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Abstract
The major motivation for this work arose from the problem of simulating diffusion type
processes in the human brain network. This thesis addresses numerical methods for
parabolic partial differential equations (PDEs) on network structures interpreted as met-
ric spaces (metric graphs). Such domains frequently occur in the context of quantum
graphs, where they are studied together with a differential operator and coupling condi-
tions at the vertices of the metric graph. Quantum graphs are popular models for thin,
branched structures, and there is a great interest in their studies also from the theoretical
point of view. The present work aims to bridge the gap between the theoretical work and
the practical usage of quantum graph models by studying arising numerical problems.
The main focus is on initial boundary value problems governed by (semilinear) parabolic
partial differential equations that involve a second order spatial derivative posed on the
edges of the graph. The particularity of these problems are the coupling conditions of
the PDEs on their common vertices.

The two central methods studied in this thesis are a Galerkin discretization with linear
finite elements and a spectral Galerkin discretization with basis functions obtained from
an eigenvalue problem on the metric graph. Both approaches follow the method of lines,
i.e., Galerkin’s method is applied for the spatial discretization resulting in a system of
ordinary differential equations. Spectral accuracy can be obtained with the spectral
discretization in space for sufficiently smooth functions that fulfill certain coupling con-
ditions at the vertices.
In the finite element approach, the semidiscretization is solved with classical implicit-
explicit time stepping methods combined with a graph specific multigrid solver for the
arising systems of linear equations in each time step. In the spectral method, the stiff-
ness matrix is diagonal such that exponential integrators can be applied efficiently to
solve the semidiscretized system. The difficulty of the spectral method, by contrast, is
the computation of an eigenfunction basis.
The computation of quantum graph spectra thus is the last important aspect of this work.
The problem of computing eigenfunctions can be reduced to a nonlinear eigenvalue prob-
lem (NEP). In the particular case of equilateral graphs, the NEP even simplifies to a
linear eigenvalue problem in the size of the number of vertices of the underlying graph.
The proposed NEP solver applies equilateral approximations combined with a nested
iteration approach to obtain initial guesses for a Newton-trace iteration.

Human connectomes interpreted as metric graphs are consulted to test the applicability
of the methods to real world, large scale problems. Experiments on simulating distribu-
tion of tau proteins in the brain of Alzheimer’s disease patients complete this work.



Zusammenfassung
Die Motivation für diese Arbeit entstand aus dem Problem, Diffusionsprozesse auf dem
menschlichen Gehirnnetzwerk zu simulieren. Es werden daher numerische Methoden
für parabolische partielle Differentialgleichungen (PDEs) auf metrischen Graphen be-
handelt. Solche Gebiete treten im Kontext von Quantum-Graphen auf und werden
zusammen mit einem Differentialoperator und Kopplungsbedingungen an den Knoten
des Graphen studiert. Quantum-Graphen als Modelle von dünnen, verzweigten Struk-
turen stellen ein beliebtes Forschungsgebiet dar. Die vorliegende Arbeit soll dazu beitra-
gen, die Lücke zwischen den theoretischen Arbeiten und der praktischer Anwendung von
Quantum Graph Modellen zu schließen, indem auftretende numerische Probleme behan-
delt werden. Das Augenmerk liegt dabei auf Anfangsrandwertproblemen, die durch eine
(semilineare) parabolische PDE mit einem Differentialoperator zweiter Ordnung im Ort
auf den Kanten des Graphen beschrieben werden. Die Besonderheit dieser Probleme
liegt in den Kopplungsbedingungen der PDEs an den gemeinsamen Knoten der Kanten.
Als zentrale Methoden werden eine Galerkin Diskretisierung mit linearen Finiten El-
ementen und eine spektrale Galerkin Diskretisierung, bei der die Basisfunktionen aus
einem Eigenwertproblem auf dem metrischen Graphen gewonnen werden, vorgestellt.
Beide Ansätze verfolgen die Linienmethode: über eine Galerkin Diskretiserung im Ort
erhält man ein System gewöhnlicher Differentialgleichungen. Spektrale Genauigkeit der
Ortsdiskretisierung kann im Fall der spektralen Diskretisierung für genügend glatte
Funktionen, deren Ableitungen gewisse Randbedingungen erfüllen, erzielt werden.
Im Finite-Elemente-Ansatz wird das semidiskretisierte System mit implizit-expliziten
Zeitschrittverfahren gelöst. Die auftretenden Gleichungssysteme werden mit einem Graph-
spezifischen Mehrgitter Verfahren gelöst. Bei der spektralen Methode werden Exponen-
tielle Integratoren genutzt, da die Steifigkeitsmatrix diagonal ist. Die Schwierigkeit liegt
stattdessen in der Berechnung einer Basis aus Eigenfunktionen.
Die Berechnung von Quantum Graph Spektren ist daher der letzte wichtige Aspekt
dieser Arbeit. Das Problem kann auf ein nichtlineares Eigenwertproblem (NEP) re-
duziert werden. Im Spezialfall von equilateralen Graphen vereinfacht sich das NEP sogar
zu einem linearen Eigenwertproblem in der Größe der Anzahl der Knoten des Graphen.
Der vorgestellte NEP-Löser benutzt equilaterale Approximationen zusammen mit dem
Ansatz der geschachtelten Iterationen, um geeignete Startwerte für eine Newton-trace
Iteration zu finden.
Die Anwendbarkeit der vorgestellten Methoden auf Echtdaten wird anhand von mensch-
lichen Gehirnnetzwerken untersucht. Erste Experimente zur Simulation der Ausbreitung
von Tau-Proteinen im Gehirn von Alzheimer-Patienten runden diese Arbeit ab.
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1. Introduction

Motivation

The numerical simulation of phenomena in medicine and biology is a challenging yet
aspirational and fascinating task. For this purpose, graphs are an elegant model to
represent complex interconnected structures while partial differential equations allow to
simulate flows and motion on such a network. In particular, the questioning leading
to this work arose from the interdisciplinary research project “Neurodegeneration Fore-
casting - A Computational Brainsphere Model for Simulation of Alzheimer’s Disease”1.
Here, among others, a method to simulate the propagation of misfolded tau proteins in
the human brain is required. Our approach is to understand the brain as a network
of brain regions with certain connectivity patterns. Through these connections, it is
assumed that misfolded proteins can spread from one brain region to another, infecting
neighboring regions in a prion (protein-infection) like fashion.
This assumption is commonly known as the transneuronal spread hypothesis and moti-
vates the modeling of tau propagation as a diffusion process across the brain network.
This approach has been prominently addressed by Raj et al. in “A network diffusion
model of disease progression in dementia” [RKW12]. There, the brain is considered as
a combinatorial graph leading to a discrete model. However, more sophisticated models
are required to capture the observed phenomena. For instance, besides the propagation
of tau proteins, it is also desirable to consider its aggregation and production via reaction
terms. Moreover, since we are considering networks embedded in a three dimensional
space (the brain), we wish to interpret them as metric spaces in which each connection
has a natural length determined by the distance between its two incident brain regions.

Such topological constructs are known as metric graphs in mathematical science. Posing
a differential operator along with vertex coupling conditions on a metric graph leads

1This project was supported by the Excellence Initiative of the University of Cologne from November
2017 to October 2019. Principal Investigators: Prof. Dr. Alexander Drzezga (Department of Nuclear
Medicine, University Hospital Cologne), Prof. Dr. Angela Kunoth (Department of Mathematics and
Computer Science, University of Cologne), Prof. Dr. Yaping Shao (Institute for Geophysics and
Meteorology, University of Cologne)
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1. Introduction

to the prominent concept of quantum graphs. There exists a wide range of theoretical
literature on quantum graphs, covering topics like spectral theory, semigroup methods
and inverse problems. In this work, I will be particularly interested in time dependent
problems and therefore prefer to speak of (partial) differential equations (posed) on
metric graphs. Due to its prominence, I will nevertheless use the term quantum graph
in the context of eigenvalue problems.
More precisely, the main emphasis of this work is on the numerical solution of parabolic
equations of the type

∂

∂t
ue(x, t) − ∂2

∂x2ue(x, t) = fe(x, t), (1.1)

or, more general, semilinear reaction-diffusion equations

∂

∂t
ue(x, t) − ∂2

∂x2ue(x, t) = R(ue(x, t)) (1.2)

posed on the edges e of a metric graph Γ. In this expression, ue and fe are functions
defined on the edge e, and R(ue) is a (nonlinear) reaction term. The partial differen-
tial equations (PDEs) posed on the single edges are coupled at their common vertices,
typically by so-called Neumann-Kirchhoff conditions

u is continuous on (the vertices of) Γ∑
e∈Ev

due

dx (v) = 0 for all vertices v
(1.3)

where Ev consists of all edges e incident to vertex v. These “standard vertex conditions”
are suitable for our application since they model a continuity and current conservation
condition at the vertices of the graph. Theoretical works by von Below [vB85] and
Mugnolo [Mug14] are concerned with such types of (semi-)linear parabolic equations. In
particular, existence and uniqueness results have been studied therein.

Besides the already motivated application to brain network models, quantum graphs,
or PDEs on metric graphs, are popular models in physical science. The first prominent
appearance was a quantum graph model of free electrons in organic molecules in the
1930s [Pau36]. In general, quantum graphs are employed in models of thin branching
structures. Nowadays, important applications are, for example, carbon nanostructures
in nanotechnogology. For an extensive theoretical investigation and further modeling
examples and applications, see for example [BK13].

12



Literature Review

Despite the wide popularity of quantum graphs in modeling as well as in theoretical in-
vestigations, the numerical research on PDEs on metric graphs is still in its early stage.
From the beginning, this thesis was inspired by the article “A finite element method for
quantum graphs” from Arioli and Benzi [AB18]. The underlying idea is straightforward:
on each edge of the metric graph, the spatial derivative is discretized by linear finite
elements, so-called hat functions. Some caution is required at the vertices of the graph
since the coupling conditions must be satisfied by the solution of the differential equa-
tion. In [AB18], special focus lies on elliptic equations of the type − d2

dx2u+ ρu = f with
a positive potential ρ. A weak formulation is derived and the existence of a solution as
well as an error estimate is given. Moreover, the method is applied to a heat equation
and a generalized eigenvalue problem on Γ.
Another important aspect of the work of Arioli and Benzi is the representation of the
finite element discretization matrices in terms of graph matrices of the so-called extended
graph. The latter arises by interpreting the spatial grid points as additional vertices in
the metric graph. The advantage of this approach is the possibility to assemble the dis-
cretization matrix by some manipulations of the incidence matrix of the original graph.
Moreover, the structured representation of the discretization matrices enables the appli-
cation of a domain decomposition approach for the solution of the arising linear systems.
For the special case of equilateral graphs (all edges have the same length), an important
identity of the Schur complement of the finite element stiffness matrix and the graph
Laplacian matrix of the underlying combinatorial graph has been developed.
Recently, the finite element approach was adapted in a work of Stoll and Winkler for
optimal control problems on quantum graphs [SW21].

Besides the finite element approach [AB18], finite difference approaches have been in-
vestigated very recently by Brio et al. [BCK22] and by Besse et al. [BDLC22]. In the
former, different differential equations involving the second order derivative such as a
Poisson’s and a wave equation are considered. The metric graph is discretized by plac-
ing grid points on both the vertices and the interior of the edges. For the latter inner
discretization points, a second order finite difference approximation of the second order
derivative is straightforward. A ghost point is introduced and subsequently eliminated
by means of the Neumann-Kirchhoff conditions to apply the same to the grid points at
the vertices. This also ensures the coupling of various edges at their common vertex.
Besse et al. in [BDLC22] only place discretization points along the edges and not at
the vertices of the graph itself. The vertex conditions are applied to couple the first,

13



1. Introduction

respectively, last discretization points of the edges among each other. The approach
by Besse et al. [BDLC22] was proposed for nonlinear Schrödinger equations on graphs
and is implemented in the Python GraFiDi Library provided by the same authors. For
each vertex, this technique requires the inversion of a matrix of size deg × deg where deg
denotes the number of incident edges of a vertex.

Brio et al. in the same work ([BCK22]) further suggest a spectral method for the solution
of a linear wave and Poisson’s equation. This is the attempt most closely related to
the one presented as a main result of this thesis. The basis functions of the spectral
expansion are obtained from an eigenvalue problem on the metric graph. An algorithm
is proposed for the computation of this spectral basis and proceeds as follows: First, a
λ-dependent matrix that is singular at the eigenvalues λ is assembled by coupling the
solution of the eigenvalue problem on each edge with Neumann-Kirchhoff conditions.
This matrix is constructed by symbolic manipulations and, subsequently, the reciprocal
condition number as a function of λ is plotted in order to graphically estimate a lower
bound for the distance between two subsequent eigenvalues. The eigenvalues are then
determined by a line minimization algorithm applied to subintervals according to the
observed distance. The eigenfunctions can be found by computing the null space of the
λ-dependent matrix at the associated eigenvalue.
Turning back to the solution of the PDE in the first place, the solution is expanded in
terms of the spectral basis and projected onto the eigenfunctions to obtain the unknown
coefficients. Spectral decay of the projection coefficients is shown for functions with
compact support on each edge. In this case, however, the coupled system reduces to
independent equations on the edges since this is equivalent to posing zero Dirichlet
conditions at each edge.

Scope of this Thesis

The objective of this work is the development and discussion of numerical methods for
the solution of (semi-)linear parabolic PDEs of the type (1.1) or (1.2) posed on met-
ric graphs under Neumann-Kirchhoff conditions (1.3). A suitable framework will be
established by introducing initial boundary value problems (IBVPs) governed by the
generalized heat equation (1.1) and a semilinear reaction-diffusion equation (1.2), by an-
alyzing the underlying differential operator, and by providing a weak formulation. For
the numerical solution, we first discretize in space (semidiscretization) and subsequently
solve the resulting system of ordinary differential equations (ODEs) by a time stepping
method (method of lines). For the spatial discretization, we will encounter a Galerkin
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discretization with finite element trial functions as well as a spectral Galerkin discretiza-
tion. The semidiscretized systems are then solved by implicit-explicit time stepping
methods in the finite element setting and by exponential integrators in the spectral set-
ting.

The application of the finite element method introduced in [AB18] to the PDEs in focus
is analyzed. Its convergence rates are demonstrated by means of simple elliptic and lin-
ear parabolic test problems. For the solution of the semidiscretized systems, I propose
implicit-explicit time stepping methods which require an efficient solution of the evolv-
ing systems of linear equations in each time step. A multigrid ansatz closely related to
standard multigrid methods but with suitable graph specific prolongation and restriction
operators is presented. As an alternative to the multigrid solver, a generalization of the
domain decomposition approach from [AB18] is derived in the appendix. In particular,
the Schur complement identity is also proven for non-equilateral graphs which guaran-
tees a broad application of the method.

The main novelty and focus of this thesis is the development of a highly accurate spectral
Galerkin approximation for the solution of IBVPs governed by (1.1) or (1.2) posed on a
metric graph under Neumann-Kirchhoff conditions (1.3) together with the efficient com-
putation of spectral basis functions. The particular characteristic of a spectral solution
method is the choice of trial functions in the Galerkin semidiscretization. In contrast
to the finite element semidiscretization, where the basis functions typically have local
support, orthogonal functions with global support are applied. In the best case, a care-
ful choice of these basis functions guarantees spectral convergence, i.e., faster than any
polynomial approximation.
In the studied approach, the trial functions are linear combinations of eigenfunctions ob-
tained from an eigenvalue equation on the metric graph subject to Neumann-Kirchhoff
vertex conditions. The ansatz is motivated by the fact that, given the studied coupling
conditions, the negative second order derivative is self-adjoint. Therefore, the considered
eigenfunctions constitute an orthogonal basis of the solution space. This is equivalent
to choosing the eigensolutions of a suitable Sturm-Liouville-Problem (see for example
[CHQZ07]) in the one dimensional setting. We discuss aspects of approximation theory
and formulate a spectral Galerkin semidiscretization. Moreover, we address the solution
of the semidiscretized system by exponential integrators which necessitates the efficient
computation of the appearing function evaluations and integrals. The efficient compu-
tation of the latter is also essential to compute the projection coefficients of the spectral
expansion and is thereby an important aspect of the proposed approach.
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1. Introduction

Towards the development of the spectral Galerkin method, it is essential to set up a
method to compute eigenvalues and eigenfunctions of quantum graphs. Indeed, the
study of eigenvalues and eigenfunctions itself is a very complex and interesting task for
which an innovative numerical method is developed in this thesis.
I will in this context also speak of the computation of quantum graph spectra in order
to keep with the terminology widely used in literature. By this I always mean not only
to compute the eigenvalues but also the associated eigenfunctions.
The main result leading to the proposed algorithm is the impressive fact that the con-
tinuous eigenvalue equation on a metric graph can be reduced to a Nonlinear Eigen-
value Problem (NEP) on the underlying combinatorial graph. This observation has
been prominently studied by several authors (for example in [BK13], [Cat97], [vB85])
in the special case of equilateral graphs. The problem then actually even simplifies to a
linear eigenvalue problem of a graph Laplacian matrix. However, one has to be careful
since the relation only applies to a specific part of the spectrum which we refer to as
vertex spectrum. For the remaining non-vertex eigenfunctions, we propose a practical
approach by inserting artificial vertices on the edges of the graph.
That said, the spectral method clearly bears some major advantages in the special case
that all edges of the metric graph have the same length. In fact, equilateral graphs are
important in a wide range of modeling, such as graphene structures. For the general case
of non-equilateral graphs, we extend our approach by proposing a numerical method to
compute eigenvalues as solutions of the NEP mentioned above. The derived method
uses a Newton-trace iteration with the particularity that initial guesses are obtained
from suitable equilateral approximations of the non-equilateral graph.

Accompanying this work, I developed the package MeGraPDE in Julia, available at
https://github.com/AnnaWeller/MeGraPDE.jl. Parts of the documentation and first
usage examples are included in the appendix (Appendix C). For the full documentation,
we refer to https://annaweller.github.io/MeGraPDE.jl.
Using the methods implemented in MeGraPDE, several numerical experiments are pre-
sented not only to verify the obtained theoretical results but also to study properties of
the solutions and the underlying metric graphs.
The finite element and spectral Galerkin discretization are compared in terms of complex-
ity and accuracy by means of a small artificial test problem. Moreover, the applicability
of the derived numerical methods to real world, large scale networks is investigated by
means of data collected during the interdisciplinary research project on the simulation
of Alzheimer’s disease. The experiments serve as a starting point for future simulations
of tau propagation.
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Outline

Chapter 2: In Section 2.1, we give a review of basic concepts of combinatorial graph
theory, the representation of graphs through matrices and some relevant results on their
spectrum. Given these fundamentals, the concept is extended to define metric graphs
in Section 2.2. An understanding of function spaces and operators on metric graphs is
established, accordingly allowing us to pose parabolic differential equations on metric
graphs in Section 2.3. We formally define the two central initial boundary value prob-
lems associated with a generalized heat and a reaction-diffusion equation. Corresponding
weak formulations are derived in Section 2.3.2, and their well-posedness is investigated.
Finally, in Section 2.4, we introduce some concrete graphs and test problems frequently
used for illustration purposes and for numerical experiments throughout this work.

Chapter 3: In Chapter 3, the application of the finite element discretization to the IB-
VPs introduced in Chapter 2 is discussed. We review the discretization of metric graphs
and the concept of extended graphs in Section 3.1. The finite element discretization of
parabolic differential equations in space is outlined in Section 3.2 along with the deriva-
tion of the semidiscretized system of differential equations and an error analysis. The
remainder of the chapter then focusses on the efficient solution of the semidiscretized
system with implicit-explicit schemes in combination with a multigrid approach.

Chapter 4: Chapter 4 introduces the heart of this thesis, the spectral solution method.
The trial space for the Galerkin approximation in space is analyzed in Section 4.1.
We derive an eigenfunction expansion and an estimate for the truncation error. Ac-
cordingly, the spectral Galerkin approximation is formalized in Section 4.2 yielding a
semidiscretized system of ODEs. The remainder of Section 4.2 consists of an error anal-
ysis before we move on to the solution of the semidiscretized problems in Section 4.3.
Finally, aspects of implementation, in particular the computation of projections coeffi-
cients, are addressed in Section 4.3.2.

Chapter 5: Given that the spectral Galerkin discretization in Chapter 4 requires a
basis of eigenfunctions, the efficient solution of eigenvalue problems on metric graphs is
discussed. The spectrum of a quantum graph is separated in the vertex and non-vertex
spectrum and, for the former, a relation to combinatorial graph spectra is described in
Section 5.1. In the special case of equilateral graphs, this allows to reduce the continuous
eigenvalue equation to a linear eigenvalue problem of a discrete matrix which is used to
compute the vertex spectrum in Section 5.2.1. In Section 5.2.2, we derive a method
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1. Introduction

to compute the remaining part of the spectrum. Some aspects of implementation are
discussed in Section 5.2.3. In Section 5.3, the ideas are adopted to the general class of
non-equilateral graphs, and a method to solve the evolving NEP is proposed.

Chapter 6: Chapter 6 is devoted to numerical investigations. The finite element method
is addressed in Section 6.1. Experiments on the convergence and the solution of the
semidiscretized system with the multigrid approach are conducted.
Section 6.2 gives more examples on the computation of quantum graph spectra. On the
one hand, we investigate the structure of the spectra. Additionally we test the spectral
algorithm in comparison to a finite element approximation of the eigenvalue problem.
First large scale examples for the non-equilateral setting are discussed.
The spectral Galerkin method is the subject of Section 6.3. Numerical experiments on
the projection coefficients, truncation error, and Weyl’s law eigenvalue estimates are
conducted in Section 6.3.1 and Section 6.3.2 before we move on to investigating spectral
solutions of the heat, a fractional diffusion and reaction-diffusion equations in Section
6.3.3 and Section 6.3.5.

Chapter 7: This chapter aims at the comparison of the two previously described meth-
ods. We analyze the finite element and spectral Galerkin method with respect to the
achieved accuracy and required complexity depending on the degrees of freedom for two
small, artificial test problems.

Chapter 8: We give an outlook on the application of the derived methods to the moti-
vational model: the simulation of tau propagation in Alzheimer’s disease. The objective
of this chapter is to test the applicability of the methods to real world, large scale data.
To motivate the application, we introduce the main ideas of the Global Brainsphere
Model and the representation of the brain as a metric graph. Numerical experiments
on the solution of IBVPs governed by linear reaction-diffusion equations are carried out
using the finite element discretization from Chapter 3. The eigenvalue algorithm from
Section 5.3 is applied to compute eigenvalues of metric graphs modeling the brain.

Chapter 9: I review the main concepts and novelties derived in this thesis. A brief
discussion of the finite difference method, that I briefly mentioned in the literature
review, shows how such methods can be embedded in our framework. I further highlight
interesting topics for further research that were identified throughout this work.
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2. Background: Graphs and Differential
Equations

In order to define continuous partial differential equations on graphs, we need to ex-
tend the widely used concept of combinatorial graphs by a metric. Such metric graphs
equipped with a differential operator are often called quantum graphs and have been stud-
ied by several authors in various contexts and under different names since the 1930s, see
for example [BK13], [Cat97], [Mug14], [Pau36], [Pos08], although this list is by far not
complete.

In the present chapter, we introduce the main concepts of combinatorial and metric
graphs. This survey is mainly based on the textbook Introduction to Quantum Graphs
by Berkolaiko and Kuchment [BK13] which we also recommend for a detailed and com-
prehensive introduction to a wide range of quantum graph theory. Key of this summary
is the derivation of a self-adjoint realization of a differential operator on metric graphs.
We then proceed to pose partial differential equations on metric graphs and derive their
weak formulation.

2.1. Combinatorial Graphs

For the convenience of the reader and to introduce our notation, I give a brief summary
on the main concepts of combinatorial graph theory, particularly focusing on graph
matrices and their spectral properties required later.

2.1.1. Basic Concepts and Notation

An undirected graph G = (V, E) consists of a vertex set V = {v1, . . . , vn} and a set
E = {e1, . . . , em} of unordered pairs of distinct vertices, called the edges of G. The
number of vertices |V| is denoted by n and the number of edges |E| by m. We usually
write e = (vi, vj) for an edge between the vertices vi and vj . Sometimes we use the
notations e1, . . . , em to distinguish between several edges or eij if the endpoints of the
edge need to be clarified.
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2. Background: Graphs and Differential Equations

Two distinct vertices vi and vj are adjacent (vi ∼ vj) if they are connected by an edge
e = (vi, vj) ∈ E . Then, we say vj is a neighbor of vi. The set of all neighbors of vi is
denoted by N (vi). We further say the edge e = (vi, vj) is incident to the vertices vi and
vj . The number of incident edges of a vertex v is referred to as the degree and denoted
by deg(v), the set of incident edges by Ev. We only consider simple graphs without loops
and multiple edges between two vertices. Thus it holds that deg(v) = |N (v)| = |Ev|.

If a vertex has no neighbors in the context of the above definition, it is an isolated vertex.
Hence, an isolated vertex is not connected to any other vertex in the graph. This leads
us to the concept of paths and reachability, which we shortly introduce next.
Consider a sequence of distinct vertices (vi, vi+1, . . . , vj) such that all consecutive ver-
tices are connected by an edge, say e1 = (vi, vi+1), e2 = (vi+1, vi+2), . . . , ep = (vj−1, vj).
The sequence of distinct edges (e1, . . . , ep) is a path of length p between vi and vj . If
such a sequence exists, vi and vj are connected, or vj is reachable from vi. In the case of
identical start point vi and end point vj , we speak of a cycle. The graph is connected if
there exists a path between every pair of two vertices. In this work, we always assume a
graph to be connected. Otherwise, one can treat the connected components as separate
graphs and apply the same theory straightaway.
Shortest paths between vertices naturally introduce a kind of distance on graphs, i.e., the
distance dist(vi, vj) between two vertices is the length of the shortest path connecting
vi and vj . Clearly, dist(vi, vj) = 1 if and only if vi ∼ vj .

Although we only consider undirected combinatorial graphs, it is convenient for the
definition of metric graphs, later on, to introduce orientations on edges. By orientation,
we mean that we assign a direction to each edge. Such directed edges are usually called
bonds in the context of digraphs (directed graphs). The start- and endpoint of a bond
b are often identified by o(b) and t(b) which stands for origin and terminal vertex.
The reversal of a bond b with opposite direction is denoted by b̄ with o(b̄) = t(b) and
t(b̄) = o(b).
Throughout this work, we try to omit the term bond as our discussed model graphs
are always undirected graphs and the orientation only serves the technical purpose of
uniquely defining coordinates along the edges. In a slight abuse of notation, we therefore
write o(e) and t(e) for the start- and endpoint of an oriented edge. In this context, we
use the notation Eout

v := {e ∈ E : v = o(e)} for the set of outgoing edges of v and
E in

v := {e ∈ E : v = t(e)} for the set of incoming edges.
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2.1. Combinatorial Graphs

2.1.2. Graph Matrices and Eigenvalues

We introduce the characterization of graphs through graph matrices, which are essential
for our further work.

The adjacency matrix A ∈ Rn×n is defined by A := (aij)i,j=1,...,n with aij = 1 if vi ∼ vj

and 0 otherwise. If a graph is simple, it can be completely characterized by its adjacency
matrix. We further define the degree matrix D := diag(deg(v1), . . . ,deg(vn)) and the
graph Laplacian matrix L := D − A.
A graph can also be characterized by its incidence matrix N ∈ Rn×m. Here, the rows of
the matrix correspond to the vertices v1, . . . , vn, and the columns to the edges e1, . . . , em

with the entries describing their incidence. After assigning an arbitrary but fixed orien-
tation to the edges, we can define

(N)v,e :=


1, if v = t(e)

−1, if v = o(e)

0, otherwise

and obtain the useful relation L = NNT . In the further course of the work, we use the
convention that the first entry per row of the incidence matrix is always negative. This
is equivalent to orientating the edges from the smaller to the larger vertex index.

With this notation in place, we prove the following well-known theorem on the spectrum
of L, see for example [BH11].

Theorem 2.1.1. Let G = (V, E) be a simple connected graph with graph Laplacian
matrix L. Then, L is positive semidefinite with a simple zero eigenvalue corresponding
to the eigenvector 1 := (1, . . . , 1)T .

Proof. For u ∈ Rn, let u(vi) denote the i-th entry1 of u and consider

uT Lu =
∑

(vi,vj)∈E
(u(vi) − u(vj))2 ≥ 0

which implies that L is positive semidefinite. This is also obvious from the fact that L
is weakly diagonally dominant. It remains to show that the null space is spanned by the

1This notation refers to the interpretation of u as a function on the vertices of G, as introduced later.
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2. Background: Graphs and Differential Equations

eigenvector 1 := (1, . . . , 1)T . Obviously, L1 = 0 and, on the other hand, for u ∈ Rn with

uT Lu =
∑

(vi,vj)∈E
(u(vi) − u(vj))2 = 0,

we obtain u(vi) = u(vj) for all vi ∼ vj . Since G is connected, we conclude that u must
be constant across all vertices.

Of special interest for the analysis of the spectrum of quantum graphs are the harmonic
graph Laplacian matrix ∆G and the normalized graph Laplacian matrix L defined by

∆G := D−1L and L := D− 1
2 LD− 1

2 .

As in the notation ∆G , we will sometimes work with a subscript if the underlying graph is
not clear from the context, for example, LG1 and LG2 are the normalized graph Laplacian
matrices of G1 and G2 respectively.
Since ∆G = D− 1

2 LD
1
2 = I − D− 1

2 (I − L)D
1
2 , we can deduce that ∆G and L are similar

and consequently have the same eigenvalues µi, i = 1, . . . , n. Moreover, if Φ is eigenvector
of ∆G , it holds that D

1
2 Φ is eigenvector of L. These observations will be particularly

useful to compute the eigenvalue decomposition of ∆G , as the normalized graph Laplacian
matrix is, in contrast to the harmonic graph Laplacian matrix, symmetric. Furthermore,
the following well-known estimate on µi, which can be found in [Chu97], Lemma 1.7,
will play an essential role in the following chapters.

Theorem 2.1.2. Let G = (V, E) be a simple connected graph with normalized graph
Laplacian matrix L and harmonic graph Laplacian ∆G. Then, for the eigenvalues µi of
L and ∆G it holds that

0 ≤ µi ≤ 2

for all i = 1, . . . , n with µn = 2 if and only if G is bipartite. Moreover, both µ1 = 0 and
µn = 2 (if it occurs) are simple eigenvalues.

Remark. The spectrum of the normalized and harmonic graph Laplacian matrices will
be denoted by σ(L) and σ(∆G) respectively.

Before we prove the theorem, we briefly give the definition of a bipartite graph.

Definition 2.1.3. A graph G = (V, E) is bipartite, if there exists a disjoint partitioning
of the vertices V = V1 ∪ V2 such that there are no edges inside a partition, i.e., vi ̸∼ vj

for all vertices vi, vj ∈ V1 and vi ̸∼ vj for all vertices vi, vj ∈ V2.
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2.1. Combinatorial Graphs

In particular, a bipartite graph has a two-coloring, that is, the vertices can be colored
with two colors such that every two adjacent vertices have a different color, see Figure
2.1. We may now turn to the proof of Theorem 2.1.2.

c1

c1

c1

c2

c2

c2

c2

V1 V2

Figure 2.1.: Bipartite graph colored with two colors c1 and c2.

Proof of Theorem 2.1.2. The proof follows [Chu97] and was prepared in the context of a
seminar paper [SS22] according to our background and notation. Due to the importance
of Theorem 2.1.2, we include it here for the sake of completeness. As ∆G and L are sim-
ilar, it suffices to prove the theorem for L and remark that ∆G has the same eigenvalues.
Let (µ,Υ) be an eigenpair of L. Then,

µΥ = LΥ = D− 1
2 LD− 1

2 Υ

is equivalent to
µD− 1

2 Υ = ∆GD− 1
2 Υ.

Thus, µΦ = ∆GΦ where Φ = D− 1
2 Υ is the eigenvector of the harmonic graph Laplacian

corresponding to the eigenvalue µ. Since L is real and symmetric, we can characterize
the eigenvalues through the Rayleigh quotient:

µ = ΥT LΥ
ΥT Υ = ΥT D− 1

2 LD− 1
2 Υ

ΥT Υ = ΦT LΦ
(D

1
2 Φ)T (D

1
2 Φ)

=
∑

(vi,vj)∈E(Φ(vi) − Φ(vj))2∑
vi∈V deg(vi)Φ(vi)2 .

Clearly, it follows that µ ≥ 0 and µ = 0 if and only if Φ(vi) = Φ(vj) for all vi, vj ∈ V
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2. Background: Graphs and Differential Equations

equivalent to the proof of Theorem 2.1.1. For the largest eigenvalue µn it holds that

µn = sup
∑

(vi,vj)∈E(Φ(vi) − Φ(vj))2∑
vi∈V deg(vi)Φ(vi)2 .

For the numerator, we derive

∑
(vi,vj)∈E

(Φ(vi) − Φ(vj))2 ≤ 2
∑

(vi,vj)∈E
Φ(vi)2 + Φ(vj)2

= 2 1
2
∑
vi∈V

∑
vj∼vi

Φ(vi)2 + Φ(vj)2

=
∑
vi∈V

deg(vi)Φ(vi)2 +
∑
vi∈V

∑
vj∼vi

Φ(vj)2

=
∑
vi∈V

deg(vi)Φ(vi)2 +
∑

vj∈V
deg(vj) Φ(vj)2

= 2
∑
vi∈V

deg(vi)Φ(vi)2.

Together, we obtain

µn = sup
∑

(vi,vj)∈E(Φ(vi) − Φ(vj))2∑
vi∈V deg(vi)Φ(vi)2 ≤ 2 sup

∑
vi∈V deg(vi)Φ(vi)2∑
vi∈V deg(vi)Φ(vi)2 = 2.

Moreover, equality holds if and only if

∑
(vi,vj)∈E

(Φ(vi) − Φ(vj))2 = 2
∑

(vi,vj)∈E

(
Φ(vi)2 + Φ(vj)2

)
,

which is equivalent to

(Φ(vi) − Φ(vj))2 = Φ(vi)2 − 2Φ(vi)Φ(vj) + Φ(vj)2 = 2(Φ(vi)2 + Φ(vj)2)

for all vi, vj ∈ V with vi ∼ vj . This can only be true if we choose Φ(vi) = −Φ(vj) for
all vi ∼ vj , which is possible if and only if G can be colored with two colors, i.e., if G is
bipartite.
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2.2. Metric Graphs

2.2. Metric Graphs

In the context of combinatorial graphs, the edges can be any kind of (abstract) relation,
for example, a friendship in a social network. However, in the scope of this work, we
understand an edge e as a physical connection between two vertices with a given length
ℓe. Therefore, we identify each edge with an interval [0, ℓe]. The intervals are coupled
by their start and end vertex just as in the combinatorial graph. In particular, the point
xe = 0 is identified with the start vertex o(e) and xe = ℓe with the end vertex t(e). We
now see what purpose the orientation of the edges serves, namely to uniquely define the
coordinates on the edges. The points of a metric graph are then not only the vertices
v ∈ V but all points xe ∈ [0, ℓe], e ∈ E on the edges. We summarize this concept in the
following definition.

Definition 2.2.1. A metric graph Γ is defined by a combinatorial graph G = (V, E) and
a vector of edge lengths ℓ := (ℓe1 , . . . , ℓem)T ∈ Rm with ℓe ∈ R+ for all e ∈ E by

a) assigning an (arbitrary but fixed) orientation to each edge e,

b) assigning the length ℓe to each edge e,

c) parameterizing each edge by xe ∈ [0, ℓe] where the coordinate xe is increasing in
the direction of e.

We write x ∈ Γ if x ∈ ⊔e∈E [0, ℓe], and we use the subscript xe to clarify on which edge e
the point lies. Identifying e with an interval e = [0, ℓe], the distance between two vertices
vi, vj ∈ Γ is defined by ℓ1 + . . . + ℓp where (e1, . . . , ep) is the shortest path connecting
vi and vj . This concept can be extended to x, y ∈ Γ to define the distance between two
arbitrary points. We will sometimes need the total length of a metric graph which we
refer to as volume of Γ, i.e., volΓ :=

∑
e∈E ℓe.

Remark. Usually, we assume the orientation of the edges to be assigned according to the
index of the vertices, i.e., such that o(eij) = vi if i < j. However, whenever we consider
an arbitrary but fixed vertex v, we sometimes assume v to be the origin of all incident
edges. This helps to simplify the notation since v is then identified with xe = 0 for all
e ∈ Ev, see also Figure 2.2 for an illustration.

Within the framework of this thesis, we only consider finite metric graphs with finite
edge lengths ℓe < ∞ and a finite number of edges and vertices. These finite metric
graphs are compact if interpreted as a topological space and therefore often referred to
as compact metric graphs. As a particular class of metric graphs, we introduce equilateral
graphs.

25



2. Background: Graphs and Differential Equations

v1 v2

v3

e1
0

0

e2

ℓe1

0

e3

ℓe2 ℓe3

(a) Classical orientation of edges from
smaller to larger vertex index.

v
0

ℓe1

0

ℓe2

0

ℓe3

(b) Simplified orientation for fixed vertex v.

Figure 2.2.: Orientation of edges in a metric graph.

Definition 2.2.2. A metric graph Γ is equilateral if each edge has the same length ℓ,
i.e., ℓe = ℓ for all e ∈ E.

These graphs play an important role in the determination of spectra of differential op-
erators posed on Γ. Moreover, we will often use equilateral graphs for demonstration
purposes since they allow a simplified notation.

We sometimes need to distinguish between metric graphs with underlying bipartite and
non-bipartite combinatorial graphs which is why I give the following definition.

Definition 2.2.3. A metric graph Γ is referred to as bipartite, if the underlying com-
binatorial graph G is bipartite.

2.2.1. Function Spaces on Graphs

A function u : V → R defined on a combinatorial graph G assigns a value to each vertex
v ∈ V and thus can be identified with a vector in Rn. For metric graphs, we need an
extension of the notion of functions defined on both the vertices and edges.

Definition 2.2.4. A function u : Γ → R on a metric graph is a collection {ue}e∈E of
functions ue : [0, ℓe] → R defined on the edges e ∈ E .

We use both the notation u(x) to evaluate u at an arbitrary point x ∈ Γ and u(xe)
for xe ∈ [0, ℓe] if we refer to a point on a specific edge e. Equivalently, we can use the
expression ue(x) for x ∈ [0, ℓe] which also clarifies that we are considering a point on a
specific edge e.
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2.2. Metric Graphs

Before defining function spaces on metric graphs, we first need to clarify what we un-
derstand by continuous functions on metric graphs.

Definition 2.2.5. A function u : Γ → R is continuous on Γ if ue : [0, ℓe] → R is
continuous for all e ∈ E and for a given vertex v it holds that ue(0) assumes the same
value for all e ∈ Ev.

For simplicity of notation, we here assumed all edges incident to v to be oriented in the
direction away from v. In other words, the values of the functions defined across the
single edges agree at the endpoints. The space of continuous functions on Γ is denoted
by C(Γ). In particular, it is important to notice that for u ∈ C(Γ), the expression u(v)
as well as the restriction of u to the vertices uV := (u(v1), . . . , u(vn))T are well defined.
We now consider the following function spaces on metric graphs as introduced in [BK13].

Definition 2.2.6. a) The space of square integrable, measurable functions on Γ is
given by

L2(Γ) :=
⊕
e∈E

L2(e) with ∥u∥2
Γ :=

∑
e∈E

∥ue∥2
L2(e)

where ∥ue∥2
L2(e) = ⟨ue, ue⟩e and ⟨ue, we⟩e =

∫ ℓe
0 ue(x)we(x) dx for ue, we ∈ L2(e).

The corresponding L2(Γ) inner product on Γ is defined by

(u,w)Γ :=
∫

Γ
u(x)w(x)dx =

∑
e∈E

∫ ℓe

0
ue(x)we(x)dx.

b) The Sobolev space H1(Γ) of square integrable functions with square integrable first
derivative on Γ is given by

H1(Γ) :=
⊕
e∈E

H1(e) ∩ C(Γ) with ∥u∥2
H1(Γ) :=

∑
e∈E

∥ue∥2
H1(e).

Here, the square of the norm on H1(e) is defined by ∥ue∥2
L2(e) + ∥u′

e∥2
L2(e) where

u′
e denotes the first derivative of ue on the edge e with respect to the parameter
x ∈ [0, ℓe].

Of special interest will further be parabolic differential equations on Γ. The definition
of Bochner Spaces on metric graphs is then standard (see for example [Eva00], Section
5.9.2):
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2. Background: Graphs and Differential Equations

Definition 2.2.7. Let H be either L2(Γ) or H1(Γ) and I := [0, T ] ⊂ R an interval. The
Bochner Space L2([0, T ];H) is the space of functions u : I → H such that the norm

∥u∥L2(I;H) :=
(∫

I
∥u(t)∥2

Hdt
) 1

2

is finite. Moreover, we define the space C([0, T ];H) of continuous functions u : I → H

with
∥u∥C(I;H) := max

0≤t≤T
∥u(t)∥H < ∞.

2.2.2. Operators on Graphs

In the setting of combinatorial graphs, all graph matrices introduced in Section 2.1.2 can
also be understood as discrete operators acting on functions defined on G. For example,
the graph Laplacian matrix L can be associated with the operator

(Lu)(vi) =
∑

vj∈V
Liju(vj) = deg(vi)u(vi) −

∑
vj∼vi

u(vj),

see [BK13] for a detailed discussion. In this context, some authors speak of the graph
Laplacian matrix to be the discrete analogous (up to the sign) of the standard Laplace
operator on a graph and the incidence matrix N to be the discrete analog of the exterior
derivative, which is also reflected in the relationship L = NNT [BK13].

Since the main motivation of this work are diffusion-type equations on metric graphs,
we are interested in the standard differential operator H acting as

H : u 7→ −d2u

dx2 , (2.2.8)

or, in a more formal definition,

H : {ue, e ∈ E} 7→
{

− d2

dx2ue, e ∈ E
}
,

i.e., the negative second order derivative acting on each edge. We will consider H on the
domain introduced in the following definition.
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2.2. Metric Graphs

Definition 2.2.9. The Neumann-Kirchhoff vertex conditions are defined as the pair of
coupling conditions

u is continuous on Γ (2.2.10a)∑
e∈Ev

due

dx (v) = 0 for all v ∈ V (2.2.10b)

where the derivatives in (2.2.10b) are assumed to be taken in the direction away from
the vertex. Of particular interest are functions in

domH,NK :=
⊕
e∈E

H2(e) ∩ {u fulfills Neumann-Kirchhoff conditions}. (2.2.11)

The Neumann-Kirchhoff conditions are appropriate for our modeling purpose since
(2.2.10b) physically corresponds to a current conservation condition and, together with
the continuity condition (2.2.10a), these are the natural demands on a concentration
function. In order to easily distinguish between the two conditions throughout this
work, we introduce the shorthand notation

(Ku)(v) :=
∑
e∈Ev

due

dx (v) (2.2.12)

as seen in [SW21].
Neumann-Kirchhoff conditions are more or less the most common vertex conditions con-
sidered in literature and imply some useful properties of H. In particular, the following
theorem is a well-known implication, see for example [BK13], Theorem 1.4.4 and (1.4.26).

Theorem 2.2.13. The negative second order derivative H : domH,NK ⊂ L2(Γ) → L2(Γ)
is self-adjoint.

We conclude this subsection with the definition of the commonly used concept of Quan-
tum Graphs.

Definition 2.2.14. A Quantum Graph is a metric graph Γ equipped with a differential
operator H and coupling conditions at the vertices of Γ.

Note that some authors require self-adjointness of H in the definition of a quantum graph.
Since we will be only interested in the standard differential operator H : u 7→ −d2u

dx2 and
Neumann-Kirchhoff conditions, a quantum graph in the scope of this work reduces to
the triple

{metric graph Γ,H : u 7→ −d2u

dx2 , Neumann-Kirchhoff conditions}.
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2. Background: Graphs and Differential Equations

2.3. Differential Equations on Metric Graphs

Oftentimes, eigenvalue equations on metric graphs are considered. For the standard
differential operator

H : u 7→ −d2u

dx2

with Neumann-Kirchhoff conditions, the eigenvalue equation

Hu = λu (2.3.1)

on the metric graph is nothing else than the system of differential equations

− d2

dx2ue = λue for all e ∈ E

with coupling conditions

u is continuous on Γ

(Ku)(v) = 0 for all v ∈ V.

Similarly, one can pose more general, elliptic differential equations on Γ, for example

Hu = f on Γ
or

Hu+ ρu = f on Γ, ρ ∈ R+

each with Neumann-Kirchhoff conditions and f ∈ L2(Γ). More generally, ρ can also be
a real-valued function ρ ∈ L∞(Γ) :=

⊕
e∈E L

∞(e).

2.3.1. Parabolic PDEs on Metric Graphs

We are particularly interested in diffusion-type equations posed on metric graphs. In
this context, we now deal with functions also depending on a time variable t, i.e.,

u(x, t) : Γ × [0, T ] → R

where [0, T ] is an interval with T ∈ R+. Consider for example the linear parabolic
equation

∂u

∂t
+ Hu = f on Γ × [0, T ]

with f : Γ × [0, T ] → R. In the special case f ≡ 0 we recover the heat equation on a
metric graph.
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2.3. Differential Equations on Metric Graphs

Together with vertex coupling and initial conditions, we define the following initial
boundary value problem.

Problem 2.3.2 (IBVP for generalized heat equation). Let Γ be a compact, connected
metric graph, H : u 7→ −∂2u

∂x2 , T > 0 and f : Γ × [0, T ] → R. We study the initial
boundary value problem for the generalized heat equation on Γ given by

∂u

∂t
+ Hu = f on Γ × [0, T ],

u(·, t) is continuous on Γ for t ∈ [0, T ],

(Ku(·, t))(v) = 0 for all v ∈ V, t ∈ [0, T ],

u(·, 0) = u0 on Γ

(2.3.3)

with initial condition u0 ∈ domH,NK.

More general, we consider reaction-diffusion equations

∂u

∂t
+ Hu = R(u) on Γ × [0, T ]. (2.3.4)

We will always assume that the reaction term R is Lipschitz continuous. However, if R
is not linear, (2.3.4) is a semilinear parabolic equation on Γ. In either case, we define
the corresponding initial boundary value problem as follows.

Problem 2.3.5 (IBVP for reaction-diffusion equation). Let Γ be a compact, connected
metric graph, H : u 7→ −∂2u

∂x2 , T > 0 and R : R → R Lipschitz continuous. We consider
the initial boundary value problem for the reaction-diffusion equation on Γ given by

∂u

∂t
+ Hu = R(u) on Γ × [0, T ],

u(·, t) is continuous on Γ for t ∈ [0, T ],

(Ku(·, t))(v) = 0 for all v ∈ V, t ∈ [0, T ],

u(·, 0) = u0 on Γ

(2.3.6)

with initial condition u0 ∈ domH,NK.

The considered problems fit into the category of semilinear parabolic PDEs for which
well-posedeness has been studied by von Below in his dissertation [vB84]. We point
out to the interested reader that evolution equations on metric graphs have also been
investigated more recently by Mugnolo [Mug14] who uses semigroup methods.
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2. Background: Graphs and Differential Equations

2.3.2. Weak Formulations

For u, g ∈ H1(Γ), we define the bilinear form

h(u, g) :=
∫

Γ

du
dx

dg
dxdx. (2.3.7)

Before we establish weak formulations of PDEs on metric graphs, we prove the following
integration by parts formula.

Theorem 2.3.8. Let g ∈ H1(Γ), u ∈
⊕

e∈E H
2(e) and H be the standard differential

operator H : u 7→ −d2u
dx2 . Then, we obtain the following integration by parts formula on

Γ:
(Hu, g)Γ = h(u, g) +

∑
v∈V

g(v)
∑
e∈Ev

due

dx (v). (2.3.9)

Note that whenever we use the expression due
dx (v) for a vertex v ∈ V, we assume the

derivative to be taken in the direction away from the vertex v (as in the Neumann-
Kirchhoff conditions). The proof was prepared for the manuscript [AW] and is included
here for the sake of completeness.

Proof. By definition, (Hu, g)Γ = −
∫

Γ

d2u

dx2 (x) g(x) dx = −
∑
e∈E

∫ ℓe

0

d2ue

dx2 (x)ge(x)dx. Inte-

gration by parts yields

−
∑
e∈E

∫ ℓe

0

d2ue

dx2 (x)ge(x)dx =
∑
e∈E

∫ ℓe

0

due

dx (x)dge

dx (x)dx−
∑
e∈E

[due

dx (x)ge(x)
]ℓe

0
.

Again by definition, it follows that
∑

e∈E
∫ ℓe

0
due
dx (x)dge

dx (x)dx =
∫

Γ
du
dx

dg
dx dx. For the second

part, we have

∑
e∈E

[due

dx (x)ge(x)
]ℓe

0
=
∑
e∈E

due

dx (ℓe)ge(ℓe) −
∑
e∈E

due

dx (0)ge(0)

and further

∑
e∈E

due

dx (0)ge(0) =
∑
e∈E

due

dx (o(e))ge(o(e))

= 1
2
∑
v∈V

∑
e∈Ev

due

dx (v)ge(v) = 1
2
∑
v∈V

g(v)
∑
e∈Ev

due

dx (v)
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2.3. Differential Equations on Metric Graphs

since g is continuous. On the other hand, it holds that

∑
e∈E

due

dx (ℓe)ge(ℓe) = −
∑
e∈E

due

dx (t(e))ge(t(e)) = −1
2
∑
v∈V

∑
e∈Ev

due

dx (v)ge(v).

Note that we had to change the sign since the derivative in due
dx (t(e)) is assumed to be

taken away from the vertex t(e), whereas the derivative due
dx (ℓe) is taken in the direction

of the coordinate ℓe. Together, we conclude that

∑
e∈E

[due

dx (x)ge(x)
]ℓe

0
= −

∑
v∈V

g(v)
∑
e∈Ev

due

dx (v)

which completes the proof.

Under Neumann-Kirchhoff conditions, the following lemma is a direct consequence.

Lemma 2.3.10. For Neumann-Kirchhoff conditions, the integration by parts formula

(Hu, g)Γ = h(u, g) (2.3.11)

holds and the quadratic form of H is given by

(Hu, u)Γ = h(u, u) =
∑
e∈E

∫
e

(due

dx (x)
)2

dx. (2.3.12)

Proof. Follows directly from Theorem 2.3.8 since
∑

e∈Ev

due
dx (v) = 0 for all v ∈ V.

It is now straightforward to pose partial differential equations in weak formulation on
Γ. Let us start with the introductory elliptic model equations.

Problem 2.3.13 (Weak elliptic differential equations). Let f ∈ L2(Γ) and ρ ∈ R+. The
weak formulation of the elliptic equation Hu = f on Γ is given by:

Find u ∈ H1(Γ) : h(u, g) = (f, g)Γ for all g ∈ H1(Γ). (2.3.14)

Equivalently, the weak formulation of Hu+ ρu = f on Γ is given by:

Find u ∈ H1(Γ) : hρ(u, g) = (f, g)Γ for all g ∈ H1(Γ) (2.3.15)

where hρ(u, g) := h(u, g) + ρ(u, g)Γ.

For ρ > 0, (2.3.15) admits a unique weak solution ([AB18]). We will later need problem
(2.3.15) with ρ = 1 in which case we use the notation h1(u, g) := h(u, g) + (u, g)Γ.
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2. Background: Graphs and Differential Equations

We will now turn to weak formulations of the initial boundary value problems (Problem
2.3.2 and Problem 2.3.5). Following the convention in [Eva00], we associate with u a
mapping from [0, T ] → L2(Γ) or H1(Γ) defined by [u(t)](x) := u(x, t). Moreover, we
adopt the notation u′ = d

dtu. We then obtain the following weak formulation.

Problem 2.3.16 (Weak IBVP for generalized heat equation). Let f ∈ L2([0, T ];L2(Γ)).
The weak formulation of Problem 2.3.2 consists of finding u ∈ L2([0, T ];H1(Γ)) with
u′ ∈ L2([0, T ];L2(Γ)) such that

(
u′, g

)
Γ + h(u, g) = (f , g)Γ (2.3.17)

for all g ∈ H1(Γ) and a.e. time 0 ≤ t ≤ T with u(0) = u0 for u0 ∈ domH,NK.

Analogous to [Eva00], Section 7.1.2, one can shown that Problem 2.3.16 has a unique
weak solution under the assumption that the bilinear form h(u, g) fulfills the following
energy estimates for u, g ∈ H1(Γ):

|h(u, g)| ≤ γ1 ∥u∥H1(Γ) ∥g∥H1(Γ) for γ1 > 0 (2.3.18)

γ2 ∥u∥2
H1(Γ) ≤ h(u, u) + γ3∥u∥2

Γ for γ2 > 0, γ3 ≥ 0. (2.3.19)

The first condition is the continuity condition familiar from the Lax-Milgram theorem
and the second condition is also known as Gårding’s inequality. It is easy to see that
our bilinear form

h(u, g) =
∫

Γ

du
dx

dg
dxdx

meets the requirements since

(2.3.18) |h(u, g)| =
∣∣∣∫Γ du

dx
dg
dxdx

∣∣∣ ≤
∥∥∥du

dx

∥∥∥
Γ

∥∥∥ dg
dx

∥∥∥
Γ

≤ ∥u∥H1(Γ) ∥g∥H1(Γ)

(2.3.19) h(u, u) =
∫

Γ
du
dx

du
dxdx =

∥∥∥du
dx

∥∥∥2

Γ
= ∥u∥2

H1(Γ) − ∥u∥2
Γ.

In particular, (2.3.19) implies that

|||u||| := (h(u, u))
1
2 =

∥∥∥∥du
dx

∥∥∥∥
Γ

= |u|H1(Γ) (2.3.20)

is a semi-norm. Note that the requirement on the initial condition in (2.3.17) makes
sense since one can show that u ∈ C([0, T ];L2(Γ)) (see for example [Eva00], Theorem 3
in Section 5.9.2).

Let us now turn to semilinear parabolic equations.
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2.3. Differential Equations on Metric Graphs

Problem 2.3.21 (Weak IBVP for reaction-diffusion equation). Under the assumptions
of Problem 2.3.5, the weak formulation of Problem 2.3.5 consists of finding
u ∈ L2([0, T ];H1(Γ)) with u′ ∈ L2([0, T ];L2(Γ)) such that

(
u′, g

)
Γ + h(u, g) = (R(u), g)Γ (2.3.22)

for all g ∈ H1(Γ) and a.e. time 0 ≤ t ≤ T with u(0) = u0 for u0 ∈ domH,NK.

The well-posedness of Problem 2.3.21 can be shown by a fixed point method, see for
example [Eva00], Theorem 2 in Section 9.2.
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2. Background: Graphs and Differential Equations

2.4. Examples and Test Problems

Throughout this work, we will frequently encounter several type of example graphs and
test problems, which we will briefly introduce in the present subsection.

Example 2.4.1. a) A star graph Γstar with n vertices has one central vertex that
is connected to all other vertices of the graph. The remaining vertices are only
connected to the central vertex, thus, a star graph always has m = n − 1 edges.
If not stated otherwise, we always consider a star graph with n = 5 vertices and
m = 4 edges of equilateral length ℓ = 1, compare Figure 2.3a.

b) A diamond graph Γdia has n = 4 vertices and m = 5 edges. It arises from a cycle
graph by adding one edge in the middle. If not stated otherwise, we will always
assume the diamond graph to be equilateral with ℓ = 1 as illustrated in Figure 2.3b.

(a) Star graph. (b) Diamond graph.

Figure 2.3.: Illustration of the graphs from Example 2.4.1.

For these graphs, we construct several test problems to test the approximation quality
of numerical solutions. The first one is an elliptic boundary value problem on Γstar

2.

Test Problem 2.4.2. Let Γstar be a star graph with n = 5 vertices and m = 4 edges
of equilateral length ℓ = π + π

2 . Then, the elliptic boundary value problem of finding
u ∈ domH,NK such that

Hu+ u = f on Γ

with right-hand side f defined by

fe1(x) = −6 sin(x), fe2 = 2 sin(x), fe3 = 2 sin(x), fe4 = 2 sin(x)

for x ∈ [0, π + π
2 ] has the exact solution u∗(x) = 1

2f(x).
2The formulation of this test problem was the result of a discussion with Dietrich Braess, Angela

Kunoth and Max Brockmann in January 2023.
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2.4. Examples and Test Problems

Similarly, we specify an elliptic test problem for Γdia.

Test Problem 2.4.3. Let Γdia be a simple graph with n = 4 vertices and m = 5 edges,
each of length ℓ = 2π. Then, the elliptic boundary value problem of finding u ∈ domH,NK

such that
Hu+ u = f on Γ

with right-hand side f defined by

fe1(x) = 2 sin(x), fe2 = −4 sin(x), fe3 = 2 sin(x), fe4 = 2 sin(x), fe5 = −2 sin(x)

for x ∈ [0, 2π] has the exact solution u∗(x) = 1
2f(x).

The solution of both test problems on the underlying metric graph is illustrated in Figure
2.4. Clearly, we constructed the test problems in such a way that the solution fulfills the
Neumann-Kirchhoff conditions.

(a) Test Problem 2.4.2 (star graph). (b) Test Problem 2.4.3 (diamond graph).

Figure 2.4.: Illustration of the solutions of Test Problem 2.4.2 and Test Problem 2.4.3.

In order to formulate test problems for linear parabolic equations, we will choose a
solution of the eigenvalue equation (2.3.1) on the metric graph as initial condition. As
in the one dimensional setting, the solution of the PDE can then be obtained explicitly
with a separation of variables approach.

37



2. Background: Graphs and Differential Equations

Test Problem 2.4.4. Let Γstar be a star graph with n = 5 vertices and m = 4 edges,
but here each of length ℓ = 1, and let T ∈ R+. The presented test problem consists of
the IBVP

∂u

∂t
+ Hu = 0 on Γ × [0, T ]

u(0) = u0 for x ∈ Γ

under Neumann-Kirchhoff conditions and with an initial condition of the form

u0
e(x) = Ae cos

(√
λx
)

+Be sin
(√

λx
)

(2.4.5)

where λ = π2 and the constants Ae, Be are given in Table 2.1. This initial condition is an
eigenfunction of Γ and thereby the exact solution is given by u∗(x, t) = exp(−tλ)u0(x).

Test Problem 2.4.6. Consider the IBVP from Test Problem 2.4.4 posed on the diamond
graph Γdia with n = 4 vertices and m = 5 edges, each of length ℓ = 1. The initial
condition is of the form (2.4.5) with λ = 3.65e+00 and coefficients given in Table 2.2.

A visualization of the two initial condition can be found in Figure 2.5

e1 e2 e3 e4
Ae 0.707107 0.707107 0.707107 0.707107
Be 0 0 0 0

Table 2.1.: Coefficients for the initial condition on Γstar (Test Problem 2.4.4).
e1 e2 e3 e4 e5

Ae 0.57735 0.57735 0.57735 0 -0.57735
Be 0.204124 -0.408248 0.204124 -0.612372 -0.204124

Table 2.2.: Coefficients for the initial condition on Γdia (Test Problem 2.4.6).

Figure 2.5.: Initial conditions for Test Problem 2.4.4 and Test Problem 2.4.6.
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We will moreover consider large scale random graphs constructed by the Barabási-Albert
[BA99] or Erdős-Rényi [ER60] model.

Example 2.4.7. a) A Barabási-Albert graph ΓBA represents a scale-free network con-
structed following a preferential attachment model. The model starts with a small
number of vertices and subsequently adds new vertices that are connected to the ex-
isting vertices with d edges. In doing so, the probability that an edge will be added
between the new vertex and the existing vertices depends on the degree of the ex-
isting vertices (the new vertices are preferentially connected to existing high-degree
vertices). The resulting graph with n vertices is a scale-free network, i.e., the de-
gree distribution follows a power law. We will typically consider sparse graphs with
few edges and thus choose d = 2 or d = 3 in our experiments.

b) An Erdős-Rényi graph ΓER is a graph with n vertices where each edge between two
vertices is added with a probability p.

The last two examples originate from [AB18]. These are examples of non-trivial graphs
which however still can be plotted in a plane, thereby allowing it to nicely visualize
functions on them.

Example 2.4.8. a) We define the so-called graphene graph Γgraphene by connecting
two 6-cycles with one edge. The resulting graph has n = 12 vertices and m = 13
edges and is illustrated in Figure 2.6 for equilateral edge length ℓ = 1.

b) Γtree is a tree graph with n = 16 vertices and m = 15 edges of length ℓ = 1 as
given in Figure 2.6. The first edge of the tree is also referred to as the stem.

Figure 2.6.: Graphene and tree graph with equilateral edge length ℓ = 1.
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3. Finite Element Method

We study the finite element approach proposed by Arioli and Benzi [AB18] and its ap-
plication to the semidiscretization of parabolic equations. We start with a discretization
of metric graphs leading to the concept of extended graphs. The latter will later allow a
structured representation of the finite element semidiscretization. The main new aspect
elaborated for this work is the solution of the semidiscretized systems with implicit-
explicit time stepping methods combined with a multigrid ansatz for the solution of the
arising linear systems of equations. Moreover, an L2(Γ)-error estimate will be derived
which allows to use standard theory of Galerkin finite element methods for parabolic
problems (see [Tho97]) to deduce estimates for the error between the solutions of the
semidiscrete and the continuous problem.

3.1. Discretization and Extended Graphs

The finite element approach requires a preliminary discretization of the domain, i.e.,
the metric graph in consideration. In this context, [AB18] introduce the concept of
extended graphs where the discretization of Γ is itself understood as a metric graph Γ̃
by considering the discretization points as additional vertices. This extended graph will
turn out to be extremely useful since its graph matrices allow a structured representation
of the finite element semidiscretization.
Before we turn to the finite element approximation, we will therefore give a detailed
discussion of Γ̃, introduce a weighted form of its graph matrices and review their efficient
computation. Clearly, the motivation and ideas of this exposition and the techniques
used arose from [AB18] as mentioned above, yet I tried to present them in a generalized
form detached from the finite element setting.

3.1.1. Discretization

Let Γ be a metric graph with an arbitrary but fixed orientation on the edges. For each
edge e ∈ E with length ℓe, we discretize the domain [0, ℓe] by

xe,k = k · he, k = 0, . . . , Ne
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3. Finite Element Method

where k increases in the direction of e, he is the step size chosen on edge e, and Ne + 1 is
the number of discretization points this choice delivers. Note that the first discretization
point xe,0 = 0 is placed at the start vertex o(e) and the last discretization point xe,Ne = ℓe

at the end vertex t(e). We will often distinguish between vertex grid points xe,0, xe,Ne

and inner grid points xe,k for k = 1, . . . , Ne − 1. The discretization is illustrated in
Figure 3.1.

v1

xe,0

v2

xe,Ne

xe,1 xe,2 xe,Ne−1

he

(a) Discretization on a single edge e = (v1, v2)
where o(e) = v1, t(e) = v2. v1

v2

v3

e1

e2

e3

xe1,1

xe1,2

xe2,1

xe2,2

xe2,3

xe3,1

(b) Discretization of a simple graph with dif-
ferent step sizes per edge.

Figure 3.1.: Metric graph discretization for a single edge and a simple example graph.

In particular, it is important to observe the different lengths ℓe of the edges. In general,
it is therefore not possible to choose the same step size he on each edge. In the special
case of equilateral graphs, we choose the simplified notation h and N since we will then
apply a discretization with a uniform step size h on each edge.

3.1.2. Extended Graphs

The inner grid points xe,k on the edges of Γ can be understood as additional vertices.
The resulting extended graph was introduced by [AB18] and will be referred to as Γ̃.
In this context, we will denote the inner grid points, understood as vertices, by ve,k for
e ∈ E and k = 1, . . . , Ne − 1.

Definition 3.1.1. For a metric graph Γ with vertex set V, edge set E and edge lengths ℓ,
we define the extended graph Γ̃ with vertex set Ṽ, edge set Ẽ and step sizes h as follows.

a) The vertex set of Γ̃ is given by

Ṽ := V ∪
⋃
e∈E

{ve,k, k = 1, . . . , Ne − 1}
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3.1. Discretization and Extended Graphs

and contains |Ṽ| = n+
∑

e∈E(Ne − 1) =: ñ elements.

b) For each original edge e, the extended graph has Ne partitioned edges

Ẽe := (o(e), ve,1) ∪
Ne−2⋃
k=1

(ve,k, ve,k+1) ∪ (ve,Ne−1, t(e)).

Together, we define Ẽ :=
⋃

e∈E Ẽe. In total, Γ̃ has |Ẽ | =
∑

e∈E Ne =: m̃ edges.

c) Induced by the step size, each edge ẽ ∈ Ẽe has length he. All the step sizes chosen
on the different edges are collected in h := (he1 , . . . , hem)T ∈ Rm.

Note that we still identify the vertices with the corresponding grid points and only adjust
the notation to emphasize that the grid can be interpreted as a new graph.

Remark. If we want to emphasize from which step sizes Γ̃ arises, we will work with a
subscript, for instance Γ̃h, Ṽh, . . .. However, if h is fixed or clear from the context, we
will prefer the shorthand notation without subscript to improve readability.

To facilitate the exposition, we will deviate from the usual numbering of the edges (from
smaller to larger vertex index) and instead number and orient the extended edges ẽ
sequentially according to their associated original edge, as illustrated in Figure 3.2.

v1 v2

v3

v1,1 v1,2 v1,3

v2,1

v3,1

v3,2

e1

e2 e3

ẽ1 ẽ2 ẽ3 ẽ4

ẽ5

ẽ6

ẽ7

ẽ8

ẽ9

Figure 3.2.: Edge numeration and orientation in the extended graph.

Definition 3.1.2. We define the underlying combinatorial extended graph G̃ by G̃ =
(Ṽ, Ẽ) with extended graph Laplacian matrix

L̃ := D̃ − Ã = ÑÑT

where D̃, Ã and Ñ are the degree, adjacency and incidence matrix of G̃.
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3. Finite Element Method

In this context, we assume the following ordering of the vertices in G̃: We start with
the original vertices v1, . . . , vn ∈ V according to their numbering in the original graph
G. Next, we enumerate the inner vertices on the first edge e1 by n+ 1, . . . , n+Ne1 − 1
followed by the inner vertices on the second edge e2 and so on, compare Figure 3.3.

v1 v2

v3

e1

e2 e3

G

ṽ1 ṽ2

ṽ3

ṽ4 ṽ5 ṽ6

ṽ7

ṽ8

ṽ9

ẽ1 ẽ2 ẽ3 ẽ4

ẽ5

ẽ6

ẽ7

ẽ8

ẽ9

G̃

Figure 3.3.: Vertex numeration in the extended combinatorial graph.

Respecting the introduced ordering, the graph Laplacian matrix of G̃ has the block
structure

L̃ =
[
L̃VV L̃VE

L̃EV L̃EE

]
.

The subscripts emphasize that the blocks reflect

1. the adjacency between and the degree of the original vertices (L̃VV),

2. the adjacency between and the degree of the inner vertices (L̃EE) and

3. the adjacency between the original vertices and inner vertices (L̃VE)

in the extended graph. In particular, L̃ is symmetric, i.e., L̃T
VE = L̃EV . If we assume

that there is at least one grid point per edge, we obtain

L̃VV = D ∈ Rn×n

since then (vi, vj) ̸∈ Ẽ for all original vertices vi, vj ∈ V. Moreover, the block L̃EE itself
is of the block structure

L̃EE = blkDiag(L̃e1 , . . . , L̃em) :=


L̃e1

. . .
L̃em

 .
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3.1. Discretization and Extended Graphs

Each block L̃e corresponds to the inner vertices on edge e ∈ E and is of the form

L̃e =



2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2


∈ R(Ne−1)×(Ne−1).

Remark. We point out to the reader familiar with [AB18] that the ordering of the blocks
in L̃ depends on the ordering of the vertices in the extended graph and therefore deviates
from [AB18] where the internal discretization points are enumerated first.

Of special interest for the representation of the finite element discretization matrices will
be a weighted version of the extended graph Laplacian matrix that accounts for possible
different step sizes on the edges.

Definition 3.1.3. We equip the edges of the extended graph with a weight according to
the reciprocal of their length, i.e., wẽ = 1/he for all ẽ ∈ Ẽe.

a) The weighted extended graph Laplacian matrix is defined by L̂ := D̂ − Â where
the weighted version of the adjacency matrix is defined by

(Â)i,j :=

w(ṽi,ṽj), if (ṽi, ṽj) ∈ Ẽ

0 otherwise

and the diagonal weighted degree matrix has entries (D̂)i,i :=
∑

ẽ∈Ẽṽi
wẽ.

b) If we define the edge-weight matrix W̃ ∈ Rm̃×m̃ by W̃ := diag((wẽ)ẽ∈Ẽ), the
weighted extended graph Laplacian matrix can be expressed in terms of the incidence
matrix of the extended graph Ñ ∈ Rñ×m̃ as

L̂ := ÑW̃ÑT .

In particular, following the chosen edge numbering, the weight matrix is given by

W̃ = blkDiag
({ 1

he
INe

}
e∈E

)
where INe denotes the identity matrix of size Ne.
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3. Finite Element Method

Clearly, the observations on the block structure also apply to the weighted version

L̂ =
(

L̂VV L̂VE

L̂EV L̂EE

)
.

Now we have

L̂VV = diag

{ ∑
e∈Ev

1
he

}
v∈V


and L̂EE = blkDiag(L̂e1 , . . . , L̂em) with

L̂e = 1
he



2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2


.

3.1.3. Extended Graph Construction

A straightforward approach to directly compute the extended graph is the explicit expan-
sion of the vertex and edge set by inserting inner grid points and edges. Yet, this process
is computationally expensive, especially for small step sizes. Moreover, for later theoret-
ical investigations, it will turn out to be useful to construct the extended graph matrices
by some manipulations of the incidence matrix N of the original graph as developed in
[AB18]. For the remainder of this subsection, we will therefore briefly demonstrate this
derivation of Ñ as seen in [AB18].
We first separate the extended incidence matrix Ñ in two parts:

Ñ =
(

ÑV

ÑE

)
=

ẽ1 ẽ2 . . . ẽm̃

ṽ1
...
ṽn

ṽn+1
...
ṽñ

ÑV

ÑE

.

Here, ÑV ∈ Rn×m̃ represents the edges incident to the original vertices and ÑE ∈
Rñ−n × m̃ the edges incident to the inner vertices.
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3.1. Discretization and Extended Graphs

The appearance of the latter can be easily specified since the inner vertices represent a
path graph on each edge. Thus, ÑE is a block diagonal matrix

ÑE =


Ñe1

. . .
Ñem


with each block Ñe ∈ R(Ne−1)×Ne given by

Ñe =


1 −1

1 −1
. . . . . .

1 −1

 .

The incidence between the original vertices and the extended graph edges can be repre-
sented by horizontally concatenated matrices as

ÑV =
[
ÑVe1

, . . . , ÑVem

]
.

Again, each block ÑVe ∈ Rn×Ne corresponds to an edge of the original graph. In other
words, the block ÑVe contains the information about the incidence of the original vertices
to the subdivisions ẽ ∈ Ẽe. Clearly, only the first or the last edge partition can be
attached to an original vertex. The blocks can therefore be specified by expanding the
original incidence matrix N as illustrated in Figure 3.4.

N =

e1 e2 . . . em

v1
...
...
...
vn

−1 −1 ·
1 · ·
· 1 . . . ·
· · −1
· · ·
· · 1

Ne1 Ne2 . . . Nem

expand each column Ne→

ẽ1 . . . . . . ẽNe1
v1
...
...
...
vn

−1 · · · ·
· · · · 1
· · · · ·
· · · · ·
· · · · ·
· · · · ·

ÑVe1

Figure 3.4.: Construction of ÑV =
[
ÑVe1

, . . . , ÑVem

]
from N.
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3. Finite Element Method

To do so, we must first differentiate between ingoing and outgoing edges in N. We
therefore define

Nin := 1
2 (N + |N|) and Nout := 1

2 (N − |N|)

where |N| denotes the entry-wise absolute values of N. The matrices ÑVe can be com-
puted as

ÑVe = Nout
e ⊗ (eNe

1 )T + Nin
e ⊗ (eNe

Ne
)T

where eNe
1 and eNe

Ne
are defined as the first respectively last column of the identity matrix

of size Ne and Ne denotes the column of N corresponding to the edge e. With this
considerations in place, we summarize the computation of Ñ in Algorithm 1.

Algorithm 1 Extended Graph Incidence Matrix.
Input: n,m : number of nodes and edges

N : incidence matrix of original graph
(Ne1 , . . . , Nem)T : vector with inner grid points per edge

Output: extended graph incidence matrix Ñ
▷ construct ÑV

Compute Nin = 1
2 (N + |N|) , Nout = 1

2 (N − |N|)
Decompose Nin = [Nin

e1 , . . . ,N
in
em

], Nout = [Nout
e1 , . . . ,N

out
em

]
for e = e1, . . . , em do

e1 = (1, 0 . . . , 0)T ∈ RNe , eNe = (0, . . . , 0, 1)T ∈ RNe

ÑVe = Nout
e ⊗ (eNe

1 )T + Nin
e ⊗ (eNe

Ne
)T

end for
Set ÑV =

[
ÑVe1

, . . . , ÑVem

]
for e = e1, . . . , em do ▷ construct ÑE

Compute Ñe = Tridiagonal(values = (0, 1,−1), size = ((Ne − 1) ×Ne))
end for
Set ÑE = blkDiag(Ñe1 , . . . , Ñem)

Set Ñ =
(

ÑV
ÑE

)
▷ assemble Ñ
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3.2. Finite Element Approximation

3.2. Finite Element Approximation

As mentioned in the introduction, a finite element method for the spatial discretiza-
tion has been extensively discussed in [AB18] where, in particular, the extended graph
was introduced to represent the coefficient matrices of the discretization. Therefore,
this section is mainly a summary of the elaborations in [AB18] embedded in the pre-
sented notation and with the objective to derive a finite element semidiscretization of
the (semi)linear parabolic equations.
Moreover, the H1(Γ)-error estimate derived in [AB18] for elliptic problems will be en-
hanced to an L2(Γ)-error estimate. We may then apply the results in [Tho97] to estimate
the error between the solutions of the semidiscrete and the continuous problem.

3.2.1. Finite Elements

As elaborated in Section 3.1.1, we discretize each edge of a metric graph Γ with step size
he resulting in Ne subintervals of the form [xe,k, xe,k+1] for k = 0, . . . , Ne − 1. If xe,k is
an inner grid point (i.e., k = 1, . . . , Ne − 1), we define the standard hat basis functions
as

ψe,k (x) :=


1 − xe,k−x

he
if x ∈ [xe,k−1, xe,k],

1 + xe,k−x
he

if x ∈ [xe,k, xe,k+1],

0 otherwise,

(3.2.1)

see Figure 3.5. Here, xe,0 = o(e) and xe,Ne = t(e) as usual.

xe,0 xe,Nexe,1 xe,2 xe,3 xe,Ne−2 xe,Ne−1

ψe,1 ψe,2 ψe,3 ψe,Ne−2 ψe,Ne−1

Figure 3.5.: Hat basis functions on an edge e.
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3. Finite Element Method

The hat functions ψe,k form a basis for

Vhe := {u ∈ H1
0 (e) : u|[xe,k,xe,k+1] is linear for k = 0, . . . , Ne − 1}. (3.2.2)

To define basis functions on the original vertices, we first introduce the neighborhood

Wv :=
⋃

e∈Eout
v

[o(e), xe,1] ∪
⋃

e∈E in
v

[xe,Ne−1, t(e)]

of a vertex v. Recall that Eout
v is the set of edges with v = o(e) and E in

v with v = t(v),
respectively. Thus, Wv is the metric graph induced by v and its neighboring inner grid
points. In particular, the edge parametrizations of Wv are given by

Wv ∩ e =


[
o(e), xe,1

]
=
[
0, he

]
if e ∈ Eout

v ,[
xe,Ne−1, t(e)

]
=
[
ℓe − he, ℓe] if e ∈ E in

v .

We may now define basis functions ψv in the neighborhood of v by

ψv(x) =


1 − x

he
if x ∈ Wv ∩ e and e ∈ Eout

v ,

1 − ℓe−x
he

if x ∈ Wv ∩ e and e ∈ E in
v ,

0 otherwise.

(3.2.3)

v
xe1,1

xe2,1

xe3,Ne3 −1

ψv

Figure 3.6.: Hat basis functions on Wv.
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3.2. Finite Element Approximation

Together with (3.2.2), we construct the space

Vh(Γ) :=
⊕
e∈E

Vhe ⊕ span{ψv : v ∈ V} ⊂ H1(Γ). (3.2.4)

The elements of Vh(Γ) can be expressed as linear combination of the hat functions, i.e.,

uh(x) =
∑
v∈V

uv ψv(x) +
∑
e∈E

Ne−1∑
k=1

ue,k ψe,k(x) (3.2.5)

with coefficients uv, ue,k ∈ R.

3.2.2. Semidiscretized System

The weak form of the semilinear parabolic initial boundary value problem (Problem
2.3.2) is given in Problem 2.3.16. A Galerkin approximation on Vh thus yields the finite
element approximation

(
u′

h(t), gh

)
Γ + h(uh(t)′, gh) = (f(t), gh)Γ for all gh ∈ Vh, t > 0

uh(0) = u0
h

(3.2.6)

where u0
h is an approximation of the initial condition. In this subsection, we want to

derive the stiffness matrix representing the discretization of h(·, ·) and the mass matrix
arising from (uh, gh)Γ.

Theorem 3.2.7. Let Γ be a metric graph and Γ̃ the extended graph arising from a
discretization with step sizes h (Definition 3.1.1) and equipped with edge weights wẽ =
1/he for all ẽ ∈ Ẽe. Let further

u(t) :=
[
uV(t)
uE(t)

]

with

uV(t) := (u1(t), . . . , un(t))T ,

uE(t) := (ue1,1(t), . . . ue1,Ne1 −1(t), . . . , uem,1(t), . . . , uem,Nem −1(t))T

be the vector collecting the coefficients of the linear combination in (3.2.5), L̂ denote the
weighted graph Laplacian of the extended graph and W̃ the edge weight matrix of Γ̃ as
introduced in Definition 3.1.3. Then, the finite element semidiscretization (3.2.6) leads
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3. Finite Element Method

to the initial value problem (IVP)

d
dtM̂u(t) + L̂u(t) = f̂ , u(0) = u0 (3.2.8)

where the mass matrix is given by

M̂ := 1
6
(
|ÑW̃−1ÑT | + diag

({
(|ÑW̃−1ÑT |)i,i

}ñ

i=1

))
and

f̂ (t) :=
[
f̂ V(t)
f̂ E(t)

]
where f̂ E(t) =


f̂ e1(t)

...
f̂ em(t)


with

f̂ e(t) :=
(∫ 2he

0
f(t)ψe,1dx, . . . ,

∫ ℓe

ℓe−2he

f(t)ψe,Ne−1dx
)T

and
f̂ V(t) :=

(∫
Wv1

f(t)ψv1dx, . . . ,
∫

Wvn

f(t)ψvndx
)T

.

Proof. The derivation of the finite element discretization in matrix form has been out-
lined in [AB18] for an elliptic PDE and the derivation of (3.2.8) works in the same
manner. Yet, for the sake of completeness, we decided to conduct a detailed proof in
Appendix A.1.

As in the statement of Theorem 3.2.7, we will omit the subscript h in the notation of
the finite element solution u whenever the chosen discretization is clear from the context.

For later numerical computations, it will be convenient to derive a diagonal approxima-
tion of the mass matrix. This can be obtained either by lumping or by approximating
the integrals in M̂ by the trapezoidal formula as proposed in [AB18]:

Lemma 3.2.9. The computation of the integrals occurring in the mass matrix using the
trapezoidal formula leads to an approximation of M̂ given by

M̄ := 1
2
(
diag

{
(|ÑW̃−1ÑT |)i,i

}ñ

i=1

)
.

Proof. The proof is conducted in Appendix A.1.
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3.2. Finite Element Approximation

In the more general case of semilinear reaction-diffusion equations, the Galerkin approx-
imation of Problem 2.3.21 on Vh reads

(
u′

h(t), gh

)
Γ + h(uh(t), gh) = (R(uh(t)), gh)Γ for all gh ∈ Vh, t > 0

uh(0) = u0
h.

(3.2.10)

The corresponding semidiscretized IVP

d
dtM̂u(t) + L̂u(t) = r̂(t), u(0) = u0 (3.2.11)

follows completely analogously to Theorem 3.2.7 but with f̂ replaced by

r̂(t) :=
[
r̂V(t)
r̂E(t)

]
where r̂E =


r̂e1(t)

...
r̂em(t)


T

with
r̂V(t) :=

(∫
Wv1

R(uh(t))ψv1dx, . . . ,
∫

Wvn

R(uh(t))ψvndx
)T

and

r̂e(t) :=
(∫ 2he

0
R(uh(t))ψe,1dx, . . . ,

∫ ℓe

ℓe−2he

R(uh(t))ψe,Ne−1dx
)T

.

3.2.3. Error Analysis

An error estimate for the finite element semidiscretization can be derived using standard
arguments for Galerkin finite element semidiscretizations of parabolic PDEs (see for
example [Tho97]). The derivation in particular requires an L2(Γ)-error estimate for the
elliptic problem of finding u ∈ H1(Γ) which solves

hρ(u, g) = (f, g)Γ for all g ∈ H1(Γ) (3.2.12)

with ρ = 1, see also Problem 2.3.13. The desired estimate can be obtained similarly to
the H1(Γ) estimate proven in [AB18] by using a duality argument. For convenience, we
define H̃2(Γ) :=

⊕
e∈E H

2(e) with

∥u∥2
H̃2(Γ) :=

∑
e∈E

∥ue∥2
H2(e)

Note that there are no coupling conditions on the vertices in H̃2(Γ).
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3. Finite Element Method

Theorem 3.2.13. Let f ∈ L2(Γ) and uh be the finite element approximation of (3.2.12),
i.e.,

h1(uh, gh) = (f, gh)Γ for all gh ∈ Vh.

Then, uh satisfies
∥u− uh∥Γ ≤ ĉ(Γ) ĥ2 ∥u∥H̃2(Γ)

where ĥ := maxe∈E he and ĉ(Γ) is a constant depending on volΓ.

Proof. The first part of the proof is analogous to [AB18], Theorem 3.2 and we outline
it here only for the special case ρ = 1. As indicated in [AB18], the bilinear form hρ

is coercive and continuous. In the special case ρ = 1, the bilinear form h1 induces the
H1(Γ)-norm since h1(u, u) =

(
du
dx ,

du
dx

)
Γ

+ (u, u)Γ =
∥∥∥du

dx

∥∥∥2

Γ
+ ∥u∥2

Γ = ∥u∥2
H1(Γ). Due to

the Galerkin orthogonality h1(u− uh, gh) = 0 for all gh ∈ Vh, we have

∥u− uh∥H1(Γ) = min{∥u− gh∥H1(Γ) : gh ∈ Vh}.

Together, this yields

∥u− uh∥2
H1(Γ) ≤

∥∥∥u− uI
h

∥∥∥2

H1(Γ)

where uI
h ∈ Vh is the interpolant of u in the inner grid points and vertices. The interpo-

lation error ∥∥∥u− uI
h

∥∥∥2

H1(Γ)
=
∑
e∈E

∥ue − (uI
h)e∥2

H1(e)

can be estimated by standard arguments since the hat functions on the edges together
with the restrictions of ψv at the start and end vertices of the edge build a basis for a
classical linear finite element approximation of H1(e). Thus, for each edge e, the central
approximation theorem yields

∥ue − (uI
h)e∥H1(e) ≤ c ℓehe∥ue∥H2(e)

where c is a constant independent of u and he. Note that since f ∈ L2(Γ), the solution
satisfies ue ∈ H2(e) for all e ∈ E . We thus arrive at the H1(Γ)-error estimate

∥u− uh∥H1(Γ) ≤
(∑

e∈E
∥ue − (uI

h)e∥2
H1(e)

) 1
2

≤ c volΓ ĥ
(∑

e∈E
∥ue∥2

H2(e)

) 1
2

= c(Γ)ĥ ∥u∥H̃2(Γ)

(3.2.14)

where the constant c(Γ) depends on the underlying metric graph, namely, its volume.
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3.2. Finite Element Approximation

The L2(Γ)-error estimate now follows by a classical duality argument, see for example
[Tho97], proof of Theorem 1.1. or [BS08], Section 0.3. The idea is to consider the
solution w of the dual problem

Hw + w = u− uh on Γ

subject to Neumann-Kirchhoff conditions. With the partial integration formula from
Theorem 2.3.8, we then obtain

∥u− uh∥2
Γ = (u− uh, u− uh)Γ = (u− uh,Hw + w)Γ

= h(u− uh, w) + (u− uh, w)Γ = h1(u− uh, w).

Using once more the Galerkin orthogonality and the Cauchy-Schwarz inequality, we may
further estimate

∥u− uh∥2
Γ = h1(u− uh, w − wh)

≤ ∥u− uh∥H1(Γ) ∥w − wh∥H1(Γ)

for wh ∈ Vh. The H1(Γ)-error estimate (3.2.14) together with the elliptic regularity
inequality ∥w∥H̃2(Γ) ≤ ĉ∥u− uh∥Γ then concludes the proof since

∥u− uh∥Γ ≤ ∥u− uh∥H1(Γ) ∥w − wh∥H1(Γ) /∥u− uh∥Γ

≤ c1(Γ)ĥ ∥u∥H̃2(Γ)c2(Γ)ĥ ∥w∥H̃2(Γ)/∥u− uh∥Γ

≤ ĉ(Γ)ĥ2∥u∥H̃2(Γ).

Let us now turn to the finite element semidiscretization (3.2.6) of the linear parabolic
problem (Problem 2.3.2). With the previous L2(Γ)-error estimate for the elliptic problem
(3.2.12) and since the bilinear form fulfills Gårding’s inequality (2.3.19) with γ2 = γ3 = 1,
we can deduce the following standard error estimate from [Tho97].

Theorem 3.2.15. The finite element approximation of Problem 2.3.16 fulfills

∥uh(t) − u(t)∥Γ ≤
∥∥∥uh(0) − u0

∥∥∥
Γ

+ ĉ(Γ)ĥ2
(

∥u0∥H̃2(Γ) +
∫ t

0
∥u′∥H̃2(Γ)ds

)
for t > 0.

Note that in Theorem 3.2.15, we implicitly assume higher regularity of the solution of
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3. Finite Element Method

the continuous problem such that ∥u′∥H̃2(Γ) is well defined. As usual, higher regularity of
the solution can be deduced if the initial data are smooth and fulfill certain compatibility
conditions. For the statement of Theorem 3.2.15, it is sufficient to require u0 ∈ domH,NK.

Similar results can be achieved for the semilinear setting since we assumed R to be
Lipschitz-continuous, see for example Chapter 14 in [Tho97].
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3.3. Solution of the Finite Element Semidiscretization

The objective of this section is the solution of the initial value problems

d
dtM̂u(t) + L̂u(t) = f̂ (t), u(0) = u0 (3.3.1)

and
d
dtM̂u(t) + L̂u(t) = r̂(u(t)), u(0) = u0 (3.3.2)

arising from the finite element semidiscretization of the generalized heat equation (3.2.6)
and the reaction-diffusion equation (3.2.10). In the following, we only consider the more
general case (3.3.2) and apply implicit-explicit (IMEX) schemes. In these, an implicit
time stepping scheme is used for the diffusion term and an explicit scheme for the reaction
term, see for example [ARS97] for an overview of IMEX methods.

3.3.1. Implicit-Explicit Time Stepping Schemes
For a fixed T > 0, we discretize the time interval [0, T ] with step size ∆t in time. In this
context, we denote the approximate solution at time t by ut and at time t+ ∆t by ut+1.
The simplest IMEX scheme is the forward-backward Euler discretization

M̂(ut+1 − ut) + ∆t L̂ut+1 = ∆t r̂(ut).

For details and higher order IMEX methods, we again refer to [ARS97]. In the remainder
of this chapter, the focus is on the efficient solution of the evolving systems of linear
equations (SLE)

(M̂ + ∆t L̂)ut+1 = M̂ut + ∆t r̂(ut) =: b (3.3.3)

with an iterative multigrid method (MGM). Besides the multigrid approach, we also de-
rived a domain decomposition method based on a Schur complement identity similar to
the one observed in [AB18]. To streamline the exposition, I decided to concentrate on
the multigrid ansatz here, and, since it requires more preliminary derivations, to discuss
the block decomposition approach as an alternative solver in the appendix.

Although we will outline the multigrid algorithm for the simple forward-backward Euler
discretization, it can be applied straightforward to higher order IMEX methods. For
example, if we apply the trapezoidal rule as implicit scheme, the evolving SLE is of the
form (

M̂ + ∆t
2 L̂

)
ut+1 =

(
M̂ − ∆t

2 L̂
)

ut + ∆t r̂(ut) (3.3.4)

and can be solved with a modification of the coefficient matrix and right hand side.
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3. Finite Element Method

3.3.2. Multigrid Solution of SLEs arising in IMEX Schemes

The linear system of equations (3.3.3) can be solved by a classical multigrid generalization
for metric graphs since we may interpret M̂ + ∆t L̂ as the discretization of an elliptic
operator. Multigrid solutions of elliptic systems on metric graphs and their convergence
are discussed in the context of a master thesis under the author’s supervision [Bro23]
where elliptic equations of the type (2.3.15) are in focus. However, a slightly different
strategy is applied here which allows to solve θ time steps simultaneously in one step
of the multigrid algorithm. The presented MGM is a variation of an early approach by
Hackbusch [Hac84] who solves the discretized system

(I + ∆tL̂)ut+1 = ut,

also arising from an implicit Euler discretization in time.

In the following, we will only consider coarsening in space, i.e., the length of the time
step ∆t remains fixed. In a nutshell, the objective of a multigrid method is to solve a
finite dimensional system of equations arising from a space discretization at level J by
successively reducing it to a coarser discretization at level J0 < J . Let us for simplicity
of notation consider an equilateral metric graph for the following exposition. Then,
usually and if not stated otherwise, a discretization at level J is realized with step size
ℓ/2J on each edge. The initial system at fine level J is given by

BJut+1
J = CJut

J + bt
J (3.3.5)

where
BJ := (M̂J + ∆t L̂J), CJ := M̂J and bt

J := ∆t r̂(ut
J).

The vector ut
J is already computed or, if t = 0, is the projection of the initial condition.

As indicated, one step of the algorithm will not only solve for ut+1
J but return the iterates

ut+1
J ,ut+2

J , . . . ,ut+θ
J for a preliminary chosen θ ∈ N.

One iteration (or cycle) of the proposed multigrid method is given in Algorithm 2 and
can be described as follows. First, a fixed number ν1 of classical smoothing iterations
is applied to the system (3.3.5) for the considered time points t+ ∆t, . . . , t+ θ∆t (pre-
smoothing). The notation

Sν(uτ
J ,BJ ,CJuτ−1

J + bτ−1
J )

describes ν applications of the smoother to uτ
J for τ = t + 1, . . . , t + θ with coefficient
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3.3. Solution of the Finite Element Semidiscretization

Algorithm 2 Multigrid Cycle for SLEs arising from implicit time-stepping methods.

(Pre-Smoothing)
for τ = t+ 1, . . . , t+ θ do

uτ
J = Sν1(uτ

J ,BJ ,CJuτ−1
J + bτ−1

J )
end for

(Defects)
for τ = t+ 1, . . . , t+ θ do

dτ
J = BJuτ

J − bτ
J

end for
(Restriction)

for τ = t+ 1, . . . , t+ θ do
dτ

J−1 = R dτ
J−1

end for
(Coarse Grid Initial Value Problem)

Solve
vt

J−1 = 0
BJ−1vτ

J−1 = ∆tdτ
J−1 + CJ−1vτ−1

J−1 for τ = t+ 1, . . . , t+ θ

by a direct solver (if J = J0) or by η multigrid iterations

(Prolongation)
for τ = t+ 1, . . . , t+ θ do

vτ
J = P vτ

J−1
end for

(Correction)
for τ = t+ 1, . . . , t+ θ do

uτ
J = uτ

J − vτ
J−1

end for
(Post-Smoothing)

for τ = t+ 1, . . . , t+ θ do
uτ

J = Sν2(uτ
J ,BJ ,CJuτ−1

J + bτ−1
J )

end for
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3. Finite Element Method

matrix BJ and right-hand side CJuτ−1
J + bτ−1

J . Next, the defects (or residuals) are
computed and restricted to the next coarser grid J − 1 by a suitable restriction operator
R (see Section 3.3.3). On the coarse grid J − 1, the residual equations are given in form
of an initial value problem

vt
J−1 = 0

BJ−1vτ
J−1 = ∆tdτ

J−1 + CJ−1vτ−1
J−1 for τ = t+ 1, . . . , t+ θ.

These can be solved in turn by η multigrid iterations until we arrive at the coarsest level
J0 where the initial value problem is solved by a direct solver (or an iterative method
such as the conjugate gradient method). The most common choices of η are η = 1 and
η = 2, referred to as V-Cycle and W-Cycle, respectively. The solutions are subsequently
transferred back to the fine grid by applying a prolongation operator P. The iteration of
the multigrid method is finally completed by the coarse grid corrections and, eventually,
a fixed number of post-smoothing iterations.

The solution of the initial value problems (3.3.1) or (3.3.2) by a forward-backward Euler
scheme where the arising SLEs are solved with the described multigrid approach will be
referred so as implicit Euler multigrid method (IE-MGM). If the trapezoidal rule (3.3.4)
is applied as implicit scheme, we will speak of the Crank-Nicolson multigrid method
(CN-MGM).

3.3.3. Intergrid Operators

It remains to derive the restriction and prolongation operators required to transport the
defect and solution from finer to coarser level and vice versa. Note that the level here
refers only to the discretization in space since the time step ∆t remains fixed. By levels,
we thus mean extended graphs arising from the discretization with different step sizes h.
Again, for simplicity of exposition, suppose that we are given an equilateral graph with
edge length ℓ such that the same step size h can be used at each edge. Let us in a slight
abuse of notation denote by Γ̃J the extended graph arising from the discretization with
J = 2−J − 1 inner grid points per edge, i.e., on the coarsest level we have Γ̃0 = Γ. We
will moreover need the notation ñJ , m̃J for the number of vertices and edges of Γ̃J . Note
that with our definition of levels, the finite element spaces on the single edges (3.2.2) are
nested, i.e., VJ/2 ⊂ VJ . Here, again in a slight abuse of notation, we define VJ := Vℓ/2J .

We are interested in a prolongation operator PJ ∈ RñJ ×ñJ−1 interpolating the vector
uJ−1 from the coarser to the finer grid and a restriction operator (PJ)T ∈ RñJ−1×ñJ for
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3.3. Solution of the Finite Element Semidiscretization

the vice versa direction. Note that we had to slightly vary the notation of the vector at
level J since we will need the subscripts to refer to the entries of uJ . The prolongation
can be interpreted as a linear interpolation, compare Figure 3.7.

ΓJ−1 ΓJ

uJ−1
v2

v2

uJ−1
e1,1

uJ−1
v1

v1

uJ−1
e2,1

v3uJ−1
v3

uJ
v2 = uJ−1

v2
v2

uJ
e1,3 = 1

2 (uJ−1
e1,1 + uJ−1

v2 )

uJ
e1,2 = uJ−1

e1,1

uJ
e1,1 = 1

2 (uJ−1
v1 + uJ−1

e1,1)

uJ
v1 = uJ−1

v1
v1

uJ
e2,2 = uJ−1

e2,1

uJ
e2,1 = 1

2 (uJ−1
v1 + uJ−1

e2,1)

uJ
e2,3 = 1

2 (uJ−1
e2,1 + uJ−1

v3 )

v3 uJ
v3 = uJ−1

v3

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1

1

1

1

1

Figure 3.7.: Interpolation from coarser to finer grid.

On the single edges, this agrees with the standard operator known in the context of
classical one-dimensional discretizations on an interval, which, in a finite element set-
ting, can also be deduced from the refinement relation of hat basis functions. However,
some special caution is required at the vertices of the graph which couple the various
one-dimensional segments.

Due to the block structure of the graph, we may interpret PJ as a block matrix of the
form

PJ =
[
PJ

VV PJ
VE

PJ
EV PJ

EE

]

where

PJ
VV ∈ Rn×n, PJ

VE ∈ Rn×(ñJ−1−n), PJ
EV ∈ R(ñJ −n)×n, PJ

EE ∈ R(ñJ −n)×(ñJ−1−n).
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Clearly, PJ
VV = In since the index of the original vertices is maintained for each possible

grid size including the original graph. Moreover, the blocks PJ
EE = blkDiag

({
PJ

e

}
e∈E

)
themselves consist of m blocks associated to the original edges e ∈ E . These blocks are
denoted by PJ

e and are given by the standard operators (for the one-dimensional setting)
in matrix form, i.e.,

PJ
e =



1
2
1
1
2

1
2
1
1
2

. . .

. . .
1
2
1
1
2

1
2
1
1
2



.

Note that PJ
e so far does not include the boundary of the intervals since there we have to

make some adjustments according to the incidence of the first and last inner grid points
to the original vertices. These will be described in PJ

EV as follows.

Consider a given vector uJ−1 =
[
uJ−1

V ,uJ−1
E

]T
∈ RñJ−1 and its interpolation to the next

finer grid uJ =
[
uJ

V ,uJ
E

]T
∈ RñJ , which both contain the values at the original vertices

uJ−1
V and uJ

V . Then PJ
VE and PJ

EV have to fulfill

[
PJ

VV PJ
VE

PJ
EV PJ

EE

](
uJ−1

V
uJ−1

E

)
=
(

PJ
VVuJ−1

V + PJ
VEuJ−1

E
PJ

EVuJ−1
V + PJ

EEuJ−1
E

)
=
(

uJ
V

uJ
E

)
.

Since the values of the original vertices are already given in the coarse graph, we have
uJ

V = uJ−1
V . Consequently, with PJ

VV = In, we deduce PJ
VE = 0. Finally, the values at

the inner vertices are interpolated by

uJ
E = PJ

EVuJ−1
V + PJ

EEuJ−1
E .

All inner vertices that are not adjacent to an original vertex are covered by the relation
PJ

EEuJ−1
E equivalent to the one-dimensional case. If we denote by vJ

e,1 and vJ
e,Ne−1 the
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first and last inner vertex of Γ̃J on edge e, we would like the relations

uJ
e,1 = 1

2uJ−1
e,0 + 1

2uJ−1
e,1 and uJ

e,Ne−1 = 1
2uJ−1

e,Ne−1 + 1
2uJ−1

e,Ne

to hold. Since uJ−1
e,0 and uJ−1

e,Ne
are the values at the origin and terminal vertex of e, we

have to place the value 1
2 in PJ

EV at the positions that reflect the adjacency between
inner and original vertices. Using the incidence matrix

ÑJ =
[
ÑJ

V
ÑJ

E

]

of Γ̃J , we thus obtain
PJ

EV = 1
2
(∣∣∣ÑJ

E (ÑJ
V)T

∣∣∣)T
.

Together, we derive the prolongation operator in matrix form as

PJ =

 I 0
1
2

(∣∣∣ÑJ
E (ÑJ

V)T
∣∣∣)T

blkDiag
({

PJ
e

}
e∈E

) . (3.3.6)

3.3.4. Aspects of Implementation

The MGM is an iterative method with one iteration (or cycle) consisting of the various
steps outlined in Algorithm 2. In particular, an initial vector has to be chosen which in
our situation is the current iterate of the implicit method ut (not to be confused with
the current multigrid iterate). In the elliptic situation, which will be briefly discussed
in Section 7.1, a nested iteration approach is applied to acquire a suitable start vector
(see for example [Hac16], Chapter 11.5). In both cases, the systems are solved up to
discretization error, where the stopping criterion is defined using the residual error.

Non-Equilateral Graphs

To simplify notation, we have so far restricted to equilateral graphs in the derivation of
the MGM since we can then apply a uniform discretization with N = 2J −1, J ∈ N inner
grid points on each edge. In fact, in the non-equilateral case, it is not constructive to
apply the same number of inner grid points Ne on each edge since the achieved accuracy
on the edges might then differ by orders of magnitude. We rather propose to specify a
maximal step size hmax according to the desired accuracy and then choose the number
of inner grid points such that ℓe/Ne ≤ hmax. In particular, to guarantee nested finite ele-
ment spaces on each edge, we choose Ne = 2Je with Je = ⌈log(ℓe/hmax)/ log(2)⌉. We can
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then no langer speak of a uniform level J and refer instead to the vector (Ne1 , . . . , Nem)T

as finest level with the next coarser level (Ne1/2, . . . , Nem/2)T and so on.
In particular, we will frequently be in the situation that all inner grid points are already
eliminated on several edges whereas Ne is still large on other, longer edges. We will
then proceed with the restriction on the longer edges until Ne = 1 for all e ∈ E . This
situation is the coarsest possible level, equivalent to J0 = 0 in the equilateral setting.

Matrix-free Implementation

In practice, we do not need to explicitly assemble the prolongation and restriction oper-
ators but only compute their application to a vector. Given the block form (3.3.6), the
prolongation can be performed as

PJvJ−1 =

 I 0
1
2

(∣∣∣ÑJ
E (ÑJ

V)T
∣∣∣)T

blkDiag
({

PJ
e

}
e∈E

)[vJ−1
V

vJ−1
E

]

=

 vJ−1
V

1
2

(∣∣∣ÑJ
E (ÑJ

V)T
∣∣∣)T

vJ−1
V + blkDiag

({
PJ

e

}
e∈E

)
vJ−1

E

 .
The multiplications blkDiag

({
PJ

e

}
e∈E

)
vJ−1

E can be performed independently for each
edge and therefore reduces to m multiplications with PJ

e . For the computation of
1
2

(∣∣∣ÑJ
E (ÑJ

V)T
∣∣∣)T

vJ−1
V , only 2m operations are necessary since for each edge only the

first and last inner discretization point is adjacent to an original vertex.
In fact, the coefficient matrix BJ in (3.3.5) does not need to be explicitly assembled
either. If, for example, a Jacobi smoother is applied, the smoothing step can be im-
plemented by just computing the application of BJ to the current iterate. This can be
realized using the expression of the mass matrix M̂ and stiffness matrix L̂ in terms of
the incidence matrix of the extended graph (as derived in Theorem 3.2.7), i.e.,

L̂ = ÑW̃ÑT , M̂ = 1
6
(
|ÑW̃−1ÑT | + diag

({
(|ÑW̃−1ÑT |)i,i

}ñ

i=1

))
.

The observations on the assembling of Ñ in Section 3.1.3 can then be used to compute
the application of the blocks

ÑW̃ÑT =
[
ÑV

ÑE

]
W̃
[
ÑT

V ÑT
E

]
=
[
ÑVW̃ ÑT

V ÑVW̃ ÑT
E

ÑEW̃ ÑT
V ÑEW̃ ÑT

E

]

(with W̃−1 respectively) on a vector.
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3.3. Solution of the Finite Element Semidiscretization

Both a classical and a matrix free implementation have been worked out and are available
in MeGraPDE. Note that in the current implementation, a direct solver is applied to solve
the systems at the coarsest level, thus the matrices have to be assembled explicitly there.
If this is prohibited by the size of the initial graph, a matrix-free iterative method can
be used instead.
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4. Spectral Solution Method
In the present chapter, we derive a spectral Galerkin semidiscretization of Problem
2.3.16 and Problem 2.3.21 in which we choose the eigenfunctions of the operator H as
trial functions. This is preceded by an investigation of the eigenfunctions in view of their
approximation properties. In particular, an eigenvalue estimate derived from Weyl’s law
allows an estimation of the truncation error. Further, we discuss the approximation
error of the spectral Galerkin semidiscretization as well as the solution of the evolving
system of ODEs. Finally, we examine two particular aspects of implementation and give
an outlook on the application to other classes of PDEs.

To our best knowledge, the only solution approach exploring quantum graph eigenfunc-
tions so far was proposed by [BCK22] which we reviewed in the introduction. However,
the idea of developing a spectral method here emerged independent of their work and
has been partly published in [AW21]. The main novelty of the following presentation is
the structured derivation of the truncation error, the class of functions for which spectral
convergence can be obtained, the derivation of error estimates, the application to semilin-
ear equations as well as the efficient computation of inner products. Some of the results
(Theorem 4.1.5, Subsection 4.2.1, Section 4.3, and Section 4.4) have been prepared in
joint work with Prof. Dr. Mark Ainsworth for the manuscript [AW] (in preparation).

4.1. Trial Functions

The spectral method relies on a Galerkin discretization, i.e., we solve the weak formula-
tion on a finite dimensional subspace. As trial functions, we choose linear combinations
of eigenfunctions of the differential operator H as introduced in the following.

4.1.1. Eigenfunction Expansion

The spectrum of a quantum graph is identified with the spectrum of H acting on func-
tions on Γ equipped with Neumann-Kirchhoff boundary conditions. Throughout this the-
sis, we only consider the standard differential operator (2.2.8) and Neumann-Kirchhoff
conditions (2.2.10), i.e., the spectrum of the quantum graph only depends on the metric
graph Γ in the sense of the following definition.
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Definition 4.1.1. Let Γ be a metric graph. We define the spectrum of Γ, denoted by
σ(Γ), as the spectrum of H : u 7→ −d2u

dx2 acting on domH,NK (see Definition 2.2.9).

We summarize the following general result on the spectrum of compact metric graphs,
which can be found for example in [BK13] and [KKMM16]:

Theorem 4.1.2. For a compact metric graph Γ, the spectrum σ(Γ) is completely deter-
mined by eigenvalues λ ∈ R for which a nontrivial ϕ with

Hϕ = λϕ (4.1.3)

such that ϕ fulfills the Neumann-Kirchhoff conditions (2.2.10) exists. In particular, λ ≥ 0
and the corresponding eigensolutions will be referred to as eigenfunctions, denoted by ϕ.

Proof. In [BK13], Theorem 3.1.1., the authors prove that the spectrum σ(Γ) is composed
of an ascending sequence of eigenvalues λq of finite multiplicity with limq→∞ λq = ∞.
Additionally, H is positive-semidefinite since (2.3.12) is non-negative. Together with the
self-adjointness, we obtain that λ ∈ R and λ ≥ 0.

Since H : u 7→ −d2u
dx2 with Neumann-Kirchhoff conditions is self-adjoint, we can expand

u ∈ L2(Γ) in terms of the (orthogonal) eigenfunctions ϕλ, λ ∈ σ(Γ) of H as

u =
∑

λ

cλϕλ (4.1.4)

with coefficients cλ ∈ R. The idea of the spectral solution approach is to truncate the
(infinite) series in (4.1.4) such that we obtain a finite dimensional approximation.

We will from now on always assume the eigenfunctions to be normalized, i.e., we con-
sider an orthonormal basis φ := {ϕλ, λ ∈ σ(Γ)}. For convenience, we will enumerate
the eigenvalues in ascending order and in a slight abuse of notation write λq for the
q-th eigenvalue with associated eigenfunction ϕq. The basis φ can thus be equivalently
written as φ = {ϕq, q = 1, 2, . . .} and we denote the space spanned by this basis by X.

In the next chapter, we will derive in detail an efficient method to compute an arbitrary
number of eigenfunctions numerically. At some points in the present chapter, however,
we have to anticipate that the eigenfunctions can be expressed on each edge e as

ϕq(x) = Aq
e cos

(√
λq x

)
+Bq

e sin
(√

λq x
)

with some edge specific constants Aq
e, B

q
e .
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4.1.2. Approximation Theory

As our objective is to truncate the series in (4.1.4), we are interested in a finite di-
mensional subspace of X spanned by a finite number of eigenfunctions φQ := {ϕq, q =
1, . . . , Q} for Q ∈ N, i.e.,

XQ := span{ϕq, q = 1, . . . , Q}.

In particular, we first define the following L2-projection onto XQ.

Theorem 4.1.5. PQ : L2(Γ) → XQ with

PQu :=
∑
q≤Q

(u, ϕq)Γϕq (4.1.6)

defines an L2-projection of u ∈ L2(Γ) onto XQ = span{ϕq, q = 1, . . . , Q}.

Proof (similar to [AW], proof of Theorem 3.10). Representing u ∈ L2(Γ) as u =
∑

q cqϕq

with constants cq ∈ R yields

(u, ϕ)Γ =
(∑

q

cqϕq, ϕ

)
Γ

=
∑

q

cq(ϕq, ϕ)Γ

for all ϕ ∈ XQ. All ϕ ∈ X are orthonormal, i.e., for a fixed ϕq ∈ XQ, all terms but
cq(ϕq, ϕq)Γ in the sum vanish and, in particular, (ϕq, ϕq)Γ = 1. We conclude that the
coefficients cq are given by

cq = (u, ϕq)Γ.

Recall that an L2-projection PQ : L2(Γ) → XQ onto XQ is defined by

(u− PQu, ϕ)Γ = 0 for all ϕ ∈ XQ

which is fulfilled for PQu :=
∑

q≤Q (u, ϕq)Γϕq given in the assertion as the orthogonality
implies

(u− PQu, ϕ)Γ =

∑
q

(u, ϕq)Γ ϕq −
∑
q≤Q

(u, ϕq)Γ ϕq, ϕ


Γ

=

∑
q>Q

cqϕq, ϕ


Γ

= 0

for all ϕ ∈ XQ.
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We are confronted with the question of how well a function u =
∑

q cqϕq can be approx-
imated by the projection PQu. Following a standard approach (compare for example
[CHQZ07]), we use Parseval’s identity to express the truncation error as

∥u− PQu∥2
Γ =

∑
q>Q

|(u, ϕq)Γ|2 =
∑
q>Q

|cq|2. (4.1.7)

In other words, the error is essentially determined by the decay of coefficients cq as
q → ∞. In [BCK22], the authors attempt to estimate the rate of decay and claim that
spectral accuracy can only be obtained for sufficiently smooth functions with compact
support on each edge. But considering functions with compact support on each edge
is the same as posing zero Dirichlet conditions at the vertices of the graph instead of
Neumann-Kirchhoff conditions. This in turn uncouples the system to m independent
equations on the edges and the graph structure has no influence on the solution at all.
We will therefore show that the applicable class of functions can be further extended.
Let us first define H(d)u := (−1)du(2d) := (−1)d d2d

dx2du and

domd
H,NK :=

⊕
e∈E

H2d(e) ∩ {u, u(2), . . . , u(2d) fulfill the Neumann-Kirchhoff conditions}.

In other words, with u ∈ domd
H,NK, we mean that u is sufficiently smooth and all even

derivatives are in domH,NK.

Theorem 4.1.8. For u ∈ domd
H,NK, q > 1, the projection coefficients are bounded by

|cq| ≤ 1
λd

q

∥∥∥u(2d)
∥∥∥

Γ
.

Proof. Since λ1 = 0 is a simple eigenvalue, it suffices to consider λq for q > 1 in the
following. The proof essentially follows the arguments in [CHQZ07], Section 5.2.1. The
coefficients cq of the expansion

∑
q cqϕq are given by cq = (u, ϕq)Γ. Throughout this

proof, we will apply the eigenvalue identity in the form ϕq = 1
λq

Hϕq and the identity

(Hu, ϕ)Γ = (u,Hϕ)Γ

for u, ϕ ∈ domH,NK which follows from the self-adjointness of H. It is then straightfor-
ward to derive

cq = (u, ϕq)Γ = 1
λq

(u,Hϕq)Γ = 1
λq

(Hu, ϕq)Γ.
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If Hu ∈ domH,NK, we can repeat these arguments and arrive at

|cq| =
∣∣∣∣∣ 1
λ2

q

(
u(4), ϕq

)
Γ

∣∣∣∣∣
and for u ∈ domd

H,NK finally at

|cq| =
∣∣∣∣∣ 1
λd

q

(
u(2d), ϕq

)
Γ

∣∣∣∣∣ . (4.1.9)

The assertion follows by

|cq| = 1
λd

q

∣∣∣(u(2d), ϕq

)
Γ

∣∣∣ ≤ 1
λd

q

∥∥∥u(2d)
∥∥∥

Γ
∥ϕq∥Γ = 1

λd
q

∥∥∥u(2d)
∥∥∥

Γ

since we consider normalized eigenfunctions.

The truncation error then follows as a direct consequence.

Corollary 4.1.10. Under the conditions of Theorem 4.1.8, the truncation error fulfills

∥u− PQu∥Γ ≤ 1
λd

Q

∥∥∥u(2d)
∥∥∥

Γ
.

Proof. From (4.1.7) we deduce

∥u− PQu∥Γ =

∑
q>Q

|cq|2
 1

2

=

∑
q>Q

1
λ2d

q

λ2d
q |cq|2

 1
2

≤ 1
λd

Q

∑
q>Q

λ2d
q |cq|2

 1
2

and thus by (4.1.9), the eigenvalue identity and the self-adjointness

∥u− PQu∥Γ ≤ 1
λd

Q

∑
q>Q

λ2d
q |cq|2

 1
2

= 1
λd

Q

∑
q>Q

∣∣∣(u(2d), ϕq

)
Γ

∣∣∣2
 1

2

.

Since
(
u(2d), ϕq

)
Γ

are the projection coefficients of u(2d), Parseval’s identity (applied to
u(2d)) yields ∥∥∥u(2d)

∥∥∥
Γ

=
∑

q

∣∣∣(u2d, ϕq

)
Γ

∣∣∣2 ≥
∑
q>Q

∣∣∣(u(2d), ϕq

)
Γ

∣∣∣2 .
Together, we thus have ∥u− PQu∥Γ ≤ 1

λd
Q

∥∥∥u(2d)
∥∥∥

Γ
.
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4.1.3. Eigenvalue Estimates

The following result on eigenvalue counting, which we cite from [Ber17], Lemma 4.4.,
can be used to derive a lower bound on the q-th eigenvalue.1

Theorem 4.1.11. Given an eigenvalue λq, the number of eigenvalues smaller than or
equal to λ2

q is given by

∣∣{λ ∈ σ(Γ) : λ ≤ λ2
q}
∣∣ = volΓ

π
λq + O(1)

where volΓ is the total length of the graph and O(1) is independent of λq.

Such results on eigenvalue counting are often referred to as Weyl’s Law. In particular,
the remainder term O(1) can be bounded from below and above such that we obtain

volΓ
π

λq −m ≤ |{λ ∈ σ(Γ) : λ ≤ λ2
q | ≤ volΓ

π
λq + n

where n is the number of vertices and m the number of edges of Γ. In other words, for
q sufficiently large, the q-th eigenvalue λq can be bounded from below by

λq ≥
((q − n)π

volΓ

)2
.

As observed in [BCK22], we will see that, in practice, the eigenvalues often follow Weyl’s
slope

(
q π

volΓ

)2
much more closely. We will address this further in the numerical experi-

ments in Section 6.3.2.

Theorem 4.1.11 implies spectral accuracy since it allows to estimate the rate of decay of
the coefficients in the spectral expansion as follows.

Corollary 4.1.12. Under the conditions of Theorem 4.1.8, the projection coefficients
are bounded by

|cQ| ≤ C̄
( volΓ

(Q− n)π

)2d ∥∥∥u(2d)
∥∥∥

Γ
.

with C̄ > 0.

1Note that this result has also been used in [BCK22] to estimate the asymptotic behavior of the
eigenvalues.
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4.2. Spectral Galerkin Approximation

We are now in the position to formulate the spectral Galerkin approximation of the
generalized heat equation in weak form (Problem 2.3.16): Find uQ ∈ L2([0, T ];XQ)
with (

u′
Q(t), gQ

)
Γ

+ h(uQ(t), gQ) = (f(t), gQ)Γ for all gQ ∈ XQ, t > 0

uQ(0) = u0
Q

(4.2.1)

where u0
Q is an approximation of the initial condition u0 on XQ. More generally, the spec-

tral Galerkin approximation of the reaction-diffusion equation (Problem 2.3.21) consists
of finding uQ ∈ L2([0, T ];XQ) with(

u′
Q(t), gQ

)
Γ

+ h(uQ(t), gQ) = (R(uQ(t)), gQ)Γ for all gQ ∈ XQ, t > 0

uQ(0) = u0
Q.

(4.2.2)

4.2.1. Semidiscretized System

Choosing uQ(0) = PQu
0 and using the orthonormality of the basis functions ϕ ∈ φQ,

the spectral Galerkin approximation of the generalized heat equation (4.2.1) simplifies
to the following semidiscretized system of differential equations.

Theorem 4.2.3. Let Γ be a metric graph with ascending numbered eigenvalues
λq ∈ σ(Γ), q = 1, . . . , Q and associated eigenfunctions ϕq ∈ φQ. Let us further de-
note by

c(t) := (c1(t), . . . , cQ(t))T

a vector collecting the coefficients of the expansion uQ(t) =
∑

q≤Q cq(t)ϕq. Then, the
spectral Galerkin approximation (4.2.1) reduces to the initial value problem

d
dtc(t) + Λc(t) = f(t)

c(0) = c0
(4.2.4)

where Λ := diag({λq}q≤Q), the initial condition is given by

c0 :=
((
u0, ϕ1

)
Γ
, . . . ,

(
u0, ϕQ

)
Γ

)T
, and f(t) :=

(
(f(t), ϕ1)Γ, . . . , (f(t), ϕQ)Γ

)T
.
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4. Spectral Solution Method

Proof. Testing with an arbitrary but fixed ϕq ∈ φQ in (4.2.2) yields

(
u′

Q, ϕq

)
Γ

+ h (uQ, ϕq) = d
dt

∑
q′≤Q

cq′ϕq′ , ϕq


Γ

+ h

∑
q′≤Q

cq′ϕq′ , ϕq


= d

dtcq(ϕq, ϕq)Γ +
∑

q′≤Q

cq′ h
(
ϕq′ , ϕq

)
since

(
ϕq′ , ϕq

)
Γ = 0 for ϕq′ ̸= ϕq (orthogonality). Thus, the spectral Galerkin approxi-

mation (4.2.2) can be written in matrix form as

d
dtMc + Sc = f(t)

where

M :=


(ϕ1, ϕ1)Γ 0

. . .
0 (ϕQ, ϕQ)Γ

 , S :=


h(ϕ1, ϕ1) . . . h(ϕQ, ϕ1)

... . . . ...
h(ϕ1, ϕQ) . . . h(ϕQ, ϕQ)

 .
Clearly, by orthonormality we obtain (ϕq, ϕq)Γ = 1, i.e., M = I. Moreover, the eigenvalue
identity in weak formulation implies h(ϕq′ , ϕq) = λq′

(
ϕq′ , ϕq

)
Γ and thereby also

S =


h(ϕ1, ϕ1) . . . h(ϕQ, ϕ1)

... . . . ...
h(ϕ1, ϕQ) . . . h(ϕQ, ϕQ)

 =


λ1(ϕ1, ϕ1)Γ . . . λQ(ϕQ, ϕ1)Γ

... . . . ...
λ1(ϕ1, ϕQ)Γ . . . λQ(ϕQ, ϕQ)Γ



=


λ1(ϕ1, ϕ1)Γ 0 0

0 . . . 0
0 0 λQ(ϕQ, ϕQ)Γ


= Λ.

Likewise, for the reaction-diffusion problem, we obtain the initial value problem

d
dtc(t) + Λc(t) = r(c(t))

c(0) = c0,
(4.2.5)

with
r(c(t)) :=

(
(R(uQ(t)), ϕ1)Γ, . . . , (R(uQ(t)), ϕQ)Γ

)T
.
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4.2. Spectral Galerkin Approximation

4.2.2. Error Analysis

Stability and convergence of the Galerkin approximation can be obtained by standard
arguments, compare for example [CHQZ07], Section 6.5.1. Yet, we are in the situation
that the bilinear form h is not coercive. However, we have seen that it fulfills Gårding’s
inequality (Section 2.3.2) and induces the seminorm (h(u, u))

1
2 = |u|H1(Γ). Therefore, a

change of variable is required to obtain the desired results, see again [CHQZ07], Section
6.5.1, Example 1.

For the generalized heat equation, the error of the spectral Galerkin discretization re-
duces to the truncation error of the exact solution.

Theorem 4.2.6. Let u be the exact solution of the generalized heat equation (2.3.17)
with u(t) ∈ domd

H,NK for t > 0. Then, the error of the spectral Galerkin approximation
(4.2.1) on the finite dimensional subspace XQ is given by

∥uQ(t) − u(t)∥Γ ≤ C̄
( volΓ

(Q− n)π

)2d ∥∥∥u(t)(2d)
∥∥∥

Γ
.

with C̄ as in Corollary 4.1.12.

Proof. A common technique is to write uQ(t) − u(t) = uQ(t) −PQu(t) +PQu(t) − u(t)
and estimate

∥uQ(t) − u(t)∥Γ ≤ ∥uQ(t) − PQu(t)∥Γ + ∥PQu(t) − u(t)∥Γ.

The second term is the truncation error of the solution at time t and for u(t) ∈ domd
H,NK

can be bounded by

∥PQu(t) − u(t)∥Γ ≤ C̄
( volΓ

(Q− n)π

)2d ∥∥∥u(t)(2d)
∥∥∥

Γ

(Corollary 4.1.10 and Corollary 4.1.12). Let us now consider the error e(t) = uQ(t) −
PQu(t) and in the following notation omit the dependence on t to improve readability.
For gQ ∈ XQ, the error satisfies

(
e′, gQ

)
Γ + h(e, gQ) =

(
u′

Q, gQ

)
Γ

+ h(uQ, gQ) −
(
PQu′, gQ

)
Γ − h(PQu, gQ)

=
(
u′, gQ

)
Γ + h(u, gQ) −

(
PQu′, gQ

)
Γ − h(PQu, gQ)

=
(
u′ − PQu′, gQ

)
Γ + h(u − PQu, gQ)
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4. Spectral Solution Method

where the third equality follows from the fact that the spectral Galerkin solution uQ

fulfills (4.2.1). Since gQ ∈ XQ is a linear combination of the eigenfunctions ϕ ∈ φQ, their
orthogonality implies the following:

1. (u′ − PQu′, gQ)Γ =

∑
q>Q

c′
qϕq, gQ


Γ

= 0.

2. Since u(t) ∈ domH,NK, we have

h(u − PQu, gQ) = (H(u − PQu), gQ)Γ =
∑
q>Q

cq(Hϕq, gQ)Γ =
∑
q>Q

cqλq(ϕq, gQ)Γ = 0.

Here, we have used the eigenvalue identity and the commutability of the operators
H and PQ which follows from the fact that the coefficients in the expansion of
Hu are given by (Hu, ϕq)Γ =

(
u, ϕ′′

q

)
Γ

= λq(u, ϕq)Γ for all q (this is only true for
u ∈ domH,NK as the self-adjointness is required in the second equality).

Choosing gQ = e thus yields2

0 =
(
e′, gQ

)
Γ + h(e, gQ) = 1

2
d
dt∥e∥2

Γ + h(e, e) (4.2.7)

and, after integration,

0 = 1
2∥e(t)∥2

Γ − ∥e(0)∥2
Γ +

∫ t

0
h(e(s), e(s)) ds.

With the choice of the initial condition uQ(0) = PQu(0) we finally obtain ∥e(0)∥Γ = 0,
and, thus ∥e(t)∥Γ = 0 which yields the assertion.

In the semilinear case, the same arguments as in the first part of the proof lead to

1
2

d
dt∥e∥2

Γ + h(e, e) = (R(u) − R(uQ), e)Γ

instead of (4.2.7). Using the Lipschitz continuity of R and Cauchy’s inequality yields

(R(u) − R(uQ), e)Γ ≤ CL∥u − uQ∥Γ

(
∥e∥Γ +

√
h(e, e)

)
≤ CL

(
∥u − PQu∥Γ + ∥PQu − uQ∥Γ

) (
∥e∥Γ +

√
h(e, e)

)
≤ CL

(
∥u − PQu∥Γ + h(e, e) + 2∥e∥2

Γ

)
.

2Note that d
dt

∥u∥2
Γ = 2(u, u)Γ ([Eva00], Theorem 3 in Section 5.9.2).
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Proceeding as in [Tho97], proof of Theorem 13.1, we obtain after integration and applying
Gronwall’s lemma

∥e∥2
Γ ≤ C̄L

∫ t

0
∥u(s) − PQu(s)∥Γds.

Together with the truncation error, this yields

∥u(t) − uQ(t)∥Γ ≤ C̄
( volΓ

(Q− n)π

)2d ∥∥∥u(t)(2d)
∥∥∥

Γ
+
(

C̄L

∫ t

0
∥u(s) − PQu(s)∥Γds

) 1
2

with positive constants C̄, C̄L.
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4.3. Solution of the Spectral Galerkin Semidiscretization

This section is devoted to the solution of the systems of ordinary differential equations
arising from the spectral Galerkin discretization (4.2.4) and (4.2.5), respectively. For
the generalized heat equation on Γ, the semidiscretized system reads

d
dtc(t) + Λc(t) = f . (4.3.1)

Multiplying (4.3.1) by exp(tΛ) leads to

exp(tΛ)
( d

dtc(t) + Λc(t)
)

= exp(tΛ) f

⇔ d
dt (exp(tΛ)c(t)) = exp(tΛ) f .

Integrating both sides over [0, s] yields

exp(sΛ)c(s) = c(0) +
∫ s

0
exp(tΛ) f dt

⇔ c(s) = exp(−sΛ)c(0) +
∫ s

0
exp ((t− s)Λ) f dt. (4.3.2)

Equation (4.3.2) is also known as the variation-of-constants formula. If f is constant
over time, the exact solution at time s is readily given by

c(s) = exp(−sΛ)c(s) +


∆t

− exp(−sλ2)−1
λ2

. . .
− exp(−sλn)−1

λn

 f .

4.3.1. Exponential Integrators

In the case of reaction-diffusion equations, the spectral Galerkin semidiscretization is
given by

d
dtc(t) + Λc(t) = r(c(t)). (4.3.3)

Here, the right hand side depends on c(t) and the integral in (4.3.2) cannot be computed
in closed form. We therefore integrate over a small time interval [0,∆t] only and obtain

c(∆t) = exp(−∆tΛ) c(0) +
∫ ∆t

0
exp ((t− ∆t)Λ) r(c(t)) dt. (4.3.4)
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The integral will now only be computed approximatively, for example as

∫ ∆t

0
exp ((t− ∆t)Λ) r(c(t)) dt ≈

∫ ∆t

0
exp ((t− ∆t)Λ) r(c(0)) dt.

More generally, this idea can be extended to an iterative scheme to compute the coeffi-
cients at time t+ ∆t by

c(t+ ∆t) = exp(−∆tΛ) c(t) +
∫ ∆t

0
exp((s− ∆t)Λ) r(c(t))ds

= exp(−∆tΛ) c(t) +


∆t

− exp(−∆tλ2)−1
λ2

. . .
− exp(−∆tλn)−1

λn

 r(c(t)).

The presented approach is known as the exponential Euler method. Similarly, one can
derive higher order exponential integrators if the integral is approximated by higher order
Runge-Kutta methods, see for example [HO06]. Note that the advantage of exponential
integrator methods in contrast to the IMEX approach used in Section 3.3 is the exact
solution of the linear part of the differential equation. However, for the solution of finite
element semidiscretizations, exponential integrators are much more expensive since the
exponential of a non-diagonal matrix, or, to be more precise, the action of the exponential
on a vector, has to be computed.

4.3.2. Aspects of Implementation

Computation of Inner Products

Besides the computation of an eigenfunction basis which will be treated in detail in the
next section, the main computational costs of the spectral solution approach originate
from the computation of inner products on graphs. To be more precise, we will address
the computation of integrals over metric graphs involving the eigenfunctions ϕq, for
example integrals of the form∫

Γ
ϕq(x)f(x)dx =

∑
e∈E

∫
e
(ϕq)e(x)fe(x)dx

which are required to assemble the right hand side f in the semidiscretized generalized
heat equation (4.2.4). In particular, the eigenfunctions ϕq on each edge are of the form

(ϕq)e(x) = Aq
e cos

(√
λq x

)
+Bq

e sin
(√

λq x
)
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as we will see later. For growing λq, the oscillation of ϕq increases such that classical nu-
merical quadrature rules fail to provide reliable results. Instead, we will apply a method
similar to Filon’s Quadrature [Fil30].

To increase readability, we will consider a fixed edge e and therefore suppress the edge
subscripts in f, ϕq. The idea is to subdivide the interval [0, ℓe] in panels (subintervals)
of length 2hκ and consider the sub integrals

∫
e
f(x)ϕq(x)dx =

∫ 2hκ

0
f(x)ϕq(x)dx + . . . +

∫ ℓe

ℓe−2hκ

f(x)ϕq(x)dx.

On each panel eκ := [(κ− 1)hκ, (κ+ 1)hκ], we then approximate f by

f(x) ≈ f̃κ(x) =
2∑

ι=0
f(ξκ,ι)ψκ,ι(x).

In this expression, ψκ,ι is a polynomial with maximal degree two and the quadrature
nodes are ξκ,0 = (2κ − 2)hκ, ξκ,1 = (2κ − 1)hκ and ξκ,2 = (2κ)hκ. The integrals∫

eκ
f̃κ(x)ϕq(x)dx can then be calculated in closed form by repeated partial integration.

To be more precise, let us consider the required integral on edge e given by∫
e
f(x)ϕqdx = Aq

e

∫
e
f(x) cos

(√
λq x

)
dx+Bq

e

∫
e
f(x) sin

(√
λq x

)
dx

=: Aq
e I cos

e (λq) +Bq
e I sin

e (λq)

and focus on the integral in the left part of the sum, i.e., I cos
e (λq). As elaborated above,

we approximate f on each panel eκ by f̃κ and obtain

I cos
e (λq) ≈

∑
eκ

∫
eκ

f̃κ(x) cos
(√

λq x
)

dx

with

∫
eκ

f̃κ(x) cos
(√

λq x
)

dx =
∫

eκ

2∑
ι=0

f(ξκ,ι)ψκ,ι(x) cos
(√

λq x
)

dx

=
2∑

ι=0
f(ξκ,ι)

∫
eκ

ψκ,ι(x) cos
(√

λq x
)

dx

= mcos
eκ

(λq)T Feκ
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where
Feκ := (f(ξκ,1), f(ξκ,2), f(ξκ,3))T

and mcos
eκ

(λq) is a vector containing the integrals
∫

eκ
ψκ,ι(x) cos

(√
λq x

)
dx. Since each

ψκ,ι is a polynomial of degree two, it can be expressed as

ψκ,ι(x) = aκ,ιx
2 + bκ,ιx+ cκ,ι,

and thus∫
eκ

ψκ,ι(x) cos
(√

λq x
)

dx

=
∫

eκ

(
aκ,ιx

2 + bκ,ιx+ cκ,ι

)
cos

(√
λq x

)
dx

= aκ,ι

∫
eκ

x2 cos
(√

λq x
)

dx+ bκ,ι

∫
eκ

x cos
(√

λq x
)

dx+ cκ,ι

∫
eκ

cos
(√

λq x
)

dx

=: aκ,ι I cos, x2
κ (λq) + bκ,ι I cos, x

κ (λq) + cκ,ι I cos
κ (λq).

The remaining integrals can be evaluated using their closed forms given in Table 4.1.
The vector mcos

eκ
(λq) can consequently be assembled as

mcos
eκ

(λq) =


aκ,1 bκ,1 cκ,1

aκ,2 bκ,2 cκ,2

aκ,3 bκ,3 cκ,3




I cos, x2
κ (λq)

I cos, x
κ (λq)
I cos

κ (λq)

 .
The integral I cos

e (λq) on the whole edge is then given by

1T (mcos
e (λq) Fe)

where
Fe = (f(hκ), f(2hκ), . . . , f(Nκhκ))T
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and

mcos
e (λq) =



mcos
e1 (λq)T 0 0 . . .

0 0 mcos
e2 (λq)T 0 0 . . .

. . . 0 0 mcos
e3 (λq)T 0 0 . . .

. . . . . .

0 0 mcos
eNκ−1(λq)T 0 0

0 0 mcos
eNκ−1(λq)T


.

Clearly, the same considerations apply for the second integral I sin
e (λq), for which we also

summarized the closed form integrals I sin, x2
κ (λq), I sin, x

κ (λq), I sin
κ (λq) in Table 4.1.

Together, we have∫
e
f(x)ϕq(x)dx ≈ Aq

e 1T (mcos
e (λq) Fe) +Bq

e 1T
(
msin

e (λq) Fe

)
.

It is worthwhile mentioning that mcos
e and msin

e do not depend on f and therefore can
be computed and stored in advance to be reused for different f . This is in particular
important when we return to the general case where R depends on u and therefore
(R(uQ(t)), ϕq)Γ is not constant over time. Moreover, for equilateral graphs, mcos

e and
msin

e are identical for all edges and only Fe as well as the constants Aq
e, B

q
e need to be

modified.

Evaluation of the Spectral Expansion

In the nonlinear case, i.e., towards the computation of integrals of the form

(R(uQ(t)), ϕq)Γ =
∑
e∈E

∫
e

R((uQ)e(t))(ϕq)e(x)dx,

it moreover arises the question of efficiently evaluating the spectral expansion uQ. In
particular, at the nodes of the quadrature formula derived above, we have to assemble
the equivalent of the vector Fe, now given by

re := (R((uQ)e(hκ, t)),R((uQ)e(2hκ, t)), . . . ,R((uQ)e(Nκ, t)))

on each edge. Again, to increase readability, we will suppress the subscript in (uQ)e

which should not lead to any confusion since we will once more start to consider a fixed
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4.3. Solution of the Spectral Galerkin Semidiscretization

I cos, x2
κ (λq) 1

λ
3/2
q

(
− (h2

κ(κ− 1)2λq − 2) sin
(
hκ(κ− 1)

√
λq

)
+(h2

κ(κ+ 1)2λq − 2) sin
(
hκ(κ+ 1)

√
λq

)
− 2hκ(κ− 1)

√
λq cos

(
hκ(κ− 1)

√
λq

)
+ 2hκ(κ+ 1)

√
λq cos

(
hκ(κ+ 1)

√
λq

) )

I cos, x
κ (λq) 2

λq

(
hκκ

√
λq sin

(
hκ

√
λq

)
cos

(
hκκ

√
λq

)
+ sin

(
hκκ

√
λq

) (
hκ

√
λq cos

(
hκ

√
λq

)
− sin

(
hκ

√
λq

) ))

I cos
κ (λq) 2√

λq

(
sin
(
hκ

√
λq

)
cos

(
hκκ

√
λq

) )

I sin, x2
κ (λq) 1

λ
3/2
q

(
(h2

κ(κ− 1)2λq − 2) cos
(
hκ(κ− 1)

√
λq

)
−(h2

κ(κ+ 1)2λq − 2) cos
(
hκ(κ+ 1)

√
λq

)
− 2hκ(κ− 1)

√
λq sin

(
hκ(κ− 1)

√
λq

)
+ 2hκ(κ+ 1)

√
λq sin

(
hκ(κ+ 1)

√
λq

) )

I sin, x
κ (λq) 2

λq

(
sin
(
hκ

√
λq

) (
hκκ

√
λq sin

(
hκκ

√
λq

)
+ cos

(
hκκ

√
λq

) )
−hκ

√
λq cos

(
hκ

√
λq

)
cos

(
hκκ

√
λq

) )

I sin
κ (λq) 2√

λq

(
sin
(
hκ

√
λq

)
sin
(
hκκ

√
λq

) )

Table 4.1.: Closed form integrals for Filon quadrature.
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4. Spectral Solution Method

edge e. On this edge, the spectral expansion of u, evaluated at a node κhκ, is given by

uQ(κhκ, t) =
Q∑

q=1
cq(t)ϕq(κhκ) = (ϕ1(κhκ), . . . , ϕQ(κhκ)) c(t).

Obviously, the evaluation of the eigenfunctions does not depend on t and thus can be
computed in advance as

ϕq(κhκ) = Aq
e cos

(√
λq κhκ

)
+Bq

e sin
(√

λq κhκ

)
.

Defining

ϕcos
κ :=

(
cos

(√
λ1 κhκ

)
, . . . , cos

(√
λQ κhκ

))
and ϕsin

κ equivalently yields

uQ(κhκ, t) = (ϕcos
κ Ae + ϕsin

κ Be)c(t)

where Ae := diag(A1
e, . . . , A

Q
e ) and Be := diag(B1

e , . . . , B
Q
e ). The evaluations of uQ on

all nodes can consequently be obtained by

(uQ(hκ, t), . . . , uQ(Nκ, t))T = ((ϕcos
1 , . . . ,ϕcos

Nκ
)Ae + (ϕsin

1 , . . . ,ϕsin
Nκ

)Be) c(t)

=: (ϕcos
e Ae + ϕsin

e Be) c(t).

All the coefficients in ϕcos
e and ϕsin

e can be computed in advance and, moreover, in
the special case of equilateral graphs, they do not depend on the edge and thus only
need to be computed once for all edges. However, also in the case of non-equilateral
graphs, a careful choice of the interpolation nodes can guarantee the reuse of the function
evaluation cos(

√
λq κhκ) and sin(

√
λq κhκ) across the edges.
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4.4. Application to other Classes of Partial Differential Equations

4.4. Application to other Classes of Partial Differential
Equations

With our application to the simulation of protein distribution in mind, we have so far
focused our work on classical diffusion-type equations. However, we would like to em-
phasize that the derived spectral method can be readily applied to other PDEs involving
the operator H from (2.2.8). For instance, consider a wave equation on a metric graph
given by

∂2

∂t2
u+ Hu = 0 (4.4.1)

subject to Neumann-Kirchhoff boundary conditions and along with initial conditions
u(0) = u0 and ∂

∂tu(0) = u0,t. We can use the exact same argumentation as for the
semilinear parabolic equation to derive the Galerkin approximation:(

u′′
Q(t), ϕ

)
Γ

+ h(uQ(t), ϕ) = 0 for all ϕ ∈ φQ, t > 0

uQ(0) = u0
Q, u′

Q(0) = u0,t
Q

which reduces to an ODE of the form

d2

dt2 c(t) + Λc(t) = 0

with c as in Theorem 4.2.3.

Remarkably, the same applies to fractional diffusion equations of the type

∂

∂t
u− ∆αu = 0

with α ∈ R. To see this, we make us of the spectral representation of the fractional
Laplacian given by

∆αu =
∑

λ

λαcλϕλ.

Consequently, if we define Λα = diag
(
λα

1 , . . . , λ
α
Q

)
, we can simply replace Λ by Λα in

(4.2.4) to deduce the semidiscretization

d
dtc(t) + Λαc(t) = 0.
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5. Computation of Quantum Graph Spectra

The spectrum of a quantum graph is defined as the spectrum of the differential operator
H with domH,NK, which consists exclusively of its eigenvalues (compare Theorem 4.1.2).
When we speak of the computation of quantum graph spectra, we always also mean the
associated eigensolutions of the eigenvalue problem, which we refer to as eigenfunctions.
In this chapter, we propose an algorithm to compute an arbitrarily large part of the
lower spectrum of a quantum graph along with a representation of the corresponding
eigenfunctions in closed form.
The theoretical foundation is a very remarkable relation of the continuous problem to
a nonlinear eigenvalue problem or, in the special case of equilateral graphs, to a linear
eigenvalue problem, both only determined on the vertices of the underlying combinato-
rial graph. Yet this finding does not apply to a particular part of the spectrum, which
we will refer to as non-vertex spectrum. Section 5.2 then derives how this relation, never-
theless, can be applied to develop a practical algorithm in the special case of equilateral
graphs and for both parts of the spectrum. A generalization to non-equilateral graphs
is discussed in Section 5.3.

New aspects of this chapter are the exploitation of the prominent relation to combina-
torial graphs for the whole spectrum using an extended graph, the arising numerical
algorithm as well as the application of the latter to solve the nonlinear eigenvalue prob-
lem (NEP) in the non-equilateral case. The first two aspects were originally prepared in
joint work with Prof. Dr. Mark Ainsworth for the manuscript [AW], although they are
presented here with many additional details and examples. The results of Section 5.3
are mainly drawn from the manuscript [DW23b].

5.1. Relation to Combinatorial Graph Spectra

We briefly recall that, according to Theorem 4.1.2, λ ∈ R+ is an eigenvalue of Γ if there
exists a nontrivial ϕ ∈ domH,NK with

Hϕ = λϕ. (5.1.1)
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5. Computation of Quantum Graph Spectra

In particular, the restriction of ϕ to the vertices of Γ (denoted by ϕV) is well defined
since ϕ is continuous.
An important result for the following numerical computations is the relation of the con-
tinuous eigenvalue problem (5.1.1) to a discrete eigenvalue problem in terms of graph ma-
trices associated with the underlying combinatorial graph G. As pointed out in [BK13],
such a relation cannot be assumed immediately since the spectrum of H is unbounded
(in contrast to the spectrum of a discrete matrix). Surprisingly, it turns out that, es-
pecially for equilateral graphs, a very useful relation exists and has been discovered
by several authors in various contexts and variants, see, for example, [BK13], [Cat97],
[Pan06], [Pos08], [vB85], just to mention a few. In all of these investigations as well as
in this thesis, this special relation only holds for a specific part of the spectrum which
we decided to refer to as the vertex spectrum.

Definition 5.1.2. The spectrum of a compact, finite metric graph Γ with edge lengths
ℓe, e ∈ E , can be classified into the vertex spectrum

σV(Γ) :=
{
λ ∈ σ(Γ) : λ ̸=

(
kπ

ℓe

)2
for all k ∈ N0 and ℓe, e ∈ E

}
and the non-vertex spectrum

σE(Γ) :=
{
λ ∈ σ(Γ) : λ =

(
kπ

ℓe

)2
for k ∈ N0 and ℓe, e ∈ E

}
.

I would like to point out that in some of the works cited above, the non-vertex spectrum
is referred to as Dirichlet-Spectrum. This is motivated by the fact that these eigen-
values occur if the associated eigenfunction fulfills some sort of Dirichlet condition at
the vertices. However, my impression is that not much attention is paid to the non-
vertex spectrum, especially not to the behavior of the associated eigenfunctions across
the edges. Therefore, we will carefully treat the non-vertex part of the spectrum and
propose a novel method to compute the associated eigenfunctions in the following sub-
section. Yet, for the remainder of this subsection, we focus on vertex eigenvalues and
their relation to discrete graph matrices.

We first show that the vertex eigenvalues of a non-equilateral graph can be found as
the solution of a so-called Nonlinear Eigenvalue Problem (NEP). The remarkable aspect
of this NEP is that it is a system of size n× n and its solution vector is only defined at
the vertices of Γ. This motivated us to choose the name vertex eigenvalues.
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5.1. Relation to Combinatorial Graph Spectra

Theorem 5.1.3. Let Γ be a compact metric graph. Then, λ ∈ σV(Γ) if and only if there
exists a nontrivial Φ ∈ Rn such that

H(λ)Φ = 0

where the matrix H(λ) ∈ Rn×n is given by

Hij(λ) :=


−
∑

e∈Evi
cot

(√
λ ℓe

)
if i = j

1
sin(

√
λ ℓe) if e = (vi, vj) ∈ E

0 otherwise.

(5.1.4)

Proof. The main part of the proof is equivalent to the first part of the proof of Theorem
3.1 in [AW] and is conducted according to the observations given in [BK13], Chapter
3.6.
In general, the solution of the eigenvalue problem (5.1.1) on each edge e = (vi, vj) has
the form

ϕe(x) = Ae cos
(√

λx
)

+Be sin
(√

λx
)
, x ∈ [0, ℓe] (5.1.5)

for λ > 0 and constants Ae, Be ∈ R. The eigenfunction ϕ on the whole metric graph is
then given by the collection {ϕe}e∈E .
In particular, the restriction Φ := ϕV ∈ Rn of ϕ to the vertices v ∈ V is well defined since
the eigenfunctions ϕ must be continuous on Γ. This implies that the boundary values
of (5.1.5) are given by ϕe(0) = Φ(vi) and ϕe(ℓe) = Φ(vj) (recall that e = (vi, vj), i.e.,
o(e) = vi and t(e) = vj). We may than reformulate (5.1.5) to determine the constants
Ae and Be in dependence of the boundary values and obtain

Φ(vi) = ϕe(0) = Ae

and
Φ(vj) = ϕe(ℓe) = Φ(vi) cos

(√
λ ℓe

)
+Be sin

(√
λ ℓe

)
,

i.e.,
Be = 1

sin(
√
λ ℓe)

(
Φ(vj) − Φ(vi) cos

(√
λ ℓe

))
.

Note that we excluded possible eigenvalues of the form λ =
(

kπ
ℓe

)2
for k ∈ N0 and

ℓe, e ∈ E guaranteeing that sin(
√
λℓe) ̸= 0. Substituting the constants finally yields that
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5. Computation of Quantum Graph Spectra

the eigenfunctions on the edges can be expressed in terms of the boundary conditions as

ϕe(x) = Φ(vi) cos(
√
λx) + 1

sin(
√
λ ℓe)

(
Φ(vj) − Φ(vi) cos(

√
λ ℓe)

)
sin(

√
λx)

= 1
sin(

√
λ ℓe)

(
Φ(vi) cos(

√
λx) sin(

√
λ ℓe) +

(
Φ(vj) − Φ(vi) cos(

√
λ ℓe)

)
sin(

√
λx)

)
= 1

sin(
√
λ ℓe)

(
Φ(vi)

(
cos(

√
λx) sin(

√
λ ℓe) − cos(

√
λ ℓe) sin(

√
λx)

)
+ Φ(vj) sin(

√
λx)

)
= 1

sin(
√
λ ℓe)

(
Φ(vi) sin(

√
λ(ℓe − x)) + Φ(vj) sin(

√
λx)

)
. (5.1.6)

Besides the continuity condition we used to reformulate each ϕe in terms of the boundary
values Φ(vi) and Φ(vj), we further need to guarantee that ϕ satisfies the conservation of
currents condition K(v) = 01 for all v ∈ V. Therefore, we consider the derivative

ϕ′
e(x) =

√
λ

sin(
√
λ ℓe)

(
cos

(√
λx
)

Φ(vj) − cos
(√

λ (ℓe − x)
)

Φ(vi)
)

and demand

∑
e∈Evi

ϕ′
e(vi) =

∑
vj∼vi

√
λ

sin(
√
λ ℓe)

(
Φ(vj) − cos

(√
λ ℓe

)
Φ(vi)

)
= 0 (5.1.7)

for all vi ∈ V. This is a necessary and sufficient condition for ϕ to be a nontrivial solution
of the eigenvalue problem and it is equivalent to

∑
vj∼vi

1
sin(

√
λ ℓe)

Φ(vj) −
∑

vj∼vi

cos(
√
λ ℓe)

sin(
√
λ ℓe)

Φ(vi) = 0

for all v ∈ V, or, in matrix form
H(λ)Φ = 0

with H as given in (5.1.4).

The fact that the eigenvalue problem on Γ can be reduced to an NEP as in Theorem
5.1.3 was also observed in [Kuc03], although no explicit characterization of H is given
and the NEP is not further investigated.

In the special case of an equilateral graph Γ, an even stronger relationship can be iden-
tified.

1(Ku)(v) :=
∑

e∈Ev

due
dx

(v), as defined in (2.2.12).
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5.1. Relation to Combinatorial Graph Spectra

Theorem 5.1.8. Let Γ be a compact, equilateral metric graph with edge length ℓ and
underlying combinatorial graph G. Then, λ ∈ σV(Γ) if and only if(

1 − cos
(√

λℓ
))

∈ σ(∆G)\{0, 2}

where ∆G = D−1L is the harmonic graph Laplacian of the underlying combinatorial
graph G.

Proof. The harmonic graph Laplacian acting on a discrete function u ∈ Rn on G takes
the form

∆Gu(vi) = u(vi) − 1
deg(vi)

∑
vj∼vi

u(vj).

Thus, setting ℓe = ℓ for all edges, we can simplify (5.1.7) in the proof of Theorem 5.1.3
to

∑
e∈Evi

ϕ′
e(vi) =

∑
vj∼vi

√
λ

sin(
√
λ ℓ)

(
Φ(vj) − cos(

√
λ ℓ)Φ(vi)

)
= 0

if and only if

∑
vj∼vi

(
Φ(vj) − cos(

√
λ ℓ)Φ(vi)

)
=
∑

vj∼vi

Φ(vj) − cos(
√
λ ℓ) deg(vi)Φ(vi) = 0

which is equivalent to

1
deg(vi)

∑
vj∼vi

Φ(vj) = cos(
√
λ ℓ)Φ(vi).

Adding Φ(vi) on both sides yields

Φ(vi) − 1
deg(vi)

∑
vj∼vi

Φ(vj) = Φ(vi) − cos(
√
λ ℓ)Φ(vi),

what we can finally rewrite as the eigenvalue equation ∆GΦ(vi) =
(
1 − cos

(√
λ ℓ
))

Φ(vi)
for all vi ∈ V.

I once more emphasize that Theorem 5.1.8 only applies if sin
(√

λ ℓ
)

̸= 0 since this
assured the representation of ϕe in terms of the boundary values to be well defined. We
will carefully treat the excluded non-vertex part of the spectrum in Subsection 5.2.2.
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5. Computation of Quantum Graph Spectra

5.2. Spectra of Equilateral Graphs

In this section, the computation of the vertex and non-vertex spectrum based on The-
orem 5.1.8 is studied for equilateral quantum graphs. The presentation is accompanied
by two minimal examples to illustrate the described method and derived patterns in
the spectrum of metric graphs. The results of this section have been prepared for the
manuscript [AW] and are partly published in [AW21]. However, several aspects have
been elaborated with additional details and more examples for this work.

5.2.1. Vertex Spectrum

In Theorem 5.1.8, we have only concentrated on the eigenvalues and somewhat neglected
the eigenfunctions. From the proof of Theorem 5.1.8, however, it directly follows that the
restriction of ϕ to the vertices is given by the eigenvectors Φ of ∆G . Slightly rephrased,
we would therefore like to state the following theorem.

Theorem 5.2.1. Let sin
(√

λ ℓ
)

̸= 0. Then, λ is an eigenvalue of Γ corresponding to
the eigenfunction ϕ defined by

ϕe = 1
sin
(√

λ ℓ
) (Φ(vi) sin

(√
λ(ℓ− x)

)
+ Φ(vj) sin

(√
λx
))

if and only if µ =
(
1 − cos

(√
λ ℓ
))

is an eigenvalue of ∆G corresponding to the eigen-
vector Φ = (Φ(v1), . . . ,Φ(vn))T .

Theorem 5.2.1 provides us with a simple procedure to compute an arbitrarily large part
of the lower vertex spectrum using only eigenvalues and eigenvectors of the discrete n×n
matrix ∆G .

Corollary 5.2.2. Any vertex eigenvalue λ and associated vertex eigenfunction ϕ can be
determined by the rule

λµ,k =


(

1
ℓ (arccos(1 − µ) + kπ)

)2
for k even(

1
ℓ (− arccos(1 − µ) + (k + 1)π)

)2
for k odd

(5.2.3)

and

(ϕµ,k)e(x) = 1
sin
(√

λµ,k ℓ
) (Φ(vi) sin

(√
λµ,k (ℓ− x)

)
+ Φ(vj) sin

(√
λµ,k x

))
(5.2.4)

where (µ,Φ) is an eigenpair of ∆G with µ ̸∈ {0, 2} and k ∈ N0.
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5.2. Spectra of Equilateral Graphs

Proof. Note that in order to avoid sin
(√

λµ,k ℓ
)

= 0, we need to exclude possible eigen-
values µ ∈ {0, 2} of ∆G . The assertion then directly follows from Theorem 5.2.1 and
rearranging by λµ,k.

In fact, as the eigenvalues of ∆G lie within the interval [0, 2], rule (5.2.3) naturally
provides us with bunches of eigenvalues coming in increasing order:

µ k λµ,k

µ ∈ (0, 2)

k = 0 λµ,0 =
(

1
ℓ (arccos(1 − µ))

)2
∈
(
0, (π

ℓ )2)
k = 1 λµ,1 =

(
1
ℓ (− arccos(1 − µ) + 2π)

)2
∈
(
(π

ℓ )2, (2π
ℓ )2

)
k = 2 λµ,2 =

(
1
ℓ (arccos(1 − µ) + 2π)

)2
∈
(
(2π

ℓ )2, (3π
ℓ )2

)
...

...

In general, λµ,k ∈ σV(Γ) lies in the interval
((

kπ
ℓ

)2
,
(

(k+1)π
ℓ

)2
)
. This motivates the

following definition.

Definition 5.2.5. The k-th bunch of vertex eigenvalues is given by

σV,k(Γ) := {λµ,k : µ ∈ σ(∆G)\{0, 2}}

with
σV,k(Γ) ⊆

((
kπ

ℓ

)2
,

((k + 1)π
ℓ

)2)
.

We will later be especially interested in σV,0(Γ) which contains all eigenvalues 0 < λ <(
π
ℓ

)2. Finally, we observe that the cardinality of each bunch can be determined a priori.

Corollary 5.2.6. For each k ∈ N0, the cardinality of σV,k(Γ) is given by

|σV,k(Γ)| =

n− 1, if Γ is not bipartite

n− 2, if Γ is bipartite.

Proof. For each eigenvalue µ ∈ σ(∆G) with µ ̸∈ {0, 2} we obtain exactly one λµ,k ∈
σV,k(Γ). The assertion follows from the fact that both eigenvalues 0 and 2 (if present)
are simple (Theorem 2.1.2).

In summary, Theorem 5.2.1 and the deduced procedure tell us that the values of the
vertex eigenfunctions at the vertices V of Γ are uniquely determined by the eigenvectors
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of the harmonic graph Laplacian matrix ∆G of the underlying combinatorial graph G. In
particular, this means that for a fixed eigenvalue µ ∈ σ(∆G), all vertex eigenfunctions as-
sociated to λµ,k, k = 0, 1, . . . assume the same values at the vertices. The behavior across
the edges can be resolved by the transformed eigenvalues (5.2.3), delivering increasingly
oscillating eigenfunctions for increasing k. These findings can be well illustrated by the
following two, very simple, example graphs.

Example 5.2.7. Consider the diamond graph Γdia with equilateral edge length ℓ = 1 as
introduced in Section 2.4. The harmonic graph Laplacian of the underlying combinatorial
graph Gdia is given by

∆Gdia =


1 −1

3 −1
3 −1

3
−1

2 1 −1
2 0

−1
3 −1

3 1 −1
3

−1
2 0 −1

2 1

 .

The eigenvalues of ∆Gdia are µ1 = 0, µ2 = 1, µ3 = 4
3 , µ4 = 5

3 , i.e., we have three
eigenvalues µ2, µ3, µ4 ̸∈ {0, 2}. Thus, for each k we obtain three vertex eigenvalues
λµ2,k, λµ3,k, λµ4,k that can be calculated by rule (5.2.3), see Figure 5.1. Note that the
bunches come in increasing order although the ordering inside the bunches does not need
to be increasing.

Figure 5.1.: Vertex eigenvalues of the diamond graph Γdia for k = 0, 1, 2, 3.

The corresponding vertex eigenfunctions are illustrated in Figure 5.2 where each row
corresponds to a discrete eigenvalue µ and each column to k = 0, 1, 2, 3. Observe that
the values of ϕµ,k at the vertices of Γdia are the same for each k. With increasing k,
the oscillation of the eigenfunctions on each edge increases. However, for a fixed µ, all
eigenfunctions ϕµ,k assume the same values at the vertices of the graph.
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5.2. Spectra of Equilateral Graphs

(a) Vertex Eigenfunctions ϕµ,k for µ = 1 and k = 0, 1, 2, 3.

(b) Vertex Eigenfunctions ϕµ,k for µ = 4
3 and k = 0, 1, 2, 3.

(c) Vertex Eigenfunctions ϕµ,k for µ = 5
3 and k = 0, 1, 2, 3.

Figure 5.2.: Vertex eigenfunctions of Γdia.
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Example 5.2.8. Consider a star graph Γstar with n = 5 vertices and equilateral edge
length ℓ = 1 as introduced in Section 2.4. The harmonic graph Laplacian

∆Gstar =



1 −1
4 −1

4 −1
4 −1

4
−1 1 0 0 0
−1 0 1 0 0
−1 0 0 1 0
−1 0 0 0 1


of the underlying combinatorial graph has eigenvalues

µ1 = 0, µ2 = 1, µ3 = 1, µ4 = 1, µ5 = 2.

Since Γstar is bipartite, 2 ∈ σ(∆Gstar) and we have to exclude the two eigenvalues µ1 = 0
and µ5 = 2. Moreover, the only eigenvalue with µ ̸∈ {0, 2} has multiplicity three. This
is why every bunch σV,k(Γstar) consists of three equal eigenvalues, see Figure 5.3.

Figure 5.3.: Vertex eigenvalues of the star graph Γstar for k = 0, 1, 2, 3.

Again, we observe that the eigenfunctions corresponding to the same discrete eigenvector
assume the same values at the vertices, see Figure 5.4.
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5.2. Spectra of Equilateral Graphs

(a) Vertex Eigenfunctions ϕµ,k for µ = 1 and k = 0, 1, 2, 3.

(b) Vertex Eigenfunctions ϕµ,k for µ = 1 and k = 0, 1, 2, 3.

(c) Vertex Eigenfunctions ϕµ,k for µ = 1 and k = 0, 1, 2, 3.

Figure 5.4.: Vertex eigenfunctions of Γstar.
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5.2.2. Non-Vertex Spectrum

We now turn to the so far neglected non-vertex spectrum, i.e., possible eigenvalues λ of
Γ with sin

(√
λℓ
)

= 0. So far, we do not know if eigenvalues of this form exist. Clearly,

if they exist, they have the form λ =
(

kπ
ℓ

)2
for k ∈ N0 and they need to fulfill (5.1.1).

We start our investigation with the most trivial case k = 0.

Theorem 5.2.9. Any given metric graph Γ has a simple eigenvalue λ = 0 corresponding
to a constant eigenfunction.

Proof. For λ = 0, a general solution of (5.1.1) on each edge has the form

ϕe(x) = Ae +Bex.

The continuity condition implies

ϕV(vi) = ϕe(0) = Ae and ϕV(vj) = ϕe(ℓ) = Ae +Be ℓ

for all e = (vi, vj) ∈ E where as usual ϕV is the restriction of ϕ to the vertices. We can
thus express ϕe in terms of the values at the vertices as

ϕe(x) = ϕV(vi) + ϕV(vj) − ϕV(vi)
ℓ

x.

Moreover, ϕ has to fulfill K(vi) = 0, i.e.,

∑
(vi,vj)∈E

ϕV(vj) − ϕV(vi)
ℓ

= −deg(vi)
ℓ

ϕV(vi) +
∑

vj∼vi

ϕV(vj)
ℓ

= 0

for all vi ∈ V which is equivalent to

LϕV = 0. (5.2.10)

Here, L is the graph Laplacian matrix of the underlying combinatorial graph. According
to Theorem 2.1.1, the only non-trivial solution of (5.2.10) is given by a constant ϕV , i.e.,
ϕV(vi) = ϕV(vj) for all vi, vj ∈ V. We conclude that

ϕe(x) = ϕV(vi) + ϕV(vj) − ϕV(vi)
ℓ

x = ϕV(vi) + ϕV(vi) − ϕV(vi)
ℓ

x = ϕV(vi)

for all e ∈ E , i.e., ϕ is a constant function on Γ.
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For λ > 0, a general solution of (5.1.1) on each edge e has the form

ϕe(x) = Ae cos
(
kπ

ℓ
x

)
+Be sin

(
kπ

ℓ
x

)
for x ∈ [0, ℓ] (5.2.11)

where the constants Ae, Be ∈ R need to be determined. Using the continuity condi-
tion on the vertices, we observe the following first result on the behavior of possible
eigenfunctions.

Lemma 5.2.12. Let k ∈ N, ϕ : Γ → R be defined by (5.2.11) for all e ∈ E. Then, ϕ is
continuous if and only if

ϕe(x) = ϕV(vi) cos
(
kπ

ℓ
x

)
+Be sin

(
kπ

ℓ
x

)
where ϕV is the restriction of ϕ to the vertices of Γ with

a) if k is even: ϕV is constant across the vertices,

b) if k is odd: ϕV(vi) = −ϕV(vj) for all adjacent vertices vi, vj. In particular, if Γ is
not bipartite, the only possible choice is ϕV(v) = 0 for all v ∈ V, i.e.,

ϕe(x) = Be sin
(
kπ

ℓ
x

)
.

Proof. a) For k even and an arbitrary edge e = (vi, vj) it holds that

ϕV(vi) = ϕe(0) = Ae cos(0) +Be sin(0) = Ae

and
ϕV(vj) = ϕe(ℓ) = Ae cos(kπ) +Be sin(kπ) = Ae.

Thus, ϕV(vi) = ϕV(vj) for all vi, vj ∈ V with vi ∼ vj . As Γ is connected, it follows that
ϕ is constant on the vertices of Γ. Further, we derive

ϕe(x) = ϕV(vi) cos
(
kπ

ℓ
x

)
+Be sin

(
kπ

ℓ
x

)
.

b) For k odd, the continuity condition reads ϕV(vi) = ϕe(0) = Ae and ϕV(vj) = ϕe(ℓ) =
−Ae. This is fulfilled for Ae = 0 implying ϕV = 0 and ϕe(x) = Be sin

(
kπ
ℓ x
)
. Moreover,

if Γ is bipartite, we can choose ϕV such that ϕV(vi) = −ϕV(vj) for every two incident
vertices vi, vj which leads to the second possible form of ϕe for bipartite graphs.
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In particular, Lemma 5.2.12 tells us how the non-vertex eigenfunctions at the vertices
of the graph must look like, namely

ϕV(vi) = ϕV(vj) for all vi, vj ∈ V

or
ϕV(vi) = −ϕV(vj) for all vi, vj ∈ V

where the last expression only has a nontrivial solution if Γ is bipartite. The remaining
condition to satisfy is the conservation of currents condition K(v) = 0 for all v ∈ V.
It turns out that there are several choices for the constants Be on the edges delivering
linear independent eigenfunctions ϕ fulfilling this requirement. One approach to study
the number of possible choices of Be is based on the idea of finding even and odd cycles
in a graph and was presented in von Below’s early work on eigenvalue problems on c2-
networks [vB85]. Here, however, we would like to take a less technical approach that
works completely without the search for cycles in graphs and on top of that even delivers
the values of Be as well as the values of ϕV . To achieve this, we will make use of the
extended graph, which was originally introduced for the discretization of Γ in Section
3.1.2, and the following simple observation given in [BK13].

Lemma 5.2.13. Let v be a vertex with degree two and u be a function on Γ with
ue ∈ H2(e) for both edges e incident to v. Let further ẽ be the edge that emerges upon
eliminating v and combining the two incident edges into one edge. Then, u satisfies the
Neumann-Kirchhoff condition at v if and only if uẽ ∈ H2(ẽ).

Proof ([BK13], Remark 1.4.2). The continuity condition ensures the continuity of u, and
the current conservation conditions the continuity of u′ at v. Therefore, the two adjacent
H2-pieces of u match into one H2-function on the combined edge.

Consequently, the insertion of artificial vertices of degree two does not affect the solutions
of the eigenvalue problem (5.1.1) on Γ. In this context, we now, with a slight abuse of
notation, define the extended graph in the following sense.

Definition 5.2.14. Let Γ be a metric graph with edge length ℓ. Then, Γ̃k with edge length
ℓ/(k + 1) is the extended graph that arises from the insertion of k artificial vertices on
each edge e ∈ E.
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Remark. We briefly state some properties of the extended graph we will occasionally
need in the following.

a) If Γ is equilateral, Γ̃k has equilateral edge length ℓ̃ = ℓ/(k + 1).

b) Γ̃k has ñ = n+ k ·m vertices.

c) If the number of artificial vertices k on each edge is odd, Γ̃k is bipartite.

By Lemma 5.2.13, we have that the eigenfunctions of Γ agree with the eigenfunctions of
the extended graph Γ̃. This turns out to be extremely useful due to the following simple
yet important fact.

Lemma 5.2.15. Every non-vertex eigenvalue λ =
(

kπ
ℓ

)2
of a metric graph Γ with length

ℓ is a vertex eigenvalue of the extended graph Γ̃k with k artificial vertices on each edge.

Proof. Γ̃k has edge length ℓ̃ = ℓ
k+1 , i.e., sin

(√
λ ℓ̃
)

= sin
(

k
k+1π

)
̸= 0. This means that

λ is a vertex eigenvalue of Γ̃k.

If we denote by ∆̃k := ∆G̃k
the harmonic graph Laplacian of the underlying combi-

natorial graph, we can thus use the extended graph to again construct the non-vertex
eigenfunctions by the eigenvectors of the discrete matrix ∆̃k.

Lemma 5.2.16. Let k ∈ N, Γ̃k be the extended graph to Γ with edge length ℓ̃ and let
λ =

(
kπ
ℓ

)2
∈ σE(Γ). Then, the eigenfunctions corresponding to λ on the edges ẽ of the

extended graph are given by

ϕ̃ẽ(x) = 1
sin
(√

λℓ̃
) (Φ̃(vi) sin

(√
λ(ℓ̃− x)

)
+ Φ̃(vj) sin

(√
λx
))

where Φ̃ is an eigenvector of the harmonic graph Laplacian ∆̃k corresponding to the
eigenvalue µ̃ = 1 − cos

(
k

k+1π
)
.

Proof. Follows directly from Lemma (5.2.15) and Theorem (5.2.1).

On the original edges e ∈ E , the eigenfunctions have the following form.

101



5. Computation of Quantum Graph Spectra

Theorem 5.2.17. Let λ =
(

kπ
ℓ

)2
be a non-vertex eigenvalue of Γ and Φ̃ be an eigen-

vector of the harmonic graph Laplacian ∆̃k associated to µ̃ =
(
1 − cos

(
k

k+1π
))

. Then,
a non-vertex eigenfunction of Γ corresponding to λ is given by

ϕe(x) = Φ̃(vi) cos
(
kπ

ℓ
x

)
+Be sin

(
kπ

ℓ
x

)
with

Be = 1
sin
(

k
k+1π

) (Φ̃(ve,1) − Φ̃(vi) cos
(

k

k + 1π
))

where ve,1 is the first artificial vertex on edge e.

Proof. We consider an arbitrary edge e = (vi, vj) in the original graph Γ. In the extended
graph Γ̃k, this edge is partitioned into k+ 1 edges (ve,0, ve,1), (ve,1, ve,2), . . . , (ve,k, ve,k+1)
where ve,0 := vi and ve,k+1 := vj . As λ is in the vertex-spectrum of Γ̃k, we obtain
by Lemma 5.2.16 that the corresponding eigenfunctions of the extended graph on each
partition (ve,r, ve,r+1) have the form

ϕ̃(ve,r,ve,r+1) = 1
sin
(√

λℓ̃
) (Φ̃(ve,r) sin

(√
λ(ℓ̃− x)

)
+ Φ̃(ve,r+1) sin

(√
λx
))

where Φ̃ is an eigenvector of ∆̃k corresponding to the eigenvalue µ̃ = 1 − cos
(

k
k+1π

)
.

On the other hand, by Lemma 5.2.13, we know that the eigenfunctions ϕ̃(ve,r,ve,r+1)

must agree with the non-vertex eigenfunctions ϕe of the original graph on each interval[
r ℓ

k+1 , (r + 1) ℓ
k+1

]
, which, in turn, have to fulfill the continuity condition on the vertices.

According to Lemma 5.2.12, a continuous function on edge e has the form

ϕe(x) = ϕV(vi) cos
(
kπ

ℓ
x

)
+Be sin

(
kπ

ℓ
x

)
where Be is constant on the edge e. With the arguments above we obtain that ϕ is a
non-vertex eigenfunction if

ϕV(vi) = ϕe (0) = ϕ̃(vi,ve,1) (0) = Φ̃(vi)

and ϕe

(
ℓ

k + 1

)
= ϕ̃(vi,ve,1)(ℓ̃) = Φ̃(ve,1),

i.e., Φ̃(ve,1) = ϕe

(
ℓ

k+1

)
= Φ̃(vi) cos

(
k

k+1π
)

+Be sin
(

k
k+1π

)
and consequently

Be = 1
sin
(

k
k+1π

) (Φ̃(ve,1) − Φ̃(vi) cos
(

k

k + 1π
))

.
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As pointed out earlier in this section, the multiplicity of non-vertex eigenvalues of a
metric graph was first treated in [vB85]. However, as already mentioned, a rather
theoretical derivation using the occurrence of cycles in a graph is presented there. We
will now demonstrate that our approach delivers a simple and straightforward proof
for the multiplicity of non-vertex eigenvalues by only counting the eigenvalues of the
extended harmonic graph Laplacian matrix. We start with the following lemma about
the occurrence of vertex-eigenvalues in the extended graph.

Lemma 5.2.18. The first k-bunches of vertex eigenvalues of Γ are contained in the first
bunch of vertex eigenvalues of Γ̃, i.e.,

k⋃
i=0

σV,i(Γ) ⊂ σV,0(Γ̃).

Proof. We first point out again that Γ and Γ̃ have the same eigenvalues. By definition,
σV,0(Γ̃) contains all vertex-eigenvalues of Γ̃ with λ <

(
π
ℓ̃

)2
=
(

π(k+1)
ℓ

)2
. Hence, it has

to contain all vertex-eigenvalues of Γ in
⋃k

i=0 σV,i(Γ).

In other words, if ∆G has p eigenvalues µ with λ ∈ σV(Γ), the harmonic graph Laplacian
of the extended graph with k artificial vertices has (k + 1)p such eigenvalues.

Corollary 5.2.19. The multiplicity of λ =
(

kπ
ℓ

)2
as an eigenvalue of Γ is given by



1, if k = 0

m− n+ 2, if k even

m− n, if k odd and Γ not bipartite

m− n+ 2, if k odd and Γ bipartite

where n is the number of vertices and m the number of edges of Γ.

Proof. We first suppose that Γ is not bipartite. For k = 0, it follows from Theorem
5.2.9 that a constant function across all edges is the only eigenfunction corresponding
to λ = 0. Hence, the multiplicity of 0 as eigenvalue is one. In total, ∆̃k = ∆G has n
eigenvalues. Since Γ is not bipartite, 2 ̸∈ σ(∆G). We deduce that the remaining n − 1
eigenvalues of ∆G correspond to the vertex spectrum of Γ. The multiplicities for k > 0
follow with the following observations for k = 1 and k = 2:

(k = 1): The extended graph has n + m vertices, which means that ∆̃k has n + m

eigenvalues. We know that 0 is an eigenvalue of ∆̃k with multiplicity one and
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that ∆̃k has 2 (n − 1) eigenvalues belonging to σV(Γ). Moreover, as k is odd, Γ̃k

is bipartite and therefore 2 appears in the spectrum of ∆̃k corresponding to the
quantum graph eigenvalue λ =

(
2π
ℓ

)2
. There remain (n+m) − (1 + 1 + 2n− 2) =

m− n eigenvalues belonging to λ =
(

π
ℓ

)2.

(k = 2): The extended graph has n+2m vertices. As elaborated for the case k = 1, ∆̃k

has eigenvalue µ = 0 with multiplicity 1 and 3(n−1) vertex eigenvalues. Moreover,
∆̃k has (m−n) eigenvalues corresponding to

(
π
ℓ

)2 and we already found λ =
(

2π
ℓ

)2

with multiplicity 1 in ∆̃k−1. The remaining (n+ 2m) − (1 + 1 + 3n− 3 +m−n) =
(m−n)+1 eigenvalues also belong to λ =

(
2π
ℓ

)2
which gives us a total of m−n+2.

If Γ is bipartite, µ = 2 is an eigenvalue of ∆G . Therefore, ∆̃k has only (k + 1)(n − 2)
eigenvalues belonging to the vertex spectrum of Γ and the claim follows with the same
arguments.

Thus, our results agree with the investigations of von Below in [vB85] although they
originate from a rather practical approach. It is now time to revisit the two example
graphs from the previous subsection and illustrate their non-vertex spectrum.

Example 5.2.20. Consider Γdia with equilateral edge length ℓ = 1 and its extended graph
Γ̃1 with equilateral edge length ℓ̃ = ℓ/2 = 1/2. The extended graph has ñ = n + m = 9
vertices and its harmonic graph Laplacian matrix has nine eigenvalues

µ̃1 = 0, µ̃2 = −
√

2 + 2
2 , µ̃3 = −

√
3 + 3
3 , µ̃4 = −

√
6 + 6
6 ,

µ̃5 = 1, µ̃6 =
√

6 + 6
6 , µ̃7 =

√
3 + 3
3 , µ̃8 =

√
2 + 2
2 , µ̃9 = 2.

Clearly, we have one simple zero eigenvalue and µ̃ = 2 since Γ̃1 is bipartite. Applying
formula (5.2.3) for k = 0 and ℓ̃ = ℓ/2 to the eigenvalues µ̃2, µ̃3, µ̃4 delivers exactly the
three vertex eigenvalues in the first bunch of σV,0(Γdia) of the original graph. It follows
one non-vertex eigenvalue λ =

(
π
ℓ

)2 =
(

1
ℓ̃

arccos(1 − µ̃5)
)2

and the second bunch of ver-
tex eigenvalues of the original graph corresponding to µ̃6, µ̃7, µ̃8.

The same considerations apply for growing extended graphs which we exemplary illustrate
in Figure 5.5 for Γ̃k, k = 1, 2, 3. To facilitate comparison, we plotted the first four bunches
of vertex eigenvalues of Γdia again in the first row. In the second row, we see the first
bunch of vertex eigenvalues for the extended graphs Γ̃1, Γ̃2, Γ̃3. We emphasized the non-
vertex eigenvalues of Γdia in a different color. Observe that σV,0(Γ̃3) contains all eigenval-
ues in

⋃3
i=0 σV,i(Γdia) plus five non-vertex eigenvalues λ5 = π2, λ9 = λ10 = λ11 = (2π)2
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Figure 5.5.: Vertex eigenvalues of the extended graphs of Γdia.

and λ15 = (3π)2. This is in accordance with the expected multiplicity of non-vertex eigen-
values we proved in Corollary 5.2.19, namely, for k odd, we obtain m− n = 1 and for k
even m− n+ 2 = 3 non-vertex eigenvalues.

Moreover, the eigenvectors of the extended harmonic graph Laplacian ∆̃1 deliver the
values of the non-vertex eigenfunctions on the vertices V1 of Γ̃1 which can be interpolated
over the edges using rule (5.2.4), see Figure 5.6. As it is trivial, we skipped the constant
eigenfunction corresponding to the first non-vertex eigenvalue λ = 0. The second non-
vertex eigenfunction is given for k = 1, i.e., λ = π2 in the left image of the upper row.
This function is zero on the vertices of the original graph, just like the second illustrated
non-vertex eigenfunction for k odd in the right image of the upper row. As in the vertex
case, we observe that the oscillation of ϕ across the edges increases for growing k. For k
even, the non-vertex eigenvalue (2π)2 occurs with multiplicity three and has three linear
independent associated eigenfunctions that are given in the lower part of the figure. Take
note that ϕV is constant for each of them.
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(a) k odd, k = 1, 3.

(b) k even, k = 2.

Figure 5.6.: Non-vertex eigenfunctions of Γdia separated by k odd and even.

Example 5.2.21. We repeat the previous discussion for the bipartite star graph Γstar

with equilateral edge length ℓ = 1. The extended graph Γ̃1 of Γstar has ñ = n + m = 9
vertices and m̃ = 2m = 8 edges with equilateral edge length ℓ̃ = ℓ/2 = 1/2. The harmonic
graph Laplacian of Γ̃1 has eigenvalues

µ̃1 = 0, µ̃2 = µ̃3 = µ̃4 = −
√

2 + 2
2 , µ̃5 = 1, µ̃6 = µ̃7 = µ̃8 =

√
2 + 2
2 , µ̃9 = 2.

Since k = 1 is odd, Γ̃1 is bipartite and we obtain the two simple eigenvalues µ̃1 = 0 and
µ̃9 = 2. Other than this, we have n−m+ 2 = 1 odd non-vertex eigenvalues arising from
µ̃5 and the first two bunches of vertex eigenvalues of the original graph corresponding to
µ̃2, µ̃3, µ̃4 and µ̃6, µ̃7, µ̃8.

In Figure 5.7, we illustrate this behavior for Γ̃1, Γ̃2 and Γ̃3. Again,
⋃3

i=0 σV,i(Γstar) ⊆
σV,0(Γ̃3), and we observe the multiplicity of the non-vertex eigenvalues to be one, which
also follows from Corollary 5.2.19 and the fact that Γstar is bipartite.
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Figure 5.7.: Vertex eigenvalues of the extended graph of Γstar.

In Figure 5.8, we plotted the non-vertex eigenfunctions for k = 1, 2, 3. We are now in
the interesting case that Γstar is bipartite and can thus observe the alternating behavior
of the eigenfunctions for k odd (λ ≈ 9.87e + 00 and λ ≈ 8.88e + 01). For k even, the
same holds true as for the non-bipartite case, i.e., the eigenfunction assumes the same
value at all the vertices.

Figure 5.8.: Non-vertex eigenfunctions of Γstar for k = 1, 2, 3.

To conclude this section, we want to emphasize that according to our definition and
notation, the eigenvalues come in increasing order with growing k. In particular, the
non-vertex eigenvalues exactly match in between the bunches of vertex eigenvalues.
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5.2.3. Aspects of Implementation

We first summarize the above considerations to compute an arbitrarily large lower part
of the spectrum with corresponding eigenfunctions in Algorithm 3 and, for the rest of
this subsection, discuss the implementation in detail step by step. The algorithm is
constructed in such a way that we obtain an ascending sequence of eigenvalues with
associated eigenfunctions.

Algorithm 3 Compute all eigenfunctions of Γ corresponding to λ <
(

kmaxπ
ℓ

)2
.

1: Compute all eigenpairs (µ,Φ) of ∆G
2: for k = 0, . . . , kmax − 1 do
3: if k even then
4: if k = 0 then ▷ non-vertex eigenfunction (ϕ0)
5: λ = 0, ϕ ≡ 1
6: else ▷ non-vertex eigenfunctions (ϕ E,even)
7: for Φ̃ with ∆̃kΦ̃ =

(
1 − cos

(
k

k+1π
))

Φ̃ do

8: λ =
(

kπ
ℓ

)2

9: ϕe = Φ̃(vi) cos
(√

λx
)
+ 1

sin( k
k+1 π)

(
Φ̃(ve,1) − Φ̃(vi) cos

(
k

k+1π
))

sin
(√

λx
)

10: end for
11: end if
12: for (µ,Φ) with µ ∈ σ(∆G)\{0, 2} do ▷ vertex eigenfunctions (ϕV)
13: λ = (1

ℓ (arccos(1 − µ) + kπ))2 ,

14: ϕe = 1
sin(

√
λ ℓ)(Φ(vi) sin(

√
λ(ℓ− x)) + Φ(vj) sin(

√
λx)).

15: end for
16: end if
17: if k odd then ▷ non-vertex eigenfunctions (ϕ E,odd)
18: for Φ̃ with ∆̃kΦ̃ =

(
1 − cos

(
k

k+1π
))

Φ̃ do

19: λ =
(

kπ
ℓ

)2

20: ϕe = Φ̃(vi) cos
(√

λx
)

+ 1
sin( k

k+1 π)
(
Φ̃(ve,1) − Φ̃(vi) cos

(
k

k+1π
))

sin
(√

λx
)

21: end for
22: for (µ,Φ) with µ ∈ σ(∆G)\{0, 2} do ▷ vertex eigenfunctions (ϕV)
23: λ = (1

ℓ (− arccos(1 − µ) + (k + 1)π))2 ,

24: ϕe = 1
sin(

√
λ ℓ)(Φ(vi) sin(

√
λ(ℓ− x)) + Φ(vj) sin(

√
λx)).

25: end for
26: end if
27: end for

We start with k = 0 and the simple zero eigenvalue λ = 0 with corresponding constant
eigenfunction in line 4. Next, in line 12-15, the first bunch of vertex eigenfunctions for
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k = 0 is computed and delivers all eigenvalues λ ∈
(
0,
(

π
ℓ

)2)
. We recall that here and

for all the following k, the number of computed vertex eigenfunctions is given by

#ϕV =

n− 1, if Γ is not bipartite

n− 2, if Γ is bipartite.
(5.2.22)

We now raise k to one and compute the non-vertex eigenfunctions corresponding to
λ =

(
π
ℓ

)2 in line 18-21. In Lemma 5.2.15, we observed that they appear as vertex eigen-
functions in the extended graph Γ̃k and thus can be constructed using the eigenvectors
Φ̃ of ∆̃k corresponding to the eigenvalue µ̃ =

(
1 − cos

(
k

k+1π
))
, compare Lemma 5.2.16.

These eigenvectors are given as the nontrivial solutions of

∆̃kΦ̃ = µ̃Φ̃.

For k odd, the number of non-trivial solutions, i.e., the number of eigenfunctions is given
by

#ϕ E,odd =

m− n, if Γ is not bipartite

m− n+ 2, if Γ is bipartite,

see Corollary 5.2.19. Subsequently, the second bunch of vertex eigenfunctions corre-
sponding to λ ∈

((
π
ℓ

)2
,
(

2π
ℓ

)2
)
, where the number of eigenfunctions is again given by

(5.2.22), is computed in line 22-25.
For k = 2, we enter the for loop in line 6-10 for the first time and compute the non-vertex
eigenfunctions corresponding to λ =

(
2π
ℓ

)2
using the extended graph equivalent to the

considerations for k odd. The number of obtained eigenfunctions is given by

#ϕ E,even = m− n+ 2

according to Corollary 5.2.19.

Eigenfunctions - Storage and Normalization

In practice, it is often not necessary and also not recommended to assemble the single
eigenfunctions as indicated in Algorithm 3. Instead, if we express both the vertex and
non-vertex eigenfunctions in the form ϕe = Ae cos

(√
λx
)

+Be sin
(√

λx
)
, we only have

to compute and store the constants Ae, Be for each edge. The non-vertex eigenfunctions
are already provided in this form and we recall that we have
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AE,k
e = Φ̃(vi), BE,k

e = 1
sin
(

k
k+1π

) (Φ̃(ve,1) − Φ̃(vi) cos
(

k

k + 1π
))

.

For the vertex eigenvalues, we note that

ϕV
e (x) = 1

sin
(√

λ ℓ
) (Φ(vi) sin

(√
λ(ℓ− x)

)
+ Φ(vj) sin

(√
λx
))

= Φ(vi) cos(
√
λx) + 1

sin(
√
λ ℓ)

(
Φ(vj) − Φ(vi) cos(

√
λ ℓ)

)
sin(

√
λx)

(as seen in the proof of Theorem 5.1.3) and thus obtain

AV,λ
e = Φ(vi), BV,λ

e = 1
sin(

√
λ ℓ)

(
Φ(vj) − Φ(vi) cos(

√
λ ℓ)

)
.

With this considerations in place, it is also trivial to compute the norms of the eigen-
functions, namely as

(ϕ, ϕ)Γ =
∑
e∈E

∫
e

(
Ae cos

(√
λx
)

+Be sin
(√

λx
))2

dx

where ∫
e

(
Ae cos

(√
λx
)

+Be sin
(√

λx
))2

dx

= 2(A2
e +B2

e )
√
λ ℓ+ (A2

e −B2
e ) sin(2

√
λ ℓ) + 2AeBe(1 − cos(2

√
λℓ))

4
√
λ

.

Eigendecomposition of the Harmonic Graph Laplacian

A computationally expensive part of Algorithm 3 is the eigendecomposition of the har-
monic graph Laplacian ∆G , which, in particular, is not symmetric. However, we pointed
out in Section 2.1.2 that ∆G is similar to the symmetric normalized graph Laplacian L.
Thus, whenever we need to compute the eigenpairs (µ,Φ) of ∆G , we proceed as follows:

1: Compute normalized graph Laplacian matrix L = D− 1
2 LD− 1

2

2: Compute all eigenpairs (µ,Υ) of L
3: Compute Φ = D− 1

2 Υ
The efficient computation of the eigenpairs of L was discussed in the course of a bach-
elor thesis [Sch] and the standard julia (or python) implementations have proven to
be very competitive. Nevertheless, we believe it is possible to find more efficient meth-
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ods exploiting the structure of the graph, such as algebraic multigrid methods, and we
highlight this as a possible future point for improvement.

Eigenvectors of the Extended Graph Laplacian Matrices

Of special interest are further the eigenvectors of the extended harmonic graph Laplacian
∆̃k corresponding to the eigenvalue µ̃ =

(
1 − cos

(
kπ
ℓ ℓ̃

))
=
(
1 − cos

(
k

k+1π
))

. Clearly,
we do not need to compute a complete eigendecomposition of ∆̃k but only need to find
Φ̃ with

∆̃kΦ̃ = µ̃ Φ̃

which is equivalent to solving (
∆̃k − µ̃ I

)
Φ̃ = 0. (5.2.23)

The nontrivial solutions Φ̃ of (5.2.23) can be found, for example, by a singular value
decomposition. However, our objective is to further simplify (5.2.23) using the structure
of the extended graph and the fact that we already have information about the first n
entries of Φ̃. This is because we have shown in Lemma 5.2.12 that the eigenfunctions
corresponding to non-vertex eigenfunctions are either constant or alternating on the
original vertices. In particular, once more we consider the symmetric system(

L̃k − µ̃I
)

Υ̃ = 0 (5.2.24)

where L̃k and Υ̃ have the block structure

L̃k =
(

L̃VV L̃VE

L̃EV L̃EE

)
, Υ̃ =

(
Υ̃V

Υ̃E

)
.

As in Section 3.1.2, we have chosen the subscripts such that they reflect if the respective
block corresponds to the original vertices V or the artificial vertices on the edges E .
Using the block structure, (5.2.24) can be rewritten as((

L̃VV L̃VE

L̃EV L̃EE

)
− µ̃I

)(
Υ̃V

Υ̃E

)
=
(

(L̃VV − µ̃I)Υ̃V + L̃VEΥ̃E

L̃EVΥ̃V + (L̃EE − µ̃I)Υ̃E

)
= 0. (5.2.25)

If Γ is not bipartite, ϕV ≡ c1 for a constant c ∈ R, i.e., Υ̃V = cD1/2
V 1, and (5.2.25) can

be simplified to (
L̃VE

L̃EE − µ̃I

)
Υ̃E = −

c(L̃VV − µ̃I)D1/2
V 1

cL̃EVD1/2
V 1

 .
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If Γ is bipartite, an equivalent simplification holds with ϕV = cΦn where Φn is the
(alternating) eigenvector corresponding to the eigenvalue 2. We point out that the
above considerations for the computation of Φ̃ have been studied in collaboration with
a bachelor student and are also summarized in more detail in his thesis [Sch].
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5.3. Spectra of Non-Equilateral Graphs
The following subsection is based on modified and unmodified passages of the manuscript
[DW23b]. The idea and the manuscript were developed in joint work with Chong-Son
Dröge, a master student working under my supervision. We both contributed equally to
the conceptualization and the formulation of the manuscript as well as the design and
implementation of numerical experiments. However, for this work, I have partly changed
the outline and structure in order to give more examples and a more detailed derivation
of the ideas that led to the proposed ansatz.

As derived in Section 5.1, the computation of quantum graph vertex eigenvalues for
non-equilateral metric graphs can be reduced to solving a Nonlinear Eigenvalue Problem
(NEP): Find λ > 0 such that there exists a nontrivial Φ ∈ Rn with

H(λ)Φ = 0 (5.3.1)

where H(z) ∈ Rn×n is defined by

Hij(z) :=


−
∑

e∈Evi
cot (

√
z ℓe) , if i = j

1
sin(√

z ℓe) , if e = (vi, vj) ∈ E

0 otherwise.

Clearly, (5.3.1) has a nontrivial solution Φ only if H(z) is singular. In other words, we
are looking for z > 0 with

det(H(z)) = 0 (5.3.2)

and we are in search of an efficient method to compute the roots of det(H(z)). Note
that we introduced z to differentiate between the variable z and the eigenvalue λ.
In the context of NEPs, various methods have been developed to tackle this problem, see
for example [GT17] for a detailed review. In particular, a common ansatz are methods
based on linearization which include an approximation of (5.3.1) by a polynomial NEP.

We want to present a different strategy here by exploiting the fact that the spectrum
of equilateral graphs can be computed in a highly efficient way. The approach relies on
the assumption that we can find a good approximation of a non-equilateral graph by
an equilateral graph. The eigenvalues of this equilateral approximation are then used as
initial guesses for the numerical solution of (5.3.2).
The computation of non-equilateral quantum graph eigenvalues using an approximation
with an equilateral graph has also been proposed in [Hof21], yet not in the context of the
NEP (5.3.1), see also Section 5.3.4. I wish to point out that our approach was developed
independently and the manuscript [Hof21] was only found by us afterwards.
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To support the assumption that non-equilateral graphs can be approximated by equilat-
eral ones, the following exposition will be preceded by some motivational thoughts and
examples. These are intended to help the reader following the subsequent presentation.
We then briefly outline a Newton-trace iteration to find the roots of (5.3.2). In the main
part of this subsection, we discuss different types of equilateral approximations and how
to utilize them to generate initial guesses for the Newton-trace iteration.
We point out that the following survey is to be understood as a first attempt to solve
our problem. We are convinced that the development of more sophisticated methods
leading to more efficient solvers for our type of NEPs is an exciting objective of future
work which we will continue to pursue.

5.3.1. Motivation

As we have already learned in Lemma 5.2.13, the elimination or insertion of vertices
of degree two on the edges does not influence the spectrum of the quantum graph.
Intuitively, the idea arises to approximate Γ by an extended graph with equilateral edge
length, as illustrated in Figure 5.9. The spectrum of this equilateral graph can then
easily be computed by the method proposed in the previous section.

ℓ1 = 2 ℓ3 = 6

ℓ2 = 4

equilateral edge length ℓ̃ = 2

Figure 5.9.: Extended equilateral graph [DW23b].

Clearly, if Γ has integer edge lengths as in the illustration, we cannot only find an
approximation but an exact representation of Γ by constructing an extended graph with
equilateral edge length according to the greatest common divisor of the edge lengths. In
the worst case, this is one resulting in a large extended graph, especially when the range
of the edge lengths is large. A similar strategy can be applied to any graph with rational
edge lengths. However, if the greatest common divisor strategy results in a too large
expansion as well as for graphs with general edge lengths ℓe ∈ R, we have to work with
an approximation instead of an exact representation Γ, see for example Figure 5.10.

ℓ2 = 2.8

ℓ1 =
√

2

ℓ2 = 1.4ℓ3 = 1.4

ℓ1 = 1.4

Figure 5.10.: Equilateral approximation graph [DW23b].
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Even if it appears to be reasonable at first, we cannot assume that these approximations
also provide good estimates of the eigenvalues. Changing the edge lengths could cause
new effects in the spectrum and deviations from the patterns found for equilateral graphs.
We therefore start this section with a simple motivational experiment: Given an initial
graph Γ with equilateral edge length, we construct a graph Γ′ with the same underlying
combinatorial graph but with slightly different and, in particular, non-equilateral edge
lengths. We then compare a fixed part of their lower eigenvalues to investigate the effect
of the deviations on the spectrum.
Let us start with the simple graph Γdia with n = 4 vertices and m = 5 edges and assign
a basic edge length ℓ = 1 to all edges. As a first modified graph Γ′

dia, we choose a copy
of Γdia and only vary the length of edge ℓ2 = 1 to ℓ′2 = 1.1 as illustrated below:

v4 v3

v1 v2

ℓ5

ℓ3

ℓ1

ℓ4ℓ2
Γdia → Γ′

dia

v4 v3

v1 v2

ℓ5

ℓ3

ℓ1

ℓ4ℓ′
2

Note that the spectrum of Γ′
dia can be calculated exactly by constructing its extended

graph with equilateral edge length 0.1. In the upper left plot of Figure 5.11, we compare
the first 12 eigenvalues of Γdia and Γ′

dia. The spectra of three other variations Γ′
dia

are illustrated in the remaining figures, where the edge lengths of Γ′
dia are modified as

indicated in the legends.

Figure 5.11.: Patterns in equilateral and non-equilateral graph spectra of Γdia. Note that
the red dots are not visible beyond the blue ones if the eigenvalues agree.
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Before we turn to the discussion of the findings in Figure 5.11, we repeat the experiment
with a bipartite graph, the star graph Γstar with n = 5 and m = 4, see Figure 5.12.

Figure 5.12.: Patterns in equilateral and non-equilateral graph spectra of Γstar.

In general, for all four scenarios of lengths variation, the smaller eigenvalues of Γ can
be approximated by Γ′ much better than the larger eigenvalues. If only one edge length
is modified (i.e., upper row of Figure 5.12 and Figure 5.11), the difference between the
eigenvalues of Γ and Γ′ grows with increasing distance of the edge lengths. Interestingly,
the stretching of the edge in both examples causes the eigenvalues to become smaller.
This is consistent with what we expect from a diffusion process on a graph with enlarged
edge lengths: the state of equilibrium is reached later.
If we vary more than one edge length, not only the values of the eigenvalues show a
higher deviation but also the patterns are further disturbed. If we enlarge one edge and
simultaneously shrink another one, the patterns seem to match “better” again. However,
we can now observe a deviation in both directions, i.e., some eigenvalues are larger and
some are smaller. In the experiments before, where we exclusively enlarged the edge
length, we observed that the eigenvalues of Γ always approximate the eigenvalues of Γ′

from below. In fact, this observation will later be a key assumption and instrument for
our proposed algorithm.

5.3.2. Newton-Trace Iteration

Let us now turn back to the nonlinear eigenvalue problem (5.3.1) which can be refor-
mulated as the root-finding problem (5.3.2). Since we have to evaluate H for different z
frequently, we first consider an efficient way to assemble H(z).
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Lemma 5.3.3. For a given metric graph Γ with edge lengths ℓ and incidence matrix N,
the matrix H corresponding to the NEP (5.3.1) is given by

H(z) = diag
({(

NW1(z)NT
)

ii

}n

i=1

)
− NW2(z)NT + diag

({(
NW2(z)NT

)
ii

}n

i=1

)
with

W1(z) = diag
({

− cot
(√
z ℓe

) }
e∈E

)
and W2(z) = diag

({
− 1/sin

(√
z ℓe

)}
e∈E

)
.

Proof. We separate H(z) in H1(z) + H2(z) where H1(z) contains the diagonal and
H2(z) the off-diagonal entries. H2(z) is the weighted adjacency matrix of Γ with
edge weights w2(e) = 1

sin(√
z ℓe) . It can be described as H2(z) = −NW2(z)NT +

diag
({(

NW2(z)NT
)

ii

}n

i=1

)
with W2(z) as given above. On the other hand, the ma-

trix H1(z) containing the diagonal entries is the degree matrix of the graph Γ with edge
weights w1(e) = − cot (

√
z ℓe) and thus given as H1(z) = diag

({(
NW1(z)NT

)
ii

}n

i=1

)
with W1(z) defined in the assertion.

However, it would be very optimistic to tackle this problem with a classical itera-
tive root-finding algorithm since we are facing a highly nonlinear problem, compare
Figure 5.13. And, of course, each iteration of a classical iterative solver is very expensive
due to the evaluation of the determinant.

Figure 5.13.: Determinant of H(z) for z ∈ [0, 9] for a random example graph with 5
vertices and 6 edges (illustration from [DW23a]).

To overcome the latter, [GT17] describes one popular approach to compute the roots
of (5.3.2) by the Newton-trace method given in [Lan66]. This can be easily derived by
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considering the standard Newton iteration for det(H(z)) given by

zj+1 = zj − det(H(zj))
(det(H(zj)))′ .

For det(H(z)) ̸= 0, the trace theorem (e.g. [Lan64], p.390, (7)) allows us to find the
derivative of det(H(z)) as

det(H(z))′ = det(H(z)) trace(H−1(z) H′(z))

provided that the entries of H(z) are differentiable functions of z. The Newton iteration
then simplifies to the Newton-trace iteration

zj+1 = zj − 1
trace(H−1(zj) H′(zj)) . (5.3.4)

The key to an efficient application of (5.3.4) are suitable initial guesses. This is in
particular important for our problem since we are searching for more than one root and
we do not know the amount of the roots in a given interval a priori. As indicated at the
beginning of this section, our objective will be to apply the eigenvalues of equilateral
approximations to start the Newton iteration.
Remark. In fact, (5.3.4) is still a rather expensive iteration and there exist several other
approaches to apply modified Netwon methods for our problem, for example based on
QR-decomposition or a nonlinear inverse iteration applied directly to the vector equation
(5.3.1), see again [GT17] for a review. However, we will restrict ourselves to the simple
Newton-trace iteration and in the remainder of this section focus on the derivation of
initial guesses to ensure fast convergence.

5.3.3. Approximation via Equilateral Graphs

In this section, we concretize the ideas presented in the motivation in Section 5.3.1 and
discuss some numerical findings on the computation of non-equilateral graph spectra by
equilateral approximations and the subsequent improvement via Netwon-trace iterations.
The main result of this subsection is the formulation of a Nested Iteration Algorithm to
efficiently compute initial guesses. In practice, the main challenge will be to find the
best trade-off between the accuracy of the initial guesses and the number of required
Newton-trace iterations.

The following definition adapted from [KS02] is useful for our investigations.
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Definition 5.3.5. For any metric graph Γ, we define its cleaned graph clean(Γ) by
removing all vertices of degree two and combining the two incident edges to one combined
edge.

The cleaned graph clean(Γ) and Γ have the same spectrum but not the same underlying
combinatorial graph G. Let us define an equilateral approximation of Γ as follows.

Definition 5.3.6. Let Γ be a non-equilateral metric graph with edge lengths ℓ and un-
derlying combinatorial graph G. An equilateral approximation of Γ is a graph Gh with
equilateral edge length h such that clean(Gh) has underlying combinatorial graph G and
edge lengths lh ≈ ℓ.

We further introduce the distance of Γ and its equilateral approximation Gh.

Definition 5.3.7. Let Γ be a non-equilateral, clean metric graph with edge lengths ℓ and
Gh an equilateral approximation of Γ. Then, we define the distance between Γ and Gh

as
dist(Γ,Gh) = ∥ℓ − lh∥

with ∥ · ∥ = ∥ · ∥2.

Note that Γ and clean(Gh) have the same edges, i.e., ℓ − lh is well defined.

The main question is now whether the eigenvalues of Gh converge to the eigenvalues of
Γ for dist(Γ,Gh) → 0. In the scope of this work, we only tackle this question from a
numerical perspective and thus are in need of a sequence of equilateral approximations
{Gh}h∈R+ such that dist(Γ,Gh) → 0 for h → 0 for a given metric graph Γ.

As a first attempt, we propose the following heuristic:
for J = 1, 2, . . . do

Set h = 2−J

Initialize l ∈ Rm

for e ∈ E do
Compute Ne = round(ℓe/h)
Set (l)e = h ·Ne

end for
Compute Gh as extended graph of (V, E) with equilateral edge length h

end for
In other words, our aim is to approximate each edge e by subdivisions of length h and we
choose the number of subdivisions Ne for each edge such that h ·Ne ≥ ℓe or h ·Ne ≤ ℓe,
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depending on which choice delivers a cleaned edge length closer to the original length ℓe,
compare Figure 5.14. In this context, we also speak of a rounded equilateral approxima-
tion and denote the resulting graphs by Gh according to the lengths of the subdivisions,
i.e., the lengths of the edges in Gh.

ℓ1 = 0.9

ℓ2 = 1.2

non-equilateral graph Γ
l1 = 1

l2 = 1

Gh with h = 2−1
l1 = 1

l2 = 1.25

Gh with h = 2−2
l1 = 0.875

l2 = 1.25

Gh with h = 2−3

Figure 5.14.: Rounded equilateral approximations.

Let us start with a first numerical experiment comparing the spectra of Γ and Gh con-
structed according to the heuristic above for h → 0.

Example 5.3.8. We consider four example graphs Γdia,Γstar,Γcircle and ΓBA where
Γcircle is a cycle graph with n = 4 vertices and m = 4 edges and ΓBA was generated
with n = 10 vertices and d = 3. We equip the edges of each of the graphs with a
random length between 1 and 2, rounded to three decimal digits. The exact eigenvalues
of the non-equilateral graphs can thus be calculated by subdividing each edge in pieces
of length 0.001. In Figure 5.15, we illustrate the absolute difference between the first
non-zero eigenvalue λ2(Γ) of the exact graph and the first non-zero eigenvalue λ2(Gh)
of the equilateral approximations Gh for h = 2−J , J = 1, . . . , 9.

Figure 5.15.: Approximating the spectral graph of the four example graphs from Exam-
ple 5.3.8 via rounded equilateral approximations.
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We thereby already found an example showing that |λ2(Γ)−λ2(Gh)| ̸≤ |λ2(Γ)−λ2(Gh′)|
for h < h′, i.e., that eigenvalues of closer graphs are not necessary better approximations.

In our second approach, we want to learn from the observations in the motivational
examples where we have seen that the eigenvalues seem to be approximated from below
or above depending on whether the edges of the approximating graph are longer or
shorter than the original ones. This motivates the following definition.

Definition 5.3.9. An equilateral approximation of Γ is referred to as equilateral floor
approximation if lh − ℓ ≤ 0, i.e., if any edge length of the approximation is shorter than
the edge length of the exact graph. Equivalently, we use the terminology equilateral ceil
approximation if all edge lengths are longer.

The computation of floor and ceil equilateral approximations can be easily done by a
slight modification in the previous heuristic and is summarized in Algorithm 4 and 5.

Algorithm 4 Floor approximation
for J = 1, 2, . . . do

Set h = 2−J , Initialize l ∈ Rm

for e ∈ E do
Compute Ne = floor(ℓe/h)
Set (l)e = h ·Ne

end for
Compute extended graph Gfl,h

end for

Algorithm 5 Ceil approximation
for J = 1, 2, . . . do

Set h = 2−J , Initialize l ∈ Rm

for e ∈ E do
Compute Ne = ceil(ℓe/h)
Set (l)e = h ·Ne

end for
Compute extended graph Gce,h

end for

And, in fact, repeating the previous example with a sequence of floor and ceil approxi-
mations shows better approximation properties.

Example 5.3.10. Consider the four example graphs Γdia,Γstar,Γcircle and ΓBA from Ex-
ample 5.3.8 with randomly chosen edge lengths between 1 and 2, rounded to three decimal
digits. The approximation quality of the first non-zero eigenvalue λ2(Γ) by an equilateral
floor and ceil approximation are displayed in Figure 5.16.
Moreover, we compared the first 50 eigenvalues of the exact graphs with the first 50 eigen-
values of Gfl,h and Gce,h and exemplary illustrate the absolute error |λi(Γ) − λi(Gh)| for
h = 2−4, 2−6, 2−8 and all example graphs in Figure 5.17. For each graph, the ceil approx-
imations approach the eigenvalues from below while the eigenvalues of floor approxima-
tion from above. Consistent with the results in Figure 5.16, the approximation quality
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Figure 5.16.: Approximating the spectral gap of the four example graphs from Example
5.3.10 via equilateral floor and ceil approximations.

increases for decreasing h and thereby decreasing distance dist(Γ,Gh). Higher eigen-
values exhibit a larger deviation as we have already seen in the motivational examples.

Figure 5.17.: Equilateral floor and ceil approximation of the first 50 eigenvalues of the
four example graphs from Example 5.3.10.

So far, our findings suggest the possibility of approaching the eigenvalues up to arbi-
trary precision by using an equilateral floor or ceil approximation of the exact graph. It
remains to further investigate this assumption from a theoretical point of view and to
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develop corresponding error estimates which will be objective of future work. However,
also from the computational side, there arise several challenges we will address in the
remainder of this section.

We need to keep in mind that although the equilateral eigenvalue problem can be solved
exactly, its complexity massively grows for h → 0. The previous section has shown that
the equilateral eigenvalues are given by the (transformed) eigenvalues of the normalized
graph Laplacian matrix of Gh. If we denote by Lh the normalized graph Laplacian
matrix of Gh, this means we have to solve the discrete eigenvalue problem

LhΦh = µhΦh.

Approximating the edges Γ with a lot of subdivisions Ne massively enlarges this system,
quickly leading to the limits of a classical eigenvalue solver. First numerical experiments
even showed that, for small h, standard julia or python implementations of sparse
solvers fail to converge within a moderate number of iterations already for simple graphs
like the star graph from the previous example.
Our objective is to overcome this problem with a nested iteration approach. This method
is originally known from the solution of systems of linear equations arising from the dis-
cretization of PDEs. In brief, the idea is to use the solution obtained by a discretization
with a coarser grid as starting vector for an iterative solver applied to the larger objective
system. It seems to be natural to apply a similar strategy here since our hypothesis is
that the eigenvalues of Gh are a good approximation of the eigenvalues of Gh/2, espe-
cially for h → 0.
To formalize the idea, recall that since Gh is equilateral, the following relation between
the eigenvalues of Gh and L derived in Theorem 5.1.8 holds true:

µh = 1 − cos
(√

λ(Gh)h
)
.

Supposing λ(Gh) is a good approximation for λ(Gh/2), then 1−cos
(√

λ(Gh)h/2
)

should
be a good approximation of µh/2. Therefore, we want to apply it as shift value σ for an
inverse iteration to find the eigenvalues of Lh/2.
The nested iteration eigenvalue algorithm is summarized in Algorithm 6. Note that in
the practical implementation, we always searched the three eigenvalues closest to the
shift value in order to guarantee, that no eigenvalues are missed.

Recall that the actual goal was to utilize equilateral approximations to generate suitable
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Algorithm 6 Nested Iteration Eigenvalue Algorithm
Input metric graph Γ, number of eigenvalues Q, startlevel J0

Output λfl,q and λcl,q, q = 1, . . . , Q

For h = 2−J0 , compute first Q eigenvalues of Gfl,h and Gcl,h by sparse eigenvalue solver
for J = J0 + 1, J0 + 2, . . . do

Set h = 2−J

Compute floor and ceil graphs Gfl,h and Gcl,h by Algorithm 4, 5
for q = 1, . . . , Q do

Compute eigenvalues µfl,q of Lfl,h and µcl,q of Lcl,h by inverse shift iteration
with

σfl =
(

1 − cos
(√

λ
(J−1)
fl,q

))
and

σcl =
(

1 − cos
(√

λ
(J−1)
cl,q

))
Compute quantum graph eigenvalues

λJ
fl,q =

(1
h

(arccos(1 − µfl,q))
)2

and λJ
cl,q =

(1
h

(arccos(1 − µcl,q))
)2

end for
end for
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initial guesses for a Newton-trace iteration and not as stand-alone approximation. It
remains to investigate how good the approximations via equilateral graphs need to be
to obtain a fast converging Newton-trace iteration. We address this question with two
numerical experiments in Section 6.2.3.

5.3.4. Alternative Approaches and Outlook

Although not in the context of NEPs, the approximation of non-equilateral graph spec-
tra by equilateral graphs has been studied in [Hof21] and an error estimate has been
derived under the assumption that the total length vol(Γ) of the non-equilateral graph
is preserved by its equilateral approximation. However, the construction of a total length
preserving approximation that can be represented by an equilateral extended graph leads
to a constrained optimization problem, a so-called Simultaneous Diophantine Approxi-
mation (SDAP). In contrast, our approach relies on a fast and easy heuristic to compute
a sequence of approximation graphs, which, combined with a nested iteration approach,
can be utilized to develop an efficient method to approximate non-equilateral graph
eigenvalues by equilateral graphs. Moreover, the subsequent Newton-iteration guaran-
tees the convergence to an eigenvalue and relieves the necessity of constructing arbitrary
good equilateral approximations. Nevertheless, it will be subject to future research to
derive similar error bounds for our type of floor and ceil approximations and to compare
the different approximation techniques in practice.

On the other hand, we can also choose a classical approach to solve the NEP (5.3.1)
without the equilateral graph approximations at all. This could be a method based on
linearization where H is, for instance, interpolated by Chebyshev polynomials. The re-
sulting polynomial NEP can be reduced to a generalized linear eigenvalue problem and
the solutions of this problem should in turn be good approximations of the original NEP
and therefore can be applied to start, for example, the Newton-trace iteration. There-
fore, in collaboration with Chong-Son Dröge, this work will be followed by an intense
study of suitable polynomial approximations in comparison to the equilateral approxi-
mations we proposed here.

At this point, we want to address the algorithm proposed by Brio et. al in [BCK22],
that we already outlined in the introduction, again. In principle, the idea also ex-
plores that the solution of the eigenvalue problem on each edge has the form ϕe(x) =
Ae cos(

√
λx) + Be sin(

√
λx) (as in our deviation of the NEP). However, they choose

an edge based approach and impose two conditions per edge (corresponding to the
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5. Computation of Quantum Graph Spectra

Neumann-Kirchhoff conditions) to determine the coefficients Ae and Be. In fact, this
also results in a nonlinear eigenvalue problem but with a coefficient matrix M(z) of size
2m × 2m (which, since usually m ≫ n, is computationally more expensive than ours).
The algorithm they propose to solve this problem, besides a rather laborious assembling
of the coefficient matrix, involves at one step to plot the reciprocal condition number
of M(z) and to graphically estimate the lower bound of the spacing between the eigen-
values. Thereupon, this is applied to define subintervals on which a line minimization
algorithm can find λ as the roots of the reciprocal condition number. However, due
to the manual processing required, we did not further compare it numerically to our
proposed method.

Last but not least, yet another totally different ansatz is the vertex scattering approach.
In a nutshell, a 2m × 2m bond scattering matrix S

(√
λ
)

describes the scattering of
waves at the vertices of the graph [BK13]. The eigenvalues λ can then be found as the
solutions of the secular equation det

(
I − S

(√
λ
)

ei
√

λL
)

= 0. In this expression, L is a
diagonal matrix containing the edge lengths (twice, since each edge is considered as bond
with an in- and outgoing direction). In [Sch06], it is claimed that though being of size
2m× 2m, the structure of the coefficient matrix in the scattering approach admits some
favorable properties and, in fact, a spectral counting function to compute the number
of eigenvalues less than or equal to a given value K is derived. However, the spectral
counting function in each call requires a diagonalization of the bond scattering matrix
at wave number K. It is one of our future objectives to investigate if this approach can
be exploited in the context of our algorithm.
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6. Numerical Results

The theoretical investigations of the previous sections are verified, underlined and ex-
tended by various numerical experiments. We start with the finite element method,
followed by experiments on graph spectra and numerical results for spectral solutions.

6.1. Finite Element Discretization

6.1.1. Convergence of Finite Element Semidiscretization

As introductory examples, we consider a finite element discretization of Test Problem
2.4.2 and Test Problem 2.4.3. Those problems are of the form

Hu+ u = f (6.1.1)

subject to Neumann-Kirchhoff conditions on the star graph Γstar and the diamond graph
Γdia. The finite element discretization of (6.1.1) with step size h leads to a system of
linear equations

L̂huh + M̂huh = f̂ h (6.1.2)

with L̂, M̂ and f̂ as in Theorem 3.2.7. System (6.1.2) is solved for h = 2−J , J = 3, . . . , 10.
The error of the finite element approximation uh for both test problems and the various
step sizes h, measured in the H1(Γ)- and L2(Γ)-norm, are illustrated in Figure 6.1.
Observe the quadratic decay of the L2(Γ)- as well as a linear decay of the H1(Γ)-error.

(a) Test Problem 2.4.2 (Γstar). (b) Test Problem 2.4.3 (Γdia).

Figure 6.1.: Finite element discretization error for Hu+ u = f on Γstar and Γdia.
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Let us now turn to the parabolic test problems 2.4.4 and 2.4.6. This was the heat
equation

∂

∂t
u+ Hu = 0 (6.1.3)

under Neumann-Kirchhoff conditions posed on the star and diamond graph. The initial
conditions of these problems are eigenfunctions since in this case, the exact solution can
be determined explicitly. A finite element semidiscretization of (6.1.3) with step size h
leads to the system of ordinary differential equations

d
dtM̂uh(t) + L̂huh(t) = 0. (6.1.4)

For the present experiment, we compute the exact solution of (6.1.4) at time t = 0.1 via
the matrix exponential as

uh(t) = exp(−t M̂−1
h L̂h) u0

h

for h = 2−J , J = 3, . . . , 10. Then, u0
h denotes the discrete initial condition on the

respective extended graph.
The L2(Γ)- and H1(Γ)-error of the finite element approximation with respect to the
exact solution is evaluated for the various step sizes. We conducted the computations
both with the exact mass matrix and the diagonal approximation via the trapezoidal
rule (compare Lemma 3.2.9). The results are displayed in Figure 6.2 and Figure 6.3. The
quadratic, respectively linear, decay of the error is confirmed by the achieved results.
Of course, we have repeated the experiment with several other eigenfunctions as initial
conditions leading to the same convergence rates.

(a) Exact mass matrix. (b) Mass matrix approximation.

Figure 6.2.: Convergence of the finite element approximation for Test Problem 2.4.4
(parabolic test problem on Γstar).
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6.1. Finite Element Discretization

(a) Exact mass matrix. (b) Mass matrix approximation.

Figure 6.3.: Convergence of the finite element approximation Test Problem 2.4.6
(parabolic test problem on Γdia).

6.1.2. Crank-Nicolson Multigrid Method

We revisit the two parabolic test problems 2.4.4 and 2.4.6 but now solve the resulting
(linear) ODE with an implicit time stepping method. To increase the order of conver-
gence, we do not utilize the implicit Euler method as outlined in Section 3.3 but apply
the trapezoidal rule resulting in the iteration(

M̂J + 1
2∆t L̂J

)
ut+1

J =
(

M̂J − 1
2∆tL̂J

)
ut

J . (6.1.5)

The SLE (6.1.5) is solved with the multigrid algorithm proposed in Section 3.3.2 (Al-
gorithm 2) with coefficient matrix BJ := (M̂J + 1

2∆t L̂J), CJ := (M̂J − 1
2∆tL̂J) and

bt
J := 0 (CN-MGM). As a smoother, a weighted Jacobi method is applied. We work

with the discretization level J = 10, the coarsest level is always J0 = 0.

Figure 6.4.: Convergence of the multigrid algorithm for different θ.
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For different numbers of time steps θ, the approximate solution uθ
J = u0+θ∆t

J is com-
puted by the application of the CN-MGM both using the V-cycle and W-cycle. The
approximate solution uθ

J is compared to the solution obtained by θ iterations (6.1.5)
with a direct solver. In Figure 6.4, the resulting error for the V-cycle is illustrated for
Test Problem 2.4.4. The W-cycle already converged after two iterations.
The previous computations are performed for ∆t = h. As pointed out by Hackbusch
in [Hac84], we observed that the convergence of the multigrid method is independent
of the ratio ∆t/h2. This stands in contrast to classical smoothing iterations which can
be very slow for large ratios. A comparison to a weighted Jacobi smoother applied to
system (3.3.3) was performed and confirms this suggestion. In Figure 6.5, we illustrate
the result of the comparison of the classical Jacobi smoother to the multigrid method
performed for fixed θ = 1 and J = 10 but different step sizes ∆t.

(a) ∆t = h2. (b) ∆t = h.

Figure 6.5.: Comparison of standalone Jacobi iteration and the multigrid algorithm with
ν1 = 1 smoothing step for different step sizes ∆t.
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6.2. Computation of Quantum Graph Spectra

6.2. Computation of Quantum Graph Spectra
More examples applying the eigenvalue algorithm for equilateral graphs derived in Sec-
tion 5 (Algorithm 3) as well as the generalization to non-equilateral graphs are discussed
in this subsection. Moreover, the efficiency of Algorithm 3 will be investigated in com-
parison to a finite element discretization of a quantum graph eigenvalue problem.

6.2.1. Numerical Examples for Equilateral Graphs

The following examples originate from [AB18] and one reason to revisit them here is to
validate the eigenvalue algorithm by means of previously studied graphs. The graphs
are the graphene graph Γgraphene and the tree graph Γtree introduced in Example 2.4.8.

We start with the eigenvalues λq of Γgraphene, which are displayed in Figure 6.6 for
q = 1, . . . , 50. The first 24 eigenvalues are further reported in the table on the right
and they agree with the values computed in [AB18]. Moreover, we observe our standard
patterns of vertex and non-vertex eigenvalues in the spectrum: Since the graphene graph
is bipartite, it has m− n+ 2 = 3 non-vertex eigenvalues for both k even and odd.

non-vertex eigenvalue k = 0 0

vertex eigenvalues σV,0

1.57e-01
9.26e-01
1.10e+00
1.10e+00
1.56e+00
3.58e+00
4.39e+00
4.39e+00
4.75e+00
7.54e+00

non-vertex eigenvalues k = 1
9.87e+00
9.87e+00
9.87e+00

vertex eigenvalues σV,1

1.25e+01
1.68e+01
1.75e+01
1.75e+01
1.93e+01
2.53e+01
2.74e+01
2.74e+01
2.83e+01
3.47e+01

Figure 6.6.: Eigenvalues of the graphene graph. Vertex and non-vertex eigenvalues are
differentiated by color in the scatter plot on the left.

Interestingly, there also seems to be a repeating pattern inside each bunch of vertex
eigenvalues. Particularly, in each bunch we have two eigenvalues of multiplicity two. For
further examination, we illustrate the corresponding eigenfunctions in Figure 6.7.
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6. Numerical Results

Figure 6.7.: First 12 eigenfunctions of the graphene graph. Eigenfunctions corresponding
to vertex eigenvalues are plotted in blue, the remaining in orange.
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6.2. Computation of Quantum Graph Spectra

The support of the eigenfunctions ϕ4, ϕ5, that correspond to the double eigenvalue
λ ≈ 1.10, contains exclusively one of the two 5-cycles of the graphene graph. The
same holds true for the eigenfunctions ϕ8, ϕ9 corresponding to the second double eigen-
value λ ≈ 4.39. Thus, the eigenvalues with multiplicity two appear in the spectrum since
the eigenfunctions resolve dynamics that only occur at one of the two 5-cycles. Further,
ϕ2, ϕ6 and ϕ10 are all point symmetric, whereas ϕ3, ϕ7 and ϕ11 axisymmetric.

We repeat the discussion by means of the tree graph, whose eigenvalues λq are plotted
in Figure 6.8 for q = 1, . . . , 30. Again, the computed eigenvalues are in agreement with
the results in [AB18] as we can verify from the table on the right.

non-vertex eigenvalue k = 0 0

vertex eigenvalues σV,0

1.15e-01
3.79e-01
3.79e-01
7.07e-01
2.47e+00
2.47e+00
2.47e+00
2.47e+00
2.47e+00
2.47e+00
5.29e+00
6.38e+00
6.38e+00
7.85e+00

non-vertex eigenvalues k = 1 9.87e+00

vertex eigenvalues σV,1

1.21e+01
1.41e+01
1.41e+01
1.59e+01
2.22e+01
2.22e+01
2.22e+01
2.22e+01
2.22e+01
2.22e+01
2.96e+01
3.21e+01
3.21e+01
3.53e+01

non-vertex eigenvalues k = 2 3.95e+01

Figure 6.8.: Eigenvalues of the tree graph. Vertex and non-vertex eigenvalues are differ-
entiated by color in the scatter plot on the left.

As observed in the graphene graph, we can see a pattern inside each bunch of vertex
eigenvalues. First, there is one eigenvalue that appears with multiplicity six (λ ≈ 2.47 in
the first bunch, λ ≈ 2.22e+01 in the second bunch). Together with the next smaller and
next larger eigenvalue, the corresponding eigenfunctions are the only eigenfunctions that
are identically zero on the stem of the tree, compare Figure 6.9. Moreover, among these,
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Figure 6.9.: First 15 eigenfunctions of the tree graph.134



6.2. Computation of Quantum Graph Spectra

only ϕ5 and ϕ12 admit a symmetric behavior on the branches of the tree. In contrast,
the eigenfunctions ϕ2 and ϕ15 are identically zero on the stem and then behave inversely
on the two main branches.
With regard to the non-vertex eigenvalues, the tree graph is a special example (as the
star graph) since n = 16 > 15 = m, i.e., it has more vertices than edges. Therefore,
it has only one non-vertex eigenvalue for both k odd and even, although it is bipartite.
The corresponding eigenfunctions assume either alternating values (k odd) or identical
non-zero values (k even) at the vertices of the graph as we see in Figure 6.10. It is left
to the interested reader to elaborate why there cannot exist an eigenfunction that is
identically zero across all vertices (which, in general, is the second possible choice of a
non-vertex eigenfunctions for k odd).

Figure 6.10.: Non-vertex eigenfunctions of the tree graph for k = 1 and k = 2.

In summary, we observed many interesting phenomenas and patterns in the spectra of the
examples discussed throughout this thesis. In particular, the spectrum of an equilateral
metric graph is determined by the structure and connectivity patterns of the underlying
combinatorial graph. This is obvious as we derived a one to one correspondence of the
eigenvalues of a discrete graph Laplacian matrix to the vertex eigenvalues of the metric
graph, and, for the remaining non-vertex eigenvalues, the appearance is determined by
the number of vertices and edges of the graph. As a follow-up to the initial results and
observations, we point out that a further study of the behavior of eigenfunctions will be
interesting with regard to approximation theory on metric graphs. In particular, this
will help to determine eigenfunctions that are important to resolve a given function on
a graph a priori (i.e., before computing the projection coefficients).

A further numerical experiment analyzing the spectrum of lollipop graphs is conducted
in the appendix, Section B.1.
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6.2.2. Comparison to Finite Element Approximations

Due to the findings in Chapter 5, we are able to compute an arbitrary lower part of
the spectrum of an equilateral metric graph with n vertices only using the eigenvalue
decomposition of the (discrete) n×n normalized graph Laplacian matrix (Algorithm 3).
Classically, it is also possible to approximatively compute eigenvalues and eigenfunctions
applying a finite element discretization to the eigenvalue problem Hϕ = λϕ. This leads
to the generalized eigenvalue problem

L̂u = λM̂u (6.2.1)

with L̂ and M̂ defined as in Theorem 3.2.7. In [AB18], Arioli and Benzi discuss the
finite element approximation of quantum graph spectra on the example of the tree and
graphene graph from the previous subsection as well as a star graph with n = 5 vertices
and m = 4 edges of length ℓ = 1. Therefore, in this subsection, we will study accuracy
and complexity of the finite element approximation in comparison to Algorithm 3 by
means of these three examples.
Note that the finite element approximation, in contrast to Algorithm 3, can also be ap-
plied to approximate the eigenvalue problem Hϕ = λϕ for more general operators such
as H : u(x) 7→ d2

dx2u(x) + ρ(x)u(x) with a potential ρ(x) ∈ L∞(Γ).

Let us start with the equilateral star graph. The exact eigenvalues λ can be computed
with Algorithm 3 and, for the sake of completeness, are reported in Table 6.1.

non-vertex eigenvalue k = 0 0

vertex eigenvalues σV,0

2.47e+00
2.47e+00
2.47e+00

non-vertex eigenvalues k = 1 9.87e+00

vertex eigenvalues σV,1

2.22e+01
2.22e+01
2.22e+01

non-vertex eigenvalues k = 2 3.95e+01

Table 6.1.: First 9 eigenvalues of the star graph with n = 5 vertices.

For different step sizes h = 2−J , J = 3, . . . , 11, we then solve the generalized eigenvalue
problem (6.2.1). To streamline the exposition, we compare three of the approximated
eigenvalues λFE to the exact values. The three selected eigenvalues are the first vertex
eigenvalue (i.e., the smallest non-zero eigenvalue) as well as the non-vertex eigenvalues
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6.2. Computation of Quantum Graph Spectra

for k odd and k even. The absolute errors |λ − λFE| along with the degrees of freedom
(i.e., the size of the generalized eigenvalue problem) are reported in Figure 6.11.

DoF Absolute error
λ2 ≈ 2.47e+00 λ5 ≈ 9.87e+00 λ9 ≈ 3.95e+01

33 7.94e-03 1.27e-01 2.07e+00
65 1.98e-03 3.17e-02 5.10e-01
129 4.95e-04 7.93e-03 1.27e-01
257 1.24e-04 1.98e-03 3.17e-02
513 3.10e-05 4.95e-04 7.93e-03
1025 7.74e-06 1.24e-04 1.98e-03
2049 1.94e-06 3.10e-05 4.95e-04
4097 4.83e-07 7.74e-06 1.24e-04
8193 1.17e-07 1.93e-06 3.10e-05

Figure 6.11.: Star graph: Finite element approximation of three selected eigenvalues.

For the first non-zero eigenvalue (λ ≈ 2.47), a generalized eigenvalue problem of size
4097 × 4097 has to be solved in order to attain an accuracy of 10−7. In contrast to
this, the exact computation with Algorithm 3 only requires the solution of an eigenvalue
problem of size n×n. Remember that n is the number of vertices, which in our example
is only n = 5. As usually in finite element eigenvalue approximations, an even smaller
step size is required to approximate larger eigenvalues with a comparable accuracy. On
the contrary, Algorithm 3 computes every eigenvalue of arbitrary size exactly by using
the eigenvalues of the n × n normalized graph Laplacian matrix. In addition, for all
eigenvalues λ ̸=

(
kπ
ℓ

)2
, the eigenvectors even provide a closed form representation of the

corresponding eigenfunction.
In the special case of non-vertex eigenvalues λ =

(
kπ
ℓ

)2
, additional degrees of freedom

are necessary to compute the eigenfunctions with Algorithm 3. More precisely, an un-
derdetermined system of linear equations of size n+ km needs to be solved. For the two
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exemplary eigenvalues in Figure 6.11, this means we have to solve a system of size 9×9 for
λ ≈ 9.87 and of size 13×13 for λ ≈ 3.95e+01. As a comparison: a finite element approx-
imation of eigenfunction ϕ5 corresponding to λ5 ≈ 9.87 such that ∥ϕ5 − ϕ5,FE∥Γ ≈ 10−7

requires 4097 = n+ 1023m degrees of freedom, compare Figure 6.12.

(a) ϕ5 on star graph. (b) L2-Error of finite element approximation.

DoF L2-error
33 5.85e-03
65 1.44e-03
129 3.60e-04
257 8.98e-05
513 2.25e-05
1025 5.61e-06
2049 1.40e-06
4097 3.51e-07
8193 8.77e-08

Figure 6.12.: Star graph: Finite element approximation of eigenfunction ϕ5.

To accelerate the discussion, we briefly summarize the results of the finite element eigen-
value approximation for the graphene and tree graph. The underlying exact eigenvalues
of the two graphs can be found in the previous chapter (Figure 6.6 and Figure 6.8).
In Table 6.2, the error of the finite element approximation with different step sizes
2−J , J = 3, . . . , 10 is reported together with the resulting degrees of freedom for the first
12 eigenvalues.
Remember that the exact computation of the eigenvalues with Algorithm 3 requires n =
12 degrees of freedom for the graphene and n = 16 for the tree graph. In contrast, a finite
element approximation of λ12 with n+ 1023m = 13311 respectively n+ 1023m = 15361
only yields an approximation of accuracy 10−6.
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DoF Absolute error |λq − λq,FE| for q = 2, . . . , 12

λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 λ11 λ12

103 3e-05 1e-03 2e-03 2e-03 3e-03 2e-02 3e-02 3e-02 3e-02 7e-02 1e-01
207 8e-06 3e-04 4e-04 4e-04 8e-04 4e-03 6e-03 6e-03 7e-03 2e-02 3e-02
415 2e-06 7e-05 1e-04 1e-04 2e-04 1e-03 2e-03 2e-03 2e-03 5e-03 8e-03
831 5e-07 2e-05 2e-05 2e-05 5e-05 3e-04 4e-04 4e-04 5e-04 1e-03 2e-03
1663 1e-07 4e-06 6e-06 6e-06 1e-05 7e-05 1e-04 1e-04 1e-04 3e-04 5e-04
3327 3e-08 1e-06 2e-06 2e-06 3e-06 2e-05 2e-05 2e-05 3e-05 7e-05 1e-04
6655 8e-09 3e-07 4e-07 4e-07 8e-07 4e-06 6e-06 6e-06 7e-06 2e-05 3e-05
13311 1e-09 7e-08 1e-07 1e-07 2e-07 1e-06 2e-06 2e-06 2e-06 5e-06 8e-06

(a) Graphene graph.

DoF Absolute error |λq − λq,FE| for q = 2, . . . , 12

λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 λ11 λ12

121 2e-05 2e-04 2e-04 7e-04 8e-03 8e-03 8e-03 8e-03 8e-03 8e-03 4e-02
241 4e-06 5e-05 5e-05 2e-04 2e-03 2e-03 2e-03 2e-03 2e-03 2e-03 9e-03
481 1e-06 1e-05 1e-05 4e-05 5e-04 5e-04 5e-04 5e-04 5e-04 5e-04 2e-03
961 3e-07 3e-06 3e-06 1e-05 1e-04 1e-04 1e-04 1e-04 1e-04 1e-04 6e-04
1921 7e-08 7e-07 7e-07 3e-06 3e-05 3e-05 3e-05 3e-05 3e-05 3e-05 1e-04
3841 2e-08 2e-07 2e-07 6e-07 8e-06 8e-06 8e-06 8e-06 8e-06 8e-06 4e-05
7681 4e-09 5e-08 5e-08 2e-07 2e-06 2e-06 2e-06 2e-06 2e-06 2e-06 9e-06
15361 5e-10 1e-08 1e-08 4e-08 5e-07 5e-07 5e-07 5e-07 5e-07 5e-07 2e-06

(b) Tree graph.

Table 6.2.: Finite element approximation of the graphene and tree graph for the first
12 eigenvalues. Accuracy of the finite element approximation opposed to the
required degrees of freedom (size of the generalized eigenvalue problem). Note
that we excluded the first eigenvalue λ1 = 0 since the extended graph Lapla-
cian L̂ of the generalized eigenvalue problem (6.2.1) always has an exact zero
eigenvalue.
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6.2.3. Non-equilateral Graphs and the Newton-Trace Iteration

The present subsection is extracted from the joint manuscript with Chong-Son Dröge
[DW23b] with minor editorial changes. The first experiment was prepared by Chong-Son
Dröge under my supervision, the second experiment was conducted and outlined by me.

As observed in the experiments in Section 5.3.3, the eigenvalues of the equilateral ap-
proximations converge to the exact eigenvalues for all analyzed examples. However, our
aim is not to approximate the exact eigenvalues of a given non-equilateral metric graph
Γ by computing arbitrary close equilateral approximations, but only to find suitable
estimates to start a subsequent Newton iteration.
The objective of the following experiment is to test the applicability of these eigenvalue
estimates as starting values for a Newton iteration as well as the influence of the accu-
racy of the estimate on the number of required Newton iterations. As in Example 5.3.10,
the experiments will be conducted to compute the first positive eigenvalue λ2.
We will consider two different sample graphs, each with random edge lengths ℓe ∈ [1, 2],
rounded to two decimal digits. These include a star graph with n = 6 vertices and
m = 5 edges and a Barabási-Albert graph with n = 50 vertices and m = 96 edges. As
the edge lengths are rounded to two decimal digits, the exact eigenvalues can be com-
puted through an equilateral representation with edge length h = 0.01.
Since we have observed (Figure 5.17) that the exact eigenvalues lie between the eigen-
values of the floor and ceil approximation, we use the mean of the eigenvalues as the
initial guess for the Newton-trace iteration, i.e.,

λinit := λ2(Gfl,h) + λ2(Gcl,h)
2 . (6.2.2)

Here, λ2(Gfl,h) denotes the first positive eigenvalue of the equilateral floor approximation
and λ2(Gcl,h) of the equilateral ceil approximation. In the following experiment, we now
want to investigate how many Newton iterations are required when starting with λinit

as defined in (6.2.2) for various h = 2−J , J = 2, . . . , 6.
As a stopping criterion for the Newton-trace iteration, we monitor the reciprocal con-
dition number of H(z) (see (5.1.4)) defined as κ−1(H) := 1

∥H∥ ∥H−1∥ . Since H(z) is
singular at the eigenvalues, a reciprocal condition number close to zero indicates that
the Newton-trace iteration converged to an eigenvalue λ. In the following experiment,
we stop the Newton-trace iteration whenever κ−1(H) < 10−10.

In Table 6.3, we have recorded the exact eigenvalue λ2, the initial value λinit arising from
the equilateral approximations with length h as well as the number of required Newton-
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Star, λ2 ≈ 0.701372 Barabási-Albert, λ2 ≈ 0.212386
h λinit Niter λNEP λinit Niter λNEP

0.25 0.785305 8 0.701372 0.221519 11 0.212386
0.125 0.725887 4 0.701372 0.213850 4 0.212386
0.0625 0.710570 3 0.701372 0.211420 4 0.212386
0.03125 0.698711 3 0.701372 0.212036 3 0.212386
0.015625 0.704270 3 0.701372 0.212253 3 0.212386

Table 6.3.: Number of Newton-trace iterations (Niter) required for computing λ2, as well
as for the Barabási-Albert graph [DW23b].

trace iterations until convergence to λNEP. First of all, it is important to notice that
for each initial value λinit, the Newton-trace iteration converges to the same eigenvalue
λNEP. Given that the H(z)-matrix in the Newton-trace iteration is only of size n × n,
the number of required iterations is moderate, even for the “worst” choice of λinit. As
expected from the results in the previous subsections, a decreasing edge length h leads to
better initial values, which in turn further reduces the number of required Newton-trace
iterations.

So far, we have only studied the convergence towards the smallest non-zero eigenvalue.
The question is whether further eigenvalues can still be found reliably by equilateral
approximations, i.e., if patterns in the spectrum can be reflected sufficiently. In other
words, how can we guarantee that all eigenvalues are found? Moreover, for the previous
experiments, we have examined example graphs of moderate size and with a limited num-
ber of decimal digits for the edge lengths. This guaranteed that the eigenvalue problem
of the equilateral approximations can be easily solved by standard eigenvalue algorithms.
Other phenomena might occur when considering more complex, large graphs. In general,
for small step sizes h, this results in large scale linear eigenvalue problems. In Section
5.3.3, we therefore proposed to follow a nested iteration approach (Algorithm 6).
With this nested iteration eigenvalue solver, we will finally consider a random Barabási-
Albert graph with n = 500 vertices and m = 1491 edges with a randomly assigned
edge length ℓe ∈ [1, 5]. For h = 2−J , J = 1, . . . , 8, we each time compute the Q = 10
smallest eigenvalues of equilateral floor and ceil approximations Gcl,h,Gfl,h and run the
Newton-trace iteration with initial value λinit

q = 1
2 (λq(Gfl,h) + λq(Gcl,h)) . Since ℓe ̸∈ Q,

we cannot compute the exact solution. Instead, we plot the reciprocal condition number
of H(z), the roots of which indicate the eigenvalues as illustrated in the upper plot in
Figure 6.13.
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6. Numerical Results

Figure 6.13.: Reciprocal condition number of H(z) for Barabási-Albert graph with
n = 500 vertices compared to computed eigenvalues by equilateral approxi-
mations with Gcl,h,Gfl,h and a subsequent Newton-trace iteration [DW23b].

Observe that the spacing between the roots is very irregular. In the lower part of Fig-
ure 6.13, the eigenvalues found by the Newton iteration with λinit

i are plotted for the
different levels J = 1, . . . , 8. Clearly, a large step size is not sufficient to resolve all
patterns in the spectrum, as not all eigenvalues can be found. In particular, we observed
that this effect appears with large, sparse graphs. As a criterion to estimate the quality
of the equilateral approximations, we suggest to verify that λq(Gfl,h) > λq(Gcl,h) for
q = 1, . . . , Q. Finally, even for large graphs, the number of required Newton iterations
remains moderate, as shown in Table 6.4.

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

h = 2−2 - - - - 11 - 9 18 - -
h = 2−3 - - 10 16 - 3 - 24 - -
h = 2−4 4 2 3 3 6 3 4 3 4 3
h = 2−5 4 3 3 3 3 3 4 3 3 2
h = 2−6 2 2 3 3 2 2 3 2 3 2
h = 2−7 2 2 2 2 2 2 1 2 2 2

Table 6.4.: Number of required Newton-trace iterations until convergence to λq [DW23b].
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6.3. Spectral Solution Method

6.3. Spectral Solution Method

We study numerical results in the context of the spectral solution method. The decay
of coefficients, spectral convergence of the truncation error, and more aspects concern-
ing the projection coefficients are investigated. We verify the Weyl’s law type eigen-
value estimates and finally analyze the spectral solution of the generalized heat and the
reaction-diffusion equation.

6.3.1. Decay of Coefficients

The objective of this subsection is to numerically investigate the approximation of a
given function u on Γ as linear combination of eigenfunctions, i.e., by

uQ =
∑
q≤Q

cqϕq. (6.3.1)

In Section 4.1.2, we derived that the decay of coefficients in the spectral expansion uQ

significantly determines the truncation error. For u ∈ domH,NK sufficiently smooth such
that all even derivatives are in domH,NK, the projection coefficients are bounded by

|cq| ≤ 1
λd

q

∥∥∥u(2d)
∥∥∥

Γ
(6.3.2)

leading to the truncation error

∥u− PQu∥Γ ≤ 1
λd

Q

∥∥∥u(2d)
∥∥∥

Γ
,

compare Theorem 4.1.8 and Corollary 4.1.10. Recall that in [BCK22], this spectral con-
vergence has been only proven for functions with compact support on an edge of the
graph, whereas we extended the class of applicable functions.

As a first example, we consider a function u on a small star graph.

Example 6.3.3. Consider the star graph Γstar with n = 5 vertices and n = 4 edges,
each of length 1 and let u be a function with

ue′ = exp
(

−(x− ℓ/2)2

(ℓ/10)2

)

for a fixed edge e′ ∈ E and ue(x) = 0 for all e ̸= e′.
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6. Numerical Results

The choice of u in Example 6.3.8 originates from [BCK22]. We adapted this choice since
it is a nice example of a smooth function with compact support on one edge that cannot
be trivially resolved by the eigenfunctons. Being of compact support on one edge, it will
be later interesting to study heat evolution with an initial condition posed on one edge
only.

For the numerical treatment, it is irrelevant on which edge the non-zero part of u is
defined, we could for example choose u as illustrated in Figure 6.14a. For this func-
tion, the projection coefficients cq of the spectral expansion (6.3.1) are computed for
q = 1, . . . , 120. The results are plotted in Figure 6.14b along with the upper bound re-
sulting from the choice of d = 3 in (6.3.2). Observe the spectral decay of the projection
coefficients and that the upper bound is sharp for every q. Note that we have suppressed
the coefficients with |cq| = 0 to clarify the illustration.

(a) u on Γ. (b) Decay of coefficients. (c) Truncation error.

Figure 6.14.: Decay of coefficients and truncation error for Test Problem 6.3.3.

For different choices of Q, we moreover computed the truncation error and again visu-
alize it together with the error bound for d = 3 in Figure 6.14c.

In fact, the function in Example 6.3.3 has compact support on one edge and thus fits in
the category of functions for which spectral accuracy has been shown in [BCK22]. We
therefore repeat the experiment with a function meeting the requirements in Theorem
4.1.8 without compact support.

Example 6.3.4. Consider again the star graph Γstar from Example 6.3.3 but with equi-
lateral edge length ℓ = π/2 and let

ue1(x) = −2 sin(x), ue2 = sin(x), ue3 = sin(x), ue4 = exp
(

−(x− ℓ/2)2

(ℓ/10)2

)
.
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6.3. Spectral Solution Method

The function introduced in Example 6.3.4 is plotted in Figure 6.15 together with the
projection coefficients as well as the truncation error. The results are visually identical
to those of the previous example, with the only exception that two additional eigenfunc-
tions (q = 2, 3) are explored in the spectral expansion. In contrast, the corresponding
projection coefficients have been identical zero in Example 6.3.3.

(a) u on Γ. (b) Decay of coefficients. (c) Truncation error.

Figure 6.15.: Decay of coefficients and truncation error for Test Problem 6.3.4.

As indicated in the previous examples, we have so far suppressed the projection coef-
ficients that has been identical zero already for small q. The associated eigenfunctions
are not relevant for the representation of the function on the graph. To this end, some
interesting phenomena have been observed during numerical experiments which we will
demonstrate by means of examples in Section B.2 in the appendix. As pointed out at the
end of Section 6.2, these experiments imply that a thorough study of the eigenfunctions
of a graph can give a priori information about the projection coefficients.
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6. Numerical Results

6.3.2. Eigenvalue Estimates from Weyl’s Law

In Section 4.1.3, we have seen that the number of eigenvalues smaller than a given value
can be bounded from below and above by

volΓ
π

λq −m ≤ |{λ ∈ σ(Γ) : λ ≤ λ2
q | ≤ volΓ

π
λq + n.

In particular, for q sufficiently large, the q-th eigenvalue λq satisfies

((q − n)π
volΓ

)2
≤ λq ≤

((q +m)π
volΓ

)2
.

We verify the eigenvalue estimates by means of the following example graphs: our com-
mon star and diamond graph as well as the graphene and tree graph. For all graphs, we
choose the equilateral edge length ℓ = 1.
The results are reported in Figure 6.16 and support the derived estimates. As pointed
out in [BCK22], one observes that the asymptotic behavior of the eigenvalues can be
described by Weyl’s slope, i.e.,

λq ∼
(
qπ

volΓ

)2
. (6.3.5)

Figure 6.16.: Eigenvalue estimates from Weyl’s law.
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6.3. Spectral Solution Method

However, if we repeat the experiment for a random Barabási-Albert and Erdős-Rényi
graph with n = 100 vertices and parameters d = 3 and p = 0.1 respectively, (6.3.5)
merely describes an improved lower bound, compare Figure 6.17. This effect occurs

Figure 6.17.: Eigenvalue estimates from Weyl’s law for random graphs.

when m ≫ n due to the large patterns of non-vertex eigenvalues
(

kπ
ℓ

)2
for each k ∈ N.

In contrast, if m ≈ n (as in the previous examples), the eigenvalues follow Weyl’s slope
much better.

The purpose of our interest in eigenvalue estimates was to derive the estimate

∥u− PQu∥Γ ≤
( volΓ

(Q− n)π

)2d ∥∥∥u(2d)
∥∥∥

Γ

for the truncation error, see Corollary 4.1.12. For the star graph and u from example
6.3.4, we therefore repeat the experiment from the previous section and, in Figure 6.18,
report the truncation error together with the upper bound for d = 3.

(a) Eigenvalue estimates. (b) Truncation error.

Figure 6.18.: Eigenvalue estimates and truncation error for Example 6.3.4.
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6. Numerical Results

6.3.3. Heat Equation

We analyze the spectral solution of the classical heat equation ∂u
∂t + Hu = 0 on Γ. The

corresponding semidiscretized initial value problem

d
dtc(t) + Λc(t) = 0, c(0) = c0,

can be readily solved by
c(t) = exp(−tΛ) c0.

In this expression, Λ is a diagonal matrix of eigenvalues and the coefficients c0 are given
by orthogonal projections of the initial condition u0, compare Theorem 4.2.3. Thus, the
solution at time t is given by

uQ(t) =
(
exp(−tλ1)

(
u0, ϕ1

)
Γ

)
ϕ1 + . . .+

(
exp(−tλQ)

(
u0, ϕQ

)
Γ

)
ϕQ. (6.3.6)

We already showed that λ1 = 0 and all the remaining eigenvalues λq are positive. For
t → ∞, the solution therefore (as expected) tends to the equilibrium state

lim
t→∞

uQ(t) =
(
u0, ϕ1

)
Γ
ϕ1

where ϕ1 is constant (compare Theorem 5.2.9). As a result, the L2(Γ)-norm approaches

lim
t→∞

∥uQ(t)∥Γ =
(
u0, ϕ1

)
Γ

(6.3.7)

and the H1(Γ)-seminorm converges to limt→∞ |uQ(t)|H1(Γ) =
(
u0, ϕ1

)
Γ

dϕ1
dx = 0.

We verify the reasoning by examining the behavior of the solution of the heat equation
on a tree graph, as well as its L2(Γ)-norm and H1(Γ)-seminorm.

Example 6.3.8. Let Γtree be the tree graph from Example 2.4.8 with ℓ = 1. In this
example, we consider the heat equation on Γtree given the initial condition

ue(x) = exp
(

−(x− ℓ/2)2

(ℓ/10)2

)

on the stem of the tree and ue′(x) = 0 on all remaining edges e′.

It is important to choose an initial condition that fulfills the Neumann-Kirchhoff condi-
tions. In the finite element experiments, we have therefore chosen eigenfunctions. This
choice is not reasonable here since we can resolve this condition with one basis function.
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6.3. Spectral Solution Method

We initially consider a short time interval [0, 0.1] and plot the initial condition (t = 0)
as well as the solution uQ(t), Q = 225 for t = 0.025, 0.5, 0.1 in Figure 6.19b. The
L2(Γ)-norm of the initial condition can be computed in closed form and is given by∥∥u0∥∥

Γ = 0.354022. By (6.3.7), we expect the norm to approach limt→∞ ∥uQ(t)∥Γ =(
u0, ϕ1

)
Γ where ϕ1 is a normalized, constant eigenfunction on Γ, i.e., ϕ1 ≡

√
1/m. Thus,(

u0, ϕ1
)

Γ = 0.0457646, which agrees with the observed decrease of the L2(Γ)-norm in
Figure 6.19a.

(a) L2-norm and H1-seminorm of uQ(t) for t ∈ [0, 0.1]. (b) Solution at t = 0, 0.025, 0.05, 0.1.

Figure 6.19.: Heat equation on tree graph.

Moreover, we can confirm the convergence in the long run by repeating the experiment
for the time interval [0, 4]. As depicted in Figure 6.20, the L2(Γ)-norm converges to
0.0457646 and the H1(Γ)-seminorm vanishes for t → ∞.
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6. Numerical Results

Figure 6.20.: L2-norm and H1-seminorm of uQ(t) for t ∈ [0, 4].

Let us now investigate the convergence of the solution in dependence on the graph struc-
ture. A similar experiment was considered in [AB18] where the authors revealed that
the decay behavior of the norms depends on the eigenvalues of the graph, which, in
turn, are widely studied as connectivity measure in combinatorial graph theory. Here,
we modified the experiment in that we compare three graphs with a similar number of
edges. This is important as we found out that the L2(Γ)-norm of the solution tends to(
u0, ϕ1

)
Γ with ϕ1 ≡

√
1/m. If we choose the same initial condition on each graph (as

before we are going to pose it on a single edge), this ensures that the solution converges
to an equilibrium in the same order of magnitude, which allows comparing the decay
behavior.

Example 6.3.9. Let ΓBA be a Barabási-Albert graph with n = 9, d = 2 and Γtree,Γgraphene

the tree and graphene graph from Example 2.4.8, each with equilateral edge length ℓ = 1.
The initial condition of the IBVP for the heat equation is given by

ue(x) = exp
(

−(x− ℓ/2)2

(ℓ/10)2

)

on one edge e ∈ E and ue′(x) = 0 on all remaining edges e′ ̸= e.

The initial condition on the tree and graphene graph are illustrated in Figure 6.21a. For
the Barabási-Albert graph, we choose a random edge e with ue ̸= 0. Moreover, the first
five eigenvalues of the graphs are recorded in the table in Figure 6.21b. As pointed out
in [AB18], the small eigenvalues mainly determine the convergence of the solution. This
is obvious from (6.3.6) since the term exp(−tλ) vanishes more slowly for smaller λ. In
other words, the larger the second eigenvalue λ2, the faster is the expected convergence
of the L2(Γ)-Norm.

This anticipated behavior is supported by our numerical findings. In Figure 6.22, we can
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6.3. Spectral Solution Method

(a) Initial condition on Γtree and Γgraphene.

Γtree Γgraphene ΓBA

λ1 0.00e+00 0.00e+00 0.00e+00
λ2 1.15e-01 1.57e-01 1.27e+00
λ3 3.79e-01 9.26e-01 1.58e+00
λ4 3.79e-01 1.10e+00 1.81e+00
λ5 7.07e-01 1.10e+00 2.47e+00

(b) Eigenvalues λq for q = 1, . . . , 6.

Figure 6.21.: Initial conditions and eigenvalues for Example 6.3.9.

see that the L2(Γ)-norm approaches the equilibrium fastest for the Barabási-Albert graph
and slowest for the tree graph, which is in agreement with the ordering of the eigenvalues
λ2. Moreover, the decay of the H1(Γ)-seminorm behaves in the same manner.

Figure 6.22.: L2(Γ)-norm and H1(Γ)-seminorm of the solution uQ(t), t ∈ [0, 4] of the
heat equation on a tree, graphene and Barabási-Albert graph (Example
6.3.9).

But indeed, there is another factor we have to take into account: the initial condition.
This can be seen very clearly by means of the tree graph. The eigenfunction associated
with the smallest non-zero eigenvalue λ2 ≈ 1.15e−01 is identically zero on the stem of
the tree (compare Figure 6.9 from the previous section), i.e., on the only edge where the
initial condition u0 ̸= 0. This implies that the coefficient of ϕ2 in the spectral expansion
(6.3.6) is zero and thus the convergence of the solution can not be influenced by λ2 at
all. The reason why the tree graph still showed the slowest convergence in the previous
experiment is that the same holds true for the eigenfunction ϕ2 of Γgraphene. If we repeat
the experiment with the initial condition of the graphene graph posed on a different
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6. Numerical Results

Figure 6.23.: L2(Γ)-norm andH1(Γ)-seminorm of the solution uQ(t), t ∈ [0, 4] of the heat
equation on the tree and Barabási-Albert graph from Example 6.3.9 and
the graphene graph with initial condition as illustrated in the left figure.

edge, the results emerge confirming to the previous observations as we can see in Figure
6.23. In fact, although the decay for the graphene graph is faster than for the tree graph
at the beginning, it decelerates in the long term such that the equilibrium is reached
much later.
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6.3.4. Fractional Diffusion

The framework of the spectral Galerkin method allows to naturally deal with a fractional
Laplacian operator without further effort. As indicated in Section 4.4, the fractional
diffusion equation

∂

∂t
u− ∆αu = 0, α ∈ R

on Γ leads to the spectral Galerkin semidiscretization

d
dtc(t) + Λαc(t) = 0.

We briefly investigate some observed particularities of fractional heat conduction on
metric graphs. Let us first consider the diamond graph Γdia with initial condition

ue(x) = exp
(

−(x− ℓ/2)2

(ℓ/10)2

)

on an arbitrary chosen edge e and ue′(x) = 0 otherwise. The solution uQ(t), Q = 148
obtained with α = 1, 0.5, 0.1 at different time points is illustrated in Figure 6.24. Observe
the increasing non-local effects for small α.

(a) α = 0.1.

(b) α = 0.5.

(c) α = 1.

Figure 6.24.: Solution uQ of the fractional diffusion equation with α = 0.1, 0.5, 1 plotted
for t = 0.25, 0.5, 0.75, 1 (from left to right).
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We moreover compute the L2(Γ)-norm and H1(Γ)-seminorm for t ∈ [0, 2] and compare
the norms for the different choices of α in Figure 6.25. Both norms decay slowest for
α = 0.1 and fastest for α = 1. Since λ > 1 for all eigenvalues of Γdia, this observation is
in line with the reflections from the previous section.

Figure 6.25.: L2(Γ)-norm and H1(Γ)-seminorm of the solution uQ(t), t ∈ [0, 2] of the
fractional diffusion equation on Γdia with α as indicated in the legend.

However, the effect is reversed when considering graphs with very small eigenvalues. As
an extreme example, we report the behavior of the norms for a large cycle graph with
n = 100 vertices in Figure 6.26 together with its first eigenvalues. Observe that the
cycle graph has a large number of eigenvalues λ ≪ 1 explaining the fast decay of the
L2(Γ)-norm for α = 0.1.

Figure 6.26.: L2(Γ)-norm and H1(Γ)-seminorm of the solution uQ(t), t ∈ [0, 2] of the
fractional diffusion equation on a cycle graph with n = 100 vertices and α
as indicated in the legend.
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6.3.5. Reaction-Diffusion Equations

We conclude this section with experiments concerning (semi)linear reaction-diffusion
equations

∂u

∂t
+ Hu = R(u)

subject to Neumann-Kirchhoff conditions and with given initial condition u0. We will
start by a comparison of the behavior of the solution for linear reaction terms

R1(u) ≡ 1, R2(u) = u

and nonlinear reaction terms

R3(u)) = u
1
2 , R4(u) = u1.5 and R5(u) = u2.

Let us again consider the tree graph along with the following initial condition.

Example 6.3.10. Let Γtree be the tree graph from Example 2.4.8 with equilateral edge
length ℓ = 1. As initial condition, we choose a linear combination of two eigenfunctions,
namely

u0(x) = ϕ1(x) + ϕ5(x),

as illustrated in Figure 6.27.

Figure 6.27.: Initial condition u0(x) = ϕ1(x) + ϕ5(x) on the tree graph.
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First, we pose the reaction-term only on one edge of the tree, the stem, and set it to
zero otherwise. We compute the spectral solution uQ(t), Q = 300 for t ∈ [0, 1] as well
as its L2(Γ)-norm. As can be seen in Figure 6.28, the L2(Γ)-norm grows fastest at the
beginning for the constant reaction term, however, in the long term, the quadratic term
outruns and the norms grow in the expected order: R5,R4,R2,R3,R1.

Figure 6.28.: Reaction-diffusion equation on a tree graph - L2(Γ)-norm of the spectral
Galerkin approximation. The progression of the L2(Γ)-norm over time is
compared for different reactions terms R, all of them posed on a single edge
only (the stem).

We repeat the experiment with the reaction term posed on all edges of the graph. Again,
the L2(Γ)-norm exhibits the strongest growth for the quadratic reaction term, compare
Figure 6.29. Moreover, we computed the H1(Γ)-seminorm and plotted its course for
R1,R2,R3. For the remaining reaction terms, the H1(Γ)-seminorm does not decrease.

(a) Progression of the L2(Γ)-norm. (b) Progression of the H1(Γ)-seminorm.

Figure 6.29.: Reaction-diffusion equation on a tree graph - L2(Γ)-norm and H1(Γ)-
seminorm of the spectral Galerkin approximation. The norms are compared
over time for different reactions terms R, each posed on every edge.
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The next experiment seeks to analyze the convergence of the spectral Galerkin method.
Again, we consider the reaction-diffusion equation with the previously introduced reac-
tion terms but consider the star graph along with the initial condition as in Example
6.3.3.
First, we compute a reference solution uref(t) with Qref = 120 modes at t = 10−8 by
applying the exponential Euler iteration with ∆t = 10−8. We then compute the spectral
solution for different Q < Qref along with the error with respect to the reference solution,
i.e., ∥uref(t) − uQ(t)∥Γ. The differences in the results for the multiple reaction terms are
marginal, however, for the sake of completeness, we included the complete output in
Figure 6.30.

(a) Linear reaction terms.

(b) Nonlinear reaction terms.

Figure 6.30.: Reaction-diffusion equation - Convergence of the spectral solution. Con-
vergence of uQ to a reference solution (Qref = 120) for different reaction
terms R. Graph and initial condition as in Example 6.3.3.

We further examine the development of the error over time. We once more consider
Example 6.3.3 with the various reaction terms as above and a reference solution uref

with Qref = 120. We then compute the spectral Galerkin approximation uQ(t) with
Q = 90 for the time interval [0, 10−5]. To compute the solutions uref(t) and uQ(t),
we again apply the exponential Euler method with ∆t = 10−7 and compute the error
∥uref(t) − uQ(t)∥Γ for each timepoint. We compare the error evolution for the different
reaction terms, illustrated in Figure 6.31.
For R1, we are in the case of the generalized heat equation where we expect the error
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6. Numerical Results

Figure 6.31.: Reaction-diffusion equation on a star graph: Evolution of the spectral ap-
proximation error over time. The error of the spectral Galerkin approx-
imation uQ with Q = 90 is illustrated for different reaction terms and
t ∈ [2−6, 3−6]. Graph and initial condition as in Example 6.3.3.

not to grow over time. This agrees with our numerical results in Figure 6.31. In the
nonlinear setting, we expect the error to grow with time, which again is in agreement
with the evolution of the error in the previous example. Moreover, we observe that the
growth depends on the reaction term, or, to be more precise, on its Lipschitz-constant
(note that local Lipschitz-continuity often suffices on a bounded time interval).
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7. Comparison of Finite Element and
Spectral Galerkin Method

One question we have to raise after presenting the two Galerkin discretizations is how the
achieved accuracy is related to the complexity of the method. The spectral convergence
of the spectral Galerkin method means that the error decreases much faster compared
to the finite element method when additional basis functions are applied. The number
of utilized basis functions (i.e., the dimension of the trial space) in turn determines the
degrees of freedom of the (semi)discretizations and thereby the computational costs.
However, the computational complexity of the methods depends on the considered PDE
and a universal comparison is not straightforward.

7.1. Elliptic Test Problem

We want to discuss and compare the convergence and computational costs by means of
a simple, elliptic test problem. Let us therefore consider the following example whose
exact solution can be specified.

Test Problem 7.1.1. Let Γstar be a star graph with n = 5 vertices and m = 4 edges of
length ℓ = 1. Let further

ue = exp
(

−(x− x0)2

s2

)

with x0 = ℓ/2, s = ℓ/12 on one fixed edge e and ue′ = 0 on the remaining edges e′. Then,
u ∈ domH,NK is the solution of

Hu+ u = f (7.1.2)

with
fe = −(exp(−(x− x0)2/s2)(4(x− x0)2 − 2s2)

s4 + exp
(

−(x− x0)2

s2

)

for e and fe′ = 0 for e′ ̸= e.

An approximate solution of (7.1.2) with the given right-hand side is computed with both
the finite element and the spectral Galerkin approximation. In the finite element setting,
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the discretization leads to the system of linear equations

L̂u + M̂u = f̂ (7.1.3)

with L̂, M̂ and f̂ as in Theorem 3.2.7. For a given step size h = 2−J , J ∈ N, the degrees
of freedom are given by n+m(2J − 1). The system is assembled and solved for different
step sizes h = 2−J , J = 1, . . . , 14, and the approximation error, measured in the L2(Γ)-
norm, is computed.
On the other hand, the spectral Galerkin approximation of (7.1.2) leads to the discretized
system

Λc + c = f (7.1.4)

with Λ and f as in Theorem 4.2.3. The degrees of freedom are given by the number of
eigenfunctions Q used to represent the solution uQ, i.e., the dimension of the trial space.
We compute the discretization for Q = 7, . . . , 100 and again evaluate the L2(Γ)-error of
the spectral approximation.

Figure 7.1.: Convergence of the finite element and spectral Galerkin discretizations of
Test Problem 7.1.1.

The results are presented in Figure 7.1, where the degrees of freedom are contrasted
to the achieved accuracy. One can clearly see the spectral convergence of the spectral
method, whereas the error of the finite element approximation improves quadratically.

To achieve the best accuracy possible, we applied a direct solver to solve the finite element
discretization (7.1.3) in the previous results. Moreover, the integrals in the right-hand
sides for both the finite element and spectral discretization have been computed with a
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standard quadrature implementation in Julia (QuadGK).
For the following discussion of the computational costs, we solve the finite element dis-
cretization with a nested iteration multigrid algorithm instead. The multigrid algorithm
works similarly to the one presented in Section 3.3.2 but is now applied to the system
(7.1.3) instead of (3.3.3). For each J = 1, ..., 14, we follow a nested iteration strategy
(see for example [Hac16]) to compute a start vector for the multigrid iteration at level
J . The latter in turn is ran with a V-Cycle, coarsest level J0 = 0, and ν1 = ν2 = 1
smoothing steps. The iteration is stopped when the residual is in the order of magnitude
of the discretization error. The nested iteration multigrid is implemented matrix free,
i.e., only the application of the discretization matrices as well as intergrid operators are
computed, compare Section 3.3.4. Explicit matrices only have to be assembled at the
coarsest level to apply a direct solver. These costs are negligible here since the coarsest
system is of size 5×5. Moreover, the integrals in the right-hand side f̂ are approximated
by an application of the mass matrix M̂ to the discrete function.
With these configurations, the time to solve (7.1.3) for different step sizes J = 1, . . . , 14 is
recorded using the package BenchmarkTools in Julia (version 1.8.2). The computations
were performed on an 2021 iMac with Apple M1 chip (8-core CPU with 4 performance
cores and 4 efficiency cores, 7-core GPU, 16-core Neural Engine, 16GB unified mem-
ory). The elapsed computation time in dependence of the required degrees of freedom
is depicted in Figure 7.2a. The observed linear slope is in agreement with the expected
complexity of a classical nested iteration multigrid method.

(a) Finite element approximation. (b) Spectral Galerkin approximation.

Figure 7.2.: Elapsed computation time versus number of applied basis functions for a
finite element and spectral Galerkin approximation of Test Problem 7.1.1.

For the spectral discretization, we compute the integrals in the right-hand side of (7.1.4)
with the Filon-type quadrature rule derived in Section 4.3.2. The number of quadra-
ture nodes applied is chosen such that the integrals are approximated up to an error
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7. Comparison of Finite Element and Spectral Galerkin Method

in the order of the expected discretization error. The baseline eigenvalue problem re-
quired for the computation of the vertex eigenvalues and eigenfunctions is solved with
a direct, standard Julia method (eigen) (applied to the symmetric normalized graph
Laplacian instead of the harmonic graph Laplacian as outlined in Section 5.2.3). For
the non-vertex eigenvalues, a sparse eigenvalue solver (eigs) is applied to compute the
eigenvectors. The computation time grows less than quadratically in terms of the num-
ber of basis functions, see Figure 7.2b.

Finally, we compare the achieved accuracy in dependence of the computational time for
both methods in Figure 7.3. The experiment demonstrates the efficiency of the spectral
method if highly accurate solutions are required. To be more precise, the spectral method
outperforms the finite element method if an L2(Γ)-error less than 1e−05 is attempted.

Figure 7.3.: Computation time versus achieved accuracy of the finite element and spec-
tral Galerkin approximation for Test Problem 7.1.1.

More general elliptic problems and problems with lower regularity (e.g. u ∈ H1(Γ))
should be discussed in future work.
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7.2. Parabolic Problems

The discussion is less straightforward for parabolic problems since the computational
costs depend on several factors. Let us for instance consider the heat equation

∂

∂t
u+ Hu = 0 (7.2.1)

on the star graph from Test Problem 7.1.1 with initial condition

u0
e′ = exp

(
−(x− ℓ/2)2

(ℓ/10)2

)

for a fixed edge e′ ∈ E and u0
e(x) = 0 for all e ̸= e′. A finite element semidiscretization

of the heat equation (7.2.1) was derived in Theorem 3.2.7 and is given by

d
dtM̂u(t) + L̂u(t) = 0, u(0) = u0. (7.2.2)

If we apply the Crank-Nicolson method to approximate the solution at time T , in total
T/∆t SLEs need to be solved. In contrast, the spectral Galerkin discretization of (7.2.1),

d
dtc(t) + Λc(t) = 0, c(0) = c0 (7.2.3)

(compare Theorem 4.2.3), can be solved directly for arbitrary T since Λ is diagonal.
Namely, the coefficients of the solution are given by c(T ) = exp(−TΛ)c0 . Instead, the
computational costs are dominated by the computation of the eigenfunction basis and
the projection of the initial condition. Thus, they behave like the cost of solving an
elliptic problem as discussed earlier.

The computational time for the solution at different time points T = 0.001, . . . , 0.2 is
measured for a finite element discretization with step size h = 2−10 (i.e., 4097 DoF) and
a spectral Galerkin discretization with Q = 88 modes. According to the experiments for
Test Problem 7.1.1, this choice of basis functions is expected to result in a solution with
comparable accuracy. The SLEs arising in the Crank-Nicolson method are solved with
a multigrid method as outlined in Section 3.3.2 (CN-MGM solver).
The results are illustrated in Figure 7.4 and confirm that the computation time for the
spectral solution is independent of T whereas it grows with T for the finite element
solution. In the particular example, the spectral method outperforms the finite element
approach in terms of computational time for T ≥ 0.005.
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Figure 7.4.: Computation time of the finite element and spectral Galerkin approximation
of (7.2.1) for different time points T .

Finally, we want to point out that in the more general case of the generalized heat and
reaction-diffusion equations, additional computational costs arise in both methods due
to the computation of the inner products on the right-hand side. Moreover, in the non-
linear case, a direct solution of the semidiscretized system is no longer possible for the
spectral method and exponential integrators have to be applied instead. A comparison
of the computational costs for different parameters (for example right-hand side, time
T , non-linearity, initial condition) will be addressed in future work.
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8. Application to the Simulation of Tau
Propagation in Alzheimer’s Disease

As indicated in the introduction, the motivation for the study of differential equations
on metric graphs arose from the interdisciplinary research project Neurodegeneration
Forecasting - A Computational Brainsphere Model for Simulation of Alzheimer’s Disease.
This project was founded in 2017 by Prof. Dr. Alexander Drzezga1, Prof. Dr. Angela
Kunoth2, and Prof. Dr. Yaping Shao3 and was supported by the Excellence Initiative of
the University of Cologne from November 2017 to October 2019. The central objective of
the collaboration was the development of a Global Brainsphere Model (GBM) to predict
the propagation of intra-neuronal tau pathology in Alzheimer’s disease (AD).
During my employment within this project, I was mainly concerned with the graph theo-
retical analysis of the human connectome. In this context, data collected at the Research
Center Jülich, Germany, have been utilized to realize a representation of the brain as a
metric graph. This representation is a key compartment of the GBM. The goal of this
chapter is to test the applicability of the derived numerical methods to metric graphs
that model the brain network. From this, first insights can be gained into the structure
of such network types and how a substance spreads across them. Advanced modeling
can follow this, but all relevant data and model parameters still need to be collected.

An outline of the GBM is in preparation for a Snapshot of modern mathematics from
Oberwolfach in joint work with Tolunay Yilmaz and Angela Kunoth [KWY]. To give
some backgrounds on the ideas and motivation at this point, I include parts of this
exposition with minor modifications in the first part of Section 8.1. Here, the focus is
on our approach to modeling the brain network as a metric graph, which I outline with
more details than in [KWY] in Section 8.2. Section 8.3 gives a brief description of the
data applied to construct a metric graph and initial data. The numerical experiments
were carried out for this thesis only and are presented in Section 8.4.

1Department of Nuclear Medicine, University of Cologne
2Department of Mathematics and Computer Science, University of Cologne
3Institute for Geophysics and Meteorology, University of Cologne
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8. Application to the Simulation of Tau Propagation in Alzheimer’s Disease

8.1. Motivation

Alzheimer’s disease (AD) is a slowly progressing neurodegenerative disease causing the
brain to shrink and brain cells to die. Much progress is being made in investigating the
course and hallmarks of the disease: beta-amyloid peptides that aggregate in the sur-
rounding area of the neuronal network (extraneuronal aggregation) and missfolded tau
proteins which accumulate in the neurons in form of tangles (intraneuronal accumula-
tion) [EJ12], [GEC17]. Tau tangles are believed to affect the functioning of the neurons
and eventually to cause their death.

Modern medical imaging techniques nowadays allow to visualize these kinds of plaques
in the brain in-vivo. Positron emission tomography (PET) scanners examine accumula-
tions of tau and beta-amyloid and, additionally, functional magnetic resonance imaging
(fMRI) and diffusion tensor imaging (DTI) provide indications on the structure and
functioning of a human brain.
With the help of these techniques, a lot of studies have been made on the behavior
of tau and beta-amyloid as well as connectivity patterns in the brain. The prevailing
hypothesis investigated in connection with tau is the transneuronal spread hypothesis
[Drz18]. By transneuronal, we mean that tau tangles travel from neuron to neuron,
inducing tangles in neighboring neurons in a prion (protein infection) like fashion. This
hypothesis motivates the simulation of tau propagation as diffusion process on the brain
network. But, on the other hand, tau tangles are also believed to disrupt the connections
between neurons and thereby to influence the brain network architecture.

The interplay between tau and network connectivity has become an active field of re-
search with the modeling of the brain as a (combinatorial) graph as one of the methods
in focus. In 2018, Cope et al. published a novel approach to investigate tau patterns
and their dependency on network connectivity measures, such as weighted degree of the
vertices [CRB+18]. This study has been reproduced by our interdisciplinary research
team [WBS+18] and similar results have been obtained: high functional connectivity of
a network node correlates with high measured tau pathology in AD.
On the other hand, a subsequent study of our group focused on the effects of tau on
brain connectivity, more precisely, on community formation in the brain [WBS+21]. Our
findings suggest that not only the brain network contributes to the tau distribution but
also that neurodegeneration affects the connectivity patterns of the brain. This implies
that a diffusion model of transneuronal spread should be capable of dealing with altered
graphs.
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8.2. Brain Network Model

As already mentioned in the introduction, Raj et al. study a network heat equation on
a combinatorial graph to investigate pathology patterns in the brain of AD patients.
In contrast to the problems considered during this thesis, the diffusion is modeled on a
discrete domain (in contrast to a metric graph). The network heat equation can then be
solved explicitly by an eigendecomposition of the graph Laplacian matrix. Therefore, in
their study, Raj et al. identify the first eigenvectors (i.e., the eigenvectors belonging to
the smallest eigenvalues) of the graph Laplacian matrix as main drivers of diffusion and
compare them with measured atrophy.
However, the model is not applied to actually model propagation on the brain network.
Moreover, it is a pure diffusive model and no additional phenomena such as production
or aggregation of tau proteins are included. There are some other attempts that extend
the pure diffusive models, for example [SMK20], [VIMS+20], but to my knowledge, no
continuous model (i.e., applying metric graphs) was investigated so far.

In a nutshell, the objective of the GBM is to analyze and combine the various in-vivo
data in a mathematical model to simulate and predict future course of AD. In addition to
the interaction of tau and the brain network, the presence of beta-amyloid plaques in the
surrounding of a neuron could influence its tendency to aggregate tau. The GBM should
thus comprise a dynamical brain network model, a tau propagation and a beta-amyloid
distribution model. We will here concentrate on the simulation of tau propagation based
on a diffusion-type distribution on the brain network. As the latter serves as a basis for
this model, we will present our current approach of a network (or graph) representation
of the brain in the following section.

8.2. Brain Network Model

Our aim is to represent the human brain as network consisting of vertices and edges.
Unfortunately, the resolution of common MRI scanners is not high enough to render
the extremely small neurons and synapses in the brain. The most prevalent method to
obtain a network representation comprises thousand of neurons to one brain region of
interest (ROI). If we consider the brain as three-dimensional object, the definition of
these ROIs corresponds to a partitioning into a number of contiguous regions.
In our case, this resulted in the parcellation displayed in Figure 8.1a with 571 regions with
an approximate volume of 2 ml (the UoC-atlas has been computed by Philipp Schlüter
as outlined in [WBS+21]). In particular, the ROIs in our atlas all have approximately
the same size and shape. Each of these regions then serves as a vertex in our graph,
where we position the vertex in the middle of the brain region, see Figure 8.1b.
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(a) UoC brain atlas with 571 brain regions.

(b) Vertices of the brain network.

(c) Vertices and edges of the brain network.

Figure 8.1.: Construction of the brain network model. Graphical representation using
nilearn in python.
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8.2. Brain Network Model

Remark. In fact, the parcellation in 571 regions is already very fine. As a comparison,
Raj et al. have used 116 regions in their network diffusion study [RKW12]. Moreover,
their brain regions vary in size and shape. The idea to use regions with an approximate
volume of 2 ml originated from [CRB+18].

Having defined the brain regions, it remains to specify how these regions are connected to
each other. As the application of graph theory in neuroscience has become prominent,
there exist several established methods to define connectivity. Among the two most
prevalent ones are structural and functional connectivity.

Structural Connectivity. The relative diffusion coefficient of water molecules
in the brain can be measured in each voxel using diffusion tensor imaging (DTI).
This coefficient provides information about the existence and strength of a physical
connection between two brain regions [LBMP+01].

Functional Connectivity. The concept of functional connectivity aims to mirror
the functional relationship between two brain regions, or in other words, their ex-
tend of interaction. During a resting-state functional magnetic resonance imaging
(rs-fMRI) session, patients are instructed not to move or think about anything in
particular while a series of scans are taken. To analyze the MRI, one makes use
of the effect that the signal of an MRI depends on the blood oxygen level of a
certain region in the brain. The blood oxygen level in turn reflects the activation
level of that region [Cho08]. Recording a series of images of a subject over time
delivers blood oxygen level dependent (BOLD) time-series for each brain region
whose pairwise correlation then determine the (undirected) functional connectivity
matrix.

Functional connectivity matrices have been studied in detail by our group and me for
the study [WBS+21]. Structural connectivity was studied intensively and computed by
a bachelor student employed within the research project [Kol20]. This study applied the
UoC-atlas but some difficulties arose due to the small size of the atlas regions and their
proper alignment with a standard space. The data therefore need to be revised before
they can be applied in the diffusion model.
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8.3. Data Description

8.3.1. Metric Graph Model of the Brain Network

In [WBS+21], we studied functional connectivity matrices for AD patients as well as for
a young and age matched healthy control cohort. In total, data of twenty AD patients
and a group of twenty age-matched healthy controls who underwent an MRI scanning
protocol at the Research Center Jülich, Germany, were analyzed. In addition, fMRI
data from a group of 24 young healthy controls from a public available rs-fMRI dataset
by Berlin-Margulies [ROSC+13] were included. Details on data acquisition and process-
ing can be found in the “Methods” section in [WBS+21]. The functional connectivity
matrix is typically thresholded such that the strongest 5-10 % connections determine
the adjacency matrix of the graph. For the following experiments, we applied a local
thresholding method with 6% network density as described in [WBS+21]4.
A group-average brain network adjacency matrix is computed for each group (AD, con-
trol and age-matched control) as the average of the thresholded functional connectivity
matrices, see Figure 8.2. To obtain a metric graph from the adjacency matrices, we
equip the edges with a length according to the euclidian distance of its start and end
vertex (Figure 8.3). We will denote the constructed metric graphs by ΓAD,ΓControl, and
ΓAge-matched.

(a) Control. (b) Age-matched control. (c) Alzheimer’s disease.

Figure 8.2.: Adjacency matrices of ΓAge-matched,ΓControl, and ΓAD. Black markers indi-
cate an edge in the graph.

All data applied for the construction of the metric graph have been originally studied
and preprocessed for [WBS+21], and a detailed description of the applied methods can
be found therein. The original data are stored in the Multimodal Imaging Cologne group
according to their ethics approved data protection policies.

4Thresholding was conducted with the Maybrain package in python (github.com/Rittman/maybrain).
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8.3. Data Description

(a) Control. (b) Age-matched control. (c) Alzheimer’s disease.

Figure 8.3.: Distribution of the edge lengths in ΓAge-matched,ΓControl, and ΓAD.

8.3.2. Tau Initial Data

A particular type of tracer for positron emission tomography (PET) can be used to as-
sess the distribution of tau pathology in vivo. For a collaboration with the Multimodal
Neuroimaging Cologne group, tau pathology data from ADNI (Alzheimer’s Disease Neu-
roimaging Initiative)5 have been analyzed [HWD+23]. In particular, longitudinal PET
data are available for the studied patient group, meaning that the patients underwent a
tau PET scan at two different time points, monitoring the deviation.
In total, data of 98 amyloid-positive patients for which both a baseline amyloid (18F-
AV45) scan and a longitudinal tau (18F-AV1451) PET scan were available have been
selected. In addition, 35 amyloid-negative patients were consulted as reference to com-
pute z-transformed tau and annual tau change maps (compare [HBS+18] or [BJF+16]
for details on the data preprocessing). The z-values are then extracted for each of the
571 brain regions of the UoC-atlas.

The 98 amyloid-positive patients are divided into 3 groups: 48 amyloid-positive cog-
nitively normal subjects (group 1), 35 subjects with mild cognitive impairment (group
2) and a group of 15 AD patients (group 3). For each group, an average baseline tau
pattern is then computed as the average of the positive z-values across the patients,
compare Figure 8.4. Additionally, a deviation pattern is computed on the basis of the
annual tau change maps, see Figure 8.5.

The original data applied for the generation of initial data originate from the ADNI
database. The data were preprocessed by the Multimodal Imaging Cologne group using
in-house scripts that are stored according to their policies.

5ADNI is a public-private partnership with the primary goal to test the combination of multimodal
imaging methods to measure the progression of mild cognitive impairment (MCI) and early AD, see
www.adni-info.org.
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(a) Group 1 (amyloid-positiv cognitively normal).

(b) Group 2 (mild cognitive impairment).

(c) Group 3 (AD).

Figure 8.4.: Initial tau patterns measured in baseline PET scan. Graphical representa-
tion using nilearn in python. Note that a z-value > 1.65 already indicates
a significant uptake of tau pathology. We therefore additionally provide
thresholded images of the initial tau patterns in the appendix (Figure B.5).
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(a) Group 1 (amyloid-positiv cognitively normal).

(b) Group 2 (mild cognitive impairment).

(c) Group 3 (AD).

Figure 8.5.: Tau deviation as measured in follow-up PET scan. Graphical representation
using nilearn in python.
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8.4. Numerical Experiments

The previously described data are now used to apply the derived numerical methods
to large-scale, real world data. In the first subsection, reaction-diffusion equations
on the brain network of the healthy control cohort, i.e., ΓControl will be solved with
the finite element method. In the second subsection, a lower part of the spectrum of
ΓControl, ΓAge-matched, and ΓAD is computed using equilateral approximations followed
by a Newton-trace iteration.
The numerical experiments constitute a first attempt of investigation diffusion-type mod-
els on brain networks. For sophisticated simulations, additional data have to be assessed
and all relevant model parameters have to be identified and determined in collaboration
with the colleagues from the Department of Nuclear Medicine.

8.4.1. Finite Element Approximation of Reaction-Diffusion Equations on
the Functional Brain Network

The baseline tau patterns described in Subsection 8.3.2 serve as initial condition on the
network nodes in the diffusion model, i.e., we consider three different initial conditions
u0,G1

V , u0,G2
V and u0,G3

V , each representing the initial tau pattern of one patient group
(as illustrated in Figure 8.4). A particular difficulty in the modeling is the definition
of a suitable initial condition on the whole metric graph. As described in the previous
section, initial tau pathology can only be measured in the vertices (i.e., ROIs) themselves
and not along the edges. The data therefore have to be interpolated at the interior of
the edges. For given data u0

V ∈ Rn on the vertices V, we propose to define

u0
e(x) = (u0

V(t(e)) − u0
V(o(e))) exp(−ℓe/x)

exp(−ℓe/x) + exp(−ℓe/(ℓe − x)) + u0
V(o(e)) (8.4.1)

for x ∈ (0, ℓe) where o(e) and t(e) are the start respectively end vertex of edge e.

To streamline the exposition, we outline the results for group 2, i.e., we set u0 = u0,G2.
Some results for the other groups are provided in the appendix (Figure B.6 and B.7).
We start with the simplest model, a pure diffusion model. To be more precise, the
propagation of tau pathology on ΓControl is modeled by the IBVP

∂u

∂t
+ Hu = 0 on Γ × [0, T ] (8.4.2)

under Neumann-Kirchhoff conditions and with initial condition u0 = u0,G2, compare
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Problem 2.3.2. In addition, we consider a weighted version of (8.4.2) that accounts for
different connection strengths of the edges. In this case, the differential operator Hβ acts
on ue as Hβ : ue 7→ −βe

∂2

∂x2ue for e ∈ E . The edge specific diffusion coefficients βe ∈ R+

are chosen as the functional connectivity strength. The weighted diffusion equation then
reads

∂u

∂t
+ Hβu = 0 on Γ × [0, T ]. (8.4.3)

The solution of (8.4.2) and (8.4.3) are approximated by a finite element semidiscretiza-
tion with step size hmax = 0.0625 (leading to 10504151 DoF) followed by the Crank-
Nicolson method (3.3.4) with step size ∆t = h. The arising SLEs are solved with a
matrix-free implementation of the multigrid algorithm (Algorithm 2) derived in Section
3.3.2 (CN-MGM). The values of the finite element solution of (8.4.2) at the vertices V
at time t are denoted by ut

V and by ut
V,β for the finite element solution of (8.4.3).

In Figure 8.6, we illustrate the deviation of the predicted tau patterns ut
V , ut

V,β and the
initial condition, i.e., ut

V − u0,G2
V and ut

V,β − u0,G2
V at time t = 12.5. The differences are

marginal, however, we can observe that some regions are effected less by the weighted
diffusion, suggesting that they are only weakly connected to the regions with high tau
burden. The diffusion coefficients can thus be applied as parameters to control the dif-
fusion to regions that are less likely to receive pathology.

Figure 8.6.: Deviation ut
V − u0,G2

V and ut
V,β − u0,G2

V of the predicted tau pattern and the
initial data at t = 12.5. Graphical representation using nilearn in python.
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The previous results obtained by a pure diffusion equation cannot model the overall
tau uptake measured in the follow-up PET scan (compare Figure 8.5). For α ∈ R, we
therefore next consider the linear reaction-diffusion equation

∂u

∂t
+ Hu = αu on Γ × [0, T ]

under Neumann-Kirchhoff conditions and with initial condition u0 = u0,G2, compare
Problem 2.3.5. The approximate solution at time t will be denoted by ut

V,α and is
computed with the same pipeline as for the diffusion equation, i.e., a finite element
approximation (h = 0.0625) followed by the CN-MGM solver (∆t = h).
We illustrate the actual observed deviation (follow-up PET scan) from the initial data
together with the deviation of the predicted tau patterns ut

V,α for α ∈ {0.001, 0.005}
in Figure 8.7. For each α, we have chosen a time point t where the overall amount of
deviation matches the observed deviation. Clearly, this state is attained faster for larger
reaction terms.
The illustration of the results suggests that the tau deviation might be better explained
by more reaction-dominated equations. However, recall that we are considering annual
tau change maps, long-term effects might be subject to more diffusion or additional
effects. Furthermore, we point out that structural connectivity networks might be better
suited for the modeling of a diffusion process. The computation of these will therefore be
an important next step. Moreover, in the very simplified model above, we have defined
a global reaction term acting on each edge in the same manner. Local reaction terms
identified from collected data and properties of the different brain regions will be derived
for future experiments and can help to better capture the observed behavior.

8.4.2. Spectra of Functional Connectivity Graphs

So far, we have only considered the metric graph ΓControl obtained from a young healthy
control cohort. However, as indicated earlier, we expect the connectivity patterns to
be altered with age and disease progression. To support this assumption, we will in
this subsection compare the spectra of the brain metric graphs obtained from the three
different groups, i.e., ΓControl,ΓAge-matched,ΓAD.

To compute the quantum graph spectra, we first round the edge lengths to two decimal
digits and then compute the first 20 eigenvalues of equilateral floor and ceil approxi-
mations Gfl,h,Gcl,h with the nested iteration algorithm (Algorithm 6). As the lowest
discretization level, we choose an equilateral approximation with edge length h = 2, the
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Figure 8.7.: Actual tau change map and deviation ut
V,α − u0,G2

V of the predicted tau
pattern and the initial data. Graphical representation using nilearn in
python.
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finest level corresponds to an approximation with edge length h = 0.5. Thus, we intend
to employ the eigenvalues of the equilateral approximation λq(Gfl,0.5) and λq(Gcl,0.5) as
estimates for the initial guess of the Newton-trace iteration.
First, we verify the estimates λq(Gcl,0.5) and λq(Gfl,0.5) for the first six (non-zero) eigen-
values by plotting the reverse condition number, compare Figure 8.8. As can be seen, the
roots of the reverse condition number lie exactly between the estimates obtained from
the equilateral floor and ceil approximations, and, in fact, the Newton-trace iteration
converges to the desired eigenvalues, compare Table 8.1.

λq Control Age-matched control AD
q = 2 1.07e-04 1.12e-04 1.34e-04
q = 3 1.33e-04 1.18e-04 1.63e-04
q = 4 1.93e-04 2.31e-04 2.39e-04
q = 5 2.20e-04 2.51e-04 2.82e-04
q = 6 2.69e-04 3.11e-04 3.10e-04
q = 7 2.77e-04 3.40e-04 3.65e-04

Table 8.1.: Eigenvalues of ΓControl,ΓAge-matched, and ΓAD computed by Newton-trace.

A comparison of the computed eigenvalues for the three different graphs reveals differ-
ences between the three groups, see Figure 8.9. Moreover, we have plotted the values of
the first two eigenfunctions (corresponding to non-zero eigenvalues) ϕ2, ϕ3 on the ver-
tices for each group in Figure 8.10. However, the interpretation of the results is not
straightforward. In general, smaller eigenvalues indicate that the diffusion progresses
more slowly throughout the network. But, as observed in the numerical experiments in
Section 6.3.3, this also critically depends on the initial condition. When it comes to the
values of the eigenfunctions at the vertices, it will be interesting to investigate if they
can be interpreted as an analog to the Fiedler’s vector in combinatorial graph theory (to
follow up on the interpretation in [RKW12]).
Overall, the observed differences indicate that the network architecture of the age-
matched control and the AD cohort is altered in comparison to young controls, and,
that these alterations influence the distribution of pathology on the brain network. The
results indicate that alterations should be integrated in the model, for instance by a dy-
namical model where the underlying graph is subject to age and disease related changes.
At this point, we would also like to point out that the applied thresholding scheme
critically influences the network structure. Since we applied a relative thresholding in
each group, it remains to investigate how the results are comparable between the groups.
Different thresholds and thresholding strategies will be applied to analyze if the observed
changes are robust towards thresholding.
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(a) Control

(b) Age-matched control.

(c) Alzheimer’s disease.

Figure 8.8.: First five eigenvalues of Gcl,0.5 and Gfl,0.5 as upper and lower bounds for the
roots of the reverse condition number cond(H(z))−1.
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Figure 8.9.: First 20 (non-zero) eigenvalues of ΓAD,ΓControl, and ΓAge-matched.

(a) Control.

(b) Age-matched control.

(c) Alzheimer’s disease.

Figure 8.10.: Values of ϕ2 and ϕ3 at the vertices of ΓControl,ΓAge-matched, and ΓAD.
Graphical representation using nilearn in python.
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9. Conclusion

9.1. Summary

Let us briefly summarize the expositions of the previous chapters. First, we derived a for-
mulation of PDEs posed on metric graphs by introducing Neumann-Kirchhoff coupling
conditions. We focused on parabolic differential equations evolving the negative second
spatial order derivative. The foundation for both of the proposed solution methods is
a weak formulation of the PDE of interest which was established for a linear parabolic
problem as well as for a semilinear reaction-diffusion equation. The well-posedness of the
weak formulations was deduced by standard requirements on the bilinear form. More-
over, an important finding in the first part of the thesis was the self-adjointness of the
differential operator H. This property is essential for the practicability of the spectral
solution method considered later since it assures the eigenfunctions of H to span an
orthogonal basis of the solution space.

As a first solution approach, we reviewed the finite element approximation presented
in [AB18]. We put some effort into the detailed discussion of the concept of extended
graphs and the structure of their graph Laplacian and incidence matrix. This has been
essential since it later allowed a convenient representation of the finite element stiffness
and mass matrix which is not only practical for representing the matrices, but also allows
an efficient assembling using the incidence matrix of the extended graph. The latter, in
turn, can be constructed from the incidence matrix of the original graph using Kronecker
products.
The obtained quadratic convergence rate of the finite element discretization is supported
by the conducted numerical experiments. We proposed implicit-explicit time stepping
methods to solve the system of ordinary differential equations arising from the semidis-
cretization. Here, the implicit part of the scheme gives rise to a system of linear equa-
tions. For the solution of these systems, we introduced a multigrid iteration and also
outlined a domain decomposition approach in the appendix.
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Moreover, we derived a spectral Galerkin method with a trial space composed of eigen-
functions of the differential operator acting on domH,NK. In other words, the objective
was to express the solution as a truncated eigenfunction expansion. We have seen that
spectral accuracy can be obtained for a class of functions that fulfill the vertex coupling
conditions together with each of its even derivatives. This means that the truncation
error decays faster than any polynomial with the addition of further basis functions.
These findings were as well supported by numerical experiments.
Given the particular structure of the mass and stiffness matrix, the solution of the
discretized system can be computed directly by using the matrix exponential, or by
exponential integrators in the semilinear case. Rather, the main costs of the spectral
Galerkin method arise from the computation of an eigenfunction basis as well as the
evaluation of inner products on graphs. The latter is a specific difficulty in spectral
methods given that the basis functions have global support. Thus, integrals over the
whole metric graph have to be evaluated, for instance to compute orthogonal projections.
We addressed this with a Filon-type quadrature formula which takes advantage of the
fact that we have a closed form representation of the eigenfunctions.

For the computation of an eigenfunction basis, we proposed a method relying on a reduc-
tion of the continuous problem to a (non-)linear eigenvalue problem on the underlying
combinatorial graph. In this context, equilateral graphs were of special interest since the
NEP in this case further simplifies to a linear eigenvalue problem. This remarkable ob-
servation allowed to directly relate the eigenvalues and eigenfunctions of a metric graph
to the eigenvalues and eigenvectors of its underlying combinatorial graph. However,
the relation does not hold for some special non-vertex eigenvalues such that some more
work had to be done to resolve the corresponding eigenfunctions. For this purpose, we
proposed a novel approach relying on the insertion of artificial vertices on the edges.
Having covered the equilateral case, we moved on to general, non-equilateral metric
graphs. By a standard approach, the NEP was reformulated to a root finding problem
and solved by a Newton-trace iteration. The novelty of our proposed method is the
application of the Newton-trace iteration to initial estimates obtained from equilateral
approximations of the non-equilateral graph, ensuring fast convergence.

Finally, two test problems were consulted to compare the finite element and spectral
Galerkin method in terms of convergence and complexity. Moreover, the applicability
of the methods to real world data obtained during the research project on Alzheimer’s
disease was tested. The first results suggest that reaction terms play an important role
in the modeling of disease propagation.
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9.2. Discussion and Further Work

One of the main purposes of this work was the detailed derivation and presentation of
numerical methods for parabolic PDEs on metric graphs. To streamline the exposition,
we have decided to abandon the finite difference method in order to work exclusively with
the weak formulation. This guaranteed better comparability of the presented methods by
an error measured in the L2(Γ)-norm. However, the finite difference method introduced
in [BCK22] can compete with the finite element method in practice and also exhibits a
quadratic error reduction (measured in the ∥ · ∥∞-norm). A detailed discussion of the
finite difference method was conducted during the lecture “Numerical methods for PDEs
on metric graphs” that I held at the University of Cologne in the summer term 2023 and
is also planned for the accompanying lecture notes.
In order to increase the practicality of the finite difference method, I have, in particular,
further extended the approach by the representation of the discretization matrices in
terms of the extended graph, just as in the finite element approach. The finite difference
discretization of the generalized heat equation then leads to the system of ODEs

d
dtu(t) + 2Q̂−1L̂u(t) = f̂ (9.2.1)

where Q̂ := diag
({

(|ÑW̃−1ÑT |)i,i
}ñ

i=1

)
and Ñ, L̂ are the incidence and weighted graph

Laplacian matrix of the extended graph as in Definition 3.1.3. Interestingly, for equilat-
eral graphs, the discretization matrix 2Q̂−1L̂ simplifies to ∆G which is our well known
harmonic graph Laplacian matrix that played an important role in the determination
of quantum graph spectra. The system (9.2.1) has a very similar structure to the finite
element semidiscretization with the advantage that the equivalent to the mass matrix
is the identity. For the solution of (9.2.1), it is therefore of interest to work with an
approximation of the matrix exponential exp(−t 2Q̂−1L̂) (for example occurring in ex-
ponential integrator methods) instead of a time stepping method. Note that in the finite
element setting, the same idea gives rise to the computation of exp(−tM̂−1L̂) where M̂
(in contrast to Q̂) is not diagonal. This can, however, be avoided if the mass matrix
approximation (Lemma 3.2.9) is exploited.

When it comes to the spectral Galerkin method, the main computational costs are caused
by the computation of an eigenfunction basis. In the equilateral case, the algorithm de-
rived in Section 5 reduces this problem to the solutions of discrete eigenvalue problems.
The efficient computation of eigenvalues and eigenvectors of graph Laplacian matrices
is therefore of great interest. In particular, the systems required for the computation of
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the non-vertex spectrum arise from an extended graph Laplacian matrix. For these, a
multigrid method will be developed in joint work with a master student following this
work. This can then also be used to accelerate the nested iteration approach to compute
initial solutions for the Newton-trace iteration in the non-equilateral case.
A further improvement of the computational complexity can be achieved through the
revision of the Filon quadrature rule for the computation of inner products. Polynomials
of higher order can be used and, in the non-equilateral case, a reasonable exploitation of
function evaluations by a careful choice of the quadrature points has to be implemented.

Finally, we would like to note out that one of the disadvantages of the spectral method is
that it was specifically designed for H acting on domH,NK, i.e., for Neumann-Kirchhoff
coupling conditions. The latter have guaranteed the self-adjointness of H. In fact,
there are other possible coupling conditions that entail a self-adjoint operator, see for
example [BK13], Theorem 1.4.4. When considering different coupling conditions, a new
method for the computation of spectral basis functions has to be developed. However,
Neumann-Kirchhoff coupling conditions are certainly the most prominent coupling con-
ditions and the discussed spectral approach naturally covers several PDEs, including
fractional diffusion equations.
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A. Supplementary Material in the Context
of the Finite Element Method

A.1. Finite Element Semidiscretization

Proof of Theorem 3.2.7. Parts of the derivation in [AB18] has been supplemented in the
course of a seminar work [JRS22] supervised by the author, which served as a basis for
the following exposition.
We want to approximate the solution on Vh by

uh(x, t) =
∑
v∈V

uv(t)ψv(x) +
∑
e∈E

Ne−1∑
k=1

ue,k(t)ψe,k(x)

with coefficients ue,k(t), uv(t) that need to be determined. The objective of this proof is
to derive a finite dimensional system yielding the demanded coefficients. This system,
as usual, arises from the choice of test functions as basis functions of Vh, i.e., it reads

d
dt(uh(t), ψ)Γ + h(uh(t), ψ) = (f(t), ψ)Γ for all ψ = ψe,k, ψv.

If we first test with the hat functions ψv defined on the vertices and then with ψe,k ∈ Vhe

successively, the matrix form of this discretization has the following block structure
corresponding to the original vertices and inner vertices:[

M̂VV M̂VE

M̂EV M̂EE

] [
u̇V(t)
u̇E(t)

]
+
[
BVV BVE

BEV BEE

] [
uV(t)
uE(t)

]
=
[
f̂ V(t)
f̂ E(t)

]
.

The vector uV(t) contains the coefficients uv(t) on the original vertices and uE(t) the
coefficients ue,k(t) on the inner vertices. We will in the following discuss how this system
simplifies to the proposed matrix form and, in particular, that the stiffness matrix B
coincides with the weighted extended graph Laplacian matrix L̂.
To start with the derivation of the stiffness matrix, we consider the bilinearform h(·, ·)
and observe the following identities for our basis functions (note that for the sake of
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A. Supplementary Material in the Context of the Finite Element Method

improved readability, we in the following exposition suppress the dependency of u on t):

1. Test functions on original vertices: For a fixed basis function ψv ∈ Vh it holds that

h(uh, ψv) =
∑
v′∈V

uv h(ψv′ , ψv) +
∑
e∈E

Ne−1∑
k=1

ue,k h(ψv, ψe,k)

= uv

∫
Wv

dψv

dx
dψv

dx dx+
∑
e∈E

Ne−1∑
k=1

ue,k

∫
Wv′ ∩e

dψe,k

dx
dψv

dx dx (A.1.1)

since Wv′ ∩ Wv = ∅ for v′ ̸= v.

The left part of this sum corresponds to the upper left part of the stiffness matrix
BVV , which consequently is diagonal with entries given by

(BVV)v,v =
∫

Wv

dψv

dx
dψv

dx dx.

Since ∫
Wv

dψv

dx
dψv

dx dx =
∑

e∈Eout
v

∫
Wv∩e

dψv

dx
dψv

dx dx+
∑

e∈E in
v

∫
Wv∩e

dψv

dx
dψv

dx dx

=
∑

e∈Eout
v

∫ he

0

(
− 1
he

)2
dx+

∑
e∈E in

v

∫ ℓe

ℓe−he

( 1
he

)2
dx

=
∑

e∈Eout
v

1
he

+
∑

e∈E in
v

1
he

=
∑
e∈Ev

1
he
,

these exactly agree with the entries of L̂VV .
Consider now the right part of (A.1.1) corresponding to the upper right part of
the stiffness matrix. The supports of ψe,k and ψv only overlap if e ∈ Ev and k is
the first or last inner grid point on e. More precisely, it holds that

supp(ψe,k ∩ ψv) =


[0, he] if e ∈ Eout

v and k = 1,

[ℓe − he, ℓe] if e ∈ E in
v and k = Ne − 1,

0 otherwise.

(A.1.2)
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We deduce that

∑
e∈E

Ne−1∑
k=1

ue,k

∫
Wv∩e

dψe,k

dx
dψv

dx dx

=
∑

e∈Eout
v

ue,1

∫ he

0

dψe,1
dx

dψv

dx dx+
∑

e∈E in
v

ue,Ne−1

∫ ℓe

ℓe−he

dψe,Ne−1
dx

dψv

dx dx

=
∑

e∈Eout
v

ue,1

∫ he

0

1
he

(
− 1
he

)
dx+

∑
e∈E in

v

ue,Ne−1

∫ ℓe

ℓe−he

(
− 1
he

) 1
he

dx

=
∑

e∈Eout
v

ue,1

(
− 1
he

)
+
∑

e∈E in
v

ue,Ne−1

(
− 1
he

)
,

i.e., (BVE)v,ṽ = − 1
he

if the original vertex v is connected to the inner grid point
ṽ and zero otherwise. This again coincides with the weighted extended graph
Laplacian matrix L̂VE .

2. Test functions on inner vertices: For a fixed basis function (ψe,k) ∈ Vhe on e ∈ E
it holds that

h(uh, ψe,k) =
∑
e′∈E

Ne−1∑
j=1

ue,j h(ψe′,j , ψe,k) +
∑
v∈V

uv h(ψv, ψe,k)

=
Ne−1∑
j=1

ue,j

∫
e

dψe,j

dx
dψe,k

dx dx+
∑
v∈V

uv

∫
Wv∩e

dψv

dx
dψe,k

dx dx

since
∫

e′

dψe′,j

dx
dψe,k

dx = 0 for e′ ̸= e.

The second part of the sum corresponds to the upper left part of the stiffness
matrix and, similar to BVE , we obtain∫

Wv∩e

dψv

dx
dψe,k

dx dx = − 1
he
.

This means that (BEV)ṽ,v is equal to − 1
he

if the inner grid point ṽ is connected to
the original vertex v and zero otherwise, i.e., we have BEV = BT

VE = L̂T
VE .

Finally, the first part of the sum describes the entries of the lower right part of the
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stiffness matrix. Clearly, the supports only overlap if e = e′ and as

supp(ψe,k ∩ ψe,j) =



[xe,j−1, xe,j ] if k = j − 1,

[xe,j−1, xe,j+1] if k = j,

[xe,j , xe,j+1] if k = j + 1,

0 otherwise,

(A.1.3)

we for each edge distinguish the three cases:

1. If k = j it holds that:

∫
e

dψe,k

dx
dψe,j

dx dx =
∫ xe,j

xe,j−1

(dψe,j

dx

)2
dx+

∫ xe,j+1

xe,j

(dψe,j

dx

)2
dx

=
∫ xe,j

xe,j−1

( 1
he

)2
dx+

∫ xe,j+1

xe,j

(
− 1
he

)2
dx

= 2
he
.

2. If k = j − 1 it holds that:∫
e

dψe,j−1
dx

dψe,j

dx dx =
∫ xe,j

xe,j−1
− 1
he

1
he

dx = − 1
he
.

3. The case k = j + 1 follows equivalently to the second case.

Consequently, BEE = blkDiag({Be}e∈E) is a block diagonal matrix with tridiagonal
blocks

Be = 1
he



2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2


what exactly defines L̂EE .

Thus, the finite element approximation of the bilinearform can be represented with the
weighted graph Laplacian matrix of the extended graph.
To show the identity of the mass matrix, we first observe that |ÑW̃−1ÑT | coincides with
the absolute graph Laplacian matrix of Γ̃ with inverse edge weights, i.e. with weights
ℓẽ. Moreover, diag

({
(|ÑW̃−1ÑT |)i,i

}ñ

i=1

)
describes the diagonal of this matrix. This

means we have to show that the blocks of M̂ are of the following form:
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A.1. Finite Element Semidiscretization

1. M̂VV = 1
6diag

{ ∑
e∈Ev

2he

}
v∈V


2. M̂EE is a block diagonal matrix M̂EE = blkDiag({M̂e}e∈E) with tridiagonal blocks

M̂e = he

6



4 1
1 4 1

. . . . . . . . .
1 4 1

1 4



3. M̂VE has entries at the positions where original vertices v and inner vertices ṽ ∈
e ∈ Ev are connected, in particular these entries are given by he

6 .

4. M̂EV = M̂T
VE .

To derive the proposed blocks, we consider

d
dt(uh, ψ)Γ = d

dt

(∑
v∈V

uv(t)ψv(x) +
∑
e∈E

Ne−1∑
k=1

ue,k(t)ψe,k(x) , ψ(x)
)

Γ

=
∫

Γ

(∑
v∈V

∂

∂t
uv(t)ψv(x)ψ(x) +

∑
e∈E

Ne−1∑
k=1

ue,k(t)ψe,k(x)ψ(x)
)

dx

for all ψ ∈ Vh. We can then again simplify the blocks of M̂ by the following distinction
of the test functions:

1. Test functions on original vertices: For a fixed basis function ψv ∈ Vh it holds that

∫
Γ

∑
v′∈V

∂

∂t
uv′(t)ψv′(x)ψv(x) +

∑
e∈E

Ne−1∑
k=1

ue,k(t)ψe,k(x)ψv(x)

dx

= d
dtuv(t)

∫
Γ
ψv(x)ψv(x)dx+

∫
Γ

∑
e∈E

Ne−1∑
k=1

ue,k(t)ψe,k(x)ψv(x)dx

with the arguments on the supports of ψv(x) as above. Thus, M̂VV is diagonal
with

(M̂VV)v,v =
∫

Γ
ψv(x)ψv(x)dx =

∫
Wv

ψv(x)ψv(x)dx. (A.1.4)
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These integrals may be calculated exactly as∫
Wv

ψv(x)ψv(x)dx =
∑

e∈Eout
v

∫
Wv∩e

ψv(x)ψv(x)dx+
∑

e∈E in
v

∫
Wv∩e

ψv(x)ψv(x)dx

=
∑

e∈Eout
v

∫ he

0

(
1 − x

he

)2
dx+

∑
e∈E in

v

∫ ℓe

ℓe−he

(
1 − ℓe − x

he

)2
dx

=
∑

e∈Eout
v

he

3 +
∑

e∈E in
v

he

3 =
∑
e∈Ev

he

3 .

Moreover, the right part of the sum simplifies to

∫
Γ

(∑
e∈E

Ne−1∑
k=1

ue,k(t)ψe,k(x)ψv(x)
)

dx =
∑
e∈Ev

Ne−1∑
k=1

ue,k(t)
∫

Wv

ψe,k(x)ψv(x)dx

(A.1.5)

and, by (A.1.2), further to

=
∑
e∈Ev

Ne−1∑
k=1

ue,k(t)
∫

Wv

ψe,k(x)ψv(x)dx

=
∑

e∈Eout
v

ue,1(t)
∫ he

0
ψe,1(x)ψv(x)dx+

∑
e∈E in

v

ue,Ne−1(t)
∫ ℓe

ℓe−he

ψe,Ne−1(x)ψv(x)dx

with ∫ he

0
ψe,1(x)ψv(x)dx =

∫ he

0

(
1 − xe,1 − x

he

)(
1 − x

he

)
dx = he

6

and∫ ℓe

ℓe−he

ψe,Ne−1(x)ψv(x)dx =
∫ ℓe

ℓe−he

(
1 + xe,Ne−1 − x

he

)(
1 − ℓe − x

he

)
dx = he

6 .

Consequently, the entries of M̂VE are given by he
6 whenever an original vertex is

connected to an inner grid point.
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A.1. Finite Element Semidiscretization

2. Test functions on inner discretization points: For a fixed basis function ψe,k ∈ Vh

it holds that

∫
Γ

∑
v∈V

d
dtuv(t)ψv(x)ψe,k(x) +

∑
e′∈E

Ne−1∑
j=1

ue′,j(t)ψe′,j(x)ψe,k(x)

dx

=
∫

Γ

∑
v∈V

d
dtuv(t)ψv(x)ψe,k(x) +

Ne−1∑
j=1

ue,j(t)ψe,j(x)ψe,k(x)

dx, (A.1.6)

i.e., to determine the entries of M̂EE we consider

∫
Γ

Ne−1∑
j=1

ue,j(t)ψe,j(x)ψe,k(x)dx =
Ne−1∑
j=1

ue,j

∫
e
ψe,j(x)ψe,k(x)dx (A.1.7)

and using (A.1.3) calculate the integrals for the three occurring cases:

1. If j = k, we obtain

∫
e
(ψe,k(x))2dx =

∫ xe,k

xe,k−1

(
1 − xe,k − x

he

)2
dx+

∫ xe,k+1

xe,k

(
1 + xe,k − x

he

)2
dx

= 2he

3 ,

2. if j = k − 1, we have∫
e
ψe,k−1(x)ψe,k(x)dx =

∫ xe,k

xe,k−1

(
1 + xe,k−1 − x

he

)(
1 − xe,k − x

he

)
dx = he

6

3. and the case j = k + 1 it follows similar to the second case.

The left part of the sum in (A.1.6) corresponds to M̂EV and follows equivalent to
the derivation of M̂VE since M̂EV = M̂T

VE .

Finally, the characterization of the right hand side immediately follows taking into ac-
count the supports of the test functions.
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Proof of Lemma 3.2.9. We go through the blocks of the mass matrix

M̂ =
[
M̂VV M̂VE

M̂EV M̂EE

]

sequentially and approximate the integrals using the trapezoidal rule.

1. The integrals in the diagonal matrix M̂VV are given by

∫
Wv

ψv(x)ψv(x)dx ≈
∑

e∈Eout
v

∫ he

0

(
1 − x

he

)2
dx+

∑
e∈E in

v

∫ ℓe

ℓe−he

(
1 − ℓe − x

he

)2
dx

=
∑

e∈Eout
v

he

2 +
∑

e∈E in
v

he

2 = 1
2
∑
e∈E

he.

2. For the integrals of the block diagonal matrix M̂EE = blkDiag({M̂e}e∈E) we have

(M̂e)k,j =
∫

e
ψe,k(x)ψe,j(x)dx

with three cases:

a) If j = k:

∫
e
(ψe,k(x))2dx =

∫ xe,k

xe,k−1

(
1 − xe,k − x

he

)2
dx+

∫ xe,k+1

xe,k

(
1 + xe,k − x

he

)2
dx

≈ he

2 + he

2 = he,

b) if j = k − 1 :∫
e
ψe,k(x)ψe,k−1(x)dx =

∫ xe,k

xe,k−1

(
1 + xe,k−1 − x

he

)(
1 − xe,k − x

he

)
dx ≈ 0

c) and j = k + 1 equivalent to 2.

3. The integrals in M̂VE and M̂EV are
∫ he

0
ψe,1(x)ψv(x)dx =

∫ he

0

(
1 − xe,1 − x

he

)(
1 − x

he

)
dx

and ∫ ℓe

ℓe−he

ψe,Ne−1(x)ψv(x)dx =
∫ ℓe

ℓe−he

(
1 + xe,Ne−1 − x

he

)(
1 − ℓe − x

he

)
dx,
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which, approximated by the trapezoidal rule, are both equal to zero. Consequently,
M̂VE = M̂T

EV = 0.

Thus, M̄ is a diagonal matrix and since the inner vertices have degree two, it is exactly
half the degree matrix of the extended graph with inverse edge weights he.

A.2. Schur Complement

The extended graph delivers a natural domain decomposition in original vertices and
inner grid points. Motivated by this fact, in [AB18], the authors discuss a block de-
composition approach for the solution of systems involving L̃. For equilateral graphs,
they prove the identity of the Schur complement of L̃ and the Laplacian matrix L of
the original, undiscretized graph ([AB18], Theorem 4.3.). With the help of the intro-
duced notation for weighted graph matrices, we will generalize this identity for arbitrary,
non-equilateral graphs.

Theorem A.2.1. Let Γ be a metric graph and Γ̃ be the extended graph arising from
the discretization with step sizes he ∈ h on the edges. We assign to the edges of both
graphs a weight according to the reciprocal of their length, i.e., we = 1/ℓe for e ∈ E and
wẽ = 1/he for ẽ ∈ Ẽe and all e ∈ E. Then, the Schur complement of L̃ in L̂EE is given
by

Ŝ := L̂/L̂EE = L̂VV − L̂VE L̂−1
EE L̂T

VE = L̂Γ

where L̂Γ is the weighted Laplacian matrix of the original graph Γ.

Proof. The proof works more or less equivalent to the equilateral case, which is given
in [AB18], proof of Theorem 4.3 and has been discussed in detail in the course of a
seminar under the authors’ supervision [JRS22]. However, some of the generalizations
and simplifications eligible in the equilateral case do not apply here since the blocks of
L̂EE no longer have the same size and weights. We therefore provide a detailed proof of
the assertion:
The extended graph Laplacian matrix can be computed as L̂ = ÑW̃ÑT with W̃ =
diag((wẽ)ẽ∈Ẽ). Consequently, the blocks of L̂ are given by

[
L̂VV L̂VE

L̂EV L̂EE

]
=
[
ÑV

ÑE

]
W̃
[
ÑT

V ÑT
E

]
=
[
ÑVW̃ ÑT

V ÑVW̃ ÑT
E

ÑEW̃ ÑT
V ÑEW̃ ÑT

E

]
. (A.2.2)

Consider the Schur complement

Ŝ := L̂/L̂EE = L̂VV − L̂VE L̂−1
EE L̂EV
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which is well defined since L̂EE is not singular. With (A.2.2), the second summand can
be rewritten to

L̂VE L̂−1
EE L̂EV = ÑV

(
W̃ ÑT

E

(
ÑEW̃ ÑT

E

)−1
ÑEW̃

)
ÑT

V . (A.2.3)

Note that

W̃ = blkDiag
({ 1

he
INe

}
e∈E

)
and ÑE = blkDiag

(
{Ñe}e∈E

)
with Ñe ∈ R(Ne−1)×Ne and, consequently, ÑEW̃ ÑT

E is a blockdiagonal matrix with its
inverse given by

(
ÑEW̃ ÑT

E

)−1
= blkDiag

({
he

(
ÑeÑT

e

)−1 }
e∈E

)
.

Moreover, W̃ÑT
E is a blockdiagonal matrix of the form W̃ÑT

E = blkDiag
({ 1

he
ÑT

e

}
e∈E

)
.

Together, the expression in the middle of (A.2.3) is given by

W̃ÑT
E

(
ÑEW̃ ÑT

E

)−1
ÑEW̃ = blkDiag

{ 1
he

ÑT
e

(
ÑeÑT

e

)−1
Ñe

}
e∈E

 .
If we denote by 1Ne ∈ RNe the vector of all ones, each of these blocks can be expressed
as

1
he

ÑT
e

(
ÑeÑT

e

)−1
Ñe = 1

he

1
Ne

(
NeINe − 1Ne1T

Ne

)
=: Te,

compare [JRS22], proof of Lemma 7.5, which we also briefly outlined for the non equi-
lateral case following this proof in Lemma A.2.4.
Remember now from the previous section that

ÑV =
[
ÑVe1

, . . . , ÑVem

]
with

ÑVe = Nout
e ⊗ (eNe

1 )T + Nin
e ⊗ (eNe

Ne
)T .
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We deduce that (A.2.3) can be expressed as

ÑV

(
W̃ ÑT

E

(
ÑEW̃ ÑT

E

)−1
ÑEW̃

)
ÑT

V

= ÑV blkDiag({Te}e∈E) ÑT
V

=
∑
e∈E

ÑVeTeÑT
Ve
.

Each of these summands can be simplified to

ÑVeTeÑT
Ve

= ÑVe

( 1
he

1
Ne

(
NeINe − 1Ne1T

Ne

))
ÑT

Ve

= 1
he

ÑVeINeÑT
Ve

− 1
heNe

ÑVe

(
1Ne1T

Ne

)
ÑT

Ve

= 1
he

ÑVeÑT
Ve

− 1
ℓe

ÑVe1Ne

(
ÑVe1Ne

)T

with

ÑVeÑT
Ve

=
(
Nout

e ⊗ (eNe
1 )T + Nin

e ⊗ (eNe
Ne

)T
) (

Nout
e ⊗ (eNe

1 )T + Nin
e ⊗ (eNe

Ne
)T
)T

= Nout
e Nout

e
T ⊗ (eNe

1 )T eNe
1 + Nout

e Nin
e

T ⊗ (eNe
1 )T eNe

Ne

+ Nin
e Nout

e
T ⊗ (eNe

Ne
)T eNe

1 + Nin
e Nin

e
T ⊗ (eNe

Ne
)T eNe

Ne

= Nout
e Nout

e
T + Nin

e Nin
e

T
.

Here, Nout
e and Nin

e are vectors in Rn with only one non-zero entry −1 or 1 at the position
of the origin o(e) or terminal vertex t(e) respectively. Thus, Nout

e Nout
e

T + Nin
e Nin

e
T is a

n×n diagonal matrix with two diagonal entries equal to 1 at (t(e), t(e)) and (o(e), o(e)).
With this considerations, we observe that

∑
e∈E

1
he

ÑVeÑT
Ve

is exactly the weighted degree matrices of the original vertices in the extended graph,
i.e., ∑

e∈E

1
he

ÑVeÑT
Ve

= L̂VV .
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This means that the Schur complement

Ŝ = L̂VV − L̂VE L̂−1
EE L̂EV

= L̂VV −
∑
e∈E

ÑVeTeÑT
Ve

= L̂VV −
(∑

e∈E

1
he

ÑVeÑT
Ve

−
∑
e∈E

1
ℓe

ÑVe1Ne

(
ÑVe1Ne

)T
)

simplifies to the expression

∑
e∈E

1
ℓe

ÑVe1Ne

(
ÑVe1Ne

)T
.

Moreover, since
ÑVe1Ne = Ne,

we obtain
Ŝ =

∑
e∈E

1
ℓe

NeNT
e ,

which is the graph Laplacian matrix of the original graph with edge weights we = 1
ℓe

.

Lemma A.2.4. Under the assumptions of Theorem A.2.1, it holds that

1
he

ÑT
e

(
ÑeÑT

e

)−1
Ñe = 1

he

1
Ne

(
NeINe − 1Ne1T

Ne

)
,

where 1Ne ∈ RNe denotes the vector of all ones.

Proof. For the equilateral case, the assertion was proved in the context of a seminar
paper, see [JRS22], lemma 7.5. The proof works equivalently for the general case. For
the sake of completeness, the main steps are outlined here:
Since

Ñe =


1 −1

1 −1
. . . . . .

1 −1

 ∈ R(Ne−1)×Ne ,
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the inverse of the tridiagonal Toeplitz matrix

ÑeÑT
e =



2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2


∈ R(Ne−1)×(Ne−1)

can be computed in closed form as

(
ÑeÑT

e

)−1
= 1
Ne



Ne − 1 Ne − 2 . . . 2 1

Ne − 2 . . . . . . . . . 2
... . . . . . . . . . ...

2 . . . . . . . . . Ne − 2
1 2 . . . Ne − 2 Ne − 1


,

compare [HO96]. Some matrix multiplication reveal

1
he

ÑT
e

(
ÑeÑT

e

)−1
Ñe = 1

he

1
Ne



Ne − 1 −1 . . . −1 −1

−1 . . . . . . . . . −1
... . . . . . . . . . ...

−1 . . . . . . . . . −1
−1 −1 . . . −1 Ne − 1


= 1
he

1
Ne

(
NeI − 1Ne1T

Ne

)
.

A.3. IMEX Scheme with Domain Decomposition Solver

An alternative to the multigrid method in Section 3.3.2 is to follow the example of [AB18]
where systems involving the graph Laplacian of the extended graph are solved using the
observed identity of the Schur complement of L̃ and the discrete graph Laplacian matrix
L ([AB18], Theorem 4.3). However, some more work has to be done here since we
are dealing with non-equilateral graphs and the structure of the systems evolving from
implicit time stepping methods differs from the systems arising from elliptic PDEs that
are considered in [AB18]. We therefore derived the general Schur complement identity
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for non-equilateral graphs as
Ŝ := L̂/L̂EE = L̂Γ

in Theorem A.2.1. It remains to deduce how this relation can also help us to solve
systems of the form

(M̂ + ∆t L̂)ut+1 = M̂ut + ∆t r̂(ut) =: b (A.3.1)

(compare (3.3.3)) efficiently.

The presented approach relies on the mass matrix approximation by the trapezoidal rule
(compare Lemma 3.2.9), i.e., M̄ ≈ M̂ is diagonal. We may then write (A.3.1) as

(I + ∆t M̄−1L̂)ut+1 = ut + ∆t M̄−1r̂(ut). (A.3.2)

As the system on the left-hand side not symmetric, first observe that its solution is given
by ut+1 = M̄− 1

2 vt+1 where vt+1 solves the symmetric system(
I + ∆t M̄− 1

2 L̂M̄− 1
2
)

vt+1 = M̄
1
2 ut + ∆t M̄− 1

2 r̂(ut). (A.3.3)

This can be seen by multiplying by M̄
1
2 from the left and expanding by I = M̄− 1

2 M̄
1
2 .

For ease of notation, we define v := vt+1 and b̂ := M̄
1
2 ut + ∆t M̄− 1

2 r̂(ut).

Since M̄− 1
2 is a diagonal matrix, it can be written as M̄− 1

2 = blkDiag(M̄− 1
2

VV , M̄
− 1

2
EE )

with two diagonal matrices M̄− 1
2

VV and M̄− 1
2

EE such that the symmetrized system assumes
the block form

(I + ∆tM̄− 1
2 L̂M̄− 1

2 )v =

I + ∆t M̄− 1
2

VV L̂VVM̄− 1
2

VV ∆t M̄− 1
2

VV L̂VEM̄− 1
2

EE

∆t (M̄− 1
2

VV L̂VEM̄− 1
2

EE )T I + ∆t M̄− 1
2

EE L̂EEM̄− 1
2

EE

[vV

vE

]
=
[
b̂V

b̂E

]
.

The objective in the following is to consider a block factorization of this system, so we
first prove the following lemma on the Schur complement.

Lemma A.3.4. Suppose we are given the diagonalization M̄− 1
2

EE L̂EEM̄− 1
2

EE = UΛUT .
Then, the Schur complement of (I + ∆tM̄− 1

2 L̂M̄− 1
2 ) can be expressed in terms of the

original weighted graph Laplacian matrix as

Ŝt = ∆t M̄− 1
2

VV L̂ΓM̄− 1
2

VV + I − ∆t2
(

M̄− 1
2

VV L̂VEM̄− 1
2

EE

)(
UX−1UT

)(
M̄− 1

2
VV L̂VEM̄− 1

2
EE

)T

where X−1 := (∆tΛ + I)−1 − (∆tΛ)−1.
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Proof. The Schur complement of the block matrix (I + ∆tM̄− 1
2 L̂M̄− 1

2 ) is given by

Ŝt := ∆t
(

I + ∆tM̄− 1
2

VV L̂VVM̄− 1
2

VV

)
− ∆t2

(
M̄− 1

2
VV L̂VEM̄− 1

2
EE

)(
I + ∆tM̄− 1

2
EE L̂EEM̄− 1

2
EE

)−1 (
M̄− 1

2
VV L̂VEM̄− 1

2
EE

)T

.

In order to use the identity derived for the extended graph Laplacian Schur complement,
we need to reformulate the inverse in the second summand of Ŝt. Consider therefore the
diagonalization

M̄− 1
2

EE L̂EEM̄− 1
2

EE = UΛUT

which allows to reformulate(
I + ∆tM̄− 1

2
EE L̂EEM̄− 1

2
EE

)−1
=
(
I + ∆tUΛUT

)−1

= U (I + ∆tΛ)−1 UT

since UUT = I. Defining X−1 := (∆tΛ + I)−1 − (∆tΛ)−1, it holds that (I + ∆tΛ)−1 =
(∆tΛ)−1 + X−1, and it follows

(
I + ∆tM̄− 1

2
EE L̂EEM̄− 1

2
EE

)−1
= U (I + ∆tΛ)−1 UT

= U
(
(∆tΛ)−1 + X−1

)
UT

and consequently

∆t2
(

M̄− 1
2

VV L̂VEM̄− 1
2

EE

)(
I + ∆tM̄− 1

2
EE L̂EEM̄− 1

2
EE

)−1 (
M̄− 1

2
VV L̂VEM̄− 1

2
EE

)T

= ∆t2
(

M̄− 1
2

VV L̂VEM̄− 1
2

EE

)(
U
(
(∆tΛ)−1 + X−1

)
UT

)(
M̄− 1

2
VV L̂VEM̄− 1

2
EE

)T

= ∆t2
(

M̄− 1
2

VV L̂VEM̄− 1
2

EE

)( 1
∆tUΛ−1UT + UX−1UT

)(
M̄− 1

2
VV L̂VEM̄− 1

2
EE

)T

.
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Observe that UΛ−1UT = (UΛUT )−1 =
(

M̄− 1
2

EE L̂EEM̄− 1
2

EE

)−1
and hence

Ŝt =
(

I + ∆tM̄− 1
2

VV L̂VVM̄− 1
2

VV

)
− ∆t2

(
M̄− 1

2
VV L̂VEM̄− 1

2
EE

)(
I + ∆tM̄− 1

2
EE L̂EEM̄− 1

2
EE

)−1 (
M̄− 1

2
VV L̂VEM̄− 1

2
EE

)T

= ∆t
(

M̄− 1
2

VV L̂VVM̄− 1
2

VV −
(

M̄− 1
2

VV L̂VEM̄− 1
2

EE

)(
M̄− 1

2
EE L̂EEM̄− 1

2
EE

)−1 (
M̄− 1

2
VV L̂VEM̄− 1

2
EE

)T
)

+ I − ∆t2
(

M̄− 1
2

VV L̂VEM̄− 1
2

EE

)(
UX−1UT

)(
M̄− 1

2
VV L̂VEM̄− 1

2
EE

)T

.

We will now show that the first part of this expression can be reduced to the original
graph similar to the Schur complement of L̂ discussed in Theorem A.2.1. This is because

M̄− 1
2

VV L̂VVM̄− 1
2

VV −
(

M̄− 1
2

VV L̂VEM̄− 1
2

EE

)(
M̄− 1

2
EE L̂EEM̄− 1

2
EE

)−1 (
M̄− 1

2
VV L̂VEM̄− 1

2
EE

)T

= M̄− 1
2

VV L̂VVM̄− 1
2

VV −
(

M̄− 1
2

VV L̂VEM̄− 1
2

EE

)(
M̄

1
2
EE L̂−1

EE M̄
1
2
EE

)(
M̄− 1

2
EE L̂T

VEM̄− 1
2

VV

)
= M̄− 1

2
VV L̂VVM̄− 1

2
VV − M̄− 1

2
VV L̂VE L̂−1

EE L̂T
VEM̄− 1

2
VV

= M̄− 1
2

VV (L̂VV − L̂VE L̂−1
EE L̂T

VE)M̄− 1
2

VV .

The expression in the middle of the last row is exactly the Schur complement of L̂.
According to Theorem A.2.1, it is equal to L̂Γ.

With this observations in place, we now consider the factorization of (I+∆tM̄− 1
2 L̂M̄− 1

2 )
given byŜt ∆t

(
M̄− 1

2
VV L̂VEM̄− 1

2
EE

)
0 I + ∆t

(
M̄− 1

2
EE L̂EEM̄− 1

2
EE

)

 I 0(

I + ∆tM̄− 1
2

EE L̂EEM̄− 1
2

EE

)−1
∆t
(

M̄− 1
2

VV L̂VEM̄− 1
2

EE

)T

I


and apply a block elimination procedure to the system (I + ∆tM̄− 1

2 L̂M̄− 1
2 )v = b̂. This

leads to two reduced systems

ŜtvV = b̂V − ∆t
(

M̄− 1
2

VV L̂VEM̄− 1
2

EE

)(
I + ∆tM̄− 1

2
EE L̂EEM̄− 1

2
EE

)−1
b̂E(

I + ∆t M̄− 1
2

EE L̂EEM̄− 1
2

EE

)
vE = b̂E − ∆t

(
M̄− 1

2
VV L̂VEM̄− 1

2
EE

)T

vV .
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The eigendecomposition M̄− 1
2

EE L̂EEM̄− 1
2

EE = UΛUT is already given, i.e., the inverse ap-
pearing in the right hand side of the first system can be readily computed as

(I + ∆tM̄− 1
2

EE L̂EEM̄− 1
2

EE )−1 = U(I + ∆tΛ)−1UT . (A.3.5)

By this, also the solution of the second system follows straightaway. The solution of the
first system involving the Schur complement (which is of size n × n!) can be efficiently
computed for example by the CG algorithm.

We summarize our findings in the following solution scheme:

Algorithm 7 Domain decomposition solver.

(i) Compute the Eigendecomposition M̄− 1
2

EE L̂EEM̄− 1
2

EE = UΛUT

(ii) For each time step t = 0, . . . T set M̄
1
2 ut =: b̂ and solve

(
I + ∆t M̄− 1

2 L̂M̄− 1
2
)

v =
b̂ by solving the two reduced systems

(ii.1) ŜtvV = b̂V − ∆t
(

M̄− 1
2

VV L̂VEM̄− 1
2

EE

)(
I + ∆tM̄− 1

2
EE L̂EEM̄− 1

2
EE

)−1
b̂E with

Ŝt := ∆tM̄− 1
2

VV L̂Γ M̄− 1
2

VV +I−∆t2
(

M̄− 1
2

VV L̂VEM̄− 1
2

EE

)(
UX−1UT

)(
M̄− 1

2
VV L̂VEM̄− 1

2
EE

)T

and X−1 := (∆tΛ + I)−1 − (∆tΛ)−1

(ii.2)
(

I + ∆tM̄− 1
2

EE L̂EEM̄− 1
2

EE

)
vE = b̂E − ∆t

(
M̄− 1

2
VV L̂VEM̄− 1

2
EE

)T

vV

and compute ut+1 = M̄− 1
2 v.

Remark. The computationally most expensive part of Algorithm 7 is the eigendecom-
position in (i). Indeed, the matrix M̄− 1

2
EE L̂EEM̄− 1

2
EE is a block diagonal matrix of the

form

M̄− 1
2

EE L̂EEM̄− 1
2

EE = blkDiag
(

M̄− 1
2

e1 L̂e1M̄− 1
2

e1 , . . . , M̄
− 1

2
em L̂emM̄− 1

2
em

)
where each block corresponds to an edge. Since the step lengths are constant across
a fixed edge e, the blocks M̄− 1

2
e1 L̂e1M̄− 1

2
e1 are Toeplitz matrices, i.e., Λe and Ue can be

computed in closed form for each block. However, these are dense matrices which means
that in particular the assembling of (A.3.5) is expensive although it can be performed

201



A. Supplementary Material in the Context of the Finite Element Method

parallel for each edge. An alternative to the direct assembling is to solve

(ii.1’) ŜtvV = b̂V − ∆t
(

M̄− 1
2

VV L̂VEM̄− 1
2

EE

)
ˆ̂bE

where ˆ̂bE is obtained from a tridiagonal solver as the solution of(
I + ∆tM̄− 1

2
EE L̂EEM̄− 1

2
EE

)
ˆ̂bE = b̂E .

Again, the systems are completely decoupled such that the solution of the tridiagonal
system can be conducted independently and in parallel for each edge.

If the system (ii.1) is solved by a direct solver, Algorithm 7 is itself a direct solver for
(A.3.2) and no additional error is introduced. However, we have to keep in mind that
we have chosen the diagonal approximation M̄ of the Mass matrix for the derivation of
the domain decomposition scheme. Yet, the numerical findings in Section 6.1 suggest
that the additional error introduced is negligible and, in particular, does not influence
the order of convergence.
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B.1. Further Examples for the Computation of Quantum
Graph Spectra

Consider the following two only slightly different lollipop graphs: the first one is a 3-cycle
graph attached to a path consisting of one edge, the second example is a 3-cycle graph
attached to a path consisting of two edges, compare Figure B.1. Both graphs are not
bipartite and have equilateral edge length ℓ = 1.

Figure B.1.: Lollipop graphs.

The objective of this example is a comparison of their eigenvalues and eigenfunctions,
or, in other words, to investigate the effect of the additional edge on patterns in the
spectrum. Let us begin with the eigenvalues, illustrated in Figure B.2 for λ <

(
3π
ℓ

)2
.

(a) Lollipop graph 1. (b) Lollipop graph 2.

Figure B.2.: Eigenvalues of lollipop graphs.

The number of non-vertex eigenvalues matches for both graphs: m−n+2 = 2 for k even
and m− n = 0 for k odd. Each vertex bunch of lollipop graph 1 has three eigenvalues,
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for lollipop graph 2 we have four as it has an additional vertex. To examine the role
of the additional vertex eigenvalue, we take a closer look at the first bunch of vertex
eigenfunctions plotted in Figure B.3

(a) Lollipop graph 1.

(b) Lollipop graph 2.

Figure B.3.: First bunch of vertex eigenfunctions for lollipop graphs.

One eigenvalue (λ = 4.39) appears in both spectra. The corresponding eigenfunction
describes the same dynamic on both graphs. In particular, it is identical zero on the
“stem”. Similarly, the eigenfunction of lollipop graph 1 corresponding to λ = 1.80 has
an equivalent in lollipop graph 2 describing a similar dynamic (ϕ2).
Note that the spectrum of lollipop graph 2 is equivalent to a lollipop graph of the first
type, but with a stem of length ℓe = 2 since the elimination of the vertex does not change
the spectrum.
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B.2. Analysis of Projection Coefficients in the Spectral
Expansion

As indicated in Section 6.3.1, we suppressed the projection coefficients identical to zero
already for small q in the results. In this context, some interesting phenomena that
have been observed during numerical experiments will be exemplary demonstrated on
the following experiment.

Example B.2.1. Consider the diamond graph Γdia with n = 4 vertices and n = 5 edges,
each of length 1 and let u be a function with

ue′ = exp
(

−(x− ℓ/2)2

(ℓ/10)2

)

for a fixed edge e′ ∈ E and ue(x) = 0 for all e ̸= e′. In particular, we choose e′ = e3 as
the middle edge of the diamond graph such that u assumes the form illustrated in Figure
B.4b.

Let us for convenience return to the notation we used in deriving the equilateral graph
spectra: for each eigenvalue µ of the harmonic graph Laplacian matrix, we have λµ,k,

k = 0, 1, 2, . . . eigenfunctions of the metric graph. In total, this gives us n − 1 different
types of vertex eigenfunctions (if Γ is not bipartite, otherwise we have n − 2). Each
of them describes a fixed dynamic on the vertices of the graph and for increasing k,
solely the oscillation across the edges increases (compare the derivation and examples
in Section 5.2.1). These observations are also reflected in the projection coefficients. To
be more precise, in Figure B.4a, we illustrate the coefficients cq for the eigenfunctions
corresponding to the vertex eigenvalues λµ,k, k = 0, 1, . . . , 6. In fact, cq ̸= 0 only for all
eigenvalues associated with the harmonic graph Laplacian eigenvalues µ2 and µ3.
A deeper examination of the eigenfunctions immediately explains this behavior. Consider
for instance ϕλ for λ = λµ2,k, k = 0, 1 in Figure B.4c. Obviously, the projection coefficient
cλ =

∫
Γ u(x)ϕλ(x)dx = 0 since ϕλ ≡ 0 on e3 (the middle edge). For µ3, the integral

vanishes since u is axisymmetric on edge e3, whereas the eigenfunctions corresponding
to λµ3,k are pointsymmetric, compare Figure B.4d.

205



B. Further Numerical Results

(a) Projection coefficients of vertex eigenfunctions.

(b) u on Γdia. (c) ϕλ for λ = λµ2,k. (d) ϕλ for λ = λµ3,k.

Figure B.4.: Projection coefficients for Example B.2.1 with a selection of associated
eigenfunctions. In subfigure a), the projection coefficients cλ of the ver-
tex eigenfunctions ϕλ corresponding to the eigenvalues λ = λµ,k are plotted
for µ = µ2, µ3, µ4 and k = 0, . . . , 6.
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B.3. Simulation of Tau Propagation

B.3. Simulation of Tau Propagation

(a) Group 1 (amyloid-positiv cognitively normal).

(b) Group 2 (mild cognitive impairment).

(c) Group 3 (AD).

Figure B.5.: Initial tau patterns measured in baseline PET scan with z-value threshold
1.65. Graphical representation using nilearn in python.
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B. Further Numerical Results

Figure B.6.: Group 1: Actual tau change map and deviation ut
V,α−u0,G1

V of the predicted
tau pattern and the initial data. Graphical representation using nilearn
in python.
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B.3. Simulation of Tau Propagation

Figure B.7.: Group 3: Actual tau change map and deviation ut
V,α−u0,G3

V of the predicted
tau pattern and the initial data. Graphical representation using nilearn
in python.
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C. Code Documentation
MeGraPDE  

MMeeGGrraaPPDDEE
MeGraPDE stands for MetricGraphPDEs and implements numerical methods for the solution of partial differential equations

(PDEs) on metric graphs.

I have developed the MeGraPDE.jl package in connection with my Ph.D thesis at the University of Cologne [W].

Among others, the package includes

• construction of a variety of exemplary metric graphs and test problems

• discretization via extended graphs

• finite element solver for PDEs on metric graphs, e.g. in combination with a multigrid approach

• computation of quantum graph eigenvalues and eigenfunctions

• spectral Galerkin solver for PDEs on metric graphs, e.g. in combination with a filon-quadrature

The package relies on the methods from Graphs.jl for combinatorial graphs.

The finite element discretization via extended graphs is implemented based on the original work [AB]. The computation of

equilateral quantum graph eigenvalues is based on an idea originally proposed by von Below [B]. The remaining methods and

the related theory have been derived for [W] and are discussed therein.

The package is under continuous development.

[W] Anna Weller, Numerical Methods for Parabolic Partial Differential Equations on Metric Graphs, PhD thesis at the

University of Cologne, in preparation.

[AB] Mario Arioli, Michele Benzi, A finite element method for quantum graphs, IMA Journal of Numerical Analysis, Volume 38,

Issue 3, July 2018, Pages 1119–1163.

[B] Joachim von Below, A characteristic equation associated to an eigenvalue problem on c2-networks. Linear Algebra and its

Applications, 71:309–325, 1985.

Copyright (c) 2023 Anna Weller (University of Cologne)

IInnssttaallllaattiioonn

The package can be added by specifying the URL to the Git repository. In your julia  terminal, enter the following commands

julia> uussiinngg Pkg
julia> Pkg.add(url="https://github.com/AnnaWeller/MeGraPDE.jl");

You are all set. The package can now be activated with the command

julia> uussiinngg MeGraPDE

Your first metric graph »

Powered by Documenter.jl and the Julia Programming Language.
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Getting Started / Your first metric graph  

YYoouurr  fifirrsstt  mmeettrriicc  ggrraapphh
Before you start, go to the installation section and activate MeGraPDE  in the current session with the command

uussiinngg MeGraPDE

CCrreeaattiinngg  aa  mmeettrriicc  ggrraapphh

Let us first create a combinatorial star graph G  with 5 vertices and 4 edges using Graphs.jl

uussiinngg Graphs
G = star_graph(5)

{5, 4} undirected simple Int64 graph

In order to extend G  to an equilateral metric graph, we define the edge length ℓ

ℓ = pi + pi/2

4.71238898038469

G  can now be represented as metric graph Γ  by applying the function metric_graph

Γ = metric_graph(G, ℓ)

{n=5,m=4,ℓ=4.71238898038469} equilateral metric graph

For a small example like the star graph, vertex coordinates can be assigned that will later allow to visualize Γ  in

3d.

coords = [[0,0],
          [ℓ,0],
          [-ℓ,0],
          [0,ℓ],
          [0,-ℓ]]

5-element Vector{Vector{Float64}}:
 [0.0, 0.0]
 [4.71238898038469, 0.0]
 [-4.71238898038469, 0.0]
 [0.0, 4.71238898038469]
 [0.0, -4.71238898038469]
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The function metric_graph  takes the optional input vertex_coords  to specify the vertex coordinates.

Γ = metric_graph(G, ℓ, vertex_coords = coords)

{n=5,m=4,ℓ=4.71238898038469} equilateral metric graph

We may now plot Γ  using plot_graph_3d

plot_graph_3d(Γ)

The previous example graph can be assembled using the constructor metric_star_graph  and indicating

the desired edge length as metric_star_graph(ℓ = pi + pi/2) . Several other example graphs are

implemented.

FFuunnccttiioonnss  oonn  mmeettrriicc  ggrraapphhss

A function u  on a metric graph is represented by a vector of functions u_e , specifying u  on each edge e .

u = [ x -> -3*sin(x),
    x -> sin(x),
    x -> sin(x),
    x -> sin(x)
    ]

4-element Vector{Function}:
 #1 (generic function with 1 method)
 #2 (generic function with 1 method)
 #3 (generic function with 1 method)
 #4 (generic function with 1 method)

If vertex coordinates are assigned to Γ , a function can be plotted on Γ  with

 NNoottee
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plot_function_3d(Γ, u)

« MeGraPDE ... and its spectrum »

Powered by Documenter.jl and the Julia Programming Language.
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Getting Started / ... and its spectrum  

......  aanndd  iittss  ssppeeccttrruumm
All eigenvalues  of the equilateral graph  can be computed with eigvals_quantum . By default, K=3 is

applied.

eigvals_quantum(Γ)

First 12 eigenvalues:
12-element Vector{Any}:
  0
  2.4674011002723395
  2.4674011002723395
  2.4674011002723435
  9.869604401089358
 22.20660990245104
 22.206609902451056
 22.206609902451056
 39.47841760435743
 61.68502750680849
 61.68502750680849
 61.68502750680852

An eigenfunction basis with all eigenfunctions ,  can be constructed via eigen_quantum

σ = eigen_quantum(Γ)

First 12 eigenvalues and eigenfunctions:
values:
12-element Vector{Float64}:
  0.0
  2.4674011002723395
  2.4674011002723395
  2.4674011002723435
  9.869604401089358
 22.20660990245104
 22.206609902451056
 22.206609902451056
 39.47841760435743
 61.68502750680849
 61.68502750680849
 61.68502750680852
 Coefficients of eigenfunctions ϕ_e = A_e cos(√λ x) + B_e sin (√λ x) for q = 1, …, Q:
A_e:
4×12 SparseMatrixCSC{Float64, Int64} with 24 stored entries:
 0.5   ⋅    ⋅   4.71028e-16  0.707107  …  -0.707107   ⋅    ⋅   4.71028e-16
 0.5   ⋅    ⋅   4.71028e-16  0.707107     -0.707107   ⋅    ⋅   4.71028e-16
 0.5   ⋅    ⋅   4.71028e-16  0.707107     -0.707107   ⋅    ⋅   4.71028e-16
 0.5   ⋅    ⋅   4.71028e-16  0.707107     -0.707107   ⋅    ⋅   4.71028e-16

λ < ℓ
Kπ 2

Γ

ϕλ λ < ℓ
Kπ 2
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 B_e:
4×12 SparseMatrixCSC{Float64, Int64} with 37 stored entries:
  ⋅   -0.57735  -1.0          -0.408248  …  -0.57735  -1.0          -0.408248
  ⋅    1.1547   -1.15574e-16  -0.408248      1.1547   -1.15574e-16  -0.408248
  ⋅   -0.57735   1.0          -0.408248     -0.57735   1.0          -0.408248
  ⋅     ⋅         ⋅            1.22474        ⋅         ⋅            1.22474

Eigenvalues and eigenfunctions are always returned in ascending order. The function allows to explicitly construct

a specific eigenfunction:

ϕ_q = eigenfunction(Γ, σ, 5)

4-element Vector{Function}:
 #6 (generic function with 1 method)
 #6 (generic function with 1 method)
 #6 (generic function with 1 method)
 #6 (generic function with 1 method)

It can be vizualized using plot_function_3d

plot_function_3d(Γ, ϕ_q)

« Your first metric graph Heat Equation »

Powered by Documenter.jl and the Julia Programming Language.
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Getting Started / Heat Equation  

HHeeaatt  EEqquuaattiioonn
Finally, the initial boundary value problem for the heat equation

on a metric graph Γ  under Neumann-Kirchhoff conditions is approximated.

Consider a lollipop graph that can be constructed using the predefined method metric_lollipop_graph

Γ = metric_lollipop_graph()
plot_graph_3d(Γ)

As initial condition, we choose a model initial condition that has compact support on randomly chosen, edge of Γ  and is

zero elsewhere. A routine to assemble this initial condition is implemented in

u0 = model_initial_condition(Γ)

5-element Vector{Function}:
 #17 (generic function with 1 method)
 #17 (generic function with 1 method)
 #16 (generic function with 1 method)
 #17 (generic function with 1 method)
 #17 (generic function with 1 method)

The solution of  can be simulated for  by calling

T = 1
animate_diffusion(Γ, u0, T)

u(x, t) +
∂t

∂
u(x, t) =

∂u2

∂2

0 (∗)

(∗) t ∈ [0, T ]
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Lets go for fractional diffusion on a tree!

Γ = metric_tree_graph()
u0 = model_initial_condition(Γ)
T = 3
animate_diffusion(Γ, u0, T, α = 0.1)

« ... and its spectrum Base »

Powered by Documenter.jl and the Julia Programming Language.
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Metric Graphs / Base  

BBaassee
The abstract type AbstractMetricGraph comprises the following two types representing non-equilateral and equilateral metric

graphs.

MeGraPDE.MetricGraphs.MetricGraph — Type

MeGraPDE.MetricGraphs.EquilateralMetricGraph — Type

In the field 'coords', coordinates can be specified that allow plotting the graph in a 3d grid.

The function metric_graph assembles a metric graph by specifying a combinatorial graph G  and edge lengths. Coordinates can be set

optionally, but are false per default.

MeGraPDE.MetricGraphs.metric_graph — Function

It is possible to extended every possible graph to a metric graph by assigning edge length.

A type representing a Metric Graph (non-equilateral)

• G

Simple combinatorial graph

• ℓ_vec

Vector containing the edge lengths

• coords

Array containing the coordinates of the vertices; specify 'nothing' if no coordinates available

A type representing a Metric Graph with equilateral edge lengths

• G

Simple combinatorial graph

• ℓ

Equilateral edge length

• coords

Array containing the coordinates of the vertices; specify 'nothing' if no coordinates available

metric_graph(G::SimpleGraph, ℓ_vec::Vector; coord=nothing)

Create metric graph from simple graph 'G' with edge lengths 'ℓ_vec' and optionally assign a coordinate specified in 'coord' to

the vertices.

metric_graph(G::SimpleGraph, ℓ::Number; coord=nothing)

Equilateral version with one uniform edge length 'ℓ' assigned to each edge.

219



Consider for example the Barabasi-Albert graph constructed with [Graphs.jl](https://github.com/JuliaGraphs/Graphs.

uussiinngg Graphs
G = barabasi_albert(100,3)

{100, 291} undirected simple Int64 graph

You can now either assign an equilateral edge length represented by one number or a vector l_vec with edge lengths to create a

metric graph

ℓ = 1
Γ = metric_graph(G, ℓ)

{n=100,m=291,ℓ=1} equilateral metric graph

ℓ_vec = rand(1:5,ne(G))
Γ = metric_graph(G, ℓ_vec)

{n=100, m=291} metric graph

Some minor functions are implemented to quickly access properties of Γ. This list is by far not complete and will be expanded by

other frequently used functions.

MeGraPDE.MetricGraphs.edge_length — Function

MeGraPDE.MetricGraphs.vol — Function

« Heat Equation Extended Graph »

Powered by Documenter.jl and the Julia Programming Language.

edge_length(Γ::MetricGraph, j::Int)

Return edge length of edge 'j.'

edge_length(Γ::EquilateralMetricGraph)

Equilateral version.

vol(Γ::MetricGraph)

Return volume .vol =Γ ℓ∑e∈E e

vol(Γ::EquilateralMetricGraph)

Equilateral version, .vol = m ⋅ ℓ
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Metric Graphs / Extended Graph  

EExxtteennddeedd  GGrraapphh

MeGraPDE.MetricGraphs.discretize_function — Function

MeGraPDE.MetricGraphs.extended_incidence_matrix — Function

MeGraPDE.MetricGraphs.extended_laplacian — Function

« Base Constructors »

Powered by Documenter.jl and the Julia Programming Language.

discretize_function(Γ::MetricGraph, u::Vector{Function}, h_max::Number)

Return discretized version of 'u' on the extended graph of 'Γ' with step size 'h_max' on the edges.

discretize_function(Γ::MetricGraph, u::Vector{Function}, Nx_vec::Vector)

Return discretized version of 'u' on the extended graph of 'Γ' with inner grid points in 'Nx_vec'.

discretize_function(Γ::EquilateralMetricGraph, u::Vector{Function}, h_max::Number)

Equilateral version.

extended_incidence_matrix(Γ::MetricGraph, h_max::Number)

Return extended incidence matrix of 'Γ' with maximal step length 'h_max' per edge.

Construction of incidence matrix via kron-products according to (AB) (section 4.1), see also (W), section 3.1 for a

summary.

extended_incidence_matrix(Γ::EquilateralMetricGraph, h_max::Number)

Equilateral version with some simplifications.

extended_laplacian(Γ::EquilateralMetricGraph, k::Int)

Compute extended graph Laplacian matrix of 'Γ' with 'k' artificial vertices on each edge.

k inner vertices means each edge is partitioned in k+1 subdivision. The construction of the graph Laplacian relies on

the same manipulations of the original graph as in the extendedincidencematrix routine. Here, however, the Laplacian

matrix L=NN^T is returned and some simplifications due to the equilateral edge length apply.
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Metric Graphs / Constructors  

CCoonnssttrruuccttoorrss
Various example graphs, where possible with vertex coordinates, can be constructed by predefined functions.

MeGraPDE.MetricGraphs.metric_tree_graph — Function

MeGraPDE.MetricGraphs.metric_graphene_graph — Function

MeGraPDE.MetricGraphs.metric_star_graph — Function

MeGraPDE.MetricGraphs.metric_diamond_graph — Function

MeGraPDE.MetricGraphs.metric_lollipop_graph — Function

metric_tree_graph(; ℓ=1)

Create a tree graph with n=16 vertices and m=15 edges of lengths 'ℓ'.

metric_graphene_graph(; ℓ=1)

Create a graphene graph with n=12 vertices and m=13 edges of lengths 'ℓ'.

metric_star_graph(; ℓ=1)

Create a star graph with n=5 vertices and m=4 edges of lengths 'ℓ'.

metric_star_graph(ℓ_vec::Vector)

Create a star graph with edge lengths 'ℓ_vec'.

metric_diamond_graph(; ℓ=1)

Create a diamond graph with n=4 vertices and m=5 edges of lengths 'ℓ'.

metric_lollipop_graph(n1::Int, n2::Int; ℓ=1)

Create a lollipop graph with clique of size 'n1' connected by an edge to a path of size 'n2', equilateral edge lengths

'ℓ'
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MeGraPDE.MetricGraphs.metric_barabasi_albert — Function

MeGraPDE.MetricGraphs.metric_erdos_renyi — Function

« Extended Graph Test Problems »

Powered by Documenter.jl and the Julia Programming Language.

metric_barabasi_albert(n::Int, k::Int; ℓ=1, seed=nothing)

Create equilateral Barbási-Albert graph with 'n' vertices by growing an initial graph with 'k' vertices and attaching

each vertex with 'k' edges, see Graphs.barabasi_albert.

OOppttiioonnaall  AArrgguummeennttss

• ℓ=1: equilateral edge length.

• seed=nothing: set the RNG seed.

metric_erdos_renyi(n::Int, p::Number; ℓ=1)

Create equilateral Erdos-Renyi graph with 'n' vertices connected by edges with probability 'p', see

Graphs.erdos_renyi
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Test Problems  

TTeesstt  PPrroobblleemmss
Different type of test problems of abstract type TestProblem can be constructed.

The following types are available:

• EllipticTestProblem

• TPGeneralizedHeat

Depending on the specific problem, a right-hand side, reaction-term and/or initial conditions must be set. If available, the exact solution

and its derivative can be indicated. Otherwise, 'Nothing' must be specified.

EElllliippttiicc  TTeesstt  PPrroobblleemmss

The elliptic equation

is represented by the TestProblem type

MeGraPDE.EllipticTestProblem — Type

The following exemplary test problems are predefined:

MeGraPDE.TestProblem242 — Constant

MeGraPDE.TestProblem243 — Constant

H(u(x)) + νu(x) = f(x)

Elliptic Test Problem

• pot

Potential

• Γ

Metric Graph

• rhs

Right-hand side

• u

Exact solution

• u_deriv

Derivative of exact solution

TestProblem242

Elliptic test problem on 5-star graph with equilateral edge length π+π/2.

TestProblem243

Elliptic test problem diamond graph with equilateral edge length 2π.
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PPaarraabboolliicc  TTeesstt  PPrroobblleemmss

GGeenneerraalliizzeedd  HHeeaatt  EEqquuaattiioonn

The generalized heat equation

on  subject to Neumann-Kirchhoff conditions and initial condition  is represented by the TestProblem type

MeGraPDE.TPGeneralizedHeat — Type

The following exemplary test problems are predefined:

MeGraPDE.TestProblem244 — Constant

MeGraPDE.TestProblem245 — Constant

MeGraPDE.TestProblem721 — Constant

« Constructors Finite Element Discretization »

Powered by Documenter.jl and the Julia Programming Language.

(x, t) +
∂t

∂u
H(u(x, t) = f(x, t))

Γ u0

Test Problem related to Generalized Heat Equation on Γ.

• Γ

Metric Graph

• u0

Initial Condition

• rhs

right-hand side

• u

Exact solution

• u_deriv

Derivative of exact solution

Heat equation on star graph with eigenfunction  as initial condition.ϕ5

Heat equation on diamond graph with eigenfunction  as initial condition.ϕ3

Heat equation with Gaussian-type inital condition.
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Finite Elements / Finite Element Discretization  

FFiinniittee  EElleemmeenntt  DDiissccrreettiizzaattiioonn

MeGraPDE.finite_element_solver — Function

MeGraPDE.fe_discretization — Function

MeGraPDE.fe_matrices — Function

MeGraPDE.fe_rhs — Function

finite_element_solver(TP::EllipticTestProblem, J::Int; solver = "backslash")

Solve elliptic test problem 'TP' using a finite element discretiation with maximum step size 2^(-'J').

The backslach operator is used as a default solver for the semidiscretized system. Set solver = "multigrid" to apply multigrid solver.

finite_element_solver(TP::TPGeneralizedHeat, T::Number, J::Int; solver = "multigrid")

Solve generalized heat equation test problem 'TP' at time 'T' using a finite element discretiation with maximum step size 2^(-'J')

followed by CN-MGM.

fe_discretization(TP::EllipticTestProblem, J::Int; mass_aprox = false)

Compute finite element discretization of elliptic test problem 'TP' with step size 'J'.

fe_discretization(TP::TPGeneralizedHeat, J::Int; mass_aprox = false)

Compute finite element discretization of generalized heat equation 'TP' with step size 2^(-'J').

fe_matrices(Γ::MetricGraph, h_max::Number; mass_approx = false)

Assemble finite element mass and stiffness matrix.

Set mass_approx = true to use mass matrix approximation via Trapezoidal rule.

fe_matrices(Γ::EquilateralMetricGraph, h_max::Number; mass_approx = false)

When called for equilateral graphs, apply uniform discretization on each edge.

fe_rhs(Γ::MetricGraph, rhs::Vector{Function}, h_max::Number)

Return discretized right-hand side rhs with maximum step size h_max on each edge.

fe_rhs(Γ::EquilateralMetricGraph, rhs::Vector{Function}, h_max::Number)

Simplified version for equilateral graphs.
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MeGraPDE.fe_error — Function

« Test Problems Multigrid Solver »

Powered by Documenter.jl and the Julia Programming Language.

fe_error(Γ::MetricGraph, u_fe::Vector, u::Vector{Function}, u_deriv::Vector{Function}, Nx_vec::Vector)

Compute L2 and H^1 error of the finite element solution with coefficients ufe with respect to exact solution u with derivative

u_deriv.

fe_error(Γ::EquilateralMetricGraph, u_fe::Vector, u::Vector{Function}, u_deriv::Vector{Function})

Equilateral version.

fe_error(TP::EllipticTestProblem, u_fe::Vector)

Compute L2 and H^1 error of the finite element solution with coefficients 'ufe' with respect to exact solution 'TP.u' with derivative

'TP.u_deriv'.
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Finite Elements / Multigrid Solver  

MMuullttiiggrriidd  SSoollvveerr

MG_Constants — Type

MG_Settings — Type

Level_Parameters — Type

IInntteerrggrriidd  OOppeerraattiioonnss

prolongate! — Function

Structure to pass constants used in multigrid iteration across the Level_Parameters.

• origs_e

• terms_e

• L

• Deg

• Deg_inv

• m

• n

Structure to pass multigrid parameters.

• nu1

• nu2

• mu

Structure to pass level discretiation parameters.

• ℓ_vec

• Nx_vec

• h_vec

prolongate!(v_fine::Vector, lev_para::Level_Parameters, v_coarse::Vector, mg_const::MG_Constants)

Perform matrix free prolongation of vector 'vcoarse' on level 'Nxvec/2' to next finer level 'Nx_vec'.

Calls subroutines

prolongate_E!(v_fine::Vector, lev_para::Level_Parameters, v_coarse::Vector, mg_const::MG_Constants)
prolongate_vector_Nxe(v::Vector ,Nx_e::Int)
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prolongate_E! — Function

restrict! — Function

restrict_V! — Function

to perform prolongation in block form.

prolongate!(v_J::Vector, J::Int, v_Jm1::Vector, mg_const::MG_Constants)

Equilateral version.

prolongate_E!(v_fine::Vector, lev_para::Level_Parameters, v_coarse::Vector, mg_const::MG_Constants)

Perform prolongation from vertices to edges and inside edges

prolongate_E!(v_J::Vector, J::Int, v_Jm1::Vector, mg_const::MG_Constants)

Equilateral version.

restrict!(d_coarse::Vector, lev_para::Level_Parameters, d_fine::Vector, mg_const::MG_Constants)

Perform matrix free restriction of vector 'dfine' on level 'Nxvec' to next coarser level 'Nx_vec/2'.

Calls subroutines

restrict_V!(d_coarse::Vector, lev_para::Level_Parameters, d_fine::Vector, mg_const::MG_Constants)
restrict_E!(d_coarse::Vector, lev_para::Level_Parameters, d_fine::Vector, mg_const::MG_Constants)
restrict_vector_Nxe(v::Vector, Nxe::Int)

to perform restriction in block form.

restrict!(d_Jm1::Vector, J::Int, d_J::Vector, mg_const::MG_Constants)

Equilateral version.

restrict_V!(d_coarse::Vector, lev_para::Level_Parameters, d_fine::Vector, mg_const::MG_Constants)

Perform restriction from edge to vertex values.

restrict_V!(d_Jm1::Vector, J::Int, d_J::Vector, mg_const::MG_Constants)

Equilateral version.
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restrict_E! — Function

CCNN--MMGGMM  SSoollvveerr

cn_mgm — Function

cn_mgm_cycle! — Function

cn_coarse_grid_correction! — Function

cn_smooth_jacobi! — Function

cn_matrix_free_jacobi! — Function

restrict_E!(d_coarse::Vector, lev_para::Level_Parameters, d_fine::Vector, mg_const::MG_Constants)

Perform restrictions inside edges

restrict_E!(d_Jm1::Vector, J::Int, d_J::Vector, mg_const::MG_Constants)

Equilateral version.

cn_mgm(TP::TPGeneralizedHeat, T::Number, J::Int; nu1=1, nu2=1, mu=1)

Fully Discretized Scheme: Compute FE-CN-MGM discretization of 'TP' at time 'T' and level 'J'.

cn_mgm_cycle!(u0::Vector, lev_para::Level_Parameters, dt::Float64, f_J::Vector, mg_const::MG_Constants, mg_set::

Perform one cycle of the CN-MGM method with initial vector 'u0', right-hand side 'f_J', time stepping size 'dt'

cn_coarse_grid_correction!(u0::Vector, lev_para::Level_Parameters, dt::Float64, f_J::Vector, mg_const::MG_Consta

Coarse grid correction including transport to lower level and back.

cn_smooth_jacobi!(u0::Vector, lev_para::Level_Parameters, dt::Number, nu1::Int, f::Vector, mg_const::MG_Constant

Perform nu1 smooting iterations.
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cn_mat_mul! — Function

MMGG  NNeesstteedd  IItteerraattiioonn  SSoollvveerr  ((EElllliippttiicc))

solve_mgm — Function

ni_mgm — Function

cn_matrix_free_jacobi!(u::Vector, lev_para::Level_Parameters, dt::Number, f::Vector, mg_const::MG_Constants)

Perform weighted jacobi smoother in MGM-CN on 'u' with time step size 'dt', right-hand side 'f' and discretization

parameters.

cn_mat_mul!(out::Vector, lev_para::Level_Parameters, vec::Vector, dt::Number, mg_const::MG_Constants)

Perform matrix free multiplication (M̂+dt/2L̂)'vec'.

Calls subroutines

cn_mat_mul_VV!(out::Vector, vec::Vector, dt::Float64, Nx_vec::Vector, h_vec::Vector, j::Int, counter::Int)
cn_mat_mul_VE!(out::Vector, vec::Vector,dt::Float64,Nx_vec::Vector,h_vec::Vector,terms_e::Vector,origs_e::Vector,
cn_mat_mul_EV_EE!(out::Vector, vec::Vector,dt::Float64,Nx_vec::Vector,h_vec::Vector,terms_e::Vector,origs_e::Vect
cn_mat_mul_e!(out::Vector, vec::Vector,dt::Float64,Nx_vec::Vector,h_vec::Vector,j::Int,counter::Int)

to perform the multiplications in block form

[ (M+̂dt/2*L)̂_VV   (M+̂dt/2*L)̂_VE ]   [ vec_V ]         [(M+̂dt/2*L)̂_VV*vec_V + (M+̂dt/2*L)̂_VE * vec_E ]    
[                               ]   [       ]   =     [                                            ]
[ (M+̂dt/2*L)̂_EV   (M+̂dt/2*L)̂_EE ]   [ vec_E ]         [(M+̂dt/2*L)̂_EV*vec_V + (M+̂dt/2*L)̂_EE * vec_E ]

where

                            [ (M+̂dt/2*L)̂_e1                         ]  [ vec_e1 ]
(M+̂dt/2*L)̂_EE * vec_E =     [                ⋱ ⋱                   ]  [   ⋮    ]  
                            [                        (M+̂dt/2*L)̂_em  ]  [ vec_em ]

is again performed in block form according to the edges e1, … ,em.

solve_mgm(TP::EllipticTestProblem, J::Int; nu1=1, nu2=1, mu=1)

Multigrid solver for elliptic test problem 'TP' at level 'J'. Calls MGMmatrixfree_jacobi!.

ni_mgm(TP:EllipticTestProblem, J_max::Int)

Nested iteration MG solver for elliptic testproblem 'TP' and Level 'Jmax'. Calls MGMmatrixfreejacobi!.

231



MGM_matrix_free_jacobi! — Function

mat_mul_M! — Function

mat_mul_H! — Function

smooth_jacobi! — Function

matrix_free_jacobi! — Function

« Finite Element Discretization Spectra of Equilateral Graphs »

Powered by Documenter.jl and the Julia Programming Language.

MGM_matrix_free_jacobi!(u0::Vector, J::Int, f_J::Vector, J0::Int, mg_set::MG_Settings, mg_const::MG_Constants)

Matrix free MGM with jacobi smoother.

mat_mul_M!(out::Vector, u::Vector, J::Int, mg_const::MG_Constants)

Perform multiplication M_'J'*'u' and store output in 'out'.

mat_mul_H!(out::Vector, J::Int, u::Vector, mg_const::MG_Constants)

Perform multiplication H_'J'*'u' and store output in 'out'.

smooth_jacobi!(u0::Vector, J::Int, f_J::Vector, nu1::Int, mg_const::MG_Constants)

Matrix-free Jacobi smoother.

matrix_free_jacobi!(u::Vector, J::Int, f::Vector, mg_const::MG_Constants)

Iteration of matrix-free Jacobi smoother.
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Quantum Graph Spectra / Spectra of Equilateral Graphs  

SSppeeccttrraa  ooff  EEqquuiillaatteerraall  GGrraapphhss

MeGraPDE.QuantumGraphSpectra.eigvals_quantum — Function

MeGraPDE.QuantumGraphSpectra.eigen_quantum — Function

MeGraPDE.QuantumGraphSpectra.count_eigvals_K — Function

« Multigrid Solver Spectra of Non-Equilateral Graphs »

Powered by Documenter.jl and the Julia Programming Language.

eigvals_quantum(Γ::EquilateralMetricGraph; K=3, sorted=true, only_vertex=false)

Compute all eigenvalues  of the equilateral metric graph 'Γ'.λ < ( K π)/ℓ)′ ′ 2

eigen_quantum(Γ::EquilateralMetricGraph; K=3, sorted=true, sparse_svd=false)

Compute all eigenvalues  and corresponding eigenfunctions  with

of the equilateral metric graph 'Γ'.

The coefficient ,  are stored in A = [Ae1,…,Aem]' and B = [Be1,…,Bem]' for each eigenfunction. The coefficients

are normalized such that all eigenfunctions fulfill .

λ < ( K π)/ℓ)′ ′ 2 ϕ

ϕ =e A cos( x) +e λ B sin( x)e λ

Ae Be

∥ϕ∥ = 1

count_eigvals_K(Γ::EquilateralMetricGraph, K::Int)

Return number of eigenvalues .λ < ( K ∗′ ′ π/ℓ)2
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Quantum Graph Spectra / Spectra of Non-Equilateral Graphs  

SSppeeccttrraa  ooff  NNoonn--EEqquuiillaatteerraall  GGrraapphhss

MeGraPDE.QuantumGraphSpectra.equilateral_floor_approximation — Function

MeGraPDE.QuantumGraphSpectra.equilateral_ceil_approximation — Function

MeGraPDE.QuantumGraphSpectra.eigvals_equilateral_representation — Function

MeGraPDE.QuantumGraphSpectra.approx_lowest_level — Function

MeGraPDE.QuantumGraphSpectra.nested_iteration_eigenvalue_approximation — Function

MeGraPDE.QuantumGraphSpectra.H_matrix — Function

equilateral_floor_approximation(Γ::MetricGraph, h::Number)

Compute equilateral floor approximation of 'Γ' with equilateral edge length 'h'

equilateral_ceil_approximation(Γ::MetricGraph, h::Number)

Compute equilateral ceil approximation of 'Γ' with equilateral edge length 'h'

eigvals_equilateral_representation(Γ::MetricGraph, h::Number)

Compute the exact eigenvalues of 'Γ' by an equilateral representation with edge length 'h'

approx_lowest_level(Γ::MetricGraph, h_min::Number; Q=2)

Compute eigenvalue approximations by equilateral ceil and floor approximations of the first 'Q' eigenvalues at the

lowest discretization level 'h_min' in the nested iteration.

nested_iteration_eigenvalue_approximation(Γ::MetricGraph; lev_zero=0, lev_max=7, Q=2, save_each_lev=

Approximate first 'Q' eigenvalues of 'Γ' via equilateral approximations using a nested itertation approach.

H_matrix(z::Number, Γ::MetricGraph)

Compute H(z) for a metric graph 'Γ'.
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MeGraPDE.QuantumGraphSpectra.newton_trace — Function

MeGraPDE.QuantumGraphSpectra.nested_iteration_newton_trace — Function

« Spectra of Equilateral Graphs Spectral Galerkin Method »

Powered by Documenter.jl and the Julia Programming Language.

H_matrix(z::Number, bfN::SparseMatrixCSC, ℓ_vec::Vector)

Compute H(z) for a graph with incidence matrix 'Inc' and edge length 'ℓ_vec'.

newton_trace(Γ::MetricGraph, z_start::Number)

Newton-trace iteration to determine roots of det(H(z)).

nested_iteration_newton_trace(Γ::MetricGraph; lev_zero=0, lev_max=7, Q=5, save_each_lev=false

Conduct nested iteration newton trace algorithm to find the first 'Q' eigenvalues of 'Γ'.
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Spectral Galerkin Method  

SSppeeccttrraall  GGaalleerrkkiinn  MMeetthhoodd

MeGraPDE.projection_coefficients — Function

MeGraPDE.projection_coefficients_filon — Function

MeGraPDE.spectral_solution — Function

MeGraPDE.spectral_galerkin_solver — Function

« Spectra of Non-Equilateral Graphs Plotting »

Powered by Documenter.jl and the Julia Programming Language.

projection_coefficients(Γ::MetricGraph, σ::QuantumGraphEigen, u::Vector{Function})

Compute projection coefficients 'coefs' of orthogonal projection of 'u' with standard QuadGK quadrature.

projection_coefficients(Γ::EquilateralMetricGraph, σ::QuantumGraphEigen, u::Vector{Function})

Equilateral version.

projection_coefficients_filon(Γ::EquilateralMetricGraph, σ::QuantumGraphEigen, u::Vector{Function}, quad_nodes::

Compute projection coefficients of 'u' on 'Γ' for eigenfunction in 'σ' with 'quad_nodes' quadrature nodes.

Uses (matrix-free) Filon-Quadrature as described in [W], Section 4.3.2.

spectral_solution(Γ::AbstractMetricGraph, σ::QuantumGraphEigen, coef::Vector)

Explicitly construct spectral solution u_Q on 'Γ' from eigenbasis 'σ' and coefficents 'coef'.

spectral_solver(TP::EllipticTestProblem, K::Int; filon=false)

Compute coefficents of the spectral Galerkin solution of 'TP' with eigenfunction basis of size 'K'.

If filon=true, the more economic filon-quadrature is applied instead of QuadGK.

spectral_solver(TP::TPGeneralizedHeat, T::Number, K::Int; filon=false)

Compute coefficents of the spectral Galerkin solution of 'TP' at time 'T' with eigenfunction basis of size 'K'.

If filon=true, the more economic filon-quadrature is applied instead of QuadGK.
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Plotting  

PPlloottttiinngg

MeGraPDE.plot_graph_3d — Function

MeGraPDE.plot_function_3d — Function

« Spectral Galerkin Method

Powered by Documenter.jl and the Julia Programming Language.

plot_graph_3d(Γ::Union{EquilateralMetricGraph,MetricGraph}; save_as=false, set_title=false, color=

Plot metric graph 'Γ' on 3d-grid.

OOppttiioonnaall  AArrgguummeennttss

• save_as=false: path to save plot

• set_title=false: optional title on plot

• color="gray": color to plot graph

plot_function_3d(Γ::Union{EquilateralMetricGraph,MetricGraph}, u::Vector{Function}; save_as=false, set_title=

Plot function 'u' on metric graph 'Γ' on 3d-grid.

OOppttiioonnaall  AArrgguummeennttss

• save_as=false: path to save plot

• set_title=false: optional title on plot

• color_graph="gray": color to plot graph

• color_func="cornflowerblue": color to plot function
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D. Notation

Abbreviations

AD . . . . . . . . . . . . . Alzheimer’s Disease
BOLD . . . . . . . . . . blood oxygen level dependency
CN-MGM . . . . . . Crank-Nicolson multigrid method
DTI . . . . . . . . . . . . diffusion tensor imaging
fMRI . . . . . . . . . . . functional magnetic resonance imaging
IBVP . . . . . . . . . . . initial boundary value problems
IE-MGM . . . . . . . implicit Euler multigrid method
IMEX . . . . . . . . . . implicit-explicit methods
MGM . . . . . . . . . . . multigrid method
NEP . . . . . . . . . . . . nonlinear eigenvalue problem
ODE . . . . . . . . . . . ordinary differential equation(s)
PET . . . . . . . . . . . . Positron emission tomography
PDE . . . . . . . . . . . . partial differential equation(s)
ROI . . . . . . . . . . . . region of interest
SLE . . . . . . . . . . . . system of linear equation

Graphs and Differential Equations

Combinatorial Graphs

G = (V, E) . . . . . . simple (undirected) combinatorial graph with vertex set V and
edge set E

n,m . . . . . . . . . . . . number of vertices n := |V| and edges m := |E|
v, vi . . . . . . . . . . . . vertex in V = {v1, . . . , vn}
e, ej . . . . . . . . . . . . edge in E = {e1, . . . , em}
eij = (vi, vj) . . . . edge between vi and vj

vi ∼ vj . . . . . . . . . . vi and vj are adjacent
N (v) . . . . . . . . . . . set of neighbors of v
deg(v) . . . . . . . . . . degree of vertex v
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D. Notation

Ev . . . . . . . . . . . . . . set of incident edges of v
dist(vi, vj) . . . . . . distance of vi and vj

b, b̄ . . . . . . . . . . . . . directed bond b = (vi, vj) with reversal b̄ = (vj , vi)
o(e), t(e) . . . . . . . . origin and terminal vertex of an oriented edge e
Eout

v , E in
v . . . . . . . . set of outgoing and incoming edges of v

Graph Matrices

A . . . . . . . . . . . . . . adjacency matrix
D . . . . . . . . . . . . . . degree matrix
L . . . . . . . . . . . . . . . graph Laplacian matrix
N . . . . . . . . . . . . . . incidence matrix
L . . . . . . . . . . . . . . . normalized graph Laplacian matrix
∆G . . . . . . . . . . . . . harmonic graph Laplacian matrix of G
σ(∆G) . . . . . . . . . . spectrum of ∆G

(µ,Φ) . . . . . . . . . . . eigenvalue and eigenvector of ∆G

Υ . . . . . . . . . . . . . . . eigenvector of L

Metric Graphs

ℓe . . . . . . . . . . . . . . . length of edge e
ℓ . . . . . . . . . . . . . . . vector containing the edge lengths of Γ, i.e. ℓ = (ℓe1 , . . . , ℓem)T

Γ . . . . . . . . . . . . . . . metric graph
volΓ . . . . . . . . . . . . volume of Γ defined by volΓ :=

∑
e∈E ℓe

ℓ . . . . . . . . . . . . . . . . uniform edge length of equilateral graph
u : V → R . . . . . . function on combinatorial graph, u ∈ Rn

u : Γ → R . . . . . . . function on metric graph, collection {ue}e∈E of functions ue

ue . . . . . . . . . . . . . . function ue : [0, ℓe] → R defined on parametrization of e

Function Spaces on Graphs

C(Γ) . . . . . . . . . . . space of continuous functions on Γ
uV . . . . . . . . . . . . . . restriction of u to vertices V
(ue, we)e . . . . . . . . inner product on edge e defined by (ue, we)e :=

∫ ℓe
0 ue(x)we(x)dx

∥ue∥L2(e) . . . . . . . . L2-norm on e = [0, ℓe] defined by ∥ue∥2
L2(e) := (ue, ue)e

L2(e) . . . . . . . . . . . space of square integrable, measurable functions on e = [0, ℓe]
(u,w)Γ . . . . . . . . . inner product on Γ defined by (u,w)Γ :=

∑
e∈E (ue, we)e

∥u∥Γ . . . . . . . . . . . . L2-norm on Γ defined by ∥u∥2
Γ :=

∑
e∈E ∥ue∥2

L2(e)
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L2(Γ) . . . . . . . . . . . space of square integrable, measurable functions on Γ
∥ue∥H1(e) . . . . . . . H1-norm on e defined by ∥ue∥2

H1(e) := ∥ue∥2
L2(e) + ∥due

dx ∥2
L2(e)

∥u∥H1(Γ) . . . . . . . . H1-norm on Γ defined by ∥u∥2
H1(Γ) :=

∑
e∈E ∥ue∥2

H1(e)
H1(Γ) . . . . . . . . . . Sobolev space of square integrable functions with square integrable

first derivative on Γ
I . . . . . . . . . . . . . . . time interval [0, T ] with T ∈ R+

L2([0, T ];H) . . . . Bochner Space of functions u : I → H

(u,w)L2([0,T ];H) . inner product on L2([0, T ];H)
∥u∥L2([0,T ];H) . . . norm induced by (u,u)L2([0,T ];H)

Operators on Graphs

H . . . . . . . . . . . . . . . standard differential operator H : u 7→ −d2u
dx2

domH,NK . . . . . . . domain of H under Neumann-Kirchhoff boundary conditions
(Ku)(v) = 0 . . . . . abbreviation for the conservation of currents condition on v

Differential Equations on Metric Graphs

f . . . . . . . . . . . . . . . right-hand side, usually f ∈ L2(Γ)
ρ . . . . . . . . . . . . . . . (positive) potential ρ ∈ R+

R . . . . . . . . . . . . . . . reaction term acting on functions u defined on Γ
u0 . . . . . . . . . . . . . . initial condition of u on Γ
g . . . . . . . . . . . . . . . testfunction in H1(Γ)
h(u, g) . . . . . . . . . . bilinear form on H1(Γ) defined by h(u, g) :=

∫
Γ

du
dx

dg
dxdx

hρ(u, g) . . . . . . . . . bilinear form on H1(Γ) defined by hρ(u, g) :=
∫

Γ
du
dx

dg
dxdx+ρ(u, g)Γ

u[t](x) . . . . . . . . . . mapping u : [0, T ] → H1(Γ) associated with u = u(x, t)
|||u||| = |u|H1(Γ) . seminorm induced by the bilinear form h

Example Graphs

Γstar,Γdia . . . . . . . star and diamond graph from Example 2.4.1
ΓBA . . . . . . . . . . . . Barabási-Albert graph from Example 2.4.7
d . . . . . . . . . . . . . . . parameter in the construction of ΓBA

ΓER . . . . . . . . . . . . Erdős-Rényi graph from Example 2.4.7
p . . . . . . . . . . . . . . . parameter in the construction of ΓER

Γgraphene,Γtree . . . graphene and tree graph from Example 2.4.8
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Finite Element Method

Discretization and Extended Graphs

he . . . . . . . . . . . . . . step size on edge e
h . . . . . . . . . . . . . . . collection of step sizes on the edges: {he}e∈E

Ne + 1 . . . . . . . . . . number of discretization points on edge e
xe,k . . . . . . . . . . . . . k-th discretization point on edge e, for k = 1, . . . , Ne − 1
xe,0, xe,Ne . . . . . . . vertex grid points: xe,0 = 0, xe,Ne = ℓe

Γ̃h, Γ̃ . . . . . . . . . . . extended graph of Γ arising from a discretization with step size h

ve,k . . . . . . . . . . . . . k-th discretization point on edge e, interpreted as vertex
Ṽ, Ṽh . . . . . . . . . . . vertex set of the extended graph
Ẽe . . . . . . . . . . . . . . set of partitioned edges belonging to original edge e
Ẽ . . . . . . . . . . . . . . . edge set of the extended graph
G̃ . . . . . . . . . . . . . . . underlying combinatorial graph of the extended graph
Ã . . . . . . . . . . . . . . adjacency matrix of the extended graph
D̃ . . . . . . . . . . . . . . degree matrix of the extended graph
L̃ . . . . . . . . . . . . . . . graph Laplacian matrix of the extended graph
Ñ . . . . . . . . . . . . . . incidence matrix of the extended graph
L̃VV , L̃EE , L̃EV . . . blocks of L̃
L̃e . . . . . . . . . . . . . . block of L̃EE associated to edge e
wẽ . . . . . . . . . . . . . . weight assigned to edge ẽ, usually wẽ = 1

ℓẽ

W̃ . . . . . . . . . . . . . . edge-weight matrix of Γ̃ defined by W̃ = diag({wẽ}ẽ∈Ẽ)
Â, D̂ . . . . . . . . . . . weighted adjacency and degree matrix of the extended graph
L̂ . . . . . . . . . . . . . . . weighted graph Laplacian matrix of the extended graph
L̂VV , L̂EE , L̂VE . . . blocks of L̂
ÑV , ÑE . . . . . . . . . blocks of Ñ
|N| . . . . . . . . . . . . . entrywise absolute values of N
Ñin, Ñout . . . . . . . incidence matrices of the incoming respectively outgoing edge
eNe

1 , eNe
Ne

. . . . . . . . first and last column of the identity matrix of size Ne

Ne . . . . . . . . . . . . . column of N corresponding to edge e
NE . . . . . . . . . . . . . NE = (Ne1 , . . . , Nem)T , vector with number of inner grid points

per edge
Ŝ . . . . . . . . . . . . . . . Schur complement of L̂ in L̂EE
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Finite Element Approximation

ψe,k . . . . . . . . . . . . . hat basis function on inner discretization point xe,k

Vhe . . . . . . . . . . . . . . finite element discretization space for edge e
Wv . . . . . . . . . . . . . . neighborhood of vertex v
ψv . . . . . . . . . . . . . . hat basis function defined on Wv

Vh(Γ) . . . . . . . . . . . finite element discretization space Vh(Γ) ⊂ H1(Γ)
uh(x) . . . . . . . . . . . finite elmenet approximation of u

u . . . . . . . . . . . . . . . vector collecting the coefficients of the finite element discretization
u0 . . . . . . . . . . . . . . . initial condition in the finite element semidiscretization
uV ,uE . . . . . . . . . . blocks of u(t) = [uV(t),uE(t)]T

f̂ . . . . . . . . . . . . . . . finite element discretization of the right hand side f
r̂ . . . . . . . . . . . . . . . finite element discretization of the reaction term R
H̃2(Γ) . . . . . . . . . . direct sum of Sobolev spaces H2(e) on each edge
h1(u, g) . . . . . . . . . bilinear form on H1(Γ) defined by h1(u, g) :=

∫
Γ

du
dx

dg
dxdx+ (u, g)Γ

ĥ . . . . . . . . . . . . . . . maximum of step size on all edges, ĥ := maxe∈E he

uh, u
I
h . . . . . . . . . . finite element approximation of u, interpolant of u

c(Γ), ĉ(Γ) . . . . . . . constants depending on Γ

Multigrid

∆t. . . . . . . . . . . . . . . time step
ut . . . . . . . . . . . . . . . solution of the finite element semidiscretization at time t
J . . . . . . . . . . . . . . . . discretization level
J0 . . . . . . . . . . . . . . . coarsest discretization level
L̂J , M̂J . . . . . . . . . . finite element discretization matrices on level J
ut

J . . . . . . . . . . . . . . . solution of the finite element discretization on level J and time t
B,C,b . . . . . . . . . coefficient matrices and right-hand side of the IMEX discretization
θ . . . . . . . . . . . . . . . . number of time steps computed by a parabolic multigrid iteration
ν . . . . . . . . . . . . . . . . number of smoothing iterations
Sν . . . . . . . . . . . . . . . ν applications of the smoother
η . . . . . . . . . . . . . . . . number of multigrid iterations (η = 1 : V-Cycle, η = 2 : W-Cycle)
P,R . . . . . . . . . . . . prolongation and restriction operators
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D. Notation

Spectral Solution Method

Trial Functions

σ(Γ) . . . . . . . . . . . . spectrum of H acting on Γ with Neumann-Kirchhoff conditions
λ . . . . . . . . . . . . . . . eigenvalue λ ∈ σ(Γ)
ϕ, ϕλ . . . . . . . . . . . . eigenfunction with Hϕ = λϕ, eigenfunction to eigenvalue λ
cλ . . . . . . . . . . . . . . expansion coefficient of u corresponding to ϕλ

φ . . . . . . . . . . . . . . . orthonormal basis of eigenfunctions φ = {ϕλ : λ ∈ σ(Γ)}
λq, ϕq, cq . . . . . . . . q-th eigenvalue, eigenfunction and expansion coefficient, enumer-

ated in ascending order q = 1, 2, 3, . . .
X . . . . . . . . . . . . . . space spanned by φ
φQ . . . . . . . . . . . . . finite basis of eigenfunctions, φQ := {ϕq, q = 1, . . . , Q} with Q ∈ N
XQ . . . . . . . . . . . . . space spanned by φQ

PQ . . . . . . . . . . . . . . L2-projection on XQ

C̄ . . . . . . . . . . . . . . . . positive constant in upper bound on projection coefficients

Spectral Galerkin Approximation

uQ . . . . . . . . . . . . . spectral Galerkin approximation of u, uQ ∈ XQ

gQ . . . . . . . . . . . . . . testfunction in XQ

c(t) . . . . . . . . . . . . . vector collecting the expansion coefficients c1(t), . . . , cQ(t) of uQ(t)
c0 . . . . . . . . . . . . . . expansion coefficients of the initial condition, equivalent to c(0)
Λ . . . . . . . . . . . . . . . diagonal matrix of eigenvalues λ1, . . . , λQ

f . . . . . . . . . . . . . . . right-hand side of the spectral Galerkin discretization (generalized
heat equation)

r . . . . . . . . . . . . . . . right-hand side of the spectral Galerkin discretization (reaction-
diffusion equation)

C̄L . . . . . . . . . . . . . . . Lipschitz constant of reaction term

Aspects of Implementation

2hκ . . . . . . . . . . . . . length of a panel in the Filon quadrature
eκ . . . . . . . . . . . . . . panel on edge e, eκ := [(κ− 1)hκ, (κ+ 1)hκ]
f̃κ . . . . . . . . . . . . . . polynomial approximation of f on panel eκ

ψ . . . . . . . . . . . . . . . polynomial of degree 2
I cos

e (λq), I sin
e (λq) integrals on edge e corresponding to the sine and cosine part of

the eigenfunction ϕq
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mcos
e ,msin

e . . . . . . vector containing the moment integrals of the polynomial approx-
imation corresponding to the sine and cosine part of the eigen-
function ϕq on edge e

Fe . . . . . . . . . . . . . vector containing the function evaluations of f on the nodes of the
interpolation polynomial on edge e

re . . . . . . . . . . . . . . vector containing the evaluations of the reaction term R on the
nodes of the interpolation polynomial on edge e

ϕcos
κ ,ϕsin

κ . . . . . . . vectors containing the function evaluations cos
(√

λq x
)

respec-
tively sin

(√
λq x

)
on the interpolation node κhκ

Ae,Be . . . . . . . . . . diagonal matrices containing the constants Aq
e, B

q
e of the eigen-

function representation ϕq(x) = Aq
e cos

(√
λqx

)
+Bq

e sin
(√

λqx
)

Computation of Quantum Graph Spectra

Relation to Combinatorial Graph Spectra

σV(Γ) . . . . . . . . . . . vertex spectrum of Γ
σE(Γ) . . . . . . . . . . . non-vertex spectrum of Γ
H . . . . . . . . . . . . . . coefficient matrix of the nonlinear eigenvalue problem associated

with σ(Γ)
ϕe . . . . . . . . . . . . . . eigenfunction on edge e given by Ae cos

(√
λx
)

+Be sin
(√

λx
)

Ae, Be . . . . . . . . . . edge specific constants of eigenfunction ϕe

ϕV . . . . . . . . . . . . . . restriction of ϕ to the vertices

Spectra of Equilateral Graphs

λµ,k . . . . . . . . . . . . . Quantum graph eigenvalue associated to discrete eigenvalue µ and
k ∈ N

σV,k(Γ) . . . . . . . . . k-th bunch of vertex eigenvalues of Γ
∆̃k . . . . . . . . . . . . . harmonic graph Laplacian matrix of the extended graph with k

artificial vertices
Φ̃, µ̃ . . . . . . . . . . . . eigenvector and eigenvalue of ∆̃k

ϕ̃ . . . . . . . . . . . . . . . eigenfunction of the extended graph
ϕV . . . . . . . . . . . . . vertex eigenfunction
ϕ E,odd, ϕ E,even . . non-vertex eigenfunctions for k odd and even respectively

Spectra of Non-Equilateral Graphs

clean(Γ) . . . . . . . . cleaned graph of Γ (all vertices of degree 2 are eliminated)
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D. Notation

Gh . . . . . . . . . . . . . . equilateral approximation of Γ with edge length h

l . . . . . . . . . . . . . . . . length vector of the cleaned graph clean(G)
dist(Γ,G) . . . . . . . distance of Γ and G defined by ∥ℓ − l∥
Gh . . . . . . . . . . . . . . equilateral approximation of Γ with edge length h

Gcl,Gfl . . . . . . . . . equilateral ceil and floor approximation
Lh . . . . . . . . . . . . . . normalized graph Laplacian matrix of Gh
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