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Abstract

One of the major interests in population genetics is to analyze the evolutionary forces, such as
genetic drift, natural selection and recombination, that shape genetic variation between and
within populations. Genetic variability ranges from single nucleotide mutations to structural
variants such as gene duplications. In some gene families, as for instance immune or receptor
genes, the variation of gene copy number is considered to play a crucial role in adapting to
changing environmental conditions.

In this work, we developed a model that explores the interplay of unequal recombination and
selection in the evolution of gene families. By analyzing data from the 1,000 Genomes Project,
we were able to estimate selection and recombination parameters for selected candidate genes
in different populations. Using analytical calculations and computer simulations, we tested
whether changes in gene copy number distribution in different populations are effects of
demography or a signal of adaptation. Furthermore, we introduced a new interpretation of
the structured coalescent to examine genetic variation in gene families. This concept assumes
gene copies to change their position within a gene array due to unequal recombination.

Zusammenfassung

Eine der Hauptaufgaben in der Populationsgenetik besteht darin, evolutionäre Kräfte wie na-
türliche Selektion, genetische Drift und Rekombination zu analysieren, welche die genetische
Variabilität zwischen und innerhalb von Populationen gestalten. Diese genetische Vielfalt
reicht von Einzelnukleotidmutationen bis hin zu strukturellen Varianten wie Genduplikatio-
nen. In einigen Genfamilien, wie beispielsweise bei Immun- oder Rezeptorgenen, spielt die
Variabilität der Genkopienzahl eine entscheidende Rolle in der Anpassung an sich verändern-
de Umweltbedingungen.

In dieser Arbeit wurde ein Modell entwickelt, welches die Wechselwirkung von ungleicher
Rekombination und Selektion in der Evolution von Genfamilien untersucht. Durch die Analyse
von Daten aus dem 1.000 Genomprojekt konnten Selektions- und Rekombinationsparameter
für ausgewählte Gene in verschiedenen Populationen geschätzt werden. Mit analytischen Be-
rechnungen und Computersimulationen wurde getestet, ob Unterschiede in der Verteilung
der Genkopienzahl in verschiedenen Populationen auf demografische Effekte zurückzuführen
sind oder ein Signal der Anpassung darstellen. Darüber hinaus stellt diese Arbeit eine neue
Interpretation der strukturierten Koaleszenztheorie vor, mit welcher die genetische Variation
in Genfamilien untersucht wird. Dieses Konzept beschreibt die Positionsveränderungen von
Genkopien innerhalb eines Genarrays aufgrund ungleicher Rekombination.
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1 Introduction

1.1 Population genetic analysis

In Biology, the term evolution refers to the process of gradual and continuous change in
living organisms over time. Some of these evolutionary changes happen rapidly within a few
generations, such as the development of insecticide resistance (Raymond et al., 2001), others
are extremely slow and occur on a timescale of hundreds of millions to billions of years, like
the emergence of multicellular organisms from single-celled ones (Ridley, 2013). The field of
population genetics deals with genetic variations that occur on a relatively short timescale,
typically within the lifespan of populations or among closely related species. Its aim is to
explain these changes based on genetics with a particular focus on the genetic information
contained in DNA. Using mathematical models, population geneticists study how genetic
variations are distributed and evolve within populations. Although those models rely on
simplified representations of the real-world situation to be mathematically tractable, they
support the understanding of inheritance and of the way genetic diversity of a population
evolves through mechanisms such as genetic mutations, gene flow, recombination, natural
selection and genetic drift.

The groundwork of mathematical population genetics was laid by the pioneering work
of John Burdon Sanderson Haldane, Ronald Aylmer Fisher and Sewall Wright in the late
1920s (Haldane, 1927; Fisher, 1930; Wright, 1931). Wright developed the concept of genetic
drift, emphasizing the role of random changes of gene frequencies within small populations.
Fisher provided crucial insights into the role of natural selection in shaping populations
and developed the mathematical framework to model the evolution of alleles that confer a
fitness advantage and how they increase in frequency over time. Haldane made significant
contributions to understanding the genetic basis of adaptation, described genetic linkage in
mammals and analyzed the role of recombination in generating genetic diversity.

Back then, population genetics analyzed and quantified differences in phenotypes, i.e. the
observable characteristics of an organism. With the development of molecular tools in the
1960s it was possible to analyze the genotype of individuals. One of those methods is the
laboratory technique of electrophoresis, which can separate molecules such as DNA, RNA
or proteins. This method relies on the principle that charged particles will move through a
medium, usually a gel or a solution, when an electric current is applied. Based on their size,
charge, and mobility the molecules move at different rates, such that larger DNA fragments
travel slower (S-type) through the gel than fast, short ones (F -type).
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1.1. POPULATION GENETIC ANALYSIS

Figure 1.1: Kreitman’s sequencing study on eleven sequences of the alcohol dehydrogenase
gene (Adh) of Drosophila melanogaster. Figure shows the 43 polymorphic nu-
cleotide positions. Dots indicate no deviation from the consensus sequence. The
asterisk in exon 4 indicates the site where the lysine (encoded by AAG) of the
S-allele is replaced by threonine (ACG) of the F-allele, causing the electrophoretic
difference between the F and S alleles. Figure taken from Stephan and Hörger
(2019), Figure 1.1.

The molecular techniques were improved further and with principles such as Sanger se-
quencing or the Maxam-Gilbert method it became possible to directly examine genetic vari-
ability at the DNA level (Sanger et al., 1977; Maxam and Gilbert, 1977). The first systematic
sequencing study of multiple alleles at a locus was conducted by Kreitman (1983), even be-
fore the invention of polymerase chain reaction (PCR), which most of the modern sequencing
techniques are based on. He isolated eleven different clones of the alcohol dehydrogenase gene
(Adh) from a worldwide collection of the fruit fly Drosophila melanogaster and sequenced them
(Figure 1.1). The nucleotide variability was surprisingly high, 43 out of the 2379 aligned loci
were variable. Furthermore, 42 of the single nucleotide polymorphisms (SNPs) were silent
or synonymous, i.e. they did not change the resulting amino acid. Only one SNP in exon 4,
i.e. protein coding area of the gene, was non-synonymous and indeed, this nucleotide was
responsible for the observed differences between the electrophoretic F and S variants.

In 1990 the Human Genome Project (HGP) was initiated, which aimed to map and sequence
all genes in the human genome. It was a worldwide collaboration involving research groups
across the United States, United Kingdom, France, Germany, Japan and China and it took
approximately 13 years and $ 2.7 billion to complete the project1. Since then, new sequencing
techniques have been developed which are more efficient and more affordable. In comparison,
in March 2021 Euan Ashley and his Ultra-Rapid Genome Team from Stanford University
were awarded with the GUINNESS WORLD RECORDT M for sequencing a whole human
genome within 5 hours and 2 minutes2.

1https://www.genome.gov/human-genome-project
2https://www.guinnessworldrecords.com/world-records/675050-fastest%C2%A0dna-sequencing%C2%A

0technique
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1.1. POPULATION GENETIC ANALYSIS

To generate a detailed catalogue of human genetic variation from populations all around the
world, the 1,000 Genomes Project was launched in 2008. With advanced sequencing methods
it took only 4 years in phase 1 to collect and sequence genomes from 1,092 individuals
belonging to 14 populations (1000 Genomes Project Consortium et al., 2012). After the final
phase of the project (phase 3) they sequenced 2,504 human genomes from 26 populations
across 5 continents, see Figure 1.2 (Sudmant et al., 2015b). Recently, the human pangenome
was published, which is a reference genome containing 47 phased, diploid assemblies of the
1,000 Genomes Project and includes nucleotide variants, insertions / deletions and structural
variants (Liao et al., 2023).

The amount of genetic data is continuously increasing and new models and theories are
developed to explain the patterns found within. One objective is to identify genes which are
involved in adaptation processes and have evolved under selective pressure. It is assumed
that fast and extensive morphological and functional differentiation might have relied on
gene duplication events with subsequent neofunctionalization (Magadum et al., 2013; Ohno,
1970). Indeed, a large portion of eukaryotic genomes is considered to be duplicated1 and
several studies indicate that multi-copy gene families are involved in adaptive processes and
in maintaining genetic diversity (Perry et al., 2007; Brahmachary et al., 2014; Pajic et al.,
2019; Manczinger et al., 2019).

Figure 1.2: Genetic variation within the sampled populations of the 1,000 Genomes Project.
The area of each pie chart is proportional to the number of polymorphisms within
a population. Pies are divided into four slices, representing variants private to
a population (darker colour unique to population), private to a continental area
(lighter colour shared across continental group), shared across continental areas
(light grey), and shared across all continents (dark grey). Dashed lines indicate
populations sampled outside of their ancestral continental region. Figure taken
from 1000 Genomes Project Consortium et al. (2015), Figure 1a.

1Around 40% in human (Zhang, 2003) and on average 65% in plants (Panchy et al., 2016).
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1.2. STRUCTURE OF THE THESIS

1.2 Structure of the thesis

The aim of this thesis is to introduce a population genetic model that describes the evolution
of multi-copy gene families. In the theoretical model we analyze the effects of selection
strength, recombination rate and demographic patterns on the copy number and nucleotide
diversity within gene families. Applied to empirical data from the 1,000 Genomes Project,
we can detect gene families with copy number distributions that are likely to be involved in
adaptation processes. This thesis includes three manuscripts and is organised as follows:

Chapter 2 gives a short introduction into population genetics. There are several books
and review articles that provide a good overview on these topics, all with a slightly different
focus – see for instance Okazaki et al. (2020); Stephan and Hörger (2019); Charlesworth and
Charlesworth (2016); Wakeley (2016); Durrett (2008); Hartl and Clark (2007). However, to
make this thesis self consistent, we are going to highlight and explain the basic concepts in
our words.

Chapter 3 introduces the recombination model of copy number changes. The interplay of
unequal recombination and selective pressure that favours genetic diversity is analyzed to
understand its effect on gene copy number distribution within a population. Using empirical
data from the 1,000 Genomes Project, we estimate recombination and selection parameters
for three human genes. This work was published in the journal Genetics (Otto et al., 2022).

Chapter 4 relies on the same model extended with the demographic history of the human
population to detect whether differences in African, European and Asian populations can be
explained purely by demography and the out of Africa expansion, or whether shifts in the
distribution are signatures of adaptation. At the time of submission, this work is available on
bioRxiv and under review in the journal G3: Genes|Genomes|Genetics (Otto et al., 2023).

Chapter 5 gives a new interpretation of the structured coalescent, which is a population
genetic model that includes migration. Intuitively, organisms become genetically more diver-
gent, when they are geographically seperated. Instead of individuals travelling around, we
consider gene copies to change their position along the genome according to unequal recom-
bination and expect a present day sample of gene copies located at different positions to have
a greater genetic variation than those at the same genetic position. This work was published
in the journal Theoretical Population Biology (Otto and Wiehe, 2023).

Chapter 6 closes with a summary of the results and suggestions of possible future research
questions.
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2 Modelling evolution

"All models are wrong, but some are useful." George Box.

2.1 The first evolutionists

The foundations of evolutionary theory date back to Charles Darwin’s famous work "On the
origin of species" (Darwin, 1859). During his travels in the 1830s he observed several finch
species on the Galapagos islands, which exhibited variations in their beak shapes, body sizes,
and feeding behaviors (see Figure 2.1). Most importantly, he observed that the characteristics
of finches on different islands were closely related to their specific ecological niches and dietary
preferences. Darwin proposed the theory of natural selection, stating that beneficial traits
which improve an individual’s ability to survive and reproduce will become frequent in a
population with time.

One of the first statistically evaluated evolutionary studies was conducted by Gregor Mendel
between 1856 and 1863 (Mendel, 1865). He performed hybridization experiments on selected
pea plants with distinct and easily recognizable traits, such as flower colour, seed colour, and
seed texture. In his experiments he described the actions of invisible "factors", today known
as "genes", and formulated the famous laws of Mendelian inheritance. The significance of
his work was not recognized until 1900, when three scientists independently rediscovered and
verified the Mendelian laws, which provided the genetic basis for understanding how traits
are passed from one generation to the next.

Figure 2.1: Darwin’s finches or Galapagos finches. Figure taken from Darwin (1845) and also
available at public domain: https://commons.wikimedia.org/wiki/File:
Darwin%27s_finches_by_Gould.jpg?uselang=en#Licensing.
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2.1. THE FIRST EVOLUTIONISTS

In 1908, Godfrey Harold Hardy and Wilhelm Weinberg independently derived one of the
first mathematical descriptions of evolution, the Hardy-Weinberg equilibrium, which describes
how allele frequencies remain constant in a sexually reproducing population (Hardy, 1908;
Weinberg, 1908). It is a theoretical concept that relies on a hypothetical and idealised pop-
ulation satisfying the following assumptions:

• infinitely large, diploid population

• sexual reproduction

• random mating

• equal sex ratio

• non-overlapping generations

• no mutation, migration, recombination or selection

If these assumptions are fulfilled, the equilibrium describes the evolution of a single locus with
two alleles (e.g., A and a). All diploid individuals carry two copies of this locus, one inherited
from each parent. Denote the total frequency of A by p and respectively the frequency of a

by q, such that 1 = p + q. Then, the alleles will be distributed in the next generation as

Females
A (p) a (q)

Males
A (p) AA (p2) Aa (pq)
a (q) Aa (pq) aa (q2)

(2.1)

Therefore, the total allele frequencies in the next generation are given by

p′ = p2 + pq = p(p + q) = p (2.2)

q′ = q2 + pq = q(p + q) = q

i.e. they remain constant and hence, genetic diversity is maintained.
Deviations from this equilibrium can therefore be interpreted as violations of the assump-

tions. For instance, subpopulation structure decreases the heterozygosity in a population.
This is also known as the Wahlund effect (Wahlund, 1928). Consider a population with allele
frequencies p and q, such that the expected heterozygosity is 2pq. If the population is divided
into two subpopulations with allele frequencies p1, q1 and p2, q2, it holds that

1
2(2p1q1 + 2p2q2) < 2pq, if p1 ̸= p2. (2.3)

6



2.1. THE FIRST EVOLUTIONISTS

Figure 2.2: Blood smear of a patient with sickle-cell disease. Picture available at https:
//www.amboss.com/de/wissen/Sichelzellkrankheit.

Whereas the Wahlund-effect decreases heterozygosity, there are also cases of a selective
pressure in which heterozygosity is beneficial and hence might be increased. A well-studied
case of heterozygote excess is that of sickle cell anemia in humans. It is a hereditary dis-
ease that leads to the production of misshapen red blood cells, which take on a crescent or
"sickle" shape instead of the normal round shape (see Figure 2.2). This disease is caused by
a genetic mutation in the hemoglobin gene – more precisely, the inheritance of two copies of
the HgbS allele, one from each parent (Allison, 1956). Individuals with this genotype experi-
ence significant sensitivity of their red blood cell hemoglobin to oxygen deprivation, leading
to a reduced life expectancy. Heterozygous individuals inheriting one HgbS allele and one
normal hemoglobin allele (HgbA) from their parents may encounter occasional health issues
but typically enjoy a normal life expectancy. However, an intriguing aspect of heterozygous
individuals is their resistance to malaria. This illustrates a phenomenon known as balancing
selection, where two opposing selective forces operate. On the one hand, there is strong se-
lection against homozygous individuals with sickle cell anemia due to their health challenges.
On the other hand, malaria exerts selective pressure on individuals with standard HgbA alle-
les. As a result, heterozygous individuals exhibit a permanent advantage, or higher fitness,
in regions where malaria is prevalent.

7
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2.2. GENETIC DRIFT

2.2 Genetic drift
The assumptions of the Hardy-Weinberg equilibrium enable derivations of mathematical re-
sults, yet they are oversimplified or even unrealistic, as for instance an infinitely large pop-
ulation size. The role of random fluctuations in allele frequencies due to finite population
sizes, which is called genetic drift, was extensively studied by Wright (1931). To analyze this
effect and to get a first feeling of the mathematical models in population genetics, consider a
short example of a simple Wright-Fisher model on a finite and haploid population of constant
size N (Wright, 1931; Fisher, 1930). The model progresses in discrete, non-overlapping gen-
erations, such that at each time step the entire population is replaced by N new individuals.
We assume a bi-allelic single locus model and denote the two alleles as A and a and the allele
frequencies as p and q, such that 1 = p + q. Let Xt be the frequency of individuals of type
A at generation t. Then, the next generation is generated according to a binomial sampling,
that is

Prob
[
Xt+1 = k

N

∣∣∣ Xt = p

]
=
(

N

k

)
pk qN−k. (2.4)

Conceptually, (Xt)t is a Markov process on the state space

S =
{

0,
1
N

,
2
N

, ...,
N − 1

N
, 1
}

.

The Markov property indicates that the allele frequency in the next generation Xt+1 only
depends on the present frequency Xt and is independent of the history X0, ..., Xt−1. In a
diploid population, the population size is replaced by 2N .

Let us have a short excursion into stochastic processes. We try to give an intuitive approach
here and refer to the books of Webel and Wied (2016) and Durrett (2008) for a more detailed
and precise introduction. A stochastic process is a sequence of random variables, where
the index of the sequence is usually interpreted as time. The most well known example is
the discrete simple random walk. Consider independent and identically distributed random
variables (Yi)i∈N such that

Prob[Yi = +1] = Prob[Yi = −1] = 1
2 ,

and let

Xn =
n∑

i=1
Yi = Xn−1 + Yn

be the sum of steps Yi and let X0 = 0 be the initial starting point. Then, Xn takes values in
Z and in each time step, one flips a fair coin to go either one step to the left or one step to the
right. The position at step n + 1 only depends on the position at step n and is independent
of the past trajectory.

8



2.2. GENETIC DRIFT

The continuous version of the simple random walk is a Brownian motion (Bt)t≥0. Time is
measured in R+, it starts at B0 = 0 and takes values in R. The increments are independent
and Gaussian distributed, such that for any 0 ≤ s < t

Bt − Bs ∼ N (0, t − s). (2.5)

An intuitive approach to Brownian motions is Donsker’s invariance principle (Donsker, 1951),
which states that, properly rescaled in time and space, the simple random walk converges to
a Brownian motion, see Figure 2.3. It can be interpreted as "random noise" around 0.

The more general class is that of diffusion processes, which are defined by stochastic dif-
ferential equations. More precisely, given a standard Brownian motion (Bs)s≥0, we call the
R-valued stochastic process (Xt)t≥0 a diffusion process, if it satisfies for given Lipschitz-
continuous functions b(x) and σ(x)

Xt − X0 =
t∫

0

b(Xs) ds +
t∫

0

σ(Xs) dBs. (2.6)

The functions b(x), σ2(x) are the infinitesimal mean and infinitesimal variance of the process.
As an example, let σ(x) = 0 and b(x) = b constant. Then

Xt − X0 =
t∫

0

b(Xs) ds = b · t,

so Xt is just a linear function with slope b. Vice versa, let b(t) = 0 and σ(t) = σ constant.
Then

Xt − X0 =
t∫

0

σ(Xs) dBs = σ · (Bt − Bs),

i.e. Xt is a Brownian motion with variance σ2. Combined, a diffusion process is a stochastic
process with deterministic mean function b(x) and random fluctuations according to σ(x).

Getting back to the Wright-Fisher process, Kimura (1964) derived the diffusion limit of
the allele frequency changes in a neutral population. According to the binomial transition
probabilities (2.4) the allele frequency is expected to remain constant but changes randomly
due to drift. This can be approximated by a diffusion process with infinitesimal mean 0 and
variance

σ2(x) = 1
N

· x(1 − x). (2.7)

In a diploid population, N is replaced by 2N . If N → ∞, the effect of random fluctuations
become smaller and the allele frequencies remain constant as in the Hardy-Weinberg equi-
librium. In finite populations, alleles may get fixed or lost due to drift and hence genetic

9
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Figure 2.3: Donsker’s Theorem. Let Yn(t) = 1√
n

∑⌊tn⌋
i=0 Xi and n → ∞, then the process

converges to a Brownian motion. Figure shows a simple random walk with scaling
n = 1, 5, 50 (top to bottom).

variability decreases. To quantify the loss of genetic diversity, consider a diploid population
of size N . The probability that two randomly chosen genes have the same ancestor in the
previous generation and are hence "identical by descent" (IBD) is

Prob[IBD] = 1
2N

.

Denote the degree of genetic diversity in the population at time t = 0 as H0, which is the
complement of being identical by descent. Then, after one generation at time t = 1 one finds

H1 = H0

(
1 − 1

2N

)
, (2.8)

and iterating gives

Ht = H0

(
1 − 1

2N

)t

≈ H0 · e− t
2N . (2.9)

10



2.2. GENETIC DRIFT

Therefore, the genetic diversity decays exponentially with parameter 1/(2N). As a calculation
example, consider a population of size N = 10,000. Then, the initial diversity is reduced by
50% after

t = 2N · log(2) ≈ 13,863 generations.

Wright (1931) also introduced the concept of effective population size Ne, which represents
the idealized size of a population that would experience the same amount of genetic drift as
the actual population. For instance, a sudden reduction in population size increases the effect
of drift, as genetic diversity decreases faster in a smaller population. Even if the population
size is recovered shortly after, the effective population size Ne can be heavily decreased by
such a bottleneck.

For example, consider a population of size N = 10,000 over a time period of 200 generations,
that experienced a population size reduction to 100 individuals between generation 50 and
60. Without mutation, genetic diversity is expected to be reduced to

H200/H0 =
∏

i

(
1 − 1

2Ni

)
=
(

1 − 1
20,000

)190
·
(

1 − 1
200

)10
≈ 0.942

A population of constant size Ne that would experience the same genetic drift can be derived
by (

1 − 1
2Ne

)t

=
∏

i

(
1 − 1

2Ni

)
, (2.10)

which solves to

Ne ≈ t∑
i 1/Ni

≈ 1,680.

The effective population size Ne of a non-constant population can therefore be calculated
by its harmonic mean over time. Even though this bottleneck lasted for only 10 generations,
it reduced the Ne from 10,000 to 1,680. Also, non-random mating, migration or an unequal
sex ratio may affect the effective population size Ne.
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2.3. INFINITE ALLELES

2.3 Infinite alleles

While genetic drift reduces the diversity of a population, mutations introduce new alleles into
the population, thereby increasing the genetic variability. Consider mutations to occur at
rate µ, such that any mutation event generates a completely new and unique allele. We call
this concept the infinite alleles model (Kimura and Crow, 1964).

There are now two forces shaping genetic variation: mutations, which introduce new alleles
into the population and increase genetic diversity, and drift, which decreases diversity, since
some alleles get lost by chance. Using the probability to not be identical by descent Ht as
measure of diversity, we find analogue to equation (2.8)

H1 = H0

(
1 − 1

2N

)
+ (1 − H0)2µ. (2.11)

The question arises, whether there is an equilibrium of these two forces, i.e. H̄, such that

H̄ = H̄

(
1 − 1

2N

)
+ (1 − H̄)2µ, (2.12)

and indeed, solving this equation gives

H̄ = 4Nµ

4Nµ + 1 = θ

θ + 1 , (2.13)

where θ = 4Nµ is the population scaled mutation rate (θ = 2Nµ in a haploid population).
In a finite population, this is not a static but dynamic equilibrium, since allele frequencies
fluctuate. However, over a long time some alleles are lost or fixed and new alleles appear,
contributing to the long term equilibrium. As an example, consider a population of size
N = 1,000 over a time period of 2,000 generations with mutation rate µ = 0.0006. Without
mutation, one expects a loss of heterozygosity according to (2.9), whereas with mutation
we expect the population to fluctuate around the equilibrium (2.13). Figure 2.4A shows
mean heterozygosity of 50 replicates of a population evolving forward in time according to a
Wright-Fisher process. We also included a bottleneck at generation 500 to see the increased
effect of drift in a small population (see Figure 2.4B).

In the infinite alleles model, the number of new alleles is not limited. Nevertheless, at
any given time point there is only a finite, typically small, number of alleles segregating in
a population. The probability distribution of the number of distinct alleles at a particular
genetic locus in a finite population was derived by Ewens (1972). Denote by ai the number
of alleles which are represented i times in a sample of size n, so that a1 counts the number of
unique alleles, a2 those that occur twice etc. Then, with scaled mutation rate θ = 4Nµ we
find

Pθ,n(a1, ..., an) = n!
θ(θ + 1) · · · (θ + n − 1)

n∏
j=1

(θ/j)aj

aj ! . (2.14)
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Figure 2.4: A. Simulated mean heterozygosity of 50 replicates of a population over time with
mutation µ = 0.0006 and population size N(t), as shown below. Red line shows
expected exponential decay of heterozygosity without mutation (2.9) and dotted
line the mutation drift equilibrium (2.13). B. Population size N(t) over time,
with population size reduction from 1,000 to 100 during generation 500-550. Blue
line shows effectice population size Ne ≈ 816.

As an example, consider a sample of n = 20, with the following allele counts:

A B C D E
4 8 4 2 2

This gives the partition (a1, a2, ..., an) = (0, 2, 0, 2, 0, 0, 0, 1, 0, ..., 0), since the two alleles D, E

occur twice, A, C four times and B eight times. Using Ewen’s sampling formula (ESF), we
calculate for different values of θ the probability to sample such a partition, resulting in
a likelihood function of θ. A low mutation rate would result in only a few (unique) alleles,
whereas a high mutation rate would result in many unique alleles. For this particular example,
we find the most likely θ at ≈ 1.8.
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2.4. COALESCENCE THEORY

2.4 Coalescence theory

While the Wright-Fisher model describes evolution of a whole population of size N forward in
time, Kingman (1982a,b) introduced a model in which the ancestry of a present day sample
of size n ≪ N is traced backward in time. Given two haploid individuals in a population of
constant size N , they may be offspring of the same ancestor with probability 1/N . Hence,
considering a sample of n ≪ N individuals, the probability that two randomly chosen genes
are identical by descent is

(n
2
)

· 1/N . Iteratively, all lineages of the sample can be traced back
to their most recent common ancestor (MRCA), see Figure 2.5. This backward-in-time model
of merging lineages is known as the Kingman coalescent. The time – measured in generations
of units N – until a set of k lineages collapses to a set of k − 1 lineages is denoted by Tk

and Exp(
(k

2
)
)-distributed. Therefore, the expected time to the most recent common ancestor

(TMRCA) in generations is given by

E [TMRCA] =
n∑

k=2
E[Tk] =

n∑
k=2

2
k(k − 1) · N = 2N

(
1 − 1

n

)
. (2.15)

The expected total tree length, i.e. the sum of all branch lengths, is given by

E [Tree-length] =
n∑

k=2
kE[Tk] =

n∑
k=2

2
k − 1 · N = 2Nhn−1, (2.16)

where hn denotes the n-th harmonic number. In the case of diploid organisms, the probability
of coalescence is 1/2N , and hence, time is scaled with factor 2. As an example with parameters
motivated from Homo sapiens, consider a diploid population of effective size1 Ne = 10,000
with a generation time of 20 years and a sample of n = 10. The expected time to the most
recent common ancestor of these 10 individuals is therefore given by

E[TMRCA] = 4N

(
1 − 1

n

)
· 20 = 800,000 · 0.90 = 720,000 years.

Throughout this time, mutations in the DNA increase the genetic diversity. While the
infinite alleles model arose at a time when indirect methods had to be used to infer differences
between individuals, the technical tools to sequence DNA in the 1960s enabled analysis of
nucleotide differences and Kimura (1969, 1971) introduced the infinite sites model. When
analyzing the sequenced data of a genetic locus, it assumes that any mutation changes one
nucleotide and occurs on a unique site that did not mutate before. As an example, consider
the pattern in Figure 2.5. Mutations are marked as red dots along the tree and change
one particular nucleotide in the sequence. The differences in the sequence sample are called
single nucleotide polymorphisms (SNPs). If the ancestral state is known, the information
of the mutations can be represented in a SNP-matrix (see Figure 2.5), where 1 represents a

1Note, that the effective population size Ne reflects the population size of an idealized population, that would
experience the same amount of genetic drift as the population under consideration. Due to several different
factors, such as subpopulation structure, population size changes, migration, unequal sex ratio etc., Ne is
significantly smaller than the true population size.
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A B C D E

T2

T3

T4
T5

A  0 0 1 0 0 0 1
B  0 0 1 0 1 0 0
C  1 0 0 1 0 0 0
D  1 0 0 1 0 0 0
E  1 1 0 0 0 1 0

3 1 2 2 1 1 1

0 1 2 3 4 5
0

1
2

3
4

5

A) B)

C)

Figure 2.5: A. Illustration of the coalescence process for n = 5. Coalescence times are in-
dicated as T2, T3, T4, T5, mutations are marked as a red dot. B. SNP-matrix. If
the ancestral state is known, mutations are indicated as a 1, the ancestral state
as 0. C. Site frequency spectrum. Four mutations occur once, two twice and one
mutation three times.

mutation and 0 the ancestral state. In this example, there are 7 polymorphic sites, distributed
on a sample of 5 haploid individuals. Four of these mutations affect only one individual and
are therefore called singletons. The frequency of singletons, doubletons etc. is denoted by
ξ1, ξ2, ... and called site frequency spectrum (SFS).
Using coalescence theory, Fu (1995) derived the expected SFS

E[ξi] = θ
1
i
. (2.17)

Note, that often the ancestral state is unknown and hence one can not distinguish, which of
the two variants of a nucleotide results from the mutation event. In the folded site frequency
spectrum the minor alleles are counted and the i-classes and the n − i-classes are combined,
i.e.

fk = ξk + ξn−k.

However, in the following models we assume the ancestral state to be known.
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Since the total tree length of a sample of n individuals is given by 4Nhn−1, one expects
a total number of 4Nhn−1µ segregating sites in the sample. Using this property, Watterson
(1975) introduced an estimator of the mutation rate θ as

θ̂W = S

hn−1
, (2.18)

which is today known as Watterson’s estimator, where S denotes the total number of segre-
gating sites in the sequenced sample. Another estimator was introduced by Tajima (1989),
which is based on pairwise nucleotide differences. Since the pairwise TMRCA is 2N genera-
tions, one expects 4Nµ = θ mutation events to happen along the branches that separate two
individuals. Therefore, the average nucleotide diversity π is defined as

π = 2
n(n − 1)

∑
i<j

dij , (2.19)

where dij is the number of differences between the ith and the jth sequence. The expected
pairwise nucleotide diversity is given by E[π] = θ, and hence Tajima introduced the estimator

θ̂π = 2
n(n − 1)

∑
i<j

dij . (2.20)

Considering again the example of Figure 2.5, we can use three different approaches to
estimate θ: the maximum likelihood estimate of Ewen’s sampling formula (considering the
infinite alleles model), Watterson’s estimator θ̂W using the number of segregating sites S and
Tajima’s nucleotide diversity estimator θ̂π. The infinite alleles model can only decide, whether
two alleles are identical or not. In this example, we find three single-type alleles and one that
occurs two times, leading to a partition (a1, a2, a3, a4, a5) = (3, 1, 0, 0, 0, ). Analyzing the
DNA sequences we find S = 7 positions in which they differ and a mean nucleotide diversity
in the sample of π = 4.2. This leads to

θ̂π = 2
n(n − 1)

∑
i<j

dij = 4.2

θ̂W = S/hn−1 = 7/2.083 = 3.36

θ̂ESF = argmaxθ (Pθ,n(a1, ..., an)) = 7.1

There are several other frequency spectrum based estimators of θ, as for instance Fu and Li’s
estimator, which just considers the singleton class θ̂F L = ξ1 (see equation (2.17)) or Fay and
Wu’s estimator, that gives most weight to high-frequency classes

θ̂H =
(

n

2

)∑
i2ξi.
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2.4. COALESCENCE THEORY

Under neutrality, one expects the estimators to coincide. Hence, deviations may be indica-
tors of violations of the underlying assumptions in the model. This gave rise to test statistics
that measure the differences of the estimators. The most commonly known are Tajima’s D
(Tajima, 1989), defined as

D = θ̂π − θ̂W

σD
, (2.21)

and Fay and Wu’s H, (Fay and Wu, 2000) defines as

H = θ̂π − θ̂H

σH
. (2.22)

For example, a value of D > 0 indicates a higher heterozygosity than the number of segregat-
ing sites would predict, which results in a lack of rare alleles in the SFS. A negative value on
the other hand indicates a low heterozygosity and many rare alleles. It is one of the greatest
tasks in population genetics to identify such regions that deviate from neutral theory and to
understand which evolutionary forces are responsible for these differences.
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2.5 Selection

While Wright considered drift to be the primary driving force in shaping genetic diversity,
Fisher (1930) and Haldane (1927) argued that natural selection plays a more significant role.
In the context of a Wright-Fisher-model, considering the type A as beneficial compared to a,
one may model selection with weighted sampling. The allele A with higher fitness is given a
sampling weight of 1 + s with fitness parameter s ≥ 0, whereas a is sampled with weight 1.

Intuitively, a beneficial or positively selected mutation becomes fixed in a population with
higher probability and on average faster than a neutral one. Considering a selective factor
s > 0 and an infinitely large population size, the frequency of a beneficial allele Xt can be
described by a logistic growth differential equation

d
dt

Xt = sXt(1 − Xt), (2.23)

which solves to

Xt = X0
X0 + (1 − X0)e−st

, (2.24)

where X0 denotes the initial allele frequency at time t = 0. Kimura (1962, 1964) showed,
that in a finite population of size N the probability of fixation of such a mutation is given by

1 − e−4N ·s·X0

1 − e−4N ·s . (2.25)

Hence, a newly arising allele X0 = 1/2N with a relative selective benefit of s = 0.01 becomes
fixed with probability ≈ 2% in a diploid population of N = 10,000. The time to fixation (say
Xt = 1 − 1/2N) can be calculated by solving

1 − X0 = X0
X0 + (1 − X0)e−st

, (2.26)

which gives

t = 2
s

log(2N − 1) ≈ 1, 981 generations. (2.27)

In contrast, a neutral allele reaches fixation due to drift with probability 1/2N = 0.00005
and the time to fixation is on average 4N = 40,000 generations.

A famous example of such a beneficial mutation is a SNP in the gene encoding lactase
(LCT), which is associated with the ability to digest milk as adults (lactase persistence) in
Europeans (Tishkoff et al., 2006). It is hypothesized to be a beneficial trait which increased
the fitness of human populations that traditionally practiced cattle domestication, since it is
only found in 1% in non-pastoralist Asian and African populations, but up to 90% in Swedes
and Danes (Swallow, 2003; Hollox, 2004).
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Pairing the two allele variants in a diploid population leads to three different genotypes,
that may all have different fitness values. Considering type A as beneficial compared to a,
define fitness with the dominance factor h as

Genotype fitness
AA 1 + 2s

Aa 1 + 2hs

aa 1

If h = 0, the allele is recessive and the fitness benefit only sets in if an individual carries
both beneficial alleles. In contrast, if h = 1, one allele is already sufficient to produce the full
selective benefit and hence called dominant. If h = 1/2, it is called co-dominant. If 0 < h < 1,
the allele frequency follows a directional selection, since the evolution is directed towards the
fixation of allele A. An interesting case occurs if h > 1 and aa also has fitness of 1 + 2s,
same as AA. Then, heterozygotes have the greatest fitness, which is called overdominance
or balancing selection. A famous example of this phenomenon is the previously mentioned
sickle cell anemia, in which the heterozygote defeats both malaria and the sickle shaped red
blood cells.

Those prime examples are rare and most of the mutations have either no effect at all or lead
to the loss of gene function and are slightly or severely deleterious. Ohta (1973) introduced
the almost neutral theory, in which she postulated that there are mutations with a small
negative selection coefficient, also known as purifying selection, such that

|Nes| < 1.

With such small s the effect of drift is still one of the main forces in evolution and even if a
mutation is solely deleterious, it may reach fixation in the population due to drift. Consider a
population of wild-types only, all with fitness 1. Mutations occur at rate µ and create alleles
with lower fitness, such that an individual with k mutations compared to the wild type has
fitness

(1 − s)k. (2.28)

There are two forces counteracting on the population: selection removes alleles of low fitness
from the population, whereas mutation generates new alleles with low fitness. Considering
a population without drift, Haigh (1978) showed that the population reaches a mutation-
selection equilibrium, where the relative frequency fk of individuals with k mutations is
given by

fk = 1
k!

(
µ

s

)k

e− µ
s , (2.29)

i.e. the classes follow a Poisson distribution. However, in a finite population the fittest class
that has no mutations might get lost due to drift. And since mutations only decrease fitness
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Figure 2.6: Illustration of Muller’s ratchet. The pawl prevents the ratchet wheel from turn-
ing backwards. In the same way, the Muller ratchet can only be turned in the
"direction" of additional, harmful gene mutations.

and back mutations are neglected, this class is indeed lost forever and can not be restored.
But then, the class with one mutation becomes the relatively fittest in the population and
the distributions of (2.29) shift by one. Again, the fittest class might get lost forever and
the population fitness decreases over time, with no possibility to gain it back. This process
is known as Muller’s ratchet (Muller, 1964) and illustrated in Figure 2.6.

The time between clicks of the ratchet, i.e. the loss of the currently fittest class, was
approximated by Haigh (1978) and is given by

E[Time between clicks] ≈ 4N · e− µ
s + 7 log(µ

s
) + 2

s
− 20. (2.30)

This time is obviously quite long in large populations, but on evolutionary time scales
this process would nevertheless lead to the mutational meltdown. Indeed, such a process was
demonstrated in an evolutionary experiment in yeast (Zeyl et al., 2007). However, several
factors could either greatly slow down or even stop the ratchet mechanism, e.g. compen-
satory mutations (Wagner and Gabriel, 1990), beneficial mutations (Rouzine et al., 2008) or
synergistic epistasis (Kondrashov, 1994; Jain, 2008). Another effective mechanism to escape
the ratchet is recombination, by which descendants may inherit fewer mutations than their
parents if the parental genotypes have mutations at different loci.
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2.6 Recombination

Recombination is the biological process in which genetic material is exchanged between two
homologous chromosomes. In diploid eukaryotes, specific DNA segments break and recombine
with their counterparts on another chromosome during meiosis. Therefore, we now consider
a two loci model in a diploid population. In its simplest form we call them the A locus
with alleles A and a and the B locus with B and b alleles. This results in four different
haplotypes: AB, Ab, aB and ab. Given two haplotypes, a recombination event may happen
with probability r and fuse the counterparts together (see Figure 2.7). Denote the frequencies
of the haplotypes as fAB, fAb, faB and fab, such that 1 = fAB + fAb + faB + fab and the
allele frequencies as 1 = fA + fa and 1 = fB + fb. If we choose two haplotypes, we may get
the allele AB in the next generation with probabilities

Recombine AB Ab aB ab
AB 1 1

2
1
2

1
2(1-r)

Ab 1
2 0 1

2r 0
aB 1

2
1
2r 0 0

ab 1
2(1-r) 0 0 0

Therefore, with recombination rate r and without drift the allele frequency of AB at time
t + 1 is given by

fAB(t + 1) = fAB(t) + 1
2rfAB(t)fAb(t) + ... + 1

2(1 − r)fab(t)fAB(t)

= fAB(t) − r(fAB(t) · fab(t) − fAb(t) · faB(t))

= fAB(t) − rLD(t),

where we define LD as the linkage disequilibrium:

LD = fAB · fab − fAb · faB.

If LD = 0, we find that fAB = fA · fB (and the analogous results for the other haplotype
frequencies) and the two loci are in linkage equilibrium, which is the "horizontal" analogue of
the Hardy-Weinberg equilibrium. Therefore, we can describe the haplotype frequencies over
time as

f ′
AB(t) = −rLD(t), f ′

ab(t) = −rLD(t), f ′
Ab(t) = rLD(t), f ′

aB(t) = rLD(t).

Consequently, we find that

L′
D(t) = ... = −r · LD(t),
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A B

a b

A b

a B

Figure 2.7: Illustration of the recombination process in a two loci model.

which means that for LD(0) = d0 the linkage disequilibrium decays exponentially over time
with

LD(t) = d0 · e−rt. (2.31)

It also decreases exponentially with genomic distance (implicitly given by the recombination
rate r). Therefore, two loci that are at distant positions and evolve under neutrality over a
long time should be in linkage equilibrium.

Linkage disequilibrium arises, for example, when a new allele with a fitness benefit has
recently been fixed. Consider such a beneficial mutation B′ on locus B and let it be under
strong directional selection, i.e. large s and Ne, such that Nes ≫ 1. Then, the new allele
B′ will eventually get fixed in the population. Without recombination, the entire haplotype
becomes fixed, which is either aB′ or AB′. The neutral locus "hitchhikes" with the beneficial
allele as if it was also under directional selection. This genetic hitchhiking leads to a loss of
genetic variability at locus A (Smith and Haigh, 1974). The genomic signal of such a selective
sweep is illustrated in Figure 2.8: The strength of this effect depends on the selective strength
Nes, the genomic distance between the loci and the time that has passed since the fixation
of the allele.

As an example, consider two completely linked loci in a distance of 10,000 base-pairs (short:
10kb) in human. As a rule of thumb, the recombination rate per nucleotide per generation
is about 10−8, therefore the recombination rate between these two loci can be considered as
r = 0.0001. Then, if we neglect the effect of drift, linkage disequilibrium decays exponentially
according to (2.31) and decreases to 50% after

t = 1
r

log(2) ≈ 7,000 generations.
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Figure 2.8: Simulated heterozygosity in a region of a beneficial selected genetic locus. Taken
from Stephan and Hörger (2019), Figure 8.2 (originally Kim and Stephan (2002),
Figure 2).

If we also apply the effect of drift, the linkage disequilibrium would decline even more rapidly
and the signal of the recent selective sweep will vanish.

Let us now consider the backward in time process of two loci with recombination in a
sample of size n in the coalescent process. If a recombination event splits the haplotype into
two pieces, the number of lineages increases, since locus A now follows the maternal genealogy
and B the paternal. The coalescence tree of A differs from the one of B and changes along
the whole genome. Therefore, the entire ancestral process features coalescence and splitting
events and we call this concept the ancestral recombination graph (ARG) (Hudson, 1983).
An example is shown in Figure 2.9.

The ancestral recombination graph is an important extension to Kingman’s classical coa-
lescence theory. Without recombination, the following sample can not be explained with just
one coalescence tree, if we consider the infinite sites model:

Individual Locus 1 Locus 2
A 0 0
B 1 0
C 0 1
D 1 1

On the one hand, the mutation at locus 1 affects both individuals B and D. Therefore,
there has to be a branch that connects these two and only these two. But on the other hand,
the mutation at locus 2 affects C and D, so that these two have to share a common branch.
Concluding, one has to either reject the assumption of the infinite sites model, or include the
possibility of different coalescence trees along the genome, i.e. recombination.
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Figure 2.9: Ancestral recombination graph. A sample of n = 4 in a three locus model. Two
recombination events result in three different genealogies in the haplotype.

The inference of all coalescence trees along the DNA is a complex problem. An approach is
given by the Sequential Markov Chain (SMC) (McVean and Cardin, 2005; Rasmussen et al.,
2014). The Markov approach considers changes not across time, but along the genome and
assumes, that the tree at locus x+1 depends on the tree at position x. The transition process
is given by the procedure of prune and regrafting, which means that if a recombination event
has happened at that locus, the tree at the next position can be produced by choosing a
"break point" on the tree and a "clipping" point to attach the branch back to the tree. This is
only an approximation, but it provides an efficient way to simulate and infer the coalescence
trees along the genome.

A famous application of this idea is the Pairwise Sequentially Markov Coalescent (PSMC)
(Li and Durbin, 2011) and its successors Multiple Sequentially Markov Coalescent (MSMC
and MSMC2) (Schiffels and Durbin, 2014; Schiffels and Wang, 2020) and extended Sequential
Markov Coalescent (eSMC) (Wang et al., 2022). They use a Hidden Markov Model (HMM)1

approach to infer the population size history from whole-genome data. Given the whole
DNA of a single diploid individual, the genealogy and hence time to the most recent common
ancestor (TMRCA) changes along the genome, which is approximated by the Sequentially
Markov Chain. If TMRCA is large, one expects high genetic diversity in the present day
sample. Vice versa, given the genetic variation in a present day sample, one can infer the
most likely sequence of TMRCA along the genome. And since the probability of coalescence
is negatively correlated to the population size, one can estimate the population size history.

In its original version, Li and Durbin (2011) used PSMC on single genomes of humans from
Africa, Asia and Europe and showed that the findings are in agreement with the founder event
(bottleneck) in East Asian and European populations, associated with the out of Africa event
≈ 60,000 years ago. This is a fascinating example of how signatures of evolutionary events
that date back far in the past can still be detected in present day DNA.

1A Hidden Markov Model considers a Markov process, in which the current state of the process can not be
detected (i.e. it is hidden). However, in any time step, the state changes according to the transition matrix
of the Markov model and a detectable signal is emitted. Here, we consider the true genealogy to be the
hidden states and the DNA sequence as the emitted signal. See (Rabiner, 1989; Fink, 2008).
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2.7 Population structure

The Hardy-Weinberg equilibrium assumes panmixia, i.e. the hypothetical situation with
complete random mating within one large population. We already mentioned the Wahlund-
effect, which states that the mean heterozygosity decreases if a population is divided into iso-
lated subpopulations (2.3). Intuitively, if a panmictic population is divided into two isolated
"island"-populations, they will evolve independently and become genetically differentiated
over time. To measure the degree of reduction in heterozygosity, Wright (1951) introduced
his hierarchical F -statistics. They measure the proportion of genetic variance among sub-
populations relative to the total genetic variance in the entire population and range from 0
(no differentiation) to 1 (complete differentiation). There are three F -statistics:

• FST , the fixation index

• FIS , the kinship coefficient

• FIT , the total inbreeding.

Here, we only focus on FST , which measures the genetic differentiation among subpopulations.
The S denotes the subpopulation, T the total population and I is the abbreviation of an
individual. For alleles at a single locus, FST is defined in terms of probabilities of identity as

FST = fS − fT

fT
, (2.32)

where fS is the probability that two genes sampled at random from a single subpopulation
are identical (carry the same allele), and fT is the probability that two genes randomly chosen
from the collection of subpopulations considered are identical.

In the context of population genetics, migration refers to the movement of individuals from
one (sub-) population to another, with the potential to introduce new genetic material. This
exchange of alleles between different populations of a species is also known as gene flow.
One of the first and simplest models is the continental island introduced by Wright (1940),
see Figure 2.10A. Motivated by the South-American continent and the Galapagos island, we
consider an infinitely large population on the continent and a finite population of size Ne on
the island. At each generation, M individuals migrate from the continent to the island and
replace M individuals there. The migration rate is denoted by m = M/Ne. The migration
process can be seen as the equivalent of the mutation in (2.13), since it introduces new alleles,
whereas drift reduces genetic diversity. Therefore, analogue to (2.13) we find the equilibrium

F̄ST = 1
1 + 4Nem

. (2.33)

Another population configuration model is given by the symmetric island model, where one
considers d islands, all with equal population sizes Ne and connected with each other with
equal migration rate m (Figure 2.10B). This means that individuals from each island have
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A B

C

Figure 2.10: Illustration of the three migration models. A: Continental model. B: Symmetric
island model with d = 3 islands. C: One-dimensional stepping stone model.

an equal chance of migrating to any other island. If the number of islands d is large, the
equilibrium (2.33) also holds true (Hudson, 1998).

The stepping stone model takes into account the spatial arrangement of subpopulations
(Figure 2.10C). It assumes that migration is more likely to occur between neighboring islands
and therefore one expects a higher genetic differentiation in populations at higher geographical
distance.

In general, any migration dynamics can be modeled, with migration rates mij from island i

to island j. However, with increasing complexity the calculations of analytical results become
more challenging.

While the equilibrium (2.33) can be derived under the assumption of a forward in time
neutral Wright-Fisher process, it is only natural to apply population structure to Kingman’s
coalescence model (Takahata, 1988). Going backward in time, two individuals can only be
offspring of the same ancestor, if they are located at the same island. Otherwise, one or
mulitple migration events have to have happened in the past. We describe this process in
more detail in chapter 5.2. As an example, consider a symmetric d = 2 island model (islands
A and B) with equal migration rates m and equal population size N . Taking a sample of
n = 2 individuals, they can be either located at the same or different islands. We denote the
time to their most recent common ancestor as TAA = TBB and TAB. Then, it can be shown
(see for example Wilkinson-Herbots (1998)) that

E[TAA] = E[TBB] = 2N, E[TAB] = 2N + 1
m

N. (2.34)

Therefore, with high migration rate m the coalescence times are close to the standard pan-
mictic case, whereas with low migration and hence high isolation the coalescence time of two
individuals on different islands can be severely increased.
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2.8 Gene duplications

When measuring genetic diversity, we considered up to this point only single nucleotide
polymorphisms (SNPs). However, structural variants such as inversions, deletions, insertions
and duplications contribute significantly to genetic variability. One of the first reported
observations of duplicated materials was the bar eye locus in Drosophila melanogaster, which
exhibited extreme reduction in eye size (Bridges, 1936). In many eukaryotes a large portion
of the genome is considered to be duplicated material. For instance, in human around 40% of
the genes were identified to be duplicates (Zhang, 2003). Gene duplications segregate in high
numbers in natural populations, and some cause disease (Singleton et al., 2003) or confer an
adaptive advantage (Perry et al., 2007).

A duplication initially arises in a single individual and may be lost by drift or be propagated
in the following generations, just like a nucleotide mutation. Suppose that a new duplicated
gene pair (A-A) arises in a diploid population of size N , in which all individuals initially
have single copies of gene A. If the new arising copy has neither selective advantage nor
disadvantage, the A-A type will be fixed in the population with probability 1/2N and the
fixation process takes on average 4N generations. During that time, the duplicated genes can
accumulate mutations independently, potentially leading to the emergence of new functions
or the refinement of existing ones, possibly resulting in adaptation and a selective benefit.
There are several theories on the selection scheme of duplicated genes (see for example Innan
and Kondrashov (2010) and Magadum et al. (2013) as overview) and we are going to present
three models here, which are positive dosage, neofunctionalization and diversifying selection,
illustrated in Figure 2.11.

1. The idea of a beneficial dosage is straightforward: If an increase of dosage of a particular
gene is beneficial, then a duplication of this gene may be fixed with positive selection.
In a variable environment, selection for increased dosage may be followed by selection
against it, leading to a cycle of gene duplication and loss. Taken further, this implies an
optimal copy number that provides the ideal dosage. This concept may be applicable
to three categories of genes:

• Genes mediating interactions between the organism and the environment, includ-
ing stress response genes, sensory genes, transport genes and those involved in
metabolic functions (Kondrashov et al., 2002).

• Genes with dosage-sensitive functions due to their products’ properties regarding
protein-protein interactions or their role in metabolic pathways (Kondrashov and
Koonin, 2004; Veitia, 2005).

• Genes with products generally required in large quantities, such as ribosomal or
histone genes (Sugino and Innan, 2006).
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2. Ohno (1970) argued that the presence of a single gene copy is sufficient to carry out the
gene’s function. If an extra, redundant copy becomes fixed within the population due
to genetic drift, the original copy will maintain its ancestral role, while the new copy
may acquire a new function. However, since the majority of newly arisen mutations
are likely to be detrimental, pseudogenization is the most probable fate for the newly
formed gene copy.

3. In cases where natural selection favours genetic diversity, gene duplications are benefi-
cial as they offer a larger platform for genetic mutation and selection. As an example,
consider the major histocompatibility (MHC) genes, which are subject to overdominant
selection and heterozygous individuals reach the maximum fitness value. Therefore, the
gene under selection accumulates several alleles with distinct functions.

In general, there are four molecular mechanisms of gene duplication: unequal crossing over,
retrotransposition, duplicated DNA transposition and polyploidization (Magadum et al.,
2013). Unequal crossing over occurs during meiosis when homologous chromosomes misalign,
leading to the duplication or deletion of genetic material and often creates tandem repeats
or gene families in the genome. Retrotransposition involves the reverse transcription of an
RNA molecule into a DNA sequence that is then inserted back into the genome. Duplicated

Dosage effect Neofunc�onaliza�on Diversifying selec�on

Figure 2.11: Illustration of dosage effect, neofunctionalization and diversifying selection. The
different colours and shapes denote different functions of the genes.
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1a 2a 3a 4a

1b 2b 3b 4b

1a 2a 2b 3b 4b

1c 2c 3c 4c 5c

1d 2d 3d 4d

Duplica�on

Dele�on

Frequency of second gene

increased by 1/4

Figure 2.12: Ohta’s cycle model. Unequal recombination happens by shifts of one unit. Du-
plication and deletion phases are alternating to keep the copy number constant.
Here, the frequency of the lineage of the second gene increases by 1/4.

DNA transposition involves the movement of DNA segments from one genomic location to
another, resulting in the duplication of genetic material. This process is typically mediated
by transposons, which are mobile genetic elements that can cut and paste themselves into dif-
ferent regions of the genome. When transposons carry host genes during this process, it can
lead to gene duplication. Polyploidization is a whole-genome duplication event in which an
organism ends up with multiple copies of its entire genome. This process can occur through
various mechanisms, such as errors during meiosis or hybridization between closely related
species.

In the following, we focus on the process of unequal recombination. There are two statistics
to explore: the genetic variation of the gene copies and the variation in copy number. We
shortly present two models that adress these questions. A model of genetic variation in large
gene families is given by the cycle model of Ohta (1976), in which she uses Kimura’s diffusion
approach for nucleotide mutations to derive the fixation of gene lineages. Consider a gene
family of n gene units and that initially each unit is represented by a different gene lineage.
Unequal recombination is modeled by shifts of exactly one unit, such that one copy is either
added or lost. These duplication and deletion processes occur alternately, keeping the total
number constant (see Figure 2.12). Denote the frequency of a particular lineage as x. Then,
in one cycle it may either increase by 1/n, decrease by 1/n or remain constant. The mean
M∆x and variance of frequency change V∆x per time unit (i.e. per cycle) are then given by

M∆x = 1
n

x(1 − x) − 1
n

x(1 − x) = 0 (2.35)

V∆x = 1
n2 x(1 − x) + 1

n2 x(1 − x) = 2
n2 x(1 − x).
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Therefore, it is possible to apply Kimura’s diffusion approach. With M∆x = 0, this setting
corresponds to the allele frequency of a neutral variant. The drift parameter in the neutral
diffusion process of a diploid population is x(1−x) ·1/(2Ne), see equation (2.7), which means
that the genealogy of n gene units under unequal recombination with shifts of one unit as
described in equation (2.35) can be seen as an analogy of a neutrally evolving mutation in a
population of size Ne = n2/4. Therefore, the time to fixation of one lineage is given by

t1(p) = −1
p

(
n2(1 − p) log(1 − p)

)
≈ n2,

where p denotes the initial frequency of the gene lineage (which is 1/n) and the approximation
holds true for large n or small p.

A general model to study the evolution of copy number variation in a population was
introduced by Takahata (1981). Let rjk denote the rate of unequal crossing over of two
chromosomes with j and k repeated genes and pi,j+k the probability that a chromosome with
i copies is generated, if a j- and k-chromosome recombine. Then, without drift, the frequency
fi of chromosomes with i copies evolves according to

fi(t + 1) =
∞∑

j=0
(1 − rij)fij(t) +

∞∑
j=0

∞∑
k=0

pi,j+k · 1{0≤i≤j+k}rjkfjk. (2.36)

This concept can be extended with selection towards an optimal copy number and even
with sister chromatid exchange. Under this process the distribution of gene copy numbers
converges to an equilibrium as time proceeds. However, Takahata (1981) could only use
computer simulations to derive the mean and variance of the limiting distribution for different
parameters and recombination schemes.
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2.9 Motivation of a new model

In the following we combine the concepts and models mentioned in this chapter. We intro-
duce a biologically motivated recombination model of copy number changes based on the
process of Takahata (1981) equipped with diversifying selection in an infinite alleles model.
Under neutrality and in the absence of drift, we derive the equilibrium distribution of gene
copy numbers. Using Wright-Fisher simulations we analyze the effect of selection strength,
recombination rate and demographic parameters on the population fitness. For given em-
pirical copy number data from the 1,000 Genomes Project, we can estimate recombination
and selection parameters. When comparing copy number distributions of African, Asian and
European populations, we answer the question, whether differences can be explained purely
by human demography and the out of Africa expansion, or whether shifts in the distribution
are signatures of adaptation. Finally, we introduce a new interpretation of the structured
coalescent to estimate genetic variation in multi-copy gene families. Instead of individuals
migrating in an island model, we consider gene copies to change their position within a gene
array according to unequal recombination. Hence, two copies can only be offspring of the same
ancestor, if located at the same genetic position. This shows, that standard test-statistics as
Tajima’s D may lead to misinterpretations when analyzing sequencing data of gene families.
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Abstract

Multi-gene families – immunity genes or sensory receptors, for instance – are often subject
to diversifying selection. Allelic diversity may be favoured not only through balancing or
frequency dependent selection at individual loci, but also by associating different alleles in
multi copy gene families. Using a combination of analytical calculations and simulations, we
explored a population genetic model of epistatic selection and unequal recombination, where
a trade-off exists between the benefit of allelic diversity and the cost of copy abundance.
Starting from the neutral case, where we showed that gene copy number is Gamma-distributed
at equilibrium, we derived also mean and shape of the limiting distribution under selection.
Considering a more general model which includes variable population size and population
substructure, we explored by simulations mean fitness and some summary statistics of the
copy number distribution. We determined the relative effects of selection, recombination
and demographic parameters in maintaining allelic diversity and shaping mean fitness of a
population. One way to control the variance of copy number is by lowering the rate of unequal
recombination. Indeed, when encoding recombination by a rate modifier locus, we observe
exactly this prediction. Finally, we analyzed the empirical copy number distribution of three
genes in human and estimated recombination and selection parameters of our model.
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3.1. INTRODUCTION

3.1 Introduction

Multi-gene families occur in most, if not all, genomes of eukaryotes – in metazoans as well as
in plants. They may be conserved across large evolutionary distances, such as the histones
or tRNA gene families, or rapidly diversify in single species, such as the NLR-genes in Danio
rerio (Howe et al., 2016) or the LRR-genes in Arabidopsis thaliana (de Weyer et al., 2019).

Interspecies comparison of gene families derived from whole genome duplication has been
used, for instance, to estimate relative rates of gene loss and functional divegence (Nadeau and
Sankoff, 1997). On a shorter time scale, segmental duplication and unequal recombination
are perhaps the more important mechanisms to explain gene family size differences between
species, populations and individuals. Modeling gene family evolution has a quite long history
(Smith, 1974; Innan, 2009; Demuth and Hahn, 2009; Liu et al., 2011). The roadmap in a
population genetic framework was laid out in a series of contributions by Ohta (1976, 1979,
1984, 1987, 1988, 2000). These models typically include forces such as selection and unequal
recombination or gene conversion. To describe the dynamics of copy number variation (CNV)
generated by unequal recombination Takahata (1981) introduced a general model based on
the work of Krüger and Vogel (1975). Fostered especially by the human genome diversity
projects, leading to the realization that structural variation is more than abundant in human
populations and observing genome size differences between individuals of 100Mb and more
(Tuzun et al., 2005; Redon et al., 2006; Eichler, 2008), we are witnessing revived interest
in modeling and analyzing the evolution of gene families and of the forces and mechanisms
driving copy number polymorphisms.

Tandem gene duplication may happen due to some form of replication error, mis-pairing or
segregation anomaly, notably unequal or – less frequently – non-homologous recombination
(Silver, 2001). A duplicated gene initially arises in a single individual, very much like a
base mutation, and may be lost by drift or be propagated to the offspring in subsequent
generations. On its way to fixation, or loss, such a duplication manifests itself as copy
number variation (CNV) in a given population and – given sufficiently large populations – is
sensed by the filter of natural selection. When beneficial, directional selection will accelerate
its fixation and subsequent purifying selection will prevent it from loss. Alternatively, when
beneficial only in conjunction with other alleles or other copies, balancing selection may force
it to remain at intermediate frequency. The best known examples are perhaps the alleles of
pathogen receptors and immune genes, such as those of the MHC complex in vertebrates.
Balancing selection, however, comes with a fitness cost in terms of segregation load.

Haldane (1937) had suggested that this effect may be alleviated or avoided when over-
dominant alleles are arrayed in tandem on the same chromosome rather than be combined
on homologous chromosomes. Only recently, this fundamental idea has been experimentally
tested – and confirmed – in populations of the mosquito Culex pipiens (Milesi et al., 2017).

Here, we designed a model of tandemly arrayed genes whose evolution is driven by unequal
recombination together with a mixture of diversifying and negative selection. More precisely,
negative selection will keep copy number in check, while allelic diversity is positively selected.
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We implement this via a product of two multiplicative fitness components: one of them
is decreasing with copy number and the other one is increasing with allele number (see
equation (3.1)). In its structure this fitness function is an old acquaintant. Very similar
versions feature in the classical model of Muller’s ratchet (Haigh, 1978) and its epistatic
relatives (Kondrashov, 1982; Chao, 1988).

We discovered the following: first, in the absence of selection, i.e. when diversity of alleles
does not confer any fitness benefit and additional copies do not provide any cost, the dis-
tribution of copy numbers can be analytically expressed. It is a Gamma distribution with
shape α = 4 and with a scale which depends only on the mean copy number of the ini-
tial distribution. With selection, the limiting distribution is still well approximated by a
Gamma distribution, but depends on the combination of selection coefficients and recombi-
nation rate, and not on the initial distribution. Second, population size can have a stronger
effect on mean fitness and allelic diversity than the strength of selection itself. Third, low
recombination rates may be favourable to maintain allelic diversity. Consistent with this,
when recombination rates are coded as alleles at a modifier locus and are allowed to evolve
over time, we observe a tendency towards recombination rate reduction.

Taken together, our model captures essential aspects of a multi gene family driven by a
force of increasing allelic diversity and, at the same time, an opposing force of maintaining
genome and chromosome integrity and of limiting both segregation and recombination loads.

Based on the empirical copy number distribution in a set of three exemplary gene families
in human we estimated the strengths of selection and (unequal) recombination rates in a
natural population.
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3.2 Methods

3.2.1 Model

We consider a compound model in which the number of copies (y) of a certain gene per
individual, as well as the number of alleles (x), are variable. When alleles are all considered
distinct (but without labeling their identities) and copy numbers remain variable, we call this
the y-only model.

In a diploid population of effective size N ≤ ∞ let individual i, 1 ≤ i ≤ N , carry yi =
ym

i
′ + y′p

i copies of a particular gene on its maternal (m) and paternal (p) chromosomes. We
use the notation y′ for the number of copies per chromosome when neither the individual
nor the parental status matter. If copies are distinguishable, we call them alleles and let x′,
1 ≤ x′ ≤ y′, be the number of different alleles on a chromosome with y′ copies. By extension,
individual i has xi ≤ xm

i
′ + x′p

i alleles (Figure 3.1C, alleles indicated by different colours).
Fitness ωi of individual i is determined by both copy and allele numbers: ωi = ωi(xi, yi). We
assume that increasing the number of copies incurs a fitness cost, representing adverse effects
to genomic structure and integrity, while increasing the number of alleles incurs a fitness
benefit, representing improved function such as recognition of a wider range of pathogens or
stimuli. To fix ideas, we consider the following fitness function

ωi = ω(xi, yi) = (1 + sx)(
∑xi−1

k=0 βk
x) × (1 − sy)(

∑yi−3
k=0 βk

y ) . (3.1)

The cost is only counted from the third copy, since the ground state is a single copy gene
with exactly one copy on each chromosome. The selection coefficients 0 < sx, sy ≪ 1 are
positive and the epistasis parameters 0 < βx ≤ 1 ≤ βy are independent of i. In the following,
we omit index i unless required for clarity. The way we define epistasis reflects the classical
concepts of diminishing returns (βx) and synergistic epistasis (βy): the benefit of adding new
alleles decreases with the number of already existing alleles. Think of the physiological limit
preventing perfect recognition of an infinite number of possible pathogens or sensory stimuli
in nature. In contrast, the cost of adding more copies increases with the number of already
existing copies. This reflects the growing threat to genome integrity by inserting more and
more copies.
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Figure 3.1: A. Fitness of an individual as a function of x (stacks) and y (bars). Parameters:
sx = 0.02, sy = 0.005, βx = 0.95, βy = 1.05. Each bar represents one value of
y with stacked fitness “layers” for x = 1 to x = y. B. Normalised fitness of
an individual in the y-only model. Parameters: sx = 0.02, sy = 0.005, ε = 0.05
(black) and its Taylor-approximated version T (y) = 1 − s̃(y − y∗)2, with s̃ ≈
0.00047 (red). The vertical line marks y∗ ≈ 14.86. C. Illustration of individual
genotype unequal recombination. Recombination occurs in an individual with
y = 7 = 4 + 3 gene copies and x = 5 < 4 + 3 different alleles (colours). The black
bullet on each chromosome represents the RRM locus (see text).
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For any fixed copy number y, fitness is maximized when x = y, i.e., when every copy is a
different allele (which is an assumption in the y-only model). Whether fitness is maximized
for small or for large y depends on the relative magnitudes of sx and sy: assuming x = y and
sx ≤ sy, maximum fitness is achieved at the lowest possible copy number, y = 2. Arguably,
this situation represents the standard scenario for single copy genes in nature: the cost of
adding copies would outweigh its benefit. In contrast, when sx > sy, maximum fitness may
be attained at values y > 2. Without epistasis, and as a function of y, fitness is monotonically
increasing, with lowest fitness at y = 2. With epistasis, fitness has a non-trivial maximum at
y∗ (Figure 3.1A). In this case, we have (see Appendix)

y∗ = 1
ln(βy

βx
)

(
2 ln(βy) + ln

(
βy − 1
1 − βx

)
+ ln

(
− ln(1 + sx)

ln(1 − sy)

)
+ ln

(
− ln(βx)

ln(βy)

))
. (3.2)

Assuming further βx = 1 − ε and βy = 1 + ε for small ε > 0, and using ln(1 + ε) ≈ ε, y∗

simplifies to

y∗ ≈ 1 + ln(sx) − ln(sy)
2ε

= 1 +
ln( sx

sy
)

2ε
. (3.3)

In finite populations alleles are lost by drift. Although new alleles are introduced by
mutation, one generally has x < y at mutation-drift equilibrium. We employ an infinite
alleles model: mutation occurs with rate µ per copy per individual per generation and turns
a given allele into a new, previously non-existing one. The more copies an individual has, the
more likely a new allele will be generated. Note that mutation does not change y or y′, but
it may increase x and x′. The y-only model can be interpreted as the limiting scenario for
large mutation rates such that any two copies are different. Therefore, mutation is explicitly
required only in the simulations of the compound model, but not for the analytical results of
the y-only model.

In both the compound and the y-only models recombination may be non-homologous, or
unequal. As a consequence, copy number may change across generations. It is implemented as
follows (Figure 3.1C): first, choose a pair of chromosomes and decide whether recombination
occurs (probability r) or not (1 − r). In the first case, randomly mark a gene copy on both
chromosomes. Then, the “upstream” fragment including the marked copy of chromosome
m (“head”), say, is fused with the “downstream” fragment excluding the marked copy of
chromosome p (“tail”). For simplicity we assume recombination break points to lie outside of
genes and exclude the possibility that genes may be disrupted by recombination. Only one
recombination product is considered further. If the last copy was marked on the tail chromo-
some, no copy is added to the head fragment. Starting from two chromosomes with ym′ and
y′p copies, copy number in the offspring gamete can range between 1 and ym′ + y′p − 1. More
precisely, copy number in the offspring chromosome is a sum of uniform random variables

37



3.2. METHODS

with

Y ′ = B1 + B2 − 1 ,

where B1 ∼ U(ym′), B2 ∼ U(y′p) are uniform on the integers {1, ..., ym′} and {1, ..., y′p},
respectively. The sum Y ′ is trapezoidal with

P [Y ′ = y′ ∣∣ ym′, y′p] = T (y′, ym′, y′p)

= 1
ym′ · y′p



0, y′ ≤ 0

y′, 1 ≤ y′ ≤ (ym′ ∧ y′p)

(ym′ ∧ y′p), (ym′ ∧ y′p) ≤ y′ ≤ (ym′ ∨ y′p)

ym′ + y′p − y′, (ym′ ∨ y′p) ≤ y′ ≤ ym′ + y′p − 1

0, y′ ≥ ym′ + y′p

,

where ∧ denotes the minimum and ∨ the maximum. When no recombination occurs, only
one of the two parental chromosomes is propagated.

We also consider a version with recombination rate variation: assume that each chromosome
carries a recombination rate modifier (RRM) locus which encodes a chromosome-specific
recombination rate. For a pair of chromosomes m and p, a recombination event occurs with
rate r = ro

√
(ρm ρp) for modifier “alleles” ρm, ρp > 0 which are multipliers of the base

recombination rate ro. The modifier allele inherited to the recombination product is the
geometric mean √

ρm ρp. Note that selection, operating on the genotype, exerts an indirect
force on the recombination rate. Symbolically, the modifier locus is represented by a black
bullet in Figure 3.1C. It is itself not subject to recombination, but attached to the first gene
copy. We set ro = 0.01 in all simulations.
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3.2.2 Simulations

For all simulations we used an in-house developed R programme (https://github.com/y-z

heng/Recombination-gene-family) implementing a Wright-Fisher-type model with discrete
generations and multinomial sampling of gametes. Simulation raw data can be downloaded
from the same repository. Simulations consisted of a burn-in phase and an observation
phase in which the statistics shown in Table 3.1 were recorded at certain time intervals. We
considered four basic scenarios:

(a) single population with constant size N ;

(b) single population with bottleneck;

(c) two sub-populations with reciprocal migration;

(d) single population of constant size with RRM.

Simulations for scenario (a) were started with y = 10 and x = 1 for all i and run for
an initial burn-in phase of 20, 000 generations. A run was re-started in case it entered the
(absorbing) state y = 2 during burn-in, i.e. when all individuals have only a single copy on
each chromosome. To start simulations in scenarios (b)-(d), we used the final state which was
reached at the end of scenario (a). To reduce standard error of the mean of this final sampling
point, we we ran 500 replicates for scenario (a) and 200 replicates for scenarios (b)-(d). For
the simulations we selected parameter ranges which we considered realistic and which turned
out to be compatible with the estimates for sx, sy and r and the mean copy number obtained
from empirical data (see below). The parameters used in the different scenarios are listed in
Table 3.3 in the Appendix.

Table 3.1: Summary statistics recorded in simulations.
Individual statistics

Mean1 Std. Dev. Min. Max.
Copies ȳ = (

∑
i yi)/Ne σy miny maxy

Alleles x̄ = (
∑

i xi)/Ne σx minx maxx
Ratio x/y = (

∑
i

xi

yi
)/Ne σx/y minx/y maxx/y

Fitness ω̄ = (
∑

i ωi)/Ne σω minω maxω

Population statistics
Total number of copies in populationb |y|
Total number of different alleles2 |x|
Absolute frequency of alleles3 mj , j = 1, ..., |x|
Relative frequency of alleles ξj = mj

2Ne
, j = 1, ..., |x|

Effective number of alleles4 |x|eff =
(

|x|∑
j=1

(
mj

|y|

)2
)−1
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3.2.3 Empirical data

Based on data from the 1,000 Genomes project, Brahmachary et al. (2014) analyzed copy
number variation in 193 gene families in three human populations (CEU, CHB, YRI). We
chose three candidates (PSG3, MUC12 and PRR20A) which satisfied the following criteria:

• genes tandemly arrayed

• genes autosomal

• mean copy number between 10 and 20

• one example each with small, intermediate and large copy number variance.

PSG3 (Pregnancy specific glycoprotein 3) is located on the long arm of the particularly
gene rich chromosome 19 (Grimwood et al., 2004). It is a member of the carcinoembryonic
antigen gene family and of the immunoglobulin superfamily and is involved in pregnancy
maintenance. MUC12 (Mucin 12) is a membrane glycoprotein of the mucin family. Mucins
are involved in mucous protection, epithelial cell differentiation and intracellular signalling
and have been recognized having similar evolutionary features as HLA genes (Vahdati and
Wagner, 2016). PRR20A (Proline-rich protein 20A) is a predicted gene located on the long
arm of chromosome 13. It has low Uniprot annotation score with experimental evidence only
at transcript level1.

The available empirical data from this data set can be analyzed in the context of the y-
only model. To estimate the underlying parameters (sx, sy, r) of the y-only model that best
describe the empirical copy number distribution we implemented an EM -like grid search as
follows: we use the data from the African (YRI) population, assuming that it is closest to
recombination-selection-drift equilibrium and least affected by a recent population bottle-
neck (e.g., Schiffels and Durbin (2014); Rafajlović et al. (2014); Spence and Song (2019)).
Individual copy numbers are derived from the data published by Brahmachary et al. (2014)
and calculated by dividing the individual read (“nanostring”, in the authors’ terminology)
counts by the average read count per copy2. This way, we found for MUC12, PSG3 and PRR20A

mean numbers of, respectively, 11.85, 14.94, 19.85 copies per individual in the YRI population
(diploid sample size n = 60). To compare these results with our model, we uniformly sam-
pled 5, 000 parameter combinations of independently chosen sx, sy and r from the product
of initial intervals [1e−6, 5e−2]3. For each parameter combination we calculate the Gamma-
approximation of the equilibrium distribution of the y-only model (see Results) and use the
Kolmogorov-Smirnov (KS) test to calculate the probability that the data are sampled from
this distribution. We choose the top 100 (= 2%) parameter combinations to define the range
of the new parameter intervals to sample from. In each iteration parameter intervals are
shrinking and we terminate this process after 10 iterations to obtain a possibly small range of
the final parameter combinations with highest KS p-value. We then chose the best parameter
combinations for further analysis.

1https://www.uniprot.org/uniprot/P86496
2https://github.com/y-zheng/Recombination-gene-family
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3.3 Results

3.3.1 y-only model

Consider first the y-only model. Each copy is considered a unique and distinct allele. There-
fore, at any time, xi = yi ∀i, and fitness of an individual is a function only of y:

ω = ω(yi) = (1 + sx)(
∑yi−1

k=0 βk
x) × (1 − sy)(

∑yi−3
k=0 βk

y ) .

for all individuals i.
Let y′ be the number of gene copies on a single chromosome, without regard of parental

status, and let pt(y′) be the frequency of chromosomes with y′ copies in an infinitely large
population in generation t.

Choosing parental chromosomes according to their fitness ω(y = ym′ + y′p), the frequency
of y′ changes to

pt+1(y′) = (1 − r)
∑
y′p

qt(y′, y′p) + r
∑

ym′,y′p

qt(ym′, y′p)T (y′, ym′, y′p), (3.4)

where T denotes the trapezoidal distribution and

qt(ym′, y′p) = pt(ym′)pt(y′p) · ω(ym′ + y′p)
ω̄t

is the frequency of the pair (ym′, y′p) after selection. In the last equation ω̄t is mean population
fitness at time t, i.e.

ω̄t =
∑

ym′,y′p

pt(ym′)pt(y′p) · ω(ym′ + y′p),

where the sum runs over all possible pairs (ym′, y′p) ∈ N × N. Therefore, this process can
be thought of as an irreducible aperiodic Markov chain on the state space {1, 2, ...}, which
converges to its unique stationary distribution. Under neutrality (ω ≡ 1), this simplifies to

Proposition 3.3.1. Under (unequal) recombination and under neutrality it holds that

• the expected value of copy number remains constant over time, i.e. ∀t

∞∑
y′=1

y′ · pt+1(y′) =
∞∑

y′=1
y′ · pt(y′) = ... =

∞∑
y′=1

y′ · p0(y′) =: EY ′

• the stationary distribution is given by the discrete kernel of the Gamma-distribution
with shape parameter α = 2 and expected value EY ′, i.e.

pstat(y′) = y′ · exp
{

− 2
EY ′

y′
}

· 1
Z

, (3.5)
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where Z is the normalisation constant given by

Z =
∑
y′

y′ · exp
{

− 2
EY ′

y′
}

=
exp

{
2

EY ′

}
(
exp

{
2

EY ′

}
− 1

)2 .

The proof is given in the Appendix.
Hence, the neutral equilibrium distribution of copy numbers on individuals is given by the
convolution

p̃stat(y) =
∑

y′
1+y′

2=y

pstat(y′
1)pstat(y′

2)

= 1
6(y3 − y) exp

{
− 1

EY
y

}
· 1

Z2 ,

which is the discrete kernel of the Gamma-distribution with shape parameter α = 4 and
expected value EY = 2EY ′ .

Adding selection to the process makes the analysis less straightforward. We note that
the process described by equation (3.4) is still an irreducible Markov chain which has a
stationary distribution. However, determining a closed formula of pstat is not easily feasible
and we resorted to the following approximation.

We choose ω as defined in equation (3.1), assume that |x| = |y| (y-only model) and that
βx = 1 − ε and βy = 1 + ε for some ε > 0. Thus, the fitness function simplifies to

ω(y) = exp{f(y)}, where (3.6)

f(y) = sx + sy

ε
− sx

ε
· e−εy − sy

ε
· eε(y−2).

The Taylor expansion up to order 2, evaluated at y∗ and scaled with ω(y∗)−1 is

T (f(y)) = 1
ω(y∗)

(
ω(y∗) + d

dy
ω(y∗)(y − y∗) + 1

2
d2

dy2 ω(y∗)(y − y∗)2
)

= 1 + 1
2

d2f

dy2 (y∗) · (y − y∗)2

= 1 − εe−ε√
sxsy · (y − y∗)2.

Note, that this coincides with the fitness function introduced by Krüger and Vogel (1975)

ω̃(y) = 1 − s̃(y − y∗)2, (3.7)

when substituting

s̃ = εe−ε√
sxsy .

Hence, the quadratic distance of y from the optimal copy number y∗ determines fitness. It fits
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well with our definition of synergistic epistasis when y is not too far from y∗ (see Figure 3.1B)
and yields a threshold yo = y∗ + 1/

√
s̃ with T (f(y)) < 0 for y > yo.

Therefore, with this quadratic approximation of the fitness function, equation (3.4) be-
comes a finite system of equations, which can be numerically solved with standard iteration
algorithms. Starting with an arbitrary initial distribution we iterate until

∥pt+1 − pt∥TV :=
∑
y′

|pt+1(y′) − pt(y′)| < 0.001,

where ∥·∥TV denotes the total variation and the sum runs from 1 to the maximal y′ given by yo.
After convergence, we calculate the copy number distribution on individuals as convolution
of the copy number distribution on chromosomes.

For fixed parameters the process converges to the same limiting distribution, independently
of initial conditions. Varying the recombination rate leads to different limiting distributions:
it is close to the neutral stationary distribution when r is large; it is sharply peaked, and
centered at y∗, when r is small. The variance is almost vanishing when r < 0.01 sx. Increasing
selection shifts ȳ towards y∗. Generally, the stationary distribution is determined by a balance
of recombination and selection and the relative magnitudes of r, sx and sy. Visual inspection
of the limiting distribution for various parameter choices suggests that it is well approximated
by a Gamma distribution also in the non-neutral case (see, for instance, the three examples
shown in Figure 3.3, lines in blue). We estimate its parameters as follows:

We numerically solved the system of equations (equation (3.4)) for about 50, 000 random
parameter combinations. We kept ε = 0.05 constant and chose r ∈ [0, 0.01], sx ∈ [0, 0.05]
and sy such that sx/sy ∈ [2.5, 18], producing an optimal copy number y∗ between 10 and
30. Then, we calculated mean and variance of the equilibrium distribution for all parameter
combinations. Assuming that the expectation (EY ) of the limiting Gamma distribution is
determined by equation (3.3), we set

ÊY = y∗ = ln(sx) − ln(sy)
2 · 0.05 + 1 .

Assuming r > 0.01 · sx and that its standard deviation scaled by the mean (σ/EY ) depends
on recombination-selection balance, ln(r/sx), we obtain by linear fitting (Figure 3.2A):

σ̂ = y∗ · (0.046 · ln(r/sx) + 0.26) . (3.8)

Furthermore, (EY /σ)2 converges towards the shape parameter (α = 4) of the Gamma
distribution under neutrality, when selection becomes small or recombination becomes large
(Figure 3.2B). Therefore, for given parameters r, sx, sy and ε = 0.05 we use the discrete
kernel of the Gamma-distribution with shape parameter α = (y∗/σ̂)2 and expected value y∗

as an approximation of the equilibrium distribution of the y-only process with selection. Note
that the distribution is uniquely determined by its shape and mean.
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Figure 3.2: A Linear fit of σ/EY on ln(r/sx) (for details see text). Note the strong corre-
lation of ln(r/sx) and σ/EY , with a Pearson correlation coefficient of ρ = 0.97.
The estimated regression line σ/y∗ = 0.046 · ln(r/sx) + 0.26 is shown in red. B
Convergence of the Gamma shape parameter α = (EY /σ)2 towards the value
α = 4, expected under neutrality, when r is increasing or sx is decreasing.

Application of the y-only model to empirical data

To estimate selection coefficients and rates of unequal recombination for the three gene fam-
ilies PSG3, MUC12 and PRR20A we used the EM -like grid search described above. We cal-
culated the KS-test p-value for three distributions: (1) a neutral equilibrium distribution
p̃stat with mean value given by the arithmetic mean of the data, (2) one of the best-fitting
Gamma-distributions with parameters given by the EM -like grid search and (3) the equilib-
rium distribution of the y-only process with the same recombination and selection coefficients
as obtained from the grid search. Sufficiently small p-values indicate a significant difference
from any of the three models, whereas a p-value close to one can be interpreted as a good
approximation of the data. The results are given in Table 3.2 and Figure 3.3. Distributions
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Table 3.2: Parameter estimates for empirical data obtained by EM grid search, with fixed
ε = 0.05, that returned the best KS p-value for the Gamma approximation.

Gene
family

Estimated
parameters p-value of KS-test

Neutral Gamma y-only

PSG3
r = 0.001
sx = 0.04
sy = 0.01

1.4e−9 0.99 0.82

MUC12
r = 0.008

sx = 0.017
sy = 0.006

0.0012 0.99 0.98

PRR20A
r = 0.008

sx = 0.001
sy = 0.00028

0.217 0.98 0.98

of the 100 best parameter combinations for each gene are shown in Figure S11. For PSG3 the
empirical distribution of copy numbers (histogram in Figure 3.3, top) is well approximated by
a Gamma distribution (red line) yielding a KS-test p-value of 0.99. The limiting distribution
under the y-only model still fits fairly well with p = 0.82 (blue line). In contrast, the hypoth-
esis of neutrality can be clearly rejected: the neutral Gamma distribution (equation (3.5))
produces a p-value of 1.4e−9 (black line). The parameter estimates suggest a small recom-
bination rate of about 0.1% per generation per gamete and strong selection (sx = 0.04 and
sy = 0.01), maintaining copy number close to its optimal value. Although the gene family
PRR20A is much more variable than MUC12 (Figure 3.3, middle and bottom) we estimate the
same recombination rate of about 0.8% for both families. However, the difference in their
distributions can be explained by different selection strengths. The estimates in MUC12 are
sx = 0.017 and sy = 0.006 – about half as strong as in PSG3. In contrast, the estimates in
PRR20A are sx = 0.001 and sy = 0.00028, lower by roughly a factor of 40 than in PSG3. While
neutrality can still be clearly rejected in MUC12 (p = 0.0012), it cannot be rejected in PRR20A.
Still, also for this gene family pure neutrality has a much lower explanatory power than do
have models with selection (p = 0.217 vs. p = 0.98). One should keep in mind, however,
that the above estimates depend on our choice of the epistasis parameter ε = 0.05. From
equation (3.3) it is clear that the ratio sx/sy and ε are inversely related. In work dedicated
to data analysis, rather than model development, one may want to include ε (or even βx and
βy separately) among the parameters to be estimated.

1Supplementary material available at https://doi.org/10.1093/genetics/iyac052.
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Figure 3.3: Copy number distribution of three different human genes and their approxima-
tions. Black: Copy number distribution under neutrality p̃stat with EY =14.94,
11.85 and 19.85 for PSG3, MUC12 and PRR20A. Red: Gamma-distribution with pa-
rameters given in Table 3.2, resulting in best KS-test p-value. Blue: Equilibrium
distribution of the y-only model generated from equation (3.4) with parameters
as in Table 3.2.
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3.3.2 Simulation results of the compound model

In scenario (a) we analyzed the effect of different population sizes, selection strengths (a1)
and recombination rates (a2) on the statistics of Table 3.1 at equilibrium. In scenario
(a1) we used sx = 0.01, 0.02, 0.04 (weak, medium and strong selection), with sx/sy = 4 and
ε = 0.05. These parameters were chosen such that the optimal genotype for an individual
is x = y = 15 in all three selection regimes. Population size varied from Ne = 500, 1000,
2000 to 4000 and recombination rate was kept constant at r = 0.01. Results are shown in
Figure 3.4.

Both larger population sizes and stronger selection lead to an increase in population means
x̄ and ȳ (Figure 3.4A and B). Note, that the demographic effect (decrease of drift by increase
of population size) on these quantities is much stronger than the effect by increasing selection.
Both x̄ and ȳ are always below the optimal value of 15. However, doubling Ne has a stronger
effect than doubling selection strength in bringing the population closer to the optimal value.
Essentially the same pattern is observed for the ratio x/y (Figure 3.4C). For example, Ne =
1000, 2000, 4000 with low selection leads to a higher ratio x/y than Ne = 500, 1000, 2000
with intermediate selection. The total (Figure 3.4E) and the effective (Figure 3.4F) number
of alleles scale roughly linearly with Ne. Again, both quantities depend more strongly on
population size than on selection strength. This effect is more pronounced in the total number
of alleles than in |x|eff , which is explained by drift: alleles at low frequency, in particular
newly generated alleles (Neµȳ per generation), are prone to loss when drift is strong. They
count for the total number, but contribute little to |x|eff . In contrast, mean fitness is more
affected by the strength of selection than by Ne. This is because mean fitness depends on two
ingredients: the equilibrium distribution y itself and the weights ωi of its components. Both
are altered by selection. Finally, the frequencies of the most common alleles (Figure S2) are
negatively correlated both with Ne and sx. In summary, allelic diversity at population scale
appears to be driven mainly by Ne.

In scenario (a2) we kept selection at intermediate level (sx = 0.02, sy = 0.005) and
varied the rate of (unequal) recombination from r = 0.002 to 0.05. Results are shown in
Figure 3.5. Increasing recombination decreases x̄ and ȳ, as well as the ratio x/y. Therefore,
it also decreases mean fitness ω̄. Recombination acts here in a similar way as drift: doubling
the recombination rate has the same effect on fitness as halving the population size. This
observation can be interpreted as a recombination load: frequent recombination can generate
chromosomes whose copy number is far away from the optimum. Deviation from the optimal
copy number has an asymmetric effect because of epistasis: a surplus of copies is more harmful
than a deficit (Figure 3.1B), explaining the somewhat counter-intuitive effect that increasing
the recombination rate decreases both total and effective number of alleles in the population.

In scenario (b) we explored the impact of a single instantaneous and short bottleneck.
Starting with an equilibrated panmictic population of constant size N = 2000, population
size was reduced to 1% (= 20) for 5, 10, or 20 generations, then restored to its original
value N and the generation counter reset to t = 0. After that, simulations are carried on for
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Figure 3.4: Scenario (a1) – constant population size. Population statistics at equilibrium:
population mean x̄ (A); population mean ȳ (B); x/y ratio (C); population mean
fitness (D); total number (E) and effective number of alleles |x|eff (F). Varying pa-
rameters: population size Ne and selection coefficient sx. Mutation (µ = 0.0005)
and recombination rate (r = 0.01) are kept fixed. Boxplots based on 500 inde-
pendent replicates. Box coloured in purple indicates a parameter combination
(Ne = 2000, r = 0.01, sx = 0.02, sy = 0.005) shared by scenarios (a), (b), (c)
and (d). Horizontal lines in A-C indicate the optimal copy number in the y-only
model. Horizontal lines in D indicate optimal fitness.

another 10, 000 generations during which the recovery process of the six summary statistics
mentioned above is recorded. Results for different selection strengths are summarized in
Figure 3.6. A longer period of population size reduction results in populations with lower
x̄ and lower ω̄. In contrast, length of the reduction period hardly affects ȳ. Recovery time
correlates positively with the length of the reduction period.

We observed that ȳ and, to a lesser extent, x̄ experience a decrease after the restoration
of population size, and before it returns to its constant equilibrium value. Furthermore, the
total number of alleles recovers much faster than the effective number. The reason is that
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Figure 3.5: Scenario (a2) – constant population size. Population statistics at equilibrium:
population mean x̄ (A); population mean ȳ (B); x/y ratio (C); population mean
fitness (D); total (E) and effective number |x|eff (F) of alleles. Varying param-
eters: population size Ne = 1000, 2000 and recombination rate (r = 0.01 times
the factor indicated on the abscissa). Mutation rate µ = 0.0005 and selection
strength (sx, sy) = (0.02, 0.005) are kept fixed. Boxplots based on 500 indepen-
dent replicates. Box coloured in purple indicates the parameter combination (see
Figure 3.4) shared by scenarios (a), (b), (c) and (d). Horizontal lines as explained
in Figure 3.4.

new alleles are quickly created by mutation, but – while rare – they continue to bias the
effective number of alleles, before equilibrium frequencies are restored. By segmental regres-
sion we found that mean fitness recovers faster than |x|eff (Figure S3 A and B). Furthermore,
populations under stronger selection recover faster. The variation of these statistics among
replicates is shown in Figure S4. Except for total and effective number of alleles, all other
statistics show little among-replicate-variation after about 500 to 1000 generations after the
bottleneck. Variation of the total number of alleles reaches a plateau and then gradually
decreases, while among-replicate-variation of |x|eff is generally small.
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Figure 3.6: Scenario (b) – recovery after a bottleneck. Equilibrium populations with
N = 2000 are reduced to Nred = 20 for a period of 5, 10 or 20 generations
and then restored. During recovery six statistics are traced. A: population mean
x̄; B: population mean ȳ; C: ratio x/y; D: mean fitness ω̄; E: total number of
alleles; F: |x|eff . Red, orange and yellow indicate strong, intermediate and weak
selection. Solid, dashed and dotted lines indicate bottleneck durations of 5, 10
and 20 generations. Each curve is an average across 200 replicates. Horizontal
black lines are equilibria under constant population size.

In scenario (c), we studied the effect of population subdivision and migration. We
simulated reciprocal migration with two sub-populations of equal size, small (N = 500)
and intermediate (N = 1000), starting from pairs of independent equilibrated replicates
from scenario (a). Then, time was reset to t = 0 and migration was turned on with rates
Nm = 0.1, 1 or 10 individuals per generation per direction. Summary statistics x̄, ȳ, mean
fitness ω̄, total number of alleles and |x|eff in the combined super-population were recorded
over time. After about 1500 to 2000 generations, these statistics approached a migration-
drift-selection equilibrium, which is between the means for the panmictic populations of size
Ne = 1000 and Ne = 2000. While the scenario with high migration (Nm = 10) is almost
indistinguishable from the panmictic population with respect to x̄, ȳ and ω̄ (Figure 3.7A-
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Figure 3.7: Scenario (c) – migration. Two separated and equilibrated sub-populations of
size N = 1000 start to exchange migrants at time t = 0. Medium strength of
selection (sx = 0.02, sy = 0.005). Migration rate: 2Nm = 0.1 (green), 1 (cyan)
or 10 (blue) migrants per generation in each direction. (A) population mean x̄;
(B) population mean ȳ; (C) ratio x/y; (D) population mean fitness ω̄; (E) total
and (F) effective number of alleles in the combined super-population. Shown are
mean values across 100 replicates. Black lines indicate mean values (across 500
replicates) in panmictic populations of size Ne = 1000 (lower line) and Ne = 2000
(upper line).

D), there is still a clear deficit in the total and effective number of alleles compared to
the panmictic population, even when the migration rate is high (Figure 3.7E,F). Note also
in this case the initial overshooting of the panmictic equilibrium in the statistics x/y, ω̄

and |x|eff at about 100-200 generations, which is reminiscent of transient “hybrid vigour”.
Variation of these statistics among population replicates does not change appreciably with
time (Figure S5). Similar results are observed for small populations Ne = 500 (Figure S6
and S7).

In scenario (a2) we observed that lower recombination rates lead to an equilibrium of x̄ and
ȳ which are closer to the optimum. A natural question to ask is whether the recombination
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Figure 3.8: Scenario (d) – RRM: recombination rate modification. Populations, which
have reached equilibrium without RRM, are carried on for 50, 000 generations
during which the recombination rate, encoded at a modifier locus, may change
under the influence of selection. For all iterations: Ne = 2000, r = 0.01. Left:
weak (sx, sy) = (0.01, 0.0025); middle: intermediate (0.02, 0.005); right: strong
selection (0.04, 0.01). Shown are trajectories of the recombination rate (in percent
of its original value r = 0.01) for 200 replicates each. The mean across all 200
replicates is shown as a black line.

rate itself maybe subject to selection. Therefore, in scenario (d) a recombination rate
modifier was added to the simple model. Given an equilibrated population which was reached
with r = 0.01 as described in scenario (a), recombination rate modification was switched on,
and time reset to t = 0. Recombination rate was coded by an RRM allele, which can increase
or decrease the current recombination rate by a factor e±0.05 when mutated. Modification
happens per chromosome per generation each with probability p = 0.002 for increase or for
decrease. The RRM locus is thought to reside on the tip of a chromosome without itself being
affected by recombination (Figure 3.1). Simulations were carried on for 50, 000 generations
and runs for each parameter setting of (sx, sy) were replicated 200 times. The results show
that the mean recombination rate (average across all RRM alleles in the population) is
continuously decreasing (Figure 3.8). It decreases more and faster when selection (sx and sy)
is strong. When simulations terminated, the recombination rate was reduced – on average
– to 56%, 41% and 31% of its original value (r = 0.01) and it showed a strongly negative
correlation with population mean fitness (Pearsons’s r = −0.75, −0.83, −0.78) for weak,
intermediate and strong selection, respectively.
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3.4 Discussion

We considered here a model in which two mechanisms, unequal recombination and mutation,
may generate chromosomal diversity. While mutation leads to genetic diversity sensu strictu,
by unequal recombination a chromosome may receive additional, or lose existing gene copies.
Therefore, it is similar, but not identical, to segmental duplication or loss: copies gained
by unequal recombination have their origin in a pairing haplotype, hence may be genetically
diverse upon arrival, while those gained by duplication have their origin in the same haplotype,
hence are genetically identical upon arrival. However, this distinction is negligible, since a
single mutation event already suffices to make two identical copies distinct from each other
when considering the infinite alleles model. Another feature of our model are the two overlaid
components of the fitness function: it decreases with copy number, but increases with allele
number, entailing a subtle and very interesting interaction of recombination and selection.

To gain some analytical insight into copy number dynamics under recombination, we first
considered the neutral case in an infinitely large population. We find copy number of indi-
viduals to be distributed according to the discrete kernel of a Gamma distribution with an
equilibrium mean which is identical to the initial mean at time t = 0 and remains constant
over time. The limiting shape parameter is α = 4, which is identical for all initial configura-
tions. These two properties together uniquely determine the limiting distribution, which is
independent of the shape of the initial distribution and of the recombination and mutation
rates.

Adding selection changes the game. The limiting distribution becomes dependent on both
the recombination rate and the strength of selection, but independent from the initial config-
uration. Still, it is well approximated by a Gamma distribution. The distribution that results
from low selection strength or high recombination converges to the neutral equilibrium.

We inferred selection and recombination parameters for three different human genes, under
the assumption of fixed epistasis ε = 0.05. Our analysis shows that observed copy number
distributions can be well approximated within the framework of our model. Different means
and variances of the distributions can be explained in terms of higher or lower recombination
rates and stronger or weaker selection.

Note, that compound fitness, in which allele diversity is credited, contains a component
of balancing selection: an individual which is heterozygous at any given locus has a higher
fitness than one which is homozygous at the same locus. An important difference between the
model considred here and one-locus models of balancing selection is the existence of gene copy
number variation and unequal recombination. Note, that allelic diversity in the population
can be stably maintained even in the case of allele fixation at single loci. The possibility
to maintain allelic diversity through gene duplication, or unequal recombination, has been
suggested by (Haldane, 1937). It is somewhat surprising that Haldane’s idea has received
only little attention in classical population genetics theory nor in experimental work. To
our knowledge, tests confirming Haldane’s hypothesis were conducted only a few years ago
(Milesi et al., 2017).
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We have shown that a high recombination rate has a negative effect on allelic diversity and
resultant mean fitness. The reason is twofold: (1) a higher rate of unequal recombination
produces individuals with much higher or lower copy number than the optimum, which have
reduced fitness; (2) low recombination increases the likelihood for highly unfit homozygotes
to appear, thus improving the efficiency of selection.

Populations which experienced strong bottlenecks are at risk of inbreeding depression, and
loci under balancing selection are particularly affected (Frankham et al., 2014). Random
loss of alleles increases homozygosity and consequently reduces fitness. This can affect and
delay the recovery of genetic diversity even after population size has recovered (Miller and
Lambert, 2004). In this study, we explored the effect of some parameters on the speed and
process of bottleneck recovery at loci under diversifying selection. Both selection strength
and bottleneck length influence the process. Relatively longer bottlenecks produce a tempo-
rary reduction in x̄, ȳ and mean fitness. The most likely reason is that high homozygosity
results in selection towards haplotypes with fewer copies. Selection is more powerful after,
than during, the bottleneck,when population size has recovered, but copy number recovery
may lag behind. However, this somewhat paradoxical effect of fitness reduction at the initial
phase of bottleneck recovery is only a short term effect, and – at least in part – due to the
instantaneous, rather than gradual, restoration of population size in our model. Compared to
fitness, |x|eff is recovering even more slowly: for fitness to recover it suffices that new alleles
appear and survive. But |x|eff has recovered only when allele frequencies have reached their
equilibrium values. Therefore, |x|eff is a more sensitive statistic to test for deviation from
equilibrium.

Simulations of scenario (c) show that fitness under population subdivision with moderate
migration reaches an equilibrium which is intermediate between those under panmixis on the
one hand and complete isolation on the other. While a short boost of hybrid vigour exists,
we do not see a positive effect from limiting migration compared to panmixis. An earlier sim-
ulation study (Schierup et al., 2000) showed that the allelic diversity is largely insensitive to
migration rates, but low-migration scenarios result in alleles with more divergent sequences.
Additionally, balancing selection in the form of heterosis could increase the effective migra-
tion rate because migrant haplotypes are more likely to be successful in this case than under
neutrality (Ingvarsson and Whitlock, 2000). Diversifying selection on MHC alleles has been
shown to increase divergence between subpopulations, while diversity within subpopulations
is still mostly governed by drift (Herdegen et al., 2014). MHC alleles and genes are also
known to be shared among species through introgression, leading to restoration of diversity
previously lost by drift (Dudek et al., 2019). In addition to generic balancing selection also
local adaptation, i.e. the fixation of alleles which are adapted to specific subpopulations, may
increase allelic diversity between populations (Ekblom et al., 2007). However, this effect is
not considered in the model presented here, where selection operates only on the number of
distinct alleles.
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When the recombination rate is allowed to change over time we observe a trend towards
lower rates. It is driven by selection and happens on a realistic population genetic timescale
of some thousand generations. However, there is little empirical knowledge about (unequal)
recombination rates in multi gene families. For example, in the human MHC locus the
recombination rate is only about a third of the average genomic background rate (de Bakker
et al., 2006; Traherne, 2008). On the other hand, studies on bovids (Schaschl et al., 2006)
and horse (Beeson et al., 2019) show the opposite: high recombination in the MHC and
olfactory receptor loci. In contrast again, the values reported for chicken seem to depend on
mapping methodology (Fulton et al., 2016). Results from sheep (Petit et al., 2017) suggest a
high “historical” (estimated from population data), but a low “meiotic” (from pedigree data)
recombination rate, which suggests a recent change in time. From humans again, it is well
known that recombination hotspots have a very fast turn-over time and are distinct in different
subpopulations (Lam et al., 2013). Also, recombination rates may substantially differ in
females and males – one example is the long arm of human chromosome 19 (Grimwood et al.,
2004). Additionally, the presence of gene conversion makes the estimation of (reciprocal)
recombination rates difficult (Martinsohn et al., 1999; Hosomichi et al., 2008). Anyway,
current experimental results do not reveal a consistent picture as to whether there is a benefit,
or trend, to suppress recombination in large multi gene families.

Caveats and future direction

While our model has incorporated multiple genetic processes, it is likely still far away from
the details of how multi gene families evolve in real-life populations. One issue, not considered
here, is gene conversion where an allele, or a fragment thereof, overwrites another one in a
pairing chromosome. For example, gene conversion is known to play an important role in
maintaining MHC diversity (Martinsohn et al., 1999; Högstrand and Böhme, 1999; Wiehe
et al., 2000; Bahr and Wilson, 2012).

Also, our selection model assumes time-independent fitness and each allele provides the
same selective benefit. This corresponds to an ideal situation where external factors are
ubiquitous and stable. In practice, however, the selective benefits of certain alleles do change
together with a changing environment. Evolving pathogens, for instance, lead to arbitrarily
complex co-evolution dynamics (Ejsmond and Radwan, 2009; Tellier et al., 2014). Further-
more, population structure may interact with diversifying selection in a complex or even
counter-intuitive way. In humans it is known that different populations harbour different
MHC alleles, likely driven by pathogen diversity (Manczinger et al., 2019). A hypothesis is
that multiple subpopulations act as reservoirs of alleles and backups for each other, allow-
ing for quick response against new pathogens (Lenz et al., 2009; Linnenbrink et al., 2018).
Interaction between population structure and local adaptation needs to take into account
subpopulation sizes and migration networks. For instance it was shown that subpopulation
sizes can affect local allelic diversity (Mason et al., 2009).
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Finally, and perhaps most importantly, gene function decides on fitness. On population
genetic time scales pseudogenization plays an important role for the evolution of multi gene
families (Hess, 2000; Menashe et al., 2006). Although eventually removed by selection, pseu-
dogenes can persist in real-life populations with high frequency. Conditions under which
pseudogenes appear and persist can be identified in accordingly modified models. Structural
and functional aspects being included together with gene conversion, temporally or locally
varying selection strengths into theoretical models will help to address open questions, but
remains to be considered in future work.
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Appendix

Proof of (3.2). Using the closed form formula of the geometric series and the fact that x = y,
we can write the fitness function ω = (1 + sx)(

∑x−1
i=0 βi

x) × (1 − sy)(
∑y−3

j=0 βj
y) as a function of y

that equals

f(y) = (1 + sx)
1−β

y
x

1−βx × (1 − sy)
1−β

y−2
y

1−βy .

Defining

a := (1 + sx)
1

1−βx , b := (1 − sy)
1

1−βy ,

we find that

f ′(y) = −
(
ln(a) ln(βx) · βy

x + ln(b) ln(βy) · βy−2
y

)
· a1−βy

x · b1−βy−2
y .

Setting f ′(y∗) = 0 leads us to

− ln(a) ln(βx)︸ ︷︷ ︸
:=p1

·βy∗
x = ln(b) ln(βy) 1

β2
y︸ ︷︷ ︸

:=p2

·βy∗
y

⇒ p1βy∗
x = p2βy∗

y

⇒ y∗ = ln(p1) − ln(p2)
ln(βy) − ln(βx) ,

and inserting the expressions for p1, p2, a, b gives the result.

Proof of Proposition 3.3.1. We note that the parental status of the chromosomes do not
matter in the following calculations. Therefore, we use the notation y′

(·) instead of ym′ and
y′p. Since the T describes the distribution of the sum of two uniform random variables, we
observe that the expected value is given by

∑
y′

y′ · T (y′, y′
1, y′

2) = E [B1 + B2 − 1] = y′
1 + 1

2 + y′
2 + 1

2 − 1 = y′
1 + y′

2
2 ,
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and therefore conclude that

∑
y′

y′ · pt+1(y′)

= (1 − r)
∑
y′

y′ · pt(y′) + r
∑
y′

y′ ·
∑

y′
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2
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1)pt(y′

2)y′
1 + y′

2
2

= (1 − r)
∑
y′

y′ · pt(y′) + r
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1
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2 pt(y′
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∑
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1
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1)
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=
∑
y′

y′ · pt(y′).

We define a = 2/EY ′ and note that the stationary distribution is independent from the
recombination rate r > 0, i.e.

pstat(y′) = (1 − r)pstat(y′) + r ·
∑

y′
1,y′

2

pstat(y′
1)pstat(y′

2)T (y′, y′
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Therefore, we find that
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)
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=y′ · e−ay′ · (ea − 1)2

ea

=pstat(y′),

where the detailed calculations of (∗) are shown below.
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Proof of (*). Using the substitution k = (y′
1 + y′

2 − y′) we find that

∑
y′

1,y′
2

pstat(y′
1)pstat(y′

2)T (y′, y′
1, y′

2)

= (ea − 1)4

e2a
·
[ y′∑

y′
2=1

y′
2 · e−ay′

2

∞∑
y′

1=y′+1
e−ay′

1 +
∞∑

y′
2=y′+1

e−ay′
2

y′∑
y′

1=1
y′

1 · e−ay′
1

+ y′ ·
∞∑

y′
2=y′+1

e−ay′
2

∞∑
y′

1=y′+1
e−ay′

1 +
y′∑

y′
2=1

e−ay′
2

y′
2∑

y′
1=y′−y′

2

(y′
1 + y′

2 − y′)e−ay′
1

]

= (ea − 1)4

e2a
·
[
2e−a(y′+1)

1 − e−a
·
(

− ∂

∂a

)(1 − e−a(y′+1)

1 − e−a
− 1

)
+ y′ ·

(
e−a(y′+1)

1 − e−a

)2

+
y′∑

y′
2=1

e−ay′
2

y′
2∑

k=0
k · e−a(k+y′−y′

2)
]

= (ea − 1)4

e2a
·
[
2e−a(y′+1)

1 − e−a
·

e−ay′
(
ea(y′+1) − ((y′ + 1)ea + y′

)
(ea − 1)2 + y′ ·

(
e−a(y′+1)

1 − e−a

)2

+ e−ay′
y′∑

y′
2=1

(
− ∂

∂a

)(1 − e−a(y′
2+1)

1 − e−a
− 1

)]

= (ea − 1)4

e2a
·
[

e−2ay′
(
2ea(y′+1) − (y′ + 2)ea + y′

)
(ea − 1)3

+ e−ay′ ·
(

− ∂

∂a

)y′ − e−a

(
1−e−a(y′+1)

1−e−a − 1
)

1 − e−a


]

= (ea − 1)4

e2a
·
[

e−2ay′
(
2ea(y′+1) − (y′ + 2)ea + y′

)
(ea − 1)3

+
e−2ay′

(
y′ea(y′+2)+(y′+2)ea−(y′+2)ea(y′+1)−y′

)
(ea − 1)3

]

=
(ea − 1) · e−2ay′ ·

(
y′ea(y′+2) − y′ea(y′+1)

)
e2a

= y′ · e−ay′ · (ea − 1)2

ea
.

59



APPENDIX

Table 3.3: Parameters used in simulations of the compound model.
Scenario (a) Single population of constant size Ne

Ne: 500, 1000, 2000, 4000
µ: 0.0005

(a1)
{

(sx, sy): (0.01, 0.0025), (0.02, 0.005), (0.04, 0.01)†

r: 0.01

(a2)
{

(sx, sy): (0.02, 0.005)
r: 0.002, 0.005, 0.01, 0.02, 0.05
replicates: 500 per parameter combination
recording: every 100-th for 20000 generations

†: the three levels of selection strengths are referred to as “weak”, “intermediate” and “strong” in the text

Scenario (b) Instantaneous bottleneck
N†

0 : 1000, 2000{
N‡

b : 20
duration : 5, 10, 20 generations
µ: 0.0005
(sx, sy): (0.01, 0.0025), (0.02, 0.005), (0.04, 0.01)
r: 0.01
replicates: 200 per parameter combination
recording: every 10-th for 5, 000 generations after bottleneck

†: population size before and after bottleneck;
‡: population size during bottleneck

Scenario (c) Two populations of constant size Ne with two-way migration†

Ne: 500, 1000
Ne m: 0.1, 1, 10
µ: 0.0005
(sx, sy): (0.01, 0.0025), (0.02, 0.005), (0.04, 0.01)
r: 0.01
replicates: 100 pairs per parameter combination
recording: every 10-th for 2, 000 generations

†: at rate m per individual per generation per direction

Scenario (d) Single population of constant size Ne with recomb. rate modifier ρ
Ne: 1000, 2000
µ: 0.0005
(sx, sy): (0.01, 0.0025), (0.02, 0.005), (0.04, 0.01)
base rate ro: 0.01
initial ρ0: 1 for all chromosomes
modification† of r = ro · ρ according to ρt+1 = ρt (p = 0.996)

ρt+1 = ρt · e0.05 (p = 0.002)
ρt+1 = ρt · e−0.05 (p = 0.002)

replicates: 200 per parameter combination
recording: every 100-th for 50, 000 generations

†: ρ changes from ρt to ρt+1 per generation per chromosome with probability p
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Abstract

Genes with multiple copies are likely to be maintained by stabilizing selection that puts a
bound to unlimited expansion of copy number. We designed a model where copy number vari-
ation is generated by unequal recombination, which fits well to a number of genes, surveyed
in three human populations. Based on this theoretical model and on computer simulations,
we were interested in answering the question whether gene copy number distribution in the
derived European and Asian populations can be explained by a purely demographic scenario
or whether shifts in the distribution are signatures of adaptation. Although copy number
distribution in most of the analyzed gene clusters can be explained by a bottleneck as in the
out of Africa expansion of homo sapiens 60-10kyrs ago, we identified several candidate genes,
for instance AMY1A and PGA3, whose copy numbers are likely to be selected differently among
African, Asian and European populations.
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4.1. INTRODUCTION

4.1 Introduction

Gene copy number variation (CNV) refers to the presence of multiple copies of a gene family
within a genome, resulting from duplications, deletions, or rearrangements. Combined with
their high mutation rate CNVs constitute a significant driver of genomic variability that
allows for rapid adaptive evolution in response to environmental changes (Sudmant et al.,
2015a; Brahmachary et al., 2014; Carvalho and Lupski, 2016; Iskow et al., 2012; Sebat et al.,
2004).

A well studied example of CNV within human population is provided by the salivary
amylase gene, whose variations in the number of copies are hypothesized to correlate with
the extent of dietary starch consumption not only in human but also in other species (Pajic
et al., 2019; Atkinson et al., 2018; Carpenter et al., 2015; Usher et al., 2015; Falchi et al.,
2014; Perry et al., 2007).

In general, copy number variation may result from different evolutionary forces acting
upon them. Demographic events, such as population migrations and expansions, can lead
to changes in gene frequencies and distributions over time. Simultaneously, natural selection
acts on genetic variations, favoring advantageous alleles and promoting their proliferation
within populations.

It is known that both demographic effects and selection may produce similar patterns in
single nucleotide as well as in structural variants, making it difficult to disentangle these
forces (Lohmueller, 2014; Stajich, 2004). For SNP or allele frequency data, there have been
well-developed statistics (e.g., Tajima (1989); Fu (1997)) that are “standardized ” so that a
genomic baseline can be established, from which loci under selection may be detected. How-
ever, such a genomic baseline is not available for gene copy number variation data. Therefore,
we resorted to a more basic approach involving modelling and computer simulations.

We have recently examined the evolutionary dynamics of multi-copy gene families with re-
spect to selective pressure and unequal recombination (Otto et al., 2022). This study focused
on analyzing the impact of stabilizing selection on gene copy numbers, while considering
the role of recombination as a randomizing mechanism that introduces variability within the
population.

By expanding this model, we aimed to assess whether gene copy number alterations ob-
served within human populations could be solely attributed to demographic events or whether
selective pressures have played a role in shaping these variations.

In this study, we conducted extensive simulations under various scenarios of human demog-
raphy and selective changes. By disentangling the effects of these two forces, we sought to gain
a deeper understanding of the evolutionary processes driving gene copy number variation in
human populations. Based on empirical data of human gene copy numbers we identified sev-
eral candidate genes, whose copy numbers are likely to be selected differently among African,
Asian and European populations.
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4.2. MATERIALS AND METHODS

4.2 Materials and Methods

4.2.1 Gene copy number variation in human

We started with the dataset provided by Brahmachary et al. (2014). Using Nanostring tech-
nology they estimated gene copy numbers of 180 gene-families in 165 individuals of three
populations (60 African Yuroba - YRI, 60 Central Europe - CEU and 45 Asia - CHB) based
on data collected in the framework of the 1,000 Genomes Project (Sudmant et al., 2010).
While some of these loci showed copy numbers of > 100 copies (DUX4 even up to 600), we
focused on intermediate copy numbers and removed all satellite loci, genes on sex chromo-
somes, genes with minimum copy number below 2, and genes with mean copy number (in
YRI) below 5 or above 60. For genes that have two primer sets, only one is taken. We used
t-test and f -test statistics to select gene families with significant differences in mean and
standard deviation between either YRI-CHB or YRI-CEU comparisons and removed those
that showed no statistical evidence in any of these. This resulted in 42 gene families, see
Table 4.1. An example of the copy number distribution of four gene families is shown in
Figure 4.1.
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Figure 4.1: Gene copy number distribution in four exemplary gene famiies in three human
populations, CEU, CHB, YRI. Data adapted from (Brahmachary et al., 2014).
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Table 4.1: Differences in mean and variance between populations. 0 indicates no significant
change, + a significant increase and – a significant decrease (t- and f -test, α =
0.05).

Gene YRI mean CEU mean CHB mean YRI sd CEU sd CHB sd
AMY1A 8.628 0 9.151 + 11.128 1.907 + 2.713 + 3.35
ANKRD20A3 26.414 + 29.148 + 29.904 1.804 0 1.718 0 1.698
BOLA2B 7.235 - 6.679 - 6.49 1.012 0 0.914 0 0.839
CBWD3 12.146 0 12.374 + 13.068 0.995 0 0.949 + 1.81
CDC37P1 14.941 + 19.977 0 16.582 4.11 + 5.619 + 5.579
CLEC18A 7.799 + 8.362 0 7.932 1.331 0 1.216 0 1.392
CSH 6.738 + 7.182 + 7.474 0.497 0 0.555 0 0.575
DEFA1 7.442 0 7.891 0 7.056 2.643 - 1.671 - 1.604
DEFB130 5.081 + 5.315 0 5.243 0.562 0 0.532 0 0.462
FAM72A 6.914 + 7.573 + 7.561 0.617 + 0.86 0 0.651
FAM75A1 11.859 0 11.972 + 13.362 1.473 0 1.391 + 2.019
FAM75A5 11.693 0 11.522 + 12.533 1.115 0 1.197 + 1.751
FCGBP 5.282 + 5.693 + 5.79 1.291 - 0.678 0 1.046
FOXD4L2 13.013 + 13.694 + 14.55 1.015 0 0.994 + 1.877
GOLGA6L9 27.683 0 28.586 + 29.181 2.615 0 2.532 0 2.59
GOLGA8G 29.209 + 31.641 + 30.37 3.065 0 2.783 0 2.35
GUSBP1 12.95 + 15.886 + 13.987 2.249 0 2.585 0 2.213
HIST2 8.436 + 8.709 + 8.894 0.528 0 0.673 0 0.644
LIMS3 5.829 - 5.408 - 5.661 0.346 0 0.354 0 0.39
LOC23117 50.194 0 50.304 - 48.639 3.685 0 2.963 0 2.789
LOC653606 6.56 0 6.403 - 5.999 0.486 0 0.621 + 0.917
MUC12 11.845 + 14.098 0 12.123 2.586 0 2.01 - 1.803
NBPF11 49.963 - 48.002 0 48.68 4.203 - 3.114 0 3.311
NBPF16 45.25 0 46.436 + 47.006 4.706 0 5.023 0 3.988
NPIP 51.171 - 49.488 - 48.938 2.16 0 2.327 0 2.224
PGA3 7.044 - 6.181 + 8.473 1.205 + 1.565 0 1.353
PPIAP21 43.141 + 48.632 + 49.493 3.765 0 4.315 0 3.881
PRAMEF14 10.516 + 11.835 + 11.888 1.295 + 2.246 + 1.937
PRAMEF20 7.253 0 7.415 + 7.576 0.566 0 0.723 + 0.924
PRAMEF5 17.844 - 16.475 - 15.804 1.721 + 2.386 + 2.578
PRAMEF8 5.919 0 5.787 0 5.842 0.652 + 1.281 0 0.819
PRR11 6.868 + 8.298 + 8.305 0.923 0 0.965 0 0.708
PRR20A 20.639 - 17.284 - 14.85 6.903 - 5.288 0 5.584
PSG3 14.943 + 15.624 0 15.087 1.314 0 1.238 + 1.843
RGPD1 13.959 0 14.037 0 14.151 0.791 + 1.309 + 1.266
SPDYE3 34.611 - 31.656 - 32.828 2.836 - 2.105 0 2.617
SULT1A3 7.627 0 7.406 - 7.017 1.197 0 1.087 0 0.904
TBC1D3 45.515 - 33.191 - 39.306 6.337 0 6.888 + 8.381
TCEB3C 33.02 - 28.574 - 25.895 7 0 7.383 0 6.299
TP53TG3 9.172 0 8.904 - 6.735 1.825 0 2.08 0 1.666
TRIM49L1 12.353 + 14.078 + 14.112 1.664 0 2.06 0 1.874
ZNF658B 5.544 + 6.273 + 6.647 0.727 0 0.827 + 1.01
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4.2.2 Unequal recombination model

In a recently developed model we considered unequal recombination and selection to describe
the evolution of tandem gene arrays (Otto et al., 2022). We shortly summarize the main
findings. Consider two chromosomes with gene arrays of size y1 and y2. A recombination
event happens at rate r and may produce a gamete of gene array size according to the
trapezodial distribution, such that

Prob[y|y1, y2] = 1
y1y2



0, y < 1

y, 1 ≤ y < min(y1, y2)

min(y1, y2), min(y1, y2) ≤ y < max(y1, y2)

y1 + y2 − y, max(y1, y2) ≤ y < y1 + y2 − 1

0, y ≥ y1 + y2

.

See Figure 4.2A for an illustration. We apply a fitness function, where each newly arising
copy has a positive, yet decreasing benefit sx. This is motivated by assuming a beneficial
effect, yet with diminishing returns, either of increased gene dosage or of increased allelic
diversity within an individual (Otto et al., 2022). At the same time, we assume additional
copies to be selected against with an increasing selective disadvantage sy. This is motivated
by assuming an increasing cost of replication, of gene processing and of maintaining genome
integrity. Both effects are cast in a double-epistatic fitness function with two selection coef-
ficients (sx, sy), governed by a single epistasis parameter (ε). To avoid the trivial long-term
evolution equilibrium of one copy, we assume sx > sy. Furthermore, we assume ε = 0.05 to
be constant in the following.
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Figure 4.2: A. Sketch of the unequal recombination process. Starting with two chromosomes
with y1 = 5 and y2 = 4 gene copies, two breaking points are chosen. One of the
recombinants is then propagated. Its copy number y = 6 is Trapezodial as shown
in (Otto et al., 2022). B. Example of the fitness function ω(y) equation (4.1) with
ε = 0.05, sx = 0.05, sy = 0.0025, which leads to an optimal copy number yopt ≈ 8
copies.
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Summarizing, fitness of a diploid individual with total gene copy number y is given by

ω(y) = exp
{1

ε

(
(sx + sy) − sx · e−εy − sy · eε(y−2)

)}
(4.1)

This leads to an optimal copy number yopt of

yopt = 1 + log(sx/sy)
2ε

, (4.2)

which is determined by the ratio sx/sy when ε is kept fixed. See Figure 4.2B for an example.
The population is then simulated according to a Wright-Fisher model with non-overlapping
generations and with selection and recombination described as above. It was shown, that
in the deterministic model the equilibrium copy number distribution is centered around yopt

and is well approximated by a Gamma distribution (Otto et al., 2022). Furthermore, it holds
that the coefficient of variation CV = σ/ȳ is correlated to the logarithm of the recombination
- selection ratio log(r/sx). With strong selection and low recombination the distribution
is tightly distributed around the optimal value, whereas higher r and lower sx lead to a
widespread distribution. Therefore, we introduce two new parameters:

• qS = sx/sy, the ’selection ratio’, which determines the optimal copy number, such that
for ε = 0.05 we find

yopt = yopt(qS ) = 1 + 10 · log(qS )

• qR = r/sx, the ’recombination/selection ratio’, which measures the randomness pro-
duced by the unequal recombination process versus the selective pressure of the fitness
function and therefore determines the coefficient of variation CV = σ/ȳ of the equilib-
rium distribution.

4.2.3 Regression

To analyze the equilibrium distribution of the unequal recombination process under drift,
we simulated the population evolution under different parameter settings. Population size is
kept at N = 5, 000 and assumed to be at an initial state of 5 copies on each chromosome.
The different input parameters are given in Table 4.2.

Together, they define 324 triples r, sx, sy. Additionally, we generated 160 random pairs
such that qR is between 0.01 and 5 and yopt is between 4 and 60 and combined them with

Table 4.2: Parameters for regression simulations.
4 recombination rates r 0.1%, 0.2%, 0.5% and 1%
9 recombination ratios qR = r/sx 0.01, 0.02, 0.05, 0.1, 0.5, 1.0, 2.0, 5.0
9 optimal copy number values yopt 10, 15, 20, 25, 30, 35, 40, 45, 50
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Table 4.3: Estimates of selection coefficients sx, sy under four recombination rates r =
0.001, ..., 0.01 based on regression equation (4.3). The displayed gene families are
the ones of Figure 4.1 for all three populations. Values in brackets are out of the
range 0.001 < sx < 0.1 in YRI and hence not used in simulations.

r = 0.001 r = 0.002 r = 0.005 r = 0.01
Gene Pop Mean SD yopt sx sy sx sy sx sy sx sy

AMY1A CEU 9.1511 2.7133 9.2708 0.0012 0.0005 0.0025 0.0011 0.0062 0.0027 0.0125 0.0055
CHB 11.128 3.3503 11.282 0.0011 0.0004 0.0022 0.0008 0.0054 0.0019 0.0109 0.0039
YRI 8.6279 1.9074 8.7386 0.0048 0.0022 0.0097 0.0045 0.0242 0.0111 0.0483 0.0223

PGA3 CEU 6.1808 1.5646 6.2491 0.0029 0.0017 0.0058 0.0035 0.0146 0.0086 (0.0292) (0.0173)
CHB 8.4731 1.3526 8.5811 0.0144 0.0068 0.0289 0.0135 0.0722 0.0338 (0.1445) (0.0677)
YRI 7.0444 1.2053 7.1277 0.0122 0.0066 0.0245 0.0133 0.0611 0.0331 (0.1223) (0.0663)

SULT1A3 CEU 7.4058 1.0872 7.4953 0.0186 0.0097 0.0373 0.0195 0.0932 0.0487 (0.1865) (0.0974)
CHB 7.0165 0.9041 7.0993 0.0259 0.0141 0.0518 0.0282 0.1295 0.0704 (0.2591) (0.1408)
YRI 7.6269 1.1971 7.7202 0.0155 0.0079 0.0311 0.0158 0.0774 0.0395 (0.1548) (0.0791)

DEFA1 CEU 7.8911 1.6708 7.9889 (0.0058) (0.0029) (0.0116) (0.0058) 0.0291 0.0145 0.0581 0.0289
CHB 7.0561 1.6041 7.1396 (0.0045) (0.0024) (0.0091) (0.0049) 0.0225 0.0122 0.0451 0.0244
YRI 7.4421 2.6428 7.5321 (0.0005) (0.0002) (0.0009) (0.0005) 0.0023 0.0012 0.0046 0.0024

the four recombination rates, leading to a total parameter set of 964 combinations, where
we disregarded those triples with selective strengths sx > 0.1 to keep a realistic parameter
range.

For each of this parameter combinations, we evolve the population under the given selection
scheme for 5 million generations. The first 200,000 generations were discarded as burn-in and
the population statistics (mean copy number ȳ and standard deviation σ) are recorded every
20,000 generations.

In total, this results in ≈ 185, 000 data points, which we used to determine the relationship
of input parameters (r, sx, sy) and output population statistics (ȳ, σ).

As indicated in (Otto et al., 2022) we suggest a mean copy number ȳ close to its optimal
value yopt and a correlation of CV to log(qR). Indeed, with r2-values of 0.9842 and 0.9088 we
find

ȳ = 0.0379 + 0.983 · yopt (4.3)

CV = σ

ȳ
= 0.323 + 0.0566 · log(qR) − 0.00152 · yopt − 0.000036 · log(qR) · yopt

We calculated the qS and qR ratios based on ȳ and CV from gene copy numbers (see Tab 4.1)
using the regression formula (4.3) with four recombination rates r = 0.001, 0.002, 0.005 and
0.01. Results for the four candidate genes shown in Figure 4.1 are given in Table 4.3.

4.2.4 Demography simulations

To determine whether significant changes of mean and variance of the copy number distribu-
tion (Table 4.1) can be explained by demographic history of human populations, we examined
in total 6 different scenarios (enumerated as I - VI), see Figure 4.3.
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Simulation of the bottleneck model First, we ran a simple bottleneck model of three
different population reductions. Each is divided into three phases: (1) Burn-in phase. For
each gene we used the estimated (r, sx, sy)-triple based on the dataset from YRI. These
parameters were chosen as input to produce an equilibrium population of N = 10, 000 by a
burn-in process of 200,000 generations. ‘Independent’ equilibrium populations are produced
by recording the population state every 20,000 generations. (2) Bottleneck. From equilibrium
we reduced the population size to N = 100, 500 or 1, 000, denoted scenario I, II and III, and
kept it such for 5,000 generations. (3) Recovery phase. At the end of the bottleneck, the
population is reset to N = 10, 000 and the copy number distribution is recorded every 50
generations until generation 1000 after the bottleneck. We ran the bottleneck simulations I
- III on all gene families given in Tab 4.1, with recombination rates r = 0.001, 0.002, 0.005
and 0.01, and discarded parameter combinations with sx outside the interval [0.001, 0.1]
in YRI. This gives a final total of 42 gene families and 95 gene-r combinations. For each
gene, recombination rate and bottleneck population size combinations, 10,000 replicates are
produced (from 100 ‘independent’ starting equilibria).

We then traced mean and CV along the recovery phase and compared these with the
empirical data from CHB and CEU populations.

Simulation of the human population history A more realistic population history of hu-
man is given by the Genetic Algorithm for Demographic Model Analysis (GADMA) (Noskova
et al., 2020), which also includes migration between subpopulations. We ran simulations on
four candidate genes (AMY1A, PGA3, SULT1A3, DEFA1) with the following modification of
the GADMA-demography: As ancestral population (N = 9, 900 in GADMA), we used the
equilibrium populations (N = 10, 000) from the previous section. Therefore, we started the
simulation 5992 generations before present, roughly corresponding to the onset of the ‘out-
of-Africa’ expansion, when the Eurasian population split from the ancestral population and
experienced a sharp bottleneck. To reduce computation time, we did not simulate the contin-
ued evolution of the African (YRI) population, since we assumed it to be in equilibrium; for
migration from YRI to Eurasian populations, we drew samples from the ancestral population.
At 896 generations before present, CEU and CHB split from each other and started to evolve
including reciprocal migration and exponentially increasing population size. In the following,
we refer to this simulation as scenario IV. At ‘present’, copy number distributions (mean and
variance) were recorded. For each gene and recombination rate combination, 10,000 replicates
were produced.

We also ran the same population model with a change of the selection parameter either
at 500 generations or 896 generations before present (the latter being the CEU/CHB split
time). The new selection parameters (sx and sy) are different for CEU and CHB populations,
and are estimated from present CEU/CHB distributions (see Table 4.3). These simulations
are hereafter called scenario V (selection change 500 generations before present) and VI (896
gpb).
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Burn-in phase
Equilibrium N=10,000

Scenario I: N=100

Scenario II: N=500

Scenario III: N=1,000

Eurasian bottleneck
with migration
(Scenario IV - VI)

Scenario V: Adaptation
500 gen before present

Scenario VI: Adaptation
896 gen before present

YRI

CEU

CHB

1,000 gbp6,000 gbp

Time in generations
before present

Figure 4.3: Illustration of simulated demography scenarios. The height of the blue boxes
denote the population size. Scenario I-III cover a simple bottleneck lasting 5,000
generations, whereas scenario IV-VI are modifications of the GADMA-model with
migration between subpopulations and change of selection parameters (indicated
by red stars) in scenario V and VI. The gray color in the YRI population indicates,
that it is at equilibrium.
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4.3 Results and Discussion

In this study, we conducted an analysis of multicopy gene family evolution using a model
that incorporates unequal recombination and selection. Our investigation aimed to examine
the copy number changes observed in subpopulations of Europe, Asia, and Africa and to
determine whether these changes could be attributed solely to demographic factors or if
additionally selective pressures played a significant role. Our findings reveal that the observed
copy number variations in several genes cannot adequately be explained by demographic
processes alone, suggesting the involvement of selection.

Based on the data of (Brahmachary et al., 2014), we chose 42 gene families of intermediate
copy number that show significant differences in their distribution among different popula-
tions (Table 4.1). This dataset relies on phase I of the 1000 Genomes project and – despite
of been published almost a decade ago – turned out to be most suitable for our analysis.
More recent data from the human pangenome project still lack phasing and a sufficiently
large sample size across different populations (Liao et al., 2023).

Using equation (4.3), we ran the simple bottleneck scenarios I-III of in total 95 parameter
combinations (r, sx, sy), to see whether population size changes can explain the differences
in copy number distribution. Figure 4.4 shows mean gene copy number of 10,000 simulated
bottleneck populations over time for one chosen gene (here: PGA3). Gray boxes indicate the
centerd 50% quantile, white the 95% and the whiskers 99% quantiles. With strong bottleneck
(reduction to N = 100 for 5,000 generations) and under low recombination and hence weak
selection (r = 0.001, and qR = r/sx, qS = sx/sy constant) we find the widest variation
among the 10,000 replicates. Higher r and stronger selection shift the mean value back to the
one of YRI population, which was the basis of the parameter estimates. In this particular
example, we find compared to YRI (black horizontal line) a higher mean copy number of
PGA3 in CHB (red line) and a lower mean value in CEU (blue line). It is the only gene in
our chosen set, that shows opposite direction of significant mean copy number change. Only
under strong bottleneck and low recombination these changes can be explained with same
selection parameters as in the ancestral population and lay within the 99% quantile.

An overview of all 95 bottleneck results is given in Table 4.4. We consider scenario I – the
strongest bottleneck – and the time point after 1,000 generations of recovery (i.e. first row
of Figure 4.4, last boxplot of each column). If the mean or resp. CV lays within the 95%
quantile, we indicate non-significant differences with a 0. Significant changes are marked
with a single ∗ (α = 5%) or double asterisk ∗∗ (α = 1%). As an example, we find for PGA3

a mean value which is significantly smaller in CEU than in YRI (marked with –). With
r = 0.001, this might be explained by a bottleneck (denoted by 0), whereas for r = 0.002 and
r = 0.005 we find a significant difference (∗∗) and the bottleneck explanation to be highly
unlikely. Higher recombination r = 0.01 led to sx values greater than 0.1 in CHB and YRI
(see Tab 4.3) and hence was omitted.

From the candidates with a significant difference in mean or variance we selected the three
genes coding for digestive enzymes, AMY1A, SULT1A3, PGA3, and the defense gene DEFA1 for
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Table 4.4: Results of bottleneck simulations. We ran simulations of scenario I (the strongest
bottleneck with a reduction to N = 100) with parameters (r, sx, sy) estimated from
the YRI-data and tested, whether after 1000 generations of recovery the mean and
standard deviation σ of the CEU and CHB-data can be explained by a bottleneck.
Blank space indicates that this parameter combination led to an sx value out of
the range of 0.001 and 0.1, and hence no simulation was run. The columns with
0,+ and – indicate whether there is a significant difference to the empirical data
set (see Tab 4.1). In the r1 - r10 columns, a 0 indicates that the data can be
explained by a bottleneck. * and ** show significant differences (5% and 1%) of
the simulated and empirical data.

CEU mean CEU sd CHB mean CHB sd
Gene r1 r2 r5 r10 r1 r2 r5 r10 r1 r2 r5 r10 r1 r2 r5 r10
AMY1A 0 0 0 0 * + 0 * * ** + * ** ** ** + * ** ** **
ANKRD20A3 + ** ** . . 0 0 0 . . + ** ** . . 0 0 0 . .
BOLA2B - 0 ** . . 0 * ** . . - 0 ** . . 0 * ** . .
CBWD3 0 0 . . . 0 0 . . . + 0 . . . + * . . .
CDC37P1 + ** ** ** ** + * ** ** ** 0 0 0 * ** + * ** ** **
CLEC18A + 0 0 * . 0 0 * * . 0 0 0 0 . 0 0 0 0 .
CSH + 0 . . . 0 ** . . . + ** . . . 0 ** 0 0 0
DEFA1 0 . . 0 0 - . . 0 ** 0 . . 0 0 - . . 0 **
DEFB130 + 0 * . . 0 ** ** . . 0 0 0 . . 0 ** ** . .
FAM72A + 0 . . . + 0 . . . + 0 . . . 0 ** . . .
FAM75A1 0 0 0 . . 0 0 0 . . + * ** . . + 0 ** . .
FAM75A5 0 0 0 . . 0 0 0 . . + 0 ** . . + 0 ** . .
FCGBP + 0 0 0 0 - * ** ** ** + 0 0 0 0 0 0 0 ** **
FOXD4L2 + 0 . . . 0 0 . . . + ** . . . + * . . .
GOLGA6L9 0 0 0 . . 0 0 0 . . + 0 * . . 0 0 0 . .
GOLGA8G + * ** . . 0 0 0 . . + 0 0 . . 0 0 0 . .
GSUBP1 + ** ** ** . 0 0 0 0 . + 0 0 ** . 0 0 0 0 .
HIST2 + 0 . . . 0 0 . . . + * . . . 0 0 . . .
LIMS3 - * . . . 0 ** . . . - 0 . . . 0 ** . . .
LOC23117 0 0 0 . . 0 * * . . - * ** . . 0 * ** . .
LOC653606 0 0 . . . 0 0 . . . - ** . . . + 0 . . .
MUC12 + * ** ** ** 0 0 * ** ** 0 0 0 0 0 - 0 ** ** **
NBPF11 - * ** ** . - * ** ** . 0 0 ** ** . 0 * * * .
NBPF16 0 0 0 0 . 0 0 0 0 . + 0 0 0 . 0 0 0 0 .
NPIP - ** ** . . 0 * * . . - ** ** . . 0 * * . .
PGA3 - 0 ** ** . + 0 0 0 . + * ** ** . 0 0 0 0 .
PPIAP21 + ** ** . . 0 0 0 . . + ** ** . . 0 0 0 . .
PRAMEF14 + * ** . . + ** ** . . + ** ** . . + 0 ** . .
PRAMEF20 0 0 . . . 0 0 . . . + 0 . . . + 0 . . .
PRAMEF5 - ** ** . . + * * . . - ** ** . . + * ** . .
PRAMEF8 0 0 0 . . + 0 ** . . 0 0 0 . . 0 0 0 . .
PRR11 + ** ** . . 0 0 * . . + ** ** . . 0 ** ** . .
PRR20A - . . 0 ** - . . 0 * - . . 0 ** 0 . . 0 0
PSG3 + 0 * . . 0 0 0 . . 0 0 0 . . + 0 * . .
RGPD1 0 0 . . . + 0 . . . 0 0 . . . + 0 . . .
SPYDE3 - ** ** . . - 0 0 . . - ** ** . . 0 0 0 . .
SULT1A3 0 0 0 0 . 0 0 * * . - 0 ** ** . 0 ** ** ** .
TBC1D3 - ** ** ** ** 0 0 0 0 0 - ** ** ** ** + 0 * ** **
TCEB3C - 0 ** ** ** 0 0 0 0 0 - 0 ** ** ** 0 0 0 0 0
TP53TG3 0 0 0 0 0 0 0 0 0 0 - 0 ** ** ** 0 0 0 * *
TRIM49L1 + ** ** . . 0 0 0 . . + ** ** . . 0 0 0 . .
ZNF658B + 0 ** . . 0 0 0 . . + ** ** . . + 0 0 . .
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Scenario I
Strong bottleneck
Reduction to N = 100

Scenario II
Intermediate bottleneck
Reduction to N = 500

Scenario III
Weak bottleneck
Reduction to N = 1,000

Low recombination
r = 0.001

Medium recombination
r = 0.002

High recombination
r = 0.005

Bottleneck simulations
PGA3
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Figure 4.4: Mean copy number over time. After population reduction to N = 100, 500, 1000
(top to bottom) we traced the mean-value of 10,000 replicates over time (x-
axis in generations). The input parameters sx, sy were estimated for r =
0.001, 0.002, 0.005 (left to right) from the YRI-data set for the candidate gene
PGA3 (see Tab 4.3) and kept constant over time, to see the effect of the bottleneck
and recovery. Whiskers mark the 99% quantile, the white box the 95% quantile.
Horizonal lines mark the values from the original data set of (Brahmachary et al.,
2014) (black: YRI, red: CHB, blue: CEU).

a more detailed analysis and tested the GADMA demography without and with selection
change according to the estimates from regression (scenario IV-VI).

Figure 4.5 shows mean copy number and coefficient of variation CV at present, simulated
according to scenarios I,IV,V and VI for 10,000 replicates each. As in the simplified bottleneck
scenario, scenario IV with subpopulation migration returns to values of basis data set YRI.
Hence, under high recombination and strong selection the mean and standard deviation values
of CHB and CEU show significant differences to the simulations.

However, with a change of selection the data of scenario V and VI show a different pattern.
With new sx and sy estimated for subpopulations according to equation (4.3), the mean
and CV are shifted and the empirical data lies often within the 95%- and 99%-quantiles of
the simulated data distributions. Deviations are a result of the sensitivity of the logarithmic
regression. We observe no strong difference between V and VI, suggesting that 500 generations
represent a sufficiently large time span to reach a new equilibrium.
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Figure 4.5: Comparison of mean copy number ȳ, and coefficient of variation CV = σ/ȳ in
four scenarios I,IV,V,VI for candidate genes AMY1A, SULT1A3, PGA3, DEFA1. In
scenario V and VI the initial selection coefficients of YRI (see Table 4.3) were
changed 500 resp. 986 generations before present. Simulation results are shown
for lowest and highest recombination rate. Black lines refer to mean and CV of
the experimental data in YRI, blue to CEU and red to CHB.

Hence, the differences of the four candidate genes may be explained by adaptive processes
and different selective pressures.

The AMY1A gene, which encodes amylase, an enzyme that breaks down starch, has strongly
increased mean and σ in the Asian population, likely linked to adaptations to high grain
intake. In the European population, while the variation is increased, the change in mean
copy number is small. These findings are in agreement with results of several studies that
indicate that individuals from populations with high-starch diets have, on average, more gene
copies than those with traditionally low-starch diets (Perry et al., 2007; Pajic et al., 2019;
Atkinson et al., 2018). Under our model selection strength is relaxed in CEU and CHB,
such that a higher copy number is not selected against and a more widespread distribution
of CNV can evolve. A recent study (Inchley et al., 2016) has suggested a more complicated
model of Amylase evolution, involving two steps: an expansion from one to several copies
after the human-Neanderthal split, but before separation of modern human populations, and
a subsequent shift of the optimal gene copy number, independently in different populations.
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This study also suggests that increase of AMY1 copy number occurred in South America even
more dramatically than in East Asia, a hypothesis which should be tested in the framework
of our model as soon as suitable data become available.

SULT1A3 is a gene in the SULT (sulfotransferases) family, which catalyze sulfation of a
variety of substrates, especially catecholamines including dopamine and epinephrine (Brix
et al., 1999; Dajani et al., 1999). Polymorphisms in SULT1A3 and SULT1A4 have been shown
to affect metabolism of therapeutic drugs (eg., (Hui and Liu, 2015; Bairam et al., 2019)),
and these genes have therefore been studied extensively in the framework of medico- and
pharmacogenetics (Thomae et al., 2004; Hildebrandt et al., 2004). In the analyzed dataset, it
has reduced mean copy number in Asia but not in Europe. There have been a few studies on
copy numbers of SULT1A3/4 genes. Hildebrandt et al. (2004) first noted possible duplication
of SULT1A3 and identified a duplicated copy in all four different human populations. More
recently, a study of 172 human individuals discovered variable SULT1A3/4 copy numbers from
1 to 10, and associated its copy number with risk and onset of neurodegenerative disease
(Butcher et al., 2017). Note that SULT1A3 and SULT1A4 are closely related paralogs that are
often difficult to distinguish, and studies on copy number usually put them together.

PGA3 (Pepsinogen, precursor for pepsin, an enzyme that breaks down protein to smaller
peptides) is associated with prostate-specific antigen production. It is the only gene in our list
to have opposite changes in two derived populations: its mean copy number increases in Asia
and decreases in Europe. As Asian and European humans share most of the same bottleneck
period, the diverging copy number distribution is highly unlikely to be a demographic effect,
and complex selection patterns are needed to explain the data. The copy number variation on
the Pepsinogen (PGA) locus was originally discoverd with electrophoresis and three individual
genes (named PGA 3, 4, 5) were initially found (Taggart et al., 1985). Pepsinogen genes
have been shown to duplicate and become lost recurrently in vertebrates (Castro et al.,
2014). The pepsinogen genes were also shown to have variable expression level in tumor
cells, particularly a reduction of PGA expression in esphagael, stomach and thyroid cancers
(Shen et al., 2020). This could be an additional source of selective pressure besides protein
metabolism. While the simplest explanation is that dietary differences between Asian and
European populations during the spread of of agriculture (in the last 5000-10000 years) is
the driver of PGA copy number changes, alternative hypotheses involving tumor suppression
or interaction with other enzymes must be considered.

Finally, we analyzed the immune gene Alpha-defensin DEFA1. It codes for defensins, pro-
teins that are involved in innate (non-learned) immunity, specifically in antimicrobial defense
against a broad spectrum of microorganisms, including bacteria, fungi, and viruses. DEFA1

shows a decrease in variance in both Asia and Europe, indicating stronger selective pressures.
More precisely, when considering the distribution in Figure 4.1, one observes four individuals
in YRI population with high copy number which indicates a relaxed selective pressure in
Africa. Alpha-defensins are expressed in neutrophil cells and intestinal epithelial cells, acting
as microbiocidal agents (Ganz et al., 1985; Ayabe et al., 2000; Nassar et al., 2007). The genes
DEFA1 and DEFA3 code for some of the Alpha-defensins (HNP1/2/3), and appear to be "in-
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terchangeable variant cassettes" within a tandem array of 19kb (Aldred et al., 2005). Copy
number variation of DEFA1 is present in all apes including gibbon, but the version identified
as DEFA3 is human-specific; the copy number is also demonstrated to affect expression level
(Aldred et al., 2005). Low copy number of DEFA1/3 is shown to be associated with hospital-
acquired infection (Zhao et al., 2018) as well as kidney diseases (Ai et al., 2016). On the other
hand and counterintuitively, a high copy number of DEFA1/3 may lead to more severe cases
of sepsis (Chen et al., 2010, 2019) and is associated with Crohn’s Disease (Jespersgaard et al.,
2011), and thus selected against. The trade-off between infective and autoimmune diseases
could lead to selection towards an intermediate copy number of Alpha-defensins. Therefore,
our results suggest a possibility that the out-of-Africa expansion is accompanied by such a
change in environmental pathogen diversity that a delicately tuned dosage of defensin is re-
quired. This can be corroborated by the fact that YRI has a few individuals with very high
(outliers) copy numbers of DEFA1, which can not be found in CHB or CEU.

In conclusion, while both demographic effects and shifts in selection schemes can result
in changes in copy number distributions, in some of our candidate genes the former is not
sufficient to explain the observation. Adaptive processes can induce new relationships between
copy number and fitness, and impact the resulting copy number distribution. Importantly,
changes in the strength, or direction of selection may become manifest not only in mean copy
number, but also in the variance or compound statistics, such as the coefficient of variation.
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Abstract

The Structured Coalescent was introduced to describe the coalescent process in spatially
subdivided populations with migration. Here, we re-interpret migration routes of individuals
in the original model as “migration routes” of single genes in tandemly arranged gene arrays.
A gene copy may change its position within the array via unequal recombination. Hence, in
a coalescent framework, two copies sampled from two chromosomes may coalesce only if they
are at exactly homologous positions. Otherwise, one or multiple recombination events have
to occur before they can coalesce, thereby increasing mean coalescence time and expected
genetic diversity among the copies in a gene array.

We explicitly calculate the transition probabilities on these routes backward in time. We
simulate the structured coalescent with migration and coalescence rates informed by the
unequal recombination process of gene copies. With this novel interpretation of population
structure models we determine coalescence times and expected genetic diversity in samples
of orthologous and paralogous copies from a gene family. As a case study, we discuss the
site frequency spectrum of a small gene family in the two scenarios of high and of no gene
copy number variation among individuals. These examples underline the significance of our
model, since standard test-statistics may lead to misinterpretations when analyzing sequence
data of multi-copy genes due to their different expected genetic diversity.
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5.1. INTRODUCTION

5.1 Introduction

Duplicated genes can make up a large portion of the entire gene complement of many eu-
karyotes. For instance, in human around 40% of the genes are considered to be duplicates
(Zhang, 2003), in plants on average about 65% (Panchy et al., 2016). Among the largest
known gene families are those of the NLR immune receptors in some animals (about 400
members in D. rerio (Howe et al., 2016)) and the evolutionarily related NBS-LRRs in some
plants (Jones et al., 2016). There are several mechanisms which generate new duplicates
(Panchy et al., 2016; Ohno, 1970; Magadum et al., 2013). One mechanism is whole genome
duplication, another one is tandem duplication. Only the latter is expected to affect a lim-
ited number of genes and to potentially generate large numbers of copies which are clustered
on a chromosome. With many species now being re-sequenced at (sub-) population level,
analysis of gene copy number variation (gCNV) is gaining growing attention. As repeatedly
reported, gCNV of signal receptors or of immunity genes is involved in adaptive responses to
both biotic (e.g., pathogens) and abiotic (e.g., heat, drought) stresses (Wan et al., 2021; Kon-
drashov, 2012; Qian and Zhang, 2014). Thus, population genetic insights should contribute
to understanding the basis of such adaptive mechanisms.

One of the persisting problems, even with modern sequencing technology, is to uniquely
identify the members of a large gene family and to correctly map them to a reference genome.
This implies difficulties not only in correctly counting copy number for a given individual,
hence in the construction of presence/absence matrices, but also in computing meaningful
measures of genetic diversity within copies. One way to overcome this problem with a bioin-
formatic approach is to abandon the concept of a reference genome altogether, replacing it by
a pan-genome graph which integrates – in particular – the structural variation present in a
species (Golicz et al., 2020; Hübner, 2022). Still, this would not solve the population genetic
problem of measuring diversity within genes, as long as these measures depend on a clear dis-
tinction between paralogs (duplicates within the same genome) and orthologs (related genes
in different species / individuals).

However, acknowledging this difficulty, one may try to overcome it by integrating both
orthologs and paralogs in a joint framework, as suggested here. Focusing on the evolution of
tandemly arrayed genes, we combine a recent model of gCNV driven by unequal recombina-
tion (Otto et al., 2022) with the classical ideas of the structured coalescent (Takahata, 1988;
Wakeley, 2001). This describes genetic distance of individuals in spatially separated islands
and under different regimes of migration. One key insight is that any two lineages may only
coalesce if drawn from the same island. Lineages (i.e. individuals) from different islands have
to migrate before they can coalesce. A large volume of theoretical literature is dedicated to
studying coalescent times and their limiting properties in simple symmetric and asymmetric
island layouts (Notohara, 1990; Nordborg, 1997; Austerlitz et al., 1997; Wilkinson-Herbots,
1998).

Here, we re-visit results of this ground-breaking work and put the structured coalescent in
a new context: considering a single gene copy, which is located in a tandem gene array (see
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Figure 5.1: Consider an alignment of five chromosomes containing arrays of different numbers
of gene copies. What is the expected pairwise genetic diversity, if the relative
positions of the genes with respect to their arrays, shown in parentheses, are
taken into account?

Figure 5.1), it may change its position in the array by unequal recombination (see Figure 5.2).
Hence, in a coalescent framework, two copies of different chromosomes can only coalesce, if
they are both in the same array position. We may call such copies orthologous. Otherwise,
they are ’paralogous’ and one or more recombination events have to bring them to the same
position before they can coalesce. Thereby coalescence time is increased. Taking into account
this possibility, we reconsider the question of genetic diversity: depending on the recombina-
tion rate, genetic diversity of paralogs can be substantially increased compared to orthologs.
We explicitely calculate the transition probability of a single gene copy along its gene array
backward in time. We simulate the structured coalescent using msprime (Baumdicker et al.,
2022) with migration and coalescence rates according to the unequal recombination process
of gene copies.

Furthermore, we consider samples larger than two, and explore how the site frequency spec-
trum and the common summary statistics, such as Tajima’s D (Tajima, 1989), are affected
when orthologs and paralogs are analyzed jointly. We close with an application, inspired by
the HMA4 gene array in Arabidopsis halleri.

78



5.2. METHODS AND MODEL

5.2 Methods and Model

Transition probabilities Consider a diploid population of size N . Let each individual carry a
varying number of gene copies of a particular gene and assume them to be tandemly arranged.
For a given chromosome denote the length of its gene array (i.e. the number of gene copies)
by ℓ. Under neutrality and unequal recombination, as described in (Otto et al., 2022), the
offspring at generation t + 1 is generated from the population at generation t as follows:

For each i in 1, ..., 2N :

• Choose two arrays of sizes ℓ1, ℓ2 ≥ 1 from the current population

• Decide whether a recombination event happens. If so, choose two break points B1 ∼
U(1, ..., ℓ1) and B2 ∼ U(1, ..., ℓ2)

• Splice head and tail of the split arrays together and propagate one of the resulting
arrays to the next generation

For N = ∞ and under neutrality array size ℓ is discrete-Gamma distributed at equilibrium
(Otto et al., 2022). It has shape κ = 2 and expectation which is identical to the initial mean
array size L since the recombination process is symmetric.

Finite population sizes introduce an additional layer of stochasticity and an analytic rep-
resentation of the compound process and its stationary density is not known. However,
simulations suggest that the stochastic effect of drift is small compared to the effect of un-
equal recombination already with moderately large population size. In the following, we
assume a sufficiently large population, which is in equilibrium, such that gene array lengths
are sampled from a discrete G(2, L) distribution, i.e.

ℓ ∼ G(2, L), pG(2,L)(k) := Prob[ℓ = k] = (e2/L − 1)2

e2/L
· k · e−2/L·k. (5.1)

Now focus on one particular copy in an array and trace its position backward in time. Note
that from now on we analyze the haploid genealogy. Encode the copy’s current position by
(x, y), where x designates its position from the head of the gene array and y from the tail
such that the total length of the gene array is ℓ = x + y − 1.

Change of position may occur by unequal recombination. To trace such events, decide
whether the array in the current generation was produced by recombination of head and
tail from different arrays in the previous generation. If so, draw a random variable H ∼
Ber( x

x+y−1) to decide whether the particular copy at position (x, y) was propagated by the
head or tail part. Choose a break point B1 ∼ U(1, ..., ℓ1 = x + y − 1), draw a second gene
array of size ℓ2 ∼ G(2, L) from the population and a break point B2 ∼ U(1, ..., ℓ2). Finally,
fuse the two parts together (see Figure 5.2).
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x=2     y=5

x'=x     y'=B1 - x + B2

l2~G(2,L)
B1 ~ U(1,...,l1)

B2 ~ U(1,...,l2)

l1 = 6

Figure 5.2: Illustration of the position change process backward in time of a gene copy. Given
a copy (grey circle) at position (x, y) in a gene array, it may have been originated
from two recombinants. The breaking point, that seperates the head and tail is
marked as B1. The part on which the copy is located is maintained (here: head)
and fused with the counterpart (tail) of a gene array sampled from the equilibrium
distribution G(2, L). Hence, the position of the copy changes to (x′, y′), where x′

remains constant and y′ is the concatenation of the remaining part of the head
(B1 − x) and the tail from the chosen recombinant (B2).

Note that either the head or the tail is maintained, and hence x or y remains constant. In
terms, we find:

H ∼ Ber( x

x + y − 1), B1 ∼ U(1, ..., ℓ1 = x + y − 1), ℓ2 ∼ G(2, L), B2 ∼ U(1, ..., ℓ2)

if H = 0

| x′ = x and y′ = |B1 − x| + B2 (5.2)

if H = 1

| x′ = |B1 − x| + B2 and y′ = y

Proposition 1. Using the notation X = |B1 − x| + B2, we find

P [X = k|x, y, L] = 1
Z

·
(
2e−2/L·k − e−2/L·c1 − e−2/L·c2

)
, (5.3)

where

Z = (x + y) · 1 − e2/L

e2/L − 1
, c1 = max(0, k − x), c2 = max(0, k − y)

Proof. This is a straightforward computation after finding that B2 is geometrically distributed
and |B1 − x| is the sum of two uniform distributions.
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Therefore, we can interprete the position change of a gene copy in its array as a Markov
process on an N×N-lattice with either horizontal or vertical moves and transition probabilities
given by

P L[(x, y) → (x, y)] = 1 − r(x,y)

P L[(x, y) → (x, k)] = r(x,y) · y

x + y
P [X = k|x, y, L] (5.4)

P L[(x, y) → (k, y)] = r(x,y) · x

x + y
P [X = k|x, y, L],

where r(x,y) denotes the (unequal) recombination rate. We distinguish the two cases, where
r(x,y) = r constant and does not depend on its current state and r(x,y) = r0 · ℓ, where the
recombination rate scales linearly with the size of the gene array. This is motivated by the
fact that under a constant rate per nucleotide the number of possible recombination points
increases with additional gene copies.

Stationary distribution The above described Markov process is irreducible and aperiodic
and therefore provides a stationary distribution π on N×N that satisfies πP = π, i.e. for all
x, y ∈ N:

π(x, y) =
∑
(a,b)

π(a, b)P [(a, b) → (x, y)]

=
∑

k

k

x + k
P L[X = y|x, k] + k

k + y
P L[X = x|k, y] (5.5)

and
∑
(x,y)

π(x, y) = 1.

Note, that the process and therefore the stationary distribution only depend on the initial
mean gene array length L of the population, from which the recombinant was generated. To
determine π, we reduce the system to a finite state space from N×N to n0 ×n0, i.e. neglecting
the possibility for a gene copy to reside in an array of size L > n0. Let n0 be the 99.9%
quantile of the discrete Gamma distribution (5.1), i.e.

n0 = min
{

n |
n∑

k=1
pG(2,L)(k) > 0.999

}
. (5.6)

With this reduction to finiteness we find a numerical solution of π. Given π we can determine
the mixing time of the Markov process, i.e. the time it takes for the process to converge to
its stationary distribution. Given a transition matrix P on the state space S the distance
d(t) at time t to its stationary distribution is defined as the total variation ∥ · ∥T V , i.e.

d(t) = max
s0∈S

∥P t
s0

− π∥T V

= max
s0∈S

∑
s1

1
2 |P t

s0
(s1) − π(s1)|
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Consistent with literature (see (Levin and Peres, 2017)), the mixing time tmix is defined as
the time, at which d(t) is less than 1

4 , i.e.

tmix = min
{

t | d(t) <
1
4

}
, (5.7)

where 1
4 is chosen as threshold in order to satisfy the equation d(s · tmix) ≤ 2−s. Since π is

numerically determined, one can determine tmix numerically as well.
Furthermore, we aim to determine the probability that two particles that independently

move on the N × N-lattice meet at the same position. Therefore, we define the distance

D(
(x1

y1
),(x2

y2
)
) = max {|(x1 − x2|, |y1 − y2|} . (5.8)

Starting with any tuple of initial positions we trace their relative distance over time t. Since
the particle trajectories do not affect each other, the process D(t) also is a Markov process
with a unique stationary distribution. We are interested in determining the probability
Prob(D∞ = 0), representing the event that two particles are eventually at the same position.

Structured Coalescent Recall the definition of the structured coalescent, with notations as
in Wilkinson-Herbots (1998). Consider a haploid population of size N divided into a finite
or infinte number of subpopulations which are all large and panmictic. Denote the label set
of these islands by S and the population size in island i ∈ S as Ni, such that

∑
i∈S Ni = N .

The individuals reproduce and migrate independently in non-overlapping generations under
the assumption of constant population size and hence migration equilibrium. At a particular
generation draw a sample of k individuals and trace their ancestry. Let αi(t) be the number
of distinct ancestors of this sample which are located in subpopulation i ∈ S at t generations
ago. Define εi to be the vector with 1 at position i and zeros otherwise, i.e. (εi)j = δi,j .
Then, α(t) may change to one of the following:

• α(t + 1) = α(t) − εi, if a coalescent event happens in subpopulation i, or

• α(t + 1) = α(t) − εi + εj , if an individual migrates from i to j.

Furthermore, define Mij to be the migration rate from island i to j and 1/ci to be the
coalescence rate in subpopulation i, which depends on the subpopulation size Ni. Under
reasonable assumptions about reproduction and migration (see (Wilkinson-Herbots, 1998)),
the ancestral process α(t), t ≥ 0 is well approximated by the continuous time Markov process
defined by the Q matrix

Qα→β =



−
∑
i∈S

αi
Mi
2 + 1

ci

(αi
2
)

if β = α

αi
Mij

2 if β = α − εi + εj

1
ci

(αi
2
)

if β = α − εi

0 else

, (5.9)
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where Mi =
∑

j Mij . Note, that this process assumes constant coalescence rates 1/ci, i.e. a
population which is in migration equilibrium. With sufficiently large population size, this is
a reasonable restriction.

From now on let k = 2, i.e. focus on the coalescent process of two lineages. Denote by Tij

the coalescence time of two lineages that are at time t = 0 located at islands i, j ∈ S. Then,
as shown in Wilkinson-Herbots (1998), the Laplace transformation of the coalescence time
distribution, i.e.

φij(s) = E[e−s·Tij ],

for s ≥ 0 can be determined by solving the following linear equation system:
(

1
ci

+ Mi + s
)

φii(s) −
∑
k ̸=i

Mikφik(s) = 1
ci

, for i ∈ S(
Mi
2 + Mj

2 + s
)

φij(s) −
∑
k ̸=i

Mik
2 φjk(s) −

∑
k ̸=j

Mjk

2 φik(s) = 0 , for i ̸= j ∈ S
(5.10)

In terms of the unequal recombination process (see equation (5.4)), we find

• state space S = N × N, which encodes the position (x, y) in gene array

• migration rates M(x,y),(·,·) = P L[(x, y) → (·, ·)], which are the position changes in the
gene array

• coalescence rates 1
c(x,y)

= 1
N(x,y)

, where N(x,y) is the equilibrium number of individuals
with gene array size ℓ = x + y − 1, i.e.

N(x,y) = N · (e2/L − 1)2

e2/L
(x + y − 1)e−2/L·(x+y−1) (5.11)

Hence, the sum of all subpopulation islands equals
∑

Nx,y = L · N , the total number
of gene copies in the population.

An illustration of the process is shown in Figure 5.3. Note, that gene copies are fully
described by their position within the gene array. Whether two copies are located on the
same or different haplotypes does not affect their ability to coalesce. Still, when tracing
the trajectory of a small sample of gene copies, we assume them to change their positions
independently. In other words, they move as particles in the Markov process of the structured
coalescent in state space S.

83



5.2. METHODS AND MODEL

0 2 4 6 8

0
50

10
0

15
0

Gene array length l = x+y-1

S
ub

po
pu

la
tio

n 
si

ze
 N

x,
y

Figure 5.3: Example of k = 2 gene copies in the N × N-lattice. The coalescence rates are
defined as 1/Nx,y, which is the subpopulation size in the equilibrium population
with ℓ = x + y − 1 copies (bottom figure). The genes may change their position
either horizontally or vertically according to unequal recombination (see black
arrow).
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msprime To obtain numerical results we resorted to simulations with msprime (Baumdicker
et al., 2022) of the structured coalescent with underlying migration and coalescence rates given
by the unequal recombination process.

Although some simpler migration dynamics may be tackled in terms of the eigenvectors of
the transition matrix, the dynamics defined in equation (5.4) on a state space S = N × N
is not easily decomposed in its eigenvalues. Also, a numerical solution of equation (5.10) is
not feasible due to the infinite state space. Even when truncating to n0 × n0, as in (5.6), the
number of unknown parameters is of order (n0)4. As an example, for L = 5 we find n0 = 23,
which results in 234 ≈ 280, 000 possible pairs of starting points and hence unknown variables
φij(s) for any given s ≥ 0.

We ran msprime with a python wrapper-script that takes as input the finite state space,
a migration matrix and subpopulation sizes and simulates for a given set of starting point
tuples 10, 000 coalescence events. To test the validity of the procedure, we ran the code on two
examples, for which a numerical solution was known and compared expected and simulated
outcomes. The details of this validation procedure on a symmetric and a continental island
model are given in the Appendix. Also, we uploaded a jupyter-notebook on github, as
reference for the details of the simulations1

Finally, we analyzed the unequal recombination structured coalescent, see equation (5.4).
The parameter range was chosen as L = 5, 10, N = 1000, 5000, 10000 and r = 1%, 5%
constant and r(x,y) = r0 · ℓ, where r0 = 1% and ℓ = x + y − 1. We used a 5 × 5 sample
grid spanning n0 × n0, i.e. {1, 5, 9, 13, 17}2 (case L = 5) and {1, 8, 16, 23, 31}2 (case L = 10),
leading to 625 starting pairs

((xi
yi

)
,
(xj

yj

))
∈ S.

Site Frequency Spectrum We explored in detail the following two extreme cases. In sce-
nario 1 consider five chromosomes, all with three gene copies, leading to a total copy sample
of k = 15. We assume them to be drawn from a population of size N = 80, 000 and mean
gene array length L = 3. These parameters are motivated by an example from the plant Ara-
bidopsis halleri in which we analyzed the three copies of the heavy metal ATPase4 (HMA4)
gene. They encode a Zinc and Cadmium pump which facilitates root-to-shoot transport of
these metals (Hanikenne et al., 2008; Roux et al., 2011; Briskine et al., 2016).

In scenario 2 we also consider k = 15 gene copies from five chromosomes, but all with
different gene array sizes ranging from 1 to 5. Hence, in the sense of the structured coalescent,
we start in scenario 1 with k = 15 particles equally distributed on 3 islands. Those that are
located on the same position may coalesce without a recombination event. In scenario 2 the
particles are all placed on different islands and hence need to migrate before coalescence.
Superimposed on this process we consider mutation events under an infinite sites model
occuring with rate µ per generation. Hence, each simulation run leads to a 0 − 1-SNP-matrix
of dimension k = 15 × m, where m indicates the total number of mutations. If gene copy
i is affected by mutation j, the entry of the matrix is 1 (and 0 otherwise). We indicate
the frequency spectrum by (ξ)i=1,...,14, where ξ1 denotes the relative number of singletons,

1https://github.com/Moritz-Otto/motto-structured_coalescent
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ξ2 the doubletons and so on. An illustration of the setup is shown in Figure 5.4. For
each scenario, we chose two mutation rates 2Nµ = θ = 1 and 5 and three recombination
rates r = 0.01/N, 1/N, 100/N and built the average frequency spectrum out of 10, 000 SNP-
matrices for each parameter combination. Furthermore, we estimated the mutation rate
based on the mean pairwise differences θπ and Watterson’s estimator θW . From this, one can
calculate Tajima’s D (Tajima, 1989) and the ratio θπ/θW to detect deviations from neutrality.
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Figure 5.4: Illustration of scenario 1 (top) and 2 (bottom) of frequency spectrum simulations.
In scenario 1 one considers k = 15 copies equally distributed on 5 chromosomes
and no copy number variation. Hence, the copies located at the same position may
coalesce quite fast (blue coalescence lines). Then, located at different positions,
it may take same longer time to coalesce (indicated by dotted line). During the
process, mutations may occur (red crosses), resulting in a 0-1-SNP-matrix (right,
top). In this example, it is a 15 × 29 matrix, where its column sum counts the
occurences of a SNP in the sample. The frequency of these is denoted by ξi, i.e. the
number of singletons, doubletons etc. Due to the long coalescence time after the
first coalescence events, we expect a high ξ5. In contrast, in scenario 2 (bottom)
we expect a frequency spectrum closer to the one expected under neutrality with
a high number of singletons and a higher total number of mutations due to the
elongated branches.
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5.3 Results

Stationary distribution For given mean gene copy number L reduce the state space S to
n0 × n0 as in equation (5.6) and solve the linear equation system πP L = π with

∑
π = 1. An

example for L = 20 is shown in Figure 5.5A.
The stationary distribution fits well a bi-variate Gamma distribution. Its maximum is

located at (L/2, L/2), which is expected. Due to the recombination with gene arrays sampled
from a population with G(2, L) distribution one expects the gene copy to be located in the
center of a gene array of size L. We observe a decline from the diagonal of the distribution
(i.e. the gene array size) and to the axes (the position within the array).

The stationary distribution is uniquely defined by L. Hence, we numerically calculated tmix

as in equation (5.7) for L = 5, 10, 15, 20, 30 (see Figure 5.5B). We find a strong correlation
(ρ2 = 0.998) and an almost perfect linear fit

tmix(L) ≈ 0.716 · L + 3.54 (5.12)

Therefore, when starting with a random distribution of gene copies that evolve according
to P L, the difference to the stationary distribution π after t generations can be bounded by

d(t) ≤ exp
{

− ln(2) · t

0.716 · L + 3.54

}
.

Hitting probability Consider two particles moving independently on the N×N-lattice with
the dynamics defined in equation (5.4) with given L. We want to study their hitting time
and therefore trace their relative distance to each other with D defined as in equation (5.8).
The stationary distribution of this Markov process on N is given by the discrete Gamma
distribution (5.1), see Figure 5.5C. We formulate as a conjecture

Conjecture 1. Consider two particles moving independently on the N × N-lattice with the
dynamics defined in equation (5.4), given L fixed. Trace their relative distance D defined in
equation (5.8). Over time, the distance is a Markov process on N with stationary distribution
given by the discrete Gamma distribution equation (5.1), i.e.

P [D∞ = d] =
∑

(x1
y1

),(x2
y2

)
π(x1, y1)π(x2, y2) · 1{

D((x1
y1),(x2

y2))=d

} (5.13)

= pG(2,L)(d).
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Figure 5.5: A Numerical solution of the stationary distribution π of the unequal recombi-
nation process, i.e. πP L = π with L = 20. B Linear regression of tmix(L). C
Evidence for Conjecture 1, that the relative distance Markov process of two copies
has stationary distribution G(2, L). Example shows L = 20. The small difference
may occur by rounding errors and the truncation of the process to n0 × n0.

Unequal Recombination We ran msprime on the complex model of gene copy trajecto-
ries with migration dynamics given by the unequal recombination process defined in equa-
tion (5.4). Figure 5.6 shows the mean coalescence time of 10,000 coalescence events of any
pair from the 5 × 5 sample grid.

As in the simpler scenarios of symmetric or continental island models (see Appendix),
the distribution has two modes, indicating whether gene copies are at the same or different
positions at time t = 0. We find short coalescence times for those that may coalesce without
a recombination event and long times for those at different positions.

Since the state space S is smaller for L = 5 than for L = 10, we observe shorter coalescence
times for the recombination process with L = 5 than with L = 10. With a large number
of subpopulations and small population size we reach a maximum mean coalescence rate for
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L = 10, r = 1% and N = 1, 000 at circa 42N (Figure 5.6B, first column in first row). Hence,
we expect a high number of nucleotide differences, if we analyze two copies sampled from
different gene array positions, if the population is small, has a large mean gene array length
and a low recombination rate. Vice versa, we find for L = 5, N = 10, 000 and r = 5%
shorter coalescence times. Still, we expect an increased coalescence time of a factor of 5 for
two copies at different positions. With smaller population structure, i.e. less states, larger
population size N and higher migration resp. recombination rate r one expects the effect of
spatial isolation to vanish and to approach the case of panmixia.

Coalescence times are substantially reduced when the recombination rate depends on the
gene array size (Figure 5.6, third column). With higher recombination (resp. migration) rate
the process gains mobility and with decreasing coalescence times the effects of subpopulation
structure vanish.

Site frequency spectrum In the simple scenario of a haploid population of size N evolving
under neutrality the expected site frequency spectrum is ξi = θ 1

i , where θ = 2Nµ is the
population scaled mutation rate. In Figure 5.7 we show the scaled mean frequency spectrum of
a sample of k = 15 gene copies under different recombination and mutation rates. As expected
(see Figure 5.4) we find an increased value of ξ5 and ξ10 in scenario 1, if recombination
rate is low. Indeed, it corresponds to the expected frequency spectrum for k = 3. More
precisely, since we observe an almost instantanuous coalescence for copies located at the same
position, the number of distinct lineages reduces to 3. Hence, mutations that occur on those
branches affect either 5 copies (equivalent to singletons in k = 3) or 10 (doubletons). The
effect vanishes with higher recombination and the spectrum resembles the expected neutral
frequency spectrum. In scenario 2 we do not observe this effect, since the copies are already
located at different positions. Hence, the shape of the frequency spectrum does not change.
As seen in Figure 5.6, the coalescence times increase with the effect of isolation. Therefore,
the height of the coalescence tree increases and one expects a higher number of mutations.
Also increasing the mutation rate increases the expected number of mutations. In Figure 5.7
we see that increasing θ by a factor of 5 also increases the number of mutations by the same
factor, as expected. With increased recombination rate, the coalescence times reduce and
therefore also the number of mutations decrease. When choosing L = 3, N = 80, 000 and
r = 0.00125 we can not distinguish scenario 1 and 2 by their frequency spectrum. We also
calculated the θπ/θW ratio. As expected, for all parameter settings in scenario 2 and high
recombination in scenario 1 we observe a ratio close to 1. If recombination is low in scenario
1 we observe a higher θπ, since the frequency spectrum shows a lack of rare alleles, i.e. almost
no singletons. For rN = 0.01 the ratio is θπ/θW ≈ 1.5 and for rN = 1 it is ≈ 1.3.
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Figure 5.6: Mean coalescence times of the unequal recombination structured coalescent for
mean gene array size (A) L = 5 and (B) L = 10. Every blue line marks one
mean coalescence time of the 625 pairs in the spanning 5 × 5 grid. The mean was
calculated from 10,000 coalescence events, simulated with msprime.
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Figure 5.7: Frequency spectrum (ξi)i=1,...,15 of the structured coalescent process with k = 15
gene copies. Red line marks neutral frequency spectrum 1/i, blue line marks
scaled neutral spectrum 5/i. Table below shows the (rounded) mean number of
mutations m as well as ratio of mutation rate estimates θπ and θW .
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5.4 Discussion

In this study we have introduced a novel interpretation of population substructure models, in
which we do not trace the migration routes of individuals but of gene copies in gene arrays.
In its principle, it can be applied to any genomic components that change their position along
the DNA. The challenge occurs in modelling the state space and transition rates. Here, we
used the unequal recombination model of (Otto et al., 2022) and calculated explicitly the
transition probabilities with which a particular gene copy changes its position.

To do so, we assumed a sufficiently large population at migration equilibrium (or, respec-
tively gene copies in recombination equilibirum) with the structured coalescent as underlying
genealogical model. We described single gene copies as particles in a two-dimensional state
space with independent trajectories. However, when tracing multiple copies located on the
same haplotype, one has to keep in mind that one recombination event can induce a position
change of several gene copies located on this haplotype. A coalescent event can happen only
if copies on different haplotypes share their position.

This Markov process is interesting in itself: it has a two-dimensional state space and we
conjecture that its stationary distribution has one-dimensional marginals which are Gamma
distributed. We numerically calculated the 2-D stationary distribution, the mixing time and
the distance distribution of two copies.

We showed that the unequal recombination process, considered here, and the structured
coalescent agree with respect to the analytic results derived by Wilkinson-Herbots (1998).
However, in her analysis it became already clear that even with a simple island structure
the solution of equation (5.10) can be quite challenging. Even numerical results are difficult
to compute if the migration graph contains multiple connected islands. In our model this
implies that either the entire array size must be limited to a small value or that the width of
a positional shift, in other words the number of accessible islands, must be capped at a mod-
erate value. This means that larger changes in copy number could only be accomplished by
multiple unequal recombination events. However, to not limit the applicability of our model
to only very small gene families, we favour the second solution. The incurred error should be
negligible, since the probability of a large shift is anyway very small (see Figure 5.8B).

Coalescence time of two genes can be substantially longer than 2N in our model. Therefore,
pairwise genetic diversity may also be much higher than 2Nµ. But what about the coalescent
tree of larger samples, which may contain a mixture of orthologous and paralogous gene copies
collected from several individuals? This question is of practical interest, because orthology
and paralogy of gene copies is often not easily distinguishable in experimental data, especially
when gene families are large (de Weyer et al., 2019). Nevertheless, researchers sometimes
apply to such data the usual population genetic statistics and tests of neutrality, Tajima’s D

for instance, without critically examining the validity of such an approach.
We investigated this problem for a moderate sample size of k = 15, taken from n = 5

chromosomes, and considered the two extreme cases: without gCNV, i.e. all chromosomes
carry the same number of gene copies (here: 3) and with high gCNV: the five chromosomes
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carry 1, 2, 3, 4 and 5 copies. In both cases mean copy number is 3 (see Figure 5.7). The
two cases exemplify the effect on the frequency spectrum: without gCNV, as expected, there
is clear clustering of all orthologous copies. All coalescent events have occurred long before
only two unequal recombination events unite the remaining three paralogous copies. This
leads to a spectrum with several clearly distinguishable modes. In contrast, high gCNV
requires many more unequal recombination events. Depending on the rate, the coalescent
and recombination events may be interspersed on an more or less elongated tree. Regarding its
shape, the spectrum tends to resemble the 1/x-spectrum of a standard Kingman-coalescent.
However, due to the elongated tree size, the number of segregating sites is expected to be
much higher than for a sample of single copy genes.

Under low recombination rates and high gCNV (see Figure 5.4C), the frequency spectrum
can severely differ from the one expected under neutrality and increase the time to the most
recent common ancestor up to a factor of ≈ 42. Hence, when analyzing data from large gene
families by pooling all sequences, population statistics based on the standard frequency spec-
trum should be used and interpreted with caution. Inferences based on summary statistics
derived from the frequency spectrum may be heavily biased. As shown, the θπ/θW ratio can
reach values of 1.5 if recombination is low. This leads to a positive Tajima’s D, which might
be misinterpreted as balancing selection or a sudden population contraction.

There are several routes of investigation to be pursued further. Here, we assumed a time
independent distribution of gene families under neutrality. Since multicopy gene families are
often involved in adaptive processes, one may enlarge the model with positive selection for
some mean copy number, as in Otto et al. (2022). Additionally to the size of gene arrays,
sequence similarity may also affect the rate and break point choice of recombination. This,
together with the question how unequal recombination affects coalescent tree topology and
its statistics is subject of current further investigations. Another complication in the analysis
and interpretation of experimental data is the possibility of ectopic gene conversion between
copies to obscure genealogical signals. Finally, inter-chromosomal recombination may be
another source of generating gCNV. Large gene families, such as the NLR receptors, may
indeed be subject to a combination of all these mechanisms.

In any case, one should know which patterns of genetic diversity to expect, before drawing
conclusions about the adaptive role of a particular copy or a gene cluster.
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Appendix

Validation of algorithm The first example was a symmetric island model with n = 5 islands
with equal subpopulation sizes, i.e. Ni = N/5 for i = 1, ..., 5 and where all islands are
connected with each other (see Figure 5.8). With msprime we simulated 10, 000 coalescent
events for each of all 25 pairs of starting points, with population sizes N = 1000, 5000, 10000
and migration rates m = 0.01, 0.001. To compare the simulation results with the result given
by Wilkinson-Herbots (1998), we calculated the Laplace transformation of the empiricial
distribution, i.e.

ϕij(s) = 1
10000

10000∑
k=1

e−s·Tk ,

for 30 discrete points s ∈ (1e − 8, 1e − 2), where 10 points span the interval of (1e − 8, 1e − 7)
and 20 the interval of (1e − 7, 1e − 2). The fine grid near 0 was used to derive the mean and
variance of the distribution, since the n-th moment of a random variable X is given by the
n-th derivative of the Laplace transformation evaluated at 0, i.e.

E [Xn] = (−1)n dn

dsn
E
[
e−sX

]
(0).

We numerically solved the linear equation system equation (5.10) with the same parame-
ters, also using an in-house developed python-script.

In the second example we defined a continental island model, that mimics the com-
plex unequal recombination process defined in equation (5.4). Consider the 5 × 5 lattice
{−2, −1, ..., 2}2. The population size increases towards the center, the ‘continent’, such that
in each discrete step the population size doubles, i.e.

(Nij) = N

100



1 2 4 2 1
2 4 8 4 2
4 8 16 8 4
2 4 8 4 2
1 2 4 2 1


.

The migration dynamics is similiar to equation (5.4) such that an individual can jump
from one to another island, but only either horizontally or vertically. Furthermore, jumping
probabilities are biased towards the center (see Figure 5.8), with

Prob[(x, y) → (x, y)] = 1 − m

Prob[(x, y) → (x, k)] = 0.5m · [0.01, 0.2, 0.5, 0.2, 0.05]k = Prob[(x, y) → (y, k)].

We used the same parameter settings as before (N = 1000, 5000, 10000 and m = 0.01, 0.001)
and calculated the numerical solution for the Laplace transformation as in equation (5.10).

We ran our msprime-script on the solvable symmetric and continental island models. We
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Figure 5.8: Left: Symmetric island model with n = 5 islands. Migration rate m is constant
and all islands are connected. Right: Continental island model. Central conti-
nent marks the largest population, whereas the ones at the boundary have small
population sizes. Arrows mark the transition probablitites from the island at po-
sition (−1, 1). Blue arrows mark the horizontal, red arrows the vertical transition
probabilities. The thickness of the arrows and the bellshape distribution indicate
the transition probability.

find that 10, 000 coalescence events describe the true distribution of Tij with high precision.
Results are shown in Figure 5.9. Due to symmetry and connectivity of the island structure
the distribution of the coalescence time reduces to two cases: individuals located on the same
island at time t = 0 or not. With high migration and large population size these differences
dissolve and the expected coalescence time gets closer to the panmictic case of E[T2] = N . In
contrast, in a small and strongly isolated population we find coalescence times of up to 2N

in the symmetric island model and up to 23N in the continental island model. These results
are in agreement with the analytic results of Wilkinson-Herbots (1998), where she concluded,
that in a symmetric island model with ci = 1 one has

φii(s) = M + (n − 1)s
M + (nM + n − 1)s + (n − 1)s2 , E[Tii] = n,

V ar(Tii) = n2 + 2(n − 1)2

M

(5.14)

φij(s) = M

M + (nM + n − 1)s + (n − 1)s2 , E[Tij ] = n + n − 1
M

V ar(Tij) = n2 + 2(n − 1)2

M
+ (n − 1)2

M2 .
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Figure 5.9: Distribution of coalescence times. Top figure: Laplace transformation of the
empiricial distribution ϕ(s) = 1

10000
∑

e−sTk for msprime-simulated data. Red line
marks the numerical solution φij(s) of equation (5.10) for s. Bottom figure: mean
values of coalescence times in symmetric island (left) and continental island (right)
models. Blue bars mark the mean values calculated from msprime-simulated data,
red bars the solution of (5.10).
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6 Conclusions and outlook

6.1 Summary

In most eukaryotic genomes a large portion of genes are considered to be duplicates. While
some gene families consist of an immense number, as the ≈ 400 copies of NLR immune
genes in the zebrafish Danio rerio (Howe et al., 2016), we focused here on human genes with
intermediate copy numbers ranging from 5 to 60. Together with their high mutation rate,
gene copy number variation (CNV) plays a significant role in genomic variability that allows
for adaptive responses to biotic and abiotic stresses (Sudmant et al., 2015a; Kondrashov,
2012). One of the molecular processes that generates CNV is that of unequal recombination.

In chapter 3 we introduced a model on the evolution of multi-copy gene families, in which
the interplay of unequal recombination and selection towards an optimal copy number with
high allelic diversity generates copy number variation. The selection ratio sx/sy, where sx

describes the benefit of allelic diversity and sy the cost of copy number accumulation, deter-
mines the optimal copy number yopt and the recombination ratio r/sx determines the spread
around yopt, see Figure 3.2 and equation (3.8). We derived that under neutrality the gene
copy number is Gamma-distributed and showed that even with selection, it is still well ap-
proximated by it. We analyzed data from the 1,000 Genomes Project to estimate selection
and recombination parameters for three selected candidate genes with copy number distri-
bution shown in Figure 3.3. We observed a high copy number variation and almost neutral
evolution in PRR20A, which is likely to be a pseudogene. In contrast, PSG3, which is involved
in pregnancy maintenance, follows a distribution close to the optimal value. We ran migra-
tion and bottleneck simulations to see the effect on the population fitness. Finally, with the
implementation of a recombination rate modifier, we observe a decreasing recombination rate.
On first thought, it seems counterintuitive that the variation-driving force (the recombination
rate) is decreasing in a setting of diversifying selection. On second thought, recombination
also generates copy numbers with low fitness and breaks those of high fitness.

In chapter 4 we equipped the model with migration and population size changes according
to human demography. Starting with a data set from the 1,000 Genomes Project with
180 gene families in 165 individuals of three populations (60 African Yoruba, 60 Central
Europe and 45 East Asia), we filtered those of intermediate copy number that show significant
differences in either mean or variance of copy number distribution between populations, which
resulted in 42 gene families. For these candidates, we estimated recombination rate and
selection strength in all three populations and used bottleneck simulations with parameters of
the ancestral YRI population, to test whether the differences can be explained by demography
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6.1. SUMMARY

alone under constant selective pressure. In several scenarios, we find significant differences
of simulated and empirical data (see Table 4.4), leading to the rejection of this hypothesis.
Considering a change of selection parameters towards the estimates of the derived Asian
and European values, the simulations are often in agreement with the empirical data, see
Figure 4.5. One of the chosen candidate genes that are likely to be explained with a change
of selection parameters is AMY1A. Several studies indicate that individuals from populations
with high-starch diets have, on average, more gene copies than those with traditionally low-
starch diets (Perry et al., 2007; Pajic et al., 2019; Atkinson et al., 2018)

In chapter 5 we still consider gene copy number evolution under the introduced model of
unequal recombination, in which we did not focus on the distribution within a population
but on individiual genes. With the process of unequal recombination a gene may change
its position within the gene array. Using the unequal recombination process, we derived the
transition probabilities of a single gene within the array. The trajectory of a copy can be
interpreted as a particle moving in a 2-dimensional lattice, where the coordinates describe the
position in the gene array. Therefore, comparing the sequences of genes at different positions
one expects a higher genetic diversity. This idea led to a new interpretation of the structured
coalescent, which was initially introduced to describe the coalescent process in spatially sub-
divided populations with migration (Takahata, 1988; Nordborg, 1997; Wilkinson-Herbots,
1998). As a backward-in-time process, two particles can fuse with a defined probability, if
located at the same position. The process stops, if only one particle remains, which is (in
coalescence theory terms) the most recent common ancestor. As a theoretical component, we
explored the stationary distribution of the Markovian jump process, its mixing time and the
relative distance of two particles (see Figure 5.5). Applied to the context of gene copies we
analyzed the time to the most recent common ancestor (i.e. the expected genetic diversity of
two copies, see Figure 5.6) and the site frequency spectrum of gene families with and without
copy number variation (see Figure 5.7). In a dynamic system with high recombination rate,
the signal is close to that of a panmictic population. But if the effect of substructure is
strong, we find clear deviations. This is especially important to keep in mind when analyzing
sequenced data from gene families without knowing their arrangement. The position of copies
in the genome can provide important extra information that affect the analysis of sequenced
data and may lead to different interpretations.
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6.2. FURTHER RESEARCH

6.2 Further research

The initial model presented in chapter 3 assumes a fitness function that favours allelic diver-
sity. In theory, it is straightforward to model an infinite alleles model such that any mutation
generates a new allele. However, in real data it is a challenging task to decide, how much
genetic variation is needed to call a variant a new allele. Some studies consider a single
nucleotide polymorphism as sufficient, whereas others require a new function of the gene. In
the example of immune genes, it is reasonable to argue that a new version is considered, if
it detects a different variant of a pathogen. But then again, the nomenclature is inconsistent
whether to call this a new allele or a completely new gene.

As shown in the application of the structured coalescent, the position of a gene copy con-
tains information that can be used to provide better estimates on genetic variation. However,
current sequencing and assembly tools often can not offer this information. Especially when
using short read sequencing techniques, it remains a challenging problem to uniquely iden-
tify the members of a large gene family and to correctly map them to a reference genome.
Additionally, in diploid organisms, assigning copies to each haplotype is also a difficult task.
With long read sequencing and a high quality reference pangenome that includes structural
variations it may become feasible to get precise copy number counts and their sequences in
the future.

The developed model considers unequal recombination as the main driver of copy number
evolution. In future studies it might be reasonable to consider additional molecular processes
as gene duplication or gene conversion. Currently, we investigate models on these mechanisms
in different projects. A combination of the findings might result in a more realistic model of
the evolution of gene copies.

From a theoretical point of view, the novel interpretation of the structured coalescent
might lead to new inspirations and applications in future modelling. Now that we have built
the bridge from population migration routes to molecular position changes, it is exciting to
think of further applications and re-interpretations of structure. One example was recently
developed in the context of the seed-bank coalescent (Blath et al., 2015, 2016). Here, the
individuals may change their state from active to dormant. This shows, that the state space
of the Markov process can appear in many different forms, not only describing the position
of an individual or, as in our model, the position of a gene.
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