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Abstract

In a eukaryotic cell, the life cycle of an mRNA consists of several processing steps, includ-

ing its synthesis, export from the nucleus into the cytosol, and, after fulfilling its function

as a protein template, cytosolic degradation. Eventually, the transcript can also be de-

graded in the nucleus upon aberrant processing. Yet, the dynamics of these processes

that determine how mRNA flows through the cell are still not fully understood. Under-

standing these dynamics is crucial as impairments in mRNA metabolism have been associ-

ated with severe human diseases.

Recent advances in biotechnology allow for the investigation of eukaryotic mRNA

metabolism by combining metabolic labeling sequencing techniques with subcellular frac-

tionation protocols. In such experiments, newly synthesized mRNA is labeled with nu-

cleoside analogs that allow for differentiation of pre-existing transcripts. However, the

analysis of this data provides many computational challenges.

In this dissertation, I develop a model to quantify essential parameters of eukaryotic

mRNA metabolism, from which nuclear and cytosolic RNA half-lives can be derived. The

model uses metabolic labeling sequencing data from HeLa-S3 cells that were separated

into nuclear and cytosolic compartments by subcellular fractionation prior to sequencing.

The presented method is demonstrated to overcome critical biases of metabolic labeling

sequencing data. At the same time, it outperforms the corresponding methodology of

the widely used tool GRAND-SLAM for analyzing such data.

The model reveals that nuclear export is slow, while cytosolic degradation is fast. Con-

sequently, an average mRNA spends most of its life in the nucleus, not the cytosol. I show

that mRNA metabolism is consistent along the cell cycle, and its quantities can be used

to pinpoint potential regulators of metabolic subprocesses such as nuclear export.

In summary, the presented model resolves the life cycle of an eukaryotic mRNA across

cell compartments with high accuracy and, therefore, will be a valuable tool for RNA re-

search.



Zusammenfassung

In einer eukaryotischen Zelle besteht der Lebenszyklus einer mRNA aus mehreren Schrit-

ten, einschließlich ihrer Synthese, ihres Exports aus dem Zellkern in das Zytosol und, nach-

dem sie ihre Funktion als Proteinvorlage erfüllt hat, ihres Abbaus im Zytosol. Die Dy-

namiken dieser Prozesse, die bestimmen, wie die mRNA durch die Zelle fließt, müssen

jedoch noch erforscht werden. Das Verständnis dieser Dynamiken ist von entscheidender

Bedeutung, da Beeinträchtigungen des mRNA-Metabolismus mit schweren menschlichen

Krankheiten assoziiert sind.

Fortschritte in der Biotechnologie ermöglichen die Untersuchung des eukaryotis-

chen mRNA-Metabolismus durch die Kombination von Sequenzierungstechniken mit

metabolischen Markern und subzellulären Fraktionierungsprotokollen. In solchen Exper-

imenten werden neu synthetisierte mRNAs mit Nukleosidanaloga markiert, um sie von

bereits vorhandenen Transkripten unterscheiden zu können. Die Analyse dieser Daten ist

jedoch mit zahlreichen bioinformatischen Herausforderungen verbunden.

In dieser Dissertation entwickle ich ein Modell zur Quantifizierung wesentlicher Pa-

rameter des eukaryotischen mRNA-Stoffwechsels, woraus sich Halbwertszeiten von nuk-

leärer und zytosolischer RNA ableiten lassen. Das Modell verwendet metabolische

Markierungs-Sequenzierungsdaten von HeLa-S3-Zellen, die vor der Sequenzierung durch

subzelluläre Fraktionierung in nukleäre und zytosolische Kompartimente aufgeteilt wur-

den. Es wird gezeigt, dass die vorgestellte Methode kritische Probleme metabolis-

cher Markierungs-Sequenzierungsdaten überwindet. Gleichzeitig übertrifft sie die

entsprechende Methodik des weit verbreiteten Programms GRAND-SLAM für die Anal-

yse solcher Daten.

Das Modell zeigt, dass der Export von RNA aus dem Zellkern langsam und der Abbau

im Zytosol schnell erfolgt. Folglich verbringt eine mRNA die meiste Zeit ihres Lebens im

Zellkern und nicht im Zytosol. Ich zeige, dass der mRNA-Metabolismus über den Zellzyk-

lus weitgehend konstant ist. Darüber hinaus können seine Schätzungen verwendet wer-

den, um potenzielle Regulatoren von Subprozessen wie dem Export von nukleärer RNA

zu identifizieren.



Zusammenfassend lässt sich sagen, dass das vorgestellte Modell den Lebenszyklus

einer eukaryotischen mRNA über Zellkompartimente hinweg mit hoher Genauigkeit au-

flöst und daher ein wertvolles Programm für die RNA-Forschung sein wird.
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1 Introduction

1.1 Ribonucleic Acid: an Informant, Mes-
senger, and Catalyst of Life

Ribonucleic acid (RNA) plays a crucial role in every living organism. According to Francis

Crick’s central dogma of biology, RNA acts as a messenger that transmits the genetic infor-

mation of deoxyribonucleic acid (DNA) for the production of proteins [1]. For this reason,

an RNA that codes for a protein is called messenger RNA (mRNA). Today, it is recognized

that the function of RNA goes beyond this role as a messenger, as it has two essential

properties of both DNA and proteins. Like DNA, RNA carries genetic information, and like

proteins, it can catalyze biochemical reactions [2]–[4]. These properties have sparked dis-

cussions about RNA being the pioneer molecule of life on Earth before the evolution of

DNA and proteins [5]–[8]. This hypothesis was termed ”The RNA World” by Walter Gilbert

in 1986 [9].

Since Francis Crick publicized his hypothesis about the central dogma of biology, var-

ious RNA types have been discovered. Such types include, but are not limited to, long

non-coding RNAs (lncRNAs), enhancer RNAs (eRNAs), micro RNAs (miRNAs), and transfer

RNAs (tRNAs). Each of these transcript classes possesses its characteristics and regula-

tory functions. For instance, lncRNAs are non-protein-coding transcripts typically longer

than 200 nucleotides (nt), are usually poly-adenylated, and are involved in essential gene

regulation processes such as X-chromosome inactivation [10]–[12]. In contrast, eRNAs are

transcribed from enhancers, which are cis-acting elements that promote the transcription

of a particular gene. These transcripts are usually not poly-adenylated and do not code

for proteins but can regulate, for instance, chromatin accessibility [12], [13]. These exam-

ples show that the regulatory nature of RNAs is diverse. Yet, the exact role of many RNA

classes remains to be elucidated. Among all these classes, mRNAs have been the most

comprehensively researched as they are fundamental for protein synthesis [14].
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Introduction 1.2 The Five Steps of the mRNA Life Cycle

1.2 The Five Steps of the mRNA Life Cycle

In a eukaryotic cell, mRNA undergoes five critical steps in its life cycle. The first step in-

volves its synthesis in the nucleus, which is coordinated by RNA polymerase (Pol) II. This

process of transcription starts with an initiation phase, where a set of general transcrip-

tion factors assemble with RNA Pol II at the promoter region of a respective gene, forming

the pre-initiation complex (PIC) [15]–[17]. This initiation phase is succeeded by an elonga-

tion phase, whereby the polymerase moves along and unwinds the double-stranded DNA

in the 3’- to 5’-direction to transcribe a nascent RNA transcript nucleotide by nucleotide

in the 5’- to 3’-direction. During this elongation phase, RNA Pol II does not synthesize

continuously but pauses at several sites of a gene sequence [18]. After the transcript has

been fully synthesized, transcription terminates, releasing RNA Pol II from the DNA. This

process yields an immature pre-mRNA molecule, which requires further processing.

During the second stage of the mRNA life cycle, pre-mRNA undergoes additional pro-

cessing in the nucleus to produce a mature transcript suitable for protein synthesis. The

transcript’s 5’-end is capped while the 3’-end is cleaved and poly-adenylated to prepare it

for export from the nucleus into the cytosol and increase stability [19], [20]. The spliceo-

some facilitates alternative splicing of the pre-mRNA, removing introns from the RNA

sequence [21]. RNA modifications like N6-Methyladenosine (m6A) introduced by writer

proteins and RNA editing by ADAR enzymes can modify mRNA in such a way that these

modifications affect a transcript’s stability, translation efficiency, and even the protein

sequence [22]–[27].

If correctly processed, an mRNA proceeds to the third stage of its life cycle, where

it undergoes nuclear export. This process is regulated by various RNA-binding proteins

(RBPs), which associate with the transcript, forming a messenger ribonucleoprotein com-

plex (mRNP) [28]. The protein composition of these mRNPs decides the transcript’s

fate [28], [29]. Several pathways control the nuclear export of mRNA types, with the

NXF1/TAP-pathway and CRM1/XPO1-pathway forming the main two export routes in hu-

man cells (Figure 1) [30].

2



Introduction 1.2 The Five Steps of the mRNA Life Cycle

CRM1

TREX

Nucleus

Cytosol

NPC

RBP

NXT1 NXF1

Figure 1: Main Nuclear Export Routes of mRNA in Eukaryotes. NXF1 forms a heterodimer with
NXT1, which is subsequently recruited by the Transcription-Export (TREX) complex. By direct bind-
ing, NXF1 promotes the nuclear export of most mRNAs through the nuclear pore complex (NPC).
CRM1, in contrast, cannot bind directly to RNA but has been shown to interact with several RBPs to
translocate mRNA through the NPC [30].

In the NXF1/TAP-pathway, NXF1 forms a heterodimer with NXT1, which is recruited by the

Transcription-Export (TREX) complex during splicing (Figure 1). Through its direct bind-

ing to RNA, NXF1 promotes the nuclear export of most mRNAs through the nuclear pore

complex (NPC). In contrast, the export of small transcripts like snRNAs, rRNAs, but also

a subset of mRNAs is mediated by CRM1. This pathway is independent of the NXF1/TAP-

pathway since it does not involve the TREX complex or the NXF1-NXT1 heterodimer. On

the contrary, CRM1 cannot bind directly to RNA but has been shown to interact with vari-

ous RBPs to translocate mRNA through the NPC along a Ran-GTP gradient [30].

However, if the mRNA is not correctly processed in the nucleus, it is targeted for nu-

clear degradation. In this fourth stage of the mRNA life cycle, these transcripts could lead

to the synthesis of aberrant proteins, so they must not be exported from the nucleus. The

3



Introduction 1.3 Quantification of mRNA Metabolic Processes

main driver of nuclear degradation is the exosome, a multiprotein complex that cleaves

mRNA from its 3’- to 5’-end [31].

Cytosolic degradation is the fifth and last step in the mRNA life cycle. After the tran-

script has fulfilled its function as a protein template for translation, it gets degraded in

the cytosol. Usually, cytoplasmic mRNA decay starts with the shortening of the poly-A

tail, triggering downstream pathways. The most prominent ones are 5’ to 3’ degradation

mediated by XRN1 or 3’ to 5’ degradation mediated by the exosome [32]–[34].

Although the life cycle of mRNA can be subdivided into the previously mentioned

steps, there are overlaps between these processes. For instance, pre-mRNA processing

is coupled with transcription via RNA Pol II [19], [35], [36]. Its C-terminal domain (CTD)

interacts with factors that mediate 5’-capping, poly-adenylation, and splicing [37]–[40].

Furthermore, the TREX complex is recruited during transcription to facilitate nuclear ex-

port [41]. These examples suggest a high interconnectedness of the metabolic processes,

increasing the complexity of mRNA metabolism. However, there is a high need to unravel

the underlying factors and mechanisms involved as impairments in mRNA metabolism

have been associated with severe human diseases like motor neuron disease [42], [43].

1.3 Quantification of mRNA Metabolic
Processes

Various methods for quantifying mRNA metabolism have been developed over the last

decades. For instance, radioactive labeling and RNA extraction were combined to moni-

tor RNA turnover from cell lysates in the early 1960s [44]. However, this approach had lim-

ited sensitivity and specificity because they could not distinguish between gene-specific

transcripts and their subcellular localization. The development of in situ hybridization

(ISH) and its successor fluorescence in situ hybridization (FISH) allowed the targeted mon-

itoring of RNA expression and localization [45]–[48]. In the mid-1980s, the introduction

of polymerase chain reaction (PCR) by Kary Mullis [49] further revolutionized the quan-

tification of mRNA metabolism: reverse transcription (RT-)PCR has been used to study

mRNA synthesis, splicing, and degradation rates [50]–[54]. Although these tools provide

valuable insights into the processes of RNA metabolism, they also have limitations and
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drawbacks. On the one hand, working with radioactive materials is hazardous for the ex-

perimentalist. On the other hand, FISH and PCR methods cannot be easily scaled up to

study an entire genome or transcriptome. In addition, these methods are often combined

with protocols that use inhibitors such as actinomycin D and thiolutin to block transcrip-

tion [51], [54], [55]. Consequently, these settings can severely affect cellular processes

and lead to biased results [56].

A less invasive method of studying RNA dynamics is the metabolic labeling of RNA

with non-radioactive nucleoside analogs such as 4-thiouridine (4sU). This analog is incor-

porated into newly synthesized transcripts during transcription [57], [58]. The resulting

newly synthesized fraction can be purified from the total RNA fraction using biotinylation

and streptavidin-based pulldown, allowing simultaneous monitoring of RNA synthesis

and degradation rates using microarrays [58]–[61]. With the advances in high-throughput

sequencing, microarray-based analyses have been replaced by RNA-seq, providing even

higher specificity and sensitivity in the quantification of RNA metabolism [62]–[66]. How-

ever, the accuracy of these measurements highly depends on the biochemical separation

efficiency of newly synthesized and pre-existing RNA, which was shown to be limited [67].

In 2017, Herzog et al. published a method called thiol(SH)-linked alkylation for the

metabolic sequencing of RNA (SLAM-seq) that bypasses the limited efficiency of biochem-

ical separation [68]. According to the SLAM-seq protocol, cells are treated with 4sU for

a certain period before the RNA is isolated and treated with iodoacetamide (IAA). This

compound performs a thiol-alkylation by attaching a carboxyamidomethyl group to 4sU.

When preparing the cDNA library, reverse transcriptase interprets this modified base as

a cytidine, not a uridine. As a result, the sequence alignments of the newly synthesized

RNAs contain cytosines instead of thymines. The relative amount of newly synthesized

transcripts can be quantified from the sequencing data alone and does not require phys-

ical separation from the pre-existing fraction. Therefore, SLAM-seq provides even more

accurate measurements than biotinylation-based methods.

Bioinformatics methods and mathematical models are required to analyze the ever-

increasing data obtained by metabolic labeling methods. One prominent model that has

been widely applied to estimate RNA decay rates is the exponential decay model [58],

[60], [64], which is an ordinary differential equation of the form:
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dR(t)

dt
= −λR (1)

Here, R describes the quantity of a particular transcript and λ a positive degradation

rate constant. The exponential decay model requires the biological system to be in steady

state, so metabolic rates do not change over time. Under this assumption, this differential

equation has the solution

R(t) = R0 · e−λt (2)

where R(t) describes the quantity of a transcript R at time point t and R0 the initial

quantity at time point 0 (the quantity in steady state). An intuitive way to interpret an RNA

metabolic rate is its inverse, the half-life. The RNA half-life describes the time it takes for

the amount of a transcript to decrease to half its steady-state value. The RNA half-life can

be calculated as:

t1/2 =
ln(2)

λ
(3)

In addition, steady-state models have been used to quantify RNA synthesis rates. They

use the principle that the expression level of a transcript is determined by a balance be-

tween RNA synthesis and decay at equilibrium [58], [60], [64]. However, the steady-state

assumption does not hold if the biological system is subjected to intrinsic or external

stress. In such a case, metabolic rates are not constant but can change over time. For

this reason, some studies have proposed differential equations in which the metabolic

rates themselves are time-dependent [53], [62], [69]. However, as model complexity in-

creases, so does the risk of overfitting the model. For this reason, steady-state models

are still commonly used.

Sequencing data generated by methods such as SLAM-seq also has some limitations.

T>C conversions in a read induced by 4sU labeling would be detected as a mismatch dur-

ing sequence alignment to a genome. Yet, 4sU-labeling-induced T>C conversions could

be mimicked by single-nucleotide polymorphisms (SNPs), sequencing errors, or RNA edit-

ing [26], [27]. In addition, the rate of 4sU incorporation into newly synthesized transcripts

6
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is not 100%, but in the range of 2% [68]. Due to this low labeling efficiency, some reads

from new transcripts will not exhibit a single T>C nucleotide conversion and will appear

as pre-existing. Therefore, a naive count of labeled reads would lead to an underestima-

tion of the relative abundance of newly synthesized transcripts. The labeling efficiency

cannot be substantially increased by prolonging labeling periods or the concentration of

4sU [58], [68], as high concentrations of 4sU can trigger cellular stress [70], which could

bias transcript dynamics. Further, stress responses violate the steady-state assumption

of the exponential decay model, so it cannot be used for downstream analysis. Therefore,

these issues must be addressed during data processing and modeling.

To manage the mapping problem of SLAM-seq data, Herzog et al. (2017) used a cus-

tom pre-processing pipeline called SlamDunk in their original publication [68], [71]. This

tool can perform T>C conversion-aware alignments that account for annotated SNPs. One

year later, Jürges et al. (2018) published GRAND-SLAM, a tool that corrects SLAM-seq

data for the low 4sU incorporation rates to derive RNA degradation kinetics [72]. To this

end, they proposed a Bayesian framework to quantify newly synthesized and pre-existing

RNA proportions on a genome-wide scale. These proportions can be used to calculate

New
Total RNA ratios. Working with these relative quantities is more robust than working

with absolute quantities since no external normalization with control samples is required.

GRAND-SLAM then fits an exponential decay model to these New
Total RNA ratios over time

and, subsequently, computes RNA half-lives.

Although GRAND-SLAM has been used in several studies with SLAM-seq experiments

[73]–[78], this tool has some potential drawbacks. GRAND-SLAM applies a binomial mix-

ture model that accounts for T>C conversions occurring in unlabeled RNA due to sequenc-

ing errors to distinguish between newly synthesized and pre-existing transcripts. How-

ever, it does not account for the possibility that T>C conversions might also be missed in

labeled RNA if the sequencing machine erroneously calls a base other than cytosine (C>X

error, where X is either A, T, or G). Furthermore, their binomial mixture model assumes

that the 4sU labeling efficiency is known. Therefore, they estimate this labeling efficiency

using an expectation-maximization (EM) algorithm [79]. Instead of using all sequencing

reads for this step, GRAND-SLAM selects only a subset of reads with sufficient T>C con-

version to be distinguishable from T>C sequencing error. These pre-selected reads could

7
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be inflated by T>C conversions arising from RNA editing and SNPs. If fewer than 10,000

reads can be selected for estimating the labeling efficiency, the authors describe in their

publication that GRAND-SLAM stops the computation [72]. Another limitation of GRAND-

SLAM is that it was initially designed for sequencing data from whole-cell extracts. Al-

though RNA synthesis, degradation, and splicing rates can be modeled from such data,

quantifying nuclear export rates and attributing RNA degradation to the nucleus and cy-

tosol requires data from subcellular fractionation experiments [73], [76], [80].

Recently, we have published a probabilistic modeling framework that overcomes

many biases of metabolic labeling sequencing data [80]. This pipeline corrects the data

for potential RNA editing sites and SNPs more conservatively than SlamDunk and GRAND-

SLAM. Further, it models the 4sU labeling efficiency using an EM algorithm while account-

ing for both the T>C and C>X sequencing errors. Additionally, this EM algorithm returns

New
Total RNA ratio estimates for each measured gene. We calculated these ratios from sub-

cellular fractionation SLAM-seq data of the nucleus and cytosol from HeLa-S3 cells to fit

an ordinary differential equation system of the following form:

dN(t)

dt
= µ− (ν + τ)N (4)

dC(t)

dt
= τN − λC (5)

Here,N(t) andC(t)denote the time courses of nuclear and cytosolic RNA abundances,

respectively. These quantities depend on 4 parameters: the synthesis rate µ, the nuclear

degradation rate ν, the nuclear export rate τ , and the cytosolic degradation rate λ (Figure

2).
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synthesis  

cytosolic
degradation

nuclear 
degradation

export

τ
ν

μ

λ

Nucleus Cytosol

Figure 2: Metabolic Rates along themRNALife Cycle. Shown is the typical life path of a transcript.
In the nucleus, an mRNA molecule is synthesized with a specific synthesis rate µ. Then, an mRNA
can be either exported from the nucleus with rate τ or degraded in the nucleus with rate ν. After
the transcript has fulfilled its purpose as a template for protein synthesis, it gets degraded in the
cytosol with rate λ.

Our two-compartment model quantifies all these 4 metabolic processes simultaneously.

We found that nuclear degradation of polyadenylated mRNA is negligible, and its nuclear

export is slow, whereas cytosolic mRNA degradation is comparatively fast. With a nuclear

RNA half-life of roughly 300 minutes and a cytosolic RNA half-life of approximately 60

minutes, an average mRNA spends most of its life in the nucleus rather than the cytosol.

We have also shown that applying a simple exponential decay model to individual subcel-

lular fractions does not capture the interdependence between RNA metabolic processes

as our two-compartment model does. When quantifying RNA metabolism, it is crucial to

consider the compartmentalization of the cell. Otherwise, the stability of the transcript

is mainly attributed to mechanisms of cytosolic RNA degradation rather than RNA export

from the nucleus.

As RNA metabolic labeling and subcellular fractionation experiments have only re-

cently been combined [73], [76], [80], our modeling framework and results might be sub-

ject to certain biases. We determined rates of mRNA metabolism in bulk sequencing data

of HeLa-S3 cells. Since these cells were not synchronized regarding the cell cycle, the

metabolic RNA rates reflect average measures across all cell cycle stages. However, since

the nuclear envelope breaks down and, therefore, the former nuclear and cytosolic frac-

tions could mix during Mitosis, the mRNA export rates could be distorted by this process.

Also, the modeling framework should be tested with another SLAM-seq time series.

9



Introduction 1.3 Quantification of mRNA Metabolic Processes

In this thesis, I developed a methodology that expands on our previously published

modeling framework [80]. To this end, I put particular focus on the EM algorithm used

to estimate the 4sU labeling efficiency and, subsequently, the New
Total RNA ratios. I imple-

mented a new EM algorithm that estimates a global labeling efficiency from all measured

transcripts. Initially, our system estimated transcript-specific labeling efficiencies and

then calculated the median of the resulting distribution to determine the final New
Total RNA

ratios. Simulations showed that this new EM algorithm estimates a wide range of 4sU

incorporation rates with high precision. It also outperforms the EM algorithm used by

GRAND-SLAM. In addition, I applied the presented model to new SLAM-seq time series

data from HeLa-S3 cells explicitly generated for this study. These data have the unique

feature that the cells were synchronized regarding the cell cycle. The time series were

generated from cells in G1 and Mitosis. This data allowed for investigating RNA metabolic

rates for differences between bulk and cell cycle-specific measurements. I demonstrated

that applying the presented model returns highly reliable rates of RNA metabolism dur-

ing the cell cycle.
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2 Data and Methods

2.1 Data

2.1.1 SLAM-seq Time-Series from synchronized HeLa-S3 Cells

Two SLAM-seq time-series datasets were generated by Elisabeth Altendorfer and Su-

sanne Freier from the Mayer lab at the MPI for Molecular Genetics (Berlin, Germany). For

this purpose, HeLa-S3 were synchronized at early S-phase using a 2.5 mM double thymi-

dine block. Cells were released into fresh and prewarmed media supplemented with 24

µM 2-deoxycytidine (Sigma) for 6 hours (late G2) prior to labeling with 500 µM 4sU for 0,

15, 45, 75, 120 and 180 minutes. At each time point, cells were fractionated to obtain nu-

clear and cytosolic cell fractions. Similarly, a time series in the G1 cell cycle phase (12-hour

release time after double thymidine block) was measured at 0, 15, 45, 75, 145, 180, 240,

and 300 minutes. Prior to phenol extraction of RNA, 1,9 µl 1:100 diluted ERCC Exfold RNA

spike-ins per 1 million cells were added to each sample. 4sU-RNA was alkylated based

on Herzog et al. (2017) [68] and poly-A enriched SLAM-seq libraries were prepared using

3’-QuantSeq REV protocol (Lexogen) according to manufacturers instructions [81]. The

final libraries were sequenced using an Illumina NovaSeq6000 with 150 nt read length in

paired-end mode. Table 1 lists the crucial experimental parameters.

Table 1: Experimental Parameters of the SLAM-seq cell cycle data.

Cell line HeLa-S3

Time-series for Mitosis 0, 15, 45, 75, 120, 180 minutes

Time-series for G1 0, 15, 45, 75, 145, 180, 240, 300 minutes

Subcellular Fractions Nuclear and cytosolic fraction

Sequencing Protocol 3’UTR Quant-seq REV with poly-A enrichment (Lexogen)

Read Length 150 nucleotides per read

Sequencing Mode Paired-end (NovaSeq6000)

Spike-ins ERCC ExFold RNA Spike-in Mix (Thermo Fisher Scientific)

11



Data and Methods 2.1 Data

2.1.2 SLAM-seq Time-Series from unsynchronized HeLa-S3 Cells

The second dataset used in this work is the SLAM-seq time-series data we recently pub-

lished on bioRxiv [80]. In brief, HeLa-S3 were incubated with 500 µM 4sU for 0, 15, 30, 45,

60, 120 and 180 minutes immediately followed by sub-cellular fractionation into nuclear

and cytosolic compartments as proposed by Nojima et al. (2016) [82]. Library preparation

was performed according to the 3’ QuantSeq REV protocol (Lexogen) [81]. Each library

was sequenced in single-end mode with 100 nt read length on an Illumina HiSeq 2000 ma-

chine. Sequencing reads were mapped to human genome hg19 using SlamDunk [71] and

assigned to 3’UTRs using annotation downloaded from UCSC Table Browser [83]. Before

counting T>C conversions, the data was corrected for putative SNPs and RNA editing sites

(see Data and Methods 2.2.7). After conversion count, New
Total RNA ratios were estimated

using an EM algorithm. Subsequently, the two-compartment model was fit to these ratios

to obtain metabolic rate estimates.

Since hg19 and GRCh38 differ in annotation, RNA half-life estimates from these unsyn-

chronized and the synchronized HeLa-S3 cells (Data and Methods 2.1.1) were compared

on the gene level. To that end, the 3’UTRs from both annotation files were mapped to

their corresponding gene name.

2.1.3 RNA Half-life Estimates fromWhole-Cell Extracts

For comparison of RNA metabolic rates obtained by the two-compartment model with

estimates from the literature, RNA half-lives published by Schueler et al. (2014) [63] were

used. This dataset contains estimates from MCF7 and HEK293 cells. The cells were in-

cubated with 4sU, followed by separation of the newly synthesized RNA from the total

RNA fraction using biotinylation. No subcellular fractionation of the respective cells was

performed, but whole-cell extracts (WCE) were used. The authors describe that RNA half-

lives were calculated according to Schwanhäusser et al. (2011) [66]. These estimates were

compared with the RNA half-lives obtained from the SLAM-seq cell cycle data (Data and

Methods 2.1.1) based on the respective gene names.
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2.1.4 RNA-binding Protein Profiles from eCLIP Experiments

eCLIP [84] data comprising binding profiles of 120 RNA-binding proteins obtained from

K562 cells were downloaded from ENCODE [85]. The profiles are stored in BED files con-

taining the genomic coordinates of cross-linked binding sites. Only BED files for GRCh38

were considered to match the genome assembly used for this work. Furthermore, only

binding sites with (−log10(p-value) ≤ 5 and log2(fold-enrichment) ≥ 3) were kept for the

analysis to control for false positives. GENCODE annotation [86] was used to map the

binding sites to gene identifiers.

A 3’UTR was defined as bound by a certain RBP if this 3’UTR can be assigned to a single

gene, which in turn contains an exonic binding site for this RBP. Subsequently, this proce-

dure yielded lists of both RBP-bound and RBP-unbound transcripts. A Wilcoxon rank-sum

test was applied to test for significant differences in RNA half-lives between these two

groups. This procedure was done for each subcellular fraction separately. For robust-

ness, only RNA half-life estimates that fulfilled stringent reliability criteria were consid-

ered (see Data and Methods 2.2.12).

2.1.5 Annotation of AU-rich Element Transcripts

AU-rich elements (ARE) in the 3’UTRs of specific transcripts affect RNA stability [87]. To

compare RNA half-lives between ARE and non-ARE transcripts, annotation of known ARE-

containing RNAs was downloaded from the ARED-Plus database [88]. The respective

gene names of these ARE RNAs were used to assign RNA half-lives from the SLAM-seq

cell cycle data. A Wilcoxon rank-sum test assessed significant differences between ARE

and non-ARE transcripts. Only RNA half-life estimates that fulfilled stringent reliability

criteria were considered (see Data and Methods 2.2.12).

2.1.6 Annotation of Protein Complexes

The annotation of protein complexes was downloaded from the CORUM database [89].

The sums of the cell cycle-specific nuclear and cytosolic RNA half-life estimates (see Data

and Methods 2.1.1) were assigned to the corresponding protein subunits in each complex

using the gene names. Only RNA half-life estimates that fulfilled stringent reliability cri-

13



Data and Methods 2.1 Data

teria were considered (see Data and methods 2.2.12). The median RNA half-life of the

protein complexes was calculated. Only protein complexes with at least 5 subunits were

considered to obtain a more stable median estimate of the RNA half-life. The log2 fold

changes in RNA half-life between the individual subunits and the whole complex were

then calculated for each protein complex.
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2.2 Methods

2.2.1 An EM Algorithm to determine the Proportions of newly synthesized

Transcripts

SLAM-seq enables the differentiation between newly synthesized and pre-existing tran-

scripts. From these two fractions, New
Total RNA ratios can be calculated for each measured

transcript. A time series of these New
Total RNA ratios can be used to derive parameters of

RNA metabolism, such as synthesis and degradation rates. However, calculating these

ratios is a difficult task as the 4sU incorporation rate (respectively, ’labeling efficiency’)

was shown to be in the range of 2% [68] but is highly dependent on 4sU labeling time

and concentration [58], [68]. This low labeling efficiency leads to the problem that many

newly synthesized transcripts do not show any T>C conversions, for which they will be mis-

classified as pre-existing. As a consequence, the actual proportion of newly synthesized

transcripts is underestimated, which in turn leads to biased estimates of RNA metabolism.

SNPs, RNA editing sites, and T>C (false-positive) sequencing errors in high-throughput se-

quencing data that mimic T>C conversions induced by 4sU labeling exacerbate this prob-

lem. Furthermore, a 4sU-labeling induced T>C conversion can also be missed due to C>X

(false-negative) sequencing errors. Despite all these possible sources of error, the chal-

lenge is to derive an accurate estimator for the labeling efficiency, which determines the

proportion of newly synthesized transcripts.

Analogous to Jürges et al. (2018) [72], the proportion of newly synthesized transcripts

is modeled with a binomial mixture model of the following form:

P (orj ;U
r
j , ρ

r, ϵ+, a) = (1− ρr) ·Bin(orj ;U
r
j , ϵ+) + ρr ·Bin(orj ;U

r
j , a) (6)

Here, orj denotes the observed T>C conversions and Ur
j the number of potential conver-

sion sites in a read j mapped to a certain 3’UTR r. Further, ρr is the New
Total RNA ratio of this

region r, and ϵ+ the T>C false-positive sequencing error. In contrast to Jürges et al. (2018)

[72], a does not directly reflect the labeling efficiency (in the following denoted as ℓ) but

a corrected labeling efficiency which accounts for the T>C false-positive sequencing error

ϵ+ and the C>X false-negative sequencing error ϵ−. This conversion rate a is calculated as:
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a = 1− (ℓϵ− + (1− ℓ)(1− ϵ+)) = ℓ(1− ϵ− − ϵ+) + ϵ+ (7)

Equation (7) of a is derived from the tree diagramm shown in Figure 3.

ℓ = Labeling efficiency ε+ = T>C Error ε- = C>X Error 

TP = 1 - (ℓε- + (1 - ℓ)(1 - ε+))

FP = 1 - (1 - ε+)
TN = 1 - ε+

FN = ℓε- + (1 - ℓ)(1 - ε+) TP FN
FP TN

labeled
unlabeled

observed unobserved

Coding Strand5' 3'T
3' 5'A

U*5' 3'U5' 3'

A3' 5' G3' 5'

X5' 3' C5' 3'C3' 5' T3' 5'

Template Strand

mRNA

cDNA

1-ε+ε+ 1-ε-ε-

1-ℓ ℓ

Read

Figure 3: Tree Diagramm of a T>C Conversion Event. Represents the probability paths of ob-
serving a T>C conversion in 4sU labeling experiments. Here, ℓ denotes the 4sU labeling efficiency,
whereas ϵ+ and ϵ− denote the false-positive and false-negative sequencing errors, respectively.
T>C conversion event paths are highlighted by red letters.

Each branch in the tree diagram in Figure 3 depicts the probability paths of observing

T>C conversions in 4sU labeling experiments. Suitable estimates for ϵ+ and ϵ− can be

directly derived from control experiments of a SLAM-seq time-series, given that SNP and

RNA editing sites were masked beforehand (see Data and Methods 2.2.7-2.2.8). Then, the

labeling efficiency ℓ can be estimated with the following EM algorithm.

Let R denote the set of all 3’UTRs that are expressed across a SLAM-seq time-series

experiment. For r ∈ R, let Jr be the number of reads mapped to region r. Given a read

j = 1, ..., Jr, let Ur
j be its number of potential conversion sites and let orj ∈ 0, 1, ..., U r

j the

number of positions at which we observe T>C conversions. Let hr
j be a hidden variable

that denotes whether the read j is derived from a pre-existing RNA (hr
j = 0), or a newly

synthesized RNA (hr
j = 1). Let ρr ∈ [0, 1] be the proportion of newly synthesized RNAs in

the RNA population belonging to region r. Let ℓ ∈ [0, 1] be the labeling efficiency, i.e., the

probability by which a 4sU is incorporated into a newly synthesized RNA. Let ϵ+ ∈ [0, 1]
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be the probability of a T>C sequencing error (false-positive) and ϵ− ∈ [0, 1] be the C>X

sequencing error (false-negative) probabilities. Denote the unknown parameters by Θ =

(ℓ, ρr; r ∈ R). Then,

P (orj , h
r
j ; Θ) = P (hr

j ; ρ
r) · P (orj | hr

j ; U
r
j , ℓ, ϵ+, ϵ−) (8)

In the above expression, P (hr
j ; ρ

r) = Bernoulli(hr
j ; p = ρr) and

P (orj | hr
j ;U

r
j , ℓ, ϵ+, ϵ−) =


Bin(orj ; n = Ur

j , p = ϵ+) if hr
j = 0

Bin(orj ; n = Ur
j , p = a) if hr

j = 1

(9)

where a = 1− (ℓϵ− + (1− ℓ)(1− ϵ+)) as denoted in Equation (7). Taking logs of Equation

(8) results in:

logP (orj , h
r
j ; Θ) =


log(1− ρr) + log

(Ur
j

orj

)
+ orj log ϵ+ + (Ur

j − orj) log(1− ϵ+) if hr
j = 0

log ρr + log
(Ur

j

orj

)
+ orj log a+ (Ur

j − orj) log(1− a) if hr
j = 1

(10)

E-step.

Let H = (hr
j ; j = 1, ..., Jr) and H−1 = (hr

j ; j = 2, ..., Jr). Given a parameter set Θ′ =

(ρr ′, ℓ′), the function Q(Θ,Θ′) has to be optimized with respect to Θ = (ρr, ℓ):
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Q(Θ;Θ′) := EP (H|O;Θ′) logP (O,H ; Θ)

=
∑
H

P (H | O; Θ′) logP (O,H ; Θ)

=
∑
r∈R

∑
Hr

−1

∑
hr
1∈{0,1}

[
P (Hr

−1 | Or
−1; Θ

′) · P (hr
1 | or1; Θ′)

]
·
[
logP (Or

−1,H
r
−1; Θ) + logP (or1, h

r
1; Θ)

]
=
∑
r∈R

∑
hr
1∈{0,1}

P (hr
1 | or1; Θ′) logP (or1, h

r
1; Θ)

+
∑
r∈R

∑
Hr

−1∈{0,1}J−1

P (Hr
−1 | Or

−1; Θ
′) logP (Or

−1,H
r
−1; Θ)

induction=
∑
r∈R

Jr∑
j=1

∑
hr
j∈{0,1}

P (hr
j | orj ; Θ′) logP (orj , h

r
j ; Θ)

(11)

Let

crj,hr
j
:= P (hr

j | orj ; Θ′) =
P (orj | hr

j ; ℓ
′)P (hr

j ; ρ
′r)∑

hr
j∈{0,1} P (orj | hr

j ; ℓ
′)P (hr

j ; ρ
′r)

, j = 1, ..., Jr (12)

where

Cr
0 =

Jr∑
j=1

crj,0

Cr
1 =

Jr∑
j=1

crj,1

(13)

Further, if Ur
j ≥ 30 (for determination of this threshold see Data and Methods 2.2.2 and

Results 3.1.1):

A =
∑
r∈R

∑
j

crj,1o
r
j

B =
∑
r∈R

∑
j

crj,1(U
r
j − orj)

(14)

Then, Equation (11) simplifies to:
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Q(Θ;Θ′) =
∑
r∈R

∑
j

crj,0

[
log(1− ρr) + log

(
Ur
j

orj

)
+ orj log ϵ+ + (Ur

j − orj) log(1− ϵ+)

]

+
∑
r∈R

∑
j

crj,1

[
log ρr + log

(
Ur
j

orj

)
+ orj log a+ (Ur

j − orj) log(1− a)

]

=
∑
r∈R

Cr
0 log(1− ρr) +

∑
r∈R

Cr
1 log ρr +A log a+B log(1− a) + const

(15)

M-step.

Taking the partial derivative of Q in Equation (11) with respect to ρr and equating this

expression to zero yields:

0 =
∂Q(Θ;Θ′)

∂ρr
= − Cr

0

1− ρr
+

Cr
1

ρr

ρr =
Cr

1

Cr
0 + Cr

1

=
Cr

1

Jr

(16)

Recall that a = ℓ(1 − ϵ− − ϵ+) + ϵ+ (Equation (7)), and take the partial derivative of Q in

Equation (11) with respect to ℓ. Equating the resulting expression to zero yields:

0 =
∂Q(Θ;Θ′)

∂ℓ
=

∂Q(Θ;Θ′)

∂a
· ∂a
∂ℓ

=

(
A

a
− B

1− a

)
· (1− ϵ− − ϵ+)

(17)

Solving Equation (17) for a (assuming 1− ϵ− − ϵ+ ̸= 0) and then solving for ℓ yields:

a =
A

A+B

ℓ =
a− ϵ+

1− ϵ− − ϵ+
=

( A
A+B − ϵ+)

1− ϵ− − ϵ+

(18)

To further stabilize the labeling efficiency estimation procedure, only regions that fulfill a

certain coverage threshold can be used to consider a 3’UTR r for the update step in Equa-

tion (14). This threshold was set to Jr ≥ 200 reads per region for the SLAM-seq cell cycle
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data 2.1.1, due to the high coverage per 3’UTR (Figure 6). The EM was run until conver-

gence to obtain a final estimate of the labeling efficiency ℓ. Subsequently, ℓ was plugged

in Equation (7) to calculate the corrected labeling efficiency a. In turn, a was plugged into

the binomial mixture model given by Equation (6). With this binomial mixture model, the

New
Total RNA ratio ρr was determined using maximum likelihood (L-BFGS-B method [90]) for

each 3’UTR r.

2.2.2 Simulation Details for Determining a Read Pre-selection Threshold

based on potential Labeling Sites

Given a certain labeling efficiency ℓ ∈ {1%, 2%, 3%, 4%, 5%} and a certain number of 4sU

incorporation sites (also referred to as ”potential labeling sites”) U ∈ {17, 30} in a read,

the number of expected T>C conversions o ∈ 0, 1, ...U is modeled by a binomial distribu-

tion:

Bin(k = o, n = U, p = ℓ) (19)

Based on the resulting distributions given by Equation (19), it was found that the labeling

efficiency could be estimated more reliably if the reads contain at least a certain number

of potential labeling sites (see Figures 11-12; Results 3.1.1). The following simulation was

performed to determine this threshold.

1,000 3’UTRs were simulated with a certain coverage T ∈ {100, 200}. Furthermore,

a New
Total RNA ratio ρ ∈ {1%, 5%, 10%, 20%, 50%, 90%} was defined to simulate the frac-

tion of newly synthesized reads N by sampling from a Binomial distribution of form

Bin(n = T ; p = ρ). Correspondingly, the fraction of pre-existing reads was defined as

O = T − N minus the number of newly synthesized reads. Next, a potential number of

labeling sites U ∈ {10, 20, 30, 40, 50} was defined. Then, for each read of newly synthe-

sized fraction N , the number of T>C conversions was sampled from a binomial distribu-

tion Bin(n = U ; p = a). Here, a = 1− (ℓϵ− + (1− ℓ)(1− ϵ+)) (Equation (7)) is a corrected

labeling efficiency which accounts for the actual labeling efficiency ℓ ∈ {1%, 2%, 3%}, the

T>C sequencing error ϵ+ = 0.1% and the C>X sequencing error ϵ− = 0.1%. Correspond-

ingly, putative T>C conversions due to ϵ+ were simulated for each read of the pre-existing
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fraction O by a binomial distribution Bin(n = U ; p = ϵ+). Subsequently, the number of

T>C conversions was used by the presented EM algorithm (Data and Methods 2.2.1) to

estimate the labeling efficiency ℓ and the corresponding New
Total RNA ratio ρ.

2.2.3 Simulation to assess the Impact of Deviations in Labeling Efficiency on

New
Total RNA Ratios

Deviations in the labeling efficiency estimate from the actual value could lead to biased

estimates of the New
Total RNA ratios. The impact of such deviations was assessed with the

following simulation.

1,000 3’UTRs were simulated from actual transcripts annotated for GRCh38. To that

end, a BED file containing the genomic coordinates of GRCh38 transcripts was down-

loaded from the UCSC Table Browser [83]. For each 3’UTR r, a coverage ranging between

0-1,000 reads Tr was sampled from a beta-binomial distribution BetaBin(n = 1000, α =

10, β = 90) with α = 10 and β = 90 to obtain a mean of 100 reads (Figure 4).
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Figure 4: Coverage Distribution used for Simulation of Annotated GRCh38 Transcripts. The
distribution was modeled by BetaBin(n = 1000, α = 10, β = 90). For visualization purposes, this
beta-binomial distribution appears as a continuous distribution. However, it is a discrete distribu-
tion.
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Having determined a specific coverage Tr from the beta-binomial distribution (Figure 4),

this number of reads was sampled from the annotated 3’UTR regions. The length of each

read was set to 100 nt. Since the length of each region r was 250 nt, while the length of a

read was only 100 nt, each read was sampled randomly from within the 3’UTR. This proce-

dure introduced some variability in the number of potential labeling sites between reads

from the same region r. Next, a New
Total RNA ratio ρ ∈ {1%, 5%, 25%, 50%, 75%, 95%, 99%}

was used as the event probability for the binomial distribution to sample the fraction

of newly synthesized Nr from a binomial distribution according to Bin(n = Tr, p = ρ).

Correspondingly, the pre-existing fraction Or was defined as Or = Tr − Nr. Then, for

each read j in both fractions Nr and Or, the number of potential labeling sites Uj was

determined. For reads of the new fraction Nr, T>C conversions were simulated using a

binomial distribution Bin(n = Uj , p = a) with a fixed labeling efficiency ℓ of 2%, where

a = 1 − (ℓϵ− + (1 − ℓ)(1 − ϵ+)) is a corrected labeling efficiency which accounts for the

T>C sequencing error ϵ+ = 0.1% and the C>X sequencing error ϵ− = 0.1% (see Equation

(7)). In contrast, T>C conversions in reads from the pre-existing fraction Or were sampled

from Bin(n = Uj , p = ϵ+). Instead of using the EM algorithm to estimate this ’true’ la-

beling efficiency ℓ of 2%, the labeling efficiency was manually varied between 1-3% with

a step size of 0.01%. For each of these labeling efficiencies, the corrected labeling effi-

ciency a was calculated according to Equation (7). a was then used to compute the New
Total

RNA ratio estimates ρ̂r using the binomial mixture model as defined by Equation (6). Sub-

sequently, the final New
Total RNA ratio estimate ρ̂ was obtained by calculating the median of

the 3’UTR-specific estimates ρ̂r.

2.2.4 Simulation for Performance Assessment of the new EM Algorithm

The simulation described in Data and Methods 2.2.2 determined a suitable number of po-

tential labeling sites per read. This number can be used as a threshold to pre-select reads,

which are used to estimate the labeling efficiency. However, this threshold was identi-

fied using only a fixed number of potential labeling sites per read. In actual sequencing

data, the number of potential labeling sites varies between reads as it depends on the

genomic sequence of a respective transcript and the read length. For validation of the

pre-selection threshold and comparison of the presented EM (Data and Methods 2.2.1)
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with the corresponding EM algorithm of GRAND-SLAM [72], a similar simulation as de-

scribed in Data and Methods 2.2.3 was performed. Again, sequencing data was simulated

from actual genomic sequences of GRCh38. The details are described in the following.

15,000 3’UTRs from annotated transcripts of GRCh38 were simulated. Genomic co-

ordinates of GRCh38 transcripts were extracted from a BED file downloaded from the

UCSC Table Browser [83]. For each transcript, the last 250 nucleotides were defined as

the 3’UTR. For each 3’UTR r, a coverage ranging between 0-1,000 reads Tr was sampled

from a beta-binomial distribution BetaBin(n = 1000, α = 10, β = 90) with α = 10 and

β = 90 to obtain a mean of 100 reads (Figure 4). According to the coverage Tr, this num-

ber of reads was sampled from the 3’UTR regions, each with a length of 100 nt. The

reads were sampled randomly from within the corresponding 3’UTR, so the number of

potential labeling sites per read could vary. Then, a New
Total RNA ratio ρr between 1-99%

was randomly sampled from a uniform distribution and assigned to each 3’UTR. ρr was

then used to sample the newly synthesized fraction of reads Nr from a binomial distri-

bution according to Bin(n = Tr, p = ρr). Correspondingly, the pre-existing fraction Or

was defined as Or = Tr − Nr. Then, for each read j in both fractions Nr and Or, the

number of potential labeling sites Uj was determined. For reads of the new fraction Nr,

T>C conversions were simulated using a binomial distribution Bin(n = Uj , p = a), where

a = 1 − (ℓϵ− + (1 − ℓ)(1 − ϵ+)) is a corrected labeling efficiency which accounts for the

actual labeling efficiency ℓ ∈ {0.1%, 0.5%, 1%, 2%, 3%, 4%, 5%}, the T>C sequencing error

ϵ+ = 0.1% and the C>X sequencing error ϵ− = 0.1% (Equation (7)). In contrast, T>C con-

versions of pre-existing reads were sampled from Bin(n = Uj , p = ϵ+). The objective of

the presented EM algorithm (Data and Methods 2.2.1) was to estimate ℓ from this data.

The performance of the presented EM algorithm was compared with the correspond-

ing EM algorithm of GRAND-SLAM [72] using the same simulation framework. GRAND-

SLAM is not open-source, so the EM algorithm was implemented as described in the cor-

responding publication. For ease of readability, this implementation is simply referred

to as GRAND-SLAM in the following. As no start value was described for the labeling effi-

ciency, it was naively set to ℓ = 100% in the first iteration of GRAND-SLAM’s EM algorithm.

Conveniently, the number of potential labeling sites and the observed T>C conversions

are sufficient statistics for both methods.

23



Data and Methods 2.2 Methods

2.2.5 Quality Control and Mapping of Sequencing Data

Individual FASTQ files of the SLAM-seq cell cycle dataset (Data and Methods 2.1.1) were

quality-checked with fastqc [91]. Sequencing adapters were trimmed using cutadapt [92].

Trimmed reads were mapped to human genome GRCh38 with NextGenMap [93] in paired-

end mode. The number of mapped reads ranged from roughly 60-120 million reads (Fig-

ure 5).
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Figure 5: Mapping Statistics of the SLAM-seq Cell Cycle Data. Trimmed reads were mapped to
human genome GRCh38 with NextGenMap [93] in paired-end mode. The number of mapped (gray)
and unmapped (orange) reads are shown for each time point of the nuclear and cytosolic fractions
from the cell cycle phases G1 and Mitosis.

2.2.6 Read Filtering and Assignment to 3’UTRs

Several quality filter criteria were applied to the mapped reads of the SLAM-seq cell cy-

cle data (Data and Methods 2.1.1). The first read of each aligned read pair was kept for

further analysis. The reason for this procedure was the observation that mates of the
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same read pair often overlapped. Therefore, T>C conversions detected in reads aligned

to the sense strand (A>G conversions on the antisense strand, respectively) would be er-

roneously counted twice, as the read pair comes only from one single transcript. Similar

to the filtering procedure of SlamDunk [71], reads were filtered out if their mapping qual-

ity was lower than 2 and the sequencing identity was lower than 95%. The reads which

passed these quality filters were stored in BAM files for downstream processing.

The 3’UTR annotations for GRCh38 were obtained from the UCSC Table Browser [83].

Overlapping 3’UTRs on the same strand were merged into one region. A read was as-

signed to a 3’UTR if its alignment overlapped with the region with at least one nucleotide

position. The strandedness of the 3’QuantSeq REV protocol (Lexogen) [81] was consid-

ered during the read assignment. That means reads in the forward direction were as-

signed to annotated regions on the antisense (-) strand, whereas reads in the reverse di-

rection were assigned to regions on the sense (+) strand. The reads could be assigned to

15,779 3’UTRs in G1 and 16,517 3’UTRs in Mitosis expressed across the respective time

series (Figure 6).
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Figure 6: Mean Coverage per 3’UTR of the Cell Cycle data. The histograms show the mean cover-
ages over the respective time series of G1 (left) and Mitosis (right), which were calculated for both
the nuclear (orange) and the cytosolic (blue) fractions.

2.2.7 Correction for SNPs and RNA Editing Sites

Genomic SNPs can mimic T>C conversions and bias 4sU labeling-induced conversion

counts. As these counts are essential for accurately estimating New
Total RNA ratios, it is nec-

essary to mask these SNP positions. Therefore, a VCF file containing SNP coordinates in
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the human genome GRCh38 was downloaded from NCBI dbSNP [94]. Subsequently, these

positions were excluded from further analyses.

Nonetheless, cell line-specific SNPs that could accumulate during cultivation and RNA

editing sites could be present in the data. Therefore, position-wise mismatch rates were

calculated in the respective control samples (0 min time points) to account for these ge-

nomic positions. If the mismatch rate of a genomic position was found to be higher than

5%, it was considered a potential SNP or RNA editing site. Such positions were collected

from all individual control samples in one list, which was used to mask the respective ge-

nomic positions in each SLAM-seq cell cycle dataset sample. Subsequently, T>C and (re-

spectively, A>G conversions on the antisense strands) were counted in each sample and

monitored over time (Figure 7).
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Figure 7: Conversion Statistics of the SLAM-seq Cell Cycle Data. Barplots depict the increase of
T>C (A>G conversions on antisense strand, respectively) over time for each compartment and cell
cycle phase. Conversions were counted after the correction of sequencing data for SNPs and RNA
editing sites.

2.2.8 Estimation of Sequencing Errors

Sequencing errors were determined after correction for SNPs and RNA editing sites (Data

and Methods 2.2.7) from control samples (0 min time points). Two distinct types of se-

quencing errors can be detected in 4sU-based sequencing experiments. The first type is

the false-negative sequencing error ϵ−, describing C>X (sense strand) and G>X (antisense

strand) conversions, which mask 4sU labeling induced T>C (sense strand) and A>G (anti-

sense strand) conversions, respectively. In contrast, the false-positive sequencing error ϵ+

26



Data and Methods 2.2 Methods

describes T>C conversions (respectively A>G conversions on the antisense strand), which

occur in sequencing data even without 4sU labeling.

ϵ+ was directly inferred as the T>C mismatch rate (A>G mismatch rate, respectively).

In contrast, ϵ− was calculated as the average of all C>X mismatch rates (G>X mismatch

rates, respectively). Finally, the strand-specific sequencing errors were averaged to ob-

tain one error rate ϵ+ and ϵ− for each respective time series. Table 2 depicts the sequenc-

ing errors measured in the SLAM-seq Cell Cycle Data (Data and Methods 2.1.1).

Table 2: Sequencing Errors in SLAM-seq Cell Cycle Data.

Control T>C Error ϵ+ C>X Error ϵ−

Mitosis Cytosol 0.033% 0.723%

Mitosis Nucleus 0.036% 0.708%

G1 Cytosol 0.036% 0.736%

G1 Nucleus 0.034% 0.692%

2.2.9 A Two-compartment Model of RNA Metabolism

Using the New
Total RNA ratios, the life cycle of a mature (polyadenylated) transcript can be

modeled by four metabolic parameters [80]. Initially, the RNA is synthesized in the nu-

cleus at a rate µ. Subsequently, the mature transcript is either exported to the cytoso-

lic compartment with rate τ or degraded in the nucleus at a nuclear degradation rate ν.

Transcripts that were exported from the nucleus are degraded in the cytosol with rate λ

irrespective of their function in this compartment. The two-compartment model assumes

that µ, τ, ν and λ are constant over time, so the RNA metabolism is in steady state. In the

following, the details of the two-compartment model are described.

Given a 3’UTR, N = N(t) denotes the time course of nuclear RNA abundances aver-

aged over all cells in a bulk sample. Correspondingly, C = C(t) represents the time course

of the cytosolic RNA abundances. Here, N and C can be treated as continuous variables

as they are high numbers. Subsequently, their time course can be modeled by an ordinary

differential equation system involving µ, τ, ν and λ:
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dN

dt
= µ− (ν + τ)N (20)

dC

dt
= τN − λC (21)

For any choice of initial conditions, the system has a closed-form solution at t = 0 but

converges to its steady state in every case. This steady state is given by:

N∞ =
µ

ν + τ
(22)

and

C∞ =
µ

ν + τ
· τ
λ

(23)

With these steady-state levels, the time courses of the pre-existing RNA fraction can be

modeled by:

Nold(t) = N∞ · e−(ν+τ)t (24)

and

Cold(t) = C∞ ·
(
λe−(ν+τ)t − (ν + τ)e−λt

λ− (ν + τ)

)
(25)

Correspondingly, the time courses of the newly synthesized RNA fraction can be obtained

by subtracting the pre-existing RNA levels from the steady states levels:

Nnew(t) = N∞ ·
(
1− e−(ν+τ)t

)
(26)

and

Cnew(t) = C∞ ·
(
1− λe−(ν+τ)t − (ν + τ)e−λt

λ− (ν + τ)

)
(27)

SLAM-seq makes it possible to distinguish between newly synthesized and existing RNA

without separating these two fractions physically but by sequencing alone. This proce-
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dure provides accurate estimates of the relative abundance of RNA Nnew(t)
N∞

in the nucleus,

respectively Cnew(t)
C∞

in the cytosol. In steady state, these ratios can be calculated with

Equations (22) and (26) for the nucleus and with Equations (23) and (27) for the cytosol:

Nnew(t)

N∞
= 1− e−(ν+τ)t (28)

Cnew(t)

C∞
= 1− λe−(ν+τ)t − (ν + τ)e−λt

λ− (ν + τ)
(29)

As defined by Equation (28), ν + τ is treated as one quantity called nuclear vanishing rate.

Further, the cytosolic ratio in Equation (29) only depends on this nuclear vanishing rate

and the cytosolic degradation rate λ. Therefore, these parameters ν + τ and λ can be

estimated from the measured nuclear and cytosolic New
Total RNA ratios by fitting Equations

(28) and (29) to these quantities (see Data and Methods 2.2.11).

2.2.10 Variance-stabilizing Transformation of New
Total RNA Ratios

As in our previous work [80], the New
Total RNA ratios ρ were variance-stabilized by applying

an arcsin transformation [95]. Assuming that the ratios ρ with a corresponding total read

count J follow a binomial distribution given by Bin(n = J, p = ρ), the distribution of the

arcsin-transformed New
Total RNA ratios arcsin

(√
ρ
)

approximates to a normal distribution

with variance σ2 = 1
4·J . The variance σ2 depends only on the number of total reads J so

that it can be accounted for during parameter fitting.

2.2.11 Fitting the Two-compartment Model to derive RNA Dynamics

Using the arcsin-transformed nuclear and cytosolic New
Total RNA ratios (Data and Methods

2.2.10), Equation (28) and (29) of the two-compartment model (Data and Methods 2.2.9)

are fitted with the following procedure.

First, fix a 3’UTR. Let q(t) be the arcsin-transformed New
Total RNA ratio of the 3’UTR in

measurement in either the nuclear or cytosolic compartment at time point t. Let q̂(t,Θ)

be the true, target New
Total RNA ratio defined by the parameter set Θ = (τ + ν, λ). The
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probability of observing the arcsin-transformed New
Total RNA ratio q(t) given the parameter

set Θ can be formulated as:

P (q(t) | Θ) =
1

σ
√
2π

· e−
1
2 ·(

q(t)−q̂(t,Θ)
σ )

2

=

√
4J√
2π

· e− 1
2 ·4J(q(t)−q̂(t,Θ))2

(30)

Subsequently, taking the logarithm results in:

logP (q(t) | Θ) = log

(√
4J√
2π

)
− 2J(q(t)− q̂(t,Θ))2 (31)

Then, a suitable parameter set Θ is obtained by maximizing the sum of the log-likelihoods

over all time points T of a SLAM-seq time series
∑T

t logP (q(t) | Θ) with respect to Θ. In

this case, log
(√

4J√
2π

)
can be omitted from Equation (31) as it does not depend on Θ.

The Markov chain Monte Carlo method (MCMC) Metropolis-Hastings [96] was used

as an algorithm to sample the parameter set Θ = (τ + ν, λ). Specifically, τ + ν and λ

were sampled jointly in each two-dimensional MCMC run. To reduce burn-in time and to

prevent the Markov chain from getting stuck in regions of low probability in the param-

eter space, a Differential Evolution algorithm (global optimization) [97] was used to find

a suitable seed for the Markov chain. Next, the Markov chain sampled 50,000 parameter

combinations of τ + ν and λ (Figure 8).
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Figure 8: Examplary MCMC Density Plot of a Parameter Fit. The MCMC-chain sampled 50,000
parameter combinations of the joint parameter set Θ = (ν + τ, λ) for an exemplary 3’UTR with
identifier ”chr1_1311584_1311924_r”. Darker areas indicate higher density regions than lighter
areas. The elliptic form reflects broad searches through the probability space of the parameter
combinations.

Median values for τ +ν and λ were calculated from these samples. Conveniently, credibil-

ity intervals were calculated as the 95%-percentiles of the MCMC samples. The median

values were used as a seed for a Nelder-Mead algorithm (local optimization) [98] to obtain

the final parameter set Θ.

2.2.12 Applying Reliability Criteria to Rate Estimates of RNA Metabolism

As in our previous work [80], several reliability criteria were applied to the rate estimates

obtained by the two-compartment model (Data and Methods 2.2.11). To that end, a pa-

rameter estimate was classified as reliable if: 1) Its corresponding 3’UTR was found to be

covered with at least 30 reads on average across the time series. 2) The difference be-

tween the parameter estimate and the upper and lower credibility bound by the param-

eter estimate is ≤ 0.3. 3) The expression level of the 3’UTR region is constant across the

time series so that the steady-state assumption of the model holds. To that end, the ex-
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pression data was normalized by calculating the average read count of the inter-quartile

range (25-75%) of the read distribution of a respective time point. Then, the read count

of each respective 3’UTR was divided by this average to obtain relative expression lev-

els. A linear regression model was fitted to the expressions of each 3’UTR over time. If

the slope of the regression line did not increase by more than 0.0025 1
min or decrease by

less than -0.0025 1
min , the region was considered reliable. 4) The coefficient of determi-

nation R2 of the model fit is ≥ 0.4. The reliability criteria were applied to the estimates

of each compartment and cell cycle phase. Additionally, cytosolic parameters were only

considered reliable if the corresponding nuclear estimate was also reliable. This criterion

is reasoned by the fact that the RNA content in the cytosol depends on the export from

the nucleus.

2.2.13 Estimating Cyt
Nuc RNA Abundances using ERCC Spike-ins

Cyt
Nuc RNA abundance ratios were determined using ERCC Exfold RNA Spike-In Mixes

(Thermo Fisher Scientific). First, a robust average read count was calculated for each sam-

ple as described in Müller et al. (2023) [80]. To that end, the bottom and top quartile of

3’UTRs were excluded concerning the total read count. Subsequently, the read counts of

the remaining 50% of 3’UTRs were averaged. Only 3’UTRs covered with at least 1 read

were considered for this procedure. This normalization strategy prevented the average

expression value from being biased by regions with highly variable transcript expression

levels. Then, each robust average expression value was divided by the total count of

the ERCC spike-ins within a respective sample. This division yielded spike-in normalized

read count averages. Lastly, Cyt
Nuc RNA abundance ratios were calculated by dividing these

count averages of the cytosolic fraction by the corresponding nuclear measurements for

each time point.
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2.2.14 Simulation Details for the Assessment of cytosolic RNAHalf-life Vari-

ability

In this work and our previous study [80], the variability of cytosolic RNA half-lives was

notably higher than the corresponding estimates for the nucleus. This discrepancy might

result from technical variability, which is investigated with this simulation.

Consider a SLAM-seq time series t = {15, 30, 45, 75, 120, 180} in minutes and a certain

coverage T ∈ {30, 100, 250, 1000}. Further, assume some parameter values for the syn-

thesis rate µ = 1 1
min and the nuclear degradation rate ν = 1 · 10−10 1

min . Reasonable

estimates for the export rate can be obtained by taking the prior information that the

average RNA spends roughly 300 min in the nucleus. Then, we can obtain the rate by

τ = ln(2)
300min = 0.0023 1

min . Analogously, we can obtain a cytosolic degradation rate for a

cytosolic half-life of 10 min by calculating λ = ln(2)
10min = 0.069 1

min . λ values were calcu-

lated this way for 10-100 min with a step size of 10min. For each λ and each coverage T ,

we can obtain a total fraction of nuclear RNA N∞ using Equation (22). Subsequently, the

old nuclear fractions can be modeled by Nold = N∞ · e−(ν+τ)t for each time point t (Equa-

tion (24)). Correspondingly, the new fractions are given by Nnew = N∞ −Nold (Equation

(26)). Similarly, the total fraction of RNA in the cytosol is given by C∞ = N∞ · τ
λ (Equation

(23)), so that Cold = C∞ ·
(

(ν+τ)·e−λt−λ·e−(ν+τ)t

ν+τ−λ

)
(Equation (25)) and Cnew = C∞ − Cold

(Equation (27)). Nuclear and cytosolic New
Total RNA ratios were obtained by calculating Nnew

N∞

and Cnew

C∞
, respectively. Then, these ratios were used to estimate back the parameter set

Θ = (τ + ν, λ) by fitting the two-compartment model as described in Data and Methods

2.2.11. 100 bootstrap runs were performed for each parameter combination.

2.2.15 Motif Search with HOMER

The reliable estimates (Data and Methods 2.2.12) of the nuclear and cytosolic RNA half-

lives were categorized into 4 different groups based on quartiles. These groups de-

scribe 1) fast (0-25%-percentile) 2) moderately fast (25-75%-percentile) 3) moderately

slow (50-75%-percentile) and 4) slow (75-100%-percentile) transcripts. The analysis was

performed at the gene level. For this purpose, each 3’UTR was mapped to one gene. A

3’UTR was excluded from further analyses if it mapped to multiple gene identifiers. Subse-
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quently, all exonic sequences of the respective genes were retrieved from the ENSEMBL

annotation [99], and de novo RNA sequence motifs were called with HOMER [100] using

default settings. The remaining groups not scanned for motifs were used as a background

sequence dataset for each group’s motif search. Walter Sandt performed this analysis.

2.2.16 Used Software

Quality metrics of sequencing data were assessed with fastqc (v0.11.9) [91], and se-

quencing adapters trimmed with cutadapt (v1.18) [92] before sequence alignment with

NextGenMap (v0.5.5) [93].

Simulation frameworks were implemented in Python (v3.9.6) [101] using additional

non-base packages: pandas (v1.4.3) [102], [103] for data table handling, scipy (v1.8.1)

[104] and numpy (v1.23.1) [105] for numerical operations and statistics, and BioPython

(v1.79) [106] for handling genomic data.

The two-compartment model was implemented in Python (v3.9.6) [101] and R (v4.0.1)

[107]. Several additional non-base python packages were used: pysam (v0.19.1; visit

https://github.com/pysam-developers/pysam) [108] for handling sequence alignment

BAM files, pandas (v1.4.3) [102], [103] for data handling, scipy (v1.8.1) [104] and numpy

(v1.23.1) for numerical operations and statistics, and pandas (v1.4.3) [102], [103] for data

table handling. Furthermore, several non-base R packages were used: mcmc (v0.9-7) [109]

for MCMC sampling, deoptim (v2.2-6) [97] for global optimization, and doParallel (v1.0.17)

[110] for multicore processing.

For data table handling and visualization with Python, the packages pandas (v1.4.3)

[102], [103], matplotlib (v3.5.2) [111] and seaborn (v0.13.0) [112] were used. Analogously,

visualization and data table handling in R was performed with non-base packages re-

shape2 (v1.4.4) [113] ggplot2 (v3.3.5) [114], ggpubr (v0.4.0) [115] and gridExtra (v2.3)

[116]. Schematic figures were created with Inkscape (v1.0.1; visit https://inkscape.org/

?switchlang=en).
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3 Results

This Results section is divided into two parts. In the first section, a probabilistic modeling

framework for quantification of RNA metabolism was developed, and its performance

was thoroughly assessed. As a ’ground truth’ dataset of RNA metabolic rates does not ex-

ist, the model performance was tested on various simulations. Subsequently, the method

was compared to GRAND-SLAM [72], a widely applied tool to estimate RNA half-lives from

metabolic labeling sequencing data.

In the second part of this section, the probabilistic modeling framework was applied

to two SLAM-seq time series of HeLa-S3 synchronized to be in Mitosis and G1 cell cycle

phase (Data and Methods 2.1.1; Figure 9).
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Figure 9: Overview of the SLAM-seq Cell Cycle Experiments. HeLa-S3 cells were synchronized
regarding the cell cycle. Two SLAM-seq time series were generated, one in Mitosis and one in the
G1 cell cycle phase. Cells were fractionated to obtain nuclear and cytosolic RNA samples. Sub-
sequently, the model was applied to estimate New

Total
RNA ratios for each compartment and cell

cycle phase. Then, cytosolic RNA half-lives were derived from these ratios by fitting the two-
compartment model.

After data pre-processing and model fit (Figure 9), the resulting cell cycle-specific RNA

half-lives were used to elucidate putative differences between the RNA metabolism dur-

ing the cell cycle. Furthermore, they were compared to estimates from the literature.

Lastly, the RNA half-lives were used to search for putative regulators of RNA metabolism,

such as RBPs and RNA sequence elements.

35



Results 3.1 Model Development

3.1 Model Development

3.1.1 A novel EM Algorithm estimates the Labeling Efficiency with high Pre-

cision

In our first implementation of the modeling framework [80], the EM algorithm estimated

labeling efficiencies for each measured 3’UTR and time point. The final labeling efficiency

estimate was then obtained by calculating the median of the resulting labeling efficiency

distribution. Subsequently, this ’global’ labeling efficiency estimate was used to estimate

New
Total RNA ratios for each measured 3’UTR. While this approach worked well with the cor-

responding SLAM-seq time series data from unsynchronized HeLa-S3 cells, its application

led to inconsistent bimodal labeling efficiency distributions between time points in the

SLAM-seq cell cycle data presented here (Supplemental Figure S1). Consequently, the

median-based approach for finding a ’global’ labeling efficiency estimate resulted in cal-

culating New
Total RNA ratios to which the two-compartment model could be poorly fitted.

One possible explanation for the inconsistent labeling efficiency estimates is the time

point-specific expression of certain transcripts during the cell cycle. The subsequent mea-

surement of the corresponding 3’UTRs could skew the labeling efficiency distribution,

leading to biased median estimates. To buffer this effect, only 3’UTRs, which are con-

stantly expressed along a time series, can be accounted for when estimating the labeling

efficiency. Further, instead of evaluating one labeling efficiency per detected 3’UTR, it

can be assessed globally by considering the conversion counts of all regions simultane-

ously. This procedure is based on the assumption that the labeling efficiency is constant

for each transcript. Although there might be some variability regarding the 4sU incor-

poration rate by Pol II during transcription, it can be assumed this polymerase does not

incorporate 4sU selectively for each transcript, and, therefore, the variability is minor.

Another cause for the inconsistent estimation of the labeling efficiency could be a low

number of T>C conversions in the data. Indeed, a manual inspection of the T>C conversion

counts per time point indicated that many of the corresponding reads show 0 T>C conver-

sions. Although these small numbers of T>C conversions could reflect low transcriptional

activity, they might also be an artifact of the low 4sU incorporation rates. In the latter’s
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case, the EM would erroneously underestimate the labeling efficiency, leading to an over-

estimation of the proportion of pre-existing transcripts.

Assuming that the 4sU incorporation follows a binomial distribution, reads from newly

synthesized transcripts with low numbers of potential labeling sites should also have a low

chance of carrying T>C conversions. The average number of potential labeling sites was

inferred from the cell cycle data to assess how many expected T>C conversions can be

observed within a sequencing read (Figure 10).
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Figure 10: Histogram of Potential Labeling Sites per 3’UTR. Shown are the mean number of po-
tential labeling sites in the respective reads of each 3’UTR (15 min time point sample of the nuclear
fraction measured in Mitosis). The orange line depicts the mode of the distribution, indicating that
most 3’UTRs contain 17 labeling sites per read.

Notably, the reads of most 3’UTRs contain 17 potential labeling sites (Figure 10). Based

on this number, the expected number of T>C conversions was modeled by binomial dis-

tributions using different labeling efficiencies as event probabilities (Data and Methods

2.2.2; Figure 11).
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Figure 11: Barplot of Expected T>C Conversions given 17 Potential Labeling Sites. The colors
represent the choices of the labeling efficiencies (4sU incorporation rate), which were used as event
probabilities p to generate conversion probabilities from binomial distributions. No T>C or C>X
sequencing errors were accounted for in the binomial model to simulate ’optimal’ 4sU incorporation
conditions.

Assuming a labeling efficiency of 2% (which was reported to be in a realistic range [68]),

the probability of observing 0 T>C conversions in a read given 17 labeling sites is roughly

70% (Figure 11), whereas the probability of observing 1 conversion is slightly higher than

20%. Even with 6% labeling efficiency, the probability of observing 0 T>C conversions is

higher than 30%, whereas the probability of observing 1 conversion is slightly higher but

still lower than 40%. Notably, the binomial model does not account for false-positive (T>C

error) and false-negative (C>X error) rates but optimal conditions where a T>C conversion

event is only dependent on the 4sU incorporation rate itself. Therefore, the probability

of observing 0 T>C conversions might be higher in actual sequencing data.

One potential way to control for this bias is to infer the labeling efficiency from reads

whose number of potential labeling sites exceeds a certain threshold. Figure 12 shows the

expected number of T>C conversions in a read given 30 instead of 17 potential labeling

sites (Data and Methods 2.2.2).
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Figure 12: Barplot of Expected T>C Conversions given 30 Potential Labeling Sites. The colors
represent the choices of the labeling efficiencies (4sU incorporation rate), which were used as event
probabilities p to generate conversion probabilities from binomial distributions. No T>C or C>X
sequencing errors were accounted for in the binomial model to simulate ’optimal’ 4sU incorporation
conditions.

Assuming a labeling efficiency of 2%, the chance of observing 0 T>C conversions dropped

from roughly 70% to less than 60% when a read contains 30 instead of 17 potential con-

version sites (compare Figure 11-12). Also, the chance of observing at least 1 T>C con-

version increases to more than 30%. If the labeling efficiency is 6%, the probability of

observing 0 T>C conversions drops below 20%. Overall, these results suggest that a read

pre-selection based on the number of potential labeling sites could increase the chance of

capturing 4sU labeling-induced T>C conversions, improving the accuracy of the labeling

efficiency estimation by the EM.

A suitable threshold of potential labeling sites per read was assessed via simulation

(Data and Methods 2.2.2). Here, the labeling efficiency was fixed to 2%. 1,000 3’UTRs

were generated with either 100 or 200 reads as coverage. The proportion of newly syn-

thesized transcripts was simulated to range from 1-90%. T>C conversions were generated

by a binomial model, accounting for putative sequencing errors. Given different numbers
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of potential labeling sites per read, the EM was challenged to estimate the ’true’ labeling

efficiency of 2% (Figure 13).
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Figure 13: Accuracy of the Labeling Efficiency Estimation with Increasing Labeling Sites per
Read In this simulation, 1,000 3’UTRs with a respective New

Total
RNA ratio ranging from 1-90% were

generated (see colors). Each region was covered with 100 (left plot) or 200 reads (right plot), where
the reads contained a certain number of potential labeling sites (x-axis). T>C conversions per read
were sampled from a binomial model using a labeling efficiency of 2% as event probability. T>C (ϵ+)
and C>X (ϵ−) sequencing errors of 0.1% were accounted for by the model. The labeling efficiency
estimates computed by the EM were plotted on the y-axis, where the gray area indicates the 5%
error region.

As the line plot in Figure 13 shows, at least 30 labeling sites per read are required to obtain

labeling efficiency values that deviate with less than 5% relative error from the literature

value of the labeling efficiency of 2% [68], given that the New
Total RNA ratio ranges from

5-90%. If the ratio is 1%, the labeling efficiency could not be estimated with less than

5% error, irrespective of the used threshold of potential labeling sites. If a read contains

only 10 potential labeling sites, the deviation in the labeling efficiency is higher than 5%

for all simulated New
Total RNA ratios. Generally, a higher coverage of 200 reads increases the

accuracy of the labeling efficiency estimates. Here, the deviation in the labeling efficiency

is already less than 5% for a broader range of New
Total RNA ratios given 20 labeling sites per

read (compare Figure 13).

As the main objective of the model is to determine the proportion of newly synthe-

sized transcripts, the respective labeling efficiency estimates were also used to infer the

New
Total RNA ratios (Data and Methods 2.2.1; Figure 14).
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Figure 14: Heatmap of the Relative Error of New
Total

RNA Ratios recovered from Reads with Dif-
ferent Numbers of Potential Labeling Sites. 1,000 3’UTRs with 100 reads (left panel) or 200 reads
(right panel) per region were generated for each simulation. Given a certain New

Total
RNA ratio (x-axis),

T>C conversions were sampled from a binomial distribution using a pre-defined number of poten-
tial labeling sites per read (y-axis). Here, the labeling efficiencies ℓ of 1% (top panel), 2% (middle
panel), and 3% (bottom panel) were used for the fraction of newly synthesized reads. The binomial
models also accounted for T>C (ϵ+) and C>X (ϵ−) sequencing errors of 0.1% each. The color grading
represents the median of the relative error of the New

Total
RNA ratio across all 1,000 3’UTRs. Asterisks

depict errors equal to or lower than 10%.

The relative error of the New
Total RNA ratio decreases with higher numbers of potential label-

ing sites per read, higher labeling efficiencies, higher coverage, and higher proportions of

the New
Total RNA ratio itself (Figure 14). In general, the lower-end ratios ranging from 1-10%

have higher error rates. This behavior is expected since the proportion of newly synthe-

sized transcripts decreases at lower ratios, reducing the number of reads with T>C con-
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versions that can be differentiated from sequencing error rates. Therefore, the model

is missing the statistical power to robustly infer the New
Total RNA ratios. Additionally, the

simulation was performed by fixating one New
Total RNA ratio, and not a mixture of different

ratios. In such a mixture setting, reads from 3’UTRs with higher ratios should stabilize the

labeling efficiency estimation and, subsequently, the full range of New
Total ratio estimates

between 0-100%.

Based on the above results, the threshold of potential labeling sites per read was set

to ≥ 30. In theory, higher thresholds would even improve the labeling efficiency estima-

tion process. However, the number of reads that pass these thresholds would decrease,

which could influence the stability of the estimation procedure.

3.1.2 Performance Assessment of the EM Algorithm

Compared to the implementation of the EM algorithm from our previous work [80], the

new version now incorporates two crucial changes. First, instead of estimating an indi-

vidual labeling efficiency value for each genomic region, the latest version estimates one

global labeling efficiency value from all genomic regions simultaneously. Second, it per-

forms a pre-selection of reads that contain a certain number of potential labeling sites.

In the previous simulation, 30 sites per read were determined to be a suitable threshold

(see Results 3.1.1). To that end, all parameters, such as the number of labeling sites per

read, the coverage, and the New
Total RNA ratio, were kept constant. However, in actual se-

quencing data, all these parameters can differ between transcripts. Therefore, the EM al-

gorithm was tested on simulated data with reads generated from actual human genomic

sequences (Data and Methods 2.2.3-2.2.4). The necessity to obtain an accurate estimator

of the 4sU incorporation rate is demonstrated, and the pre-selection step is further eval-

uated using this data. Lastly, the EM is tested against the corresponding implementation

of GRAND-SLAM [72], a widely used tool to quantify RNA metabolic rates.

First, the impact of deviations in the labeling efficiency estimate on the New
Total RNA

ratio estimation was investigated. For this purpose, 1,000 3’UTRs were retrieved from

actual sequences of GRCh38 (Data and Methods 2.2.3). A wide range of target New
Total RNA

ratios ranging from 1-99% was defined for each region. A ’true’ labeling efficiency of 2%

was set, which was used to model the expected number of T>C conversions at each ratio.
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Then, the EM was applied to estimate the target New
Total RNA ratios. However, the labeling

efficiency was manually varied between 1-3%, while the T>C conversion counts generated

with the ’true’ labeling efficiency of 2% were kept constant. Subsequently, the deviation

of the New
Total RNA ratios estimates from their target values was assessed (Figure 15).
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Figure 15: Variation of the New
Total

RNA Ratio in dependence on the 4sU Incorporation Rate.
Shown is a range of labeling efficiencies ranging from 1-3% (x-axis) used to estimate specific tar-
get New

Total
RNA ratios ρ ranging from 1-99%. However, T>C conversion counts for each ratio were

inferred from a ’true’ labeling efficiency of 2%. 1,000 transcripts were simulated for each New
Total

RNA ratio ρ, each with a coverage of 100 reads. The median estimate of the New
Total

RNA ratios ρ̂ of
these transcripts were plotted as colored lines across the range of labeling efficiencies (y-axis). The
gray vertical area depicts the 1% relative error region of the ’true’ labeling efficiency of 2%. T>C
conversions were generated by binomial models accounting for T>C sequencing errors (ϵ+) and C>X
sequencing errors (ϵ−) of 0.1% each.

The New
Total RNA ratios are sensitive to variations in the labeling efficiency (Figure 15). As-

suming a ’true’ labeling efficiency of 2%, slight deviations of this efficiency lead to com-

parably high deviations of the New
Total RNA ratio estimates from their target ratios. The

ratios are generally overestimated if the labeling efficiency falls below the ’true’ labeling

efficiency of 2% and vice versa. Notably, at a ratio of 1% the estimates tend to fall to

0%, likely due to the small numbers of reads from the new fraction. On the contrary, at

high ratios of 95-99%, the estimates tend to increase to 100% if the labeling efficiency is

underestimated. However, if the labeling efficiency is overestimated, the ratios decrease
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rapidly. Based on this result, it was concluded that the labeling efficiency estimate should

deviate with less than 1% relative error from its ’true’ quantity.

Next, the simulation was scaled up to test the performance of the presented EM

with and without read pre-selection. 15,000 transcripts were generated from annotated

3’UTRs of GRCh38 (Data and Methods 2.2.4). The coverage of each transcript was sam-

pled from a beta-binomial distribution with a mean of 100 reads (Figure 4), resulting in a

total number of roughly 1.5 million reads. Further, each transcript was assigned a random

New
Total RNA ratio between 1-99% drawn from a uniform distribution. Subsequently, T>C

conversions for each read were generated using binomial models, accounting for T>C se-

quencing errors (ϵ+) and C>X sequencing errors (ϵ−). Both ϵ+ and ϵ− were set to 0.1%. The

labeling efficiency ranged from 0.1-5%. 5 replicates were generated for each parameter

combination. First, the impact of the labeling site threshold on the accuracy of labeling

efficiency estimation was assessed using this data (Figure 16).
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Figure 16: Impact of Read Pre-selection on Labeling Efficiency. Different labeling efficiencies ℓ
are shown, ranging from 0.1-5% (x-axis), which were estimated by the new EM with and without read
pre-selection. The threshold was set to ≥0 (which effectively includes all reads; blue line) or ≥30
(pink line). The relative errors of the respective labeling efficiency estimates ℓ̂ are plotted on the y-
axis. The horizontal dashed line depicts the 1% relative error threshold. 5 replicates were simulated
for each labeling efficiency. Points represent the means of the respective replicates and error bars
the corresponding standard error. 15,000 transcripts were simulated for each replicate. A coverage
was randomly sampled from a beta-binomial distribution with a mean of 100. A random New

Total
RNA

ratio ranging between 1% and 99% was uniformly assigned to each transcript. T>C conversions
were generated by binomial models using the target labeling efficiency ℓ ranging from 0.1-5%, while
accounting for T>C sequencing errors (ϵ+) and C>X sequencing errors (ϵ−) of 0.1% each. Note that
due to the logarithmic y-axis, the standard errors of smaller estimates appear larger than those of
higher estimates.

A pre-selection of reads with at least 30 potential labeling sites yields more accurate la-

beling efficiency estimates than no pre-selection (≥ 0 threshold, Figure 16). Suppose the

labeling efficiency is 2%. In that case, the relative error of its corresponding estimates is in

the range of 1% upon read pre-selection. In contrast, without pre-selection, the relative

error was roughly 3% (compare Figure 16). In the case of even higher labeling efficien-

cies (≥3%), the error dropped below 1% upon pre-selection. In contrast, the error always

exceeded the 1% threshold if no read pre-selection was performed. If the labeling effi-

ciency was set to 0.1%, 0.5%, or 1%, the relative errors of the labeling efficiency estimates

were higher with pre-selection than without. A possible explanation is the small number
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of reads that pass the labeling site filter. Further, the background sequencing errors ϵ+

and ϵ− have a higher impact on the estimation precision as they have a similar magnitude

as the labeling efficiency itself. However, actual SLAM-seq data typically has higher cov-

erage and labeling efficiency [68]. Therefore, 30 potential labeling sites per read can be

considered a reasonable pre-selection threshold.

Next, the performance of the new EM algorithm and GRAND-SLAM were compared on

this simulated data. GRAND-SLAM performs a fundamentally different read pre-selection

step than the here presented method. Instead of selecting reads that exhibit a certain

minimum number of potential labeling sites, GRAND-SLAM pre-selects reads whose num-

bers of T>C conversions exceed those expected to be observed from background sequenc-

ing errors [72]. For comparison, the presented EM algorithm and the corresponding imple-

mentation of GRAND-SLAM were applied to estimate a wide range of labeling efficiencies

from 0.1-5% (Figure 17).
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Figure 17: Performanceof theNewEMandGRAND-SLAM in Estimating the Labeling Efficiency.
Shown are different labeling efficiencies ℓ ranging from 0.1-5% (x-axis), which were to be estimated
by either the new EM (green) or GRAND-SLAM (orange). The relative error of the respective labeling
efficiency estimates ℓ̂ is plotted on the y-axis. The horizontal dashed line depicts the 1% relative er-
ror threshold. 5 replicates were simulated for each labeling efficiency. Points represent the means
of the respective replicates and error bars the corresponding standard error. 15,000 transcripts
were simulated for each replicate. T>C conversions were generated by binomial models using a
target labeling efficiency ℓ ranging from 0.1-5%, while accounting for T>C sequencing errors (ϵ+)
and C>X sequencing errors (ϵ−) of 0.1% each. Note that due to the logarithmic y-axis, the standard
errors of smaller estimates appear larger than those of higher estimates.

Assuming realistic error rates (ϵ+ = 0.1% and ϵ− = 0.1%) [117], both EM algorithms pro-

vide labeling efficiency estimates with relative errors less than 10% if the labeling effi-

ciency is at least 2% (compare Figure 17). At a labeling efficiency of 1%, GRAND-SLAM’s

estimate has a relative error of roughly 20%, whereas the error of the presented EM is

below 10%. Notably, GRAND-SLAM computed estimates with more than 1000% relative

error if the labeling efficiency was set to 0.1% or 0.5%. This observation is because only

a small number of reads (less than 10,000) would fulfill the preselection criteria. There-

fore, GRAND-SLAM’s EM estimates the labeling efficiency either at the starting value of

100% (see Data and Methods 2.2.4) or at a slightly lower value. In theory, GRAND-SLAM

would even stop the computation, as at least 10,000 reads are required for the estima-

tion (noted by the authors [72]). However, the implementation was still run for complete-
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ness. In contrast, the presented EM algorithm could recover a labeling efficiency of 0.5%

with less than 40% relative error. If the labeling efficiency was set to the same value as

the sequencing errors of 0.1%, the relative error increased to roughly 300%. This result

demonstrates that the presented EM outperforms GRAND-SLAM regarding the labeling

efficiency estimation.

Complementary to the labeling efficiency estimation, both methods were used to de-

termine the New
Total RNA ratio of each simulated transcript. Subsequently, the deviation of

these estimates from their respective ’true’ ratios was assessed (Figure 18).
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Figure 18: Performance of the New EM and GRAND-SLAM in Estimating the New
Total

RNA Ratio.
Shown is a range of labeling efficiencies ℓ (x-axis), which were to be estimated by either the pre-
sented EM (green) or GRAND-SLAM (orange). 5 replicates with 15,000 transcripts were simulated
for each labeling efficiency. A coverage was randomly sampled from a beta-binomial distribution
with a mean of 100. A random New

Total
RNA ratio ranging between 1% and 99% was uniformly assigned

to each transcript. T>C conversions were generated by binomial models using a target labeling effi-
ciency ℓ ranging from 0.1-5%, while accounting for T>C sequencing errors (ϵ+) and C>X sequencing
errors (ϵ−) of 0.1% each. The absolute errors of the New

Total
RNA ratios across all 5 replicates are plot-

ted on the y-axis.
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As shown by the boxplots in Figure 18, both the presented EM and GRAND-SLAM compute

New
Total RNA ratios with median absolute errors of roughly 10% and inter-quartile ranges

(IQR) of roughly 5-15%, if the underlying labeling efficiency is set to at least 1%. With

increasing labeling efficiency, the median absolute errors of the New
Total RNA ratios drop

from roughly 10% (at 1% labeling efficiency) to about 4% (at 5% labeling efficiency) with

both methods. At the same time, these errors of both methods converge to a detection

limit. This convergence is expected, as the fraction of newly synthesized reads was sam-

pled from a binomial distribution, using the ’true’ New
Total RNA ratio as the event probability.

This procedure introduces some variability to the data according to the variance np(1− p)

of the binomial distribution, which is challenging to capture by both methods. For the

labeling efficiency scenarios of 0.1% and 0.5%, the presented EM computes estimates

with median absolute errors of roughly 30% (IQR: roughly 15-55%) and 10% (IQR: roughly

5-25%), respectively. Despite the high variability, the EM outperforms GRAND-SLAM in

these scenarios (compare Figure 18). In theory, GRAND-SLAM would have stopped com-

putation in these scenarios due to its read pre-selection cut-off of at least 10,000 reads.

In summary, the results of the simulations show that the EM algorithm with a global

optimization approach achieves a high degree of accuracy in estimating the labeling ef-

ficiency. Combined with a pre-selection of reads with at least 30 potential 4sU labeling

sites, the presented EM algorithm performs with higher precision than the corresponding

EM algorithm of the widely used tool GRAND-SLAM. In direct comparison, it also outper-

forms GRAND-SLAM even in scenarios with low labeling efficiency, which could occur at

early time points of a metabolic labeling time series. However, the variability of label-

ing efficiency estimates (and the subsequent New
Total RNA ratio) is still comparatively high

when the labeling efficiency falls below 1%. Therefore, it is advisable to critically evalu-

ate the estimates when such magnitudes are observed in experimental data. But, with a

typical labeling efficiency in the range of 2%, this problem should affect SLAM-seq data

to less extent. Overall, the simulations demonstrated that the presented EM algorithm is

a promising method to help analyze metabolic sequencing data.
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3.2 RNA Metabolism along the Cell Cycle

The performance of the presented EM algorithm was evaluated on simulated data in the

Results section 3.1. Simulations help investigate a particular method’s performance and

limitations, but they remain simplifications. The modeling assumptions on which they

are based may not capture all the technical or biological effects that could occur in actual

experimental data. If the assumptions are not chosen appropriately, a method in question

may even fail with such data sets in the worst case. Therefore, the EM presented here

was tested as part of the modeling framework on data from two SLAM-seq time series

measured in HeLa-S3 cells generated exclusively for this project (Data and Methods 2.1.1).

An essential feature of the two new SLAM-seq time-series datasets generated for this

work is that the cells were synchronized with respect to the cell cycle. This synchroniza-

tion contrasts with the data we used in our previous study, which was obtained from

unsynchronized cells [80]. Such data provides insight into bulk RNA dynamics but only

limited information about changes in transcript metabolism during the cell cycle. There-

fore, the two SLAM-seq time series were generated from cells in G1 and Mitosis to as-

sess putative cell cycle-specific fluctuations in RNA metabolism. Before applying the two-

compartment model, the data was pre-processed, including thorough quality control of

sequencing reads, followed by read alignment and T>C conversion count for each time-

point of a respective time-series (see Data and Methods 2.1.1 and Data and Methods 2.2.5-

2.2.7).

3.2.1 Estimating Cell Compartment-specific New
Total RNA Ratios

After the SLAM-seq time series had been pre-processed, the EM algorithm was applied

to estimate the labeling efficiency for each time point of a respective time series. In G1,

the labeling efficiency ranged from 2.76-5.82% labeling efficiency in the nucleus and 1.58-

5.81% in the cytosol. Correspondingly, it ranged from 2.77-4.98% in the nucleus and 2.12-

5.23% in the cytosol during Mitosis. Subsequently, these labeling efficiency estimates

were used by the modeling framework to infer New
Total RNA ratios for each detected 3’UTR

(Data and Methods 2.2.1). In total, estimates for 15,779 3’UTRs were captured in G1 and

16,517 in Mitosis.
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The New
Total RNA ratios are expected to increase over time due to the duration of 4sU la-

beling. Such an increase was monitored in each compartment and cell cycle phase (Figure

19).
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Figure 19: New
Total

RNA Ratios estimated by the presented Modeling Framework from the SLAM-
seq Cell Cycle Experiments. Shown are boxplots of estimated New

Total
RNA ratios for the nuclear

(darkorange) and cytosolic (blue) compartments over time for both G1 (left) and Mitosis (right).
Each boxplot represents estimates from 15,779 3’UTRs detected in G1 and 16,517 3’UTRs in Mi-
tosis.

Figure 19 shows that in both time series, the nuclear and cytosolic New
Total RNA ratios in-

crease over time. Notably, the median nuclear ratios exceed the cytosolic ones at each

time point, irrespective of the cell cycle phase. Further, considering the median ratios

per time-point, the nuclear estimates almost increase linearly over time. In contrast, the

cytosolic ratios increase with some delay, which can be explained by the compartmen-

talization of the cell. Transcription occurs in the nucleus, for which newly synthesized

transcripts will be detected in this compartment first. Consequently, a transcript must be

exported from the nucleus before it can be measured in the cytosol. The delay further

suggests that the nuclear export of RNA does not happen immediately after transcrip-

tion, likely due to post-transcriptional processing steps. When comparing the median

New
Total RNA ratios between G1 and Mitosis over time, the ratios appear slightly elevated

in G1. This variability might result from higher transcriptional activity in G1 but could also

reflect technical variance. Reassuringly, the variance of the New
Total RNA ratios increase over

time, indicating that the model quantifies a wide range of transcript dynamics.
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3.2.2 An mRNA spends most of its Life in the Nucleus, not the Cytosol

Having determined New
Total RNA ratios, the two-compartment model was fitted to these

quantities to obtain a nuclear vanishing rate (ν+ τ) and a cytosolic degradation rate λ for

each measured 3’UTR. The fit was performed with a two-dimensional MCMC followed by

numerical optimization (Data and Methods 2.2.11). In contrast to our previous implemen-

tation, (ν + τ) and λ were fitted jointly to the New
Total RNA ratios of each respective 3’UTR.

Subsequently, the obtained rates were converted to nuclear and cytosolic RNA half-lives

by calculating ln(2)
ν+τ and ln(2)

λ , respectively. Additionally, stringent reliability criteria were

applied to yield highly reliable RNA half-lives for each compartment and cell cycle phase

(Data and Methods 2.2.12). This procedure determined 1,931 highly reliable nuclear and

956 cytosolic estimates in G1. Correspondingly, 2,295 highly reliable nuclear and 907 cy-

tosolic estimates were identified in Mitosis. For each cell cycle phase, the nuclear RNA

half-lives were compared with the corresponding cytosolic estimates (Figure 20).
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Figure 20: Nuclear vsCytosolic RNAHalf-life Estimates fromSLAM-seqCell Cycle Experiments.
The nuclear RNA half-lives were plotted against the respective cytosolic estimates for both the G1
and Mitosis cell cycle phases. Yellow points highlight nuclear RNA half-life estimates, which were
highly reliable (G1: n=1,931, Mitosis: n=2,295; Data and Methods 2.2.12). The green points high-
light estimates found to be highly reliable in both the nucleus and the cytosol (G1: n=956, Mitosis:
n=907). Gray points highlight half-life estimates from all other 3’UTRs. The lines and numbers in
the respective colors depict median RNA half-lives in minutes.
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Considering the reliable estimates, the median nuclear RNA half-life is 265 min (IQR: 140-

485 min), whereas the median cytosolic RNA half-life is 44 min (IQR: 29-68 min) in the G1

cell cycle phase (compare Figure 20). In contrast, the median nuclear RNA half-life is 242

min (IQR: 128-432 min), and the cytosolic RNA half-life is 29 min (IQR: 20-43 min), consider-

ing the reliable estimates measured in Mitosis. These numbers indicate that the nuclear

export of RNA is slow, while cytosolic degradation is fast in both cell cycle phases. Conse-

quently, an average transcript remains in the nucleus at least 6-times as long as it remains

in the cytosol. Further, some qualitative differences between the RNA half-lives in G1 and

Mitosis can be observed, as the mitotic estimates are lower on average. However, these

differences are minor, considering the assumption that nuclear and cytosolic half-life frac-

tions could mix up completely upon nuclear envelope breakdown (NEBD) during Mitosis.

In such a scenario, the half-lives of both compartments should have more or less the same

magnitude. However, the NEBD was observed to happen within roughly 35 minutes from

initial breakdown to nuclear reassembly [118]. Further, subcellular fractionation proto-

cols rely on centrifugation [82] to separate intact nuclei from the cytoplasmic fractions.

These two data properties might bear experimental difficulties in monitoring NEBD with

subcellular metabolic labeling sequencing experiments. However, the observed RNA half-

lives suggest that NEBD affects mitotic estimates to a minor extent. Replicate time series

are needed to check whether the mitotic RNA turnover rates are robust, but further vali-

dation experiments were out of scope for this study.

The long nuclear RNA half-lives imply that the transcript abundances could be higher

in the nucleus than in the cytosol. ERCC RNA spike-ins were used to normalize each se-

quencing library and, subsequently, calculate Cyt
Nuc RNA abundance ratios for each cell cy-

cle phase and time point to check this hypothesis (Data and Methods 2.2.13; Figure 21).
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Figure 21: Cytosolic vsNuclear RNAAbundanceRatios during theCell Cycle. The left plot shows
the log2 fold-change of Cyt

Nuc
RNA ratios for each time point in the G1 phase, whereas the right

plot shows the ratios per time point for the mitotic phase. Negative values indicate higher RNA
abundances in the nucleus, whereas positive values represent higher numbers of transcripts in the
cytosolic fraction. RNA abundances were calculated with ERCC RNA spike-ins (Data and Methods
2.2.13).

The Cyt
Nuc RNA abundance ratios of each time point in each cell cycle phase indicate higher

RNA amounts in the nucleus compared to the cytosol (compare Figure 2.2.13). Interest-

ingly, RNA amounts vary between the time points in both G1 and Mitosis samples. At the

start of Mitosis (0 min), there is almost a 4-times higher amount of RNA in the nucleus, but

this amount declines to more balanced abundances in the nucleus and cytosol over time.

These more balanced ratios can be expected upon NEBD during Mitosis as the nuclear and

cytosolic RNA fractions could mix up. Still, roughly 2 times more RNA is in the nucleus at

the 180 min time point sample. Further, the Cyt
Nuc RNA abundance ratios fluctuate during

the G1 phase (especially at 75 min). Similar to the differences regarding the RNA half-lives

from both cell cycle phases (compare Figure 20), these Cyt
Nuc RNA abundance ratios could

also result from technical variation. Overall, these ratios provide further evidence that an

average mRNA spends most of its life in the nucleus, not the cytosol.

Although the RNA half-lives seem to be highly similar in both G1 and Mitosis, the

metabolism of individual transcripts could differ along the cell cycle. The compartment-

specific RNA half-lives from G1 and Mitosis were plotted against each other to investigate

for such differences (Figure 22).
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Figure 22: Comparison Compartment-specific RNAHalf-life Estimates betweenG1 andMitosis.
Shown are nuclear (left plot) and cytosolic (right plot) RNA half-life estimates from G1 (x-axis) and
Mitosis (y-axis) plotted against each other. Green points depict reliable half-life estimates (Data and
Methods 2.2.12), whereas gray points reflect all other estimates. Spearman’s ρ correlation values
of the estimates are indicated in the plots. In total, 14,814 3’UTRs were commonly detected in both
cell cycle phases.

The reliable nuclear RNA half-lives from both cell cycle phases are highly correlated (Spear-

man’s ρ = 0.91). In contrast, the corresponding cytosolic estimates show a comparably

weaker correlation (Spearman’s ρ = 0.76, compare Figure 22). While the correlation of all

estimates is similar to the reliable ones in the nucleus (Spearman’s ρ = 0.92), the correla-

tion of all estimates is less pronounced in the cytosol (Spearman’s ρ = 0.49). Although this

inconsistency might reflect cell cycle-specific differences in cytosolic degradation rates, it

could also be caused by technical variation. A similar discrepancy between actual replicate

measurements was observed in our previous study, suggesting that technical variation is

the leading cause [80].

3.2.3 Cytosolic RNA Half-life Estimates suffer from technical Variance

A higher number of replicate time series could be used to obtain more stable estimates

for the cytosolic RNA half-lives. But as already mentioned, these measurements were

out of scope for this study. One alternative is to tweak the experimental parameters,

for instance, by increasing the coverage. As higher numbers of reads should have higher
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chances to capture relatively small New
Total RNA ratios but also lowly abundant RNA (due to

high cytosolic degradation rates), a higher coverage might help to account for the techni-

cal variability observed in the cytosol.

A simulation was performed to check if an increasing coverage could improve the esti-

mation accuracy of cytosolic RNA half-lives (Data and Methods 2.2.14). Therefore, a wide

range of cytosolic RNA half-lives ranging from 10-100 min and different coverages ranging

from 30-1,000 reads were used to simulate cytosolic New
Total RNA ratios. Then, the modeling

framework was challenged to estimate back the cytosolic RNA half-lives from these ratios

to investigate the technical variance. The simulation was bootstrapped 100 times (Figure

23).
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Figure 23: Reproducibility of Cytosolic RNA Half-Life Estimates. The point plot shows the rel-
ative error of a variety of cytosolic RNA half-lives ranging from 10-100 minutes (see colors) on the
y-axis, in dependence of the coverage on the x-axis. Each cytosolic RNA half-life was used to define
the proportion of reads from newly synthesized transcripts given a certain coverage ranging from
30-1,000 reads. Then, the two-compartment model was used to estimate the cytosolic RNA half-
lives from the respective New

Total
RNA ratios. Each simulation was bootstrapped 100 times to yield

median point estimates for each cytosolic RNA half-life (Data and Methods 2.2.14).

As shown in Figure 23, the relative errors of the cytosolic RNA half-life estimates shrink

with increasing coverage. If the coverage is set to 30 reads, the whole range of distinct cy-

tosolic RNA half-lives from 10-100 minutes is estimated with more than 10% error. Only if
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the coverage is set to 1,000 reads, RNA half-lives higher than 20 minutes can be estimated

with less than 5% relative error on average. Overall, the simulation results suggest that

increasing coverage could help obtain more robust cytosolic RNA half-lives. This finding

will help to reduce future experimental costs and resources on replicate time series. At

the same time, these results show that handling the variability of cytosolic RNA half-lives

remains a challenging task, for which advances in experimental and computational meth-

ods are needed in the future.

3.2.4 RNA Half-lives are consistent along the Cell Cycle

Although the compartment-specific RNA half-lives were found to be highly correlated be-

tween G1 and Mitosis (see Results 3.2.1), some variability could be observed. Therefore,

the RNA half-lives obtained from G1 and Mitosis were tested for significant differences

using a Wilcoxon rank-sum test. For robustness, only 3’UTRs with reliable parameter esti-

mates in both cell cycle phases were considered (Figure 24).
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Figure24: Assessmentof significantDifferencesbetweenCompartment-specificRNAHalf-life
Estimates fromtheSLAM-seqCell CycleExperiments. Shown are violin plots which represent the
disributions of reliable RNA half-life estimates (Data and Methods 2.2.12) measured in the nucleus
(left plot; n = 766) and the cytosol (right plot; n = 326). A Wilcoxon rank-sum test was used to
test for significant differences between the compartment-specific RNA half-lives of both the G1
and Mitosis cell cycle phases (see p-values in the plots).

The violin plots in Figure 24 elucidate that the mitotic RNA half-lives have less variance

than the G1 counterparts in both the nucleus and cytosol. Furthermore, the RNA half-lives
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of both cell cycle phases are significantly different in the nucleus (p = 0.049; Wilcoxon

rank-sum test) and the cytosol (p < 0.05; Wilcoxon rank-sum test). However, replicate

time series are required to assess whether these differences are due to discrepancies in

RNA metabolic rates during the cell cycle. Given the large technical variance in cytosolic

estimates and the minor differences in the nucleus (see Results 3.2.2 and 3.2.3), this anal-

ysis does not suggest that RNA metabolic rates differ between phases of the cell cycle.

3.2.5 RNA Half-lives from synchronized Cells correlate with those from un-

synchronized Samples

In the previous sections, cell cycle-specific RNA half-lives were tested against each other.

However, they could deviate from estimates obtained from HeLa-S3 cells that are not

synchronized regarding their cell cycle. The cell cycle-specific rates were compared to

bulk measures from our previous work [80] (Data and Methods 2.1.2) to check the concor-

dance between compartment-specific RNA half-lives from synchronized and unsynchro-

nized cells (Figure 25).
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Figure 25: Comparison of Cell Cycle-specific RNA Half-lives with Estimates from Unsynchro-
nized Cells. Shown are compartment-specific comparisons of bulk and cell cycle-specific RNA half-
lives for the cytosol (left), the nucleus (middle), and pseudo-whole-cell (right) estimates. The top
panel depicts the comparison of G1 estimates with the corresponding RNA half-lives from unsyn-
chronized cells. Analogously, the bottom panel shows the comparison of Mitosis and the bulk esti-
mates. Green points (n = 11) depict RNA half-lives which passed stringent reliability criteria (Data
and Methods 2.2.12), and gray points (n = 291) all other parameter estimates. Spearman’s ρ corre-
lation values of the estimates are indicated in the plots.

While the cytosolic RNA half-lives of the unsynchronized cells correlate moderately with

the corresponding estimates from the cell cycle data (G1: Spearman’s ρ = 0.4, Mitosis:

Spearman’s ρ = 0.35), they are in high agreement with the nuclear turnover rates (G1:

Spearman’s ρ = 0.82, Mitosis: Spearman’s ρ = 0.82; Figure 25). This consistency still holds

when comparing pseudo-whole-cell extract (pseudo-WCE) estimates, which reflect the

sum of the nuclear and cytosolic RNA half-lives (G1: Spearman’s ρ = 0.84, Mitosis: Spear-

man’s ρ = 0.77). Overall, these results indicate that the RNA metabolism of synchronized

cells does not differ remarkably from that of unsynchronized cells, at least in the nucleus.

In contrast, the variability in cytosolic RNA half-life might reflect differences in the RNA

metabolism along the cell cycle. However, this cannot be determined confidently due to

the technical variation in cytosolic RNA half-life and the lack of replicate measurements.
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3.2.6 Cell Cycle-specific RNA Half-lives are consistent with Estimates from

the Literature

In the previous sections, the RNA half-life estimates of the modeling framework pre-

sented here were only compared internally with its own estimates. However, comparisons

with external datasets are essential to evaluate the accuracy and credibility of the respec-

tive estimates. Therefore, the presented RNA half-lives were compared to estimates pub-

lished by Schüler et al. (2014) [63] (Data and Methods 2.1.3). This dataset comprises RNA

half-lives measured from WCEs of HEK293 and MCF7 cells. The authors applied 4sU label-

ing followed by biotinylation to separate newly synthesized from pre-existing transcripts.

A simple exponential decay model was fitted as described in Schwanhäusser et al. (2011)

[66] using these fractions. For this comparison, the nuclear and cytosolic RNA half-lives

from each cell cycle phase were summarized to pseudo-WCE estimates (Figure 26).
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Figure 26: Comparison of Cell Cycle-specific RNAHalf-liveswith Estimates fromWhole-Cell Ex-
tracts. Nuclear and cytosolic RNA half-lives were summarized to pseudo-WCE estimates for both
G1 (left panel) and Mitosis (right panel). The pseudo-WCE estimates were plotted against the WCE
RNA half-lives measured from HEK293 (top panel) and MCF7 (bottom panel) cells [63]. Highly re-
liable parameter estimates are indicated by green points (Data and Methods 2.2.12), whereas the
gray points represent all other estimates. Spearman’s ρ correlation values of the estimates are indi-
cated in the plots. For HEK293 cells, 1,385 RNA half-lives (reliable: 130) from HeLa-S3 estimates in
G1 were compared (top left), and 1,386 (reliable: 135) in Mitosis (top right). For MCF7 cells, 1,357
RNA half-lives (reliable: 130) from HeLa-S3 estimates in G1 were compared (bottom left), and 1,357
(reliable: 137) in Mitosis (bottom right).

The reliable pseudo-WCE RNA half-lives of the HeLa-S3 cells are in high agreement with

the WCE estimates obtained from HEK293 (G1: ρ = 0.77, Mitosis: ρ = 0.8) and MCF7

(G1: ρ = 0.7, Mitosis: ρ = 0.78) cells (Figure 26). Notably, the HeLa-S3 RNA half-lives are

systematically longer than the respective measurements from HEK293 cells. In contrast,
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they are systematically shorter than the ones from MCF7 cells. Such shifts might indicate

cell line-specific differences in RNA turnover rates and have already been observed in the

analyses of the first version of our modeling setup [80]. Nonetheless, these results show

that the model presented here calculates compartment-specific estimates whose sums

are in high agreement with corresponding measurements from the literature.

3.2.7 RNA-binding Proteins might modulate nuclear RNA Turnover Rates

RNA-binding proteins enable essential processing steps of mRNAs, such as alternative

splicing and poly-adenylation, but also export from the nucleus [119]. In these processes,

the composition of RBPs bound to a particular transcript plays a crucial role in modulat-

ing gene expression [120]. It can be assumed that RNAs with similar half-lives exhibit

similar RBP compositions. Therefore, the half-lives of RNAs to which a certain RBP binds

should differ from the corresponding half-lives of the unbound transcripts. The binding

profiles of 120 RBPs were analyzed from eCLIP data deposited on ENCODE [85] (Data and

Methods 2.1.4) to elucidate such differences. For each RBP, a set of unbound and bound

transcripts was defined. The reliable RNA half-lives of these two groups were then tested

for significant differences.

In total, 24 RBPs showed significant effects on nuclear RNA half-life in Mitosis (Supple-

mental Figure S2). Here, the binding of 2 of these proteins, RBM15 and KHSRP, appears

to promote nuclear RNA export (Figure 27).
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Figure 27: Differences in mitotic nuclear RNA Half-lives upon binding by RBM15 and KHSRP.
Each violin plot shows the distributions of the mitotic nuclear half-lives of transcripts that are ei-
ther bound (red) or unbound (gray) by RBM15 (left plot) or KHSRP (right plot). A Wilcoxon rank-sum
test was applied to test for significant differences in RNA half-life between the bound and unbound
transcripts. Only those transcripts whose RNA half-lives met stringent reliability criteria (Data and
Methods 2.2.12) were considered for this analysis. The ENCODE accession numbers for the corre-
sponding eCLIP data are listed in brackets next to the RBP name.

As the violin plots in Figure 27 depict, the bound RNAs of RBM15 and KHSRP had signifi-

cantly shorter nuclear turnover rates than the corresponding unbound transcripts. Inter-

estingly, RBM15 has been associated with NXF1-dependent nuclear export of RNA in pre-

vious studies [73], [121] and was also found as a potential modulator in our earlier study

[80]. In contrast, KHSRP emerged as a new candidate whose binding might enhance nu-

clear RNA export. The function of this protein has been linked to processes such as mRNA

splicing and decay [122], [123]. According to the Uniprot database [124], it might also play

a role in mRNA trafficking (Uniprot accession number: Q92945).

In the cytosol, 2 RBPs were found to significantly effect RNA half-life in Mitosis (Sup-

plemental Figure S3). Here, the binding of PUM2 seems to promote cytosolic degradation

(Figure 28).
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Figure 28: Differences in mitotic cytosolic RNA Half-life upon binding by PUM2. The violin plot
shows the distributions of the mitotic cytosolic half-lives of transcripts that are either bound (red) or
unbound (gray) by PUM2. A Wilcoxon rank-sum test was applied to test for significant differences in
RNA half-life between the bound and unbound transcripts. For this analysis, only those transcripts
were considered whose half-lives met stringent reliability criteria (Data and Methods 2.2.12). The
ENCODE accession number for the corresponding eCLIP data is listed in brackets next to the RBP
name.

PUM2 is an RBP that binds to the 3’UTR region of a transcript and recruits a deadeny-

lase, which inhibits translation and, subsequently, induces mRNA degradation [125], [126].

Therefore, this function could be reflected by the shorter cytosolic RNA half-lives of its

bound transcripts. For all other tested RBPs, nuclear and cytosolic RNA half-lives of the

respective bound transcripts were not found to be significantly shorter than those of the

unbound transcripts in Mitosis (Supplemental Figures S2-S3).

In the G1 cell cycle phase, 19 RBPs were found to have significant effects on nuclear

RNA half-life (Supplemental Figure S4) and 7 RBPs on cytosolic RNA half-life (Supplemen-

tal Figure S6). None of these RBPs seems to promote nuclear RNA export. Instead, 2

RBPs seem to support cytosolic RNA turnover. One of these proteins is again PUM2 (Sup-

plemental Figure S5), which also affects to affect the corresponding estimates in Mitosis

(compare Figure 28). Additionally, IGF2BP1 emerged as another RBP to affect cytosolic

RNA half-life in the G1 cell cycle phase (Figure 29).
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Figure 29: Differences in G1 Cytosolic RNA Half-life upon binding by IGF2BP1. The violin plot
shows the distributions of the G1 cytosolic half-life of transcripts that are either bound (red) or
unbound (gray) by IGF2BP1. A Wilcoxon rank-sum test was applied to test for significant differences
in cytosolic RNA half-life between the bound and unbound transcripts. For this analysis, only those
transcripts whose half-lives met the reliability criteria described in Data and Methods 2.2.12 were
considered.

IGF2BP1 has been associated with RNA stabilization to protect a transcript from miRNA-

mediated degradation [127], [128]. This function contradicts a possible shortening effect

on cytosolic RNA half-life upon binding this protein. Therefore, IGF2BP1 could be a false-

positive hit of this eCLIP analysis. On the one hand, this observation could be due to the

comparatively high technical variability of cytosolic RNA half-life. On the other hand, it

could also be due to the discrepancy in the cell lines used for the eCLIP experiments. The

latter were performed with K562 cells and not with HeLa-S3 cells. The metabolism of

the respective transcripts could differ between these cell types. In contrast, the finding

that PUM2 was found as a putative modulator of cytosolic degradation in both cell cycle

phases supports the analysis for the detection of regulatory RBPs of RNA metabolism.

As KHSRP was previously associated with regulating the stability of transcripts with

AU-rich elements (ARE) in their 3’UTRs [123], the RNA half-lives of ARE transcripts defined

in the database ARED-Plus [88] (Data and Methods 2.1.5) were further investigated. A

comparison of ARE and non-ARE transcripts revealed significant differences regarding

the nuclear RNA half-lives during Mitosis (see Figure 30).
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Figure 30: Mitotic nuclear RNA Half-life Distribution of AU-rich Element Transcripts. Genes
with AU-rich element (ARE) RNAs were downloaded from the ARED-plus database [88]. The half-
lives of mitotic nuclear ARE transcripts are indicated in dark red (n = 187), whereas all non-ARE
RNAs are depicted in gray (n = 720). A Wilcoxon rank-sum test was applied to test for significant
differences in nuclear RNA half-life between the ARE and non-ARE transcripts. Only those tran-
scripts were considered whose nuclear RNA half-lives passed stringent reliability criteria (Data and
Methods 2.2.12).

In Mitosis, the median nuclear half-life of ARE transcripts is 204 minutes, whereas the non-

ARE transcripts have a median half-life of 283 minutes. A similar pattern was observed for

the nuclear RNA half-lives measured in G1 (Supplemental Figure S7). These results indi-

cates that AU-rich element transcripts spend less time in the nucleus than non-AU-rich

element RNAs. They also support the role of KHSRP as a potential modulator of nuclear

RNA turnover rates (compare Figure 27). Whether it stabilizes, degrades, or modulates

the process of RNA export needs to be validated in future experiments. Additionally, ARE

transcripts also had significantly shorter cytosolic half-lives in both the G1 and Mitosis cell

cycle phase (Supplemental Figures S8-S9). However, these differences should be inter-

preted with caution due to the technical variability of cytosolic RNA half-lives. Nonethe-

less, these results demonstrate that the two-compartment model calculates RNA half-

lives that capture the properties of specific RNA binding factors and sequence elements.

3.2.8 RNA Half-lives of Protein Subunits vary within Protein Complexes

The stoichiometry of individual subunits in protein complexes is essential to ensure the

correct function of the complex [129]. A cell might control this stoichiometry by balancing
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protein synthesis and degradation. Yet, the exact mechanism remains unclear [129]. One

determining factor could be the overall RNA turnover rate. To check this hypothesis, the

variability of RNA half-lives of individual subunits within a protein complex was analyzed

using annotation data from the CORUM database [89] (Data and Methods 2.1.6; Figure

31).
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Figure 31: Variability in RNA Half-life of Protein Complex Subunits. The point plot depicts the
log2 fold-changes between pseudo-WCE RNA half-lives of protein subunits and the corresponding
median RNA half-life of the whole complex (Data and Methods 2.1.6). The CORUM database [89]
was used to annotate protein complexes. Red points depict RNA half-lives measured in G1, and blue
points represent RNA half-lives measured in Mitosis.

Notably, the RBP RALY of the C complex spliceosome [130] is the only protein subunit with

a more than 2-times higher RNA half-life than the whole complex in both G1 and Mitosis

(compare Figure 31). Besides being part of the C spliceosome, RALY was also found to be

part of the Drosha complex, which is involved in the genesis of miRNAs [131], [132]. Pos-

sibly due to its regulatory role as an RBP and its role in multiple complexes, the elevated

transcript half-life could reflect more stable protein expression.
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At the other end of the spectrum, MRPS2, part of the small ribosomal subunit of the

55S mitochondrial ribosome, is the only protein with a more than 2 times lower RNA half-

life than the whole complex, at least in Mitosis. In G1, its RNA half-life is not at least

2 times lower, but the lowest compared to the overall complex RNA half-life (compare

Figure 31). Interestingly, mutations in MRPS2 have been linked to deficiencies in the ox-

idative phosphorylation system of mitochondria as a consequence of impairments in the

assembly of the mitochondrial small ribosomal subunit [133]. Therefore, the short RNA

half-lives of MRPS2 provide further evidence that this protein might be a limiting factor in

mitochondrial ribosome stability. More analyses have to be performed, which would com-

pare, for instance, the half-lives with actual protein expression data obtained by mass-

spectrometry to check this hypothesis. Nonetheless, the presented analysis provides a

starting point to unravel additional determinants of protein complex stability by incorpo-

rating transcript abundances and their dynamics.

3.2.9 Motif Search in RNAs with slow and fast Turnover Rates

RNA sequence features determine transcript stability by, for instance, providing binding

sites for RBPs [134], [135]. The high number of reliable RNA half-lives returned by the two-

compartment model allowed for the grouping of transcripts from fast to slow turnover

rates based on quartiles: transcripts with 1) fast turnover rates (0-25%), 2) moderately

fast turnover rates (25-50%), 3) moderately slow turnover rates (50-75%), and 4) slow

turnover rates (75-100%; Data and Methods 2.2.15). For each compartment and cell cycle

phase, a de novo motif search was performed with transcripts of these four categories

using HOMER [100] (analysis performed by Walter Sandt; Figure 32).
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Figure 32: De novo Motif Search on Transcripts with different turnover rates (perfomed by
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moderately fast, 3) moderately slow, and 4) slow turnover rates. The analysis was performed for
both the G1 and Mitosis cell cycle phases.

As shown in Figure 32, distinct de novo motifs, which could act as potential RBP-binding

sites, were returned by HOMER. Note that this is an exploratory analysis for which these

motifs must be validated experimentally. To that end, it would be interesting to target

these motifs, for instance, using CRISPR, and test the dynamics of the respective tran-

scripts for significant differences. Overall, these motifs represent potential targets for

the RNA research community.
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4 Discussion

In this work, I developed a model that resolves an mRNA’s life cycle across cell compart-

ments. A novel EM algorithm that robustly estimates the 4sU incorporation rate was im-

plemented at the core of this framework. Since the New
Total RNA ratios are very sensitive to

variation in the labeling efficiency, the accuracy of the 4sU incorporation rate estimate

is a crucial factor for successfully estimating the transcript dynamics. The presented EM

algorithm not only considers the possibility of false-positive T>C conversions caused by

sequencing errors to ensure this accuracy but also accounts for possible false-negative

C>X conversions, which could mask 4sU-labeling induced T>C conversions. Furthermore,

it performs a read pre-selection for reads whose numbers of potential labeling sites are

greater or equal to 30. This filtering step increases the probability of recognizing T>C

conversions in 4sU-labeled transcripts.

The EM’s read pre-selection contrasts with the equivalent step of GRAND-SLAM, a

tool widely applied in analyzing metabolic labeling sequencing data. GRAND-SLAM pre-

selects reads based on the number of observed T>C conversions, not the potential num-

ber of labeling sites. Such a procedure requires the sequencing data to be corrected

from SNPs, RNA editing sites, and potentially other unknown sources of biases. GRAND-

SLAM performs some data cleansing steps, but the pre-selection could still be prone to

enrichment with T>C conversions originating from such error sources that escaped the

pre-processing steps. Although the same sources of error could be present in the data

used in this work, the here presented EM does not enrich for them, as it merely selects

reads based on the potential number of T>C conversions and not the observed ones. Our

modeling framework performs an even more conservative correction for SNPs and editing

sites than GRAND-SLAM. In particular, our framework masks every position with a corre-

sponding rate higher than 5%, whereas GRAND-SLAM applies a milder threshold of 50%.

Consequently, the here presented read pre-selection should have an even smaller chance

of enriching for T>C conversions, which were not induced by 4sU-labeling.

Although the presented EM algorithm outperforms GRAND-SLAM’s EM algorithm in

estimating the 4sU incorporation rate, it also has its limitations. As pointed out by the
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simulation, computing an accurate estimator becomes increasingly difficult if the labeling

efficiency equals or falls below 1%. In such a scenario, the labeling efficiency is slightly

higher than the sequencing error rates, approaching theoretical limits for the EM algo-

rithm to differentiate 4sU labeling-induced T>C conversions from sequencing errors. This

problem can be partially circumvented by increasing the depth of the sequencing libraries.

Additionally, it is advisable to choose a read length that is at least 150 nucleotides since

more than 30 potential labeling sites can be expected on average in the reads (assuming

that each nucleotide occurs with the same frequency). Longer read lengths would even

increase the number of potential labeling sites per read on average, so the threshold of

at least 30 sites per read can be further elevated to gain additional confidence in the la-

beling efficiency estimator. However, efforts should be made to achieve a higher 4sU

incorporation rate by, for instance, optimizing the amount and concentration of 4sU for

the cell line of choice.

Like in our previous work [80], the analyses revealed that nuclear RNA export is slow,

while cytosolic RNA degradation is comparatively fast. Consequently, an average mRNA

spends most of its life in the nucleus, not the cytosol. A possible explanation for such

high nuclear dwell times is that a cell could regulate protein expression by keeping the

number of transcripts low in the cytosol but high in the nucleus. When more elevated

amounts of a particular protein are required, the RNA can be rapidly exported from the

nucleus to promote translation. Analogously, the cell can rapidly degrade a small number

of cytosolic transcripts when fewer amounts of protein are required.

The mere translocation of transcripts through the NPC has been found to happen on

the order of milliseconds [136], which seems to contradict the slow nuclear RNA export

rates determined in this work. However, these export rates were derived from SLAM-

seq data that captures poly-adenylated transcripts. Consequently, the presented nuclear

RNA export rates reflect all processes that take place after polyadenylation and not solely

the passage through the NPC. The long half-lives of nuclear RNA indicate that the matura-

tion and quality control steps, such as alternative splicing and 5’-end capping, are overall

long-lasting processes. The duration of these processes might be a reason why stress-

induced transcripts can bypass such quality mechanisms [137].
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The comparison of cell cycle-specific RNA half-lives with estimates from bulk mea-

surements indicates that although some variability has been observed in the data, RNA

metabolism is consistent along the cell cycle. Notably, this observation was made for both

G1 and Mitosis. In the latter, some deviations of the RNA metabolism can be expected as

the nuclear envelope breaks down in this phase. As a result, the nuclear and cytosolic

RNA fraction could mix up. The fact that high deviations in nuclear export and cytosolic

degradation were not observed in this work could imply that NEBD during mitosis does

not affect the overall RNA metabolism to a great extent. One possible reason is the short

duration of the breakdown, which was observed in live-cell imaging experiments to last

roughly 35 minutes [118]. In comparison, the whole cell cycle of in HeLa-S3 cells was re-

ported to be in the range of approximately 22 hours (10 h G1, 8 h S, 3 h G2, 1 h Mitosis)

[138]. Since this period is only a fraction of the SLAM-seq time series, its effects may re-

main undetected. Moreover, possibly not all cells were perfectly synchronized, so NEBD

starts with a slight offset in different cells. Therefore, the subcellular fractionation pro-

tocol might still capture a fraction of cells with intact nuclei, retaining the long half-lives

of nuclear RNA.

Also, how ”freely” RNAs can move through the cells remains debatable. A cell is

fully packed with proteins, organelles, chromatin, and other structures, which are po-

tential physical obstacles, especially for larger RNAs. It has been shown that mRNPs

of different sizes have different diffusion parameters [139]. Depending on the used

technique, diffusion parameters of different magnitudes were measured, ranging from

0.005 µm2

s to > 1 µm2

s [140]. Consider a diameter of a HeLa-S3 cell of 17.1µm [141], which

equals a radius of 8.55µm. Then, we can calculate the travel time of the RNA from the

center of the cell to the inner membrane in three-dimensional space with the formula

T = (d2)/(6 ·D), where d is the distance and D the diffusion coefficient. Plugging in the

values for d = 8.55µm and D = 0.005 − 1 µm2

s results in diffusion times ranging from

0.2 − 41min. These naive estimators indicate that certain transcripts could theoretically

diffuse through the entire cell during NEBD. However, mRNAs were shown to move not

only by diffusion but also by active transport via the cytoskeleton [142]–[144]. These find-

ings lead to the question of whether RNA in the nucleus is actively transported through

the cell as soon as the nuclear envelope breaks down. As there is evidence that certain
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RNAs are distributed asymmetrically between mother and daughter cell [145] and some

RNAs were found to be associated with chromatin during mitosis [146], it could be pos-

sible that nuclear and cytosolic RNAs do not necessarily have to mix up during Mitosis.

Therefore, it will be interesting to study the fate of nuclear RNA during NEBD in live cell

imaging experiments in the future. However, the presented results suggest that Mitosis

does not affect bulk mRNA metabolism to a noticeable extent.

The analyses of the eCLIP experiments revealed that the putative binding of PUM2

promotes cytosolic degradation. This finding is supported by previous evidence that

PUM2 regulates the degradation of transcripts by recruiting a deadenylase [125], [126].

Further, 2 proteins were identified that possibly modulate nuclear RNA export, namely

RBM15 and KHSRP. Notably, RBM15 was also found in the corresponding analysis of our

previous study, but KHSRP emerged as a new candidate. RBM15 has been associated

with NXF1-dependent RNA export and regulation of mRNA stability [73], [121], [147], but

its exact function remains unclear. KHSRP has been related to the regulation of AU-rich

element transcripts stability [123]. Such ARE transcripts are less stable than non-ARE

transcripts, which was also confirmed by their comparatively shorter nuclear and cytoso-

lic RNA half-lives. However, these analyses are only correlative and not causal. For in-

stance, the eCLIP data were acquired from WCE of K562 cells and not HeLa-S3 cells. The

metabolism of certain transcripts could vary not only between these cell lines, but also

the RBP function. Previously, cell line-specific differences in RBP function have been

identified in the regulation of RNA decay between K562 and HepG2 cells [148]. Such ef-

fects could lead to the detection of false-positive RBPs in this eCLIP data analysis, for

which further validation experiments are needed to pinpoint the roles of RBPs in RNA

metabolism. Nonetheless, these findings show that the RNA half-lives computed by the

two-compartment model could reflect the influence of certain sequence elements and

regulatory proteins.

Collectively, the modeling framework captures critical aspects of eukaryotic mRNA

metabolism with high precision. The underlying EM algorithm accounts for various se-

quencing errors to provide a global parameter of the 4sU incorporation rate. This labeling

efficiency estimate is robust against variability from spurious, non-constant gene expres-

sion, which might bias the estimator’s accuracy. I could show that this EM algorithm out-
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performs the corresponding methodology of the currently widely applied tool GRAND-

SLAM. As a result, the here presented framework delivers precise New
Total RNA ratios for

every measured transcript from which RNA half-lives can be derived for nuclear and cy-

tosolic cell compartments.
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5 Outlook

The two-compartment model is a robust framework that quantifies RNA metabolism on a

genome-wide scale. In the future, this framework could be expanded to gain even higher

accuracy. For instance, the 4sU incorporation into newly synthesized transcripts is mod-

eled by a binomial distribution with a fixed labeling efficiency. It can be assumed that this

rate is not necessarily constant, be it for spatial accessibility of RNA Pol II to 4sU, differ-

ences in RNA Pol II elongation speed [149], or transcriptional errors. A possible way to

account for such effects is to model T>C conversions by a beta-binomial model. In this

model, the labeling efficiency is not a constant probability but is sampled from a beta

distribution. This way, the beta-binomial distribution captures some overdispersion in

binomial-type distributed data. As SLAM-seq data is noisy, an EM algorithm based on a

beta-binomial distribution is a promising model to make the 4sU incorporation rate esti-

mation more robust and, therefore, increase its accuracy.

Furthermore, the two-compartment model could be used to study the effects of cer-

tain RBPs on RNA metabolism. For instance, an RBP involved in nuclear RNA export or

degradation pathways could be knocked out. Then, the impact of the loss of this protein

on RNA metabolism could be assessed. One attractive candidate for such an experiment

is RBM15. As reported previously, this protein was associated with RNA export and regu-

lation of transcript stability [73], [121], [147], but its exact role remains unclear. The two-

compartment model could be fitted to two individual SLAM-seq time series obtained from

control and RBM15 knock-out cell lines. Subsequently, the RBM15-associated transcripts

could be tested for significant differences in nuclear export rates to elucidate whether

RBM15 mainly acts as an export factor.

Since the two-compartment model captures RNA metabolism in steady state, this con-

dition must also be fulfilled in a knock-out cell line of interest. This condition can be

achieved when knocking out a non-essential gene and letting the cell line grow under

optimal conditions, but not if the gene of interest is essential for cell viability. The two-

compartment model needs to be extended to non-stationary conditions to study immedi-

ate cellular responses upon rapid depletion of a particular protein. To that end, the two-
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compartment model could be expanded by time-dependent RNA metabolic rates. Pre-

viously, such expansions have been developed to model time-dependent RNA synthesis

and degradation [53], [69]. Using the temporal and spatial information provided by sub-

cellular fractionation combined with SLAM-seq, RNA export could also be modeled time-

dependent. Such an expansion might capture the influence of biological processes, such

as the bypass of RNA quality export followed by rapid export [137]. Further, it can also

be used to study nuclear degradation. We assessed nuclear degradation’s contribution to

mRNA metabolism and found its influence to be minor [80], whereas Smalec et al. (2022)

[76] report that a substantial amount of transcripts undergoes nuclear degradation. Since

two putative regulators of RNA stability emerged in the presented work, namely RBM15

and KHSRP, performing a refined analysis of nuclear degradation will be interesting. To

that end, a protein of the nuclear RNA degradation machinery such as hDIS3 [150] could

be rapidly depleted using, for instance, an auxin-inducible degron fused to the respec-

tive protein. This depletion would lead to immediate changes in nuclear RNA half-life if

nuclear decay plays a major role in RNA metabolism.

With technical advances in quantifying RNA metabolism, we have refined our under-

standing of how RNA flows through a cell. Since early quantification attempts, a simple

exponential decay is used as a model to quantify RNA turnover rates. In general, expo-

nential models assume constant degradation (or growth) rates over time and unlimited

resources. When thinking of a single cell, these assumptions do not necessarily apply. For

instance, the availability of specific protein subunits of the exosome could limit the capac-

ity of RNA degradation. The same principle applies to nuclear RNA export. If a certain RBP

is not available to ensure the correct protein composition of a particular RNA, it might not

be exported. In general, the regulatory processes of distinct transcript subtypes could

lead to notable differences in their metabolism. These examples emphasize that more

flexible, alternative models for RNA turnover might be worth investigating in the future.

For instance, logistic decay models, which involve a logistic function that accounts for the

carrying capacity of the system in question, give an alternative to exponential decay. One

could think of such a carrying capacity as the maximum transcript abundance determined

by the cellular resources. A generalized version of the logistic model is the hyperbolastic

model, which is an appropriate model for stem cell growth [151]. Importantly, this model
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can also describe decay [152]. Unlike classic logistic models, it can not only fit sigmoidal

curves but also biphasic behavior. In the case of cytosolic degradation, such behavior

could reflect bursty RNA release from the nucleus, which changes the carrying capacity

of cytosolic RNA. Therefore, these models represent promising alternatives that could

overcome the limitations of the classic exponential decay models due to their higher flex-

ibility.

So far, RNA metabolism has been quantified at the gene level rather than specifically

for the corresponding RNA isoforms. Such transcript variants can lead to the produc-

tion of protein variants with different functions. A cell can generate a diverse pool of

such isoforms, for instance, by alternative splicing and the use of alternative transcrip-

tion start or stop sites [153], [154]. Due to the amount of different processing steps and

regulatory roles, it can also be expected that the metabolism of these transcripts differs

between variants. Their quantification is challenging because of the high sequence sim-

ilarity between variants and low abundance levels of specific isoforms [155], [156]. Fur-

ther, short-read RNA-seq protocols (as used in SLAM-seq) are of limited use for isoform

quantification due to short read lengths that cannot recover full-length transcripts. In

contrast, long-read sequencing methods can recover full-length transcripts but currently

suffer from high sequencing errors and do not provide as high sequencing depth as short-

read sequencing methods [157]. However, this precision and depth are required to infer

RNA dynamics. With advancements in long-read sequencing, combining these methods

with the SLAM-seq protocol will be interesting to detect and quantify RNA isoforms and

their underlying dynamics.

In conclusion, the multitude of suggestions mentioned above for improving the two-

compartment model and for future studies on RNA metabolism in general shows how

challenging this field of research is. I am convinced that the model presented here offers

new opportunities to unravel the dynamics of the complex life cycle of eukaryotic mRNA

and, therefore, will help understand how a eukaryotic cell regulates gene expression.
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Supplemental Figure S1: Labeling Efficiency Estimates of Cell Cycle Data obtained by the first
Implementation of ourModeling Framework [80]. The density plots show the distributions of the
labeling efficiency estimates computed for each time point (see color) of the nuclear and cytosolic
compartments from the G1 and Mitosis cell cycle phases.
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Supplemental Figure S2: Density Plots for distinct RBPs with significant Effects on nuclear
RNAHalf-life in Mitosis. The density plots depict the distributions of the mitotic nuclear half-lives
from RNAs putatively bound to a specific RBP. Log10 fold-changes were calculated by taking the
log10 of the nuclear RNA half-lives and subtracting the log10 of the global median (the median of
all bound and unbound RNA half-lives) from these values. Blue density plots indicate distributions
with a higher median RNA half-life of the bound transcripts as the global median. Red densities
indicate a shorter median RNA half-life of the bound transcripts compared to the global median.
The black bars indicate the median values of the respective distributions.
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Supplemental Figure S3: Density Plots for distinct RBPs with significant Effects on cytosolic
RNAHalf-life inMitosis. The density plots depict the distributions of the mitotic cytosolic half-lives
from RNAs putatively bound to a specific RBP. Log10 fold-changes were calculated by taking the
log10 of the cytosolic RNA half-lives and subtracting the log10 of the global median (the median of
all bound and unbound RNA half-lives) from these values. Blue density plots indicate distributions
with a higher median RNA half-life of the bound transcripts as the global median. Red densities
indicate a shorter median RNA half-life of the bound transcripts compared to the global median.
The black bars indicate the median values of the respective distributions.
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Supplemental Figure S4: Density Plots for distinct RBPs with significant Effects on nuclear
RNA Half-life in G1. The density plots depict the distributions of the G1 nuclear half-lives from
RNAs putatively bound to a specific RBP. Log10 fold-changes were calculated by taking the log10
of the nuclear RNA half-lives and subtracting the log10 of the global median (the median of all
bound and unbound RNA half-lives) from these values. Blue density plots indicate distributions
with a higher median RNA half-life of the bound transcripts as the global median. Red densities
indicate a shorter median RNA half-life of the bound transcripts compared to the global median.
The black bars indicate the median values of the respective distributions.
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Supplemental Figure S5: Differences in G1 cytosolic RNA Half-life upon binding by PUM2. The
Violin plot shows the distributions of the cytosolic RNA half-life of transcripts that are bound (red)
or unbound (gray) by PUM2. A Wilcoxon rank-sum test was applied to test for significant differences
in cytosolic RNA half-life between the bound and unbound transcripts. For this analysis, only those
transcripts whose half-lives met the reliability criteria described in Methods 2.2.12 were considered.
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Supplemental Figure S6: Density Plots for distinct RBPs with significant Effects on cytosolic
RNA Half-life in G1. The density plots depict the distributions of the G1 cytosolic half-lives from
RNAs putatively bound to a specific RBP. Log10 fold-changes were calculated by taking the log10
of the cytosolic RNA half-lives and subtracting the log10 of the global median (the median of all
bound and unbound RNA half-lives) from these values. Blue density plots indicate distributions
with a higher median RNA half-life of the bound transcripts as the global median. Red densities
indicate a shorter median RNA half-life of the bound transcripts compared to the global median.
The black bars indicate the median values of the respective distributions.
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Supplemental Figure S7: G1 nuclear RNA Half-life Distribution of AU-rich Element Transcripts.
Genes with AU-rich element (ARE) RNAs were downloaded from the ARED-plus database [88]. The
half-lives of G1 nuclear ARE transcripts are indicated in dark red (n = 220), whereas all non-ARE
RNAs are colored in gray (n = 736). A Wilcoxon rank-sum test was applied to test for significant dif-
ferences in nuclear RNA half-life between the ARE and non-ARE transcripts. Only those transcripts
whose nuclear RNA half-lives passed stringent reliability criteria were considered (Data and Meth-
ods 2.2.12).
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Supplemental Figure S8: Mitotic cytosolic RNA Half-life Distribution of AU-rich Element Tran-
scripts. Genes with AU-rich element (ARE) RNAs were downloaded from the ARED-plus database
[88]. The half-lives of mitotic cytosolic ARE transcripts are indicated in dark red (n = 187), whereas
all non-ARE RNAs are depicted gray (n = 720). A Wilcoxon rank-sum test was applied to test for
significant differences in cytosolic RNA half-life between the ARE and non-ARE transcripts. For this
analysis, only those transcripts whose cytosolic RNA half-lives passed stringent reliability criteria
were considered (Data and Methods 2.2.12).
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Supplemental Figure S9: G1 cytosolic RNA Half-life Distribution of AU-rich Element Tran-
scripts. Genes with AU-rich element (ARE) RNAs were downloaded from the ARED-plus database
[88]. The half-lives of G1 cytosolic ARE transcripts are depicted in dark red (n = 220), whereas all
non-ARE RNAs are shown in gray (n = 736). A Wilcoxon rank-sum test was applied to test for signif-
icant differences in cytosolic RNA half-life between the ARE and non-ARE transcripts. Only those
transcripts whose cytosolic RNA half-lives passed stringent reliability criteria were considered (Data
and Methods 2.2.12).
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