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Zusammenfassung

Von frühen Arbeiten aus den 1930er Jahren an bis heute besteht ein wachsendes In-
teresse an der Theorie der asymptotischen Verteilungen der erwarteten Nullstellen von
zufälligen Polynomen, wenn ihr Grad unendlich wächst. Eine natürliche geometrische
Verallgemeinerung von zufälligen Polynomen sind zufällige Schnitte holomorpher Ger-
adenbündel über einer komplexen Mannigfaltigkeit.

Im Jahr 1999 bewiesen Shiffman und Zelditch, dass auf einer kompakten Kähler-
Mannigfaltigkeit die Nullstellen von Schnitten hoher Tensorpotenzen eines holomorphen
Geradenbündels asymptotisch gleichverteilt bezüglich der normalisierten Krümmung des
Bündels sind. Ihr Ergebnis hat zahlreiche Anwendungen in der mathematischen Physik
und wurde seitdem in viele verschiedene Richtungen verallgemeinert.

In dieser Arbeit verallgemeinern wir ihr Ergebnis auf ein semipositiv gekrümmtes
holomorphes Geradenbündel über einer punktierten Riemannschen Fläche. Dafür un-
tersuchen wir Instrumente, deren Betrachtung sich als geeigneter Rahmen für die Un-
tersuchung statistischer Eigenschaften von Nullstellenmengen auf komplexen Mannig-
faltigkeiten erwiesen haben.

Zunächst zeigen wir die Existenz einer Spektral-Lücke für den zum Bündel gehörigen
Kodaira-Laplace-Operator. Dieses Ergebnis wenden wir zusammen mit der Technik
der analytischen Lokalisierung von Ma und Marinescu an, um eine punktweise glob-
ale asymptotische Entwicklung des zugehörigen Bergman-Kerns zu folgern. Zusätzlich
zeigen wir lokal gleichmäßige Schranken für den Bergman-Kern und seine Ableitungen.
Diese benutzen wir, um die lokal gleichmäßige Konvergenz der durch die zugehörige
Kodaira-Abbildung induzierten Fubini-Study-Metriken und ihrer Potentiale zu der glob-
alen Krümmung, beziehungsweise ihrem Potential nachzuweisen.

Abschließend zeigen wir, dass die erwarteten Nullstellen der holomorphen Schnitte
bezüglich der normalisierten Krümmung der Geradenbündels gleichverteilt sind. Außer-
dem wenden wir die Theorie der meromorphen Transformationen von Dinh und Sibony
an, um die Konvergenzgeschwindigkeit unseres Gleichverteilungsergebnisses abzuschätzen.



Abstract

With early works dating back to the 1930’s until today, there is a growing interest
in the theory of asymptotic distributions of expected zeros of random polynomials when
their degree grows indefinitely. A natural geometric generalization of random polyno-
mials are random sections of a holomorphic line bundle over a complex manifold. In
1999, Shiffman and Zelditch proved that on a compact Kähler manifold, the zeros of
sections of high tensor powers of a holomorphic line bundle asymptotically equidistribute
with respect to the normalized curvature of the line bundle. Their result has numerous
applications in mathematical physics and was generalized in many different directions.

In this thesis we generalize their result to a semipositively curved holomorphic line
bundle over a punctured Riemann surface.

To achieve this, we discuss many tools that have proven themselves to represent an
appropriate framework to study statistical properties of ensembles of zeros on complex
manifolds.

We start by proving the existence of spectral gap for the Kodaira Laplacian that is
associated to the line bundle. We use this result, together with the technique of analytic
localization by Ma and Marinescu, to prove a pointwise global on-diagonal asymptotic
expansion of the associated Bergman kernel in our setting. Moreover, we show locally
uniform estimates on the Bergman kernel and its derivatives. We use these estimates
to prove the locally uniform convergence of the induced Fubini-Study metrics and their
potentials to the global curvature and its potential, respectively.

We conclude by showing that the expected zeros of holomorphic sections equidis-
tribute with respect to the normalized curvature of the line bundle. Moreover, we apply
the theory of meromorphic transforms by Dinh and Sibony estimate the speed of conver-
gence in our equidistribution result.
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1. Introduction: Overview of the topic and

statement of the results

For growing p ∈ N, we will consider sections of line bundles Lp ⊗E over a punctured
Riemann surface Σ, where (E, hE) is a smooth holomorphic Hermitian line bundle and
(L, hL) is a smooth holomorphic line bundle; we make two assumptions:

• the local geometry of (L, hL) and Σ near the punctures are modelled by the Poincaré
(punctured) disc (D∗, hD∗);

• away from the punctures, the curvature RL of hL of L is assumed to be semipositive
and it is allowed to vanish at most to finite order at every point.

We prove various results in this setting:
In Chapter 3, we show the existence of a spectral gap for the Kodaira Laplacian and

prove estimates on the associated Dirac operators.
In Chapter 4 we will use the spectral gap of the Kodaira Laplacian to conclude the

existence of a global pointwise on-diagonal asymptotic expansion of the Bergman kernel
that is associated to hL. Moreover, we give locally uniform estimates for the Bergman
kernel from below and above as locally uniform estimates for derivatives of the Bergman
kernel from above.

In Chapter 5, we will investigate the Kodaira map associated to hL and we prove an
analogue of a theorem of Tian and Ruan. Moreover, on compact subsets of Σ, we prove
the convergence of the induced Fubini-Study potentials via pull-backs by this Kodaira
map to the potential of hL. A similar convergence result is shows to hold for the ∂- and
∂-derivatives of the induced Fubini-Study potentials to the corresponding derivatives of
the potential of hL. All convergence results come with an estimate for the speed of
convergence.

In Chapter 6 we prove the equidistribution of the currents of integration along the
(support of the) zero divisors to the normalized (Chern) curvature RL of hL and give an
estimate of the speed of convergence.
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1.1 Setting: Semipositive line bundles on punctured Rie-

mann surfaces

In this Section, we briefly explain our setting and its relations to settings that have
previously been considered by different authors.

Consider a compact Riemann surface Σ with complex structure J . Without loss of
generality, we can assume that Σ is connected. Fix a non-zero natural number N ∈ N; for
our purposes we view 0 /∈ N and set N0 := N ∪ {0}. Given a set of points a1, . . . , aN ∈ Σ
and

D :=
N∑

j=1
aj , (1.1.1)

a divisor on Σ, such that its support suppD = {a1, . . . , aN } ⊂ Σ and Σ := Σ \ suppD is
an open Riemann surface, called a punctured Riemann surface, with punctures in (the
support of) D. The complex structure J on Σ induces a complex structure on Σ by
restriction. On Σ, we take a smooth Hermitian (1, 1)-form ωΣ that is compatible with J .

We denote by i :=
√

−1 the imaginary unit in C. Recall the definition of the Poincaré
metric on the punctured unit disc D∗ := {z ∈ C : 0 < |z| < 1} ⊂ C, normalized as follows

ωD∗ := i
|z|2(log(|z|2))2 dz ∧ dz ; (1.1.2)

it is a complete metric of finite volume (see (2.1.6), (2.1.7)).
Let L → Σ be holomorphic line bundle equipped with a singular Hermitian metric hL

(as defined in Section 2.3).
We assume that ωΣ and hL are subject to the following conditions:

(α) hL is smooth over Σ and for all j ∈ {1, . . . , N} there exists a trivialization of L in
a small open neighborhood Vj ⊂ Σ, centered at aj in Σ with associated complex
coordinate zj , where aj corresponds to zj = 0, such that

|1|2hL(zj) = | log |zj |2| . (1.1.3)

(β) The smooth (Chern) curvature RL of hL satisfies the following conditions:

(i) on Σ, we have iRL ⩾ 0,
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(ii) for each j = 1, . . . , N , we have iRL = ωΣ on Vj := V j \ {aj}; in particular,
ωΣ = ωD∗ in the local coordinate zj on Vj and

(iii) RL vanishes at most to finite order at any point x ∈ Σ, i.e.

ordx(RL) := min{l ∈ N : J l(Σ,Λ2T ∗Σ) ∋ jl
xR

L ̸= 0} < ∞, (1.1.4)

where J l(Σ,Λ2T ∗Σ) denotes the l-th jet bundle over Σ (see Appendix A).

Remark 1.1.1. Note that the sets Vj are open subsets of Σ; this notation is chosen in this
way in order to emphasize that Vj are subsets of Σ and is not to be confused with the
topological closure Vj ∪ ∂Vj of Vj in Σ, which we will not be interested in. Consequently,
the sets Vj := Vj \ {aj} are open subsets of Σ, for all j = 1, . . . , N .

Assumptions (β)(i)-(ii) imply that (Σ, ωΣ) is complete and the total volume of Σ with
respect to ωΣ is finite.

For x ∈ Σ, we set
ρx := 2 + ordx(RL) ∈ N⩾2 . (1.1.5)

It is then evident that ρx = 2 for all x ∈ Vj , for all j = 1, . . . , N . Moreover, the function
Σ ∋ x 7→ ρx is upper semi-continuous. Since Σ \ (⋃j Vj) is compact, assumption (β)(iii)
implies that

ρΣ := max
x∈Σ

ρx < ∞ . (1.1.6)

The semipositivity in assumption (β)(i) implies that ρx is even for all x ∈ Σ; consequently,
ρΣ is an even number, as well. Moreover, we have a decomposition Σ = ⋃ρΣ

j=2 Σj , with
Σj := {x ∈ Σ : ρx = j} and each Σ⩽j = ⋃j

j′=2 Σj′ is open. Consequently, the function
x 7→ ρx is constant on each of the subsets Σj ⊂ Σ and only jumps in value upon
transitioning from one Σj to another.

When referring to condition (β), we say that L is semipositive and its curvature van-
ishes to at most finite order over Σ.

Now let E → Σ be a holomorphic line bundle equipped with a smooth Hermitian
metric hE . We always assume the technical assumption for (E, hE) near the punctures
that (E, hE) coincides with the trivial Hermitian line bundle on each of the neighbor-
hoods Vj ⊂ Σ.

We will frequently consider the restrictions L|Σ and E|Σ of the line bundles L and E,
respectively, to Σ. By a slight abuse of notation, we will then still denote L|Σ and E|Σ
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by L and E, respectively, when the context provides sufficient room to avoid confusion;
otherwise an appropriate distinction is highlighted.

The results that we have mentioned in the beginning of this Chapter will be statements
about the tensor ( p⊗

i=1
L

)
⊗ E = L⊗p ⊗ E =: Lp ⊗ E (1.1.7)

of the line bundles Lp → Σ and E → Σ, for fixed p ∈ N or p → ∞; the parameter p ∈ N

corresponds to the semiclassical limit (see [43] for example) which originates in problems
in mathematical physics.

Our results have previously been established individually in different, related settings,
which we will now summarize for an appropriate context. The different results will be
discussed separately in the corresponding subsections of Section 1.2. In Section 1.3, we
will explain how the thesis is organized.

1.2 Overview of the results

1.2.1 Dirac and Kodaira Laplace Operators and Spectral Gap

In the book [43] of Ma and Marinescu a spectral gap for the Kodaira Laplacian was
established for a positive line bundle on a compact Kähler manifold [43, Section 1.5.1]
and for a modified Dirac operator on symplectic manifolds [43, Section 1.5.2]. While
the spectral theory of Dirac and Laplace operators on manifolds are interesting in its
own right, our view adopts the strategy mentioned in the book, where the authors show
that the existence of a spectral gap can be applied to gain detailed information about
asymptotic behavior of the Bergman kernel on the manifold. This application will be
discussed in Chapter 4.

As mentioned in [43, Problem 4.8], Donnelly [25] presented an example of a semi-
positively curved line bundle on a compact complex Hermitian manifold, such that the
associated Kodaira Laplacian does not possess a gap in its spectrum. However, in their
papers [47] and [46], Marinescu and Savale prove that the situation is more promising
on compact Riemann surfaces by imposing the additional condition to the semipositive
curvature of a holomorphic Hermitian line bundle that if the order of vanishing hap-
pens at most to finite order; Marinescu and Savale achieve this by relating the condition
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of globally a finite order of vanishing to the bracket generating condition known from
sub-Riemannian geometry [46, Proposition 11]: the authors conclude the existence of a
spectral gap for the Bochner Laplacian (see [47, Proposition 6] or [46, Proposition 15])
and infer by the Lichnerowicz formula (see [47, (2.12)] or [46, (4.5)]) that a spectral gap
also exists for the Kodaira Laplacian globally (see [47, Corollary 8] or [46, Corollary 21]).

In this thesis, we generalize this result to our setting by explaining how a partition
of unity argument allows the statement to hold over the punctured Riemann surface
Σ. To state the result, recall the definition (see Subsection 2.6.1) of the ∂-operator, or
Dolbeault operator, on manifolds. For each level p ∈ N, the Dirac operator Dp and
Kodaira Laplacian operator □p are then defined by

Dp :=
√

2(∂p + ∂∗
p) ,

□p := 1
2(Dp)2 = ∂p∂

∗
p + ∂∗

p∂p . (1.2.1)

For each p ∈ N, consider a holomorphic section s : Σ → Lp ⊗ E that is L2-integrable
with respect to the L2-inner-product from (2.5.7). This inner product induces an L2-
norm (see Section 2.5). We will then show that the value of Dps with respect to this
norm can be estimated from above by a monotonous function of order O(p−2/ρΣ) where
ρΣ is the maximal order of vanishing on Σ, multiplied by the norm of s. From this, we
conclude that the associated Kodaira Laplacian □p has a spectral gap. This result is
summarized in the following theorem.

Theorem A (Spectral Gap and vanishing first cohomology). Let Σ be a punctured Rie-

mann surface, and let L be a holomorphic line bundle such that L carries a singular

Hermitian metric hL satisfying conditions (α) and (β). Let E be a holomorphic line

bundle on Σ equipped with a smooth Hermitian metric hE such that (E, hE) on each

chart Vj coincides with the trivial Hermitian line bundle. Consider the Dirac and Ko-

daira Laplace operators as defined in (1.2.1). Then there exist constants C1, C2 ∈ R>0

independent of p, such that for all s ∈ Ω0,1
c (Σ, Lp ⊗ E),

(i) the Dirac operators are bounded from below,

∥Dps∥2
L2 ⩾ 2(C1p

2/ρΣ − C2)∥s∥2
L2 , (1.2.2)

(ii) for p ∈ N, we have

Spec(□p) ⊂ {0} ∪ [C1p
2/ρΣ − C2,∞) . (1.2.3)
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In particular, the first L2-Dolbeault cohomology group H1
(2)(Σ, Lp ⊗ E) = 0 vanishes for

sufficiently large p > 0.

As mentioned before, this result was proven in [47, Corollary 8] for the case of a
semipositive line bundle on a compact Riemann surface where the curvature vanishes
at most to finite order. Thus our result is a generalization to the case of a punctured
Riemann surface with the Poincaré model condition (α) on the punctures.

Another known result in this direction is [43, (6.1.8)], where the authors prove a spec-
tral gap for the Kodaira Laplacians of the associated Dirac operators on a non-compact,
complete Hermitian manifold, where the line bundle is assumed to have strictly positive
curvature everywhere. As a special case, this implies the existence of a spectral gap for
the Kodaira Laplacian of the associated Dirac operators on a punctured Riemann sur-
face for sections of a positive line bundle. The latter setting is also a special case of our
setting, which is obtained by assuming that ρΣ = 2, which implies that the curvature is
positive. In this sense, our result represents a generalization of this special case with an
upper bound that is more precise.

Theorem A is restated as Theorem 3.2.1, and proven, in Chapter 3.

1.2.2 On-diagonal asymptotic Expansion of Bergman Kernel

The Bergman kernel is a central object to this thesis. Recall the well-known Schwarz
kernel Theorem [43, Theorem B.2.7] about the existence and regularity of the Schwartz
integral kernel. The Bergman kernel is the Schwartz kernel of the (unique) orthogonal
projection from the space of square-integrable sections of Lp ⊗E onto the space of square-
integrable holomorphic sections, which is a closed subspace of the latter.

The Bergman kernel was first introduced by Stefan Bergman in 1922 [4] for domains
in Cn, for n ⩾ 1. Historically, the Bergman kernel has been influential in many areas of
complex geometry, complex analysis, quantum physics and many others, including but
not limited to partial differential equations and several complex variables [15], holomor-
phic embeddings and extensions of holomorphic maps (see [33] and [29], respectively),
the study of domains in Cn whose boundaries are pseudoconvex (see [11], [32], [42]),
vanishing theorems [20] and the existence and approximation of Kähler metrics [52] on
complex manifolds, the theory of quantization [49], [37], [29], [12], [45] and path integrals
and their computations [26]; in [43], the authors provide an extensive list of references of
its importance and influences throughout the many different areas of mathematics.
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One active area of research that is of particular interest in this thesis is the study
of the asymptotic behavior of the Bergman kernels Bp for holomorphic Hermitian line
bundles Lp ⊗ E, for growing integer powers p → ∞.

As mentioned in Subsection 1.2.1, Ma and Marinescu (see [43]) and Hsiao and Mari-
nescu (see [34]) argue how the existence of a spectral gap of the Kodaira Laplacian for
sufficiently large values of p ∈ N implies the existence of an asymptotic expansion of the
Bergman kernel associated to high tensor powers of a positive holomorphic Hermitian
line bundle over a compact Kähler manifold of dimension n ∈ N. Let Bp be the Bergman
kernel at level p ∈ N associated to a Hermitian metric hp on a line bundle Lp ⊗E and a
fixed volume form on the underlying Kähler manifold. If x is a point in the underlying
manifold where the Chern curvature of hL fails to be positive, Berman [6] showed that

lim sup
p→∞

Bp(x)
pn

= 0 ; (1.2.4)

later, this result was refined by Hsiao and Marinescu [34]. Consequently, meaningful
information about the asymptotic behavior of Bp can only be expected to be obtained
on subsets of the manifolds where the curvature of L is positive, or at least semipositive.

In general, the asymptotic behavior of the Bergman kernel associated to high tensor
powers of a positive Hermitian line bundle on a compact complex manifold has been
studied by many authors. The subject of Bergman kernel asymptotics can be divided
into a few parts which are oftentimes treated separately. Of particular interest are the
asymptotic expansions on, near and away from the diagonal, as well as computations
of specific coefficients of the asymptotic expansion, which oftentimes carry meaningful
information about the line bundle, such as its curvature. In cases where no full asymp-
totic expansion is known, useful estimates on the modulus of the Bergman kernel can
oftentimes be obtained. We review some of the relevant historical results to provide some
context for Chapter 4.

In the case where L is a positive line bundle over a compact Kähler manifold, Ma
and Marinescu [43, Theorem 4.1.1] prove, using the existence of a spectral gap, the finite
propagation speed of solutions of the wave equation of the associated Laplacian and
the technique of analytic localization, that the Bergman kernel Bp has an on-diagonal
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asymptotic expansion

∥∥∥∥∥Bp(x, x) −
k∑

r=0
br(x)pk−r

∥∥∥∥∥
Cℓ(hp)

= O(pn−k−1) (1.2.5)

for any ℓ ∈ N, with smooth coefficients br that are polynomials in the curvatures and
their derivatives. Moreover, they explicitly calculated b0.

The computation of the coefficients br is an interesting and active area of research in
itself. For a discussion on the topic we refer the reader to the authors book.

The existence of an expansion such as (1.2.5) started with a paper of Tian [52] (in
this context it is also important to mention Bouche [10] and Ruan [48]) after a suggestion
of Yau in [54] and [55]. The existence of the expansion (1.2.5) was first established by
Catlin [13] and Zelditch [56], where the respective authors also gave an explicit formula
for the leading coefficient b0. For a detailed list of references we refer the reader of this
thesis to [43, Section 4.3].

Of importance for our subject are also the Ma and Marinescu’s result [43, Theorem
6.1.1], where they generalize (1.2.5) to the case of compact subsets of a complete Her-
mitian manifold, under certain conditions on the geometry of the line bundle and the
manifold.

In [1] and [2], Auvray Ma and Marinescu go on to study the asymptotic behavior
of the Bergman kernel near punctures of a punctured Riemann surface, when the local
model is the punctured Poincaré disc, identical to our case; the line bundle in their papers
is otherwise assumed to be globally positive. In their seminal papers, the authors com-
pare the Bergman kernel on the manifold to the Bergman kernel of the local model and
prove various useful estimates such as of the quotients of the two Bergman kernels; in the
corresponding later chapters, the authors discuss useful applications such consequences
of the estimates for the study of the metric aspect of the associated Kodaira maps and
the equidistribution of zeros of random holomorphic sections.

In the present text, we will show the pointwise existence of an on-diagonal asymptotic
expansion of the Bergman kernel. The result was proven by Marinescu and Savale in [47]
to hold on a compact Riemann surface with a semipositive line bundle, that is, a line
bundle that is equipped with an Hermitian metric the (Chern) curvature of which is a
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semipositive form.
We explain how their results applies to our setting to obtain a global on-diagonal

pointwise asymptotic expansion on the punctured Riemann surface Σ under the same
curvature conditions away from the punctures. The result is the following.

Theorem B (On-diagonal asymptotic expansion of the Bergman kernel). Let Σ, L

and E be as in Section 1.1. For ρ0 ∈ {2, 4, . . . , ρΣ} define a smooth path W : [0, 1] ∋

t 7→ W (t) ∈ Σ such that W (t) ∈ Σρ0 for all t ∈ [0, 1]. Then for all r ∈ N, there

exists a smooth function br(x) with x ∈ range(W ), such that for all k ∈ N the following

asymptotic expansion of the Bergman kernel function holds uniformly on range(W ) in

any Cℓ-topology, with ℓ ∈ N:

Bp(x, x) = p
2/ρ0

[
k∑

r=0
br(x)p−2r/ρ0

]
+ O(p−2k/ρ0) , (1.2.6)

Moreover, for x ∈ W , the leading term satisfies

b0(x) = Bj
ρ0−2
z RL(0, 0) > 0 , (1.2.7)

where the (ρ0 − 2)-th jet jρ0−2
x RL ∈ iSρ0−2R2 ⊗ Λ2(R2)∗ is identified with the (ρ0 − 2)-

degree homogeneous part of the Taylor expansion of RL in the geodesic normal coordinate

centered at z, and Bj
ρ0
x RL is the model Bergman projection defined in Subsection 4.4.1.

For h ∈ (0, 1), γ ∈ (0, 1
2), ℓ,m ∈ N, and Vj described in assumption (α) with coor-

dinate zj, the following asymptotic expansion of the Bergman kernel function holds uni-

formly in any Cl-topology, with ℓ ∈ N, for points zj in the ring D∗(aj ,
1
6) \ D∗(aj , he

−pγ ):

Bp(zj , zj) = p− 1
2π + O(p−m) . (1.2.8)

Later, Theorem B will be restated as Theorem 4.1.1. The proof can be found in
Chapter 4.

The expansion holds pointwise when one considers larger subsets on Σ, which contain
points where the curvature has different orders of vanishing. One of the reasons for this is
the presence of ’jumps’ in the coefficients in the asymptotic expansions when one moves
from a point on Σ along a path that crosses points where the order of the vanishing of
the curvature changes. To establish the expansion in Chapter 4, we follow the approach
of Ma and Marinescu [43, Chapter 4] in using the spectral gap property of the Kodaira
Laplacian together with the analytic localization technique that was inspired by Bismut

9



and Lebeau [7].
Our result generalizes [47, Theorem 1] to the case of a punctured Riemann surface

with the Poincaré disc as the local model near the punctures and otherwise semipositive
curvature that vanishes at most to finite order. The difference to the previous results
authors are the existence of the punctures, since our assumptions away from the punctures
are locally identical to the situation in the paper of Marinescu and Savale.

We also have the following estimates on the Bergman kernel on arbitrarily large,
relatively compact subsets of Σ.

Lemma C. Let h ∈ (0, 1) and γ ∈ (0, 1
2) be arbitrary. Then for sufficiently large p ∈ N

and all x ∈ Σp,h,γ, we have the estimates

c(ρΣ) (1 + o(1)) p2/ρΣ ⩽ Bp(x, x)

⩽

[
sup
x∈Σ

Bj0
xRL(0, 0)

]
(1 + o(1)) p , (1.2.9)

where both constants in o(1) are uniform in x ∈ Σp,h,γ, as p → ∞.

Lemma C is an analogue of [47, Lemma 12] for the case of a punctured Riemann
surface. It is restated as Lemma 4.1.7 and proven in Section 4.5.

Another result that we obtain is the following, which estimates the derivatives of the
Bergman kernel locally uniformly.

Lemma D. Let h ∈ (0, 1) and γ ∈ (0, 1
2) be arbitrary. Then for sufficiently large p ∈ N

and all x ∈ Σp,h,γ, we have the upper bound for the l-th jets of the Bergman kernels

|jl[Bp(x, x)]| ⩽ p
l/3[1 + o(1)]

sup
x∈Σ

∣∣∣jlBj1
xRL/j0

xRL(0, 0)
∣∣∣

Bj1
xRL/j0

xRL(0, 0)

Bp(x, x) , (1.2.10)

where o(1) is uniform in x ∈ Σp,h,γ, as p → ∞.

Lemma D will be restated as Lemma 4.1.9 in Chapter 4. Its proof can be found in
Section 4.5.

The locally uniform upper bound for the l-th jet of the Bergman kernel is an extension
of [47, Lemma 13] to the case of a punctured Riemann surface.

1.2.3 Convergence of Fubini-Study potentials away from punctures

Since (L, hL) is a positive holomorphic line bundle on the compact Riemann surface
Σ, the Riemann-Roch-Hirzebruch theorem (see [43, Theorem 1.4.6]) implies that the line
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bundles Lp have a lot of holomorphic sections when the tensor power p is sufficiently
large.

This fact is used in the construction of the well-known Kodaira map over a compact
manifold (see [43, Chapter 5], for a general discussion). In [43], the authors apply the
asymptotic expansion of the Bergman kernel to study the metric aspect of the Kodaira
map. We will follow their approach and construct a family of Fubini-Study metrics as-
sociated to the Kodaira maps in our case.

Because of our special setting, the study of the Kodaira map is a bit more delicate
than for example in the case of a positive line bundle over a compact Riemann surface,
in particular, two difficulties arise: first, the deletion of isolated points, i.e. puncturing
a compact Riemann surface produces a manifold that is no longer compact, and second,
the existence of regions on the manifold where the curvature is allowed to vanish to at
most finite order.

In [2], Auvray, Ma and Marinescu consider the case of a punctured Riemann surface
with the same local model as in our case and the authors proceed to explain how to
overcome the arising sensitivity that their setting requires, in particular in the context
of the associated Kodaira map and equidistribution of zeros.

In [47, Section 4], Marinescu and Savale study the Kodaira maps associated to a
semipositive line bundle over a compact Riemann surface, with at most finite order of
vanishing of the curvature.

We utilize these two works in our setting and give a discussion about the associated
Kodaira maps in our case where we seek to combine previous results on this topic that
deal with the arising difficulties.

One of the results that we obtain in this discussion is an analogue of the theorem of
Tian-Ruan (see [43, Theorem 5.1.4], [52, Theorem A] and [48]) in our setting:

Theorem E. Let Σ be a punctured Riemann Surface and let (L, hL) (E, hE) be Hermitian

holomorphic line bundles on Σ such that conditions (α) and (β) are satisfied. Let U ⊂ Σ
be a relatively compact subset. Then the following statements are true. The normalized

induced Fubini-Study metrics converge uniformly on U to the normalized semipositive

curvature RL|U , with speed O(p−1/3); that is, for every ℓ ∈ N0, there exists a constant

Cℓ,U ∈ R>0, such that:

∥∥∥∥1
p

((Φp,(2))∗(ωFS,p,(2)))|U − i
2πR

L|U
∥∥∥∥

Cℓ(U,hp|U )
⩽ Cℓ,Up

− 1
3 , (1.2.11)
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for sufficiently large p ∈ N. On compact subsets of Σ2, where the curvature doesn’t vanish,

one may replace the fractional powers of p with −1, as in the classical version (see [43,

Theorem 5.1.4]) of the theorem.

Later, Theorem E will be restated as Theorem 5.3.1. We give a proof in Chapter 5.
The relevant norms in the statement of Theorem E will be defined in Section 2.5.

For a smooth holomorphic line bundle on a compact Kähler manifold, the induced
Fubini-Study currents by the associated Kodaira maps converge to the Kähler form; in
his celebrated theorem [52, Theorem A], Tian proved that this statement holds true in
C2 topology with a speed estimate. Later, the theorem was refined by Ruan in [48] to
hold in any Cℓ-topology with an improved speed estimate.

It is worth mentioning that during that time, both Tian and Ruan didn’t rely on the
Bergman kernel, but instead used the peak section method. The latter is explained in
[43, Definition 5.1.7].

In [17, Theorem 1.1], Coman and Marinescu prove that γp converges weakly to the
first Chern class of a singular positive line bundle on a compact Kähler manifold under the
condition that 1

p times the logarithm of the associated Bergman kernel function converges
to 0 locally uniformly on the manifold, outside of the singular set of the metric.

In our next result from Chapter 5, we extend [47, Theorem 14] to our setting: In
particular we show that the result of Marinescu and Savale hold when one allows the
presence of singularities, or punctures of the underlying manifold, to exist. As mentioned
before, a key consequence of the presence of punctures is that the manifold Σ is no longer
compact, which affects our results on the convergences. The statement of our theorem is
the following:

Theorem F (Local uniform convergence of induced Fubini-Study potentials). Let Σ
be a punctured Riemann Surface and let (L, hL) (E, hE) be Hermitian holomorphic line

bundles on Σ such that conditions (α) and (β) are satisfied. Let U ⊂ Σ be a relatively

compact subset. Then the following statements are true.

(i) The normalized potentials of the Fubini-Study metric converge uniformly on U to

the potential φ of hL on K with speed O(p−1 log p); that is, for each ℓ ∈ N0, there

exists a constant Cℓ,U ∈ R>0, such that:

∥∥∥∥1
p
φFS,p,(2)|U − φ|U

∥∥∥∥
Cℓ(U,hp|U )

⩽ Cℓ,Up
−1 log p , (1.2.12)
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for all sufficiently large p ∈ N.

(ii) The following ∂- and ∂-derivatives of the normalized potentials of the Fubini-Study

metric converge uniformly on U to the ∂- and ∂-derivatives of the potential φ of

hL on U with the respective speeds; that is, for each ℓ ∈ N0, there exists constants

Cℓ,U,1, Cℓ,U,2, Cℓ,U,3 ∈ R>0, such that:

∥∥∥∥1
p
∂φFS,p,(2)|U − ∂φ|U

∥∥∥∥
Cℓ(U,hp|U )

⩽ Cℓ,U,1p
−2/3 , (1.2.13)∥∥∥∥1

p
∂φFS,p,(2)|U − ∂φ|U

∥∥∥∥
Cℓ(U,hp|U )

⩽ Cℓ,U,2p
−2/3 , (1.2.14)∥∥∥∥1

p
∂∂φFS,p,(2)|U − ∂∂φ|U

∥∥∥∥
Cℓ(U,hp|U )

⩽ Cℓ,U,3p
−1/3 , (1.2.15)

for all sufficiently large p ∈ N.

The following is true both for (i) and (ii): On compact subsets of Σ2, where the curvature

doesn’t vanish, one may replace the fractional powers of p with −1, as in the classical

version of the theorem.

Theorem F corresponds to Theorem 5.4.1. A proof is given in Chapter 5.

Finally, we conclude the following weak convergence of induced Fubini-Study currents
to the semipositive curvature current RL on Σ, as an application of our analogues of the
quotients of the Bergman kernels Bp and the model Bergman kernel

Theorem G. Let Σ be a punctured Riemann Surface and let (L, hL) (E, hE) be Hermi-

tian holomorphic line bundles on Σ such that conditions (α) and (β) are satisfied.

Then the normalized induced Fubini-Study metrics converge weakly in the sense of

currents to the normalized semipositive curvature current RL on Σ:

1
p

(Φp,(2))∗(ωFS,p,(2)) ⇀
i

2πR
L , (1.2.16)

as p → ∞.

Theorem G corresponds to Theorem 5.5.2. A proof is sketched in Section 5.5.
Our result is a generalization of [1, Theorem 4.3] to the case of a semipositive curvature

and otherwise identical geometrical conditions.
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1.2.4 Equidistribution

The study of equidistribution of zeros can be motivated by the following observation
(see [3] for a survey): if the coefficients of a polynomial are subject to a random error,
the positions its zeros will also be subject to a random error. A natural question to ask
in this context is how the former error affects the latter. The appropriate framework
to tackle this question is to consider polynomials whose coefficients are independent and
identically distributed random variables (in a suitable space of polynomials) and then
study the statistical properties of the (positions of the) zeros. One of particular interest
in this thesis is the degree of uniformity of the distribution of zeros in the case of holo-
morphic sections s ∈ H0

(2)(Σ, Lp ⊗ E), as p → ∞.

The above circle of ideas has been applied by many authors in seminal works such as
Bloch and Pólya [9], Littelwood and Offord [39], [40], [41], Erdős and Turán [28], Kac
[36], [35] and Hammersley [31], to name a few. We refer the reader to the survey [3] for a
more extensive list of references, as well as the relations of the study of equidistribution
to other fields in mathematics and mathematical physics.

We first explain the terminology that we use: a sequence of points on the real number
line R is equidistributed if the proportion of terms that fall into a (non-empty) interval is
proportional to the size of the interval. This can be described in terms of distributions:
for equidistributed sets of points, the value of integration against the counting measure of
the points, when restricted to some interval I, can be estimated in terms of the integration
of the indicator function on I against the Lebesgue measure.

When working over a manifold, the volume of a subset of the manifold is calculated
by integrating against a volume form, in the case of a Kähler manifold, this volume form
is related to the curvature of the corresponding line bundle. The equivalent problem of
proving equidistribution of a set of points when these points are the support of a zero
divisor of sections of a line bundle is the following: A sequence of currents of integration
along a zero divisor of sections of a holomorphic line bundle is said to be equidistributed
if it converges weakly to the first Chern class of the line bundle, i.e. the normalized
(Chern) curvature.

In their paper [50], Shiffman and Zelditch proved that the zeros of holomorphic sec-
tions of high tensor powers of positive line bundles on a compact complex manifold
converge almost surely to the volume form of the smooth metric. The same authors
proceed to further consider the correlations between zeros and their variance (see Bleher,
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Shiffman and Zelditch [8], and Shiffman and Zelditch [51]). In [23], Dinh and Sibony de-
livered a new approach, using the formalism of meromorphic transforms, and used it to
estimate the speed of convergence of zeros to the asymptotic distribution in the compact
case. Their work improved estimates that were obtained in [50]. Dinh, Marinescu and
Schmidt utilized the techniques from Dinh and Sibony to prove equidistribution hold on
complete n-dimensional Hermitian manifolds, under mild conditions, including on the
curvatures of the line bundle, and after assuming that the space of global holomorphic
sections is finite dimensional and grows as a polynomial of degree n in the tensor power
of the bundle.

In Chapter 6, we prove the following result on the almost sure convergence of the
currents of integration along the zero loci of holomorphic sections Lp⊗E to the normalized
curvature, as p → ∞, on relatively compact subsets U ⊂ Σ:

Theorem H (Equidistribution of zeros of random holomorphic sections). Let Σ be a

punctured Riemann surface, and let L be a holomorphic line bundle such that L carries a

singular Hermitian metric hL satisfying conditions (α) and (β). Let E be a holomorphic

line bundle on Σ equipped with a smooth Hermitian metric hE such that (E, hE) on

each chart Vj coincides with the trivial Hermitian line bundle. Then for µ-almost all

s = {sp}p∈N ∈ Ω, the sequence of currents converges weakly to the semipositive curvature

form on relatively compact subsets U ⊂ Σ:

1
p

[Div(sp)]|U ⇀
i

2πR
L|U , as p −→ ∞ . (1.2.17)

An analogue of our theorem has been proven in [2, Theorem 4.3] and more generally,
in [27] by Drewitz, Liu and Marinescu for a larger class of probability measures. Each
of the authors considered a punctured Riemann surface such as Σ, but with otherwise
positive curvature globally. In our case, we only consider Gaussian probability measures
(see Section 6.2). Our result extend [27, Theorem 1.5] for Gaussian measures and [2,
Theorem 4.3] by allowing the curvature to vanish at most to finite order away from the
punctures.

In [47, Theorem 4], Marinescu and Savale proof a similar result in the case of a
compact Riemann surface with semipositive curvature that vanished at most to finite
order.

As mentioned in the introductory section of Subsection 1.2.4, closely related to equidis-
tribution is the study of the convergence speed of the weak convergence in the statement
of Theorem 6.3.1. In Section 6.4, we follow and apply a method of Dinh, Marinescu and
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Schmidt [22], Dinh, Ma and Marinescu [21], and Dinh and Sibony [23] to estimate the
speed of convergence, dependent of the size of a subset that is cut out of the complex
projective space of L2-holomorphic sections. The statement is the following:

Theorem I (Convergence speed of equidistribution of zeros). Let Σ be a punctured Rie-

mann surface as above and (L, hL) a Hermitian holomorphic line bundle with semipositive

curvature which vanishes at most to finite order at any point. Then for any relatively

compact open subset U ⊂ Σ there exist cU > 0 and p(U) ∈ N with the following prop-

erty. For any sequence (λp)p∈N of real numbers and for any p ⩾ p(U) there exists a set

Θp ⊂ P(H0
(2)(Σ, Lp ⊗ E)) such that:

(a) σFS,p(Θp) ⩽ cUp
2e−λp/cU ,

(b) For any sp ∈ P(H0
(2)(Σ, Lp⊗E))\Θp and any relatively compact open subset U ⊂ Σ,

∥∥∥∥∥1
p

[sp = 0] −
√

−1
2π RL

∥∥∥∥∥
U,−2

⩽ λpp
−1/3 .

On open sets U where the curvature is strictly positive, we can replace the term

p−1/3 by p−1 in the inequality above.

1.3 Organization of the thesis

The thesis is organized as follows:
In Chapter 2 we explain most of the notation that is used and the chapter also

attempts to summarize common preliminaries, for example from differential geometry
and functional analysis, that are needed throughout the thesis.

In Chapter 3, we introduce the Dirac and Kodaira Laplace operators and prove the
existence of a gap in the spectrum of the latter.

Chapter 4 discusses the Bergman kernel and we shows that a pointwise on-diagonal
asymptotic expansion holds globally on the non-compact manifold Σ.

In Chapter 5 we introduce the Kodaira map associated to a Hermitian metric in two
separate cases which we will compare to each other: the original Hermitian metric hL

that has semipositive curvature RL, and in the case of a positive Hermitian metric on Σ.
Furthermore, we prove a theorem of Tian-Ruan in our setting and prove that the pull-
backs by the Kodaira maps that are associated to hL of the potentials of the Fubini-Study
metrics converge globally uniformly to the potentials of hL and we give an estimate on
the speed of this convergence.
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Finally in Chapter 6, after reminding the reader of the definition and some useful
properties of currents and introducing terminology from probability theory that is needed
for equidistribution, we state and prove that equidistribution holds. Moreover, we prove
the convergence speed of the weakly convergence of currents of integration along the
zero divisors to the normalized semipositive curvature by applying an approach of Dinh,
Marinescu and Schmidt [22], which has its roots in ideas from Dinh and Sibony [23].
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2. Geometric setting and preliminaries

In this chapter we elaborate on the geometric setting that is described in the intro-
duction. We explain necessary preliminaries and define concepts that are central to the
topics and problems explained in the forthcoming chapters.

2.1 Geometry on Σ

2.1.1 Geometric structures on Σ

We denote by TΣ and T ∗Σ the real tangent and cotangent bundles over Σ, respec-
tively. The complex structure J on Σ induces a splitting by bidegree on the complexified
real tangent bundle of Σ:

TΣ ⊗R C = T (1,0)Σ ⊗ T (0,1)Σ , (2.1.1)

into two vector bundles that are the eigenspaces of the complexified endomorphism J⊗Id,
associated to the eigenvalues i and − i. The former is called the holomorphic tangent
bundle and the latter the anti-holomorphic tangent bundle of Σ. There is a canonical
choice of basis in each fiber, given by

∂

∂z
= 1

2

(
∂

∂x
− i ∂

∂y

)
,

∂

∂z
= 1

2

(
∂

∂x
+ i ∂

∂y

)
, (2.1.2)

respectively, in a local chart, where x := Re(z), y := Im(z) ∈ R are the real and imaginary
part of z ∈ C, respectively. For its corresponding dual bundles we write T ∗(1,0)Σ and
T ∗(0,1)Σ, respectively.

Let gT Σ denote the Riemannian metric on Σ that is associated to ωΣ, i.e. gT Σ(J ·, ·) =
ωΣ(·, ·). This Riemannian metric gT Σ induces a Hermitian metric hT (1,0)Σ on the holo-
morphic tangent bundle, i.e. a family of positive-definite Hermitian sesquilinear forms
on each fiber. In local coordinates (z, z), the Hermitian metric is a smooth map Σ →
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(T 1,0Σ)∗ ⊗ (T 0,1Σ)∗) and satisfies

hT (1,0)Σ = hT (1,0)Σ
zz dz ⊗ dz (2.1.3)

for a suitable coefficient hT (1,0)Σ
zz ∈ C that depends of the coordinate. Furthermore, the

(1, 1)-form ωΣ that was defined in Section 1.1 satisfies

ωΣ = hT (1,0)Σ
zz dz ∧ dz, (2.1.4)

i.e. ωΣ is exactly the fundamental form of hT (1,0)Σ. The Hermitian (1, 1)-form ωΣ induces
a Riemannian volume form, which in the case of our Riemann surface Σ is simply dvΣ =
ωΣ.

Let L and E be holomorphic line bundles over Σ. As mentioned in the Section 1.1, we
equip E with a Hermitian metric hE that is trivial near punctures and L with a singular
Hermitian metric satisfying assumptions (α) and (β). For any p ∈ N, we abbreviate the
tensor power line bundles of L by Lp := L⊗p and the Hermitian metrics hL and hE induce
a metric on the twisted bundle Lp ⊗ E by

hp := hLp ⊗ hE = (hL)⊗p ⊗ hE . (2.1.5)

2.1.2 Completeness and finite volume of (Σ, ωΣ)

We wish to understand the geometry in our setting near the punctures, which is
locally modelled by the Poincaré metric ωD∗ on the punctures unit disc. This metric is
complete: Fix r0 ∈ (0, 1). Then

∫ r0

0

1
r

1
| log r| dr = − log log 1

r

∣∣∣∣r0

r=0
= ∞ . (2.1.6)

Consequently, by (β)(ii), the punctured Riemann surface (Σ, ωΣ) is complete.
Denote by D∗

r0 the punctured disc of radius r0. Then the total volume of D∗
r0 is

calculated as ∫ 2π

0

∫ r0

0

1
r2

r

| log r|2 dr dθ = −2π 1
log r

∣∣∣∣r0

r=0
< ∞ . (2.1.7)

This implies that (Σ, ωΣ) has finite volume.
Now observe that since Σ\

⋃
j Vj is compact, by (2.1.6) we infer that the non-compact

Riemann surface (Σ, ωΣ) is complete.
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2.2 Connections and curvature

In this section we review the concept of connections and curvature.

2.2.1 Hermitian and holomorphic connections

A connection on L → Σ is a complex linear map ∇L : C∞(Σ, L) → C∞(Σ, T ∗Σ ⊗ L)
(see Section 2.5 for the definitions of function spaces) that is a derivation over scalar-
valued functions with respect to the exterior differential operator d; that is for s ∈ L and
φ ∈ C∞(Σ,C) and U ∈ TΣ the Leibnitz rule is satisfied in the following way:

∇F (φ · s) = dφ⊗ s+ φ∇Ls , (2.2.1)

∇L
U (φ · s) = U(φ) ⊗ s+ φ∇L

Us . (2.2.2)

One can always construct connections by choosing an open covering together with a par-
tition of unity and a choice of local frames, where the latter both are subordinated to
the covering. This linear map ∇L extends uniquely to differential forms.

A Hermitian connection is a connection that is compatible with the Hermitian metric:
given a Hermitian metric hL, compatibility between ∇L and hL means that the following
relation holds

dhL(s1, s2) = hL(∇Ls1, s2) + hL(s1,∇Ls2) , (2.2.3)

for all s1, s2 ∈ C∞(Σ, L). In the case of a singular Hermitian metric, we will demand the
above condition (2.2.3) to hold almost everywhere.

If as in our case the line bundle L is holomorphic, we can consider holomorphic
connections. These are connections, that satisfy

∇L
Us = ιU (∂L

s) , (2.2.4)

for all U ∈ T (0,1)Σ and s ∈ C∞(Σ, L), where ι is the contraction operator and ∂
L is the

Dolbeault operator as defined in [20, Paragraph 3.C].

There exists a unique holomorphic Hermitian connection, called Chern connection
(see [43, Subsection 1.1.2]).

In the case of a holomorphic connection, the following holds: in light of the split-
ting via bidegree, the connection decomposes as ∇L = (∇L)(1,0) + (∇L)(0,1), where
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(∇L)(0,1) = ∂
L.

If ∇L and ∇E are the respective Chern connections, then the induced connection
∇Lp⊗E is exactly the Chern connection on Lp ⊗E with respect to the induced Hermitian
metric hp.

2.2.2 Chern curvature

Note that for any U, V ∈ TΣ and any s ∈ C∞(Σ, L), we have the relation

(∇L)2(U, V )s = ∇L
U ∇L

V s− ∇L
V ∇L

Us− ∇L
[U,V ]s , (2.2.5)

where [U, V ] = UV − V U is the Lie bracket. The map (∇F )2 : L → Λ2T ∗Σ ⊗L defines a
bundle morphism and there exists RL ∈ C∞(Σ,Λ2T ∗Σ) such that (∇L)2s = RLs for all
s ∈ C∞(Σ, L). RL is called the curvature of ∇L. In the case of a Hermitian connection,
we also say that RL is the curvature of hL (or of the line bundle L).

Given our Hermitian metric hL, by [43, Theorem 1.1.5], there exists a unique holo-
morphic Hermitian connection, called Chern connection. The associated curvature RL is
called Chern curvature. in our case, it is a form of bidegree (1, 1) such that iRF is real
at any point in Σ.

The first Chern form is then defined as

c1(F, hF ) := i
2πR

F . (2.2.6)

Given a local frame, connections can locally be expressed in terms of their Christoffel
symbols, which are 1-forms that describe how a frame element scales when expressed
as the transport of a second frame element along a third frame element with respect to
the connection. Given Hermitian line bundles (TΣ, gT Σ) and (E, hE) and (L, hL) and
singular Hermitian line bundle, with respective Hermitian connections ∇T Σ, ∇E and ∇L,
locally in a suitable coordinate system, we have the Christoffel symbols

aΛ0,•
i =

∫ 1

0
ρxjRΛ0,•

ij (ρx)dρ , (2.2.7)

aL
i =

∫ 1

0
ρxjRL

ij(ρx)dρ , (2.2.8)

aE
i =

∫ 1

0
ρxjRE

ij(ρx)dρ , (2.2.9)
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where RΛ0,• = daΛ0,• is the curvature of the connection ∇Λ0,• which is the extension of
the connection ∇T Σ to smooth forms of bidegree (0, q), for all q ∈ N. We will also study
the product connection, which in terms of (2.2.7) - (2.2.9) reads:

∇Λ0,•⊗Lp⊗E = d + aΛ0,• + paL + aE . (2.2.10)

2.3 Local potentials and singular Hermitian metric

For any Hermitian line bundle (L, hL), the value of the norm of a local holomorphic
frame eL is given by

hL(eL, eL) =: |eL|2hL = e−2φ (2.3.1)

for a function φ : Σ → R∪ {±∞} that is locally integrable on Σ and smooth on Σ; func-
tions that arise as in (2.3.1) are called local weights or local potentials of the Hermitian
metric in question. If the local potentials fail to be smooth on the Σ the metric is called
a singular Hermitian metric, otherwise smooth Hermitian metric.

For any holomorphic section s of L with s = feL locally in terms of a local holomorphic
frame, we then have |s|2

hL = |f |2|eL|2
hL almost everywhere: we need to exclude points

x ∈ Σ, where s(x) = 0 and |eL|hL(x) = ∞, such as the puncture divisor D. Given an
open covering Σ = ⋃

α Uα and a local holomorphic frame eL = {(eL)α}α, the metric then
gives rise to a family of local potentials φα which satisfy

log |(eL)2
α|hL = log |gαβ|2 + log |(eL)β|2hL , (2.3.2)

where gαβ is a cocycle on Uα∩Uβ, which is holomorphic and non-vanishing. Consequently,
we have ∂∂ log |gαβ|2 = 0. Therefore, because of the independence of the choice of local
frames, the following relation characterizes the curvature RL of (L, hL) in terms of the
local potentials:

RL = 2 ∂∂φα . (2.3.3)

This point of view will be used in Chapters 5 and 6 when we will calculate the asymptotic
behavior from families of potentials that are associated to the line bundles Lp ⊗ E, for
growing p ∈ N.

Remark 2.3.1. It is important to note that when the Hermitian metric is smooth, the
associated curvature RL is a (1, 1)-form. This is no longer the case for singular Hermitian
metrics: the appropriate perspective is to view RL as a (1, 1)-current on Σ, that is, a
(1, 1)-form with coefficients that take values in the space of distributions (see Section 2.8
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for a definition and elaborate discussion of currents).

2.4 Notions of positivity of line bundles

For line bundles on compact complex manifolds, there exists multiple distinct notions
of positivity (see [43] for a discussion on this). Aside from notions that take into consid-
eration the curvature of the line bundle, the so-called ampleness is of particular relevance
to our subject, in particular in the discussion of the Kodaira maps associated to the Her-
mitian metrics in Chapter 5. We will recall the definition of ampleness in Subsection 5.2.2.

With our assumptions (α) and (β) the curvature RL of the Hermitian holomorphic
line bundle L with singular Hermitian metric hL (as a bundle over Σ) is allowed to vanish.
On the other hand, semipositivity and an upper bound on the maximal order of vanishing
of the curvature implies that there exist points where the curvature is strictly positive,
i.e. Σ2 ̸= ∅. In fact, the set of the points Σ2 where iRL is strictly positive is an open
dense subset of Σ. Consequently, when we view L as a holomorphic line bundle with
singular Hermitian metric hL over Σ, we have

0 <
∫

Σ

i
2πR

L (2.4.1)

and
degΣ(L) :=

∫
Σ
c1(L, hL) =

∫
Σ

i
2πR

L =
∫

Σ

i
2πR

L =
∫

Σ2

i
2πR

L , (2.4.2)

i.e. L is said to have positive degree as a line bundle over Σ.

2.5 Spaces of sections and topologies

In our calculation we make use of several different norms, which we will now define.
Throughout this section, let U ⊂ Σ be any subset.

For k ∈ N, let Ck(U,Lp ⊗ E) be the space of sections of Lp ⊗ E → Σ, whose partial
derivatives of order ⩽ k exist and are continuous. In all spaces of sections that we
discuss, when considering functions over U , we will trim the notation by writing Ck(U) :=
Ck(U,C). The support supp (s) of a section s is the topological closure of {x ∈ Σ : s(x) ̸=
0}. Set C∞(U,Lp ⊗ E) := ⋂

k∈N0 Ck(U,Lp ⊗ E) for the space of smooth sections and

Cα
c (U,Lp ⊗ E) := {s ∈ Cα(U,Lp ⊗ E) : supp (s) is compact} , (2.5.1)
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for the spaces of such sections with support contained in a compact set, where α ∈

N0 ∪ {∞}.

Remark 2.5.1. Throughout the thesis, for all spaces of sections that we consider, the
requirement of a compact support will always be indicated by adding a lower case letter
c to the subscript.

Smooth sections are called test functions or test forms (with values in a line bundle),
depending on the codomain. For k ∈ N and s ∈ C∞(Σ, Lp ⊗ E), x ∈ Σ, set

|s|Ck(hp)(x) := (|s|hp + |∇p,Σs|hp,ωΣ + . . .+ |(∇p,Σ)ks|hp,ωΣ)(x) , (2.5.2)

where ∇p,Σ is the connection on (TΣ)⊗l ⊗ Lp ⊗E, for every l ∈ N ∪ {0}, induced by the
Levi-Civita connection associated to ωΣ and the Chern connection that corresponds to
the metric hp, and | · |hp,ωΣ denotes the norm of the Hermitian metric on (TΣ)⊗l ⊗Lp ⊗E

induced by gT Σ and hp.
For any subset U ⊂ Σ, define the norm ∥ · ∥Ck(U,hp) on U as follows,

∥s∥Ck(U,hp) := sup
x∈U

|s|Ck(hp)(x). (2.5.3)

If U = Σ, we abbreviate ∥s∥Ck(hp) := ∥s∥Ck(Σ,hp).
Let

Ωm(Σ, Lp ⊗ E) := C∞(Σ,Λm(TΣ) ⊗ Lp ⊗ E) (2.5.4)

be the spaces of smooth m-forms on Σ with values in Lp ⊗ E, for any p ∈ N. Similarly,
let

Ωr,q(Σ, Lp ⊗ E) := C∞(Σ,Λr(T ∗(1,0)Σ) ⊗ Λq(T ∗(0,1)Σ) ⊗ Lp ⊗ E) (2.5.5)

be the spaces of smooth (r, q)-forms on Σ with values in Lp ⊗ E, for any p ∈ N. Note
that there exists a splitting/Hodge decomposition as follows

Ωm(Σ, Lp ⊗ E) =
⊕

r+q=m

Ωr,q(Σ, Lp ⊗ E) ; (2.5.6)

and we have C∞(Σ, Lp ⊗E) = Ω0,0(Σ, Lp ⊗E) = Ω0(Σ, Lp ⊗E). Moreover, the letters r
and q in the bidigree satisfy 0 ⩽ r+q ⩽ 2, since we work on a manifold of real dimension 2.

The choice of a Hermitian metric hp on the line bundle Lp ⊗ E and a volume form
ωΣon the underlying manifold Σ allows us to define the space L2(Σ, Lp ⊗ E) of square-

24



integrable sections of Lp ⊗ E, together with an inner product/L2-metric via integration
with respect to hp and ωΣ:

⟨s1, s2⟩L2(U,hp) :=
∫

U
hp(s1, s2)ωΣ (2.5.7)

for all U ⊂ Σ and s1, s2 : Σ → Lp ⊗E, whenever the right hand side is well defined. For
the induced norms we write ⟨s, s⟩L2(U,hp) =: ∥s∥L2(U,hp), for all s : Σ → Lp ⊗E such that
(2.5.7) is finite, and abbreviate ∥ · ∥L2(hp) := ∥ · ∥L2(Σ,hp).

For p ⩾ 1, we then denote by L2(U,Lp ⊗ E) := L2(U, ωΣ, L
p ⊗ E, hp) the space of

sections over U ⊂ Σ with values in Lp ⊗ E that are square integrable with respect to
(2.5.7).

We define the Sobolev space and Sobolev norm as follows: for k ⩾ 1, let H2,k(U,Lp ⊗

E) := H2,k(U, ωΣ, L
p ⊗ E, hp) denote the Sobolev space of sections of Lp ⊗ E over U

endowed with the Hermitian metric hp over Σ|U whose derivatives up to order k exist
and are integrable with respect to (2.5.7) over U , with respect to ωΣ and hp. For s ∈

H2,k(U,Lp ⊗ E), set

∥s∥2
H2,k

p (U,ωΣ,hp) :=
∫

U

(
|s|2hp

+ |∇p,Σs|2hp,ωΣ + . . .+ |(∇p,Σ)ks|2hp,ωΣ

)
ωΣ . (2.5.8)

Equivalently, H2,k(Σ, Lp ⊗ E) is the ∥ · ∥2
H2,k

p (Σ,ωΣ,hp)
-completion of the space of smooth

sections of Lp ⊗ E → Σ with compact support. For k = 0 we write ∥ · ∥2
H2,k

p (Σ,ωΣ,hp)
=

∥ · ∥2
L2

p(Σ,ωΣ,hp). Similarly, the space of restricted sections s|U : L|U → U ⊂ Σ is defined.
We abbreviate ∥ · ∥H2,k

p (ωΣ,hp) := ∥ · ∥H2,k
p (Σ,ωΣ,hp). When considering functions of this

regularity, we allow ourselves to drop the letter p from the notation, since there is no
dependence on p in these cases.

Remark 2.5.2. For all norms that we discuss, when no ambiguity arises, we drop hp and
ωΣ from the notation for convenience.

2.6 Dolbeault cohomology and holomorphic sections

2.6.1 Dolbeault operator and Dolbeault cohomology

Denote by Ωr,q
(2)(Σ, L

p ⊗ E) the Hilbert space that is obtained by considering the
completion of Ωr,q

c (Σ, Lp ⊗ E) with respect to ∥ · ∥L2(hp). Note that for the bidegree
(0, 0) we have the equalities L2(Σ, Lp ⊗E) = Ω0,0

(2)(Σ, L
p ⊗E). We set Ω0,•

(2)(Σ, L
p ⊗E) =⊕

q Ω0,q
(2)(Σ, L

p ⊗ E).
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Let ∂p be the L2-Dolbeault operator on Σ acting on Ω0,•
(2)(Σ, L

p ⊗E). In general, the
operator ∂p acts on the larger space Ω0,•

c (Σ, Lp ⊗E) with range in Ω0,•
(2)(Σ, L

p ⊗E) and is
preclosed, so there exist closed extensions of ∂p. We always identify ∂p with its maximal
extension, with domain given by

Dom(∂p) := {s ∈ Ω0,0
(2)(Σ, L

p ⊗ E) : ∂ps ∈ Ω0,1
(2)(Σ, L

p ⊗ E)} . (2.6.1)

Then the unbounded linear operator ∂p, being its own maximal extension, is densely
defined and closed (see [43, Lemma 3.1.1]).

Let ∂∗
p denote the maximal extension of the formal adjoint of ∂p with respect to the

L2-metric. Then, since (Σ, ωΣ) is complete, ∂∗
p coincides with the Hilbert adjoint of ∂p

(see [43, Corollary 3.3.3]).
Recall the definition of a graph norm of a linear operator between Hilbert spaces. By

Andreotti-Vesentini (see [43, Lemma 3.3.1]), Ω0,•
c (Σ, Lp ⊗ E) is dense in the spaces of

sections Dom(∂p), Dom(∂∗
p), Dom(∂p) ∩ Dom(∂∗

p) in the graph norms of ∂p and ∂∗
p and

∂p + ∂∗
p, respectively.

Now note that the square of the differential operator ∂p vanishes identically. Thus
there exists an associated cochain complex, the L2-Dolbeault complex such that ∂p is its
coboundary operator:

0 → Ω0,0
(2)(Σ, L

p ⊗ E) ∂p−−−−→ Ω0,1
(2)(Σ, L

p ⊗ E) → 0 . (2.6.2)

Let H0(Σ, Lp ⊗ E) be the space of sections s of Lp ⊗ E such that ∂ps = 0 and consider
the subspace

H0
(2)(Σ, Lp ⊗ E) := H0(Σ, Lp ⊗ E) ∩ L2(Σ, Lp ⊗ E) , (2.6.3)

of holomorphic sections of Lp ⊗ E that are square-integrable with respect to hL.

2.6.2 Spaces of holomorphic sections

By [1, Remark 3.2], L2-bounded holomorphic sections of Lp ⊗E on Σ extend to holo-
morphic sections of Lp ⊗ E over Σ. We will now have a closer look from an algebraic
point of view on the section space H0

(2)(Σ, Lp ⊗ E).

If p ⩾ 2, then elements in H0
(2)(Σ, Lp ⊗ E) are precisely those in H0(Σ, Lp ⊗ E) that
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vanish in D):

H0
(2)(Σ, Lp ⊗ E) ∼= {σ ∈ H0(Σ, Lp ⊗ E) : σ|D = 0} ⊂ H0(Σ, Lp ⊗ E) ; (2.6.4)

moreover, in general, H0(Σ, Lp ⊗E) is strictly bigger than H0
(2)(Σ, Lp ⊗E), as the former

might contain sections that have no zero in D.
Let OΣ(D) be the holomorphic line bundle on Σ that is defined by the divisor D =∑N

j=1 aj and let σD be the canonical section of OΣ(D). Now the isomorphism

H0(Σ, Lp ⊗ E ⊗ OΣ(−D)) −→ {σ ∈ H0(Σ, Lp ⊗ E) : σ|D = 0} (2.6.5)

s 7−→ s⊗ σD

gives an identification of vector spaces

H0(Σ, Lp ⊗ E ⊗ OΣ(−D)) ⊗ σD
∼= H0

(2)(Σ, Lp ⊗ E) ⊂ H0(Σ, Lp ⊗ E) . (2.6.6)

Since the zero divisor of σD is D, the following sets coincide

{σ ∈ H0
(2)(Σ, Lp ⊗ E) : σ(x) = 0} =

{s ∈ H0(Σ, Lp ⊗ E ⊗ OΣ(−D)) : s(x) = 0} ⊗ σD ,
(2.6.7)

or all x ∈ Σ. Note that by Riemann-Roch theorem the dimension is

dp := dimCH
0
(2)(Σ, Lp ⊗ E) = dimCH

0(Σ, Lp ⊗ E ⊗ OΣ(−D))

= deg(L)p+ deg(E) −N + 1 − genus(Σ) ,
(2.6.8)

which is a finite quantity.

Remark 2.6.1. From the above observation and the proof of [1, Lemma 3.1] we also see
that the value of dp might vary drastically when one wishes to change the underlying
inner product, which is the behavior that one should expect for general non-compact Σ.
This will become important to keep in mind later in Chapter 5, where we also consider
different Hermitian metrics on L.

2.7 Bergman kernel

To define the Bergman kernel, we first recall that the space of L2-integrable holomor-
phic for complex domains G ⊂ C is closed and the Bergman condition (see (2.7.1) below)
holds: one can show with the Cauchy integral formula and the
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-inequality that
|f(z0)| ⩽ sup

z∈K
|f(z)| ⩽ cK · ∥f∥L2(G,C) (2.7.1)

for all z0 in any compact subset K ⊂ G, where the constant cK depends only on K; the
norm on the right hand side will be defined in 2.5. This implies that the evaluation map

L2(G,C) ⊃ H0
(2)(G,C) ∋ f 7→ f(z) ∈ C (2.7.2)

is a continuous linear map and families of holomorphic functions on domains are normal,
in the sense that every sequence of such functions contains a subsequence which converges
uniformly on compact subsets (on metric spaces this is equivalent to the usual definition
of normal family that is a precompact subset of a set of continuous functions with respect
to the compact-open topology). Hence every Cauchy-sequence (with respect to the norm
coming from the L2-inner-product) is compact convergent and by completeness of square-
integrable functions G → C with respect to this L2-metric the limit function lies in
H0

(2)(G,C). This means that these L2-bounded holomorphic functions form a closed
subspace and hence a Hilbert space. Note that the same can be said about sections of
our Riemann surfaces (which are paracompact by assumption), since they are locally
represented by families of holomorphic functions with conformal transition conditions on
intersections of open subsets of Σ.

Therefore, by (2.7.1) and (2.7.2), there exists a unique orthogonal projection map
L2(Σ, Lp ⊗ E) → H0

(2)(Σ, Lp ⊗ E), called the Bergman kernel. By Fischer-Riesz the
Bergman kernel map has an unique Schwartz integral kernel that is a reproducing kernel
for the space H0

(2)(Σ, Lp ⊗ E): if {Sj}1⩽j⩽dp is an orthonormal basis of H0
(2)(Σ, Lp ⊗ E),

it is given by

Bp(x, y) =
dp∑

j=1
Sp

j (x) ⊗ Sp,∗
j (y) ∈ (Lp ⊗ E)x ⊗ (Lp ⊗ E)∗

y , (2.7.3)

for x, y ∈ Σ, where Sp,∗
j (y) is the metric dual of Sp

j (y) with respect to hp. The on-diagonal
Bergman kernel

Bp(x) := Bp(x, x) =
dp∑

j=1
∥Sp

j (x)∥2
L2 ∈ R , (2.7.4)

for x ∈ Σ, is also called the Bergman kernel function. Since the ∂-operator is elliptic
and hence hypoelliptic, the Bergman kernel in two variables is of smooth regularity. As
computed in [17, Lemma 3.1], one sees that it is positive and independent of the choice
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of basis and moreover, has the following variational characterization:

Bp(x) = max
∥S∥L2(hp)=1

S∈H0
(2)(Σ,Lp⊗E)

|S(x)|2hp
. (2.7.5)

We will also be interested in the values of the logarithm of the Bergman kernel. In [17,
Lemma 3.2(iii)] the authors show that logBp ∈ L1

loc(Σ) is locally integrable, which will
be used in multiple calculations in the later chapters of the thesis.

As mentioned in Subsection 1.2.2, given a positive line bundle over a compact Kähler
manifold, Ma and Marinescu [43, Theorem 4.1.1] prove the following on-diagonal asymp-
totic expansion for the associated Bergman kernel Bp:

∥∥∥∥∥Bp(x, x) −
k∑

r=0
br(x)pk−r

∥∥∥∥∥
Cℓ(hp)

= O(pn−k−1) (2.7.6)

for any ℓ ∈ N, with smooth coefficients br that are polynomials in the curvatures and
their derivatives. Moreover, they explicitly calculated b0.

In the same author prove in [43, Theorem 6.1.1], under the mild assumptions [43,
(6.1.1)] on a complete Hermitian manifold, that the associated Bergman kernel has the
same asymptotic expansion as in (1.2.5) on compact subsets of the manifold.

Moreover, the authors go on to prove the existence of a full off-diagonal asymptotic
expansion of the corresponding Bergman kernels and consider other more general cases,
such as when the underlying manifold is symplectic, as well. However, in this thesis, we
will only be interested in obtaining an on-diagonal expansion in our setting.

As mentioned in Subsection 1.2.2 Auvray, Ma and Marinescu study the same setting
locally near the punctures of their punctures Riemann surface. The authors obtained
an asymptotic expansion of Bp near the punctures in [1] by studying the asymptotic
behavior of the Bergman kernel on the Poincaré punctured disc model. Moreover, the
authors go on to prove an optimal global upper bound for Bp in [1, Corollary 1.4]. We
argue that their bound holds in our case as well, which we summarize in our Corollary
4.1.3.

In [47, Theorem 1], Marinescu and Savale prove a pointwise on-diagonal asymptotic
expansion with fractional powers in the exponents. Our result Theorem B (this is Theo-
rem 4.1.1 in Chapter 4) is an extension of their asymptotics to our setting globally, with
the same fractional exponents.
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2.8 Currents on Σ

2.8.1 Spaces of currents, topologies and dual norms on Σ

Currents are differential forms with distribution coefficients. They carry the struc-
ture of a topological vector space and generalize various objects that are of interest
in geometric analysis, such as functions, differential forms, measures and distributions.
Furthermore, the target domain in the process of integration defines a current. Thus,
currents interpolate between homological and cohomological objects. We give a rigorous
construction of the space of currents.

For 0 ⩽ m ⩽ 2 = dimR Σ, let Ωm
c (Σ, Lp ⊗ E) be the vector space of compactly

supported, smooth m-forms with values in Lp ⊗ E, as defined in Chapter 2.
Let 0 ⩽ l = 2 − m ⩽ 2, a l-current on Σ is a continuous linear functional T from

Ωm
c (Σ, Lp ⊗ E) to C. Equivalently, a current is a differential form that takes values in

distributions.
Evaluation of a current T at some element u ∈ Ωm

c (Σ, Lp ⊗ E) will be denoted by
T (u) := (T, u), i.e. the natural pairing between an object and its algebraic dual.

The continuity of such linear functionals is to be understood in the following sense:
for every sequence (uj)j∈N ⊂ Ωm

c (Σ, Lp ⊗ E) such that there exists a compact subset
K ⊂ Σ with the property that supp uj ⊂ K for all j ∈ N and the sequence (uj)j∈N

converges to some u ∈ Ωm
c (Σ, Lp ⊗ E) uniformly as j → ∞, we have (T, uj) → (T, u), as

j → ∞.

An equivalent way of defining currents that says more about the involved topologies
is the following: to every compact subset K ⊂ Σ, we associate a seminorm by

pK(u) := sup
x∈K

max
|I|=m

∣∣∣∣ ∂α

∂xα1
1 ∂xα2

2
uI(x)

∣∣∣∣ , (2.8.1)

where α = (α1, α2) ∈ N2 is a multi-index. For each K, we define Dm(K,Lp ⊗ E) to be
the space Ωm

c (K,Lp ⊗ E) equipped with the topology that induced by any finite set of
seminorms pKj , such that the compact subsets Kj cover K; and set Dm(Σ, Lp ⊗ E) :=⋃

K Dm(K,Lp ⊗ E).

Similarly, we define Em(Σ, Lp ⊗E) to be the space Ωm(K,Lp ⊗E) of smooth m-forms,
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not necessarily with compact support, equipped with the same topology as above.

The space of currents of dimension m (or equivalently, of degree 2 −m) is the topo-
logical dual space D′

m(Σ, Lp ⊗E) of linear forms T on Dm(Σ, Lp ⊗E) with respect to the
topology in which the restriction of T to all subspaces Dm(K,Lp ⊗ E), for all compact
K ⊂ Σ, is continuous. Currents of degree 2−m will also be called m-currents for brevity.

The support supp T of a current T is defined as the smallest closed subset U ⊂ Σ,
such that the restriction of T to D′

m(Σ \U,Lp ⊗E) is identically zero. One can drop the
condition of a compact support of the differential forms that the currents are acting on
if one requires the currents themselves to have compact support; the definition carries
over to this case without further adjustments.

The space of currents of compact support will be denoted by E ′
m(Σ, Lp ⊗ E). The

same definitions can be used for spaces of currents over Σ; the requirement of a compact
support of either the smooth forms or the currents themselves is not needed in this case.

The regularity of a current is described by the following lemma, the proof of which is
straightforward and similar to its analogue from the theory of distributions:

Lemma 2.8.1. A linear functional T on Dm(Σ, Lp ⊗ E) is a current if and only if for

every compact K ⊂ Ω, there exists a constant CK =: C > 0, such that

|(T, u)| ⩽ C∥u∥Ck
c (K,ΛmT Σ⊗Lp⊗E) (2.8.2)

for every m-form u of regularity Ck with supp u ⊂ K.

A current T for which the integer k in (2.8.2) can be chosen independently of K is
said to have finite order. In this case, the smallest finite (non-negative) integer k such
that (2.8.2) holds for all compact subsets K ⊂ Σ is called the order of T .

Currents of compact support are naturally of finite order.

The vector space of real currents satisfies a Hodge decomposition

D′
m(Σ, Lp ⊗ E) =

⊕
q+r=m

D′
q,r(Σ, Lp ⊗ E) ; (2.8.3)

elements of D′
q,r(Σ, Lp ⊗ E) are called currents of bidimension (q, r) (or equivalently, of
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bidegree (2 − q, 2 − r)). Currents of compact support split similarly.

On the topological closure Σ, which is a compact Riemann surface, one can define the
following seminorms on the set of currents T of order 0 on Σ; for U ⊂ Σ, we set

||T ||U,−α := sup
x∈U

|(T, u)| , (2.8.4)

where the supremum is taken over smooth test forms u with support in U , that lie on
the closed unit disc with respect to the Cα norm that was defined in Section 2.5.

For α = 0 we obtain the usual notion of mass of a current, which we denote by ∥T∥U .
From the definition (2.8.4) it is clear that

∥T∥U,−α ⩾ ∥T∥U,−β , (2.8.5)

if β ⩾ α.
Later, when working with the norm (2.8.4), the only case that we we will consider

is α = 2 and we will compute estimates of the ∥ · ∥U,−2-norm of differences of certain
currents (for instance, see Theorem 6.4.1). However, other cases can be obtained as a
consequence of our estimates by the theory of interpolation between Banach spaces [53]:
let W ∪ Σ be an relatively compact open subset of Σ, such that U ∪ W is a relatively
compact open subset of W , then

∥T∥U,−α ⩽ c∥T∥
1− α

β

W ∥T∥
α
β

W,−β , (2.8.6)

for 0 < β ⩽ α ⩽ 1, where the constant c > 0 is independent of T (see [24]).

In the case U = Σ the norm in (2.8.4) and the induced topology coincides with the
weak topology on any set of currents (on Σ) with mass bounded by a fixed constant,
i.e. the topology in the definition we have given above for the spaced of currents when
defined over the topological closure Σ.

2.8.2 Closed and positive currents

The wedge product of a current and a differential form is defined by duality (see [20,
Paragraph 2.B.2]).

We review the definition of the exterior derivative on currents (see [20, Paragraph
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2.B.1]): recall that for 0 ⩽ m ⩽ 2, if β ∈ Em(Σ, Lp ⊗ E) and α ∈ Dm(Σ, Lp ⊗ E), then
by the classical Stokes formula, we have (dβ, α) = (−1)m+1(β,dα). This motivates the
following definition for the exterior derivative on currents: the dT of a current T of degree
l on Σ is a current of degree l + 1 defined intrinsically by

(dT, α) := (−1)l+1(T, dα) , (2.8.7)

for α ∈ D2−(l+1)(Σ). The map T 7→ dT is continuous for the topology of currents that
we have defined above.

The exterior derivative is defined analogously for currents that have compact sup-
port. We say that a current is closed, if dT = 0, i.e. if it lies in the kernel of the map d.
Currents of maximal degree, i.e. distributions, are always closed currents.

A current T is called exact if there exists another current S, such that dS = T , i.e.
T is exact if and only if it lies in the image of the map d.

For a current T of bidegree (r, q), dT can be decomposed as a sum ∂T + ∂T , where
∂T is a (r + 1, q)-current and ∂T is a (r, q + 1)-current. Note that d(dT ) = 0 and hence
∂(∂T ) = ∂(∂T ) = 0 and ∂∂T = −∂ ∂T . Furthermore,

(∂T, α) := (−1)r+q+1(T, ∂α) , (∂T, α) := (−1)r+q+1(T, ∂α) for α ∈ D2−(r+q+1)(Σ) .
(2.8.8)

The conjugate T is defined by (T , α) := (T, α) for all differential forms α of suitable
degree or bidegree. If T = T holds, then T is a real current.

There is a notion of positivity for currents: First, Recall that a real (1, 1)-form α

is positive if at any point on Σ it coincides with a linear combination of semipositive
(1, 1)-forms with (real) positive coefficients.

A (q, r)-current is called positive (respectively weakly positive), if (T, α) ⩾ 0 for every
weakly positive (respectively positive) test form α of bidegree (1 − q, 1 − r). Positive
currents of maximal bidegree are positive measures.

If a current T is positive and of bidegree (q, q) on (Σ, ωΣ), the following notion of
mass is equivalent to the one we have defined in (2.8.4):

||T || = (T, ω1−q
Σ ) ; (2.8.9)
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if the current at hand is closed, their mass (in the sense of (2.8.9)) is invariant under
addition of an exact current.

Examples 2.8.2. (i) Distributions define currents of top degree (or bidigree in the
case of a complex distribution).

(ii) Differential forms u with locally L1-integrable coefficients define currents Tu of order
0. The map u 7→ Tu associating a L1

loc-differential form to a current is injective.
In the same way that L1

loc-functions are usually identified to the distributions that
they induce, we will identify u to the its image Tu in the space of currents.

(iii) We recall an important example of currents in the the general case of a Kähler
manifold X with dimCX = m ∈ N. Then the following are called currents of
integration on a complex submanifold M ⊂ X: let 1 ⩽ q = dimCM ⩽ m be
the dimension of the submanifold M and equip M with its canonical, induced
orientation. The current of integration [M ] on M is defined by

([M ], u) :=
∫

M
u , (2.8.10)

for all u ∈ Ωq,q
c (Σ). This is a positive current of bidimension (q, q) on Σ, with

supp [M ] = M . Moreover, by the theorem of Stokes, we have d[M ] = ±[∂M ] = 0
(see [20, Paragraph 1.20]).

In the case of a Riemann surface, the only interesting case is the case of a current
of integration along a submanifold of dimension 1: let Γ ⊂ Σ (or Γ ⊂ Σ) be a set
of points, then the current of integration along Γ is [Γ] = ∑

x∈Γ δx, where δx is the
Dirac delta distribution. For any smooth, compactly supported function on Σ (or
Σ, we have ([Γ], φ) = ∑

x∈Γ φ(x).
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3. Estimates for the Dirac Operator and

Spectral Gap of the Kodaira Laplacian

3.1 Dirac and Kodaira Laplace operators

In this chapter we establish an estimate for the Dirac operator Dp and proof the
spectral gap of the Kodaira Laplacian □p (both defined in (1.2.1)).

Note that □p : Ω0,•
c (Σ, Lp ⊗ E) → Ω0,•

c (Σ, Lp ⊗ E) is essentially self-adjoint, so that
it has a unique self-adjoint extension which we still denote by □p, the domain of this
extension is

Dom(□p) = {s ∈ Ω0,•
(2)(Σ, L

p ⊗ E) : □p(s) ∈ Ω0,•
(2)(Σ, L

p ⊗ E)} . (3.1.1)

From their definition, it can be seen that Dp interchanges and □p preserves the Z-
grading of Ω0,•

c (Σ, Lp ⊗ E). Since Σ has complex dimension 1, we have

Dp Ω0,0(Σ,Lp⊗E)
=

√
2 ∂p ,

Dp Ω0,1(Σ,Lp⊗E)
=

√
2 ∂∗

p ,

□0
p := □p Ω0,0(Σ,Lp⊗E)

= ∂∗
p∂p ,

□1
p := □p Ω0,1(Σ,Lp⊗E)

= ∂p∂
∗
p . (3.1.2)

Unlike in the case of compact Kähler manifolds, it is not trivially true in the non-
compact setting for ∂p and ∂∗

p to have closed range. Since ∂p is closed (and so is ∂∗
p),

however, it is enough that this holds for one of them. This condition is desirable, since
we want to talk about the quotient space

Hq
(2)(Σ, L

p ⊗ E) := ker ∂q
p⧸im∂q−1

p
(3.1.3)
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where ∂q
p := ∂p : Ω0,q

(2)(Σ, L
p ⊗ E) → Ω0,q+1

(2) (Σ, Lp ⊗ E). For q = 0 we just identify the left
hand side of (3.1.3) to the space of L2-bounded holomorphic sections of Lp ⊗E, defined
in (2.6.3). By completeness of (Σ, ωΣ), ∂1

p has closed range, so the cokernel in (3.1.3) is
separable in the topological sense; furthermore, we have an isomorphism

ker□q
p

∼= Hq
(2)(Σ, L

p ⊗ E) , (3.1.4)

for q = 0, 1, which shows that the Kodaira Laplacian is well-suited for studying the spaces
of holomorphic sections and (0, 1)-forms with values in Lp ⊗E. One of the consequences
in the existence of a gap in the spectrum of the Kodaira Laplacian is that the Bergman
kernel can then be represented in terms an integral of the resolvent of □p.

3.1.1 Clifford action and Lichnerowicz formula

For x ∈ Σ, v ∈ TxΣ, by the splitting (2.1.1), we write v = v(1,0) + v(0,1) ∈ T
(1,0)
x Σ ⊕

T
(0,1)
x Σ; we denote by v(1,0)∗ ∈ T

(0,1)∗
x Σ the metric dual of v(1,0). The Clifford multipli-

cation endomorphism c : TxΣ → End(Λ•(T ∗(0,1)
x Σ)) is then defined as

v 7→ c(v) :=
√

2(v(1,0)∗ ∧ −ιv(0,1)) . (3.1.5)

If {e1, e2} is a local orthonormal frame of (TΣ, gT Σ), then the Dirac operators in (3.1.2)
can then be written as follows:

Dp =
2∑

j=1
c(ej)∇Λ0,•⊗Lp⊗E

ej
, (3.1.6)

where ∇Λ0,•⊗Lp⊗E is the product connection that was introduced in (2.2.10).
Set ω = 1√

2(e1 − ie2) which is an orthonormal frame of T (1,0)Σ. Let ω∗ denote the
metric dual of ω. By [43, Theorem 1.4.7], let ∆Λ0,•⊗Lp⊗E denote the Bochner Laplacian
associated with ∇Λ0,•⊗Lp⊗E , i.e.

∆Λ0,•⊗Lp⊗E :=
(
∇Λ0,•⊗Lp⊗E

)∗
∇Λ0,•⊗Lp⊗E . (3.1.7)

Then we have the following Lichnerowicz formula for □p:

□p = 1
2∆Λ0,•⊗Lp⊗E + rΣ

4 ω∗ ∧ ιω + p(RL(ω, ω)ω∗ ∧ ιω − 1
2R

L(ω, ω))

+RE(ω, ω)ω∗ ∧ ιω − 1
2R

E(ω, ω) , (3.1.8)
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where rΣ = 2RT (1,0)Σ(ω, ω) is the scalar curvature of (Σ, gT Σ). Note that rΣ is a bounded
function on Σ which is constant near punctures. In particular, near the punctures, we
have

RE(ω, ω)ω∗ ∧ ιω − 1
2R

E(ω, ω) = 0 . (3.1.9)

3.2 Estimates and Spectral Gap

Now we consider the action of □p on Ω0,1
c (Σ, Lp ⊗ E). Since we assume that iRL is

nonnegative, i.e., RL(ω, ω) ⩾ 0, then, on (0, 1)-forms,

p

(
RL(ω, ω)ω∗ ∧ ιω − 1

2R
L(ω, ω)

)
⩾

1
2pR

L(ω, ω) ⩾ 0 . (3.2.1)

For the points where RL does not vanish, the above term therefore admits a local lower
bound growing linearly in p.

We allow RL to vanish up to a finite order and with this assumption, in [47, Propo-
sition 6], Marinescu and Savale proved that for a compact subset K ⊂ Σ, there ex-
ist constants C1 ∈ R>0, C2 ∈ R>0 such that for sufficiently large p > 1 and for
s ∈ Ω0,1

c (Σ, Lp ⊗ E) with supp(s) ⊂ K,

(C1p
2/ρΣ − C2)∥s∥L2 ⩽

∥∥∥1
2∆Λ0,•⊗Lp⊗Es

∥∥∥
L2
. (3.2.2)

The key idea to obtain the above inequality is the sub-elliptic estimate for the sub-
Riemannian Laplacian on the circle bundle of Lp ⊗ E on Σ .

We will combine the above considerations to prove the following theorem that estab-
lishes the spectral gap for the Kodaira Laplacian.

Theorem 3.2.1 (Spectral Gap and vanishing first cohomology). Let Σ be a punctured

Riemann surface, and let L be a holomorphic line bundle such that L carries a singular

Hermitian metric hL satisfying conditions (α) and (β). Let E be a holomorphic line bun-

dle on Σ equipped with a smooth Hermitian metric hE such that (E, hE) on each chart Vj

coincides with the trivial Hermitian line bundle. Consider the Dirac and Kodaira Laplace

operators as defined in (1.2.1). Then there exist constants C1, C2 ∈ R>0 independent of

p, such that for all s ∈ Ω0,1
c (Σ, Lp ⊗ E),

(i) the Dirac operators are bounded from below,

∥Dps∥2
L2 ⩾ 2(C1p

2/ρΣ − C2)∥s∥2
L2 , (3.2.3)
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(ii) for p ∈ N, we have

Spec(□p) ⊂ {0} ∪ [C1p
2/ρΣ − C2,∞) . (3.2.4)

In particular, the first L2-Dolbeault cohomology group H1
(2)(Σ, Lp ⊗ E) = 0 vanishes for

sufficiently large p > 0.

Proof of Theorem 3.2.1. In scope of this proof, for s ∈ Ω0,1
c (Σ, Lp ⊗ E) and a domain

A ⊂ Σ, set
∥s∥2

A :=
∫

A
|s|2hp

ωΣ ; (3.2.5)

observe that A ⊂ B implies ∥ · ∥A ⩽ ∥ · ∥B. We fix a compact subset K of Σ such that
outside of K we have iRL > cKωΣ with some constant cK ∈ R>0. Then RL can only
vanish at the points in K. Let U ⊂ Σ be an open relatively compact neighborhood of K.
Take smooth functions ϕ1, ϕ2 : Σ → [0, 1] such that

supp (ϕ1) ⊂ U , (3.2.6)

supp (ϕ2) ⊂ Σ \K , (3.2.7)

with ϕ1 ≡ 1 on K and ϕ2
1 + ϕ2

2 ≡ 1 on Σ. Note that near the punctures, ϕ2 takes the
constant value 1, then |∂ϕ2|2

hp,gT ∗(0,1)Σ
< ∞, where the norm is defined in (2.5.3) The

assumption on (E, hE) that it is the trivial line bundle near punctures implies that there
exists a constant c0 ∈ R>0 such that for x ∈ Σ, we have

RE(ω, ω)ω∗ ∧ ιω − 1
2R

E(ω, ω) ⩾ −c0IdT ∗(0,1)Σ⊗Lp⊗E . (3.2.8)

At first, we apply (3.2.2) to the sections with support contained in U . Then by (3.1.8),
(3.2.1), (3.2.8) and using the same arguments as in [47, Proposition 7], we get that there
exist constant c1, c2 ∈ R>0 such that for s ∈ Ω0,1

c (Σ, Lp ⊗ E),

(c1p
2/ρΣ − c2)||ϕ1s||2U ⩽ ||∂∗

p(ϕ1s)||2U . (3.2.9)

On the other hand, since iRL(ω, ω) > cKωΣ on the support of ϕ2, then by (3.2.8) and
[43, Theorem 6.1.1, (6.1.7)], there exists a constant c3 ∈ R>0, such that for sufficiently
large p ∈ N

c3p||ϕ2s||2Σ\K ⩽ ||∂∗
p(ϕ2s)||2Σ\K . (3.2.10)

Let ∇Λ0,•⊗Lp⊗E be the connection on Λ•(T ∗(0,1)Σ) ⊗ Lp ⊗ E that is induced by the
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holomorphic Hermitian connection ∇T (1,0)Σ and ∇Lp⊗E , and let 0 ̸= w ∈ T (1,0)Σ be any
local orthonormal frame, defined on some open set V . Because our Riemann surface Σ is
a Kähler manifold, by [43, Lemma 1.4.4], we have locally ∂∗

p = −ιw∇Λ0,•⊗Lp⊗E
w for p ∈ N.

As a consequence, we get, for (⋆, j) = (U, 1) or (Σ \K, 2) and p ∈ N,

∥∂∗
p(ϕjs)∥2

⋆ ⩽ |∂ϕj |2
hp,gT ∗(0,1)Σ · ∥s∥2

L2 + ∥ϕj∂
∗
ps∥2

L2 . (3.2.11)

Combining (3.2.9) - (3.2.11), for sufficiently large p ∈ N,

(
min

{
c1p

2/ρΣ − c2, c3p
}

− |∂ϕ1|2
hp,gT ∗(0,1)Σ − |∂ϕ2|2

hp,gT ∗(0,1)Σ

)
∥s∥2

L2 ⩽ ∥Dps∥2
L2 .

(3.2.12)
Since ρΣ ⩾ 2, the above inequality implies that there exist constants C1, C2 ∈ R>0 such
that for p ∈ N,

||Dps||2L2 ⩾ 2(C1p
2/ρΣ − C2)||s||2L2 . (3.2.13)

This proves the desired inequality (3.2.3) for the Dirac operators.
Observe that Spec(□p) = Spec(□0

p) ∪ Spec(□1
p) ⊂ R⩾0. For s ∈ Ω0,1

c (Σ, Lp ⊗ E),

∥Dps∥2
L2 = 2⟨□ps, s⟩. (3.2.14)

Then by (3.2.3), we get Spec(□1
p) ⊂ [C1p

2/ρΣ −C2,∞), and H1
(2)(Σ, Lp ⊗E) = 0 for p ≫ 0.

For s ∈ Ω(0,0)
c (Σ, Lp ⊗ E), applying (3.2.3) to ∂ps gives

∥□0
ps∥2

L2 ⩾ (C1p
2/ρΣ − C2)⟨□0

ps, s⟩ . (3.2.15)

As a consequence, Spec(□0
p) ⊂ {0} ∪ [C1p

2/ρΣ − C2,∞), so that we get (3.2.4). This
concludes the proof.
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4. Asymptotic expansion of the Bergman

kernel

4.1 Strategy and results

In this chapter, we investigate the Bergman kernel on Σ, which will be used in the
proof of the equidistribution phenomenon of zeros of holomorphic sections of Lp ⊗E over
Σ, as p grows indefinitely. In particular, we will prove that the on-diagonal Bergman
kernel Bp(x) exhibits a pointwise asymptotic expansion when p → ∞, for every x ∈ Σ.
Our strategy is to estimate the difference of our Bergman kernel in a neighborhood of
a fixed point to the Bergman kernel of two different model situations, depending on the
position of the point in question. As a consequence, we treat both cases separately and
conclude a global asymptotic expansion after having justified control on the Bergman
kernel functions on any open subset of Σ.

Close to the punctures, the Bergman kernel has been shown to have an asymptotic
expansion via this method in [1], [2], where the authors make use of the existence of the
asymptotic expansion of the Bergman kernel BD∗

p on the punctured unit disc (D∗, ωD∗).
We will follow this approach in these regions.

Away from the punctures, our local model is a model Bergman kernel that is defined
in the complex plane. Here the curvature is allowed to vanish. An asymptotic expansion
in this geometry is proven in [47].

Finally, in order to compare the asymptotic expansions of the model Bergman kernels
in the above cases, we utilize the method of analytic localization that was developed by
Ma and Marinescu [43], which is inspired by Bismut-Lebeau [7].

The following theorem extends [47, Theorem 1] (equivalently, [46, Theorem 3]).

Theorem 4.1.1 (On-diagonal asymptotic expansion of the Bergman kernel). Let Σ, L

and E be as in Theorem 3.2.1. For ρ0 ∈ {2, 4, . . . , ρΣ} define a smooth path W : [0, 1] ∋

t 7→ W (t) ∈ Σ such that W (t) ∈ Σρ0 for all t ∈ [0, 1]. Then for all r ∈ N, there
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exists a smooth function br(x) with x ∈ range(W ), such that for all k ∈ N the following

asymptotic expansion of the Bergman kernel function holds uniformly on range(W ) in

any Cℓ-topology, with ℓ ∈ N:

Bp(x, x) = p
2/ρ0

[
k∑

r=0
br(x)p−2r/ρ0

]
+ O(p−2k/ρ0) , (4.1.1)

Moreover, for x ∈ W , the leading term satisfies

b0(x) = Bj
ρ0−2
z RL(0, 0) > 0 , (4.1.2)

where the (ρ0 − 2)-th jet jρ0−2
x RL ∈ iSρ0−2R2 ⊗ Λ2(R2)∗ is identified with the (ρ0 − 2)-

degree homogeneous part of the Taylor expansion of RL in the geodesic normal coordinate

centered at z, and Bj
ρ0
x RL is the model Bergman projection defined in Subsection 4.4.1.

For h ∈ (0, 1), γ ∈ (0, 1
2), ℓ,m ∈ N, and Vj described in assumption (α) with coor-

dinate zj, the following asymptotic expansion of the Bergman kernel function holds uni-

formly in any Cl-topology, with ℓ ∈ N, for points zj in the ring D∗(aj ,
1
6) \ D∗(aj , he

−pγ ):

Bp(zj , zj) = p− 1
2π + O(p−m) . (4.1.3)

for every m ∈ N.

The reason why we consider the expansion along smooth paths along which the order
of vanishing of the curvature does not change is to obtain a stronger statement, i.e. the
expansion holds uniformly on the image of such paths. Thus, considering such paths
seems to present itself to be an appropriate setting when stating the result. When apply-
ing a pointwise expansion is sufficient for the matter at hand, our result on the punctured
Riemann surface identical to [47, Theorem 1] for points away from the punctures.

Remark 4.1.2. Note that the function x 7→ ρx may exhibit jumps with respect to x ∈ Σ
along regions where the order of vanishing of the curvature varies. On subsets of Σ where
this happens, the function ρ is discontinuous and hence the above asymptotic expansion
for Bp can not be uniform in any neighborhood such points.

As a Corollary, we get the following asymptotic expansion for the sup of the Bergmen
kernel function. The proof can be found in Section 4.5. The result is an analogue of [1,
Corollary 1.4] in our setting.
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Corollary 4.1.3. We have

sup
x∈Σ

Bp(x, x) =
(
p

2π

)3/2

+ O(p) . (4.1.4)

Remark 4.1.4. Note that for x ∈ Σ2, Bj0
xRL(0, 0) > 0 and moreover, the quantity

Bj0
xRL(0, 0) depends smoothly on x. In particular, if x is close to a puncture, then

Bj0
xRL(0, 0) = BD∗

p (x, x) = 1
2π . For x such that ρx ⩾ 4, we have j0

xR
L = 0 so that

Bj0
xRL(0, 0) = 0, since a L2-integrable entire function on C has to be identically 0.

For h ∈ (0, 1) and γ ∈ (0, 1
2), set

Σp,h,γ := Σ \
N⋃

j=1
D∗(aj , he

−pγ ) , (4.1.5)

where D∗(aj , he
−pγ ) denotes the punctured (open) disc of radius he−pγ centered at a

puncture aj in the coordinate zj ∈ Vj described in assumption (α). Set

Σp,h,γ
ρΣ := Σp,h,γ ∩ ΣρΣ . (4.1.6)

Remark 4.1.5. Observe that for any arbitrary but fixed pair of real numbers h ∈ (0, 1) and
γ ∈ (0, 1

2) the set-valued function N ∋ p → Σp,h,γ
ρΣ is monotonically increasing with respect

to the partial order of inclusion of subsets, that is, if p1, p2 ∈ N are such that p1 < p2,
then Σp1,h,γ,ρΣ ⊂ Σp2,h,γ,ρΣ . In particular, if ρΣ > 2, then for any fixed pair of real
numbers h ∈ (0, 1) and γ ∈ (0, 1

2), for all sufficiently large p ∈ N, we have Σp,h,γ
ρΣ = ΣρΣ .

We have the following corollary, which we will prove in Section 4.5.

Corollary 4.1.6. For any given h ∈ (0, 1), γ ∈ (0, 1
2), the following constant is positive

c(p, h, γ, ρΣ) := inf
x∈Σp,h,γ

ρΣ

Bj
ρΣ−2
x RL(0, 0) > 0 . (4.1.7)

Moreover, for all h ∈ (0, 1) and γ ∈ (0, 1
2), for sufficiently large p ∈ N, the constant

c(p, h, γ, ρΣ) =: c(ρΣ) ∈ R>0 is independent of h and γ.

We obtain an analogue of [47, Lemma 12] for arbitrarily large, but strictly smaller
relatively compact subsets of Σ in our setting as an application of the lower bound from
Corollary 4.1.6. We will sketch a proof in Section 4.5.

Lemma 4.1.7. Let h ∈ (0, 1) and γ ∈ (0, 1
2) be arbitrary. Then for sufficiently large
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p ∈ N and all x ∈ Σp,h,γ, we have the estimates

c(ρΣ) (1 + o(1)) p2/ρΣ ⩽ Bp(x, x)

⩽

[
sup
x∈Σ

Bj0
xRL(0, 0)

]
(1 + o(1)) p , (4.1.8)

where both constants in o(1) are uniform in x ∈ Σp,h,γ, as p → ∞.

The derivatives of the Bergman kernel can be written in a coordinate-free fashion by
means of an associated jet-bundle (see Appendix A).

A pointwise asymptotic expansion on the diagonal also exists for derivatives of the
Bergman kernel. In our setting the proof is again analogous to [47, Theorem 10].

Theorem 4.1.8. For all l ∈ N0, the l-th jet of the on-diagonal Bergman kernel has a

pointwise asymptotic expansion

jl[Bp(x, x)]/jl−1[Bp(x, x)] = p(2+l)/rx

 N∑
j=0

cj(x)p−2j/rx

+ O(p−(2N−l−1)/rx) (4.1.9)

for all N ∈ N, in jlEnd(E)/jl−1End(E) ∼= SlT ∗Σ ⊗ End(E) ∼= SlT ∗Σ ⊗ C.

Again the expansion is not uniform with respect to the base point x ∈ Σ, but, similar
to Lemma 4.1.7, we get the following upper-bound on the derivatives of the Bergman
kernel, which is uniform on an arbitrarily large, relatively compact subset of Σ.

Lemma 4.1.9. Let h ∈ (0, 1) and γ ∈ (0, 1
2) be arbitrary. Then for sufficiently large

p ∈ N and all x ∈ Σp,h,γ, we have the upper bound for the l-th jets of the Bergman

kernels

|jl[Bp(x, x)]| ⩽ p
l/3[1 + o(1)]

sup
x∈Σ

∣∣∣jlBj1
xRL/j0

xRL(0, 0)
∣∣∣

Bj1
xRL/j0

xRL(0, 0)

Bp(x, x) , (4.1.10)

where o(1) is uniform in x ∈ Σp,h,γ, as p → ∞.

Similarly to Lemma 4.1.7, we will sketch the proof in Section 4.5.
The method of analytic localization is explained in Section 4.2. The proof of the

asymptotic expansion in Theorem 4.1.1 needs some preparation; all the necessary steps
are explained in the Sections 4.3-4.4 in this chapter.

43



4.2 Analytic Localization Principle

In this section, we explain how to localize the computations for the Bergman kernel
Bp on Σ by the technique of analytic localization. This method was inspired by the
work of Bismut-Lebeau [7] in local index theory, and developed by Dai-Liu-Ma [18] and
Ma-Marinescu [43], [44] to study the Bergman kernels. Now we explain how this method
works for our setting.

In order to apply the method of analytic localization, elliptic estimates and the exis-
tence of a spectral gap for the Kodaira Laplacians □0

p are needed, the latter of which we
have proven in Theorem 3.2.1. The next step is to apply the finite propagation speed for
solutions of the wave equation that is associated to the corresponding Laplace operator.

Near the punctures, where the curvature is strictly positive, the necessary elliptic
estimates are proven by Auvray, Ma and Marinescu (see [1]). Here the finite propagation
speed follows from [43, Theorem D.2.1], as explained in [1, p.32].

Away from the punctures the curvature might vanish; the necessary steps for the finite
propagation speed of the wave equation associated to a model sub-Riemannian Bochner
Laplacian (see [46, (2.11)] operator are explained in [46, Lemma 7], which use sub-elliptic
estimates for this operator [46, (2.14)].

In each of both cases the conclusion is that the Bergman kernel localizes, which allows
us to reduce the problem to its analogue in the corresponding model situations.

We will now move on to explain the mentioned steps in more detail; the following
proposition is from [1, Proposition 4.2].

Proposition 4.2.1. For any m ∈ N, there exists C = C(m,hL) such that for p ≫ 1 and

all s ∈ H2m(Σ, ωΣ, L
p ⊗ E, hp),

∥s∥2
H2m

p
⩽ C

m∑
j=0

p4(m−j)∥(□0
p)js∥2

L2 (4.2.1)

In the proof of this proposition from [1], the authors take (E, hE) to be trivial line
bundle on Σ and assume that (L, hL) is strictly positive on all of Σ. But since neither
the twist by E nor the positivity of (L, hL) away from punctures play any role in the
proof of this estimate, the same model situation near punctures applies in our setting, so
that the arguments in the proof can be applied in the same way to our case.

We will now explain the underlying idea behind analytic localization. For this purpose,
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fix a small ε > 0. Let ψ : R → [0, 1] be a smooth even function such that

ψ(v) =
{ 1 , |v| ⩽ ε/2

0 , |v| ⩾ ε
, (4.2.2)

and define
φ(a) =

(∫ ∞

−∞
ψ(v) dv

)−1
·
∫ ∞

−∞
eivaψ(v) dv (4.2.3)

which is an even function with φ(0) = 1 and lies in the Schwartz space S(R). The
definition of the latter can be found in [43, Definition A.1.5].

For p > 0, set φp(s) := 1[ 1
2

√
C1p1/ρΣ , ∞[ (|s|)φ(s), where C1 is the constant in the spectral

gap of Theorem 3.2.1.
Note that φ and φp are even functions. We consider the bounded linear operators

φ(Dp), φp(Dp) acting on L0,0
2 (Σ, Lp ⊗ E) defined via the functional calculus of □0

p.
In particular, we have

φ(Dp) = 1
2π

∫
R

cos(ξ
√
□0

p)φ̂(ξ)dξ , (4.2.4)

where φ̂ is a multiple of the function ψ defined in (4.2.2). Then for p > 0, such that
C1p

2/ρΣ − C2 ⩾ C1
4 p

2/ρΣ , we have

φ(Dp) −Bp = φp(Dp) . (4.2.5)

Let φp(Dp)(x, x′) denote the Schwartz integral kernel of φp(Dp), which is smooth on
Σ × Σ. Fix 0 < r < e−1 and introduce a smooth function η : Σ → [1,∞) such that
η(z) = | log |z|2| for z ∈ D∗

r near each punctures. Let dist(x, x′) denote the geodesic
distance between two points x, x′. We have the following estimates as an extension of [1,
Proposition 5.3].

Proposition 4.2.2. For ℓ,m ∈ N0 and any real number γ > 1
2 , there exists Cℓ,m,γ ∈ R>0

such that for all x, x′ ∈ Σ and any p ∈ N, we have

∥∥η(x)−γη(x′)−γφp(Dp)(x, x′)
∥∥

Cm(hp) ⩽ Cℓ,m,γp
−ℓ. (4.2.6)

Moreover, for x, x′ ∈ Σ, dist(x, x′) ⩾ ε with ε as in (4.2.2), we have

∣∣η(x)−γη(x′)−γBp(x, x′)
∣∣
Cm(hp) ⩽ Cℓ,m,γp

−ℓ. (4.2.7)

Proof. Since φ is a Schwartz function on R, then for any k ∈ N, there exists Mk ∈ R>0
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such that for all s ∈ R,
|skφ(s)| ⩽Mk . (4.2.8)

This implies
|φp(s)| ⩽Mk( 4

C1
)k/2p−k/ρΣ . (4.2.9)

Combining (4.2.9) with the estimate (4.2.1) and the definition of φp(Dp), we infer that
for any k, ℓ ∈ N, there exists Ck,ℓ ∈ R>0 such that for all s ∈ L0,0

2 (Ω, Lp ⊗ E),

∥φp(Dp)s∥Hk
p
⩽ Ck,ℓp

−ℓ∥s∥L2 . (4.2.10)

Using the above inequality and the Sobolev embeddings [1, Lemma 2.6] for the sections
on Σ and Σ × Σ, the proof of (4.2.6) follows from the same arguments given in the proof
of [1, Proposition 5.3]

Note that by the Lichnerowicz formula (3.1.8), the second order term of □0
p is

1
2∆Λ0,•⊗Lp⊗E . Thus by the finite propagation speed of solutions of the wave equations
associated to the wave operators (see [43, Appendix Theorem D.2.1]) in (4.2.4) and our
assumptions on ψ in (4.2.2), we get that for x ∈ Σ, the support of φ(Dp)(x, ·) is included
in BΣ(x, ε√

2), and φ(Dp)(x, ·) depends only on the restriction of □0
p on BΣ(x, ε√

2). In
particular, if x, x′ ∈ Σ are such that dist(x, x′) ⩾ ε, then

φ(Dp)(x, x′) = 0 , (4.2.11)

so that (4.2.7) follows from (4.2.5) and (4.2.6). This completes our proof.

4.3 Bergman kernel near the punctures

4.3.1 Local model: D∗ - Bergman kernel for the punctured unit disc

We consider the Poincaré punctured unit disc:

(D∗, ωD∗ ,C, hD∗) ,

where hD∗ = | log(|z|2)|hC0 with hC0 the flat Hermitian metric on the trivial line bundle
C → D∗. Let z ∈ D∗ denote the natural coordinate.

For p ∈ N, consider the Hermitian metric hp,D∗ := | log(|z|2)|phC0 on C. Define

Hp
(2)(D

∗) := H0
(2)(D∗, ωD∗ ,C, hp,D∗), (4.3.1)
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to be the space of L2-integrable holomorphic functions on D∗ (with respect to the Her-
mitian metric hp,D∗). We denote by BD∗

p the corresponding Bergman kernel.
By [1, Lemma 3.1], for p ∈ N⩾2, the space of sections in (4.3.1) has orthonormal basis

c(p)
l =

(
lp−1

2π(p− 2)!

) 1
2

zl : l ∈ N

 . (4.3.2)

Then the Bergman kernel BD∗
p is given by

BD∗
p (z1, z2) = | log(|z2|2)p

2π(p− 2)!

∞∑
l=1

lp−1zl
1z

l
2 (4.3.3)

and the corresponding Bergman kernel function by

BD∗
p (z) = | log(|z|2)p

2π(p− 2)!

∞∑
l=1

lp−1|z|2l (4.3.4)

for all z ∈ D∗. The following result is due to [1, Proposition 3.3].

Proposition 4.3.1. For any 0 < a < 1 and any m ⩾ 0, there exists c = c(a) > 0 such

that ∥∥∥∥BD∗
p (z) − p− 1

2π

∥∥∥∥
Cm({a⩽|z|<1},ωD∗ )

= O(e−cp) , (4.3.5)

as p → ∞. More generally, for 0 < a < 1 and 0 < γ < 1
2 , there exists c = c(a, γ) ∈ R>0

such that, as p → ∞,

∥∥∥∥BD∗
p (z) − p− 1

2π

∥∥∥∥
Cm({ae−pγ⩽|z|<1},ωD∗ )

= O(e−cp1−2γ ) . (4.3.6)

We have added ωD∗ in the notation of the norm in the above proposition to emphasize
that we equip the corresponding subsets of D∗ with ωD∗ .

Together with Proposition 4.3.1, we will use the following corollary (see [1, Corollary
3.6]) from the same authors on the supremum value of BD∗

p (z).

Corollary 4.3.2. The supremum over D∗ of the Bergman kernel function BD∗
p on the

punctured unit disc has the asymptotic behavior for growing p ∈ N:

sup
z∈D∗

BD∗
p (z) =

(
p

2π

)3/2

+ O(p) , as p −→ ∞ (4.3.7)
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4.3.2 Bergman kernel expansion near a puncture

For each puncture aj ∈ D, consider an open neighborhood Vj ⊂ Σ around aj as
described in (β), in the sense that Vj := Vj ∪{aj} is an open neighborhood in Σ = Σ∪D.

Fix an arbitrary radius 0 < r < e−1; we view D∗
r as a subset of Vj with the local

complex coordinate zj on Vj . Then we have the identification of geometric data

(Vj , ωΣ, L
p ⊗ E, hp)|D∗

r
∼= (D∗, ωD∗ ,C, hp,D∗)|D∗

r
, (4.3.8)

where the right-hand side is the Poincaré punctured unit disc described in Subsection
4.3.1. Denote by □0

D∗,p the Kodaira Laplace operators and DD∗,p the associated Dirac
operators on the Poincaré punctured unit disc acting on Ω0,0

(2)(D
∗, ωD∗ ,C, hp,D∗). After

restricting both to D∗
r , □0

D∗,p coincides with the operator □0
p.

By [1, Corollary 5.2], □0
D∗,p has a spectral gap: there exists C ′ ∈ R>0 such that for

sufficiently large p ∈ N,
Spec(□0

D∗,p) ⊂ {0} ∪ [C ′p,∞) . (4.3.9)

Therefore we can proceed for □0
D∗,p as in Subsection 4.2: For arbitrary but fixed 0 < ε < r

2 ,
define ψ as in (4.2.2) and the corresponding function φ. Then for p ⩾ 1,

φ(DD∗,p) −BD∗
p = φp(DD∗,p) . (4.3.10)

By the finite propagation speed of solutions of the corresponding wave equation, as
explained in the proof of Proposition 4.2.2, for z, z′ ∈ D∗

r/2, we have

φ(DD∗,p)(z, z′) = φ(Dp)(z, z′) . (4.3.11)

This implies that on D∗
r/2 × D∗

r/2, we have

Bp(z, z′) −BD∗
p (z, z′) = φp(DD∗,p)(z, z′) − φp(Dp)(z, z′) . (4.3.12)

Now both terms on the right-hand side obey the estimate from (4.2.6) on D∗
r/2 × D∗

r/2.
Since the problem is local in nature, we can proceed as in [1, Section 6], so that the
results of [1, Theorems 1.1 & 1.2] still hold in our setting. We thus can conclude the
following Theorems.

Theorem 4.3.3. Fix any ℓ,m ∈ N0. For any α ∈ R>0, there exists a constant C =

48



C(ℓ,m, α) ∈ R>0 such that on D∗
r/2 × D∗

r/2

|Bp(z, z′) −BD∗
p (z, z′)|Cm ⩽ Cp−ℓ| log(|z|2)|−α| log(|z′|2)|−α . (4.3.13)

Moreover, for every δ ∈ R>0, there exists a constant C ′ = C ′(ℓ,m, δ) ∈ R>0, such that

for all p ∈ N and zj ∈ D∗
r/2,

|Bp −BD∗
p |Cm(zj) ⩽ C ′p−ℓ| log(|zj |2)|−δ . (4.3.14)

Furthermore, the same authors Auvray, Ma and Marinescu obtain estimates on the
behavior of the quotients of Bergman kernels, which also apply in our setting by the same
argument as above.

Theorem 4.3.4. Let Σ be a punctured Riemann surface and let (L, hL) (E, hE) be Her-

mitian holomorphic line bundles on Σ such that conditions (α) and (β) are satisfied.

Then

(i) for any ℓ ∈ N there exists C ∈ R>0, such that for any p ∈ N we have

sup
z∈V1∪...∪VN

∥∥∥∥∥ Bp

BD∗
p

(z) − 1
∥∥∥∥∥

C0(hp)
⩽ Cp−ℓ . (4.3.15)

(ii) for all k ∈ N, D1, . . . , Dk ∈
{

∂
∂z ,

∂
∂z

}
and any ℓ ∈ N there exists Cℓ ∈ R>0, such

that for any p ∈ N we have

sup
z∈V 1∪...∪V N

∥∥∥∥∥(D1 · · ·Dk) Bp

BD∗
p

(z)
∥∥∥∥∥

C0(hp)
⩽ Cℓ p

−ℓ . (4.3.16)

The proofs for the statements in Theorem 4.3.4 about the quotients are analogous to
the proofs of [2, Theorems 1.2 & 1.3].

We have described the behavior of BD∗
p in Subsection 4.3. Together with Theorem

4.3.3, we infer the existence of an asymptotic expansion of Bp on D∗
r/2 and hence on small

punctured discs around the punctures, as p → ∞.
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4.4 Bergman kernel away from the punctures

4.4.1 Local model: C - Model Dirac and Kodaira Laplacian operators,
Model Bergman kernel

Alongside the Kodaira Laplacians of our interest, we need to introduce certain model
operators that plays an important role in our calculations. We always equip R2 with the
standard Euclidean metric and the standard complex structure such that R2 ≃ C. Let
z = x+ iy ∈ C denote the usual complex coordinate, and let {e1 := ∂

∂x , e2 = ∂
∂y } be the

standard Euclidean basis of R2. Now fix an even integer ρ′ ⩾ 2.
Let R be a non-trivial (1, 1)-form on R2 whose coefficients with respect to the frame

dz∧dz = −2 i dx∧dy are given by a non-negative real homogeneous polynomial of degree
ρ′ − 2, for some ρ′ ∈ N⩾2.

We define a smooth 1-form aR ∈ Ω1(R2) by

aR
v1(v2) :=

∫ 1

0
Rtv1(v2, tv1) dt , (4.4.1)

where v1 ∈ R2 and v2 ∈ Tv1R2 ≃ R2. Set

∇R = d − aR ; (4.4.2)

it is a unitary connection on the trivial Hermitian line bundle C over R2. Then by con-
struction the curvature form of ∇R is exactly given by R. Let ∆R denote the associated
Bochner Laplacian.

Take ∂ to be the standard ∂-operator on R2 ∼= C; then the (0, 1) part of the connection
∇R is ∂C := ∂ −

(
aR
)0,1

. Let ∂∗
C denote the formal adjoint of ∂C with respect to the

standard inner product on R2.
The following operators are called the model Dirac and model Kodaira Laplace oper-

ators on R2, associated to R:

DR :=
√

2
(
∂C + ∂∗

C

)
□R := 1

2 (DR)2 , (4.4.3)

This model Kodaira Laplacian is related to the model Bochner Laplacian by the Lich-
nerowicz formula (compare to (3.1.8)):

□R = 1
2∆R + 1

2c (R) (4.4.4)
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with
c (R) = R(e1, e2)c(e1)c(e2) . (4.4.5)

We identify ∆R and □R with their unique self-adjoint extensions acting on the L2-sections
over R2.

For the restriction □0
R of □R onto (0, 0)-sections, in [47, Proposition 25], the authors

proved that there exists a constant cR ∈ R>0 such that

Spec(□0
R) ⊂ {0} ∪ [cR,∞) . (4.4.6)

Consider the following first-order differential operators

b = −2 ∂
∂z

+ 1
ρ′ iR(e1, e2)z , b+ = 2 ∂

∂z
+ 1
ρ′ iR(e1, e2)z . (4.4.7)

Then we have
□0

R = 1
2bb

+ . (4.4.8)

and, moreover, for s ∈ L0,0
2 (R2,C), s ∈ ker□0

R if and only if b+s ≡ 0.
Consider the L2-orthogonal projection

BR : L0,0
2 (R2,C) −→ ker□0

R . (4.4.9)

For z, z′ ∈ R2, let BR(z, z′) denote the Schwartz integral kernel of the above projection,
which is a smooth function on R2 × R2.

The following lemma was already known in [47, Theorem 1], which can be understood
as a consequence of the lower bound for the Bergman kernel that was proved by Catlin
[14] by considering local models. Here we also give a direct proof in order to shed light
on the space ker□0

R.

Lemma 4.4.1. For R as above, BR is an even function, i.e. for all z, z′ ∈ R2 we have

BR(z, z′) = BR(−z,−z′). Moreover,

BR(0, 0) > 0. (4.4.10)

Furthermore, the quantity BR(0, 0) depends smoothly on R.

In scope of the following Corollary, consider the finite dimensional vector space that
is spanned by the homogeneous monomials {zαzβ}α,β∈N2,0⩽|α|,|β|⩽ρ′−2, equipped with
the Euclidean norm which we simply denote by | · |. This vector space is isomorphic
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to the complex vector space {R = p(z, z) dz ∧ dz : deg(p) = ρ′ − 2}; we set |R| =
|p(z, z) dz ∧ dz| := |p(z, z)|.

Corollary 4.4.2. inf |R|=1B
R(0, 0) > 0.

Proof. Let V be the vector space from above and let V1 := V ∩ {|p| = 1} be the subset
of vectors of unit length and H := V ∩ {p : p(x) ⩾ 0 ∀x} the half plane with boundary,
as well as H1 := H ∩ {|p| = 1} the portion of the unit circle that lies in H. Clearly, H1

is a compact subset of V1. Now by Lemma 4.4.1, the function R 7→ BR(0, 0) is smooth,
in particular continuous. Then inf |R|=1B

R(0, 0) = min|R|=1B
R(0, 0) and the latter is

positive, again by Lemma 4.4.1.

Proof of Lemma 4.4.1. Set ω = 1√
2(e1 − ie2). Then by assumption

ψ(x, y) := R(ω, ω) = iR(e1, e2) (4.4.11)

is a nonnegative real homogenous polynomial in x, y of degree ρ′ − 2. In particular, it
is an even function in (x, y) ∈ R2. Hence, BR is an even function. Let Ψ(x, y) be a
homogeneous polynomial in x, y of degree ρ′ such that

∂Ψ
∂z

(x, y) = 1
ρ′ψ(x, y)z . (4.4.12)

Then for any fixed λ ∈ C, Ψ + λzρ′ also satisfies (4.4.12). Moreover, we have

−1
2∆R2 Re(Ψ) = ψ(x, y) ⩾ 0 , (4.4.13)

where ∆R2 = −( ∂2

∂x2 + ∂2

∂y2 ). Then the real part φ := Re(Ψ) is a subharmonic, nonhar-
monic real homogenous polynomial in x, y of degree ρ′.

Now note that if g is an entire function on C such that |g|2e−φ is integrable on C

(with respect to the standard Lebesgue measure), then

ge− 1
2 Ψ ∈ ker□0

R . (4.4.14)

This way, we can translate our problem at hand to the study the weighted Bergman kernel
on C associated to the real subharmonic function 1

2φ as in [16]. Now by [16, Proposition
1.10], ker□0

R is an infinite dimensional subspace of L0,0
2 (R2,C). In particular, there exists

a nontrivial entire function g on C such that ge− 1
2 Ψ ∈ ker□0

R. If g(0) ̸= 0, then ge− 1
2 Ψ

does not vanish at z = 0. On the other hand, if g(0) = 0, we can write g(z) = zkh(z),
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where k ∈ N and h is some entire function with h(0) ̸= 0. Consequently, the integrability
of |g|2e−φ implies the integrability of |h|2e−φ, so that he− 1

2 Ψ ∈ ker□0
R and it does not

vanish at the center point z = 0. This implies that

BR(0, 0) > 0 (4.4.15)

by the variational characterization (2.7.5) of the Bergman kernel.
Analogous to [43, (4.2.22)], by the spectral gap (4.4.6), for t > 0, we have the identity

exp(−t□0
R) −BR =

∫ ∞

t
□0

R exp(−s□0
R) ds . (4.4.16)

Then
BR(0, 0) = exp(−t□0

R)(0, 0) −
∫ ∞

t
{□0

R exp(−s□0
R)}(0, 0) ds . (4.4.17)

Now we replace R by a smooth family of non-trivial (1, 1)-forms on R2 whose coefficients
with respect to dz ∧ dz are given by nonnegative real homogeneous polynomials in x, y

of degree ρ′ − 2. Then locally in the parameter space for this family of (1, 1)-forms,
the spectral gaps cR in (4.4.6), as R varies, admit a uniform lower bound c > 0 (see
[47, Appendix]). Combining with the smooth dependence of the heat kernels of □0

R

on R (see Duhamel’s formula [5, Theorem 2.48]),
∫∞

t {□0
R exp(−s□0

R)}(0, 0)ds depends
continuously on R for any given t > 0. As a consequence of (4.4.17), we conclude that
BR(0, 0) depends smoothly on R. This completes our proof of the lemma.

Example 4.4.3. We consider a simple but nontrivial example R(x, y) = y2 dz ∧ dz,
ρ′ = 4, then we can rewrite it as

R(x, y) = −2 iy2 dx ∧ dy. (4.4.18)

Then
aR

z :=
∫ 1

0
t3(2 iy2x dy − 2 iy3 dx)dt = i

2y
2(x dy − y dx), (4.4.19)

and
(aR)0,1

z = −1
4y

2z dz. (4.4.20)

An explicit computation shows that ∂∗
C = −2ι ∂

∂z

∂
∂z + 1

2y
2zι ∂

∂z
, and that

□R = 1
2∆R2 − 1

2y
2(z ∂

∂z
− z

∂

∂z
) + i

2xy

+ 1
8y

4|z|2 − y2 + 2y2 dz ∧ ι ∂
∂z
. (4.4.21)
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Note that the differential operator

−1
2y

2(z ∂
∂z

− z
∂

∂z
) + i

2xy = i
2y

2(y ∂
∂x

− x
∂

∂y
) + i

2xy (4.4.22)

is formally self-adjoint with respect to the standard L2-metric on the functions over R2.
In this example, we have

b = −2 ∂
∂z

+ 1
2y

2z , b+ = 2 ∂
∂z

+ 1
2y

2z . (4.4.23)

Then
□0

R = 1
2bb

+ . (4.4.24)

Note that
Re{|z|4 − |z|2z2 − 1

3 |z|2z2 + 1
2z

4} ⩾
1
24x

4 + 1
6y

4 . (4.4.25)

Consider the following L2-function on C

f(z) = exp
(

− 1
16

{
|z|4 − |z|2z2 − 1

3 |z|2z2 + 1
2z

4
})

. (4.4.26)

We have f(0) = 1, and f ∈ ker□0
R. Moreover, we have

BR(0, 0) ⩾ 1
∥f∥L2

. (4.4.27)

The weighted Bergman kernel has been well studied, in particular, in [16, Theorem
1.13], an upper bound on BR(z, z′) was obtained. As a consequence, we have the following
estimate.

Proposition 4.4.4. There exists a smooth positive function C ∋ z 7→ α(z) > 0 and a

constant δ ∈ (0, 1
4 ] such that for all z ∈ R2

∫
z′∈B(z,α(z))

ψ(z′) dV (z′) ∈ [1 − δ, 1 + δ] . (4.4.28)

Then there exist constants C > 0, c > 0 such that for all z, z′ ∈ R2

|BR(z, z′)| ⩽ C

α(z)2 exp(−c|z − z′|) . (4.4.29)
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4.4.2 Bergman kernel expansion away from the punctures

In this section, we explain how to apply the method of analytic localization described
in 4.2 on small open neighborhoods of points x ∈ Σ, i.e. away from the punctures.
Similar to 4.3.3, we wish to compare the global Bergman kernel Bp to a model Bergman
kernel of a suitable local model and estimate its differences for growing p. We will use a
different local model than the punctured unit disc for points near the punctures.

We start by discussing a construction of a convenient coordinate system near an
arbitrary fixed point in Σ.

4.4.2.1 Exponential map and normal coordinates

Note that (Σ, gT Σ) is complete and hence by the Hopf-Rinow theorem geodesically
complete. Thus the exponential map

TxΣ ∋ Z 7→ expΣ
x (Z) ∈ Σ

is well-defined for all x ∈ Σ. For an open subset U ⊂ Σ, the real number

injU := inf
x∈U

sup{ε > 0 : expU
x is a diffeomorphism of BTxΣ(0, ε) onto its image in U},

(4.4.30)
is called the injectivity radius of U . If U contains any punctures, we always have injU = 0
since the injective radius of a point x ∈ U goes to 0 as x approaches a puncture in U .
On the other hand, if U is relatively compact in Σ, then injU > 0.

Fix a point x0 ∈ Σ away from the punctures and fix an open neighborhood U0 ⊂ Σ
of x0 which is relatively compact in Σ. Hence injU0 > 0. Let {e1, e2}, {e}, and {f} be
orthonormal bases for Tx0Σ, Ex0 and Lx0 respectively, and let {w = 1√

2(e1 − ie2)} be an
orthonormal basis for T (1,0)

x0 Σ.
Fix a positive real number 0 < ε < injU0/4 such that the vanishing order of RL on

BΣ(x0, 4ε) is at most ρx0 − 2. Since ε does not exceed the injectivity radius of U0, the
exponential map

Tx0Σ ⊃ BTx0 Σ(0, 4ε) ∋ Z 7→ expΣ
x0(Z) ∈ BΣ(x0, 4ε) ⊂ Σ (4.4.31)

is a diffeomorphism of open balls; it yields a local coordinate system in Tx0Σ:

R2 ∋ (Z1, Z2) 7−→ Z1e1 + Z2e2 ∈ Tx0Σ , (4.4.32)
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and thus a local chart near x0, called the normal coordinate system (centered at x0).

4.4.2.2 Local trivialization of bundles and local description of curvature

We always identify BTx0 Σ(0, 4ε) with BΣ(x0, 4ε) via (4.4.31). For Z ∈ BTx0 Σ(0, 4ε) we
identify LZ , EZ and Λ•(T ∗(0,1)

Z Σ) to Lx0 , Ex0 and Λ•(T ∗(0,1)
x0 Σ), respectively, by parallel

transport with respect to ∇L,∇E and ∇Λ•(T ∗(0,1)Σ) along γZ : [0, 1] ∋ u 7→ expΣ
x0(uZ).

This way, we trivialize the bundles L, E, Λ•(T ∗(0,1)Σ) near x0. In particular, we will still
denote by {e1, e2}, {e}, and {f} the respective orthonormal smooth frames of the vector
bundles on point Z, defined as the parallel transports as above of the vectors {e1, e2},
{e}, and {f} from x0.

With the above local trivializations, we write the connection ∇Λ0,•⊗Lp⊗E as follows

∇Λ0,•⊗Lp⊗E = d −
(
aΛ0,• + paL + aE

)
(4.4.33)

where d denotes the ordinary differential operator, and aΛ0,•
, aE , aL are respectively

the local connection 1-forms of ∇Λ0,•
,∇E ,∇L in this trivialization. Note that these

connection 1-forms are purely imaginary.
In coordinate (Z1, Z2), we write

aL =
2∑

i=1
aL

i dZi. (4.4.34)

Let RL
ij denote the coefficients of the curvature form RL with respect to the (local) frame

dZi ∧ dZj , i, j = 1, 2. We have

RL
11 = RL

22 ≡ 0 , RL
12 = −RL

21 . (4.4.35)

Then we can write
RL

Z = RL
12,Z dZ1 ∧ dZ2 (4.4.36)

Similarly, we define RΛ0,•
ij,Z and RE

ij,Z . Moreover, we have the following relations for Z ∈

BTx0 Σ(0, ε)

aL
i,Z =

2∑
j=1

∫ 1

0
tZjRL

ij,tZdt . (4.4.37)

The analogous identities also hold for aΛ0,•
, aE .

On the other hand, in these normal coordinates, we find that the curvature RL of ∇L
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has the following Taylor expansion at the origin

RL
Z =

∑
|α|=ρx0 −2

RL
12;αZ

αdZ1 ∧ dZ2 + O(|Z|ρx0 −1) =: RL
Z,0 + O(|Z|ρx0 −1) , (4.4.38)

where the (dZ1∧dZ2)-coefficient of RL
Z,0 is the product of − i and a positive homogeneous

even polynomial of order ρx0 − 2 in Z.

4.4.2.3 Local model for Bp

Now we construct the local model for Bp near the point x0. For this purpose, set
Σ0 := Tx0Σ ∼= R2, and as before (see (4.4.32)) let Z = (Z1, Z2) denote the natural
coordinate on Σ0. Denote by (L0, h0), (E0, h

E0) the trivial line bundles on Σ0; their
fibers are exactly (Lx0 , hx0) and (Ex0 , h

E
x0), respectively. We equip Σ0 with J0 the almost

complex structure on Σ0 that coincides with the pull-back of the complex structure J on
Σ by the exponential map (4.4.31) on BΣ(x0, 2ε), and equals to Jx0 outside BΣ(x0, 4ε). In
a similar spirit, let gT Σ0 denote the Riemannian metric on Σ0 that is compatible with J0

and that coincides with Riemannian metric gT Σ on BΣ(x0, 2ε), and equals to gT Σ
x0 outside

BΣ(x0, 4ε). It follows immediately that J0 is integrable and the triplet (Σ0, J0, g
T Σ0)

becomes a Riemann surface equipped with a Kähler form, which we denote by ωΣ0 , that
is induced by gT Σ0 .

Let T ∗(0,1)Σ0 denote the anti-holomorphic cotangent bundle of (Σ0, J0), and let ∇̃Λ0,•

denote the Hermitian connection on Λ•(T ∗(0,1)Σ0) associated with the Levi-Civita connec-
tion of (TΣ0, g

T Σ0). Note that on BTx0 Σ(0, 2ε), the pair (Λ•(T ∗(0,1)Σ0), ∇̃Λ0,•) coincides
with (Λ•(T ∗(0,1)Σ),∇Λ•(T ∗(0,1)Σ)) via the identification (4.4.31), and outside BTx0 Σ(0, 4ε),
the connection ∇̃Λ0,• is given by the trivial connection on the trivial bundle Λ•(T ∗(0,1)

x0 Σ).
We can always trivialize T ∗(0,1)Σ0 by the parallel transport along the geodesic rays start-
ing at 0, so that for Z ∈ Σ0, we have the identification of fibers T ∗(0,1)

Z Σ0 ≃ T
∗(0,1)
x0 Σ.

4.4.2.4 Modified Dirac and Kodaira Laplace operators

Fix an even smooth function χ ∈ C∞(R, [0, 1]) with χ = 1 on [−2, 2] and suppχ ⊂

[−4, 4]. We defined a nonnegative curvature form by modifying RL as follows, for Z ∈ Σ0,

R̃L0
Z := χ

( |Z|
ε

)
RL

Z +
(

1 − χ

( |Z|
ε

))
RL

0,Z , (4.4.39)
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where RL
0 is defined in (4.4.38). On Σ0, define a 1-form (compare to (4.4.34) and (4.4.37)):

ãL0 =
2∑

i=1
ãL0

i dZi , ãL0
i (Z) :=

∫ 1

0
tZjR̃L0

ij,tZdt . (4.4.40)

Then we set

∇̃E0 = d − χ

( |Z|
ε

)
aE ,

∇̃L0 = d − ãL0 , (4.4.41)

which are Hermitian connections on the line bundles L0 and E0, respectively. Moreover,
the curvature form of ∇̃L0 is exactly R̃L0 .

As in (1.1.5), we define for Z ∈ Σ0,

ρ̃Z := 2 + ordZ(R̃L0) . (4.4.42)

Since both the vanishing order of RL on BΣ(x0, 4ε) and the vanishing order of RL
0 on Σ0

are at most ρx0 − 2, we get
ρ̃Z ⩽ ρx0 . (4.4.43)

In particular, ρ̃0 = ρx0 , and if R̃L0(Z) ̸= 0, we have ρ̃Z = 2.
We now define Dirac and Kodaira Laplace operators on Σ0. Note that we can either

use the formulas in (4.4.3), or equivalently use the connections ∇̃Λ0,• , ∇̃L0 , ∇̃E0 to define
the Dirac operator D̃p by (3.1.6). Then we have the operators

D̃p : Ω0,•
c (Σ0, L

p
0 ⊗ E0) −→ Ω0,•

c (Σ0, L
p
0 ⊗ E0) ,

□̃p := 1
2(D̃p)2 : Ω0,•

c (Σ0, L
p
0 ⊗ E0) −→ Ω0,•

c (Σ0, L
p
0 ⊗ E0) . (4.4.44)

The above operators each extend to a respective unique self-adjoint operator acting on
L2-sections over Σ0; we will identify the operators in (4.4.44) with their respective ex-
tension. By construction, the differential operators D̃p and □̃p coincide with Dp and □p,
respectively, on BTx0 Σ(0, 2ε) ≃ BΣ(x0, 2ε).

Let ∆̃Λ0,•⊗Lp
0⊗E0 denote the Bochner Laplacian associated to the connection ∇̃Λ0,•⊗Lp

0⊗E0 .
Analogous to the Lichnerowicz formula from (3.1.8), we have

□̃p = 1
2∆̃Λ0,•⊗Lp

0⊗E0 + rΣ0

4 ω∗ ∧ ιω + p(R̃L0(ω, ω)ω∗ ∧ ιω − 1
2R̃

L0(ω, ω))

+ (R̃E0(ω, ω)ω∗ ∧ ιω − 1
2R̃

E0(ω, ω)) , (4.4.45)

58



where ω denotes a local frame of T ∗(1,0)Σ0 with |ω| = 1, the function rΣ0 is the scalar
curvature of (Σ0, g

T Σ0), and R̃E0 is the curvature form of ∇̃E0 . Moreover, rΣ0 , RE0

vanishes identically outside of the region BTx0 Σ(0, 4ε).
By (4.4.45), □̃p preserves the degree of Λ•(T ∗(0,1)Σ). For j = 0, 1, let □̃j

p denote
the restriction of □̃p onto Ω0,j

(2)(Σ0, L
p
0 ⊗ E0). For ∆̃Λ0,•⊗Lp

0⊗E0 , analogous to (3.2.4) by
the same sub-elliptic estimate in [47, Proposition 6], we get that there exist constants
C ′

1, C
′
2 ∈ R>0, such that the spectra of □̃0

p and □̃1
p satisfy

Spec(□̃0
p) ⊂ {0} ∪ [C ′

1p
2/ρx0 − C ′

2,∞) ,

Spec(□̃1
p) ⊂ [C ′

1p
2/ρx0 − C ′

2,∞) . (4.4.46)

Set
H0

(2)(Σ0, L
p
0 ⊗ E0) := ker(□̃0

p) (4.4.47)

and consider the orthogonal projection

B̃x0,p : L0,0
2 (Σ0, L

p
0 ⊗ E0) → H0

(2)(Σ0, L
p
0 ⊗ E0) . (4.4.48)

Let B̃x0,p(Z,Z ′) denote the Schwartz kernel of B̃x0,p with respect to the volume form
induced by gT Σ0 , which is smooth on Σ0 × Σ0.

We can now proceed as in Section 4.2. In particular, by Proposition 4.2.2, we get
that for all ℓ,m ∈ N0 and any γ > 1

2 , there exists Cℓ,m ∈ R>0 such that for any p ∈ N,
we have

∥∥∥Bp(x, x′) − B̃x0,p(x, x′)
∥∥∥

Cm(BΣ(x0,ε)×BΣ(x0,ε),hp)
⩽ Cℓ,m,γp

−ℓ. (4.4.49)

In a shorter notation, we will abbreviate the above statement by writing

Bp − B̃x0,p = O(p−∞) , on BΣ(x0, ε) × BΣ(x0, ε) . (4.4.50)

4.5 Proofs of Bergman kernel estimates

In this section, we present proof to Corollaries 4.1.3 and 4.1.6 and to Lemmas 4.1.7
and 4.1.9.

We begin by proving Corollary 4.1.3.

Proof of Corollary 4.1.3. For x ∈ Σ near a puncture, (4.3.14), together with Proposition
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4.3.1 and Corollary 4.3.2 implies that

sup
|x|⩽r⩽e−1

|Bp(x)|hp =
(
p

2π

)3/2

+ O(p) as p → ∞ . (4.5.1)

By [43, Theorems 6.1.1, 6.2.3] the following asymptotic expansion holds for any compact
set K ⊂ Σ and in any Cm-topology,

1
p
Bp(x) = 1

2π +
∞∑

j=1
bj(x)p−j as p → ∞ . (4.5.2)

Now the variational characterization of the Bergman kernel and (4.5.1) conclude the
proof.

Proof of Corollary 4.1.6. We prove (4.1.7) in two separate cases. Suppose h ∈ (0, 1) and
γ ∈ (0, 1

2) are arbitrary, but fixed.

(ρΣ = 2) In this case, the order of vanishing of the curvature is 0 on Σ, hence RL is strictly
positive on Σ, i.e. we have ΣρΣ = Σ and thus, Σp,h,γ

ρΣ = Σp,h,γ for all p ∈ N. Note
that for any fixed p ∈ N, the set Σp,h,γ ⊂ Σ is a relatively compact. Thus the
number c(p, h, γ, 2) is a positive constant by Corollary 4.4.2.

(ρΣ > 2) For all p ∈ N, we have Σp,h,γ
ρΣ = ΣρΣ . The set ΣρΣ ⊂ Σ is relatively compact.

Thus, there exists a constant c(ρΣ) ∈ R>0 independent of p ∈ N (and even of h and
γ), such that c(p, h, γ, ρΣ) = c(ρΣ). Hence, c(p, h, γ, ρΣ) is a positive constant by
Corollary 4.4.2.

This proves (4.1.7).
For the second claim, first recall that the local model near any of the punctures is

the same. Hence, it suffices to look at what happens near a single puncture aj , for some
1 ⩽ j ⩽ N , since from this we can conclude the same behavior of the Bergman kernel.

Observe that by assumption (β)(ii), the curvature RL does not vanish in the open
neighborhood V j of a puncture aj , for any 1 ⩽ j ⩽ N . Hence there exists p0 ∈ N,
such that D∗(aj , he

−p0γ ) ⊂ V j and the value of Bj
ρΣ−2
x RL(0, 0) is constant for all x ∈

D∗(aj , he
−p0γ ).

Finally, the last argument together with (4.1.7), and Remark 4.1.5 imply, that for all
sufficiently large p ∈ N, the constant c(p, h, γ, ρΣ) =: c(ρΣ) ∈ R>0 is independent of h
and γ. This concludes the proof.

We now sketch a proof of Lemma 4.1.7. The proof mostly follows the same arguments
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as the proof of [47, Lemma 12], with a small adjustment in the beginning on the estimate
from below.

Proof of Lemma 4.1.7. At first, as in [47, (3.30)], note that Theorem 4.1.1 implies that
for all x ∈ Σ, there exists constants Cρx , cx ∈ R>0, such that

Bp(x, x) ⩾ Cρx

(
|jρx−2RL|p

)2/ρx

− cx , (4.5.3)

with cx := c
(
|jρx−2RL(x)|−1

)
for some c ∈ R>0 and Cρx := BRx(0, 0) is the constant

from (4.4.10), which is positive by Lemma 4.4.1; here, BRx is the model Berman kernel
for the local model centered at x ∈ Σ.

Now fix any pair of real numbers h ∈ (0, 1) and γ ∈ (0, 1
2). For the rest of the proof,

we take any x ∈ Σp,h,γ for some arbitrary p ∈ N.
Then, as argued in the proof of [47, Lemma 12], for any ε > 0, there exists a uniform

constant cε ∈ R>0 that only depends on ε and ∥RL∥CρΣ , such that

|jρx−2RL(x)| ⩾ (1 − ε)|jρx−2RL(x)| , (4.5.4)

for all x ∈ Bcε|jρx−2RL|(x). The next step is to dissect the set Bcε|jρx−2RL|(x) in terms
of different orders of vanishing of the curvature and use the model Kodaira Laplacian
□̃p near x in terms of geodesic coordinates centered at x and rescaling at different levels
centered at x, to successively give estimates for Bp(x, x) from below, in terms of the values
of the model Bergman kernel Bjρx−2

x RL(0, 0) at the origin (0, 0). The reader can follow
the arguments in the authors proof of [47, Lemma 12] for the rescalings and estimations
in the associated regions in Bcε|jρx−2RL|(x).

Then, since Σp,h,γ is a relatively compact subset of Σ, there exists a finite set of points
{x1}m

i=1 ⊂ Σp,h,γ , such that the balls Bcε|jρxi −2RL|(xi) cover the whole set Σp,h,γ . Hence,
there exists a uniform constant ch,γ,ε ∈ R>0, such that

Bp(x, x) ⩾ (1 − ε)

 inf
x∈Σp,h,γ

ρΣ

Bj
ρΣ−2
x RL(0, 0)

 p2/ρΣ − ch,γ,ε (4.5.5)

for all x ∈ Σp,h,γ and all ε > 0. By Corollary 4.1.6, we conclude that for all sufficiently
large p ∈ N,

Bp(x, x) ⩾ (1 + o(1))c(ρΣ)p2/ρΣ (4.5.6)

for all x ∈ Σp,h,γ and the o(1) term is uniform in x ∈ Σp,h,γ , as p → ∞. The proof of the
upper bound is the same as the proof of the authors upper bound in [47, Lemma 12].
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We conclude with a sketch of the proof of Lemma 4.1.9.

Proof of Lemma 4.1.9. We follow the arguments from the authors related result in [47,
Lemma 13]. As in the proof of their related result, the arguments that are needed for an
the upper bound (4.1.10) for the l-th jets of of Bergman kernels follow from the proof of
Lemma 4.1.7.

Fix any pair of real numbers h ∈ (0, 1) and γ ∈ (0, 1
2). any pair of real numbers

h ∈ (0, 1) and γ ∈ (0, 1
2) and let x ∈ Σp,h,γ for some arbitrary p ∈ N.

Let ε > 0, then as in (4.5.4), there exists a uniform constant cε ∈ R>0 that only
depends on ε and ∥RL∥CρΣ , such that

|jρx−2RL(x)| ⩾ (1 − ε)|jρx−2RL(x)| , (4.5.7)

for all x ∈ Bcε|jρx−2RL|(x). As in the proof of Lemma 4.1.7 the same stepwise rescaling
procedure and compactness argument imply, together with Corollary 4.1.6, that there
exists ph,γ ∈ N, such that for all x ∈ Σp,h,γ and all α ∈ N2

0, there exists a uniform
constant ch,γ,ε ∈ R>0, such that

| ∂αBp(x, x)|
Bp(x, x) ⩽ p

|α|/3(1 − ε)

sup
x∈Σ

∣∣∣j|α|Bj1
xRL/j0

xRL(0, 0)
∣∣∣

Bj1
xRL/j0

xRL(0, 0)

+ ch,γ,ε , (4.5.8)

for all ε > 0. This completes the proof.
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5. Kodaira map, Tian’s theorem and con-

vergence of induced Fubini-Study cur-

rents

5.1 Hyperplane line bundles and Fubini-Study metrics

For a complex vector space V we denote by V ∗ its dual and by P(V ∗) the projective
space associated to V ∗. We define the tautological line bundle on P(V ∗) as

O(−1) = {(l, f) ∈ P(V ∗) × V ∗ : f ∈ l ⊂ V ∗} (5.1.1)

and by (O(−1))∗ = O(1) its dual, the hyperplane line bundle on P(V ∗). As a sub-bundle
of the trivial Hermitian line bundle V ∗ on P(V ∗), O(−1) inherits a Hermitian metric
hO(−1) by restriction of the canonical Hermitian metric on V ∗. Then hO(−1) induces a
dual Hermitian metric hO(1) on O(1).

Given a vector v ∈ V , we define a linear map σv(f) := (f, v) = f(v) ∈ C via the
natural pairing between V and its algebraic dual V ∗. The norm with respect to the
Hermitian metric hO(1) is then given by

|σv([f ])|2hO(1) = |(f, v)|2
|f |hO(1)

for f ∈ V ∗ \ {0} , [f ] ∈ P(V ∗) , (5.1.2)

where the expression in the enumerator is the standard Euclidean norm of (f, v).

In light of the above background, we define the (Kähler form of the) Fubini-Study
metric on P(V ∗) as

ωFS = i
2πR

O(1) = − i
2π ∂∂ log |σs|2hO(1) , (5.1.3)

where RO(1) is the curvature of the Chern connection of hO(1), for all f ∈ V ∗ \ {0}.
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Example 5.1.1. A common case is V ∗ ∼= Cn, such that P(V ) ∼= CPn−1, for any n ∈ N⩾2.
The tautological line bundle in this case is given by

O(−1) = {([u], v) ∈ CPn−1 × Cn : v ∈ [u] = Cu ⊂ CPn−1} ; (5.1.4)

the projection π : O(−1) → CPn−1 is defined by π([u], v) = [u]. The usual open covering
(Ui)n−1

i=1 of CPn−1 is given via the open subsets

Ui = {[z0 : . . . : zn−1] ∈ CPn−1 : zi ̸= 0} (5.1.5)

with smooth charts

τi : Ui × C −→ π−1(Ui) , ([u], z) 7−→
(

[u], z
ui
u

)
(5.1.6)

and the definition of this map is by evidently independent of the choice of representative
u of the class [u]. The smooth inverse is τ−1

i ([u], v) = ([u], vi). This yields transition
functions

fij : Ui ∩ Uj −→ C \ {0} [u] 7−→ uj

ui
(5.1.7)

which are holomorphic. Now the adjoint bundle O(1) = O(−1)∗ over Cn is defined by
the family of transition functions (f̃ij)i,j for f̃ij := f−1

ij .
The Fubini-Study metric takes the form

ωn
FS =

( i
2

)n

n! det(gij) dz1 ∧ dz1 ∧ . . . ∧ dzn ∧ dzn , (5.1.8)

where,
gij := (1 + |z|2)δij − zizj

(1 + |z|2)2 (5.1.9)

in the local coordinate z ∈ Ui for any Ui
∼= C and δij is the Kronecker-delta. Observe that

for any invertible complex n×n matrix A and complex vectors u, v ∈ Cn, the relation of
determinants

det(A+ uvt) = (1 + vtA−1u) det(A) (5.1.10)

holds, where vt is the transpose of v. Equation (5.1.10) implies that locally,

det(gij) = 1
(1 + |z|2)n+1 . (5.1.11)
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Thus, for any Ui,

∫
Ui

ωn
FS =

∫
Cn+1

( i
2

)n

n! det(gij) dz1 ∧ dz1 ∧ . . . ∧ dzn ∧ dzn

=
( i

2

)n

n!(−2 i)nvol(S2n−1)
∫ ∞

0

r2n−1

(1 + r2)n+1 dr

= πn2n
∫ π

2

0
sin2n−1 θ cos θdθ = πn

⇒
∫
CPn

ωn
FS = πn , (5.1.12)

where S2n−1 ⊂ Cn is the unit sphere. The last implication holds because the complement
U∁

i ⊂ CPn−1 ∼= Cn−1 ∪ {0} is a null set with respect to the Lebesgue measure in Cn−1

that we have integrated against, for all Ui.

In Chapter 6, we will also consider Fubini-Study metrics on P(V ), which we will also
denote by ωFS; these are defined in the same way as the metrics in (5.1.3). To mitigate
confusion, we will highlight which Fubini-Study metric is meant in the appropriate place,
if necessary.

The following point of view will simplify the definition of the Kodaira map, which
we will discuss in the following sections of this chapter: Recall that the Grassmanian
GdimC V −1(V ) is defined as the set of (dimC V − 1)-dimensional complex linear sub-
spaces, i.e. hyperplanes, of V and there is an isomorphy between complex vector spaces
GdimC V −1(V ) = P(V ∗).

5.2 Kodaira map

In this section, we will define the Kodaira map which maps our manifold into a
projective space. We want to compare the construction of the Kodaira map, as it is done
in [43, Chapter 5], to our setting, step-by-step, and highlight possible difficulties that
arise from our setting. In the book, the authors consider the case of a (strictly) positive
holomorphic Hermitian line bundle over a compact complex manifold. Consequently,
both, the possible vanishing of the curvature of our semipositive Hermitian metric hL on
L away from the puncture divisor D and the singular behavior of hL at the punctures,
as it was described in (α) and (β) in Chapter 1, pose complications.

In [1] and [2], Auvray, Ma and Marinescu have considered the same singular setting
as we do in our case; in particular, the authors explain the construction and properties of
the associated Kodaira map associated to a positively curved, singular Hermitian metric.

In [47], Marinescu and Savale discuss the case of a semipositive Hermitian metric
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on a holomorphic line bundle on a compact Riemann surface, without the presence of
punctures in the manifold. The authors discuss the behavior of the Kodaira map that is
associated to the semipositive Hermitian metric.

We will take advantage of these seminal works and utilize their arguments for our
setting.

5.2.1 The base locus of a vector space of sections

The complex vector space from the previous section will be the space of holomorphic
sections of Lp⊗E: we set Vp,(2) := H0

(2)(Σ, Lp⊗E). In light of the discussion in Subsection
2.6.2, set Vp := H0(Σ, Lp ⊗ E ⊗ OΣ(−D)).

In order to define the Kodaira map, we need the following definition: The base locus
of Vp is the set

BlVp := {x ∈ Σ : s(x) = 0 for all s ∈ Vp} . (5.2.1)

The key interest in the Kodaira map lies in obtaining projective coordinates by taking
global sections of a line bundle for each point on the manifold. This is possible at a fixed
point where not all global sections disappear simultaneously, or, in other words, outside
of BlVp .

5.2.2 Kodaira maps associated to vector spaces of sections

5.2.2.1 Kodaira maps associated to Vp

So long as the evaluation map Vp,(2) ∋ s 7→ s(x) is not identically zero at x ∈ Σ, there
exist dp − 1 sections sj ∈ Vp,(2) that vanish at x. Hence their common kernel spans a
hyperplane in Vp,(2); it can be uniquely identified with a line of covectors in the algebraic
dual V ∗

p,(2). We thus identify the projective space P(V ∗
p,(2)) of lines in V ∗

p,(2) to the Grass-
manian manifold Gdp−1(Vp,(2)) of (dp − 1)-dimensional hyperplanes in Vp,(2), and to the
same in the case of the vector space Vp.

We define the Kodaira map of Vp at level p ∈ N is the meromorphic map

Φp := ΦVp : Σ 99K P(V ∗
p ) ,

Φp(x) = {s ∈ Vp : s(x) = 0} ;
(5.2.2)

by definition, the set of poles of Φp is contained in the base locus BlVp that we have
defined in (5.2.1). Later in Subsection 5.2.3, we will give an analytic description of Φp,
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which will also show that they are well-defined as a holomorphic map outside of its set
of indeterminacy.

5.2.2.2 Kodaira maps associated to Vp,(2)

Following the approach from Auvray, Ma and Marinescu in [1, Section 4], we can
define another family of Kodaira maps Φp,(2) that correspond to the vector spaces Vp,(2):
in our setting, these corresponding to the meromorphic maps

Φp,(2) := ΦVp,(2) : Σ 99K P(V ∗
p,(2)) ,

Φp,(2)(x) = {s ∈ Vp,(2) : s(x) = 0} .
(5.2.3)

The difference between our Kodaira maps Φp,(2) and the corresponding Kodaira maps on
the punctured Riemann surface in [1] is that the ranges of the maps in (5.2.3) are the
projectivizations of the complex vector spaces of holomorphic sections that are bounded
with respect to the L2-norm that is induced by an L2-inner-product that is induced by
the semipositive Hermitian metric hL (and ωΣ), instead of being induced by a positive
Hermitian metric as in [1].

5.2.2.3 The relationship between Φp and Φp,(2) and their regularity

Demailly’s seminal holomorphic Morse inequalities ([19], see also [43, Theorem 1.7.1],
applied to the case where q = 1, where the vector bundle E in the book is the line bundle
E ⊗ OΣ(−D) in our case) imply that there exist C ∈ R>0 and p0 ∈ N, such that for all
p ⩾ p0, the dimension of Vp obeys dp ⩾ C · p. Hence, as we can find a growing number of
linear independent elements in Vp (and consequently, the same can be said about Vp,(2)

as p grows, by definition of the base locus, the set BlVp can not grow in size; in fact, in
many cases of interest, it has the tendency to become progressively smaller for growing
p (see [43]).

As the dimension grows at least linearly in p, it is reasonable to expect that the
meromorphic Kodaira maps are eventually holomorphic on their whole domain, because
we obtain an ever growing number of sections to choose a family of coordinates from.

We have the following lemma for the relationship between the two families of Kodaira
maps and their respective global behavior.
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Lemma 5.2.1. For each p ⩾ 2,

Σ� _

��

Φp,(2) //

⟲

P(V ∗
p,(2))

∼=

��
Σ

Φp // P(V ∗
p )

(5.2.4)

Proof. The commutativity of the diagram (5.2.4) follows from the same reasoning as the
commutativity of the corresponding diagram [1, (4.5)]: we have explained the relationship
of the two vector spaces Vp and Vp,(2), for p ∈ N⩾2, in Section 2.4.

Let g denote the topological genus of the compact Riemann surface Σ. We now follow
the arguments as in [1, Section 4], where the authors refer to Griffiths and Harris [30, p.
215-216]: for sufficiently large p ∈ N, p degΣ(L)+degΣ(E)−N > 2g by Riemann-Hurwitz
formula, hence, the Kodaira maps Φp are holomorphic embeddings, for sufficiently large
p ∈ N. In particular, these maps are well-defined on Σ \ BlVp , and there exists p0 ∈ N,
such that Blp = ∅ for all p ⩾ p0.

Consequently, by the commutativity of the diagram (5.2.4), the Kodaira maps Φp,(2)

are holomorphic embeddings for sufficiently large p ∈ N.

In this context, we recall the definition of ampleness of a line bundle:
A holomorphic line bundle over a compact Kähler manifold is called ample if for

sufficiently large p ∈ N, its associated base locus is empty and the associated Kodaira
maps are holomorphic embeddings.

In the case of our compact Riemann surface Σ, by a lemma of Cartan-Serre-Grothendieck
(see [43, Lemma 5.1.11]) the existence of p0 ∈ N such that Lp0 → Σ is ample implies that
F p → Σ is ample for all p ⩾ p0.

By Lemma 5.2.1, we can conclude that for both holomorphic line bundles L → Σ and
its restriction L|Σ → Σ, sufficiently high tensor powers of L and L|Σ admit enough holo-
morphic sections of the respective bundles to produce a respective basis of homogeneous
coordinates in a projective space. In the case of the compact Riemann surface Σ, this is
exactly the definition of L → Σ being ample.

5.2.3 Isomorphisms induced by the Kodaira maps

We want to study the Fubini-Study metric ωFS introduced in (5.1.3) as a Hermitian
metric on Σ. The idea to do this is to consider the pull-back of the hyperplane line bundle

68



O(1) by the Kodaira map. For now, we will focus on understanding the pull-backs by
the Kodaira maps Φp,(2) on Σ for large p ∈ N.

For all p ∈ N, we denote by ωFS,p,(2) the smooth Kähler (1, 1)-forms that are associ-
ated to the Fubini-Study metrics on P(V ∗

p,(2)).

In general, on the (punctured) Riemann surface Σ, the pull-back by the Kodaira maps
Φp,(2) of the (Kähler (1, 1)-forms of the) Fubini-Study metric are (1, 1)-currents; accord-
ingly, we call the positive closed (1, 1)-currents (Φp,(2))∗(ωFS,p,(2)) the induced Fubini-
Study currents on Σ. Immediately, we see that the following two statements hold true:

First, by [21, Lemma 2.1], the currents Φ∗
p,(2)(ωFS,p,(2)) are well-defined and in our

case given by a (1, 1)-form with L1-integrable coefficients. This (1, 1)-form is smooth
where Φp,(2) is holomorphic. When p ∈ N is sufficiently large, Φp,(2) is holomorphic on
Σ and hence Φ∗

p,(2)(ωFS,p,(2)) are given in terms if a smooth (1, 1)-form on Σ (we denote
this (1, 1)-form in the same way as the (1, 1)-currents Φ∗

p,(2)(ωFS,p,(2))).
Second, by [17, Theorem 1.1], these Φ∗

p,(2)(ωFS,p,(2)) extend to closed positive (1, 1)-
currents over Σ, which we will gain denote in the same way, when there is enough room
to avoid ambiguity, otherwise we emphasize the domain.

For each sufficiently large p ∈ N, we will now also consider the Hermitian metrics
h(Φp,(2))∗O(1) on (Φp,(2))∗O(1) that are induced by hO(1) on O(1) on P(V ∗

p,(2)).

The two Kodaira maps Φp and Φp,(2) each induce families of isomorphisms of line
bundles; we summarize this in the Theorem 5.2.2 below. Under the isomorphisms that are
associated to the Kodaira maps Φp,(2), we can view the (1, 1)-currents that are associated
to the Hermitian metrics h(Φp,(2))∗O(1) as (1, 1)-currents on the line bundles (Lp ⊗E)|Σ →

Σ; by slightly abusing notation, we will denote the currents under these isomorphisms
by (Φp,(2))∗(hFS,p,(2)).

Recall that Bp is the Bergman kernel function from (2.7.4) and hp is the Hermitian
metric on Lp ⊗ E that was defined in Section 2.1. The statement of the theorem about
the induced families of isomorphisms is the following.

Theorem 5.2.2. For sufficiently large p ∈ N⩾2, the Kodaira maps Φp and Φp,(2) each
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induce families of isomorphisms of vector bundles

Φ∗
pO(1) Ψp−→ Lp ⊗ E ⊗ OΣ(−D) , (5.2.5)

(Φp,(2))∗O(1)
Ψp,(2)−→ (Lp ⊗ E)|Σ . (5.2.6)

Note that Φ∗
pO(1) is a holomorphic line bundle over Σ and (Φp,(2))∗O(1) is a holomophic

line bundle over Σ.

Moreover, let p ∈ N be sufficiently large. Then the (1, 1)-currents (Φp,(2))∗(hFS,p,(2))
are given in terms of smooth (1, 1)-forms on Σ and for sufficiently large p ∈ N, we have

(Φp,(2))∗(hFS,p,(2)) = 1
Bp(x, x)hp(x) (5.2.7)

for all x ∈ Σ. Hence the (1, 1)-forms (Φp,(2))∗(hFS,p,(2)) induce Hermitian metrics, called

the induced Fubini-Study Hermitian metrics on Σ. We will denote the Hermitian metrics

in the same way as their associated (1, 1)-forms.

For sufficiently large p ∈ N, the associated Hermitian metrics (Φp,(2))∗(hFS,p,(2)) are
called induced Fubini-Study Hermitian metrics on Σ.

Proof of Theorem 5.2.2. We follow the arguments in [43, Theorem 5.1.3]. We begin by
giving an analytic description of the Kodaira maps Φp.

Recall that Vp = H0(Σ, Lp ⊗E ⊗ OΣ(−D)) and dp = dimCH
0(Σ, Lp ⊗E ⊗ OΣ(−D))

as in Subsection 2.6.2. Let {sj}dp

j=1 ⊂ Vp be any basis of globally defined sections and
write {sj}dp

j=1 for its dual basis. Consider an arbitrary but fixed point x0 ∈ Σ and a local
chart W ⊂ Σ around x0. Let eL, eE and eOΣ(−D) be local holomorphic frames of L, E,
and OΣ(−D), respectively, in the chart around x0. For each p, we set

ep := e⊗p
L ⊗ eE ⊗ eOΣ(−D) ; (5.2.8)

this is a local holomorphic frame of Lp ⊗E ⊗ OΣ(−D) in the chart W around x0. Thus,
near x0, we can write sj = fjep and the fj are holomorphic, for all j ∈ {1, . . . , dp}. For
all s ∈ Vp, we have

 dp∑
j=1

fj(x)sj , s

 ep =
dp∑

j=1
sj(x)(sj , s) = s(x) , (5.2.9)

70



which implies that the Kodaira map Φp at level p satisfies

Φp(x) =

 dp∑
j=1

fj(x)sj

 ∈ P(V ∗
p ) (5.2.10)

locally around x0. In particular, Φp is well-defined on W \BlVp and since the fj are holo-
morphic, we get that Φp is holomorphic on W \ BlVp . Furthermore, the same holds true
on non-trivially overlapping subsets of two given local charts outside of BlVp . Thus, we
can glue together a set of local charts that cover Σ and conclude that Φp is well-defined
and holomorphic on Σ \ BlVp . Finally, by Lemma 5.2.1, there exists p0 ∈ N, such that
BlVp = ∅ for all p ⩾ p0. From this, we see directly that Φp are holomorphic for all p ⩾ pU .

We proceed with the proof for the first claim. Let p ∈ N be a sufficiently large, but
fixed positive integer and take any fixed section s ∈ Vp. As in Section 5.1, s induces a
linear map σs ∈ V ∗

p via the natural pairing with its algebraic dual. For ∑dp

j=1 fj(x)sj ∈

O(−1)Φp(x) we have

(Φ∗
pσs)(x),

dp∑
j=1

fj(x)sj

(e⊗p
L ⊗ eE

)
(x) =

dp∑
j=1

fj(x)(s, sj)
(
e⊗p

L ⊗ eE

)
(x) = s(x) .

(5.2.11)
This implies that (Φ∗

pσs)(x) = 0 if and only if, s(x) = 0.
By Lemma 5.2.1, for any ζ ∈ (Φ∗

pO(1))x, there exists s ∈ Vp, such that ζ = (Φ∗
pσs)(x).

Thus, for all s ∈ Vp, the map

Ψp : Φ∗
pO(1) −→ Lp ⊗ E ⊗ OΣ(−D) ,

Ψp

(
(Φ∗

pσs)(x)
)

= s(x) , (5.2.12)

is well-defined and moreover, Ψp is an isomorphism of vector bundles Σ. To obtain the
second family of isomorphisms Ψp,(2) of the theorem, we simply restrict the maps Ψp

from Σ and compose them with the isomorphisms from (2.6.6). The resulting family of
isomorphisms are

Ψp,(2) : Φ∗
p,(2)O(1) −→ (Lp ⊗ E)|Σ ,

Ψp,(2)
(
((Φp,(2))∗σs)(x)

)
= s(x) . (5.2.13)

The second claim follows from the corresponding arguments in [43, Theorem 5.1.3]
applied to the case of the line bundle Lp ⊗E, see also [1, Section 4], for reference; neither
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the possible vanishing, nor the existence of singularities of the Hermitian metric hL affect
the outcome of the statement. The proof is complete.

Remark 5.2.3. The requirement that p ⩾ 2 is only necessary for the construction of
the second family of isomorphisms, because we want to use what we know about the
relationship between the two vector spaces Vp and Vp,(2) of sections.

In contrast: As one can see in [43, Theorem 5.1.3], the existence of induced iso-
morphisms and relation of Fubini-Study metrics to the Bergman kernel functions do not
require conditions on the parameter p other than demanding that p ⩾ p0 for some p0 ∈ N.

However, this observation is not relevant when one asks about the asymptotic behavior
of the Kodaira maps or pull-backs of the induced Fubini-Study metrics.

The Hermitian metrics that are associated to (Φp,(2))∗(hFS,p,(2)) are called induced
Fubini-Study Hermitian metrics on Σ.

We are now equipped to proceed with studying the asymptotic behavior of the induced
Fubini-Study currents (Φp,(2))∗(ωFS,p,(2)) on Σ and (Φp,(2))∗(hFS,p,(2)) on (Lp ⊗ E)|Σ, as
p → ∞. The next two sections will deal with each of these cases separately.

5.3 The Theorem of Tian-Ruan away from the punctures

With our tools at hand, we are equipped to prove an analogue of this the theorem of
Tian-Ruan (see [43, Theorem 5.1.4]) in our setting.

Theorem 5.3.1. Let Σ be a punctured Riemann Surface and let (L, hL) (E, hE) be

Hermitian holomorphic line bundles on Σ such that conditions (α) and (β) are satisfied.

Let U ⊂ Σ be a relatively compact subset. Then the following statements are true.

The normalized induced Fubini-Study metrics converge uniformly on U to the normalized

semipositive curvature RL|U , with speed O(p−1/3); that is, for every ℓ ∈ N0, there exists

a constant Cℓ,U ∈ R>0, such that:

∥∥∥∥1
p

((Φp,(2))∗(ωFS,p,(2)))|U − i
2πR

L|U
∥∥∥∥

Cℓ(U,hp|U )
⩽ Cℓ,Up

− 1
3 , (5.3.1)

for sufficiently large p ∈ N. On compact subsets of Σ2, where the curvature doesn’t vanish,

one may replace the fractional powers of p with −1, as in the classical version (see [43,

Theorem 5.1.4]) of the theorem.
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Proof of Theorem 5.3.1. As in [43, (5.1.21)], for all sufficiently large p ∈ N, we have

1
p

((Φp,(2))∗(ωFS,p,(2))) − i
2πR

L = i
2πpR

E + i
2πp ∂∂ logBp . (5.3.2)

Now let U ⊂ Σ be relatively compact. Since the logarithm is monotonic, we can apply
Lemma 4.1.9 to ∂∂ logBp|U to infer that for all ℓ ∈ N there exists a constant Cℓ,U ∈ R>0,
such that ∥∥∥∥1

p
((Φp,(2))∗(ωFS,p,(2)))|U − i

2πR
L|U

∥∥∥∥
Cℓ(U,hp|U )

⩽ Cℓ,Up
− 1

3 , (5.3.3)

verifying the first claim (5.3.1).
For the second claim, we may go another route: Note that the curvature RL|Σ2 is

strictly positive and hence the same is true for RL|K for any compact subset K ⊂ Σ2.
Moreover, the conditions of [43, Theorem 6.1.1] are met: therefore the Bergman kernel
that is associated to the restrictions hL|K and ωΣ|K onto the compact subset K ⊂ Σ2 ⊂ Σ
exhibits a uniform on-diagonal asymptotic expansion with remainder of order p−1, for
all p ∈ N. Hence for all compact subsets K ⊂ Σ2 and all ℓ ∈ N0, there exists constants
Cℓ,K ∈ R>0, such that

∥∥∥∥1
p

((Φp,(2))∗(ωFS,p,(2)))|K − i
2πR

L|K
∥∥∥∥

Cℓ(K,hp|K)
⩽ Cℓ,Kp

−1 . (5.3.4)

Remark 5.3.2. Our result is local: the reason is that the upper bound from Lemma 4.1.9
is only uniform on relatively compact subsets of the form Σ(ph,γ),h,γ ⊂ Σ, for any h ∈ (0, 1)
and (0, 1

2) and not on all of Σ.

In the next section, we proceed by studying the asymptotic behavior of the induced
Fubini-Study Hermitian metrics (Φp,(2))∗(hFS,p,(2)), as p → ∞, on relatively compact
subsets of Σ.

5.4 Convergence of induced Fubini-Study potentials away

from the punctures

In this section, for any relatively compact subset U ⊂ Σ and each sufficiently large
p ∈ N, we will consider the asymptotics of the induced Fubini-Study Hermitian metrics
((Φp,(2))∗(hFS,p,(2)))|U , which we have defined in Subsection 5.2.3.

For this purpose, at first, consider be an auxiliary positive Hermitian metric hL
0 on L;

we know that such a Hermitian metric exists, as argued in Section 2.4. We can express
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our original semipositive singular Hermitian metric hL in terms of a global weight φ with
respect to hL

0 as follows: hL = e−2φhL
0 ; by the conditions on hL from Section 1.1, we

know that φ is L1-integrable function on Σ with values in R ∪ {±∞} and is smooth on
Σ.

We also express the induced Fubini-Study Hermitian metric (Φp,(2))∗(hFS,p,(2)) in
terms of hL

0 :
(Φp,(2))∗(hFS,p,(2)) = e−2φFS,p,(2)(hL

0 )p ⊗ hE . (5.4.1)

The weight functions φFS,p,(2) are smooth on Σ and are called induced Fubini-Study
potentials.

Theorem 5.4.1 (Local uniform convergence of induced Fubini-Study potentials). Let Σ
be a punctured Riemann Surface and let (L, hL) (E, hE) be Hermitian holomorphic line

bundles on Σ such that conditions (α) and (β) are satisfied. Let U ⊂ Σ be a relatively

compact subset. Then the following statements are true.

(i) The normalized potentials of the Fubini-Study metric converge uniformly on U to

the potential φ of hL on K with speed O(p−1 log p); that is, for each ℓ ∈ N0, there

exists a constant Cℓ,U ∈ R>0, such that:

∥∥∥∥1
p
φFS,p,(2)|U − φ|U

∥∥∥∥
Cℓ(U,hp|U )

⩽ Cℓ,Up
−1 log p , (5.4.2)

for all sufficiently large p ∈ N.

(ii) The following ∂- and ∂-derivatives of the normalized potentials of the Fubini-Study

metric converge uniformly on U to the ∂- and ∂-derivatives of the potential φ of

hL on U with the respective speeds; that is, for each ℓ ∈ N0, there exists constants

Cℓ,U,1, Cℓ,U,2, Cℓ,U,3 ∈ R>0, such that:

∥∥∥∥1
p
∂φFS,p,(2)|U − ∂φ|U

∥∥∥∥
Cℓ(U,hp|U )

⩽ Cℓ,U,1p
−2/3 , (5.4.3)∥∥∥∥1

p
∂φFS,p,(2)|U − ∂φ|U

∥∥∥∥
Cℓ(U,hp|U )

⩽ Cℓ,U,2p
−2/3 , (5.4.4)∥∥∥∥1

p
∂∂φFS,p,(2)|U − ∂∂φ|U

∥∥∥∥
Cℓ(U,hp|U )

⩽ Cℓ,U,3p
−1/3 , (5.4.5)

for all sufficiently large p ∈ N.

The following is true both for (i) and (ii): On compact subsets of Σ2, where the curvature

doesn’t vanish, one may replace the fractional powers of p with −1, as in the classical

version of the theorem.
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Proof. First, by (5.4.1), we have

R(L,hL) = 2 ∂∂φ+R(L,hL
0 ) ,

R(Lp,hFS,p,(2)) = 2 ∂∂φFS,p,(2) + pR(L,hL
0 ) +R(E,hE)

= − i2πp (Φp,(2))∗(ωFS,p,(2)) . (5.4.6)

Now let U ⊂ Σ be relatively compact.

(i) By (2.3.3), (5.2.7) and (5.3.2), we infer that

1
p
φFS,p,(2)(x) − φ(x) = 1

p
logBp(x, x) (5.4.7)

for every x ∈ U . As in the proof of Theorem 5.3.1, Lemma 4.1.9 implies that for
all ℓ ∈ N0 there exists a constant Cℓ,U ∈ R>0, such that

∥∥∥∥1
p
φFS,p,(2)|U − φ|U

∥∥∥∥
Cℓ(U,hp|U )

⩽ Cℓ,Up
−1 log p , (5.4.8)

for all sufficiently large p ∈ N. This verifies (i).

(ii) The second statement (ii) follows the same arguments as above with application
of the uniform upper-bound of the jets of the Bergman kernel from Lemma 4.1.9
on the ∂-, ∂- and ∂∂-derivatives of the Bergman kernel: hence for all ℓ ∈ N0 there
exists constants Cℓ,U,1, Cℓ,U,3, Cℓ,U,3 ∈ R>0, such that

∥∥∥∥1
p
∂φFS,p,(2)|U − ∂φ|U

∥∥∥∥
Cℓ(U,hp|U )

⩽ Cℓ,U,1p
−2/3 , (5.4.9)∥∥∥∥1

p
∂φFS,p,(2)|U − ∂φ|U

∥∥∥∥
Cℓ(U,hp|U )

⩽ Cℓ,U,2p
−2/3 , (5.4.10)∥∥∥∥1

p
∂∂φFS,p,(2)|U − ∂∂φ|U

∥∥∥∥
Cℓ(U,hp|U )

⩽ Cℓ,U,3p
−1/3 , (5.4.11)

for all sufficiently large p ∈ N.

Note that the exponent in p in the last equation is higher than the exponents in p

in the first two equations. This comes from the fact that in this case, we use the
upper bound (4.1.10) on the jets/derivatives of the Bergman kernel for ℓ = 2, since
we apply two partial derivatives ∂ and ∂.

For the last statement, the argument is analogous to the one in the proof of Theorem
5.3.1.
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Remark 5.4.2. Again, our result is local, for the same reason as before: the upper bound
from Lemma 4.1.9 is only uniform on relatively compact subsets of the form Σ(ph,γ),h,γ ⊂

Σ, for any h ∈ (0, 1) and (0, 1
2) and not on all of Σ.

In the following section, we explain how the results of [1] apply in our setting, which
is identical to theirs locally near the punctures in the compact Riemann surface Σ.

5.5 Global convergence results

Near the punctures, Auvray, Ma and Marinescu study their Kodaira maps using their
comparison results between the associated Bergman kernel and the Bergman kernel on
the punctured disc from the local model. Since the curvature does not vanish near the
punctures in our setting, their conclusions for the Kodaira maps apply directly for our
Kodaira maps, on neighborhoods of punctures. In particular, the analogue of [2, Theorem
4.1] holds for our Kodaira maps Φp and Φp,(2) that are associated to the semipositively
curved Hermitian metrics hp. The necessary arguments for a proof are identical to the
arguments made in [2, Section 4].

Theorem 5.5.1. Let V 1, . . . , V N ⊂ Σ be open neighborhoods of the punctures a1, . . . , aN

as in condition (α) and set V 1,...,N := V 1 ∪ . . . ∪ V N for their union. Then Φp and

Φp,(2) are well-defined and holomorphic on V 1,...,N . Then, as p → ∞, the following two

asymptotic identities

(Φp|V 1,...,N
)∗(hFS,p) = (1 + O(p−∞)) hp

BD∗
p

, (5.5.1)

1
p

(Φp|V 1,...,N
)∗(ωFS,p) = 1

2πωΣ + i
2πp ∂∂ log(BD∗

p ) + O(p−∞) (5.5.2)

hold uniformly on V 1,...,N .

Proof. As a consequence of Theorem 5.2.2, analogous arguments as in the proof of [2,
Theorem 4.1] imply that

(Φp|Σ)∗(hFS,p)(x, x) = 1
Bp(x, x)hp(x, x) (5.5.3)

1
p

(Φp|Σ)∗(ωFS,p) = i
2πR

L + i
2πp ∂∂ log(Bp) , (5.5.4)

for all x ∈ V1 ∪ . . .∪VN . The claims follow by an application of Theorem 4.3.4 about the
quotient of Bergman kernels.
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From Theorem 5.5.1, in particular, by using (5.5.2), immediately conclude the follow-
ing theorem as in the proof of Theorem 5.3.1 (see [1, Theorem 4.3]).

Theorem 5.5.2. Let Σ be a punctured Riemann Surface and let (L, hL) (E, hE) be

Hermitian holomorphic line bundles on Σ such that conditions (α) and (β) are satisfied.

Then the normalized induced Fubini-Study metrics converge weakly in the sense of

currents to the normalized semipositive curvature current RL on Σ:

1
p

(Φp,(2))∗(ωFS,p,(2)) ⇀
i

2πR
L , (5.5.5)

as p → ∞.
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6. Equidistribution of zeros of holomor-

phic sections

6.1 Poincaré-Lelong formula

Let p ∈ N and s ∈ H0
(2)(Σ, Lp ⊗E) be arbitrary. The divisor of zeros of s is the formal

sum
Div(s) :=

∑
s(x)=0

ordx(s) · x , (6.1.1)

with ordx(s) the multiplicity of s at x and the sum runs over the zeros x ∈ Σ of s. its
support supp Div(s) ⊂ Σ is the set of points x ∈ Σ where ordx(s) ̸= 0; we call it the zero
set of s. By the identity theorem from complex analysis in C, the zero set of a section is
closed and discrete.

The measure of zeros of s will be denoted by

[Div(s)] :=
∑

s(x)=0
ordx(s) · δx , (6.1.2)

where δx is the Dirac delta distribution supported in x ∈ Σ; it defines a current of
integration along supp Div(s)

The following theorem is due to Poincaré-Lelong. It constitutes an important link
between homological and cohomological points of view, which is quintessential in the
study of the distribution of zeros of holomorphic sections by the tools from complex
analysis on manifolds that we have introduced in the earlier chapters.

Theorem 6.1.1 (Poincaré-Lelong). Let L be a Hermitian line bundle over Σ, equipped

with a singular Hermitian metric hL. Then for any meromorphic section s of L we have

i
2π ∂∂ log |s|2hL = [Div(s)] − i

2πR
(L,hL) . (6.1.3)

Since sections are locally functions and the relation itself is of local nature, the proof
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follows from the case of meromorphic functions; it can be found in [43, Theorem 2.3.3].

6.2 Gaussian measures on spaces of sections

We will first define the concept of a random holomorphic section. In general, there
are multiple equivalent ways to do this. Our interest lies in the expected positions of
zero sets of holomorphic sections of powers Lp, twisted by E, on the manifold. Therefore,
picking a section s ∈ H0

(2)(Σ, Lp ⊗E) at random and asking about the expected positions
of their zeros on Σ is equivalent to asking about the expected location of a subset of Σ
where the subset is chosen by a given law.

In general, let V be a complex vector space of dimension dimC V =: m < ∞, equipped
with the standard Hermitian product ⟨·, ·⟩V and the m-dimensional Lebesgue measure
λm and let A = (aij)m

i,j=1 be a positive Hermitian matrix with complex entries. A
complex Gaussian measure µV (complex Gaussian, or Gaussian in short) with mean 0
and covariance matrix A is the measure that is absolutely continuous with respect to λm,
with density given by

dµV := 1
πm detAe

−⟨A−1v,v⟩V dλm(v) . (6.2.1)

Note that µV as defined by its density in (6.2.1) has total mass 1, which is assured by
the fractional scaling factor before the exponential, and hence it defines a probability
measure. If µV is a complex Gaussian on V and τ : V → Ṽ is a surjective linear map,
then the push-forward τ∗µV is a complex Gaussian on Ṽ . In particular, if Ṽ = Cm, then

d(τ∗µV ) := 1
πm detAe

−(A−1z·z)dz . (6.2.2)

As defined in Appendix B.15 we write E for the expected value operator. Integrating
against the probability measure that has density given by (6.2.2) yields the expected
values E[zi] = 0, E[zizj ] = 0 and E[zizj ] = aij , for all 1 ⩽ i, j ⩽ m, where zi := zi ◦ τ :
V → C is the component of the standard coordinates in Cm.

In our case, the complex vector space of consideration is V = H0
(2)(Σ, Lp ⊗ E). We

thus start by choosing an orthonormal basis {Sp
1 , . . . , S

p
dp

} of H0
(2)(Σ, Lp ⊗ E); then any

s ∈ H0
(2)(Σ, Lp ⊗ E) can be expressed in coordinates s = ∑

i ciS
p
i for some complex

numbers c1, . . . , cdp ∈ C. We equipH0
(2)(Σ, Lp⊗E) with the complex Gaussian probability

measure, that has density with respect to λ2dp the 2dp-dimensional Lebesgue measure
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given by
dµp = 1

πdp
e−|·|2V dλ2dp (6.2.3)

where |s|2V := ⟨s, s⟩V and the latter denotes the standard Hermitian product for the
complex vector space V = H0

(2)(Σ, Lp ⊗ E), i.e.

⟨s, s′⟩V :=
dp∑

i=1
cic

′
i , for s =

dp∑
i=1

ciS
p
i , s′ =

dp∑
i=1

c′
iS

p
i . (6.2.4)

Then by definition, the measure µp is absolutely continuous with respect to the Lebesgue
measure λ2dp and again its total mass is a unit. This Gaussian measure is characterized
by the property that the 2dp real random variables Re ci and Im ci, for 1 ⩽ i ⩽ dp, are
independent random variables with mean 0 and variance 1

2 : in expectation, we have

E[ci] = 0 , E[cicj ] = 0 , E[cicj ] = δij (6.2.5)

with δij the Kronecker-delta.
Another common way of introducing random sections is the following: First we ob-

serve that the zero sets are unaffected by the process of multiplying the section at hand
by a nowhere vanishing, global holomorphic function on Σ. Hence the position of the
zero sets of any fixed section s ∈ H0

(2)(Σ, Lp ⊗E) coincides with the position of the zero
sets of any representative of the class of elements [s] ∈ PH0

(2)(Σ, Lp ⊗ E).
Now, as argued before in Subsection 2.6.2 (2.6.8), we have dp = dimCH

0
(2)(Σ, Lp ⊗

E) < ∞ and the vector space of L2-bounded holomorphic sections H0
(2)(Σ, Lp ⊗E) carries

the natural L2-metric (2.5.7) that is associated to ωΣ and hp. As seen in Chapter 5, this
data induces a family of Fubini-Study metrics ωFS,p, parametrized by the semiclassical
parameter p ∈ N, on the projective spaces P(H0

(2)(Σ, Lp ⊗ E)∗), and similarly a family
of Fubini-Study metrics, which we will also denote by ωFS,p, on the projective spaces
P(H0

(2)(Σ, Lp ⊗E)). First. recall that, as explained earlier in Subsection 5.2.2 of Chapter
5, we have the identification

P(H0
(2)(Σ, Lp ⊗ E)) ∋ [ξ] 7→ Hξ ∈ Gdp−1(H0

(2)(Σ, Lp ⊗ E)) (6.2.6)

between the projective space P(H0
(2)(Σ, Lp⊗E)) and the Grassmanian Gdp−1(H0

(2)(Σ, Lp⊗

E)) of (dp − 1)-dimensional hyperplanes in H0
(2)(Σ, Lp ⊗ E).

Second, recall that the total volume of an dp-dimensional projective space is πdp , as
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calculated in (5.1.12). Therefore, a normalization by

σFS,p := 1
πdp

ω
dp

FS,p , (6.2.7)

gives a measure of total mass, i.e. its integral over the whole space, equal to 1. Hence
σFS,p defines a probability measure on the projective spaces P(H0

(2)(Σ, Lp ⊗E)) ∼= CPdp .
Recall the definition of a probability space (see Appendix B.2). We now consider the

products of probability spaces

(Ω, µ) :=
∞∏

p=1
(P(H0

(2)(Σ, Lp ⊗ E), σFS,p) , (6.2.8)

The underlying σ-algebra is the product-σ-algebra, as we have defined in Appendix B.13.
A random section of Lp ⊗ E in our context will therefore just be a random variable

Σ ∋ x 7−→ [sp(x)] ∈ (CPdp , µdp) ∼= (P(H0
(2)(Σ, Lp ⊗ E)), σFS,p) , (6.2.9)

where µdp is the probability measure on CPdp that we get by pulling back σFS,p under
this isomorphism of line bundles. The measure σFS,p is identical to the complex Gaussian
introduced via its density in (6.2.3): integration of the pull-backs of the normalized
Fubini-Study metrics yield the same expected values, which characterize this complex
Gaussian.

The authors in [43, Section 5.3] offer yet another approach for introducing the proba-
bility measure that we are looking for: if dS2dp−1 denotes the spherical (Haar) measure,
i.e. the usual volume form on the (2dp − 1)-dimensional unit sphere S2dp−1 = {zp =
(zp,1, . . . , zp,dp) ∈ Cdp : |zp| = 1} and

SH0
(2)(Σ, Lp ⊗ E) : {s ∈ H0

(2)(Σ, Lp ⊗ E) : |s|hp = 1} (6.2.10)

is the (unit) circle bundle over Σ, then the complex Gaussian relates to the normalized
Haar measure by

dµp = dS2dp−1

vol(S2dp−1) . (6.2.11)

Hence the total mass of (6.2.11) is equal to 1 and the corresponding expected values
coincide with the expectations (6.2.5); thus (6.2.11) again defines the same complex
Gaussian as in the two approaches that we have given before.

We will use the three approaches from above interchangeably and use the different
points of view to our advantage, whenever possible; we call the probability measure µ in
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(6.2.8) the equidistribution measure with respect to hp and ωFS.
From (6.2.3), we can also see the relevance of the Bergman kernel: functions (of

two variables) of the form as the density given in (6.2.3), or (6.2.2) in general, are
called covariance kernels of the probability distribution at hand; hence after specifying
an orthonormal basis of H0

(2)(Σ, Lp ⊗ E), the Bergman kernel (2.7.3) takes the form of
the covariance kernel of the complex Gaussian on H0

(2)(Σ, Lp ⊗ E).

6.3 Equidistribution of zeros of random holomorphic sec-

tions

We will now adjust our notation a little bit for matters of convenience when talking
about equidistribution of zeros of holomorphic sections. In particular, we now consider
s := {sp}p∈N ∈ Ω to be a sequence of sections sp ∈ PH0

(2)(Σ, Lp ⊗ E); i.e. the letter p in
the subscript in sp indicates the power of the line bundle Lp, which has an influence on
the dimension of the space H0

(2)(Σ, Lp ⊗E). Now for every p ∈ N, we fix an orthonormal
basis {Sp,i}

dp

i=1 of the complex vector space H0
(2)(Σ, Lp ⊗E), such that the sphere S2dp−1

gets identified to SH0
(2)(Σ, Lp ⊗ E) by

Sdp−1 ∋ (z1, . . . , zdp) 7−→
dp∑

i=1
ziSp,i ∈ SH0

(2)(Σ, Lp ⊗ E) (6.3.1)

and denote by sp = ∑dp

i=1 λp,iSp,i the representation of sp with respect to this basis.
We proceed by considering the (sequences of) currents of integration [Div(sp)], for each
p ∈ N. In particular, we view each member sp of the sequence s = {sp}p∈N as a random
variable over the corresponding probability space (P(H0

(2)(Σ, Lp ⊗E), ωFS,p) and wish to
understand the expectations

(E[Div(sp)], φ) =
∫

S2dp−1

 dp∑
i=1

λp,iSp,i

 = 0

 , φ
 dµp(λp) (6.3.2)

for all φ ∈ Ω0,0(Σ) and all λp := (λp,1, . . . , λp,dp) ∈ Sdp−1.
The main result of this section is that equidistribution holds with respect to the

Hermitian metrics hp.

Theorem 6.3.1 (Equidistribution of zeros of random holomorphic sections). Let Σ be a

punctured Riemann surface, and let L be a holomorphic line bundle such that L carries a

singular Hermitian metric hL satisfying conditions (α) and (β). Let E be a holomorphic
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line bundle on Σ equipped with a smooth Hermitian metric hE such that (E, hE) on

each chart Vj coincides with the trivial Hermitian line bundle. Then for µ-almost all

s = {sp}p∈N ∈ Ω, the sequence of currents converges weakly to the semipositive curvature

form on relatively compact subsets U ⊂ Σ:

1
p

[Div(sp)]|U ⇀
i

2πR
L|U , as p −→ ∞ . (6.3.3)

Proof. Let (Ω, µ) be the probability space defined in (6.2.8) and let s = {sp}p∈N ∈ Ω
be a sequence of sections, i.e. sp ∈ H0

(2)(Σ, Lp ⊗ E) for all p ∈ N. We will consider the
random variables (1

p
[Div(sp)]|U − i

2πR
L|U , φ

)
(6.3.4)

for each p ∈ N and φ ∈ Ω0,0
c (Σ), i.e. φ is a smooth function on Σ with compact support

supp (φ) ⊂ U . By Theorem 5.3.1, we have

(1
p

[Div(sp)]|U − i
2πR

L|U , φ
)

=
(1
p

[Div(sp)]|U − 1
p

((Φp,(2))∗(ωFS,p,(2)))|U , φ
)

+ O
(
p−1/3∥φ∥C0(U)

)
=: Yp,φ,U (s) + O

(
p−1/3∥φ∥C0(U)

)
. (6.3.5)

The error term shrinks arbitrarily for growing p ∈ N. Thus, in order to prove (6.3.3), it
suffices to show that, µ-almost surely for s ∈ Ω,

Yp,φ,U (s) −→ 0 , as p −→ ∞ , (6.3.6)

for all φ ∈ Ω0,0
c (Σ) with suppφ ⊂ U . As a first step, we show that for all p ∈ N,

E[Div(sp)]|U = ((Φp,(2))∗(ωFS,p,(2)))|U , (6.3.7)

relating our expectations to the Kodaira map that we have studied in Chapter 5. An
application of the Poincaré-Lelong formula, Theorem 6.1.1, to the currents of integration
of each zero set of the members sp of our sequence s = {sp}p∈N implies

[Div(sp)]|U = i
2π ∂∂ log |(sp)|U |2hp

− p
i

2πR
(L,hL)|U − i

2πR
(E,hE)|U . (6.3.8)
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Then applying (6.3.8) and formula (5.3.2) yields

([Div(sp)]|U , φ) =
∫

Σ

( i
2π ∂∂ log |(sp)|U |2hp

− p
i

2πR
(L,hL)|U − i

2πR
(E,hE)|U

)
φ

=
∫

Σ
((Φp,(2))∗(ωFS,p,(2)))|Uφ+ i

2π

∫
Σ
∂∂ log |Bp(x, x)− 1

2 sp(x)|2hp
φ

=
∫

Σ
((Φp,(2))∗(ωFS,p,(2)))|Uφ+ i

2π

∫
Σ

log |Bp(x, x)− 1
2 sp(x)|2hp

∂∂φ .

(6.3.9)

for x ∈ U . Next, for each p ∈ N, we fix an orthonormal basis {Sp,i}
dp

i=1 of H0
(2)(Σ, Lp ⊗E);

recall the identification (6.3.1) with the sphere Sdp−1. We take unit vectors eL(x) of L
and eE(x) of E at x ∈ Σ. In light of (2.7.4), set

ψ(x) := 1√
Bp(x, x)

(
Sp,1(x), . . . , Sp,dp(x)

)
(e⊗p

L ⊗ eE)(x)
∈ S2dp−1 , (6.3.10)

which is well defined up to multiplication by complex numbers of unit length. Set

u · v =
dp∑

i=1
uivi , u · Sp =

dp∑
i=1

uiSp,i (6.3.11)

for the usual dot product on Cdp ∋ u = (u1, . . . , udp), v = (v1, . . . , vdp). Then, formula
(2.7.4) implies that

∫ 2dp−1

S
log|Bp(x, x)− 1

2 sp(x)|2hp
dµp(λ) =

∫ 2dp−1

S
log |Bp(x, x)− 1

2

dp∑
i=1

λp,iSp,i(x)|2hp
dµp(λ)

=
∫ 2dp−1

S
log |

∑dp

i=1 Sp,i(x)
(
√
Bp(x, x))(

√
Bp(x, x))

dp∑
i=1

λp,iSp,i(x)|2hp
dµp(λ)

=
∫ 2dp−1

S
log |λp · ψ|2hp

dµp(λ)

=
∫ 2dp−1

S
log |λp · u|2hp

dµp(λ) =: cp , (6.3.12)

is a constant function on the manifold Σ, for x ∈ U ; the last step follows by utilizing
the rotational invariance of the function ψ, which allows us to exchange ψ by a constant
vector u = (u1, . . . , udp) ∈ Cdp in the formula under the integral. By definition (6.3.2) of
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the currents of integration along the zero sets of sp, by (6.3.8) and (6.3.12) we finally get

(E[Div(sp)|U ], φ) =
∫

S2dp−1

Div

 dp∑
i=1

λp,i(Sp,i)|U

 , φ
dµp(λp)

=
∫

Σ
((Φp,(2))∗(ωFS,p,(2)))|Uφ+ cp

i
2π

∫
Σ
∂∂φ

=
∫

Σ
((Φp,(2))∗(ωFS,p,(2)))|Uφ , (6.3.13)

since the total mass of S2dp−1 with respect to dµp is a unit; this holds for all φ ∈ Ω0,0
c (U),

for all p ∈ N. This confirms (6.3.7). A consequence is that

E
[
|Yp,φ,U (s)|2

]
= 1
p2 E

[
|([Div(sp)] , φ)|2

]
− 1
p2

∣∣∣(((Φp,(2))∗(ωFS,p,(2)))|U , φ
)∣∣∣2 (6.3.14)

for all φ ∈ Ω(0,0)
c (U) and all p ∈ N. The next step is now to understand the first summand

in the last equation. By (6.3.2), (6.3.8) and (6.3.12), we get

E
[
|([Div(sp)] |U , φ)|2

]
=
∣∣∣(((Φp,(2))∗(ωFS,p,(2)))|U , φ

)∣∣∣2
= 1

4π2

∫
Σ

∫
Σ

(
∂∂φ(x)

) (
∂∂φ(y)

) ∫
S2dp−1

log
∣∣∣Bp(x, x)−1/2λp · Sp(x)

∣∣∣2
hp

× log
∣∣∣Bp(y, y)−1/2λp · Sp(y)

∣∣∣2
hp

dµp(λp) , (6.3.15)

for (x, y) ∈ U × U . Now define a function for u, v ∈ S2dp−1 by

Ap(u, v) :=
∫

S2dp−1
log(|λp · u|) log(|λp · v|) dµp(λp) . (6.3.16)

By [43, Lemma 5.3.2], there exists a constant Cp > 0, such that Ap(u, v)−Cp is uniformly
bounded for (u, v) ∈ S2dp−1×S2dp−1, for all p ∈ N. Hence, equations (6.3.14) and (6.3.15)
imply that

E
[
|([Div(sp)] |U , φ)|2

]
= 1

4π2p2

∫
Σ

∫
Σ

(
∂∂φ(x)

) (
∂∂φ(y)

)
Ap(ψ(x), ψ(y)) dµp(λp)

= O
(
p−2

)
, (6.3.17)

for x, y ∈ U . Finally we conclude by (6.3.14) and (6.3.17), that

∫
Ω

∞∑
p=1

|Yp,φ,U (s)|2 dµ(s) =
∞∑

p=1

∫
Ω

|Yp,φ,U (s)|2 dµ(s) =
∞∑

p=1
E
[
|([Div(sp)] |U , φ)|2

]
< ∞ ,

(6.3.18)
which implies the desired µp-almost surely (see Appendix B.16) convergence (6.3.6). The
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proof is complete.

6.4 Convergence speed of equidistribution of zeros

Having established equidistribution in our setting, it is natural to ask if stronger
results also hold. There are multiple ways to generalize Theorem 6.3.1.

In particular, we will proof a variant of [22, Theorem 1.5], which is an equidistribution
result on relatively compact open subsets of Σ, together with an estimate on the speed
of convergence.

6.4.1 Plurisubharmonic functions

Plurisubharmonic functions are a central topic to pluripotential theory and many
topics that are related to the theory of currents. Plurisubharmonic functions and currents
have an interwoven relationship.

Let U ⊂ C be an open set in the complex plane and φ : U → R ∪ {−∞} an upper
semi-continuous function. Recall that φ is called subharmonic, if it satisfies the mean
value inequality (also called the sub-mean inequality)

φ(a) ⩽ 1
2π

∫ 2π

0
φ(a+ reiθ) dθ , (6.4.1)

on any closed ball Br(a) ∪ U with center a ∈ U and radius r > 0 and φ is harmonic, if
both φ and −φ are subharmonic.

An upper semi-continuous function φ : Σ → R∪{−∞} is called plurisubharmonic (psh
for short) if for all a ∈ C, B1(a) ⊂ C and for any holomorphic function f : B1(a) → Σ,
the composition φ ◦ f is subharmonic. Now it is worth noting that the definition works
on manifolds of higher dimensions and not just in dimension dimC Σ = 1 that we are
dealing with in our case. In fact, this is what the syllable ’pluri’ is meant to indicate. For
the sake of consistency with secondary literature, we will still call functions on Σ that
satisfy this definition plurisubharmonic.

There are many natural examples that one can construct from forms and currents.
In particular (see [20, I. Theorem 5.8]), if φ : Σ → R is any smooth function, then φ is
psh if and only if − ∂∂φ is a semipositive form. In light of this relationship we call an
locally integrable, upper semi-continuous function φ strictly plurisubharmonic (spsh for
short) if − ∂∂φ is a positive form.
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This relationship holds more generally in weaker regularity: let φ : Σ → R∪ {−∞} is
a psh (spsh) function that is locally integrable (this time without requiring it to be upper
semi-continuous). Then − ∂∂φ is a positive (strictly positive) (1, 1)-current. Conversely,
if φ ∈ L1

loc(Σ) such that the (1, 1)-current − ∂∂φ is positive (strictly positive), then there
exists a psh (spsh) function ψ : Σ → R ∪ {−∞}, such that φ = ψ almost everywhere
(with respect to the standard Lebesgue measure).

More generally and also of interest to the theory of currents are quasi-plurisubharmonic
functions. These are functions φ : Σ → R ∪ {−∞} with the property that φ can locally
be written as the sum of a smooth function α and some plurisubharmonic function on
Σ ; we may write α-psh, i.e. quasi-psh such that ∂∂φ ⩾ −α, when brevity is beneficial.
Consequently, quasi-plurisubharmonic functions generalize plurisubharmonic functions,
since if φ is α-psh for α ≡ 0 if and only if φ is psh.

Similarly to the above relationship between positive (strictly positive) currents and
psh (spsh) functions, the following equivalence holds (see [43, Proposition B.2.17]): let
φ : Σ → R∪{−∞} be a quasi-plurisubharmonic function that is locally integrable. Then
there exists a continuous (1, 1)-form α on Σ, such that − ∂∂φ ⩾ α, i.e. − ∂∂φ − α

is a positive (1, 1)-current. Conversely, if φ ∈ L1
loc(Σ) such that − ∂∂φ ⩾ α for some

continuous (1, 1)-form α on Σ, i.e. the (1, 1)-current − ∂∂φ − α is positive, then there
exists a quasi-plurisubharmonic function ψ : Σ → R ∪ {−∞}, such that φ = ψ almost
everywhere.

With this framework about potentials (quasi-potentials) of currents (closed and posi-
tive currents) in mind, we proceed with the next subsection, where we prove a result for
the speed of convergence of equidistribution.

6.4.2 Convergence speed of equidistribution of zeros

We prove the following theorem on the speed of convergence for the equidistribution
from our Theorem 6.3.1. The theorem below was inspired by Dinh and Sibony’s method
of meromorphic transforms.

Theorem 6.4.1 (Convergence speed of equidistribution of zeros). Let Σ be a punctured

Riemann surface as above and (L, hL) a Hermitian holomorphic line bundle with semi-

positive curvature which vanishes at most to finite order at any point. Then for any

relatively compact open subset U ⊂ Σ there exist cU > 0 and p(U) ∈ N with the following

property. For any sequence (λp)p∈N of real numbers and for any p ⩾ p(U) there exists a

set Θp ⊂ P(H0
(2)(Σ, Lp ⊗ E)) such that:
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(a) σFS,p(Θp) ⩽ cUp
2e−λp/cU ,

(b) For any sp ∈ P(H0
(2)(Σ, Lp⊗E))\Θp and any relatively compact open subset U ⊂ Σ,

∥∥∥∥∥1
p

[sp = 0] −
√

−1
2π RL

∥∥∥∥∥
U,−2

⩽ λpp
−1/3 . (6.4.2)

On open sets U where the curvature is strictly positive, we can replace the term

p−1/3 by p−1 in the inequality above.

Recall the definition of the normalized Fubini-Study measure σFS,p in (6.2.7). In order
to prove Theorem 6.4.1, we will apply the following Lemma, the proof of which can be
found in [22, p.12] or [21, p.3091-3094].

Lemma 6.4.2. Let V be a (d + 1)-dimensional complex vector space, let Ξ ⊂ P(V ∗) be

a closed subset and take a function u ∈ L1(P(V ∗)) ∩ C0(P(V ∗) \ Ξ) and a positive real

constant γ ∈ R>0. Suppose that there exists a positive closed (1, 1)-current S of mass

1 (with respect to the norm defined in (2.8.9)), such that −S ⩽
√

−1 ∂∂u ⩽ S and the

integral of u with respect to the measure σFS,p is zero. Then there exists a constant c > 0
and a Borel set Θ = Θ(S, γ) ⊂ P(V ∗), such that

σFS,p(Θ) ⩽ cd2e−γ and |u(a)| ⩽ γ ∀a ∈ P(V ∗) \ (Ξ ∪ Θ) . (6.4.3)

Proof of Theorem 6.4.1. Recall the identification (6.2.6) of the projective space
P(H0

(2)(Σ, Lp ⊗E)) with the Grassmanian Gdp−1(H0
(2)(Σ, Lp ⊗E)) of (dp −1)-dimensional

hyperplanes in H0
(2)(Σ, Lp ⊗ E); in light of this identification, we will use the projective

space and the Grassmanian interchangeably. We take a L2-holomorphic section sp ∈

H0
(2)(Σ, Lp ⊗ E), so that [sp] ∈ P(H0

(2)(Σ, Lp ⊗ E)), and denote by Hsp = ker(sp) the
corresponding (unique) hyperplane in Gdp−1(H0

(2)(Σ, Lp ⊗ E)). It defines a current of
integration (Φp,(2))∗[Hsp ] := [Div(sp

′)] for any sp
′ ∈ [sp]. Observe that when the preimage

(Φp,(2))−1(Hsp) does not contain any open subset of Σ, the pull-back (Φp,(2))∗[Hsp ] is
well-defined as a current of integration; for if any neighborhood of a point x ∈ Σ gets
mapped by Φp,(2) onto the same set of sections as x, these sections must be identically
vanishing so their span defines no unique hyperplane. Equivalently, locally, we can write
[Hsp ] =

√
−1 ∂∂u for some plurisubharmonic function u.

Then (Φp,(2))∗[Hsp ] :=
√

−1 ∂∂(u ◦ Φp,(2)) is well-defined since u is equal to −∞ on
Hsp and smooth otherwise, so that u ◦ Φp,(2) is not identically −∞. Define Ξp to be the
closure of the set of points [sp] ∈ P(H0

(2)(Σ, Lp ⊗ E)) where this fails to hold.
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In our case, where Σ is a compact Riemann Surface, Ξp consists of finitely many
isolated points. For the sections sp, such that the line [sp] does not intersect any point in
Ξp, the assignment sp 7→ (Φp,(2))∗[Hsp ] to the corresponding current is then a continuous
function.

Let Γ ⊂ Σ ×P(H0
(2)(Σ, Lp ⊗E)∗) be the graph of the Kodaira map (Φp,(2)) and define

Σ̃ := {(x, [sp]) : ∃v ∈ P(H0
(2)(Σ, Lp ⊗ E)∗) such that (x, v) ∈ Γ, v ∈ Hsp}

⊂ Σ × P(H0
(2)(Σ, Lp ⊗ E)) . (6.4.4)

This is a compact analytic subset of dimension 1 + (dp − 1) = dp. Denote by π1 and π2

the projections of Σ̃ onto Σ and P(H0
(2)(Σ, Lp ⊗ E)∗) respectively.

It follows that for any open U ⊂ Σ, there exists an integer p′(U) ∈ N and a suitable
neighborhood W ⊃ U , such that (Φp,(2))|W is an embedding in W for all p ⩾ p′(U). We
fix a smooth positive (1, 1)-form τ with compact support contained in W , such that for
any real smooth C2-function φ with compact support in U and ||φ||C2 ⩽ 1 we have

−τ ⩽
√

−1 ∂∂φ ⩽ τ . (6.4.5)

With help of the projection operators, we can write (Φp,(2))∗[Hsp ] = (π1)∗([(π2)∗(sp)])
and define

v := (π2)∗(π1)∗(φ) ∈ L1(P(H0
(2)(Σ, Lp ⊗ E)) ∩ C0(P(H0

(2)(Σ, Lp ⊗ E)) \ Ξp) . (6.4.6)

For any sp ∈ H0
(2)(Σ, Lp ⊗ E), we thus have

v([sp]) =
(
(Φp,(2))∗[Hsp ], φ

)
(6.4.7)

and by definition (6.2.7) of σFS,p, the mean value of v is given by

Mv :=
∫
P(H0

(2)(Σ,Lp⊗E))
v d(σFS,p) =

(
(Φp,(2))∗(ωdp−1

FS,p ), φ
)
. (6.4.8)

Let T := (π2)∗(π1)∗(τ). Recall that by assumption, τ is positive and of maximal bidigree,
hence closed. Since the operators (π1)∗ and (π2)∗ preserve these conditions, T is a positive
closed (1, 1)-current on P(H0

(2)(Σ, Lp ⊗ E)).
Also, the relation (6.4.5) implies

−T ⩽
√

−1 ∂∂v ⩽ T . (6.4.9)
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Let ϑ := ||T || be the mass of T with respect to the norm (2.8.9). Now on P(H0
(2)(Σ, Lp ⊗

E)), we define a function u := ϑ−1 (v −Mv) to measure the deviation of the integration
of our functions in question to their mean values.

We consider the normalized current S := ϑ−1T . For any number γ > 0 we can apply
the previous Lemma 6.4.2 to S and γ/ϑ, so that there exists a set Θ′

p independent of φ,
such that σFS(Θ′

p) ⩽ c(dp − 1)2e−γ/ϑ ∼ cp2e−γ/ϑ and |u| ⩽ γ/ϑ outside of Θp := Ξp ∪Θ′
p.

Replacing ϑ by max (c, ϑ) verifies the first claim. For the second claim, note that the
Lemma 6.4.2 also implies that

||(Φp,(2))∗[Hs] − (Φp,(2))∗(ωFS,p)||U,−2 ⩽ γ . (6.4.10)

by the definition of u and the norm (2.8.4). Now on U , the restriction of the Kodaira
map (Φp,(2))|W (onto W ⊂ U) is an embedding for all p ⩾ p′(U) and hence Theorem 5.3.1
implies that p−1((Φp,(2))∗(ωFS,p,(2)))|U differs from i

2πR
L|U by a form of norm bounded

by CU,2/p
−1/3, for some constant CU,2 > 0 that depends on U .

Thus, we can find a sequence (λ′
p)p∈N of positive real numbers λ′

p ∈ R>0, such that
for any smooth function φ ∈ Ω0,0

c (Σ) with compact support contained in U , we have

∣∣∣∣(1
p

(Φp,(2))∗[Hsp ] − 1
p

(Φp,(2))∗(ωFS,p,(2)), φ
)∣∣∣∣ ⩽ (CU,2 + λp) p−1/3||φ||C2(U) (6.4.11)

where λp := λ′
pp

−2/3. Now take p′′(U) ∈ N to be the smallest integer, such that for
all p ⩾ p′′(U) we have λp ⩾ CU,2 and set p(U) := max (p′(U), p′′(U)). This implies the
second claim (ii) and the proof is complete.
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A Jet-bundle and induced norms

Let (F, hF ) be a real (or complex) vector bundle on Σ with hF a Euclidean (or
Hermitian) inner product.

For x ∈ Σ, let Gx(F ) denote the germs of local sections of F at x. For l ∈ N, s ∈ Gx(F ),
the l-th jet of s at x, denoted by jl

xs, is the equivalence class of s in Gx(F ) under the
equivalence relation given as follows: two germs are said to be equivalent if on some open
coordinate chart containing x where the bundle F is trivialized, their Taylor expansions
at x are identical in the first summands up to terms of order l. Let J l(F )x denote the
vector space of all l-th jets jl

xs, s ∈ Gx(F ). Then J l(F )x is finite dimensional; moreover,
the fibration ⨿x∈ΣJ

l(F )x → Σ defines a smooth vector bundle on Σ, which is denoted
by J l(F ) and called the l-th jet bundle of F on Σ. Note that by this construction, J0(F )
is just F itself.

For an integer l > 0, let πl
l−1 : J l(F ) −→ J l−1(F ) denote the usual projection of

vector bundles. Observe that there exists a short exact sequence of vector bundles over
Σ (see [38, pp.121])

0 → SlT ∗Σ ⊗ F
incl // J l(F )

πl
l−1 // J l−1(F ) → 0 , (A.1)

where SlT ∗Σ is the l-th symmetric tensor power of T ∗Σ. The map incl is defined as
follows: for x ∈ Σ, we fix a local chart U around x where F is trivialized as Fx; then
one element ξ in (SlT ∗Σ ⊗ F )x can be constructed as df1 ⊙ df2 ⊙ · · · ⊙ dfl ⊗ v, where ⊙

denotes the symmetric tensor product, v ∈ Fx and f1, . . . , fl are smooth functions on U

which vanish at x. Then we define incl(ξ) := jl
x(f1f2 · · · fl ⊗ v). As a consequence, we

have an identification of vector bundles over Σ as follows,

SlT ∗Σ ⊗ F ≃ J l(F )⧸J l−1(F ) . (A.2)

We equip the vector bundle SlT ∗Σ ⊗ F with the metric induced by gT Σ and hF . For
s ∈ Gx(F ), let jl

xs/j
l−1
x s ∈ (SlT ∗Σ ⊗ F )x be the unique element that is determined by

the isomorphism (A.2), and let |jl
xs/j

l−1
x s| denote the corresponding norm. For x ∈ Σ,

let (Z1, Z2) ∈ R2 ≃ TxΣ denote the (geodesic) normal coordinate centered at x. Then
for any germ s ∈ Gx(F ), we have

|jl
xs/j

l−1
x s|2 :=

∑
|α|=l

1
α!

∣∣∣∣∣∂|α|s

∂Zα
(0)
∣∣∣∣∣
2

hF
x

(A.3)
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and set |j0
xs/j

−1
x s| := ∥s(x)∥hF ; here, α ∈ N2 is a multi-index and |α| its length.

This way, we can define a norm on J l(F ) as follows: for s ∈ Gx(F ), set

∥jl
xs∥2 :=

l∑
k=0

|jk
xs/j

k−1
x s|2 , (A.4)

where ∥j0
xs/j

−1
x s∥ := ∥s(x)∥hF .

B Probability Theory

We recall some definitions and elementary results from measure theory and probability
theory.

Definition B.1 (σ-algebra, measurable space). Let Ω be a set that is not empty. A
subset F ⊂ 2Ω of the set 2Ω of all subsets of Ω is called σ-algebra over Ω if the following
properties hold:

(i) Ω ∈ F ;

(ii) if A ∈ F , then the complement A∁ ∈ F ;

(iii) if (Aj)j∈N ⊂ F , then the union ∪j∈NAj ∈ F .

The data (Ω,F) is called a measurable space.

We denote by Borel(Rd) the σ-algebra that is generated by the open sets in Rd with
respect to the Euclidean topology.

Definition B.2 (Probability measure, probability space). A probability measure P on
the measurable space (Ω,F) is a function such that P(Ω) = 1 and for any sequence
(Aj)j∈N ⊂ F of pairwise disjoint sets, i.e. Ai ∩ Aj = ∅ for all i, j ∈ N with i ̸= j, we
have P(⋃j∈NAj) = ∑

j∈N P(Aj).
The data (Ω,F ,P) is called a probability space and in this case F is called the σ-

algebra of events.

Remark B.3. The second property in Definition B.2 is called σ-additivity; since measures
are always σ-additive, the above definition can be simplified: a probability measure is a
measure with total mass = 1.

Definition B.4 (Random variable). Let (Ω,F ,P) be a probability space and (M,M) a
measurable space. A function X : Ω → M is called a random variable if for all A ∈ M
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its preimage under X is contained in F , i.e. if X−1(A) ∈ F . The values X(ω) ∈ M

for ω ∈ Ω are called realizations of the random variable. The probability of an event
described by the random variable X is the value of the image measure P ◦X−1.

Definition B.5 (Distribution function). Let (Ω,F ,P) be a probability space and X :
(Ω,F ,P) → (Rd,Borel(Rd)) be a random variable. Then

FX : Rd −→ [0, 1]

t 7−→ P(X ⩽ t) := P
(
X ∈ ×d

j=1(−∞, tj ]
)

(B.1)

is called (cumulative) distribution function (in short cfd) of X. Similarly, if µ is a
probability measure on (Rd,Borel(Rd)), then

Fµ : Rd −→ [0, 1]

t 7−→ µ
(
X ∈ ×d

j=1(−∞, tj ]
)

(B.2)

is called the distribution function of µ.

Recall the following basic properties of distribution functions, which can be derived
by elementary methods.

Theorem B.6. Let F be the distribution function of a real random variable or of a

probability measure on (Rd,Borel(Rd)). Then F obeys the following properties:

(i) F is non-decreasing.

(ii) limt→−∞ F (t) = 0 and limt→∞ F (t) = 1.

(iii) For all t0 ∈ R, F (t0) = limt↘ F (t), i.e. F is continuous from the right.

Moreover, distribution functions are characterized in terms of these three properties, i.e.

any function that satisfies these three properties is a distribution function of a real random

variable (or of a probability measure on (Rd,Borel(Rd)).

In light of Theorem B.6, we will call any function F : R → [0, 1] that satisfies prop-
erties (i)-(iii) a distribution function.

The following elementary result, together with Theorem B.6 establishes a one-to-one
correspondence between (real-valued) random variables and distribution functions.

Theorem B.7. If F : (Rd,Borel(Rd),P) → (Rd,Borel(Rd)) is any distribution function,

then there exists a unique probability measure µ on (Rd,Borel(Rd)), such that Fµ = F .
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Recall the following elementary fact from measure theory.

Theorem B.8. Let (Ω,F) and (M,M) be a measurable spaces and equip the former

with a measure µ. If f : (Ω,F) → (M,M) is a measurable map, then the set function

µ ◦ f−1 : M ∋ A 7−→ µ(f−1(A)) ∈ [0,∞] is a measure on (M,M). If µ is a probability

measure (and hence f is a random variable), then the push-forward µ ◦ f−1 is called the

distribution (or law) of f .

Remark B.9. In terms of random variables, saying that an event happens at random
with respect to a distribution µ can be expressed in the following way: Given any dis-
tribution/law µ, i.e. a probability measure on (M,M), a random variable X with law µ

can be reconstructed by choosing (M,M, µ) as underlying probability space and set X :
M ∋ ω → ω ∈ M , i.e. X is the identity on the set M . Then X : (M,M, µ) → (M,M)
defined a random variable with law µ.

Thus, if we want to describe a random experiment whose outcome is a value in a
set M , we can do so by choosing (M,M, µ) as the underlying probability space, for a
suitable σ-algebra M and law µ.

Definition B.10 (Probability density). Let (Ω,F) and (M,M) be a measurable spaces
and equip the former with a measure µ and f : (Ω,F) → (R∪−∞,∞,Borel(R∪−∞,∞))
be a measurable function. We call f a probability density (with respect to µ), if

∫
R f dµ =

1.

In this thesis, we are interested in studying infinite sequences of random variables.
We thus need to make sure that the underlying probability space is sufficiently rich in
structure to accommodate for the wealth of information that the corresponding infinite
family of probability spaces of the associated member random variables of the infinite
sequence has. One suitable way to model this situation is by considering product prob-
ability spaces.

Definition B.11. Let Λ be any non-empty index set and (Ωλ)λ∈Λ a family of non-empty
sets. The product space ×λ∈ΛΩλ is defined to be the set of all maps f : Λ ∋ λ → f(λ) ∈⋃

λ∈Λ Ωλ, such that f(λ) ∈ Ωλ for all λ ∈ Λ. In the case where Ωλ = Ω for all λ ∈ Λ, we
will denote the corresponding product space by ΩΛ.

Definition B.12. Let Λ be any non-empty index set and I ⊂ J ⊂ Λ any non-empty
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subsets. We call

projJI : ×λ∈JΩλ −→ ×λ∈IΩλ

ω 7−→ ω|I (B.3)

the projection from J onto I. If J = Λ, we write projJI = projI and if I = {λ} for any
λ ∈ Λ, we write projJI = projJ{λ} =: projJλ .

Definition B.13. Let Λ be any non-empty index set and (Ωλ, τλ)λ∈Λ be any family of
topological spaces indexed by Λ. The product topology τ on the product (topological)
space ×λ∈ΛΩλ is the smallest topology on ×λ∈ΛΩλ such that for each λ′ ∈ Λ the projection
maps projλ′ : ×λ∈ΛΩλ → Ωλ′ are continuous with respect to the topologies τ and τλ, for
all λ ∈ Λ.

Definition B.14 (Product σ-algebra). Let Λ be any non-empty index set and (ΩλFλ)λ∈Λ

be any family of measurable spaces indexed by Λ. The product-σ-algebra ⊗λ∈Λ Fλ on
the product (measurable) space ×λ∈ΛΩλ is the smallest σ-algebra on ×λ∈ΛΩλ such that
for each λ′ ∈ Λ the projection maps projλ′ : ×λ∈ΛΩλ → Ωλ′ are⊕λ∈Λ Fλ-Fλ′-measurable,
i.e. for all A ∈ Fλ′ , we have proj−1

λ′ (A) ∈
⊗

λ∈Λ Fλ, for all λ ∈ Λ.

We set R := R ∪ {−∞,∞} and Rn := R×n for the n-times Cartesian product of R.

Definition B.15 (Expectation, (Co-)variance). LetX = (X1, . . . , Xn), Y = (Y1, . . . , Yn) :
(Ω,F ,P) → (Kn,Borel(Kn))be two random variables, where Kn ∈ {Rn,Rn

,Cn} for
n ∈ N. Assuming the right hand side is well-defined, the expectation (or expected value)
of X is

E[X] :=
∫

Ω
XdP . (B.4)

where the right hand side is vector valued, if n ̸= 1. Assume that the absolute value |X|

of X is Lebesgue integrable. Then the covariance matrix is the matrix with entries

Cov[Xi, Yj ] := E[(Xi − E[Xi])(Xj − E[Xj ])] ∈ [0,∞] , Cov[X,Y ] := (Cov[Xi, Yj ])i,j .

(B.5)
For all 1 ⩽ i ⩽ n, the variance of Xi is given by

Var[Xi] = E[(Xi − E[Xi])2] (B.6)

i.e. the variances of the components of a vector valued random variable are the entries
of the covariance matrix of the random variable with itself on the diagonal.
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Definition B.16 (Almost sure convergence). Let X and (Xn)n∈N be a random variable
and a sequence of random variables, each with domains a probability space (Ω,F ,P) and
ranges in a metric space (S, d). Then Xn is said to converge P-almost surely (short P-a.s.
or a.s.) to X if

P
(

lim
n→∞

d(Xn, X) = 0
)

= P
({
ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)

})
= 1 . (B.7)

In other words, the realizations Xn(ω) converge pointwise to the realization X(ω) for all
ω ∈ Ω except at most any set of measure zero with respect to the measure P. The same
definition can therefore be extended to any measures that are not necessarily probability
measures.
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