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2023

vorgelegt

von

M. Sc. Jonas Zinke

aus

Berlin





Referent: Prof. Dr. Marc Oliver Bettzüge
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1. Introduction

1.1. Motivation

The strive for climate neutrality requires a fundamental overhaul of the capi-
tal stock as fossil-fueled assets have to be replaced by low-carbon technologies.
At the heart of this transformation lies the electricity sector, which assumes a
pivotal role in realizing climate neutrality across the energy consumption sec-
tors. Here, new electricity-based, low-carbon technologies, such as heat pumps,
electric vehicles, or industrial electric appliances (e.g., electric arc furnaces), are
driving up the electricity demand. In order to supply the required clean electric-
ity, smaller, decentralized, and weather-dependent renewable power plants like
wind and solar farms must replace the existing fleet of large fossil-fueled power
plants. Concurrently, the grid structure and transport capacity must also adapt
to accommodate these changes.

The International Energy Agency estimates that global investment in clean-
energy technologies has to increase from about 1.8 trillion USD in 2023 to 4.5
trillion USD a year by the early 2030s (IEA, 2023). To mitigate these investment
costs and their societal distributional impact, effective coordination of existing
resources and new capital spending is key.

Theoretically, electricity prices could provide all the information needed to
coordinate the transformation process, as they result from transactions between
market participants and thus reveal their respective value for electricity. High
electricity prices during certain periods or locations indicate a high value for
additional generation or transport capacities, incentivizing market participants
to dispatch existing assets and guide new investments accordingly. However, in
reality, market prices do not reflect all relevant information due to the intricate
requirements associated with pricing electricity as a commodity. These complex-
ities include, in particular, the consideration of physical transport restrictions
resulting from the grid-bound nature of electricity and the negative externality
of greenhouse gas (GHG) emissions in the case of fossil-fired power generation.
As a result, coordination issues arise, and efficient regulation is required.

The European Union (EU) organizes power systems with a regulated monop-
olistic grid infrastructure on the one hand and competitive wholesale markets
within regional bidding zones on the other. Transmission scarcities manifest
as price differences only between bidding zones, i.e., the market neglects inner-
zonal grid restrictions. While this structure fosters highly competitive and liquid
electricity wholesale markets, it hinders the provision of local investment and dis-
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1. Introduction

patch signals. Consequently, additional market design elements and regulations
are required to coordinate between the grid and the market.

To address the negative externality of GHG emissions, the EU employs the
emission trading system (EU ETS). This system mandates emitters to acquire
allowances for their GHG emissions. Thus, the total allowance supply limits
total emissions. Firms trade these allowances on markets, with the resulting
prices theoretically reflecting the scarcity of allowance supply and firms’ marginal
abatement costs. Thereby, emissions trading discloses the firms’ private infor-
mation on abatement costs and handles this information so that the emission
target is met at the least cost. This system serves as an inter-temporal coordi-
nation mechanism, signaling to GHG emitters when to invest in new low-carbon
technologies and when to decommission existing fossil-fueled assets. However,
important parameters like the future marginal abatement costs are subject to
uncertainty.

Against this backdrop, the regulatory challenge is to create a framework that
efficiently coordinates investment and dispatch decisions both spatially and tem-
porally. Simultaneously, it must mitigate distributional effects perceived as so-
cially unjust and maintain liquid and competitive markets without increasing
uncertainty. As these challenges have proven non-trivial, the current regulatory
system is the subject of debate in science and politics. This dissertation aims to
provide new insights into this debate by analyzing different aspects of the coor-
dination task and the impact of potential market design elements. The focus is
particularly on the European and German context. The thesis consists of four
chapters, each based on a single paper to which the authors contributed equally:

1. One Price Fits All? On Inefficient Siting Incentives for Wind Power Expan-
sion in Germany under Uniform Pricing. Joint work with Lukas Schmidt,
EWI Working Paper 20/06 and published in The Energy Journal.
(Schmidt and Zinke, 2023)

2. The Place beyond the Lines - Efficient Storage Allocation in a Spatially
Unbalanced Power System with a High Share of Renewables. Joint work
with Berit Czock and Amelie Sitzmann, EWI Working Paper 23/01 and
under review at Energy Policy. (Czock et al., 2023)

3. Two Prices Fix All? On the Robustness of a German Bidding Zone Split.
EWI Working Paper 23/07. (Zinke, 2023)

4. On the Time-Dependency of MAC Curves and its Implications for the
EU ETS. Joint work with Martin Hintermayer and Lukas Schmidt, EWI
Working Paper 20/08. (Hintermayer et al., 2020)

The remainder of the introduction provides an outline of the following chapters
(section 1.2), discusses the methodological approaches and hints at opportunities
for future research (section 1.3).

2



1.2. Outline

1.2. Outline

1.2.1. One Price Fits All? On Inefficient Siting Incentives for
Wind Power Expansion in Germany under Uniform
Pricing

With wind power capacities expected to play a central role in reducing green-
house gas emissions, the decision as to where to install these systems becomes in-
creasingly important. Chapter 2 evaluates investment incentives for wind power
under two market designs: uniform and nodal pricing. To this end, an electricity
system model is developed that allows for investments in wind power capaci-
ties while carefully accounting for static transmission grid constraints. Wind
power capacities are assumed to reach the same expansion target by 2030 under
both market designs. The results show that under nodal pricing, investments
in wind power plants shift to locations with lower wind yields. The amount
of electricity fed into the grid from wind power plants, however, is higher under
nodal pricing as curtailment is reduced by two-thirds. Furthermore, grid-optimal
wind locations are shown to require higher direct subsidy payments but decrease
yearly variable supply costs by 1.5% in 2030. Yet distributional effects present
an obstacle to the introduction of a nodal pricing regime, with about 75% of
German demand facing an increase in electricity costs of about 5%. To mitigate
the distorted investment signals arising from uniform pricing regimes, restricting
investments within grid expansion areas proves more promising than including
latitude-dependent generator-component in the grid tariff design.

1.2.2. The place beyond the lines - efficient storage allocation in
a spatially unbalanced power system with a high share of
renewables

Increasing shares of wind and solar generation serve to decarbonize electricity
generation; however, their temporal and spatial variability poses challenges in
grid operation. While grid expansion is restricted in the medium term, storage
technologies can potentially increase the power system’s efficiency by temporally
aligning generation and demand and increasing network utilization. Chapter 3
uses a theoretical and a numerical model to evaluate the optimal allocation of
battery storage. In a case study for Germany, the results show that batteries
can reduce system costs when placed behind the north-south grid bottleneck and
near solar power. The supply costs in a setting with uniform prices and a random
battery distribution are 9.3% higher than in the theoretical first-best benchmark
with nodal prices. An optimal allocation of batteries can reduce this efficiency
gap by 0.7 percentage points to 8.6%. This corresponds to almost a doubling of
supply cost savings per euro spent on battery installation. Due to the lack of
spatially differentiated investment incentives under the German uniform pricing
scheme, batteries must be allocated by additional policies. Simple allocation

3



1. Introduction

rules such as tying battery siting to solar capacity or explicitly identifying a
limited number of suitable sites and auctioning capacity can approximate an
optimal allocation.

1.2.3. Two Prices fix all? On the Robustness of a German
Bidding Zone Split

As redispatch costs and their associated distributional impacts continue to rise,
the discussion on reconfiguring bidding zones in European power markets per-
sists. However, determining an appropriate bidding zone configuration is a non-
trivial task, as it must prove beneficial under varying weather conditions, load
situations, and an uncertain future – in other words, it must be robust.Chapter
4 uses the German-Luxembourg market area as an example to investigate the
impact of uncertain factors, such as short-term weather patterns and long-term
system changes, on the potential reduction of redispatch costs resulting from
a two-zone split. Employing hierarchical clustering on hourly time series of
Locational Marginal Prices for multiple historical weather and future scenario
years, the paper derives bidding zone splits and assesses their robustness re-
garding redispatch cost reduction. Sensitivities to uncertain factors such as grid
and renewable expansion, demand development, and fuel prices are investigated.
The results indicate that a north-south split of the German-Luxembourg market
area can robustly reduce redispatch costs. The impact of yearly weather fluc-
tuations on the reduction potential is limited, owing to the structural nature
of grid bottlenecks. However, the long-term transformations within the power
system, coupled with their associated uncertainties, can significantly diminish
the potential for cost reduction through a bidding zone split.

1.2.4. On the Time-Dependency of MAC Curves and its
Implications for the EU ETS

Several articles have analyzed the coordination function of the EU ETS, mostly
relying on marginal abatement cost (MAC) curves. While the assumptions on
MAC curves drive the results, the prevailing literature on the EU ETS does not
take the shape of MAC curves into account. Chapter 5 discusses the implications
of MAC curve properties for the EU ETS. Using a partial equilibrium model of
the European power sector, this chapter derives two essential properties of MAC
curves: Firstly, the shape of MAC curves is convex and depends on economic
developments such as fuel prices and interest rates. Secondly, MAC curves flat-
ten over time, mainly due to enlarging investment opportunities. With convex
MAC curves, marginal abatement costs in the EU ETS increase over time, which
triggers higher banking of firms. On the contrary, flattening MAC curves over
time lead to lower incentives for banking. In particular, short-term MAC curves
are steep and, thus, raise the price path.

4



1.3. Methodological Approaches

1.3. Methodological Approaches

The thesis uses numerical fundamental models of real-world markets. All of them
are partial equilibrium optimization models, which isolate individual markets and
take assumptions on other markets as given. The models rely on the assumption
of competitive, efficient markets and rational market participants with perfect
foresight. Further, the models assume electricity demand to be inelastic.

Each chapter of this thesis highlights a specific aspect of coordination in Eu-
ropean power markets. Thus, a model configuration specifically tailored to the
research question of each chapter was developed. Chapters 2 through 4 address
their respective research questions by modeling spatially high-resolved electricity
markets. To analyze the efficient allocation of new investments into decentral-
ized generation capacity (chapter 2 and 3) or to determine suitable splits of
the German bidding zone (chapter 4), they apply the concept of nodal pricing.
While the assumption of perfect competition seems reasonable for existing large
European day-ahead markets, market power issues are more likely to arise in the
much smaller nodal markets. Similarly, the assumption of perfect foresight, i.e.,
the absence of uncertainty, is more critical under nodal pricing. Future nodal
prices are sensitive to other firms’ actions or grid expansion decisions, while uni-
form prices are comparatively robust due to the market size. Consequently, the
project profitability experiences higher uncertainty under nodal pricing, prompt-
ing investors to adjust their risk premia. The results of the nodal pricing model
runs must, therefore, be regarded as hypothetical benchmarks rather than real-
istically achievable results.

In order to maintain linearity, non-linear alternating current (AC) power flow
restrictions are approximated via direct current (DC) power flow constraints.
Although this means that the model neglects grid losses and reactive power,
the general findings remain undistorted. Moreover, the model results depend
on the quality of the input data. Where feasible, the models apply real-world
data. Nevertheless, some approximations are necessary, for example, regarding
the distribution of demand and power plants among the German grid nodes.
Neighboring countries are depicted as singular nodes to keep the computational
effort manageable. Chapter 4 extends the detailed network representation to
Germany’s neighbors, which enables assessing interactions of cross-border elec-
tricity trading and network congestion issues in more detail. Further, the chapter
applies the model as a pure dispatch model in hourly resolution, making all in-
vestment decisions exogenous assumptions.

To derive candidates for a bidding zone reconfiguration, chapter 4 applies hi-
erarchical agglomerative clustering. Even though this is an established method,
it should be noted that it does not guarantee optimality. Therefore, the devel-
opment of new methods for the delineation of bidding zones offers further scope
for research.
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Finally, chapter 5 applies an investment and dispatch model of the European
power market to derive stylized facts on the shape of MAC curves. To this end,
the model allows for endogenous investments in more technologies and covers
a larger area than the models employed in the previous chapters but uses a
simplified representation of transmission constraints. The general drivers of the
MAC curve’s shape should hold for all sectors. Nevertheless, further research is
warranted, considering that the EU ETS covers not only the electricity but also
the industrial sector and may be extended to the mobility and heating sectors
in the future.

In addition to this discussion, each respective chapter provides comprehensive
descriptions of the methodological approaches employed.
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2. One Price Fits All? On Inefficient Siting

Incentives for Wind Power Expansion in

Germany under Uniform Pricing

2.1. Introduction

2.1.1. Motivation

With wind power capacities expected to play a central role in reducing green-
house gas emissions, the decision as to where to install these systems becomes
increasingly important. First, spatially distributed locations can flatten the vari-
able nature of their electricity feed-in (balancing effects) and hence reduce the
need for dispatchable generation capacities. Second, sites with high wind yield
usually do not coincide with main load centers (cf. Borenstein, 2012). A large
concentration of wind power plants at attractive but remote sites imposes chal-
lenges to the grid. Selecting the location of wind power plants is thus often a
trade-off between high wind yield and grid congestion. This trade-off becomes
more critical with increasing market shares of renewable energy sources (RES).

The paper analyzes this problem by considering the example of Germany.
About 25% of the electricity demand in Germany was covered by wind energy in
2019 (cf. AGEB, 2021), and further expansion is a clear political goal (cf. EEG,
2021). The typical pattern of remote locations offering better wind conditions
also applies to Germany: Wind yield peaks in Northern Germany close to both
the North Sea and the Baltic Sea. Demand for electricity, however, is highest in
the densely populated, industry-rich areas of Southern and Western Germany.
As a direct consequence, integrating RES generation into the grid has posed
a challenge in recent years.1 The current country-wide market design, which
imposes a uniform electricity price, does not take grid bottlenecks into account.
As a result, scheduled generation may be adjusted after market-clearing to align
with grid restrictions, often referred to as redispatch.2 Both redispatch volumes
and costs have risen over recent years. Coordinating wind power expansion with
grid bottlenecks is crucial to minimize electricity supply costs.

In liberalized electricity systems, grid expansion - in terms of increasing trans-
mission capacity - is subject to regulatory decisions, whereas wind power plants

1Government decisions on phasing-out coal and nuclear power plants exacerbate the problem
further, since these plants are usually located close to load centers.

2With redispatch, remote intermittent RES are usually curtailed and replaced by ramping-up
conventional power plants close to load centers to overcome congestion.
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are built by private investors. Due to long approval and construction periods,
grid expansion projects are fixed for the long term, usually before the decision to
invest in new generation capacity is made.3 German and European regulatory
authorities usually review and approve grid expansion projects at least 10 years
in advance (cf. Bundesnetzagentur, 2019). Since this analysis covers the time
horizon up to 2030, grid expansion is considered to be a given, even though the
optimal grid expansion may differ between the nodal and the uniform market
design. The expansion of wind power, on the other hand, is subsidized by the
German government, as is the case in many other European countries. In ad-
dition to the revenue generated via the electricity market, wind turbines also
receive a market premium for electricity fed into the grid. The value of the
market premium is determined in capacity-based pay-as-bid auctions: new wind
power projects bid according to their expected revenue, which is calculated based
on the expected electricity prices, expected wind yield at the respective location
and the correlation between wind availability and electricity price. Incentives for
spatial diversification only arise due to the variations in wind feed-in4 patterns
across regions and the resulting balancing effects (cf. Schmidt et al., 2013). How-
ever, wind yield often prevails over balancing effects under uniform pricing due
to high correlation of feed-in patterns (cf. Eising et al., 2020). As a result, wind
power investors seek to maximize wind feed-in. In order to reduce the concen-
tration of wind power investments in regions with high wind yields, the German
government introduced a wind bonus-malus component into the auctions that
is determined based on the expected wind yield (cf. EEG, 2021). The compo-
nent aims to create incentives for constructing wind power plants in locations
with lower wind yield. Nevertheless, wind power has continued to be primarily
deployed at high wind-yield sites in Northern Germany.

The expansion of intermittent electricity generation exerts negative externali-
ties on the electricity grid. Pricing of externalities is the economically desirable
instrument to overcome their detrimental effects (cf. e.g., Borenstein, 2012,
Hogan, 1999, Wagner, 2019). While uniform prices fail to reflect grid externali-
ties, nodal pricing regimes internalize these in market prices, to reflect the cost of
both generation and grid constraints (cf. Weibelzahl, 2017). If, e.g., wind power
feed-in in Northern Germany is too high to be integrated into the grid, low elec-
tricity prices arise there. If such situations occur frequently, the electricity price
level drops and investments in wind power become unprofitable. This mechanism
creates dynamic incentives in nodal price regimes for an efficient coordination
of investments in wind energy with the existing grid (cf. Green, 2007). This
also applies to investments in demand-side or flexibility assets: building energy-

3Höffler and Wambach (2013) argue that an early commitment to grid extension is also welfare-
optimal as long as the investment costs of the companies are not private information. The
investment costs for wind power plants are transparent so that an early commitment to grid
expansion is economically desirable.

4Within this paper, the term (maximum) wind feed-in refers to the electricity generation
potential of wind power plants given under the the wind conditions. Actual generation may
deviate due to curtailment, in the event of grid bottlenecks.
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intensive industries becomes more attractive in regions with lower electricity
prices, flexibility is added to regions with large fluctuations in the electricity
price.

In order to counteract problems with the grid integration of wind energy
under uniform pricing, the amendment to the Renewable Support Scheme in
2017 (Erneuerbaren-Energien-Gesetz 2017 ) introduced the so-called ”grid ex-
pansion area” (Netzausbaugebiet). Within this designated area, investments are
restricted to prevent excessive expansion of wind turbines at windy but grid-
critical locations. Furthermore, spatially-differentiated grid tariffs for generators
(cf. e.g., Grimm et al., 2019, Haucap and Pagel, 2014) can penalize wind power
generation at grid-critical sites and hence positively affect social welfare (cf. e.g.,
ACER, 2015, Daxhelet and Smeers, 2007). Several European countries have in-
troduced spatially-differentiated generator-components (g-components) in their
grid tariff schemes, including e.g., Sweden, the UK and Norway (cf. ENTSO-E,
2019). While node-specific g-components can replicate the efficient investment
signals of nodal pricing, the simplefied g-component approach eases information
gathering for investors and tariff setting for regulators. Since distorted signals of
uniform prices develop mainly along the North-South axis (cf. Obermüller, 2017),
this paper follows the Swedish grid tariff design and assess latitude-dependent
g-components (THEMA, 2019).

This paper quantifies the effects of nodal and uniform prices on the spatial
distribution of wind power expansion. Welfare losses stemming from distorted
incentives set by uniform prices as well as distributional effects resulting from
the introduction of nodal prices are also examined. Furthermore, this paper
evaluates to what extent welfare losses resulting from inefficient wind power siting
can be mitigated by complementing uniform pricing with latitude-dependent g-
components in grid tariffs or defining grid expansion areas.

2.1.2. Related Literature

This paper builds on two strands of literature: The first strand uses the concept
of market values to evaluate the financial worth of power generation facilities.
In recent years, several articles have used market values to analyze efficient RES
expansion pathways. Joskow (2011), for example, introduces market values to
evaluate intermittent power generators. Among others, Grubb (1991), Jägemann
(2014) and Hirth (2013) discuss how RES market penetration affects market
value. Some studies find that higher penetration of RES undermines their market
value due to cannibalization effects (see e.g., Prol et al., 2020). In the case
of increasing wind capacities, high intermittent feed-in, especially when there
is a high degree of simultaneity, may result in a drop in the electricity price
and thus lower the market revenue of wind power plants. Grothe and Müsgens
(2013), Elberg and Hagspiel (2015) and most recently Eising et al. (2020) use
market values to shed light on the optimal distribution of wind power plants in
Germany. However, these papers only consider uniform pricing. Accordingly, the
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market values only reflect the correlation of local wind feed-in with the uniform
price signal and do not address grid restrictions. Consequently, the problem of
coordination between RES deployment and grid bottlenecks is not examined.

The second strand includes papers that either examine the trade-off between
grid expansion and investment or analyze nodal market designs as a theoretically
efficient instrument to solve this coordination problem. Lamy et al. (2016) exam-
ine the trade-off between grid expansion and investments in wind power plants
at less attractive locations and find that wind power plants close to load centers
are economically desirable. Opportunity costs of choosing sites with lower wind
yields are lower than the avoided grid expansion costs. However, in a scenario
comparison for Germany Böing et al. (2017) find the opposite. Grid expansion
imposes fewer costs than an increased deployment of wind power plants in the
low-wind area of Southern Germany. In an early work on nodal prices, Green
(2007) investigates the welfare effects of switching from uniform to nodal prices
in England/Wales. He finds that, in a static setting, the introduction of nodal
prices avoids welfare losses of 1.5% with regards to the spot market revenues of
electricity producers. He suggests that the efficient, dynamic incentive effects of
nodal prices should significantly increase welfare gains. Leuthold et al. (2008)
conduct a similar, static investigation of uniform and nodal market designs for
Germany and find comparable welfare effects. They also emphasize the advan-
tages of nodal prices in a dynamic context. Most recently, Triolo and Wolak
(2021) estimate that switching from uniform to nodal pricing in Texas reduced
supply costs of thermal power plants statically by 3.9%. Pechan (2017) sheds
light on the dynamic incentives of nodal pricing. Using a simplified six-node
model, she investigates the effects of uniform and nodal pricing on the location
of wind turbines. The spatial distribution of wind turbines changes significantly
if negative grid externalities are taken into account. Similar to the paper at
hand, Lamp and Samano (2020) investigate inefficient incentives for building
photovoltaics under the German uniform pricing market design. Karhinen and
Huuki (2020) examine locational prices for Finland, a country that also has high
wind capacities far from load centres. The authors find that prices differ between
regions only temporarily until grid expansion is completed.

Closest to this article, Obermüller (2017) combines the two strands of liter-
ature. He uses a static dispatch model to examine the market values of wind
power plants under uniform and nodal pricing in Germany for 2014. He derives
diverging market values and concludes that uniform prices set inefficient invest-
ment incentives for wind power plants. Yet, a dynamic evaluation to quantify
the resulting inefficiencies is not included.

The prevailing literature on evaluating spatially-differentiated grid tariffs or
grid expansion areas to mitigate inefficient investment signals of uniform pricing
is scarce. Lück and Moser (2019) assess the German grid expansion area and its
impact on redispatch volumes but do not evaluate its benefits from an economic
perspective. Numerically evaluating spatially-differentiated g-components, Bertsch
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et al. (2016b) and Grimm et al. (2019) find only minor positive effects of their
implementation on congestion costs and welfare.

2.1.3. Contribution and Structure

The work presented sheds light on the dynamic coordination of wind power
investments for given grid expansion under nodal and uniform pricing. Our con-
tribution is fourfold: First, an electricity system model is developed that allows
for investments in power plants while considering a detailed representation of
transmission grid constraints. To isolate the effects of the spatial distribution of
wind power plants, this paper considers only endogenous siting of an exogenously
defined target capacity of wind power, while conventional power plants follow an
exogenous path.

Existing dynamic modelling approaches either (i) decouple investment deci-
sions and grid modelling to approximate an equilibrium solution using iterative
model runs (e.g., Bertsch et al., 2016b; Fürsch et al., 2013; Hagspiel et al., 2014
or most recently Fraunholz et al., 2020) or (ii) use highly aggregated grid rep-
resentation with only few nodes or zones (e.g. Grimm et al., 2016b). In order
to accurately address the spatial distribution of wind power plants and the im-
pact on grid congestion, the model developed considers 380 nodes to represent
the German transmission grid. To the best of the author’s knowledge, existing
models with high spatial resolution are static and neglect investments in power
plant capacities (e.g., Obermüller, 2017 or Breuer and Moser, 2014). Second, the
efficient expansion of wind power plants in Germany is derived using nodal pric-
ing. Third, inefficiencies implied by the current uniform pricing market design
are quantified. To this end, market values of wind power plants are compared
under nodal and uniform pricing, and necessary direct subsidies, as well as the
resulting welfare losses and distributional effects, are derived. Fourth, this pa-
per investigates the introduction of latitude-dependent g-components as well as
grid expansion areas to counteract welfare losses due to inefficient siting of wind
power plants under uniform pricing.

Our main findings are as follows:

First, building the same amount of wind capacities at grid-friendly sites rather
than at sites with maximal wind yield increases the amount of wind energy fed
into the grid. The reduced need for curtailment overcompensates losses in wind
yield.

Second, sites that require low (or even no) subsidies have low system values
and hence increase redispatch and curtailment. In general, uniform prices lower
subsidies for wind power but lead to yearly welfare losses amounting to 1.5% of
variable supply costs in 2030 due to inefficient wind power expansion.

Third, latitude-dependent g-components fall short in adequately reflecting dis-
tortions in uniform pricing regimes. A single grid expansion area, which is cur-
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rently the case in Germany, outperforms latitude-dependent g-components. Yet,
further differentiation into multiple grid expansion areas can significantly en-
hance these positive effects.

Fourth, spatially-differentiated signals of nodal prices for wind power invest-
ments lead to distributional effects. Consumers in Northern Germany, repre-
senting about 25% of German demand, would benefit from up to 30% lower
nodal electricity prices compared to uniform prices in 2030. In contrast, electric-
ity prices in Western and Southern Germany would increase by about 5% under
nodal prices. As a result, electricity consumers in the load centers in Western and
South-Western Germany would bear higher costs, while electricity generators in
Northern Germany would face declining revenue and vice versa.

The remainder of this paper is structured as follows: Section 2.2 introduces the
model, the input data and central assumptions. The differences in investment lo-
cations, electricity generation, market values as well as welfare and distributional
implications triggered by switching from a uniform to nodal pricing regime are
explained in Section 2.3. Latitude-dependent g-components and grid expansion
areas as complementary measures to mitigate distorted investment signals of uni-
form pricing are analyzed in Section 2.4. Section 2.5 offers a critical discussion
of the applied methodology, and Section 2.6 forms the conclusion.

2.2. Methodology, Input Data and Scenario Design

This paper uses the notation presented in Table A.1. To distinguish exogenous
parameters and endogenous optimization variables, the latter are written in cap-
ital letters.

2.2.1. Power Market Model

This paper develops an investment and dispatch model, which considers a de-
tailed representation of the German transmission grid. It is based on the power
market model DIMENSION5. SPIDER is a partial equilibrium model of the Eu-
ropean power sector. The model invests into new power plants and dispatches
generation capacities such that the net present value of variable and fixed costs
is minimized. Within this paper, network investments are considered exogenous,
i.e., the transmission system operator has already defined its grid expansion
for the timeframe considered. Electricity demand, which is defined by the load
structure, spatial distribution and consumption level, assumed to be inelastic,
i.e., demand does not adjust to prices. By assuming perfect markets and no
transaction costs, the market rationale of profit maximizing power generation

5DIMENSION was used in numerous analyses, e.g., in Bertsch et al. (2016b) and Peter (2019).
For a thorough introduction to DIMENSION and its characteristics, the reader is referred
to Richter (2011).
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firms corresponds to a cost minimization of a central planner. The competition
of profit-maximizing symmetric firms constitutes the dual optimization prob-
lem to a central planners’ cost minimization. The technical details of the cost
minimization problem are given in Appendix A.2.

The inner-German transmission grid infrastructure is considered within a lin-
ear optimal power flow problem (LOPF). Non-linear AC power flow restrictions
are approximated via linear DC power flow constraints. Thereby, it neglects grid
losses (cf. Van den Bergh et al., 2014). To implement DC power flow, the cycle-
based Kirchhoff formulation is used, which presents an efficient formulation (cf.
Hörsch et al., 2018). Appendix A.2 presents the corresponding constraints in
detail.

Incorporating a detailed representation of grid constraints as well as endoge-
nous investments in generation is computationally challenging. Thus, the model
underlies several limitations to keep it tractable: Investments in transmission grid
lines are exogenous assumptions. To avoid mixed-integer optimization, ramping
and minimum load constraints are approximated. The model does not depict
combined heat and power plants. Further, the model abstracts from uncertainty
and assumes perfect foresight. The model also uses representative days to reduce
the temporal dimension of the optimization problem.

2.2.2. Assumptions and Data

Scope and Transmission Grid

The regional focus of the model is Germany with a spatial resolution at transmis-
sion grid node level, i.e., 220 kV to 380 kV voltage levels. For the representation
of the transmission grid, grid information from multiple sources is combined, e.g.,
Matke et al. (2016) and 50Hertz et al. (2019). Grid extensions follow the lat-
est version of the German grid development plan (cf. Bundesnetzagentur, 2019).
The model covers Germany and its neighboring countries, depicted as one node
without inner-country grid restrictions. Interconnectors both to and between
neighboring countries are approximated via Net Transfer Capacities based on
ENTSO-E (2018b). Overall, the model incorporates 380 nodes and 606 con-
necting lines within Germany. The regional scope and the representation of the
German transmission network is visualized in A.2.

The temporal scope covers the years 2019, 2020, 2025 and 2030, represented
by 12 representative days in an hourly resolution. The representative days are
derived using k-medoids clustering concerning residual load (cf. Kotzur et al.,
2018).

The technological scope comprises the most common conventional and re-
newable power plant types, as well as pumped storage. Table A.3 provides an
overview of the considered technologies, including their techno-economic param-
eters. Endogenous investments are only allowed for onshore wind power plants
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and gas turbines in Germany. The capacity development of all other technologies
is exogenous. It follows the National Trends scenario in ENTSO-E (2018b) and
Scenario B in 50Hertz et al. (2019). The development of power plant capacities
follows political announcements. For instance, the phase-out of German lignite
and coal power plants is implemented according to the latest public information.
The exogenous development of conventional generation capacities is sufficient to
meet demand at any time, i.e., it is assumed that the electricity market design
triggers sufficient investments in backup power plants such as open-cycle gas
turbines. Their location is determined efficiently in the nodal run and fixed for
the uniform run. A.3 discloses further assumptions on demand development per
country, investment costs as well as fuel prices.

Input data: Time-series and Regionalization

Demand time-series are based on hourly national demand in 2014, according to
ENTSO-E (2020b). The German demand is distributed to the nodes similar to
the approach in 50Hertz et al. (2019). Based on sectoral demand shares on federal
state level (cf. Länderarbeitskreis Energiebilanzen, 2020), household demand is
broken down to nodes via population shares. For regionalizing industry and
commercial demand, regional data on gross value added is used for the respective
sectors (cf. EUROSTAT, 2020).

For modeling intermittent renewable feed-in of photovoltaics and wind power,
data provided by Pfenninger and Staffell (2016a) and Pfenninger and Staffell
(2016b) is used for Germany and its neighbors. Since this paper investigates
wind power expansion, regional feed-in within Germany is used based on Henckes
et al. (2017), which applies a novel meteorological reanalysis model to derive
wind speeds in high spatial resolution (6kmx6km). The derived wind speeds
were transformed into feed-in time-series and calibrated to historical feed-in of
wind parks.

Existing power plant capacities, as well as their distribution across Germany
are derived from data of the German regulator Bundesnetzagentur.6 Power plants
are distributed via their postcodes to the nearest transmission grid node. The
future distribution of offshore wind farms and solar power plants is in line with
50Hertz et al. (2019).

Figure 2.1 displays the regionally differentiated capacity factors for onshore
wind power plants as well as the initial distribution of wind power plants across
Germany in 2019.

6Conventional power plants are based on the power plant list (Bundesnetzagentur, 2020a),
Renewables on Marktstammdatenregister (Bundesnetzagentur, 2020b).
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Figure 2.1.: Regional capacity factors of wind power plants (left) and spatial distribution
of wind power plants in 2019 (right)

Capacity factors of wind power plants in Northern Germany range from 25%
up to 35%. Towards the south, capacity factors decrease gradually. In Western
Germany, wind yield stays above a capacity factor of 20% until the 51st parallel,
followed by a sharp decrease towards the south. In Southern Germany, most
sites offer only around 10% to 15%. As a result, about 75% of existing capacity
are located above the 51st parallel. Yet, wind power capacities are low in densely
populated Western Germany despite the above average wind conditions. This is
mainly due to politically driven space restrictions which deviate among German
federal states.

2.2.3. Scenario Setup

This paper analyzes investment decisions into wind power plants under different
market designs. Apart from the uniform price market design, a nodal pricing
regime is set up to derive efficient locations for new wind power plants. Un-
der nodal pricing, each transmission grid node constitutes a market, and grid
constraints are considered within the price formation. Uniform pricing consid-
ers only nationwide electricity markets where prices do not reflect inner-German
grid bottlenecks. Like Germany, several European countries use uniform pric-
ing.7 While the transmission grid constraints are modeled via DC power flow (cf.
Section A.2) for the nodal pricing regime, these constraints are turned off un-
der uniform pricing. Inner-German power flows, hence, are not restricted under
uniform pricing. Two scenarios are considered:

7Exemptions are, e.g., Norway, Sweden, and Italy, where the electricity market is split into
bidding zones.
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• Nodal, where invest and dispatch are derived under nodal pricing.

• Uniform, where invest and dispatch are derived under uniform pricing. The
scheduled dispatch after market clearing, however, might violate physical
grid restrictions and hence necessitates curative redispatch measures. The
subsequent redispatch is assumed to derive the cost-efficient dispatch de-
cision under the given power plant fleet.8

Additionally, Section 2.4 evaluates the effects of complementing uniform pric-
ing with either latitude-dependent g-components or grid expansion areas. Both
instruments are proposed to mitigate inefficient investment signals of uniform
pricing.

For both nodal and uniform pricing, a homogeneous RES expansion target is
assumed. The overarching target of Germany is to reach a 65% share of RES
generation with regard to gross electricity demand, according to the government
coalition agreement in 2018. For meeting this target, RES capacities are ex-
tended linearly according to announced capacity targets - i.e., 20 GW of Wind
Offshore in 2030 - or capacities stated in the Grid Extension Plan (cf. scenario
B in 50Hertz et al., 2019). Table 2.1 shows the assumed RES expansion in
Germany.

Table 2.1.: Assumed development of installed RES capacities in Germany, based on
50Hertz et al. (2019)

[GW] 2019 2020 2025 2030

Wind Onshore 53.4 55.9 68.7 81.5
Wind Offshore 7.5 8.7 14.3 20.0
Photovoltaics 49.2 53.0 72.1 91.3

The expansion of photovoltaics as well as offshore wind power plants is exoge-
nous, the spatial distribution of new capacities follows the development in the
latest grid extension plan (cf. 50Hertz et al., 2019). For the expansion of onshore
wind power plants, the model is required to expand capacities by 2.56 GW per
year. The assumptions on RES expansion are in line with the goal of the German
government to provide 65% of gross electricity demand via RES power plants.

In order to avoid an unrealistic concentration of new wind power plants, upper
bounds for yearly expansion at each transmission node based on area-corrected
historical expansion rates (data retrieved from Bundesnetzagentur, 2020b) are
implemented. There are two reasons for defining the wind onshore target with
regard to capacity instead of energy feed-in: First, the current auction design in
Germany is capacity-based. The government auctions off a pre-defined amount
of capacity to be built. Second, a capacity target ensures that investment costs

8Within this run, the cost-efficient dispatch decision is derived, including optimal trade flows.
In reality, market clearing under uniform pricing pre-determines trade flows, which renders
system-optimal trade in redispatch impossible. Cross-border redispatch is only viable based
on bilateral contracts.
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are the same under uniform and nodal pricing. Resulting changes in total costs
are only due to different incentives to coordinate wind power investments and
the grid topology.

2.3. Implications of Wind Power Expansion under
Uniform and Nodal Pricing

2.3.1. Siting of Wind Power and Implications for Wind Feed-In

The gross wind capacity expansion is assumed to equal 2.56 GW per year in both
market designs, regardless of nodal or uniform pricing. Whereas the regional in-
vestment bounds, from e.g., limited social acceptance and space potential, are
identical, the market-based incentives for the spatial distribution differ between
both market designs: under uniform pricing, only a difference in feed-in patterns
and the resulting balancing effects trigger a spatial differentiation. Under nodal
pricing, market revenue reflects costs resulting from grid congestion. Hence,
nodal pricing incentivizes investments at grid-friendly locations. Figure 2.2 vi-
sualizes the impact of market design on the siting of wind power plants up to
2030.

Figure 2.2.: Difference in spatial distribution of wind capacities in 2030 (left) and cumu-
lative wind expansion by latitude and capacity factor (right)

Under uniform pricing, wind power expansion is concentrated in Northern
Germany. Sites above the 53rd parallel cover approximately 90% of wind power
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expansion. Under nodal pricing, the investment pattern differs in two aspects:
First, wind energy investments spread over more nodes than under uniform pric-
ing and second, the locations chosen for new wind power plants move southwards.
Furthermore, nodal pricing leads to a decrease in the capacity additions at windy
sites above the 53rd parallel, with sites at latitudes between 51 and 53 attracting
about 75% of new wind power plants instead. As a result, capacity factors of
newly installed wind power plants decrease: Whereas wind power investments
are found exclusively at sites with a capacity factor of at least 20% under uni-
form pricing, only about 40% of new wind power plants reach an equally high
capacity factor under nodal pricing. Uniform pricing appears to set rather low
incentives for spatial diversification, as wind yield and wind power investments
are strongly correlated. Nodal pricing, on the other hand, triggers spatial di-
versification. Wind power expansion spreads to mediocre wind yield sites in
Western and Eastern Germany. These sites are either close to load centers or
own comparatively low existing wind capacities (cf. Figure 2.1). Both aspects
ease the grid integration of wind power. Yet nodal pricing does not appear to
trigger additional investments in Southern Germany: on the one hand, benefits
from easing grid congestion do not compensate for the lower capacity factors
in Southern Germany, since the main grid bottlenecks are between Northern
and Central Germany.9 On the other hand, high shares of photovoltaic and
hydropower plants both locally as well as in the neighboring countries of Aus-
tria and Switzerland further decrease the profitability of wind power plants in
Southern Germany.

As a consequence of different investment patterns, feed-in from wind power
plants as well as curtailment volumes vary between market designs. Figure 2.3
depicts the spatial generation pattern of wind power plants and the development
of actual feed-in as well as curtailment volumes. As discussed in Section 2.2.3,
this analysis assumes capacity-based RES expansion targets. Therefore, installed
wind capacities are equal under both nodal and uniform pricing.

The model results reveals two key findings: first, the southward shift of ca-
pacity additions naturally shifts generation in the same direction. Second, the
internalization of grid costs under nodal pricing reduces grid congestion signifi-
cantly, which allows for both existing and newly installed wind power plants to
feed-in a higher proportion of potential generation into the grid. Consequently,
overall wind power curtailment in 2030 is cut to a third under nodal pricing
compared to uniform pricing.10 All in all, the introduction of nodal pricing leads
to a decrease in the curtailment of wind generation, overcompensating for lower
wind yield and achieving greater volumes than under uniform pricing.

9The high wind capacities of Germany’s Northern neighbor exacerbates these bottleneck.
10It is assumed, that investors get a compensation for curtailed energy and thus, do anticipate

the curtailment. The compensation is subject to regulation. In the case of Germany the
compensation amounts to at least 95% (cf. EEG, 2021).
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Figure 2.3.: Difference in spatial distribution of wind generation in 2030 (left) and de-
velopment of wind generation and curtailment (right)

2.3.2. Regional Electricity Prices

Wind power investments strongly interact with electricity prices under nodal
pricing. Nodal prices, combined with total wind yield and temporal pattern, set
spatially-differentiated signals for wind power expansion. However, wind power
investments depress nodal prices locally if the grid is congested (cannibalization).
Figure 2.4 illustrates the results for uniform and nodal electricity prices in 2030.11

Given the assumptions on power plant phase-outs, fuel and carbon prices,
the weighted average of Germany-wide uniform electricity prices rises to slightly
above 61 EUR/MWh in 2030 compared to about 38 EUR/MWh in 2019. Nodal
electricity prices differ between regions. Average nodal electricity prices in North-
ern Germany are found to be significantly lower than the uniform price, falling
as low as 43 EUR/MWh at single nodes. About 25% of German electricity
consumption would benefit from lower prices, whereas the remaining share of
demand would face an price increase of about 5%12 However, electricity prices
at single nodes increase up to 75 EUR/MWh. These price peaks occur mostly
in Western Germany where demand is high, RES capacities are low and conven-
tional capacity is scarce due to phase-outs of lignite power plants. Furthermore,

11The prices shown are the demand-weighted average of the power price time-series reflecting
the marginal costs of power generation.

12In contrast to uniform prices, nodal prices already internalize grid congestion costs. Hence,
redispatch costs of 1.5 EUR/MWh (see Section 2.3.4) are add to the uniform electricity
prices.
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Figure 2.4.: Difference between weighted-average nodal and uniform prices (left) as well
as nodal and uniform prices over latitude and cumulative demand (right)

Western Germany is not as well connected to wind-rich Northern Germany as
Southern Germany, whose interconnection enhances due to three new DC lines
installed after 2025. Nodal prices in Southern Germany also profit from high
shares of PV and hydro, including flexible pumped hydro. Additionally, imports
from nuclear- or hydropower-dominated neighbors in the South, namely France,
Switzerland and Austria, reduce price peaks in Southern Germany.

Nodal prices cause a change in the trade flows between Germany and its neigh-
bors. Grid bottlenecks are not visible under uniform pricing. Consequently, high
wind feed-in in Northern Germany leads to a low electricity price throughout
Germany, which triggers exports to all neighboring countries, even to the south.
If the wind feed-in in Northern Germany does not comply with grid constraints,
power plants in Southern Germany would have to ramp up to deliver the sched-
uled exports. In such situations, however, electricity imports from neighboring
countries in the south would be favorable. Nodal prices reveal information on
grid congestion issues and hence prevent inefficient incentives for cross-border
trade. Net trade indicates that inefficient trade flow incentives of uniform prices
will become more problematic as the RES shares in the German electricity gen-
eration mix increase (see A.4).
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2.3.3. Market Values and Subsidies

This paper uses the concept of market values to reflect the market revenue of
power plants.13 In contrast to nodal pricing, market values under uniform pricing
fail to reflect the actual value of power plants. To evaluate whether market
values under uniform pricing set distorted incentives, system values of wind
power plants are derived in the uniform market design from an optimal nodal
dispatch given invest decisions made under uniform pricing. Under nodal pricing,
market and system values are equal. Figure 2.5 depicts the market and system
values of wind power plants in 2030 under uniform and nodal pricing.

Figure 2.5.: Market (MV) and system values (SV) under uniform and nodal pricing in
2030

Market values under uniform pricing strongly correlate with wind conditions.
Market values peak in Northern Germany close to the sea, where the best wind
conditions prevail although there is already a lot of wind power installed. Since
the market area is large and grid restrictions are not visible in uniform prices, a
large amount of local wind power investments would be possible before market
prices would drop due to cannibalization effects. However, the actual system
values are low in Northern Germany. The difference between market and system
values indicates that uniform prices send distorted signals for the site selection of
wind power plants. Market revenue triggers high investments in Northern Ger-
many, although the system values are low due to grid bottlenecks. Under nodal
prices, though, market values at Northern Germany’s shores are significantly
lower than under uniform pricing. Wind power plants in Western Germany close
to load with mediocre wind yield become relatively more valuable than under
uniform pricing. As a result, wind power expansion is spatially widespread.

To further assess the incentives set by uniform and nodal pricing, the sub-
sequent paragraph compares the distribution of market values and the system
values of wind power investments. Furthermore, the required direct subsidies are

13Within this study, market values reflect revenue under the respective market design per
capacity.
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derived from the difference between fixed costs of wind power plants and market
values divided by the actual feed-in.14 15 Figure 2.6 depicts the distribution
of market and system values of newly built wind power plants and the required
subsidies with boxplots.16

Figure 2.6.: Boxplots of market and system values as well as required subsidies for wind
power investments

Under uniform pricing, market values of wind power investments exceed 75
EUR/MW and even the best sites are not profitable without subsidies. Required
subsidies range from about 1.5 up to just below 5 ct/kWh.17 Until 2025, market
values increase due to rising electricity market prices as a result of higher fuel and
carbon prices as well as the Nuclear phase-out until the end of 2022. At the same
time, fixed costs decrease due to the assumed learning rates in investment costs
(cf. A.3). Consequently, almost 25% of wind power capacity additions become
economically feasible without direct subsidies, while most of the residual sites
require subsidies 0 to 2 ct/kWh.18 Between 2025 and 2030, market values and
subsidies remain relatively constant under uniform pricing.

Market values under nodal pricing are significantly lower than under uniform
pricing. Wind power cannibalizes itself and lowers market revenue at sites with
high wind power installations due to grid bottlenecks. As a result of soaring

14Beside ”direct” subsidies there are ”indirect” subsidies, since uniform prices do not not
reflect negative grid externalities of wind power investments. Wind power plant investments
are cross-subsidized by electricity consumers, which have to bear these externalities, i.e.,
redispatch costs, via higher grid tariffs.

15In line with real auctions, subsidies are indicated in terms of electricity production (ct/kWh).
16Boxplots visualize the range of values. The boxes represent the 25 and 75% percentiles,

the whiskers the 5 and 95% percentiles. The line within the boxes represents the median,
outliers are scattered.

17Historical auction tenders in 2017 are in the same range. At the moment, auctions are not
competitive due to issues in approval processes and subsidies are close to the regulated
maximum bid of 6.2 ct/kWh.

18Uniform prices do not not reflect negative grid externalities of wind power investments. Wind
power plant investments are cross-subsidized by electricity consumers, which have to bear
these externalities, i.e., redispatch costs, via higher grid tariffs.
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electricity market prices as well as grid expansion, nodal market values increase
steadily from 2020 to 2030. Subsidies under nodal pricing are about twice as
high as under uniform pricing. However, the higher subsidies under nodal pricing
include grid integration costs. If negative externalities of wind power plants on
the grid are considered for wind power plant additions under uniform pricing,
their system value is significantly lower than the respective market value.

To evaluate whether market prices set efficient signals for the site selection of
new wind power plants, Figure 2.7 visualizes the required subsidies over system
values under uniform and nodal pricing.

Figure 2.7.: Required subsidies vs. system values of newly built wind power plants under
nodal and uniform pricing

Under nodal pricing, subsidies naturally reflect system values and stimulate an
efficient site selection of wind power. Under uniform pricing, though, particularly
sites, where little subsidies are needed, have low system values. Hence, uniform
prices set inefficient incentives: productive but grid-hostile sites are tendered
first in auctions under uniform pricing.

Summing up, uniform prices do not reflect negative externalities of wind power
plants, grid congestion costs are not reflected in market revenue. Hence, invest-
ments in wind power are close to profitability and require only comparatively low
direct subsidies. Wind power plants though receive indirect subsidies as their
integration is non-transparently borne by consumers via grid charges. Auctions
that minimize subsidy costs under uniform pricing lead to inefficient wind power
expansion. Nodal pricing internalizes negative grid externalities. As a result,
subsidies double compared to uniform pricing, but wind power expansion shifts
to system-optimal sites.
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2.3.4. System Costs

Comparing the system costs provides insights into welfare losses due to inefficient
siting of wind power plants. Note that fixed costs are equal across scenarios since
the capacity expansion of wind power and conventional power plants is held
constant (compare Section 2.2.3). Average electricity supply costs reflect the
total variable costs of electricity supply divided by aggregate electricity demand.
Table 2.2 compares variable supply costs for the two scenarios.

Table 2.2.: Average variable electricity supply costs

[EUR/MWh] 2019 2020 2025 2030

Uniform 17.5 18.3 23.8 22.8
- incl. redispatch costs 0.6 0.9 1.3 1.5

Nodal 17.5 18.3 23.6 22.4

Delta Uniform - Nodal 0.0 0.04 0.24 0.34

The average variable supply costs increase until 2025 for both scenarios driven
by increasing fuel and carbon prices as well as the phase-out of nuclear power
plants in Germany. After 2025, costs decrease since the expansion of intermittent
RES with low variable costs overcompensates the slight increase in fuel prices
after 2025.

Supply costs in Uniform reflect the costs after redispatch. The development
of redispatch costs is given separately. Despite grid expansion, redispatch costs
increase from 0.6 EUR/MWh in 2019 to 1.5 EUR/MWh until 2030 due to dis-
torted investment signals of uniform pricing. Elasticity of demand, i.e. load
curtailment, could decrease redispatch costs under both market designs.

The difference between Nodal and Uniform reflects the lower bound of welfare
losses implied by distorted wind power investment signals under uniform pric-
ing.19 Consequently, there is no cost difference in 2019. Until 2025, the addi-
tional costs per year due to sub-optimal siting of new wind power plants increase
to about 0.24 EUR/MWh. Due to grid expansion, particularly the installation
of DC lines between Northern and Southern Germany in 2026, the increase in
electricity supply costs slows down afterward. It reaches 0.34 EUR/MWh in
2030, which corresponds to an annual cost increase of 1.5% compared to the
least-cost electricity supply under nodal pricing. If only the direct costs of wind
power generation are considered, an efficient siting of wind power plants and thus
higher wind feed-in, the average levelized costs of electricity generation of new
wind power plants decreases to 79.8 EUR/MWh in 2030, which is about 15%
lower than the average cost of 93.3 EUR/MWh under uniform pricing. Lower

19Withing this paper, cost-optimal redispatch with optimal trade flows between countries is as-
sumed. Therefore, the neighbouring countries partly bear the costs caused by inner-German
bottlenecks. In reality, though, market clearing under uniform pricing predetermines cross-
border trade. Hence, optimal trade flows are usually not feasible since cross-border redis-
patch is limited to bilateral contracts.

24



2.4. Evaluation of G-Components and Grid Expansion Areas

supply costs under nodal pricing imply a welfare gain. Yet, this paper does not
consider how consumers and producers share the additional welfare. The change
in consumer and producer surplus depends on the electricity system, i.e., which
power plants are price-setting in both market designs.20 In general, however, a
welfare gain means both a higher consumer and a higher producer surplus.

Moreover, nodal pricing makes congestion - and thus the necessary network
investments to alleviate congestion - more transparent. As such, nodal pricing
may spark additional welfare benefits, for example, by incentivizing efficient
investments in transmission grids as well as the efficient siting of wind power
plants. As shown in the results, this would enable the same wind power feed-in
to be realized with lower wind power capacities.

2.4. Evaluation of G-Components and Grid
Expansion Areas

This section analyzes two instruments to reduce the distorting investment in-
centives of uniform prices: first, spatially-differentiated grid tariffs, i.e., latitude-
dependent generation components and second, grid expansion areas. Both in-
struments are already implemented in European power market designs: For in-
stance, Sweden charges energy-based g-components, which linearly increase with
the latitude. Germany restricts wind power expansion within a grid expansion
area, which is dynamically adjusted and usually covers Germany’s most Northern
federal states.

2.4.1. Configuration

G-Components

This paper considers capacity based g-components. These spatially-differentiated
grid charges can be considered a grid connection fee, which depicts grid external-
ities of wind power at the respective sites. Optimally, the g-component reflects
the distorting signals of uniform prices. In the setting presented the distort-
ing signals are given by the difference in market values between uniform and
nodal pricing. Optimal g-components are highly correlated to the latitude of
the specific node. To develop an easy-to-implement heuristic, g-components are
derived by regressing this difference on the latitude and consider two designs:
G-components, which either linearly (Lin. g-comp.) or cubically (Cub. g-comp.)

20The distributional effects between nodal and uniform pricing are particularly interesting
because redispatch under uniform pricing is cost-based while nodal pricing is entirely market-
based. Thus, even if the same power plants are dispatched after redispatch, power prices
are different. This leads to changes between consumer and producer surplus between both
market designs.
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depend on the latitude. Figure 2.8 visualizes the development of the derived
g-components.

Figure 2.8.: Derivation of latitude-dependent g-components from the differences in mar-
ket values between Uniform and Nodal

The difference in market values is (slightly) negative in Southern Germany
(below the 50th parallel). Uniform prices underestimate the system value of
Southern Wind power plants. In contrast, sites in Northern Germany largely
exhibit strong distortions (above the 52nd parallel). The market revenue of
wind power plants at these sites is higher than their system value. The distorting
signals of uniform pricing do not develop linearly with the latitude but increase
convexly. Thus, linear g-components are particularly far off for sites with high
wind yields in Northern Germany. Cubical g-components reflect the non-linear
correlation of market value distortions and latitude better, in particular above
the 52nd parallel.

Grid Expansion Areas

Furthermore, this paper considers two designs of grid expansion areas, in which
an annual investment limit restricts the wind power expansion. First - close to
the currently implemented design21 - this paper evaluates a single grid expan-
sion area (GEA1 ), which covers the three coastal states of Mecklenburg-Western
Pomerania (MP), Schleswig-Holstein (SH) and Lower Saxony (LS) as well as the
city-states of Hamburg and Bremen). A.5 visualizes their geographical situation.
Second, this region is subdivided into three grid expansion areas (GEA3 ) to as-
sess whether further differentiation would be beneficial. The three grid expansion
areas are in line with the three aforementioned federal states. The investment
limit for wind power expansion within the defined grid expansion areas equals
the efficient investments under nodal pricing and is given in table 2.3.

21The specific configuration is subject to bi-annual reviews. From 2017 to 2020, the grid
expansion area limited wind power expansion within MP, SH and the Northern part of
LS including the city-states of Hamburg and Bremen to 902 MW per year (cf. Lück and
Moser, 2019). From 2020 on, the annual limit decreases to 786 MW and changes the spatial
configuration by including also the Southern part of LS while excluding MP.
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Table 2.3.: Yearly investments limit [MW/a] for the two designs of grid expansion areas

Variation name 2020 2025 2030

GEA1 646 889 1289

GEA3
LS: 436
SH: 33

MP: 177

LS: 457
SH: 220
MP: 212

LS: 441
SH: 670
MP: 178

The investment limit in GEA1 equals the sum of the three limits in GEA3.
Until 2030, the investment limit rises, in particular for the most Northern state
of SH, due to grid investments, which improve the connection between North-
ern and Southern Germany. The subsequent section discusses the impact of
complementing uniform prices with the described additional instruments.

2.4.2. Effects on Siting, Feed-in and System Costs

Siting of Wind Power Plants

For understanding the effects on the siting of wind power plants, Figure 2.9
depicts the spatial distribution of wind power plants if uniform pricing is com-
plemented with the four aforementioned instruments compared to the two pure
market designs Nodal and Uniform.

Figure 2.9.: Cumulative wind power expansion by latitude (left) and capacity factor
(right) until 2030

The investment pattern with linear g-components is similar to Uniform. The
high distortions for very productive sites are not sufficiently internalized so that
expansion in the very North of Germany hardly changes. About 50% of the in-
stalled capacity is still allocated above the 54th degree of latitude. The location of
the remaining half of investments shifts a bit southward. Cubical g-components
address the distorting signals more accurately and shift the investment pattern
with regard to latitude closer to the Nodal pattern. Looking at the investments
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concerning the capacity factors reveals that still very productive sites are pre-
ferred. But below the few very windy sites, cubical g-components significantly
trigger investments at sites with lower capacity factors.

Under a single grid expansion area (GEA1 ), the sites with the highest capacity
factors are still utilized, while the expansion stagnates between capacity factors
of 20% and roughly 27%. This is intuitive: The best sites are still exploited while
the investment limit prohibits the development of less attractive sites within the
grid expansion area. Splitting the single grid expansion into three parts (GEA3 )
prevents such a clear drop. However, the very best wind conditions, which are
also subject to the highest distortions, are still exploited. Yet, the investment
pattern under GEA3 comes close to the outcomes of nodal pricing.

Feed-in and Curtailment

Figure 2.10 depicts the impact on potential and realized feed-in as well as curtail-
ment resulting from the changed investment pattern, i.e., it shows the difference
to Nodal.

Figure 2.10.: Change in feed-in potential, curtailment and realized generation compared
to Nodal

Under all considered market designs, the feed-in potential is higher than under
nodal pricing since wind power plants are built at sites with higher capacity
factors. All of the instruments also decrease curtailment compared to Uniform.
The actual wind power feed-in is the difference between generation potential and
curtailment. Compared to Uniform, only GEA3 performs better and allows for
higher wind power feed-in, while all other instruments slightly lower the realized
compared to Uniform. For evaluating the efficiency of the instruments, though,
wind power feed-in is not decisive. Lower grid congestion could improve the
overall working of the electricity system, e.g., by allowing an efficient dispatch of
conventional power plants. In particular, grid expansion areas significantly lower
curtailment by prohibiting excessive wind power expansion at very productive
but grid-critical sites. For evaluating whether the considered instruments avoid
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welfare losses through inefficient siting of wind power plants, the next section
analyzes system costs.

System Costs

Figure 2.11 depicts the annualized discounted increase of variable supply costs
compared to the efficient benchmark (Nodal) for the considered market designs.

Figure 2.11.: Annualized increase of discounted additional supply costs compared to
Nodal

Linear g-components reduce the annualized costs increase due to uniform pric-
ing from 231 to about 204 mn EUR/a. Cubical g-components better reflect high
distorting signals for productive sites in Northern Germany and hence drive the
additional costs down by about 25% compared to (Uniform). Both designs of
grid expansion areas perform better than latitude-dependent g-components. A
single grid expansion area (GEA1 ) cuts the welfare losses implied by uniform
pricing to about 60%. Yet, a further differentiation into multiple grid expansion
areas (GEA3 ) leads to a significant additional welfare gain, reducing additional
costs to 93 mn EUR/a.

Summing up, this paper evaluates selected designs of g-components and grid
expansion areas. In general, the bandwidth of design options for these in-
struments is broad. Nonetheless, this paper finds that latitude-dependent g-
components do not adequately reflect the distortions of uniform prices in Ger-
many. Hence, such grid charges struggle to mitigate adverse effects from ineffi-
cient investment signals under uniform pricing. In particular, linearly dependent
g-components are hardly beneficial. Grid expansion areas are superior in ad-
dressing these inefficiencies. In particular, a well-considered differentiation into
several areas, which account for inter-dependencies of wind power expansion and
grid congestion, can significantly lower welfare losses.
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2.5. Discussion of the Methodology

This paper relies on several strong assumptions, e.g., perfect foresight, no trans-
action costs, exogenous distribution of new conventional power plants and in-
elastic exogenous demand.

First, future nodal prices are sensitive to other firms’ actions or grid expansion
decisions, while uniform prices are robust due to the market size. Consequently,
long-term profitability of wind power plants are subject to higher uncertainty
under nodal pricing. Ceteris paribus, investors would adjust their risk premia
according to the higher risk. Second, nodal prices increase transaction costs (e.g.,
Breuer and Moser, 2014), particularly for setting up a new market environment
and the necessary regulations. Third, demand reacts to power prices, particularly
in the long term, e.g., via the siting of new industrial plants or investments in
energy efficiency. The siting of conventional plants also depends on expected
revenue under different market designs. All of the aspects mentioned above
affect welfare gains or distributional effects imposed by the introduction of nodal
markets.

Furthermore, the analysis relies on real-world data; however, some assump-
tions have to be made regarding the regionalization due to the lack of data. For
example, the distribution of industrial load within a federal state is derived based
on the regional distribution of value added. This is a common approximation for
load at single network nodes, which certainly deviates from the real distribution
due to inhomogeneous industrial structures within federal states. However, this
simplification should not affect the overall findings of this paper, which rather
depend on the inbalance of demand and RES generation in larger spatial areas.
Furthermore, assumptions on capacity factors of future wind turbines rely on the
rather conservative assumptions of Henckes et al. (2017). Assuming higher ca-
pacity due to technical advances (e.g., increasing hub heights), would exacerbate
the inefficient siting incentives uniform prices.

This paper quantifies the distorting effects of uniform pricing for the isolated
problem of coordinating wind power investments with (given) grid restrictions.
The derived welfare loss is rather a conservative estimation since lock-in effects in
redispatch, e.g., due to scheduled trades or ramping constraints of power plants,
are neglected. Widening the scope, allocating flexibility options on the demand
side and incentivizing optimal grid expansion is crucial for an efficient integra-
tion of RES into electricity systems. This paper neglects interactions between
regulated grid expansion and investments of firms in competitive electricity gen-
eration markets. While today’s market design and network regulation overlooks
this important coordination task, nodal pricing incentivizes efficient investments
and indicates the need for network expansion via price spreads between nodes.

Whether nodal prices raise market power issues (cf. Weibelzahl, 2017), or
market power stems from physical realities, i.e., grid bottlenecks, and market
design only determines where it unfolds (cf. Hogan, 1999 or Bertsch, 2015) is

30



2.6. Conclusion

beyond the scope of this paper. Zonal prices, i.e., splitting the uniform pricing
market into several bidding zones, are an alternative for spatially-differentiated
prices (cf. Grimm et al., 2016a). Apart from spatially-differentiated investment
incentives, zonal pricing mitigates the inherent weakness of uniform prices to set
distorted incentives for cross-border trade due to the single price signal for all
neighboring markets. The results presented suggest that a division into a North-
ern, Southern and Western zone may appropriately internalizes grid congestion
issues. Yet, zone configuration based on nodal prices should be interpreted with
caution, requiring a more sophisticated approach (see e.g., Ambrosius et al.,
2020).

While the quantification of inefficiencies crucially depends on the country-
specific network infrastructure the overall findings can be generalized for other
countries beyond Germany. Uniform prices lead to inefficient incentives for siting
of RES generators if locations with the best conditions are far from load centers.
This pattern is typical for most European countries like the UK or France.

2.6. Conclusion

Within this research work, a power system model is developed that allows for
investments in wind power plants and incorporates a detailed DC power flow
representation of the German transmission grid. In applying the model, this
paper investigates the siting of wind power plants in Germany under nodal and
uniform pricing up to 2030, as well as the implications for the electricity system,
including welfare and distributional effects.

The findings confirm that uniform prices fail to incentivize spatial diversifi-
cation of wind power plants as investments tend to be made concentrated at
locations with high wind yield. Since uniform prices do not reflect negative
externalities on the grid, wind power expansion only requires low direct subsi-
dies, if any. The large market size prevents significant cannibalization effects.
Hence, wind capacities at productive but grid-hostile sites are found to have a
competitive edge in subsidy-minimizing auctions. In other words, low subsidy
requirements correlate strongly to low system values under uniform pricing.

Nodal pricing as the efficient benchmark shifts investments closer to load cen-
ters at the expense of lower potential wind yield. However, curtailment is cut to a
third such that more wind energy is actually fed into the grid under nodal pricing
when holding installed capacities equal in both market designs. By harmonizing
wind power expansion with grid restrictions, variable generation costs in 2030
under nodal pricing are shown to be 1.5% lower than under uniform prices only
due to system-optimal wind power expansion. However, distributional effects
may pose political challenges to introducing spatially-differentiated electricity
prices. Only about 25% of German electricity demand would profit from lower
wholesale electricity prices, while wholesale electricity prices would increase by
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about 5% for densely-populated and industry-rich regions such as Western Ger-
many. Additionally, the quantitative analysis reveals that nodal prices require
higher direct RES subsidies because they disclose the costs for RES integration,
which are typically hidden in grid charges used in uniform pricing. Whether such
a transparent price indicator is in line with targets concerning political economy
aspects is unclear. Subsidies also have distributional effects, which makes polit-
ical feasibility even more difficult (cf. Liski and Vehviläinen, 2020).

If introducing nodal or zonal pricing is deemed politically impossible, addi-
tional instruments such as spatially-differentiated, i.e., latitude-dependent, g-
components in grid tariffs or grid expansion areas to incentivize grid-friendly
siting of wind power are worth considering. Both instruments partly mitigate
the inefficient investment signals of uniform prices - but their design matters.
G-components, which increase linearly with the latitude, are not able to ade-
quately reveal the distortions of uniform prices at the very productive Northern
sites. Cubical g-components address these distortions more accurately. Grid
expansion areas, on the other hand, are more effective in mitigating distortion
of uniform price signals for wind power investments. Differentiating a large grid
expansion area, as is the case in the current German market design, into several
areas could significantly enhance the efficiency gains. Grid expansion areas, how-
ever, are technology-specific investment restrictions, while g-components could
be generalized to include other generators such as gas power plants. Beyond gen-
eration, nodal pricing incentivizes an efficient allocation of demand and discloses
information on grid bottlenecks.

Future research could extend the model to shed light on the efficient integra-
tion of flexibility options, such as power-to-heat or electrolyzers. Implementing
the grid topology of neighboring states would allow investigating inefficiencies
stemming from limited possibilities for cross-border redispatch. Another ex-
tension could investigate the optimal layout of price zones by clustering nodes
to bidding zones. Finally, including endogenous grid investments in the model
would allow the analysis of efficient incentives for coordinating power plant and
grid investments.
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3. The Place beyond the Lines - Efficient

Storage Allocation in a Spatially

Unbalanced Power System with a High

Share of Renewables

3.1. Introduction

As countries strive for climate neutrality, they aim for high wind and solar power
penetration rates. Wind and solar are intermittent, so temporal congruence with
demand is not guaranteed. Additionally, resource quality varies across regions,
which may lead to a spatial imbalance between supply and demand or exten-
sive transmission requirements that exceed the capacity of existing grid infras-
tructure. Efficient coordination of investments in wind and solar, as well as in
transmission grid expansion and power system flexibility, can mitigate these chal-
lenges and decrease system costs. Storage technologies, such as electric batteries,
provide such power system flexibility. They can address temporal imbalances by
shifting generation and load and reduce spatial imbalances by improving net-
work utilization if allocated accordingly. Whether such an allocation is achieved
ultimately depends on the market design. Under nodal pricing, allocation incen-
tives are set by market prices. Such incentives do not exist in uniform pricing
systems.

This paper analyzes investment in storage technologies in both a nodal and
a uniform setting. We focus on a rapidly changing, spatially unbalanced power
system, i.e., where solar and wind capacity expansion is fast, but grid expansion
is slow. By applying a stylized, theoretical, and a numerical investment and
dispatch model, we answer the following three research questions: Firstly, where
in the transmission grid should batteries be allocated? Secondly, how important
is storage allocation for the system’s efficiency and, thirdly, how could policy
instruments be designed to approximate an optimal allocation under uniform
pricing?

The importance of storage allocation is first illustrated using a theoretical
two-node, two-time-step model that stylizes the characteristics of a spatially
unbalanced power system. This model enables us to show fundamentally that
storage capacity can increase line utilization depending on its location. We
show that both an allocation before or behind a grid bottleneck can be efficient.
Which allocation rule dominates crucially depends on the temporal relationship
between the volatility pattern of renewable generation, the demand structure,
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and available transmission capacity. Naturally, the complexity of the allocation
question increases as soon as more than two nodes and time steps are considered.
Therefore, we provide a comprehensive numerical model to investigate optimal
storage allocation in a system with multiple technologies and a detailed grid
representation. We use the German electricity system as a case study.

Already today, Germany exhibits characteristics of a spatially unbalanced elec-
tricity system. Under the single bidding zone, i.e., uniform pricing, wind gen-
eration is dominantly allocated in northern Germany on the shore of the North
and Baltic Seas, while electricity demand is historically centered in the south
and west of Germany, which is more densely populated and industrialized. As
a result of this spatial mismatch, the volume and costs of network congestion
measures have risen and are likely to increase further, given Germany’s latest
renewable capacity targets.

To investigate the optimal allocation of storage and identify policy design
options for coordinating investments, we use a linear optimization market and
grid model that endogenously determines the allocation of storage and renew-
able generation technologies. The storage technology is calibrated as short-term
battery storage. The model computes a closed-form solution to the investment
and dispatch optimization problem while considering a high spatial resolution.
We use the results from modeling a nodal setup with consideration of transmis-
sion constraints as a theoretical first-best benchmark. This allows benchmarking
battery allocation under a uniform setup without consideration of transmission
constraints in the investment problem, similar to the current German market
design.

The numeric simulation results confirm the significance of local demand, re-
newable feed-in volatility, and grid infrastructure availability for optimal battery
allocation. Especially solar generation, which has a daily generation pattern that
matches the batteries’ short-term shifting abilities, is a key driver for an efficient
allocation. Compared to the nodal first-best benchmark, we see that the uniform
setting with randomly distributed batteries increases supply costs by 9.3%. An
optimal allocation of batteries can reduce this efficiency gap by 0.7 percentage
points to 8.6%. In relation to the cost of battery investments, this corresponds
to almost a doubling of the supply cost savings per euro spent. The supply cost
savings are realized in redispatch, where the location of batteries is crucial.

In the current system in Germany, such an optimal allocation is not achieved
because spatially differentiated investment signals are not available under uni-
form pricing. However, with the help of an additional policy instrument, location-
specific information could be made transparent to provide a reference point for
allocating batteries in a system-beneficial way. To get insights on how to design
this policy instrument, we model different allocation rules. We find that simple
heuristics, such as tying battery allocation to solar generation or explicitly defin-
ing a limited number of nodes for capacity auctions, can closely approximate the
optimal battery allocation.
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3.2. Literature review

Only a limited amount of publications have fundamentally examined the role
storage could play in unbalanced power systems. Newbery (2018) argues fun-
damentally that storage can increase grid utilization, thus decreasing system
imbalances. Using theoretical models, Neetzow et al. (2018) analyze whether
grid expansion and storage are complements or substitutes, and Weibelzahl and
Märtz (2018) examine the effect of storage on the optimal definition of price
zones, highlighting the additional complexity storage brings into the system.
Predominantly, the current literature is based on more complex, numerical stud-
ies considering specific countries or regions. Many of the studies focus on the
short-term deployment of storage in uniform price systems (e.g. Abrell et al.,
2019, Bertsch et al., 2016a, Schill and Zerrahn, 2018, Zerrahn and Schill, 2017).
These papers analyze the possibilities of using storage to balance the temporal
volatility of renewables but do not include a grid representation. To model spa-
tial allocation and derive market design implications, a representation of grid
constraints is crucial. Such an analysis is, for example, carried out by Schmidt
and Zinke (2023) for the case of wind generation allocation in Germany in 2030
and similarly, vom Scheidt et al. (2022) investigate differences between a nodal
and a uniform pricing system in Germany, focusing on the integration of hydro-
gen and system-optimal locations of electrolyzers in 2030. Lindner et al. (2023)
analyze the impact of batteries used as grid boosters or virtual power lines and
place them at two exemplary nodes in the north and south of Germany.

Closest to our analysis is literature on efficient incentives for flexibility assets.
Ambrosius et al. (2018) investigate the effects of different market designs on
investment incentives for flexible demand in the German industry in various
scenarios under nodal and uniform pricing. However, the paper uses a simplified
transmission grid representation with just 16 zones. Babrowski et al. (2016)
apply a more detailed model but focus on the optimal amount of storage.

Some further publications focus on the longer term and analyze efficient power
system configurations with (nearly) 100% renewable power generation in the
European power system, e.g., Brancucci Mart́ınez-Anido and de Vries (2013),
Bussar et al. (2014), Schlachtberger et al. (2017), and Göke et al. (2021).

Research gap and contribution

Reviewing current literature reveals a lack of systematic analysis of optimal stor-
age allocation and market design implications. Consequently, our paper seeks to
bridge the gap between existing publications that address storage, grid issues, or
market design as individual issues in power systems with high shares of wind and
solar. We contribute a fundamental analysis of storage allocation in a simplified
model and verify and expand our findings by employing a numerical electricity
market and detailed grid model with endogenous storage allocation in light of
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the current conditions in Germany. Analyzing storage allocation in a uniform
setting and a first-best nodal benchmark allows us to translate the insights from
our integrated analysis into policy suggestions.

3.3. The economic rationale for storage allocation

This section introduces a model with two nodes and two time steps to analyze
determinants of cost-optimal spatial allocation of storage in a spatially unbal-
anced transmission network. Generally, electrical storage technologies can shift
electricity supply between different points in time.

Depending on their allocation in the grid, storage can use its temporal shifting
potential to increase network utilization and thus reduce spatial imbalances. For
illustration, consider the following:

Assume a weather-dependent, renewable generation technology in node R, for
example, a wind or a solar generator gres, with constant zero marginal costs
cres = 0. Renewable generation is stochastic and can take two possible states,
reslow and reshigh. Demand d is allocated in node D and can also take two
possible states dlow and dhigh. For simplicity, demand and renewable availability
are assumed not to be correlated, and renewable generation meets demand when
both are in the same state, i.e., reslow = dlow and reshigh = dhigh. Further,
we consider a peak-load technology gpeak at node D, with constant marginal
costs cpeak > 0 and enough capacity to serve the demand in each time, i.e.,
gpeak >= dhigh.

Both nodes are connected by a transmission line l with line capacity dlow <
l < dhigh. Hence, if both demand and generation in node R are high, node D
could still not be fully supplied by the renewable generation technology due to
a grid bottleneck. The model is illustrated in Figure 3.1.

R D
transmission line l

renewable generation gres
with gres ∈ {reslow; reshigh}
and cres = 0

demand d ∈ {dlow; dhigh}
peak-load generation gpeak
with cpeak > 0

Figure 3.1.: Two-node example

We consider two time steps t1 and t2. Combining renewable generation and
demand in all its possible states yields eight different cases, shown in table 3.1.22

Storage s can either be built in node R or D and comes without any investment
costs. We further assume no storage losses or other variable costs in addition

22We do not consider combinations in which renewable generation is low in t1 as storage is per
se useless in these cases.
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Table 3.1.: Possible combinations of renewable generation and demand in both time
steps

Volatility t1 t2 Allocation rationale

case 1 none reshigh, dlow reshigh, dlow no storage
case 2 none reshigh, dhigh reshigh, dhigh no storage
case 3 in generation reshigh, dhigh reslow, dhigh storage in R

case 4 in both reshigh, dlow reslow, dhigh indifferent (R or D)

case 5 in generation reshigh, dlow reslow, dlow no storage
case 6 in demand reshigh, dlow reshigh, dhigh storage in D

case 7 in demand reshigh, dhigh reshigh, dlow no storage
case 8 in both reshigh, dhigh reslow, dlow no storage

to charging costs, such that cs < cpeak when storage is charged with renewable
energy. For simplicity, we assume that storage power (charge and discharge) ca-
pacity equals supply and demand states reshigh and dhigh. Furthermore, storage
volume capacity spower is sufficient to store at least one period of full charging,
i.e., svolume ≥ spower.

By definition, storage is only useful if there are fluctuations in the system,
either in renewable generation or demand. If renewable generation is high in
both time steps and demand does not fluctuate either, the transmission line l is
already used at capacity and peak generation is minimized. Hence, storage has
no benefit to the system as a whole, which holds for cases 1 and 2.

If demand fluctuates and transmission line l is not utilized in t1 or t2, temporal
shifting becomes useful. Consider the case that renewable supply is high in t1
and low in t2 and demand in node D is high in both time steps (case 3). Because
there is a transmission bottleneck in t1, storage could be used to store excess
renewable generation reshigh − l. In t2, the stored energy can be released and
transmitted to node D, as transmission line l is not utilized because generation
is otherwise low. Storage has to be allocated at the generation node R to do so,
as l is fully utilized in t1 when the storage is charged. A similar effect occurs, if
demand is low in t1 and high in t2 (case 4). In this case, however, the location
does not matter. Without storage, line l is not utilized at capacity in either
time step. Thus, storage can charge regardless of whether it is allocated at
node R or node D. In case 5, where demand is low at both times, no storage
is needed because both renewable generation and grid capacity are sufficient to
meet demand at both times.

If the renewable generation is high at both times, the benefit of storage depends
solely on the demand profile. In case 6, where demand is low in t1 and high in
t2, storage capacity equal to spower = l−dlow is built in node D to use renewable
generation in t2 instead of the more expensive conventional generation. In cases
7 and 8, where reshigh and dhigh coincide, again, temporal shifting has no benefit.
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Main findings and generalization

The model demonstrates that storage can decrease supply costs by increasing
line utilization and that storage location is crucial to unlock said system benefits.
The results suggest that storage can be optimal either before or behind a grid
bottleneck. In the simple setup, the optimal location depends on the volatility of
the underlying demand and generation profiles. Thus, storage is allocated where
volatility is higher. In practice, however, the underlying profiles are stochastic
and exhibit more time steps, i.e., a sequence of the individual cases discussed
above. When combining the cases into a sequence, the strict dominance of an
allocation case ceases to exist, meaning that one of the cases could prevail or
storage capacity could be split between the two nodes.23

Furthermore, the complexity of the model and the underlying relationships
increases as soon as more than two nodes and technologies with different char-
acteristics are considered. Even in the very simple model setup with only two
nodes and two time steps, the storage allocation depends on the parametrization
of generation and demand volatility. To decide where storage is allocated opti-
mally, it is thus necessary to use a well-parametrized and numerical real-world
model.

3.4. Methodology and input data

3.4.1. Model framework

We employ an extended version of the investment and dispatch model SPIDER
initially developed in Schmidt and Zinke (2023). SPIDER is a model of the
European power sector that considers a detailed depiction of the German trans-
mission grid.24 The model invests in new power plants and dispatches generation
capacities such that the net present value of the variable and fixed costs is min-
imized.

Demand, which means the structure, spatial distribution, and level, is assumed
to be inelastic, i.e., not adjusting to prices. The model relies on the assumption
of perfect markets and no transaction costs. Thus, the competition of profit-
maximizing symmetric firms corresponds to the model’s cost minimization of a
central planner.

23With a longer sequence of time steps, also the assumption regarding the volume factor of
storage svolume

spower
becomes more relevant than it is in the two-time-step example. The volume

factor determines the maximum duration of temporal shifting. Different volume factors
mean that different parts of a stochastic demand and supply pattern can be exploited, thus
also potentially affecting efficient allocation.

24For a thorough description of the underlying model and its characteristics, the reader is
referred to Schmidt and Zinke (2023).
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We set up a linear optimal power flow problem (LOPF) to approximate the
inner-German transmission grid infrastructure. To keep the problem linear,
DC power flow constraints approximate non-linear AC power flow restrictions.
Thereby, the model neglects grid losses and reactive power (c.f. Van den Bergh
et al., 2014). The implementation of DC power flows is based on the cycle-based
Kirchhoff formulation, which has been proven to be an efficient formulation (c.f.
Hörsch et al., 2018). Network investments are assumed to be exogenous, which
is valid for the 2030 time horizon due to the long approval and construction
times. European regulatory authorities usually review and approve grid expan-
sion projects 10 to 15 years in advance (c.f. Bundesnetzagentur, 2019).

In addition to the initial model of Schmidt and Zinke (2023), in this paper,
SPIDER is extended to allow for endogenous investments in storage as well as
solar power capacities. The model optimizes the allocation of storage, but the
ratio of maximal charging power (hereafter referred to as capacity) and stored
energy (hereafter referred to as storage volume) is set exogenously. The key
formulation of the cost minimization problem and the storage constraints are
given in B.2.

Modeling a detailed representation of grid constraints and endogenous invest-
ments in generation and storage is a computational challenge. As in Schmidt and
Zinke (2023), the model is subject to several limitations: As mentioned above,
investments in transmission grid lines are exogenous assumptions. Ramping and
minimum load constraints are approximated to avoid a mixed-integer optimiza-
tion and the model does not include combined heat and power plants. Further,
the model abstracts from uncertainty and assumes perfect foresight.

3.4.2. Assumptions and data

The regional focus of the model is Germany, with a spatial resolution at trans-
mission grid node level, i.e., 220 kV to 380 kV voltage levels. The depiction of
the transmission grid is based on grid information from multiple sources, includ-
ing Matke et al. (2016) and 50Hertz et al. (2019). Grid extensions follow the
German 2030 grid development plan, which was reviewed and approved by the
German grid regulator (c.f. Bundesnetzagentur, 2019).

While the German transmission grid is modeled for 2019 with 380 nodes and
606 lines, Germany’s neighboring countries are depicted as singular nodes with-
out intra-country grid restrictions. The model includes interconnectors to as
well as between neighboring countries, which are approximated via net transfer
capacities (NTC) based on ENTSO-E (2020a).

The regional scope and the depiction of the German transmission grid are
visualized in Figure 3.2.

Our analysis covers the years 2019, 2025, and 2030. Each year is represented
by 12 representative days at hourly resolution. We derive the representative days
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by using k-medoids clustering with respect to residual load (c.f. Kotzur et al.,
2018).

For our case study, we parameterize the storage technology as large-scale elec-
tric batteries. Therefore, these batteries participate in the wholesale market and
may be subject to redispatch measures (in the uniform setting).25 B.3 discloses
further assumptions on technology parameters, demand development per country
as well as fuel prices.

Existing power plant capacities and their distribution across Germany are de-
rived from data provided by the German regulator Bundesnetzagentur.26 Power
plants are distributed via their postcodes to the nearest transmission grid node.
The future distribution of offshore wind farms is based on 50Hertz et al. (2019).

Figure 3.2.: German transmission grid and NTC connections to neighboring countries

25In practice, this does not apply to small storage systems such as photovoltaic systems or
storage for electric vehicles designed to increase self-sufficiency.

26Conventional power plants are based on the power plant list (Bundesnetzagentur, 2020a) and
renewables on data from the Marktstammdatenregister (Bundesnetzagentur, 2020b).

40



3.4. Methodology and input data

Capacity development at the national level is exogenous and follows the Na-
tional Trends scenario in ENTSO-E (2020a) for all countries except Germany.
For Germany, the assumed capacity development reflects the legal and politi-
cal situation. Wind and solar expansion follow the current legal targets (EEG,
2023, WindSeeG, 2023). The legislation does not include a specific capacity tar-
get for batteries in 2030. Instead, aggregated battery capacity is an assumption
based on Scenario B from the 2037/2045 grid development plan (50Hertz et al.
(2022)).27 Table 3.2 shows the assumed expansion of wind, solar, and battery
capacities in Germany.

Table 3.2.: Assumed development of installed wind, solar and battery capacities in Ger-
many

[GW] 2019 2025 2030

Wind Onshore 53.4 65.4 115.0
Wind Offshore 7.5 14.3 30.0

Solar 49.2 105.2 215.0
Batteries 0.0 5 15.0

The phase-out of German nuclear, lignite, and coal power plants is imple-
mented according to the path defined in the Act to Reduce and End Coal-
Fired Power Generation (KAG, 2020). In addition, the announced phase-out of
lignite-fired power generation by 2030 is considered for the state of North Rhine-
Westphalia (BMWK, 2022b). We assume that the electricity market triggers
sufficient investments into backup power plants to meet demand at all times.
The location of the required gas capacities is efficiently determined in the nodal
setting and fixed for all model runs.

The regional allocation of onshore wind, solar, and battery storage capac-
ity is determined endogenously. Therefore, their regional allocation follows the
economic rationale of the considered model setup (see 3.4.3) while considering
distributions of determining factors such as demand and resource quality. Since
the total installed capacities are the same in all settings examined, the efficiency
of regional allocation alone determines the differences in electricity supply costs.

Demand time-series for neighboring countries are based on hourly national
demand in 2014, according to ENTSO-E (2020b). The German demand is dis-
tributed to the nodes similar to the approach in 50Hertz et al. (2019): Based
on sectoral demand shares on the federal state level (c.f. Länderarbeitskreis En-
ergiebilanzen, 2020), household demand is distributed onto nodes proportionally
to population shares. The distribution of industry and commercial demand re-
flects the regional distribution of gross value added for the respective sectors
(c.f. EUROSTAT, 2020)). The demand time series are synthesized in a bottom-

27In a sensitivity analysis, our results prove robust for deviating total battery capacities of 5,
10, and 20 GW, respectively B.4.
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up approach using sector and application-specific standard load profiles, which
reflect 2014 as a calendar and weather year.

The intermittency of renewable feed-in is modeled via weather-dependent
hourly regional feed-in potential. The time series for onshore wind in Germany
and solar generation are based on high-resolution reanalysis meteorological data
from the COSMO-REA6 model. For onshore wind, the conversion of wind speeds
to regional feed-in data is based on Henckes et al. (2017). For solar genera-
tion, solar radiation was converted to regional feed-in potential as described by
Pfenninger and Staffell (2016a). Data for Germany’s neighboring countries and
German offshore wind power is provided by Pfenninger and Staffell (2016a) and
Pfenninger and Staffell (2016b).

3.4.3. Nodal and uniform setting, allocation rules, and
benchmarking

The model framework is applied to simulate investment and dispatch decisions
under two different settings: nodal and uniform. Each transmission grid node
constitutes a market in the nodal setting, and grid constraints are considered
within the price formation. When grid constraints are binding, prices differ
between nodes. In the case of new investments, these spatially differentiated price
signals and hence, transmission bottlenecks are considered in siting decisions.
Without any friction, the nodal setting represents the first-best configuration for
efficient coordination of power generation investments, dispatch, and the grid.

Germany employs a uniform pricing approach. Uniform pricing relies on larger
market areas or zones, usually defined by a country’s national borders. Under
uniform pricing, physical constraints concerning power flows within a market area
are not considered in the market clearing. As a result, the scheduled dispatch
after market clearing may violate physical grid restrictions and require curative
redispatch measures carried out by grid operators. As grid restrictions are not
reflected in the market, prices within a market area are the same. We model
a uniform setting where transmission bottlenecks are neglected; As a result,
coordination between generation investment, dispatch, and the grid is missing.
This setup represents the uniform pricing market design currently in place in
Germany in a simplified way.28

Consequently, the two setups differ regarding the amount of information avail-
able or, more specifically, in terms of the consideration of transmission con-
straints. In the uniform setting, a subsequent dispatch run considering the DC
power flow reveals whether the scheduled dispatch with given investment deci-

28We neglect additional factors that might impact siting decisions, such as additional policies
or locational factors that relate to the preference of individual investors. Consequently, in
the uniform setup, siting decisions for wind and solar are guided by resource quality so that
new facilities are primarily built in areas where meteorological conditions allow a maximum
yield. Other generators, including batteries, are indifferent to siting in the uniform setup.
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sions violates grid constraints, i.e., whether a redispatch is required. The differ-
ence in supply costs between the initial dispatch and the subsequent redispatch
run is considered the resulting redispatch cost.29 We quantify efficiency losses
of the uniform setting by comparing total supply costs with the nodal first-best
benchmark. Capital costs can be neglected since the total installed capacity is
the same in each setting.

Assuming that the uniform pricing system is politically desired and will be
maintained in Germany, location-specific information could be made transparent
with the help of an additional policy instrument that provides a reference point
for a system-beneficial allocation of storage capacities. To get insights on how to
design this policy instrument, we use the numerical model to analyze different
allocation rules for storage investment in an otherwise uniform setting. Thereby,
we focus on allocation rules that coordinate the storage allocation isolated from
other technologies. Specifically, we test for heuristic approaches and explicit
allocation rules.

Heuristic approaches, on the one hand, allocate storage capacity based on a
reference distribution. We select the heuristics based on an analysis of drivers
for optimal storage allocation. A similar instrument to such a heuristic is used in
the capacity auction for wind power generation. To achieve a broader capacity
distribution over Germany, the merit order of capacity bids is altered to compen-
sate for yield losses at sites with lower resource quality. The correction follows a
non-linear heuristic based on the deviation from a reference wind generator. An-
other example of a heuristic allocation approach can be found in Sweden, where
generation network tariffs depend on latitude. The differentiation of network
tariffs incentivizes generation investment at lower resource quality sites close to
demand.

On the other hand, we test explicit approaches which allow storage investment
at a limited number of candidate nodes identified as suitable in the optimal
case. The capacity is then optimized across the candidate nodes. Hence, this
approach requires detailed information about load flows. A similar policy is
already implemented within the capacity auctions for wind generation, where a
certain percentage of capacity is reserved for bids from the so-called south zone, a
predefined area below the structural grid bottleneck. A different kind of location-
specific capacity mechanism is used to procure the so-called grid reserve. The
German grid regulator monitors the capacity demand for redispatchable power
plants in the south of Germany. If available capacity is lower than capacity
demand, grid operators can procure specific mothballed power plants or power
plants scheduled for phaseout for grid reserve.

29We model a perfectly efficient redispatch that includes all generation units in all modeled
countries. Thus, the resulting total supply costs, i.e., dispatch plus redispatch costs, would
be equal if capacity allocations in the nodal and uniform setting were the same. However,
the allocation of new capacity is sub-optimal in the uniform case, resulting in higher total
supply costs than in the nodal setup.
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To rank the different instruments and their efficiency gains, we derive the op-
timal allocation of batteries for the uniform setup and use it for comparison. To
obtain the optimal allocation, we perform a first model run calculating the distri-
bution of wind and solar capacity without considering transmission constraints.
Subsequently, in a second model run, we optimize the battery allocation consider-
ing transmission constraints and the given distribution of wind and solar. While
the optimal allocation represents the upper bound for the efficiency achieved
with a storage allocation mechanism, determining a lower bound is somewhat
more complicated. In the uniform setting, there is no clear decision rule for
storage because resource quality does not vary. Different factors such as demand
typology, innovation drive or existing infrastructure could potentially influence
storage allocation in the real world without spatially differentiated investment
incentives. It is, however, unclear whether and how such factors influence the al-
location and we, therefore, cannot include them in our model. Instead of a lower
bound, we compute a demand-weighted random distribution of storage across
Germany as a benchmark for the lack of coordination incentives. The random
distribution is sampled 100 times and averaged to reflect an expected value.

3.5. Numerical model results

3.5.1. Battery allocation

In both settings, placing 15 GW battery capacity reduces supply cost, i.e., dis-
patch (and redispatch) costs.30 In the nodal setting, supply costs decrease by
1.1% compared to a case without batteries in the system. In the uniform setting,
batteries can reduce supply costs by 1.5%. The drivers for the efficiency gains
differ between the two settings. Under the nodal setup, wind, solar, and batteries
are allocated in an integrated optimization and under the consideration of grid
constraints. This allows wind and solar generation to be shifted to locations with
higher full-load hours that were subject to grid constraints without batteries.31

Thus, renewable power generation increases and higher-cost fossil generation is
avoided compared to a case without batteries. In the uniform setting, supply
cost reductions are split between cost savings in the initial market clearing and
in redispatch. In the market clearing, batteries shift excess renewable energy
to peak residual load periods, avoiding high-cost peak generation. The supply
cost reductions are realized independent of the location and are equal in both
battery allocation cases under the uniform setup. In redispatch, batteries create
additional efficiency by avoiding high-cost generation behind grid bottlenecks.

30Note that the amount of battery capacity is imposed exogenously in our setting. Thus, we
do not investigate whether the savings in supply cost cover the capital cost of the batteries
and hence do not infer conclusions about the economic efficiency of the chosen amount of
batteries installed. We discuss some rough estimates at the end of section 3.5.3.

31For a more detailed understanding of the different allocations of wind and solar under nodal
and uniform setting without batteries, see Appendix B.4.
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To achieve efficiency gains in redispatch, the allocation of batteries is relevant.
This is illustrated by comparing a case of optimal battery allocation to a case of
random battery allocation. On average, when allocated randomly, batteries can
only decrease supply costs by 0.8% in comparison to a case without batteries.
An optimal allocation sets the upper bound for supply cost reduction at 1.5%.
Figure 3.3 compares the efficiency gains of placing 15 GW of battery capacity in
the grid for the three cases.

Figure 3.3.: Relative reduction of supply costs due to batteries in the nodal and uniform
setting compared to the case without batteries

When comparing the two settings, we find that the total supply costs are 8.6%
higher in the uniform than in the nodal setting, even for optimal battery alloca-
tion. This cost difference is attributed solely to the sub-optimal distribution of
renewable generation capacity.

In both settings, nodal and uniform, the optimal battery allocation follows
the allocation of wind and especially solar generation capacity. Thus, in the
nodal case, batteries are allocated broadly across Germany, while in the uniform
case, batteries concentrate in the south of Germany and especially below the
51st latitude. Moreover, under both settings, batteries are allocated close to
congested transmission lines, i.e., lines that are frequently utilized at full capacity
(depicted in red).
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(a) Spatial distribution of battery capacity expansion and
line utilization in the (i) nodal and (ii) uniform setting

(b) Nodal marginal supply costs
and battery allocation by
latitude

Figure 3.4.: Spatial distribution of 15 GW battery capacity and marginal supply costs
in 2030

Grid congestion is illustrated in the upper graph of Figure 3.4b, which shows
marginal supply costs at each node over latitudes. In the nodal setting, marginal
supply costs equal the nodal prices. In the uniform case, they reflect the supply
costs in redispatch. Prices differ between nodes if transmission constraints are
binding, i.e., if a bottleneck exists. This is especially the case between the 52nd
and 53rd parallel, where price differences of up to 44 EUR/MWh in the nodal case
and 70 EUR/MWh in the uniform case occur. The price difference in the uniform
setting is higher because the grid bottleneck is more prevalent here. This can be
attributed to the sub-optimal renewable allocation in this case. In both settings,
placing most of the battery capacity below the grid bottleneck is optimal. It
follows the distribution of solar generation capacity. Thus, it is distributed more
uniformly across the west and east in the nodal setting, while it is concentrated
in the southeast (the federal state of Bavaria) in the uniform setting. Close to
solar generation, batteries can flatten the daily solar generation profile, mitigate
local grid congestion, and thus reduce local residual demand peaks. Doing so,
batteries help to avoid the high-cost (re-)dispatch of conventional power plants
in this area.

Furthermore, in both settings, a significant battery capacity of about 3 GW is
allocated right above the structural north-south transmission bottleneck. Under
the nodal setup, this capacity is shifted closer to western demand centers, where
substantial wind and solar generation capacity is allocated. Through temporal
shifting, these batteries increase the utilization of connections to the north and
the usage of local wind and solar generation. In the uniform setting, the battery
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capacity allocated at the structural grid bottleneck is concentrated in the middle
and the east of Germany, making use of solar capacity allocated there while at
the same time increasing utilization of the easternmost HVDC connection.

The north of Germany, i.e., above the 53rd parallel, attracts a battery capacity
of 1.4 GW under the nodal setup. The allocation of this capacity is the result
of the simultaneous optimization of battery and renewable capacity allocation.
Batteries allocated in the far north increase the north-south transmission uti-
lization at locations where HVDC lines are connected. Thus, they enable wind
generation to increase its full load hours by moving further northwards. This
rationale does not hold under the uniform setup, where the optimization of re-
newables and batteries is decoupled. Additionally, the structural north-south
bottleneck is too prevalent to achieve a similar transmission. As a result, there
are no batteries allocated in the far north.

The numerical model results confirm for the case study of the 2030 scenario
of Germany what the two-node model revealed: Storage can reduce supply costs
in transmission constraint power systems with high volatility, but allocation
matters to unlock the efficiency gains. For the case of batteries, we show that
efficiency gains can be made, especially in conjunction with solar generation,
as batteries flatten the daily generation pattern. By locating them near solar
generation and grid congestion, the batteries avoid high residual demand peaks,
i.e., costly generation during dispatch and redispatch.

3.5.2. Policy instruments for battery allocation

The uniform pricing setting sets no spatial coordination incentives for batter-
ies; thus, achieving optimal allocation is unlikely. Therefore, we investigate the
supply costs of potential allocations that could be realized by regulatory mech-
anisms that impose additional price signals under uniform pricing. We test for
two types of capacity distribution mechanisms: heuristic allocation rules that
allocate battery capacities over all nodes according to a predefined distribution
and explicit mechanisms that allow battery allocation only at specific candidate
nodes.

Heuristic allocation rules

As shown in the two-node model and the numerical example, optimal storage
allocation is driven by the volatility induced by renewable feed-in, demand, and
transmission grid constraints. Therefore, the first two heuristics distribute bat-
tery capacity proportionally to solar generation capacity and demand, respec-
tively. Even though wind generation allocation is not a driver for optimal bat-
tery allocation in the uniform setting, we test whether batteries could exploit the
volatility of wind generation and decrease supply costs when distributed accord-
ing to wind generation capacity in a third heuristic. Heuristic four reflects the
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allocation of both wind and solar, thus taking a combined approach to renew-
able volatility. Capturing the dynamic influence of transmission grid constraints
in a heuristic approach is more difficult. We investigate whether heuristic five
can address grid congestion, which distributes storage capacity proportionally to
phased-out power plants. Phased-out plants were historically allocated close to
demand and may thus address the north-south bottleneck.

To discuss the suitability of these heuristics, we assess them against the optimal
battery allocation given the distribution of wind and solar in the uniform setting
discussed in the previous section. The relative increase in total supply costs
resulting from the heuristics compared to the hypothetical, optimal allocation of
batteries lies between close to 0 and 1.1% (see table 3.3).

Table 3.3.: Summary of relative cost increases and battery capacity factors for heuristic
battery allocations

opt.
benchmark

random
benchmark

solar
wind

& solar
demand

phased-out
power plants

wind

Supply cost delta [%] - 0.66 0.27 0.38 0.61 0.90 1.07
Redispatch cost delta [%] - 3.84 1.58 2.19 3.58 5.25 6.24
Battery capacity factor 0.15 0.15 0.16 0.15 0.16 0.13 0.08

As market efficiency gains are independent of the allocation, the differences in
supply costs between the benchmark and the heuristic allocations correspond to
the difference in redispatch costs, which are determined by the total redispatch
volume and the power plants used in redispatch. The total redispatch volumes
are similar in the benchmark case and for all heuristics. Redispatch is mainly
caused by high wind power curtailment in the north of Germany. Situations
of high wind feed-in and north-south transmission bottlenecks continue for long
periods, and therefore the ability of batteries to reduce curtailment volumes is
limited.

Hence, redispatch costs differ mainly due to the different types of power plants
used for redispatch. Redispatch costs are lowest if batteries frequently shift low-
cost electricity in time to avoid costly fossil-fired generation. In our scenario
results, this is especially the case in the south and east of Germany, where
high solar generation leads to high volatility in local marginal generation costs.
Batteries can utilize this volatility by charging when solar power generation is
high. They then use this energy to displace lignite power plants and gas turbines,
which replace south German nuclear capacities, in redispatch. Conclusively, a
heuristic, which distributes capacity according to solar generation capacity, is
the most efficient, followed by a heuristic, which considers both wind and solar.

A demand-based heuristic is the third most efficient. Here, more battery
capacity is located in the west of Germany, while solar power generation is con-
centrated in the east and south. Since marginal generation costs are higher in
the west, battery charging is more expensive and replacement of fossil power
plants in redispatch is less frequent. A similar effect occurs if the batteries are
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allocated accordingly to phased-out power plants since they are located near
demand centers, too.

In contrast, if batteries are deployed close to wind generation, their contri-
bution in redispatch is more limited. Even though batteries prevent more wind
curtailment than in the other heuristics, they can only participate in redispatch
above the structural grid bottleneck. There, marginal generation costs in re-
dispatch are low, and so is volatility, making this allocation the least efficient.
In fact, redispatch costs are even higher than in a case without batteries. This
is because batteries increase the share of wind generation in the initial market
outcome, which then has to be curtailed in redispatch due to grid constraints.
However, market gains outweigh redispatch losses, resulting in lower total sup-
ply costs than without batteries. Moreover, the allocations according to wind
or phased-out power plants are even less efficient than a random allocation of
batteries. The random allocation leads to a broad distribution of batteries across
Germany, meaning that at least some batteries are close to solar generation and
demand.

The heuristics’ supply cost differences are also reflected in battery utilization.
In the wind-based heuristic, the battery capacity factor is less than half of the
capacity factor of the solar-based heuristic, where a capacity factor of 0.16 is
achieved. This corresponds to 345 battery cycles per year or an average of almost
one charge cycle per day, i.e., a steady reduction of residual loads. The reason is
the assumed capacity-to-volume ratio of 4h, which makes batteries better suited
to buffer daily solar generation than wind generation profiles with their coarser
volatility.

Explicit allocation rules

Secondly, we investigate explicit approaches that allow for an optimal battery
allocation at predefined candidate nodes. We test the following variations: Start-
ing from the 40 nodes with the highest capacity in the hypothetical benchmark
case, we iteratively reduce the number of candidate nodes to 1. The resulting
supply costs of these explicit allocation rules are between 0.00 and 0.85% higher
than the optimal benchmark. The higher the number of candidate nodes, the
lower the supply costs. At 40 or more candidate nodes, supply costs are almost
the same as in the optimal benchmark case. Even reducing the allocation to
just two nodes leads to a cost increase of 0.37%, which is between the supply
costs of the solar heuristic (0.27%) and the heuristic allocation according to so-
lar and wind capacity (0.38%). If the number of candidate nodes is reduced to
one, the supply cost delta more than doubles compared to the case with two
nodes. With one endogenously chosen candidate node, all capacity is placed at
a node in southern Germany. In this case, the battery cannot have its full effect
because the installed battery capacity is higher than the sum of renewable and
transmission capacity at that node. Consequently, the resulting capacity factor
is much lower, and the total supply cost is higher than in the case of random
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distribution. Nevertheless, it is noteworthy that the single-node allocation is still
more efficient than an allocation by wind capacity or phased-out power plants.

The explicit approaches that distribute battery capacity to five or more nodes
outperform all heuristic approaches.32

Table 3.4 compares resulting capacity factors and supply costs relative to the
hypothetical benchmark for each of the explicit options.

Table 3.4.: Summary of relative cost increases and battery capacity factors for explicit
battery allocations

opt.
benchmark

random
benchmark

40 20 10 5 3 2 1

Supply cost delta [%] - 0.66 0.00 0.02 0.10 0.16 0.29 0.37 0.85
Redispatch cost delta [%] - 3.84 0.00 0.12 0.57 0.94 1.70 2.14 4.97
Battery capacity factor 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.13 0.10

3.5.3. Summary

We quantify the efficiency gains of placing 15 GW of batteries in the German
transmission grid by comparing supply costs for two settings, nodal and uni-
form, to equivalent cases without batteries. The results show that batteries
reduce supply costs in both cases. In the uniform setting, the efficiency gains are
composed of supply costs reduction in the electricity market, which are indepen-
dent of battery allocation, and in redispatch, which depend on battery location.
To compare different allocation rules under the uniform setup, a hypothetical,
optimal allocation for a given distribution of renewable capacity is used as an
upper benchmark. Furthermore, a random distribution of batteries is used as a
benchmark for missing local investment incentives. The analysis shows for our
scenario that explicit approaches with endogenous battery investment allowed at
a limited number of pre-determined nodes can approximate the optimal distri-
bution well, and already from five nodes, it outperforms all heuristic approaches
with a fixed distribution. Among the fixed heuristic approaches, an allocation
that mimics the distribution of solar generation capacity performs best. Solar
generation is a crucial driver for optimal allocation since batteries can exploit
the daily solar generation pattern to reduce gas-fired redispatch. Other heuristic
approaches prove to be less suitable. An allocation proportional to phased-out
power plants or wind generation capacity is less efficient than a random distri-
bution. The wind-based heuristic leads to even higher redispatch costs than the
case without any batteries.

The performance of the different allocation rules is compared to the theoretical
first-best nodal benchmark. Figure 3.5 shows the relative increase in supply costs

32When comparing the results, however, it has to be noted that the installed capacity per
node is optimized endogenously in the explicit cases. In contrast, capacity distribution is
determined exogenously in the heuristic cases.
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compared to this benchmark for the allocation variations ordered by efficiency. It
highlights the efficiency gains that can be made by introducing and coordinating
batteries. The most efficient allocation rule is the explicit allocation to 40 nodes,
leading to 8.6% higher supply costs than the nodal benchmark. Least efficient
is the heuristic allocation by wind capacity (+9.7%). Hence, the range of total
supply costs between the best and the worst performing allocation amounts to
1.1% of the nodal supply costs.

Figure 3.5.: Supply cost differences between allocation rules and the first-best nodal
benchmark in 2030

The relevance of appropriate coordination can be further illustrated by relat-
ing the supply cost savings achieved by batteries to the capital cost incurred.
The supply cost saving of each battery allocation is the difference in total supply
costs compared to the uniform setting without any batteries. To calculate the
capital costs of batteries, we assume investment costs of 600 EUR/kW, a lifetime
of 16 years, and an interest rate of 8% (c.f. EWI, 2021). The ratio of savings
to annualized capital cost depends strongly on battery allocation. Batteries can
yield 1.08 EUR in savings per euro spent if allocated optimally in the uniform
setting. A random allocation reduces the savings by 47 ct per euro spent. With
an explicit allocation at five or more candidate nodes, the battery-induced sav-
ings come close to the savings under an optimal allocation (0.96 - 1.08 EUR
saved per euro spent, depending on the number of nodes). In the best heuristic
allocation (solar), the ratio of savings to expenditures is 19 ct lower than with an
optimal allocation. In the worst case (wind) examined, the savings drop to just
33 ct per euro spent. Under the assumed capital costs, 15 GW of battery capac-
ity is in the money if allocated optimally. With the help of the allocation rules,
savings are higher than the annualized capital costs for explicit approaches at 10
or more nodes. With all other rules, savings are below expenditures. However,
batteries can generate additional value not considered in the present analysis
through system services, e.g., balancing power provision or avoiding grid expan-
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sion in the long run and thus savings can be higher. Further, these results highly
depend on the (assumed) capital costs.

3.6. Discussion

3.6.1. Generalization

Although the numerical model results are specific to the chosen setting, they can
be generalized for several aspects. First, the finding of the two-node model that
optimal storage allocation is driven mainly by volatility is valid and applicable for
all time horizons and countries. In our case study, solar power is the dominating
renewable capacity driving volatility and, thus, battery allocation. Divergent
renewable energy shares may lead to different optimal battery allocations, e.g.,
previous analyses assuming higher shares of wind power conclude that higher
shares of battery capacity should be allocated near wind energy.

Secondly, the numerical analysis at hand focuses on batteries, i.e., a storage
technology with a relatively small storage volume compared to installed charging
capacity, which complements the daily fluctuations of solar power generation.
Therefore, we perform a sensitivity analysis regarding the storage type and show
that the optimal allocation depends on the specific technology. In particular,
storage with a larger power-volume ratio is favorable at locations with high
shares of wind power (see B.4).

Thirdly, we show that storage can generate value in a uniform setting in both
the initial market clearing and in redispatch. The latter can only be exploited if
the market design allows for the participation of storage in redispatch. If this is
not the case, a substantial part of the potential benefits of storage technologies
- in our numerical analysis, about 50% - cannot materialize.

Fourthly, the findings for the transmission level can be used to get insights for
the distribution grid. Distribution grid operators could use the batteries’ flexi-
bility to lower curtailment volumes and required grid expansion if the batteries’
allocation matches flexibility demands and technical and regulatory properties
allow. However, on the distribution grid level, storage is usually used to increase
the self-consumption of solar generation, e.g., home-storage systems. Therefore,
these systems are neither dispatched by market signals nor used in redispatch.

3.6.2. Limitations

Several limitations should be noted when considering the results and analysis
presented. First, the numeric modeling results are based on several strong as-
sumptions, e.g., perfect foresight, no transaction costs, perfect markets, and
the exogenous distribution of inelastic exogenous demand. The mathematical
duality between a central planer and a profit-maximization of symmetric firms

52



3.7. Conclusion and policy implications

holds only if these assumptions are all met. In practice, this is rather not to
be expected. In particular, the first-best nodal benchmark is a rather theoreti-
cal benchmark as in reality frictional losses can distort optimality, e.g., reduced
liquidity, lack of transparency, market power issues, and increased transaction
costs (c.f. Antonopoulos et al., 2020).

Furthermore, modeling the market setup of uniform pricing, as it is currently
in place in Germany, comes along with some simplifying assumptions. We ab-
stract from additional policy instruments for the expansion of wind and solar
power. In particular, the reference yield model should affect wind power expan-
sion compared to our modeled distribution. The cost-based redispatch mecha-
nisms applied in practice are less efficient than those modeled in our numerical
analyses. In our model, power plants outside Germany and all technologies in-
cluding storage can be used for redispatch without any restrictions, which is not
necessarily the case in practice. In particular, redispatch of hydro-pumped stor-
age in the Alps can be fully exploited in the model which might cannibalize the
value of batteries in Southern Germany. Additionally, further efficiency gains of
storage deployment are possible, which were not part of the numerical analyses,
e.g., avoided grid expansion or increased security of supply.

In addition to these model properties, the results have to be interpreted in light
of the specific scenario chosen for the analysis. To demonstrate the robustness of
our results, we perform a sensitivity analysis regarding the total installed battery
capacity in B.4. Additionally, the scenario-specific renewable energy allocation
largely determines the magnitude of the identified efficiency gap between the first
best nodal and the uniform setting. Besides resource quality, further aspects,
such as land availability and residents’ opposition, play into renewable investors’
decision process. Hence, the resulting renewable energy distribution for 2030 is
likely to be less concentrated in reality, which also impacts the optimal storage
allocation and system efficiency.

3.7. Conclusion and policy implications

This paper investigates the allocation of battery storage in spatially unbalanced
power systems in the transition to climate neutrality, i.e., with rapidly increasing
shares of wind and solar power generation. Specifically, we seek to answer three
questions: Firstly, where in the transmission grid should batteries be allocated,
secondly, how important is storage allocation for the system’s efficiency, and
thirdly how could policy instruments be designed to approximate an optimal
allocation?

To investigate the drivers of optimal storage allocation, we develop a theo-
retical two-node, two-time-step model that simplifies the dynamics of spatially
unbalanced power systems. We show that an allocation close to volatile re-
newables or close to demand can be optimal. We find that optimal allocation
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depends on the volatility and location of demand and generation relative to grid
bottlenecks.

These results are verified and expanded in a numerical case study using the
example of a spatially unbalanced power system in Germany. The largest effi-
ciency difference occurs between the nodal and uniform setting. Supply costs
are at least 8.6% higher in the uniform case than under the nodal setup. This
is primarily because in the nodal setting wind and solar generators are allocated
optimally and shows that the leverage of a simultaneous allocation and coordi-
nation of wind and solar expansion exceeds the leverage of allocating batteries.
However, the results in the nodal setting rely on several assumptions that tend
not to hold in practice, and switching from uniform to nodal pricing may not be
politically feasible.

In practice, there is no allocation coordination under uniform pricing; thus,
the optimal battery allocation that minimizes the efficiency gap to the nodal
benchmark is not achieved. Our analysis reveals that with a random battery
allocation, the efficiency gap relative to the first-best nodal case lies 0.7 percent-
age points higher than with an optimal allocation. The least efficient allocation
that was tested even increases the efficiency gap by 1.1 percentage points. 33

It is, therefore, worth discussing how coordination can be achieved and local
incentives can be set even in a system with uniform pricing. In Germany, this
question is currently being asked as part of the government initiative Climate
Neutral Electricity System Platform - a dialogue platform that aims to prepare
for an upcoming electricity market reform.

Our model results show that several allocation rules are conceivable to approx-
imate an optimal allocation of batteries in the uniform setting. For example, a
heuristic approach that allocates batteries close to solar capacity or explicit ap-
proaches that rely on grid analyses to determine a limited number of locations for
a capacity auction can reduce supply costs in the uniform setting. In addition,
implementing such an allocation rule would ensure that inefficient distributions,
like an allocation close to installed wind power capacity, are not realized.

Policymakers designing regulatory instruments based on these findings should
weigh the reduction in supply costs resulting from improved allocation against
the implementation costs. In the case of the heuristic approaches, the difficulty
lies in identifying a mechanism that yields the desired distribution of batteries.
Costs could also be incurred if the chosen mechanism leads to a high number of
transactions, e.g., if batteries were subsidized via feed-in tariffs. For the explicit
approaches that allow the installation of batteries at limited locations in the
grid, the allocation could be managed via a limited number of auctions. Here,
transaction costs arise from the information asymmetries of the regulator in
determining optimal locations and capacities. Further, our results benefit from

33However, the benefits of optimal battery allocation in the uniform setup are split roughly half-
half between market-based dispatch and subsequent redispatch, underlining the importance
of including flexibility assets in redispatch.
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the assumption of perfect foresight. In practice, it may be more complicated
to determine optimal candidate notes ex-ante, in particular, if only a few nodes
are chosen and in a dynamic setting the optimality of nodes may change over
time. Choosing a heuristic approach directly connected to the distribution of
solar power may be more robust to the deviations from a modeled scenario.

Policies that coordinate wind, solar, and storage capacity in an integrated
way could come even closer to the first-best benchmark. The analysis of such
an integrated approach could be part of further research. It would likely lead to
additional efficiency gains but would be a more complex endeavor with higher
implementation costs.

We conclude that it is possible to design a policy instrument suitable to ap-
proximate an optimal storage allocation under uniform pricing. Any potential
policy should either be simple and low-cost to implement or be part of a compre-
hensive mechanism that coordinates all types of generation and flexibility with
the grid.
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4. Two Prices Fix All? On the Robustness

of a German Bidding Zone Split

4.1. Introduction

The liberalization of electricity markets resulted in the unbundling of former ver-
tically integrated utilities into separate companies for power generation and grid
operation. Nevertheless, to ensure grid stability, there is a need for coordination
between the dispatch decisions of power generators and given grid constraints.
Different approaches exist, such as the nodal pricing approach used in markets
like PJM in the United States, where Locational Marginal Prices (LMPs) are
assigned to each grid node. Differences in LMPs are explicit scarcity signals for
transmission. In contrast, markets in Europe use a zonal pricing approach, in
which intra-zonal constraints, i.e., grid constraints within zones, are neglected
in the market clearing. With a few exceptions, e.g., the Nordics and Italy,
these zones largely correspond to national borders. Violations of transmission
constraints within zones are administratively handled via remedial actions by a
Transmission System Operator (TSO), e.g., by adjusting the dispatch schedule
of power plants (a so-called redispatch) or the trade balance (so-called counter-
trading) post-market clearing.

With increasing capacities of volatile renewable power generation, the Ger-
man nuclear phase-out, decreasing fossil generation capacities, closer integration
of European power markets, and slow grid expansion, the need for remedial ac-
tions rose significantly: in Germany, nominal costs for redispatch, countertrad-
ing, and compensation payments for renewable curtailment, increased from 200
million Euros in 2014 to 3.7 billion euros in 2022 (Bundesnetzagentur, 2023).
It is important to note that these costs do not necessarily imply static ineffi-
ciency. In theory, assuming full participation in redispatch and no additional
readjustment costs, zonal pricing and subsequent redispatch can lead to optimal
power plant dispatch and maximize social surplus (c.f. Bjørndal et al., 2013).34

However, the zonal pricing leads to distributional effects if structural bottlenecks
are not considered in the zonal market clearing. For instance, if high demand
in one region requires costly power generation adjustments through redispatch,
the associated costs are socialized by being passed on to consumers via the grid
tariffs. Essentially, regions with favorable energy conditions may cross-subsidize

34However, these theoretical assumptions do not hold in practice, resulting in inefficiencies.
Conversely, in reality, the nodal pricing approach also has disadvantages, such as increased
complexity, price volatility, and uncertainty. Therefore, it remains a matter of active dis-
cussion on which option is the more favorable one.
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those with higher power generation costs. As redispatch costs continue to rise,
so do these distributional effects. Besides issues of fairness, this system obscures
the true local electricity supply costs and lacks efficient allocation signals for
investors of generation and demand capacities and could thus lead to dynamic
inefficiency (c.f. Jeddi and Sitzmann, 2021). Consequently, there is a growing call
to revise the current bidding zone configuration to better reflect structural grid
bottlenecks within Europe and, thereby, reduce redispatch costs (e.g., Höffler,
2009).

In line with Article 34 of the EU capacity allocation and congestion manage-
ment (CACM) guideline (European Union, 2015), the efficiency of the bidding
zone (BZ) configuration has to be assessed every three years by the Agency
for the Cooperation of Energy Regulators (ACER), an umbrella organization
of European regulators. As part of this process, in 2016, ACER requested the
European Network of Transmission System Operators (ENTSO-E) to draft a
first bidding zone review, which was published in 2018 (ENTSO-E, 2018a) but
did not include quantitative analyses. ACER then required the TSOs to submit
proposals on a methodology, assumptions, and the alternative BZ configurations
to be considered (ACER, 2020). As the TSOs could not agree on alternative
configurations, ACER decided on the bidding zone configurations to be reviewed
based on a Locational Marginal Price analysis provided by the TSOs (ACER,
2022, ENTSO-E, 2022).

The bidding zone review process highlights the complexity of finding an ap-
propriate bidding zone configuration. First of all, there is no optimal number of
bidding zones, as any reconfiguration requires a trade-off between, e.g., complex-
ity and correctness of prices. Increasing the number of zones substantially and,
thus, moving towards nodal pricing increases the informational transparency in
the market. Therefore, prices reflect actual grid constraints more properly and
set incentives for system-friendly investments. Yet, larger bidding zones might be
beneficial in practice. In particular, in forward markets, nodal pricing lacks effi-
ciency if the market participants have inadequate expectations about the prices,
transaction costs are high, or the limited number of participants leads to low liq-
uidity (e.g., Adamson et al., 2010, Bartholomew et al., 2003, Deng et al., 2010,
Kristiansen, 2004, Siddiqui et al., 2005).

ACER’s proposal does not aim to drastically increase the number of zones.
For Germany, which received most configurations for review, a division into two
to a maximum of four zones is being considered (c.f. ACER, 2022).35

Even with a given number of bidding zones, it is difficult to determine a suit-
able bidding zone split. Grid bottlenecks and, hence, the most effective bidding
zone configuration might change frequently as volatile renewable generation and
demand alter the grid load. In the long run, the commissioning and decom-

35If TSOs cannot allocate generation and load units to a single bidding zone for any of the
initially proposed BZ configurations, they may consider fallback options with up to five
zones instead.
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missioning of new generators, consumers, and transmission capacities as well
as changing fuel prices, might affect the optimal bidding zone configuration.
However, bidding zones should not be adjusted frequently because the reconfigu-
ration increases uncertainty and involves high transaction costs. For example, it
requires the transformation of existing forward and long-term contracts. Thus,
if a new bidding zone configuration must be stable over time, it should be bene-
ficial under different weather conditions, load situations, and future scenarios –
in other words, it must be robust.

This paper addresses the robustness of a bidding zone reconfiguration under
stochastic weather patterns and structural changes in the power system over
time, e.g., demand and capacity development. It uses a two-zone split of the
current German-Luxembourg bidding zone as a case study. To determine suitable
BZ split configurations of the German-Luxembourg bidding zone, hourly LMPs
are calculated within a linear market and grid model for 24 weather years and the
scenario years 2021, 2025, 2030, and 2035. The hourly LMPs are then clustered
hierarchically based on Ward’s criterion. For the resulting bidding zone splits,
the effect on redispatch costs is analyzed. Furthermore, this paper sheds light
on how uncertain factors impact the efficiency of a bidding zone reconfiguration
by investigating sensitivities regarding grid and renewable expansion as well as
fuel prices.

The results show that a north-south division of the German-Luxembourg mar-
ket area is beneficial in terms of reduced redispatch costs largely independent of
weather conditions. However, the cost reduction depends highly on the period
for which the bidding zone split is held stable and the future scenario. The
sensitivities show that uncertain factors greatly affect the bidding zone split’s ef-
fectiveness in reducing redispatch costs. If the system properties change strongly,
e.g., if a substantial part of grid congestion is driven by solar power generation,
the redispatch costs reduction from splitting the bidding zone decreases signifi-
cantly.

The paper is organized as follows. Section 4.2 presents relevant literature on
determining suitable bidding zone reconfigurations. Section 4.3 introduces the
numerical model, relevant input data, and scenario assumptions. Section 4.4
presents and discusses the results, by comparing redispatch costs for different
bidding zone configurations, weather conditions, and scenarios. Section 4.5 sum-
marizes the main findings and draws conclusions.

4.2. Related Literature

This research builds on extensive literature applying mathematical models to find
suitable bidding zone configurations. The bulk of existing research uses LMPs
as an indicator for determining bidding zones, following Stoft (1997), who states
that the definition of bidding zones should be based on price differences between
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nodes, as these contain all relevant information on network-related costs. Excep-
tions are, e.g., Kang et al. (2013), Kumar et al. (2004), K los et al. (2014), who
cluster power transfer distribution factors (PTDFs) due to a lack of information
available to calculate LMPs or to reduce complexity. ENTSOE-E applies both
PTDF and LMP clustering in its first bidding zone review but does not use the
results of clustering PTDFs due to the high sensitivity regarding some input
assumptions (c.f. ENTSO-E, 2018a, p. 30). Most research on LMP clustering
focuses on a specific load situation, e.g., Imran and Bialek (2008), who test ge-
ographical, fuzzy-c-means, and price differential clustering. Bovo et al. (2019)
provide a comprehensive review of this kind of work.

A smaller sub-strand of literature considers multiple time steps in clustering
LMPs to analyze the impact of stochastic factors such as weather and/or exoge-
nous factors such as capacity and demand development. Burstedde (2012) uses
a simplified 72-node model of the European transmission grid to calculate LMPs
for the scenario years 2015 and 2020 and applies a hierarchical algorithm based
on Ward’s criterion to evaluate suitable amounts and shapes of bidding zones.
Her results suggest that redefining bidding zones can increase the static efficiency
of the system, even without increasing the number of bidding zones. Further-
more, the results show that the clustered bidding zones vary in time. This result
is confirmed by Breuer et al. (2013), who apply a more detailed model of the
European electricity grid to calculate LMPs for 2016 and 2018. Yet, the authors
do not evaluate redispatch costs or volumes. Wawrzyniak et al. (2013) investi-
gate the impact of different wind conditions on optimal bidding zone splits of
the Polish market. The authors propose a two-step methodology: first, they ap-
ply hierarchical clustering based on Ward’s criterion for every load situation (i.e.,
time step) individually and then use consensus clustering to determine a suitable
bidding zone split for all modeled load situations. Although the authors include
comparatively little installed wind capacity (1.4 GW) in their analysis, they find
that wind conditions affect the clustering results. Breuer and Moser (2014) ex-
amine the appropriate amount of bidding zones, taking into account the level of
competition and network security. Furthermore, they analyze the cost savings for
various reconfiguration frequencies and find that a bidding zone reconfiguration
after three years almost halves the benefits compared to a yearly reconfiguration.
Felling and Weber (2018) determine bidding zone configurations that are robust
to six scenarios for the future development of the electricity system in Central
Western Europe. In a follow-up paper, Felling et al. (2019) expand the analysis
by calculating redispatch costs and welfare effects. The authors find that an op-
timized bidding zone configuration can reduce total system costs by 1.8%. This
cost reduction is confirmed by the authors in a recent publication for the year
2020 (Felling et al., 2023). In addition, the authors emphasize the distributional
effects resulting from the reconfiguration of bidding zones. In another recent
publication, Brouhard et al. (2023) cluster bidding zone configurations based on
600 grid load situations for the scenario year 2025. The authors find that the
resulting BZ configuration can reduce the need for redispatch significantly in
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2025 but leads to increased redispatch volumes in 2030 and 2040 compared to
the status quo configuration. They conclude that multiple time horizons have to
be considered when creating a robust market design.

Research gap and contribution

Reviewing current literature reveals a lack of systematic analysis of the funda-
mental drivers that determine the impact of a bidding zone split. This paper
seeks to close the gap between existing publications focusing on stochastic factors
such as wind power generation (e.g., Wawrzyniak et al., 2013) and publications
investigating suitable BZ configurations for specific scenarios (e.g., Burstedde,
2012, Felling and Weber, 2018). For this purpose, the present study analyzes
splitting the German-Luxembourg market area into two separate bidding zones.
This bidding zone split is done by clustering LMPs obtained from running simu-
lations over 24 weather years for the scenario years 2021, 2025, 2030, and 2035.
The resulting bidding zone splits are then analyzed with regard to redispatch
costs. Subsequent sensitivity analyses investigate the robustness of the deter-
mined bidding zone configuration to uncertain scenario-related factors.

4.3. Methodology, input data and scenario design

This paper applies a three-step methodology to find and evaluate bidding zone
splits. First, SPIDER (Spatial Investment of Distributed Energy Resources,
c.f. Czock et al., 2023, Schmidt and Zinke, 2023), a detailed electricity system
model of the Central European transmission grid, is applied to derive Locational
Marginal Prices for one reference scenario under 24 different weather years. Sec-
ondly, these LMPs are clustered to determine bidding zones. In the third step,
SPIDER is used to model the market results and redispatch costs for the ob-
tained bidding zone configuration for the reference scenario and sensitivities.
The following presents the applied model, the underlying assumptions, the clus-
tering algorithm, and the reference scenario. Throughout this work, the notation
presented in table B.1 is used. To distinguish (exogenous) parameters and opti-
mization variables, the latter are written in capital letters.

4.3.1. Spot market and grid modeling

SPIDER is a model of the European power sector that considers a detailed
depiction of the central European transmission grid. In the present work, the
commissioning and decommissioning of transmission, generation, and demand
capacities are exogenous. Hence, SPIDER is applied as a pure dispatch model,
minimizing the variable costs of electricity generation. Variable costs are the
product of electricity generation GEN in each market zone z, timestep t and
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per technology i and the technology-specific variable operating costs γ:

min! V C =
∑

z∈Z,i∈I,t∈T
GEN(t, z, i) · γ(t, i). (4.1)

Nodal modeling

For calculating LMPs and when modeling redispatch, each grid node constitutes
a market zone z, and all transmission grid constraints are considered within a lin-
ear optimal power flow problem (LOPF). To keep the problem linear, DC power
flow constraints are used to approximate non-linear AC power flow restrictions.
Thereby, the model neglects grid losses and reactive power (c.f. Van den Bergh
et al., 2014). The implementation of DC power flows is based on the cycle-based
Kirchhoff formulation, which has been proven to be an efficient formulation (c.f.
Hörsch et al., 2018). For a thorough description of the LOPF implementation,
the underlying model, and its characteristics, the reader is referred to Schmidt
and Zinke (2023) and Czock et al. (2023).

Zonal modeling

In addition to the initial model of Schmidt and Zinke (2023), the model formu-
lation is extended to consider different bidding zone configurations in the Euro-
pean spot market by applying the so-called flow-based market coupling (FBMC).
Flow-based market coupling was introduced in Central Western Europe (CWE)
in 2015 and has since been extended to neighboring markets. In contrast to the
Net Transfer Capacity (NTC) approach used before, TSOs determine flow-based
parameters, and the actual use of cross-zonal capacities is decided within the
market clearing algorithm. A short, general introduction to FBMC modeling is
given in the following. For a more detailed description, the reader is referred to
Van den Bergh et al. (e.g., 2014), Müller et al. (2018), or Felten et al. (2019).

In every timestep t, the system-wide electricity load and supply must be in
equilibrium (4.2). A market’s net position (SALDO) is the delta of supply
(GEN) and consumption (CONS) (4.3) and, consequently, equals the sum of
flows (FLOW ) from one market to its neighbors (4.4). The coefficient κz,l depicts
the flow direction (1 if line l starts in zone z, -1 if line l ends in zone z, 0 else).
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∑
z∈Z

SALDO(t, z) = 0 ∀t ∈ T

(4.2)

SALDO(t, z) =
∑
i∈I

GEN(t, z, i) −
∑
j∈J

CONS(t, z, j) ∀t ∈ T, ∀z ∈ Z

(4.3)

SALDO(t, z) =
∑
l∈L

κ(z, l) · FLOW (t, l) ∀t ∈ T, ∀z ∈ Z

(4.4)

The FBMC approach accounts for the fact that AC-flows between two zones
are influenced by the trades between other zones via the zonal Power Transfer
Distribution Factors (zPTDF ) (4.5). The zonal PTDF is a linear sensitivity
between the net position of each zone and the power flows on each AC line.
The flows on lines identified as critical lines L are restricted by the tradeable
line capacity, the Remaining Available Margin (ram−/ram+), in positive and
negative flow direction (4.6):

FLOW (t, l) =
∑
z∈Z

zPTDF (t, z, l) · SALDO(t, z) ∀t ∈ T, ∀l ∈ L (4.5)

ram−(t, l) ≤ FLOW (t, l) ≤ ram+(t, l) ∀t ∈ T, ∀l ∈ L (4.6)

The parameters ram and zPTDF are called FBMC parameters and have to
be defined prior to the market clearing. The zonal PTDF is defined as the sum
of the nodal PTDF, which can be calculated from the line reactances (see, e.g.,
Van den Bergh et al., 2014), weighted with Generation Shift Keys (gsk).

zPTDF (t, l, z) =
∑
n∈N

nPTDF (n, l) · gsk(t, n, z) ∀t ∈ T, ∀l ∈ L,∀z ∈ Z

(4.7)

The GSKs are an assumption on how the changes in the net position of a market
zone are distributed among the nodes. So far, there is no standardized approach
how to calculate GSKs for future scenarios and different calculation approaches
exist (c.f. Felten et al., 2019, Wyrwoll et al., 2018). The simplest method involves
using static GSKs per year, based on parameters such as installed capacities or
marginal generation costs. However, this approach neglects the temporal changes
in the spatial distribution of demand and supply. More sophisticated approaches
calculate GSK on an hourly basis, requiring a preceding model run with all
trade set to zero (the base case) to determine the distribution of generation
and demand. These methods mainly differ in the technologies considered. A
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common approach is to base GSK calculations on the generation of dispatchable
capacities, i.e., thermal power plants, batteries, etc. However, this approach
faces limitation in scenarios with 100% renewable power generation during many
hours. To avoid this problem, this study, calculates GSKs for each hour as the
proportion of a node’s total generation of the total zone’s generation.

The ram parameter is the remaining line capacity available for commercial
exchange without endangering grid security. It is defined as follows:

ram(t, l) = fmax(t, l) − f ref (t, l) − frm(l) − fav(l) ∀t ∈ T, ∀l ∈ L (4.8)

fmax is the maximal power flow per line, determined by the line’s physical
thermal limit. f ref is the reference flow representing loop and transit flows. In
addition, safety margins (the Flow Reliability Margin (frm) and Final Adjust-
ment Value (fav)) are subtracted from the line capacity. In contrast to AC lines,
DC lines allow controlling power flows. In this paper, DC lines are modeled via
the so-called ”Advanced Hybrid Market Coupling” such that the impact of DC
flows on AC flows is considered. For an in-depth introduction to the coupling of
DC and AC modeling, see, e.g., Müller et al. (2018).

In this study, the frm is set to 10% of the line capacity and the fav is set
to zero (c.f. Müller et al., 2018). Reference flows are determined in the base
case. Furthermore, only cross-border lines are considered critical lines in this
study. Thus, all other intra-zonal transmission restrictions are not taken into
account. However, in reality, TSOs designate critical network elements based
on their experience (cf. 50Hertz et al. (2018) and intra-zonal lines can also be
classified as critical. Since TSOs’ experience is not available when modelling
future scenarios, critical intra-zonal lines must be determined through calcula-
tion. This is typically done by analyzing the impact of changes in zonal positions
on intra-zonal flows (see Schönheit et al. (2021)). However, the present study
identifies structural bottlenecks and examines the impact of splitting the bidding
zone based on these bottlenecks. If intra-zonal lines are considered critical, these
bottlenecks are factored into the uniform market clearing, which complicates the
comparison of different bidding zone configurations as it distorts the resulting
redispatch costs.

Redispatch modeling

The scheduled dispatch after zonal market clearing might violate intra-zonal
physical grid restrictions and require remedial redispatch measures. The costs
for increasing and decreasing the dispatch of power plants are calculated in a
subsequent simplified redispatch run. Within this run, a LOPF is calculated
while holding the zonal net trade positions fixed. Therefore, only adjustments
in the generation distribution within each zone are possible. Additionally, it is
assumed that wind, solar, battery, and electrolysis dispatch determined in the
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zonal market-clearing can only be curtailed in redispatch, not increased. Differ-
ences in generation costs between the zonal and redispatch runs are interpreted
as redispatch costs.

The resulting redispatch costs tend to be higher than in reality because of
model simplifications: Countertrading, which is not considered in the modeling,
can be advantageous over intra-zonal redispatch. Furthermore, the flow-based,
zonal results can be more efficient in reality, as TSOs draw on many years of
experience when setting flow-based parameters such as the ram and frm or
choosing critical lines.

Modeling a detailed representation of grid constraints is computationally chal-
lenging.36 The model is, therefore, subject to several limitations: As mentioned
above, investments in transmission, generation, and demand capacities are ex-
ogenous assumptions. Ramping and minimum load constraints are approximated
to avoid a mixed-integer optimization and the model does not include combined
heat and power plants.

4.3.2. Clustering algorithm

The SPIDER model is applied to calculate LMPs for all nodes, time steps, and
scenarios. Subsequently, nodes are grouped into zones using hierarchical ag-
glomerative clustering based on the LMP time series. The clustering process
is initiated by considering each node as an individual zone. Then, following a
bottom-up approach, pairs of zones are systematically merged by adhering to
Ward’s minimum variance criterion (c.f. Ward, 1963). This criterion aims to
minimize the sum of squared differences among all LMP time series within the
zones during the merging process. This iterative procedure continues until all
nodes are grouped into zones, resulting in a hierarchical structure representing
the relationships between the LMP time series across the power system. The
penultimate iteration holds particular significance in this study, as it represents
the definition of two German bidding zones.

In the context of this paper, agglomerative clustering has some advantages.
Foremost, existing connections between nodes can easily be considered within the
clustering procedure as a prerequisite for merging two zones. This ensures that
every node is electrically connected to any of the other nodes within a bidding
zone. Second, the cluster method is deterministic, i.e., unlike the commonly used
heuristic k-means algorithm, the result does not depend on the starting point.
Thirdly, the results of agglomerative clustering based on Ward’s criterion tend
to form clusters of similar size, which is beneficial for defining sufficiently large

36The model run time depends on the specific weather and scenario year. On a Windows Azure
cloud machine with eight AMD EPYC 7763 cores @2.44GHz each and 128 GB RAM, nodal
model runs take about 2:05 hours on average. A full zonal model run, including base case
and redispatch, takes about 2.1 hours. For this work, 96 nodal and 118 zonal model runs
were evaluated, which add up to a runtime of more than 18 days.
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markets. Hierarchical agglomerative clustering of LMPs is applied and described
in more detail, e.g., by Burstedde (2012) and Wawrzyniak et al. (2013).

4.3.3. Assumptions and data

Scope and Transmission Grid

The regional focus of the model is central Europe with a spatial resolution at
transmission grid node level, i.e., 220 kV to 380 kV voltage levels. The trans-
mission grid model includes 13 European countries that are part of the ”Core
Flow-Based Market Coupling project” and is based on the published grid in-
formation of the Joint Allocation Office (JAO, 2022). Grid extensions follow
the German grid development plan (c.f. 50Hertz et al., 2023), and ENTSO-E’s
Ten-Year Network Development Plan (c.f. ENTSO-E and ENTSOG, 2022). To
reduce complexity, a grid reduction algorithm proposed by Biener and Garcia
Rosas (2020) is applied to reduce the initial grid from 1063 nodes to 533 nodes
and 859 lines in 2021. Important neighboring countries outside the core FBMC
region, i.e., Italy, Switzerland, Denmark, Norway, and Sweden, are depicted as
singular nodes without intra-country grid restrictions. Interconnectors to these
markets are approximated via net transfer capacities (NTC).

The regional scope and the depiction of the reduced transmission grid are
visualized in Figure 4.1.

Figure 4.1.: Modeled transmission grid after grid reduction
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Input data: Regionalization and Time-series

Existing power plant capacities and their distribution across Europe are based
on Bocin et al. (2019) and updated by own research. Data on German con-
ventional power plants is derived from the power plant list of the German grid
regulator (Bundesnetzagentur, 2022a), and data on renewables is the Marktstam-
mdatenregister (Bundesnetzagentur, 2022b). Power plants are allocated to the
geographically nearest transmission grid node.

The analysis covers the years 2021, 2025, 2030, and 2035, each in hourly
resolution. The country-specific demand time series are taken from ENTSO-E
and ENTSOG (2022). The German demand is distributed by sectoral demand
shares on the federal state level (c.f. Länderarbeitskreis Energiebilanzen, 2020).
For residential demand, the distribution is assumed to follow population shares,
while industrial and commercial electricity demand is distributed in proportion
to the regional gross value added (c.f. EUROSTAT, 2020). This approach is
similar to the one used by 50Hertz et al. (2022). For all other countries, the
assumed demand distribution follows the population per local administrative
unit (EUROSTAT, 2023).

The hourly onshore wind and solar generation potential dataset comprises
24 climate years (1995 to 2018). These time series are computed based on a
reanalysis of meteorological data from the COSMO-REA6 model in a regional
resolution of 48x48 km. To match the data to the nearest nodes, Voronoi cells
were employed. The generation potential of offshore wind regions (hourly) and
hydropower (weekly) is provided by Copernicus Climate Change Service (2020).

4.3.4. Scenario

For Germany, the assumed capacity development reflects the legal and political
situation. The expansion of Wind and solar follows the legal targets of the EEG
(2023) and WindSeeG (2023), while the capacities of hydrogen (H2) electrolyz-
ers follow the political targets of BMWK (2023). The phase-out of German
nuclear, lignite, and coal power plants is implemented according to the path de-
fined in the Act to Reduce and End Coal-Fired Power Generation (KAG, 2020).
In addition, the announced phase-out of lignite-fired power generation by 2030
is considered for the state of North Rhine-Westphalia (BMWK, 2022b). New
onshore wind, solar, and gas capacities are distributed across the federal states,
according to 50Hertz et al. (2023). Within the federal states, wind and solar
capacities are assigned to nodes based on existing capacities, while the distribu-
tion of new gas power plants aligns with the decommissioning of coal-fired and
nuclear power plants until 2035. The future distribution of offshore wind farms is
given by 50Hertz et al. (2023). To reduce computational costs, new batteries are
exclusively positioned at the 30 nodes with the highest demand. Electrolyzers
are allocated according to existing German hydrogen projects. The demand de-
velopment, the capacity development for all other countries, and the expansion
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Table 4.1.: Assumptions on installed capacities [GW] and electricity demand develop-
ment [TWh] in Germany

Technology [GW] 2021 2025 2030 2035

Wind Onshore 54.5 76.0 115.0 157.0
Wind Offshore 7.8 10.9 29.6 35.6

Solar 53.3 108 215.0 309.0
Hard Coal 23.5 14.0 8.4 0.6

Lignite 20.5 14.9 8.9 7.9
Gas 31.9 36.2 47.0 48.0

Nuclear 8.1 - - -
Batteries - 2.8 14.6 22.0
Others 27.5 27.5 27.5 27.5

H2 Electrolyzer - 0.9 10.0 17.5

Demand [TWh] 532 595 652 686

of batteries in Germany follow the Global Ambition scenario in ENTSO-E and
ENTSOG (2022). Table 4.1 shows Germany’s assumed capacity and demand
development.

Additional flexible demand exists from hydrogen electrolyzers, which are as-
sumed to consume electricity when electricity prices are below a certain thresh-
old. The threshold price is assumed to be 70 EUR/MWh.37 Fuel price assump-
tions are based on IEA (2022). C.2 discloses fuel and carbon prices as well
as further assumptions on technology parameters and demand development per
country.

4.4. Results and Discussion

4.4.1. Short-term robustness to weather conditions

Locational Marginal Prices depend on transmission constraints and the distribu-
tion of generation and demand. In Germany, electricity demand is concentrated
in the densely populated and industrialized regions of Western and Southern Ger-
many, while wind power generation is abundant in the north. If grid bottlenecks
occur in high wind power generation situations, LMPs are lower in Northern
than Western and Southern Germany. As wind speeds and solar radiation fluc-
tuate, potential bottlenecks can change from hour to hour. A bidding zone split
needs to be robust to such variations in weather conditions. Therefore, LMPs are
calculated for many weather years (1995 to 2018) in hourly resolution (210,240
load situations per scenario year) and used as input to the clustering algorithm.

37This threshold leads to about 3500 full-load hours in 2030, which is in line with the assump-
tions of the German hydrogen strategy BMWI (2020)
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Figure 4.2 shows the resulting LMPs for the reference year 2021 averaged across
all weather years and the bidding zone split obtained from the clustering.

Figure 4.2.: Spatial distribution of LMPs averaged across all weather years (left) and
resulting bidding zone split (right) in 2021

In 2021, the annual average LMPs in Northwest Germany are up to 30 EUR/MWh
lower than LMPs in Southwest Germany, indicating a structural bottleneck be-
tween the North and the South. The LMP clustering results in a bidding zone
split approximately along the 53 latitude. Average LMPs in the northern price
zone are about 18.5 EUR/MWh lower than in the larger, southern high price
zone.

The robustness to weather conditions is evaluated by comparing the resulting
redispatch costs for the presented bidding zone split (all weather year split) to
bidding zone splits, clustered for each individual weather year (weather year-
specific split), as an upper bound, and to a single bidding zone, i.e., without
split (single BZ ), as a lower bound. Note that the weather year-specific splits
are rather hypothetical benchmarks since weather conditions are uncertain and
unpredictable in the long term. Table 4.2 depicts the resulting redispatch costs
for Germany.
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Table 4.2.: Resulting redispatch costs in Mio. EUR per weather year. The relative
reduction [%] relates to the single BZ case.

weather
year

single BZ
all weather
year split

[%]
weather year-
specific split

[%]

2018 2061.7 877.8 -57.4% 626.2 -69.6%
2017 1854.4 284.8 -84.6% 99.5 -94.6%
2016 1536.4 220.9 -85.6% 58.9 -96.2%
2015 2768.3 811.6 -70.7% 621.6 -77.5%
2014 1886.8 333.0 -82.4% 153.1 -91.9%
2013 1681.5 287.3 -82.9% 105.0 -93.8%
2012 1772.1 278.6 -84.3% 112.4 -93.7%
2011 2351.2 567.9 -75.8% 427.5 -81.8%
2010 1406.0 266.1 -81.1% 88.6 -93.7%
2009 1687.8 431.0 -74.5% 200.9 -88.1%
2008 2096.8 373.6 -82.2% 112.6 -94.6%
2007 2130.9 287.8 -86.5% 99.0 -95.4%
2006 1859.1 549.5 -70.4% 319.9 -82.8%
2005 1851.8 437.0 -76.4% 150.6 -91.9%
2004 1875.6 391.6 -79.1% 188.0 -90.0%
2003 1602.1 332.0 -79.3% 185.3 -88.4%
2002 1786.4 233.8 -86.9% 147.0 -91.8%
2001 1597.2 346.3 -78.3% 208.1 -87.0%
2000 2003.0 267.6 -86.6% 85.9 -95.7%
1999 1643.6 255.7 -84.4% 61.1 -96.3%
1998 2058.1 273.2 -86.7% 100.2 -95.1%
1997 1756.9 351.1 -80.0% 202.8 -88.5%
1996 1450.3 282.2 -80.5% 107.1 -92.6%
1995 1975.9 311.7 -84.2% 206.6 -89.5%

Average 1862.2 377.2 -79.7% 194.5 -89.6%

Without a bidding zone split, the derived redispatch costs for 2021 amount to
1.4 to 2.8 billion EUR depending on the weather year.38 In the benchmark case
of weather year-specific bidding zone configurations, average redispatch costs
are about 90% lower than with a single bidding zone, indicating that without
weather uncertainty, a yearly two-zone split captures almost all congestion. The
all weather year split reduces the redispatch costs by about 80% on average.
However, redispatch costs are almost twice as high compared to the weather
year-specific split. For individual weather years, the cost reduction ranges from
-57.4% for 2018 to -86.5% for 2007. For 23 out of 24 weather years, the reduction

38In reality, costs for redispatch, countertrading, and the dispatch of grid reserves amounted
to about 1.2 billion EUR in 2021 (Bundesnetzagentur, 2022c). See section 4.3.1 for a brief
discussion of the underlying drivers of the higher modeled redispatch costs.
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is higher than 70%, and for 14 weather years, it is even higher than 80%. As
the redispatch cost reductions are significant for all weather years, it can be
concluded that the obtained bidding zone split is robust to weather conditions.
However, the deviations in total redispatch costs between weather years are high.
Therefore, it seems important to consider different weather years when assessing
the impact of a bidding zone split.

This analysis assumes a risk-neutral central planner treating all weather years
and events equally in the clustering process. However, a risk-averse central
planner might weigh redispatch-intensive weather years higher when determining
a bidding zone split. This could potentially reduce the maximum and increase the
minimum redispatch costs across all weather years. The result would be a lower
weather-related variance in redispatch costs. Moreover, it would be conceivable
to adjust the bidding zone within a year to account for structural differences
in weather patterns. For instance, applying distinct bidding zone configurations
in summer and winter could be beneficial if the structural bottleneck shifts due
to different renewable power generation and load patterns. An illustration of
such a season-specific split is presented in C.3; however, assessing the impact on
redispatch costs falls beyond the scope of this paper.

4.4.2. Robustness to system changes

Besides short-term uncertainty, the suitability of a bidding zone split is subject
to changes in the electricity system, e.g., new generation capacity, changing
electricity demand, and grid extension. Analogous to 2021, LMPs are calculated
for 2025, 2030, and 2035 based on the scenario defined in section 4.3.4. Figure
4.3 shows the resulting LMP distribution and the clustered bidding zone split
per scenario year.
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Figure 4.3.: Spatial distribution of LMPs (left) and clustering results (right) for 2025,
2030, and 2035

Several overlapping effects influence the development of the LMP level and
distribution. The main drivers of the electricity price level are fuel prices, re-
newable investments, and electricity demand development. Under the given as-
sumptions, the LMP level increases compared to 2021 due to rising carbon prices
and electricity demand. Towards 2030 and 2035, the LMP level declines as large
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amounts of renewable capacity come into operation. The LMP distribution, in
turn, is determined mainly by the distribution of renewable capacity additions
and the grid extension (or missing grid extension, i.e., new bottlenecks). Given
the assumptions of the reference scenario, new wind power plants in the North,
particularly new offshore wind farms, increase the demand for power transmis-
sion year by year. Few new AC lines are commissioned by 2025, which hardly
changes the resulting bidding zone split. Conversely, substantial grid expansion
is planned until 2030, including six new DC projects with a capacity of 2 GW
each. As a result, the bottleneck and the boundary between the two clustered
bidding zones shift from around the 53rd parallel in 2021 and 2025 southwards
towards the 51st parallel in 2030 and 2035.

In practice, frequent adjustments of the bidding zone split would lead to trans-
formation costs and increase complexity and uncertainty for investors and market
participants. Determining the future bidding zone configuration well in advance
is therefore advantageous. In the following, a stable bidding zone configura-
tion until 2035 is examined. To determine such a split, the calculated German-
Luxembourg LMPs for all 840,960 time steps (24 weather and four scenario years
in hourly resolution) are used as input for the clustering algorithm. The cluster-
ing does not incorporate an additional discount factor. Thus, the central planner
is assumed to have no time preference.39 Figure 4.4 shows the average LMPs
across all scenario years and the obtained bidding zone split.

Figure 4.4.: Spatial distribution of average LMPs across all scenario years (left) and
resulting bidding zone split (right)

39Introducing a discount factor greater than zero would assign a higher weight to the earlier
years, potentially changing the clustering result. For example, with a discount rate of 3%,
about 4.6% (16 nodes) of the Luxembourg-German nodes are in a different cluster. See
Appendix C.3 for an illustration.
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The resulting northern, low-price bidding zone comprises only the Northwest
of Germany along the North Sea coast. It is notably smaller in size compared to
those derived from scenario year-specific LMPs. This is due to Ward’s criterion,
which minimizes the in-cluster variance. High wind power generation on- and
offshore leads to transmission bottlenecks towards the south and causes low
LMPs along the coast in all scenario years. For individual scenario years, other
bottlenecks are more prevalent and dominate in the clustering process. Yet,
these bottlenecks shift over the scenario years while the bottleneck along the
coast remains stable. In addition, the LMPs of the different scenario years are
not weighted equally in the clustering. The year 2025 is characterized by the
highest LMP levels, resulting in larger Euclidean distances and consequently
exerting a stronger influence on the clustering process.40

Holding the bidding zone split stable over multiple years decreases the infor-
mation quality on transmission restrictions in the market. Consequently, the
need for redispatch increases in all scenario years compared to a yearly split.
Table 4.3 presents the changes in redispatch costs per scenario year compared
to the benchmarks of a single bidding zone and the annually changing bidding
zone splits presented above. The results are based on 2009 weather conditions as
ENTSO-E and ENTSOG (2022) considers these to be the most representative.

Table 4.3.: Resulting redispatch costs in Mio. EUR per scenario year under the weather
conditions of 2009. The relative reduction [%] relates to the single BZ case.

scenario
year

single BZ
stable
split

[%]
Year-specific

split
[%]

2021 1687.8 548.2 -67.5% 431.0 -74.5%
2025 2595.7 1128.0 -56.5% 315.4 -87.8%
2030 4784.0 1651.0 -65.5% 470.0 -90.2%
2035 7884.8 3773.6 -52.1% 1226.5 -84.4%

Average 4238.1 1775.2 -58.1% 610.7 -85.6%

Without a bidding zone split, the total redispatch costs increase strongly until
2035. This is due to the chosen scenario: a strong increase in renewable genera-
tion capacity, growing electricity demand, and comparably slow grid expansion
lead to increased redispatch demand, while rising carbon prices increase the costs
for (re-)dispatching fossil-fueled power plants. If redispatch costs were equally
distributed among all consumers, grid fees to cover the congestion management
on the transmission level increase from 0.32 ct/kWh in 2021 to 1.15 ct/kWh in
2035, more than tripling the associated distributional effect.

40This effect could be prevented by normalized time series. However, higher LMPs represent
higher system costs, so a higher weighting in the clustering process may make sense. An
analysis of different weightings is beyond the scope of this study.
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Splitting the bidding zone once and holding it stable from 2021 to 2035 de-
creases the yearly redispatch costs by about 58% on average. However, the
relative reduction ranges from -56.5% to -67.5% because the stable split cannot
adequately depict the shifting inner-German bottleneck. In contrast, an annually
changing bidding zone configuration (based on LMPs of all weather years) leads
to significantly lower redispatch costs. Particularly noteworthy is the decrease
in redispatch costs from 2021 to 2025. While redispatch costs in case of a stable
split are just 27.2% (+127 Mio EUR) higher than with the year-specific split in
2021, this ratio increases to factor 3.1 (+2547 Mio EUR) by 2030. Overall, the
results show how changing system properties complicate the delimitation of an
efficient bidding zone configuration. These findings align with the research by
Breuer et al. (2013), who found, for a different scenario setting, that the benefits
of a bidding zone split halves if it is held stable over three years instead of an
annual reconfiguration.41 However, dividing the existing bidding zone into two
stable market areas is nevertheless beneficial in terms of reducing the distribu-
tional effects of redispatch for the assumed reference scenario in each scenario
year.

4.4.3. Sensitivity analysis

The future is uncertain, and the identified bidding zone split might be less effi-
cient or even detrimental if the scenario changes. In the following, a sensitivity
analysis is performed to investigate and identify critical parameters that drive
the effectiveness of a bidding zone split. To reduce complexity, the sensitiv-
ity analysis is done only for the representative weather conditions of 2009 (c.f.
ENTSO-E and ENTSOG, 2022). In the following, the stable split determined in
the previous chapter for the period 2021 to 2035 is considered as the reference
case.

System development

The observed grid bottlenecks are largely driven by the assumed substantial
development of the electricity system: the renewable generation capacities, par-
ticularly wind power, the growth in electricity demand, and the expansion of the
transmission capacity.

Delayed wind power expansion: The German expansion targets for renewable
energies have been regularly missed in recent years. Therefore, it appears uncer-

41Similar to a season-specific split discussed in section 4.4.1, the bidding zone split could theo-
retically be regularly reconfigured without significantly increasing uncertainty. This would
require the reconfigurations to be determined well in advance and made transparent, e.g.,
by publication when implementing the initial split. Potentially, this could lead to the redis-
patch cost reductions of year-specific splits. However, the complexity and transformation
costs would be higher than in the case of an stable split. Quantifying and weighing both is
beyond the scope of this paper.
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tain whether the 2030 targets will be achieved. Within a sensitivity, the effects
of splitting the German bidding zone are examined for a scenario with only half
the speed of wind power expansion.

Delayed wind power expansion and stable demand : Recent studies on the tran-
sition of the German and European energy systems towards climate neutrality
show the need for electrification and, hence, growth in electricity demand, as
assumed in the reference case. However, the current progress in electrifying the
industry, mobility, and heating sectors lags behind those scenarios. Moreover,
comparably high electricity prices and limited availability of renewable electricity
set incentives for industries to move production overseas. A case with delayed
wind power expansion and stable demand is analyzed as a second sensitivity.

Delayed grid expansion: To relieve grid congestion and counteract the in-
creasing redispatch costs, TSOs invest in new transmission capacities. However,
several of Germany’s grid expansion projects are currently delayed (c.f. 50Hertz
et al., 2019, 2021, 2023). Further delays in grid expansion would amplify con-
gestion and redispatch costs. To analyze the impact of further setbacks, this
sensitivity considers a scenario where projects in Germany set to be operational
before 2030 face a one-year delay, while those with later commissioning dates
encounter a delay of two years.

The resulting redispatch costs without a bidding zone split in the reference
case and the three sensitivities regarding the system development are depicted
in figure 4.5 and described in the following.
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Figure 4.5.: Redispatch costs without a bidding zone split in the system development
sensitivities.

Slower wind power expansion reduces grid congestion. As a result, the redis-
patch costs increase much slower than in the reference case: in 2030 and 2035,
these costs are nearly halved compared to the reference case.
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If, in addition, the demand remains stable at the level of 2021, the regional
surplus generation and, thus, the need for transmission increases. In 2025 and
2030, the level of redispatch costs is similar to the reference case. In 2035, how-
ever, the redispatch costs decline due to higher market-driven curtailment: The
lower electricity demand leads to more hours of negative residual load, i.e., if
wind power generation in Germany exceeds the total demand, renewable power
is curtailed already in the market clearing. These market-driven renewable cur-
tailment volumes can be shifted cost-neutral within Germany in redispatch.

Any delay in expanding the transmission capacity increases the need for redis-
patch and, consequently, redispatch costs. In 2030, redispatch costs are almost
33% higher than in the reference case. By 2035, the difference in redispatch
costs diminishes, as all high-capacity DC-lines come into operation, even with
the two-year delay.

The absolute redispatch costs and the relative cost reduction in the case of the
stable bidding zone split is presented in figure 4.6.
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Figure 4.6.: Redispatch costs with a bidding zone split in the system development sen-
sitivities.

The bidding zone split reduces the redispatch costs in all sensitivities sub-
stantially, but the effect varies between the sensitivities and scenario years. In
case of delayed wind power expansion, the relative reduction amounts to 58%
on average, marginally less than in the reference case. The absolute reduction is
about 1 billion EUR less on average than in the reference case, indicating that
the bottleneck is less severe, but the structure remains similar to the reference
case.

If the wind power expansion is delayed and the demand does not increase, the
redispatch cost reduction varies much more between years: In 2030, a market
split reduces the redispatch costs by about 72%, the highest reduction across all
sensitivities and scenario years. This is mainly because cross-zonal trade flows
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are managed better in the market clearing. Since the power systems of neigh-
boring countries correspond to the reference case, the German electricity system
is comparably smaller than in the reference case. The relative importance of
cross-country trade increases. In contrast, the cost reduction in 2035 amounts
to just 23%, which is the lowest observed across all years and sensitivities. Sub-
stantial grid expansion, including new DC lines in the North-South direction,
and the higher market-driven wind power curtailment reduce redispatch costs
even without a bidding zone split. Instead, high solar power generation leads
to local bottlenecks in Southern Germany more often. This is reflected by the
additional solar power curtailment of 26 TWh. These local bottlenecks are not
captured by the bidding zone split, and hence, redispatch costs are comparably
high.

In case of a delayed grid expansion, a bidding zone split reduces the redispatch
costs by about 55% on average, with a peak of -60% (3.9 billion EUR) in 2030.
Even though the absolute reduction is higher than in the base case, the relative
reduction is lower. This is due to a higher absolute level of redispatch costs but
a different structure of the grid bottlenecks, which are less well reflected in the
studied bidding zone split.

Overall, the sensitivities regarding the system development show that the bid-
ding zone split leads to a robust reduction of redispatch costs as long as the
structure of the bottlenecks remains similar. If the system’s properties change
fundamentally, as in the case of lower wind power expansion and demand in
2035, the effectiveness of a bidding zone split decreases.

Fuel price changes

Assumed fuel prices are based on long-term trends identified by the International
Energy Agency (c.f. IEA, 2022, p.110). However, these price trajectories are sub-
ject to uncertainty and - as stated by the authors - ”do not attempt to track the
fluctuations and price cycles that characterize commodity markets in practice.”
In reality, fuel prices can, and most likely will, deviate from these projections.
Fuel prices affect the distribution of electricity generation and, hence, grid bot-
tlenecks if the merit order of power plants changes. The German merit order
primarily depends on the gas-coal spread, determined by coal, gas, and carbon
prices. Besides the ”normal” volatility of global gas market prices, blending
low-carbon gases (e.g., hydrogen) could increase the fuel costs of gas-fired power
plants. Carbon prices, in turn, depend on regulatory decisions. To achieve its cli-
mate goals, the European Union could reduce the number of emission certificates
auctioned and increase the carbon price. This would disproportionately increase
the electricity generation costs of hard coal and lignite-fired power plants. The
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effect of doubling gas and carbon prices is calculated in two sensitivities.42 The
resulting redispatch costs for the case of a single German-Luxembourg bidding
zone are depicted in figure 4.7.
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Figure 4.7.: Redispatch costs without a bidding zone split in case of doubled gas and
carbon prices.

Elevated gas and carbon prices increase overall redispatch costs due to higher
(re-)dispatchable power generation costs. This, in turn, impacts European trade
balances. Higher gas prices lead countries like Italy and the Netherlands, with
more gas-fired power generation, to import more electricity. Conversely, coun-
tries with significant coal capacities, such as Germany and Poland, export more
electricity. This effect diminishes by 2035 as the merit order becomes similar in
both sensitivities due to the exogenously assumed coal phase-out.

In contrast, high carbon prices make gas cheaper than coal and lignite for
power generation. Consequently, lignite and coal power plants are already priced
out in the counterfactual case of 2021, resulting in an overall reduction of Ger-

42The fuel price sensitivities focus on changes in the merit order. In fact, rising gas prices might
imply higher carbon prices due to increasing emission-intensive coal-fired power generation,
and vice versa. Neglecting this potential endogeneity allows for a more isolated examination
of changes in the merit order.
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Figure 4.8.: Redispatch costs with a bidding zone split in case of doubled gas and carbon
prices.

man exports, increased flows to the East, and reduced flows to the South. By
2025, however, carbon pricing also renders combined-cycle gas turbines cost-
competitive to coal-fired power plants in the reference scenario. Therefore, in
later years, higher carbon prices have only minimal additional effects on the merit
order of power plants and grid congestion. Elevated redispatch costs, compared
to the reference case, stem mostly from increased fuel costs. The effects on the
merit order and changed trade flows also determine the impact of the bidding
zone split on redispatch costs, depicted in figure 4.8.

The high imports from Poland and southbound exports, e.g., to Switzerland
and Austria, triggered by high gas prices, increase the inner-German grid con-
gestion. However, the bidding zone split studied has a comparably small impact
on these trade flows because the countries mentioned all border the Southern
zone (see figure 4.3). This effect decreases over time as the congestion caused
by the wind power expansion dominates and coal- and lignite-fired capacities
decrease. High gas prices, in turn, increase the German bottleneck due to higher
imports to Germany and higher exports to Poland. Splitting the German market
reduces imports from the Netherlands and Denmark in particular, resulting in
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a redispatch cost reduction of 77%. The effect decreases from 2025 as the effect
on the merit order disappears.

All in all, fuel prices primarily affect the overall redispatch cost level. To a
lesser extent, they influence the effectiveness of a bidding zone split in the short
term via the merit order. In the longer term, however, the merit order effect
decreases with the decline in coal-fired power plant capacities.

4.5. Conclusion

This paper addresses a bidding zone reconfiguration’s long- and short-term ro-
bustness. Specifically, it analyzes the effects of stochastic weather patterns and,
second, structural changes in the power system over time on the redispatch cost
reduction due to a two-zone split of the German-Luxembourg market area. For
this purpose, Locational Marginal Prices are calculated for 24 weather years and
the scenario years 2021, 2025, 2030, and 2035 and used as input for hierarchical
clustering based on Ward’s criterion to derive a bidding zone split. The robust-
ness of the resulting bidding zone configuration is then analyzed in terms of
corresponding redispatch costs. Furthermore, additional sensitivity analyses are
performed to investigate the impact of uncertain parameters, such as grid and
wind power expansion, as well as fuel prices.

The key findings are threefold: First, the impact of changing weather condi-
tions on the exact bidding zone split is limited if there is a structural bottleneck,
such as in Germany. A bidding zone split derived from clustering LMPs of 24
weather years for the reference year 2021 results in a redispatch cost reduction of
about 80% on average - 10 percentage points less than the hypothetical bench-
mark of individual bidding zone splits for each weather year. Second, looking
at several scenario years, the structural grid bottleneck shifts southwards over
time as the system changes, i.e., transmission, generation capacity, and demand.
Annually adjusted bidding zone splits, i.e., obtained from clustering LMPs for
each scenario year individually, lead to reductions in redispatch costs of -75 to
-90%. If the bidding zone split is stable from 2021 to 2035, the redispatch cost
reduction is significantly lower (-52 to -68% per year) for the assumed scenario.
Third, deviations in uncertain scenario parameters like the expansion of wind
power, transmission capacity, or fuel prices impact the effectiveness of a bidding
zone split. If grid expansion projects are delayed, the existing grid bottleneck
becomes more structural and severe, increasing the effectiveness of a bidding
zone split in reducing redispatch costs. On the other hand, delays in wind power
expansion lead to less congestion than in the reference case. Hence, the absolute
reduction in redispatch costs is lower. If the congestion is less structural but
replaced by local, solar power-driven negative residual loads and associated con-
gestion, the two-zone split studied is less effective. Increases in gas and carbon
prices primarily drive up the absolute redispatch costs. To a lesser extent, they
impact the bidding zone split’s effectiveness due to the altered distribution of
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fossil power generation within Germany and among neighboring countries. No-
tably, the impact of fuel prices decreases over time, especially by 2035, as coal
and lignite capacities decline.

The results suggest that dividing the German-Luxembourg market area into
two stable bidding zones would yield a robust reduction in redispatch costs,
mitigating distributional effects. Nonetheless, the sensitivities show that the
advantage of a bidding zone split diminishes when the underlying system char-
acteristics change. Considering this dependence on uncertain parameters, the
development of novel methods to robustly determine suitable zones is both a
relevant and fruitful direction for further research. For instance, the shifting
boundaries of the clustered zones over the years could indicate that a third zone
may be beneficial. If the northern boundary of this third zone aligns with the
existing structural bottleneck, and the southern boundary corresponds to the
identified future structural bottleneck, a three-zone setup could significantly en-
hance the robustness to system developments. Another approach to increase
the bidding zone split’s effectiveness could involve periodic transitions between
configurations, such as switching between summer and winter or day and night.
This dynamic adaptation could better reflect the seasonal or daily patterns of
renewable power generation and corresponding grid bottlenecks. Furthermore, it
may be worthwhile to investigate methods to reduce the weather-induced volatil-
ity of redispatch costs. One potential approach could involve assigning higher
weights to weather events or years that trigger exceptionally high redispatch costs
during the clustering process. Last but not least, this paper uses the German-
Luxembourg market area as a case study. In Europe, however, bidding zone
splits are discussed for multiple market areas marked by structural bottlenecks,
e.g., Great Britain, the Netherlands, or France. The key findings of this study
should hold in general for all these market areas, too. However, it should be
analyzed in more detail how splitting one bidding zone affects the benefits of
splitting another (neighboring) zone.
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5. On the Time-Dependency of MAC

Curves and its Implications for the EU

ETS

5.1. Introduction

The mitigation of greenhouse gas emissions requires a fundamental overhaul of
the capital stock, i.e., investments in low-carbon technologies. The efficient co-
ordination of investment capital is essential to minimize overall abatement costs.
Economists agree that the pricing of emissions is a suitable instrument for allocat-
ing capital efficiently (e.g., Coase (1960) and Borenstein (2012)). By introducing
the European emissions trading system (EU ETS), the EU has implemented a
quantity control system with an endogenous price on emissions. The EU ETS
requires that firms in the power sector, energy-intensive industries, and inner-
European aviation submit allowances to cover their emissions. Overall, the EU
ETS regulates about 40 % of total European emissions.

The latest reform of the EU ETS has introduced the Market Stability Re-
serve (MSR) and the Cancellation Mechanism (CM), which have fundamentally
changed the EU ETS to a system with restricted banking and responsive al-
lowance supply (cf. Bocklet et al. (2019)). A comprehensive literature strand
evaluates the reforms’ impact via partial equilibrium models of the EU ETS (e.g.,
Perino and Willner (2016) and Bocklet et al. (2019)). Most of these articles do
not model allowance demand endogenously.43 They assume allowance demand
exogenously based on marginal abatement cost (MAC) curves. MAC curves
match emission mitigation with abatement costs and have been crucial tools to
evaluate environmental policies for decades (e.g., Jackson (1991) or Aaheim et al.
(2006)).

In the EU ETS related literature, the assumptions on MAC curves are het-
erogeneous. While some articles assume linear MAC curves (e.g., Perino and
Willner (2016) or Bocklet et al. (2019)), others use convex MAC curves (e.g.,
Beck and Kruse-Andersen (2018) or Schmidt (2020)). Without evidence from
the literature, papers usually presume a time-independent shape of MAC curves.
Nevertheless, both the shape as well as its development over time drives results.
In particular, these assumptions affect total emissions in the EU ETS due to the
responsive allowance supply of the EU ETS.

43To the best of our knowledge, Bruninx et al. (2018) present the only approach that combines
power market modeling with a depiction of the EU ETS regulation.
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This paper assesses the fundamental properties of MAC curves and their impli-
cations for the EU ETS. To this end, we carry out a case study to derive stylized
MAC curves for the European power sector. Multiple runs of a partial equi-
librium model map carbon price paths onto emission abatement. We find that
MAC curves are convex. The curvature is subject to economic developments,
such as fuel prices and interest rates. Further, MAC curves are time-dependent.
In the short term, they are steep since coal-to-gas fuel switching is the only
abatement measure. With enlarging investment opportunities and technological
learning, MAC curves flatten over time.

Assuming convex instead of linear MAC curves increases banking since future
abatement becomes relatively more expensive. On the contrary, flattening lowers
incentives for banking. Under idealized assumptions, steep short-term MAC
curves shift the equilibrium price path upward while also reducing short-term
banking. This effect could cause strong price reactions in the short term when
market frictions such as myopia are considered. For a numerical evaluation of
these effects, we propose methodological approaches to account for the time-
dependency of MAC curves.

The remainder of the paper is organized as follows: Section 5.2 reviews the
prevailing literature on MAC curves. Section 5.3 derives stylized MAC curves
for the European power sector. Section 5.4 discusses the implications of the
identified properties of MAC curves for the EU ETS. Section 5.5 concludes.

5.2. Prevailing Literature on MAC Curves

This section sheds light on the properties of MAC curves discovered in the ex-
isting literature. We consider quantitative evaluations as well as qualitative
discussions of MAC curves.

The prevailing literature uses four methodological approaches to quantitatively
evaluate MAC (compare Huang et al. (2016)): (1) Estimations based on distance
functions, (2) expert-based evaluations, (3) top-down models, and (4) bottom-up
models.

MAC evaluation via distance functions estimates past and present marginal
abatement costs based on historical data (Ma et al. (2019)). For example, Du
et al. (2015) find that the marginal abatement costs in the Chinese energy system
increase over time in a convex shape. However, these historical observations do
not allow statements about future MAC or the construction of MAC curves.44

Expert-based evaluations, e.g., performed by McKinsey & Company (2013),
derive MAC curves by gathering expert knowledge on abatement costs and po-

44In particular, observed marginal abatement costs reflect rather the part of the MAC curve
with low mitigation efforts, which likely do not represent MAC for extensive emission miti-
gation. For a comprehensive and critical review of MAC evaluation by distance functions,
the reader is referred to Ma et al. (2019).
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tentials. While revealing abatement potential even at negative abatement costs,
the derived MAC curve for 2030 is convex-shaped in its positive part.

The use of top-down models, mostly integrated assessment models, covers
economy-wide activities, their interactions, and the consequences on the natural
environment at a global level.45 For the EU ETS sectors, Landis (2015) finds
that MAC curves are convex in abatement.

In contrast to top-down models, bottom-up partial equilibrium models ab-
stract from global interactions between different economic sectors but allow for
more technical details. Kesicki (2013) finds that the MAC curve of the UK en-
ergy system in 2030 is convex-shaped and robust to changes in fossil fuel prices,
but depends strongly on the underlying interest rate. Delarue et al. (2010) find
that short-run abatement in the European power markets depends on the car-
bon price as well as on the price margin between coal and gas. Van den Bergh
and Delarue (2015) compare two abatement options, namely fuel-switching from
coal to gas and wind investments, with a model of the central-western European
power sector. They point out that MAC of the different abatement options are
not additive but impact each other.

Summing up, articles with different methodological approaches consent that
MAC curves are convex. However, Kesicki and Ekins (2012) generally calls
for caution when interpreting MAC curves. MAC curves depend on uncertain
assumptions, which are often not transparent. Further, the concept of MAC
curves takes the perspective of a perfectly informed central planner who decides
cost-efficiently on abatement under perfect foresight. In reality, the decisions
on abatement measures depend on individual preferences. If individuals decide
solely based on abatement costs and their actions are coordinated in perfect
markets, the cost-efficient MAC curve of the central planner coincides with the
aggregation of individual decisions on abatement measures. However, individual
decision-making is subject to non-financial costs and behavioral aspects. Conse-
quently, MAC curves of a central planner often identify abatement measures with
negative abatement costs, which are not realized yet. Moreover, MAC curves are
always a static snapshot in time and do not reveal what abatement measures are
taken before and after the reference year. Historic abatement and expectations
about future abatement drive the shape of MAC curves.46

45Most integrated assessment models use a computable general equilibrium framework to depict
economic interrelations via substitution elasticities. Kuik et al. (2009) provides a compre-
hensive meta-analysis on the derivation of MAC curves with integrated assessment models.

46At the same time, today’s decisions on abatement also impact future’s abatement costs, e.g.,
due to technological learning effects.
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5.3. Case Study: MAC Curves of the European
Power Sector

To illustrate the different properties of MAC curves, this section carries out a
case study for the European power sector.

5.3.1. Methodological Approach

Power market model DIMENSION

We derive MAC curves with the partial equilibrium European power market
model DIMENSION.47 By assuming inelastic electricity demand in the short
term and perfectly competitive markets without transaction costs, the decision
making of individual, profit-maximizing firms under perfect foresight is equiv-
alent to a central planner’s cost minimization problem. The central planner
minimizes the total discounted costs of investments in power plants and their
dispatch to satisfy electricity demand. Appendix D.1 presents the most relevant
equations of DIMENSION.

Approach for Deriving MAC Curves

To obtain MAC curves for the European power sector, we feed different carbon
price paths τ into the model and derive the corresponding level of emissions
emissions(y)|τ for each considered year y. The emissions of the baseline scenario
(baseline emissions) u(y) := emissions(y)|τ=0 are used to define the abatement
level of a carbon price path τ as abatement(y, τ) = u(y) − emissions(y)|τ .
Figure 5.1 sketches the methodology to derive MAC curves using the power
market model DIMENSION.

We assume that carbon prices develop according to the Hotelling rule (cf.
Hotelling (1931)), i.e., they rise with the interest rate.48 The model derives
MAC curves in time period t anticipating this price development for a time
horizon H of 15 years.

47The model DIMENSION has been developed by Richter (2011) and has been used in many
analyses, e.g., Bertsch et al. (2016b), Peter and Wagner (2018) and Helgeson and Peter
(2020).

48Emission allowances are a scarce resource. Rational firms with perfect foresight use allowances
so that the corresponding carbon price increases with their private interest rate. Otherwise,
arbitrageurs could take advantage of inter-temporal price differences. Ex-post, prices de-
velop differently due to external shocks or new information on future costs or demand (cf.
Bocklet and Hintermayer (2020)).
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Figure 5.1.: Schematic illustration of the approach for deriving MAC curves

Parametrization

This case study derives stylized facts on MAC curves, using the European power
sector as an example. To isolate the impact of single restrictions or input pa-
rameter changes, we keep the parametrization as plain as possible. We fix the
status quo of European power plants, i.e., we abstract from decommissioning due
to technical restraints or political goals. We assume the existing fleet of power
plants in 2019 according to the database developed at the Institute of Energy
Economics at the University of Cologne, which is continuously updated based on
Platts (2016), Bundesnetzagentur (2020a) and ENTSO-E (2020b). Net transfer
capacities develop according to the ENTSO-E Ten-Year Network Development
Plan 2018 (ENTSO-E (2018b)). Fuel prices, investment costs, net trade capac-
ities, and electricity demand are as of 2019. By default, we use an interest rate
of 8%. Time-series rely on the historical weather year 2014. For keeping the
model tractable, 16 representative days approximate the development for one
year. Appendix D.2 gives an overview of the considered technologies and their
techno-economic parameters.

5.3.2. The Change of MAC Curves Over Time

This section evaluates how different lead times for investment affect MAC curves.
In the short term, the power plant fleet is fixed. Switching electricity generation
from power plants with higher carbon intensity (e.g., hard coal or lignite) to
power plants with lower carbon intensity is the only viable abatement measure
(Fuel Switching). The existing capacity of the power plants with lower carbon
intensity limits the abatement potential of fuel switching. With longer lead
times, investment into generation capacities as a reaction to higher carbon prices
is possible. Yet, installation capacities or necessary approval processes restrict
the speed of changing the power plant fleet via investments. In the long term,
freedom to invest is unrestricted. Additionally, demand can react to rising carbon
prices, e.g., via investments into energy efficiency or carbon leakage.
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For determining the development of MAC curves over time, we make the fol-
lowing stylized assumptions. In the short term, all capacities are fixed and only
the dispatch of the generation portfolio can change with the carbon price. In
the medium term, the expansion of RES capacities must not be higher than five
times the average expansion between 2017 and 2019, reflecting investment lead
times of five years. Investments into gas power plants are restricted to about 9
GW per year within the European electricity system. In the long term, invest-
ments are not restricted. Further, we assume that the development of long-term
demand depends on the carbon price development.49 Ceteris paribus, figure
5.2 depicts the resulting MAC curves for different time horizons and disaggre-
gates the abatement into static fuel switching, (restricted) investment into power
plants, and demand adjustment.50

Figure 5.2.: Short-, medium- and long-term MAC curves and disaggregation of the
abatement measures

In line with the literature, MAC curves are convex independent of the time
horizon. They further flatten over time, primarily due to the increasing invest-
ment possibilities. In the short run, replacing coal generation with gas-fired
power plants allows to reduce emissions. The short-term MAC curve is convex
since modern gas power plants drive inefficient coal power plants out of the mar-
ket already at low carbon prices. Later on, inefficient gas power plants replace
modern coal generators at higher abatement costs.

Progressing in time, fuel switching is not the only abatement option but in-
vestments into modern gas power plants and particularly RES power plants are
possible. As a result, the MAC curves flatten, i.e., the same carbon price results
in higher abatement. While investment restrictions prevail in the medium term,
unrestricted investment possibilities further flatten MAC curves in the long term.

49We approximate the impact of rising carbon prices on electricity prices via the difference in
marginal costs of modern Combined Cycle Gas Turbine Power Plants (CCGT) and assume
a demand elasticity of 5 % with regard to the electricity price.

50Throughout this paper, the end of the x-axis depicts maximum abatement, i.e., zero emissions.
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Besides developments on the supply side, adjustments of the electricity demand
further bend MAC curves downward.51

While the MAC curves above consider variations in investment freedom and
demand adjustment, the following section analyzes how developments in markets
beyond the power sector (i.e., fuel prices and interest rates) or technological
progress affect long-term MAC curves.

5.3.3. Drivers of Long-term MAC Curves

This section analyzes three exogenous parameters, which influence long-term
MAC curves: fuel prices, interest rates, and technological learning.

Fuel Prices

With regard to fuel prices, the power sector is mainly subject to the development
of gas and hard coal prices. In particular, the margin between these fuels is
considered a major driver. For a stylized illustration of the impact of fuel prices
on the MAC curve, we compare three different levels of gas prices (10, 20, or
30 EUR/MWhth, respectively), while the coal price is not varied. The variation
of gas prices with constant coal prices alters the margin between coal and gas.
Figure 5.3 depicts the corresponding MAC curves.

Figure 5.3.: Long-term MAC curves for different coal/gas price spreads

Lower gas prices affect MAC curves in two ways: First, gas power plants are
more competitive against carbon-intensive coal generation. As a result, more
abatement takes place at lower carbon prices, and the lower end of the MAC
curve shifts downward. Second, investments into RES power plants are less
competitive to gas power plants, since gas generation becomes cheaper. As a
result, the MAC curve becomes steeper at the upper end. For higher gas prices,
the same effects hold true vice versa.
51Based on our stylized assumptions, demand adjustment is only a minor abatement measure.

Whether it is more relevant in reality depends on the assumed elasticity.
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The same reasoning holds with a variation of fuel prices in the short term. As
there is no investment in the short term, the only effect is the altered margin of
fuel switching (see Appendix D.3).

Interest Rates

Apart from fuel markets, the development of financial markets affects the shape
of MAC curves. The interest rate reflects the general development of financial
markets, i.e., the risk-free interest rate, and the risk premium accounting for
sector-specific uncertainty. Figure 5.4 depicts long-term MAC curves for different
interest rates on long-term MAC curves.

Figure 5.4.: Long-term MAC curves for different interest rates

Interest rates primarily affect the weighted costs of capital. The transforma-
tion of the power sector requires capital-intensive installations of RES power
plants. With lower interest rates, RES becomes cheaper. As a result, the MAC
curve is lower at all abatement levels. Since the lower part of the MAC is dom-
inated by fuel-switching, the effect increases with abatement so that it mainly
affects the end of MAC curves. A higher interest rate mirrors the effect of lower
interest rates.

Technological Learning

Until now, we refrain from technological learning. However, new technologies
exhibit possibilities to drive down investment costs or improve technological pa-
rameters such as efficiency. Figure 5.5 depicts the change in long-term MAC
curves with projected technological learning of RES power plants. The respec-
tive cost assumptions can be found in Appendix D.2.
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Figure 5.5.: Long-term MAC curves for different investment costs

The impact of technological learning is clear-cut: Lower investment costs drive
down costs of RES generation. Hence, uncertainty about the future development
of techno-economic properties mainly affects the upper part of MAC curves, i.e.,
beyond the potential of fuel-switching.

Beyond improvements of existing technologies, the cost development of so-
called backstop technologies underlines this finding. These technologies are able
to remove an arbitrarily large amount of emissions for a fixed price, the backstop
price. In light of recent plans to establish a hydrogen economy, experts con-
sider hydrogen-fueled gas turbines as a potential carbon-free and dispatch-able
backstop technology in the power sector. In this case, the backstop price level is
subject to future costs of hydrogen. The prevailing literature (e.g., Brändle et al.
(2020)) projects costs of carbon-neutral hydrogen of roughly 1.5 to 3 EUR/kg.
These prices equal about 45-90 EUR/MWth, the marginal abatement costs to
replace gas generation is thus approximately between 125 and 350 EUR/t com-
pared to gas prices of 20 EUR/MWth.52

Summing up, this case study of the European power sector reveals: first, MAC
curves are convex. Their curvature depends on economic developments such as
fuel prices and interest rates. Second, they flatten over time due to technological
learning and investment restrictions.

5.4. Implications for the EU ETS

As pointed out in section 5.1, model-based analyses of the EU ETS typically
assume static MAC curves. On the contrary, MAC curves are dynamic. They are
only a snapshot in time so that they conceal dynamic interactions. Further, MAC
curves flatten over time due to restrictions on investments and technological
advancements. This section discusses the implications of these findings for the
EU ETS.

52The (direct) marginal abatement costs reflect the difference in fuel prices between natural
gas and hydrogen, divided by the emission factor of natural gas of about 0.2 tCO2/MWtth.
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5.4.1. The Functioning of the EU ETS

The EU ETS is a cap-and-trade system, which requires firms to buy allowances
to compensate for their emissions. By reducing the yearly supply of allowances
to the market, the EU ETS enforces abatement. Firms are allowed to bank
allowances for later use while borrowing allowances from future allocations is
prohibited.

Firms choose their abatement so that they minimize abatement costs. In
equilibrium, carbon prices equal MAC in a friction-less market. In line with
the Hotelling rule (cf. Hotelling (1931)), the carbon price rises with the interest
rate as long as firms hold a positive bank of allowances. If the aggregate private
bank is empty, the price increases at a lower rate according to the yearly issued
allowances. (cf. Bocklet et al. (2019))

In this idealized setting, the market determines an initial price, which reflects
the discounted backstop costs and fully sets up a price path that sooner (lower
initial price) or later (higher initial price) leads to an empty private bank. Market
equilibrium paths, which consist of a sequence of price-emission tuples, solve the
trade-off between low initial prices and a late point in time where allowances are
scarce so that overall (discounted) abatement costs are minimal.

The implementation of the Market Stability Reserve and the Cancellation
Mechanism poses additional restrictions on the banking of allowances. First, if
banking volumes exceed a pre-defined level, the MSR absorbs allowances from
the market. The allowances from the MSR enter the market when the bank falls
below the reinjection threshold.53 Second, the size of the MSR is limited. If the
MSR exceeds the previous year’s auction volume, the CM invalidates overhanging
allowances. As a result of the MSR and the CM, banking decisions affect both the
timing and the total volume of allowance supply. In particular, higher banking
volumes increase cancellation volumes and thus reduce total emissions within
the EU ETS.

5.4.2. Implications of Time-Dependent MAC Curves in the EU
ETS

Section 5.3 reveals two properties of MAC curves, which should be considered in
models of the EU ETS: MAC curves are convex and they flatten over time.

If the MAC curve is convex instead of linear, the MAC curve becomes steeper
with higher abatement, which makes future abatement relatively more costly.
Accordingly, firms bank more allowances to smooth the abatement in the steep
upper part of the MAC curve. Due to the endogenous supply rules in the re-
formed EU ETS, a convex MAC curve causes higher banking volumes and more

53Allowances from the MSR enter the market in junks of 100 million allowances per year if the
previous year’s bank is below 400 million allowances.
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cancellation compared to a linear MAC. Osorio et al. (2020) provides quantita-
tive evidence by comparing the cancellation volumes of several articles. Modeling
approaches that consider convex curvatures (e.g., Bruninx et al. (2018) and Beck
and Kruse-Andersen (2018)), exhibit comparatively high cancellation volumes.

Along the same lines, models of the EU ETS usually assume the shape of the
MAC curves to be time-independent, neglecting that short-term MAC curves are
steeper due to investment restrictions and technological learning. As a result,
abatement is more expensive in the short term and becomes cheaper over time.
Figure 5.6 visualizes the stylized impact of a steeper short-term MAC curve on
the price path in comparison to the assumption of the long-term MAC curve for
all points in time.54

Figure 5.6.: Stylized impact of time-dependent MAC curves on the equilibrium price
path and implications for abatement in the short (ST), medium (MT) and
long term (LT)

Under perfect foresight, the whole price path is determined already in the first
period. Backstop costs are obtained when the last allowance is issued (tsupply=0

in the upper part of Figure 5.6).55 The quasi-linear price development after the
bank is emptied (tb=0,dep. and tb=0,indep.), depends on the allowance supply and
the shape of long-term MAC curves.56 Firms choose a sequence of price-emission

54This stylized analysis assumes that there is only one banking phase. If, for example, the
flattening of MAC curves overcompensates the firms’ interest rate, a second banking phase
is economically rational.

55This holds true as long as backstop costs decrease slower than the firms’ interest rate. In
general, backstop costs only shift the price path as long as the rest of the MAC curve is
kept constant (compare Bocklet et al. (2019)). Abatement and banking remain unaltered.

56After the private bank is empty, abatement decreases linearly with the allowance supply.
Correspondingly, the price increases in accordance with the upper part of the MAC curve.
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tuples that suffice the two fundamental rules, namely the price development
with Hotelling until the bank is empty and the equivalence of MAC and car-
bon prices. Due to steeper short-term MAC curves (i.e., short-term abatement
becomes more expensive), firms increase their short-term emissions, and thus,
decrease banking volumes. At the same time, prices increase since the short-
term MAC are higher even at the lower abatement level (see Figure 5.6a). In
the medium term, the time-dependent MAC curve flattens and the difference in
abatement decreases but abatement is still lower (see Figure 5.6b). As a result,
the bank empties earlier (tb=0,dep. < tb=0,indep.). In the long term, firms need to
increase their abatement with time-dependent MAC curves due to lower banking
volumes (see Figure 5.6c). Summing up, with time-dependent MAC curves, the
price level rises, and banking decreases in the short-term. Since cancellation vol-
umes increase with short-term banking (see Herweg (2020)), the described effect
increases total emissions due to lower cancellation volumes.

Beyond this theoretical analysis, myopia is considered important to understand
the EU ETS market (compare Bocklet and Hintermayer (2020)). In a myopic
setting, steep short-term MAC curves might be an additional driver of the price
increase observed after the introduction of the MSR and the CM.

All in all, banking and cancellation volumes increase with convexity while
flattening has the opposite effect. Accurate numerical models of the EU ETS
should consider the shape and dynamic evolution of MAC curves to quantify the
overall effects.

5.4.3. Approaches for Time-Dependent MAC Curves in EU
ETS Models

In general, there are two approaches to account for the time-dependency of MAC
curves: using exogenous but time-dependent MAC curves in EU ETS models or
coupling of models for allowance demand and the EU ETS.

Exogenous dynamic MAC curves for the power sector can be derived via mod-
eling, e.g., as described in Section 5.3. Deriving MAC curves for the energy-
intensive industries - as the other large sector within the EU ETS - is more
challenging, since industry processes are more heterogeneous and data availabil-
ity is limited. Further, it is important to depict interactions between the sectors
to account for the non-additivity of abatement measures. For example, the elec-
trification of industry processes saves carbon in the industry sector but interacts
with the MAC curves of the power sector. Feeding the derived time-dependent
MAC curves into a model of the EU ETS improves the accuracy of the results.
However, this approach neglects that MAC curves are interrelated, i.e., they are
not a sequence of static curves but rather a family of curves, that depends on
the carbon price path.

For considering interactions between the allowance demand and the EU ETS
price path, it is worth to consider the coupling of an allowance demand-side
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model (covering the power sector and energy-intensive industries) and an EU
ETS model. Via soft-coupling, the EU ETS model feeds the derived price paths
to the allowance demand-side model, which then updates the MAC curves. By
iterating these steps, a consistent model framework is set up if the model runs
converge. Alternatively, the two models could be hard-coupled, i.e., a simul-
taneous equilibrium is calculated by an integrated approach. For example, the
implementation as a mixed complementary problem (MCP) allows to derive a
consistent solution with an endogenous depiction of allowance demand and the
EU ETS market. Both variants of model-coupling open up possibilities to evalu-
ate alternative EU ETS designs (e.g., the implementation of carbon price floors)
or related environmental policies, such as electrification efforts.

5.5. Conclusion

Recent literature relies on MAC curves to analyze the design of the EU ETS as
the key emission abatement instrument in Europe. While the assumptions on
MAC curves drive the results, the literature on the shape of MAC curves within
the scope of the EU ETS is scarce. Against this backdrop, this paper identifies
implications of MAC curve properties for the EU ETS.

In a case study, we derive MAC curves for the European power sector. To
this end, a partial equilibrium model is fed with carbon price paths to deter-
mine corresponding emission and abatement levels. We identify two fundamen-
tal properties of MAC curves of the European power sector: First, the shape
of MAC curves is convex for all points in time. The curvature depends on eco-
nomic developments, such as fuel prices and interest rates. Second, MAC curves
flatten over time. In the short term, fuel-switching is the only abatement option
and thus, the MAC curve is steep. With longer investment horizons, the degree
of freedom for investment grows and enables the transformation of the capital
stock. This additional abatement option flattens the MAC curve. Further, tech-
nological learning and demand adjustments lowers in particular the upper part
of the MAC curve.

Idealized market equilibrium paths in the EU ETS consist of price-emission
tuples that minimize overall abatement costs and comply with the allowance
supply path. Emission decisions and thus market prices are a trade-off between
emissions today and in the future. After introducing the Market Stability Re-
serve and the Cancellation Mechanism, the total allowance supply and thus total
emissions decrease with banking volumes. With convex MAC curves, marginal
abatement costs increase over time, which makes future abatement relatively
more expensive compared to today’s abatement. Thus, firms increase banking
volumes compared to linear MAC curves. On the contrary, MAC curves flatten
over time, which lowers the incentives for banking. Considering steeper MAC
curves in the short term leads to a higher price path and an earlier depletion
of the firms’ bank. For quantifying these effects, the time-dependency of MAC
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curves should be depicted. A model of the allowance demand side could derive
MAC curves, which are fed into a model of the EU ETS. Ideally, the allowance
demand-side model is coupled with the EU ETS model to derive consistent equi-
librium paths.

Beyond the power sector, MAC curves within energy-intensive industries should
be analyzed to cover the whole scope of the EU ETS. Since MAC curves are only
snapshots of a dynamic context, path dependencies and uncertainties are worth
considering. In particular, the impact of global deep decarbonization and its
implications for MAC curves are a subject of further research.
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A. Supplementary Material for Chapter 2

A.1. Notation

Throughout the paper at hand, the notation presented in Table A.1 is used.
To distinguish (exogenous) parameters and optimization variables, the latter are
written in capital letters.

Table A.1.: Sets, parameters and variables

Sets
i ∈ I Electricity generation and storage technologies

m,n ∈ M Markets
l ∈ L Transmission Grid Lines
c ∈ C Linear independent cycles of modelled grid

y, y1 ∈ Y Years
t ∈ T Representative timesteps

Parameters
d(y, t,m) [MWh] Electricity demand

avail(y, t,m, i) [-] Availability of electricity generation technology
linecap(y,m, n) [MW] Available transmission capacity

β(y) [-] Discount factor
δ(y, i) [EUR/MW] Annualized investment cost
σ(i) [EUR/MW] Fixed operation and maintenance cost
γ(y, i) [EUR/MWh] Variable generation cost

capadd,min(y,m, i) [MW] Capacities under construction
capsub,min(y,m, i) [MW] Decommissioning of capacity due to lifetime or policy bans

l(m,n) [-] Relative transmission Losses
κ(m, l) [-] Incidence matrix
ϕ(l, c) [-] Cycle matrix

Variables
CAP (y,m, i) [MW] Electricity generation capacity

GEN(y, t,m, i) [MWh] Electricity generation
CAPadd(y,m, i) [MW] Investments in electricity generation capacity
CAPsub(y,m, i) [MW] Decommissioning of electricity generation capacity

TRADE(y, t,m, n) [MWh] Electricity trade from m to n
TRADE BAL(y, t,m) [MWh] Net trade balance of m

FLOW (y, t, l) [MWh] Power flow along line l
TC [EUR] Total costs

FC(y) / V C(y) [EUR] Yearly fixed or variable costs
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A.2. Power Market Model

Basic Model

The central planner invests into new power plants and dispatches generation
capacities such that the net present value of the variable (V C) and fixed costs
(FC) is minimized, where β represents the discount factor.

The objective is hence:

min! TC =
∑
y∈Y

β(y) · [V C(y) + FC(y)]. (A.1)

Installed electricity generation capacities (CAP ) are modeled endogenously:
The model invests in new generation capacities (CAPadd) and decommissions ca-
pacities (CAPsub), which are not profitable. For a realistic depiction of European
energy markets, existing as well as under construction capacities (capadd,min) and
decommissioning due to end-of-lifetime or technology bans (capsub,min) are given
exogenously. These parameters serve as lower bounds for building or decommis-
sioning capacities, respectively. The fixed costs per year comprise the annualized
investment costs (δ) plus fixed operation and maintenance costs (σ) per installed
capacity. The following equations describe these interrelations.

CAP (y,m, i) = CAP (y − 1,m, i) + CAPadd(y,m, i) − CAPsub(y,m, i)

CAPadd(y,m, i) ≥ capadd,min(y,m, i)

CAPsub(y,m, i) ≥ capsub,min(y,m, i)

∀y ∈ Y,∀m ∈ M,∀i ∈ I

FC(y) =
∑

m∈M,i∈I
CAP (y,m, i) · σ(i)

+
∑

y1:y−y1<econ lifetime(i)

CAPadd(y1,m, i) · δ(y, i)

(A.2)

Electricity generation (GEN) in each market and timestep (t) has to level the
(inelastic) demand (d) minus the trade balance (TRADE BAL), which depicts
the net imports of trade flows (TRADE) from other markets. Availability of
power plants (avail ·CAP ), which, e.g., considers maintenance shutdowns limit
their generation. Trade flows between markets are limited by interconnection
capacities (linecap). Yearly total variable costs (V C) result from the generation
per technology times the technology-specific variable operation costs (γ), which
mainly comprise costs for burnt fuel and required CO2 allowances.
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∑
i∈I

GEN(y, t,m, i) = d(y, t,m) − TRADE BAL(y, t,m)

GEN(y, t,m, i) ≤ avail(y, t, i) · CAP (y,m, i)

TRADE BAL(y, t,m) =
∑
n

(1 − l(n,m)) · TRADE(y, t, n,m) − TRADE(y, t,m, n)

TRADE(y, t,m, n) ≤ linecap(y,m, n)

∀y ∈ Y,∀m,n ∈ M & m ̸= n, ∀i ∈ I

V C(y) =
∑

m∈M,i∈I,t∈T
GEN(y, t,m, i) · γ(y, i)

(A.3)

The presented equations constitute the backbone of SPIDER. Beyond that,
the model features, e.g., constraints to depict the utilization of storage as well
as constraints on energy potentials, e.g., for biomass.

Grid Modeling

Kirchhoff’s current law is implemented directly via mapping active power injec-
tions in each market m (which equal the trade balance TRADE BAL) on line
power flows (FLOW ) via the incidence matrix κ(m, l), i.e.:

TRADE BAL(y, t,m) =
∑
l∈L

κ(m, l) · FLOW (y, t, l)

, κ(m, l) =


1 if line l ends in bus m,

−1 if line l starts at bus m m,

0 else

(A.4)

The transmission grid is assumed to be a directed graph. With |L| repre-
senting the number of lines and |N | the number of nodes, the graph is uniquely
determined by |C| = |L| − |N | − 1 linear independent cycles. To fulfill Kirch-
hoff’s voltage law, power flows (FLOW ) times line reactances (x) along each of
these cycles have to sum up to zero. Thereby, the model considers interactions of
electricity generation and power flows endogenously. The cycle matrix (ϕ(l, c))
assigns lines to the respective cycles.
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∑
l∈L

ϕ(l, c) · x(y, l) · FLOW (y, t, l) = 0

, ϕ(l, c) =


1 if line l is element of cycle c,

−1 if reversed line l is element of cycle c,

0 else

∀c ∈ C,∀y ∈ Y

(A.5)
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Regional Scope: Germany’s Transmission Network and
Neighbors

Figure A.1 visualizes the regional scope. Within Germany, this paper considers
a detailed depiction of the transmission network. Connections to neighbors are
approximated via Net Trade Capacities (NTC).

Figure A.1.: Regional scope and considered grid topology in 2030

101



A. Supplementary Material for Chapter 2

A.3. Assumptions on Investment Costs, Demand and
Fuel Prices

Table A.2.: Development of investment costs [EUR/kW] for onshore wind power plants
based on The Boston Consulting Group and Prognos (2018)

Technology 2020 2025 2030

Wind Onshore 1200 1150 1100

Table A.3.: Considered technologies and their techno-economic parameters, assumptions
based on scenario Stated Policies in World Energy Outlook 2019 (IEA, 2019)
and (Knaut et al., 2016)

Technologies Efficiency Fixed Operation Costs
(EUR/kW/a)

Nuclear 0.33 85
Lignite 0.4 45
Coal 0.45 45

Combined Cycle Gas Turbines (CCGT) 0.5 25
Open Cycle Gas Turbines (OCGT) 0.38 15

Oil 0.4 7
Biomass 0.3 150

PV 1 17
Wind Onshore 1 12
Wind Offshore 1 93

Hydro 1 11.5
Pumped Storage 0.78 11.5
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Table A.4.: Development of fuel and carbon prices [EUR/MWhth], based on scenario
Stated Policies in World Energy Outlook 2019 (IEA, 2019)

Fuel 2019 2020 2025 2030

Uranium 3.0 3.0 3.0 3.0
Lignite 3.9 4.2 5.6 5.6
Coal 7.9 8.1 9.1 9.3

Natural Gas 13.6 15.2 23.2 23.2
Oil 33.1 34.7 42.3 45.9

Biomass 21.0 22.0 22.5 23.0
Carbon [EUR/tCO2] 24.9 26.2 35.5 38.8

Table A.5.: Development of demand [TWh], based on scenario National Trends in
ENTSO-E (2020a) and Scenario B in 50Hertz et al. (2019)

Country 2019 2020 2025 2030

AT 67 69 77 79
BE 85 85 87 91
CH 62 62 62 61
CZ 63 65 73 78
DE 530 529 528 544
DK 35 38 52 46
FR 456 463 496 486
NL 114 114 114 119
PL 156 160 181 182
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A.4. Trade Flows

The modeled trade flows underlie three simplifications which are necessary to
keep the model tractable: First, the age structure of national power plants fleets
is not considered. Second, interconnectors are depicted as NTC constraints with-
out power flow restrictions. Third, other countries than German neighbours are
not in the scope of this paper. Due to these shortcomings, the derived trade
flows are not realistic. The derived patterns among the three scenarios, however,
shed light on the impact of market design on electricity trade between Germany
and its neighbours. Figure A.2 visualizes German net imports in the years 2020
and 2030.

Figure A.2.: Trade between Germany and its neighbour countries in 2020 and 2030

In general, uniform prices trigger higher exports in all directions. Nodal prices
incentivize, in particular in Southern and Western Germany, higher imports while
exports to Denmark increase. The difference in trade between nodal and uniform
prices can be observed best at the example of France. Instead of significant net
export under uniform pricing, optimal dispatch under nodal pricing requires high
net imports in 2030.
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A.5. North-German Federal States

Figure A.3 visualizes the three most Northern federal states of Germany.

Figure A.3.: The area of the federal states of Mecklenburg-Western Pomerania (MP),
Schleswig-Holstein (SH) and Lower Saxony (LS)

A.6. Price times series at exemplary Nodes

Nodal prices differ between nodes if grid bottlenecks occur. To give an idea of
the drivers and the structure of nodal prices, Figure A.4 shows the hourly nodal
electricity prices and the hourly residual load within the 12 type days at three
exemplary nodes, one each in the north, west and south of Germany.
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Figure A.4.: Location, hourly nodal electricity prices and hourly residual load of three
exemplary nodes

Among the three exemplary nodes, average nodal electricity prices are lowest
at node 1 in the North of Germany. While the installed wind power capacities
at node 1 are large, demand is relatively low. Thus, the residual load becomes
negative in hours with high wind availability. If grid bottlenecks occur in these
windy periods, the nodal price at node 1 drops below the nodal prices of node
2 and node 3, e.g., on the first day. If the grid is not congested, prices are the
same at all nodes, e.g., between the hours 120 and 180. Nodal prices at node 2
and node 3 are mostly equally high. Node 2 lies Western Germany, where high
load prevails. The node has the highest residual load of the exemplary nodes, as
electricity demand is relatively high and electricity generation from wind and PV
power plants is low. Electricity demand at node 3 is low while electricity feed-in
from photovoltaics is high. Due to the location in Southern Germany, which is
rather poorly connected, node 3 exhibits the highest average nodal prices.
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B.1. Notation

Throughout the paper at hand, the notation presented in table B.1 is used. To
distinguish (exogenous) parameters and optimization variables, the latter are
written in capital letters.

Table B.1.: Sets, parameters and variables

Sets
i ∈ I Electricity generation and

storage technologies
m,n ∈ M Markets

l ∈ L Transmission Grid Lines
c ∈ C Linear independent cycles of modeled grid

y, y1 ∈ Y Years
d ∈ D Representative Days
h ∈ H Hours

Parameters
demand(y, d, h,m) [MWh] Electricity demand
avail(y, d, h,m, i) [-] Availability of technology

eff(i,m) [-] Efficiency of technology
linecap(y,m, n) [MW] Available transmission capacity

β(y) [-] Discount factor
δ(y, i) [EUR/MW] Annualized investment cost
σ(i) [EUR/MW] Fixed operation and maintenance cost
γ(y, i) [EUR/MWh] Variable generation cost

capadd,min(y,m, i) [MW] Capacities under construction
capsub,min(y,m, i) [MW] Decommissioning of capacity due

to lifetime or policy bans
l(m,n) [-] Relative transmission Losses
κ(m, l) [-] Incidence matrix
ϕ(l, c) [-] Cycle matrix

Variables
CAP (y,m, i) [MW] Electricity generation capacity

GEN(y, d, h,m, i) [MWh] Electricity generation
CAPadd(y,m, i) [MW] Investments in electricity

generation capacity
CAPsub(y,m, i) [MW] Decommissioning of electricity

generation capacity
TRADE(y, d, h,m, n) [MWh] Electricity trade from m to n

TRADE BAL(y, d, h,m) [MWh] Net trade balance of m
FLOW (y, d, h, l) [MWh] Power flow along line l

TC [EUR] Total costs
FC(y) / V C(y) [EUR] Yearly fixed or variable costs

107



B. Supplementary Material for Chapter 3

B.2. Power market model

Basic model

The central planner invests into new power plants and dispatches generation
capacities such that the net present value of the variable (V C) and fixed costs
(FC) is minimized, where β represents the discount factor.

The objective is hence:

min! TC =
∑
y∈Y

β(y) · [V C(y) + FC(y)].

Installed electricity generation capacities (CAP ) are modeled endogenously:
The model invests in new generation capacities (CAPadd) and decommissions ca-
pacities (CAPsub), which are not profitable. For a realistic depiction of European
energy markets, existing as well as under construction capacities (capadd,min) and
decommissioning due to end-of-lifetime or technology bans (capsub,min) are given
exogenously. These parameters serve as lower bounds for building or decommis-
sioning capacities, respectively. The fixed costs per year comprise the annualized
investment costs (δ) plus fixed operation and maintenance costs (σ) per installed
capacity. The following equations describe these interrelations.

CAP (y,m, i) = CAP (y − 1,m, i) + CAPadd(y,m, i) − CAPsub(y,m, i)

CAPadd(y,m, i) ≥ capadd,min(y,m, i)

CAPsub(y,m, i) ≥ capsub,min(y,m, i)

∀y ∈ Y,∀m ∈ M,∀i ∈ I

FC(y) =
∑

m∈M,i∈I
CAP (y,m, i) · σ(i)

+
∑

y1:y−y1
<econ lifetime(i)

CAPadd(y1,m, i) · δ(y, i)

Electricity generation (GEN) in each market, day (d) and hour (h) has to level
the (inelastic) demand minus the trade balance (TRADE BAL), which depicts
the net imports of trade flows (TRADE) from other markets. Availability of
power plants (avail ·CAP ), which, e.g., considers maintenance shutdowns limit
their generation. Trade flows between markets are limited by interconnection
capacities (linecap). Yearly total variable costs (V C) result from the generation
per technology times the technology-specific variable operation costs (γ), which
mainly comprise costs for burnt fuel and required CO2 allowances.
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∑
i∈I

GEN(y, d, h,m, i) = demand(y, d, h,m) − TRADE BAL(y, d, h,m)

GEN(y, d, h,m, i) ≤ avail(y, d, h, i) · CAP (y,m, i)

TRADE BAL(y, d, h,m) =
∑
n

(1 − l(n,m)) · TRADE(y, d, h, n,m)

− TRADE(y, d, h,m, n)

TRADE(y, d, h,m, n) ≤ linecap(y,m, n)

∀y ∈ Y,∀m,n ∈ M & m ̸= n, ∀i ∈ I

V C(y) =
∑

m∈M,i∈I,
d∈D,h∈H

GEN(y, d, h,m, i) · γ(y, i)
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Storage equations

The charging level of storage (STORLEV EL) is determined by the level in the
previous time step and the net-balance of electricity charged and withdrawn. The
level cannot exceed the storage volume which is given by the installed capacity
and an exogenous ratio of capacity and volume (vol factor).

STOR LEV EL(y, d, h,m, i) = STOR LEV EL(y, t− 1,m, i)

− eff(m, i) ·GEN(y, d, h,m, i)

+ eff(i,m) ·GEN(y, d, h, i,m)

STOR LEV EL(y, d, h,m, i) ≤ STOR V OL

STOR V OL = avail(y, d, h, i) · vol factor(i) · CAP (y,m, i)

∀y ∈ Y,∀d ∈ D,h ∈ H,∀m ∈ M,∀i ∈ IStorage

The amount of energy which can be shifted between typedays (DAY SALDO)
is limited according to the number of days that a typeday represents (d rep). The
total of the energy shifted by storage must add up to zero.

DAY SALDO(y, d,m, i) =
∑
h∈H

(GEN(y, d, h, i,m)

−GEN(y, d, h,m, i))

DAY SALDO(y, d,m, i) · d rep(d) ≤ STOR V OL(y,m, i)

DAY SALDO(y, d,m, i) · d rep(t) ≥ −STOR V OL(y,m, i)∑
d∈D

DAY SALDO(y, d,m, i) = 0

∀y ∈ Y,∀d ∈ D,∀m ∈ M,∀i ∈ IStorage
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B.3. Assumptions on technologies, demand and fuel
prices

Table B.2.: Considered technologies and their generation efficiency, assumptions based
on scenario Stated Policies in World Energy Outlook 2021 (IEA, 2021) and
Knaut et al. (2016)

Technologies Efficiency

Nuclear 0.33
Lignite 0.4
Coal 0.45

Combined Cycle Gas Turbines (CCGT) 0.5
Open Cycle Gas Turbines (OCGT) 0.38

Oil 0.4
Biomass 0.3

PV 1
Wind Onshore 1
Wind Offshore 1

Hydro 1
Pumped Storage 0.78
Battery Storage 0.95

Table B.3.: Development of fuel and carbon prices [EUR/MWhth], based on scenario
Net Zero Emissions in World Energy Outlook 2022 (IEA, 2022)

Fuel 2019 2030

Uranium 3.0 3.0
Lignite 3.9 4.0
Coal 7.9 7.7

Natural Gas 13.6 25.9
Oil 33.1 44.9

Biomass 21.0 23.0
Carbon [EUR/tCO2] 24.9 95.0
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Table B.4.: Development of demand [TWh], for Germany based on BMWK (2022a) and
for all other countries on scenario National Trends in ENTSO-E (2020a)

Country 2019 2025 2030

AT 67 77 79
BE 85 87 91
CH 62 62 61
CZ 63 73 78
DE 524 600 715
DK 35 52 46
FR 456 496 486
NL 114 114 119
PL 156 181 182

B.4. Additional results and sensitivity analyses

Renewable allocation

Solar and wind power allocation is primarily driven by the consideration of trans-
mission capacity. In the nodal setting, grid constraints are considered when siting
new capacity. However, in the uniform case, investment decisions depend mainly
on resource quality and, to a lesser extent, on feed-in patterns and resulting bal-
ancing effects. As a result, wind and solar capacity are distributed more broadly
and closer to demand under the nodal setup. At the same time, it is concen-
trated at sites with high resource quality in the uniform setting. Figures B.1a
and B.1b compare the spatial distribution of wind and solar capacity in both
cases. Total capacity is exogenous for both settings and reflects Germany’s 2030
capacity targets.
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(a) Spatial distribution of wind capacity expansion in the (i) nodal and (ii) uniform setting and
(iii) difference between both in 2030

(b) Spatial distribution of solar capacity expansion in the (i) nodal and (ii) uniform setting and
(iii) difference between both in 2030

Figure B.1.: Spatial distribution of wind and solar capacity expansion in the nodal and
uniform setting

In the nodal setting, wind capacity peaks in the very north of the country,
where resource quality is high. The rest of the capacity is widely distributed
above the 50th parallel. Solar capacity is relatively evenly distributed below the
52nd parallel, despite higher resource quality in the south of Germany. All in all,
significant shares of wind and solar capacities are allocated close to the demand
centers in western Germany.

In the uniform setting, investment in wind power concentrates above the 53rd
parallel. Solar capacity concentrates in Germany’s south and east, with the
majority of capacity installed below the 50th parallel. The lack of coordination
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of renewable feed-in and grid bottlenecks under the uniform setup leads to high
curtailment. This especially affects wind power, which is separated from demand
by a structural north-south grid bottleneck. In total, 109 TWh of renewable
electricity are curtailed under the uniform setup in 2030, compared to only 30
TWh under the nodal setup.

Volume factor

Figure B.2 shows variations of the volume factor, i.e., the ratio between con-
nected power (GW) and the energy volume (GWh) of a storage technology. Low
volume factors correspond to battery storage, while higher factors can be seen for
technologies using a different energy carrier for storage, e.g,. hydrogen. Storage
allocation depends significantly on the volume factor. For higher volume factors
(¿4h), storage moves northwards and closer to wind generation. Here, they buffer
volatile wind generation and increase utilization of the congested lines along the
structural grid bottleneck. However, even for higher volume factors, significant
capacities are allocated in the south of Germany. Even when volume factors
are above 100h and the majority of storage is located above the 52nd parallel,
storage is needed to buffer volatile PV infeed in the south.

Battery capacity

Figure B.3 shows sensitivity analyses for the total installed capacity of batteries
for a given distribution of wind and solar generation according to the nodal set-
ting. The allocation of batteries close to grid bottlenecks along the 53rd parallel
as well as in the south of Germany is robust. In the case of 15 and more GW
of batteries, saturation in those areas leads to an allocation in the north, close
to wind generation centers. The sensitivity analyses, therefore, highlights again
the role of batteries in balancing short-term volatility from demand and solar
feed-in time series as opposed to wind generation that requires longer storage of
electricity.
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(a) 1 h (b) 4 h (reference)

(c) 50 h (d) 200 h

Figure B.2.: Optimal battery allocation based on the distribution of wind and solar in
the uniform setting for different battery volume factors
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(a) 5 GW (b) 10 GW

(c) 15 GW (reference) (d) 20 GW

Figure B.3.: Optimal battery allocation based on the distribution of wind and solar in
the uniform setting for different battery capacities
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C.1. Notation

Throughout the paper at hand, the notation presented in table C.1 is used. To
distinguish (exogenous) parameters and optimization variables, the latter are
written in capital letters.

Table C.1.: Sets, parameters and variables

Sets
i ∈ I, j ∈ J Electricity generation and

consumption technologies
z ∈ Z Zones
n ∈ N Nodes
l ∈ L Transmission Grid Lines
t ∈ T Timesteps

Parameters
fmax(l) [MW] Line capacity
ram(t, l) [MW] Remaining Available Maring (RAM)

fref (t, l) [MW] Reference flow in base case
frm(l) [MW] Flow Reliability Margin (FRM)
fav(l) [MW] Final Adjustment Value (FAV)

nPTDF (t, z, l) [-] nodal Power Transfer Distribution Factor
zPTDF (t, z, l) [-] zonal Power Transfer Distribution Factor
gsk(t, n, z) [-] Distribution of zonal generation

among nodes
γ(t, i) [EUR/MWh] Variable generation cost
κ(m, l) [-] Incidence matrix

Variables
GEN(t, z, i) / CONS(t, z, j) [MWh] Electricity generation / consumption

SALDO(t, z) [MWh] Net position of zone z
FLOW (t, l) [MWh] Power flow along line l

V C(y) [EUR] Variable costs
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C.2. Assumptions on technologies, fuel prices and
demand

Table C.2.: Considered technologies and their generation efficiency, assumptions based
on scenario Stated Policies in World Energy Outlook 2021 (IEA, 2022) and
Knaut et al. (2016)

Technologies Efficiency

Nuclear 0.33
Lignite 0.4
Coal 0.45

Combined Cycle Gas Turbines (CCGT) 0.5
Open Cycle Gas Turbines (OCGT) 0.38

Oil 0.4
Biomass 0.3

PV 1
Wind Onshore 1
Wind Offshore 1

Hydro 1
Pumped Storage 0.78
Battery Storage 0.95

Table C.3.: Assumptions on fuel and carbon prices [EUR/MWhth], based on scenario
Stated Policies in World Energy Outlook 2022 (IEA, 2022)

Fuel 2021 2025 2030 2035

Uranium 5.5 5.5 5.5 5.5
Lignite 4.5 4.5 5.0 5.0
Coal 15.3 11.5 7.7 7.8

Natural Gas 28.8 27.3 25.8 26.3
Oil 37.7 41.2 44.8 46.5

Biomass 20.0 21.0 22.0 23.0
Carbon [EUR/tCO2] 54.0 90.0 100.0 110.0

118



C.2. Assumptions on technologies, fuel prices and demand

Table C.4.: Development of demand [TWh], for Germany based on scenario Global Am-
bition in ENTSO-E and ENTSOG (2022)

Country 2021 2025 2030 2035

AT 70 78 85 91
BE 88 95 103 108
CH 62 62 62 65
CZ 66 65 65 68
DE 531 592 652 686
DK 35 42 49 52
FR 482 502 523 547
HU 47 46 45 47
HR 19 18 17 17
IT 320 319 317 335
LU 7 7 8 9
NL 119 145 171 182
NO 122 122 122 122
PL 167 169 171 178
SE 142 143 144 148
SI 14 15 15 16
SK 28 30 32 33
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C.3. Additional results

Season-specific bidding zone configuration

Changing the bidding zone configuration depending on the time of year could
further reduce redispatch costs without increasing uncertainty. This would be
particularly beneficial if the structural congestion shifts significantly throughout
the year due to different seasonal renewable generation and load patterns. Fig-
ure C.1 shows an example of a season-specific split resulting from the separate
clustering of the summer and winter season LMP time series for the scenario
year 2030.

During the summer season, average LMPs are lower due to higher solar gen-
eration and lower electricity demand. In addition, wind generation is lower,
especially at greater distances from the North Sea coast. As a result, the low-
price summer bidding zone is a smaller area close to the North Sea. In contrast,
the winter configuration is the same as that identified for the entire year (see
figure 4.3 in section 4.4.2). This is because the regional differences in LMPs are
higher in the winter months.
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(a) Summer (April-September)

(b) Winter (October-March)

Figure C.1.: Season-specific split for the scenario year 2030
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Discounting in the clustering of a stable split

In this paper, a discount rate of 0% is assumed for clustering the stable bidding
zone split across multiple scenario years, as it simplifies the comparison of the
split’s impact between scenario years. Considering a discount rate weighs the
present higher than the future and thus, the resulting bidding zone configuration
changes. For example, a discount rate of 3% would result in a 4.6% (16 nodes)
larger northern bidding zone, equivalent to the year-specific one of the year 2025
(see figure C.2).

Figure C.2.: Spatial distribution of average LMPs across all scenario years (left) and
resulting bidding zone split (right) when applying a discount rate of 3% in
the clustering
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D.1. The Power Market Model DIMENSION

Table D.1 presents the notation used within this paper. Capitalized terms rep-
resent endogenous decision variables. Lowercase terms denote exogenous param-
eters.

Table D.1.: Sets, parameters and variables

Sets
i ∈ I Electricity generation and

storage technologies
m,n ∈ M Countries
y ∈ Y Years
t ∈ T Representative time steps

Parameters
d(y, t,m) [MWh] Electricity demand

r [-] Discount rate
avail(y, t,m, i) [-] Availability of electr. generation
ntc(y,m, n) [MW] Net transmission capacity

η(i) [MWh/MWh th] Generation efficiency
δ(y, i) [EUR/MW] Annualized investment cost
σ(i) [EUR/MW] Fixed operation and maintenance cost
γ(y, i) [EUR/MWh] Variable fuel cost
τ(y) [EUR/tCO2eq] Carbon price
ν(i) [tCO2eq/MWh th] Fuel-specific emission factor

capadd,min(y,m, i) [MW] Existing or under construction capacity
capsub,min(y,m, i) [MW] Decommissioning due to lifetime or policy

l(m,n) [-] Relative transmission losses

Variables
CAP (y,m, i) [MW] Electricity generation capacity

GEN(y, t,m, i) [MWh] Electricity generation
EM(y, t,m, i) [tCO2eq] Emissions
CAPadd(y,m, i) [MW] Investments in electr. generation capacity
CAPsub(y,m, i) [MW] Decommissioning of electr. generation capacity

TRADE(y, t,m, n) [MWh] Trade flow of electr. from m to n
TC [EUR] Total costs

FC(y) [EUR] Invest and fixed operation &
maintenance costs

V C(y) [EUR] Variable generation costs
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The central planner minimizes total discounted costs for serving the electric-
ity demand. Consequently, she decides on the investment in capacity and the
dispatch of power plants. The total discounted costs consist of fixed (FC) and
variable (V C) costs, i.e.,

TC =
∑
y∈Y

(1 + r)−(y−y0) · [FC(y) + V C(y)], (D.1)

where the fixed costs per year comprise the annualized investment costs and the
fixed operation and maintenance costs for installed capacity. The variable costs
embody generation-dependent costs, namely for fuel and emission allowances.The
installed capacity of electricity generators develops endogenously according to
equation D.2.

For a realistic depiction of European energy markets, equations D.3 and D.4
account for existing as well as under construction capacities (capadd,min) and de-
commissioning due to end-of-lifetime or technology bans (capsub,min). Equation
D.5 formally defines the fixed costs.

CAP (y,m, i) = CAP (y − 1,m, i) + CAPadd(y,m, i) + CAPsub(y,m, i)

(D.2)

CAPadd(y,m, i) ≥ capadd,min(y,m, i) (D.3)

CAPsub(y,m, i) ≥ capsub,min(y,m, i) (D.4)

FC(y) =
∑
ỹ:

y−ỹ<lifetime(i)

CAPadd(ỹ,m, i) · δ(ỹ, i)

+
∑

m∈M,i∈I
CAP (y,m, i) · σ(i)

(D.5)

Further, technical constraints restrict the dispatch of installed capacities. First,
for every time step, electricity generation has to balance the inelastic demand
adjusted by the trade flows from and to neighboring countries (Equation D.6).
Second, electricity generation of each technology and in each time step is bound
by the available capacity (Equation D.7). The availability factor accounts for
maintenance shutdowns of conventional power plants or the infeed profile of re-
newable energy. The trade flows are restricted by the net transfer capacities
between countries and have to be symmetric, i.e., exports from m to n are im-
ports from n to m (Equations D.8 and D.9). Variable costs comprise fuel costs
and costs for emissions (Equation D.10). The former is calculated as the prod-
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uct of generation per technology and the technology-specific variable fuel costs.
The latter is the product of the carbon price and realized emissions which are
calculated through the fuel input and the fuel-specific emission factor (Equation
D.11).

∑
i∈I

GEN(y, t,m, i) = d(y, t,m) (D.6)

+
∑
n̸=m

(1 − l(m,n)) · [TRADE(y, t,m, n)

− TRADE(y, t, n,m)]

GEN(y, t,m, i) ≤ avail(y, t, i) · CAP (y,m, i) (D.7)

TRADE(y, t,m, n) ≤ ntc(y,m, n) (D.8)

TRADE(y, t,m, n) = −TRADE(y, t, n,m) (D.9)

∀y ∈ Y,m, n ∈ M, i ∈ I

V C(y) =
∑

m∈M, i∈I

∑
t∈T

[GEN(y, t,m, i) · γ(y, i) (D.10)

+ EM(y, t,m, i) · τ(y)]

EM(y, t,m, i) = GEN(y, t,m, i) · ν(i)

η(i)
(D.11)

The presented equations constitute the core functionality of DIMENSION:
The objective function in equation D.1 is minimized over the feasible region,
which is defined by the constraints D.2-D.11.

Moreover, the model incorporates features such as ramping and storage con-
straints as well as area restrictions for RES. For a thorough introduction of
DIMENSION and its characteristics, the reader is referred to Richter (2011).

D.2. Numerical Assumptions

Table D.2.: Technological learning regarding investment costs [EUR/kW], based on the
World Energy Outlook 2019 (IEA (2019))

Technology Status quo Near Future Far Future

Wind Onshore 1580 1503 1430
Wind Offshore 3985 3038 2600

PV (roof) 883 688 580
PV (base) 750 585 480

OCGT 412 412 412
CCGT 900 900 900
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Table D.3.: Considered technologies and their techno-economic characteristics based on
Knaut et al. (2016) and Peter (2019)

Technologies Efficiency Fixed Operation Costs
(EUR/kWa)

Nuclear 0.33 101 - 105
Lignite 0.32 - 0.46 45 - 60
Coal 0.37 - 0.46 40 - 60

CCGT 0.39 - 0.60 24 -30
OCGT 0.28 - 0.40 12 - 17

Oil 0.4 7
Biomass 0.3 120

PV 1 15 - 17
Wind Onshore 1 13
Wind Offshore 1 93

Hydro 1 11.5
Pumped Storage 0.76 11.5

Table D.4.: Assumptions on fuel prices [EUR/MWhth]

Fuel Price

Uranium 3
Lignite 3
Coal 10

Natural Gas 20
Oil 33

Table D.5.: Assumed electricity demand per country [TWh], based on 2019 levels ac-
cording to ENTSO-E (2020b)

Country Demand Country Demand

AT 67 IE 29
BE 85 IT 307
BG 32 LT 12
CH 62 LV 7
CZ 63 NL 114
DE 530 NO 128
DK 35 PL 156
EE 8 PT 49
ES 248 RO 52
FI 86 SE 132
FR 456 SI 14
GR 51 SK 28
HR 17 UK 263
HU 41
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D.3. Impact of Fuel Prices on Short-term MAC
Curves

Figure D.1 depicts the impact of different gas prices (10, 20 or 30 EUR/MWhth)
on short-term MAC curves, i.e., if no investments are possible.

Figure D.1.: Short-term MAC curves for different coal/gas price spreads

The lower part of the MAC curve reflects the margin between coal and gas
prices. Under lower gas prices, modern gas power plants replace inefficient coal
generation even without a carbon price signal. Higher gas prices have the oppo-
site effect. Only below 10 EUR/t, higher gas prices do not impact fuel switching
as the margin between coal and gas is not closed by such low carbon prices.
The upper part of the MAC curve is similar since the fuel-switching potential
is reached independently of the gas price. Only minor shifts in the dispatch of,
e.g., biomass affect the MAC curve.
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Höffler, F. (2009). Engpassmanagement und Anreize zum Netzausbau im leitungs-
gebundenen Energiesektor, volume 20 of Common Goods: Law, Politics and
Economics - Gemeinschaftsgüter : Recht, Politik und Ökonomie. Nomos,
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J., and Häger, U. (2023). Operation strategies of battery energy storage sys-
tems for preventive and curative congestion management in transmission grids.
IET Generation, Transmission & Distribution, 17(3):589–603.
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