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Summary 
 

Dietary restriction (DR), defined as reduced food intake without malnutrition, increases 

lifespan and improves health in most organisms including mammals. In mice, onset of 

DR late in life does not provide the same benefits as lifelong DR. While lifelong DR 

increases lifespan, late-onset DR initiated at 24 months of age does not extend 

survival. Mice lose their responsiveness in lifespan to DR between 16 and 20 months 

of age. The liver and white adipose tissue (WAT) are key organs for maintaining 

energy homeostasis. Interestingly, gene expression in the liver is fully responsive to 

the late-life DR switch, while most genes in the WAT do not change their expression 

in response to late-onset DR, indicating a memory of gene expression in the WAT. 

However, the cause of this memory effect and which cell types in the WAT contribute 

to memory formation is currently unknown.  

 

In order to address these questions, in my PhD project I employed single-nuclei 

sequencing of WAT from control and DR animals at young and old age. Furthermore, 

I analyzed the WAT from animals that were switched from AL to DR at 16 and 20 

months of age, to correlate the responsiveness in gene expression with the longevity 

of these animals. When I started my PhD thesis, there were not methods available to 

perform single-cell sequencing of the whole WAT including mature adipocytes, which 

due to their large size and fragile nature, cannot be analyzed by traditional single cell 

sequencing approaches. Thus, I first optimized a protocol to isolate WAT nuclei, and 

then tested which droplet-based single-cell RNA-seq platform would provide the best 

data quality. Based on the results from the pre-test, I generated a comprehensive 

single-nuclei landscape of the WAT under DR using 10X Chromium. The results 

showed that cell types were distributed in three super clusters including mature 

adipocytes, immune cells, and the stromal-vascular fraction containing stem cells and 

precursor cells. Only mature adipocytes clustered in different sub-groups depending 

on diet and age. Interestingly, I identified a cluster of mature adipocytes that was 

unique to the AL to DR switch at 16 months of age, but not present in the DR switch 

at 20 months. Gene expression analysis showed that this cluster was enriched for 

pathways linked to insulin sensitivity and fat tissue homeostasis. This finding suggests 

that the earlier DR switch generates a partial reprogramming of the WAT in response 
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to DR, which is not the case when animals are switched to DR later in life. To confirm 

my findings, I validated the cell-type proportion changes observed in the SNuc-seq 

data, by deconvolution of a corresponding bulk RNA-seq data. In addition, by including 

additional time points in the bulk analysis, I provide evidence that the transcriptional 

flexibility of the WAT decreases with age. Finally, using the single-nuclei data, I show 

that the dietary memory originates mainly from differences in gene expression of 

mature adipocyte but also from changes in the proportion of immune cells. 
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1.1            Extending healthy lifespan by dietary restriction (DR)  
 

1.1.1 Ageing and age-related diseases 
 

Ageing is characterized by functional degradation, a lowering chance of reproduction 

with increasing adult age as well as an increase in disease susceptibility that ultimately 

leads to death of the organism. The ageing process is widespread among organisms, 

but to some known exception like the hydra, a multicellular organism that escapes 

senescence thanks to three stem-cell populations with regenerative capacity 

(Tomczyk et al., 2015). The maximum lifetime of each species affects how quickly an 

animal ages, larger animals like elephants and whales typically live longer than smaller 

species like mice (Speakman, 2005). Ageing has various effects on sexes of the same 

species due to sex-specific reproductive costs and interactions with the local 

environment. It was shown that females had on average an adult median lifespan 

18.6% longer than males in wild mammals. This trend is conserved in humans from 

different geographic groups, where women median lifespan is 7.8% longer than males 

(Lemaitre et al., 2020). Rather than a difference in ageing rate between sexes, the 

interaction between sex specific biological traits such as differences in mating 

strategies, immune system, sex hormones, and different environmental conditions, 

results in higher mortality chances for male organisms (Lemaitre et al., 2020).  

An important research effort has been done over the years to describe the 

fundamental mechanisms of aging, and these processes have been divided into age-

related hallmarks (Lopez-Otin et al., 2013). Telomere attrition, genetic instability, 

altered nutrient signalling, stem cell exhaustion, epigenetic alterations, cellular 

senescence, loss of proteostasis, mitochondrial dysfunction and altered intracellular 

communication are the main directions in ageing research. These hallmarks are 

interconnected, and understanding their core mechanisms and also their interactions 

is crucial for developing healthy ageing interventions. Numerous diseases that affect 

various organs or metabolic processes all share age as a risk factor for their 

progression (Niccoli & Partridge, 2012). By targeting one hallmark it is possible to limit 

the simultaneous progression of multiple age-related diseases (ARDs). ARDs 

associated with five aging mechanisms, namely altered intercellular communication, 

mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and deregulated 
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nutrient sensing, could account for increased co-occurrence of these diseases in 

patients (Fraser et al., 2022). For exemple ARDs linked to metabolism and thus 

deregulated nutrient sensing, including obesity, type 2 diabetes, and fatty liver are 

usually found in the same patients. The global rise of multimorbidity cases and the 

number of elderly patients, is a challenge for healthcare systems and a motivation for 

biomedical research to find solutions. To tackle numerous ARDs simultaneously and 

promote healthy aging, it is necessary to understand the biological pathways that are 

impacted by aging. 

 

 

1.1.2 Genetic and pharmacological interventions can extend healthy lifespan 

by targeting nutrient sensing pathways 
 

The evolution of most cellular functions has been influenced by the selection pressure 

of nutrient scarcity. Metabolic pathways are modulated by the levels of sugars, amino 

acids, lipids, and metabolites, generating specific responses of the organism. Nutrient 

sensing pathways trigger different signals in response to food availability. Abundance 

of food favors storage and anabolic pathways, while absence of food mobilizes stored 

energy. Deregulation of nutrient sensing pathways are usually observed in metabolic 

diseases which are a major part of ARDs (Efeyan et al., 2015).  As the prevalence of 

obesity increased drastically in children and adults worldwide, with all co-occurring 

morbidities, understanding why and how nutrient sensing pathways are dysregulated 

is important to design treatments for metabolic diseases while supporting healthy 

ageing. The insulin and insulin-like growth factor pathway (IIS) is an evolutionally 

conserved cellular network that plays a key role in regulating the ageing process. 

Interventions that decrease IIS activity increase lifespan in the 

roundworm Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and also in 

mammals including mice (van Heemst, 2010).  

The transcription factor FOXO and the mammalian target of rapamycin (mTOR) 

complex are among the most studied targets of the IIS network. In contrast to lower 

organisms like worms and flies, the mammalian genome encodes several foxo genes. 

FOXO3 was found to be positively associated with longevity in Japanese 
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centenarians, and in long-lived individuals from Italy and the Netherlands (Willcox et 

al., 2008). mTOR is a conserved serine/threonine kinase involved in a multitude of 

cellular functions including cell growth, survival, metabolism, autophagy and stress 

response. mTOR is present in two protein complexes, mTORC1 and mTORC2, both 

reacting to growth factors, but only the activity of mTORC1 is regulated by nutrient 

sensing via glucose or amino acids. mTOR modulates cell growth based on nutrient 

availability activating anabolic pathways under nutrient rich conditions. mTOR activity 

is dependent on the insulin signaling pathway. When there is high glucose 

concentration, insulin is released into the blood to promote glucose uptake in fat and 

skeletal muscle, in order to lower glycemia and activate anabolic pathways. Insulin-

stimulated protein kinase B (PKB, also known as Akt) indirectly activates mTORC1, 

yet mTORC1 negatively regulates insulin signaling by phosphorylating insulin receptor 

substrate (IRS1), creating a negative feedback regulation. Excessive flux of nutrients 

could over-stimulate the activation of mTORC1 and result in an increase of 

phosphorylation of IRS1, leading to insulin resistance (Ong et al., 2016).  

Genetic modification of the IIS pathway by deletion of IRS1 in mice induced lifespan 

extension in both males and females (Selman et al., 2011). Deletion of ribosomal 

protein S6 kinase 1, a component of mTOR pathway, also led to increased lifespan in 

females and protection against age-related defects such as immune and motor 

dysfunction and insulin resistance (Selman et al., 2011). Furthermore, in addition to 

extending lifespan, downregulation of the IIS pathway also has beneficial effects on 

healthspan. A recent study showed that mice with genetically reduced circulating 

insulin through IRS2 mutation, showed improve insulin sensitivity at old age compared 

to control, and overall healthier ageing  (Templeman et al., 2017).  

Additionnaly to genetic interventions, the use of drugs that could mimic the same 

action on key actors of the nutrient sensing pathways have been studied. Rapamycin 

is an antifungal, antitumor, anti-inflammatory drug, produced by a bacteria 

Streptomyces hygroscopicus, found in the Easter Island (Arriola Apelo & Lamming, 

2016). Through characterization of its action it was discovered that Rapamycin  inhibits 

mTORC1 activity, inducing autophagy and leading to  lifespan extension in worms, 

flies and mice (Niccoli & Partridge, 2012). Since 2009, thirty studies in mice of different 

strains have been conducted to assess the effect of rapamycin on lifespan (Selvarani 

et al., 2021). 90% of these studies showed increased lifespan upon rapamycin 

treatment, demonstrating that the effect of rapamycin on survival is robust and 
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reproducible. Furthermore, lifelong or late-onset administration of rapamycin 

increased lifespan (Harrison et al., 2009), and its effects can persist even after 

administration has ceased (Quarles et al., 2020). E.g. treating 20-month-old mice with 

rapamycin for only 3 months was sufficient to extend lifespan (Juricic et al., 2022; 

Quarles et al., 2020). Taken together these recent findings provide solid ground for 

the development of rapamycin interventions in humans knowing that beneficial effects 

can be obtained from temporary treatments and can last even after administration has 

ceased. Indeed, first pilot studies in humans showed enhanced immune response to 

influenza vaccination after a low dose of rapamycin during 6 weeks and a 2-week drug 

free interval in old individuals (Mannick et al., 2014), while another study showed that 

rapamycin could be a potential topical treatment reducing skin senescence (Chung et 

al., 2019). Rapamycin can also present some negative side-effects including impaired 

wound healing (Weinreich et al., 2011), ulcers in mouth and lips, diabetes, 

hyperlipidemia and hypercholesterolemia (Soefje et al., 2011). Additional studies are 

needed to define a working dosage in humans and the effect of temporary dosage. 

There are multiple ongoing clinical trials that use rapamycin, one is in phase two, the 

Participatory Evaluation (of) Aging (With) Rapamycin (for) Longevity Study (PEARL), 

which should provide a great source of data for better understanding of effects of 

rapamycin on humans.  

Studies looking at interventions into the nutrient sensing pathway either with genetic 

modifications or drug administration showed robust results of lifespan extension and 

health benefits, but their application in humans needs further work to define working 

dosage and the potential long-term effects. In contrast, dietary habits directly impact 

the same pathways and have the advantage that they can be easily adjusted in animal 

models and also in humans. Due to this, several studies became interested in dietetic 

therapy, particularly dietary restriction (DR). 

 

 

1.1.3 The effects of DR and late-life DR  

Dietary restriction (DR) is one of the most promising interventions to increase lifespan 

and protect against ARDs across multiple animal models, from worms to primates 

(Green et al., 2022). DR refers to the reduction in food intake without malnutrition and 

its beneficial effect was first reported in 1935, by showing that that DR increased 
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lifespan in rats (McCay et al., 1935). Since then, many studies have confirmed the link 

between nutrition and ageing, where DR protects against metabolic diseases like 

diabetes, cardiovascular diseases but also neurodegeneration (Wilson et al., 2021). 

Despite its benefit, there are some limitations to its application in humans. DR is 

challenging to implement on a full-length controlled trial, because of the duration of the 

study and the complications of human lifestyle, with additional factors to take into 

account such as diet quality or meal frequency (Most et al., 2017). Short duration 

clinical trials in humans with moderate caloric restriction such as CALERIE or CRON 

studies showed beneficial effects on health by reducing the prevalence of metabolic 

pathologies such as diabetes, heart disease and cancer (Most et al., 2017).  In 

contrast, severe caloric restriction in human, similar to the amount of food restriction 

applied in mice studies, demonstrated serious side effects such as immune system 

impairment or reproduction issues (Most et al., 2017). In addition to physiological side-

effects, due to the variety of factors that need to be taken into account for an 

intervention in humans, notably complexity of the diet and behavior, a dietary therapy 

presents a lot of challenges (Redman & Ravussin, 2011). Temporary instead of 

chronic DR is a more feasible option and can reduce potential adverse effects. 

Identifying the latest age of onset at which DR still demonstrates positive effects on 

health and survival would be the most favorable solution, limiting the duration of DR 

and targeting an age period where development or reproduction would not be affected 

(Sun et al., 2021).  

Understanding the underlying mechanisms of DR is necessary to translate its benefits 

to human metabolism, and knowing when DR would still be effective would help the 

development of simpler and appropriate intervention in older patients.  To define this 

DR effective period in humans, research in model organism, particularly mice, is 

needed. In order to benefit from DR, its effector mechanisms must maintain 

responsiveness to the nutritional environment. The ability to respond to DR appears 

to fade with age. For instance, the timing of the onset of DR in mouse or rat models 

had an impact on the survival effect (Das et al., 2017). Similar results were observed 

in rhesus monkeys, where DR at old age didn’t extend lifespan but improved metabolic 

profiles (Mattison et al., 2012). A previous study in mice showed that late onset DR at 

24 months of age did not extend mouse survival (Hahn et al., 2019). In contrast, an 

older study subjecting mice to caloric restriction at 19 months of age, observed 

significantly increased lifespan and reduced tumour load (Dhahbi et al., 2004). A 
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recent study in which mice were switched from ad libitum (AL) to DR at 12, 16, 20, 24 

months of age (Lisa F. Drews, 2021), showed that the period in which DR can 

positively affect survival ended between 16 and 20 months of age. Understanding how 

metabolism changes between 16 and 20 months of age and what the underlying 

causes are, would aid in the development of late-onset DR interventions that might be 

more applicable to humans. 

  

1.2 The White adipose tissue (WAT)  
 

1.2.1 Metabolic role and morphology of WAT 

The main function of the white adipose tissue (WAT) is to store lipids in the form of 

triacylglycerols as a potential source of energy. For decades the WAT remained 

understudied, considered as an inert organ and its contribution to systemic metabolic 

responses was underestimated.  With the rise of obesity, an excessive proportion of 

body fat, now considered a pandemic, WAT is an organ of growing interest (O'Neill & 

O'Driscoll, 2015). More studies are trying to understand the function of adipose tissue, 

within the tissue but also its effect at the whole-body level. It is the largest endocrine 

organ and the central link to metabolic syndrome, a cluster of conditions that increase 

the risk of diabetes, cardiovascular diseases, and other widely spread and related 

health issues (Martinez-Sanchez, 2020). The WAT is found in two main depots: 

subcutaneous adipose tissue (SAT), which is under the skin and visceral adipose 

tissue (VAT), which is lining internal organs. Each depot has a different role in 

metabolic function and biochemical processes. VAT is more metabolically active with 

lipolysis, storage, and insulin regulation, making it a better indicator of metabolic 

dysregulation and prediction of mortality (Ibrahim, 2010). The body fat distribution is 

affected by ethnic background and gender in humans, and adipose tissue repartition 

is an important factor for metabolic diseases (Yaghootkar et al., 2020). Excessive 

visceral and ectopic fat is more detrimental than excessive subcutaneous fat. Some 

studies even showed that after body mass index adjustment, SAT had a protective 

effect against insulin resistance IR (McLaughlin et al., 2011).  

Adipose tissue was initially classified into two types based on its color, the white and 

the brown adipose tissue, displaying different type of adipocytes with different 

metabolic functions. WAT is the largest tissue and is found in mammals including 
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humans. Its main role is to store lipids for energy, but it also secretes hormones and 

adjusts insulin sensitivity to maintain energy imbalance. The brown adipose tissue 

(BAT) is found in mammals, especially after birth or during hibernation to ensure non-

shivering heat production, which is critical for body temperature maintenance. 

Previously, BAT was only associated with infants in humans, but recent studies 

showed that this tissue is also present in adults, with a higher prevalence in women 

and younger people (Cypess et al., 2009). BAT in adults can be metabolically active 

and involved in diet-induced thermogenesis and fat oxidation, but its small percentage 

and complex activation makes it a potential target to improve whole-body metabolism.  

Adipocytes of WAT contain a large unique lipid droplet with the nucleus and organelles 

in the periphery of the cell. In contrast, brown adipocytes have multiple lipid droplets 

and a large number of iron-rich mitochondria, giving the brown color to the tissue 

(Richard et al., 2000). BAT mitochondria contain uncoupling protein 1 (UCP-1), which 

causes heat production by short circuiting the protein gradient of the inner 

mitochondria membrane enabling the thermogenic function of the BAT. White 

adipocytes can store large amounts of lipids and expand their sizes up to 100um, while 

brown adipocytes are smaller and only reach half of their size. Interestingly, an 

intermediate profile of adipocyte, called beige adipocyte, seems to appear in 

subcutaneous WAT from potential brown preadipocytes or through transdifferentiation 

of white adipocytes. Beige adipocytes also have thermogenic potential, and therefore 

the capacity to dissipate energy more actively than white adipocytes. The process of 

beiging of the fat is mainly observed in rodents but is also possible in humans, and 

seems to be activated through cold exposure and also interventions such as diet or 

exercise, making it an potential novel therapeutic treatment (Lizcano, 2019).   

Adipocytes are the main cell type of adipose tissue. They stock lipids and also have a 

crucial role in communication in local and systemic responses by secreting paracrine 

and endocrine hormones, adipokines, cytokines. Signals emitted by the adipose tissue 

are fundamental to maintain energy balance, which is mainly controlled by the central 

nervous system. Leptin is a key hormone produced by adipocytes, which interacts with 

the nervous and immune system to regulate energy homeostasis (Martinez-Sanchez, 

2020). Leptin resistance is a consequence of obesity, where excessive adiposity 

diminishes the leptin signal, preventing its anorexigenic functions (Izquierdo et al., 

2019).  
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The WAT is a heterogeneous tissue, mainly composed of mature adipocytes but it 

also displays a large variability of cells, with a stromal vascular fraction that includes 

immune cells, endothelial cells, adipocyte precursors, and stem cells. (Duerre & 

Galmozzi, 2022). The metabolic function of the tissue depends on its composition, 

which is affected by multiple factors such as obesity or age. Mature adipocytes take 

up to 90% of the tissue space-wise, but account for less than 50% of the cell types 

(Lee et al., 2013) . Maintaining a pool of pre-adipocyte to store lipids is crucial for the 

flexibility of the tissue and the adipogenesis capacity can be impaired in metabolic 

disorders. Adipocyte progenitors go through multiple stages of differentiation, 

monitored closely by expression levels of specific genes, to complete maturation. 

Among important factors for differentiation, PPARg is a transcription factor highly 

expressed during maturation and crucial for regulating lipid metabolism. Subtypes of 

adipocyte progenitors were recently characterized depending on their functions. Most 

progenitors go through adipogenic differentiation in order to stock lipids, yet some 

subtypes are refractory to differentiation. Those progenitors are pro-inflammatory, and 

they could have a role in preventing fat deposition in skeletal muscle by attenuating 

adipogenic processes in surrounding adipocytes (Hepler et al., 2018).  

Presence of immune cells can also be a sign of malfunction of the tissue and 

inflammation. Macrophages are the main immune cell found in WAT and they can 

promote pro or anti-inflammatory signals. Their role in a healthy tissue is to maintain 

the plasticity by clearing debris, modifying the extra cellular matrix or buffering lipid 

accumulation. In disease states, such as obesity, where the tissue needs increasing 

storage and expansion, vascularization is impaired which leads to fibrosis and 

macrophage infiltration (Reyes-Farias et al., 2021). Other immune cell-types, such as 

lymphocytes, T-cell and B-cell, can also be present, recruited in early stages of obesity 

and promoting inflammation through the release of cytokines and immunoglobulins 

such as IgG, IgM (Reyes-Farias et al., 2021).  

A growing number of studies are investigating the heterogeneity of WAT through 

single-cell and single-nucleus data, trying to capture the best representation of the 

cell-type landscape of the tissue. Recently, spatial transcriptomics added a layer of 

information showing that different subtypes of mature adipocytes cluster together in 

the tissue, but also that progenitors tend to be in proximity of M2 macrophages, acting 

to maintain remodeling potential of the tissue (Backdahl et al., 2021). More research 
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characterizing the spatial distribution under different metabolic conditions would 

provide important information on the communication among different cell types inside 

the tissue and could possibly identify additional sub-cell types. 

 

 

1.2.2 Effects of ageing on adipose tissue 

Similar to obesity, ageing is an important contributor to adipose tissue dysfunction and 

metabolic disorder progression. Body fat distribution is important for metabolic health. 

With age, VAT proportion increases while SAT decreases, when SAT is considered 

beneficial for health. While fat depots are affected by age, the proportion of different 

fat tissues also changes, with a decrease of brown and beige adipose tissue. This 

affects thermoregulation in old people but also is detrimental for metabolism, since the 

declining tissues are highly metabolically active. Increase of BAT by surgical 

simulation or molecular knock-out protected against obesity, improved metabolism 

and enhanced lifespan (Vatner et al., 2018).  

With fat redistribution during ageing, more lipids are stocked in adipocytes of VAT, 

leading to adipocyte hypertrophy and ectopic fat deposition. This is observed notably 

in the liver, causing nonalcoholic fatty liver disease (Frith et al., 2009). Furthermore, 

ageing reduces angiogenic capacity, leading to defective vascularity of the tissue, 

tissue fibrosis and hypoxia (Donato et al., 2014).  

All those factors trigger immune infiltration, where macrophages surround 

dysfunctional adipocytes and form crown-structures. Macrophages secrete pro-

inflammatory cytokines such as IL-1b, Il-6, or TNF-a which reduce expression of 

PPARg, a transcription factor essential for adipocyte maturation. This has direct 

consequences for the plasticity of the tissue and its potential to adapt to changes in 

metabolic activity and storage.  

Adipose stem cells (APSC) are the least differentiated cell-types that can mature into 

adipocytes. They are an important pool of cells that can respond to changes in 

metabolic activity of WAT. These cells have a mesenchymal origin, and can also 

differentiate into osteocytes, chondrocytes, and myocytes, which make them attractive 

targets for stem cell therapy. The adipogenic differential potential of APSCs declines 

with age (Liu et al., 2017), with the differential capacity in other cell-types being 

impaired along with their proliferative capacity. Additionally, ageing affects their 



 11 

paracrine activity and doubles the time needed to differentiate (Frankish et al., 2021). 

The stemness capacity of APSCs could also be affected by senescent cells 

accumulating in the tissue with age. These cells show a senescence-associated 

secretory phenotype, including cytokines, chemokines and growth-factor. This leads 

to more immune cell infiltration to clear the accumulation of senescent cells but at the 

same time increases inflammation signaling and compromises the integrity of the 

extracellular matrix, promoting fibrosis of the tissue. 

Multiple factors induce inflammation in ageing WAT. Another is the dysregulation of 

autophagy, with the elevation of reticular endoplasmic stress and increased secretion 

of pro-inflammatory cytokines IL-6 and MCP-1 (Ghosh et al., 2016). Taken together, 

these results show that ageing hinders adipose tissue remodeling capacity by affecting 

adipogenesis and triggering inflammation reactions that could participate in insulin 

resistance in old individuals (S. M. Kim et al., 2014).  

As an endocrine organ, if the WAT function is altered, it has repercussions at the 

systemic level through the dysregulation of adipokines and secretion of pro-

inflammatory cytokines. For example, leptin regulation is affected with age, leading to 

leptin resistance, which increases the risk of obesity, but also to liver cirrhosis or 

fibrosis (Tsochatzis et al., 2006). Furthermore, 30% of Il-6, a major inflammatory factor 

contributing to systemic inflammation, is produced by WAT (Starr et al., 2009).  

To prevent metabolic illnesses and encourage healthy aging, normal AT metabolic 

activity is essential. 

 

 

1.2.3 Effects of DR on AT 
 

To prevent age-related dysfunction, one robust intervention is DR, which acts directly 

on the AT by reducing adiposity and leading to better metabolic health. Reducing WAT 

by caloric restriction, energy expenditure or selective removal, leads to lifespan 

extension by improving glucose sensitivity and insulin action, suggesting a direct link 

between organismal ageing and WAT function (Weiss & Holloszy, 2007) (Muzumdar 

et al., 2008). Multiple studies looked in detail at the effect of DR on WAT and the 

mechanisms affected through it. An early study looked at the effect of short- and long-

term energy restriction in male mice, and found that long term energy restriction had 



 12 

a stronger effect on the WAT transcriptome, with downregulation of inflammation 

genes, and promotion of structural remodeling genes (Higami et al., 2006). A study of 

caloric restriction (CR) during ageing in mice showed that it attenuated adipocyte 

hypertrophy while maintaining the beiging potential of the WAT (Sheng et al., 2021). 

By limiting food intake, the storage of lipids was also decreased, and adipocytes 

remained small in size compared to those in AL mice. Small adipocytes prevented the 

secretion of pro-inflammatory cytokines and general inflammation of the tissue, and 

preserved insulin sensitivity. Beige adipocyte are more metabolically active than those 

in WAT, and could generate a resting metabolic activity, helping to burn more stored 

fat. CR enhanced beiging of WAT from young to old age, but weakened function of 

BAT. Another study showed that CR promoted beiging of the WAT in both VAT and 

SCAT through recruitment of M2 Macrophages, which are anti-inflammatory, but also 

accumulation of adipose-resident eosinophils important for tissue remodeling and 

metabolic homeostasis (Fabbiano, Suarez-Zamorano, et al., 2016). Among other 

beneficial aspects of CR, CR mice showed less accumulation of autophagy substrates 

like p62 compared to AL mice (Ghosh et al., 2016), limiting autophagy dysregulation 

which is one of the hallmarks of ageing (Lopez-Otin et al., 2013).  
Age of onset of DR and its duration affect its health benefits. A previous study in mice 

showed that late onset dietary restriction has no beneficial effect on survival. In 

addition, gene expression in the WAT, but not the liver, were refractory to the diet 

switch (Hahn et al., 2017). The WAT transcriptome of young animals responded 

rapidly to DR, suggesting that, rather than being an intrinsic feature of WAT, the low 

transcriptional responsiveness to DR in this tissue was specific to aged individuals. 

This result showed that, in contrast to the liver, WAT metabolic flexibility declined with 

age. Interestingly, the WAT transcriptome of DR mice showed upregulation of PPARg 

and its downstream target the de-novo-lipogenesis (DNL) pathway. It has already 

been demonstrated that this pathway is upregulated during DR (Solinas et al., 2015). 

DNL produces long fatty acids, either for mitochondrial biogenesis or to function as 

adipokines activating transcription factors, preserving a healthier metabolic equilibrium 

(Song et al., 2018). Nevertheless, further work is needed to understand how the DNL 

signal is triggered by DR and to better characterize its repercussions at the systemic 

level. A minimum level of adiposity is needed to observe the benefits from caloric 
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restriction in mice (Mitchell et al., 2016), indicating the importance of adipocytes in DR 

response, but more information is needed on the role of other the cell-types. 

 

 

 

1.3 Single-cell RNA sequencing  

 

1.3.1 New insights provided by single-cell data  

Massive advances in high-throughput technologies have made it possible to analyze 

differences at the genome, transcriptome, and epigenome level in recent decades. 

This has enabled generation of numerous biological databases, getting more 

informative and comprehensive with time. Transcriptomic approaches evolved from 

microarray-based platforms, where only expression levels of known transcripts could 

be measured, to RNA-seq technology, which additionally provides information on 

isoforms, splice junctions and novel transcripts (Byron et al., 2016). RNA-seq allows 

to capture a comprehensive transcriptomic profile of a sample, to gather valuable 

information on different tissues, in different models, highlighting the effects of a 

disease, a drug or any intervention on metabolism. Nevertheless, organs are complex, 

comprising different cell-types, at different levels of differentiation, in different 

proportions, and none of these details can be captured using bulk RNA-seq 

transcriptomics. However, since 2009, it is possible to measure gene expression with 

single-cell resolution using Single-cell RNA sequencing (Tang et al., 2009). In the last 

decade, the single-cell approach developed into a new field, offering ever-more-

effective techniques and creating new cell-type atlases of organs, allowing the 

scientific community to examine their biological heterogeneity and diversity. For 

example, multiple brain atlases have been generated in different model organisms, in 

mice (La Manno et al., 2021), fly (Davie et al., 2018), even looking at the effect of age 

or diet on the cell-types, providing great resources for research (Ximerakis et al., 

2019). Comprehensive databases have been built, including data from several organs, 

like the Fly cell atlas (Li et al., 2022), the Human cell landscape (Han et al., 2020), or 

the Tabula Muris  (Tabula Muris et al., 2018). With time, more specific datasets are 

generated, characterizing novel cell-types (Travaglini et al., 2020), comparing cell-

types profiles and proportions between conditions (Melms et al., 2021), or looking at 
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differentiation processes (Alsinet et al., 2022). Single-cell approaches brought new 

layers of information, changes in gene expression in a cell but also changes in cell-

type proportions, both having an impact on metabolic changes in a tissue. This 

combination of information showed great advantages to understand physiological and 

pathologic processes in particular tumor heterogeneity (Tang et al., 2019). The amount 

of single-cell data generated is quickly increasing, nevertheless the methods used to 

produce those datasets are challenging, with strict protocols, expensive instruments 

to generate the libraries, and constantly developing bioinformatics analytical pipelines 

(Adil et al., 2021). In order to properly create specialized datasets to address more 

complicated biological questions, choosing the right experimental design and method 

is essential. 

 

 

1.3.2 Methods for single-cell experiments  

 

By isolating individual cells, collecting their RNA, and converting it to cDNA to create 

a sequencing library, single-cell RNA sequencing techniques allow the analysis of the 

mRNA transcriptome of a single cell. The number of methods to perform single cell 

sequencing analysis is still increasing, offering higher yield, quality and specification, 

such as looking at the methylation or the spatial localization of cells. Most methods 

target transcriptomic information and they differ in the techniques used to isolate cells 

and produce cDNA. The use of different instruments or protocols result in differences 

in sensitivity and accuracy (Oulhen et al., 2019). Some methods like Smart-seq or 

CEL-seq2 separate cells into individual wells to generate single-cell data. Other 

methods use fluorescence-activated sorting to separate cells, like MARS-seq, SCRB-

seq, and Smart-seq2. Methods based on microdroplets to capture single cells or 

nuclei, are the most widely used thanks to their high performance, i.e. the number of 

cells captured and data quality. In contrast to other methods that isolate cells using 

selection, they have an unbiased approach that enables a comprehensive 

representation of the tissue of interest. Additionally, the isolation step is based on 

microfluidics, which is easier and cheaper than manually selecting single cells. InDrop, 

Drop-seq, and 10X Chromium are the three most commonly used droplet-based 

platforms. InDrop and Drop-seq are published methods while 10X Chromium is a 
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commercial platform, but overall, these three methods use a similar approach. They 

individually encapsulate several thousands of cells per second in oil drops, producing 

millions of micro compartments for capturing single transcriptome profiles. In order to 

generate transcriptome profiles for each cell, beads covered with a PCR primer, cell 

barcode, an UMI and a poly-T tag, are introduced in the oil droplets.  The PCR primer 

is used for amplifying the mRNA captured by the poly-T tag, the cell barcode is used 

to identify from which cell the mRNA came, and the UMI to correct for duplication bias 

in quantitative analysis. This amplification bias comes from the fact that a single cell 

does not yield a lot of mRNA after lysis and some will not be captured or reverse 

transcribed, large amplification is needed afterwards to build a library, and with the 

use of UMI a more precise quantification of each transcript is possible (Chen et al., 

2018).  

 

In each method, beads and cells are introduced at a low rate to avoid having doublets 

of beads or cells in the same droplet (Zhang et al., 2019). This leads to errors in the 

analysis, especially cell doublets, which can be wrongly interpreted as novel cell-types. 

InDrop and 10X use soft gel beads, they have a better encapsulation rate, following a 

Super-poissonian distribution, whereas Drop-seq uses hard beads which follow a 

Poisson distribution and results in a lower bead occupancy and cell capture efficiency 

(Zhang et al., 2019). Following encapsulation, cells are lysed, either directly from the 

buffer of the beads for InDrop and Drop-seq, or in the case of 10X the beads are 

dissolved, releasing the lysis buffer for the cells. In addition, dissolving beads allows 

more primer to be released and a better capture efficiency. Another advantage of 

InDrop and 10X, is that the reverse transcription from mRNA to cDNA is done in the 

emulsion, the use of small compartments for this reaction gives more accurate results. 

Then, for all methods, a step of demulsification is done to pool all cDNA collected, to 

then amplify it to make libraries. These last steps are different depending on the 

method, notably Drop-seq and InDrop have a more challenging and long protocol, 

while 10X is a commercially simplified pipeline. Previous studies compared the 

different methods and overall 10X provides better results and has a faster protocol 

(Zhang et al., 2019). But a lot of tissues require to adapt the protocol to their specificity, 

and 10X doesn’t provide a lot of room for change, while InDrop and Drop-seq allow to 

modify the rate of beads/cells encapsulation or the size of the droplets, or even the 

buffer used during encapsulation. They are also cheaper approaches which can be a 
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strong argument when trying to generate an atlas with numerous tissues and 

replicates. Most of single-cell transcriptomics studies use 10X approach nowadays but 

it is interesting to consider different single cell approaches and the choice of the 

method should depend on the scientific question. 

 

1.3.3 Distinction between single-cell and single-nuclei RNA sequencing 
 

Droplet-based methods of single-sequencing aim to target cells to capture all 

transcriptomic information available. In some cases, using cells is not possible 

because of the cell shape or their organization in the tissue. For example, the brain 

displays a great variety of cells with complex layering leading to loss of some specific 

cell-types during the cell dissociation process (Bakken et al., 2018). Mature adipocyte, 

the main cell-type of white adipose tissue, can expand to stock lipids, and this leads 

to its cells being too large to be encapsulated in droplets (Rondini & Granneman, 

2020). Additionally, while it can be difficult to obtain fresh tissues for single-cell 

methods, frozen post-mortem tissues can directly be used with single-nuclei 

sequencing (Lake et al., 2016). Single-nuclei sequencing (sNuc-seq), is a great 

alternative for complex specific tissues or to process a large number of samples that 

don’t need to be freshly isolated. Cell identities or specific gene expression profiles 

can be retrieved with solely nuclei transcriptomes. A number of studies looked at 

potential differences or bias from using nuclei instead of cells in single transcriptomic 

studies. The majority of studies comparing sNuc-seq to single-cell showed similar 

sensitivity and high concordance in results, while some differences might occur 

depending on the tissue. For example, comparison of single-nucleus and single-cell 

data in neurons showed differences in transcript abundance, more nascent transcript 

in the nuclei data, and more mitochondrial respiratory relative transcript in the cellular 

data since they accumulate in the cytosol (Lake et al., 2017). Despite those 

differences, similar results in cell-type profiles, cell-type proportions and metabolic 

gene markers were observed, in both datasets. Another study compared single-cell 

and single-nuclei methods on cell lines, peripheral blood mononuclear cells and brain 

tissue, and found similar sensitivity and cell type classification between the methods, 

also showing that single-nuclei data prevented gene expression artefacts from 

dissociation stress (Tabula Muris, 2020).  Some studies also showed, by comparing 
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the two approaches on kidney tissue, that using single-nuclei could prevent the bias 

induced by dissociation and recovery of some cell-types absent in single-cell data, 

even if immune cells were underrepresented in nuclei data compared to cell (Gaedcke 

et al., 2022). Despite some differences depending on the tissue, using nuclei instead 

of cells can provide similar results, especially for cell-type identification and finding 

metabolic gene markers. The choice of method should depend on the scientific 

question, single-nuclei being a more interesting option if nuclear transcripts can 

provide enough information or if the tissue of interest would be subjected to bias 

because of the dissociation process. 

 

1.3.4 Bioinformatic challenges of single-cell data analysis 
 

High throughput methods changed the way of analyzing biological data, dataset size 

is increasing rapidly, demanding more technological resources in terms of memory 

and computing power. Gene expression datasets are usually in the form of a matrix, 

with genes detected and their respective level of expression for a sample. With RNA-

seq bulk dataset only a few samples would be measured, while in the case of single-

cell approaches, the size of the matrix is significantly larger since thousands of cells 

are measured. To properly analyze this new type of data, a lot of development has 

been done in the bioinformatic community to create adequate pipelines and address 

these new problems. A few commercial pipelines are available, notably CellRanger 

from 10X and Fluidigm, but there is not yet a reference pipeline in single-cell analysis 

(Hwang et al., 2018). A lot benchmarking reviews on methods are available to 

researchers to design their own pipelines, also available methods are constantly and 

quickly improving by using novel data analysis methods, like deep learning (Ma & Xu, 

2022).  

From the raw sequencing files, a few steps are needed to obtain a gene expression 

matrix. Reads need to be aligned on a reference genome, de-duplicated to have 

accurate quantification and collecting information on which transcript came from which 

cell. This can be done via the CellRanger software, or the zUMIs pipeline (Parekh et 

al., 2018), or STAR (Dobin et al., 2013), which has adapted its mapping method to 

single-cell data. The end results are dependent on the first steps of the pipeline, 

meaning data quality assessment and normalization. From cell to cell the quality varies 
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a lot, from really low expression, to high content due to doublets, or high mitochondrial 

gene expression observed when cells are going through apoptosis. Not all transcripts 

are caught during cell lysis, leading to what is called a dropout, an absence of 

expression of a gene in some cells. This is another factor contributing to the high 

variability across cells and different samples. It can be explained by the low amounts 

of mRNA released from lysis of individual cells and inefficient mRNA capture, as well 

as the stochasticity of mRNA expression. The dropouts are the reason why scRNA-

seq data is usually sparse and the high amount of zero counts cause the data to be 

zero-inflated (Zhang et al., 2019). To address this issue, some imputation methods 

are designed to infer missing level expression data based on gene to gene or cell to 

cell similarities, like scImpute (Li & Li, 2018) or MAGIC (van Dijk et al., 2018). But the 

real challenge is to differentiate real dropouts from the ones that are from low technical 

sensitivity, and the risk with imputation is to infer expression when there is none.  A lot 

of filtering steps are necessary to limit the high heterogeneity in the data and to have 

information reflecting the cell-type landscape of the tissue. From the normalized 

dataset, the main analysis can be divided between one part focusing at the cell level 

and one at the gene level.  One of the main purposes of single-cell analysis is to define 

similar group of cells in the mix of cells from the tissue, identify their cell-type, and 

possibly their level of differentiation thanks to trajectory analysis (Trapnell et al., 2014). 

To define when cell composition changes, clustering techniques are used to determine 

whether cells are comparable and may be from the same cell type, which is crucial 

information for not only the dropout imputation methods but also for all the downstream 

analysis and biological interpretation. Since single-cell data is sparse and carries a lot 

of  technical noise, highly variable genes are selected to do dimension reduction 

analysis with either principal component analysis (PCA) (Jolliffe & Cadima, 2016) or t-

Distributed Stochastic Neighbor Embedding (tSNE (Kobak & Berens, 2019)) or UMAP 

(Becht et al., 2018). Highly variable genes carry differences in their expression levels 

that can differentiate cell clusters in a mixed cell population, and are less affected by 

dropouts (Yip et al., 2019).  After identifying clusters of similar cells and their cell-type 

identity, the analysis can be done at the gene-level, for example, functional enrichment 

analysis to determine the biological function of a cluster, or inferring gene-regulatory 

network to get better understanding of which genes are co-expressed in a specific cell-

type and, or condition. While differential gene expression analysis is the golden 

standard analysis in bulk RNA-seq, it is still a field in development in single-cell data, 
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where improvement is needed to detect differences in gene level expression between 

cells because of biological and not technical variability. Some methods address this 

problem such as DEsingle (Miao et al., 2018). The high variability can be an issue 

when looking at replicates and comparing different conditions. Batch correction 

methods for technical variability are available, but by correcting technical variability, 

some biological variability is lost, and possibly also more subtle changes, such as 

novel information on sub-cell-types or metabolic activity in specific group of cells.   

Lately single-cell approaches have been extended to the epigenome, proteome or the 

spatial position of cells in the tissue. The main motivation is to combined several layers 

of information from the same cell to depict a hyper precise profile of it and its interaction 

with other cells. As complete as it sounds, it is also bringing new challenges, and a 

higher level of complexity, exacerbating all the issues mentioned for transcriptomic 

analysis (Subramanian et al., 2020). These multimodal assays are forcing scientists 

studying single-cell bioinformatic analysis to foresee new problems. As a result of this 

emerging discipline, several cutting-edge tools are being published at a rapid rate so 

that further work is needed for the bioinformatic field to converge towards common 

best practices for analysis. 
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1.4 Aims of the work presented in this thesis 
 

Dietary restriction (DR) ameliorates ageing in multiple animal models, ranging from 

worms to mammals including primates (Balasubramanian et al., 2017). In order to 

benefit from the DR treatment, an organism has to be able to adapt to the nutritional 

change. In mice, the ability to adapt to DR is lost with age in the WAT, where gene 

expression is mostly refractory towards a late onset AL to DR switch  (Hahn et al., 

2019). This transcriptional memory of prior AL feeding in the WAT might explain why 

DR cannot extend lifespan in old animals.  Indeed, mice lost the ability to increase 

their lifespan in response to DR between 16- and 20-month of age (Drews 2021). Thus, 

comparing the response in WAT gene expression towards a DR switch at 16 and 20 

months might provide novel insights into processes that contributes to the better health 

and increased lifespan of the DR animals. The white adipose tissue is highly 

heterogeneous with multiple cell types in different proportions (Ràfols, 2014). Thus, in 

order to elucidate the molecular basis for the transcriptional memory in the WAT, I 

used single-cell RNA sequencing to address which cell types contribute to the 

memory, and whether it is caused by changes in gene expression and/or cell 

composition.    

 

At the time I started my PhD project, there were no methods available to do single cell 

RNA sequencing on mature adipocytes due to their large size, which is incompatible 

with traditional microfluidic approaches. Thus, my first aim was to develop and 

optimize a single-nuclei protocol for the WAT using droplet-based sequencing 

methods. In particularly, I addressed the following questions: 

1) How to optimize the nuclei isolation protocol using WAT? 

2) Which single-cell platform provides the best data quality given the low cDNA 

concentration usually obtained from WAT? 

 

After establishing the protocol, I designed the experimental layout, generated and 

bioinformatically analyzed the single-nuclei data to answer the following questions: 

 

3) What is the cell type composition of the murine white adipose tissue?   

4) How do age and DR affect the cell-type landscape of the murine WAT? 
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5) Does the late-onset DR treatment rejuvenate the white adipose tissue?  

6) What are the differences in single cell gene expression and cell type 

composition between the DR switch a 16 and 20 months of age?  

7) Does the WAT need longer to adapt to DR if the switch is done at old age? 

8) Is the transcriptional memory a result of gene expression or cell composition 

changes?  

9) Can cell-type composition information be extracted from bulk RNA-seq using a 

deconvolution approach? Is it validating the observations made from sNuc-seq 

data? 
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2 Methods 
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2.1  Animal husbandry and DR protocol 
 

Females of the F1 hybrid strain C3B6F1 were used throughout, and were part of a 

cohort study that examined the effects of switching diets at 12 (ALDR12), 16 

(ALDR16), 20 (ALDR20), and 24 (ALDR24) months of age, together with mice fed 

chronic AL and DR diets (Drews et al., 2021). Ad libitum fed (AL) mice had ad libitum 

access to chow food while dietarily restricted (DR) animals received 60% of the 

amount consumed by AL-fed animals (i.e. food intake was reduced by 40%). Food 

consumption of AL mice was monitored weekly. Four distinct cohorts were created, 

for lifespan analysis (n=320 mice), tissue collection (n=320 mice), metabolic (n=90 

mice) and fitness phenotyping (n=72 mice). For each mouse of the tissue collection 

cohort, the WAT was snap frozen in liquid nitrogen and then stored at -80°C. Those 

samples were used for bulk RNA sequencing (RNA-seq) or sequencing of single nuclei 

(SNuc-seq). 

 

 

2.2 RNA-sequencing (RNA-seq) measurement 
 

 
Figure 2-1 Experimental design for SNuc-seq and Bulk RNA-seq 

 

 

RNA from perigonadal WAT of conditions of interest were isolated in three biological 

replicates by Dr Lisa Drews. Conditions were the following: AL and DR mice of 5 and 

24 months old, ALDR16 of 20 and 24 months old, and ALDR20 of 24 and 28 months 

old (Figure 2-1). Between 70-120mg of snap-frozen WAT from each sample were 

homogenized in 1000μl Trizol (15596018 ThermoFisher Scientific) and incubated for 

5min at RT followed by centrifugation at full-speed for 10min at 4°C to collect free-
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floating fat (Drews et al. 2021). Samples were treated to remove genomic DNA 

contamination using the DNA-freeTM DNA Removal Kit (AM1906, Invitrogen) 

according to manufacturer’s protocol, and RNA concentration was measured using a 

QubitTM RNA BR Assay Kit (Q10210, ThermoFisher Scientific) according to 

manufacturer’s protocol.  

RNA-seq library preparation and sequencing was performed by the Max Planck 

Institute for Molecular Genetics, Berlin, Germany (https://www.molgen.mpg.de/). 

According to the facility’s procedure, stranded TruSeq RNA-seq libraries were 

prepared using TruSeq RNA Library Prep Kit (RS-122-2001, Illumina) according to 

manufacturer’s protocol. Libraries were sequenced with 2x40 mio, 100 bp paired-end 

reads on an Illumina Novaseq 6000 (Illumina, San Diego, California, USA).  

 

 
Figure 2-2- Single-nuclei wet lab workflow.  

Wet Lab optimization was divided into two steps, first getting an optimal isolated nuclei 
solution, without cellular debris and floating RNA. Multiple changes in different steps of the 
protocol were tested, notably sorting nuclei with FACS after isolation to get a cleaner solution. 
The second part of protocol optimization for the experiment was to assess which droplet-based 
platform was the best suited for WAT, and would give the best data quality. Test data were 
acquired from a Nadia Instrument, a 10x Chromium, and a 10X chromium with FACS before 
dropletisation. 
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2.3  Nuclei isolation 
 

sNuc-seq was done on WAT from AL and DR mice of young (5 months) and old (24 

months) age, and on ALDR16 and ALDR20, both at 24 months (Figure 2-1). Nuclei 

were extracted from snap-frozen tissues, using a custom protocol adapted to work 

with adipose tissue. The main steps of the protocol were designed based on 

“Massively parallel single-nucleus RNA-seq with DroNc-seq » (Habib et al., 2017), to 

retrieve isolated nuclei from all the cell types present in the tissue. To lower inter-

sample, 100mg of fat from 3 different mice were pooled together. On ice, fat pads were 

cut and minced using surgical scissors and were then transferred to a 1mL douncer 

with 0.8mL of EZ lysis buffer (NUC-101, Sigma-Aldrich). Tissue was homogenized first 

using a loose then a tight pestel 20 times. The homogeneous solution was transferred 

to 5 ml conical tubes and kept on ice with additional 2mL of EZ lysis buffer for 20min, 

vortexing every 5 min. After centrifugation for 5min at 500xg (4 °C), the supernatant 

was discarded and the pellet, containing the nuclei, was resuspended in 3mL of EZ 

lysis buffer, and kept on ice for 5min.  The solution was centrifugated again for 5min 

at 500xg (4 °C), the supernatant was discarded and the pellet was resuspended in 

3mL of PBSA buffer (PBS + 1% BSA) to wash the nuclei and prevent them clumping. 

After centrifugation for 5min at 500xg (4 °C), the supernatant was discarded and the 

pellet was resuspended in 0.5mL of nuclei resuspension buffer (PBSA + RNAse 

inhibitor). The solution was filtered through a 35 µm cell strainer (352235, Falcon) to 

discard clumped nuclei, and kept on ice.  

 

2.4  Fluorescence-activated cell sorting (FACS) 

 

To get a clean solution of isolated nuclei, Fluorescence-activated cell sorting was done 

directly after nuclei isolation. The nuclei were processed as quickly as possible to 

avoid deterioration and apoptosis of the nuclei, which would be reflected in the 

transcriptome data. The FACS & Imaging Core Facility of the MPI for Biology of Ageing 

did the FACS sorting based on DAPI+ staining, to select nuclei regardless of the cell-

type. Nuclei were stained with DAPI (1μg/μ L) and sorted on a BD FACSARIA FUSION 
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(BD Biosciences) and a 70μm nozzle and 70psi shear pressure, with chillers to 

preserve nuclei. Singlet DAPI+ signal was selected to discard doublets, clumped 

nuclei, debris and floating ambiant RNA.  

 

 

2.5 Droplet-based methods for single-cell sequencing 
 

2.5.1 Nadia Instrument 
 

2.5.1.1 Nuclei encapsulation optimization 

 

The Nadia instrument from Dolomite Bio requires a certain ratio of beads and nuclei 

per droplet to avoid doublets and false transcriptome profiles. To assess the right 

amount of tissue needed to reach the ratio of nuclei to introduce into the Nadia 

Instrument, test-runs were done without adding the lysis buffer that would normally 

lyse the cells into the droplets. In that way, the nuclei concentration, the ratio of only 

encapsulated beads, only encapsulated nuclei, and both, were assessed. Multiple 

amounts of AL and DR WAT tissue from young mice (5 months) were used for nuclei 

isolation, ranging from 0.7g to 0.2g. After the isolation step, nuclei concentration was 

assessed with TC20 Cell Counter (TC20, Biorad), and the nuclei solution was diluted 

to reach 300k nuclei/mL. As indicated in the manufacturer protocol, Emulsion oil 

(QX200TM Droplet Generation Oil for EvaGreen), the nuclei suspension and the 

barcoded beads (Macosko-2011-10, ChemGenes) resuspended in nuclease-free H2O 

instead of the lysis buffer were loaded in the cartridge designed for encapsulation on 

the Nadia Instrument. After the run, the creamy emulsion was collected using a P1000 

pipette and loaded into a Neubauer Haemocytometer counting chamber. Finally  

monodispersity of droplets and counts of nuclei, beads encapsulation was assessed 

using a Nikon microscope.  
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2.5.1.2 Protocol for benchmarking dataset 

 

To assess which platform would yield better results, similar WAT samples were tested 

on the Nadia and 10X Chromium platform. 0.3g of sample from AL or of DR young 

mice (5 months) were used for nuclei isolation. Nuclei were processed on the Nadia 

following the manufacturer’s protocol, from run on the Nadia Instrument for 

encapsulation and lysis to the creation of libraries. To summarize, after breakage of 

the emulsion, the cDNA libraries are made in several steps. Firstly, reverse 

transcription is done to get cDNA from mRNA captured on the beads, and exonuclease 

1 treatment enables removal of the excess of primers that didn’t capture mRNA. Then 

the cDNA that is still attached to the beads is amplified by PCR, 21 cycles were needed 

to get a working cDNA concentration for each sample. The number of cycles depends 

on the quality of the starting material and the capture efficiency. Beads were then 

washed with AMPure beads to get cDNA, which was measured on a Tapestation 

HSD5000. Finally, in order to sequenced the captured transcripts, Nextera XT DNA 

libraries (FC-131-1024, Illumina) were used to add illumina indexes. The final Nextera 

products were measured on a Tapestation to confirm that the read length was between 

500 and 680 bp. Libraries were sequenced in paired-end mode for 100 million reads 

of 100bp for each sample by the Molecular Genetics Sequencing Facility in Berlin.  

 

2.5.2 10X Chromium 
 

2.5.2.1 Protocol for benchmarking the dataset  

 

In order to compare the data quality between the Nadia Instrument and the 10x 

Chromium, 0.3g of young (5 months) AL or DR WAT tissues were used on the 

chromium platform. Two experiments were done, one where the nuclei were loaded 

directly for the Chromium protocol, and another where the nuclei were sorted by FACS 

based on DAPI+ staining. When loaded directly, the concentration of nuclei per mL 

was assessed with aTC20 Cell Counter (TC20, Biorad), while with FACS a fixed we 

aimed for a fixed number of nuclei, in our case 8000. Library preparation and 

sequencing was done at the Cologne Center for Genomics. Sequencing was 

performed on an Illumina HiSeq 4000 (Illumina, San Diego, CA, USA) instrument with 
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PE100bp reads and an 8 bp index read for multiplexing, for 10 million reads per 

sample.  

 

2.5.2.2 Protocol for the main dataset  

 

The main dataset had more conditions, chronic AL and DR at young (5 months) and 

old (24 months), and two time points of diet switch, ALDR16 and ALDR20 at 24 

months. Three samples from 3 mice were pooled for each condition, with two 

replicates per condition. For each sample, 0.1g was taken from frozen WAT pads. The 

12 samples were organized into 4 batches, with randomized samples, to avoid 

confounding effects. The pooling of the 3 samples per replicate was done from the 

beginning of the nuclei isolation protocol, where the tissue is cut and were 

homogenized using a douncer. After FACS sorting, approximately 8000 nuclei per 

sample were loaded onto Single Cell 3’ Chip (10xGenomics, CA) per channel with an 

expected recovery rate of 2000–3000 nuclei. Library preparation and sequencing were 

done at the Cologne Center for Genomics. The Chip was placed on the 10X Chromium 

Instrument for Single Nuclei partitioning and to generate single nuclei gel beads in 

emulsion (GEMs). Single nuclei RNA-Seq libraries were prepared using Chromium 

Single Cell 3’ Library and Cell Bead Kit according to manufacturer’s instructions. 

The molar concentration of the library was quantified and library fragment length was 

estimated using a TapeStation (Agilent, Santa Clara, CA, USA). Sequencing was 

performed on an Illumina HiSeq 4000 (Illumina, San Diego, CA, USA) instrument with 

PE100bp reads and an 8 bp index read for multiplexing.  

 

 

2.6  Published sequencing datasets used in the study 
 

2.6.1 Published RNA-seq data 
 

To test deconvolution methods on white adipose tissue and assess differences in cell-

types between WAT of mice from chronic and switch diets, we downloaded the 

corresponding RNA-seq data from a previous study on diet-switch from our laboratory 
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(Hahn et al., 2019). Datasets were downloaded from the GEO repository under 

accession ID GSE92486 and GSE124772 .  

 

2.6.2 Published single-cell data 
 

In order to infer cell-type proportions of RNA-seq bulk data, and analyze changes of 

proportions as a function of age and diet, we downloaded several single-cell or single-

nuclei datasets of white adipose tissue to use as references.  

The Tabula Muris consortium generated a compendium of single cell transcriptome 

data from 20 different mice tissues (Tabula Muris et al., 2018). The files of gene 

expression matrices, metadata, and annotation were downloaded through figshare 

(DOI: 10.6084/m9.figshare.5715040.v1). White adipose tissue data was captured with 

FACS-based full length transcript analysis, so no mature adipocytes were captured, 

only progenitors, but this dataset was used as a reference for the single-cell landscape 

of white adipose tissue. To match the datasets generated in our study, cells from 

female mice and from subcutaneous adipose tissue (inguinal pad) were selected.  

Another single-cell dataset was used for deconvolution analysis, single-cell of WAT of 

mice published as a single-cell atlas of human and mouse white adipose tissue (Emont 

et al., 2022). Datasets, in the format of Seurat object, were downloaded from the Single 

Cell Portal (study no. SCP1376). Only cells from female mice and inguinal fat pads 

were selected.  

 

 

2.7  Data analysis and statistical methods 
 

2.7.1 RNA-seq data pre-processing and analysis 
 

The Molecular genetics sequencing facility sent the raw reads in the fastq format. After 

assessing the reads quality with FastQC (Andrews, 2010), the reads were mapped to 

genome 105 of Mus musculus with Hisat2 (Kim et al., 2019) using the paired-end 

option. The resulting sam files were converted to a compressed bam format with 

Samtools (Tang et al., 2009), and the gene expression matrix generated by 
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featurecount (Liao et al., 2014). In addition, data visualization was performed using 

SeqMonk (http://www.bioinformatics.babraham.ac.uk/projects/seqmonk).   

Analysis from the gene count matrix was done using custom R script, based on the 

Deseq2 (Love et al., 2014) package for differential expression analysis, prcomp 

(Buhmann, 2008) for PCA analysis and GGplot (Wickham, 2016) for plotting results. 

Gene expression levels were plotted based on normalized counts using Deseq2 

normalization method, using the median of ratios. It takes into account eh sequencing 

depth and the RNA composition. It first creates a pseudo reference sample that is 

equal to the geometric mean across all samples and then compute the ratio of each 

sample to this reference for every gene. Then the median of all ratios per sample is 

used as the normalization factor for the sample and is used to normalized the 

expression of all genes.  

 

 

 

2.7.2 Processing of raw single-nuclei dataset 
 

 
Figure 2-3 - Read format structure from the Nadia Instrument and 10X Chromium 
protocols.  

The Nadia Instrument protocol generates paired end reads of 100bp, read 1 having the cell 
barcode the UMI and the end of the cDNA insert. Read 2 has the beginning of the cDNA insert. 
10X Chromium protocol generates paired end reads as well, but Read 1 only has the cell 
barcode and the UMI, while Read 2 has the cDNA insert.  
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2.7.2.1 Dataset generated from Nadia instrument 

 

Raw reads were again provided as fastq files from the Molecular genetics sequencing 

facility, and were first  tested for quality with FastQC (Andrews, 2010).  

To obtain matrix of gene count per cell, the protocol entitled Drop-seq Core 

Computational Protocol  (Nemesh, 2015) was followed, since it deals with the different 

customs tags used in the Nadia’s protocol.  After quality check using FastQC, the first 

step was to trim the reads to remove the Nextera adapter and cDNA primer used for 

amplification with Trimgalore (Krueger, 2012) (v.0.6.5, parameters: -- paired --length 

60, --a2 GTACTCTGCGTTGATACCACTGCTT ). Trimmed reads were then converted 

from fastq to unaligned and unpaired bam format files with the Picard toolkit (Institute, 

2018), with FastqtoSam function. Then the Drop-seq-tool (Nemesh, 2015) was used 

to  extract bases from the cell barcode and the UMI barcode and tag each bam entry 

with correct identification barcodes. The function 

TagBamWithReadSequenceExtended was used with the parameters 

“BASE_RANGE=1-12 TAG_NAME=XC” for cell barcode and “BASE_RANGE=13-20 

TAG_NAME=XM” for UMI barcode (Figure 2-3). Afterwards, reads where the cell or 

molecular barcode were of low quality were removed with Drop-seq_tools function 

FilterBam. With trimmed reads and cell and molecular barcodes extracted, reads could 

be aligned on the genome but first they needed to be converted back to fastq format, 

using SamToFastq function from Picard program. The alignment step was done with 

STAR program version 2.7.3a with the following parameters “– genomeDir 

Star_index_273a_92 --outFileNamePrefix star --outFilterScoreMinOverLread 0.4 --

outFilterMatchNminOverLread 0.4”. The custom index was made with STAR’s function 

genomeGenerate, supplying GENCODE annotation (Frankish et al., 2021) (release 

M20, primary assembly) and the following parameter “--sjdbOverhang 92”.  Then the 

aligned sam files were sorted and compressed into a bam format with Picard’s function 

SortSam. Having the sorted aligned bam file and the unaligned bam having the cell 

and UMI barcodes, those two bam files were then merged to a single bam file with 

MergeBamAlignement from the Picard program. Reads were then single-end, 

trimmed, aligned, tagged with cell and molecular barcodes. In addition, Drop-

Seq_tools’ function TagReadWithExonFunction and TagReadWithGeneFunction 

were used with the same annotation file used for alignement, to get information on 

which reads match which gene. To finish a function was used to get an expression 
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matrix, DigitalExpression from Drop-seq_tools, with “NUM_CORE_BARCODES=1 

LOCUS_FUNCTION_LIST=INTRONIC’ so that cells that have at list 1 read would be 

reported in the matrix and that intron information would be counted.  

 

2.7.2.2 Dataset generated from 10X Chromium 

 

According to the 10Xgenomics three chemistry, the first 26 bp of Read 1 consist of the 

cell barcode and the UMI, and the last 74 bp on the read are not used. Read two 

contains the single cell transcripts (Figure 2-3). Digital gene expression matrices 

(DGEs) were obtained using 10x Genomics’ Cell Ranger v4.0.0 software suite. The 

bcl files obtained from the Cologne Center for Genomics were demultiplexed and 

converted to fastq files using the mkfastq function in Cell Ranger. The counts function 

in Cell Ranger was used to generate DGEs from the fastq files. The resulting fastq 

files are aligned to a reference genome (refdata-gex-mm10-2020-A_premrna). Reads 

which align to exonic and intronic regions were used, since nuclei experiment is 

resulting in lower mRNA quantities, intronic information can be useful for cell type 

identification. Then, additional filtering was carried out using R (team, 2013) and the 

Seurat package (Hao, Hao et al. 2021). Single cells were identified from background 

ambient mRNA using (Gao et al., 2015) thresholds of at least 100 genes expressed, 

genes kept if they were detected in at least 10 cells and a maximum mitochondrial 

fraction of 2%. 

 

2.7.3 Single-nuclei data analysis 
 

2.7.3.1 Cell-type identification 

 

The Seurat R package version 4.0.0 (https://github.com/satijalab/seurat) was used to 

preprocess raw matrix files, perform quality control, filtering and normalization, and 

integrate the replicates for each condition. The method identifies across the datasets, 

pairs of cells that are in a matched biological state (‘anchors’). These anchors are used 

to correct batch effects or other technical differences, and integrate multiple datasets 

by matching shared cell populations across datasets. In our case, we matched similar 

cell population across replicates, and followed with the usual steps of scRNA-seq 

https://github.com/satijalab/seurat
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analysis. For each condition all sequenced cells were processed by a Principal 

Components Analysis, to lower the dimensionality of the dataset. The first 30 principal 

components were used in another dimensional reduction technique, the Uniform 

Manifold Approximation and Projection (UMAP). The specified parameters for the 

function are ‘min.dist=0.5’ and ‘spread=0.8’. The same package was then used to 

construct a nearest-neighbor graph to identify clusters of cells by optimization of 

modularity function. Only the resolution parameter in the FindClusters() function was 

changed depending to the dataset (0.6-0.8).  

We defined specific genes markers for each cluster in each condition by using the 

FindAllMarkers function in Seurat. It identifies differentially expressed genes in each 

cluster by comparing it to all of the others using a Wilcoxon Rank Sum test. Gene 

markers can be shared between clusters. To be used in the analysis, the gene had to 

be expressed in at least 20% of the single cells of one of the clusters and there had to 

be at least a 0.30 log fold change in gene expression between the groups.  

To identify cell type identities, multiple approaches were used. First, we used the top 

gene markers of each cluster and looked at already published and annotated dataset 

via tools like ScFind (Lee et al., 2021), a search engine for cell atlases. Another 

approach was to use the R package SingleR (Aran et al., 2019), an automated cell 

type assignment based on gene marker correlation with reference datasets.  

 

2.7.3.2 Functional enrichment 

 

All clusters were tested for significant enrichment of annotated gene sets obtained 

from MsigDB (Subramanian et al., 2005) (Liberzon et al., 2015): GO Biological 

Processes, Curated gene sets and Hallmark. The enrichment analysis was done by 

two R packages, VISION version 2.1.0 (Rosen, 2022) and clusterprofiler (Wu et al., 

2021). VISION has a workflow that provide gene set enrichment analysis on genes 

differentially-expressed between groups. Clusterprofiler was used to detect 

enrichment of the different hallmarks in each cluster using over representation 

analysis, p-values being calculated by a hypergeometric distribution and adjusted with 

multiple testing analysis with the Benjamini-Hochberg method.  Results from different 

approaches were compared to validate cell type assignment to each cluster, and to 

get insight on their biological function. 
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2.7.3.3 Differential gene expression analysis 

 

The Seurat package was used for differential expression testing within clusters of the 

same condition. It identifies differentially expressed genes between two groups of cells 

using a Wilcoxon Rank Sum test. To compare clusters between conditions the R 

package Desingle (Miao et al., 2018) was also used. It takes into account the sparsity 

of single-cell data where, in addition to difference in expression abundance, there is 

difference in proportion of zeros.  

 

2.7.3.4 Statistical analysis 

Overlap of gene list were tested for significance using Fisher’s exact test in 

comparison with a genomic background. The null hypothesis is that the odds ratio is 

no larger than 1.  

To assess the accuracy of the prediction from deconvolution methods, Pearson 

correlation was used, which measures the relation strength of a linear association 

between two continuous variables. A value greater than 0 indicates a positive 

association, the closer to 1 being the strongest association. Another measure was 

used, the Root Mean Square Error (RMSE) which is the standard deviation of 

the residuals (prediction errors). High values of residuals signify, larger differences 

between models’ predictions and actual values.  Additionally, performance between 

methods were compared using the mean of their Pearson correlation per sample with 

Kruskal-Wallis or Anova, depending if the data were normally distributed or not.  

 

 

2.7.4 Deconvolution analysis 
 

To assess cell-type proportions in bulk RNA-seq datasets, deconvolution methods can 

be used. In our case, to extract changes in cell-type proportions depending on age or 

diet, multiple datasets and pipelines were tested. Deconvolution methods that are 

reference-based need two inputs, the bulk RNA-seq from which proportions need to 

be inferred, and corresponding single-cell or single nuclei datasets. In this project, bulk 

RNA-seq datasets of white adipose tissue were tested, firstly the previous diet-switch 

dataset from our lab (Hahn et al., 2019)  and, second, the current multiple time point 

https://www.statisticshowto.com/probability-and-statistics/standard-deviation/
https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/residual/
https://www.statisticshowto.com/prediction-error-definition/
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diet switch bulk RNA-seq dataset. As references, single-cell datasets from Tabula 

Muris (Tabula Muris et al., 2018), single-cell WAT atlas (Emont et al., 2022), and the 

single-nuclei dataset generated from our study.  

Three deconvolution methods were tested, Cibersortx (Steen et al., 2020), a method 

accessible through a web tool, and two R packages, SCDC (Dong et al., 2021) and 

MuSiC (Wang et al., 2019). The methods were selected using results from 

benchmarking studies on deconvolution methods for transcriptomics data (Jin & Liu, 

2021) (Avila Cobos et al., 2020), and if they were fitting our data and question.  

 

All three methods were first tested with Single-cell data from Tabula Muris (Tabula 

Muris et al., 2018) and WAT atlas (Emont et al., 2022), converted to a pseudo-bulk 

dataset so that the estimation of each deconvolution method could be compared to 

the real known proportions. Then we used our dataset of Single-nuclei data to assess 

if performance of the deconvolution methods were modified by using single-nuclei 

instead of single-cell data as reference. Finally, MuSiC and SCDC were used to predict 

cell type proportions in the first diet switch RNA-seq dataset and the one generated 

from this study with multiple time switches. 

 

To access Cibersortx tool, an account needs to be created to use the online tool, and 

all steps are done online. The first step is to create a Signature Matrix from the single-

cell dataset, this will serve as reference with selected gene markers of each cell-type. 

Then the bulk data is deconvoluted using the signature matrix to get cell-type fraction 

estimation. The output is available as a data frame to be downloaded. 

The MuSiC package needs two type of input, raw read counts for bulk sample to 

deconvolute and multi-subject single cell expression with associated cell-types. The 

MuSiC model is based on derivation of the relationship between RNA-seq bulk 

expression and cell type gene expression in single-cell. It uses a weighted non-

negative least squares regression (W-NNLS) and attributes weights to informative 

genes, if they have consistent expression profile across similar subjects and if they 

can differentiate cell-type clusters. The input data, bulk and single-cell need to be 

under the format of an expression set. To get proportions, the function ‘music_prop’ is 

used with input datasets, and parameters indicating the name of the cell-types to 

deconvolute, and a vector with the ID of different samples.  
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SCDC uses single-cell dataset of multiple samples as input. Its method is based on 

weighted non-negative least squares regression and it measures the quality of the 

reference datasets to remove potentially misclassified cells and adjust how they can 

contribute to the estimation of cell type proportions accordingly. Estimations are 

conducted for each reference datasets separately, then the results are combined and 

weights are attributed to each dataset, with higher weights to the ones that recapitulate 

better the cell-type profile mixture. For the SCDC package, Seurat objects with raw 

expression counts were transformed into the format ‘expression set’ via the function 

getESET() to be used in the pipeline. Then quality control was done on the reference 

sample removing all cells that had poor quality or seemed to be wrongly associated to 

a cluster, via the function SCDC_qc() with parameters qcthreshold=0.7.  Proportions 

were estimated with the function SCDC_prop() and, to make easier interpretation, 

some cell-types were gathered in categories as follows : Macrophage and Myeloid cell 

as Immune cells and Precursor and Progenitor as Progenitors.  
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3 Optimization of methods to analyze 

single-nuclei sequencing data from 

murine white adipose tissue 
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3.1 Introduction 
 

3.1.1 Characterization of the murine WAT at the single cell level 
 

The white adipose tissue is a highly active metabolic tissue, understanding its role and 

its composition is crucial to better understand metabolic diseases. The majority of early 

research relied on bulk sequencing, which is effective for tissues with a limited number 

of cell types but inadequate for the WAT. A lot of diverse cell-types are present in the 

tissue, adipocytes are the main cell-type, but mesenchymal stem cells, progenitors of 

adipocytes, support cells like endothelial cells or immune cells have also important 

roles and impact the tissue function. The impact of each cell-type, by its gene 

expression or its proportion in the tissue is lost with bulk sequencing approach. Thanks 

to recent advances in transcriptomics approach, developing multiple methods to look 

at the single-cell level, a better characterization of this tissue was made possible. 

Single-cell RNA sequencing methods enable the transcriptome of multiple cells to be 

captured in an unbiased and high throughput approach. Previous studies generated 

single-cell WAT dataset, with sorted and targeted cells, losing the benefit of an 

unbiased approach and missing potential new cell-types (Hildreth et al., 2021). Other 

studies used a high-throughput approach with droplet sequencing but then focused on 

the stromal fraction or pre-adipocyte and missing information on mature adipocyte 

(Vijay et al., 2020). Mature adipocytes are the main functional cell type of WAT, but 

their large size, high lipid content and fragile nature presents a challenge for single-

cell, droplet-based methods (Hagberg et al., 2018). Targeting nuclei, instead of cells, 

is an alternate method (sNuc-seq) to capture single transcriptomes regardless of cell 

shape or size and has been widely used for brain datasets (Lake et al., 2016). At the 

start of this study there was no protocol available for sNuc-seq of the WAT. Therefore, 

I first established a single-nuclei protocol, from nuclei isolation to sequencing, for the 

WAT. 
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3.1.2 Cell-type deconvolution of biological data 
 

Even if the number of single-cell datasets is rapidly increasing, yet it is not always 

possible to generate single-cell data because of the laborious and expensive 

protocols. Doing a bulk RNA-seq analysis remains the easiest way to get relevant and 

extensive transcriptomic information on a sample, but it does not capture the cell-type 

heterogeneity.  Still, it is possible to estimate cell-type proportions from a bulk RNA- 

seq sample, by using a deconvolution method (Avila Cobos et al., 2018). To 

deconvolute is to resolve something into its constituents, by removing the complexity 

of it. In genomics, deconvolution methods can be used to extract and estimate 

information from gene expression levels. The main goal of deconvolution methods is 

to estimate cell-type proportions from a mixture from cells of a bulk RNA-seq sample, 

but also in the case of tumors analysis, estimating tumor clonality (Lei et al., 2020) or 

purity (L. Wang et al., 2020).  The initial hypothesis for deconvolution is that the mixture 

of gene expression signals follows a linear mixed model. The level of expression for a 

gene M observed in bulk sample equals the sums of the proportions of each cell type 

P, multiplied by the gene expression level for each cell-type C (Avila Cobos et al., 

2018) . The aim of a deconvolution method is to obtain P, by using known M and C 

(Figure 3-1). To estimate cell-type proportions P, if M is a bulk sample, C should be a 

specific cell-type gene expression measurement, usually a single-cell dataset with 

individuals cells associated to known cell-types.  
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Figure 3-1 Deconvolution application to cell composition analysis 

Schematic illustration of the deconvolution of bulk RNA sample to extract cell type 
composition. M is a matrix of gene level expression; each gene expression level is a sum 
of the mixture from all cell types. C is the specific level of expression for each gene per cell 
type. C is the reference dataset used to extract the cell type proportions P, from M, using a 
deconvolution method. 
 

Depending on the deconvolution method used, the input can either be profiles of a few 

cells per cell-types, or single-cell datasets of multiple samples, or just a few known 

gene markers per cell-type and their respective levels of expression. Methods are also 

distinguished between supervised, where the cell-types are known, and unsupervised 

where the cell-types to estimate and specific expression profiles are unknown. 

Supervised methods demonstrated better results in benchmarking studies compared 

to unsupervised (Avila Cobos et al., 2020).  

In addition to the input data varying between methods, the type of deconvolution model 

is also evolving, with more complex models and precise prediction in the most recent 

approaches. Most are based on regression models, such as support vector machine 

for Cibersort (Steen et al., 2020) or  weighted non-negative least squares regression 
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for MuSiC (Wang et al., 2019) but also some methods use enrichment like xCell (Aran 

et al., 2017). 

Studies were done to compare the accuracy of results between different type of 

deconvolution packages, using a pseudo-bulk dataset as input. By merging all cell 

transcriptomic profiles from a single-cell dataset, it is possible to create a pseudo-bulk 

dataset with known cell-type proportions, which enables to validate the results of a 

deconvolution method. Benchmarking studies showed that supervised methods using 

multiple single-cell samples were the most accurate since they can better estimate the 

variability between samples (Avila Cobos et al., 2020). Nevertheless, few studies look 

at the impact of single-cell or single-nuclei as input dataset, like we had in our study. 

Bulk RNA-seq datasets are made from a mixture of complete cells, taking RNA 

transcripts from all compartments, while single-nuclei only account for genes present 

in the nucleus. One study compared deconvolution results of bulk RNA-seq data with 

single-cell and single-nuclei data coming from the same brain samples (Sutton et al., 

2022). Accordingly, the single-cell cell-type estimation outperformed the ones based 

on single-nuclei data. Only when they filtered and kept genes located in the nuclei in 

the bulk samples, prediction of single-nuclei data matched the ones based on single-

cell data. 

Based on the benchmarking reviews assessing the pros and cons of each method, we 

selected the best deconvolution methods that were fitting our input dataset. Since we 

had two replicates of single-nuclei data for multiple conditions, we selected only 

supervised methods that can take into account variability from multiple samples, 

MuSiC and SCDC. We also used Cibersort, which is one of the most cited and versatile 

method. We first evaluated their performances using single-cell and single-nuclei data 

of WAT, from our dataset or published ones. By finding the optimal deconvolution 

pipeline for WAT sNuc-seq, we would then be able to estimate the cell-type proportion 

in our bulk dataset. This would be used to verify if we could observe the same change 

in population size as the ones observed in single-nuclei data between conditions. 
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3.2  Results 
 

3.2.1 Optimization of single nuclei sequencing protocol for WAT 

  

3.2.1.1 Determination of parameters for optimal nuclei isolation 

 

Nuclei isolation was the first step of establishing a protocol for droplet-based single-

nuclei sequencing of WAT. In order to get a solution of isolated nuclei we used the 

protocol explained in the initial Dronc-seq publication “Massively parallel single-

nucleus RNA seq with DroNc-seq” (Habib et al., 2017). The first attempt of nuclei 

isolation was done using the same protocol as the DroNc-seq publication, and using 

young (5 months) mice under chronic AL feeding. Nuclei were stained with DAPI in 

order to distinguish them from the background.  

Although, we observed nuclei but also a lot of them were clumped together (Figure 
3-2 A). which is problematic as they might be encapsulated together and thereby 

confound the single cell transcriptomic profiles. Another issue was the high amount of 

lipid droplets floating in the solution (Figure 3-2 B) which could might negatively affect 

the encapsulation process since it is based on a flow of different lipid droplets. 

 
Figure 3-2 Nuclei isolation based on the unmodified DroNc-seq protocol 

A – Representative image of isolated nuclei in solution, clumped nuclei are designated by 
blue arrows. B- Representative image of isolated nuclei in solution, lipid droplets are 
designated by white arrows. 
 

Additionally, we observed that the nuclei should have been condensed in a pellet 

following centrifugation and incubation in the lysis buffer, but there was also a layer of 

floating fat remaining (Figure 3-3). We then repeated the protocol on both fractions 

0.10mm

0.10mm
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separately to see if nuclei were also contained in the fat layer and therefore would be 

lost for the analysis.  

 

 
Figure 3-3 Nuclei solution after cell lysis and centrifugation 

Schematic representation of nuclei solution after cell lysis and centrifugation with 3 fractions 
from up to bottom, a layer of floating fat, the supernatant, and the pellet where nuclei are 
concentrated. Representative image of isolated nuclei DAPI stained from the layer of floating 
fat (top) and pellet (bottom).  
 

We noticed the presence of nuclei in both fractions, the fat fraction having more clumps 

and lipid droplets compared to the pellet. To get the nuclei from the fat fraction, one 

option was to process each fraction separately and pool them together at the end of 

the protocol but this could have created a bias depending on how both fractions were 

handled. Instead, we tested several incubation times with the lysis buffer right after the 

tissue homogenization with a douncer. This was to see if a longer incubation time 

could enable the nuclei of the fat layer to be collected in the pellet with the rest of 

nuclei. Nuclei were incubated for 30 and 20 min before centrifugation (Figure 3-4.A)  

In the test with 30min incubation there was no nuclei left from the fat fraction, but the 

nuclei collected in the pellet were either clumped or with altered shaped, and presence 

of lipid droplets in the solution (Figure 3-4.B). In contrast, after 20min incubation, we 

observed few nuclei in the fat fraction and a lot more in the pellet fraction (Figure 
3-4.C). After counting using a cell counting chamber, 95% of the nuclei were from the 

pellet, and more importantly nuclei were well isolated and lipid droplets were not 

noticeable. 
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Using this modified protocol additional adjustments were made to optimize the final 

solution of nuclei. An additional washing steps was done to remove most of the lipid 

droplets and fat in the solution. At the end, nuclei were resuspended in a solution of 

PBS, RNAse inhibitor and BSA at 0.01% which prevented clumping of nuclei. Finally, 

the last parameter to adjust was the initial quantity of tissue used for the experiment, 

since a certain concentration of nuclei is required for droplet-based sequencing. Not 

enough tissue could lead to an insufficient number of nuclei, while a too much would 

increase the clumping of nuclei since they tend to stick together and create large 

clumps. After several test with different amount of fat tissue, an amount of 0.2g was 

used for the following experiments. 

From the initial Dronc-seq protocol, after several testing experiments, we adapted the 

protocol to the WAT, to collect most of the nuclei present in the tissue, remove lipid 

droplets and in a limited time to avoid potential alteration and stress of nuclei.    
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Figure 3-4 Testing protocol to extract all nuclei from fat layer 

A – Schematic diagram of the test protocol with 2 incubation times and nuclei imaging from 
both fractions, fat and pellet, in each case. B- Representative images of isolated nuclei in 
solution, from fat floating fraction and pellet after 30min incubation in cell lysis buffer. C- 
Representative images of isolated nuclei in solution, from fat floating fraction and pellet after 
20min incubation in cell lysis buffer. 
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3.2.1.2 Benchmarking of dropletisation platforms 

 

3.2.1.2.1 10X Chromium test-run with adipose nuclei 

 

After establishing the protocol to obtain a comprehensive representation of nuclei from 

white adipose tissue, we tested two dropletisation platforms, Nadia Instrument of 

Dolomite bio and Chromium Controller from 10X Genomics. Both instruments are used 

to generate droplet in which cells or nuclei transcriptomes are captured on beads with 

a unique tag, generating specific transcriptomes. The first goal was to assess which 

platform would provide the best results but also which one was the most balanced 

option to have an extensive experimental design that would answer our biological 

question while keeping a reasonable cost. The initial plan was to use the same 

samples to do nuclei isolation and process half of the nuclei on both instruments so 

that only technical parameters would influence the results. Technical issues prevented 

the realization of this experiment, so instruments were tested with different nuclei 

isolation solution but from the same conditions, young AL and DR.  

For the first try with the 10X Chromium, the nuclei were loaded in the instrument after 

isolation. The cDNA concentration was low in both samples when compared to other 

type of tissue samples, so additional PCR cycles were needed to have enough cDNA 

and make libraries. After further amplification, 5ng was collected for AL sample and 

15ng for DR samples. Libraries can be done with 2ng, so both were processed to 

make libraries and were sequenced shallowly with 10 million reads per sample, to 

detect if there was presence of cells and if they had biological relevance to our 

samples. 

From the first quality assessment with FastQC (Andrews, 2010) on the raw reads, we 

detected several issues, low quality on the two last bases of the UMI, which would 

impact the quantification of gene expression, and high levels of duplication levels 

either caused by the additional PCR cycles or error in measurement of duplication 

because of faulty UMIs. After mapping reads with Cellranger software (Zheng et al., 

2017) to generate expression matrices, 12209 genes were detected in 2308 estimated 

cells for DR and 10611 genes in 990 estimated number of cells for AL. Cellranger 

displayed several warnings, notably the percentage of reads mapped to the genome 

and the fraction of reads in cells being low. Approximately 40% of the reads were 

mapped to the genome and 30% of the reads would be associated to cells in both 
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conditions. Those numbers showed that a lot of cDNA that was amplified didn’t bring 

any biological meaningful information. 

From the expression gene matrices, more filtering steps and downprocessing analysis 

were done with the R package Seurat (Hao et al., 2021). After filtering to remove 

doublets cells, cells with low number of genes detected, and high percentage of 

mitochondrial genes which is an indicator of apoptosis, the number of cells estimated 

dropped to 360 for AL and 666 for DR. Also, the number of genes detected in cells 

decreased to 1224 in AL and 1641 in DR.  

Despite the low quality of the data, further analysis was done to see if there was a 

biological link between the nuclei collected and the conditions of each sample. To do 

so, gene expression data from each sample were first analyzed using UMAP and 

unsupervised Louvain clustering method, so that cells with similar profiles would be 

clustered together. From those clusters, gene markers are extracted as genes that 

were positively differentially expressed in one cluster compared to all others, making 

those genes specific signatures of those clusters that can be potentially be associated 

to a cell-type.  

We detected 4 clusters in AL and 3 in DR (Figure 3-5.A). In DR the two largest clusters 

were almost merged, while AL clusters were well separated. From the gene markers 

collected, we could identify that the main cluster in AL, cluster 0, would represent 

adipocytes, from high expression of Ghr (Ran et al., 2019), Tshr (Lu et al., 2012), 

Slc1a3 (Krycer et al., 2017) that are genes found in mature adipocytes (Figure 3-5.B). 

Similarly, the clusters 0 and 1 in DR seemed to have the same gene markers, 

suggesting that those clusters would be mature adipocyte as well. In AL the next larger 

cluster, cluster 1 had upregulation of genes that are found in fibroblasts or adipocyte 

progenitors, cluster 2 had also some markers of fibroblasts but the cell-type profile 

wasn’t specific enough to be assigned, and the last cluster, cluster 3 displayed 

upregulation of genes found in myeloid cell, such as Myo1f (Piedra-Quintero et al., 

2019) or Runx1 (Himes et al., 2005). Cluster 2 in DR had also markers of fibroblast 

but again not specific enough to be attributed a cell-type.  

For this first try, with really low-quality data, and shallow sequencing, we could observe 

the capture of transcriptome from mature adipocytes, but also differences between 

conditions, notably presence of immune cell-type in AL and not in DR, and the capture 

of nuclei from mature adipocytes. This information motivated the optimization of the 
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protocol to improve capture of reads that would map to the genome and belong to 

specific cells.  

 

 

 
Figure 3-5 SNuc-seq dataset of young AL and DR from 10X Chromium 

A – Uniform manifold approximation and projection (UMAP) two-dimensional map from 
unsupervised Louvain clustering, of nuclei from AL and DR condition at young age (5 months) 
B- Heatmap showing the gene expression of the top six differentially expressed genes in 
nuclei per cluster in AL and DR condition at young age (5 months). Nuclei are represented in 
columns and genes are represented in rows. Colored bars indicate clusters assigned to both 
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cells and genes.  C- Uniform manifold approximation and projection (UMAP) two-dimensional 
map of nuclei with cell-type assigned, from AL and DR condition at young age (5 months) 
 
3.2.1.2.2 Nadia Instrument test-run with adipose nuclei 

 
The alternative option to 10X Chromium was to use the Nadia Instrument. One 

advantage of the Nadia Instrument is the transparency of the protocol, adjustment can 

be done during the encapsulation phase and afterwards, which enable to design a 

specific protocol for a specific experiment. The downside compare to 10X chromium, 

is the difficulty of execution of the protocol to obtain libraries, and in addition, the 

bioinformatic processing of the data is more challenging since there is no dedicated 

pipeline to do it. To compare both platform similar biological conditions were used, AL 

and DR from 5 months mice. After dropletisation, additional PCR cycles were required, 

like in the experiment with 10X chromium, to generate enough cDNA to build libraries. 

To obtain the most of those libraries, each sample was sequenced for 40 million reads. 

From the first quality assessment with FastQC, a lot of duplicate reads were detected, 

which might have come from the deep sequencing and over-amplification, but the 

overall quality of the reads was good. After processing the raw reads with a customized 

pipeline to create the gene expression matrices, Seurat was used to pre-process the 

data and estimate the number of nuclei and genes detected.  For DR sample, 641 

nuclei were estimated with 4418 genes detected, and 703 nuclei with 4388 genes for 

AL sample (Figure 3-6.A). After dimension reduction analysis with UMAP and 

unsupervised clustering using Louvain method, 4 clusters were found in each 

condition. The genes markers detected for each cluster were less informative than the 

ones found with 10X chromium data. Most of the gene markers were not linked to a 

specific cell-type but were found in the nucleus regardless of the cell-type, which made 

the identification of clusters difficult. In AL the larger cluster, cluster 0 had no positive 

gene markers associated, meaning that no genes were significantly upregulated in this 

cluster compared to other clusters (Figure 3-6.B). Because of the lack of gene 

markers, cluster 0 was not associated to a potential cell-type. The second cluster, 

cluster 1 showed upregulation of genes unspecific to cell-types but also March1 

(Galbas et al., 2017), which is enriched in macrophages, which could indicate a cluster 

of immune cells. Cluster 2 had positive upregulation of unspecific genes located in the 

nuclei such as Rbm25 or Luc7l3 but also immune related genes such as Zeb2 

upregulated in macrophages from immune response (Scott et al., 2018). That 
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information might also suggest the presence of immune cell clusters, however this 

assumption cannot be supported by the lack of several robust immune cell gene 

markers. The last cluster, cluster 3, which has the less nuclei, had positive markers of 

mature adipocytes such as Ghr, Nnat (Ka et al., 2017) or Sorbs1 (Yang et al., 2003). 

In DR cluster 0 had a similar profile as cluster 1 in AL, and could be associated to 

immune cells. Cluster 1 had gene markers associated to adipocytes while cluster 2 

gene markers of pre-adipocytes. Finally, the last cluster, had gene markers unspecific 

of cell-types and was not associated to a particular cell-type.  

The overall results from the Nadia were not convincing, with 4 times deeper 

sequencing than with 10X chromium, the results were not more informative. The 

number of nuclei collected increased for both conditions and the number of genes 

detected, but most of the gene markers for the clusters were not cell-type specific but 

expressed in the nuclei, which didn’t help for cell-type identification. Overall, the data 

quality was not good enough to do further analysis and extract any biological 

information. For example, the small population of adipocyte and absence of pre-

adipocyte in AL didn’t seem to fit with the observation made with the 10X data or 

previous publication of drop-seq (Tabula Muris et al., 2018).  
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Figure 3-6 SNuc-seq dataset of young AL and DR from Nadia Instrument 

A – Uniform manifold approximation and projection (UMAP) two-dimensional map from 
unsupervised Louvain clustering, of nuclei from AL and DR condition at young age (5 months) 
B- Heatmap showing the gene expression of the top five differentially expressed genes in 
nuclei per cluster in AL and DR condition at young age (5 months). Nuclei are represented in 
columns and genes are represented in rows. Colored bars indicate clusters assigned to both 
cells and genes.  C- Uniform manifold approximation and projection (UMAP) two-dimensional 
map of nuclei with cell-type assigned, from AL and DR condition at young age (5 months) 
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3.2.1.3 FACS improves purification of single nuclei solution 

 

The poor results from Nadia sequencing made us focus on the 10X platform, since 

with less reads the results were of similar quality, and even more relevant biologically. 

Also, there was possibility of improvement with 10X chromium with deeper sequencing 

and modification of the experimental protocol before encapsulation. The main issue 

from the first try was that a lot of reads were actually unused because there were 

neither mapping to the genome or linked to specific nuclei. A lot of cDNA was 

uninformative, which could come from ambient RNA present in the solution that would 

be attached on the beads and reverse transcribed. To prevent this issue, it was 

suggested by the technical support of 10X Chromium to sort the nuclei using 

fluorescence activated cell sorting (FACS). Nuclei can be stained with DAPI regardless 

of their cell types which preserved the unbiased way of the approach. The nuclei were 

directly sorted in the solution for dropletisation with absence of debris, ambient RNA 

and any lipid floating. Since the nuclei would be sorted for a small amount, smaller fat 

pads were used, which avoided clumping of nuclei. Another test-run was done on the 

same conditions with FACS and 10X Chromium to assess if adding this step was 

beneficial and not detrimental to the nuclei, since nuclei should be kept for a short time 

in solution or they could enter in apoptosis phase.  

 

We repeated the test experiment by taking AL and DR WAT from young animals and 

did the same nuclei isolation protocol. Nuclei were stained with DAPI and were 

collected using FACS directly in the solution used in 10X chromium protocol. During 

the sorting, gates were designed to select single nuclei, discard doublets and debris 

(Figure 3-7.A). A number of 8000 nuclei were collected per sample, in order to retrieve 

around 3000 nuclei after sequencing. When observed under the microscope the nuclei 

isolation solution was cleaner, without debris or nuclei clumping together (Figure 
3-7.B-C). After dropletisation, the initial tapestation results showed low cDNA 

concentration, but this was be expected since a small number of nuclei were 

incorporated to make the libraries. Interestingly, compared to the first experiment with 

10X, the amount of cDNA for AL sample increased nine times, while for DR it lowered 

to half (Table 3-1). Since the amount of cDNA was low, further amplification was done, 

and libraries were sequenced only at 10 million reads per sample in order to measure 

if there was any improvement compared to without FACS. 
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Figure 3-7 FACS of nuclei after isolation protocol 

A – Flowjo representation of gate to select singlet nuclei from AL and DR sample B- 
Representative image under microscope of isolated nuclei solution before FACS C- 
Representative image under microscope of isolated nuclei solution after FACS   

 

 
Table 3-1 cDNA concentration of libraries of AL and DR sample, with or without FACS 
step 

 AL (pg/mL) DR (pg/mL) 
Without FACS (-) 46.9 249 

With FACS (+) 396 100 
 

 

 

 
 

 



 54 

Table 3-2 Comparison between all data based on metrics after pre-processing with 
Seurat package. 

 
AL DR 

Platform 10x Nadia 10x Nadia 

FACS Æ + Æ Æ + Æ 

Number of cells 688 1018 589 1113 1190 644 

Median genes/cell 114 113 92 81 105 87 

Median count/cell 316 152 115 132 131 111 

Total genes detected 5194  8480 4647 5566 8260 4421 

Cell types detected 4 6 4 4 6 4 

 

Table 3-3 Comparison between 10X data with or without FACS sorting based on 
Cellranger metrics. 

 
AL DR 

Platform 10x 10x 

FACS Æ + Æ + 

Number of cells 990 2016 2308 3324 

Median genes/cell 64 63 57 49 

Median reads/cell 12018 5904 5677 3388 

Fraction of read in cells 36.7 61.6 29.5 64.2 

Total genes detected 10611 13013 12209 13999 

 

From Cellranger mapping results we saw improvements, firstly the read quality and 

tags were accurate, so reads could be attributed to nuclei, and gene level expression 

was correctly assessed from UMIs. Furthermore, the amount of reads that were 

effectively associated to cells doubled (Table 3-3), providing more information to 

characterize the cell type landscape of both samples. Other parameters showed 

improvement such as the number of cells estimated for both conditions and the 

number of genes detected (Table 3-2).  

After quality filtering we obtained 922 nuclei and 3399 genes detected in AL and 951 

nuclei with 3156 genes for DR. From the dimensionality reduction analysis and 

clustering, we observed that in both conditions more clusters were present (Figure 
3-8.A). In AL based on gene markers, following clusters were identified in decreasing 

size: mature adipocytes, pre-adipocytes, myeloid cell, unknown, progenitor and 

endothelial cells (Figure 3-8.C). In DR, mature adipocytes, pre-adipocytes, unknown, 

myeloid cell, progenitors were identified (Figure 3-8.C).  
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We then merged both datasets to assess if same cell-types in both conditions 

clustered together, or if they would be differences due to the diet (Figure 3-9). 

Interestingly similar cell types merged together, but only mature adipocyte seemed to 

be separated based on the diet (Figure 3-9.A). This suggested that after 2 months, 

adipocytes would have different transcriptome based on their diets and those 

differences were observable at young age (Figure 3-9.C). When looking at 

proportions, DR showed a larger population of mature adipocyte while AL had more 

pre-adipocyte and immune cells (Figure 3-9.D).  

Only from 10 million reads this last dataset showed promising information, highlighting 

biological differences only 2 months after diet switch. This acted as a catalyst for 

developing a complete experimental design that investigates the effects of nutrition 

and aging on the white adipose tissue. 
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Figure 3-8 SNuc-seq dataset of young AL and DR using FACS and 10X Chromium 

A – Uniform manifold approximation and projection (UMAP) two-dimensional map from 
unsupervised Louvain clustering, of nuclei from AL and DR condition at young age (5 months) 
B- Heatmap showing the gene expression of the top five differentially expressed genes in 
nuclei per cluster in AL and DR condition at young age (5 months). Nuclei are represented in 
columns and genes are represented in rows. Colored bars indicate clusters assigned to both 
cells and genes.  C- Uniform manifold approximation and projection (UMAP) two-dimensional 
map of nuclei with cell-type assigned, from AL and DR condition at young age (5 months) 
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Figure 3-9 Merged SNuc-seq dataset of AL and DR young using FACS and Chromium 
10X 

A –UMAP of merged nuclei from AL and DR condition at young age (5 months) B- Dotplot 
showing the gene expression of the top two gene markers per cluster in AL and DR condition 
at young age (5 months). Only common genes of the merge data were represented. Size of 
the dot represent the percentage of cells in the cluster expressing the gene. C- UMAP of 
merged nuclei split by diet. Clusters are colored by cell-type assignment before merging. D- 
Proportions of cell types in percentage per diet. 
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3.2.2 Understanding changes in cell type composition with deconvolution 

analysis  
 

3.2.2.1 Weighted Deconvolution methods show better prediction than Cibersort 

 

Deconvolution methods are useful tools to get a better insight of cell-type composition 

of a tissue while avoiding the generation of single-cell data. With a bulk RNA-seq 

dataset it is possible to infer cell-type proportions based on the gene expression data. 

From previous benchmarking study (Avila Cobos et al., 2020) we selected 3 methods 

to compare, Cibersort, SCDC, and MuSiC to select the one that would provide the 

most accurate results with using single-nuclei data from WAT. 

First, their performance in predicting cell-type proportion from known single-cell and 

single-nuclei datasets was compared. To do so, Tabula Muris data of WAT (Tabula 

Muris et al., 2018) was used as reference for single-cell, and the data of ALDR16 

condition from our SNuc-seq dataset was used as reference for single-nuclei data. In 

both case pseudobulk datasets were generated from the original data single cell or 

nuclei, so that we knew the true proportion of each cell types. The pseudobulk datasets 

were deconvoluted using the single-cell or single-nuclei data as reference with each 

method.  

 

Tabula Muris single-cell data were used to compare the methods. Therefore, data 

were filtered to only keep single-cell data obtained through FACS of adipose tissue of 

female mice. The dataset was composed of 777 cells across 3 samples, with 

expression data in 23433 genes. Those cells were divided across 11 different cell-

types, the main one being adipocyte progenitors, followed by immune cells and tissue 

support cells (Sup.Figure 6). The prediction results of each method were compared 

to the true proportions by samples, summarized by Pearson correlation coefficient and 

the associated p-value. Cibersort, SCDC, and MuSiC showed almost perfect 

prediction of cell-type composition, with Pearson correlation coefficient between 0.97 

and 0.98, and associated p.value <2.2e-16, indicating significant correlation between 

predictions and real values (Figure 3-10.A-C). Furthermore, when we compared 

directly the methods predictions between them, SCDC and MuSiC actually were 

positively correlated together with a Pearson coefficient of 1, showing that the two 
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methods provided really close predictions in this case (Figure 3-10.D). As a last 

comparison, we used the root mean square error (RMSE) for each sample and 

combined it per methods (Figure 3-10.E). SCDC and MuSiC had the lowest values, 

so the smallest margin of error between their prediction and the true values. Despite 

those results showing MuSiC and SCDC as slightly more accurate in their predictions 

than Cibersort, the difference was not significant (Kruskal-Wallis test, p.value=0.18). 
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Figure 3-10 Comparison of deconvolution methods using Tabula Muris single cell 
data from adipose tissue 

A –C. Stacked barplots of cell-type proportions predicted by Cibersort, MuSic and SCDC 
methods compared to the true proportions. Prediction of 3 samples for each method. 
Correlation plots between predicted and true proportions with Pearson correlation coefficient 
(R) and associated p.value. D- Correlation plot of prediction results from all methods.  
E. Barplot of RMSE per sample for each method (Kruskal-Wallis test p.value=0.18) 
 

 

The methods were then tested to see if they also perform well when using single-nuclei 

data as input. The same testing workflow was used on ALDR16 single-nuclei data 

composed of 2896 nuclei across two samples, with 7694 genes expressed. This 

dataset was selected to see how the methods would perform with less genes and 

nuclei available, and if they could discriminate two subtypes of a similar cell-type, 

adipocytes 1 and 4. In this case, SCDC and MuSiC predicted almost perfectly the 

proportions of the different cell-types (R=0.98 and R=0.99 respectively), Cibersort was 

less accurate where prediction and actual values were correlated with R=0.83 (Figure 
3-11.A-C). Cibersort couldn’t predict well the proportion of adipocyte 4 (Figure 3-11.A), 

showing struggles to predict accurately different type of a similar cell-type. Then all 

results were compared together through a correlation plot, where SCDC and MuSiC 

were again highly correlated between each other and with the actual true values 

(Figure 3-11.D). Finally, by looking at the RMSE data for each method, we could 

appreciate that Cibersort perform worst, yet the difference was not statistically 

significant (Kruskal-Wallis, p.value=0.16). 
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Figure 3-11 Comparison of deconvolution methods using single-nuclei as reference 
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A –C. Stacked barplots of cell-type proportions predicted by Cibersort, MuSic and SCDC 
methods compared to the true proportions. Prediction of 2 samples for each method. 
Correlation plots between predicted and true proportions with Pearson correlation coefficient 
(R) and associated p.value. D- Correlation plot of prediction results from all methods. E. 
Barplot of RMSE per sample for each method (Kruskal-Wallis, p.value=0.16). 
 

 

3.2.2.2 Weighted Deconvolution methods difference in prediction accuracy 

using single-cell or single-nuclei data 

 

The nearly perfect prediction of SCDC and MuSiC led us to focus on them despite the 

non-significant difference in prediction between Cibersort and SCDC, MuSiC. The 

initial benchmarking test was done to see how the method is performing in perfect 

conditions: same genes expressed and same cell-types in the data to deconvolute and 

the reference. But it is not always the case, more often, deconvolution methods are 

used when the single-cell data are not available, so it is necessary to find a single-cell 

reference matching the data to deconvolute. In the case of the WAT, it can be an 

additional challenge since most datasets focused on the stromal vascular fraction of 

the adipose tissue and discarded mature adipocytes. We tested SCDC and MuSiC 

performance when a cell-type is missing or a reference is incomplete. 

To test both methods, we used different datasets for the pseudo-bulk data to 

deconvolute and reference dataset. Among the WAT single-nuclei datasets available, 

one has mature adipocyte in addition to cells of the SVF fraction (Emont et al., 

2022).This dataset, designated by Emont dataset, has 4 samples, for a total of 16659 

nuclei with 28727 genes expressed, spread among 14 different cell-types and was 

used to generate pseudo-bulk data to deconvolute (Sup.Figure 7).   

 

Firstly, Tabula Muris was used as reference data to see how SCDC and MuSiC would 

predict cell-types proportions using another dataset. Both methods can take into 

account a list of common cell-types between the test data and the reference data to 

deconvolute. In this case, Tabula Muris and Emont datasets had in common 8 cell-

types: Progenitor, Endothelial cell, B cell, T cell, Monocyte, Muscle cell, Natural Killer, 

Neutrophil. Using those cells profiles to predict Emont proportion in each sample, 

correlation profiles of predictions and true values were plotted as correlation plot for 

each method (Figure 3-12). Both methods didn’t perform well in this case especially 
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MuSiC (Figure 3-12.A), having a correlation R=0.36, and SCDC (Figure 3-12.B) with 

a better coefficient but still poor results R=0.64, both being statistically significant 

(p.value=0.046, p.value=8.1e-05). Interestingly in both cases, endothelial cells 

proportion was overestimated by both methods, while MuSiC underestimated the 

proportion of progenitors, explaining the even poorer prediction result (Figure 3-12.A-

B).  

 

 

 
Figure 3-12 Deconvolution results of Emont pseudobulk using Tabula Muris as 
reference 

A-MuSiC method: Correlation plots between predicted and true proportions with Pearson 
correlation coefficient (R) and associated p.value. B- SCDC method: Correlation plots 
between predicted and true proportions with Pearson correlation coefficient (R) and 
associated p.value. 
 

Then ALDR16 dataset was used as the reference, in that case we could test the 

performance of both methods using single-nuclei data to predict proportions of another 

dataset. Single-nuclei data being sparse, with less nuclei and genes, only 3 cell-types 
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were found common: adipocytes, progenitors and macrophages. Despite the few 

common cell-types, predictions results were more accurate, with R=0.81 for MuSiC 

and R=0.83 for SCDC with associated significant p.value=0.0015 and p.value=9e-04 

(Figure 3-13.A-B). Interestingly, both methods predicted correctly progenitors, but 

less accurately adipocytes.  

 

 

 
Figure 3-13 Deconvolution results of Emont pseudobulk using ALDR16 sNuc-seq as 
reference 

A-MuSiC method: Correlation plots between predicted and true proportions with Pearson 
correlation coefficient (R) and associated p.value. B- SCDC method: Correlation plots 
between predicted and true proportions with Pearson correlation coefficient (R) and 
associated p.value. 
 

 A final parameter was tested in order to potentially improve prediction of the 

deconvolution methods in the case of using single-nuclei data as reference. Previously 

nuclei data from ALDR16 was used to deconvolute profiles from Emont dataset, that 

has three times more genes expressed. We hypothesized that non common genes 
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could add noise instead of informative data for the methods, while taking a subset of 

genes that are common between both datasets could improve the prediction. Emont 

dataset was filtered to retain only common genes with ALDR16. Interestingly in both 

cases, the predictions were slightly improved, R=0.85 for MuSiC and R=0.86 for SCDC 

with associate significant p.value=5e-04 and p.value=0.00035 (Figure 3-14.A-B). The 

change was observable in prediction of macrophage that were previously 

overestimated when using the full dataset to deconvolute (Figure 3-13.A-B). 

 

 

 
Figure 3-14 Deconvolution results of Emont pseudobulk (filtered for nuclei genes) 
using ALDR16 sNuc-seq as reference 

A-MuSiC method: Correlation plots between predicted and true proportions with Pearson 
correlation coefficient (R) and associated p.value. B- SCDC method: Correlation plots 
between predicted and true proportions with Pearson correlation coefficient (R) and 
associated p.value. 
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Results of prediction cross-datasets were summarized with RMSE plot, showing the 

predictions errors across reference datasets, either Tabula Muris for single-cell or 

ALDR16 for single-nuclei and methods, SCDC and MuSiC (Fig. 3-14). Regardless of 

the reference dataset, SCDC performed better having lower prediction errors (Anova, 

p.value=0.019). Even if the results using single-nuclei data as reference didn’t 

discriminate the methods, the poor performance of MuSiC with Tabula Muris as 

reference made the difference.  

 

 Results between using the full dataset and only common genes between the input 

data and the reference were summarized with RMSE analysis (Figure 3-15.B). Even 

if the predictions were slightly more accurate using only common genes just based on 

correlation across samples, the difference was not significant (Anova p.value=0.94).  

 

 

 
Figure 3-15 Comparison of prediction results between methods using single-cell or 
single-nuclei as reference 

A- Barplot of RMSE per sample for SCDC (blue) and MuSiC (green) predictions. Comparisons 
between using single-cell (Sc-seq) or single-nuclei (SNuc-seq) as reference. Anova, p=0.019. 
 B- Barplot of RMSE per sample for SCDC (blue) and MuSiC (green) predictions. 
Comparisons between using all genes in pseudobulk data (all) or genes only expressed in 
ALDR16 (only nuc). Anova, p=0.94. 
 

Since SCDC provided more robust results along the testing, it was used in a last test. 

SCDC can take multiple references datasets as input, so that if one dataset is missing 

some cell-types it can be completed with another dataset. Since our ALDR16 
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reference was missing quite some cell types, we combined it with AL_24 sNuc-seq 

dataset that has 2 samples and more additional cell types, especially immune ones. 

Combining ALDR16 and AL_24, more cell types were found common with Emont 

pseudobulk data: progenitor, adipocyte, macrophage, dendritic cell and endothelial 

cell. Predictions from SCDC were more accurate using this combined reference 

dataset, with R=0.97 and p=4.2e-13 (Figure 3-16). Not only SCDC showed better 

performance along all tests but the possibility to combine datasets is a major 

improvement in the case of incomplete reference datasets. 

 

 

 
Figure 3-16 Deconvolution results of Emont pseudobulk using ALDR16 and AL_24 
sNuc-seq as reference 

SCDC method: Correlation plots between predicted and true proportions with Pearson 
correlation coefficient (R) and associated p.value. 
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3.3  Discussion 
 

3.3.1 10X Chromium with FACS provided better data quality for WAT  
 

To generate single-nuclei data from WAT, since no protocol and method were 

available for this tissue at the beginning of the study, it was necessary to develop a 

suitable protocol. Starting with the nuclei isolation, where several rounds of 

experimentation were needed to obtain a nuclei solution free of fat floating and debris 

while avoiding a potential dissociation bias. To do the droplet sequencing two 

platforms were accessible, Nadia Instrument and 10X Chromium. Nadia Instrument 

has the advantages of customizable protocols and relatively lower in cost compared 

to 10X Chromium which is the most use platform despite being on the expensive side. 

Thanks to its strong performance and high data quality it is widely used and has well 

developed analysis pipelines but its protocol is not modifiable, which could limit its 

application for difficult tissue like the WAT.  

To compare both platforms, a benchmarking experiment was done where each 

instrument would generate data based on the same samples. To do so we selected 

WAT from 5-month-old mice of AL and DR diet.  

The first run on 10X Chromium provided poor results, where a lot of reads were 

duplicated, not associated to cells because of faulty barcodes and also not mapped 

onto the genome, indicating a lot of contaminant RNA. Despite the shallow 

sequencing, we could still identify relevant cell-types to the tissue especially mature 

adipocytes. Most papers studying fat at this point only looked at progenitors and SVF 

fractions (R. B. Burl et al., 2018) (Schwalie et al., 2018) or used targeted approach to 

study at adipocytes (Boumelhem et al., 2017). This motivated further improvement of 

the protocol; aiming to increase the number of reads mapped to the genome, and gain 

more insightful transcriptomic information.  

In comparison the results of the Nadia Instrument were even less informative despite 

a deeper sequencing. From the low number of cells or genes detected, most genes 

being specific to nuclei but not to a specific cell-type making the data redundant.  



 70 

 In addition, the entire pipeline was challenging to execute, from the library making to 

the analysis of the data. The bioinformatic workflow had to be fully adapted, making 

the analysis more time consuming. Lastly, in addition to poor quality data, since our 

biological question needed a more extensive experimental design and the wet-lab 

protocol was hard to perform, it was concluded that the Nadia Instrument wasn’t a 

suitable option for our project.  

 

The 10X Chromium protocol had to be optimized by getting rid of nonspecific RNA and 

possible debris or lipid in solution that might hindered the results. Using FACS, nuclei 

were stained with DAPI and sorted, regardless of their cell-type to maintain the 

unbiased approach of the experiment. The results improved, from the number of cells 

and genes detected, but most importantly the fraction of number of reads in cells 

doubled in both condition. With the same amount of reads we gained relevant 

information, characterized more cell-types, and even detected biological differences 

between samples. Increased proportion of immune cells in AL compared to DR, 

suggested immune infiltration as it was observed in histological data (Lisa F. Drews, 

2021). Interestingly, DR samples always had better quality results regardless of the 

platform. One possible explanation is coming from the nuclei solution that is less 

contaminated by fat, and so less lipids and debris contaminating the solution.  

In conclusion, the promising results from a shallow sequencing using 10X Chromium 

with FACS gave us confidence to set up the full experimental design to answer our 

biological questions 

 

 

3.3.2 Evaluation of deconvolution methods for WAT  
 

Cell-type composition is an important factor to understand metabolic function of a 

tissue. Early single-cell studies showed that for a lot of tissues, cell-types or sub-cell 

types were unknown, or that specific condition could change the cell-type landscape 

and affect tissue homeostasis. For example, presence of inflammatory cells in a tissue 

can be a sign of disease and can help to understand the dysfunction of normal 

metabolic processes in the tissue. Since single-cell methods are not always 

accessible, because of the experimental challenge or cost, deconvolution is a great 
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alternative to estimate cell-types proportions using RNA-seq bulk data.  A lot of 

methods are now available, and selecting the adequate method based on the available 

data is essential to obtain valid results. In our case we wanted to find the most accurate 

method to predict cell-type proportions from bulk of WAT. Since this tissue is difficult 

to profile with single-cell methods, a lot of single-cell datasets of WAT are incomplete, 

missing mature adipocytes or even additional cell-types. To obtain an unbiased view 

of the tissue, we used a single-nuclei approach to generate data. Knowing that droplet-

based sequencing methods can add technical bias, we wanted to validate the cell-

type proportions observed in the single-nuclei dataset we generated by using 

deconvolution methods on RNA bulk samples of the same conditions. This was an 

additional parameter to take into account, whether prediction based on cell or nuclei 

profile be similarly accurate. It was necessary to find a method that could work with 

single-nuclei data, taking into account multiple samples and possibly uncomplete 

reference dataset. 

We tested 3 methods, Cibersort, SCDC and MuSiC with pseudo-bulk data generated 

from annotated single-cell datasets in order to have known proportions of the cell-

types. Using Tabula Muris WAT data to predict proportion from its pseudobulk dataset 

provided great predictions for all 3 methods, especially SCDC and MuSiC that almost 

predicted perfectly the tissue composition. Similar results were observed for SCDC 

and MuSiC when the same test was done with ALDR16 data while Cibersort gave a 

less accurate prediction. One reason could be that Cibersort is using a signature 

matrix as reference, constructed from the single-cell or single-nuclei data provided, 

which discard the variability information from multiple samples. Additionally, single-

nuclei data is sparser, with less genes expressed, while the dataset from Tabula Muris 

is from full cells and from FACS which in general provide more robust and complete 

data.  

From those results, SCDC and MuSiC were selected to be tested with different 

datasets for reference and data to deconvolute. Usually, deconvolution methods would 

be used in the case of having only bulk data and trying to infer cell-types proportions 

using another single-cell dataset available of the same tissue or condition. Depending 

on the tissue, datasets can be similar if the tissue is homogeneous or if the tissue is 

complex, dataset might represent a fraction of it. For example liver has a small number 

of well characterized cell-types (Ding et al., 2016), while tissue like the brain (Mu et 

al., 2019), or the WAT are harder to get a full depiction of all cell types present in them.  
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To test SCDC and MuSiC accuracy in the case of different dataset between reference 

and data to deconvlute, we used a large single-nuclei dataset of WAT having 14 

different cell-types including mature adipocyte (Emont et al., 2022). First Tabula Muris 

was used as reference and for both methods, predictions were not accurate, whereas 

using ALDR16 gave positive correlation between predictions and actual proportions of 

~80%. This showed that using single-nuclei as reference can outperform single-cell 

data, the most important factor being that the main cell-types are found in the reference 

and the data to deconvolute. Even if in Tabula Muris, 8 cell-types are overlapping with 

Emont dataset, mature adipocyte are missing, which influence importantly the results, 

like MuSiC overestimating the proportion of endothelial cells. On the contrary even if 

ALDR16 data is from single-nuclei and had only 3 cell-types in common, the fact that 

those 3 cell-types, mature adipocytes, progenitors and macrophages are among the 

most important ones, it gave accurate predictions.  

We wanted to assess if using genes commonly expressed between the reference 

dataset and the data to deconvolute could improve prediction since additional genes 

could add noise. A study showed actual improvement by removing genes non 

expressed in nuclei in the data to deconvolute when using sNuc-seq data as reference 

(Sutton et al., 2022). In our case the correlation was better between prediction and 

actual proportion but the difference was not significant. Finally, SCDC was used with 

multiple datasets as references, to complete possible missing cell types, and got the 

most accurate prediction. 

Among the three methods tested, SCDC showed the most accurate and robust results. 

If MuSiC and SCDC usually performed similarly, it is because they use the same type 

of approach, a weighted non-negative least squares (W-NNLS) regression framework. 

Yet SCDC was able to perform better when using a different reference dataset and 

even by combining datasets to have a comprehensive reference. SCDC is giving more 

weight to expression profiles of the reference data that correlates positively with the 

data to deconvolute, and is discarding potential cells that are wrongly annotated (Dong 

et al., 2021). 

Those results highlighted the importance of having a comprehensive reference to have 

accurate prediction results, which can be challenging when the tissue of interest is not 

fully characterized or single-cell or nuclei datasets are not yet available. Nevertheless, 

new methods like SCDC seemed to be a suitable alternative by combining multiple 
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reference datasets to get profiles of all potential cell-types and provide valid prediction 

results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4  Single nuclei RNA profiling of white 

adipose tissue under dietary restriction 

reveals decreasing responsiveness with age 
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4.1 Introduction 
 

Dietary restriction (DR) one of the most successful anti-aging strategies, has been 

demonstrated to slow down the aging process in a variety of animal models, including 

primates and worms (Balasubramanian et al., 2017). Dietary restriction affects nutrient 

sensing pathways, gene expression, cellular repair systems, and metabolic functions 

to promote longevity (Most et al., 2017). The metabolism must be able to adjust to the 

nutritional alteration in order to profit from the DR treatment. This ability to adapt 

appears to be fading with age, as it was previously demonstrated in mice where the 

effect of late onset dietary restriction on mortality and gene expression was 

investigated (Hahn et al., 2017). This study showed that with age, the white adipose 

tissue (WAT), one of the most metabolically active organs, is unable to adapt to the 

DR condition.  The WAT transcriptome of young animals was able to rapidly adapt to 

the DR conditions, suggesting that transcriptional nutritional memory is established 

later in life.  

In order to narrow down the interval when the metabolism loses the ability to benefit 

from DR, mice were switched from ad libitum (AL) to DR at 12, 16, 20, 24 months of 

age in a follow-up study (Lisa F. Drews, 2021). The lifespan results suggested that the 

phenocritical period in which DR can positively affect survival ends between 16 and 

20 months of age. Thus, comparing the molecular response in the WAT to DR between 

16 and 20 months might help to identify the molecular basis of the dietary memory and 

whether this contributes to the survival phenotype. Because the WAT is a highly 

heterogeneous tissue with a variety of cell types, bulk sequencing is insufficient to 

completely comprehend the dynamics of gene expression in this tissue (Hwang et al., 

2018). Recent developments in single-cell RNA sequencing methods enable to 

capture the transcriptome of multiple cells from an unbiased and high throughput 

approach. Mature adipocytes are the main functional cell type of WAT but by 

accumulating lipids and their fragile nature, it presents a challenge for usual single-

cell droplet-based methods (Hagberg et al., 2018). Targeting nuclei instead of cells is 

an alternate method to capture single transcriptomes from WAT as it was successfully 

shown in recent studies on adipose tissue of mice and human subjects (Emont et al., 

2022).  



 75 

 

In this study we used sNuc-seq to capture in an unbiased way transcriptome profiles 

and proportions of specific cell-types in WAT subjected to different diet strategies and 

ageing. We compared single cell gene expression between 5 and 24 months for 

chronic diets, AL and DR, and found DR prevents age-related immune infiltration in 

the WAT. We identified a specific sub-cluster of mature adipocytes in the earlier switch 

at 16months, showing increased activation of de-novo lipogenesis pathway, similarly 

to chronic DR adipocytes.  Collectively our results identify targets to better understand 

the metabolic flexibility of the WAT in the light of ageing but also nutrition and as a 

result contributes to the research on age related diseases such diabetes or 

cardiovascular disease. 

 

 

 

4.2 Results 
 

4.2.1 Generating a cell-type landscape from young and aged murine white 

adipose tissue under dietary restriction  
 

To study the flexibility of WAT gene expression in response to age and diet, gonadal 

fat pads from female mice were used for sNuc-seq and bulk RNA-seq (Lisa F. Drews, 

2021). DR was started at 12 weeks of age by feeding the DR animals 60% of the food 

consumption of AL controls. Late-onset DR was introduced at 16 (ALDR16) and 20 

months (ALDR20) of age (Figure 4-1 A). We obtained unbiased gene expression 

profiles from single nuclei using droplet-based sNuc-seq from the optimised method 

adapted to the WAT (see section 3.2.1 Optimization of single nuclei sequencing 

protocol for WAT). Chronic AL (AL_5) and DR (DR_5) WAT were sampled at 5 months, 

while at 24 months chronic AL (AL_24), DR (DR_24), and the two DR switches at 16 

months (ALDR16) and 20 months (ALDR20) were included. Three individuals were 

pooled for each sample in order to reduce biological inter-sample variability and two 

samples were used per condition. After isolation, nuclei were stained with DAPI and 

filtered with FACS to limit unspecific RNA contamination (Figure 4-1 C). Purified nuclei 

were processed with the 10X Genomics Chromium system (Zheng et al., 2017), 
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generating single-nuclei transcriptomes for 12,044 cells after quality control. Using 

known marker genes, fifteen cell groups were found after unsupervised clustering of 

data from all conditions (Figure 4-1 B). These fell into three super clusters: adipocytes, 

immune cells, and stromal-vascular fraction (Sup.Figure 8-F). For instance, we 

detected markers specific to mature adipocytes in multiple clusters, evidence of 

several sub-type of mature adipocyte. Slc1a3 is a gene marker that is expressed in all 

adipocyte sub-clusters and maintains a steady import of acidic amino acids into 

adipocytes(Krycer et al., 2017).  
Immune cells were also clustered together and shared markers expressed in myeloid 

and lymphoid cells, such as Runx1 (North et al., 2004). We could distinguish a large 

cluster of macrophages expressing Ptprj, a regulator of macrophage adhesion and 

spreading (Dave et al., 2013), and dendritic cells expressing gene markers such as 

Myo1f and Alcam (Oh et al., 2019). Finally, among immune cells, we identified 

lymphoid cells, expressing lymphocyte markers such as Bank1 (Aiba et al., 2006) and 

Inpp4b (Srivastava et al., 2013).  

The final super cluster was made up of heterogeneous cell-types from the stromal 

vascular fraction, such as progenitors, pre-adipocytes, endothelial cells, or muscle 

cells (Han et al., 2015). Zfpm2 is significantly higher expressed in fibroblasts or 

preadipocytes in comparison with adipocytes (Sup.Figure 8-E) (Oger et al., 2014) and 

Lama2 is a regulator promoting adipogenesis (Zhu et al., 2020). Both are top gene 

markers for the first cluster identified as pre-adipocyte cluster. Interestingly Adamtsl1 

seems to be highly expressed in adipose stem cells (T. Wang et al., 2020), indicating 

that the cells of this cluster are earlier in the adipogenesis process and so referred as 

progenitors. Another cluster of pre-adipocytes was separated by the expression of 

fibrogenic and inflammatory markers such as Fndc1 (Hepler et al., 2018). Additional 

small clusters could be identified, such as endothelial cells expressing Ptprb, or 

muscle cells expressing Dmd. In summary our unsupervised analysis of all merged 

data could identify a diversity of cell types reflecting the biological complexity of the 

white adipose tissue. This analysis also enabled to capture the variability coming from 

different conditions, emphasizing the impact of age and diet on the cell-type 

landscape.  
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A, Schematic diagram of experimental design B, Uniform manifold approximation and 
projection (UMAP) two-dimensional map from unsupervised Louvain clustering, of nuclei from 
all merged conditions showing 3 super-clusters of adipocytes, immune cells and stromal 
vascular fraction C, Schematic diagram of the experimental pipeline, from tissue to single-
nuclei data. After nuclei isolation, DAPI-stained nuclei from mice white adipose underwent 
FACS to remove debris and then were encapsulated into droplets with the Chromium platform. 
The resulting libraries were sequenced on an Illumina platform, and the raw data were 
processed with CellRanger to obtain expression matrices. The downstream analysis was done 
R using mainly the Seurat package to get single-nuclei maps of each biological condition.  
 

 

 

 

 
 

Figure 4-1 Single nuclei transcriptomic analysis of young and old murine adipose 
tissue, under AL and DR feeding and diet switch 
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4.2.2 Cell-type landscape changes with age and DR 
 
 

A, Uniform manifold approximation and projection (UMAP) plots showing highlighted nuclei 
coming from each single condition. B, Cell-type composition differences between different 
conditions of single-nuclei samples quantified as proportions over cell types. Cell-types were 
divided in 5 categories. Data are plotted as mean ± s.e.m C, Immune cell-type proportion 
differences between different conditions of single-nuclei samples. Proportions were 
transformed using arcsin square root. Data are plotted as mean ± s.e.m. T-test was used to 
calculate p-values. Benjamini and Hochberg false discovery rates were used to account to 
multiple testing of cell types/clusters. 

Figure 4-2 Compositional and transcriptional changes in the murine adipose 
tissue in function of age and diet  
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To examine the effects of age and diet on the cell-type landscape, we highlighted the 

nuclei from each age and diet condition in the merged UMAP (Figure 4-2.A). The 

heterogeneity of the cell-type landscape was highly affected by both age and diet. Cell 

type diversity increased with age in AL fed animals, and more differentiated cells 

appeared with age, including endothelial cells and lymphocytes.  There was also an 

increase immune cells with age from 20% to 35% of all cells present in AL (Figure 
4-2B). Macrophages representing more than 15% in AL_24 and 20% in ALDR20 

(Figure 4-2 C). Previous studies showed macrophage infiltration in adipose tissue 

under high fat diet, generating local inflammation in the tissue (Russo & Lumeng, 

2018). Lpl is upregulated in dendritic cells in AL_5 and AL_24, this gene contributes 

to lipid accumulation in the dendritic cells and causes their dysfunction, which leads to 

tumour evasion and growth (Gao et al., 2015). Lymphocytes in white adipose tissue, 

particularly T-cells, recruit and encourage the formation of M1, pro-inflammatory 

macrophages. Lymphocytes were found only in AL_24 WAT, consistent with an age-

related immune infiltration already demonstrated by previous studies on obese WAT  

(Surmi & Hasty, 2008) (DeFuria et al., 2013). 

Age had less effect on WAT composition of DR animals, especially an absence of 

immune infiltration. The macrophage population represented a small proportion of all 

cell-types at young age, less than 5% and did not increase with age (Figure 4-2C). 

Additionally, no lymphocytes were detected in DR WAT, consistent with the hypothesis 

that DR has a protective role against age-related tissue inflammation of the WAT 

(Ishaq et al., 2018).  The switch conditions showed as well differences in immune 

infiltration with intermediate profile for ALDR16, where we found presence of 

macrophage and dendritic cell but not to the level of AL_24 and very little lymphocytes. 

On the contrary, the later switch, ALDR20, displayed similar profile to AL_24 with 

presence of large population of immune cells including lymphocytes (Figure 4-2C). 

These results suggest that only the earlier switch, at 16 months, had a protective effect 

against immune infiltration. 

Among the other cell-types we saw less differences in proportions with the exception 

of DR_24 having a lot of cell-types from the stromal-vascular fraction other than 

immune cells. The fact that DR_24 mice have a small fat pad and surrounding tissues 

may have been caught during dissection could explain why they had more cell kinds 
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of support, such as epithelial cells or muscle cells. The number of precursors was fairly 

similar in all condition even if pro-inflammatory progenitor were found in almost all 

condition but DR_5, once again a sign of the inflammation of the tissue. The main cell-

type of the adipose tissue are adipocyte and, in our case, we could see that they were 

subdivided with age and diet influencing the clustering (Sup.Figure 8A-B). In relative 

proportions, surely because of the lack of differentiated cell types in young samples, 

we observed larger cluster of adipocytes compare to the old samples. The different 

conditions produced sub-clusters of mature adipocytes but not the other cell-types, 

demonstrating how age and diet impacted the metabolic activity of adipocytes which 

highly influence the tissue’s main functionality. 

 

 

4.2.3 Adipocytes exhibit greater variety in relation to nutrition and age 
 

To further understand what caused the split between the various sub-clusters of 

adipocytes, we focused initially on the chronic diet conditions AL and DR. Before 

evaluating the effects of a late-onset diet switch, it was essential to know how chronic 

DR differs from AL and how aging affects the metabolic activity of the tissue. Datasets 

from old and young AL and DR were merged together and after unsupervised 

clustering we obtain 4 subclusters of adipocytes (Figure 4-3 A). Those 4 clusters were 

divided based on their age and diet conditions (Figure 4-3 B). We compared them 

using differential gene expression analysis and looked at the enriched hallmarks from 

the enrichment analysis using on Msigdb Hallmarks (Subramanian 2005). 

Firstly, we looked at the ageing effect in both diet conditions (Figure 4-3 C-D). In DR, 

hallmarks of adipose tissue metabolic activity were upregulated with age (Figure 4-3 

C). Among interesting genes upregulated with age we noted some genes being linked 

to the de-novo-lipogenesis (DNL) pathway, like Lipe which hydrolyses stored 

triglycerides to free fatty acids, Fasn which catalyses the synthesis of palmitate from 

acetyl-CoA and malonyl-CoA, in the presence of NADPH, into long-chain saturated 

fatty acids, Acsl1 synthesizes long chain fatty acid. The upregulation of this pathway 

under DR has been showed previously (Solinas et al., 2015) and observed in the 

previous bulk study (L. F. Oliver Hahn 2019). DNL would contribute to maintain a flow 

of long fatty acids, either for mitochondria biogenesis or to act as adipokines and 
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activating transcription factors sustaining a healthier metabolic homeostasis (Song et 

al., 2018) 

In the case of AL feeding, similarly genes linked to metabolic activity of the WAT were 

upregulated with age but not the same genes as DR (Figure 4-3 D). Insulin linked 

genes such as IRS1, IGF1 or PParg are essential transcriptome factor for lipid 

metabolism and were upregulated in AL_24, demonstrating their crucial role for 

adipogenesis. This could be explained by the fact that in AL, with age, there is a need 

for a constant supply of mature adipocytes to stock new lipids. Interestingly Sorbs1, 

an insulin sensitive gene, that has been reported to contribute to adipose tissue 

inflammation and linked to obesity and diabetes (S. J. Kim et al., 2014) was 

upregulated in both AL_24 and DR_24 compare to their young conditions. 

 

Then we took interest in the difference between the transcriptome profile of mature 

adipocytes in AL_24 and DR_24. Even if both conditions had a similar ratio of mature 

adipocyte at old age (Figure 4-2 B), they showed the most differences between all 

cluster’s comparisons. In DR_24 we noticed the upregulation of Mtorc1 signalling 

hallmark, and notably the genes Acsl1, Acaca, Acly which are all enzyme essential to 

DNL. DR_24 showed lower levels of expression of the Rora gene compared to AL_24 

(Figure 4-3 E). Rora is linked to hypoxia and it has been suggested that the expansion 

of the WAT during obesity leads to a lack of oxygenation of the tissue. This has 

consequences on adipocytes, inducing insulin resistance, inflammation related 

adipokines secretion, and eventually contribute to tissue fibrosis (Trayhurn, 2013).  

This would explain why Rora and additional genes linked to tissue remodelling were 

downregulated in DR_24 compared to AL_24 since the WAT doesn’t increase as much 

under limited feeding. For example, in the angiogenesis hallmark, App was 

downregulated in DR_24 compared to AL_24 (Figure 4-3 E). A previous study showed 

that App was increased in obese phenotype promoting hypertrophy of adipocyte (Min 

et al., 2017).  Furthermore, several collagen genes, which are promoting differentiation 

into mature adipocytes to increase stockage capacity of lipids (Cho et al., 2019), were 

found downregulated between DR_24 and AL_24 in the epithelial transition hallmark.  

In young conditions, comparing DR_5 to AL_5, angiogenesis was downregulated with 

genes like Vegfa, which promotes proliferation of endothelial cells to enable 

oxygenation of the tissue (Herold & Kalucka, 2020)(Figure 4-3 F). AL expanding faster 

than DR could require more remodelling of the tissue even at young age, explaining 
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the downregulation of collagen genes in DR (Figure 4-3 F). DR_5 had lower 

expression of adipogenesis genes compared to AL_5, such as Fabp4 and Lpl 

(Gonzales & Orlando, 2007) that are acting on maturation of adipocyte and lipid 

stockage.  

With age, AL and DR adipocytes showed upregulation of different metabolic pathways, 

some differences being visible at young age such as the specific upregulation of DNL 

genes in young and old DR (Figure 4-3 C,E). AL diet driving adipocytes to activate 

pathways that would promote the proliferation of new adipocytes in order to stock more 

fatty acids and angiogenesis to remodel and maintain oxygenation of the tissue 

(Figure 4-3 D,F).  

From the UMAP clustering to the enrichment results, adipocytes were divided in 4 

clusters showing the impact of age and diet (Figure 4-3A). Even if DR is known to 

have a healthier phenotype even at old age, old DR adipocytes were not similar to 

young DR adipocytes (Sup.Figure 10). WAT under DR is subjected to less 

mechanical stress and immune infiltration which preserves the metabolic homeostasis 

of the tissue, yet ageing is still affecting the transcriptome profile of the tissue. This 

raises the question of when aging prevents DR from having a beneficial impact on the 

metabolic activity of the WAT. 
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A, UMAP of nuclei from all chronic conditions, AL young (5M), old  (24M), DR young (5M), old 
(24M), from unsupervised louvain clustering, showing separation of adipocytes in 4 clusters 
in function of age and diet. B, UMAPs showing nuclei derived from young (5M) and old (24M) 
or from chronic conditions AL and DR coloured by age or diet. C-D, Hallmark enrichment 
analysis of differentially expressed genes between old and young adipocytes for DR and AL 
(ageing effect). Only significant enriched hallmarks are represented (P< 0.05, after correction 
with Benjamini-Hochberg). Corresponding genes of the enriched hallmark are red 
(upregulated) or blue (downregulated). E-F, Hallmark enrichment analysis of differentially 
expressed genes between DR and AL adipocytes at young and old age (diet effect). Only 

Figure 4-3 Adipocytes show subtypes depending on diet and age 
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significant enriched hallmarks are represented (P< 0.05, after correction with Benjamini-
Hochberg). Corresponding genes of the enriched hallmark are red (upregulated) or blue 
(downregulated) 
 
 

 

4.2.4  A specific type of mature adipocyte emerges from the switch of DR at 

16M 
Chronic diets conditions showed gradient of sub-types of adipocytes separated based 

on age and diets, with giving evidence for metabolic differences observed between AL 

and DR increasing with age. To determine where the diet switch adipocytes were 

distributed among the sub-cell types of adipocytes, diet switch conditions were taken 

into consideration during the analysis. From the lifespan data, the switch done at 16 

months showed lifespan extension similar to chronic DR while the later switch at 20 

months was not extending lifespan (Lisa F. Drews, 2021). We investigated if we could 

see potential differences at the single-cell level between those two diet switches, 

especially among the sub-clusters of adipocytes. Five sub-clusters were observed 

when all conditions were merged together (Figure 4-4 A). Adipocytes 1 cluster was 

made of DR_5 and part of ALDR16, while adipocyte 2 cluster was made of adipocyte 

from AL_5 and AL_24. Adipocyte 3 included ALDR20 and part ALDR16, and the two 

last clusters were from only one condition, ALDR16 for Adipocyte 4 and DR_24 for 

Adipocyte 5. Only from the unsupervised clustering, AL young and old adipocytes 

(adipocyte 2) were separated from the others conditions. The DR young and old 

adipocytes, ALDR20 and part of the ALDR16 were overlapping while some ALDR16 

(adipocyte 4) were completely detached from the other adipocytes. 

 The two clusters made by a single condition, adipocyte 4 (ALDR16) and 5 (DR_24) 

showed the most interesting profiles based on the enrichment analysis of their specific 

gene markers. Apart from upregulation of fatty acid metabolism hallmark, we noticed 

the significant upregulation of the hallmark mtorc1 signalling for both clusters (Figure 
4-4 A). Acaca, Acly, Elovl6 or Me1 are among the genes enriched in this hallmark, and 

as it was already mentioned, they are connected to metabolic pathway of de novo 

lipogenesis. Interestingly, not all adipocytes of ALDR16 were in Adipocyte 4, only half 

of them, this cluster being metabolically similar to DR_24, while the rest was merged 

in adipocyte 3 and 1. Given that it was present in both replicates (Sup.Figure 8C), it 

showed the consistency of this subpopulation of adipocytes with an unique metabolic 
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profile. To get more precise information on metabolic changes in that cluster, 

enrichment with GO term was also done. For this analysis the genes of that cluster 

were compared to all the other clusters in the tissue, and a network plot was used to 

represent relations between the different genes and GO terms (Figure 4-4 B). Again 

Acaca, Fasn, Elovl6, Scd1 were significantly upregulated, and are central in the 

network showing the importance of long fatty acid synthesis. Two genes linking the 

GO term “regulation of metabolic process” and “fatty acid biosynthetic process”, 

Prkag2 and Mlxipl are regulators of de novo lipogenesis process, ChERBP (Mlxipl) 

being strongly upregulated and actively promoting DNL as a transcription factor.  

We analysed the expression levels of the relevant genes across all clusters (Figure 
4-4 C), particularly across Adipocyte 4 and 5. Scd1, the enzyme that transform 

saturated fatty acid in unsaturated fatty acid to be incorporated in membranes or act 

as lipokines, was highly in expressed in DR_24 compared to ALDR16. On the contrary 

the other genes of DNL and the transcription factor ChERBP were highly expressed 

in ALDR16. Adipocyte 5 (DR_24) and 4 (ALDR16) clusters showed similar 

upregulation of DNL, but with a difference in some key gene regulators, suggesting 

that some adipocytes are responding to the change of diet in the earlier switch at 16 

months. Given that this is only seen in ALDR16, age may be a factor in response 

capability following diet switch. 
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A, Schematic representation of all adipocyte clusters from all merged data, with corresponding 
Hallmarck enrichment. Hallmark enrichment analysis of signature genes of each adipocyte 
cluster. Only significant enriched hallmarks are represented (P< 0.05, after correction with 
Benjamini -Hochberg). B, Gene-Concept Network showing linkages of genes and enriched 
GO categories (Biological Process). Blue node represents significantly enriched GO term (P< 
0.05, after correction with Benjamini-Hochberg).  Red nodes represent significant signature 
genes of the cluster, from light to dark red, showing the level of upregulation of the gene in the 
cluster compared to the rest of the dataset. C, Average expression of De-Novo-Lipogenesis 
genes in all clusters. 
 

Figure 4-4 A specific type of mature adipocyte emerges from the switch of DR at 16M 
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4.2.5 With aging, the metabolic flexibility of WAT is impaired 
 

To assess if age was an important factor in WAT ability to change its metabolic 

profile, we sequenced bulk RNA-seq samples of 3 replicates of the same conditions 

as the ones of the sNuc-seq experiment, and added ALDR16 at 20 months 

(ALDR16_20) and ALDR20 at 28 months (ALDR20_28) (Figure 4-5 A). The raw data 

from bulk RNA-seq samples were processed and normalised using Deseq2 (Love et 

al., 2014). Quite some variability was observed among samples of the same 

conditions, where conditions were overlapping in the PCA analysis (Sup.Figure 12 

A). This could be due to the advanced age of the mice since variability is increasing 

with age, while in sNuc-seq variability might have been lowered by pooling 3 mice per 

sample. Some samples considered as outliers from the PCA analysis were identified, 

sample 1059 for DR_24 and 1012 for ALDR16_20. Interestingly by looking at the level 

of expression of some inflammation markers (Sup.Figure 12), sample 1059 of DR_24 

had higher expression of inflammation markers Cd68, Infgr1, Myo1f compare to other 

replicates, and the lowest expression of Cd163 which is anti-inflammatory (Chen et 

al., 2019). On the contrary, sample 1012 of ALDR16_20 had higher expression for 

Cd163 but the lowest expression level for the pro-inflammatory markers compared to 

other replicates. And this was confirmed in the deconvolution results where sample 

1012 had the smallest proportion of immune cells in all ALDR16_20 samples and 

sample 1059 had the largest proportion among samples of DR_24 (Sup.Figure 12). 

Inflammation seemed to play an important role in the variability observed among 

samples of the bulk analysis, where some replicates of the same conditions were not 

subjected to the same level of immune infiltration.   

Despite the variability between replicates, since we wanted to specifically monitor the 

DNL signal specific to DR and some ALDR16 adipocytes (adipocyte 4), we focused 

on first on DNL gene expression across conditions. The PCA analysis was done this 

time only with DNL genes (Sup.Figure 12 B), and we could observe that based on the 

PC1 (61.43% of the variability), conditions were spread from DR_24 to ALDR16_20, 

ALDR16_24, AL_24 and ALDR20_24, ALDR20_28. Hence, DNL genes could 

separate the conditions following the trend observed in the SNuc-seq data, where DNL 

was upregulated in ALDR16 and DR_24. 
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We then looked at the log normalised gene expression of DNL genes in all conditions 

(Figure 4-5 B). The same trend was observed regardless of the gene: compared to 

chronic AL the same genes in ALDR16 had higher expression levels 4 months after 

the switch (ALDR16_20), following by a decrease after 8 months (ALDR16_24). 

Similar observation was made for ALDR20 but the expression levels were lower than 

for ALDR16 as it was also observed in RTqPCR (Sup.Figure 11. C). Additionally, 

when compared to chronic conditions, ALDR16 at 20 and 24 months had similar levels 

of expression of DNL genes to DR_24 while ALDR20 at 24 months matched AL_24. 

ALDR20 at 28 months had the lowest level of expression for all DNL genes showing 

that ALDR20 expression of DNL genes did not recapitulate ALDR16's level even after 

a longer time frame (Figure 4-5 B).   

To measure the relative proportions of adipocyte 4 (ALDR16) in all conditions 

(Figure 4-5 D) we performed tissue deconvolution analysis on the bulk data. We used 

the package SCDC (Dong et al., 2021) to do the analysis using combined SNuc-seq 

ALDR16 and AL_24 dataset as reference (described in 3.3.2 Understanding changes 

in cell type composition with deconvolution analysis). All bulk RNA-seq samples were 

deconvoluted to evaluate proportions of different cell-types in each condition. 

Combining replicates samples together we could observe that the largest proportion 

of adipocyte 4 was observed in DR_24 and ALDR16_20 (Figure 4-5 E). ALDR20 

proportion of adipocyte 4 was lower and decreased with age, fitting the previous trend 

observed with DNL gene markers (Figure 4-5 B).  

Finally, another important factor linked to the diet and age is the level of inflammation 

of the tissue, and as it was previously mentioned, immune cell-type populations 

increased with age but also under AL. We looked at expression level of different 

immune cell markers (Figure 4-5 C), particularly 3 macrophage markers, CD68, 

CD86, and CD163 (Chen et al., 2019). CD68, a pan macrophage marker, increased 

expression with age for ALDR20, while remain the same for ALDR16. CD86 is an M1 

macrophage marker, which promotes inflammation in the tissue. CD86 increased with 

age for both switches and had higher level of expression in ALDR20. On the contrary, 

CD163 an M2 macrophage marker, which is anti-inflammatory, showed decreased 

expression with age but was expressed at a higher level in ALDR16 compare to 

ALDR20. Myo1f which expression is linked to inflammatory response and Ptprj which 

is highly expressed in macrophage-enriched tissue, showed a similar trend where 

expression increased with age for switches, with ALDR20 having higher levels of 
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expression compared to ALDR16. This trend was also observed in the deconvolution 

results, where both switches showed increased percentage of immune cell types with 

time, with ALDR20 (52%) having a larger proportion compare to ALDR16 (45%) 8 

months after the switch. Those results showed that inflammation of the WAT increased 

with age for both switches but ALDR16 expressing more anti-inflammatory 

macrophages, and lesser levels of pro inflammation markers compared to ALDR20 

(Figure 4-5 C).  

As a whole, those results showed that adipocytes with upregulation of DNL were more 

expressed in DR_24 and ALDR16, while ALDR20 expressed lower level of DNL genes 

markers. In addition, ALDR20 showed a stronger decrease in expression of those 

markers 8 months after the switch while it remained similar for ALDR16. Even after 

the same time period, ALDR20 had a different metabolic profile compared to ALDR16, 

having less of the adipocytes 4 and an overall more inflamed status.  

As a final validation we used the previous dataset of bulk RNA-seq with diet switch 

(Hahn et al., 2019) to do a deconvolution analysis with the same parameters 

(Sup.Figure 13 E). In this case the switch was done at old age (24 months) and 

transcriptomic profiles were measured 2 months later at 26 months. This short late-on 

switch didn’t show as strong signals as the earlier switch from our study but some 

trends were still observable. Notably adipocyte 4 proportions were similar for young 

samples of AL and DR, but only AL proportion decreased at old age (Sup.Figure 13 

F). Regarding the switches, DRAL that was under DR for a longer time had more 

adipocyte 4 compared to ALDR, putting in evidence again the link between restricted 

feeding and the subtype of adipocyte 4 upregulated for DNL expression.  

Despite the variability in the bulk dataset, we observed similar trends in the sNuc-seq 

data and the bulk dataset. Those datasets were generated from different mice of the 

same cohort, showing consistency in the observed trends. Even an older dataset from 

another switch study hinted at similar patterns of impact of DR on the cell type 

landscape. Taken altogether those results suggest that switching to DR is affecting 

the metabolic function of some adipocytes, displaying a similar profile to DR. The 

earlier the switch to DR, the more effective is the change of metabolic activity to have 

the benefits from DR. ALDR20 diet switch was not able to recapitulate ALDR16 profiles 

after the same amount of time and even showed that late diet switch could trigger even 

more immune response compare to AL. This loss of flexibility of the WAT with age has 

been previously characterized as a memory effect of the bulk transcriptome as 
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described in (Hahn et al., 2019). Using a the single-nuclei approach, we could show 

that dietary memory is stronger in ALDR20 compare to ALDR16 that displayed a new 

sub-type of adipocyte adapting to DR. This observation was also validated through the 

bulk RNA-seq by looking at gene markers expression level and deconvolution 

analysis. We then investigated if the dietary memory was only coming from the mature 

adipocyte or if other cell types in had also a role in transcriptional flexibility of the WAT.  

 

 

 
 
 

A, Schematic of experimental design for RNA bulk sequencing. B, Expression level (log of 
normalized counts using median of ratios methods) of DNL genes for all conditions.  C, 
Expression level (log of normalized counts using median of ratios methods) of immune marker 
genes for all conditions. D, Percentage of cell-type categories per samples based on 
deconvolution analysis with SCDC. Data are plotted as mean ± s.e.m. 
 
 

Figure 4-5 Age is a key a factor in the metabolic flexibility of the WAT 
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4.2.6 The transcriptional memory of the WAT is caused by gene expression 

changes in mature adipocytes and cell type composition of immune cells 
 

The previous study on late-on diet switch used bulk RNA-seq data to compare 

transcriptomic profiles of liver and WAT before and after DR switch (Hahn et al., 2019). 

They looked at differentially expressed genes between DR and AL (DR/AL), and 

between DR and ALDR (AL/ALDR). If the number of differentially expressed genes 

between DR/ALDR was low, it would have mean that ALDR had a similar profile like 

DR and so fully adapt to the switch of diet. Nevertheless, the overlap of differentially 

expressed genes between DR/AL and DR/ALDR was comparably large, 1978 genes 

were found common, meaning that ALDR had a profile similar to AL in the WAT and 

did not fully adapt to DR. These 1978 genes were designated as memory genes, since 

their transcriptome profiles were not affected by the change of diet and remain similar 

as being under AL feeding.  

Thanks to the single-nuclei dataset we were able to add information on where this 

memory effect is coming from in the tissue. We initially investigated the cell types 

expressing these memory genes. We selected memory genes that were commonly 

expressed in both bulk and all merged SNuc-seq data, in total 718 genes. We took the 

30 memory genes that had the highest expression in the sNuc-seq data and looked in 

which cell types they were mostly expressed (Figure 4-6 A). We could see that they 

were found mainly in the different adipocytes’ subtypes (adipocytes 3,4,5) but also in 

some immune cell types such as macrophages and dendritic cells. Looking at the top 

30 genes, some genes found in adipocytes are genes of the DNL pathway such as 

Acaca, Acsl1 or Acly. In macrophage we noted Zeb2 and Ptprj that are gene mainly 

expressed during immune response.  We looked at the repartition of all 718 genes in 

the different cell-types and summarized the results in (Figure 4-6 B). It validated what 

we observed, 67% were expressed in adipocytes and 21% in immune cell types. It 

seemed that if a lot of memory genes from the bulk were coming from adipocytes, it 

could come from difference in gene level expression, especially as we saw 

upregulation of DNL pathways in DR_24 compared to AL_24 (Figure 4-3 E) but also 

from differences in proportion of sub-type of adipocytes such as the adipocyte 4. On 

the contrary genes found in immune cells seemed to not come from a difference in 
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gene expression but from different proportions between conditions. We didn’t capture 

subtypes of macrophages depending on the condition, their transcriptomic profiles 

remained similar, whereas their proportion changed with immune infiltration (Figure 
4-2 B). Immune cells were found to represent approximately 40% of cells for AL_24 

and ALDR16 but only 5% for DR_24. This could explain why gene markers of 

macrophages and in general immune cells would be found differentially expressed in 

the bulk RNA-seq dataset. If the memory effect seemed to come from both differential 

gene level expression and changes in proportions in the cell-type landscape, we then 

focused on the adipocytes, being the main cell-type found in the memory analysis. 

We did a similar analysis as the one in bulk, to define memory genes from the SNuc-

seq data in adipocytes. Both switches were used to define memory genes, finding 108 

refractory genes for ALDR16 and 73 for ALDR20 (Figure 4-6 C). More genes were 

differentially expressed between DR_24 and ALDR16 compared to DR_24 and 

ALDR20. Looking at the top genes downregulated in DR_24 compared to ALDR16 in 

adipocytes, we found all genes from DNL pathway and ChREBP (Table 5-2). On the 

contrary, genes that were upregulated in DR_24 compared to ALDR16 were insulin 

sensitive such as Sorbs1 (Yang et al., 2003), Fam13a (Wardhana et al., 2018), anti-

inflammatory genes like Nnat (Ka et al., 2017) or genes involved in thermogenesis like 

Ctcflos (Bast-Habersbrunner et al., 2021) or Adbr3 (Rayanne B. Burl et al., 

2018)(Table 5-1).  

We then compared those memory genes to the ones found in bulk and commonly 

expressed in both datasets. In both cases, almost half of the sNuc-seq memory genes 

were found in the bulk ones, 46% and 41% for ALDR20 and ALDR16 respectively 

(Figure 4-6 D). Hallmark enrichment analysis was done on the genes found common 

between bulk, ALDR16 and ALDR20 memory genes (19 genes) (Figure 4-6 E). Fatty 

acid metabolic processes were found enriched, including genes of the DNL pathway, 

Acaca, Acsl1, Acly. Then genes found in memory only for the ALDR16 genes were 

used for hallmark enrichment (Figure 4-6 F), and among the terms enriched lipid 

metabolism terms were found but RNA splicing as well. All lipids’ enriched terms were 

linked by Mlxipl (ChREBP) as previously observed upregulated in adipocyte 4 (Figure 
4-4 B), a transcription factor which activates DNL pathway.   

Single-nuclei data helped to better characterize the memory effect observed in the 

bulk dataset, showing that the memory genes found were present mostly in adipocytes 

but also in immune cells. The refractory genes would come from both non adaptation 
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of gene level expression but also change in cell type proportions in the tissue. 

Furthermore, we analyzed the single-nuclei dataset in the same way to define memory 

genes from both switches and compared it to the bulk. Only half of the memory genes 

for both switch were found in the bulk, and common genes were linked to fatty acid 

metabolism notably the specific upregulation of DNL in DR. Interestingly only in 

specific memory genes of ALDR16 was found the transcription factor ChREBP, 

emphasizing its important function for adaptation to DR. Thanks to the single-nuclei 

data we collected additional data to better understand which cells are the main actors 

of the transcriptional flexibility of the WAT and which metabolic pathways are involved 

in the process.  
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A, Dotplot of the cell type repartition of top 30 expressed memory genes from bulk in the all 
merged single-nuclei dataset. B, Stacked bar plot of the repartition of all memory genes from 
bulk in all cell types, and by cell type categories. Each memory gene was associated to the 
cell type where it was the most expressed. Proportions are based on the amount of memory 

Figure 4-6 Memory genes analysis from bulk and single-nuclei data 
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genes per cell type, or summarized in cell type categories. C, Venn diagram of single nuclei 
memory genes analysis. Memory genes are the overlap between differentially expressed 
genes of DR/AL and DR/ALDR16, and DR/AL and DR/ALDR20. D, Venn diagram of 
comparison between memory genes from bulk and SNuc-seq data. E, Network plot of hallmark 
enrichment of memory genes common to bulk, ALDR16 and ALDR20 (19 genes). F, Network 
plot of hallmark enrichment of memory genes unique to ALDR16 (63 genes). 
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4.3 Discussion 
 

DR increases health and lifespan in diverse organisms including primates 

(Balasubramanian et al., 2017). In humans, short term interventions with moderate 

caloric restriction also improve health, by decreasing the prevalence of age-related 

pathologies like diabetes, cardio-vascular diseases and cancer (Redman & Ravussin, 

2011). However, maintaining a DR diet over long periods is challenging for most 

humans, which is also reflected in higher withdrawal rates of participants following the 

DR regime in the corresponding clinical trials. Reducing the time period in which 

humans have to practice DR should make it more applicable to a wider part of the 

population and might also reduce negative side effects. Thus, the timing of the DR 

treatment and whether late-life DR can positively affect health and survival in humans 

are important questions, that are currently underexplored. In mice, DR is only effective 

in extending lifespan, when initiated earlier in life (Hahn et al., 2019). Mice lose their 

ability to respond with lifespan extension to DR between 16 and 20 months of age 

(Lisa F. Drews, 2021).  A previous study looked into the transcriptome of liver and 

WAT, highly active metabolic organs, and found that at old age, the white adipose 

tissue (WAT), is unable to adapt to the DR condition (Hahn et al., 2019), indicating a 

nutritional memory of gene expression in the WAT. However, the molecular basis of 

this memory and the cell types in the WAT that contribute to memory formation were 

unknown. In my PhD thesis, I addressed these questions by performing single-nuclei 

sequencing of the ageing WAT under DR conditions. 

 

4.3.1 The effects of age and diet on the cell-type landscape of the WAT 
 

I generated a dataset of 12044 nuclei in total from 6 different conditions, divided in 16 

clusters after non-supervised clustering, showing how the cell-type landscape is 

modified by age and diet. We noticed that the cell-type diversity increased with age, 

mainly driven by immune infiltration, especially in chronic AL and in the late switches. 

Comparison of lean and obese human phenotypes with single-cell also confirmed the 

presence of larger immune population in obese patients (Hildreth et al., 2021).  Each 

condition had either different cell-types or in different proportions, but interestingly only 

mature adipocytes displayed sub-cell types in function of age and diet. The importance 
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of mature adipocytes could not be characterized in bulk RNA-seq and they were 

usually missed out in single-cell studies because of their large size, but thanks to a 

single-nuclei approach, we got specific transcriptomic profiles from sub-clusters of 

adipocytes. We investigated their transcriptional activity starting by comparing the 

chronic diet AL and DR diets at young and old age. The diet type shaped the metabolic 

profile of adipocytes from young age, and with age an increased fatty acid metabolic 

activity was observed. DR_24 adipocytes showed upregulation of both Mtorc1 

signaling and genes linked to DNL which was previously associated to insulin 

sensitivity (Collins et al., 2010). On the contrary AL_24 adipocytes showed 

upregulation of pathway linked to tissue expansion such as angiogenesis, 

myogenesis, epithelial mesenchymal transition but also hypoxia. Hypoxia has also 

been linked to the crown-like structure of macrophages surrounding dead adipocytes 

(Hasty 2008). This was also observed in mice from the same cohort of this study. 

AL_24 mice and ALDR16, ALDR20 shortly after switching diet, had an increase of 

crown structures in the WAT (Lisa F. Drews, 2021).  

Although pathways associated with a healthy phenotype were upregulated in mature 

adipocytes old DR animals, they were not similar to adipocytes from young AL or DR 

animals, indicating that DR induces a specific transcriptional profile and is not just 

slowing down age-related gene expression. Consistent with this hypothesis, the 

expression profiles of AL and DR adipocytes were already different at young age. 

Under AL conditions pathways involved in adipocyte expansion and lipid storage were 

upregulated. The hallmark “UV Response DN” is upregulated in AL_5 compared to 

DR_5, and is also upregulated with old age regardless of the diet. In WAT, UV 

exposition, modifies the expression of adipokines and can lead to macrophage 

infiltration (Kim et al., 2018) and inhibits adipogenic differentiation (Lee et al., 2010). 

The genes found in the hallmark are downregulated when exposed to UV light, and 

are associated to adipogenesis like Dlc1 (Sim et al., 2017) or progenitors’ proliferation 

such as Tgbr3 (Petrus et al., 2018) . Upregulation of this pathway shows the need of 

more mature adipocytes to stock lipids, where this was observed mostly under AL 

feeding, but also increased with age for both diets. 

 Cells are communicating in a tissue, and in a heterogenous tissue such as the WAT, 

the diversification of cell-types with age can have an influence on the metabolic activity 

of the tissue. Adipocytes are interacting via adipokines secretion but also by being in 

contact with pro or anti-inflammatory cytokines expressed by immune cells. For 
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example, sub-types of pre-adipocytes have been characterized based on their spatial 

localization, notably fibro-inflammatory precursors being close to macrophages 

(Backdahl et al., 2021). Based on our observation DR did not rejuvenate the tissue, 

but protected it from hyperplasia and immune infiltration which dysregulate the 

homeostasis of the tissue.  

 

4.3.2 Late-onset DR at 16 months leads to a unique subtype of adipocyte 
 

We then focused our analysis on mature adipocyte of the switches to determine 

whether mid-life onset provides the same benefits as chronic DR. Interestingly a 

specific sub-cluster of mature adipocytes was found only in ALDR16, and showed a 

similar metabolic profile like DR_24. In fact, apart from Mtorc1 signaling and DNL 

pathway being upregulated like in DR_24, we observed the upregulation of the 

transcription factor Mlxipl (ChREBP) specifically in that unique cluster of ALDR16. A 

previous study in obese humans demonstrated that increased expression of adipose 

ChREBP was associated to improved glucose tolerance and positively correlated to 

insulin sensitivity (Kursawe et al., 2013). ChREBP expression in adipose tissue is also 

regulated by transporter GLUT4 which is important for modulation of glycemia. Obese 

patients with insulin resistant phenotype displayed decreased expression of GLUT4 

and lipogenic enzymes compared to non-obese subjects showing the importance of 

the transcription factor for metabolic health (Eissing et al., 2013). ChREBP target 

genes are involved in DNL, including the fatty acid elongase ELOVL6, which produces 

elongated fatty acid like phospholipid oleic acid (Eissing et al., 2013). Mitochondria 

biogenesis and DNL are both upregulated in the WAT of DR animals (Hahn et al., 

2019). Accordingly, it has been suggested that long chain fatty acids might be used to 

supply mitochondria membrane production and the upregulation of mitochondrial 

activity might contribute to maintain a healthier metabolism under DR  (Hahn et al., 

2019).  This was not observed in the sNuc-seq, since most mitochondria genes were 

not captured in nuclei transcriptomes.   

ChREBP was not identified as a strongly regulated gene in the previous bulk data set 

but was identified as a highly regulated gene in the single-nuclei data set. This might  

be explained by the fact that there are 2 isoforms of ChREBP, ChREBP-α and 

ChREBP-β. Only ChREBP-β isoform has a constitutive nuclear localization, and has 
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elevated transcriptional activity compare to ChREBP-α (Herman et al., 2012).  Its 

expression is associated to expression of DNL genes and insulin sensitivity (Eissing 

et al., 2013), which could explain why we saw its upregulation under DR in sNuc-seq 

data. 

Long chain free fatty acids have been suggested to contribute to improved health by 

enhancing plasma membrane fluidity and improving insulin signaling (Morigny et al., 

2019). Additionally, long chain free fatty acid also act as lipokines activating 

intracellular pathways of fatty acid metabolism. ChREBP activity is tightly linked to 

PPARγ, and can activate PPARγ through endogenous fatty acid (Nicole Witte 2015).  

Supplementation of palmitoleic acid effectively improved insulin and glucose tolerance 

in dependence of PPARγ of mice on a high fat diet (Souza et al., 2020). PPARγ is a 

transcription factor highly expressed in adipocytes, regulating storage and 

adipogenesis, but its major role as modulator of lipid metabolism and insulin sensitivity 

makes it an important target to prevent age-associated diseases and improve lifespan.  

This actually fit as well with the mitochondria biogenesis hypothesis since PPARγ is 

an activator of the pathway, and its expression is upregulated in clusters linked to 

upregulation of ChREBP and DNL, like adipocytes of DR_24 (adipocyte 5) and 

ALDR16 specific cluster (adipocyte 4). 

A spatial transcriptomic study done on human WAT, identified 3 different types of 

adipocytes, and associated insulin sensitivity with marker genes linked to lipid 

metabolism and glucose, notably ChREBP, in one of the clusters. This sub-type of 

adipocyte showed positive correlation for insulin-stimulated lipogenesis and was also 

less abundant in obese subjects (Backdahl et al., 2021). Thus, in summary, these 

findings suggest that the sub-type of adipocytes observed in ALDR16 animals 

probably indicates a healthier adipocyte state. 

 

4.3.3 WAT transcriptional flexibility is impaired with age 
 

We next enquired if the lack of responsiveness in ALDR20 was due to the short time 

frame, 4 months, to adapt to DR switch, when ALDR16 had 8 months. To verify this 

hypothesis, we generated a bulk RNA-seq dataset of WAT with the same condition as 

the sNuc-seq data, and ALDR16 at 20months and ALDR20 at 28 months. From 

expression levels of gene markers in bulk RNA-seq data, it showed that after a longer 
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time under DR, ALDR20 had still lower expression of DNL gene markers, and higher 

expression of inflammation markers. The remodeling capacity of the tissue seemed to 

be age dependent and this would explain why even after a longer period ALDR20 

cannot beneficiate from the same metabolic shift as ALDR16.  

One hypothesis explaining why ALDR16 still had the potential to adapt to DR could be 

that the pool of progenitors can differentiate in DR functional mature adipocyte 

compared to ALDR20. The proliferation and differentiation capacity of adipocyte 

progenitors is altered with age (Ou et al., 2022), so switching at an older age could be 

ineffective by lack of responsiveness of the tissue. Additionally, we looked at some 

gene markers involved in adipocyte differentiation, and at markers of full differentiated 

adipocytes. We observed that the sub-cluster of adipocytes observed only in ALDR16 

expressed higher levels of PPARγ and ChREBP compared to other clusters, both 

being involved in differentiation (Witte et al., 2015), and lower levels of Fabp4 a marker 

of mature adipocytes (Arimochi et al., 2016). This might indicate that these adipocytes 

are younger, and differentiated after the switch to DR feeding. As the plasticity of the 

WAT declines with age, the late-life switch at 20 months of age might not be able to 

induce these changes due to a change in differentiation capacity of adipocyte 

precursor cells.  

Finally, by comparing the results between the previous analysis done on bulk RNA-

seq data (Hahn et al., 2019) and our results of sNuc-seq data, we could go deeper in 

characterizing the dietary memory. The list of genes from bulk RNA-seq data that were 

refractory to the change of diet between AL and DR, were found mostly in mature 

adipocytes but also in immune cells. Dietary memory could come from changes in 

gene expression, such as the different metabolic profiles observed in adipocytes but 

also from changes in cell type proportions, like immune infiltration. 

It has been shown that obesity impacts negatively the metabolic activity of the WAT, 

with hypertrophy of the adipocytes resulting in hypoxia, which triggers the recruitment 

of pro-inflammatory cells (Khan et al., 2020). Because late-onset DR conditions were 

fed on AL for a longer period of time, they also experienced immune infiltration, which 

could account for the difference in immune cell count between them and DR, and the 

observation of immune genes in the memory genes. 

The pro-inflammatory processes observed in obese phenotypes are also inducing pro-

fibrotic phenotype, and impairing adipogenic potential. Progenitors differentiation 

potential is also affected with age, the accumulation of senescent cells affecting 
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adipogenesis (Tchkonia et al., 2010). This could explain the difference in gene 

expression profiles between adipocytes of DR and late-onset switch conditions, since 

after the change of diet, new progenitors might not be able to differentiate to a different 

metabolic profile and already matured adipocyte under AL feeding didn’t adapt to DR. 

Interestingly in the single-nuclei memory genes, we observed more memory genes in 

ALDR16 compared to ALDR20, while ALDR16 had a cluster of adipocytes with 

upregulation of pathways similar to DR, such as DNL. Yet, looking at the DE genes in 

adipocytes between DR_24 and ALDR16, it seemed that even if DNL was upregulated 

in both clusters, they displayed different profiles. We noted a stronger and significant 

upregulation of DNL and ChREBP in ALDR16 and genes linked to adipogenesis 

compared to DR_24. In DR_24 we saw upregulation of genes linked to insulin-

sensitivity or thermogenesis. Beiging of the WAT is characterized by increased 

thermogenic capacity, leading to beneficial health effect since BAT is more active 

metabolically (Vargas-Castillo et al., 2017).  Even if beiging of the tissue was not 

observed in DR mice of our study, previous study showed a link between caloric 

restriction and beiging (Fabbiano, Suárez-Zamorano, et al., 2016). In addition, DR_24 

showed upregulation of genes associated to inflammation, like Snhg11 that recruits 

M2 macrophages (Shi et al., 2022). In summary those results showed that even if 

those two subtypes of adipocytes were enriched for DNL activity, their complete 

transcriptome profiles didn’t overlap, as observed on the UMAP of all merged 

conditions. If the specific cluster of ALDR16 is made of adipocyte differentiated after 

the diet switch this could explain the upregulation of adipogenesis genes and absence 

of genes markers of inflammation.  

 

4.3.4 Conclusion, limitations and future perspectives  
 

This project provided novel insights on the dietary memory observed in the WAT in the 

light of ageing and diet, however it was subjected to several limitations. The age 

window where mice did not respond to the change of diet could be sex-specific or 

specific to the mouse strain. Previous study observed different response to caloric 

restriction depending on the strain and sex of mice (Mitchell et al., 2016). Similar study 

of multiple diet switch could be done in male and other mice’s strain in order to either 

confirm the age where transcriptional flexibility is declining, or to find a broader age 
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window. In addition, in the case of this study, enough tissue material was not available 

especially for the bulk RNA-seq experiment. Age increased the variance between 

mice, and particularly old mice (24M or 28M) would frequently have tumors or tissue 

fibrosis, which would increase the variance between samples. The lack of enough 

replicates prevented to do differential analysis with the bulk RNA-seq data or getting 

significant statistical differences between gene level expression. We could also see 

among replicates of the diet switches, that some mice responded well to diet restriction 

and would be protected from immune infiltration while some others would suffer from 

inflammation and were not showing sign of metabolic shifting. Understanding the 

causes behind the capacity or not to respond to diet restriction similarly among 

replicates of the same condition would be important.  

The single-nuclei approach led to the discovery of new information that helped 

to better understand the dietary memory, although using a novel methodology can be 

challenging. Regarding the experimental dataset, since this is a costly method, we had 

to get 2 replicates for each condition, while additional replicates would have enabled 

to have statistical power and allow to detect smaller changes in the transcriptome. To 

limit the variability between replicates, we pooled 3 mice per replicate, but then we 

couldn’t trace back which cells were coming from which mice. The small number of 

biological replicates per condition is not unusual in single-cell studies because of the 

cost and it also depends on the research question. To generate a cell atlas of a tissue, 

looking at a single condition, usually around 3 biological replicates are used (Emont et 

al., 2022) (Tabula Muris et al., 2018). When conditions are compared, usually less 

replicates are used. Similar to our experimental approach, a study of the epididymal 

adipose tissue that compare obese and lean states pooled 3 mice for both replicates 

in each condition (Sárvári et al., 2021). 

 Since the nuclei were selected by FACS, mitochondria were not found in the solution 

before encapsulation, so the mitochondrial DNA was not captured. This was observed 

in another study, where mitochondria genes were not present in single nuclei data 

(Lake et al., 2017). Mitochondria biogenesis being upregulated under DR was an 

important founding from the bulk RNA-seq dataset, and even if some mitochondrial 

genes are nuclear-encoded, we didn’t see this signal in the sNuc-seq. Another 

drawback of the dataset's limited gene expression was that trajectory analysis was not 

feasible. This could have been used to estimate, using pseudotime trajectories 
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(Trapnell et al., 2014), if the subtype of adipocyte found in ALDR16 was indeed newly 

differentiated adipocyte after the switch to DR.  

 

Despite those limitations, it was still possible to extract important biological information 

from the sNuc-seq and bulk RNA-seq datasets. They followed the same trends despite 

coming from different mice, which gave the results additional significance. Follow-up 

experiments could be done to validate the findings of this project. First, RNAScope 

might be used to confirm whether the new subtype of adipocytes discovered only in 

ALDR16 are in fact more numerous in ALDR16 compared to the other conditions 

(Wang et al., 2012). This technique allows visualization of single RNA molecules in 

individual cells directly in the tissue, using formalin fixed paraffin-embedded tissue for 

exemple.  It could be used to look in the same tissue with specific markers of the new 

sub-type of adipocytes of ALDR16 and markers of adipocyte with an AL profile. 

Additionally, assessing if those specific adipocytes from ALDR16 were younger and 

just got differentiated could be done by using adipogenesis markers and seeing if there 

is a difference in maturation between the two clusters of mature adipocytes. 

The cellular landscape is an important factor in the WAT homeostasis, it would be 

useful to see how those different subtypes of mature adipocytes are scattered in the 

tissue and which cell types surround them. Similar to the study done in human 

(Backdahl et al., 2021), it would be interesting to use spatial transcriptomics and 

assess if adipocytes respond to the diet in function of the cells surrounding them, and 

if the presence of macrophages or low vascularization could prevent the adaptation to 

DR.  

Finally, one interesting finding of this study is the upregulation of the transcription 

factor ChREBP in the subtype of adipocyte found only in ALDR16.  Palmitic acid-

hydroxy-stearic acid levels are associated with ChREBP expression in adipose tissue, 

they have been shown to promote a healthy metabolic activity with anti-diabetic and 

anti-inflammatory effects (Iizuka et al., 2020). Further work is needed to understand 

why ChREBP is upregulated in some adipocytes under DR feeding, especially since 

it is activated with glucose. 

 
In summary, our study demonstrates that DR positive effects on WAT are highly 

dependent on when DR is started. We showed that WAT is a highly heterogeneous 

tissue, its plasticity depending on the cellular landscape. With ageing, immune 
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infiltration increases, affecting its remodeling capacity and preventing to DR to be 

effective. The sNuc-seq data enabled to find a novel sub-cell-type of adipocytes, only 

found in the earlier switch at 16 months, showing upregulation of pathways linked to 

insulin sensitivity and fat tissue homeostasis. This metabolic profile is in adequation 

with the lifespan observations made on the same cohort, where ALDR16 was closer 

to DR and ALDR20 to AL. Those findings suggested that the metabolic flexibility of the 

tissue relied mainly on adipocyte and possibly their capacity to go through 

adipogenesis after the switch to DR. There is an effort in the research field to find a 

potential intervention preserving the differentiation potential of adipocyte progenitors. 

Some previous work showed promising results by blocking activin A and improving 

metabolic activity of senescent progenitors (Xu et al., 2015) or identifying specific gene 

targets maintaining differentiation capacity of adipose progenitors (Mandl et al., 2020). 

It would be interesting to investigate if the age at which the WAT stops responding to 

DR is delayed by combining an intervention that preserves the adipogenic potential of 

progenitors with multiple diet restriction switch time-points. Further work is now 

needed to find an intervention that would conjugate maintaining the plasticity of WAT 

in order to benefit from DR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 105 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 Extended data 
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Sup.Figure 1 SNuc-seq data from AL young from 10X Chromium 

A, UMAP of the number of features detected, RNA molecules, percentage of mitochondria 
genes, ribosomal genes.  
B, Selected UMAP feature plots showing RNA expression of two gene markers for each cluster 
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Sup.Figure 2 SNuc-seq data from DR young from 10X Chromium 

A, UMAP of the number of features detected, RNA molecules, percentage of mitochondria 
genes, ribosomal genes.  
B, Selected UMAP feature plots showing RNA expression of two gene markers for each cluster 
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Sup.Figure 3 SNuc-seq data from DR young from Nadia Instrument 

A, UMAP of the number of features detected, RNA molecules, percentage of mitochondria 
genes, ribosomal genes.  

B, Selected UMAP feature plots showing RNA expression of two gene markers for each 
cluster. 
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Sup.Figure 4 SNuc-seq data from AL young from FACS+10X Chromium 

A, UMAP of the number of features detected, RNA molecules, percentage of mitochondria 
genes, ribosomal genes.  

B, Selected UMAP feature plots showing RNA expression of two gene markers for each cluster 
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Sup.Figure 5 SNuc-seq data from DR young from FACS+10X Chromium 

A, UMAP of the number of features detected, RNA molecules, percentage of mitochondria 
genes, ribosomal genes.  
B, Selected UMAP feature plots showing RNA expression of two gene markers for each cluster 
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Sup.Figure 6 Clustering of cells for Tabula Muris single-cell deconvolution reference 
dataset 

A, Barplot of cell type distribution of 3 samples of sub-cutaneous adipose tissue (SCAT) from 
Tabula muris dataset 
B, UMAP of the SCAT dataset 
C, Heatmap of cells from SCAT dataset, clustered by cell-types. Cells having a similar profile 
to the other cells in the clusters are scored from 0.7 and above (green) and are used to 
construct the reference dataset. 
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Sup.Figure 7 Clustering of cells for Emont single-cell deconvolution reference dataset 

A, Barplot of cell type distribution of 4 samples of Emont dataset 
B, UMAP of the Emont dataset 
C, Heatmap of cells from Emont dataset, clustered by cell-types. Cells having a similar profile 
to the other cells in the clusters are scored from 0.7 and above (green) and are used to 
construct the reference dataset. 
D, Heatmap of cells from Emont dataset using only nuclei genes, clustered by cell-types. Cells 
having a similar profile to the other cells in the clusters are scored from 0.7 and above (green) 
and are used to construct the reference dataset. 
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Sup.Figure 8 Cell-type landscape of WAT in function of biological and technical 
parameters 

A, Uniform manifold approximation and projection (UMAP) two-dimensional map of nuclei 
from all merged conditions showing repartition by Age 
B, UMAP of nuclei from all merged conditions showing repartition by Diet 
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C, of nuclei from all merged conditions showing repartition by Sample 
D, Distance tree estimated based on distance matrix between average profile of each cluster 
E, UMAP Gene expression of Ghr, Tshz2, Ptprj, main signature genes markers of super 
clusters 
 
 
 
 
 

 
Sup.Figure 9 All gene markers from merged SNuc-seq data 

Unsupervised heatmap of the top 3 differentially expressed cluster marker genes for each cell 
type cluster. Cells are represented in columns and genes are represented in rows. Cluster 
identities are shown above the heatmap. Color saturation indicates the strength of expression 
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Sup.Figure 10 Venn diagram of differentially expressed genes between AL old/DR old, 

AL young/DR old, DR young/DR old 

Venn diagram of differential expressed genes between mature adipocytes of AL_24, 
AL_5, DR_5 compared to DR_24.  
Fisher test to test statistical significance of overlap between AL_24/DR_24 and 
DR_5/DR_24, p.value <2.2e-16. 
Fisher test of overlap between AL_24/DR_24 and AL_5/DR_24, p.value <2.2e-16. 
Fisher test of overlap between AL_5/DR_24 and DR_5/DR_24, p.value <2.2e-16. 
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Sup.Figure 11 De-novo-lipogenesis pathway is enriched in ALDR16 adipocytes 

A, UMAP of ALDR16 and ALDR20 sNuc-seq data, with feature plots showing expression of 
Acaca and Fasn.  
B, Dot plot showing the average expression of selected markers of different stage of 
maturation in adipocytes. 
C, Expression of lipogenesis genes by RTqPCRs in WAT at 20, 24 and 28M for AL, DR, 
ALDR16 and ALDR20.  
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Sup.Figure 12 Bulk RNA-seq analysis and deconvolution analysis enable to validate 
cell type proportion variation 

A, Principal component analysis of bulk RNA-seq dataset using all genes expressed, by 
conditions (AL at 24M, DR at 24M, ALDR16 at 20M and 24M, ALDR20 at 24M and 28M). 
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B, Principal component analysis of bulk RNA-seq dataset using only DNL genes, by conditions 
(AL at 24M, DR at 24M, ALDR16 at 20M and 24M, ALDR20 at 24M and 28M). 
C, Gene level expression (log of normalised counts based on median of ratios methods) of 
inflammation markers in all samples. 
D, Barplot of predicted percentages of cell types for each sample in all conditions, using SCDC 
deconvolution method. 
 

 

 

 

 
Sup.Figure 13 Deconvolution analysis of Hahn et al. dataset using ALDR16 and AL_24 
as reference 

A, Heatmap of cells from SNuc-seq AL_24dataset, clustered by cell-types. Cells having a 
similar profile to the other cells in the clusters are scored from 0.7 and above (green) and are 
used to construct the reference dataset. 
B, Heatmap of cells from SNuc-seq ALDR16 dataset, clustered by cell-types. Cells having a 
similar profile to the other cells in the clusters are scored from 0.7 and above (green) and are 
used to construct the reference dataset. 
C, stacked bar plot of predicted percentages of cell types for each sample in all conditions of 
the dataset from (Hahn et al., 2019), using SCDC deconvolution method. 
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D, Barplot of percentage of cell-type categories per samples based on deconvolution analysis 
with SCDC 
 
 

Table 5-1 Differentially expressed genes upregulated between adipocyte 5 (DR_24) 
and adipocyte 4 (ALDR_16) 

Gene symbol p.val Avg.log2FC pct.1 pct.2 p.val.adj 

Gm42418 1.402047e-17 19.0063168 0.993 0.973 1.370221e-13 

Neat1 8.987489e-23 17.0655531 0.986 0.911 8.783473e-19 

Nnat 2.697974e-12 9.5936460 0.313 0.143 2.636730e-08 

Atp1a2 2.022433e-28 8.4297933 0.829 0.605 1.976523e-24 

Slc1a3 5.925544e-37 7.0906552 0.857 0.624 5.791034e-33 

Adrb3 3.052118e-70 6.6261589 0.724 0.193 2.982835e-66 

Fam13a 6.772255e-46 6.4653280 0.577 0.154 6.618525e-42 

Thrsp 1.983053e-08 5.9877019 0.306 0.476 1.938037e-04 

St3gal4 4.175506e-10 5.5571973 0.196 0.064 4.080722e-06 

Tns1 2.808227e-27 4.7767820 0.673 0.345 2.744480e-23 

Acsl1 6.173910e-42 4.6976636 0.731 0.324 6.033762e-38 

Cd1d1 2.366644e-63 4.5445913 0.680 0.177 2.312921e-59 

Sorbs1 9.669433e-09 4.2287912 0.748 0.603 9.449936e-05 

Snhg11 1.772823e-26 3.2105777 0.528 0.218 1.732580e-22 

Fam214a 2.476413e-23 3.1145578 0.439 0.162 2.420198e-19 

Art3 6.385419e-31 2.9912312 0.570 0.225 6.240470e-27 

Lipe 3.536888e-34 2.9533133 0.701 0.337 3.456600e-30 

Ctcflos 1.109457e-07 2.7064247 0.315 0.175 1.084272e-03 

Acacb 1.918809e-22 2.5400379 0.458 0.175 1.875252e-18 

Acss3 3.205830e-26 2.4474534 0.425 0.127 3.133058e-22 

Fabp4 1.320568e-39 2.1275031 0.509 0.125 1.290591e-35 

Slc1a5 1.206955e-20 2.0371172 0.591 0.308 1.179557e-16 

Fry 2.710553e-28 1.9996748 0.551 0.216 2.649023e-24 

Zbtb16 3.851658e-15 1.9652274 0.402 0.185 3.764226e-11 

Ivns1abp 1.714842e-11 1.9318050 0.227 0.075 1.675915e-07 
 

Differentially expressed genes from Wilcoxon rank test. p.val is the p-value from Wilconxon 
test. avg_logFC is log fold-chage of the average expression between the two groups. Positive 
values indicate that the gene is more highly expressed in the first group. pct.1 is the 
percentage of cells where the gene is detected in the first group. pct.2 is the percentage of 
cells where the gene is detected in the second group. p_val_adj is the adjusted p-value, based 
on bonferroni correction using all genes in the dataset. 
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Table 5-2 Differentially expressed genes downregulated between adipocyte 5 (DR_24) 
and adipocyte 4 (ALDR_16) 

Gene 
symbol 

p.val Avg.log2FC pct.1 pct.2 p.val.adj 

Acly 1.999523e-57 -13.1783249 0.367 0.802 1.954134e-53 

Acaca 2.336224e-34 -12.8373438 0.699 0.904 2.283191e-30 

Ghr 2.044467e-19 -9.8283841 0.883 0.960 1.998058e-15 

Pparg 3.570883e-10 -9.0850990 0.449 0.628 3.489824e-06 

Me1 1.007326e-43 -8.1633221 0.143 0.566 9.844592e-40 

Mlxipl 2.936904e-14 -6.7125103 0.481 0.665 2.870236e-10 

Tshr 5.567291e-17 -6.2092817 0.404 0.667 5.440914e-13 

Mir99ahg 1.024637e-15 -5.3326920 0.381 0.618 1.001378e-11 

Xist 2.880770e-07 -5.2092221 0.874 0.750 2.815377e-03 

Zeb2 1.300369e-06 -4.6695305 0.395 0.534 1.270851e-02 

Dlc1 4.518092e-15 -4.4862192 0.393 0.601 4.415531e-11 

Pik3r1 2.079274e-06 -3.1427234 0.456 0.584 2.032075e-02 

Ebf1 1.044041e-12 -3.0709348 0.617 0.763 1.020341e-08 

Elovl6 6.226648e-16 -2.9695486 0.119 0.347 6.085303e-12 

Pnpla3 2.628229e-07 -2.5668436 0.360 0.501 2.568569e-03 

Cidec 7.708825e-54 -2.5418797 0.806 0.378 7.533834e-50 

Pakap 2.862977e-06 -2.4227255 0.269 0.389 2.797988e-02 

Col15a1 5.500736e-19 -2.1171890 0.171 0.428 5.375870e-15 

Adamts5 6.657261e-12 -1.9022073 0.063 0.222 6.506141e-08 

Tmem45b 9.486593e-10 -1.4153314 0.068 0.206 9.271248e-06 

Sema3c 3.738719e-16 -1.3729896 0.049 0.239 3.653850e-12 

Mycbp2 4.770473e-12 -1.2807607 0.173 0.362 4.662183e-08 

Fasn 3.583961e-09 -1.2773881 0.624 0.780 3.502605e-05 

Nabp1 5.839772e-09 -1.2449557 0.138 0.281 5.707209e-05 

Prkd1 2.189719e-08 -1.1550653 0.140 0.285 2.140012e-04 

 
Differentially expressed genes from Wilcoxon rank test. p.val is the p-value from Wilconxon 
test. avg_logFC is log fold-chage of the average expression between the two groups. Positive 
values indicate that the gene is more highly expressed in the first group. pct.1 is the 
percentage of cells where the gene is detected in the first group. pct.2 is the percentage of 
cells where the gene is detected in the second group. p_val_adj is the adjusted p-value, based 
on bonferroni correction using all genes in the dataset. 
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