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Abstract
Colonies of bacteria endowed with a pili-based self-propulsion machinery are ideal mod-
els for investigating the structure and dynamics of active many-particle systems. We study
Neisseria gonorrhoeae colonies with a molecular-dynamics-based approach. A generic, adapt-
able simulation method for particle systems with fluctuating bond-like interactions is de-
vised. In a first study, the simulations are employed to investigate growth of bacterial
colonies and the dependence of the colony structure on cell-cell interactions. In colonies,
pilus retraction enhances local ordering. For colonies consisting of different types of cells,
the simulations show a segregation depending on the pili-mediated interactions among
different cells. These results agree with experimental observations. Next, we quantify
the power-spectral density of colony-shape fluctuations in silico. Simulations predict a
strong violation of the equilibrium fluctuation-response relation. Furthermore, we show
that active force generation enables colonies to spread on surfaces and to invade narrow
channels. The methodology can serve as a foundation for future studies of active many-
particle systems at boundaries with complex shape.

Bacterial colonies can attach and wet on surfaces like liquid droplets. Little is known
about what factors affect the wetting of bacterial colonies. In a second study, we combine
experimental data with our particle-based simulations and analytical calculations to show
that azithromycin treatment enhances the wettability of Neisseria gonorrhoeae colonies. We
show that the steady-state contact angle is not only determined by parameters that deter-
mine an equilibrium state, but also depends on dynamical quantities like the friction con-
stant. Thus, surface-wetting of Neisseria gonorrhoeae colonies is a genuine non-equilibrium
process. The thickness of the diffuse interface of the colonies is non-negligible compared
to the colony radius, which gives rise to a finite Tolman length and a contact angle that
depends on the size of the colony. The spreading dynamics is changed with azithromycin
treatment, different spreading power laws are shown.

In a third study, we investigate the dynamics of colonies consisting of two types of bac-
teria. In certain growth conditions, one finds experimentally that bacteria inside of the
colony change the dynamics of their pili and become less adhesive. In simulations, we
show that the configuration of such mixed colonies can become unstable, leading to a
rapid folding and reorganization of the colony structure, which one can interpret as a
non-equilibrium capillary instability.

In a fourth study, we investigate bacterial colonies directionally migrate on geometrically
asymmetric surfaces. The binding of bacterial pili to the asymmetric surfaces generates
unbalanced forces, which drive the colony to migrate forward.
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Overall, we have demonstrated the versatility and predictive power of particle-based sim-
ulations of bacteria, which enable the discovery of novel non-equilibrium phenomena in
bacterial collectives.
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Chapter 1

Introduction

1.1 Motility of bacteria

In many organisms, motility plays a crucial role for the acquisition of re-
sources and the dispersal of their offspring. Bacteria, in particular, have de-
veloped diverse motility mechanisms to exploit available resources and en-
vironments, ultimately facilitating their colonization. These mechanisms can
be categorized into two main classes: the first involves the uninhibited swim-
ming of bacteria in aqueous solutions, while the second class comprises var-
ious types of motion across solid surfaces within aqueous environments [1].

1.1.1 Surface motility

The common motility of bacteria on surfaces can be categorized into swim-
ming, swarming, gliding, twitching, and sliding [1–3], as shown in Fig. 1.1.
Swarming motility can be defined as a rapid collective movement of bac-
teria across a surface, facilitated by the coordinated action of rotating flag-
ella. Notably, swarming, as observed in bacteria like Proteus, represents a
form of collective movement, while swimming is an individual behavior.
Both swimming and swarming modes of bacterial motility rely on flagella
for propulsion, but they operate in different environments. Swimming can
occur in a three-dimensional liquid medium, while swarming takes place in
a quasi-two-dimensional context on a solid surface. Swarming requires the
formation of a thin liquid layer on the surface for cells to participate in this
collective movement. This necessary condition for the movement of fluid at
the boundary emphasizes the need for particular chemical elements, like os-
molytes or surfactants, to be in close proximity to the forefront of the bacterial
colony [1].
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Bacterial twitching motility is driven by the attachment of their type IV pili
(T4P) to a surface. In the case of Neisseria gonorrhoeae, these bacteria do not
exhibit active swimming in a liquid medium or the ability to sense chemical
gradients [4]. Instead, their mechanism of surface twitching motility is me-
diated by the retraction of T4P [5–7]. Additionally, the twitching motility of
bacteria on surfaces can be influenced by the topography of the substrate [8–
10].

Sliding motility is an expansive movement for a colony growing on a surface,
and it is a passive form of surface spreading [2, 3]. This mode of motility does
not rely on the involvement of an active motor. During sliding, certain bacte-
rial species produce surfactants that effectively reduce surface tension. This
reduction in surface tension contributes to the overall spreading movement.
The spreading speed of the colony front during sliding ranges from 0.03µm/s

to 6µm/s [2].

1.1.2 Type IV pili-driven migration in detail

Filamentous appendages known as pili are a common feature of many bac-
terial species. There are several different types of pili, including type IV pili
(T4P), chaperone-usher pili (CUP fimbria) and so on [11]. A important role
of typie IV pili in some organisms like is to facilitate adherence to host cells
and abiotic surfaces, as well as adherence to other bacteria. Other, often es-
sential functions of pili include the facilitation of DNA uptake in competent
bacteria.

T4P are helical polymers characterized by a diameter ranging from 5 to 8 nm
and a remarkable length of several micrometers. The main structural com-
ponent of these pili is the major pilin, identified by the protein names PilE or
PilA, as shown in Fig. 1.2. The assembly of a pilus polymer is composed of a
large number of pilin subunits, with each individual pilin subunit within the
pilus being approximately 0.8 nm in length. These pilin subunits are typi-
cally stored within the inner membrane of the bacterium. The crucial process
of T4P polymerization is enabled by an ATPase, specifically either PilF or
PilB, located in the cytoplasm [10]. T4P undergo polymerization and depoly-
merization processes, resulting in cycles of elongation and retraction. This
dynamic behavior generates significant mechanical forces that distinguish
T4P from other types of pili [11].
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Figure 1.1: Bacteria migrate on surfaces. The motility of bacteria on surfaces
by swimming, swarming, gliding, twitching, and sliding. The figure is
adapted from [3] by permission from Springer Nature.
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In spherical bacteria like N. gonorrhoeae and N. meningitidis, pili are thought to
usually extend uniformly in all directions. In contrast, rod-shaped bacteria,
like Pseudomonas aeruginosa and Myxococcus xanthus, typically display T4P
extending from their poles, with a common observation being the presence
of pili at only one pole at a time [12].

For N. gonorrhoeae, which is the bacterium that is primarility studied here,
the T4P are helical polymers consisting mainly of the major subunit PilE.
Anchored in a transmembrane complex, T4P are isotropically displayed on
the whole cell surface [13],as shown in Fig. 1.3. Their elongation and retrac-
tion is driven by the dedicated ATPases PilF and PilT, respectively. PilF is
required for pilus polymerization and PilT drives pilus retraction and de-
polymerization. During retraction, T4P are capable of generating high forces
exceeding 100pN [6, 14], which is 20 times higher than the force generated
by muscle myosin and makes T4P one of the strongest molecular machines
known so far [15]. The retraction proceeds with velocities up to 2µm/s [13,
16]. T4P assemble into bundles that can cooperate to generate forces in the
nN range [17]. When individual cells come into proximity of abiotic surfaces
such as glass, cells can attach via T4P. Since N. gonorrhoeae generates multiple
pili simultaneously, a tug-of-war between pili on different sides of the cell
body ensues. On glass surfaces, the average detachment force is an order of
magnitude smaller than the maximum force generated by pili. Therefore, the
tug-of-war leads to a random walk of individual bacteria on surfaces [7, 13,
18–21].

1.1.3 Bacterial colonies

Bacterial colonies consisting of cells with nearly identical geometry and mechancial
properties are uniquely suited for studying the non-equilibrium statistical
mechanics of living matter [16, 22, 23]. A well-established biological model
system is the coccoid/diplococcoid bacterium N. gonorrhoeae. With a spheri-
cal cell body with a diameter of roughly 1µm, the bacterium forms colonies
that are reminiscent of nonliving colloidal assemblies. However, bacteria
grow and reproduce. Moreover, while colloidal assemblies are held together
by passive attractive interactions, such as depletion forces, N. gonorrhoeae
colonies are held together by T4P [11]. The fact that the cell-cell interaction
is caused by time-dependent non-equilibrium forces affects the shape, dy-
namics, and sorting behavior of bacterial colonies. N. gonorrhoeae mutants
without T4P cannot aggregate into colonies [24]. The strength of cell-cell



1.1. Motility of bacteria 5

Figure 1.2: T4P structure. The figure is adapted from [11] and reproduced
with permission from Springer Nature.
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Figure 1.3: (a) A cell body with T4P. (b) A bacterium twitching on a surface.
The figure is adapted from [13] by permission from Springer Nature.

attraction is affected by T4P post-translational modifications and can be con-
trolled by inhibiting or activating different steps of the pilin glycosylation
pathway [25].

The material properties of Neisseria colonies have been characterized as liquid-
like [22] with effective viscosities of η ∼ 350Pa s for N. gonorrhoeae [16]. Mi-
crocolonies display properties that are partially reminiscent of droplets ex-
hibiting an effective surface tension. Evidence for an effective surface tension
is firstly the spherical shape of microcolonies formed by N. gonorrhoeae with
retractile T4P [26]. Secondly, upon contact, two microcolonies fuse to form a
sphere with larger radius [16, 24, 27]. Depending on the strength and activity
of T4P interactions, initial fusion is however followed by slow coalescence
of the two microcolonies that can take hours [20, 28] and the mechanical re-
sponse of colonies certainly contains elastic components on some time scales.

1.1.4 Swimming

Bacteria endowed with flagella as cellular appendages, such as Escherichia
coli and Salmonella typhimurium, exhibit the capability for active swimming
in their surrounding medium. These microorganisms typically feature be-
tween five to eight flagella, emerging from the cellular surface, each flagel-
lum being associated with a dedicated motor at its base. The flagellum itself
consists of a helical filament, typically adopting a left-handed helical struc-
ture with variable length, commonly ranging from 5 to 10 micrometers, with
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a diameter of approximately 20 nanometers.

The rotation of flagellar motors in the counterclockwise (CCW) direction in-
duces the propagation of a helical wave, resulting in a propulsive force act-
ing upon the cell. The collective action of the flagellar bundle, responding
to CCW motor rotation, leads to a phenomenon commonly referred to as
"smooth swimming". This mode of locomotion enables the bacterium to
navigate along relatively straight trajectories, achieving speeds of up to 40
micrometers per second. Conversely, when the motors rotate in the clock-
wise (CW) direction, the flagellar filaments experience a right-handed tor-
sional load, engendering a distinctive behavior known as "tumbling". Con-
sequently, the cell undergoes a process of random reorientation and thereby
changes its travel direction.

Within a stable environmental context,the typical movement pattern of bac-
terial cells exhibits periods of random walk, featuring runs lasting approx-
imately 1 second, which are intermittently interrupted by 0.1-second tum-
bling events. These movement patterns can be influenced by the chemo-
taxis signal transduction network. When the bacterium detects changes in
its chemical environment, it adjusts its behavior by reducing the frequency
of tumbling. This adaptive response introduces a bias into its random move-
ment pattern, promoting preferential movement aligned with the gradient of
chemical cues.

It is worth noting that, while flagella are a key determinant of motility in
many bacteria, other types of swimming motility exist. For instance, certain
microorganisms like Synechococcus have evolved the capability for swimming
driven by spicules, diverging from the typical reliance on flagella for motility.

1.2 A gentle introduction to Brownian motion

Brownian motion, initially observed by biologist Robert Brown, is character-
ized by the random motion exhibited by small particles, typically with radii
ranging from a few nanometers (10−9 m) to micrometers (10−6 m), when they
are suspended in a fluid with a density not too different from the density
of the particles. This phenomenon was also investigated by Albert Einstein,
who studied the relationship between random motion, ambient temperature,
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and dissipation, which resulted in a formula for the diffusion constant as

D =
kBT

6πηR
, (1.1)

where kB is the Boltzmanns constant, T is the temperature, η is the viscosity
of the fluid, R is the radius of the Brownian particle. The random motion of
these particles arises from the stochastic, high-frequency collisions with the
fluid atoms.

In a colloidal system, there are typically three distinctly different timescales.
The fast atomic timescale τa ∼ 10−12 s, the relaxation timescale of the particle
velocity

τr ≈
m

γ
∼ 10−3 s, (1.2)

where m is the mass of the particle, γ is the friction coefficient, and the char-
acteristic diffusive time scal

τd ≈
R2

D
. (1.3)

Generally,
τa ≪ τr ≪ τd. (1.4)

Phenomenologically, the random motion of a particle in one dimension with
time-dependent position x(t), velocity v(t) can be described with a Langevin
equation

dx(t)

dt
= v(t),

m
dv(t)

dt
= −γv(t) + ξ(t),

(1.5)

where ξ(t) is the thermal noise, which satisfies

⟨ξ(t)⟩ = 0, ⟨ξ(t1)ξ(t2)⟩ = gδ(t1 − t2). (1.6)

The Langevin equation (1.5) has an explicit solution

v(t) = v(0)e−t/τr +
1

m

∫ t

0

dse−(t−s)/τrξ(s). (1.7)

Therefore, the average velocity over all of Brownian particles is given by

⟨v(t)⟩ = v(0)e−t/τr . (1.8)
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The velocity autocorrelation is obtained as

⟨v2(t)⟩ = [⟨v(0)2⟩ − gτr
2m2

]e−2t/τr +
gτr
2m2

. (1.9)

In thermal equilibrium, equipartition of energy implies ⟨v2(t)⟩ = kBT/m,
which combined with Eq. (1.9) yields an expression that relates noise strength
to the temperature and friction

g = 2γkBT. (1.10)

Thus, the noise autocorrelations must obey

⟨ξ(t1)ξ(t2)⟩ = 2γkBTδ(t1 − t2). (1.11)

The displacement of the particle can be solved by making use of the Langevin
equation (1.5)

x(t) = x(0) +

∫ t

0

dsv(0)e−s/τr +
1

m

∫ t

0

ds

∫ s

0

due−(s−u)/τrξ(u). (1.12)

The average displacement is

⟨x(t)⟩ = x(0) + v(0)τr(1− e−t/τr). (1.13)

The mean squared displacement (MSD) can be calculate as

⟨[x(t)− x(0)]2⟩ = τ 2r [1− e−t/τr ]2[v(0)− kBT

m
] +

2kBT

γ
[t− τr(1− e−t/τr)]. (1.14)

At thermal equilibrium, we have the MSD for short and long time

⟨[x(t)− x(0)]2⟩ =

kBT
m

t2 (t → 0)

2kBT
γ

t (t → ∞)
. (1.15)

On small timescales, the particle experiences ballistic motion. On large timescales,
the particle undergoes diffusive motion and the MSD can be written as

⟨[x(t)− x(0)]2⟩ = 2Dt, (1.16)
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where the Stokes-Einstein relation follows from comparison with Eq. (1.15)
as

D =
kBT

γ
=

kBT

6πηR
. (1.17)

1.3 Introduction to particle-based simulation meth-

ods

1.3.1 Overview

At the macroscopic scale, fluid motion can be described in a hydrodynamic
framework where conservation of momentum yields the Navier-Stokes Equa-
tions (NSEs). However, systems consisting only of few particles in a bath or
systems consisting of subunits that actively generate mechanical forces on
small lengthscales cannot always be described by the language of hydrody-
namics. Indeed, computers can meticulously simulate experimental systems,
serving as invaluable tools for the theoretical analysis of experimental results.
Various simulation methods have been developed over the past few decades
to computationally model biological systems at the microscopic and meso-
scopic scale.

At the microscopic scale, motion of complex fluids can be simulated by cap-
turing the movement of individual solute and solvent molecules, this ap-
proach is known as Molecular Dynamics (MD) simulation. MD simulation
is a computational technique used to determine the positions and veloci-
ties of individual solvent particles by applying Newton’s law. It can cap-
ture both thermal fluctuations and hydrodynamics, providing valuable in-
sight into microscopic systems. However, MD simulations are limited by
their computational expense and are typically applicable to small length and
time scales. Therefore, a method that connects macroscopic and microscopic
scales in simulations is needed, and it is generally referred to as mesoscopic
scale simulation [29, 30].

The mesoscale is typically characterized by spatial dimensions ranging from
10− 104 nm and temporal dimensions ranging from 1− 106 ns [31]. Simulat-
ing systems at this scale using MD method is quite costly due to the substan-
tial number of atoms and timesteps required. To study mesoscopic systems,
which involve larger length and time scales, coarse-grained or mesoscopic
simulation methods have been developed. These methods provide a com-
putationally efficient approach for investigating mesoscopic systems while
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retaining essential system properties. Thus, they serve as a bridge connect-
ing the realms of microscopic and macroscopic scales in the field of molecular
modeling and simulation.

In Brownian Dynamics (BD) simulations, particle motion is described by an
overdamped Langevin equation. In particular, the original BD method does
not account for hydrodynamic interactions. To account for hydrodynamic
interactions, an enhancement can be achieved by introducing the Oseen ten-
sor, thereby refining the simulation’s ability to capture the influence of fluid
dynamics on particle dynamics.

The Lattice-Boltzmann (LB) method is a computational approach used to
simulate fluid flow [32–35]. Unlike solving the Navier-Stokes Equations (NSE),
the LB method involves a lattice-based solution of the Boltzmann equation.
This technique ensures the conservation of both mass and momentum, pro-
viding an effective means of modeling fluid behavior in a computationally
efficient manner.

Another popular simulation technique is Multi-Particle Collision (MPC) dy-
namics, which successfully integrates both thermal fluctuations and hydro-
dynamics [36–42]. However, it is important to note that the MPC fluid is
modeled asa gass-like collection of particles and thus possesses high com-
pressibility. Therefore, compressibility issues may represent challenges when
attempting to accurately model certain physical systems, such as binary mix-
tures.

1.3.2 Dissipative particle dynamics

The Dissipative Particle Dynamics (DPD) method differs from conventional
molecular simulations by representing a small fluid cluster as one particle
rather than as individual molecules [43–47]. The number of molecules Nm

in this cluster is referred to as the coarse-graining parameter, it has been
demonstrated that DPD is approximately 1000N

8/3
m times faster compared

to MD method [48]. Another advantage of DPD over MD is that the hard-
core Lennard-Jones (LJ) potential between molecules can be replaced by a
soft-core potential between DPD particles that represents the coarse-grained
interaction among many molecules. Such a soft potential allows the use of
larger time steps in DPD simulations [49].
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In Dissipative Particle Dynamics (DPD), pairwise interactions guarantee mo-
mentum conservation, contrasting with original Brownian dynamics. This
distinction gives rise to proper hydrodynamics at larger scales [50–53].

The standard DPD method has some inherent limitations. Therefore, to sim-
ulate more complex systems, some improved DPD methods have been pro-
posed. The dissipative and random forces in DPD are chosen to obey the
fluctuation-dissipation theorem and function as a thermostat. As a result,
the standard DPD method is not energy conserving and is particularly suited
for modeling isothermal systems. To overcome the energy conservation lim-
itation in standard DPD, a modified version known as Energy-conserving
Dissipative Particle Dynamics (EDPD) has been developed [44, 54, 55].

In the original DPD method, the soft interaction potential imposed limita-
tions on the Equation Of State (EOS) for the simulated system [56, 57]. There-
fore, the Many-body DPD (MDPD) method has been proposed, where the
interaction potential between particles is derived from many-body poten-
tials [58–67]. Such many-body potentials are analogous to the potentials be-
tween atoms in MD simulations. For coexistence of multiple components, the
interaction potential in MDPD depends on the local density. This approach
has the potential to produce an equation of state that is more widely appli-
cable than the original DPD. A classic example is liquid-vapor coexistence,
where the MDPD can achieve a van der Waals loop in the EOS [57].

Furthermore, the Smoothed DPD (SDPD) method combines DPD and Smoothed
Particle Hydrodynamics (SPH) to provide an improved approach to simu-
lating complex fluid systems. SDPD integrates the advantages of other im-
proved DPD methods and overcomes some limitations present in the stan-
dard DPD method. Energy conservation is maintained in SDPD method,
consistent with the principles of EDPD method. SDPD has a wide range
of applicability and has been used to simulate various complex fluid sys-
tems [68–81].

DPD and its improved versions have been widely used to simulate various
complex systems [31]. Numerous studies have focused on simulating col-
loidal suspensions using DPD, with utilizing different approachs to repre-
sent the solute [82]. One approach is to assemble a colloidal particle com-
posed of DPD particles that move rigidly or are connected by springs [51,
83–85]. This strategy simplifies the representation of arbitrary shapes and
allows the inclusion of confinement effects resulting from walls [86, 87]. An
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alternative approach, in which a single DPD particle represents each colloidal
particle [88–91], is less computationally costly. The colloidal system of blood
has been studied with original DPD and SDPD [72, 73, 92–95].

Liquid droplets have been simulated as an example of gas-liquid phase sepa-
ration [96]. The wetting behavior of droplets on solid surfaces has been simu-
lated by DPD [97]. Additionally, MDPD has been employed in extensive sim-
ulations to further investigate the properties and dynamics of droplets [57,
98]. The simulation of biological membranes and their complex mechanisms
has been achieved using DPD [48, 99–103]. DPD has been used extensively
to simulate polymers with and without entanglements [104–112].

To reduce computational costs, methods for solvent-free DPD simulations
have been proposed [100, 113]. This approach assumes that solutes are al-
ways in equilibrium, allowing for the implicit treatment of solvent parti-
cles. However, to achieve results comparable to explicit solvent simulations,
adjustments to the interaction potentials between solutes are required. By
significantly reducing the number of simulated particles, implicit solvent
DPD offers advantages over explicit solvent DPD, including faster simula-
tion speeds and smaller memory and storage requirements. Additionally, the
simulation results of the two methods are consistent [100]. Methods similar
to implicit solvent DPD have been used extensively in simulations, including
simulations of bacterial colonies [114] , tissues [115, 116], and self-propelled
particle systems [117].

1.3.3 Time integration algorithms for dissipative particle dy-

namics

In early implementations of DPD, the Euler algorithm was utilized to update
the velocities and positions of particles by integrating the DPD equations [50,
52]. For a particle with the index i, the position ri, velocity vi, and force fi of
the particle, over a small time step ∆t, are given by

ri(t+∆t) = ri(t) + ∆tvi(t),

vi(t+∆t) = vi(t) + ∆t fi(t),

fi(t+∆t) = fi(ri(t+∆t),vi(t+∆t)).

(1.18)
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As a more efficient scheme, a modified velocity-Verlet algorithm has been
proposed in Ref. [118]:

ri(t+∆t) = ri(t) + ∆tvi(t) +
1

2
(∆t)2fi(t),

ṽi(t+∆t) = vi(t) + λ∆t fi(t),

fi(t+∆t) = fi(ri(t+∆t), ṽi(t+∆t)),

vi(t+∆t) = vi(t) +
1

2
∆t (fi(t) + fi(t+∆t)).

(1.19)

Here, the factor λ is a constant whose value is 1/2 in the original Verlet algo-
rithm but may also be chosen differently.

A number of alternative time integration algorithms for DPD simulations
have been suggested over the years [81, 119–128].

1.4 Objectives of this thesis

Internally driven many-particle systems exhibit a rich behavior, including
various types of non-equilibrium phase transitions, pattern formation, and
so-called giant fluctuations. Many of these phenomena were studied with
particles that, in addition to being active, have some internal orientation, ei-
ther in their geometry or through a directed active motion. Coccoid bacteria
with an active force that is on average isotropic are an arguably simpler form
of active matter which is known to exhibit certain non-equilibrium features,
such as demixing of active and passive bacteria. While some of these behav-
iors have already been studied theoretically and experimentally, a plethora
of non-equilibrium behaviors that could also be biologically relevant remain
to be studied. In this thesis, focusing on N. gonorrhoeae as a model system,
we have constructed a simulation model for bacterial colonies, incorporating
a force analogous to the force generated by T4P. The model is designed for
the simulation of colony growth and formation, enabling the study of colony
behavior both in solution and on solid surfaces. Comparative analysis of
simulation results with experimental data can offer valuable insights into the
non-equilibrium physics that governs the behavior of these colonies.

In Chapter 2, we introduce the effective model that is employed in our study.
The interactions between bacteria are represented by DPD. A DPD particle
represents a single bacterium and the volume repulsion, dissipation and ther-
mal fluctuations of the bacteria are included. By adding an additional force
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to represent the interaction between T4P, the binding, retraction and rupture
of pili are also taken into account. Bacterial growth is modeled by a pair
of bound particles, with the rest length between them slowly increasing un-
til a cell division threshold is reached, at which point they divide into two
daughter cells. The selection of appropriate parameter values is informed by
a comparative analysis with existing experimental data.

The material properties of N. gonorrhoeae colonies have been characterized as
liquid-like [22] with effective viscosities [16]. The motor activity of T4P ac-
celerates the processes of local ordering and shape relaxation during colony
fusion have been shown. How the molecular properties of motor proteins
affect colony dynamics is difficult to quantify experimentally, but is possible
for simulations. We investigate the effect of pili properties, such as bind-
ing rate, retraction velocity and number of pili, on the RDF and MSD of the
colonies in Chapter 3. The results of our simulations and experiments are
comparable.

In thermodynamic equilibrium, the velocity correlation measured in parti-
cle systems is generally proportional to the linear response with respect to a
small perturbation, which is called a fluctuation-response relation [129]. The
extent of the violation of this fluctuation-response relation in non-equilibrium
states can be related to the rate of energy dissipation [130, 131]. For bacte-
rial colonies, active force-generation by T4P changes the fluctuations of the
conservative forces experienced by the cells and entails energy dissipation.
Therefore, the fluctuation-response relation is expected to be violated in bac-
terial colonies under the premise that colonies can be described as physical
particle system [132–134]. In Chapter 3 we devise a model for quantifiying
the power spectral density of active bacterial colonies and compare the re-
sults with experimental data. Then, by simulating an experimental setup for
probing the colony response to an external force, we investigated violation
of the equilibrium fluctuation-response relation in bacterial colonies.

Unlike passive liquids whose spreading behavior has been extensively stud-
ied, little is known about the spreading behavior of active bacterial colonies.
Do such active matter systems exhibit similar spreading behavior on sur-
faces as passive liquids? Through the integration of experimental observa-
tions, computational simulations, and theoretical analyses, we investigate
the spreading behavior of colonies on solid surfaces in Chapter 4.

Experiments have shown that bacteria within colonies decrease pili activity
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in response to oxygen and nutrient depletion. Such colonies undergo sort-
ing, which is sometimes accompanied by the colony folding. What factors
determine the occurrence of folding in bacterial colonies? In Chapter 5, we
investigate the folding of bacterial colonies by implementing an appropriate
simulation model.
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Chapter 2

Computational model for
simulation of bacterial colonies

2.1 Assumptions and model description

In our simulations, colonies are grown from individual cells through cell di-
vision. An individual cell is also called a coccus. A pair of dividing N. gonor-
rhoeae cells is called a diplococcus and has the shape of two partially overlap-
ping spheres. During the growth, each diplococcus divides approximately
with rate α into a pair of individual cocci, which in turn again become diplo-
cocci after some time. The fraction of dead cells in N. gonorrhoeae colonies
is reported to be below 5% [135] and cell death is therefore neglected in our
model. Each individual coccus is endowed with a repulsive potential mod-
eling volume exclusion. In addition, cells experience dissipative forces re-
sulting from relative motion of neighboring cells and thermal fluctuations.
Each cell has a fixed number of pili. By modeling the pili as dynamic springs
that can extend, retract, bind and unbind either with other pili or with the
environment, we faithfully represent the stochatic nature of cell-generated
forces.

2.1.1 Cell geometry and bacterial growth

All simulations are conducted in a three-dimensional, Cartesian coordinate
system. Individual cells are modeled as soft spheres with radius R. The
position of the center of bacterium i is denoted by ri. The vector between a
pair of bacteria with indices (i, j) is denoted by rij = ri−rj and their distance
is rij = |rij|.
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The division of a cell with index i is modeled by insertion of a second sphere
with index j on top of i so that the excluded volume remains the same dur-
ing insertion. The pair of cells is initially connected by an elastic spring with
time-dependent rest length l(t), thus forming a diplococcus. The initial orien-
tation of the vector connecting the cell pair is chosen randomly. Then, growth
of the diplococcus is simulated by increasing the rest length of the spring that
connects the cell pair as

dl(t)

dt
=

α

νr
, (2.1)

with a rate constant α and a constant with units of length 1/νr. This linear
growth of the long axis of the diplococcus with time is consistent with exper-
imental data presented in Ref. [136]. Note that the geometry of the growth of
the diplococcus implies that the volume growth rate increases with size of the
individual diploccus. As a generalization, one could also include a growth
rate α that explicitly depends on the size of the diplococcus to represent an
arbitrary volume-dependency of the growth on the single-cell level [137]. A
further complication that has not been included in the model, for simplicity,
is that the direction of growth and division in Neisseria likely follows a com-
plex pattern determined by alternating perpendicular division planes [136].
Once the length l(t) reaches a threshold lt, the connecting spring is removed
and the two spheres are treated as individual cocci. Instantaneous forces act-
ing on either of the two cocci during their separation are equally distributed
among the two cocci to ensure momentum conservation. The time between
creation of a diplococcus and separation of the two daughter cells is given by
tr = ltνr/α.

After separation of a diplococcus, the two individual cocci do not become
diplococci instantaneously. Rather, individual cells are turned into diplo-
cocci at a constant rate per cell, for which we employ for simplicity the same
rate constant α that also appears in Eq. (2.1). This means that the separation
of a diplococcus (division) is followed by a random refractory time, which
prevents an unphysical synchronization of the division events in the simula-
tions.

The growth and division model employed in this work is primarily mo-
tivated by its simplicity and numerical stability. For several bacterial or-
ganisms, experimental studies have demonstrated that homeostasis of cell
size can be explained by a phenomenological “adder rule”, whereby cells



2.1. Assumptions and model description 19

increase by a constant volume each generation, regardless of initial size at di-
vision [138–140]. Thereby, the volume increment during each generation sets
the division time and division times obey a Gaussian distribution. For our
model, however, we choose to keep the sizes of the spheres always the same
to enable a robust parametrization. This choice produces a natural scale for
cell division and insofar determines the division times. The additive noise
in bacterial division times that reportedly results in their Gaussian distribu-
tion [139] is represented in our model approximately by the random refrac-
tory time between pair separation and creation of daughter cells in the next
generation.

𝑖

𝑖 𝑗

𝑖 𝑗

growth

division

unbound

bound

retraction

rupture

(a) Growth and Division (b) Pilus-based interaction

Figure 2.1: Schematic representation of the two active processes occurring
in the simulations: (a) A bacterium grows into a diplococcus and then
divides into two individual bacteria. (b) Two cells bind to each other via
pili. Subsequently, pili are retracted by the bacteria leading to a force
build-up. The bond connecting the pili ruptures stochastically in a
force-dependent manner.

2.1.2 Dynamics of type IV pili

Each cell is assumed to have a constant number of pili, typically around 7,
see Tab. 2.1. A pilus of bacterium i is assumed to bind with a rate kbind to one
pilus of a neighboring bacterium j. For binding, the distance between i and
j, rij , is required to be less than a cutoff distance dbind. This cutoff distance
ensures that only bacteria bind to each other when they are in proximity to
each other. In some simulations, a distance-based criterion and a Voronoi
tessellation are combined to limit pilus interactions only to immediate neigh-
bors that have a distance from each other that is smaller than the cutoff for
pilus binding. For simplicity, we assume that pilus-based forces act along the
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straight lines connecting the centers of cell pairs. It is assumed that two bac-
teria can only have one pair of pili adhering to each other. Likewise, bundling
of pili [13] is also neglected due to its unknown role in cell colonies. Pili of the
two cells in a diplococcus do not bind to each other. The pilus-based cell-cell
connection is modeled as a spring connecting the centers of two cells. The
rest length of the pilus connecting two cells with indices i and j is denoted
by Lij . The force exerted on the pair of cells is purely attractive and given by

fp
ij = min [0,−k[rij(t)− Lij(t)]] , (2.2)

where k is the pilus’ spring constant. Once the pilus is bound, it is assumed to
retract. Thus, the effective pilus dynamics employed for our model exclude
non-retracting pili that form passive bonds among cells, see, e.g. Ref. [19].
Pilus retraction leads to a continuous shortening of its rest length as

Lij(t) = max

[
2R, rij(0)−

∫ t

0

vre(t)dt

]
, (2.3)

where vre is the force-dependent retraction velocity of pili. To describe the
force-velocity relationship for T4P retraction motors [14], we employ the lin-
earized relation

vre(t) = max

[
0, vre(0)

(
1−

fp
ij

fs

)]
, (2.4)

where the stall force fs represents the maximal force a retracting pilus can
generate. Furthermore, it is assumed that the bonds between the pili rupture
under stress with a force-dependent rate as

γrupt =
1

t1e
−fp

ij/Fc,1 + t2e
−fp

ij/Fc,2
, (2.5)

where t1 and t2 are two characteristic rupture time, Fc,1 and Fc,2 are two char-
acteristic rupture force. To simplify the analysis the effect of characteristic
rupture time on colony dynamics in Secs. 3.4, 3.5, 3.6, we employ a simpli-
fied pilus-pilus rupture rate formula in these sections as

γrupt = krupte
fp
ij/Frupt , (2.6)

where krupt is the pilus rupture rate without loading and Frupt is a character-
istic rupture force. See, e.g., Refs. [13, 19, 20, 141] for related models of pilus
dynamics.
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2.1.3 Dynamics of bacteria

For simulating the cell dynamics, we employ an algorithm similar to dissi-
pative particle dynamics (DPD) [118, 142], where we assume a soft repul-
sion between cells, a frictional force proportional to the relative velocity of
neighboring cells, and thermal noise forces that satisfy the Einstein relation.
Underdamped equations of motion for every cell i with mass mi, position ri,
velocity vi, and force fi are assumed as

dri
dt

= vi, mi
dvi

dt
= fi. (2.7)

The force acting on each pair of cells consists of conservative forces Fc
ij , dissi-

pative forces Fd
ij , thermal fluctuations Fr

ij and forces from active pilus retrac-
tion Fp

ij . Overall, the sum of these forces is

fi =
∑
j ̸=i

(Fc
ij + Fd

ij + Fr
ij + Fp

ij). (2.8)

For defining the individual force terms, we employ the vector between the
centers of masses rij = ri − rj and the unit vector pointing towards cell i
denoted by r̂ij = rij/rij .

The conservative force acting between pairs of unbound bacteria is

Fc
ij =

a0(1− rij/dcon)r̂ij (rij < dcon)

0 (rij ≥ dcon)
, (2.9)

where a0 is the maximum conservative force between bacterium i and j, the
cutoff distance for the repulsive cell-cell interaction is denoted by dcon =

2R. For a diploccus consisting of two spheres, the conservative force due
to growth is

Fc
ij = agrowth(li − rij)r̂ij, (2.10)

where agrowth is the elastic constant of the spring connecting the two cells of a
diplococcus. The dissipative and random forces are, respectively, given by

Fd
ij = −γωD(rij)(r̂ij · vij)r̂ij, (2.11)

Fr
ij =

√
2γkBTω

R(rij)θij r̂ij, (2.12)

where γ is a friction coefficient, ωD and ωR are distance-dependent weight
functions, kB is the Boltzmann constant, T is the ambient temperature and
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θij = θji is a random number drawn from a Gaussian distribution with zero
mean and unit variance. For the distance-dependence of the friction force we
choose

ωD(r) = [ωR(r)]2 =

(1− rij/ddpd)
2 (rij < ddpd)

0 (rij ≥ ddpd)
, (2.13)

where ddpd is the cutoff distance for dissipative and random forces. Finally,
the forces resulting from retraction of pili are given in their vectorial form by

Fp
ij = fp

ij r̂ij. (2.14)

Note that we do not consider the torques generated by T4P between pairs of
cells, see Ref. [20] for such a model.

2.2 Computational methods

2.2.1 Simulation details and parameter values

The simulation code is integrated into the molecular dynamics simulator
LAMMPS [143], which allows an efficient parallelization while providing
great flexibility regarding the model choice. To model the cellular dynam-
ics described above, we wrote a new C++ code. The velocity-Verlet algo-
rithm is used to advance the set of positions, velocities and forces. The code
is parallelized for execution on CPUs and large colonies consisting of ten-
thousands of bacteria can be simulated efficiently. The colonies are visualized
with OVITO [144].

The characteristic scales that are used as simulation units are the cell diameter
dc = 2R = 1µm, a time scale given by the inverse of the default value of
the pilus-unbinding rate constant tc = 1/krupt = 1s, and a force scale of fc =
1pN. Parameters values that are used for the simulations are listed in Tab. 2.1.
Whenever alternative parameter values are used, they are provided with the
results.

2.2.2 Separation of time scales

In the simulations, the time scale of viscous relaxation is smaller than the
time-scale of pilus-based interaction. Thus, inertial effects are negligible.
Moreover, the time scale of the pilus-based interaction is much smaller than
the time-scale of cell division tc ≪ 1/α. Simulations typically start with one
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Table 2.1: The choice of parameters for the simulations.

Parameter Value Unit Reference
cell radius R 0.5 dc [16]
cell mass m 0.1 fct

2
cd

−1
c

pilus spring constant k 500 fcd
−1
c

pilus stall force fs 180 fc
maximum retraction velocity of pili v0 2 dct

−1
c

number of pili per cell 7 [18]
simulation time step ∆t 1× 10−4 tc
division rate α 1/500 t−1

c

diplococcus growth parameter νr 1.0 d−1
c

pilus characteristic rupture time t1 0.5 tc
pilus characteristic rupture time t2 0.091 tc
pilus characteristic rupture force Fc,1 4.5 fc
pilus characteristic rupture force Fc,2 60 fc
pilus rupture rate krupt 3 t−1

c

pilus binding cutoff distance dbind 2.5 dc
pilus binding rate kbind 10 t−1

c

pilus-pilus bond rupture force scale Frupt 22.5 fc [16, 145]
maximum conservative force a0 4000 fcd

−1
c

conservative force cutoff dcon = 2R 1.0 dc
diplococcus spring constant agrowth 4000 fcd

−1
c

friction coefficient γ 50 fctcd
−1
c

thermal energy scale kBT 1× 10−5 fcdc
dissipative and random force cutoff ddpd 1.5 dc
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bacterium and colonies are formed by letting the cells grow and divide. The
colony structures emerge during growth due to the repulsive interactions,
thermal noise, and pilus-based interactions, as shown in Fig. 3.1(a). In some
simulations, it is desirable to completely remove the effect of cell growth
on the bacterial dynamics. For this purpose, cell growth and division are
switched off after a sufficient colony size is reached.

2.3 Experimental data

Experiments were carried out in the laboratory of Prof. Dr. Berenike Maier
at University of cologne. Bacterial colonies were grown as described pre-
viously [25, 146]. The presented data, with the exception of the data for
Fig. 5c, was originally generated for work summarized in Refs. [25, 147, 148].
Briefly, for assessing colony structure and dynamics, bacteria were incubated
within a flow chamber under continuous nutrient supply for one hour to
several hours hours. Constant supply of nutrients and, if used, antibiotics
was ensured by applying continuous flow. For calculation of the RDF, bacte-
ria were stained with Syto 9 to enable detection of the position of individual
cells and to determine the cell volume. Colony dynamics were assessed with
gfp and mcherry expressing cells [25]. In detail, the origin of the data is as
follows. The confocal section of a microcolony of fluorescently labeled bac-
teria in Fig. 3.1b) was produced as described in [148]. The rupture forces
of T4P bonds shown in Fig. 3.2a) were measured with an optical trap and
experimental methods are described in Ref. [25]. Diffusion coefficients and
RDFs were shown in Figs. 3.2c),f) were measured as described in [147]. The
PSDs of the colony boundary fluctuations shown in Fig. 3.4(c) were calcu-
lated from time-lapse images of colonies recorded at 10 Hz for one minute.
The corresponding experimental methods are detailed in Refs. [16, 25].
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Chapter 3

Growth, active fluctuations,
segregation, adhesion and invasion
of bacterial colonies

This chapter is published in Communications Physics with the title "Non-
equilibrium dynamics of bacterial coloniesgrowth, active fluctuations, segre-
gation, adhesion, and invasion" in 2022 [114].

3.1 Introduction

While material properties of N. gonorrhoeae colonies have been character-
ized [22], many non-equilibrium effects resulting from active bacterial force-
generation remain to be explored. In thermodynamic equilibrium, the ve-
locity correlation measured in particle systems is generally proportional to
the linear response with respect to a small perturbation, which is called a
fluctuation-response relation [129]. The extent of the violation of this fluctuation-
response relation in non-equilibrium states can be related to the rate of en-
ergy dissipation [130, 131]. For bacterial colonies, active force-generation by
T4P changes the fluctuations of the conservative forces experienced by the
cells and entails energy dissipation. Therefore, the fluctuation-response re-
lation is expected to be violated in bacterial colonies under the premise that
colonies can be described as physical particle system [132–134]. However, the
frequency-characteristics and measurability of this violation are unknown.
Thus, an aim of this work is to establish theoretical predictions regarding the
non-equilibrium fluctuations of N. gonorrhoeae colonies.

Internally driven many-particle systems can also exhibit non-equilibrium phase
transitions, which has been investigated for some classes of model systems,
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of bacterial colonies

see, e.g., Refs. [149–152]. Notably, for active particles that undergo rotational
motion and thus on average obey rotational symmetry, density fluctuations
are Gaussian and the non-equilibrium phase transitions can be understood in
a framework similar to equilibrium phase transitions [153, 154]. For N. gon-
orrhoeae colonies, the average force generation by individual bacteria is pre-
sumably almost spherosymmetric and therefore it may be challenging to dis-
tinguish genuine non-equilibrium colony dynamics from dynamics that are
also be observable in passive systems. However, it has been shown experi-
mentally that mechanical forces govern the sorting of different cells during
the early formation of N. gonorrhoeae colonies [145]. Mutants with different
T4P density and rupture forces of T4P-mediated adhesion spatially segregate
inside colonies, suggesting a sorting process driven by pilus retraction that
also depends on differential adhesiveness [28, 145]. Self-sorting of Neisseriae
colonies has been studied experimentally by changing the post-translational
modification of T4P, their activity, and computer simulations have been con-
ducted [22, 28, 145].

In general, physical properties of large bacterial colonies are ideally studied
with a combination of experiments, theory, and detailed computer simula-
tions. Previous work includes simulations of the dynamics of single cells
due to individual pili [13, 19–21] and coarse-grained approaches or contin-
uum theories for the description of Neisseria colonies [155]. Furthermore,
multiscale simulations combining overdamped cell dynamics with stochastic
pilus activity have shown great promise for the investigation of the behav-
ior of Neisseria colonies on different length scales [20, 22]. Mechanical forces
in bacterial colonies are not only actively generated by T4P but also by cell
growth and division. For the case of mammalian cells, tissue growth has
been studied extensively with particle-based simulations where individual
cells are represented as spheres [115, 156, 157]. The sphericity and growth
dynamics assumed for cells with these models are also appropriate for sim-
ulating coccoid bacteria.

3.2 Exponential colony growth

Figures 3.1 shows simulation results for colony growth. As for experimental
systems, colonies approximately maintain a spherical shape during growth.
In the simulations, both the number of bacteria and the colony radius in-
crease exponentially with time. Colony radii are quantified by measuring
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the distance between the center of mass and cells on the boundary at a fixed
polar angle and azimuth. Since we have not taken into account a position-
dependence of nutrient availability inside colonies, we expect to see such
growth dynamics in experiments only for small cell colonies in rich media.
Experimentally, an exponential increase of the radii of N. gonorrhoeae colonies
has been observed for about three hours during the initial growth of young
colonies [135].

Next, analytical formulas are derived for the simulated growth dynamics.
The cell-growth simulations are based on the assumption of two growth
phases - consisting of single cocci and diplococci. The advantage of this two-
phase model is that it allows the introduction of a controllable randomization
of division events and thus the avoidance of artificial division synchroniza-
tion. A single coccus can divide to form a diplococcus, which is a random
event that occurs with rate α. The resulting diplococcus cannot divide im-
mediately but grows on average for a time tr until it separates into two single
cocci that can then divide. We denote the average number of all cells forming
the cocci and diplococci by N(t). The average number of cells that are single
cocci is denoted by Nc(t). Since only the single cocci are assumed to divide,
the overall number of bacteria is determined by

dN(t)

dt
= Nc(t)α. (3.1)

We next consider the governing equation for the number of single cocci Nc(t),
which increases at time t through separation of diplococci. The separating
diplococci, in turn, were formed at time t−tr through division of single cocci.
Hence, the increase of single cocci at time t is given by 2αNc(t − tr), where
the factor 2 results from cell doubling during division. Simultaneously, the
number of single cocci is reduced through formation of diplococci with rate
αNc(t). Overall, we obtain

dNc(t)

dt
= 2αNc(t− tr)− αNc(t). (3.2)

Growth is assumed to obey an exponential time dependence and the ansatz
Nc(t) = Nc(0)e

αpt with a constant p is inserted into Eq. (3.2). This yields a
nonlinear equation determining p as

p = 2e−pαtr − 1. (3.3)
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Insertion of this result into Eq. (3.1) yields the final result for the overall cell
number as

N(t) = Nc(0)e
αpt/p. (3.4)

Thus, the effective growth rate of the cell number in simulations is given by
αp. Formula (3.4) has no free parameters and fits the simulation results very
well, see the inset of Fig. 3.1(c).
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Figure 3.1: Simulations of growing colonies. (a) Simulation snapshots
showing colony formation. (b) Confocal section of a microcolony of
fluorescently labeled N. gonorrhoeae. Scale bar: 5µm. (c) Cell numbers and
colony radii increase exponentially with time in the simulations before
growth and division are switched off.

3.3 Pilus-mediated interactions determine local colony

order

To establish that the parameter values chosen for simulating pilus dynam-
ics and forces correspond to measured values for N. gonorrhoeae, the dis-
tributions of rupture forces in our simulations are recorded. For adjusting
the parameters governing pilus binding and rupture, simulation results are
compared with measured rupture force distributions, see Fig. 3.2(a,b). The
rupture-force values used for Fig. 3.2(a) correspond to data in Ref. [16], where
the experimental procedures are explained in detail. To examine how the ac-
tive force generation affects the mobility of cells in colonies, we next compare
the simulated long-time diffusion coefficient of cells in colonies with station-
ary size with experimental data published in Ref. [147], see Fig. 3.2(c). Con-
sistent with the experimental results and previous computational work [28,
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147], diffusive motion of cells decreases at the center of the colonies. These
gradients in mobility are not a result of graded mechanical activity because
all cells in the simulations have the same properties. Rather, the reduced
motion inside the colonies is due to a “caging” of every cell by its neigh-
bors [148]. This mutual obstruction of movement is reduced at the periphery
of the colony as a result of the lower cell density. Treatment of the colonies
with the antibiotic azithromycin reduces the T4P-T4P binding among neigh-
boring cells. Accordingly, cell motility in colonies treated with azithromycin
is increased, Fig. 3.2(c,inset) [147]. Note that the employed concentrations
of azithromycin do not completely abolish T4P retraction or lead to a high
cell death rate. In simulations, the reduced pilus interaction of azithromycin-
treated cells are represented by variation of the binding constant for T4P,
kbind, Fig. 3.2(c).

Next, the local order in simulated colonies is investigated. The degree of local
ordering is characterized by the radial distribution function (RDF), which is
the average local particle density at distance r from any reference particle,
normalized by the average particle density of the system [158, 159]. The RDF
is defined as

g(r) =
V

N

N∑
i=1

ϕi(r)

NVshell(r)
, (3.5)

where ϕi(r) is the number of particles whose distance to the ith particle is
between r −∆r and r + ∆r with ∆r = 0.05µm, Vshell(r) is the volume of the
shell between radii r−∆r and r+∆r, N is the total number of particles in the
system, and V is the volume of the colony. In Fig. 3.2(d,e), the RDFs of bac-
teria inside stationary, non-growing colonies are displayed. For cells carry-
ing 2− 12 pili, which corresponds to the experimentally established number
for wild-type N. gonorrhoeae, the RDFs have the typical characteristics seen
for liquids with multiple, maxima that are decreasing in magnitude with in-
creasing r. Hence, pilus-based cell-cell interaction generates structures with
short-range order. Since the pili also cause relative motion of the bacteria, de-
creasing pilus retraction speed increases the spatial ordering as can be seen
in Fig. 3.2(d). Higher numbers of pili result in more pronounced maxima
and therefore to a higher degree of spatial ordering, Fig. 3.2(e). Experimen-
tally, a lower number of T4P can be induced by treatment of the colonies with
sub-inhibitory concentrations of antibiotics [146, 147]. Figure 3.2(f) displays
experimentally measured RDFs for wild-type cells and azithromycin-treated
cells. Distances in this plot are scaled by the different mean diameters of the
bacteria. Lowering the number of T4P by azithromycin treatment reduces the
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local ordering, which is in good qualitative agreement with the simulation
results. Experiments were performed as described previously in Ref. [147].
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Figure 3.2: Pilus-generated forces and local colony order. (a) Experimental
results for the distribution of pilus-pilus bond rupture forces measured
with an optical trap [25]. Forces above 80pN cannot be measured precisely,
the histogram bar at 100pN represents the contribution of all forces over
80pN. (b) Distribution of pilus-pilus bond rupture forces in simulations.
(c) Diffusion coefficient of bacteria as a function of distance from the colony
edge dedge in simulations. Error bars show standard deviations of 3 samples.
Inset: experimental data for wild-type cells and azithromycin-treated
cells [147]. (d) Radial distribution function (RDF) of cells inside simulated
colonies for different pilus retraction velocities. The shape of the functions,
with decreasing, quasi-periodic maxima resembles the RDF of a liquid. For
passive pili (vre = 0), kbind = 2 s−1 is used, compare Tab. 2.1. (e) The maxima
in the RDF become more pronounced with increasing numbers of pili per
cell, thus, pili promote ordering. (f) Experimentally determined RDF for
wild-type cells and azithromycin-treated cells with fewer T4P [147]. The
cell diameter dc is 1.02µm for the untreated control cells and is 1.42µm for
the azithromycin-treated cells. Error bars are the standard error of the
mean, over 24 colonies.
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3.4 Active phase segregation in mixed colonies

Experimentally, strains carrying mutations affecting the T4P machinery have
been found to segregate during formation of colonies [28, 145]. Bacterial seg-
regation was seen to be dependent on the number of pili per cell, on post-
translational pilus modifications that modify binding properties, and on the
ability of bacteria to retract their pili. The observed colony morphotypes
were suggested to be in agreement with the so-called differential-strength-
of-adhesion hypothesis [160], which proposes that contractive activity of cells
in addition to differential adhesiveness drives cell sorting. While active force
generation was seen to be necessary for defined morphologies of mixed mi-
crocolonies, an experimental separation of the effect of pilus activity from
differential adhesiveness is challenging due to the molecular complexity of
pili. Simulations allow the systematic study of how variation of different
parameters affects segregation.

To establish that the simulations produce results that are consistent with ex-
perimental data, experimentally studied cases of colony segregation are re-
investigated. We first simulate simultaneous growth of two kinds of strains
carrying different numbers of pili, as studied experimentally in Ref. [145].
In simulations, the growing colonies segregate and the cells that have many
pili concentrate in the center of the colony, while cells with fewer pili form a
spherical shell in the periphery, see Fig. 3.3(a). Qualitatively, this configura-
tion can be explained by the hierarchy of interaction strengths, as explained
in Ref. [145]. The mutual attraction of a pair of cells with many pili is larger
than the attraction of a cell with many pili to a cell with few pili. The weak-
est attraction occurs among pairs of cells with few pili. The formation a shell
of weakly-binding cells in the periphery is energetically advantageous be-
cause of the reduction of surface-energy cost. For binary mixtures of bacte-
ria with different pilus-rupture probabilities, other hierarchies of interaction
strength are possible. For a mixture of two cell types that have high pilus rup-
ture forces among each other, but lower rupture forces for pairs of different
cells, simulations show the formation of two segregated half-spheres during
growth, see Fig. 3.3(b). This is consistent with experimental results, where
wild-type cells were mixed with mutants deficient in post-translational pilin
glycosylation [145].

Previous work on pilus-driven self-assembly of colonies has shown that bi-
nary cell mixtures consisting of cells with intact and retraction-deficient pili
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segregate [20, 28]. To learn more about the segregation dynamics in this case,
we start our simulations with fully grown colonies consisting of random bi-
nary cell mixtures, see Fig. 3.3(c). Half of the cells can retract their pili and
the other half are retraction-deficient. Since both cell types have the same
number of pili, no differential in adhesiveness exists. Nevertheless, the ini-
tially random distribution of different cell types gradually disappears and
the retraction-deficient cells accumulate at the periphery of the simulated
colony, as found in Ref. [20]. Unexpectedly, our simulations also predict the
existence of a metastable intermediate state, in which active, pilus-retracting
cells form a concentric spherical shell inside the colony, see Fig. 3.3(c, t2). This
intermediate state has to our knowledge not yet been observed experimen-
tally. The lifetime of the predicted intermediate state depends on the pilus-
based interactions and on the strength of the cell-cell repulsion. We quantify
the effect of pilus-retraction velocity and cell-cell repulsion on the appear-
ance of the metastable concentric shell. Heat-maps of the average lifetimes
of the concentric spheres as a percentage of the simulation time are shown in
Fig. 3.3(d) and (e). For short-ranged pilus interactions, the concentric shell of
retracting cells inside the colony hardly appears, see Fig. 3.3(d), (dbind = 2).
Likewise, this metastable state is suppressed if pilus-mediated interactions
are limited to the next neighbors via Voronoi tesselation. The appearance of
the metastable state requires long-ranged pilus-pilus interactions and rather
stiff repulsive potentials among cells, see Fig. 3.3(e) (dbind = 3). Through such
long-ranged pilus-pilus interactions, cells can exert forces on other cells that
are not their direct neighbors. Experimentally, it has been established that the
length of T4P follows an exponential distribution with a length scale around
0.8µm and measured maximum lengths up to 5µm [161]. Thus, the average
T4P length is about the diameter of a coccus. For our simulations, we there-
fore chose a default binding cutoff equal to 1.5 times the cell diameter plus
two times the cell radius (dbind = 2.5). Experimentally, longer-ranged inter-
action forces could occur for bacteria under stress conditions that affect T4P
dynamics [161] or in situations where extracellular matrix constituents, such
as polysaccarides or DNA, transmit forces inside colonies. The simulation
results suggest that an experimental observation of a metastable concentric
shell during phase separation would point toward the existence of such long-
ranged, pilus-based interactions among bacteria.

Figure 3.3(f) shows plots of the diffusion coefficient of cells as a function of
the distance from the colony center. For cell colonies consisting of one cell
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type, diffusive motion of cells decreases at the center of the colonies as al-
ready shown above. In contrast, for segregated colonies consisting of cells
with retracting and non-retracting pili, the diffusion constant decreases with
the distance from the colony center. This position-dependence of the cell
mobility is consistent with the increasing concentration of pilus-retraction-
deficient cells at the periphery of the colony, see Fig. 3.3(g).
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Figure 3.3: (Previous page.) Phase segregation of mixed colonies.
(a) Simulation snapshots for a growing colony from t1 to t3 consisting of
cells with 14 pili (red) and cells with 7 pili (green). (b) Snapshots of the
simulated growth from t1 to t3 of a mixture of wild-type cells (WT, green)
and mutants deficient in post-translational pilin glycosylation (GD,
red) [145]. Pilus rupture forces are as follows: FWT−WT

rupt = 22.5 pN,
FGD−WT
rupt = 20 pN, FGD−GD

rupt = 45 pN. In (a) and (b), Voronoi tessellation is
used to locate neighbors for pilus binding. (c) Segregation of a binary
mixture of wild-type bacteria (green) and pilus-retraction-deficient cells
(red). Pilus-mediated interactions are long-ranged in this example with
dbind = 2.5µm. At time t0, the colony is randomly mixed. Over time, the
proportion of pilus-retraction-deficient cells increases in the colony
periphery, t1, and wild-type cells then accumulate in a concentric sphere
inside the colony, t2. The concentric sphere eventually disappears and
wild-type cells accumulate in the colony center, t3. (d) Lifetime of the
concentric sphere arrangement for short-ranged pilus interactions,
dbind = 2.5µm. Lifetimes are given in percent of the longest observed
lifetime (3000s). (e) Lifetime of the concentric sphere arrangement for
long-ranged pilus interactions, dbind = 3.5µm. Lifetimes are given in
percent of 3000 s. (f) Diffusion coefficients of individual cells as a function of
their distance from the colony center divided by the colony radius, dcm.
Pure colonies consist of one type of cells, the mixed colony is the segregated
system shown in (c, t3). (g) The mean radial number density of wild-type
cells (green) for the simulation snapshots shown in (c).

3.5 Non-equilibrium fluctuations of colony bound-

aries

The position fluctuations of cells in colonies on the one hand provide in-
formation about the viscoelastic properties of the system and, on the other
hand, carry information about the non-equilibrium forces holding the sys-
tem together. While it is trivial to keep track of cell positions in simulations,
a high-precision measurement of cell positions inside a three-dimensional
colony is challenging in experiments. However, it is possible to image whole
colonies with high frame rate and subsequently extract the colony edges from
the images. Thus, the non-equilibrium fluctuations of colony boundaries are
observable. We mimic here such a measurement in simulations by tracking
cells located in a fixed small sector at the edge of colonies in the station-
ary state, as shown in Fig. 3.4(a). In this setup, a movement of bateria at
the colony edge can either result from thermal noise or the activities of pili.
Colonies are grown in simulations using wild-type cells. After switching off
colony growth, the role of pilus activity for the stationary state is studied.
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The decay time of the velocity autocorrelation function (VACF) in the sta-
tionary state without active pilus-mediated forces, vre = 0, corresponds to
the inertial time scale in simulations. Thus, we roughly have an inertial de-
cay time tinert ≃ 0.1 k−1

rupt (simulation units), see Fig. 3.4(b). The cell motion
resulting from pilus retraction strongly increases the VACF below the time
scale of pilus-bond rupture k−1

rupt = 1 s.

With the radial distance rCMS(t) between the center of mass and the edge
of the colony, the deviations from the time average are given by X(t) =

(rCMS(t) − ⟨rCMS⟩). The power spectral density (PSD) of the displacement
is given by

P (ω) =
|X̃(ω)|2

s n
, (3.6)

where X̃(ω) is the discrete Fourier transform of X(t), s is the sampling rate,
and n is the number of data points. The PSDs of the radial motion of bacteria
at the boundary in our simulated colonies are shown as Fig. 3.4(c). Fluctu-
ations with frequencies ω ≲ 10Hz are expected to be experimentally acces-
sible. For ω > 2π/tinert ≃ 50Hz, the results are not expected to match with
experiments since here inertial effects start to play a role the in simulations.

First, retraction-deficient, passive pili with vre = 0 are considered. Since these
pili only form temporary bonds between the cells, they produce an effective
friction among cells. The boundary fluctuation are similar to the motion of
an overdamped particle in a purely viscous environment P (ω) ∝ ω−2. Sec-
ond, for retraction-deficient, passive pili that form permanent bonds (vre = 0,
no rupture), we find boundary fluctuations that are similar to the motion
of an overdamped particle in an harmonic potential with P (ω) ∝ const. at
low frequencies and P (ω) ∝ ω−2 for high frequency (not shown). Third,
wild-type cells with retracting T4P are considered (vre = [0.5, 2]µm/s). In
this case, pilus retraction on the one hand enhances the elastic forces among
cells, on the other hand, increases the rupture rate of bonds formed by T4P.
Overall, the activity of T4P results in visco-elastic material properties with a
pronounced elastic response at low frequencies. Simulations show that this
elastic response does not occur if temporary cell-cell connections are formed
by passive links.

The inset of Fig. 3.4(c) show experimental results for the PSDs of wild-type
cells and a strain carrying inactivating deletions in genes that encode the
phosphotransferase pptA, which required for the post-translational modifica-
tion of T4P (∆pptA). Experiments were carried out as described in Ref. [25].
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For wild-type cells, where colony contains around 4000 cells, the experimen-
tally measured colony boundary fluctuations up to 10 Hz are in good quali-
tative agreement with our simulation results. For a qualitative assessment of
the experimental data for the ∆pptA strain, a smaller colony with about 600
mutants is simulated. Here, the parameters governing T4P dynamics are ad-
justed to mimic the higher binding probablility and lower rupture frequency
measured for the ∆pptA strain in comparison to the wild-type [25]. A bind-
ing rate of kmutant

bind = 50 s−1 and lower rupture rate kmutant
rupt = 1 s−1 were cho-

sen, compare Tab. 2.1. We also find that a lower retraction velocity needs to
be chosen for the simulated mutant strain, compared to the wild-type strain
(vre = 0.5µm/s). This lower retraction velocity is necessary in simulations to
mimic the lower retraction frequency of the mutant [25] and reduces the ap-
parent elastic modulus at low frequencies. Overall, the higher plateau value
of the PSD at low frequencies suggest that post-translational modification of
T4Ps in wild-type cells leads to “stiffer” N. gonorrhoeae colonies.

Since shape fluctuations of a wild-type cell colony mainly result from ac-
tive forces, a violation of the equilibrium fluctuation-response relation is ex-
pected. To find out how a fluctuation-response relation can be measured
experimentally, we simulate a setup for controlled mechanical perturbation
of the colony boundary. This setup is inspired by techniques for measuring
active fluctuations in cell membranes [162]. We fix a simulated colony be-
tween walls and stick a bead with radius RB = 1.5µm onto one side of the
colony, see Fig. 3.4(d). The same parameter values are used to describe pilus
interaction with walls and pilus-pilus interaction. The pairwise interactions
between the bead and the cells is modeled with a Morse potential. Denoting
the distance between the bead and any neighboring cell i by ri,B, the potential
is given by

ΨB
i (ri,B) = cmors [e

−2β(ri,B−Ri,B) − 2e−β(ri,B−Ri,B)], for ri,B ≤ dmors, (3.7)

ΨB
i (ri,B) = ΨB

i (dmors), for ri,B > dmors, (3.8)

where sum of the radii of cell and beads is given by Ri,B = R+RB. The cutoff
for the interaction potential is set at dmors = 3.1µm. Other parameter values of
the potential are fixed as cmors = 10 pNµm (energy unit: fcdc) and β = 1µm−1.
The radial displacement of the bead relative to the center of the colony, x(t), is
employed to quantify the fluctuations of the colony boundary through a PSD
P (ω) given by Eq. (3.6). Alternatively, a sinusoidally varying force Fext(t) is
applied to the beads’ center, pointing towards the colony center. The Fourier
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transform of the force is given by F̂ext(ω) with angular frequency ω. The
response function is given by

χ̂(ω) ≡ x̂(ω)

F̂ext(ω)
. (3.9)

The imaginary part of the response function χ̂(ω) is denoted by χ̂′(ω) and we
define the quantity H(ω) ≡ −χ̂′(ω)2kBT/ω. For systems in thermal equilib-
rium, the fluctuation-response theorem states that

P (ω) = H(ω). (3.10)

For colonies consisting of bacteria with retraction-deficient, passive pili and
permanent bounds (vre = 0), Eq. (3.10) is satisfied and the fluctuation-response
theorem holds as expected, see Fig. 3.4(e). In simulations of colonies con-
sisting of wild-type bacteria that can retract their pili (vre = 1.0µm/s) and
form dynamic bonds with other cells, the equilibrium fluctuation response
relationship is violated across the whole experimentally relevant frequency
range of [0 − 10]Hz. Note that constraining the colony in between walls
and then tracking the motion of a bead is not equivalent to tracking the dis-
tance of the colony boundary from its center. Hence the spectral densities in
Figs. 3.4(c),(f) are different. For wild-type bacteria, the simulations predict a
very strong deviation from Eq. (3.10), where P (ω) is several orders of magni-
tude larger than H(ω). Such deviations are likely measurable in experiments.
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Figure 3.4: (a) Simulated setup for quantifying boundary fluctuations by
measuring the radial distance rCMS between a fixed angular position on the
surface and the colony center. (b) Active pilus retraction results in a slower
decay of the velocity autocorrelation function (VACF) of the surface point.
Main plot: colonies are first grown from cells with retracting pili and the
role of pili is studied after growth is switched off. Inset: colonies are grown
with retraction-deficient cells. (c) Active pilus retraction produces a power
spectral density of fluctuations characteristic for a visco-elastic material
with an elastic behavior at low frequencies. For passive colonies, vre = 0,
bond rupture results in a viscous material behavior. Colony size is 4000
cells. For comparison with experimental data, a small colony with 600
mutant cells is simulated having a higher binding rate kmutant

bind = 50 s−1,
lower rupture rate kmutant

rupt = 1 s−1 and lower retraction velocity
vre = 0.5µm/s. Inset: experimental data for wild-type cells and a ∆pptA
strain, error bars show standard deviations of the 3 samples. (d) Simulated
setup for colony-shape perturbation. (e) Simulated mutant colonies with
retraction-deficient pili that form permanent bonds. The equilibrium
fluctuation-response relationship holds. (f) For simulated wild-type cells,
the equilibrium fluctuation-response relationship is strongly violated
(vre = 1.0µm/s, dbind = 3.0µm)
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3.6 A first look at active colony spreading on a sur-

face

An important aspect of growing bacterial colonies is the colonization of sur-
faces and the invasion of tubes and channels. In this subsection, we present
first results about interaction of cells with surfaces. An in-depth study of the
surface-wetting behavior of colonies is presented in the next chapter. To in-
vestigate the role of active adhesion forces for the colony behavior in such
situations, we consider the interaction of cells with walls that provide at-
tachment sites for pili. Walls are represented by a layer of immobile, soft
spheres. Cell-wall interactions are represented by the same conservative po-
tential employed for cell-cell repulsion. Since biomolecular binding affini-
ties are typically determined by the unbinding rate, the pilus unbinding rate
kplane, corresponding to krupt for pilus-pilus unbinding, is varied. The other
parameters governing pilus-wall binding are assumed to be the same as for
pilus-pilus interactions, see Tab. 2.1. Experimentally, such wall properties
can be realized, e.g., by coating hydrogel surfaces with pilin.

For colonies spreading on a planar wall, the shape results from a competi-
tion between the cell-cell interactions within the colony and the interactions
of the cells with the substrate. Previous simulation studies showed that the
radius of the contact zone between the colony and the wall increases with
the rupture force scale [20], which can be called “partial wetting”. Here, we
vary the dissociation-rate constant of the pilus-wall bonds to assess the wet-
ting transition. Simulation snapshots of colonies growing on a planar surface
are shown in Fig. 3.5(a-c). If the dissociation-rate constant of the pilus-wall
bonds is smaller than the dissociation rate constant for pilus-pilus bonds,
kplane ≲ 2 s−1 < krupt = 3 s−1, we find that the colonies dissolve and the bac-
teria are evenly dispersed along the surface, see Fig. 3.5(a,d), which corre-
sponds to complete wetting. For kplane ≥ krupt, the colonies assume rounded
shapes that can still remain in loose contact with the surface, see Fig. 3.5(b,c).
To assess the dynamics of the wetting process, we next record the diameter
dsurface of the contact zone of a spreading colony on the surface. For a passive,
Newtonian fluid on a planar surface, the diameter of a spreading droplet
asymptotically obeys a power-law dependence on time t as dsurface ∼ tϑ,
known as Tanner’s law [163–165]. The exponent ϑ depends on droplet size
and on the dimension. Droplets that are much smaller than the capillary
length obey in three dimensions for long times the scaling ∼ t1/10 [165],
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which results from a leading-order balance of capillary forces with dissipa-
tion close to the wetting line. It has also been theoretically predicted that ther-
mal fluctuations promote spreading of nanodroplets and lead to a scaling of
∼ t1/6 [166]. In our simulations of active bacterial colonies, a regime with the
classical passive-liquid scaling ∼ t1/10 is not observed. Rather, we find that
the diameter dsurface obeys a power law with an exponent close to 1/4, which
is very similar for different parameter choices, see Fig. 3.5(e). Such a scaling
indicates that the dynamics is dominated by a balance of surface-attraction
and dissipation in the bulk of the colony. The scaling breaks down at long
times when the colony reaches a stationary, rounded shape on the surface.

3.7 Active colony invasion of narrow channels

We next simulate the invasion of small channels by colonies. The coloniza-
tion of protective niches can present a selective advantage in abiotic envi-
ronments and can also be an important aspect of host-pathogen interaction.
Previous work on Neisseria meningitidis, the causative agent of meningitis,
showed that attractive forces generated by T4P fluidize the bacterial colonies,
which is required for efficient colonization of the blood capillary network
during infection. Furthermore, simulations of N. gonorrhoeae migration through
asymmetric corrugated channels show a rectification of motion for active
bacteria [4]. However, a systematic assessment of the conditions necessary
for the active invasion of constrictions is missing. To focus on the role of
pilus activity, we only consider colonies that are not growing or dividing
and channels are represented with the same methods as walls in Sec. 3.6.

Like for cell-surface interaction, the behavior of active colonies is seen to be
qualitatively similar to a liquid minimizing surface energy. Active pilus re-
traction can cause a rapid and complete invasion of the channel, see Fig. 3.6(a-
e). For passive cells (vre = 0), colonies can attach to the walls but proper inva-
sion of the whole channel is not observed, see Fig. 3.6(f). A complete entrance
of passive colonies into the channels never occurs in our simulations, even for
large surface affinity, kplane ≃ 0.01 s−1, and very long simulation times. For
active colonies, the onset of channel invasion occurs rather suddenly when
increasing the affinity for the substrate (∼ 1/kplane), see Fig. 3.6(d). However,
the threshold value of kplane below which channel invasion occurs is not the
same as the threshold required for complete wetting of a planar substrate
shown in Fig. 3.5. The reason for different threshold affinities is presumably
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that the formation of a monolayer of cells on a planar surface is energetically
more costly than formation of a cylindrical colony with finite internal vol-
ume. Consistent with this interpretation, we find that the narrower the chan-
nel is, the higher the surface-binding affinity has to be to achieve channel
invasion, see Fig. 3.6(g). For very narrow channels, w ≲ 2.5µm, we find that
the invasion does not occur through collective motion of an intact colony but
that individual cells and small collections of cells break off from the colony
and individually explore the channel, see Fig. 3.6(e). A possible cause for this
break-up is that the high curvature of very narrow channels results in a sur-
face area per cell that is larger than the surface area per cell on a plane. Since
the number of T4P is limited, the geometry of narrow channels increases the
effective binding affinity between cells and walls and decreases the effective
binding affinity among cells is reduced. The break-up of colonies during in-
vasion of these channels is therefore due to the finite inherent length scale of
the “bacterial active fluid”.
To quantify the dynamics of colony invasion, we next record the speed of the
front of the colony moving down the channel and plot it as a function of the
enter length L(t), see Fig. 3.6(h). For passive liquids, the penetration dynam-
ics into horizontal capillary tubes under the assumption of negligible gravity
and inertia obeys an approximate scaling of L(t) ∼

√
t, which is derived as

follows [167]. The liquid viscosity is denoted by ηp, the presumably constant
surface-contact angle is θp, the surface tension is σp and the channel diameter
w. Then, the balance of capillary driving force with viscous friction can be
written as 8ηpL(t)L̇(t)/w2 = σp cos θp/w. Solution of this differential equation
for L(t) yields the Lucas-Washburn equation [168, 169]

L(t) =

√
w σp cos θp

8 ηp

√
t. (3.11)

For our active colonies, we find that the invasion dynamics for thin channels
of width w = 3.3µm obey the L(t) ∼

√
t scaling of passive liquids. These

channels are wide enough to prevent colony break-up. For thicker channels
the Lucas-Washburn-like scaling no longer holds in our simulations, as is the
case for passive liquids, where the deviations are attributed to inertial effects
and to a dependence of the contact angle on the wetting dynamics.

Overall, channel invasion by active bacterial colonies displays a striking qual-
itative similarity to capillary wetting by passive liquids. However, for pas-
sive colonies, having a mesoscopic internal length scale, we do not observe
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channel invasion in simulations. The main role of pilus-mediated random
activity is to increase the fluidity and to thereby change the dynamics of
colony-surface interactions. Thus, T4P activity allows the occurrence of chan-
nel invasion and surface spreading on biologically relevant time scales.

(a)

surface

kplane=1 s-1 (b) kplane=5 s-1 (c) kplane=20 s-1

(d) (e)

Figure 3.5: (a-c) Colonies spreading on planar surfaces. Depending on the
dissociation rate constant of pilus-surface bonds, kplane, colonies undergo a
partial or complete wetting transition. (d) A complete wetting occurs when
kplane ≪ krupt = 2 s−1. Error bars represent sample standard deviations.
(e) The time dependence of the diameter of the spreading colony, dsurface,
obeys approximately a power law. If not given otherwise, pilus-substrate
binding rates and rupture forces are assumed to be the same as for
pilus-pilus bonds, see Tab. 2.1. Error bars represent standard deviations of
the 3 samples.
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(h)

(a)

channel

L

w=3.3 m,

kplane=3 s-1

(g)

w

(b) w=3.3 m,

kplane=9.5 s-1

(c) w=3.3 m,

kplane=22 s-1

(d) w=5.3 m,

kplane=22 s-1

(e) w=2.4 m,

kplane=3 s-1

(f) w=3.3 m, kplane=3 s-1, 

pssive pili

Figure 3.6: Colonies atop surfaces containing channels. (a-c) Simulated
wild-type colonies that are initially positioned on top of a narrow channel
can invade the channel by making use of pilus activity if the pilus-substrate
bonds are strong. The length that a colony enters a channel is denoted by L.
(d) Colonies more easily invade a wider channel. (e) Invasion of very
narrow channels is possible, but colonies break up in this geometry
(f) Passive colonies are not seen to invade channels fully in simulations.
(g) Stationary lengths of colonies after entering channels of different
widths. Depending on the channel width, full entrance of the colony occurs
below a critical value of kplane. (h) The time evolution of the enter length is
described approximately by a power law. Error bars represent standard
deviations of the 3 samples.

3.8 Summary

We have introduced a simulation model to study the non-equilibrium struc-
ture and dynamics of colonies of active, growing bacteria on different time-
and length scales. Bacterial cells are modeled with an algorithm akin to
dissipative particle dynamics. Parameter values are carefully chosen to al-
low comparison of the simulation results with experimental measurements.
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We investigate different physical aspects of N. gonorrhoeae colonies, includ-
ing growth dynamics, local ordering, and self-sorting of bacteria in colonies.
Simulation results are in good qualitative agreement with experimental data.
We also propose a setup for measuring fluctuations in the colony shape and
its response to external force. The simulations predict a strong, measur-
able violation of the equilibrium fluctuation-response relationship. Further-
more, the model shows that actively fluctuating adhesion forces can allow
the bacterial invasion of narrow channels. Thus, active force generation is
not only required for bacterial migration, but can determine the rheology of
cell colonies and drive the colonization of constricted environments, which
represent central aspects for host infection and bacterial contamination of
abiotic environments. At present, basic physical mechanisms underlying the
collective interaction of active particles with complex surfaces are hardly un-
derstood. We expect that future experimental and theoretical work on the
non-equilibrium properties of bacterial colonies will generate insights that
deepen our understanding of the emergent properties of such active matter
systems.

3.9 Appendix

3.9.1 Power spectral density

According to Parseval’s theorem the total energy of a signal can be calculated
by integrating the intensity in the time domain or the Fourier-transformed
signal in the frequency domain as

E =

∫ ∞

−∞
|x(t)|2dt =

∫ ∞

−∞
|x̂(f)|2df, (3.12)

where x̂(f) ≡
∫∞
−∞ x(t)e−2πitfdt is the Fourier transform of x(t).

For discrete-time signals, the discrete Fourier transform (DFT) yields

N−1∑
n=0

|x[n]|2 = 1

N

N−1∑
k=0

|x̂[k]|2. (3.13)

The average power P of a signal x(t) is given by the following time average

P = lim
T→∞

1

2T

∫ T

−T

|x(t)|2dt = 1

2π

∫ ∞

−∞
S(ω)dω, (3.14)
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where the PSD is given by

S(ω) ≡ lim
T→∞

1

2T
|x̂(ω)|2. (3.15)

The Wiener-Khinchin theorem states that the PSD of a stationary random
process is given by the Fourier transform of the autocorrelation function of
that process

S(ω) =
1

2π

∫ ∞

−∞
e−iωτG(τ)dτ, (3.16)

where the autocorrelation function G(τ) = limT→∞
1
T

∫ T

0
x(t)x(t+ τ)dt.

Finally, the Nyquist-Shannon sampling theorem states that if a function x(t)

contains no frequencies higher than B hertz, it is completely determined by
giving its ordinates at a series of points spaced 1/(2B) seconds apart. A suf-
ficient sample-rate is therefore anything larger than 2B samples per second.
Equivalently, for a given sample rate fs, perfect reconstruction is guaranteed
possible for a bandlimit B < fs/2.

3.9.2 A fluctation-response relation for a two-particle system

We consider two particles 1 and 2 that are confined by harmonic potentials,
and the two particles are coupled by a harmonic bond. We track the particle 1
and it’s position is x(t), the position of the particle 2 is y(t). The two particles’
Langevin equations can be described as

m1
¨x(t) = −γ1 ˙x(t) + k[y(t)− x(t)]− a1x(t) + ξ1(t) (3.17)

m2
¨y(t) = −γ2 ˙y(t)− k[y(t)− x(t)]− a2y(t) + ξ2(t), (3.18)

where

⟨ξ1(t)ξ1(t′)⟩ = 2γ1kBT1δ(t− t′) (3.19)

⟨ξ2(t)ξ2(t′)⟩ = 2γ2kBT2δ(t− t′), (3.20)

where T1, T2 are two temperatures that determine the noise magnitudes.

Assuming over-damped motion of the second particle, we set m2 = 0, so that
we have

0 = −γ2 ˙y(t)− k[y(t)− x(t)]− a2y(t) + ξ2(t). (3.21)
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A Fourier transform yields

ŷ(ω) =
1

iω + (k + a2)/γ2
[
k

γ2
x̂(ω) +

ξ̂2(ω)

γ2
], (3.22)

so we can describe y(t) as

y(t) = [e−(k+a2)t/γ2 ] ∗ [ k
γ2

x(t) +
1

γ2
ξ2(t)], (3.23)

where we denote the convolution of two functions f and g as (f ∗ g)(t) ≡∫∞
−∞ f(τ)g(t− τ)dτ . Inserting this solution into the Langevin equation (3.17),

we obtain the generalized Langevin equation

m1
¨x(t) =− γ1 ˙x(t) + k{[e−(k+a2)t/γ2 ] ∗ [ k

γ2
x(t) +

1

γ2
ξ2(t)]− x(t)}

− a1x(t) + ξ1(t),

(3.24)

which reads in Fourier space

{−m1ω
2 + iγ1ω + a1 − k[

1

iω + (k + a2)/γ2

k

γ2
− 1]}x̂(ω) =

k[
1

iω + (k + a2)/γ2

1

γ2
ξ̂2(ω)] + ξ̂1(ω).

(3.25)

We denote the real part of the prefactor to x̂(ω) by a and the imaginary part
by b. Then, the equation reads

(a+ ib)x̂(ω) = ξ̂(ω), (3.26)

where

b = γ1ω +
k2γ2ω

(k + a2)2 + γ2ω2
. (3.27)

From equation(3.26) we have the PSD of x(t)

Cx(ω) =
Cξ(ω)

|a+ ib|2
=

Cξ(ω)

a2 + b2
, (3.28)

where

Cξ(ω) = Cξ1(ω) +
k2

(k + a2)2 + γ2
2ω

2
Cξ2(ω) (3.29)

= 2γ1kBT1 +
k2

(k + a2)2 + γ2
2ω

2
2γ2kBT2. (3.30)
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By setting T2 = (1 + α)T1, we have

Cξ(ω) = 2kBT1[γ1 +
k2(1 + α)γ2

(k + a2)2 + γ2
2ω

2
]. (3.31)

Now, we add an external force F (t) on particle 1, equation(3.26) can be writ-
ten as

(a+ ib)x̂(ω) = ξ̂(ω) + F̂ (ω), (3.32)

we define the response function by averaging over the noise

χ̂(ω) ≡ ⟨x̂(ω)⟩
F̂ (ω)

(3.33)

=
a− ib

a2 + b2
. (3.34)

So that we have

Cx(ω) =
Cξ(ω)

a2 + b2
=

−χ̂′(ω)

b
Cξ(ω), (3.35)

where χ̂′(ω) is the imaginary part of χ̂(ω). Inserting equation(3.31) into equa-
tion(3.35), we have

Cx(ω)

−χ̂′(ω)2kBT1/ω
=

γ1 +
k2(1+α)γ2

(k+a2)2+γ2
2ω

2

γ1 +
k2γ2

(k+a2)2+γ2
2ω

2

(3.36)

= 1 +
k2γ2α

k2γ2 + (k + a2)2γ1 + γ1γ2
2ω

(3.37)

When T1 = T2, so that α = 0, we have Fluctuation-Response Relation (FRR)

Cx(ω)

−χ̂′(ω)2kBT1/ω
= 1. (3.38)

When T1 ̸= T2, so that α ̸= 0, the FRR is violated.
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Chapter 4

Treatment with an antibiotic
stimulates active surface wetting of
bacterial colonies

4.1 Introduction

We start by describing the spreading dynamics of a passive liquid on a sur-
face. The spreading behavior can be roughly divided into two stages; in the
initial stage it spreads much faster than in the late time. For low-viscosity
droplets, the initial spreading is dominated by inertia, and its spreading ra-
dius follows a power-law dependence on time t as R ∼ t1/2 [170–173], while
for high-viscosity droplets the scaling is different [174]. At a late stage of the
spreading process, the droplet assumes a shape that approximates a spherical
cap, and the spreading radius asymptotically obeys a power-law as R ∼ t1/10,
known as Tanner’s law [163, 164, 175], which has been observed by many ex-
periments [164, 176, 177]. For a large liquid drop,the effect of gravity on
the spreading dynamics dominates surface tension and the spreading, the
power law changes into R ∼ t1/8 [176, 178]. Thermal fluctuations can en-
hance spreading of nanodroplets which has been predicted to lead to a scal-
ing of R ∼ t1/6 [166]. Taking into Navier slip condition, us = Ls∂u/∂z with
slip length Ls, the drop spreading behaviour will be affected [179]. Normally,
slip length Ls is small compared to the drop thickness h, and dose not change
the spreading law [180]. When the slip length is larger than the thickness,
Ls > h, Tanner’s law dose not hold anymore, and a faster spreading law
R ∼ t1/8 shows up [181, 182]. If Ls is much large, it will lead a even faster 1/4
law [183–185]. When considering both thermal fluctuations and slip condi-
tion, a faster spreading law will be obtained [186].
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The wetting behavior of passive liquid droplets on surfaces has been exten-
sively studied, but there is relatively limited research on the wetting behavior
of active droplets, such as bacterial colonies, on surfaces. The effect of antibi-
otic treatment on the wetting behavior of bacterial colonies on surfaces is
remains unclear.

In this chapter, we study wetting behavior of bacterial colonies spreading on
surfaces experimentally and in simulations. We investigate the steady con-
tact angle and spreading dynamic of colonies treated with different concen-
trations of antibiotics on the surface. We study the slip condition and shear
viscosity of bacterial colonies on surfaces.

4.2 Steady-state contact angle

As a bacterial colony approaches a surface, the attachment of bacterial pili to
the surface generates an interaction force that drives the colony to spread on
the surface. This wetting behavior of the colony eventually reaches an equi-
librium between surface tension and adhesion energy, leaving the colony in
a steady state. At this point, the shape of the bacterial colony can be approxi-
mated as a segment of a sphere with a radius of rmax, as shown in Fig. 4.1(a).
The contact area between the colony and the surface can be approximated as
a circle with a radius of r. Additionally, we refer to the angle formed between
the colony and the surface as a steady-state contact angle θ. In most of the
experimental data, the steady-state contact angle θ is greater than 90 degrees,
indicating that r < rmax.

Based on our computer simulations, we predicted that treatment with azithromycin
increases the spreading radius of bacterial colonies. Subsequently, these pre-
dictions were experimentally verified in the laboratory of Prof. B. Maier,
Cologne University. However, we start here by introducing the experimental
results before explaining the theoretical analysis and computer simulations
in depth. After treatment with azithromycin, tendency of bacterial colonies
to wet a surface is enhanced. This implies a reduction in the steady-state
contact angle θ of the colony, leading to a larger value of r/rmax, as shown in
Fig. 4.1(b).

Treating bacterial colonies with different concentrations of azithromycin, the
values of r/rmax for the colonies at steady state are shown in Fig. 4.1(c). The
minimum inhibitory concentration (MIC) of an antibiotic is the lowest con-
centration that can inhibit the visible growth of a specific microorganism
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strain [187], the unit of antibiotics we use here is the MIC of azithromycin for
N. gonorrhoeae. The wild-type bacterial colonies ( at 0×MIC) exhibit the small-
est r/rmax value, while the colonies treated with azithromycin demonstrate
an increase in r/rmax values. Specifically, colonies treated with a moderate
concentration of azithromycin (at 20×MIC) present an intermediate r/rmax

value, while those treated with high concentrations (at 40, 100×MIC) demon-
strate a further increase in r/rmax values.

Fig. 4.2(b) shows a recduction of the steady-state contact angles that corre-
spond to larger spreading radii for increasing concentrations of azithromycin.

This observed trend suggests a dependent relationship between concentra-
tion of azithromycin and the magnitude of r/rmax and steady-state contact
angle θ in treated bacterial colonies. It can be summarised that higher con-
centrations of azithromycin prompted colonies to exhibit greater wetting ca-
pacity.

It is noteworthy that bacterial colonies treated with azithromycin at 40, 100×MIC
demonstrate comparable wetting capacity on the surface. This suggests that
the wetting capacity of colonies on the surface does not escalate consistently
with concentration of antibiotic, implying that there is a limit to this capacity.

Bacterial colonies spreading on surfaces are simulated using previously in-
troduced models. The simulations initiate with the growth of a single bac-
terium above the surface, and the growth of the bacteria is stopped when
the number of bacteria reaches N . This results in the formation of a bacterial
colony consisting of a fixed number of bacteria. Once the colony growth is
complete, a planar surface is created below the colony. The binding of the
pili of the bacteria to the surface generates an interaction force which drives
the colony to migrate towards the surface. The colony reaches a steady state
when this spreading process is complete.

In the simulations, the adjustment of two parameters is employed to repli-
cate colonies treated with varying concentrations of antibiotics. Experimen-
tal measurements have indicated that azithromycin-treated bacteria demon-
strate a reduced probability of pilus binding. Consequently, the pilus bind-
ing rate kbind is selected as the first parameter. The second parameter is the
cell-cell DPD friction γ, a friction parameter that determines dissipation in
non-equilibrium states. Since there is no net energy dissipation in equilib-
rium states, γ should not play a role for equilibrium configurations. How-
ever, somewhat surprisingly, we found that this parameter does affect the
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steady-state contact angle for active bacterial colonies.

The steady-state contact angles of the simulated colonies are shown in Fig. 4.2(c).
It can be observed that the steady-state contact angle increases with increas-
ing pilus binding rate kbind or cell-cell DPD friction γ. To align simulated
results with experimental data for wild-type bacterial colonies, a specific set
of parameters (dot 1: kbind = 50 s−1, γ = 240 pN · s/µm) is chosen. This choice
aims to establish a correspondence between the steady-state contact angles of
simulated and experimental colonies, ensuring that they are approximately
equal. Based on this approach, three more sets of parameters (dots 2, 3 ,4) are
selected, each corresponding to the bacterial colonies treated with three dif-
ferent concentrations (20, 40, 100×MIC) of azithromycin in the experiments.
This systematic approach ensures the alignment of simulated parameters
with the observed behaviors in antibiotic-treated bacterial colonies, facili-
tating a representation of varying antibiotic concentrations in the simulated
model.

(a) (c)(b)
Azithromycin

Figure 4.1: (a) Sketch of colonies wetting surfaces. The colony on the
surface can be approximated as part of a sphere of radius rmax, and the area
of contact with the surface is approximated as a circle of radius r, forming a
contact angle θ. Left: a colony of wild type bacteria; right: a colony of
azithromycin-treated bacteria. (b) The relative steady-state spreading radius
r/rmax as a function of the azithromycin concentration in the experiments.
The unit of x-axis is the MIC of azithromycin for N. gonorrhoeae.
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Figure 4.2: (a) Spreading bacterial colony imaged by confocal microscopy of
fluorescently labeled cells (top), and an image of a simulated spreading
colony (bottom). Scale bar: 10µm. (b) Experimental (green) and simulated
(black) variation of steady-state contact angle of colonies wetting surfaces
with azithromycin concentration. The 1, 2, 3,4 dots in here correspond to
these four dots in figure (c). (c) Steady-state contact angle of simulated
colonies wetting on a surface. The steady-state contact angle as a function
of the the two most important parameters (kbind, γ). With increase of the
azithromycin concentration, the contact angle moves to lower values.

4.3 Size dependence of the steady-state contact an-

gle

Surface tension is defined as the ratio of the change in energy to the change
in surface area

σ =
dE

dA
, (4.1)

where E is the energy, and A is the surface area. Young’s equation relates the
equilibrium contact angle θe with the surface tensions as

σ cos θe = σsv − σsl, (4.2)

where σ is the liquid-vapor surface tension, σsv is the solid-vapor surface
tension, σsl is the solid-liquid surface tension, and θe is the stationary Young’s
angle.

For idealized liquids with an infinitely thin liquid-gas interface zone, the
equilibrium contact angle does not depend on the size of the spreading droplet.
Whether the Young’s equation holds for active bacterial surface wetting is
unclear. A variation of the contact angle with the size of the colony in exper-
iments is shown in Fig. 4.3(a) with dots. We simulate colonies with different
size spreading on surfaces, the spreading radius and the stationary contact
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angles θ are shown in Fig. 4.3(a) with dashed lines. Evidently, for bacterial
colonies, cos(θ) depends approximately linearly on the inverse of the colony
radius. We attribute this dependence to the finite interface. The slope of the
linear relationship between the the inverse radius and cos(θ) is the so-called
Tolman length, which we estimate from the concentration profiles in simula-
tions to be of the order of a few cell radii.
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Figure 4.3: The steady-state contact angle and surface tension of colonies
changes with the size of colonies which is quantified by the radius rmax. (a)
Cosine of the steady-state contact angle as a function of 1/rmax under
different azithromycin concentration in experimental data (dots) and
simulations (dashed lines). (b) Surface tension σ as a function of radius of
colonies Rc in simulations.

To characterise the size-dependent stationary contact angle, a modified Young’s
equation [188–191] has been proposed

cos θe = cos θ − τσ

r
, (4.3)

where τ is line tension at three phase contact line. The stationary contact
angle θ of a droplet can only reach Young’s angle θe if its spreading radius is
infinite r → ∞.

To verify the influence of line tension on the wetting behavior of active bac-
terial colonies on surfaces, cylindrical colonies of infinite length are simu-
lated as shown in Fig. 4.4(a). Periodic boundary conditions (PRC) are ap-
plied along the axial direction of the cylindrical colonies, allowing them to
be considered as effectively infinite in length. It has been demonstrated that
the line tension of such cylindrical liquid structures is negligible when the
contact angle exceeds 90 degrees θ > 90◦. For simulated colonies cos(θ) as a
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function of 1/r is shown in Fig. 4.4(b), revealing a noticeable influence of 1/r
on the contact angle θ. Neglecting the effect of linear tension of cylindrical
colonies on the contact angle, a size dependent surface tension is required.
For spherical droplets the curvature dependent surface tension is given by

σ(Rc) = σflat(1−
2δT
Rc

), (4.4)

where σflat is the surface tension of the flat interface, δT is the Tolman length.
For cylindrical droplets the curvature dependent surface tension is given by

σc(Rc) = σflat(1−
δT
Rc

). (4.5)
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Figure 4.4: Steady-state contact angles for spherical and cylindrical colonies
in simulations. (a) A simulation for cylindrical colonies wetting on a
surface, PRC are applied along the axial direction of the cylindrical
colonies. (b) The contact angle for surface wetting of spherical and
cylindrical colonies as a function of curvature of colony.

The surface tension σ of simulated colonies is measured by micropipette aspi-
ration, as shown in Fig. 4.5(a). The bacterial pili cannot bind to the simulated
micropipette in here. A total driving force Fd is applied to all bacteria inside
the micropipette, generating a pressure

Pd =
Fd

πR2
p

, (4.6)

where Rp is the radius of the micropipette. If the pressure Pd exceeds the crit-
ical pressure to aspirate Pc, the bacterial colony will enter the micropipette
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completely. Otherwise, it will not enter the micropipette. The critical pres-
sure to aspirate Pc is given by the Laplace law

Pc =
2σ

Rp

− 2σ

Rc

, (4.7)

where Rc is the radius of the colony. For different colony radii Rc , the critical
pressures Pc are shown in Fig. 4.5(b). Therefore the corresponding surface
tension σ can be calculated by Eq. 4.7, and the results are shown in Fig. 4.3(b).

We now consider the Tolman length effect, Eq. 4.7 can be modified as

PT
c =

2σflat(1− δT
Rp

)

Rp

−
2σflat(1− 2δT

Rc
)

Rc

. (4.8)

The curves fitted to Tolman length-dependent critical pressures PT
c are shown

with dashed curves in Fig. 4.5(b). The fitted results are σflat = 9.324, δT =

−0.1898 for simulation 2, and σflat = 6.652, δT = −0.3447 for simulation 4.
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Figure 4.5: Micropipette aspiration of simulated colonies. (a) Snapshot of
simulated colonies and micropipette aspiration. The bacteria colony with
radius Rc = 10.5µm is aspirated into a pipette with radius Rp = 3.3µm. (b)
The critical pressure pc as a function of colony radius Rc for simulation 2
and simulation 4. The curves fitted to Tolman length-dependent critical
pressures PT

c are shown with dashed curves. (c) The enter length Ln as a
function of time for different driving forces Fd.

4.4 Slip length and shear viscosity

As mentioned above, the spreading dynamics of passive liquids depends
strongly on the solid-liquid boundary condition. For no-slip boundary con-
ditions, dissipation occurs mainly at the outer rim of the spreading droplet.
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These small lengthscales involved lead to strong friction and a balance of
capillary forces and frictional forces is results in a generic scaling prediction
for the time-dependence of the radius, known as Tanner’s law. If, however,
the fluid is allowed to slip on the surface, dissipation is no longer localized to
the edges and different spreading laws result. To understand the spreading
dynamics of active bacterial colonies, we first investigate which boundary
conditions would be appropriate for describing the flow of this material.

Couette flow and Poiseuille flow are two ways commonly used to measure
the slip length [192]. Confining bacteria in two parallel smooth plates with
a distance H , Couette flow is generated by moving only the upper plate at a
constant velocity U , see Fig. 4.6(a). The slip length of bacteria on the plates is
given by

Ls = us/β, (4.9)

where us is the slip velocity, the shear rate β = ∂u/∂z, u is the velocity profiles
in x-direction. The shear stress in such flow is given by

σs = Fx/A, (4.10)

where the Fx is summation of the forces in x-direction on the upper wall, A
is the area of the wall. The flow’s shear viscosity can be calculated from

η = σs/β. (4.11)

The T4P of bacteria can bind to the surface, this binding produces attractive
interactions among bacteria and surfaces. The active binding (vwall = 1µm/s)
can generate a large slip length, on the contrary, the passive binding (vwall =
0), which the pili binding to the surfaces do not retract, only generates a small
slip length as shown in Fig. 4.6(b).

Next, we asses whether fluid slip depends on a dependence of the viscosity
on the shear rate. The corresponding shear viscosity and fitted lines in log-
log plot are shown in Fig. 4.6(c). As we can see the shear viscosity depends
on the shear rate as

η = kβn−1, (4.12)

where k is the consistency coefficient, n is the power exponent. For Newto-
nian fluids n = 1, for shear-thinning fluids n < 1, and for shear-thickening
fluids n > 1. The power exponent n ≈ 0.78 in our simulations means that the
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colonies we simulated are shear-thinning liquids. During spreading, flow ve-
locities are however very low and shear thinning therefore affects the process
only weakly.

U
(a) (b) (c)

Velocity

z

Figure 4.6: Measurement of slip length and shear viscosity of colonies.

4.5 Spreading dynamics

The steady state of colonies wetting surfaces has been studied in previous
sections. However, further research is needed to explore the spreading pro-
cess from the initial contact of the colony with the surface to the achievement
of a steady state.

Experimental results for the variation of the spreading radius of wild-type
and azithromycin-treated bacterial colonies over time are depicted in Fig. 4.7(b).
The results indicate that wild-type bacterial colonies take longer time to reach
the same spreading radius as azithromycin-treated bacterial colonies. Bac-
terial colonies treated with higher concentrations of azithromycin exhibit a
more fast spreading on the surface. The spreading radius of the simulated
colonies is shown in Fig. 4.7(c), the results demonstrate wetting behavior
similar to that observed in experiments.

The exponent of the spreading radius r during the wetting of the colony on
the surface is displayed in Fig. 4.7(d). For colonies treated with high con-
centrations (40, 100×MIC) of azithromycin, the maximum value of the expo-
nent of the spreading radius is approximately 0.38, whereas for untreated
colonies, the maximum value of the exponent of the spreading radius is
around 0.25. The azithromycin-treated colonies exhibit a larger exponent of
the spreading radius. In the later stages of diffusion, the exponent of the
diffusion radius gradually decreases to 0.
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Azithromycin treatment not only decreases the steady-state contact angle but
also accelerates spreading in colonies. Consequently, it can be inferred that
the wetting behavior of the colonies on the surface is improved by azithromycin
treatment.
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(a) (b)

Figure 4.8: Spreading radius simulated with various parameters.

4.6 MSD and VACF of individual bacteria in colonies

Bacteria within the bulk of the colonies exhibit approximately the same num-
ber density everywhere, allowing the bulk of the colonies to be considered as
homogeneous. Bacteria at distances greater than 3.5µm from the colony sur-
face dedge > 3.5µm are regarded as part of the bulk as shown in Fig. 4.9(a).
The MSD of bacteria in the bulk of the colony is calculated as

MSD(t) ≡ 1

M

M∑
i=1

|ri(t)− ri(0)|2, (4.13)

where M is the number of bacteria in the bulk of the colony, and t is time.

The experimental measurements of the MSD of untreated and azithromycin-
treated colonies are shown in Fig. 4.9(b). This experimental data was gener-
ated by Dr. M. Hennes in the laboratory of Prof. B. Maier at Cologne Univer-
sity. The MSD of bacteria in azithromycin-treated colonies is larger than that
of bacteria in untreated colonies. We define a time-dependent exponent α(t)
which serves to characterize the random walk of the bacteria and is related
to the MSD as

MSD(t) ∼ tα(t). (4.14)

The MSD exponent for a free Brownian particle tends to one (α(t) = 1) over
long time scales. If the exponent is less than one (α(t) < 1), the particle
is characterized as undergoing subdiffusion, and an exponent greater than
one (α(t) > 1) is characterized as superdiffusion. An exponent equal to two
(α(t) = 2) defines ballistic diffusion, e.g. particles moving in a fixed direction
at a constant velocity. The exponent of the MSD for azithromycin-treated
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bacterial colonies is shown in the inset of Fig. 4.9(b). For both untreated
and azithromycin-treated bacterial colonies, the bacteria exhibit superdiffu-
sion on small timescales (0.01s < t < 0.2s), and transition to subdiffusion on
larger time scales (1 s < t < 10 s). It should be noted that here the colonies
were treated with azithromycin for 5 hours, which differs from the experi-
ment mentioned in the other sections, where the treatment with azithromycin
lasted only for 0.5− 1.0 hours.

The MSD of the corresponding simulations is shown in Fig. 4.9(c), which
shows that the MSD of the colony in simulation 1 is the smallest, while the
MSD of the colony in simulation 4 is the largest. All simulated colonies show
superdiffusion (α(t) < 1) at the short-time range (0.01 s < t < 0.2 s), and
simulation 1 clearly shows subdiffusion (α(t) > 1) at long-time range (1 s <
t < 10 s). This suggests that increasing the concentration of azithromycin in
treated colonies decreases the MSD of bacteria in the bulk of the colony.

To characterize the long-term mobility of bacteria, the effective diffusion co-
efficient D is defined as

D ≡ MSD(t)

2d · t
|t=1s, (4.15)

where d is the number of dimensions. The effective diffusion coefficient D
of simulated colonies as a function of distance from the colony surface dedge

is shown in Fig. 4.9(c). It can be summarized as increasing the concentra-
tion of azithromycin in treated colonies increases the diffusion coefficient of
bacteria over long time. Furthermore, the effective diffusion coefficient D de-
creases with increasing the distance from the colony surface dedge, eventually
reaching an approximately stable value. This suggests that bacteria closer to
the colony surface have a larger diffusion coefficient, while all bacteria in the
bulk of the colony exhibit approximately the same diffusion coefficient.

The MSD of bacteria within the bulk of the colony has been simulated with
variations in the parameters of pilus binding rate kbind and cell-cell DPD fric-
tion coefficient γ, and the results are shown in Fig. 4.10. Increasing the pilus
binding rate kbind will decrease the exponent α of the MSD at the long-time
range (1 s < t < 10 s). Increasing the cell-cell DPD friction coefficient γ re-
duces the MSD.

The experimental measurements of the VACF for untreated and azithromycin-
treated colonies are shown in Fig. 4.12(a). Similar to the MSD measure-
ment, the VACF is measured only for bacteria in the bulk of the colony. The
azithromycin-treated colony exhibits a higher VACF at short times (0.01 s <
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Figure 4.9: The MSD and the effective diffusion coefficient of the bacteria in
the colonies. (a) A simulated bacterial colony, with surface and bulk
labeling. (b) The experimental MSD of bacteria in the bulk of the colonies,
both untreated and azithromycin-treated for 5 hours. (c) The MSD of
bacteria in the bulk of the colonies for simulated colonies. As in Fig. 4.2, the
parameter values for simulations 1-4 are chosen to represent increasing
concentrations of azithromycin. (d) The effective diffusion coefficient D of
simulated colonies as a function of distance from the colony surface dedge.

t < 0.2 s). The relaxation times for both colonies are approximately 0.5 s. The
VACF of the simulated colonies are displayed in Fig. 4.12(b). The results in-
dicate an increase in VACF with increasing azithromycin concentration in the
short-time range. Relaxation times (approximately 0.5 s) comparable to the
experimental results have been obtained.
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Figure 4.10: The MSD of bacteria in the bulk of the colonies for different
simulation parameters: (a) pilus binding rate kbind and (b) cell-cell DPD
friction coefficient γ.
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4.7 Summary

Experiments investigating the wetting behavior of bacterial colonies on sur-
faces have been carried out in the laboratory of Prof. Dr. Berenike Maier
at University of cologne. The results indicate that these colonies exhibit a
large steady-state contact angles (θ > 90◦) on the surface. In addition, the
experimental results on azithromycin-treated bacterial colonies highlight a
significant influence of azithromycin treatment on the wetting behavior of
the colonies. Specifically, it was observed that azithromycin treatment de-
creased the steady-state contact angle of the colonies, indicating an increase
in the wetting capacity of the colonies. Furthermore, the wetting behavior
of bacterial colonies treated with different concentrations of antibiotics has
been investigated. The experimental results indicate that increasing the con-
centration of azithromycin increases the wetting capacity of the colonies. To
gain deeper insight, we introduce a simulation model that includes individ-
ual bacteria and surfaces to study colony wetting behavior. The simulated
colonies exhibit wetting behavior akin to that observed in experiments by
choosing appropriate parameters. Notably, both experimental and simu-
lation findings reveal a correlation between the steady-state contact angle
and colony size. Specifically, the steady-state contact angles increase with
colony size. In addition to analyzing the steady-state, we also investigate
the dynamics of colony wetting. Findings from both experimental and sim-
ulation studies suggest that colonies treated with higher concentrations of
azithromycin exhibit faster surface spreading, resulting in a greater spread-
ing law. The effect of azithromycin treatment on the mobility of bacteria in
the colonies has been investigated experimentally and in simulations. The re-
sults reveal that azithromycin treatment induces an increase in both the MSD
and the diffusion coefficient of bacteria within the colonies.

4.8 Appendix

4.8.1 Parameters values

Parameters values that are used for the simulations in this chapter are listed
in Tab. 4.1, parameters not listed here use the same values as in Tab. 2.1.
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Table 4.1: The choice of parameters for the simulations in this chapter.

Parameter Value Unit
cell radius R 0.5 dc
cell mass m 0.1 fct

2
cd

−1
c

pilus spring constant k 500 fcd
−1
c

pilus stall force fs 180 fc
maximum retraction velocity of pili v0 1.0 dct

−1
c

number of pili per cell 7
simulation time step ∆t 1× 10−4 tc
pilus rupture rate krupt 0.5 t−1

c

pilus binding cutoff distance dbind 2.0 dc
pilus binding rate kbind 50 t−1

c

pilus-pilus bond rupture force scale Frupt 30 fc
maximum conservative force a0 2000 fcd

−1
c

conservative force cutoff dcon = 2R 1.0 dc
diplococcus spring constant agrowth 2000 fcd

−1
c

friction coefficient γ 240 fctcd
−1
c

thermal energy scale kBT 1× 10−2 fcdc
dissipative and random force cutoff ddpd 1.7 dc
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Chapter 5

A folding instability in bacterial
colonies

5.1 Introduction

Bacteria locate at the edge of a colony receive greater amounts of nutrients
and oxygen in comparison to those located at the center. Experiments have
shown that bacteria within colonies decrease pili activity in response to oxy-
gen and nutrient depletion. Experimental and simulation studies have shown
that the mixing bacteria with different pili interactions induces a sorting phe-
nomenon. Specifically, bacteria characterized by stronger pili interactions
tend to aggregate at the center of the colony, while those with weaker pili
interactions disperse toward the edge of the colony. This spatial sorting
suggests a correlation between the strength of pili interactions and the po-
sitioning of bacterial clusters within the colony. It has been experimentally
observed that colony sorting occurs when the bacteria inside the colony are
transformed into inactive bacteria, similar to the mixing of bacteria with dif-
ferent pilus interactions. Specifically, clusters of inactive bacteria undergo a
relocation process from the interior of the colony to its surface, and even-
tually inactive bacteria surround the cluster of active bacteria. This spatial
sorting signifies a discernible consequence of the transformation of bacterial
activity states within the colony. The phenomenonof sorting was found to
be sometimes accompanied by the occurrence of a large-scale instability that
we term folding. Colony folding is a translocation of inactive bacterial clus-
ters inside the colony on to the colony surface by folding the shells of active
bacteria.
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5.2 Folding during colony sorting

To simulate the transformation of bacteria inside the colony into inactive bac-
teria due to depletion of nutrients or oxygen, the bacteria in the center of the
colony are altered into a variant with reduced activity of their pili, these in-
active bacteria are referred to as inactive bacteria. This reduced pili activity
is simulated in this study by decreasing the pilus binding rate kbind and/or
the retraction velocity vre of the pilus.

To investigate the influence of the size of inactive bacterial clusters on the
process of colony folding, different transition cluster radii are simulated as
shown in Fig. 5.1. At the beginning of the simulations, all bacteria are active
(green bacteria), with a total number of bacteria N = 6000 they aggregate into
a colony with radius Rc ≈ 11.0µm as shown in Fig. 5.1(a). At a certain time
t0, active bacteria within a distance Ri from the center of mass of the colony
transform into inactive bacteria (red bacteria). These inactive bacteria form
a cluster with a radius of Ri at the center of the colony. Three colonies with
different radii (Ri = 8.0, 6.5, 5.0µm) of inactive bacterial clusters are simu-
lated. Thereby, we aim to systematically analyze how variations in the size
of inactive bacterial clusters contribute to the observed dynamics of colony
restructuring.

Rc Ri

(a) (b) (c) (d)

Ri = 8.0 μmRc = 11.0 μm Ri = 6.5 μm Ri = 5.0 μm

Figure 5.1: A cluster of inactive bacteria at the center of the colony. (a)
Active bacteria (green) numbering 6000 aggregate into a colony with a
radius of approximately 11µm (Rc ≈ 11.0µm). Inactive bacteria form a
cluster with a radius of Ri = (b) 8.0µm, (c) 6.5µm, (d) 5.0µm, at the center
of the colony.

Following the transformation of bacteria in the central region into inactive
bacteria, the colony undergoes sorting. This sorting is driven by the fact that
active bacteria near the colony edge exhibit stronger interaction forces be-
tween pili than inactive bacteria. The differential strength of pili-mediated
interactions plays a critical role in the spatial organization of the colony, re-
sulting in the observed sorting dynamics.
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For active bacteria, their pili have a binding rate of kbind = 50 s−1 and a re-
traction velocity of vre = 2.0µm/s. The pili activity of inactive bacteria is
reduced, and in this section, the parameters for inactive bacteria are chosen
with a lower pilus binding rate of ki

bind = 5 s−1 and a lower pilus retraction
velocity of vire = 0.6µm/s.

Simulations for the colony with an inactive cluster radius of Ri = 6.5µm
have been done, the sorting process of the colony is illustrated in Fig. 5.2(a).
The active bacteria within a distance Ri = 6.5µm from the center of mass of
the colony transform into inactive bacteria at time t0. Subsequently, at time
t1, the cluster of inactive bacteria establishes a channel leading to the colony
surface, forming a depression on the colony surface. The colony begins to ex-
hibit a rapid instability termed folding from this stage onward. An increasing
number of inactive bacteria move through this channel to the colony surface,
causing the channel to widen. Simultaneously, a large defect forms on the
colony surface at time t2. As most of the inactive bacteria migrate to the
colony surface, the colony undergoes a distinct folding, assuming a hat-like
shape rather than maintaining its spherical shape at time t3. Eventually, al-
most all of the inactive bacteria migrate to the colony surface and distribute
uniformly on the colony surface, while the active bacteria aggregate at the
center of the colony, restoring the colony to a spherical shape at time t4.

A colony with a smaller inactive bacterial cluster radius of Ri = 5.0µm is
simulated and diffusive sorting is observed as shown in Fig. 5.2(b). In con-
trast to the folding observing during the sorting process of the colony with
Ri = 6.5µm, no folding is observed during the sorting process of the colony
with Ri = 5.0µm. The inactive bacteria move individually to the surface of
the colony, and they are no longer able to maintain a cluster. As the inactive
bacterial cluster decreases in size, almost all of the inactive bacteria even-
tually drift to the surface of the colony. During this process, no defects are
formed on the colony surface and the shape of the colony does not change
significantly.

The colony with an inactive cluster radius of Ri = 7.0, 6.0, 5.5, 4.5, 3.5, 3.0µm
also have been simulated. The results can be summarized as follows: colony
folding is observed for bacterial clusters with a radius 6.0µm < Ri < 8.0µm,
while no folding is observed for colonies with Ri < 6.0µm. Therefore, it can
be stated that the folding phenomenon during the sorting process of colonies
depends on the size of the inactive bacterial cluster. When the radius of the
inactive bacterial cluster is small, folding is hardly observable.
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t0 t1 t2 t3 t4

(a) Ri = 6.5 μm

Ri = 5.0 μm

t0 t1 t2 t3 t4

(b)

Figure 5.2: The process of colony sorting. For active bacteria (green), their
pili have a binding rate of kbind = 50 s−1 and a retraction velocity of
vre = 2.0µm/s. For inactive bacteria (red), their pili have a binding rate of
ki
bind = 5 s−1 and a retraction velocity of vire = 0.6µm/s. (a) A colony with an

inactive bacterial cluster radius of Ri = 6.5µm. The active bacteria within a
distance Ri = 6.5µm from the center of mass of the colony transform into
inactive bacteria at time t0. At time t1, the cluster of inactive bacteria
establishes a channel leading to the colony surface, forming a depression on
the colony surface. At time t2, a wide channel to the surface of the colony is
formed by the inactive bacterial cluster, and a large defect appears on the
surface of the colony. Most of the inactive bacteria are on the surface of the
colony, and the colony is folded into a shape resembling a hat at time t3. At
time t4, almost all of the inactive bacteria distribute uniformly on the colony
surface, while the active bacteria aggregate at the center of the colony,
giving the colony exhibits a spherical shape. (b) A colony with an inactive
bacterial cluster radius of Ri = 5.0µm. The shape of the colony does not
change significantly during this process.

5.3 Dependence of colony folding on pilus activ-

ity

To investigate the dependence of the colony folding phenomenon on the ac-
tivity of inactive bacterial pili, colonies consisting of inactive bacteria with
different pilus binding rate ki

bind and pilus retraction velocity vire are simu-
lated.

For colonies with a inactive bacterial cluster radius of Ri = 6.5µm, the results
can be classified into three categories: folding, no folding, and weak folding,
as illustrated in Fig. 5.3(a). It can be observed that the occurrence of colony
folding is highly dependent on the pilus binding rate of inactive bacteria. A
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lower pilus binding rate of inactive bacteria (ki
bind ⩽ 5 s−1) is more prone to

induce the folding phenomenon.

At relatively high pilus binding rates (ki
bind > 5 s−1), inactive bacteria are

observed to migrate to the colony surface without inducing colony folding,
as shown in Fig. 5.4. The process of colony sorting without folding is similar
to the sorting process described in the previous section for smaller inactive
bacterial clusters (e.g., Ri = 5.0µm, see Fig. 5.2(b)).

In comparison to the typical folding phenomenon, a weak folding is observed
in a colony, as shown in Fig. 5.5. Unlike regular folding, this weak folding
dose not induce significant changes in the overall shape of the colony. In-
stead, inactive bacterial clusters form only a small depression on the surface
of the colony.

Analogous simulations are performed for colonies with a inactive bacterial
cluster radius of Ri = 8.0µm, and the results are presented in Fig. 5.3(b).
The results indicate a similar dependence as observed for colonies with Ri =

6.5µm, except that the weak folding phenomenon is not observed in this case.

The results from colonies with inactive bacterial cluster radii of Ri = 6.5 and
8.0µm both indicate a strong dependence of the folding phenomenon on the
pilus binding rate ki

bind of the inactive bacteria, while the pilus retraction ve-
locity vire of the inactive bacterial does not have a significant effect on folding.
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Figure 5.3: The dependence of colony folding on the pilus binding rate ki
bind

and pilus retraction velocity vire of inactive bacteria. For active bacteria, the
pilus binding rate of kbind = 50 s−1 and pilus retraction velocity of
vre = 2.0µm/s are fixed. (a) Folding phenomenon of colonies with a inactive
bacterial cluster radius of Ri = 6.5µm. Three different morphologies can be
displayed during colony sorting: folding (green), weak folding (red), no
folding (black). (b) Folding phenomenon of colonies with a inactive
bacterial cluster radius of Ri = 8.0µm.

t0 t1 t2 t3

Figure 5.4: Colony sorting process without folding. A simulated colony
with an inactive bacterial cluster radius of Ri = 6.5µm. For active bacteria
(green), their pili have a binding rate of kbind = 50 s−1 and a retraction
velocity of vre = 2.0µm/s. For inactive bacteria (red), their pili have a
binding rate of ki

bind = 10 s−1 and a retraction velocity of vire = 0.6µm/s.
Inactive bacteria at the center the colony individually drift to the surface of
the colony, and no folding phenomenon occurs.
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t0 t1 t2 t3 t4

Figure 5.5: Weak folding during colony sorting. A simulated colony with
an inactive bacterial cluster radius of Ri = 6.5µm/s, and the pilus binding
rate ki

bind = 5 s−1 and pilus retraction velocity vire = 2.0µm/s of inactive
bacteria. The colony weakly fold during sorting and does not undergo
major deformation.
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5.4 Transport speed during colony folding

During colony folding, clusters of inactive bacteria are transported to the
surface of the colony along the channels they form, as shown the blue arrows
in Fig. 5.6. Inactive bacteria that have reached the surface of the colony walk
randomly along the surface of the active bacteria.

To investigate the transport speed of inactive bacterial clusters to the colony
surface during colony folding, inactive bacteria within a distance of Rd from
the center of mass of the colony are traced, as shown the black dashed line in
Fig. 5.6. The transport speed vtr(t) of inactive bacterial clusters is defined as

vtr(t) ≡
1

∆tr

|
I∑

i=1

(ri(t+∆tr)− ri(t))|, (5.1)

where I is inactive bacteria within a distance of Rd = 4.5µm from the center
of mass of the colony, ∆tr is the time interval for tracking the inactive bacteria.

The parameters for inactive bacteria are chosen with a pilus binding rate of
ki
bind = 5 s−1 and a pilus retraction velocity of vire = 0.6µm/s. For the colony

with a inactive bacterial cluster radius of Ri = 6.5µm, the transport speed
vtr(t) of the inactive bacterial cluster is shown in Fig. 5.7(a). The time = 0 s

corresponds to the moment of transition of the bacteria t0 in Fig. 5.2(a). The
moment t1, when the colony starts to fold, and the moment t3, when the
colony is folded into the shape of a hat, are marked with red dashed lines in
the figure. It can be observed that the transport speed vtr(t) of the inactive
bacterial cluster is greater between the moments t1 and t3 compared to speeds
at other times.

The colony with a inactive bacterial cluster radius of Ri = 8.0µm is simu-
lated, the result is shown in Fig. 5.7(b). It can be observed that between the
moments t1 and t3, the transport speed vtr(t) of the inactive bacterial cluster
is faster compared to colonies with Ri = 6.5µm.

An average transportation speed vave between the moments t1 and t3 is calcu-
lated. For the colony with a inactive bacterial cluster radius of Ri = 8.0µm,
vave = 0.02µm/s, and for the colony with a inactive bacterial cluster radius of
Ri = 6.5µm, vave = 0.0151µm/s.
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Rd

Figure 5.6: Inactive bacteria are transported to the surface of the colony
along the channel they form during colony folding. Inactive bacteria within
a distance of Rd from the center of mass of the colony (black dashed line)
are traced.
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Figure 5.7: The transport speed vtr(t) of the inactive bacterial cluster for The
colony with a inactive bacterial cluster radius of (a)Ri = 6.5µm and
(b)Ri = 8.0µm.

5.5 Summary

Over time, bacteria at the center of a colony experience a decline in pili ac-
tivity attributable to the depletion of nutrients or oxygen. Consequently,
such colonies undergo sorting, which is sometimes accompanied by the fold-
ing phenomenon. To study colony folding, simulations are performed with
colonies containing inactive bacteria. By choosing appropriate parameters
for the inactive bacteria, the colony folding phenomenon is reproduced in
simulations. Our investigation reveals that the size of inactive clusters has a
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significant impact on the folding dynamics of the colony. In particular, fold-
ing is observed for colonies with relatively large radii of inactive bacterial
clusters (6.0µm < Ri < 8.0µm) , while no folding is observed for colonies
with smaller cluster radii Ri < 6.0µm. Further investigation of the depen-
dence of colony folding on parameters related to inactive bacteria reveals
that the pilus binding rate plays a significant role in colony folding. In par-
ticular, the lower the pilus binding rate of inactive bacteria, the more likely
folding is observed. Conversely, the pilus retraction velocity has a negligible
effect. The transport velocity of inactive bacteria during the colony folding
process is investigated, and results show that colonies with larger clusters
(Ri = 8.0µm) of inactive bacteria have faster transport speeds.

5.6 Appendix

5.6.1 Parameters values

Parameters values that are used for the simulations in this chapter are listed
in Tab. 5.1, parameters not listed here use the same values as in Tab. 2.1.
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Table 5.1: The choice of parameters for the simulations in this chapter.

Parameter Value Unit
cell radius R 0.5 dc
cell mass m 0.1 fct

2
cd

−1
c

pilus spring constant k 500 fcd
−1
c

pilus stall force fs 180 fc
maximum retraction velocity of pili v0 2.0 dct

−1
c

number of pili per cell 7
simulation time step ∆t 1× 10−4 tc
pilus rupture rate krupt 0.5 t−1

c

pilus binding cutoff distance dbind 2.0 dc
pilus binding rate kbind 50 t−1

c

pilus-pilus bond rupture force scale Frupt 60.0 fc
maximum conservative force a0 2000 fcd

−1
c

conservative force cutoff dcon = 2R 1.0 dc
diplococcus spring constant agrowth 2000 fcd

−1
c

friction coefficient γ 300 fctcd
−1
c

thermal energy scale kBT 2× 10−2 fcdc
dissipative and random force cutoff ddpd 1.7 dc
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Chapter 6

Directed migration of bacterial
colonies on sawtooth patterns

6.1 Introduction

A droplet of water can undergo directed motion on a serrated surface under
non-equilibrium conditions. Cells perform directional migration on geomet-
rically asymmetric ratchets [193–195], on which droplets can directionally
move [196, 197]. When cells move in a random walk through asymmetric
channels they can generate a net transport in one direction [4, 26, 198, 199].

Here, we propose that bacterial colonies may be able to directionally migrate
on geometrically asymmetric surfaces. Unlike cells and droplets, the migra-
tion of colonies on geometrically asymmetric surfaces is driven by the bac-
terial pili binding to the surfaces. Pili can result in unbalanced active forces
on the colony by binding to asymmetric ratchets. The unbalanced forces in
the horizontal direction drive the colony forward. The shape of the ratchets
affects pili binding, therefore we propose that the direction of migration can
be controlled by changing the geometry of the ratchets. In addition to the
sawtooth surfaces, the inherent properties of the bacterial colony may also
potentially influence the directional migration of the colony.

6.2 Description of sawtooth patterns

Each sawtooth pattern is composed of many identical right-angled triangles,
where the width of these triangles is l, and the height is g, as shown in Fig. 6.1.
Thus, the difference between the sawtooth patterns is determined only by
the width l and height g of the small right triangles that make them up. The
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width of the pattern is Wp and its total length Lp is given by

Lp = Npl, (6.1)

where Np is the number of small right-angled triangles constituting the pat-
tern. In our simulations, periodic boundary conditions are employed, al-
lowing the length and width of the pattern to be considered infinite (Lp →
∞,Wp → ∞).

…

Lp

Lp

Wp

x

y

x

z

Front view

Top view

migrate

migrate

colony

l

g

Figure 6.1: Sketch of the sawtooth pattens. The sawtooth patterns are made
up of many small identical rectangular triangles arranged in close
proximity. These small triangles have a width of l and a height of g, forming
a pattern with a length of Lp and a width of Wp. The colony migrates along
the direction of the length of the pattern, which is defined as the x-axis. In
this figure it is assumed that colonies migrate along the positive x-axis
direction (to the right).

Various different patterns have been designed, and three typical patterns are
displayed in Fig. 6.2. The width l and height g of the small rectangular tri-
angles that make up each of these three patterns (pattern 1: l = 1.4µm,
g = 1.0µm; pattern 2: l = 2.71µm, g = 1.18µm; pattern 3: l = 1.38µm,
g = 0.89µm) are shown in the up of the figure. In the simulations, each hy-
potenuse and height of the rectangular triangles are formed by many small
fixed particles (blue), as depicted in the down of Fig. 6.2. Periodic Boundary
Conditions (PBC) are used in the simulations, so these simulated patterns
are equivalent to being composed of an infinite number of small rectangular
triangles.
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pattern 1 pattern 2 pattern 3(a) (b) (c)

l=1.4 m

g=1.0 m

l=2.71 m

g=1.18 m g=0.89 m

l=1.38 m

Figure 6.2: Three designed sawtooth patterns. Up: the structures of three
small right triangles; down: simulated patterns are formed by many small
fixed particles (blue). In the simulations PBC is used, so the patterns can be
considered as consisting of an infinite number of small right triangles.

The simulations are initiated with the growth of a single bacterium above
the pattern, as shown in Fig. 6.3(a). As the number of bacteria increases,
they aggregate into a microcolony, see Fig. 6.3(b). The growth of the bacteria
is stopped when the number of bacteria reaches N = 400, and the pili of
bacteria bind to the pattern, causing the colony to adhere to the pattern, as
shown in Fig. 6.3(c). Bacterial growth is stopped to eliminate the influence of
growth on the migration of the colony on the surface.

(a) (b) (c)

Figure 6.3: Bacteria growing into a colony on the patterns. (a) A single
bacterium (green) above the pattern (blue). (b) Bacteria aggregate into a
colony. (c) The colony with the number of bacteria N = 400 adheres to the
pattern.

6.3 Migration speed of colonies on the patterns

To quantitatively study the migration of bacterial colonies on the patterns,
some parameters relevant to bacteria are chosen. The number of bacteria in
the colony is chosen as N = 400, the binding distance of the bacterial pili
is set to dbind = 1.8µm, and the retraction velocity of the pili binding to the
patterns is chosen as vp = 1.0µm/s. Such a colony adhering to different
patterns exhibits markedly different migration behaviors. Specifically, the
colony on pattern 1 migrates to the right (positive x-axis direction), as shown
in Fig. 6.4(a), while the colony on pattern 2 migrates to the left (negative x-
axis direction), as displayed in Fig. 6.4(b).
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(a)

(b)

pattern 1

pattern 2

Figure 6.4: Snapshots of colonies migrating on the patterns. (a) The colony
with the number of bacteria N = 400 migrates to the right on pattern 1. (b)
The colony migrates to the right on pattern 2.

To characterize the migration direction and speed of bacterial colonies on
the patterns, the displacement dm(t) of the mass center of the colonies in the
x-direction is defined as

dm(t) =
N∑
i=1

(xi(t)− xi(0)), (6.2)

where N is the number of bacteria, xi is the x-coordinate of the bacteria with
index i.

The displacement dm(t) of colony migration on these three patterns as a func-
tion of time are shown in Fig. 6.5. It is evident that on pattern 1 and pattern 3
the colony migrates along the positive x-axis (to the right), while on pattern 2
the colony migrates along the negative x-axis (to the left). The displacement
of the colony on the patterns as a function of time exhibits an approximately
linear relationship, indicating that the colony moves uniformly along the x-
axis on the patterns. Therefore, the average migration speed sm of colonies
on the patterns can be defined as

sm =
dm(t)

t
|t→∞. (6.3)

The migration speed of the colony on pattern 1 (sm = 0.0436µm/s) is greater
than that on pattern 2 (sm = 0.0076µm/s), while on pattern 3, the migration
speed (sm = −0.0308µm/s) is negative, as shown in Fig. 6.5.

To investigate the effect of colony size on the migration behavior of the colony
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Figure 6.5: The displacement dm(t) of the mass center of colonies as a
function of time during the migration on the patterns.

on the patterns, colonies with a larger number of bacteria (N = 1000) are sim-
ulated. The migration of these colonies on pattern 1 and pattern 2 is shown
in Fig. 6.6(a) and (b), respectively, and the displacement of the colonies as a
function of time is plotted in Fig. 6.6(c). It is evident that larger colonies (sm =

0.0436µm/s) on pattern 1 migrate significantly slower than smaller colonies
(sm = 0.0251µm/s) . On pattern 2, larger colonies (sm = −0.0308µm/s) ex-
hibit slightly faster migration compared to smaller colonies (sm = −0.0316µm/s).
These results suggest that the size of the colony can influence the migration
speed of the colonies on the patterns.

To investigate the dependence of colony migration on the bacterial pilus
binding distance, colonies with different pilus binding distances (dbind =

2.6, 2.0, 1.8, 1.5, 1.4µm) are simulated. The displacement of these colonies as a
function of time on pattern 1 is shown in Fig. 6.7. Colonies with longer pilus
binding distances (dbind = 2.6, 2.0, 1.8µm) show forward migration along the
positive x-axis (to the right) on pattern 1, consistent with the results of the
previous sections. Surprisingly, however, colonies with shorter pilus binding
distances (dbind = 1.5, 1.4µm) migrate in the opposite direction (to the left).
Furthermore, it is evident from the figure that the migration speed sm of the
colony decreases with a reduction in the pilus binding distance dbind. These
results can be summarized as the pilus binding distance dbind not only influ-
ences the migration speed sm of the colony but also can change the direction
of migration on the patterns. This implies that the migration direction of
the colony on the patterns is jointly determined by both the patterns and the
parameters of the colony.
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Figure 6.6: The simulated colonies with different numbers of bacteria
N = 1000, 400 on (a) pattern 1 and (b) pattern 2. (c) The displacement dm(t)
of colonies with different numbers of bacteria migrating on these two
patterns.

The binding of pili to the sawtooth surface generates asymmetric interac-
tion forces that drive the directed migration of the colony on the pattern.
These interaction forces are caused by two factors: the retraction of the pili
and the motility of the bacteria. To verify whether the directed migration
of the colony depends on the retraction of the surface-binding pili, colonies
are simulated with a retraction velocity of 0 (vp = 0) of the surface-binding
pili. The migration displacements of these colonies on patterns 1 and 2 are
shown in Fig. 6.8. It is evident that colonies withvp = 0 still exhibit directed
migration on the patterns. Furthermore, colonies with vp = 0 show higher
magnitudes of migration speeds on patterns 1 and 2 compared to colonies



6.3. Migration speed of colonies on the patterns 85

1000 2000 3000

0

50

100

150

200

time (s)

 d
m

 (
m

)

d
bind

=2.6 m/s

d
bind

=2.0 m/s

d
bind

=1.8 m/s

d
bind

=1.5 m/s

d
bind

=1.4 m/s

Figure 6.7: The displacement dm(t) of the colonies with different pilus
binding distances dbind migrating on pattern 1.

with vp = 1.0µm/s. This indicates that eliminating the retraction of surface-
binding pili enhances the directed migration of the colony.

Although the driving force for twitching motility is pili retraction, our simu-
lations show that colonies can still migrate directionally even without retrac-
tion between the bacteria and the surface.
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Figure 6.8: The displacement dm(t) of the colonies with different retraction
velocities vp of the surface-binding pili migrating on pattern 1 and pattern 2.
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6.4 Effective model

The migration velocity vm(t) of the colony under the influence of unbalanced
active forces can be described by the following Langevin equation

mcolony
dvm(t)

dt
= −γeffvm(t) + Fdrive + ξf(t), (6.4)

where mcolony is the mass of the colony, γeff is an effective translational friction
coefficient, Fdrive is a constant force that drives the colony to migrate, ξf(t)
represents fluctuating forces with vanishing mean. The velocity of the colony
vm(t) reaches an average stationary value of

v0m =
Fdrive

γeff
. (6.5)

Now, we add an extra force Fext to the colony to obtain an equation of motion
as

mcolony
dvm(t)

dt
= −γeffvm(t) + Fdrive + Fext + ξf(t). (6.6)

The colony eventually reaches a constant average velocity given by

v1m =
Fdrive + Fext

γeff
. (6.7)

Insertion of this result into Eq. (6.5) yields the effectiv friction coefficient

γeff =
Fext

v1m − v0m
. (6.8)

The constant migration velocity v1m of the colony on pattern 2 as a function
of the extra force Fext is shown in Fig. 6.9. The results can be fitted into a
straight line with a slope of αm. Thus, we have the value for γeff = 1/αm. In
this figure, the slope αm = 0.0084, indicating that the effective friction for the
colony migration motion on pattern γeff = 1/αm = 119.5 pN · s/µm, therefore
the driving force Fdrive = v0mγeff = −4.362 pN.
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Figure 6.9: The constant velocity v1m of the colony’s migration on pattern 1
under the traction of an extra force Fext.

6.5 Summary

The movement of bacterial colonies on an asymmetric surface is simulated.
The colonies rely on pili to adhere to a sawtooth pattern. we observe that the
colonies can exhibit directed movement on certain patterns. The direction
and speed of the motion depend sensitively on the shape of the pattern. The
speed depends on the size of the colonies but a clear correlation between
speeds and colony size on different patterns could not be established. The
cutoff distance for pilus binding, corresponding to the maximum length of
pili, affects both the direction and speed of motion on different patterns. By
eliminating the active retraction of surface-binding pili, we find that the force
generated by pili at the surface is not a necessary condition for a directed
migration of the colony. Overall, we have shown that directional motion of
colonies on sawtooth pattern is a complex and intriguing behavior whose
occurrence is demonstrated in simulations.

6.6 Appendix

6.6.1 Parameters values

Parameters values that are used for the simulations in this chapter are listed
in Tab. 6.1, parameters not listed here use the same values as in Tab. 2.1.
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Table 6.1: The choice of parameters for the simulations in this chapter.

Parameter Value Unit
cell radius R 0.5 dc
cell mass m 1.0 fct

2
cd

−1
c

pilus spring constant k 500 fcd
−1
c

pilus stall force fs 180 fc
maximum retraction velocity of pili v0 2.0 dct

−1
c

number of pili per cell 7
simulation time step ∆t 2× 10−4 tc
pilus rupture rate krupt 3.0 t−1

c

pilus binding cutoff distance dbind 1.8 dc
pilus binding rate kbind 50 t−1

c

pilus-pilus bond rupture force scale Frupt 22.5 fc
maximum conservative force a0 2000 fcd

−1
c

conservative force cutoff dcon = 2R 1.0 dc
diplococcus spring constant agrowth 2000 fcd

−1
c

friction coefficient γ 50 fctcd
−1
c

thermal energy scale kBT 1× 10−4 fcdc
dissipative and random force cutoff ddpd 1.5 dc
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Chapter 7

Summary and Concluding
Remarks

In this dissertation, we investigate the non-equilibrium dynamics of bacte-
rial colonies through the integration of experimental observations, computa-
tional simulations, and theoretical analyses .

The N. gonorrhoeae have a spherical cell body with a diameter of roughly 1
m, and T4P are isotropically displayed on their entire cell surface. T4P are
helical polymers consisting mainly of the major subunit PilE. T4P undergo
polymerization and depolymerization processes, resulting in cycles of elon-
gation and retraction. During retraction, T4P are capable of generating high
forces. N. gonorrhoeae do not exhibit active swimming in a liquid medium or
the ability to sense chemical gradients. Their mechanism of surface twitching
motility and cell-cell attraction is mediated by the retraction of T4P. Bacteria
grow and aggregate into colonies through the interaction of their T4P.

We have introduced a simulation model to study the non-equilibrium dy-
namics of bacterial colonies. Bacteria are modeled by solvent-free dissipative
particle dynamics. A DPD particle represents a single bacterium and the
volume repulsion, dissipation and thermal fluctuations of the bacteria are in-
cluded. By adding an additional force to represent the interaction between
T4P, the binding, retraction and rupture of pili are also taken into account.
The choice of some critical simulation parameters is based on experimental
measurements, such as bacterial radius, number of pili per cell, pilus length,
pilus spring constant, pilus stall force, maximum retraction velocity of pili,
pilus characteristic rupture force.

We have established a bacterial growth model in which one single bacterium
can grow and divide to form a colony. The simulation results show that cell
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numbers and colony radii increase exponentially with time. The local order
in the simulated colonies is investigated by calculating the radial distribu-
tion function. The simulations indicate that decreasing the pilus retraction
velocity increases the spatial ordering, and higher numbers of pili result in a
higher degree of spatial ordering.

Phase separation in mixed colonies has been simulated. For a mixture of
two cell types carrying different numbers of pili, the colonies segregate and
the cells that have many pili (14 pili) concentrate in the center of the colony,
while cells with fewer pili (7 pili) form a spherical shell at the periphery. For
a mixture of two cell types that have high pilus rupture forces among each
other, but lower rupture forces for pairs of different cells, simulations show
the formation of two segregated half-spheres. These simulations produce
results that are consistent with experimental data.

We quantifiy the power spectral density of simulated bacterial colonies and
compare the results with experimental data. The simulation results are in
good qualitative agreement with the experimental data. We also propose
a setup for measuring fluctuations in the colony shape and its response to
external force. The simulations yield a significant violation of the equilibrium
fluctuation-response relationship. Our simulations also show that the force
generated by the surface-binding pili can drive colonies to invade narrow
channels.

We investigate the spreading behavior of colonies on solid surfaces. Ex-
periments investigating the wetting behavior of bacterial colonies on sur-
faces have been carried out in the laboratory of Prof. Dr. Berenike Maier
at University of cologne. The results indicate that these colonies exhibit a
large steady-state contact angles (θ > 90◦) on the surface. The impact of
azithromycin treatment on the wetting behavior of bacterial colonies is no-
table. Experimental results reveal a significant decrease in the steady-state
contact angle of the colonies, suggesting an enhanced wetting capacity due
to azithromycin treatment. We present a simulation model that incorporates
individual bacteria and surfaces to investigate colony wetting behavior. Both
the experimental and simulation results indicate that the steady-state contact
angle correlates with colony size, showing an increase with increasing colony
size. Azithromycin treatment not only decreases the steady-state contact an-
gle but also accelerates the spreading in the colonies. Therefore, it can be con-
cluded that the wetting behavior of the colonies on the surface is improved
by azithromycin treatment.
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The dynamics of colonies consisting of two types of bacteria is studied. By
choosing appropriate parameters for the inactive bacteria, the colony folding
phenomenon is reproduced in simulations. The simulations show that the
configuration of such mixed colonies can become unstable, leading to a rapid
folding and reorganization of the colony structure. The simulation results
indicate that both the radius of the inactive bacterial cluster and the pilus
binding rate play a significant role in colony folding.

The movement of bacterial colonies on geometrically asymmetric surfaces is
simulated. These simulations show that colonies can exhibit directed move-
ment on certain sawtooth patterns. The direction and speed of the motion
depend sensitively on the shape of the pattern. The cutoff distance for pilus
binding affects both the direction and speed of motion on different patterns.
Our simulations have demonstrated that the directional motion of colonies
on a sawtooth pattern is a complex and intriguing behavior.
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