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Ich bedanke mich bei allen (ehemaligen) Kollegen und Kolleginnen am Institut
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Contents

1. Introduction 1

2. Alternative estimation approaches for the factor augmented panel data

model with small T 5

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Existing estimation approaches . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1. The PC estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2. The CCE Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3. The HNR and ALS approach . . . . . . . . . . . . . . . . . . . . . 9

2.2.4. The RS estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3. Asymptotic properties for fixed T . . . . . . . . . . . . . . . . . . . . . . . 12

2.4. Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5. Multiple factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6. Determining the number of factors . . . . . . . . . . . . . . . . . . . . . . 18

2.7. Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7.1. Normalization failure . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7.2. Fixed versus data driven weights . . . . . . . . . . . . . . . . . . . 24

2.7.3. Selecting the number of factors . . . . . . . . . . . . . . . . . . . . 26

2.7.4. Performance in more general setups . . . . . . . . . . . . . . . . . 29

2.8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3. Empirical Challenges for Optimal Portfolio Selection 33

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2. The MSR and GMV portfolios . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3. On the interpretation of negative weights . . . . . . . . . . . . . . . . . . 38

3.4. The statistical properties of estimated weights . . . . . . . . . . . . . . . . 40

3.4.1. Estimating the covariance matrix . . . . . . . . . . . . . . . . . . . 41

3.4.2. Estimating the mean returns . . . . . . . . . . . . . . . . . . . . . 45

3.4.3. The effect of the normalization . . . . . . . . . . . . . . . . . . . . 50

ii



Contents

3.5. Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.1. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.2. Alternative Portfolio Selection Strategies . . . . . . . . . . . . . . 53

3.5.3. Methodology for Evaluating the Performance . . . . . . . . . . . . 59

3.5.4. Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.5. Analysis of weights . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4. Quantifying Downside Risk: A comparative Study of Value at Risk and

Expected Shortfall 77

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2. Definitions and Properies of VaR and ES . . . . . . . . . . . . . . . . . . 79

4.2.1. VaR and ES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.2. Coherence, subadditivity and fat tails . . . . . . . . . . . . . . . . 80

4.2.3. Elicitability and conditional elicitability . . . . . . . . . . . . . . . 83

4.2.4. Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.5. Summary of properties . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3. ES/VaR ratios for the normal and t-distribution . . . . . . . . . . . . . . 90

4.3.1. VaR and ES for location scale families . . . . . . . . . . . . . . . . 90

4.3.2. Normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.3. Student-t distribution . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.4. Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.5. Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4. Bootstrap resampling application . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.1. Application setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.2. Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5. Performance based on scoring functions . . . . . . . . . . . . . . . . . . . 111

4.5.1. Application setup and portfolios . . . . . . . . . . . . . . . . . . . 112

4.5.2. Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.5.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A. Appendix of Chapter 2 120

B. Appendix of Chapter 3 124

B.1. 49 industry portfolios with adjusted time period . . . . . . . . . . . . . . 124

iii



Contents

B.2. L1-regularization: choice of λ . . . . . . . . . . . . . . . . . . . . . . . . . 124

C. Appendix of Chapter 4 128

References 133

iv



List of Tables

2.1. Fixed versus data driven weights . . . . . . . . . . . . . . . . . . . . . . 25

2.2. Hit rates for selection criteria . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3. Selecting the number of factors . . . . . . . . . . . . . . . . . . . . . . . 28

2.4. Performance in more general setups . . . . . . . . . . . . . . . . . . . . . 30

3.1. Performance of weights with estimated covariance matrix . . . . . . . . 44

3.2. Descriptive statistics for the first 10 estimated weights . . . . . . . . . . 48

3.3. Shrinkage estimation of the mean vector (MSR) . . . . . . . . . . . . . . 49

3.4. Alternative normalizations . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5. Performance measures for the CRSP dataset . . . . . . . . . . . . . . . . 64

3.6. Performance measures for the 49 industry portfolios . . . . . . . . . . . 68

3.7. Analysis of weights for the CRSP dataset . . . . . . . . . . . . . . . . . 71

3.8. Analysis of weights for the 49 industry portfolios . . . . . . . . . . . . . 74

4.1. VaR, ES and ratios for the Student-t and normal distribution . . . . . . 93

4.2. Simulation results for t-distributed data . . . . . . . . . . . . . . . . . . 95

4.3. Performance results for VaR 97.5% . . . . . . . . . . . . . . . . . . . . . 107

4.4. Performance results for ES 97.5% . . . . . . . . . . . . . . . . . . . . . . 107

4.5. Performance results for VaR 99% . . . . . . . . . . . . . . . . . . . . . . 110

4.6. Performance results for ES 99% . . . . . . . . . . . . . . . . . . . . . . . 110

4.7. Descriptive statistics for the five portfolios . . . . . . . . . . . . . . . . . 113

4.8. Average scores and ranks for (VaR97.5%,ES97.5%) . . . . . . . . . . . . . 115

4.9. Diebold-Mariano t-statistics for the naive portfolio, ES 97.5% . . . . . . 116

4.10. Diebold-Mariano t-statistics for the BAC portfolio, ES 97.5% . . . . . . 117

4.11. Average scores and ranks for (VaR99%,ES99%) . . . . . . . . . . . . . . . 117

B.1. Performance measures for the 49 industry portfolios with adapted out-

of-sample period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.2. Alternative methods for choosing λ . . . . . . . . . . . . . . . . . . . . . 126

v



List of Tables

C.1. Performance results for VaR 97.5% (est. window 500) . . . . . . . . . . 128

C.2. Performance results for ES 97.5% (est. window 500) . . . . . . . . . . . 128

C.3. Performance results for VaR 99% (est. window 500) . . . . . . . . . . . 129

C.4. Performance results for ES 99% (est. window 500) . . . . . . . . . . . . 129

C.5. Average scores and ranks for (VaR97.5%,ES97.5%), (est. window 500) . . 130

C.6. Average scores and ranks for (VaR99%,ES99%), (est. window 500) . . . . 130

C.7. Diebold-Mariano t-statistics for the MV+ portfolio, ES 97.5% . . . . . . 131

C.8. Diebold-Mariano t-statistics for the MCD portfolio, ES 97.5% . . . . . . 131

C.9. Diebold-Mariano t-statistics for the NVDA portfolio, ES 97.5% . . . . . 131

C.10. Simulation results for t-distributed data (est. window 500) . . . . . . . . 132

vi



List of Figures

2.1. Normalization failure for CCE (DGP1) and ALS (DGP2) . . . . . . . . 23

3.1. Condition number as a function of N . . . . . . . . . . . . . . . . . . . . 42

3.2. Function ψ1(c) for the first asset . . . . . . . . . . . . . . . . . . . . . . 46

3.3. Comparison of the asymptotic and empirical density . . . . . . . . . . . 47

3.4. Asymptotic densities for five estimated weights . . . . . . . . . . . . . . 47

3.5. Example of MSE paths for Britten-Jones LASSO regressions . . . . . . . 57

3.6. LASSO weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1. p-ratios and i-ratios for the 2000 bootstrap samples . . . . . . . . . . . . 109

vii



Chapter 1.

Introduction

This thesis consists of three self-contained essays on statistical methods for modeling

financial risk. Chapter 2 corresponds to the paper “Alternative estimation methods

for the factor augmented panel data model with small T” by Breitung and Hansen

(2021), published in Empirical Economics. Chapter 3 corresponds to the working paper

”Empirical Challenges for Optimal Portfolio Selection”, which is also a joint work with

Jörg Breitung. Chapter 4 contains my single-authored working paper “Quantifying

Downside Risk: A comparative Study of Value at Risk and Expected Shortfall”.

The topics in Chapters 3 and 4 are directly related to the modeling of financial risks.

In Chapter 3, we analyze portfolio models, which are closely linked to the minimization

of portfolio risk. Chapter 4 examines the estimation of risk measures to quantify the

downside risk of financial assets. Chapter 2 does not contain an empirical application,

since the primary focus of this paper lies in the theoretical differences of alternative esti-

mation methods and their comparative performance in simulation studies. However, the

considered estimation methods are also relevant in the field of financial risk. Application

examples can be found, for instance, in the context of exchange rate risks in Breitung

and Mann (2017) or in the case of dynamic panel data models for leverage in Westerlund

et al. (2022). In the following, the main findings of the three papers will be summarized

and my contribution to Chapters 2 and 3 will be outlined.

In Chapter 2, alternative estimation methods for the factor augmented panel data

model are compared. In contrast to traditional panel data models, factor augmented

panel data models offer a highly flexible approach to account for cross-sectional depen-

dence and time-varying heterogeneity in the error term. For instance, panel data often

exhibit cross-sectional dependence, even after conditioning on relevant independent vari-

ables (Karabiyik et al., 2019a). Ignoring the cross-sectional dependence in the errors can

lead to serious consequences such as misleading inference or even inconsistent estimates.

In the factor augmented panel data model, unobservable time-varying individual ef-

fects are modeled though a factor structure in the error term, where the factors affect

1



Chapter 1. Introduction

all cross-section units with different intensities. In Chapter 2, the focus lies on panel

datasets where the number of cross-sections (N) is large relative to the number of time

periods (T ). In the comparison of different estimation methods, we include the principal

component (PC) estimator of Bai (2009) and the common correlated effects (CCE) esti-

mator proposed by Pesaran (2006). These estimators were originally developed for panel

data with large N and T . Additionally, we consider the GMM approaches introduced

by Ahn et al. (2013) and Robertson and Sarafidis (2015), which assume that T is small

(that is T is fixed in the asymptotic analysis).

Our comparison of these existing methods addresses three different issues. First, we

analyze the possibility of an inappropriate normalization of the factor space (referred to

as the normalization failure). The results indicate that the normalization conditions for

the CCE estimator of Pesaran (2006) and the original ALS estimator of Ahn et al. (2013)

can be problematic when the factors and loadings are close to a normalization failure.

However, it is possible to adapt the estimation methods to improve the performance

in such cases. In particular, we propose a variant of the CCE estimator that avoids

the normalization failure by adapting a weighting scheme inspired by the analysis of

Mundlak (1978). Secondly, we examine the impact of estimating versus fixing the number

of factors in advance. We find that for small T , the selection criteria proposed by Bai

and Ng (2002) and Ahn and Horenstein (2013) can yield inconsistent results, whereas

the BIC criteria of Ahn et al. (2013) and Robertson and Sarafidis (2015) demonstrate

robust performance. Thirdly, we demonstrate that the relative performance of these

alternative estimation methods is highly influenced by the specific design of the Monte

Carlo experiment, which helps to explain the conflicting findings from previous Monte

Carlo studies.

My contribution to Chapter 2 is as follows: I developed the MATLAB codes and per-

formed all Monte Carlo simulations. Regarding the writing process, I authored Section

2.7 on the Monte Carlo simulations and created the appendix. Prior to and during the

publication process, I revisited the draft of the paper multiple times.

In Chapter 3, various challenges encountered in practical portfolio selection are exam-

ined. The maximum Sharpe ratio (MSR) portfolio, as proposed by Markowitz (1952),

requires reliable estimates of expected returns and the covariance matrix of returns. Es-

timating these moments via their sample counterparts (the so-called plug-in method)

yields extreme portfolio weights that fluctuate excessively over time and typically per-

form poorly out-of-sample (see, e.g., Michaud, 1989; Best and Grauer, 1991; Chopra

and Ziemba, 1993; DeMiguel et al., 2009b). Obtaining reliable estimates is particularly

problematic in case the number of investable assets (N) is of a similar magnitude as the

2



Chapter 1. Introduction

available amount of time series data (T ). A common procedure is to ignore the infor-

mation on the first moment, resulting in the estimation of the global minimum variance

(GMV) portfolio, which generally improves the out-of-sample performance.

We analyze the impact of estimation uncertainties in both moments on portfolio per-

formance. To mitigate the effects of errors in estimating the covariance matrix, several

regularization methods have been proposed, such as shrinkage estimators or dimension-

ality reduction techniques like factor models. These methods can significantly improve

the out-of-sample performance of the GMV portfolio, particularly in high-dimensional

applications (e.g., Ledoit and Wolf, 2003, 2004a,b). Another approach to enhance the

out-of-sample performance of both portfolios, MSR and GMV, is by regularizing the

weights. Both portfolio models can be represented as regression models (Britten-Jones,

1999; Kempf and Memmel, 2006). This opens up the possibility, for example, to con-

strain the L1-norm of the weights through the application of LASSO techniques in the

regression estimation. Another issue arises from the large number of negative weights

that result from the estimation of the MSR and GMV portfolios. Traditionally, negative

weights imply a short-selling strategy, which, however, leads to high risk exposure and

turnover rates for the portfolio. As an alternative, we propose a put option strategy that

reduces portfolio risk, turnover, and extreme weights.

In an empirical application, we analyze the out-of-sample performance of 15 portfolio

models using two different datasets characterized by different concentration ratios (N/T ).

In cases where T is substantially larger than N , the performance of the plug-in GMV

estimator is competitive in comparison to other models. However, when the number

of assets is considerable relative to the number of time periods, we demonstrate how

alternative regularization approaches, such as LASSO or shrinkage methods, help to

improve portfolio allocation in practice.

My contributions to Chapter 3 are as follows: Firstly, I performed all Monte Carlo

simulations of Sections 3.4.1 and 3.4.3. Secondly, I collected and processed all the data for

the empirical application. Thirdly, I am fully responsible for the empirical application in

Section 3.5, where I implemented and performed all empirical exercises using the financial

data set. Fourthly, I contributed to the theoretical development of our LASSO versions

and introduced the concept of blocking strategies. In terms of the writing process, I

authored Section 3.5 on the empirical application, the introduction, conclusion, and

several paragraphs in Sections 3.2 and 3.4. Additionally, I created the appendix.

Chapter 4 focuses on the analysis of the two risk measures Value at Risk (VaR) and

Expected Shortfall (ES) with regard to their theoretical differences and practical esti-

mation. This comparison is particularly relevant, since ES at the 97.5% confidence level

3



Chapter 1. Introduction

replaces VaR at the 99% confidence level as the regulatory risk measure for calculating

capital requirements according to the Basel III Accords. This transition is motivated by

the fact that ES captures tail risks in contrast to VaR. Furthermore, ES is a subadditive

risk measure unlike VaR (Artzner et al., 1999), a theoretical property related to risk

diversification. On the other hand, backtesting ES appears to be more challenging due

to its lack of elicitability (Gneiting, 2011). ES is also less robust with regard to model

misspecifications and noise in the data in comparison to VaR (see, e.g., Cont et al., 2010;

Kou et al., 2013; Kellner and Rösch, 2016).

Despite these theoretical differences, both risk measures have to be estimated in prac-

tice. This leaves the question whether the more complex estimation of ES provides any

additional insights with regard to the quantification of risk. The results of the simula-

tion and application study in Chapter 4 reveal that ES at the 97.5% confidence level is

estimated with considerable more uncertainty compared to VaR, even when considering

VaR at the higher 99% confidence level.

Under certain distributional assumptions, there exists a relationship between the two

risk measures. For instance, under the assumption of a normal distribution, ES does

not provide additional insights compared to VaR, as the corresponding VaR can be

simply multiplied by a constant to obtain ES. In more realistic scenarios, the relationship

between ES and VaR depends on the tail thickness of the distribution. In an empirical

application, the performance of certain ratio models is examined. These models involve

multiplying VaR by a factor to obtain ES estimates. Such ratio models either exhibit

improved performance compared to ES benchmark models or offer comparable quality.

4
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Alternative estimation approaches for the

factor augmented panel data model with

small T

2.1. Introduction

The seminal work of Holtz-Eakin et al. (1988) has provided two important contributions

to the statistical analysis of panel data. First, it proposes a GMM framework for es-

timating dynamic panel data models that were further developed and popularized by

Arellano and Bond (1991). This approach has become standard in the dynamic analy-

sis of panel data. The second contribution, the introduction of time varying individual

effects, was less influential and went largely unnoticed for many years. For example, the

excellent monograph of Baltagi (2005) – as all other textbooks on panel data analysis

of the early 2000s – does not consider time varying individual effects or any other factor

structure. Bai (2009) pointed out that time varying individual effects are just a special

case of a factor structure and provided a general framework for estimating a panel data

model with “interactive fixed effects”, which is also referred to as the factor-augmented

panel data model.

With the work of Ahn et al. (2001, 2013), Pesaran (2006), and Bai (2009) the interest in

models that account for time varying heterogeneity and cross-section correlation surged

considerably and the 25th. International Conference on Panel Data in Vilnius 2019

included a large number of papers dealing with factor-augmented panel data models.

In empirical practice, the Common Correlated Effects (CCE) approach proposed by

Pesaran (2006) has recently become very popular among empirical researchers. This

is due to the fact that this estimator is easy to understand and implement, a STATA

routine (xtmg) and a Gretl add-on (xtcsd) is available and it performs well in Monte

Carlo studies. It is however not clear, whether the CCE approach is similarly attractive

5
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in empirical applications where the number of time periods T is small (say 5 – 15).

Ahn et al. (2013) and Robertson and Sarafidis (2015) proposed a GMM approach that

is shown to be consistent for finite T , whereas the CCE and the Principal Component

(PC) estimator were developed for samples with large T and N . Su and Jin (2012) and

Westerlund et al. (2019) showed that the CCE approach is consistent and asymptotically

(mixed) normal if T is fixed and N → ∞, whereas the consistency of the PC estimator

requires quite restrictive assumptions (such as i.i.d. errors across time) in this case. It

is, however, not clear how large T should be in order to ensure reliable estimation and

inference.

An important assumption for the CCE estimator is that the (weighted) mean of the

factor loadings is different from zero. This assumption is difficult to verify as the factor

loadings are typically unknown. Furthermore, we show that the CCE estimator is already

biased if the mean of the factor loadings is O(N−1/2). To escape such a “normalization

failure”, we suggest a data dependent weighting scheme that is inspired by the Mundlak

(1978) approach. In our Monte Carlo simulations we show that this simple weighting

scheme performs well, whenever the original CCE estimator suffers from a normalization

failure.

The rest of the paper is organized as follows. Section 2.2 compares the existing es-

timation methods and Section 2.3 reviews and complements the asymptotic results for

fixed T and N → ∞. Possible problems with the normalization of the estimators are

analyzed in Section 2.4. An extension to multiple factors is considered in Section 2.5

and empirical approaches for selecting the number of common factors are examined in

Section 2.6. We argue that popular selection rules for the number of factors are gen-

erally inconsistent if T is fixed. The small sample properties of alternative estimation

procedures are investigated in Section 2.7. Specifically, we illustrate the detrimental

effect of a normalization failure and demonstrate the robustness of the Mundlak type

CCE estimator. Furthermore, we investigate the effects of estimating the number of fac-

tors on the performance of the estimation procedures. Finally, we employ three general

model setups from the literature in order to compare the competing methods in more

challenging and realistic scenarios. Section 2.8 concludes.
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Chapter 2. Estimation approaches for the factor augmented panel data model

2.2. Existing estimation approaches

Consider the factor augmented panel data model:1

yit = β′xit + eit (2.1)

with eit = λift + uit , (2.2)

where xit and β are k × 1 vectors. For the ease of exposition, we first consider a single

factor with r = 1, that is, ft and λi are scalars. The extension to multiple factors is

considered in Section 2.5.

We adopt a “classical” panel data framework where the coefficient vector β is the

same for all cross-section units (homogeneous panel). Furthermore, we assume that T

may be small relative to N , which is typical for many panel data applications. It should

be noted that the asymptotic framework of Pesaran (2006) and Bai (2009) assumes

that N and T tend to infinity, whereas Ahn et al. (2013) and Robertson and Sarafidis

(2015) suppose that T is small and fixed. Furthermore, the latter approach treats ft as

parameters and thereby avoids making any assumptions on these parameters, whereas

Pesaran (2006) and Bai (2009) assume that the factors are weakly correlated random

variables and the loadings are treated as parameters (or also as random variables). We

make the assumption that uit is independent (strictly exogenous) of xit, ft and λi. This

rules out dynamic specifications.2

It is well known that in the two way panel data model the individual and time specific

effects (which result as special cases of the factor model with constant factor and loading,

respectively) can be removed by a simple data transformation, where the variables are

adjusted by the individual and time specific averages. It is not difficult to see that a

similar transformation exists for the model with interactive fixed effects, which is given

by

yit − λiyt(λλλ) = β′ [xit − λixt(λ)] + uit − λiut(λ), (2.3)

1The model may include further terms such as γ′
idt, where dt is some observed strictly exogenous

regressor, cf. Pesaran (2006). As such additional terms are easily accounted for without affecting the
main results, these extensions are ignored.

2In panels with individual specific parameters and fixed T , including weakly dependent regressors (such
as lagged dependent variables) results in a bias of order 1/T (the incidental parameter problem). The
GMM based estimators of Section 2.2.3 are able to cope with this bias by introducing time dependent
vectors of instruments. In this paper we abstract from such complications. The reader interested in
dynamic models is referred to Juodis and Sarafidis (2018).

7
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where λλλ = (λ1, . . . , λN )′ and

yt(λλλ) =
1

Nλ2

N∑
i=1

λiyit

with λ2 = N−1
∑N

i=1 λ
2
i . The weighted averages xt(λ) and ut(λ) are constructed in

an analogous manner. Note that et(λλλ) = yt(λλλ) − β′xt(λ) = ft + ut(λ) serves as an

estimate of ft. Estimating the transformed regression (2.3) is equivalent to the least-

squares estimator, treating β and f1, . . . , fT as parameters and xit and λi as regressors.

Accordingly, the resulting estimator is efficient if uit
iid∼ N (0, σ2).

2.2.1. The PC estimator

For the PC approach suggested by Bai (2009), equation (2.3) is replaced by the feasible

version

yit − λ̂iyt(λ̂λλ) = β′
[
xit − λ̂ixt(λ̂λλ)

]
+ eit − λ̂iet(λ̂λλ), (2.4)

where eit = yit − β′xit = λift + uit and λ̂i denotes the PC estimator of the factor

loading λi, which is equivalent to the eigenvector associated with the largest eigenvalue

of the sample covariance matrix Ωee(β) = T−1
∑T

t=1 et(β)et(β)
′ with et(β) = (yi1 −

β′xi1, . . . , yiT − β′xiT )
′. As shown by Moon and Weidner (2015) the sum of squared

residuals can be obtained by minimizing the objective function

β̂ = argmin

{
µmin

[
N∑
i=1

(yi −Xiβ) (yi −Xiβ)
′

]}
(2.5)

where yi = (yi1, . . . , yiT )
′ and Xi = (xi1, . . . ,xiT )

′ and µmin{A} denotes the smallest

eigenvalue of the matrix A. The minimum can be obtained by standard numerical meth-

ods, whereas Bai (2009) proposed to compute the (nonlinear) least-squares estimator of

(2.4) sequentially by starting with the pooled OLS or within-group estimator of β (that

is by ignoring the factor structure in the errors). The first principal component of the

residual eit(β̂) yields a first estimator of the common factor and the associated loadings

are used to obtain the estimated analog of the weighted averages in (2.4). The estima-

tion procedure is iterated until the estimators converge to the least-squares estimators

of β and λ.

Moon and Weidner (2019) pointed out that the least-squares objective function may

exhibit several local minima and therefore it is possible that the gradient based mini-

8
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mization algorithm fails to find the global minimum. To cope with this problem, Moon

and Weidner (2019) propose a nuclear norm penalty that results in a convex optimiza-

tion problem. Another possibility is to initialize the minimization algorithm by a
√
NT -

consistent initial estimator. In this case it is sufficient to assume convexity in the 1/
√
NT

vicinity around the true value.

2.2.2. The CCE Estimator

In contrast to the PC estimator, the CCE approach proposed by Pesaran (2006) does not

adopt an (asymptotically) efficient weighting scheme, but employs instead pre-specified

weights λ0.
3 In practice λ0 = (1, . . . , 1)′ is the default option, but any other granular

weighting scheme is possible. This gives rise to a modified transformation,

yit − λ∗i yt(λλλ0) = β′ [xit − λ∗i xt(λλλ0)] + uit − λ∗i ut(λλλ0), (2.6)

where

λ∗i = λi

∑N
i=1 λ

2
0,i∑N

i=1 λ0,iλi

is required to drop the factor from the model. Note that if λ0,i = λi for all i, then

λ∗i = λi and the transformation is equivalent to (2.3). Furthermore, if λ0,i = 1 then

λ∗i = λi/λ, where λ = N−1
∑N

i=1 λi. By reorganizing (2.6), we obtain the cross-section

augmented regression equation,

yit = β′xit + λ∗i yt(λλλ0) + γ ′
ixt(λλλ0) + vit , (2.7)

where γi = −λ∗iβ and vit = uit − λ∗iut(λλλ0). In practice, the nonlinear restriction γi =

−λ∗iβ is ignored and, therefore, γi is treated as an additional parameter.4

2.2.3. The HNR and ALS approach

While the CCE and PC approach replace the unobserved factor by (weighted) averages

of y1t, . . . , yNt and x1t, . . . ,xNt, the approaches suggested by Holtz-Eakin et al. (1988)

3This does not imply, however, that the CCE estimator is always inefficient whenever λ ̸= λ0. As
shown by Westerlund et al. (2019) the CCE estimator is asymptotically efficient if r = k+ 1 and uit

is i.i.d. across i and t.
4The restricted version of the CCE estimator is considered in Everaert and De Groote (2016). In our
experience, imposing the nonlinear restriction does not result in an important gain in efficiency. In
the model with r > 1 the restriction cannot be imposed anyway.

9
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(HNR) and Ahn et al. (2013) (ALS) replace the unknown factor loadings by linear

combinations of yi1, . . . , yiT and xi1, . . . ,xiT :

HNR:
1

ft−1
(yi,t−1 − β′xi,t−1) = λi +

1

ft−1
ui,t−1 (2.8)

ALS:
1

fT
(yiT − β′xiT ) = λi +

1

fT
uiT . (2.9)

The main difference between these two approaches is that in (2.8) the linear combination

is time dependent, whereas in (2.9) the linear combination is the same for all time series.

As we do not see any advantage in using the variant HNR (and in our simulations the

HNR estimator tends to perform worse than the ALS estimator), we focus on the ALS

variant in the following analysis.

Inserting (2.9) in the model (2.1) yields

ALS: yit = β′xit + θtyiT − θtβ
′xiT + νit for t = 1, . . . , T − 1, (2.10)

where θt = ft/fT and νit = uit − θtuiT . Note that this approach involves T − 1 addi-

tional parameters θ1, . . . , θT−1, whereas the CCE approach involves N(k+1) additional

parameters, which may be a much larger number of parameters, in particular if N is

large relative to T .

Equation (2.10) can be estimated as a linear equation by ignoring the nonlinear re-

lationship δt = θtβ and treating δt as additional parameters, cf. Hayakawa (2012).

Furthermore, as the regressor yiT is correlated with the errors, an instrumental variable

approach is required for estimating the coefficients efficiently. Since it is assumed that

xit is strictly exogenous, we employ observations of all time periods to construct the

Tk × 1 instrumental variable vector zi = (x′
i1,x

′
i2, . . . ,x

′
iT )

′. The first stage regression

yields ŷiT = π̂′zi, where π̂′zi is the fitted value from a regression of yiT on zi. The

second stage regression is

yit = β′xit + θtŷiT − θtβ
′xiT + νit.

Estimating the latter equation by OLS yields the two-stage least squares (2SLS) estima-

tor. Since the error term νit is autocorrelated (due to the common component θtuiT ), a

GMM estimator based on the moment condition E(νi ⊗ zi) = 0 with νi = (νi1, . . . , νiT )
′

is more efficient, in general.

10
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2.2.4. The RS estimator

The GMM estimator of Robertson and Sarafidis (2015) results from multiplying the orig-

inal model by the vector of instruments zi (e.g. the instruments of the ALS estimator)

such that

ziyit =
(
zix

′
it

)
β + (ziλi) ft + ziuit .

The respective moment condition is given by

E (mzy −Mzxβ − f ⊗ γ) = 0,

where

mzy =


1
N

N∑
i=1

ziyi1

...

1
N

N∑
i=1

ziyiT

 Mzx =


1
N

N∑
i=1

zix
′
i1

...

1
N

N∑
i=1

zix
′
iT


γ =

1

N

N∑
i=1

ziλi f =
(
f1 · · · fT

)′
.

Note that in this model the N factor loadings λ1, . . . , λN enter in form of the Tk di-

mensional vector γ, resulting in a considerable dimensionality reduction whenever N is

much larger than T . The GMM estimator results from minimizing the criterion function

Q(β,γ,f) = (mzy −Mzxβ − f ⊗ γ)′WN (mzy −Mzxβ − f ⊗ γ) , (2.11)

where WN is a consistent estimator of the optimal weighting matrix

W =

[
E

(
1

N

N∑
i=1

ũiũ
′
i

)]−1

with ũi = mzy −Mzxβ − f ⊗ γ. Robertson and Sarafidis (2015) propose to minimize

the function Q(·) by applying a sequential GMM estimator. Let f0t denote some starting

value. Replacing ft by f0t , the parameters β and γ are obtained by linear GMM.

Replacing γ by the respective GMM estimator, we obtain an updated estimator for

ft by another linear GMM estimation step. This sequential GMM estimator eventually

converges to the minimum of (2.11). An alternative estimator based on linear GMM is

11
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proposed by Juodis and Sarafidis (2020).

It is important to notice that the first order condition of the GMM estimator is in-

variant to some scaling factor c, such as f∗ = cf and γ∗ = γ/c. The PC estimator

implies c = 1/
√∑T

t=1 f
2
t and the original ALS estimator imposes c = 1/fT . The ob-

jective function of the least-squares estimator does not impose any normalization of the

factors. There exists a unique minimum for the product f ⊗ γ, but the decomposition

into γ and f is somewhat arbitrary and depends on the starting value of the iterative

algorithm.

2.3. Asymptotic properties for fixed T

The asymptotic properties of the PC and CCE estimators are typically derived by

adopting a joint limit theory, where T and N tend to infinity (e.g. Pesaran 2006, Bai

2009, Greenaway-McGrevy et al. 2012 and Westerlund and Urbain 2015). The asymp-

totic analysis revealed that the PC and CCE estimators are
√
NT -consistent whenever√

T/N → 0 and
√
N/T → 0. This requirement is fulfilled if for some fixed constant,

0 < a <∞, the paths of the sample sizes admit the inequality aT 0.5+ϵ < N < aT 2−ϵ for

some ϵ > 0. Statistical inference based on these estimators suffers from an asymptotic

bias whenever T/N → κ > 0. This bias does not show up in the asymptotic analysis of

Pesaran (2006), as he assumes that the coefficient vector βi = β+vi is individual specific,

where vi is a random error that prevents the estimator from achieving the usual
√
NT

convergence rate. In the literature cited above, bias-corrected estimators are suggested

that remove the asymptotic bias from the limiting distribution.

For fixed T and N → ∞ the CCE estimator of the factors is consistent as et(λ0)

converges in probability to cft, where c is some scale factor that is different from zero.

Therefore, the errors-in-variable problem vanishes for N → ∞ and fixed T (cf. Wester-

lund et al. 2019).

For the asymptotic analysis of the PC estimator, it is usually assumed that min(N,T ) →
∞ (cf. Bai 2009) and, therefore, the PC estimator may be inconsistent if T is fixed and

N → ∞ (see Remark 1 of Bai 2009). Under more restrictive assumptions it is, however,

possible to show that the PC estimator of the factors is consistent if T is fixed and

N → ∞. To focus on the main issues assume that β is known. Furthermore, we assume

that the vectors fff = (f1, . . . , fT )
′ and λλλ = (λ1, . . . , λN )′ are parameter vectors to be

12
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estimated. The PC estimator solves the first order conditions:

1

N

N∑
i=1

(eeei − f̂ffλ̂i)λ̂i = 0 where ei = (ei1, . . . , eiT )
′ (2.12)

1

T

T∑
t=1

(eeet − f̂tλ̂λλ)f̂t = 0 where et = (e1t, . . . , eNt)
′, (2.13)

subject to T−1
∑T

t=1 f̂
2
t = T−1f̂ff

′
f̂ff = 1. Since λ̂i = T−1f̂ff

′
eeei, we obtain

1

N

N∑
i=1

(
ei −

1

T
f̂ f̂ ′ei

)
e′if̂ = M

f̂

(
1

N

N∑
i=1

eie
′
i

)
f̂ = 0, (2.14)

where M
f̂
= IT − T−1f̂ f̂ ′ with M

f̂
f̂ = 0. For N → ∞ we have

1

N

N∑
i=1

eie
′
i

p→ σ2λff
′ +Σu,

where σ2λ = plim
N→∞

N−1
∑N

i=1 λ
2
i , Σu = plim

N→∞
N−1

∑N
i=1 uiu

′
i, and ui = (ui1, . . . , uiT )

′.

Assume that uit is i.i.d. with Σu = σ2uIT . As N → ∞ the moment condition is

solved by letting f̂ = f and, therefore, the PC estimator for f is consistent (up to a

scaling factor). If uit is heteroskedastic or autocorrelated, then MfΣΣΣufff ̸= 0 in general

and, therefore, the PC estimator is inconsistent as N → ∞. On the other hand, if

both N and T tend to infinity, the PC estimator is consistent no matter of a possible

heteroskedasticity or (weak) autocorrelation (cf. Chamberlain and Rothschild 1983).

The asymptotic theory for the HNR and ALS estimators assumes that T is fixed and

N tends to infinity. The GMM estimator is based on kT (T − 1) moment conditions

with k + T − 1 unknown parameters. Therefore, no problem arises if T is fixed and N

tends to infinity. Accordingly, the estimators are asymptotically normally distributed

and centered around zero. Of course the problem of instrument proliferation arises if T

gets large and the asymptotic theory breaks down if T 3/N → κ > 0 (cf. Bekker 1994

and Lee et al. 2017).5

5A practical solution is to reduce the set of instruments (cf. Juodis and Sarafidis 2018) or applying
other methods of dimensionality reduction (Breitung 2015, Section 15.2.3).
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2.4. Identification

Since the factor space is not identified without some normalization of the factors and

factor loadings, the estimation approaches impose some normalization that may be prob-

lematical in empirical practice. The CCE and ALS approaches require the following

conditions:

CCE:
1

N

N∑
i=1

λ0,iλi ̸= 0, (2.15)

ALS: fT ̸= 0 , (2.16)

whereas the requirement for the PC estimator T−1
∑T

t=1 f
2
t > 0 is unproblematic, as

otherwise the factor does not exist. The violation of the restrictions (2.15) and (2.16) may

result in poor distributional properties of the estimator. If, for example, N−1
∑
λ0,iλi =

0, then the cross section mean et(λλλ0) does not depend on the factor and, therefore,

the CCE estimator is biased whenever xit and λift are correlated (cf. Westerlund and

Urbain 2013). Similarly, if fT = 0, then yiT = β′xiT + uiT and the instruments are not

able to identify the parameters θt and δt.

One may argue that the chance that (2.15) or (2.16) is exactly zero is negligible, so

that problems only occur in rare cases (if at all). Unfortunately, this is not true, as

the problems already arise whenever N−1
∑
λ0,iλi = Op(N

−1/2). For illustration, let us

assume λ0,i = 1, such that yt(λλλ0) = yt and λ = Op(N
−1/2). Including the cross-section

averages yt and xt is equivalent to augmenting with et and xt. Furthermore,

et = λft + ut

= λf∗t ,

where f∗t = ft + (ut/λ). Since in our case ut/λ = Op(1), it follows that the factor f∗t

is different from ft. In this case, et does not represent the true factor and the CCE

estimator of β is inconsistent whenever the factor is correlated with the regressors.

To sidestep this difficulty, we follow the analysis of Mundlak (1978) and decompose

the factor loadings into a systematic component related to the ordinary average xi and

the projection error ξi:

λi = γ0 + γ ′
1xi + ξi, (2.17)

where xi = T−1
∑T

t=1 xit and ξi is uncorrelated with xi. In this specification γ ′
1xi
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represents a possible linear dependence of λi on the regressors that gives rise to an

endogeneity bias. Inserting (2.17) in (2.1) yields

yit = β′xit + λ∗i ft + e∗it ,

where λ∗i = γ0 + γ ′
1xi, e

∗
it = ξift + uit and E(e∗it|xit) = 0. This estimation equation is

related to the projection approach of Hayakawa (2012), who considers a projection of λi

on the vector zi = vec(Xi), also known as Chamberlain projection. A second difference

to the Hayakawa (2012) approach is that he employs the projection for GMM estimation

of ALS, whereas we employ the Mundlak projection in the context of CCE estimation.

The weighting scheme for the CCE estimator results as

yt(λ
∗) =

1

Nλ2∗

N∑
i=1

λ∗i yit

= γ̃0

(
1

N

N∑
i=1

yit

)
+ γ̃ ′

1

(
1

N

N∑
i=1

xiyit

)
where γ̃0 = γ0/λ2∗ and γ̃1 = γ1/λ2∗

and λ2∗ = 1
N

∑N
i=1(λ

∗
i )

2. Since γ̃0 and γ̃1 are unknown, we augment the regression by

the following (k + 1)2 cross section averages:

1

N

N∑
i=1

yit ,
1

N

N∑
i=1

x1,it , · · · , 1

N

N∑
i=1

xk,it ,

1

N

N∑
i=1

x1,iyit ,
1

N

N∑
i=1

x1,ix1,it , · · · ,
1

N

N∑
i=1

x1,ixk,it ,

...
...

...

1

N

N∑
i=1

xk,iyit ,
1

N

N∑
i=1

xk,ix1,it , · · · ,
1

N

N∑
i=1

xk,ixk,it .

This estimator is referred to as CCE(M).6 It is important to note that this approach

implies the inclusion of (k+1)2 cross-section averages, attached with individual specific

coefficients. It follows that T needs to be larger than (k+1)2 which may be a severe re-

striction in empirical practice. Furthermore, the small sample properties of the CCE(M)

estimator may suffer from a large number of auxiliary regressors.

6This estimator can be seen as a special case of the combination-CCE estimator proposed by Karabiyik
et al. (2019b).
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Similar normalization problems arise for the HNR and ALS approaches, but these

estimators apply a normalization to the factors. For example, if fT is zero, then the

linear combination of yiT and xiT is not able to identify the factor and, therefore,

the ALS approach is biased whenever fT = 0 and xit is correlated with λift. If T is

small, then one may try out all possible time periods for normalization and select the

normalization that minimizes the GMM objective function. For a large number of time

series this approach is rather time consuming. In such cases the normalization may be

selected by estimating the factor by the PC approach. Then, the normalization period

with the largest factor (in absolute value) is selected as the normalization period.

In the appendix of Ahn et al. (2013) a more flexible approach is proposed, which

we refer to as ALS∗. Let H denote the T × (T − 1) orthogonal complement of f =

(f1, . . . , fT )
′ such that H ′f = 0. To obtain (2.10) we let

H ′
ALS =


1 0 0 · · · 0 −θ1
0 1 0 · · · 0 −θ2
...

. . .
...

0 0 0 · · · 1 −θT−1

 .

To avoid normalizing T − 1 elements to unity, we transform the equations for unit i by

using a more general matrix with property H ′f = 0, such that H ′ei = H ′(yi −Xiβ),

where yi = (yi1, . . . , yiT )
′, Xi = (xi1, . . . ,xiT )

′, ẽi = H ′ei. Given β, the estimator of

H is based on the moment condition E(H ′eiz
′
i) = 0, where zi = vec(Xi). Accordingly,

a GMM estimator for H can be obtained as

Ĥ = argmin
HHH

{
tr
(
H ′ΩezΩ

−1
zz Ω

′
ezH

)}
s.t. H ′H = IT−1,

where Ωez = N−1
∑N

i=1 eiz
′
i and Ωzz = N−1

∑N
i=1 ziz

′
i. Accordingly, the estimator Ĥ

is obtained as the matrix of eigenvectors corresponding to the smallest T −1 eigenvalues

of the matrix ΩezΩ
−1
zz Ω

′
ez. Given Ĥ, the estimator for β is obtained from the OLS

regression

Ĥ ′yi = Ĥ ′Xiβ + ẽi.

This estimation step yields an updated estimator for β that can be used to obtain a new

estimator of H, until convergence. A drawback of this variant of the ALS estimator is

that no standard errors for β are readily available, as the respective estimation step is

affected by the estimation error in Ĥ.
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It is interesting to compare this approach to the PC estimator of Bai (2009), which

can be obtained by solving the problem

H̃ = argmin
HHH

{
tr
(
H ′ΩeeH

)}
s.t. H ′H = IT−1,

where Ωee = N−1
∑N

i=1 eie
′
i. Accordingly, the difference between the PC and ALS/RS

approaches is that the former extracts the factors from the residual vector ei, whereas

the ALS/RS approach first projects the residuals on the space spanned by the vector of

instruments zi. Accordingly, the latter approach requires that the factors are correlated

with the regressors, whereas the PC approach does not.

Robertson and Sarafidis (2015) show that their estimator considered in Section 2.2.4 is

asymptotically equivalent to ALS∗ if the error uit is i.i.d. If uit is heteroskedastic and/or

serially correlated, then the weighting matrix Wn results in an asymptotic efficiency

gain.

2.5. Multiple factors

So far we assumed that there is only a single factor. It is not difficult to see that for a

panel data model with a vector of r ≥ 1 factors fff t and the conformable r × 1 loading

vector λλλi, the estimation equation (2.3) is given by

yit − λλλ′iyyy
∗
t (ΛΛΛ) =

[
x′
it − λ′

iXXX
∗
t (Λ)

]
β + uit − λλλ′iuuut(ΛΛΛ), (2.18)

where ΛΛΛ = (λλλ1, . . . ,λλλN )′ and

yyy∗t (ΛΛΛ) =

(
N∑
i=1

λλλiλλλ
′
i

)−1 N∑
i=1

λiyit

and XXX
∗
t (ΛΛΛ) =

(
N∑
i=1

λiλ
′
i

)−1 N∑
i=1

λixxx
′
it

and the r× 1 vector uuut(Λ) is constructed in a similar manner. This shows that efficient

estimation requires r linear independent weighting schemes applied to yyyt = (x1t, . . . , yNt)
′

and XXXt = (x′
1t, . . . ,x

′
Nt)

′.

To show consistency of the modified CCE estimator, CCE(M), a different reasoning

is required. For the ease of exposition assume k = 2 regressors and r = 2 factors. We
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obtain 2 different weighting schemes:

y
(1)
t =

1

N

N∑
i=1

x1,iyit x
(1)
1,t =

1

N

N∑
i=1

x1,ix1,it x
(1)
2,t =

1

N

N∑
i=1

x1,ix2,it

y
(2)
t =

1

N

N∑
i=1

x2,iyit x
(2)
1,t =

1

N

N∑
i=1

x2,ix1,it x
(2)
2,t =

1

N

N∑
i=1

x2,ix2,it

that are used to obtain the following relationships:(
y
(1)
t

y
(2)
t

)
−

(
x
(1)
1,t x

(1)
2,t

x
(2)
1,t x

(2)
2,t

)
β =

(
ξ
(1)
1 ξ

(1)
2

ξ
(2)
1 ξ

(2)
2

)(
f1,t

f2,t

)
+Op(N

−1/2)

where ξ
(ℓ)
k = N−1

∑N
i=1 xℓ,iλk,i. Accordingly, if the matrix

Ξ =

(
ξ
(1)
1 ξ

(1)
2

ξ
(2)
1 ξ

(2)
2

)

is invertible,7 we can obtain the linear combinations that represent the factors as(
f1,t

f2,t

)
= Ξ−1

(
y
(1)
t

y
(2)
t

)
−Ξ−1

(
x
(1)
1,t x

(1)
2,t

x
(2)
1,t x

(2)
2,t

)
β +Op(N

−1/2).

Thus, asymptotically the space spanned by (f1,t, f2,t) is contained in the space spanned

by the corresponding 6 cross-sectional averages y
(1)
t , y

(2)
t , x

(1)
1,t , x

(1)
2,t , x

(2)
1,t , and, x

(2)
2,t .

8

2.6. Determining the number of factors

As argued by Pesaran (2006), the CCE estimator is consistent if the actual number of

factors r is not larger than k+1. This requires however that r− 1 factors are correlated

with the k regressors. This is due to the fact that one factor can be identified by

the cross-section average et(λ0) = yt(λ0) − β′xt(λ0), whereas the identification of the

other factors requires some relationship to the cross-section averages of the regressors xt.

7Note that for finite N the matrix Ξ is almost surely invertible, even if λi and xit are uncorrelated
for all i and t. To establish consistency, we require that the probability limit of Ξ is invertible as
N → ∞.

8The alert reader may have noticed that the linear combination does not involve the ordinary cross-
section averages N−1 ∑

i yit, N
−1 ∑

i x1,it and N−1 ∑
i x2,it that are employed in the CCE estimator.

These additional averages are not required for identification but often improve the statistical proper-
ties of the estimator. They may also help to escape the problems resulting from a (nearly) singular
matrix Ξ.
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Furthermore, the correlation pattern needs to be sufficiently informative for identifying

the factors.

It is often argued that the CCE approach is attractive, as we do not need to select

the number of factors, whereas for all other approaches, the number of factors needs to

be known (or determined from the data). If the number of factors is smaller than k + 1

and the normalization requirements are satisfied, then the CCE estimator is consistent,

but the small sample properties may suffer from including many cross-section averages.

This is comparable to applying the PC estimator with r = k + 1 factors. As shown

by Moon and Weidner (2015), under some additional assumptions,9 the PC estimator

is robust against over-specifying the number of factors. A similar result is obtained by

Westerlund et al. (2019) for the CCE estimator. Since under certain conditions the CCE

estimator for β is as efficient as the OLS estimator using the true factors, there is no

gain in (asymptotic) efficiency by changing the weighting scheme or imposing nonlinear

restrictions to the auxiliary parameters that are implied by knowing the number of fac-

tors. It is, however, not clear whether this result provides a good guidance for empirical

applications in finite samples.

In practice, it may therefore be interesting to estimate the number of factors. To this

end, we may invoke the criteria proposed by Bai and Ng (2002) and Ahn and Horenstein

(2013). Both approaches are based on the eigenvalues of the residual covariance matrix.

Denote by µ̂1 ≥ · · · ≥ µ̂T the ordered eigenvalues of the T ×T sample covariance matrix

Ω̂ee = N−1
∑N

i=1 êiê
′
i, where the residual vector êi is obtained by estimating the model

with maximum number of factors r∗. Furthermore, let

σ̂2u(r) =
1

NT

N∑
i=1

T∑
t=1

û2it =
1

T

T∑
j=r+1

µ̂j

where ûit denotes the residual from estimating the model with r factors. Bai and Ng’s

(2002) criterion ICp2 minimizes

BN(r) = log
(
σ̂2u(r)

)
+ r

N + T

NT
log(min[N,T ]),

for r ∈ {0, 1, . . . , r∗}, whereas the criterion proposed by Ahn and Horenstein (2013)

maximizes the eigenvalue ratios

AH(r) = µ̂j/µ̂j+1 for r ∈ {1, 2, . . . , r∗}

9The proof of Moon and Weidner (2015) requires T → ∞ and is based on the i.i.d. assumption but
they note that it appears that their results extend to a less restrictive setting.
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and the mock eigenvalue µ̂0 =
(∑T

j=1 µ̂j

)
/ log(T ). Let r0 denote the true number of

factors. If β̂∗ − βββ = Op(1/
√
NT ), we have

1

NT

N∑
i=1

T∑
t=1

(yit − β̂′
∗xit)

2 =
1

NT

N∑
i=1

T∑
t=1

e2it − 2
1

NT

N∑
i=1

T∑
t=1

eitx
′
it(β̂ββ∗ − βββ) +Op

(
1

NT

)

=
1

NT

N∑
i=1

T∑
t=1

e2it +Op

(
1√
NT

)
.

Accordingly, the BN and AH criteria include an additional term of order

Op((NT )
−1/2) that does not affect the asymptotic properties as N and T tend to infinity.

Let us consider the asymptotic properties of the respective estimators r̂ if T is fixed

and N → ∞. The condition limN→∞ P (r̂ < r0) = 0 implies (cf. Bai and Ng 2002)

c(N,T ) =
N + T

NT
log(min[N,T ]) → 0. (2.19)

As condition (2.19) is not satisfied for fixed T , the BN criterion may select some r̂ < r0,

even if N → ∞. The requirement limN→∞ P (r̂ > r0) = 0 implies

lim
N→∞

P
(
(r − r0)c(N,T ) + log

(
σ̂2u(r)

)
− log

(
σ̂2u(r0)

)
> 0
)
= 1 for all r > r0. (2.20)

Since log
(
σ̂2u(r0)

)
− log

(
σ̂2u(r)

)
= Op(N

−1) + Op(T
−1) for r > r0 (cf. Lemma 4 of Bai

and Ng 2002), it may happen that for small T , condition (2.20) is violated as well.

Hence, the BN criterion may not be consistent for fixed T . In practice, it is nevertheless

possible that the BN criterion selects the number of factors consistently, if the eigenvalues

µ̂1, . . . , µ̂r0−1 are sufficiently large and µ̂r0+1, . . . , µ̂r∗ are sufficiently small relative to µ̂r0 .

Since for fixed T , µ̂r is Op(1) for all r = 1, . . . , T , it follows that the eigenvalue ratio

AH(r) is Op(1) for fixed T and all r ∈ {1, . . . , r∗}. Therefore, the AH criterion cannot

be shown to be a consistent selection rule for fixed T . It may nevertheless perform well,

if the slope of the eigenvalue function is sufficiently steep at r = r0.

A possibility to sidestep these problems is to adopt the BIC selection criteria of Ahn

et al. (2013) and Robertson and Sarafidis (2015). These criteria are based on the Sargan-

Hansen specification test for GMM estimators. If the number of factors is too small,

then the remaining cross-correlation among the residuals results in a large value of the

test statistic. The penalty function is constructed such that the sum of the test statistic

and the penalty function obtains a minimum at the correct number of factors as N tends

to infinity.
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2.7. Monte Carlo Simulations

In this section we assess the performance of alternative estimation methods in various

settings and highlight some favorable and problematic aspects of alternative estimation

methods. The simulation results in Sections 2.7.1 – 2.7.2 are based on the following

simple data-generating process

yit = βxit + λift + uit (2.21)

xit = µ+ λift + λi + ft + εit (2.22)

with β = 0.5 and r = 1. Hence, the regressor is correlated with the loadings, the factor

and the product of both. The regression error uit and the idiosyncratic component of

the regressor, εit, are independent standard normal random variables. The constant µ

is drawn from a U [0, 1] distribution. The DGPs in Sections 2.7.1 to 2.7.2 differ with

respect to the distributional assumptions on the factors and their loadings.

The (near) violation of the normalization restrictions for the CCE and ALS estimators

are examined in Section 2.7.1. In Section 2.7.2, we compare the PC and CCE estimator

with regard to their different weighting schemes. In Section 2.7.3 we address the esti-

mation of the number of factors, r, for the PC, ALS* and RS approaches. There, we

consider a similar DGP as in (2.21) and (2.22) for r = 1 and r = 2. The last subsection

2.7.4 considers the relative performance of the CCE, PC, ALS* and RS estimation ap-

proaches in more general settings that are based on the DGPs considered by Bai (2009),

Chudik et al. (2011) and Ahn et al. (2013).

2.7.1. Normalization failure

As argued in Section 2.4, the CCE and ALS/HRN approaches may suffer from a vi-

olation of their normalization conditions. The performance already deteriorates if the

parameters approach the
√
N -vicinity of the problematic subspace. In a model with a

single factor, the normalization of the equally weighted CCE estimator (λ0,i = 1) re-

quires that λ = N−1
∑N

i=1 λi ̸= 0. We have argued that whenever λ = c/
√
N , the factor

cannot be represented by a linear combination of yi and xi as N → ∞.

Sarafidis and Wansbeek (2012) and Westerlund and Urbain (2013) analyze the per-

formance of the CCE estimator when the normalization condition is violated. In order

to study the performance of the CCE estimator when λ is different but close to zero, we
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consider the model in (2.21) and (2.22), where we generate the factor loadings as

DGP1: λi ∼ N (µλ, 1) for µλ ∈ [0, 1] and ft ∼ N (0, 1).

Hence, the loadings are normally distributed with expectation that ranges from 0 to 1.

Figures 2.1 (a) – (d) present the absolute bias for the original CCE, the Mundlak type

CCE(M) estimator suggested in Section 2.4, and the PC estimator for N = 100 and

N = 500 with a small (T = 10) and moderate (T = 50) number of time periods. The

PC estimator of Bai (2009) is obtained by a sequential estimation procedure using the

pooled OLS estimator as starting value for β (see Section 2.2.1). It turns out that the

CCE estimator is severely biased even if the mean of λi is substantially different from

zero. This is due to the fact that a bias already occurs whenever µλ = O(N−1/2). This

reasoning predicts that for fixed µλ the bias gets smaller if N increases. Indeed, this is

what we observe when comparing panel (a) and (c) as well as (b) and (d). Note that√
100/

√
500 ≈ 0.44 and, therefore, we expect that the bias reduces to a value less than

one half which is a good approximation for µλ > 0.1. The other two estimators, PC and

CCE(M), are virtually unbiased, which is expected as the estimators do not rely on the

assumption µλ ̸= 0.

In a similar manner, the normalization of the ALS estimator may be problematic if

the factors approach the problematic subspace. The ALS estimator requires fT ̸= 0. To

examine the consequences of an (approximate) violation of this normalization condition,

we consider the model in (2.21) and (2.22) where the factors are generated as:

DGP2: ft ∼ N (0, 1) for t = 1, ..., T − 1 and fT ∼ N (µT , 0.5) for µT ∈ [0, 1]

and the factor loadings are standard normally distributed. As the final value of the

factor is crucial, we generate it by a distribution with expectation ranging from 0 to 1.

Figures 2.1 (e) – (f) present the bias for the ALS estimator when T = 5 and N = 100

or N = 500, respectively. As expected, the ALS estimator is severely biased whenever

µT = E(fT ) is small. But even for moderate values of µT the bias remains substantial

and decreases only gradually for larger values of µT . It should be noted that if the

regression includes an individual specific intercept, then the factors are demeaned and,

therefore, assuming a nonzero mean appears inappropriate.

Figures 2.1 (e) – (f) also present the bias of two estimators that circumvent the

problems with the normalization of the original ALS estimator. The estimator ALS∗

refers to the GMM estimator that estimates the matrix H that is used to remove the
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Figure 2.1.: Normalization failure for CCE (DGP1) and ALS (DGP2)
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factors (see Section 2.4).10 Our simulation results suggest that this estimator performs

quite well in terms of bias, as it is virtually unbiased for all values of µT . Another

approach to escape the normalization problem is the GMMmax estimator, where in a

first step the factor is estimated using the PC approach. In the second step, the time

period for the normalization is chosen according to the maximum absolute value of the

estimated factor and the original ALS estimator is adapted, where the time period with

the largest factor is shifted to the end of the sample. Both estimators are able to reduce

the bias dramatically.

The figures also include the RS estimator, which corresponds to the FIVU estimator of

Robertson and Sarafidis (2015). This estimator does not require fT ̸= 0 for normalization

(see Section 2.2.4) and thus the bias does not depend on the value of µT . The RS

estimator has a slight advantage in terms of bias when N = 100. With N = 500, the

bias of the ALS∗, GMMmax and RS estimators is nearly zero.

To summarize, our findings confirm earlier evidence that the normalization applied for

the original CCE or ALS/HNR estimators may be problematical, whenever the factors or

loadings approach a normalization failure. It is, however, easy to adjust the estimators

such that they perform well for all values of the parameter space. Our Monte Carlo

exercise indicates that the PC and CCE(M) estimators as well as ALS∗, GMMmax and

RS are very robust against a possible normalization failure.

2.7.2. Fixed versus data driven weights

From the reasoning of Section 2.2, it turns out that the CCE estimator is expected

to outperform the PC estimator whenever the weighting scheme λλλ0 comes close to the

actual set of loadings λλλ, see also Westerlund and Urbain (2015). For equal weights with

λ0,i = 1 for all i, the CCE estimator performs well, whenever (i) the absolute value of the

mean of the loadings is large (to avoid the normalization failure) and (ii) the variance of

the loadings is small. Our DGP3 represents such a scenario, whereas the DGP4 favors

the PC estimator by generating factor loadings with large variance,

DGP3: λi ∼ N (1, 0.1), ft ∼ N (0, 1)

DGP4: λi ∼ N (1, 3), ft ∼ N (0, 1).

The remaining details of the simulation setup are identical to the model in (2.21) and

(2.22).

10Following Ahn et al. (2013), we use β = 0 as starting value for the iterative ALS∗ procedure.
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Table 2.1.: Fixed versus data driven weights

Bias*100 RMSE*100

N T PC CCE CCE(M) PC CCE CCE(M)

DGP3

50 10 1.23 0.00 0.19 6.43 5.12 5.93

100 10 0.56 0.06 0.21 3.94 3.56 4.04

100 20 0.10 −0.14 −0.09 2.43 2.33 2.42

100 50 0.09 −0.04 0.02 1.49 1.48 1.51

100 100 0.08 −0.03 0.02 1.06 1.06 1.08

500 500 0.05 −0.01 −0.01 0.20 0.20 0.20

DGP4

50 10 0.18 −2.31 0.19 4.65 6.62 5.97

100 10 0.24 −1.09 0.22 3.26 4.05 4.17

100 20 0.01 −1.30 −0.08 2.15 3.05 2.45

100 50 0.08 −1.22 0.01 1.34 2.36 1.51

100 100 0.10 −1.20 0.01 0.97 2.00 1.08

500 500 0.08 −0.24 −0.01 0.20 0.36 0.20

This table reports the simulation results generated with DGPs 3 and 4. The results

are based on 1000 replications.

The results reported in Table 2.1 clearly confirm our assertion that the CCE estimator

outperforms the PC estimator in DGP3, whereas the PC estimator performs better for

DGP4. This finding suggests to find a weighting scheme that comes close to the actual

distribution of the loadings. This is the notion behind the Mundlak type CCE variant

that employs the individual specific means yi and xi, since a linear combination of

these averages can be seen as (CCE type) estimates of the loadings λi. Therefore, we

hope to improve the original CCE estimator by applying weights that are correlated

with the loadings. Our results from the simple Monte Carlo experiment suggest that

the CCE(M) approach of choosing a data driven weighting scheme performs similar to

the best estimator in the respective situation. Furthermore, as shown in the previous

subsection, the CCE(M) estimator sidesteps the risk of a normalization failure. Provided

that this estimator is similarly easy to compute as the original CCE estimator, it appears

as if this estimator is a robust variant of the original CCE estimator.
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2.7.3. Selecting the number of factors

In practice, it is necessary to select the number of factors for the PC and GMM esti-

mation procedures. The choice is important, since misspecifying the number of factors

can have severe consequences: Overspecifying the number of factors can have adverse

effects on the sampling properties of the estimators, while an underspecification may

lead to inconsistent estimates if the ignored factors are correlated with the regressors.

One possibility for selecting the number of factors is simply to specify the number ac-

cording to some ad hoc rule, for instance r = k + 1, as usually advocated for the CCE

approach. Another option is to use a consistent criterion for the number of factors, such

as the ones proposed by Bai and Ng (2002) (hereafter: BN) and Ahn and Horenstein

(2013) (AH). Note that these selection criteria were developed for the pure factor model

without regressors. Furthermore, the asymptotic theory underlying these approaches re-

quires T → ∞ (see Section 2.6). It is therefore interesting to investigate the performance

of these criteria that were not initially developed for a small number of time periods.

For the GMM estimators, the number of factors can be estimated using model informa-

tion criteria, such as the Schwarz Criterion (BIC) considered by Ahn et al. (2013) and

Robertson and Sarafidis (2015).

Table 2.2.: Hit rates for selection criteria

r=1 r=2

N T BNPC AHPC BICALS∗ BICRS BNPC AHPC BICALS∗ BICRS

100 5 0.0 94.6 91.7 83.0 0.0 46.8 86.4 76.6
250 5 0.0 96.2 96.9 96.7 0.0 50.8 93.2 89.5
500 5 0.0 96.9 98.8 98.3 0.0 52.1 96.3 94.1
250 10 100.0 99.9 90.6 97.0 99.6 86.4 89.7 92.9
500 10 99.9 99.9 96.7 98.4 99.4 89.8 95.9 96.9
500 15 100.0 100.0 92.3 99.6 100.0 97.9 92.9 98.8

In order to study the performance of these selection criteria, we consider a similar

model as in (2.21) and (2.22) with r = 1 and r = 2. For the loadings and factors, we

assume the following DGP,

DGP5: λj,i ∼ N (0, 1), fj,t ∼ N (0, 1) for j = 1, 2.

As reported in Table 2.2, the hit rates for a single factor, r = 1, are nearly 100% for

the BN and AH criteria whenever T ≥ 10. For T = 5 the BN criterium does not work

and nearly always picks the maximum number of factors. On the other hand, the AH
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criterion works remarkably well, even for a number of time periods as small as T = 5.11

The hit rates for the BIC criteria exceed 90% in all but one case. For r = 2 the hit rates

for the AH criterion are substantially lower, but the estimators are still quite accurate,

even if T = 10 and N is large. For the BIC criteria, the hit rates decrease by only a small

amount and do not seem to be very sensitive to the number of factors, in particular if

N > 100.

In Table 2.3, we report bias and RMSE for the PC, ALS∗ and RS estimators based

on the true number of factors (r = 1 and r = 2) as a benchmark. In addition we assess

the performance of the estimators, when the number of factors is estimated based on

selection criteria.12 As expected, using the AH method for r = 1 in order to estimate

the number of factors for the PC estimator produces bias and RMSE results that are of

similar magnitude as the true number of factors. Applying the BIC criterion to estimate

the number of factors for the GMM estimators produces very accurate estimates when

N > 100, accordingly.

For r = 2, the performance of the PC estimator using the AH criterion shows a

considerable bias, in particular if T is as small as 5. In contrast, bias and RMSE of

the GMM estimators applying the BIC criterion are similar to the estimators based on

the true number of factors when N > 100. When T increases to 10, there is still a

substantial performance gap between the PC estimator using the AH method and the

PC estimator based on the true number of factors, whereas the GMM estimators based

on the BIC criterion perform much better. This is surprising as Table 2.2 suggests that

the hit rates of the BIC criterion are only slightly better in these cases. The reason is

that the AH criterion tends to underestimate the number of factors, whereas the BIC

criterion overestimates the number of factors in case the correct number of factors is not

found.

Consider, for instance, T = 10 and N = 500. The BIC estimator finds the correct

number of factors (r = 2) in more than 95% of the cases and overestimates the number

in the other (< 5%) cases. The AH estimator finds the correct value of r = 2 in 89.8%

of the cases, however underestimates the number in all other cases. Since the estimator

is biased if the number of factors is too small, the AH criterion tends to produce a

large negative bias in some cases, whereas the BIC criterion tends to produce unbiased

11The performance is similar to the case where β is known (not shown). Therefore, the estimation
of β does not seem to have an important effect on the performance of the BN and AH selection
criteria. Furthermore, the growth ratio statistic of Ahn and Horenstein (2013) performs similar to
the eigenvalue ratio statistic. For reasons of space we do not show the respective results.

12To save space, we do not show results for the estimators based on the BN criterion, since the hit rates
are either 0% or (close to) 100%.
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Table 2.3.: Selecting the number of factors

r = 1 r = 2

Bias*100 RMSE*100 Bias*100 RMSE*100

N T PCr PCAH PCr PCAH PCr PCAH PCr PCAH

100 5 0.20 0.31 5.10 5.30 0.67 5.47 6.83 11.06
250 5 0.12 0.24 3.22 3.51 0.29 4.89 4.14 10.13
500 5 0.14 0.30 2.25 2.66 0.22 4.54 3.04 9.13
250 10 0.07 0.08 2.04 2.04 0.17 1.51 2.20 4.79
500 10 0.09 0.10 1.42 1.44 0.06 1.07 1.55 3.93
500 15 0.07 0.07 1.06 1.06 0.11 0.28 1.18 1.81

ALS∗r ALS∗BIC ALS∗r ALS∗BIC ALS∗r ALS∗BIC ALS∗r ALS∗BIC

100 5 0.14 0.15 6.22 6.84 −0.33 −0.65 7.46 8.15
250 5 −0.01 0.04 3.69 3.83 0.08 0.10 4.33 4.53
500 5 0.23 0.23 2.62 2.64 0.04 −0.01 3.08 3.26
250 10 −0.02 −0.02 2.25 2.36 0.00 −0.02 2.23 2.32
500 10 0.10 0.10 1.59 1.61 −0.06 −0.06 1.58 1.59
500 15 0.04 0.03 1.20 1.22 0.03 0.03 1.18 1.20

RSr RSBIC RSr RSBIC RSr RSBIC RSr RSBIC

100 5 −0.58 0.74 6.01 7.93 −0.92 −0.26 7.88 9.00
250 5 −0.17 −0.12 3.65 3.76 −0.21 −0.14 4.72 4.99
500 5 0.11 0.10 2.60 2.66 −0.07 −0.10 3.58 3.59
250 10 −0.40 −0.29 2.42 2.68 −0.86 −0.73 3.20 3.21
500 10 −0.10 −0.10 1.66 1.66 −0.44 −0.41 2.16 2.11
500 15 −0.17 −0.17 1.29 1.29 −0.65 −0.62 2.05 2.00

This table reports bias and RMSE results for DGP5 with r = 1 and r = 2 for the PC, ALS∗ and RS
estimators with the true number of factors and estimated number of factors based on selection criteria.
The results are based on 1000 replications.
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estimators with a slightly larger variance than estimating with the correct number of

factors in some very rare cases.

2.7.4. Performance in more general setups

So far the DGPs considered in this paper were simplified versions of the ones considered

in the literature and focus on the particular features of these models. In the following,

we study the relative performance of the CCE, PC, ALS∗ and RS approaches in more

sophisticated simulation setups, similar to the simulation experiments of Bai (2009),

Chudik et al. (2011) and Ahn et al. (2013). The details of these data generating processes

are presented in Appendix A. The Monte Carlo design of Bai (2009) employs two

regressors that are correlated with two factors, their loadings and the product of both.

The idiosyncratic error is i.i.d. across individuals and time periods. We refer to this

model as DGP6. DGP7 refers to the factor model of Chudik et al. (2011) that includes

two regressors and three factors. A special feature of this DGP is that the factor loadings

of the regressors are independent of the loadings in the errors eit and, therefore, the

regressors are not correlated with the errors. The factors are generated by independent

AR(1) processes and the idiosyncratic component uit is heteroskedastic but mutually

and serially uncorrelated. DGP8 corresponds to the Monte Carlo design of Ahn et al.

(2013), which includes two regressors and two factors. The first regressor is correlated

with the first factor and the second regressor is correlated with the second factor. The

idiosyncratic error is autocorrelated but the variances are identical across panel units

and time periods.

The results in Table 2.4 indicate that the relative performance of the estimators de-

pends quite sensitively on the DGP considered. The first panel of Table 2.4 presents

the results for DGP6. The CCE estimator is not consistent in this setting, since the

rank condition is violated and both factor and loading vectors are correlated with both

regressors. The other three estimators are consistent in this setting, where the RS esti-

mator is the least biased when T = 5 and the ALS∗ exhibits the lowest bias for T ≥ 10.

The latter performs best in terms of RMSE with only slight advantages over the PC

estimator when T ≥ 10.

The second panel of Table 2.4 reports the results for DGP7. The CCE estimator is the

favored one in this setting. It has a very small bias and exhibits the lowest RMSE for

nearly all considered (N,T ) combinations, in particular if T is as small as 5. Comparing

the PC and GMM estimators, the results slightly favor the PC estimator in terms of

RMSE. The difference between the PC and the CCE estimator is negligible when T = 15

and N = 500. With regard to the GMM estimators, the RS estimator has a marginally
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Chapter 2. Estimation approaches for the factor augmented panel data model

lower RMSE when T = 5 and N is large, while the results indicate small advantages for

the ALS∗ estimator when T ≥ 10.

The third panel of Table 2.4 presents the results for DGP8. The GMM estimators

are the least biased estimators in this setting. The ALS∗ estimator exhibits the smallest

RMSE for all (N,T ) combinations with only slight advantages over the RS estimator.

For example, for T = 10 and N = 500, the RMSE of the ALS∗ estimator is about

40% lower than the RMSE of the PC estimator and more than 60% lower than the

RMSE of the CCE estimator. The CCE estimator is problematic in this setting, since

the expectation of the loadings is equal to zero. The PC estimator is problematic in

this small T setting. However, the RMSE is lower for larger samples with T = 15 and

N = 500.

2.8. Conclusion

In this paper we compare three existing approaches for estimating factor augmented

panel data models. We argue that the PC estimator can be seen as an estimated analog

of the optimal transformation for eliminating the common factors from the data. The

CCE estimator applies a data transformation that has the important advantage that

the weighting scheme is fixed and does not involve any sampling error. This ensures

that the estimator is consistent even if T is fixed, whereas the PC estimator requires

much more restrictive assumptions (such as i.i.d. errors) whenever T is fixed. The third

estimation approach corresponds to the nonlinear GMM estimators of Ahn et al. (2013)

and Robertson and Sarafidis (2015). In contrast to the PC and CCE estimators, the

number of parameters does not depend on N , which makes these estimators particularly

attractive for models with large N and small T .

In this paper we focus on the typical micro panel data setup where T is small compared

toN . Since for an approximate factor model the consistency of the PC estimator requires

T → ∞, it is interesting to investigate how large T needs to be for ensuring the PC

estimator to be approximately unbiased. Our Monte Carlo experiments indicate that

for all data generating mechanisms considered in this paper T = 10 is already sufficient

to achieve reasonable small sample properties of the PC estimator.

Some versions of the estimators impose normalization conditions that may be prob-

lematical in practice. For the original CCE estimator, we propose a simple weighting

scheme based on a decomposition similar to Mundlak (1978). The resulting CCE(M)

estimator is able to escape the endogeneity bias that may occur in the
√
N vicinity of the

normalization failure at the cost of introducing a larger number of additional auxiliary
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parameters. The PC, ALS∗ and RS estimators sidestep the possibility of a normaliza-

tion failure and perform well in all our Monte Carlo experiments. Sometimes the CCE

and ALS∗ estimators perform slightly better than the PC estimator, but in other Monte

Carlo setups the PC estimator tends to outperform all other competitors. Furthermore,

we show that for small T the selection criteria for the number of factors proposed by Bai

and Ng (2002) and Ahn and Horenstein (2013) may be inconsistent, whereas the BIC

criteria of Ahn et al. (2013) and Robertson and Sarafidis (2015) perform well.
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Chapter 3.

Empirical Challenges for Optimal Portfolio

Selection

3.1. Introduction

The prominent maximum Sharpe ratio (MSR) portfolio of Markowitz (1952) requires

reliable estimates of expected returns and the covariance matrix of stock returns. When

these moments are estimated using the sample analogs from historical data (the so-called

plug-in method), this often leads to extreme portfolio weights that excessively fluctuate

over time and typically exhibit poor out-of-sample performance (see, e.g., Michaud, 1989;

Best and Grauer, 1991; Chopra and Ziemba, 1993; DeMiguel et al., 2009b). Estimating

expected returns from historical data is particularly prone to errors. Additionally, errors

in estimating the first moment have a larger impact on the estimation of portfolio weights

than errors in estimating the second moment (see, e.g. Chopra and Ziemba, 1993; Ja-

gannathan and Ma, 2003; DeMiguel et al., 2009a). Therefore, in practice and research,

information regarding the first moment is often ignored, leading to the estimation of the

global minimum variance (GMV) portfolio.

However, obtaining reliable estimates of the covariance matrix becomes particularly

challenging in high-dimensional applications, where the number of investable assets (N)

is roughly equivalent to the number of available time series (T ). In this case, the sample

covariance matrix suffers from the curse of dimensionality. This becomes most evident

when the number of assets exceeds the number of time periods, as the covariance ma-

trix becomes singular. Nevertheless, considering that the number of parameters to be

estimated in an N × N covariance matrix is N(N + 1)/2, the sample size T should be

substantially larger than N to avoid unreliable parameter estimates. However, this is

often not the case in modern portfolios with numerous assets.

To mitigate the impact of estimation errors in the covariance matrix, various ap-

proaches have been introduced in the literature. These include, for instance, regulariza-
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tion methods such as the well known linear shrinkage estimators (Ledoit and Wolf, 2003,

2004a,b) or more recently, nonlinear shrinkage estimators (e.g., Ledoit and Wolf, 2020),

as well as dimensionality reduction techniques such as factor models (e.g., De Nard et al.,

2019). Particularly in high dimensional applications, these approaches typically improve

the out-of-sample performance of estimated GMV portfolios.

Another prominent issue is that the unrestricted MSR or GMV optimization often

results in a large number of negative weights. From a conventional perspective, this

implies that an investor is taking short positions on the corresponding stocks with neg-

ative weights. Besides the fact that the feasibility of short-selling is severely limited in

practice, the presence of negative weights in a portfolio leads to high risk exposure and

turnover rates. To address this concern, various strategies have been proposed in the

literature. These strategies either completely exclude short sales as in Jagannathan and

Ma (2003) or impose constraints on the weight vector as in DeMiguel et al. (2009a) and

Fan et al. (2012).

Both portfolio models can be represented as regression models. This opens up the

opportunity, for instance, to restrict the 1-norm of the weights by employing LASSO

techniques in the regression estimation. While the unconstrained regression of Kempf

and Memmel (2006) provides the normalized weights of the GMV portfolio (which sum

to unity), the well-known regression of Britten-Jones (1999) for the MSR portfolio yields

weights that require normalization to obtain the plug-in MSR weights. This subsequent

normalization is, however, not without difficulties when applying L1-regularization to

the Britten-Jones regression.

This paper examines a variety of aspects related to empirical challenges in portfolio

selection, which are further explored in the subsequent sections. In Section 3.2, we

consider the MSR and GMV portfolios and their representation as regression models.

We establish a relationship between the Kempf-Memmel regression for the GMV weights

and the Britten-Jones regression for the MSR portfolio. This relationship is used to

derive a variant of the Britten-Jones regression that directly provides the normalized

weights of the MSR portfolio.

In Section 3.3, we examine the interpretation of negative weights and illustrate how the

classical short-sale strategy can lead to excessive leverage and exposure. We propose an

alternative strategy involving put options, which results in considerably more moderate

portfolio weights and constraints exposure. Mathematically, both strategies result in

different normalization schemes, as the short-selling strategy normalizes the weights such

that they sum to unity, while the put option strategy requires the sum of the absolute

weights to be one.
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In Section 3.4, we focus on three major challenges for estimating portfolio weights.

Using simulation studies, we first investigate the impact of estimation uncertainties in the

covariance matrix on portfolio performance under various concentration ratios (N/T ).

Second, we emphasize the detrimental effects of substantial estimation uncertainties in

expected returns on the accuracy of portfolio weight estimation. Third, we consider the

less prominent effect of the challenging weight normalization in the classical short-selling

strategy.

In the empirical application in Section 3.5, we analyze the out-of-sample performance

of 15 models using two datasets characterized by different concentration ratios (N/T ).

In addition to the plug-in estimators for the MSR and GMV portfolios, we consider alter-

native regularization methods for the covariance matrix and portfolio weights, including

LASSO versions of the Kempf-Memmel and (normalized) Britten-Jones regressions. Sec-

tion 3.6 concludes.

3.2. The MSR and GMV portfolios

Following the literature on optimal portfolio selection, we assume that the N × 1 vector

of returns Rt = (R1,t, . . . , RN,t)
′ is an independent and identically distributed random

vector with E(Rt) = µ and E(Rt −µ)(Rt −µ)′ = Σ, where Σ is positive definite.1 The

efficient frontier is obtained by minimizing the Lagrangian objective function

min
w

1

2
w′Σw − λ(w′µ− µp), (3.1)

where w is the N × 1 vector of portfolio weights, λ is the Lagrangian multiplier and

µp denotes the target portfolio return.2 The vector of optimal portfolio weights w∗

is proportional to the “raw” (non-normalized) weights v = Σ−1µ. Normalizing the

weights such that they sum up to unity yields the weights that maximize the Sharpe

ratio SR(w) = w′µ/
√
w′Σw for w ∈ Rn, given by

MSR: w∗
MSR =

Σ−1µ

1′NΣ−1µ
, (3.2)

1Note that this assumption rules out riskless assets. If the portfolio includes riskless assets, we subtract
the (maximum of the) riskless yield from the returns of the risky assets. The weights of the riskless
asset can be obtained in a second step by optimizing the utility of a convex combination of the
tangential portfolio and the riskless asset.

2In many textbooks the optimization problem includes a second constraint that the weights sum up to
unity. In this case the solution depends on µp. The combination of µp and the associated minimum
volatility yields the efficient frontier. The tangential portfolio that maximizes the Sharpe ratio is
identical to a portfolio with weight vector w∗.
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where 1N denotes an N × 1 vector of ones.

The (global) minimum-variance portfolio (GMV) is obtained by minimizing the port-

folio variance subject to the normalization
∑N

i=1wi = 1. The resulting portfolio is

equivalent to a MSR portfolio assuming that the means of all assets are identical:

GMV: w∗
GMV =

Σ−11N
1′NΣ−11N

.

In practice, the moments µ and Σ are unknown and must be replaced by estimated

versions, such as the sample moments µ̂ = T−1
∑T

t=1Rt and Σ̂ = T−1
∑T

t=1(Rt −
µ̂)(Rt− µ̂)′. The reliable estimation of the expected return vector µ is often considered

challenging in practical contexts. Therefore, it seems more appealing to avoid the esti-

mation of the mean vector and instead focus on the GMV portfolio (e.g. DeMiguel et al.,

2009b). As noted by Kempf and Memmel (2006), the weights of the GMV portfolio can

be obtained by minimizing the objective function

Q(w, α) = (w′Rt − α)2

subject to the constraint
∑
wi = 1. Inserting w1 = 1 −

∑N
i=2wi, the solution can be

obtained by running the regression

R1,t = α+ w2(R1,t −R2,t) + · · ·+ wN (R1,t −RN,t) + ut. (3.3)

Let ŵi denote the OLS estimator of wi. The minimum variance portfolio weights result

as

w∗
GMV =


1−

∑N
i=2 ŵi

ŵ2

...

ŵN

 .

A similar approach can be adopted for obtaining the MSR solution (3.2). Let w′Rt =

µp+ut where µp = w′µ denotes the portfolio return. Dividing the equation by µp yields

1 = w̃′Rt + ũt, (3.4)

where w̃ = w/µp and ũt = −ut/µp. Note that E(ũ2t ) = w′Σw/µ2p is the inverse of the

squared Sharpe ratio of the portfolio. Hence, minimizing the residual sum of squares∑
ũ2t maximizes the (absolute) Sharpe ratio of the portfolio. This motivates the regres-
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sion approach proposed by Britten-Jones (1999), where the raw weights are obtained

from a regression of ones on the asset returns R1,t, . . . , RN,t.

A drawback of the Britten-Jones regression is that the subsequent normalization of the

weights affects statistical inference. To impose the normalization
∑
wi = 1, we adopt

the Kempf-Memmel regression (3.3). Due to the idempotency of the projection matrix

that is used to transform data to deviations from their mean, the first order condition

of the empirical analog of (3.1),

w = λ

[
T∑
t=1

(Rt −R)(Rt −R)′

]−1 T∑
t=1

Rt

= λ

[
T∑
t=1

Rt(Rt −R)′

]−1 T∑
t=1

Rt · 1,

implies that the normalized weights are proportional to the IV estimator of w in the

regression (3.4) by using Rt as a vector of instrument variables (IV). The two-stage least-

squares interpretation of the IV regression entails that the IV regression is equivalent to

running an ordinary regression of the form

R1,t = γĉt + w2(R1,t −R2,t) + · · ·+ wN (R1,t −RN,t) + u∗t , (3.5)

where ĉt = R′
tΣ̂

−1µ̂ denotes the fitted value from a regression of ones on Rt. Accord-

ingly, the normalized Britten-Jones regression just replaces the constant in the Kempf-

Memmel regression by the variable ĉt.

These results can be used to construct regularized versions of the estimators in order

to improve the small sample properties. For the LASSO variant of regression (3.3),

the returns are mean-adjusted in order to remove the (unrestricted) constant from the

regression. Note that the usual standardization of variables would disregard information

about the assets’ risk and is hence deactivated when conducting the LASSO regression.

For the normalized version of the Britten-Jones regression (3.4), we first remove the term

ĉt from the regression in (3.5) by applying the theorem of Frisch and Waugh (1933) and

Lovell (1963): First, a regression of the dependent variable on ĉt is conducted. Second,

regressions of the independent variables on ĉt are performed. To obtain the normalized

coefficients w2, ..., wN , the residuals resulting from the first-step regression are regressed

on the residuals originating from the second-step regressions. When applying LASSO,

we therefore avoid to shrink the parameter γ towards zero. Since this regression does

not include a constant term, the variables are not mean-adjusted. Additionally, it is
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important to note that the weight of the return used as dependent variable results as

one minus the sum of all other weights, e.g. w1 = 1 −
∑N

i=2wi, which means that this

weight is exempt from shrinkage towards zero. However, the regressions (3.3) and (3.5)

are invariant to the choice of the reference asset and therefore, an asset return expected

to exhibit a large weight is selected as dependent variable, see Section 3.5.2 for details.

3.3. On the interpretation of negative weights

It is a matter of fact that the optimal portfolio regularly exhibits negative weights. For

illustration let us consider a portfolio of just two assets. The covariance matrix of the

two returns R = (R1, R2)
′ is given by

Σ =

(
σ21 ϱσ1σ2

ϱσ1σ2 σ22

)
with Σ−1 = φ

(
σ2
σ1

−ϱ
−ϱ σ1

σ2

)
,

where φ = [σ1σ2(1 − ρ2)]−1 and ϱ denotes the correlation between the two returns.

Accordingly, for the GMV portfolio, one weight becomes negative whenever

ϱ > min

(
σ2
σ1
,
σ1
σ2

)
,

whereas for the tangential (MSR) portfolio, the condition for a negative weight is

ϱ > min

(
µ1σ2
µ2σ1

,
µ2σ1
µ1σ2

)
.

Since in practice the correlation among stock price returns is typically large, the oc-

currence of negative weights is highly probable in empirical applications. For example,

concerning the dataset used for the empirical application in Section 3.5, we observe that

45% of the weights of the sample GMV portfolio and nearly 50% of the sample MSR

weights are negative.

What does a negative weight mean? Since a positive weight tells the investor how

many stocks to buy, a negative weight suggests that the investor should sell a certain

amount of stocks and invest the resulting cash flow in other stocks. Accordingly, a

negative weight suggests that the investor holds a short position in the respective asset,

which is opened by borrowing shares (or other assets) corresponding to the negative

weight. The investor sells the borrowed shares and employs the cash-flow for purchasing

shares with positive weights. This investment plan will be called short-selling strategy.

Another possibility is to adopt a put option strategy. For this purpose, the investor
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buys a put option, which we assume to have a 1 : 1 inverse relationship with the under-

lying asset.3 Essentially, this strategy shifts the minus sign of the weight to the asset’s

return, as the put option strategy involves a positive investment in an asset with an

inverse return. While these two strategies may appear similar at first glance, they differ

substantially in some important aspects.

For concreteness let us consider a simple example, where E(R) = µ = (0.18, 0.08)′

and the covariance matrix is given by

Σ =

(
2 1.2

1.2 1

)
. (3.6)

The MSR weights are given by w∗
1 = 3 and w∗

2 = −2. While this scenario does not

seem unrealistic, no investor would pursue the implied short-selling strategy. Note that

according to this investment plan, the investor invests 3 times the wealth in asset 1,

resulting in an exposure of 3. Consequently, the portfolio variance is as large as 7.6,

which even exceeds the variances of the individual assets. In contrast, the put option

strategy shifts the minus sign from the weight to the corresponding return yielding the

return vector R̃ = (R1,−R2)
′ with covariance matrix(

2 −1.2

−1.2 1

)
(3.7)

and the MSR weights w̃∗ = (0.6, 0.4). These weights make much more sense as there

is no need to borrow a huge amount of asset 2 in order to invest it in asset 1. From

a mathematical point of view, the main difference between the two shorting strategies

is that the short-selling strategy implies the normalization
∑
w∗
i = 1, whereas the put

option strategy adopts the normalization
∑

|w∗
i | = 1. Accordingly, the put option MSR

weights are obtained by dividing the raw weights vi by
∑

|vi|. A negative sign of the

resulting weight implies the investment in a put option position.

It is important to notice that the Sharpe ratios of both shorting strategies with weight

vectors (3,−2) and (0.6,−0.4) are identical. This is due to the fact that the short-selling

strategy inflates means and standard deviations by the same factor. Specifically, the

3In practice, the (absolute) leverage of an option often exceeds 1. In such cases, the returns (and their
moments) are multiplied by the leverage, leading to the division of the raw weights by the same
leverage factor.
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relationship between the weights of the two shorting strategies is

w̃∗
i =

∑N
j=1w

∗
j∑N

j=1 |w∗
j |
w∗
i .

The adjustment factor in front of w∗
i is smaller or equal to one (in our example this

factor is equal to 0.2). Hence, the standard deviation and (absolute) return of the put

option strategy are typically (much) smaller. Furthermore, in most applications, the

weights implied by the put option strategy are far more appealing than the excessively

fluctuating weights from the short-selling strategy.

Another problem with the short-selling approach occurs if the sum of the raw weights

v1, . . . , vN is negative. In such cases, the standard (short-selling) normalization w∗
1 +

...+ w∗
N = 1 switches the sign of the raw weights. In our simple example, this situation

can occur if both mean returns are negative. Assume that µ = (−0.6,−0.4). In this

scenario, the MSR portfolio with the standard normalization yields w∗ = (0.6, 0.4).

However, the conventional interpretation suggests that the investor should go long in

both assets, although both returns are negative. Such a portfolio is clearly not optimal.

If we adopt the put option normalization with |w∗
1| + |w∗

2| = 1, the optimal portfolio

results as (−0.6,−0.4), implying to buy put options for both assets. This approach

yields a positive and, indeed, a maximum Sharpe ratio.

It is important to note that the two different shorting strategies result in different

GMV portfolios. For our simple example above, the put option strategy implies that the

negative sign of the second weight shifts to the return of the second asset. Accordingly

the covariance matrix of this portfolio with R̃ = (R1,−R2)
′ is given in (3.7). The

GMV weights are obtained as w̃ = (0.407, 0.593)′. The corresponding portfolio variance

is 0.104. Notice that this variance is substantially smaller than the variance of the

standard GMV portfolio. It might seem counterintuitive to observe a portfolio with

positive weights in long/short positions that possesses a much lower variance than the

“gobal minimum variance portfolio allowing for short-selling”. However, notice that the

covariance matrix (3.7) is much better suited for risk hedging than (3.6), as it includes

two negatively correlated assets.

3.4. The statistical properties of estimated weights

In this section, we examine the statistical properties of the GMV and MSR estimators

based on the model assumptions underlying the standard framework considered in Sec-

tion 3.2. Specifically, we assume that returns are distributed as Rt
iid∼ N (µ,Σ). It is well
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known that in empirical practice, returns are neither normally distributed nor indepen-

dent. Furthermore, the moments µ and Σ typically change over time. Notwithstanding

these limitations, it is interesting to study the performance of the standard approaches

within such admittedly unrealistic laboratory conditions.

In order to mimic the statistical properties of actual return series, we compute the

sample mean vector µ̂ and covariance matrix Σ̂ from the daily returns of 760 stocks from

major stock price indices that are also employed in the empirical analysis of Section 3.5.4

We generate artificial data by drawing T independent observations from a N (µ̃, Σ̃)

distribution, where µ̃ and Σ̃ denote the sample mean and covariance matrix of the

stock returns. We construct portfolios of size N by randomly selecting N columns

without replacement from the T × 760 matrix of realizations. In order to assess the

performance of the estimated portfolio weights, we compute the Sharpe ratio (SR) of

the resulting portfolios, evaluated using 100 out-of-sample realizations of the returns.5

Furthermore, we report the correlations between the empirical weights and the optimal

weights, considering the hypothetical scenario of known moments.

We focus on three major challenges for estimating the optimal weights in the GMV

and MSR approach:

1. the covariance matrix is ill conditioned,

2. the uncertainty about the mean is substantial,

3. the normalization has a crucial effect on the statistical properties of the portfolio.

In the following, we first examine each of the three problems separately before the overall

performance of the GMV and MSR approaches is considered in Section 3.5.

3.4.1. Estimating the covariance matrix

First, we study the effect of uncertainty about the covariance matrix. Since the estimated

GMV portfolio is a function of the sample covariance matrix, the properties of the

estimated covariance matrix are crucial for the performance of the GMV portfolio. The

weights of the MSR portfolio depend in addition on the estimated mean vector. If the

returns are normally distributed, the estimation errors µ̂−µ and Σ̂−Σ are independent.

Therefore, it makes sense to study the effect of the estimation errors for the two moments

separately. To this end, we initially assume that the mean vector is known for the MSR

portfolio. Accordingly, the weights are computed as w∗(Σ̂) = Σ̂−1µ/1′nΣ̂
−1µ.

4See Section 3.5.1 for the details of the dataset.
5The results are not sensitive to the number of out-of-sample periods. The Sharpe ratios are computed
as the average of 1000 Sharpe ratios computed from 100 out-of-sample returns.
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Figure 3.1.: Condition number as a function of N

The figure displays the mean of the condition numbers of the empirical covariance matrix based
on 1000 random samples of N assets, drawn from the set of all 760 assets contained in our
CRSP dataset. See Section 3.5.1 for the details of the dataset.

As shown by Okhrin and Schmid (2006, Corollary 1), the estimation error of the

GMV weights is Op(N/T ). This finding extends to the estimator w∗(Σ̂). Accordingly,

we expect a large estimation error as N/T approaches unity. For N/T > 1, the inverse

of the sample covariance matrix must be substituted by the (Moore-Penrose) pseudo

inverse. A key concern for the small sample properties of the inverse Σ̂−1 is that the

condition number (e.g. the ratio of the largest to the smallest eigenvalue of Σ̂) typically

increases with N . This is due to the fact that if the assets are driven by common risk

factors, the largest eigenvalue of the covariance matrix is O(N), whereas the smallest is

O(1). Figure 3.1 presents the condition number as a function of the N . The covariance

matrices of smaller portfolios are constructed by drawing randomly N assets from the

set of all 760 assets without replacement. This experiment is repeated 1000 times and

the average condition number is plotted in Figure 3.1. Clearly, the rate of the largest
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eigenvalue is well characterized as a linear function of N . Since the condition number is

a measure for the sensitivity of the output of a linear system with respect to small input

changes, the sampling variability tends to increase with the condition number.

This reasoning suggests that some regularization is required for estimating the inverse

of a large covariance matrix. A popular method is the shrinkage estimator proposed by

Ledoit and Wolf (2003). This estimator is an optimally weighted average of the usual

sample covariance matrix and the estimated covariance matrix of a factor model. Some

other regularization methods (such as the LASSO variant of the Kempf-Memmel regres-

sion) will be considered in Section 3.5. In Table 3.1, we compare the performance of

the estimated weights for the MSR and GMV portfolios using (i) the unrestricted sam-

ple covariance (sample) and (ii) the regularized covariance matrix of Ledoit and Wolf

(2003), referred to as LW1F. Furthermore, we include (iii) an extremely simple “regu-

larization”, denoted as “correlation-neglect” (CN). This approach essentially ignores the

correlation among the returns yielding weights proportional to µi/σ̂
2
i (resp. 1/σ̂2i ) for

the MSR (GMV) portfolio. This simple variant reflects the investment strategy of less

sophisticated investors (e.g., Benartzi and Thaler, 2001; Eyster and Weizsäcker, 2016).

The results of our Monte Carlo experiment indicate a clear improvement of the es-

timated weights by adopting the regularization strategy LW1F, in particular, as the

number of assets (N) approaches the sample size. As illustrated in Table 3.1, the perfor-

mance of the estimated weights for the GMV portfolio based on the sample covariance

deteriorates considerably when N = T , whereas the estimated weights perform reason-

able (although worse than using the LW1F regularization) when N substantially differs

from T . The reason is that the inverse of the sample covariance matrix for the case

N = T is based on all N eigenvalues, where some of the eigenvalues may happen to be

very small. This results in huge and volatile portfolio weights. If N > T , the pseudo

inverse employs only the T largest eigenvalues, which results in a much more stable

behavior of the respective portfolio weights. However, the correlation between the esti-

mated and optimal weights may be substantially diminished. Notably, the simple CN

strategy, which neglects the correlation among the assets, performs nearly on par with

the GMV estimator using the full sample covariance matrix for moderate portfolio sizes.

A similar pattern emerges for the MSR strategy, when assuming known mean returns.

As expected, this additional information improves the SR substantially. However, the

relative performance of the estimated weights remains similar (albeit more pronounced)

compared to the GMV strategy. In particular, the results suggest that the information

contained in the covariances is more important for the MSR strategy, as the performance

for the CN estimator, which sets all covariances to zero, performs much worse.
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3.4.2. Estimating the mean returns

In this section, we focus on the estimation of the mean vector and assume that the

covariance matrix is known. An important empirical challenge is that the portfolio

returns are typically small. For the stock return dataset, 90 percent of the 760 daily

mean returns are in the interval [0.0001, 0.18] percent and only 7 percent of the mean

returns are statistically significant at the 5% significance level. The average t-statistic

is 1.013 indicating that estimation error is typically of the same magnitude as the mean

itself. Since the estimation error is Op(T
−1/2), our asymptotic reasoning assumes that

the mean return is of the same order of magnitude, that is, µ = η/
√
T , where η is some

given vector η ∈ RN . Let us assume that

√
T µ̂ ∼ N (η,Σ).

Note that in this setup, the sample means are unbiased but do not converge to their

counterparts µ as T → ∞. Thus, the vector of weights can be represented as

ŵ∗ =
Σ−1η +Σ−1ε

1′NΣ−1η + 1′NΣ−1ε
,

where ε =
√
T (µ̂− µ) ∼ N (0,Σ). The distribution of the i-th weight is obtained as

P (ŵ∗
i ≤ c) = P

(
δ′cΣ

−1η ≤ −δ′cΣ
−1ε
)

= P (z < ψi(c)) = Φ (ψi(c)) , (3.8)

where z is a standard normally distributed random variable with c.d.f. Φ(·) and

ψi(c) =
δ′cΣ

−1η√
δ′cΣ

−1δc
and δc = c1− ei.

The density of w∗
i as a function of c is obtained as ϕ (ψi(c)) ∂ψi(c)/∂c, where ϕ(·) denotes

the density of the standard normal distribution. Hence, the distribution is Gaussian only

if ψi(c) is a linear function. Figure 3.2 depicts the function ψi(c) for the first weight.

The graph indicates that ψi(c) considerably deviates from a linear function. While the

implied skewness is relatively small, the kurtosis is substantially larger than that of a

normal distribution, as the function tends to become flat for large absolute values of c.
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Figure 3.2.: Function ψ1(c) for the first asset

In our simulations, the asymptotic distribution in (3.8) approximates well the actual

distribution of the weights when simulating the data as Rt
iid∼ N (µ̃, Σ̃).6 Figure 3.3

compares the asymptotic and the estimated density of the simulated returns for the first

stock by using a bandwidth of 0.03. Furthermore, Figure 3.4 depicts the asymptotic

densities of the first five weights.

It becomes apparent that the potential to learn about the optimal weights from the

data is quite limited. The 90 percent confidence interval is w∗
1 ∈ [−0.0232, 0.0555]. This

indicates that there is a possibility of the weight to be negative, while the true value is

clearly positive. Table 3.2 presents some further information on the distribution of the

estimated weights. The mean absolute value of the weights is 0.030 and the mean of

their standard deviations is 0.033. As the standard deviation is of similar magnitude,

the uncertainty about the weights is substantial. In many cases, the probability of the

estimated weight having the wrong sign exceeds 20 percent (see Table 3.2). Therefore,

even in an ideal scenario with i.i.d. normally distributed returns and a constant mean,

6For normally distributed errors and fixed covariance matrix, the distribution is exact for all T > N .
If Σ is replaced by the sample covariance matrix, the sample size T must be large enough (as in our

example) such that the estimation error in Σ̂ is negligible.
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Figure 3.3.: Comparison of the asymptotic density (broken blue) and the empirical
density (solid black)

Figure 3.4.: Asymptotic densities for the first 5 estimated weights ŵ∗
1, . . . , ŵ

∗
5.
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Table 3.2.: Descriptive statistics for the first 10 estimated weights

i w∗
i sample mean theoretical std.dev. P (ŵ∗

i ) < 0

1 0.0349 0.0351 0.0360 0.0342 0.15
2 0.0042 0.0039 0.0043 0.0239 0.43
3 0.0369 0.0380 0.0378 0.0358 0.14
4 −0.0782 −0.0790 −0.0802 0.0445 0.97
5 0.0299 0.0308 0.0314 0.0479 0.25
6 −0.0240 −0.0270 −0.0244 0.0448 0.73
7 0.0216 0.0219 0.0219 0.0302 0.24
8 0.0193 0.0194 0.0198 0.0153 0.10
9 0.0424 0.0438 0.0437 0.0407 0.13
10 −0.0085 −0.0087 −0.0086 0.0118 0.78

The table reports the sample mean of 10.000 replications of the estimated MSR

weights, where the returns are distributed as Rt
iid∼ N (µ̃, Σ̃) and the covariance ma-

trix is treated as known. The column “theoretical” reports the mean of the asymptotic
distribution, the column “std.dev.” presents the sample standard deviations of the
estimated weights ŵ∗

i .

the ability to obtain reliable information about the implied optimal weights is severely

constrained.

In the previous subsection, we observed that shrinkage towards a simple structure

helps to reduce the sampling variability of the estimates. It is therefore interesting to

investigate whether a similar shrinkage approach for the mean improves the performance

of the estimated weights. To this end, we consider a convex combination of the unre-

stricted mean and the mean resulting from a factor model with a single factor. The

factor model is given by

Rt = βft + vt,

where β is an N × 1 vector of loading coefficients. The factor is estimated by the first

principal component and β is estimated by regressing the returns R1,t, . . . , RN,t on the

estimated factor. The restricted estimator for the means results as

µ̂θ = θ µ̂+ (1− θ) β̂ f with 0 ≤ θ ≤ 1,

where β̂ denotes the least-squares estimator of β and f indicates the ordinary mean of

the estimated factor. Note that for θ = 1, the standard MSR weights are obtained, while

θ = 0 yields the GMV weights. The shrinkage parameter is varied between θ = 1 and

θ = 0 with step size 0.1. It should be noted that, in practice, both estimators µ̂ and µ̂θ

48



Chapter 3. Empirical Challenges for Optimal Portfolio Selection

Table 3.3.: Shrinkage estimation of the mean vector (MSR)

θ 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

T N = 50

250 0.25 0.25 0.26 0.26 0.26 0.28 0.29 0.31 0.35 0.39 0.55
500 0.41 0.43 0.44 0.46 0.48 0.52 0.55 0.58 0.60 0.61 0.57
750 0.56 0.56 0.57 0.59 0.63 0.66 0.68 0.71 0.72 0.73 0.61
1000 0.62 0.62 0.63 0.64 0.66 0.67 0.68 0.71 0.74 0.74 0.64

T N = 250

250 0.46 0.47 0.49 0.48 0.50 0.51 0.52 0.51 0.52 0.53 0.45
500 0.79 0.79 0.79 0.77 0.79 0.79 0.80 0.81 0.80 0.76 0.50
750 0.91 0.92 0.92 0.92 0.92 0.93 0.93 0.93 0.95 0.94 0.61
1000 1.13 1.14 1.14 1.14 1.15 1.16 1.17 1.17 1.15 1.06 0.56

T N = 500

250 0.57 0.58 0.60 0.60 0.61 0.62 0.62 0.60 0.57 0.49 0.33
500 1.09 1.10 1.09 1.10 1.10 1.10 1.10 1.07 1.03 0.95 0.42
750 1.26 1.26 1.27 1.28 1.29 1.29 1.29 1.28 1.26 1.11 0.45
1000 1.40 1.40 1.41 1.41 1.42 1.43 1.44 1.44 1.43 1.36 0.62

T N = 760

250 0.75 0.75 0.75 0.76 0.77 0.78 0.78 0.81 0.79 0.69 0.40
500 1.25 1.25 1.26 1.27 1.28 1.28 1.28 1.27 1.22 1.09 0.37
750 1.55 1.54 1.55 1.55 1.56 1.56 1.55 1.55 1.54 1.39 0.50
1000 1.69 1.69 1.69 1.69 1.70 1.70 1.70 1.69 1.66 1.56 0.58

The table reports annualized Sharpe ratios for the MSR portfolio using the restricted mean
estimator with a known covariance matrix. The returns are simulated as a normal distribution
employing sample moments from the CRSP dataset. The results are based on 1000 replica-
tions.

might yield rather different values. Since the mean return of the market factor and the

loadings are typically positive, all elements of µ̂θ are positive as well, whereas the mean

of some assets may be negative.

Table 3.3 shows that some shrinkage of the mean improves the performance of the MSR

portfolio, at least in our laboratory conditions of i.i.d. returns with known covariance

matrix and constant mean and variances. The optimal shrinkage parameter is around

θ = 0.1 for a smaller set of assets and increases slightly as N increases. The relative

gain relative to the original MSR portfolio (θ = 1) is sizable but the gain deteriorates

slightly as N gets larger.
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3.4.3. The effect of the normalization

As argued in Section 3.3, the treatment of negative weights is important for the per-

formance of the GMV and MSR strategies. The short-selling strategy corresponds to

the standard solution that allows for short-selling and imposes the normalization that

the weights sum up to unity. Conversely, the put option strategy adopts an alternative

normalization, requiring that the sum of the absolute weights is equal to one. We argued

that the short-selling strategy typically involves a much higher risk due to the leverage

effect implied by substantial asset borrowing.

In this section, we perform experiments to examine the effect of the normalization.

In addition to the short-selling and put option strategies, we also consider the optimal

weights under the no short-selling constraint wi > 0 for all i = 1, . . . , N . The return

data is generated as before by using the historical means and covariances of the dataset

described in Section 3.5.1. The sample size of the estimation sample is T = 1000 and

LW1F regularization is applied to the covariance matrix.

The standard approach with short-selling implies that the investor borrows the shares

with negative weights and invests the cash flow in shares with positive weights. As a

result, such a portfolio allocates an amount that exceeds the initially investable capital.

This amount is proportional to the sum of the positive weights ξ =
∑N

i=1(wi + |wi|)/2.
The factor ξ ≥ 1 is labeled as the “exposure factor”. It is related to the leverage factor

ℓ =
∑

|wi|/
∑
wi via ℓ = 2ξ − 1. Note that ξ is larger than one whenever there is at

least one negative weight and, therefore, ξ > 1 implies ℓ > ξ.

Table 3.4 presents the exposure factor (ξ) associated with the short-selling strategy

(indicated by
∑
wi = 1). It turns out that the exposure tends to increase with the

number of assets (N). This is due to the fact that probability for negative weights

increases with N . For N ≥ 250, the exposure factor of the MSR portfolio exceeds 30,

implying that the total investment related to the short-selling portfolio is more than

30 times as large as for the put option or no short-selling strategies. For all available

760 stocks, the exposure factor is even larger than 50. The GMV portfolio exhibits

considerably lower exposure factors, as it assumes that the mean returns of all stocks

are identical and positive, resulting in a lower probability for negative weights.

As noted in Section 3.3, the absolute value of the SR is identical no matter whether

the portfolio weights are normalized as
∑
wi = 1 or

∑
|wi| = 1. From Table 3.4 it

turns out, however, that the average SR is slightly smaller when applying the former

normalization. This is due to some few cases where the sum of the raw weights,
∑
vi, is

negative. In this case, the SR of the former normalization is typically negative, whereas

the SR with the latter normalization is positive. These (rather few) cases lead to the
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Table 3.4.: Alternative normalizations

norm. MSR GMV

SR µ σ turn ξ SR µ σ turn ξ

N = 50∑
wi = 1 0.59 18.00 208.52 134.06 19.11 0.84 11.55 13.93 5.23 1.38∑
|wi| = 1 0.68 3.87 5.76 2.91 1.00 0.84 6.60 7.94 2.97 1.00

wi ≥ 0 0.81 18.04 22.56 3.54 1.00 0.82 11.95 14.80 3.41 1.00

N = 250∑
wi = 1 1.10 130.44 143.34 39.85 30.02 1.02 10.53 10.32 1.82 2.04∑
|wi| = 1 1.16 2.82 2.46 0.58 1.00 1.02 3.44 3.36 0.59 1.00

wi ≥ 0 0.97 18.74 19.75 0.77 1.00 0.85 10.55 12.53 0.75 1.00

N = 500∑
wi = 1 1.29 132.38 122.42 23.69 36.26 1.13 10.22 9.05 1.20 2.53∑
|wi| = 1 1.34 2.29 1.71 0.29 1.00 1.13 2.52 2.24 0.30 1.00

wi ≥ 0 1.00 18.68 18.85 0.39 1.00 0.88 10.50 11.86 0.38 1.00

N = 760∑
wi = 1 1.48 220.03 140.84 23.38 52.51 1.21 10.08 8.37 0.92 2.88∑
|wi| = 1 1.51 2.08 1.39 0.19 1.00 1.21 2.12 1.76 0.19 1.00

wi ≥ 0 1.04 19.01 18.30 0.26 1.00 0.94 10.73 11.47 0.25 1.00

The table reports the annualized Sharpe ratio, return, standard deviation, turnover and exposure for
the MSR and GMV portfolios. Both portfolios are evaluated under the the short-selling, put option
and no short sale strategies. The returns are simulated as normal distribution employing sample
moments from the CRSP dataset. The results are based on estimation samples of T = 1000 with 1000
replications. The covariance matrix is subject to LW1F regularization.

reported small differences in the average SR. Additionally, notice that the SR is identical

for both normalizations of the GMV portfolio, since in this case, we observe no instance

where the sum of the raw weights is negative.

For N = 50, the no short-selling portfolio performs slightly better than the other

portfolios in terms of the SR for the MSR approach. However, for larger portfolios, the

no short-selling portfolio exhibits a considerably lower SR. With respect to the means

and variances of the portfolios, the differences are much more pronounced. Due to the

high leverage and exposure, both the average mean and volatility of the short-selling

portfolio are substantially higher compared to both the put option and no short-selling

portfolios.

Table 3.4 also presents the turnover rate (turn) of the portfolios. This indicator

measures the extent the assets are reallocated after the holding period (m = 100).

The turnover is a rough measure of the transaction costs due to the restructuring of the

portfolio, see Section 3.5. The short-selling portfolios exhibit a markedly higher turnover

(and thus transaction costs) than the put option and no short-selling portfolios.
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3.5. Empirical Analysis

In this section, we evaluate the out-of-sample performance of alternative portfolio strate-

gies on American stock data. In particular, we focus on the major challenges for esti-

mating portfolio weights that are emphasized in Section 3.4. As mentioned before,

the estimation of portfolio weights is highly prone to estimation errors in the moments

leading to extreme weights and poor out-of-sample performance. Hence, finding sound

estimates for the moments is crucial but not trivial, in particular when when the con-

centration ratio N/T comes close to one. As noted in Section 3.4.2, the estimation of

expected returns via the sample means is particularly challenging, since the estimation

error is typically of the same magnitude as the mean itself. In addition, errors in the

estimation of the mean returns are more harmful for estimating portfolio weights than

errors in the estimation of covariance matrices. This led many authors of the recent

academic literature to ignore the data on mean returns and instead focus their efforts on

enhancing the estimation of the GMV portfolio. In this section, we compare the perfor-

mance of several popular estimators of the covariance matrix and furthermore consider

investment strategies that focus on the direct estimation of the portfolio weights via

LASSO regressions. In addition, we show empirically that the put option strategy is

effective in reducing the portfolio variance and typically performs much more desirable

with regard to the portfolio weight properties, most notably, when taking into account

the mean returns to estimate MSR portfolios.

3.5.1. Data

We extracted daily stock data from the Center for Research in Security Prices (CRSP)

for the time period 3 January 2000 until 14 November 2019 yielding 5000 daily returns

(WRDS, 2020). Our primary dataset comprises 760 stocks for which we have an almost

complete return history for the considered time period.7 To ensure a certain quality

standard of the stocks included in our investment universe, we restrict attention to

stocks that were constituents of the S&P 500 index on the last trading day of the years

between 2010 and 2019 plus constituents of the NASDAQ composite index. All included

stocks are common shares that are traded on the NYSE or NASDAQ stock exchanges

with no more than ten recorded trading days without trading volume. We chose these

requirements to avoid the inclusion of illiquid stocks with high spreads.

In addition, we consider the 49 industry portfolios from Kenneth French’s website

7We allow for <1% of missing returns during the considered time period. The few missing values are
replaced by zeros.
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(French, 2020). For this dataset, all stocks from NYSE, AMEX and NASDAQ are

assigned to one of 49 industries. We consider the dataset for the time period 1 July 1969

until 15 January 2020 yielding 12750 daily returns. In Appendix B.1, we also examine

the same time period as for the CRSP dataset.

3.5.2. Alternative Portfolio Selection Strategies

This section provides short descriptions of the alternative estimators we consider. Besides

the standard plug-in estimators, we include some very simple regularization strategies

for estimating the covariance matrix and compare them to more complex and sophis-

ticated models from the recent literature. In addition, we consider LASSO variants of

the regression approaches to portfolio allocation described in Section 3.2. Finally, we

examine the performance of an investment strategy, in which the concentration ratio is

artificially reduced by subdividing the N assets into smaller blocks. For each of the port-

folio estimators, we report results for the short-selling and put option strategies. The

weights for an estimation strategy are obtained by applying the following normalizations

to the raw weights υ, respectively:

short-selling: w =
υ

1′Nυ
, put option: w =

υ

∥υ∥1
.

We include the following estimators in our comparison.

Standard models

1. Plug-in MSR portfolio (MSR(µ̂, Σ̂))

We consider the plug-in MSR portfolio with the expected return and covariance ma-

trix estimated via their sample analogous. Thus, the vector of raw weights is deter-

mined as υ̂ = Σ̂−1µ̂.

2. Plug-in GMV portfolio (GMV(Σ̂))

For the plug-in GMV portfolio, we employ the sample covariance matrix, assuming

that the expected returns are identical for all assets. That is, we ignore the data on

expected returns and compute the raw weights as υ̂ = Σ̂−11N .

3. Naive portfolio (1/N)

This strategy omits the estimation of both moments and simply invests 1/N in all

assets. DeMiguel et al. (2009b) claim that it is difficult to outperform the 1/N

portfolio out-of-sample, as allocation mistakes caused by using this naive strategy
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may be less severe than the consequences of estimation errors. Hence, this simple

portfolio serves as a benchmark strategy.

Regularization strategies for the covariance matrix

4. Correlation-neglect (CN)

This simple regularization strategy solely considers the estimated variances, ignoring

the potentially noisy estimates of the correlations among the assets. The estimated

covariance matrix results as Σ̂ = diag(σ̂21, ..., σ̂
2
N ) so that υ̂i ≥ 0 for all i. Thus, the

weights for both normalization approaches are identical for the CN portfolio.

5. Single-factor (1F)

This strategy uses the estimated covariance matrix of an exact single factor model,

Σ̂1f , as input for Σ to compute the raw weights. The factor is estimated as the first

principal component of the sample covariance matrix.

6. Linear shrinkage (LW1F)

Ledoit and Wolf (2003) propose a shrinkage estimator in the style of Stein (1956) to

regularize the covariance matrix, which is a convex linear combination of the market-

factor covariance matrix and the sample covariance matrix,

Σ̂LW1F = ωΣ̂1F + (1− ω)Σ̂,

where Σ̂1F is the shrinkage target and ω denotes the shrinkage intensity.8 The sample

covariance matrix is asymptotically unbiased but suffers from substantial estimation

error when the concentration ratio comes close to one. The market-factor covariance

matrix, on the other hand, has considerably fewer parameters to estimate and contains

much less estimation error. We consider Σ̂LW1F as linear shrinkage estimator in our

empirical application, since it is a particularly suitable shrinkage target in finance

applications. Ledoit and Wolf (2004a,b), however, suggest the constant correlation

matrix and (a multiple of) the identity matrix as alternative shrinkage targets.

7. Nonlinear shrinkage (LWNL)

We consider the (analytical) nonlinear shrinkage estimator of Ledoit and Wolf (2020).

The nonlinear shrinkage approach generalizes linear shrinkage to a multiple of the

8In order to obtain the optimal shrinkage intensity, Ledoit andWolf (2003) consider a loss function based
on the Frobenius norm, which is a quadratic measure of distance between the shrinkage estimator
ΣLW1F and the true covariance matrix. The optimal shrinkage intensity depends on population
quantities, which can be estimated from the data to obtain a feasible version. We use the Matlab
package covShrinkage, available on Michael Wolf’s website.
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identity matrix proposed by Ledoit and Wolf (2004b). While the latter approach is

equivalent to shrinking the sample eigenvalues to their grand mean with equal inten-

sity, nonlinear shrinkage uses individual (positive or negative) shrinkage intensities

for each sample eigenvalue. To overcome the problem that the number of parameters

increases with N , the sample eigenvalues are transformed with a shrinkage function.

Ledoit and Wolf (2020) present an analytical solution to directly estimate the oracle

shrinkage function.9

8. Dynamic Model (DCCNL)

All previously considered models rely on the assumption that the return data are

i.i.d., which may be overly restrictive. However, the accurate estimation of dynamic

covariance matrices (via multivariate GARCH models) is very challenging in large-

dimensional asset applications due to their complexity and the large number of pa-

rameters to estimate. Recently, Engle et al. (2019) managed to robustify the dynamic

conditional correlation (DCC) model of Engle (2002) for large N applications by using

nonlinear shrinkage of Ledoit and Wolf (2012, 2015) in the estimation of the (static)

correlation targeting matrix and using the composite likelihood method of Pakel et al.

(2020) to estimate the DCC parameters. For details on the implementation of this

DCCNL model, consider the original paper Engle et al. (2019).10

Regularization strategies for the weights

9. Short-sale-constrained MSR (MSR+)

A prominent method to improve the stability of portfolio weights is to extend the

MSR and GMV optimization problems with short sale constraints on the portfolio

weights. In the context of the MSR portfolio, DeMiguel et al. (2009b) emphasize

that constraining short sales corresponds to shrinking the mean returns towards the

average of the mean returns. In this study, we consider the classical no-short-selling

portfolio imposing a lower bound of zero on the portfolio weights.11

10. Short-sale-constrained GMV (GMV+)

For this strategy, the GMV optimization problem is extended with short sale con-

9In earlier papers, Ledoit and Wolf (2012, 2015, 2017b) propose numerical strategies to estimate the
shrinkage function. As mentioned in Ledoit and Wolf (2020), the analytical solution is much faster
and similarly accurate. We use the Matlab routine analytical shrinkage, available on Michael Wolf’s
website.

10We use the Matlab routine DCC NL06, available on Michael Wolf’s website
11Instead of imposing a nonnegativity constraint on the portfolio weights, short-selling can also be

limited by constraining the 1-norm of the weight vector when solving the optimization problem, cf.
DeMiguel et al. (2009a) and Fan et al. (2012).
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straints. Jagannathan and Ma (2003) demonstrate that constraining short sales when

estimating the GMV portfolio corresponds to shrinking the extreme elements of the

sample covariance matrix.

11. Kempf-Memmel-LASSO (KML)

We examine an alternative shrinkage method and consider LASSO variants of the

regressions depicted in Section 3.2. The LASSO regression encourages sparsity with

regard to the number of model parameters by constraining the L1-norm of the regres-

sion coefficients (i.e. the portfolio weights).

We estimate a LASSO variant of the Kempf-Memmel (KM) regression and obtain the

coefficients by solving the following minimization problem,

min
w2,...,wN

T∑
t=1

u2t + λ

N∑
i=2

|wi|, (3.9)

where the variables are mean-adjusted to exclude the parameter of the constant from

the shrinkage estimation. However, the variables are not standardized in order to

retain the information about the risk of the assets. This type of regularization can

eliminate weights from the portfolio (i.e. wi = 0) and thus focuses on the most

important assets. The amount of zero-weights depends on the size of the tuning

parameter λ, which controls the shrinkage intensity. The larger λ, the more weights

are set to zero and the corresponding assets are eliminated from the portfolio. A

standard approach to select the tuning parameter is cross-validation.

In contrast to the original KM regression, the LASSO variant is sensitive to the choice

of the reference asset as a dependent variable, since the corresponding weight is not

shrunk but determined by the adding-up constraint w1 = 1 −
∑N

i=2wi. To choose

a plausible reference asset, we make an educated guess: We estimate the original

KM regression (hence the plug-in GMV portfolio) in a first stage and use the asset

with the largest (positive) weight as a reference asset in the LASSO regression. This

data-driven procedure increases the probability that the reference asset would not be

removed by the L1-regularization.12

12. (Normalized) Britten-Jones-LASSO (BJL∗)

For the LASSO variant of the Britten-Jones (BJ) regression, we consider the second

12Frey and Pohlmeier (2016) propose to augment the asset universe by a reference portfolio (e.g. the
1/N portfolio) in order to impose shrinkage on all weights. Using their approach yields a quite similar
portfolio performance. In general, the choice of the reference asset does not seem to have a major
impact on the portfolio performance in large-dimensional applications.
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stage of the 2SLS approach depicted in Section 3.2. In contrast to the original BJ

regression, this version does not require a challenging normalization such that the

weights sum up to unity after estimating the LASSO regression. In addition, the

original BJ-regression features a constant variable on the left side (typically a vector

of ones), which causes problems when applying L1-regularization with classical cross-

validation. Figure 3.5 presents the MSE paths for LASSO versions of the original

BJ (BJL) and the normalized BJ (BJL∗) regressions for an exemplary estimation

period of the CRSP dataset using 5-fold cross-validation and a grid of 100 λ-values.

The MSE of BJL is steadily decreasing and exhibits a minimum at the highest λ

value suggesting to set all weights equal to zero. Besides the fact that this result

is unreasonable, obtaining normalized weights is impossible in this scenario. On the

other hand, the MSE of the BJL∗ is minimized at λ = 0.0418, which eliminates 500

out of 760 assets in this case.
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Figure 3.5.: Example of the MSE paths for LASSO versions of the original
Britten-Jones and the normalized Britten-Jones (BJL∗) regressions. The
x-axis is represented on a logarithmic scale.

In contrast to the MAXSER approach proposed by Ao et al. (2019), our approach does

neither require an estimate for the response variable nor to specify a risk constraint.13

13Ao et al. (2019) propose an unconstrained regression representation that is equivalent to the mean-
variance portfolio for a given risk constraint. In contrast to the approach of Britten-Jones (1999),
their dependent variable is estimated from the data in order to approximate the correct scaling of
the mean-variance portfolio. As a result, the BJ-regression is multiplied by a constant leading to a
similar LASSO solution path for the MAXSER and BJL regressions (see Ao et al., 2019, Figure 4).
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Instead, applying the L1-regularization to the second stage of the 2SLS approach

yields the normalized weights in a direct way. As mentioned in Section 3.2, we

remove the constant ĉt from equation (3.5) by applying the theorem of Frisch and

Waugh (1933) and Lovell (1963). We find the reference asset with a similar approach

as for the KML regression, using the asset with the largest weight from the original

BJ-regression (plug-in MSR) as dependent variable.

Blocking strategies

Since we expect the estimation error of the covariance matrix to be large whenever the

concentration ratio N/T comes close to one, we propose a very simple strategy that

reduces the concentration ratio by subdividing the assets into blocks. For this strategy,

we utilize the information on µ by sorting the assets according to their sample means,

µ̂, in the respective estimation period and separate the assets into B (approximately)

equal-sized blocks. In a second step, the plug-in GMV weights are determined for each

of the b = 1, ..., B blocks such that the weights within each block sum up to unity. In a

third step, the weights of all blocks are merged back into one vector and the portfolio

weights for the blocking strategy are computed as linear combination of the within-block

weights, i.e.

ŵ∗
block = θbw

b
GMV(Σ̂),i

for i = 1, ..., N, and b = 1, ..., B,

where wb
GMV(Σ̂),i

denotes the within-block weight of asset i in block b and θb indicates the

weight of block b with
∑B

b=1 θb = 1. Finally, the original order of the assets is restored.

We consider the following alternative weighting schemes for θb.

13. Equal-weighted (block(eq))

The blocks are equally-weighted, hence θb = 1/B for b = 1, ..., B.

14. Ordinal-weighted (block(ord))

The blocks are ordinally weighted, hence θb = b/B! for b = 1, ..., B, such that the block

comprising the assets with the largest historical mean returns receives the largest

weight.

15. In-sample Sharpe ratio (block(SR))

We also consider a data-driven weighting scheme, where the weights of the blocks are

scaled according to their in-sample Sharpe ratio in the current estimation period. To

The authors select a tuning parameter through a cross-validation procedure that leads to a portfolio
attaining a higher Sharpe Ratio than BJL (see their Section 1.5 for details).
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ensure that the block weights are positive and sum up to unity, the weight for block

b is determined as

θb =
exp(ŜRb)∑B
b=1 exp(ŜRb)

for b = 1, ..., B,

where ŜRb denotes the in-sample Sharpe ratio of the assets contained in block b in

an estimation period.

3.5.3. Methodology for Evaluating the Performance

To compare the performance of alternative portfolio strategies, we use the following

rolling window procedure to generate a time series of out-of-sample returns for each

strategy. Let T denote the total number of available daily returns. We choose an esti-

mation window length of M returns (e.g. 1000 returns corresponding to roughly four

years of daily data) to estimate the vector of portfolio weights for each strategy k. Next,

we choose an investment period of length h (e.g. 50 trading days) to generate out-of-

sample returns for each strategy. During an investment period, the number of shares are

held constant. In order to determine the out-of-sample returns for the subsequent in-

vestment period, we move the estimation window by h and update the portfolio weights,

accordingly. This rolling window procedure is continued until the end of the dataset is

reached. For instance, if M = 1000 and h = 50, the first estimation window goes from

t = 1 to t = 1000 and the first investment period from t = 1001 to t = 1050. The second

estimation window goes from t = 51 to t = 1050 and the second investment period from

t = 1051 to t = 1100 and so on. Eventually, we obtain (T −M)/h weight vectors for H

investment periods and T −M out-of-sample returns for each strategy.

As mentioned above, we hold the assets (instead of the weights) fixed during an

investment period and rebalance according to the updated weights at the beginning

of the subsequent investment period.14 Let τ denote an investment period, such that

τ = 1, ...,H. We determine for each strategy k the amount of stocks for asset i that are

acquired on the rebalancing date of τ as

ŝk,i,τ =
ŵk,i,τ

pτi
, (3.10)

where ŵk,i,τ denotes the corresponding estimated weight and pτi indicates the buying

14The other way around, thus holding the weights constant, would imply excessive turnover. The weights
of stocks in a portfolio constantly change when prices vary, hence maintaining a specific weight vector
requires constant trading.
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price of asset i in investment period τ .15 The out-of-sample portfolio return for time

period t and strategy k is obtained as

R̂pk,t =
(pt − pt−1)

′ŝk,τ
p′
t−1ŝk,τ

for t =M + 1, ..., T and τ = 1, ...,H, (3.11)

where pt and sτ are N -dimensional vectors.

In order to examine the performance of the alternative portfolio strategies, we use

the out-of-sample returns for each strategy to compute the average annualized portfolio

return

µ̂k =

(
1

T −M

T∑
t=M+1

R̂pk,t

)
× 250, (3.12)

the annualized portfolio standard deviation

σ̂k =

√√√√( 1

T −M − 1

T∑
t=M+1

(R̂pk,t − µ̂k)2

)
× 250 (3.13)

and the annualized portfolio Sharpe ratio

ŜRk =
µ̂k
σ̂k

× 250. (3.14)

We do not prioritize these three performance criteria and consider them to be equally

important, even if we compare alternative estimators of the GMV portfolio. As pointed

out by De Nard et al. (2019), estimators of the GMV portfolio should be primarily

evaluated according to the extent to which they minimize the variance while a high

return and Sharpe ratio are of secondary importance. However, we want to compare

portfolio performances in general and consider the GMV portfolio as an expedient to

deal with the estimation error in the sample means.

Since we are particularly interested in the effect of the normalization, we examine

the performance of the short-selling and put option strategies that are considered in

Section 3.3. The short-selling strategy is implemented by employing a negative weight

in Equation (3.10) in case the investor holds a short position in the corresponding asset.

The put option strategy, on the other hand, essentially involves only positive investments

in either stocks or put options, such that the sum of the absolute weights is equal to

one. Hence, we use the absolute weights in Equation (3.10) for this strategy. In order

15For instance, if the first investment period (τ = 1) starts in t = 1001 then pτi = pi,1000. This assumes
that prices are constant after-hours, so that the (daily) return of stock i is determined by the price
difference of pi,t+1 and pi,t.

60



Chapter 3. Empirical Challenges for Optimal Portfolio Selection

to mimic the inverse returns of put options, the prices in Equations (3.10) and (3.11)

are replaced by shadow prices in case the (original) weights from the optimization are

negative. This shadow price for put options is computed as

pputi,t = 2× pτi − pi,t, (3.15)

such that the price of the put option is identical to the share price at the time of

investment in τ .16

As noted in Section 3.3, the standard deviation and absolute return of a portfolio

applying the normalization
∑

|wi| = 1 are typically much smaller than for the classi-

cal short-selling strategy, while the Sharpe ratio remains identical, since the mean and

standard deviation of the short-selling strategy are inflated by the same factor. How-

ever, in our empirical application, we observe occasionally large deviations between the

Sharpe ratios, depending on the normalization scheme. There are two reasons for this.

Firstly, as noted in Section 3.3, applying the standard normalization
∑
wi = 1 reverses

the signs of the weights whenever the sum of the raw weights is negative. This implies

that mean and standard deviation of the short-selling strategy are inflated by the same

(absolute) factor, but with opposite signs. Secondly, and more importantly, the devi-

ations in Sharpe ratios result from the manner in which we conduct our out-of-sample

evaluation. The inflation factor for mean and standard deviation is constant through-

out an investment period, but changes from one investment period to the next. Hence,

following the common practice of computing the portfolio mean and standard deviation

for the entire out-of-sample period leads to different Sharpe ratios.17

In addition to the performance criteria formulated in (3.12) - (3.14), we are interested

in the properties of the weights for each investment strategy. It is well known that im-

plementing investment strategies based on sample estimates of means and the covariance

matrix produces excessively fluctuating weights with extreme long and short positions

(cf. DeMiguel et al., 2009b). Another, less noticed reason for the extreme weights results

from the classical normalization scheme, such that the weights sum up to one. This nor-

malization can have a crucial effect on the statistical properties of the weights, since the

16As an example, consider a share that costs 100$ at the time of investment. The price of the put
option results as 2 × 100$ − 100$ = 100$ at this time. If the price of the share drops to 90$ in the
subsequent time period, investors owning the put option gained 10%, since the new price of the put
option results as 2× 100$− 90$ = 110$. In the very few cases where pi,t > 2× pτi , we set the price
of the put option equal to zero such that the put option is out of the money.

17We follow this rule, as it is common practice in the literature to compute the three performance criteria
in equations (3.12) - (3.14) for the entire out-of-sample period. However, it is important to note that
considering the average for all investment periods would indeed yield identical Sharpe ratios for both
normalization strategies.
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raw weights are divided by a number that is typically close to zero.

In order to gain insights in the properties of the weight vectors, we report for each

strategy and both normalization variants the average minimum and maximum weights

for all investment periods as well as the average exposure factor,

ξ̄k =
1

H

H∑
τ=1

∥ŵτ∥1, (3.16)

where H denotes the number of investment periods. We are additionally interested in

the fluctuation of weights over the investment periods. Hence, we assess the amount

of trading required and compute the following turnover formula for strategies applying

the classical short-selling normalization (cf. DeMiguel et al. (2009a) and De Nard et al.

(2019),

Turnover =
1

H − 1

H−1∑
τ=1

N∑
i=1

(|ŵk,i,τ+1 − ŵk,i,τ+ |), (3.17)

where wk,i,τ denotes the weight in asset i in the investment period τ and wk,i,τ+1 is the

desired weight in the subsequent investment period τ + 1. The weight wk,i,τ+ denotes

the percentage share of asset i in the portfolio just before rebalancing at τ + 1 and is

obtained as18

ŵk,i,τ+ =
ŝi,τp

τ+
i∑N

i=1 ŝi,τp
τ+
i

.

The computation of the turnover for put option portfolios requires some modifications.

Since the put option strategy essentially involves only positive investments in either

stocks or put options, we compute the turnover for i = 1, ..., 2N assets, where the first

N assets are stocks and the remaining N assets constitute put options with positive

weights. For the N stocks, we apply the turnover formula in (3.17) as set out above. For

the put options, we compute the weights wi,τ+ using the pricing formula in Equation

(3.15) and apply the turnover formula in (3.17) for i = N + 1, ...2N , accordingly.

3.5.4. Performance

In this section, we compare the out-of-sample performance of the alternative portfolio

strategies listed in Section 3.5.2 for the 760 stocks of the CRSP dataset and for the 49

industry portfolios. We report Sharpe ratio, portfolio return and standard deviation for

each strategy.

18This implies that also the naive strategy exhibits a turnover larger than 0. For this strategy, wi,τ =
wi,τ+1 = 1/N , but wi,τ+ may be different due to changes in asset prices between τ and τ + 1.
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CRSP dataset

Table 3.5 reports for both shorting strategies the out-of-sample Sharpe ratios, portfolio

returns and portfolio standard deviations for the CRSP dataset with an estimation win-

dow of 1000 trading days and an investment period of 50 trading days. Hence, for this

dataset, we examine an investment environment, in which the concentration ratio, N/T ,

amounts to 0.76 and is relatively large. As mentioned before, the poor out-of-sample

performance of the plug-in mean-variance estimator (MSR(µ̂, Σ̂)) is well documented

in the academic literature. The results in Table 3.5 confirm this observation and show

the devastating effects on performance when considering the sample means in the es-

timation of the plug-in estimator, resulting from estimation error. The performance

improves considerably when omitting the information on the sample means and restrict-

ing the expected returns to be identical across assets (GMV(Σ̂) portfolio) or even when

ignoring all information from the data (1/N portfolio). Although the Sharpe ratios of the

GMV(Σ̂) and 1/N portfolios are comparable for the short-selling strategy, the GMV(Σ̂)

portfolio is more effective in reducing the portfolio standard deviation. In this scenario,

the out-of-sample performance of the GMV(Σ̂) portfolio can be considerably improved

by using effective regularization strategies for the covariance matrix.

The results for the short-selling strategy in Table 3.5 show that the simple regulariza-

tion strategies CN and 1F attain slightly higher Sharpe ratios than the GMV(Σ̂) and

1/N portfolios. While the 1F portfolio yields marginal improvements in terms of portfo-

lio return and standard deviation compared to the GMV(Σ̂) portfolio, the CN strategy

exhibits a return and standard deviation that are in the range of the 1/N portfolio.

The latter is not surprising, since CN ignores the information on the covariances be-

tween assets and thus involves only long positions. Put otherwise, the strategy does not

exploit differences between assets by taking long and short positions and additionally

invests some (small) fraction in each asset. Hence, the CN strategy can be considered

as an optimized version of the naive strategy that optimizes with regard to the assets’

variances without leveraging.

All other covariance regularization strategies outperform the CN and 1F portfolios

by a substantial margin. Interestingly, the LW1F portfolio attains the highest Sharpe

ratio and lowest standard deviation among the regularization portfolios for the short-

selling strategy. That is, the LW1F portfolio also outperforms the LWNL portfolio,

which ranks on the third place in terms of standard deviation. While Ledoit and Wolf

(2017a) state that nonlinear shrinkage clearly outperforms linear shrinkage in their out-

of-sample analysis, it should be noted that they compare nonlinear shrinkage to linear

shrinkage towards (a multiple of) the identity matrix (LWID). However, we examine
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the performance of the estimator that shrinks towards the single-factor model, which

is a particularly suitable shrinkage target in finance applications. The LWID portfolio,

on the other hand, exhibits a Sharpe ratio of 0.70 and a standard deviation of 9.99 in

our out-of-sample evaluation (not shown in Table 3.5) and is thus outperformed by the

LW1F and LWNL portfolios.

Table 3.5.: Performance measures for the CRSP dataset

short-selling put option

Strategy SR µ σ SR µ σ

MSR(µ̂, Σ̂) −0.31 -3739 12223 0.18 0.21 1.19

GMV(Σ̂) 0.55 7.38 13.32 0.67 0.79 1.18
1/N 0.56 11.28 20.31 0.56 11.28 20.31

covariance regularization (only GMV)

CN 0.61 10.65 17.53 0.61 10.65 17.53
1F 0.59 7.71 13.07 0.69 3.90 5.64
LW1F 0.81 7.21 8.86 0.87 1.82 2.10
LWNL 0.76 7.19 9.42 0.84 1.99 2.37
DCCNL 0.70 6.69 9.53 0.59 1.81 3.08

weight constraints

GMV+ 0.79 9.06 11.53 0.79 9.06 11.53
MSR+ 0.65 12.10 18.60 0.65 12.10 18.60
KML 0.80 7.65 9.52 0.86 3.51 4.09
BJL 0.79 7.51 9.54 0.85 3.44 4.04

blocking strategies

block(eq) 0.93 8.72 9.33 0.95 2.16 2.27
block(ord) 1.02 9.93 9.69 1.01 2.40 2.37
block(SR) 1.03 10.40 10.06 1.02 2.54 2.49

The table reports the annualized out-of-sample Sharpe ratios, returns and
standard deviations of 15 portfolio strategies applied to the CRSP dataset
comprising 760 stocks. The estimation period spans 1000 trading days
with rebalancing every 50 days. The out-of-sample period ranges from
December 26th. 2003 to November 14th. 2019.

Table 3.5 further shows that the Sharpe ratio of the dynamic conditional correlation

model with nonlinear shrinkage (DCCNL) is lower than the Sharpe ratios of the static

shrinkage and LASSO portfolios, which mainly stems from the lower portfolio return

of this strategy. The portfolio standard deviation is, however, close behind that of the

LWNL portfolio and ranks on the fifth place. While it may be restrictive to assume
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an unconditional coviariance matrix, it is important to note that the DCCNL model

introduces additional complexity and uncertainty with regard to parameter estimation,

choice of the GARCH model and distributional assumptions. On the other hand, our

study is more suited for a static setting, since we assume 50-day holding periods, which

is at odds with the assumption of a constantly changing covariance matrix. Hence, one

should take caution when interpreting these results. Furthermore, the combination of

the DCC model and nonlinear shrinkage in Engle et al. (2019) enables the estimation of

dynamic models for large-dimensional applications in the first place.

Table 3.5 reports results for the estimators involving weight constraints for both, the

GMV and MSR portfolio. While the MSR+ portfolio yields much more sensible results

than the plug-in estimator of the MSR portfolio, the Sharpe ratio is only in the midfield

due to a comparatively high standard deviation. The Sharpe ratios of the GMV+ and

LASSO portfolios are of a similar magnitude to that of the LW1F strategy and range

between 0.79 and 0.81. However, the standard deviation of the GMV+ portfolio clearly

exceeds that of the LASSO and LW-shrinkage strategies. Hence, the portfolio risk can be

further reduced by allowing short sales while using some effective regularization strategy.

While the performance of the LASSO and static LW-shrinkage strategies is quite

similar, the LASSO portfolios invest in a considerably lower amount of assets. For

instance, the KML strategy invests on average in 291 of the 760 shares (see Section

3.5.5 for more details). As mentioned in Section 3.5.2, the amount of eliminated weights

depends on the size of the tuning parameter in the L1 penalty term of the LASSO

optimization problem. For the results reported in Table 3.5, we used the popular tool

of 5-fold cross-validation in order choose the tuning parameter λ. We examined several

other methods to choose λ for the LASSO regressions and (the classical) cross-validation

belongs to the best-performing approaches. The results of this comparison can be found

in Appendix B.2.

The last panel of Table 3.5 reports the outcomes for the blocking strategies using

three blocks. The results show that the blocking strategies attain the highest Sharpe

ratios among all considered portfolios. Although these strategies simply apply the

minimum-variance optimization within the subdivided blocks of assets, the portfolio

standard deviations are well below the standard deviation of the plug-in GMV portfolio.

The equal-weighted blocking strategy (block(eq)) attains a standard deviation of 9.33,

which is second lowest among all considered portfolios for the short-selling strategy.

Hence, reducing the concentration ratio via subdividing the assets into blocks seems

to be an effective tool for improving portfolio performance. As mentioned in Section

3.5.2, the three blocking strategies differ with regard to the weighting of the individual
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blocks. Since the assets are sorted according to their sample means before the blocks

are formed, the ordinal-weighted blocking strategy (block(ord)) and typically the Sharpe

ratio weighted strategy (block(SR)) attach the largest weight to the block comprising

the best-performing assets. Interestingly, this increases the portfolio return and Sharpe

ratio of the blocking strategy while the data-driven weighting scheme yields the best

performance with regard to these two criteria.

We argued in Section 3.4.3 that the normalization of the (raw) weights has a major in-

fluence on the statistical properties of the portfolios. The short-selling strategy typically

involves high leverage, in particular in high-dimensional asset applications, which results

in larger portfolio means and variances. The three columns on the right-hand side of

Table 3.5 report the performance results for the put option strategy. Obviously, there

are no differences for portfolios involving only long positions (e.g. 1/N, CN, GMV+ and

MSR+). On the other hand, (absolute) return and volatility are considerably reduced

for all other portfolios (e.g. portfolios that exhibit negative weights for the short-selling

strategy). This is most striking for the MSR(µ̂, Σ̂) portfolio, which now yields a small,

but positive, portfolio return. The standard deviation of the GMV(Σ̂) portfolio is re-

duced by a factor of 11, while the portfolio return is roughly 9 times smaller. For the

other strategies involving put options, the reduction is less extreme but still sizable.

In most cases, the standard deviation decreases by a larger factor than the portfolio

return when applying the put option strategy, which results in an increased Sharpe ratio.

For instance, the Sharpe ratio increases by almost 21% for the GMV(Σ̂) portfolio, by

nearly 10% for the LWNL strategy and by roughly 7% and 8% for the KML and BJL∗

strategies, respectively. It turns from negative to positive for the MSR(µ̂, Σ̂) portfolio.

The only exceptions are the block(ord) and block(SR) portfolios, for which the Sharpe

ratios are slightly reduced and the DCCNL strategy where it decreases by almost 17%.

As mentioned in Section 3.5.3, the Sharpe ratios of both normalization schemes differ in

case the sum of the raw weights is negative for the short-selling strategy, which occurs,

however, rarely for GMV portfolios. More importantly, the adjustment factor of the

portfolio mean and standard deviation changes from one investment period to the next

and thus differs when the performance measures are computed for the entire out-of-

sample period.19

With regard to the Sharpe ratio, there are only a few differences in the ranking of

the portfolios between the two shorting strategies. Most notably, the GMV(Σ̂) portfolio

improves and the DCCNL deteriorates. There are, however, important differences when

19In addition, the maximal loss of investing in a put option is 100% (the investment) while the potential
loss is infinity for short-selling a share (if the price increases to infinity).
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considering the portfolio return and standard deviation individually: While these mea-

sures are in a similar range for the LASSO and LW-regularization approaches applying

the short-selling strategy, they are nearly twice as high for the LASSO-approaches ap-

plying the put option strategy. In the latter case, the blocking portfolios feature returns

and standard deviations that are above LW1F but below the LASSO strategies. Inter-

estingly, the plug-in portfolios exhibit the lowest volatility but also very low returns.

Hence, for portfolios with excessive leverage and exposure rates, the put option strategy

tends to overly hedge risk, leading to a substantial reduction in return. Conversely, less-

leveraged strategies, such as LASSO, yield a considerably higher return and standard

deviation.

49 industry portfolios

In this section, we examine the out-of-sample performance for the 49 industry portfolios.

As for the CRSP dataset, we consider an estimation period of 1000 trading days and

an investment period of 50 trading days, which leads to a completely altered estimation

setting for this dataset, in which the concentration ratio amounts to approximately 0.05.

Table 3.6 reports the results for the two alternative normalization schemes.

The first thing to notice is that the absolute performance significantly improves in

comparison to the CRSP dataset, since Sharpe ratios and portfolio returns are (much)

higher and standard deviations are lower for all considered portfolios. There are two

reasons for this: Firstly, we consider the industry portfolios as individual assets in our

optimization and, as pointed out by Ledoit and Wolf (2017a), portfolios bear a lower

risk than individual shares that we considered in the CRSP dataset. Secondly, the out-

of-sample period we observe for the industry portfolios is considerably longer, starting

in January 1973, which makes a clear difference. When adjusting the out-of-sample

period for both datasets, the absolute performance is much more similar (see Appendix

B.1). In addition to the enhanced overall performance for the industry portfolio dataset,

there are also some differences with regard to the relative performance of the various

strategies.
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Table 3.6.: Performance measures for the 49 industry portfolios

short-selling put option

Strategy SR µ σ SR µ σ

MSR(µ̂, Σ̂) −0.13 −63.31 497.45 2.30 4.72 2.05

GMV(Σ̂) 2.05 16.20 7.90 2.29 5.55 2.42

1/N 1.44 20.89 14.52 1.44 20.89 14.52

covariance regularization (only GMV)

CN 1.53 20.62 13.45 1.53 20.62 13.45

1F 1.72 16.03 9.30 1.92 6.40 3.33

LW1F 2.06 16.22 7.88 2.30 5.75 2.50

LWNL 2.08 16.38 7.88 2.33 5.83 2.51

DCCNL 2.14 16.93 7.91 2.46 6.18 2.52

weight constraints

GMV+ 1.71 17.61 10.27 1.71 17.61 10.27

MSR+ 1.73 21.89 12.68 1.73 21.89 12.68

KML 2.05 16.24 7.90 2.24 6.28 2.80

BJL∗ 2.26 20.29 8.97 2.49 9.80 3.94

blocking strategies

block(eq) 2.15 19.11 8.89 2.33 8.98 3.85

block(ord) 2.23 19.93 8.93 2.44 9.37 3.84

block(SR) 2.27 20.07 8.85 2.49 9.59 3.84

The table reports the annualized out-of-sample Sharpe ratios, returns and standard

deviations of 15 portfolio strategies applied to the 49 industry portfolios. The

estimation period spans 1000 trading days with rebalancing every 50 days. The

out-of-sample period ranges from June 18th. 1973 - January 15th. 2020.

For the short-selling strategy, the out-of-sample performance of the MSR(µ̂, Σ̂) port-

folio is poor with a negative Sharpe ratio. As for the CRSP dataset, the performance

improves considerably when excluding the information on the sample means (GMV(Σ̂))

or when the information from the data is completely ignored (1/N). In contrast to the

results for the CRSP dataset, the GMV(Σ̂) portfolio clearly dominates the 1/N, simple

regularization (CN and 1F) and short sale constrained (GMV+ and MSR+) strategies in

terms of Sharpe ratio and is comparable to the KML and LW1F portfolios in this regard.
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Its standard deviation ranks on the second place together with the KML strategy, closely

behind the LW1F and LWNL portfolios. Hence, the volatility of the plug-in GMV esti-

mator can hardly be reduced by using regularization strategies in this low concentration

ratio setting.

The ranking of the (L1-)regularization strategies according to the standard devia-

tion largely corresponds to that for the CRSP dataset, although the distances between

the low-volatility strategies (LW1F, LWNL, DCCNL, KML) are considerably smaller.

These sophisticated shrinkage strategies clearly outperform the simple regularization

strategies CN and 1F. There are, however, marked differences concerning the Sharpe

ratio ranking. Most notably, the BJL∗ strategy attains the highest Sharpe ratio among

the regularization strategies. Considering the fact that BJL∗ applies L1-regularization

to the weights of the MSR portfolio, the strategy successfully enhances Sharpe ratio

and return as compared to the best performing GMV-estimators in this scenario. A

second difference is that the Sharpe ratio of the GMV+ portfolio clearly ranks behind

the LW and LASSO approaches and even falls behind the simple 1F strategy. Lastly,

the DCCNL and LWNL portfolios yield somewhat higher Sharpe ratios than the LW1F

strategy, which is, however, driven by (slightly) larger portfolio returns.

Together with BJL∗, the blocking portfolios attain the highest Sharpe ratios among all

considered strategies. As for the CRSP dataset, attaching the largest weight to the block

comprising the assets with the highest historical sample means improves the Sharpe ratio

and portfolio return for the blocking strategy. All three performance measures are quite

similar for the block(SR) and BJL∗ portfolios. Only the naive and CN strategies achieve

a somewhat larger return, which is accompanied by a considerably higher volatility.20

Even though the blocking strategies are among the best in terms of Sharpe ratio and

return, their standard deviations exceed that of the GMV(Σ̂), LW and LASSO strategies.

The three columns on the right-hand side of Table 3.6 report the performance re-

sults for the industry portfolios when the put option strategy is applied. As expected,

the portfolios involving put options yield returns and standard deviations that are sub-

stantially lower in comparison to the short-selling portfolios. The Sharpe ratios of all

portfolios investing in put options improves, since the standard deviations decrease by

a larger factor than the portfolio returns. In comparison to the CRSP dataset, the in-

flation factors for the alternative strategies are more similar and range between two and

three. The MSR(µ̂, Σ̂) portfolio stands out as an exception, since it attains a compet-

itive Sharpe ratio of 2.30 for the put option strategy. It exhibits the lowest standard

20As for the CRSP dataset, the 1/N and CN strategies show a similar performance with slight advantages
for the CN portfolio.
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deviation among all considered portfolios, reduced by over 240 times as compared to the

short-selling version. The GMV(Σ̂) portfolio yields a similar Sharpe ratio and exhibits

the second-lowest standard deviation.

In this setting involving a low concentration ratio, none of the considered covariance

regularization approaches for estimating the GMV portfolio is able to reduce the volatil-

ity for the put option strategy as compared to the plug in estimator and only the DCCNL

portfolio achieves a noticeably higher Sharpe ratio of 2.46. In line with the results for the

short-selling strategy, the BJL∗ and block(SR) strategies attain the highest Sharpe ratios

among all considered portfolios and exhibit a comparable performance. The BJL∗ and

blocking strategies have higher standard deviations than the LW and KML approaches,

which are, however, accompanied by larger portfolio returns.

3.5.5. Analysis of weights

In this section, we examine the out-of-sample weight properties for both shorting strate-

gies across the two datasets. As mentioned in Section 3.5.3, we report the turnover,

average minimum and maximum weights as well as the average exposure factor for the

alternative portfolios.

CRSP dataset

Table 3.7 reports the results for the 760 stocks of the CRSP dataset. For the short-selling

strategy, the MSR(µ̂, Σ̂) portfolio is extreme by any measure and suggests to invest 882

times of one’s (investible) wealth into stocks. The widely divergent weights result from

the substantial estimation error that is involved when including the sample means in the

optimization without imposing any restrictions, since it produces large absolute weights

in order to optimally exploit the assets’ differences. However, as noted in Section 3.4.2,

it is not uncommon to obtain weights with the wrong sign. Ignoring the sample means

effectively reduces turnover, exposure and the weight dispersion, yet adhering to the

GMV(Σ̂) still requires to invest more than 11 times of one’s wealth and produces the

second highest turnover exceeding that of the LASSO approaches by nearly 6 times.

It is not surprising that the naive portfolio features a low turnover rate as typically

little trading is required to meet the 1/N rule at the beginning of a new investment

period. It is perhaps more surprising that there exists a portfolio (CN) that exhibits

lower turnover than the naive strategy. As stated earlier in Section 3.5.4, the CN strategy

can be interpreted as an optimized version of the naive strategy with similar properties,

since a small (but positive) fraction is invested in every asset. The weight range of
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GMV+ and MSR+ exceeds that of other portfolios that allow only nonnegative weights

and display a somewhat higher turnover. In contrast to 1/N and CN, the short sale

constrained optimization actually sets weights to zero and thus eliminates assets from the

portfolio. Portfolios without short-selling share the common feature that their exposure

is limited to one.

Table 3.7.: Analysis of weights for the CRSP dataset

short-selling put option

Strategy turn Min Max ξ turn Min Max ξ

MSR(µ̂, Σ̂) 2444 -768 750 882 0.65 −0.86 0.82 1.00

GMV(Σ̂) 6.76 −8.97 12.10 11.43 0.59 −0.79 1.05 1.00
1/N 0.10 0.13 0.13 1.00 0.10 0.13 0.13 1.00

covariance regularization (GMV)

CN 0.09 0.01 0.58 1.00 0.09 0.01 0.58 1.00
1F 0.30 −0.75 2.37 2.22 0.13 −0.33 1.06 1.00
LW1F 1.16 −2.69 6.26 4.28 0.27 −0.62 1.46 1.00
LWNL 1.25 −2.16 2.98 4.05 0.31 −0.53 0.74 1.00
DCCNL 3.16 −1.95 7.38 3.49 0.90 −0.55 2.15 1.00

weight constraints

GMV+ 0.27 0.00 13.29 1.00 0.27 0.00 13.29 1.00
MSR+ 0.57 0.00 13.02 1.00 0.57 0.00 13.02 1.00
KML 1.14 −4.24 9.93 2.44 0.47 −1.71 4.14 1.00
BJL 1.16 −4.28 9.85 2.48 0.47 −1.70 4.05 1.00

blocking strategies

block(eq) 2.50 −3.10 5.22 4.32 0.59 −0.70 1.25 1.00
block(ord) 2.63 −3.63 5.88 4.31 0.62 −0.86 1.44 1.00
block(SR) 2.71 −4.29 6.96 4.28 0.65 −1.04 1.72 1.00

The table reports the turnover, average minimum and maximum weights and the average
exposure across all investment periods for 15 portfolio strategies applied to the CRSP dataset
comprising 760 stocks. The estimation period spans 1000 trading days with rebalancing every
50 days. The out-of-sample period ranges from December 26th. 2003 to November 14th. 2019.

Among the portfolios that allow short-selling, the 1F portfolio attains the lowest

turnover and exposure rate. The turnover for the LASSO and static Ledoit-Wolf ap-

proaches is of similar magnitude and improves substantially as compared to the GMV(Σ̂)

portfolio. There are, however, important differences between the LASSO and static LW

portfolios: The L1-regularization eliminates weights from the portfolio and thus limits

exposure subject to the size of the tuning parameter λ. As mentioned earlier, we use
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cross-validation in order to select λ for each investment period. Figures 3.6a and 3.6b

show the percentage shares of zero, positive and negative weights throughout the out-of-

sample period for KML and BJL∗, respectively. In both cases, the average proportion of

eliminated weights exceeds 60% while the number of weights with a negative sign rarely

exceeds 20%. These smaller shares of negative weights for the short-selling strategy lead

to a considerable reduction in the exposure as compared to the LW strategies. While the

exposure of the LASSO portfolios is below 2.5, the LW1F and LWNL portfolios require

to invest more than four times of one’s wealth on average. The exposure of the DCCNL

is slightly below that of the static LW strategies, but the turnover is the highest among

all regularization strategies and about half the turnover of the GMV(Σ̂) strategy. The

blocking strategies require somewhat less trading than DCCNL, but clearly rank behind

the static LW and LASSO approaches.

The four columns on the right-hand side of Table 3.7 report the weight measures

for the put option strategy. By definition, the exposure rate of the put option strategy

corresponds to one, since this strategy requires a normalization such that
∑

|wi| = 1. As

mentioned in Section 3.3, the intuitive explanation is that a put option shifts the minus

sign of the weight to the asset’s return and thus implies a positive investment in an asset

with an inverse return without leverage-effect. Hence, betting on a falling stock price

does not require to incur debts by borrowing a share as for the short-selling strategy. This

reduces the weight range and substantially lowers the turnover for portfolios that apply

the put option strategy. Therefore, the gap between the highest and lowest turnover

rates is much smaller. The naive and CN strategies still attain the lowest turnover rates

directly before the 1F strategy. They precede the GMV+ and static LW approaches,

which now yield comparable turnover rates, followed by the LASSO strategies. The

decline in turnover is most pronounced for the plug-in estimators, which have a similar

turnover as the blocking portfolios. Consistent with the results for short-selling strategy,

the DCCNL yields a comparatively high turnover.

49 industry portfolios

Table 3.8 reports the weight measures for the 49 industry portfolios. While the turnover

rates of all portfolios are considerably lower in comparison to the CRSP dataset, the

ranking of the strategies is similar to that in Table 3.7 with one important exception:

The GMV(Σ̂) portfolio exhibits a turnover that is now in the range of the KML and

static LW strategies. This matches the insights from the performance analysis in Section

3.5.4 indicating that the regularization strategies bring only small improvements in this

low-concentration ratio setting.
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Figure 3.6.: LASSO weights

The figure displays the percentage of zero, positive and negative weights for the LASSO
approaches across the out-of-sample time periods for both the CRSP dataset and the 49
industry portfolios.
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Table 3.8.: Analysis of weights for the 49 industry portfolios

short-selling put option

Strategy turn Min Max ξ turn Min Max ξ

MSR(µ̂, Σ̂) 15.85 -195 199 21.35 0.26 −7.09 13.15 1.00

GMV(Σ̂) 0.51 −18.50 67.43 3.30 0.16 −5.51 21.43 1.00

1/N 0.05 2.04 2.04 1.00 0.05 2.04 2.04 1.00

covariance regularization (GMV)

CN 0.05 0.30 6.71 1.00 0.05 0.30 6.71 1.00

1F 0.34 −16.34 43.18 2.83 0.11 −5.65 15.75 1.00

LW1F 0.47 −17.25 63.49 3.18 0.15 −5.34 20.89 1.00

LWNL 0.48 −17.14 62.85 3.18 0.16 −5.32 20.71 1.00

DCCNL 2.72 −15.80 55.69 3.14 0.86 −4.91 18.85 1.00

weight constraints

GMV+ 0.11 0.00 59.41 1.00 0.11 0.00 59.41 1.00

MSR+ 0.34 0.00 47.36 1.00 0.34 0.00 47.36 1.00

KML 0.49 −17.22 68.84 2.92 0.18 −5.83 25.15 1.00

BJL∗ 0.61 −18.97 85.10 2.33 0.25 −7.97 38.51 1.00

blocking strategies

block(eq) 0.85 −11.95 32.98 2.40 0.35 −4.73 14.47 1.00

block(ord) 0.91 −15.34 37.72 2.42 0.37 −6.03 15.96 1.00

block(SR) 0.91 −15.93 41.55 2.41 0.38 −6.46 18.27 1.00

The table reports the turnover, average minimum and maximum weights and the average exposure

across all investment periods for 15 portfolio strategies applied to the 49 industry portfolios. The

estimation period spans 1000 trading days with rebalancing every 50 days. The out-of-sample

period ranges from June 18th. 1973 - January 15th. 2020.

It is not surprising that the average minimum and maximum weights are larger in ab-

solute values, since the investible wealth is distributed among fewer assets. Interestingly,

the BJL∗ strategy features the widest weight range behind the MSR(µ̂, Σ̂) portfolio, but

yields the lowest exposure rate among the strategies that involve short sales. This results

from the fact that the BJL∗ estimator effectively limits short sales and sets nearly 50%

of the 49 weights to zero (Figure 3.6d). In contrast, the KML estimator eliminates on

average only 14% of the assets (Figure 3.6c) and in fact has a larger exposure than for
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the CRSP dataset. As depicted in Figure 3.6, the proportion of zero weights is smaller

for the 49 industry portfolios as compared to the CRSP dataset, which is particularly

pronounced for the KML strategy. Since the exposure rate decreases for nearly all port-

folios in comparison to the CRSP dataset, the KML now ranks in the midfield behind

the blocking strategies but ahead of the LW portfolios.

In line with the results for the CRSP dataset, the turnover rates reduce substantially

when the put option strategy is applied. This does, however, barely affect the ranking

with regard to the turnover, except for the fact that the MSR(µ̂, Σ̂) portfolio moves

upwards before the blocking and DCCNL portfolios. Since the exposure rate is con-

strained to equal one for all strategies that invest in put options, the minimum and

maximum weights are smaller in absolute values. Therefore, the put-option strategy

effectively reduces turnover by limiting the exposure even in this environment with a

low-concentration ratio.

3.6. Conclusion

In this paper, we consider a variety of aspects related to empirical challenges for portfo-

lio selection. The popular MSR portfolio requires reliable estimates of expected returns

and the covariance matrix, as estimation errors in both moments can lead to devastating

effects on out-of-sample performance. The plug-in estimator based on the sample mo-

ments yields extreme portfolio weights that perform poorly out-of-sample and involve

excessive leverage and turnover. Possible solutions are either to regularize the estimated

weights of the MSR portfolios (e.g. short sale constraints, L1-regularization) or to ig-

nore the information on the first moment and estimate the GMV portfolio. The latter

solution solely requires to estimate the covariance matrix of returns. For the dataset

comprising 49 industry portfolios, where T >> N , the plug in estimator of the GMV

portfolio attains competitive out-of-sample results. However, obtaining reasonable esti-

mates is more challenging in case N is considerable relative to T , as for the 760 CRSP

stocks, and requires, for instance, effective regularization approaches for the covariance

matrix or the weights.

In our empirical application, we compare several such strategies. We observe that

the considered LASSO and static LW-shrinkage approaches attain a quite similar out-

of-sample performance when estimating the GMV portfolio for the CRSP dataset and

clearly improve upon the simple regularization estimators. Perhaps surprisingly, we

find that it is difficult to outperform the LW1F strategy with other LW-type estimators.

This relatively simple estimator shrinks the sample covariance matrix towards the single-
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factor model, which is a particularly suitable shrinkage target in finance applications.

Estimating the LASSO variant of the KM-regression yields a similar performance as the

LW1F strategy, but features an important advantage: The L1-regularization eliminates

weights from the portfolio and significantly reduces the exposure factor. In addition, ap-

plying L1-regularization to the normalized version of the BJ-regression yields estimated

weights for the MSR portfolio that yield a comparable performance for the CRSP dataset

and improve upon the performance of KML and LW1F for the 49 industry portfolios in

terms of portfolio return and Sharpe ratio.

In addition to regularization, a further approach that helps to improve the portfolio

performance is to artificially reduce the concentration ratio for the considered dataset

by forming blocks of assets and compute the plug-in GMV estimator for each individ-

ual block. Despite sacrificing some data information through the use of blocking, the

performance appears to benefit from the reduced concentration ratio as these strategies

belong to the top-performing portfolios for both of our applications. The assets may be

assigned systematically, e.g. according to their sample mean. While the direct usage of

sample means for weight estimation is problematic due to large estimation errors, the

indirect usage of the sample means for sorting the assets into blocks can be useful, since

mistakes (e.g. assigning an asset to the wrong block) are far less severe. We observe that

attaching larger weights to the blocks comprising the best-performing assets increases

the portfolio return and Sharpe ratio in our applications.

A further empirical challenge is to cope with the many negative estimates of the

weights that result when applying the classical short-selling strategy that lead to exces-

sive turnover, leverage and exposure. One possibility is to fully exclude negative weights

from the optimization and estimate short sale constrained portfolios for either the MSR

or GMV portfolio. The portfolio risk can, however, be further reduced by using some

effective regularization strategies while allowing (some) short sales. Another option is to

apply a suitable put option strategy, which entails a new normalization scheme, where

the sum of the absolute weights equals one. Such a strategy leads to a substantial re-

duction in portfolio risk, turnover and extreme weights, but also to a noticeable decline

in portfolio return. In contrast to short sale bans, this strategy allows to bet on falling

stock prices while keeping the exposure fixed at one.

76



Chapter 4.

Quantifying Downside Risk: A comparative

Study of Value at Risk and Expected

Shortfall

4.1. Introduction

Value at Risk (VaR) and Expected Shortfall (ES) are two widely employed downside risk

measures that play an important role in determining regulatory capital requirements for

trading books of banks. In simple terms, VaR denotes a threshold for losses, such as

for a portfolio of assets, which is not exceeded with a high probability (e.g., 99%). On

the other hand, ES represents the expected loss in case the actual loss exceeds the VaR

threshold (see Section 4.2.1 for detailed definitions). This implies that ES exceeds VaR

for the same level of confidence.

The Basel III Accords stipulate that ES at the 97.5% confidence level replaces VaR

at the 99% confidence level as the risk measure for capital requirement calculations.

This transition is motivated by the fact that the ES captures tail risks, in contrast to

VaR (BCBS, 2016, 2019). For instance, the VaR at the 99% confidence level provides

no information about the magnitude of extreme losses with a probability of less than

1%. Furthermore, it is often argued that ES is theoretically superior, since it fulfills the

mathematical axiom of subadditivity and is hence a coherent risk measure, unlike VaR

(Artzner et al., 1999). On the other hand, ES lacks the property of elicitability, which

led to a debate whether ES is backtestable (Gneiting, 2011). In fact, VaR is elicitable

and continues to be used as a risk measure for conducting backtests under Basel III.

Despite the theoretical differences between VaR and ES, both risk measures have to

be estimated in practice. ES is estimated with more uncertainty than VaR at the same

confidence level. In addition, previous studies find that the estimation of ES is less robust

with regard to model misspecifications and noise in the data (see, e.g., Cont et al., 2010;
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Kou et al., 2013; Kellner and Rösch, 2016). This leaves the question whether the more

complex estimation of ES provides any additional insights on the riskiness of a portfolio

as compared to the estimation of VaR in practical applications.

Under certain distributional assumptions, there exists a relationship between ES and

VaR. For the normal distribution this relationship depends only on the confidence level

and is otherwise constant. Therefore, if the data follows a normal distribution, ES does

not provide any additional information compared to VaR, since VaR can be easily trans-

formed into ES by multiplying it with the corresponding constant. However, financial

market data often exhibit fat tails and assuming a normal distribution is unrealistic

in most cases. The Student-t distribution, on the other hand, is popular for modeling

financial market data. For this distribution, the ratio between ES and VaR depends on

the degrees of freedom and thus on the heaviness of the tails in addition to the confidence

level. The relationship between ES and VaR can be used to construct a simple estimator

for ES. For this purpose, VaR is estimated using some established estimation method

and is then multiplied by a ratio ES/VaR. By scaling the VaR upwards, this method

relies more on the accuracy of the VaR estimation rather than on individual data points

in the tail, as commonly employed methods for ES estimation.

This paper presents three main contributions. First, the performance of established

estimation models for VaR and ES is examined in simulations and in a real-data applica-

tion. While VaR is estimated more accurately than ES at the same level of confidence,

lower confidence levels enhance the estimation accuracy of risk measures. Therefore,

switching from 99% VaR to 97.5% ES could potentially offset this advantage of VaR.

Thus, comparing the two risk measures at these regulatory relevant confidence levels is

particularly interesting. Second, the objective is to explore whether simple ratio models

can achieve comparable performance for ES estimation of stock data in comparison to

established models. In simple ratio models, the VaR of different stocks is multiplied by

the same constant to obtain ES estimates. This applies, for example, to the ES/VaR

ratio for normally distributed data. Alternatively, the simple ratio can be set higher

or estimated from the data to obtain a more realistic (and thus higher) ratio for stock

data. Third, the performance of ratio models is examined, where the ratio incorporates

additional information about the stocks, such as the industry affiliation of a company

or, as for the Student-t ratio, the heaviness of the tail.

Comparing alternative estimation methods for real data is not straightforward, since

the true values of risk measures are unknown. Therefore, the first application employs

a bootstrap resampling procedure to generate new samples from a filtered dataset con-

sisting of 760 stocks. This enables a comparison of estimation methods in terms of bias,
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variance and MSE. In a second application, the performance is analyzed using the joint

scoring function of Fissler and Ziegel (2016). The benchmark models that are consid-

ered in these applications are (filtered) historical simulation and two models based on

extreme value theory.

The remainder of the paper is structured as follows. Section 4.2 provides a literature

review discussing the key theoretical differences between VaR and ES and their practical

implications for stock data. Section 4.3 derives the relationship between ES and VaR for

the normal and Student-t distribution and investigates the performance of the t-ratio

in a simulation. Section 4.4 presents the results of the bootstrap resampling procedure

and Section 4.5 shows the results of the performance evaluation using the joint scoring

function. Section 4.6 concludes.

4.2. Definitions and Properies of VaR and ES

4.2.1. VaR and ES

The formulations of VaR and ES in the academic literature differ and depend on whether

the return variable R or the loss variable L is considered for some financial asset and

whether high or low-level terminology is used for the confidence or probability levels of

these risk measures. In this paper, we use the more common notation and consider the

random loss variable L of a financial position defined on a probability space (Ω,F , P )
and high-level terminology for the confidence level α ∈ (0, 1) with values close to 1. Note

that L = −R so that losses are positive numbers in this setting. A risk measure p (e.g.

VaR or ES) is a functional defined on a set of random variables L that maps a random

variable L ∈ L into the real numbers R. Thus, p(L) reports a level of risk that can be

used to determine the capital amount to back a position with loss L.

Both risk measures are law-invariant meaning that two random variables L1 and L2

with the same distribution FL1 = FL2 yield the same risk measure value p(L1) = p(L2).

A law-invariant risk measure depends on the random variable L ∈ L only through its

distribution FL and can thus be interpreted as a statistical functional defined on a space

of distribution functions P that maps FL to the real line. We will use p for both, p(L)

and p(FL), to simplify notation.

For an asset with loss distribution FL, the VaR denotes a loss threshold that is not

exceeded with probability α over some period of time. More formally, the VaR at

confidence level α is given by

VaRα(L) = inf{l ∈ R : P (L ≤ l) ≥ α} (4.1)
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and is thus the α-quantile of the loss distribution, qα(L). The ES denotes the expected

loss in case the VaR is exceeded. For a continuous loss distribution, the ES is given by

the conditional expected value above the VaR,1

ESα(L) = E[L|L ≥ V aRα(L) = qα(L)]. (4.2)

There is a vast literature on the desirable properties of risk measures and, in this

context, on the theoretical pros and cons of VaR and ES in terms of these properties. The

debate revolves primarily around the properties coherence and elicitability with the ES

satisfying coherence but not being elicitable and, vice versa, the VaR fulfilling elicitability

but not coherence due to its lack of subadditivity. While these theoretical differences have

been widely discussed, their practical implications are less well understood, in particular

with regard to the transition of 99% VaR to 97.5% ES in Basel III. This section aims

to provide important definitions and highlight theoretical differences between VaR and

ES.

4.2.2. Coherence, subadditivity and fat tails

In their seminal paper, Artzner et al. (1999) recommend the use of coherent risk measures

for effective risk management. They are defined as follows.

Definition 4.2.1 (Coherent risk measures) A risk measure p(·) is coherent if it sat-
isfies

1. Monotonicity: For all L1, L2 ∈ L it holds that

L1 ≤ L2 ⇒ p(L1) ≤ p(L2).

2. Positive homogeneity: For all L ∈ L and any λ ≥ 0 it holds that

p(λL) = λp(L).

3. Translation invariance: For all L ∈ L and every c ∈ R it holds that

p(L− c) = p(L)− c.

4. Subadditivity: For all L1, L2 ∈ L it holds that

p(L1 + L2) ≤ p(L1) + p(L2).

Following the work of Artzner et al. (1999), other papers published around the turn of

the millennium particularly emphasize the importance of coherence (Acerbi and Tasche,

2002; Tasche, 2002). For example, Acerbi and Tasche (2002, p.380) claim that “To avoid

1See, for instance, Emmer et al. (2015) for a more general definition.
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confusion, if a measure is not coherent, we just choose not to call it a risk measure at all.”

As both risk measures, VaR and ES, meet the first three conditions of coherence, the

discussion regarding the advantages and disadvantages of VaR and ES mainly focuses

on the subadditivity property. Artzner et al. (1999) demonstrate that ES is subadditive,

while VaR does not generally have this property.

Subadditivity ensures that the total risk of a portfolio composed of multiple assets

cannot exceed the sum of the risks of its individual assets. Put simply, the subadditivity

property reflects the idea that diversification reduces risk. There exist several examples

in the literature that show that VaR is not generally subadditive (see e.g. Artzner

et al. 1999 or Dańıelsson et al. 2013). These examples, however, represent relatively

extreme situations that do not necessarily match the characteristics of nonderivative

financial assets. Hence, the question remains whether the general lack of subadditivity,

as a theoretical deficiency, excludes VaR as a risk measure for portfolios and stocks in

practice.

There are several studies that examine the conditions under which VaR is subadditive.

Although Artzner et al. (1999) show that VaR is subadditive for normally distributed

data in the relevant tail region (i.e. when α > 0.5 ), this is not a practical scenario

for financial market data, which typically displays fat tails (see, e.g., Mandelbrot, 1963;

Fama, 1965). However, further studies reveal that the VaR is also subadditive for many

practical applications with financial market data, as long as the tails of the corresponding

loss distribution are not super fat (cf. Garcia et al., 2007; Ibragimov and Walden, 2007;

Ibragimov, 2009; Dańıelsson et al., 2013). Super fat tails, as stated by Dańıelsson et al.

(2013), refers to a scenario where the first moment of the distribution does not exist,

such as for the Cauchy distribution.

To better understand when a distribution has super fat tails, it is helpful to look at

the formal definition of fat-tailed distributions based on the notion of regular variation,

as presented, for instance, in Dańıelsson et al. (2013).2

2Dańıelsson et al. (2013) point out that the commonly used definition of fat-tailed distributions, which
is “higher than normal kurtosis”, is not accurate. This is because there exist examples of distributions
with high kurtosis and thin tails. In addition, according to definition 4.2.2, kurtosis is not defined
for γ ≤ 4.
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Definition 4.2.2 (Fat-tailed distribution) A distribution function F (x) has fat tails

if it varies regularly at infinity with tail index γ > 0, that is

lim
t→∞

1− F (tx)

1− F (t)
= x−γ , ∀x > 0. (4.3)

The tail of a regularly varying distribution can be represented by the product of a

power function and a slowly varying function, i.e. 1 − F (x) = x−γL(x). We call L(x)

slowly varying if L(tx)/L(t) → 1 as t → ∞ for all x > 0 (e.g. the log function).

Hence, the tails of a regularly varying distribution essentially decay according to a power

function as x → ∞, where the rate of decay is determined by the tail index γ. Put

simply, the lower the tail index, the thicker the tails of the distribution. A super fat-

tailed distribution exhibits a tail index below one. Another important aspect is that

the tail index determines the number of moments that are finite: As tails get thicker,

the computation of moments E(xm) =
∫
xmf(x)dx is affected by increasingly large

observations (due to the explosion of xm) causing moments of order m > γ to be infinite.

Dańıelsson et al. (2013) extend the work of Garcia et al. (2007), Ibragimov and Walden

(2007) and Ibragimov (2009) and show that the VaR is subadditive in the relevant tail

region for financial assets with (jointly) regularly varying non-degenerate tails in case

γ > 1. Therefore, the VaR is subadditive for a wide range of distributions that are

also relevant for modeling financial market data, such as the t-distribution with degrees

of freedom larger than one. The t-distribution varies regularly at infinity with the tail

index equaling the degrees of freedom. For the losses of nonderivative financial assets,

it is quite realistic to assume that the first moment (the mean) exists, so that the VaR

is subadditive and thus coherent. For example, Jansen and De Vries (1991) find in their

empirical application that the tail index of stocks and stock indices is between 3 and 5.

When assets occasionally experience severe losses (e.g. defaultable bonds3), the tails can

be so heavy that the tail index is less than 1. However, ES is not defined in this case, as it

depends on the existence of the first moment. In addition, subadditivity is a controversial

assumption when γ < 1, since diversification can increase risk when portfolio components

exhibit super fat tails, see Ibragimov and Walden (2007) and Ibragimov (2009). Hence,

it can be concluded that the general lack of subadditivity alone does not exclude the use

of VaR as a risk measure for practical applications with (portfolios of) stocks and stock

indices.

3Further examples would be options, portfolios including short positions or insurance contracts from
the insurer’s perspective.
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4.2.3. Elicitability and conditional elicitability

Another important theoretical property that gained a lot of attention in the academic

debate concerning the pros and cons of risk measures is elicitability, since Gneiting

(2011) proved that ES is not elicitable in contrast to VaR. The concept of elicitability was

introduced by Osband (1985) and extended in Lambert et al. (2008) and Gneiting (2011)

and relates to the evaluation of point forecasts by means of scoring functions. A scoring

function S is a loss function, or predictive error function in forecasting terminology, that

maps point forecasts x and realizations of a random variable L to R+.
4

Definition 4.2.3 (Elicitability) The statistical functional p is elicitable with respect

to P if there exists a scoring function S that is strictly consistent for p relative to P, i.e.

E(S(p(FL), L)) < E(S(x, L))

for all x ̸= p(FL).

Elicitability is an important property, since it implies that the optimal forecast p∗(FL) =

x∗ for a risk measure p can be found by minimizing the expected value of a scoring

function,

p∗(FL) = x∗ = arg min
x

E[S(x, L)]. (4.4)

In addition, competing forecasts of elicitable functionals may be compared using their

expected scores and thus elicitability is useful for forecast ranking and comparative

backtesting (cf. Gneiting, 2011; Emmer et al., 2015; Nolde and Ziegel, 2017). In practice,

the true distribution FL is unknown and the expected score is approximated by the mean

score for T forecast cases,

S̄ =
1

T

T∑
t=1

S(xt, lt), (4.5)

where x1, ..., xT denote point forecasts and l1, ..., lT are realizations of the random vari-

able L. The performance of M alternative estimation methods can be compared by

computing S̄m for m = 1, ...,M , since the mean scores tend to be lowest for the most

accurate forecasts.

The VaR is an elicitable risk measure for which strictly consistent scoring functions

exist. More generally, all quantiles are elicitable and the respective scoring functions are

characterized in, for example, Gneiting and Raftery (2007) and Gneiting (2011) and are

given by,

S(v, l) = (1− α)G(v) + 1{l > v}(G(l)−G(v)) + h(l), (4.6)

4See, for instance, Bellini and Bignozzi (2015) for a more rigorous definition of scoring functions.
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where v = VaRα, G is a strictly increasing function5 and h is integrable. In contrast, the

ES is not elicitable and thus there exists no natural empirical score in order to compare

alternative ES forecasts. However, some statistical functionals that are not elicitable

individually can be elicitable jointly with other functionals. In terms of risk measures,

this means that the k-dimensional vector of the true risk measures p = (p1, ..., pk)

minimizes the expected loss of a scoring function S(x, L) with x = (x1, ..., xk). Fissler

and Ziegel (2016) show that this is the case for ES, which is jointly elicitable with VaR6

and that strictly consistent scoring functions for evaluating the pair (VaRα,ESα) take

the following form,

S(v, e, l) = 1{l > v}(−G1(v) +G1(l)−G2(e)(v − l))

+ (1− α)(G1(v)−G2(e)(e− v) + G2(e)), (4.7)

where v = VaRα and e = ESα for notational convenience. The functions G1, G2 and G2

fulfill certain properties, among which is the condition that G1 is an increasing function,

G2 is the antiderivative of G2 and G2 is strictly increasing and strictly concave.7 Hence,

minimizing any member of the scoring functions in (4.7) yields the true pair (VaRα,ESα).

Four concrete versions that have been used in the literature are presented in Table 1

of Taylor (2020). The joint elicitability is a weaker concept than elicitability itself,

since, as exemplified by ES, the joint elicitability of (p1, ..., pk) does not imply that pi

is elicitable for each i = 1, ...k. On the other hand, for every pi that is elicitable with

the corresponding scoring function Si, the vector (p1, ..., pk) is jointly elicitable with

S(x, L) =
∑k

i=1 Si(xi, L) (Kou and Peng, 2016).

The lack of elicitability has sparked a controversial debate on whether it affects the

ability to perform backtests for the ES. Acerbi and Szekely (2014) claim that elicitability

is not a concern for backtesting per se, but only for the relative ranking of alternative

models. Fissler et al. (2016) and Nolde and Ziegel (2017) address this point and dif-

ferentiate between two different types of backtests, namely traditional and comparative

backtests. The purpose of traditional backtests is model validation and involves testing

a null hypothesis of the form “H0 : The available estimates for the risk measure are

correct”. In contrast, comparative backtests aim to compare and rank the performance

5As pointed out by Gneiting (2011), the condition that G is strictly increasing is the requirement for
strict consistency of the scoring function in (4.6). If G is only increasing, then S is consistent for
VaRα (or quantiles in general).

6Another prominent example is the variance, which is not elicitable on its own, but only jointly with
the mean.

7This is the condition for strict consistency of the scoring functions in (4.7). When G2 is increasing and
concave, the scoring functions in (4.7) are consistent for the pair (VaRα,ESα).
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of alternative estimation methods using strictly consistent scoring functions. In light of

this distinction, it is therefore correct that comparative backtests exploit the elicitability

property. Nevertheless, conducting traditional backtests is more difficult for ES than for

VaR, since ES lacks the property of identifiability, which is closely linked to elicitabiliy.

According to Steinwart et al. (2014), both concepts are even equivalent when consider-

ing point-valued functionals (i.e. the k = 1 case) under some additional assumptions,

see also Nolde and Ziegel (2017) and Fissler and Hoga (2023).

Based on Nolde and Ziegel (2017, Definition 2), we define identifiability for the k = 1

case as follows:

Definition 4.2.4 (Identifiability) The statistical functional p is identifiable with re-

spect to P if there is a function V such that

E(V (x, L)) = 0 ⇔ x = p(FL)

for all L with distribution FL in P.

For identifiable risk measures, the identification function V can be used to perform tra-

ditional backtests by testing whether the sample analog of V is (close to) zero. The

VaR is identifiable via the hit sequence and traditional backtests are based on the cor-

responding identification function V (v, l) = 1 − α − 1{l > v}. In practice, it is tested

if the hit sequence is close to 1 − α. In contrast, the ES is not separately identifiable,

but only jointly with the VaR (see Nolde and Ziegel (2017) for the definition of joint

identifiability).

Despite the lack of elicitability and identifiability, there are several proposals in the

literature for backtesting ES. For instance, Acerbi and Szekely (2014) introduce three

nonparametric backtests for ES. Kou and Peng (2016), however, argue that these back-

tests, as well as all other approaches known to them for backtesting the ES, are indirect

backtests. For risk measures, a direct backtest tests whether an estimated risk measure

equals the unknown true value of the risk measure, while an indirect approach tests a

related quantity, such as the entire tail or loss distribution (as in Acerbi and Szekely,

2014), or a linear approximation of the risk measure (as in Emmer et al., 2015). Indirect

backtests can also be based on the joint elicitability of risk measures such as the ones

proposed in Fissler et al. (2016) for the pair (VaRα,ESα).

There are two main problems with using indirect backtests for ES that require addi-

tional input variables. Firstly, if the null hypothesis of a correct model is rejected, it

remains unclear if the ES estimate is incorrect or if the rejection is the result of a poor

estimation of another variable. Secondly, from a regulatory perspective, the additional
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input variables may not necessarily be available, as financial institutions are not required

to disclose them (Kou and Peng, 2016; Bayer and Dimitriadis, 2022). A possible solution

to these problems was recently proposed by Bayer and Dimitriadis (2022), since they

suggested ES backtests based on the Mincer-Zarnowitz regression that only require ES

forecasts and realized losses as input variables.

Fissler et al. (2016) and Nolde and Ziegel (2017) propose to complement the tradi-

tional backtests used in regulatory practice with comparative backtests. Specifically,

Nolde and Ziegel (2017) suggest a two-stage procedure: In the first stage, a traditional

backtest is conducted. In the second stage, provided that the first stage is passed, a

comparative backtest is performed to compare a financial institution’s internal model

against a regulator’s standard model. When solely traditional backtests are used for

model validation, this could provide an incentive to minimize the risk measure estimate

under the condition that the backtest is passed, rather than aiming for the best possible

forecasts. To incorporate comparative backtests into regulation, a standardized method

for risk measure estimation is needed for the comparison with internally generated fore-

casts from financial institutions. Nolde and Ziegel (2017) propose the filtered historical

simulation (FHS) method as a potential candidate for this. For ES, it remains challeng-

ing to find a reliable comparative backtesting method due to the lack of elicitability. One

possible solution is to use the scoring functions in (4.7) based on the joint elicitability

of VaR and ES, however it is unclear whether a poor estimation of the ES, VaR or both

is responsible for the failure of an estimation method in a comparative backtest, see

also examples 5 and 6 in Kou and Peng (2016). Dimitriadis and Schnaitmann (2021)

recently proposed an encompassing test for situations where only ES forecasts are avail-

able. However, the authors also recommend to publish both ES and VaR forecasts as a

standard practice given their joint elicitability.

Overall, it appears that backtesting ES predictions is more challenging than back-

testing VaR predictions, since the ES lacks elicitability (and identifiability). However,

the discovery by Fissler and Ziegel (2016) that ES is elicitable (and identifiable) jointly

with VaR opens up new possibilities for evaluating ES predictions, leading Bayer and

Dimitriadis (2022) to conclude that “[...] the ES is an appropriate candidate for being

the standard risk measure in practice”. Kou and Peng (2016) are more skeptical and

favor quantile-based risk measures such as the median shortfall.8 They claim that the

joint elicitability of “[...] (ESα,VaRα) does not lead to a reliable method for evaluating

forecasts for ES.”

8Kou and Peng (2016) refer to the median shortfall as the median of the tail loss distribution, e.g. the
VaR at level (1 + α)/2.
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4.2.4. Robustness

The modeling of risk measures such as VaR and ES entails two major challenges in prac-

tice. First, there is a high degree of model uncertainty in the estimation of risk measures,

since the “true” underlying model is unknown. This creates perils for modeling, such

as model misspecification or parameter estimation errors. Second, the estimation of risk

measures is based on either historical or simulated data, which may not accurately pre-

dict future risks. Problems can arise in the estimation, for example, due to limited data

or contaminated datasets. With ES set to replace VaR as the regulatory risk measure

for determining capital requirements under Basel III, it is important to consider which

risk measure is more robust in the face of these uncertainties. However, robustness has

received less attention in the academic literature than coherence and elicitability and

lacks a uniform definition. The following presents the definition of robustness according

to Kou et al. (2013) and then discusses some important contributions to the topic.

Kou et al. (2013) address the uncertainties mentioned above and refer to a risk measure

as robust if (i) it can accommodate model misspecifications and (ii) exhibits statistical

robustness with respect to changes in the data, see also He et al. (2022). The authors em-

phasize the importance of having a robust regulatory risk measure that provides reliable

results and that can be consistently implemented in all institutions. If a risk measure

lacks robustness, two institutions with equal risk profiles that use different methods for

estimating the risk measure could face completely different capital requirements in case

both estimation methods pass the regulatory backtests. This incentivizes the preference

for estimation methods that output lower values for the risk measure. Kou et al. (2013)

refer to the robustness of law, which involves designing a law in such a way that different

judges come to the same decision when applying it.

Kellner and Rösch (2016) address the first aspect of robustness and conduct an em-

pirical analysis to compare the model risk of ES at level 97.5% and VaR at level 99%.

The authors quantify the so-called legal robustness, which measures the mean absolute

deviation among different estimation methods that previously passed a traditional back-

test. In addition, the sensitivity of the risk measures to errors in the estimation of the

model parameters is quantified by evaluating the ratio of partial derivatives of the risk

measures with respect to the corresponding parameter. The study finds that the vari-

ability of estimates between reasonable models for ES97.5% is higher than for VaR99% in

most cases. In addition, estimating the ES carries a higher risk of parameter misspecifi-

cation, as the estimates have a higher variability when the estimated parameter deviates

from the true value. It is particularly problematic that the estimates of ES97.5% are

less reliable than VaR99% estimates during adverse market conditions and that heavier
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tails in the loss distribution lead to an increased difference in model risk between the

two risk measures, since reliable estimates in terms of capital requirements are needed

precisely under these circumstances. Kellner and Rösch (2016) conclude that the ES is

more sensitive to regulatory arbitrage and that there is a trade-off between the ability

to incorporate extreme events and model risk due to misspecification of parameters and

higher variability in estimates.

Cont et al. (2010) focus on the second aspect of robustness mentioned above and

investigate the impact of a small change in the dataset (i.e. adding a new data point) on

various estimation methods for evaluating the robustness of VaR and ES using sensitivity

functions, which is a tool from robust statistics. They conclude that ES lacks robustness

in this regard, while the VaR exhibits bounded sensitivity. They demonstrate that there

is a fundamental contradiction between subadditivity (and hence coherence) and the

robustness of risk measures with regard to the dataset used for their computation. It

turns out that the estimation method plays an important role for this form of robustness,

as a parametric model, for instance, can react differently to the addition of a data point

than a model based on the empirical loss distribution. This sensitivity varies considerably

across different ES models. Cont et al. (2010) also show that the popular historical

simulation (HS) estimator is significantly more robust for VaR than for ES when adding

a new observation. Furthermore, the ES is more sensitive to the size of the data point.

In the study by He et al. (2022), the most important results from the literature

on robust statistics are summarized. It is shown that VaR is more robust than ES

with regard to four methods of robust statistics, namely influence functions, asymptotic

breakdown points, finite sample breakdown points and Hampel robustness. For example,

VaR has a bounded influence function while that of ES is unbounded. Put simply, the

asymptotic breakdown point is a measure of the proportion of outliers that an estimator

can tolerate before its behavior becomes arbitrary as the sample size approaches infinity.

A higher breakdown point indicates greater robustness to outliers. While the asymptotic

breakdown point is 1− α for VaRα, it is 0 for ESα. In practice, the computation of ES

may be substantially affected by adding one data point to a finite sample. For more

details, refer to He et al. (2022) and the references therein.

In summary, it can be concluded that the VaR is more robust than the ES with regard

to noise in the dataset and model misspecifications. However, this observation must be

balanced against the ability of ES to respond to tails events. When robustness primarily

refers to the sensitivity to outliers as in Cont et al. (2010), it is not surprising that the

estimation of ES as a conditional expectation is more sensitive than the estimation of

a quantile. In fact, ES was implemented as a regulatory risk measure in Basel III to
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capture possible extreme losses in the tail of the distribution, which VaR is not sensitive

to. Extreme values can occur in financial market data and are not necessarily outliers, see

the discussion in Emmer et al. (2015). Nevertheless, it is desirable for a regulatory risk

measure that alternative estimation methods that are accepted by traditional backtests

respond similarly to changes in the dataset. The sensitivity of ES with respect to data

and model assumptions makes it challenging to implement this risk measure consistently

across all financial institutions in the current regulatory setting, as each institution uses

its own data and internal models to calculate risk measures. This promotes regulatory

arbitrage in both the model selection and the data used for computation.

4.2.5. Summary of properties

The previous sections discuss some important concepts regarding risk measures and

their differences with respect to the two popular risk measures VaR and ES. ES is often

considered the theoretically superior risk measure, as it is subadditive and coherent,

but mainly because it accounts for tail risks beyond the VaR. In contrast, ES is not

elicitable and is less robust with regard to model misspecifications and noise in the data.

Therefore, there is a trade-off between subadditivity and sensitivity to extreme events

on the one hand, and elicitability and robustness on the other.

In light of this tradeoff and the current regulatory requirements for backtesting, it is

unclear whether adopting ES97.5% as regulatory risk measure is justified. As mentioned

above, the lack of subadditivity does not seem to be a relevant issue in most practical

applications and in cases where VaR is not subadditive, this concept is controversial. The

lack of elicitability complicates backtesting and model selection for the ES, although

recent publications in this field have made progress. While ES theoretically covers

extreme events beyond VaR and captures both their size and likelihood, it is unclear to

what extent an estimated ES can actually quantify these tail risks in practice, given the

lack of robustness.

There is no consensus in the literature about the most suitable risk measure for reg-

ulation. While, for example, Emmer et al. (2015) and Bayer and Dimitriadis (2022)

consider ES to be the appropriate risk measure in practice, other authors such as Cont

et al. (2010), Kou and Peng (2016) and He et al. (2022) are more skeptical and prefer

quantile-based risk measures.
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4.3. ES/VaR ratios for the normal and t-distribution

Despite the theoretical differences discussed in Section 4.2, there exists a relationship

between VaR and ES under certain distributional assumptions. This section presents

VaR and ES for location-scale families, followed by the closed-form solutions of both risk

measures for the standard normal distribution and the standard t-distribution. Based

on this, the ratios between ES and VaR for both distributions are derived and the

performance of the t-ratio estimator is examined in a simulation study.

4.3.1. VaR and ES for location scale families

Consider a random variable X from the location-scale family of distributions with a

location parameter µ ∈ R and a scale parameter σ ∈ R+ such that there exists a

standardized random variable Z = (X − µ)/σ. Since both VaR and ES satisfy the

properties of positive homogeneity and translation invariance, it holds that

VaRα(X) = µ+ σVaRα(Z), and (4.8)

ESα(X) = µ+ σESα(Z) (4.9)

for all location-scale families. In the following, we consider the derivations of VaR and

ES for two popular location-scale families, the normal and the Student-t distribution.

4.3.2. Normal distribution

Suppose that the random variable Z has a standard normal distribution, thus Z ∼
N(0, 1). Then it holds that

P (Z ≤ Φ−1(α)) = Φ(Φ−1(α)) = α,

where Φ(·) denotes the distribution function of the standard normal distribution and

Φ−1(·) is the corresponding quantile function. Since VaRα(Z) = Φ−1(α) according to

the definition in (4.1), the VaR for normally distributed losses L with location parameter

µ and scale parameter σ is

VaRα(L) = µ+ σΦ−1(α). (4.10)
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Let ϕ(z) denote the density function of Z. Then, according to the definition in (4.2), a

closed-form solution for the ES is obtained by computing the following integral,

ESα(Z) =
1

1− α

∫ ∞

Φ−1(α)
zϕ(z)dz

=
1

(1− α)
√
2π

∫ ∞

Φ−1(α)
z exp

(
−1

2
z2
)
dz.

With the substitution u(z) = −1
2z

2 and taking the limit yields

ESα(Z) = − 1

(1− α)
√
2π

lim
b→∞

∫ u(b)

u(Φ−1(α))
exp(u) du

= − 1

(1− α)
√
2π

lim
b→∞

[exp(u)]
u(b)
u(Φ−1(α))

= − 1

(1− α)
√
2π

lim
b→∞

(
exp

(
−1

2
b2
)
− exp

(
−1

2
(Φ−1(α))2

))
=

1

(1− α)
√
2π

exp

(
−1

2

(
Φ−1(α)

)2)
=

1

(1− α)
ϕ(Φ−1(α)) (4.11)

(see, e.g., McNeil et al., 2015, p.70). For L ∼ N(µ, σ2), ES follows as

ESα(L) = µ+ σESα(Z). (4.12)

4.3.3. Student-t distribution

The VaR and ES for returns that have a generalized Student-t distribution with ν degrees

of freedom can be derived in a similar manner.9 The VaR results as

VaRα(L) = µ+ σt−1
ν (α), (4.13)

where t−1
ν (α) denotes the α-quantile of the standard Student-t distribution. For the

derivation of ES, suppose that the random variable Z has a standard Student-t distri-

bution with ν degrees of freedom where fν(z) denotes the density function and t−1
ν (α)

is the α-quantile of the distribution. The closed-form solution for ES is obtained by

9Note that the variance of the generalized Student-t distribution is given by νσ2/(ν − 2) and does not
equal σ2.
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computing

ESα(Z) =
1

(1− α)

∫ ∞

t−1
ν (α)

z fν(z)dz (4.14)

=
1

(1− α)

Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

)︸ ︷︷ ︸
:=c

∫ ∞

t−1
ν (α)

z

(
1 +

z2

ν

)− ν+1
2

dz,

where Γ(x) = (x− 1)! denotes the Gamma function. Substituting u(z) = 1 + z2

ν yields

ESα(Z) =
cν

2(1− α)
lim
b→∞

∫ u(b)

u(t−1
ν (α))

u−
ν+1
2 du

=
cν

(1− α)(1− ν)
lim
b→∞

[
u

1−ν
2

]u(b)
u(t−1

ν (α))

=
cν

(1− α)(1− ν)
lim
b→∞

((
1 +

b2

ν

) 1−ν
2

−
(
1 +

(t−1
ν (α))2

ν

) 1−ν
2

)

=
cν

(1− α)(ν − 1)

(
1 +

(t−1
ν (α))2

ν

) 1−ν
2

, for ν > 1,

=
ν

(1− α)(ν − 1)

(
1 +

(t−1
ν (α))2

ν

)
c

(
1 +

(t−1
ν (α))2

ν

)− ν+1
2

︸ ︷︷ ︸
fν(t

−1
ν (α))

=
ν + (t−1

ν (α))2

(1− α)(ν − 1)
fν(t

−1
ν (α)) (4.15)

(see, e.g., McNeil et al., 2015, p.70). For a generalized Student-t distributed loss variable

L, the ES results as

ESα(L) = µ+ σESα(Z), (4.16)

accordingly.

4.3.4. Ratios

The closed-form solutions for the ES in (4.11) and (4.15) can be used to explicitly

calculate the ratio ES/VaR for the normal and Student-t distributions. For losses that

have a standard normal distribution, the ratio is

ESα
V aRα

=
1

(1− α)Φ−1(α)
ϕ
(
Φ−1(α)

)
. (4.17)
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Hence, the normal-ratio is a function of α. For the standard Student-t distribution, the

ratio depends on the degrees of freedom ν and results as

ESα
V aRα

=
ν + (t−1

ν (α))2

(1− α)(ν − 1)t−1
ν (α)

fν(t
−1
ν (α)). (4.18)

Table 4.1 displays the VaR, ES and ratio for the normal and Student-t distribution with

various degrees of freedom at some prominent confidence levels. The table shows that

the t-ratio increases with tail heaviness, while the ES and VaR are related by a small

constant in the normal case.

Table 4.1.: VaR, ES and ratios for the Student-t and normal distribution

VaR ES ratio

α 99% 97.5% 95% 99% 97.5% 95% 99% 97.5% 95%

t3 4.54 3.18 2.35 7.00 5.04 3.87 1.54 1.58 1.65
t4 3.75 2.78 2.13 5.22 3.99 3.20 1.39 1.44 1.50
t5 3.36 2.57 2.02 4.45 3.52 2.89 1.32 1.37 1.43
t6 3.14 2.45 1.94 4.03 3.26 2.71 1.28 1.33 1.40
t7 3.00 2.36 1.89 3.77 3.09 2.59 1.26 1.31 1.37
t8 2.90 2.31 1.86 3.59 2.97 2.51 1.24 1.29 1.35
t9 2.82 2.26 1.83 3.46 2.88 2.45 1.23 1.28 1.34
t10 2.76 2.23 1.81 3.36 2.82 2.41 1.22 1.27 1.33
t15 2.60 2.13 1.75 3.10 2.64 2.28 1.19 1.24 1.30
t20 2.53 2.09 1.72 2.98 2.56 2.22 1.18 1.23 1.29
N(0, 1) 2.33 1.96 1.64 2.67 2.34 2.06 1.15 1.19 1.25

This table displays values for the VaR, ES and the ratio ES/VaR for the standard Student-t
distribution for various degrees of freedom and for the standard normal distribution.

4.3.5. Simulation study

In this section, the results of a simple simulation study for the risk measures VaR and

ES are presented for the confidence levels 97.5% and 99% that are relevant for regula-

tory practice. The study uses a standard t-distribution with degrees of freedom ranging

between three and six as the data-generating process to create a simple laboratory set-

ting in which the true values of VaR and ES are known. This allows to compare the

performance with regard to bias, variance and MSE. The choice of degrees of freedom

aims to simulate heavy tails as they are often observed in stock data, while maintaining

the existence of the first two moments.

In the simulation, the maximum likelihood estimator (MLE) is compared to the his-

torical simulation (HS) estimator for both risk measures at the two confidence levels

97.5% and 99%. In addition, for ES, the ratio estimator is computed and compared to
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the other two estimation methods. In this laboratory setting, the MLE is the asymptot-

ically most efficient estimator and is obtained by plugging in the maximum likelihood

estimate for the degrees of freedom into (4.15). On the other hand, HS is one of the most

popular estimators in practice (European Banking Authority, 2021). Given a sample of

past observations xt−1, ..., xt−w where w denotes the length of the estimation window,

estimates for the VaR and the ES are obtained as the empirical α-quantile and the mean

of all observations exceeding VaR, respectively, i.e.

V̂ aR
HS

α = F̂−1(α), (4.19)

ÊS
HS

α =

∑w
i=1 xt−i · 1{xt−i > V̂ aR

HS

α }∑w
i=1 1{xt−i > V̂ aR

HS

α }
, (4.20)

where F̂ denotes the empirical distribution. The HS estimator is a simple nonparametric

method that makes only one assumption about the distribution of the data, which is

that the data is i.i.d. For this simulation, the multiplier for the ratio estimator is selected

using a data-driven approach. The t-ratio estimator is simply obtained by multiplying

V̂ aR
HS

α with the ratio in (4.18), where the degrees of freedom are replaced by the

maximum likelihood estimate for ν.10 The simulations are based on 2000 replications.

For each simulation run, data for 400 artificial stocks are simulated, with 100 for each

degree of freedom.

Table 4.2 reports the results of the simulations for estimating the two risk measures

at the relevant confidence levels for an estimation window of 1000 periods. This corre-

sponds to approximately four years of daily data in a financial market application. The

estimators are evaluated in terms of bias, variance and MSE. It is not surprising that

the MLE outperforms the other estimators, as it is the asymptotically most efficient es-

timator under these simulation conditions. For real data, on the other hand, it becomes

necessary to make an assumption about the unknown loss distribution, and accordingly,

a pseudo-MLE is employed in practice.

The results in Table 4.2 show that estimating ES by means of MLE and HS leads to

higher variance and MSE compared to estimating the corresponding VaR counterparts

at the same confidence levels for all considered degrees of freedom. Additionally, the

absolute bias is higher in most cases. The differences are more pronounced for lower

degrees of freedom, i.e. when the tails are heavier. For example, the MSE for both

10In the optimization carried out in Matlab 2020a, the only condition for the degrees of freedom is that
ν > 0. The maximum likelihood estimation involves numerical optimization techniques and aims to
find the parameter values that maximize the likelihood of observing the given data. This optimization
process can also yield estimates for ν that are non-integer.
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MLE and HS is almost eight times higher when the risk measures are compared at the

97.5% confidence level and for three degrees of freedom. For six degrees of freedom,

the MSE of the MLE estimator is still more than four times as large and the MSE of

the HS estimator is nearly tripled. The simulation results show that the estimation of

ES99% is a difficult task, in particular for the HS estimator. This is because, even with

a relatively long estimation window of 1000 periods, the HS estimator is based on only

ten observations. As a result, each of these individual observations has a substantial

impact on the outcome of the ES estimation. When the degrees of freedom are low and

the tails are correspondingly heavier, the likelihood of extreme observations increases,

thereby affecting the computation of ES and leading to increased variability.

In light of the transition from VaR99% to ES97.5% as the regulatory risk measure,

the comparison between these two risk measures is particularly relevant for regulatory

purposes. The simulation results for VaR99% and ES97.5% are listed in columns two and

three, as well as the last three columns of Table 4.2, respectively. The MLE consistently

shows lower values for variance and MSE for VaR99% as compared to ES97.5%. This

difference is again particularly pronounced for low degrees of freedom. For three degrees

of freedom, the MLE exhibits an almost twice as high MSE for ES97.5% in comparison

to VaR99%. For six degrees of freedom, the MSE for the ES97.5% is still about 40%

higher. The bias is relatively low for both risk measures, so the MSE is mainly driven

by the variance. In comparison to the MLE, the HS estimator has higher levels of bias

and variance overall. However, similar to the MLE, estimating VaR99% with HS provides

advantages compared to estimating ES97.5% in terms of variance and MSE for low degrees

of freedom. For three degrees of freedom, the MSE of the HS estimator for ES97.5% is

about 75% higher than for VaR99%. When the degrees of freedom are 5-6, the differences

in MSE between the two risk measures are minor.

One major challenge for estimating the ES at the 97.5% confidence level is the high

variability in estimation when tails are heavy, in particular for the widely-used HS esti-

mator. In contrast, the HS estimator shows lower bias, variance and MSE values when

used to estimate the VaR at the 97.5% confidence level. To mitigate the issue, the ratio

estimator approach proposes to compute ES by multiplying the VaR at the 97.5% level

with a ratio, which can lead to a more stable estimate of ES. In this simulation study,

the ratio is estimated from the data and depends on the estimated degrees of freedom,

reflecting the heaviness of the tails. When the VaR is multiplied by a constant that

is larger than one, the variance increases due to its property V (aX) = a2V (X) for a

random variable X and any constant a. Accordingly, the variance of the ratio estimator

for ES97.5% is higher than that of the HS estimator for VaR97.5%. However, Table 4.2
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shows that for ES97.5%, the ratio estimator exhibits a lower variance and MSE compared

to the HS estimator for all considered degrees of freedom, as well as a lower absolute

average bias. The improvement in variance and MSE is most noticeable for low degrees

of freedom. Moreover, the ratio estimator for ES97.5% achieves values for bias, variance

and MSE that are slightly lower than those of the HS estimator for VaR99%. Recall that

VaR99% was the former regulatory risk measure for determining capital requirements

in Basel II. These findings suggest that the implementation of a ratio estimator could

offer practical utility by stabilizing ES estimates at the confidence level 97.5% and thus

reduce the variability in the calculation of capital requirements. For ES99%, the ratio

estimator also yields significantly lower values for variance and MSE in comparison to

the HS estimator, although the overall level remains relatively high.

The simulation results for an estimation window of 500 periods are presented in Table

C.10 in Appendix C. Despite a noticeably higher overall level of bias, variance and MSE,

the relative performance of the estimators for the two risk measures appears similar to

that for an estimation window of 1000. For the same confidence level, the MLE and HS

estimators exhibit substantially lower bias, variance and MSE values for the estimation

of VaR compared to ES. For the estimation of ES, the ratio estimator shows markedly

lower variance and MSE values than the HS estimator, while the performance of the

ratio estimator for ES97.5% is again slightly better than that of the HS estimator for

VaR99%. These results demonstrate the challenging nature of obtaining accurate ES

estimates with smaller estimation windows.

4.4. Bootstrap resampling application

In this section, we examine the performance of some prominent estimation methods on

real data and compare them to ratio models, where the estimation of the ES is obtained

by multiplying the VaR with a constant. The results of the empirical application are

based on daily stock data from the Center for Research in Security Prices (CRSP) for

the time period 26 December 2003 until 14 November 2019, yielding 4000 daily returns

WRDS (2020). The dataset comprises 760 stocks for which we have an almost complete

return history for the considered time period.11 To ensure a certain quality standard of

the stocks included in our investment universe, we restrict attention to stocks that were

constituents of the S&P 500 index on the last trading day of the years between 2010

and 2019 plus constituents of the NASDAQ composite index. All included stocks are

11We allow for <1% of missing returns during the considered time period. The few missing values are
replaced by zeros.
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common shares that are traded on the NYSE or NASDAQ stock exchanges with no more

than ten recorded trading days without trading volume. We chose these requirements

to avoid the inclusion of illiquid stocks with high spreads.

4.4.1. Application setup

For real data, the performance comparison of alternative estimation methods for VaR

and ES is considerably more challenging than for simulated data, since the true values

of these risk measures are unknown for real data. Under the laboratory conditions of

the simulation study in Section 4.3.5, the true values for VaR and ES could be deter-

mined according to the formulas in Section 4.3.3, allowing for the comparison of various

estimation methods in terms of bias, variance and MSE.

To mimic such laboratory conditions for the real dataset mentioned above, the com-

plete set of 4000 (filtered) time series of the 760 stocks is considered as the population

from which the true VaR and ES for each stock are determined based on the empirical

distribution. Bootstrapping is then employed to generate new samples from this dataset

by resampling the data points. Specifically, for each new sample, T time points are ran-

domly drawn with replacement from the original 4000 time points of the population. This

results in each new sample having the dimension T × 760. Thus, for each new sample,

there is a new composition of time points, while maintaining the grouping of stocks to

preserve the correlations among them. In total, B new samples are generated using this

procedure and the VaR and ES are calculated for each sample using various estimation

methods. This approach allows to compare the performance of alternative estimation

approaches with regard to average bias, variance and MSE based on the deviation of the

sample-based estimates from the true values obtained from the population.

In order to apply this bootstrap procedure, the time series should be i.i.d. However,

financial market data often exhibit autocorrelation and heteroskedasticity. Therefore, it

is essential to apply suitable filtering techniques to the time series of the 760 stocks. In

this context, we assume that the series of losses is of the form

Lt = µt + εt with εt = σtZt (4.21)

where µt denotes the conditional mean (location), σt represents the conditional standard

deviation (scale) and both parameters are Ft−1 measurable, the information available

up to time point t − 1. The series Zt are i.i.d. innovations with zero mean and unit

variance with distribution function FZ . A widely employed approach for capturing the

dynamics in financial market data involves combining an ARMA model to estimate the
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conditional mean µt with a GARCH model to estimate the conditional variance σ2t . In

this study, we specifically employ an AR(1)-GARCH(1,1) model to filter the data, which

is a common approach used by many other researchers in their empirical studies focused

on forecasting risk measures, e.g. Kellner and Rösch (2016), Nolde and Ziegel (2017) or

Li and Wang (2023). The AR(1)-GARCH(1,1) model is specified as

Lt = ϕ0 + ϕ1Lt−1 + εt with εt = σtZt, (4.22)

σ2t = ω + δ1ε
2
t−1 + δ2σ

2
t−1 (4.23)

where µt = E[Lt|Ft−1] = ϕ0 + ϕ1Lt−1 and Zt
i.i.d.∼ fZ . The sequence of i.i.d. innovations

can be obtained using the following two step procedure:

1. The parameters µt and σt are estimated using maximum likelihood, assuming a

specific distribution for Zt.

2. Compute the standardized residuals using the estimated parameters µ̂t and σ̂t,

Ẑt =
Lt − µ̂t
σ̂t

. (4.24)

The risk measures can be computed based on these standardized residuals. For the loss

function Lt, the risk measure estimates can simply be obtained by p̂t(Lt) = µ̂t+σ̂tp̂t(Ẑt),

where p̂t denotes an estimator for a risk measure at time t.

A simple assumption for the distribution of Zt is N(0, 1). While this assumption of-

ten leads to a misspecified model for stock returns, an AR(1)-GARCH(1,1) filter with

normally distributed innovations removes a large portion of autocorrelation and het-

eroskedasticity and generates approximately i.i.d. distributed residuals, see Kuester

et al. (2006). In this application, a Student-t distribution is assumed for filtration to

better account for the heavy tails typically observed in stock returns. This assumption

changes the functional form of the likelihood function and the corresponding additional

parameter, the degrees of freedom νt, is estimated in the first step described above, to-

gether with the parameters µt and σt. The AR(1)-GARCH(1,1) model with t-distributed

innovations yields approximately i.i.d. residuals Ẑt based on Ljung-Box test results.

This model represents an improvement over a filter that uses normal innovations. On

the other hand, more complex models such as GJR-GARCH or a model employing a

skewed-t distribution do not seem to provide any improvement in terms of filtration for

the dataset used.

For the bootstrap experiment, samples with T = 1000 and T = 500 observations

are examined. The estimation methods that are described in Section 4.4.2 are used
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to compute VaR and ES for the confidence levels 97.5% and 99% that are particularly

relevant with regard to the Basel regulations. All results are derived from B = 2000

generated samples.

4.4.2. Estimators

For the bootstrap experiment, three prominent estimation methods serve as a bench-

mark, and their performance is compared to various ratio models. These three estima-

tion methods include the well-known estimation method (filtered) historical simulation,

which is considered in most related studies and is also a popular estimation method

used by banks in practice. In addition, two estimation methods based on extreme value

theory are included. Estimation methods based on extreme value theory are considered,

for example, in Kuester et al. (2006), Kellner and Rösch (2016), Nolde and Ziegel (2017)

and Taylor (2019). According to the empirical results in Kellner and Rösch (2016), all

three models that serve as a benchmark in this section are among the best models for

estimating ES97.5% and pass their conducted backtests. All estimations in this section

are computed based on the samples consisting of standardized residuals.

FHS

The nonparametric estimation method known as filtered historical simulation (FHS) is

similar to the HS method presented in equations (4.19) and (4.20), with the difference

that the estimators are computed based on standardized residuals. Hence, the estimator

for VaRFHS
α is the empirical α-quantile of the bootstrap sample Zb and ÊS

FHS

α corresponds

to the average of the observations above V̂aR
FHS

α .

For the simulations in Section 4.3.5, no filtration is necessary, since the simulated data

is i.i.d. However, it is important to note that data filtration is important for financial

market returns. FHS is one of the most investigated methods for the estimation of VaR

and ES. Regarding ES, Patton et al. (2019) refer to FHS as “perhaps the best existing

model for ES”. Nolde and Ziegel (2017) propose FHS as a potential “standard model”

against which alternative models should be compared to in comparative backtesting, as

it is flexible and performs well in many situations.

The unconditional historical simulation method (HS), on the other hand, would be ap-

plied directly to the raw data without prior filtration. Generally, HS exhibits a relatively

poor performance since it violates the i.i.d. assumption that underlies this method. Ex-

amples of its applications can be found in Righi and Ceretta (2015) and Patton et al.

(2019). Nonetheless, unconditional HS is likely the most commonly used method by
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banks due to its simplicity and the relatively smooth risk measures it provides, which

do not lead to rapid changes in capital requirements, see Pérignon and Smith (2010).

According to the European Banking Authority (2021), 72% of the participating banks

reported to use some form of historical simulation for VaR computation, without differ-

entiating between filtered and unfiltered HS.

EVT

We consider two estimation methods, the GPD and Hill approach, which are based

on extreme value theory (EVT). EVT is a branch of statistics that specifically focuses

on modeling the tail regions of distributions rather than the entire distribution. EVT

provides important results regarding limiting distributions for extreme observations in

large samples. Due to space constraints, we provide only a concise overview of EVT and

the two estimation methods. For a detailed exploration of EVT, refer to McNeil et al.

(2015) or Dańıelsson (2011) for an intuitive introduction.

Consider the sequence of i.i.d. random variables X1, ..., XT and its maximum MT =

max(X1, ..., XT ). The fundamental result of classical EVT is that the limiting distribu-

tion for normalized maxima from samples of i.i.d. random variables is in the family of

the generalized extreme value (GEV) distribution with distribution function Hξ(x).
12 In

this case, it is commonly stated that the random variable X with distribution function

F is in the maximum domain of attraction of an extreme value distribution, denoted as

F ∈ MDA(Hξ). The value of the parameter ξ plays a key role in EVT analysis, since for

F ∈ MDA(Hξ), the tails of the distribution fall into the categories Fréchet when ξ > 0,

Gumbel when ξ = 0 or Weibull when ξ < 0, irrespective of the shape of the distribution

function F . In the context of stock returns, the first category is particularly relevant,

as ξ > 0 implies heavy tails where the tails decline by a power law at rate 1/ξ. The

parameter ξ is referred to as shape parameter and is the reciprocal of the tail index γ,

see also Definition 4.2.2.

The block maxima method, which involves dividing a sample into blocks and using the

respective corresponding block maxima to estimate the GEV distribution is considered

inefficient in terms of data utilization. Therefore, modern EVT analysis focuses on

large observations that exceed a particular threshold, known as peaks over threshold

(POT). Similar to how the GEV distribution represents the limiting distribution of

normalized maxima, the generalized Pareto (GP) distribution is the limiting distribution

of normalized data exceeding a threshold. When the POT method is applied in practice,

12See, e.g., McNeil et al. (2015, p. 136).
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an appropriate threshold u must be chosen, which is usually set to an upper order

statistic, since EVT methods are typically applied to the right tail of a distribution. The

choice of the threshold involves a bias-variance tradeoff. A higher value for u increases

the variability in the estimation of the parameters of the GP distribution, while a lower

value of u leads to bias, since the GP distribution assumption is only valid in the tails.

We consider two estimators based on the POT approach, the GPD and Hill estimator.

Since EVT methods rely on the i.i.d. assumption, the estimation methods should be

applied to appropriately filtered data, such as the standardized residuals Z (McNeil and

Frey, 2000). For a sufficiently large threshold u, the threshold exceedences Z − u follow

a GP distribution, i.e.

Z − u|Z > u ∼ GP(β, ξ) (4.25)

with shape parameter ξ and β > 0 denotes a scale parameter, see e.g. Nolde and Ziegel

(2017). For the GPD estimator, the two parameters are estimated by fitting a GPD

model to the excess losses in each bootstrap sample using MLE. McNeil et al. (2015)

derive the formulas for VaR and ES, which are expressed as

V̂ aR
GPD

α = u+
β̂

ξ̂

((
1− α

k/T

)−ξ̂

− 1

)
and (4.26)

ÊS
GPD

α =
V̂ aR

GPD

α

1− ξ̂
+
β̂ − ξ̂u

1− ξ̂
, (4.27)

where the threshold u is set to the (k + 1)-upper order statistic in each bootstrap sam-

ple and k denotes the number of threshold exceedences. As mentioned previously, the

selection of the threshold is an important task in practice. We adopt the approach used

in Nolde and Ziegel (2017) and use the 12% most extreme observations for the GPD

estimator. For instance, if the sample contains T = 1000 observations, the number of

threshold exceedances used for fitting the GPD model would be k = 120.

The approach of Hill (1975) offers an alternative way to estimate the shape parameter

or tail index. When using the Hill method, it is assumed that the underlying distribution

is in the MDA of the Fréchet distribution and is therefore heavy-tailed. This means that

the tail of the distribution is regularly varying and can be represented as the product of

a power function and a slowly varying function, see Section 4.2.2 for details. Based on

the assumption that the slowly varying function is constant above a threshold u(H), the
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Hill estimator for the shape parameter corresponds to

ξ̂(H) =
1

γ̂(H)
=

1

k(H)

k(H)∑
i=1

lnZ(1) − lnZ(k+1), (4.28)

where Z(1) ≥ Z(2) ≥ ... ≥ Z(k(H)+1) represent the descending order statistics of the

bootstrap sample Zb and k
(H) denotes the number of observations considered in the tail

for the Hill approach. Embrechts et al. (1997) present various derivation methods for

the estimator of ξ(H) (or γ(H), respectively).

The derivation of the risk measures VaR and ES is based on the Hill tail estimator,

see Embrechts et al. (1997, p. 331 ff.) and McNeil et al. (2015, p. 160). Since the

slowly varying function is considered as a constant c, the tail distribution is of the form

F̄ (z) = cz−1/ξ for z > u. By using F̄ (u) = cu−1/ξ, the constant can be represented as

c = F̄ (u)u1/ξ. The expression for the right tail of the distribution follows as

F̄ (z) = F̄ (u)
( z
u

)−1/ξ
.

The Hill tail estimator is obtained by using ξ̂(H) as the shape parameter, u(H) =

Z(k(H)+1)) as the threshold and replacing F̄ (u) with the empirical estimator k/T . The

VaR at level α is obtained by inverting the Hill tail estimator,

V̂aR
Hill

α (Z) = Zk(H)+1

(
1− α

k/T

)−ξ̂(H)

. (4.29)

The ES is derived using (4.29) and the definition of ES as an integral, which results in

ÊS
Hill

α (Z) =
Zk(H)+1

1− ξ̂(H)

(
1− α

k/T

)−ξ̂(H)

=
V̂aR

Hill

α (Z)

1− ξ̂(H)
. (4.30)

From equation (4.30) follows that the Hill-based ES estimator can be viewed as a type of

ratio estimator. Similar to the t-ratio estimator, the ES is obtained by multiplying the

VaR by a parameter that depends on the thickness of the tail. However, in contrast to

the t-ratio estimator, the Hill-based ES estimator implicitly also depends on the number

of exceedances k(H). Additionally, the t-ratio estimator can accommodate scenarios

where the distribution is not very heavy-tailed with correspondingly higher degrees of

freedom.

In our application, we choose the 5% most extreme observations for the Hill estimator,

hence k(H) = 50 in a sample of T = 1000. Simulation evidence from McNeil et al. (2015)
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suggests that the Hill estimator performs well for relatively small values of k(H), that

is 20 − 75 observations in sample of 1000, and can outperform the GPD (and FHS)

estimator for distributions with well-behaved regularly varying tails. However, the GPD

estimator seems to be less sensitive to the threshold choice and is more flexible, since it

is also applicable to non-heavy-tailed data.

ES-normal-ratio

For the ES normal-ratio (n-ratio) estimator, the three VaR estimators V̂aR
FHS

α (Z),

V̂aR
GPD

α (Z) and V̂aR
Hill

α (Z) are multiplied with the constant in (4.17). For the nor-

mal ratio, the underlying assumption is that the ratio is constant for a given α. The

corresponding multipliers can be found in the last row of Table 4.1. Since the ratios are

based on the normal distribution and do not account for heavy tails, it is expected that

the ES will be underestimated in most cases for stock returns.

ES-t-ratio

For the t-ratio estimator, the three VaR estimators are multiplied by the ratio in (4.18),

where the degrees of freedom are replaced by the estimator ν̂, which is estimated for each

bootstrap sample and each asset individually. This ratio estimator is a relatively flexible

model as it can capture various degrees of tail-heaviness through the degrees of freedom.

Additionally, since an individual ratio is estimated for each asset, this approach can also

be applied to portfolios consisting of a single asset.

ES-p-ratio

To obtain a constant ratio for all assets within each bootstrap sample, which incorporates

data information, the constant p-ratio based on the squared differences between ES and

VaR estimates is considered. For a dataset with i = 1, ..., N stocks, the estimator for

the ratio is obtained by

min
p

(
N∑
i=1

ÊS
FHS

α,i − pV̂aR
FHS

α,i

)2

. (4.31)

Similar to the normal ratio, the VaR values of all assets are multiplied by the same

constant p to obtain estimates for ES. However, in contrast to the normal ratio, p is

estimated based on data. Since stock returns often exhibit heavier tails than the normal

distribution, the p-ratio will generally be higher than the normal ratio. Additionally,
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the p-ratio is recalculated for each bootstrap sample. In this application, nonparametric

estimates of ES and VaR are used to compute p due to its widespread use in practice.

The p-ratio approach is conceptually similar to the probability equivalent level of VaR

and ES (PELVE) approach introduced by Li and Wang (2023). The authors establish a

relationship between ES and VaR based on the probability level 1− ϵ = α and solve for

some (single) asset the equation

ÊS
FHS

1−cϵ = V̂aR
FHS

1−ϵ , (4.32)

for the constant c ∈ [1, 1/ϵ]. It is important to note that Li and Wang (2023) consider

PELVE as a distributional index that increases as the distribution exhibits heavier tails,

rather than using it for estimating ES. An alternative approach to estimate ES would

be to consider the modified relationship

ÊS
FHS

1−ϵ = V̂aR
FHS

1−ϵ/c. (4.33)

The p-ratio approach in (4.31) is based on the relationship between ES and VaR at the

same level of confidence α. Since 1 − ϵ/c ≥ α, the estimation of ES in (4.33) is based

on a less accurate VaR estimate compared to VaRα, as lower confidence levels enhance

estimation accuracy. The results of an (unreported) simulation study with t-distributed

data indicate that ES estimates based on (4.31) exhibit a substantially lower MSE than

ES estimates based on (4.33). This serves as the motivation for using (4.31) to estimate

the p-ratio in this application.

ES-i-ratio

The assumption of an identical ratio across all assets, as it is presumed in the case

of the normal and p-ratio, is highly restrictive. For the ES-i-ratio, the 760 companies

in the dataset are categorized into 11 different industries according to their Standard

Industrial Classification (SIC) code. In order to estimate branch-specific ratios, the

formula in (4.31) is used for each industry.

4.4.3. Results

In this section, the results of the bootstrap experiment are presented. For VaR, the

performance of the three benchmark estimation methods is evaluated. For ES, the n-

ratio, t-ratio, p-ratio and i-ratio are considered for all three benchmark methods. In
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total, three models are compared for VaR and 15 models are compared for ES.13 The

performance measures for VaR and ES include the average values of bias, variance and

MSE for the 760 stocks in the dataset. For each estimation method, the values of bias,

variance and MSE are calculated with respect to the true risk measures for each of the

760 assets and then average values are computed. The true values are based on the

empirical distribution of the complete filtered time series, as described in Section 4.4.1

Tables 4.3 - 4.6 present the average values for bias, variance and MSE.14 Additionally,

the average rank for the absolute bias, variance and MSE is provided. Each method is

assigned a rank for each asset and an average value is computed for all assets. Since 15

estimation methods are considered for ES, the average rank ranges from 1 (best) to 15

(worst). For VaR, the average rank ranges from 1 to 3.

Tables 4.3 and 4.4 show the performance of the estimation methods for VaR97.5% and

ES97.5% for an estimation period of T = 1000. For VaR, the FHS method exhibits

the lowest bias, while the EVT-based methods have a slightly lower MSE due to a

lower variance. Consequently, the FHS method achieves the lowest rank for bias, while

the EVT-based methods obtain lower ranks for variance and MSE. However, the overall

performance measured by MSE is relatively similar among the three benchmark methods.

The ranking of benchmark estimators is reversed for ES. FHS exhibits the lowest MSE,

closely followed by the GPD estimator. Hill performs worst among the benchmark

estimators in terms of all performance measures and average ranks. The Hill estimator

is appropriate only when the distribution is actually fat-tailed, since it assumes that the

underlying distribution is in the MDA of the Fréchet distribution. Therefore, ξ(H) is

confined to positive values. However, the fat-tailed assumption is not adequate in every

case. In comparison, the GPD estimates a negative value for ξ in approximately 20%

of all estimations.15 For ES-Hill, this appears to be a larger problem than for VaR-Hill,

since the ES estimator divides the VaR value by 1− ξ(H), which can lead to the positive

bias. In general, it can be observed that the variance and MSE for the ES estimators

are higher than for VaR estimation at the same level of α, which is consistent with the

simulation results.

13The results in this section do not include the fully-parametric (MLE) approach to avoid making
the list of models, especially for ES, too extensive. First, fully-parametric models are not used
frequently in practice (according to European Banking Authority (2021), 6% of the banks use a
fully-parametric approach for VaR calculation). Second, these models are not among those that pass
the backtests conducted in Kellner and Rösch (2016). The computations for this study also do not
indicate improved performance of the fully-parametric models. In Section 4.5, however, the FP-t
approach is considered as a benchmark model.

14Note that variance + bias
2 ̸= MSE, as we consider average values of bias, variance and MSE.

15In total, there are 1, 520, 000 estimations for 760 assets times 2000 bootstrap samples.
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Table 4.3.: Performance results for VaR 97.5%

Method Bias Rank Variance Rank MSE Rank

FHS −0.0010 1.30 0.0150 2.64 0.0152 2.26
GPD 0.0301 2.30 0.0125 2.12 0.0145 1.96
Hill −0.0311 2.40 0.0115 1.25 0.0137 1.78

This table reports the performance results of the bootstrap resampling experi-
ment for the estimation of 97.5% VaR with 1000 periods and 2000 replications.

Table 4.4.: Performance results for ES 97.5%

Method Bias Rank Variance Rank MSE Rank

FHS −0.0152 2.40 0.0933 13.31 0.0936 8.45
GPD −0.0041 2.06 0.0945 13.32 0.0951 8.64
Hill 0.0755 6.56 0.1021 14.51 0.1124 10.59

n-FHS −0.4804 13.54 0.0214 3.50 0.2958 13.48
n-GPD −0.4432 12.56 0.0177 2.13 0.2504 12.30
n-Hill −0.5163 14.59 0.0163 1.26 0.3163 14.51

t-FHS −0.0514 6.52 0.0513 11.74 0.0736 7.16
t-GPD −0.0060 5.59 0.0485 11.23 0.0630 5.78
t-Hill −0.0925 7.19 0.0456 9.99 0.0676 6.19

p-FHS −0.0051 9.17 0.0313 7.71 0.0827 7.33
p-GPD 0.0398 8.73 0.0260 5.89 0.0693 5.88
p-Hill −0.0485 8.26 0.0240 4.29 0.0641 4.93

i-FHS −0.0219 7.96 0.0322 8.51 0.0714 6.09
i-GPD 0.0233 7.61 0.0275 7.13 0.0592 4.78
i-Hill −0.0643 7.26 0.0256 5.50 0.0579 3.89

This table reports the performance results of the bootstrap resampling experi-
ment for the estimation of 97.5% ES with 1000 periods and 2000 replications.

Turning to the ratio estimators for ES97.5% estimation, the n-ratio estimators have the

lowest variance among all considered models, but also by far the highest absolute bias and

MSE. The low variance results from multiplying the low-variance VaR97.5% benchmark

estimators by a relatively small constant that is displayed in Table 4.1. However, this

small constant is simultaneously responsible for the substantial negative bias observed for

the n-ratio estimators, since it is too small for capturing the characteristics of fat-tailed

distributions, leading to an underestimation of ES97.5%.

The other ratio estimators exhibit a lower variance and MSE in comparison to the

benchmark models, but with higher absolute bias. The p-ratio estimator employs the

same multiplier for each asset, which is determined from the data, in contrast to the

n-ratio estimator. This simple approach reduces the MSE compared to the benchmark
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methods. The decrease in MSE is more pronounced for the EVT-based estimators reflect-

ing that the VaR estimates are better for these models. It is an interesting observation

that this restrictive ratio model leads to an improved MSE and average ranks in such a

diverse investment universe consisting of 760 different stocks. However, the relationship

between ES and VaR does not seem to correspond to a single natural constant, since

subdividing the assets into industry sectors based on their SIC codes further improves

the MSE, as evidenced by the results for the i-ratio models. The MSE is lowest for the

i-Hill estimator, which results from the low MSE in the VaR-Hill estimation.

Figure 4.1 shows the distribution of the estimated p-ratios and i-ratios for each of

the 11 considered industries for all 2000 bootstrap samples. While the p-ratios are quite

narrowly distributed in the range of 1.38 and 1.48, the industry ratios show distributions

around considerably lower ratios (e.g., Mining) as well as substantially higher ratios (e.g.,

Services). The models based on i-ratios exhibit the lowest MSE and seem to gain an

advantage from avoiding the computation of individual ratios for each asset - a process

that can lead to estimation errors in the t-ratio method. On the other hand, the i-ratio

models do not have the restrictive assumption of the p-ratio models that the ratios for

all assets are identical.16

In terms of MSE, the performance of the t-ratio estimators for FHS and GPD falls

in between their p-ratio and i-ratio counterparts. The average ranks for absolute bias

improve in comparison to the other ratio estimators but are higher than those of the

benchmark models. Nevertheless, the MSE is considerably reduced as compared to the

benchmark models: for t-FHS by approximately 21% compared to FHS, for t-GPD by

nearly 34% compared to GPD and for t-Hill by almost 40% compared to Hill. The vari-

ance of the t-ratio estimators is higher than that of the other ratio estimators, since the

ratio is estimated individually for each asset and depends on the estimated degrees of

freedom. However, the variance is considerably lower as compared to the benchmark es-

timators with reductions ranging from 45% to 55%. The t-ratio approach is particularly

interesting, as it can also be used for ES estimation for individual portfolios.

Tables 4.5 and 4.6 show the performance of the estimators for VaR and ES at the 99%

confidence level. The comparative performance is similar to the 97.5% confidence level,

even though the general levels of bias, variance and MSE are higher. It is worth noting

16As an alternative to grouping assets by industries, the assets could also be divided into groups using
a data-driven method. For instance, the following two-step procedure could be implemented for this
purpose. In a first step, the t-ratios for all assets are determined. In a second step, the vector of
t-ratios can be split into k clusters using k-means clustering. The resulting cluster centroids can then
serve as ratio estimates for the k clusters. However, some experiments indicate that this approach
does not yield any further improvement with regard to MSE.
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Figure 4.1.: p-ratios and i-ratios for the 2000 bootstrap samples
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that for the benchmark models, the variance and MSE for VaR99% are lower than for

the ES97.5%. This observation is particularly interesting in light of the transition from

VaR99% to ES97.5% as the regulatory risk measure under Basel III.

Table 4.5.: Performance results for VaR 99%

Method Bias Rank Variance Rank MSE Rank

FHS 0.0065 1.37 0.0686 2.75 0.0700 2.54
GPD 0.0635 2.54 0.0453 1.51 0.0570 1.84
Hill 0.0131 2.09 0.0465 1.75 0.0517 1.63

This table reports the performance results of the bootstrap resampling experi-
ment for the estimation of 99% VaR with 1000 periods and 2000 replications.

Table 4.6.: Performance results for ES 99%

Method Bias Rank Variance Rank MSE Rank

FHS −0.0479 2.60 0.3806 13.45 0.3832 9.02
GPD −0.0910 3.68 0.3496 13.21 0.3656 8.80
Hill 0.2071 8.35 0.3683 14.37 0.4579 11.94

n-FHS −0.7440 13.33 0.0900 4.49 0.8034 13.27
n-GPD −0.6786 12.18 0.0594 1.54 0.6486 11.31
n-Hill −0.7364 13.51 0.0610 1.76 0.7443 12.92

t-FHS −0.1584 7.08 0.2027 12.03 0.3083 8.11
t-GPD −0.0784 5.31 0.1563 9.84 0.2145 4.95
t-Hill −0.1485 6.41 0.1561 10.07 0.2409 5.70

p-FHS −0.0520 9.05 0.1359 8.53 0.3025 7.81
p-GPD 0.0289 8.25 0.0895 4.55 0.2144 5.29
p-Hill −0.0426 8.23 0.0917 5.02 0.2329 5.27

i-FHS −0.0506 7.70 0.1429 9.09 0.2701 6.84
i-GPD 0.0321 7.19 0.0982 5.88 0.1941 4.45
i-Hill −0.0401 7.14 0.0995 6.18 0.2073 4.34

This table reports the performance results of the bootstrap resampling experi-
ment for the estimation of 99% ES with 1000 periods and 2000 replications.

In comparison to ES97.5%, the t-ratio, p-ratio and i-ratio models display a more sizable

reduction in MSE for ES99% as compared to their benchmark counterparts in all cases

except one. For instance, the MSE for p-GPD is roughly 27% lower than that of GPD for

ES at the 97.5% level and it decreases by approximately 41% for ES99%. The reduction

in MSE for i-GPD and t-GPD is around 9 and 8 percentage points, respectively. The Hill

ratio estimators, p-FHS and i-FHS also exhibit higher percentage reductions in MSE for

ES99%. The only exception is t-FHS, where the reduction remains relatively constant.
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For the estimation at the 99% confidence level, the EVT-based methods appear to

provide more stable estimates in comparison to FHS. With an estimation period of 1000

data points, the FHS estimation relies on only a few observations in the tail, which makes

the estimation uncertain and susceptible to the influence of individual data points. In

contrast, EVT-based methods fit a smooth function to the tail, which helps to stabilize

the risk measure estimates. For VaR99%, despite having a higher bias, the EVT-based

methods exhibit a lower MSE than FHS due to a lower variance. The data-driven

ratio estimators for GPD and Hill benefit from this lower variance, showing improved

performance compared to their FHS counterparts. Among these estimators, the i-GPD

estimator has the lowest MSE. For the data-driven EVT ratio estimators, the average

absolute bias is lower compared to their benchmark counterparts, while the average

ranks are higher. Similar to ES97.5%, the Hill estimator has a relatively large bias.

Tables C.1-C.4 in Appendix C show the performance of the risk measures for an

estimation period of T = 500. In general, the absolute bias, variance and MSE are

considerably higher compared to an estimation period of T = 1000. However, the

key findings remain the same: VaR estimation is more accurate than ES estimation

and the data-driven ratio models offer a considerable stabilization of ES estimates with

a substantially lower MSE. Notably, the GPD model exhibits a high variance for ES

when T = 500. As with T = 1000, 12% of the data are used as exceedances for the

GPD model. However, in some instances, this appears to be insufficient for the ML

optimization to converge. The performance of GPD improves when, for instance, 20% of

the data are selected as exceedances for T = 500, resulting in a reduction of the variance

from 0.7045 to 0.1613 for ES97.5%. Nevertheless, this highlights a practical drawback

of EVT-based models, as they necessitate the selection of a threshold. The EVT-based

ratio models are less affected by this issue, since they rely on the performance of VaR

estimation. Estimating ES at high confidence levels with with short estimation periods

is particularly challenging. The results in Table C.4 show that the benchmark models

are even inferior to the n-ratio models in two cases, while the data-driven ratio models

display a considerable reduction in MSE as compared to the benchmark models.

4.5. Performance based on scoring functions

The objective of this application is to investigate the out-of-sample performance of sev-

eral VaR and ES models for portfolios based on the scoring function in (4.7). In practice,

it is relevant to be able to compare the performance of risk measure estimates for individ-

ual assets, such as portfolios. The results are based on the same dataset as in Section 4.4,
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from which the returns of the well-known 1/N (naive) portfolio and the mean-variance

portfolio with short-sale constraints are obtained. Additionally, we examine the scores

for the three prominent single-asset portfolios McDonald’s, Nvidia and Bank of America.

4.5.1. Application setup and portfolios

To obtain forecasts for the risk measures, a rolling-window procedure is applied. For

an estimation period of 1000 daily data points, an AR(1)-GARCH(1,1) model with t-

innovations is estimated and the forecasts of the risk measures for time period t+ 1 are

obtained as

V̂aRα(Lt+1) = µ̂t+1 + σ̂t+1V̂aRα(Zt+1) and

ÊSα(Lt+1) = µ̂t+1 + σ̂t+1ÊSα(Zt+1).

For example, the first 1000 periods are used to produce a forecast for t = 1001. Then,

the estimation window shifts to 2 : 1001 to produce a forecast for t = 1002 and so on.

The out-of-sample period covers the time span from December 26, 2003 to November 14,

2019. However, for the mean-variance portfolio with short-sale constraints, the out-of-

sample period starts later on December 17, 2007, since the first time periods are used for

estimating the portfolio weights. For comparison purposes, a shorter estimation period

of 500 is also considered, while maintaining the same out-of-sample time span.

For the simultaneous forecast evaluation of the pair (VaRα,ESα), we use the scoring

function in (4.7). This requires a choice for G1 and G2. We follow Nolde and Ziegel

(2017, eq. 2.24) and choose G1(x) = 0 and G2(x) = 1/x so that G(x) = ln(x), see also

Patton et al. (2019, eq. 6). This yields the scoring function

S(v, e, l) = 1(l > v)
l − v

e
+ (1− α)

(v
e
− 1 + ln(e)

)
. (4.34)

As pointed out by Nolde and Ziegel (2017) and Patton et al. (2019), this choice of the

scoring function is appealing since it generates loss differences between competing scores

that are homogeneous of degree zero in the relevant tail region. Patton and Sheppard

(2009) show that this property improves the power of Diebold and Mariano (1995) tests

in the context of volatility forecasts.

In this application, five portfolios with different risk profiles are considered. Firstly,

we examine two diversified portfolios: the 1/N portfolio and the mean-variance portfolio

with short sale constrains (MV+). The 1/N portfolio does not require the estimation of

portfolio weights, since an equal weight of 1/N is invested in each asset in a potential in-

112



Chapter 4. A comparative Study of Value at Risk and Expected Shortfall

vestment universe consisting of N assets. The weights of the MV+ portfolio are obtained

by solving the classical mean-variance problem subject to the constraint that the port-

folio weights are nonnegative. Empirical findings from numerous studies demonstrate

that the MV+ portfolio exhibits significantly improved out-of-sample performance and

more stable weights as compared to the mean-variance portfolio without constraints, see

e.g. Jagannathan and Ma (2003). In addition to the diversified portfolios, the stocks

of McDonald’s (MCD), Nvidia (NVDA) and Bank of America (BAC) are considered as

single-asset portfolios. These three companies belong to different industries and have a

high level of recognition.

Table 4.7 shows that the returns of the portfolios under analysis exhibit different

risk profiles. The two diversified portfolios have the lowest standard deviation and the

smallest maximum loss over the observed time span. MCD is included in the analysis

because it has a relatively defensive risk profile that is more similar to that of the

diversified portfolios. In contrast, NVDA and BAC exhibit significantly higher volatility

over the observed time period. For example, the standard deviation of NVDA is more

than three times higher than that of theMV+ portfolio. Moreover, NVDA and BAC also

experience notable instances of both substantial losses and gains, as reflected in their

maximum daily losses and returns. The kurtosis for all portfolios is higher than normal.

It may be surprising that the single-asset portfolios exhibits positive skewness. However,

Albuquerque (2012) finds a difference in the sign of the skewness between returns at the

aggregate stock market level and the individual firm level. While negative skewness is

commonly observed for aggregate stock market returns, individual stock returns often

exhibit positive skewness, see also Jondeau et al. (2019).

Table 4.7.: Descriptive statistics for the five portfolios

Method naive MV+ MCD NVDA BAC

mean 0.0602 0.0484 0.0418 0.1527 0.0465
stddev. 1.3167 1.1766 1.4382 3.8325 2.8779
skewness −0.1276 −0.2471 0.0336 0.6187 0.9071
kurtosis 9.1079 6.8539 9.4737 16.1463 31.1804
min −10.3830 −7.6461 −12.8170 −35.2335 −28.9694
max 10.8257 9.4200 9.3895 42.4145 35.2691

4.5.2. Estimators

To assess the performance of risk measures for individual assets, a total of 11 estimation

methods are examined. These methods include the (unfiltered) HS and fully-parametric-

t (FP-t) as additional benchmarks, which are known to perform worse than, for example,

113



Chapter 4. A comparative Study of Value at Risk and Expected Shortfall

FHS in most cases. However, according to Patton et al. (2019), it is difficult to distinguish

good models from each other using scoring functions, but it is possible to distinguish the

worst models from the good ones. The analysis also includes the baseline models FHS,

GPD and Hill.

Two types of ratio models are considered. Firstly, a completely naive model is assessed,

where the VaR estimates from FHS, GPD and Hill are simply multiplied by a factor of 1.4

to obtain 97.5% ES estimates. Although this factor is not based on a rigorous estimation,

it roughly corresponds to the average of all ratios considered in Section 4.4. As shown

in Table 4.1, this already represents a ratio suitable for distributions with relatively

heavy tails when α = 97.5%. Hence, this naive approach will overestimate the ratio

for well-diversified portfolios such as the 1/N strategy. Nonetheless, it is interesting

to compare the scores of such a completely naive (and partially incorrect) approach

with sophisticated methods for estimating ES. For estimating ES99%, the simple ratio is

reduced to 1.35. To include a data-driven ratio estimator, the t-ratio estimator is also

considered, which provides an individual ratio for each time point and asset. The t-ratio

estimator is obtained by multiplying the VaR values from FHS, GPD and Hill with the

corresponding t-ratios.

In this application, the p-ratio and industry-specific ratio are not considered, since es-

timating these ratios requires a dataset consisting of multiple assets. While determining

the p-ratio from the five assets would be feasible, the focus here is to specifically ex-

amine estimation methods applicable in the single-asset case. To save space, the poorly

performing n-ratio model is not further explored.

4.5.3. Results

Table 4.8 shows the average scores for (VaR97.5%,ES97.5%), which are determined as the

average out-of-sample scores using the joint scoring function in (4.34). As described in

Section 4.2.3, the true values of the risk measures minimize the expected value of the

scoring function, hence lower average scores in Table 4.8 indicate better performance.

The ranks of the individual methods are presented in parentheses, while the last column

of Table 4.8 displays the average rank. Evaluating ES forecasts using the joint scoring

function is not straightforward for two reasons. Firstly, scores for good models tend to be

close to each other (Patton et al., 2019). Secondly, VaR and ES forecasts are evaluated

simultaneously. However, the considered ratio models employ the same VaR forecasts

as their benchmark counterparts, thus differences in scores arise from the ES forecasts.

The scores of the unconditional HS estimator stand out as particularly poor and rank

last for all portfolios. This confirms that inferior models can be effectively distinguished
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Table 4.8.: Average scores and ranks for (VaR97.5%,ES97.5%)

Method naive MV+ MCD NVDA BAC Rank

HS 1.3588 (11) 1.3009 (11) 1.2075 (11) 2.1954 (11) 2.1848 (11) 11
t-FP 1.0326 (9) 1.0960 (3) 1.1662 (10) 2.1277 (10) 1.6274 (10) 8.4

FHS 1.0281 (2) 1.0950 (2) 1.0971 (9) 2.0182 (7) 1.5887 (9) 5.8
GPD 1.0295 (4) 1.0962 (5) 1.0946 (8) 2.0189 (8) 1.5869 (7) 6.4
Hill 1.0300 (5) 1.0972 (6) 1.0942 (7) 2.0175 (6) 1.5884 (8) 6.4

s-FHS 1.0300 (6) 1.0977 (7) 1.0912 (3) 2.0121 (3) 1.5809 (1) 4.0
s-GPD 1.0317 (7) 1.1004 (10) 1.0899 (2) 2.0131 (4) 1.5817 (4) 5.4
s-Hill 1.0325 (8) 1.0986 (9) 1.0898 (1) 2.0197 (9) 1.5829 (5) 6.4

t-FHS 1.0256 (1) 1.0949 (1) 1.0942 (6) 2.0073 (1) 1.5814 (2) 2.2
t-GPD 1.0282 (3) 1.0961 (4) 1.0916 (4) 2.0082 (2) 1.5816 (3) 3.2
t-Hill 1.0326 (10) 1.0983 (8) 1.0925 (5) 2.0137 (5) 1.5841 (6) 6.8

This table shows the scaled average scores for the estimation of (VaR97.5%,ES97.5%) with a rolling window of 1000
time periods. The corresponding ranks are presented in brackets. The last column contains the average rank for
each estimation method.

from better models for (VaRα,ESα) forecasts using the joint scoring function. The t-

FP methods also exhibits higher scores in most cases and has the second-worst average

rank. The best average ranks are achieved by t-FHS and t-GPD, which display lower

scores in comparison to their benchmark counterparts for all portfolios. The t-Hill esti-

mator exhibits lower scores only for single stock portfolios compared to Hill. The naive

simple-ratio (s-ratio) models perform impressively well for the single-stock portfolios and

surprisingly outperform the benchmark models in most cases. For the diversified port-

folios, the s-ratio models show slightly worse scores compared to the benchmark models.

It is, however, remarkable that the scores of the s-ratio models, based on the results

of Diebold-Mariano tests, do not differ significantly from the benchmark models, even

though the simple ratio of 1.4 is likely set too high for well-diversified portfolios (cf.

Tables 4.1 and 4.9).

Diebold-Mariano (DM) tests can be used to evaluate whether the average scores differ

significantly from each other. For illustration, Tables 4.9 and 4.10 show DM t-statistics

for the naive and BAC portfolios. The t-statistics for MV+, MCD and NVDA are pro-

vided in Tables C.7-C.9 in Appendix C. The results are presented in a similar manner

as in Patton et al. (2019): Positive t-statistics suggest that the column model is supe-

rior to the row model. A t-value with an absolute value greater than 1.96 indicates a

significant difference in average scores at a 95% confidence level. As noted by Patton

et al. (2019), detecting statistically significant differences between sophisticated models

can be challenging. This is supported by the results for the naive portfolio in Table 4.9.
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Table 4.9.: Diebold-Mariano t-statistics for the naive portfolio, ES 97.5%

Method HS t-FP FHS GPD Hill s-FHS s-GPD s-Hill t-FHS t-GPD t-Hill

HS · 4.65 4.75 4.71 4.73 4.77 4.73 4.72 4.81 4.75 4.67
t-FP −4.65 · 0.93 0.79 0.57 0.29 0.11 0.02 1.08 0.88 −0.01

FHS −4.75 −0.93 · −0.66 −0.65 −0.32 −0.69 −1.25 1.10 0.00 −1.18
GPD −4.71 −0.79 0.66 · −0.18 −0.08 −0.44 −0.86 1.13 0.88 −0.84
Hill −4.73 −0.57 0.65 0.18 · −0.01 −0.29 −0.78 1.07 0.59 −1.10

s-FHS −4.77 −0.29 0.32 0.08 0.01 · −0.80 −0.56 1.10 0.35 −0.31
s-GPD −4.73 −0.11 0.69 0.44 0.29 0.80 · −0.20 1.59 0.87 −0.12
s-Hill −4.72 −0.02 1.25 0.86 0.78 0.56 0.20 · 2.61 1.66 −0.04

t-FHS −4.81 −1.08 −1.10 −1.13 −1.07 −1.10 −1.59 −2.61 · −1.04 −1.40
t-GPD −4.75 −0.88 0.00 −0.88 −0.59 −0.35 −0.87 −1.66 1.04 · −1.12
t-Hill −4.67 0.01 1.18 0.84 1.10 0.31 0.12 0.04 1.40 1.12 ·

This table reports the Diebold-Mariano t-statistics comparing the average scores for the naive portfolio for (VaR97.5%,ES97.5%).
Positive t-statistics show that the column model exhibits a lower average score than the row model.

Only the unconditional HS model displays significantly inferior average scores compared

to all other models, and t-FHS performs significantly better than p-Hill. Although all

other entries in the t-FHS column are positive, they are notably below 1.96. For the

single-stock portfolios, the absolute t-values are considerably higher. For BAC, the

s-ratio models as well as t-FHS and t-GPD frequently show statistically significant im-

provements compared to the benchmark models. The columns with ratio models feature

positive t-values in the majority of the cases. HS is significantly worse in all cases and

t-FP is significantly worse in almost all cases as compared to the other models.

Turning to risk measures at a higher α-level, Table 4.11 presents the performance for

(VaR99%,ES99%). Similar to Section 4.4.3, it is observed that the performance of FHS

and t-FHS deteriorates at this high confidence level, although t-FHS remains superior

to FHS. The estimation of ES using FHS is quite uncertain for α = 0.99. As observed in

Section 4.4.3, the EVT methods demonstrate better performance, with t-GPD achieving

the lowest average rank of 2.8. The s-ratio models exhibit lower average scores for the

single-stock portfolios. Tables C.5 and C.6 in Appendix C contain the average scores

for an estimation period of 500 days, showing qualitatively similar results. The ratio

models outperform the benchmark models in most cases, in particular for the single-

stock portfolios. For α = 0.99 and an estimation period of 500, the s-ratio models

display the lowest average ranks, as all types of estimation seem to entail significant

uncertainty for ES. It can be concluded that t-FHS performs well for α = 97.5% and

a reasonable estimation period, while t-GPD consistently belongs to the better models

with comparatively low average scores, irrespective of the confidence level or estimation

period.
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Table 4.10.: Diebold-Mariano t-statistics for the BAC portfolio, ES 97.5%

Method HS t-FP FHS GPD Hill s-FHS s-GPD s-Hill t-FHS t-GPD t-Hill

HS · 5.91 6.50 6.55 6.52 6.56 6.59 6.57 6.54 6.58 6.55
t-FP −5.91 · 1.90 2.02 1.90 2.53 2.49 2.06 2.32 2.32 1.87

FHS −6.50 −1.90 · 0.71 0.13 2.33 1.93 1.97 2.66 2.65 1.23
GPD −6.55 −2.02 −0.71 · −0.54 1.35 2.01 1.46 1.25 2.86 0.71
Hill −6.52 −1.90 −0.13 0.54 · 2.04 1.95 2.59 2.11 2.58 1.31

s-FHS −6.56 −2.53 −2.33 −1.35 −2.04 · −0.23 −0.43 −0.25 −0.20 −0.55
s-GPD −6.59 −2.49 −1.93 −2.01 −1.95 0.23 · −0.32 0.07 0.05 −0.45
s-Hill −6.57 −2.06 −1.97 −1.46 −2.59 0.43 0.32 · 0.37 0.48 −0.64

t-FHS −6.54 −2.32 −2.66 −1.25 −2.11 0.25 −0.07 −0.37 · −0.06 −0.59
t-GPD −6.58 −2.32 −2.65 −2.86 −2.58 0.20 −0.05 −0.48 0.06 · −0.65
t-Hill −6.55 −1.87 −1.23 −0.71 −1.31 0.55 0.45 0.64 0.59 0.65 ·

This table reports the Diebold-Mariano t-statistics comparing the average scores for the BAC portfolio for
(VaR97.5%,ES97.5%). Positive t-statistics show that the column model exhibits a lower average score than
the row model.

Table 4.11.: Average scores and ranks for (VaR99%,ES99%)

Method naive MV+ MCD NVDA BAC Rank

HS 1.6254 (11) 1.5408 (11) 1.5054 (11) 2.4937 (11) 2.5418 (11) 11
t-FP 1.2206 (7) 1.2686 (4) 1.4199 (10) 2.4090 (10) 1.8566 (10) 8.2

FHS 1.2256 (10) 1.2742 (8) 1.3726 (9) 2.3309 (9) 1.8431 (9) 9.0
GPD 1.2217 (8) 1.2682 (3) 1.3646 (6) 2.3303 (8) 1.8266 (6) 6.2
Hill 1.2113 (1) 1.2716 (6) 1.3636 (5) 2.3223 (5) 1.8261 (5) 4.4

s-FHS 1.2183 (6) 1.2809 (10) 1.3670 (7) 2.3210 (4) 1.8336 (7) 6.8
s-GPD 1.2179 (5) 1.2728 (7) 1.3551 (1) 2.3200 (3) 1.8177 (3) 3.8
s-Hill 1.2117 (2) 1.2697 (5) 1.3580 (2) 2.3282 (7) 1.8160 (1) 3.4

t-FHS 1.2223 (9) 1.2753 (9) 1.3722 (8) 2.3170 (2) 1.8363 (8) 7.2
t-GPD 1.2168 (4) 1.2675 (2) 1.3596 (3) 2.3153 (1) 1.8180 (4) 2.8
t-Hill 1.2129 (3) 1.2649 (1) 1.3634 (4) 2.3238 (6) 1.8172 (2) 3.2

This table shows the scaled average scores for the estimation of (VaR99%,ES99%) with a rolling window
of 1000 time periods. The corresponding ranks are presented in brackets. The last column contains
the average rank for each estimation method.
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4.6. Conclusion

The transition from 99% VaR to 97.5% ES as the regulatory risk measure according

to the Basel Accords leaves the question whether the estimation of 97.5% ES provides

practical value in quantifying risk. This paper examines the key theoretical differences

between these two risk measures and compares their estimation performance through

simulation studies and real-data applications. Additionally, it is explored whether ES

can be well approximated by so-called ratio models, that involve to multiply the VaR

with a factor above one.

ES is often considered the theoretically superior risk measure, since it is subadda-

tive and incorporates tail risks. However, ES is not elicitable and less robust to model

misspecifications and outliers in the dataset. Hence, there is a trade-off between subaddi-

tivity and sensitivity to extreme events on the one hand, and elicitability and robustness

on the other. As a result, there is no consensus in the literature regarding the most

suitable risk measure for regulatory purposes.

The results of the simulation study and bootstrap resampling application suggest

that ES97.5% is estimated with considerably higher variability than VaR, even when

considering the higher confidence level of 99% for VaR. The results in this paper also

show that the estimation of ES can be improved in terms of MSE by multiplying VaR

by a suitable constant. Such ratio models benefit from the relatively accurate estimation

of VaR97.5%, which is upscaled to obtain ES97.5% estimates.

The applications in Sections 4.4 and 4.5 indicate that even rudimentary estimated

ratios or rather naively chosen ratios can enhance the performance of the considered

benchmark models FHS, GPD and Hill. Such ratios either improve the performance or

achieve a comparable quality. However, the ES/VaR ratio does not seem to be a fixed

constant. Ratio models that incorporate additional information about companies (such

as the industry sector) or the distribution of data (such as tail heaviness) outperform

the benchmark and simple ratio models.

Among the considered ratio models, the t-ratio model is particularly interesting as

it can be applied to single-asset portfolios. For this model, the ratio is based on the

degrees of freedom of the Student-t distribution, which reflects the heaviness of the tails.

Notably, the t-ratio model based on the VaR from the GPD model (t-GPD) consistently

ranks among the best-performing models, irrespective of the considered confidence levels

and estimation periods.

In conclusion, the findings of this paper suggest that quantile-based risk measures

improve estimation accuracy. In case accurate estimation of risk measures is an impor-
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tant goal in regulation, this should be taken into account. Although ES theoretically

accounts for tail risks, it remains uncertain how effectively an estimated ES quantifies

these risks in practice due to higher estimation uncertainty. An alternative approach

could involve upscaling the more accurately estimated VaR97.5% with the scaling factor

incorporating information on individual or market risk. Future research could further

explore and develop ratio models that, for example, consider economic conditions.
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Details of the data generating processes used in Section 2.7.4

DGP6, (Bai, 2009)

We consider the following model with two regressors, k = 2, and r = 2 unobserved

factors:

yit = β1x1,it + β2x2,it + λ′
ift + uit, (A.1)

with β1 = 1, β2 = 3, λi = (λ1,i, λ2,i)
′ and ft = (f1,t, f2,t)

′. The two regressors are

generated as

x1,it = µ1 + λ′
ift + ι′λi + ι′ft + η1,it (A.2)

x2,it = µ2 + λ′
ift + ι′λi + ι′ft + η2,it (A.3)

with ι′ = (1, 1). Hence, both regressors are correlated with the loadings, the factors

and the product of both. The unobserved factors and loadings follow standard normal

distributions,

fj,t
iid∼ N (0, 1) for j = 1, 2,

λj,i
iid∼ N (0, 1) for j = 1, 2,

where j = 1, 2 denotes the factor subscript. The regression error is generated as

uit
iid∼ N (0, 4)
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and the idiosyncratic components of the regressors are generated as

ηl,it
iid∼ N (0, 1) for l = 1, 2,

where l indicates the regressor and µl = 1 for l = 1, 2.

DGP7, (Chudik et al., 2011)

This simulation setup is based on a model with two regressors and three unobserved

factors,

yit = β1x1,it + β2x2,it + λ′
ift + uit (A.4)

where β1 = β2 = 1, λi = (λ1,i, λ2,i, λ3,i)
′ and ft = (f1,t, f2,t, f3,t)

′. The regressors are

generated according to

x1,it = γ ′
1,ift + η1,it, (A.5)

x2,it = γ ′
2,ift + η2,it, (A.6)

where γ1,i and γ2,i denote r-dimensional vectors of loadings for the regressors that are

independent of the loadings in the DGP of the dependent variable, λi. The unobserved

factors are generated as independent AR(1) processes,

fj,t = 0.5fj,t−1 + υfj,t , j = 1, 2, 3; t = −49, ..., 0, 1, ..., T

υfj,t
iid∼ N (0, 1− 0.52), fj,−50 = 0.

In order to reduce the effect of the initial value, the first 50 observations of fj,t are

discarded. The factor loadings in the DGP of yit are generated as

λj,i
iid∼ N (0, 1) for j = 1, 2, 3

and are independently distributed from the factor loadings in the DGPs of the regressors,

γl,j,i
iid∼ N (0, 1) for l = 1, 2; j = 1, 2, 3

121



Appendix A. Appendix of Chapter 2

where l denotes the index for the regressor xl,it. The regression errors exhibit mild

heteroskedasticity and are generated as

uit
iid∼ N (0, σ2i ), where σ

2
i

iid∼ U(0.5, 1.5).

The idiosyncratic components of the regressors are generated according to

ηl,it = ρνl,iηl,it−1 + νj,it for l = 1, 2; t = −49, ..., 0, 1, ...T

νl,it
iid∼ N (0, 1− ρ2νj,i), ηl,i,−50 = 0, ρνl,i

iid∼ U(0.05, 0.95) for l = 1, 2.

The first 50 observations of ηl,t are discarded as “burn-in” period.

DGP8, (Ahn et al, 2013):

For this DGP, we consider a model with k = 2 and r = 2,

yit = β1x1,it + β2x2,it + λ′
ift + uit (A.7)

where β1 = β2 = 1, λi = (λ1,i, λ2,i)
′ and ft = (f1,t, f2,t). The regressors are generated

by

x1,it = λ1,if1,t + λ1,i + f1,t + η1,it + µ1,i (A.8)

x2,it = λ2,if2,t + λ2,i + f2,t + η2,it + µ2,i (A.9)

DGP8 differs from DGP6 in that the regressor xl,it for l = 1, 2 is only correlated with

one factor fj,t, the loadings λj,i and the product λj,ifj,t for j = 1, 2, but is independent

of the other factor and loadings. The unobserved factors follow a uniform distribution,

fj,t
iid∼ U(0, 2) for j = 1, 2,

and the loadings follow a normal distribution,

λj,i
iid∼ N (0, 4) for j = 1, 2.

The regression errors are generated by an AR(1) process,

uit = ρui,t−1 + νit for t = −49, ..., 0, 1, ...T,

where ρ = 0.5, νit ∼ N (0, 1) and ui,−50 = 0.
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The first 50 time observations of uit are discarded. The idiosyncractic components of

the regressors are

ηl,it
iid∼ N (0, 1) and µl,i

iid∼ N (0, 1) for l = 1, 2.
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B.1. 49 industry portfolios with adjusted time period

Table B.1 reports performance results for the 49 industry portfolios with an out-of-

sample period ranging from December 26th. 2003 to November 14th. 2019 matching

the investment period for the CRSP dataset. The first thing we notice is that the

absolute performance deteriorates in comparison to the results that comprise the full

out-of-sample period (Table 3.6) and are much more similar to the performance results

for the CRSP dataset (Table 3.5). For the short-selling strategy, the relative ranking

of the portfolios is largely consistent with the results reported in Table 3.6. The main

difference is that the performance of the DCCNL falls behind the static LW approaches,

which is accordance with the results for the CRSP dataset. In addition, the simple

1F portfolio attains the second highest Sharpe ratio after the BJL∗ portfolio, which

stems, however, from a higher portfolio return. For the put option strategy, the blocking

strategies rank behind the static-LW and LASSO portfolios in terms of Sharpe ratio.

B.2. L1-regularization: choice of λ

The estimation of LASSO regressions requires to choose the tuning parameter λ. There

are various possibilities to choose λ but the most common approach is k-fold cross-

validation: The available data for estimation is split into k folds and the model is fitted

for each value of λ to k−1 of these folds (the training set) and evaluated on the fold that

was excluded in the estimation (test set). This process is repeated for each of the k folds

and for the classical cross-validation, one selects the λ that minimizes the overall mean

squared error (MSE). In Table B.2 we show results for the cross-validation procedure

with the following alternative error functions.
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Table B.1.: Performance measures for the 49 industry portfolios with
adapted out-of-sample period

short-selling put option

Strategy SR µ σ SR µ σ

MSR(µ̂, Σ̂) 0.22 245.89 1136.10 1.00 2.24 2.25

GMV(Σ̂) 1.32 13.07 9.89 1.38 3.58 2.60
1/N 0.69 13.27 19.16 0.69 13.27 19.16

covariance regularization

CN 0.78 13.78 17.73 0.78 13.78 17.73
1F 1.41 16.57 11.72 1.45 5.52 3.81
LW1F 1.36 13.39 9.86 1.43 3.82 2.67
LWNL 1.35 13.32 9.87 1.41 3.81 2.71
DCCNL 1.17 11.71 9.98 1.10 3.14 2.85

weight constraints

GMV+ 1.01 14.02 13.83 1.01 14.02 13.83
MSR+ 0.94 14.90 15.84 0.94 14.90 15.84
KML 1.33 13.20 9.91 1.41 4.24 3.02
BJL∗ 1.53 17.05 11.17 1.52 6.55 4.30

blocking strategies

block(eq) 1.29 14.44 11.23 1.26 5.35 4.25
block(ord) 1.40 15.50 11.10 1.35 5.64 4.18
block(SR) 1.37 15.10 11.00 1.32 5.51 4.17

The table reports the annualized out-of-sample Sharpe ratios, returns and stan-
dard deviations of 15 portfolio strategies applied to the 49 industry portfolios. The
estimation period spans 1000 trading days with rebalancing every 50 days. The
out-of-sample period ranges from December 26th. 2003 - November 14th. 2019.
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� CV-MSE: We conduct 5-fold cross-validation and choose the λ that minimizes the

MSE.

� CV-STD: We conduct 5-fold cross-validation and choose the λ that minimizes the

portfolio standard deviation.

� CV-SR: We conduct 5-fold cross-validation and choose the λ that maximizes the

portfolio Sharpe Ratio.

� CV-1SE: We conduct 5-fold cross-validation and choose the largest value of λ such

that the MSE is within one standard error of the minimum. This promotes a more

regularized model than CV-MSE.

In addition, we consider the following information criteria to guide the choice of λ.

� AIC: We choose the λ that minimizes 2k−2 ln(L̂), where L̂ is the maximized value

of the likelihood function, k denotes the degrees of freedom.

� BIC: We choose the λ that minimizes the k ln(N)− 2 ln(L̂).

Table B.2.: Alternative methods for choosing λ

short-selling put option

Strategy SR µ σ SR µ σ

KML

MSE 0.80 7.65 9.52 0.86 3.51 4.09
STD 0.76 7.25 9.49 0.86 3.47 4.05
SR 0.60 8.31 13.96 0.57 7.34 12.77
1SE 0.81 7.88 9.73 0.87 4.92 5.66
AIC 0.78 8.44 10.76 0.74 6.46 8.68
BIC 0.80 9.62 12.04 0.76 8.51 11.19

BJL∗

MSE 0.79 7.51 9.54 0.85 3.44 4.04
STD 0.76 7.24 9.51 0.86 3.48 4.06
SR 0.64 8.93 14.03 0.61 7.86 12.92
1SE 0.80 7.76 9.72 0.86 4.84 5.60
AIC 0.79 8.45 10.76 0.75 6.51 8.67
BIC 0.80 9.75 12.11 0.76 8.60 11.26

The table reports the performance of alternative methods to choose
λ for the LASSO approaches applied to the CRSP dataset.

The results reported in Table B.2 show that the classical cross-validation minimizing

the MSE belongs to the best-performing approaches to select λ. The alternative ap-

proaches CV-STD and CV-1SE yield similar performances. Guiding the choice of λ by
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minimizing AIC or BIC yields Sharpe ratios that are in a similar range as CV-MSE,

which are, however, accompanied by larger portfolio standard deviations. The CV-SR

approach performs worst in terms of Sharpe ratio and exhibits the largest standard

deviations.
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Table C.1.: Performance results for VaR 97.5% (est. window 500)

Method Bias Rank Variance Rank MSE Rank

FHS 0.0008 1.37 0.0309 2.78 0.0312 2.58
GPD 0.0303 2.24 0.0251 2.09 0.0272 1.88
Hill −0.0359 2.39 0.0230 1.13 0.0257 1.54

This table reports the performance results of the bootstrap resampling ex-
periment for the estimation of 97.5% VaR with 500 periods and 2000 repli-
cations.

Table C.2.: Performance results for ES 97.5% (est. window 500)

Method Bias Rank Variance Rank MSE Rank

FHS −0.0590 4.70 0.1745 12.62 0.1782 9.04
GPD −0.0065 1.89 0.7034 13.85 0.7044 10.44
Hill 0.0955 7.01 0.2280 14.57 0.2408 12.07

n-FHS −0.4782 13.70 0.0440 3.82 0.3153 13.30
n-GPD −0.4431 12.73 0.0357 2.09 0.2681 11.57
n-Hill −0.5220 14.75 0.0328 1.13 0.3383 14.51

t-FHS −0.0466 5.86 0.1070 11.98 0.1280 8.15
t-GPD −0.0034 5.16 0.0995 11.31 0.1137 6.69
t-Hill −0.0968 6.94 0.0933 10.00 0.1157 6.58

p-FHS −0.0492 8.75 0.0620 7.96 0.1137 6.61
p-GPD −0.0074 8.11 0.0506 5.83 0.0915 4.49
p-Hill −0.1012 8.33 0.0465 4.01 0.0935 3.89

i-FHS −0.0655 7.46 0.0637 8.68 0.1051 5.63
i-GPD −0.0235 6.89 0.0533 6.99 0.0843 3.56
i-Hill −0.1165 7.72 0.0492 5.17 0.0903 3.45

This table reports the performance results of the bootstrap resampling ex-
periment for the estimation of 97.5% ES with 500 periods and 2000 repli-
cations.
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Table C.3.: Performance results for VaR 99% (est. window 500)

Method Bias Rank Variance Rank MSE Rank

FHS 0.0256 1.56 0.1477 2.88 0.1510 2.81
GPD 0.0506 2.48 0.0924 1.43 0.1026 1.58
Hill 0.0146 1.97 0.0950 1.69 0.1004 1.61

This table reports the performance results of the bootstrap resampling ex-
periment for the estimation of 99% VaR with 500 periods and 2000 replica-
tions.

Table C.4.: Performance results for ES 99% (est. window 500)

Method Bias Rank Variance Rank MSE Rank

FHS −0.0836 3.74 0.7418 12.97 0.7496 10.57
GPD −0.0896 3.96 3.8871 13.79 3.9027 12.23
Hill 0.2612 9.14 0.8552 14.41 0.9621 13.77

n-FHS −0.7221 13.21 0.1939 4.93 0.8619 12.13
n-GPD −0.6935 12.59 0.1213 1.44 0.7290 9.34
n-Hill −0.7347 13.77 0.1247 1.70 0.8028 11.16

t-FHS −0.1240 6.34 0.4513 12.23 0.5351 9.27
t-GPD −0.0893 5.04 0.3244 9.85 0.3823 5.77
t-Hill −0.1397 6.16 0.3258 10.13 0.4047 6.53

p-FHS −0.0839 8.80 0.2831 8.74 0.4373 7.49
p-GPD −0.0489 7.89 0.1765 4.30 0.3009 3.84
p-Hill −0.0991 8.33 0.1812 4.83 0.3270 4.38

i-FHS −0.0835 7.32 0.2972 9.23 0.4155 6.73
i-GPD −0.0470 6.68 0.1924 5.55 0.2874 3.19
i-Hill −0.0979 7.03 0.1954 5.91 0.3084 3.61

This table reports the performance results of the bootstrap resampling ex-
periment for the estimation of 99% ES with 500 periods and 2000 replica-
tions.
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Table C.5.: Average scores and ranks for (VaR97.5%,ES97.5%), (est. window 500)

Method naive MV+ MCD NVDA BAC Rank

HS 1.2610 (11) 1.2435 (11) 1.1937 (11) 2.0818 (10) 1.9347 (11) 10.8
t-FP 1.0300 (3) 1.1082 (7) 1.1725 (10) 2.1481 (11) 1.6175 (10) 8.2

FHS 1.0337 (6) 1.1060 (3) 1.1095 (9) 2.0068 (9) 1.5718 (6) 6.6
GPD 1.0285 (2) 1.1081 (6) 1.1042 (7) 2.0023 (8) 1.5740 (8) 6.2
Hill 1.0334 (5) 1.1083 (8) 1.1068 (8) 1.9997 (7) 1.5757 (9) 7.4

s-FHS 1.0392 (10) 1.1047 (2) 1.0988 (4) 1.9923 (3) 1.5633 (1) 4.0
s-GPD 1.0321 (4) 1.1092 (9) 1.0943 (1) 1.9884 (1) 1.5691 (3) 3.6
s-Hill 1.0338 (7) 1.1067 (4) 1.0976 (2) 1.9957 (5) 1.5717 (5) 4.6

t-FHS 1.0351 (9) 1.1040 (1) 1.1042 (6) 1.9955 (4) 1.5645 (2) 4.4
t-GPD 1.0277 (1) 1.1078 (5) 1.0983 (3) 1.9910 (2) 1.5695 (4) 3.0
t-Hill 1.0341 (8) 1.1096 (10) 1.1026 (5) 1.9973 (6) 1.5739 (7) 7.2

This table shows the scaled average scores for the estimation of (VaR97.5%,ES97.5%) with a rolling
window of 500 time periods. The corresponding ranks are presented in brackets. The last column
contains the average rank for each estimation method.

Table C.6.: Average scores and ranks for (VaR99%,ES99%), (est. window 500)

Method naive MV+ MCD NVDA BAC Rank

HS 1.4994 (11) 1.5110 (11) 1.4715 (11) 2.3990 (10) 2.2204 (11) 10.8
t-FP 1.2150 (2) 1.2978 (3) 1.4259 (10) 2.4338 (11) 1.8570 (10) 7.2

FHS 1.2174 (6) 1.3106 (8) 1.3973 (9) 2.3183 (8) 1.8165 (9) 8.0
GPD 1.2208 (8) 1.2990 (4) 1.3725 (6) 2.3310 (9) 1.8067 (7) 6.8
Hill 1.2226 (10) 1.3061 (7) 1.3715 (5) 2.3100 (5) 1.8088 (8) 7.0

s-FHS 1.2145 (1) 1.3130 (10) 1.3868 (7) 2.2833 (1) 1.8006 (5) 4.8
s-GPD 1.2165 (5) 1.2968 (1) 1.3548 (1) 2.3063 (4) 1.7968 (2) 2.6
s-Hill 1.2198 (7) 1.3013 (5) 1.3576 (2) 2.3061 (3) 1.7938 (1) 3.6

t-FHS 1.2154 (3) 1.3125 (9) 1.3959 (8) 2.2884 (2) 1.8047 (6) 5.6
t-GPD 1.2162 (4) 1.2972 (2) 1.3627 (3) 2.3101 (6) 1.7987 (4) 3.8
t-Hill 1.2211 (9) 1.3031 (6) 1.3666 (4) 2.3103 (7) 1.7969 (3) 5.8

This table shows the scaled average scores for the estimation of (VaR99%,ES99%) with a rolling window
of 500 time periods. The corresponding ranks are presented in brackets. The last column contains
the average rank for each estimation method.
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Table C.7.: Diebold-Mariano t-statistics for the MV+ portfolio, ES 97.5%

Method HS t-FP FHS GPD Hill s-FHS s-GPD s-Hill t-FHS t-GPD t-Hill

HS · 3.67 3.67 3.67 3.65 3.60 3.59 3.63 3.65 3.67 3.62
t-FP −3.67 · 0.22 −0.07 −0.25 −0.45 −1.42 −0.55 0.21 −0.04 −0.30

FHS −3.67 −0.22 · −0.55 −1.08 −0.75 −1.05 −1.45 0.11 −0.48 −0.82
GPD −3.67 0.07 0.55 · −0.41 −0.40 −1.03 −1.02 0.46 0.15 −0.44
Hill −3.65 0.25 1.08 0.41 · −0.12 −0.60 −0.90 0.87 0.43 −0.32

s-FHS −3.60 0.45 0.75 0.40 0.12 · −0.99 −0.24 0.76 0.47 −0.07
s-GPD −3.59 1.42 1.05 1.03 0.60 0.99 · 0.39 0.99 1.18 0.25
s-Hill −3.63 0.55 1.45 1.02 0.90 0.24 −0.39 · 1.23 0.98 0.09

t-FHS −3.65 −0.21 −0.11 −0.46 −0.87 −0.76 −0.99 −1.23 · −0.41 −0.81
t-GPD −3.67 0.04 0.48 −0.15 −0.43 −0.47 −1.18 −0.98 0.41 · −0.43
t-Hill −3.62 0.30 0.82 0.44 0.32 0.07 −0.25 −0.09 0.81 0.43 ·

This table reports the Diebold-Mariano t-statistics comparing the average scores for the MV+ portfolio for ES
97.5% with a rolling window of 1000 periods. Positive t-statistics show that the column model exhibits a lower
average score than the row model.

Table C.8.: Diebold-Mariano t-statistics for the MCD portfolio, ES 97.5%

Method HS t-FP FHS GPD Hill s-FHS s-GPD s-Hill t-FHS t-GPD t-Hill

HS · 1.17 3.38 3.48 3.46 3.60 3.68 3.59 3.43 3.55 3.42
t-FP −1.17 · 3.14 3.40 3.38 3.62 3.90 3.41 3.26 3.60 3.11

FHS −3.38 −3.14 · 0.97 1.39 2.54 1.58 2.08 1.36 1.56 1.29
GPD −3.48 −3.40 −0.97 · 0.21 1.13 1.65 1.74 0.12 1.36 0.57
Hill −3.46 −3.38 −1.39 −0.21 · 1.19 1.15 1.52 0.00 0.84 0.47

s-FHS −3.60 −3.62 −2.54 −1.13 −1.19 · 0.37 0.40 −1.08 −0.14 −0.30
s-GPD −3.68 −3.90 −1.58 −1.65 −1.15 −0.37 · 0.04 −0.80 −0.66 −0.50
s-Hill −3.59 −3.41 −2.08 −1.74 −1.52 −0.40 −0.04 · −0.98 −0.60 −0.99

t-FHS −3.43 −3.26 −1.36 −0.12 0.00 1.08 0.80 0.98 · 0.69 0.45
t-GPD −3.55 −3.60 −1.56 −1.36 −0.84 0.14 0.66 0.60 −0.69 · −0.26
t-Hill −3.42 −3.11 −1.29 −0.57 −0.47 0.30 0.50 0.99 −0.45 0.26 ·

Diebold-Mariano t-statistics for the MCD portfolio. The table notes for Table C.7 apply.

Table C.9.: Diebold-Mariano t-statistics for the NVDA portfolio, ES 97.5%

Method HS t-FP FHS GPD Hill s-FHS s-GPD s-Hill t-FHS t-GPD t-Hill

HS · 1.48 5.33 5.41 5.43 5.40 5.63 5.34 5.29 5.51 5.27
t-FP −1.48 · 2.99 3.11 3.06 3.06 3.34 2.83 3.30 3.65 3.12

FHS −5.33 −2.99 · −0.23 0.19 1.42 1.31 −0.46 1.81 1.92 1.10
GPD −5.41 −3.11 0.23 · 0.33 1.12 2.60 −0.18 1.51 2.34 0.96
Hill −5.43 −3.06 −0.19 −0.33 · 1.50 1.27 −0.67 2.09 2.26 1.35

s-FHS −5.40 −3.06 −1.42 −1.12 −1.50 · −0.20 −2.20 1.30 0.65 −0.46
s-GPD −5.63 −3.34 −1.31 −2.60 −1.27 0.20 · −1.48 0.85 1.37 −0.12
s-Hill −5.34 −2.83 0.46 0.18 0.67 2.20 1.48 · 2.01 1.81 1.55

t-FHS −5.29 −3.30 −1.81 −1.51 −2.09 −1.30 −0.85 −2.01 · −0.17 −1.93
t-GPD −5.51 −3.65 −1.92 −2.34 −2.26 −0.65 −1.37 −1.81 0.17 · −1.27
t-Hill −5.27 −3.12 −1.10 −0.96 −1.35 0.46 0.12 −1.55 1.93 1.27 ·

Diebold-Mariano t-statistics for the NVDA portfolio. The table notes for Table C.7 apply.
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Dańıelsson, J., Jorgensen, B. N., Samorodnitsky, G., Sarma, M., and de Vries, C. G.
(2013). Fat tails, VaR and subadditivity. Journal of econometrics, 172(2):283–291.

De Nard, G., Ledoit, O., and Wolf, M. (2019). Factor models for portfolio selection in
large dimensions: The good, the better and the ugly. Journal of Financial Economet-
rics.

134



Bibliography

DeMiguel, V., Garlappi, L., Nogales, F. J., and Uppal, R. (2009a). A generalized ap-
proach to portfolio optimization: Improving performance by constraining portfolio
norms. Management science, 55(5):798–812.

DeMiguel, V., Garlappi, L., and Uppal, R. (2009b). Optimal versus naive diversifica-
tion: How inefficient is the 1/N portfolio strategy? The review of Financial studies,
22(5):1915–1953.

Diebold, F. X. and Mariano, R. S. (1995). Comparing predictive accuracy. Journal of
Business & Economic Statistics, 13(3):253–263.

Dimitriadis, T. and Schnaitmann, J. (2021). Forecast encompassing tests for the expected
shortfall. International Journal of Forecasting, 37(2):604–621.
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