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Abstract

Characterizing the set of correlations that can arise from performing measurements
in a quantum description of Nature is a relevant, but challenging task. Such a char-
acterization, known as the quantum causal compatibility problem, provides us with
insights in the advantages of quantum theory over a classical theory, but can also
show its limitations. This problem becomes particularly challenging when the quan-
tum states and measurements are required to be compatible with a given causal struc-
ture. A causal structure dictates the causal dependencies of the parties and systems
involved in the experiment. One can think of the Bell scenario as one of the sim-
plest causal structures, in which two spatially separated parties, Alice and Bob, are
assumed to perform a measurement on a shared source. In more general causal
structures we might have more parties, and more sources that are independent of
each other.

Recently, a systematic way of analyzing the correlations in classical and quan-
tum causal structures was proposed in the form of the inflation technique. In the
inflation technique the causal dependencies, which are difficult to encode algorith-
mically, are relaxed to easy-to-encode symmetry constraints on a larger number of
parties. For the classical case, this provides a converging hierarchy of linear pro-
grams for the causal compatibility problem. For the quantum case, it instead yields
a hierarchy of increasingly restrictive semidefinite programming relaxations. It is,
however, unknown whether this hierarchy is also complete.

One of the main results of this thesis is to show that a modified version of the
quantum inflation technique is convergent for the quantum causal compatibility prob-
lem. This modified hierarchy introduces an additional parameter, r, that restricts the
Schmidt rank of the observables. For each value of r we provide a hierarchy of com-
patibility tests that is complete in the sense that it will detect, at some finite level, any
probability distribution that is incompatible with the causal model under the Schmidt
rank constraint. Such compatibility tests are formulated as non-commutative poly-
nomial optimization problems, of which we provide a C∗-algebraic description.

Additionally, we develop a separate hierarchy of semidefinite programs, which
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we call the polarization hierarchy. It is shown that the polarization hierarchy, as
well as the original quantum inflation hierarchy are complete for the causal structure
known as the bilocal scenario. In the bilocal scenario there are three distant parties,
Alice, Bob and Charlie, performing measurements on two independent sources: one
shared by Alice and Bob and the other by Bob and Charlie. We show that a model
for Bob’s algebra, which consists of two commuting subalgebras, can be constructed
from the commutants of representations of Alice’s and Charlie’s algebras. This con-
struction also gives insight into a bilocal version of Tsirelson’s problem. We show
that if Alice’s and Charlie’s systems can be modeled with a finite dimensional repre-
sentation, the commuting observables model and tensor product model of locality in
quantum theory coincide.

Our convergence results rely centrally on the fact that certain symmetries in the
limit imply independence of random variables or quantum states. Such statements
are collectively known as de Finetti theorems. For the specific setup considered in
this thesis, namely the C∗-algebraic description of quantum mechanics, a de Finetti
theorem had not yet been proven beyond the special case of the minimal tensor prod-
uct. Another result of the thesis is therefore the proof that a quantum de Finetti
theorem also holds for general tensor products of C∗-algebras.

The quantum causal compatibility problem can be seen as a version of the quan-
tum network compatibility problem – in which we ask which quantum states can be
produced in a certain causal structure – where the output is assumed to be a classical
state. We show that the techniques developed for the causal compatibility problem
can be adapted to the more general setting of quantum networks. Furthermore, an
analytic proof is given of the fact that graph states cannot be produced in bipartite
quantum networks. This proof again relies on the inflation technique by linking cor-
relations of different inflations of the network to each other. By assuming that the
correlations arise from a graph state, it can be shown that the bound of a particular
inequality can be violated, which leads to a contradiction.

Lastly, we show that the polarization hierarchy can be used to optimize over a
large class of optimization problems known as state polynomial optimization. In
such problems, the goal is to optimize an objective function that is a polynomial in
the expectation values of observables, under similar polynomial constraints. This
allows us, for example, to optimize over covariances or non-linear Bell inequalities.
We also give an alternative version of a recently developed semidefinite program-
ming hierarchy that solves this problem, in which we incorporate the polarization
trick.
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Symbols
Symbol Meaning

A,B, C, . . . Unital C∗-algebra
Asa Self-adjoint elements of A
A+ Positive elements of A
CSE Commutative scalar extension algebra
Aa|x, Exa POVM element with outcome a and setting x
B(H) Bounded operators on a Hilbert spaceH
C∗(G|R) Universal C∗-algebra generated by G subject toR
Dn Algebra associated with level n inflation
D∞ Quasi-local algebra
F(G) Free ∗-algebra in the generators G
F (k)(G) Subset of F(G) with words in the generators G up to length k
f⋆, f∗, fn Optimal value of an optimization problem
G Set of generators
H Hilbert space
R Set of relations
K(A) State space of a C∗-algebra A
Ks(D∞) Symmetric states on the quasi-local algebra
Λ Quantum channel; Local hidden variable
ρ, σ, ϕ, ω Quantum state (as density matrix or functional)
|Ω⟩ Cyclic GNS state on a Hilbert space
⟨ . ⟩ Expectation value
p(abc|xyz) Conditional probability
P, p Probability distribution
pi, q Polynomials in generators
π Representation of a C∗-algebra; Permutation of n elements
Sn Symmetric group of n elements
απ Action of π ∈ Sn on elements of an algebra
Πσ Infinite symmetric product state on the quasi-local algebra
Symn Symmetrization operator on n elements
Sym∞(D) Symmetric quasi-local algebra
tr, Tr Trace
∥ . ∥γ C∗-(semi-)norm
⋆ Abelian product on the symmetric (quasi-)local algebra
⊗ (Algebraic) tensor product
⊗min Minimal tensor product
⊗max Maximal tensor product
⊗̄ Von Neumann tensor product
· · · Completion w.r.t. a (semi-)norm or a topology



Introduction

One of the most noteworthy discoveries in physics of recent times is that, with very
high likelihood, Nature cannot both be local (causal influences do not travel faster
than the speed of light) and real (the value of physical quantities is predictable with
certainty, without disturbing the system). This counter intuitive result was shown
in a series of experiments performed by Alain Aspect and collaborators in 1982
[4, 5] and has since been repeated many times over, in order to improve its statistical
significance and to get rid of any loopholes [6, 7]. The idea behind the experiment is
relatively simple, but its results have profound implications on any theory of Nature.
The setup is based on an observation made by Einstein, Podolski and Rosen [8] that
quantum theory is not simultaneously local and real, as well as on the subsequent
derivation of an inequality by Bell [9] that any local, real theory should obey. Later,
a similar inequality was derived by Clauser, Horne, Shimony and Holt [10], which is
now known as the CHSH inequality. It can be formulated as follows. Let Alice and
Bob be two experimenters whose laboratories are spatially separated (see Fig. 1).
Alice has a choice between two measurements with outcomes ±1 each, denoted by
A1 and A2, and the same is true for Bob, with measurements B1 and B2. Then for
any local, real theory

⟨A1B1⟩+ ⟨A1B2⟩+ ⟨A2B1⟩ − ⟨A2B2⟩ ≤ 2. (1)

The experiments of Aspect showed that this inequality could be violated by a pair of
photons, confirming that with very high likelihood Nature cannot be fully explained
by a local hidden variable model, and putting a nail in the coffin of local realism.

Quantum theory is one way of explaining the violation of the CHSH inequal-
ity. Indeed, by choosing the right quantum states and measurements, the CHSH
inequality (1) can be violated up to 2

√
2. These results show that quantum theory is

in some sense more powerful than classical local hidden variable models. In what
sense quantum theory rejects local realism is a discussion that is well beyond the
goal of this thesis. We are, however, interested in the consequences, advantages and

x
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(a)

A B

X YΛ
(b)

A B

X ρAB Y
(c)

A B

X Y?

Figure 1: The famous Bell scenario, in which two distant observers, Alice and Bob,
perform measurements on a system received from a shared source. The random
variable X serves as a measurement setting for Alice, while Y serves as a setting
for Bob. In Fig. (a), the source is assumed to be a classical local hidden variable
Λ. The correlations that arise from this are bounded by Bell inequalities such as the
CHSH inequality. In Fig. (b), the source distributes one part of a bipartite quantum
state ρAB to each of the observers. This allows for a larger set of correlations, but is
still dictated by the limitations of quantum theory. It is possible that there exist more
exotic sources, such as the unknown source of Fig. (c), but so far the experiments
agree with the predictions of quantum theory.

limitations of choosing quantum theory as the description of Nature.
A logical follow-up question to the Bell experiment would be how these results

can be extended to more general causal structures. That is, what are the correla-
tions that can be achieved in more general experiments, involving more parties, more
states, and more measurements? This question, known as the causal compatibility
problem, is one of the central topics of this thesis.

Both in classical and in quantum theory, causal relationships can be conveniently
depicted in the form of a directed acyclic graph (DAG) G. We have already seen
an example of a DAG in the form of the Bell scenario in Fig. 1. In a DAG, we
distinguish between unobserved systems, depicted in circles, and observed systems,
depicted in boxes. The causal dependencies are denoted by arrows. In the quantum
case, these arrows can be thought of as quantum channels [11].

In order to analyze the power of different causal structures, we are interested
in finding the answer to the following problem, known as the causal compatibility
problem, for particular choices of probability distributions P .

Problem 1 (Causal compatibility). Given a (conditional) probability distribution P
and a causal structure G, determine whether P can be produced in a model compat-
ible with the causal structure.

If the model in Problem 1 is restricted to a classical description of nature, we
call the problem the classical causal compatibility problem. Similarly, if the model
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is allowed to be a quantum model, the problem is known as the quantum causal
compatibility problem. What it means to be a “quantum model” turns out to be a
subtle question. In this thesis, quantum theory will be modeled from the algebraic
perspective. That means that the central object for a quantum system is a C∗-algebra
of bounded observables, with states acting as normalized functionals on these ob-
servables. If there are multiple systems, they are commuting subalgebras of a larger
algebra. This way of modeling locality in quantum theory gained traction after a
series of influential papers by Murray and Von Neumann [12, 13, 14, 15, 16]. The
second way of modeling quantum mechanics, which is more common in the last
decades, involves vector states on Hilbert spaces, and observables that are taken to
be the bounded linear operators on the Hilbert space. Subsystems are then combined
by simply taking the tensor product of the Hilbert spaces. For a long time, it was an
open problem whether these two models were equivalent. This problem, known as
Tsirelson’s problem, has recently been answered in the negative for infinite dimen-
sional systems [17]. In Section 1.2 we will therefor motivate our decision to adopt
the algebraic model.

Figuring out the causal relationship among random variables has applications in
many fields of study that deal with statistics, such as economics and medicine [18,
19, 20]. Arguably, the quantum version of this problem is not of great interest in these
research areas. In the field of quantum information theory the motivation is therefore
often a bit different. There, the goal is to distinguish quantum theory from other
theories in a device-independent way, either by showing that the quantum model is
capable of beating classical models (cf. the Bell scenario), or by showing that it
is less powerful than other generalized probabilistic theories (GPTs). A convenient
way to do this is to find witnesses of incompatibility, for example in the form of
inequalities such as the CHSH inequality of Eq. (1). Similar inequalities can be
derived to bound the set of quantum correlations. Each such bound gives us an
experiment that can be performed in a lab and violations of the bounds force us to
reconsider the assumptions of the theory.

In general it is considered very challenging to analyze causal structures with un-
observed systems, even classically [18]. Recently, a new method, called the inflation
technique, has been proposed for both classical [21] and quantum causal structures
[22]. It is formulated as a hierarchy of compatibility tests in the form of linear pro-
grams in the classical case, and semidefinite programs in the quantum case. At each
level of the hierarchy, the causal relationships implied by the causal structure are re-
laxed to a set of symmetry constraints on a larger number of variables. The classical
inflation hierarchy has been shown to be complete in the sense that any probability
distribution that is incompatible with the causal hypothesis will be detected at some
level of the hierarchy [23]. The result relies on a de Finetti theorem, which (roughly)
states that the symmetry constraints in the limit are sufficient to enforce the causal
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relationships. For the quantum case no such result is known.
In Chapter 3 we partially solve this problem: we provide a hierarchy of semidef-

inite programming relaxations that is inspired by the inflation technique, but which
is provably convergent. Our proof also relies on a de Finetti theorem. In the quan-
tum case, such theorems state that symmetry constraints are, in the limit, sufficient
to force a quantum state to be separable. However, no such theorem was proven for
the very general algebraic model that we work with. We therefore adapt the proof
technique of Ref. [24] to this more general case, resulting in a quantum de Finetti
theorem for the maximal tensor product (Theorem 2.1.1).

This newly developed inflation method has some drawbacks over the original
version of the inflation technique: it requires a much larger number of variables, and
the compatibility tests are dependent on the Schmidt rank of the measurements that
are performed, which dictates how entangled the measurements can be. Therefore,
it remains relevant to investigate the convergence of the original inflation method.

The simplest generalization of the Bell scenario that involves independence con-
straints is the bilocal scenario. It consists of three parties, Alice, Bob and Charlie,
and two independent quantum sources, one shared by Alice and Bob, and one shared
by Bob and Charlie (see Fig. 3.7). This scenario forms the basis for entanglement
swapping experiments [25]. As we show in Sec. 3.3, it is also one of the few causal
structures for which we know that the original quantum inflation technique is con-
vergent. One of the biggest hurdles in proving convergence consists of constructing
all the local subalgebras from the information given to and provided by the computer
in the SDP relaxations of the problem. For the bilocal scenario, we show that this
can be done by constructing Bob’s system from the commutants of Alice’s and Char-
lie’s algebras. Apart from the inflation hierarchy, we develop a different convergent
hierarchy, which we call the polarization hierarchy.

Additionally we might want to go beyond correlations and ask what happens if
the output is not a probability distribution, but a quantum state? Which states can
we produce in quantum networks that are under certain causal restrictions? Since
such networks form the backbone of many quantum information processing tasks –
think of quantum key distribution [26, 27, 28], clock synchronisation [29], parallel
computing [30] or even a quantum internet [31, 32, 33, 34] – such questions form
a very relevant line of inquiry. The problem can be stated as a generalization of
Problem 1:

Problem 2 (Network compatibility). Given a dN -dimensional quantum state ρ on
N parties and a causal structure G with N end nodes, determine whether ρ can be
produced in a quantum model compatible with the causal structure.

In Section 4.1, we show that the SDP hierarchies developed for the causal com-
patibility problem can relatively easily be adapted to this more general setting as
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well.
It is also possible to use the inflation technique as an analytic tool for showing

incompatibility [21]. This is the approach in Section 4.2, where it is shown that graph
states cannot be produced in bipartite networks in the so-called local operations and
shared randomness (LOSR) setup, i.e. without classical communication. Since graph
states are a very promising set of states due to their easy description in terms of the
stabilizer formalism, and due to their error-correcting potential [35, 36], this can be
seen as an argument against the LOSR setup.

In the final chapter of the thesis, we momentarily forget about the causal compat-
ibility and network compatibility problems and treat state polynomial optimization
problems. This type of problems is tailored to optimization over objective func-
tions and constraints that are polynomials in the state. It provides a way to op-
timize over non-linear Bell inequalities, which also includes e.g. optimization over
covariances [37, 38, 39], generalizing the non-commutative polynomial optimization
(NPO) method of Ref. [40]. We show that the polarization hierarchy is convergent for
this type of problems, and we compare it to the recently developed SDP hierarchy of
Ref. [39], of which we give an alternative version and proof. This second hierarchy
is closely related to what is known as scalar extension in the quantum information
literature [41].

Outline

In Chapter 1 we treat the theoretical preliminaries that are necessary to understand
the subsequent chapters. In particular, some important notions from the theory of
operator algebras is discussed in Sec. 1.1. The finer details of locality and causality
are treated in Sec. 1.2. Here the notion of a causal structure is also introduced. In
order to analyze such causal structures, we use convex optimization methods in the
form of semidefinite programming, which is the topic of Sec. 1.3.

The causal compatibility problem that we have introduced above in Problem 1
involves statements about product states. We prove a de Finetti theorem that fits
the causal compatibility problem in Chapter 2. Additionally, some closely related
statements are derived for the case of scalar extension and quantum inflation.

Chapter 3 discusses the quantum causal compatibility problem, and our efforts
in solving it. Indeed, in Secs. 3.1 and 3.2 the difficulties in proving convergence of
any kind of hierarchy to tackle this problem are explained, and a way to overcome
them is proposed. This involves an SDP hierarchy that is heavily inspired by the
quantum inflation technique, but which is provably complete. In Sec. 3.3, it is shown
that for the special case of the bilocal scenario, the extra efforts of Secs. 3.1 and 3.2
are unnecessary.

In Chapter 4, we show that the inflation and polarization hierarchies can also



Introduction xv

be used to make statements about states that are produced in quantum networks. In
Sec. 4.1 we show that many of the convergence results from Chapter 3 carry over
to this case. Additionally, in Sec. 4.2, we give an analytic proof of the fact that
non-trivial graph states cannot be produced in bipartite quantum networks if we only
allow for local operations and shared randomness (LOSR). This result also holds for
states that are close to a graph state.

Lastly, in Chapter 5 a large class of problems, known as state polynomial op-
timization (SPO), is considered. This involves the polarization hierarchy, which is
described in Sec. 5.1, as well as the scalar extension hierarchy, which was developed
in Ref. [39] and of which we give an alternative version in Sec. 5.2.

We end the thesis with some concluding remarks and an outlook on some open
problems.

Contributions
• Paper [1]: The theory of a maximal tensor product de Finetti theorem, stated

in Sec. 2.1, was developed together with my collaborators Mariami Gachechi-
ladze and David Gross. I developed the completeness argument presented in
Secs. 3.1 and 3.2 of this thesis. I wrote the manuscript, with later revisions by
my collaborators.

• Paper [2]: The proof strategy for Theorem 3.3.10 and the corollaries that fol-
low from it were developed and worked out in discussions and collaboration
with David Gross. The completeness results of Sec. 3.3.6, in particular Theo-
rems 3.3.15 and 3.3.16 were derived by me, based on the results of Paper [1].
I wrote the manuscript, with later revisions by my collaborator.

• Paper [3]: The majority of this paper was written by the first author, Owidiusz
Makuta. My contributions are the following

– Independently formulating the problem description.

– Stating and proving Lemma 4.2.3.

– Stating and providing an independent proof for Lemma 4.2.4.

– Developing the robustness results of Sec. 4.2.3.

• All other results in this thesis, most notably the unpublished results of Sec. 2.3,
Sec. 4.1 and Chapter 5, were developed by me unless stated otherwise.
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Chapter 1

Preliminaries

The procedure that creates the universe out of the vacuum is called the
Genesis Construction (often abbreviated as GNS). This is no
coincidence, if for no other reason that nothing ever is! It might seem
peculiar that the Genesis Construction starts with |Ω⟩ which should,
by rights, be the end of it. But on reflection, things are wholly
consistent. Genesis is meant to be used with the Heisenberg picture,
where time flows backwards and calculations do indeed start with an
element A (of an observable algebra) and are contracted against |Ω⟩
in the very end.

From a discussion between David Gross and me

In this chapter the mathematical, physical and computational topics that are rel-
evant for the subsequent chapters are introduced. We start the discussion in section
1.1 with the treatment of C∗-algebras as generalizations of algebras of observables
on Hilbert spaces. This will also involve some details on von Neumann algebras, a
special type of C∗-algebras.

Secondly, one of the main goals of this thesis is to study the consequences of
assuming a certain causal structure, either for correlations (Chapter 3) or for network
states (Chapter 4). It turns out that there are multiple different notions of locality
that will play a highly important role in this analysis. The relevant theory of the
surprisingly subtle study of locality is treated in section 1.2. Subsequently, we use
these definitions of locality to formally set up the definitions for causal structures in
the form of directed acyclic graphs (DAGs).

A common way to analyze the correlations in causal structures is by convex
optimization in the form of semidefinite programming. Therefore, in section 1.3 an

1



2 1.1. C∗-ALGEBRAS & TOPOLOGIES

exposition of some of the basic notions in semidefinite programming is given, with
some extra emphasis on the problem of non-commutative polynomial optimization.

1.1 C∗-algebras & topologies
Von Neumann algebras and C∗-algebras were first introduced approximately a cen-
tury ago by von Neumann and Murray in a series of extremely influential papers on
what they called “rings of operators” and “operator algebras” [12, 13, 14, 15, 16].
Their goal was to study infinite dimensional objects and abstract operator theory on
Hilbert spaces. This line of research was very much motivated by the recent devel-
opments in quantum theory, where such objects arose naturally, and where the lack
of understanding of such objects proved to be a major difficulty.

The study of C∗-algebras essentially consists of two parts [42]: 1). The intrinsic
structure and abstract description of the algebra, and 2). the concrete realizations of
such an algebra as representations on Hilbert spaces. One can compare this to the
abstract characterization of groups, and the classification of their representations. As
we will see below, the theory of operator algebras therefore consists of a mixture of
algebraic, as well as analytic results.

Definition 1.1.1. A C∗-algebra A is a Banach algebra with an involution ∗ and a
norm ∥ . ∥ that satisfies the C∗ property

∥xx∗∥ = ∥x∥2 = ∥x∗∥2. (1.1)

A C∗-algebra is said to be unital if it contains an identity element 1.

Throughout this thesis, the C∗-algebras we encounter are assumed to be unital.
The subset of A that is self-adjoint is denoted by Asa. The dual of A is denoted

by A∗ and is given by all linear maps A → C (or A → R in the case of a real
C∗-algebra). Such maps are also known as functionals.

Definition 1.1.2. An element x ∈ Asa is positive, denoted by x ≥ 0 (or sometimes
x ⪰ 0), if it can be written as x = y∗y for some y ∈ A. The set of positive elements
of A is denoted by A+.

Positivity defines a partial order on Asa in the sense that x ≥ y if and only if
x− y ≥ 0. It also allows us to define positivity on the dual A∗, from which we can
define the notion of a state.

Definition 1.1.3. A state on a unital C∗-algebraA is a functional ρ : A → C that is
positive in the sense that

ρ(x) ≥ 0 ∀x ∈ A+,
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and that is normalized as

ρ(1) = 1.

We denote the state space, i.e. the set of all states, of A by K(A).

We started the discussion of C∗-algebras by motivating them as generalizations
of algebras of bounded operators on Hilbert spaces. Conversely, the pairing of a C∗-
algebra with a state gives us a way of constructing representations on a Hilbert space
via the GNS construction detailed below.

Theorem 1.1.4. GNS construction (see e.g. [42, Thm. 9.14] or [43, II.6.4.1]) Let
A be a unital C∗-algebra. Then, to any state ω ∈ K(A) there corresponds uniquely
(up to an isometry) a representation (πω,Hω) of A with a vector |Ω⟩ such that

1. πω(A) |Ω⟩ is dense inHω (i.e. |Ω⟩ is a cyclic vector for πω(A)),

2. ω(x) = ⟨Ω|πω(x)|Ω⟩.

Proof. Each state ω defines a pre-inner product on A through

⟨x, y⟩ := ω(x∗y). (1.2)

Let Nω := {x ∈ A : ⟨x, x⟩ = 0}. This is a closed ideal of A. Define Hω as the
completion of the pre-Hilbert space A/Nω with respect to the inner product (1.2).
For any a ∈ A, let π0

ω(a) be the left multiplication operator on A/Nω , i.e. the
operator that maps

π0
ω(a)(x+Nω) = ax+Nω.

π0
ω(a) is bounded due to

x∗a∗ax ≤ ∥a∥2x∗x,

which follows from a∗a ≤ ∥a∥21. Hence,
∥∥π0

ω(a)
∥∥ ≤ ∥a∥ and thus π0

ω(a) can be
extended to a bounded operator πω(a) onHω . By the Riesz representation theorem,
there exists a unique vector |Ω⟩ such that ω(x) = ⟨Ω|πω(x)|Ω⟩. Identifying |Ω⟩
with the identity element shows that πω(a) |Ω⟩ is indeed dense inHω .

To show uniqueness, let (πω,Hω, |Ω⟩) and (π′
ω,H′

ω, |Ω′⟩) be two GNS repre-
sentations obeying the assumptions of the theorem. Then, define a map V0 as

V0π
′
ω(a) |Ω′⟩ = πω(a) |Ω⟩ .
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This yields

⟨Ω′|(V0π′
ω(a))

∗V0π
′
ω(b)|Ω′⟩ = ⟨Ω|(πω(a))∗πω(b)|Ω⟩

= ω(a∗b) = ⟨Ω′|(π′
ω(a))

∗π′
ω(b)|Ω′⟩ ,

so that V0 is a well-defined isometry for π′
ω |Ω′⟩ onto πω |Ω⟩ and can be extended to

an isometry for the Hilbert spaces. V0 also defines an isometry for the representa-
tions, since

πω(a)V0π
′
ω(b) |Ω′⟩ = V0π

′
ω(a)π

′
ω(b) |Ω′⟩ ,

so that V0π′
ω(a) = πω(a)V0 for all a ∈ A.

1.1.1 Universal C∗-algebras

The following section corresponds to section 2.2.2 from Paper [1].
Let G = {gi}i be a countable set of symbols. Denote by F(G) the free complex

∗-algebra generated by the elements of G. Put differently, F(G) is the set of finite
complex linear combinations of words in the symbols gi and g∗i , with multiplication
defined by concatenation of words. Choose a countable set R ⊂ F(G). We aim to
define the “largest C∗-algebra with generators G, subject to the constraint that each
q ∈ R is positive”. We will refer to the elements ofR as relations.

To make this notion precise, define a representation of (G|R) to be a homomor-
phism π : F(G) → B(H) from the free algebra into the set of bounded operators
on some Hilbert space H, such that π(q) is a positive operator for every q ∈ R. On
F(G), define

∥x∥ := sup{∥π(x)∥ | π is a representation of (G|R)}. (1.3)

Now assume that the relations imply ∥x∥ < ∞ for all x ∈ F(G). In this case,
∥ · ∥ is a seminorm on F(G). The universal C∗-algebra on (G|R), abbreviated as
C∗(G|R), is then the completion of F(G) with respect to this C∗-seminorm.1 We
will not differentiate notationally between an element x ∈ F(G) and its image in the
completion C∗(G|R).

In our applications, we will mostly consider two types of relations:

1 Recall that, despite the everyday connotations of the word, the process of “completing” a metric
space does not necessarily only add elements to it. The completion can be defined as the set of Cauchy
sequences, with two considered equivalent if the norm of their differences converges to zero. Every
x ∈ F(G) gives rise to an element in C∗(G|R), represented by the sequence that is constant and equal
to x. Two elements x, y ∈ F(G) induce the same element in C∗(G|R) if and only if ∥x− y∥ = 0. Put
differently, the completion adds elements to the quotient space F(G)/{x | ∥x∥ = 0}.
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Equality constraints. Let x, y ∈ F(G) and assume that R contains both x − y
and y − x. It then follows easily that x = y in the universal C∗-algebra C∗(G|R).
We will always assume that g1 =: 1 is constrained to commute with all the others
and obeys 1x = x1 = x for all x ∈ F(G), so that C∗(G|R) is unital.

Norm constraints. Let x ∈ F(G), C ∈ R+ and assume that R contains C21−
x∗x. Then ∥x∥ ≤ C in C∗(G|R).

We will prove the following lemma, which justifies our characterization ofC∗(G|R)
as the “largest C∗-algebra such that each q ∈ R is positive”.

Lemma 1.1.5. In C∗(G|R), any element q ∈ R is positive.

Proof. We first show that for every representation ϕ of C∗(G|R), it holds that ϕ(q)
is a positive operator for each q ∈ R. (Using the terminology introduced above, this
says that a representation of C∗(G|R) is also a representation of (G|R)).

Fix a q ∈ R. There is no loss of generality in assuming ∥q∥ ≤ 2.
It holds that q = q∗, because

∥q − q∗∥ = sup
π representation of (G|R)

∥π(q − q∗)∥ = 0,

as π(q) is positive (and hence self-adjoint) by definition of representations of (G|R).
For every representation π of (G|R), it holds that ∥π(1− q)∥ ≤ 1 [43, Proposi-

tion II.3.1.2(iv)]. From the definition of the seminorm, this implies that ∥1−q∥ ≤ 1.
Now assume for the sake of reaching a contradiction that for some representa-

tion ϕ of C∗(G|R), the operator ϕ(q) is not positive. Using again [43, Proposition
II.3.1.2(iv)], ∥ϕ(1− q)∥ > 1 ≥ ∥1− q∥, which is a contradiction, as representations
are norm-contractions.

Next, let ρ ∈ K(C∗(G|R)). By the above, using the GNS representation,

ρ(q) = ⟨Ω|πω(q)|Ω⟩ ≥ 0.

Hence q is positive by [43, Corollary II.6.3.5].

1.1.2 Tensor products of C∗-algebras

The following section is largely taken from section 2.2.4 of Paper [1].
If A and B are the C∗-algebras of observables on one subsystem each, then the

joint system should come with an observable algebra C that contains copies of A
and B as commuting subalgebras and is generated by them. Unfortunately, these
two requirements are not quite enough to uniquely determine C. To understand the
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freedom we have in defining the set of global observables, start with the algebraic
tensor product C0 = A⊗alg B. This is the ∗-algebra of elements x of the form

x =
∑
i

ai ⊗ bi ai ∈ A, bi ∈ B (1.4)

with multiplication and involution in C0 defined factor-wise as

(a1 ⊗ b1)(a2 ⊗ b2) = a1a2 ⊗ b1b2, (a1 ⊗ b1)∗ = a∗1 ⊗ b∗1. (1.5)

To promote the ∗-algebra C0 to a C∗-algebra C, we have to endow it with a norm
satisfying the C∗-norm property in Eq. (1.1) and complete it with respect to this
norm. The choice of this norm is not unique [42, 43]. There are two distinguished
norms: minimal and maximal, named-so because they constrain the value of any
C∗-norm on the algebraic tensor product by

∥x∥min ≤ ∥x∥ ≤ ∥x∥max. (1.6)

In the more general case of n tensor factors, they are defined via their respective
values on elements of A1 ⊗alg . . .⊗alg An as

∥x1 ⊗ · · · ⊗ xn∥min = sup{∥π1(x1)∥ . . . ∥πn(xn)∥ | πi a rep. of Ai}, (1.7)
∥x1 ⊗ · · · ⊗ xn∥max = sup{∥π(x1 ⊗ · · · ⊗ xn)∥ | π a rep. of A1 ⊗alg . . .⊗alg An},

(1.8)

where the suprema are taken over representations of the respective C∗-algebras as
operator algebras on a Hilbert space. We denote the C∗-algebra generated by the
tensor product ofA and B and completed with respect to the norm ∥ · ∥γ byA⊗γ B.

If the Ai’s arise as bounded operators on Hilbert spaces, Ai = B(Hi), the ap-
proach from elementary quantum mechanics corresponds to their natural embedding
intoB(H1⊗· · ·⊗Hn). The operator norm in this picture corresponds to the minimal
tensor product. In this way, the elementary approach reappears as a special case of
the algebraic construction.

Note that due to the definition in Eq. (1.8), convergence with respect to the max-
imal norm implies convergence for any operator representation of the global observ-
able algebra.

The tensor product structure now allows us to define two special subsets of states
on tensor product algebras [1, Def. 2].

Definition 1.1.6. Let A and B be C∗-algebras and let A ⊗γ B be the completion
of the algebraic tensor product with respect to the C∗-norm ∥ · ∥γ . A state ρ ∈
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K(A⊗γ B) is a product state across A |B if

ρ(ab) = ρ(a)ρ(b) ∀a ∈ A, b ∈ B. (1.9)

A state ω ∈ K(A ⊗γ B) is said to be separable across the partition A |B if it is a
convex combination of product states, i.e. if

ω(ab) =

∫
dµ(σ)σ(ab) =

∫
dµ(σ)σ(a)σ(b), (1.10)

for some probability measure µ over product states.

1.1.3 Topologies and von Neumann algebras
A large part of this thesis deals with the concept of convergence. While quite often it
is sufficient to consider convergence with respect to a certain norm, or equivalently
convergence with respect to the topology induced by that norm, we will sometimes
require convergence with respect to different topologies. Therefore, this subsection
is meant to recall some notions about (functional) analysis that will be useful in
subsequent chapters.

Definition 1.1.7. Let X be a topological vector space and let X∗ : X → C be a
separating dual. Then we call the X∗-topology on X the weak topology. That is, the
weak topology is the collection of all unions of finite intersections of sets f−1(V ),
with f ∈ X∗ and V ⊂ C an open set.

Similarly, ifX is separating forX∗, define the weak∗-topology as theX-topology
on X∗ by noting that every x ∈ X defines a linear functional fx on X∗ via fx(Λ) =
Λ(x) for Λ ∈ X∗.

The bounded linear functionals on some Hilbert spaceH are an insightful exam-
ple to which these definitions can be applied. If ϕ is a bounded linear functional on
H, then it can be uniquely identified with a vector |τ⟩ ∈ H such that ϕ(|ω⟩) = ⟨τ |ω⟩.
Hence,H can be identified with its dual and the weak- and weak∗-topologies are both
induced by the inner product. That is, a sequence {|τi⟩}i converges weakly to |τ⟩,
denoted |τi⟩ → |τ⟩ weakly, if ⟨τi|ω⟩ → ⟨τ |ω⟩ for all |ω⟩ ∈ H.

There are several useful ways to topologize the bounded linear operators on a
Hilbert space B(H). Since B(H) comes equipped with a norm, the most obvious
topology is given by the norm topology: Xi → X in norm if ∥X −Xi∥ → 0.

The following topologies make use of the norm topology and weak topology on
H respectively.

Definition 1.1.8. [43, I.3.1.1] A sequence Xi → X in the strong operator topology
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if Xi |ω⟩ → X |ω⟩ for all |ω⟩ ∈ H. Similarly, Xi → X in the weak operator
topology if ⟨τ |Xi|ω⟩ → ⟨τ |X|ω⟩ for all |τ⟩ , |ω⟩ ∈ H.

If there is no confusion, the strong and weak operator topologies are sometimes
also simply called the strong and weak topologies in the literature. In this thesis,
however, we try to avoid confusion and will always use the full names.

The following theorem shows that in many relevant cases, the closures with re-
spect to the strong and weak operator topologies coincide.

Theorem 1.1.9. [44, 5.1.2] If K ⊂ B(H) is a convex subset, then the weak and
strong operator closures of K coincide.

The strong and weak operator topology often appear in the context of von Neu-
mann algebras.

Definition 1.1.10. A von Neumann algebra is a unital C∗-algebra A, acting on a
Hilbert spaceH, that is closed in the weak operator topology.

We denote by A⊗̄B the von Neumann tensor product of two algebras, i.e. the
closure of the algebraic tensor product with respect to the weak operator topology.

There is another useful property that defines von Neumann algebras in a way that
is equivalent to definition 1.1.10. Let the commutant A′ of A ⊂ B(H) be the set

A′ = {x ∈ B(H) : [x, a] = 0 ∀a ∈ A},

with [x, a] = xa − ax. Then a von Neumann algebra A is a C∗-algebra acting on
a Hilbert space with the property A′′ = A. Lemma 1.1.11 below summarizes some
useful relations between commutants, von Neumann algebras, and weak (strong)
operator closures.

Lemma 1.1.11. 1. For any set S it holds that (S′′)′ = S′ [43, I.2.5.3].

2. (Bicommutant Theorem [44, 5.3.1]) If A is a unital ∗-algebra acting on a
Hilbert space H, then the weak and strong operator closures of A coincide
with A′′ .

3. (Commutation Theorem for tensor products [43, II.4.5.8]) LetA and B be von
Neumann algebras onHA andHB respectively. Then

(A⊗̄B)′ = A′⊗̄B′. (1.11)

4. LetH1 andH2 be Hilbert spaces. Then B(H1)⊗̄B(H2) = B(H1⊗H2) [43,
III.1.5.4].
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The results stated above mainly pertain to the structure of the algebras. The
lemma below instead summarizes some results that will be relevant, e.g. in Chapter
3, for the classification of states, which are the positive normalized elements of the
dual of the algebras.

Lemma 1.1.12. 1. (Hahn-Banach Theorem [45, Thm. 3.3]) LetM be a subspace
of a vector spaceX , p a seminorm onX , and f a linear functional onM such
that

|f(x)| ≤ p(x) ∀x ∈M.

Then, f extends to a linear functional Λ on X that satisfies

|Λ(x)| ≤ p(x) ∀x ∈ X.

2. (Krein-Milman Theorem [45, Thm 3.23]) Let X be a topological vector space
with a dualX∗ that separates points inX . IfK is a nonempty compact convex
subset of K, then K is the closed convex hull of the set of its extreme points.

3. (Banach-Alaoglu [45, Thm. 3.15]) If V is a neighborhood of 0 in a topological
vector space X and if

K = {Λ ∈ X∗ : |Λ(x)| ≤ 1 ∀x ∈ V }

then K is weak∗-compact.

The Hahn-Banach theorem can be applied to functionals (e.g. states) that are only
defined on a subspace of a C∗-algebra in order to show that they can be extended to
the entire C∗-algebra. Krein-Milman can be used to decompose states into extremal,
pure states. The Banach-Alaoglu theorem can also be applied to the state space of a
C∗-algebra, since the norm of states is bounded by 1.

1.2 Causal structures and models of locality
This section sets up the formalism for causal structures and causal networks. To de-
fine non-trivial causal models, one needs a notion of (independent) local subsystems.
Though intuitively clear, it turns out that locality is a surprisingly subtle concept to
formalize mathematically, depending on the theory of nature one prescribes to. From
the perspective of special relativity, two events in space-time cannot be causally re-
lated if they are spatially separated. Since we believe that the predictions of special
relativity hold true, our theories should also reflect this property. Which other re-
strictions we impose depends on the theory we choose. Below are two such models:
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classical and quantum theory. Since this thesis mainly pertains to the latter, quantum
theory will receive the most attention in the subsequent sections. It is also possible
to define causal models in the broader context of generalized probabilistic theories
(GPTs) [46], but this is outside the scope of this thesis.

We will assume some familiarity with probability theory and graph theory. We
will write random variables in upper case letters, while specific outcomes are denoted
by lower case letters. For example, the random variable X can take values in the set
{x}x. For probabilities, we will often use the shorthand notation P (x) = P (X =
x).

1.2.1 Classical causal models
To analyze causality in statistical models we will make use of a graphical notation.
Our focus will be on directed acyclic graphs (DAGs)2. In such graphs, each of the
vertices represents a random variable, while each directed edge represents a func-
tional relationship. The outcome of each variable Xi is completely determined by
its graph theoretical parents, PA(Xi), and some independent local randomness. That
is, if for a variable Xi with outcomes {xi} we denote the outcomes of the parents of
Xi by pa(Xi), and the local randomness of Xi by ΛXi

, then there is a function fi
such that

xi = fi(pa(Xi), λXi
). (1.12)

The set of such structural equations completely determines the causal model [18]. It
allows us to write the joint probability distribution as

P (x1, . . . , xn) =
∏
i

P (xi|pa(Xi)). (1.13)

Here, the local randomness has been suppressed, but could be added back in via the
identification

P (xi|pa(Xi)) =
∑
λi

P (xi|pa(Xi), λi)P (λi).

We will use the connection between the graphical model and the functional depen-
dencies as our definition of a classical causal structure.

Definition 1.2.1. cf. [18, Defs. 1.2.2 and 2.2.1] A causal structure of a set of (classi-
cal) variables V is a DAG G in which each node corresponds to a unique element of

2 More general graphs with undirected or bidirected edges also have their use in causal inference, but
will not be very relevant for our discussions here. See e.g. [18] for more details.
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V and each edge represents a direct functional relationship among the corresponding
variables.

If a probability distribution admits the factorization of (1.13) relative to G, we
say that P is compatible or Markov compatible with G.

In some abuse of terminology, we will sometimes also refer to a causal struc-
ture as a causal model. Technically speaking, a causal model requires both a causal
structure and a set of functional dependencies as in Eq. (1.12).

In general, when analyzing data, one does not have access to all of the variables
in a causal structure. The ones that can be accessed are called observed (or observ-
able) variables, while those that cannot be measured are called unobserved or latent
variables. In the graphical notation, a boxed variable corresponds to an observed
variable, while a circled one corresponds to a latent variable (see e.g. Fig. 1.1).

As explained in the introduction, it is a very relevant, but in general quite difficult
problem to determine whether a probability distribution over observed variables is
compatible with a causal structure. Determining which distributions are compatible
is known as the causal compatibility problem or causal hypothesis testing.

The functional dependencies also imply certain (conditional) independence re-
lations between variables. For example, if there is no directed path connecting two
variables to each other, they must be independent. A more general conclusion can
be drawn from a property called d-separation (where d stems from the word ‘direc-
tional’).

Definition 1.2.2. cf. [18, Def. 1.2.3] A path p is said to be d-separated by a set of
nodes Z if and only if

1. p contains a chain i→ m→ j or a fork i← m→ j such that m ∈ Z, or

2. p contains an inverted fork, also known as a collider, i → m ← j such that
neither m nor any of its descendants are in Z.

A set Z is said to d-separate X from Y if and only if Z d-separates all paths from X
to Y .

Theorem 1.2.3. [18, Thm. 1.2.4] If sets X and Y are d-separated by Z in a DAG
G, then X is independent of Y conditional on Z in every distribution compatible
with G.

Conversely, if X and Y are not d-separated by Z, then there exists a distribution
compatible with G such that X and Y are dependent conditional on Z.

In fact, for the converse part of theorem 1.2.3, almost all compatible distribu-
tions will have a conditional dependency of X and Y . It would require quite precise
fine-tuning of the variables for conditional independence to still hold. This motivates
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us to apply Occam’s razor to the causal compatibility problem: In principle, there
is an unbounded set of compatible causal explanations for any observed probability
distribution, since extending a causal structure by adding more variables and de-
pendencies only allows for more compatible distributions. However, since observed
(conditional) independence would require precise fine-tuning we generally consider
it reasonable to choose the “simplest” model that allows the observed statistics. To be
more precise, a causal structure G is preferred over a different structure G′, some-
times written G ≤ G′, if G′ can mimic all of the statistics compatible with G. If
G ≤ G′ and G′ ≤ G, then G and G′ are said to be (observationally) equivalent [18,
Def. 2.3.4].

Let us illustrate the formalism with an example: Consider the graph in Fig. 1.1(a),
known as the triangle scenario. The value of the random variable A is determined
by the values that X and Z take (up to some local randomness). Similarly, B is
determined by X and Y , and C is determined by Y and Z. Since X,Y and Z have
no parents, they only depend on local randomness, and are independent of each other.
This also allows us to write down the form that the joint probability distribution of
all the variables must take. We get

P (a, b, c, x, y, z) = P (a|b, c, x, y, z)P (b|c, x, y, z)P (c|x, y, z)p(x, y, z) (1.14)
= P (a|x, z)P (b|x, y)P (c|y, z)p(x)p(y)p(z), (1.15)

where the second equality follows from the d-separation properties of the triangle
graph and indeed corresponds to what we defined as a compatible distribution ac-
cording to definition 1.2.1.

To refer back to the discussion of locality at the start of this section: In the case
of classical causal structures locality is enforced by requiring that the joint prob-
ability distribution of all the variables in the causal structure factorizes according
to Eq. 1.13. This then has implications on the dependencies of the observed (con-
ditional) distribution. Even though Eq. (1.13) is a fairly simple equation to inter-
pret, determining whether an observable probability distribution is compatible with
a global distribution of this form remains a highly nontrivial problem.

1.2.2 Quantum causal models

The following section contains excerpts of sections 1.2, 2.1 and 2.3 of Paper [1] and
combines the notions introduced there to define quantum causal structures.

It is natural to generalize the causal hypothesis testing problem to quantum causal
structures [11, 22, 47, 48, 49, 50]. A conceptual difference to classical causal models
is that, due to the no-broadcasting theorem, quantum states cannot be both measured
and also serve as an input for further processing. Here, we mainly focus on the subset
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Figure 1.1: The triangle scenario will be an important example of a causal structure
that we will refer to multiple times in this thesis. Round vertices denote latent, or
unobserved systems, while square vertices denote observed ones. Arrows represent
causal relationships. Even though the triangle features only three observed and three
unobserved variables, it is nevertheless highly non-trivial to analyze. This is in part
due to the fact that its description lacks independence constraints on the level of
the observed variables. Fig. (a) depicts the classical case, in which the unobserved
systems are assumed to be classical random variables. In the quantum case depicted
in Fig. (b), the unobserved systems are bipartite quantum states. Each of the quantum
systems is then distributed over a channel that is represented by an outgoing arrow.
At each square vertex, a measurement is performed simultaneously on all incoming
quantum systems at that node, resulting in a classical random variable.

of quantum causal structures known as correlation scenarios [47]. These comprise
one layer of hidden nodes and one layer of observed nodes, with arrows pointing
from hidden to observed ones (more general causal structures are discussed in Sec-
tion 3.2.3).

The input to the causal hypothesis test for correlation scenarios is a bipartite
directed graph and a joint probability distribution with one classical variable corre-
sponding to every observed node (see Fig. 1.1(b) and Fig. 3.7 for examples). The
problem is then to decide whether the classical distribution could have arisen from
the following process:

1. For each hidden node, prepare a quantum state on as many systems as there are
outgoing arrows from that node. The quantum state can be entangled among
the subsystems, but the states associated with different latent nodes must be
independent. Then, distribute the subsystems along the arrows to the observed
nodes.

2. At each observed node, perform a global measurement on all incoming quan-
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tum systems. Assign the result to the observed random variable.

To give an example, we again take the triangle scenario, which is depicted for
the quantum case in Fig. 1.1(b). The latent variables are now quantum systems with
quantum states that are labeled according to the observer to which they are sent. For
example, ρAB is a bipartite quantum state, of which the first part is sent to Alice
and the second part to Bob. The arrows indicate independent quantum channels and
whenever an arrow ends in a classical observable node, a measurement is performed
at that node. Nodes that do not have any incoming edges are called root nodes and
are assumed to be prepared in independent initial states. Note the abuse of notation
that is commonly used in the graphical representation of quantum causal structures:
The hidden nodes are labeled by quantum states, as opposed to the quantum systems
on which they live. This is in contrast to the classical case, where the hidden nodes
are labeled by the random variables and not by their probability distributions. Here
we have opted to adopt this commonly used abuse of notation, as the quantum state
is generally considered as the more central object.

The formal definition of a quantum causal structure depends crucially on the
notion of a subsystem. Here, we describe two subtle modeling decisions that have to
be made when making this term precise.

In elementary quantum mechanics, the central object that characterizes a quan-
tum system is its Hilbert space. In this framework, one thus associates to each sub-
system a Hilbert spaceHi and takes the joint Hilbert space to be their tensor product
H12 = H1 ⊗ H2. The set of observables is then derived from the Hilbert space
structure. For the individual subsystems, the observables are the linear operators
Ai = L(Hi). They can be embedded into A12 = L(H12) by taking the tensor
product with identities on the other subsystem:

A1 ≃ A1 ⊗ 1, A2 ≃ 1⊗A2. (1.16)

In contrast, in algebraic quantum mechanics (cf. [51, Chapter 8], [52]), the set of
observables is seen as being more central. Consequently, one associates an observ-
able algebra Ai with each subsystem. A joint system is then any algebra A12 that
contains A1 and A2 as commuting subalgebras and is generated by them. Clearly,
the construction in (1.16) provides an example of algebras standing in such a rela-
tion, but it turns out that there are more general scenarios that cannot be realized
using Hilbert space tensor products.

Commutativity has physical consequences, e.g. in terms of joint measurability.
So if we accept the quantum-mechanical description of observable phenomena in
terms of operators, we are forced to conclude that measurements in space-like sepa-
rated regions are described in terms of commuting operators. However, the stronger
requirement that the underlying Hilbert space forms a tensor product is not obviously
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physically motivated.
For a long time, it was an open problem to decide whether there are correlations

that can be realized by performing measurements on commuting operators, but not on
operators acting on distinct factors of a tensor product Hilbert space. This relates to
the question when the minimal and maximal tensor product of two algebras coincide.
In quantum information theory, this question has been known as Tsirelson’s problem
and was shown to be equivalent to other long-standing open problems in operator
theory, most notably Connes’ embedding problem [53, 54, 55]. In a recent break-
through result, these questions have been decided: The commuting-operator model
does capture more general correlations than the tensor-product model [17].

The above raises the question which of the two mathematical models to adopt.
Here, we take a pragmatic approach. It has long been realized (and in fact, has his-
torically triggered Tsirelson to speculate) that commutativity is easily encoded as a
constraint in SDPs that give outer approximations to the set of quantum correlations
[56]. The same is not true for the tensor product property. Since either model is
legitimate, but one is a better fit for the SDP hierarchies we want to make a state-
ment about, we opt for the approach in which locality is modeled by commutativity.
Therefore, in this work, we will assume throughout that one can associate an algebra
of observables with each party and that these algebras commute.

The second subtlety deals with the boundedness of operators. In this thesis,
we are mostly interested in observable probabilities that describe measurements on
quantum systems. Probabilities are associated with elements of a positive operator-
valued measure (POVM), which are bounded: Their operator norm does not exceed
1. It follows that the entire observable algebra generated by POVM elements consists
of bounded operators. Many problems – e.g. the problem of characterizing the set
of correlations compatible with a Bell scenario – can be described solely in terms
of this algebra. From a technical point of view, this property can provide significant
simplifications. For example, the convergence proofs of the NPO hierarchy [40]
or the Quantum de Finetti Theorem for infinite-dimensional quantum systems [24]
make central use of the fact that operators are bounded.

It thus comes as bad news that this simplifying property is not obviously available
for the causal compatibility problem.

Indeed, consider a node of a quantum causal structure, say the one that gives rise
to the random variable A in the triangle scenario. Each possible outcome A = a
is associated with a POVM element Ea. As there are two incoming arrows to this
vertex, Ea acts on two quantum systems. We therefore assume that the observable
algebra A of the joint system is generated by two commuting subalgebras A−,A+.
These local algebras play an important role in the definition of the causal structure:
It is with respect to them that the state is required to factorize (see Eq. (1.18) below).
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But, while Ea is bounded, we are not aware of any result that would imply that one
can assume the same is true for elements of A−,A+.

More concretely, we cannot exclude the possibility that there is a mathematical
model of “local quantum systems” in which one can assign a precise meaning to the
series

Ea =

∞∑
α=1

e−(a, α)e+(a, α) (1.17)

for suitable unbounded operators e−(a, α) ∈ A−, e+(a, α) ∈ A+, but where no
such expression for Ea exists if the e−, e+’s are required to be bounded.

In our precise definition of a quantum causal model, we will assume that it is
not necessary to allow for such singular situations. The convergence proofs in later
sections make use of this assumption (implicitly, by virtue of being phrased in terms
of C∗-algebras, which model bounded operators).

While it is an interesting question about operator algebras whether the assump-
tion is actually necessary, it seems that under mild physical conditions, observed
correlations can be approximated using models for which it is valid. For example,
if each subsystem is endowed with a non-degenerate Hamiltonian and the state has
finite energy, one can always compress the local observables to finite-dimensional
low-energy subspaces on which they are obviously bounded. So as long as not
both the observable and the state display rather singular behavior, an approximate
bounded model should always be possible in physical situations.

We can now state the definition of quantum causal structures in mathematically
precise terms. Here we restrict attention again to the triangle scenario (Fig. 1.1(b))
as a guiding example.

Let A,B and C be random variables. We say that a probability distribution
P (A,B,C) is compatible with the quantum triangle scenario, if it can be realized in
the following mathematical model.

Assume that there is a C∗-algebraD that is generated by commuting subalgebras
A,B, C that are each associated with a vertex of the triangle. Each of the algebras
A,B, C is in turn generated by two commuting subalgebras: A by A−,A+; B by
B−,B+; and C by C−, C+. They model the observables measurable on the subsys-
tems that enter the respective node from either side in the diagram (that is, A,B, C
and D are C∗-tensor products in the sense of Sec. 1.1.2 – but we take no stance on
which particular one). Next, we assume that there is a state ρ on D that factorizes
according to the independence implied by the causal structure, i.e. a product state of
the form

ρ(A−A+B−B+C−C+) = ρ(C+A−)ρ(A+B−)ρ(B+C−) (1.18)
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where A− ∈ A−, A+ ∈ A+, B− ∈ B− and so on. Finally, we assume that there are
POVMs

{Ea}a ⊂ A, {Fb}b ⊂ B, {Gc}c ⊂ C (1.19)

such that the joint distribution can be realized as

P (a, b, c) = ρ(EaFbGc). (1.20)

The definition for a quantum causal structure is now readily extended to other
correlation scenarios.

Remark. The GNS construction applied to two commuting algebras acting on a
product state gives rise to a tensor product Hilbert space. Thus, by (1.18), there
is no loss of generality in assuming that A = A− ⊗min A+ and likewise for B
and C. However, the same is not true for the tensor products between A, B, and
C. (Certainly the same argument doesn’t apply – as ρ does not factorize as a state
between the nodes. One can combine the results from Refs. [17, 47] to see that there
are correlations P that cannot be modeled using minimal tensor products between
nodes at all). This observation does not obviate the need for a generalized Quantum
de Finetti Theorem, as we will apply it to the state that is extracted from the SDP
hierarchy, and there is no semidefinite constraint that can express thatA is a minimal,
rather than a general, tensor product of its constituents.

Remark. More generally, one can think of nodes with incoming edges as per-
forming a quantum channel on the systems they receive. In the case of correlation
scenarios, where such systems are always leaf nodes that perform a measurement
in the end, this generalization does not add much, since the effect of the quantum
channel can be absorbed into the POVM. Later, in Chapter 4, where the output of
the quantum channel can also be a quantum state, this distinction will become more
relevant.

1.3 Semidefinite Programming

The third main topic of this thesis is semidefinite programming. A semidefinite pro-
gram (SDP) is a conic convex optimization program, where one optimizes over posi-
tive semidefinite (PSD) matrices under linear matrix inequalities. Such optimization
programs have many practically relevant use cases, including, but not limited to,
system and control theory [57]; experiment design [58, 59]; combinatorial optimiza-
tion [60, 61], among which the well-known NP-hard MAX-CUT [62] and traveling
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salesperson [63] problems; and of course problems in quantum information theory
[56, 64, 65, 66].

Though convex conic optimization is in general NP-hard3, SDPs can be solved
in polynomial time in the input size within a fixed approximation error using interior
point methods under some mild assumptions [68]. Additionally, if the problem turns
out to be infeasible, we can extract a seperating hyperplane as a certificate of infeasi-
bility, which often has a useful interpretation as a so-called ‘witness’, separating the
feasible region from (a part of) the infeasible region.

Here we explain some of the basic concepts of semidefinite programming. Some
special attention will be given to SDP relaxations for non-commutative polynomial
optimization, which is a central ingredient in our approach to analyze the quantum
causal compatibility problem.

1.3.1 Standard form of SDPs
In semidefinite programming, we optimize some linear objective function over the
cone of positive semidefinite n×nmatrices, which is a subset of the real4 symmetric
matrices Sn. The PSD cone is defined as

Sn⪰0 = {X ∈ Sn : X is PSD}.

Furthermore, we use ⟨A,B⟩ to denote the trace inner product tr(AB) on Sn. There
are several ways to characterize PSD matrices, as outlined in the theorem below.

Theorem 1.3.1. [69, Thm. 1.7.2] Let X ∈ Sn be a symmetric n × n matrix. Then
the following properties are equivalent.

1. X is positive semidefinite.

2. xTXx ≥ 0 for all x ∈ Rn.

3. The smallest eigenvalue of X is non-negative.

4. X = LLT for some L ∈ Rn×k. This is called a Cholesky decomposition of
X .

5. Xij = vTi vj for some set of vectors {vi}ni=1 in Rn. This is called a Gram
decomposition.

3 This can be concluded from the fact that one can rewrite any quadratic optimization problem as a
convex conic problem [67]. Since there exist NP-hard quadratic problems (e.g. max clique), this implies
that convex conic optimization is also NP-hard.

4 One can in principle also consider complex matrices. Most of the statements in this section carry over
to this case, where ‘symmetric’ should then be replaced by ‘self-adjoint’. Additionally, in practice we are
only optimizing over rational numbers.
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6. All principal minors of X are non-negative.

Additionally, we have

7. X is positive semidefinite if ⟨X,Y ⟩ ≥ 0 for all Y ∈ Sn⪰0.

We use 2. as the defining property of PSD matrices. Note that 7. implies that the PSD
cone is self-dual.

Additionally, in our optimization we may wish to restrict to an affine subspace
of the cone of PSD matrices. This leads to an optimization problem of the form

p∗ =sup
X
⟨C,X⟩

s. t. ⟨Aj , X⟩ = bj ,

X ⪰ 0,

(1.21)

where X,Aj ∈ Sn and bj ∈ R for all j. The matrix C represents the objective
function that we are trying to optimize. The intersection of the PSD cone with the
affine subspace defined by the matrices {Aj}j and data b = (bj)j is called the feasi-
ble region. If there is a solution such that X is positive definite, then the program is
said to be strictly feasible.

Equation (1.21) is referred to as the primal SDP in standard form. There is also
a dual SDP in standard form, which looks like

d∗ = inf
y
bT y

s. t.
∑
j

yjAj − C ⪰ 0,
(1.22)

where y is a real vector indexed in the number of linear constraints. The matrices
{Aj}j and C, together with the vector b are thus sufficient to define both the primal
and the dual standard form of a semidefinite program.

Under certain conditions, the values p∗ and d∗ coincide. This is summarized in
the theorem below.

Theorem 1.3.2. [69, Lemma 2.1.1 and Thm. 2.1.2]

1. (weak duality) Let (X, y) be a primal/dual pair of feasible solutions for the
SDP defined by {Aj}j , b, C. Then ⟨C,X⟩ ≤ bT y and thus p∗ ≤ d∗.

2. (strong duality) If (1.21) is bounded from above and strictly feasible, then the
dual attains its infimum and there is no duality gap, i.e. p∗ = d∗. Similarly
if (1.22) is bounded from below and strictly feasible, the primal attains its
supremum and there is no duality gap.
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It is not difficult to prove weak duality. If X and y are feasible points to a pair of
primal and dual SDPs, then

⟨C,X⟩ ≤ ⟨
∑
j

yjAj , X⟩ =
∑
j

yjbj = bT y.

Strong duality is often much more difficult to prove. Though it turns out that in many
practically relevant use cases the duality gap does indeed vanish.

Let us briefly comment on the mild assumptions that are needed for polynomial-
time convergence of semidefinite programming [68]. Let F denote the feasible re-
gion of a semidefinite programming problem with rational input. Furthermore, we
denote by B(X, r) the unit ball (in the Frobenius norm, i.e. the norm derived from
the trace inner product) around X ∈ Sn of radius r. If we know a rational point
X0 ∈ F and radii r and R such that

B(X0, r) ⊆ F ⊆ B(X0, R), (1.23)

then we can find a feasible point X∗ such that ⟨C,X∗⟩ − p∗ ≤ ε in time polynomial
in the dimension n, the number of constraints m, log2(R/r), log2(1/ε) and the bit
size of the input data [68, 70].

In other words, the feasible region cannot be too small or too big. In the SDP hi-
erarchies that we will use in this thesis, the operators we optimize over are bounded
in such a way that the feasible region is indeed not too big [71]. However, we make
no statement about the smaller radius r. In the literature on semidefinite program-
ming, some results are known on when the radius r is provably large enough (see
e.g. Ref. [71]), but it is not clear whether the requirements for such statements al-
ways hold in the SDP hierarchies that are used in this thesis. Instead, we will simply
assume that the feasible region is not more than exponentially small. Alternatively,
many of these SDPs can be phrased as a type of eigenvalue optimization problem for
which the feasible region is the entire state space of the C∗-algebra, such that X0

and r can be chosen large enough for log2(R/r) to be at most polynomial.

1.3.2 Non-commutative polynomial optimization

In a series of papers [40, 56, 72] Navascués, Pironio and Acín developed a method
for solving non-commutative polynomial optimization (NPO) problems, using a con-
vergent hierarchy of SDP relaxations. This was a generalization of the hierarchy
developed by Lasserre [73] for the commutative case.

Here we outline an equivalent formulation in terms of optimization problems
over states on C∗-algebras, as developed in Paper [1, Sec. 2.2.3].
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Given generators G and relationsR, we are interested in certain linear optimiza-
tion problems over states on the algebra they generate.

In Ref. [40], the NPO problem is phrased as an optimization over representations
π of the free ∗-algebra F(G) and normalized vectors |ϕ⟩ in the representation space.
Concretely, choose an element y0 ∈ F(G) and a countable set {y1, y2, . . .} = Y ⊂
F(G) and consider:

f⋆NPO = min
π,|ϕ⟩

⟨ϕ|π(y0)|ϕ⟩

s. t. π(q) ⪰ 0 q ∈ R,
⟨ϕ|π(yi)|ϕ⟩ ≥ 0 yi ∈ Y.

(1.24)

We prefer to think of this problem more abstractly, as an optimization over the state
space of the universal algebra C∗(G|R):

f⋆uni = min
ρ∈K(C∗(G|R))

ρ(y0)

s. t. ρ(yi) ≥ 0 y ∈ Y.
(1.25)

We may write min instead of inf , because the Banach-Alaoglu Theorem implies that
the state space is weak∗-compact and thus that the infimum over states evaluated on
any fixed element of the algebra is attained. Following [40, Section 3.6], one can in
addition impose constraints of the form ρ(·z) = 0 for a countable set of z ∈ F(G).
We have omitted this type of constraint from the discussion, as it is not needed for
our use cases.

Lemma 1.3.3. The solutions of (1.24) and (1.25) coincide.

Proof. Let ω be an optimizer of (1.25). Let πω be the GNS representation and |Ω⟩ ∈
Hω the vector that implements ω. By Lemma 1.1.5, (πω,Ω) is feasible for (1.24)
and achieves the optimal value of (1.25).

Conversely, let (π, ϕ) be an optimizer of (1.24). For x ∈ F(G), define ρ(x) :=
⟨ϕ|π(x)|ϕ⟩. If the seminorm vanishes on x, ∥x∥ = 0, then, in particular, ∥π(x)∥ = 0
and hence π(x) = 0. Thus, ρ is constant on cosets of the ideal of elements on which
the seminorm vanishes and therefore well-defined as a functional on C∗(G|R). As
such, it is feasible for (1.25) and achieves the optimal value of (1.24).

We now briefly describe the semidefinite programming hierarchy introduced in
Ref. [40] and sketch the completeness proof.

Of course, the difficulty in solving (1.25) lies in the fact that C∗(G|R) is, in
general, infinite-dimensional. The broad idea behind the NPO hierarchy is to parti-
tion F(G) into an increasing family of finite-dimensional subspaces F (k) ⊂ F(G).
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At the k-th level of the hierarchy, one imposes the conditions that ρ be a state and
that the relations be fulfilled only to the extent to which they can be expressed using
elements from F (2k).

To carry out this program, let F (k) be the space of all elements x ∈ F(G) that
can be expressed as a polynomial in the generators and their adjoints of degree at
most k. We fix some basis {b(k)1 , . . . , b

(k)
dk
} of each F (k).

Recall that a linear functional ρ on C∗(G|R) is a state if and only if ρ(1) = 1
and ρ(x∗x) ≥ 0 for all x ∈ C∗(G|R). We impose a related condition by demanding
that the matrix Γ(k) with elements

Γ
(k)
ij = ρ

(
b
(k)
i

∗
b
(k)
j

)
, i, j = 1, . . . , dk (1.26)

be positive semidefinite and that Γ(k)
1,1 = ρ(1) = 1. A matrix that obeys Eq. (1.26) is

referred to as a moment matrix.
Next, consider a relation q ∈ R. Let l be the smallest integer such that q ∈ F (2l).

We relax the requirement that q be positive to demanding that the matrix

(Λ(k)
q )ij = ρ(b

(k−l)
i

∗
qb

(k−l)
j ), i, j = 1, . . . , dk−l

be positive semidefinite. The matrices Λq are called localizing matrices.
Let k0 be such that x ∈ F (2k0). For each k ≥ k0, one thus arrives at a relaxation

of Eq. (1.25) in terms of the semidefinite program

fk = min
ρ∈(F2k)∗

ρ(y0),

s. t. ρ(1) = 1,

Γ(k) ≽ 0,

Λ(k)
q ≽ 0 q ∈ R ∩ F (2k),

ρ(yi) ≥ 0 yi ∈ Y ∩ F (2k).

(1.27)

The completeness result of Ref. [40] states that, in the case where |Y| ≤ ∞ is
finite, the optimal values fk of the relaxations (1.27) converge to f⋆NPO = f⋆uni =: f⋆

from below.

Lemma 1.3.4. The completeness result limk→∞ fk = f⋆ extends to the case of a
countably infinite number of inequality constraints ρ(y) ≥ 0.

Proof. Choose some enumeration y1, y2, . . . for the countable set Y . Let Ys =
{y1, . . . , ys}. Assume that (1.27) with Y replaced by Ys is feasible for every k, s,
with optimal value fks . Using the convergence proof of Ref. [40] and Lemma 1.3.3,
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there exists a sequence of states ρ⋆s ∈ K(C∗(G|R)) that are feasible for (1.25) with
inequality constraints Ys and attain f⋆s := limk→∞ fks . By the Banach-Alaoglu
Theorem, there is a convergent subsequence. Let ρ⋆ be its limit point. Then, for
each yi ∈ Y , ρ⋆(yi) ≥ 0, as this constraint is fulfilled by all but a finite number of
the ρ⋆s . Thus, ρ⋆ is feasible for (1.25) with all inequality constraints Y taken into
account and attains f⋆ = lims→∞ f⋆s .

Remark. If a spaceN ⊂ F(G) of elements with vanishing seminorm is known, then
one can replace F(G) by the quotient space F(G)/N in the constructions above,
while retaining convergence. This can result in significantly smaller matrices that
need to be treated. In particular, every equality constraint x = y gives rise to an
element x− y ∈ N .



Chapter 2

Quantum de Finetti Theorems

Symmetry is one of the most relevant notions in all of physics. It often allows us
to extract information about a system, e.g. in the form of conservation laws, or to
reduce the size or complexity of a problem. Symmetries in the form of groups also
enable us to use the large body of knowledge that has been accumulated over the
centuries on group theory and representation theory. Perhaps it then doesn’t come as
a surprise that the symmetries that are present in the causal compatibility problems
that we encounter in this thesis will also provide us with a strategy to solve those
problems. Additionally, symmetries can help to reduce the size of the semidefinite
programs that are used to analyze these compatibility problems.

This chapter shows how symmetry of a state relates to the entanglement of that
state. More precisely, if a state is symmetric over an infinite number of copies of an
algebra, it must be a separable state over any finite number of those copies. Such
statements are broadly known as quantum de Finetti theorems [24, 74, 75, 76, 77].
They form a generalization to the classical de Finetti theorems that state that in-
finitely symmetric distributions must be convex mixtures of product distributions
[78, 79]. Similar statements can be made for theories that are even more general
than quantum theory. In particular, there has been recent progress on a de Finetti-
type theorem for convex cones that can be applied to generalized probabilistic theo-
ries (GPTs) [80].

Here we present several quantum de Finetti theorems. In Sec. 2.1 we prove a de
Finetti theorem for the maximal tensor product of C∗-algebras. This is a generaliza-
tion of the works of Størmer [74], and Raggio and Werner [24], in which only the
minimal tensor product was treated.

In Sec. 2.2 we prove that the scalar extension method described in Sec. 5.2 also
gives rise to a separable state. In fact, the proof is much simpler, due to the fact

24
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that the scalar extensions already form an abelian algebra; something that we have
to work hard for to achieve in the other cases.

Lastly, in Sec. 2.3 it is shown that one can still use parts of the construction and
proof of the existing quantum de Finetti theorems to analyze the state that arises
from the original formulation of quantum inflation. Such a state will be separable
over many of the subsystems. While this gives us some insight in the type of states
one optimizes over in the inflation method, it is not immediately clear what to do
with this information in regard to completeness proofs.

2.1 The Maximal Tensor Product

The following section is largely taken from Paper [1, Sec. 3]
To the best of our knowledge, the existing literature on de Finetti Theorems for

infinite systems is phrased only in terms of the minimal tensor product [24, 74].
These results are not directly applicable to the quantum models that result from the
NPO hierarchy. Indeed, the latter naturally guarantees the existence of a represen-
tation πρ of the algebraic tensor product as operators on a Hilbert space that arise
from a state ρ on A1 ⊗alg . . .⊗alg An via the GNS construction. While the resulting
operator norm ∥πρ(x)∥ constitutes a C∗-norm on the tensor product, we have no a
priori control over its value beyond the constraints in Eq. (1.6).

The purpose of this section is therefore to retrace the arguments given by Raggio
and Werner in Ref. [24] to verify that the infinite de Finetti Theorem established there
generalizes to arbitrary C∗-norms on algebraic tensor products. We also present a
somewhat simpler formulation that is sufficient for our purposes.

In fact, we state the results only in terms of the maximal C∗ tensor product norm.
A priori, it is possible that one can derive stronger results for the GNS norm ∥πρ(·)∥,
in particular if the state ρ is known to have symmetries. We leave this possible
improvement open for later investigations.

Let D be a unital C∗-algebra and let

Dn = D⊗maxn

be the completion of the algebraic tensor product of n copies ofD with respect to the
maximal C∗-norm. The infinite maximal tensor product is defined as the inductive
limit

D∞ = lim
n→∞

Dn. (2.1)

We recall the definition of an inductive limit using the tensor product structure [43,
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Section II.8.2]: For any n, k ∈ N, there is a natural embedding

Dn → Dn+k, x 7→ x⊗ 1⊗k.

It allows us to define addition and multiplication between elements of the union

∞⋃
n=1

Dn (2.2)

by embedding the element living in the smaller tensor power into the larger one and
performing the operations there. The resulting ∗-algebra is the local algebra, called
so as each of its elements lives in a finite tensor power. The inductive limit D∞,
the quasi-local algebra, is the completion of the local algebra with respect to the
C∗-norm ∥ · ∥D∞ on (2.2) which assigns to every x ∈ Dn the value

∥x∥D∞ = ∥x∥Dn = lim
k→∞

∥x⊗ 1k∥Dn+k .

We will not notationally distinguish between an element x ∈ Dn and its em-
bedding in D∞. Note that any x ∈ Dn and its extensions x ⊗ 1k are identified in
D∞.

For any n and permutation π ∈ Sn, there is an automorphism απ on Dn which
acts by permuting tensor factors

απ(x1 ⊗ · · · ⊗ xn) = xπ(1) ⊗ · · · ⊗ xπ(n).

It extends to anyDn+k by letting π act on the first n tensor factors, and by continuity
to D∞.

A state ρ on D∞ is symmetric if ρ(x) = ρ(απ(x)) for every x ∈ D∞. Denote
the set of symmetric states by Ks(D∞). We aim to show:

Theorem 2.1.1 (Max tensor product Quantum de Finetti Theorem). Let ρ ∈ Ks(D∞)
be a symmetric state on an infinite maximal tensor product

D∞ = lim
n→∞

D⊗maxn.

Then there exists a unique probability measure µ over states on D such that for all
x ∈ D∞,

ρ(x) =

∫
K(D)

Πσ(x) dµ(σ),

where Πσ is the infinite symmetric product state on D∞ associated with the state σ
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on D.

Key to the proof is to show that symmetric states ρ define a state on the abelian
C∗-algebra of symmetric observables whose multiplication law is derived from the
tensor product. It is established in the general theory of C∗-algebras [52, Chap-
ter 4] that pure states ϕ of abelian algebras are homomorphisms, i.e. that ϕ(xy) =
ϕ(x)ϕ(y), and that general states of abelian algebras are unique convex combina-
tions of pure states (cf. the Krein-Milman Theorem of Lemma 1.1.12). Using the
fact that in our case, the product xy is related to the tensor product x⊗y, we will ob-
tain the claimed decomposition of ρ as a convex combination of symmetric product
states.

To construct the symmetric algebra, define the symmetrization map

Symn(x) =
1

n!

∑
π∈Sn

απ(x), (2.3)

and let Symn(D) be the image of Dn under Symn. Define the symmetric local
algebra to be the set

∞⋃
n=1

Symn(D) (2.4)

with an associative and abelian multiplication law given by the symmetrized tensor
product

⋆ : Symn(D)× Symm(D)→ Symn+m(D), x ⋆ y = Symn+m(x⊗ y).

Our aim is to mimic the construction of D∞ to arrive at a symmetric quasi-local
algebra Sym∞(D). To this end, define embeddings

Symn(D)→ Symn+k(D), x 7→ x ⋆ 1⊗k. (2.5)

As was the case for D∞, addition between two symmetric local elements can now
be defined by embedding the lower power into the higher power and performing the
addition there. This convention turns the symmetric local algebra into an abelian
∗-algebra. One can endow it with a C∗-seminorm [81, Section 6.1] so that the com-
pletion Sym∞(D) is an abelian C∗-algebra:

Lemma 2.1.2. The limit

∥x∥Sym := lim
k→∞

∥x ⋆ 1⊗k∥D∞ (2.6)
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defines a C∗-seminorm on the symmetric local algebra ∪n Symn(D) fulfilling

∥x∥Sym ≤ ∥x∥D∞ . (2.7)

The completion Sym∞(D) is an abelian C∗-algebra.

The central ingredient to the proof is the following combinatorial lemma, which
shows that the multiplication on ∪n Symn(D) inherited from ∪nDn and the newly
defined ⋆-multiplication are asymptotically equivalent.

Lemma 2.1.3. Let x ∈ Symm(D) and y ∈ Symn(D). Then

lim
k→∞

∥∥∥(x ⋆ 1⊗(k−m))(y ⋆ 1⊗(k−n))− (x ⋆ y ⋆ 1⊗(k−m−n))
∥∥∥
D∞

= 0.

Proof. Choose two sets of respective size m,n uniformly at random from [k] :=
{1, . . . , k}. The probability that any given element is contained in both sets is m

k
n
k .

By the union bound, the probability that these two sets intersect at all is not larger
than mn

k . Thus

∥(x ⋆ 1⊗(k−m))(y ⋆ 1⊗(k−n))− (x ⋆ y ⋆ 1⊗(k−m−n))∥D∞

=
∥∥∥ 1

(k!)2

∑
π,π′∈Sk

π([m])∩π′([n]) ̸=∅

απ(x⊗ 1⊗(k−m))απ′(y ⊗ 1⊗(k−n))
∥∥∥
D∞

≤mn
k
∥x∥D∞∥y∥D∞ .

The claim then follows from taking the limit k → ∞ and from the boundedness of
x and y.

Proof of Lemma 2.1.2. For x ∈ Symn(D), we have the estimate

∥x ⋆ 1∥D∞ =
∥∥∥ 1

(n+ 1)!

∑
π∈Sn+1

απ(x⊗ 1)
∥∥∥
D∞

≤ 1

(n+ 1)!

∑
π∈Sn+1

∥απ(x⊗ 1)∥D∞ = ∥x⊗ 1∥D∞ ≤ ∥x∥D∞ .

Using this estimate repeatedly shows that the sequence ∥x ⋆ 1⊗k∥D∞ = ∥(x ⋆
1⊗(k−1)) ⋆ 1∥D∞ is non-increasing and hence convergent. Subadditivity, absolute
homogeneity, and invariance under involution of ∥ · ∥Sym on ∪n Symn(D) follow
directly from the same properties of ∥ · ∥D∞ . For x ∈ Symm(D) and y ∈ Symn(D),
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Lemma 2.1.3 implies the C∗-norm property

∥x ⋆ y∥Sym = lim
k→∞

∥x ⋆ y ⋆ 1⊗(k−n−m)∥D∞

= lim
k→∞

∥(x ⋆ 1⊗(k−n))(y ⋆ 1⊗(k−m))∥D∞

≤ lim
k→∞

∥(x ⋆ 1⊗(k−n))∥D∞∥(y ⋆ 1⊗(k−m))∥D∞

= ∥x∥Sym∥y∥Sym

with equality if y = x∗.
We have thus verified the C∗-seminorm properties, and the second advertised

claim follows from the general theory [81, Section 6.1].

Next, we aim to set up a bijection between the space of symmetric statesKs(D∞)
and the state space K(Sym∞(D)) of the abelian algebra. The connection revolves
around ∪n Symn(D), as it can be interpreted as a subspace of either algebra. We will
thus look for natural ways of extending a state ρ from ∪n Symn(D) to Sym∞(D)
and to D∞ respectively.

For the former case, we can use the fact that ∪n Symn(D) is dense in Sym∞(D).
Thus, if ρ ∈ Ks(D∞), it is natural to try to extend it by continuity from∪n Symn(D)
to a state on all of Sym∞(D). Lemma 2.1.4 shows that this ansatz indeed leads to a
well-defined map

E : Ks(D∞)→ K(Sym∞(D)). (2.8)

Conversely, in order to evaluate a state ρ ∈ K(Sym∞(D)) on an element of
x ∈ D∞, our approach is to map x to a symmetrized version Sym(x) ∈ Sym∞(D)
and then to apply ρ to Sym(x). To define the symmetrization operation, note that
any element of D∞ can be represented by a Cauchy sequence (xn)n with xn ∈ Dn
and set

Sym : (xn)n 7→ (Symn(xn))n. (2.9)

Lemma 2.1.4 establishes that the result lies in Sym∞(D) and that the adjoint

(Sym∗(ρ))(x) = ρ(Sym(x)) (2.10)

defines a map

Sym∗ : K(Sym∞(D))→ Ks(D). (2.11)
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Lemma 2.1.4. The maps Sym∗ and E are well-defined and inverses of each other.
What is more, Sym∗ is weakly continuous.

Proof. We will repeatedly make use of the fact [43, Prop. II.6.2.5] that the states on
a C∗-algebra are exactly those functionals ρ that satisfy

ρ(1) = 1, |ρ(x)| ≤ ∥x∥. (2.12)

Eq. (2.9) indeed defines a map from D∞ → Sym∞(D): If (xn)n, xn ∈ Dn
is a Cauchy sequence with respect to ∥ · ∥D∞ , then by Eq. (2.7), the sequence
(Symn(xn))n is Cauchy with respect to ∥ · ∥Sym and therefore an element of
Sym∞(D). Next, let ρ ∈ K(Sym∞(D)). Then

ρ(Sym(1)) = ρ(1) = 1, |ρ(Sym(x))| ≤ ∥ Sym(x)∥Sym ≤ ∥x∥D∞ ,

thus Sym∗(ρ) is a state. Because Sym ◦απ = Sym for any permutation π, Sym∗(ρ)
is symmetric. The map Sym∗ is weakly continuous: If a net ρλ in K(Sym∞(D))
converges weakly to ρ, then in particular ρλ(Sym(x))→ ρ(Sym(x)) for all x ∈ D.
Thus Sym∗(ρλ) converges weakly to Sym∗(ρ).

To prove that E is well-defined, start with a state ρ ∈ Ks(D∞). For x ∈
∪n Symn(D), using symmetry and Eq. (2.12),

|ρ(x)| = lim
k→∞

|ρ(x ⋆ 1⊗k)| ≤ lim
k→∞

∥x ⋆ 1⊗k∥D∞ = ∥x∥Sym.

In other words, on ∪n Symn(D), ρ is bounded with respect to the ∥ · ∥Sym-norm
and can thus be uniquely extended by continuity to a functional E(ρ) on Sym∞(D).
Using Eq. (2.12) once more, the preceding estimate also shows that E(ρ) is a state.

Finally, for each ρ ∈ Ks(D∞), x ∈ D∞ and σ ∈ K(Sym∞(D)),
y ∈ ∪n Symn(D),

Sym∗(E(ρ))(x) = E(ρ)(Sym(x)) = ρ(Sym(x)) = ρ(x),

E(Sym∗(σ))(y) = (Sym∗ σ)(y) = σ(y),

which shows that the two maps are inverses of each other.

Proof of Theorem 2.1.1. Consider E(ρ) ∈ K(Sym∞(D)). By [52, Example 4.1.30
and Proposition 2.3.27], because Sym∞(D) is abelian, there exists a unique non-
negative measure µ̃ over pure states Kpure(Sym

∞(D)), such that

E(ρ)(x) =

∫
Kpure(Sym∞(D))

σ̃(x) dµ̃(σ̃).
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But then, for xi ∈ D,

ρ(x1 ⊗ . . .⊗ xn) = ρ(x1 ⋆ . . . ⋆ xn)

= (E(ρ))(x1 ⋆ . . . ⋆ xn)

=

∫
Kpure(Sym∞(D))

σ̃(x1 ⋆ . . . ⋆ xn) dµ̃(σ̃).

Consider one σ̃ ∈ Kpure(Sym
∞(D)), let R : Ks(D∞) → K(D) be the map that

restricts states toD ⊂ D∞, and let σ = R◦Sym∗(σ̃). Because pure states of abelian
algebras are homomorphisms,

σ̃(x1 ⋆ . . . ⋆ xn) = σ̃(x1) . . . σ̃(xn) = σ(x1) . . . σ(xn) = Πσ(x1 ⊗ · · · ⊗ xn).

The restrictionR is the adjoint of the symmetric embeddingD →
⋃
n Sym

n(Dn)
⊂ D∞. As the adjoint of a bounded map, it is weak∗-continuous by the same
argument as the one used in the proof of Lemma 2.1.4. Thus the concatenation
R ◦ Sym∗ : σ̃ 7→ σ is continuous and hence measurable. We can therefore define a
non-negative measure µ on K(D) by

µ(S) = µ̃
(
(R ◦ Sym∗)−1(S)

)
.

Then

ρ(x1 ⊗ . . .⊗ xn) =
∫
K(D)

Πσ(x1 ⊗ . . .⊗ xn) dµ(σ),

which proves the claim, as ∪nDn is dense in D∞.

2.2 Scalar Extension

In sections 3.3.6 and 5.2 we will discuss a way of analyzing causal scenarios, and
more generally of solving certain polynomial optimization problems, that does not
involve copying the entire algebra, but instead uses a hierarchy of so-called scalar ex-
tensions [41, 82, 83]. In Ref. [39] the authors develop a way of proving convergence
of such a scalar extension hierarchy for state polynomial optimization problems. In
section 5.2 we will prove a similar convergence statement by re-expressing their
proof idea in the C∗-algebra language, and combining this with some techniques for
proving convergence for the polarization method that we developed in Papers [1, 2].

Here we prove a corollary that can be used for proving convergence of scalar
extension hierarchies and is motivated by the proof strategy of the de Finetti theo-
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rem 2.1.1, as well as by lemmas IV.4 and IV.5 of Ref. [24]. It will turn out to be
simpler than Theorem 2.1.1, due to the fact that we will be dealing with abelian
algebras.

Let A be the universal C∗-algebra generated by a set of generators G and rela-
tionsR. Furthermore, let Bi be the abelian C∗-algebra generated by a single genera-
tor bi (and the identity), with the relation C2

i 1− b∗i bi ≥ 0 for some constant Ci ∈ R
that we leave unspecified for now. In the most general case we will have a countable
number of such algebras Bi.

Since each Bi is an abelian algebra, they are nuclear [43, II.9.4.4], i.e. for every
C∗-algebra C the completion of the algebraic tensor product Bi ⊗alg C with respect
to a C∗-norm is unique, so that we can simply write Bi⊗C. In particular, this means
that A ⊗ Bi = A ⊗min Bi for every Bi so that it seems likely that we can use the
proof strategy of the existing de Finetti theorem of [24]. Indeed the proof follows
directly from this paper and its references.

We start by defining a second type of inductive limit of C∗-algebras in order to
work more easily with an algebra that is defined by a countable set of generators, and
subalgebras thereof. Indeed the construction will follow the standard definition of
inductive limits as given in e.g. Ref. [43, II.9.4.5]. DefineDK = A⊗B1⊗ . . .⊗BK ,
where each of the tensor products is unique due to the fact that nuclearity is preserved
under tensor products (and also under inductive limits, as we will use in a moment)
[43, II.8.2.1]. DK can be embedded into DK+1 in the obvious way, so that we can
define DK→∞ as the completion of ⋃

K

DK (2.13)

with respect to the norm ∥.∥DK→∞ , which is defined for each x ∈ DK as

∥x∥DK→∞ = ∥x∥DK . (2.14)

In DK→∞ the elements x ∈ DK and x ⊗ 1 ∈ DK+1 are identified, similar to how
y ∈ Dn and y ⊗ 1 ∈ Dn+1 are identified in D∞ in the previous section. We denote
by BK→∞ the special case where A is trivial.

Corollary 2.2.1. A state ω ∈ K(BK→∞) has a weak∗-integral decomposition

ω =

∫
dµ(σ)σ, (2.15)

where σ is a pure state on the abelian algebra BK→∞, i.e. a unital ∗-homomorphism
and µ is a probability measure on pure states of BK→∞.
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Proof. This follows directly from [52, Example 4.1.30]: Since BK→∞ is an abelian
C∗-algebra, there exists for any state ρ ∈ K(BK→∞) a unique measure µ over pure
states Kpure(BK→∞) such that

ρ(x) =

∫
Kpure(BK→∞)

σ(x)dµ(σ),

where each pure state is a ∗-homomorphism.

It is possible to prove a more general corollary, namely the one below, which
follows directly from the proofs of lemma IV.4 and IV.5 of Ref. [24]. However,
since we will not need this result, we will only state it here and refer the interested
reader to Ref. [24].

Corollary 2.2.2. A state ω ∈ K(DK→∞) has a weak∗-integral decomposition

ω =

∫
dµ(σ)ϕσ ⊗ σ, (2.16)

where ϕσ ∈ K(A), σ is a pure state on the abelian algebra BK→∞, i.e. a unital ∗-
homomorphism and µ is a probability measure on pure states of BK→∞. Moreover,
for each a ∈ A, ϕσ(a) is uniquely determined by ϕ almost everywhere with respect
to µ. If A is separable, the ϕσ is uniquely determined by σ almost everywhere.

Remark. In a way, the corollaries 2.2.1 and 2.2.2 are different from a “standard” de
Finetti theorem, since they do not require a combinatorial argument. The conclusion
follows almost directly from the decomposition of states on abelian algebras.

2.3 Quantum inflation
In the case of the original formulation of the inflation technique in Ref. [22], the
global algebra is not a (maximal) tensor product of copies of the same algebra, and
as such it is not possible to directly apply Theorem 2.1.1 to it. Nevertheless, the
algebra contains many isomorphic subalgebras for which the Theorem does apply.
In this section, we will derive all these separability statements from one “de Finetti-
like” theorem for the global algebra.

We start by formalizing the definition for a C∗-algebra that corresponds to the
limiting procedure of taking infinite inflation levels. We will phrase this in more
general terms, without referring to the inflation technique, with the goal of making
the statement more widely applicable.
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The result of the Theorem can loosely be seen as an interpolation between “stan-
dard” quantum de Finetti theorems and the result of e.g. Ref. [84], which is a de
Finetti theorem for exchangeable sequences in free products of ∗-algebras.

Let E be a universal C∗-algebra generated by a set of generators G and relations
R. LetA,B, . . . be commuting subalgebras of E , such that E = A⊗maxB⊗max . . ..
Denote the subset of generators that generate the algebra of system X by GX . Let
{i, j, . . .} be a set of indices of size L and assign a subset IX of the indices to each
subalgebra X , e.g. if IA = {i, j}, IB = {j, k}, we write Aij ,Bjk, and so on1.
We denote an assignment of values for the indices of system X with ℓX , e.g. ℓA =
(i = 1, j = 2) = (1, 2) leads to AℓA = Ai=1,j=2 = A12. The generators of
such a copy of the subalgebra X are denoted by GXℓX . In a similar way, we denote
by ℓE an assignment of values between 1 and n to the indeces of all parties, with
corresponding generators GℓE and relations RℓE . With this definition C∗(GℓE |RℓE )
is isomorphic to E .

We now define the C∗-algebra En to be the universal C∗-algebra C∗(Gn|Rn),
where

Gn :=
⋃

ℓE∈ZL
n

GℓE , Rn :=

 ⋃
ℓE∈ZL

n

RℓE
 ∪Rcom, (2.17)

Rcom :=

{
[xℓX , yℓ

′
Y ] : xℓX ∈ GXℓX , y

ℓ′Y ∈ G
Y ℓ′

Y
s.t.

{
X ̸= Y, or
(ℓX)i ̸= (ℓ′Y )i ∀i

}
,

(2.18)

As noted before, this algebra contains many isomorphic copies of the subalgebras,
most of which commute. However, if copies of the same subalgebra have overlap-
ping indices, their elements do not commute. Hence, contrary to the algebra Dn in
section 2.1, En as defined above is not a tensor product of n algebras. The commu-
tation relations that do hold are represented by Rcom. These are the commutation
relations between copies of different commuting subalgebras, and between copies of
the same subalgebra that have no overlapping indices.

In order to arrive at a de Finetti theorem, we will first show that there is a natural
way of taking an inductive limit in the parameter n. An inductive limit can be con-
structed from a set of norm-decreasing ∗-homomorphisms ϕmn : Em → En such
that ϕmn = ϕkn ◦ ϕmk. We will go one step further and show that the elements
from F(Gn−1) ⊂ En−1 can be identified with the elements F(Gn−1) ⊂ En. The
construction will follow from Lemma 2.3.1 below.

Lemma 2.3.1. En−1 is a C∗-subalgebra of En. That is, a sequence (xk)k with

1 In the inflation technique these indices correspond to copies of the sources.
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xk ∈ F(Gn−1) converges to 0 in the norm ∥ · ∥En−1 if and only if it converges to 0
in the norm ∥ · ∥En .

Proof. Recall the definition for the norm of a universal C∗-algebra

∥x∥ := sup{∥π(x)∥ |π is a representation of (G|R)}, (2.19)

so that this is the largest algebra for which all q ∈ R are positive (cf. lemmma 1.1.5).
limk ∥xk∥En−1 = 0 =⇒ limk ∥xk∥En = 0: This is the easy direction. We have

thatRn−1 ⊂ Rn. Hence, from Eq. (2.19) it follows that ∥x∥En ≤ ∥x∥En−1 .
limk ∥xk∥En = 0 =⇒ limk ∥xk∥En−1 = 0: For the converse direction let

K = Gn \ Gn−1 and Q = Rn \ Rn−1. The set Q consists of

1. the relationsRℓE that involve generators that have at least one index with value
n,

2. commutation relations of generators with at least one index with value n.

More precisely, the only commutation relations that are “missing” to make the alge-
bra into a tensor product of algebras are commutation relations between copies of the
same system with overlapping indices, where at least one index has value n. Indeed,
if we define

R̃n = Rn ∪ {[xℓX , yℓ
′
X ] : x ∈ GXℓX , y ∈ GXℓ′

X
s.t. n ∈ ℓX and n /∈ ℓ′X}

Ẽn = C∗(Gn|R̃n),

then it holds that Ẽn = En−1 ⊗max C
∗(K| ∪ℓE :n∈ℓE RℓE ). Hence, we can embed x

into Ẽn in the obvious way by tensoring with identity. From this it follows that

∥x∥En−1 = ∥x∥Ẽn ≤ ∥x∥En ,

where the last inequality follows again from the fact thatRn ⊂ R̃n.

Lemma 2.3.1 shows that it makes sense to define an inductive limit via embed-
dings, similar to the construction of Dn in section 2.1. That is, we define addition
and multiplication in ⋃

n

En
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by embedding into the larger algebra. We then define E∞ as the completion of the
∗-algebra

⋃
n En with respect to the norm ∥ · ∥E∞ defined for every x ∈ En as

∥x∥E∞ := ∥x∥En .

To get to a de Finetti theorem, let us start by defining the symmetrization map on
En. Let πi ∈ Sn be a permutation for the index i, and similar for j, k, . . .. Then we
define for every x ∈ En

Symn(x) =

(
1

n!

)L ∑
πi,πj ,...∈Sn

απi,πj ,...(x), (2.20)

where L is the total number of indices. Symn thus symmetrizes over each of the
indices individually. Again, the maps Symn can be extended to E∞ via their action
on cauchy sequences (xn)n with xn ∈ En as

Sym : (xn)n 7→ (Symn(xn))n.

We call a state ρ ∈ K(E∞) symmetric if ρ(x) = ρ(Sym(x)). The set of sym-
metric states is denoted by Ks(E∞).

Theorem 2.3.2. Let ρ be a symmetric state on E∞. Then there exists a decomposi-
tion

ρ =

∫
dµ(ϕ)ϕ, (2.21)

where µ is a unique probability measure over symmetric states on E∞. Additionally,
if X and Y are subalgebras of E∞ that commute and whose assignments of indeces
ℓX and ℓ′Y do not have an index with the same value (i.e. (ℓIX∩IY )i ̸= (ℓ′IX∩IY )i
for all i), then for all x ∈ X, y ∈ Y

ϕ(xy) = ϕ(x)ϕ(y) µ− almost everywhere. (2.22)

The proof of this theorem follows the same structure as that of Theorem 2.1.1,
with some details changed.

We start by defining a product ⋆n,m that acts on elements x ∈ En and y ∈ Em as

x ⋆n,m y = Symn+m(x⊗ y),

where x⊗ y is understood as its embedding in En+m. We write the similar product
acting on elements in E∞ simply as ⋆.
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With this product we get once more a symmetric local algebra as the set⋃
n

Symn(En).

Defining embeddings

Symn(En)→ Symn+k(En+k), x 7→ x ⋆n,k 1k,

with 1k the identity on Ek, and identifying x with x ⋆n+k 1k for all k, makes
(
⋃
n Sym

n(En), ⋆) into an abelian ∗-algebra. The following lemmas, that are similar
to lemmas 2.1.3 and 2.1.2, show that completion with respect to the norm defined as

∥x∥Sym = lim
k→∞

∥x ⋆ 1k∥E∞

turns (
⋃
n Sym

n(En), ⋆) into an abelian C∗-algebra.

Lemma 2.3.3. For x ∈ Symm(Em) and y ∈ Symn(En) it holds that

lim
k→∞

∥(x ⋆ 1k−m)(y ⋆ 1k−n)− (x ⋆ y ⋆ 1k−n−m)∥E∞ = 0. (2.23)

Proof. The probability that a permutation πi([m]) ∈ Sk and π′
i([n]) ∈ Sk intersect

is upper bounded by mn
k (see lemma 2.1.3). Then, by the union bound the probability

that any of the indices of the L permutations overlap is upper bounded by Lmn
k . We

use this to write

lim
k→∞

∥(x ⋆ 1k−m)(y ⋆ 1k−n)− (x ⋆ y ⋆ 1k−n−m)∥E∞

= lim
k→∞

∥∥∥( 1

k!

)2L ∑
πi,π

′
i
∈Sk

πi([m])∩π′
i([n]) ̸=∅

∑
πj,π

′
j
∈Sk

πj([m])∩π′
j([n]) ̸=∅

. . .

απiπj ...(x⊗ 1k−m)απ′
iπ

′
j ...

(y ⊗ 1k−n)
∥∥∥
E∞

≤ lim
k→∞

mnL

k
∥x∥E∞∥y∥E∞ = 0,

since x and y are bounded.

Using this combinatorial lemma, we can prove that ∥ · ∥Sym is a C∗-norm (cf.
lemma 2.1.2).
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Lemma 2.3.4. The limit

∥x∥Sym := lim
k→∞

∥x ⋆ 1k∥E∞

defines a C∗-seminorm on the symmetric local algebra
⋃
n Sym

n(En) fulfilling

∥x∥Sym ≤ ∥x∥E∞ .

The completion Sym(E∞) is an abelian C∗-algebra.

Proof. See lemma 2.1.2.

Once again, the aim is to set up a bijection between the state space of the abelian
algebra Sym(E∞) and the symmetric states of the quasi-local algebra E∞. The
construction is the same as in section 2.1. Define a map

E : Ks(E∞)→ K(Sym(E∞)), (2.24)

which extends a state on
⋃
n En to Sym(E∞) by continuity. Secondly, define the

map

Sym∗ : K(Sym(E∞))→ Ks(E)

as

(Sym∗(ρ))(x) = ρ(Sym(x)). (2.25)

Lemma 2.3.5. The maps Sym∗ and E are well-defined and inverses of each other.
Additionally, Sym∗ is weakly continuous.

Proof. See lemma 2.1.4.

We are now ready to prove Theorem 2.3.2. Since most of the ingredients of the
proof are identical to those of theorem 2.1.1, the proof strategy will be exactly the
same as well. The most notable difference is that we will not get a measure over
states on the algebra E , but only over symmetric states on the inflated algebra E∞.
We will see that all separability conditions that one would expect to hold from the
algebra derived from the inflated causal structure, indeed follow from this theorem.

Proof of Theorem 2.3.2. Since Sym(E∞) is an abelian algebra, any state E(ρ) ∈
K(Sym(E∞)) can be written as

E(ρ) =

∫
Kpure(Sym(E∞))

dµ̃(σ̃) σ̃,



CHAPTER 2. QUANTUM DE FINETTI THEOREMS 39

where µ̃ is a probability measure over pure states on Sym(E∞).
Then, using the fact that the map Sym∗ is weakly continuous and the inverse of

E, we can write

ρ =

∫
Ks(E∞)

dµ(σ) σ,

where

µ(S) = µ̃((Sym∗)−1(S)).

Now, for any choice of x, y ∈
⋃
n En obeying the conditions stated in the theo-

rem, we get

ρ(xy) = ρ(x ⋆ y) (2.26)
= (E(ρ))(x ⋆ y) (2.27)

=

∫
dµ̃(σ̃) σ̃(x ⋆ y) (2.28)

=

∫
dµ̃(σ̃) σ̃(x)σ̃(y) (2.29)

=

∫
dµ(σ) σ(x)σ(y), (2.30)

where it was used that σ̃ is a pure state on an abelian algebra, i.e. a ∗-homomorphism.
This proves the claim, as

⋃
n En is dense in E∞.

If x and y would not obey the conditions of the theorem, the equality (2.26)
would not hold, because x and y would share at least one index with the same value.
In the context of quantum inflation, this would correspond to two operators acting on
the same copy of a quantum state, for which it is indeed not expected that the state
factorizes over these operators.

The statement of the theorem can roughly be interpreted as follows. If the sub-
algebra generated by two subalgebras A and B of an inflated causal structure is a
tensor productA⊗B, the restriction of the state to these subalgebras is separable. In
fact, since a state ϕ ∈ Ks(E∞) is equivalent to some pure state on an abelian algebra
for all x, y with unequal or non-overlapping indices, it holds that ϕ µ-almost surely
simultaneously factorizes.

By restricting the states σ ∈ Ks(E∞) to n levels of inflation, it might be possible
to draw non-trivial conclusions on lower levels of the inflation from the factorization
conditions on higher levels. It is, however, not immediately clear how to do this.



Chapter 3

Quantum causal compatibility

One of the main motivations of this thesis is the quantum causal compatibility prob-
lem, which was informally stated in the introduction as Problem 1. Here we will state
it more precisely, in such a way that we can make mathematically precise statements
that take, for example, machine precision into account. Afterwards, we rephrase this
problem as a hierarchy of optimization problems in the form of NPO (cf. Sec. 1.3.2)
inspired by the quantum inflation technique of Ref. [22].

The main contribution of this chapter is to rephrase the quantum causal compat-
ibility problem as a hierarchy of NPO problems that is also complete in the sense
that any incompatible probability distribution will ultimately be detected as such. In
Sections 3.1 and 3.2 we will focus on a modified version of the inflation hierarchy
and prove it to be complete. In Section 3.3 we treat the special case of the bilocal
scenario. For this causal structure it turns out that such a modification to the inflation
technique is not necessary. In fact, we will show that there exist several convergent
hierarchies for this special scenario. The following is largely taken from Paper [1,
Sec. 1.3].

We follow the notation of Ref. [22] and introduce a precision parameter ϵ to
define the approximate quantum causal compatibility problem below.

Problem 3 (Approximate quantum causal compatibility). Given ϵ ≥ 0, a causal
structure and a probability distribution over observable variables P , determine
whether there exists a distribution P̃ that can be produced by a quantum model
compatible with the causal structure, such that ∥P̃ − P∥22 ≤ ϵ.

Similar to Refs. [22, 23], we will phrase Problem 3 as a special case of a more
general causal polynomial optimization problem. For this problem, the goal is to
minimize a polynomial function f0(ρ) over states ρ that are compatible with the
causal structure and in addition satisfy a set of polynomial constraints fi(ρ) = 0.

40
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The notion of a “polynomial function in states” needs to be explained. A quan-
tum model associates with each party an algebra of observables. We assume that
these algebras possess a finite set of generators G = {gi}i (we will describe how to
derive a suitable set of generators for each causal structure and any given number of
outcomes per party later). For now, we treat the gi as (non-commutative) variables –
later we will optimize over all possible assignments of concrete operators to the gi.
Let F (k)(G) be the vector space formed by complex linear combinations of words of
length k in the symbols gi and g∗i . Each element x ∈ F (k) defines a “linear function
f on states” in the following sense: Choose an assignment of operators to the gi. Let
D be the resulting algebra of observables. Then x can be understood as an element
of D. Let ρ be a state on D. Then the linear function is just f : ρ 7→ ρ(x). To
define a degree-g polynomial, start with an element x in the g-fold tensor product
F (k) ⊗ · · · ⊗ F (k) and set

f : ρ 7→ ρ⊗g(x). (3.1)

We say that x is a polarization of the polynomial f . Note that polarizations x are
defined independently of any assignments of concrete operators to the generators
– so they can be used to specify polynomial objective functions for problems that
optimize over such assignments.1

Problem 4 (Quantum causal polynomial optimization). Given a causal structure,
the number of possible measurement outcomes for each party, a polynomial function
f0 on quantum states (as defined above), and a countable set of polynomial func-
tions f1, f2, . . . that are non-negative on quantum states compatible with the causal
structure. Find

f⋆ = min
ρ
f0(ρ)

s. t. fi(ρ) = 0 i ≥ 1

ρ is compatible with the causal structure.

Problem 3 reduces to Problem 4 by choosing f0 to be the 2-norm distance be-
tween the observed data P and the one produced by the state. More general objective

1 In the context of quantum inflations, there are two distinct sources of “polynomials” that must not be
confused. First, general operators arise as (non-commutative) polynomials in the generators. The word
“polynomial” in the non-commutative polynomial optimization (NPO) framework refers to this sense. But
NPO objective functions are still linear in the state. In contrast, the term “polynomial” in the quantum
causal polynomial optimization problem – both as treated here and in Refs. [22, 23] – indicates that we
are allowing for objective functions that are polynomials in the state (in the sense explained above). The
degree of polynomial expressions in the generators of the algebra is connected to the level k of the NPO
hierarchy, while the degree of polynomial functions of the states corresponds to the level n of the inflation
or polarization hierarchy.
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functions can be important in applications – see [22, Section VII] for examples.
As we have seen in Sec. 1.2.2, the rigorous definition of a quantum causal struc-

ture depends on a mathematical model of the notion of a “local subsystem”. Here
we model local subsystems via commuting observable algebras of bounded oper-
ators. One could also consider alternative models: Instead of via commuting al-
gebras, locality could be formalized in terms of tensor products of Hilbert spaces
[17, 53, 54, 55]. Additionally, even though the causal compatibility problem only
involves bounded operators (the algebra generated by the POVM elements that give
rise to the observed probabilities), one could allow for unbounded operators in the
local algebras on which they act. A detailed discussion of these modeling decisions
was given in Sec. 1.2.2.

The SDP hierarchy that we describe in Sections 3.1 and 3.2 differs slightly from
the original quantum inflation hierarchy of [22]. Most importantly, we add two new
parameters: r, C, which are related to the Schmidt decomposition of the measurement
operators. To define them, consider a node of a quantum causal structure, say the one
that gives rise to the random variable A in the triangle scenario (Fig. 1.1(b)). Each
possible outcome is associated with a POVM element E. As there are two incoming
arrows to this vertex, E acts on two quantum systems. Call the observable algebras
acting on the respective subsystems A−,A+. For fixed values of r, C, we assume
that E is of the form

E =

r∑
α=1

e−(α)e+(α)

for suitable operators e−(α) ∈ A−, e+(α) ∈ A+ such that

∥e−(α)∥, ∥e+(α)∥ ≤ C.

Call models like this rank-constrained with parameters r, C.

Problem 5 (Rank-constrained quantum causal polynomial optimization). With the
notation of Problem 4, find

f⋆r,C = min
ρ
f0(ρ)

s. t. fi(ρ) = 0 i ≥ 1

ρ is a state on a model that is rank-constrained with parameters r, C
ρ is compatible with the causal structure.

Here, we construct semidefinite programming relaxations for these problems:

Theorem 3.0.1. Use the notation of Problem 4 and Problem 5. For every r, C, there
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exists a hierarchy of semidefinite programs indexed by an inflation parameter n and
an NPO parameter k. Denote the optimal values by f⋆r,C,n,k.

The hierarchy is complete in the sense that, as n, k → ∞, the f⋆r,C,n,k converge
to f⋆r,C from below. What is more, as r, C →∞, the f⋆r,C converge to f⋆ from above.

Increasing the parameter C does not come with significant computational cost
(cf. the discussion of the Archimedean property in [40], and the discussion on con-
vergence speed of SDPs in Sec. 1.3). Larger values of r, in contrast, do correspond
to a larger number of variables and constraints in the SDP formulation. The decision
to add these additional degrees of freedom must therefore be well-justified. While
we cannot prove that they are strictly necessary (which would in particular imply
that the original quantum inflation hierarchy is not convergent), we identify some
challenges that any constructive convergence proof that does not include these extra
variables would face in Secs. 3.1.1 and 3.1.2.

3.1 Inflation for the quantum causal compatibility prob-
lem

Here we give a brief overview of the quantum inflation technique, adapted from Sec.
2.3.1 of Paper [1].

The quantum inflation technique was first introduced in Ref. [22] and generalizes
classical inflation [21, 23] to the case of quantum causal structures. This section
serves to motivate the construction of the hierarchy in Sec. 3.2 – but in the rest of the
thesis, we will not rely on results and notation introduced here. We again focus on
the triangle scenario (Fig. 1.1(b)).

Given a joint distribution P (A,B,C), assume that there is a quantum model
compatible with the triangle scenario. Using the terminology of Sec. 1.2.2, we thus
know there exist a global observable algebraD generated by local algebrasA−,A+,
B−, B+, C−, C+, a state ρ factorizing as in (1.18), and POVM elements {Ea}a,
{Fb}b, {Gc}c that reproduce the correlations P as in (1.20).

Denoting the restrictions of ρ to the subalgebra ⟨C+ · A−⟩ generated by C+,A−
as ρCA, to ⟨A+ · B−⟩ as ρAB , and to ⟨B+ · C−⟩ as ρBC , Eq. (1.18) is equivalent to
demanding that ρ factorizes as

ρ = ρCA ⊗ ρAB ⊗ ρBC .

For any level n, we construct an inflated model as follows. Distribute n indepen-
dent copies of the original states ρAB , ρBC and ρCA among the three nodes A, B,
and C. At each node, we consider n2 POVMs {Eija }a, {F klb }b, {Gpqc }c. The POVM
element Eija replicates the original Ea, but acts on the i-th copy of the state ρCA and
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ρAB
1

ρBC
1ρCA

1

ρAB
2

ρBC
2ρCA

2

Figure 3.1: The level 2 inflation of the quantum triangle scenario. The latent quantum
systems have been copied individually. Alice, Bob and Charlie now each have 4
choices of which combination of the incoming states to measure. This is reflected
in the labeling of the corresponding POVMs and algebras. For example, Alice’s
POVM elements are denoted by {Eija }, where i denotes the copy of the state ρCA
and j denotes the copy of the state ρAB that the operator is acting on.

j-th copy of the state ρAB . The other two cases are defined analogously. As a result,
POVM elements Eija , F jlb , and Glic reproduce the original probabilities P (a, b, c).
Fig. 3.1 depicts the level 2 inflation of the triangle scenario.

We now list a number of properties of the inflated model. These properties can be
directly imposed as constraints in an NPO program. It follows that if P is compatible
with the causal model, then the resulting NPO problem is feasible for any inflation
level n [22]. In Sec. 3.2 we construct a variant of this NPO hierarchy for which we
supply a proof of the converse implication.

First, in Ref. [22] it is assumed that the {Ea}a, {Fb}b and {Gc}c are orthogonal
projective measurements, rather than more general POVMs. This simplifies the SDP
and can be done without loss of generality, because we do not restrict dimension and
possible dilations would still be compatible with the causal structure.

(Eija )∗ = Eija ∀i, j, a, (3.2)

Eija E
ij
a′ = δa,a′E

ij
a ∀i, j, a, a′, (3.3)∑

a

Eija = 1 ∀i, j, (3.4)
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and similar for {F klb } and {Gpqc }. In later sections we will drop this restriction, and
will only assume that we have POVM elements, i.e. non-negative operators that sum
to the identity.

Second, operators that act on different subsystems commute:[
Eija , F

kl
b

]
=
[
Eija , G

kl
c

]
=
[
F ijb , G

kl
c

]
= 0 ∀i, j, k, l, a, b, c,

(3.5)[
Eija , E

i′j′

a′

]
=
[
F ijb , F

i′j′

b′

]
=
[
Gijc , G

i′j′

c′

]
= 0 ∀i ̸= i′, j ̸= j′, a, a′, b, b′, c, c′.

(3.6)

Third, there is a permutation symmetry, resulting from the fact that the global
state is built out of independent copies of the original one. For any polynomial Q in
the measurement operators {Eija }, {F klb }, {Gpqc } up to inflation level n and for all
permutations π, π′, π′′ of n elements, the following must hold:

ρ
(
Q({Eija , F klb , Gpqc })

)
= ρ
(
Q({Eπ(i)π

′(j)
a , F

π′(k)π′′(l)
b , Gπ

′′(p)π(q)
c })

)
. (3.7)

For example,

ρ(E11
a F

12
b F 21

b′ G
21
c ) = ρ(E12

a F
22
b F 11

b′ G
21
c )

= ρ(E12
a F

21
b F 12

b′ G
11
c )

= ρ(E22
a F

21
b F 12

b′ G
12
c ),

where we have swapped ρ1AB ↔ ρ2AB in the first step, ρ1BC ↔ ρ2BC in the second
and ρ1CA ↔ ρ2CA in the third.

Fourth and finally, for the specific problem of causal compatibility the authors of
Ref. [22] include constraints of the marginal distribution over g ≤ n copies of the
triangle scenario. In particular, for the triangle scenario it must hold that

ρ
( g∏
i=1

EiiaiF
ii
biG

ii
ci

)
=

g∏
i=1

P (ai, bi, ci), (3.8)

since these variables describe g independent copies of the triangle causal structure.
We will not be needing these types of constraints for our quantum inflation hierarchy,
since we can already show convergence without them. Instead, for the approximate
causal compatibility problem we will choose an objective function that, if the optimal
value is ϵ-close to 0, ensures that Eq. (3.8) approximately holds. If ϵ = 0 Eq. (3.8)
will hold exactly.
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As noted before, the classical version of inflation has been shown to be complete
in Ref. [23]. Let us briefly comment on why the approach of this paper does not
directly carry over to the quantum case. The theorem the authors of Ref. [23] derive
to prove this statement, relies heavily on the observations that any distribution can
be decomposed as a convex combination of deterministic distributions, and that any
deterministic distribution can always be produced in any network. It is then shown
that symmetric deterministic distributions are close to product distributions. Those
product distributions allow one to construct polynomials over which it is possible
to optimize. In particular, one can minimize the 2-norm distance between these
deterministic product distributions and the observed statistics.

In the quantum case, this argument fails not because the symmetric extremal
states are not product states (in fact, they are if we choose appropriate subalgebras,
as we will see in later sections), but because the extremal states are not clearly pro-
ducible in any network. Whereas the set of extremal points in the classical case
consisted of deterministic distributions, in the quantum case this set is replaced by
the set of pure states. By now we have many examples of pure states that cannot be
produced in the triangle network, such as the GHZ state and the W state [22]. One
would thus additionally have to show that the constraints of the inflation technique
are sufficient to restrict the optimization to a smaller set of states that is compatible
with the causal structure. This requirement relates strongly to challenge 3 of the
following section.

3.1.1 Challenges

In our view, to prove that the quantum inflation hierarchy, or any similar hierarchy
like the polarization or scalar extension hierarchies of Chapter 5, is complete for
the quantum causal optimization problem one needs to find solutions to the three
challenges presented below. These challenges were first outlined in Sections 2.1, 2.4
and 2.5 of Paper [1].

Challenge 1: Mathematical models of subsystems. The first decision that has to
be made relates to which framework for quantum theory one will use. As explained
in Section 1.2, this choice between elementary quantum mechanics, where joint sys-
tems are constructed through Hilbert space tensor products, and algebraic quantum
mechanics, where subsystems are described by commuting subalgebras, turns out
to be relevant for infinite dimensional systems [17]. While most physicists prefer to
work with the Hilbert space tensor product model, there seems to be no clear physical
reason to prefer it over the commuting operator model.

In the quantum causal compatibility problem, no assumption is made about the
dimension of the sources in the causal structure. In particular, the states could be
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infinite dimensional systems such that the distinction between the commuting ob-
servables model and the Hilbert space tensor product model could actually become
relevant.

In what follows, we choose to adopt the algebraic model. This is a pragmatic
approach, for two reasons. First, it is already known that the quantum causal com-
patibility problem in the Hilbert space tensor product model is undecidable [85]. And
secondly, commutativity is a constraint that can be imposed algebraically, in contrast
to the requirement that the underlying Hilbert space is of tensor product form.

To reason numerically about observable algebras, one needs to express them in
a format that can be processed by a computer. Both the original quantum inflation
hierarchy [22] and our work [1, 2] are built on the non-commutative polynomial
optimization (NPO) hierarchy [40], which was explained in Sec. 1.3.2. The NPO
hierarchy allows us to optimize an expectation value over the set of states on a C∗-
algebra, under constraints that are linear in the state, via a convergent hierarchy of
SDP relaxations. This, however, only solves a part of our problem, since we need
to be able to express independence constraints of the form of Eq. (1.18) that are
polynomial in the state. This brings us to the second challenge.

Challenge 2: Polynomials in the state and a quantum de Finetti Theorem for
general C∗ tensor products.

In general, the independence constraints that follow from the causal structure are
not convex and therefore cannot directly be phrased as SDP constraints. Optimizing
over the set of states that obey these constraints is therefore highly non-trivial.

The basic idea underlying the quantum inflation hierarchy is to relax indepen-
dence conditions to symmetry conditions, which are linear in elements of the algebra
and easily incorporated into an SDP. It is easily seen that independence implies sym-
metries in the inflated causal structure. Central to convergence arguments is that
sometimes, in an asymptotic sense, the converse is also true. This is the case for
classical causal structures [23]. Such converse results that obtain independence from
symmetries are known as de Finetti Theorems and have been formulated both for
classical [78, 79] and for quantum [24, 74, 75, 76] probability theories, as well as for
more general settings [80, 84].

In addition to the conceptual problems mentioned in Challenge 1 and in Sec. 1.2,
switching to a more general notion of locality raises additional technical challenges.
Because the generalized Quantum de Finetti Theorem that is central to our conver-
gence proof requires C∗-algebraic methods, we have rephrased the NPO framework
of Ref. [40] in this language. We employ the terminology of universal C∗-algebras
as described in Sec. 1.1.1 (see also [43, Section II.8.3]).

A problem we faced was that the literature on de Finetti Theorems for C∗-
algebras to our best knowledge only pertained to minimal tensor products – too
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narrow for our use case. One of the main technical contributions of this work is
the realization that the construction and proof of the Quantum de Finetti Theorem in
[24] carries over from the minimal tensor product case for which it was formulated,
to general C∗-tensor products. The proof of this statement was given in Section 2.1.

Challenge 3: Identifying the local observable algebras. We now present what
we consider to be the most difficult challenge in deciding completeness of quantum
inflation hierarchies.

Assume that a joined probability distribution P (A,B,C) passes all levels of the
original quantum inflation hierarchy, as outlined at the start of this section. We thus
know that there is a C∗-algebra D generated by the observables {Eija , F

ij
b , G

ij
c }

and a state ρ that reproduces the observed correlations (Eq. (3.8)) and is symmetric
(Eq. (3.7)).

We now need to verify that this quantum model fulfills the causal constraints, e.g.
Eq. (1.18) for the triangle (see also Fig. 3.2). This involves, in particular, showing
that

1. one can embed the algebra ⟨{Eiia }a⟩ containing the measured POVM elements
into a potentially larger algebra Aii of all observables associated with the ver-
tex A, such that Aii is generated by two commuting subalgebras Ai−,Ai+,
and

2. that the state ρ can be extended to all of Aii and that it factorizes in the sense
that for each A− ∈ Ai−, A+ ∈ Ai+ we have ρ(A−A+) = ρ(A−)ρ(A+).

The second condition can be addressed using the generalized Quantum de Finetti
Theorem 2.1.1 proven in Sec. 2.1. The first condition, however, seems much more
challenging: There is no obvious ansatz for constructingAii and its commuting gen-
erators Ai−,Ai+ from the algebra D that results from the original quantum inflation
hierarchy of Ref. [22]. In fact, in the subsection just below, we will give an argument
that suggests that D does not in general contain local observable algebras Ai−,Ai+
that satisfy the two conditions above. It would then follow that if the original quan-
tum inflation hierarchy is complete, any constructive proof of that fact would neces-
sarily have to introduce additional operators that are not generated by the measured
POVMs and their copies.2

The modified quantum inflation hierarchy we construct in this chapter follows
such an approach (for details, see Sec. 3.2). It contains generators ei−(a, α), e

j
+(a, α),

which are constrained to commute unless both the upper and lower indices coincide.

2 The construction in chapter 3.3 for the specific case of the bilocal scenario indeed introduces such
operators by taking commutants of representations of subalgebras on certain Hilbert spaces.
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ρAB

ρBCρCA
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A+ B-
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C-C+

Figure 3.2: We associate to each quantum system an observable algebra. This means
that the POVM elements of Alice generate a subalgebra of a larger algebraA−⊗A+,
and similar for Bob and Charlie. It is with respect to the splitting C+A− | A+B− |
B+C− that the global state is supposed to factorize.

One can then define

Ai− = ⟨{ei−(a, α)}a,α⟩, (3.9)

Ai+ = ⟨{ei+(a, α)}a,α⟩, (3.10)

Aij = ⟨Ai− · A
j
+⟩, (3.11)

Ea =

r∑
α=1

e−(a, α)e+(a, α). (3.12)

The observables at the other two vertices are treated analogously. This modified
hierarchy thus fulfills condition 1. listed above by construction. Theorem 3.2.1 then
shows that the generalized Quantum de Finetti Theorem implies that there exists a
state ρ such that condition 2. holds as well.

3.1.2 Example of measurement operators that do not generate
elements from the local algebras

In this subsection, corresponding to Sec. 2.5.1 in Paper [1], we provide evidence for
the claim that the algebraD that results from the original quantum inflation hierarchy
does not in general contain the local observable algebras satisfying the two condi-
tions laid out above. The purpose of the material presented here is to motivate our
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ansatz and guide future research.
The strategy is to give a natural example of mutually commuting observable

algebras Ai−,A
j
+ and POVMs Eija ∈ Ai− · A

j
+ such that the algebra generated by

the {Eija }ija does not contain any non-trivial local observable, i.e. no element in
any of the Ai− or Aj+ other than 1. This does not constitute a proof of the claim
made above: We do not know whether there are correlations P (A,B,C) that will
cause the original inflation hierarchy to output such a model. But it does show that
there are natural choices for the operators Eija that fulfill all the constraints of the
hierarchy, while failing to generate the local observables with respect to which the
factorization properties of the causal structure are defined.

The model is very simple: For i, j = 1, . . . , n, let Ai−,A
j
+ be the observable

algebra of one qubit each. Consider the maximally entangled magic basis

|ψ1⟩ij =
1√
2

(
|00⟩+ |11⟩)ij ,

|ψ2⟩ij =
1√
2

(
|01⟩+ |10⟩)ij ,

|ψ3⟩ij =
1√
2

(
|00⟩ − |11⟩)ij ,

|ψ4⟩ij =
1√
2

(
|01⟩ − |10⟩)ij ,

and define POVMs

Eija = |ψa⟩⟨ψa|ij .

Lemma 3.1.1. The algebra D generated by {Eija } for i, j = 1, . . . n; a = 1, . . . , 4
does not contain any non-trivial local operator.

Proof. The magic basis is a stabilizer basis, and we can thus express the projection
operator onto each vector by summing over the respective stabilizer group. In terms
of the usual Pauli operators, this gives

Eij1 =
1

4
(1+Xi

−X
j
+ + Zi−Z

j
+ − Y i−Y

j
+), (3.13)

Eij2 =
1

4
(1+Xi

−X
j
+ − Zi−Z

j
+ + Y i−Y

j
+), (3.14)

Eij3 =
1

4
(1−Xi

−X
j
+ + Zi−Z

j
+ + Y i−Y

j
+), (3.15)

Eij4 =
1

4
(1−Xi

−X
j
+ − Zi−Z

j
+ − Y i−Y

j
+). (3.16)
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Let

X̄ =

n∏
i

Xi
−X

i
+, Z̄ =

n∏
i

Zi−Z
i
+.

Because distinct Pauli operators on the same system anti-commute,

[X̄, Eija ] = [Z̄, Eija ] = 0

and thus D is contained in the commutant of X̄, Z̄. But there is no non-trivial local
operator that commutes with both X̄ and Z̄.

We note that Eqs. (3.13)-(3.16) imply that the effectsEija have Schmidt-rank≤ 4
and a product decomposition with factors of operator norm C ≤ 1

4 .

3.2 A convergent hierarchy
The entirety of Section 3.2 corresponds to Section 4 of Paper [1].

Motivated by the difficulties that were outlined in Section 3.1.1, we propose a
modified hierarchy of semidefinite programs for a Schmidt rank-constrained version
of the quantum causal optimization problem that is provably complete. We show that
by increasing the Schmidt rank, one can approximate any POVM arbitrarily well.

We use the triangle causal structure without settings as a guiding example to
demonstrate the technique and to keep the notation relatively legible. More general
scenarios can be accommodated – e.g. it is straight-forward to add additional gener-
ators to describe several possible POVMs per party. Extensions of these methods to
arbitrary quantum causal structures are discussed in Section 3.2.3.

3.2.1 Construction of the hierarchy
The universal algebra of the quantum causal structure

First, we define generators and relations for the universal C∗-algebra Dn modeling
the most general set of observables for the n-th inflation level of the causal structure.
The algebra depends on a number of parameters:

1. The causal structure (taken to be the triangle scenario for now);

2. The number of outcomes M per vertex;

3. The inflation level n;
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4. A bound r on the Schmidt rank of the measurement operators;

5. A bound C on the norm of the generators of the local algebra.

The dependency of Dn on the parameters will not be made explicit, with the excep-
tion of the inflation level.

From this data, define the set Gn of 6(M − 1)rn+ 1 generators to be

{1} ∪
⋃
a,α,i

{
ei−(a, α), e

i
+(a, α), f

i
−(a, α), f

i
+(a, α), g

i
−(a, α), g

i
+(a, α)

}
,

where

a ∈ {1, . . . ,M − 1}, α ∈ {1, . . . , r}, i ∈ {1, . . . , n}.

We will use the abbreviations

Eija :=

r∑
α=1

ei−(a, α)e
j
+(a, α),

F ija :=

r∑
α=1

f i−(a, α)f
j
+(a, α),

Gija :=

r∑
α=1

gi−(a, α)g
j
+(a, α)

(3.17)

and

Xij
M := 1−

M−1∑
a=1

Xij
a , X ∈ {E,F,G}. (3.18)

Four types of constraints are imposed.

1. Locality constraints: for all x ∈ {e, f, g}, y ∈ {−,+}, a ∈ {1, . . . ,M},
α ∈ {1, . . . , r}, i ∈ {1, . . . , n}:

[xiy(a, α), x
′i′
y′ (a

′, α′)] = 0 unless x = x′, y = y′, and i = i′. (3.19)

2. Measurement constraints:

Xij
a is positive, X ∈ {E,F,G}. (3.20)
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3. Norm constraints:

∥g∥ ≤ C, ∀ 1 ̸= g ∈ Gn. (3.21)

4. And finally that

1x = x1 = x (3.22)

for all generators x.

Together, these constraints define the set of relationsRn. The NPO problem will run
over states on the universal C∗-algebra Dn = C∗(Gn|Rn).

Polynomial constraints and objective function

The quantum causal polynomial optimization problem minimizes a polynomial func-
tion f0 over compatible states ρ ∈ K(D1) that also fulfill a number of polynomial
constraints fi(ρ) = 0. Here, we construct these objects precisely.

Choose some g, k ∈ N. Recall the definition of the finite vector space F (k)(G)
of polynomials of order k in the generators G from Sec. 1.3.2. We assume that the
functions are such that for every fi, there exists a yi in the g-fold algebraic tensor
product F (k) ⊗alg · · · ⊗alg F (k) such that fi(ρ) equals the evaluation of the product
state ρ⊗g on yi:

fi(ρ) = ρ⊗g(yi) (3.23)

For our purposes, it will be enough to take Eq. (3.23) as the definition of the type of
functions we allow for. We remark, though, that passing from a degree-g polynomial
function fi on F (k) to a yi ∈ (F (k))⊗algg such that Eq. (3.23) holds is known as a
polarization in multi-linear algebra. In this context, it is proven that a unique suitable
yi always exists. Polarizations will be discussed in a more general context in Section
3.3 and Chapter 5.

As an example, consider the 2-norm distance that allows one to reduce Problem 3
to Problem 4 as we will see in Corollary 3.2.3. The objective function is then given
by ∑

a,b,c

(
ρ(E11

a F
11
b G11

c )− P (a, b, c)
)2
. (3.24)
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To find the polarization, note that for a compatible state ρ it holds that∑
a,b,c

(
ρ(E11

a F
11
b G11

c )− P (a, b, c)
)2

=
∑
a,b,c

ρ(E11
a F

11
b G11

c )ρ(E22
a F

22
b G22

c )− 2P (a, b, c)ρ(E11
a F

11
b G11

c ) + P (a, b, c)2

=ρ⊗2
(∑
a,b,c

E11
a F

11
b G11

c E
22
a F

22
b G22

c − 2P (a, b, c)E11
a F

11
b G11

c + P (a, b, c)2
)
,

(3.25)

which is indeed of the form ρ⊗g(yi).
We have now assigned a precise meaning to every object that appeared in the

quantum causal polynomial optimization problem (Problem 4), which we restate
here with constraints on the Schmidt rank of the POVM elements and the norm
of the generators (i.e. as in Problem 5): Given a causal structure, a choice for the
parameters M, r,C, and a family of polynomial functions fi on K(D1) as defined
above and such that the fi, i ≥ 1 are non-negative on states that are compatible with
the causal structure. Find

f⋆r,C = min
ρ∈K(D1)

f0(ρ)

s. t. fi(ρ) = 0 i ≥ 1

ρ is compatible with the causal structure.

(3.26)

We adopt the common convention that f⋆r,C is∞ in case the problem is infeasi-
ble.

NPO formulation

We now pass to an NPO problem, which we will show is asymptotically equivalent
to the causal optimization problem in Eq. (3.26). To do so, we will replace the
polynomial functions fi by their polarizations yi, and replace the causal constraint
on ρ by symmetry constraints on a degree-n inflation.

Choose some n larger than or equal to the degree of y0. For permutations
π, π′, π′′ ∈ Sn define an action on generators:

ei+ 7→ e
π(i)
+ , f i− 7→ f

π(i)
− ,

f i+ 7→ f
π′(i)
+ , gi− 7→ g

π′(i)
− ,

gi+ 7→ g
π′′(i)
+ , ei− 7→ e

π′′(i)
− .

(3.27)
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Let απ,π′,π′′ be the extension of this action to F(Gn).
The NPO problem relaxation of (3.26) at inflation level n is

fnr,C = min
ρ∈K(Dn)

ρ(y0)

s. t. ρ(yi) = 0, i ≥ 1, yi ∈ F (n)(G),

ρ(b
(n)
j − απ,π′,π′′(b

(n)
j )) = 0,

(3.28)

where the final symmetry constraint ranges over a basis {b(n)j } for F (n)(G) and a
generating set of permutations in S×3

n .
We note that (3.28) is not yet directly a semidefinite program. Instead, every in-

stance gives rise to the infinite (but complete) hierarchy of SDP relaxations discussed
in Section 1.3.2.

3.2.2 Proof of completeness

Now follows the proof that the inflation hierarchy of Eq. (3.28) is complete, i.e. that
in the limit of n→∞, Eq. (3.28) and Eq. (3.26) are equivalent. Afterwards, we show
that for every ϵ in the approximate quantum causal compatibility problem (Problem
3), there exist a Schmidt rank r and a norm bound C such that any compatible dis-
tribution can be ϵ-approximated by one that can be realized in a model that respects
the bounds on r, C.

Theorem 3.2.1. The hierarchy (3.28) is complete for the problem (3.26) in the sense
that

f∞r,C := lim
n
fnr,C = f⋆r,C .

Proof. Since each level of the hierarchy is a relaxation of the original problem, it
holds that

fnr,C ≤ f⋆r,C ∀n. (3.29)

The converse inequality is more involved. We start by constructing a state ωn on
D∞ for each n by taking the infinite tensor product of some optimizing state of the
problem in Eq. (3.28). By the Banach-Alaoglu Theorem applied to the state space
K(D∞), there exists a weak∗-convergent subsequence of the ωn. Let ω be its limit
point.

For each i ≥ 1, yi has a finite degree ni. The constraint ρ(yi) = 0 in (3.28)
implies that ωn(yi) = 0 for every n ≥ ni, and therefore the same is true for the
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limit:

ω(yi) = 0.

Because ωn is chosen to be an optimizer, ωn(y0) = fnr,C and thus

ω(y0) = lim
n→∞

fnr,C = f∞r,C .

Likewise, the symmetry constraints in (3.28) imply that

ω ◦ απ,π′,π′′ = ω. (3.30)

Restricting to the diagonal case π = π′ = π′′, we conclude that the limit ω is a
symmetric state on D∞, so that Theorem 2.1.1 applies.

Next, for each 1 ≤ n ≤ ∞, introduce the algebras

(C+A−)
n, (A+B−)n, (B+C−)n,

where (C+A−)
n ⊂ Dn is the subalgebra generated by

⋃
i≤n

⋃
a,α{gi+(a, α), ei−(a, α)},

and similar for (A+B−)n and (B+C−)n. As n ranges over all natural numbers, the
linear span of elements of the form

x = uvw,

with u ∈ (C+A−)
n, v ∈ (A+B−)n andw ∈ (B+C−)n is dense inD∞. We therefore

lose no generality by restricting the analysis of the action of ω to elements of this
form.

Fix one n ∈ N and x = uvw ∈ Dn. Using the cycle notation, define the
permutations

π = (1, n+ 1) (2, n+ 2) . . . (n, 2n),

π′ = (1, 2n+ 1) (2, 2n+ 2) . . . (n, 3n),

i.e. π exchanges the 1st block of n symbols with the 2nd block of n symbols and π′

exchanges the 1st block of n symbols with the 3rd block of n symbols. Then

ω(x) = ω(α1,π,π′(x)) (3.31)

= ω
(
uαπ(v)απ′(w)

)
(3.32)
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=

∫
dµ(σ) Πσ

(
uαπ(v)απ′(w)

)
(3.33)

=

∫
dµ(σ) Πσ(u)Πσ

(
απ(v)

)
Πσ
(
απ′(w)

)
(3.34)

=

∫
dµ(σ) Πσ(u)Πσ(v)Πσ(w), (3.35)

where Eq. (3.32) follows from Eq. (3.30), Eq. (3.33) from Theorem 2.1.1, and in
Eqs. (3.34) and (3.35) we have used that Πσ is a symmetric product state for disjoint
sets of layers of the inflation.

For each σ, the integrand in Eq. (3.35) factorizes (cf. Fig. 3.2). The respective
marginals of Πσ will be denoted as

ΛC+A−
σ := Πσ|(C+A−)∞ , ΛA+B−

σ := Πσ|(A+B−)∞ , ΛB+C−
σ := Πσ|(B+C−)∞ ,

(3.36)

so that the product state appearing in the integrand is

Λσ := ΛC+A−
σ ⊗ ΛA+B−

σ ⊗ ΛB+C−
σ . (3.37)

Therefore, ω is a convex combination

ω(x) =

∫
dµ(σ) Λσ(x). (3.38)

of states Λσ that are compatible with the causal structure.

It remains to be shown that we can choose one σ, such that Λσ(y0) = f∞r,C and
Λσ(yi) = 0 for all i ≥ 1.

By the definition of Problem 4, the yi are non-negative on states compatible with
the causal structure, i.e. Λσ(yi) ≥ 0 for all i ≥ 1. Because ω(yi) = 0 as well,
the constraints must be fulfilled on a set E ⊂ K(D) of measure µ(E) equal to
one. For every Λσ with σ ∈ E it must hold that Λσ(y0) ≥ f∞r,C , for else one could
have chosen µ to be the point measure on a state σ′ ∈ E with Λσ′(y0) < f∞r,C , which
contradicts the fact that f∞r,C is a minimum. As before, there must be a subset F ⊂ E
of measure µ(F ) equal to one such that Λσ(y0) = f∞r,C for all σ ∈ F . Therefore,
any state Λσ such that σ ∈ F is compatible with the constraints of Eq. (3.26), so that
we can conclude

f∞r,C = Λσ(y0) ≥ f⋆r,C ∀σ ∈ F. (3.39)

Combining Eqs. (3.29) and (3.39) yields f∞r,C = f⋆r,C .
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Remarks.

1. It is not obviously possible to extract a compatible state from the SDP.

2. The proof of Theorem 3.2.1 shows that it is in general not possible to add
additional constraints of the form ρ(x) ≥ 0 to the program for elements x
that are not necessarily positive on compatible states: the states Λσ that are
compatible with the causal structure might not obey these constraints, since
they only apply to ω. That is, the set E defined in the proof will in general
not have full measure. However, if the optimization problem is a feasibility
problem, i.e. if it has a trivial objective function, it is possible to put one such
constraint as the objective function and reject the solution if the optimal value
does not obey the inequality. We will apply this to the constraints of the causal
compatibility problem in Corollary 3.2.3 below.

Lemma 3.2.2. Consider a probability distribution P that is compatible with a given
causal structure. Choose ϵ > 0. There exist constants C, r such that there is a
distribution P̃ that approximates P in the sense that

∥P − P̃∥22 ≤ ϵ

which can be realized using only POVM elements of the form

Ẽ =

r∑
α=1

e−(α) · e+(α), such that ∥e−(α)∥, ∥e+(α)∥ ≤ C. (3.40)

Proof. Consider the original model that gives rise to P . By the definition of a C∗-
tensor product, for each a = 1, . . . ,M − 1, there is a convergent series

Ea =

∞∑
α=1

e−(a, α) · e+(a, α), e−(a, α) ∈ A−, e+(a, α) ∈ A+.

Let E(r)
a be the truncation of the series to the first r terms. Convergence implies that

for every δ > 0, there exists an r such that

∥E(r)
a − E∥ ≤ δ a = 1, . . . ,M − 1.

What remains to be proven is that one can turn these partial sums into an exact
POVM. To this end, set

Ẽa =
1

1 + 2Mδ
(δ1+ E(r)

a ) a = 1, . . . ,M − 1. (3.41)
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Then the Ẽa are positive. What is more,∥∥∥∥∥
M−1∑
a=1

Ẽa

∥∥∥∥∥ ≤ 1

1 + 2Mδ

(
M−1∑
a=1

∥δ1∥+

∥∥∥∥∥
M−1∑
a=1

(E(r)
a + Ea − Ea)

∥∥∥∥∥
)

≤ 1

1 + 2Mδ

(
(M − 1)δ +

∥∥∥∥∥
M−1∑
a=1

Ea

∥∥∥∥∥+
∥∥∥∥∥
M−1∑
a=1

(E(r)
a − Ea)

∥∥∥∥∥
)

≤ 1

1 + 2Mδ

(
(M − 1)δ + 1 + (M − 1)δ

)
< 1

so that

ẼM := 1−
M−1∑
a=1

Ẽa

is also positive. Therefore {Ẽ1, . . . , ẼM} forms a POVM. Repeating the construc-
tion, one arrives at approximations F̃b to Fb and G̃c to Gc.

From Eq. (3.41), the approximating POVM elements converge to the original
ones in operator norm as δ → 0. The same is thus true for all polynomial expressions
in the POVM elements. Therefore,

P̃ (a, b, c) := ρ(ẼaF̃bG̃c)→ P (a, b, c) (δ → 0)

and, because there are only finitely many outcomes,

∥P̃ − P∥22 → 0 (δ → 0).

Thus, choosing r sufficiently high, an arbitrarily good approximation can be achieved.
The advertised claim follows by choosing C to be the largest operator norm of any
factor of the partial sums involved.

Corollary 3.2.3. Given a probability distribution P over observed variables, the
SDP hierarchy that corresponds to the optimization problem of Eq. (3.28) can solve
the approximate quantum causal compatibility problem described in Problem 3.

Proof. In order to solve Problem 3, we need to show that there exists a state ρ that
is compatible with the description of the causal structure and that produces statistics
that are close in 2-norm to the observed statistics. In particular, for the triangle
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scenario it must hold that∑
a,b,c

(
ρ(E11

a F
11
b G11

c )− P (a, b, c)
)2 ≤ ϵ, (3.42)

where ρ is a compatible state. Once again we can polarize the expression, which
yields the objective function

min
ρ∈K(D2)

∑
a,b,c

ρ(E11
a F

11
b G11

c E
22
a F

22
b G22

c )− 2P (a, b, c)ρ(E11
a F

11
b G11

c ) + P (a, b, c)2,

(3.43)

as was shown in Eq. (3.25).
If the NPO hierarchy attains the optimal value f∞r,C for this objective function,

there also exists a product state Πσ ∈ K(D∞) that is compatible with the infinitely
inflated causal structure that attains the same optimal value by Theorem 3.2.1. If
fnr,C > ϵ for any n, we reject the hypothesis that the given description of the causal
structure with measurement operators of rank r and generators with a norm-bound
of C can produce the observed statistics. If there does exist a quantum description of
P (A,B,C) Lemma 3.2.2 ensures that there exist r andC such that the optimal value
is not rejected for any n. In that case the restriction of Πσ to D is a product state that
is compatible with the triangle causal structure and that approximately produces the
probability distribution P (A,B,C).

Remark. Though in the limit of n → ∞ the objective function (3.43) is equivalent
to Eq. (3.42), Eq. (3.43) is likely to be impractical to detect incompatibility. For low
values of n the state will not be separable and this objective function can become
negative. Fortunately, once convergence is proven, it is possible to add additional
constraints that are as strict as, or relaxations of, Problem 3: Denoting the optimal
value of such an adjusted hierarchy by f̃nr,C , it holds that fnr,C ≤ f̃nr,C ≤ f∗r,C . Then
limn→∞ fnr,C = f∗r,C implies limn→∞ f̃nr,C = f∗r,C . This means in particular that
we can simply add the linear equality constraints (3.8), while retaining convergence.
This should allow for detection of incompatibility at much lower levels than without
such constraints.

3.2.3 Arbitrary quantum causal structures
In this section we will generalize the results presented above to arbitrary causal struc-
tures for which all leaf nodes are observed classical variables3. Ref. [22, Sec. V] dis-

3 Recall that one can also define quantum causal structures that give rise to quantum states rather than
classical variables [11]. Such scenarios are beyond the scope of this chapter, but will be discussed in the
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cusses a number of transformation rules that bring such general causal structures into
a form amenable to the hierarchy introduced above. It is argued there that these rules
are sufficient to treat every structure that gives rise to classical random variables. We
will not repeat this argument here. However, for each of their transformation rules,
we will explain how they can be applied in our modified framework.

We will first argue that the approach described in the previous sections is applica-
ble to all network scenarios, which are two-layered causal structures with observed
leaf nodes, i.e. nodes without children. In the second step, we will map any latent
exogenous causal structure to such a network scenario. Latent exogenous causal
structures are those in which the only unobservable nodes are root nodes, i.e. nodes
that have no parents. The final step is to map non-exogenous causal structures to
exogenous ones by introducing a new type of node that can also be treated in our
model.

Network scenarios

It is not difficult to see that Theorem 3.2.1 and Corollary 3.2.3 can be extended
to arbitrary correlation scenarios, which are the causal structures that only have a
bottom layer of independent latent systems with arrows pointing to a top layer of
observed variables. The triangle scenario is an example of a correlation scenario.
If the causal structure has L latent (quantum) variables, one can employ the proof
strategy of Theorem 3.2.1 by writing an operator on n inflation levels as an operator
on L ·n levels of inflation. Indeed, for the triangle scenario one has 3 latent quantum
systems, and thus 3n levels of inflation were sufficient in the reasoning of Eqs.(3.31)-
(3.35). The proof that causal polynomial optimization can be solved with an SDP
hierarchy as described above remains nearly the same, with the only difference that
the algebra Dn modeling the level-n inflated causal structure has to be defined in
accordance with the proposed causal structure. To show that causal compatibility is
also solved, one just needs to write down a similar objective function as in Eq. (3.43)
for the given probability distribution.

By allowing classical root nodes that only have one child in two-layered causal
structures, one obtains so called network scenarios (see e.g the Bell scenario of
Fig. 1). Whenever a classical, observed variable is an input to another observed vari-
able, we give the POVM elements of the latter variable an extra index. For example
in the Bell scenario, where Alice has the input variable X , the POVM elements of
Alice become {Exa}, with

∑
aE

x
a = 1 for every x, so that x can be interpreted as

a measurement setting. POVM elements with different measurement settings, e.g.
Exa and Ex

′

a , need no longer commute. Though this description introduces more
variables to the model, nothing major changes in the proofs.

network scenarios of Chapter 4.
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(a)

A BX

ρAB
(b)

A BX

ρAB

A#1

Figure 3.3: (a) The instrumental scenario as an example of a latent exogenous causal
structure. The variable A is both a parent and a child and thus the causal structure is
not a network scenario. By splitting A into A and A#

1 , as in (b), and post-selecting
A#

1 on the outcome of A, the instrumental scenario can be modeled by a network
scenario, which happens to be the Bell scenario. This process is an example of
maximal interruption.

Latent exogenous causal structures

It is also possible to extend our result to quantum causal structures with more than
two layers. The reduction of the general case to the proof methods considered here
is not immediate. We follow the approach of Wolfe et al. [22], who generalize to
arbitrary causal structures in two steps. In both cases, they offer a solution for how to
alter the description of these causal structures such that they fit in the framework of
inflation and NPO. We will adopt the first and alter the second method to adhere to
our formalism. One then has to show that these descriptions still obey all the results
of the previous sections. Here we briefly outline why this is indeed the case and give
the general transformation rules to map those causal structures to equivalent network
scenarios.

In the first generalization step, the causal structure is also allowed to contain ob-
served nodes that have both one or more parents and one or more children. However,
all unobserved nodes remain root nodes. Such causal structures are called latent
exogenous. An example is the instrumental scenario in Fig. 3.3. The probability
distribution of the instrumental scenario is denoted by PIS(A,B,X). However, it
is more common to express the statistics in terms of conditional probabilities. For a
set of N random variables {A1, . . . , AN} conditioned on K independent variables
{X1, . . . , XK}, the statistics are fully captured by the combination of the conditional
probabilities

P (A1, . . . , AN | X1 . . . XK) =
P (A1, . . . , AN , X1 . . . XK)

P (X1 . . . XK)
, (3.44)
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(a)

A B

C

ρAB

ρBCρCA
X

(b)

A B

C

ρAB

ρBCρCA X3

X1 X2
# #

#

Figure 3.4: (a) The triangle scenario with a shared setting X . Via maximal interrup-
tion the observed variableX is split into three independent and identically distributed
random variables, producing the network scenario (b). The allowed probability dis-
tributions of the original causal structure can be obtained from the network scenario
by post-selection.

and the requirement that the setting-associated variables factorize:

P (X1, . . . , XK) = P (X1) . . . P (XK). (3.45)

We refer to Ref. [86] for a fuller discussion on why this is necessary and how this
works in more general (classical) setups. Hence, checking for compatibility will
consist of two separate steps: First one has to confirm that variables that are being
conditioned on form a product distribution; Secondly, one checks compatibility with
the causal structure via the procedure outlined below.

In particular, for the instrumental scenario this simply reduces to checking com-
patibility of

PIS(a, b | x) =
PIS(a, b, x)

PIS(x)
. (3.46)

The classical random variable A is both a child of ρAB and X , as well as a parent
of B. This problem is resolved by a process known as maximal interruption [87,
88, 89, 90]: the variable A is split into two random variables A and A#

1 , where A is
only a child and A#

1 is only a parent. The causal structure is then effectively mapped
to the Bell scenario. By post-selecting A#

1 on the outcome A = a, i.e. by setting
PIS(A = a,B = b | X = x) = PBell(A = a,B = b | X = x,A#

1 = a), one can
still obtain the allowed distributions of the original graph.

In the case that an observable node has multiple children, one applies a similar
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splitting and post-selection procedure. Consider for example the triangle scenario
with a shared settingX depicted in Fig 3.4(a). Via maximal interruption the observed
variable X is split up into three independent and identically distributed random vari-
ables X#

1 , X#
2 and X#

3 as depicted in Fig 3.4(b). The resulting causal structure
is a network scenario. By post-selecting on X#

1 = X#
2 = X#

3 = x one can link
the (conditional) probability distribution of the network scenario to the (conditional)
probability distribution P (A,B,C | X = x) of the triangle with a shared setting
and find the allowed distributions in the original causal structure.

In this way, one can map all latent exogenous causal structures to network sce-
narios. The general rule is then as follows: Whenever an observed node is not a leaf
node and is directly connected to multiple other nodes, split the node into as many
copies as there are outgoing arrows. Remove every outgoing arrow from the original
node and attach it to a copy. If there are no incoming arrows to the original node,
remove it. Check whether the setting-associated variables factorize into a product
distribution. Finally, analyze this causal structure, which is now a network scenario,
and apply post-selection on the copies.

Non-exogenous causal structures

The second step in the generalization is more involved. The causal structures are
now also allowed to have latent (quantum) variables with parents. In classical causal
structures it is possible to transform these non-exogenous causal structures into ex-
ogenous ones, for which it is then possible to apply maximal interruption as de-
scribed above, if necessary [91]. However, for quantum causal structures this is in
general not possible.

Ref. [22] gives a clear example (credited there to Stefano Pironio), which is de-
picted in Fig. 3.5. In this example, the quantum system ρBC in Fig. 3.5(a) is non-
exogenous. The structure in Fig. 3.5(b) has been exogenized as if it were a classical
causal structure, by removing ρBC and drawing arrows from the parents of ρBC to
its children. It can be seen that in the original causal structure it is possible to max-
imally violate a Bell inequality for either the systems A and B or A and C, based
on the setting determined by S. However, after the exogenization depicted on the
right, the setting S cannot determine anymore which pair maximally violates a Bell
inequality. Since it is impossible that both A and B, as well as A and C maximally
violate a Bell inequality due to monogamy of entanglement [92], the causal structure
on the right cannot produce the same statistics as the one on the left.

We will split the treatment of non-exogenous causal structures in two parts: First,
we will consider unobservable systems with one or more observed parents and at
most one unobservable parent. Secondly, we will regard unobservable systems with
multiple unobservable parents, but no observed parents. These two solutions can
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be combined to form a general set of rules for treating non-exogenous causal struc-
tures. It will turn out that, even though we cannot directly apply the exogenization
procedure for classical causal structures, each observable leaf node will instead get
an index associated to each of its parents in the classically exogenized causal struc-
ture. These indices then contain the information about commutation relations and
independence constraints for the causal structure.

In Ref. [22] unobservable systems are eliminated by instead regarding such a
system as a quantum channel applied to its unobservable parents and regarding any
observed parents as a classical control for this quantum channel. If there is no ob-
served parent to a non-exogenous system, the quantum channel that replaces it does
not have such a control variable.

We opt for a slightly different treatment of non-exogenous systems with a simi-
lar interpretation. Instead of acting with a quantum channel on a state, we alter the
POVM elements. Consider again the causal structure of Fig. 3.5(a) as an example.
The intermediate state ρBC has the interpretation of redistributing the S subsystem
of ρAS among Bob and Charlie, based on the observed variable S. Hence, for dif-
ferent outcomes s of S, Bob and Charlie will perform measurements over different
parts of the S subsystem of ρAS . However, for every specific outcome s, the mea-
surements operators will be given by commuting POVMs for Bob and Charlie. We
therefore define for every outcome of S the commuting algebras B(s) and C(s) with
elements {F (s)

b }b and {G(s)
c }c respectively. Elements from these algebras obey the

commutation relations

[F
(s)
b , G(s)

c ] = 0, (3.47)

but whenever two operators have different indices s and s′, they are no longer re-
quired to commute. The difference between this description and the measurement
settings in network scenarios is that in network scenarios all POVM elements of Bob
commute with all POVM elements of Charlie, while that is no longer the case here.
We therefore propose a new graphical notation for this exogenization procedure, in
which the nodes of Bob and Charlie are initially combined and only become com-
muting POVMs after the measurement setting s has been processed (see Fig. 3.5(c)).
We will call such nodes endogenous nodes.

One can still apply inflation to this causal structure as well. The algebras A,
B(s) and C(s) will be copied and get the index i corresponding to the i’th copy of
ρ. Different inflation levels will be modeled by commuting subalgebras with an
exchange symmetry and one can show, using the de Finetti theorem, that in the limit
a symmetric global state is separable across copies of ρ. The proofs of Theorem
3.2.1 and Corollary 3.2.3 then also follow.

In general, one can apply the following rule to remove a non-exogenous system
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Figure 3.5: (a) An example of a non-exogenous causal structure. It is not possible to
exogenize such a quantum causal structure as depicted in (b), like one would do for
classical causal structures. This can be seen by noting that structure (a) can maxi-
mally violate a Bell inequality forA andB or forA andC based on the measurement
setting S. Due to monogamy of entanglement this is not possible for structure (b).
In structure (c) this is solved by first regarding Bob and Charlie as one observer and
only choosing the commuting algebras B and C after the setting S has been received.
This procedure is represented by a new type of node.

with observed parents and at most one latent parent, starting with non-exogenous
systems that are closest to a leaf node: Split up each leaf node according to the
structure of its local algebras, similar to the triangle scenario. Combine all leaf nodes
that have a directed path from the non-exogenous system to that leaf node into one
endogenous node. For every observed variable that is a parent of the non-exogenous
node, introduce an index to the elements of the endogenous node. Elements of the
algebra of the endogenous node commute if all such setting indices are the same and
the elements originated from spatially separated systems (e.g. Bob and Charlie).

The final class of causal structures that has not been discussed yet, is the one where
there are multiple unobserved parents to a latent variable. We will again first treat an
example and then give the general rule.

Consider the causal structure in Fig. 3.6(a). The intermediate node ρBC is non-
exogenous and has two latent parents. We start by splitting up the algebras C and
D into their minus and plus sub-algebras, similar to the triangle scenario. Then we
remove the non-exogenous node by taking those algebras together into an endoge-
nous node that are its descendants, as was done in Fig. 3.5(c). In this case, that will
remove ρBC and combine B and C− into an endogenous node.

When the causal structure is inflated, the root nodes are copied and given infla-
tion indices i, j, k respectively. The intermediate state ρBC would then have gotten
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Figure 3.6: (a) A more complicated causal structure, where ρBC has two latent par-
ents and two observable children. The inflated version of this structure can alterna-
tively be depicted as in Fig. (b). The algebras {Bij}ij and {Cij−}ij are taken together
and do not commute if there is only one overlapping index.

the two inflation indices i, j, which in turn are both passed down to B and C− (see
Fig. 3.6(b)). We thus have the following algebras after inflation: Ai,Bij , Cij− , Ck+,D

j
−

and Dk+. Operators from these algebras will be denoted in a similar way. Let En be
the algebra describing the level-n inflated causal structure. Though each of these
algebras is a subalgebra of En, it is no longer true that En is the tensor product of
all these algebras, because some of them do not commute. This is due to the “mix-
ing” of the root nodes ρiL and ρjM by the intermediate nodes ρijBC . In particular, for
Bij ∈ Bij and Ci

′j′

− ∈ Ci
′j′

−

[Bij , Ci
′,j′

− ]

{
= 0 if i = i′, j = j′ or i ̸= i′, j ̸= j′,

̸= 0 if i = i′, j ̸= j′ or i ̸= i′, j = j′.
(3.48)

By requiring that the POVM elements of Bob and Charlie commute when they per-
form a measurement on the same state ρijBC , or on independent copies of the state,
ρijBC and ρi

′j′

BC with i ̸= i′, j ̸= j′, we ensure that we still model spatially separated
measurements in a physical scenario.

The question is now which independence relations hold and how to properly ap-
ply the quantum de Finetti theorem to show that these relations hold asymptotically
in the inflation formalism.

To answer this question, note that the state ρBC masks the independence of the
parts of ρL and ρM that are sent to Bob and Charlie: The correlations in this causal
structure could have also been produced by a four-partite state, of which the first and
fourth subsystems are required to be independent, combined with the independent
bi-partite state ρR. The independence requirements that still have to hold after the
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quantum channel that produces ρBC are thus

ρ(AiBijCij−C
k
+D

j
−D

k
+) = ρ(AiBijCij−D

j
−)ρ(C

k
+D

k
+) ∀i, j, k, (3.49)

ρ(AiDj
−) = ρ(Ai)ρ(Dj

−), ∀i, j (3.50)

ρ(

n∏
i=1

AiBiiCii−C
i
+D

i
−D

i
+) = ρ(

n∏
i=1

Aπ(i)Bπ(i)π
′(i)C

π(i)π′(i)
− C

π′′(i)
+ D

π′(i)
− D

π′′(i)
+ )

=

n∏
i=1

ρ(AiBiiCii−C
i
+D

i
−D

i
+),

(3.51)

where the first two equalities signify independence within layers of inflation (namely
the independence of ρR with respect to ρL and ρM , and the independence of A and
D), while the last equality corresponds to independence between layers of inflation.
Note, however, that the algebras Bij and Cij− do not have this independence between
inflation layers if the state is evaluated over products of operators of either algebra
for which only one of the two indices coincides, e.g. ρ(BijCi

′j
− ) ̸= ρ(Bij)ρ(Ci

′j
− )

and ρ(BijBi
′j) ̸= ρ(Bij)ρ(Bi

′j).
Relaxing the independence conditions of Eqs. (3.49)-(3.51) to their correspond-

ing symmetry constraints and combining this with the commutation relations and the
de Finetti Theorem, we can still asymptotically solve the (rank-constrained) causal
compatibility problem even for this causal structure.

The general rule to map each inflation level of a causal structure with non-
exogenous systems that have multiple latent parents, but no observed parents to an
equivalent latent exogenous causal structure is then as follows: Start with the non-
exogenous system that is closest to a leaf node. Split up each leaf node according to
the structure of its local algebras. Combine all leaf nodes that have a directed path
from the non-exogenous system to that leaf node into one endogenous node. For
every root node that is an ancestor of the non-exogenous node, attach the inflation
index of that root node to the elements of the endogenous node. Elements of the al-
gebra of the endogenous node commute if either (1) all inflation indices are pair-wise
the same, i.e. i = i′, j = j′, . . ., and the elements originated from spatially separated
systems, e.g. Bob and Charlie, or if (2) all inflation indices are pair-wise different,
i.e. i ̸= i′, j ̸= j′, . . ..

More succinctly: to reduce a non-exogenous causal structure to an exogenous one,
we attach to every child of a non-exogenous node an index for all of the root nodes
of the non-exogenous system, and apply the appropriate commutation relations.

Our approach is thus applicable to all relevant quantum causal structures, by se-
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quentially applying the techniques outlined above, i.e. by first turning a non-exogenous
causal structure into an exogenous one with a new type of node that can also be
treated in our model, and then applying maximal interruption to turn it into a net-
work scenario. Checking the feasibility of the SDP hierarchy of this network sce-
nario, as well as the required factorization of the setting-associated variables is then
a necessary and sufficient procedure for checking causal compatibility.

3.3 The bilocal scenario

This section will focus on the bilocal scenario. The text largely coincides with that
of Paper [2].

In the bilocal scenario (Fig. 3.7), we are concerned with the set of correlations
that can be obtained by three parties (Alice, Bob, and Charlie) performing measure-
ments on pairs of quantum particles originating from two independent sources: one
distributing a pair between Alice and Bob, and one between Bob and Charlie. We
assume that each party can choose among a finite number of measurement settings,
their choices being labeled by numbers x, y, z. Each then obtains one of a finite
number of possible outcomes. We represent their respective outcomes by α, β, γ.
The statistics of such an experiment are then described by a collection p(αβγ|xyz)
of conditional probabilities.

The bilocal scenario is one of the most fundamental causal structures: It is the
simplest non-trivial structure in which source states are assumed to be independent.
It is also a straightforward generalization of the Bell scenario. Nevertheless it allows
for new behaviour such as entanglement swapping [25] and is surprisingly hard to an-
alyze. Here, we are primarily concerned with the bilocal causal compatibility prob-
lem: Given a collection of conditional probabilities p(αβγ|xyz), decide whether it
is compatible with an experiment of the form described above.

Several techniques to answer this question have already been developed. These
include, but are not limited to, (non-linear) Bell inequalities [93], machine learning
techniques [94], information-theoretic methods [11], scalar extension [41, 82, 83]
and the inflation technique that is also considered in this chapter [1, 21, 22, 23].
For a more complete list, both on the bilocal scenario and more general network
scenarios, we refer to the excellent review of Ref. [95].

Recently, the authors of Ref. [83] asked whether the quantum inflation technique
is complete for the bilocal compatibility problem. One of the main results of this
chapter, partly building on their constructions, is to answer this question in the af-
firmative. We develop two complete semidefinite programming hierarchies that are
closely related. The first, which we call the polarization hierarchy, uses symmetric
product states to linearize the non-convex independence constraint. The second is a
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version of the quantum inflation hierarchy, which relaxes the independence condi-
tion to a family of linear symmetry constraints. Along the way, we obtain a number
of equivalent characterizations of bilocal quantum correlations, which might be of
independent interest.

3.3.1 Quantum models of locality

In order to give a precise definition of the set of bilocal quantum correlations, one
needs to fix a quantum model of locality. As noted before in Sections 1.2 and 3.1,
this turns out to be a surprisingly subtle issue. Here we briefly repeat part of the
discussion to motivate the several definitions for bilocal quantum correlations.

There are two commonly used “pictures” on which a formalization of quantum
mechanical descriptions of Nature can be based.

In elementary quantum mechanics (related to the Schrödinger picture), the fun-
damental mathematical object associated with a quantum system is a Hilbert space
H. The set of observables is then derived as the algebra of bounded operators B(H)
acting onH.

Alternatively, in algebraic quantum mechanics [52, 96, 97] (related to the Heisen-
berg picture), quantum systems are primarily described via an algebra A of observ-
ables. A Hilbert space is then a secondary object, which can be derived e.g. via the
GNS construction [43].

The two points of view are mostly equivalent as a basis for describing natural
phenomena. Differences are commonly associated with finer technical points, e.g.
in the rigorous description of the thermodynamic limit [52]. One would thus assume
that the choice of which point of view to adopt becomes a matter of taste and conve-
nience. While most working physicists prefer the Schrödinger picture, the algebraic
model is easier to reason about algorithmically, which explains its use in complete-
ness proofs such as those of Refs. [1, 40, 56].

However, the two approaches suggest different formalizations of the notion of
“locality”, which is obviously relevant for the problem treated in this chapter.

Indeed, consider two spatially separated subsystems A, B of some composite
system. Separation implies that physical properties of A and B can be simultane-
ously measured, which means that the associated observable algebras A, B must
mutually commute, [a, b] = 0, a ∈ A, b ∈ B. In algebraic quantum mechanics, this
assumption (sometimes referred to as Einstein locality [96, Sec. 8.5]) is the only one
made.

In contrast, the Schrödinger picture-approach is to associate one Hilbert space
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HA,HB with each subsystem and to take the observable algebras to be

A = B(HA)⊗ 1 ⊂ B(HA ⊗HB),
B = 1⊗B(HB) ⊂ B(HA ⊗HB)

(3.52)

respectively.
The surprisingly technically complex theory of tensor products of operator al-

gebras [42] shows that not every pair of commuting algebras can be realized on a
tensor product of Hilbert spaces as in Eq. (3.52). For a considerable time, it was an
open question (known as Tsirelson’s Problem [53, 54, 55]), whether these operator-
theoretic subtleties would manifest themselves at the level of finite sets of observ-
able correlation functions (as made precise in Sec. 3.3.2). Unfortunately, it has now
become clear that this is indeed the case [17]. Thus, whenever one speaks about
“quantum correlations”, one has to be specific as to whether one is working in the
more restrictive tensor product Hilbert space model or the more general commuting
observable model.

At present, there does not seem to be strong evidence indicating which of the
two approaches is more relevant for the description of natural phenomena. Both are
legitimate targets of inquiry, as long as authors indicate clearly (as we have tried to
do) which model they are working with at any time.

3.3.2 Quantum correlations
Two-party quantum correlations

As a warm-up, we can now state precisely the two well-known distinct models of
two-party quantum correlations, i.e. the set of conditional probabilities p(αβ|xy)
obtainable by two parties performing local measurements on a shared quantum state.

Definition 3.3.1 (Two-party correlations, tensor product model). A set p(αβ|xy)
of conditional probabilities is a bipartite quantum distribution in the Hilbert space
tensor product model if the following holds. There are

• Hilbert spacesHA,HB ,

• for each of Alice’s settings x a POVM {Aα|x}α ⊂ B(HA), and for each of
Bob’s settings y a POVM {Bβ|y}β ⊂ B(HB),

• a density operator ρ onHA ⊗HB

such that

p(αβ|xy) = tr
(
ρAα|x ⊗Bβ|y

)
.
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In order to highlight the essential difference, we first give a version of the com-
muting observables model that is phrased as closely as possible to the tensor product
model.

Definition 3.3.2 (Two-party quantum correlations, commuting observables model).
A set p(αβ|xy) of conditional probabilities is a bipartite quantum distribution in the
commuting observables model if the following holds. There is

• a Hilbert spaceH

• for each of Alice’s settings x a POVM {Aα|x}α ⊂ B(H), and for each of
Bob’s settings y a POVM {Bβ|y}β ⊂ B(H), such that all of Alice’s operators
commute with all of Bob’s,

• a density operator ρ onH

such that

p(αβ|xy) = tr
(
ρAα|xBβ|y

)
.

As alluded to before, Tsirelson’s problem asked whether the two definitions char-
acterize the same set of correlations [53, 54, 55, 98]. This problem has since been
answered in the negative [17].

There is an equivalent way of characterizing the commuting observable model.
This version refers only to the observable algebras and not directly to any Hilbert
space:

Definition 3.3.3 (Two-party quantum correlations, commuting operator model: al-
gebraic formulation). A set p(αβ|xy) of conditional probabilities is a bipartite quan-
tum distribution in the commuting observable model if the following holds. There
are

• a C∗-algebra D (of global observables),

• two mutually commuting C∗-subalgebrasA,B ⊂ D (the observables measur-
able by the respective parties),

• for each of Alice’s settings x a POVM {Aα|x}α ⊂ A, and for each of Bob’s
settings y a POVM {Bβ|y}β ⊂ B,

• a state ρ on D

such that

p(αβ|xy) = ρ(Aα|xBβ|y).
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Figure 3.7: The bilocal scenario. Alice and Bob share a bipartite quantum state
σABA

and Bob and Charlie share a bipartite quantum state σBCC . Alice performs
a measurement with the POVM {Aα|x}α based on the setting measurement setting
x. Bob and Charlie perform a similar measurement. The conditional probabilities
p(αβγ|xyz) that can arise in this way are called bilocal correlations.

Proving the equivalence between Def. 3.3.2 and Def. 3.3.3 amounts to an appli-
cation of the GNS construction [43].

Bilocal correlations

When modeling locality using tensor products of Hilbert spaces, the set of bilocal
correlations is defined as follows.

Definition 3.3.4 (Tensor product model). A set p(αβγ|xyz) of conditional proba-
bilities is a bilocal quantum distribution in the tensor product model if the following
holds. There are

• Hilbert spacesHA,HBA
,HBC

,HC ,

• for each of the settings x, y, z POVMs

{Aα|x}α ⊂ B(HA),
{Bβ|y}β ⊂ B(HBA

)⊗̄B(HBC
),

{Cγ|z}γ ⊂ B(HC),

• density operators σABA
onHA ⊗HBA

and σBCC onHBC
⊗HC ,
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such that

p(αβγ|xyz) = tr
(
(σABA

⊗ σBCC) (Aα|x ⊗Bβ|y ⊗ Cγ|z)
)
.

In the commuting observables-model, bilocality takes on the following form:

Definition 3.3.5 (Commuting observables model). A set p(αβγ|xyz) of conditional
probabilities is said to be a bilocal quantum distribution in the commuting observ-
ables model if the following holds. There are

• a C∗-algebra D,

• mutually commuting C∗-subalgebras A,BA,BC , C ⊂ D,

• for each of the settings x, y, z POVMs

{Aα|x}α ⊂ A,
{Bβ|y}β ⊂ BA · BC ,
{Cγ|z}γ ⊂ C,

with B := BA · BC the subalgebra of D generated by BA and BC ,

• a state ρ on D that acts as a product state in the sense

ρ(abAbCc) = ρ(abA)ρ(bCc) (3.53)

for all a ∈ A, bA ∈ BA, bC ∈ BC , c ∈ C,

such that

p(αβγ|xyz) = ρ(Aα|xBβ|y Cγ|z).

3.3.3 Equivalent characterizations of bilocal quantum correla-
tions

We will give three further characterizations of the set of bilocal quantum correlations
in the commuting operator model. Some of these equivalences are integral to our
completeness proof – but they might also be of independent interest.

All statements made here are corollaries of the technical Theorem 3.3.10 proven
in Sec. 3.3.5.
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A reduced factorization condition

To motivate the first reformulation in Corollary 3.3.6 below, let us try to see which
part of Def. 3.3.5 might be the most difficult to work with algorithmically. In our as-
sessment, this is the “hidden factorization condition” of Eq. (3.53). It is “hidden” in
the sense that it involves product operators bAbC , bA ∈ BA, bC ∈ BC that need not
lie in the algebra generated by the POVMs (cf. Example 3.1.2). But it is properties of
precisely this algebra that methods building on the non-commutative polynomial op-
timization (NPO) hierarchy [40], used in e.g. the quantum inflation method of [22],
typically optimize over. As argued in Challenge 3 of Sec. 3.1.1, this poses a bar-
rier against proving completeness for such methods, including the original quantum
inflation scheme.

In Sec. 3.2 we circumvented this problem by explicitly adding generators for
the algebras BA,BC to the input of the NPO hierarchy, and expressing the POVM
elements as finite-rank superpositions of those. The price to pay for this workaround
consists of additional computational costs, as well as the necessity to upper-bound
this “Schmidt rank” of the POVM elements.

The following corollary shows that in the special case of the bilocal scenario,
these difficulties can fortunately be avoided. Indeed, the weaker factorization condi-
tion (3.54), involving only operators generated by the measured POVMs, suffices to
imply the a priori more general (3.53). We will refer to the weaker constraints as the
reduced model.

Corollary 3.3.6 (Reduced model). A set p(αβγ|xyz) of conditional probabilities is
bilocal in the commuting observables model of Def. 3.3.5 if and only if there are

• a C∗-algebra D,

• mutually commuting C∗-subalgebras A,B, C ⊂ D,

• for each of the settings x, y, z POVMs

{Aα|x}α ⊂ A,
{Bβ|y}β ⊂ B,
{Cγ|z}γ ⊂ C,

• a state ρ on D that acts as a product state in the sense

ρ(ac) = ρ(a)ρ(c) (3.54)

for all a ∈ A, c ∈ C,
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such that

p(αβγ|xyz) = ρ(Aα|xBβ|y Cγ|z).

We note that the reduced model arises implicitly from the factorisation bilocal
NPA hierarchy of [83].

Bilocal Tsirelson’s Problem

The second reformulation, specified in Corollary 3.3.7 below, clarifies the differ-
ences between the Hilbert space tensor product model and the commuting operator
model of bilocal correlations.

The two approaches are obviously different: To see this, one can simply embed
the two-party scenario into the bilocal one, e.g. by taking the A system or C system
to be trivial.

It could be surmised that there are “genuine bilocal differences” between the two
approaches, and that the bilocal scenario could teach us about Tsirelson’s Problem
in a way that goes beyond the two-party case. We will, however, show that this is
not the case. More precisely, consider the mixed model formalized below, where
the bipartition ABA|BCC is described by a Hilbert space tensor product, while all
we can say about the bipartitions A|BA and BC |C is that they are associated with
commuting observable algebras.

Corollary 3.3.7 (Mixed model). A set p(αβγ|xyz) of conditional probabilities is
bilocal in the commuting observables model of Def. 3.3.5 if and only if there are

• Hilbert spacesHABA
,HBCC ,

• mutually commuting C∗-algebras

A,BA ⊂ B(HABA
), BC , C ⊂ B(HBCC),

• for each of the settings x, y, z POVMs

{Aα|x}α ⊂ A,
{Bβ|y}β ⊂ BA⊗̄BC ,
{Cγ|z}γ ⊂ C,

• density operators σABA
onHABA

and σBCC onHBCC ,

such that

p(αβγ|xyz) = tr
(
(σABA

⊗ σBCC) (Aα|xBβ|y Cγ|z)
)
,
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where all operators act on B(HABA
⊗HBCC) in the natural way.

The Renou-Xu formulation

Finally, we consider the formulation used in Ref. [83]. It could be described as
the bilocal analogue of Def. 3.3.2, in the sense that it formalizes a commuting
observables-model while avoiding to explicitly introduce the local observable al-
gebras. While in the two-party case, the equivalence of Def. 3.3.2 and Def. 3.3.3
was a direct consequence of the GNS construction, the relation between the Renou-
Xu model and commuting operator models defined above may not be as obvious.
However, we will show:

Corollary 3.3.8 (Renou-Xu model [83]). A set p(αβγ|xyz) of conditional probabil-
ities is bilocal in the commuting observables model of Def. 3.3.5 if and only if there
are

• a Hilbert spaceH,

• commuting projection operators P,Q ∈ B(H), such that PQ is a normalized
rank-one projection,

• for each of Alice’s settings x, a POVM {Aα|x}α ⊂ B(H), and likewise for Bob
and Charlie, such that: (1) operators belonging to different parties commute,
and (2)

[Aα|x, Q] = [P,Cγ|z] = 0,

such that

p(αβγ|xyz) = tr
(
PQAα|xBβ|yCγ|z

)
.

3.3.4 The finite-dimensional case
In the two-party case, the distinction between the tensor product model and the com-
muting observable model ceases to exist if either can be realized in finite dimensions.
Reference [83] asked whether the same is true for the bilocal scenario. Here, we an-
swer this question in the affirmative. In fact, the equivalence already holds when
both Alice and Charlie can be associated with a finite-dimensional system.

Corollary 3.3.9. Assume p(αβγ|xyz) is compatible with any of the models given
in Def. 3.3.4, Def. 3.3.5, Cor. 3.3.6, Cor. 3.3.7, Cor. 3.3.8, and is such that the C∗-
algebra generated by Alice’s and Charlie’s POVMs are finite-dimensional.

Then p(αβγ|xyz) is compatible with all these models, and all operator algebras
and Hilbert spaces can be chosen to be finite-dimensional.
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3.3.5 Proof of the equivalences

The claimed equivalences derive from the following theorem. We state it in general
terms (i.e. not yet specific to the various models of bilocality).

Recall [43, Sec. II.6.4]. that the GNS construction associates with every C∗-
algebra F and state σ ∈ K(F) a triple (H, π, |Ω⟩), where H is a Hilbert space,
π : F → B(H) a ∗-representation, and |Ω⟩ ∈ H a cyclic vector that implements the
state in the sense that σ(f) = ⟨Ω|π(f)|Ω⟩ for every f ∈ F .

Theorem 3.3.10. Let A,B, C be mutually commuting C∗-subalgebras of some C∗-
algebra D. Let ρ be a state on D such that

ρ(ac) = ρ(a)ρ(c) ∀a ∈ A, c ∈ C. (3.55)

Let (HABA
, πA, |ΩA⟩) be the GNS representation of A associated with the state

ρ. Let BA be the commutant of πA(A) in B(HABA
). Define (HBCC , πC , |ΩC⟩) and

BC ⊂ B(HBCC) analogously.
Then there exists a completely positive unital map

Λ : B → BA⊗̄BC ⊂ B(HABA
⊗HBCC)

such that for all a ∈ A, b ∈ B, c ∈ C

ρ(abc) = tr
(
|ΩA⟩⟨ΩA| ⊗ |ΩC⟩⟨ΩC | πA(a)Λ(b)πC(c)

)
,

where all operators act on B(HABA
⊗HBCC) in the natural way.

The spaces HABA
,HBCC have previously appeared in the proof of Thm. 3.2 in

Ref. [83] (as VABL
, VBRC). In fact, this inspired our formulation of Thm. 3.3.10.

We go beyond this prior result by showing that they give rise to a tensor product
structure on the global Hilbert space.

To prove the theorem, consider in addition the GNS representation (πD,HD, |ΩD⟩)
of D associated with ρ.

Lemma 3.3.11. There is an isometric embedding V : HABA
⊗HBCC → HD which

fulfills

V |ΩA⟩ ⊗ |ΩC⟩ = |ΩD⟩, (3.56)
V πA(a)⊗ πC(c) = πD(ac)V. (3.57)

Equation (3.57) says that V intertwines πA ⊗ πC and πD as representations of
the C∗-algebra generated by A and C.
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Proof. The factorization property (3.55) implies that |ΩA⟩ ⊗ |ΩC⟩ and |ΩD⟩ induce
the same state on the C∗-algebra generated by A and C:

⟨ΩA| ⊗ ⟨ΩC | (πA(a)⊗ πC(c)) |ΩA⟩ ⊗ |ΩC⟩
=ρ(a)ρ(c) = ρ(ac) = ⟨ΩD|πD(ac)|ΩD⟩.

By the uniqueness property of the GNS construction [44, Proposition 4.5.3], there
exists a unitary

V : HABA
⊗HBCC → πD(AC)|ΩD⟩ =: K

such that

V |ΩA⟩ ⊗ |ΩC⟩ = |ΩD⟩,
V πA(a)⊗ πC(c)V ∗ = πD(ac) ↾ K,

where the final symbol denotes the restriction of πD toK = rangeV . The advertised
intertwining relation follows by multiplying the last line with V from the right and
finally re-interpreting V as a map to all ofHD.

Lemma 3.3.12. It holds that

V ∗πD(B)V ⊂ BA⊗̄BC .

Proof. We first claim that

V ∗πD(B)V ⊂ (πA(A)⊗alg πC(C))′.

Indeed, for a ∈ A, b ∈ B, c ∈ C, Eq. (3.57) and its adjoint give

[V ∗πD(b)V, πA(a)⊗ πC(c)]
=V ∗πD(b)V πA(a)⊗ πC(c)− πA(a)⊗ πC(c)V ∗πD(b)V

=V ∗πD(b)πD(ac)V − V ∗πD(ac)πD(b)V

=V ∗[πD(b), πD(ac)]V = 0.

Now use the fact that the commutator of a set equals the commutator of its weak
operator closure [43, I.2.5.3], the Bicommutant Theorem [44, Theorem 5.3.1], and
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tensor product
commuting observables
Renou-Xu

⇒ reduced

=⇒
Thm. 3.3.10

mixed⇒

 [if dimA,dim C <∞] tensor product
commuting observables
Renou-Xu

Figure 3.8: Logical structure of the proof given in Sec. 3.3.5. The equivalences
claimed in Sec. 3.3.3 follow from this chain of implications among the various mod-
els of bilocal quantum correlations.

the Commutation Theorem for von Neumann algebras [43, III.4.5.8] to conclude

(πA(A)⊗alg πC(C))′ = (πA(A)⊗̄πC(C))′

= (πA(A)′′⊗̄πC(C)′′)′

= (πA(A)′′′⊗̄πC(C)′′′)
= (πA(A)′⊗̄πC(C)′).

Proof (of Theorem 3.3.10). Set

Λ : b 7→ V ∗πD(b)V

and compute, using Lemma 3.3.11 repeatedly,

⟨ΩA|⟨ΩC |πA(a)(V ∗πD(b)V )πC(c)|ΩA⟩|ΩC⟩
=⟨ΩA|⟨ΩC |V ∗πD(a)πD(b)πD(c)V |ΩA⟩|ΩC⟩
=⟨ΩD|πD(abc)|ΩD⟩ = ρ(abc).

After these preparations, we can now proceed to prove the equivalences claimed
to hold in Sec. 3.3.3. The proof’s chain of implications among the various models
is visualized in Fig. 3.8. The implication “reduced model⇒ Renou-Xu model” also
follows from Thm. 3.2 of [83].
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Proof (of the equivalences stated in Sec. 3.3.3).
Step 1: We claim that if p(αβγ|xyz) is compatible with the tensor product model of
Def. 3.3.4, the commuting observables model of Def. 3.3.5, or the Renou-Xu model
of Cor. 3.3.8, then it is also compatible with the reduced model (Cor. 3.3.6).

This is straightforward to verify, except perhaps for the Renou-Xu model, which
we treat explicitly. Indeed, consider a Renou-Xu model realization for p(αβγ|xyz).
LetA be the C∗-algebra generated by Alice’s POVM elements, and likewise for Bob
and Charlie. Let D be the C∗-algebra generated by A,B, C. By assumption, there
is a normalized vector |ψ⟩ ∈ H, such that PQ = |ψ⟩⟨ψ|. Let ρ be the associated
vector state ρ(x) = ⟨ψ|x|ψ⟩ on D. We have now constructed all objects that enter
the reduced model. Using the commutation relations of the Renou-Xu model, one
verifies the factorization constraint (3.54) for all a ∈ A, c ∈ C:

ρ(ac) = tr(PQac)

= tr(PPQQac)

= tr(PQaQPc)

= ⟨ψ|a|ψ⟩⟨ψ|c|ψ⟩
= ρ(a)ρ(c)

(a similar calculation appears in the proof of Thm. 3.2 of Ref. [83]).
Step 2 is to show that, by Thm. 3.3.10, the reduced model implies the mixed

model. Assume a reduced model description with elements A,B, C,D, ρ, Aα|x, . . .
is given. They satisfy the assumptions of Thm. 3.3.10, so that we can use the objects
whose existence it guarantees in the construction of the mixed model. Indeed, one
immediately verifies the properties of the mixed model from the choices

H(mix)
ABA

= HABA
, H(mix)

BCC
= HBCC ,

A(mix) = πA(A), C(mix) = πC(C),

B(mix)
A = BA, B(mix)

C = BC ,

A
(mix)
α|x = πA(Aα|x), B

(mix)
β|y = Λ(Bβ|y), C

(mix)
γ|z = πC(Cγ|z),

σ
(mix)
ABA

= |ΩA⟩⟨ΩA|, σ(mix)
BCC

= |ΩC⟩⟨ΩC |.

Step 3: The mixed model obviously implies the commuting operator model. It
also implies the Renou-Xu model by setting

P = |ΩA⟩⟨ΩA| ⊗ 1BCC , Q = 1ABA
⊗ |ΩC⟩⟨ΩC |

(which is similar to the construction of their operators ρ, σ in the proof of Thm. 3.2
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of Ref. [83]).

It remains to treat the finite-dimensional case, as advertised in Cor. 3.3.9. The
proof combines the construction given in Thm. 3.3.10 with the well-known fact (c.f.
Ref. [53, 98]) that for two-party correlations, a finite-dimensional commuting model
(as in Def. 3.3.2) implies a tensor product model (as in Def. 3.3.1). Specifically, we
will use the following reformulation of Theorem 1 of Ref. [53]:

Lemma 3.3.13. IfF ,G are mutually commutingC∗-algebras on a finite-dimensional
Hilbert space H, then there exist finite-dimensional Hilbert spaces HF ,HG and an
isometric embedding

WFG : H → HF ⊗HG

such that

WFG FW ∗
FG ⊂ B(HF )⊗ 1,

WFG GW ∗
FG ⊂ 1⊗B(HG).

In keeping with the notation of C∗-algebras, W ∗ denotes the adjoint of W , i.e.
the operator that would be denoted as W † in physics notation.

Proof (of the equivalences for finite-dimensional models). By the previous proof, all
models imply the mixed model, where specifically HABA

,HBCC arise from the
GNS representation of the observable algebras A and C respectively. In particular,
the dimensions of these Hilbert spaces are upper-bounded by the dimension of the
associated algebras, which in turn can be chosen to be the ones generated by Alice’s
and Charlie’s observables. All operators that enter the construction of the mixed
model as laid out in Cor. 3.3.7 are linear maps on the tensor product of these two
Hilbert spaces and therefore finite-dimensional. The third step of the previous proof
then gives finite-dimensional realizations in the commuting operator model and the
Renou-Xu model.

It remains to be shown that p(αβγ|xyz) can be realized in the Hilbert space
tensor product model (Def. 3.3.4), and in particular in one involving only finite-
dimensional spaces. Let a finite-dimensional mixed model realization of p(αβγ|xyz)
with elementsHABA

,HBCC ,A,BA,BC ,B, Aα|x, σABA
, . . . be given. Our strategy

is to apply Lem. 3.3.13 separately to A,BA and to BC , C. First, choosing F = A
and G = BA in Lem. 3.3.13 establishes the existence of two Hilbert spacesHA,HBA

and an isometry

WABA
: HABA → HA ⊗HBA

.
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These allow us to choose the first set of objects that will enter the tensor product
model as

H(t.p.)
A = HA, H(t.p.)

BA
= HBA

,

A
(t.p.)
α|x =WABA

Aα|xW
∗
ABA

,

σ
(t.p.)
ABA

=WABA
σABA

W ∗
ABA

.

An analogous procedure starting with BC , C gives

H(t.p.)
BC

= HBC
, H(t.p.)

C = HC ,

C
(t.p.)
γ|z =WBCCCγ|zW

∗
BCC ,

σ
(t.p.)
BCC

=WBCCσBCCW
∗
BCC .

Finally, with

B
(t.p.)
β|y = (WABA

⊗WBCC)Bβ|y(WABA
⊗WBCC)

∗

it is straight-forward to verify the properties of the tensor product model.

It is apparent from the proof that the condition in Cor. 3.3.9 can be slightly weak-
ened. Instead of demanding that the algebras A, C be finite-dimensional, it is suffi-
cient for the conclusions to hold that the GNS Hilbert spaceHABA

⊗HBCC associ-
ated with the restriction of the state to AC is finite-dimensional.

3.3.6 Complete SDP hierarchies

In this section, we will construct complete hierarchies of relaxations for the reduced
model defined in Cor. 3.3.6. Most ingredients for this construction and the complete-
ness proof have been developed in earlier sections (based on Refs. [21, 22, 24, 40]),
to which we will refer for technical details.

Let D be the universal C∗-algebra (cf. Sec. 1.1.1 and [43, Sec. II.8.3]) with
generators

G = {1, Aα|x, Bβ|y, Cγ|z} (3.58)
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and relations

[Aα|x, Bβ|y] = 0, ∀α, β, x, y, (3.59)
[Bβ|y, Cγ|z] = 0, ∀β, γ, y, z, (3.60)
[Cγ|z, Aα|x] = 0, ∀α, γ, x, z, (3.61)
[1, X] = 0 ∀X ∈ G, (3.62)
1X = X1 = X ∀X ∈ G, (3.63)
X∗ = X ⪰ 0, ∀X ∈ G, (3.64)∑
α

Aα|x =
∑
β

Bβ|y =
∑
γ

Cγ|z = 1 ∀x, y, z. (3.65)

In a precise sense D is the direct sum of all possible realizations of this algebra as
operators on Hilbert spaces. Let K(D) be the set of all states on D.

We aim to solve the following optimization problem:

f∗ = min
ρ∈K(D)

∑
α,β,γ,x,y,z

(
ρ(Aα|xBβ|yCγ|z)− p(αβγ|xyz)

)2
s. t. ρ(ac)− ρ(a)ρ(c) = 0 ∀a ∈ A, c ∈ C

(3.66)

The objective function of this problem represents the minimal 2-norm distance be-
tween a quantum realization of the reduced model of the bilocal scenario and the
observed statistics. We accept that the correlations can arise from a reduced model
if f∗ = 0 (or at most some small ε that represents numerical and statistical toler-
ances). By Theorem 3.3.10 this means that such correlations can also arise in the
mixed model, the commuting observables model and the Renou-Xu model of the
bilocal scenario. If f∗ > 0, the correlations cannot have been produced in any of the
models, including the tensor product one.

The problem (3.66) is “polynomial” in two different ways: The operators
Aα|xBβ|yCγ|z and ac are (norm limits of) non-commutative polynomials in the gen-
erators, while the objective function and the constraints are second order polynomials
in the state.

We will again use two different techniques to deal with these non-linearities:

1. Non-commutative polynomial optimization (NPO) [40] provides a hierarchy
of SDP relaxations for optimizing over linear functions on states of the uni-
versal algebra D, subject to linear constraints. Its completeness follows from
the GNS construction.

2. By passing to their polarizations, one can interpret the polynomial functions
on K(D) as linear functions on symmetric product states on multiple copies
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of D. Such states are constructed from symmetric extensions of states on D
and completeness follows from a suitable quantum de Finetti theorem from
Chapter 2.

In Sec. 3.3.6 below, we lay out how to use the results of the earlier sections to
construct a converging hierarchy of SDP relaxations for polynomial optimization
problems over algebras given in terms of generators and relations. While we focus
on the bilocal scenario, the techniques can be fairly straightforwardly adapted to
general algebras and polynomials, as we will see in Chapter 5. We call this approach
the polarization hierarchy. In Sec. 3.3.6, we describe a slightly different approach
more closely related to quantum inflation [22], which we also prove to be complete
for the bilocal scenario.

Polarization hierarchy

To define the polarization hierarchy, choose a level n ∈ N and consider n copies of
the generators:

Gn = {1, A(i)
α|x, B

(i)
β|y, C

(i)
γ|z} i ∈ 1, . . . n. (3.67)

Relations analogous to those in Eqs. (3.59)-(3.65) are imposed for each i, together
with relations stating that operators for different values of the superscript i commute.
The resulting universal C∗-algebra Dn is the “largest C∗-algebra generated from n
commuting copies of D”, or, more precisely, the maximal C∗-tensor product Dn =
D⊗maxn [1, 52].

We note that this algebra is closely related to the algebra that is constructed for
the most general version of the quantum inflation technique [22]. This technique
works with an even larger algebra, where e.g. Bob’s operators carry two indices
B

(i,j)
β|y that can be varied independently. It will turn out that our simpler model is

sufficient for the bilocal scenario.

On the n-th tensor product of D, we can linearize n-th order polynomial func-
tions on K(D) by passing to their polarization as follows: With every state σ ∈
K(D) associate its n-fold symmetric product state Πnσ ∈ K(Dn) which is defined
by its action on product operators in the obvious way:

Πnσ(x1 ⊗ · · · ⊗ xn) = σ(x1) . . . σ(xn)
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and extended to all of Dn by linearity and continuity. Then∑
α,β,γ,x,y,z

(
σ(A

(1)
α|xB

(1)
β|yC

(1)
γ|z)− p(αβγ|xyz)

)2
= Π2

σ

( ∑
α,β,γ,x,y,z

A
(1)
α|xB

(1)
β|yC

(1)
γ|zA

(2)
α|xB

(2)
β|yC

(2)
γ|z

− 2p(αβγ|xyz)A(1)
α|xB

(1)
β|yC

(1)
γ|z + p(αβγ|xyz)21

)
=: Π2

σ(y0),

where y0 is the element of D2 on which Π2
σ is evaluated.

Similarly, one can turn the independence constraint of (3.66) into a linear con-
straint on two inflation levels. However, it will turn out that for the completeness
proof, it is necessary to impose constraints that are bounded from below and attain
their minimal value on the feasible set of states. We will thus formulate the factor-
ization constraints as

(σ(ac)− σ(a)σ(c))2 = 0,

so that the polarization becomes

Π4
σ(yac) = 0,

where

yac := a(1)c(1)a(2)c(2) − 2a(1)c(1)a(2)c(3) + a(1)c(2)a(3)c(4).

Here, the indices indicate which copies of the POVM elements are used to generate
the operator, e.g. a(2) can be written as (the norm limit of) a polynomial in the
generators {1, A(2)

α|x}. In this way, both the polynomial objective function and the
polynomial constraints correspond to the linear pairing between operators y0, yac ∈
D4 and symmetric product states in K(D4).

More generally, given a degreem polynomial q whose action on states is bounded
from below by 0, one can optimize over polynomial constraints of the form

q(σ) = 0,

by passing to the polarization yq ∈ Dm of q.
Unfortunately, the set of symmetric product states is not an affine subset of state

space, which means that the NPO method cannot directly optimize over it. To get
around this restriction, we will combine three tricks. First, realize that NPO can
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optimize over the set of all symmetric states. Indeed, the symmetric group Sn acts on
Dn by permuting the indices of the generators, and a state ρ ∈ K(Dn) is symmetric
if it satisfies the linear constraints ρ(π(x)) = ρ(x) for every x ∈ Dn, π ∈ Sn.
Second, in both quantum and classical probability [1, 23, 24, 75, 79, 99], there is
a well-known family of statements collectively known as de Finetti theorems that
show that symmetric states on infinitely many copies are a convex combination of
symmetric product states. In our particular case, “infinitely many copies” can be
made rigorous as the inductive limit of maximal C∗-tensor products. The following
de Finetti theorem, adapted to this setting, is proven in Sec. 2.1 and repeated here for
easy reference.

Theorem 3.3.14 (Max tensor product Quantum de Finetti Theorem). Let ρ ∈ K(D∞)
be a symmetric state on an infinite maximal tensor product

D∞ = lim
n→∞

D⊗maxn.

Then there exists a unique probability measure µ over states on D such that for all
x ∈ D∞,

ρ(x) =

∫
K(D)

Π∞
σ (x) dµ(σ), (3.68)

where Π∞
σ is the infinite symmetric product state on D∞ associated with the state σ

on D.

The third trick is to choose the polynomial constraints in such a way that they
demand that point-wise non-negative polynomials are set to 0. If such an extremal
condition is satisfied by a (continuous, as in Eq. (3.68)) convex combination, then
it must in fact be satisfied almost surely. Applying this to the constraints and the
objective function, we will see that in our case the Π∞

σ are almost surely a feasible
solution of (3.66) that attains the minimum f∞ = limn→∞ fn of the relaxation
(3.69) below.

Let us now formulate the NPO hierarchy and its convergence proof more pre-
cisely. Define An to be the subalgebra of Dn that consists of Alice’s operators and
similar for Bob and Charlie. Let U be a countable basis of An. Usually this basis is
taken to be the set of all words in Alice’s POVM elements. Define V for Bob and W
for Charlie in a similar way. For n ≥ 4 the hierarchy of NPO problems is then given
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by

fn = min
ρ∈K(Dn)

ρ(y0)

s. t. ρ(π(abc)) = ρ(abc),

ρ(yac) = 0,

∀π ∈ Sn, a ∈ U, b ∈ V, c ∈W.

(3.69)

Each of these NPO problems can in turn be solved via the complete hierarchy of SDP
relaxations (1.27) introduced in Ref. [40, 56], where we have used the formulation
of NPO problems from Sec. 1.3.2.

The following theorem then states that (3.66) and (3.69) are equivalent in the
limit.

Theorem 3.3.15. Let f∞ = limn→∞ fn. It holds that f∞ = f∗.

Proof. The proof is very similar to that of Theorem 3.2.1.
It is clear that

fn ≤ f∗ ∀n, (3.70)

since each level of the hierarchy (3.69) is a relaxation of the optimization problem
(3.66).

For the converse direction, use NPO to construct a state ωn onD∞ for each level
n of the hierarchy by taking the infinite tensor product of an optimizing state of the
optimization problem (3.69) at level n.

By the Banach-Alaoglu theorem applied to the state spaceK(D∞), this sequence
admits a weak∗-convergent subsequence. Let ω be its limit point. Since each ωn
obeys the constraints of Eq. (3.69), so does ω. Hence, ω is a symmetric state on the
algebra D∞ and Theorem 3.3.14 applies. That is, ω can be written as

ω =

∫
dµ(σ) Π∞

σ , (3.71)

with µ a unique probability measure over states σ ∈ K(D) and Π∞
σ an infinite

product state on D∞.
By construction, each of the yac is non-negative on the product states Π∞

σ . There-
fore, since ω(yac) = 0, and µ is a probability measure, it holds that

Π∞
σ (yac) = 0 almost everywhere w.r.t. µ.

That is, there exists a full measure subset E ⊂ K(D) such that for all σ ∈ E, it
holds that Π∞

σ (yac) = 0.
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Figure 3.9: The level 2 inflation of the bilocal scenario. Each of the states σABA

and σBCC has been copied. The total state of the system is permutation symmetric
under the exchange of each of these copies. The inflation technique builds on this
observation.

Hence, each Π∞
σ with σ ∈ E defines a feasible state σ for the optimization prob-

lem (3.66) by restricting to one copy of the algebra D. From this one can conclude
that Π∞

σ (y0) ≥ f∞ for all σ ∈ E, for otherwise one could have taken ω to be the
point measure on a state σ′ such that Πσ′(y0) < f∞. This would contradict the fact
that f∞ is a minimum.

Combining this with the fact that ω(y0) = f∞, it must hold that

Π∞
σ (y0) = f∞ almost everywhere w.r.t. µ on E.

I.e., there exists a set F ⊂ E with full measure, such that for all σ ∈ F it holds that
Π∞
σ (y0) = f∞. Finally, we can conclude for any σ ∈ F

f∞ = Π∞
σ (y0) ≥ f∗. (3.72)

Combining Eqs. (3.70) and (3.72) yields f∞ = f∗, proving the theorem.

Inflation hierarchy

There exists a second convergent hierarchy that is more closely related to the quan-
tum inflation hierarchy of Ref. [22]. By showing convergence of such a hierarchy, we
answer a question posed by Renou and Xu in Ref. [83]. The hierarchy is very similar
to that of Eq. (3.69), but instead of treating the independence constraints as poly-
nomial conditions, they are enforced by imposing additional symmetries. Loosely
speaking, these new symmetry constraints posit that copies of the state σABA

can
be permuted independently of the copies of σBCC , see Fig. 3.9 for a visualization.



90 3.3. THE BILOCAL SCENARIO

The advantage of this hierarchy over the polarization hierarchy is that the symmetry
constraints can already be imposed at level 2 of the hierarchy.

In the notation introduced above Eq. (3.69), the level n relaxation is given by

f̃n = min
ρ∈K(Dn)

ρ(y0)

s. t. ρ(π(abc)) = ρ(abc), ∀π ∈ Sn
ρ(aπ(c)) = ρ(ac), ∀π ∈ Sn.

(3.73)

Theorem 3.3.16. Let f̃∞ = limn→∞ f̃n. It holds that f̃∞ = f∗.

Proof. We only give a short proof sketch, since the techniques are nearly identical
to the proof of Theorem 3.3.15.

Construct a state ω ∈ K(D∞) as the limit of optimizing states of (3.73) (c.f. the
proof of Theorem 3.3.15). By the de Finetti theorem this state has the form

ω =

∫
dµ(σ)Π∞

σ . (3.74)

Fix one n ∈ N. Using the cycle notation, define the permutation

π = (1, n+ 1) (2, n+ 2) . . . (n, 2n),

i.e. π exchanges the 1st block of n symbols with the 2nd block of n symbols. Using
the additional symmetry constraints of ω, when restricted to elements of Alice and
Charlie, we see that for each a ∈ An and c ∈ Cn, and for all n

ω(ac) = ω(aπ(c)) (3.75)

=

∫
dµ(σ) Π∞

σ (aπ(c)) (3.76)

=

∫
dµ(σ) Π∞

σ (a)Π∞
σ (π(c)) (3.77)

=

∫
dµ(σ) Π∞

σ (a)Π∞
σ (c), (3.78)

where the symmetry of ω was used in (3.75), Eq. (3.74) was used for Eq. (3.76),
and in Eqs. (3.77) and (3.78) it was used that each Π∞

σ is a symmetric product state
over disjoint inflation levels. From this we can see that Π∞

σ obeys the factorization
constraint almost surely with respect to µ.

The rest of the proof is now similar to that of Theorem 3.3.15.

We note that this result also proves convergence of the “full” quantum inflation
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A1 Bρ1

An

A2

A3

ρ2
ρ3

ρn

Figure 3.10: A star network with n+1 parties. The bilocal scenario is a star network
with n = 2, where Alice is A1 and Charlie is A2. The settings for each of the parties
have been left out in this figure.

hierarchy [22] where Bob’s POVMs have two separate indices: For each n, the NPO
problem that describes such a full inflation level is a relaxation of problem (3.66)
that is at least as restrictive as the relaxation (3.69). Hence, its optimal value lies
between fn and f∗ for every n.

3.3.7 Generalization to other causal structures

One can ask whether it is possible to use the technique of Theorem 3.3.10 to show
that the quantum inflation hierarchy converges for other networks. It is not difficult to
show that Theorem 3.3.10 can be adapted to the more general case of star networks,
in which one central party shares a bipartite quantum state with n other parties, but
no other connections are present. Note that the bilocal scenario is a star network with
n = 2, where Bob acts as the central party.

Consider the star network with n+1 partiesA1, . . . , An, B depicted in Fig. 3.10.
In this figure the settings for each party have been left out for simplicity, but can be
added back in if necessary. The following corollary of Theorem 3.3.10 holds.

Corollary 3.3.17. The polarization and inflation hierarchies are complete for the
causal compatibility problem for star networks.

Proof. The proof relies on an extension of Theorem 3.3.10. In a star network, we
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X A

ρXA

B Y

ρAB ρBY

Figure 3.11: A line network of four parties without settings. The Bell scenario can
be simulated by this scenario by regardingX as the setting forA and Y as the setting
for B.

have a state ρ such that

ρ(a1a2 . . . an) = ρ(a1)ρ(a2) . . . ρ(an). (3.79)

Using this property, we can repeat the construction that leads to the proof of Theorem
3.3.10. Applying the GNS construction on the state of Eq. (3.79) yields a tensor
product of n Hilbert spaces HAi

⊗ . . . ⊗ HAn
. Defining BAi

= πAi
(Ai)′, one

can show that there is a channel Λ : B → BA1⊗̄BA2⊗̄ . . . ⊗̄Bn that preserves the
correlations, yielding a mixed model for the star network.

In this way, the causal compatibility problem becomes an instance of a state
polynomial optimization problem. The claim for the polarization and scalar exten-
sion hierarchy then follows from Theorem 5.1.1, which is proven in chapter 5. For
the quantum inflation hierarchy, the claim follows from Theorem 3.2.1.

Remark. In Chapter 5 we will also treat a hierarchy of SDPs known as scalar exten-
sion in the quantum information community and as state polynomial optimization in
the convex optimization community. It was shown in Ref. [39] that scalar extension
is also convergent for optimization problems that are polynomials in the operators
and the states. Therefore, Theorem 3.3.10 shows that it can also be used for the
causal compatibility problem in the bilocal scenario. Additionally, using the same
reasoning as in Corollary 3.3.17, this can be extended to the case of star networks as
well.

The bilocal scenario is also a line network, in which the parties are arranged in
a line and share a bipartite quantum state with each of their neighbors. It therefore
might seem plausible that the technique can also be extended to larger line networks.
This, however, turns out to not be the case. The following counter example is due to
Elie Wolfe.

Example 3.3.18. Consider a line network of four parties, X,A,B, Y , as depicted
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in Fig. 3.11. From the causal structure, we can deduce the following factorization
constraints for all X ∈ X , A ∈ A, B ∈ B and Y ∈ Y:

ρ(XAY ) = ρ(XA)ρ(Y ) (3.80)
ρ(XBY ) = ρ(X)ρ(BY ). (3.81)

These factorization conditions can be enforced in the polarization, inflation or scalar
extension hierarchy. Since there are no settings in this example, we can w.l.o.g. take
our POVMs to be commuting orthogonal projective measurements, which means
that the conditions (3.80) and (3.81) are equivalent to

p(XAY ) = p(XA)p(Y ) (3.82)
p(XBY ) = p(X)p(BY ). (3.83)

However, these conditions are not enough to ensure compatibility with the four party
line scenario. This can be seen by the following argument.

By letting ρXA send perfectly correlated classical bits to X and A, it is possible
to simulate a network where X is a setting for A. By a similar procedure, Y can be
interpreted as a setting forB. This effectively creates the Bell scenario. As we know,
in the two parties, two outcomes, two settings Bell scenario, the CHSH inequality
(Eq. (1)) can be violated up to 2

√
2. However, if we only assume the factorization

conditions (3.82) and (3.83), we cannot exclude correlations created by a PR box,
which only requires non-signaling constraints and can reach a violation of the CSHS
inequality up to 4. Indeed, consider the distribution of the PR box

pPR(x, a, b, y) =

{
1
8 if a⊕ b = x · y,
0 otherwise.

(3.84)

The marginal distribution of pPR on the subsets XAY and XBY leads to a uniform
distribution, so that (3.82) and (3.83) hold. From this we must conclude that the
factorization conditions alone are not enough to capture the correlations in general
line scenarios.

Remark. We note that example 3.3.18 is again not a counter example to the con-
vergence of the quantum inflation hierarchy. The example only shows that a similar
construction as that of the proof of Theorem 3.3.10 will not work in general.

In fact, the quantum inflation hierarchy numerically refutes the PR correlations
in the four party line already at inflation level 2, which can quickly be checked using
the recently developed inflation toolkit [100].
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3.4 Conclusion
Building on the quantum inflation hierarchy of Ref. [22], we have constructed a prov-
ably complete semidefinite programming hierarchy for the quantum causal polyno-
mial optimization problem. Along the way, we have used the generalized Quantum
de Finetti Theorem for infinite systems of Chapter 2, and the description of the NPO
hierarchy as an optimization procedure over states of a universal C∗-algebra of Sec-
tion 1.3.2.

We have shown the equivalence of several models of locality for the bilocal sce-
nario. In particular, we have shown that a reduced model of bilocality, in which only
Alice and Charlie are supposed to be independent, is enough to reproduce exactly the
bilocal quantum distributions in the commuting observables model. Furthermore, if
Alice’s and Charlie’s systems can be associated with a finite dimensional algebra,
the correlations also coincide with the tensor product model.

Additionally, we have constructed two converging SDP hierarchies for the bilo-
cal scenario, based on the above-mentioned classification. The polarization hierarchy
makes use of the fact that certain polynomial expressions in a state can be linearized
on tensor powers of that state. Here, this idea was applied to the factorization con-
straint between Alice and Charlie, but it can be applied to polynomials of higher
order as well. The second hierarchy is a form of the quantum inflation hierarchy.

In deriving these results, we have answered two open questions of Ref. [83]:

1. whether the bilocal scenario allows for new insights into Tsirelson’s problem:
No.

2. and whether the quantum inflation hierarchy is complete for the bilocal sce-
nario: Yes.

A number of follow-up questions suggest themselves.
We could not prove completeness of the original quantum inflation hierarchy

for general quantum causal structures, due to the difficulty of constructing the local
observable algebras (A−,A+, etc.). To deal with this problem in the general case,
we had to manually add generators for the algebra to the NPO program, and then
manually impose norm constraints. While we have argued that any constructive
completeness proof will have to add elements to the algebra that is extracted from the
output of the SDP hierarchy, it is not obvious that we have found the most economical
way of handling the issue. We also do not know whether there are a priori finite
bounds on the norm of the local operators that combine to give the POVM elements,
except for the case of the bilocal scenario. Both questions merit further research.

So far, we have focused mostly on the quantum causal compatibility problem,
and have not investigated objective functions beyond the 2-norm distance to mea-
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sured data. While the examples given in [22, Section VII] carry over to our formu-
lation, it would be interesting to look into further applications. For this reason, we
consider quantum networks in Chapter 4, where we allow the output to be a finite-
dimensional quantum state. Additionally, the more general class of optimization
problems known as state polynomial optimization (SPO) will be treated in Chapter
5. In both chapters many of the concepts introduced in this chapter will reappear.

Laslty, it would be worth investigating what further properties of the universal
observable algebra can be enforced with suitable constraints. For example, one could
impose that some of the subalgebras are Abelian in order to model partly classical
behavior.



Chapter 4

Network compatibility

Even though the inflation technique is mostly applied in the device-independent set-
ting, where only correlations are considered, there is no theoretical reason to restrict
to this case. In this section we will therefore take a closer look at how to apply the
inflation and polarization techniques to analyze whether a specific quantum state can
be produced in a given network scenario.

4.1 General approach

The descriptions of quantum inflation and NPO as given in sections 3.1 and 1.3.2 are
not restricted to testing for compatibility with respect to a probability distribution.
Instead, they allow for a wide range of optimization problems in network scenarios,
as long as one can express the problem in terms of quantum states on separable
C∗-algebras.

To give a simple example, one can analyze the Bell scenario using dichotomic
observables, i.e. observables with a ±1-valued spectrum, as we did in the introduc-
tion. The CHSH expression in terms of these quantities takes on the form in which
it is most often found in textbooks. For dichotomic operators A0, A1, B0, B1 such
that [Ai, Bj ] = 0, we want to maximize

⟨A0B0⟩+ ⟨A0B1⟩+ ⟨A1B0⟩ − ⟨A1B1⟩ . (4.1)

It is well known [56, 101] that this expression reaches the Tsirelson bound of 2
√
2

96
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by choosing

A0 = σZ B0 =
1√
2
(σZ + σX)

A1 = σX B1 =
1√
2
(σZ − σX)

and measuring these observables on the maximally entangled state |ψ+⟩ = 1√
2
(|00⟩+

|11⟩). Using the NPA hierarchy [56], one can retrieve this upper bound already with
a moment matrix of size 5× 5, and extract the 2-qubit model above with a matrix of
size 9× 9.

In some sense, this example is still only testing for correlations: each dichotomic
operator A is equivalent to a two-outcome measurement {P0, P1} via A = +1P0 +
(−1)P1 = 2P0 − 1 = 1 − 2P1. To test the compatibility of an arbitrary quantum
state ρ, we will in general need a larger set of observables. Suppose one is testing
the compatibility of a state in d dimensions. It is then always possible to choose a
complete set of observables for that dimension, that is, a set of observables whose
expectation values uniquely determine the state (up to local isometries). We will
consider two special cases: the set of d-dimensional Pauli operators (which will also
prepare us for Sec. 4.2), and the set of matrix units.

Let us first describe the general setup. We will restrict our attention to networks
described by bigraphs, which were called correlation scenarios in Sec. 1.2.2 for the
case of the causal compatibility problem. Consider a quantum network ofN spatially
separated parties, with some configuration of S quantum sources, given by a bipartite
DAG G in a similar way as for a quantum causal structure. Each party receives
a number of quantum systems from the sources, as prescribed by G, is allowed to
perform local operations (LO) on these source states, and finally outputs a state of
dimension d. The total Hilbert space of the outputs is thus (Cd)⊗N and the final
state is of the form

ρLO = E1 ⊗ . . .⊗ EN (σ1 ⊗ . . .⊗ σS), (4.2)

where Ei is a local quantum channel for party i and σj is the state that the source j
distributes. Even though the dimensions of the output states are restricted, those of
the input states are not. If H is a subgraph of G, we label the reduced output state
on the parties in H by ρH .

Alternatively, one can consider the so-called LOSR setup, in which the parties
can perform local operations (LO) and possess pre-shared randomness (SR). Without
loss of generality the shared randomness can be absorbed into the channels [102]. In
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this case, the output state has the more general form

ρLOSR =
∑
λ∈Λ

pλEλ1 ⊗ . . .⊗ EλN (σ1 ⊗ . . .⊗ σS),

for a (discrete) random variable Λ.

The question that naturally arises from these setups is which (dN -dimensional)
quantum states can be produced in such a network under LO or LOSR constraints.
This is known as the network compatibility problem.

Problem 6 (network compatibility). Given a dN -dimensional quantum state ρ on
N parties and a causal structure G with N end nodes, determine whether ρ can be
produced in a LO/LOSR quantum model compatible with the causal structure.

Remark. There is a third well-known setup of network scenarios in which one
allows for local operations and classical communication (LOCC). For the discussion
of network compatibility, however, this setup is less interesting: given enough rounds
of communication, one can simply create any quantum state by distributing it through
the network via teleportation. The analysis becomes far less trivial again if one
restricts the number of rounds of communication.

To try to answer the question of Problem 6, first note that the causal compatibility
problem is a special case of the network compatibility problem with LO constraints,
where the output is simply a classical state. The idea behind solving the more general
setup is therefore largely the same: it is still possible to perform inflation as a thought
experiment. If the output state can be produced in the network, it should be possible
to copy the source states and pick any of those copies to produce the output state.

This procedure is formalized in the following way. Suppose we want to test
whether a state ρ ∈ K((Cd)⊗N ) is compatible with a given network corresponding
to a DAGG. Let {M ℓ

i }i be a set ofm observables inB(Cd), which act on the output
space of party ℓ. Denote the algebra that is generated by all such observables on all
parties of G by DG. Then one can calculate the expectation values yM1

i1
⊗...⊗MN

iN

=

tr
(
ρ M1

i1
⊗ . . .⊗MN

iN

)
for all possible combinations of the observables. If the set

of observables is complete, these expectation values uniquely identify the state.

To perform inflation, one now has to distinguish the LO and LOSR setups. In
the case where only local operations are allowed, the setup is exactly the same as
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described in section 3.2. To see this, one can perform the following calculation:

tr
(
ρ M1

i1 ⊗ . . .⊗M
N
iN

)
= tr

(
E1 ⊗ . . .⊗ EN (σ1 ⊗ . . .⊗ σS)M1

i1 ⊗ . . .⊗M
N
iN

)
= tr

(
(σ1 ⊗ . . .⊗ σS) E∗1 ⊗ . . .⊗ E∗N (M1

i1 ⊗ . . .⊗M
N
iN )
)

= tr
(
(σ1 ⊗ . . .⊗ σS) U1 ⊗ . . .⊗ UN (M1

i1 ⊗ 1⊗ . . .⊗M
N
iN ⊗ 1)U

∗
1 ⊗ . . .⊗ U∗

N

)
= tr

(
(σ1 ⊗ . . .⊗ σS) (U1(M

1
i1 ⊗ 1)U

∗
1 ⊗ . . .⊗ UN (MN

iN ⊗ 1)U
∗
N )
)
,

(4.3)

where the definition of an LO network state was used in the first equality, the chan-
nels Ej were moved to the observables by taking the adjoint maps in the second
equality, and the last two equalities follow from the Stinespring representation of the
adjoint channel and the fact that the channels act locally on each party. From the fi-
nal equation, one can see that the operators Uj(M

j
ij
⊗1)U∗

j have the same algebraic

structure as the operators M j
ij

. In other words, the problem is invariant under the
local operations. This is not surprising, since we were only trying to determine the
state uniquely up to local isometries.

The convergence results for the LO setup thus carry over directly from the causal
compatibility problem of Chapter 3:

Corollary 4.1.1. The modified quantum inflation technique of Section 3.2 yields a
hierarchy of semidefinite programs that converges to the network compatibility prob-
lem under LO constraints. It will have the same drawbacks as in section 3.2, namely
that it introduces a very large number of variables and is not monotonically conver-
gent.

Proof. This follows immediately from Eq. (4.3) and Theorem 3.2.1, since the con-
struction works for general C∗-algebras.

Corollary 4.1.2. For the specific case of star networks, most notably the bilocal net-
work, the original version of the quantum inflation technique is convergent for the
network compatibility problem under LO constraints. The same is true for the polar-
ization hierarchy and the scalar extension hierarchy (discussed in detail in Chapter
5).

Proof. The construction of Sec. 3.3 holds for any C∗-algebra, and is therefore also
applicable to the network compatibility problem under LO constraints, due to the
calculation (4.3).

For the LOSR setup the same procedure does not quite work, due to the pre-
shared randomness. The shared randomness prohibits us from performing the quan-
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tum inflation technique in the usual way. Instead, for the original version of quantum
inflation, one needs to choose a so-called non-fanout inflation network [21] that is
compatible with the original network.

In a non-fanout inflation GNF of a DAG G, the sources and parties are copied
in such a way that each copy of a party is locally indistinguishable from the origi-
nal party it was copied from. That is, it receives exactly the same amount of source
states, and each such source state corresponds to a copy of a source that was send to
the party in the original DAG. The full level 2 inflation of the triangle scenario de-
picted in Fig. 3.1 does not obey these requirements, since each of the parties receives
two copies of each of the source states that they would have received in the original
triangle graph. However, if we consider the graph that corresponds to the commut-
ing subalgebrasA12, A21, B11, B22, C11, C22, we get an inflation of the triangle that
corresponds to Fig. 4.1, known as the wheel inflation [21]. Since the algebras A12

andA21 in the full level 2 inflation are acting on different states, they can be consid-
ered as separate parties acting on spatially separated systems. The same is true for
the algebras of Bob and Charlie. Note that each of the parties in the wheel inflation
receives exactly the same states as their counterparts in the triangle scenario. The
wheel inflation is therefore an example of a non-fanout inflation. Apart from the
local correlations being the same, the wheel inflation is also indistinguishable from
the triangle for each set of two neighboring parties. For example, if we consider the
subalgebras A21 and B11, we see that they are acting on the states ρ2CA, ρ1AB and
ρ1BC in exactly the same way as in the triangle scenario. Lastly, the 3-local correla-
tions of the triangle will in general not be found in the wheel inflation: none of the
combinations of the copies of the algebras A, B and C in the wheel inflation results
from a set of three sources like in the triangle scenario.

We will now introduce some notation to treat a more general set of causal struc-
tures. Label the parties by a vector s⃗ℓ, indicating which copy of the source states
they are acting on. For example, 1s⃗1 is the copy of party 1, with a channel acting on
the sources indicated by s⃗1. For certain subgraphs the input states and channels will
be indistinguishable from those in the original graph, as we have seen in the wheel
inflation. Hence, for the non-fanout inflation network GNF there should exist a set
of local channels that result in a state ωGNF

, such that whenever a subgraph HNF of
GNF is equivalent to a subgraphH ofG, it holds that the reduced output state ωHNF

of the inflation is equal to the reduced output state ρH of the original network. This
means that all of the expectation values should correspond to those in the original
graph as well. That is,

tr
(
ωHNF

M
s⃗ℓ1
i1
⊗ . . .⊗M s⃗ℓK

iK

)
= tr

(
ρHM

ℓ1
i1
⊗ . . .⊗M ℓK

iK

)
for ℓ1, . . . , ℓK ∈ H .
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Figure 4.1: An example of a non-fanout inflation of the triangle scenario, known as
the wheel inflation. Each copied party is locally indistinguishable from the party it
was copied from.

Let DGNF
be the algebra generated by all the observables {M s⃗ℓ

i } in the inflation
graph GNF and the relations among those variables. The network compatibility
problem then takes on the form

min
ωGNF

∈K(DGNF
)

0

s. t. ωGNF
(x′) = ρG(x) for all x′ ∼ x,

ωGNF
(x′) = ωGNF

(x) for all x′ ∼ x,

(4.4)

where x′ ∼ x if the operators x and x′ are copies of the same operator, and are non-
trivial only on subalgebras corresponding to isomorphic subgraphs of GNF . The
first constraint in Eq. (4.4) imposes that the subgraphs of GNF that are isomorphic
to subgraphs of the original causal structure lead to the same expectation values.
The second constraint imposes that the same is true when two different subgraphs of
GNF are isomorphic. An example of this second constraint for the wheel inflation
of Fig. 4.1, which is not implied by the first set of constraints, is

ωWheel(a
21b11c11) = ωWheel(a

12b22c22),

where a21 ∈ A21, etc.
Despite the added difficulties, there are still some convergence results for the
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LOSR case as well:

Corollary 4.1.3. There exists a hierarchy of semidefinite programs, closely related to
the modified quantum inflation technique of Section 3.2 that converges to the network
compatibility problem under LOSR constraints. It will have the same drawbacks as
in section 3.2, namely that it introduces a very large number of variables and is not
monotonically convergent.

Proof. By treating the shared random variable as a classical unobserved source, one
can also define "fanout" inflations in the LOSR setup for the modified inflation tech-
nique of section 3.2. That is, write the network state as

ρLOSR = E1 ⊗ . . .⊗ EN (Λ⊗ σ1 ⊗ . . .⊗ σS),

where Λ is a local hidden variable distributing randomness between all parties, and
each of the Ej now also act on a part of the variable Λ. Repeat the calculation in
Eq. (4.3). Then, when defining the local algebras, add an abelian local algebra for
each party which models the classical random variable received by that party. At this
point we are back in the usual framework for the modified version of inflation and
can claim the same convergence results1.

The result of Sec. 3.3 for the bilocal scenario does not obviously carry over.
Though it is true that the argument only uses non-fanout inflations, the construction
in Theorem 3.3.10 makes central use of the factorization condition (3.55), which
does not hold for states produced in an LOSR network. One could hope to use the
separability of the state instead: The GNS representation arising from the restriction
of the state to Alice and Charlie is a direct integral of the form [43, III.1.6]

HAC =

∫ ⊕
dµ(σ)HσA

A ⊗H
σC

C , (4.5)

πAC(ac) =

∫ ⊕
dµ(σ)πσA

A (a)⊗ πσC

C (c). (4.6)

But this does not clearly lead to an algebra for Bob that is generated by a tensor prod-
uct of two commuting subalgebras. We therefore leave the question of convergence
of the inflation technique for the bilocal LOSR network open for future research.
The scalar extension and polarization hierarchies are not suitable for this version of
the network compatibility problem, since there are no factorization constraints to
enforce.

1 The reason why this does not work for the original version of quantum inflation is because it is not
clear how to model the classical subsystem. Indeed, as pointed out in section 3.1.1 one of the biggest
hurdles in proving convergence is finding a way to construct those subsystems.
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In summary, the essence of the inflation technique for network scenarios is no
different from that of (non-fanout) inflations as discussed in e.g. Ref. [21]. The main
difference is the fact that we allow for more general algebras to optimize over. In
particular, we are interested in algebras that completely determine a dN -dimensional
state via expectation values, while still having a convenient algebraic structure that
is relatively easy to implement and that reduces the size of the problem.

Below, we will discuss two such examples: the algebra of generalized Pauli ma-
trices, and the algebra of matrix units in d dimensions. We will only show the opti-
mization problems for the original version of quantum inflation, since the optimiza-
tion problem for the modified version of section 3.2 would be quite hard to parse and
would not serve well as a clarifying example.

Example 4.1.4 (Pauli operators). As a generalization of the well-known 2-dimensional
Pauli matrices {1, σx, σy, σz}, we define the generalized Pauli matrices in d dimen-
sions [103]

X :=

d−1∑
i=0

|i+ 1⟩⟨i| , Z :=

d−1∑
i=0

ωi |i⟩⟨i| , (4.7)

where ω = ei
2π
d is a d’th root of unity and |d⟩ is identified with |0⟩. More abstractly,

their algebra is defined through the relations

ZlXm = ei
2πlm

d XmZl, (4.8)

(Xm)∗ = Xd−m, (Zm)∗ = Zd−m, (4.9)

Xd = Zd = 1. (4.10)

We will denote the generalized Pauli algebra by P .
The representation (4.7) in d dimensions is particularly useful when we define

the displacement operators

D(l,m) = e−i
πlm
d ZlXm.

These operators form an orthogonal set with which we can write a d-dimensional
state in the Bloch representation [103]

ρ =
1

d

d−1∑
l,m=0

tr(ρD(l,m))D∗(l,m), (4.11)

which emphasizes the fact that the expectation values of the state on the generalized
Pauli matrices uniquely determine the state. The N party state can then be charac-
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terized by the expectation values on P⊗N .
Let GNF be a non-fanout inflation of a DAG G with Ñ end nodes. Let Sinv ⊂

SÑ be the set of permutations of the parties that leaves the graph GNF invariant.
Concretely, the optimization problem then takes the form

min
ω∈K(P⊗Ñ )

0

s. t. ωHNF
(Zl1Xm1 ⊗ . . .⊗ ZlKXmK ) = ρH(Zl1Xm1 ⊗ . . .⊗ ZlKXmK )

for all HNF ∼ H,
ω(Zl1Xm1 ⊗ . . .⊗ ZlÑXmÑ )

= ω(Zπ(l1)Xπ(m1) ⊗ . . .⊗ Zπ(lÑ )Xπ(mÑ ))

for all l⃗ ∈ (Zd)
Ñ , m⃗ ∈ (Zd)

Ñ , π ∈ Sinv,

(4.12)

where ωHNF
is the restriction of ω to the subgraphHNF and the systems are ordered

such that the first system in HNF is equivalent to the first system in H , and so forth.

Example 4.1.5. (Matrix units) A second example is given by the algebra of matrix
units [43, Example II.8.3.2.iv]. This algebra is defined as the universal algebra of a
set of generators G = {ei,j}, i, j ∈ [0, d− 1] and the relations

R = {eijekl = δjkeil, e
∗
ij = eji}. (4.13)

The universal C∗-algebra C∗(G|R) is isomorphic to Md, the set of d × d matrices,
where each of the generators eij can be thought of as the d × d matrix with a 1 on
position (i, j) and 0 everywhere else.

It is clear that such an algebra also uniquely determines a d-dimensional state (up
to local isometries), simply by writing down the d × d density matrix and requiring
tr
(
ρe∗ij

)
= ρij . More generally, one can determine a state on N parties by taking

expectation values of (C∗(G|R))⊗N so that the optimization problem becomes

min
ω∈K((C∗(G|R))⊗Ñ )

0

s. t. ωHNF
(eij ⊗ . . .⊗ ei′j′) = ρH(eij ⊗ . . .⊗ ei′j′)

for all HNF ∼ H,
ωH1

NF
(eij ⊗ . . .⊗ ei′j′) = ωH2

NF
(eij ⊗ . . .⊗ ei′j′)

for all H1
NF ∼ H2

NF ,

(4.14)

where again the systems are ordered in the obvious way.
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4.2 Analytic proof of incompatibility for graph states

The following section is largely taken from Paper [3]. Its wording and notation
have been slightly modified to be consistent with the rest of the text. Furthermore,
the supplementary material has been inserted in the main text in order to make the
argument more linear.

Out of all proposed real-life implementations of quantum information, quantum
networks stand as one of the most promising ones. They appear as key components
for several proposals of possible applications of quantum information theory, such as
quantum key distribution [26, 27, 28], clock synchronisation [29], parallel computing
[30] or even a quantum internet [31, 32, 33, 34]. What is more, their relative simplic-
ity as compared to other quantum technologies, makes them perhaps the closest ones
to commercial implementation. This sentiment is also supported by the significant
progress in the experimental implementation of quantum networks that has recently
been made [104, 105, 106, 107, 108].

At their core, quantum networks are simply collections of parties and of sources
of multipartite quantum states. Their most natural model (referred to as LOCC net-
works) is one that allows the parties to act with the most general local operations on
their shares of the distributed states and to coordinate their actions by using classical
communication. However, while connected LOCC networks enable preparing any
multipartite state, the use of classical communication might be problematic for their
commercial implementations.

When considering the possible future applications of quantum networks one has
to take into account that the distances between parties will substantially increase as
compared to the current state-of-the-art experiments. Therefore, while classical com-
munication between parties can be considered almost instantaneous in a lab setup,
this will not be the case for quantum networks spanning many different countries or
even continents. From that point of view, it would be beneficial, e.g. for quantum
key distribution protocols, to use quantum states that require as little classical com-
munication as possible to be generated. This has not only the potential to decrease
the latency of quantum networks but also to reduce the noise therein, as the longer a
quantum state has to be stored, the noisier the state gets.

One is thus forced to consider quantum networks in which the amount of classical
communication between the parties is limited or even no communication is allowed
(see Ref. [109]). A possible model of quantum networks that fulfills this requirement
is one in which the parties can apply arbitrary quantum channels to their particles,
however, they cannot use classical communication. Instead, they are allowed to
orchestrate their actions by using some pre-shared classical information. We call
such networks LOSR (local operations and shared randomness) quantum networks.
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While the above no-communication assumption severely reduces the capability of
generating multipartite states in LOSR quantum networks as compared to the LOCC
ones, they are still more general than those in which the parties can only implement
unitary operations and no randomness is shared. While the LOSR networks have
become an object of intensive studies [102, 110, 111, 112, 113], it remains unclear
what multipartite entangled states can actually be prepared in them.

In quantum information graph states stand as one of the most representative
classes of multipartite states, including the Greenberger-Horne-Zeilinger [114], clus-
ter [115] or the absolutely maximally entangled [116] states. Moreover, they are key
resources for many applications, such as quantum computing [117, 118, 119], mul-
tipartite secret sharing [120], or quantum metrology [121]. It is thus a question of
utmost importance how difficult it is to prepare such states in quantum networks.

In this chapter we will prove a negative result to this question in the sense that
no graph states of arbitrary prime local dimension (or any state sufficiently close to
them) can be prepared in LOSR networks with bipartite sources. We thus generalize
the recent results that the three-partite GHZ states [102, 122] or any N -qubit graph
states with N up to 12 cannot be prepared in such networks [112]. Simultaneously,
our work is complementary to Ref. [113] showing that no qubit or qutrit graph states
of an arbitrary number of parties can be prepared in LOSR networks even with (N −
1)-partite sources. Our proof employs the quantum inflation method [21, 22] which
is perfectly suited to tackle these types of questions [22, 102].

While finishing the original manuscript [3] of this result, we became aware of a
very similar result by Y.-X. Wang et al [123], and coordinated the publication of the
preprints of the manuscripts.

4.2.1 Preliminaries

(1) Graph states. Consider a multigraph G, which is a graph in which any two
vertices can be connected by more than one edge, but no edge can connect a vertex
to itself. This can be seen as a special case of a weighted graph, in which the weights
are integers. Let Γi,j denote the number of edges connecting vertices i and j, and let
Ni be the neighbourhood of vertex i, i.e. the set of vertices that are connected to i
by at least one edge (see Fig. 4.2 for an example). To associate a quantum state to an
N -vertex multigraph G, we consider a Hilbert space H = C⊗N

d , where each qudit
space Cd corresponds to one of the vertices of G. We assume that d is prime and
will consider multigraphs such that d ≥ maxi,j Γi,j . To each vertex i we associate
the operator

gi = Xi

∏
j∈Ni

(Zj)
Γi,j , (4.15)
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Figure 4.2: An example of a multigraph with three vertices.

where X and Z are the generalized Pauli matrices of Eq. (4.7). The subscripts in
(4.15) label the subsystems on which these operators act. One defines a graph state
|G⟩ associated toG to be the unique state inH obeying gi |G⟩ = |G⟩ (i = 1, . . . , N)
(for a review on graph states see e.g. [35]).

(2) Quantum networks. Let us consider a scenario in which N parties, labelled
1, . . . , N , receive quantum states distributed by independent sources. Each party
i can perform an arbitrary local operation represented by a quantum channel Ei,
on their shares of these states. We also assume that parties cannot communicate
with each other, but instead all have access to some shared randomness, which is
a random variable Λ with a distribution {pλ}λ∈Λ. These assumptions describe the
LOSR scenario.

There is one more assumption, independent of LOSR, that we make: the sources
distributing quantum states are bipartite, that is, every source distributes a quantum
state to only two parties. We say that two parties are connected if they share a source
state.

The most general state that can be produced in such an LOSR network is given
by [112]

ρ =
∑
λ

pλEλ1 ⊗ · · · ⊗ EλN [σ1,2 ⊗ σ1,3 ⊗ · · · ⊗ σN−1,N ] , (4.16)

where σi,j denotes a source state that is distributed between parties i and j,
∑
λ pλ =

1, and the superscript λ denotes the dependence of local operations on the shared
random variable.

Here, three remarks are in order. First, tensor products of Eλi and of σi,j are taken
with respect to different sets of subsystems; while the former is taken with respect to
different parties, the latter separates states from different sources.

Second, in general we could expect the distributed states σi,j to also depend on
Λ, since the sources can be classically correlated as well. However, because we
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do not impose any restriction on the dimension of the σi,j , one can get rid of this
dependency by considering a Hilbert space of sufficiently high dimension [102].

Third, in this work, we will assume that every network we consider (not includ-
ing inflations) is fully-connected, i.e., each party shares a bipartite state with every
other party. We can make this assumption without loss of generality because the
behaviour of each quantum network can always be simulated by the fully connected
one: taking σi,j to be the maximally mixed state produces the same outcomes as
removing the connection between the nodes i and j. Thus, since we are trying to
show incompatibility of graph states, finding that they cannot be produced in this
more powerful setup where all parties share a source state is sufficient to show that
they cannot be produced in any bipartite network with LOSR.

(3) Network inflation. Let us briefly recall the relevant tools from the network
inflation method [21, 22] which we use to derive the main results. Given some net-
work O, an inflation network I of O is a network that consists of multiple copies of
parties and sources from the original network. Whether two parties are connected in
I depends on the choice of inflation, with the only restriction that they are connected
via a copy of a source from O.

This construction is very general as many different inflations can be considered
for a given networkO. Here we focus on a certain class of inflations that are tailored
to our proof. Consider anN -partite networkO that we want to analyse; as mentioned
before, we will assume it to be fully connected. In our approach, every inflation I
of O that we consider consists of two copies of the parties from O labeled 1, . . . , N
and 1′, . . . , N ′. We assume that parties i and i′ apply the same local operation as the
original parties in O: EIi = EIi′ = EOi , where the superscripts indicate the network.
We also assume that each party i in I is connected to either j or j′ (but never to both).
Furthermore, if two copies of parties share a source state, this state is a copy of the
state that is shared between the original parties in O. These last two assumptions
imply that for every pair of parties i, j ∈ O and any inflation I, exactly one of the
following statements is true:

σI
i,j = σI

i′,j′ = σO
i,j , or σI

i,j′ = σI
i′,j = σO

i,j . (4.17)

Lastly, it is assumed that the shared randomness in I is distributed between all copies
of the parties, such that the total output state is again described by Eq. (4.16).

Two networks are said to be isomorphic if one can be transformed into the other
by switching a subset of the non-primed parties with their primed counterparts.

The above assumptions allow us to establish very useful relations between ex-
pectation values ⟨·⟩I1

and ⟨·⟩I2
calculated over states from two different inflations

I1, I2.
Let O be a network and B =

⊗
i∈O Bi. We call a subnetwork of O the B sub-
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network if it consists only of parties i for which Bi ̸= 1 and sources that distribute
states to said parties. For example, if O is a tripartite, fully-connected network and
B = X ⊗X ⊗ 1, then the B subnetwork of O is a network consisting of parties 1
and 2 and the sources distributing a state to those parties.

Fact 4.2.1. Consider a network O and two different inflations of it, I1 and I2. Con-
sider also two matrices B =

⊗
i∈I1

Bi and C =
⊗

i∈I2
Ci that act nontrivially on

some subnetworks I ′i ⊆ Ii. Then, ⟨B⟩I1
= ⟨C⟩I2

if

1. The subnetworks I ′1 and I ′2 are isomorphic.

2. For every party i we have that either Bi = Ci and Bi′ = Ci′ , or Bi′ = Ci
and Bi = Ci′ .

The above fact can be proven with the use of (4.16) by tracing out the parties
where B and C act trivially. We will see several examples and applications of this
fact below.

Note that since the original network O can be considered a trivial inflation of
itself, Fact 4.2.1 also enables establishing relations between ⟨·⟩O and ⟨·⟩I for some
inflation I.

4.2.2 Incompatibility of graph states

Let us now move on to the main results of this section, namely that no graph state can
be generated in quantum networks with bipartite sources. We begin by presenting
the key ingredients of our approach, which is inspired by the recent work [112].
The main idea of the proof is to show that the assumption that a graph state can be
generated in a network leads to the violation of a certain inequality that follows from
the lemma below.

Lemma 4.2.2. Consider two unitary matrices A1, A2 acting on some Hilbert space
CD with D being a multiple of some prime number d ≥ 2. Assume moreover that
Ai satisfy Ad1 = Ad2 = 1 and A1A2 = ωqA2A1 for ω = ei

2π
d and for some

q ∈ {1, . . . , d− 1}. Then

d−1∑
k=0

⟨Ak1 +Ak2⟩ ≤ d+
√
d (4.18)

where ⟨·⟩ ≡ Tr[ρ(·)] and the above holds true for any state ρ acting on CD.
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Proof. We start from rewriting the sum in Eq. (4.18) in the following form

d−1∑
k=0

⟨Ak1 +Ak2⟩ρ =
d−1∑
k=0

tr
[
(Ak1 +Ak2)ρ

]
, (4.19)

where ρ is an arbitrary state acting onCD. Let us then assume thatA1A2 = ωqA2A1

for some q ∈ {1, . . . , d − 1} and that Ad1 = Ad2 = 1. As proven in Ref. [124,
Proposition B.1] these two conditions imply the existence of a unitary U : CD →
Cd ⊗H′ such that

UA1U
† = X ⊗ 1, UA2U

† = Zq ⊗ 1, (4.20)

where 1 is the identity acting on H′. Denoting ρ′ = UρU†, Eq. (4.19) can be
rewritten as

d−1∑
k=0

tr
[(
(Xk + Zqk)⊗ 1

)
ρ′
]
. (4.21)

We can trace out the subsystems corresponding to the Hilbert space H′ which leads
us to

d−1∑
k=0

tr
[
(Xk + Zqk)ρ̃

]
=

d−1∑
k=0

tr
[
(Xk + Zqk)ρ̃

]
, (4.22)

where ρ̃ = trH′ ρ′.

Let us now consider the eigendecompositions of both X and Z operators,

X =

d−1∑
i=0

ωi |ϕi⟩⟨ϕi| , Z =

d−1∑
i=0

ωi |i⟩⟨i| , (4.23)

where |ϕi⟩ and |i⟩ are the eigenvectors of X and Z, respectively. Exploiting the
well-known fact that

d−1∑
k=0

ωki = dδi,0, (4.24)

it is not difficult to observe that

d−1∑
k=0

Xk = d |ϕ0⟩⟨ϕ0| ,
d−1∑
k=0

Zkq = d |0⟩⟨0| , (4.25)

where |ϕ0⟩ and |0⟩ are eigenstates corresponding to the eigenvalue 1 of X and Zq ,
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respectively. This, taking into account, Eq. (4.22), allows us to rewrite Eq. (4.19) as

d−1∑
k=0

⟨Ak1 +Ak2⟩ρ = d tr [(|ϕ0⟩⟨ϕ0|+ |0⟩⟨0|)ρ̃] . (4.26)

Let us now notice that for any pair of normalized vectors |ψi⟩ (i = 1, 2), the sum of
projectors P = |ψ1⟩⟨ψ1|+ |ψ2⟩⟨ψ2| is a rank-two matrix whose eigenvalues are 1±
|⟨ψ1|ψ2⟩| and therefore tr[Pσ] ≤ 1 + |⟨ψ1|ψ2⟩| for any σ. Taking into account that
the eigenbasis of X and Zq is mutually unbiased, meaning that |⟨0|ϕ0⟩| = 1/

√
d,

the above bound implies that

d−1∑
k=0

⟨Ak1 +Ak2⟩ρ ≤ d+
√
d, (4.27)

which completes the proof.

While the inequality of Lemma 4.2.4 is enough to prove the main result of this
chapter, we have also found another way allowing to reach the same result that ex-
ploits an equality instead. This is shown in the following Lemma.

Lemma 4.2.3. Given two positive real numbers λ1, λ2 and two matrices A1, A2

such that Ad1 = Ad2 = 1 and A1A2 = ωqA2A1 for q ∈ {1, . . . , d − 1}, if q and d
are coprime, then it holds that〈

(λ1A1 + λ2A2)
nd
〉
ρ
= (λd1 + λd2)

n ∀n ∈ N, (4.28)

where ρ is an arbitrary state acting on CD.

Proof. Exploiting the commutation relation A2A1 = ηA1A2, where η = ωq and the
fact that Adi = 1 we can rewrite

(λ1A1 + λ2A2)
d

=

d−1∑
k=1

Ad−k1 Ak2λ
d−k
1 λk2

d−k∑
i1=0

· · ·
d−k∑

ik=ik−1

η
∑k

j=1 ij

+Ad1λ
d
1 +Ad2λ

d
2. (4.29)

Using Eq. (4.31) proven below in Lemma 4.2.4, the first term on the right vanishes
and the above considerably simplifies to

(λ1A1 + λ2A2)
d = Ad1λ

d
1 +Ad2λ

d
2, (4.30)
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which due to the fact that Adi = 1 leads us directly to Eq. (4.28), completing the
proof.

Lemma 4.2.4. Given η = ω−q for q ∈ {1, . . . , d − 1}, if q and d are coprime, the
following holds true

d−k∑
i1=0

d−k∑
i2=i1

· · ·
d−k∑

ik=ik−1

η
∑k

j=1 ij = 0, (4.31)

where k ∈ {1, . . . , d− 1}.

Proof. Let us consider the expression on the left-hand side of Eq. (4.31) and shift
the summation index in the last sum by k. That is, we apply the transformation
ik → ik − k, which leads us to

d−k∑
i1=0

· · ·
d−k∑

ik=ik−1

η
∑k

j=1 ij = η−k
d−k∑
i1=0

· · ·
d∑

ik=ik−1+k

η
∑k

j=1 ij . (4.32)

We then implement a similar transformation to the second to last, where this time we
shift the index by k − 1 [ik−1 → ik−1 − (k − 1)], which allows us to rewrite the
above as

η−k
d−k∑
i1=0

· · ·
d−k∑

ik−1=ik−2

d∑
ik=ik−1+k

η
∑k

j=1 ij

= η−k−(k−1)
d−k∑
i1=0

· · ·
d−1∑

ik−1=ik−2+k−1

d∑
ik=ik−1+1

η
∑k

j=1 ij .

(4.33)

Notice that this action changes also the summation range of the last sum.
We then recursively shift the remaining summation indices as ij → ij − j for

j = 1, . . . , k − 2, which yields the following expression

d−k∑
i1=0

d−k∑
i2=i1

· · ·
d−k∑

ik=ik−1

η
∑k

j=1 ij

= η−k(k+1)/2
d−k+1∑
i1=1

d−k+2∑
i2=i1+1

· · ·
d∑

ik=ik−1+1

η
∑k

j=1 ij ,

(4.34)
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which can also be stated as

d−k∑
i1=0

d−k∑
i2=i1

· · ·
d−k∑

ik=ik−1

η
∑k

j=1 ij = η−k(k+1)/2
∑

1≤ii<i2<···<ik≤d

η
∑k

j=1 ij . (4.35)

Our aim now is to prove that the above sum vanishes. To this end, we employ the so-
called Vieta’s formulas which relate roots xj of any complex polynomial of degree
n

Pn(x) =

n∑
i=0

aix
i, (4.36)

to the coefficients ai defining it,

∑
1≤ii<i2<···<ik≤n

 k∏
j=1

xij

 = (−1)k an−k
an

. (4.37)

Let us then consider a particular polynomial of degree d,

Pωd (x) = xd − 1, (4.38)

whose roots are obviously ωi. However instead of enumerating these roots by powers
of ω, i.e., xi = ωi, we can use the fact that q and d are coprime and enumerate them
by powers of η, that is,

xi = ηi. (4.39)

Since all coefficients of this polynomial except ad and a0 are zero, Eq. (4.37) implies
that for any k = 1, . . . , d− 1,

∑
1≤ii<i2<···<ik≤d

k∏
j=1

ηij =
∑

1≤ii<i2<···<ik≤d

η
∑k

j=1 ij = 0. (4.40)

Substitution of the above equation to Eq. (4.35) ends the proof.

Remark. Though the proof of Lemma 4.2.4 seems rather technical, the intuition
behind it is easier to understand: Due to the commutation relation between A1 and
A2, each of the terms Ak1A

d−k
2 in the binomial expansion of (A1 + A2)

d appears

equally often with each of the phases ei
2πq
d

q . Hence, summing over all of these terms
exactly cancels out this sum.

In order to show a violation of (4.18) we will also use the following fact.
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Fact 4.2.5. Consider three mutually commuting unitary matricesBi that obeyBdi =

1. If ⟨B1B3⟩ = ⟨B2B
†
3⟩ = 1, then ⟨B1B2⟩ = 1.

This fact follows from an observation thatB1B3 andB2B
†
3 are unitary and there-

fore the fact that ⟨B1B3⟩ = ⟨B2B
†
3⟩ = 1 holds true for some |ψ⟩ implies that

B1B3 |ψ⟩ = |ψ⟩ and B2B
†
3 |ψ⟩ = |ψ⟩. Since Bi mutually commute, one concludes

that B1B2 |ψ⟩ = |ψ⟩ which yields the above implication.
Facts 4.2.1 and 4.2.5 together with Lemma 4.2.2 are the key elements of the

proof technique. However, before showing how they are combined, let us present an
illustrative example.

Example 4.2.6. Consider the triangle network O∆ presented in Fig. 4.3. The most
general form of a state that can be generated in such a network under the LOSR
assumption is given by

ρO
∆

=
∑
λ

pλE(λ)1 ⊗ E(λ)2 ⊗ E(λ)3 (σ1,2 ⊗ σ1,3 ⊗ σ2,3), (4.41)

where σi,j is a state shared by parties i and j and E(λ)i is a local operation performed
by the party i.

Next, let us fix d = 3 and consider the graph state |G∆⟩ corresponding to the
graph2 of Fig. 4.2, i.e., the state that satisfies gi |G∆⟩ = |G∆⟩ for i ∈ {1, 2, 3},
where the stabilizing operators are given by

g1 = X1Z
2
2Z3, g2 = Z2

1X2, g3 = Z1X3. (4.42)

In what follows we prove that this state cannot be generated in the network O∆. In
other words, we demonstrate that |G∆⟩ does not admit the form given in Eq. (4.41).
This goal is achieved via a proof by contradiction: by assuming that the above graph
state can be generated in O∆, and then showing that this assumption leads to the
violation of an inequality that follows from Lemma 4.2.2, we reach a contradiction.

To this end, let us consider an inflation ofO∆, denoted I∆0 (cf. Fig. 4.3), and two
operators defined on it, g1 = X1Z

2
2Z3 and Z2

1X2′ . Notice, that while the former
acts only on the non-primed parties, the latter acts both on party 1, as well as on the
primed party 2′. So, importantly, even though g1 and g2, as defined in Eq. (4.42)
commute, this is not the case for g1 and Z2

1X2′ . Instead, it holds that g1Z2
1X2′ =

ωZ2
1X2′g1. Hence, these two operators fulfill the conditions of Lemma 4.2.2 with

2 Note that there are two notions of graphs here that are not to be confused: the graph O∆ corresponds
to the network, while the graph G∆ corresponds to the graph state |G∆⟩.
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Figure 4.3: A fully connected tripartite quantum network O∆ with its two inflations
I∆0 and I∆1 . The "edges" represent bipartite states shared by the parties.

q = 1, so that we have

2∑
k=0

(〈
gk1
〉
I∆
0
+
〈
(Z2

1X2′)
k
〉
I∆
0

)
≤ 3 +

√
3, (4.43)

where ⟨·⟩I∆
0

denotes the expected value calculated with respect to any state that can
be generated in I∆0 . For completeness, let us notice that such a state has the following
form

ρI
∆
0 =

∑
λ

pλE(λ)1 ⊗ E(λ)2 ⊗ E(λ)3 ⊗ E(λ)1′ ⊗ E
(λ)
2′ ⊗ E

(λ)
3′ (σI∆

0 ), (4.44)

where
σI∆

0 = σ1,2 ⊗ σ1,3 ⊗ σ2,3 ⊗ σ1′,2′ ⊗ σ1′,3′ ⊗ σ2′,3′ . (4.45)

Our goal now is to show that the assumption that the graph state |G∆⟩ can be gener-
ated in O∆ leads to a contradiction with inequality (4.43). We achieve it by proving
that, under this assumption, every expected value in (4.43) must equal one.

Let us start with the first expected value in (4.43). Given that |G∆⟩ can be pre-
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pared in O∆, it follows from Fact 4.2.1 that

⟨gk1 ⟩I∆
0
= ⟨gk1 ⟩O∆ = 1. (4.46)

This can also be seen by directly calculating the reduced state of ρI
∆
0 corresponding

to the non-primed parties, which is exactly the state that can be prepared in the
original network. That is,

ρ
I∆
0

1,2,3 = Tr1′,2′,3′
(
ρI

∆
0

)
=

∑
λ

pλE(λ)1 ⊗ E(λ)2 ⊗ E(λ)3 (σ1,2 ⊗ σ1,3 ⊗ σ2,3) = ρO
∆

. (4.47)

From this it follows that

⟨gk1 ⟩I∆
0
= Tr

(
gk1ρ

I∆
0

)
= Tr

(
gk1ρ

I∆
0

1,2,3

)
= Tr

(
gk1ρ

O∆
)
, (4.48)

where the second equality follows from the fact that g1 acts only on the non-primed
parties, whereas the third equality is a consequence of (4.47). We can then em-
ploy the assumption that the state generated by O∆ is our graph state, i.e., ρO

∆

=
|G∆⟩⟨G∆|, and therefore

⟨gk1 ⟩I∆
0
= Tr

(
gk1 |G∆⟩⟨G∆|

)
= Tr (|G∆⟩⟨G∆|) = 1, (4.49)

As for the second expected value in (4.43), we consider another inflation I∆1 of
O∆ (cf. Fig. 4.3) and use Fact 4.2.1 to show that〈

Z2
1X2′

〉
I∆
0
= ⟨g2⟩I∆

1
, (4.50)

where ⟨·⟩I∆
1

stands for an expected value calculated on the state that can be prepared
in I∆1 . This relation follows from noticing that the two party reduced density matrix
corresponding to nodes 1 and 2′ of the state preparable in I∆0 is the same as the one
corresponding to the nodes 1 and 2 of the state that can be generated in I∆1 .

Let us now prove that ⟨g2⟩I∆
1

= 1. Since the nodes 1 and 2 are disconnected in
I∆1 , but are connected in O∆ we cannot directly obtain this expected value from the
original network O∆ and the state |G∆⟩. However, we can compute it indirectly by
employing Fact 4.2.5. The idea is to link ⟨g2⟩I∆

1
to two other expected values. If

the latter are chosen appropriately then we will be able to calculate them in the same
way as we calculated the value of ⟨g1⟩I∆

0
.

Notice first that g2 and g3 commute and give the identity when raised to the third
power. Hence, the assumptions of Fact 4.2.5 are satisfied.
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Furthermore, it follows from Fact 4.2.5 that if

⟨g2g3⟩I∆
1
= ⟨g3⟩I∆

1
= 1, (4.51)

it holds that ⟨g2⟩I∆
1
= 1.

The above observation allows us to shift the focus from ⟨g2⟩I∆
1

to the expected
values appearing in Eq. (4.51), that is, ⟨g2g3⟩I∆

1
and ⟨g3⟩I∆

1
.

Now, it follows from Fact 4.2.1 that

⟨g2g3⟩I∆
1
= ⟨g2g3⟩O∆ = 1, (4.52)

as well as that
⟨g3⟩I∆

1
= ⟨g3⟩O∆ = 1. (4.53)

From this, we conclude ⟨g2⟩I∆
1

= 1, which also implies that
〈
Z2
1X2′

〉
I∆
0

= 1 by
Eq. (4.50).

By the same argument it also holds that
〈
Z1X

2
2′

〉
I∆
0

= 1. Combining this with
Eq. (4.46) implies that the left-hand side of (4.43) equals 6, leading to a contradic-
tion. Thus, the graph state |G∆⟩ cannot be prepared in the network O∆.

We are now ready to present our main result that no graph states of arbitrary
local prime dimension can be produced in LOSR quantum networks with bipartite
sources, generalizing the results of Refs. [112, 113].

Theorem 4.2.7. Consider a graph G with N ≥ 3 vertices and where at least one
vertex i has a neighbourhood |Ni| ≥ 2. The graph state |G⟩ ∈ C⊗N

d , where d
is prime, corresponding to a graph G cannot be generated in an LOSR N -partite
quantum network with bipartite sources.

For the proof of Theorem 4.2.7, it will be convenient to consider certain sets of
graph states separately. This division into sets is done with the help of Lemma 4.2.8
below.

For the proof of this lemma we will recall the notion of local complementation.
First, if a graph G can be transformed into a graph G′ using a set of transformations
called local complementations, then there exists a set of local unitaries Ui such that

|G⟩ =
N⊗
i=1

Ui |G′⟩ (4.54)

(see e.g. Theorem 5 in [125]). The local complementations on the vertex n consist
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of the transformations of a graph G to a graph G′ such that

Γ′
i,j = Γi,j + anΓi,nΓj,n, (4.55)

where an ∈ {0, . . . , d− 1}.

Lemma 4.2.8. Every graph that has at least 3 vertices and has at least one vertex
with a neighbourhood |Ni| ≥ 2 can be transformed using local complementations
and relabelling into a graph G that fulfils |N1 \ N2| ≥ 2, Γ1,2 ̸= 0 and one of the
four following sets of conditions:

1. N1 ∩N2 = ∅,

2. N1 ∩N2 ̸= ∅ and for all n ∈ N1 ∩N2 we have N2 \ {n} ≠ Nn \ {2},

3. |N1 ∩N2| = 1 and there exists n ∈ N1 ∩N2 such thatN2 \ {n} = Nn \ {2},

4. |N1 ∩ N2| ≥ 2, there exists n ∈ N1 ∩ N2 such that N2 \ {n} = Nn \ {2},
and there exists an ∈ {1, . . . , d − 1} such that for all i ∈ Nn \ {2} we have
Γ2,i + anΓ2,nΓn,i = 0.

Proof. We assume that a graph G has at least 3 vertices and that at least one vertex
has a neighbourhood |Ni| ≥ 2, and so, without loss of generality, we can take |N1| ≥
2 and Γ1,2 ̸= 0. Then we act a1 times with a local complementation on vertex 1,
which gives us

Γ′
2,n = Γ2,n + a1Γ1,2Γ1,n, (4.56)

where n ∈ N1. We choose a1 such that Γ′
2,n = 0, and since local complementation

on 1 does not change Γ1,2, it implies |N1 \ N2| ≥ 2. If after this operation we have
N1 ∩N2 = ∅ then the first set of conditions in the lemma is fulfilled.

As for the case when N1 ∩ N2 ̸= ∅, the graph G fulfils the second set of condi-
tions in the lemma if for all n ∈ N1 ∩N2 we have

N2 \ {n} ≠ Nn \ {2}. (4.57)

Let us now consider a case where for some n ∈ N1 ∩ N2 the above equation
does not hold true. If |N1 ∩N2| = 1 then the third set of conditions in the lemma is
fulfilled. Otherwise, let us consider a local complementation on the vertex n

Γ′
2,i = Γ2,i + anΓ2,nΓn,i, (4.58)

where i ∈ Nn. We assume that (4.57) does not hold for n, hence for every i we also
have i ∈ N2. If one can find an such that Γ′

2,i = 0 for all i ∈ Nn, then the fourth set
of assumptions from the lemma is fulfilled.
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If choosing such an an is not possible, then we can take an such that Γ′
1,2 ̸= 0 and

such that there exists i ∈ N2 for which Γ′
2,i = 0. Clearly, after this transformation

we get
|N ′

2| < |N2|. (4.59)

Let us investigate the properties of this transformed graph. First of all Γ1,2 ̸= 0,
since that was the condition on an. Next, the local complementation on the vertex n
by definition does not change Γi,n for all i, so in particular we still have Γ1,n ̸= 0
and Γ2,n ̸= 0 which implies N1 ∩ N2 ̸= ∅. Last but not least, the action of a local
complementation on vertex n ∈ N1 ∩N2 cannot decrease the size of a set N1 \ N2,
which means that the assumption |N1 \ N2| ≥ 2 still holds.

To see why the last claim holds true, notice that to decrease the size of a set
N1 \ N2 we would have to have Γ1,j ̸= 0 and Γ2,j = 0 for some j before the action
of the local complementation on n, and after said action either Γ′

1,j = 0 or Γ′
2,j = 0.

However, from the assumption N2 \ {n} ≠ Nn \ {2} it follows that Γn,j = 0.
Crucially, this implies that under the action of local complementation on n we have

Γ′
j,k = Γj,k (4.60)

for all k, hence Γ′
1,j = Γ1,j and Γ′

2,j = Γ2,j .
The key observation here is that the new graph created after action of local com-

plementation fulfils |N1 \ N2| ≥ 2, Γ1,2 ̸= 0 and N1 ∩ N2 ̸= ∅, and so we can
check if the new graph fulfils conditions 2, 3 or 4 from the lemma and if they are
not fulfilled, then we again create a new graph by action of local complementation
on some ñ ∈ N1 ∩ N2. Every time we act with this local complementation we get
(4.59), which implies that after a finite amount of repetition of this procedure, we
will get |N1 ∩ N2| = 1 which fulfills either the second or third condition from the
lemma.

With that, we are finally ready to prove Theorem 4.2.7. The proof is rather
technical, so let us briefly describe the key idea. Our goal is to find a contradiction
to Lemma 4.2.2. In order to do that, we construct a series of implications between
expectation values of different inflations, using Facts 4.2.1 and 4.2.5 repeatedly. In
one of those inflations we will be able to directly link the expectation value of an
operator to the expectation value of a stabilizer in the original network. When we
assume that we have a graph state, this leads us to conclude that the expectation value
equals 1. Applying this trick to both operators in the statement of Lemma 4.2.2, we
reach a total of 2d on the left hand side, which is a contradiction. This leads us to
conclude that the state we started with could not have been a graph state, completing
the proof.

Proof (of Theorem 4.2.7). We assume that the graph G consists of at least three ver-
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Figure 4.4: Inflations Ik. Here Tk, T ′
k, Rk, R′

k are not individual parties, but rather
sets of parties. Every party from a set is connected to all other parties from that set
and if two sets are connected then every party from one set is connected to every
party from the other set.

tices and has at least one vertex i such that |Ni| ≥ 2. So by virtue of Lemma 4.2.8 by
using local complementations and relabeling we can transform G into a graph that
fulfills one of the four sets of conditions. Acting with a local complementation on
a graph G corresponds to acting with local unitaries on a graph state |G⟩, and so it
is sufficient to only consider graphs that fulfill one of the four sets of conditions in
Lemma 4.2.8.

Since every inflation in this proof has a very similar structure, let us begin by
discussing these similarities in order to make the proof easier to follow. All inflations
Ilk that we consider in this proof share two assumptions. First, every Ilk consists of
exactly two copies of every party, denoted i and i′, and two copies of every source
from O. Second, a non-primed party i (for i ̸= 2) is connected to every other non-
primed party j (for j ̸= 2) and to either 2 or 2′. Likewise, every primed party i′ (for
i′ ̸= 2′) has to be connected to every other primed party j′ (for j′ ̸= 2′) and to either
2 or 2′. These two assumptions allow us to precisely describe an inflation just by
defining the set of non-primed parties connected to 2′, which we denote by T lk. For
a graphical description, see Fig. 4.4.

We structure this proof in the following way: in Part 1 we consider graphs G
fulfilling the first or the second set of conditions from Lemma 4.2.8, in Part 2 we
consider graphs G fulfilling the third set of conditions and in Part 3 we consider
graphs fulfilling the fourth set of conditions.

Part 1. Here, we assume that a graphG fulfils the first or second set of conditions
from Lemma 4.2.8. Both these sets of conditions imply the same structure of the first
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two stabilizing operators, namely:

g1 = X1Z
Γ1,2

2 ZN1\{2},

g2 = Z
Γ1,2

1 X2ZN2\{1},
(4.61)

where
ZNi\{j} =

∏
k∈Ni\{j}

Z
Γi,k

k . (4.62)

Let us consider an inflation I10 for which

T 1
0 =

(
N1 \ (N2 ∪ {2})

)
∪ {1}. (4.63)

By virtue of Lemma 4.2.2, the following holds true:

d−1∑
k=0

〈
g̃k1
〉
I1
0
+
〈
gk2
〉
I1
0
≤ d+

√
d, (4.64)

where g̃1 = X1Z
Γ1,2

2′ ZN1\{2}. To complete the proof we will show that the above
inequality is violated, since if one could generate the aforementioned graph state in
the network O, then the above operators stabilize the state generated in the inflation
I10 . The strategy is the same as the one we applied in Example 4.2.6.

We begin our analysis with the operator g̃1. To show that this operator is a stabi-
lizing operator, let us consider another inflation I11 for which

T 1
1 = N1 ∩N2. (4.65)

Notice that the union

T 1
0 ∪ T 1

1 ∪ {2′} = (N1 \ {2}) ∪ {1, 2′} (4.66)

describes a set of parties in a g̃1 subnetwork of I10 . In this subnetwork, every party
from the set T 1

0 is connected to 2′ and to T 1
1 , but 2′ and T 1

1 are disconnected. Simi-
larly, in the inflation I11 , every party from the set T 1

0 is connected to 2 and to T 1
1 , but

2 and T 1
1 are disconnected, hence by Fact 4.2.1 we have

⟨g̃1⟩I1
0
= ⟨g1⟩I1

1
. (4.67)

The first set of assumptions from Lemma 4.2.8 implies T 1
1 = ∅ which gives us

⟨g1⟩I1
1
= ⟨g1⟩O = 1, since we assume that we generate a graph state |G⟩ in the
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original network O. Of course, for the second set of assumptions we have T 1
1 ̸= ∅,

and so the same implication does not hold. Therefore, for the next few paragraphs we
only consider the second set of assumptions from Lemma 4.2.8 and we will return to
considering both after showing that ⟨g1⟩I1

1
= ⟨g1⟩O = 1 holds also for the second

set of assumptions.
One of the assumptions from the second set of assumptions from Lemma 4.2.8

states that for all n ∈ N1 ∩N2 we have

N2 \ {n} ≠ Nn \ {2}. (4.68)

Consequently, given two stabilizing operators g2 and gn there has to exist a qubit i
such that i ̸= 2, n and g(i)2 ̸= g

(i)
n , where g(i)k denotes a matrix of gk acting on the

subsystem corresponding to the party i. Utilising the symmetry: g(j)i = g
(i)
j , we get

two possibilities: either

g
(2)
i = 1, g

(n)
i = ZΓi,n (4.69)

or
g
(2)
i = ZΓ2,i , g

(n)
i = 1, (4.70)

where Γi,n ̸= 0 and Γ2.i ̸= 0 respectively. In what follows, we assume that Eq.
(4.69) is true, and we will later come back to the case of Eq. (4.70).

Using Fact 4.2.5 we have the implication

⟨g−li ⟩I1
1
= ⟨g1gli⟩I1

1
= 1 ⇒ ⟨g1⟩I1

1
= 1, (4.71)

for all l ∈ {1, . . . , d− 1}.
From (4.69) it follows that the g−li subnetwork of I11 does not contain party 2.

Recall that we choose inflations such that every non-primed party is connected to
every other party with an exception of party 2, meaning that if a subnetwork does
not contain the party 2 or 2′ then it is fully connected, which is exactly the case for
the g−li subnetwork of I11 . Consequently, from Fact 4.2.1 it follows that

⟨g−li ⟩I1
1
= ⟨g−li ⟩O = 1, (4.72)

where in the second equality we used the assumption that we generate a graph state
on the network O. As for the expected value ⟨g1gli⟩I1

1
, in order to calculate it, we

first have to introduce another inflation I12 for which

T 1
2 = (N1 ∩N2) \ {n}. (4.73)

Notice, that the only difference between inflations I11 and I12 is that in the former,
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parties 2′ and n are connected and in the latter 2 and n. Crucially, since d is prime
and Γi,n ̸= 0, we can always take

l = −Γ1,nΓ
−1
i,n, (4.74)

where we take the inverse and the negation to be operations in Zd, i.e., l ∈ {1, . . . , d−
1}. This implies that the g1gli subnetwork of I11 does not contain party n, therefore
by Fact 4.2.1 we have

⟨g1gli⟩I1
1
= ⟨g1gli⟩I1

2
. (4.75)

Lastly, by using Fact 4.2.5 once more we can show that if ⟨g1⟩I1
2
= ⟨gli⟩I1

2
= 1 then

⟨g1gli⟩I1
2
= 1. Furthermore, since gli subnetwork of I12 does not contain party 2, we

have ⟨gli⟩I1
2
= ⟨gli⟩O = 1, and so:

⟨g1⟩I1
2
= 1 ⇒ ⟨g1gli⟩I1

2
= 1 ⇒ ⟨g1⟩I1

1
= 1. (4.76)

As for the case when Eq. (4.70) is true, the proof has mostly the same structure,
but with g−li and g1gli swapped. The only other difference is that, using the fact that
d is prime and Γ2,i ̸= 0, we take l ∈ Zd such that

l = −Γ1,2Γ
−1
2,i . (4.77)

As a result, we have the same implication as in the first case:

⟨g1⟩I1
2
= 1 ⇒ ⟨g1⟩I1

1
= 1. (4.78)

Since both cases result in the above implication, we can now take a different n
and apply the same procedure to produce an implication

⟨g1⟩I1
3
= 1 ⇒ ⟨g1⟩I1

2
= 1, (4.79)

where T 1
3 = (N1 ∩N2) \ {n, n′}. Repeating this procedure for all n ∈ T1 results in

a chain of implications

⟨g1⟩I1
q
= 1 ⇒ ⟨g1⟩I1

q−1
= 1 ⇒ · · · ⇒ ⟨g1⟩I1

1
= 1, (4.80)

where q = |N1 ∩N2|+ 1. Finally, for I1q we have T 1
q = ∅, and so

⟨g1⟩I1
q
= ⟨g1⟩O = 1. (4.81)
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This is the first statement in the chain of implications (4.80), and so

⟨g1⟩I1
1
= 1, (4.82)

which, by the virtue of Eq. (4.67) implies

⟨g̃1⟩I1
0
= 1. (4.83)

As a direct implication of the above, we have that g̃1 is a stabilizing operator of the
state on I10 .

We now come back to the inequality (4.64) and show that g2 is also a stabilizing
operator of a state generated in the inflation I10 . We again consider both the first and
second set of assumption from Lemma 4.2.8. The g2 subnetwork of I10 is a fully
connected subnetwork, apart from the lacking connection between parties 1 and 2.
Therefore, from Fact 4.2.1 we have that

⟨g2⟩I1
0
= ⟨g2⟩I1

−1
, (4.84)

where I1−1 is an inflation with
T 1
−1 = {1}. (4.85)

From |N1 \ N2| ≥ 2 it follows that there exists i ∈ N1 for which

g
(1)
i = ZΓ1,i , g

(2)
i = 1, (4.86)

where we used the symmetry g(j)i = g
(i)
j . Next, using Fact 4.2.5 once again, we have

⟨g−li ⟩I1
−1

= ⟨g2gli⟩I1
−1

= 1 ⇒ ⟨g2⟩I1
−1

= 1, (4.87)

where we take l ∈ Zd such that

l = −Γ1,2Γ
−1
1,i . (4.88)

Notice, that ⟨g2gli⟩I1
−1

has a trivial action on the first party and ⟨g−li ⟩I1
−1

has a trivial

action on the second party meaning that the g2gli and g−li subnetworks of I1−1 are
fully connected which by Fact 4.2.1 implies

⟨g−li ⟩I1
−1

= ⟨g−li ⟩O = 1, ⟨g2gli⟩I1
−1

= ⟨g2gli⟩O = 1, (4.89)

and so by virtue of Eq. (4.84) and Eq. (4.87) we have

⟨g2⟩I1
0
= 1, (4.90)
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i.e., g2 is a stabilizing operator of the state generated in I10 .
As a consequence of the above result and (4.82), the inequality (4.64) is violated,

meaning that our assumption must have been wrong: graph states corresponding to a
graph that admit the first or the second set of assumptions from Lemma 4.2.8 cannot
be generated in a network with bipartite sources.

Part 2. We now assume that the graph G fulfills the third set of conditions from
Lemma 4.2.8. In this part we will only use three stabilizing operators, namely

g1 = X1Z
Γ1,2

2 ZΓ1,n
n ZN1\{2,n},

g2 = Z
Γ1,2

1 X2Z
Γ2,n
n ZN2\{1,n},

gn = Z
Γ1,n

1 Z
Γ2,n

2 XnZNn\{1,2},

(4.91)

whereN1 ∩N2 = {n}. Let us consider an inflation I20 for which T 2
0 = N2 \ {1, n}.

We can use Lemma 4.2.2 to construct an inequality:

d−1∑
k=0

〈
sk
〉
I2
0
+
〈
gk1
〉
I2
0
≤ d+

√
d, (4.92)

where
s = X2′Z

lΓ2,n

2′ ZΓ2,n
n X l

nZN2\{1,n}Z
l
Nn\{1,2}, (4.93)

and we take l ∈ Zd such that
l = −Γ1,2Γ

−1
1,n. (4.94)

From the assumption |N1 ∩ N2| = 1 we can infer that the gk1 subnetwork of I20
does not contain any party from the set T 2

0 , hence we can use Fact 4.2.1 and our
assumption about the generation of a graph state in the network O to get

⟨gk1 ⟩I2
0
= ⟨gk1 ⟩O = 1. (4.95)

Thus, for all k, gk1 is a stabilizing operator of a state generated in I20 .
In order to tackle the second operator from Eq. (4.92), introduce another inflation

I21 with T 2
1 = {n}. From Fact 4.2.1 it follows that

⟨s⟩I2
0
=
〈
g2g

l
n

〉
I2
1
. (4.96)

The above can be shown by comparing the two operators and the corresponding
subnetworks of I20 and I21 : the former is fully-connected apart from the lacking
connection between 2′ and n, and the latter is fully-connected apart from the lacking
connection between 2 and n.
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By virtue of Fact 4.2.5

⟨g−m1 g2⟩I2
1
= ⟨gm1 gln⟩I2

1
= 1 ⇒ ⟨g2gln⟩I2

1
= 1, (4.97)

where we take m ∈ Zd to be
m = Γ2,nΓ

−1
1,n. (4.98)

A quick look at the g−m1 g2 and gm1 g
l
n subnetworks of I21 reveals that both of them

are fully-connected, since they do not contain party n and party 2 respectively, hence
from Fact 4.2.1 we have

⟨g−m1 g2⟩I2
1
= ⟨g−m1 g2⟩O = 1, ⟨gm1 gln⟩I2

1
= ⟨gm1 gln⟩O = 1, (4.99)

However, the above implies
⟨s⟩I2

0
= 1, (4.100)

and so, as was the case with g1, the above operator is a stabilizing operator of a
state generated in I20 . Therefore, the inequality (4.92) is violated, which implies that
the graph state corresponding to a graph that fulfills the third set of conditions from
Lemma 4.2.8 cannot be generated in the considered quantum network.

Part 3. In this part, we consider graphs G that fulfill the fourth set of conditions
from Lemma 4.2.8. The stabilizing operators used in this part of the proof have the
same general structure as the ones we have used in the previous part (see Eq. (4.91)).

Let us consider an inflation I30 for which T 3
0 = ∅. Using Lemma 4.2.2 we can

construct the following inequality:

d−1∑
k=0

〈(
X2′Z

lΓ2,n

2′ ZΓ2,n
n X l

n

)k
+ gk1

〉
I3
0

≤ d+
√
d, (4.101)

where l ∈ Zd. From Fact 4.2.1 and from the assumption that we can generate a graph
state |G⟩ in the network O it follows that

⟨g1⟩I3
0
= ⟨g1⟩O = 1, (4.102)

and so g1 is a stabilizing operator of a state generated in I30 . Next, let us consider an
inflation I31 for which T 3

1 = {n}. It quickly follows from Fact 4.2.1 that〈
X2′Z

lΓ2,n

2′ ZΓ2,n
n X l

n

〉
I3
0

=
〈
X2Z

lΓ2,n

2 ZΓ2,n
n X l

n

〉
I3
1

. (4.103)

Furthermore, one of the assumptions states that there exists an ∈ {1, . . . , d − 1}
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such that for all i ∈ Nn \ {2} we have

Γ2,i + anΓ2,nΓn,i = 0. (4.104)

Taking l = anΓ2,n we get〈
X2Z

lΓ2,n

2 ZΓ2,n
n X l

n

〉
I3
1

=
〈
g2g

l
n

〉
I3
1
. (4.105)

Now, we can use Fact 4.2.5 to construct an implication

⟨gm1 g2⟩I3
1
=
〈
g−m1 gln

〉
I3
1
= 1 ⇒

〈
g2g

l
n

〉
I3
1
= 1, (4.106)

where we take m ∈ Zd such that

m = −Γ2,nΓ1,n. (4.107)

It follows that the gm1 g2 subnetwork of I31 does not contain party n and that the
g−m1 gln subnetwork of I31 does not contain party 2. Therefore, both of these subnet-
works are connected, which by the virtue of Fact 4.2.1 implies

⟨gm1 g2⟩I3
1
= ⟨gm1 g2⟩O = 1, (4.108)〈

g−m1 gln
〉
I3
1
=
〈
g−m1 gln

〉
O = 1. (4.109)

Consequently, both operators in (4.101) stabilize the state generated in I30 and so the
inequality (4.101) is violated which ends the proof.

4.2.3 Robustness

Using a standard continuity argument one can extend the above result to any state
that is sufficiently close to a graph state. Indeed, recalling the definition of the fidelity
F (ρ, σ) between two states, where one of the states is a pure state σ = |ψ⟩⟨ψ|:

F (ρ, |ψ⟩⟨ψ|) = ⟨ψ|ρ|ψ⟩ , (4.110)

we can formulate the following Theorem.

Theorem 4.2.9. Let us consider a state ρ and a graph state |G⟩. Moreover, let
q = |N1 ∩N2|+ 1 for graphs G that fulfill (4.68) and q = 1 in other cases. If

F (ρ, |G⟩⟨G|) > 1− 1

8

(
β2 + 2γ − β

√
β2 + 4γ

)
, (4.111)
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where β = 2q − 1 and γ = (d −
√
d)/(d − 1), then ρ cannot be generated in an

LOSR network with bipartite sources.

Proof. Rewriting a state ρ in an orthogonal basis that contains |ψ⟩ and diagonalising
the subspace orthogonal to |ψ⟩, one gets

ρ = (1− δ) |ψ⟩⟨ψ|+
d∑
i=1

ci |fi⟩⟨fi|+
d∑
j=1

(a0,j |ψ⟩⟨fj |+ a∗0,j |fj⟩⟨ψ|), (4.112)

where
∑d
i=1 ci = δ, so that tr(ρ) = 1. Note that this is always possible, since ρ is

Hermitian and thus so is every principal submatrix of ρ. This then yields

F (ρ, |ψ⟩⟨ψ|) = 1− δ. (4.113)

We can express every state with fidelity 1−δ with respect to a graph state |ψ⟩ = |G⟩
in the form of Eq. (4.112).

In order to find our desired bound on the fidelity of ρ we will need two facts.
First, given a stabilizing operator s of the graph state |G⟩, we have∣∣∣⟨1− s⟩ρ∣∣∣ = ∣∣∣1− (1− δ) ⟨s⟩|G⟩ −

∑
i

tr(cis |fi⟩⟨fi|)

−
∑
j

tr
(
a0,js |G⟩⟨fi|+ a∗0,j |fi⟩⟨G| s

)∣∣∣
≤ δ +

∑
i

ci = 2δ.

(4.114)

Second, given two unitary operators s1 and s2 such that |⟨1− s1⟩| ⩽ µ, |⟨1− s2⟩| ⩽
ν, and µ ⩽ ν the following holds true:

|⟨1− s1s2⟩| = |⟨(1− s1)s2 + 1− s2⟩|

≤

∣∣∣∣∣
√〈

(1− s1)(1− s†1)
〉〈

s†2s2

〉∣∣∣∣∣+ |⟨1− s2⟩|
≤

∣∣∣∣∣
√〈

21− s1 − s†1
〉∣∣∣∣∣+ ν

≤
√
2µ+ ν,

(4.115)

where we have used the triangle inequality and the Cauchy-Schwarz inequality.
The next step is to assess how such a deviation from a unit expected value prop-
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agates in the reasoning of the proof of Theorem 4.2.7. As that proof is divided into
three parts, we have to consider each of them separately.

We begin with Part 1 of the proof of Theorem 4.2.7. Unlike in the proof of
Theorem 4.2.7, here we are forced to start from the "end" and consider the inflation
I1q first. From Eq. (4.114) it follows that

|⟨1− g1⟩I1
q
| ⩽ 2δ, |⟨1− gli⟩I1

q
| ⩽ 2δ, (4.116)

where we assume that Eq. (4.69) holds true for n ∈ Tq−1. The case when Eq. (4.70)
is true gives the same result, and so for simplicity we will only focus on Eq. (4.69).

From Eq. (4.115) it follows that

|⟨1− g1gli⟩I1
q
| ⩽ 2

√
δ + 2δ. (4.117)

From the proof of Theorem 4.2.7 we have that

⟨1− g1gli⟩I1
q
= ⟨1− g1gli⟩I1

q−1
, (4.118)

and so we also have
|⟨1− g1gli⟩I1

q−1
| ⩽ 2

√
δ + 2δ. (4.119)

For inflation I1q−1 we also have

|⟨1− g−li ⟩I1
q−1
| ⩽ 2δ. (4.120)

We can again use Eq. (4.115) for s1 = g−li and s2 = g1g
l
i which yields

|⟨1− g1⟩I1
q−1
| ⩽ 4

√
δ + 2δ. (4.121)

Applying this procedure q − 1 times, where q = |N1 ∩N2|+ 1, gives us∣∣∣⟨1− g̃1⟩I1
0

∣∣∣ ⩽ 4(q − 1)
√
δ + 2δ, (4.122)

where g̃1 = X1Z2′ZN1\{2}. As this proof can be performed for any power k ∈
{1, . . . , d− 1} it holds more generally that∣∣∣〈1− g̃k1〉I1

0

∣∣∣ ⩽ 4(q − 1)
√
δ + 2δ. (4.123)

Similarly, one can show that∣∣∣〈1− gk2〉I1
0

∣∣∣ ⩽ 2
√
δ + 2δ. (4.124)
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We can now use the above inequalities to find for which values of δ one still
breaks the bounds of Lemma 4.2.2:

2(d− 1)−

∣∣∣∣∣
d−1∑
k=1

〈
g̃k1
〉
I1
0
+
〈
gk2
〉
I1
0

∣∣∣∣∣ ≤
∣∣∣∣∣
d−1∑
k=1

〈
1− g̃k1

〉
I1
0
+
〈
1− gk2

〉
I1
0

∣∣∣∣∣ (4.125)

≤ 2(d− 1)
[
(2q − 1)

√
δ + 2δ

]
, (4.126)

so that ∣∣∣∣∣
d−1∑
k=1

〈
g̃k1
〉
I1
0
+
〈
gk2
〉
I1
0

∣∣∣∣∣ ≥ 2(d− 1)
[
1− (2q − 1)

√
δ − 2δ

]
. (4.127)

Notice, that the k = 0 terms in the inequality of Lemma 4.2.2 always give exactly
one which can be subtracted from both sides of an inequality. Hence, the bound of
d+
√
d− 2 is violated if

(2q − 1)
√
δ + 2δ <

d−
√
d

2(d− 1)
. (4.128)

Solving this inequality yields

δ <
1

8

(
β2 + 2γ − β

√
β2 + 4γ

)
, (4.129)

where β = 2q − 1 and γ = (d−
√
d)/(d− 1).

As for Part 2 and Part 3 of the proof of Theorem 4.2.7, the derivation of the
fidelity bound is relatively simple as compared to the case of Part 1, and so we will
only show the result. For both Part 2 and Part 3 the inequality is violated if

(
√
δ + 2δ) <

d−
√
d

2(d− 1)
, (4.130)

which yields

δ <
1

8
(1 + 2γ −

√
1 + 4γ), (4.131)

where γ = (d −
√
d)/(d − 1). Notice that this bound corresponds to the bound

(4.129) for q = 1, and so the case whereN1 ∩N2 = ∅. Coincidentally, the left hand
side of Eq. (4.129) decreases with increasing q, and so Eq. (4.131) is also an optimal
case of Eq. (4.129).
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As an example, let us consider the graph state corresponding to the graph pre-
sented on Fig. 4.2. Here q = 1, d = 3, and so (4.111) simplifies to F (ρ, |G⟩) >
0.952. Interestingly, the bound (4.111) can be relaxed by increasing d; in the limit
d→∞ for q = 1 we obtain F (ρ, |G⟩) > 0.905.

4.2.4 Conclusion
We showed classical communication between parties is necessary for the generation
of qudit graph states of prime local dimension (and all states that are in their vicinity)
in quantum networks with bipartite sources. We achieve this goal by employing the
quantum inflation method. In fact, we demonstrate that the use of many different
inflations of the same network might be beneficial over using just two inflations
as done before in the literature, and hence our work might inspire future research
involving quantum networks. Our results serve as a guide to experimental physicists
who wish to implement protocols on quantum networks that involve graph states. On
the other hand, they hint at a possible gain from the construction of protocols based
on other states than the graph states.

Still, many questions concerning LOSR networks remain unexplored. The most
obvious one is whether graph states are preparable with k-partite sources for k ⩾ 3.
Even if from the application viewpoint this case seems less important than that of
k = 2, answering this question would allow us to understand quantum networks on
a deeper level. One can also ask whether other classes of multipartite states can be
obtained in LOSR networks. Apart from the graph states, this question was answered
negatively for symmetric or antisymmetric states of any local dimension [112] and
pure genuinely entangled states of local dimension 2 and 3 in Ref. [113]. On the
other hand, it would be interesting to determine the minimal amount of classical
communication required to generate graph states in LOCC networks and to identify
other classes of states that are efficiently preparable in this sense.



Chapter 5

State Polynomial Optimization

The semidefinite programming hierarchies in Chapter 3 can be phrased for a more
general type of problem known as state polynomial optimization (SPO). In SPO we
aim to optimize a polynomial expression in a state of a C∗-algebra A under polyno-
mial (equality) constraints. An optimizing state then also induces a representation of
the C∗-algebra through the GNS construction.

Let us formalize the notion of an SPO problem. Let A be a C∗-algebra with
state space K(A). Following the notation of Ref. [39] we define a (commutative)
state polynomial p as a formal polynomial in state symbols σ(w), where w is a
word in symbols indexed in the generators of A. The degree of a state monomial
σ(w1)σ(w2) . . . is the sum of the degrees of the wordsw1, w2, . . ., i.e. |

∏
i σ(wi)| =∑

i |wi|. The degree |p| of a state polynomial is the highest degree of the state
monomials that it consists of.

One can evaluate a state polynomial on a state ω ∈ K(A) and its GNS represen-
tation (Hω, πω(A), |Ω⟩). That is

p : (K(A),A)→ C

p : (ω,A) 7→ p( ⟨Ω|·|Ω⟩ , πω(A)).
(5.1)

When there is no confusion we will often write ω instead of the expectation value
with respect to the GNS vector state |Ω⟩, to reduce clutter.

Example 5.0.1. As a simple example, consider the state polynomial that represents
the factorization of a state with respect to two operators that we have encountered
several times in Chapter 3:

p = σ(AB)− σ(A)σ(B). (5.2)

132
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At the moment this is only a symbolic expression and can be written down regardless
of the existence of states and representations that obey such an equation.

This expression could, for example, be evaluated on realizations of the operators
A and B as

π(A) = X ⊗ 1 ∈ π(A), π(B) = 1⊗ Z ∈ π(A)

and the functional ρ that corresponds to the state |+⟩ ⊗ |+⟩, in which case

p(ρ, π(A)) = ρ(π(AB))− ρ(π(A))ρ(π(B))

= ⟨++|X ⊗ Z|++⟩ − ⟨+|X|+⟩ ⟨+|Z|+⟩ = 0,

which confirms that this state factorizes over these operators.

Using the notation of state polynomials, we can formalize the optimization prob-
lem as follows.

Problem 7 (State polynomial optimization). Given a C∗-algebraA with state space
K(A), and a countable set of state polynomials pi, i ∈ {0, 1, 2, . . .}, find

f∗ = min
ρ∈K(A)

p0(ρ, πρ(A))

s. t. pi(ρ, πρ(A)) = 0.
(5.3)

The semidefinite programming hierarchies discussed and developed in Chapter 3
can be used to tackle this problem. The key ingredients to the proof of this statement
are the Theorems derived in Chapter 2. They show that there is a way of using linear
constraints in the state to enforce that the state is a convex combination of product
states.

There are roughly two known ways of writing down a convergent hierarchy of
relaxations to the SPO problem. The first hierarchy, which we have come to call the
polarization hierarchy, will be discussed in Sec. 5.1. The proof of convergence is
mostly a repetition of Theorem 3.3.15, phrased in the more general language of SPO.
The relation to the quantum inflation hierarchy will also be discussed.

The second hierarchy is known as the scalar extension hierarchy in the quantum
information community [41]. A more involved version of this hierarchy was shown
to be convergent for SPO problems in [39]. The proof uses the observation that any
evaluation of a state polynomial simply consists of the multiplication and addition of
scalar variables, which allows one to use the commutative polynomial optimization
hierarchy of Lasserre [73]. The algebra is then ‘build from the inside’ through a large
amount of localizing matrices that restrict the values these scalar operators can take.

Here we give a slightly different proof of convergence of the scalar extension



134 5.1. POLARIZATION

hierarchy, again making use of polarizations. This sometimes allows us to remove a
large number of localizing matrices compared to the formulation of Ref.[39], which
are then replaced by polarizations of the constraints they represent. The details can
be found below in Sec. 5.2.

Lastly, in Sec. 5.3, we compare the two approaches, and see that they are in fact
not so different.

5.1 Polarization

Both the polarization hierarchy and the quantum inflation hierarchy use the obser-
vation that a state polynomial on an algebra A of degree n can be written as an
expression that is linear in a symmetric product state that acts on n copies of the
algebra A⊗n. Using again the example of Eq. (5.2), and the evaluation with respect
to a state ρ and its GNS representation πρ, we get

p(ρ, πρ(A)) = ρ(πρ(AB))− ρ(πρ(A))ρ(πρ(B))

= ρ⊗2(πρ(AB)⊗ 1)− ρ⊗2(πρ(A)⊗ πρ(B))

= ρ⊗2(πρ(AB)⊗ 1− πρ(A)⊗ πρ(B)) =: ρ⊗2(yp).

Therefore, if we can guarantee that our algebra is a tensor product of n copies of
the algebra A, and the state is a symmetric product state on this algebra, we can
rewrite all the state polynomials to linear expressions and write the SPO problem as
an NPO problem instead. The procedure of turning a state polynomial into a linear
expression on the tensor product of copies of the algebra is called polarization. The
operator yp is also called the polarization of p(ρ, πρ(A)).

Up to this point we have been vague about the type of tensor product between
the copies of the algebras. For the purpose of linearizing the polynomial any C∗-
tensor product would do. But since our goal is to find a convergent hierarchy of SDP
relaxations, we once again take the pragmatic approach and use the maximal tensor
product in order to show convergence for any C∗-tensor product.

The first hierarchy of relaxations for Problem 7 uses a combination of Theorem
2.1.1 and the polarization technique described above. Let y0 be the polarization of
the state polynomial p0 and let yi be the polarizations that corresponds to the state
polynomials p2i for all i ≥ 1. Then we get the following hierarchy of NPO problems
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as relaxations of Problem 7.

fnpol = min
ρ∈K(A⊗n)

ρ(y0)

s. t. ρ(π(a1 ⊗ . . .⊗ an)) = ρ(a1 ⊗ . . .⊗ an), ∀π ∈ Sn, ai ∈ A
ρ(yi) = 0,

(5.4)

where π permutes the n tensor factors of A⊗n.

Theorem 5.1.1. It holds that limn→∞ fnpol = f∗.

Proof. The proof once again follows the structure of the proofs of Theorems 3.2.1
and 3.3.15.

First note that fnpol ≤ f∗ for all n, since each of the NPO problems in (5.4) is a
relaxation of Problem 7.

For the converse direction, we realize that the states we optimize over in the
relaxations (5.4) are symmetric, such that in the limit n→∞ Theorem 2.1.1 holds.

Let ωn ∈ K(A∞) be the infinite tensor product of the optimizing state of re-
laxation (5.4) at level n. By the Banach-Alaoglu theorem, there exists a weak∗-
convergent subsequence in K(A∞). If we construct the state ω ∈ K(A∞) as the
limit point it must be a separable state by Theorem 2.1.1. That is, it is of the form

ω =

∫
dµ(σ)Πσ, (5.5)

where Πσ is a symmetric product state on A∞, and µ is a probability measure on
states of A.

On each of the states Πσ it holds that Πσ(yi) = p2i (σ,A) ≥ 0 by definition of
polarization. Since µ is a probability measure and for all i ≥ 1 we have ω(yi) = 0
it must therefore hold that Πσ(yi) = 0 almost surely with respect to µ, which also
implies that pi(σ,A) = 0 a.e. w.r.t. µ. Let E ⊂ K(A) be the full measure subset
where the constraints hold. Then each σ ∈ E is a feasible state for the SPO problem.

From this it follows that Πσ(y0) ≥ f∞pol a.e. w.r.t. µ, for otherwise we could have
chosen the point measure on a feasible state σ′ ∈ E such that Πσ′(y0) < f∞pol, which
contradicts that f∞pol is a minimum. Combining this with the fact that ω(y0) = f∞pol,
it holds that

Πσ(y0) = f∞pol a.e. w.r.t. µ on E.



136 5.1. POLARIZATION

Hence, there exists a feasible state σ such that

f∞pol = Πσ(y0) ≥ f∗, (5.6)

which concludes the proof.

It should again be noted that it is in general not possible to extract an optimal
state, due to the form of Eq. (5.5).

Furthermore, a drawback of the polarization hierarchy might seem to be that
the degree of each of the polynomial constraints must be doubled to impose that
constraint. However, also adding the polarization of the non-doubled constraints
retains the convergence result, and allows to impose a relaxation of the constraint
already at lower levels of the hierarchy.

5.1.1 Relation to quantum inflation hierarchy

The quantum inflation hierarchy is closely related to the polarization hierarchy, but
instead of using the polarizations yi for i ≥ 1, it uses the fact that if a state factorizes
with respect to two operators, it is possible to permute these two operators individ-
ually. That is, if we once again look at our example (5.2), it must hold that for a
product state on A⊗n

ρ⊗n(AB) = ρ⊗n(A)ρ⊗n(B)

= ρ⊗n(Aπ(B)) =: ρ⊗n(ỹ)

for all π ∈ Sn. We call ỹ an inflation of p if A and π(B) act on different tensor
factors. Hence, this trick also allows us to write polynomials in the state as linear
expressions in a symmetric tensor product of that state, by replacing a k-th order
polynomial in the state with a permuted version of the operator that acts non-trivially
on k copies of the state.

We can then write down the following hierarchy of NPO relaxations to the SPO
problem.

fninfl = min
ρ∈K(A⊗n)

ρ(ỹ0)

s. t. ρ(π(a1 ⊗ . . .⊗ an)) = ρ(a1 ⊗ . . .⊗ an), ∀π ∈ Sn, ai ∈ A
ρ(ỹi) = 0,

(5.7)

where ỹi are the inflations of the polynomials pi.
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For the inflation hierarchy, convergence is less clear. It seems to be tailored to the
specific problem of causal compatibility, and seems difficult to extend beyond the re-
sult of Theorem 3.2.1. The main difficulty stems from the identification of Eq. (3.35)
with Eq. (3.38): it is a crucial part of the proof that the commuting subalgebras gen-
erate the global algebra, and that the separability of the state can be captured in this
one expression by identifying each state in the convex combination with a product
state. In a general problem of the form of Problem (7), this is not the case.

For the broader context of SPO, the hierarchy (5.7) can of course still be used as
a hierarchy of relaxations.

5.2 Scalar Extension

In addition to the state polynomials for a C∗-algebra A defined at the beginning
of this chapter, one can create formal non-commutative state polynomials in state
symbols σ(v) and words w. Such expressions are linear combinations of objects of
the form pw, where p is a (commutative) state polynomial and w is a word in the
generators of A. Note that if q is a non-commutative state polynomial, σ(q) is a
commutative state polynomial, where each word w is replaced by its state symbol
σ(w).

The authors of Ref. [41] made the observation that the evaluation of a monomial
in state symbols consists simply of scalar variables. If we treat those scalars as
elements of our algebra, it is once again possible to write a polynomial expression
in the state as a linear expression on a larger algebra. For example, looking at our
standard factorization example (5.2), we see

σ(AB)− σ(A)σ(B) = σ(AB)− σ(Aσ(B))

= σ(AB −Aσ(B)).

Treating σ(B) as a scalar extension of the algebra has linearized the expression.
However, since the value of σ(B) is also subject to optimization, it is not possible
to truly treat σ(B)A as a scalar multiple of A in our SDP. Instead, we add σ(B) as
a generator to our algebra and require it to lie in the center. This yields an algebra
of non-commutative state polynomials. In this formulation the variable σ(B) is not
guaranteed to be a scalar in the GNS representation of the optimal state.

The authors of Ref. [39] made this procedure more systematic and proved that
there is a hierarchy of semidefinite programming relaxations to Problem 7 that uses
this technique and converges to the optimal value f∗, despite the above-mentioned
objection. Here we prove the same statement, with a slightly different hierarchy and
proof technique. This new hierarchy, inspired by the approach of Ref. [39], possibly
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avoids a large number of localizing matrices that are present in their hierarchy. As
we will see, it also bears some resemblance to the polarization hierarchy.

We start by defining the notion of a quadratic module. A quadratic module can be
defined in several contexts, such as commutative polynomial optimization [73, 126],
non-commutative polynomial optimization [40, 127], and now also in the context
of (non-commutative) state polynomial optimization [39]. We will adopt this last
definition from Ref. [39], as it applies to the SPO problem. Quadratic modules are
useful for defining positivity and boundedness in an algebraic way.

Let A be a ∗-algebra and let C ⊂ A. We will assume that the set C is balanced,
that is, it is closed under involution and if c ∈ C is not self-adjoint, then −c ∈ C.
We then define the quadratic module QM(C) generated by C as the smallest set in
A such that

1 ∈ QM(C), QM(C) +QM(C) ⊆ QM(C), x∗QM(C)x ⊆ QM(C) ∀x ∈ A.

A quadratic module is archimedean if for each a ∈ A, there is an ma > 0, such that
ma ± a ∈ QM(C).

Using this formalism, we can write down two hierarchies of relaxations to Prob-
lem 7 that can be proven to be complete. In fact, we can solve an even more general
problem that also involves inequality constraints.

Problem 8 (State polynomial optimization with inequalities). Given aC∗-algebraA
with state spaceK(A), and a countable set of state polynomials pi, i ∈ {0, 1, 2, . . .},
find

f⋆ = min
ρ∈K(A)

p0(ρ, πρ(A))

s. t. pi(ρ, πρ(A)) ≥ 0.
(5.8)

For an optimization problem of the form (5.8) over a universal C∗-algebra A =
C∗(G|R), with basis B = {b}1 and quadratic module QM(R), we define the scalar
extension C∗-algebra CSE as C∗(GSE|RSE), where

GSE = {σ(b)}b∈B , (5.9)
RSE = {σ(r)}r∈QM(R) ∪ {si} ∪ {[σ(b), σ(b′)]}b,b′∈B (5.10)

where each element si ∈ F(GSE) is the scalar extension that corresponds to the
the state polynomial pi. If the relations R are sufficient to make each element of
the algebra A bounded, then the relations RSE will ensure that each of the scalar
extensions is also bounded, as we will see below in Lemma 5.2.3.

1 This basis can be chosen to be overcomplete, e.g. by taking all words in the generators.
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The first hierarchy (Eq. (5.12)) is equivalent to the hierarchy of Ref. [39], rephrased
in the language of this thesis. It expresses the optimization problem fully in terms
of the scalar extension variables, essentially ‘rebuilding the algebra from within’ by
requiring the relations RSE to hold. Since the optimization is then only over com-
mutative variables, it is possible to use the polynomial optimization hierarchy of
Lasserre [73] to enforce the polynomial constraints in the state. Using the GNS con-
struction, it is shown that there exists a state that reaches the optimal value f⋆. A
proof of these facts can be found in section 5 of Ref. [39]. Below, we will give an
alternative, but equivalent proof for the hierarchy (5.14).

Problem 8 can be relaxed to the following commutative polynomial optimization
problem. Let s0 be the element in CSE that corresponds to the state polynomial p0,
fully expressed in scalar extension variables.

f∗SE = min
ρ∈K(CSE)

ρ(s0), (5.11)

which can be solved via the hierarchy of relaxations (cf. Eq. (1.27))

fkSE = min
L∈(F2k)∗

L(s0)

s. t. Γkσ(1) = 1

Γk ⪰ 0

Λkq ⪰ 0 ∀q ∈ RSE ∩ span(F2k)

(5.12)

where F2k is the set of words in the generators of CSE of length ≤ 2k. Recall
that the definition of the moment matrix Γk includes the fact that one should put
Γx,y = Γx′,y′ if ρ(x∗y) = ρ((x′)∗y′) (and similar for the localizing matrices).

Theorem 5.2.1 (Klep et al. [39]). If QM(R) is an archimedean quadratic module,
it holds that limk→∞ fkSE = f∗SE = f⋆.

The second hierarchy, a version of which will appear in the revised version of
Ref. [83]2, is very similar, but in some cases improves over the hierarchy (5.12), in
the sense that a fixed level k of the hierarchy is less expensive to run. Instead of
having all the constraints RSE represented by moment matrices, which are compu-
tationally expensive, it is possible to impose each equality constraint in {pi} via a
polarization.

To this end, let us split up the relations RSE into the sets Q = {qi} ⊂ {si} of
equality constraints stemming from {pi} and all other constraints T = {tj}. This
allows us to define the algebra C̃SE = C∗(GSE|T ).

2 Will appear as Ref. [128].
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For each equality constraint qi, we define the polarization yqi simply by the
square of that constraint, i.e. yqi = q2i . Note that there is no need to do any per-
mutations, like in the case of the hierarchy of Eq. (5.4), as we will see in the proof
of Theorem 5.2.2 below.

We then get the following optimization problem.

f̃∗SE = min
ρ∈K(C̃SE)

ρ(s0)

s. t. tj ⪰ 0 ∀tj ∈ T,
ρ(yqi) = 0 ∀qi ∈ Q,

(5.13)

which has relaxations of the form

f̃kSE = min
L∈(F2k)∗

L(s0)

s. t. Γkσ(1) = 1

Γk ⪰ 0

Λktj ⪰ 0 ∀tj ∈ T ∩ span(F2k)

L(yqi) = 0 ∀qi ∈ Q s. t. yqi ∈ span(F2k),

(5.14)

Theorem 5.2.2. If QM(R) is an archimedean quadratic module, it holds that
limk→∞ f̃kSE = f̃∗SE = f⋆.

The proof of the Theorem consists of many similar elements as the proof of
Theorem 5.2.1 proven in Ref. [39]. However, we try to phrase it using the language
developed in Chapters 1 and 2. It relies roughly on two observations:

1. The extremal states, i.e. the pure states, of a commutative C∗-algebra are ∗-
homomorphisms. For the GNS representation induced by such states the scalar
extension variables actually become scalars, justifying the terminology.

2. A form of the GNS construction applied to the scalar extension variables under
the constraints RSE allows us to build a quantum model that corresponds to
a representation of the C∗-algebra A and a state that obeys the polynomial
constraints {pi}.

Lemma 5.2.3. Let A = C∗(G|R) be a universal C∗-algebra. Then the generators
GSE of the induced scalar extension algebra C̃SE are bounded by the relations T , such
that C∗(GSE|T ) is a well-defined abelian universal C∗-algebra.

Proof. Assume w.l.o.g. that the generators are self-adjoint. It follows from the as-
sumptions in the definition of a universal C∗-algebra that the relations R imply that
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the generators g ∈ G are bounded. That is, the relations ensure that there exists an
Ng ≥ 0 such that

Ng1− g∗g ⪰ 0.

It follows that for every word w

w∗(Ng1− g∗g)w ∈ QM(R) ⊂ T, (5.15)

such that Lemma 1.1.5 implies

Ngσ(w
∗w)− σ(w∗g∗gw) = σ(w∗(Ng1− g∗g)w) ⪰ 0. (5.16)

By inductively reducing the length of the word w using Eq. (5.16), it follows that
there always exist an Nw ≥ 0 such that

Nw − σ(w∗w) ⪰ 0. (5.17)

Following a trick that is often used for Positivstellensätze (see e.g. also [39, Thm.
5.5]), we get that

1

4
+Nw ± σ(w) = σ

(
(
1

2
± w)∗(1

2
± w)

)
+Nw − σ(w∗w) ⪰ 0, (5.18)

which implies

0 ⪯ (
1

4
+Nw + σ(w))∗(

1

4
+Nw − σ(w))

= (
1

4
+Nw)

2 − σ(w)∗σ(w) + (
1

4
+Nw)(σ(w

∗)− σ(w))

⪯ 3(
1

4
+Nw)

2 − σ(w)∗σ(w),

where the last inequality follows from applying Eq. (5.18) twice more.
That is, all generators of C̃SE are bounded.

Proof. (of Theorem 5.2.2) By lemma 5.2.3, we see that we are indeed optimizing
over a universal algebra given by CSE = C∗(GSE|T ). This turns (5.13) into a standard
NPO problem as defined in Sec. 1.3.23, with relaxations given by (5.14). At each
finite level of the hierarchy, we are optimizing over a subset of the scalar extension
generators and their relations. A functional L ∈ (F2k)∗ can then be extended to all

3 Actually it is a commutative polynomial optimization problem, but this still fits into the NPO frame-
work as well.
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of CSE, e.g. by putting L(x) = 0 for x /∈ F2k. By the convergence of NPO, there
exists a limiting functional that is a state on CSE that obeys all constraints. We let ρ
be this limiting optimizing state.

Since C̃SE is an abelian C∗-algebra, we can apply the result of Corollary 2.2.1 to
show that ρ has a weak∗-integral decomposition of the form

ρ =

∫
dµ(ϕ)ϕ, (5.19)

where each ϕ is a ∗-homomorphism and µ is a probability measure over pure states.
In Ref. [39] this is referred to as the Kadison-Dubois representation theorem.

Each of the states ϕ induces a one-dimensional GNS representation, where every
scalar extension variable is in fact simply a scalar.

The constraints T were imposed algebraically, and thus apply to any represen-
tation of C̃SE. Additionally, by once again applying the same reasoning as in the
proof of Theorem 5.1.1, the polarization constraints enforce that ϕ(yqi) = 0 and
ϕ(s0) = f̃∗SE almost surely with respect to µ. Choosing a ϕ∗ that is in the full mea-
sure subset where these equalities hold thus gives an optimal solution to the NPO
problem (5.13), which yields the same optimal value as problem (5.11), by virtue of
the polarizations {yqi}.

What remains to be shown is that this solution also provides an optimal solution
to the original problem, namely problem 8. First note that (5.13) is a relaxation to
Problem 8, so that f⋆ ≥ f̃∗SE.

For the converse, we will use the optimizing state ϕ∗ to build a state ψ ∈ K(A)
and its corresponding GNS representation, and show that it obeys all the constraints.
We define ψ ∈ A∗ as

ψ(x) = ϕ∗(σ(x)) ∀x ∈ A. (5.20)

Here σ(x) should be understood as
∑
b λbσ(b), where x =

∑
b λbb is the expansion

of x in the basis {b}.
To show that ψ is a valid state and we can use it to build a representation ofA on

a Hilbert space, we need to show that it is positive on QM(R) and that ψ(1) = 1
(see e.g. [129, Theorem 1.27] or [40], which largely boils down to an application
of the GNS construction). Additionally, we need to check that all the polynomial
constraints {pi} are satisfied.

The normalization requirement is easily verified, since

ψ(1A) = ϕ∗(σ(1A)) = ϕ∗(1C̃SE
) = 1.
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The other requirements follow from the constraints σ(QM(R)) ∈ RSE and {si}:

ψ(r) = ϕ∗(σ(r)) ≥ 0, ∀r ∈ QM(R),
pi(ψ, πψ(A)) = ϕ∗(σ(si)) = ϕ∗(si) ≥ 0, ∀si.

By the definition of Eq. (5.20), it then holds that p0(ψ, πψ(A)) = f̃∗SE. Further-
more, since this yields a feasible point for Problem 8, we have

p0(ψ, πψ(A)) ≥ f⋆,

from which we conclude f⋆ = f̃∗SE = limk→∞ f̃kSE.

As a result of [39, Lemma 6.4 and 6.5], both versions of the hierarchy, Eqs. (5.12)
and (5.14), can be expressed with fewer localizing matrices, by relating them to the
non-commutative problem they derive from. To be more precise, we include all the
non-commutative generators and their relations, and require entries of the moment
matrix to obey

(Γk)v,w = L(σ(v∗w)), (5.21)

so that the non-commutative variables and their scalar extensions evaluate to the
same number. The consequence is that the relations for {σ(r)}r∈QM(R) are automat-
ically obeyed due to the relations imposed on the non-commutative variables. That
is, we will effectively optimize over symmetric states on C∗(G|R)⊗ C∗(GSE|RSE).
We thus get the following alternative SDP hierarchy for the hierarchy of Eq. (5.12)

gkSE = min
L∈(F̃2k)∗

L(s0)

s. t. Γk
1
= 1

Γk ⪰ 0

Λkq ⪰ 0 ∀q ∈ (R∪ {si}i) ∩ span(F̃2k),

(5.22)

where F̃2k consists of all the words in the commutative and non-commutative gen-
erators up to length 2k. Note that it is now implicitly assumed that Eq. (5.21) is
imposed.

It is still possible to use the polarization trick as well. We distinguish between
the equality constraints Seq ⊂ {si} and inequality constraints Sineq ⊂ {si} that
arise from the polynomial constraints pi. The alternative hierarchy for Eq. (5.14)



144 5.2. SCALAR EXTENSION

then becomes

g̃kSE = min
L∈(F̃2k)∗

L(s0)

s. t. Γk
1
= 1

Γk ⪰ 0

Λktj ⪰ 0 ∀tj ∈ (R∪ Sineq) ∩ span(F̃2k)

L(yqi) = 0 ∀qi ∈ Seq s. t. yqi ∈ span(F̃2k).

(5.23)

The following corollary then follows immediately (see e.g. [39, Lemma 6.5]).

Corollary 5.2.4. If QM(R) is an archimedean quadratic module, it holds that
limk→∞ gkSE = g∗SE = f⋆ and limk→∞ g̃kSE = g̃∗SE = f⋆.

Some remarks are in order.
Remarks:

• In practice the size of each relaxation in both scalar extension hierarchies can
often be greatly reduced by making use of the equality constraints to reduce the
set of basis elements of the algebra. For example, in optimization over algebras
on a causal structure, the commutation relations and P(O)VM conditions can
be used to this end. The use of such symmetries is one of the main reasons
why it is possible to use the scalar extension hierarchy to get non-trivial results
for optimization problems.

• In the hierarchies (5.14) and (5.23), we chose to enforce some equality con-
straints on the level of the state through polarizations, as opposed to on the
level of the algebra via localizing matrices. In many cases, a larger set of con-
straints can be enforced through polarizations. The only requirement is that
the algebraic constraints should be sufficient to bound each generator. If an
upper bound on the norm of basis elements is known (e.g. because they are
POVM elements), it is possible to add constraints of the form

N −
∑

{x}⊂{b}

σ(x)∗σ(x) ≥ 0, (5.24)

where N ≥
∑
x ∥x∥, which ensures boundedness of the operators in {x}.

Any polynomial equality constraints involving only elements in {x} can then
be imposed through polarizations.

As an example, for the case of causal optimization, at any level of the hierarchy
it is sufficient to have only one constraint of the form (5.24), since we know
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each basis element, as a product of POVM elements, is bounded in norm by
1. All other polynomial equality constraints can then be imposed through
polarizations, greatly reducing the complexity of the problem at higher levels
of the hierarchy.

• It is in general not possible to extract an optimal solution, since it will be of
the form (5.19), except when the optimal state turns out to be pure.

5.3 Comparison of the two approaches
The polarization hierarchy and the scalar extension hierarchy a priori seem fairly
different. However, here we will try to argue that both approaches are actually quite
similar, but they treat the two kinds of polynomials that appear in state polynomial
optimization in a different order. For identification purposes, let us call polynomials
in the operators of the algebra operator polynomials, while polynomials in the state
are still referred to as state polynomials.

• The polarization hierarchy first copies the algebraA, which is easy to do. The
resulting algebra is still a non-commutative algebra, for which we know that
the NPO hierarchy is convergent. This allows us to build operator polynomials.

As a second step, the goal is to construct a symmetric state on this algebra. In
the limit, such a state is a convex mixture of symmetric product states due to
the quantum de Finetti theorem. Letting the product states act on the copied
algebra allows us to build state polynomials.

• Scalar extension, on the other hand, first constructs a set of commuting op-
erators by mimicking the action of a state on a basis of the algebra A. Then
these commuting operators generate an abelian algebra, for which the Lasserre
hierarchy is known to be convergent. This convergence relies on the Kadison-
Dubois representation theorem. Using this abelian algebra, one can construct
state polynomials.

As a second step, it is shown that a representation of the algebra A can be re-
covered if a certain set of constraints is imposed on the commuting variables.
It then requires some thought which set of constraints is necessary and suffi-
cient for this purpose. By choosing the right set of constraints, one recovers
the set of operator polynomials.

The Kadison-Dubois representation theorem and the quantum de Finetti theorem
essentially stem from the same observation, namely that the extremal points of the
unit ball in the dual of an abelian C∗-algebra are ∗-homomorphisms. In the case
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of the polarization hierarchy, one has to work quite hard to use this statement in the
form of a de Finetti theorem, while for abelian algebras, the statement can be applied
directly. On the other hand, the fact that the optimization problem of polarization
yields a state and representation for the algebra A is not hard to see: it is a standard
NPO problem. In contrast, for the scalar extension hierarchy the difficulty now lies
in choosing an appropriate set of constraints, such that the solution also yields a way
to construct a state and representation for A.

In the end, the difference in proof techniques seems to stem mostly from fa-
miliarity with each of the concepts: as researchers in quantum information theory,
non-commutative operators and product states seem like a natural approach to the
problem, while for researchers in classical optimization it would be reasonable to
use the Lasserre hierarchy.

Which hierarchy is more useful in practice is as of yet unclear, due to the fact
that the polarization hierarchy has not been implemented yet. For the particular
problem of causal optimization, the recently developed quantum inflation toolbox of
Ref. [100] can be used to compare the closely related quantum inflation hierarchy to
the results of the scalar extension hierarchy in Ref. [39]. The authors of Ref. [39],
however, were able to greatly reduce the size of their test cases by using the sym-
metry and sparsity of the problem. For a fair comparison to the quantum inflation
hierarchy, similar reductions should be applied to the problems constructed by the
toolbox of Ref. [100]. As of yet such reductions are not part of the toolbox and
would require a significant amount of work to implement. Writing a program that
implements the polarization hierarchy is left for later research.
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In this final section, I will summarize the main results presented in this thesis, and
discuss some of the open problems that I hope to see solved in the near future.

The main focus of the thesis has been on the quantum causal compatibility prob-
lem, in which one tries to determine whether a certain observed probability distribu-
tion can be obtained from a quantum model that fits a particular causal hypothesis.
Though the problem itself is easy to understand, finding a systematic way to answer
the question posed in the problem has been considered extremely challenging, even
in the classical case.

Recently, a new method to analyze the causal compatibility has been proposed
in the form of the inflation technique. This technique has been developed for the
classical, as well as for the quantum causal compatibility problem. Its merit is that
it relaxes independence constraints, which are expressions that are at least quadratic
in the state, to symmetry constraints, which can be formulated as linear constraints
on a larger algebra. By increasing the size of the algebra and the number of sym-
metry constraints, the inflation technique gives a hierarchy of linear programs in the
classical case, and semidefinite programs in the quantum case, which provide ever
tighter compatibility tests. If one of the tests fails, the distribution cannot have been
the result of the causal hypothesis. An important question then becomes whether
the converse also holds, i.e. whether these hierarchies are complete in the sense that
any incompatible distribution is eventually caught at some level of the hierarchy. In
the classical case, this question has been answered in the affirmative. This thesis
addressed the same question for the quantum inflation hierarchy.

In Chapter 3 we partially answered this question, based on the results from the
publications [1] and [2]. Before attempting to give such an answer, however, one
needs to properly define what a quantum model with a causal hypothesis entails. In
particular, there is a choice to be made in how to model local subsystems. Through-
out the thesis, we have made the choice to use the commuting operators model, in
which subsystems are defined through commuting subalgebras, as opposed to the
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more commonly used Hilbert space tensor product model. The mathematical tools
necessary to treat this way of modeling quantum physics have been discussed in
Chapter 1. This Chapter also included an introduction to semidefinite programming,
and concludes with the observation that non-commutative polynomial optimization
(NPO) problems can be phrased as optimization problems over C∗-algebras.

In Sections 3.1 and 3.2 we have developed an alternative quantum inflation hier-
archy that is provably convergent. It relied roughly on three observations. Firstly, it
is noted that symmetry conditions are expressed as constraints that are linear in the
state and elements of the algebra. It is possible to optimize over such expressions
using the NPO hierarchy. Secondly, symmetric states are closely related to separable
states, a statement that is made precise in the form of a quantum de Finetti theorem.
This allows use to use linear expressions on symmetric states as a relaxation of in-
dependence constraints that are implied by the causal structure. Lastly, and perhaps
most importantly for a convergence argument, it is observed that the local algebras
of each of the parties must consist of a number of subalgebras corresponding to the
number of quantum systems that that party receives. Additionally, the independence
constraints are to be formulated with respect to these subalgebras. Any constructive
proof of convergence must therefore be able to certify the existence of these local
subalgebras and a state obeying the independence constraints, solely from the data
provided by the inflation hierarchy.

Building on this third observation, we have constructed an inflation hierarchy
in which the local subalgebras are put in ‘by hand’. That is, we have introduced
a number of generators corresponding to each subalgebra, and required the POVM
elements of each party to be build up from these generators. This has allowed us
to formulate the independence constraints of the causal structure fully in terms of
factorization conditions on these subalgebras. This construction furthermore sug-
gests more clearly that a quantum de Finetti theorem might be applicable. Indeed,
in Chapter 2, we have proven such a theorem (Theorem 2.1.1) in the context of gen-
eral tensor products of C∗-algebras, extending a previous result that was restricted to
minimal tensor products. Using this theorem, it could be shown that, in the limit, the
symmetry constraints force the state to be a separable state, i.e. a convex mixture of
product states. Having used the second and third observations, it is a straightforward
application of NPO theory to formulate this new inflation hierarchy as a hierarchy of
semidefinite programs.

The final step in proving convergence of this new inflation hierarchy involved
singling out a state in the convex mixture of product states that also obeys all the
constraints. For this we used a trick known as polarization. It used the observation
that positive operators that evaluate to zero on a separable state, must evaluate to
zero almost surely for the product states in the convex mixture that defines the sep-
arable state. In this way, it was shown that if all of the levels of the hierarchy are
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passed, there must exist a state that is compatible with the causal explanation, and
that produces the probability distribution up to arbitrary precision.

The new quantum inflation hierarchy has some significant drawbacks: it intro-
duced a large number of additional variables and was therefore even more impractical
than the original quantum inflation hierarchy. Additionally, the convergence was not
monotonic: the number of generators for each local subalgebra became a parameter
of the hierarchy, and thus restricting the number of generators was also restricting
the quantum model. The question whether the original quantum inflation hierarchy
is convergent therefore remains very relevant.

In Section 3.3 we have shown that for the specific case of the bilocal scenario,
the original quantum inflation hierarchy is indeed convergent. As noted above, this
required constructing local subalgebras for Bob, the middle party in the bilocal sce-
nario, and constructing a global state that obeys the correct independence constraints.
This was done by defining Bob’s algebra to be the tensor product of the commutants
of the GNS representations of Alice’s and Charlie’s algebras. It was then shown that
it is sufficient to require independence of the state with respect to the algebras of Al-
ice and Charlie. This section also developed a new type of SDP hierarchy, which we
called the polarization hierarchy. Though it was inspired by the quantum inflation hi-
erarchy, it is distinct in some relevant ways. Both the polarization hierarchy and the
inflation hierarchy were shown to be convergent for the quantum causal compatibility
problem in the bilocal scenario. The construction also worked for star networks, but
failed to work for general causal structures. It remains an interesting open question
whether the symmetries that follow from the inflation technique can be combined
with this technique of (re)constructing local algebras to build a quantum model from
the inflation or polarization technique for more general causal structures.

Chapter 4 treated a more general setup than the quantum causal compatibility
problem. Instead of restricting the end nodes in a causal network to be classical ran-
dom variables, the end result could now also be a quantum state. From this setup, the
quantum network compatibility problem naturally arose, in which it is asked which
quantum states can be produced in certain causal networks. The goal of Section 4.1
was to show that there exist similar quantum inflation and polarization hierarchies
for these types of problems. In particular, the distinction was made between the case
where only local operations (LO) were allowed, and the case where local operations
and shared randomness (LOSR) were allowed. After realizing that the techniques of
the previous chapters apply generally toC∗-algebras, it was quickly seen that the LO
network compatibility problem was essentially the same as the causal compatibility
problem. Therefore, the results from previous sections largely carried over. For the
LOSR network compatibility problem, the results from Secs. 3.1 and 3.2 could be
adapted to this case as well.
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Apart from treating the inflation technique numerically with SDPs, it is also pos-
sible to derive certain analytic results. This was the goal of Sec. 4.2. Here, we
showed that non-trivial graph states cannot be produced in bipartite LOSR networks.
Since graph states form an important class of quantum states, this negative result
can be seen as an argument against using LOSR networks. The argument involved a
proof by contradiction, in which it was shown that an inequality was violated in an
inflated network if the state was indeed assumed to be a graph state. In deriving the
inequality, it was used that graph states are eigenstates of certain combinations of
(generalized) Pauli matrices with eigenvalue 1, and that Pauli matrices obey certain
commutation relations. To arrive at a contradiction, it was then used repeatedly that
unit expectation values with respect to Pauli matrices have implications on the expec-
tation values of other Pauli matrices. Linking many such expectation values together
using the symmetries of the inflation technique eventually allowed us to exceed the
bound of the derived inequality, thus reaching a contradiction.

Section 4.2 furthermore included a robustness result, in which it was shown that
states that are sufficiently close to a graph state also cannot be produced in bipar-
tite LOSR networks. Such robustness results are relevant in practice, since current
quantum devices are not yet fault-tolerant.

In future work, it might be interesting to consider a more realistic setup, such
as a setup that allows a restricted amount of classical communication, or quantum
sources with bounded dimensions.

Lastly, Chapter 5 treated a more general type of optimization problem, which is
known as state polynomial optimization. In such optimization problems, one opti-
mizes over states on a C∗-algebra, under state polynomial (in)equality constraints.
The polarization hierarchy was extended to this more general setting and compared
to the recently developed scalar extension hierarchy. Additionally, an alternative
proof of the convergence of the scalar extension hierarchy was given, and the polar-
ization trick was included in this setting to possibly reduce the size of the semidef-
inite program. Though both hierarchies achieve convergence in the limit, which of
them has faster convergence in practice is an interesting and relevant question, left
for future research. In this context, it is also valuable to investigate which subsets
of generators and constraints provide the strongest restrictions to the problem, such
that the numerical optimization can be adjusted to prioritize them.

It would be interesting to develop methods to analyze causal structures of other
GPTs and compare them to quantum causal structures. For example, it is known that
a triangle causal structure that adheres to the limitations of boxworld (i.e. consisting
of PR boxes) is in some respects less powerful than the equivalent quantum causal
structure [130]. This is in some sense surprising, since PR boxes are strictly more
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powerful than quantum theory in the Bell scenario [131]. Creating a version of the
inflation method that works for GPTs, like boxworld, is therefore of interest, since it
allows us to create experiments that can disprove such theories.

In addition, the development of other methods to tackle the causal compatibility
problem that do not rely on the inflation technique, and are perhaps less computa-
tionally expensive, remains a relevant line of inquiry.
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Zusammenfassung in deutscher Sprache

Die Charakterisierung von Korrelationen, die aus der Durchführung von quantenme-
chanischen Messungen entstehen können, ist eine relevante, aber auch anspruchs-
volle Aufgabe. Eine solche Charakterisierung, bekannt als das Problem der quanten-
kausalen Kompatibilität, bietet uns zum einen Einblicke in die Vorteile der Quan-
tentheorie gegenüber einer klassischen Theorie, kann aber auch zum anderen deren
Einschränkungen aufzeigen. Die Lösung dieses Problems wird besonders herausfor-
dernd, wenn die quantenmechanischen Zustände und Messungen mit einer gegebe-
nen kausalen Struktur kompatibel sein müssen. Eine kausale Struktur bestimmt die
kausalen Abhängigkeiten der Parteien und Systeme, die an einem Experiment betei-
ligt sind. Man kann zum Beispiel das Bell-Szenario als eine der einfachsten kausalen
Strukturen betrachten, in der zwei räumlich voneinander getrennte Parteien, Alice
und Bob, Messungen an einer gemeinsamen Quelle durchführen. In allgemeineren
kausalen Strukturen kann es mehr Parteien und mehr unabhängige Quellen geben.

Kürzlich wurde eine systematische Methode zur Analyse der Korrelationen in
klassischen und quantenkausalen Strukturen in Form der sogenannten Inflations-
technik entwickelt. In der Inflationstechnik werden die kausalen Abhängigkeiten,
die algorithmisch schwer zu codieren sind, zu leicht zu codierenden Symmetrie-
Nebenbedingungen für eine größere Anzahl von Parteien relaxiert. Im Fall der klas-
sischen Physik liefert dies eine konvergierende Hierarchie von linearen Programmen
für das Kompatibilitätsproblem. Im Fall der Quantenphysik hingegen führt dies zu
einer Hierarchie von immer restriktiver werdenden semidefiniten Programmierungs-
Relaxationen. Ob diese Hierarchie auch vollständig ist, bleibt eine offene Frage.

Eines der Hauptergebnisse dieser Dissertation besteht darin zu zeigen, dass eine
modifizierte Version der Quanten-Inflationstechnik für das Problem der quantenkau-
salen Kompatibilität konvergent ist. Diese modifizierte Hierarchie führt einen zu-
sätzlichen Parameter r ein, der den Schmidt-Rang der Observablen einschränkt. Für
jeden Wert von r wird eine Hierarchie von Kompatibilitätstests bereitgestellt, die in
dem Sinne vollständig ist, dass sie jede Wahrscheinlichkeitsverteilung auf irgendei-
nem endlichen Niveau der Hierarchie detektiert, die mit dem durch r modifizierten
kausalen Modell unvereinbar ist. Solche Kompatibilitätstests werden im Allgemei-
nen als nicht-kommutative polynomiale Optimierungsprobleme formuliert für die in
dieser Arbeit eine C∗-algebraische Beschreibung geliefert wird.

Zusätzlich wird eine separate Hierarchie von semidefiniten Programmen, die
Polarisation-Hierarchie, entwickelt. Es wird gezeigt, dass sowohl die Polarisation-
Hierarchie als auch die ursprüngliche Quanten-Inflation-Hierarchie für die kausa-
le Struktur, die als das bilokale Szenario bekannt ist, vollständig ist. Im bilokalen
Szenario gibt es drei räumlich weit voneinander entfernte Parteien, Alice, Bob und
Charlie, die Messungen an zwei unabhängigen Quellen durchführen: eine, die von
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Alice und Bob geteilt wird, und eine andere, die von Bob und Charlie geteilt wird.
Es wird gezeigt, dass ein Modell für Bobs Algebra, welche aus zwei kommutieren-
den Teilalgebren besteht, aus den Kommutanten von Darstellungen von Alices und
Charlies Algebren konstruiert werden kann. Diese Konstruktion gibt auch Einblick
in eine bilokale Version von Tsirelsons Problem. Außerdem wird gezeigt, dass wenn
Alices und Charlies Systeme mit einer endlichdimensionalen Darstellung modelliert
werden können, das Modell der kommutierenden Observablen und das Tensorpro-
duktmodell der Lokalität in der Quantentheorie übereinstimmen. Diese Konvergen-
zergebnisse stützen sich auf die Tatsache, dass bestimmte Symmetrien im Grenzfall
die Unabhängigkeit von Zufallsvariablen oder Quantenzuständen implizieren. Sol-
che Aussagen sind im Allgemeinen bekannt als de Finetti-Theoreme. Für den Spe-
zialfall der C∗-algebraischen Beschreibung der Quantenmechanik wie er in dieser
Dissertation untersucht wird, war ein de Finetti-Theorem über den Sonderfall des mi-
nimalen Tensorprodukts hinaus noch nicht bewiesen worden. Ein weiteres Ergebnis
der Dissertation ist der Beweis, dass ein quantenmechanisches de Finetti-Theorem
auch für allgemeine Tensorprodukte von C∗-Algebren gilt.

Das Problem der quantenkausalen Kompatibilität kann als eine Version des Kom-
patibilitätsproblems in Quantennetzwerken angesehen werden, welches sich mit der
Frage beschäftigt, welche Quantenzustände in einer bestimmten kausalen Struktur
erzeugt werden können unter der Annahme, dass das Endprodukt ein klassischer Zu-
stand ist. In dieser Arbeit wird gezeigt, dass die für das kausale Kompatibilitätspro-
blem entwickelten Techniken auch auf den allgemeineren Fall von Quantennetzwer-
ken angewendet werden können. Darüber hinaus wird ein analytischer Beweis dafür
erbracht, dass Graphzustände nicht in bipartiten Quantennetzwerken erzeugt werden
können. Dieser Beweis stützt sich erneut auf die Inflationstechnik, indem Korre-
lationen unterschiedlicher Inflationen des Netzwerks miteinander verknüpft werden.
Nimmt man nun an, dass die Korrelationen aus einem Graphzustand resultieren, kann
gezeigt werden, dass dies die Schranke einer bestimmten Ungleichung verletzt, was
zu einem Widerspruch führt.

Zu guter Letzt wird gezeigt, dass die Polarisation-Hierarchie dazu verwendet
werden kann, eine große Klasse von Optimierungsproblemen zu lösen, die als Zu-
standspolynom Optimierungsprobleme bekannt sind. Bei Zustandspolynom Opti-
mierungsproblemen besteht das Ziel darin, die Ziel- und Nebenbedingungsfunktio-
nen zu optimieren, welche polynomiale Funktionen der Erwartungswerte von Obser-
vablen sind. Dies ermöglicht es einem beispielsweise, die Kovarianzen oder nichtli-
neare Bell-Ungleichungen zu optimieren. Darüber hinaus wird auch eine alternative
Version einer kürzlich entwickelten Hierarchie dargestellt, die dieses Problem eben-
falls löst und in welche der Polarisationstrick integriert ist.
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