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Abstract

For decades, physicists have been fascinated by frustrated magnetism. Frustration arises when
the pairwise interaction energies between localized magnetic moments in a system cannot be
minimized simultaneously. This competition prevents the formation of long range magnetic
order even at lowest temperatures and, eventually, leads to the hallmark of frustration in the
form of a massive ground state degeneracy accompanied by a finite zero-point entropy. Thus,
exotic magnetic analogs of ordinary fluids can be realized, where spins are highly correlated but
remain strongly fluctuating. Such spin liquids are linked to remarkable unconventional collective
phenomena, most notably emergent gauge fields and fractionalized quasi-particle excitations
that can be conceived as magnetic monopoles. In this thesis, we study the dynamics of such
quasi-monopoles in the presence of a magnetic field and address the question whether critical
fluctuations at a phase transition always slow down equilibration or, conversely, can also help
the system to thermalize. Employing large-scale dynamical Monte Carlo simulations, we show
that the latter—a critical speeding up—can indeed be observed in two prototypical classical spin
systems: dipolar spin ice in pyrochlore magnets and a Coulomb spin liquid in the triangular lattice
Ising antiferromagnet. For the former, we also establish a relationship between Monte Carlo
time and real time by comparing numerical and experimental data. Another part of this thesis
is concerned with systems in which further-neighbor interactions stabilize certain non-coplanar
magnetic orders. Such orders are particularly interesting because upon introducing quantum
fluctuations, they may possibly melt into a chiral quantum spin liquid. To this end, we study
two model systems that turn out to have non-coplanar classical ground states and are motivated
by the recent synthesis of a number of Mott insulating square-kagome materials as well as of
spin-1/2 maple-leaf lattice antiferromagnets. We explore the rich phenomenology of frustrated
magnetism induced by these two lattice geometries, including extensive degeneracies and order-
by-disorder mechanisms. For both models, we study an elementary, classical Heisenberg model
with nearest-neighbor and additional cross-plaquette interactions and discuss a multitude of non-
coplanar orders and spiral spin phases. Using extensive numerical simulations, we also discuss
the thermodynamic signatures of these phases, which often show multi-step thermal ordering.





Kurzzusammenfassung

Seit Jahrzehnten übt frustrierter Magnetismus auf Physiker*innen eine ungebrochene Faszination
aus. Frustration tritt auf, wenn die paarweisen Wechselwirkungsenergien zwischen lokalisierten
magnetischen Momenten in einem System nicht gleichzeitig minimiert werden können. Diese
Konkurrenz verhindert die Bildung einer langreichweitigen magnetischen Ordnung selbst bei
tiefsten Temperaturen. Daraus resultiert schließlich das Hauptmerkmal von Frustration in Form
einer massiven Grundzustandsentartung, die von einer endlichen Nullpunktsentropie begleitet
wird. Auf diese Weise lassen sich exotische magnetische Gegenstücke zu gewöhnlichen Flüs-
sigkeiten realisieren, in denen Spins zwar beträchtlich korreliert sind, aber dennoch stark fluktu-
ieren. Diese Spinflüssigkeiten sind mit bemerkenswerten unkonventionellen kollektiven Phänome-
nen verbunden, insbesondere mit emergenten Eichfeldern und fraktionalisierten Quasiteilchenan-
regungen, die als magnetische Monopole aufgefasst werden können. In dieser Arbeit untersuchen
wir die Dynamik solcher Quasi-Monopole in Anwesenheit eines Magnetfeldes und gehen der Frage
nach, ob kritische Fluktuationen an einem Phasenübergang die Gleichgewichtsbildung immer ver-
langsamen oder umgekehrt auch zur Thermalisierung des Systems beitragen können. Mit Hilfe
von groß angelegten dynamischen Monte-Carlo-Simulationen zeigen wir, dass das Letztere—ein
critical speeding up—in zwei prototypischen klassischen Spinsystemen tatsächlich beobachtet
werden kann: Dipolares Spin-Eis in Pyrochlor-Magneten und eine Coulomb-Spinflüssigkeit im
Ising-Antiferromagneten auf dem Dreiecksgitter. Für das erstgenannte System stellen wir auch
eine Beziehung zwischen der Monte-Carlo-Zeit und der realen Zeit her, indem wir numerische
und experimentelle Daten vergleichen. Ein weiterer Teil dieser Arbeit befasst sich mit Syste-
men, in denen Wechselwirkungen zwischen weiter entfernten Spins bestimmte nicht-koplanare
magnetische Ordnungen stabilisieren. Solche Ordnungen sind besonders interessant, weil sie
durch das Einführen von Quantenfluktuationen möglicherweise zu einer chiralen Quantenspin-
flüssigkeit schmelzen können. Zu diesem Zweck untersuchen wir zwei Modellsysteme, die nicht-
koplanare klassische Grundzustände aufweisen. Diese sind motiviert durch die jüngste Synthese
einer Reihe von Mott-isolierenden Quadrat-Kagome-Materialien und von Spin-1/2-Ahornblatt-
Gitter-Antiferromagneten. Wir erforschen die umfangreiche Phänomenologie des frustrierten
Magnetismus, der durch diese beiden Gittergeometrien hervorgerufen wird, einschließlich ex-
tensiver Entartungen und Ordnung-durch-Unordnung-Mechanismen. Für beide Modelle unter-
suchen wir ein elementares, klassisches Heisenberg-Modell mit Wechselwirkungen zwischen näch-
sten Nachbarn sowie zusätzlichen plakettenübergreifenden Wechselwirkungen. Dabei behandeln
wir eine Vielzahl von nicht-koplanaren Ordnungen und spiralförmigen Spinphasen. Anhand um-
fangreicher numerischer Simulationen erörtern wir zudem die thermodynamischen Eigenschaften
dieser Phasen, die oft eine mehrstufige thermische Ordnung aufweisen.
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Introduction
Chapter 1

’Frustration is the name of the game’—few could have imagined what an extraordinarily fasci-
nating field of research was born when Nobel laureate P.W. Anderson wrote this on a blackboard
in Aspen in 1976 [1]. Although not yet called frustrated magnetism, seminal studies of magnetic
systems, in which competing interactions render it impossible to find a unique ground state, date
back to as early as 19501. At that time Wannier and Houtappel investigated the prototypical
antiferromagnetic Ising model on the triangular lattice; they found that the system possesses
an extensive residual ground state degeneracy and does not develop any long range order in a
symmetry-breaking phase transition [4–6]. In another pioneering work, Anderson studied the
problem of antiferromagnetically coupled Ising spins on what is now commonly known as the
pyrochlore lattice [7]. Intriguingly, he linked it to the peculiar physics of proton ordering in
common water ice, which leads to exactly the same macroscopic number of ground states and
was explained by Pauling in 1935 [8, 9]. Since those early days, an exciting research area has
evolved, giving rise to a plethora of novel concepts and sophisticated numerical and analytical
tools that are now ubiquitous and indispensable in condensed matter physics.

Probably one of the most salient of these concepts is that of a classical spin liquid [10, 11].
This exotic phase of matter is a magnetic analog of an ordinary liquid: while in a magnetically
ordered system the spins are in a fixed arrangement with static order (similar to the constituents
of a conventional solid), in a spin liquid the constituent spins are highly correlated but remain
strongly fluctuating even at lowest temperatures. This negative definition by the absence of
magnetic order goes far beyond the prevailing Landau paradigm [12, 13], which distinguishes
symmetry-broken from symmetry-preserving phases by a local order parameter. Instead, spin
liquids often display unconventional topological order, which is characterized by the emergence of
a gauge field, and exhibit non-local fractionalized quasi-particle excitations [14]. These concepts
also carry over to the quantum counterparts of classical spin liquids, so-called quantum spin
liquids [15–17]. The importance of such quantum phases of matter cannot be stressed enough,
with possible practical applications all the way up to topological quantum computing [18, 19].
But classical spin liquids are no less valuable, as their study contributes to understanding the
finite-temperature physics of real frustrated magnetic materials, and they often turn out to be
parent states for quantum spin liquids [20, 21].

A poster child for the notions of fractionalization and topological order is a class of materials
called spin ice, a system in which the spins can be thought of as classical vectors and which—like
Anderson’s pyrochlore Ising antiferromagnet—is frustrated in the same way as ordinary water

1In fact, the notion of frustration was introduced in the context of spin glasses [2, 3] where magnetic atoms are
distributed randomly, but it is now inextricably linked to the study of localized magnetic moments on regular
lattices where competing interactions cannot be satisfied simultaneously.
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1 Introduction

ice [22, 23]. A miraculous interplay of lattice geometry, crystal field effect, and dipolar interac-
tions in spin ice ensures that its extensive ground state manifold is subject to a divergence-free
constraint, giving rise to a gauge field governed by a Maxwell action. Elementary excitations in
this incarnation of a Coulomb phase [24, 25] can be considered as emergent deconfined magnetic
monopoles which, just like Dirac monopoles [26], carry magnetic charges and experience Coulomb
interactions [27]. Notably, unlike Dirac’s elusive original monopoles, the emergent monopoles in
spin ice are actually experimentally observable [28–31], and their dynamics is a particularly im-
portant topic of ongoing research [32–35].

However, in some frustrated magnets, the massive ground state degeneracy can be partially
or completely lifted. This occurs, for example, through the phenomenon of order by disorder
[36], where soft modes in the fluctuation spectrum select a subset of ground states. This mecha-
nism has long been established, e.g., in the classical Heisenberg antiferromagnet on the kagome
lattice, where coplanar ground states are favored by thermal fluctuations [37, 38]. In other cases,
competing interactions can even stabilize conventional types of order with broken spin symmetry.
In particular, for non-Bravais lattices with further-neighbor interactions, this can lead to the for-
mation of complex non-coplanar magnetic orders, for example with tetrahedral or cuboctahedral
symmetry [39, 40]. Due to their finite spin chirality, such non-coplanar magnetic orders are of
fundamental interest. Not only can they induce a spontaneous topological Hall effect [41–44],
but they can also possibly melt into much sought-after chiral quantum spin liquid states when
quantum fluctuations are introduced [45, 46]. In this way, non-coplanar magnetic orders provide
an excellent starting point for the search for such spin liquid states.

The scope of this thesis is, on the one hand, the numerical study of the dynamics of magnetic
monopoles in dipolar spin ice, where we put to the test the paradigm that critical fluctuations
always lead to a critical slowing down of the dynamics [47]. On the other hand, we explore the for-
mation of complex non-coplanar magnetic ground states of classical Heisenberg antiferromagnets
on non-Bravais lattices with cross-plaquette interactions. In order to handle the exponentially
large configuration space of the models at hand, the numerical means of choice are classical
Monte Carlo simulations, which are provided with a dynamical flavor for the study of monopole
relaxation rates.

To this end, the structure of this thesis is as follows. In Part I, we introduce the theoret-
ical background relevant to this thesis. To do this, we begin in Chapter 2 with a general
introduction to frustrated magnetism, where we present the paradigmatic Heisenberg model and
describe in detail the mechanisms that lead to the characteristic ground state degeneracy of
frustrated magnets. We also discuss the phenomenon of order by disorder, by which this de-
generacy can be partially lifted by fluctuations. Finally, we review the concept of a Coulomb
phase and show how it gives rise to magnetic monopoles as elementary excitations. Chapter 3
then sets the methodological stage of this thesis, where we start with the concept of Markov
chains and their generation using the Metropolis algorithm and a parallel tempering scheme. We
then outline the analysis of Monte Carlo data and its statistical errors as well as the influence of
autocorrelations and the canonical phenomenon of critical slowing down. We also describe the
dynamical Monte Carlo method, which allows us to measure non-equilibrium quantities such as
the dynamical susceptibility.

In the following Part II, we discuss our numerical analyses of the dynamics of emergent magnetic
monopoles in spin ice and spin liquids. Chapter 4 begins with a detailed introduction to the

2



physics of spin ice. Subsequently, we show numerical results for the dynamical simulation of the
dipolar spin ice model. The monopole relaxation times thus obtained are then compared with
experimental results and a theory for the conversion between Monte Carlo time and real time is
presented and tested for validity. In Chapter 5, we take a look at the prototype of a classical
spin liquid, the triangular Ising antiferromagnet, and analyze its dynamics in comparison to a
simple ferromagnet.

Part III of this thesis is devoted to the study of intricate, non-coplanar magnetic ground states of
classical Heisenberg antiferromagnets on different lattice geometries. This is motivated in Chap-
ter 6, which also introduces the Luttinger-Tisza method as well as various relevant non-coplanar
orders such as spin spirals and so-called regular magnetic orders. Afterwards, in Chapter 7, we
explore the classical Heisenberg model on the square-kagome lattice in great detail by means of
large-scale Monte Carlo simulations complemented by a semi-analytical method. In addition to
the classical spin liquid arising for the nearest-neighbor model, we discuss a large variety of copla-
nar and non-coplanar ground states for the extended model with cross-plaquette interactions.
In Chapter 8, we use the same methods to briefly review the ground state phase diagram of a
classical Heisenberg model on the maple-leaf lattice, which again provides a wealth of non-trivial
ground states.

Finally, the thesis comes to an end with some general concluding remarks in Chapter 9. These
summarize our results and give an outlook for possible future research.
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Theoretical Foundation





Frustrated Magnetism
Chapter 2

Frustration describes a situation where not all contributions to the energy of a physical system
can be minimized simultaneously [2, 3]. The origin of the complex and exotic behavior of
frustrated magnets can be illustrated remarkably simply by considering antiferromagnetically
coupled Ising spins which can only point in two possible directions (Sz

i = ±1) and sit at the
vertices of a triangle. While such spins can easily be antialigned with their neighbors on a
square (as favored by the antiferromagnetic nature of their interaction), this is not possible
on a triangle because of the odd number of connections (see Fig. 2.1(a) and (b)). By virtue
of the conflict between the geometry of the lattice that the spins inhabit, and the preferred
orientation of the spins due to their mutual interactions, the system is said to exhibit geometric
frustration. The simplest basic building block of frustrated magnetic systems thus consists of
spins arranged on triangular plaquettes. It is, therefore, not surprising that the prototypical
example of such a system is the Ising antiferromagnet on the simple triangular lattice introduced
by Wannier in 1950 [4, 5]. Another possible source of frustration is the presence of competing
interactions that lead to so-called exchange frustration. This appears, e.g., in the celebrated
and fundamental Kitaev model [48] on the honeycomb lattice (see Fig. 2.1(c)). There, the
nearest-neighbor spin degrees of freedom interact via a strongly anisotropic Ising-like exchange
so that the coupling of neighboring spins is highly dependent on the spatial direction of the
bond, rendering a simultaneous minimization of all interactions impossible. As a consequence,
frustration suppresses the build-up of conventional long range magnetic order and gives rise to
exotic magnetic analogs of liquids and ice, where the spins are strongly fluctuating but highly
correlated, and which exhibit a large residual zero-temperature entropy due to a degenerate

?

(a)                                       (b)                                       (c)

Figure 2.1 – Sources of frustration. (a) Unfrustrated Ising antiferromagnet on a square, where all four
spins are antialigned with their neighbors (red and blue dots indicate spins pointing upwards and downwards,
respectively). (b) On a triangle, this is not possible—three neighboring spins cannot be pairwise antialigned,
and therefore, the system is frustrated due to the lattice geometry. (c) In the Kitaev model on the hexagonal
lattice, exchange frustration arises since spins are coupled depending on the spatial direction of the bond. The
x-components of neighboring spins are coupled along x-bonds (blue) via JxS

x
i S

x
j , and the y-components and

z-components are coupled analogously.
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2 Frustrated Magnetism

ground state manifold rather than a single stable ground state configuration. This chapter
serves as an introduction to the rich phenomenology of such frustrated magnetic systems and
provides the theoretical basis for this thesis. More detailed introductions can be found in the
vast literature [49, 50].

2.1 Fingerprint of Frustration

Since frustration tends to suppress conventional magnetic order, strongly frustrated magnetic
compounds have a characteristic fingerprint visible in the magnetic susceptibility χ, which at
high temperatures in the conventional paramagnetic regime follows the Curie-Weiss law

χ−1 ∝ T −ΘCW , (2.1)

where ΘCW is the Curie-Weiss temperature that characterizes the sign and strength of inter-
actions. For antiferromagnets, ΘCW is negative, and for unfrustrated systems, magnetic order
appears below the Néel temperature TN ∼ |ΘCW|, signaled by a cusp in χ. In the presence of
frustration, on the other hand, the paramagnetic linear regime of χ−1 extends smoothly to tem-
peratures Tc � ΘCW, where some non-generic and compound-dependent freezing or frustration-
relieving transition occurs (as schematically depicted in Fig. 2.2). The intermediate regime
Tc . T . ΘCW is commonly termed cooperative paramagnet or classical spin liquid [51, 52].
Hence, a simple and widely used empirical measure of the degree of frustration is the frustration
parameter [53, 54]

f =
|ΘCW|
Tc

. (2.2)

An ideal spin liquid with no ordering down to zero temperature would have f → ∞. In real
materials, however, degeneracy-breaking perturbative interactions ultimately lead to the devel-
opment of long range order out of the spin liquid state at some critical temperature Tc. Materials
with f > 5–10 are commonly called highly frustrated [10, 55].

Figure 2.2 – Fingerprint of frustration. The inverse magnetic susceptibility follows the Curie-Weiss law
at high temperatures in the paramagnetic regime, χ−1 ∝ T − ΘCW. The Curie-Weiss temperature ΘCW
sets the scale for magnetic ordering in an unfrustrated material. In the presence of frustration, conventional
ordering is suppressed and the linear behavior of χ−1 is extended to temperatures Tc � ΘCW in a cooperative
paramagnetic, or classical spin liquid regime, where spins are highly correlated but strongly fluctuating. The
width of this intermediate regime Tc . T . ΘCW—typically expressed as the frustration parameter f =
|ΘCW|/Tc—is a widely used empirical measure of the degree of frustration in a material.

8



2.2 Paradigmatic Models

2.2 Paradigmatic Models

Theoretical models to describe classical localized moments in magnets typically start with the
general Heisenberg Hamiltonian [56–58]

H =
∑
i,j

JijSi · Sj , (2.3)

where Si denotes a classical n-component spin vector of unit length and Jij is the coupling
strength between Si and Sj that arises from their exchange interaction. This interaction is often
(but not necessarily) restricted to nearest-neighbor pairs of spins with a single exchange con-
stant J . For n = 1, 2, or 3 components of Si, one obtains the Ising, XY, and Heisenberg model,
respectively.

With this starting point, models can be made increasingly complex to account for different
physical contributions by adding more terms to the Hamiltonian. These could be, e.g., external
magnetic fields, crystal field anisotropies that favor some specific easy axis [59], Dzyaloshinski-
Moriya interactions that favor spin canting of otherwise parallel or antiparallel aligned spins
[60–62], dipole-dipole interactions [63, 64], or bond-dependent anisotropies induced by spin-orbit
coupling, where Jij becomes a 3 × 3 exchange tensor with Kitaev, Γ, and Γ′ terms [48, 65–68],
just to name a few.

For Jij ≡ J < 0, the basic Heisenberg Hamiltonian, Eq. (2.3), leads to ferromagnetic order,
while a positive J can lead to antiferromagnetic Néel order provided the lattice structure allows
it, i.e., if the lattice is bipartite. Then, the spins on each sublattice can be ordered ferromagnet-
ically such that spins on one sublattice are antialigned with the spins on the other sublattice.
For non-bipartite lattices, an antiferromagnetic J can lead to frustration, as already shown for
three spins on a triangle. For this reason, particularly interesting models for the study of frus-
trated magnetism are those in which the spins are located on the vertices of lattices composed of
elementary triangles. Besides the triangular lattice, important examples are the kagome lattice
in two dimensions and the pyrochlore lattice in three dimensions (cf. Fig. 2.3).

(a)                                                                              (b)

Figure 2.3 – Lattices composed of elementary triangles. (a) The two-dimensional kagome lattice consists
of corner-sharing equilateral triangles. (b) A generalization of the kagome lattice to three dimensions is the
pyrochlore lattice. It consists of corner-sharing regular tetrahedra.
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2 Frustrated Magnetism

2.3 Classical Ground State Degeneracy

Having shown that lattices of elementary triangular plaquettes can lead to frustration, we now
want to understand the degeneracy of the ground state to quantify the degree of frustration with
some accuracy. For a general arrangement of classical Heisenberg spins Si on corner-sharing units
of q sites (that is, q = 3 for the kagome lattice and q = 4 for the pyrochlore lattice), where each
spin is coupled to its q−1 neighbors in each unit, the general Heisenberg Hamiltonian, Eq. (2.3),
with Jij ≡ J can be rewritten as a sum over the N units forming the system as

H = J
∑
〈i,j〉

Si · Sj =
J

2

∑
α

|Lα|2 + c , (2.4)

where Lα =
∑

i∈α Si is the total spin in unit α and the constant c = −JNq/2 must be subtracted
in order to account for the diagonal terms S2

i in the expansion of |Lα|2. For antiferromagnetic
coupling J > 0, the energy is minimized for states in which Lα = 0 for all units α.

For a single unit with q = 4 spin vectors, we thus have H = J |L|2/2+c and L = S1+S2+S3+S4.
Such an arrangement with four spins that sum to zero is shown in Fig. 2.4(a). In addition to
global rotations due to the O(3) symmetry of H, the ground state of the system has two addi-
tional degrees of freedom—the angles θ and φ.

To understand how this accidental ground state degeneracy extends from a single unit to larger
lattices, a counting argument introduced by James Clerk Maxwell in 1864 in the context of elas-
tic systems [51, 69] can be used. The argument compares the number of degrees of freedom F
in the system with the number of ground state constraints K that must be satisfied in order to
determine the degrees of freedom in the ground state as

DM = F −K . (2.5)

A system of NS classical Heisenberg spins has F = 2NS , as each (unit length) spin is speci-
fied by two angles. Furthermore, a system consisting of NC clusters has K = 3NC , since Lα

must vanish for each cluster (Lx = Ly = Lz = 0). For the single cluster of four spins in
Fig. 2.4(a) (NS = 4, NC = 1), this gives exactly the two extra angular degrees of freedom as
DM = F −K = 2NS − 3NC = 8 − 3 = 5, that is three global rotations plus the unconstrained
two angles θ and φ.

We will stay with the example of q = 4, as in the pyrochlore lattice, as follows. There, four
spins form one tetrahedron but each spin is part of two tetrahedra, such that NS = 2NC . This
gives, for a pyrochlore lattice consisting of NC tetrahedra, a number of degrees of freedom in the
ground state of DM = 2NS − 3NC = NC , i.e. an extensive ground state degeneracy that grows
proportional to the number of tetrahedra. In general, for lattices of corner-sharing units with q
spins with n components, one obtains [51, 70]

DM = NC [n(q − 2)− q]/2 . (2.6)

The Maxwell counting relies on the assumption that all constraints are linearly independent.
Therefore one may underestimate the true number of ground state degrees of freedom D ≥ DM

when this is not the case. An important example is the Heisenberg antiferromagnet on the
kagome lattice, where the above estimate yields DM = 0 (on each triangular unit the spins are
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2.3 Classical Ground State Degeneracy

arranged such that they form mutual angles of 120◦), but an extensive ground state degeneracy
D ∝ NC nonetheless arises, as an explicit ground state construction [71] shows, as illustrated in
Fig. 2.4(b).

Ground state degeneracy due to geometrical frustration takes a different form for systems with
Ising spins that take only discrete values. Unlike in the case of continuous spins, the number of
ground states W is countable and can be used to define a residual entropy S0 = lnW (with kB
being set to 1). A textbook example to illustrate this is the ground state degeneracy of the Ising
antiferromagnet on the pyrochlore lattice. For a system of NS Ising spins, there are 2NS different
configurations in total. From the 24 = 16 different configurations on a single tetrahedron, only(
4
2

)
= 6 are ground states with Lα = 0, namely those, where two spins point up and two spins

point down. A lattice consisting of NS spins and hence NC = NS/2 tetrahedra has therefore
W = 2NS (6/16)NS/2 possible ground states, leading to a residual ground state entropy per spin
of

S0
NS

=
1

2
ln 3

2
≈ 0.203 . (2.7)

This estimate was already used by Pauling in 1935 in the description of water ice and the low-
temperature ordering of protons therein [8, 9, 72]—the physics of proton ordering in water ice
turns out to be locally equivalent to the physics of a frustrated pyrochlore antiferromagnet, as
first noted by Anderson in 1956 [7].

A simple way to observe this residual entropy in experiments and simulations is to measure
the specific heat cV of the system as it is cooled down to temperatures at which only the ground
states are accessible, and then to calculate the entropy ∆S released in this process. This in
turn can be subtracted from the high temperature entropy of free spins that each can freely
fluctuate between its two possible states, that is Sf/NS = ln 2. The entropy release between the
high temperature Tf and the low temperature T0 can easily be calculated directly by integrating

(a)                                                                                                 (b)

Figure 2.4 – Ground state degeneracy. (a) Four antiferromagnetically coupled classical Heisenberg spins that
fulfill L =

∑
i Si = 0. This constraint is fulfilled for arbitrary angles of φ between S1 and S4 and θ between the

planes containing S1,4 and S2,3—the ground state has hence two extra degrees of freedom in addition to the
three that arise from global rotations. (b) The ground state of the Heisenberg antiferromagnet on the kagome
lattice is degenerate even though a single triangular unit has no intrinsic degrees of freedom—L = 0 is only
fulfilled when all three spins form mutual angles of 120◦. Here, the (light blue) spins on the hexagon may be
rotated all together about the axis defined by the (dark blue) outer spins, without leaving the ground state
manifold.
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2 Frustrated Magnetism

cV /T , thus the residual entropy is given by

S0
NS

= ln 2−∆S = ln 2−
∫ Tf

T0

cV (T )

T
dT . (2.8)

Ground state degeneracy in frustrated systems is a striking result. It means that there are local
degrees of freedom that can fluctuate independently without the system leaving its ground state
manifold, preventing the formation of long range magnetic order.

2.4 Order by Disorder

Although massive ground state degeneracies are a key feature of frustrated magnets, they may be
partially lifted by fluctuations, as they are not symmetry-protected but accidental in a technical
sense. Therefore, the fluctuation spectrum about different degenerate ground states is expected
to be different in some cases, and it is possible that states are selected because they minimize
the free energy

F = E − TS (2.9)

if they have the lowest excitation energy and hence have access to the largest part of the configura-
tion space through thermal fluctuations and consequently have the highest entropy (cf. Fig. 2.5).

Villain et al. [36] introduced the concept of order by disorder (ObD), which describes exactly
such an apparently paradoxical mechanism of degeneracy lifting, where fluctuations enhance or-
der instead of suppressing it. In their model of a specific frustrated Ising model on a square
lattice, at T = 0, the ground state has zero net magnetization and is disordered, but becomes
ferromagnetically ordered at low temperatures when thermal fluctuations are introduced. It was
also shown that a site dilution with random non-magnetic impurities leads to the same ordering
pattern, hence the name order by disorder.

Whether a system explores its whole ground state manifold or not depends on its soft modes (i.e.
quartic modes) in the harmonic spectrum. Specifically, ObD occurs when harmonic contribu-
tions to the partition function lead to a non-integrable divergence in the vicinity of the subset of
configurations favored by fluctuations [70, 73]. To assess, whether this is the case, it is sufficient

(a)                                                                            (b)

Figure 2.5 – Order by disorder. (a) A degenerate ground state manifold (black line) together with all thermally
accessible states (blue region), where each ground state has the same number of accessible thermal excitations.
(b) In contrast to (a), a subset of the ground state manifold can access more thermally excited states. The
associated higher entropy minimizes the free energy and selects this subset of ground states over the rest of
the ground state manifold.
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2.4 Order by Disorder

to consider the criterion
D − S −M ≤ 0 , (2.10)

where D is the dimension of the ground state manifold, M is the number of soft modes, and S is
the dimension of the submanifold where these soft modes occur. The dimension D of the ground
state manifold can again be determined using the Maxwell counting argument introduced before
as the difference of the total number of degrees of freedom in the system F and the number K of
constraints that must be imposed to restrict the system to its ground state, that is DM = F −K.
Again, the Maxwell counting only provides a lower bound, D ≥ DM , as it assumes all constraints
to be independent, but it serves a useful tool to estimate in advance the possibility of OdB.

Striking numerical evidence for the presence of ObD (in simulations of models with continuous
degrees of freedom) can be found in the low-temperature limit of the specific heat cV , since soft
modes contribute to the specific heat with kB/4, whereas harmonic modes contribute with kB/2
according to the equipartition theorem. Therefore, in the presence of ObD, the low-temperature
specific heat is diminished. This is the case, for example, in the kagome Heisenberg antiferro-
magnet with cV (T → 0) = 11/12 (kB = 1), in perfect agreement with predictions by a mode
counting analysis [74, 75]. In contrast, one finds cV (T → 0) = 1 for an unfrustrated Heisenberg
model, where each spin is free to fluctuate about its ordered ground state in two orthogonal
directions on the unit sphere and these two quadratic modes each contribute 1/2 to the specific
heat. The same low-temperature value of the specific heat of cV (T → 0) = 11/12 is found in the
isotropic square-kagome Heisenberg antiferromagnet, that we discuss in detail in Part III of this
thesis. An example curve of cV for such a system that shows OdB is depicted in Fig. 2.6.

Figure 2.6 – Signature of oder by disorder in the specific heat. In the specific heat of the isotropic
(J = 1) square-kagome Heisenberg antiferromagnet, one can clearly distinguish three different regimes. At high
temperatures T ≥ 10−1, the system is in a paramagnetic state with only weak correlations. The intermediate
regime 10−2 ≤ T ≤ 10−1 corresponds to the commonly known cooperative paramagnet or spin liquid state with
a plateau cV ≈ 1, where the system fluctuates between the whole extensive number of possible ground states.
Only at temperatures T ≤ 10−2, a globally coplanar subset of ground states is selected via an entropy-driven
OdB mechanism due to the presence of one zero mode per triangle (and thus two zero modes per six-site unit
cell) resulting in cV → [10 · (1/2) + 2 · (1/4)]/6 = 11/12 as T → 0.
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2 Frustrated Magnetism

2.5 Ground State Correlations

In addition to the massive ground state degeneracy, the ground state condition of the squared
Heisenberg Hamiltonian in Eq. (2.3) has another direct consequence. It turns out that despite
the existence of local degrees of freedom, which can fluctuate independently, there are long range
spin correlations.

This can again be easily shown using the condition that all elementary units forming a lat-
tice have a vanishing total spin, that is Lα = 0 for all α. If we now look at the top layer z1 of
a lattice, as exemplified in Fig. 2.7 for the Heisenberg antiferromagnet on the kagome lattice, it
has some finite magnetization of m(z1) =

∑
i∈z1 Si = M. This magnetization is then perfectly

correlated with the magnetization of the next layer z2 since both layers together form a sheet of
complete elementary units, that is, of units that fulfill Lα = 0. Consequently, the magnetization
of the layer z2 must be equal to −M. The same argument can now be continued layer by layer,
so that ultimately

m(zi+n) = (−1)n · m(zi) (2.11)

for any n, which is indeed an indication of long range correlations. This simple argument already
shows the existence of these correlations. In the following, we want to switch to the Coulomb
phase theory in order to quantify these correlations for a class of models as well.

Figure 2.7 – Long range correlations. An immediate consequence of the ground state condition Lα = 0
for all units α (cf. Eq. (2.4)) is the build-up of long range correlations, as visualized here for a Heisenberg
antiferromagnet on the kagome lattice. Let z1 be the top layer of sites in the lattice. This layer then has some
magnetization m(z1) =

∑
i∈z1

Si = M. Consequently, the magnetization of the layer z2 must be equal to −M,
since both layers together form a sheet of complete triangles, that is, of units that fulfill Lα = 0. In general,
therefore, m(zi+n) = (−1)n · m(zi) for any n, which is indeed a sign of long range correlations.

2.6 Coulomb Phase

In the theory of a Coulomb phase [25, 76, 77], a constrained spin configuration on some lattice L
is mapped to a vector field P(r) on the premedial or parent lattice B of L1 such that the ground
state constraint translates to the condition, that the resulting vector field has zero divergence,
that is,

∇ · P(r) = 0 . (2.12)
1That means that the elementary units of L sit on the vertices of B while the sites of L fall onto the bond

midpoints of B.
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2.6 Coulomb Phase

Figure 2.8 – Parent and medial lattices. The hexagonal lattice is the premedial or parent lattice B of its
medial lattice L, the kagome lattice. That is, the elementary triangular units of L sit on the vertices of B (red
dots) while the sites of L (blue dots) fall onto the bond midpoints of B.

The ground state constraint underlying the mapping can simply be the condition Lα = 0 of
Eq. (2.3), or a more specific constraint (as for example in the case of kagome ice [78], see
Fig. 2.9). For the mapping to be possible, the parent lattice must be bipartite, such as the
hexagonal lattice, which is the parent lattice of the kagome lattice (cf. Fig. 2.8), or the diamond
lattice, which is the parent lattice of the pyrochlore lattice. In this case, one can assign an
orientation convention for the bonds from one sublattice of B to the other sublattice and thus
translate the spin degrees of freedom on the sites of L into an arrangement of weighted lattice
fluxes on the bonds of B, such that the incoming and outgoing fluxes at each vertex sum to
zero, as shown in Fig. 2.9 for kagome ice. The divergence-free emergent vector field P(r) is
then the coarse-grained version of this arrangement of lattice fluxes that is averaged over some
neighborhood larger than the lattice spacing but smaller than the system size and assumed to
vary smoothly. Since each coarse-grained state of P(r) represents many different microscopic
configurations, it should have an entropic weight that reflects this. Small field strengths of P(r)
can be generated by a huge number of different microstates, while large field strengths are realized

(a)                                                                                            (b)

Figure 2.9 – Coulomb phase in kagome ice. (a) The ground state constraint of kagome ice is the rule, that
on each elementary triangle of the kagome lattice L one spin points into the triangle and two spins point
out (or vice versa) [78]. (b) Ground states of kagome ice can be mapped onto lattice flux configurations on
the hexagonal parent lattice B by assigning fluxes starting from, say sublattice A (light red nodes), twice the
weight of arrows starting from sublattice B (dark red nodes). In this way, the kagome ice rule is translated
into the condition that at each node of B the sum of all weighted lattice fluxes is equal to zero.
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Figure 2.10 – Pinch points in reciprocal space. Structure factors from a Monte Carlo simulation of the
Heisenberg antiferromagnet on the kagome lattice (L = 24) at (a) T = 0.07, and (b) T = 0.5 showing pinch
point patterns on the edges of the extended Brillouin zone (dashed hexagon) that are characteristic for Coulomb
phase correlations Eq. (2.16). As the temperature increases, the width of the pinch points widens.

only by very few microstates, suggesting [76, 79] a free energy as a function of P(r),

F ({P(r)})
T

=
κ

2

∫
d3r|P(r)|2 (2.13)

with a single, dimensionless parameter, the stiffness κ. The name Coulomb phase comes from the
similarity of this free energy and of the divergence-free constraint, Eq. (2.12), with a magnetic or
electric field without monopoles. Both equations taken together indicate [77] that the probability
distribution for the coarse-grained P(r) is the constrained Gaussian distribution

Prob ({P(r)}) ∝ e−F({P(r)})/T
∏

r
δ(∇ · P(r)) . (2.14)

By Fourier transforming the free energy, F = κ
2

∑
q |P(q)|2, and by applying equipartition,

correlations can now be calculated as Sµν(q) = 〈Pµ(−q)Pν(q)〉 = (1/κ)δµν . However, it must
also be taken into account that the divergence-free condition dictates that

q · P(q) = 0 . (2.15)

Therefore, from the trivial result of equipartition for an unrestricted P(q), the longitudinal
fluctuations must be projected out, leading to

Sµν(q) = 〈Pµ(−q)Pν(q)〉 =
1

κ

(
δµν −

qµqν
|q|2

)
. (2.16)

These correlations give rise to sharp characteristic features in reciprocal space that resemble pinch
points or bow ties [77, 79–82] and distinguish the structure factor Sµν(q) of the frustrated system
from the diffraction pattern of a magnetically ordered system or a paramagnet—cf. Fig. 2.10
for example structure factors from a Monte Carlo simulation of the Heisenberg antiferromagnet
on the kagome lattice. When these correlations are Fourier transformed back to real space, one
obtains

〈Pµ(0)Pν(r)〉 =
cd
κrd

(δµν − dr̂µr̂ν) (2.17)
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in d dimensions, where r̂ = r/|r| and cd is a dimension-dependent constant (c3 = 4π). Strikingly,
the real space correlations are power-law decaying and in that sense critical and have the spatial
dependence of a dipole-dipole interaction familiar from Maxwell magnetostatics.

2.7 Emergent Magnetic Monopoles

One of the most significant implications of a Coulomb phase comes to light when looking at
possible excitations. As fundamental as the divergence-free condition, Eq. (2.12), for the ground
state is, one can ask what happens when it is violated, for example by thermal fluctuations or
by a magnetic field. Such a violation of the flux constraint ∇ · P(r) = 0 leads to defects that
can be labeled by their chargeQ given by the net flux at a specific node of the parent lattice B [25].

The term charge is appropriate insofar as the Gauss law is fulfilled here, namely that the net flux
through any hypothetical surrounding closed surface is equal to Q. This also has the consequence
that charge is conserved—the net charge in some volume cannot be changed. In particular, such
defects, or magnetic monopoles, are fractionalized and can only be created in pairs with opposite
charges (one spin flip creates two defects, see sketch of monopole formation in kagome ice in
Fig. 2.11).

Intriguingly, these monopoles are deconfined and may independently move trough the lattice
further away from the origin of the monopole pair creation without any energy cost via sub-
sequent flux inversions that restore a solenoidal flux arrangement on one node and violate the
zero divergence on the next. Furthermore, the constraint ∇ ·P(r) = 0 immediately uncovers the
existence of an emergent gauge field A(r) via P(r) = ∇×A(r), which is generally associated with
topological order [83, 84].

The prime example of the formation of magnetic monopoles is that in spin ice [14, 27], which
will be the subject of a more detailed discussion and the main topic in Part II of this thesis.
However, before we go into this, we will first introduce the main method of this thesis, the Monte
Carlo simulation technique, in the next chapter.

(a)                                                                                            (b)

Figure2.11 – Formation of magnetic monopoles. (a) A section of a lattice flux configuration on the hexagonal
lattice that fulfills the zero divergence condition on every node. (b) By flipping a single spin, this condition
is no longer fulfilled on two neighboring nodes. As a result, one node has a positive net flux (three incoming
fluxes), that can be interpreted as a positive magnetic charge (red dot), while the other node has a negative
magnetic charge (blue dot).
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The Monte Carlo Method
Chapter 3

The Monte Carlo method subsumes a class of statistical sampling techniques that use random
numbers to solve hard problems. These problems are usually either too complex to be solved
analytically or numerically too expensive to be solved deterministically. The underlying idea
traces back to Stanislaw Ulam and John von Neumann in the early 1940s [85–87] and the first
published work on the Monte Carlo method by Ulam and Metropolis in 1949 [88]. It has been
applied to a vast range of problems in natural sciences, mathematics, engineering, or even fi-
nance and social sciences since then and is among the most powerful numerical tools at all. In
this chapter, we give a brief introduction to Monte Carlo simulations of classical spin models,
where the exponentially large configuration space often complicates analytical calculations, and
numerical methods are, therefore, an invaluable important tool in the study of such systems.

3.1 Markov Chains

Most generally speaking, the primary objective of the Monte Carlo method is to draw unbiased
and statistically relevant samples from some configuration space Ω, with the samples being
distributed according to some probability distribution. The simplest application is the numerical
evaluation of an integral by the Monte Carlo method, where the drawn samples are random
coordinates xi ∈ Ω with a suitably chosen distribution at which the function to be integrated
can be evaluated. However, these random samples may also be more complex objects, such as
spin configurations of a spin model. A set of such random samples {Ci} ⊂ Ω—in the following
referred to as configurations—is generated in a weighted random walk, and the resulting sequence
of configurations

C1 → C2 → · · · → Ci−1 → Ci → Ci+1 → . . . (3.1)

is called a Markov chain, as the underlying process is Markovian, i.e., the next step in the chain
only depends on the current configuration but is independent of any earlier configuration, which
leads to the conditional probability

P (Ci|Ci−1, Ci−2, . . . , C2, C1) = P (Ci|Ci−1) . (3.2)

For the configurations to follow a given distribution pC , this step has to fulfill certain conditions.
The probability of the transition from some configuration C to some other configuration C ′

is given by the elements of a transition matrix WCC′ . As the probability of getting from one
configuration C to any other configuration must be exactly 1, the first condition for the transition
matrix is
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3 The Monte Carlo Method

1. Normalization: The columns of the transition matrix are normalized,∑
C′

WCC′ = 1 . (3.3)

This, by definition, makes the transition matrix a stochastic matrix and has the consequence
that the largest eigenvalue of the transition matrix is equal to 1, with the corresponding eigen-
vector being an equilibrium distribution. For this stationary eigenvector to model the desired
distribution pC , the transition matrix must obey two additional properties. These are:

2. Ergodicity: Every configuration C ′ must be reachable from any other configuration C in
a finite number of steps n,

∀C,C ′ ∃n : (Wn)CC′ 6= 0 . (3.4)

Ergodicity ensures that the Markov chain does not get trapped in a limited subset of the configu-
ration space and thus the set of sampled configurations can never be statistically representative.

3. Convergence to equilibrium: The probability distribution at the nth Markov step, p(n)C ,
changes in each Markov step as

∑
C p

(n)
C WCC′ = p

(n+1)
C′ but converges to an equilibrium

distribution,
lim
n→∞

p
(n)
C = pC . (3.5)

Since pC is an eigenvector of the transition matrix with eigenvalue 1, the equilibrium
condition is ∑

C

pCWCC′ = pC′ , (3.6)

or simply
p · W = p . (3.7)

To fulfill the equilibrium condition, the so-called detailed balance condition is sufficient:

WCC′

WC′C
=
pC′

pC
. (3.8)

This can easily be checked by plugging Eq. (3.8) into the left hand side of the equilibrium
condition in Eq. (3.7) and using the normalization of the columns of the transition matrix:∑

C

pCWCC′
(3.8)
=
∑
C

pC′WC′C = pC′
∑
C

WC′C
(3.3)
= pC′ . (3.9)

A sampling process that fulfills these conditions will yield a sequence of configurations that
represents the probability distribution pC .

3.2 Generation of Markov Chains

The rules stated above do not yet state how such a sequence can be generated in practice.
Usually, this is done by employing the Metropolis algorithm [89, 90], which we outline in the
following.
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3.2.1 Metropolis Algorithm

To generate a Markov chain, an appropriate choice of weights WCC′ must be made. One com-
monly used way to comply with the detailed balance condition is to choose so-called Metropolis
weights

WCC′ = min
(
1,
pC′

pC

)
. (3.10)

That these fulfill the detailed balance condition, Eq. (3.8), can be demonstrated by considering
the cases pC′ > pC and pC′ > pC separately. For the former, we find WCC′ = 1 and WC′C = pC

pC′
,

whereas the latter yields WCC′ =
pC′
pC

and WC′C = 1, both leading to detailed balance.

After starting with some random initial configuration Ci ∈ Ω, the iterative Monte Carlo step of
the Metropolis algorithm then consists of the following steps:

1. Based on the current configuration Ci, propose some new configuration C̃i+1.

2. Calculate the weight α =
pC̃i+1

pCi
.

3. Generate a uniformly distributed random number γ ∈ [0, 1].

4. The next configuration in the Markov chain is then given by

Ci+1 =

{
C̃i+1 γ ≤ α
Ci γ > α .

5. Based on Ci+1, restart from step 1.

One such single iteration is also called a Monte Carlo update (MCU). For a system of N random
variables, a set of N MCU is called a Monte Carlo sweep (MCS), i.e., during one sweep, every
random variable is (attempted to be) updated on average once.

Steps 2 to 4 simply implement the Metropolis weights of Eq. (3.10). The question of how
to propose a new configuration in the first step, on the other hand, is nontrivial and depends
strongly on the problem at hand. One simple update technique is to pick a randomly chosen
spin and either flip it (Ising spins) or randomly rearrange it on the unit sphere (Heisenberg spins).

If the desired probality distribution is the Boltzmann distribution pC = 1
Z e

−βH(C), where H(C)
is the energy of configuration C (which is typically the case in statistical physics simulations),
the weight α in step 2 simply becomes

α = e−β(H(C̃i+1)−H(Ci)) ≡ e−β∆E . (3.11)

The numerical expensive calculation of the partition function Z =
∑

C e
−βH(C) in the denom-

inator of pC cancels out and the computational effort of step 2 reduces to finding the energy
difference ∆E between the two configurations C̃i+1 and Ci. A technical aspect that needs to
be considered is equilibration. Due to the Boltzmann factor e−β∆E in the Metropolis weights,
a proposed new configuration with a lower energy than the previous one is always accepted,
while configurations with higher energy are accepted with exponentially small, but non-zero
probability. These thermal fluctuations allow the system to overcome local energy minima and
eventually reach a global energy minimum. Depending on the temperature T = β−1 (kB = 1),
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this can take a considerable number of sweeps. Therefore, it is essential to allow the system to
thermalize to equilibrium for a certain number of sweeps before generating the Markov chain for
later measurements.

3.2.2 Parallel Tempering

There are systems with complex and rough energy landscapes that have numerous local minima
at low temperatures separated by energy barriers, such as spin glasses or frustrated spin systems.
In such systems, conventional Monte Carlo methods can hardly relax to the true ground state.
A solution to address this difficulty is the so-called parallel tempering or replica exchange Monte
Carlo scheme [91–93].

The idea of this scheme is to simulate K independent replicas of the system simultaneously
at different temperatures {T1, T2, . . . , Ti−1, Ti, Ti+1, . . . , TK} spanning from low to high temper-
atures. After a certain number of conventional Monte Carlo sweeps, a sequence of swap moves
is suggested, where for each pair of neighboring replicas at temperatures Ti and Ti+1 and with
energies Ei and Ei+1 the current configurations are interchanged with a probability

p(Ei, Ti → Ei+1, Ti+1) = min
(
1, e∆β∆E

)
, (3.12)

where ∆β = 1/Ti+1−1/Ti and ∆E = Ei+1−Ei are the differences between the inverse tempera-
tures and energies of the two replicas, respectively. An accepted swap effectively corresponds to a
global update and as a result, individual replicas make a random walk in temperature space and
thus can escape local minima at low temperatures easily, since fluctuations occurring at higher
temperatures are fed into systems at lower temperatures by warming up and cooling down each
replica.

From a technical point of view it is important to choose the number of replicas and the temper-
ature grid properly. The highest temperatures must be sufficiently large to enable all replicas
to escape every local minimum. Also, one has to ensure that swap moves are accepted with
a non-vanishing probability for all neighboring pairs of replicas. To this end, the probability
distributions p(Ei) and p(Ei+1) must have a finite overlap for all pairs (i, i+1), as schematically
depicted in Fig. 3.1. For the systems studied within this thesis, a logarithmically distributed
temperature grid with 192 to 240 replicas between Tmin/J = 10−4 and Tmax/J = 10 is used
successfully. For other problems, different choices of temperature grids may be more efficient,
for example, using a geometric progression of temperatures [94], adaptive temperature control
schemes [95], or an adaptive feedback-optimized algorithm that minimizes the round-trip times
of replicas moving between the lowest and highest temperatures [96].

3.3 Monte Carlo Data

Now that we have seen howMarkov chains are constructed, we turn to the generation of physically
relevant data from them. The following chapter describes how observables and their errors are
measured and analyzed statistically and how successive measurements are correlated, which can
lead to a critical slowing down.
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3.3 Monte Carlo Data

3.3.1 Observables

The benefit of the outlined statistical sampling becomes particularly clear if one now considers
a specific observable O in whose thermodynamic expectation value one is interested. In general,
such an expectation value is given by

〈O〉 =
∑
C

pCOC , (3.13)

where the summation is performed over all possible configurations C of the system at hand, pC
is the probability of finding the system in configuration C, and OC is specific the value of the
observable O for the given configuration C. However, this summation turns out to be almost
impossible to carry out due to an exponentially large configuration space—even in the simplest
case, the Ising model with N spins, there are already 2N different possible configurations.

Here, the Markov chain comes into play. With a set {Ci} of M � 2N statistically relevant
samples from the configuration space, the true expectation value can be approximated as a
sample mean via

〈O〉 ≈ Ō =
1

M

M∑
i=1

OCi , (3.14)

where OCi ≡ Oi is the value of O for a given configuration Ci. Even though the expectation value
〈O〉 is approximated by the arithmetic mean Ō, it is important to distinguish both quantities.
Whereas the former is an expectation value and, therefore, a well-defined fixed numeric value,
the latter is a random variable that fluctuates around the theoretical expectation value.

An important quantity is, therefore, its variance, which measures the squared deviation of Ō
from its expectation value:

Var(Ō) =
〈(

Ō − 〈Ō〉
)2〉

= 〈Ō2〉 − 〈Ō〉2 . (3.15)

Figure 3.1 – Energy histograms of replicas at different temperatures. The distributions p(Ei) and p(Ei+1)
of replicas running at temperatures Ti and Ti+1 must have a finite overlap in order to have a non-vanishing
probability to exchange their configurations in an attempted swap move.
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For M subsequent uncorrelated measurements, this variance is easily obtained by plugging
Eq. (3.14) into Eq. (3.15):

Var(Ō) =

〈(
1

M

M∑
i=1

Oi

)2〉
−

〈
1

M

M∑
i=1

Oi

〉2

=
1

M2

M∑
i,j=1

〈OiOj〉 −
1

M2

M∑
i,j=1

〈Oi〉〈Oj〉

=
1

M2

M∑
i=1

(
〈O2

i 〉 − 〈Oi〉2
)
+

1

M2

M∑
i 6=j

(〈OiOj〉 − 〈Oi〉〈Oj〉)

=
1

M
Var(Oi) , (3.16)

where

Var(Oi) =
1

M

M∑
i=1

〈O2
i 〉 − 〈Oi〉2 (3.17)

and the summation in the third line of Eq. (3.16) is split into two parts, one with i = j and one
with i 6= j. The final step holds since the off-diagonal terms with i 6= j vanish for uncorrelated
measurements where 〈OiOj〉 = 〈Oi〉〈Oj〉. Also, assuming equilibrium, the quantity 〈Oi〉 should
be independent of the index i and Eq. (3.16) simplifies to

Var(Ō) =
1

M
Var(O) . (3.18)

The variance of the arithmetic mean is thus proportional to the variance of the underlying
distribution but becomes smaller the more Monte Carlo measurements are taken into account.
This fact is rooted in the central limit theorem, which states that the distribution of a sum of
independent and identically distributed random variables (here, Eq. (3.14)) becomes a normal
distribution in the asymptotic limit of large M , that can be described only by its mean and its
variance, no matter what the underlying distribution of the original random variables is1. The
standard deviation σŌ =

√
Var(Ō) is the width of this normal distribution and scales as 1√

M
·σO.

The statistical error in a Monte Carlo simulation can therefore be well controlled by the sample
size.

3.3.2 Autocorrelation Effects and Critical Slowing Down

Since each configuration in the Markov chain is generated by modifications of the previous
configuration, successive measurements are usually correlated and not truly independent, and
the off-diagonal term in Eq. (3.16) must be taken into account. To do so, we introduce the
autocorrelation time τ , which is the typical time scale on which the correlations fall off. The
correlations of two different measurements Oi and Oi+∆ are found [98] to decay exponentially as

〈OiOi+∆〉 − 〈O〉2 ∝ exp
(
−∆

τ

)
. (3.19)

1This is true as long as the underlying distribution has a well-defined expectation value and variance, which is
always the case except for a few pathological distributions such as the Cauchy distribution [97].
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An alternative way to express these correlations is via the integrated autocorrelation time

τO,int =

∑∞
∆=1

(
〈OiOi+∆〉 − 〈O〉2

)
〈O2〉 − 〈O〉2

, (3.20)

which becomes useful in the following calculation.

With the integrated autocorrelation time at hand, we can estimate how the correlations be-
tween subsequent measurements affect the variance of Ō when the off-diagonal terms do not
vanish:

Var(Ō) =
1

M
Var(O) +

1

M2

M∑
i 6=j

(〈OiOj〉 − 〈Oi〉〈Oj〉)

=
1

M
Var(O) +

2

M2

M∑
i=1

M−i∑
∆=1

(
〈OiOi+∆〉 − 〈O〉2

)
≈ 1

M
Var(O)(1 + 2τO,int) . (3.21)

Here we used the symmetry i ↔ j to reduce the summation
∑M

i 6=j to 2
∑M

i=1

∑M−i
∆=1 and trans-

lational invariance 〈Oi〉 ↔ 〈Oi+∆〉 to rewrite the second term. From this we can conclude that
the number of uncorrelated samples in the Markov chain is reduced by a factor of 1+ 2τO,int, or
in other words, the statistical error of the Monte Carlo estimator, σO, is enhanced by a factor√

1 + 2τO,int due to the temporal correlations of subsequent measurements. The autocorrelation
time τ is also related to the correlation length ξ by the dynamical exponent z,

τ ∝ ξz . (3.22)

The correlation length, in turn, is the typical length scale of spatial correlations, or in other
words, the typical size of clusters with the same spin orientation. Empirically, for the Metropolis
algorithm for the 2D Ising model, the dynamical exponent is known to be z2D Ising ≈ 2.17 for lo-
cal single spin flip updates [99]. This means that near the ferromagnetic phase transition, where
fluctuations occur on all length scales and the correlation length diverges as ξ ∝ |T −Tc|−ν with
the critical exponent ν > 0, the autocorrelation time diverges as well, and the time between
two uncorrelated configurations in the Markov chain becomes infinitely large—an effect that is
known as critical slowing down.

The problem of critical slowing down can be circumvented by using cluster updates (as pro-
posed, e.g., in the Swendsen-Wang algorithm [100] or the Wolff algorithm [101]), where clusters
of spins are collectively flipped instead of local updates—techniques that we do not pursue in
this thesis.

3.3.3 Numerical Estimation of Statistical Errors: Binning and Jackknife Analysis

Ignoring the intrinsic autocorrelation effects can lead to drastic underestimations of statistical
errors. But since calculating τO,int via Eq. (3.20) is cumbersome, a common practice to cope
with this and reliably determine autocorrelation times is a binning analysis [102], as outlined
in the following. By grouping the M original measurements Oi into MB bins of length k (i.e.,
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3 The Monte Carlo Method

M = kMB),

O1,O2, . . . ,Ok︸ ︷︷ ︸
Bin 1

,Ok+1,Ok+2, . . . ,O2k︸ ︷︷ ︸
Bin 2

, . . . ,O(MB−1)k+1,O(MB−1)k+2, . . . ,OMBk︸ ︷︷ ︸
Bin MB

, (3.23)

one can form MB different bin averages

OB
j =

1

k

k∑
i=1

O(j−1)k+i . (3.24)

The mean of all bin values evidently satisfies

OB =
1

MB

MB∑
j=1

1

k

k∑
i=1

O(j−1)k+i =
1

M

M∑
i=1

Oi
(3.14)
= Ō , (3.25)

while the bin averages, however, are less correlated than the original measurements. Upon
increasing the bin size k, the variance of the bin averages also increases as

Var(OB) ≈ 1

(MB − 1)

MB∑
j=1

(OB
j −OB)2 , (3.26)

but converges to the correct error estimate σ2O for sufficiently large k, when all bins become
statistically independent. In order to determine for which k this is the case, the ratio

RO =
Var(OB)

Var(O)
(3.27)

is measured as a function of the bin size k where the denominator is the unbinned sample variance,
i.e. Var(OB) for k = 1. If convergence is observed and RO plateaus at a finite value Rplateau

O , a
reliable estimate for the autocorrelation time τO is given by

τO =
1

2

(
Rplateau

O − 1
)
. (3.28)

If no convergence of RO can be observed, τO is larger than the simulation time and much longer
simulations must be performed in order to obtain reliable error estimates.

But even for uncorrelated data, error estimation can be problematic if an observable is not
measured directly, but rather as a combination of different basic observables from the same time
series—which, therefore, are not temporally but rather trivially statistically correlated. Impor-
tant examples for which this is relevant are the specific heat cV = β2(〈E2〉−〈E〉2) or the magnetic
susceptibility χ = β(〈m2〉−〈|m|〉2), where different moments of the distribution of the energy and
the magnetization, respectively, are involved. Instead of using the full machinery of calculating
covariance matrices and correlation coefficients for multivariate variance estimates, a less tedious
technique to handle this is the jackknife method [103, 104]. In this resampling method, instead
of considering small bins of length k as in the binning method, one forms MB large jackknife
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blocks OJ
j that contain all measurements but the jth bin from the binning analysis,

OJ
j =

MŌ − kOB
j

M − k
, (3.29)

with j = 1, . . . ,MB, such that each jackknife block consists of N−k measurements. The jackknife
estimates for mean and the variance are then given by [104]

OJ =
1

MB

MB∑
j=1

OJ
j , (3.30)

Var(OJ) =
MB − 1

MB

MB∑
j=1

(
OJ

j −OJ
)2

. (3.31)

3.4 Dynamical Monte Carlo

Up to this point, the Monte Carlo method, as described above, is used to study systems in
equilibrium. Measurements of observables are taken after the system has equilibrated and the
fluctuations in the configurations in the Markov chain can be thought of as thermodynamical
fluctuations around some equilibrium configuration. In the following, we want to use and expand
this framework to study dynamical phenomena and systems out of equilibrium, based on ideas
of Takatsu et al. [105, 106].

3.4.1 Monte Carlo Time

The key idea is to interpret the sequence of configurations generated in the Markov chain not
as a canonical ensemble of configurations but rather as the real time evolution of some initial
configuration of the studied system, that is,

C1 → C2 → · · · → Ci−1 → Ci → Ci+1 → . . . (3.32)

will be thought of as

C(t1) → C(t2) → · · · → C(ti−1) → C(ti) → C(ti+1) → . . . . (3.33)

This relation sets an elementary time scale that spans one Monte Carlo update (MCU). As
such, the time passed in dynamical Monte Carlo, tMC, can, in principle, be related to real time
treal, e.g., in an experimental system, by scaling with a factor A, that may depend on several
external parameters such as temperature or magnetic field, which are a priori unknown but can
be determined by comparison to experimental data, i.e.

tMC = A(T,H, . . . ) · treal . (3.34)

With this new time scale established, subsequent measurements of the observable O in a dynam-
ical Monte Carlo simulation no longer contribute to a statistical mean but yield corresponding
time-dependent measurement outcomes O(tMC). This time dependence can now be used to
introduce time-varying parameters like an oscillating magnetic field and to consequently access
dynamical measurements—previously unavailable in classical Monte Carlo studies. In particular,
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3 The Monte Carlo Method

as outlined in the next section, it can be used to numerically measure dynamic AC susceptibili-
ties, which is a standard tool for probing magnetic dynamics in experiments [107–111].

At this point, we want to emphasize that the single spin-flip dynamics immanent in the local
Monte Carlo updates is of great importance for the concept of dynamical Monte Carlo. Phys-
ically, one can interpret real time fluctuations in the Markov chain as phonons that shake the
system and stochastically cause fluctuations of single spins. Based on this picture, it is logical
that we use local updates instead of cluster update schemes, which are, therefore, not suitable
to model single spin dynamics.

3.4.2 Dynamical Measurements

In contrast to static Monte Carlo simulations, our approach allows also for the calculation of
dynamical observables such as the dynamical susceptibility χAC(ω). The dynamical (AC) sus-
ceptibility is a measure for the response to an alternating magnetic field

HAC(t) = H0 sin(ωt) . (3.35)

This magnetic field leads to a time-varying magnetization

M(t) = M0 sin(ωt− δ)

= M′ sin(ωt) + M′′ cos(ωt) , (3.36)

where M′ = M0 cos δ is the in-phase component of the magnetization and M′′ = −M0 sin δ the
out-of-phase component. δ describes the dephasing between the magnetization and the magnetic
field which originates in dissipation in the system which prevents the magnetization to follow
the oscillations of the field. The associated AC susceptibility χAC(ω) = M/H0 = χ′(ω)− iχ′′(ω)
can thus be calculated via

χ′(ω)H0 = M0 cos(δ) =
2

T

∫ T

0
M(t) sin(ωt)dt (3.37)

and
χ′′(ω)H0 = M0 sin(δ) =

2

T

∫ T

0
M(t) cos(ωt)dt . (3.38)

For dynamical Monte Carlo simulations, where the Markov chain of successive configurations is
interpreted as the real time evolution of the system, the alternating magnetic field in Eq. (3.35)
can be implemented as a function of Monte Carlo time tMC as

HAC(tMC) = H0 sin(ωtMC) = H0 sin
(
2π
tMC
tAC

)
, (3.39)

where tAC = 2π/ω is the period of the magnetic field in units of MCU. To measure the AC
susceptibility, the integrals on the right hand sides of Eqs. (3.37) and (3.37) are then simply
computed by averaging the integrands as usual in Monte Carlo simulations, that is,

χ′(ω)H0 =
2

NMC

NMC∑
tMC=1

M(tMC) sin(ωtMC) (3.40)

28



3.4 Dynamical Monte Carlo

for the real part of the dynamic susceptibility and

χ′′(ω)H0 =
2

NMC

NMC∑
tMC=1

M(tMC) cos(ωtMC) (3.41)

for its imaginary part, where M(tMC) is the magnetization in the simulation cell measured at
time tMC and NMC is the number of total MCU during the Monte Carlo simulation.

3.4.3 Example: Critical Slowing Down in a Ferromagnet

As a warm-up example of the dynamical Monte Carlo method, we want to probe the previously
described effect of critical slowing down near a phase transition, where fluctuations occur on
larger and larger and, eventually, system-spanning length scales and slow down the equilibration
of the system dramatically.

To this end, we periodically drive the ferromagnetic Ising model on the triangular lattice with
a sinusoidal magnetic field of the form of Eq. (3.35) and an amplitude of |H0|/J = 0.01. At
zero DC field, this model is known to exhibit a symmetry-breaking phase transition at a critical
temperature of Tc = 4

ln 3 ≈ 3.64 [112] and, therefore, is expected to show a drastic increase in
correlation times near Tc. Assuming a simple exponential relaxation of the magnetization with a
single relaxation time τ , linear response theory yields the Debye model for the AC susceptibility
(for a derivation, see Appendix A),

χAC(ω) =
χ0

1 + iωτ
, (3.42)

where the imaginary part χ′′(ω) = ωτχ0

[
1 + (ωτ)2

]−1 has a maximum at the loss peak frequency
ωp = 1/τ [107]. Therefore, we measure spectra of χAC(ω) in a dynamical Monte Carlo scheme, fit
the data to such a Debye relaxation, and use ωp to determine the relaxation time τ , which we, in
turn, interpret as the autocorrelation time of the system. This scheme is summarized in Fig. 3.2,
where normalized spectra of the imaginary part of the AC susceptibility, χ′′(ω)/χmax, are shown
for three different temperatures below, above, and near Tc. After fitting a Debye relaxation to
several such data sets, the loss peak frequency ωp can be plotted as a function of temperature
(see inset Fig. 3.2). As expected, the canonical critical slowing down near the phase transition
is successfully revealed as indicated by an exponential suppression of wp corresponding to an
exponential increase of τ = w−1

p . The method used in this fruitful example forms the basis for
studies of the dynamics in other, more complex systems in the next part of this thesis, where
the method, which is only briefly outlined here, is also presented in more detail.
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Figure 3.2 – Numerical spectra of χ′′(ω). Monte Carlo data of the (normalized) imaginary part of the AC
susceptibility (Eq. (3.41)) and corresponding Debye fits (see Appendix A for details) for the triangular lattice
Ising ferromagnet for three temperatures below, above, and near the phase transition at Tc = 4

ln 3
≈ 3.64

[112]. Each curve has a distinct maximum at a peak frequency ωp which is related to the relaxation time
as τ = ω−1

p . Inset: Upper panel shows the specific heat with the characteristic peak structure at T = Tc.
The lower panel shows the temperature dependence of the peak frequency ωp of the AC field response. The
exponential suppression of ωp is consistent with an exponential increase in correlation times near the phase
transition, i.e., a critical slowing down. Figure taken from [U1].
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Part II

Critical Speeding Up in Spin Ice and Spin
Liquids





Monopole Dynamics in Spin Ice
Chapter 4

Introduced 1997 by M. Harris, S. Bramwell, et al. [22], the term spin ice refers to a broad range
[113] of magnetic rare earth oxides that exhibit remarkably similar physics to water ice with
its characteristic zero point entropy [9]. These compounds are of the form A2B2O7 where B4+

usually are non-magnetic ions of a transition metal and A3+ are magnetic rare earth ions that
reside on the vertices of a face centered cubic network of corner-sharing tetrahedra commonly
referred to as the pyrochlore lattice (cf. Fig. 2.3(b)). Well-established textbook members of
this family of materials are holmium titanate (Ho2Ti2O7) [22, 114] and dysprosium titanate
(Dy2Ti2O7) [115]. In this chapter, the basics of spin ice physics are introduced and the emergence
of magnetic monopoles as elementary excitations in spin ice is discussed—for a much more
comprehensive introduction to the topic of spin ice, the interested reader is referred to the
extensive literature [23, 49, 50, 116, 117]. We will subsequently investigate the dynamics of such
monopoles using dynamical Monte Carlo simulations.

4.1 Spin Ice Physics

In Part I we showed that tetrahedra are perfect geometric building blocks for frustrated sys-
tems and that antiferromagnetically coupled classical Ising spins on the pyrochlore lattice do
not develop long range order, but have massively degenerate ground states leading to the resid-
ual Pauling entropy of Eq. (2.7). Intriguingly, the physics in spin ice can be mapped to this
very same model due to a very strong axial crystal field on the rare earth ions that splits the
free ion state such that an almost pure Ising doublet lies lowest in energy by several hundred
Kelvin. This, in turn, gives rise to a strong single ion anisotropy that constrains the magnetic
moments parallel to their local 〈111〉 quantization axes [118, 119]. That is, each spin behaves
like a classical Ising spin parallel to the axis which connects the vertex with the center of its op-
posing triangular face (cf. Fig. 4.1) and thus can only either point into a tetrahedron or out of it.

Accordingly, each spin can be written as a product of its local axis ẑi and an Ising variable
σi ∈ {−1,+1},

Si = σiẑi , (4.1)

where the four possible local axes are given by

ẑ1 =
1√
3
[11̄1̄] , ẑ2 =

1√
3
[1̄11̄] , ẑ3 =

1√
3
[1̄1̄1] , ẑ4 =

1√
3
[111] . (4.2)

Plugging this into a general nearest-neighbor Heisenberg Hamiltonian (Eq. (2.3)) with Jij ≡ J
and using that ẑi · ẑj = −1

3 for all neighboring i and j then yields the following effective Ising
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(a)                                                                                              (b)

Figure 4.1 – Pyrochlore lattice with Ising spins pointing along local 〈111〉 axes. (a) In spin ice materials
like Dy2Ti2O7 or Ho2Ti2O7, rare earth magnetic moments reside on the vertices of a network of corner-sharing
tetrahedra. A strong single ion anisotropy due to crystal field effects forces the spins (indicated by arrows) to
point along the axes that connect the vertices with the centers of the opposing triangular faces (example shown
as dashed line). Each tetrahedron has two spins pointing inwards and two spins pointing outwards, according
to the ice rule (see main text). (b) Shows a projection of (a) onto a two-dimensional plane for clarity.

Hamiltonian for nearest-neighbor spin ice (NNSI):

HNNSI = J
∑
〈i,j〉

Si · Sj = J
∑
〈i,j〉

σiσj(ẑi · ẑj) = −J
3

∑
〈i,j〉

σiσj

= Jeff
∑
〈i,j〉

σiσj =
Jeff
2

∑
α

|Lα|2 + c . (4.3)

This means that, due to the local single ion anisotropy, any coupling J is mapped to an effective
coupling Jeff = −J/3. This reveals a first surprise in the physics of spin ice: while geometric
frustration is generally associated with antiferromagnetism (J > 0), such a spin-spin coupling in
spin ice yields only two ground states related by a global spin inversion symmetry with all spins
pointing in or all out any reference tetrahedron (Lα =

∑
i∈α σi = ±4), and, upon cooling the

system, a second order phase transition in the unfrustrated three-dimensional Ising universality
class occurs [49, 114].

In the particular case of spin ice, surprisingly, ferromagnetism (J < 0) leads to the minimal
energy condition that Lα = 0 for all tetrahedra which ultimately causes massive frustration1.
Indeed, the Curie–Weiss temperature of Ho2Ti2O7 was found to be positive, ΘCW ≈ +1.9 K,
indicating overall ferromagnetic spin interactions, while no development of long range order was
neither found in neutron scattering experiments down to a temperature four times lower [22] nor
in muon spin relaxation (µSR) measurements down to 0.05 K [120].

1’It would be no understatement to say that this observation came as a surprise; indeed, in the months after our
initial discovery of spin ice both of us witnessed frequently the shock which this counter-intuitive result would
cause in audiences, as we presented our findings.’, S. Bramwell and M. Harris [117].
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The condition Lα = 0 that requires two spins to point into each tetrahedron while the re-
maining two spins point out of it, leads to the same degree of frustration as already discussed in
the context of water ice [9] and the Ising antiferromagnet on the pyrochlore lattice [7]. Therefore,
following the heuristical reasoning of Pauling [9] in the case of water ice, one expects exactly
the same residual entropy per spin in spin ice as in water ice: of all 24 = 16 possible configu-
rations on a single tetrahedron,

(
4
2

)
= 6 fulfill this condition, which is a fraction of 3/8. This

yields W = 2NS (3/8)NS/2 possible ground states for a lattice consisting of NS spins and hence
NC = NS/2 tetrahedra leading to a residual ground state entropy per spin of S0/NS = 1

2 ln
3
2 .

This exact correspondance to the physics of proton ordering in water ice with a macroscopic
number of minimal energy configurations, where each oxide ion is tetrahedrally coordinated with
two covalently bonded (”near”) protons and two hydrogen bonded (”far”) protons [72] (as visu-
alized in Fig. 4.2), is why the 2-in/2-out rule in spin ice is also commonly called the ice rule.

Remarkably, A. Ramirez et al. found direct experimental evidence for exact this zero point
entropy in the spin ice compound Dy2Ti2O7 by measurements of the specific heat cV (T ). They
integrated the specific heat between T1 = 300 mK in the spin ice regime and T2 = 12 K in
the paramagnetic regime, where the molar entropy is known to be R ln 2 for two possible spin
orientations per degree of freedom (where R is the molar gas constant). By applying Eq. (2.8),
they were able to show that Dy2Ti2O7 has, within a few percent [8], indeed the same zero point
ground state entropy as water ice (cf. Fig. 4.3) and thus confirmed the existence of an ice rule
obeying spin ice state in this compound [115, 121]. More recent specific heat measurements on
Dy2Ti2O7 lead to to a even better agreement between the experimental residual entropy and the
Pauling estimate [122]. Similar evidence for Ho2Ti2O7 is documented in Refs. [123, 124].

Figure 4.2 – Analogy between water ice and spin ice. Left: Low-energy configuration of water ice where
each oxide ion (large red circles) is tetrahedrally coordinated with two covalently bonded (”near”) protons
(black dots connected by a solid black line) and two hydrogen bonded (”far”) protons (connected by a dashed
black line). Right: The left picture translates into the ”two-in/two-out” ground state configuration in spin ice
when the far protons are depicted as arrows pointing outwards and the near protons are depicted as arrows
pointing inwards the tetrahedron spanned by the centers of the lines that connect two neighboring red circles
[125].
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Figure 4.3 – Entropy of the spin ice compound Dy2Ti2O7. The molar zero point entropy as found by
integrating experimental specific heat data by A. Ramirez et al. coincides within a few percent with the
entropy of water ice and the Pauling estimate R · 1

2
ln 3

2
(Eq. (2.7)). The high temperature limit of R · ln 2

corresponds to independently fluctuating spins with two possible directions. Data extracted from [115] and
figure reproduced with permission from Springer Nature.

4.2 Dipolar Spin Ice Model

We have shown that the nearest-neighbor spin ice model of Eq.(4.3) is already a surprisingly
good approximation that is able to qualitatively explain the presence of spin ice phenomenology:
the local 〈111〉 anisotropy due to the strong crystal field in combination with nearest-neighbor
spin-spin interactions yields an effective Ising antiferromagnet with a macroscopic residual Paul-
ing entropy as well as the ferromagnetic sign of the experimentally observed Curie-Weiss constant.

However, it turns out that both, Ho3+ and Dy3+, carry large magnetic moments µ of approxi-
mately 10 µB [126]. Therefore, these systems have a magnetic dipole-dipole interaction of about

D =
µ0µ

2

4πr3nn
(4.4)

with D ≈ 1.41 K at the nearest-neighbor distance rnn ≈ 3.5 Å, which is comparable to ΘCW and
the same order of magnitude as the exchange energy.

Thus, it surprises that the long range, proportional to r−3 decaying, and complex nature of
the dipolar interactions does not lift the ground state degeneracy in spin ice and induce long
range order at some critical temperature TN ∼ D. Siddharthan et al. were the first to empha-
size their influence, suggesting the dipolar origin of the effective ferromagnetic nearest-neighbor
coupling in Ho2Ti2O7, with the exchange coupling between Ho3+ ions actually being antiferro-
magnetic, which in themselves would indeed drive the system into a long range ordered state
[127]. To see how this is possible, we introduce the dipolar spin ice model (DSI) [126, 128, 129],
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4.2 Dipolar Spin Ice Model

which adds a long range dipolar interaction part HDD to the NNSI model:

HDSI = HNNSI +HDD = J
∑
〈i,j〉

Si · Sj +Dr3nn
∑
i,j

[
Si · Sj

|rij |3
− 3(Si · rij)(Sj · rij)

|rij |5

]
. (4.5)

where rij is the vector connecting spins Si and Sj , and Si = σiẑi are, again, three component
unit vectors composed of a local 〈111〉 axis ẑi and an Ising variable σi, and with a magnetic
moment µi = µSi, whose magnitude µ is absorbed in the definition of the dipolar interaction
strength D. Rewritten in terms of the Ising variables σi and using that ẑi · ẑj = −1

3 for all
neighboring i and j as well as (ẑi · rij)(ẑj · rij) = −2

3r
2
nn, the DSI Hamiltonian can be split into

an effective nearest-neighbor part and a part in which all dipole-dipole interactions beyond the
nearest-neighbor distance rnn are absorbed:

HDSI = Hnn
DSI +H>nn

DSI (4.6)

with
Hnn

DSI =

(
−J
3
+

5D

3

)∑
〈i,j〉

σiσj = Jeff
∑
〈i,j〉

σiσj , (4.7)

where
Jeff = Jnn +Dnn (4.8)

is the effective nearest-neighbor coupling consisting of an exchange part Jnn = −J/3 and a dipo-
lar part Dnn = 5D/3 with positive D. This reveals a second surprise in the physics of spin ice:
remarkably, this means that the dipolar interactions are not only compatible with the existence
of spin ice phenomenology, but in fact they appear to be responsible for it, given the antiferro-
magnetic (J > 0 and Jnn < 0) exchange interaction in Dy2Ti2O7 and Ho2Ti2O7—provided the
effective interaction is ferromagnetic (Jeff > 0) overall. The condition

Jeff > 0 ⇔ 5D > J (4.9)

is thus a simple criterion to weigh up whether a system displays a degenerate spin ice state, or
one has two unique Néel ordered ground states related by global spin inversion that correspond to
all spins pointing in or out each tetrahedron. This criterion is fulfilled by both reference spin ice
materials, Dy2Ti2O7, and Ho2Ti2O7, respectively (see Table 4.1). Note that taking into account
the dipolar interactions in the DSI model only up to a finite truncation radius rtrunc may lead to
a degeneracy lifting. But calculations using mean-field theory [130–132] as well as Monte Carlo
simulations [129]—carefully including the infinite range of dipolar interactions by the Ewald
method (cf. Appendix B)—have shown that by going from the effective nearest-neighbor DSI

Compound J Jnn D Dnn Jeff µ/µB

Dy2Ti2O7 [126] 3.72 -1.24 1.41 2.35 1.11 9.866
Ho2Ti2O7 [123] 1.56 -0.52 1.41 2.35 1.83 9.866

Table 4.1 – Interactions strengths. Exchange and dipolar interactions as well as effective nearest-neighbor
energy scales in Dy2Ti2O7 and Ho2Ti2O7 given in Kelvin, and the respective magnetic moments in units of
µB .
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4 Monopole Dynamics in Spin Ice

to true long range dipole-dipole interactions, spin ice degeneracy is almost completely recovered
as rtrunc → ∞ by some kind of self-screening mechanism of the dipolar interactions. These cal-
culations also showed that the threshold between systems with long range order and spin ice is
only slightly modified to approximately 4.53D = J in the limit of infinitely long range dipolar
interactions. That means that the full beyond-nearest-neighbor interaction, H>nn

DSI , acts only very
weakly to stabilize Néel order to the detriment of the degenerate spin ice manifold.

Finally we would like to point out that the relevance of the DSI eventually became clear not
least because it successfully accounts for discrepancies between experimental neutron scatter-
ing patterns and calculated scattering intensities in the NNSI model, as illustrated in Fig. 4.4.
What is remarkable about the DSI model is that it can not only elegantly explain the surprising
qualitative success of the NNSI model in understanding spin ice physics through the interplay
of antiferromagnetic nearest-neighbor exchange and effectively ferromagnetic nearest-neighbor
dipole-dipole interactions, but at the same time it also shows that the long range dipolar in-
teractions are indispensable for the quantitative understanding of various aspects of spin ice.

Figure 4.4 – Neutron scattering patterns of Ho2Ti2O7. (a) Experimental neutron scattering results at
T = 50 mK with dark blue regions representing low intensity and red regions representing high intensity.
Main features are intense scattering around (0, 0, 0) and (0, 0, 3) and a broad region with weaker scattering
around (3/2, 3/2, 3/2), connected by narrow necks that resemble bow-ties. Interestingly, qualitatively similar
scattering patterns have been observed in water ice [133]. (b) and (c) show numerically calculated neutron
scattering intensities for the NNSI model Eq. (4.3), and the DSI model Eq. (4.5), respectively (the solid line
indicates the region of experimental data in (a)). The main features of the experimental pattern are reproduced
successfully by both models, but the DSI model reproduces the features qualitatively and quantitatively much
better. Reprinted with permission from Ref. [123]. Copyright (2001) by the American Physical Society.

4.3 Magnetic Monopoles in Spin Ice

So far we have only considered spin ice with globally obeyed ice rules, that is two spins pointing
in and two spins pointing out each and every tetrahedron. One of the most impressive and
interesting aspects of spin ice, however, is revealed when one asks what excitations are in this
system. It turns out that spin ice is a prime example of a Coulomb phase (see Sec. 2.6), where
the local constraint leading to the zero divergence condition of the emergent flux vector field P(r)
is precisely the ice rule, that is, each node of B carries two incoming and two outgoing fluxes2.

2Recall from Sec. 2.6 that P(r) is defined on the parent diamond lattice B that is formed by the midpoints of the
tetrahedra of the medial pyrochlore lattice L
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4.3 Magnetic Monopoles in Spin Ice

If now a single spin is flipped, one of this fluxes is reversed, breaking the ice rule in the two
adjacent tetrahedra the spin belongs to, and thus creating two defects in form of nodes on B
with three ingoing and one outgoing flux and vice versa. The defects are therefore sources and
sinks of the flux field P(r). Notably, these fractionalized defects are deconfined: flipping fur-
ther spins along a Dirac string separates the defects without further energy costs, connected
by a Dirac string (cf. Fig. 4.5). Remarkably, the defects can be considered effective magnetic
monopoles.

In the above defect picture, we did not refer to the magnetic moment µ of the spins. Adding
these is conveniently best done pictorially similar to the way an electric dipole is composed of
two electric charges: by replacing the dipole moment of a spin situated on the vertices of the py-
rochlore lattice L by two separated magnetic charges sitting on the nodes of the diamond lattice
B. In order to reproduce the value of the magnetic moment µ of the rare earth ions correctly in
this dumbbell model [14, 27], the magnetic charges need to take values of q = ±µ/rD where rD
is the distance between two neighboring charges. Consequently, each center of a tetrahedron is
occupied by four charges, which either sum up to a total magnetic charge of Q = 0 when the ice
rule is fulfilled, or to Q = ±2µ/rD, when a spin is flipped such that three spins point into the
tetrahedron and one out, or vice versa. Intriguingly, since the spins in the DSI model interact
with each other through dipolar interactions, the magnetic charges at the centres of the tetra-
hedra in the dumbbell picture must interact through an effective magnetic Coulomb interaction
and behave like classical magnetic monopoles. Therefore, for pairs of monopoles with charges
Qα and Qβ (sitting on the nodes α and β of the diamond lattice formed by the midpoints of
the tetrahedra), separated by a distance rαβ through subsequent flips of neighboring spins, the
energy of the system can be described (up to corrections O(r−5)) [27] by translating the DSI
Hamiltionian to

H =
µ0
4π

∑
α<β

QαQβ

rαβ
+
ν0
2

∑
α

Q2
α . (4.10)

(a)                                                          (b)                                                                (c)

Figure 4.5 – Emergent monopoles in spin ice. (a) A section of a pyrochlore lattice obeying the ice rules
in each tetrahedron. (b) The spin sitting on the vertex connecting the left and the middle tetrahedron is
flipped leading to a 1-in/3-out configuration on the left tetrahedron and a 3-in/1-out configuration on the
middle tetrahedron, both violations of the ice rule and therefore of the divergence-free condition of the flux
vector field. This can be interpreted as an emerging pair of magnetic monopoles sitting at the centers of the
two neighboring tetrahedra connected by the spin that was flipped. (c) The same situation as before, but
now with a second spin being flipped, namely the one sitting on the vertex connecting the middle and the
right tetrahedron. This spin flip restores the ice rule on the middle tetrahedron but leads to a violation of
it (3-in/1-out) on the right tetrahedron. As both configurations have the same energy, this process can be
interpreted as deconfined magnetic monopoles moving apart without energy cost, connected by a Dirac string
(yellow line) [125].
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4 Monopole Dynamics in Spin Ice

(a)                                                                                       (b)

Figure 4.6 – Dumbbell model of magnetic charges. (a) Left: Schematic projection of a tetrahedron obeying
the ice rule. Right: Each magnetic moment µ can be decomposed into two magnetic charges q = ±µ/rD sitting
on the ends of a dumbbell. In the case of two spins pointing inwards and two outwards, the four charges in the
tetrahedron sum up to Q = 0. (b) If one spin is flipped such that three spins point inwards, the tetrahedron
is no longer charge neutral, but has a net magnetic charge of Q = 2µ/rD.

Here, the second term with

ν0

(
µ

rD

)2

=
J

3
+

4

3

(
1 +

√
2

3

)
D (4.11)

is added in order to include the nearest-neighbor exchange interaction correctly [14]. Note, that
large enough ν0 enforces Qα = 0 for all α which is simply a reformulation of the ice rule.

We have thus seen that the dipolar spin ice model and the dumbbell model both reconstruct
spin ice physics and that topological defects in the former can be viewed as emerging magnetic
monopoles via the latter—which can ultimately even be observed in experiments [24, 28–31]. We
will now see how the density of such monopoles can be tuned by an external magnetic field and
what effects this entails.

4.4 Magnetic Field Effects: Kagome Ice andMonopole Liquid-Gas
Transition

In this section we briefly want to review how an externally applied magnetic field can act as a
chemical potential favoring the creation of magnetic monopoles. To that end, we add a magnetic
field H = Hn̂ to the DSI Hamiltonian of Eq. (4.5) via

HH = −µ
∑
i

Si · H . (4.12)

Due to the strong single ion anisotropy, an external magnetic field can couple in various different
ways to the rare earth magnetic ions depending on its orientation. Magnetic fields along the
principal axes [100] and [110] break the macroscopic ground state degeneracy and remove the
residual entropy of the spin ice state at H = 0 relatively quickly [134–137] by forming long range
ordered q = 0 and q = X states, respectively, both satisfying the ice rules [129], as illustrated in
Fig. 4.7.

Of particular interest, on the other hand, it is to consider the case of n̂ ‖ [111]. To get a
better idea of what happens when a magnetic field is applied along the global [111] crystal direc-
tion, it is convenient to think of the pyrochlore lattice as an assembly of stacked kagome layers
along that very crystal direction, with alternating triangular layers in between, so that
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(a)                                                                                                                         (b)  

[100] [110]

q = 0 q = X

Figure 4.7 – q = 0 and q = X states. Schematic projections of the pyrochlore unit cell down the z-axis. For
external magnetic fields applied along the principal axes (a) [100], and (b) [110], spin ice has unique, ice rule
obeying ground states.

each triangle of a kagome plane is decorated with an extra spin from a triangular layer above or
below, which together form exactly one tetrahedron of the pyrochlore lattice, cf. Fig. 4.8.

If a field is applied along the global [111] axis, all spins couple to the field, i.e., they have a
non-zero dot product in Eq. (4.12), whereby the local anisotropy axes of a quarter of the spins—
namely of those on the triangular layers—and the magnetic field are collinear while the remaining
spins have a component of the magnetic moment along the [111] field direction a third smaller.
As a result, spin ice evolves to a fully polarized state in two steps.

Firstly, these triangular layer spins are subject to the highest Zeeman energy and will align
with the magnetic field first upon increasing the magnetic field strength, whereas the other spins
remain free to fluctuate on the effectively decoupled kagome layers such that the ice rule will still
be satisfied globally for intermediate fields, where a competition between the exchange, dipolar,
and the magnetic field part in the Hamiltonian is expected.

Figure 4.8 – The pyrochlore lattice as an assembly of stacked kagome layers (red) along along the global
cubic [111] direction, with alternating triangular layers (blue) in between, so that each triangle of a kagome
plane is decorated with an extra spin from a triangular layer above or below, which together form exactly one
tetrahedron of the pyrochlore lattice [125].
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4 Monopole Dynamics in Spin Ice

From the discussion in Sec. 2.6 we know that a single kagome layer consists of corner-sharing
triangles and for the ice rule being obeyed, the triangles may either have a 1-in/2-out config-
uration or a 2-in/1-out configuration, each being threefold degenerate. This modified ice rule
can be mapped to the problem of covering the hexagonal lattice with hardcore dimers, which
allows an analytical calculation of the reduced residual entropy of this state of about 40% of the
zero-field spin ice state [138, 139], in good agreement with experimental results [140]. Under
projection of the intra-layer spins onto the kagome layers, the planar system is equivalent to the
two-dimensional kagome ice model presented by Wills, Ballou, and Lacroix [78], hence giving
this macroscopically degenerate state its name kagome (spin) ice (KI).

The magnetization per spin m along the [111] direction in this regime can be easily derived
by considering a single tetrahedron with its triangular layer spin pinned by the magnetic field
plus two kagome layer spins having components aligned with the field and one spin with com-
ponent aligned against it. Using the definition of the local anisotropy axes from Eq. (4.2), this
yields a magnetization plateau with a value of

mKI =
µ

4
(+ẑ1 − ẑ2 − ẑ3 + ẑ4) · ẑ[111]

=
µ

4
√
3
(+ [11̄1̄]− [1̄11̄]− [1̄1̄1] + [111]) · 1√

3
[111]

=
µ

3
. (4.13)

In a second step, at larger field strengths (of about 1 T for Dy2Ti2O7 [141] and 1.7 T for Ho2Ti2O7

[82]), when the Zeeman energy dominates the exchange and dipolar interactions, the ice rules
will eventually be broken into 3-in-1-out configurations (or vice versa) since then all spins will
have a positive projection onto the field. The resulting state is fully ordered with maximal
polarization along the field. Thus the residual ground state entropy is expected to disappear and
the magnetization per spin can be calculated as

mpolarized =
µ

4
(−ẑ1 − ẑ2 − ẑ3 + ẑ4) · ẑ[111]

=
µ

4
√
3
(− [11̄1̄]− [1̄11̄]− [1̄1̄1] + [111]) · 1√

3
[111]

=
µ

2
. (4.14)

Both, the saturation of the magnetization and the disappearance of the residual entropy, have
been confirmed experimentally [124, 136, 142]. As we have seen before, breaking the ice rule
leads to magnetic point defects. Hence going from the kagome ice to the fully polarized phase
is accompanied by a drastic increase of the magnetic monopole density—which is also well il-
lustrated by the monopole density per tetrahedron from Monte Carlo simulations as a function
of temperature and magnetic field shown in Fig. 4.9(c). Therefore, an external magnetic field
along the crystallographic [111] axis can indeed be considered as an chemical potential for the
magnetic monopoles

To illustrate this two step evolution from spin ice via kagome ice to a fully polarized state,
we show results of Monte Carlo simulations of the DSI model Eq. (4.5), with model parameters
of Dy2Ti2O7 (cf. Tab. 4.1), where the full dipolar interactions are carefully taken into account
by using the Ewald simulation technique (see Appendix B for details), in Fig. 4.9.
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(c)

Figure 4.9 – Phase diagram and monopole density of spin ice in a magnetic field. (a) Monte Carlo
data of spin ice in a static external magnetic field along the crystallographic [111] direction (in units of Tesla)
shows a rich phase diagram. The colormap encodes magnetization data (in units of µ) whereas black crosses
indicate peaks in the specific heat. At low temperatures, two magnetization plateaus can be observed which
correspond to the kagome ice phase (m = 1/3) and the polarized phase (m = 1/2). The transition from the
spin ice phase (at HDC = 0) into the kagome ice phase can be described by aligning one of the four spins (see
red spin in inset) on each tetrahedron with the external field while still preserving the ice rules. A further
increase in field breaks the ice rules and aligns all spins with the external field, yielding the polarized phase.
This sequence is also depicted in the insets of panel (a) where spins that are pinned by the magnetic field are
colored in red. The transition between kagome ice and the polarized phase is of first order up to a critical end
point above which the transition occurs in a crossover. This change of behavior can also be seen in panel (b)
where cuts of the magnetization are shown as function of the external field. (c) The corresponding monopole
density per tetrahedron ρm as a function of temperature and magnetic field. Figure taken from [U1].

In line with previous experimental [136, 141, 143, 144] and numerical [27] results, the magnetiza-
tion and specific heat data shown in Fig. 4.9 reveal a rich phase diagram. For low field strengths,
the triangular spins start to align with the field and the magnetization immediately starts to build
up up to the first plateau value of the KI regime, mKI. Furthermore, and even more remarkably,
we see that the ice rule-breaking spin flip that turns kagome ice to the fully polarized phase
occurs in a liquid-gas type transition: below some critical temperature Tc, the magnetization as
a function of the external magnetic field strength along the [111] direction, HDC, jumps from
the KI regime value, mKI, to the value of the fully polarized phase, mpolarized. This line of first
order transitions ends at a critical end point (HDC, Tc)MC ≈ (0.75, 0.48) which slightly deviates
from the experimental values (HDC, Tc)exp ≈ (0.91, 0.36) which can be attributed to finite size
effects in numerics and further-neighbor interactions in real materials [27]. At higher tempera-

43



4 Monopole Dynamics in Spin Ice

tures, there is a continuous crossover regime between the low monopole density KI (”gas”) phase
and the high monopole density polarized (”liquid”) phase, implying that there is no symmetry
breaking between the two phases. This makes spin ice one of the the very few experimentally
known instances of such a transition in localized spin systems [144].

4.5 Monopole Dynamics in Spin Ice

Now that we have established the general phase diagram of spin ice with its low- and high-
monopole density phases with a magnetic field applied along the [111] crystallographic direction,
we can turn to the main topic of this chapter—the dynamics of these magnetic monopoles in a
magnetic DC field. As a final preparation for this, we briefly summarize what is known about
dynamics in spin ice so far and what is ultimately the motivation for the studies carried out
within the framework of this thesis.

In addition to various possible experimental methods such as neutron scattering [145], muon
spin resonance (µSR) [146], or nuclear magnetic resonance (NMR) [147], the main method of
choice for gaining insights into spin dynamics is AC susceptibility measurements. This method
has been applied numerous times to Ho2Ti2O7 and Dy2Ti2O7 [148–159], revealing a quite unique
behavior of the zero DC field relaxation time τ(T ) which can be roughly described by three dif-
ferent temperature regimes. At high temperatures above 12 K, the relaxation can effectively be
explained by an Arrhenius law τ(T ) = τ0 exp(E/T ) with an energy barrier E = 200− 300 K due
to thermal excitations of higher crystal field levels [160]. For intermediate temperatures between
approximately 2 and 10 K, the spin relaxation time flattens and is almost constant. This regime
is described in terms of annihilation and creation of monopoles and their diffusive motion [29].
Below 2 K, τ(T ) increases again as spin ice is formed. In this regime, spin relaxation can again
be described by an Arrhenius law, but with a much lower energy (E ≈ 6.6 K for Dy2Ti2O7

[35]). Finally, below about 0.6 K—which is above Tc of the critical end point—spin ice freezes
and relaxation becomes too long to be measured experimentally and also numerically. Fig. 4.10
illustrates this typical profile of τ(T ) between 0.8 and 17 K on the example of Dy2Ti2O7.

Figure 4.10 – Experimental spin relaxation time. Temperature dependence of τ(T ) in the spin ice compound
Dy2Ti2O7 obtained by AC susceptibility measurements. The temperature regime of spin ice relevant for this
thesis is shown in the inset. Data taken and figure reproduced with permission from Ref. [153]. Copyright
(2004) by the American Physical Society.

44



4.5 Monopole Dynamics in Spin Ice

Much less is known about the dynamics of spin ice in DC magnetic fields, especially near the
critical field so that the critical end point has not been approached very closely by AC suscepti-
bility measurements. Takatsu et al. studied the dynamics of Dy2Ti2O7 in a magnetic DC field
applied along the [111] direction, where excitations can be regarded as monopoles restricted to
effective two-dimensional kagome layers [34, 106]. The motion of these monopoles was studied
by AC susceptibility measurements in an additional magnetic AC field along the [112̄] direction,
i.e. perpendicular to [111]. Their measurements at T = 1 K � Tc ≈ 0.36 K showed that
the relaxation strongly depends on the DC field strength. While in the crossover of spin ice to
kagome ice between 0 T and 0.4 T the monopole dynamics is slowed down, relaxation becomes
significantly faster—beyond the measurement limit—upon approaching the critical field from
either side, signifying a critical speeding up of monopole dynamics that can be interpreted as a
change from independent diffusive monopole motion to a collective phenomenon or as diffusively
moving monopoles with highly increased hopping rate.

The fact that there is ultimately more information about the monopole dynamics near the critical
end point is due to an important consequence of the existence of emergent magnetic monopoles,
that was pointed out by D. Khomskii [161] after some early experimental indications [162]: a
redistribution of the electric charge depending on the spin configuration causes the formation of
spontaneous electric dipole moments in the case of 3-in-1-out or 1-in-3-out tetrahedra, i.e. in the
presence of magnetic monopoles. A different mechanism for the formation of electric dipole mo-
ments in the presence of magnetic monopoles was proposed in Ref. [163]. Both explanations lead
to the same striking consequence that magnetic monopole dynamics contribute to the dielectric
response function ε(ν) [164]. Grams et al. [165] have taken advantage of this and performed
spectroscopic measurements of ε(ν) in Dy2Ti2O7 in a magnetic DC field along the [111] direction
down to 200 mK. Fig. 4.11 shows the temperature and magnetic field dependence of the loss peak
frequency νp = (2πτ)−1 of the relaxation spectrum, which is fastest at the critical end point of
the monopole liquid gas transition and forms a fan-shaped region above the critical end point.

Figure 4.11 – Peak frequency of the dielectric loss spectra. Loss peak frequency obtained by spectra of
the dielectric function as a function of temperature and magnetic field exposing a sharp peak at the critical
point. Figure taken from [165] and reprinted with permission from Springer Nature.
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We recall (see discussion in Sec. 3.3.2) that the relaxation time is related to the correlation length
by some dynamical exponent z as τ ∝ ξz, and that at the critical field the correlation length
diverges as ξ ∝ |T − Tc|−ν with a positive exponent ν > 0. Combining these relations leads to

1

τ(T )

∣∣∣∣
H=Hc

= 2πνp(T )

∣∣∣∣
H=Hc

∝ |T − Tc|νz . (4.15)

Therefore, the sharp peak in νp signifies a negative dynamical exponent (νz ≈ −0.7 [165]) quite
contrary to the usual positive dynamical exponent leading to the canonical behavior of critical
slowing down, which, similar to the results of Ref. [106], implies a critical speeding up of the
dynamics close to the liquid-gas transition.

4.6 Dynamics in Spin Ice: Numerical Results

Having reviewed what is known about dynamics in spin ice experimentally, we will now move on
and discuss the results of dynamical Monte Carlo simulations of spin ice and whether they can
reproduce the experimentally observed critical slowing down. To that end, we simulate the DSI
model of Eq. (4.5) with model parameters of Dy2Ti2O7 (as in Tab. 4.1), where the full dipolar
interactions are again incorporated via the Ewald simulation technique (cf. Appendix B). In
addition, we add a magnetic field that consists of a static part and an AC part,

H(tMC) = HDC + HAC(tMC) = HDCn̂DC +HAC sin(ωtMC)n̂AC , (4.16)

in order to measure spectra of the AC susceptibility as described in Sections 3.4.2 and 3.4.3, for
DC fields from zero beyond the critical field (fixed along n̂DC = [111]) and AC fields with an
amplitude of HAC = 0.1, to map out the AC susceptibility across the whole phase diagram of
Fig. 4.9(a). As already briefly described before, this technique measures the response

χAC(ω) =
M

HAC
= χ′

AC(ω)− iχ′′
AC(ω) , (4.17)

to an applied magnetic AC field HAC(tMC) that oscillates with angular frequency ω = 2πν.
Formally—for a derivation see Appendix A—the AC susceptibility has the form of a Debye
relaxation,

χAC(ω) =
χ0

1 + iωτ
, (4.18)

and its real and imaginary parts are, therefore, given by

χ′
AC(ω) =

χ0

1 + (ωτ)2
, (4.19)

and
χ′′

AC(ω) =
ωτχ0

1 + (ωτ)2
, (4.20)

respectively. Since the imaginary part is a symmetric function in logarithmic scale with a maxi-
mum when ωτ = 1, one can extract the characteristic spin relaxation time as

τ =
1

ωp
. (4.21)
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(a)                                                                  (b)                                                                     (c)

Figure 4.12 – Numerical spectra of χ′′
AC(ω) and extraction of the relaxation time τ(T ). (a) Monte Carlo

spectra of the imaginary part of the AC susceptibility of the spin ice compound Dy2Ti2O7 in zero magnetic DC
field for temperatures between T = 0.7 and T = 1.9 with corresponding (generalized) Debye fits (Eq. (4.22)).
(b) From the curves in (a), one can extract the loss peak frequency ωp as a function of temperature. (c) The
resulting spin relaxation time τ(T ) = 1/ωp(T ).

An example of this workflow for the study of dynamics in spin ice is illustrated in Fig. 4.12. Panel
(a) of this Figure shows raw Monte Carlo spectra of χ′′

AC(ω) for zero DC field and temperatures
between 0.7 K and 1.9 K with n̂AC = [11̄0] (i.e. perpendicular to [111] and parallel to the kagome
planes), together with corresponding fits to the imaginary part of a Havriliak-Negami function
[166]

χAC(ω) =
χ0

[1 + (iωτ)1−α]β
. (4.22)

This is a generalized Debye relaxation that takes into account a spread of relaxation times in
real materials caused by interaction effects by introducing the real parameters 0 ≤ α, β ≤ 1 (cf.
Appendix A). Panel (b) of Fig. 4.12 shows the resulting loss peak frequency ωp, where χ′′(ω)AC
has its maximum, as a function of temperature. Finally, panel (c) shows the corresponding
relaxation time τ(T ) = 1/ωp(T ), which is very similar to the experimental low temperature
relaxation time in the inset of Fig. 4.10. In the same way we will now proceed to study the
dynamics over the whole range of relevant magnetic fields and temperatures.

4.6.1 Speeding Up vs. Slowing Down

We start with applying the magnetic AC field along the [11̄0] direction, that is, parallel to the
kagome planes and transversal to the cubic [111] direction of the DC field. Fig. 4.13(a) depicts
the resulting loss peak frequency of the numerical AC susceptibility for static fields up to 1.27 T
and temperatures between 0.4 K and 2.0 K. Intriguingly, we observe a maximum of ωp towards
the critical field of the monopole liquid-gas transition (Hc ≈ 0.75 T), that can be attributed to
the critical speeding up of the monopole dynamics, in line with the experimental results [106,
165]. Noteworthy is the deviation from experiment (cf. Fig. 4.11) that the peak frequency does
not fall back to zero beyond the critical field, but remains on a plateau. Also, the ridge along
the temperature direction around the critical field does not drop off exponentially, but is rather
temperature independent. These similarities and differences show that some aspects of monopole
dynamics in spin ice are already well reproduced by dynamical Monte Carlo simulations of the
DSI model, but others are not. The latter must therefore be compensated for by a conversion
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(a)                                                                                                                         (b)

Figure 4.13 – Speeding up versus slowing down in dipolar spin ice. (a) Shown is the loss peak frequency
ωp of the AC susceptibility of dipolar spin ice with transversal AC field, obtained from dynamical Monte Carlo
simulations with an alternating field HAC ‖ [11̄0] and amplitude of the AC field H0 = 0.1 T. For orientation,
the phase diagram from Fig. 4.9 is plotted below the susceptibility data. Peak frequencies of the AC response
show a characteristic ridge towards the critical end point but no sign of (exponential) suppression. Along the
magnetic field direction, a critical speeding up of the dynamics is revealed towards the critical field. (b) As
(a), but with an alternating field HAC ‖ [111]. Peak frequencies of the AC response show a stark suppression
towards the critical end point, consistent with a slowing down of the critical dynamics. Figure taken from [U1].

factor between Monte Carlo time and real time, which we will examine in detail later. We also
checked the case HAC ‖ [112̄], which is parallel to the kagome planes as well, and obtained ex-
actly the same results as for HAC ‖ [11̄0] (not shown here). Therefore, in both cases we speak
synonymously of the transversal case and later on, we will use experimental data for both cases
as a comparison to our numerical data.

We now compare the transversal field data to the results for the case HAC ‖ [111], that is lon-
gitudinal to the cubic [111] direction. As depicted in Fig. 4.13(b), it turns out that in this case
the dynamics are subject to a conventional slowing down near the critical end point. Fig. 4.14
demonstrates how the slowing down is gradually transformed into the speeding up by varying
AC field direction from [111] to [11̄0] at 0.6 K.

In both cases, transversal and longitudinal AC field, the zero DC field cut of ωp shows an increase
towards higher temperatures consistent with experimental results [150, 153, 159]. Building on
the qualitatively already good agreement with experiments, we want to investigate the connec-
tion between Monte Carlo and real time in the later course of this thesis by combining detailed
comparisons with various experimental results and theoretical considerations about the nature
of this conversion.

4.6.2 Spin Flips

In order to understand which spins mainly carry the speeding up of the dynamics in a transversal
AC field, we take a look at the fluctuations of the different types of spins grouped according to
their local Ising axes (cf. sketch in Fig. 4.15). The plots on the r.h.s. of Fig. 4.15 show these
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Figure 4.14 – Tuning between slowing down and speeding up. Monte Carlo data of the loss peak frequency
ωp of the AC susceptibility in dipolar spin ice close to the critical end point. Data shows cuts for constant
T = 0.6 upon tilting of the AC magnetic field. The behavior of the switches from a characteristic decrease
of ωp near Hc for a longitudinal AC field HAC ‖ [111] (red curve) to a speeding up for a transversal AC field
HAC ‖ [11̄0] (turquoise curve). Figure taken from [U1].

spin fluctuations, ordered by spin type and for both cases, longitudinal and transversal AC field.
In the longitudinal case (upper four plots on the right of Fig. 4.15), all three types of spins in
the kagome planes (S1, S2, and S3) fluctuate equally independent of the magnetic field strength.
The fluctuations of S4 drop rapidly to zero as soon as the system enters the KI phase above 0.2 T
where these spins are pinned by the static DC field, whereas the fluctuations of the remaining
spins do not drop until above the critical field when the system becomes fully polarized. This
also seems logical, because spins of type S1, S2, and S3 are geometrically equivalent with respect
to the magnetic field axis which happens to coincide with the local axes of S4. Moreover, the
fluctuations of all spins are largely independent of the frequency of the AC field.

For the transversal case, on the other hand, it is revealed (lower four plots on the right of
Fig. 4.15) that with increasing driving frequency, fluctuations of S3 are enhanced just below the
critical field while those of S1 and S2 are suppressed compared to a static setup. In this scenario,
S3 is geometrically distinct from S1 and S2.

4.7 Comparison to Experimental Data

Having shown the qualitative agreement of Monte Carlo data and experimental results in terms
of the prevalent spin dynamics close to the critical point, a natural question to ask is to what
extent the observables can be matched quantitatively. In the following section, we demonstrate
that the Monte Carlo dynamics can indeed be compared to the dynamics of the real system by
employing a systematical mapping. To this end, a conversion factor is introduced which maps the
timeline of updates in the Monte Carlo simulation to the real time passing in the experiment. We
show that this conversion not only gives qualitative but also quantitative agreement for certain
regions of the phase diagram.
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4.7.1 Conversion Factor

In our Monte Carlo Markov chain, configurations succeed each another by means of single-spin
flip Monte Carlo updates (MCU) in each of which the flip of an individual spin is accepted or
rejected based on the thermal Metropolis weights. One typically groups N of those updates
together to form a so-called Monte Carlo sweep (MCS), a unit of Monte Carlo time which is
consequently independent of system size and which can be roughly understood as the average
time for any given spin to be updated. However, despite this grouping spin flips still occur
sequentially and not in parallel.

In contrast to our Monte Carlo simulation, however, a real material exhibits spontaneous thermal
spin flips, e.g., induced by phonon activity, which are not sequential but occur at any given place
within the sample simultaneously. One therefore is usually discussing quantities of a single spin
which is again (mostly) independent of sample size.

Let us consider the two systems individually. In the experimental system, the number of spin
flips that occur in a given time interval ∆treal, measured in seconds, is given by

N real
SF = α̃ nph ∆treal (4.23)

where α̃ is a material constant, amounting for coupling between phonons and spins as well as
the total amount of spins and nph describes the density of phonons present in the system which
can couple to the spins.

In the Monte Carlo system, the number of spin flips in a given time interval ∆tMC, measured in
Monte Carlo updates, can be given far more explicit, it is

NMC
SF = pacc ∆tMC , (4.24)

Figure 4.15 – Spin fluctuations in spin ice. Panels show the variance of different types of spins in each
tetrahedron as function of external magnetic field for T = 0.6 K. The colors of the variance plots match the
respective type of spin in the sketch. For the two distinct cases HAC ‖ [111] (upper four plots) and HAC ‖ [11̄0]
(lower four plots), qualitatively different behavior in the vicinity of the critical field can be observed: Whereas
for HAC ‖ [111], S1,S2,S3 remain equally fluctuating for all magnetic fields, fluctuations in these spins are
pronounced differently in the vicinity of the critical field for the transversal case, where fluctuations of S3 are
enhanced near HDC = Hc. Figure taken from [U1].
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which only includes the length of time interval, ∆tMC, as well as the update acceptance proba-
bility pacc which emerges from the Monte Carlo update scheme.

In order to compare time scales between the real system and the Monte Carlo system, time
intervals ∆tMC and ∆treal are compared in which both systems perform one spin flip per spin as
illustrated in Fig. 4.16, i.e.

N real
SF

N real
S

=
NMC

SF
NMC

S

!
= 1 . (4.25)

If one uses this and equates Eqs. (4.23) and (4.24), then it follows that

α nph ∆treal[s] =
pacc

NMC
SF

∆tMC[MCU] (4.26)

with some new constant α = α̃/N real
SF which is now independent of the size of the real system.

This identification leads to relating real and Monte Carlo time intervals in the form of

∆tMC[MCS] = A ·∆treal[s] (4.27)

with a conversion factor A. Such a conversion factor between Monte Carlo time and real time has
already been introduced by Takatsu and et al. [105]—however, the factor was only introduced
phenomenologically and only its temperature dependence was investigated, which was explained
with a simple Arrhenius law, that is, A(T ) ∝ exp−∆/T with ∆ ≈ 4 K. But with the previous
discussion, this factor can now be theoretically identified as

A =
α nph
pacc

. (4.28)

For a typical phonon system underlying the spin system one can make further general assump-
tions. The phonon occupation has in general a thermal dependence nph(T ) which can be ex-
pressed as a Bose function of typical energy scale Eph as

nph(T ) ∼
1

eEph/kBT − 1
. (4.29)

This Bose form of the phonon occupation explicitly has two relevant limits. For high tempera-
tures kBT � Eph, the function is roughly given as nph(T ) ∼ T whereas for small temperatures

kBT � Eph, the function is roughly given as nph(T ) ∼ e
−

Eph
kBT .

Extracting the conversion factor for the purpose of spin ice (and in general) can hence be
done from two different perspectives. First and foremost, having access to experimental AC
susceptibility data allows to compare the peak frequencies between Monte Carlo and experiment
according to Eq. (4.27), directly yielding the factor A as a function of external parameters. Sec-
ondly, the theoretical approach of Eq. (4.28) can be used, employing the numerical acceptance
rates while still containing estimates or fits for the phonon contributions.
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tMC [MCU]

treal [s]
treal,i treal,i + Δtreal 

tMC,i tMC,i + ΔtMC 

Figure 4.16 – Time scale comparison between Monte Carlo and real time. In the time it takes the
Monte Carlo system a certain number of proposed updates (light and dark blue ticks), ∆tMC, the experimental
system progresses by a time interval ∆treal. These time intervals can be related if they include the same
number of spin flips (dark blue and dark red ticks, respectively) per spin in both systems as outlined in the
main text. The final result is that for one update in a Monte Carlo system of N spins, the real time progresses
by ∆treal ∼ pacc/(nphN).

In the following, both methods are compared by first calculating the actual conversion from
experimental to Monte Carlo time and then fitting Eq. (4.28) to the resulting A(H,T ).

Note, that in Eq. (4.28), the acceptance rates of the Monte Carlo process enter as pacc and
the only fit parameters are the global prefactor α as well as the phonon energy Eph, entering
the phonon density term nph. The Monte Carlo update probability pacc as a function of mag-
netic DC field and temperature is shown in Fig. 4.17. As expected, pacc goes to zero for low
temperatures, making the conversion factor A large and indispensable for conversion between
real time and Monte Carlo time. Note also, that the precise form of phonon contribution can
be extracted from this comparison and is separately compared to the estimated nph given by
Eq. (4.29). Overall, comparisons are limited by the availability of experimental data, which is
the reason for combining data from different sources and concentrating on certain regions of the
phase diagram, namely zero field, the KI regime, and slightly below or at Hc.

Figure 4.17 – Monte Carlo acceptance probability. The probability of accepted updates pacc in the Monte
Carlo simulation of spin ice in a magnetic field enters the conversion between real time and Monte Carlo time
according to Eq. (4.28).
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4.7.2 Transversal AC Field

Let us start by investigating the conversion between time scales for an alternating magnetic
field HAC ‖ [11̄0] which is perpendicular to the static magnetic field and thus compatible with
accelerated dynamics. First, we focus on the temperature behavior below 2 K in the spin ice
and kagome ice phases with data shown in Fig. 4.18. Here, we compare experimental suscepti-
bility data for HDC/Hc = 0.0 [158] and for HDC/Hc = 0.54 [34] against our Monte Carlo data
obtained at the same parameter values—the scaling of the magnetic field is due to the slightly
different values of the critical field between experiment (Hc ≈ 0.91 T) and Monte Carlo sim-
ulation (Hc ≈ 0.75 T). This data features frequency-resolved AC susceptibilities for multiple
temperatures at a fixed magnetic field. Overall, a bare comparison of the experimental peak
frequencies in panels (a) and (e) to the numerical peak frequencies in panels (b) and (f) shows a

(a)   Experiment                                                                                              (e)  Experiment

(b)   Monte Carlo                                                                                            (f)  Monte Carlo

(c)                                              (d)                                                                 (g)                                             (h)  

Figure 4.18 – Comparison of experimental and numerical AC susceptibilities for transversal HAC .
Experimental AC susceptibilities (panels (a) and (e)) are compared to Monte Carlo data (panels (b) and (f))
for the case of AC field ⊥ DC field. A direct comparison of peak frequencies leads to a conversion of time scales
with a factor A depicted in panels (c) and (g), respectively. Overall, the conversion factor is compatible with an
Arrhenius-like behavior for low temperatures. The factor contains contributions from both the experimental as
well as the Monte Carlo side. Removing the latter by explicitly taking the Monte Carlo specifics into account
yields a remaining phonon contribution depicted in panels (d) and (h), which is consistent with our estimates.
Experimental data in panel (a) is taken from Ref. [158] for HDC/Hc = 0.0, experimental data in panel (e) is
taken from Ref. [34] which describes HDC/Hc = 0.54. Figure taken from [U1].
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good qualitative resemblance. Both the order of peak frequencies as well as the relative heights of
peaks agree on a qualitative level. Fitting the extracted conversion factors AMC-exp = ωreal

p /ωMC
p

with the theoretical prediction from Eq. (4.28), displayed in panels (c) and (g), reveals a good
agreement to the a priori predictions especially for low temperatures. Furthermore, extracting
only the phonon part of the conversion by multiplying with pacc, one can observe in panels (d)
and (h) that this is well reproduced by the expected nph given by Eq. (4.29).

If the conversion factor is considered only phenomenologically, it shows the same Arrhenius-
like behavior as already shown by Takatsu et al. [105], as indicated by the dashed line in panel
(c) of Fig. 4.18. However, it should be noted that this Arrhenius law is purely descriptive whereas
the fit to Eq. (4.28) is based on theoretical considerations.

Increasing the static field further, let us compare the dynamics in the cone above the criti-
cal end point where the critical speeding up occurs. In experiment, this speeding up can be
measured as a drastic increase in peak frequency upon lowering the temperature towards the
critical end point, as displayed in Fig. 4.19 which shows data similar to that published in ref-
erence [165] (see also Fig. 4.11) and has been provided by the Hemberger group at University
of Cologne. As visualized in Fig. 4.13(a), our Monte Carlo data has a similar feature in terms
of a ridge which does not show any signs of a critical slowing down towards the critical end point.

Fig. 4.20 compares frequency-resolved AC susceptibility data at the critical field for various
temperatures between experiment and Monte Carlo simulation. A qualitative comparison be-
tween experimental data in panel (a) and numerical data in panel (b) shows a good agreement,
especially when comparing again to the data of Figure 4.18. In this comparison, especially the
narrow spread of peak frequencies seems to be reproduced by the numerics accurately. However,
upon closer inspection, the behavior for higher temperatures differs between experimental and
numerical data. Whereas peak frequencies are observed to drop significantly at higher tem-

Figure 4.19 – Critical speeding up in experiment – Experimental data for the magnetic AC susceptibility
with transversal AC field. The cone-like structure at HDC/Hc = 1.0 indicates increased response frequencies
close to the critical end point. Data has been provided by the Hemberger group at University of Cologne and
is similar to that published in reference [165].
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(a)   Experiment                                                                                 (c) 

(b)   Monte Carlo                                                                              (d)  

Figure 4.20 – Comparison of experimental and numerical AC susceptibilities for transversal HAC .
Experimental AC susceptibilities (panel (a)) are compared to Monte Carlo data (panel (b)) for the case of AC
field ⊥ DC-field similar to Fig. 4.18. Data is shown for the static field tuned to the critical point and different
temperatures above the critical temperature. A comparison of time scales between experiment and Monte
Carlo simulations reveals the absence of the typical Arrhenius-like behavior (panel (c)) as well as a strange
and unphysical phonon contribution (panel (d)). Experimental data in panel (a) has been provided by the
Hemberger group at University of Cologne and is similar to that published in reference [165]. Figure taken
from [U1].

peratures in the experiment, the Monte Carlo data does not seem to follow this trend as peak
frequencies tend to group up and show no signs of variation. This is replicated in the atypical
behavior of the conversion factor, displayed in panel (c), and the lack of a clear phonon contri-
bution form, displayed in panel (d). We thus conclude that the theoretical ansatz of Eq. (4.28)
does not hold up close to the critical magnetic DC field.
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4.7.3 Longitudinal AC Field

Let us switch the AC field direction to HAC ‖ [111] which is parallel to the static magnetic
field and where the raw Monte Carlo data (cf. Fig. 4.14) shows a slowing down of the critical
dynamics close to the critical end point.

We start by investigating the dynamics in the spin ice and kagome ice phases as displayed
in Figure 4.21. Again, experimental frequency-resolved AC susceptibility data [167] is compared
along cuts of constant field. Overall, there is a good qualitative agreement between the experi-
mental datasets [167] in panels (a) (HDC/Hc = 0.0) and (e) HDC/Hc = 0.4 and the numerically
obtained susceptibilities in panels (b) and (f), respectively. This agreement is also reflected in a
well-fitted conversion factor, displayed in panels (c) and (g), which is well described by the theo-
retical estimates of Eq. (4.28). Also, the extracted phonon contribution fits well to its theoretical
estimate, complementing the overall conversion.

(a)                                                              Experiment                                  (e)                                                             Experiment

(b)                                                            Monte Carlo                                  (f)                                                            Monte Carlo

(c)                                             (d)                                                                 (g)                                             (h)  

Figure 4.21 – Comparison of experimental and numerical AC susceptibilities for longitudinal HAC .
Experimental AC susceptibilities (panels (a) and (e)) are compared to Monte Carlo data (panels (b) and (f))
for the case of AC field ‖ DC field. For both field strengths, the calculated conversion factors between numerical
and experimental time scales feature an theoretically predicted behavior and a phonon contribution consistent
with our theoretical expectations. Experimental data was provided by the Hemberger group at University of
Cologne [167]. Figure taken from [U1].
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Increasing the static field further and probing the region right below the critical slowing down
(HDC/Hc = 0.7) yields the comparison displayed in Figure 4.22. Similar to the case of per-
pendicular AC field, the experimental and Monte Carlo data seem to differ here. Whereas a
general agreement in terms of relative peak heights and overall spread of the peak frequencies
can be observed, the order of peak frequencies seems to mismatch. This is again reflected in a
anomalous conversion factor and phonon factor, depicted in panel (c) and (d).

Overall, Fig. 4.23 summarizes the quality of conversion between experimental and numerical
data for the longitudinal AC field. Here it can be seen that the qualitative and non-monotonous
dependency of A on the static field HDC, predicted by theoretical estimates along Eq. (4.28), is
reproduced qualitatively by the true conversion factor obtained by directly comparing numerical
and experimental relaxation times. It is further possible to assign a single phonon energy Eph
to large regions of the phase diagram, further solidifying the shape of the conversion.

(a)   Experiment                                                                             (c) 

(b)   Monte Carlo                                                                          (d)  

Figure 4.22 – Comparison of experimental and numerical AC susceptibilities for longitudinal HAC .
Experimental AC susceptibilities (panels (a)+(e)) are compared to Monte Carlo data (panels (b)+(f)) for the
case of AC field ‖ DC field. Upon increasing the static magnetic field, the conversion factor (panel c) show no
longer Arrhenius-like behavior, but has a positive slope yielding an unphysical phonon factor (panel d) with
negative phonon energy. Experimental data was provided by the Hemberger group at University of Cologne
[167]. Figure taken from [U1].

4.8 Discussion and Outlook

We have extensively studied the dynamics of monopole-like excitations in spin ice based on dy-
namical Monte Carlo simulations. This revealed several interesting features already on a raw
numerical level without comparison to experimental results and conversion between Monte Carlo
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Figure 4.23 – Conversion factor for longitudinal HAC . Comparison of the measured (Eq. (4.27)) and
expected (Eq. (4.28)) conversion factors between experimental and numerical data. The factor is shown as
a function of static field for an alternating field HAC ||[111] for a fixed temperature of 1.8 K. Dashed curve
shows the measured factor A, obtained by comparing peak frequencies in experimental and numerical Monte
Carlo data. The solid curve shows the prior expectation based solely on a phonon factor with constant phonon
energy Ēph and the numerical Monte Carlo acceptance rates. The constant phonon energy Ēph in this curve
is given by the average of the fit parameter Eph of the fit to nph as in Fig. 4.21(d)+(h) for fields between
HDC/Hc = 0.0 and HDC/Hc = 0.5 (inset). Overall, the non-monotonic behavior of the conversion factor is
captured by the theoretical approach. Figure taken from [U1].

time and real time. The purely numerical results show that the dynamics of spin ice depend very
sensitively on the direction along which the alternating magnetic field oscillates: while for a lon-
gitudinal field along [111] the dynamics slows down near the critical end point of the monopole
liquid-gas transition, for a transverse field along [11̄0] signs of a critical speeding up become
apparent, in complete contrast to the prevailing paradigm that critical fluctuations always slow
down equilibrium.

Subsequently, we established the connection between our numerical simulations with various
experiments on the dynamics in spin ice and made statements about the conversion between
Monte Carlo time and real time based on a profound theory for the conversion factor A. For
parts of the phase diagram—from zero field to well into the KI regime—the conversion based
on our theory works well and reproduces the actual conversion as well as the previously purely
phenomenological introduced Arrhenius-like relationship between tMC and treal, which allows to
better understand the microscopic origin of this conversion than before.

However, this theoretical conversion breaks down before the critical field is reached. For fur-
ther research, it would therefore be important to understand how the conversion can also be
theoretically substantiated for strong magnetic DC fields. But the prerequisite for this is, of
course, corresponding experimental data for fields exceeding Hc. On a purely numerical level,
a worthwhile goal would be to understand what is the microscopic origin of the field direction
dependence of the dynamics, i.e. why the dynamics becomes slow for a longitudinal AC field
and fast for a transverse field.
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Spin Liquid

Chapter 5
Having seen from the dynamics of monopoles in spin ice that critical fluctuations can lead to
a speeding up of the dynamics, and that dynamic Monte Carlo simulations can capture these
dynamics considerably well, we now want to use the same method to consider an even more
fundamental system than spin ice, namely a classical spin liquid arising from the Ising antiferro-
magnet on the triangular lattice. After reviewing the basics of this model in a static setup, we
proceed with analyzing the dynamics due to an applied magnetic AC field.

The motivation for this chapter stems from a bachelor thesis supervised by the author of this
thesis [168], the content of which has been taken up and substantially expanded by the author of
this thesis in preparation of [U1].

5.1 Introduction

As already mentioned in the very beginning of Chapter 2, the prototypical example of an frus-
trated system is the triangular lattice Ising antiferromagnet (TIAFM) as introduced by Wannier
in 1950 [4, 5]. In Fig. 2.1(b) we showed how frustration arises geometrically on an elementary,
triangular plaquette. The Hamiltonian of the TIAFM is simply given by

H = J
∑
〈i,j〉

σiσj , (5.1)

where σi = ±1 denote standard Ising variables, 〈i, j〉 indicates summation over pairs of nearest
neighbors, and J > 0 is the isotropic antiferromagnetic coupling constant. The energy is there-
fore minimal for all configurations that fulfill the constraint that each elementary triangular
plaquette has exactly two up spins (σ = +1) and one down spin (σ = −1), or vice versa. Only
two of the three bonds on such a plaquette can, therefore, be satisfied simultaneously, which
leads to a massive ground state degeneracy.

A snapshot of one specific ground state is shown in Fig. 5.1(a). Looking at this Figure, the
ground state degeneracy becomes immediately clear when one realizes that there exist spins that
can be flipped without energy cost, e.g., the grey encircled spin. The resulting residual entropy
can be calculated analytically by mapping the ground state spin configuration to a hardcore
dimer covering on the dual hexagonal lattice (see Fig. 5.1(b)). This is done by placing a dimer
on each bond of the hexagonal lattice that crosses an unsatisfied bond of the original triangular
lattice, that is, a bond connecting two parallel spins. The resulting dimer covering is such that
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(a)                                                                       (b)                                                                      (c)

Figure 5.1 – Triangular Ising antiferromagnet. (a) A snapshot of one specific ground state of the triangular
AFM on the triangular lattice. Each triangle hosts two up spins and one down (or vice versa). The grey
encircled spin is an example of a spin that can be flipped without energy cost. In the background, the hexagonal
dual lattice to the triangular lattice, can be seen in transparent. (b) Here, the hexagonal dual lattice is now in
focus. The ground state configuration of (a) can be mapped to a dimer covering an the dual hexagonal lattice
such that those bonds are covered by dimers that cross unsatisfied bonds in the original triangular lattice and
every site is part of precisely one dimer. (c) This in turn can be mapped to a divergence-free flux field P(r) by
identifying the bonds of the hexagonal lattice with lattice fluxes where each dimer-covered bond has (minus)
twice the weight of an uncovered bond. Each node has then zero net (incoming minus outgoing) flux.

each dimer covers exactly two hexagonal lattice sites and each hexagonal lattice site is occupied
by precisely one dimer. The number of ground state configurations on the triangular lattice
then translates to the number of possible different dimer coverings on the hexagonal lattice—a
problem that has been addressed in the early 1960s [169, 170], yielding an exact value for the
zero point entropy per spin of

S0/N = 0.323. (5.2)

This is in stark contrast to the unfrustrated ferromagnetic (J < 0) Ising model on the triangular
lattice, which exhibits a thermal phase transition from a paramagnet to an unique ferromagnetic
ground state (up to global spin inversion) at some critical temperature Tc = 4/ ln 3 ≈ 3.6403
[112, 171] and, therefore, has no residual entropy.

In Fig. 5.2, we show a comparison of antiferromagnetic (AFM) and ferromagnetic (FM) tri-
angular lattice Ising model by their specific heat and residual entropy, both calculated in Monte
Carlo simulations. Whereas the FM shows a sharp peak in the specific heat at Tc, the AFM
displays a crossover regime and no sign of a symmetry breaking phase transition. The numerical
curves of the residual entropy also show the expected behavior with the respective limiting values
for T → 0 of 0.323 and 0, respectively.

This is already a quite interesting result and makes the TIAFM a prototypical cooperative
paramagnet, or classical spin liquid. But the mapping to a hardcore dimer covering opens up
yet another perspective. Starting from the dimer covering in Fig. 5.1(b), the system can then be
mapped to a divergence-free flux field P(r), as visualized in Fig. 5.1(c). Similar to the mapping
of kagome ice to a Coulomb phase presented in Sec. 2.6, weighted fluxes are placed on the bonds
of the hexagonal lattice such that bonds, that are occupied by a dimer, have twice the weight of
an unoccupied bond. This results in the sum of all incoming and outgoing fluxes being equal at
each node of the hexagonal lattice, i.e. there is no net flux, which is exactly the divergence-free
condition of P(r). The TIAFM is thus also a prime example of a Coulomb phase with all the
consequences described in Sec. 2.6, in particular long range algebraic correlations that decay
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(a)

(b) ln 2

0.323

Figure 5.2 – Triangular Ising AFM vs. FM. (a) Specific heat of AFM and FM Ising model on the triangular
lattice. The latter shows a distinct peak at the ferromagnetic phase transition at the critical temperature
Tc = 3.6403 [112, 171]. (b) Residual entropy per spin showing a finite zero-temperature entropy only in the
AFM, indicating a highly degenerate ground state.

with the distance r as 1/r2 and possible defects, that can be interpreted as emerging magnetic
monopoles.

5.2 TIAFM in a Magnetic Field

Applying a static magnetic DC field to the TIAFM leads to a similarly rich phase diagram as it
is the case for spin ice in a magnetic field along the cubic [111] direction [172–175]. In order to
implement the magnetic field, the term

HH = −H
∑
i

σi (5.3)

is added to the TIAFM Hamiltonian of Eq. (5.1). If the magnetic field is now switched on, the
system enters into a non-degenerate ordered phase with a magnetization per spin m = 1/3 where
the spins on one sublattice are aligned along one direction whereas the spins on the other two
sublattices point in the opposite direction.

This can be nicely illustrated by considering the triangular lattice as a centred hexagonal lat-
tice [176], as visualized in Fig. 5.3. A first approximation to the zero field ground state of the
TIAFM is then a Néel ordered state on the hexagons with one degree of freedom per hexagonal
plaquette, namely the spin in its centre. That this is only an approximation of the ground state
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(a)                                                              (b)

H = 0                                                          H > 0

Figure 5.3 – First approximation to the TIAFM ground state and magnetization plateau. (a) By
considering the triangular lattice as a centred hexagonal lattice (thick black lines), the (zero field) ground state
of the TIAFM can be understood in a first approximation as a Néel ordered state on the hexagons with one
degree of freedom per hexagonal plaquette, namely the spin in its centre. (b) An infinitely small magnetic
field lifts the degeneracy and aligns the spins on the centres of the hexagonal plaquettes. Consequently, two
sublattices of the triangular lattice are aligned with the field, while the third sublattice is antialigned, leading
to a magnetization per spin of m = 1/3.

is reflected in the fact a one Ising degree of freedom per hexagonal plaquette leads to a too low
residual entropy of S0/N = (1/3) ln 2 ≈ 0.231 < 0.323, since each spin belongs to three hexagons
and, therefore, a lattice with N spins hosts N/3 hexagonal plaquettes. Nevertheless, this ap-
proximation explains the magnetization step very well: when an infinitely small magnetic field
is applied, all spins in the centres of the hexagonal plaquettes immediately align with it, such
that the degeneracy is lifted and two sublattices are aligned with the magnetic field while the
third one is antialigned, leading to the magnetization plateau with a magnetization per spin of
m = 1/3. In this respect, the plateau is very similar to the kagome ice regime in spin ice—but it
is also different because, unlike the kagome ice regime, it has no reduced residual entropy. This
magnetization plateau exists at temperatures below approximately T = 1.3 and magnetic fields
up to Hc = 6J (for T = 0). The value of the critical field is determined by the fact that each
spin that is antiparallel to the field is surrounded by six spins that are parallel to the field. For
larger fields, the system becomes fully polarized and magnetic defects in the divergence-free flux
field picture emerge. The polarized phase is thus quite similar to the polarized phase in spin ice.

The full phase diagram in the HDC-T plane, obtained by Monte Carlo simulations, is depicted
in Fig. 5.4(a)—the previously described strongly correlated spin liquid phase is indicated as the
small blue region for zero DC field. The extension of this region up to temperatures of about
0.3 K results from the residual entropy data (Fig. 5.2(b)), which drops to its zero temperature
value of S0/N = 0.323 at this temperature. Fig. 5.4(b) depicts the corresponding specific heat
in the HDC-T plane and reveals that the transition to the magnetization plateau is quite sharp.

Taken together, the phase diagram of the TIAFM compares very well with that of spin ice in a
magnetic field (Fig. 4.9): in addition to an extensively degenerate phase at zero field, there is a
phase characterised by a magnetization plateau that globally satisfies the ground state constraint
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Figure 5.4 – Triangular Ising AFM. (a) Phase diagram of the triangular lattice Ising antiferromagnet with
colorcoded magnetization data and crosses indicating peak positions of the specific heat, obtained by Monte
Carlo simulations. For zero field and T . 0.3, the system is in the classical spin liquid regime, where a
divergence-free condition is obeyed (blue region). For finite magnetic field, the system exhibits a m = 1/3
magnetization plateau which is extended in both directions, magnetic field and temperature (yellow region).
Within this plateau, the divergence-free condition of the classical spin liquid phase is still obeyed. For fields
HDC > 6, the system becomes polarized and monopoles emerge (dark green region). (b) Specific heat of the
TIAFM throughout the phase diagram. Colored arrows indicate vertical cuts in Fig. 5.7. Figure taken from
[U1].

at intermediate fields, followed by a fully polarized phase that is accompanied by a proliferation
of defects that can be understood as emergent monopoles in the Coulomb phase picture. As in
the case of spin ice, we will now proceed and study the dynamics in the whole temperature and
magnetic field range of the phase diagram.

Before we do that, however, we would like to conclude this section with a brief comment on
possible other magnetic field strengths of importance besides Hc = 0+ and Hc = 6J , since these
play a role in the discussion of later results. In the first approximation that we used to explain
the 1/3 magnetization plateau, we considered the TIAFM ground state a Néel ordered state on
the hexagonal lattice with one degree of freedom in the centre of each hexagonal plaquette (as
visualized in Fig. 5.3(a)). But this approximation can actually be improved simply by taking
into account possible tripod configurations, as shown in Fig. 5.5. Panel (b) of this Figure shows
an isolated tripod, whose center spin belongs to the hexagonal sublattice. The consequence of
such an isolated tripod is that the spins in the centres of the three hexagonal plaquettes neigh-
boring the tripod have four antiparallel nearest neighbors. Therefore, the critical field to flip
these spins is Hc = 2J . An even further approximation is displayed in Fig. 5.5(c), where a
configuration with three connected tripods is shown. In this case, the spins in the centres of the
affected hexagonal plaquettes have five antiparallel neighbors, which leads to a critical field of
Hc = 4J . Additional critical fields through further approximations are not possible, because up
to here all possible numbers of antiparallel neighbors between one and six are already covered.
This approximation scheme was set up [176, 177] in order to explain the experimental magneti-
zation curves in Ca3Co2O6, which is a compound that consists of ferromagnetically coupled spin
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(a)                                                       (b)                                                     (c)

Figure 5.5 – Further approximations to the TIAFM ground state. (a) First approximation of the TIAFM
ground state: Néel order on a hexagonal lattice with one degree of freedom in the centre of each hexagonal
plaquette. (b) This approximation can be improved by including tripod configurations (blue star). The
consequence of such an isolated tripod is that the spins in the middles of the three hexagonal plaquettes
neighboring the tripod have four antiparallel nearest neighbors and hence the critical field to flip these spins
is Hc = 2J . (c) An even further approximation is to include configurations with three connected tripods. In
this case, the spins in the centres of the affected hexagonal plaquettes have five antiparallel neighbors, which
leads to a critical field of Hc = 4J .

chains arranged on a triangular lattice with antiferromagnetic inter-chain coupling, and displays a
equidistant multi-step magnetization rather than a two-step magnetization [178–182]. In numer-
ical simulations, however, it depends subtly on the thermalization scheme whether the additional
magnetization plateaus occur or not, which shows that the states into which the plateau is split
are metastable and do not correspond to states in equilibrium [183–185]. Throughout this thesis,
the simulated systems were thermalized with the magnetic field switched on and over a period
of 106 MCU, yielding the equilibrium 1/3 magnetization plateau for all fields between H = 0+

and H = 6J (and appropriate temperatures), as indicated in the phase diagram Fig. 5.4(a).

5.3 Dynamics in the TIAFM: Numerical Results

To study the dynamics, we proceed as before. We simulate the TIAFM (Eq. (5.1) with J = 1)
including a magnetic field via Eq. (5.3), where we add a sinusoidal time varying part in addition
to the static magnetic DC field, that is

H(tMC) = HDC +HAC(tMC) = HDC +HAC sin(ωtMC) . (5.4)

Again, we measure numerical spectra of the AC susceptibilities χAC(ω), fit Debye relaxations to
them, and determine the peak frequency ωp as a function of temperature and magnetic field to
obtain information about the relaxation time τ = 1/ωp.

A temperature cut of ωp for zero DC field is shown in Fig. 5.6 where it is compared to the
loss peak frequency data of the triangular Ising ferromagnet that we have already shown in the
warm-up example in Sec. 3.4.3. While the FM, as we have seen, exhibits a critical slowing down
at the critical temperature Tc, the loss peak frequency of the TIAFM behaves completely differ-
ently and has a maximum in the crossover regime which implies a speeding up of the dynamics.
Only below approximately T = 0.3 upon entering the classical spin liquid regime, the dynamics
of the TIAFM slows down.

64



5.3 Dynamics in the TIAFM: Numerical Results

Figure 5.6 – Loss peak frequency of the TIAFM. AC susceptibility loss peak frequency of TIAFM (blue) and
FM (red) at zero magnetic DC field. The FM displays a significant decrease of ωp at the critical temperature
(Tc ≈ 3.64 [112, 171]—see also specific heat data in the inset for orientation), signaling a critical slowing down.
The TIAFM, on the other hand, has a maximum in the crossover regime, indicative of no slowing down effect
taking place, but a speeding up of the dynamics.

In the next step we switch on a static magnetic field in order to probe the dynamics for different
magnetic fields. Fig. 5.7 shows specific heat, residual entropy and loss peak frequency for cuts
along fixed HDC = 0, 1, 3, and 6. For HDC = 6, the system behaves similar as at HDC = 0 in
terms of a broad crossover regime in the specific heat and a non-zero residual entropy that is
even slightly higher than the residual entropy at zero field, in line with previous results [174, 186].

Within the magnetization plateau, at HDC = 1 and HDC = 3, the specific heat shows rather
sharp peaks beyond which the residual entropy drops to zero, indicating an ordering transition.
The loss peak curves (panel (c)) behave similar for HDC = 0 and HDC = 6 as they both show a
maximum in the crossover regime and only drop off again at low temperatures, thus displaying
a speeding up of the dynamics at the crossover that only slows down upon going to very low
temperatures below approximately T = 0.3. In contrast, the curves for HDC = 1 and HDC = 3
within the magnetization plateau, show a canonical slowing down of the dynamics above T = 1
at the ordering transition when the magnetization plateau is entered.

A three-dimensional surface plot of the resulting loss peak frequency for the whole HDC-T phase
diagram with temperatures up to T = 5 and magnetic fields between HDC = −1 and HDC = +7
as well as cuts for different fixed temperatures are shown in Fig. 5.8—the grey cut-off area is
due to noisy data, as in this area the response to the AC magnetic field is too small to measure
meaningful spectra of χAC(ω) so that these gray values do not correspond to actually measured
loss peak frequencies. One can see well in it that inside the magnetization plateau and the po-
larized phase, the dynamics are relatively slow.

Outside of these regions, the dynamics speed up showing several features that we will discuss
in the following. To explore the dynamics at the transition from the spin liquid regime to the
magnetization plateau and from the magnetization plateau to the polarized phase, we take a
closer look at cuts for fixed temperatures (cf. Fig. 5.8 (b) and (c)). It turns out that for lower
temperatures, ωp has distinct peaks exactly at HDC = 0 and at HDC = 6 which indicate a critical
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Figure 5.7 – Cuts for constant DC field. Panels show specific heat (a), entropy (b) and loss peak frequency
of the AC susceptibility (c) of the TIAFM for cuts at static magnetic fields indicated by arrows in Fig. 5.4(b).
While for HDC = 1 and HDC = 3, within the 1/3 magnetization plateau, all curves behave similar in terms
of a vanishing residual entropy (panel (b)) and a slowing down of the dynamics (panel (c)) at the ordering
transition, for HDC = 0 and HDC = 6, one can observe a non-zero residual entropy and a speeding up of the
dynamics in the crossover regime. Figure taken from [U1].

speeding up at these points. In addition, one can see a tiny bump right in the middle of the
magnetization plateau exactly at HDC = 3. For temperatures that lie above the magnetization
plateau, ripples emerge in the structure of ωp with additional peaks at HDC = 2 and at HDC = 4.
Intriguingly, that is exactly at the critical field strengths at which spins surrounded by isolated
and connected tripod configurations are being flipped (see Sec. 5.2). The inset of Fig. 5.7(c)
shows how the valleys of this structure vanish with increasing temperature.
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Figure 5.8 – Loss peak frequency of the TIAFM. (a) Three-dimensional plot of the loss peak frequency
ωp of the AC susceptibility, measured by dynamical Monte Carlo, superimposed on top of the static phase
diagram of Fig. 5.4. In the gray region right above the magnetization plateau and the polarized phase at low
temperatures, the AC response is too weak to fit a Debye relaxation so that these values do not correspond
to actually measured loss peak frequencies. Panels (b) and (c) show cuts at constant temperature through the
magnetization plateau. For temperatures above the magnetization plateau, ripples emerge in the structure of
ωp, whose amplitude decreases for large temperatures (inset panel (c)). Figure taken from [U1].

5.4 Discussion and Outlook

We have studied the dynamics of magnetic monopole-like excitations in the simplest and most
basic model of a classical spin liquid, the triangular Ising antiferromagnet. Even without a mag-
netic field, the dynamics in this model differ drastically from its ferromagnetic cousin: while the
latter exhibits a phase transition at a critical temperature Tc and experiences a canonical critical
slowing down near Tc, no magnetic long range order builds up in the TIAFM and the dynamics
experiences a speeding up in the crossover to the classical spin liquid regime.

In an applied magnetic DC field, the TIAFM possesses a similarly rich phase diagram as spin ice,
including a magnetization plateau and a fully polarized phase. While the system undergoes an
ordering transition into the magnetization plateau at HDC = 1 and HDC = 3 where the dynam-
ics slows down and the residual entropy vanishes for T → 0, a behavior similar to zero field is
found at HDC = 6—the critical field where the system enters the fully polarized phase—namely
a non-zero residual entropy and a speeding up of the dynamics.

The magnetic field dependence of the dynamics also displays interesting features. Here, for
temperatures in which the magnetization plateau exists (T < 1.2), maxima in ωp, i.e. signs of a
speeding up of the dynamics, appear exactly at HDC = 0 and HDC = 6. For higher temperatures,
ripples in ωp emerge by two additional peaks at HDC = 2 and HDC = 4—exactly the magnetic
field strengths relevant for flipping spins neighboring meta-stable tripod configurations (see re-
mark in Sec. 5.2 and Fig. 5.5). With regard to the magnetic field dependence, a comparison
with experimental results of the relaxation time in Ca3Co2O6 seems interesting, a compound
that exhibits a multi-step magnetization with equidistant steps in a magnetic field [178–182].
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Due to its ferromagnetically coupled spin chains that are arranged on a triangular lattice with
antiferromagnetic inter-chain couplings, it was logical to explain these steps with precisely the
tripod configurations in the TIAFM mentioned before [176, 177]. Remarkably, measurements of
the relaxation time in Ca3Co2O6 [181, 182] show a similar behavior of the dynamics at exactly
the magnetic field strengths relevant for these steps, just as in our numerical results for the
TIAFM, see Fig. 5.9(c) and (d). Also the dip of τ at HDC = 0, appears both numerically in the
TIAFM and experimentally in Ca3Co2O6, cf. Fig. 5.9(a) and (b).

The experimental results in Ca3Co2O6 were explained [181, 182] by quantum tunneling of mag-
netization [187], a phenomenon which has been observed, for example, in Mn12 [188, 189] or
ferritin [190, 191], where at specific resonant values of HDC, magnetization steps occur and spin
relaxation is enhanced by resonant quantum tunneling, signaled by a phenomenologically similar
relaxation behavior as observed in Ca3Co2O6. Future efforts should therefore be directed towards
investigating the connection between quantum tunneling of magnetization on the one hand, and
the characteristic profile of spin relaxation inherent in dynamical Monte Carlo simulations of the
TIAFM on a classical level on the other.

(a)                                                                                    (b)

(c)                                                                                    (d)

T = 0.6

T = 2.0

Figure 5.9 – Numerical relaxation times of the TIAFM and experimental relaxation times in
Ca3Co2O6. (a) and (c) show numerical relaxation times τ = 1/ωp and their field dependence for T = 0.6
and T = 2.0, respectively, extracted from the data shown in Fig. 5.8. (b) Experimental relaxation times in
Ca3Co2O6 at T = 2.0, showing the same dip structure around H = 0 as in (a). Reprinted with permission from
[182]. Copyright (2004) by the American Physical Society. (d) Experimental relaxation times in Ca3Co2O6

at T = 2.0 for different sweep rates (top to bottom: 0.01 T min−1, 0.1 T min−1, and 1 T min−1), showing
qualitatively the same variations as in (c). Used with permission of the Royal Society of Chemistry, from [181],
permission conveyed through Copyright Clearance Center, Inc.
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Preface
Chapter 6

Although magnetic orders can theoretically be arbitrarily complex, the magnetic orders found
in nature are mostly simple, such as collinear orders like ferromagnetic order or antiferromag-
netic Néel order. However, more complicated forms of magnetic order can also occur, including
coplanar orders or even non-coplanar orders up to complex spin spirals. Such intricate textures
are highly relevant in many respects, as will be motivated below.

This part of the thesis focuses on the study of non-coplanar magnetic orders in classical an-
tiferromagnets. To this end, we study two model systems that turn out to have non-coplanar
classical ground states and are motivated by the recent synthesis of a number of Mott insulating
square-kagome materials and of spin-1/2 maple-leaf lattice antiferromagnets. We explore the rich
phenomenology of frustrated magnetism, including extensive degeneracies and order-by-disorder
mechanisms, induced by these lattice geometries, namely square-kagome antiferromagnets in
Chapter 7 and maple-leaf antiferromagnets in Chapter 8. For both models, we study an elemen-
tary, classical Heisenberg model with nearest-neighbor and additional cross-plaquette interactions
and discuss a multitude of non-coplanar orders, as well as a number of spin spiral phases.

The following introductory chapter serves as the basis for both subsequent chapters and pro-
vides the motivation and fundamentals relevant to both models examined.

6.1 Motivation

Non-coplanar magnetic orders can lead to non-trivial and exotic topological effects and uncon-
ventional transport properties. These phenomena arise since non-coplanar orders are typically
associated with a non-zero scalar spin chirality

χijk = Si · (Sj × Sk) . (6.1)

The scalar spin chirality χijk is proportional to the volume of the parallelepiped spanned by
the three spins Si, Sj , and Sk, and thus also to the solid angle Ω subtended by these three spin
vectors (see sketch in Fig. 6.1). Consequently, it is non-zero if the three spins are non-coplanar.

As a consequence, non-coplanar magnetic orders can induce a spontaneous topological Hall effect
(THE) by virtue of their finite spin chirality, as has recently been shown [41–44], making them
very interesting for spintronic applications [192, 193]. In the ordinary Hall effect that arises in
a normal conductor in a perpendicular magnetic field, the Lorentz force acting on the charge
carriers induces a transverse Hall resistivity that scales linearly with the applied magnetic field
[194]. Furthermore, in ferromagnets there is a much higher additional component of Hall re-
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(a)                                                                           (b)

Figure 6.1 – Scalar spin chirality. (a) Three spins on the vertices of a triangle that are arranged non-coplanar.
(b) The corresponding scalar spin chirality χ123 = S1 · (S2 × S3) is proportional to the solid angle Ω subtended
by the three spin vectors—and hence zero for coplanar spins. Figure inspired by Ref. [195].

sistivity resulting from the internal magnetization of the ferromagnetically ordered spins. This
anomalous Hall effect is ascribed to spin-orbit interactions and can occur even in the absence
of a magnetic field when time-reversal symmetry is spontaneously broken [196]. The THE, on
the other hand, arises from the fact that a conduction electron, that hops along a loop of non-
coplanar spin sites, picks up an additional quantum-mechanical Berry phase, which acts as an
emergent magnetic field that scales with the scalar spin chirality [195]. This emergent magnetic
field then can generate a contribution to the Hall resistivity in antiferromagnets without internal
magnetization and external magnetic field [197]. Such a THE has been observed, e.g., in frus-
trated pyrochlore magnets [198]. Conversely, the THE can also be used as a powerful probe to
detect unconventional non-coplanar magnetic orders [199].

Closely related to this, non-coplanar magnetic orders are also particularly interesting in an-
other respect. Upon introducing quantum fluctuations, for instance by going to small spins such
as S = 1/2, such orders can melt into chiral quantum spin liquids (CSLs) [45, 46]. CSLs are a
class of spin liquids with macroscopically broken time-reversal and mirror symmetries as well as
non-zero expectation value of the scalar spin chirality. They were originally proposed in the late
1980s [200, 201], but their experimental realization and observation remains challenging so far.
Therefore, due to the possible melting of classical non-coplanar magnetic orders to a CSL, such
orders are an excellent starting point in the search for the latter.

Now that we have shown that non-coplanar orders are interesting in various ways, we will intro-
duce some examples of such magnetic orders (as special cases of non-collinear orders) that are
relevant in the course of this thesis.

6.2 Types of Non-Collinear Magnetic Order

In this section, we briefly review classical non-collinear ground states of frustrated Heisenberg
models, including three-dimensional, non-coplanar generalizations of spin spirals and regular
magnetic orders. Since the criterion for the formation of spin spirals can be well understood in
the Luttinger-Tisza framework, we start by introducing this method.

6.2.1 The Luttinger-Tisza Method

The Luttinger-Tisza (LT) method [202, 203] is a powerful approach to determine the ordering
wave vector that characterizes the ground state of classical Heisenberg models. Initially lim-
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ited to Bravais lattices, the method was soon extended to non-Bravais lattices by Lyons and
Kaplan [204]. To discuss the LT method, we follow Refs. [205, 206] and start with the general
Heisenberg Hamiltonian of Eq. (2.3) and rewrite it as a sum over real-space coordinates by using
Si = S(ri) and Jij = J(Rij), where ri is the position of Si and Rij = ri − rj is the distance
between sites i and j:

H =
∑
i,j

J(Rij)S(ri) · S(rj) . (6.2)

The problem of solving for the energy minimum and finding the ground state under the strong
constraint

|Si|2 = 1 ∀ i (6.3)

is in general non-trivial. The key idea of the LT approach is to soften this constraint and to
demand, that it is only fulfilled on average, leading to the much less restrictive weak constraint∑

i

|Si|2 = N , (6.4)

where N is the total number of spins. Since all solutions that satisfy the strong constraint
necessarily meet the weak constraint, one can solve the problem for solutions under the weak
constraint and then check whether the found solutions additionally satisfy the strong constraint.
This softening of the spin length constraint allows to solve the minimization problem by diag-
onalizing the symmetric interaction matrix with entries J(Rij). The problem is then simplified
by making use of the translational variance of J(Rij) and transforming the problem to Fourier
space, leading to the quadratic form

H =
∑

q∈BZ

∑
µ,ν

J̃µν(q)S̃µ(q) · S̃ν(−q) . (6.5)

Here, the following definitions of the Fourier transform are being used:

S̃µ(q) =
1√
N/Γ

∑
i∈µ

S(ri)e−iq·ri , (6.6)

J̃µν(q) =
∑
j∈ν

J(Ri∈µ,j)e
iq·Ri∈µ,j , (6.7)

where the lattice is assumed to have Γ sites per unit cell, that is, µ = 1, . . . ,Γ and N/Γ is the
number of spins per sublattice. The summation over i ∈ µ in the definition of S̃µ(q) then runs
over all spins of sublattice µ while the notation i ∈ µ in the definition of J̃µν(q) refers to an
arbitrary but fixed site belonging to sublattice µ. J̃µν(q) are the elements of the Γ×Γ matrix J̃(q)
that contains all interactions between sublattices µ and ν. J̃(q) is hermitian and has, therefore,
real eigenvalues λµ(q), and the corresponding normalized eigenvectors uµ(q) form an eigenbasis
of the underlying Γ-dimensional vector space. Thus, Eq. (6.6) can be rewritten in this eigenbasis
as

S̃µ(q) =
Γ∑

ν=1

wν(q)uνµ(q) , (6.8)
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where wν(q) are three-dimensional coefficients that determine the components of S̃µ(q). Inserting
this into Eq. (6.5) leads to

H =
∑

q∈BZ

Γ∑
ν=1

λν(q)|wν(q)|2 . (6.9)

Furthermore, using the inverse Fourier transform

S(ri∈µ) =
1√
N/Γ

∑
q∈BZ

S̃µ(q)eiq·ri , (6.10)

allows to express the weak spin length constraint of Eq. (6.4) in Fourier space as

∑
q∈BZ

Γ∑
ν=1

|wν(q)|2 = N . (6.11)

Combining this with Eq. (6.9) yields the lower limit for the energy of the true ground state as

H ≥ NλLT , (6.12)

where λLT = min{λν(q)} is the minimal eigenvalue of J̃(q). The wave vector that corresponds
to λLT is the optimal Luttinger-Tisza ordering wave vector qLT.

6.2.2 Spin Spirals

Having found the lower limit for the ground state energy and the associated ordering wave
vector, one might be interested in the corresponding ground state spin configuration in real
space. According to Eq. (6.9), the energy can be minimized by allowing wν(q) to be non-zero
only for the values ±qLT and νLT for which λν(q) is minimal, that is

|wν(q)|2 =
{

N
2 if (q, ν) = (qLT, νLT) ,

0 otherwise .
(6.13)

With these coefficients, the weak spin length constraint is met by construction. The inverse
Fourier transform of Eq. (6.8) then yields

S(ri∈µ) =
1√
2Γ

∑
q=±qLT

ŵ(q)uLT
µ (q)eiq·ri , (6.14)

where ŵ(q) is the unit vector along wνLT(q) and uLT
µ (q) is the µth component of the eigenvector

that corresponds to λLT. From this, physical solutions that fulfill the strong spin length constraint
arise in form of coplanar spin spirals [207]

S(ri) =

cos(qLT · ri)
sin(qLT · ri)

0

 , (6.15)

which are described by a single propagation vector qLT that indicates direction and pitch of the
spiral. A sketch of such a coplanar spin spiral in shown in Fig. 6.2.
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Figure 6.2 – Spin spiral. (a) A coplanar spin spiral as described by a single propagation vector qLT . The spin
vectors S(ri) rotate in a single plane (indicated by the grey ellipses) and the propagation vector determines
direction and pitch of the spiral. (b) A common origin plot, where all spin vectors of the spiral are plotted on
a single unit sphere. For coplanar spin spirals, the spins lie on a great circle.

Due to the O(3) symmetry of the isotropic Heisenberg Hamiltonian, every rotation of this solution
is a possible solution as well. This method is exact for monoatomic lattices, where uLT

µ (q) = 1.
This is sometimes also referred to as the spiral theorem, which states that every classical Heisen-
berg Hamiltonian with one spin per unit cell has a spiral spin state in its ground state manifold
[208, 209]. It can also be shown [205] that the LT method is exact for all bipartite lattices,
but it may also hold in certain cases of non-bipartite lattices. In the case of multiple equivalent
minimal eigenvalues λLT, the set of corresponding wave vectors {qLT} describes degenerate spin
spiral ground states in form of a manifold of propagation vectors in the Brillouin zone, which can
appear in the shape of points, lines, surfaces, or even volumes [210]. If, on the other hand, no
physical solution can be found, the method only gives a lower bound for the true ground state
energy in form of Eq. (6.12).

Possible spiral ground states are not limited to two dimensions, however. It is straightforwardly
possible to find three-dimensional, non-coplanar spin spirals as possible ground state solutions in
a generalization of the LT framework [211]. From the above discussion it is clear that a necessary,
but not sufficient requirement to find non-coplanar ground states with the LT method is that
the underlying lattice is non-Bravais [212].

6.2.3 Regular Magnetic Orders

We have seen that in the special cases of quadratic Heisenberg Hamiltonians on monoatomic
Bravais lattices and bipartite lattices, the Luttinger-Tisza method can construct exact ground
states. In general, however, the problem of finding the ground state of a generic spin model
with global O(3) spin symmetry on non-Bravais lattices or in the presence of multiple-spin in-
teractions (that is, beyond the Heisenberg model), is remarkably challenging and there is no
analytical method for doing so.

To facilitate this, Messio et al. introduced a class of spin configurations called regular mag-
netic orders (RMOs), which are good variational ground state candidates [39]. These RMOs
preserve all lattice symmetries modulo global O(3) spin transformations (i.e., rotations and spin
inversions) and can be constructed explicitly via a group-theoretical approach in a systematic
way for any lattice geometry and independent of the spin interactions.

RMOs include both simple collinear magnetic orders as well as more complex orders up to non-
coplanar magnetic structures. For example, the two- (three-) sublattice Néel order on the square
(triangular) lattice is an RMO, since each lattice symmetry operation can be compensated by
global spin rotations of angle 0 or π (0,±2π/3). In Fig. 6.3, we present as an example all RMOs
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(a)                                                                                   (d)

(b)                                                                                    (e)

(c)                                                                                   (f)

Figure 6.3 – Regular magnetic orders on the kagome lattice. Shown are the RMOs on the kagome lattice
as constructed by Messio et al. [39] with their real-space arrangement and the corresponding spin vectors.
(a) The simplest RMO on the kagome lattice is the ferromagnetic state where all spins point in the same
direction. The unit cell (red rhomb) contains the three basis sites of the underlying triangular lattice. (b) and
(c) show the coplanar q = 0 and

√
3×

√
3 orders, with three-site, and nine-site magnetic unit cells, respectively.

In both cases, the spins on the three sublattices form mutual angles of 120◦. For both orders there are also
non-coplanar umbrella states that interpolate between the ferromagnetic state and the respective 120◦ order
(not shown here). (d) The non-coplanar octahedral state has a 12-site magnetic unit cell with six sublattices
of spins that point to the corners of a regular octahedron. (e) and (f) show the non-coplanar cuboctahedral
states cuboc1 and cuboc2. In both cases, the magnetic unit cell contains 12 sites and the 12 sublattices of
spins point to the corners of a cuboctahedron. While in the cuboc1 state the nearest-neighbor pairs of spins
form angles of 120◦, in the cuboc2 state the angle is 60◦. Figure inspired by Ref. [39].

that were constructed for the kagome lattice [39]. Besides a collinear ferromagnetic order, these
include the prominent coplanar q = 0 and

√
3×

√
3 orders, as well as various non-coplanar orders.

Messio et al. also showed that large parts of the ground state phase diagram of a J1-J2-J3-J ′
3

Heisenberg model on the kagome lattice with further-neighbor cross-plaquette interactions host
these RMOs and thus that RMOs are indeed extremely good ground state candidates.

Finally, it should be mentioned that it is precisely such non-coplanar RMOs that are expected
to melt into chiral spin liquids upon the introduction of quantum fluctuations [46], making them
natural candidates for the parent states of such spin liquids. Now that we have motivated where
to look for non-coplanar magnetic orders and why, we do so by studying the non-Bravais square-
kagome and maple-leaf lattices with further-neighbor interactions via large-scale Monte Carlo
simulations in the following chapters.
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Square-Kagome Antiferromagnets
Chapter 7

Motivated by the recent synthesis of a series of Mott insulators based on the square-kagome lat-
tice, the potential of this geometry to accommodate intricately structured magnetic ground states
or quantum spin liquid phases is currently under intense investigation [213–219]. Indeed, no sign
of long range magnetic order down to 50 mK has been observed in the spin S = 1/2 Cu2+ based
compounds KCu6AlBiO4(SO4)5Cl [213] and Na6Cu7BiO4(PO4)4[Cl,(OH)]3 [216] despite having
large negative Curie-Weiss temperatures of -237 K and -212 K, respectively. On the other hand,
their sister compounds KCu7(TeO4)(SO4)5Cl and NaCu7(TeO4)(SO4)5Cl develop antiferromag-
netic order [217, 218], while related compounds Rb7(TeO4)(SO4)5Cl and Cs7(TeO4)(SO4)5Cl do
not show any sign of magnetic order down to 2 K [218]. In the following, we provide a com-
prehensive discussion of the physics of square-kagome antiferromagnets on a classical level by
investigating ground states and the thermodynamics of the classical Heisenberg model on this
lattice in the presence of nearest-neighbor couplings as well as additional cross-plaquette inter-
actions.

This chapter is largely based on publication [P1], to which the author of this dissertation has
contributed the major part, namely almost all numerical simulations, all figures, and large parts
of the text. The latter are, therefore, partly adopted one-to-one when it comes to the technical
description of the results. If there are contributions of co-authors involved, they will be marked
as such in the appropriate places.

7.1 Square-Kagome Heisenberg Model

The square-kagome lattice [220]—in the literature also referred to as the squagome or shuriken
lattice—is a non-Bravais lattice that consists of a two-dimensional network of corner-sharing
triangles with alternating square and octagon plaquettes in between, as depicted in Fig. 7.1.
The lattice can be described by a square lattice with unit vectors

a1 = (1, 0) , a2 = (0, 1) ,

and a unit cell comprising six sites with relative coordinates

δ1 =
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4
,−1

4

)
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7 Square-Kagome Antiferromagnets

Figure 7.1 – Square-kagome lattice and interactions. The square-kagome lattice, also referred to as the
squagome or shuriken lattice in the literature, consists of two sets of topologically distinct sites – square sites
and bow-tie sites. Nearest-neighbor interactions are referred to as J1 (square) and J2, J3 (bow-tie), respectively.
Additionally, we introduce further-neighbor cross-plaquette J+-bonds (J×-bonds) as indicated in blue (red).
The unit cell contains six spins (labeled 1 to 6), namely the four square sites and two bow-tie sites of a single
shuriken star. Figure taken and modified from [P1].

The resulting lattice is non-Archimedean since it has two topologically distinct types of sites,
namely those forming the square plaquettes (basis sites 1 to 4) and those forming the bow-ties
(basis sites 5 and 6).

For this reason, but also because some synthesized square-kagome materials have symmetry
inequivalent couplings [213], we allow our classical Heisenberg model Eq. (2.3) to host three dif-
ferent nearest-neighbor couplings, Ja with a = {1, 2, 3}, on the sides of the elementary triangles,
as indicated in Fig. 7.1.

Furthermore, we allow for further-neighbor interactions, J+ and J×, across the octagonal pla-
quettes. Similar interactions across the hexagons in the kagome lattice are known to stabilize
non-coplanar spin structures [39, 40, 221, 222], as motivated earlier. These further-neighbor
interactions, therefore, give good reason to expect similar results on the square-kagome lattice.

To tackle this model numerically, we employ large-scale Monte Carlo simulations over a wide
range of parameters. Our Monte Carlo simulations are performed on finite lattices of L×L unit
cells, i.e. N = 6L2 spins, with periodic boundary conditions. Unless explicitly stated otherwise,
we choose L = 12 (N = 864).

In order to resolve the thermal selection of ground states by subtle thermal order-by-disorder
effects at very low temperatures, we employ a parallel tempering/replica exchange Monte Carlo
scheme (see Sec. 3.2.2) such that after every 10th (consisting of N local update attempts), spin
configurations of neighboring replicas are attempted to be exchanged. For ground state prop-
erties, 192 logarithmically spaced temperature points between Tmin = 10−4 and Tmax = 10 are
simulated simultaneously. In some cases, which are pointed out separately, a conventional Monte
Carlo scheme without parallel tempering and 192 linearly spaced temperature points between
Tmin = 0.1 and Tmax = 0.5 is employed. In all cases, measurements are performed over 5 · 108
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sweeps after a thermalization period of 108 sweeps. In some cases, our Monte Carlo simulations
are complemented by a semi-analytical method, which we will described in detail later. With
this in mind, let us now turn to our results.

7.2 Nearest-Neighbor Model

Before we consider the further-neighbor cross-plaquette interactions in more detail, we will first
look at the nearest-neighbor Heisenberg model. With just nearest-neighbor interactions the
square-kagome model shares much of the same physics as the nearest-neighbor kagome Heisen-
berg model. Below, we briefly summarize some of the known results for the ground states of the
square-kagome model that can be inferred from the conventional kagome antiferromagnet. We
then move on to discuss its finite temperature physics and explore critical fluctuations, going
beyond what has been studied for the conventional kagome scenario.

The Hamiltonian with nearest-neighbor couplings can be written as

H =
∑

〈i,j〉∈a

Ja Si · Sj , (7.1)

where a = {1, 2, 3} runs over the three different types of bonds, as in Fig. 7.1. However, its
properties can be more easily understood by rewriting it as

H =
∑

i,j,k∈4

1
2

(√
J1J3
J2

Si +

√
J1J2
J3

Sj +

√
J2J3
J1

Sk

)2

−1

2

(
J1J3
J2

+
J1J2
J3

+
J2J3
J1

)]
, (7.2)

where the sum is now over all four types of elementary triangles of the lattice and we have
assumed all couplings to be antiferromagnetic, Ja > 0 (such that all of the arguments of the
square roots are positive). The Hamiltonian of the kagome Heisenberg model can be written in
the same form, but with a key distinction being the number and nature of elementary triangles
that are summed over. The new form of the Hamiltonian allows us to easily construct a special
class of classical ground states. These are the states that satisfy the constraint(√

J1J3
J2

Si +

√
J1J2
J3

Sj +

√
J2J3
J1

Sk

)
= 0 . (7.3)

where Si,Sj are the spins on the squares and Sk is the spin on the centers of the bow-ties.
To see that such states are indeed ground states, note that the Hamiltonian, for a given set
of parameters, is the sum of a squared term, which is always positive, and a constant term.
The minimal possible energy is thus obtained when the squared term is precisely zero, i.e., the
constraint above. However, there is the additional constraint that the spins at each site are all
properly normalized, |Si| = 1 ∀ i. Satisfying both of these constraints is only possible within a
restricted region of parameter space, namely

−2 ≤ J2J3
J2
1

−
(
J2
J3

+
J3
J2

)
≤ +2 . (7.4)
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Thus, within this parameter region, all spin configurations satisfying the constraint of Eq. (7.3)
on each and every triangle are guaranteed to be bona fide ground state spin configurations. This
includes both globally coplanar and non-coplanar spin configurations as, though the three spins
in each triangle are constrained to lie within the same plane, it is not necessary that the planes
for different triangles are the same.

The resulting unusual and highly degenerate phase is the classical spin liquid indicated in the
phase diagram of Fig. 7.2(a) and previously reported in Ref. [223], which shares the same qualita-
tive physics as the classical spin liquid found in the distorted kagome version of the model [224–
227]. At the isotropic point, J1 = J2 = J3, the spins in each triangle lie within the same plane
at an angle of exactly 120◦ away from one another. On the other hand, away from the isotropic
point, e.g. along the diagonal line J2 = J3, the coplanar spin configuration for a single triangle
obeying the constraint can be written as

Si = (−J2/(2J1), −
√
4− (J2/J1)2/2, 0),

Sj = (−J2/(2J1), +
√
4− (J2/J1)2/2, 0),

Sk = (1, 0, 0) , (7.5)

where we have fixed the spins to lie in the xy-plane for simplicity. As one increases J2 from
J2 = 0 to J2 = 2J1, the angle θ between Sk (the spin on the bow-tie) and the other two spins
(on the squares) increases from π/2 to π, passing through 2π/3 exactly at the isotropic point
J2 = J1 [228]. For globally coplanar spin configurations, which are the relevant configurations
at the lowest temperatures as we will see in the next section, as well as the constraints already
mentioned, there is one additional form of constraint [224]. It is related to how the spins in the
triangles around the square and octagonal plaquettes of the lattice are arranged. For globally
coplanar ground state spin configurations, we can define on each triangle a chirality variable,
ηa = ±1, which encodes whether the spins rotate clockwise or anti-clockwise as one goes from
say i to j to k [229] (keep in mind that the angles between the spins in each triangle are fixed,
e.g. all three angles are fixed to 2π/3 at the isotropic point).

Figure 7.2 – The nearest-neighbor model. (a) Zero-temperature phase diagram as a function of nearest-
neighbor couplings J2 and J3, reproduced from Ref. [223] via Eq. (7.4). (b) Specific heat traces obtained from
Monte Carlo simulations for three representative points along the J2 = J3 diagonal in the phase diagram of
panel (a). The one for the isotropic point, J1 = J2 = J3 = 1, closely resembles the well-studied specific heat
trace of the kagome AFM [37, 38]. (c) Specific heat scan across the phase diagram of panel (a) at fixed, low
temperature of T = 0.04 (in units of J1 = 1). Figure taken from [P1].
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Now, starting from an initial spin which points in some specific direction, if one travels in a
closed loop on the lattice then one must return back to that same initial spin pointing in that
same specific direction. However, as one travels along each bond the chirality variables dictate
in which direction the spins rotate, and so in order to get back to the same initial spin there is
a constraint on the sum of the chirality variables along the closed loop. At the isotropic point,
we require

∑
a ηa = 0 for the four triangles surrounding a square, and

∑
a ηa = 0,±6 for the

eight triangles surrounding an octagon. Away from the isotropic point there will in general be
more stringent constraints as the angle between spins is no longer 2π/3, but instead some angle
incommensurate with respect to 2π. This results, for a given lattice size, in a smaller number of
allowed coplanar ground state spin configurations, just as in the analogous kagome case [224].

Outside of the classical spin liquid region there are two distinct Néel states in the phase diagram
of Fig. 7.2(a), depending on whether J2 or J3 dominates. In each phase, spins are arranged
antiferromagnetically along the bonds with the dominant coupling, and ferromagnetically along
the weaker bonds. On the other hand, for dominant J2 = J3, there is an up-up-down (UUD)
state, sometimes also referred to as a Lieb ferrimagnet [230], in which the spins on the squares
point along one direction while the spins on the bow-ties point in the opposite direction (this
can be seen from Eq. (7.5) with J2 = 2J1, the critical point between the classical spin liquid and
UUD state).

7.2.1 Finite-Temperature Physics

The unusual nature of the classical spin liquid phase is naturally revealed by examining how
the specific heat behaves as a function of temperature. For two-dimensional Heisenberg models
with finite-range exchange interactions, true long range magnetic order cannot set in at any
non-zero temperature, as laid out in the Mermin-Wagner theorem [231]. However, it is possible
for quasi-long-range order to develop, signaled by a peak in the specific heat. Our discussion,
in the following, of such quasi-long-range “orders” is based on an analysis of the symmetry of
spin-spin correlations. In the case of non-coplanar, i.e., chiral orders, however, a true thermal
phase transition associated with the breaking of discrete symmetries occurs.

As briefly discussed in Sec. 2.4, at the lowest temperatures, one generically expects that, in
the thermodynamic limit, the specific heat per site cV → 1 as T → 0. This is because each spin
is free to fluctuate about its ordered ground state in two orthogonal directions on the unit sphere.
These two quadratic modes each contribute (1/2) · T , as dictated by classical equipartition, to
the energy and thus 1/2 to the specific heat (setting kB = 1). However, as first discussed in
the context of the kagome antiferromagnet [74], this simple counting breaks down within the
classical spin liquid region, as well as in an extended finite temperature fan about the critical
lines in the phase diagram. The breakdown is due to the entropic selection of a subset of ground
state spin configurations, those which carry the largest entropy and thus the lowest free energy
at finite temperature. Classical fluctuations about this favored subset include one or more zero
modes at the harmonic level, which contribute 1/4 (i.e. they are quartic modes), rather than 1/2,
to the specific heat. The deviation of the low-temperature specific heat from cV → 1 thus serves
as a signature of this phenomenon of thermal order by disorder. In Fig. 7.2(b), we show the
specific heat as a function of temperature for three special parameter points along the diagonal
line J2 = J3, with a number of curves in between shown in Fig. 7.3(a) and (b).
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critical
    fan
                

cV = 1
cooperative 
paramagnet

cV = 11/12
coplanar states 

paramagnet

cV = 10/12

Figure 7.3 – The nearest-neighbor model II. (a) Specific heat traces from Monte Carlo simulations for
0.0 ≤ J2 = J3 ≤ 1.0 (in steps of 0.2). (b) Specific heat traces for 1.0 ≤ J2 = J3 ≤ 2.0. Of special interest is the
curve for J2 = J3 = 2.0 which is the only one which converges to a value of cV = 10/12. (c) Finite temperature
specific heat along the diagonal J2 = J3 illustrating the cV = 1 plateau of the cooperative paramagnet (dark
red area), the coplanar phase with cV = 11/12 (light red area), the critical fan with cV ≤ 10/12 (grey area),
and the paramagnetic phase (black region). Figure taken from [P1].

(i) First, starting with J2 = J3 = 0, we have the trivial limit of fully disconnected squares.
Alternatively, one can think of this limit as consisting of decoupled four-site periodic Heisenberg
chains. The spins order in a simple antiferromagnetic arrangement within each square. There are
8 quadratic modes per square, minus two due to the global rotational symmetry of the antiferro-
magnetic moment. This leaves us with 6 independent quadratic modes, and a contribution to the
specific heat per site as cV → [6 · (1/2)]/6 = 1/2 as T → 0 [232]. (ii) At the isotropic point, there
are three distinct regimes, which share the same physics as the isotropic kagome model at finite
temperatures [38] (the similarity even extends to the spin-1/2 quantum case [233]). There is
the usual high-temperature paramagnetic region, followed by a cooperative paramagnetic regime
and finally a coplanar state at the lowest temperatures. These three regimes can be observed
throughout the classical spin liquid phase. The cooperative paramagnet is clearly distinguished
by a plateau in the specific heat with cV ≈ 1. Within this temperature window, the system fluc-
tuates between the full (extensive) number of states within the ground state manifold that satisfy
the constraint in Eq. (7.3). At lower temperatures, within the coplanar states, fluctuations select
the subset of globally coplanar states within the ground state manifold via the entropic-driven
order-by-disorder mechanism. This is accompanied by cV → [10 · (1/2) + 2 · (1/4)]/6 = 11/12
as T → 0 due to the presence of one zero mode per triangle (thus two zero modes per unit
cell) within the spectrum of classical harmonic fluctuations (very similar to the conventional
kagome case [74]). (iii) At J2 = 2J1 we have the transition between the classical spin liquid
and UUD state. Precisely at this critical point an additional zero mode per triangle leads to
cV → [8 · (1/2) + 4 · (1/4)]/6 = 10/12 as T → 0.

The evolution of the specific heat between these three special points, as one increases J2 = J3,
is shown in Fig. 7.3(c). Starting from the trivial limit, J2 = J3 = 0, the width of the plateau
that develops at cV ≈ 1/2 shrinks as the interaction scale that couples squares, J2 = J3, grows.
At low temperatures, the characteristic two temperature regimes emerge, with the cooperative
paramagnet and coplanar regimes giving rise to plateaus at cV = 1 and 11/12, respectively. The
1/2-feature disappears completely at the isotropic point. As one moves past the isotropic point,
the width of the cooperative paramagnet plateau starts to decrease, until it eventually disappears
completely at the critical point J2 = 2J1.
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At the same time, in the temperature regime above the cooperative paramagnet, there is a
substantial drop in the specific heat as a result of increasing fluctuations on approaching the
critical point (which damps the entropy loss in this temperature regime and thus the specific
heat). This can be more clearly seen in Fig. 7.3(c), where the drop manifests itself as a finite
temperature fan, emanating from the zero-temperature critical point—reminiscent of the fan-like
structure at quantum critical points [234].

We conclude this section by presenting the finite size scaling behaviour of the previously dis-
cussed cV data for J2 = J3 ∈ [0.0, 1.0, 2.0]. Fig. 7.4 shows that for three different system sizes,
L = 8, 12, 16, the curves fall onto each other. This indicates that the observed behaviour is
universal and independent of system size.

7.2.2 Spin-Spin Correlations

To explore the formation of quasi-long-range order and cooperative paramagnetic phases in the
absence of any true thermal phase transitions, we turn to the static spin structure factor, i.e. the
Fourier transform of the equal-time real-space spin-spin correlations, that is,

S(q) = 1

N

N∑
i,j=1

〈Si · Sj〉eiq·(ri−rj) , (7.6)

where N is the number of lattice sites, q is a momentum inside the extended Brillouin zone, and
ri denotes the position of site i.

Sharp peak-like features in S(q) indicate the formation of quasi-long-range order, while the
tell-tale signatures of cooperative paramagnets are pinch points in momentum space, which map

Figure 7.4 – Finite-size scaling of cV for selected parameters in the nearest-neighbor model. Specific
heat traces from Monte Carlo simulations for J2 = J3 = 0.0, 1.0, 2.0 for different system sizes L = 8, 12, 16,
showing no system size dependence. Figure taken from [P1].
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to algebraically decaying correlations in real space, as discussed in Sec. 2.6.

In Fig. 7.5, we provide a comprehensive overview of the static structure factor over a wide range
of temperatures and parameter points. In some cases, such as rows (g) and (h), the ground state
is quasi-long-range-ordered and sharp peaks are clearly visible at the corresponding ordering
wavevectors. In other cases, i.e. within the classical spin liquid parameter region, we observe a
complex redistribution of spectral weight as the system passes through the three distinct finite
temperature regimes.

For the isotropic point (J2 = J3 = 1.0), the S(q) at the highest temperature shown in Fig. 7.5(b)
only displays a broad diffuse profile corresponding to a weakly correlated thermal paramagnet.
Inside the cooperative paramagnetic regime, at T = 0.1 and 0.05, pinch points (with a finite-
width set by the inverse correlation length) appear between the square and lobed shaped regions
of stronger relative intensity. Their presence signifies the approximate fulfillment of the S4 = 0
constraint of Eq. (7.3) and thus the onset of strong correlations between spins within triangular
plaquettes.

Upon cooling further, at T = 0.03 and 0.02, the intensity is redistributed to the centers of
squares and lobes located at q = (4π, 0) and q = (2π, 2π) (and symmetry related points), re-
spectively. Since one is still in the cooperative paramagnetic regime characterized by a dipolar
∼ 1/r2 decay of spin-spin correlations (at distances smaller than the correlation length), these
high intensity features do not correspond to Bragg peaks.

Finally, once order by disorder kicks in at T . 0.01 selecting coplanar states, we notice the
disappearance of spectral weight at the location of the pinch point as well as the absence of
narrow necks connecting the squares with the lobes. The presence of well-defined maxima at
the aforementioned points indicates enhanced correlations of the 120◦ q = 0 type order [215,
235], in contrast to the conventional kagome antiferromagnet which favors

√
3×

√
3 correlations

[236–238]. While the kagome antiferromagnet develops long range dipolar magnetic order of the√
3×

√
3 type in the limit T → 0 [238], it remains to be established on the square-kagome lattice

whether true long range q = 0 dipolar ordering of 120◦ type asymptotically develops as T → 0.

Away from the isotropic point, but still on the line J2 = J3, we first note that the coop-
erative paramagnetic and coplanar temperature regimes are pushed down to smaller T and
shrink in extent (see Fig. 7.3). At J2 = J3 = 0.5, within the cooperative paramagnetic regime
(0.008 . T . 0.05), the pinch points are seen to be present, and with the principal spectral
weight at the center of the lobes q = (2π, 2π) (and symmetry related points) which progressively
increases, together with a relatively weaker signal at the centers of the squares q = (4π, 0) (and
symmetry related points) (see Fig. 7.5(a)).

However, upon entering the coplanar regime, at T = 0.003, an equally strong maximum develops
at the q = (4π, 0) type points, but in contrast to the isotropic point, these are not indicative of
enhanced q = 0 correlations of the 120◦ type. Similar observations hold true at J2 = J3 = 1.5
(see Fig. 7.5(c)) with the noticeable difference being the presence of a finite spectral weight at the
Brillouin zone centre, being more pronounced in the intermediate temperature, i.e., cooperative
paramagnetic regime. Moving away from the symmetric line, i.e., J2 6= J3 but still inside the
degenerate manifold region, one observes that the S(q) are only rotationally invariant possibly
reflective of the underlying symmetries of the incipient magnetic order in the limit T → 0.
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Figure 7.5 – Structure factors of the J1-J2-J3 model. Structure factors from Monte Carlo simulations for
different temperatures between T = 0.003 and T = 0.2 (left to right) and for different values of J2 and J3 as
indicated in the phase diagram in the left column (top to bottom). The shown squares extent in reciprocal
space from −4π to 4π in both dimensions. Rows (a) to (c) show structure factors on the diagonal J2 = J3

within the classical spin liquid regime, especially for the isotropic point J1 = J2 = J3 = 1.0 in row (b), which
agrees well with the result obtained via large-N analysis in [215]. Rows (d) and (e) as well show structure
factors in the classical spin liquid regime, but off the diagonal with different values for J2 and J3. All structure
factors within the classical spin liquid regime show sharp pinch point-like features upon entering the cooperative
paramagnetic regime at around T = 0.01, which broaden with increasing temperature. The statistical noise
at lower temperatures is due to freezing in Monte Carlo sampling. The lower three rows (f) to (h) display
structure factors outside the classical spin liquid regime, namely directly on the transition line to the UUD
phase, J2 = J3 = 2.0, in (f), within the UUD phase, J2 = J3 = 2.5, in (g), and in the J1-J3-Néel ordered phase,
J2 = 0.25 and J3 = 2.5, in (h). Figure taken from [P1].
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Upon cooling, a progressive redistribution of spectral weight occurs leading to the appearance
of new soft maxima in the coplanar regime at (J2, J3) = (1.0, 2.5) (see Fig. 7.5(d)) while at
(J2, J3) = (1.7, 0.8) (see Fig. 7.5(e)) interestingly a similar intensity distribution prevails across
all temperatures. Finally, inside the magnetically ordered regions, the S(q) become more sharply
peaked, as expected, and interestingly the S(q) at (J2, J3) = (2.0, 2.0) (see Fig. 7.5(f)) and
(J2, J3) = (2.5, 2.5) (see Fig. 7.5(g)) resemble those inside the disordered regime at (J2, J3) =
(1.5, 1.5) seen in Fig. 7.5(c) along the J2 = J3 axis as if pre-empting the UUD order which onsets
for J2 = J3 ≥ 2.0. Inside the Néel phase at (J2, J3) = (0.25, 2.5), in Fig. 7.5(h) there is no
spectral weight at the centre of the Brillouin zone as expected, and instead we find dominant
peaks at the (2π, 2π) (and symmetry related) points, and subdominant peaks at (2π, 0) (and
symmetry related) points.

7.3 Octagon-Plaquette Interactions

We now augment the nearest-neighbor model, discussed in the previous Section, with the cross
octagon-plaquette interactions J+ and J× (cf. Fig. 7.1), which microscopically arise upon the
inclusion of longer-range Heisenberg couplings. Conceptually, they are interesting as they are
expected to stabilize non-coplanar magnetic orders, akin to the cross-hexagonal interactions in
the conventional kagome case, and in distinction to square-diagonal couplings.

Indeed, we find that the cross octagon-plaquette interactions induce a plethora of non-coplanar
orders as summarized in the global phase diagram of Fig. 7.6. One can, in fact, distinguish ten
different phases (labeled I to X), indicated by the different colors in the phase diagram, as one
varies the relative coupling strength of the two couplings, J+ and J×, starting from an isotropic
nearest-neighbor model (i.e. for fixed J1 = J2 = J3 = 1). The distinct nature of these phases
can be easily visualized by representative common origin plots for each phase, i.e. the collapse of
an extended ground state real-space configuration of spins to a single unit sphere by placing all
spins at a joint origin. These are shown around the phase diagram. In addition, we show their
respective spin structure factors. Let us briefly go through these phases here, before providing
a much more detailed description in the remainder of this Section. Following this detailed de-
scription, the results are later summarized once again in Table 7.1.

The only phases with coplanar order come in the form of a 120◦ ordered phase (VI) in the
lower left quadrant, i.e. for ferromagnetic J+ and J× (indicated by dark gray in Fig. 7.6), as well
as a distorted version of this 120◦ order (VII) for slightly positive J× (indicated by light gray
in the phase diagram). In the plain-vanilla 120◦ ordered phase spins on elementary triangles
form mutual angles of 2π/3, while this angle is increased beyond 2π/3 in the distorted phase
as discussed in Sec. 7.3.2. All other phases of the phase diagram exhibit non-coplanar order,
which come in commensurate and incommensurate forms1. The simpler, commensurate variant
of such non-coplanar order is the extended phase with cuboctahedral order (I) in the upper right
quadrant and a distorted version of this (II), which we discuss in depth in Sec. 7.3.3. Somewhat
more complex non-coplanar orders come in incommensurate spin spiral order, which we find for
the remaining six phases (III-V and VIII-X). Remarkably, however, these can still be described
by a semi-analytical ground state construction [239–245], which we describe in Sec. 7.3.4.

1A magnetic order is said to be incommensurate when its periodicity cannot be matched to the periodicity of the
underlying lattice.
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Figure 7.6 – Phase diagram in the presence of cross-octagonal couplings. At the center we show the
phase diagram with ten different phases (labeled I to X) as a function of J+ and J× for a nearest-neighbor
model with isotropic, antiferromagnetic interactions, i.e. J1 = J2 = J3 = 1. (A companion phase diagram for
ferromagnetic nearest-neighbor couplings is later shown in Fig. 7.23.) Besides indicating the phase boundaries
(solid, dashed and dotted lines), the phases are described by symmetry (with Dn referring to the dihedral
group of order n and Oh to full octahedral symmetry), coplanarity, and magnetization of their ground states.
As a quick visualization of their distinct nature, we show common origin plots and spin structure factors for
each phase left and right around the phase diagram. The only coplanar orders are found in form of 120◦ order
(VI) in the lower left quadrant, i.e. ferromagnetic J+ and J× (darker gray phase), as well as a distorted version
of this (VII) for sligthly positive J× (lighter gray phase). All other phases are non-coplanar, which besides a
rigid phase with cuboctahedral order (I) in the upper right quadrant and a distorted version of this (II) include
a variety of different spirals (III-V and VIII-X). Phase boundaries of special interest are found upon exiting
the coplanar 120◦ order, indicated by the dashed and dotted lines, along which the low temperature specific
heat cV (T → 0) takes values of 11/12 and 23/24, respectively (cf. Fig. 7.7). Figure taken from [P1].

7.3.1 Physics on the Axes

Before we dive into the various magnetic orders that can be stabilized by the combined effects of
cross octagon-plaquette interactions, we first consider their exclusive effect, i.e. we consider the
horizontal and vertical axes in the middle of the phase diagram of Fig. 7.6. Adding only one of
the two cross octagon-plaquette interactions (J× or J+ only), it turns out that it is still possible
to locally satisfy the constraint of Eq. (7.3) provided that the added interaction is ferromagnetic
in nature.

For FM J+, the spins located on the bow-ties become locked together and are all ferromag-
netically aligned, meaning that Sk in the constraint Eq. (7.3) is fixed in each and every triangle
to be the same. Denoting this fixed direction by M, the remaining two spins (located on the
squares) are thus subject to the local constraint on each triangle

Si + Sj = −M. (7.7)
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This results in a global spin configuration in which 1/3 of the spins point along M while the
other 2/3 point along a ring at an angle of 2π/3 away from M. This removes the possibility of
having an extensive number of both globally coplanar and globally non-coplanar ground states,
and thus there are only two distinct finite temperature regimes. In other words, entropic-driven
selection of globally coplanar configurations would result in a regular 120◦ ordered state. At
high temperatures there is the usual paramagnetic regime, and at low temperatures a crossover
into the ground state manifold with an accompanying specific heat cV → 11/12 as T → 0, due
to the continued existence of one zero mode per triangle. This is precisely what we find in finite-
temperature Monte Carlo simulations as shown in Fig. 7.7. For FM J×, the spins within each
octagon coupled by J× become locally ferromagnetically aligned, but the spins from one octagon
to the next are not. This locks neighboring triangles together, resulting in one zero mode per
unit cell, as opposed to one zero mode per triangle, and thus a low-temperature specific heat
cV → [11 · (1/2) + 1 · (1/4)]/6 = 23/24 as T → 0. This, again, is in perfect agreement with
finite-temperature Monte Carlo simulations as shown in Fig. 7.7. Corresponding finite size scal-
ing data to the data of Fig. 7.7 is shown in Fig. 7.8. For J+ = 0.0, J× = −1.0 (J2 = J3 = 1.0),
the curves, again, fall onto each other for all system sizes. In the case J+ = −1.0, J× = 0.0,
the feature at higher temperatures scales with increasing system size, while the feature at lower
temperatures does not.

In comparison to the spin structure factors, summarized for the nearest-neighbor model in
Fig. 7.5, the spin-spin correlations discussed above lead to a deformation of S(q) as shown
in Fig. 7.9. The S(q) for (J+ = −1.0, J× = 0.0) show maxima at positions where the Bragg
peaks of the incipient q = 0 order of the 120◦ type would show up as T → 0 [215]. In contrast,
for (J+ = 0.0, J× = −1.0), the S(q) display maxima at the expected locations for

√
3 ×

√
3

order [215].

Figure 7.7 – Specific heat and ground states of the extended model on the axes. For either only J+

or J× turned on and being ferromagnetic, one again finds special values of cV (T → 0) that differ from 1. For
For J× = 0.0, J+ < 0.0, the value is 11/12 (cf. purple curve with J+ = −1.0), and for J+ = 0.0, J× < 0.0,
we find a value of 23/24 (cf. mint curve with J× = −1.0). The upper insets show common origin plots of the
corresponding ground states. Figure taken from [P1].
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Figure 7.8 – Finite-size scaling of cV on the axes of the extended model. Specific heat traces for
J+ = −1.0, J× = 0.0 and J+ = 0.0, J× = −1.0 (J2 = J3 = 1.0) for different system sizes L = 8, 12, 16. Figure
taken from [P1].

Figure 7.9 – Structure factors of the extended model on the axes. Structure factors for different tem-
peratures between T = 0.003 and T = 0.1 (left to right) on the axes (J+ = −1.0, J× = 0.0 on the top and
J+ = 0.0, J× = −1.0 on the bottom). Note the sharp maxima at (−4π, 0) and symmetry related momenta in
the top row (indicated by red circle). The shown squares extent in reciprocal space from −4π to 4π in both
dimensions. For T = 0.1, the first Brillouin zone and the extended Brillouin zone are indicated. Figure taken
from [P1].

7.3.2 120◦ Order

Turning to the magnetically ordered states of our phase diagram in Fig. 7.6, we start with the
120◦ order found in the lower left quadrant where both cross octagon-plaquette couplings are
ferromagnetic. While at zero temperature the ground state is degenerate and coplanar states as
well as non-coplanar states with the same energy exist, this degeneracy is lifted at small, finite
temperatures and coplanar states are selected over non-coplanar states by a thermal order-by-
disorder mechanism. Therefore, we start our discussion concentrating on these coplanar states,
whereas the non-coplanar states are discussed afterwards.
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7 Square-Kagome Antiferromagnets

Coplanar States

For the square-kagome lattice geometry at hand, one can, in principle, distinguish three different
types of 120◦ coplanar orders, each with three sublattices where the spins on each sublattice
point to a different corner of an equilateral triangle such that each neighboring pair of spins
forms an angle of 2π/3. As illustrated in Fig. 7.10, the magnetic unit cell coincides either with
the geometric 6-site unit cell as in the regular q = 0 order shown in Fig. 7.10(a), or contains either
12 sites and is two times larger than the geometric unit cell for the type shown in Fig. 7.10(b),
or 24 sites for the type in Fig. 7.10(c), with the difference between the two latter types coming
down to the bow-tie spins. While these bow-tie spins are all pointing in the same direction in
the order of Fig. 7.10(b) forming a bow-tie ferromagnet, the bow-tie spins in the second type of
120◦ order form stripy antiferromagnets with alternating rows/columns of up and down-pointing

(a)                                   (d)                                   (g)

(b)                                   (e)                                   (h)

(c)                                   (f)                                   (i)

Figure 7.10 – Coplanar 120◦ orders. (a), (b), and (c) show real space arrangements of spins in the three
different coplanar 120◦ ordered states, with (a) corresponding to regular q = (0, 0) order, (b) corresponding to
q = (0, 0) and q = (π, π) and (c) having no q vectors at all . The states have either a 6-site magnetic unit cell
that coincides with the geometric unit cell (a), a 12-site magnetic unit cell (large gray square), which is two
times larger than the geometric unit cell (small square) (b), or a 24-site magnetic unit cell (c), respectively.
The magnetization of the square-diagonal spins, mdiag, is 1.0 for state (a), 0.5 for state (b), and 0.25 for state
(c). (d)+(e)+(f) There are each three sublattices (each one corresponding to one color). Each sublattice of
spins points towards a different corner of an equilateral triangle such that each neighboring pair of spins forms
an angle of 2π/3. (g)+(h)+(i) First and extended Brillouin zones of the square-kagome lattice showing the
positions of the corresponding dominant and subdominant Bragg peaks. In (i), the ratio of the weight of
the subdominant peaks λ to the weight of the dominant peaks Λ is λ/Λ ≈ 85%. Arising from these three
coplanar orders, there are three one-parameter families of non-coplanar orders, whose details are shown later
in Fig. 7.12. Figure taken from [P1].
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spins as shown in Fig. 7.10(c). The magnetization of the spins on the main diagonal of the
squares, mdiag, is different for all three types of order with mdiag = 1.0 for order Fig. 7.10(a),
mdiag = 0.5 for order Fig. 7.10(b), and mdiag = 0.25 for order Fig. 7.10(c) (see also Fig. 7.11).
A schematic of the static spin structure factors corresponding to these types of real-space 120◦

order is shown for an extended Brillouin zone of the square-kagome lattice in Fig. 7.10(g), (h),
and (i), respectively. All three spin configurations exhibit the symmetry of the dihedral group
D3. Their net magnetization vanishes, m = 0, and the energy per site can be calculated as

E120◦ = −1 +
1

3
(J+ + J×) , (7.8)

for varying strengths of the two couplings.

To elucidate the thermodynamics associated with these 120◦ orders we show, in Fig. 7.11, spe-
cific heat traces for the point in the lower left corner, J+, J× = −1 (i.e. deep in the phase), for
different system sizes between L = 8 and L = 32.

Figure 7.11 – Thermodynamics of 120◦ order. (top) The specific heat (obtained via Monte Carlo simulations
without parallel tempering) of the 120◦ phase shows a sharp feature at T = 0.27(3) and a subtle bump at
T = 0.33(2). The subtle bump can be associated with the build-up of 120◦ order, whereas at the sharp feature
a specific 120◦ order is selected – in the example shown the structure factor at T = 0.1 (inset) coincides
with the analytical structure factor in Fig. 7.10(h), whereas the intermediate structure factor can be obtained
by averaging the real space correlations of all possible 120◦ orders, i.e. those shown in Fig. 7.10(g)+(h)+(i)
plus all possible rearrangements with the same order. The bottom panel shows the magnetization of the
square-diagonal spins mdiag, i.e., the two spins on the main diagonal of the square of each unit cell (inset).
The displayed square-diagonal magnetization starts to build up right at the bump-like feature slightly above
T = 0.3. Below T = 0.3, at the sharp peak in the specific heat, the square-diagonal magnetization splits up
into different branches that converge to the values of mdiag = 1.0, mdiag = 0.5, and mdiag = 0.25, corresponding
to the 120◦ orders shown in Fig. 7.10(a), (b), and (c), respectively. Figure taken from [P1].
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Next to a sharp peak at T = 0.27(3), there is a second, more subtle feature at T = 0.33(2). This
smaller bump can, in fact, be associated with the build-up of quasi-long-range 120◦ order—but
without selecting one of the types of 120◦ order. Accordingly, the structure factor for the regime
between the two features in the specific heat cV , e.g., for T = 0.3, can be obtained by averaging
the real space correlations of the possible 120◦ order arrangements. Also, the net magnetization
of the square-diagonal spins, shown in the lower panel of Fig. 7.11, builds up at this feature
at higher temperatures. The lower temperature peak at T = 0.27(3) then corresponds to the
spontaneous selection of one of the types 120◦ orders, resulting in a sharp feature in the specific
heat.

Non-Coplanar States

The 120◦ order found for ferromagnetic J+ and J× possesses a rather complex ground state
manifold, with three distinct families of non-coplanar configurations connected via the three
coplanar configurations just described. Here, we give a more detailed description of the non-
coplanar states2. The three coplanar ground states (a), (b) and (c) described in Fig. 7.10 all
satisfy the following two rules:

1. 120◦ rule: any two spin vectors of adjacent squagome sites form angles of 120◦.

2. Pairing rule: lattice sites with FM octagon-plaquette interactions (i. e. J+, J× < 0) are
occupied by identical spin vectors.

Conversely, any spin configuration obeying these rules has an energy of E120◦ given by Eq. (7.8)
and thus represents a ground state. However, in addition to the above three coplanar ground
states, these rules are also satisfied by certain one-parameter families of, in general, non-coplanar
spin configurations. These can be further characterized by the fact that the sequence of spin
vectors in the squares of unit cells is either of the form (a,b, a,b) (1st family) or (a,b, a, c) (2nd
family) or (a,b, c,d) (3rd family). It turns out that the 1st family connects the coplanar ground
states (a) and (b) of Fig. 7.10, the 2nd one the coplanar ground states (b) and (c), and the third
family loops (c) with itself, as summarized in Fig. 7.12 pictorially.

The first one-parameter family can be described by five spin vectors that depend on a single
angle α as

Sα
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3

2
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2
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2
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3

2
sinα, 1

2

)
,

Sα
5 = (0, 0,−1) . (7.9)

2The derivation and description of the non-coplanar 120◦ orders was done by Heinz-Jürgen Schmidt (co-author
of publication [P1]).
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For α = 0, this yields the coplanar 120◦ order of Fig. 7.10(a). For α = π, on the other hand, one
obtains the coplanar order Fig. 7.10(b). For arbitrary values of α between 0 and π one obtains
the non-coplanar 120◦ orders depicted in Fig. 7.12(a).

The second one-parameter family can be described by five spin vectors that depend on a single
angle β as
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For β = 0, these vectors describe the coplanar 120◦ order of Fig. 7.10(b). For α = π/2, they
reproduce the coplanar order Fig. 7.10(c). For other values of β between 0 and π/2 one obtains
the non-coplanar 120◦ orders depicted in Fig. 7.12(b).

Finally, the third one-parameter family of non-coplanar orders can be described by eight spin
vectors that depend on a single angle γ:
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Figure 7.12 – Three families of non-coplanar orders arising from coplanar 120◦ order. In the 120◦ phase,
there are three one-parameter families of non-coplanar states, each described by a single angle α, β, or γ, whose
limiting cases yield the coplanar orders presented in Fig. 7.10, as sketched on the left. The first family, here
depicted in (a)+(d)+(g) by its real space arrangement, a schematic common origin plot, and its structure factor,
respectively, for α = π/2, interpolates between the coplanar q = 0 state in Fig. 7.10(a)+(d)+(g) (limit α = 0)
and the coplanar state Fig. 7.10(b)+(e)+(h) (limit α = π). The second family, here depicted in (b)+(e)+(h)
by its real space arrangement, a schematic common origin plot, and its structure factor, respectively, for
β = π/4, interpolates between the coplanar state in Fig. 7.10(b)+(e)+(h) (limit β = 0) and the coplanar state
Fig. 7.10(c)+(f)+(i) (limit β = π/2). The ratio of the weight of the subdominant peaks λ to the weight of the
dominant peaks Λ in the structure factor is λ/Λ = 40%. The third family, here depicted in (c)+(f)+(i) by its
real space arrangement, a schematic common origin plot, and its structure factor, respectively, for γ = π/4,
has the coplanar state in Fig. 7.10(c)+(f)+(i) for both limits γ = 0 and γ = π/2 and non-coplanar states in
between. The ratio of the weight of the subdominant peaks λ to the weight of the dominant peaks Λ in the
structure factor is λ/Λ ≈ 39%. Figure taken from [P1].

These vectors reproduce the coplanar order Fig. 7.10(c) for γ = 0 and γ = π/2, but yield the
non-coplanar orders Fig. 7.12(c) in between. However, all these non-coplanar orders do not occur
as actual ground states, as we show next.

Order-by-Disorder Selection of Coplanar States

We briefly discuss the thermal order-by-disorder effect that selects the coplanar configurations
at finite temperatures. The energy of the three families of non-coplanar ground states, as well
as the three coplanar ground states, are all identical. However, as these spin configurations are
not related by a symmetry of the Hamiltonian, the relevant quantity that needs to be minimized
at finite temperature, their free energy, will not be identical. The selection of a subset of ground
states via such a thermal order-by-disorder mechanism is a well-studied phenomenon within the
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context of frustrated magnets (cf. Sec. 2.4).

By expanding to quadratic order in classical fluctuations about a particular ordered ground state
one can compute the lowest-order correction to the entropy. With the free energy F = E − TS,
the states with the highest entropy will be selected at finite temperatures which, as shown in
Fig. 7.13, are precisely the three coplanar states3.

Interestingly, these all possess the exact same correction at this lowest quadratic order, meaning
that the ultimate selection of the (coplanar) ground state must be via higher-order non-linear
corrections. To avoid such involved calculations, we apply a numerical approach to determine
the preferred ground state.

The three different coplanar 120◦ orders, shown in Fig. 7.10, each have a distinct value of mdiag.
In Fig. 7.14, we show histograms from Monte Carlo timeseries showing the equilibrium distri-
bution of mdiag within the 120◦ phase (J+ = J× = −1.0) for different system sizes at different
temperatures. Below the phase transition at T = 0.27 (cf. Fig. 7.11), the distribution of mdiag
splits up into three distinct peaks, corresponding to the three different coplanar 120◦ orders. At
the lowest temperature, T = 0.05, and for L = 24, the probability of q = 0 order (Fig. 7.10(a))
is 2%, whereas the orders Fig. 7.10(b) and (c) have probabilities of 88% and 10%, respectively.
We thus suspect that the order in (b) is the likely spin configuration favored by thermal fluctu-
ations at finite temperatures, on the largest system sizes. Only for smaller system sizes, q = 0
order occurs with significant probability. Overall, the probabilities only slightly change between
T = 0.05 and T = 0.15.

Figure 7.13 – Order-by-disorder correction. The entropy correction ∆Srel relative to the coplanar correction
for the three one-parameters families of non-coplanar order in the 120◦ phase as a function of the parameters
α, β, and γ shows that the entropy is maximal for the coplanar 120◦ orders (α = 0, π;β = 0, π/2; γ = 0, π/2).
Figure taken from [P1].

3The calculation of the OdB correction was not carried out by the author of this dissertation, but by Ciarán
Hickey (co-author of publication [P1]).
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Figure 7.14 – Square-diagonal magnetization distribution in the 120◦ phase. Histograms from Monte
Carlo timeseries showing the equilibrium distribution of mdiag in phase VI (J+ = J× = −1.0) for different
system sizes at different temperatures. The square-diagonal magnetization of the coplanar orders Fig. 7.10(a),
(b), and (c) takes values of mdiag = 1.0, 0.5, and 0.25, respectively. Slightly lower values of mdiag in these
histograms are due to thermal fluctuations. Figure taken from [P1].

Deformed Coplanar States

A deformed version of the 120◦ order, henceforth termed 120◦-d, exists in a small region touching
the conventional 120◦ ordered phase in the upper left quadrant of the phase diagram, indicated
as phase VII in Fig. 7.6. As in the non-deformed case, there exist non-coplanar states and copla-
nar states with the same energy, with the latter being selected by thermal order by disorder at
small, but finite temperature, in a similar way as in the non-deformed 120◦ order. Therefore,
the following discussion concentrates on the coplanar deformed 120◦ order.
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Its deformation—two of the three mutual angles between neighboring spins take a value of
α > 2π/3, while the third one becomes smaller than 2π/3—can be seen in the common origin
plot of Fig. 7.6. It can be derived by elementary geometric considerations: for instance, let the
angle between the blue and the red sublattices and between the blue and the green sublattices
shown in Fig. 7.10 increase to α > 2π/3, while the third angle, between the red and the green
sublattices, becomes 2π − 2α < 2π/3. The angle α is found to vary as cosα = −(2 + J×)

−1 and
the ground state energy per site takes the value

E120◦-d = −
6 + J2

× − 2J+ − J×(J+ − 4)

3(J× + 2)
. (7.12)

The ground state symmetry is reduced to the symmetry of the dihedral symmetry group D1 and
has a non-zero, yet small magnetization m120◦-d = J×

3(2+J×) , which only depends on the values of
J× (see also Fig. 7.25).

7.3.3 Cuboc1 Order

Let us now turn to the first instance of exclusively non-coplanar order and consider the cuboc-
tahedral (cuboc) order found in the upper right quadrant of the phase diagram, where both
cross-octagon plaquette couplings are antiferromagnetic.

In real-space this order is described by 12 sublattices where the spins on each sublattice point
towards a different corner of a cuboctahedron, as illustrated in Fig. 7.15(b). The order has zero
magnetization, m = 0, and its energy per site is given by

Ecuboc = −1− 1

3
(J+ + J×) . (7.13)

The underlying magnetic unit cell contains 24 sites and is thus four times larger than the geo-
metric unit cell, see Fig. 7.15(a). All neighboring spins form an angle of 2π/3, which corresponds
to the cuboc1 state discussed for the kagome lattice with cross-hexagonal couplings [39, 221] and
introduced earlier (cf. Fig. 6.3(e)).

(a)                                             (b)                                             (c)

Figure 7.15 – Cuboctahedral order cuboc1. (a) Real space arrangement of spins in a cuboctahedral (cuboc)
ordered state. There are 12 sublattices (each one corresponding to one color) with a 24-site magnetic unit cell
(large gray square), which is four times larger than the geometric unit cell (small square). (b) Each sublattice
of spins points towards a different corner of a cuboctahedron such that each neighboring pair of spins forms
an angle of 2π/3. This order corresponds to the cuboc1 state in [39]. (c) First and extended Brillouin zones of
the square-kagome lattice showing the positions and the fractions of total spectral weight of the corresponding
Bragg peaks. The order breaks C4 symmetry. Figure taken from [P1].
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There are eight different possibilities to set up cuboc1 order on the square-kagome lattice, each
of which breaks C4 rotation symmetry, as visualized in Fig. 7.16. The remaining symmetry of
this ordered state is the full octahedral symmetry group Oh. The real-space correlations of the
cuboc1 order give rise to a spin structure factor as schematically visualized for one of the eight
possible real-space configurations in Fig. 7.15 (c), which shows the positions of the corresponding
Bragg peaks within the extended Brillouin zone of the square-kagome lattice together with the
associated fraction of total spectral weight. Averaging over the real-space correlations of all eight
possible cuboc1 arrangements restores C4 symmetry in the structure factor (cf. Fig. 7.16(f)).

The different cuboc1 realizations can be best described by dividing the 24-site magnetic unit
cell into four building blocks, each encompassing one geometric unit cell, with some specific
fixed arrangement of spins—indicated as blue, green, yellow, and red squares in Fig. 7.16. These
building blocks can be arranged clockwise or anti-clockwise, each in four different ways. The
order parameter to distinguish between clockwise and anti-clockwise arrangements of blue-green-
yellow-red is

O =
1

M

∑
./

Oijkl (7.14)

where
Oijkl =

1√
2

Si · [(Sj − Sk)× (Sl − Sm)] (7.15)

is summed over all skew bow-ties as shown in the inset of the lower panel of Fig. 7.17 and M is
the number of skew bow-ties.

Figure 7.16 – Variants of cuboc1 order on the square-kagome lattice. (a)-(d) show four of the eight
different possible arrangements of cuboc1 order on the square-kagome lattice, each with its corresponding
structure factor. The arrangement in (a) corresponds to the arrangement shown in Fig. 7.15 and has a
clockwise placement of the building blocks highlighted in blue, green, yellow, and red, in the magnetic unit
cell. The arrangement in (c) also has this clockwise placement, but in a different order, and has the same
structure factor as (a). The other two arrangements, (b) and (d), on the other hand, have an anti-clockwise
placement of blue, green, yellow, and red, resulting in a structure factor that is rotated by π/2 (two additional
arrangements are possible in each case, but not explicitly shown). (e) Averaging the real space correlations of
a clockwise and an anti-clockwise arrangement results in a structure factor with twice as much subdominant
peaks. (f) The averaged real space correlations of all possible cuboc1 orders yields a structure factor with only
main peaks on the edges of the extended Brillouin zone without further subdominant peaks. Figure taken from
[P1].
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For cuboc1 order with a clockwise (anti-clockwise) arrangement of blue-green-yellow-red, O yields
+1 (−1). The associated susceptibility is given by

χO =
M

T
(〈O2〉 − 〈|O|〉2) . (7.16)

Turning to the thermodynamics of the cuboc phase, we show, in Fig. 7.17, the specific heat, the
cuboc1 order parameter O (and its absolute value, |O|), as well as its associated susceptibility
χO for different system sizes between L = 8 and L = 32.

The specific heat displays a clearly visible double-peak structure which, similar to our discussion
of the coplanar 120◦ order, can be rationalized by the coexistence of multiple possible cuboc1
arrangements on the square-kagome lattice: at the high-temperature peak in cV (at T = 0.371),
the system builds up cuboc1 order, but does not select a specific arrangement out of the eight
possible realization, as can be seen from the C4 symmetric structure factor in the inset. At the
low-temperature peak (at T = 0.256) a specific cuboc1 order is then spontaneously selected. At
this temperature, the order parameter O (Eq. (7.14)), which takes values of ±1 for different
specific cuboc1 arrangements, builds up and the corresponding susceptibility χO (Eq. (7.15))
diverges as shown in the lowest panel of Fig. 7.17.

Deformed Cuboc Order

A deformed version of cuboc1 order (denoted as phase II in our phase diagram Fig. 7.6), termed
cuboc-d, extends to a part of the lower right quadrant in the phase diagram with J× < 0 and J+ ≥
0. In this cuboc-d phase, the antipodal squares of the cuboctahedron are deformed into antipodal
squares with modified z-values while the square in the equatorial plane remains undeformed. Its
symmetry is thereby reduced to the symmetry of the dihedral symmetry group Ds

4 where the
superscript s denotes additional mirror symmetry on the xy-plane, i.e. s = diag(1, 1,−1). The
ground state energy per site can be calculated to be

Ecuboc-d =
3 + J2

× + J+ − J×(J+ + 3)

3(J× − 1)
. (7.17)

The cuboc-d ground state still has zero magnetization, m = 0.

7.3.4 Spiral Orders

The upper left and lower right quadrant of our phase diagram are occupied by spin spiral phases,
coming in the form of six different variants (labeled III-V and VIII-X, respectively). The com-
plexity of these incommensurate, non-coplanar orders becomes immediately clear when looking
at their common origin plots next to the phase diagram in Fig. 7.6, whose intricate patterns
point to magnetic unit cells of hundreds of spins. This renders any direct analytical description
of these phases rather elusive, but it turns out that one can, in fact, deduce a semi-analytical
description [239–245] of these phases from low-temperature numerical simulation data. As we
will discuss below, this approach provides us with a symmetry-optimized description of these
spin spirals including explicit expressions of their ground state energy as function of the cou-
pling parameters. The latter then allows us to establish sharp phase boundaries between these
complex spin spiral phases as depicted in the phase diagram of Fig. 7.6.
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Figure 7.17 – Thermodynamics of cuboc1 phase. Top panel: the specific heat (obtained from Monte Carlo
simulations without parallel tempering) of the cuboc1 phase displays a double-peak structure. The high-
temperature peak at T = 0.371 can be associated with the initial build-up of coexisting cuboc1 orders. At the
low-temperature peak (at T = 0.256), one specific realization of cuboc1 order is selected. This can be seen
from the structure factors (inset). While the structure factor at T = 0.1 corresponds to one specific realization
of cuboc1 order, the intermediate structure factor at T = 0.3 conincides with the analytical structure factor of
the superposition of all possible cuboc1 order realizations. Middle and bottom panels show the cuboc1 order
parameter O (Eq. (7.14)), and the corresponding susceptibility χO (Eq. (7.15)). The lower inset shows how
Oijkl is being calculated on a single skew bow-tie. This quantity is then averaged over all skew bow-ties in
order to calculate O. Figure taken from [P1].
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Semi-Analytical Approach

The starting point of our semi-analytical approach is numerical data in the form of a common
origin plot of the N spin vectors of a ground state spin configuration sampled in Monte Carlo
simulations at ultra-low temperatures T = 10−4. Example input for the spin spiral phase III in
the lower right quadrant is shown on the left in the schematic illustration of Fig. 7.18.

In a second step, we then identify a smaller number of M < N unique spin vectors by grouping
spins in the initial common origin plot that point approximately in the same direction, see the
middle panel of Fig. 7.18. In practice, we say that two spins Si and Sj point approximately in
the same direction if Si · Sj ≥ γ, where the exact value of γ slightly varies from case to case, but
typically γ ≈ 0.995.

Finally, for these M spin directions we then identify all possible symmetries, which allows us to
further reduce the number of unique spin vectors to K < M . A symmetry in the aforementioned
sense is a tuple (R, π) with R ∈ O(3) and π ∈ SM where SM is the permutation group of M
elements, such that RSi = Sπ(i) for all spin vectors Si. From the remaining K spin vectors, all
spin vectors can be generated by applying these symmetries. In total, this approach allows us to
describe the ground state by at most 2K − 1 parameters – maximally two parameters per spin
minus one parameter due to a global rotation around the symmetry axis, but less if some polar
or azimuthal angles of the ground state assume fixed values4.

Having such an analytical representation at hand, we can then explicitly calculate various observ-
ables such as the magnetization or ground state energy for arbitrary couplings J+ and J× for all
phases, which in turn allows us to determine the phase boundaries shown in the phase diagram
Fig. 7.6. Several cross-checks can be used to validate this approach, including a comparison of
the analytical ground state energy and the Monte Carlo result as well as the determination of
the phase boundaries, which we compare to scans of derivatives of the Monte Carlo energy, as
shown later in Sec. 7.3.7.

Figure 7.18 – Semi-analytical scheme for spin spiral phases. Starting point is a common origin plot
of the N spin vectors of a ground state spin configuration sampled in Monte Carlo simulations at ultra-low
temperatures T = 10−4, as shown on the left. In a second step, we identify M < N unique spin directions
by grouping spins that point approximately in the same direction (middle). From these unique spin vectors,
we then identify symmetries that further reduce the number of unique spin vectors to K < M and allow
us to describe the spiral phase analytically (right). The data shown is for spin spiral phase III of the lower
right quadrant with couplings J+ = +1 and J× = −0.2. The initial common origin plot has N = 864 spins
corresponding to a system size of L = 12. The initial reduction leads to M = 72 points on five circles (as
indicated in the middle panel). The symmetry group G of the example is generated by rotations of π/6 about
the vertical symmetry axis as well as by a reflection at the equatorial plane, i.e. G = Ds

12, and therefore K = 4.
Figure taken from [P1].

4The second and third steps of the semi-analytical approach were carried out by Heinz-Jürgen Schmidt (co-author
of publication [P1]), to whose idea the method can also be traced back.
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In the following we present explicit results of this semi-classical approach for all six spin spiral
phases. In all cases, the nearest-neighbor couplings are set to J1 = J2 = J3 = 1.0 and the
numerical Monte Carlo ground states are taken at a temperature of T = 10−4.

Spiral Phase III withDs
12 Symmetry

We start with spiral phase III in the lower right quadrant of the phase diagram Fig. 7.6 for
J+ = +1 and J× = −0.2 (our schematic illustration of the semi-classical approach in Fig. 7.18
uses this example). The common origin plot on the left consists N = 864 spin vectors of the
numerical ground state of a system of linear length L = 12. By grouping spins that point to the
same direction, using the criterion Si · Sj ≥ 0.999, we find that there are only M = 72 unique
spin directions which are shown in the middle panel. Performing a symmetry analysis, one finds
that the symmetry group G of this state is generated by rotations of π/6 about the vertical
symmetry axis as well as by a reflection at the equatorial plane, i.e. G = Ds

12. This leaves us
with just K = 4 representative spins that describe the entire spin spiral configuration—one on
each of the upper circles as well as two on the equator shown in Fig. 7.18. This is a significant
reduction compared to the N = 864 spins in the original real-space configuration. The K = 4
representative spins can be written as functions of three parameters α, z1, z2 in the following way

S1 =

(
0,
√
1− z21 , z1

)
,

S2 =

(√
1− z22√
2

,

√
1− z22√
2

, z2

)
,

S3,4 =
(
cos
(π
4
± α

)
, sin

(π
4
± α

)
, 0
)
. (7.18)

With this compact representation at hand, the energy per site can now be explicitly calculated
as

EIII =
1

12

[
J× cos 2α+

√
3J× sin 2α− 2

(√
3J+ − (

√
3− 2)J+z

2
1 + 4z1z2

+ (
√
6−

√
2)
√
(1− z21)(1− z22) + J×(2z

2
2 − 1) + 2

(√
3− 3z22 −

√
2− 2z21

)
sinα

+ 2
(√

2− 2z21 +
√

1− z22
)
cosα

)]
. (7.19)

Numerical minimization of this energy with J+ = +1 and J× = −0.2 then leads to a ground
state energy of EIII,semi-analytical = −1.34515 which is in excellent agreement with and slightly
below the Monte Carlo result EIII,MC = −1.345, which is shifted upwards by finite-temperature
fluctuations commensurate with a temperature of T = 10−4.

Spiral phase IV withDs,t
6 Symmetry

We consider the ground state for J+ = J× = −0.2. On the left of Fig. 7.19(a), a common
origin plot of the N = 864 (L = 12) spin vectors of the numerical ground state is shown. After
grouping those spins that point to the same direction, we are left with M = 228 unique spin
directions which are shown on the right of Fig. 7.19(a). The symmetry group G of this state
is generated by two reflections and rotations of π/3 about the symmetry axis i.e. G = Ds,t

6 ,
where the superscripts imply additional mirror symmetries on the xy-plane and the yz-plane,
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Figure 7.19 – Spin spiral phases. Shown are common origin plots (left column) of the numerical Monte Carlo
ground states of spiral phases IV (a), V (b), VIII (c), IX (d), and X (e), at T = 10−4. Each common origin
plot depicts the spin direction of all N = 864 spins on the unit sphere. The right column shows the result of
reducing the number of spin directions by grouping spins that point to the same direction which eventually
allows for the symmetry analysis and analytical description outlined in the text. Figure taken from [P1].

i.e. s = diag(1, 1,−1) and t = diag(−1, 1, 1). The energy per site can eventually be described as
a function of 19 parameters (which is too long to be specified here) and numerical minimization
of this energy with J+ = −0.2 then leads to EIV,semi-analytical = −1.10525 in accordance with the
Monte Carlo result EIV,MC = −1.1051(4) for the same parameters.

Spiral phase V with {id, s} Symmetry

For J+ = 0.2 and J× = −1.0, there are M = 47 unique spin vectors left after grouping the
N = 864 ground state spin vectors according to unique directions (cf. Fig. 7.19(b)). There is no
exact rotation symmetry but a reflection symmetry with respect to the equatorial plane, thus the
symmetry group of this phase is {id,s}. The energy per spin then is a function of 48 parameters
and yields, after minimization, EV,semi-analytical = −1.36719 in accordance with the Monte Carlo
result EV,MC = −1.367(1) for the same parameters.

Spiral phase VIII withD12 Symmetry

The ground state for J+ = −1.0 and J× = 1.0 (Fig. 7.19(c)) can be constructed depending on
two polar angles α and β and one azimuthal angle γ as follows. Let Si (i = 1, . . . , 6) be the six
spin vectors of the primitive unit cell with S1 and S2 being the bow-tie spins. One can define

S1 = (0, 0, 1),

S2 = (sinα, 0, cosα),
S3 = (sinβ cos γ, sinβ sin γ, cosβ),
S4 = (sinβ cos γ,− sinβ sin γ, cosβ),
S5 = (− sinβ cos γ, sinβ sin γ, cosβ),
S6 = (− sinβ cos γ,− sinβ sin γ, cosβ). (7.20)

103



7 Square-Kagome Antiferromagnets

With µ = (m,n, i) denoting the general index of a spin site on the lattice, any spin of the ground
state can thus be written as Sµ = σnρmSi with

σ =

−1 0 0
0 −1 0
0 0 1

 , ρ =

 cos π
6 sin π

6 0
− sin π

6 cos π
6 0

0 0 1

 . (7.21)

The ground state energy per spin of this state is given as

EVIII =
1

12

[
2J+(1 + cos2 α) + 8 cosβ(1 + cosα) + 4(2 + J×) cos2 β +

√
3J+ sin2 α

+ 8 cos γ sinα sinβ + 2
√
3J× cos2 γ sin2 β + 4J× cos γ sin2 β sin γ

− 8 sin2 β sin2 γ − 2
√
3J× sin2 β sin2 γ

]
. (7.22)

Specific heat traces for this spiral phase and for spiral phase IV for different system sizes are
shown Fig. 7.20. However, due to the incommensurability of these spin spirals there are significant
finite-size effects, making it hard to narrow down the location of the finite-temperature transition.

Figure 7.20 – Specific heat of spiral phases IV and VIII. To exemplify the complicated behaviour of the
specific heat of the spiral phases, we show cV traces from Monte Carlo simulations (without parallel tempering)
for the spiral phase IV (top) and VIII (bottom). In both cases, the specific heat qualitatively changes drastically
with the system size which indicates that the spiral ground state depends very sensitively on the system size.
Figure taken from [P1].
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Spiral phase IX withDσ
3 Symmetry

For J+ = −0.2 and J× = 1.0 (Fig. 7.19(e)), grouping the N = 864 ground state vectors according
to their direction leaves us with M = 108 unique spin vectors. These can be reduced further
by identifying the symmetry group G of this state, which is generated by a point reflection
and rotations of 2π/3 about the symmetry axis, i.e. G = Dσ

3 , where the superscript σ implies
additional point reflection symmetry, i.e. σ = diag(−1,−1,−1). The energy per spin is then given
by a function of 26 variables and minimization yields EIX,semi-analytical = −1.3272 as compared
to the Monte Carlo result EIX,MC = −1.327(1) for the same parameters.

Spiral phase X withDs
6 Symmetry

For J+ = −0.05 and J× = 0.4 (Fig. 7.19(e)), there are M = 32 unique spin directions left after
identifying the numerical ground state spin vectors that are close to each other. The symmetry
group of this state is generated by a point reflection and by rotations of π/3 about the symmetry
axis.

The energy per site can be expressed as a function of three variables α1, α2, z as

EX =
1

36

[
8J×

(
z2 − 1

)
sin
(
π

(
−α1 + α2 +

1

6

))
+ 2J×

(
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)
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(
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5

3
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)
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3 sin(πα1) + cos(πα1)
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+ 12
√
1− z2 cos(πα2) + 12z2 − 24z − 12

]
. (7.23)

Minimization of this expression gives EX,semi-analytical = −1.12813 in agreement with the Monte
Carlo result EX,MC = −1.1280(3) for the same parameters.

Summary

The compact representation of the complicated spin spiral states made possible by the semi-
analytical method is summarized in Table 7.1 for all six spin spiral phases of our phase diagram
Fig. 7.6. Table 7.1 also summarizes all ten phases of the phase diagram according to the method
used to describe each phase, the corresponding ground state symmetry, and corresponding q
vectors, if any. As a side note we would like to remark that it turns out that these six phases
can be divided into three regular ones that possess q vectors and three irregular ones, possessing
no q vectors5.

5The q vectors originate from generalized Luttinger-Tisza theory [211] and were determined by Heinz-Jürgen
Schmidt (co-author of publication [P1]).
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phase symmetry q vectors semi-analytical
N M K # parameters

I Oh (0, π), (π, π) – – – –
II Ds

4 (0, 0), (π, π) – – – –
III Ds

12 (−5π/6,−5π/6), (π, π) 864 72 4 3
IV Ds,t

6 – 864 228 13 19
V {id, s} – 864 48 24 47
VI D3 (0, 0), (π, π) – – – –
VII D1 (0, 0), (0, π) – – – –
VIII D12 (π/6, π) 864 37 3 3
IX Dσ

3 – 864 108 18 26
X Ds

6 (π/3, π), (π, π) 864 32 4 3

Table 7.1 – Symmetry characterization of the ten ground state phases of the phase diagram Fig. 7.6.
Given are the ground state symmetry (second column), and the q vectors of each phase (if any, third column).
For the six semi-analytically described phases (III-V, VIII-X), the compression of the parametrization of the
spin spirals via clustering and symmetrization (Fig. 7.18) is given in the four columns on the right. Technically,
this semi-analytical description is obtained by starting with a common origin plot with N = 864 spins sampled
at T = 10−4 for a linear system size L = 12, and is then given in terms of M , K, and the number of needed
parameters (last column) to describe the phase.

7.3.5 Cuboc3 and Pentagonal Order for Mixed Interactions

Finally, we note that one could also consider variations of the model at hand where one changes
the sign of the interactions in the original nearest-neighbor (J1, J2, J3) Heisenberg model (see
Fig. 7.1 for a reminder of the coupling geometries). Flipping the sign of the bow-tie interactions
to ferromagnetic couplings, i.e. J2 = J3 = −1, while keeping the square interactions antiferro-
magnetic, i.e. J1 = 1, yields exactly the same phase diagram as shown in Fig. 7.6, up to local
spin transformations.

Specifically, since the spins on the bow-ties are coupled via J2 and J3 to their nearest neighbors
and via J+ to other bow-tie spins, the total energy remains unchanged if all bow-tie spins are
inverted simultaneously while the sign of the triangular couplings is changed, J2 → −J2 and
J3 → −J3. Performing these local spin transformations on the orders of our original phase dia-
gram yields qualitatively new types of orders.

The original cuboctahedral order (Fig. 7.15), for example, becomes a new cuboctahedral or-
der cuboc3, where each neighboring pair of spins forms an angle of 2π/3 on the squares and
an angle of π/3 on the triangles (Fig. 7.21). This new cuboc order is different to both cuboc1
order (where all neighboring pairs of spins form an angle of 2π/3) and to cuboc2 order (where
all neighboring pairs of spins form an angle of π/3) [39].

The 120◦ orders (Fig. 7.10) are transformed into new coplanar orders in an analogous way,
e.g., into a coplanar pentagonal order (Fig. 7.22), that results from flipping the bow-tie spins in
the 120◦ order Fig. 7.10(c). Note that, just as in the original 120◦ case, at zero temperature
there are both coplanar and non-coplanar states degenerate in energy but the coplanar states
are selected at finite temperature via thermal order by disorder.
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(a)                                             (b)                                             (c)

Figure 7.21 – Cuboctahedral order cuboc3. This variant of a non-coplanar cuboctahedral order is found
when flipping the bow-tie interactions J2 and J3 of the nearest neighbor model to ferromagnetic (while keeping
the square interactions J1 antiferromagnetic). It is obtained from the original cuboc order (Fig. 7.15) via a
local spin transformation (see text). (a) Real space arrangement of spins in the cuboc3 ordered state. There
are 12 sublattices (each one corresponding to one color) with a 24-site magnetic unit cell (large gray square),
four times larger than the geometric unit cell (small square). (b) Each sublattice of spins points towards a
different corner of a cuboctahedron such that each neighboring pair of spins forms an angle of 2π/3 on the
squares and an angle of π/3 on the triangles, making it different from the cuboc1 and cuboc2 orders discussed
in the literature [39]. (c) First and extended Brillouin zones of the square-kagome lattice showing the positions
of the corresponding Bragg peaks. The order breaks C4 symmetry. Figure taken from [P1].

(a)                                             (b)                                             (c)

Figure 7.22 – Pentagonal order. Coplanar pentagonal order arises when flipping the bow-tie interactions J2 and
J3 of the nearest-neighbor model to ferromagnetic (while keeping the square interactions J1 antiferromagnetic).
It is obtained from the original 120◦ order (Fig. 7.10(c)) via a local spin transformation (see text). (a) Real
space arrangement of spins in the coplanar pentagonal state. There are five sublattices (each one corresponding
to one color) with a 24-site magnetic unit cell (large gray square), four times larger than the geometric unit
cell (small square). (b) The spins on the five sublattices point to five out of the six corners of a hexagon. (c)
First and extended Brillouin zones of the square-kagome lattice showing the positions of the corresponding
dominant and subdominant Bragg peaks. The ratio of the weight of the subdominant peaks λ to the weight
of the dominant peaks Λ is λ/Λ ≈ 85%. Figure taken from [P1].

7.3.6 Octagonal and Conical Orders for FM Interactions

Flipping the sign of all three couplings to ferromagnetic in the underlying nearest-neighbor
Heisenberg model, i.e. J1 = J2 = J3 = −1, the phase diagram for varying cross octagon-
plaquette interactions changes its topology substantially. As depicted in Fig. 7.23, there are only
three distinct phases. Trivially, there is a large ferromagnetic phase when J+, J× ≤ 0, which
also extents to the other three quadrants in the phase diagram and is bound by the hyperbola
defined by (J× − 1)(J+ − 1) = 1

2 . Its ground state energy per site is given by

EFM = −2 +
J× + J+

3
. (7.24)
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Figure 7.23 – FM phase diagram. For fixed J1 = J2 = J3 = −1, the model shows a large ferromagnetic
phase (light gray), a coplanar phase with octagonal order (dark gray) and non-coplanar umbrella-like double
cone states (turquoise) that are an interpolation between octagonal and ferromagnetic states. Ferromagnetic
and coplanar phases touch at the single point J+ = J× = 1 − 1√

2
. On the right hand side are corresponding

common origin plots and structure factors from Monte Carlo simulations. Figure taken from [P1].

Bound by a second hyperbola, given by (J× + 1√
2
)(J+ + 1√

2
) = 1, there is a coplanar ordered

phase with eight sublattices where the spins on each sublattice point to the corners of an octagon.
The magnetic unit cell contains 24 sites and is four times larger than the geometric unit cell (cf.
Fig. 7.24(a)-(c)). Its ground state has zero magnetization, m = 0, and its energy per site is given
by

Eoctagonal = −1

3
(2 + 2

√
2 + J+ + J×) . (7.25)

Between these two phases, which touch each other only at the point J+ = J× = 1 − 1√
2
, there

exist non-coplanar umbrella-like states that smoothly interpolate between octagonal and FM
order (cf. Fig. 7.24(d)-(f)). The magnetic unit cell of this phase coincides with the one of the
octagonal phase, but the spins are no longer coplanar, but rather the directions in which the
spins on the sublattices point form two cones.

The first cone is formed by the four sublattices of spins located on the squares with mutual
angles of π/2, whereas the second cone is formed by the four sublattices of bow-tie spins, again
with mutual angles of π/2 but rotated π/4 with respect to the first cone. The two polar angles
that describe these two cones depend on J+ and J×, the ground state energy per site for those
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(a)                                             (b)                                             (c)

(d)                                              (e)                                             (f)

Figure 7.24 – Octagonal and double-conical orders. (a) Real space arrangement of spins in the coplanar
octagonal ordered state stabilized in the purely ferromagnetic nearest-neighbor model. There are eight sublat-
tices with a 24-site magnetic unit cell (large gray square), four times larger than the geometric unit cell (small
square). (b) Each sublattice of spins points towards a different corner of an octagon such that each pair of
neighboring spins forms an angle of π/4. (c) First and extended Brillouin zones showing the positions and the
fractions of total spectral weight of the corresponding Bragg peaks. (d) Real space arrangement of spins in the
non-coplanar double cone state. The eight sublattices coincide with those of the octagonal state shown in (b).
(e) The directions in which the spins on the sublattices point form two cones. The first cone is formed by the
four sublattices of spins located on the squares with mutual angles of π/2, whereas the second cone is formed
by the four sublattices of bow-tie spins, again with mutual angles of π/2 but rotated π/4 with respect to the
first cone. (f) First and extended Brillouin zones showing the positions of the corresponding Bragg peaks. The
ratio of the weight of the subdominant peaks λ to the weight of the dominant peaks Λ depends on the two
polar angles of the cones and therefore on J+ and J×. Figure taken from [P1].

states can be calculated analytically and is given by

Econical =− 1

6J+J×

(
J+ + J× + 4J+J×

± (J+ − J×)
√
1− 12J+J× + 4J2

+J
2
×

)
, (7.26)

where the plus sign applies to the left domain with J+ < 1− 1√
2
, and the minus sign to the right

domain with J+ > 1 − 1√
2
. While the ferromagnetic phase has uniform magnetization and the

octagonal phase has zero magnetization, the magnetization in the conical phase depends on J+
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and J×. Analytically, one finds

mconical =
[
(2(J× + 4)J+ ± ξ) + 1

][
24J+|J×|

]−1

×

√(
2J2

× + 1
)
ξ ±

(
−4J3

×J+ + 6J2
× + 6J×J+ − 1

)
ξ

, (7.27)

where,
ξ =

√
4J2

×J
2
+ − 3J×J+ + 1 , (7.28)

and the plus sign applies to the right domain with J+ > 1− 1√
2
, and the minus sign to the left

domain with J+ < 1− 1√
2
.

7.3.7 Energy and Magnetization

We close this chapter with presenting ground state energy and magnetization Monte Carlo data
for selected horizontal and vertical cuts through the phase diagrams of Figs. 7.6 (AFM nearest-
neighbor interactions) and 7.23 (FM nearest-neighbor interactions). All data is measured at low
temperatures (T = 10−4).

AFM Nearest-Neighbor Interactions

Fig. 7.25 shows Monte Carlo magnetization cuts for fixed J+ = −1.0, and J× = 1.0, respectively.
The only two phases with non-zero magnetization are the 120◦-d phase (VII) and the spiral
phase VIII. In the deformed 120◦ phase, the magnetization only depends on J× and is given by
m120◦-d = J×/(3(2 + J×)).

Figure 7.25 – Magnetization cuts for AFM nearest neighbor interactions. Magnetization cuts from
Monte Carlo simulations for fixed J+ = −1.0 (left) and J× = 1.0 (right) with the colorcode of the phases
shown in Fig. 7.6 in the background. Only the deformed 120◦ phase (light gray) and the spiral phase with D12

symmetry (yellow) have non-zero magnetization. For the deformed 120◦ phase the magnetization as a function
of J× can be expressed analytically as m = J×/(3(2 + J×)) (red curve). Figure taken from [P1].
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7.3 Octagon-Plaquette Interactions

In order to demonstrate the good agreement between the (semi-)analytically derived phase
boundaries and Monte Carlo results, we show cuts of E/N for fixed values of J+ = ±1.0,
and J× = ±1.0, respectively, from Monte Carlo simulations, along with the corresponding sec-
ond derivatives in Fig. 7.26. The second derivatives of E/N show sharp features exactly at all
(semi-)analytically determined phase boundaries.

Figure 7.26 – Energy cuts for AFM nearest neighbor interactions. Ground state energy cuts from Monte
Carlo simulations for fixed J× = ±1.0 (top) and J+ = ±1.0 (bottom). The inset shows the second derivatives
of the energy per spin with the phases shown in the phase diagram Fig. 7.6 in the background with the phase
boundaries (dashed lines) obtained (semi-)analytically as described in the main text. The second derivatives
of E/N show sharp features exactly at all phase boundaries. Figure taken from [P1].
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FM Nearest-Neighbor Model

Similarly good agreement between analytically determined phase boundaries and Monte Carlo
results we find in the case of FM interactions. Fig. 7.27 shows cuts of E/N for fixed values of
J+ = 0.0, and J+ = 0.5, respectively, from Monte Carlo simulations along with the corresponding
derivatives in Fig. 7.26. Note that the second derivatives of the energy do not reveal any sharp
features (not shown here). Therefore, we present the third derivatives of E/N with the result
that these show sharp features at the (semi-)analytically determined phase boundaries. We thus
conclude that the phase transitions are of one order higher than in the AFM case considered in
Fig. 7.26.

Figure 7.27 – Energy cuts for FM nearest neighbor interactions. Energy cuts from Monte Carlo sim-
ulations for fixed J+ = 0.0 (blue) and J+ = 0.5 (red). The inset shows the third derivatives of the energy
per spin with the phases shown in Fig. 7.23 in the background with phase boundaries (dashed lines) obtained
analytically as described in the main text. The third derivatives of E/N show sharp features exactly at the
phase boundaries. Figure taken from [P1].
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7.4 Discussion and Outlook

Led by the search for non-coplanar magnetic orders, we have indeed found a plethora of non-
trivial magnetic textures on the square-kagome lattice. These orders are stabilized by introducing
cross-plaquette interactions in addition to the classical nearest-neighbor Heisenberg model, with
either antiferromagnetic or ferromagnetic nearest-neighbor interactions, or a combination of both
(ferromagnetic on bow-tie bonds and antiferromagnetic on square bonds). By employing large-
scale Monte Carlo simulations, we revealed a variety of non-coplanar states including a new
type of cuboctahedral order (termed cuboc3, Fig. 7.21), as well as highly intricate non-coplanar
spirals. The underlying magnetic unit cells of these spin spiral states feature a highly complex
structure and large sizes but, remarkably, we were able to provide a semi-analytical construction
of these phases based on a symmetry-optimized parametrization with our Monte Carlo results as
a starting point. This allowed us to obtain explicit expressions (depending only on a comparably
small number of parameters) for their ground state energy as a function of the coupling strengths,
which in turn enables us to establish, with high precision, the phase boundaries between these
complex spiral phases. The approach established here, in which numerics and semi-analytics go
hand in hand, is universal and can be transferred one on one to other lattice geometries, as we
will show in the next chapter using the maple-leaf lattice as another example.

Besides the ground state, we also studied the thermodynamics of non-coplanar states employing
classical Monte Carlo simulations. By virtue of being chiral, non-coplanar states are expected
to feature a symmetry-breaking phase transition at T 6= 0. In particular, for the cuboc order
we presented the temperature evolution of the specific heat, the chiral order parameter, and its
susceptibility, for different system sizes which manifestly exhibits signatures of a chiral phase
transition. For the elementary model with only three symmetry inequivalent nearest-neighbor
couplings, we showed that, besides the isotropic point, within the entire region occupied by an ex-
tensively degenerate manifold of ground states one can always identify three distinct temperature
regimes, namely, a high-temperature thermal paramagnet, an intermediate-temperature coop-
erative paramagnet, and a low-temperature coplanar regime selected via an order-by-disorder
mechanism. We showed that upon introduction of ferromagnetic cross-plaquette interactions of
just one type, i.e., either J+ or J×, the extensive degeneracy is reduced, but there still persists
one zero mode per per triangle or per unit cell, respectively. This results in a T → 0 limiting
value of specific heat which is less than one, however, the intermediate-temperature cooperative
paramagnetic temperature regime disappears.

As motivated earlier, non-coplanar magnetic orders could give rise to chiral quantum spin liq-
uids if quantum fluctuations are introduced and spin rotational symmetry is restored. We thus
provided a detailed symmetry analysis for the non-coplanar orders on the square-kagome lattice,
paving the way for the systematic classification of possible descendant chiral spin liquid states.
The exploration of these exotic phases in the corresponding quantum models employing state-of-
the-art numerical quantum many-body approaches constitute an important direction of future
research.

In the context of material realizations, it is worth noting that in the copper based compound
Na6Cu7BiO4(PO4)4[Cl,(OH)]3 [216], the J× interactions are mediated by Cu-O-Na-O-Cu su-
perexchange pathways, while the J+ bonds pass through a chloride group at distances that
prevent any Cu-Cl hybridization, and thus not triggering a superexchange. The presence of
the non-magnetic Na ions in the center of the octagons is likely to trigger a finite J× interac-
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7 Square-Kagome Antiferromagnets

tion akin to the scenario realized in the kagome based materials kapellasite and haydeeite [246].
One could think of possible chemical substitutions which are likely to enhance this interactions,
e.g., by replacing Na with Cs which has a larger ionic radius. Another route towards strength-
ening the cross-plaquette couplings would involve preparing the corresponding sulfide version
instead of oxides leading to Cu-S-Na-S-Cu type superexchange pathways, similar to the breath-
ing chromium spinels [247]. In KCu6AlBiO4(SO4)5Cl [213], it is the sulfate SO2−

4 that occupies
the octagon centers and one may consider the possibility of substituting it with a selenate group
SeO2−

4 to enhance both the cross-plaquette couplings. These would constitute interesting future
explorations on the material synthesis front6.

6The last paragraph of the discussion about possible material realizations was written by Yasir Iqbal and taken
from Ref. [P1], of which he is a co-author.
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Maple-Leaf Antiferromagnets
Chapter 8

Recently, a wide range of candidate materials involving quantum spins on the maple-leaf lattice
geometry has attracted attention, including the copper minerals bluebellite Cu6IO3(OH)10Cl
[248, 249], spangolite Cu6Al(SO4)(OH)12Cl·3H2O [250], and many more [251–254]. Their poten-
tial to host non-trivial quantum ground states such as quantum spin liquids or dimer states led
to a number of theoretical studies of quantum antiferromagnets on this very lattice geometry
[255–258].

Also from a classical point of view, the maple-leaf lattice is an ideal playground to explore
interesting physics. Its non-Bravais property and the possibility of integrating additional cross-
plaquette interactions provide the best conditions for finding intricate non-coplanar magnetic
orders. To this end, in this chapter we discuss the ground state phase diagram of a classi-
cal Heisenberg model on the maple-leaf lattice with further-neighbor interactions based on the
methods that have already proven to be fruitful in the previous chapter.

This chapter is based on publication [P2], which is still a work in progress at the time of this writ-
ing. The parts of publication [P2] for which the author of this thesis is responsible are presented
below.

8.1 Maple-Leaf Heisenberg Model

The maple-leaf lattice [259] is an Archimedean lattice that is obtained by a periodic depletion
of 1/7 of the sites of the triangular lattice, as visualized in Fig. 7.1. Its coordination number is
z = 5 and, therefore, it is intermediately frustrated between the kagome (z = 4) lattice and the
triangular (z = 6) lattice. It can be described by the lattice vectors

a1 =
(
3
√
3

2
,−1

2

)
, a2 =

(√
3, 2
)
,

and a unit cell comprising six sites with relative coordinates

δ1 = (0, 0) , δ2 =

(√
3

2
,−1

2

)
,

δ3 =
(√

3, 0
)
, δ4 =

(√
3, 1
)
,

δ5 =

(√
3

2
,
3

2

)
, δ6 = (0, 1) .
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8 Maple-Leaf Antiferromagnets

Figure 8.1 – Maple-leaf lattice and interactions. Resulting from a 1/7-depletion of the triangular lattice,
each site of the maple-leaf lattice belongs to four triangular and one hexagonal plaquette. Next to the nearest-
neighbor coupling J1, cross-hexagon interactions J2 and J3 are introduced. The unit cell contains the six sites
(labeled 1 to 6) of a single hexagonal plaquette.

Motivated by the stabilization of non-coplanar magnetic orders by cross-plaquette interactions
in the previously discussed square-kagome Heisenberg model (SKHM), we introduce further-
neighbor cross-hexagon interactions J2 and J3 (as indicated in Fig. 8.1) in addition to the
nearest-neighbor coupling J1 to our classical Heisenberg model on the maple-leaf lattice (MLHM).

Numerically, we proceed in exactly the same way as in the SKHM. We again employ Monte
Carlo simulations over a range of parameters for the cross-plaquette interactions, performed on
finite lattices of size L × L, i.e. N = 6L2 = 864. Also similar to the study of the SKHM, a
parallel tempering scheme is employed with 192 logarithmically spaced temperature points be-
tween Tmin = 10−4 and Tmax = 10 and measurements are performed over 5 · 108 sweeps after a
thermalization period of 108 sweeps. Where necessary, these simulations are supplemented by
the semi-analytical method presented in Sec. 7.3.41.

8.2 Ground State Phase Diagram

Upon varying the cross-plaquette interactions J2 and J3 (where J1 = 1 is fixed to be antifer-
romagnetic), we indeed find a number of different ground state phases, including coplanar and
non-coplanar magnetic orders as summarized in the phase diagram Fig. 8.2. From the representa-
tive common origin plots (and also from static spin structure factors) next to the phase diagram,
one can see at first glance that the six phases found (labeled I to VI) are clearly distinct from
each other.

The coplanar phases I and III appear in the form of two different six-sublattice ordered states,
the first of which has already been described in the context of the quantum model on the maple-
leaf lattice without cross-plaquette interactions [258, 260]. The remaining four phases come in

1As in the SKHM, the semi-analytical results for the MLHM have been worked out in close collaboration with
Heinz-Jürgen Schmidt (co-author of [P2]).
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8.2 Ground State Phase Diagram

IVV

III
coplanar

T
non-coplanar

I
coplanar
D3

VI
T
non-coplanar

II

D6

non-coplanar non-coplanar
D12 D12

Figure 8.2 – Classical phase diagram of the maple-leaf lattice with six different phases (labeled I-VI)
as a function of J2 and J3 (J1 = 1). Besides indicating the phase boundaries (solid lines), the phases are
described by symmetry (with Dn referring to the dihedral group of order n and T to tetrahedral symmetry),
and coplanarity. Also, we show Monte Carlo common origin plots and spin structure factors for each phase to
the right of the phase diagram.

different non-coplanar orders, including commensurate variants (phases II and VI) as well as in-
commensurate ones (phases IV and V). We will provide details about each phase in the remainder
of this section.

8.2.1 Coplanar Orders

We start with the coplanar ground states of phase I and phase III which make up large parts of
the lower half and the upper right corner of the phase diagram Fig. 8.1, respectively.

Coplanar Phase I withD3 Symmetry

This order has already been described in full agreement with our numerical results as the ground
state in the classical limit of the quantum maple-leaf Heisenberg model in Refs. [258, 260]. It
consists of six sublattices of spins and a three times larger magnetic unit cell, as indicated in
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8 Maple-Leaf Antiferromagnets

(a)                                                                              (b)

                            Phase I                                                                       Phase III

Figure 8.3 – Coplanar orders. (a) The ground state of phase I has six sublattices of spins and a 18-site
magnetic unit cell (outlined in red). Within one geometrical unit cell, neighboring spins form an angle α (for
example, yellow and green spins) while next-nearest neighbors are parallel. Equivalent spins in two neighboring
geometric unit cells are rotated by 2π/3 (for example, yellow and light blue spins). (b) In phase III, the ground
state has six sublattices as well, but the magnetic unit cell coincides with the geometrical unit cell. Within
each unit cell, each spin points to a different corner of a regular hexagon and nearest neighbors (within a unit
cell) form an angle of π/3.

Fig. 8.3(a). Within one geometrical unit cell, neighboring spins form an angle

α = arctan

( √
3

3 + 2J2

)
+ π (8.1)

while next-nearest neighbors are parallel. Equivalent spins in two neighboring geometric unit
cells are rotated by 2π/3. Its energy can explicitly be given as

EI = −1

2

(
1 +

√
3 + 3J2 + J2

2 − 2J3

)
. (8.2)

The symmetry of this ground state is given by the dihedral group of order 3, D3. For the special
case J2 = −2, the six different spin vectors form a regular hexagon with D6 symmetry. In the
case J2 = −1, on the other hand, the ground state becomes a 120◦ state which still has D3

symmetry.

Coplanar Phase III withD6 Symmetry

The rigid coplanar order of phase III, found in in the upper right corner of the phase diagram,
also has six sublattices of spins, but the magnetic unit cell coincides with the geometrical unit
cell. Within each unit cell, each spin points to a different corner of a regular hexagon (see
Fig. 8.3(b)) and nearest neighbors (within a unit cell) form an angle of π/3. The corresponding
ground state energy is

EIII = −1

2
(1 + J2 + J3) . (8.3)

and the symmetry group of the ground state is the dihedral group of order 6, D6.

8.2.2 Non-Coplanar Orders

We now come to discuss of the various non-coplanar magnetic orders. Our brief introduction of
the same starts with the two commensurate structures found in the phases II and IV of the phase
diagram. Starting point for all semi-analytical descriptions are numerical Monte Carlo ground
states at T = 10−4 with fixed J1 = 1.
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8.2 Ground State Phase Diagram

(a)                                                                              (b)

                            Phase II                                                                      Phase VI

Figure 8.4 – Non-coplanar orders II and VI. (a) The ground state of phase II has 24 sublattices of spins
and a magnetic unit cell with as many sites (outlined in red in the real-space arrangement on the left). Right:
common origin plot of the 24 spin directions. (b) The ground state of phase VI has a 24-site magnetic unit
cell as well, but only 12 sublattices of spins. In general, these point to the corners of a deformed icosahedron
which becomes regular in the special case J2 = −1.0, J3 = 0.0 (shown here).

Non-Coplanar Phase II with T × Z2 Symmetry

The ground state of phase II consists of 24 sublattices of spins and the magnetic unit cell spans
the same amount of sites, as shown in Fig. 8.4(a) exemplarily for J2 = 0.5 and J3 = 1.0. A
symmetry analysis of the ground state reveals that its symmetry is described by the symmetry
group T × Z2, the direct product of the tetrahedral group without reflections T and the group
{id,−id} ∼= Z2. The energy of this state can be expressed as a function of two parameters λ and
α as

EII =
1

6

[
− 7− 3J2 + 12λ2 − 9J3λ

2 + 2λ
√
6− 6λ2 cosα

+ 4λ2 cos 2α+ 2λ
√
2− λ2 sinα+ 2

√
3λ2 sin 2α+ 6J3

]
. (8.4)

Minimizing this expression for J2 = 0.5 and J3 = 1.0 yields EII,semi-analytical = −1.41782 which
fits well with the Monte Carlo result for the same parameters EII,MC = −1.417(5).

Non-Coplanar Phase VI with T Symmetry

The magnetic order of phase VI also has a 24-site magnetic unit cell, but only 12 sublattices of
spins. In general, these point to the corners of a deformed icosahedron, which becomes regular
in the special case J2 = −1.0, J3 = 0.0 shown in Fig. 8.4(b). Its symmetry is described by the
tetrahedral symmetry group without reflections T (for the aforementioned special case it becomes
the icosahedral symmetry group Ih). The general expression for the ground state energy as a
function of two parameters λ and α is

EVI =
1

6

[
3 + 3J2 − 6λ2 − 9J3λ

2 + 4λ
√
6− 6λ2 cosα

+ 3λ2 cos 2α−
√
3λ2 sin 2α+ 6J3

]
. (8.5)

Minimizing this term for, e.g., J2 = −0.5 and J3 = 0.5, leads to EVI,semi-analytical = −1.60183 in
line with the corresponding Monte Carlo result EVI,MC = −1.601(4).

In the following, we conclude this report on the various non-coplanar orders on the maple-leaf
lattice with the two incommensurate spiral structures of phases IV and V.
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Non-Coplanar Phase IV withD12 Symmetry

In the spiral phase IV, as depicted in the common origin plot on the left of Fig. 8.5(a) for
J2 = 0.7 and J3 = 1.0, we are left with M = 72 unique spin vectors after grouping those spins
that point into the same direction (cf. the corresponding plot on the right of the very same
figure). This state is symmetric under actions of the dihedral group of order 12, D12, as well as
under mirroring z 7→ −z. The ground state energy EIV can explicitly be expressed analytically
as a function of eight parameters (which is too long to be specified here). Its minimization yields
EIV,semi-analytical = −1.35069, consistent with the Monte Carlo result EIV,MC = −1.350(5).

Non-Coplanar Phase V withD12 Symmetry

For the spiral phase V, we consider the numerical Monte Carlo ground state for J2 = 0.6 and
J3 = 1.0, as shown in the common origin plot on the left of Fig. 8.5(b). After grouping the
N = 864 spin vectors according to their unique directions, we are left with M = 72 unique spin
vectors, which can be divided into six groups with constant z-component, as visualized on the
right of Fig. 8.5(b). Taking into account D12 symmetry and invariance under z 7→ −z, the state
can be described by three z-components z1, z2, and z3, and the difference angle δφ between the
azimuth angles of the spins on the two lower circles on the one hand, and the upper circle on the
other. With these parameters, the ground state energy takes the form

EV =
1

12

[
− 1− 4z21 − z22 − 2

√
3− 3z22

√
1− z23 − J2

(
1 + z21 + 2z22 + 2z23

)
− 4J3

(
− z2z3 + z1(z2z3) +

√
1− z22

√
1− z23

)
+
√
1− z21

((
2
√
1− z22 − (2 +

√
3)J3

(√
1− z22 −

√
1− z23

))
cos δφ

+
(
(−4 + 2

√
3)
√
1− z22 + J3

(√
1− z22 −

√
1− z23

))
sin δφ

)]
. (8.6)

Minimization of this energy yields EV,semi-analytical = −1.32311 in good agreement with and
slightly smaller than the Monte Carlo result EV,MC = −1.322(7) for the same parameters.

(a)                                                                               (b)

                           Phase IV                                                                     Phase V

Figure 8.5 – Non-coplanar spiral orders IV and V. (a) Left: common origin plot of the Monte Carlo ground
state of spiral phase IV (for J2 = 0.7 and J3 = 1.0) with N = 864 spins. Right: These can be grouped into
M = 72 unique directions and described analytically (see text). The resulting order has D12 symmetry. (b)
The same applies in the case of the spiral ground state of phase V, here shown for J2 = 0.6 and J3 = 1.0. The
plots of the unique spin directions shown in this figure have been kindly provided by Heinz-Jürgen Schmidt.
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8.2.3 Energy and Specific Heat

To conclude this chapter, we present some cuts of the ground state energy as a function of J2
and J3, along with selected plots of the specific heat for all six phases of the state diagram.
The former are presented in Fig. 8.6 and again underline, as in the SKHM, the good interplay
of Monte Carlo numerics on one side, and semi-analytical method on the other. The insets in
Fig. 8.6 display the second derivatives of the Monte Carlo ground state energy along with the
semi-analytically determined phase boundaries. Note that it is precisely at these boundaries
that the Monte Carlo energies have sharp features, which is a confirmation of the accuracy of
the phase diagram we have determined.

Specific heat traces for the six phases are shown in Fig. 8.7. The spiral phases IV and V show
complicated behaviour; due to their incommensurability, these phases depend very sensitively on
finite-size effects. In contrast, the three phases II, III, and VI, display single peaks at some finite
temperature that scale with the system size—a scaling behaviour that is expected for a thermal
ordering phase transition. Phase I is out of line, here. The peak size for L = 12 is larger than
for L = 16. This strange behavior is unexpected and should be investigated further.

8.3 Discussion and Outlook

Motivated by the successful search for non-coplanar magnetic orders on the square-kagome lattice
described in the previous chapter, we have here applied our fruitful method to another classical
Heisenberg model with nearest-neighbor as well as cross-plaquette interactions on a non-Bravais
lattice in the form of the maple-leaf lattice. Using our combined approach of Monte Carlo numer-
ics on the one hand and the semi-analytical method on the other hand, we have again revealed a
complex ground state phase diagram with an abundance of coplanar and non-coplanar magnetic
structures. The latter include, besides complicated incommensurate spiral structures, a newly
type of (deformed) icosahedral order (Fig. 8.4(b)).

(a)                                                                                 (b)

Figure 8.6 – Ground state energies from Monte Carlo simulations at low temperatures (T = 10−4) for (a) fixed
J3 = 0.0, 1.0, and (b) fixed J2 = 0.0, 1.0, respectively. The insets show the corresponding second derivatives,
E′′/N . These show sharp features exactly at the semi-analytically determined phase boundaries (indicated as
vertical dashed lines).
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8 Maple-Leaf Antiferromagnets

Figure 8.7 – Specific heat traces from Monte Carlo simulations for all six phases, color-coded the same way
as in the phase diagram Fig. 8.2. The spiral phases IV and V (green and red, respectively) show complicated
behaviour indicating a sensitive dependence on finite-size effects. The three phases II (yellow), III (light gray),
and VI (blue), display a scaling behaviour that is expected for a thermal phase transition with a single peak
that grows with system size. Phase I is out of line, with a peak size for L = 12 larger than for L = 16.

With the relevance of quantum counterparts of such non-trivial structures in mind, our clas-
sical phase diagram can be seen as a foundation for the exploration of quantum models on the
maple-leaf lattice. Some of this has already been done in the publication [P2] currently being
prepared, of which this classical study forms a part. In it, the exact same model with the exact
same couplings is examined by means of pseudo-fermion functional renormalization group (PF-
FRG) calculations [261]. These calculations reveal the existence of quantum disordered states,
indicated by the absence of a flow breakdown in some areas of the phase diagram—especially
where classically the spiral phases are located and near the phase boundaries I-VI, II-VI and I-II.

Regarding possible material realizations, our classical study involving cross-plaquette interac-
tions provides a motive to consider ways to generate such couplings for the various maple-leaf
materials already available.
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General Concluding Remarks
Chapter 9

In this thesis, we have studied a variety of classical spin systems that, taken together, exhibit
a wide range of the rich phenomenology of frustrated magnetism. For this purpose we have
extended existing methods and applied them to uncover various interesting physical phenomena.

We have thus substantially advanced the classical Monte Carlo method by adding to it a dy-
namical flavor, viz. the interpretation of the Markov chain as time evolution. For the dipolar
spin ice system studied in Chapter 4, this allowed us to investigate the dynamics of emergent
magnetic monopoles near the monopole liquid-gas transition when applying an external magnetic
AC field. We showed that while modulation with a transverse field reveals a critical speeding up,
a modulated longitudinal magnetic field yields a critical slowing down, in good agreement with
experimental observations. However, the mechanism behind this directional dependence of the
dynamics remains an intriguing question. To make the comparison with experimental data sys-
tematic, we have gone far beyond the purely phenomenological Arrhenius law ansatz of Takatsu
et al., and developed a profound theory for the conversion factor between Monte Carlo time and
real time. Eventually, we were able to validate this theory in parts of the phase diagram from
zero field up to the kagome ice regime. For the Coulomb spin liquid of the triangular lattice Ising
antiferromagnet (TIAFM) described in Chapter 5, we explored the finite-temperature crossover
to the paramagnet which is also found to exhibit fluctuation-enhanced dynamics. Moreover, we
have shown that the numerical signature of the dynamics in the TIAFM describes well the ex-
perimental relaxation times in Ca3Co2O6, a system consisting of antiferromagnetically coupled
spin chains on a triangular lattice with ferromagnetic intra-chain couplings. Future research
should address the question of how these experimental findings, explained by quantum tunneling
of magnetization, are related to numerical relaxation times in the classical TIAFM. The numer-
ical observations of Chapters 4 and 5 might indicate that unconventional forms of magnetism
often go hand-in-hand with unusual dynamical phenomena – a motif that should warrant further
exploration, particularly in quantum magnets.

Also through large-scale Monte Carlo simulations, we then explored in great detail classical
Heisenberg models with additional further-neighbor cross-plaquette interactions on non-Bravais
lattices in the form of the square-kagome lattice (SKHM, Chapter 7) and the maple-leaf lattice
(MLHM, Chapter 8). In the case of the SKHM, we first looked at the pure nearest-neighbor
model and encountered a number of concepts that are intimately linked to frustrated magnetism,
including a classical spin liquid phase and multiple order-by-disorder mechanisms. Guided by the
search for non-coplanar magnetic orders, we then explored the ground state phase diagram for
both models, SKHM and MLHM, with further-neighbor interactions by joint forces of numerical
simulation results combined with a semi-analytical method. Indeed, we were able to show that in
both cases a large number of different ground states constitute the phase diagram. These appear
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9 General Concluding Remarks

partly coplanar, but also come in intricate non-coplanar forms and complex incommensurate
spiral phases. For the latter, it must be taken into account how much they depend sensitively
on the simulated system size. For unit cells comprising hundreds of spins, it cannot be excluded
that the found spiral phases may change considerably towards significantly larger systems. This
would be a separate question that could be investigated in the future. Among the non-coplanar
orders, a novel cuboctahedral order (cuboc3) on the square-kagome lattice and an icosahedral
order on the maple-leaf lattice are noteworthy. Our classical studies of these models thus lay the
groundwork for future investigations, since exploring the quantum analogs of these phases, either
conceptually as in quantum spin-1/2 generalizations of our models, or experimentally, may prove
fruitful in identifying chiral quantum spin liquids.

Considering the topics of this thesis as a whole, the verdict is clear: the study of frustrated
magnets in the classical realm continues to be an exciting, cutting-edge field. This is not only
because it is a playground for the development and extension of numerical and analytical methods
of all kinds. More importantly, there is still fascinating new physics to be discovered here—either
in the classical systems themselves, or in these systems as precursors to possible new exotic quan-
tum phases of matter. In conclusion, to paraphrase P.W. Anderson, frustration is STILL the
name of the game.
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Debye Relaxation from Linear
Response Theory and Generalized

Debye Models

Appendix A

We review the derivation of Debye relaxation, Eq. (3.42), from linear response theory [107]. In
linear response theory, the generalized response function χ(t− t′) describes how a general system
shows a generalized displacement

x(t) =

∫ ∞

−∞
χ(t− t′)f(t′)dt′ (A.1)

due to a generalized force f(t − t′). Using the convolution theorem, we can rewrite this as a
product,

x(ω) = χ(ω)f(ω), (A.2)

with the Fourier transform defined as

x(ω) =

∫ ∞

−∞
e−iωtx(t)dt (A.3)

and the corresponding inverse transform

x(t) =
1

2π

∫ ∞

−∞
eiωtx(ω)dω. (A.4)

Assuming causality, that is χ(t− t′) = 0 for t < t′, we write χ(t) = X(t)θ(t) with the Heaviside
function θ(t) and construct X(t) to be odd by choosing

X(t) =

{
χ(t) for t > 0

−χ(|t|) otherwise.
(A.5)

Consequently, X(ω) is purely imaginary. By again making use of the convolution theorem, we
write the product X(t)θ(t) as a convolution,

χ(ω) =
1

2π

∫ ∞

−∞
θ(ω′ − ω)X(ω′)dω′, (A.6)
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and use θ(ω) = πδ(ω)− i/ω to get

χ(ω) =
1

2
X(ω)− i

2π
PV

∫ ∞

−∞

X(ω′)

ω′ − ω
dω′ ≡ χ′(ω) + iχ′′(ω) (A.7)

where the Cauchy principal value (PV) of the second term is taken to avoid any singularities.
Since X(ω) is purely imaginary, we find

iχ′′(ω) =
1

2
X(ω) (A.8)

and therefore the Kramers-Kronig relation

χ′(ω) = PV
∫ ∞

−∞

χ′′(ω′)

π(ω′ − ω)
dω′. (A.9)

We now apply this to the example of a damped harmonic oscillator with equation of motion

mẍ+ αẋ+ kx = f. (A.10)

Plugging this into Eq. (A.2) and writing ω2
0 = k/m and γ = α/m directly yields

χ(ω) =
x(ω)

f(ω)
=

1

m(ω2
0 − ω2 − iωγ)

(A.11)

Removing the inertial term in Eq. (A.10),

αẋ+ kx = f, (A.12)

and introducing the relaxation time τ = α/k leads to a susceptibility given by

χ(ω) =
1/k

1− iωτ
(A.13)

with real and imaginary parts

χ′(ω) =
1/k

1 + (ωτ)2
(A.14)

and
χ′′(ω) =

ωτ/k

1 + (ωτ)2
. (A.15)

Note that the sign difference in the denominator in Eq. (A.13) compared to Eq. (3.42) results from
the differing convention χ(ω) = χ′(ω)− iχ′′(ω) for the latter but nevertheless leads to exactly the
same equations for the real and imaginary part. At this point it is common to introduce the so-
called adiabatic susceptibility χS ≡ χ(∞) and isothermal susceptibility χT = χS + 1/k ≡ χ(0)
such that the correct limits at low and high frequencies are recovered. If we take this into
account, the following equations result:

χ(ω) = χS +
χT − χS

1 + iωτ
, (A.16)

χ′(ω) = χS +
χT − χS

1 + (ωτ)2
, (A.17)
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and
χ′′(ω) =

(χT − χS)ωτ

1 + (ωτ)2
. (A.18)

The solution for Eq. (A.12) with f = 0 is given by an exponential relaxation with a single
relaxation time,

x(t) = x0e−t/τ . (A.19)

Therefore, a magnetic system which has a magnetization that relaxes exponentially in time with
a single relaxation time, M(t) = M0e−t/τ , can be described by the very same equations (A.16)
- (A.18).

The derivation of the simple Debye model of Eq. (3.42) from linear response theory is based
on the assumption of a magnetization that relaxes exponentially with a single time scale [107].
This assumption completely ignores the complexities in real materials like interaction effects that
may lead to a distribution of relaxation times [262]. To overcome this there are several empirical
approaches to adjust the simple Debye model in order to take a spread of relaxation times into
account. Examples are the generalized Debye model

χ(ω) =
χ0

1 + (iωτ)1−α
, (A.20)

with the phenomenological parameter 0 ≤ α ≤ 1 [263], the Cole-Davidson model [264]

χ(ω) =
χ0

(1 + iωτ)β
, (A.21)

or a combination of both, the Havriliak-Negami model [166]

χ(ω) =
χ0

[1 + (iωτ)1−α]β
. (A.22)

Each of these models parametrizes a spread of relaxation times by introducing the exponents
α and/or β and thereby can improve agreement between theoretical model relaxation and data
[265], as exemplified in Fig. A.1. Throughout this thesis, when referring to Debye fits, we actually
use the more general Havriliak-Negami model.
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Figure A.1 – Debye models for relaxation. Example of Monte Carlo data of the imaginary part of the AC
susceptibility and comparison of the different relaxation models mentioned in the text. One can see very well
that for this specific set of parameters (spin ice with longitudinal AC field, T = 1.0, HDC = 0.5), the Havriliak-
Negami model gives the best fit to the data.
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Ewald Summation Technique for
Lattice Sums

Appendix B
An efficient way to control the long-ranged dipole-dipole interactions in a simulation is to derive
an effective dipole-dipole interaction between spins within the finite simulation cell. This is
necessary since the dipolar interaction term in the DSI Hamiltonian, Eq. (4.5), can be determined
in principle once the details of the magnetic ions are known, but due to its |Rij |−3 nature such
a lattice summation converges, if at all, conditionally and very slowly. By means of the Ewald
summation technique the slowly and conditionally convergent dipolar interaction term can be
converted into two rapidly absolute converging series [266, 267]. To see how this works we first
rewrite the dipole-dipole interaction term, using Si = σiẑi, as

HDD = Dr3nn
∑
i,j

[
Si · Sj

|Rij |3
− 3

(Si · Rij)(Sj · Rij)

|Rij |5

]

= Dr3nn
∑
i,j

σiσj

[
ẑi · ẑj
|Rij |3

− 3
(ẑi · Rij)(ẑj · Rij)

|Rij |5

]

=
Dr3nn
L3

∑
i,j

∑
n′

σiσj

[
ẑi · ẑj

|rij + n|3 − 3
(ẑi · (rij + n))(ẑj · (rij + n))

|rij + n|5

]

=
Dr3nn
L3

∑
i,j

σiσjAij (B.1)

with an interaction matrix Aij , rij = Rij/L with the linear system size L of the simulation cell.
The index n = (nx, ny, nz), nx,y,z ∈ Z, describes the involvement of dipolar interactions within
replicas of the simulation cell that are spherically arranged in shells with radii L(nx, ny, nz)
around the simulation cell itself. The summation over n′ indicates that n = (0, 0, 0)—which
corresponds to the simulation cell itself—is omitted when rij = 0. This summation over mirror
cells is sketched in Fig. B.1. The interaction matrix Aij can now be rewritten as follows:

Aij =
∑
n′

[
ẑi · ẑj

|rij + n|3
− 3

(ẑi · (rij + n))(ẑj · (rij + n))
|rij + n|5

]

= −(zi · ∇r)(zj · ∇r)

[∑
n′

1

|r + n|

]
r=rij

(B.2)
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Figure B.1 – Sketch of the summation over replica cells in two dimensions. Starting from the simulation cell
(blue) on the left, more and more shells of copies of the simulation cell (red, green, and orange) are taken into
account for the lattice sum of the dipolar interaction. The red circled replica of the simulation cell corresponds
to n = (1, 2).

The main idea is now to introduce a convergence factor in order to force absolute convergence
on the sum. To understand this, consider the conditionally convergent series

A =

∞∑
i=0

ai. (B.3)

One can now introduce a sequence of numbers f(n, s) that fulfill

(i) f(n+ 1, s) ≤ f(n, s) ∀ s ≥ 0 ∀ n,

(ii) 0 ≤ f(n, s) ≤ 1 ∀ s ≥ 0 ∀ n,

(iii) f(n, 0) = 1 ∀ n.

It can be shown that inserting these numbers into the series B.3 then leads to some s-dependence

A(s) =

∞∑
i=0

f(i, s)ai (B.4)

and that taking the limit s→ 0 gives back the original series,

lim
s→0

A(s) = A. (B.5)

A can then be determined via calculating A(s) with proper f(n, s) enforcing absolute conver-
gence of the series and taking the limit s→ 0.

In the present case of determining the interaction matrix Aij , we include a spherical conver-
gence factor f(n, s) = e−s|n|2 yielding

Aij = lim
s→0

Aij(s) = lim
s→0

−(zi · ∇r)(zj · ∇r)

[∑
n′

e−s|n|2

|r + n|

]
r=rij

 . (B.6)
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By using the Γ-function identity x−2k = 1
Γ(k)

∫∞
0 tk−1e−tx2dt we can rewrite the denominator in

expression B.6 as
1

|r + n| =
1√
π

∫ ∞

0
t−1/2e−t|r+n|2dt (B.7)

leading to

Aij(s) = −(zi · ∇r)(zj · ∇r)
1√
π

∫ ∞

0
dt

[∑
n′

t−1/2e−t|r+n|2e−s|n|2
]

r=rij

= −(zi · ∇r)(zj · ∇r)
[
ψ̄(r, s)

]
r=rij

. (B.8)

The limit s→ 0 for ψ̄(r, s) can now be taken by splitting the integral into two parts at a suitable
chosen boundary α, leaving us with

lim
s→0

ψ̄(r, s) = ψ(r)− 2

3
π|r|2 (B.9)

with the main part

ψ(r) =
∑
n′

erfc(α|r + n|)
|r + n| +

1

π

∑
n6=0

1

|n|2 e
− π2

α2 |n|2e2πin·r (B.10)

where erfc(x) = 2√
π

∫∞
x e−t2dt is the complementary error function.

Operating the gradient terms on the above expression then leads to the final expression for
the interaction matrix,

Aij =
4

3
πẑi · ẑj +

∑
n′

[
ẑi · ẑj

|rij + n|2

(
2α√
π
e−α2|rij+n|2 +

erfc(α|rij + n|)
|rij + n|

)
− (ẑi · (rij + n))(ẑj · (rij + n))

|rij + n|2

(
4α3

√
π
e−α2|rij+n|2

)
− 3

(ẑi · (rij + n))(ẑj · (rij + n))
|rij + n|4

(
2α√
π
e−α2|rij+n|2 +

erfc(α|rij + n|)
|rij + n|

)]
+ 4π

∑
n 6=0

(ẑi · n)(ẑj · n)
|n|2 e−

π2

α2 |n|2e2πin·rij . (B.11)

Since the positions of the spins are restricted to fixed lattice points, this has to be calculated
only once and can then be stored in a look-up table and be used in a conventional Metropolis
algorithm1.

1This appendix is taken and slightly modified from M. Gembé, Dynamical Monte Carlo Simulations with Appli-
cations in Dipolar Spin Ice and Open Floquet Systems [125].
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For decades, physicists have been fascinated by frustrated magnetism. Frustration arises
when the pairwise interaction energies between localized magnetic moments in a sys-
tem cannot be minimized simultaneously. This competition prevents the formation of
long rangemagnetic order even at lowest temperatures and, eventually, leads to the hall-
mark of frustration in the form of a massive ground state degeneracy accompanied by a
finite zero-point entropy. Thus, exotic magnetic analogs of ordinary fluids can be real-
ized, where spins are highly correlated but remain strongly fluctuating. Such spin liquids
are linked to remarkable unconventional collective phenomena, most notably emergent
gauge fields and fractionalized quasi-particle excitations that can be conceived as mag-
netic monopoles. In this thesis, we study the dynamics of such quasi-monopoles in the
presence of a magnetic field and address the question whether critical fluctuations at a
phase transition always slow down equilibration or, conversely, can also help the system
to thermalize. Employing large-scale dynamical Monte Carlo simulations, we show that
the latter—a critical speeding up—can indeed be observed in two prototypical classical
spin systems: dipolar spin ice in pyrochlore magnets and a Coulomb spin liquid in the
triangular lattice Ising antiferromagnet. For the former, we also establish a relationship
betweenMonte Carlo time and real time by comparing numerical and experimental data.
Another part of this thesis is concerned with systems in which further-neighbor interac-
tions stabilize certainnon-coplanarmagnetic orders. Suchorders areparticularly interest-
ing because upon introducing quantum fluctuations, they may possibly melt into a chiral
quantum spin liquid. To this end, we study twomodel systems that turn out to have non-
coplanar classical ground states and are motivated by the recent synthesis of a number
of Mott insulating square-kagome materials as well as of spin-1/2 maple-leaf lattice an-
tiferromagnets. We explore the rich phenomenology of frustrated magnetism induced
by these two lattice geometries, including extensive degeneracies and order-by-disorder
mechanisms. For both models, we study an elementary, classical Heisenberg model with
nearest-neighbor and additional cross-plaquette interactions and discuss a multitude of
non-coplanar orders and spiral spin phases. Using extensive numerical simulations, we
also discuss the thermodynamic signatures of these phases, which often showmulti-step
thermal ordering.
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