Aus der Klinik für Anästhesiologie und Operativen Intensivmedizin der Universität zu Köln Direktor: Universitätsprofessor Dr. med. B.W.Böttiger

Veno-arterielle Kohlendioxidgehaltsdifferenz / arteriovenösen Sauerstoffgehaltsdifferenz-Ratio während kardiopulmonaler Reanimation im Großtiermodell

Inaugural-Dissertation zur Erlangung der Doktorwürde der Medizinischen Fakultät der Universität zu Köln

> vorgelegt von Lucian Mioc aus Timisoara (Rumänien)

promoviert am 12.Januar 2024

Gedruckt mit Genehmigung der Medizinischen Fakultät der Universität zu Köln Druckjahr 2024

Dekan:	Universitätsprofessor Dr. med. G. R. Fink
1.Gutachter:	Professor Dr.med.habil. T Annecke
2.Gutachter:	Privatdozent Dr.med. K. Frank

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Dissertationsschrift ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht.

Bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des Manuskriptes habe ich Unterstützungsleistungen von folgenden Personen erhalten:

Prof. Dr. med. T. Annecke und Dr. med. T. Neumann

Weitere Personen waren an der geistigen Herstellung der vorliegenden Arbeit nicht beteiligt. Insbesondere habe ich nicht die Hilfe einer Promotionsberaterin/eines Promotionsberaters in Anspruch genommen. Dritte haben von mir weder unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertationsschrift stehen.

Die Dissertationsschrift wurde von mir bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Die dieser Arbeit zugrunde liegenden Messergebnisse wurden ohne meine Mitarbeit im Labor der Klinik für Anästhesiologie und Intensivmedizin durch die AG Klinische Forschung und Lehre (Dr. Tobias Neumann, Prof. Dr. Thorsten Annecke) an den Versuchstieren ermittelt und mir anschließend zur Auswertung und Interpretation zur Verfügung gestellt.

Die statistische Auswertung wurde durch Murat Karaman (Dipl.-Statistiker & Master of Science Statistics) durchgeführt. Bei meiner Interpretation der Datenwurde ich beratend durch Prof. Dr. med. T. Annecke und Dr. med. Tobias Neumann unterstützt.

Erklärung zur guten wissenschaftlichen Praxis:

Ich erkläre hiermit, dass ich die Ordnung zur Sicherung guter wissenschaftlicher Praxis und zum Umgang mit wissenschaftlichem Fehlverhalten (Amtliche Mitteilung der Universität zu Köln AM 132/2020) der Universität zu Köln gelesen habe und verpflichte mich hiermit, die dort genannten Vorgaben bei allen wissenschaftlichen Tätigkeiten zu beachten und umzusetzen.

Köln, den 24.04.2023

Mioc

Unterschrift:

Danksagung

Ich danke meinem Doktorvater Professor Dr.med.habil. T Annecke für die stets freundliche und hilfsbereite Betreuung dieser Arbeit.

Meinen Eltern, die in jeglicher Hinsicht die Grundsteine für meine Weg gelegt haben, und meiner Ehefrau Katharina möchte ich ganz herzlich für die Geduld und den emotionalen Beistand danken. Sie haben mich während dieser Zeit immer unterstützt.

Mein besonderer Dank gilt meiner Tochter Patricia Anna, die für mich die größte Motivation war, diese Arbeit abzuschließen.

INHALTSVERZEICHNIS

AB	BKÜRZUNGSVERZEICHNIS	7
1.	ZUSAMMENFASSUNG	8
2.	EINLEITUNG	9
2.1	Herzkreislaufstillstand	
2	2.1.1 Definition und Epidemiologie	
2	2.1.2 Einteilung	
2	2.1.3 Physiologisches Monitoring während der CPR	
2.2	2 Die veno-arterielle Kohlendioxidgehaltsdifferenz / arterio-venöse	
Sai	verstoffgehaltsdifferenz-Ratio	
2	2.2.1 Zellulärer Sauerstoffmetabolismus	
2	2.2.2 CO ₂ Produktion und Transport	14
2	2.2.3 Die arterio-venöse Sauerstoffgehaltdifferenz	
2	2.2.4 Die veno-arterielle Kohlendioxidgehaltsdifferenz	
2.3	6 Fragestellung	19
2.4	Arbeitshypothesen	
3.	MATERIAL UND METHODEN	20
3.1	Studiendesign	20
3.2	2 Anzeigepflichten	20
3.3	8 Reanimationsmodell	20
3.4	Experimentelles Protokoll	21
3.5	5 Datenerhebung und Qualitätssicherung	22
3.6	6 Berechnung des Blut-CO2-und -O2-Gehaltes	22
3.7	7 Statistik	23
4	ERGEBNISSE	24
4.1	Erfolgsrate nach CPR	24
4.2		25
4.2	A 2 1 mCO. CO. Gabalt im Plasma und CO. Gabalt im Plut	
4	4.2.1 pUO ₂ , UO ₂ -Genalt im Plasma und UO ₂ -Genalt im Blut	25 مد
4	4.2.3 Veno-arterielle Kohlendioxidgehaltsdifferenz / arterio-venöse Sauerstoffgehaltsdifferenz-Ratio	im Plasma und
i	im Vollblut	

4.2.4 4.2.5	Laktat und ScvO ₂ Hämoglobin	
5 D	ISKUSSION	47
6 LI	ITERATURVERZEICHNIS	
7 A]	NHANG	58
Abbild	lungsverzeichnis	
Tabelle	enverzeichnis	
Ergänz	zende Tabellen:	60

Abkürzungsverzeichnis

ATP	Adenosintriphosphat
a-vDO ₂	arterio-venöse Sauerstoffgehalltsdifferenz
CaO ₂	Sauerstoffgehalt arteriell, Sauerstoffgehalt arteriell
C _{Blut} CO ₂	Blut CO ₂ -Gehalt
Cl ⁻	
CO ₂	Kohlendioxid
CO ₂ Hb	Carbamino-Hämoglobin
C _{Plasma} CO ₂	
CPR	Kardiopulmonaler Reanimation
ctCO ₂	Plasmakohlendioxidgehalt
Cv-aCO ₂ /Ca-vO ₂ Ratio	veno-arterielle Kohlendioxidgehaltsdifferenz / arterio-
venöseSauerstoffgehaltsdifferenz - Ratio	_
DO ₂	Sauerstoffangebot
etCO ₂	end-exspiratorisches CO ₂
ETCO ₂	endtidale Kohlendioxid
F _i O ₂	Sauerstoffkonzentration
H^+	
H ₂ CO ₃	Kohlensäure
H ₂ O	Wasser
Нь	Hämoglobin
HCO ₃	Bikarbonat
IHCA	in-hospital cardiac arrest
NIRS	Nahinfrarotspektroskopie
O ₂	Sauerstoff
OHCA	out-of-hospital cardiac arrest
pCO ₂	Kohlendioxidpartialdruck
PEEP	positive end-expiratory pressure
pK'	Dissoziationkonstante des CO ₂ -HCO ₃ Systems
pO ₂	Sauerstoffpartialdruck
Pv-aCO ₂ / Ca-vO ₂ Ratio	veno-arterielle Partialdruckdifferenz/ arterio-venöse
Sauerstoffgehaltsdifferenz - Ratio	
ROSC	Return of spontaneos circulation
RQ	respiratorischer Quotient
S	Löslichkeitskoeffizienten
ScvO ₂	Zentralvenöse Sättigung
SpO ₂	Sauerstoffsättigung
SvO ₂	gemischtvenöse Sättigung
v-aDCO ₂	veno-arterielle Kohlendioxidgehltsdifferenz
VCO ₂	
VO ₂	

1. Zusammenfassung

Der Erfolg einer Reanimation nach einem plötzlichen Herzkreislaufstillstand ist von multiplen Faktoren abhängig. Es existiert zurzeit kein etablierter Parameter, der frühzeitig auf eine hohe Wahrscheinlichkeit für das Wiedereinsetzen des spontanen Kreislaufes nach Defibrillation hindeutet. Die Kenntnis eines solchen Parameters könnte helfen, den optimalen Zeitpunkt für eine Defibrillation zu wählen.

Diese Arbeit hatte zum Zweck zu untersuchen, ob sich durch die Blutgasanalyse gestützte Bestimmung der veno-arteriellen Kohlendioxidgehaltsdifferenz / arterio-venösen Sauerstoffgehaltsdifferenz-Ratio (Cv-aCO₂/Ca-vO₂ - Ratio) vor einer Defibrillation, unter Kardiopulmonaler Reanimation (CPR), eine Aussage bezüglich des zu erwartenden Reanimationserfolges (Return of spontaneous circulation: ROSC) treffen lässt. Hierzu wurde unter Laborbedingungen eine experimentelle Studie am Großtiermodell (Schwein) durchgeführt. Für das Versuchsvorhaben wurden 57 Schweine genutzt.

Es ist bekannt, dass sowohl eine Cv-aCO₂/Ca-vO₂ Ratio größer 1 als auch eine hohe veno-arterielle Partialdruckdifferenz CO₂/ arterio-venöse Sauerstoffgehaltsdifferenz – Ratio (Pv-aCO₂/Ca-vO₂ Ratio) mit anaerobem Metabolismus und erhöhter Mortalität bei Intensivpatienten mit Sepsis assoziiert ist.¹

Im Vordergrund dieser Arbeit stand die Frage, ob sich die zwei von uns untersuchten Gruppen aus ROSC-Tieren und ROSC-Versagern in Bezug auf die, aus dem Vollblut oder aus dem Plasma berechnete Cv-aCO₂/Ca-vO₂ Ratio unterscheiden. Unsere Hypothese lautete, dass eine aus dem Vollblut berechnete Cv-aCO₂/Ca-vO₂ Ratio kleiner 1 mit einer erfolgreichen Reanimation assoziiert ist.

Wir untersuchtenzudem, ob der Laktatwert, die Pv-aCO₂/Ca-vO₂ Ratio oder die zentralvenöse Sättigung (ScvO₂) einen Einfluss auf das Reanimationsergebnis hatte.

Mit dieser Arbeit konnte gezeigt werden, dass eine Cv-aCO₂/Ca-vO₂ Ratio kleiner 1 isoliert betrachtet keinen Aussagewert bezüglich des Eintretens eines Return of spontaneos circulation (ROSC) im Rahmen einer Reanimation besitzt. Ein hohes Ratio-Niveau war bei ROSC-Tieren und ROSC-Versagern gleichermaßen zu beobachten. Gleiches gilt für alle anderen von uns untersuchten Parameter. Der Absolutwert der Cv-aCO₂/Ca-vO₂ Ratio ist nach unseren Erkenntnissen nicht als ROSC-Prädiktor geeignet.

Bei den meisten Tieren, die erfolgreich reanimiert werden konnten, war die Cv-aCO₂/Ca-vO₂ Ratio zu jedem Zeitpunkt größer 1. Gleichzeitig konnte eine Tendenz beobachtet werden, dass gegen Ende der Untersuchungsphase der Unterschied zwischen den beiden Gruppen in Bezug auf die berechnete Cv-aCO₂/Ca-vO₂ Ratio grösser wurde.

Weitere Studien mit einer längeren Beobachtungszeit sind nötig, um einen eventuellen Einfluss der Cv-aCO₂/Ca-vO₂ Ratio auf das Reanimationsergebnis zu bestätigen. Eine Korrelation zwischen dem Laktatwert, der zentralvenösen Sättigung und ROSC fand sich nicht.

2. Einleitung

Der plötzliche Herzkreislaufstillstand als finale Manifestation einer zugrundeliegenden Herzkreislauferkrankung oder seltener anderer Erkrankungen nichtkardialer Genese², zählt zu den häufigsten Todesursachen weltweit.

Unverzüglich eingeleitete Wiederbelebungsmaßnahmen können die Überlebensrate bei einem Kreislaufstillstand deutlich erhöhen ³, indem ein minimaler Blutfluss generiert wird und so den Zellen Sauerstoff (O₂) zugeführt werden kann. Der Erfolg einer Reanimation ist von multiplen Faktoren abhängig, wobei eine frühzeitig eingeleitete, qualitativ richtig und effizient durchgeführte Herzdruckmassage zu den wichtigsten und wissenschaftlich anerkannten Maßnahmen zählt Sowohl die Ursache als auch vorhandene Vorerkrankungen haben einen entscheidenden Einfluss auf das Endergebnis der Reanimationsmaßnahmen. Aktuelle Studien beschreiben ein Überleben in zehn oder zwanzig Prozent der Fälle, die Ergebnisse variieren in Abhängigkeit zum Land, in dem die Daten erhoben wurden ⁴.

Der Beginn der Herzdruckmassage ist die erste Maßnahme, die ergriffen werden muss, sobald die Diagnose eines Herzkreislaufstillstandes gestellt wurde. Im Falle einer pulslosen Kammertachykardie oder eines Kammerflimmerns, als Ursache des Herzkreislaufstillstandes, stellt die Defibrillation die einzige anerkannte Maßnahme, die diese Art von Rhythmusstörungen erfolgreich beenden kann. Hiermit ist diese die einzige kausale Therapie, die nach aktuellen Leitlinien empfohlen wird ⁵.

Der Erfolg dieser Maßnahme ist von verschiedenen Faktoren abhängig. Es existiert zurzeit kein

etablierter Parameter, der frühzeitig auf eine hohe Wahrscheinlichkeit für das Wiedereinsetzen des spontanen Kreislaufes nach Defibrillation hindeutet. Die Kenntnis eines solchen Parameters könnte helfen, den optimalen Zeitpunkt für eine Defibrillation zu wählen. Ausgehend von der Prämisse, dass ein minimales Sauerstoffangebot erforderlich ist, um die Funktionalität des Gewebes aufrechtzuerhalten und so das Wiederkehren eines spontanen Kreislaufes überhaupt zu ermöglichen, sollen im vorliegenden Projekt Parameter untersucht werden, die sich im Falle einer Gewebehypoxie dynamisch verändern und das Ausmaß der Sauerstoffunterversorgung oder der Hypoperfusion am zuverlässigsten widerspiegeln. Auf der Suche nach einem geeigneten Marker liegt der Fokus dieser Arbeit auf der Cv-aCO₂/Ca-vO₂ Ratio und der Pv-aCO₂/Ca-vO₂ Ratio

Kohlendioxid (CO₂) wird während verschiedener metabolischer Vorgänge von den Mitochondrien der Zellen produziert. Es gibt zwei Faktoren, welche die Menge an entstandenem CO₂ maßgeblich beeinflussen. Diese sind die Metabolismusrate und das Substrat. Der respiratorische Quotient beschreibt die Menge an CO₂, die aus einer vorgegebenen Sauerstoffmenge entsteht (Respiratorischer Quotient = CO₂ Produktion (VCO₂) geteilt durch den O₂-Verbrauch (VO₂)). Unter aeroben Bedingungen entspricht die produzierte Menge an CO₂ ungefähr dem Sauerstoffverbrauch. Falls ausschließlich Glucose als Substrat zur Energiegewinnung genutzt wird, ergibt sich ein respiratorischer Quotient von 1. Die Oxidation von Fetten führt zu einer geringeren CO₂-Produktion im Verhältnis zum Sauerstoffverbrauch und dementsprechend zu einem respiratorischen Quotienten von ungefähr 0,7. Allerdings kann sich unter anaeroben Bedingungen das Verhältnis zwischen CO₂ Produktion und Sauerstoffverbrauch verschieben ⁶, sodass letztendlich mehr CO₂ entsteht als Sauerstoff angeboten wird ⁷. Die CO₂ Produktion während dieser Phase hat ihren Ursprung in der übermäßigen Freisetzung von Protonen, bedingt durch die anaerobe Glycolyse ⁸ und deren Pufferung durch das Kohlensäure-Bicarbonat-Puffersystem oder andere Puffersysteme.

Es gibt aktuell keine wissenschaftliche Evidenz darüber, ob die Cv-aCO₂/Ca-vO₂ Ratio oder die PvaCO₂/Ca-vO₂ Ratio im Rahmen einer Reanimation im Hinblick auf Erlangen eines ROSC richtungsweisend ist. Es gibt jedoch Hinweise darauf, dass bei anderen Krankheitsbildern wie z. B. dem septischen Schock, welcher ebenfalls mit einer Makro-/Mikrozirkulationsstörung einhergeht, das Vorliegen einer erhöhten Pv-aCO₂/Ca-vO₂ Ratio als unabhängiger Prädiktor für Mortalität zu einem schlechteren Outcome führt ^{9,10}.

2.1 Herzkreislaufstillstand

2.1.1 Definition und Epidemiologie

Der Kreislaufstillstand wird definiert als ein kompletter Ausfall des Herz-Kreislauf-Systems herbeigeführt durch die Unfähigkeit des Herzens einen ausreichenden Blutfluss zu generieren. Die konsequent ist ein unzureichender Perfusionsdruck so dass keine ausreichende Sauerstoffversorgung der Zellen gewährleistet werden kann¹¹. Unter diesen Umständen kommt es schon nach kurzer Zeit zu zerebralen Ischämieschäden die nur dann reversibel sind wenn unmittelbar nach erkennen dieses Zustandes eine mechanische Reanimation oder eine maschinelle Unterstützung des Kreislaufes eingeleitet werden. Die Inzidenz eines Kreislaufstillstandes außerhalb des Krankenhauses (präklinischer Herzkreislaufstillstand) wird auf 40 bis 130 Fälle pro 100.000 Einwohner geschätzt¹², von denen weniger als einer von zehn überlebt ¹³⁻¹⁶. Die Daten bezüglich der Inzidenz des intrahospitalen Kreislaufstillstandes sind begrenzt. Die meisten Publikationen beschreiben eine 17,18 Häufigkeit von 0,1bis 0,6 Prozent der Krankenhausaufnahmen mit einer Überlebenswahrscheinlichkeit von ungefähr 25 Prozent^{19,20}.

2.1.2 Einteilung

Die Einteilung des Herzkreislaufstillstandes kann sich nach der Art der Herzaktivität oder nach dem Ort des Kreislaufstillstandes richten. So wird zwischen einem hyperdynamen Kreislaufstillstand, vorzufinden bei Kammerflimmern oder Kammerflattern, und einem hypodynamen Kreislaufstillstand unterschieden. Letzter umfasst die elektromechanische Entkopplung und die Asystolie. In Bezug auf den Ort, an dem der Kreislaufstillstand aufgetreten ist, wird zwischen in-hospital cardiac arrest (IHCA) und out-of-hospital cardiac arrest (OHCA) unterschieden²¹.

2.1.3 Physiologisches Monitoring während der CPR

Die Möglichkeit, verschiedene physiologische Parameter während der Reanimation zu erheben und den Ablauf der Reanimation entsprechend anzupassen, könnte den Erfolg dieser Maßnahme erhöhen. Aktuell wird ein besonderer Fokus auf das endtidale Kohlendioxid (ETCO₂), den arteriellen Blutdruck und die Nahinfrarotspektroskopie (NIRS) gerichtet. In einer propensity-matched cohort study konnte gezeigt werden, dass durch ein zusätzliches Monitoring des ETCO₂ und des diastolischen Blutdruckes im Laufe einer Reanimation die Wahrscheinlichkeit, ROSC zu erlangen, erhöht werden kann²².

Die zerebrale Oxygenierung kann mittels NIRS gemessen werden. Dies ist ein neues, nicht-invasives, bettseitiges Messverfahren, welches im Rahmen der Reanimation ein großes Potenzial als prädiktiver Wert zu haben scheint ^{23,24}. In der aktuellen Literatur liegt allerdings kein fest definierter NIRS-Schwellenwert vor, der auf eine ausreichende zerebrale Oxygenierung hindeutet ²⁴.

2.1.4 Prognostische Möglichkeiten während eines Kreislaufstillstandes

Die point-of-care Echokardiographie gewann in den letzten Jahren zunehmend an Bedeutung, obwohl ihr Wert als prognostischer Faktor noch unklar ist ²¹. Wenngleich die Echokardiographie aufgrund der aktuellen Datenlage nicht dazu genutzt werden sollte, die Reanimationsmaßnahmen frühzeitig zu beenden, kann diese zu diagnostischen Zwecken genutzt werden, um behebbare Ursachen des Kreislaufstillstandes zu identifizieren ^{25,26}. Die Messung des ETCO₂ zeigt auch Potenzial, das Outcome einer Reanimation in Bezug auf ROSC und Überleben voraussagen zu können ²⁷. So wird ein Wert unter 20mmHg mit einer schlechten Prognose assoziiert.

2.2 Die veno-arterielle Kohlendioxidgehaltsdifferenz / arterio-venöse

Sauerstoffgehaltsdifferenz-Ratio

2.2.1 Zellulärer Sauerstoffmetabolismus

Etwa fünfhundert Liter Sauerstoff bringt der Kreislauf eines erwachsenen Menschen täglich an die Mitochondrien heran. Ungefähr die gleiche Menge Kohlendioxid verlässt in dieser Zeit den Körper. Der oxidative Stoffwechsel ist die wichtigste und effizienteste Quelle zur Energiegewinnung in der menschlichen Zelle. In Anwesenheit von Sauerstoff werden in den Mitochondrien der Zellen während der oxidativen Glykolyse Adenosintriphosphat(ATP) sowie CO₂ und Wasser (H₂O) gebildet. Dies geschieht über Oxidations-Reduktions-Reaktionen. Im Laufe dieses Prozesses werden aus 1 Mol Glukose 38 Mol ATP gebildet, dabei dienen die Sauerstoffatome als Elektronenfänger. Im Falle eines reduzierten Sauerstoffangebotes, bedingt durch einen unzureichenden Sauerstoffgehalt des Blutes durch eine verminderte Organperfusion oder durch eine gestörte mitochondriale Funktion, wird der Energiebedarf der Zellen zunächstaus den in Form von ATP und Kreatinphosphat gespeicherten Energiereserven gesichert. Sobald diese Reserven aufgebraucht sind, findet zusätzlich die anaerobe Glykolyse statt, bei der aus 1 Mol Glukose 2 Mol ATP gebildet werden. Während dieser Reaktion entstehen neben den energetisch geladenen Molekülen auch 2 Mol Laktat. Die anaerobe Glykolyse

ist aber im Vergleich zur oxidativen Glykolyse erheblich ineffizienter, kann aber unter besonderen Bedingungen den energetischen Bedarf der Zellen aufrechterhalten. Sind all diese Kompensationsmöglichkeiten und Mechanismen erschöpft, kommt es in der ersten Etappe zum hypoxischen Zellschaden. Falls dieser Zustand länger anhält, ist der Zelltod als finale Manifestation dieser Störung unumgänglich.²⁸

Zwei Größen stehen sich bei der zellulären Sauerstoffversorgung gegenüber: das Sauerstoffangebot (DO_2) und der Sauerstoffverbrauch .

Das Sauerstoffangebot kann berechnet werden in dem man das Herz-Minutenvolumen mit dem Sauerstoffgehalt des arteriellen Blutes (CaO₂) multipliziert Für die Bestimmung des Herz-Minutenvolumen stehen aktuell verschieden Messverfahren zur Verfügung. Der CaO₂ und CvO₂ wird auf der Grundlage von Sauerstoffsättigung, Hämoglobingehalt, Hüfner-Zahl und dem physikalisch gelösten Sauerstoff berechnet. Die Hüfner-Zahl beschreibt die Menge in ml an Sauerstoff die von einen g Hb gebunden werden kann. Sie nimmt unter physiologischen Bedingungen einen Wert von 1,34 ml/g an ²⁹.

Der Menge am physikalisch gelösten Sauerstoff im Blut ist sehr gering, kann aber berechnet werden, indem der Partialdruck des Sauerstoffes mit dem Bunsen-Löslichkeitskoeffizienten (s) multipliziert wird. Dieser Koeffizient ist eine experimentell ermittelte Größe und beträgt für Sauerstoff im Plasma 0,003 ml/dl/mmHg ³⁰

- \Box CaO₂ = (1.34 × SaO₂ × Hb) + (0.0031 × PaO₂)
- $\Box \quad \text{CvO}_2 = (1.34 \times \text{ScvO}_2 \times \text{Hb}) + (0.0031 \times \text{PvO}_2)$

Der zweite Faktor, der einen erheblichen Einfluss auf die Sauerstoffbalance des Organismus hat, ist der Sauerstoffverbrauch (VO₂). Der VO₂ wird auf der Basis der Fickschen Formel ermittelt und besagt, dass die Menge an verbrauchten Sauerstoff, gleich der Differenz zwischen Sauerstoffgehalt im arteriellen und gemischt-venösen Blut, multipliziert mit dem Herzzeitvolumen, entspricht. So ist also der VO₂ ein Produkt aus pulmonalem Blutfluss und arteriovenöser Sauerstoffgehaltsdifferenz. Ein gesteigerter Sauerstoffbedarf kann entweder in engen Grenzen durch eine Steigerung des Herzzeitvolumens oder durch eine vermehrte Sauerstoffextraktion gedeckt werden. Auch die Sauerstoffextraktionsrate ist jedoch organspezifisch begrenzt, sodass ab einem gewissen Punkt eine Abnahme des Sauerstoffangebotes zu einem linearen Abfall des Sauerstoffverbrauches führt ^{31,32}

2.2.2 CO₂ Produktion und Transport

Das aerobe Kohlendioxid ist das Endprodukt des oxidativen Stoffwechsels, bei dem energetisch geladene Moleküle entstehen. Die Menge an CO₂, welche während dieser Prozesse entsteht, ist direkt vom Sauerstoffverbrauch und vom Substrat abhängig. Das Substrat beeinflusst seinerseits den respiratorischen Quotienten (RQ), sodass folgende Gleichung entsteht: $VCO_2 = RQ \times VO_2$. Der respiratorische Quotient beschreibt den Zusammenhang zwischen CO₂ Produktion auf der einen Seite und O₂ Verbrauch auf der anderen Seite und nimmt einen Wert zwischen 0,7 and 1,0 an. Bei der Glucoseverbrennung wird genauso viel Kohlendioxid frei, wie an Sauerstoff verbraucht wird. Somit gilt für die Kohlenhydratverbrennung ein RQ von 1. Falls ausschließlich Fettsäuren für den oxidativen Stoffwechsel genutzt werden, ergibt sich beim Abbau dieser ein niedrigerer RQ von 0,7 ³³. Dementsprechend kann die CO₂ Produktion entweder durch eine Veränderung der metabolischen Rate mit angepasstem Sauerstoffverbrauch oder durch eine Veränderung des Substrates beeinflusst werden ³⁴.

Die anaerobe CO₂ -Produktion hat ihren Ursprung in der Pufferung von Wasserstoffionen (H⁺) durch das Kohlensäure-Bicarbonat-System. Diese werden während der erhöhten Produktion von Laktat durch die anaerobe Glycolyse oder der anaeroben Decarboxylierung ³⁵ freigesetzt. Als Endergebnis dieser Reaktion kann es in Anwesenheit einer reduzierten Gewebeperfusion zu einer Erhöhung des im venösen Blut gemessenen Kohlendioxidpartialdruckes (pCO₂) und dementsprechend zu einem Anstieg der veno-arteriellen pCO₂-Differenz trotzt der gleichzeitig reduzierten aeroben Kohlendioxidproduktion kommen ³⁶.

Der Kohlendioxidtransport beschreibt den Weg des Kohlendioxides vom Ort der Produktion über das Blut zu den Lungen. Von dortaus diffundiert das im Blut gelöste Gas in den Alveolen und letztendlich in die Umgebungsluft. Das in den Mitochondrien der Zellen produzierte CO₂ diffundiert entlang eines Konzentrationsgefälle in das Cytoplasma, und von da aus weiter in das Interstitium sowie in das Blut.

Ungefähr fünf Prozent des so produzierten CO₂ lösen sich entweder physikalisch im Blutplasma auf oder binden an der Aminogruppe der Plasmaproteine und formen so Carbaminoverbindungen. Henrys Gesetz beschreibt das Löslichkeitsverhalten von Gasen in einer Flüssigkeit und besagt, dass der Partialdruck eines Gases über einer Flüssigkeit direkt proportional zur Konzentration des Gases in der Flüssigkeit ist. Bei gleichbleibender Temperatur ist also die so im Blut physikalisch gelöste Kohlendioxidmenge gleich dem Partialdruck des Gases multipliziert mit dessen Löslickkeitkoeffizienten (s). Der Löslichkeitkoeffizient ist eine temperaturabhängige Größe und charakterisiert die Löslichkeit eines Gases in Flüssigkeiten und nimmt für das CO₂ einen Wert von 0,03 mmol/mmHg.

Approximativ 25 Prozent des entstandenen Kohlendioxids binden sich an das erythrozytere Hämoglobin (Hb) und formen dabei Carbamino-Hämoglobin (CO₂Hb). Die reduzierte Form des Hämoglobins hat, nachdem sie die Sauerstoffmoleküle an das umliegende Gewebe abgegeben hat, verglichen mit dem Oxihämoglobin, eine um 3,5 höhere Affinität zum CO₂. Das CO2Hb entsteht durch eine Reaktion zwischen dem gebildeten CO₂ und einem Amino (-NH2) -Rest aus dem Globin-Molekül³⁷. Diese Reaktion ist aber wesentlich langsamer als die Reaktion zu Bikarbonat (HCO₃) ³⁸.Dabei hat der Haldane-Effekt einen beachtlichen Einfluss auf die Bindungskapazität des Hämoglobins und spielt bei der Regulation des CO₂-Transportes durch das Hämoglobin vom Sauerstoffpartialdruck (pO₂) beeinflusst wird. So erleichtert ein niedriger Sauerstoffpartialdruck im Gewebe die CO₂-Bindung und den Abtransport zur Lunge. Bei steigendem Sauerstoffpartialdruck wird hingegen Kohlendioxid leichter abgegeben und abgeatmet.

Die größte Menge am Kohlendioxid wird unter Form von Bikarbonat abtransportiert. 70 Prozent des entstandenen CO₂ werden so vom Gewebe zu der Lunge befördert. Somit nimmt das Bikarbonat den wichtigsten Anteil im Kohlendioxidtransport an. Das in den Zellen produzierte CO₂ diffundiert in das Interstitium und von da aus in das Blut. Hier wird es von den Erythrozyten aufgenommen und es kommt zu einer chemischer Reaktion bei der Kohlensäure (H₂CO₃) generiert wird. Dieser Prozess läuft in Anwesenheit des Enzyms Carboanhydrase ab. Dieses Enzym ermöglicht eine Beschleunigung der Reaktion um den Faktor 5000. Bei einem physiologischen pH-Wert dissoziiert über 90 Prozent der so geformten H₂CO₃ zu H+ und HCO₃-. Als Ergebnis dieser Reaktion kommt es zu einem Anstieg der intrazellulären negativ geladenen Ionen, sodass HCO₃- aus den Erythrozyten durch das Bande-3-Protein ins Plasma abgegeben wird. Um das elektrische Gleichgewischt der Zelle nicht zu stören werden im Austausch Chlorid-Ionen (Cl⁻), über vorhandene Ionenkanäle in das Zytoplasma aktiv gepumpt. Dieser Prozess, bei dem die zwei negativ geladenen Ionen gegeneinander ersetzt werden, wird als Hamburger-Shift oder Gibbs-Donnan-Gleichgewicht bezeichnet. Die Wasserstoff-Ionen werden von reduziertem Hämoglobin gebunden (Hämoglobin-Puffer). Der Imidazolring der

Aminosäure Histidin verleiht dem Hämoglobin besonders gute Puffereigenschaften. Gleichzeitig beeinflusst der Oxigenierungsgrad des Hämoglobins die Dissoziationkonstante dieser Verbindung.

Als Endergebnis all dieser Reaktionen wird das venöse Blut mehr CO₂ enthalten als das arterielle. Die prozentuale Verteilung ist aber nicht gleichmäßig: So ist das CO₂ im arteriellen Blut zu 5 Prozent physikalisch gelöst vorzufinden, 90 Prozent in der Form von HCO₃ und 5 Prozent als Carbaminoverbindung ³⁹. Auf der venösen Seite ist diese Verteilung vorschoben, sodass hier 10 Prozent physikalisch gelöst, 60 Prozent als HCO₃ und 30 Prozent als Carbaminoverbindung ³⁸.

Im Bereich der Lunge kehren sich die Vorgänge um. HCO_3 - gelangt im Austausch gegen Cl- zurück in die Erythrozyten, wo es mit H+ zu H₂CO₃ reagiert. Dieses dissoziiert dann zu CO₂ und H₂O. Das so entstandene CO₂ sowie das physikalisch im Blut gelöste diffundiert aufgrund eines Konzentrationsgradienten in den Alveolen und wird abgeatmet.

2.2.3 Die arterio-venöse Sauerstoffgehaltdifferenz

Die arterio-venöse Sauerstoffdifferenz (a-vDO₂) beschreibt die Differenz des Sauerstoffgehalts in Arterien und Venen. Abhängig vom Sauerstoffbedarf verschiedener Organe kann diese unter Normalbedingungen erheblich schwanken. In diesem Fall wird von der so genannten Sauerstoffutilisation gesprochen. Diese lässt sich mittels folgender Formel berechnen:

O₂-Utilisation= (avDO₂ × Q) / (CaO₂ × Q) 40 .

Zwei Größen beeinflussen diesen Wert: das Sauerstoffangebot, welches sich aus dem Sauerstoffgehalt des Blutes und dem Herzzeitvolumen zusammensetzt, und der Sauerstoffverbrauch. Die Berechnung des Sauerstoffgehaltes ist relativ unkompliziert und hat wenige Fehlerquellen, da sowohl der Hb-Wert als auch der Sauerstoffpartialdruck und die Sauerstoffsättigung während der Blutgasanalyse direkt gemessen wird. Die Hüffner-Zahl bleibt konstant; selbst bei Temperatur- oder pH-Veränderungen.

Für die Berechnung des arteriellen Sauerstoffgehaltes kann das Blut aus jeder beliebigen Arterie entnommen und analysiert werden. Bei der Bestimmung des venösen Sauerstoffgehaltes unterscheidet man, je nach Ort der Blutabnahme, zwischen dem gemischtvenösen und zentralvenösen Blut.

Die Messung der gemischtvenösen Sättigung (SvO₂) erfordert das Legen eines Pulmonaliskatheters, um darüber die zu analysierende Blutprobe direkt aus der Pulmonalarterie, zu entnehmen. Der venöse Sauerstoffgehalt entspricht der Relation zwischen dem Sauerstoffangebot und Sauerstoffverbrauch. Bei gleichbleibender Hämoglobinkonzentration haben Schwankungen der SvO₂ einen direkten Einfluss auf den CvO₂.

Bei der Bestimmung der ScvO₂ Sättigung wird das Blut aus einer der beiden Hohlvenen entnommen. Falls dafür die obere Hohlvene als Abnahmeort gewählt wird, repräsentiert die dort gemessene Sauerstoffsättigung lediglich den Sauerstoffbedarf der oberen Körperhälfte. Unter physiologischen Bedingungen ist die Sauerstoffsättigung der beiden Hohlvenen nicht identisch, sondern sie ist in der unteren Hohlvene grösser als in der oberen. Beim Menschen findet sich in der V. cava superior eine etwas niedrigere Sauerstoffsättigung als in der V. cava inferior, da die Niere einen sehr hohen Anteil des Herzzeitvolumens für ihre Funktion benötigt aber gleichzeitig einen niedrigen Sauerstoffbedarf hat ⁴¹.Da die Pulmonalarterie ein gemischtes Blut der beiden Hohlvenen aus dem rechten Ventrikel erhält, ist dementsprechend auch die SvO₂ höher als die in der oberen Hohlvene gemessene ScvO₂.

Tierexperimentell konnte jedoch eindeutig gezeigt werden, dass sowohl die durch eine Hypoxie als auch die durch einen hämorrhagischen Schock verursachten Änderungen der SvO₂ immer von parallelen Veränderungen der ScvO₂ gefolgt wurden ⁴². Als Schlussfolgerung dieser physiologischen Tatsache ist es im klinischen Alltag oft möglich darauf zu verzichten direkt, das pulmonalarterielle Blut zu untersuchen und dafür aus praktischen Gründen die großen Hohlvenen als Abnahmeort für Blutgasanalysen zu nutzen. Mit dem Hintergrundwissen, dass jede Änderung der ScvO₂ von einer simultanen Änderung der ScO₂ gefolgt wird, kann auf ein invasives Verfahren wie das legen eines Pulmonalarteriellenkatheters verzichtet werden.

2.2.4 Die veno-arterielle Kohlendioxidgehaltsdifferenz

Unter der veno-arteriellen Kohlendioxidgehltsdifferenz (v-aDCO₂) wird die Differenz zwischen dem CO₂-Gehalt des Blutes auf der venösen und der arteriellen Seite der Kapillaren bezeichnet. Die Berechnung dieser ist komplexer und somit fehleranfälliger als die Berechnung der a-vDO₂. Dies liegt daran, dass das CO₂ in verschiedenen Formen im Blut vorzufinden ist: physikalisch gelöst, als

Bikarbonat, als Carbaminoverbindung oder als Kohlensäure. Gleichzeitig ist die Verteilung dieser Formen zwischen Plasma und Erythrozyten nicht gleichmäßig.

Erschwerend hinzu kommt die Art, nach welcher die wichtigsten Parameter, das pCO₂ und das Bikarbonat, bestimmt werden. Während das pCO₂ und der pH-Wert in der Blutgasanalyse direkt gemessen, kann das Bikarbonat nur berechnet werden. Die Berechnung basiert auf der Henderson-Hasselbach Gleichung: pH=pKa+log c[HCO₃⁻]/c[CO₂] oder pH=pKa+log[HCO₃⁻]/s × pCO₂ ^{43,43,44}. Das c in der oben beschriebenen Gleichung steht für die Konzentration. Diese ist für das CO₂ abhängig vom Partialdruck und von der Löslichkeit. Als Schlussfolgerung ist der Plasmakohlendioxidgehalt (ctCO₂) eine Summe aus den in der Blutgasanalyse direkt bestimmten Parametern und solcher, die mittels mathematischer Gleichung ermittelt werden.

Die aktuell am häufigsten benutzte Formel, um den CO₂ Gehalt einer Blutprobe zu bestimmen, ist die Douglas Formel.

<u>Blut CO₂-Gehalt (C CO₂) = Plasma CO₂ Gehalt (C CO₂) ×[1-[0,0289× [Hb]] \div [[3,352-0,456 × <u>SpO₂]× [8,142-pH]]]</u></u>

Es existiert auch die Möglichkeit einer direkten Messung des CO₂-Gehaltes, diese ist aber nur unter Laborbedingungen möglich ⁴⁵ und nicht bettseitig im Rahmen einer Reanimation anwendbar. Sowohl die in der Blutgasanalyse berechnete als auch die direkt gemessene Menge an Bikarbonat ist in den allermeisten Fällen identisch. Eine Untersuchung der Mayo Clinic ⁴⁶ konnte zeigen, dass es in 98,5% der von ihnen untersuchten Blutproben ein minimaler Unterschied zwischen der berechneten und der direkt ermittelten Bikarbonatmenge auftrat.

Dennoch liegen auch Studien vor, die zum Ergebnis kamen, dass es in manchen Fällen doch eine signifikante Differenz zwischen dem berechneten und dem gemessenen Bikarbonatgehalt gibt ⁴⁷.

Dieser Unterschied lässt sich durch zwei Hypothesen erklären. Während für die Berechnung des CO₂-Gehaltes die Werte aus der bettseitig durchgeführten Blutgasanalyse benötigt werden, muss für die direkte Messung das Blut in ein Labor gebracht werden. Dies kann dazu führen, dass ein Teil des im Blut gelösten CO₂ aus der Blutprobe entweichen und so verloren gehen kann ⁴⁸, was dazu führen würde, dass die direkte Messung den CO₂ -Gehalt der Blutprobe unterschätzen und somit einen geringeren Wert ergeben würde. Der zweite Faktor, der die korrekte Berechnung des CO_2 -Gehaltes einer Blutprobe entscheidend beeinflusst, ist die Dissoziationskonstante des CO_2 -HCO₃ -Systems. Diese ist keine wahre physikalische Größe, da sie experimentell ermittelt wird und dementsprechend einer gewissen Variabilität unterliegt. Mehrere Studien konnten eindeutig zeigen, dass gerade dann, wenn es zu komplexen Veränderungen im Säure-Base-Haushalt eines Systems kommt, die Dissoziationskonstante des CO_2 -HCO₃-Systems Werte annimmt, die deutlich außerhalb ihres üblichen Schwankungsbereiches liegen ^{49–51}.

Trotz der oben genannten Fehlerquellen belegt die aktuelle Literatur, dass in den allermeisten Fällen die Berechnung des CO₂-Gehaltes im Blut mittels der aus der Blutgasanalyse ermittelten Werte ausreichend genau ist ^{52,53}. Gleichzeitig liefert die Blutgasanalyse zum selben Zeitpunkt zusätzliche Informationen über die Komplexität der Säure-Basen-Veränderungen und bietet Einsicht in die Sauerstoffversorgung des Organismus über die Messung der Sauerstoffsättigung und des Hämoglobingehaltes. Aus diesem Grund wurde für das Experiment die Berechnung des CO₂-Gehaltes im Blut mittels der Douglasformel und dementsprechend der verschiedenen Ratios der direkten Messung vorgezogen.

2.3 Fragestellung

Lässt sich durch die Blutgasanalyse gestützte Bestimmung der Cv-aCO₂/Ca-vO₂ Ratio, des Laktatwertes und der zentralvenösen Sättigung vor einer Defibrillation unter CPR eine Aussage bezüglich des zu erwartenden Reanimationserfolges treffen?

2.4 Arbeitshypothesen

- Eine niedrige Cv-aCO₂/Ca-vO₂ Ratio wird mit einer höheren ROSC-Wahrscheinlichkeit assoziiert.
- Die Cv-aCO₂/Ca-vO₂ Ratio kann einen hypoxischen Zustand im Rahmen einer Reanimation früher als die Pv-aCO₂/Ca-vO₂ Ratio erfassen.
- Die Paramater zentralvenöse Sättigung und Laktatwert liefern keine zuverlässige Aussage zur Prädiktion des Reanimationserfolges.

3. Material und Methoden

3.1 Studiendesign

Hierbei handelt es sich um eine retrospektive Analyse auf der Basis der zwischen 8.3.2018 und 14.11.2018 bereits erhobenen Daten aus einem abgeschlossenen großtierexperimentellen Reanimationsmodell.

3.2 Anzeigepflichten

Die abgeschlossene tierexperimentelle Untersuchung wurde vom Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen, Referenznummer 84 02.04.2017.A176 genehmigt.

3.3 Reanimationsmodell

Unter Laborbedingungen wurde eine experimentelle Studie am Großtiermodell (Schwein) durchgeführt. Nach Bestätigung des "Antrages auf Genehmigung eines Tierversuchvorhabens nach §8 Abs.1 des Tierschutzgesetzes" wurde ein porcines Reanimationsmodell etabliert. Für das Versuchsvorhaben wurden 57 Schweine genutzt. Dabei handelte es sich um landwirtschaftliche Nutztiere. Vor Einleitung der Narkose erhielten die Tiere im Stall eine intramuskuläre Injektion mit Azaperon 2 mg/kg, Ketamin 20 Milligramm pro Kilo und Atropin 0,02 Milligramm pro Kilo. Nach Einleiten einer Vollnarkose unter Laborbedingungen mit Propofol 2 bis 6 mg/kg wurden die Tiere in einer speziellen Lagerungsvorrichtung in Rückenlage gebracht. Eine Ohrvene wurde mit einem 18 Gauge Venenverweilkatheter punktiert. Es wurde kontinuierlich eine Vollelektrolytlösung mit 4ml/kg pro Stunde intravenös infundiert. Die Intubation erfolgte mit einem Endotrachealtubus. Die Tiere wurden nach Einleitung mittels eines Beatmungsgerätes mechanisch ventiliert (Drägerwerk AG & Co. KGaA, Luebeck, Germany). Folgende Beatmungsparameter wurden eingehalten: Volumenkontrollierte Beatmung mit einem Tidalvolumen von 8 ml/kg, positive end-expiratory pressure (PEEP) von 8 cmH₂O; die Sauerstoffkonzentration des eingeatmeten Gasgemisches (F_iO₂) wurde so eingestellt, dass eine periphere Sauerstoffsättigung von mindestens 94% erreicht wurde; die Atemfrequenz wurde angepasst, um ein normales end-exspiratorisches CO₂ von 40+-5 zu erzielen (etCO₂).

Bei allen Tieren wurden zwei Schleusen in der Größe 2,83 mm (8,5 F) und 2 mm (7 F) mit einer Länge von 10 cm der Firma Teleflex Medical Europe Ltd. in die Vena jugularis interna eingeführt.

Über die größere Schleuse wurde ein pulmonal-arterieller Katheter (äußerer Durchmesser 2,33 mm (7 F, Teleflex Medical Europe Ltd.) in die Pulmonalarterie eingeschwemmt. Die kleinere 7 F Schleuse wurde dafür benutzt, um darüber einen bipolaren Stimulationskatheter (äußerer Durchmesser 1,67 mm (5 F), Elektrodenabstand 10 mm, Abbott Medical GmbH, Eschborn, Deutschland) in den rechten Ventrikel einzuführen, über den im Nachhinein Kammerflimmern induziert werden konnte. In die linke Beinarterie wurde ein Messkatheter (äußerer Durchmesser 1,33 mm (4 F), Länge 16 cm, PiCCO Thermodilution-Katheter PV 2014L16) zur invasiven Blutdruckmessung eingebracht und an den zugehörigen Monitor angeschlossen. Darüber wurden im Folgenden die arteriellen Blutgasanalysen entnommen. Ein in der Humanmedizin zugelassenes Medizingerät zur maschinellen Thoraxkompression (Corpuls CPR | GS Elektromedizinische Geräte G. Stemple GmbH) wurde an der Lagerungsvorrichtung angebracht. Im Gegensatz zur manuellen Thoraxkompression konnte mit höherer Grad Standardisierung dieser Einrichtung ein an von Eindrucktiefe und Kompressionsfrequenz erreicht werden.

3.4 Experimentelles Protokoll

Nach den vorbereitenden Maßnahmen wurde bei allen Tieren eine Stabilisierungsphase von 30 Minuten unter Fortführung von Narkose und kontrollierter Beatmung durchgeführt. Kurze Zeit vor Anlegen des Wechselstroms über dem im rechten Ventrikel liegenden bipolaren Stimulationskatheter, um so Kammerflimmern auszulösen, wurde die Sauerstofffraktion (FiO₂) des eingeatmeten Gasgemisches auf 30 Prozent reduziert und die Baseline-Messungen (vor Eintreten des Kreislaufstillstandes) durchgeführt.

Die venöse BGA wurde durch den distalen Schenkel des einliegenden Pulmonaliskatheters abgenommen. Dieser befand sich zum Zeitpunkt der Butabnahme in einer zentralvenösen Position sodass ausschließlich zentralvenöses und kein gemischtvenöses Blut analysiert wurde. Arterielles Blut wurde aus der in die linke Arteria femoralis eingeführte Kanüle abgenommen und analysiert.

Im Anschluss wurde das Kammerflimmern durch Applikation eines Wechselstroms mit einer Spannung von 11 V und einer Stromstärke von 0,5mA über einen Zeitraum von maximal zwei Sekunden induziert. Nachdem die Diagnose eines Kreislaufstillstandes anhand des EKG-Bildes in Kombination mit einem Abfall des arteriellen Blutdrucks auf das Niveau des zentralvenösen Drucks gesichert werden konnte, wurde die maschinelle Beatmung beendet. Während des fünfminütigen Kreislaufstillstandes wurden keine therapeutischen Maßnahmen am Tier durchgeführt Alle Tiere blieben dauerhaft im Kammerflimmern. Im Anschluss wurde die Beatmung wieder fortgesetzt und mittels einer maschinellen Kompressionshilfe entsprechend geltender Leitlinie reanimiert (siehe Neumann T. "Erprobung der mechanischen Reanimationshilfe Corpuls CPR im porcinen Modell - eine Machbarkeitsstudie. Universität zu Köln, Medizinische Fakultät; 2017"). Die Kompressionsfrequenz betrug 100 Kompressionen pro Minute, wobei die Kompressionstiefe mit 60 mm, duty-cycle 50% eingestellt wurde. Während der Thoraxkompressionen wurden keine Pausen gemacht.

Während der Reanimation wurden die Tiere mit einer FiO₂ von 100% beatmet. Das Atemminutenvolumen wurde dem reduzierten Herzzeitvolumen angepasst, sodass ein Tidalvolumen von 10 ml/kg, ein PEEP von 5 cm H₂O und eine Atemfrequenz von 16 pro Minute eingestellt wurden. Zwei Minuten nach Beginnder kardio-pulmonalen Reanimation wurde zum ersten Mal defibrilliert. Anschließend wurden weitere Defibrillationen in einem Zwei-Minuten-Rhythmus bis zum Erzielen von ROSC induziert.

Venöse und arterielle Blutgasanalysen wurden zum Zeitpunkt "Baseline" und fünf Minuten nach Kreislaufstillstand (nach CPR-Beginn) bei allen Tieren abgenommen und unmittelbar analysiert (ABL 800) sowie zusätzlich bei Minute 11 und 15 nach Kreislaufstillstand bei den Tieren, die bis zu diesem Zeitpunkt kein ROSC hatten.

Basierend auf den internationalen Empfehlungen zur Erfassung und Auswertung von Reanimationsmaßnahmen wurde ROSC als eine Wiederherstellung eines Spontankreislaufes, die länger als 30 Sekunden anhält, definiert ⁵⁴.

3.5 Datenerhebung und Qualitätssicherung

Es wurde eine Übersicht der erhobenen Parameter erstellt und in Form von Tabellen gespeichert. Die so entstandene Datenbank wurde anschließend auf Vollständigkeit und Plausibilität überprüft. Fehlende Einzelwerte, Doppelangaben oder Berechnungen mit physiologisch unmöglichen Werten wurden bei der Auswertung nicht berücksichtigt und grundsätzlich als "missing values" behandelt.

3.6 Berechnung des Blut-CO₂-und -O₂-Gehaltes

Bei unserer Untersuchung wurde der CO₂-Gehalt des Blutes mithilfe der Douglas-Formel berechnet ⁵⁵.

Blut CO₂-Gehalt (C_{Blut}CO₂) = Plasma CO₂-Gehalt (C_{Plasma}CO₂) × $[1-[0,0289\times[Hb]] \div [[3,352-0,456 \times SpO_2] \times [8,142-pH]]]$

Plasma $CO_2=2,226 \times S \times Plasma pCO_2 \times (1+10 [pH-pK']]$

 $S = 0,0307 + [0,00057 \times (37-T)] + [0,00002 \times (37-T)^{2}]$

 $pK'=6,086 + [0,042 \times (7,4-pH)] + [[38-T)] \times \{0,00472 + [0,00139 \times (7,4-pH)]\}$

S und pK' stehen für den Löslichkeitscoeffizienten von CO₂ in Plasma beziehungsweise für die Dissoziationkonstante des CO₂-HCO₃ Systems.

SpO2 ist die Sauerstoffsättigung des Blutes

2,226 ist der Umrechnungsfaktor vom mmol/L in ml/dl (1mmol CO₂=22,26 ml CO₂).

Um die nötigen Berechnungen durchführen zu können, wurde auch den Sauerstoffgehalt des Blutes mithilfe folgender Formel berechnet:

Blut O₂ Gehalt (C_{Blut}O₂) = (Hb × $1,34 \times$ SpO₂) + (pO₂ × 0,003)

1,34 entspricht der Sauerstoffbindungskapazitätskonstante von Hb und 0,003 der Sauerstofflöslichkeitskonstante.

3.7 Statistik

Zum Datenmanagement und zur Datenanalyse wurde die Software SPSS Statistics 19.0 (IBM) verwendet. Durch den anschließenden Datenabgleich und die Korrektur vor der Durchführung der Datenanalyse konnten Eingabefehler weitestgehend ausgeschlossen werden.

Die primäre Auswertung erfolgte mit den jeweils verfügbaren Daten, die in der routinemäßigen Blutdiagnostik anfielen.

Die gewonnenen Daten wurden deskriptiv beschrieben und mittels absoluter und prozentualer Häufigkeiten dargestellt. Darüber hinaus wurden die Hauptdokumentationsparameter in Diagrammen abgebildet. Die Zahl "N" ist nicht konstant, da fehlende Angaben in die Auswertung nicht einbezogen wurden. Die intraindividuellen Differenzen zwischen den Erhebungszeitpunkten wurden mit einem Wilcoxon-Vorzeichen-Rangtest auf signifikante Unterschiede hin untersucht. Zusätzliche, sinnvolle Analysen wurden in Subkollektiven durchgeführt und in Bezug auf das Signifikanzniveau (p=0,05) getestet.

4 Ergebnisse

4.1 Erfolgsrate nach CPR

Initial wurden 57 Tiere in die Studie bzw. in das Reanimationsmodell einbezogen. Davon konnten die Daten von 53 Tieren für die statistische Auswertung verwendet werden, da für die restlichen 4 Tiere keine gültigen Parameter vorlagen. Fünf von insgesamt 53 Tieren gehörten zur Kontrollgruppe SHAM (Tabelle 1).

Statis	GESAMT	
Gruppe		
Tiere mit ROSC	N	22
	Prozent	41
Tiere ohne ROSC	N	26
	Prozent	49
SHAM	Ν	5
	Prozent	10
Gesamt	Ν	53
	Prozent	100

Tabelle 1: Anzahl der Tiere mit Gruppenverteilung

Abbildung 1: Prozentuale Gruppenverteilung der Tiere

Bei insgesamt 22 Versuchstieren konnte am Ende des Versuchsvorhabens ein ROSC erreicht werden, wobei die meisten ROSC-Ereignisse zwischen Minute 7 und Minute 9 nach Kreislaufstillstand eintraten (Tabelle 2).

Tabelle 2: Zeitpunkt für das Eintreten von ROSC nach Herzkreislaufstillstand

	Statistik	Minute 5	Minute 7	Minute 9	Minute 11	Minute 13	Minute 15
Gruppe							
Häufigkeit	Ν	0	12	4	1	1	4
_	Prozent	0	55	18	4	4	18

4.2 Verlaufsentwicklung der Zielparameter: bei Minute Baseline, 5, 11 und 15

Während der gesamten Beobachtungsphase wurden anhand der zur Verfügung stehenden BGA's Laborparameter jeweils zum Zeitpunkt Baseline und Minute 5, 11 und 15 nach Kreislaufstillstand erhoben. Diese sind in den folgenden Tabellen zusammenfassend dargestellt.

4.2.1 pCO₂, CO₂-Gehalt im Plasma und CO₂-Gehalt im Blut

Die Messung des arteriellen pCO₂ zeigte von dem Zeitpunkt Baseline bis zur Minute 15 bei allen Tieren, sowohl bei denen aus der ROSC Gruppe als auch bei denen aus der Gruppe ohne ROSC, einen nahezu konstanten Verlauf an und lag im Mittelwert zwischen 38,1 und 39,5 mmHg. Legt man für das CO₂ einen Normbereich von 35 bis 45 mmHg zugrunde, so hatten zum Zeitpunkt Baseline 15 Tiere (68 %) aus der ROSC-Gruppe und 21 Tiere (80 %) aus der Gruppe ohne ROSC einen arteriellen pCO₂-Wert, der sich im Normalbereich befand. Lediglich ein Tier jeweils aus jeder Gruppe hatte einen arteriellen pCO₂-Wert größer 45mmHg, wobei bei allen anderen Tieren dieser Wert unter 35 mmHg lag.

Nach dem Kreislaufstillstand zum Zeitpunkt Minute 5 hatten 10 Tiere (45 Prozent) in der ROSC-Gruppe und 14 Tiere (53 Prozent) in der Gruppe ohne ROSC immer noch einen pCO₂-Wert, der sich im Normalbereich befand. Vier Tiere aus der ROSC-Gruppe und fünf Tiere aus der Gruppe ohne ROSC hatten zu diesem Zeitpunkt einen arteriellen pCO₂-Wert, der über dem Normwert lag. Bei Minute 11 und Minute 15 hatten, mit einer Ausnahme, alle der übrig gebliebenen Tiere aus der Gruppe ROSC ein normwertiges CO_2 . In der Gruppe ohne ROSC hatten bei Minute 11 noch 16 Tiere einen CO_2 -Wert zwischen 35 und 45 mmHg und jeweils 5 Tiere (mit und ohne ROSC) hatten einen arteriellen CO_2 -Wert, der über 45 mmHg oder unter 35 mmHg lag.

Trotz erheblicher Schwankungen des arteriellen CO₂-Wertes lag der Medianwert in beiden Gruppen und zu allen anderen Zeitpunkten im Normbereich.

Ebenfalls wurde aus dem zentralvenösen Blut der venöse pCO2-Wert während der Untersuchung analysiert. Legt man einen Wert von 38 bis 50 mmHg als einen normalen Bereich für das zentralvenöse pCO₂ zugrunde, so stieg das venöse pCO₂ während des Experimentes durchgehend an. Bei Minute Baseline hatten in der ROSC-Gruppe 19 Tiere (86 Prozent) und in der ohne ROSC 25 Tiere (96 Prozent) normwertige venöse CO₂-Werte. Nur ein Tier aus der ROSC-Gruppe hatte ein niedrigeres CO₂.

Bei Minute 5 hatten mit nur einer Ausnahme alle Tiere der ROSC-Gruppe einen zentralvenösen CO₂-Wert, der über 50 mmHg lag. In der Gruppe ohne ROSC waren es lediglich 5 Tiere. Im weiteren Verlauf, sowohl zum Zeitpunkt Minute 11 als auch Minute 15, zeigten alle Tiere in beiden Gruppen CO₂-Werte, die deutlich über dem Normwert lagen.

Wie schon bei der Analyse des arteriellen CO₂ festgestellt, gab es auch hier große Schwankungen, wobei der Medianwert, mit Ausnahme der Baseline - Messung, aber deutlich über dem Normwert lag.

In Bezug auf den im Plasma sowie im Blut berechneten CO₂-Gehalt konnte sowohl im arteriellen als auch im zentralvenösen Blut eine Reduktion festgestellt werden. So war der CO₂ Gehalt sowohl im arteriellen als auch im zentralvenösen Blut zu Beginn der Untersuchung am größten.

Die beschriebenen Tendenzen hinsichtlich des CO₂-Partialdrucks und des CO₂-Gehaltes waren in beiden Gruppen (mit/ohne ROSC) identisch (Tabelle 3,4).

Gruppe			Statistik	Baseline	Minute 5	Minute 11	Minute 15
	pCO ₂	Arterie	Median	38	37,5	42,2	36,7
	mmHg		Q1/Q3	33/41	33,4/39,9	37,2/44,5	34,7/47,1
		Vene	Median	45	57	56,8	63,2
			Q1/Q3	40,1/46,1	53,3/63,5	55,3/61,7	57,7/63,5
	C CO ₂ A Plasma	Arterie	Median	71,8	65,8	52,7	46,9
			Q1/Q3	68,2/74,6	63,1/68,4	49/57,1	43,2/49,7
	mL/dl	Vene	Median	74,3	75,3	60,2	55
ROSC			Q1/Q3	69,9/77,2	69,6/77,6	58/65,5	54,3/61,7
	C CO ₂	Arterie	Median	63,4	58,7	45,9	42,5
	Blut		Q1/Q3	60,1/65,9	55,2/60,6	43,6/51,2	37,9/44,1
	ml/dl	Vene	Median	66,4	68,9	54,6	50,3
			Q1/Q3	63,4/69,6	63,3/70,9	52,3/60,1	50/56,4

Tabelle 3: pCO2, und C CO2 im Vollblut und C CO2 im Plasma bei den Tieren mit ROSC

Gruppe			Statistik	Baseline	Minute 5	Minute 11	Minute 15
	pCO ₂	Arterie	Median	38,6	36,2	39,6	43,7
	mmHg		Q1/Q3	35,9/41,2	32,7/43,7	35,1/45,6	34,3/50,8
		Vene	Median	45,19	57,4	57,5	63,7
			Q1/Q3	42,7/48,2	48,3/58,6	53,6/63,4	59,1/70,3
Ohne	C CO ₂ Plasma	Arterie	Median	70,9	65,2	52,8	48,2
ROSC	mL/dl		Q1/Q3	68,3/72,8	61,5/66,9	49,5/56,2	44,6/51,2
		Vene	Median	74	72,9	62,4	57
			Q1/Q3	71,1/75,6	68,6/75,5	58,3/65,6	53,1/60,6
	C CO ₂ Blut	Arterie	Median	63,5	57,5	47,5	43,5
	ml/dl		Q1/Q3	60,3/65,5	54,5/59,7	43,7/50	39,9/45,5
		Vene	Median	67	66,6	55,7	52,4
			Median	63,7/68,7	62,7/69,6	53,5/59,7	49,9/54,8

Tabelle 4: pCO2, C CO2 im VollBlut und C CO2 im Plasma bei den Tieren ohne ROSC

Abbildung 2: pCO2-Verlauf arteriell mit/ohne ROSC

Abbildung 3: pCO2-Verlauf im zentralvenösen Blut bei den Tieren mit/ohne ROSC

Abbildung 4: Content-CO2-Verlauf im arteriellen Blut bei den Tieren mit/ohne ROSC

Abbildung 5: Content-CO2-Verlauf im zentralvenösen Blut bei den Tieren mit/ohne ROSC im Blut

4.2.2 O2-Gehalt im Blut

Der in beiden Gruppen (mit/ohne ROSC) gemessene pO₂ lag stets über 100 mmHg (Abbildung 6). Der höchste Wert wurde jeweils zu Beginn der maschinellen Beatmung (mit FiO₂ von 1,0) zum Zeitpunkt "Minute 5" dokumentiert. Der pO₂-Wert auf der venösen Seite zeigte ein vom Zeitpunkt Baseline zu Minute 11 fallenden Verlauf. Bei Minute 15 ist in beiden Gruppen der pO₂ angestiegen, lag aber deutlich unter den Wert den er bei Minute Baseline annahm. (Abbildung 7).

Der O₂-Gehalt im arteriellen Blut stieg bei den Tieren mit und ohne ROSC jeweils vom Zeitpunkt "Baseline" bis zur "Minute 15" kontinuierlich an (Abbildung 8). Dies ist mit dem gleichzeitigen Hämoglobin-Anstieg zu assoziiert. Der O₂-Gehalt im zentralvenösen Blut fiel hingegen während der gesamten Untersuchungszeit ab (Abbildung 9).

Gruppe			Statistik	Baseline	Minute 5	Minute 11	Minute 15
	nO2	Arterie	Median	155	352	160	90
	p02	Thene	Q1/Q3	133/165	107/463	82/323	63/294
	mmHg	Vene	Median	49	29,9	30	43
			Q1/Q3	45/54	27,1/35,7	28/31	37/50
		Arterie	Median	9,81	10,8	11,9	11,1
		There is a second secon	Q1/Q3	9,2/10,5	10,1/11,6	11,2/14,3	9,3/14,3
ROSC	CO_2 Blut	Vene	Median	7,2	3,2	3,7	5,3
	mL/dl		Q1/Q3	6,7/7,4	2,6/4,1	3,3/3,9	4,1/5,4
		Arterie	Median	7	7,5	9,5	8,9
	TT··· 1 1 '	There is a second secon	Q1/Q3	6,6/7,6	7,1/8,1	8,2/9,7	8,7/10
	Hamoglobin	Vene	Mittelwert	7,1	7,8	8,9	8,7
	g/dl		Q1/Q3	6,6/7,4	7,2/8,4	8,2/9,2	8,2/9,1

Tabelle 5: pO₂, C O₂ im arteriellen und zentralvenösen Blut sowie der Hämoglobinwert bei den Tieren mit ROSC

Gruppe			Statistik	Baseline	Minute 5	Minute 11	Minute 15
	nOa	Artorio	Median	142	225	111	264,4
		7 interne	Q1/Q3	128/165	77/378	70/269	179,5
	mmHg	Vene	Median	49	29,7	29	29,93
		vene	Q1/Q3	45/52	25/32	27/31	2,00
		Arterie	Median	9,7	10,5	11,8	12,83
			Q1/Q3	9,2/10,2	9,1/11,6	10,7/12,5	3,12
Ohne	C O ₂ Blut mL/dl	Vene	Median	6,7	2,9	3,2	3,23
ROSC			Q1/Q3	6,2/7,4	2,4/3,3	2,8/3,9	0,76
		Arterie	Median	7	7,6	9	9,63
	Hämoglobin	7 interne	Q1/Q3	6,7/7,4	7,1/7,9	1,1	1,49
		Vene	Median	7,1	7,5	8,73	9,53
	g/dl		Q1/Q3	6,7/7,5	7,2/8,4	1,01	1,81

Tabelle 6: pO₂, CO₂ im arteriellen und zentralvenösen Blut sowie der Hämoglobinwert bei den Tieren ohne ROSC

Abbildung 6: pO2-Verlauf im arteriellen Blut mit/ohne ROSC

Abbildung 7: pO2-Verlauf im zentralvenösen Blut mit/ohne ROSC

Abbildung 9: Content-O2-Verlauf zentralvenös mit/ohne ROSC im Vollblut

4.2.3 Veno-arterielle Kohlendioxidgehaltsdifferenz / arterio-venöse Sauerstoffgehaltsdifferenz-Ratio im Plasma und im Vollblut

Um die verschiedenen Ratios berechnen zu können wurde im ersten Schritt die arterio-venöse Sauerstoffgehaltsdifferenz (Abbildung 10), und mit Hilfe der Douglas Formel die veno-arterielle Kohlendioxidgehaltsdifferenz (Abbildung 11 und 12) im Vollblut und im Plasma bestimmt. Abbildung 10: Ca-vO₂ Verlauf mit und ohne ROSC

Die Kreislaufsituation und die Sauerstoffversorgung waren in beiden von uns untersuchten Gruppen zu jedem Zeitpunkt vergleichbar.

In beiden Gruppen zeigte sich in der graphischen Darstellung ein biphasicher Verlauf. Zu Minute Baseline wurde ein Mittelwert für die Ca-vO₂ von 3,01 ml/dl in der ROSC und 3,08 ml/dl in der Gruppe ohne ROSC ermittelt.

Während der Reanimationsphase stieg die Ca-vO₂ weiter und erreichte sein Maximum bei Minute 15. Es zeigte sich aber kein statisch signifikanter Unterschieden zwischen den beiden Gruppen in Bezug auf die ausgerechnete Ca-vO₂.

Die mittels der Douglas Formel ermittelte Cv-aCO₂ stieg parallel zum Anstieg der Ca-vO₂ und war dieser zu den verschiedenen Zeitpunkten fast identisch.

Abbildung 12: Vollblut Cv-aCO₂ Verlauf mit und ohne ROSC

Für jedes Tier der beiden Gruppen wurde dann, zu den verschiedenen Zeitpunkten, die Cv-aCO₂/CavO₂ Ratio im Vollblut und im Plasma berechnet. Im Nachhinein wurde für jede Gruppe zu den verschiedenen Zeitpunkten der Medianwert, Q1/Q3, Minimum und Maximum ermittelt (Tabelle 7,8).

Zunächst wurde untersucht, ob es Unterschiede in den Werten:

- Cv-aCO₂/Ca-vO₂ Ratio im Vollblut
- Cv-aCO₂/Ca-vO₂ Ratio im Plasma

über die vier Zeitpunkte hinweg, unabhängig von den Gruppen, gibt.

Diese Analyse zeigte, dass es in der Gruppe der Tiere ohne ROSC, für beide Parameter, keine signifikanten Unterschiede zwischen den vier Zeitpunkten gab.

In der Gruppe der Tiere mit ROSC zeigte sich eine signifikante Veränderung der Ratio im Verlauf von Minute 11 zur Minute 15 (siehe Tabelle 7,8). Diese Veränderung betraf beide Ratios, sowohl die im Plasma als auch die im Vollblut berechnete. Sie erreichte bei Minute 15 den Maximalwert.

Um einen Zusammenhang zwischen dem Eintreten von ROSC und der errechneten Ratio zu erkennen, wurden die zwei Gruppen jeweils zu jedem Zeitpunkt miteinander verglichen. Es wurde für jeden Zeitpunkt einzeln getestet (T-Test für unabhängige Stichproben bzw. Mann-Whitney U Test, wenn Normalverteilung nicht vorlag). Sowohl für die Cv-aCO₂/Ca-vO₂ Ratio im Vollblut als auch für die Pv-aCO₂/Ca-vO₂ Ratio im Plasma gab es keine signifikanten Unterschiede zwischen den beiden Gruppen zum Zeitpunkt Baseline, Minute 5 und Minute 11. Lediglich zu Minute 15 zeigte sich ein signifikanter Unterschied zwischen der Gruppe der Tiere mit ROSC und der Gruppe der Tiere ohne ROSC. (p<0,014 für Plasma und p<0,014 für Blut) (s. Tabelle 8).

	Statistik	Cv-aCO ₂	Pv-aCO ₂	Blut Cv-aCO ₂	Cv-aCO ₂	Pv-aCO ₂	Blut Cv-aCO ₂
Gruppe		/Ca-vO ₂	/Ca-vO ₂	/Ca-vO ₂	/Ca-vO ₂	/Ca-vO ₂	/Ca-vO ₂
		Baseline	baseline	baseline	5 Min	5 Min	5 Min
ROSC	Mittelwert	1,04	2,12	1,24	1,08	2,73	1,24
	Median	1,05	2,11	1,26	1,09	2,76	1,17
	Q1/Q3	0,7/1,31	1,92/2,48	0,9/1,5	0,79/1,26	2,3/3,07	0,96/1,4
	Minimum	0,27	0,66	0,36	0,17	1,67	0,47
	Maximum	2,05	3,15	2,20	2,10	4,35	2,14
Ohne	Mittelwert	1,08	2,50	1,29	1,02	2,51	1,19
ROSC	Median	1,01	2,37	1,22	1,04	2,49	1,23
	Q1/Q3	0,8/1,27	2,1/2,61	1,04/1,45	0,83/1,26	1,99/2,91	1,02/1,41
	Minimum	0,30	1,17	0,50	0,25	1,34	0,55
	Maximum	1,75	3,93	1,97	1,42	4,96	1,53

Tabelle 7: Errechnete Ratio (ROSC/ ohne ROSC) von Minute Baseline bis Minute 5

Tabelle 8: Verlaufsentwicklung der errechneten Ratio (ROSC/ ohne ROSC) von Minute 11 bis Minute 15

Gruppe		Cv-aCO ₂ /Ca-vO ₂ 11 Min	Pv-aCO ₂ /Ca-vO ₂ 11 Min	Blut Cv-aCO ₂ /Ca-vO ₂ 11 Min	Cv-aCO ₂ /Ca-vO ₂ 15 Min	Pv-aCO ₂ /Ca-vO ₂ 15 Min	Blut Cv-aCO ₂ /Ca-vO ₂ 15 Min
ROSC	Mittelwert	0,98	1,85	1,04	1,59*	3,29	1,63*
	Median	0,98	1,84	1,04	1,41*	3,17	1,42*
	Q1/Q3	0,71/1,21	1,69/2,19	0,79/1,29	1,31/2,11	3,10/3,69	1,38/2,15
	Minimum	0,48	1,39	0,58	1,31	3,10	1,38
	Maximum	1,37	2,35	1,4	2,06	3,59	2,09
Ohne	Mittelwert	1,04	2,12	1,11	1,05	2,61	1,12
ROSC	Median	1,12	2,03	1,17	1,06	2,67	1,12
	Q1/3	0,81/1,28	1,68/2,51	0,86/1,34	0,79/1,24	1,78/3,19	0,95/1,29
	Minimum	0,23	1,06	0,42	0,45	0,33	0,54
	Maximum	2,00	4,35	2,00	1,61	4,57	1,61

In den folgenden Kastengrafiken (Abbildung 13,14) wurden die einzelnen Ratios zur Verdeutlichung des Verlaufs zu den jeweiligen Zeitpunkten, vor und nach Eintreten des Kreislaufstillstandes,

zwischen den zwei Gruppen graphisch dargestellt.

Abbildung 13: Blut Cv-aCO₂/Ca-vO₂ von Minute Baseline bis Minute 15

Abbildung 14: Cv-aCO₂/Ca-vO₂ von Minute Baseline bis Minute 15

Abbildung 15: Pv-aCO₂/Ca-vO₂ von Minute Baseline bis Minute 15

Nachdem die Analyse der Blut - Cv-aCO₂/Ca-vO₂ - Ratio und der Cv-aCO₂/Ca-vO₂ - Ratio zwischen den Gruppen zu den Zeitpunkten Minute Baseline, Minute 5 und Minute 11 keine signifikanten Resultate bezüglich einer Abhängigkeit der ROSC von der Ratio lieferte, wurde die in der klinischen Praxis angewandte und von den meisten Publikationen als Surrogatmarker für anaeroben Metabolismus beschriebene Pv-aCO₂ /Ca-vO₂ - Ratio errechnet. Die dadurch ermittelten Werte wurden genau wie bei den vorherigen Ratios miteinander verglichen. Ein signifikanter Unterschied zwischen den zwei Gruppen konnte zu keinem Zeitpunkt ermittelt werden.

4.2.4 Laktat und ScvO₂

In Bezug auf die erhobenen Laktatwerte konnte während der gesamten Untersuchungszeit ein kontinuierlicher Anstieg dokumentiert werden. Dies traf sowohl für die Gruppe mit als auch ohne ROSC zu (Tabelle 9, Abbildung 16).

Abbildung 16: Laktat-Verlauf mit/ohne ROSC im Blut

Tabelle 9: Verlaufsentwicklung der Laktatwerte (ROSC/ ohne ROSC) von Minute Baseline bis Minute 15

Parameter		Statistik	Baseline	Minute 5	Minute 11	Minute 15
	ROSC	Mittelwert	2,98	4,1	6,1	7,53
Laktatwert		Median	3,15	4,3	5,9	7,3
mmol/L		Q1/Q3	2,55/3,6	3,4/4,8	5,6/6,8	7,1/8,2
	Kein ROSC	Mittelwert	3,22	3,9	6	6,9
		Median	2,9	4	5,8	7,3
		Q1/Q3	2,3/3,7	3,4/4,9	5,2/6,6	0,69

Bei der genauen statistischen Auswertung der Daten der Gruppe, die ROSC erlangten, zeigte sich

ein kontinuierlich, statisch relevanter Anstieg des Laktates über alle 4 Messzeiten (Abbildung 17).

			Test	bei gepaarten	Stichproben				
			G	epaarte Differenze	n				
			Std	Standardfehle r des	95% Konfider Diffe	renz			
		Mittelwert	Abweichung	Mittelwertes	Untere	Obere	Т	df	Sig. (2-seitig)
Paaren 1	Lac_t2 - Lac_t1	,7068181818	,5201408817	,1108944086	,4762006344	,9374357292	6,374	21	,000
Paaren 2	Lac_t2 - Lac_t3	-3,17857	,54303	,20525	-3,68079	-2,67635	-15,487	6	,000
Paaren 3	Lac_t2 - Lac_t4	-5,13333	,49329	,28480	-6,35873	-3,90794	-18,024	2	,003
Paaren 4	Lac_t1 - Lac_t3	-3,85714286	,8594710444	,3248495204	-4,65202100	-3,06226472	-11,874	6	,000
Paaren 5	Lac_t1 - Lac_t4	-5,88333333	,9305016568	,5372253820	-8,19482759	-3,57183908	-10,951	2	,008
Paaren 6	Lac_t3 - Lac_t4	-1,81667	,12583	,07265	-2,12925	-1,50409	-25,006	2	,002

Abbildung 17: Statistische Auswertung für die Laktatentwicklung in der ROSC Gruppe

Die Auswertung der Daten für die zweite Gruppe zeigte einen nahezu identischen Verlauf des Laktatwertes mit der Gruppe der ROSC Tiere.

Die zentral-venöse Sättigung befand sich zum Zeitpunkt des Kreislaufstillstandes bzw. zum Zeitpunkt "Baseline" mit über 70% auf dem Höhepunkt. Ab "Minute 5" und somit nach Beginn der CPR fielen die Werte auf im Mittel 30 % in beiden Gruppen ab (Abbildung 18).

Abbildung 18: ScvO₂-Verlauf mit/ohne ROSC im Blut

Beim direkten Vergleich der zwei Gruppen zum Zeitpunkt Baseline, Minute 5, Minute 11 und Minute 15 konnte ein statisch relevanter Unterschied im Verlauf des Laktatwertes und in der ScvO₂ ausgeschlossen werden

4.2.5 Hämoglobin

Theoretisch können auch Veränderungen des Hämoglobinwertes die Ratio beeinflussen, da dieser bei der Berechnung des Sauerstoffgehaltes eine entscheidende Rolle spielt.

Zunächst wurde untersucht, ob es innerhalb jeder Gruppe Unterschiede im Verlauf des Hämoglobinwertes zu den verschiedenen Mess-Zeitpunkten gibt. In Bezug auf die Hämoglobin-Entwicklung im Verlaufe des Experimentes lässt sich anhand der folgenden Grafik ein deutlicher Anstieg in beiden Gruppen darstellen. Somit stieg der Hämoglobin-Gehalt kontinuierlich an und erreichte sein Maximum jeweils bei Minute 11 (Abbildung 19).

Abbildung 19: Verlaufsentwicklung des Hämoglobins

Bei den Tieren der ROSC Gruppe zeigte sich ein kontinuierlicher Anstieg des Hämoglobinwertes bis zur Minute 11. Zwischen Minute 11 und Minute 15 gab es in dieser Gruppe keinen statisch signifikanten Anstieg des Hämoglobinwertes mehr. Alle anderen Zeitpunkte unterscheiden sich signifikant voreinander (p<0,05) (Abbildung 20).

				Gepaarte Differen:	zen				
		Mittelwert	Std Abweichung	Standardfehle r des Mittelwertes	95% Konfiden: Differ Untere	zintervall der enz Obere	Т	df	Sig. (2-seitig
Paaren 1	tHb_t2 - tHb_t1	,4909	,4151	,0885	,3069	,6749	5,547	21	,000
Paaren 2	tHb_t2 - tHb_t3	-1,62143	,80408	,30391	-2,36508	-,87778	-5,335	6	,002
Paaren 3	tHb_t2 - tHb2_t4	-1,8000	,7000	,4041	-3,5389	-,0611	-4,454	2	,047
Paaren 4	tHb_t1 - tHb_t3	-2,03571	,87212	,32963	-2,84229	-1,22914	-6,176	6	,001
Paaren 5	tHb_t1 - tHb2_t4	-2,1333	,5859	,3383	-3,5889	-,6778	-6,306	2	,024
Paaren 6	tHb_t3 - tHb2_t4	,18333	,57951	,33458	-1,25625	1,62292	,548	2	,639

Abbildung 20: Statistische Auswertung für Hämoglobin in der ROSC Gruppe

Der Hämoglobinwert bei den Tieren der Gruppe ohne ROSC zeigte einen nahezu identischen Verlauf. Auch in dieser Gruppe stieg der Hämoglobinwert kontinuierlich an, sodass sich in der statistischen Analyse alle Zeitpunkte in Bezug auf diesen Wert voneinander unterscheiden (p<0,05) (Abbildung 21).

Abbildung 21: Statistische Auswertung für Hämoglobin in der Gruppe ohne ROSC

			Tes	t bei gepaarter	n Stichprober	1			
			Std	Standardfehle r des	2en 95% Konfiden Diffe	zintervall der renz			
		Mittelwert	Abweichung	Mittelwertes	Untere	Obere	Т	df	Sig. (2-seitig
Paaren 1	tHb_t2 - tHb_t3	-1,44400	,80108,	,16022	-1,77467	-1,11333	-9,013	24	,000,
Paaren 2	tHb_t2 - tHb2_t4	-1,2474	,9902	,2272	-1,7246	-,7701	-5,491	18	,00
Paaren 3	tHb_t1 - tHb_t3	-2,07308	,90003	,17651	-2,43661	-1,70955	-11,745	25	,000
Paaren 4	tHb_t1 - tHb2_t4	-1,8300	1,1554	,2583	-2,3707	-1,2893	-7,084	19	,00
Paaren 5	tHb_t3 - tHb2_t4	,26316	,54079	,12407	,00250	,52381	2,121	18	.04

Um einen eventuellen Zusammenhang zwischen dem Hämoglobinwert und dem Eintreten von ROSC auszuschließen, wurden im nächsten Schritt die zwei Gruppen mittels des Levene-Tests, für jeden

Zeitpunkt einzeln, miteinander verglichen. Dabei zeigte sich, dass sich die zwei Gruppen zu keinem Zeitpunkt voneinander unterscheiden, der Hämoglobinanstieg war symmetrisch (Abbildung 22).

			Test	bei unabł	nängigen	Stichproben	
		Levene-1 Varianzgi	Fest der leichheit				
		F	Signifikanz	т	df	Sig. (2-seitig)	
tHb_t1	Varianzen sind gleich	1,223	,274	,711	47	,480	
	Varianzen sind nicht gleich			,698	41,074	,489	
tHb_t2	Varianzen sind gleich	,057	,812	-,021	49	,984	
	Varianzen sind nicht gleich			-,021	45,925	,984	
tHb_t3	Varianzen sind gleich	,471	,498	,400	31	,692	
	Varianzen sind nicht gleich			,472	12,414	,645	
tHb2_t4	Varianzen sind gleich	1,266	,273	,456	21	,653	
	Varianzen sind nicht gleich			,706	4,412	,516	

Abbildung 22: Vergleich im Hämoglobinwert zwischen den zwei Gruppen

5 Diskussion

Die vorliegende Studie ist nach aktuellem Kenntnisstand die erste, die sich speziell auf den Wert der Cv-aCO₂/Ca-vO₂ Ratio im Vollblut oder Plasma und der Pv-aCO₂/Ca-vO₂ Ratio im Rahmen einer Reanimation nach Kreislaufstillstand konzentriert hat.

Im Vordergrund dieser Arbeit stand die Frage, ob sich die zwei von uns untersuchten Gruppen in Bezug auf die aus dem Vollblut oder aus dem Plasma berechnete Cv-aCO₂/Ca-vO₂ Ratio unterscheiden.

Obwohl es aktuell noch schwierig ist, eine exakte Grenze zu ziehen, ab welchem Wert die CvaCO₂/Ca-vO₂ Ratio als pathologisch zu werten ist, gilt als Normwert im Allgemeinen eine Ratio kleiner $1,0^{56}$. Als physiologische Grundlage für unsere Arbeit nutzten wir die Erkenntnis, dass eine Cv-aCO₂/Ca-vO₂ Ratio größer 1,0 den anaeroben Stoffwechsel im Rahmen einer Gewebehypoxie widerspiegelt, da unter aeroben Bedingungen die CO₂-Produktion nicht höher als der O₂-Verbrauch sein sollte⁵⁷.

In der vorliegenden Verlaufsbeobachtung zeigt sich, dass die von uns aus dem Vollblut berechnete Cv-aCO₂/Ca-vO₂ Ratio in beiden untersuchten Gruppen bei Minute Baseline, Minute 5 und Minute 11 einen nahezu identischen Wert einnahm. Die aus dem Plasma berechnete Cv-aCO₂/Ca-vO₂ Ratio oder die Pv-aCO₂/Ca-vO₂ Ratio zeigte genau denselben Verlauf. Lediglich bei Minute 15 zeigte sich ein statistisch relevanter Unterschied zwischen den beiden Gruppen in Bezug auf die im Plasma und im Vollblut berechnete Ratio. Jedoch muss die Aussagekraft dieses einzelnen Wertes kritisch hinterfragt werden, da die Gruppe der "ROSC-Tiere" zu diesem Zeitpunkt (Minute 15) sehr klein (s. Tabelle 2, 10) war. Gleichzeitig war die Ratio in der ROSC Gruppe bei Minute 15 sehr hoch, was gegen, auf Basis der aktuellen physiologischen Kenntnis, von uns erstellten Arbeitshypothese sprechen würde.

In den letzten Jahren mehren sich klinische und experimentelle Befunde, dass sowohl die Cva $CO_2/Ca-vO_2$ Ratio als auch die Pv-a $CO_2/Ca-vO_2$ als Marker für die globale Gewebehypoxie bei kritisch kranken Patienten verwendet werden kann^{58–61}.

Es ist bekannt, dass sowohl eine ungünstige Cv-aCO₂/Ca-vO₂ Ratio (Ratio größer 1) als auch eine hohe Pv-aCO₂/Ca-vO₂ Ratio mit anaerobem Metabolismus und erhöhter Mortalität bei

Intensivpatienten mit Sepsis assoziiert ist^{62,63}. Demgegenüber steht eine Untersuchung an einem Kollektiv von herzchirurgischen Patienten, die gezeigt hat, dass die Cv-aCO₂/Ca-vO₂ Ratio als auch die Pv-aCO₂/Ca-vO₂ Ratio einen Anstieg des VO₂ nach Erhöhung des DO₂ nicht voraussagen konnte⁶⁴. Osama Abou-Arab et al. belegte damit, dass die Patienten, bei denen es später zu einem Anstieg des VO₂ als Zeichen für eine vorhandene oder stattgefundene Hypoxie gekommen ist, sich von den anderen Patienten, in Bezug auf die auf der Basis von CO₂ abgeleiteten Parameter, nicht unterscheiden.

In der vorliegenden Studie gab es keinen Unterschied zwischen den auf der Basis vom CO₂ abgeleiteten Parametern und Überleben, so wie es im Gegensatz zu Patienten mit Sepsis beobachtet wurde^{65,66}. Interessanterweise hatten schon vor Einleiten des Kreislaufstillstandes, zum Zeitpunkt Baseline 63% der Tiere aus der ROSC Gruppe und 80% der Tiere aus der Gruppe ohne ROSC eine Cv-aCO₂/Ca-vO₂ Ratio größer 1,0 und diese veränderte sich nicht im Verlauf der Untersuchung. Obwohl es fünf Minuten lang keine Gewebeperfusion gab, kam es zu keinem Anstieg der ursprünglich berechneten Ratio bei gleichzeitig steigender Pv-aCO₂-Differenz und veno-arteriellen Kohlendioxidgehaltsdifferenz. Es gab dementsprechend immer einen direkten Zusammenhang zwischen Sauerstoffverbrauch und Kohlendioxidproduktion.

Eine große Anzahl von klinischen und experimentellen Studien unterstützen die These, dass es während eines hypoxischen Zustandes zu einem Anstieg des venösen pCO₂ kommen kann. Wie in der vorliegenden Untersuchung, konnten andere Autoren ebenfalls einen ausgeprägten Anstieg des venösen pCO₂ und dementsprechend der Pv-aCO₂-Differenz sowie des Laktatwertes im Rahmen eines Reanimationsmodels beschreiben ⁶⁷. Die These, dass ein Anstieg des Blut- oder Gewebe-pCO₂ als Marker für eine stattgefundene Hypoxie dienen kann, ist nicht neu und wurde bereits von Grum et al. ⁶⁸postuliert.

In Bezug auf das Ausmaß des pCO₂-Anstieges auf der venösen Seite post kapillär scheint auch die Ursache der Hypoxie entscheidend zu sein. Während der hypoxischen Hypoxie ist die regionale Gewebeperfusion erhalten, der Sauerstoffgehalt des Blutes ist jedoch gesunken. Anders gestaltet sich dieser Vorgang bei der ischämischen Hypoxie: Diese kennzeichnet sich durch einen normalen oder erhöhten Sauerstoffgehalt des Blutes bei verminderter Organperfusion. Bei einem Herzkreislaufstillstand sind beide Formen der Ischämie vorzufinden. Die aktuellen Untersuchungen kommen jedoch zu dem Ergebnis, dass der Anstieg des Gewebe- oder Blut-pCO₂ überwiegend der ischämischen Hypoxie zuzuschreiben ist. Die hypoxische Hypoxie scheint nur einen minimalen Einfluss auf das venöse pCO_2 zu haben^{69,70}.

Um einen Vergleich mit anderen Parametern zur Einschätzung des Reanimationserfolges zu ermöglichen, wurde im Rahmen unserer Studie auch die Laktatkonzentration erfasst und analysiert. In den letzten Jahrzehnten wurde festgestellt, dass die Blutlaktatkonzentration mit der Dauer des No-Flow- und Low-Flow-Status während der Reanimation korrelieren könnte⁷¹. In zahlreichen Untersuchungen wurde gezeigt, dass niedrigere Serumlaktatwerte mit einer verminderten Mortalität bei Herzstillstandspatienten korrelieren^{72–74}. Diese Studien verwendeten alle den Post-ROSC-Laktatspiegel für die Analyse. In einer dieser retrospektiven Beobachtungsstudien konnten die Autoren zeigen, dass der während der Reanimationsphase gemessene Serumlaktatspiegel mit dem Überleben bis zur Krankenhausentlassung korrelierte⁷⁴ Ein Serumlaktatspiegel <9 mmol/l innerhalb von 10 Minuten nach Beginn der Reanimation war positiv mit dem Überleben verbunden.

In unserem Kollektiv konnte kein signifikanter Zusammenhang zwischen Reanimationserfolg und Laktatwert gefunden werden (siehe Tab.9, Abbildung 16). In beiden von uns untersuchten Gruppen konnte während der gesamten Untersuchungszeit ein kontinuierlicher Anstieg dokumentiert werden. Dies traf sowohl für die Gruppe mit als auch ohne ROSC zu. Bei der genauen statistischen Auswertung der Daten der Gruppe, die ROSC erlangten, zeigte sich ein kontinuierlicher, statisch relevanter Anstieg des Laktates über alle 4 Messzeiten. Die Auswertung der Daten für die zweite Gruppe zeigte einen nahezu identischen Verlauf des Laktatwertes mit der Gruppe der ROSC Tiere.

Bei der Interpretation der im Vollblut berechneten Cv-aCO₂/Ca-vO₂ Ratio ist zu berücksichtigen, dass diese von multiplen Faktoren beeinflusst werden kann, wie dem Hämoglobingehalt, der arteriellen Sauerstoffsättigung, der Genauigkeit der Blutgasanalyse und dem Pathomechanismus der Grunderkrankung. Gleichzeitig liefert sie keine Information über die Perfusion und den Sauerstoffverbrauch einzelner Organe (in unserem Experiment des Myokards), sondern je nach Abnahmeort, über die obere oder die untere Körperhälfte, beziehungsweise den ganzen Organismus, falls das Blut aus der Pulmonalarterie analysiert wird. Daher lassen die erfassten Ratios nur sehr bedingt Rückschlüsse auf den Erfolg einer Reanimation zu, was die Studienergebnisse erklären könnte.

Sowohl in der Gruppe der Tiere mit ROSC als auch in der ohne ROSC gab es am Anfang normale sowie pathologisch hohe Ratios. Ob ein Tier nach Beginn der Reanimationsmaßnahmen wieder einen

spontanen Kreislauf erlangt, lässt sich anhand des Absolutwertes der Ratio nicht vorhersagen. Nicht nur die Anfangsbedingungen, sondern auch die kurze Untersuchungsdauer könnte einen Einfluss auf das Endresultat gehabt haben.

Die Divergenz zwischen den Ergebnissen der Untersuchungen bei Sepsispatienten, postoperativen herzchirurgischen Patienten und das Resultat unserer Studie kann auf mehrere Faktoren zurückzuführen sein. Die Ursache und das Ausmaß der durch Sepsis, Operation oder Kreislaufstillstand verursachten Mikrozirkulationsveränderungen ist unterschiedlich⁷⁵. Es wurde gezeigt, dass die Sepsis mit Störungen der mikrozirkulatorischen Regulation verbunden ist. Es kommt zu einer Abnahme bis zum vollkommenen Aussetzten des Kapillarflusses, der arteriovenöse Shunt nimmt zu und es kommt zur zellulären Hypoxie⁷⁶. Die Herzchirurgie mit kardiopulmonalem Bypass ist ihrerseits mit einer Vielzahl von mikrozirkulatorischen Veränderungen verbunden, einschließlich einer Abnahme der mikrovaskulären Perfusion, erhöhter Heterogenität im Perfusionsindex sowie arteriovenösem Shunt⁷⁷. Es gibt aktuell nur wenige Kenntnisse über die Mikrozirkulationstörungen beim Herzstillstand und die meisten dieser Erkenntnisse stammen aus Tierversuchen⁷⁸. So ist während des Kreislaufstillstandes und der CPR die Mikrozirkulation stark durch einen fehlenden oder stark verschlechterten Blutfluss beeinflusst⁷⁹. All diese Studien zeigten eine verzögerte Reaktion der Mikrozirkulation auf ROSC und nur eine teilweise Wiederherstellung der Mikrozirkulation während CPR.

Die oben genannten Veränderungen der Mikrozirkulation sind dementsprechend auch mit Veränderungen der arterio-venösen Sauerstoffdifferenz, der veno-arterielle Kohlendioxidgehaltsdifferenz, des systemischen Sauerstoffverbrauchs sowie der CO₂- und O₂-Diffusion verbunden⁸⁰.

Somit ist ein sinnvoller Einsatz der Cv-aCO₂/Ca-vO₂ Ratio im Rahmen einer Reanimation aufgrund der aktuellen Datenlage nicht gegeben. Weitere Studien mit größeren Teilnehmerzahlen sind nötig, um weitere Erkenntnisse zu erlangen.

Limitationen

Bislang wurde der Nutzen der Cv-aCO₂/Ca-vO₂ Ratio als auch die Pv-aCO₂/Ca-vO₂ Ratio als Marker für die globale Gewebehypoxie und als Prädiktor für eine erfolgreiche Reanimation nicht systematisch untersucht. Mit dieser Arbeit konnte gezeigt werden, dass die Ratio isoliert betrachtet keinen Aussagewert bezüglich des Eintretens von ROSC im Rahmen einer Reanimation besitzt. Ein hohes Ratio-Niveau war bei ROSC-Tieren und ROSC-Versagern gleichermaßen zu beobachten. Gleiches gilt für alle anderen von uns untersuchten Parameter. Nachteilig auf die Aussagekraft wirkte sich die im Verlauf immer kleiner werdende Anzahl von Tieren unter Reanimation in der ROSC Gruppe aus, wodurch die Ergebnisse bei Minute 15 aufgrund der geringen Anzahl keine statistische Signifikanz erreichten. Die Genauigkeit der verwendeten mathematischen Formel und der Blutgasanalyse könnte einen beträchtlichen Einfluss auf das Endergebnis der Untersuchung gehabt haben. Gleichzeitig gibt es Untersuchungen die gezeigt haben, dass Anästhetika einen erheblichen Einfluss auf die Mikrozirkulation haben, indem sie den peripheren Gefäßwiderstand verändern⁸¹ und so das wahre Ausmaß der Mikrozirkulationsstörung und der damit verbunden CO₂ veränderung.

6 Literaturverzeichnis

- 1 Ospina-Tascón GA, Umaña M, Bermúdez W, *et al.* Combination of arterial lactate levels and venous-arterial CO2 to arterial-venous O 2 content difference ratio as markers of resuscitation in patients with septic shock. *Intensive Care Med* 2015; **41**: 796–805.
- 2 Tseng ZH, Olgin JE, Vittinghoff E, *et al.* Prospective Countywide Surveillance and Autopsy Characterization of Sudden Cardiac Death: POST SCD Study. *Circulation* 2018; **137**: 2689–700.
- 3 Monsieurs KG, Nolan JP, Bossaert LL, *et al.* European Resuscitation Council Guidelines for Resuscitation 2015: Section 1. Executive summary. *Resuscitation* 2015; **95**: 1–80.
- 4 Ruch R, Stoessel L, Stein P, Ganter MT, Button DA. Outcome, quality of life and direct costs after out-of-hospital cardiac arrest in an urban region of Switzerland. *Scand J Trauma Resusc Emerg Med* 2019; **27**: 106.
- 5 Leitlinien zur Reanimation 2015 des European Resuscitation Council. springermedizin.de. https://www.springermedizin.de/leitlinien-zur-reanimation-2015-des-european-resuscitationcounc/8710096 (accessed April 23, 2020).
- 6 Ospina-Tascón GA, Hernández G, Cecconi M. Understanding the venous-arterial CO2 to arterial-venous O2 content difference ratio. *Intensive Care Med* 2016; **42**: 1801–4.
- 7 Wasserman K, Beaver WL, Whipp BJ. Gas exchange theory and the lactic acidosis (anaerobic) threshold. *Circulation* 1990; **81**: II14-30.
- 8 Stringer W, Wasserman K, Casaburi R. The VCO2/VO2 relationship during heavy, constant work rate exercise reflects the rate of lactic acid accumulation. *Eur J Appl Physiol Occup Physiol* 1995; **72**: 25–31.
- 9 Mallat J, Lemyze M, Tronchon L, Vallet B, Thevenin D. Use of venous-to-arterial carbon dioxide tension difference to guide resuscitation therapy in septic shock. *World J Crit Care Med* 2016; 5: 47–56.
- 10 Ospina-Tascón GA, Umaña M, Bermúdez W, *et al.* Combination of arterial lactate levels and venous-arterial CO2 to arterial-venous O2 content difference ratio as markers of resuscitation in patients with septic shock. *Intensive Care Med* 2015; **41**: 796–805.
- 11 Perkins GD, Jacobs IG, Nadkarni VM, et al. Cardiac Arrest and Cardiopulmonary Resuscitation Outcome Reports: Update of the Utstein Resuscitation Registry Templates for Out-of-Hospital Cardiac Arrest: A Statement for Healthcare Professionals From a Task Force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, Resuscitation Council of Asia); and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation. *Resuscitation* 2015; **96**: 328–40.
- 12 Lenz K, Holzer M. Herz-Kreislauf-Stillstand. 2007: 1646–52.

- 13 Beck B, Bray J, Cameron P, *et al.* Regional variation in the characteristics, incidence and outcomes of out-of-hospital cardiac arrest in Australia and New Zealand: Results from the Aus-ROC Epistry. *Resuscitation* 2018; **126**: 49–57.
- 14Daya MR, Schmicker RH, Zive DM, et al. Out-of-hospital cardiac arrest survival improving over time: Results from the Resuscitation Outcomes Consortium (ROC). *Resuscitation* 2015; 91: 108– 15.
- 15 Gräsner J-T, Lefering R, Koster RW, *et al.* EuReCa ONE□27 Nations, ONE Europe, ONE Registry: A prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in Europe. *Resuscitation* 2016; **105**: 188–95.
- 16Ong MEH, Shin SD, Souza NNAD, et al. Outcomes for out-of-hospital cardiac arrests across 7 countries in Asia: The Pan Asian Resuscitation Outcomes Study (PAROS). *Resuscitation* 2015; 96: 100–8.
- 17 Hodgetts TJ, Kenward G, Vlackonikolis I, *et al.* Incidence, location and reasons for avoidable inhospital cardiac arrest in a district general hospital. *Resuscitation* 2002; **54**: 115–23.
- 18 Sandroni C, Nolan J, Cavallaro F, Antonelli M. In-hospital cardiac arrest: incidence, prognosis and possible measures to improve survival. *Intensive Care Med* 2007; **33**: 237–45.
- 19 Hospital Variation in Survival Trends for In-hospital Cardiac Arrest | Journal of the American Heart Association. https://www.ahajournals.org/doi/10.1161/JAHA.114.000871?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub++0pubmed& (accessed Dec 10, 2020).
- 20 Nolan JP, Soar J, Smith GB, *et al.* Incidence and outcome of in-hospital cardiac arrest in the United Kingdom National Cardiac Arrest Audit. *Resuscitation* 2014; **85**: 987–92.
- 21 Soar J, Berg KM, Andersen LW, *et al.* Adult Advanced Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. *Resuscitation* 2020; **156**: A80–119.
- 22 Sutton RM, French B, Meaney PA, *et al.* Physiologic monitoring of CPR quality during adult cardiac arrest: A propensity-matched cohort study. *Resuscitation* 2016; **106**: 76–82.
- 23 Cournoyer A, Iseppon M, Chauny J-M, Denault A, Cossette S, Notebaert É. Near-infrared Spectroscopy Monitoring During Cardiac Arrest: A Systematic Review and Meta-analysis. *Academic Emergency Medicine* 2016; 23: 851–62.
- 24 Schnaubelt S, Sulzgruber P, Menger J, Skhirtladze-Dworschak K, Sterz F, Dworschak M. Regional cerebral oxygen saturation during cardiopulmonary resuscitation as a predictor of return of spontaneous circulation and favourable neurological outcome A review of the current literature. *Resuscitation* 2018; **125**: 39–47.
- 25 Blanco P, Volpicelli G. Common pitfalls in point-of-care ultrasound: a practical guide for emergency and critical care physicians. *Critical Ultrasound Journal* 2016; **8**: 15.
- 26 Querellou E, Leyral J, Brun C, et al. Échographie et arrêt cardiaque intra- et extrahospitalier :

mise au point et perspectives. *Annales Françaises d'Anesthésie et de Réanimation* 2009; **28**: 769–78.

- 27 Poppe M, Stratil P, Clodi C, *et al.* Initial end-tidal carbon dioxide as a predictive factor for return of spontaneous circulation in nonshockable out-of-hospital cardiac arrest patients: A retrospective observational study. *European Journal of Anaesthesiology* | *EJA* 2019; **36**: 524–30.
- 28 Connett RJ, Honig CR, Gayeski TE, Brooks GA. Defining hypoxia: a systems view of VO2, glycolysis, energetics, and intracellular PO2. *J Appl Physiol (1985)* 1990; **68**: 833–42.
- 29 Gregory IC. The oxygen and carbon monoxide capacities of foetal and adult blood. *The Journal* of *Physiology* 1974; **236**: 625–34.
- 30 Christmas KM, Bassingthwaighte JB. Equations for O2 and CO2 solubilities in saline and plasma: combining temperature and density dependences. *J Appl Physiol (1985)* 2017; **122**: 1313–20.
- 31 Gutierrez G. A Mathematical Model of Tissue–Blood Carbon Dioxide Exchange during Hypoxia. *Am J Respir Crit Care Med* 2004; **169**: 525–33.
- 32 Thorn CE, Shore AC. The role of perfusion in the oxygen extraction capability of skin and skeletal muscle. *Am J Physiol Heart Circ Physiol* 2016; **310**: H1277–84.
- 33 Schneider M. Einführung in die Physiologie des Menschen. Springer-Verlag, 2013.
- 34 Herve P, Simonneau G, Girard P, Cerrina J, Mathieu M, Duroux P. Hypercapnic acidosis induced by nutrition in mechanically ventilated patients: glucose versus fat. *Crit Care Med* 1985; **13**: 537–40.
- 35 Randall HM, Cohen J. Anaerobic CO2 production by dog kidney in vitro. *American Journal of Physiology-Legacy Content* 1966; **211**: 493–505.
- 36 Mallat J, Lemyze M, Tronchon L, Vallet B, Thevenin D. Use of venous-to-arterial carbon dioxide tension difference to guide resuscitation therapy in septic shock. *World J Crit Care Med* 2016; 5: 47–56.
- 37 Waterhouse J, Campbell I. Respiration: gas transfer. *Anaesthesia & Intensive Care Medicine* 2005; **6**: 363–6.
- 38 Arthurs G, Sudhakar M. Carbon dioxide transport. *Continuing Education in Anaesthesia Critical Care & Pain* 2005; **5**: 207–10.
- 39 De Cort SC, Innes JA, Barstow TJ, Guz A. Cardiac output, oxygen consumption and arteriovenous oxygen difference following a sudden rise in exercise level in humans. *J Physiol* 1991; **441**: 501–12.
- 40 Schmidt RF, Thews G. Physiologie des Menschen. Springer-Verlag, 2013.
- 41 Kersting T, Reinhart K, Gramm H-J, Mühlberg J. Können zentralvenöse Blutproben gemischtvenöse Abnahmen aus der Pulmonalarterie ersetzen? In: Reinhart K, Eyrich K, eds.

Organfunktion und Stoffwechsel in der perioperativen Phase. Berlin, Heidelberg: Springer, 1985: 122–9.

- 42 Comparison of central-venous to mixed-venous oxygen saturation during changes in oxygen supply/demand PubMed. https://pubmed.ncbi.nlm.nih.gov/2721255/ (accessed June 20, 2021).
- 43 Geers C, Gros G. Carbon Dioxide Transport and Carbonic Anhydrase in Blood and Muscle. *Physiological Reviews* 2000; **80**: 681–715.
- 44 Parameters that reflect the carbon dioxide content of blood. https://acutecaretesting.org/en/articles/parameters-that-reflect-the-carbon-dioxide-content-ofblood (accessed Dec 20, 2020).
- 45 International Federation of Clinical Chemistry and Laboratory Medicine. IFCC Scientific Division, Working Group on Selective Electrodes. IFCC Reference Measurement Procedure for Substance Concentration Determination of Total Carbon Dioxide in Blood, Plasma or Serum. International Federation of Clinical Chemistry and Laboratory Medicine. *Clin Chem Lab Med* 2001; **39**: 283–8.
- 46 Kumar V, Karon BS. Comparison of measured and calculated bicarbonate values. *Clin Chem* 2008; **54**: 1586–7.
- 47 O'Leary TD, Langton SR. Calculated bicarbonate or total carbon dioxide? *Clinical Chemistry* 1989; **35**: 1697–700.
- 48 Masters P, Blackburn ME, Henderson MJ, Barrett JF, Dear PR. Determination of plasma bicarbonate of neonates in intensive care. *Clin Chem* 1988; **34**: 1483–5.
- 49 Rosan RC, Enlander D, Ellis J. Unpredictable error in calculated bicarbonate homeostasis during pediatric intensive care: the delusion of fixed pK'. *Clin Chem* 1983; **29**: 69–73.
- 50 Tibi L, Bhattacharya SS, Flear CT. Variability in pK'1 of human plasma. *Clin Chim Acta* 1982; **121**: 15–31.
- 51 Trenchard D, Noble MI, Guz A. Serum carbonic acid pK'1 abnormalities in patients with acidbase disturbances. *Clin Sci* 1967; **32**: 189–200.
- 52 Chittamma A, Vanavanan S. Comparative study of calculated and measured total carbon dioxide. *Clin Chem Lab Med* 2008; **46**: 15–7.
- 53 Story DA, Poustie S, Bellomo R. Comparison of three methods to estimate plasma bicarbonate in critically ill patients: Henderson-Hasselbalch, enzymatic, and strong-ion-gap. *Anaesth Intensive Care* 2001; **29**: 585–90.
- 54 Jacobs I, Nadkarni V, Bahr J, *et al.* Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries. A statement for healthcare professionals from a task force of the international liaison committee on resuscitation (American Heart Association, European Resuscitation Council, Australian Resuscitation Council, New Zealand Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa).

Resuscitation 2004; **63**: 233–49.

- 55 Douglas AR, Jones NL, Reed JW. Calculation of whole blood CO2 content. *J Appl Physiol* 1988; **65**: 473–7.
- 56 Ospina-Tascón GA, Hernández G, Cecconi M. Understanding the venous-arterial CO2 to arterial-venous O2 content difference ratio. *Intensive Care Med* 2016; **42**: 1801–4.
- 57 Wasserman K, Beaver WL, Whipp BJ. Gas exchange theory and the lactic acidosis (anaerobic) threshold. *Circulation* 1990; **81**: II14-30.
- 58 Mallat J, Lemyze M, Meddour M, *et al.* Ratios of central venous-to-arterial carbon dioxide content or tension to arteriovenous oxygen content are better markers of global anaerobic metabolism than lactate in septic shock patients. *Ann Intensive Care* 2016; **6**: 10.
- 59 Mekontso-Dessap A, Castelain V, Anguel N, *et al.* Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. *Intensive Care Med* 2002; **28**: 272–7.
- 60 Monnet X, Julien F, Ait-Hamou N, *et al.* Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. *Crit Care Med* 2013; **41**: 1412–20.
- 61 Vallet B, Teboul JL, Cain S, Curtis S. Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. *J Appl Physiol (1985)* 2000; **89**: 1317–21.
- 62 Mallat J, Lemyze M, Meddour M, *et al.* Ratios of central venous-to-arterial carbon dioxide content or tension to arteriovenous oxygen content are better markers of global anaerobic metabolism than lactate in septic shock patients. *Ann Intensive Care* 2016; **6**: 10.
- 63 Mesquida J, Saludes P, Gruartmoner G, *et al.* Central venous-to-arterial carbon dioxide difference combined with arterial-to-venous oxygen content difference is associated with lactate evolution in the hemodynamic resuscitation process in early septic shock. *Crit Care* 2015; **19**: 126.
- 64 Abou-Arab O, Braik R, Huette P, Bouhemad B, Lorne E, Guinot P-G. The ratios of central venous to arterial carbon dioxide content and tension to arteriovenous oxygen content are not associated with overall anaerobic metabolism in postoperative cardiac surgery patients. *PLoS One* 2018; **13**: e0205950.
- 65 Mallat J, Lemyze M, Meddour M, *et al.* Ratios of central venous-to-arterial carbon dioxide content or tension to arteriovenous oxygen content are better markers of global anaerobic metabolism than lactate in septic shock patients. *Ann Intensive Care* 2016; **6**: 10.
- 66 Mallat J, Pepy F, Lemyze M, *et al.* Central venous-to-arterial carbon dioxide partial pressure difference in early resuscitation from septic shock: a prospective observational study. *Eur J Anaesthesiol* 2014; **31**: 371–80.
- 67 Weil MH, Rackow EC, Trevino R, Grundler W, Falk JL, Griffel MI. Difference in acid-base state between venous and arterial blood during cardiopulmonary resuscitation. *N Engl J Med* 1986;

315: 153–6.

- 68 Grum CM, Fiddian-Green RG, Pittenger GL, Grant BJ, Rothman ED, Dantzker DR. Adequacy of tissue oxygenation in intact dog intestine. *J Appl Physiol Respir Environ Exerc Physiol* 1984; **56**: 1065–9.
- 69 Gutierrez G. A mathematical model of tissue-blood carbon dioxide exchange during hypoxia. *Am J Respir Crit Care Med* 2004; **169**: 525–33.
- 70 Vallet B, Teboul JL, Cain S, Curtis S. Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. *J Appl Physiol (1985)* 2000; **89**: 1317–21.
- 71 Ralston SH, Voorhees WD, Showen L, Schmitz P, Kougias C, Tacker WA. Venous and arterial blood gases during and after cardiopulmonary resuscitation in dogs. *Am J Emerg Med* 1985; 3: 132–6.
- 72 Donnino MW, Andersen LW, Giberson T, *et al.* Initial Lactate and Lactate Change in Post– Cardiac Arrest: A Multicenter Validation Study*. *Critical Care Medicine* 2014; **42**: 1804–11.
- 73 Starodub R, Abella BS, Grossestreuer AV, *et al.* Association of serum lactate and survival outcomes in patients undergoing therapeutic hypothermia after cardiac arrest. *Resuscitation* 2013; **84**: 1078–82.
- 74 Wang C-H, Huang C-H, Chang W-T, *et al.* Monitoring of serum lactate level during cardiopulmonary resuscitation in adult in-hospital cardiac arrest. *Critical Care* 2015; **19**: 344.
- 75 De Backer D, Orbegozo Cortes D, Donadello K, Vincent J-L. Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock. *Virulence* 2014; **5**: 73–9.
- 76 Edul VSK, Enrico C, Laviolle B, Vazquez AR, Ince C, Dubin A. Quantitative assessment of the microcirculation in healthy volunteers and in patients with septic shock. *Crit Care Med* 2012; **40**: 1443–8.
- 77 Kara A, Akin S, Ince C. The response of the microcirculation to cardiac surgery. *Current Opinion in Anesthesiology* 2016; 29: 85–93.
- 78 Krupičková P, Mormanová Z, Bouček T, Belza T, Šmalcová J, Bělohlávek J. Microvascular perfusion in cardiac arrest: a review of microcirculatory imaging studies. *Perfusion* 2018; **33**: 8– 15.
- 79 Fries M, Weil MH, Chang Y-T, Castillo C, Tang W. Microcirculation during cardiac arrest and resuscitation. *Crit Care Med* 2006; **34**: S454-457.
- 80 Koning NJ, Simon LE, Asfar P, Baufreton C, Boer C. Systemic microvascular shunting through hyperdynamic capillaries after acute physiological disturbances following cardiopulmonary bypass. *Am J Physiol Heart Circ Physiol* 2014; **307**: H967-975.
- 81 Van der Linden P, Gilbart E, Engelman E, Schmartz D, Vincent JL. Effects of anesthetic agents on systemic critical O2 delivery. *J Appl Physiol (1985)* 1991; **71**: 83–93.

7 Anhang

Abbildungsverzeichnis

Abbildung 1: Prozentuale Gruppenverteilung der Tiere	24
Abbildung 2: pCO2-Verlauf arteriell mit/ohne ROSC	
Abbildung 3: pCO2-Verlauf im zentalvenösen Blut bei den Tieren mit/ohne ROSC	29
Abbildung 4: Content-CO2-Verlauf im arteriellen Blut bei den Tieren mit/ohne ROSC	29
Abbildung 5: Content-CO2-Verlauf im zentalvenösen Blut bei den Tieren mit/ohne ROSC im Blut	
Abbildung 6: pO2-Verlauf im arteriellen Blut mit/ohne ROSC	
Abbildung 7: pO2-Verlauf im zentralvenösem Blut mit/ohne ROSC	
Abbildung 8: Content-O2-Verlauf arteriell mit/ohne ROSC im Blut	34
Abbildung 9: Content-O2-Verlauf zentralvenös mit/ohne ROSC im Vollblut	34
Abbildung 10: Ca-vO ₂ Verlauf mit und ohne ROSC	35
Abbildung 11: Plasma Cv-aCO2 Verlauf mit und ohne ROSC	
Abbildung 12: Vollblut Cv-aCO2 Verlauf mit und ohne ROSC	
Abbildung 13: Blut Cv-aCO ₂ /Ca-vO ₂ von Minute Baseline bis Minute 15	
Abbildung 14: Cv-aCO ₂ /Ca-vO ₂ von Minute Baseline bis Minute 15	40
Abbildung 15: Pv-aCO ₂ /Ca-vO ₂ von Minute Baseline bis Minute 15	40
Abbildung 16: Laktat-Verlauf mit/ohne ROSC im Blut	42
Abbildung 17: Statistische Auswertung für die Laktatentwicklung in der ROSC Gruppe	43
Abbildung 18: SvO ₂ -Verlauf mit/ohne ROSC im Blut	43
Abbildung 19: Verlaufsentwicklung des Hämoglobins	44
Abbildung 20: Statistische Auswertung für Hämoglobin in der ROSC Gruppe	45
Abbildung 21: Statistische Auswertung für Hämoglobin in der Gruppe ohne ROSC	45
Abbildung 22: Vergleich im Hämoglobinwert zwischen den zwei Gruppen	46

Tabellenverzeichnis

Tabelle 1: Anzahl der Tiere mit Gruppenverteilung	24
Tabelle 2: Zeitpunkt für das Eintreten von ROSC nach Herzkreislaufstillstand	25
Tabelle 3: pCO ₂ , C CO ₂ im VollBlut und C CO ₂ im Plasma bei den Tieren mit ROSC	27
Tabelle 4: pCO ₂ , C CO ₂ im VollBlut und C CO ₂ im Plasma bei den Tieren ohne ROSC	28
Tabelle 5: pO2, C O2 im arteriellen und gemischt-venösen Blut sowie der Hämoglobinwert bei den Tieren mit ROSC	31
Tabelle 6: pO2, CO2 im arteriellen und gemischt-venösen Blut sowie der Hämoglobinwert bei den Tieren ohne ROSC	32
Tabelle 7: Errechnete Ratio (ROSC/ ohne ROSC) von Minute Baseline bis Minute 5	
Tabelle 8: Verlaufsentwicklung der errechneten Ratio (ROSC/ ohne ROSC) von Minute 11 bis Minute 15	
Tabelle 9: Verlaufsentwicklung der Laktatwerte (ROSC/ ohne ROSC) von Minute Baseline bis Minute 15	42

Ergänzende Tabellen:

Ergebnis für tHb über die vier Zeitpunkte (ohne Gruppeneinteilung):

		Quadratsumme		Mittel der		
Quelle		vom Typ III	df	Quadrate	F	Sig.
Faktor1	Sphärizität angenommen	61,123	3	20,374	53,893	,000
	Greenhouse-Geisser	61,123	1,553	39,358	53,893	,000
	Huynh-Feldt	61,123	1,666	36,697	53,893	,000
	Untergrenze	61,123	1,000	61,123	53,893	,000
Fehler(Faktor1)	Sphärizität angenommen	21,549	57	,378		
	Greenhouse-Geisser	21,549	29,507	,730		
	Huynh-Feldt	21,549	31,646	,681		
	Untergrenze	21,549	19,000	1,134		

Tests der Innersubjekteffekte

Paarweise Vergleiche

Maß: MEASURE_1

Map. MEAS	JUKE_I					
					95% Konfidenz	intervall für die
		Mittlere Differenz			Diffe	renz ^b
(I)Faktor1	(J)Faktor1	(I-J)	Standard Fehler	Sig. ^b	Untergrenze	Obergrenze
1	2	-,620*	,108	<mark>,000</mark>	-,939	-,301
	3	-2,097*	,228	<mark>,000</mark>	-2,767	-1,428
	4	-1,895*	,248	<mark>,000</mark>	-2,626	-1,164
2	1	,620*	,108	<mark>,000</mark>	,301	,939
	3	-1,478*	,200	<mark>,000</mark>	-2,066	-,889
	4	-1,275*	,219	<mark>,000</mark>	-1,919	-,631
3	1	2,097*	,228	<mark>,000</mark>	1,428	2,767
	2	1,478*	,200	<mark>,000</mark>	,889	2,066
	4	,203	,118	<mark>,613</mark>	-,145	,550
4	1	1,895*	,248	<mark>,000</mark>	1,164	2,626
	2	1,275*	,219	<mark>,000</mark>	,631	1,919
	3	-,203	,118	<mark>,613</mark>	-,550	,145

Basiert auf den geschätzten Randmitteln

*. Die mittlere Differenz ist auf dem ,05-Niveau signifikant.

Ergebnis für Lac über die vier Zeitpunkte (ohne Gruppeneinteilung):

Tests der Innersubjekteffekte

Maß: MEASURE_1

		Quadratsumme		Mittel der	
Quelle		vom Typ III	df	Quadrate	F
Faktor1	Sphärizität angenommen	332,084	3	110,695	185,434
	Greenhouse-Geisser	332,084	1,891	175,576	185,434
	Huynh-Feldt	332,084	2,094	158,577	185,434
	Untergrenze	332,084	1,000	332,084	185,434
Fehler(Faktor1)	Sphärizität angenommen	34,026	57	,597	
	Greenhouse-Geisser	34,026	35,937	,947	
	Huynh-Feldt	34,026	39,789	,855	
	Untergrenze	34,026	19,000	1,791	

Paarweise Vergleiche

Maß: MEAS	SURE 1					
					95% Konfidenz	intervall für die
		Mittlere Differenz			Differ	enz ^b
(I)Faktor1	(J)Faktor1	(I-J)	Standard Fehler	Sig. ^b	Untergrenze	Obergrenze
1	2	-,699*	,179	,006	-1,225	-,173
	3	-3,549*	,251	,000	-4,287	-2,811
	4	-4,982*	,271	,000	-5,778	-4,185
2	1	,699*	,179	,006	,173	1,225
	3	-2,850*	,259	,000	-3,612	-2,088
	4	-4,282*	,310	,000	-5,196	-3,369
3	1	3,549*	,251	,000	2,811	4,287
	2	2,850*	,259	,000	2,088	3,612
	4	-1,432*	,164	,000	-1,916	-,949
4	1	4,982*	,271	,000	4,185	5,778
	2	4,283*	,310	,000	3,369	5,196
	3	1,432*	,164	,000	,949	1,916

Basiert auf den geschätzten Randmitteln

*. Die mittlere Differenz ist auf dem ,05-Niveau signifikant.

b. Anpassung für Mehrfachvergleiche: Bonferroni.

Ergebnis für Cv-aCO2 über die vier Zeitpunkte (ohne Gruppeneinteilung):

Multivariate Tests ^a										
Effekt		Wert	F	Hypothese df	Fehler df	Sig.				
Faktor1	Pillai-Spur	,065	,323 ^b	3,000	14,000	,808				
	Wilks-Lambda	,935	,323 ^b	3,000	14,000	,808				
	Hotelling-Spur	,069	,323 ^b	3,000	14,000	,808				
	Größte charakteristische Wurzel	,069	,323 ^b	3,000	14,000	,808				
	nach Roy									

a. Design: Konstanter Term

Innersubjektdesign: Faktor1

b. Exakte Statistik

→ Keine signifikanten Unterschiede über die vier Zeitpunkte

Ergebnis für Blut Cv-aCO2 über die vier Zeitpunkte (ohne Gruppeneinteilung):

Multivariate Tests ^a										
Effekt		Wert	F	Hypothese df	Fehler df	Sig.				
Faktor1	Pillai-Spur	,028	,132 ^b	3,000	14,000	,939				
	Wilks-Lambda	,972	,132 ^b	3,000	14,000	<mark>,939</mark>				
	Hotelling-Spur	,028	,132 ^b	3,000	14,000	,939				
	Größte charakteristische Wurzel	,028	,132 ^b	3,000	14,000	,939				
	nach Roy									

a. Design: Konstanter Term

Innersubjektdesign: Faktor1

b. Exakte Statistik

→ Es gibt keine signifikanten Unterschiede zwischen den vier Zeitpunkten

Ergebnis für Pv-aCO2 über die vier Zeitpunkte (ohne Gruppeneinteilung):

Statistik für Test ^a				
Ν	17			
Chi-Quadrat	3,988			
Df	3			
Asymptotische Signifikanz	,263			

a. Friedman-Test

→ Es gibt keine signifikanten Unterschiede über die vier Zeitpunkte

Gibt es Unterschiede zu jedem Zeitpunkt zwischen den Gruppen in Bezug auf die 5 Werte?

Ergebnisse für tHb:

		Levene-1 Varianzgi			T-Tes		
		F	Signifikanz	т	df	Sig. (2-seitig)	
tHb_t1	Varianzen sind gleich	1,223	,274	,711	47	,480	
	Varianzen sind nicht gleich			,698	41,074	,489	
tHb_t2	Varianzen sind gleich	,057	,812	-,021	49	,984	
	Varianzen sind nicht gleich			-,021	45,925	,984	
tHb_t3	Varianzen sind gleich	,471	,498	,400	31	,692	
	Varianzen sind nicht gleich			,472	12,414	,645	
tHb2_t4	Varianzen sind gleich	1,266	,273	,456	21	,653	
	Varianzen sind nicht gleich			,706	4,412	,516	

Test bei unabhängigen Stichproben

→ Die Gruppen unterscheiden sich zu keinem Zeitpunkt voneinander

Ergebnisse für Lac:

Test bei unabhängigen Stichproben

		Levene-Test der Varianzgleichheit				T-Te		
		F	Signifikanz	т	df	Sig. (2-seitig)		
Lac_t1	Varianzen sind gleich	,502	,482	-,560	46	,578		
	Varianzen sind nicht gleich			-,568	45,999	,573		
Lac_t2	Varianzen sind gleich	4,305	,043	-,093	49	,926		
	Varianzen sind nicht gleich			-,097	47,372	,923		
Lac_t3	Varianzen sind gleich	2,602	,117	,692	31	,494		
	Varianzen sind nicht gleich			1,004	20,460	,327		
Lac_t4	Varianzen sind gleich	2,734	,113	,623	21	,540		
	Varianzen sind nicht gleich			1,589	20,781	,127		

→ Es gibt keinen Unterschied zwischen den Gruppen zu den 4 Zeitpunkten

Ergebnisse für Plasma Cv-aCO₂/Ca-vO₂:

		Levene-T Varianzgi			т-т		
		F	Signifikanz	т	df	Sig (2-soitig)	
		1	orgrinikariz	1	u	olg. (2-settig)	
Cv-aCO2/Ca-vO2_t1	Varianzen sind gleich	1,997	,165	,439	45	,663	
	Varianzen sind nicht gleich			,429	37,078	,670	
Cv-aCO2/Ca-vO2_t2	Varianzen sind gleich	,725	,400	,582	40	,564	
	Varianzen sind nicht gleich			,582	37,436	,564	
Cv-aCO2/Ca-vO2_t3	Varianzen sind gleich	,648	,428	-,539	28	,594	
	Varianzen sind nicht gleich			-,644	13,924	,530	
Cv-aCO2/Ca-vO2_t4	Varianzen sind gleich	,294	,594	2,705	20	,014	
	Varianzen sind nicht gleich			2,228	2,396	,134	

Test bei unabhängigen Stichproben

➔ Es gibt signifikante Unterschiede zwischen Gruppe 1 und 2 bei Cv-aCO2 zum letzten Zeitpunkt

Ergebnisse für Blut Cv-aCO2/Ca-vO2:

Test bei	unabhängigen	Stichproben
----------	--------------	-------------

		Levene-Test der Varianzoleichheit				
		F	Signifikanz	Т	df	Sig. (2-seitig)
Blut Cv-aCO2/Ca-vO2_t1	Varianzen sind gleich	3,334	,075	,410	45	,683
	Varianzen sind nicht gleich			,400	35,774	,691
Blut Cv-aCO2/Ca-vO2_t2	Varianzen sind gleich	1,586	,215	,498	40	,622
	Varianzen sind nicht gleich			,498	36,667	,622
Blut Cv-aCO2/Ca-vO2_t3	Varianzen sind gleich	,726	,401	-,582	28	,565
	Varianzen sind nicht gleich			-,689	13,596	,503
Blut Cv-aCO2/Ca-vO2_t4	Varianzen sind gleich	,700	,413	2,750	20	,012
	Varianzen sind nicht gleich			2,129	2,334	,149