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Abstract

In econophysics, the intersection of statistical physics and economics offers
a unique viewpoint for deciphering complex economic systems. This thesis
uses a complex systems framework to study the intricate dynamics of supply
networks and energy systems.

The research initially investigates the creation of supply networks, with
economies of scale emerging as a critical influencer. The research highlights
the process of globalization using an abstract theoretical model, demon-
strating the shift from localized to centralized production. When the model
accounts for differences in agent preferences, it reveals three unique trade
regimes: local, centralized, and diversified production. The results empha-
size the significant impact of transportation costs, preference diversity, and
economic scale effects on global trade patterns.

The following section of the thesis examines the concept of demand re-
sponse in electric power systems, focusing on the advantages of load shifting
at the individual household level through an agent-based model. However,
the coordinated operation of these systems based on real-time pricing may
result in synchronization, potentially creating grid stability issues.

Additionally, the thesis presents an extensive statistical study of elec-
tricity price time series in the European electricity exchange market. The
research identifies time scales intrinsic to price dynamics by addressing non-
stationarities and fitting data to appropriate models. A significant finding
is a strong correlation between weather conditions and electricity price dy-
namics, emphasizing the importance of considering external factors in agent-
based models.
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This thesis aims to objectively understand collective behaviors within
econo-physical models of supply networks and energy systems. The agent-
based models presented establish a basis for future research, highlight-
ing the potential integration of advanced tools such as machine learning.
The research yields significant findings and insights that contribute to aca-
demic discourse, with profound implications for policymakers, businesses,
and stakeholders in the energy sector.
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Chapter 1

Introduction

1.1 Econophysics and Complex Networks

Theoretical physics has always been a major source of inspiration for the de-
velopment of economic theory, particularly the development of the modern
neoclassical theory [1, 2]. Early research focused on the theory of economic
equilibrium, inspired by the equilibrium of classical mechanics. In this ap-
proach, a stable economic equilibrium corresponds to a state of maximum
utility, whereas a stable mechanic equilibrium is a state of minimum po-
tential energy. This analogy was emphasized by Léon Walras [3] and other
founding fathers of neoclassics [2]. Furthermore, there was a strong method-
ological influence. Neoclassical researchers emphasized the mathematical as-
pects of their work, differentiating themselves from the political economics
of their time [2]. Statistical methods became essential in economics much
later, as discussed in [1].

Econophysics is an interdisciplinary research field that emerged from
statistical physics a few decades ago. In this field, researchers apply the
theories and methods of physics to understand and solve the questions of
both micro- and macro-economies [1, 4, 5]. The microscopic perspective
includes, in particular, agent-based models of economic behavior and their
statistic analysis [4].

A well-established sub-field in econophysics is the study of economic time
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2 Chapter 1. Introduction

series, from single assets to market indices [6]. This subfield included the
development of stochastic models of time series and the empiric study of
correlations and scaling behavior. For instance, it has been pointed out that
the statistics of price changes over different time steps in foreign exchange
markets bear strong similarities to the statistics of velocity differences in
turbulent fluids [7]. Another prominent example is the application of random
matrix theory to modeling financial correlations [8]. These developments
have influenced the fields of mathematical finance.

More recently, the analysis of economic networks has become a vital
subtopic in econophysics [9, 10]. Prime questions are the vulnerability of
economic networks, in particular in the perspective of the global financial
crisis 2007/08 [11], or the formation of networks by individual actors [12].
Again, a microscopic and a macroscopic perspective on economic networks
has emerged. The macroscopic approach focuses on the statistical and large-
scale properties of the respective networks [10]. For instance, a power-law
scaling has been claimed for the network of direct investments among Euro-
pean firms [13]. Hence, the network would be dominated by only a few large
firms, which has far-reaching consequences on the network’s vulnerability
to failures and bankruptcies [14]. In contrast, the microscopic perspective
typically focuses on the individual system elements and how their behavior
and choices shape individual relations [10]. The formation of a network can
then be understood in the framework of game theory, where agents decide
about the formation of links, influenced by the decision of other agents [12].

This thesis is devoted to the econophysics of supply networks and energy
systems. The first part studies the emergence of supply networks from indi-
vidual economic decisions with a focus on collective decisions. The second
part deals with collective effects and correlations in energy networks and
markets in the context of the ongoing energy system transformation. This
part includes a microscopic study of consumer decisions and a macroscopic
study of European electricity markets.
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1.2 Multi-agent systems

A multi-agent system is composed of many autonomous agents in complex
systems. These agents have the intelligence to assess their internal state
and external conditions and make decisions based on their assessments.
The study of collective actions and behaviors at the macroscopic level in
various fields, including econophysics, has gained significant importance
[15, 16, 17]. Multi-agent systems have been utilized in diverse areas such
as transportation, social sciences, and artificial intelligence, demonstrating
their versatility and effectiveness in modeling complex systems [18].

The agents in the system can be coupled if they are able to communicate
or interact with one another, leading to changes in their individual behav-
iors based on the actions of others in the system. This feature means that
one agent’s actions can affect others’ situations in the system, potentially
changing the actions of many agents. Such coupling and interactions can
provide non-linearity to the system [19]. Studying these interactions has led
to advances in understanding social networks, supply chains, and various
economic systems, among other areas [20].

Agent-based modeling has emerged as an important tool for understand-
ing the behavior of complex economic systems [21]. By simulating the inter-
actions of diverse agents with different preferences, constraints, and decision-
making rules, agent-based models can capture the heterogeneity and non-
linearity of economic systems more effectively than traditional mathemat-
ical models [22]. Agent-based models have been employed to investigate a
wide range of economic phenomena, such as market dynamics, consumer
behavior, and the formation of economic networks [23]. The flexibility of
agent-based models allows researchers to incorporate behavioral and insti-
tutional factors into the models, thus providing a more comprehensive and
realistic representation of economic systems [24].

One limitation of agent-based models in economics is their reliance on
simplifying assumptions and the challenges of validating and calibrating the
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models [25]. However, despite these limitations, agent-based models have
contributed significantly to the field of econophysics by offering valuable
insights into agents’ complex interactions and emergent behaviors within
economic systems [26]. Recent advancements in computational power and
data availability have further facilitated the development and application
of more sophisticated agent-based models in the study of economic systems
[27].

Utility functions are crucial in measuring agent preferences and guiding
their actions. They quantify the satisfaction of agents when encountering
different options. Based on the given information, agents can evaluate the
situation and rank the different options, choosing the one that best fits
the simulation guidelines. In econophysics, agents in multi-agent economic
systems are often assumed to be economic men, i.e., perfectly rational agents
[28]. These types of agents always maximize their utility function with all
the information they have, and they are capable of overseeing all possible
outcomes and evaluating them based only on the quantified outcomes [29].

The agents in the multi-agent system act based on microscopic individual
decisions. On the other hand, the collective action of all agents in the system
represents the macroscopic properties of the system. Observations in statis-
tical physics focus on macroscopic properties to understand the system [26].
By combining the principles of statistical physics and agent-based model-
ing, researchers can explore the connections between microscopic individual
decisions and macroscopic properties, shedding light on agents’ collective
actions and behaviors in multi-agent systems [6].

One of the most interesting aspects of multi-agent systems is the emer-
gence of macroscopic phenomena from the microscopic interactions of in-
dividual agents [30, 31]. In many cases, these emergent phenomena can be
understood in terms of phase transitions, where the system undergoes a
dramatic change in its macroscopic properties due to the collective behav-
ior of its agents [32, 33]. Phase transitions are a central topic in statistical
physics, and hence, many ideas and concepts have been translated to the
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analysis of multi-agent systems [34].

In the context of econophysics, phase transitions have been observed in
various economic systems caused by the complex interactions among agents
[35, 36]. For example, abrupt changes in market volatility or the formation of
economic bubbles can be seen as phase transitions driven by the collective
behavior of market participants. By studying these emergent phenomena
and their underlying mechanisms, researchers can gain insights into the
stability and resilience of economic systems, which can ultimately inform
policy-making and risk management strategies [37].

Network analysis has become an increasingly important tool for study-
ing the structure and dynamics of multi-agent systems [38]. By representing
agents as nodes and their interactions as edges, researchers can explore the
topological properties of the system and investigate the role of network
structure in shaping the emergent behavior of agents [39]. In econophysics,
network analysis has been applied to study various economic systems, such
as financial markets, trade networks, and supply chains, revealing the com-
plex inter-dependencies among agents and the potential for cascading fail-
ures and systemic risk [40, 10].

Moreover, recent advancements in network science, such as the study of
multiplex networks and temporal networks, have enabled researchers to cap-
ture the multi-layered and dynamic nature of real-world economic systems,
providing a more comprehensive understanding of the complex interactions
among agents and the mechanisms driving the emergence of macroscopic
properties [41].

In summary, multi-agent systems are an essential component of econo-
physics research, providing insights into the complex interactions and emer-
gent behaviors of agents within economic systems. By combining the prin-
ciples of statistical physics, agent-based modeling, and network analysis,
researchers can develop a deeper understanding of the microscopic and
macroscopic properties of these systems, with important implications for
policy-making and risk management in various economic sectors.
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1.3 Collective Behavior

First introduced and popularized by a group of sociologists in the first half of
the 1900s [42, 43, 44], collective behavior describes the macroscopic actions
of a group of agents. Focusing on the group, the idea of collective behavior
is that the effect of the collective of all actions is different than the sum of
the actions [45, 30]. In a multi-agent system, collective behaviors connect
the microscopic actions of individuals to the macroscopic actions of the
system [46]. The agents in the system choose their actions individually based
on their utilities. When the agents in the system have similar reactions
to the surrounding environment, the collective behavior can emerge from
these individual decisions, and the system may look homogeneous from the
macroscopic view [47].

Agent-based models are an effective tool for studying the effect of collec-
tive behaviors [15]. Using the utility functions, the model builds the system
structure from the bottom up. The organization of the agents in the system
emerges from the actions of individual agents [48]. The agents interact to
form connections, and this process can be related to network science. In a
loosely coupled system, the actions of the agents are heterogeneous [49]. As
the interactions of the agents increase, the coupling between the agents in-
creases, leading to more homogeneous actions [50]. When enough agents act
similarly, the effect of collective behaviors can become visible at a critical
point in a system that was once disordered [51].

By modeling the system, we can understand the process of emerging
collective behaviors. The snapshots of the evolution of the systems provide a
scope to look into what were once very rapid changes, such as critical points
[16]. These critical points can be observed and analyzed more effectively
using agent-based models [52]. Coupling and the interaction between agents
play a crucial part in understanding the emergence of collective behaviors
within the system.

In the realm of collective behaviors, the research of [53] offers a com-
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pelling exploration. The study bridges the sociophysical voter model with
the statistical physics Ising model, delving into the intricacies of a phase
transition. A pivotal concept introduced is the “social temperature,” which
mirrors individuals’ propensity to alter their opinions, drawing parallels with
the physical temperature in the Boltzmann distribution.

The system shows a strong tendency towards domain formation in figure
1.1. When the social temperature is lower than the critical social temper-
ature, collective alignment emerges, outlining a few well-defined domains
that represent regions characterized by uniformity in agent states or opin-
ions. Figure 1.2 comprehensively analyzes the system’s magnetization dy-
namics across different social temperatures. Notably, the system manifests
a near-absolute polarization when the social temperature is lower than the
critical social temperature, underscoring a dominant collective consensus
among the individual agents.

Both figures exemplify the essence of collective behavior: the interplay
between individual decisions and collective behaviors, as well as the impact
of external factors, such as temperature, on this dynamic. This study pro-
vides a deeper understanding of agents’ collective behavior and highlights
the significant links between sociophysics and statistical physics.

In summary, from natural science to social science, from medical studies
to engineering, agent-based models have been applied to numerous fields
to study emerging collective behaviors [48, 54, 55, 56, 57]. Understand-
ing emerging collective behaviors allows researchers to gain insights into
the complex interactions and behaviors that drive the systems they study
[19, 17]. By providing a detailed understanding of the underlying processes,
agent-based models can help researchers develop more effective interven-
tions, policies, and strategies to address various challenges in various do-
mains.
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Figure 1.1: A visualization of the dynamics of a generalized voter model bearing strong
resembling the kinetic Ising model [53]. The figure shows the state of a square lattice of
size L = 500, spanning social temperatures T and three different timesteps t. From the
top to bottom, T = 0.9TV , T = TV , and T = 1.1TV , and from left to right, the time
steps are t = 103, t = 104, and t = 5 × 104, respectively. In the top row, at a lower
temperature, the system leans towards order, with agents predominantly aligning with
group opinions. The middle row indicates the system at critical temperature. It depicts
the system’s transitional behavior, marking a shift from structured dynamics to a more
chaotic state, characteristic of the voter model. Conversely, the bottom row reveals a
disordered state at higher temperatures, emphasizing the diminished trust agents place
in local majorities. Figure reproduced from [53] with permission of the authors.

1.4 Correlated Dynamics

Examining correlations in complex systems often involves the application of
statistical and probability theory [58]. These correlations can typically be
introduced in two main ways. First, interactions between agents establish
a direct connection for correlation, and second, systematic dynamics may
result in correlations among the dynamics of the agents. Gaining a deeper



1.4. Correlated Dynamics 9

-1

 0

 1

m

-1

 0

 1

m

-1

 0

 1

m

-1

 0

 1

 0  2⋅10
6

 4⋅10
6

m

t
ρ

Figure 1.2: Dynamics of a generalized voter model bearing strong resembling the kinetic
Ising model [53]. This figure provides a comparative analysis of the total magnetization
of the system m at different social temperatures T over time t and their distribution den-
sities ρ. The system has size L = 100. From top to bottom, each row represents different
social temperatures T = 0.9846TV , T = 1.0002TV , T = 1.0046TV , and T = 1.6717TV .
The left-side plots are the magnetizations of the system over time, and the right-side
plots are the distribution density of the magnetizations. At lower temperatures, the
agents exhibit a strong collective consensus, gravitating toward shared states. Around
the critical temperature, the system displays a mix of collective consensus and diverse
opinions, reflecting the interplay between individualistic and collective tendencies. No-
tably, at T = 1.0046TV , there is a balance of opinions, yet periodic inclinations towards
collective alignment emerge. When the social temperature is significantly higher than the
critical temperature, the magnetization of the system m oscillates around zero, indicat-
ing that agents adopt any opinion present in their neighborhood. This figure highlights
the intricate balance between individual and collective behaviors, showcasing how tem-
perature modulates the dance between order and disorder in collective dynamics. Figure
reproduced from [53] with permission of the authors.

understanding of these correlations is key to deciphering the dynamics of
the system and the behavior of each individual agent.

Within a multi-agent system, the dynamics of the system and its compo-
nents are governed by the agents’ utility functions. To fully grasp a multi-
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agent system, we must observe both the actions of the agents in the system
and the system’s development over time. By focusing on the time series
generated from the system, we can employ a range of statistical tools to
analyze and make sense of the system’s correlations [49]. As a dynamical
system, the complex system exhibits sophisticated behaviors that may be
influenced by an array of internal and external factors.

In such a complex system, the behavior of individual agents may be cor-
related due to the system’s design. When agents interact, synchronization
and correlation can result from an agent’s influence on another. This phe-
nomenon is demonstrated through models such as the echo chamber model
[59, 60] and the voter model [53, 39]. Conversely, agents within the system
may demonstrate synchronization and correlations even in the absence of
direct connections or interactions. This phenomenon implies that external
factors, such as shared environmental impacts or systemic constraints, may
also contribute to the emergence of correlated dynamics within the system
[58]. It is essential to comprehend these correlations and their origins to
model and predict the behavior of complex multi-agent systems accurately.

1.5 Network formation in economy and beyond

Network formation and percolation theory have played a significant role in
elucidating the structure and dynamics of diverse systems, including eco-
nomic, social, and physical systems. Examining these processes provides
valuable insights into the fundamental mechanisms that propel the emer-
gence and evolution of complex networks, such as trade networks, finan-
cial markets, and social networks. By examining the principles of network
formation and percolation, researchers can better understand the interre-
lationships among individual agent behavior, local interactions, and global
system properties. This knowledge ultimately enables the development of
more effective strategies for managing and optimizing complex systems.

An important breakthrough in network formation and percolation the-
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ory occurred with the study of random graphs by Erdös and Renyi [61] and
Gilbert [62]. Erdös and Renyi introduced two ensembles of random graphs,
each with n nodes. Ensemble G(n,m) comprises all graphs with a fixed
number of edges, m, each with equal probability. Ensemble G(n, p) con-
nects each pair of nodes with an edge with probability p and with no edge
with probability (1− p). These ensembles, particularly G(n, p), have arisen
as essential models for connectivity emergence in graphs as they permit
an elegant analytical solution. The detailed behavior of this emergence in
G(n, p) is depicted in figure1.3.
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Figure 1.3: Emergence of connectivity in the Erdös-Renyi random graph ensemble
G(n,p). A giant connected component (GCC) emerges if the average degree c exceeds
one. We plot the relative size s of the GCC s as a function of c for a finite graph with
n = 200 and in the thermodynamic limit. In the thermodynamics limit, the size of the
GCC is determined by the implicit equation 1 − s = e−cs. Results for the finite graph
were obtained by direct numerical simulation averaging over 50 random realizations. The
simulation code includes functions implemented by J. Wassmer.

Percolation theory has flourished since it provides model systems that
capture essential properties of real systems but still allow for an analytic
treatment. For instance, directed percolation can used to understand the
transition to turbulence in Couette flow [63].

In the 1990s, large datasets of actual social and economic networks be-
came available, triggering a renewed interest in random graph models [38].
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It became obvious that the classic Erdös-Renyi ensembles fail to describe
essential properties of social networks. In 2000, Watts and Strogatz in-
troduced a model that interpolated between regular lattices and random
graphs, visualized in figure1.4, to model networks that simultaneously show
a low average path length and a high clustering coefficient [64]. One year
later, Barabási and Albert introduced a stochastic network growth model,
as shown in figure1.5, to describe the emergence of hubs observed in social
networks [65].

p = 0.00
L = 1.91
C = 0.50

regular

p = 0.20
L = 1.82
C = 0.48

small-world

p = 0.90
L = 1.73
C = 0.22

random

Increasing p

Original Edges Rewired Edges

Figure 1.4: Visualization of the Watts-Strogatz small-world model for varying rewiring
probabilities p [64]. The figure showcases the transition from a regular lattice (left) to a
small-world network (center) and finally to a random network (right). Edges are colored
based on their status: original edges from the regular lattice are shown in red, and rewired
edges are shown in blue. The characteristic path length L and clustering coefficient C

for each network are displayed below each subplot. An arrow at the bottom indicates
the increasing trend of the rewiring probability p. The average path length L and the
clustering coefficient C tend to decrease as p increases, which are the properties of the
Watts-Strogatz model.

These models, as well as many successors, stand in the tradition of ran-
dom graph ensembles. The statistic approach allows for deep insights, for
example, in the robustness of a graph [66, 38], but it does not answer the
question why links are established in the first place. Global optimization
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Figure 1.5: The evolution of a Barabási-Albert model with n = 11 nodes [65]. In every
step, a new node is added to the network, as well as m = 2 edges connecting this
node to existing nodes. The connecting nodes are chosen at random with a probability
proportional to their degree, which is referred to as “preferential attachment”. In the
figure, each panel represents different steps of the network growth process. The nodes
are colored to represent their degrees, while the edge colors indicate the stages of growth.
The BA model’s preferential attachment mechanism is evident in the network’s structure.
New nodes tend to connect to existing nodes with higher degrees, leading to a few nodes
accumulating a large number of connections. This phenomenon results in the emergence
of hubs, which are nodes with exceptionally high degrees.

models provide such an answer for some types of networks, especially in
engineering or biology. For example, optimizing the topology of a flow net-
work to minimize the dissipated energy with limited resources can explain
the structure of leaf venation networks [67]. However, these global models
are not applicable in social or economic networks, where there is no over-
arching objective, just the goals and decisions of single agents. A variety
of game theoretic network formation models were introduced in the field
of mathematical economy. Here, edges are established due to the decisions
of individual agents or nodes as required. However, most of these models
are highly abstract and thus not directly applicable to real-world economic
networks [68].

When economic activities take place in a system, goods, services, and
values are transferred between the agents. If we consider these transactions
as the connections between the agents, these economic activities constitute
a trade or supply network. We note that trade networks generally require
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a physical network for transportation, such as the power grid for electricity
trading [69] or the cargo ship network [70].

But what drives the development of trade and supply networks in the
first place? The first theory of international trade was developed by David
Ricardo as early as 1817 [71, 72]. Ricardo postulated a comparative advan-
tage as the main reason for trade. Two countries will benefit from trading
if they have different productivity, i.e., if they can produce goods at dif-
ferent costs. The countries will then start to export goods with the lowest
opportunity costs in exchange for other goods.

The new trade theory pioneered by Paul Krugman emphasizes other rea-
sons for trade, particularly economies of scale and a preference for diversity
of many consumers [73]. Economies of scale refer to the empirical finding
that the price of a good typically decreases with the amount of produc-
tion. Hence, centralizing production and establishing networks to distribute
the goods to the customers is often beneficial. Furthermore, different cus-
tomers have different preferences, so countries often exchange similar, distin-
guishable goods. For instance, countries import and export cars of different
brands and types.

This thesis investigates a model for the emergence of the supply or trade
network driven by the decisions of individual economic agents. In the very
tradition of econophysics, we utilize concepts from statistical physics to
quantify and understand the emergence of trade networks. In particular, we
will pinpoint collective behavior and phase transition in the system.

1.6 Econophysics and Energy Systems

The mitigation of climate change requires a comprehensive transformation
of our energy supply [74, 75]. Power plants based on fossil fuel must be re-
placed by renewable power sources, in particular wind and solar power. This
transformation challenges both the operation of electricity networks [69] and
electricity markets [76, 77]. This thesis addresses aspects of econophysics,
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particularly the emergence of collective behavior and dynamics associated
with this energy system transition.

Power generation from wind and solar depends on the weather and is thus
volatile and inherently uncertain [78]. The volatility of renewable power is
most apparent on the synoptic time scales ranging from a few days to weeks
[79, 80]. Large-scale weather patterns may change entirely during this time,
as does the yield of wind turbines and solar panels. Furthermore, there is a
seasonal effect whose characteristics depend on the geographic location. In
Europe, wind power is stronger in the winter, while solar power is stronger
in the summer [81]. This volatility of renewable power generation also man-
ifests in the electricity market prices: Prices generally increase (decrease)
if the supply decreases (increases). The analysis of price volatility and its
connection to the weather constitutes one major topic of this thesis.

At the same time, the complexity of energy systems and energy mar-
kets is growing tremendously. Renewable power sources are typically more
distributed than conventional power plants. For instance, there are tens
of thousands of wind turbines in Germany alone. New actors are entering
the system, for instance, battery electric storage systems providing primary
reserve power [82]. All these elements must be monitored, controlled, and
integrated into the existing energy markets. Notably, German law requires
all new renewable power sources with peak power above 100 kW to sell
electricity directly [83] – typically via an intermediary at the ordinary elec-
tricity market. In the future, complexity will increase even more as different
economic sectors are coupled to the electricity system [84]. For instance, we
are already witnessing a rapid advance in electric mobility [85].

Electric Power systems require a stable balance of generation and load.
Fluctuations of renewable power sources are mainly balanced by flexible
power plants [86] or different storage technologies [87]. However, the de-
mand side may also provide flexibility – an approach commonly referred to
as “demand response” [88, 89]. This approach is fostered by sector coupling,
for example, via the flexibilization and optimization of energy-intensive in-
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dustry processes [90]. On a smaller scale, consumers with specific tariffs may
adapt their demand to the current electricity prices in almost real-time to
reduce overall costs [91]. In this way, many consumers react to the same
input signal – the price – which can lead to a strong collective response. In
fact, it has been shown in the econophysics community that systems sub-
ject to common input signals can synchronize, which fundamentally changes
their statistic characteristics [92, 93]. This thesis will address these aspects
using a multi-agent simulation model.

In summary, statistical methods have become indispensable in planning,
operating, and analyzing modern energy systems. Methods for stochastic
time series analysis developed in the field of econophysics can be general-
ized to energy markets, taking into account the external influences of the
weather. Agent-based simulation methods can be applied to study the col-
lective effects of distributed elements in energy systems and markets.



Chapter 2

Work Overview

This thesis comprises four scientific publications, which are all published.
These are:

#1 [published] Han, Chengyuan, Malte Schröder, Dirk Witthaut, and
Philipp Böttcher. Formation of trade networks by economies of scale
and product differentiation. Journal of Physics: Complexity 4, no. 2
(2023): 025006. [94]

#2 [published] Han, Chengyuan, Dirk Witthaut, Marc Timme, and Malte
Schröder. The winner takes it all—Competitiveness of single nodes in
globalized supply networks. PloS one 14, no. 11 (2019): e0225346. Ref.
[95]

#3 [published] Han, Chengyuan, Dirk Witthaut, Leonardo Rydin Gor-
jão, and Philipp C. Böttcher. Collective effects and synchronization of
demand in real-time demand response. Journal of Physics: Complexity
3, no. 2 (2022): 025002. Ref. [96]

#4 [published] Han, Chengyuan, Hannes Hilger, Eva Mix, Philipp C.
Böttcher, Mark Reyers, Christian Beck, Dirk Witthaut, and Leonardo
Rydin Gorjão. Complexity and persistence of price time series of the
European electricity spot market. PRX Energy 1, no. 1 (2022): 013002.
Ref. [97]
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Several other projects and their publications [98, 99, 100] were also done
during my Ph.D. study. However, these works are not included as the main
content of this thesis.

Publication #1:Formation of trade networks by economies of scale

and product differentiation. In this article, we present a model for the
formation of trade networks that combines concepts from economics and
statistical physics, based on the references [68] and [95]. The model con-
siders both supply and demand factors in the emergence of trade. On the
supply side, trade emerges when regional differences in production costs ex-
ceed transportation costs, including economic scale effects. On the demand
side, diversity in agents’ preferences facilitates trade even if it increases
costs. The model is derived from individual agents’ decisions, using discrete
choice theory, and shows strong connections to ensembles in statistical ther-
modynamics. We find three different regimes of trade: local production, cen-
tralized production, and an all-to-all coupled trade network. The transition
between these regimes can be continuous or discontinuous, depending on
economic scale effects.

From a fundamental viewpoint, the model starts from discrete choice
theory and aggregates over many agents to obtain total purchases between
network nodes representing regions in space. A thorough treatment of the
thermodynamic limit remains challenging due to different scaling behaviors
in the utility function. We have developed a comprehensive analytical theory
of the transitions between these regimes and derived analytical estimates
for critical parameter values.

The model describes some essential mechanisms in the formation of trade
networks but has limitations. For example, it captures the importance of
economies of scale, diverse preferences, and emergent hysteresis effects but
cannot predict the multi-center structures often observed in reality. Further
research could explore the inclusion of additional factors, such as spatial
constraints or congestion at high levels of centralization, to improve the
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predictive power of the model.

Publication #2: The winner takes it all—Competitiveness of sin-

gle nodes in globalized supply networks. In this article, we conducted
an in-depth investigation into the factors that determine the competitive-
ness and importance of individual nodes in socio-economic networks, with a
particular emphasis on trade networks. We consider a model for the emer-
gence of supply networks established in [68]. In this model, agents have a
fixed demand for a good and optimize their purchases to minimize the total
costs for the good. The emergence of a supply network is driven by the
reduction of the specific costs of transportation and economic scale effects
that may also lead to strong collective effects. Remarkably, the model can
be reformulated as a percolation problem allowing for an efficient numer-
ical solution [68]. Using this model, we were able to analyze the influence
of topological features of nodes within the underlying transport network,
thereby gaining a deeper understanding of the dynamics at play.

Our results show that an advantageous position with respect to different
length scales determines the competitiveness of a node at different stages
of the percolation process and depends on the speed of cluster growth. We
find that for weak economies of scale, the internal properties of an eco-
nomic agent, such as closeness, betweenness, and degree, are the decisive
factors. In contrast, for strong economies of scale, neighborhood properties,
in particular the proximity of the nearest neighbors facilitating trade, be-
come more important than efficiency or global location. Furthermore, our
study highlights the significance of local closeness as a measure of a node’s
success.

The article provides valuable contributions to the understanding of net-
work formation through economies of scale and individual decisions in large
heterogeneous systems. Our research provides important insights into the
structure of trade networks and the factors that shape the competitiveness
of nodes. We have explored the core aspects of “who wins and how” in a
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simplified model of supply network percolation, paving the way for further
research in this area and shedding light on the emergence of trade networks
and globalization.

The insights gained from our research can contribute to the development
of more effective policies and strategies for managing globalized supply net-
works. Furthermore, the knowledge gained from our study has the potential
to improve our understanding of systemic risks, such as those observed in
the financial sector, and to help mitigate the negative consequences of these
risks.

In conclusion, our article presents a comprehensive examination of the
competitiveness of individual nodes in globalized supply networks and pro-
vides a foundation for future research in this area. By understanding the
factors that determine the success of individual nodes, we can work towards
fostering more resilient and efficient socio-economic networks in an increas-
ingly interconnected world.

Publication #3: Collective effects and synchronization of demand

in real-time demand response. In this article, we conduct an in-depth
investigation into the operation and statistics of demand response at the sys-
tem level, focusing on the synchronization of demand and its impact on the
stability of the power system. As the energy landscape evolves towards an
increased reliance on renewable power sources, the need for flexible elements
to balance the variability of renewable power generation is paramount. De-
mand response offers a viable approach to adapting electricity demand to
match the variable generation, particularly by shifting the load in time.

Utilizing a simulation model based on real-world electricity demand data
from German households, we study the collective behavior of demand re-
sponse systems in response to real-time electricity pricing. Our findings in-
dicate that while demand response does facilitate load shifting as intended,
it also gives rise to strong collective effects, such as synchronization of de-
mand, which could pose a threat to system stability. As more households
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participate in demand response, the likelihood of extreme demand peaks
increases, potentially stressing the power system.

This work provides a comprehensive statistical analysis of the grid load,
quantifying both the likelihood and extent of extreme demand peaks. Our
results demonstrate that demand response systems, driven by standard price
signals, can lead to the synchronization of electricity load among households.
This synchronization reduces the smoothing effect and results in pronounced
demand peaks. In some cases, demand peaks may not align with periods of
the lowest prices but could occur when prices drop following a prolonged
period of high values. In such scenarios, demand response operations could
have counterproductive effects on system stability.

Our findings emphasize the need to implement demand response systems
to mitigate the identified negative consequences carefully. Coordinating de-
mand response at the system level and designing programs that offer con-
sumers flexibility in reducing demand could be potential solutions to the
synchronization problem. However, further research is needed to determine
the most effective strategies for addressing these challenges.

In conclusion, our article provides valuable insights into the potential
negative consequences of demand response systems, underscoring the im-
portance of considering both collective effects and technical implementa-
tion details when designing and deploying demand response programs. A
comprehensive assessment of demand response should account for factors
such as the layout of the respective distribution grid, market penetration
of demand response systems, choice of algorithms, and heterogeneity of DR
units. Such multifaceted modeling efforts can help identify whether coun-
termeasures are necessary and how they can be effectively implemented to
ensure the optimal operation of future energy systems.

Publication #4: Complexity and persistence of price time series of

the European electricity spot market. In this comprehensive study,
we delved into the complex dynamics of electricity price time series in the
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European electricity market. In particular, we focused on the day-ahead and
intra-day spot markets for bulk electricity. This work provides a macroscopic
statistical understanding of the collective phenomena observed in the time
series. Our study was guided by four key questions: (1) What is an ap-
propriate model to describe the leptokurtic distribution of the price time
series? (2) Can we model price time series by simple stochastic processes,
or do they exhibit nontrivial correlations? (3) On which time scale do cor-
relations persist? How can these time scales be identified from the data
and associated with a physical explanation? (4) How are the above aspects
related to weather changes?

After eliminating non-stationarities in the data utilizing the Hilbert-
Huang transform, we fit the price time series to q-Gaussian and symmet-
ric Lévy α-stable distributions. It was found that q-Gaussian distributions
provided the most accurate fit for all the time series examined. Then, we
extracted three intrinsic time scales associated with the internal correla-
tions of prices, the correction of extreme prices, and the slow-changing non-
stationarity effects.

The research findings were correlated with weather changes through an
examination of circulation weather types, with a particular focus on the
strength of the large-scale near-surface flow over Central Europe. The strong
correlation between weather conditions and electricity price dynamics high-
lights the importance of incorporating external factors, such as weather
patterns, into agent-based models that study collective phenomena within
electricity markets.

In addition to the main findings, the analysis presents innovative tools
for improving the understanding of spot market electricity price time series
in the context of agent-based studies of collective phenomena. The methods
presented can refine the modeling of price time series with accurate statis-
tical properties in future investigations and elucidate their association with
weather changes. These insights have significant value for agent-based mod-
els, as they can contribute to a more precise representation of collective be-
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haviors, including the interactions between electricity producers, consumers,
and market mechanisms.

In summary, this study advances our comprehension of electricity price
time series and highlights the relevance of these findings in agent-based
studies of collective phenomena in electricity markets. By accounting for
pertinent features such as non-stationarity, appropriate local distributions,
and intrinsic correlations, our methodologies can facilitate improvements
in agent-based models, ultimately leading to more accurate predictions of
price dynamics and market behavior.
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Abstract
Understanding the structure and formation of networks is a central topic in complexity science.
Economic networks are formed by decisions of individual agents and thus not properly described
by established random graph models. In this article, we establish a model for the emergence of
trade networks that is based on rational decisions of individual agents. The model incorporates key
drivers for the emergence of trade, comparative advantage and economic scale effects, but also the
heterogeneity of agents and the transportation or transaction costs. Numerical simulations show
three macroscopically different regimes of the emerging trade networks. Depending on the specific
transportation costs and the heterogeneity of individual preferences, we find centralized
production with a star-like trade network, distributed production with all-to-all trading or local
production and no trade. Using methods from statistical mechanics, we provide an analytic theory
of the transitions between these regimes and estimates for critical parameters values.

1. Introduction

Trade networks are essential to today’s international economy [1, 2]. From supply chains to financial
transactions, goods and values are exchanged among almost every region on Earth. The importance of
economic connectivity and complexity becomes most obvious in case of a disturbance: the world financial
crisis of 2007/2008 emerged after inter-bank claims and liabilities had been growing for decades, enabling a
rapid spread of financial risks [3, 4]. Similarly, disruptions of global transportation networks due to the
Covid-19 pandemic have led to a substantial loss of production in various regions [5].

The emergence of connectivity and the structure of networks are essential topics in complexity science
[6–8]. Traditionally, ensembles of random networks have been used to describe essential features of
real-world networks such as the small-world effect or the emergence of hubs [9, 10]. On the one hand,
percolation theory enables far-reaching insights into the formation and robustness of ensembles of networks
[11]. On the other hand, optimization models have been used to describe the structure of biological
networks [12, 13], assuming that evolution created structures that provide a certain function in an optimal
way. Both approaches are of limited use in the modeling of economic networks, where links are neither
established at random, nor following a single, global objective. Instead, links are established deliberately on
the basis of individual decisions.

The emergence of trade is a central subject of economics. In the celebrated Ricardian model, trade
patterns are determined by the regional differences in productivity providing a comparative advantage [14].
Initially formulated in terms of productivity of labor, the Ricardian model was later generalized and
formulated in terms of opportunity costs [15]. Predictions of these trade theories have been tested in various
empiric studies, see [16] for a recent example. A comparative advantage typically arises when the trading

© 2023 The Author(s). Published by IOP Publishing Ltd
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countries have strongly different characteristics. Explaining the emergence of trade between similar countries
required a substantial extension of the theory. In a landmark study from 1979 [17], Krugman pointed out the
importance of economies of scale and transportation costs. Economic scale effects foster the centralization of
production, as they lead to lower production costs for large producers and thus to advantages in competition.
Transportation costs may lead to a home market effect, where regions or countries with a higher demand
have an advantage and tend to export a good. Mathematical models in this field often feature the
Dixit–Stiglitz model of consumer preferences in terms of a utility function with a constant elasticity of
substitution [18]. Krugman later extended these ideas towards a comprehensive theory of trade and
economic geography [19]. Notably, economies of scale can also lead to lock-in effects [20]. A well readable
introduction to this topic is provided in the text book [1].

However, transportation and production costs are not the only attributes that determine economic
interactions and trade. Discrete choice theory investigates how economic agents reach a decision on the basis
of both observed and unobserved attributes [21, 22]. The agents’ preferences vary, in particular with respect
to the unobserved attributes, and so do the agents’ choices. Thus, discrete choice models are intrinsically
stochastic, describing the probability of choice on an individual level or the demand for certain goods or
brands on an aggregate level. As a consequence, populations of heterogeneous consumers demand
differentiated goods [23, 24].

Recent research in statistical mechanics and network science has provided a variety of empirical insights
into the structure of international trade networks. Early studies of the structure of trade networks have
shown a scaling behavior [25] and the correlations between different commodities [26]. An explanation for
the observed scaling has been suggested in [27] in terms of a fitness model. Changes in the world trade
network in the last decades were studied in [28, 29], pointing out the importance of (fractal) geography to
understand trade patterns and quantifying the robustness to economic shocks.

In this article we establish a model for the formation of trade networks combining essential concepts of
economics and statistical physics. Trade links are established by the decisions of individual agents taking into
account differentiated preferences in the spirit of discrete choice theory. The cost functions incorporate
economic scale effects, making the decision problems nonlinear and interdependent. Statistical physics guides
the numerical solution of the problem as well as the analysis of the results. We compute the ‘phase diagram’
of the emergent trade network using a self-consistent method and provide an approximate analytic theory
for the transitions between different regimes of the emerging trade network. The current article generalizes
previous models [30, 31] which neglected product differentiation and focused solely on percolation aspects.

2. Models andmethods

2.1. Discrete choice theory
Discrete choice theory considers individual agents or consumers which may choose from different discrete
options. The preferences of the individuals vary leading to product differentiation [21–23, 32]

To formalize this model, we consider a set of nodes or vertices i ∈ {1, . . . ,N} representing well-defined
spatial units, each inhabited by a large number of agents Di. A single agent a at node i chooses to purchase a
good from different nodes j ∈ {1, . . . ,N} at different effective prices p̃ji. However, the price is not the only
factor that determines consumer behavior and preferences generally differ. Hence, the utility of an individual
agent a for a good from node j is

Ua( j) = U0 − p̃ji + T ϵa( j), (1)

with a constant term U0 > 0. It is assume that the utility of a good from node j decreases as the effective price
p̃ji increases which holds for all agents alike. The difference of the individual preferences of the agents a are
summarized in the ϵa( j), which is typically unknown a priori and thus modeled as random variables. The
parameter T > 0 measures how strongly preferences vary between individual agents. A common assumption
in the economic literature is that the ϵa( j) are independent and identically Gumbel distributed, which leads
to the classic multinomial logit model [23, 32]. The probability of an agent a at node i choosing alternative j
is then given by

Pa( j) =
exp(−p̃ji/T )

∑N
ℓ=1 exp(−p̃ℓi/T )

. (2)

Now consider the cumulative purchases Sji made by all agents at node i from all nodes j ∈ {1, . . . ,N}.
Assuming that the number of agents Di at node i is sufficiently large, we can replace the amount by its
expected value and obtain

2
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Sji = Di
exp(−p̃ji/T )

∑N
ℓ=1 exp(−p̃ℓi/T )

. (3)

This expression is the starting point of our analysis. In the limiting case T → 0, differences between the
agents at a node i vanish and all agents purchase from the same node j = i∗ for which the prices are smallest,

Sji =

{
Di for j = i∗

0 j ̸= i∗,
(4)

where i∗ = argminj p̃ji. Finally, we remark that the total expenses of all agents at node i in the discrete choice
model are given by

Ki =
N∑

j=1

p̃jiSji . (5)

2.2. Transportation costs and economies of scale
An important goal of our work is to study the role of transportation costs and scale effects on the formation
of economic networks. We incorporate these aspects in terms of the consumer prices p̃ji that an agent at node
i has to pay when buying goods from node j. First, we assume that consumers have to pay for the
transportation of the good from the production site. As a first order approximation, transportation costs
increase linearly with the distance Eij = Eji of the nodes i and j. Hence, the price per good for a consumer at
node i is the sum of the local price p̃jj at the production location and the transportation costs per unit good,

p̃ji = p̃jj + p̃TEji . (6)

The symbol p̃T denotes the transportation costs per unit of goods and per unit of distance. This quantity
typically decreases over time as the technology in the transportation sector advances. The transportation
network and the distance Eji are discussed in detail below.

Second, we assume that the production is subject to economies of scale. The higher the total production,
the lower the production costs per unit. Denoting the total production at the node j as Sj, we thus assume
that p̃jj (the price without transportation) decreases monotonically with Sj. In this article, we assume an
affine linear relation for the sake of simplicity

p̃jj(Sj) = b̃j − ãSj , (7)

where the parameter ã describes the strength of the scale effects. We assume that the parameters b̃j and ã are
such that p̃jj(Sj) > 0 is always satisfied.

To close the model, we express the production Sj in terms of the purchases Sji. Assuming that the
production is sold completely, it must equal the purchases from all other nodes in the network such that

Sj =
N∑

i

Sji . (8)

For the further analysis, we define the total production at the largest supplier in the system

S∗ = max{S1, S2, . . . , SN} (9)

to characterize the degree of centralization of production.
To summarize, the consumer prices that an agent at node i has to pay for goods from node j are given by

p̃ji(Sj) =
(
b̃j − ãSj + p̃TEij

)
. (10)

The economic model is now complete up to the definition of the Eji which will be provided in the following
section. Notably, the choices of the agents at a node i depend on the choices of all other agents via the total
production Sj entering the prices. This interdependency introduces strong collective effects and essentially
complicates the numerical solution as discussed in section 2.5.

In summary, we have introduced a model that describes different preferences of the agents as well as a
complex cost function featuring production costs, transportation costs and economies of scale. The model
includes three global parameters: (i) the parameter T that describes the importance of the diversity of the
agents’ preferences compared to the price differences, (ii) the specific transportation costs p̃T and (iii) the
strength of economic scale effects ã.

3
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Figure 1. Routes to the emergence of a trade network. Upper row: if the specific transportation costs p̃T decrease, it becomes
cheaper to import goods from neighboring nodes. Economic scale effects foster centralization of production and eventually lead
to the emergence of a one-to-all trade network. Bottom row: if the diversity in preferences quantified by the parameter T
increases, agents are choosing a diverse set of goods from other nodes despite the additional additional transportation costs which
eventually leads to the emergence of an all-to-all trade network. The figures illustrate the existing transportation network (black)
as well as the emerging trade network (blue), while the insets depict the resulting matrix of purchases Sji.

The roles of the system parameters p̃T and T are sketched in figure 1. If the specific transportation costs
p̃T are high and the diversity of preferences T is low, we find local production, that is Sii = Di and Sji = 0 for
i ̸= j. A trade network can then emerge through two different mechanisms: (i) If p̃T decreases, it becomes
cheaper for an agent to satisfy its demand by imports than by local production. This route to trade is strongly
promoted by the scale effects of production [30]. Once a node starts to export goods, production costs per
unit and thus the prices p̃jj(Sk) decrease, facilitating further exports. (ii) If T increases, the preference for a
diverse supply causes agents to more evenly distribute their purchases despite additional transportation costs.
Eventually, an all-to-all connected network of trades emerges. We study the different routes to the emergence
of a trade network in detail in sections 3 and 4.

2.3. Transportation and trade networks
The model introduced above describes the emergence of trades in terms of the purchases Sji on a underlying
transportation network, determining the distances Eji. To study the model numerically, we generate
ensembles of geographically embedded transportation networks as follows. First, a number of nodes is
placed uniformly at random in the unit square with periodic boundary conditions, which is equivalent to a
two-dimensional torus. Second, these nodes are connected using Delaunay triangulation. The length of an
edge (i, j) is given by the Euclidean distance of the terminal nodes i and j with respect to the periodic
boundary conditions. The distance Eij from node j to node i is then given by the geodesic distance on the
transportation network.

Figure 2 shows an example of the generated transportation network as well as the emerging trade
network from an exemplary simulation for T = 0 and decreasing specific transportation cost p̃T. For very
high values of p̃T the supply matrix is diagonal, Sii = Di and Sji = 0 for j ̸= i, such that the trade network is
fully disconnected. When p̃T is gradually lowered, some nodes start to purchase their goods at other nodes,
represented by colored stars. The emerging trade network is thus composed of clusters with a single supplier
(identified by different colors in figure 2). For very small p̃T, the production becomes increasingly centralized
such that one cluster grows until it contains all nodes.

2.4. Aggregated interpretation
In this section we provide an alternative interpretation for the purchases (3) on an aggregate level. Consider
the functions

Fi(S1i, . . . ,SNi) = F0 + T Hi(S1i, . . . ,SNi) −Ki(S1i, . . . ,SNi), (11)

for all nodes i = 1, . . . ,N with a constant F0 and

Hi = −
N∑

ℓ=1

Sℓi
Di

ln
Sℓi
Di

, (12)
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Figure 2. The transportation network and the emerging trade network during the centralization of production. Symbols and
dashed lines show the nodes and the edges of the transportation network, while solid lines in different colors indicate clusters in
the emerging trade network. Colored stars indicate nodes that export goods to all nodes in the respective cluster, shown in the
same color. Grey nodes supply only themselves and gray dashed lines indicate transportation routes that are not being used. As
the transportation cost decreases from panel a to c, the cluster size of the largest supplier grows until it encompasses almost the
entire network. Parameters are T = 0 and a = 10−3.

Ki =
N∑

ℓ=1

(
b̃ℓ − ã(Sℓ − Sℓi/2)+ p̃TEiℓ

) Sℓi
Di

. (13)

Now consider the purchases that maximize the function Fi while respecting the constraint

N∑

ℓ=1

Sℓi = Di.

That is, all purchases made by agents at the node imust sum to Di. The maximum can be computed by using
the method of Lagrangian multipliers, leading to the conditions

∂

∂Sji

[
Fi − λ

(
N∑

ℓ=1

Sℓi −Di

)]
= 0. (14)

Solving these conditions yields

Sji = Di
exp(−p̃ji/T )

∑N
ℓ=1 exp(−p̃ℓi/T )

. (15)

which is equivalent to the expression (3).
The maximum of the function Fi has be to be evaluated for all nodes i = 1, . . . ,N—but these

optimization problems are not independent. Every function Ki depends on the production Sj at all nodes
and hence on the results of the optimization problems of all nodes in the network. We thus have to interpret
the purchases (15) as a Nash equilibrium: no node i can further increase the function Fi by changing its
purchases S1i, . . . ,SNi while the purchases of all other nodes remain constant.

We have thus introduced an alternative, macroscopic approach that reproduces the aggregated purchases
obtained from discrete choice theory. The aggregated purchases of node imaximize the function
Fi(S1i, . . . ,SNi), which may thus be interpreted as an aggregated effective utility function. We propose the
following interpretation of this aggregated utility, proceeding term by term. First, there is a constant term F0

describing the utility from using a good. Second the function Hi coincides with the Gibbs entropy, which
measures the diversity of the purchases. Hence, the aggregated utility increases with the diversity of supply.
The strength of this effect is measured by the parameter T . Finally, the utility is reduced by the function Ki.
We consider the case of a large network with N nodes where production is not fully centralized such that

Sℓi ≪ Sℓ. (16)

Then we have

Ki =
N∑

ℓ=1

(
b̃ℓ − ã(Sℓ − Sℓi/2)+ p̃TEiℓ

) Sℓi
Di

(17)

≈ 1

Di

N∑

ℓ=1

p̃ℓiSℓi. (18)
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Hence, Ki is approximately equal to the total expenses (5) of the agents at node i divided by the number of
agents Di.

We finally note that the negative function, −Fi = Ki −T Hi, has a similar form as the Helmholtz free
energy in the study of closed thermodynamic systems. Because of this structural similarity, we refer to the
weighting factor T as the effective temperature of the economic system in the following. The similarities to
statistical physics will further guide our analysis of the system and provide methods to quantitatively
understand the transitions between different trade regimes.

2.5. Numerical solution
The equilibrium state of the trade network will be analyzed via numerical simulations. In all numerical
simulations we fix the system parameters as follows. First, we assume that the nodes are chosen such that
they contain the same number of agents such that

Di = D =
Dtot

N
, (19)

where Dtot is the total number of agents. Furthermore, we will a denote the purchases Sji and productions Si
in units of Dtot. In these rescaled units, all purchases sum up to one,

∑
j,i Sji = 1. Furthermore, we have

Sii = 1/N when the purchases are fully local (i.e. Sji is diagonal) and S∗ = 1 when the production is fully
centralized at a single node.

The prices p̃ji depend on three essential parameters, ã, b̃j and p̃T. For consistency with prior work, we
scale all these parameters with the factor D,

p̃ji = Dpji, ã = Da, b̃j = Dbj, p̃T = DpT. (20)

Hence, the approximation (18) now reads Ki =
∑

ℓ pℓiSℓi. The parameter bi is chosen uniformly at random
from an interval b0 + [0,0.005] for each node. The parameters a and pT are varied to analyze how scale effects
and transportation costs scale the emerging trade network. In the simulations, we use N = 300 unless stated
otherwise.

In the model developed in the previous section, purchases and prices are linked via the conditions (10)
and (3). Notably, both equations are coupled: the purchases depend on the prices, but the prices also depend
on the purchases through the production Sj. Both equations have to be solved self-consistently.

Based on these considerations, we establish the following self-consistent algorithm to compute the
equilibrium purchases as a function of the system parameters. Starting from a suitable initial guess for the
purchases Sji, we compute the resulting prices (10). Given these prices we can directly compute a new value
for the purchases (3). This procedure is iterated until no further changes in the purchases occur. Once the
iteration converged, the resulting state satisfies both conditions (10) and (3) simultaneously such that we
arrived at an equilibrium.

We emphasize that the model can support multiple solutions [30]. In such a situation it depends on the
initial guess which one is found and if the iteration terminates at all. In the numerical simulations, we use the
following algorithm to compute how the equilibrium states depends on the parameters a, pT and T :

(i) We fix a value of a> 0 and a transportation network as described above.
(ii) We start at T = 0 and pT = ∞, where the equilibrium state is given by Sii = 1/N and Sji = 0 for j ̸= i,

i.e. fully local production.
(iii) We then compute the equilibrium states along the line T = 0 by decreasing pT to zero. This

computation follows the semi-analytic algorithm introduced in [30].
(iv) We define a grid of values for pT and T for which the supply matrix Sji is to be computed. We choose

the minimum (maximum) value of pT such that production is fully centralized (local) for T = 0. The
step size is chosen uniformly on a logarithmic scale. We then compute the equilibrium states as a
function of T and pT:
(a) For each value of pT on the grid, we proceed from T = 0 to T = Tmax.
(b) For a given value of pT and T we start from an initial guess for the purchases Sji. For T > 0 we use

the solution of the previous, smaller value of T . For T = 0 the exact solution Sji is known from the
step (c).

(c) We compute the prices pji from equation (10) and update the purchases Sji using equation (3).
(d) We iterate this procedure until it converges. Convergence is assumed when the Frobenius norm of

the difference of the previously calculated and the updated purchase matrix decreases below 10−8.

6



J. Phys. Complex. 4 (2023) 025006 C Han et al

(v) The procedure is repeated for different random realizations of networks to average out the impact a
single network might have on the position and behavior at the phase transition.

3. Phase diagram of the trade network

How do the decisions of individual agents lead to the emergence of trade? In this section we provide an
overview of the emerging trade networks and how they depend on the preferences of the agents, the
properties of the transportation network, and the economic scale effects. To this end, we compute the
equilibrium purchases Sji using the self-consistent method introduced in section 2.5 as a function of the
parameters pT, T , and a. We average over 100 random realizations of the transportation network model
(cf section 2.3) to map out the typical behavior independent of the randomly chosen network. Single
realizations will be treated in a subsequent section.

Figure 3 shows two macroscopic observables that characterize the emerging trade network on large
scales. The normalized maximum production,

µS = ⟨S∗⟩ , (21)

quantifies the degree of centralization of the production, where the brackets denote the average over the
transportation network ensemble. If µS is close to unity, the production is strongly centralized at a single
node. The average entropy

µH =

⟨
N−1

N∑

i=1

Hi

⟩
(22)

measures the diversity of supply as described in section 2.
Based on the observables µS and µH , we identify three different regions in parameter space that display

qualitatively different patterns of the emerging trade networks:

I. If the specific transportation costs pT are high and the effective temperature T is low, we have

lim
T →0

lim
pT→∞

µS =
1

N
and

lim
T →0

lim
pT→∞

µH = 0. (23)

That is, all agents purchase their goods locally as imports would be too expensive. No trading takes place
in this phase such that the purchase matrix is given by

lim
T →0

lim
pT→∞

S =
1

N




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


 . (24)

We refer to this phase as the local production phase in the following.
II. If the unit transportation costs pT decrease, while the effective temperature T is still low, we find

lim
T →0

lim
pT→0

µS = 1. (25)

That is, the production becomes completely centralized at a single node j and the purchase matrix can
be written as

lim
T →0

lim
pT→0

S =
1

N




0 . . . 0 . . . 0
1 . . . 1 . . . 1
...

...
...

...
...

0 . . . 0 . . . 0


 . (26)

We refer to this phase as the centralized production phase in the following.
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Figure 3. Phase diagrams of the emerging trade networks for different values of the scale effects a. The left column shows the
production of the largest supplier in the system µS, and the middle column shows the mean purchase entropy µH . Results for µS

and µH are averaged over 100 random realizations of the transportation network. Based on these observations, we identify three
phases of the emerging trade network shown in the right column: (I) A phase of local production when the specific transportation
costs pT are high and the effective temperature T is low. (II) A phase with centralized production, i.e. µS → 1, for small values of
both pT and T . (III) A phase with diversified production, i.e. high entropy for large values of T , i.e. limT →∞ µH = ln(N).
A definition and analysis of the phase transition is provided in the main text.

III. If the effective temperature T is high, the differences of the agents’ preferences dominate while different
prices play a negligible role. Hence, we observe a phase with an average entropy close to the maximum
possible value,

lim
T →∞

µH = ln(N). (27)

In this phase every node purchases a similar amount of goods from every other node such that the
purchase matrix reads

lim
T →∞

S =
1

N2




1 . . . 1 . . . 1
1 . . . 1 . . . 1
...

...
...

...
...

1 . . . 1 . . . 1


 . (28)

We thus find a globally connected trade network, where every node produces the same amount of
goods, limT →∞ µS = 1/N, as in phase I but exports and imports from all other nodes. We refer to this
phase as the diverse production phase in the following.

For a better overview, we extract a comprehensive phase diagram from the values of µS and µH in our
simulations as follows. For both quantities, we determine the minimum and maximum values found in the
simulations and choose the midpoints of the respective intervals as a threshold value. We then compute the
areas in the phase diagram, where the observables µS and µH are above or below the respective thresholds.
The red and green lines in figure 3 depict the boundary between these areas. Together, they reveal the
boundary between the different phases I, II and III.

The resulting phase diagram in figure 3 on the right shows most clearly how the equilibrium trade
network depends on the parameters pT and T as well as the strength of the scale effects a. We find that the
three phases exist for all values a, but the location and nature of the phase boundaries depend strongly on a.
Scale effects foster a centralization of production, such that the parameter region corresponding to
centralized production (phase II) increases with a.

We observe qualitatively different transitions between the three phases:

• The transition between local and diverse production (I–III) is smooth. The phase boundary is a straight line
pT/T = const.
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• The transition from local to centralized production (I–II) is rather sharp and the phase boundary is almost
given by a horizontal line, i.e. a constant value of pT. However, a slight incline of the phase boundary becomes
visible for large a, such that the transition can in principle also be triggered by a decrease in T .
In economic terms, centralization of production is driven by a reduction in the specific transportation costs
pT. This process is facilitated by scale effects, which make the transition occur earlier (i.e. for larger values
of pT) and more rapid. This scenario is mostly, but not perfectly, independent of the consumer preferences
expressed by the parameter T .

• The transition between centralized and diverse production (II–III) is also very sharp and the phase boundary
is almost given by a vertical line, i.e. a constant value of T .
In economic terms, a change in the nodes’ preferences can trigger a transition at low specific transportation
costs pT. If the agents’ preferences vary only little (low T ), then decisions are dominated by prices and
production is centralized at a single node. If the agents’ preferences vary strongly (high T ), prices play a
minor role and the production is decentralized. Remarkably, the transition occurs abruptly as T increases.

• A particular behavior is observed around the triple point of the phases I, II, and III. For certain values of T ,
we find a non-monotonic behavior of µH . Decreasing the unit transportation costs first induces a transition
from local to diverse production, and then a transition to centralized production. Hence, µH first increases
and then decreases back to values around zero.Wenote, however, that the systemcanhavemultiple equilibria
[30], of which only one is analyzed here.

4. Transitions between different regimes

We now investigate the transitions between the three phases of the trade network in more detail. We discuss
the type of the transition and derive approximate analytic expressions for the locations of the phase
boundaries.

4.1. From local to centralized production
The transition from phase I to phase II describes the centralization of production as the price for
transportation decreases, while the diversity of the agents’ preferences does not play a central role. The
remarkable feature of this transition is that it can be either continuous or discontinuous depending on the
value of a [30]. A discontinuity is the direct consequence of scale effects in the production. If agents at a node
i chooses to purchase goods at a node j instead of locally, the production costs per unit at node j decrease due
to scale effects. Now the agents at another node i

′
can purchase goods from j at a lower price. If this effect is

strong enough, agents at i
′
may also choose to change their purchases and buy at j instead, which leads to a

further decrease of production costs at j. Eventually, we may find a cascade of decisions, where a large
fraction of agents simultaneously change their purchases and the production is centralized at node j.

We analyze the transition in more detail, starting from the simplest case T = 0 [30]. In this case the
differences between the preferences of agents vanish and all agents at a node i purchase from same node i∗

which yields the lowest price, see equation (4). We will thus treat a node as a single entity in the following
analysis.

If a= 0 (and T = 0) the maximum production S∗ changes in discrete steps of D as pT is reduced. For
T = 0, all agents at a node i have the same preferences and choose a single supplier node. If node i chooses to
buy at node j instead of a node ℓ, the effective price node i pays per units changes by

∆p = pj − pℓ = (bj − bℓ)+ pT(Ei j − Eiℓ). (29)

Hence, a node i will change its purchases if pT = (bj − bℓ)/(Eij − Eiℓ). These values of pT are distinct for all
nodes and potential suppliers with probability 1, such that changes in the purchases occur only in single
events at different values of pT. Hence, in the thermodynamic limit N → ∞ with constant total demand ND
constant, the transition from phase I to phase II is continuous [30].

If a is large (and T = 0), the transition is generally discontinuous in the following sense. If pT is reduced,
the maximum production S∗ changes by a macroscopically large amount ∆S∗ at a critical value of pT. This is
due to a cascade of decisions of the individual nodes: if a node i chooses to purchase from another node j
instead of buying locally, the price pjj at node j decrease by an amount aD. This decrease may be sufficiently

strong to cause another node i
′
to also purchase from j instead of buying locally. In the end, a macroscopic

fraction of the nodes decides to change its purchases simultaneously. We note that the difference between
continuous or discontinuous transitions is not visible in figure 3, as the phase diagram shows the average
over many random realizations of the underlying transportation network. In contrast, a clear difference is
observed for a single realization as shown in figure 4.

For extremely large values of a we may even find a complete centralization in a single event, i.e.
∆S∗ = (N− 1)D. We make this statement more precise now. To this end, we order the nodes n ∈ {1, . . . ,N}
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Figure 4. Transition from local to centralized production. Results are shown for a single instance of the transportation network,
comparing the case of (a)–(c) weak scale effects and (d)–(e) strong scale effects as well as low and high effective temperatures (red
solid vs. blue dashed line). We show (a), (d) the total expenses

∑
i Ki, (b), (e) the production of the busiest node S∗ = maxk Sk

and (c), (f) the entropy averaged over all nodes, H = N−1
∑

i Hi.

as follows. The nodes ( j, i) = (1,2) are chosen such that they have the lowest value of (bj − bi)+ Eji,
that is

(bj − bi)+ Eji ⩽ (bm − bn)+ Emn, ∀m ̸= n. (30)

The remaining nodes n ∈ {3, . . . ,N} are ordered such that the series

(b1 − bn)+ E1n (31)

is monotonically increasing. Furthermore, we assume that

(i − 1)E12 > E1i, ∀ i ∈ {3, . . . ,N}. (32)

This condition is typically satisfied if the differences in the parameters bi are small. Then we find the
following statement: if scale effects are extremely strong,

a > max
i∈{3,...,N}

|(b1 − bi)E12 − (b1 − b2)E1i|
D [(i− 1)E12 − E1i]

, (33)

the maximum production changes from S∗ = D to S∗ = ND when the transportation costs per unit are
decreased below a critical value

pTcrit =
aD

E12
. (34)

A proof of this statement is given in appendix A. For large a we may thus compute the critical point directly
from the network topology and the local values bi.

4.2. Impact of temperature on the centralization
A reduction in the specific transportation costs pT generally leads to a centralization of production. But how
does the diversity of agent’s preferences, measured by the parameter T , affect this scenario? Simulation
results for different values of T and a are shown in figure 4.

In the case of strong scale effects, a = 100, we observe almost no differences between the curves for
different T . In this case, the price effects dominate the decision of the agents: the centralization of
production leads to strong changes of the price pji which outweighs the individual differences T ϵj in the
agents’ utility function (1).

In contrast, a substantial impact is found in the case of weak scale effects, e.g. a = 10−2. Results for two
intermediate values for T are compared in the upper row of figure 4. Not surprisingly, the differences in the
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agents’ preferences measured by T ϵj counteracts centralization, as the impact of price differences due to scale
effects is less pronounced. Hence, the maximum production S∗ for intermediate values of pT is typically the
lower, the higher T . Correspondingly, there are more nodes that contribute significantly to the production.
Nevertheless, we still see a transition to complete centralization for the given values of T as pT decreases
further. Remarkably, the final step of the centralization process takes place in an even more abrupt way as T
is increased. The difference is even more pronounced in the aggregated entropy H =

∑
i
Hi. For

T = 4× 10−6 we first observe a smooth increase of H, indicating the emergence of all-to-all trade, until it
drops sharply to low values associated with centralization. We thus find that the diversity of preferences can
delay centralization of the trade network, until the centralization occurs in an ‘explosive’ way. Similar
explosive effects where found for a variety of different models in percolation theory [33, 34].

We finally recall that for even higher values of T the emergence of centralization is entirely absent as
shown in the phase diagrams in figure 3.

4.3. From local to diverse production
The differences in the agent’s preferences induces a transition from local production to a diverse supply if
either the effective temperature T is increased or the specific transportation costs pT are decreased. The
boundary between the two regimes appears as a straight line with slope one in the double-logarithmic phase
diagram (figure 3), except for the parameter region with both pT and T small leading to centralized
production (phase II). In the following paragraphs, we provide a detailed analysis of the transition from local
to diverse production and derive an analytical estimate for the location of the transition.

We first note that in both phases the local production of each node equals Sj = D. Hence, we assume that
scale effects play no role for the transition and equation (3) for the purchases simplifies to

Ski = D
exp
[
−D(bk + pTEki)/T

]
∑N

k=1 exp [−D(bk + pTEki)/T ]
. (35)

The differences in the local parameters bk are small compared to pTEki in all simulations and can thus be
neglected in the following analysis. We conclude that the transportation costs parameter pT and the effective
temperature T enter only via the ratio

β = DpT/T . (36)

Hence, also the entropy H will depend on pT and T only via the ratio β and the phase boundary is given
by a straight line

pT/T = D−1 βcrit = const. (37)

Indeed, the numerical simulations presented in figure 3 confirm this finding. The boundary between phases I
and III is a straight line as long as pT and T are large enough such that no centralization occurs, i.e. far away
from phase II.

The second conclusion we draw from the expression (35) is that we can treat all nodes i = 1, . . . ,N
separately. We note that this assumption is strictly true only for a= 0, while it represents a useful
approximation for a> 0. Indeed, the success of this assumption is surprising from a conceptual view at first
glance. If a node i would independently redistribute its purchases, this would invalidate the assumption
Sj ≈ D = const. which allowed us to neglect scale effects and treat all nodes separately. This apparent
contradiction is resolved as follows: typically, the decision of a node i to purchase from j is mirrored by a
simultaneous decision of j to purchase at i if bi and bj do not differ too much. Hence, the decisions are not
independent a priori but their effect on the prices cancels out such that the decisions of the nodes effectively
separate and can be treated independently in the calculation.

Using these assumptions, we now provide an explicit approximate expression for the entropy Hi and the
critical parameter βcrit. We first note that the entropy can be rewritten as (cf appendix B)

Hi = − ∂

∂β−1

[
− β−1 ln(Qi)

]
, (38)

where

Qi =
N∑

j=1

e−βEji (39)
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can be interpreted as a partition function and the expression in the bracket as a free energy. To evaluate the
Qi, we just need the information of how many nodes are found at a given distance E. We encode this in the
counting function

Ni(Ê) =
N∑

j=1

Θ(Ê− Eij), (40)

where Θ denotes the Heaviside function. Notably, the function (40) can be interpreted as an integrated
density of states.

To obtain an analytic approximation for Qi, we have to approximate Ni by a function that keeps the
essential properties but allows to carry out the sum in equation (39) in closed form. Three properties have to
be taken into account: (i) the function Ni scales quadratically with Ê on coarse scales. (ii) We have to take
into account that the set of distances Eij is discrete such that Ni does not increase smoothly but in discrete
steps. In fact, it is essential to take into account that the distance to the nearest neighbor is always finite. In an
analog physical model, this would correspond to a finite ‘energy gap’ between the ground and first excited
state. (iii) Finally, it must be taken into account that the number of states is finite. These requirements can be
met by a staircase function with steps of regular position and size. For the time being, we restrict ourselves to
networks where the number of nodes can be written as N = (M+ 1)(M+ 2)/2 withM ∈ N. The function
Ni(Ê) can then be approximated by

Nst(Ê) =
M∑

m=0

(m+ 1)Θ(Ê−mE0), (41)

where E0 = 1/
√
4N is the expected value of the distance to the nearest neighbor on a two-dimensional plane

with node density ρ = N. Using this approximation, the partition function can be computed as

Qst =
M∑

m=0

(m+ 1)e−βE0m =
1− (M+ 2)e−βE0(M+1) +(M+ 1)e−βE0(M+2)

(1− e−βE0)2
. (42)

We test this approximation in figure 5 for a sample network with N = 105 nodes and find a very good
agreement with the numerically exact values.

For large networks and low effective temperatures, we can further simplify expression (42) by noting that
e−βE0(M+1)/e−βE0 → 0 for β → ∞ or in large networksM → ∞. We then obtain

Qst ∼
1

(1− e−βE0)2
. (43)

In this limit, the entropy can be computed from equation (38) as

Hst ∼ −2 ln(1− e−βE0)+
2βE0e−βE0

1− e−βE0
. (44)

We find that the entropy vanishes for low effective temperatures,

Hst → 0 for β → ∞,

indicating that all nodes i choose a single supplier. In fact, the production is local in this limit.
The entropy differs substantially from zero when βE0 is of the order of unity leading to the estimate

βcrit ≈ E−1
0 for the critical value. A slightly more accurate approximation can be obtained by computing the

value for which the entropy H equals half of its maximum value which yields the implicit condition

Hst(βcrit) =
1

2
ln(N). (45)

For higher values of the effective temperature (lower values of β), the approximation (44) is no longer valid
as indicated in figure 5.
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Figure 5. Transition between local and distributed production in a sample network. (a) Network structure of the sample network
with N = 105 nodes. Five nodes were selected at random for further analysis (color coded). (b) The counting functionN (Ê)
counts the number of nodes with a distance ⩽ Ê. We showNi(Ê) for the five selected nodes (thin colored lines) in comparison to
the analytic approximation (41) (thick black line). (c), (d) The partition function (39) and the entropy (38) for the five selected
nodes (thin colored lines) compared to the analytic approximation (42) (thick black line). On average, we find a very good
agreement. For low temperatures, the partition function and entropy can be approximated by the expressions (43) and (44)
(dotted black line).

4.4. From centralized to diverse production
We finally consider the transition between the diverse (III) and the centralized production regime (II). This
transition is driven by the competition of the two terms in the agents’ utility function (1)—the individual
differences and the universal prices. A diverse production is found if the preferences are sufficiently different,
i.e. if the weight parameter (the effective temperature) T exceeds a critical value Tcrit, cf figure 3.

This critical value Tcrit can be estimated in terms of the aggregated interpretation introduced in
section 2.4 by comparing the different contributions to the free energy (11) in the two regimes. If production
is fully diversified, then the supply matrix is given by Sji = D/N (cf equation (28)) and the free energy (11) is
thus given by

Ki,div ≈ (b̄− aD)D+ pTĒiD

⇒ Fi,div ≈ T ln(N) −Ki,div,

where Ēi is the average distance from node i to all other nodes, Ēi = N−1
∑

jEij and b̄ = N−1
∑

j bj. If
production is fully centralized at a node n, then the supply matrix is given by Sji = Dδjn using the Kronecker
delta symbol (cf equation (26)). In this case, the free energy (11) reads

Ki,cen ≈ (bn − aND)D+ pTEinD

⇒ Fi,cen ≈ −Ki,cen .

We expect the production to be purely centralized when Fi,cen > Fi,div for all nodes i and to be diverse if
Fi,div > Fi,cen for all i. If scale effects are sufficiently strong, then the differences between the nodes i are
negligible and the transition is abrupt. We then expect the transition to take place at a critical temperature
Tcrit given by

Fi,central(Tcrit) ≈ Fi,diverse(Tcrit),

⇒ Tcrit ≈
Ki,div −Ki,cen

ln(N)
.

Neglecting the inhomogeneities in the bi and the transportation distances, we finally obtain
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Figure 6. Transition from diverse to centralized production. Results are shown for a single instance of the transportation network,
comparing the case of (a)–(c) weak scale effects and (d)–(f) strong scale effects as well as different values of the specific
transportation costs pT (red solid vs. blue dashed line). We show (a), (d) the total costs

∑
i Ki, (b), (e) the production of the

busiest node S∗k = maxk Sk and (c), (f) the entropy Hi averaged over all nodes. The transition is very sharp and occurs at a critical
value of the effective temperature given by equation (46). A non-monotonous behavior of S∗k is found for a = 100 and
pT = 1.1× 10−2, which is discussed in the text.

Tcrit ≈
a(N− 1)D2

ln(N)
. (46)

We conclude that the transition between diverse and centralized production is driven by the competition of
scale effects scaling linearly in a and diversity in preferences scaling linearly in T , while transportation effects
play a negligible role. Hence, the critical effective temperature Tcrit scales linearly in a, while it is largely
independent of the specific transportation costs pT. However, this reasoning is only valid as long as local
production is not competitive, i.e. as long as pT is small enough.

A surprising behavior is found for weak scale effects and intermediate values of the specific
transportation costs pT (figure 6, upper row, dashed line). We find that the maximum production S∗ jumps
to one when the effective temperature T increases above approximately 10−6. That is, an increase in the
diversity of preferences leads to a decrease in product diversification. This counter-intuitive behavior is a
consequence of the multistability of the economic system. Two Nash equilibria exist for T ≪ 10−6, one with
an incomplete and one with a complete centralization of production. Due to the design of our numerical
experiments the initial state features an incomplete centralization. An increase in T fosters trade,
strengthening one producer at the expense of another one. Eventually, the Nash equilibrium with incomplete
centralization becomes unstable, and the system relaxes to the centralized equilibrium, offering lower total
costs due to scale effects. Notably, a further increase of the effective temperature finally leads to a fully
diversified production as expected.

4.5. Comparison to numeric results
As a final step of our analysis, we compare the analytical estimates for the location of the phase boundaries to
the numerical results in figure 7. We find that the estimate (45) for the phase boundary between the localized
and diversified phase accurately matches the numerical results with no visible differences. The estimate (46)
slightly overestimates the critical value Tcrit for the transition from centralized to diversified production.
However, the analytical estimate faithfully reproduces the order of magnitude of Tcrit as well as the scaling
with the parameter a. Similarly, the estimate (34) provides a fair overall estimate for the critical value pTcrit for
the transition from localized to centralized production. The scaling with a is overestimated such that
analytical estimates are larger than the numerically exact values for large a. This is not surprising as we expect
a smooth crossover between the two different scaling regimes. For medium to large values of a, we expect a
proportional scaling of pTcrit with a as described by (34). In contrast, pTcrit should tend to a constant for small
values of a as there is still a (continuous) centralization at a finite pTcrit due to the small inhomogeneity in
the bi.
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Figure 7. Comparison of numerical results and analytic estimates for the location of phase transitions in terms of the parameters
pT and T . Green and red lines show the numerical results as established in figure 3. Black dashed lines show the corresponding
analytical estimates according to equations (34), (45), and (46). The strength of the scale effects is varied as a = 100 (top panel),
a = 10−1 (middle panel) and a = 10−2 (bottom panel).

5. Conclusion and outlook

In this article, we have established a model for the formation of trade networks based on the decisions of
economic agents. The model combines two driving factors for the emergence of trade: on the supply side,
trade is established if regional differences in production costs, including economic scale effects, exceed the
transportation costs. On the demand side, the diversity of the agents’ preferences fosters trading even if this
increases costs.

The model was derived from the decisions of individual agents in terms of discrete choice theory. Every
agent decides for a supplier based on both the price and an individual factor modeled as a random variable.
On an aggregated scale, a set of agents thus purchases goods from different suppliers at different locations.
On this aggregated level, the model shows strong connections to ensembles in statistical thermodynamics as
the equilibrium on the agent level coincides with an equilibrium of the effective free energy (11). However,
all decisions are coupled through scale effects: the decision of any agent changes the prices for all other agents
and may thus trigger further decisions. Hence, the common equilibrium of statistical physics must be
generalized to a Nash equilibrium. Nevertheless, statistical thermodynamics provides essential concepts to
compute the equilibrium states and to understand the emergence of a trade network.

We have shown that the model bears three different regimes of trade. If transportation costs are high and
the diversity of preferences is weak, then all goods are produced locally. A trade network can emerge in two
different ways rooted in either the supply or demand side. Decreasing transportation costs makes it cheaper
to import goods thus fostering the emergence of trade. This process is essentially driven by economies of
scale, as every increase of production leads to lower prices fostering further increase in exports. Eventually,
this process leads to a complete centralization of production and a directed star-like trade network. An
increase in the diversity of preferences drives the emergence of bilateral trade and eventually leads to an
all-to-all coupled trade network. We have developed a comprehensive analytical theory of the transitions
between these regimes and derived analytical estimates for critical parameter values. Remarkably, the
transition to a phase with centralized production can be continuous as well as discontinuous if economic
scale effects are strong enough.

The model describes some essential mechanisms in the formation of trade networks—but of course it
cannot capture all facets of this complex process. For instance, our model captures the importance of
economies of scale, diverse preferences and emergent hysteresis effects [20, 30]. A limitation of the model is
found in the emerging production patterns: When transportation costs continue to decrease, production will
either be centralized completely or not at all depending on the parameter T . In reality, one often observes
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multi-center structures, for example in urban systems [35, 36] as a result of spatial constraints or congestion
at high levels of centralization. In the proposed modeling framework, this would be possible if scale effects
saturated or if transportation capacities were limited.

From a more fundamental viewpoint, the model starts from discrete choice theory and then aggregates
over many agents to obtain the total purchases between the nodes of a network. Other economic models,
such as the celebrated Dixit–Stiglitz model maximize utility for a given budget [18]. From a statistical
viewpoint, a thorough treatment of the thermodynamic limit remains challenging due to the different scaling
behaviors in the utility function. This analysis is well beyond the scope of the present analysis, so we have
focused on finite systems.
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Appendix A. Proof of discontinuous transition

In this appendix we proof the existence of a discontinuous transition in a single step from section 4.1. We
have T = 0 such that all agents at a node i purchase from same node i∗. We can thus treat a node as a single
entity in the following analysis.

We first consider the purchases of node i= 2, that may choose to purchase from node j= 1 or produce
locally. By an explicit computation, we can show that local production (S22 = D, S12 = 0) is cheaper for
pT > pTcrit. Importing goods (S22 = 0, S12 = D) is cheaper for pT < pTcrit.

Due to the ordering of the nodes we can conclude two further statements: (i) node i= 2 will change its
purchases to buy at node j= 1, while purchasing at another node ℓ ≥ 3 provides no benefits. (ii) Node i= 2 is
the first one to change its purchases. That is, production is fully locally (Sℓ,ℓ = D for all nodes ℓ = 1, . . . ,N)
for pT > pTcrit.

Now consider the consequences of node i= 2 changing its purchases at pT = pTcrit. Node i
′ = 3 can either

buy locally at a price

p33 = b3 − aD (A.1)

or at node j= 1 at a price

p13 = b1 − 3aD+ pTcritE13 . (A.2)

By our assumption (33), we find that p13 < p33 such that node i ′ = 3 changes its purchases from local to
import simultaneously with node i= 2. The same argument now applies to all nodes i ′ ′ = 4 . . . ,N. Hence, we
conclude that at pT = pTcrit all nodes simultaneously change their purchases such that we find

for pT > pTcrit : Sii = D,

for pT < pTcrit : S1i = D, (A.3)

for all nodes i = 1 . . . ,N.

Appendix B. Entropy and partition function

In this appendix we briefly recall the relation of the entropy and the partition function (39). In particular, we
show that the expression (38) for the entropy Hi is equivalent to the definition (12). Differentiating the
partition function Qi with respect to β yields
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− ∂

∂β
ln(Qi) = − 1

∑N
l=1 e

−βEli

∂

∂β

N∑

j=1

e−βEji ,

=
N∑

j=1

e−βEji

∑N
l=1 e

−βEli
Eji,

=
N∑

j=1

Sji
D
Eji. (B.1)

Similarly, we can show that

− ∂

∂β−1
(−β−1 lnQi) = lnQi − β

∂

∂β
lnQi

= lnQi + β
N∑

j=1

Sji
D
Eji. (B.2)

Next, we start from the definition of entropy,

Hi = −
N∑

j=1

Sji
D

ln
Sji
D

= −
N∑

j=1

e−βEji

∑N
l=1 e

−βEli
ln

e−βEji

∑N
l=1 e

−βEli

= −
N∑

j=1

e−βEji

∑N
l=1 e

−βEli

[
lne−βEji − ln

N∑

l=1

e−βEli

]

=
N∑

j=1

e−βEji

∑N
l=1 e

−βEli
β Eji + ln

(
N∑

l=1

e−βEli

)
N∑

j=1

e−βEji

∑N
l=1 e

−βEli

= β
N∑

j=1

Sji
D

Eji + ln(Qi), (B.3)

which coincides with the expression (B.2).

ORCID iDs

Chengyuan Han https://orcid.org/0000-0001-5220-402X
Malte Schröder https://orcid.org/0000-0001-8756-9918
Dirk Witthaut https://orcid.org/0000-0002-3623-5341
Philipp C Böttcher https://orcid.org/0000-0002-3240-0442

References

[1] Krugman P 1992 Geography and Trade (Cambridge, MA: MIT Press)
[2] Schweitzer F, Fagiolo G, Sornette D, Vega-Redondo F, Vespignani A and White D R 2009 Science 325 422–5
[3] Gai P, Haldane A and Kapadia S 2011 J. Monet. Econ. 58 453–70
[4] Helbing D 2013 Nature 497 51
[5] Guan D et al 2020 Nat. Hum. Behav. 4 577–87
[6] Newman M E 2003 SIAM Rev. 45 167–256
[7] Pastor-Satorras R, Rubi M and Diaz-Guilera A 2003 Statistical Mechanics of Complex Networks vol 625 (Berlin: Springer)
[8] Havlin S et al 2012 Eur. Phys. J. Spec. Top. 214 273–93
[9] Watts D J and Strogatz S H 1998 Nature 393 440–2
[10] Barabási A L and Albert R 1999 Science 286 509–12
[11] Newman M E J 2010 Networks: An Introduction (Oxford: Oxford University Press)
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Abstract

Quantifying the importance and power of individual nodes depending on their position in

socio-economic networks constitutes a problem across a variety of applications. Examples

include the reach of individuals in (online) social networks, the importance of individual

banks or loans in financial networks, the relevance of individual companies in supply net-

works, and the role of traffic hubs in transport networks. Which features characterize the

importance of a node in a trade network during the emergence of a globalized, connected

market? Here we analyze a model that maps the evolution of global connectivity in a supply

network to a percolation problem. In particular, we focus on the influence of topological fea-

tures of the node within the underlying transport network. Our results reveal that an advanta-

geous position with respect to different length scales determines the competitiveness of a

node at different stages of the percolation process and depending on the speed of the clus-

ter growth.

Introduction

Global connectivity is central to our social, economic and technological development [1–4].

The growth of a global transportation network has dramatically changed world economy and

led to increased efficiency and more centralized production [5]. But this global connectivity

also bears new, systemic risks—highlighted in particular in the financial sector [6, 7].

Economies of scale are a major driving force in the formation of many of these socio-eco-

nomic networks. Generally, a well developed economic agent with high connectivity is more

attractive or competitive compared to smaller, less developed agents. The larger agents thus

naturally attract even more connections [8–10]. In social network theory, this principle is com-

monly referred to as preferential attachment, driving the formation of scale-free networks

[11]. In economic theory, economies of scale have been identified as a key mechanism leading

to the emergence of trade networks and globalization [5, 12]. More recently, we have seen the

emergence of quasi-monopolies in digital platform economies where economies of scale are

particularly strong [13–15]. In this case the winner takes it all. But who wins and how?
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Understanding which node in a network is the most competitive one and how it ‘wins’ over

the competition as the network evolves toward global connectivity is still largely an open ques-

tion. In particular, a systematic study of network formation in a heterogeneous geographic

environment is a demanding task. Percolation models describing network growth typically

involve random processes [16–18], while optimization models of the network structure typi-

cally start from a single global objective function [19–23]. However, neither model class fully

describes socio-economic networks, whose formation is determined by the individual deci-

sions (optimization, non-random) of interacting agents (multiple different objective func-

tions). Economic equilibrium models and game-theoretic models capture these interactions

and the individual decision but quickly become intractable as the number of agents increases

[3, 24–28].

In this article, we study a simplified supply network model that explicitly includes nonlinear

nonconvex economies of scale and transportation costs while simultaneously enabling a semi-

analytical treatment by mapping the evolution of the network to a percolation problem [29].

In the model, agents try to satisfy a given demand at minimum costs, either through domestic

production or via imports. Economies of scale favor the centralization of production and the

emergence of trade. On the other hand, non-zero transportation costs favor distributed pro-

duction. Simulating the evolution of the emerging trade network in this model allows us to sys-

tematically study how the transition to a globally connected supply network takes place, how

the transportation network affects this transition, and last but not least which geographic fac-

tors provide an advantage for the competitiveness of the economic agents. In particular, we

demonstrate that the way to be successful in the globalization process is to be in an advanta-

geous position on the correct length scale. We show that the length scale characterizing the

competitiveness of a node changes depending on the stage of the percolation process and the

speed of the cluster growth.

Methods

Economic percolation model

We analyze the influence of topological features on the importance of nodes in a network for-

mation model recently introduced by Schröder et al. [29]. The model describes the formation

of global connectivity in networks inspired by the evolution of trade interactions in a funda-

mental network supply problem [5, 12]. The idea is as follows: Each node (or economic agent)

i 2 {1, 2, . . ., N} in the network has a fixed demand D (identical for all nodes). A node i can

either fill this demand by domestic production or by making purchases from other nodes it is

connected to via the underlying transport network. Filling this demand always incurs costs for

node i: (I) production costs KP
ki for production at node k, even for domestic production where

k = i, and (II) transport costs KT
ki for transport from node k to node i if node i makes purchases

from other nodes (k 6¼ i). This general setup is illustrated in Fig 1.

The production costs of goods manufactured at node k and consumed at node i are given

by

KP
ki ¼ pkðSkÞ � Ski; ð1Þ

where Ski denotes the amount of goods produced at node k and consumed at node i. The costs

per unit pk are decreasing with the total production Sk ¼
PN

i¼1
Ski due to economies of scale at

node k. This means production becomes more efficient for larger quantities. Throughout this

article we assume a linear relation

pkðSkÞ ¼ bk � aSk ð2Þ
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for the sake of simplicity, where the parameter a� 0 directly quantifies the effective strength

of the economies of scale and bk is a constant offset different for each node, describing inherent

production cost advantages.

The transport costs

KT
ki ¼ pTTkiSki ð3Þ

are proportional to the amount of purchased goods Ski and the distance Tki between the nodes

in the underlying transport network. The proportionality factor pT controls the importance of

transport costs relative to production costs. In real-world settings, it typically decreases over

time due to technological advancements in the transport sector and serves as the main control

parameter for the network formation model. Together, the total costs for node i read

Ki ¼
XN

k¼1

Kki ¼
XN

k¼1

KP
ki þ KT

ki ð4Þ

as illustrated in Fig 1. This cost structure captures the fundamental incentives for the agents in

this supply network percolation process.

Each node i chooses its purchases Ski in order to minimize its costs under the constraint

that it exactly satisfies its demand, ∑k Ski = D. In general, this leads to N interacting nonlinear

and nonconvex optimization problems as the production costs depend on the purchases of all

(other) nodes. Nevertheless, a resulting Nash equilibrium, where no node can further decrease

its costs by changing its supplier, can be computed efficiently as shown in [29]: Each node i
chooses only a single supplier k (either itself or one other node in the network) that can be

found efficiently with an adapted breadth-first-search due to the mapping to a local percola-

tion problem. While multiple Nash equilibria exists for each value of pT, this mapping uniquely

defines the sequence of Nash equilibria describing the states of the supply network during the

slow decrease of pT depending on the parameters and initial conditions.

We study the evolution of the supply network starting from the limit of infinite transport

costs, pT =1, such that all nodes purchase locally and no trade takes place. As the

Fig 1. Network supply problem. Each node i chooses a supplier k to satisfy its demand D at minimal cost Ki = mink Kki. These costs include: (I)

production costs at node k, where the costs per unit depend on the total amount of production Sk at that node (left panel), and (II) transport costs that

depend on the distance Tki between the nodes k and i in the underlying transport network (dashed line). All nodes in the network (including k)

simultaneously solve their individual optimization problem.

https://doi.org/10.1371/journal.pone.0225346.g001
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importance of transport costs decreases, some nodes start to make non-local purchases such

that the production Sk of other nodes increases. Eventually, large common markets (clusters)

emerge in the network of trades Ski, each with a single supplier node k. In the end, when

transport costs disappear, pT = 0, only one giant cluster remains with a single supplier k� with

globally centralized production Sk� = ND. This evolution is illustrated in Fig 2 for a small pla-

nar network.

In this article we study two main aspects of the formation of this trade network: First, how

does centralization occur? That is, how does the transition from local production at large pT to

centralized production at low pT take place? Second, we analyze which node k� becomes the

final supplier (the center of the globally connected cluster) as production becomes fully cen-

tralized for pT! 0.

Analysis of network structure

The economic percolation model includes heterogeneous geographical conditions explicitly.

The matrix Tki encodes the distances of all pairs of nodes (k, i) which depends on their geo-

graphic location and the structure of the underlying transportation network. Hence, the model

allows to systematically study the influence of geographical or topological properties on the

formation of connectivity and trade and the centralization of production. Are there any geo-

graphical or topological features that determine which node becomes the final supplier and

which does not?

To study the impact of the transport network topology, we consider four different random

network ensembles. We start from an ensemble of geographically embedded networks

obtained by distributing N = 1000 nodes uniformly at random on the unit square. Edges are

constructed by a Delaunay triangulation with periodic boundary conditions. Each of the

resulting M = 3000 links is undirected and assigned a distance equal to the Euclidean distance

between the connected nodes. The distance Tij of two arbitrary nodes i, j in the network is

finally obtained as the geodesic or shortest path distance in the network.

The other random network ensembles are obtained from the initial ensemble by a reshuffl-

ing of the edges. This procedure keeps the number of connections and the distribution of the

individual edge lengths identical and thus leaves the networks comparable to each other. We

apply three different reshuffling procedures creating randomizations with different properties:

Fig 2. Cluster growth in the percolation model. (a) Evolution of the size Si of four clusters measured by the production Si of the clusters supplier i (the

number of nodes relative to the size of the whole network). Every node in the network optimizes its costs to satisfy its demand as described in the main

text. As the importance of transport costs pT decreases, nodes make external purchases and clusters (common markets) emerge where production is

centralized at a single node k. As pT! 0, only a single, global cluster with a central supplier k� = 16 and S16 = 1 remains (blue line). (b-e) Snapshots of

the network for different values of pT. The four clusters with centralized production shown in panel (a) are illustrated in their respective colors and the

central supplier node is highlighted. Black nodes do not belong to any of these four clusters. Solid colored lines indicate active links in the transport

network, dashed lines indicate potential transport links that are not used by the four large markets. Parameters are D = 1/N, b 2 [0, 1] distributed

uniformly at random and a = 10−3. The planar network is created as the Delaunay triangulation from N = 100 points distributed uniformly at random

in the unit square (see Methods for more details).

https://doi.org/10.1371/journal.pone.0225346.g002
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First, we keep the structure of the network the same but choose a random permutation of the

distances (random weights). This breaks correlations between the link distances and the node

position. Second, we uniformly randomly rewire all links to different nodes under the con-

straint that the resulting network is connected. The network then has a topology correspond-

ing to a Poisson random network [2]. Comparison of this randomization to the original

network allows us to understand the impact of regular versus random network topologies.

Third, we create a Barabasi-Albert scale-free network with the same number of links and the

same distances for the links [11]. We thus create four different ensembles with identical aver-

age degree and edge lengths, but vastly different global structures. For instance, the degree dis-

tribution changes from narrow for the geometric and Poisson random networks to heavy-

tailed for scale-free networks.

Model parameters

In addition to the structure of the transportation network, several model parameters deter-

mine the evolution of the trade network. First, we note that the system evolution is invariant

with respect to a rescaling of the costs. In particular, we can set D = 1/N by choosing an appro-

priate unit system. A rescaling of the distances can be absorbed into the main control parame-

ter pT describing the transport cost per unit. It characterizes the relative importance of

transportation costs with respect to production costs.

Two parameters a and b characterize the production costs via the costs per unit p(Sk) =

bk − aSk [Eq (2)]. Since only the relative ordering of the costs are relevant to compare

different suppliers (in the form of Kki< Kji), we scale the costs such that all bi 2 [0, 1] with

mini bi = 0 and maxi bi = 1. In particular, we choose the bi uniformly at random from the

interval [0, 1]. The second parameter a characterizes the economies of scale and has a strong

impact on the model behavior. We perform simulations for vastly different values a 2 {10−5,

10−4, . . .101} to cover all different regimes. To put this into context, note that total centraliza-

tion of production leads to a decrease of production costs by exactly NDa = a for D = 1/N.

Economies of scale are negligible if a is much smaller than typical differences of the cost

parameter bi, i.e., for a� 1/N = 10−3. Economies of scale are dominant if a is of the order of

the largest difference of the bi, i.e. for a� 1. The range a 2 {10−5, 10−4, . . .101} covers both

regimes.

In summary, we perform simulations for four different transportation network ensembles

and several values of a. For each case we consider 1000 different random realizations of the

transportation network with 10 different permutations of the bi each, resulting in 10.000 mea-

surements per ensemble and value of a. For each realization, we start the simulation in the

limit of large transport costs, pT =1, without any trade interactions. We gradually lower pT

and record the emergence of a trade network, i.e., the emergence of connected components of

the network defined by the purchases Ski, as well as the final supplier for pT = 0.

Results

How does global connectivity emerge?

To understand the emergence of a globally connected network we record the size of the largest

clusters as the transport costs decrease from pT =1 (no trade) to pT = 0 (single, globally con-

nected cluster). A trade network between nodes emerges as transportation costs decrease. An

example of the centralization of production is shown in Fig 2 for a small geographically

embedded random network. For pT = 1.0, several nodes have already decided to purchase their

goods from other neighboring nodes and multiple clusters have formed where production is

The winner takes it all—Competitiveness of single nodes in globalized supply networks
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centralized to a single node. The clusters grow when pT decreases to pT = 0.5 as further nodes

decide to purchase non-locally. Finally, many nodes again change their supplier, joining one

large, global cluster with strong economies of scale instead of the smaller local clusters. In the

end, as pT! 0, production is fully centralized at a single node. The size of the four largest clus-

ters is shown in Fig 2(a) as a function of the transportation cost parameter pT.

Inspecting this evolution, we are directly led to the question how the transition to global

connectivity takes place under different circumstances. Is it very sudden with a single large

change in the size of the largest cluster or is the transition slow and the largest cluster grows

gradually as pT decreases? Does a single node expand its cluster or do multiple large clusters

grow and only later merge to one global cluster? To answer these questions, we measure the

largest gap max[ΔS(1)] in the size (total production) of the largest cluster [30] as well as the

maximum size of the second largest cluster max[S(2)], the third largest cluster max[S(3)] and

so on over the course of the evolution from infinite to zero transport costs (see Fig 3). The

maximal size max[S(2)] of the second largest cluster in particular measures how much clusters

grow before global centralization occurs. If it is small, only a single large cluster emerges and

local competitiveness is relevant to gain an early advantage. If it is large, at least two large

Fig 3. Multiple clusters or sudden growth? Distribution of the maximum size max[S(n)] of the n-th largest cluster and largest change max[ΔS(1)] in

the size of the largest cluster (insets) during the emergence of global connectivity for (a) the random planar network, (b) the network with randomized

weights, (c) the network with uniformly randomized links and (d) the network with scale-free randomized links. For small a, multiple large clusters

appear and merge slowly in all networks. For large a, a globally connected cluster suddenly forms from the individual nodes in a single large cascade

before any other cluster had the chance to grow significantly. Depending on the value of the parameter a, nodes have to be competitive at different

length scales to become the final supplier. The maximal size of the second largest cluster max[S(2)](red) can serve as a proxy for this length scale.

https://doi.org/10.1371/journal.pone.0225346.g003
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clusters expand side by side before one of them becomes globally dominant and production is

completely centralized. Here, the central nodes of the clusters have to compete against each

other on a larger length scale. The maximal size max[S(2)] of the second largest cluster serves

as a proxy for this length scale.

If economies of scale are weak (small values of a), multiple large clusters coexist before

they finally merge. As a becomes larger, the maximum size of all clusters except the largest

one decreases. Finally, for strong economies of scale a, only a single cluster grows. Corre-

spondingly, the transition to global connectivity becomes more and more abrupt with

increasing a, measured by the growth of the gap max[ΔS(1)]. We thus obtain the following

picture: For weak economies of scale, several clusters grow and finally merge in a gradual

process. For strong economies of scale, only local clusters exist until a globally connected

cluster emerges in abruptly. After this sudden transition, exactly one globally connected clus-

ter remains.

We observe rather little differences between the four network ensembles under consider-

ation. The transition from gradual to abrupt emergence of global connectivity is qualitatively

the same in all networks and also the transition point is remarkably similar. While the transi-

tion is gradual (no large gaps) for a = 10−5, it is sudden for a = 10−3 for all networks. Slight dif-

ferences are observed only for a = 10−4. While the maximum gap is larger than 0.1 for all

realization of the random planar network, the transition is still gradual with smaller changes of

the largest cluster for most realizations of a scale-free network.

This is rather surprising, as scale free networks are characterized by the existence of hubs, a

few nodes with very high degree. At first glance, one might expect that these hubs can exploit

economies of scale most easily, making the transition abrupt already for small a. Our results

show that this simple reasoning fails. The impact of economies of scale on the transition and

on the competitiveness of nodes is more subtle. In fact, different hubs have to compete when

the economies of scale are not dominant (small a). Thus, while hubs allow for the easier forma-

tion of local clusters, these hubs then have to compete on a larger length scale (measured by

the maximum size of the second largest cluster), where the local properties of the central sup-

plier, such as the high degree of the hubs, are less important. Overall, this competition slows

down the centralization of production in scale-free networks. This idea is similar to the mecha-

nism preventing or delaying the merger of large clusters in models resulting in explosive and

discontinuous percolation transitions [18, 31, 32].

Who becomes the central supplier?

Understanding how global connectivity emerges, we now address the question who wins the

competition in this model. That is, which node i becomes the central supplier of the network

for pT! 0? Are there any geographic features that determine a node’s competitiveness?

To characterize the geographical location of a node in a network, we consider several differ-

ent centrality measures that measure different aspects of a node’s position in the network:

(i). cost centrality 1/bi

(ii). local closeness centrality 1/minjTij

(iii). global closeness centrality 1/∑j Tij [33, 34]

(iv). degree centrality [34]

(v). betweenness centrality [34, 35].
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These quantities measure the advantage of the nodes in terms of (i) global production costs,

(ii) small transport costs to a local trade partner, (iii) small transport costs to the whole net-

work, (iv) immediate access to different trade partners and (v) position of the node along

many trade routes.

We generally expect that all these properties are beneficial for the nodes. For example, a

high cost centrality implies that production is cheap—at least until production costs decrease

significantly due to economies of scale. The node with the highest cost centrality would be the

socially optimal supplier when pT = 0 and minimize the total costs across all nodes. Similarly, a

high global closeness centrality implies that transportation is cheap on average, making the

node an attractive global supplier when transport costs are not zero. The remaining three cen-

trality measures also point to a favorable position in the network, but their implication is less

clear. High degree and local closeness point to an attractive local environment, while high

betweenness centrality is a typical measure of importance in social networks and means that

many shortest transportation routes cross the respective node.

To understand which of these properties most strongly influences the competitiveness of a

node, we rank all nodes according to their centralities and evaluate if the final suppliers typi-

cally have a high or low ranking. We record the final supplier and its centrality ranking x for

each random realization of the percolation process. The resulting distributions of the ranks of

the final supplier are shown in Fig 4 for the four network ensembles under consideration. In

addition, we fit a distribution P(x) * exp[−m(N − x)] to the observed centrality rankings to

quantify the importance of the respective centrality. A value of m = 0 indicates a flat distribu-

tion, i.e., no influence of the centrality rank x on the chance to become the final supplier. The

higher the value of |m|, the stronger the correlation, and the more meaningful the respective

centrality to predict which node becomes the central supplier.

The first, expected observation is the influence of the cost centrality 1/bi of a node i. For

weak economies of scale (small a) the production costs are dominated by the cost parameters

bi and low production costs are decisive for the competitiveness of a node. For all network

ensembles under consideration, cost centrality is the best indicator for competitiveness for

small a, whereas its importance decreases for stronger economies of scale.

The second, more striking observation is the importance of the local closeness centrality. In

the case of strong economies of scale a = 1, this centrality measure provides the best indicator

for the competitiveness of a node. The histogram of the centrality ranking peaks strongly at

top ranks. Local closeness is even more important than global closeness, although we evaluate

the global competitiveness of the nodes. Again, this finding holds true for all four network

ensembles.

A surprising correlation is found for the two remaining centrality measures, degree and

betweenness, for the spatially embedded random network. Contrary to our expectation, the

final supplier typically has a low degree and betweenness centrality for strong economies of

scale a. This effect is lost or even reversed for the other network ensembles and can be attrib-

uted to a subtle geometric property of spatially embedded random networks. In this network

class, local closeness centrality is anti-correlated with degree and betweenness centrality. As

competitive nodes have a high local closeness, they are likely to have a low degree and

betweenness centrality. This observation is particularly relevant since real-world transporta-

tion networks are typically spatially embedded, with the exception of digital, data exchange

networks. Note that similar correlations exist for other network ensembles as well. For exam-

ple, nodes with a high degree centrality in the reshuffled scale free networks typically also have

high local closeness centrality, due to more opportunities for a short link.

Finally, a more subtle implication of the centrality measures is that, depending on the

parameter a, the size or length scale of the relevant neighborhood changes. This length scale is
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defined by the critical size the largest cluster must reach before it becomes the global supplier.

The effect is illustrated in Fig 5. For small a, the number of customers does not significantly

affect the costs and one new customer allows the supplier to attract customers only in a small

additional range [Fig 5(a)]. Consequently, a node must attract a larger number of customers to

Fig 4. How to become the central supplier? Distribution of the ranking of the final supplier in various centrality measures (see main text) in (a) a

random planar network, (b) the network with a random permutation of edge distances, (c) a Poisson random network with a random permutation of

the edge distances, and (d) a scale-free network with a random permutation of the edge distances. All networks are constructed from a Delaunay

triangulation of N = 1000 points uniformly randomly distributed in the unit square, resulting in M = 3000 links with distances equal to the Euclidean

distance between the connected nodes (see Methods for details).

https://doi.org/10.1371/journal.pone.0225346.g004
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become globally competitive and the critical size is (almost) equal to the total size of the net-

work. In this regime, global centrality measures like the cost centrality are most relevant. For

intermediate a, a single customer allows the supplier to attract nodes in a larger range [Fig

5(b)]. The critical length scale becomes smaller and we need to put more weight to the local

structure. In this regime, the global closeness centrality and the degree centrality start to

become better predictors, quantifying the centrality of a node in a local neighborhood. Finally,

for very large a, the critical size of the largest cluster becomes 2 and one single customer

induces a sufficiently large change in production costs for the supplier to become globally

competitive immediately [Fig 5(c)]. The centrality of a node in its most local context then

becomes the deciding factor. This is best measured by the distance to the nearest neighbor, the

local closeness centrality 1/minjTij.

Comparing results across the different network topologies, we find that the network topol-

ogy becomes more important when the diameter is smaller, i.e., for Poisson and scale-free net-

work structure. Since the total transport costs in these networks are smaller (proportional to

the smaller diameter of these networks), the critical size to become the global supplier is also

smaller. Thus, local length scales and the (local) network structure become important already

for smaller values of a.

Conclusion and discussion

Economies of scale are a decisive factor in the formation of socio-economic networks and the

globalization and centralization of economic activities. Eventually, the winner takes it all. Here

we have studied core aspects of the question who wins and how in a simplified model of supply

network percolation.

The formation of socio-economic networks is a guiding research question across disci-

plines, including economics [4–6, 12], sociology [3, 27, 36] and statistical physics [2, 11]. Key

mechanisms and global properties of network formation through economies of scale have

been thoroughly analyzed [5, 11, 27], whereas the microscopic processes in large systems with

Fig 5. Impact of a single customer. Sketch of the effect of a single (new) customer for a node. With the new customer production increases and the

production costs per unit decrease by aD (economies of scale). This compensates larger transport costs for nodes further away from the supplier.

Consequently, the supplier becomes competitive in a larger range and can potentially attract additional customers. The blue disks indicate the distance

that is compensated by the decrease in production costs due to one customer (two customers). (a) For small a, the change in production cost is small

and likely has no immediate effect [compare a = 10−4 in Fig 4(a)]. The nodes have to compete at all length scales. (b) For intermediate a, a single

customer may reduce the costs sufficiently to cause additional nodes to change their supplier. In this case, nodes have to compete at a local scale until

they reach a size sufficiently large to take over the global cluster. (c) For large a, a single customer definitely reduces the costs sufficiently to cause a

cascade of purchasing decisions and the first node to attract a customer takes over the whole cluster. Here, only the immediate neighborhood of a node

decides about its success [compare a = 1 in Fig 4(a)].

https://doi.org/10.1371/journal.pone.0225346.g005
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many heterogeneous actors are much harder to grasp. Most traditional models of network for-

mation do not explicitly capture the behavior of individual actors [11, 17, 37]. Percolation

models are based on random processes, while optimization models typically assume a com-

mon global objective function. In contrast, game theoretic models describing individual agents

[21, 25, 26, 38] are often hard, if not impossible, to solve for large heterogeneous systems. In

this article, we have analyzed a supply network model [29] that explicitly includes economies

of scale and individual decisions, yet remains simple enough to allow for an efficient simula-

tion of network formation and centralization in large heterogeneous environments. We exploit

this fact to reveal the topological properties that determine the importance of a node for the

emerging globally connected network.

The model yields the structure of a trade network given an underlying transportation net-

work as a function of two main parameters: the strength of economies of scale a and the trans-

port costs per distance pT. As transport costs decrease, trade links are established and the

production is centralized to fewer and fewer nodes. For weak economies of scale, this process

is gradual. Nodes compete at all length scales and the merger of two large clusters is inhibited

while transport costs are large, similar to mechanisms of explosive percolation [18, 31, 32].

The internal cost parameters are decisive for the competitiveness of a node. Only nodes with

low productions costs bi have a chance to become the final supplier of the network once pro-

duction is centralized completely. The geographic location of the nodes in the network, char-

acterized by different centrality measures, plays only a minor role. In contrast, if economies of

scale become dominant, this picture changes entirely: Production is centralized in a single, dis-

continous percolation transition once transportation costs decrease below a critical value.

Only a single node attracts a significant number of customers and wins the competition almost

instantly. Moreover, the transition becomes abrupt and as such hard to foresee. The chance of

a node to become the central supplier is now mostly determined by the location of the node in

the network. Interestingly, however, global centrality measures are not the best indicator for

competitiveness. Instead, a local measure of the distance to the nearest neighbor, referred to as

local closeness, is the best indicator for the success of a node. These results remain qualitatively

unchanged for a broad range of cost functions describing economies of scale [29]. While mod-

ifications, for example stopping the process at non-zero transportation costs, change the quan-

titative evolution, the mechanistic insights into which length scales determine the importance

of nodes during the emergence of (global) connectivity are generally applicable.

Loosely speaking, our findings are as follows: For weak economies of scale the internal

properties of a node or economic agent are decisive. Competition occurs across all length

scales in the network and basic efficiency provides the greatest advantage in all stages of the

emergence of global connectivity. Only the (globally) most efficient nodes have a chance to

take over the network. For strong economies of scale speed becomes the most important fac-

tor, rather than efficiency or global location. Competition occurs only locally to gain a first

advantage and only the agent with the highest local closeness can rapidly attract the first exter-

nal customers and then exploit economies of scale to grow its market, skipping over the com-

petition in later stages of process. For the future it would be of eminent interest to study how

other factors influencing economic globalization processes confirm or modify these findings

and whether they can be confirmed in real world settings.

Supporting information

S1 Table. Information on the realization of network typologies (10 different realizations

for each reshuffling method) indexed by r. Legends can be found in te readme.txt file.
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Validation: Chengyuan Han, Malte Schröder.
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Abstract
Future energy systems will be dominated by variable renewable power generation and
interconnected sectors, leading to rapidly growing complexity. Flexible elements are required to
balance the variability of renewable power sources, including backup generators and storage
devices, but also flexible consumers. Demand response (DR) aims to adapt the demand to the
variable generation, in particular by shifting the load in time. In this article, we provide a detailed
statistic analysis of the collective operation of many DR units. We establish and simulate a model
for load shifting in response to real-time electricity pricing using local storage systems. We show
that DR drives load shifting as desired but also induces strong collective effects that may threaten
system stability. The load of individual households synchronizes, leading to extreme demand peaks.
We provide a detailed statistical analysis of the grid load and quantify both the likelihood and
extent of extreme demand peaks.

1. Introduction

The mitigation of climate change requires a comprehensive transformation of our energy system towards
renewable sources [1]. Wind and solar power have enormous potential [2] and have become fully cost-
competitive in recent years [3]. However, system integration of renewable power sources remains a challenge
as generation fluctuate on multiple time scales [4–7]. Hence, methods of statistical physics and complexity
science are becoming essential to understand the dynamics and operation of future energy systems [8–10].

A variety of methods are being used and developed to balance the fluctuations of renewable power gener-
ation, including different storage techniques [11] and flexible balancing power plants [12]. Furthermore, the
electricity sector may be coupled to other sectors, e.g., heating and industry, providing additional flexibility
[13]. In addition, flexibility can be introduced on the demand side. Techniques to adapt to the fluctuating
generation are commonly referred to as demand response (DR) and are heavily discussed in the literature
(see [14, 15] for recent reviews). The adoption of DR requires incentives for the respective user, typically via
offering financial compensation [16]. For instance, users may adapt their demand to the current electricity
prices in almost real-time to reduce overall costs [17]. However, the adaption of DR at the household level is
lacking behind [18] as social and behavioral obstacles are not overcome.

In this article, we address the operation and implications of DR from a systemic statistical perspective. With-
out DR, the actions of single consumers, i.e., the switching of a single device, can be considered an independent
stochastic event [19]. In a large interconnected power system, demand fluctuations of individual households
average out, and the total grid load varies rather smoothly [20, 21]. In the spirit of the central limit theorem, we
can assume that the residual fluctuations of the total grid load around the smooth daily profile follow a normal
distribution. This assumption is no longer valid for real-time DR, where the customer demands are adapted

© 2022 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Sketch of the household DR model analyzed in the present paper. The household demands the electric power D(t)
during time interval t. This demand can either be satisfied by drawing power from the grid or a local BESS with capacity SCap.
Whether power is drawn from the grid to meet the demand and charge the BESS is decided by a controller on the basis of the
real-time price p(t) and the state of charge of the BESS S(t). We consider an elementary control law where p(t) is compared to an
acceptable price pa , that is a monotonously decreasing function of S(t).

according to a common input signal, the electricity price, and thus are no longer independent. Collective effects
may then fundamentally alter the statistics of the electricity demand.

To study the potential impacts of DR, we simulate the operation of a household DR system based on real-
time pricing using a coarse-grained model and investigate the impact on the resulting electricity demand time
series. On average, demand is shifted to periods of low prices as desired, but we instead focus on the statistics
of the time series and collective effects emerging for many households all reacting to the same real-time price
signals. It has been shown in the statistical physics community that such common inputs can fundamentally
change the statistics [22, 23]. In fact, the behavior of different households can synchronize, which leads to
heavy-tailed distributions of the aggregated demand. Events with a strongly simultaneous demand may arise,
which may be adverse to power system stability.

It should be noted that we examine DR systems aiming to reduce electricity costs for the consumers and
their impacts from a systemic viewpoint. Generally DR can serve other beneficial purposes, e.g., improve grid
stability or manage congestion [15, 24]. In particular, dynamic DR and similar smart-grid approaches offer an
avenue to tackle fluctuations at the level of power-grid frequency [25–28].

2. Models and methods

We consider a coarse-grained model of real-time DR. A set of N households try to minimize their electricity
costs by adapting their power supply, as shown in figure 1. Each household j = 1, . . . , N is characterized by
its residual power demand time series Dj(t), which equals the final demand minus local renewable generation,
e.g., by a photovoltaic source.

The DR is realized via a small battery electric storage system (BESS) with capacity SCap, which allows for a
shifting of electricity consumption. That is, we consider only DR actions that do not require any active partici-
pation or behavioral changes by the consumer, i.e., fully automated by a controller. The residual power demand
Dj(t) of each household j can be covered either by electricity stored in the battery or by buying electricity from
the market by paying the price p(t) per unit of energy. Market prices are typically updated in hourly or quarter-
hourly steps. Hence, we simulate system operation in discrete time steps of length Δt = 1 h. In the following,
energy is always given in units of kWh, and the power demand is given in units of kW.

The basic operation of the BESS system is determined by a controller that consider the current price and
the state of the BESS. In each time interval t, the controller at household j determines the amount of energy
Ej(t) purchased from the grid. Neglecting losses, the energy stored in the BESS increases by a portion of the
purchased energy and decreases by the residual energy due to demand Dj(t) · Δt. The state of charge of the
BESS Sj(t), defined relative to the capacity SCap, thus evolves as

Sj(t + Δt) = Sj(t) +
Ej(t) − Dj(t) × Δt

SCap
. (1)

The characteristics of the demand time series Dj(t) and the operation of the controller that determines Ej(t)
are discussed below.
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2.1. Demand patterns
This paper deals with the statistical properties of electricity consumption and collective effects emerging in
the system compromised of many users, such that a large amount of input data is required. We use a recently
developed statistical model for the demand time series Dj(t), which captures essential features of real-world
demand fluctuation patterns [29].

In the model, the demand time series of a household is given by a stochastic process

Dj(t) =

√√√√
L∑

k=1

x2
k(t) + μMB, (2)

where xk(t) is an Ornstein–Uhlenbeck process with zero mean, diffusion constant σOU and mean-reversion
strength γD [30]. The demand time series Dj(t) is a composition of L Ornstein–Uhlenbeck processes. We
choose L = 3 following [29]. This model leads to a stationary distribution of the demand Dj being described
by the shifted Maxwell–Boltzmann distribution (equivalently known as the shifted χ2 distribution with three
degrees of freedom)

P(Dj) =
1

σ3
MB

√
2

π
(Dj − μMB)2 · exp

[
− (Dj − μMB)2

2σ2
MB

]
, (3)

for Ornstein–Uhlenbeck processes with a stationary distribution with identical scale parameter σOU, where
subsequently the scale of the Maxwell–Boltzmann distribution σMB equals σOU. The distribution of the
demand time series P(Dj) takes values in the interval [−μMB, ∞]. Hence, distributions with different vari-
ability can be readily generated by tuning the diffusion parameter σOU in the individual Ornstein–Uhlenbeck
processes xk(t). Hence, distributions with different variability can be readily generated by tuning either the
diffusion parameter σOU or the mean-reversion strength γD of an individual Ornstein–Uhlenbeck processes
xk(t).

In the numerical simulation, we generate the individual Ornstein–Uhlenbeck processes using a Markov
chain Monte Carlo method. The transition probability from state x0 at time t0 to state x1 at time t0 + Δt is
given by

P(x1, t0 + Δt|x0, t0) =

√
γD

πσ2(1 − e−2γDΔt)
exp

[
−γD(x1 − x0 e−γDΔt − μD(1 − e−γDΔt))2

σ2(1 − e−2γDΔt)

]
. (4)

While the authors in reference [29] used the offset μMB to fit different measured load time series, our analysis
only necessitates the correct stochastic behavior of the resulting load time series, and thus we set μMB = 0 for
the analysis. Furthermore, we choose the scale parameter to give an average demand of 〈Dj〉 = 0.5 kW, resulting
in about 12 kWh consumption per household and day. The choice of the mean reversion rate γD determines the
timescale of the stochastic demand series. We choose this to be set to γD = 1 h−1. An exemplary distribution
of the demand P(D) can be seen in figure 2.

2.2. Price time series
The real-time electricity price p(t) is the essential variable driving the operation of the BESS controller. To
enable more detailed stochastic investigations, we use synthetic time series which are designed to reproduce
essential statistic features of real-world time series. In particular, we model p(t) as a one-dimensional Orn-
stein–Uhlenbeck process with parameters μp, σp, and γp. The mean and the standard deviation are set to
μp = 39.46 ct kWh−1 and σp = 20.69 ct kWh−1, respectively, corresponding to the value observed in the Ger-
man–Austrian intra-day spot market in the years 2014–2020. The mean reversion rate γp is kept as a tunable
parameter to analyze the impact of correlations on the DR effect. We mostly use γp = 0.2 h−1 for illustrative
purposes, but present the final results for different values of γp. The transition probabilities are given by an
analogous expression to equation (4).

We note that consumer prices are generally much higher than wholesale market prices. However, any con-
stant shift or scaling of the prices does not affect the results of our simulations. In fact, such a rescaling will
only lead to an equivalent rescaling of the acceptable prices pa,j.

2.3. Controller model
The BESS control system must determine how much electrical energy Ej(t) is purchased from the grid in the
time interval t. The development of optimal control algorithms for DR is a wide research field, and important
progress has been made (see [31, 32] for recent reviews). The scope of this study is a very different one, focusing
on collective effects and emergent statistical properties. Hence, we keep the controller model as concise as
possible.
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Figure 2. Sample simulation for a single household showing the dynamics. The parameters defining the household were set to a
battery size of SCap = 10 kWh and a charging rate of cr = 0.2 h−1, while the control parameters were chosen as q = 20 ct kWh−1

and k = 40 ct kWh−1. From top left clockwise: demand D, acceptable price pa, price p(t), and state of charge S.

First, we do not include any forecasting in the control law. Decisions are made on the basis of the current
state of charge of the BESS Sj(t) and the electricity price p(t). In addition, the controller must take into account
the variable Dj(t) to ensure that the demand is always met and the battery limits are obeyed.

Second, we assume that the controller has only two basic options: either it chooses to cover the demand
completely from the battery such that Ej(t) = 0 kWh, or it chooses to draw power from the grid to recharge
and satisfy the demand. Recharging is always done at a maximum charging rate crSCap, where cr ∈ [0, 1] h−1 is
a tunable parameter. In this case, the household will draw the energy

Ej(t) = (Dj(t) + cr SCap) Δt (5)

from the grid. Small adjustments must be made to ensure the demand is always met and the battery is never
overloaded, i.e., Sj(t + 1) ∈ [0, 1] is always satisfied. Revisiting equation (1), we find the following constraints:
if the state of charge is too low to cover the demand in the current time interval, Ej(t) = 0 is impossible, and
the BESS has to draw the energy Ej(t) = Dj(t)Δt − Sj(t)SCap from the grid. If the BESS is almost full such that
equation (5) would lead to overloading, the BESS can only draw the energy Dj(t) Δt + SCap(1 − Sj(t)) from
the grid.

Finally, we assume that the decision of whether to draw energy from the grid or not is reached by comparing
the market price p(t) to an acceptable price pa,j(t). Hence, the control law can be formulated as

Ej(t) =

{
min

[
SCap(1 − Sj(t)) + Dj(t) · Δt, (cr · SCap + Dj(t)) · Δt

]
if p(t) < pa,j(Sj(t)),

max
[
0, Dj(t) · Δt − Sj(t) · SCap

]
p(t) � pa,j(Sj(t)).

(6)

The acceptable price depends on the state of change Sj(t) of the BESS. If the BESS is almost fully charged,
there is no need to purchase electricity such that pa,j will be large. If the BESS is almost empty, recharging is
urgent, and pa,j will be small. In the following, we assume a simple affine linear law

pa,j(t) = k + (q − k) Sj(t). (7)

Note the parameters for q and k in equation (7) give the acceptable price for a full and empty BESS, respectively.
The actual value of the parameters q and k are determined to optimize the total costs of a single household and
depend on the properties of the demand, price statistics, and the BESS itself. We will discuss this aspect in the
following section.

3. Demand response effect at the household level

The DR system shifts the electricity demand of the households in time. Without DR, a household consumes
the demand Dj(t) directly from the grid; with DR, the purchases are instead given by the time series Ej(t). By
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Figure 3. Example of the DR for a single household with battery size SC = 10 kWh and a charging rate cr = 0.2 h−1, while the
control parameters were chosen as q = 20 ct kWh−1 and k = 40 ct kWh−1. At times where the acceptable price pa is large then the
price p (green shaded regions), the storage is charged by cr · SCap if it is not full already. This way, the saved up energy can be used
to avoid the high price regions in the middle thus lowering the money that would have to be paid.

shifting to time intervals of lower prices, DR can thus reduce the total electricity cost of a household. We first
analyze this effect from the perspective of a single household before we turn to systemic effects and statistical
properties in the next section. A sample simulation can be seen in figure 2. As the price is modeled as an Orn-
stein–Uhlenbeck process, its stationary distribution P(p) follows a Gaussian distribution, while the demand
distribution follows a Maxwell–Boltzmann distribution (center column of figure 2). Using the control function
described in section 2.3, the state of charge S and acceptable price pa interact to drive the system dynamics.

To understand the underlying dynamics, we need a closer look at the time evolution of the price p, accept-
able price pa, and the state of charge S. In figure 3, a short time window of the same simulation as presented in
figure 2. The time windows where the acceptable price pa is above the market price p(t), i.e., where the battery
is charged if the limits are not exceeded, are indicated by the green shaded regions. At times when the price
is too large, the battery can be used to cover the demand. Thus, the demand has been shifted away from the
times of high prices to the green shaded time regions. To quantify the impact of the DR system for a single
household, we consider the average cost that a household j has to pay for the energy drawn from the grid in Nt

time steps,

μC,j = N−1
t

Nt∑

i=1

p(ti)Ej(ti), (8)

as well as its volatility expressed by the standard deviation σC. We assume that all customers individually min-
imize their average costs μC and design the controller accordingly. Furthermore, we consider the mean μ and
the standard deviation σ of the time series S(t) and E(t) to characterize the operation of the DR system. Obvi-
ously, all characteristics depend on the properties of the BESS system and the controller as well as the properties
of the stochastic processes Dj(t) and p(t). In the following, we fix the parameters of the stochastic processes to
the values given in the previous section and focus on the BESS and control system.

To begin with, we consider an even simpler control law with a constant acceptable price pa,j = k, see figure 4.
This simplified treatment provides some fundamental insights into the operation of the BESS, which is helpful
for the analysis of the full system provided below. We find that even in this simple case, a substantial reduction
of the electricity costs is possible. For a large BESS with capacity SCap = 40, we find a reduction of the cost by
more than 50%.

In all cases, we find that there is an optimum value of the acceptable price k∗ for which the average electricity
price μC assumes a minimum. Notably, this optimum value is considerably lower than the average market price.
For pa,j = k∗, the system makes use of the battery in an optimal way. It is heavily charged and discharged such
that the standard deviation σS assumes a maximum. States with high and low charges are equally probable
such that the purchases Ej(t) are also most volatile at the optimum point.

We now turn back to the original control law given in equation (7), where the controller takes into account
the state of charge of the battery. The control law is characterized by two parameters, k and q, which are chosen
to minimize the average costs μC. In particular, we carry out a parameter scan for any given BESS system to
find the optimum values q∗ and k∗, as shown in figure 5. We find that a household can reduce its electricity
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Figure 4. Operation of the DR/BESS system of a single household for simplified control law. The panels show the mean μ and the
standard deviation σ of the state of charge Sj(t) and the purchases Ej(t), as well as the average electricity price paid by the
household (8) together with the volatility. The respective quantities are plotted as a function of the acceptable price pa,j = k,
which is assumed to be constant here. We observe a minimum in the average price μC that gets more pronounced with increasing
storage capacity SCap. At the this optimum point, σE and σS assume a maximum.

Figure 5. Reduction of the electricity costs of a single household by a DR/BESS system. We plot the average electricity costs μC as
a function of the control system parameters q and k for two values of the BESS capacity: SCap = 10 kWh (left) and SCap = 40 kWh
(right) and a charging rate of cr = 0.5 h−1. For the larger storage sizes SCap = 40 kWh, a reduction in μC by a factor of
approximately 3 is possible compared to a storage size of SCap = 10 kWh. The red cross denotes the optimal choice of the
parameters q∗ and k∗ for which μC assumes its minimum, while the red dashed lines indicate the line for the constant strategy as
explored in figure 4.

costs considerably by the DR system depending on the size of the BESS. For a BESS capacity of SCap = 40 kWh,
we find a reduction of μC by more than a factor of 4 at optimum parameters. In the following simulations, we
will always assume that all households set the control parameters to the optimum values k∗ and q∗.

A systematic study of the impact of the technical parameters of the BESS on the DR effect is provided in
figure 6. We find that the average electricity cost μC at optimum parameter choices decreases monotonically
with the available storage capacity SCap. That is, the larger the BESS, the more it can contribute to load shifting
and hence to a reduction of household electricity cost. The slope decreases slightly with the capacity SCap, but
we see no pronounced saturation effect for values up to SCap = 40 kWh considered in our simulations. For
a fixed storage capacity SCap, the average price drops rapidly with the maximum charging rate cr SCap until it
saturates at cr ≈ 0.2 h−1.

4. Systemic effects and statistics of DR

The result of the previous section confirms that DR can lead to a substantial reduction of a household’s electric-
ity costs by shifting electricity purchases to time intervals with lower prices. As low prices typically correspond
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Figure 6. Reduction of average electricity costs μC for a single household as a function of the capacity SCap and charging rate cr of
the BESS. In all cases, the respective optimal control parameters k∗ and q∗ were used. The minimal cost decrease monotonically
with both SCap and the charging rate cr, where the latter shows a pronounced saturation for cr � 0.2 h−1.

to periods of high renewable power generation, this is considered beneficial for the operation and stability of
the entire power system. We will now demonstrate an important limitation to this general conclusion due to
the collective effects induced by real-time DR.

To quantify the collective effects and the impact on the system, we simulate the operation of many house-
holds. All households j = 1, . . . , N have different demand patterns Dj(t) but react to the same price signal p(t).
For the sake of simplicity, we furthermore assume that the parameters of the BESS are identical and that each
household chooses the same optimal control parameters p∗ and k∗. The impact on the electricity system is ana-
lyzed in terms of (i) the statistics of the total grid load Etot(t) =

∑N
j=1 Ej(t) and (ii) the fraction of electricity

purchased at a certain price p. The latter quantity is estimated from the simulation results as

Z(p) = N −1
∑

t:p(t)∈[p,p+Δp]

N∑

j=1

Ej(t). (9)

Here, the sum over the variable t is restricted to time steps where the price satisfies p(t) ∈ [p, p + Δp], i.e.,
where it falls in a small interval around the given price p. The variable N denotes a normalization constant
which ensures that the integral over Z(p) equals one such that we can interpret Z(p) as the density of purchases
at a certain price.

Consider first the case of no DR, which is recovered in the above model by setting SCap = 0 kWh. Electric
energy is drawn from the grid whenever demanded, Ej(t) = Dj(t), independent of the actual price p(t). Hence,
the likelihood of buying at a certain price, Z(p), equals the PDF of the market price p(t), see figure 7. The
individual purchases Ej(t) fluctuate strongly, but the total system load Etot(t) does not. In fact, the individual
fluctuations average out such that the total grid load is almost constant at a level of

Etot ≈ N
〈

Dj(t)
〉

j,t
, (10)

where the brackets denote averaging over time steps and households. The residual small fluctuations around
this value are well described by a narrow Gaussian PDF, see figure 8. According to the central limit theorem,
the relative width of the Gaussian decreases as 1/

√
N.

This picture is completely altered in the presence of real-time DR. Customers shift their load to periods
with lower prices to reduce their costs. Hence, the density function Z(p) of purchases in a certain price interval
is strongly shifted to lower values of p, as shown in figure 7. Purchases during high-price time intervals are
suppressed. The larger the size of the battery SCap is, the less likely purchases at times with high price become,
but they still occur occasionally.

In principle, load shifting is the desired effect of DR. However, the effects at different households are not
independent but synchronized due to the coupling to the common price signal p(t). Consequently, the fluc-
tuations at different households no longer average out, and the central limit theorem no longer applies. The
impact on the statistics of the total grid Etot(t) is dramatic, as shown in figure 8. Instead of a narrow normal
distribution, we now find a wide bathtub-shaped distribution. Events where all customers synchronously draw
the maximum amount of power are quite likely. In particular, such events take place after a longer period of
high prices, where all BESS are empty, the acceptable prices pa,j are high, and all households start charging
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Figure 7. The likelihood of prices p paid by the households. The figure shows the density function defined in equation (9) for DR
systems with different storage capacities SCap. In the absence of DR (SCap = 0 kWh, dashed line), the density Z(p) equals the
density of the price time series p(t). In the presence of DR (SCap > 0 kWh, solid lines), customers can shift the purchases to
periods with lower prices. Hence, the density function Z(p) is strongly shifted to lower values of p. In all cases, we use optimized
parameters k∗ and q∗ for the controller. The charging flow to the batteries cr · SCap was chosen as 2 kW and 6 kW for the results
presented on the left and right sides, respectively.

Figure 8. Distribution of total grid load Etot for different mean reversion rates γp of the Ornstein–Uhlenbeck process giving the
price. The storage size of SCap = 10 kWh and SCap = 40 kWh are compared on the left and right, respectively. In both cases, the
total charging cr · SCap is chosen as 2 kWh per hour. Black dashed line gives the distribution if no storage device would be used,
which is equivalent to the distribution of the demand D. When the time spent in either high or low price regimes is short enough
to allow the battery device to be used effectively, the distribution of the total purchased energy Etot, i.e., the stress to the grid, is
broad, and situations with large total demand become very likely. As the price dynamics gets slower, the distribution changes from
an almost horizontal shape by narrowing considerably.

when the price finally drops [23]. These crucial events result in a peak of the distribution at the right edge at

Etot ≈ N
(

crSCap +
〈

Dj(t)
〉

j,t

)
Δt, (11)

increasing linearly with the system size N. Such periods with large purchases induce stress to the electric power
grid on various scales and may even prove critical for system stability. On the distribution grid level, large
demand peaks may lead to problems of voltage quality and have been intensively discussed in the context of
e-vehicle charging [33, 34]. On the transmission grid level, a sudden increase of the demand leads to a drop of
the grid frequency which has previously been observed due to societal events [35, 36].

Remarkably, events with excessive demand can not even be considered rare, as the probability density shows
pronounced peaks at high values. We note that similar distributions with peaks at the right edge have been
intensively studied in reliability theory [37]. In figure 8, it is also shown how this effect changes for different
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Figure 9. Stress to the grid for different battery sizes. The probability P(Etot > f · 〈Dtot〉 · Δt) of the total purchases energy is
larger than f-times the average total demand Dtot at the optimal strategy parameters q∗ and k∗. Using larger batteries by increasing
their capacity SCap generally decreases the stress to the grid but for one important effect. There is a sharp increase in the likelihood
of very high stress situations for different f values if one increases the capacity of the batteries.

mean reversion rates of the price γp. If smaller and smaller γp are used to generate the price time series p(t),
high stress situations become more and more unlikely since the battery storage device cannot sustain the long
periods of high prices and the DR effect is diminished. Although one might consider these situations as prefer-
able due to the absence of high stress situations, they are not beneficial to the individual households since they
are not able to escape high prices with the help of the BESS, the average cost of a household is considerably
higher than in case with faster price dynamics, which is not desirable to individual households.

To further quantify the likelihood of situations that strongly affect the grid, we evaluate the probability
P(Etot > f · 〈D〉 · Δt) that the purchased energy exceeds the average demanded energy 〈D〉 · Δt by a factor of f.
Results are shown as a function of the capacity SCap of the BESS in figure 9. Without DR, extreme events with
f > 2 are never observed in our simulations. This is a direct consequence of the central limit theorem, which
states that large deviations from the mean are exponentially unlikely. DR now makes these events possible as
the demand is accumulated during time periods with low prices. In particular, we find that extreme events
become possible if the capacity SCap exceeds a threshold value. If the capacity increases further, the likelihood
decreases again because purchases are further concentrated to fewer and fewer points in time. That is, extreme
events become less likely but more pronounced in their magnitude.

5. Discussion

DR summarizes a variety of approaches to adapt the demand for electric power to better match the supply.
This can be achieved by load shifting—consumers shift their demand in time and may receive financial com-
pensation for the utility company in return. DR can be a meaningful source of flexibility in future renewable
power systems, where the generation is volatile and cannot be easily adapted to the demand.

In this article, we have analyzed a model DR system from a statistical viewpoint. Load shifting is realized by
the optimized charging of a household BESS in response to real-time electricity pricing. Such storage systems
are often installed together with a rooftop photovoltaic system and it becomes increasingly important to take
their role in the operation of the entire system into account.

On average, the model DR systems provide the desired load shifting effect. However, the statistics of the
grid loads change dramatically, which may have unwanted or even harmful effects. These effects manifest the
collective behavior of many DR systems driven by the same price signals. Without DR, the electricity load
of single households is largely uncorrelated besides the common daily profile. Hence, individual fluctuations
average out, and the total grid load is smoothed. With DR, the electricity load can get synchronized. The
smoothing effect is lost, and we observe pronounced peaks instead. The distribution of the grid load then
assumes a bathtub shape with pronounced peaks at zero and peak load.

Importantly, the demand peaks do not necessarily occur during the periods of the lowest prices. Instead,
they may also occur if the price drops after a long period of high values. In such a case, DR operation may be
counter-productive for system stability, introducing demand peaks at times of limited generation.
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In conclusion, we have demonstrated that DR may induce load shifting patterns with intricate statistical
properties. While load shifting itself is the desired effect of DR, a comprehensive roll-out of such systems may
lead to undesired excessive effects. Whether beneficial or adversarial effects dominate in terms of system stabil-
ity depends on a variety of parameters. For instance, the layout of the respective distribution grid determines
which demand peaks can be safely handled. Furthermore, the market penetration of DR systems will be deci-
sive. Critical impacts on system stability are expected only if the number of DR units is fairly large. Moreover,
the choice of a different algorithm may ameliorate the synchronization problem, but the synchronisation effect
will be present.

A comprehensive assessment of DR should take into account both collective effects and details of the tech-
nical realization, including the implementation of the controllers and heterogeneity of the DR units. On large
scales, it might be even necessary to include the feedback on the electricity market prices. On small scales, the
limitations of the local distribution grids must be taken into account. Such comprehensive modeling efforts
can then show whether counter measures are necessary and how they can be realized effectively.
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Benjamin Schäfer for stimulating discussions.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

ORCID iDs

Chengyuan Han https://orcid.org/0000-0001-5220-402X
Dirk Witthaut https://orcid.org/0000-0002-3623-5341
Leonardo Rydin Gorjão https://orcid.org/0000-0001-5513-0580
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The large variability of renewable power sources is a central challenge in the transition to a sustainable
energy system. Electricity markets are central for the coordination of electric power generation. These
markets rely evermore on short-term trading to facilitate the balancing of power generation and demand
and to enable systems integration of small producers. Electricity prices in these spot markets show pro-
nounced fluctuations, featuring extreme peaks as well as occasional negative prices. In this article, we
analyze electricity price time series from the European Power Exchange market, in particular the hourly
day-ahead, hourly intraday, and 15-min intraday market prices. We quantify the fluctuations, correlations,
and extreme events and reveal different time scales in the dynamics of the market. The short-term fluc-
tuations show remarkably different characteristics for time scales below and above 12 h. Fluctuations are
strongly correlated and persistent below 12 h, which contributes to extreme price events and a strong
multifractal behavior. On longer time scales, they get anticorrelated and price time series revert to their
mean, witnessed by a stark decrease of the Hurst coefficient after 12 h. The long-term behavior is strongly
influenced by the evolution of a large-scale weather pattern with a typical time scale of four days. We elu-
cidate this dependence in detail using a classification into circulation weather types. The separation in time
scales enables a superstatistical treatment, which confirms the characteristic time scale of four days, and
motivates the use of q-Gaussian distributions as the best fit to the empiric distribution of electricity prices.

DOI: 10.1103/PRXEnergy.1.013002

I. INTRODUCTION

Human reliance on electric power has fostered the devel-
opment of a large set of technological advances [1]. The
need to mitigate climate change has, on the one hand,
greatly increased the need for low or zero-emission power
generation [2], and on the other hand, opened up the elec-
tricity markets to small renewable energy power producers
[3–8]. Particularly, the short-term markets facilitated the
integration of the smaller power producers [9], and have
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author(s) and the published article’s title, journal citation, and
DOI.

introduced considerable changes to the economic aspects
and regulations of electricity markets [10,11]. For most
power systems, electricity markets are used to trading gen-
erated power and guarantee that the consumed power is
matched at every point in time [12]. Particularly in open
electricity markets—and for our study here, the European
market—the price of electricity is settled on the electric-
ity power exchange (EPEX SPOT) [13]. In the European
electricity exchange markets, several different products can
be traded, with very different delivery targets and dura-
tion. Particularly on the time scale of days to minutes,
there are the day-ahead and intraday markets [14], where
most renewable energy producers participate. On the day-
ahead market, auction-type products can be traded up to
12 h before the delivery of power. On the intraday mar-
kets, continuous-type products are traded up to 5 min
before delivery [15,16]. Electricity prices are intrinsically

2768-5608/22/1(1)/013002(17) 013002-1 Published by the American Physical Society
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coupled in these markets. The day-ahead markets set an
initial value for trading electricity in the intraday market.

From their launch at the beginning of 2010, several stud-
ies on the influence, benefits and drawbacks, and impact
of short-term electricity markets have been made [7,9,17].
The need for more accurate forecasting models has also
lead to a recent, more close examination of the intraday
market prices [15,18–22]. In this study, we consider a com-
plex systems approach to price dynamics in the purview
of stochastic processes and examine the interplay between
quarter-hourly and hourly price time series, as well as
their connection to large weather patterns [23]. We aim
at unveiling the characteristic time scales of electricity
price time series from a data-driven perspective. In this,
we focus on price dynamics as a complex stochastic pro-
cess and analyze characteristic metrics in the context of
complex systems [24,25]. Particularly, we try to answer
the questions: what probability distributions do time series
show, and to what extent do they differ from Gaussian
processes? What are the reasons for these deviations? Are
price time series stationary processes? If not, do they show
distinct time scales? What about stochastic memory and
multifractality? Can we quantify those and link them back
to how each distinct market works? And how are they
influenced by the weather? In this work we address some
of these questions, particularly attempting to link the vari-
ous complex behaviors that price time series exhibit—such
as multifractality and long-range dependence—to three
distinct time scales that we extract from the data.

One should note that electricity prices, unlike most other
commodities prices, are distinct in, for example, having
not-so-infrequent negative values, being mean reverting,
i.e., returning to some base price after fluctuations, and
having pronounced cycles coupled to the generation or
consumption of energy, particularly day-night cycles, and
other human activities [18,26]. Being distinctively differ-
ent from other prices, electricity prices, especially intraday
prices, have not been extensively analyzed from a complex
systems’ perspective [27,28]. An examination of the mul-
tifractal properties of electricity price time series is also
scarce in the literature [29,30]. We employ the model-free
Hilbert-Huang transform (empirical mode decomposition)
to remove nonstationarities from price time series [31].
We use multifractal detrended fluctuation analysis [32–36]
to explain: (i) the time scale separation of the quarter-
hourly market below 12 h and different persistence in the
prices; (ii) the anchoring of fast transitions by the day-
ahead hourly market at the time scale of 12 to 48 h and
the coalescence of precision of all time series [37,38]. We
also employ superstatistical methods [39–41] to unveil the
longer time scale of prices equilibrium at roughly 96 h and
obtain the entropic indices of each time series—a measure
of the strength of nonstationarities—which all differ from
1 [42–45]. These results support the fact that the statis-
tics of electricity price time series follow a q-Gaussian

distribution [46–48]. The methods employed aim to extract
the various mentioned features and time scales solely from
the price data, without any other exogenous information.
As a final step, we examine circulation weather types data
[49,50], which comprise an objective measure of the state
of the flow over Central Europe, particularly describing the
strength of the wind. We show that the prices are inextrica-
bly related to large weather parameters, and their statistics
change considerably between calmer and strong wind con-
ditions, further justifying our superstatistical approach to
price dynamics.

This article is organized as follows. Section II provides
a short background on the European electricity markets.
Section III is comprised of five subsections: Sec. III A dis-
cusses the aspects of nonstationarity in price time series
and how to deal with them; Sec. III B explains the statis-
tics of price time series and introduces a candidate model
to explain these; Sec. III C discusses simultaneously the
intrinsic correlation and persistence in price time series,
unveiling our short-term time scale, as well as the rapid
jumps in prices, unveiling our midterm time scale; Sec.
III D addresses the change of statistics over time, unveil-
ing our long-term time scale in price time series, and offers
a justification for the aforementioned candidate model for
price time series statistics; Sec. III E covers an analysis of
the connection between large-scale weather patterns and
the changes in statistical properties of the price time series.
Section IV provides a set of concluding comments on the
results.

II. BACKGROUND

A major portion of the Continental European electricity
is traded at the European Energy Exchange (EEX). For the
case of Germany and Austria, electricity spot market and
over-the counter trading takes place at the European Power
Exchange (EPEX SPOT) [13], which is a subsidiary of the
EEX. This market is used particularly to balance the daily
changes of power in Continental Europe, as well as the
very short quarter-hourly and hourly imbalances in power
generation and consumption [51].

On futures markets, electricity is often traded weeks,
months, or even years before the actual delivery of elec-
tricity [52]. In contrast to other markets, the supply and
demand of electricity has to be met at each point in time to
guarantee a stable power system. While the future demand
can be approximated by experience using, for example,
the standard load profiles, some deviations might become
apparent when getting closer to the date of delivery [53].
Additionally, due to the weather-dependent nature of the
increasing share of wind and solar energy resources, it is
not possible for a producer to precisely predict the amount
of electricity that will be produced at a time in the future
[54,55]. Thus, shorter-term trading is needed and takes
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place on the spot markets, making these markets essential
instruments for renewable energy source producers.

In Europe, the trading on these shortest time scales is
done on the day-ahead and intraday market. The time
series of three intrinsically connected electricity prices
from the spot markets are studied in this article: the day-
ahead hourly price time series, the intraday hourly price
time series, and the intraday quarter-hourly price time
series. Two distinct market schemes are present here: (i)
the day-ahead or auction market, on which offers can be
placed up to 12:00 (noon) prior to the day of effect for
the hourly products; (ii) the intraday or continuous mar-
ket, on which offers for the subsequent day may be placed
from 15:00 (16:00 for quarter-hourly products) of the prior
day up to 5 min before the respective trading block. While
the last successful bid determines the market clearing price
that has to be paid by everyone in the case of the day-
ahead market, the intraday market prices are given by a
pay-as-bid principle. In this sense, the intraday market is
intrinsically coupled with the day-ahead market, as the
day-ahead clearing price serves as a first price reference
for the prices in the intraday market.

Since the trading on the intraday market exists to clear
the mismatch that remains after trading on the day-ahead
market is finished, it is a smaller market in volume but
still an essential one in ensuring the stable operation of
the power system. The volume of trade in 2019 of the
day-ahead market totalled 501.6 TWh and of the intraday
market totalled 83.2 TWh [57].

The implementation of the quarter-hourly blocks of trad-
ing in 2011 for intraday trading, and the extension in
2014 to day-ahead trading, were designed to deal with the
increase in renewable energy source input, such as solar
and wind energies, which introduces stronger fluctuations
in power-grid systems. Likewise, these short window mar-
kets invited various smaller energy producers, particularly
of renewable energies, to participate in the market, as they
can now trade in time margins wherein they know they
can generate the necessary electric power. Furthermore,
the introduction of short trading periods contributes to the
improvement of power-grid frequency stability [58–60].

III. ELECTRICITY PRICE TIME SERIES
ANALYSIS

A. Long-term nonstationarity

The dynamics of electricity prices is closely connected
to the dynamics of the load and the renewable genera-
tion. In fact, a rough estimate for the price p at a time
t can be obtained from the balance equation of gener-
ation and demand, Gr(t) + Gd(p) = D(t). Here, Gd(p)

denotes the supply curve of the dispatchable generation,
also called the merit-order curve [6,61,62]. The demand
D(t) and the renewable generation Gr(t) vary strongly in
time, whereas the dependence on the price is negligible,

i.e., the demand is inelastic. Solving for the average price
yields p̄(t) ≈ G−1

d [D(t) − Gr(t)], i.e., the price dynamics
is mainly driven by the load minus the intermittent renew-
able generation, commonly referred to as the residual load
(Fig. 1). The residual load shows a pronounced weekly and
seasonal pattern and a strong variability on the synoptic
scale [63]. It must be kept in mind that this is only a rough
estimate, which cannot explain many details, such as the
occurrence of negative prices.

Electricity prices in any exchange market are influenced
by both short- and long-term trends, particularly those
reliant on renewable energy sources. In a single day, elec-
tricity prices tend to be lower at night. The price is also
often lower during weekends due to lower consumption
[64]. When looking at a longer time period, a more distinct
scale emerges: a seasonal and yearly scale [65]. The aver-
age price of electricity fluctuates at the level of months,
usually culminating in the largest average prices occurring
by the end of the year. These fluctuations make the aver-
age of price time series change slowly over the years, e.g.,
the day-ahead market has seen a variation of the average
price from 31.6 EUR/MWh in 2015, 29.0 EUR/MWh in
2016, 34.2 EUR/MWh in 2017, 44.5 EUR/MWh in 2018,
to 37.7 EUR/MWh in 2019.

In this work, we deal with variations of price time series
on different time scales, from scales of �t < 12 h to scales
of �t ∼ 4 days and longer. Long-term changes, as those
described above, affect the statistics of the time series [66].
These changes are well understood, yet present a difficult
task if we are interested in understanding the fundamental
nature and statistics of price time series. Take the simple
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FIG. 1. The electricity price strongly depends of the residual
load. The figure shows a joint histogram of the price p(t) in the
day-ahead hourly market and the residual load, i.e., the differ-
ence between the load and renewable generation D(t) − Gr(t)
in a colormap plot with a logarithmic scale. Assuming a per-
fect market equilibrium, prices would be given by the function
p̄(t) ≈ G−1

d [D(t) − Gr(t)], which can be approximated by a lin-
ear function (dotted red line). The fluctuations, i.e., deviations
from the line, are evident, as well as occasional extreme events.
Data from EPEX, 2015–2019 [13].
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FIG. 2. The three electricity price time series examined in this study, from January 2015 to December 2019. The average fluctuations
around a mean value are visible, as well as occasional jumps into either very large or possibly negative prices. The three black curves
display the three slowest intrinsic mode functions (IMFs) obtained via the Hilbert-Huang transform, which are subtracted from the
data to remove the long-term nonstationarity. Data from EPEX, 2015–2019 [13]. Figures generated with PYTHON’s Matplotlib [56].

example of the variation of the average of the day-ahead
price: this implies that examining an aggregated probabil-
ity distribution of all five years of data will not capture the
changes of the average price values that happen yearly.

In order to investigate the short-term variability, long-
term trends and periodicities must be separated from the
time series. To this end, we employ a model-free detrend-
ing method to remove the slowest trends in the data. We
use the model-free Hilbert-Huang transform (empirical
mode decomposition) method to extract these variations
[31,67,68]. The Hilbert-Huang transform extracts a set of
intrinsic mode functions (IMFs) from the (nonstationary)
price time series. This is achieved via an iterative process
of obtaining the set of local minima and maxima of the data
and connecting each set via cubic splines, forming an enve-
lope around the time series. Subsequently, find the middle
curve equidistant to the upper (maxima) and lower (min-
ima) envelope. This is the first IMF. Subtract this from the
actual time series and repeat the procedure to uncover the
subsequent IMFs, until the data are solely left with a sin-
gle residual trend. One of the main advantages of using the
Hilbert-Huang transform is that it can handle nonstationary
and nonperiodic trends, unlike a Fourier decomposition.

In Fig. 2, the full set of five years of data of the three
examined time series is displayed, alongside the three
slowest IMFs, i.e., the larger wavelength IMFs, which we
use to remove the long-term trend. The data of the day-
ahead hourly price, intraday hourly, and intraday quarter-
hourly price show small diffusivelike fluctuations as well
as large excursions or jumps. From hereon, we work with
the detrended data from which the three lowest IMFs have
been removed unless stated otherwise.

B. Statistics of electricity price and electricity price
increment time series

Having removed the long-term trends of the data, we
now examine the statistics of the data in more detail. In

Fig. 2, we observe large excursions of the prices, some-
times even leading to negative prices for all considered
time series. A common method to quantify the dynamics of
price time series is to examine the probability distribution
or probability density function, as shown in Fig. 3. One can
clearly observe that the data are not described by a Gaus-
sian distribution. To examine the impact of the heavy tails
of the price distributions, we examine the fourth central
moment of the price probability distributions, the kurtosis.
The kurtosis of a random variable, or in our case, a price
time series X is given by

κX = E
[(

X − μX

σX

)4]
= E[(X − μX )4]

{E[(X − μX )2]}2 , (1)

with E[·] denotes the expected value, μX the mean value
of X , and σ 2

X the variance of X . For example, a Gaussian
or normal distribution has a kurtosis of κX = 3. Any dis-
tribution with a kurtosis κX > 3 is considered heavy tailed
and is called leptokurtic. Conversely, if a distribution has a
kurtosis κX < 3, it is called platykurtic.

TABLE I. Kullback-Leibler divergence DKL(p|·) of the empir-
ical distributions of the three price time series relative to the
two candidate distributions: the Lévy symmetric α-stable dis-
tribution Lα,c,μ given in Eq. (2) and the q-Gaussian distribution
Gq,c,μ given in Eq. (3). The q-Gaussian distribution minimizes
the Kullback-Leibler divergence DKL for all price time series,
indicated in bold. The α and q values of the distributions are
given as per the best fit.

α-stable q-Gaussian

DKL(p|·) α DKL(p|·) q

Day ahead 0.013 1.61 0.012 1.46
Intraday hourly 0.016 1.54 0.014 1.50
Intraday quarterly 0.012 1.61 0.011 1.46
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FIG. 3. Empirical distributions of the detrended price time series. Each empirical distribution is fitted via a maximum likelihood
algorithm [69,70] with a q-Gaussian and a symmetric α-stable distribution, given by Eqs. (3) and (2), respectively. The q-Gaussian
distributions yield a better fit than the α-stable distributions, yielding q = 1.46 for the day-ahead, q = 1.50 for the intraday hourly,
and q = 1.46 for the intraday quarterly prices. The Kullback-Leibler divergence of the empirical and fitted distributions are given in
Table I, where one can see that the q-Gaussian distribution is the best at describing the empiric price time series. Mean μ, standard
deviation σ , skewness s, and kurtosis κ of the empiric data are given in each figure.

Electricity price time series feature pronounced jumps
clearly visible in the data (Fig. 2). Hence, the statistics
of the electricity prices cannot be expected to be well
described by a Gaussian. Instead, we expect the distribu-
tion to be leptokurtic, i.e., to have a kurtosis κX larger than
3. In Fig. 3 we display the probability density function
ρ(p) of the three detrended price time series (here with
a mean close to zero given the detrending performed pre-
viously). The heavy tails are clearly visible on a semilog-
arithmic scale, where a Gaussian distribution would look
like an inverted parabola. This finding raises the question
of what statistics is more suitable to capture the statistical
features of electricity prices.

A description of the price time series as a Gaussian pro-
cess is therefore not suitable, as the empirical distributions
of the price time series are highly leptokurtic. As there is no
a priori model for these types of data, we begin by exam-
ining the adequacy of describing the data’s distribution via
two classical distributions: Lévy α-stable distributions [71]
and q-Gaussian distributions [72]. These two are chosen
for being potentially very leptokurtic distributions, just like
the empirical distribution of the data suggests.

The symmetric Lévy α-stable distribution has no closed
formula for the probability density function Lα,c,μ(x), but it
can be expressed via its characteristic function (the Fourier
transform of its probability density function) via

Lα,c,μ(x) = 1
2π

∫ ∞

−∞
ϕα,c,μ(t)e−ixt dt

with ϕα,c,μ(t) = exp(itμ − |ct|α).
(2)

Here we focus only on symmetric (and zero mean μ =
0) α-stable distributions, but more general asymmetric
α-stable distributions exist [73].

A q-Gaussian distribution is a three-parameter distribu-
tion with a probability density function Gq,c,μ(x) given by

[72,74,75]

Gq,c,μ(x) =
√

c
Nq

eq(−c(x − μ)2), (3)

where eq(·) is the q exponential given by

eq(x) = [1 + (1 − q)x]1/1−q (4)

and Nq is a normalization constant given by

Nq =
√

π	((3 − q)/[2(q − 1)])√
q − 1 	(1/(1 − q))

for 1 < q < 3, (5)

where 	(·) is the Gamma function, 	(n) = (n − 1)! if
n ∈ N. Note that these two distributions converge to a nor-
mal distribution N when q → 1 or α → 2, respectively,
i.e., L2,c,0 = G1,c,0 = N (0, 1/c). Here we have expressed
these two distributions in a comparable way. The main
interest for us is to ascertain the heavy tailedness of the dis-
tribution, which is described by the value of q > 1 for the
q-Gaussian distribution, and the value of α < 2 for the α-
stable distribution. The parameter c is the scale, somewhat
related to the variance. Note that Lévy α-stable distribu-
tions do not have a well-defined variance for α < 2 and
q-Gaussian distributions have a well-defined variance only
if q < 5/3. Lastly, μ is the center of the distribution, which
equals the expected value as long as it exists.

In order to discern which probability distribution func-
tion best fits the distribution of our data, we evaluate the
Kullback-Leibler divergence. The Kullback-Leibler diver-
gence DKL(r|s) of two probability density functions r and
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s is given by

DKL(r|s) =
∫ ∞

−∞
r(x) ln

(
r(x)
s(x)

)
dx. (6)

This, not surprisingly, resembles an entropy formulation,
which in this case is the relative entropy of r in relation
to s. To be more precise, the Kullback-Leibler divergence
DKL(r|s) should be defined over a set X with any measure
μ such that r = dR/dμ, s = dS/dμ, with R and S continu-
ous random variables drawn from r and s, respectively.

In Table I we show the Kullback-Leibler divergence
DKL(p|·) of the empiric distributions of the three time
series in relation to a α-stable distribution, as given in Eq.
(2), and to a q-Gaussian distribution, as given in Eq. (3).
A q-Gaussian distribution offers a better fit for all the three
price time series. For each of the fits, we also show the
calculated α and q values for the α-stable and q-Gaussian
distributions, respectively. The q values will be reevaluated
later in Sec. III D and compared with the entropic indices
derived from the data. It is worth mentioning that, for both
proposed distributions, we observe large deviations from
usual Gaussian distributions.

We note that q-Gaussian distributions have been exten-
sively discussed as candidate distributions for heavy-tailed
distributions that characterize various properties of finan-
cial markets and other complex systems [25,27]. A q-
Gaussian probability density asymptotically decays as a
power law with exponent −2/(q − 1); the corresponding
cumulative distribution function (CDF) decays with expo-
nent −2/(q − 1) + 1. Thus, if q = 3/2, the corresponding
CDF has power law tails with exponent −3. This is the
well-known “inverse cubic” law, which is an empirical
law observed for CDFs of various financial time series.
For instance, it has been observed in the fluctuations of
stock prices [76–78] as well as the return distributions of
currency exchange rates, cryptocurrencies, stock indices,
stock shares, and commodities [75,79]. Our analysis sug-
gests that electricity prices also fall in this universality
class: the observed q values are close to 3/2, as shown in
Fig. 3.

We have thus far concerned ourselves with the statisti-
cal properties of the data, detailing a candidate distribution
that can capture the heavy tailedness of the leptokurtic dis-
tribution of the data. An equivalently important question
relates to the correlations of the time series, in particular,
their persistence behavior, which we address subsequently.

C. Persistence and fractality in price time series

Separately from time series statistics, the examination of
the correlations—at different temporal scales—allows us
to uncover which phenomena are recurring in a statistical
sense. That is, is the time series persistent and thus repeats
itself? Or is it antipersistent, and thus follows an opposite
tendency in comparison to past events? In other words, we

are interested in studying the long-term memory or long-
range correlations of the data. When studying stochastic
time series, such as price time series, a common method
to evaluate the long-range dependency is to estimate the
Hurst exponent H [80]. The Hurst exponent H of a time
series with uncorrelated increments is H = 0.5. One can
roughly picture this as imagining that at any point of the
time series, the subsequent price is as likely to be higher
as it is likely to be lower than the present price. In this
manner, Hurst exponents H > 0.5 indicate that the incre-
ments of the price time series have positive correlations,
i.e., are persistent, and thus if we witnessed an increase
(decrease) in the price, it is more likely that the price will
keep increasing (decreasing). Conversely, Hurst exponents
H < 0.5 indicate antipersistence or anticorrelation. Thus,
a price increase (decrease) is more likely followed by a
price decrease (decrease) just after. This is a vital met-
ric in order to understand whether hedging is possible in
electricity markets [81].

A time series can have various Hurst exponents at dif-
ferent scales, telling us, for example, that the price is
positively correlated at some very short time scale and neg-
atively correlated at some much larger time scale. This, in
fact, is what we see below. Compounding this, we have
also seen in Fig. 2 the large excursions to very high or neg-
ative prices, which we quantified by proposing a suitable
candidate distribution for the data. We also examine the
strength of their fluctuations as we change between time
scales in our time series, and in that sense examine the
spectrum of multifractality.

A common method to estimate the Hurst exponent,
as well as the multifractal spectrum, is multifractal
detrended fluctuation analysis (MFDFA) [32,34,36,82].
As the name suggest, MFDFA studies the fluctuation of
one-dimensional time series around a smooth trend. First,
define the function F(v, s) over the integrated time series
Yi = ∑i

k=1(Xk − μX ) for i = 1, 2, . . . , N as

F(v, r) = 1
r

r∑
i=1

[Y(v−1)r+i − y(v−1)r+i]2 (7)

for v = 1, 2, . . . , Ns. Here, Yr is the segmentation of the
time series into nonoverlapping segments of size r, and yr
is a polynomial fit to this segment of the data. It is partic-
ularly well adapted to data with trends. The algorithm first
removes the trends of sequential segments of the data by
subtracting local polynomial fits from the time series via
least squares and only subsequently calculates the variance
of each segment. We utilize polynomials of order one.

Subsequently, to extract the multifractal spectrum of the
time series, a set of different powers are taken over the
average of all segments. From this, we define the fluctu-
ation function Fq̂(s), which depends on a time scale s of

013002-6



COMPLEXITY AND PERSISTENCE OF PRICE TIME SERIES. . . PRX ENERGY 1, 013002 (2022)

the process and the aforementioned powers q̂:

Fq̂(r) =
{

1
Nr

Nr∑
v=1

[F(v, r)]q̂/2
}1/q̂

. (8)

This is similar to considering a set of equivalent norms
with different powers, e.g., L1, L2, L3, etc. This is the func-
tion we study here onward. We note that the index q̂ is
not related to the q parameter in the distribution in Eq. (3).
The fluctuation function Fq̂(r) captures the increase of the
variance of the segments of the time series, i.e.,

Fq̂(r) ∼ rh(q̂), (9)

where h(q̂) is known as the generalized Hurst exponent,
which, for the case of q̂ = 2, reduces to our aforemen-
tioned Hurst exponent H = h(q̂ = 2).

We expect that the price time series are not monofractal
processes, i.e., processes that are solely quantified by a sin-
gle Hurst exponent H . In order to quantify the influence of
the jumps in the time series, we turn to the dependence of
h(q̂) on q̂. From this, we can construct the singularity spec-
trum f (α) and the singularity strength α as the Legendre
transform given by

α̂ = h(q̂) + q̂h′(q̂) (10)

and

f (α̂) = q̂[α̂ − h(q̂)] + 1 (11)

with h′(q̂) = dh(q̂)/dq̂. This leads to the iconic shape of
the singularity spectrum f (α̂) as one half of an inverted
parabola with maximum at α̂ = 0 [82,83]. Similarly as
before, we note that singularity strength α̂ is not related
to the α for α-stable distributions in Eq. (2).

1. Persistence of price time series

First, we turn to the question of long-range dependence,
i.e., persistence. In Fig. 4, we show the fluctuation function
Fq̂=2(r) for q̂ = 2. We plot Fq̂=2(r) versus the scale r on a
double logarithmic scale, as we are interested in the expo-
nents of Eq. (9), i.e., the Hurst exponent H . The exponent,
in a double-logarithmic plot, is simply the slope of the
curves, which we extract by fitting a straight line. Immedi-
ately, two phenomena are striking. First, for time scales
larger than 12 h, all time series have virtually identical
anticorrelations, with H ≈ 0.16. Moreover, at time scales
smaller than 12 h, the larger hourly markets become posi-
tively correlated, with H ≈ 0.63 for the day-ahead hourly
price and H ≈ 0.61 for the intraday hourly price, whereas
the intraday quarter-hourly price does not show a change
from correlated (r < 12 h) to anticorrelated (r > 12 h)
behavior, having H ≈ 0.31.

1 2 3 4 6 12 24 48 168 744

r (h)
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101

102

F
q=

2
(r

)
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0.
6

H < 0.4

t > 48 h12 < t< 48 ht < 12 h

Day Ahead Intraday Hourly Intraday Quarterly

4 5 6 8 12
100
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FIG. 4. Fluctuation function Fq̂=2(r) over the scale r of the
three price time series on a double-logarithmic plot. By fitting
the curves we can extract the Hurst exponent as given in Eq. (9).
Noticeable is the change from persistence to antipersistence at
the 12 h mark, which is present for the hourly market but not
the quarter-hourly market. The separation into three disjoint time
ranges of t < 12 h, 12 < t < 48 h, and t > 48 h is discussed in
the multifractal analysis (see Fig. 5).

2. Fractality of price time series

We have already mentioned the necessity to properly
quantify the effects of the jumps in the time series, and we
have introduced the singularity spectrum f (α). Moreover,
already in Fig. 4, we have found at least two separate time
scales for the hourly markets: less than 12 h and greater
than 12 h. We now further divide the larger time scale
again into periods of 12 < t < 48 h and periods of t > 48 h
and study these three time scales and their multifractal
spectrum.

In Fig. 5, we display the singularity spectrum for q̂ ∈
(0, 10], i.e., the positive half of f (α) for the three afore-
mentioned time scales. We cannot evaluate the negative
q̂ powers here due to the limited precision of the data,
which makes obtaining negative moments a difficult task
as numerical instabilities are generated. To evaluate the
meaning of the singularity spectrum, we focus on the
widths of α̂ for the different time series, i.e.,

�α̂ = argmax[f (α̂)] − min[α̂]. (12)

This yields a measure of “how many fractal scales” are
present in each time series, which is commonly referred
to as the multifractal spectrum width. If our time series
had a single scale, i.e., a single Hurst exponent H , then
�α̂ = 0, and we would classify it as monofractal. The
meaning of �α̂ is thus straightforward to understand. If
the data are multifractal, i.e., they show a range of small
and large fluctuations and jumps, then �α̂ > 0. In Table
II we report all �α̂, as given in Eq. (12), as well as
�f (α̂) = max[f (α̂)] − min[f (α̂)]. These values give us a
notion of which scales show rougher behaviors and which
are milder.
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FIG. 5. Singularity spectrum f (α̂) and singularity strength α̂

for three distinct time scales of the three price time series: t <

12 h, 12 < t < 48 h, and t > 48 h. The horizontal width, i.e.,
the multifractal spectrum width �α̂, indicates the strength of the
fluctuation and jumps at the indicated time scales. The data show
larger �α̂ at short time scales, indicating that within these win-
dows, very large price variations are seen and are reverted back
to their mean value. The effects become milder as the time scales
increase, telling us that the market shows weaker jumps at large
time scales and always reverts back to its mean value. Finally, at
scales t > 48 h, the three markets become indistinguishable, as
we had also seen in Fig. 4 at the same scales. Results in Table
II. The singularity spectra are shifted horizontally for better vis-
ibility to allow for comparison of the widths and heights of the
spectra.

Again, here as before in Fig. 4, at large scales, the time
series coalesce to having identical fractal behavior and
comparably small �α̂ ≈ 0.50. All Fq̂=2 curves overlay for
t > 48 h, i.e., all have the same Hurst index H . They all
similarly show the same multifractal spectrum. The very
short time scales of t < 12 h show the largest �α̂, indicat-
ing the strongest multifractal behavior. This is very much
in line with the rare, sudden price increases or decreases
to extreme values, which very quickly correct themselves
and return to their average price.

Interestingly, there are considerable differences between
the markets in the range 12 < t < 48 h. The day-ahead

TABLE II. Multifractal spectrum width �α̂ and �f (α̂) for
three distinct time scales of the three price time series: t < 12 h,
12 < t < 48 h, and t > 48 h. The smallest time scale shows
the largest values of �α̂. Overall, the day-ahead hourly market
shows the smallest multifractal spectrum width �α̂ at the time
scale 12 < t < 48 h, which we propose offers a kind of “anchor”
for the prices to coalesce around.

t > 48 h 12 < t < 48 h t < 12 h

�α̂ �f (α̂) �α̂ �f (α̂) �α̂ �f (α̂)

Day ahead 0.29 0.82 0.14 0.59 0.99 2.05
Intraday hourly 0.27 0.82 0.50 1.35 0.71 1.20
Intraday quarterly 0.24 0.72 0.47 1.46 0.84 2.21

hourly market shows the smallest �α̂, i.e., it shows the
weakest multifractality. The day-ahead market constitutes
the largest share of the electricity markets in volume, and
thus ensures that electricity prices must all coalesce to
the mean behavior within the time scale 12−48 h. It is
therefore likely that, due to the large volume of trade
in the day-ahead market and the small �α̂ in the range
12 < t < 48 h, the day-ahead market serves as an anchor
for the other smaller markets and their prices, guaranteeing
that, in the long run, very large price fluctuations return to
normal price ranges within time scales smaller than 48 h.
An important question deals with the symmetry or asym-
metry of f (α̂) for observed price time series [35,83], i.e.,
how the singularity spectra look for q̂ < 0. This falls out-
side our examination, but in this case one expects the effect
of white noise to be dominant.

D. Obtaining local equilibria in leptokurtic electricity
price time series

We have thus far given an account of the correlation
behavior in the three electricity price time series, unveiling
different persistence behavior between the hourly market
and the quarter-hourly market. We have also seen that at
scales roughly larger than t > 48 h, the markets coalesce
to exhibit identical behavior, both in their diffusive behav-
ior, as seen in Fig. 4, as well as their multifractal behavior,
e.g., the presence of jumps in the data, as seen in Fig. 5.
Given that all price time series eventually return to an aver-
age price value, and that intrinsic periods are present in
the data, a time scale at which an equilibrium is reached
must exist. This is the time the price statistics balances out
before it is again affected by its various intrinsic changes
and large price variations.

The most straightforward way to examine the typical
time scale of local relaxation of a time series of a stochas-
tic process is to study its autocorrelation function. The
autocorrelation of a time series is given by

C(t − t′) = E[(X (t) − μX )(X (t′) − μX )]. (13)

For t − t′ = 0, i.e., C(0) = σ 2
X , we recover the variance of

the process. For t 	= t′, we obtain the covariance, which
yields the self-correlation of the process with itself, that is,
its memory. In Fig. 6, we show the autocorrelation func-
tion C(t′)/C(0) for our three price time series. Along with
an exponential-like decay, one can find well-defined peaks
that indicate the usual periods known in these time series:
12 h, due to the day-night cycle, 24, 48 h, etc. Although
there are several peaks, the autocorrelation shows a decay
that has a minimum at roughly 90 h. This indicates that
this is the time scale at which the process loses its mem-
ory. In order to more precisely ascertain what the intrinsic
time scale is for which the price time series attains a
local equilibrium, we turn to a superstatistical description
[39,40].
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FIG. 6. Autocorrelation functions C(t′)/C(0) of the price time
series and their respective volatilities. The short superstatistical
times τ for each price time series is extracted from the initial
exponential decay of Cp(t′). The results are given in Table III.
Also shown is the autocorrelation of the f parameter, discussed
in Sec. III E.

We have already seen that the probability distribution
functions of each price time series had very large kurtosis,
i.e., they are leptokurtic distributions (see Fig. 3). We fur-
ther identified the q-Gaussian distribution in Eq. (3) as a
good candidate to model the large kurtosis. Along similar
lines as discussed above, we now propose that the underly-
ing stochastic process that gives rise to these complicated
distributions of price time series is a composite process
with a probability density function ρ(p) given by

ρ(p) =
∫ ∞

0
f (β)�(p|β)dβ, (14)

where �(p|β) is a conditional distribution dependent on a
volatility parameter β that has probability density function
f (β).

What we are considering here is that the price time series
consists of two processes: one fast process of the actual
price time series, with local temporal properties, i.e., a cer-
tain level of fluctuations and an average price; and another
far slower process, which changes the strength of the fluc-
tuations and/or the average price at a larger temporal scale.
The description above in Eq. (14) accounts for the distri-
bution of the price time series ρ(p) being a convolution of
these two processes.

TABLE III. Long and short superstatistical times T and τ , and
the entropic indices q̄ of the three price time series. In all cases
the short superstatistical time is substantially smaller than the
long superstatistical time, i.e., τ 
 T.

T (h) τ (h) q̄

Day ahead 95 13.5 1.55
Intraday hourly 108 11.8 1.61
Intraday quarterly 104 7.6 1.46

Stemming from a physical understanding of the price of
stocks in other markets outside power systems [46,84,85],
a common assumption is to take �(p|β) as a Gaussian dis-
tribution. This assumption would mean that fundamentally
price time series obey locally Gaussian statistics, which is
then affected by a superstatistical change given by f (β).
In this work, we relax this constraint and propose that
�(p|β) need not necessarily be a Gaussian distribution,
but instead, simply restrict �(p|β) to be a symmetric dis-
tribution. This proposal means that in principle �(p|β)

can be, for example, a symmetric α-stable distribution, or
a q-Gaussian distribution, or possibly another symmetric
distribution (or even just a Gaussian distribution).

To evaluate if a distribution is symmetric, one can
evaluate its skewness s, i.e.,

sX := E
[(

X − μX

σX

)3]
= E[(X − μX )3]

{E[(X − μX )2]}3/2 , (15)

which is vanishing if the distribution is symmetric. As
mentioned before, we are interested in finding an average
time scale at which the price attains equilibrium. By this,
we mean that we are interested in a point in time where, on
average, a segment of the price time series has a skewness
s = 0. This point tells us, statistically, that the distribution
of events around a local price average balances to be sym-
metrically distributed. So, in some sense, this is the point in
time where the markets average out their electricity price,
and they are as likely to see a subsequent increase as a sub-
sequent decrease of the price, statistically speaking. This
time is referred to as the long superstatistical time T. We
can estimate the long superstatistical time T by taking seg-
ments of the price time series with a given time range
δt:

sp(δt) =
〈 [1/(δt)]

∑j δt
i=(j −1)δt+1(pi − p̄i)

3

{[1/(δt)]
∑j δt

i=(j −1)δt+1(pi − p̄i)2}3/2

〉
δt

. (16)

Here T is defined as the particular δt value such that s(δt =
T) = 0. Previous methods used the kurtosis κ rather than
the skewness s to estimate the long superstatistical time
T, but we think that, for electricity prices, the skewness is
a particularly well-suited observable, given that electricity
prices show both small and large deviations to high or low
(and negative) prices at different points in time. At δt = T
both positive and negative tails are equally pronounced,
indicating a symmetry of high and low extremes.

In Fig. 7, we display the local skewness sp(δt) (top
panel) as a function of the time range δt. For comparison,
we also show the local kurtosis κp(δt) (bottom panel), cal-
culated similarly as in Eq. (16) but considering the kurtosis
κ as in Eq. (1). Interestingly, we see that all three electricity
markets attain a skewness of s = 0, i.e., become symmet-
rical, at a scale of roughly four days or 96 h. In Fig. 7,
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FIG. 7. Estimating the long superstatistical time T from the
vanishing of the local skewness s(δt) given in Eq. (16). The top
panel shows the s(δt) for increasing segments of time length δt.
At approximately four days, indicated with the circular markers,
all price time series show a vanishing local skewness. We define
this as marking the long superstatistical time T. The lower panel
shows the local kurtosis κp(δt). We also show the kurtosis of a
Gaussian distribution, i.e., κ = 3, for comparison. We see that the
time series attain an equilibrium at the vanishing skewness s, but
they do so with different kurtosis, implying that their equilibrium
distributions are not Gaussian distributions, possibly apart from
the day-ahead hourly price time series. Each long superstatistical
time T can be found in Table III.

top panel, we indicate these times with circular markers.
For comparison, we also indicate, in the bottom panel, the
long superstatistical time and the kurtosis of each of the
local distributions. The dotted line indicates the kurtosis
κ = 3 of a Gaussian distribution. Although the larger, day-
ahead market has a kurtosis very close to that of a Gaussian
distribution, the other markets deviate from this and show
a large kurtosis κ > 3. We also note a second transition
in the intraday quarter-hourly market at roughly 4 h, indi-
cated with a triangular marker, which is yet another point
with zero skewness.

Thus, we have found the long superstatistical time T for
the three price time series by assuming that these can have
a rather general distribution locally, for as long as it is
symmetric. All the markets seem to have a very similar
long superstatistical time T, pointing to this being the local
balancing value for all time series, i.e., this is a common
feature of all the markets, likely due to their coupled struc-
ture. The exact long superstatistical times T for each price
time series can be found in Table III.

From this point, we can proceed further and analyze the
volatilities β that give rise to the superstatistical distribu-
tions for the given time series. Having unveiled the long

superstatistical time T of each time series, we can study
the stochastic process of volatilities β, which is given by

β(t) = 1
〈p2〉T − 〈p〉2

T
, (17)

i.e., it is given by the inverse of the local variance of the
segments with a time length of T. Strictly speaking, β−1

is the volatility, as it is proportional to the variance, but
for brevity, we simply define β as the volatility. We can
picture this in a simple way: if no changes were happen-
ing at a larger time scale (at the long superstatistical time
scale) in our time series then the variance of each segment
of time length T would be the same, and thus the volatil-
ity β would be a constant β0. This would also mean that
in Eq. (14) the distribution f (β) of the volatility β would
by a delta Dirac distribution and there would be no super-
statistical change in the time series [ρ(p) ≡ �(p|β0)]. The
distributions of the volatilities for our data can be found in
Appendix A.

Before we proceed, we need to ensure that our super-
statistical approach is justified. Just as discussed before, is
it true that we can separate two time scales from the time
series? For our superstatistical description of the leptokur-
tic distributions of price time series to be justified, we need
to evaluate the correlations of both the time series them-
selves and of the volatilities. We need to evaluate what is
the typical correlation length of the time series p(t). We
can do this by considering the initial exponential decay of
the autocorrelation function of the price time series, such
that C(τ ) = e−1C(0), as given in Fig. 6. For superstatistics
to be justified, the correlation time τ , denoting the short
superstatistical time scale τ , needs to be smaller than the
long superstatistical time T. This restriction ensures that
a local equilibrium is achieved on a time scale shorter
than the long superstatistical time scale T. Figure 6 shows
the autocorrelation functions, i.e., C(t′)/C(0), for the three
price time series p(t) and their respective volatilities β(t).
In Table III we can see that the short superstatistical
times τ are all smaller than the long superstatistical time
T. In a similar manner, we can see that the autocorrela-
tion functions of the volatilities Cβ(t′) decay slower than
the normalized autocorrelation functions of their respec-
tive price time series, telling us that the superstatistical
changes occur slower than the changes in the time series
themselves, as required by the superstatistical modelling
approach.

We have thus far shown that our description of the prob-
ability density function as a superposition of symmetric
(yet unspecified) distributions is justified and seems to
indicate that all price time series attain an equilibrium after
roughly four days (96 h). We now evaluate the strength
of the changes of the volatilities β. Since we assumed
a general description of �(p|β) as simply being a sym-
metric distribution, and given that we have not detailed
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specifically the distribution f (β) of the volatilities β, we
cannot evaluate Eq. (14) explicitly. We can nevertheless
consider the integration in Eq. (14) for small fluctuations
of β around β0 = 〈β〉. For small variance σ 2 = 〈β2〉 − β2

0 ,
we obtain

ρ(p) = 〈�(p|β)〉
= �(p|β0)〈�(p|(β − β0)〉

= �(p|β0)

(
1 + 1

2
σ 2p2 + O(σ 3)

)

= �(p|β0)

(
1 + 1

2
(q̄ − 1)β2

0 p2 + O(σ 3)

)
,

where we introduce the entropic index [40,86]

q̄ = 〈β2〉
〈β〉2 . (18)

The entropic index q̄ accounts for the variations of the
volatilities. It is a rather elegant measure for the existence
of nonstationarities or nonextensive properties in the data.
As described before, if there were no changes in the vari-
ance of the price time series, q̄ = 1, and Eq. (18) would
collapse to the case where ρ(p) ≡ �(p|β0). If, on the other
hand, the entropic index q̄ differs from 1, then we necessar-
ily have some variation of the volatilities β. In Table III we
report the entropic indices q̄ of the three price time series,
which all differ strongly from 1.

Naturally, a subsequent question is related to our choice
of fitting q-Gaussian distributions to ρ(p) in Sec. III B,
seen in Fig. 3, and the relation of that fitting parameter q
with the entropic index q̄. One way a q-Gaussian distribu-
tion arises is if choose �(p|β) as a Gaussian distribution
and f (β) a Gamma distribution. From this choice, one
finds that q = q̄. From a theoretical point of view, with-
out detailing the distribution of the volatilities f (β), it is
not possible to ascertain if ρ(p) is justifiably given by a q-
Gaussian distribution. This nevertheless does not preclude
comparing the entropic indices q̄ with the q values of the
best fitting q-Gaussian distributions.

In Table III, we indicate the entropic indices q̄ of the
volatilities of each price time series. We see that these very
closely resemble the q values of the q-Gaussian distribu-
tions in Table I. For the day-ahead hourly price time series,
q = 1.46 and q̄ = 1.55; for the intraday hourly price time
series, q = 1.50 and q̄ = 1.61; and for the intraday quarter-
hourly price time series, q = 1.46 and q̄ = 1.46. These
stark similarities offer a justification for the choice of q-
Gaussian distribution as the descriptors for the distribution
of price time series. Note that, for all three electricity price
time series, the extracted q̄ values are considerably larger
than for other financial time series, such as, e.g., share
price indices or foreign currency exchange rates [86]. This

is understandable, given the complexity of the demand
dynamics of electricity markets.

E. The impact of weather on electricity prices

Fluctuations in renewable energy production on differ-
ent time scales are strongly influenced by weather regimes
and systems, like, e.g., blocking regimes, low pressure sys-
tems, and the passage of fronts [87–89]. Inherently, so
are electricity prices because of the merit-order effect. As
previously shown in Fig. 1, the prices generally increase
with the residual load. This general dependency is well
approximated by a linear function except for the extreme
cases of very small residual load (i.e., a large portion of
power being generated by renewable sources) or the oppo-
site case of very large residual load (i.e., full conventional
generation). We now examine in more detail the impact of
large-scale weather regimes and systems on the statistics
of electricity prices.

An objective method to characterize the large-scale cir-
culation in the lower atmosphere is the circulation weather
type (CWT) approach [49], which has turned out to be
particularly suitable for wind energy applications in Cen-
tral Europe [50,63,90,91]. In this approach mean sea level
pressure (MSLP) fields around a central point in Central
Europe (here 10◦ east and 50◦ north near Frankfurt am
Main, Germany) are assigned to one out of eight direc-
tional and/or two rotational weather types. Furthermore,
the strength of the flow is calculated and provided as the
f parameter. Low values of the f parameter represent
weak pressure gradients across Central Europe and are
thus associated with weak winds, while high f -parameter
values are related to strong pressure gradients and high
wind speeds. In this study we use hourly MSLP fields of
the latest reanalysis dataset of the European Centre for
Medium-Range Weather Forecasts (ERA5 [92]).

In Fig. 8 the relationship between the hourly f parame-
ter and different statistics of the electricity price time series
is shown. To this end, we condition the price time series
to different intervals of the f parameter and evaluate the
statistical moments separately for each segment. A dis-
tinct impact of the f parameter is revealed for the mean
μ and the skewness s, which are both positive for low
f -parameter values and become negative for high values.
This indicates that, under calm wind conditions, elevated
average prices with a skewed distribution towards high
price events occur. In contrast, high pressure gradients and
the associated strong surface winds result in reduced aver-
age prices with a skewed distribution towards negative
price events. This is valid for all three electricity markets.
The standard deviation σ (kurtosis κ) tends to increase
(decrease) with increasing f parameter, thus being char-
acteristic of prices during periods of high renewable pen-
etration, but the trends are less clear when compared to
the mean μ and the skewness s. The change of the mean μ
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FIG. 8. Impact of large-scale weather regimes on the statis-
tics of electricity prices. We sort all time intervals according
to the f parameter that represents the strength of the flow over
Central Europe, and evaluate the statistics of the resulting sub-
sets of the time series. We observe that low f -parameter values
(calm wind conditions) are associated with a large mean μ, small
standard deviation σ , positive skewness s, and somewhat large
kurtosis κ . These are the weather periods with low renewable
generation in Germany, which is dominated by wind generation.
When examining the raw prices (bottom plots), there are no peri-
ods of negative price (i.e., number of hours of negative prices),
and a maximum of “high” price events (where the raw prices
pr > μr + 3σr, r for raw). As the f -parameter value increases
(windier conditions over Central Europe), the mean μ and skew-
ness s turn negative, the standard deviation σ increases, and
the kurtosis κ decreases slightly. Likewise, negative (raw) price
events increase and “high” (raw) prices vanish. The top four
plots utilize the processed price data, and the bottom plots use
the actual raw prices, to best showcase the “true” negative price
events.

from positive to negative values for increasing f parameter
agrees well with the merit-order effect, indicating a funda-
mental change in the shape of the distribution of prices as
the weather changes. Furthermore, we find a maximum of
“high” price events and a minimum of negative electricity
prices during calm wind conditions (f parameter almost
zero), while negative price events increase and “high”
prices vanish during windy periods (high f parameter).

Interestingly, it is mainly the strength and not the direc-
tion of the flow that dominates the statistical moments of
the electricity price time series. An agreeing yet small cor-
relation in the statistics of prices are found when analyzing
the directional CWT west (associated with a strong zonal

flow over Central Europe) and the rotational CWT anti-
cyclonic (associated with a stable high-pressure system)
separately (see Appendix B).

Lastly, we are left with the question of whether intrin-
sic memory in price time series (as observed in Fig. 6)
is in line with the intrinsic changes of the atmospheric
flow over Central Europe. In Fig. 6 we show the autocor-
relation of the f parameter, which falls in line with the
typical decay of the autocorrelation of price time series.
Hence, the changes in the large-scale weather regime may
provide a physical justification for the adequacy of a super-
statistical treatment and the typical time scales of synoptic
circulation patterns like high and low pressure systems
may explain the observed superstatistical time scale T. We
should nevertheless note that price time series statistics
also changes due to the workweek-weekend changes in
generation and consumption, which falls outside the scope
of this article.

IV. CONCLUSION

In this article, we have examined three price time series
from the German and Austrian electricity market, indexed
in the European Power Exchange (EPEX SPOT), from
2015 to 2019. We analyzed spot market prices: the day-
ahead hourly electricity price, the intraday hourly electric-
ity price, and the intraday quarter-hourly electricity price.
We focused particularly on explaining and justifying the
very heavy tails evidence in the distributions of all price
time series. The three examined price time series are intrin-
sically correlated as they reflect the trade of electricity
futures in an open market, associated with an identical ini-
tial evaluation of electricity price in Europe. We addressed
the following four central questions in this article. (1) What
is an adequate model to describe the leptokurtic distribu-
tion of the price time series? (2) What characteristics and
time scales of the data give rise to these distributions? (3)
Can we determine these time scales from the data and find
a physical explanation for these? (4) How is the above
related to weather changes?

To tackle the first question, we started by addressing
the presence of strong nonstationarities in the data. Upon
examining these time series, one immediately notices the
strong nonstationary effects. This is evidenced across sev-
eral time scales: the average annual price is different every
year; it varies over the months, and is often higher at
the last month of each year; it varies between weekdays
and weekends, and day and night. To pursue a statistical
examination of the prices, we proposed a simple, purely
data-driven detrending of the data via the Hilbert-Huang
transform, with which we subtracted the slower trends of
the price time series.

We then turned to finding an adequate distribution for
the price time series data. After removing the long-term
nonstationarities, we presented two general distributions
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to describe the heavily leptokurtic distributions of the
price time series: q-Gaussian and symmetric Lévy α-
stable distributions. We evaluated the quality of the fits of
these two distributions by examining the Kullback-Leibler
divergence between the proposed distributions and the
empirical distributions of the price time series. We found
that q-Gaussian distributions offer, for all time series, the
best fit, and from these fits extracted their q values (all
roughly q = 1.5). Large values of q imply heavy-tailed
distributions, which are also observed in other financial
market time series [43,46,48,75,84,86,93,94]. Our obser-
vation of q ≈ 1.5 for electricity prices agrees well with the
well-established “inverse cubic” law for cumulative price
distributions [76,77].

This led us to the second and third questions: what are
the intrinsic time scales of these time series? We uncovered
the correlations in the price time series, i.e., their persis-
tence and long-range dependence. We found that all three
price time series are highly anticorrelated on time scales
greater than 12 h, having a Hurst coefficient H = 0.1−0.2.
Moreover, we also unveiled a small scale phenomenon for
periods less than 12 h, where prices in both hourly mar-
kets become positively correlated with H ≈ 0.6, whereas
the quarter-hourly market remains anticorrelated. We note
here that these markets show strong antipersistence for
periods greater than 12 h, rendering it conceptually pos-
sible to hedge prices [95]. Statistically speaking, this trend
means that if the price is decreasing at a given moment, the
price is very likely to increase in the next moment and vice
versa. This is the first intrinsic time scale we extract from
the price time series, which relates to internal correlations
of prices.

Subsequently, we examined the multifractal characteris-
tics of the data. We found a clear separation of the mul-
tifractal spectrum, described by �α̂ 	= 0 for the different
time series, resulting in large widths at small time scales.
This indicates that very large deviations happen and correct
themselves in a very short manner, under 12 h. Moreover,
at the intermediate scale, the largest market, the day-ahead
hourly market, shows the smallest multifractal spectrum
width �α̂ ≈ 0.5, pointing to a time scale that “anchors” the
price fluctuation—i.e., a scale where fast price changes and
jumps are not seen. This serves as a base for the price of the
other markets and ensures that no extreme events extend
beyond this period. This agrees with the common under-
standing that electricity prices can see very sharp peaks
in prices, but this behavior is unsustainable for long peri-
ods of time—i.e., any fast change to extreme prices is very
quickly corrected. This constitutes the second time scale,
from 12 to 48 h, where extreme prices can happen but are
corrected.

We returned to the overarching question of nonstation-
arity in price time series, proposing to describe the price
time series distribution via a superposition of symmetric
yet unspecified simple distributions. Using superstatistical

analysis, we showed that by assuming the underlying fun-
damental distributions to be symmetric, one can uncover a
unique long time scale—the long superstatistical time—at
roughly 96 h for all three markets. This constitutes the third
intrinsic time scale extracted in this article, and it relates
to the slow-changing nonstationarity effects in price time
series. Having uncovered the large time scale of changes
in price time series we returned to our initially proposed
q-Gaussian distributions of price time series. From the
superstatistical analysis, we extracted the entropic indices
q̄—a measure of the “changes of statistics”—of each price
time series, all roughly q̄ = 1.5, which agree well with the
fits from the aforementioned q values of the q-Gaussian
fits. Hence, we offered an explanation for the largely lep-
tokurtic distributions of price time series as a combination
of the changing local statistics.

As a final step with respect to question (4), we exam-
ined circulation weather types, and in particular the “f
parameter,” which is a measure of the strength of the large-
scale near-surface flow over Central Europe. We found that
European electricity price time series are highly dependent
on the strength of the flow (rather than on the direction
of the flow). In particular, wind energy generation—which
depends on the pressure gradient over Europe—is the main
renewable energy generation type in Germany, and thus
highly influences electricity prices. We observe a clear
relation between the strength of the flow and the change in
price dynamics: “calm” wind conditions (low f -parameter
values) lead to price distributions with higher mean and
positive skewness (i.e., more high-price events). Simi-
larly, these show a lower standard deviation, characteristic
of a reliance on conventional generation. On the oppo-
site spectrum, strong pressure gradients (high f -parameter
values) with windier conditions lead to low prices on aver-
age, negative skewness, and increased standard deviation.
We also observe a congruent autocorrelation decay of the
electricity price and the f parameter, which strongly sug-
gests that the vanishing memory in the prices is induced
by a change in the weather conditions, as we observed
in the superstatistical analysis. Hence, we found a pos-
sible physical mechanism that explains the long super-
statistical time of approximately 96 h for the price time
series.

The analysis presented in this article provides some
powerful and novel tools for a better understanding of
spot market electricity price time series, which we investi-
gated in this study using data from Germany and Austria,
from 2015 to 2019. In particular, our methods may help to
pave the way forward to enable modelling price time series
with the correct statistical properties in future studies, by
considering relevant characteristics like nonstationarities,
adequate local distributions, and intrinsic correlations. Our
methods may also help in extracting information on the
relevant time scales of transitions in given data and clarify
their relation to weather changes.
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APPENDIX A: DISTRIBUTIONS OF THE
VOLATILITIES β OF THE PRICE TIME SERIES

We present here the empirical distributions of the
volatilities β as drawn from Eq. (17), alongside two candi-
date distributions, the log-normal distribution

flogN (β) = 1√
2πsβ

exp
(

− (ln β − μ)2

2s2

)
(A1)

and the inverse-Gamma distribution

finv	(β) = bc

	(c)
1

βc+1 exp
(

− b
β

)
. (A2)

In Fig. 9 the empirical distributions and these two best-
fitting distributions are shown. We also tested fittings with
Gamma and F distributions, by minimizing the Kullback-
Leibler divergence DKL as given in Eq. (6). The log-normal
and inverse-Gamma distributions provide the best fits.
These results must be judged as illustrative, as the data are
insufficient in size to clearly single out a particular form of
f (β). We can nevertheless see that the volatilities β vary
over a wide range of values, as described by an entropic
index q̄ that deviates substantially from 1.
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FIG. 9. Distributions f (β) of the volatilities β, on a double
logarithmic scale, of the three price time series and the two best-
fitting log-normal and inverse-Gamma distributions, given in
Eqs. (A1) and (A2), minimizing the Kullback-Leibler divergence
DKL, as given in Eq. (6). Inset shows a linear scale.

APPENDIX B: DEPENDENCE OF PRICE TIME
SERIES ON ATMOSPHERIC FLOW DIRECTION

The circulation weather typing approach, as discussed
in Sec. III E, also enables a separation of the atmospheric
flow into eight directional and/or two rotational types. Fol-
lowing the work by Wohland et al. [90], we focus on two
of these weather types in this study: anticyclonic and west-
erly weather types (note that, for both weather types, the
full spectrum of potential f -parameter values is consid-
ered). The anticyclonic weather type is typically associated
with stable and steady weather, while the westerly type
often comes along with strong pressure gradients and thus
strong winds, and with the passage of lows and fronts.
We condition the price time series to these two weather
types. To exclude situations where the atmospheric flow is
strongly alternating on very short time scales, we select
only the cases where the anticyclonic and the westerly
weather types prevail for longer than 12 h and for longer
than 24 h, respectively. Subsequently, we analyze various
statistics of prices for each separate segment of the price
time series. In Fig. 10 we summarize the results, where we
show the mean μ, standard deviation σ , and skewness s
for each price time series, conditioned to either westerly
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FIG. 10. Impact of particular weather types on the statistics
of price time series. We condition the price time series to either
westerly or anticyclone states for segments longer than 12 h
(g > 12) and for segments longer than 24 h (g > 24). For each,
we calculate the mean μ, standard deviation σ , and skewness
s of the prices. A separation between westerly and anticyclone
weather types is in agreement with the price relation with the f
parameter in Fig. 8. Westerly weather types are associated with
a negative mean, more elevated standard deviation, and slightly
negative kurtosis. In opposition, anticyclone weather types are
associated with positive mean, smaller standard deviation, and
slightly positive skewness.
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or anticyclone states for longer than 12 or 24 h, which
we denote as g > 12 h and g > 24 h, respectively. We do
not include the kurtosis, as estimating the kurtosis requires
a larger set of data points. In general, westerly weather
types are rather associated with a negative mean, a slightly
negative skewness, and a higher standard deviation when
compared to the anticyclonic weather type. These statistics
reflect the typical characteristics of the westerly weather
types with fluctuating strong wind speeds. In contrast, the
mean and the skewness tend to positive values for the
anticyclonic weather types, and the standard deviation is
smaller than for the westerly weather types. These results
generally agree with what we obtained for the f parameter
in Sec. III E, yet the effect is considerably smaller than for
the f parameter.
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Chapter 4

Conclusions

This thesis addresses current topics at the interface of statistical physics and
economics. The scope of research in econophysics is not for physicists to take
over the work of economists but rather to provide a different point of view
on the matters that interest the economists. As markets become ever more
connected globally, physicists can provide a systematic perspective to the
current economic activities by focusing on the complex systems perspective
of economic systems.

More specifically, this thesis focused on collective phenomena in economic
systems, especially related to supply networks and energy systems. Adopt-
ing a complex system perspective, we have studied the connections between
the microscopic behavior of economic agents and the emergent macroscopic
phenomena. Using numerical simulation and statistical methods, we have
analyzed the formation of the economic networks, phase transitions in eco-
nomic systems, and conflicts between individual and systemic optima.

4.1 Economic Network Formation

In our manuscript [95], we examined an abstract theoretical model of eco-
nomic network formation, including economies of scale as a key driving
factor. Network formation can be interpreted as a globalization process:
As specific transportation costs decrease, the trade benefits the individual
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agents. Scale effects boost the globalization process, eventually leading to a
complete centralization of production. Including the diversity of the agents’
preferences gives the process a new flavor [94]. The extended model yields
a new and different look, generalizing from a single product to the theory
of product differentiation.

In the original model studied in [95], production will eventually become
centralized at a single node of the network. That is, there is a single “win-
ner” of the globalization process that will dominate the entire market. This
observation immediately triggers the question: Who will win globalization
and why? Our model does not feature pronounced natural advantages such
as the availability of resources. Hence, an obvious hypothesis is that the
most central node will have the greatest competitive advantage as it can
distribute goods at the lowest costs. This hypothesis has been formalized
using the closeness centrality and tested through comprehensive numerical
simulations. We found that the hypothesis is true only if economic scale
effects are negligible. Then, Collective effects are negligible, and the global
properties of the node are indeed decisive for the competitiveness of a node.

If economic scale effects are strong, collective phenomena are essential to
understanding the globalization process. In particular, the decision of any
agent strongly depends on the previous decisions of all other agents. The
entire process becomes path-dependent and shows a strong hysteresis. We
have shown that the early steps of the globalization process become decisive
in this case. To be able to compete on a global scale, a node must first “win”
its neighborhood to recruit customers and benefit from scale effects. Hence,
a node with high local closeness centrality— one closest to its neighbors—
is most likely to succeed in the global competition.

Thus far, the model has described a globalization process for a single
product in which agents do not exhibit any product preference. By incorpo-
rating diversity into the agents’ preferences, the enhanced model studied in
[94] reveals three distinct trade regimes: local, centralized, and diversified
production. When transportation costs are high, and the diversity of pref-
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erences is weak, goods are produced locally, and minimal trade occurs. As
transportation costs decrease, economies of scale make it more affordable
to import goods, fostering the emergence of trade. Eventually, economies of
scale ensure that the most cost-effective option for all nodes is to purchase
from a single node. The centralized production results in a directed star-
like trade network as in the initial model discussed above. Increasing the
diversity of preferences also drives trade within the network, but there is an
essential difference. Trade is generally bilateral as both nodes benefit from
a more diverse supply. Eventually, all nodes trade with each other, and a
fully connected trade network emerges.

Economic scale effects play a crucial role in the model and the emerg-
ing globalization process. Obviously, they foster centralization: The region
in parameter space corresponding to a centralized production grows mono-
tonically with the strength of the scale effects. However, there is a second,
more intriguing effect. Scale effects can change the nature of the transition
between the local, centralized, and diversified phases of the system. It was
previously shown that the transition from local to centralized production
could be either continuous or discontinuous depending on the scale effects.
We have provided strong hints that the same is true between centralized
and diversified production.

Our findings carry significant implications for understanding globaliza-
tion dynamics and market competition. Our work illuminates the intricate
mechanisms governing global economic interactions by pinpointing the fac-
tors responsible for trade network formation and the emergence of various
trade regimes.

A critical implication of these findings is the substantial influence of
transportation costs and preference for diversity on global trade patterns.
Decreasing transportation costs encourages production centralization, which
may result in market monopolies, reduced competition, and potential ad-
verse consequences for consumers and smaller market players. In contrast,
an increased diversity of preferences fosters bilateral trade, forming a more
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interconnected, fully connected trade network. This diversified production
system cultivates a competitive market environment, providing consumers
with a wider product range and market participants with greater opportu-
nities.

Furthermore, this study highlights the significance of economic scale ef-
fects in transitioning between trade regimes. Strong scale effects can make
globalization discontinuous and induce hysteresis. Hence, undoing global-
ization by regulatory means, such as increased customs or fees, will be ex-
tremely difficult. Understanding these transitions and their driving forces
offers valuable insights for policymakers and businesses navigating the ever-
changing landscape of globalization and market competition. By recognizing
globalization dynamics and their shaping forces, decision-makers can devise
well-informed strategies to stimulate economic growth, fair competition, and
overall market stability.

4.2 Collective Behaviors in Multi-agent Systems

In manuscript [96], we examined the operation of demand response (DR)
in electric power systems. DR systems enable households to adjust their
energy consumption in response to changing electricity prices. As a result,
these systems can facilitate the integration of renewable energy sources —
characterized by unpredictable generation — into the grid. Such systems
may be considered an important real-world example of multi-agent systems,
as the controller reacts to external conditions and the internal state. The
system comprises battery storage used to realize load shifting in response
to the price to minimize electricity costs at the individual household level.
Our analysis quantified the potential benefits of load shifting and uncovered
potential challenges.

We employed an agent-based model to simulate the multi-household en-
ergy system, which captures the dynamics of multiple households engaged
in DR. In our model, we assumed an extreme case of DR with real-time
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pricing. Each household is denoted by an agent equipped with a battery
and a controller. The controller decides the flow of electricity among the
grid, the battery, and the household demand. The decisions are made based
on the electricity prices, the current demand, and the state of charge of the
battery. The controller computes an acceptable price from the state of the
charge and the demand and draws electricity from the grid when the market
price is lower than the acceptable price. This control law ensures that the
demand is always satisfied and that the load is shifted to periods of lower
price depending on the state of the battery. This decision-making process
effectively captures the autonomous behavior of individual households as
agents in the system. The demand time series of each household and the
electricity price time series are synthesized using statistical models based on
empirical data and research. The statistical characteristics of real household
demand and electricity market dynamics are thus accurately represented in
our model.

Introducing DR to the individual household leads to a lower cost for each
of them. Thus, at the agent level, the DR is beneficial for each household,
and it is rational to follow the decision of the DR. However, the theory
of collective behavior suggests a potential problem: It was found that DR
causes the households to synchronize their load as the purchasing decisions
are made based on the same price signal. This collective behavior can have
complex effects on the grid load’s dynamical and statistical properties, lead-
ing to extreme demand peaks in the system. These peaks mostly occur when
prices are low — as intended in DR — but not always. They may also occur
when the price drops after a long period of high prices when all batteries
are empty. Extreme demand peaks can stress the grid and threaten stability
as distribution grids have a limited capacity [101].

These results highlight the importance of considering both individual
benefits and system-wide effects when implementing DR in the energy sys-
tem. Maintaining a balanced interest for both the individual and the system
is critical for a better renewable energy integrated energy system.
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4.3 Complexity and Persistence of Electricity Prices

In manuscript [97], we conducted a comprehensive statistical analysis of
three price time series from the German and Austrian electricity markets,
namely the day-ahead hourly electricity price, the intraday hourly electric-
ity price, and the intraday quarter-hourly electricity price. Our goal was
to explore the underlying dynamics and patterns of price fluctuations by
employing various statistical methods and investigating the factors that
contribute to these patterns. In doing so, we sought to provide insights into
the behavior of electricity prices that could contribute to the future model-
ing of price time series with appropriate statistical properties by considering
relevant characteristics.

Initially, we addressed the non-stationarities in the time series using
the Hilbert-Huang transform. These non-stationarities arise from system-
atic changes in the data over time. By eliminating the long-term non-
stationarities, we could focus on the short-term fluctuations in electricity
prices. Subsequently, we fitted the data to appropriate models capable of de-
scribing the heavy-tailed distribution of the time series. Our results demon-
strated that the q-Gaussian model provided the most accurate fit for all
time series included in the study.

In addition, we aimed to identify the key time scales that contribute
to the characteristics of the price time series. By analyzing the persistence
and long-range dependence in the price time series, we extracted three in-
trinsic time scales associated with the internal correlations of prices, the
correction of extreme prices, and the slow-changing non-stationarity effects.
This approach has enhanced our understanding of the complex dynamics of
electricity prices in the European market.

Furthermore, to comprehend the impact of external factors, such as
weather patterns, on electricity price dynamics, we examined circulation
weather types, focusing on the strength of the large-scale near-surface flow
over Central Europe. Our results revealed a strong correlation between
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weather conditions and electricity price dynamics, highlighting the impor-
tance of considering these external factors when studying electricity price
behavior. This finding contributes significantly to understanding how weather
conditions influence the European electricity market.

Our research findings have significant implications for all stakeholders
in the energy industry that are interconnected through an energy exchange
market. Since the fluctuations in renewable energy production strongly af-
fect short-term energy trading, our detailed statistical analysis enables these
stakeholders to comprehend the underlying dynamics of the exchange mar-
ket, thereby facilitating the harmonious cooperation of renewable and tra-
ditional energy sources.

From a broader perspective, an energy exchange market represents a
complex system composed of all stakeholders, with the trading price serving
as a reflection of the collective behavior of all participants. The responses
of these agents within the system are influenced by external factors such
as weather patterns and demand. Our project allows the use of market
price time series to understand the system’s dynamics, providing a unique
perspective on the collective behavior of a multi-agent complex system.

4.4 Final Remarks

This thesis was devoted to analyzing collective behavior in econophysical
models of supply networks and energy systems. In econophysics, physicists
bring a unique perspective to analyzing economic systems, utilizing math-
ematical tools and models derived from studying physical systems. Com-
bined with the economic principles and dynamics, this approach can illumi-
nate what might otherwise remain hidden. Further collaboration between
physicists and economists will not only foster intellectual growth but also
cultivate a rich dialogue that can pave the way for novel approaches and
breakthroughs in understanding complex economic systems.

Agent-based models provide general frameworks for understanding the
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complexity of economic systems. The models allow for bottom-up systems
analysis, where we can model and simulate the behavior of interacting au-
tonomous agents and observe emergent phenomena. This approach has been
instrumental in developing our understanding of how individual behaviors
coalesce into systemic properties and how interactions at the micro level
can influence macro-level outcomes.

The agent-based models mentioned in the thesis are the springboard for
the future exploration and refinement of research in econophysics, including
more complex effects— policies and human behaviors— and more advanced
tools— machine learning and artificial intelligence — more sophisticated
simulations could bring us closer to a true representation of complex social
and economic systems.
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