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Abstract
Aging organisms show a pervasive decline in cellular function, with important implications for
healthspan and lifespan. Aging associated impairment of gene transcription from Pol II are believed
to underlie a large part of this phenotype. Elongation is a particularly important step of transcription
since it regulates a lot of cotranscriptional processes, however the exact molecular mechanisms
involved in its changes with aging remain unclear.

In this thesis, we report the effects of aging in various transcriptional processes across different
eukaryotes. We use a combination of previously published and newly-generated next generation
sequencing data to understand the mechanisms of aging associated changes in Pol II speed and
fidelity

We profiled and analyzed genome-wide, aging-related changes in transcriptional processes across
different organisms: nematode worms, fruit flies, mice, rats and humans. The average
transcriptional elongation speed (Pol II speed) increased with age in all five species. Along with
these changes in elongation speed, we observed changes in co-transcriptional processes that are
partially regulated by elongation, including splicing alterations, the formation of more circular RNAs
and loss of transcriptional fidelity. Two lifespan-extending interventions, dietary restriction and
lowered insulin/Igf signaling, both partially reversed some of these aging-related changes.
Remarkably, genetic variants of Pol II that reduced its speed in worms and flies increased their
lifespan, which proves the importance of elongation rate for organismal longevity. Similarly, reducing
Pol II speed by overexpressing histone components, to counter age-associated changes in
nucleosome positioning, also extended lifespan in flies and the division potential of human cells.
Our findings uncover fundamental molecular mechanisms underlying animal aging and
lifespan-extending interventions, and point to possible preventative measures.

Furthermore, we developed a new computational pipeline, scErrorRate, that utilizes UMI-based
single-cell data to estimate transcriptional error rate. It is a computational approach that does not
require the onerous process of rolling circle-based technologies. Using scErrorRate, we were able
to profile the error spectrum of Pol II in mice and human cell culture. For the first time, we
characterized changes in transcriptional fidelity caused by aging and senescence, showing an
overall increase in transcriptional misincorporations. Taken together, this work provides new insight
on the fundamental molecular mechanisms underlying aging.
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Chapter 1. Introduction

1.1 Overview
Every living being will experience the end of life. For many of us, the ultimate cause of this
irreversible erasure will be aging, a gradual process of organismal deterioration that occurs with
time. Aging impairs a wide range of cellular processes, leading to a decline in cellular fitness and
progressive loss of function. It is an important risk factor for various chronic diseases such as
cancer, cardiovascular and metabolic pathologies, and neurodegeneration1. Considering that there
has been a significant global increase in life expectancy globally, this means that aging-related
diseases are an increasingly greater socioeconomic burden2. As a consequence, increasing
“healthspan” and slowing down age-related disorders is vital3. Understanding the molecular
mechanisms at work is necessary if we ever hope to discover preventative measures and for the
future of geroscience in general, but it remains a work in progress.

On the molecular and cellular level, there are multiple hallmarks that characterize aging4, either as
responses to age-associated deterioration or as causes of cell dysfunction. They include genomic
instability, loss of proteostasis, deregulation of nutrient sensing, altered intercellular communication,
mitochondrial dysfunction, telomere attrition, stem cell exhaustion, altered intercellular
communication and epigenetic alterations. One of the most important processes affected by aging
that is related to these hallmarks is transcription, the first step of gene expression. During aging,
transcriptome composition in animals changes dramatically4. Furthermore, aging causes a
significant increase in variability and errors in the expression of genes5,6.

The process of transcription and its regulation have been studied extensively with a great variety of
specialized biochemical and imaging approaches, in various contexts and organisms. Initially,
studies of transcriptional regulation mostly focused on its first step, transcriptional initiation.
However, it has become increasingly clear that the other stages of transcription are critical for the
control of gene expression, with transcriptional elongation being of particular interest. During
elongation, the enzyme RNA polymerase II travels the entire length of the gene in a step-wise,
nucleotide-by-nucleotide process. This leads to the synthesis of an RNA chain complementary to
the template strand of the DNA.

Elongation is very important for correct mRNA production, since it controls multiple cotranscriptional
pre-mRNA processing steps, like splicing, polyadenylation and termination7,8. Correct regulation of
these events is vital, since errors in these steps can result in severe decline of cellular health. Given
the fact that aging causes significant changes in the output of RNA synthesis, it is reasonable to
assume that it could affect elongation itself. However, relatively little attention has focused on
transcriptional elongation in aging studies. Much remains to be discovered about the effects of
aging on the kinetics and fidelity of transcription and the impact of these changes on
aging-associated decline of function.
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The speed of RNA polymerase II is an important determinant of the composition of the
transcriptome. It regulates fundamental co-transcriptional processes, like transcriptional termination
and splicing, controlling the production of alternative transcript isoforms9 and circular RNAs7,10.
However, we lack full understanding of how Pol II speed is affected by aging. Similarly, there is a
lack of published research about the impact of aging on transcriptional fidelity5,11. Transcription
errors can mimic detrimental mutations12,13 and apply pressure to protein quality control
mechanisms5. Analyzing the dynamics of Pol II speed and error rate could provide insight in
aging-related disease progression and deterioration of physiological processes.

However, estimating Pol II speed and Pol II fidelity in living organisms requires elaborate
biochemical approaches that are time-consuming and onerous. One of the main driving impulses of
this thesis is an effort to overcome these methodological limitations that have inhibited further in
vivo elucidation of the kinetics and mechanisms of Pol II elongation.
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1.2 Transcription
Identical genomes produce a great variety of cellular phenotypes in the same organism. Most of this
variation can be attributed to differences in gene expression, a complex array of mechanisms by
which proteins are synthesized using information encoded in the DNA. The rate of protein synthesis
is regulated at multiple steps during the process of gene expression, but the primary one is the very
first step: transcription.

The vast variety of cellular phenotypes that are produced by identical genomes can mostly be
attributed to differences in gene expression, a complex array of mechanisms by which proteins are
synthesized using information encoded in the DNA. The rate of protein synthesis is regulated at
multiple steps during the process of gene expression, but the primary one is the very first step:
transcription.

Transcription is the synthesis of an RNA molecule from DNA, creating a copy of the information
contained in a gene. The resulting RNA molecule is called messenger RNA (mRNA) and it
contains the necessary information to construct a protein14. The sequence of the transcript is
complementary to the DNA sequence of the genes, with the difference that thymines are replaced
by uracils. Transcription is a precisely regulated process that allows both the maintenance of
cellular homeostasis and the adjustment of the composition of the cellular proteome in response to
environmental cues and various external stimuli15.

RNA polymerase is the main protein responsible for transcription. While there is only one RNA
polymerase in prokaryotes and archaea, the transcription in eukaryotes is performed by five
different polymerases. Two of them (Pol IV and Pol V) are exclusive to plants. The other three
polymerase enzymes, Pol I, II and III16, exist in all eukaryotes. Even though the general process of
the transcription cycle is almost identical for all RNA polymerases, the transcription factors that
associate with the polymerases and the regions of the genome that they transcribe are very
different. Pol I catalyzes the synthesis of the precursor ribosomal RNAs (pre-rRNAs) which are then
processed into mature rRNAs, integral parts of the cellular ribosome. Pol III transcribes transfer
RNAs, the 5S rRNA and many small RNAs. Pol II is responsible for the transcription of all
protein-coding regions of the genome and multiple non-coding ones (including snRNAs, snoRNAs
and miRNAs).

In yeast, replicative aging has a remarkable impact on Pol II transcription, leading to global
upregulation of Pol II gene expression17. In higher eukaryotes, the effect is milder, with less than 5%
of the genes showing age-associated differential expression18. A lot of these genes have important
age-related functions. For instance, the expression of Pol II genes in stress response and
inflammation pathways is commonly induced with aging19,20. Metabolic and DNA repair genes are
commonly downregulated21. These pathways play an important role in aging; thus , it is worth
exploring how their transcription functions in greater detail.

Pol II is a protein complex which consists of 12 subunits and which is conserved throughout
eukaryotes. It doesn’t mediate transcription on its own; a very wide group of proteins called
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transcription factors (TFs) can either activate or repress transcription by binding on the DNA, on the
polymerase itself or on other proteins14.

Transcription by Pol II proceeds in the following three general steps:

1) Transcriptional initiation. The polymerase binds to the DNA of the gene at a region called the
promoter. The pre-initiation protein complex is assembled. It opens the DNA and the polymerase
starts transcription.

2) Transcriptional elongation. The polymerase moves along one strand of DNA in the 3' to 5'
direction. For each nucleotide in the DNA template, RNA polymerase adds a matching
(complementary) RNA nucleotide to the 3' end of the RNA strand.

3) Transcriptional termination. Pol II transcribes a DNA sequence that signals cleavage of the 3’
end of the RNA molecule. Transcription ends and the RNA transcript is released along with the
polymerase.

1.2.1 Transcriptional initiation
Transcription by RNA Pol-II first requires the assembly of a pre-initiation complex (PIC) bound at the
promoter. The minimal PIC is composed of Pol-II, the Mediator complex and six general
transcription factors: TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH22. Regulatory components that
render the promoter accessible, like chromatin remodelers and histone acetyltransferases, are also
often involved in the process23. Once the PIC is assembled on the promoter, Pol II escapes the
promoter and RNA synthesis commences.

After elongating 25-50 bp, RNA Pol II pauses. This state is called promoter-proximal pausing24 and
it is one of the key rate-limiting steps in the production of RNA25. The paused Pol II is stabilized by
two factors, the DRB-sensitivity inducing factor (DSIF)26 and the negative elongation factor
(NELF)27. The positive transcription elongation factor b (P-TEFb) releases Pol II from this pausing
by phosphorylating multiple proteins, including the CTD of Pol II, NELF and the DSIF subunit Spt528.
NELF dissociates from Pol II and DSIF switches from a repressing factor to an activating one.

1.2.2 Transcriptional elongation
After pause release, RNA Pol II begins the process of productive transcription elongation. The
transcription elongation complex is minimally composed of three parts: the double-stranded DNA
template, the nascent RNA that is being synthesized and Pol II. Elongation occurs in steps. The
complex contains a DNA-RNA duplex known as a transcription bubble29. Because of the bubble, the
most 3′ end of RNA is positioned at the active site of RNA polymerase. The incoming nucleotide
binds to the active site based on its complementarity to the next base on the DNA template.
Subsequently, the formation of a phosphodiester bond between the 3′-OH group of the nascent
RNA and the new nucleotide is catalyzed. Finally, the polymerase moves to the next template
position30. Overall, Pol II elongation proceeds in the 5’-3’ direction in steps, but it is not a
monotonous process, as the polymerase can be interrupted by pauses, premature disengagements
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and even backtracking31. This has the potential to cause premature termination, creating transcripts
that become non-coding RNAs, new proteins or targets for rapid degradation32.

A chromatin structure that facilitates the passage of Pol II through the gene while preventing
intragenic transcription is vital for elongation33. This requires the recruitment of multiple histone
chaperones and elongation factors. Two of these very important proteins for rapid elongation are
PAF (Polymerase Associated Factor)34 and SPT635. Along with DSIF, they associate with Pol II to
create an activated transcription elongation complex. PAF strongly allosterically stimulates the
polymerase36 and recruits histone chaperones (FACT37), histone modifiers (BRE138, DOT1L39) and
histone remodellers40 (CHMD1). The chaperones SPT6 and FACT are required for maintaining the
proper chromatin structure during elongation41–43.

1.2.3 Transcriptional termination
At the end of almost all eukaryotic protein-coding genes, there is a polyadenylation signal (PAS)44.
The PAS contains an AAUAAA motif and it is recognized by the cleavage and polyadenylation
complex (CPA), which is composed of multiple factors including the cleavage and polyadenylation
specificity factor (CPSF), the cleavage stimulatory factor and the cleavage factors I and IIm
subcomplexes. The association of CPA with PAS leads to the cleavage of the pre-mRNA, which is
then polyadenylated at the cleaved 3’ end45,46.

There are two main models that explain how transcription terminates after PAS transcription:

1) The allosteric model47, according to which transcription of the polyadenylation site induces
conformational changes to the complex, mediated by the binding of termination factors or
loss of elongation factors.

2) The “torpedo” model48, according to which the cleavage by the CPA creates a new,
unprotected 5’ end on the nascent RNA, allowing the entry of the 5′–3′ exoribonuclease 2
(Xrn2 in humans, Rat1 in yeast). The exonuclease degrades the nascent RNA synthesized
beyond the termination signal and chases the Pol II, dislodging it from the DNA once it
catches up to it49.

The two models are not mutually exclusive. A unified model has recently been proposed in which
the dephosphorylation of the DSIF subunit Spt5 slows down elongation, allowing the Xrn2
exoribonuclease to catch up with Pol II and trigger transcript release50.

After termination, the newly-cleaved nascent RNA undergoes several post-transcriptional
modifications while the polymerase is again available for promoter binding.
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1.3 RNA Pol II elongation speed
Until the last couple of decades, the focus of studies about the transcriptional regulation of gene
expression was transcriptional initiation. Elongation was not considered as important for expression
regulation. New research, however, has indicated that the elongation speed is highly dynamic and
tightly coupled with other cellular processes that define the composition of the transcriptome.

In the first part of this section, the existing technologies for Pol II speed estimation will be reviewed
and an evaluation of their advantages and disadvantages. In the second part, the existing literature
about the known factors that determine Pol II speed will be reviewed. The third and final part
concerns our current knowledge of the effects of Pol II speed on many cellular processes.

1.3.1 Methods used to estimate elongation speed in eukaryotes

Biochemical approaches in one or few genes

Early experiments used radioisotope pulse labeling of RNA to measure transcription speed in HeLa
cells, finding a rate of 3-6 kb/min51. In the first half of the nineties, elongation rates were measured
with in situ hybridization in the Drosophila Ubx gene52 and with nuclear run-on assays in the
Drosophila heat shock genes53 and the human dystrophin gene54. These methods yielded estimates
ranging from 1.1 to 2.5 kb/min. Chromatin immunoprecipitation of Pol-II followed by PCR has also
been used to estimate elongation rates (1-2 kb/min)55. More refined quantitative approaches like
tiling arrays56 and RT-PCR57 gave somewhat higher speed estimates (3.1-3.8 kb/min). While these
approaches give a first indication of the transcriptional speed, they are limited to one or few genes
and therefore do not provide a global image of transcription.

Imaging approaches in one or few genes

Fluorescence recovery after photobleaching (FRAP) is a microscopy-based approach used to
investigate molecular dynamics in vivo. It can be used to monitor Pol II elongation during steady
state transcription. FRAP experiments for Pol II speed estimation use MS2 proteins fused with GFP
that bind to nascent RNA transcripts containing a series of repeated MS2 loops58. The speed
estimated with this method ranged from 0.3 to 4.3 kb/min58–62. In one MS2 experiment, transcription
from HIV promoters was shown to reach up to 50–100 kb/min63. Labs attempting dual fluorescence
detection of nascent transcripts in yeast64 and Drosophila65 reported estimates ranging from 0.88 to
3.66 kb/min. Measurements with FRAP experiments using fused Pol II in Drosophila were also tried,
yielding a range of speeds between 1.1 to 1.5 kb/min66,67. These approaches also suffer from the
fact that they can be applied to a limited number of genes.

Genome-wide approaches

During the last few years, the rapid development of next-generation sequencing (NGS) methods
has significantly reduced the price of genome-wide tracking of nascent transcription. There are
currently multiple approaches utilizing NGS in the context of investigating Pol II speed, which can
be divided in two broad categories:
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1) Methods measuring Pol II distribution on chromatin

Chromatin immunoprecipitation is used to investigate interactions between proteins and the DNA in
vivo. The proteins of interest are crosslinked with the DNA and then the complexes are
immunoprecipitated via protein-specific antibodies. The DNA is then purified from the complexes
and the specific nucleotide sequences that interact with the proteins can be identified with PCR,
qPCR, microarrays (ChIP-on-chip) or sequencing (ChIP-Seq)68. Using this method, Pol-II binding
can be mapped genome-wide, providing a snapshot of the Pol II distribution throughout the
genome. Chip-Seq cannot be used for estimation of elongation speed since it is very highly
enriched in stalled and paused polymerase molecules; it is impossible to know whether the
polymerase was elongating at the time.

Native elongating transcript sequencing (NET-seq) can provide genome-wide mapping of Pol II
density at nucleotide resolution by identifying the 3’ ends of nascent RNA69. Chromatin-bound RNA
can be extracted from the polymerase and sequenced. The technique was successfully used first in
yeast and then in bacteria70, identifying multiple new pause sites through the genome and
increasing our understanding of the pervasiveness of backtracking. With mammalian native
elongating transcript sequencing (mNET-seq)71, this method became possible to use in metazoans.
Since NET-seq is still based on immunoprecipitation, the data from it can be influenced by antibody
quality and crosslinking time.

2) Methods measuring Pol II enzymatic activity

Global run-on sequencing (GRO-seq)72 was a major breakthrough in the attempt to measure Pol II
speed genome-wide73. Nascent RNA is extended with nuclear run-on assays while initiation is
prohibited. Transcription can either be newly initiated by physiological inducers74 or paused with
DRB and initiated by DRB removal75. Elongation rate can be calculated by sampling at a time point
after transcription induction, finding the “leading edge” of newly initiated Pol II and measuring the
distance the polymerase has traveled during that time (speed = distance/time).

Finding the “leading edge” for the elongating polymerase is not trivial, as the read signal is noisy.
Saponaro et al., who performed DRB/GRO-seq in human cells, identified the wave front by
identifying regions with a normalized read depth of at least 3 base pairs from the transcription start
site to 120 kb downstream75. Stringent filtering was performed for quality control. To calculate
elongation rates, the difference in wave front positions at two time points was divided by the number
of minutes between them. Danko et al74.(GRO-seq in human cells, following transcriptional
activation by estrogen signaling or cytokine treatment) used a more sophisticated statistical
inference procedure based on a three-state hidden Markov model. This model divides each gene
into three regions: the upstream region prior to the transcription start site, the region corresponding
to the Pol II wave, and the downstream region beyond the wave. To increase the reliability of their
measurements, difference maps were utilized, which allow for the identification of true signals
above background noise in a quantitative manner. To control for both technical errors and biological
variability, the wave end was fit separately in multiple independent biological replicates at each time
point and the elongation rate was calculated through linear regression analysis.

It should be noted that GRO-Seq relies on in vitro run-on, which can potentially affect the accuracy
of the results. Specifically, the addition of sarkosyl to the run on buffer in order to prevent the

7



initiation of novel transcription events, may lead to the release of paused Pol II and the
disengagement of regulatory factors bound to the polymerase. Furthermore, it is limited in the
number of genes it can profile at the same time.

Another genome-wide approach is to label nascent RNA with bromouridine76 or 4-thiouridine77–80

and follow the transcriptional wave after Pol II release with DRB/avlocipid. The modified nucleotides
do not naturally occur in mRNAs. To label nascent transcripts with 4sU, cells are fed the compound
and then purified via streptavidin-affinity purification after reacting with the thiol group of
incorporated 4-thiouridines with 2-pyridylthio- or methylthiosulfonate-activated biotin (HPDP-biotin
or MTS-biotin, respectively). Bru labeling works in a similar way. After the incorporation of the
modified nucleotides into newly synthesized transcripts, labeled from unlabeled mRNAs can be
distinguished and the wave front of transcription can be tracked with similar methods to GRO-seq.
4sU/BruDRB-seq allows the assessment of the steady state elongation rate of thousands of genes
simultaneously. However, it is worth noting that the procedure can be highly complex, and it
involves multiple steps that may introduce errors.

One of the published computational methods for estimating the elongation rate is the pipeline
TERate81. To calculate speed, TERseq divides the transcription elongation distance by the
transcription block release time for each selected gene. To find the wave front, it splits each intron
into bins and calculates the expressed signal of each bin. It then randomly selected bins within the
TSS proximal region as "expressed bins" and bins within the TES proximal region of very long
genes as "background bins." If the tag density of the expressed bin was greater than that of the
background bin, it is defined as transcribed. The position of the last two continuous transcribed bins
is then defined as the Pol II transcription edge, and the transcription elongation distance is
calculated from the TSS to this edge.

The average Pol II speed estimation varies substantially depending on the method and system used
(1.25 to 3.5 kb/min). Speed was also shown to be very variable, not only between different genes
(0.37 to 3.57 kb/min) but also in the same genes in different cell lines and within a gene
(accelerating 4-8 times downstream compared to upstream). This indicates that the regulation of
transcriptional speed by RNA polymerase II is a highly dynamic process that occurs both between
and within genes.

Total RNA-seq data has also been used to calculate Pol II speed82,83. Instead of performing
selection by polyA tailing, like standard RNA-seq, selective depletion of rRNAs from the total RNA
of a tissue is performed. Unlike polyA sequencing, total RNA-seq retains transcripts that are still not
fully transcribed, so the final pool of reads contains both mature polyadenylated RNAs and nascent
transcripts.

In total RNA-seq datasets, the read coverage in the introns displays a monotonically decreasing
slope from the 5’ to the 3’ end of the intron, with substantially higher RNA levels present in the
exons. The reason these slopes exist in the introns and not the exons is a result of nascent RNA
synthesis being concurrent with intron removal82. The 3’ ends of the introns are excised and
degraded shortly after the 3’ splice sites are fully transcribed. This creates a characteristic
saw-tooth pattern of read coverage in the actively-transcribed genes. The same pattern can be
seen in nascent or “factory” RNA-SEQ84, which captures nascently-transcribed molecules.
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The rate of transcription elongation by Pol II is a major factor influencing this pattern. When RNA
Pol II moves quickly through an intron, it reaches the downstream exon more swiftly, enabling
co-transcriptional splicing to occur. This results in a decrease in RNA accumulation at the 5′ end of
the intron, which is reflected in the slope of intronic read coverage. Faster elongation rates result in
shallower decreasing gradients in introns, while slower rates result in steeper gradients. The
average speed of Pol II in a long intron can be estimated by fitting a linear model on the read
coverage and using the estimated coefficient of the model. The calculated slopes can then be
compared among different genes from the same sample or the same genes in different samples.
This technique is quite noisy and best applied for relative comparisons of Pol II speed among
different samples, but it gives the opportunity to compare speeds in thousands of different publicly
available datasets, from different tissues, organisms and conditions.

Finally, in Chapter 2, Pol II speed is calculated for the first time using a combination of DRB pausing
and reinitiation of transcription with thiouridine to cytidine conversion sequencing (TUC-seq). 4sU is
incorporated in the cells in the same way as 4sUDRB-seq, but instead of using thiol-specific
biotynilation, T-to-C nucleotide conversions are chemically induced. These are then detected in the
sequencing data after alignment as point mutation, allowing the separation of labeled and unlabeled
reads and the genome-wide detection of the transcriptional wave front without the complicated
affinity purification process. The biggest challenge of this approach is correctly identifying reads
from newly synthesized reads, since the rate of 4sU incorporation is low and the frequency of
sequencing artifacts is high. The biochemical and computational details behind our implementation
of the method are explored in more detail in the methods section of Chapter 2 of the dissertation.

1.3.2 Pol II speed regulation

The structure of the chromatin is one of the major factors affecting Pol II speed. In the eukaryotic
nucleus, the DNA is packaged in chromatin, the basic unit of which is nucleosomes. They consist of
147 bp of DNA wrapped around a protein core made of histones (two heterodimers of H2A-H2B and
two heterodimers of H3-H4)85. Nucleosomes are separated from each other by a sequence of
non-nucleosomal DNA known as linker DNA, the length of which ranges from ~20 to 90 bp,
depending on the organism, tissue or even cell86. Because the DNA has to fit in the limited nuclear
space, nucleosomes are not in a linear state. Instead, they are compacted on top of each other into
a more condensed chromatin fiber87. If the chromatin is highly condensed, it is called
heterochromatin; if it is less condensed, it is called euchromatin. Euchromatin is more
transcriptionally permissive since the DNA is more accessible to Pol II when it is less densely
packaged. Additionally, it is known that nucleosomes by themselves hinder transcriptional
elongation33 and they can induce polymerase pausing69,88. In Drosophila, it was shown that they are
barriers to transcription in all active genes, as Pol II stalls at their entry site89. Tellingly, histone
depletion in human cells, which promotes a more open chromatin configuration, increases Pol II
speed90.

Additionally, histone modifications can also have an effect on elongation rates by changing
chromatin density. When a histone amino acid is modified, its charge can change, altering the
interaction between the protein and the DNA and thus the compaction of the protein. Alternatively,
some modifications do not act by directly changing the interaction between the histones and the
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genome, but by allowing the binding of transcription factors that can modify proteins. Histone
modifications that cause denser chromatin slow down Pol II while those that cause looser chromatin
accelerate it91,92. More specifically, H3 and H4 acetylation91, H4K20 methylation76, H3K79
dimethylation76,83 and H2B monoubiquitylation93 correlate with increased intragenic Pol II speed
while H3K27 trimethylation92 and H3K9 dimethylation92 correlate with decreased Pol II transcription
rate. There are also some indications that methylation of the gene body DNA itself can slow down
elongation rate94,95, possibly through the involvement of methyl-CpG binding proteins96.

Not only does the structure of chromatin have an influence on the speed of Pol II, but also the
sequence of the transcribed DNA has a relevant effect. Pol II can pause and even backtrack
because of the DNA sequence and the resulting structure of the nascent RNA. Weaker RNA-DNA
hybrids transcribed from DNA sequences rich in A-T promote pausing while GC-rich templates have
fewer pauses97,98. It is worth noting, however, that, in vivo, GC content has been shown to have
zero99 or negative76 correlation with Pol II speed, hinting at a more complicated role of GC
sequences in transcription kinetics. DNA sequences have also been shown to govern the
positioning of nucleosomes, as nucleosomes have clear sequence preferences100.

The structure of a gene, specifically the presence of introns and exons, can also affect the speed at
which Pol II transcribes the gene. Transcription is faster if introns are present in the transcript65 and
slower if the transcript has a higher density of exons76. This may be due to increased nucleosome
occupancy on exons101–103, which as previously described can cause Pol II to pause, and the
involvement of pre-mRNA splicing in slowing down Pol II over exons, as it has been shown that Pol
II pauses on splice sites in yeast104, fruit flies105 and humans71. The same studies have also
indicated higher concentrations of polymerase at spliced exons compared to skipped exons. These
findings suggest the transcription of RNA polymerase II slows down intron-exon boundaries, and
this slow-down may be linked to the splicing process. This slowing may also influence
co-transcriptional splicing.

Finally, a few transcription factors are also known to have an effect on the elongation rate of Pol II.
Ccr4-Not and TFIIS can stimulate Pol II elongation by rescuing it from backtracking106,107. Indeed, it
has been directly shown that dominant-negative TFIIS slows down transcription by half108. The
direct interaction of other factors with Pol II speed is more difficult to demonstrate, since they are
often involved with multiple transcriptional processes. Knockdown of Spt6, which mediates the
reassembly of nucleosomes109, slows down elongation rate in Drosophila from 1.1 kb/min to 0.5
kb/min66. The spt5-242 mutation of Spt5 in yeast decreases elongation rates110, although it has been
shown to have no effect on speed in MEFs (mouse embryonic fibroblasts)111. MYC-dependent
recruitment of Spt5 increases Pol II speed79,112 and Spt5 dephosphorylation by the PNUTS-PP1
phosphatase slows down Pol II transcription50. RECQL5 depletion significantly increases the
elongation rate, while also increasing backtracking and pausing events75. In the absence of Sub1, a
PIC component and global regulator of Pol II phosphorylation, elongation slows down in the GAL1
gene in yeast113. Inhibition of the cyclin-dependent kinases CDK12 and CDK13 greatly reduces Pol
II speed114. SCAF8 positively affects Pol II speed115 and so does Paf1C in yeast116. The wide range
of species, conditions and technical approaches used to measure the effects of transcription factors
on Pol II speed makes assessment of their relative importance very complicated.
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1.3.3 Processes regulated by Pol II speed
The main method of investigating the effects of Pol II speed on co-transcriptional processes is using
mutations that increase or decrease elongation speed and studying their effects on an organismal
and cellular level. A lot of these mutations were discovered in a Drosophila genetic screen because
they confer resistance to α-amanitin, a mushroom toxin that inhibits transcription, and they are
mostly concentrated in the RPB1 subunit of Pol II117. The C4 mutation (R741H) specifically has a
lower elongation rate. Its human homologue, R749H, also slows down transcription118. H1085Y in
yeast and its human homologue H1108Y slow down transcription, whereas E1103G in yeast and its
human homologue E1126G speed transcription up119. Multiple studies have been performed using
these mutants that show a very significant effect of Pol II speed on multiple cellular processes vital
for healthy cellular function. For instance, it has been established in mice that mutants with reduced
elongation rate exhibit early embryonic lethality, which could indicate that proper control of Pol II
speed is essential for the correct expression of developmental genes114. Some of the more
important processes regulated by Pol II speed are analyzed below.

Splicing

Splicing was first discovered in the late seventies in two studies that showed that eukaryotic genes
were split into exons and introns120,121. The introns are removed or ‘spliced out’ of the final transcript
and the exons are combined together. This explains the confusing previous finding that nuclear
mRNAs were much longer than cytoplasmic mRNAs, despite having the same beginning and end
sequences. There are multiple sequences that define an intron, like the donor site at the 5’
exon-intron border, the branch point close to the 3’ end and the acceptor site at the 3’ intron-exon
border. The donor and acceptor sites are known as splice junctions. The splicing reaction takes
place in two steps that cut the intron in the splice junctions and join the exons in two sequential
transesterification reactions122. The process is conducted by the spliceosome, a large
ribonucleoprotein complex123.

In constitutive splicing, the pre-mRNA is always spliced in the same way. On the other hand,
alternative splicing is a process in which a single mRNA is spliced in different ways. This increases
transcriptomic and proteomic diversity because a higher number of proteins is synthesized
compared to the number of genes124. There are many variants of alternative splicing, including exon
skipping, intron retention and alternative donor/acceptor site. It is estimated that ~95% of human
genes undergo alternative splicing, in a tissue and stimulus-specific manner125.

Several studies that use mutants with different elongation speeds have indicated that Pol II speed
and constitutive splicing efficiency are inversely correlated in budding yeast9,126 and Drosophila127.
Similar to constitutive splicing, changes in transcription speed seem to also have an effect on
alternative splicing events119,128–132.

Transcriptional initiation and termination
Beyond alternative splicing, transcriptome variability is also increased by the alternative choice of
transcription start sites (TSSs)133 and transcription end sites (TESs)134. Transcript isoforms with
different TSSs and TESs can also vary in their localization, stability and translational efficiency135.
Pol II speed affects TSS preference in budding yeast promoters. Increased elongation speed shifts
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initiation upstream, whereas decrease in speed shifts initiation downstream126,136. This means that
changes in Pol II speed could possibly have downstream effects on transcriptome composition or
translation activity137. Pol II speed has also been shown to affect both the duration132 and the
location138 of polymerase pausing.

Additionally, differences in transcriptional termination have been demonstrated in Pol II speed
mutants, as would be expected from the “torpedo” model. Slowing down transcriptional elongation
shifts termination upstream and, conversely, accelerating elongation reduces the efficiency of
termination, shifting it downstream132,139. Therefore, elongation acceleration can increase
transcriptional read-through, potentially affecting the gene expression of neighboring genes and
increasing transcriptional noise.

Regulation of chromatin structure and gene expression

As discussed above, histone modifications can have an impact on elongation speed. There are
several studies that show the reverse is also true: Pol II speed affects the pattern of histone
modifications on the parts of the chromatin that is getting transcribed. H3K4 methylation patterns
change in response to elongation speed140 and the monoubiquitylation of H2B is significantly
correlated with the speed of Pol II93. Both of these modifications play important roles in
transcriptional regulation and therefore in the regulation of gene expression.

The effect of transcription speed on RNA expression levels is unclear. There has been some
evidence from NET-SEQ99 and GRO-SEQ74 experiments that genes with high speed also exhibit
high expression rate. Nonetheless, other studies have found no correlation between elongation rate
and expression levels57,65.

Transcriptional fidelity
One potential effect of changes in Pol II speed is altering transcriptional fidelity, the accuracy with
which genetic information is transcribed from DNA to RNA. The speed of synthesis by RNA141,142

and DNA143 polymerases seems to be inversely correlated with its accuracy. However, there is no
direct genome-wide experimental measurement of Pol II speed and error rate at the same time, as
simultaneous measurement of both of these factors is difficult.
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1.4 Transcription elongation errors
The fidelity of transcription is important since errors in transcription can lead to non-functional RNAs
or to mRNAs that get translated to proteins that are truncated or dysfunctional144. As important as
transcriptional accuracy is, Pol II still makes mistakes, with an estimated error rate of less than 1 in
10000 in prokaryotes and eukaryotes145,146. The first part of this section is a review of the known
cellular mechanisms that correct errors in transcription. The second part is an exploration of the
known effects caused by mistakes that evade correction and their potential consequences on health
and aging. Finally, the third part is a description of the methods that have been used both
historically and recently to estimate transcription error rate.

1.4.1 Transcription errors and correction mechanisms
Transcriptional fidelity is a result of three processes: correct substrate selection, proofreading and
non-efficient extension of transcripts with misincorporated nucleotides. After the RNA translocates
from the substrate site to the product site, the nucleotide selection takes place in two steps. First,
the nucleotide binds to the open active center of Pol II. If it is complementary to the DNA base, it is
delivered to the insertion site147 of the enzyme. Catalysis of a phosphodiester bond is performed
and the active site closes through the folding of a specific structural domain of the polymerase
called the trigger loop148. This domain is very important for fidelity. When the correct nucleotide
binds to the active center, the trigger loop folds and catalyzes the nucleotide’s incorporation. If the
nucleotide is not complementary to the DNA or if it is a complementary deoxynucleotide, then it
cannot induce correct folding of the trigger loop149.

If misincorporation occurs, the lack of proper alignment between the ribonucleotide and the DNA
template causes the fraying of the nucleotide from the template150. Pol II pauses and backtracks31

by at least 1 bp. Transcription stops until the mismatch is cleaved, allowing a second transcription of
the previous wrongly transcribed base. There are two cleavage mechanisms: intrinsic cleavage, in
which the active site of the polymerase itself cleaves the mismatched nucleotide151–153, and
factor-assisted cleavage, involving proteins that stimulate cleavage like GreA and GreB in
bacteria154,155, and TFIIS in eukaryotes156.

Beyond misincorporations, Pol II also commits frameshifts (either insertions or deletions).
Frameshifts are more common in homopolymeric A/T regions157, but they are rarer than
misincorporations, since they tend to be more destabilizing to the template-RNA hybrid. They can
potentially disrupt cellular homeostasis in a more significant way, since mRNAs with insertions or
deletions commonly contain premature termination codons (PTCs) and they are either eliminated by
the NMD pathway or translated as truncated proteins.

1.4.2 Physiological consequences of transcription elongation errors
If, despite these quality control mechanisms, errors escape correction, they can have a profound
effect on cellular phenotype. After all, transcription errors are amplified with translation, as one RNA
molecule can produce multiple proteins158. Additionally, even though errors happen very rarely and
have an impact even more rarely, transcription takes place constantly on gigantic scales. This

13



means that even a very infrequent event can occur a large number of times in the lifespan of an
organism.

Since misincorporations can change the amino acids in important catalytic or binding domains, they
can alter or completely deactivate normal protein function. This is especially important for proteins
with a long half-life, as the consequences of the mistake can persist long after it originally occurred.
Even a single error can have dire consequences, as shown by a study in which
O6-methylguanine-induced misincorporation of a single uridine in the TP53 gene caused impaired
apoptosis and cell cycle arrest in almost 15% of the cells159. The odds of one error having long-term
physiological consequences are even further increased in long-lived, non-replicating cells such as
neurons.

Significant issues can also be caused by the cumulative effects of less important transcriptional
errors, as has now been shown in multiple studies. Yeast mutants with increased transcription error
rate suffer from proteotoxic stress and reduce cellular lifespan5. Errors can also result in splicing
defects160, mutagenesis144 and tumorigenesis13. Misincorporation-caused Pol II pausing can also
result in physical blocking of transcription of important genes and conflict with other cellular
mechanisms161. Finally, RNA errors are a contributor to molecular noise, impacting the homeostasis
of the proteome and thus the homogeneity of a tissue162.

Transcriptional infidelity has also been connected to neurodegenerative aging-related diseases,
since transcription errors in specific genes expressed in the brain can cause the production of
disease-related protein aggregates and apply pressure to the mechanisms that control protein
quality11,12. In addition, it has been shown that aging increases the transcriptional error rate in yeast
cells5 and these errors can influence the aggregation and degradation of proteins which contribute
to aging-associated diseases in humans. Given that disruption of proteostasis is one of the
recognized hallmarks of aging4, the error rate of transcription is of special interest in regard to aging.

1.4.3 Measurements of transcription errors
The accurate measurement of the error rate of transcription and its changes in various conditions,
including aging, is important. It would help with the determination of the effects this has on the
proteome and on the subsequent phenotype. This could allow the identification of specific genes
that are disproportionately affected and thus potential therapeutic targets. Additionally, an accurate
error rate estimation could provide insight into the factors, genetic or environmental, that contribute
to transcriptional infidelity and allow their investigation in the context of aging.

The earliest error rate measurement for RNA polymerases was estimated in vitro in 1975 by
Springgate and Loeb based on the rate of misincorporation of radioactively-labeled nucleotides163.
They used repeating dinucleotide templates and purified bacterial polymerase for the measurement.
Even though the study had significant issues (no elongation factors or additional regulatory proteins,
repeating template which increases transcription errors), it was a milestone for many years, since
measuring error rates in vivo was an intractable problem for existing technology at that time.

Before the advent of NGS techniques, in vivo measurements were limited to single-cell organisms.
The first ones were performed using the lac operon164. The lacZ gene was modified so that it
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contained a premature stop codon, hence the only way for LacZ to be functional was if a
transcriptional mistake would change the premature stop codon to a functional amino acid. The
activity of beta-galactosidase was then measured after induction with LacI. The authors argued that
the effect of translational mistakes would be negligible because of the extreme polarity of the
mutation. Additionally, multiple mistakes in translation would have to occur in the same cell in the
same codon to generate a functional beta-galactosidase tetramer. The RNA polymerase error rate
indicated by the assay was 1.4 x 10-4. The assay required both a lot of assumptions about
translation and transcription that are not completely accurate as well as very high precision in the
measurement of both LacZ activity and number of cells. However, despite these limitations, it is still
used to this day to compare error rates in different bacterial mutants165,166 and calculate error rate in
yeast, wild-type167 or mutant168,169.

Another non NGS-based approach used a Cre/Lox gal transcription fidelity reporter system in E.
coli170. In this system, the Cre recombinase is rendered inactive due to a missense mutation in the
active site of Cre. In the event of a transcription misincorporation error in the mutation site, Cre is
restored and translated into a functional tetramer. Its activity can be measured, since the functional
Cre converts a gal- mutant gene to gal+, allowing the growth of Gal positive colonies on selected
growth media. The same approach in yeast provided valuable information about fidelity mutants in
eukaryotic Pol II171.

More recently, there have been attempts to measure transcriptional error rate with RNA-seq172. This
is still technically very challenging, as the reverse transcription process necessary for converting
RNA to cDNA and the sequencing itself are error-prone and thus it is very difficult to distinguish
transcriptional errors from sequencing artifacts173,174. One way around this problem involved ligating
a randomized barcode on each RNA fragment, followed by multiple rounds of cDNA sequencing.
This allows for the creation of a consensus read among sequences with the same barcode, allowing
distinction of artifacts from true errors. The authors termed this method Rep-seq175. Its main
disadvantage, the very low efficiency, was resolved with the development of CirSeq, which
generates tandem cDNA repeats from a single RNA fragment with a rolling circle polymerase176–178.
CirSeq was recently improved by changing the RNA fragmentation strategy, which was artificially
increasing the detected error rate162. Another approach based on CirSeq is called ARC-seq
(Accurate RNA Consensus sequencing), in which a barcode is added to each RNA molecule and
multiple cDNA copies of each molecule are generated179. While tandem repeat methods are a
massive improvement in determining error rate compared to what was previously available, they still
suffer from specific limitations. First, there is no way to distinguish between RNA editing changes
and transcription errors. Second, rare de novo mutations are impossible to correct for. Finally, and
most importantly, CirSeq is a protocol that requires specialized expertise and experience and has
not been widely applied, so there are limited available datasets.

Finally, NET-Seq has also been used for error rate estimation. Pausing has been linked to
misincorporation, by comparing the error rates between the most recently transcribed nucleotide
and the rest of the RNA-DNA hybrid161. As opposed to CirSeq, NET-Seq data is routinely generated
for other applications and there are a lot of publicly available datasets. The sequencing is still
error-prone, making this method more suitable for relative instead of absolute comparisons.
NET-Seq can be further optimized by adding an extra RNase footprinting step to distinguish pausing
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from backtracking (RNET-Seq)180, but its sensitivity relies on sequencing small RNAs which are
difficult to map to the genome. This limitation restricts the use of RNET-Seq.

In Chapter 3, we will introduce a novel computational method, scErrorRate, for the quantification of
transcription elongation errors through analysis of single-cell RNA-seq data. This approach has the
potential to be applied to a wide range of datasets from various individuals, cell types and health
and disease states. It has the potential to be applied to thousands of existing datasets, which could
lead to significant advances in the field of transcriptional fidelity.
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1.5 Single-cell RNA sequencing and unique molecular
identifiers
In order to fully understand and effectively utilize scErrorRate, it is important to have a thorough
understanding of single-cell RNA sequencing and unique molecular identifiers. By explaining
scRNAseq and UMIs in this chapter, we can provide the necessary background knowledge for the
method and its potential applications.

1.5.1 Overview of commonly used scRNAseq methods

The field of transcriptomics has greatly expanded our knowledge of RNA abundance in various
species, tissues, ages and conditions. For most of its existence, the field was dominated by bulk
techniques (microarrays and RNA-seq), which involve measurements of RNA abundance from
thousands of cells. However, in the last few years, several methods have been developed to profile
the transcriptome at the level of a single cell181–185. Single cell RNA sequencing (single-cell RNA
SEQ/scRNAseq) has allowed investigations that were until recently impossible, providing insight
into the transcriptional heterogeneity among the cells of the same tissue and the changes in
transcription during cellular differentiation, as well as allowing the sorting of cell types in silico. By
now, multiple other single cell technologies have been developed (measuring the epigenome, the
proteome and the metabolome with a single cell resolution), but scRNAseq remains the most
popular technique, with a wide variety of applications and approaches.

There are several methods to calculate RNA abundance on a single-cell level, but they all share
common features. Every approach begins with a cell suspension and produces a count matrix. In
between, they share the following steps:

1. Cells are isolated from a tissue or cell culture and lysed. Cell isolation is usually
well-based186, plate-based183,187,188 or droplet-based184.

2. RNA is captured, usually with either polyA selection or rRNA depletion to enrich the
molecules of interest. After capture, mRNA is reverse-transcribed to cDNA.

3. The cDNA is fragmented, amplified and tagged with sequencing adapters. It is now ready for
sequencing.

4. The reads in the raw files produced from sequencing are aligned or pseudoaligned. The
transcript count for all cells is then quantified, producing the count matrix.

One of the main differences between scRNAseq methods involves whether they include Unique
Molecular Identifiers (UMIs) or not. UMIs are short, random sequence labels189. A large combination
of them can be ligated to the cDNA produced after reverse transcription, leading to the generation
of a library where every molecule has a distinct nucleotide sequence. Thus, PCR copies generated
from the same molecule can be tracked (duplicates) and the amplification bias caused by PCR can
be removed. The data is analyzed using bioinformatics tools to identify and count the number of
times each UMI is present in each cell and subsequently correct for it. UMI-based protocols are
more popular since they help reduce background noise and improve data accuracy. However, most
of them do not provide full transcript coverage, which is necessary for certain studies (for example,
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alternative splicing analysis), since they require the incorporation of the barcode sequence through
the reverse transcription primer. As a consequence, their detection is limited to the end of the
sequence where they were placed, 3’ or 5’. Some examples of non-UMI protocols are Smart-Seq2
and CEL-Seq190, while some examples of UMI protocols are Quartz-Seq2191, Drop-Seq184 and
Chromium (10x genomics)185. A recently published method called SMART-Seq3187 combines UMI
counts with full transcript coverage, allowing both isoform-level analysis and the mitigation of the
side effects of PCR amplification.

1.5.2 Unique molecular identifiers

All single-cell data analyzed in this thesis were generated through 10x sequencing, a UMI-based
protocol. Since the methodological approach we developed to estimate transcription errors requires
UMIs, a deeper insight into UMIs is needed to allow a better understanding of the details of our
analysis.

UMIs are short nucleotide sequences used to uniquely mark every molecule in a library, providing
an increase in sequencing accuracy. UMIs are used in various sequencing methods, especially
those in which correction of PCR duplicates is necessary. If PCR duplicates are not accounted for,
they can falsely increase coverage, creating significant issues in many applications. Not using PCR
at all is not an option for most sequencing applications, since by duplicating each DNA fragment
multiple times it increases the available pool of molecules, providing sufficient coverage of the
transcriptome. If it is preceded by UMI ligation, then identification of duplicates becomes a simple
affair. Each UMI corresponds to one molecule, so all PCR duplicates have the exact same barcode,
facilitating correction through computational methods.

UMIs have been used in many applications. Even though tagging selected genes with random
barcodes had been done before192,193, UMIs were first used genome-wide for DNA-Seq in 2012 for
digital human karyotyping189. A few years later, a different team developed a UMI-based method for
de novo detection of mutations in plasma cell-free DNA194. UMIs were subsequently used to
distinguish rare sequence variants from sequencing artifacts in virology and genomics195,196. Bulk
RNA-seq applications of UMIs include the removal of PCR duplicates197 and the identification of
undiscovered sequencing artifacts198.

As with bulk RNA-seq, the scRNAseq read counts that are produced after sequencing and
alignment may contain PCR duplicates. This issue is more impactful in single-cell sequencing
because of the smaller initial library size. These duplicates can hide differences in gene expression
between cells, generate differences where none exist and negatively impact the accuracy of the
data. The use of UMIs allows for the identification and removal of PCR duplicates, resulting in more
reliable expression data. This is crucial for the correct interpretation of the results.
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1.6 Aims of the Project
As analyzed so far, the control of polymerase II elongation rate and the fidelity of transcription are
critical for proper cellular function. However, the impact of these mechanisms on aging and
longevity remains largely unexplored. In this dissertation, we aim to investigate the effects of
aging-associated changes in transcriptional elongation and transcriptional fidelity on aging and
longevity.

Firstly, we examined how the average elongation rate is affected by aging. To do this, we used a
combination of sequencing experiments to measure the rate of Pol II elongation in cells from young
and old individuals. Our results show that the average elongation rate increases globally with age in
various organisms and tissues, indicating that aging may dysregulate the proper function of
transcription.

Next, we examined the effects of changes in Pol II speed on downstream co-transcriptional
processes. Using a variety of molecular and computational techniques, we found that changes in
Pol II elongation rate can impact the stability and splicing of RNA transcripts, as well as the
efficiency of protein synthesis. These findings suggest that alterations in Pol II elongation rate may
contribute to the decline in protein synthesis and cellular function that occurs during aging.

Finally, we developed a novel method, scErrorRate, to compare changes in transcriptional fidelity
using single cell RNA-seq data. This method allows us to measure changes in transcriptional
accuracy at the single cell level, providing valuable insights into the potential causes of
aging-associated changes in transcriptional elongation.

In conclusion, our study provides new insights into the role of Pol II elongation rate and
transcriptional fidelity in aging and longevity. Further research is needed to fully understand the
underlying mechanisms and potential interventions to delay or prevent age-related declines in these
processes.
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Chapter 2. The effects of aging-associated
changes in transcriptional elongation on metazoan
longevity

2.1 Introduction
Aging impairs a wide range of cellular processes, many of which affect the quality and concentration
of proteins. Among these, transcription is particularly important, because it is a main regulator of
protein levels199–201. Transcriptional elongation is critical for proper mRNA synthesis, due to the
co-transcriptional nature of pre-mRNA processing steps such as splicing, editing, and 3’ end
formation7,8. Indeed, dysregulation of transcriptional elongation results in the formation of erroneous
transcripts and can lead to a number of diseases202,203. During aging, animal transcriptomes
undergo extensive remodeling, with large-scale changes in the expression of transcripts involved in
signaling, DNA damage responses, protein homeostasis, immune responses, and stem cell
plasticity4. Furthermore, some studies uncovered an age-related increase in variability and errors in
gene expression5,6,204. Such prior work has provided insights into how the transcriptome adapts to,
and is affected by, aging-associated stress. However, it is not known if, or to what extent, the
transcription process itself affects or is affected by aging.

In this study, we used high-throughput transcriptome profiling to investigate how the kinetics of
transcription are affected by aging, how such changes affect mRNA biosynthesis, and to elucidate
the role of these changes in age-related loss of function at the organismal level. We document an
increase in Pol-II elongation speed with age across five metazoan species, a speed reduction under
lifespan-extending conditions, and a causal contribution of Pol-II elongation speed to lifespan. We
thus reveal an association of fine-tuning Pol-II speed with genome-wide changes in transcript
structure and chromatin organization.
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2.2 Results
The translocation speed of elongating RNA polymerase II (Pol-II) can be measured using RNA
sequencing (RNA-seq) coverage in introns. This is because Pol-II speed and co-transcriptional
splicing are reflected in the characteristic saw-tooth pattern of read coverage, observable in total
RNA-seq or nascent RNA-seq measurements56,82. Read coverage generally decreases 5’ to 3’
along an intron, and the magnitude of this decrease depends on Pol-II speed: the faster the
elongation, the shallower the slope57,77,83. High Pol-II speeds result in fewer nascent transcripts
interrupted within introns at the moment when the cells are lysed. Thus, by quantifying the gradient
of read coverage along an intron, it is possible to determine Pol-II elongation speeds at individual
introns (Figure 2.1a,b). Note that this measure is only weakly associated with the expression level
of the transcript (Supplementary Table 2.1).

To monitor how the kinetics of transcription changes during aging, we quantified the distribution of
intronic reads resulting from RNA-seq in five animal species: the worm C. elegans, the fruit fly D.
melanogaster, the mouse M. musculus, the rat R. norvegicus, and humans H. sapiens, at different
adult ages (Supplementary Table 2.2 and Materials and methods), and using diverse mammalian
tissues (brain, liver, kidney, whole blood), fly brains, and whole worms. Human samples originated
from whole blood (healthy donors, age 21-70), and from two primary human cell lines (IMR90,
HUVEC) driven into replicative senescence.

After filtering, we obtained between 518 and 7994 introns that passed quality criteria for reliable
Pol-II speed quantification (Materials and Methods). These different numbers of usable introns
mostly result from inter-species variation in intron size and number, and to some extent from
variation in sequencing depth. To rate the robustness of Pol-II speed changes across biological
replicates, we clustered samples based on their ‘speed signatures’, i.e. on the detected elongation
speeds across all introns that could be commonly quantified across each set of experiments. We
observed largely consistent co-clustering of samples from the same age across species, whereas
young and old samples mostly separated from each other (Supplementary Figure 2.1). This
suggests that age-related speed changes were consistent across biological replicates and reliably
quantifiable in independent measurements.

We observed an increase of average Pol-II elongation speed with age in all five species and all
tissue types examined (Fig. 2.1 and Supplementary Fig. 2.2). Changes in Pol-II speed did not
correlate with either the length of the intron or with its position within the gene (Supplementary Table
1). The observed increase in Pol-II elongation speed was even more pronounced after selecting
introns with consistent speed changes across all replicates (i.e., always up or down with age;
Supplementary Fig. 2.3). This result is non-trivial, because our analysis also revealed introns with a
consistent reduction in Pol-II speed.

In order to confirm our findings with an orthogonal assay, we monitored transcription kinetics in
IMR90 cells using 4sU-labeling of nascent RNA. After inhibiting transcription with
5,6-dichloro-l-β-D-ribofuranosyl benzimidazole (DRB), we conducted a pulse-chase-like experiment
quantifying 4sU-labeled transcripts at four time points after transcription release (i.e., at 0, 15, 30
and 45 min). This enabled us to quantify Pol-II progression into gene bodies (see Methods for
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details) and confirmed our results based on intronic slopes using proliferating (young) and
senescent (old) IMR90. Pol-II speed measurements from the 4sU-based assay showed significant
correlation with those from the slope-based assay (Fig. 2.1d), with Pol-II speed increasing on
average in both approaches (Fig. 2.1e, Supplementary Fig. 2.4). Note that, although many
individual genes showed a decrease in elongation speed with aging in both assays, the majority
exhibited increased speed.

To assess whether known lifespan-extending interventions, inhibition of insulin/insulin-like growth
factor signaling (IIS) and dietary restriction, affected Pol-II speeds, we sequenced RNA from IIS
mutants, using daf-2 mutant worms at day 14 and fly brains from dilp2-3,5 mutants at day 30 and
day 50, as well as hypothalamus from aged wild type and IRS1-null mice. We also sequenced RNA
from kidney and liver of dietary restricted (DR) and ad libitum-fed mice. In all comparisons, except
IRS1-null mice and livers from 26 months old DR mice, lifespan-extending interventions resulted in
a significant reduction of Pol-II speed. Pol-II elongation speeds thus increased with age across a
wide range of animal species and tissues, and this increase was, in most cases, reverted under
lifespan-extending conditions (Fig. 2.1).

Although Pol-II speed changed consistently with age across replicates (Supplementary Fig. 2.1), we
did not observe specific classes of genes to be affected across models. To determine whether
genes with particular functions were more strongly affected by age-related Pol-II speed changes,
we performed gene set enrichment analysis on the 200 genes with the highest increase in Pol-II
speed during aging in worms, fly brains, mouse kidneys and livers, and rat livers. Only very generic
functional classes, such as metabolic activity, were consistently enriched across three or more
species (Supplementary Fig. 2.5). Thus, no specific cellular process appeared to be consistently
affected across species and tissues. Next, we examined age-associated gene expression changes
of transcription elongation regulators. We observed that some regulators (e.g., PAF1, THOC1) were
consistently downregulated across species during aging (Supplementary Fig. 2.6), which was also
confirmed using gene set enrichment analysis (Supplementary Fig. 2.7). These expression changes
potentially represent a compensatory cellular response to a detrimental increase in transcriptional
elongation speeds.
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Figure 2.1: Pol-II elongation speed increases with age and is slowed-down by reduced insulin
signaling and dietary restriction (DR) in multiple species. (a) Schematic representation of read coverage
along introns in total RNA seq. Intronic reads represent transcriptional production at a given point in time. A
shallower slope of the read distribution is a consequence of increased Pol-II elongation speed. (b) Exemplary
read distribution in the FRAZZLED intron 1 with coverage in reads per million (RPM) for D. melanogaster at
age day 10 (gray) and day 50 (blue). (c) Log2 fold change of average Pol-II elongation speeds in worm
(whole body), fruit fly (brains), mouse (kidney, liver, hypothalamus, blood), rat (liver), human blood, HUVECs:
umbilical vein endothelial cells; IMR90: fetal lung fibroblasts). Error bars show median variation ±95%
confidence interval (Wilcoxon signed rank test). Empty circles indicate results using all introns passing the
initial filter criteria, while full circles show results for introns with consistent effects across replicates. Number
of introns considered (n) ranged from 518 to 7994. (d) Transcriptional elongation speed estimate from
4sUDRB-seq in IMR90 cells versus intronic slopes for 217 genes for which elongation speed could be
estimated using both assays. Each dot represents one gene (Pearson correlation=0.313, p-value=2.5e-06).
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(e) Distributions of elongation speeds in IMR90 cells based on 4sUDRB-seq. The black dot indicates the
average speed. The difference between speeds is statistically significant (paired Wilcoxon test, p-value =
2.13e-10). The same genes (464 genes) were used for both conditions (see Methods for details).

To determine if changes in Pol-II speed are causally involved in the aging process, we used
genetically modified worm and fly strains carrying point mutations in a main Pol-II subunit that
reduce its elongation speed (C. elegans, ama-1 (m322) mutant205; D. melanogaster, RpII215C4
mutant206). We sequenced total RNA from wild type and “slow” Pol-II mutant worms (whole animal
at day 14) or fly heads, at day 10 and 50. Measurements of elongation speeds confirmed the
expected reduction of average Pol-II speeds in both C. elegans ama-1 (m322) and D. melanogaster
RpII215C4 (Fig. 2.2a). To assess whether Pol-II speed and its associated maintenance of
transcriptional fidelity also affected aging of the whole organism, we measured survival of these
animals. Slowing down Pol-II increased lifespan in both worms and fruit flies (median lifespan
increase of ~20 % in C. elegans and in ~10 % D. melanogaster; Fig. 2.2b and Supplementary Fig.
2.8a). CRISPR/Cas9 engineered reversal of the Pol-II mutations in worms restored lifespan
essentially to wild-type levels (Supplementary Fig. 2.8b). Furthermore, mutant worms displayed
higher pharyngeal pumping rates at older age compared to wild type worms, suggesting that
healthspan was also extended by slowing down Pol-II elongation speed (Supplementary Fig. 2.9).

Figure 2.2: Molecular and lifespan effects of reduced Pol-II elongation speed in C. elegans and D.
melanogaster. (a) Differences of average Pol-II elongation speeds between Pol-II mutant and wild-type
worms (left) and flies (right), and changes of average Pol-II elongation speeds with age in flies (right). Error
bars show median variation ±95% confidence intervals. All average changes of Pol-II elongation speeds are
significantly different from zero (P < 0.001; paired Wilcoxon rank test). Empty circles indicate results using all
introns passing the initial filter criteria, while full circles show results for introns with consistent effects across
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replicates. (b) Survival curves of worms with ama-1 (m322) mutation (left, replicate 1) and flies with
RpII215C4 mutation (right, averaged survival curve); worms 4 replicates, flies 3 replicates. Animals with slow
Pol-II have a significantly increased lifespan (+20 % and +10 % median lifespan increase for C. elegans
(n=120, P < 0.001, log rank test) and D. melanogaster (n=220, P < 0.001, log rank test), respectively).

Optimal elongation rates are required for fidelity of alternative splicing119,207: for some exons, slow
elongation favors weak splice sites that lead to exon inclusion, while these exons are skipped if
elongation is faster7,118,129. Faster elongation rates can also promote intron retention leading to the
degradation of transcripts via nonsense-mediated decay (NMD)208 and possibly contributing to
disease phenotypes209. Therefore, we next quantified changes in splicing. The first measure we
used was splicing efficiency, which is the fraction of spliced reads from all reads aligning to a given
splice site9. In most datasets, from total and nascent RNA-seq, we observed an increase of the
spliced exon junctions relative to unspliced junctions during aging, and a decrease of the percent
spliced junctions under lifespan-extending conditions (Fig. 2.3a). Consistent with earlier work132, we
observed more spliced transcripts under conditions of increased Pol-II speed, i.e. greater splicing
efficiency. For co-transcriptional splicing to occur, Pol-II first needs to transcribe all parts relevant to
the splicing reaction (i.e., 5' donor, branch point, 3' acceptor), which are located at the opposite
ends of an intron210 Our data suggest that accelerated transcription shortens the interval in which
splicing choices are made, thus shortening the time between nascent RNA synthesis and intron
removal.

Accelerated transcription and splicing carries the risk of increasing the frequency of erroneous
splicing events, which has been associated with advanced age and shortened lifespan211–214. It is
non-trivial to deduce whether a specific splice isoform is the product of erroneous splicing or
created in response to a specific signal. Simply checking if an observed isoform is annotated in
some database can be problematic for multiple reasons. For instance, most databases have been
created on the basis of data from young animals or embryonic tissue. Thus, a detected isoform that
only may be functionally relevant in old animals will not be reported in such databases. Moreover,
an annotated isoform might be the result of erroneous splicing if its expression is normally
suppressed at a particular age or cellular context. We therefore based our analysis on the notion
that extremely rare isoforms (rare with respect to all other isoforms of the same gene in the same
sample) are more likely erroneous than frequent ones215,216. We used Leafcutter217, which performs
de novo quantification of exon-exon junctions based on split-mapped RNA-seq reads. Due to its
ability to identify alternatively excised intron clusters Leafcutter is particularly suitable to study rare
exon-exon junctions218. We defined rare splicing events as exon-exon junctions supported by ≤0.7%
of the total number of reads in a given intron cluster, and the gene-specific fraction of rare clusters
was computed as the number of rare exon-exon junctions divided by the total number of detected
exon-exon junctions in that gene. We observed that such rare exon-exon junctions often resulted
from exon skipping or from the usage of cryptic splice sites (Supplementary Fig. 2.10). The average
fraction of rare splicing events increased during aging in fly and worm, and this effect was reverted
under most lifespan-extending conditions (Fig. 2.3b). However, we did not observe a consistent
age-associated increase of the fraction of rare splice variants across all species, which may at least
in part be due to the more complex organization of splice regulation in mammalian cells.
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Another potential indicator of transcriptional noise is the increased formation of circular RNAs
(circRNAs)219,220, i.e., of back-spliced transcripts with covalently linked 3’ and 5’ ends221. Increased
Pol-II speed has previously been associated with increased circRNA abundance81. Thus, we
quantified the fraction of circRNAs as the number of back-spliced junctions normalized by the sum
of back-spliced fragments and linearly spliced fragments. We observed either increased or
unchanged average circRNA fractions during aging, while reducing Pol-II speed also reduced
circRNA formation (Fig. 2.3c). This suggests that faster Pol-II elongation correlates with a general
increase of circRNAs. Nevertheless, our data does not provide evidence that increased circRNA
levels directly result from increased Pol-II speed, despite it being a consequence of the overall
reduced quality in RNA production.

Increased Pol-II speeds can lead to more transcriptional errors, because the proofreading capacity
of Pol-II is challenged5. To assess the potential impact of accelerated elongation on transcript
quality beyond splicing, we measured the number of mismatches in aligned reads for each gene.
For this, we normalized mismatch occurrence to individual gene expression levels and excluded
mismatches that were likely due to genomic variation or other artifacts (see Methods for details).
We observed that the average fraction of mismatches increased with age, but decreased under
most lifespan-extending treatments (Fig. 2.3d). Consistent with prior findings5, slow Pol-II mutants
exhibited reduced numbers of mismatches compared to wild-type control levels in 3 out 4
comparisons.
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Figure 2.3: Changes in transcript structure upon aging (old vs. young; blue) and after lifespan
extending interventions (orange). Error bars show median variation ±95% confidence interval. (a) Average
percent changes of rare splice events (<= 0.07 percent of total gene expression). Number of genes
considered (n) ranged from 1121 to 41004. (b) Circular RNA index (back-spliced reads divided by sum of
linear and back-spliced reads) for worms, fly heads, mouse and rat liver, human cell lines. Number of
back-spliced junctions considered (n) ranged from 453 to 9741. (c) Average mismatch level changes. Number
of genes considered (n) ranged from 546 to 14593. (d) Average changes of the fraction of spliced transcripts.
Number of genes considered (n) ranged from 124 to 15328.

Subsequently, we explored alterations in chromatin structure as a possible cause of the
age-associated changes in Pol-II speeds. Nucleosome positioning along DNA is known to affect
both Pol-II elongation and splicing23,83,90,95. Furthermore, aged eukaryotic cells display reduced
nucleosomal density in chromatin and ‘fuzzier’ core nucleosome positioning17,222. Thus,
age-associated changes in chromatin structure could contribute to the changes in Pol-II speed and
splicing efficiency that we observed. To test this, we performed micrococcal nuclease (MNase)
digestion of chromatin from early (proliferating) and late-passage (senescent) human IMR90 cells,
followed by ~400 million paired-end read sequencing of mononucleosomal DNA (MNase-seq).
Following mapping, we examined nucleosome occupancy. In senescent cells, introns were less
densely populated with nucleosomes compared to proliferating cells223 (Fig. 2.4a). In addition, we
quantified peak ‘sharpness’, reflecting the precision of nucleosome positioning in a given
MNase-seq dataset (see Methods), as well as the distances between consecutive nucleosomal
summits as a measure of the spacing regularity223,224. Principal Component Analysis (PCA) of the
resulting signatures indicated consistent changes of nucleosome ‘sharpness’ and distances upon
entry into senescence as the samples clearly separated by condition (Fig. 2.4b, c). Both measures
were significantly, but moderately, altered in senescent cells (Fig. 2.4d,e): average sharpness was
slightly decreased (along both exons and introns), and average inter-nucleosomal distances slightly
increased in introns. In conclusion, the transition from a proliferating cell state to replicative
senescence was associated with small, but significant changes in chromatin structure, involving
nucleosome density and positioning-changes that were previously shown to affect Pol-II
elongation17,23,225.
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Figure 2.4: Profiling of nucleosome positioning in human cell models. (a) Average differences in
nucleosome density between exons (n=37,625) and introns (n=193,912), and between proliferating and
senescent cells. (b) Changes of nucleosome sharpness between senescent and proliferating cells in exons
(left) and introns (right). (d) Distributions of distances between nucleosome summits between senescent and
proliferating cells in exons (left) and introns (right). (c+e) PCA plots of nucleosome sharpness (c) and
distances between nucleosome summits (e) in introns for individual samples and pooled data. All panels:
Error bars show median variation ±95% confidence interval. Statistical significance of difference in
pseudomedian distribution indicated by asterisks (*** P < 0.001, paired Wilcoxon rank test).

The organization of nucleosomes is severely influenced by histone availability90,222. For example,
histone H3 depletion reduces nucleosomal density and renders chromatin more accessible to
MNase digestion226. Such global loss of histones constitutes a hallmark of aging and senescence227.
Consistent with this, our senescent IMR90 and HUVECs carry significantly reduced histone H3
protein levels (Fig. 2.5a). Conversely, elevated histone levels promote lifespan extension in yeast222,
C. elegans228 and D. melanogaster229. To assess whether Pol-II elongation speed and senescence
entry in human cells are causally affected by changes in nucleosomal density, we generated IMR90
populations homogeneously overexpressing GFP-tagged H3 or H4 in an inducible manner (Fig.
2.5b and Supplementary Fig. 2.11a,b). Overexpression of either histone resulted in significant
reduction of Pol-II speed, confirming the causal connection between chromatin structure and
transcriptional elongation (Fig. 2.5c). Pol-II speed reduction was accompanied by markedly reduced
senescence-associated β-galactosidase staining in H3-/H4-overexpressing cells compared to both
control (GFP-only) and uninduced cells (Fig. 2.5d). Moreover, both H3- and H4-overexpressing cells
did not display p21 induction or HMGB1 depletion, both hallmarks of senescence entry, compared
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to control IMR90 (Fig. 2.5e and Supplementary Fig. 2.11c). Finally, MTT assays showed that
viability and proliferation were improved in H3- and, to a lesser extent, in H4-overexpressing cells
compared to control cells (Fig. 2.5f). Together, these results suggest that H3/H4 overexpression
decelerates Pol-II and compensates for the aging-induced core histone loss90,225 to restrict
senescence entry.

The average speed reduction following H4 overexpression was significantly larger than that
obtained upon H3 overexpression, yet H4-overexpressing near-senescent IMR90 only marginally
outperformed control cells in MTT assays (Fig. 2.5f). This raises the possibility of excessive
reduction in Pol-II speed negatively affecting aspects of cell function131. To address the role of
nucleosome density in organismal lifespan, we used UAS-His3229 to overexpress His3, specifically
in Drosophila glial cells using Repo-Gal4 specifically in glial cells. H3 overexpression led to
significantly increased numbers of mono-nucleosomes in aged (60 day-old) compared to the
wild-type fly heads (Fig. 2.5g), thus possibly compensating for age-associated loss of histone
proteins. Further, H3 overexpression in glial cells increased fruit fly lifespan (Fig. 2.5h). These in
vivo results are consistent with our in vitro data from IMR90, demonstrating that H3 overexpression
partially reverts the aging effects on chromatin density and promotes longevity in flies. As this was
linked to a reversal in Pol-II elongation speed, our findings, together with earlier ones in yeast222,226,
C. elegans228 and D. melanogaster229, demonstrate how the structure of the chromatin fiber likely
modulates Pol-II elongation speed and lifespan.
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Figure 2.5 : Histone overexpression slows down entry into senescence and decreases RNA-Pol-II
speed. (a) H3 protein levels in proliferating and senescent HUVEC and IMR90 cells. (b) Schematic
representation of the experiment. (c) Differences of average Pol-II elongation speeds between histone
overexpression mutants and wild-type IMR90 cells (derived from 1,212 introns). Error bars show median
variation ±95% confidence interval. All average changes of Pol-II elongation speeds are significantly different
from zero (P < 0.01; paired Wilcoxon rank test). (d) Typical images from Beta-galactosidase (β-gal) staining of
H3-GFP, H4-GFP and control IMR90 cells, in the presence and absence of Doxycycline. (e) Typical
immunofluorescence images of H3-GFP, H4-GFP and control IMR90 cells (left) show reduced p21 levels in
histone overexpression nuclei. Violin plots (right) quantify this reduction. N specifies the number of cells
analyzed per condition. (f) MTT proliferation assay. (g) Quantification of input normalized mono-nucleosome
footprints (black arrowhead) between the heads of aged (60d) flies overexpressing Histone 3 in glial cells
(Repo-Gal4/UAS-Histone 3) and control fly heads (Repo-Gal4/+), significance determined by paired t-test
(n>5, * p<0.05). Digests were halted after 10 min and visualized by Tapestation (Agilent) (n>5). (h) Lifespan
analysis of flies Repo-Gal4/UAS-Histone3 and control flies (+/Repo-Gal4 and UAS-Histone 3/+) (n>100).
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2.3 Materials and methods

2.3.1 Biological materials

Eukaryotic Cell Lines. Human umbilical vein endothelial cells (HUVECs) from individual healthy
donors were purchased by Lonza Inc.; human primary lung fibroblasts (IMR90) from two different
isolates were obtained via the Coriell repository. All these lines were biannually checked for
mycoplasma contamination and tested negative.

Human cell culture for 4sU DRB-Seq. Human fetal lung (IMR90) cells (from two donors) were
grown to 80% to 90% confluence in endothelial basal medium 2-MV with supplements (EBM;
Lonza) and 5% fetal bovine serum (FBS) and MEM (Sigma-Aldrich) with 20 FBS (Gibco) and 1%
non-essential amino acids (Sigma-Aldrich) for HUVECs and IMR-90 respectively.

Human whole blood sample acquisition. Human samples were obtained as part of a clinical
study on aging-associated molecular changes (German Clinical Trials Register: DRKS00014637) at
University Hospital Cologne. The study cohort consisted of healthy subjects between 21 and 70
years of age. Whole blood samples were obtained using the PAXgene Blood RNA system (Becton
Dickinson GmbH, Heidelberg, Germany) directly after informed consent.

Animal Strains Used & Animal Ethics. Mus musculus. Female F1 hybrid mice (C3B6F1) were
generated in-house by crossing C3H/HeOuJ females with C57BL/6 NCrl males (strain codes 626
and 027, respectively, Charles River Laboratories). The DR study involving live mice was performed
in accordance with the recommendations and guideline of the Federation of the European
Laboratory Animal Science Association (FELASA, EU directive 86/609/EEC), with all protocols
approved by the Landesamt für Natur, Umwelt und Verbraucherschutz, Nordrhein-Westfalen
(LANUV), Germany (reference numbers: 8.87-50.10.37.09.176, 84-02.04.2015.A437, and
84-02.04.2013.A158) and the Netherlands (IACUC in Bilthoven, NIH/NIA 1PO1 AG 17242).

Drosophila melanogaster: WT, RpII215 (RRID:BDSC_3663) mutant flies and Repo-Gal4 were
obtained from the Bloomington Drosophila Stock Center (NIH P40OD018537). The RpII215 allele
and Repo-Gal4 were backcrossed for 6 generations into the outbred white Dahomey (wDah) wild
type background generating the wDah, RpII215 stock, which was used for experiments. wDah,
dilp2-3,5 flies (RRID:BDSC_30889) and UAS-Histone 3 (UAS-H3) were previously generated in the
lab and backcrossed for 6 generations into the outbred wDah wild type background. Female flies
were used for all experiments.

C. elegans strains used: AA4274 ama-1(m322), ama-1(syb2315), CB1370 daf-2(e1370), N2 wild
type.

Worm strains and demography assays. Nematodes were cultured using standard techniques at
20° C on NGM agar plates and were fed with E.coli strain OP50. DR786 strain carrying the
ama-1(m322) IV mutation in the large subunit of Pol-II (RBP1), which confers alpha-amanitin
resistance, was obtained from Caenorhabditis Genetics Center (CGC)230,231. DR786 strain was then
outcrossed into N2 wild type strain 4 times and mutation was confirmed by sequencing. 5’-3’
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AGAAGGTCACACAATCGGAATC primer was used for sequencing. For each genotype, a minimum
of 120 age-matched day 1 young adults were scored every other day for survival and transferred to
new plates to avoid starvation and carry-over progeny. Lifespan analyses using the C. elegans
Lifespan Machine were conducted as previously described232. Briefly, wild-type N2 and mutant
worms were synchronized by egg-prep (hypochlorite treatment) and grown on NGM-agar plates
seeded with OP50 at 20°C. Upon reaching L4 stage these worms were transferred onto plates
containing 0.1 g/ml 5-Fluoro-2′-deoxyuridine (FUDR) and placed into the modified flatbed scanners
(35 Worms per plate). The scan interval was 30 min. Objects falsely identified as worms were
censored. Time of death was automatically determined by the C. elegans Lifespan Machine232.
Demography experiments were repeated multiple times. For all experiments, genotypes were
blinded. Statistical analyses were performed using Mantel-Cox log rank method.

Measurements of pharyngeal pumping rates in worms. Synchronized wild type and ama-1
(m322) animals were placed on regular NGM plates seeded with OP50 bacteria on day1 and day8
adulthood and number of pharyngeal pumping rate was assessed by observing the number of
pharyngeal contractions during a 10 sec interval using dissecting microscope and Leica Application
Suite X imaging software. Pharyngeal pumping rate was then adjusted for the number of
pharyngeal pumping per minute. Animals that displayed bursting, internal hatching and death were
excluded from the experiments. Experiments were repeated three independent times in a blinded
fashion, scoring a minimum of 15 randomly selected animals per genotype and time point for each
experiment. One-way Anova with Tukey’s multiple comparison test was used for statistical
significance testing. p-value < 0.0001****, error bars represent standard deviation.

Fly strains and fly maintenance. The RpII215C4 fly strain (RRID:BDSC_3663), which carries a
single point mutation (R741H) in the gene encoding the Drosophila RNA polymerase II 215kD
subunit (RBP1), was received from the Bloomington Drosophila Stock Center (Bloomington,
Indiana, USA). Flies carrying the RpII215C4 allele233 are homozygous viable but show a reduced
transcription elongation rate205. RpII215C4 mutants were backcrossed for 6 generations into the
outbred white Dahomey (wDah) wild type strain. A PCR screening strategy was used to follow the
RpII215C4 allele during backcrossing. Therefore, genomic DNA from individual flies was used as a
template for a PCR reaction with primers SOL1064 (CCGGATCACTGCTGCATATTTGTT) and
SOL1047 (CCGCGCGACTCAGGACCAT). The 582 bp PCR product was restricted with BspHI,
which specifically cuts only in the RpII215C4 allele, resulting in two bands of 281 bp and 300 bp. At
least 20 individual positive female flies were used for each backcrossing round. Long-lived insulin
mutant flies, which lack three of the seven Drosophila insulin-like peptides, dilp2-3,5 mutants
(RRID:BDSC_30889)234 were also backcrossed into the wDah strain, which was used as wild type
control in all fly experiments. Flies were maintained and experiments were conducted on 1,0 SY-A
medium at 25°C and 65% humidity on a 12L:12D cycle234.

Fly lifespan assays. For lifespan assays, fly eggs of homozygous parental flies were collected
during a 12 h time window and the same volume of embryos was transferred to each rearing bottle,
ensuring standard larval density. Flies that eclosed during a 12 h time window were transferred to
fresh bottles and were allowed to mate for 48h. Subsequently, flies were sorted under brief CO2

anesthesia and transferred to vials. Flies were maintained at a density of 15 flies per vial and were
transferred to fresh vials every two to three days and the number of dead flies was counted.
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Lifespan data were recorded using Excel and were subjected to survival analysis (log rank test) and
presented as survival curves.

Mouse maintenance and dietary restriction protocol. The DR study was performed in
accordance with the recommendations and guideline of the Federation of the European Laboratory
Animal Science Association (FELASA), with all protocols approved by the Landesamt für Natur,
Umwelt und Verbraucherschutz, Nordrhein-Westfalen, Germany. For the mouse kidney, male
C57BL/6 mice were housed under identical SPF conditions in group cages (5 or fewer animals per
cage) at a relative humidity of 50-60% and a 12 hour light and 12 hour dark rhythm. For dietary
restriction vs control, 8 week old mice were used. Dietary restriction was applied for 4 weeks.
Control mice received food and water ad libitum. Mice were sacrificed at 12 weeks. For comparison
of young vs aged mice, 14 week and 96 week old mice were used. Food was obtained from ssniff
(Art. V1534-703, Soest, Germany) and Special Diet Services (Witham, UK). The average amount of
food consumed by a mouse was determined by daily weighing for a period of two weeks and was
on average 4,3 g per day. DR was applied for 4 weeks by feeding 70% of the measured ad libitum
amount of food. Water was provided ad libitum. Mice were weighed weekly to monitor weight loss.
Neither increased mortality nor morbidity was observed during dietary restriction.

2.3.2 Biochemistry and molecular biology methods
RNA extraction for next-generation sequencing.

C. elegans: Wild-type N2 strain, alpha-amanitin resistant ama-1(m322) mutants and long-lived
insR/IGF signaling mutants, daf-2(e1370) were sent for RNA-seq. For each genotype, more than
300 aged-matched adult worms at desired time points were collected in Trizol (Thermo Fisher
Scientific, USA) in 3 biological replicates. Total RNA was extracted using RNAeasy Mini kit (Qiagen,
Hilden, Germany).

D. melanogaster: The RNA-seq data for brains of 30 days and 50 days old dilp2-3,5 and wDah
control flies have been published previously.235 10 days and 50 days old RpII215C4 mutants and
wDah control flies were snap frozen and fly heads were isolated by vortexing and sieving on dry ice.
Total RNA from three biological samples per treatment group was prepared using Trizol Reagent
according to the manufacturer’s instructions, followed by DNAse treatment with the TURBO
DNA-free Kit (Thermo Fisher Scientific).

M. musculus: Mouse liver samples were isolated from 5, 16 and 27 months old ad libitum and DR
animals, which corresponded to 2, 13 and 24 months of DR treatment, respectively. RNA was
isolated by Trizol and DNase-treated. The RNA-seq data for 5 and 27 months old liver DR samples
have been published previously236. RNeasy mini Kit and Trizol were used to isolate RNA from
snap-frozen kidneys as per manufacturer’s instructions. Hypothalamus tissue of long-lived insulin
receptor substrate 1 (IRS1-/-) knock out mice237 and C57BL/6 black control animals was dissected
manually at the age of 27 months. RNA was isolated by Trizol with subsequent DNase treatment.
For blood samples globin RNA was removed using GLOBINclear™ Kit, mouse/rat/human, for globin
mRNA depletion.
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Human whole blood sample RNA extraction. After storage at -80°C for at least 24 h RNA
extraction was performed by usage of PAXgene Blood RNA Kit (Quiagen, Hilden, Germany)
according to the manufacturer’s protocol. The study was operated in accordance with the
Declaration of Helsinki and the good clinical practice guidelines by the International Conference on
Harmonization. All patients provided informed consent and approval of each study protocol was
obtained from the local institutional review board (Ethics committee of the University of Cologne,
Cologne, Germany; (17-362, 2018-01-17).)

Total RNA and nascent RNA sequencing. From 1 µg input of total RNA, ribosomal RNA was
removed using the Ribo-Zero Human/Mouse/Rat kit (Illumina). Sequencing libraries were generated
according to the TruSeq stranded total RNA (Illumina) protocol. To generate the final cDNA library,
products were purified and amplified by PCR for 15 cycles. After validation and quantification of the
library on an Agilent 2100 Bioanalyzer, equimolar amounts of libraries were pooled. Pools of 5
libraries were sequenced per lane on an Illumina HiSeq 4000 sequencer. For a description of all the
RNA-seq datasets used in this study see Supplementary Table 2.2. The same protocol was used to
sequence cDNA libraries from human cell “factory” RNA, which was isolated as described
previously238.

4sU-DRB labeling and TUC-conversion.
First, transcription was reversibly inhibited by 6-dichlorobenzimidazole 1-β-d-ribofuranoside (DRB)
in order to achieve accumulation of RNA polymerase II at the transcription start sites and
synchronized transcriptional elongation initiation upon DRB removal. Simultaneously with the DRB
removal, cells were pulsed for different time points with the Uridine-analogue 4-thiouridine (4sU) in
order to enrich for newly synthesized transcripts. Finally, total RNA was isolated per each time point
and the RNA polymerase II speed was determined by calculating the 4sU nucleotides added to the
nascent transcript per time point. To estimate RNA polymerase II speed change in aging cells,
human fetal lung fibroblasts (IMR90) in proliferating and in senescent state were treated using this
experimental procedure.

In order to select the time-points to be used in the experiment, validate the DRB treatment and
removal and check the enrichment efficiency of 4sU, a control experiment was set according to the
protocol of Fuchs et al. 201577. Two million proliferating cells (passage 14) were treated with 100 µM
DRB (Merck, D1916) in their medium for three hours at 37 oC and, upon DRB removal, they were
pulsed with 1 mM 4sU (Sigma-Aldrich, T4509) for 0 min, 5 min, 15 min, 30 min, 45 min, 60 min, 90
min and 120 min. Immediately after the completion of each time point, cells were lysed in TRIzol
(ThermoFisher, 15596018) and RNA was isolated with the Direct-Zol RNA mini-prep kit
(ZymoResearch, R2052). To validate DRB treatment, qRT-PCR was performed in cDNA from all
time points using the primers designed by Fuchs et al. 201577 in proximal and distant introns of the
OPA-1 gene. Furthermore, to estimate 4sU enrichment, the RNA collected in each time point was
biotinylated using the EZ-Link biotin HPDP kit (ThermoFisher, 21341) and biotinylated RNA was
enriched with streptavidin-coated beads (DYNAL™ Dynabeads™ M-280 Streptavidin,
ThermoFisher 11205D). qRT-PCR evaluation was performed also with the primers suggested by
Fuchs et al. 201577 against TTC-17 nascent and mature mRNA and 18S rRNA.
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For the actual experiment, we performed the Thiouridine-to-Cytidine Conversion Sequencing
(TUC-Seq) protocol developed by Lusser et al. (2020)239 in order to detect the 4sU labeled
transcripts in different time points. In this method, the thiol group of 4sU is quantitatively converted
to cytidine via oxidation by OsO4 in aqueous NH4Cl solution. The OsO4-treated RNA samples are
submitted to RNA-sequencing to quantify labeled and unlabelled transcripts and define the number
of reads containing Uridine-to-Cytidine conversions. To this aspect, nine million proliferating
(passage 9) cells and nine million cells that had entered senescence (passage 35) were treated
with 100 µM DRB for three hours at 37 oC. Immediately after DRB removal, cells were pulsed with 1
mM 4sU for 0 min, 5 min, 15 min, 30 min and 45 min. RNA was isolated manually according to the
TRIzol protocol and treated with 40 Units DNAse I (ZymoResearch, E1010) for 20 min at room
temperature. RNA was purified with the RNA Clean & Concentrator-25 kit (ZymoResearch, R1018)
and quantified using a NanoDrop spectrophotometer. For the TUC-conversion, 10 µg of 4sU labeled
RNA was treated with 1.43 mM OsO4 (Merck, 251755) in 180 mM NH4Cl (Merck, 09718) solution
pH 8.88 for 3 hours at 40 oC as described in Lusser et al. (2020)239. Subsequent sample
concentration and purification were also done according to this protocol. 4sU-labeled and
OsO4-treated RNA samples derived from proliferating and senescent IMR90s in all five time-points
were subjected to RNA-sequencing. As a negative control for the TUC-conversion, we used a
mixture 1:1 of 4sU-labeled but not OsO4-treated samples from the time-points 30 min and 45 min.
The RNA-sequencing was performed in two biological replicates per condition.

35S-methionine/35S-cysteine incorporation to measure translation rates in Drosophila.

Ex-vivo incorporation of radio-labeled amino acids in fly heads was performed as previously
described240. Briefly, 25 heads of each young (10 days) and old (50 days) wDah control and
RpII215C4 mutant animals were dissected in replicates of 5 and collected in DMEM (#41965-047,
Gibco) without supplements, at room temperature. For labeling, DMEM was replaced with
methionine and cysteine free DMEM (#21-013-24, Gibco), supplemented with 35S-labeled
methionine and cysteine (#NEG772, Perkin-Elmer). Samples were incubated for 60 min at room
temperature on a shaking platform, then washed with ice cold PBS and lysed in RIPA buffer
(150 mM sodium chloride, 1.0% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris, pH 8.0)
using a pestle gun (VWR, Germany). Lysates were centrifuged at 13.000 rpm and 4 °C for 10 min
and protein was precipitated by adding 1 volume of 20% TCA, incubating for 15 min on ice and
centrifugation at 13.000 rpm, 4 °C for 15 min. The pellet was washed twice in acetone and
resuspended in 200 µl of 4 M guanine-HCl. 100µl of the sample was added to 10ml scintillation fluid
(Ultima Gold, Perkin-Elmer) and counted for 5 min per sample in a scintillation counter
(Perkin-Elmer). Protein determination was done in duplicates (25µl each) per sample using the
Pierce BCA assay kit (Thermo Fisher Scientific). Scintillation counts were normalized to total protein
content.

MNase-seq sample preparation.
Mononucleosomal DNA from proliferating and senescent IMR-90 cells (from two donors) were
prepared and sequenced on an Illumina HiSeq4000 platform as previously described241. For fly
heads, a MNase digestion assay was performed using the EZ nucleosomal DNA prep kit, as per the
manufacturer’s guidelines (Zymo Research). Briefly, 25 snap frozen heads were lysed in nuclei prep
buffer, and incubated on ice for 5min. Cuticle fragments were then removed via centrifugation
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(30sec 50xg). Nuclei were pelleted (5min 500xg) and washed twice in digestion buffer and
resuspended in 100μl of digestion buffer. Nucleosome footprints were then digested using 0.05U of
MNAse (Zymo Research). Samples were taken at 0, 2, 3 and 5 min or 10 min for prolonged
digestion, and immediately stopped in MN stop buffer (Zymo Research). Samples were isolated
using Zymo Spin IIC columns. Nucleosome footprints (1:10 dilution) were visualized by Tapestation
using High sensitivity D1000 ScreenTape (Agilent).

Western blotting.
Western blots were carried out on protein extracts of individual dissected tissues. Proteins were
quantified using BCA (Pierce). Equal amounts were loaded on Any-KD pre-stained SDS-PAGE gels
(Bio-Rad) and blotted according to standard protocols. Antibody dilutions varied depending on the
antibody and are listed here: Histone 3 (1:1000), HP1 (DSHB) (1:500). Appropriate secondary
antibodies conjugated to horseradish peroxidase were used at a dilution of 1:10000.

Inducible histones overexpression.
Doxycycline (Dox)-inducible expression of histones H3 and H4 in proliferating human fetal lung
fibroblasts (IMR90) was achieved using the PiggyBac transposition system242. The open reading
frames of H3 and H4 were cloned in the Dox-inducible expression vector KA0717
(KA0717_pPB-hCMV*1-cHA-IRESVenus was a gift from Hans Schöler, Addgene plasmid #124168;
http://n2t.net/addgene:124168; RRID:Addgene_124168) fused at their 3’ end in frame to the
sequence of the yellow fluorescent protein (YFP) mVenus243. After sequencing validation, each
construct was co-transfected in IMR90s with the transactivator plasmid KA0637
(KA0637_pPBCAG-rtTAM2-IN was a gift from Hans Schöler, Addgene plasmid #124166;
http://n2t.net/addgene:124166; RRID:Addgene_124166) and the Super piggyBac Transposase
expression vector (SBI System Biosciences, PB200PA-1,) using the Lipofectamine™ LTX Reagent
with PLUS™ Reagent (ThermoFisher Scientific, 15338100,) according to the manufacturer’s
instruction. In total 2.5 µg of the vectors KA0717, KA0637 and PB200PA-1 were used for each
transfection in a 10:3:1 ratio. Stable transgene-positive cells were selected using 250 μg/ml G418
(resistance gene carried in KA0637) for 7 days. Emerging cells were induced for 24 h with 2.5 µg/ml
doxycycline and then subjected to Fluorescent-Activated Cell Sorting (FACS) to select the ones
expressing the mVenus (BD FACSAria™ II, BD Biosciences). H3 and H4 overexpression was
verified by Western Blot with anti-H3 and anti-H4 antibodies (Abcam, ab1791 and ab10158
respectively).

All further assays were repeated in proliferating cells and cells at the senescence entry state.
Senescence state was monitored by Beta-galactosidase staining244 in different passages (Cell
Signaling Technology, Senescence β-Galactosidase Staining Kit, 9860). Immunofluorescence
stainings (IF) to detect HMGB1, p21 and HMGB2 (Abcam, ab18256, ab184640 and ab67282
respectively) were performed as previously described245 and images were acquired in a widefield
Leica DMi8 S with an HCX PL APO 63x/1.40 (Oil) objective. For MTT assays246 6000 cells of each
condition were seeded per well in a 96-well plate in four replicates, incubated for 4 h at 37 oC after
the addition of 1 mM MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide,
ThermoFisher, M6494), treated with DMSO for 10 min at 37 oC and finally their absorbance was
measured at 540 nM in an Infinite® 200 PRO plate reader (Tecan). For RNA-sequencing, one
million cells of each condition were lysed in Trizol (ThermoFisher, 15596018) and RNA was isolated
with the Direct-Zol RNA mini-prep kit (ZymoResearch, R2052).
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2.3.3 Computational methods

RNA-seq alignments
Raw reads were trimmed with trimmomatic version 0.33247 using the following parameters
‘ILLUMINACLIP:./Trimmomatic-0.33/adapters/TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3
SLIDINGWINDOW:4:15 MINLEN:45’ for paired-end datasets and
‘ILLUMINACLIP:./Trimmomatic-0.33/adapters/TruSeq3-SE.fa:2:30:10 LEADING:3 TRAILING:3
SLIDINGWINDOW:4:15 MINLEN:45’ for single-end datasets. Alignment was performed with STAR
version 2.5.1b248 using the following parameters: ‘--outFilterType BySJout --outWigNorm RPM’ on
the genome version mm10, rn5, hg38, dm6, ce5 for M. musculus, R. norvegicus, H. sapiens, D.
melanogaster, C. elegans, respectively. The bam files produced by STAR were used for all
analyses, unless otherwise noted.

Definition of intronic regions.
All annotation files for this analysis were downloaded from the Ensembl website249 using genome
version ce10 for Caenorhabditis elegans, mm10 for Mus musculus, hg38 for Homo sapiens, rn5 for
Rattus norvegicus, and dm6 for Drosophila melanogaster. All of the following filtering steps were
applied on the intronic ENSEMBL annotation files.

First, overlapping regions between introns and exons were removed in order to avoid confounding
signals due to variation in splicing or transcription initiation and termination. Overlapping introns
were merged to remove duplicated regions from the analysis. In the next step, STAR was used to
detect splice junctions. These junctions were then compared to the intronic regions. Introns with at
least 5 split reads bridging the intron (i.e. mapping to the flanking exons) per condition were kept for
subsequent analyses. This step ensures a minimum expression level of the spliced transcript. When
splice junctions were detected within introns, those introns were further subdivided accordingly.
Introns with splice junction straddling were discarded. The above-mentioned steps were performed
using the subtract and merge commands of Bedtools version 2.22.1.

After these filtering steps, the number of usable introns per sample varied between a few hundred
(n=546, C. elegans, total RNA) to over ten thousand (n=13,790, H. sapiens, nascent-RNA-seq).
These large differences resulted from different sequencing depths, sequencing quality (number of
usable reads) and from the complexity of the genome (numbers and sizes of introns, number of
alternative isoforms, etc.). In order to avoid artifacts due to the different numbers of introns used per
sample, the same sets of introns were always contrasted for each comparison of different
conditions (e.g. old versus young, treatment versus control). Note that certain comparisons were not
possible for all species, due to variations in the experimental design. For instance, for mouse kidney
only a single time point after lifespan intervention (dietary restriction DR, age 3 months) was
available, which prevented a comparison of old versus young DR mice, but allowed comparison
with ad libitum fed mice at the young age.

Transcriptional elongation speed based on intronic read distribution.
In order to calculate Pol-II speeds, we used RNA-seq data obtained from total RNA and nascent
RNA enrichment. In contrast to the widely used polyA enrichment method, which primarily captures
mature, spliced mRNAs and is therefore not suitable to estimate Pol-II speeds based on intronic
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reads, these methods yield sufficient intronic coverage to quantify elongation rates. To analyze the
distribution of intronic reads between conditions, we fitted the read gradient (slope) across the
length of each of selected introns (5’->3’; see above for the filtering criteria). The read gradient was
calculated from the bedgraph files produced by STAR.

In order to transform slopes to Pol-II elongation speed the following formalism was used. Let us
assume an intron of length L. Let us also assume that at steady state a constant number of
polymerases is initiating and the same number of polymerases is terminating at the end of the
intron; in other words, we assume that premature termination inside the intron can be ignored.
Polymerases are progressing at a common speed of k [bp/min]. The average time that it takes a
polymerase to traverse the whole intron is hence

∆𝑡 = 𝐿
𝑘

Transcription is initiated at a rate of n polymerases per unit time [1/min]. Hence, the number of
polymerases N initiating during is:∆𝑡 

𝑁 = ∆𝑡 × 𝑛

The slope s is the number of transcripts after the distance L minus the number of transcripts at the
beginning divided by the length of the intron:

𝑠 = 0−𝑁
𝐿 = −∆𝑡×𝑛

𝐿 =
−𝐿
𝑘 .𝑛

𝐿 = −𝑛
𝑘

and thus, the speed k can be computed from the slope as:

𝑘 = −𝑛
𝑠

Hence, slope and speed are inversely related and the speed depends also on the initiation rate (i.e.
the expression rate). However, we observed empirically only a small dependency between
expression and slope (Supplementary Table 2.1).

Transcript counts were estimated using Kallisto version 0.42.5250 for each sample. To determine
differentially expressed genes we used DESeq2 version 1.8.2251 with RUVr normalization version
1.6.2252. For the differential analysis of transcriptional elongation regulators, we downloaded the list
of positive and negative regulators from the GSEA/MSigDB253. Gene ontology (GO) term
enrichment analysis of differentially expressed genes or genes with increased RNA-Pol-II
elongation speed was carried out using TopGO version 2.20.0. For GO enrichment analysis of
differentially expressed genes, we identified 4784 genes as evolutionarily conserved from each
species of our study to humans: genes were either direct orthologues (one2one) or fusion genes
(one2many) of H. sapiens were retrieved from ENSEMBL database using biomaRt 2.24.1254. Using
our 4784 genes evolutionary conserved, we further divided into consistently up-regulated or
down-regulated genes across species during aging or ‘aging intervention’ (as target set for GO
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enrichment: aging up-regulated: 92 genes; aging down-regulated: 71; ‘aging intervention’
up-regulated: 164 genes; ‘aging intervention’ down-regulated: 473 genes; as background set 4784
orthologue genes between R. norvegicus, M. musculus, D. melanogaster, C. elegans, and H.
sapiens). For GO enrichment analysis of genes harboring increasing Pol-II speed, we used as
target set the top 200 or 300 genes with an increase in Pol-II speed change for each species.
Quantification of transcript abundance for ITPR1 and AGO3 was obtained by using StringTie255. For
circular RNA, we aligned the reads using STAR version 2.5.1b248 with the following parameters:’
--chimSegmentMin 15 --outSJfilterOverhangMin 15 15 15 15 --alignSJoverhangMin 15
--alignSJDBoverhangMin 15 --seedSearchStartLmax 30 --outFilterMultimapNmax 20
--outFilterScoreMin 1 --outFilterMatchNmin 1 --outFilterMismatchNmax 2 --chimScoreMin 15
--chimScoreSeparation 10 --chimJunctionOverhangMin 15’. We then extracted back spliced reads
from the STAR chimeric output file and normalized the number of back spliced reads by the sum of
back spliced (BSi) and spliced reads from linear transcripts (S1i, S2i) for an exon i4:

𝐶𝑖𝑟𝑐𝑅𝑎𝑡𝑖𝑜
𝑖

=
𝐵𝑆

𝑖

𝐵𝑆
𝑖
+

𝑆1
𝑖
+𝑆2

𝑖

2

* 100

Here, S1i refers to the number of linearly spliced reads at the 5’ end of the exon and S2i refers to
the respective number of reads at the 3’ end of the exon. Thus, this score quantifies the percent of
transcripts from this locus that resulted in circular RNA. Finally, we quantified the significance of the
average change in circular RNA formation between two conditions using the Wilcoxon rank test.

To validate our estimates of Pol-II speeds we compared our data with experimental values
estimated via GRO-seq83 and tiling microarray data56. There was a significant correlation (GRO-seq:
R=0.38, p-value=4e-5, compared to time point 25-50 min see Jonkers et al.83; Tiling array; R=0.99,
p-value=<2.6e-16, data not shown) between our data and experimentally measured transcriptional
elongation values. We noted that our Pol-II speed estimates for different introns of the same gene
were more similar than Pol-II speed estimates for random pairs of introns, implying that
gene-specific factors or local chromatin structure influence Pol-II speed.

4sU-DRB elongation rate calculation.

The estimation of transcription elongation speed using RNA labeling was based on the
measurement of nucleotides added per time unit in a newly synthesized nascent transcript.

Detection of labeled transcripts was performed based on the Lusser protocol, modified for Illumina
RNA-seq:

1. FASTQ files were aligned to the genome using STAR to produce BAM files.
2. Sam2tsv was then used to identify single nucleotide mismatches.
3. A custom R script was used to count the number of A-G or T-C mismatches per read.

Only read-pairs with at least 3 A-G or T-C mismatches were assumed to be 4sU-labeled and thus
retained for subsequent analyses. Because the 5 min samples contained a very low number of
reads with conversions, they were discarded from the rest of the analysis. We employed two
approaches for estimating the elongation rate per gene from the 4sU-labeling data. For the first
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approach, we tracked the progress of RNA-Pol-II complexes constructing single gene coverage
profiles using 4sU-labeled reads. Progression was determined by picking the 99th percentile of gene
body coverage in each sample to determine the front of elongating RNA polymerases. (We did not
use the last converted read to determine the front, because this measure would be too sensitive to
noise in the data.) Elongation rates were calculated by fitting a linear model on the front positions of
Pol II in 0, 15, 30 and 45 min in the first 100 kb of each gene. To determine elongation rates with
greater accuracy, we filtered out genes with a length of less than 100 kb, since short genes can be
fully transcribed in less than 45 min or even 30 min. This first approach of estimating RNA-Pol-II
speeds is characterized by high accuracy, but is limited to genes longer than 100 kb. The data in
Panel e of Figure 2.1 is based on this approach.

The direct comparison of the 4sU data to the approach using read-coverage slopes in introns
required a large set of genes for which RNA-Pol-II speed could be measured using both assays. In
order to maximize this gene set we devised a second alternative approach for deriving speed from
4sU-labeling data that is applicable to shorter genes. For this second approach we measured the
front position of the polymerase in the same way as before (using the 99th percentile) but across the
whole gene. For genes 30 kb to 100kb long, we calculated the elongation rate from the difference in
the front positions of the polymerase at 15 mins and 30 mins and divided this distance by 15
minutes in order to obtain speed measures per minute. For genes more than 100kb long, we
calculate the elongation rate from the difference in the positions of the polymerase at 30 mins and
45 mins divided by 15 minutes. This second speed measure is less accurate than the first one,
because it uses only two time points per gene; however, it enables estimating speed for genes
shorter than 100 kb. The data in Panel d of Figure 2.1 is based on this second measure. Note that
both measures confirmed the increase in average RNA-Pol-II elongation speed from proliferating to
senescent IMR90 cells.

Mismatch detection.

Mismatch detection was performed using the tool rnaseqmut
(https://github.com/davidliwei/rnaseqmut), which detects mutations from the NM tag of BAM files. To
avoid detection of RNA editing or DNA damage-based events we only considered genomic
positions with only 1 mismatch detected (i.e. occurring in only one single read). Reads with indels
were excluded and only mismatches with a distance of more than 4 from the beginning and the end
of the read were considered. A coverage level filter was applied so that only bases covered by at
least 100 reads were kept. A substantial number of mismatches may result from technical
sequencing errors. However, since young and old samples were always handled together in the
same batch, we can exclude that consistent differences in the number of mismatches are due to
technical biases. The fraction of RNA editing events is generally relatively low and not expected to
globally increase with age256.

MNase-seq analysis.

We used nucleR257 with default parameters to calculate peak sharpness as a combination of peak
width and peak height. Peak ‘width’ was quantified as the standard deviation around the peak
center and peak ‘height’ was quantified as the number of reads covering each peak257 and the
distance between peak summits. Intron and exon annotations were downloaded from UCSC table
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utilities249 and filtered as described in Definition of intronic regions. Nucleosome density (Figure 5a)
is defined as the number of nucleosome peaks found within an exon or an intron divided by the
length of the exon or intron.

2.4 Discussion
We found a consistent increase in average intronic Pol-II elongation speed with age across four
animal models, two human cell lines and human blood, and could revert this trend by employing
lifespan-extending treatments. We also documented aging-related changes in splicing and
transcript quality, such as elevated formation of circular RNAs and increased numbers of
mismatches with genome sequences, which likely contribute to age-associated phenotypes.
Further, we observed a consistent increase in the ratios of spliced to unspliced transcripts (splicing
efficiency) with age across species (Fig. 2.3a), which has been reported to be a result of increased
elongation speed132. However, we cannot exclude the possibility that this increase resulted from
changes in RNA half-lives. Although average speed changes were predominantly significant, they
remained small in absolute terms. This is expected, as drastic, genome-wide changes of RNA
biosynthesis would quickly be detrimental for cellular functions and likely lead to early death.
Instead, what we monitored here is a gradual reduction of cellular fitness characteristic for normal
aging. Critically, we were able to increase lifespan in two species by decelerating Pol-II. Thus,
despite being small in magnitude and stochastically emerging in tissues or cell populations, these
effects are clearly relevant for organismal lifespan.

Genes exhibiting accelerated Pol-II elongation were not enriched for specific cellular processes,
indicating that speed increase is probably not a deterministically cell-regulated response, but rather
a spontaneous age-associated defect. Yet, the genes affected were not completely random, since
we observed consistent changes across replicates for a subset of introns. Thus, there must be
location-specific factors influencing which genomic regions are more prone to Pol-II speed increase
and which not. This observation is consistent with earlier findings and our data, indicating that
chromatin structure may causally contribute to age-associated Pol-II speed increase. Although we
still lack a complete understanding of the molecular events driving Pol-II speed increase, our
findings indicate that aging-associated changes in chromatin structure play an important role.

Our work establishes Pol-II elongation speed as an important contributor to molecular and
physiological traits with implications beyond aging. Misregulation of transcriptional elongation
reduces cellular and organismal fitness and may therefore contribute to disease
phenotypes228,258,259. Taken together, the data presented here reveal a new molecular mechanism
contributing to aging and serve as a means for assessing the fidelity of the cellular machinery
during aging and disease.
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2.5 Contributions
The work described in this chapter is available in the following preprint:

Debès, C. et al. Aging-associated changes in transcriptional elongation influence metazoan
longevity. Preprint at https://doi.org/10.1101/719864 (2022).

All the experimental work was done by the other authors of the paper, from the groups of Linda
Partridge, Argyris Papantonis, Adam Antebi, Roman-Ulrich Müller, Bernard Schermer and Thomas
Benzing. Isabell Brusius performed the LeafCutter splicing analysis (Figure 2.3a). Cedric Debès
wrote the code for the slope estimation method and circular RNA fraction calculation from RNA-seq
reads. He also calculated the transcriptional mismatch level changes (Figure 2.3c), analyzed gene
expression changes (Supplementary Figures 2.5, 2.6 and 2.7) and created Supplementary Figure
2.10. I performed the rest of the bioinformatics analyses, including the definition of intronic regions,
Pol II speed calculation, 4suDRB-seq analysis, splicing efficiency estimation, circular RNA detection
and MNAse-seq analysis. I wrote the manuscript together with Andreas Beyer and Cedric Debès.
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Chapter 3. Age-related changes in transcriptional
fidelity across tissues

3.1 Introduction
Protein synthesis is an error-prone process260. Errors in the amino acid sequence can cause defects
in cellular fitness261 and lead to the emergence of diseases262,263. Therefore, precision in the
mechanisms that maintain the faithful expression of our genetic code, like DNA replication,
transcription and translation, is vital. There have been numerous studies focused on the mutations
caused by DNA replication264, as they are heritable, and translation163,265, since the error rate of
translation is normally an order of magnitude higher than the one of transcription. Transcriptional
infidelity266 is less well studied, since there are technical limitations that inhibit the effort. However,
errors in transcription can have worse consequences than those in translation, since a single error
can be massively amplified267. As a consequence, if the error changes the function of a crucial or
long-lived protein, it can have a very significant effect on the fate of the cell or even the organism.
Previous studies have shown that an increase in the error rate of transcription can have very
deleterious effects on cellular homeostasis and cell fate in general5,11 and that transcriptional
infidelity can contribute to aging268 and aging-related diseases.

Precisely measuring the error rate of transcription of protein coding genes would therefore be
important to further our understanding of the causes and consequences of transcriptional infidelity
and its relation to aging. In vitro assays146,163 have estimated the error rate of Pol II to be around 1 in
10-5. However, in living organisms there are several factors (including but not limited to transcription
factors, DNA damage, chromatin structure and repair mechanisms) that may influence the real error
rate of transcription. Additionally, in vitro assays are limited in the spectrum of errors and sequence
contexts they can monitor269. As a result, in order to properly understand the effects of Pol II errors,
it seems it is necessary to study transcriptional fidelity in vivo.

Next generation sequencing technologies seem ideal for this task. After all, RNA-seq has already
been used to great effect to study DNA mutations and there is already a huge variety of published
datasets, which could be mined. Single-cell RNA sequencing data would be even more interesting,
since they would provide the ability to distinguish between cell types and thus study the
heterogeneity of transcriptional fidelity in tissues. Nevertheless, there are significant limitations
regarding the detection of mismatches in RNA sequences. This is partially due to the fact that the
step of reverse transcription has a much higher error rate compared to RNA synthesis, effectively
masking transcriptional mistakes270. This issue is compounded by the fact that there are two other
processes that can artificially inflate the calculated error rate: PCR amplification and sequencing.
Both of those steps can cause significant artifacts174. While there are sequencing approaches that
significantly increase error rate estimation accuracy, like NET-Seq180 and CirSeq176–178, they are
technically challenging179 and they cannot be used for standard published bulk or single-cell
RNA-seq data.
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In order to overcome these obstacles, we have developed scErrorRate, the first tool that can
perform in vivo transcriptional error rate estimation from scRNAseq data. Using barcoded
scRNAseq alignment files, a list of cell barcodes and a GTF file of the transcriptome, scErrorRate
leverages the presence of UMIs (unique molecular identifiers) in single-cell data to identify
sequence mismatches on a single-molecule level. UMIs are used to create a consensus sequence
for the mRNA molecules from the barcoded reads and the molecular sequences covering the same
part of the transcriptome are compared and the error rate for each cell is calculated.
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3.2 Results

The detection of mismatches between aligned reads and the reference genome is a simple
operation. Determining which of them are caused by Pol II infidelity is a more complicated affair,
since transcriptional errors account for a small percentage of the detected mismatches. The rest of
them are caused by (1) DNA polymorphisms, (2) sequencing mistakes (whether reverse
transcription errors, PCR errors or alignment errors), (3) RNA editing and (4) RNA.

To enrich real transcriptional mistakes, scErrorRate generates consensus reads for every RNA
molecule from single-cell RNA sequencing data. This is based on the link between the reads and
the original mRNA derived from the unique molecular identifier of each read, a randomized
nucleotide sequence that is distinct for each RNA molecule. UMIs have been widely used to
generate more accurate estimations of gene expression in single-cell experiments, since they
facilitate the detection and removal of PCR duplicates182,271. Given sufficient reading depth, UMI
tags can be leveraged to create a consensus sequence for each molecular identifier, eliminating
artifacts caused by sequencing mistakes. This happens in two steps. First, a pileup table is created
from the reads of every cell. Then, a proofreading step is applied on the pileup, creating a
consensus sequence per cell per UMI per position. The RNA sequences covering the same part of
the transcriptome are then compared to each other. After filtering out mismatches among the
sequences that are likely to be caused by DNA polymorphisms and RNA editing, true mistakes can
be detected with higher accuracy (see 3.3 for more detail). It is worth noting that the pipeline cannot
distinguish between mistakes caused by reverse transcription and transcription errors. Howeve,r for
relative comparisons, if the different samples were always handled together in the same batch, the
possibility that consistent differences in the error frequency are due to technical biases during
RT-PCR can be excluded.

Figure 3.1: A visual representation of the idea behind the transcription error detection pipeline. The
pipeline identifies transcriptional mistakes by leveraging the UMI information present in droplet-based single
cell RNA-seq data to construct consensus mRNA sequences. (a) If there is a DNA polymorphism, either a
single nucleotide polymorphism or an error in the DNA sequence, the error will be present in multiple
transcripts (but not necessarily all of them, given the existence of heterozygous polymorphisms). If a
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mismatch between consensus sequences appears more than one time, it is removed. (b) If there is a
sequencing mistake, whether because of PCR amplification or because of the introduction of a base miscall
from the Illumina machine, it is unlikely to be present in all reads that come from the same transcript. During
the construction of the consensus sequence, these errors are thus eliminated. (c) If an error happens during
transcription, it will be present in all the reads of the transcript, meaning the reads with the same UMI. It can
be detected by comparing the consensus sequences of different UMIs covering the same genomic region.

ScErrorRate generates a cell-error matrix with the absolute counts of positions with errors (nerr),
positions without errors (ncon) and the error rate (ER=nerr/nerr+ncon) and a cell matrix containing the
ner, ncon and ER of every type of misincorporation error. Optionally, it can create tables with the exact
positions of the epimutations and error coverage plots for specified regions or classes of genes,
measure the frequency of specific motifs and generate an R object that can be incorporated in
standard scRNAseq analysis and visualization. Strengths of scErrorRate, beyond the fact that it is
the first tool to estimate RNA epimutations from scRNAseq data, include the uncomplicated format
of its input and output, its explicit and user configurable capabilities for extraction of cell barcodes
and quality filtering and its interoperability with Seurat272. Its output can be used for a variety of
downstream analyses.

We used publicly available data reporting single-cell transcriptomics measurements during aging to
test the transcriptional error pipeline. Tabula Muris Senis273 or ‘Mouse Ageing Cell Atlas’ contains
scRNAseq data from 23 tissues and organs across the lifespan of Mus musculus. We chose spleen
samples from 1-month-old and 30-month-old mice, produced through droplet-based cell isolation
paired with sequencing of the 3′ end of transcripts. The raw sequencing files were realigned and the
cells were filtered to remove barcodes corresponding to empty droplets and doublets (Methods).

46



Figure 3.2: ScErrorRate workflow.

One possible caveat of scErrorRate is that it may be unable to differentiate between errors and
RNA editing or other post-transcriptional modifications. The most common RNA editing in
metazoans is adenosine-to-inosine (A-to-I) editing, in which the deamination of adenosine
ribonucleotides to inosines is catalyzed by the adenosine deaminase acting on RNA (ADAR) family
of genes274,275. More than 99% of edits occur in Alu repeats and the majority are A-to-I, which
appear as A-to-G transitions by RNA-seq. RNA editing mostly happens co-transcriptionally8,276, but
deamination of nucleobases in RNA can also be the result of spontaneous deamination and
nitrosative stress277. To evaluate the pervasiveness of deamination caused by post-transcriptional
RNA damage and RNA editing events, we generated a scRNAseq dataset with a novel nascent
RNA-seq protocol. Usually, the capturing and barcoding of scRNAseq is performed through reverse
transcription of their poly (A) tails278. To capture nascent RNA instead, the previously established
“factory RNA-seq” protocol84 was used to capture nuclei rich in nascently-transcribed RNA
molecules from proliferating and senescent HUVEC cells. DNase digestion was used to remove
chromatin that was not being actively transcribed. Polyadenylation of nascent transcripts was
performed, followed by standard library preparation for the 10X Genomics platform. The files were
aligned and filtered as described in the methods.

We explored an assortment of different scErrorRate applications on the different samples. For all
samples, gene expression was estimated from the STARsolo output, and normalized and scaled
with scTransform. For the published dataset, we used the same cell type annotation and clustering
as in the original publications. Despite the fact that the original study used CellRanger to align the
data, dimensional reduction and clustering clearly separated the dataset in the originally annotated
cell types (Supplementary Figure 3.1). For the HUVEC nascent RNA-Seq data, we performed
filtering as described in the method section.

For all samples, the number of detected mistakes per cell is significantly correlated with the number
of UMIs and number of genes per cell, but not with the cellular proportion of mitochondrial reads
(Supplementary Figure 3.2). The error rate itself is uncorrelated with all the previously mentioned
cell metrics (Supplementary Figure 3.3). When we compare the proliferating cells to the senescent
ones, we observe a statistically significant increase in cellular error rate (Figure 3.3a). Furthermore,
the overall average error rate, calculated by dividing the number of mistakes in all the cells in a
sample by the total coverage of that sample, is higher in the senescent sample compared to the
proliferating one (Figure 3.3b). Similarly, in the spleen dataset, we observe that the error rate
increases with age in all old replicates.
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Figure 3.3: Changes in transcription error rate with senescence and aging. (a) Distributions of error
rates in HUVEC cells. The difference in error rates between proliferating and senescent cells is statistically
significant (unpaired Wilcoxon test, p-value = 2.13e-10). (b) Mean error rate of transcription in proliferating
and senescent human cells. (c) Distributions of error rates in spleen cells. The difference in error rates
between young and old cells is statistically significant (unpaired Wilcoxon test, p-value < 2.2e-16). (d) Mean
error rate of transcription in young and old spleen samples.

Using a next generation sequencing method for error detection instead of a gene reporter assay
allows genome-wide detection of transcription errors and localization to specific transcripts. Indeed,
the detected errors span the entire human genome (Supplementary Figure 3.4). The number of
errors per chromosome does not correlate with chromosomal length, but it does correlate with the
chromosomal coverage of the consensus sequences. One issue with using scErrorRate on 10x
sequencing data is that errors were mostly detected at the 3’ end of the gene. This limits the
potential to derive conclusions about which transcript regions are most affected (Supplementary
Figure 3.5). We then calculated the error rate per gene. Within genes, error rate is not significantly
correlated with gene expression (Figure 3.4a,b). Aging significantly increases the average error rate
in coding genes in both the HUVEC and spleen datasets.
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Figure 3.4: Genewise error rate. Genes were binned according to expression per sample in three categories
of equal size in (a) HUVEC and (b) spleen cells. Senescence and aging significantly increase the average
gene error rate in the (c) HUVEC and (d) spleen dataset (Wilcoxon rank sum test in HUVEC: p-value=
1.467e-14, Wilcoxon rank sum test in spleen=0.0004197). Genes were included if there was at least one
mistake detected in one of the samples.

Finally, in order to better understand the molecular mechanisms that affect Pol II error rate, we
investigated its error spectrum in greater detail. Specifically, we examined whether the primary
sequence of the human genome affects mistake incorporation by computing the error rate on all
nucleotides. Every kind of misincorporation increases its frequency with senescence in both
samples (Figure 3.5). The error spectrum in the spleen matches what has been previously reported;
transitions occur more often than transversions175 and the most common error is C-to-U. This has
been previously reported in human cells, yeast and worms175,179,279. However, the error spectrum in
HUVEC cells is substantially different; U-to-G is the most common reported mismatch, especially in
senescent cells. It is possible that a fraction of the C-to-U RNA mutations observed in our polyA
data is a result of deamination, either enzymatic or spontaneous, instead of transcriptional
misincorporations.

49



Figure 3.5: Spectrum of error types. The frequency of each RNA error type was determined by the number
of errors observed over the total number of observations (number of positions in the consensus sequences) of
the wild-type nucleotide in the (a) HUVEC and (b) spleen datasets.
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3.3 Materials and methods
Pre-existing single-cell RNA-seq dataset

Spleen fasta sequencing data from the Tabula Muris Senis dataset were downloaded from a public
AWS S3 bucket (https://registry.opendata.aws/tabula-muris-senis/). The mice and organ collection,
tissue preparation, and the specifics of the 10x Genomics sequencing protocol are described in
detail in the original study. Briefly, single cells were captured in droplet emulsions using the
GemCode Single-Cell Instrument and scRNA-seq libraries were constructed as per the 10x
Genomics protocol using GemCode Single-Cell 3′ Gel Bead and Library V2 Kit. Libraries were
sequenced on the NovaSeq 6000 Sequencing System (Illumina).

Single-cell nascent RNA sequencing

Proliferating and senescent HUVEC cells were washed once in an isotonic near-physiological buffer
(PB) that maintains the cells’ transcriptional activity and subjected immediately to the first steps of
the “factory RNA-seq” protocol238. In more detail, cell nuclei are gently isolated using PB+0.4%
NP-40, DNase I-treated at 33°C for 25 min to detach most chromatin, pelleted and washed once in
ice-cold PB, before polyadenylation of nascent RNA280. Next, ~2,500 cells from each state were
loaded onto the Chromium 10X Genomics platform for encapsulation in oil droplets and generation
of barcoded cDNA libraries from individual nuclei as per manufacturer’s instructions.

Data pre-processing

The fasta files were aligned to the mouse (mm10) and human (hg38) genome with the STARsolo281

module of STAR v.2.7.8a, using the following parameters: --soloType Droplet --soloUMIfiltering
MultiGeneUMI --soloCBmatchWLtype 1MM_multi_pseudocounts --outSAMtype BAM
SortedByCoordinate --soloFeatures GeneFull --outSAMattributes CB UB GX GN
--readFilesCommand zcat. StarSolo was also used for read-to-gene assignment, cell barcode
demultiplexing with knee filtering, error correction, and unique molecular identifier (UMI) collapsing.

Gene expression was estimated from the filtered read count matrix output by STARsolo, and
normalized and scaled using the sctransform282 function of Seurat272. For cell type determination of
the spleen data, we used the cell_ontology_class column within the metadata table contained in the
h5ad files of Tabula Muris Senis (https://doi.org/10.6084/m9.figshare.8273102.v2).

Pipeline data input

In order to run the pipeline, three files are necessary: the position-sorted, UMI-based scRNAseq
alignment file, a file containing a list of error-corrected cell barcodes and a Gene Transfer Format
(GTF) file of the transcriptome. The alignment files can be in either SAM or BAM format. The UMIs
must be either under a specified read tag (CB by default) or in the read name. In the second case, a
regular expression must be provided to extract the barcode from the name. SAMtools283 convert the
files into BAM if they are SAM and index them. The cell barcode file should be a one-column text
file containing the cell barcodes of interest. The pipeline can technically be run without a cell
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barcode file, but it is highly recommended to first find the cell barcodes that correspond to real cells.
The vast majority of barcodes contain very few reads and are produced from empty droplets,
especially in 10X sequencing. If alignment is performed with CellRanger185 or STARsolo281, a filtered
list of barcodes, corrected for sequencing errors, is produced by default. The GTF file has to be
from the same genome annotation and genome version used for alignment for accurate results.

Pipeline workflow

The R parts of the pipeline were developed in R 4.2.2.

1. Splitting the BAM file
Specified read tags or the read name are used to parse the alignment file to create separate bam
files for individual cells. This process is performed with Sinto 0.9.0 (https://github.com/timoast/sinto).
The files are then indexed with SAMtools283.

2. Pileup

A pileup consists of a summary of the reads overlapping each genomic position, differentiating on
nucleotide, strand and position within the read. Since every read is associated with a specific UMI,
every nucleotide can also be tagged with the UMI it corresponds to and thus the molecule from
which it was derived. This step goes through all the reads and generates a dataframe with the
nucleotides in each position (chromosome, location and strand), the UMI sequence, the cell
barcode, the sequence quality score and the mapping quality score. Reads from mitochondrial
genes are excluded from the analysis, since each cell contains between 1000 and 10,000 copies of
the mitochondrial genome284. Ambiguous nucleotides, deletions and insertions are removed by
default. After completing the pileup, the pipeline generates an .rds file. This file can be used to try
different parameters for the consensus sequence and error calling steps.

3. Consensus sequence calling

This step consists of collapsing all reads tagged with the same UMI into a single read. The purpose
of this step is to reduce the number of false positive calls, either from PCR amplification or
sequencing errors. All reads tagged with the same UMI should be produced by the same mRNA
molecule and thus reads from the same genomic position should have the same nucleotide
sequence. If there are mismatches between reads from the same UMI, they can be attributed to
sequencing or amplification artifacts.

By default, positions with less than 5 reads are filtered out, since it is impossible to determine
whether a mismatch is an artifact if the coverage is too low. If the sequencing depth per cell is very
high, increasing this threshold is possible. To calculate the consensus read per UMI, there are two
parameters that are used: the frequency of the nucleotide in each position and the quality of the
sequence. Each position in a read is associated with a quality score in ASCII format. It can be
converted to a Phred score format by subtracting an offset value (33 in modern Illumina
sequencers) from the numeric value of the ASCII character in the QUAL field. A higher Phred score
in a read position corresponds to a lower probability of an incorrect base call in that position.
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Two methods of consensus read collapse have been implemented in the pipeline:

1) The nucleotide with the highest frequency is taken as the consensus. If there are more than
two types of nucleotides in one position (for example, A, C and G at the same coordinates),
the position is removed to increase stringency and decrease the number of positions where
mapping is ambiguous. In case of a tie in frequency, the position is also discarded by
default. The mean quality score (Phred score) per position of the most frequent nucleotide is
also calculated and the user can optionally also filter based on it.

2) The sum of the Phred scores of each nucleotide per position is calculated. The consensus
nucleotide is the one with the highest sum of scores. The rest of the filtering steps are the
same as the first method.

The second method was developed in case there is a position where one nucleotide exists in
multiple low quality reads vs. another which exists in fewer high quality reads and we wanted the
second. In practice, there is practically no difference between the two methods.

4. Transcriptional error detection

Positions covered by less than five consensus reads are discarded. Positions of known RNA
editing sites are annotated through the REDIportal database285 and removed. If a mismatch
between the consensus reads has a frequency of more than one, then the position is discarded to
avoid detection of errors caused by DNA polymorphisms or DNA damage. All other mismatches
among the consensus reads are retained and their positions, type and surrounding nucleotides are
stored. Error frequencies are detected by (a) dividing the number of genomic positions with
mismatches in the consensus reads by the total number of positions that pass the filtering criteria
and (b) dividing the number of mismatched nucleotides in the consensus reads by the total number
of nucleotides. Method (a) was exclusively used for this analysis since the rates detected with (b)
were highly correlated with the read coverage in each cell.

The calculation of the error rate per individual cell is noisy, because scRNAseq data are rife with
dropout events and the low coverage increases the possibility that a transcriptional mistake will not
be captured. If two samples differ in coverage, then the sample with a lower number of reads is
more likely to have cells with zero transcription error rate. The mean or median error rate for a
custom group of cells, either the whole sample or a cluster, can also be calculated from the output
of the pipeline.

Localization of errors in genes and genome coverage plots

For genome annotation, the latest CellRanger GTF file was used. It is a subset of ENSEMBL
annotations, with several gene biotypes removed (mostly small non-coding RNA). Genes were
selected from that GTF using the R package rtracklayer286. To find the overlaps between the
positions of transcription mismatches/consensus genome and the genome, we used the R package
GenomicRanges287.
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3.4 Discussion
scErrorRate is the first pipeline developed to measure the relative fidelity of RNA metabolism from
scRNAseq data. It detected an increase in error rate with aging in mouse data and senescence in
HUVEC cell culture. This is consistent with previous experiments that showed that transcription
errors increase with age in yeast5. However, this is the first time that an increase in error rates with
aging was demonstrated in mouse and human cells. Since problems in RNA metabolism can
perturb several basic biological processes that are key to human aging, including proteostasis,
metabolic pathways and NAD metabolism162, this finding can provide key insight into the biological
basis of aging and age-related diseases.

scErrorRate also has the advantage that it operates on any UMI-based single cell RNA-seq dataset,
unlike other approaches that require circle sequencing data. Additionally, the method can derive
more accurate error rate estimates by summarizing information from a specific population of cells.
When combined with cell clustering and cell type identification, it allows the comparison of error
rates between different cell subpopulations.

One caveat is that the method cannot distinguish between true transcriptional misincorporations
and errors caused by the process of reverse transcription during library construction. The reverse
transcription process is error-prone, with the error rate dependent on the fidelity of the enzymes
used. Because it lacks proofreading activity, a reverse transcriptase has an expected error rate of (6
x 10–5 to 6.7 x 10–4)288, which is much higher compared to the expected error rate of Pol II (4.9 ×
10−6 to 5.6 × 10−5)162,175,179. If the same RNA molecule is not transcribed multiple times, like in the
rolling circle assays, then reverse transcription errors are expected to dominate in a standard
RNA-seq library, which would make absolute estimation of error rate impossible. Nonetheless, when
comparing samples from the same sequencing batch, the background noise caused by reverse
transcriptase mistakes should be similar between samples. Relative differences in errors can be
attributed to differential Pol II transcription accuracy and post-transcriptional RNA modifications. In
any case, despite not correcting for RT errors, the error frequencies derived from polyA data are
very similar to previously published data.

While the method was used specifically for aging data, its potential uses are broader. Transcription
errors may contribute to diseases through multiple mechanisms. For instance, there is strong
evidence that transcription mistakes have a direct, mechanistic effect on cancer266. They can
facilitate oncogenesis by reducing the function of tumor-suppressor genes159 or inducing cell cycle
progression289. In later stages, they could potentially promote tumor evolution by increasing the
phenotypic heterogeneity of tumor cells. Furthermore, cancers are characterized by increased
levels of transcription and replication, which could make individual cells more susceptible to the
consequences of error-prone transcription, since error-related backtracking can increase replicative
stress through collisions of the different protein complexes290. Further study needs to be made on
the contributions of transcriptional infidelity to cancer progression. By applying scErrorRate on the
vast numbers of publicly available scRNAseq datasets from cancer tissue, we can tackle important
questions in the field.
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3.5 Contributions
The work described in this chapter is unpublished.

The group of Akis Papantonis generated the nascent scRNA-seq data. The provenance of the
publicly available spleen data is detailed in the methods. I wrote this section and performed all the
coding and analyses.
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Chapter 4. General discussion
Analyzing the age-related changes to the molecular mechanisms of transcription and understanding
their downstream effects on the composition of the transcriptome is an important avenue of
research for both basic and clinical research. In the work presented here, we

1. observed an increase in elongation rate with aging and investigated its causes and
consequences (Chapter 2)

2. created a pipeline to investigate RNA epimutations from single cell RNA sequencing data
(Chapter 3)

4.1 The effects of aging-associated changes in
transcriptional elongation on metazoan longevity
The estimated age-associated changes in Pol II speed are remarkably consistent across different
metazoan species and cell types. Consequently, a mechanistic explanation of the changes would
need to be a phenomenon that is observed in all eukaryotes. One of the potential causes that was
investigated in this dissertation was the age-related alteration of the chromatin landscape. It is
known that constitutive heterochromatin domains that are established early in development break
down with aging and that senescent cells experience global heterochromatin loss.291,292 A global
reduction in heterochromatin could increase the average speed of Pol II by relaxing the chromatin.

This is further supported by the fact that a global reduction in core histone proteins is one of the
hallmarks of aging4. Replicative aging in budding yeast is accompanied by a dramatic reduction in
histone protein levels222. This reduction is also observed in aging worms293, senescent human
cells294 and replicative aging human fibroblasts295. We showed that histone overexpression can
increase chromatin compaction and decrease transcription speed, so it is reasonable to assume
that the age-associated global decrease in histone protein levels would have the opposite result.
We also showed that H3 overexpression increases proliferative lifespan in IMR90 cells, in
agreement with previous results in worms296 and yeast222.

It should be noted however that our work has not proved that histone loss or changes in chromatin
density is the primary cause for the observed speed increase in all studied organisms. While the
loss of core histones accompanies aging in many organisms, it still hasn’t been observed in vivo in
mitotic mammalian transcripts. MNAse-seq in aged murine liver did not find any global reduction in
nucleosome occupancy297. This result agrees with another recent study in multiple mouse tissues
which actually showed that there was no drastic decrease in H3 expression levels298. Even if there
is a global reduction in core histone expression with aging in mammals in some tissues, we haven’t
conclusively demonstrated that it would be sufficient to increase transcription speed.

4.1.1 Limitations

56



Some of the RNA Pol II-associated factors that control elongation rate also have an effect on aging
and longevity. MYC, one of the four Yamanaka factors, is required for fast transcription elongation79

and its depletion increases longevity and healthspan299. Depletion of the RecQ helicase RECQL5,
which maintains genome stability by taking part in multiple DNA metabolic processes, increases
elongation speed75. PNUTS-PP1, which negatively regulates elongation speed, is repressed in
senescent cells300. The change in expression of these proteins during aging would potentially
directly affect Pol II speed, explaining at least partially some of the changes that we observe.
Additionally, given that these factors are associated with various crucial cellular processes, some of
the observed effects of the acceleration of transcriptional elongation might be caused by the
age-related changes in their expression.

The slope used to estimate Pol II speed is also dependent on the initiation rate n, defined as the
number of polymerases initiating transcription per unit of time. Slope and n are directly correlated,
so if n significantly decreases with aging, we would also expect to see on average shallower slopes
of read distributions. Reduction of n would mean that either:

1) the loading of the polymerase and the assembly of the pre-initiation complex happens more
slowly

2) promoter-proximal pausing lasts longer, presumably because of less efficient pause release.
3) promoter-proximal termination occurs more often, decreasing the number of elongating

molecules per unit of time
4) some combination of the three

According to a recent study by Bozukova et al301., a strong decrease in promoter-proximal pausing
was observed in NET-SEQ data from aged murine liver. Even though initiation rates cannot be
directly estimated, the data points towards increased initiation rates and reduced proximal pausing
in aged tissues, which would globally decrease estimated elongation rates. However, the same data
also suggests that the frequency of promoter-proximal termination increases with aging. Further
work would need to be done to understand the impact of initiation on our results.

4.1.2 Future directions
The focus of our research so far was on global increase of elongation rate, since our method is too
noisy to accurately estimate speed changes on the gene level. However, chromatin and histone
modifications can change locally, depending on the cellular environment. This can affect elongation
rate and thus the production of specific transcripts, by altering splicing, termination or circular RNA
formation. Understanding the mechanisms behind such changes and the stimuli that trigger them
would provide insight into the effects of regulated speed change. It would also be interesting to
investigate global and local variability in Pol II speed during development, given the evidence that
altered elongation rate can be embryonically lethal131 in mice and non-viable in plants132.

Furthermore, it would be interesting to investigate how epigenetic factors affect Pol II speed using
our total RNA-seq dataset. There are publicly available databases containing the locations of
epigenetic modifications and ATAC-seq peaks, such as the one provided by the ENCODE project302,
that can be used for this purpose. Similarly, we can investigate how the presence or absence of
DNA binding proteins affects the estimated elongation rates.
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4.2 Age-related changes in transcriptional fidelity
across tissues
In chapter 3, we presented ScErrorRate, the first method to estimate transcriptional error rates from
single-cell RNA-seq data. By taking advantage of the presence of unique molecular identifiers in the
dataset, our method avoids the laborious process of tandem repeat methods and is applicable to
any public or newly generated UMI-based scRNAseq dataset.

Despite the expected increase in noise by not correcting for reverse transcriptase errors, the error
spectrum we derive from polyA data is similar to previous results that use circle sequencing to
account for the infidelity of reverse transcription. This is surprising, given that the estimated error
rate of RT is at least an order of magnitude greater than Pol II. It is worth noting however that a fully
satisfactory method to determine fidelity of RNA-dependent DNA synthesis by RTs is still missing.
Most fidelity estimates either lack a way to differentiate between transcription and reverse
transcription errors303–305 or have been obtained from DNA-dependent DNA polymerization assays
of the enzyme288,306. A recent study based on M13 lacZ forward mutation assays showed that
RNA-dependent DNA polymerization error rates had values in the range of 2.5 x 10–5 to 3.5 x 10–5.
This range is closer to the reported RNA polymerase transcription error rates, which indicates that
the errors introduced by RNA polymerase, either T7 or the equivalent enzymes used for in vitro
transcription, inflate the estimated inaccuracy of reverse transcription.

The difference we observe in the error spectrum of nascent RNA-seq data is also remarkable. It
cannot be attributed solely to differences in RNA editing. Firstly, from what is known, RNA editing
takes place mostly co-transcriptionally8,307 and is responsible for changes in alternative splicing308,309.
Second, while A-to-I editing events are prevalent, there is much less evidence of widespread C-to-U
editing, which is the most common type of error in the spleen data and in previous publications.
Further studies are necessary, altering the expression of deaminase enzymes or modulating
nitrosative stress to clarify how much deamination contributes to C-to-U RNA mutations.

This is also the first time increased genome-wide transcriptional infidelity with aging and
senescence has been directly measured in higher organisms. Previous research has shown that an
increase in transcriptional mistakes increases cytotoxic stress and negatively affects lifespan in
yeast5. If this is also the case for humans, it could have significant implications for aging-related
diseases. There are several potential mechanisms that could explain why aging leads to decreased
transcriptional fidelity. One of them is oxidative stress. DNA damage accumulates in cells with
aging310, partially because age-related defects in respiration create oxidative DNA lesions311,312.
These lesions can significantly increase misincorporations during transcription13,313. For example,
the modified guanine 8-oxoguanine, which results from oxidation of normal guanine, causes a
C-to-A transversion when transcribed314. This transversion has been associated with a reduction in
splicing fidelity315 and α-synuclein aggregation316. Another potential mechanism is the age-related
increase of Pol II speed; increased speed of elongation is linked with reduced Pol II precision141.
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4.2.1 Limitations
ScErrorRate, while functional, is not yet well optimized. Running it on a single sample currently
takes more than a day. The most time consuming step is the pileup process, which is currently
processed in R. Implementing the step in C would drastically reduce processing time and make the
pipeline more accessible for broader use.

Regarding the effects of aging on transcriptional fidelity, our results are still preliminary. We have
only tested scErrorRate on two samples, so there might be unknown technical issues that influence
our results. Further testing on the multiple available aging datasets is required to strengthen our
conclusions. The rest of the Tabula Muris Senis dataset would be a good candidate; it provides a
deep characterization of the aging transcriptome on a single cell level, including animals of multiple
ages, from 1 months to 30 months old. The Calico study19 is also of interest, as it contains kidney,
lung and spleen 10x sequencing data from young and old mice.

4.2.2 Future directions
Potential integration of other information layers would provide more insight into the mechanisms
behind transcription errors. Recently, single cell ATAC-seq has been applied in droplet-based
platforms317, allowing the integration of expression data with an assessment of the chromatin status
of each cell. Applying our method on combined scRNAseq/single-cell ATAC-seq data would
elucidate the effects of DNA accessibility on the error rate of transcription.

There is some evidence160 that transcriptional infidelity increases splicing defects. 10x sequencing is
not suitable for investigating the effects of Pol II errors on splicing, as it provides limited coverage of
the transcripts. New methods have been developed in the last few years that combine full-length
transcript coverage and UMI information, like Smart-seq3187. Using scErrorRate on reads spanning
exon-intron junctions in combination with an isoform-level analysis could expand our understanding
of the splicing mechanisms.

Changes in elongation rate could potentially have an effect on transcriptional fidelity, but this has
never been experimentally demonstrated in vivo in a conclusive fashion. If we perform single-cell
analysis on Pol II slow or fast mutants, not only would we obtain insight on a single-cell level on the
molecular mechanisms behind the changes we observe in lifespan, but we could also use
scErrorRate to see how alterations in elongation rate affect transcriptional errors.

Finally, there is no reason to limit the application of our method to aging and aging-related diseases.
It can be used to map transcription errors in different species and tissues, under different conditions
(environmental stresses or DNA mutations) and to investigate the consequences of specific errors.
It would be interesting to discover the phenotypic effects of transcriptional infidelity and try to
uncover the mechanisms underlying them.
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Appendix A: Supplementary Figures

Supplementary Figure 2.1: PCAs of slopes of intronic read distribution. Principal component analysis
(PCA) of the slopes of C. elegans ((a) wt 21 d vs 1 d; (b) 14 ama-1(m322) d vs wt 14 d), D. melanogaster ((c)
wt heads 50 d vs 10 d, (d) RpII2154 heads 50 d vs wt 50 d), M. musculus ((e) kidney: 24 mo vs 3 mo), H.
sapiens ((f) Progeria: WT vs progeria mutants, (g) HUVEC and (h) IMR90: Senescent vs Proliferating).
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Supplementary Figure 2.2: Scatterplots of intronic slope (-log10) for each condition and species (C.
elegans, D. melanogaster, M.musculus, R. norvegicus, H. sapiens).

Supplementary Figure 2.3: Consistency of RNA Pol-II speed changes. (a) Change of elongation rate with
aging or senescence in introns of C. elegans, D. melanogaster, M. musculus and H. sapiens, before and after
filtering for introns that consistently change in speed in all replicates. (b) Change of elongation rate with
mutations that slow down the speed of RNA-Pol-II in introns of C. elegans and D. melanogaster before and
after filtering for introns that consistently change in speed in all replicates. (c) Comparison of the change of
elongation rate with aging between IMR90 and HUVEC using the same introns.
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Supplementary Figure 2.4: 4SU-DRB labeling and TUC conversion to calculate RNA-Pol-II elongation
rate. (a-c) Schematic representation of the 4SU-DRB labeling (a), TUC conversion (b) and elongation rate
calculation (c). (d) Percentage of mismatches in every time point of the experiment (0 mins, 15 mins, 30 mins,
45 mins) in one of the proliferating replicates. There is a noticeable increase in A-to-G and T-to-C mismatches
in the last two time points.
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Supplementary Figure 2.5: Genes with increase in Pol-II speed are associated with metabolism and
catabolism related pathways. GO enrichment analysis of genes with increased Pol-II speed across species:
C. elegans (21 d vs 1 d), D. melanogaster (heads: 50 d vs 30 d), M. musculus (kidney: 24 mo vs 3 mo), R.
norvegicus (liver: 24 mo vs 6 mo), H. sapiens (IMR90: Senescent vs Proliferating). GO enrichment of (a), top
200 (b), top 300 genes with an increase in Pol-II speed change for each species (common terms between the
two sets in bold). Color scale indicates the significance of the enrichment (all GO terms enriched with
p-values below 0.05, with at least 10 significant genes for each GO categories, Fisher elim test).
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Supplementary Figure 2.6: Heatmap of differential expression (log2 fold change) of MSigDB (61)
annotated genes for ‘regulation of DNA templated transcriptional elongation’. Top: activators of
transcriptional elongation (POSITIVE); Bottom: repressors of transcriptional elongation (NEGATIVE). Data
shown for WT aging time courses: worm (21 d vs 1 d), fly heads (50 d vs 10 d), mouse liver (27 mo vs 5 mo),
mouse kidneys (24 mo vs 3 mo) and human fibroblast cell line (IMR90: Senescent vs proliferating).
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Supplementary Figure 2.7: Functional enrichment for across-species differential expression analysis.
GO enrichment for consistently down-regulated (top) or up-regulated (bottom) genes across species during
aging (left) or ‘aging intervention’ (right) (aging up-regulated: 92 genes; aging down-regulated: 71 genes;
‘aging intervention’ up-regulated: 164 genes; ‘aging intervention’ down-regulated: 473 genes; as background
for the enrichment analysis a set of 4784 orthologue genes between H. sapiens, R. norvegicus, M. musculus,
D. melanogaster, C. elegans was used. All p-values *P < 0.05, significant genes > 10, fisher elim test). GO
terms related to transcription and splicing are indicated in bold.
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Supplementary Figure 2.8: Slowing down Pol-II in C. elegans increases lifespan. (a) Survival of
wild-type and ama-1(m322) mutant worms conferring a slow Pol-II elongation rate (4 replicates, BR1:1.267, P
< 0,0001; BR2:1.23, P < 0.0001; BR3:1, P = 0.0342; BR4:1.263, P < 0.0001, log-rank test, Mantel-cox). (b) C.
elegans lifespan analysis after CRISPR/Cas9 mediated reversion of the slow RNAPII mutation. Survival
curves of the strain harboring the slow RNAPII mutation (ama-1 m322) and wild-type controls compared to
worms after CRISPR/Cas9 engineered reversion of the slow mutation back to the wild type allele (ama-1
syb2315). Animals with slow Pol-II have a significantly increased lifespan. CRISPR/Cas9 engineered
reversion restored lifespan essentially back to wild-type levels. (3 replicates; n > 300 per strain).
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Supplementary Figure 2.9: Slowing down Pol-II in C. elegans ameliorates the age-related decline in
pharyngeal pumping rates. Pumping rates of wild type N2 and ama-1 mutant worms were measured on day
1 and day 8. Pumping rates were not significantly different on day 1, but ama-1 worms showed higher
pumping rates compared to wild types on day 8, suggesting that the mutant worms are healthier at old age.

Supplementary Figure 2.10: Examples of rare splice site changes for gene Ezr and Rack1 with 3
replicates young (3.5 month) and old (26 month). Line thickness encodes the number of reads supporting this
junction. Rare splice sites are shown in green.
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Supplementary Figure 2.11: H3-GFP and H4-GFP overexpression in IMR90 cells. (a)Western blot
experiments confirm the overexpression of the H3-GFP and H4-GFP proteins. (b)Visual confirmation of the
Dox induction of H3/H4 expression and FACS sorting of GFP-positive cells. (c) Typical immunofluorescence
images of H3-GFP, H4-GFP and control IMR90 cells (left) show increased DAPI levels in histone
overexpression nuclei. Violin plots (right) quantify this reduction. N specifies the number of cells analyzed per
condition.
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Supplementary Figure 2.12: Variation of Pol-II elongation speed changes for different introns of the
same gene. Distribution of variances of Pol-II speed estimates (slope per intron) for introns within the same
gene. Average variance of speed estimates across all introns (i.e. between genes; global average) is shown
as a dashed vertical line for C. elegans (21 d vs 1 d; 14 daf-2 d vs 14 d), D. melanogaster (heads 50 d vs 30
d; 50 d vs 10 d), M. musculus (kidney: 24 mo vs 3 mo; 3 DR mo vs 3 mo), R. norvegicus (liver: 24 mo vs 6
mo), H. sapiens (Umbilical vein endothelial (HUVECs); fibroblast fetal lung (IMR90): Senescent vs
Proliferating). The vast majority of intra-gene variances are below the average inter-gene variance,
suggesting that introns of the same gene have coupled Pol-II elongation speeds.
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Supplementary Figure 2.13: Protein biosynthesis rates do not change with aging in Drosophila.
Ex-vivo S35 incorporation assay shows no significant difference in translation rates in female fly heads
between wDah control and RpII215C4 mutants both at young (10days) and old age (50 days). N=5 biological
replicates with 25 heads per replicate.

Supplementary Figure 3.1: Visualization of the Tabula Muris Senis spleen dataset. Despite being
realigned with STARSolo, cells keep their original clustering.
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Supplementary Figure 3.2: Association between numbers of transcription errors per cell and cellular
features. The number of detected mistakes per cell in the HUVEC dataset is highly correlated with (a) the
number of UMIs per cell (Pearson correlation = 0.812, p-value < 2.2e-16), (b) the number of expressed genes
per cell (Pearson correlation = 0.717, p-value < 2.2e-16) and (c) the coverage of consensus sequences per
cell (Pearson correlation = 0.920, p-value < 2.2e-16). It is uncorrelated (Pearson correlation = 0.0029, p-value
= 0.962) with mitochondrial expression (d).
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Supplementary Figure 3.3: Association between error rate per cell and cellular features. The error rate
per cell in the spleen dataset is very lowly correlated with (a) the number of UMIs per cell (Pearson correlation
= 0.0856, p-value < 2.2e-16) and (b) the number of expressed genes per cell (Pearson correlation = -0.1422,
p-value < 2.2e-16). Similar low correlations with the number of UMIs (c, Pearson correlation = 0.165, p-value=
0.025) and genes per cell (d, Pearson correlation = 0.173, p-value =0.019) are found in the HUVEC dataset.

Supplementary Figure 3.4: Count of transcription errors across human (a) and mouse (b)
chromosomes.
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Supplementary Figure 3.5: Gene coverage of transcriptional errors. The coding genes were binned in
100 bins from 5’ end to 3’ end and the number of detected errors (a, c) and consensus sequence positions (b,
d) from every HUVEC and spleen cell were counted.
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Appendix B: Supplementary Tables

Species Comparison
Distance from

promoter
Intron length

Gene
expression
log2FC

Circular
RNA index

C. elegans 21 d vs 1 d 0.014 0.071 -0.266 -0.085
C. elegans 14 d ama-1 vs 14 d wt 0.008 -0.110 -0.247 0.160
C. elegans 14 d daf2 vs 14 d wt 0.020 0.007 -0.278 0.130

D. melanogaster 50 d vs 10 d -0.036 0.019 -0.023 0.019
D. melanogaster 50 d RpII215 vs 50 d 0.002 -0.091 -0.161 -0.043
D. melanogaster 50 d dilp 2,3-5 vs 50 d -0.133 -0.170 0.041 -0.092
M. musculus 24 mo vs 3.5 mo 0.011 0.043 -0.230 -0.045

H. sapiens
Senescent vs
Proliferating

(IMR90)
-0.021 0.046 -0.274 0.184

H. sapiens
Senescent vs
Proliferating

(HUVEC)
0.014 0.036 -0.289 0.020

Supplementary Table 2.1: Table of correlations (Pearson correlation) between the change in elongation rate

and characteristics of the introns in which the elongation rate was measured in selected RNA-SEQ datasets.

Species Tissue Enrichmen
t protocol

Sequencing
parameters

Paired-/single-end,
read length, millions

of reads (M)

Time points1 and
conditions

C. elegans Whole body TruSeq
Stranded
Total RNA

Library

Paired-end, 75 bp,
25 M

Day 1 (WT), day 7
(WT), day 14 (WT),

day 21 (WT)

Whole body TruSeq
Stranded
Total RNA

Library

Paired-end, 75 bp,
25 M

Day 14 (WT,
daf-2(e1370),
ama-1(m322))

Whole Body TruSeq
Stranded
Total RNA

library

Paired-end, 75 bp,
25 M

Day 1 (WT,
ama-1(m322))

1 Triplicate except where mentioned otherwise.
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D.
melanogaster

Head TruSeq
Stranded
Total RNA

Library

Single-end, 100 bp,
37.5 M

Day 30 (WT,
dilp2,3-5), Day 50

(WT, dilp2,3-5)

Head TruSeq
Stranded
Total RNA

Library

Paired-end, 75 bp,
30 M

Day 10 (WT,
RpII215C4), day 50

(WT, RpII215C4)

M. musculus Kidney TruSeq
Stranded
Total RNA

Library

Paired-end, 75 bp,
70 M

Month 3 (WT),
month 24 (WT)

Kidney TruSeq
Stranded
Total RNA

Library

Paired-end, 75 bp,
30 M

Month 3 (WT, DR)
(4 replicates)

Liver TruSeq
Stranded
Total RNA

Library

Paired-end, 75 bp,
37.5 M

Month 5 (WT, DR)

Liver TruSeq
Stranded
Total RNA

Library

Paired-end, 75 bp,
37.5 M

Month 16 (WT, DR)

Liver TruSeq
Stranded
Total RNA

Library

Paired-end, 75 bp,
37.5 M

Month 27 (WT, DR)

Blood TruSeq
Stranded
Total RNA

Library

Paired-end, 75 bp,
70 M

Month 5 (WT),
month 27 (WT)

Hypothalamus TruSeq
Stranded
Total RNA

Library

Single-end, 100 bp,
30 M

Month 26 (WT,
IRS1-/-)

R. norvegicus
(17)

Liver TruSeq
Stranded
Total RNA

Library

Single-end, 50 bp,
60 M

Month 6 (WT),
month 24 (WT) (2

replicates)
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Brain2 TruSeq
Stranded
Total RNA

Library

Single-end, 50 bp,
20 M

Month 6 (WT),
month 24 (WT) (6

replicates)

H. sapiens Fetal lungs
(IMR90)

Nascent
RNA

Paired-end, 75 bp, 25
M

Early passage, late
passage (2
replicates)

Fetal lungs
(IMR90)

TruSeq
Stranded
Total RNA

Library

Paired-end, 75 bp, 50
M

Early passage, late
passage (2
replicates)

Umbilical vein
endothelial
(HUVECs)

Nascent
RNA

Paired-end, 75 bp, 50
M

Early passage, late
passage (2
replicates)

Umbilical vein
endothelial
(HUVECs)

TruSeq
Stranded
Total RNA

Library

Paired-end, 75 bp,
100 M

Early passage, late
passage

Fibroblast
skin

TruSeq
Stranded
Total RNA

Library

Paired-end, 100 bp,
100 M

Progeria patient
(HSS) (2 replicates)

Paired-end, 75 bp,
100 M

Healthy donor,
sex/age matched

with progeria patient
(2 replicates)

Blood TruSeq
Stranded
Total RNA

Library

Paired-end, 75 bp, 70
M

Healthy donor, 6
females, 6 males,
age range: 21-70

Supplementary Table 2.2: Description of the RNA-seq datasets used in the study.

2 Not included in the analysis due to low coverage (bellow 1X genome coverage or 29 M
sequenced reads for R. norvegicus ; genome coverage calculated using Lander-Waterman formula)
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