are the same. For the sake of contradiction,
assume that they are not. Since Rα0 ∼ Rα1 , the 2-forms dα0 and dα1 must be
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multiples of each other, so we may write dα1 = µ dα0, where µ : M → R−. Also,
set λ := α1(Rα0) ∈ C∞(M,R+). Now α1 ∧ dα1 = f α0 ∧ dα0 for some function
f : M → R−. By contracting both sides of this equation with Rα0 , we see that
f = λµ. Similarly, one computes that

(α0 − α1) ∧ (dα0 + dα1) = (1− λ)(1 + µ)α0 ∧ dα0.

Then, identity (3.1) implies that∫
M

(1− λµ)α0 ∧ dα0 =

∫
M

α0 ∧ dα0 −
∫
M

α1 ∧ dα1

=

∫
M

(α0 − α1) ∧ (dα0 + dα1)

=

∫
M

(1− λ)(1 + µ)α0 ∧ dα0.

But then
∫
M

(µ−λ)α0∧dα0 must vanish, which is impossible since µ−λ is assumed to
be negative everywhere. Hence, we arrive at a contradiction, and the first statement
is proven. Now consider the family of 1-forms αt := (1 − t)α0 + t α1. Again, write
λ := α1(Rα0) ∈ C∞(M,R+) and dα1 = µ dα0, where µ : M → R+ is now a positive
function. Then

αt ∧ dαt =
[
(1− t)2 + t(1− t)(λ+ µ) + t2λµ

]︸ ︷︷ ︸
>0

α0 ∧ dα0,

hence αt is a contact form for every t ∈ [0, 1]. Then kerα0 and kerα1 are diffeomor-
phic by Gray stability (Theorem 2.1.9).

Lemma 3.2.5. Let π : M → N be a k-fold covering, X a geodesible vector field on
N and Y its lift to M . Then Y is geodesible and the volumes of X and Y are related
as

vol Y = k volX .

Proof. Let α be a connection 1-form for X. Then π∗α clearly defines a connection
1-form for Y , hence Y is geodesible. Furthermore,

vol Y =

∫
M

π∗α ∧ (d(π∗α))n =

∫
M

π∗ (α ∧ (dα)n) = k

∫
N

α ∧ (dα)n = k volX .

3.3 Basic cohomology

In this section, we introduce a special kind of cohomology adapted to a foliation of
a manifold, called basic cohomology. It is given as the de Rham cohomology of the
subcomplex of so-called basic differential forms. Here, we discuss the concept for
1-dimensional foliations only; a more general introduction can be found in [75].
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Definition 3.3.1. Let F be a 1-dimensional foliation of a manifold M , spanned by
a non-singular vector field X. A k-form β is called basic with respect to F if

iXβ = 0 and iXdβ = 0.

The vector space of basic k-forms is denoted by Ωk
B(F). By definition, the exterior

derivative preserves basic forms. In particular, we have an induced complex

. . .
dB−→ Ωk−1

B (F)
dB−→ Ωk

B(F)
dB−→ Ωk+1

B (F)
dB−→ . . .

called the basic de Rham complex. The cohomology of this complex is called the
basic cohomology associated with the foliation F , and the cohomology groups are
denoted by Hk

B(F).

Example 3.3.2. (i) Let F be a 1-dimensional foliation whose leaves are given as
the fibres of a fibration π : M → B. Then, any basic k-form β ∈ Ωk

B(F) gives
rise to a k-form η ∈ Ωk(B), as follows. For a point p ∈ B and tangent vectors
v1, . . . , vk ∈ TpB, set

ηp(v1, . . . , vk) := βq(ṽ1, . . . , ṽk),

where q ∈ π−1(p) and ṽ1, . . . , ṽk are some lifts of v1, . . . , vk. To see that this is
well defined, note that

LXβ = d(iXβ) + iXdβ = 0,

which implies that the above definition does not depend on the choice of q ∈
π−1(p). Furthermore, since iXβ = 0, it does not depend on the choice of lifts
ṽ1, . . . , ṽk either, since any two lifts of a given tangent vector of B differ by a
multiple of X. Conversely, given a k-form η ∈ Ωk(B), the pull-back β := π∗η is
basic. Clearly, these two operations are inverse to each other. Hence, we obtain
a one-to-one correspondence between basic k-forms on (M,F) and ordinary k-
forms on B. One may easily check that this correspondence preserves exterior
derivatives. Thus, the basic cohomology groups of F are isomorphic to the
de Rham cohomology groups of the basis B. This justifies the name ‘basic’
cohomology.

(ii) The following is an example of a foliation F whose second basic cohomology
is infinite-dimensional (cf. [17, Proposition 3.39]). Let M = T 2 × [0, 1] with
coordinates (ϕ, θ, r) and let X = sin f(r) ∂ϕ + cos f(r) ∂θ, where f : [0, 1]→ R
is a smooth function with f ′ 6= 0 everywhere. Let F be the 1-dimensional
foliation spanned by X. Note that the leaves of F are tangent to the tori
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T 2 × {∗}. If r is such that f(r) ∈ 2πQ, then F gives rise to a fibration
of T 2 × {r} by circles, whereas if f(r) ∈ 2π (R \ Q), then every leave of F
contained in T 2 × {r} is dense in T 2 × {r}.

The claim is now that H2
B(F) is infinite-dimensional. To see this, consider the

basic 2-form dα, where α = sin f(r) dϕ+ cos f(r) dθ is the 1-form dual to X.
Then dα|X⊥ is non-vanishing. Hence, if β is an arbitrary basic 2-form, then
β = λ dα for some function λ : M → R. Now, since β is basic, we have that

0 = LXβ = iX(d(λ dα)) + d(iX(λ dα))

= dλ(X) dα− dλ ∧ (iXdα︸ ︷︷ ︸
=0

) + dλ ∧ (iXdα︸ ︷︷ ︸
=0

) + λ d(ixdα︸︷︷︸
=0

)

= dλ(X) dα,

so that dλ(X) = 0, i.e. λ is invariant under the flow of X. Hence λ is constant
on the tori T 2 × {r} for r satisfying f(r) ∈ 2π (R \ Q). Since these tori are
dense in M (as f ′ 6= 0 everywhere), it follows that f depends on r only.

Now consider a basic 1-form η ∈ Ω1
B(F). Write

η = a dr + b dϕ+ c dθ,

for some functions a, b, c ∈ C∞(M). Then, by our observation above, dη =

λ dα for some function λ = λ(r). This translates into the following system of
equations:

(I) ∂rb− ∂ϕa = λf ′ cos f ,

(II) ∂rc− ∂θa = −λf ′ sin f ,

(III) ∂ϕc− ∂θb = 0.

On the other hand, we know that

0 = η(X) = b sin f(r) + c cos f(r). (3.2)

Differentiating this equation with respect to ϕ yields

∂ϕb sin f(r) + ∂ϕc cos f(r) = 0.

Using this and (III), we obtain

X(b) = ∂ϕb sin f(r) + ∂θb cos f(r)

= ∂ϕb sin f(r) + ∂ϕc cos f(r)

= 0.
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Hence, b is invariant under the flow of X and therefore (using the same argu-
ment as before) it is a function of r only. The same is true for c. Now from
equations (II) and (III) it follows that ∂ϕa and ∂θa depend on r only, and
since a is periodic with respect to ϕ and θ, we conclude that a, too, must be
a function of r only. Hence, equations (I) and (II) above become

(I) ∂rb = λf ′ cos f ,

(II) ∂rc = −λf ′ sin f .

Differentiating equation (3.2) with respect to r and plugging in equations (I)
and (II), we obtain

b f ′ cos f − c f ′ sin f = 0.

Since f ′ 6= 0 everywhere, this is equivalent to b cos f − c sin f = 0. But now
this, together with (3.2), yields(

b c

−c b

)(
sin f

cos f

)
= 0,

hence b = c = 0, and then also λ = 0 by (I) and (II). This means that
dη = λ dα = 0. In particular, since η was an arbitrary basic 1-form, it follows
that

Im(d: Ω1
B → Ω2

B) = 0.

This implies that

H2
B(F) = ker(d: Ω2

B → Ω3
B) = Ω2

B = {λ dα : λ = λ(r) ∈ C∞([0, 1])}
∼= C∞([0, 1]),

hence H2
B(F) is infinite-dimensional.

Now let X be a geodesible vector field and FX the 1-dimensional foliation
spanned by X. Given any connection 1-form α for X, the 2-form dα is basic, hence
it defines a basic cohomology class [dα]B ∈ H2

B(FX). This class does not depend on
the specific choice of connection form α. Indeed, if β is another connection form for
X, then α−β is basic, hence dα−dβ ∈ Im dB. This allows us to make the following
definition, following [30].

Definition 3.3.3. Let X be a geodesible vector field with connection form α. Then,
the basic cohomology class eX := [dα]B ∈ H2

B(FX) is called the Euler class of X.

Proposition 3.3.4 ([30, Proposition 5.5]). A geodesible vector field X on a (2n+1)-
dimensional manifold is the Reeb vector field of a contact form if and only if eX has
an odd-symplectic representative, that is, there is a basic closed 2-form ω such that
[ω]B = eX and ωn 6= 0.
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Proof. If X is the Reeb vector field of a contact form α, then eX = [dα]B and dα is
odd-symplectic. Conversely, if there is such an odd-symplectic form ω, then

dα = ω + dβ

for some basic 1-form β. Then the 1-form α̃ := α−β is contact, and its Reeb vector
field is given by X.

In particular, a necessary condition for a geodesible vector field to be Reeb is
the existence of an odd-symplectic basic 2-form ω. In that case, the volume form
µ := α ∧ ωn is nowhere vanishing and invariant under the flow of X, since

LXµ = d(iX(α ∧ ωn)) = dωn = 0.

In dimension 3, the converse is also true: If µ is an invariant volume form, then
ω := iXµ is an odd-symplectic basic 2-form.

Proposition 3.3.5. Let X be a geodesible vector field on a 3-manifold such that

• the flow of X preserves a volume form;

• volX 6= 0;

• H2
B(FX) ∼= R.

Then X is the Reeb vector field of a contact form.

Proof. Since the flow of X preserves a volume form, there is an odd-symplectic
basic 2-form ω defining a basic cohomology class [ω]B ∈ H2

B(FX). Note that since
volX 6= 0, the Euler class eX ∈ H2

B(FX) is nontrivial. Indeed, if there were a basic
1-form β such that dα = dβ, then

0 6= volX =

∫
M

α ∧ dα =

∫
M

α ∧ dβ =

∫
M

d(α ∧ β)︸ ︷︷ ︸
=0

−
∫
M

β ∧ dα.

But iX(β ∧ dα) = 0, hence β ∧ dα = 0 which gives a contradiction. For the same
reason, the class [ω]B is nontrivial. Since H2

B(FX) = R, there is a basic 1-form β

and a constant c 6= 0 such that dα− cω = dβ. Then α− β is a contact form whose
Reeb vector field is given by X.

The third condition in Proposition 3.3.5 will not be satisfied in general, since
H2
B(FX) can be infinite-dimensional, as we saw in Example 3.3.2 (ii). However,

there are certain examples where the condition holds, and we will discuss these in
the next section.
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3.4 Isometric and transitive flows

In this section, we want to discuss some examples of geodesible vector fields for
which Proposition 3.3.5 applies. Consider a Riemannian manifold (M, g) and X a
Killing vector field on M . Recall that if X is of unit length, then it is a geodesic
vector field (Example 1.1.12). If the underlying 3-manifoldM is orientable, then the
Riemannian volume form vol g is defined, and the flow of X preserves this volume
form. Hence X satisfies condition (1) of Proposition 3.3.5. It also satisfies condition
(3), as the next lemma says.

Lemma 3.4.1 ([75, (6.15)]). Let X be a Killing vector field of unit length on some
Riemannian 3-manifold. Then H2

B(FX) ∼= H3
dR(M). In particular, H2

B(FX) ∼= R if
M is closed.

Together with Proposition 3.3.5, we immediately obtain the following.

Corollary 3.4.2. Let X be a Killing vector field of unit length on some closed
Riemannian 3-manifold. Then X is the Reeb vector field of a contact form if and
only if volX 6= 0.

Recall that if X is a periodic vector field defining a Seifert fibration, then X

can be realised as a Killing vector field of unit length for a suitable Riemannian
metric (Example 1.1.14). Now we have seen in Example 3.2.3 that the volume of X
is given by volX = c−1e, where e is the Euler number of the Seifert fibration and c
is the regular period of X. Together with Corollary 3.4.2, this yields the following
statement that was first proven by Kegel and Lange [50, Theorem 1.4].

Corollary 3.4.3. Let X be a periodic vector field defining a Seifert fibration with
Euler number e. Then X is the Reeb vector field of a contact form if and only if
e 6= 0.

A second situation in which H2
B(F) is finite-dimensional is that of a transitive

flow, i.e. a flow that admits a dense orbit.

Proposition 3.4.4. Let X be a geodesible vector field on a 3-manifold M preserving
some volume form (i.e., X is the Reeb vector field of a stable Hamiltonian structure).
If volX 6= 0 and X has a dense orbit, then H2

B(FX) ∼= R, and X is the Reeb vector
field of a contact form.

Proof. Let µ be a volume form preserved by X, and let ω := iXµ. Then ω defines a
nontrivial basic cohomology class [ω]B ∈ H2

B(FX). If η is another basic 2-form, then
η = λω for some function λ : M → R. Then dη = dλ ∧ ω, hence η is closed if and
only if dλ(X) = 0, which means that λ is invariant under the flow of X. Since X
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has a dense orbit, every such function must be constant. Hence every closed basic
2-form is a constant multiple of ω, implying that H2

B(FX) ∼= R. The statement then
follows from Proposition 3.3.5.

3.5 Geodesic vector fields on flat 3-manifolds

The contents of this section and the remainder of this chapter are mainly based on
the article [4]. We now want to address the question asked in the beginning of this
chapter in a more geometric setting. That is, we consider geodesic vector fields on
manifolds with a given Riemannian metric. Of course the simplest Riemannian man-
ifolds to consider are space forms (i.e. spaces of constant curvature). For instance,
we have seen in Section 2.2 that every fibration of the round 3-sphere by oriented
great circles induces a contact structure (Theorem 2.2.3); in particular, by Remark
2.2.2, every unit vector field spanning a great circle fibration is the Reeb vector field
of a contact form, and the corresponding contact structure must be diffeomorphic
to the standard one by Proposition 3.2.4. Hence in the case of positive constant
curvature, there is nothing more to do. Similarly, using Harrison’s result (Theorem
2.2.6), a geodesic vector field X on a flat 3-manifold induces a contact structure if
and only if rank∇X ≥ 1, and X is also Reeb in this case. However, consider for
example the constant geodesic vector field ∂z on E3. This clearly does not induce a
contact structure (the orthogonal complement being a constant plane field), but it is
the Reeb vector field of a contact form, namely the standard one given by dz+x dy.
That is, unlike in the case of positive constant curvature, the class of geodesic Reeb
vector fields on flat 3-manifolds is larger than the class of geodesic vector fields that
induce contact structures. In fact it is not hard to show that every geodesic vector
field on E3 can be realised as the Reeb vector field of a contact form, diffeomorphic
to the standard one (Corollary 3.7.2).

For closed flat 3-manifolds, the situation is different again. For example, the
geodesic vector field ∂z on T 3 (equipped with flat coordinates (x, y, z)) cannot be
realised as the Reeb vector field of a contact form, for the reason discussed in the
beginning of Section 3.1, as it admits a transverse 2-torus. The question is now
whether one can find a reasonable criterion for the Reebability of such vector fields.
We will provide an answer to that question in Section 3.6 (Theorem 3.6.2). The
proof of Theorem 3.6.2 is based on the following characterisation, which says that
if the given flat 3-manifold is not equal to E3, any foliation by oriented geodesics is
of a very simple type.
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Theorem 3.5.1. Let M be a complete flat 3-manifold not equal to E3. Then any
1-dimensional oriented geodesic foliation of M is tangent to a 2-dimensional totally
geodesic foliation.

Figure 3.2: A 1-parameter fibration by lines.

Remark 3.5.2. Note that if M is a complete flat 3-manifold, then M can be iden-
tified with the quotient space E3/Γ, where Γ < Isom(E3) is some discrete subgroup
of isometries acting freely (cf. [55, Corollary 11.13]). In particular, every geodesic
vector field X on M lifts to a geodesic vector field

∼
X on E3. Theorem 3.5.1 then

says that ifM 6= E3, then
∼
X is tangent to a fibration by planes, see Figure 3.2. That

is, the vector field
∼
X can be described by a single angular function θ : E3 → S1. In

this case, the line fibration spanned by
∼
X is called 1-parameter (see [42]).

Remark 3.5.3. We do not assume M to be oriented or closed in Theorem 3.5.1.
Furthermore, the statement is false for geodesic foliations of E3. In fact, there exist
fibrations of E3 by pairwise non-parallel oriented lines (so-called skew fibrations),
which are of course far from being 1-parameter. One way to construct such a fibration
is the following (cf. [41]). Start with a single oriented line. The complement of this
line in E3 is fibred by nested one-sheeted hyperboloids, all of which are ruled surfaces
and can therefore be written as the union of (oriented) lines. This yields a fibration
of E3 by oriented lines, and one may check that no two of these lines are parallel to
each other. See Figure 3.3 below.
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Figure 3.3: A skew fibration.

Proof of Theorem 3.5.1. LetM be a complete flat 3-manifold not equal to E3. Then
M can be identified with E3/Γ, where Γ < Isom(E3) is a nontrivial discrete sub-
group of isometries acting freely (see Remark 3.5.2). Now let F be a (1-dimensional,
oriented) geodesic foliation ofM , spanned by a geodesic vector field X. Then F lifts
to a geodesic foliation F̃ of E3, spanned by the lifted vector field

∼
X. Here, we view

F̃ = {`} just as a set of lines. For a point p ∈ E3, denote by `p ∈ F̃ the fibre through
p. Note that F̃ must be invariant under the action of Γ, that is, `γ(p) = γ(`p) for
every γ ∈ Γ and p ∈ E3. Now it clearly suffices to prove the statement for the lifted
foliation F̃ , since the covering map π : E3 → M is locally isometric. That is, we
have to show that the fibration F̃ of E3 by oriented lines is tangent to a fibration by
affine planes, i.e. F̃ is 1-parameter. To do so, let us take a closer look at the group
Γ < Isom(E3). It is well known that every isometry of E3 (also called Euclidean
motion) is given by the composition of a reflection in a plane or rotation about
some axis, and some (perhaps trivial) translation. Then one can easily see that any
fixed-point free Euclidean motion must be one of the following three:

• a translation;

• a screw motion, i.e. rotation about some axis followed by translation in the
direction of this axis;

• a glide reflection, i.e. reflection in some plane followed by translation parallel
to this plane.

Note that applying a glide reflection twice yields a (pure) translation again. Hence,
we may assume that the group Γ contains a nontrivial translation or screw motion.
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We will treat these two cases separately.

First case (Γ contains a translation): Assume that there is some Tv ∈ Γ, where
Tv is the translation by some vector v ∈ R3. If

∼
X is constant, there is nothing

to prove. Otherwise, there is a point p0 ∈ E3 such that `p0 does not point in the
direction of ±v. Let P ⊂ E3 be the affine plane through p0 spanned by v and the
cross product

∼
Xp0×v. Then P is transverse to `p0 , so we can consider the projection

π : E3 → P onto P in the direction of `p0 . Define a vector field Y on P by

Yp := dπp(
∼
Xp), p ∈ P,

and denote by `Yp the line in P spanned by Yp. Note that `Yp is just given by the
projected line π(`p). The Z-action on E3 generated by the translation Tv restricts to
a Z-action on P , and Y is invariant under this action. Now partition P as P = AtB,
where A = {Y 6= 0} and B = {Y = 0}. Note that B is precisely the set of points
p ∈ P for which `p is parallel to `p0 . Therefore, we may assume that A 6= ∅, for
otherwise,

∼
X is constant and therefore trivially 1-parameter. Also, if Yp 6= 0 at

some point p ∈ P , then `Yp must be disjoint from B. Indeed, if there were a point
q ∈ B ∩ `Yp , then the fibre `p would intersect `q transversely, which is of course not
possible.

Now we consider two cases. First, assume that there is a point q ∈ A for which
Yq is parallel to v. Then Y must be parallel to Yq on the whole line `Yq . Indeed, if
that were not the case, then the set of lines {`Yp : p ∈ `Yq } would fill out a cone that
intersects p0 + Z v, see Figure 3.4 below. In particular, there would be some line
`Yp intersecting a point in B, which is not possible, as we have seen above. For the
same reason, Y must be non-vanishing on `Yq (in fact, we have that Yp = Yq for all
p ∈ `Yq ). It follows that the affine plane spanned by `Yq and

∼
Xq is fibred by pairwise

parallel lines in F . The same holds for every parallel translate of that plane, and we
conclude that F̃ is 1-parameter.

Thus, we may assume that Y is nowhere parallel to v. Let Q ⊂ E3 be the affine
plane through p0 spanned by v and

∼
Xp0 . Then Q contains infinitely many fibres of F

parallel to `p0 , namely, the fibres through points in p0 + Z v. Note that these points
are contained in B. If Q′ is another affine plane parallel to Q, then there must be
fibres contained in Q′ as well. To see this, denote by UQ and UQ′ the set of points
in Q and Q′, respectively, where

∼
X is transverse to Q (resp. Q′). Then, the flow of

∼
X maps UQ diffeomorphically to UQ′ . But since there is a Z-family of fibres tangent
to Q, we see that UQ is either empty or disconnected, so the same must be true for
UQ′ . In particular, UQ′ 6= Q′, so that there must be fibres in F tangent to Q′. All of
these fibres must be parallel to `p0 , for otherwise Y is parallel to v (and non-zero)
somewhere, and we are in the first case again. Furthermore, the translates of these
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p0

v

q

Yq

`Yq

Figure 3.4: The set of lines spanned by Y contains the grey cone, which intersects
the set of points {p0 + Z v}.

fibres by integer multiples of v are again fibres of F contained in Q′. But then every
disc of radius > |v| in P must intersect B in at least one point. Now by an argument
similar to the one in the first case, we see that for every point q ∈ A and p ∈ `Yq , we
have that Yp = Yq, and we conclude that F̃ is 1-parameter.

Second case (Γ contains a screw motion): Assume that Γ contains a screw mo-
tion γ, where γ is given by some rotation followed by translation by some vector
v ∈ R3. We may assume that the angle of rotation is an irrational multiple of 2π,
for otherwise, applying γ some number of k times yields a (pure) translation, and
we are in the first case again.

Denote by P the plane through the origin orthogonal to v, and for t ∈ R let
Pt := P + tv, the parallel translate of P by the vector tv. Consider the fibre `0

through the origin, and let `t := `tv. We need the following additional lemma.

Lemma 3.5.4. Either `t ⊂ Pt for all t, or `0 is parallel to v.

Proof. The statement is equivalent to saying that if `t is transverse to Pt for some t,
then `t is parallel to v. Therefore, for the sake of contradiction, let us assume that
there is some t ∈ R such that ` := `t is transverse to Pt (and hence transverse to
P ) and not parallel to v. For simplicity assume that t = 0. Let π : E3 → P be the
orthogonal projection onto P . Then ` projects to a line π(`) ⊂ P . Now consider the
projected lines π(`t) for t ∈ R. If π(`t) = π(`) for all t ∈ R, then the lines `t must be
pairwise parallel, thus the plane Q spanned by v and ` is fibred by (parallel) lines.
Then γ must preserve Q in order for the fibration F̃ to be preserved, which is only
possible if γ is trivial, a contradiction. Hence, we may assume that there is some
t0 ∈ R such that π(`t0) 6= π(`). We may further assume (without loss of generality)
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that t0 < 0 and that every `t, for t ∈ [t0, 0], intersects P transversely (by choosing
t0 close enough to 0). Now let

N :=
⋃

t∈[t0,0]

`t ⊂ E3.

Then the projection π(N) ⊂ P contains the cone K ⊂ P given by the convex hull
of π(`) and π(`t0) (see Figure 3.5). Let θ be the angle between π(`) and π(`t0). Since
the angle of rotation of γ is irrational, there is some k ∈ N such that the projection
of γk(`) ∈ F onto P is a line obtained by rotating −π(`) towards the interior of K
by an angle of less than θ. In other words, π(γk(`)) ⊂ IntK ∪ {0}. From this we
deduce that γk(`) intersects N . However, since k > 0 > t0, we see that γk(`) 6⊂ N ,
hence γk(`) intersects some line in N transversely, a contradiction.

N

`
`t0

γk(`)

Rv

θ

K

P
π(`)

π(`t0)

π(γk(`))

Figure 3.5: The line γk(`) intersects N transversely.

Proof of Theorem 3.5.1 (cont.) Using Lemma 3.5.4, we now have to consider two
cases. The first is that `t ⊂ Pt for all t ∈ R. Let us show that, under this assumption,
every fibre of F̃ must be contained in one of the planes Pt (in particular, the fibration
will be 1-parameter). To see this, note first that each of the oriented lines `t divides
Pt into two open, oriented half-planes `+

t and `−t , where ∂`
+
t = `t and ∂`−t = −`t

(that is, `t with the opposite orientation). Here, the orientations of `+
t and `−t come

from a consistently chosen orientation of the Pt. Now assume that there is a point
p ∈ P such that `p intersects P (and hence every Pt) transversely. We may assume
that `p is not parallel to v, so that the orthogonal projection π(`p) ⊂ P of `p is
a line again. Furthermore, we may assume that π(`p) intersects `0 transversely (if
that is not the case, simply replace P by an appropriate Pt, and `0 by `t, for some
t ∈ R). Now, without loss of generality, let us assume that p ∈ `+

0 . Then the point pt
given by the intersection of `p with Pt must be contained in `+

t for every t ∈ R, for
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otherwise, the line `p intersects one of the `t transversely. But since π(`p) intersects
`0 transversely, there is some T > 0 such that π(pt) ∈ `−0 for all t > T . Again,
since the angle of rotation of γ is irrational, we can approximate `0 arbitrarily well
by π(γk(`0)) = π(`k) for large enough k ∈ N, hence we can approximate `−0 by
π(γk(`0))−. In particular, there is some k ≥ T such that π(pk) ∈ `−0 ∩ π(`k)

−. But
then pk ∈ `−k , a contradiction.

The other case is that `0 is parallel to v (and then, in particular, `t = `0 for all t).
We will show that in this case, every fibre must be parallel to v, and so the fibration
is trivially 1-parameter. Arguing again by contradiction, we assume that there are
fibres that are not parallel to v. Choose a small closed disc D ⊂ P such that

(i) for every p ∈ D, the fibre `p is transverse to D;

(ii) for every p ∈ ∂D, the fibre `p is not parallel to v.

Such a disc can be found as follows. First, take a disc D = Dr(0) (the closed disc
about 0 of radius r > 0) that satisfies (i). Now if (ii) does not hold, then there is
some p0 ∈ ∂D such that `p0 is parallel to v. By applying γ successively (once again
using the fact that its rotational angle is irrational) we find that for a dense subset
of ∂D, the corresponding fibres must be parallel to v. Then by continuity, this must
hold for every fibre through points in ∂D. But then the set of all fibres through ∂D
form a straight cylinder parallel to v, and thus every fibre inside that cylinder must
be parallel to v as well. In other words, the fibration is constant over D. But since
the fibration is assumed to be globally non-constant, we find a larger disc, again
called D, so that (i) is still satisfied and the fibration is not constant over D. Then
D has to satisfy (ii) as well.

Now let Σ := {`p : p ∈ ∂D} be the surface consisting of all fibres through points
in ∂D. Let Σt := Σ∩Pt, with Pt = P + tv as before, and let π(Σt) be its projection
to P . We shall prove that there is some T > 0 such that for all t ∈ R with |t| > T

we have that
D ⊂ Intπ(Σt), (3.3)

where Intπ(Σt) denotes the interior of π(Σt), that is, the connected component of
Pt \ π(Σt) bounded by π(Σt) with compact closure. Indeed, π(Σt) is obtained from
π(Σ0) = ∂D by flowing in the direction of the projected lines π(`p), p ∈ ∂D. Denote
this flow by Φ. For T large enough and |t| > T , the set Φt(∂D) lies outside of D,
that is, Φt(∂D) ⊂ P \ D. The fact that we can write D instead of IntD here is
because the `p project to lines and not points, due to property (ii) above; hence no
point on ∂D is fixed under the flow Φ. Since none of the projected lines point to the
origin (due to Lemma 3.5.4), the origin stays in the interior while applying the flow,
from which (3.3) follows. This is illustrated in Figure 3.6.
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D

π(Σt)

Figure 3.6: D is contained in the interior of π(Σt).

Now let k > T and consider the surface Σ̃ := γk(Σ). Then, since F̃ is invariant
under the action of Γ, we see that Σ̃, too, is a union of fibres of F̃ . Hence, either
Σ and Σ̃ are disjoint, or they intersect in a set of common fibres. In particular,
the intersection Σ ∩ Σ̃ is either empty or there is a non-empty intersection in every
t-level, that is, Σt ∩ Σ̃t 6= ∅ for every t. On the other hand, from (3.3) we deduce
that π(Σ̃k) = ∂D ⊂ Intπ(Σk), hence Σ̃k ⊂ Int Σk. Similarly, one can show that
Σ0 ⊂ Int(Σ̃0), see Figure 3.7.

Σ

Σ̃

Pk

P0

Figure 3.7: The surfaces Σ and Σ̃ intersect transversely.

But this means that Σ∩ Σ̃ 6= ∅ while Σk ∩ Σ̃k = ∅, a contradiction. This finishes
the proof of Theorem 3.5.1.
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3.6 Reebability in the flat case

The goal of this section is to prove a necessary and sufficient criterion for the Reeba-
bility of geodesic vector fields on closed flat 3-manifolds. Before giving the statement,
let us make the following definition.

Definition 3.6.1. A geodesible vector field X on an odd-dimensional manifold M
is called conformally Reeb if there is a contact form α with Reeb vector field
Rα such that X ∼ Rα. In other words, there is a function λ : M → R+ such that
X = λRα.

Secondly, recall that a flat torus is the manifold given by T n = En/Zn equipped
with the induced (flat) Riemannian metric, where Zn is a lattice in En acting by
translations. For the remainder of this chapter, by T 3 we shall always mean a flat
3-torus.

Theorem 3.6.2. Let X be a geodesic vector field on a closed orientable complete
flat 3-manifold M . Then X is conformally Reeb for a contact form α if and only if
there is a geodesic vector field Y on M inducing a contact structure ξ such that X
is everywhere transverse to ξ.

In this case, writing M as M = T 3/Γ, where T 3 is some flat 3-torus and Γ <

Isom(T 3), there is a fibration ζ : T 3 → S1 whose fibres are totally geodesic 2-tori such
that the lifted vector fields XT and YT are tangent to the fibres of ζ. Furthermore,
the lifted contact structures ker αT and ξT on T 3 are both diffeomorphic to

ker

(
sin

(
volX |Γ|

A
ζ

)
E1 + cos

(
volX |Γ|

A
ζ

)
E2

)
,

where

• E1 and E2 are 1-forms dual to a global orthonormal parallel frame (E1, E2)

spanning the fibres of ζ,

• A :=
∫
ζ−1(a)

E1 ∧ E2 is the (Euclidean) area of a typical fibre.

In particular, we obtain the following standardness result, which follows also from
Theorem 3.7.4; however, the proof of Corollary 3.6.3 below is by a direct argument
and does not use sophisticated results like Hofer’s theorem on overtwisted contact
structures or Eliashberg’s classification of tight contact structures on R3.

Corollary 3.6.3. Let X be a geodesic vector field on a closed flat 3-manifold. If X
is conformally Reeb for a contact form α, then the lifted contact structure ker

∼
α on

R3 is diffeomorphic to the standard contact structure ker (dz + x dy).
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In order to prove Theorem 3.6.2 and Corollary 3.6.3, we first show how to reduce
the problem to the special case of M = T 3, a flat 3-torus. For this let M be a closed
orientable complete flat 3-manifold. By the classical Bieberbach theorems [8, 9] (see
also [73, Theorem 4.2.2]), M can be written as M = T 3/Γ, where T 3 = E3/Z3 is
some flat 3-torus and Γ < Isom(T 3) is a finite subgroup of isometries of T 3 acting
freely and orientation-preservingly.

Proposition 3.6.4. Let X be a geodesic vector field on M = T 3/Γ and XT its lift
to T 3. Then X is conformally Reeb if and only if XT is conformally Reeb.

Proof. Assume first that X is conformally Reeb. That is, there is a contact form α

on M such that X ∼ Rα. Let π : T 3 → M be the natural projection. Then p∗α is
again a contact form, and clearly Rp∗α ∼ XT .

Conversely, assume that XT ∼ RαT for some contact form αT on T 3. Since
|Γ| <∞, we can average under the action of Γ to obtain a 1-form

α :=
1

|Γ|
∑
γ∈Γ

γ∗αT .

Then α is again a contact form, since γ∗XT = XT and dγ maps the hyperplane
field X⊥T orientation-preservingly to itself, for every γ ∈ Γ. Here we are using the
fact that in dimension 3, a 1-form β with β(XT ) > 0 is contact if and only if
dβ is non-vanishing on any hyperplane field transverse to XT . It also follows that
Rα = RαT ∼ XT . Now since γ∗α = α for every γ ∈ Γ, the contact form α descends
to a contact form on M whose Reeb vector field is a multiple of X.

We may now, for the remainder of the section, assume that M = T 3. We may
further assume that the geodesic vector field X is not constant, for otherwise, there
is an embedded 2-torus transverse to X and so by Stokes’ theorem, X cannot be
(conformally) Reeb. Let

∼
X be the lift of the geodesic vector field X to E3. By

Theorem 3.5.1,
∼
X is tangent to a fibration P of affine planes. Now choose a parallel

orthonormal frame (E1, E2, E3) of E3 such that E1 and E2 span the fibres of P . This
frame descends to an orthonormal frame of T 3, which we call (E1, E2, E3) again.
Then E1 and E2 span the leaves of the totally geodesic foliation PT of T 3 covered by
P . Let us see that PT is in fact a T 2-fibration over S1. First note that the leaves are
embedded copies of T 2. Indeed, each leaf PT ∈ PT is covered by a plane P ∈ P , hence
PT is either a 2-torus, or a dense immersed cylinder S1 × R, or a dense immersed
copy of R2. But since X is constant on each leaf, the existence of dense leaves would
force XT to be globally constant, which we already ruled out.

Next, we want to define a map ζ : T 3 → S1 whose fibres are the elements of
PT . Fix a 2-torus PT ∈ PT covered by a plane P ∈ P . The claim is now that the
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orbit of P under the action of Z3 is an infinite discrete set of equally spaced affine
planes. That is, the distance between any two adjacent planes in Z3(P ) is the same.
To see this, choose global coordinates (x1, x2, x3) of E3 corresponding to the global
orthonormal frame (E1, E2, E3), and consider the projection

π : E3 −→ R, (x1, x2, x3) 7−→ x3.

Let A ⊂ R be the image of P under this projection, i.e. every point in A corresponds
to a plane in P , and the distance of two points in A equals the distance of the
corresponding planes in E3. Hence the claim is that A is a discrete set of equally
spaced points. Note that the Z3-action on E3 induces a Z3-action on R = π(E3), and
A is invariant under this action. Furthermore, the action of Z3 on E3 commutes with
the action of R3 by translations, which implies that the action of Z3 on R commutes
with the action of R. In particular, we have the following.

Lemma 3.6.5. Let a, b ∈ A and h ∈ R such that a+ h ∈ A. Then b+ h ∈ A.

Proof. Write b = γ(a) for some γ ∈ Z3. Then

b+ h = γ(a) + h = γ(a+ h) ∈ A.

Using this lemma, we can now show that A is a discrete set. Indeed, if a =

limn→∞ ∈ A were an accumulation point, then writing an = a+hn, where hn = an−a,
Lemma 3.6.5 implies that every point b ∈ A is an accumulation point, namely
b = limn→∞(b + hn). But then A must be a dense set, which would mean that the
fibre PT is dense in T 3, which is not possible. Now consider three consecutive points
a, b, c ∈ A. Write b = a + h, then b + h ∈ A by Lemma 3.6.5, hence dist(b, c) ≥
dist(a, b), and similarly dist(a, b) ≥ dist(b, c). Hence dist(a, b) = dist(b, c), so that A
is a discrete set of equally spaced points. A similar argument shows that the minimal
distance of two distinct points in A does not depend on the choice of fibre PT ∈ PT .

We are now ready to define the map ζ : T 3 → S1. Pick a fibre PT ∈ PT and let
Φ = Φt denote the flow of E3. Let t0 denote the minimal distance of two distinct
points in A as above. Then, for q ∈ T 3, define ζ(q) ∈ S1 = R/2πZ as

ζ(q) := 2π − 2π tq
t0

mod 2π, (3.4)

where tq > 0 is the smallest positive number such that Φtq(q) lies in the fibre PT . It
follows from the discussion above that this is a well-defined map; in fact, ζ defines
a fibration of T 3 whose fibres are the elements of PT . Now we can write X as

X = sin θ(ζ)E1 + cos θ(ζ)E2 (3.5)
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for some function θ : S1 → S1. Using the identification S1 = R/2πZ, we may think
of θ (or any function S1 → S1) as a function R→ R, such that θ(t+2π)−θ(t) ∈ 2π Z
for all t ∈ R. As usual, one defines the degree of θ as

deg θ =
1

2π
(θ(2π)− θ(0)).

By θ′ we mean the usual derivative of θ when viewed as a function defined on R.
The following proposition will be crucial for the proof of Theorem 3.6.2.

Proposition 3.6.6. Let X be a geodesic vector field on T 3. Then the following are
equivalent.

(i) X is conformally Reeb.

(ii) deg θ 6= 0 and for any a, b ∈ R with a < b we have that

θ(b)− θ(a) > −π, if deg θ > 0,

and
θ(b)− θ(a) < π, if deg θ < 0.

(iii) The set
B :=

{
ϕ : R/2πZ = S1 → S1 : ϕ′ 6= 0, d(ϕ, θ) <

π

2

}
is non-empty. Here, d(ϕ, θ) is the maximum Euclidean distance of ϕ and θ

(modulo 2π), that is,

d(ϕ, θ) := max
x∈S1

(
|ϕ(x)− θ(x)| mod 2π

)
.

Proof. We first show that (iii) implies (ii). So assume that (iii) holds, and choose
some ϕ ∈ B. Note that deg θ = degϕ 6= 0. If deg θ > 0, then ϕ′ must be positive
everywhere. Then, for a < b,

θ(a)− π

2
< ϕ(a) < ϕ(b) < θ(b) +

π

2
,

which implies that θ(b) − θ(a) > −π. A similar argument applies for the case of
deg θ being negative.

Conversely, if (ii) holds, we need to show that B 6= ∅. We will do so by construc-
ting some ϕ ∈ B explicitly. Assume that deg θ > 0 (the case deg θ < 0 is analogous).
Let

ε := min
a<b

(
θ(b)− θ(a)

)
+ π > 0.
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Choose a function θ̃ : S1 → R such that d(θ̃, θ) < ε/8, and such that θ̃ has finitely
many local minima and maxima, respectively, and no other critical points. That is,
there is a subdivision

0 < a1 < b1 < . . . < an < bn < 2π,

such that θ̃ has a local maximum at every ak and a local minimum at every bk. Note
that, since d(θ̃, θ) < ε/8,

min
a<b

(
θ̃(b)− θ̃(a)

)
+ π >

7

8
ε. (3.6)

Now define intervals Ik by

Ik :=
[
θ̃(ak)−

π

2
+
ε

4
, θ̃(bk) +

π

2
− ε

4

]
.

Note that it follows from (3.6) that every Ik defines an interval with non-empty
interior. Moreover, we have that

max Il > min Ik (3.7)

for every l = 1, . . . , n and k ≤ l. Now we want to find some numbers

c1 ≤ c2 ≤ . . . ≤ cn,

such that ck ∈ Ik for every k. Given such numbers, we can find a function φ : S1 → S1

with the following properties:

• d(φ, θ̃) < π/2− ε/4;

• φ is constantly equal to ck on [ak, bk];

• φ is non-decreasing.

This is illustrated in Figure 3.8. This construction is possible since θ̃ is strictly in-
creasing on (bk, ak+1). Once we have constructed φ, we can choose a strictly increas-
ing function ϕ : S1 → S1 such that d(ϕ, φ) < ε/8. Then, by the triangle inequality,

d(ϕ, θ) ≤ d(ϕ, φ) + d(φ, θ̃) + d(θ̃, θ) <
ε

8
+
π

2
− ε

4
+
ε

8
=
π

2
,

hence ϕ ∈ B, so that B 6= ∅. Therefore, all we are left to do is to find numbers ck as
above. This is best done reversely, starting with cn. Set cn := max In. The remaining
ck are defined inductively as

ck := min{ck+1, max Ik} ≤ ck+1.

Note that ck ∈ Ik since ck is given by the maximum of some Il, l ≥ k, so that
ck > min Ik by (3.7). Clearly c1 ≤ . . . ≤ cn, and this concludes the proof of the
equivalence of (ii) and (iii).
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2π deg θ
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ε
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Figure 3.8: Construction of the function φ.

Now, let us see how (iii) implies (i). Given ϕ ∈ B as in (iii), consider the 1-form

α = sinϕ(ζ) E1 + cosϕ(ζ) E2,

where (E1, E2, E2) is the dual frame to (E1, E2, E3). A simple calculation shows that

dα = ϕ′(ζ) cosϕ(ζ) E3 ∧ E1 − ϕ′(ζ) sinϕ(ζ) E3 ∧ E2,

hence
α ∧ dα = ϕ′(ζ) E1 ∧ E2 ∧ E3 6= 0,

so α is a contact form. Its Reeb vector field is given by

Rα = sinϕ(ζ)E1 + cosϕ(ζ)E2.

We claim that, for a suitably chosen ϕ ∈ B, there are functions f, g : S1 → R+ such
that

f(ζ)X = R(1/g(ζ))α. (3.8)

Generally, for h : T 3 → R+, we have that R(1/h)α = hRα +Y , where Y is the unique
vector field satisfying α(Y ) = 0 and

iY dα = dh(Rα)α− dh. (3.9)

Now, if h = g ◦ ζ for some function g : S1 → R+, then dh(Rα) = dg ◦ dζ(Rα) = 0,
so (3.9) translates into

iY dα = −dh = −dg ◦ dζ = −g′(ζ) E3,
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where we again think of g as a 2π-periodic function R→ R+, with g′ being its usual
derivative. Then, to solve equation (3.8), we need to find functions f and g such
that Y := f(ζ)X − g(ζ)Rα satisfies

0 = α(Y ) = f(ζ)α(X)− g(ζ), (3.10)

as well as
iY dα = −g′(ζ) E3. (3.11)

Now (3.10) is equivalent to g = f cos(ϕ− θ), which is positive iff f is positive, since
d(ϕ, θ) < π/2. Thus we only need to find a suitable function f and then define g by
the equation g = f cos(ϕ− θ). In view of this equation, (3.11) translates into

fϕ′ sin(ϕ− θ) E3 = − (f ′ cos(ϕ− θ)− f(ϕ′ − θ′) sin(ϕ− θ)) E3,

where we refrained from writing ζ in the arguments for simplicity. This, in turn,
reduces to

f ′ cos(ϕ− θ) + fθ′ sin(ϕ− θ) = 0.

This differential equation is being solved by

f(x) := exp

(
−
∫ x

0

tan(ϕ(t)− θ(t))θ′(t) dt

)
> 0.

However, for a generic choice of ϕ, the function f is not 2π-periodic, hence it does
not define a function on S1. Note that f is 2π-periodic if and only if

I(ϕ) :=

∫ 2π

0

tan(ϕ(t)− θ(t))θ′(t) dt

vanishes. Therefore, we need to show that the function I : B → R has a zero. First
observe that since∫ 2π

0

tan(ϕ(t)− θ(t))(ϕ′(t)− θ′(t)) dt =

∫ x0

x0

tan(u) du = 0 (where u = ϕ− θ),

we can write

I(ϕ) =

∫ 2π

0

tan(ϕ(t)− θ(t))ϕ′(t) dt.

Now, it is easy to see that B is convex. Hence, it suffices to find functions ϕ+, ϕ− ∈ B
such that I(ϕ+) ≥ 0 and I(ϕ−) ≤ 0. For then we can simply interpolate between
ϕ+ and ϕ− to find a zero of I. To achieve this, one can adjust the construction of
φ in the proof of (ii) ⇒ (iii) so that φ < θ̃ wherever φ is not constant (in fact, the
function φ drawn in Figure 3.8 has this property). By approximating this function
with a function in B, we obtain a function ϕ− ∈ B with I(ϕ−) ≤ 0. The function
ϕ+ is constructed similarly. This proves that (iii) implies (i).
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To finish the proof, we show that (i) implies (ii). Assume that X ∼ Rα for some
contact form α of T 3. Suppose, for the sake of contradiction, that (ii) does not hold.
Assume for the moment that deg θ > 0. Then (ii) being false means that there are
a, b ∈ [0, 2π] with a < b such that θ(b) − θ(a) = −π, as well as c, d ∈ [0, 2π] with
b < c < d such that θ(c) = θ(b) and θ(d) = θ(a) (since deg θ > 0). Furthermore, we
may choose a, b and c, d so that

θ(x) ∈ [θ(b), θ(a)] for all x ∈ [a, b] ∪ [c, d]. (3.12)

Now choose a point p ∈ E3 that projects to a point in ζ−1(a) ⊂ T 3 and let P be the
affine plane in E3 through p spanned by E3 and

∼
Xp. Assume for the moment that

P covers a 2-torus in T 3, which we call Σ. Consider the two subsets

Σ1 := Σ ∩ {a ≤ ζ ≤ b}, Σ2 := Σ ∩ {c ≤ ζ ≤ d}.

Both Σ1 and Σ2 are diffeomorphic to cylinders, and each of their boundaries consists
of two integral curves of X. Choose an orientation of Σ and orient Σ1 and Σ2

accordingly as submanifolds of Σ. Denote the (oriented) boundary curves of Σ1 and
Σ2 by

∂Σ1 = γa t γb, ∂Σ2 = γc t γd.

We may choose the orientation of Σ so that γa and γb are negatively tangent to X,
whereas γc and γd are positively tangent, see Figure 3.9. It follows that∫

Σ1

dα =

∫
γa

α +

∫
γb

α < 0,

and ∫
Σ2

dα =

∫
γc

α +

∫
γd

α > 0.

However, it follows from (3.12) that X (and then also Rα) is positively transverse
to the interiors of both Σ1 and Σ2. Then, since Σ1 and Σ2 are oriented consistently,∫

Σ1
dα and

∫
Σ2

dα must have the same sign, and we arrive at a contradiction.
We are left to deal with the case of P covering some dense infinite cylinder in

T 3 (instead of a 2-torus). Parametrise P using coordinates s and t such that ∂s is
parallel to

∼
Xp. Consider subsets of the form

Ps0 := P ∩ {−s0 ≤ s ≤ s0} ⊂ P

for some s0 > 0. Then Ps0 covers a cylinder in T 3, which we call Σ = Σs0 . Let
Σ1 = Σs0

1 = Σ ∩ {a ≤ ζ ≤ b} as before. Then

∂Σ1 = ∂vΣ1 ∪ ∂hΣ1,
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Σ1 Σ2 Σ

a b c d

ζ

X X

γa γb γc γd

Figure 3.9: Σ1 and Σ2.

where ∂vΣ1 = γa t γb and ∂hΣ1 = ∂Σ1 ∩ ∂Σ. In other words, ∂vΣ1 and ∂hΣ1 are the
‘vertical’ and ‘horizontal’ part of ∂Σ1, respectively. Note that, since α is non-zero
on the vertical boundary components, we have that∣∣∣∣∣

∫
∂vΣ

t0
1

α

∣∣∣∣∣ >
∣∣∣∣∣
∫
∂vΣ

s0
1

α

∣∣∣∣∣ (3.13)

for t0 > s0. Now let

C :=

∣∣∣∣∣
∫
∂vΣ

s0
1

α

∣∣∣∣∣
for some s0, and choose t0 > s0 large enough so that∣∣∣∣∣

∫
∂hΣ

t0
1

α

∣∣∣∣∣ < C.

This can be done due to the fact that P covers a dense cylinder in T 3. Then (3.13)
implies that

sgn

(∫
∂Σ

t0
1

α

)
= sgn

(∫
∂vΣ

t0
1

α

)
,

and the same may be assumed for Σt0
2 . Then, using the same reasoning as in the

first case, we arrive at a contradiction again.
The case deg θ < 0 is analogous. Now we are still left to show that deg θ is

indeed nonzero. Note that if deg θ = 0 and the image of θ is contained in an open
interval of length at most π, then there is an embedded 2-torus transverse to X, so
that X cannot be conformally Reeb. Therefore, we may again assume that there are
a < b < c < d with θ(b)− θ(a) = ∓π, θ(c) = θ(b) and θ(d) = θ(a), and we arrive at
a contradiction using the same argument as before.
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Remark 3.6.7. In the proof of (i)⇒ (ii), the surfaces Σ1 and Σ2 form what is called
a negative and positive partial section, respectively. This notion was introduced by
Cardona in his preprint [13], which was uploaded to the arXiv after the acceptance
of the article [4]. Amongst other things, he proves that a vector field admitting both
a negative and a positive partial section cannot be conformally Reeb [13, Lemma
12], and the argument is similar to the one given above.

Proof of Theorem 3.6.2. Assume first that there is a geodesic vector field Y on M
inducing a contact structure ξ such that X is everywhere transverse to ξ. In other
words, X and Y are nowhere orthogonal. Then the same is true for the lifted vector
fields XT and YT on T 3. In particular, both XT and YT are non-constant, so by the
discussion prior to Proposition 3.6.6, there are fibrations TX and TY of T 3 by 2-tori
tangent to XT and YT , respectively. These two fibrations must coincide: Indeed, if
this were not the case, we could consider a loop in some T ∈ TX that is transverse to
XT and also transverse to every fibre in TY . Along this loop, XT is constant, whereas
YT must make at least one complete turn (since YT induces a contact structure),
hence XT and YT are orthogonal somewhere, a contradiction. Therefore, writing XT

as
XT = sin θ(ζ)E1 + cos θ(ζ)E2

as in (3.5), we find that YT is of the form

YT = sinϕ(ζ)E1 + cosϕ(ζ)E2 (3.14)

for some function ϕ : S1 → R with ϕ′ 6= 0. Since XT and YT are nowhere orthogonal,
we have that d(ϕ, θ) < π/2. Thus, it follows from Propositions 3.6.4 and 3.6.6 that
X is conformally Reeb.

Conversely, assume thatX is conformally Reeb, that is,X ∼ Rα for some contact
form α onM = T 3/Γ. As before, write XT = sin θ(ζ)E1+cos θ(ζ)E2 for the lift of X
to T 3. Then, by Proposition 3.6.6, there is a function ϕ : S1 → S1 such that ϕ′ 6= 0

and d(ϕ, θ) < π/2. Hence the geodesic vector field YT := sinϕ(ζ)E1 + cosϕ(ζ)E2

induces a contact structure and is nowhere orthogonal to XT . If M = T 3, then
Y = YT and we are done. So suppose that M is not equal to T 3, that is, M = T 3/Γ,
where Γ is a nontrivial subgroup of Isom(T 3). We want to adjust the construction of
YT (resp. ϕ) so that it is invariant under the action of Γ, and therefore descends to
a geodesic vector field Y on M . First note that every element of Γ must be a screw
motion of finite order in Γ, since glide reflections are not orientation-preserving. If
γ ∈ Γ is such a screw motion, then γ must preserve the fibration T of 2-tori defined
by ζ. Indeed, if there were some T ∈ T such that γ(T ) /∈ T , then γ(T ) would
intersect every fibre of T transversely. But then XT is constant along each fibre of
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T and also constant along γ(T ) (since γ∗XT = XT ), thus XT is globally constant.
In particular, XT cannot be Reeb, a contradiction. But this means that the axis of
rotation of γ (and consequently its translational part) must be orthogonal to T . In
other words, the translation vector of γ is a multiple of E3. Now choose γ0 ∈ Γ so
that the absolute value of its translational part is minimal among all elements of Γ.
Then γ0 generates Γ (in particular, Γ is cyclic). Write γ0 as γ0 = TλE3 ◦ Rψ, where
Rψ is rotation about the axis spanned by E3 of angle ψ, and TλE3 is the translation
by the vector λE3 for some real number λ. Then, it suffices to choose ϕ such that
ϕ(t + λ) = ϕ(t) + ψ for all t, for then ϕ ◦ ζ ◦ γ0 = ϕ ◦ ζ + ψ which implies that
(γ0)∗YT = YT . To find an appropriate ϕ, we can construct ϕ first on the interval [0, λ]

as in the proof of Proposition 3.6.6, and then extend it to the whole real line via the
rule ϕ(t + λ) := ϕ(t) + ψ. Here, one has to be a little careful to ensure smoothness
of ϕ at points kλ, k ∈ Z, but this can be arranged easily. The vector field YT we
end up with is invariant under Γ. Note that if XT and YT are not orthogonal on
{0 ≤ t ≤ λ}, then they are nowhere orthogonal, since XT and YT are both invariant
under the action of Γ. Then YT descends to a vector field Y on M with the desired
properties.

To prove the second statement of the theorem, note that in Proposition 3.6.6 it
is actually shown that if XT is conformally Reeb for some contact form αT , then it is
also conformally Reeb for a multiple of the contact form αϕ = sinϕ(ζ)E1+cosϕ(ζ)E2

whose kernel defines the contact structure ξT . Then, by Proposition 3.2.4, kerαT and
ξT are diffeomorphic. Now set

n := 2π degϕ = 2π deg θ = θ(2π)− θ(0).

Denoting by Φ the flow of E3 again, consider the diffeomorphism

h : T 3 −→ T 3, p 7−→ (Φf(p))(p),

where f(p) := tp+(t0/2π)ϕ−1(nζ(p)), with t0, tp as in (3.4) and ϕ−1(nζ(p)) ∈ [0, 2π).
Then h pulls αϕ back to

αn := sin(nζ) E1 + cos(nζ) E2.

On the other hand, denoting by βT = sin θ(ζ)E1 + cos θ(ζ)E2 the 1-form dual to XT ,
we have that

|Γ|volX = volXT =

∫
T 3

βT ∧ dβT

=

∫
T 3

θ′(ζ)E1 ∧ E2 ∧ E3

= θ(2π)

∫
ζ−1(2π)

E1 ∧ E2 − θ(0)

∫
ζ−1(0)

E1 ∧ E2

= nA,
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where the first equation follows from Lemma 3.2.5. Hence, n = |Γ|volX/A.

Proof of Corollary 3.6.3. Choose global coordinates (x, y, z) for R3 such that the
frame (E1, E2, E3) on T 3 is covered by the coordinate frame (∂x, ∂y, ∂z). Then, by
Theorem 3.6.2, ker α̃ is diffeomorphic to the kernel of

α̃n = sin(nz)dx+ cos(nz)dy,

which, in turn, is diffeomorphic to kerαst (see Example 2.1.8).

3.7 Open flat 3-manifolds

We start with the following general result.

Proposition 3.7.1. Let M be an orientable 3-manifold with H2
dR(M) = 0, and X

a nowhere vanishing vector field on M whose flow induces a free, proper R-action.
Then X is conformally Reeb.

Proof. SinceX induces a free and proper R-action that is also orientation-preserving,
the orbit space B = M/R is an orientable 2-dimensional manifold, and the projection
π : M → B defines a principal line bundle which is necessarily trivial. That is, we
can identify M with B ×R, where the R-fibres correspond to the integral curves of
X. Now B is a deformation retract of M , so we have that H2

dR(B) = H2
dR(M) = 0.

Hence, there is an exact area form ω = dβ on B. Let t denote the coordinate
of the R-factor of M = B × R. Then the 1-form α := dt + π∗β is contact, and
Rα ∼ ∂t = X.

Corollary 3.7.2. Let X be an aperiodic geodesic vector field on E3 or R2 × S1.
Then X is conformally Reeb.

Remark 3.7.3. Of course, in the case of E3, every geodesic vector field is aperiodic;
hence, Corollary 3.7.2 implies that every geodesic vector field on E3 is conformally
Reeb.

In the case of a line fibration of R3 (or generally Rn), the fact that the induced
R-bundle is trivial can be seen more explicitly, by describing a specific section as
follows. Denote the fibration by F = {`} as before, and let

Σ := {p ∈ Rn : 〈p,X〉 = 0},

where X is the unit vector field defining the (oriented) fibration F . Note that Σ

contains exactly one point in every fibre `, and this point is characterised by min-
imising the distance to the origin among all points on `. Now write Σ as Σ = h−1(0),
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where h : R3 → R, h(p) = 〈p,X〉. The differential of h is given by

dhp(v) = 〈v,X(p)〉+ 〈p,∇vX(p)〉, v ∈ TpM.

Now, since X is geodesic, dhp(X) = |X|2 = 1, which implies in particular that h
has regular values only. Hence, the level sets h−1(∗) are embedded submanifolds
which are transverse to X everywhere. This holds in particular for Σ = h−1(0). It
remains to prove that Σ is an embedded copy of Rn−1. To see this, consider the
Morse function

Ψ: Rn −→ R, Ψ(p) := |p|2

Its only critical point (a minimum) is the origin. Furthermore, since dΨp(v) = 2〈p, v〉,
it follows that dΨp(X) = 0 for p ∈ Σ. Since TpM = TpΣ⊕ (R ·X), this means that
Ψ restricts to a Morse function Ψ|Σ whose critical points are also critical points of
Ψ. Hence Ψ|Σ is a Morse function with a single critical point (a minimum), which
implies that Σ is an embedded copy of Rn−1.

Next, we prove the following generalisation of Theorem 2.2.7. This is again stated
in a slightly more general way, but applies in particular for geodesic vector fields on
E3.

Theorem 3.7.4. Let X a nowhere vanishing vector field on R3 whose flow induces
a free, proper R-action. Assume that there is a contact form α such that X ∼ Rα.
Then, the contact structure kerα is tight.

Proof. Assume, for the sake of contradiction, that (M, ξ = kerα) contains an over-
twisted disc ∆. Identify R3 with R2 × R as in the proof of Proposition 3.7.1, with
coordinates (x, y, z), so that Rα ∼ X ∼ ∂z. Let π : R2 × R → R2 denote the pro-
jection onto the first factor. Choose a disc D2 ⊂ R2 such that π(∆) ⊂ D2, and
let c > 0 big enough so that ∆ ⊂ D × [−c, c] ⊂ R2 × R. Denote by φt the time-
t-flow of X (which is a contactomorphism of (M, ξ) for all t), and choose T > 0

big enough so that φT (p) /∈ ∆ for all p ∈ ∆. Now consider the quotient space
M := (D × R)/〈φT 〉, where 〈φT 〉 is the group of contactomorphisms generated by
φT . Then M ∼= D2 × S1 admits an induced contact form α̂, and the contact struc-
ture ker α̂ is still overtwisted, since no two points on ∆ are being identified by the
action of 〈φT 〉. However, the Reeb vector field of α̂ is tangent to the S1-fibres; in
particular, there is no contractible periodic Reeb orbit. This is a contradiction to
Theorem 2.1.14.

Note that the contact structure kerα in Theorem 3.7.4 is then diffeomorphic to
the standard one by Theorem 2.1.13.

The following two examples are to show that Theorem 3.6.2 is not true in general
for non-closed manifolds.
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Example 3.7.5. (i) Let M be equal to S1×R2 or T 2×R with coordinates (x, y, z)

and consider the geodesic vector field

X = sin θ(z) ∂x + cos θ(z) ∂y,

where θ : R → R is a smooth function defined as follows. Set θ(0) = θ(2π) = 0,
θ(π) = −π, and

θ(z) ≈

−z, 0 ≤ z ≤ π,

z − 2π, π ≤ z ≤ 2π,

where the approximation is C0-close. Then extend θ to a 2π-periodic function defined
on R. Since θ(π)− θ(0) = −π, the condition of Proposition 3.6.6 (or Theorem 3.6.2)
is not satisfied. However, X is still conformally Reeb. To see this, consider the 1-form
β = F (z) dx+ y sin θ(z) dz, where

F (z) :=

∫ z

0

cos θ(t) dt− 1.

Then dβ = cos θ(z) dz ∧ dx+ sin θ(z) dy ∧ dz is non-degenerate on the plane field η
spanned by ∂z and cos θ(z) ∂x − sin θ(z) ∂y, and iXdβ = 0. Furthermore,

β(X) = F (x) sin θ(x) ≈

sinx(1− sinx) ≥ 0, if 0 ≤ x ≤ π,

sinx(sinx− 1) ≥ 0, if π < x ≤ 2π.

That is, β(X) ≥ −ε for some arbitrarily small ε > 0. Now choose ε so that 1+2εθ′ >

0 everywhere, and consider the 1-form

α := β + 2ε αθ,

where αθ = sin θ(z) dx+ cos θ(z) dy. Then

dα = (1 + 2εθ′)︸ ︷︷ ︸
>0

dβ

is again non-degenerate on η, and α(X) = β(X) + 2ε ≥ ε > 0. Therefore, as X is
transverse to η and iXdα = 0, it follows that α is a contact form with Reeb vector
field Rα = (1/α(X))X.

(ii) Let M = T 2 × R with coordinates (x, y, z) and choose a diffeomorphism
ϕ : R

∼=−→ (−π/4, π/4). Define geodesic vector fields X and Y on M by

X = ∂y + ∂z, Y = sinϕ(z) ∂x + cosϕ(z) ∂y.

Then Y induces a contact structure and 〈X, Y 〉 = cosϕ(z) > 0. But X is transverse
to the 2-torus {z = 0}, hence X cannot be conformally Reeb.
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Seifert fibrations

In this section, we investigate a very particular class of geodesible foliations, the so-
called Seifert fibrations. A Seifert fibration of a 3-manifold is, roughly speaking, a
fibration by circles such that each fibre has a tubular neighbourhood that either looks
like a trivially fibred solid torus, or one that has been cut open along a meridional
disc, twisted by some angle 2πr (where r ∈ Q), and then glued back together (the
fibration here being the one obtained from the trivial one under this operation).
Thus, Seifert fibrations can be viewed as generalisations of honest S1-fibrations.

We have already seen that every Seifert fibration is geodesible (see the remark
following Example 1.1.14). In this chapter, we will see how to describe explicit
metrics on Seifert manifolds that turn the Seifert fibres into geodesics. Namely,
by a theorem of Scott [65], every Seifert manifold can be equipped with a locally
homogeneous Riemannian metric for which the Seifert fibres are geodesics (with the
exception of lens spaces, see Theorem 4.4.6). The goal of this chapter is to work
out Scott’s proof of Theorem 4.4.6, including some details missing in the original
exposition. Furthermore, we observe that with respect to these metrics, a (geodesic)
vector field X spanning the Seifert fibres induces a contact structure if and only if
the Euler number of the Seifert fibration is nonzero. In this case, the vector field X
will be the Reeb vector field of its dual contact form, and the contact structure will
be universally tight (i.e. the pullback to its universal cover is tight). In particular,
using Proposition 3.2.4, we conclude that a contact structure that admits a Reeb
vector field spanning a Seifert fibration is universally tight.

More precisely, we will present a proof of the following statements.

Theorem 4.0.1. LetM be a Seifert fibred 3-manifold not equal to a lens space. Then
M admits a locally homogeneous Riemannian metric for which the Seifert fibres are
geodesics. Furthermore, denoting by ξ the 2-plane field orthogonal to the fibration,
the following holds true.

• If the Euler number e is nonzero, the plane field ξ defines a universally tight
contact structure, and there is a contact form defining ξ whose Reeb vector
field is tangent to the fibres of the Seifert fibration.

• If e = 0, the plane field ξ is integrable.

87
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Remark 4.0.2. (i) Note that a lens space can also be equipped with a locally
homogeneous Riemannian metric (namely, the one induced by S3, see Example
4.1.2 below). However, a Seifert fibration of a lens space equipped with this
metric is not necessarily geodesic. In fact, the (k1, k2)-fibration in Example
4.1.2 is geodesic if and only if k1 = k2 = 1.

(ii) We should note at this point that although the statement of Theorem 4.0.1
is not given in [65], it essentially follows from the proof of the main theorem
in that article. Hence the contents of this chapter are of a more expository
nature.

In particular, we recover Corollary 3.4.3, and (using Proposition 3.2.4) the follow-
ing statement, which is probably known but nowhere to be found in the literature.

Corollary 4.0.3. Let M be a Seifert fibred 3-manifold and α a contact form whose
Reeb vector field is tangent to the Seifert fibres. Then the contact structure kerα is
universally tight.

4.1 Definitions and examples

In this section, we give a brief introduction to the theory of Seifert fibrations, fol-
lowing [48] and [31].

Definition 4.1.1. Let M be a closed, oriented 3-manifold. A Seifert fibration
of M is a smooth map π : M → Σ onto a closed surface Σ (which may be non-
orientable), with the following property: Every point x ∈ Σ admits a neighbourhood
D2 ⊂ Σ (where x is identified with 0 ∈ D2) such that π−1(D2) ∼= D2 × S1, and,
choosing the diffeomorphism in a suitable way, the map π : D2 × S1 → D2 is given
by

(reiφ, eiθ) 7−→ rei(pφ+qθ), (4.1)

where p and q are some coprime integers with p 6= 0. The number |p| is called the
multiplicity of the central fibre {0} × S1. If p > 1, the central fibre is called sin-
gular. We write (M,π,Σ) for the Seifert fibred manifold M whose Seifert fibration
is given by π.

Note that, in the local model above, the central fibre is the only one that can
be singular. In particular, since M is compact, every Seifert fibrations admits only
finitely many singular fibres. Given the standard model π : D2 × S1 → D2 around
a singular fibre as above, we see that a typical nonsingular fibre π−1(reiψ) can be
parametrised by

t 7−→ (rei(ψ/p+tq), e−itp).
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It follows that every nonsingular fibre goes −p times along the longitudinal direction
and q times along the meridional direction. That is, if we make one whole turn in
the direction of the longitude, a nonsingular fibre makes −q/p turns in meridional
direction. In particular, a solid torus fibred that way is p-fold covered by a trivially
fibred one.

Example 4.1.2. Consider S3, viewed as the unit sphere in C2 with complex coor-
dinates (z1, z2). Let k1, k2 be a pair of coprime integers, and consider the S1-action

θ(z1, z2) = (eik1θz1, e
ik2θz2), θ ∈ S1 = R/2πZ. (4.2)

This defines a Seifert fibration of S3 with singular fibres S1 × {0} and {0} × S1 of
multiplicity k1 and k2, respectively. If k1 = k2 = 1, this defines the Hopf fibration of
S3 (Example 1.1.8).

Now consider the free Zp-action on S3 generated by

(z1, z2) 7−→ (e2πi/pz1, e
2πiq/pz2),

where p and q are coprime integers. The quotient space L(p, q) := S3/Zp is called
lens space. Note that L(1, 0) = S3. Furthermore, we set L(0, 1) := S2 × S1.

One can easily check that the Zp-action commutes with the S1-action (4.2), so
that the corresponding Seifert fibration of S3 descends to L(p, q). It can be shown
that these Seifert fibrations determine all Seifert fibrations of lens spaces up to Seifert
isomorphism (see below for the definition), cf. [31, Theorem 5.1].

Definition 4.1.3. An isomorphism between two Seifert fibrations π : M → Σ

and π′ : M ′ → Σ′ is an orientation-preserving diffeomorphism f : M → M ′ that
preserves fibres. In other words, there is a diffeomorphism f : Σ → Σ′ of the bases
such that the following diagram is commutative:

M M ′

Σ Σ′.

f

π π′

f

Next, we will define the so-called Seifert invariants, which consist of a collection
of integers that describe every Seifert fibration in a unique way. Say we are given
an integer g and pairs (α1, β1), . . . , (αn, βn) of coprime integers with αi 6= 0. For the
moment, let us assume that g ≥ 0. Then let Σ0 denote the orientable surface of
genus g with n disjoint discs removed, i.e. Σ0 := Σg \ (

∐n
i=1D

n
i ). Consider the trivial

S1-bundle over Σ0 with total space M0 = Σ0 × S1, whose boundary is given by

∂M0 = S1
1 × S1 ∪ . . . ∪ S1

n × S1,
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where S1
i = ∂D2

i . Let

R = Σ0 × {1},
qi = S1

i × {1} (oriented as a component of − ∂R),

hi = {1} × S1 ⊆ S1
i × S1.

Now, for each i = 1, . . . , n, take a solid torus Ti = D2×S1 with respective meridian
and longitude given by

µi = ∂D2 × {1}, λi = {1} × S1 ⊂ Ti.

Consider the manifold

M(g; (α1, β1), . . . , (αn, βn)) := M0 ∪∂
∐
i

Ti, (4.3)

where the Ti are glued along their boundary to S1
i × S1 via the identifications

µi = αiqi + βihi, λi = α′iqi + β′ihi, (4.4)

where integers α′i, β′i are chosen such that

det

(
αi α′i
βi β′i

)
= 1.

Note that the result of the gluing depends only on αi and βi, and not on the specific
choice of α′i and β′i. The above identifications can be written equivalently as

hi = −α′iµi + αiλi, qi = β′iµi − βiλi.

The trivial S1-fibration of M0 = Σ0 × S1 then extends to the Ti via

π : Ti = D2 × S1 −→ D2, (reiφ, eiθ) 7−→ rei(αiφ+α′iθ).

In other words, p = αi and q = α′i in the local model (4.1). Hence, the manifold
M(g; (α1, β1), . . . , (αn, βn)) defined in (4.3) is Seifert fibred.

If g < 0, consider the non-orientable surface of genus g, which — by definition
— is given by the connected sum of |g| copies of RP 2 and denoted by Σg again.
Now Σg can be written as the connected sum of a Klein bottle or RP 2 with some
orientable surface. Then we can do the same construction as above by doing every-
thing over the orientable part of Σg. The resulting Seifert manifold is again denoted
by M(g; (α1, β1), . . . , (αn, βn)).

Conversely, by reversing this process, one can show that every Seifert fibration
can be written (up to isomorphism) as M(g; (α1, β1), . . . , (αn, βn)) for some g ∈ Z
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and pairs (αi, βi) of coprime integers. In particular, the Seifert invariants describe
a Seifert fibration up to isomorphism. However, this description is not unique. For
example, permuting the (αi, βi) or adding or deleting any pairs of the type (1, 0)

(which corresponds to gluing in trivially fibred solid tori) do not change the iso-
morphism type of the resulting Seifert fibration. The next theorem tells us precisely
which operations on the Seifert invariants preserve the isomorphism type.

Theorem 4.1.4. Two sets of Seifert invariants determine isomorphic Seifert fibra-
tions if and only if one can be changed into the other using the following operations:

(1) Permute the pairs (αi, βi).

(2) Add or delete any pair (α, β) = (1, 0).

(3) Replace each (αi, βi) by (αi, βi + kiαi), where
∑n

i=1 ki = 0.

(4) Replace any (αi, βi) by (−αi,−βi).

Proof. See [48, Theorem 1.5].

It turns out that most Seifert manifolds admit a unique Seifert fibration (up to
Seifert isomorphism). The only exceptions are the following.

Theorem 4.1.5. We have the following diffeomorphisms of Seifert manifolds:

(1) M(−1; (α, β)) ∼= M(0; (2, 1), (2,−1), (−β, α)) (called ‘prism manifolds’);

(2) M(−2; (1, 0)) ∼= M(0; (2, 1)(2, 1), (2,−1), (2,−1)).

Together with the lens spaces (Example 4.1.2), these are the only Seifert manifolds
admitting at least two non-isomorphic Seifert fibrations.

Proof. See [48, Theorem 5.1].

Definition 4.1.6. Let π : M → Σ be a Seifert fibration with invariants given by
(α1, β1), . . . , (αn, βn). Then the Euler number of π is defined as

e = e(π) = −
n∑
i=1

βi
αi
.

One can show that if the Seifert fibration defines an honest S1-fibration (i.e.
αi = 1 for all i), then e = −

∑
i βi ∈ Z coincides with the usual Euler number of the

S1-fibration.
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4.2 Orbifolds

Let π : M → Σ be an (honest) S1-fibration. Then, for every point x ∈ Σ, there is a
neighbourhood U ∼= D2 such that π−1(U) ∼= D2×S1 is a trivially fibred solid torus.
In D2×S1, any meridional disc intersects every fibre exactly once, so that the fibre
space obtained by identifying every fibre to a point is given by D2. On the other
hand, if we are given a Seifert fibration, we have seen that in the standard model
π : D2 × S1 → D2 around a singular fibre of multiplicity p, the nonsingular fibres
intersect the meridional discs p times. Therefore, the fibre space in this case is given
by the quotient of D2 under the Zp-action generated by a rotation about the origin
by an angle of 2π/p. Hence the orbit space of a Seifert fibration can be thought of
as a space that locally looks like the quotient of D2 under some finite group action
(in this case, rotation about the origin). Such spaces will be called orbifolds. The
general definition is given below.

Definition 4.2.1. Let O be a Hausdorff, paracompact space together with a cov-
ering by open subsets Ui. Associated with each Ui is

• an open subset Vi ⊂ Rn,

• a finite group Γi, defining an action on Vi,

• a homeomorphism ϕi : Vi/Γi −→ Ui.

The tuple (Ui,Γi, Vi, ϕi) is called orbifold chart for O. Furthermore, if Ui ⊂ Uj,
there is to be an inclusion Γi ⊂ Γj and an embedding Vi ↪→ Vj such that the following
diagram commutes:

Vi Vj

Vi/Γi Vj/Γi

Vj/Γj

Ui Uj

ϕi

ϕj

An atlas U = {(Ui,Γi, Vi, ϕi)} of orbifold charts is said to be maximal if every
orbifold chart for O that is compatible (in the above sense) with every other chart
of U is contained in U . Finally, an orbifold O is a Hausdorff, paracompact space
together with a maximal orbifold atlas.
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By the discussion at the beginning of this chapter, it is now evident that if
π : M → Σ is a Seifert fibration, then Σ admits a natural orbifold structure, where
a neighbourhood of x ∈ Σ is being identified with the quotient D2/Zp, where p is
the multiplicity of the fibre π−1(x).

Let us now review some examples of orbifolds.

Example 4.2.2. (i) (Quotient spaces) LetM a manifold and Γ be a group acting
properly discontinuously on M , i.e. for every x ∈ M there is an open neigh-
bourhood U such that |{γ ∈ Γ: γ(U)∩U 6= ∅}| <∞. Then the quotient space
M/Γ is Hausdorff and paracompact (the latter follows from the fact that the
quotient map M → M/Γ is open). Furthermore, M/Γ admits a natural orbi-
fold structure, as follows. Given a point [x] ∈M/Γ and a lift x ∈M , consider
the stabiliser subgroup

Γx := {γ ∈ Γ: γ(x) = x} ≤ Γ

of x. Since Γ acts properly discontinuously, Γx is finite and there is a neigh-
bourhood V ⊂ M about x, diffeomorphic to an open subset of Rn, such that
γ(V ) ∩ V 6= ∅ if and only if γ ∈ Γx. Let

Ṽ :=
⋂
γ∈Γx

γ(V ) ⊂M,

which can be seen as an open subset Ṽ ⊂ V ⊂ Rn. Then Γx acts on Ṽ , and
since γ(Ṽ ) ∩ Ṽ = ∅ for γ /∈ Γx, there is a homeomorphism

ϕ : Ṽ/Γx
∼=−→ π(Ṽ ) =: U,

where π : M →M/Γ is the quotient map. Thus the tuple (U,Γx, Ṽ, ϕ) defines
an orbifold chart. Now it is not hard to see that one can cover M/Γ by such
orbifold charts that are compatible with each other in the sense of Definition
4.2.1. This defines the orbifold structure of M/Γ.

(ii) Let D2
1, D

2
2 be two copies of the closed unit disc in R2. Consider the Zp-action

on D2
1 generated by rotation about the origin by an angle of 2π/p. Similarly,

we define an Zq-action on D2
2 (here p and q are any two integers). The quotient

spacesD2
1/Zp andD2

2/Zq are topologically discs again. Hence we can glue them
along their boundary (via the identity map) to obtain

S2(p, q) := D2
1/Zp ∪∂ D2

2/Zq,

which is, topologically, a copy of S2. However, the actions of Zp and Zq define
an orbifold structure on S2(p, q) with two orbifold points given by the centres



94 Seifert fibrations

of D2
1 and D2

2. If p = q, then S2(p, p) is orbifold isomorphic to S2/Zp, with Zp
the action induced by rotation about some axis by an angle of 2π/p. If p 6= q,
then S2(p, q) cannot be written as a quotient orbifold (see Proposition 4.2.10).
The orbifold S2(p, q) is also called the (p, q)-football. A special case is if q = 1

and p 6= 1. This orbifold is written as S2(p) = S2(p, 1) and called teardrop
orbifold.

Notation. Given an orbifold O, we write |O| for its underlying topological space.
In dimension 2, |O| is always a manifold (cf. [65]); in this case, we will think of |O|
as the topological space underlying O together with its manifold structure.

There is also a concept of coverings for orbifolds.

Definition 4.2.3. Amap π : O′ → O between orbifolds is called orbifold covering
if, for every point x ∈ O, there is an orbifold chart x ∈ U ∼= V/Γ such that π−1(U)

is the disjoint union of orbifold charts U ′i ∼= V/Γ′i, i ∈ I, where Γ′i ⊂ Γi and I is
a discrete set (finite or infinite), and each restriction π|U ′i : V/Γ′i → V/Γi is given
by the natural projection. For a nonsingular point x ∈ O, the cardinality |π−1(x)|
does not depend on the choice of x and is called degree of the covering. An orbifold
covering π̃ : Õ → O is called universal if for every orbifold covering π : O′ → O
there is an orbifold covering π′ : Õ → O′ such that the following diagram commutes:

Õ O′

O

π′

π̃
π

For example, if M is a manifold with G a finite group acting on it and H ⊂ G is
a subgroup, then the natural projection M/H →M/G is an orbifold covering. The
universal orbifold covering in this case is the projection M̃ →M →M/G, where M̃
is the universal cover ofM . It is important to distinguish between orbifold coverings
and coverings (in the usual sense) of the underlying topological spaces. For example,
if M = S2 and G ∼= Zn is the group acting on S2 by rotation about some axis by an
angle of 2π/n, then |S2/G| ∼= S2, so |S2/G| does not admit any nontrivial covering.
However, the orbifold S2/G does admit a nontrivial orbifold covering: namely, the
natural projection S2 → S2/G.

At this point, for simplicity, we will only consider 2-dimensional orbifolds that
are given as the base of some Seifert fibration. To be precise, we make the following
definition.

Definition 4.2.4. Given a 2-dimensional orbifold, an orbifold point whose local
model is given by D2/Zp (where Zp is generated by rotation about 0 by an angle of
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2π/p) is called cone point of order p. A closed 2-dimensional orbifold all of whose
orbifold points are cone points is called Seifert orbifold.

We have already seen that the base of a Seifert fibration naturally has the struc-
ture of a Seifert orbifold. Conversely, given a Seifert orbifold O, one can construct
a Seifert fibration whose base orbifold is given by O (see the discussion following
Definition 4.1.3).

The following statement is true for arbitrary orbifolds of any dimension [72,
Proposition 13.2.4]; we will, however, only prove it for Seifert orbifolds.

Proposition 4.2.5. Every Seifert orbifold admits a universal orbifold covering.

Proof. We follow the idea given in [65]. Assume that O is a Seifert orbifold and
π : O′ → O is an orbifold covering, where O′ is some 2-dimensional orbifold. In
order to simplify notation, we assume that O has a single cone point of order p
only (the general case is completely similar). Denote this orbifold point by x, and
let U ∼= B2/Zp be a (small) orbifold chart about x, where B2 ⊂ C is an open disc
and Zp acts by rotation. Let N = O \ U and N ′ = π−1(N) ⊂ O′. Then both N and
N ′ are topological surfaces with boundary and without orbifold points. Hence, the
restriction

π|N ′ : N ′ −→ N

defines a covering in the usual sense. Now by the definition of an orbifold covering,
the preimage π−1(U) is the union of disjoint orbifold charts U1, . . . , Un, where Ui ∼=
B2/Zki and ki divides p, i.e. p = kili for some li ∈ N. Then, identifying both U and
Ui with B2 in the natural way, the restriction of π to Ui is given by

C ⊃ B2 −→ B2, z 7−→ zli .

Now denote by C the boundary curve of U ⊂ O and let Ci := (π|Ui)
−1(C). Let

[Ci] ∈ π1(N) denote the corresponding elements of the fundamental group of N .
Then

π∗([Ci]
ki) = [C]kili = [C]p,

hence the subgroup π∗(π1(N ′)) ≤ π1(N) contains the normal subgroup K generated
by [C]p. Now let π̃ : Ñ → N denote the covering of N determined by the subgroup
K (that is, π̃∗(π1(Ñ)) = K). Note that in particular, Ñ covers N ′. Now the covering
π̃ extends to an orbifold covering Õ → O, as follows. Given a component C̃i ⊂
Ñ of π̃−1(C), the projection C̃i → C is l̃i-fold for some natural number l̃i. Since
π̃∗(π1(Ñ)) = K, there is some number k̃i such that

[C]k̃i l̃i = π∗([C̃i]
k̃i) = [C]p.
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In particular, k̃i divides p. Now let Õ be the orbifold obtained from Ñ by attaching
D2/Zk̃i along C̃i (for each C̃i in the preimage of C), equipped with the natural
orbifold structure as in Example 4.2.2 (ii). Then, since k̃i divides p, this extends
to an orbifold covering Õ → O via the natural projection maps D2/Zk̃i → D2/Zp.
This orbifold covering is universal, since by construction, the covering Ñ → N is
universal among all coverings of N that extend to orbifold coverings.

Definition 4.2.6. Let O be a (Seifert) orbifold and π : Õ → O be its universal
covering. The orbifold fundamental group of O is the group of deck transforma-
tions of π (i.e. diffeomorphisms ϕ : Õ → Õ such that π ◦ ϕ = π), and denoted by
πorb

1 (O).

Remark 4.2.7. In the proof of Proposition 4.2.5, the deck transformation group
of the universal covering Õ → O coincides with the deck transformation group of
Ñ → N , since every deck transformation of Ñ extends to a deck transformation of
Õ, simply by extending the diffeomorphism of the boundary components of Ñ to
the attached discs. Now the deck transformation group of Ñ is given by π1(N)/K.
Hence we obtain the following finite presentation for the orbifold fundamental group
of a Seifert orbifold.

Proposition 4.2.8. Let O be a Seifert orbifold whose underlying surface has genus
g, with cone points x1, . . . , xn of orders α1, . . . , αn. Then πorb

1 (O) has the following
finite presentation:

πorb
1 (O) ∼=

〈ai, bi, qj | q1 · · · qn [a1, b1] · · · [ag, bg], q
αj
j 〉, if g ≥ 0

〈ai, qj | q1 · · · qn a2
1 · · · a2

g, q
αj
j 〉, if g < 0.,

where i = 1, . . . , |g| and j = 1, . . . , n.

Here, when writing a relation as a word w, we mean that w = 1 (for example,
q
αj
j = 1 for all j ∈ {1, . . . , n}).

Definition 4.2.9. An orbifold is called good if it is covered by a manifold (or,
equivalently, if its universal cover is a manifold). Otherwise it is called bad.

An example of a bad orbifold is given by S2(p, q) for p 6= q (see Example 4.2.2
(ii)). Indeed, up to taking a finite cover, we may assume that p and q are coprime.
Then

πorb
1 (S2(p, q)) ∼= 〈c1, c2 | c1c2, c

p
1, c

q
2〉 ∼= 〈c | cp, c−q〉 = {1},

since for every k ∈ Z, there are m,n ∈ Z such that pm − qn = k. But this means
that S2(p, q) does not admit any nontrivial orbifold covering, so in particular, it is
not covered by a manifold.
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It turns out that among Seifert orbifolds, these are the only examples of bad
orbifolds.

Proposition 4.2.10. The only bad Seifert orbifolds are S2(p) and S2(p, q), where
p, q ∈ Z and p 6= q.

Proof. See [65, Theorem 2.3].

Now let us see how to define a notion of Euler characteristic for a Seifert orbifold
O. A first attempt would be to define the Euler characteristic of O simply as the
Euler characteristic of its underlying surface |O|. However, consider for example the
d-fold orbifold covering D2 → D2/Zd, where Zd acts by rotation. Then the Euler
characteristic does not see this nontrivial covering, as the surface underlying D2/Zp
is homeomorphic to D2. Thus one has to adjust the definition of orbifold Euler
characteristic, as follows.

Definition 4.2.11. Let O be a Seifert orbifold whose orbifold points are cone points
of order p1, . . . , pk, respectively. Then the orbifold Euler characteristic of O is
defined as

χ(O) := χ(|O|)−
k∑
i=1

(
1− 1

pi

)
.

This definition is chosen in a way so as to behave well under coverings. Indeed,
one can show that if O′ → O is a d-fold orbifold covering, then χ(O′) = dχ(O) (see
[56, Proposition 6.2.9]).

If a 2-orbifold is good, it is covered by a surface, hence its universal cover is
(topologically) S2 or R2. Now every surface admits a geometry modelled on one of
the three model spaces S2,E2 or H2 (written M), that is, it can be written as a
quotientM/Γ, where Γ ≤ Isom(M) is a discrete subgroup of isometries acting freely
and properly discontinuously on M . It turns out that the same is true for a good
orbifold, with Γ not acting freely but still properly discontinuously.

Theorem 4.2.12. Let O be a good 2-dimensional orbifold, and let

Õ :=


S2, if χ(O) > 0

E2, if χ(O) = 0

H2, if χ(O) < 0.

Then there is a subgroup Γ ≤ Isom(Õ) acting properly discontinuously on Õ such
that O = Õ/Γ.

Proof. See [56, Theorem 6.2.10].
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4.3 The fundamental group of a Seifert manifold

In this section, our goal is to derive a presentation of the fundamental group of
a Seifert manifold in terms of its invariants. We will compare this presentation to
the presentation of the fundamental group of the base orbifold in Proposition 4.2.8,
and show that most Seifert manifolds are determined, up to Seifert isomorphism, by
their fundamental group and their base orbifold.

Proposition 4.3.1. The fundamental group ofM = M(g; (α1, β1), . . . , (αn, βn)) has
the finite presentation

π1(M) ∼=

〈ai, bi, qj, h |h central, q1 · · · qn [a1, b1] · · · [ag, bg], q
αj
j h

βj〉, if g ≥ 0,

〈ai, qj, h | aiha−1
i h, [qj, h], q1 · · · qn a2

1 · · · a2
|g|, q

αj
j h

βj〉, if g < 0,

where i = 1, . . . , |g| and j = 1, . . . , n.

Proof. We present the argument given in [48], by computing the fundamental group
of M using the theorem of Seifert and van Kampen. Let π : M → O be the
corresponding Seifert fibration, where O is the base orbifold with orbifold points
x1, . . . , xn. Consider small open discs Bi about the xi and let Σ0 := |O| \ (

∐n
i=1 Bi).

Then Σ0 is a topological surface of genus g with n boundary components. Let us
assume that g ≥ 0 (the case g < 0 is similar). Then the fundamental group of Σ0 is
given by

π1(Σ0) = 〈ai, bi, qj | q1 · · · qn [a1, b1] · · · [ag, bg]〉.

Hence

π1(Σ0 × S1) = 〈ai, bi, qj, h |h central, q1 · · · qn [a1, b1] · · · [ag, bg]〉.

The claim is now that the gluing of the Ti as in (4.4) adds the relations qαjj hβj = 1.
Indeed, using (4.4) and the Seifert-van Kampen theorem, the gluing of Ti amounts
to adding the generator λi to π1, together with the relations

λi = q
α′i
i hβ

′
i , 1 = qαii hβi

Now since λi can be expressed using the generators qi and h, it can be deleted,
leaving us only with the relations qαii hβi which proves the claim.

Note that if π : M → O is a Seifert fibration with underlying base orbifold O,
then using the presentations of the fundamental group ofM in 4.3.1 and the orbifold
fundamental group of O in Proposition 4.2.8, we have the relation

πorb
1 (O) ∼= π1(M)/〈h〉,
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which should not come as a surprise, since the generator h in π1(M) corresponds to
a typical fibre of M .

The following statement is probably not new, but we could not find it anywhere
in the literature, hence we give a short proof.

Proposition 4.3.2. Let p1 : M1 → O and p2 : M2 → O be two Seifert fibrations
over the same base orbifold O. Assume thatM1 andM2 are not diffeomorphic to lens
spaces, and that π1(M1) ∼= π1(M2). Then, perhaps after reversing the orientation of
fibres, M1 and M2 are Seifert isomorphic.

Proof. First note that M1 and M2 are both irreducible (that is, every embedded
2-sphere bounds a ball). Indeed, a Seifert manifold which is not irreducible is dif-
feomorphic to S2 × S1 or the nontrivial S1-bundle over RP 2 (see [56, Corollary
10.3.40]), both of which count as lens spaces according to our definition (the lat-
ter one is diffeomorphic to L(4, 1), see [51, Theorem 1.1]). By a theorem of Scott
[66, Theorem 3.1], the homeomorphism type of an irreducible Seifert manifold is
determined by its fundamental group; in particular, M1 and M2 are homeomorphic.
Hence, by Theorem 4.1.5, either M1 and M2 are Seifert isomorphic, or each of them
is Seifert isomorphic to one of the exceptional Seifert manifolds in Theorem 4.1.5. In
the latter case, sinceM1 andM2 have the same base, there are only two possibilities:

1. M1 = M(−1; (α, β1)) and M2 = M(−1, (α, β2)), or

2. M1 = M(0; (2, 1), (2,−1), (−β, α1)) and M2 = M(0; (2, 1), (2,−1), (−β, α2)),

where α and βi are coprime, i = 1, 2. Now in the first case, using Proposition 4.3.1,
the fundamental groups of M1 and M2 are given by

π1(M1) ∼= 〈a1, q1, h1 | a1h1a
−1
1 h1, [q1, h1], q1a

2
1, q

α
1 h

β1
1 〉

∼= 〈a1, h1 | a1h1a
−1
1 h1, a

2α
1 = hβ11 〉

and
π1(M2) ∼= 〈a2, h2 | a2h2a

−1
2 h2, a

2α
2 = hβ22 〉.

The subgroup H ≤ π1(M1) generated by h1 is a normal subgroup in π1(M1). From
the relations in π1(M1) we obtain

hβ11 = a2α
1 = a1h

β1
1 a
−1
1 = h−β11 ,

hence h2β1
1 = 1. Thus H is isomorphic to Z2β1 . Furthermore, the quotient group

π1(M1)/H is isomorphic to Z2α. Using Lagrange’s theorem, we obtain

|π1(M1)| = |π1(M1)/H||H| = 4|αβ1|.
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Similarly, |π1(M2)| = 4|αβ2|. In particular, since π1(M1) ∼= π1(M2), we must have
β1 = ±β2. Perhaps after reversing the orientation of the fibres ofM1, we may assume
that β1 = β2, hence M1 and M2 are Seifert isomorphic. A similar argument applies
in the second case.

4.4 Geometrisation of Seifert manifolds

In this section, we want to describe how to ‘geometrise’ Seifert manifolds, following
Scott’s paper [65]. We first introduce the notion of model geometry due to Thurston
[73].

Definition 4.4.1. A model geometry (G,X) consists of a manifold X and a Lie
group G, acting on X by diffeomorphisms, such that

(i) X is connected and simply connected;

(ii) G acts transitively on X, and the stabiliser subgroups Gx := {g ∈ G : gx = x}
are compact for every x ∈ X;

(iii) if G ⊂ H and H satisfies (ii), then H = G;

(iv) there exists at least one compact manifold M modelled on (G,X), i.e. M can
be written as the quotient space M/Γ, where Γ is a discrete subgroup of G
acting freely on X.

Note that condition (ii) implies thatX admits a homogeneous Riemannian metric
invariant under G (see [73, Lemma 3.4.11]). That is, G is a subgroup of the isometry
group Isom(X) of X. It then follows from condition (iii) that G is the whole isometry
group ofX, since the stabiliser subgroups of Isom(X) are always compact. Therefore,
an equivalent way of defining a model geometry is the following.

Definition 4.4.2 (Alternative definition of model geometry). A model geometry is
a homogeneous, connected and simply connected Riemannian manifold (X, g) such
that there is at least one compact manifold modelled on X, i.e. M can be written
as a quotient space M/Γ, where Γ ≤ Isom(X) is a discrete subgroup of isometries
acting freely on X.

This alternative definition is the one we will use throughout the remainder of this
chapter. Note that ifM is modelled on (X, g), thenM carries an induced Riemannian
metric such that the projection X →M becomes a local isometry. Furthermore, if X
is a model geometry as in Definition 4.4.2 and Γ ≤ Isom(X) is a discrete subgroup,
then the action of Γ on X is properly discontinuous [73, Cor. 3.5.11]. In particular,
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if Γ acts freely on X, then the quotient space X/Γ is a manifold [73, Proposition
3.5.7].

For 3-manifolds, the model geometries have been classified by Thurston (see [73]
for definitions of these spaces and their isometry groups):

Theorem 4.4.3 (Thurston [73, Theorem 3.8.4]). There are eight 3-dimensional
model geometries, given by:

• The three model geometries of constant curvature S3, H3 and E3;

• the product geometries S2 × R and H2 × R;

• the geometry of S̃L2(R), the universal cover of the special linear group SL2(R);

• the solvegeometry Sol;

• and the nilgeometry Nil.

We will only briefly describe the model geometries relevant for our needs; we
refer the reader to [73] for a more thorough discussion.

Thurston also showed that if a closed 3-manifold can be modelled on one of the
eight geometries above, then the model geometry is unique.

Theorem 4.4.4 (Thurston [73, Theorem 4.7.8]). If M is a closed 3-manifold mod-
elled on one of the eight geometries as in Theorem 4.4.3, then it is not modelled on
any of the other geometries.

Remark 4.4.5. This statement is clearly wrong is M if not assumed to be closed;
for example, R3 admits Euclidean and hyperbolic geometry.

It turns out that among 3-manifolds, the Seifert fibred ones are in one-to-one
correspondence to manifolds modelled on six of the eight geometries, according to
the following theorem by Scott.

Theorem 4.4.6 (Scott [65]). Every closed Seifert manifold can be modelled on one
of six model geometries, according to the following table:

χ > 0 χ = 0 χ < 0

e = 0 S2 × R E3 H2 × R

e 6= 0 S3 Nil S̃L2(R)

Here, e is the Euler number of the Seifert fibration and χ the orbifold Euler charac-
teristic of the base orbifold.

Conversely, every closed 3-manifold that can be modelled on one of the six ge-
ometries above admits a Seifert fibration.
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Definition 4.4.7. A model geometry equal to one of the six given in Theorem 4.4.6
is called Seifert model geometry. The geometries S2×R, E3 ∼= E2×R and H2×R
are called product geometries, whereas S3, Nil and S̃L2(R) are called twisted
geometries.

We will provide a proof for one direction of the statement of Theorem 4.4.6,
namely, that every Seifert manifold can be modelled on the according geometry. This
part is only briefly discussed in [65]. The more detailed discussion we give here also
allows for the proof of Theorem 4.0.1. The proof of the other direction amounts to
showing that every discrete cocompact subgroup of the isometry group of a Seifert
model geometry preserves some fibration by lines or circles; this is discussed in
Scott’s article [65].

Let us now take a look at the six Seifert model geometries in Theorem 4.4.6. The
spaces E3, S3, H2 × R and S2 × R are each equipped with their standard metric.
The two remaining model spaces, Nil and S̃L2(R), are perhaps less familiar, so we
give a brief description.

The geometry of Nil. This is the geometry of the Heisenberg group Nil, which
is the nilpotent Lie group consisting of upper 3× 3 triangular matrices of the form1 x z

0 1 y

0 0 1

 ,

where x, y, z ∈ R. In particular, Nil can naturally be identified with R3. Under this
identification, the product induced by matrix multiplication is given by

(x′, y′, z′) · (x, y, z) := (x+ x′, y + y′, z + x′y + z′), (4.5)

and the Riemannian metric on Nil is defined as

dx2 + dy2 + (dz − x dy)2.

It is easy to see that left multiplication by an element of Nil defines an isometry of
Nil (in particular, Nil is homogeneous). This way, we can view Nil as a subgroup of
Isom(Nil). Examples of 3-manifolds modelled on Nil can be obtained by taking the
quotient by the discrete subgroup Γk ≤ Nil ≤ Isom(Nil) generated by the elements
(k, 0, 0), (0, 1, 0), (0, 0, 1), where k ∈ Z \ {0}. The resulting quotient space Nil /Γk is
then the total space of a torus bundle over the circle.

The geometry of S̃L2(R). Let SL2(R) denote the special linear group of degree
2, i.e. the group of all (2 × 2)-matrices with determinant equal to 1. Let S̃L2(R)

denote its universal cover. Since SL2(R) is a Lie group, so is S̃L2(R). Let us see how
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to define a left-invariant metric on S̃L2(R). Consider the projective special linear
group PSL2(R), defined as PSL2(R) = SL2(R)/{I,−I}, where I is the identity
matrix. Since PSL2(R) is doubly covered by SL2(R), the universal cover of PSL2(R)

is given by S̃L2(R) as well. Now, it is well known that PSL2(R) is isomorphic to the
group of orientation preserving isometries of the 2-dimensional hyperbolic plane H2,
acting by Möbius transformations. Furthermore, H2 is homogeneous and isotropic
with respect to orientation preserving isometries, which means that PSL2(R) acts
transitively and freely on STH2, the unit tangent bundle of H2. Thus, we may
identify PSL2(R) with STH2. We equip STH2 with the Sasaki metric (see Definition
B.8), which clearly defines a left-invariant metric on STH2. By pulling this metric
back via the covering S̃L2(R)→ PSL2(R) = STH2, we obtain a left-invariant (and,
in particular, homogeneous) metric on S̃L2(R).

Examples of 3-manifolds modelled on S̃L2(R) are given by unit tangent bundles
of hyperbolic surfaces, equipped with the Sasaki metric.

Besides Proposition 4.3.2 above, the following proposition will be crucial for the
proof of Theorems 4.4.6 and 4.0.1.

Proposition 4.4.8. Let M̃ be one of the six model geometries in Theorem 4.4.6.
Then there exists a submersion π : M̃ → Σ, where Σ is one of S2, E2 or H2, such
that the fibres of π are geodesics. The horizontal distribution (ker dπ)⊥ ⊂ TM̃ is
integrable if M̃ is a product geometry, and defines a tight contact structure if M̃ is a
twisted geometry. Given an isometry ϕ of Σ, there is an isometry Φ of M̃ covering
ϕ, i.e. π ◦ Φ = ϕ ◦ π. Furthermore, the subgroup

Isomπ(M̃) := {Ψ ∈ Isom(M̃) : π ◦Ψ = π} ≤ Isom(M̃)

of isometries preserving every fibre is isomorphic to R or S1, and generated by the
flow of a Killing vector field.

Remark 4.4.9. One can show that — with the exception of the Hopf fibration —
the submersion M̃ → Σ is in fact a Riemannian submersion (for the Hopf fibration,
this is only true up to a conformal change of the metric on S2 by a constant factor).
We will, however, not appeal to this fact.

Proof of Proposition 4.4.8. This is clear if M̃ is a product geometry (that is, M̃ =

Σ × R); in this case, π is just given as the projection onto the first factor, and
G ∼= R ≤ Isom(M̃) is the group of isometries consisting of translations along the
R-fibre. The twisted geometries are treated separately.

Case M̃ = S3. Consider the Hopf fibration π : S3 → S2 as defined in (C.3), that is,

π(x1, . . . , x4) =
(
2(x1x3 + x2x4), 2(x3x4 − x1x2), 1− 2(x2

2 + x2
3)
)
, (4.6)
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which defines a submersion with geodesic fibres, and whose horizontal distribution
defines the standard (tight) contact structure on S3 (see Example 2.1.5 (ii) and
Remark 2.1.6).

Now let ϕ be an isometry of S2. Since Isom(S2) = O(3), it is enough to consider
the cases of ϕ defining a rotation, or reflection in the yz-plane (every other element
of O(3) can be written as a composition of these). In the latter case, ϕ is given by
ϕ(x, y, z) = (−x, y, z), and the isometry Φ(x1, x2, x3, x4) := (−x1,−x2, x3, x4) of S3

covers ϕ (i.e. π◦Φ = ϕ◦π). On the other hand, if ϕ defines a rotation, then consider
the quaternionic description of the Hopf fibration as in (C.4). That is, we identify
S3 with the set of unit quaternions and S2 with the set of purely imaginary unit
quaternions, so that π(u) = fu(k), where fu is the rotation defined by u ∈ S3 (see
Appendix C for definitions). Now let u0 ∈ S3 correspond to the rotation defined by
ϕ (i.e. fu0 = ϕ), and let Φ: S3 → S3, Φ(u) = u0u. Then Φ is an isometry of S3, and

π ◦ Φ(u) = π(u0u) = fu0u(k) = u0u ku0u = u0(uku)u0 = fu0(π(u)) = ϕ ◦ π(u),

hence Φ covers ϕ. Now consider the subgroup G ∼= S1 ≤ Isom(S3) consisting of
isometries of the form (z1, z2) 7→ (e2πitz1, e

2πitz2), t ∈ R (here, S3 is viewed again as
the unit sphere in C2). Then G defines the Hopf action, so in particular elements
of G cover the identity on S2. Since G is generated by the flow of a Killing vector
field, we have that G = Isomπ(S3) by Lemma 4.4.10 below.

Case M̃ = Nil. Consider the natural projection

π : Nil −→ E2, (x, y, z) 7−→ (x, y),

which defines a submersion with geodesic fibres. The horizontal distribution is given
by ∂⊥z = ker(dz + xdy) which defines the standard (tight) contact structure on R3.

Now given an element ϕ ∈ Isom(E2), then ϕ is either a translation, a rotation
about the origin, the reflection in the x-axis, or a composition of such isometries.
Hence it suffices to show that these isometries lift. If ϕ is given by translation by some
vector (x′, y′), then left multiplication by (x′, y′, 0) defines the required isometry of
Nil. If ϕ is the rotation about the origin by some angle θ ∈ [0, 2π), then a lift is
given by

Φ(x, y, z) :=

(
ϕ(x, y), z +

1

2
(x2 − y2) sin θ cos θ − xy sin2 θ

)
,

see [56, Section 12.5.3]. Finally, if ϕ is the reflection in the x-axis, that is, ϕ(x, y) =

(x,−y), then Φ(x, y, z) := (x,−y,−z) is the corresponding lift to Nil.
Now consider the subgroup G ≤ Isomπ(Nil) given by translations in z-direction,

i.e. isometries of the form

(x, y, z) 7→ (x, y, z + t), t ∈ R.
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Then G ≤ Isomπ(M̃) and G is generated by the flow of a Killing vector field, hence
G = Isomπ(Nil) by Lemma 4.4.10.

Case M̃ = S̃L2(R). The projection π : S̃L2(R)→ H2 is given by the composition

S̃L2(R) −→ STH2 −→ H2,

where STH2 → H2 is the natural projection, and S̃L2(R) → STH2 is a locally
isometric covering. This clearly defines a submersion whose fibres are geodesics,
since the fibres of STH2 → H2 are geodesics, spanned by the vertical geodesic
vector field V (Definition B.14). The horizontal subbundle HM of STH2 is given by
the orthogonal complement of V , hence it defines a contact structure (see Example
2.2.10), and the same is true for the induced horizontal subbundle H ⊂ T S̃L2(R). To
see that the contact structure H is tight, one can choose suitable global coordinates
on S̃L2(R) (recall that S̃L2(R) ∼= R3 as topological spaces) and give an explicit
description of the contact structure to see that it coincides with the standard one
on R3 (see [56, Section 12.6]). Alternatively, one could argue using Theorem 3.7.4.

Now given an isometry ϕ of H2, its differential defines an isometry of STH2

which lifts to an isometry of S̃L2(R), covering ϕ and preserving fibres (Corollary
B.12). Hence every isometry lifts. The subgroup G ∼= R is given by the flow of V ,
which is isometric since V is a Killing vector field (Proposition B.15). In particular,
using Lemma 4.4.10 again, G = Isomπ(S̃L2(R)). This finishes the proof.

Lemma 4.4.10. Let M be a Riemannian manifold and π : M → B a fibre bundle
with 1-dimensional fibres. Consider the group Isomπ as in Proposition 4.4.8. Assume
that Isomπ(M) contains a 1-parameter subgroup G generated by the flow of some
Killing vector field X. Then Isomπ(M) = G.

Proof. Denote by φt the time-t flow of X. Let ϕ ∈ Isomπ(M) and consider the 1-
parameter subgroup Gϕ = {φt ◦ ϕ : t ∈ R} ≤ Isomπ(M). Then Gϕ is generated by
the flow of a Killing vector field Y . Since the fibres of π are 1-dimensional, we have
that Y = λX for some smooth function λ : M → R. Let us show that λ has to be
constant. Indeed, recall that Y being a Killing vector field means that LY g = 0.
That is, given two arbitrary vector fields Z1 and Z2,

0 = (LY g)(Z1, Z2) = Y (g(Z1, Z2))− g(LYZ1, Z2)− g(Z1, LYZ2)

= g(∇YZ1, Z2) + g(Z1,∇YZ2)− g([Y, Z1], Z2)− g(Z1, [Y, Z2])

= −
(
g(∇Z1Y, Z2) + g(Z1,∇Z2Y )

)
,

where we used the fact that the Levi-Civita connection is metric and torsion-free.
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Now since X and Y = λX are both assumed to be Killing, this implies that

0 = g(∇Z1(λX), Z2) + g(Z1,∇Z2(λX))

= λ ((g(∇Z1X,Z2) + g(Z1,∇Z2X))︸ ︷︷ ︸
=0

+Z1(λ)g(X,Z2) + Z2(λ)g(Z1, X).

Now taking Z1 = Z2 = X yields X(λ) = 0. Then taking Z1 arbitrary and Z2 = X

yields Z1(λ) = 0. It follows that λ is constant. In particular, φt ◦ ϕ = φλt, or
equivalently, ϕ = φ(λ−1)t ∈ G. Since ϕ ∈ Isomπ(M) was chosen arbitrarily, it follows
that Isomπ(M) = G.

4.5 Proof of Scott’s Theorem

We prove only one direction of Theorem 4.4.6, namely, that every Seifert fibred
manifold can be modelled on one of the six model geometries. We follow the original
proof by Scott [65], but we provide some important details left out in the original
proof. For the other direction, see [65] or [56].

Let π : M → O be a Seifert fibration with Euler number e = e(π), where

M = M(g; (α1, β1), . . . , (αn, βn)),

and O is the underlying base orbifold. First note that if O is bad, then O = S2(p, q),
p 6= q, by Proposition 4.2.10. Then χ(O) > 0, and it is not hard to see thatM admits
a Heegaard splitting of genus 1 (arguing as in the proof of Proposition 4.3.1), hence
M is a lens space. In particular, M is modelled on S3. As a Seifert manifold, M is
of the form M = M(0; (p, β1)) or M = M(0; (p, β1), (q, β2)). In both cases we have
that e 6= 0. Hence we have proven the statement in case O is bad.

Now assume that O is good. Furthermore, let us assume that |O| is an ori-
entable surface of genus g (the non-orientable case works analogously). Write O =

Õ/πorb
1 (O) as in Theorem 4.2.12, where Õ is one of S2,E2 or H2 and πorb

1 (O) acts
by isometries and properly discontinuously on Õ. Recall that by Proposition 4.2.8,
πorb

1 (O) has the finite presentation

πorb
1 (O) ∼= 〈a1, b1, . . . , ag, bg, q1, . . . , qn | q1 · · · qn [a1, b1] · · · [ag, bg], q

αj
j 〉,

whose generators are identified with the corresponding isometries. Let M̃ be the
corresponding model geometry according to the table in Theorem 4.4.6. At this
point, we have to distinguish two cases. The first case is that the Euler number of
the Seifert fibration vanishes, i.e. e = 0. Then M̃ = Õ×R. Let h denote the isometry
of M̃ given by translation by 1 in R-direction, and let ãi, b̃i, i = 1, . . . , g, denote the
product of ai, bi with the identity in the second factor of M̃ . Choose lifts q̃1, . . . , q̃n
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of q1, . . . , qn satisfying q̃jαjhβj = 1, j = 1, . . . , n. That is, the q̃j are given as the
product of qj in the first factor, and h−βj/αj in the second factor. Then

q̃1 · · · q̃n [ã1, b̃1] · · · [ãg, b̃g] = h−
∑
j βj/αj = he = id .

Hence the group

Γ := 〈ãi, b̃i, q̃j, h |h central, q̃1 · · · q̃n [ã1, b̃1] · · · [ãg, b̃g], q̃jαjhβj〉 ∼= π1(M)

acts properly discontinuously and isometrically on M̃ . The action is also free, which
can be seen as follows. Assume that there is an element g̃ ∈ Γ and a point x̃ ∈ M̃
such that g̃(x̃) = x̃. Consider the image g of g̃ in πorb

1 (O), and let x = π(x̃) ∈ Õ.
Then x is a fixed point of g. The claim is now that g must be conjugate to some
power of some qj, i.e. there is ρ ∈ πorb

1 (O) and k ∈ Z such that g = ρqkj ρ
−1. Indeed,

since x is a fixed point of g, its projection to O is an orbifold point, say xj. That
is, there is x′ ∈ Õ covering xj such that qj(x′) = x′. Now x and x′ lie in the same
fibre of xj, hence there is an element ρ ∈ πorb

1 (O) such that ρ(x′) = x (recall that
πorb

1 (O) is, by definition, the deck transformation group of the covering Õ → O).
Then ρ−1gρ(x′) = x′, which means that ρ−1gρ must be equal to some power of qj,
as these are the only elements of Γ fixing x′. Hence g = ρqkj ρ

−1 for some k ∈ Z, as
claimed. Now this implies that g̃ must be equal to g̃ = hmρ̃−1q̃kj ρ̃ for some lift ρ̃ of
ρ and m ∈ Z. Along the R-fibres, g̃ acts by translation by m − kβj/αj. Now since
αj and βj are assumed to be coprime, it follows that m− kβj/αj 6= 0, which means
that g̃ acts nontrivially in fibre direction, so it cannot have fixed points. This yields
a contradiction. Hence, Γ defines a free and properly discontinuous action on M̃ by
isometries, and the quotient space M̃/Γ is a manifold modelled on M̃ . Now consider
the induced projection π′ : M̃/Γ→ O, so that the following diagram commutes:

M̃ M̃/Γ

Õ O

π
π′

Then π′ defines a Seifert fibration of M̃/Γ with base orbifold O and fundamental
group π1(M̃/Γ) = Γ ∼= π1(M). Then, by Proposition 4.3.2 (perhaps after revers-
ing the orientation of the fibres of M̃/Γ), the Seifert manifolds M̃/Γ and M are
isomorphic (and, in particular, homeomorphic). Hence M can be modelled on M̃ .

For the second case, assume that e 6= 0. In this case M̃ is a twisted model
geometry, and we let h = φ1 be the time-1 flow of the Killing vector field whose
flow generates Isomπ(M̃) (see Proposition 4.4.8). Choose arbitrary lifts of the ai, bi
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to isometries ãi, b̃i of M̃ (which exist due to Proposition 4.4.8). Furthermore, let q̃j
be lifts of the qj such that q̃αjj hβj = id. Then

q̃1 · · · q̃n [ã1, b̃1] · · · [ãg, b̃g] = φλ (4.7)

for some λ ∈ R. If we replace h by h̃ = φu for some u ∈ R, then we have to replace q̃j
by q̃jφ−(u−1)βj/αj (which we again call q̃j), so that q̃αjj h̃βj = 1 is still satisfied. Then

q̃1 · · · q̃n [ã1, b̃1] · · · [ãg, b̃g] = φλ̃,

where
λ̃ = λ− (u− 1)

∑
j

βj/αj = λ+ (u− 1)e. (4.8)

Now we can solve the equation λ̃ = 0 for u by setting u = (e−λ)/e (here we use
that e 6= 0). If u 6= 0, then we can replace h by h̃ = φu, and the group

Γ := 〈ãi, b̃i, q̃j | h̃ central, q̃1 · · · q̃n [ã1, b̃1] · · · [ãg, b̃g], q̃
αj
j h̃

βj〉 ∼= π1(M)

again acts isometrically and freely (by the same argument as before) on M̃ . Then,
arguing as in the first case, we see that M̃/Γ is Seifert fibred and—perhaps after
changing the orientation of fibres—Seifert isomorphic to M . Hence the only thing
left to show is that u 6= 0. Suppose u = 0, so λ = e. Consider the Seifert manifold

N := M(g; (α1, β1), . . . , (αn, βn), (1, e))

and let π̃ : N → Σg be the corresponding Seifert fibration. Note that N has the same
base orbifold as M . Furthermore, setting q̃n+1 := φ−e, the group G of isometries
spanned by ã1, b̃1, . . . , ãg, b̃g, q̃1, . . . , q̃n, q̃n+1 acts freely on M̃ and is isomorphic to
the fundamental group of N . Indeed, the long relation holds since

q̃1 · · · q̃n [ã1, b̃1] · · · [ãg, b̃g] = φe = q̃−1
n+1

by equation (4.7). It follows that the quotient M̃/G is a Seifert fibred manifold with
fundamental group G ∼= π1(N) and base orbifoldO, hence M̃/G is Seifert isomorphic
to N by Proposition 4.3.2. In particular, N is homeomorphic to M̃/G, hence it can
be modelled on the twisted geometry M̃ . On the other hand, e(π̃) = 0, hence N
can be modelled on a product geometry by the previous discussion. That, however,
contradicts the fact that closed 3-manifolds admit at most one model geometry
(Theorem 4.4.4). In conclusion, we must have u 6= 0, which finishes the proof of
Theorem 4.4.6.

Proof of Theorem 4.0.1. If M is a Seifert manifold not equal to a lens space, then
M can be modelled on one of the six Seifert model geometries by Theorem 4.4.6. In
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fact, we have seen in the proof of Theorem 4.4.6 that if M̃ denotes the corresponding
model geometry and π : M̃ → Õ the submersion as in Proposition 4.4.8, then M is
Seifert isomorphic to M̃/Γ, where Γ ∼= π1(M) acts isometrically on M̃ , preserving
the fibres of π. By the same proof, the Seifert fibres of M̃/Γ lift to the fibres of π
in M̃ which are geodesics by Proposition 4.4.8. Now denote by ξ ⊂ TM̃ the plane
distribution orthogonal to this geodesic fibration. Then, again using Proposition
4.4.8, ξ is integrable if e(π) = 0, and it defines a tight contact structure if e(π) 6= 0.
That is, if X denotes a unit vector field spanning the Seifert fibres of M̃/Γ, then X
induces a universally tight contact structure, and (by Remark 2.2.2) X is the Reeb
vector field of the (contact) 1-form dual to X.



Appendix A

Poincaré first return map

Theorem A.1. LetM be a closed manifold and φ : M×R→M a global flow on it.
Let Σ ⊂M be a closed global section for φ, that is, a compact hypersurface without
boundary that is transverse to the flow and meets every orbit at least once. Then,
for every x ∈ M , there is a smallest positive time τ+(x) > 0 and a largest negative
time τ−(x) < 0 such that φ(x, τ±(x)) ∈ Σ. Furthermore, the functions τ± : Σ → R
are smooth if φ is smooth. In particular, the Poincaré first return map

P : Σ −→ Σ, x 7−→ φ(x, τ+(x))

is smooth.

Proof. We prove the statement for τ+ (the argument for τ− is completely analogous).
If x is a point in M , consider its ω-limit set

ω(x, φ) := {y ∈M : ∃ tn −→∞ : φ(x, tn) −→ y as n→∞}.

First notice that, as M is compact, ω(x, φ) is always nonempty. Furthermore, it is
invariant under φ: If y ∈ ω(x, φ), there is a sequence tn →∞ such that φ(x, tn)→ y

for n → ∞. Then, φ(x, tn + t) = φ(φ(x, tn), t) → φ(y, t) as n → ∞, which means
that every point φ(y, t) (that is, the whole orbit of y) is also contained in ω(x, φ).
Those two observations imply the existence of an orbit of φ that is contained in the
ω-limit set of x. By assumption, this orbit must intersect Σ transversely at some
point z ∈ Σ. Choose a parametrisation

R −→M, t 7−→ γ(t)

of that orbit, such that γ(0) = z. Now choose a small open ball B ⊂ Σ around z and
identify a small neighbourhood of z in M with U := B × [−ε, ε] using the flow of
X, where γ ∩U is being identified with {0}× [−ε, ε]. Choose an increasing sequence
(tn) ⊂ R such that φ(x, tn)→ z as n→∞. Then φ(x, tn + ε)→ φ(z, ε) = (0, ε) ∈ U
and φ(x, tn − ε) → φ(z,−ε) = (0,−ε). In particular, for n large, φ(x, tn + ε) ∈
B× (0, ε) ⊂ U and φ(x, tn− ε) ∈ B× (−ε, 0) ⊂ U . Hence, by the intermediate value
theorem, there is tn− ε < t < tn + ε such that φ(x, t) ∈ B×{0} ⊂ Σ. It follows that
the set

Rx = {t ∈ (0,∞) : φt(x) ∈ Σ}
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is nonempty. Since every orbit of φ intersects Σ transversely, the set Rx ∪ {0} is
discrete, hence the (well-defined) infimum of Rx is strictly positive. Set τ+(x) :=

inf Rx. Then, by continuity, φ(x, τ+(x)) ∈ Σ and φ(x, t) /∈ Σ for 0 < t < τ+(x).
Note that by continuity of the flow, it is not hard to see that the function

x 7→ τ+(x) is continuous. To see that it is in fact smooth, we will apply the implicit
function theorem. First, let s : M → R be a smooth function such that Σ = s−1(0)

and 0 is a regular value of s. Now, consider the function

F : M × R −→ R, (x, t) 7−→ s(φ(x, t)).

We see that, for (x, t) ∈ F−1(0),

d

dt
F (x, t) = ds(Xφ(x,t)) 6= 0,

as X is transverse to Σ = s−1(0) and 0 is a regular value of s. Since F is smooth,
using the implicit function theorem, we can write t locally as a smooth function of x
(for points (x, t) ∈ F−1(0)). This function, however, must equal τ+ around any point
(x, τ(x)), since τ+ is continuous. Hence, τ is smooth, and the proof is finished.

Now given the (smooth) Poincaré return map P : Σ→ Σ, consider the mapping
torus Σ(P ) := (Σ× [0, 1]) /(x, 1) ∼ (P (x), 0).

Corollary A.2. In the setting of Theorem A.1, there is a diffeomorphism

M
∼=−→ Σ(P )

mapping orbits of φ to orbits of the suspension flow on Σ(P ).

Proof. By Theorem A.1, the map

Σ× [0, 1] −→M, (x, t) 7−→ φ(x, tτ+(x))

is smooth and maps vertical line segments to flow lines of φ. Then this map induces
a diffeomorphism Σ(P )

∼=−→M whose inverse is given by

M −→ (Σ× [0, 1]) / ∼, x 7−→
[
φ(x, τ−(x)),

−τ−(x)

τ+(φ(x, τ−(x)))

]
.



Appendix B
Geometry of tangent bundles

Let M be a smooth n-dimensional manifold and TM its tangent bundle, endowed
with the natural differentiable structure. We will describe how to obtain a Rieman-
nian metric on TM from a metric on M , which will be called Sasaki metric on TM ,
introduced by and named after S. Sasaki [64]. The idea will be to write the dou-
ble tangent bundle TTM as the direct sum of two n-dimensional subbundles HM
and VM , called horizontal and vertical subbundle. The horizontal and vertical sub-
spaces both turn out to be naturally isomorphic to the corresponding tangent space
of M , and these isomorphisms define metrics on each of these subspaces (by pulling
back the metric on TM). This defines Riemannian metrics on the subbundles HM
and VM , which are then declared to be orthogonal. This completely determines a
Riemannian metric on TM .

The vertical subbundle VM of TTM can be defined without any reference to
the Riemannian metric on M .

Definition B.1. Let M be a smooth n-dimensional manifold. The vertical sub-
bundle is the n-dimensional subbundle VM of the (2n-dimensional) double tan-
gent bundle TTM , given by the kernel of the linear map dπ : TTM → TM , where
π : TM →M is the natural projection. In other words,

VM := ker dπ =
⋃

w∈TM

{u ∈ TwTM : dwπ(u) = 0}.

In contrast, if there is no Riemannian metric specified on M , there is no well-
defined notion of a ‘horizontal’ subbundle of TTM . However, if we are given a
Riemannian metric g on M , a horizontal subbundle may be constructed as follows.

Definition B.2. Let w ∈ TM and p = π(w). For a vector u ∈ TpM , define its
horizontal lift to TwTM as follows. Choose a curve t 7→ γ(t) in M such that
γ(0) = p and γ̇(0) = u. Let t 7→ W (t) denote the (unique) parallel transport of w
along γ, viewed as a curve in TM . Then

uhw :=
d

dt

∣∣∣∣
t=0

W (t) ∈ TwTM.

Note that this does not depend on the choice of γ. The horizontal subspace HwM

at w ∈ TM is then defined as the n-dimensional subspace of TwTM consisting of
all horizontal lifts. The horizontal subbundle HM is the union of all horizontal
subspaces, equipped with the obvious bundle structure.
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Remark B.3. If it is clear from the context to which fibre u is being lifted, we
simply write uh instead of uhw.

Lemma B.4. Let (M, g) be a Riemannian manifold andHM ⊂ TTM the horizontal
subbundle of TTM . Then, for every w ∈ TM and p = π(w), the map

dwπ|HwM : HwM −→ TpM

is a linear isomorphism.

Remark B.5. Note that the above lemma implies that HwM ∩ VwM = {0} for
every w ∈ TM . Hence, as both HwM and VwM are n-dimensional, it follows that
TTM = HM ⊕ VM .

Proof of Lemma B.4. Let w ∈ TM and p = π(w). By definition, every horizontal
tangent vector uh at w is tangent to a curve t→ W (t), where W is a parallel vector
field along the curve γ = π ◦W , with γ(0) = p and γ̇(0) = u. Thus,

dwπ
(
uh
)

=
d

dt

∣∣∣∣
t=0

π(W (t)) =
d

dt

∣∣∣∣
t=0

γ(t) = γ̇(0) = u,

hence dwπ|HwM : HwM → TpM is an isomorphism with inverse u 7→ uhw.

So far, we have seen that the double tangent bundle TTM does indeed split into
a direct sum of its horizontal and vertical subbundle, and we have given linear iso-
morphisms between the horizontal subspaces and the tangent spaces of M , namely,
the restriction of dwπ to HwM . Now, we want to find similar isomorphisms for the
vertical subspaces.

Definition B.6. For a smooth manifold M , define the connection map

K : TTM −→ TM

as follows. Let w ∈ TM and u ∈ TwTM . Let W be a curve adapted to u, i.e.,
W (0) = w and Ẇ (0) = u. Let γ = π ◦W . Then, define

K(u) := (DtW )(0) ∈ Tπ(w)M,

where Dt denotes the covariant derivative along γ.

Lemma B.7. For every w ∈ TM and p = π(w), the restriction

K|VwM : VwM −→ TpM

is a linear isomorphism.
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Proof. Given u ∈ TpM , consider the curve t 7→ W (t) = w + tu in TM , and let
u = d

dt

∣∣
t=0

W (t). Note that u ∈ VwM . Then

K(u) = Dt|t=0 W (t) = u,

hence K|VwM is surjective. Now clearly HwM ⊂ kerK and dimHwM = n, hence by
the rank-nullity theorem, HwM = kerKw. In particular, as TwTM = HwM ⊕VwM ,
the restriction K|VwM is a linear isomorphism.

Given u,w ∈ TpM , we can now define the vertical lift of u to TwTM as

uv = uvw := (K|VwM)−1(u).

Note that
uvw =

d

dt

∣∣∣∣
t=0

(w + tu) (B.1)

Lemma B.7 also yields another characterisation of the horizontal subbundle,
namely, HM = kerK. This is often used as the definition of HM (see e.g. [59]).

We are now ready to define the Sasaki metric.

Definition B.8. Let (M, g) be a Riemannian manifold. The Sasaki metric of TM
is the Riemannian metric gS on TM given as follows. For w ∈ TM and u1, u2 ∈
TwTM , set

gS(u1, u2) := g(dwπ(u1), dwπ(u2)) + g(K(u1), K(u2)).

If t 7→ W1(t) and t 7→ W2(t) are curves tangent to u1 and u2, respectively, with
γ1 = π ◦W1 and γ2 = π ◦W2, this translates into

gS(u1, u2) = g(γ̇1(0), γ̇2(0)) + g(D1
tW1(0), D2

tW2(0)),

where D1
t and D2

t denote the covariant derivative along γ1 and γ2, respectively.

Using the Koszul formula, one can compute the Levi-Civita connection associated
with gS as follows.

Proposition B.9. Let X and Y be vector fields on (M, g), and let ∇S denote the
Levi-Civita connection of (TM, gS). Then, for w ∈ TpM ,(

∇S
XvY v

)
w

= 0,(
∇S
XhY

v
)
w

= (∇XY )vw +
1

2
(Rp(w, Yp)Xp)

h
w ,(

∇S
XvY h

)
w

=
1

2
(Rp(w,Xp)Yp)

h
w ,(

∇S
XhY

h
)
w

= (∇XY )hw −
1

2
(Rp(Xp, Yp)w)vw .

Here, R denotes the Riemann curvature tensor of (M, g).
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Proof. See [52, p. 125].

From this description we immediately obtain the following.

Corollary B.10. The vertical subspaces VwM ⊂ TTM are totally geodesic with
respect to the Sasaki metric.

Next, we want to show that differentials of isometries define isometries of the
corresponding tangent bundles. We need the following preparatory lemma.

Lemma B.11. Let ϕ : M →M be an isometry. Let u,w ∈ TM, p = π(u). Then

dwdϕ(uhw) = (dpϕ(u))hdϕ(w) and dwdϕ(uvw) = (dpϕ(u))vdϕ(w).

In other words, applying the differential commutes with taking horizontal and ver-
tical lifts.

Proof. By definition, uhw := d
dt

∣∣
t=0

W (t), where W is a parallel vector field along the
curve γ = π ◦W . Hence

dwdϕ(uhw) =
d

dt

∣∣∣∣
t=0

dϕ(W (t)) =:
d

dt

∣∣∣∣
t=0

W̃ (t).

Now since ϕ is an isometry, the vector field W̃ is parallel along the curve ϕ◦γ, hence
d
dt

∣∣
t=0

W̃ (t) = (W̃ (0))h = (dpϕ(u))h. This gives us the first identity.
On the other hand, by (B.1), the vertical lift of u can be written as uv =

d
dt

∣∣
t=0

W (t), where now W (t) = w + tu. Hence

dwdϕ(uv) =
d

dt

∣∣∣∣
t=0

dϕ(W (t)) =
d

dt

∣∣∣∣
t=0

dpϕ(w) + t dpϕ(u) = (dpϕ(u))vdϕ(x).

Corollary B.12. Let M be a Riemannian manifold and TM be equipped with the
Sasaki metric. Then, if ϕ : M →M is an isometry ofM , the differential dϕ : TM →
TM is an isometry of TM .

Proof. Let w ∈ TM , p = π(w), and u ∈ TwTM . It suffices to show that |dwdϕ(u)| =
|u|. Using the splitting TwTM = HwM ⊕ VwM , we can write u = uh1 + uv2, where
u1, u2 ∈ TpM . Then, by Lemma B.11,

dwdϕ(u) = dwdϕ(uh1) + dwdϕ(uv2) = (dϕ(u1))h + (dϕ(u2))v,

hence

|dwdϕ(u)|TM = |(dϕ(u1))h|TM + |(dϕ(u2))v|TM
= |dϕ(u1)|M + |dϕ(u2)|M
= |u1|M + |u2|M
= |uh1 |TM + |uv2|TM
= |u|TM .
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Now consider the unit tangent bundle (or sphere bundle) of M , given as

STM := {u ∈ TM : |u| = 1}.

As a codimension-1 submanifold of (TM, gS), it inherits a Riemannian metric, again
denoted by gS. Then the natural projection π : STM → M is a Riemannian sub-
mersion whose fibres are totally geodesic (n− 1)-spheres by Corollary B.10.

Definition/Lemma B.13. The horizontal vector field G on STM given by Gu := uh

is geodesic. It is called the horizontal geodesic vector field or simply geodesic
vector field on STM . Its flow is called the geodesic flow.

Proof. Clearly |G| ≡ 1. Now if u ∈ STpM and γ is a geodesic in M with γ(0) = p

and γ̇(0) = u, then
(
∇S
GG
)
u

= (Dtγ̇)h = 0, where Dt denotes the covariant derivative
along γ. Hence the flow lines of G are geodesics, and G is a geodesic vector field.

If dimM = 2, then the fibres of STM are geodesic circles by Corollary B.10. If
M is oriented, these geodesics carry an induced orientation, hence there is a unit
vector field V on STM tangent to the vertical geodesics.

Definition B.14. The geodesic vector field V spanning the fibres of STM is called
the vertical geodesic vector field.

Proposition B.15. The vertical geodesic vector field V is Killing.

Proof. Recall that the vector field V is Killing if and only if

gS(∇S
Y V , Z) + gS(Y,∇S

ZV) = 0

for all vector fields Y and Z. If, for example, Y = V , we compute

gS
(
∇S
VV︸︷︷︸

=0

, Z
)

+ gS
(
V ,∇S

ZV
)︸ ︷︷ ︸

=(1/2)Z(|V|2)=0

= 0.

On the other hand, if Y and Z are both horizontal vector fields, then by Proposition
B.9,

gS
(
∇S
Y V , Z

)
+ gS

(
Y,∇S

ZV
)

=
1

2

(
R(u, Ju, Y, Z) +R(u, Ju, Z, Y )

)
= 0.

It follows that V is indeed a Killing vector field.



Appendix C
Quaternions and the Hopf fibration

The space of quaternions is the 4-dimensional vector space H whose elements are
of the form a + bi + cj + dk for a, c, b, d ∈ R, where the addition is componentwise,
i.e.

(a+ bi + cj + dk) + (a′ + b′i + c′j + d′k) := a+ a′ + (b+ b′)i + (c+ c′)j + (d+ d′)k.

Hence a basis of H is given by the elements 1, i, j and k. One defines a multiplication
on H by the rules

i2 = j2 = k2 = ijk = −1,

which turns H into a non-commutative, associative real division algebra (i.e. ev-
ery element except 0 has an multiplicative inverse). Generally, the product of two
elements q := a+ bi + cj + dk and q′ := a′ + b′i + c′j + d′k of H is given by

q · q′ =(aa′ − bb′ − cc′ − dd′) + (ab′ + ba′ + cd′ − dc′)i
+ (ac′ − bd′ + ca′ + db′)j + (ad′ + bc′ − cb′ + da′)k.

(C.1)

As for complex numbers, one defines the conjugate of q = a+ bi + cj + dk as

q = a− bi− cj− dk.

An easy computation shows that pq = q p for p, q ∈ H. Now consider the standard
inner product on H ∼= R4 for which 1, i, j and k form an orthonormal basis. Then
the induced norm is given by

|q| =
√
a2 + b2 + c2 + d2 =

√
qq.

Since qq = |q|2 6= 0 for q 6= 0, the multiplicative inverse of q is given by q−1 = q/|q|2.
Now consider the set of unit quaternions

S3 := {q ∈ H : |q| = 1} ⊂ H.

For u ∈ S3, the map Lu : H→ H, q 7→ uq preserves norms, since

|Lu(q)|2 = Lu(q)Lu(q) = uquq = u q q u = |q|2|u|2 = |q|2.

Hence Lu also preserves the inner product on H, using polarisation. Similarly, right
multiplication by an element of S3 preserves the inner product, so that these maps
are isometries of H.
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Now consider
R3 := {xi + yj + zk: x, y, z ∈ R} ⊂ H,

the set of purely imaginary quaternions. Note that q ∈ R3 if and only if q = −q.
Then, for any u ∈ S3, consider the map

fu : R3 −→ R3, fu(q) := uqu−1 = uqu.

The image of fu is indeed contained in R3: if q ∈ R3, then

fu(q) = uqu = u q u = −u q u = −fu(q),

hence fu(q) ∈ R3. Note that fu defines an isometry of R3; in fact, writing u (uniquely)
as u = cos(θ/2) + sin(θ/2)w for θ ∈ [0, 2π) and w ∈ R3, |w| = 1, then fu is
given as rotation by an angle of θ about the axis spanned by w (cf. [29, Theorem
10.9]). In terms of the basis i, j, k of R3, the rotation matrix associated with fu, for
u = a+ bi + cj + dk, is then given by1− 2(c2 + d2) 2(bc− ad) 2(ac+ bd)

2(ad+ bc) 1− 2(b2 + d2) 2(cd− ab)
2(bd− ac) 2(ab+ cd) 1− 2(b2 + c2)

 . (C.2)

Now let us consider the Hopf fibration and see how to describe it in a quaternionic
setting. Originally, the Hopf fibration was given by Hopf [46] (up to permutation of
coordinates) as the map S3 → S2 defined by

(x1, x2, x3, x4) 7−→
(
2(x1x3 + x2x4), 2(x3x4 − x1x2), 1− 2(x2

2 + x2
3)
)
, (C.3)

where S3 and S2 are thought of as the unit spheres in R4 and R3, respectively. Using
the standard identification CP 1 ∼= S2 via stereographic projection, one observes that
this map coincides with the one given in Example 1.1.8. Now consider S3 as the set
of unit quaternions in H, and S2 the set of unit purely imaginary quaternions in
R3 ⊂ H. Then, comparing (C.2) and (C.3), we see that the map

π : S3 −→ S2, π(u) := fu(k) (C.4)

defines the Hopf fibration. This has now a nice geometric interpretation. Namely,
we fix a base point in S2 (in this case, k), and associate a rotation with an element
u ∈ S3. The image π(u) is then the result of this rotation applied to the base point.
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