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Abstract

During antigenic evolution, a virus alters its presentation to the immune system,
reducing the ability of the immune system to recognize and protect against
the virus. Those viruses that most successfully escape from immune protection
are selected for in the evolutionary process. These viruses are most likely to
predominate in the future viral population. The selection pressures that shape
this evolution are computable from models that use molecular input data on the
interaction between the virus and the immune system. Given these selection
pressures, future evolutionary trajectories of viruses can be predicted. These
predictions help the timely identification of emerging variants and inform the
most protective antigenic composition of vaccinations. Alternatively, given
frequency trajectories of viral evolution, key parameters can be learned that
describe the molecular interaction between the virus and the immune system.
These parameters describe the effects of immune therapy while considering the
evolutionary response of the virus explicitly.

In this thesis, I discuss the antigenic evolution of three fast-evolving viruses.
First, I analyze the in vivo antigenic escape evolution of HIV-1 from a broadly
neutralizing antibody. In this analysis, I use data from clinical trials to infer
key fitness parameters that determine escape evolution across multiple hosts.
Second, I present an antigenic model to predict the evolutionary trajectories of
SARS-CoV-2. The model is the first to use human antigenic data to predict
viral evolution. In this work, I combine genetic, epidemiological, and antigenic
data to model the population immunity that determines viral fitness. The
fitness model can predict the short-term evolution of SARS-CoV-2, as well as
predict the antigenic profile of future escape variants. Finally, I present a set
of methods for the evolutionary analysis of influenza. It contains methods on
evolutionary tracking, inference of selection, inference and tracking of population
immunity, fitness modelling, and computation of vaccine protection. The focus is
on influenza, but the methods are also relevant to other respiratory viruses, in
particular SARS-CoV-2.

Together, the work shows how the selection pressures that steer the antigenic
evolution of viruses can be computed. Antigenic evolution is predictable. Fitness
modelling of antigenic evolution can aid the design of better immune therapies
against HIV-1 and improve the antigenic composition of vaccinations that protect
people against respiratory viruses.
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Chapter 1

Introduction

Viruses are a diverse group of parasites that replicate inside living cells. They
transmit between infected individuals in a variety of ways. Viruses cause epidemics
through rapid spread in a population. Pandemics occur when the virus is
widespread throughout the world. When a virus is continuously present in a
population, but the number of infected individuals stays relatively constant, a
virus is said to be endemic. The public health burden of a virus depends on
the related disease severity and the type of epidemiological circulation. The
immune system provides a natural defence against the virus. Vaccinations
exploit this defense by eliciting an immune response that produces protective
antibodies against the virus. Childhood vaccinations against measles and polio
can provide lifelong protection against disease [1, 2]. A worldwide vaccination
and surveillance campaign even eradicated the smallpox virus [3]. For other
viruses, such as HIV, influenza, and SARS-CoV-2, such long-lasting protection
has not yet been achieved. These viruses mutate rapidly and can escape from
the protection of the immune system.

HIV, influenza, and SARS-CoV-2 are three different types of viruses, but
show common modes of evolution. HIV is a retrovirus that infects human
immune cells [4]. HIV has a high error rate in its replication cycle and produces
large amounts of new virions each day [5]. Infections are long-term and are
characterised by continuous co-evolution of the virus and the immune system
[6]. The corresponding intra-host evolutionary pattern of HIV is driven by
strong selection [7]. In contrast, the between-host evolution of HIV is only
weakly driven by selection and shows a more geographical structure [4]. Human
influenza virus infects cells in the respiratory pathway and can be transmitted
through respiratory droplets. Individuals recover typically fast and build up
immunity against reinfection with the virus. Influenza has a high error rate and
evolves to avoid immune recognition of individuals that have previously been
immunised [8, 9, 10]. Tracking the evolution of influenza, the recommended
vaccine composition is regularly updated to match the antigenic characteristics of
the circulating viral population [11]. Immune selection occurs on the level of the
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2 CHAPTER 1. INTRODUCTION

host population: viral variants that have escaped immune detection can infect
more individuals in the population, giving the variant a competitive advantage
[12]. The evolutionary pattern of influenza is similar to that of the intra-host
evolution of HIV with fast evolution and strong selection pressure [7]. Finally,
SARS-CoV-2 also infects cells in the respiratory pathway and transmits in a
similar manner as influenza. The mutation rate of SARS-CoV-2 is an order of
magnitude smaller than in influenza [13]. Nevertheless, SARS-CoV-2 has already
displayed a pattern of antigenic evolution, requiring updates to the vaccine
recommendation [14, 15]. In the first four years of evolution, SARS-CoV-2 has
shown a pattern of fast evolution and strong selection pressures.

Each of these three viruses evolve under selection generated by the immune
system, either within a host, or on the population level. The evolutionary pressure
is the same: the immune system produces neutralising antibodies that bind to
an exposed part of the viral protein, the viral epitope, and stop the virus from
replicating [16]. Mutations in the genome of the virus introduce small changes to
the viral epitope, changing this binding interaction. When antibodies recognizes
the viral epitope less well, they become less efficient at stopping viral replication,
making the mutated virus more competitive. This interaction within a single
host drives HIV-1 evolution [17, 18]. On the scale of the human population,
this interaction affects the number of individuals susceptible to infection and
thereby shapes the antigenic selection pressures observed in influenza [8, 9, 10]
and SARS-CoV-2 [15].

The tools to describe evolution in HIV, influenza, and SARS-CoV-2 are also
similar: biophysical rules describe the interaction between the antibody and the
virion and are thus shared across pathogens. Mutations affect the binding affinity,
which is the energy difference between the bound and unbound virion-antibody
complex. However, the binding probability between the antibody and the virus
is the phenotype on which antigenic evolution acts. A nonlinear map relates
the binding affinity to the binding probability [19, 20, 21]. This nonlinear map
describes the key interaction between the immune system and each of these three
pathogens. The nonlinearity that it introduces allows the biophysical model to
describe the effect of mutations on viral evolution.

Second, the evolution of SARS-CoV-2 and influenza is described on the level
of viral clades. A viral clade is a group of viruses that share the same common
ancestor and thus have a common genetic characteristic. The intra-host evolution
of HIV analysed in this thesis is also described by groups of viruses with shared
genetic characteristics. The frequency of a viral clade is the fraction of infected
individuals corresponding to a strain of that clade [7]. The equivalent for HIV
is the fraction of viruses of a particular genetic group that circulates in blood
and tissue. Evolution is the continuous competition and replacement of clades
or viral groups in the viral population. Frequency trajectories of viral clades
describe the dynamics of this evolution: a clade can expand until the whole
circulating viral population is part of that clade and now shares the same genetic
characteristic. The mutation that spawned the viral clade has then fixated in
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the viral population. Other clades are unsuccessfull and disappear from the viral
population.

In order to predict the future growth of a viral clade, each clade can be
assigned a fitness. The fitness of a viral clade, with respect to the average
fitness in the population, is informative of the prospective change in clade
frequency. In this way, viral evolution can be predicted by correct estimation
of viral fitness. Fitness is a complex phenotype that integrates the antigenic
interaction between the virus and the host with several other molecular functions
of the virus. In general, these different molecular functions do not change
independently; constraints in one phenotype restrict antigenic evolution [22,
23]. Fitness models can integrate molecular-level data to estimate viral fitness.
Examples are neutralisation measurements of viral isolates by seroconvalescent
sera [24, 25, 26], replication kinetics [24, 27, 22, 28] or binding affinity between
the virus and its target receptor on the cell [24, 29]. In this way, fitness models
act as a bridge across scales to compute how a change to molecular function
affects fitness.

Challenges to describe evolution in these pathogens involve the appearance of
new mutations. The evolution of influenza is characterized by clonal interference
[30]. Clonal interference happens in asexually evolving pathogens when adaptive
mutations appear at a high rate, before older mutations have either fixated in
or disappeared from the viral population. Adaptive mutations either spawn
new clades that compete with existing clades, or reinforce other clades when
they appear in a nested manner [31]. Clonal interference reduces the long-term
predictability of evolution. Similarly, for SARS-CoV-2, even though it evolves
through recombination [32], new clades appear before older mutations have fixated
in the population. Additionally, within-host evolution during chronic infections
seems to play a role in the emergence of new viral clades in SARS-CoV-2 [15].
For HIV, predictability is reduced through uncertainty in the initial distribution
of mutants in the population. This distribution is controlled by a continuous
process of mutations and selection [33]. The frequency of mutant strains in this
distribution is thus influenced by stochastic forces. As the selection pressure
suddenly changes, the initial frequency of a mutant is an important determinant
of subsequent escape evolution, limiting the universal escape dynamics of HIV
across different hosts.

This thesis includes three works that describe the antigenic evolution of
HIV-1, SARS-CoV-2, and influenza. In chapter two, I present an analysis of the
escape evolution of HIV-1 from a broadly neutralizing antibody. This neutralizing
antibody is passively infused in the blood of the with HIV-1 infected individual
and exerts the antigenic pressure on the evolution of the virus. The concentration
of the antibody decays exponentially after the infusion, creating a time-dependent
fitness landscape for the different viral variants. A biophysical model describes
and predicts the escape patterns of the wild type and mutant viruses across 11
different individuals. This work shows a fitness trade-off between two fitness
components, antibody resistance and the basic replication rate of the virus.



4 CHAPTER 1. INTRODUCTION

In the third chapter, I present work on the antigenic evolution of SARS-CoV-2.
This work is the first to use human antigenic data to predict viral evolution.
Quantifying population immunity is central to this aim. Population immunity
gives the amount of protection for groups of individuals against each viral clade.
It summarizes the network of interactions between the viral clades and the
population of hosts. Groups of individuals with similar immune responses are
treated as single immune classes. Population immunity is tracked by integrating
genetic, epidemiological, and antigenic data. Viral fitness is directly proportional
to the population immunity, weighed by the sizes of the immune classes. This work
shows how evolutionary trajectories can be predicted by population immunity,
but also, in turn, how population immunity is shaped by the circulation of
viral clades. The fitness model successfully predicts the short-term evolution of
SARS-CoV-2, as well as the antigenic profile of future escape variants, prior to
their emergence.

In the final chapter, I present work on the antigenic evolution of influenza.
It describes a set of methods for predictive analysis: it contains methods on
evolutionary tracking, inference of selection, inference and tracking of population
immunity using different types of input data, fitness modelling, and computation
of vaccine protection. This chapter builds and expands on the approach taken
in chapter three: viral fitness is proportional to the appropriately weighed
population immunity and viral clade frequency trajectories can be predicted
from the estimated fitness. In addition, the chapter describes how additional
phenotypes inform fitness and how the fitness model can be calibrated using
empirical fitness data, as measured from frequency trajectories. Finally, it derives
measures of vaccine protection against an evolving viral population that can be
used to rank candidate vaccines. This output of the analysis can be used for the
pre-emptive vaccine strain selection for the seasonal influenza vaccination.

Each chapter involves the computation of a dynamic fitness landscape, or
fitness seascape. The fitness seascape quantifies how the fitness of viral variants
changes over time, as the immune pressure changes. For HIV, the immune pres-
sure is time-dependent because of the decay of the broadly neutralizing antibody
concentration in the blood. For SARS-CoV-2 and influenza, the immune pressure
is time-dependent because circulation of the virus changes the population immu-
nity and the immunity of an individual wanes after an infection or vaccination.
The fitness seascape changes the selection coefficients of viral variants, or even
changes the fitness ranking. The effect on the frequency trajectories of the
viral variants is computed by combining population genetics with biophysical
modelling of the fitness seascape. For this purpose, each chapter involves the
data integration of multiple data sources that inform this dynamic landscape. For
each pathogen, the virus-immune interaction is the main driver of viral evolution.
The effect of this antigenic interaction is computable, allowing for the prediction
of antigenic evolution.



Chapter 2

In vivo escape dynamics of HIV-1

Despite progress in HIV treatment and prevention, HIV is still a global public
health issue. In 2022, an estimated 39 million people live with an HIV infection,
with an estimated 1,3 million new infections and 630.000 deaths [34]. Within
a host, HIV is extremely difficult to clear. It has a high turn-over rate with
more than a billion new virions produced each day [5] and an error rate of
⇠ 0,2 errors per genome for each replication cycle [35]. Together, this gives the
virus an extraordinary capacity to evade the immune system. Indeed, the virus
continuously escapes from the humoral immune response [17]. In addition, HIV
is a retrovirus and can encode itself into the human DNA, avoiding any detection
from the immune system. Because of the ability of HIV to escape the immune
system, HIV infections are long-term infections with continuous co-evolution
of the virus and the immune system [6]. HIV infects the human immune cells
and slowly depletes the number of helper T-cells. When left untreated, HIV
can advance to acquired immunodeficiency syndrome (AIDS), which leaves the
individual susceptible to other diseases and often leads to death [4].

Treatment with antiretroviral therapy (ART) can successfully reduce viral
loads, prevent disease progress and even prevent viral transmission [36]. Taken
daily, ART interferes with reverse transcription, integration, and/or viral entry to
prevent new infections [37]. Interruption of the treatment leads to the reactivation
of dormant viruses in infected individuals. Therefore, a life-long administration
of ART is necessary. ART is not a cure from HIV, and not all infected individuals
have access to this treatment [38]. As an alternative avenue, broadly neutralizing
antibodies (bnAbs) are considered to be used for phophylaxis, therapy, and as a
guide to vaccine design [39, 40, 41, 26]. These antibodies are isolated from with
HIV-1 infected individuals and can effectively neutralize the majority of existing
HIV-1 isolates. When used as therapy, bnAbs are passively transfered to an
infected individual to combat the infection and remain active for several months.
Initial studies show that bnAb therapy transiently reduces the viral load, but
selects for variants that have acquired resistance to the bnAb [42, 43, 44, 45].
Therapy with a combination of bnAbs could more durably suppress the virus,
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6 CHAPTER 2. IN VIVO ESCAPE DYNAMICS OF HIV-1

since multiple escape mutations are necessary for viral rebound [46, 47, 48].
Remaining challenges include the selection of bnAbs with nonoverlapping target
sites, the characterisation of HIV escape variants and their fitness costs, and the
design of treatment protocols that can sustainably suppress the viral load.

The following is published work analyzing HIV-1 escape dynamics from
monoclonal therapy with two different bnAbs using data from refs. [42, 45]. In
the escape dynamics, multiple variants compete in the viral population while the
selection pressure from the bnAb changes over time. Despite this complexity,
universal fitness factors are consistent across multiple individuals and can be
separated from host-specific factors. The model has a predictive power that
shows that the evolutionary response to the bnAb is computable and can be used
to design optimal bnAb dosage protocols. The fitness factors show a resistance-
growth rate trade-off for escape mutants: Intrinsic fitness factors are affected by
changes to the protein that decrease recognition from the bnAb. Successfull bnAb
therapies can use this trade-off to limit the number of viable escape variants.

The next section has appeared as,

Meijers et al., Predicting in vivo escape dynamics of HIV-1 from a broadly
neutralizing antibody. PNAS 118(30), e2104651118 (2021).

On this work, I am first author and I have performed the research and analysis
under supervision of the last author. The paper is co-written with the last author;
other authors have supportive and editorial contributions.

In accordance with the doctoral regulations, this article, already published in
a peer-reviewed scientific journal, is not attached in the published version of this
thesis.



Chapter 3

Antigenic evolution of
SARS-CoV-2

At the end of 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) emerged and quickly spread across the globe. In March 2020, the WHO
officially characterised the outbreak as a pandemic and the associated disease,
COVID-19, was declared a Publich Health Emergency of International Concern
(PHEIC) [49]. The pandemic had a large impact on public health: there have
been nearly 180 million cases and more than 1 million deaths reported in the EU
up to January 2023 [50]. It is likely that the true number of cases is higher still,
due to the underreporting of cases. Because of non-pharmaceutical interventions
such as school closures and stay-at-home orders, public life was also strongly
affected by the pandemic. Now in 2024, population immunity has been built
up against SARS-CoV-2 and COVID-19 is no longer a PHEIC. However, SARS-
CoV-2 continues to infect large numbers of people and evolves to evade immune
protection.

SARS-CoV-2 is a member of the family of coronaviruses. Related viruses
include those that cause the common cold, as well as the SARS-CoV-1 virus that
caused an epidemic in 2003. SARS-CoV-2 infects cells in the upper respiratory
tract [51]. Recovery happens often quick. The virus spreads through respiratory
droplets in the air that are released when coughing or speaking [52, 53]. This
leads to infection chains where the virus is able to infect many individuals in the
population. Combined with a mutation rate on the order of ⇠ 10�6 mutations
per nucleotide per replication [13], SARS-CoV-2 evolves quickly and has spawned
a succession of different Variants of Concerns (VOCs), as named by the World
Health Organization [15, 54]. The selective advantage of these variants can
be measured experimentally [55, 56], or a postiori with genetic methods [57].
Here I show how molecular measurements can be used to reconstruct the fitness
landscape that drives the evolution of SARS-CoV-2.

Mutations that confer a selective advantage to the virus can be grouped in
two classes: intrinsic mutations change an inherent function of the virus, such
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8 CHAPTER 3. ANTIGENIC EVOLUTION OF SARS-COV-2

as binding affinity to human receptors [55] or protein stability [58]. Antigenic
mutations, on the other hand, change how well the virus is recognized by the
immune system of individuals that were previously infected and decrease their
immune protection. This effect of antigenic mutations on the immune recognition
is measured in neutralisation assays. The fitness effect of antigenic mutations
depends on the epidemiological context of the epidemic: immunisations from
infections and vaccinations generate population immunity, which in turn shape
the antigenic fitness landscape. The fitness effect of intrinsic mutations shows
no such context-dependence. In the following published work, we compute
the population immunity by combining genetic, antigenic, and epidemiological
data. The selective forces that drive clade growth are decomposed in selection
components for intrinsic and antigenic effects. Population immunity predicts
short-term evolution of viral clades and defines windows of strong antigenic
selection for emerging variants. This analysis shows how population immunity
shapes the fitness seascape of SARS-CoV-2 evolution and how immunity acts
across scales – from the molecular up to the population.

The next section has appeared as,

Meijers et al., Population immunity predicts evolutionary trajectories of
SARS-CoV-2. Cell 186, 5151-5164 (2023).

On this work, I am first author and I have performed the research and analysis
under supervision of the last author. The project has been developed in the
context of many scientific discussions with all co-authors. Denis Ruchnewitz has
performed the genealogical analysis of SARS-CoV-2 in the manuscript. The paper
is co-written with the last author; other authors have supportive and editorial
contributions.

In accordance with the doctoral regulations, this article, already published in
a peer-reviewed scientific journal, is not attached in the published version of this
thesis.



Chapter 4

Antigenic evolution of influenza

Seasonal influenza virus has multiple similarities with SARS-CoV-2: both target
cells in the respiratory pathway, spread in a similar manner [59], have short
generational intervals [60, 61], and evolve to avoid immune recognition [8, 9, 10].
While SARS-CoV-2 has emerged in the human population in 2019, influenza has
been circulating in the human population for a longer time – the current endemic
lineages A/H3N2 and A/H1N1pdm09 emerged in 1968 and 2009, respectively.
Influenza generates seasonal epidemics in temperate climates and can occur
throughout the year in tropical regions. Hundreds of millions of infections occur
each year and it is estimated there are on the order of 500.000 deaths anually
throughout the world [62, 63].

There are four genera of influenza viruses: types A, B, C, and D. Influenza
A and B are responsible for most infections. Influenza A is further subtyped
depending on the two expressed surface proteins, haemagglutinin (types H1 up
to H18) and neuraminidase (types N1 up to N11). The natural reservoir for
influenza A is in wild birds, but the virus can jump to mammalian hosts [64].
When such an event happens, known as zoonosis, the virus can cause a pandemic
in the largely naive human population, such as the influenza A/H1N1 Spanish
Flu pandemic of 1918, or the A/H1N1pdm09 Swine flu pandemic in 2009 [65, 66].
As the virus continues to circulate, the virus mutates. Its evolution shows a
pattern of positive selection in the epitope sites of the HA protein [30]. Mutations
in the epitope sites decrease the immune protection that exists in the population
and slowly change the presentation of the virus to the immune system, a process
known as antigenic drift [67]. Due to this immune escape, antigenic variants have
a larger pool of susceptible individuals in the population that they can infect,
giving the variant a selective advantage. In this way, population immunity drives
the evolution of influenza A.

Vaccination is the best way to prevent influenza infection. But as influenza
evolves antigenically, the immune protection of vaccination is decreased [8, 9, 10].
Therefore, regular vaccine updates are necessary to antigenically match the vaccine
composition to the circulating viral population. Since 1952, global influenza
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surveillance has been conducted through the WHO’s global influenza surveillance
and response system (GISRS) [68]. On this platform, institutions collaborate
by sharing viruses and monitoring influenza epidemiology and evolution. The
antigenic evolution of influenza is tracked using HA inhibition or neutralisation
assays. Combined, the antigenic and epidemiological data inform the WHO’s
recommendation for the influenza vaccine composition [69]. Because of the time
delay between recommendation and vaccine distribution, predictive models for
the short-term evolution of influenza can improve the vaccine recommendation.
In this chapter, a set of computational tools are described for the evolutionary
tracking and predictive analysis of influenza. It combines genetic, epidemiological,
antigenic, and other phenotypic data to construct a fitness model for influenza
and shows how this model can be used for evolutionary predictions. It also
describes how to estimate the protection of vaccine strains against the present
and future viral population, which can be used to rank the candidate vaccine
strains for the composition of the influenza vaccine.

The next section has been accepted for publication as,

Meijers et al., Concepts and methods for predicting viral evolution. Influenza
Virus: Methods and Protocols, edited by M.J. Amorim and Y. Yamauchi, Springer,
in press.

On this work, I am co-first author together with Denis Ruchnewitz. I have
performed the research and analysis for the sections 3.3 Tracking population
immunity, 3.4 Evolutionary prediction and validation, and 3.5 Vaccine protection.
These sections are co-written by me and the last author; other authors have
supportive and editorial contributions. In other sections, I have had supportive
and editorial contributions. The project has been developed in the context of
many scientific discussions with all co-authors.
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Summary

The seasonal human influenza virus undergoes rapid evolution, leading to significant changes in
circulating viral strains from year to year. These changes are typically driven by adaptive mutations,
particularly in the antigenic epitopes, the regions of the viral surface protein haemagglutinin targeted
by human antibodies. Here we describe a consistent set of methods for data-driven predictive analysis
of viral evolution. Our pipeline integrates four types of data: (1) sequence data of viral isolates
collected on a worldwide scale, (2) epidemiological data on incidences, (3) antigenic characterization of
circulating viruses, and (4) intrinsic viral phenotypes. From the combined analysis of these data, we
obtain estimates of relative fitness for circulating strains and predictions of clade frequencies for periods
of up to one year. Furthermore, we obtain comparative estimates of protection against future viral
populations for candidate vaccine strains, providing a basis for pre-emptive vaccine strain selection.
Continuously updated predictions obtained from the prediction pipeline for influenza and SARS-CoV-2
are available on the website previr.app.

Keywords: antigenic evolution, population immunity, influenza vaccines, fitness models

1 Introduction

Global populations of the influenza virus encompass multiple antigenically distinct groups. The strains
descending from a given mutant strain define a clade of the evolving viral population. A part of
the genetic diversity encodes antigenic diversity: new strains escape human immunity generated by
infection or vaccination with previous strains – partially and into different directions. Antigenic
diversity enables fast evolution driven by human immune pressure, leading to genetic and antigenic
turnover on timescales of a few years. Thus, influenza evolution continuously decreases the protection
of a given vaccine and requires regular vaccine updates. Given the time required for the development,
production, and delivery of vaccines, current decisions to update the vaccine strain are made about

∗Equal contributions
†To whom correspondence should be addressed. Email: marta.luksza@mssm.edu, mlaessig@uni-koeln.de
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nine months in advance of the next influenza season. Hence, optimal vaccines should be chosen in a
pre-emptive way, to provide the best response to the strains circulating in the next season. These
decisions benefit from modeling in two ways: to predict the antigenic characteristics of next year’s
circulating strains and to estimate the protection profile of different vaccine candidates against these
strains.

Two kinds of methods are currently used for influenza predictions in the context of vaccine strain
selection. One strategy is to estimate growth differences between viral clades from a sequence- or
phenotype-based fitness model. The original predictive fitness model for influenza uses amino acid
mutations within antigenic sites of influenza hemagglutinin as markers of positive selection for antigenic
escape, as well as mutations outside epitopes as a measure of negative selection (mutational load) [1].
Antigenic assays measure the binding or neutralization capacity of host antisera against panels of test
strains. More recently, suitably curated data from such assays [2] have been integrated into antigenic
fitness models for predictions [3, 4, 5]. A complementary, model-free approach is to harvest genealogical
trees built from viral sequences for information on the recent growth of genetic clades; this information
can be extrapolated to predict near-future clade frequencies [6].

Digesting viral data into successful predictions poses a fundamental problem: to assess the effects
of genetic and phenotypic changes in viral strains facing the heterogenous population of all of our
immune systems. Moreover, viruses and immune systems are coupled in a fast co-evolutionary process,
so successful antigenic predictions have to track, and project into the future, the changes in viruses
and in human population immunity [5].

The computational analysis of influenza evolution, including predictions of near-future viral
populations, is made possible by a unique combination of available data. First, sequence evolution of
human influenza lineages is documented by worldwide surveillance over several decades [7]. Currently,
about 40.000 sequences of human influenza are sequenced each year. Second, influenza incidences, in
part subtyped by lineage, is reported from multiple countries on a weekly basis. Third, the interactions
of human and ferret antisera and viruses are extensively characterized by antigenic assays, specifically
hemagglutination-inhibition (HI) and neutralization tests [8, 9, 10, 11, 12, 13].

In this chapter, we describe an integrative suite of methods that combines all of these data to
predict the prevalence and characteristics of emerging variants for fast-evolving respiratory viruses
(Fig. 1). We focus on the analysis of human influenza, and we compare with parallel methods and
results for SARS-CoV-2 where appropriate. We first describe the computational processing of viral
sequence data, including the construction of genealogical trees and the evolutionary tracking of viral
clades. As an application, we discuss how sequence and tree data can be combined to infer selection on
the evolution of influenza proteins. Next, we describe the integration of epidemiological and antigenic
data, which provide information on human immune pressure acting on viral evolution. We assemble
this input into a data-driven fitness model for viral evolution and develop model-based computational
estimates of vaccine protection.

2 Materials

2.1 Genetic data

The repositories GenBank [14] and GISAID [15] contain large numbers of influenza genome sequences
(currently > 400.000 for human seasonal lineages). We use a primary curation procedure to exclude low-
quality or incomplete sequences. We perform the following steps: (1) Initial curation: raw, unaligned
consensus nucleotide sequences with > 1% ambiguous characters or without a complete collection
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Figure 1. Pipeline for predictive analysis of viral evolution. (1) Input data: viral sequence data,
epidemiological data, antigenic data, intrinsic viral phenotypes (protein stability, receptor binding,
cell entry pathway, intra-cellular replication efficiency, ...). (2) Evolutionary tracking: viral
evolution (clade frequency trajectories and empirical clade fitness trajectories), clade-specific
incidence dynamics, population immunity, and phenotypic evolution are tracked using a timed
strain tree. (3) Predictive analysis: fitness models are built from tracked immune data and
tree-mapped sequence data and are calibrated by empirical fitness. (4) Predictive output: fitness
models serve to predict clade trajectories and antigenic evolution and to rank candidate vaccines by
their predicted protection against future viral strains.

date are excluded. (2) Alignment: the remaining sequences are aligned with MAFFT [16], using a
reference isolate from GenBank (typically one of the oldest isolates available, e.g., A/HongKong/1-
5-MA21-1/1968 for influenza A(H3N2)). (3) Secondary curation: From the aligned set, we discard
sequences containing > 1% ambiguous characters. (4) Exclusion of outlier sequences (optional): We
record pairwise sequence divergence and exclude isolates outside the 95th percentile within a given
month. This step can filter out isolates from potential zoonotic events (transmissions from animals to
human hosts). Together, these steps produce a set of aligned, high-quality sequences of viral isolates
for all subsequent analyses (currently about 40.000 sequences/year for human seasonal influenza).

2.2 Epidemiological data

The size of influenza epidemics varies considerably between years, lineages, and geographical regions [17,
18, 19]. Factors determining the size of the influenza epidemic include the antigenic novelty of the
predominant strains, as well as environmental, and socio-demographic factors [20]. We track the
number of influenza cases using the epidemiological records provided by FluNet [21], a surveillance tool
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of the Global Influenza Surveillance and Response System (GISRS) FluNet reports weekly numbers
of influenza virus infections that are detected at the country-level, totalling about 370.000 influenza
cases per year from 122 different countries, regions, or territories. Detected influenza cases are tested
for influenza type (A or B); subtyping into lineages is provided for a large fraction of the cases. For
cases that are not subtyped, we assign the case data to the different influenza subtypes, using the
distribution of positive tests at that time in the corresponding region.

2.3 Antigenic data

Antigenic assays measure the neutralization capacity of antiserum from a human or animal host against
a panel of test viruses. Common assays include the classical hemagglutination-inhibition (HI) assay [10]
and various types of viral neutralization assays [11, 12]. In an HI assay, binding of viral particles to red
blood cells prevents their hemagglutination; antibody-antigen binding can disrupt hemagglutination.
The assay is performed with serial 2-fold dilutions of the antiserum. The maximum log2 dilution titer
at which the red blood cells do not agglutinate, T , provides a readout of the net binding between
antiserum and virions [22]. In neutralization assays, the antiserum is titrated in the presence of virions
and target cells; the recorded titer measures the minimum serum concentration needed to inhibit cell
infection by 50%. In both assays, higher titers correspond to better recognition of the test virus by the
antiserum.

In the common animal model for influenza, naive ferrets are infected with an influenza strain which
we call the reference strain. Antigenic assays record the titer T

j
i that quantifies the neutralization

of virus i by antiserum raised against reference strain j. Absolute titer values are confounded by
non-antigenic effects, such as the potency of the antiserum or the avidity of the red blood cells used in
the HI assay [23] . Therefore, we preprocess titer data to remove spurious variation in the homologous
titers T j

j : we apply shifts T j
i ! T

j
i +(hT j

j i�T
j
j ), where hT

j
j i is the average homologous titer in the raw

data (for influenza ferret assays, hT j
j i ⇡ 11). These standardized titers are used in the remainder of the

text. The transformation leaves titer differences �T
j
i = T

j
j �T

j
i , which measure evolutionary differences

between viral strains, unchanged. For the predictive data analysis reported in this chapter, we use a
published set of primary antigenic data produced by the Worldwide Influenza Centre, London [24].
This dataset contains nearly 30.000 HI titers with test strains in the period 2010 – 2023. Reference and
test strains are carefully chosen to cover the antigenic diversity of the evolving population of circulating
strains.

Two further types of antigenic data have recently been included into evolutionary analysis: antigenic
assays using polyclonal human antisera [25, 26] and deep mutational scanning data (DMS) [25, 26, 27].
In DMS experiments, a given backbone viral strain is used to construct a library of mutant strains, most
of which contain a single point mutation away from the backbone strain. Then, in a high-throughput
way, an escape score against a given antiserum is evaluated for each mutant [28, 29]. In sections 3.3
and 3.4, we discuss the extension of predictive methods to these data and highlight challenges specific
to each data type.

3 Predictive analysis of viral evolution

3.1 Tracking viral evolution

The continuous, time-resolved surveillance of circulating influenza viruses is key to track evolutionary
changes [30] and is the basis for predictive analysis. Here we discuss a pipeline for evolutionary
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tracking that combines sequence data, epidemiological records, and phenotypic data. Based on a
timed genealogical tree of the evolving viral population, we first construct trajectories of evolutionary
change at the level of clade frequencies, clade fitness, and mutant allele frequencies. Second, integrating
information from epidemiological records, we obtain trajectories of clade-specific case counts. Third,
we discuss the mapping of molecular phenotypic data to the strain tree; the special case of antigenic
phenotypes will be taken up in section 3.3.

Tree reconstruction and reassortment detection

Genealogical trees are graphical representations of inferred evolutionary relationships among collected
samples, illustrating their common ancestry and divergence over time [31]. Two types of tree reconstruc-
tion methods are most commonly used for viral data analysis: maximum parsimony approaches analyze
sequences directly to infer a tree topology with the least evolutionary changes. Maximum likelihood
methods use statistical models of sequence evolution to estimate the probability of a particular tree
structure given the observed data, together with the probability of the evolutionary steps along the
tree. Maximum likelihood approaches are generally favored for their accuracy and flexibility, despite
their higher computational demands [32].

We use a probabilistic, maximum-likelihood approach utilizing IQTree2 [33], which supports
various evolutionary models. Following an inference of the tree topology, TreeTime [34] is employed
to infer the time and sequences of internal nodes in the resulting trees. We perform the following
steps: (1) Determine a maximum-likelihood sequence evolution model (if unknown). ModelFinder
[35] identifies nucleotide substitution models that best fit the data based on likelihood metrics. For
seasonal influenza, a suitable assumption is the general-time-reversible model (GTR) with invariant
sites (I), nucleotide frequencies inferred from data (F), and site-specific rates of 8 categories (R8) (the
corresponding model name for IQTree2 is GTR+F+I+R8). (2) Construct a maximum-likelihood tree
of curated genetic data using IQTree2. The output from step 2 is a nexus file that stores the inferred
topology. (3) Use TreeTime [34] to infer the ancestral sequences and the time of internal nodes of the
genealogical tree.

The result of this procedure above is a timed, genealogical tree of available sequences (see Note 1
for further discussion). A strain tree for influenza A(H3N2) is shown in Figure 2A. The tree describes
the tracked genetic evolution of the virus; individual nucleotide and amino acid changes are mapped on
specific branches. Collected isolates are depicted on the tree as leaves (small circles). Internal nodes
(positioned at junctions of branches) represent the inferred common ancestors of the isolates. The tree
is colored by clades, which are genetically distinct groups of strains with a recent common ancestor. In
defining a set of clades, the appropriate level of coarse-graining is an intricate problem and depends
on the goals of the analysis. Criteria for delineating clades include epitope mutations or measured
antigenic differences, changes in protein stability or other phenotypes, or significant growth increase
compared to the ancestral clade. All of these changes are possible markers of fitness differences relevant
for evolutionary predictions (section 3.4).

Influenza viruses have a segmented genome with multiple chromosome-like segments (8 segments
for influenza A and B). These segments can mix during replication if a host is co-infected with two
distinct strains. This process, called reassortment, significantly contributes to the genetic diversity of
influenza, particularly for influenza type A viruses [36, 37]. Reassortment events break the assumption
that each sequence originates from a single parent, which underlies tree reconstruction. Therefore,
trees are commonly reconstructed for each segment independently; this step is followed by tree
reconciliation analysis using visualization with tanglegrams, manual comparison [36, 38], or algorithmic
approaches [39, 40, 41, 42]. Here, we implement a joint procedure of tree reconstruction and reassortment
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detection for the genes encoding the surface proteins hemagglutinin (HA) and neuraminidase (NA),
which accumulate more sequence changes than other genes. This procedure contains computationally
efficient reassortment detection operating at the level of sequences: by comparison with earlier sequences,
we identify isolates that have an exceptionally high number of changes in the NA segment, compared to
a null model of sequence evolution by point mutations; a related approach has been proposed in ref. [43].
The algorithm partitions the sequence sample into bi-segment sequence clusters free of significant
reassortments. For each cluster, we obtain a maximum-likelihood tree based on linked bi-segment
sequences by the method described above, resulting in a subtree with a significantly reassorted sequence
at its root. Finally, each cluster is mapped to a parent cluster, using the maximum-likelihood HA
ancestor of its reassorted root sequence. The output is a bi-segment tree with point mutations and
significant reassortments mapped on its branches.

Viral frequency trajectories

A partitioning of the strain tree into clades is defined by a set of internal nodes, each representing
the last common ancestor of a given clade. Each strain is mapped to exactly one clade, given by the
closest clade-defining node in its ancestral lineage. The evolutionary success of a given clade, ↵, is
described by its time-dependent population frequency trajectory, x↵(t). We compute these frequency
trajectories as follows. For each isolate i, we define a frequency xi(t) = w(t� ti)/

P
j w(t� tj), where

ti is the reported collection date and w(⌧) = exp
�
�⌧

4
/4�2

�
with � = 45d. The weight function w(⌧)

is a smooth sliding window and a heuristic measure of the temporal distribution of cases related to
each reported isolate. The frequency of each clade is then the sum of the frequencies of its strains,

x
↵(t) =

X

i2↵
xi(t). (1)

Clade population frequencies, by definition, sum up to one,
P

↵ x
↵(t) = 1 for all t.

For each clade ↵, we can define the sublineage S(↵) as the union of clade ↵ and all its nested
descendant clades. Sublineages are in one-to-one correspondence with subtrees of the strain tree. They
define a second set of frequency trajectories,

X
↵(t) =

X

i2S(↵)

xi(t). (2)

In a fast-evolving system like influenza, successful clades will rapidly produce new sequence variation
on their genetic background, which defines new, nested descendant clades. Therefore, we rarely observe
clade frequencies x

↵(t) close to 1. By contrast, a sublineage frequency X
↵(t) includes all nested

subclades; it reaches 1 when the sublineage has displaced all competing clades. Fig. 2B shows clade
frequency trajectories x↵(t) for the set of clades marked on the strain tree as a stacked plot; Fig. 2C
shows the corresponding sublineage frequencies X↵(t).

A third set of trajectories tracks the time-dependent population frequency of a given (nucleotide or
amino acid) allele a at a given genome position k,

xk,a(t) =
X

i|k,a

xi(t), (3)

where the sum runs over all strains carrying allele a at position k. In contrast to clade and sublineage
frequencies, allele frequencies count the occurrence of point mutations independently of the genetic
background. Therefore, an observed increase of xk,a(t) may signal an allele-specific fitness advantage.
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Figure 2. Evolutionary tracking of influenza A(H3N2). (A) Timed maximum-likelihood strain tree
based on viral sequences from isolates with collection date from 2010 until end 2023. The tree
is colored by clades ↵ that reach a global frequency X

↵(t) > 0.05 and have potential antigenic
differences to their parent clade (signalled by amino acid change(s) in an epitope or antigenic
advance mapped from ferret antigenic data). (B) Stacked plot of global clade frequency trajectories,
x
↵(t), for this set of clades. (C) Global sublineage frequencies, X↵(t).
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Empirical fitness trajectories

Given a set of clade frequency trajectories, x↵(t), we can also track the relative rates of change,

f̂↵(t) =
ẋ
↵(t)

x↵(t)
, (4)

where dots denote derivatives with respect to time. As discussed in section 3.4, the resulting trajectories
f̂↵(t) measure the relative fitness of each clade, relative to the mean population fitness, as a function of
time. Clades with f̂↵(t) > 0 show a net increase in frequency, clades with f̂↵(t) < 0 a net decrease. A
hat distinguishes these empirical fitness values derived from frequency tracking from the fitness models
introduced below. The time-derivative is evaluated by numerical discretization around the time t or by
Bayesian inference from the timed isolate counts. A related measure of relative clade growth that can
be evaluated from tree topology is the Local Branching Index (LBI) introduced in ref. [6].

Regional frequency tracking

Influenza strain populations show significant variation across regions, generating different sets of major
regionally competing strains. This variation is of particular importance for emerging clades that
originate in a specific region and have to be gauged in that context. Moreover, a regionally distributed
population of circulating strains generates region-specific exposure histories that are relevant for the
antigenic fitness model described below.

Therefore, we track region-specific clade frequencies x
↵
r (t), sublineage frequencies X

↵
r (t), and

allele frequencies xr,k,a(t); the frequencies in a given region r are obtained by summation over all

strains collected in that region. An inference procedure for empirical fitness trajectories f̂↵(t) from
region-specific data is discussed in section 3.4. Major surveilled regions are roughly aligned with named
WHO transmission zones; region-specific tracking can be refined to individual countries whenever this
is relevant for a specific question.

Incidence tracking

By combining regional reported incidence numbers Ir(t) obtained from FluNet [21] with regional clade
frequencies x↵r (t), we infer clade-specific incidence numbers,

I
↵
r (t) = Ir(t)x

↵
r (t), (5)

which enter the tracking of population immunity discussed in section 3.3.

Regional incidence tracking can also serve to flag, and partially correct, differences in sequence
sampling depth between regions. From sequence counts Nr(t) =

P
i2 r w(t� ti) and incidence data Ir(t)

in a set of regions r, we record weight factors mr(t) = Ir(t)/Nr(t) measuring the incidence per sequence
count in each region. Given region-specific clade frequency trajectories, x↵r (t), we can then compute
incidence-weighed global clade frequencies, x↵(t) = m

�1(t)
P

r mr(t)x↵r (t), where m(t) = I(t)/N(t) is
the ratio of global incidence and sequence counts. Incidence-weighed sublineage and allele frequencies
are defined in an analogous way. Alternatively, differences in sampling depth can also be inferred from
local sequence diversity [44, 45].
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Tracking phenotypic evolution

Several independently measurable molecular phenotypes of influenza proteins show evolutionary
variation and may contribute fitness effects. Examples are protein stability, conformation of binding
interfaces, as well as local solvent accessibility and glycosylation status of antigenic epitopes. Using input
from specific sequence data, recent computational methods serve to predict protein structures [46, 47],
the impact of mutations on protein stability and binding of protein complexes [48], glycan shielding
on the protein surface [49], cross-neutralization [50], variation of innate immune response [51, 52], as
well as combinations of phenotypes relevant for growth [53]. Deep mutational scanning [29, 27] and
high-throughput in-vitro evolution [54, 55] provide experimental genotype-phenotype maps.

Tracking phenotypic evolution from these data requires mapping significant changes onto branches
of the strain tree. Here we use a tree-guided interpolation procedure to obtain clade-specific phenotype
values E↵ from data Ei measured for a limited set of strains. This procedure serves several purposes: (1)
to average between measurements Ei within clades with measured data, (2) to infer maximum-likelihood
values E↵ for clades without data, (3) to detect measurement outliers, and (4) to identify branches with
significant phenotypic changes. A specific tracking algorithm is described in the context of antigenic
phenotypes (section 3.3).

3.2 Inference of selection on influenza proteins

Sequence data organized in a genealogical tree and partitioned into clades with time-dependent
sublineage frequencies contain a wealth of evolutionary information. In particular, they can serve to
infer the speed of molecular evolution and the underlying selective forces, in different influenza genes
and gene segments with specific functions. Second, they harbour information on the type of selection
acting on viral clades that can guide the predictive fitness models to be developed below.

As an example of the inference method, Table 1 records the number of synonymous and non-
synonymous nucleotide changes in the HA protein, mapped on a strain tree constructed from > 100.000
isolates for influenza A(H3N2) in the period 1968-2020. The HA protein contains two domains, HA1
and HA2. The antigenic epitopes, which are the primary loci of interactions with the human immune
system are found on the HA1 domain of the protein. These epitopes, designated A to E, contain a
combined total of 62 amino acids [56, 57, 58, 59]. Figure 3A shows the location of the five epitopes
(A-E) on the monomeric protein structure of HA. Accordingly, we partition the HA point mutations
into four sequence classes: antigenic epitopes A, B, D (located on the HA1 head), epitopes C, E
(located closer to the HA1 stem), the receptor binding domain (RBD, which overlaps with epitopes
A and B), and the remaining non-epitope sequence. Each mutation originates on a given branch
of the tree, i.e., on a given genetic background, and defines a sublineage of descendant strains. We
record the time-dependent frequency, X(t), and record the number of all mutations that reach a given
frequency X, denoted by m(X). A mutation reaching frequency X = 1 (in practice, we use a threshold
X = 0.99) signals fixation of the descendant sublineage; we denote the number of such fixations by d.
In most cases, sublineage fixation also implies fixation of the defining allele change in the viral genome.
Table 1 shows the numbers m(0), m(0.05), and d for synonymous and non-synonymous changes in each
sequence class. Here, the threshold frequency X = 0.05 serves to remove biases due to sampling depth
(sampling in later years detects mutations at much lower initial frequency). Next, we compute the
fraction of all mutations that reach a given frequency, G(X) = m(X)/m(0). Throughout the influenza
genome, most mutations remain at small frequency (i.e., close to the tips of the tree), only a small
fraction reaches high frequency and eventual sublineage fixation (these mutations appear on the trunk
of the tree).
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Table 1. Selection inference for the HA protein of influenza A(H3N2). From left to right: (1)
msyn(0), number of all synonymous mutations; (2) msyn(0.05), number of synonymous mutations
reaching frequency X > 0.05; (3) dsyn, number of synonymous mutations reaching sublineage
fixation; (4) mnsyn(0), number of all non-synonymous mutations; (5) mnsyn(0.05), all non-synonymous
mutations reaching sublineage frequency 0.05; (6) dnsyn, number of non-synonymous mutations
reaching sublineage fixation; (7) propagator ratio, g; (8) mutation ratio, q. Data from influenza
A(H3N2) strain tree 1968-2020, 120K isolates.

sequence class msyn dsyn mnsyn dnsyn g q

0.0 0.05 0.0 0.05 0.05

epitope A, B, D 4048 146 17 6160 483 120 3.06 1.58
epitope C, E 1669 68 8 3195 184 36 1.77 1.29
receptor binding domain 1998 103 15 1766 140 27 2.40 0.65
non-epitope 23499 1066 161 13982 542 40 0.45 0.24

To quantify selection, we record the ratio

g(X) =
Gnsyn(X)

Gsyn(X)
(6)

as a function of the frequency X for the different sequence classes. This measure, referred to as
propagator ratio [60], gives the probability of non-synonymous mutations to reach sublineage frequency
X, weighed by the corresponding probability for synonymous mutations. More generally, the ratio
g(X2)/g(X1) gives the conditional probability to reach frequency X2, given an initial frequency X1

already reached, again weighed by the corresponding probability for synonymous mutations. Hence,
we obtain a frequency-sensitive measure of selection: the direction and amplitude of changes in
g(X) between frequencies X1 and X2 measure the amount of directional selection in the frequency
interval [X1, X2]. The strongest signal of selection is contained in the propagator ratio evaluated
over the full frequency interval g = (dnsyn/mnsyn(0))/(dsyn/msyn(0)) (Table 1). We obtain a clear
grading of selection in different HA gene segments of influenza A(H3N2): positive selection (g > 1)
in antigenic epitopes (strongest in the head epitopes A, B, D, including the RBD sites overlapping
with epitopes A and B), and negative selection (g < 1) in the remainder of the HA protein [60].
Thus, selection analysis is able to identify the sequence loci subject to positive selection for immune
escape evolution. Numerous other studies have identified positive selection in the antigenic epitopes
of influenza [61, 62, 63, 64, 65, 66, 67, 68] and in the RBD and nucleocapsid protein of SARS-CoV-2
[69]. Similarly, purifying selection on viral protein evolution was mapped in a number of studies for
influenza [68, 70, 71] and SARS-CoV-2 [71, 72].

To obtain a more detailed picture of selection, we plot the propagator ratio g(X) as a function of the
sublineage frequency X. We observe that most of the selection signal is in the frequency range X . 0.3.
For higher frequencies, the pattern of g(X) flattens, indicating that initially successful escape variants
can be driven to loss by the subsequent dynamics [60]. Two factors contribute to this effect, the relative
strength of which delineates modes of evolution under directional vs. diversifying selection [73]. First,
clonal interference – the selective competition between co-existing clades – introduces strong collective
effects at high sublineage frequencies that override the selection coefficients of individual mutations
and introduce so-called hitchhiking effects: neutral and even moderately deleterious mutations can
reach high frequencies in a successful sublineage, while mutations under positively selected can be
outcompeted by another clade [60]. Second, antigenic selection introduces time-dependent, non-linear
effects [1, 5]: immune waning and previous infections deplete the pool of susceptible human hosts
available to each of the competing clades. In particular, the self-coupling of an initially successful clade
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Figure 3. Selection on protein segments of influenza HA. (A) Protein structure of HA with marked
regions: subdomains HA1 (light grey) and HA2 (dark grey), antigenic epitopes A – E, receptor
binding domain (RBD). (B) Frequency propagator ratio, g(X), as a function of the sublineage
frequency threshold X, for different HA sequence classes of influenza A(H3N2). Predominantly
positive selection (g > 1) is inferred for the epitopes including overlapping RBD sites, overall
negative selection (g < 1) for the non-epitope HA sequence. Shading indicates standard error
margins.

(that is, the consumption of susceptibles by previous infections from that clade and closely related
clades) generates a systematic fitness decline at later times [5, 74].

The propagator ratio g is conceptually and computationally related to the McDonald - Kreitman
test of selection [75]. We note that probability ratios of the form (6) are insensitive to uncertainties
in entry frequency and timing of polymorphism histories, as well as to frequency-dependent bias in
polymorphism numbers, as long as this bias does not depend on mutation class.

Alternatively, we can directly compare the numbers of synonymous and non-synonymous changes
above a given sublineage frequency threshold. We compute the ratio

q(X) =
mnsyn(X)

q0msyn(X)
, (7)

where q0 is the expected value under neutral genome evolution. We obtain q0 ⇡ 2.1 by numerical
evolution of influenza HA, using the reference sequence A/Hong Kong/1-5-MA21-1/1968 (see 2.1) as
starting point, transition and transversion rates estimated by IQTree2, and discarding mutations that
produce a stop codon. Other computational implementations of neutral evolution are discussed in refs.
[76, 77]. Evaluating q(0.05) in different sequence classes yields again a signal of positive selection in
the antigenic epitopes, albeit weaker than by the propagator ratio method, and of negative selection
in the remainder of the HA sequence (Table 1). The q measure is related to the classical dN/dS
method [78, 79, 80]. Previous theoretical work has highlighted potential biases and inaccuracies in
dN/dS estimates [81, 82, 83, 84, 85]. In a genealogical tree, the q ratio measures originations, rather
than substitutions as in a strain tree across different species. With a given threshold frequency X, it
captures only the part of selection acting below X.

The inference of selection can be refined to individual amino acid changes, integrating computational
predictions of phenotypic effects [48, 50, 53] and experimental genotype-phenotype maps [29, 27, 54, 55];
see the discussion in section 3.1. A common challenge for experimental and computational analysis is
to capture not only the effects of single mutations, but of combinations of multiple mutations that
arise in circulating strains.
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3.3 Tracking population immunity

The antigenic interaction between pathogen and host is a complex phenotype. The neutralization of a
virus during an infection depends on the viral strain and on the individual immune system. The amount
of neutralization shows considerable variation across the viral and the immune population. Moreover,
both populations are highly dynamic: different viral clades and different classes of immune systems
become prevalent over time. Here we develop a method to track these co-evolutionary dynamics, using
a combination of molecular antigenic data, viral frequency data, and epidemiogical records.

The tracking of antigenic evolution at the level of molecular interactions, here cross-neutralization
titers, is jointly organized along a strain tree of primary infections, generating immune classes [5], and
another strain tree of secondary infections. Next, we define two antigenic interaction measures at the
population level: population immunity trajectories, again organized by immune class and viral clade,
and population immunity profiles that summarize the net immune pressure on a given viral clade. We
first develop the tracking method for antigenic data from ferrets; the application to human antigenic
data is discussed at the end of the section. A glossary of all antigenicity measures used in this Chapter
is given in Note 2.

Tracking antigenic evolution

Antigenic titers T
j
i from ferrets are obtained from immune-naive animals infected with a reference

strain j, whose antisera are subsequently assayed against a panel of test strains i representing potential
secondary infections (see section 2.3). Titers from binding assays measure the reduced free energy
of binding between virus and polyclonal antiserum; titers from neutralization assays remain strongly
correlated with binding [86]. Reference strains and test strains are judiciously chosen from the evolving
viral population but cover only a small fraction of the circulating strains. Here we describe a tree-guided
interpolation method that produces a complete antigenic interaction matrix at the level of clades, T 

↵

(Fig. 4). Here  is the clade of the primary infecting strain j, in the following also called immune class,
and ↵ denotes the clade partitioning of test strains i. The completed cross-neutralization matrix also
quantifies local antigenic evolution: the antigenic advance from clade ↵ to clade �,

�T

↵� = T


↵ � T


� , (8)

measures the immune escape effect of the mutation(s) separating these clades on the strain tree, as
seen from immune class . Thus, antigenic advance is the change in the free energy of functional
antibody-antigen binding induced by viral sequence evolution.

In a first step, we infer matrix elements T 
↵ for clade pairs (↵,) containing measurements T j

i . We
use a quadratic optimization procedure with a cost function

S1 =
X

↵,

X

(i,j)2(↵,)

⇣
T
j
i � �i � �j � T


↵

⌘2
+

1

�2
av

X

i

(�i)
2 +

1

�
2
pot

X

j

(�j)2. (9)

Here T
j
i are standardized titer data, as described in section 2.3. The correction terms �i and �j (with

the constraint
P

i �i =
P

j �j = 0) account for strain-specific confounding factors caused by viral
avidity and serum potency effects, respectively; the coefficients �pot and �av tune the amplitude of
these corrections [23]. As shown in Fig. 4AB, this step achieves a partial data completion, setting
titers T 

↵ close to the average of the measurements covering the corresponding clade pair (↵,). In a
second step, we infer the remaining T


↵ , which belong to clade pairs (↵,) without measurements. We
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Figure 4. Inference of cross-neutralization. (A) Set of raw titers T
j
i between viral test strains i and

reference strains j from antigenic assays. (B) Coarse-grained matrix elements T
↵ for clade pairs

(↵,) containing measured strain pairs (i, j). (C) Full inferred cross-neutralization matrix T

↵

covering major clades in the period 2020–2024; missing values are inferred using a tree-guided
interpolation scheme. Ferret antigenic data for influenza A(H3N2) are from ref. [24], clade names
follow WHO nomenclature.

use an interpolation procedure that minimizes the cost function

S2 = �0

X

↵,

⇣
�T


A(↵)↵

⌘2
+ �1

X

↵,

⇣
�T

A()
A(↵)↵ � �T


A(↵)↵

⌘2
, (10)

where A(↵) is the parent of clade ↵ and A() is the parent of clade . This step produces a complete
interaction matrix T


↵ (Fig. 4C). We test the accuracy of the inference scheme using a 90/10 training/test

partitioning of the antigenic data and setting �i = 0 for strains that are not in the training set. We
find a mean square error h(T j

i � �i � �j � T

↵ )

2i = 0.55± 0.03 (95% confidence interval) in the test
set. This should be compared with the expected measurement error of ±1 titer in an HI assay. We
conclude that the curation and completion scheme reduces experimental noise; that is, the inferred
titer values T 

↵ are likely to be more informative than individual antigenic measurements T j
i .

The inference procedure presented here allows for antigenic advance between viral clades to depend
on the immune class, �T


↵� = T


↵ � T


� . It generalizes a previous method that infers antigenic

advance with the constraint �T

↵� = �T↵� , where �T↵� is a sum of uni-valued increments on the tree

branches [2]. The increased method complexity is warranted by the data: from the ferret antigenic
data for influenza, we find that some clade pairs (↵,�) show a significant antigenic advance �T


↵� in

some immune classes  but not in others; a similar effect for SARS-CoV-2 is discussed in ref. [5].
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Inference of cross-immunity

How can the tracking of molecular antigenic evolution be used to build dynamical measures of antigenic
interactions at the level of individuals and population segments? Here we relate clade-specific binding
or neutralization titers, T 

↵ to the corresponding cross-immunity factors, c↵, with measure the relative
reduction of susceptibility to infection by viral strains from clade ↵, given a primary infection by a
strain from clade  [87, 88, 89]. We use a nonlinear map,

c

↵ = H(T 

↵ ) =
1

1 + exp[(T50 � T 
↵ )/�]

, (11)

with system-specific parameters T50, � (for standardized titers from influenza ferret data, T50 = 8
and � = 1.4). This form follows the thermodynamic relation between binding probability and free
energy, a rationale familiar from biophysical fitness models [90, 91, 92, 93, 94, 95, 96, 97]. However,
equation (11) says more than molecular binding kinetics: it relates a molecular variable, T , to an
organismic effect, c (the likelihood to get the flu). This relation is a heuristic; its validity has to be
corroborated by data from both scales. For viral infections, a sigmoidal relationship between HI titers
and measured protection from an infective challenge has first been reported in ref. [98]; later studies
confirmed this form in several viral systems [99, 100, 101, 102, 5]. In using ferret antigenic data as an
input for cross-immunity factors of human individuals, we assume that the ferret titers from immune
class  are a reasonable proxy for the neutralization capacity of humans who had their last infection
by a strain from clade  (Note 3).

Population immunity trajectories and profiles

To scale cross-immunity to the population level, we weigh the coefficients c↵ with epidemiological data
of past infections. This defines a family of cross-immunity trajectories [5],

C

↵(t) = c


↵ r(t), (12)

which describe the population immunity against viral clade ↵ generated by the population segment
in immune class . The time-dependent factors r(t) determine the weight of immune class 

in the human population at time t. We obtain these weights by summation over past infections,
r(t) =

P
r

R t
I

r (t

0)K(t� t
0) dt0, using clade-resolved incidence numbers given by equation (5). The

kernel K accounts for immunodominance-changing infections or vaccinations between t
0 and t; similar

kernels describe waning of immune protection for SARS-CoV-2 [5].

By summation over immune classes, we obtain the population immunity profile,

C̄↵(t) =
X



c

↵ r(t), (13)

which measures the total population immunity against clade ↵ at time t. This profile describes the
immune pressure on viral evolution and will be a key input to viral fitness models (section 3.4).

Tracking of human antigenic data

Antigenic data based on human antisera give a more direct representation of the human immune
landscape, which is marked by complex histories of previous infections and vaccinations. Antigenic
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assays performed on a sample of antisera from individuals (n = 1, . . . , N) and a set of test viruses
produce a set of titers Tn

↵ . We then compute a set of cross-immunity profiles specific to each individual,

c
n
↵ = H(Tn

↵ ), (14)

by applying a nonlinear map analogous to equation (11) with parameters T50, � appropriate for human
data [98, 99, 102, 5]. Given a sufficiently large and representative population sample collected around
a given time t, the sample-averaged immunity profile,

C̄↵(t) =
1

N

NX

n=1

c
n
↵, (15)

may provide a good approximation of the underlying population immunity profile. In the context of
predictive analysis, this type of inference has been applied to human antigenic data for SARS-CoV-2 [5].
In this case, individual samples may be assigned a likely recent infection or vaccination dominating
cross-immunity; the sample average (15) can then be evaluated as an average over immune classes,
equation (13), with weight functions informed by incidence tracking. More generally, the sample average
(15) may still give a bona fide input for fitness models; however, detecting and correcting biases in the
population sample requires at least partial knowledge of the underlying infection histories by available
metadata or computational reconstruction. This practical problem indicates a fundamental challenge
of human immune data: given the complexity of human immunization histories [103, 104, 105, 106],
only the most common patterns (e.g., the last vaccination or infection) will be represented correctly
in realistic population samples. This limits the complexity of immune imprinting and antigenic sin
that can be included in data-driven predictive analysis. In the formalism developed here, immune
classes define the appropriate coarse-graining of infection and vaccination histories [5]. In practice,
we partition human antigenic data into immune classes labelled by one or few previous immunization
events, each associated with a specific viral clade, depending on the availability of metadata (Note 3).

Recently, deep mutational scanning (DMS) experiments have been developed for the analysis of
antigenic data from human population samples [25, 26]. These high-throughput experiments generate
antigenic escape mutations away from a backbone genome under immune pressure from an individual’s
antiserum and measure the fraction of unbound viral particles. From this readout, free energy effects
of individual mutations can be extracted [107], which correlate well with measured titer differences
between the backbone strain and the single-mutant strain [25]. Assuming additivity of local free
energy changes, DMS data can be extrapolated to map the antigenic advance of strains with multiple
mutations away from the backbone strain [107]. Coarse-graining to the level of clades, we can track the
advance �T

n
↵� from the backbone clade ↵ to mutant clades �, as seen in a given individual n, similar

to the antigenic advance (8) defined in the context of ferret data. With an additional measurement of
the backbone titer Tn

↵ , the set of mutant titers Tn
� = T

n
↵ � �T

n
↵� determines cross-immunities cn� and,

by equation (15), a sample-averaged immunity profile C̄� . See also Note 4.

3.4 Evolutionary prediction and validation

Predictive analysis harvests information from a system’s past evolution to determine its likely near-future
trajectory. At the core of predictions is a fitness model: a computable relation between independently
measurable genetic and molecular traits as input and fitness, quantifying the expected relative growth
of competing viral clades, as output. In this section, we first define absolute and relative fitness. Next,
we describe a method to build consistent fitness models from distinct components, representing different
sources of input data. Fitness models, together with tracking of the past dynamics, determine likely
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future frequency trajectories, as well as antigenic properties of emerging high-fitness variants. Finally,
we discuss probabilistic measures to validate predictive methods and to quantify the time horizon of
predictions.

Absolute and relative fitness

The absolute fitness of a viral clade is defined as the growth rate of the number of infections,
F↵(t) = İ↵(t)/I↵(t). By defining fitness at the level of clades, we average over systematic growth
differences between strains within the same clade. Absolute fitness depends on the effective reproductive
number, R↵(t) (the average number of new infections generated by an infected individual), and on the
distribution of generational intervals (the time between infection and transmission) [108, 109]. In the
relevant parameter regime, this dependence is well approximated by F↵(t) = logR↵(t)/⌧ , where ⌧ is
the mean generational time interval [5].

The relative fitness of a clade is defined with respect to the mean fitness of the viral population,

f↵(t) = F↵(t)�
X

�

x
�(t)F�(t). (16)

Given that absolute fitness is proportional to the log of the reproductive numbers, relative fitness is
invariant under a uniform rescaling Ri ! a(t)Ri, as expected for the temporal variation of reproductive
numbers in the seasonal epidemics of influenza. Relative fitness governs the change of clade frequencies
by selection,

ẋ
↵(t)

x↵(t)
= f↵(t) + . . . ; (17)

the omitted terms are stochastic changes by genetic drift. For sizeable clades of influenza, genetic
drift can be neglected, and we obtain a deterministic relation between frequency trajectories and
relative fitness that is the central equation of motion used for predictions. Given time-dependent
frequency trajectories, we can also compute the change of the mean absolute fitness by evolution,
�(t) =

P
↵ ẋ

↵(t)F↵(t) =
P

↵ ẋ
↵(t)f↵(t), the so-called fitness flux [110]. In the deterministic regime,

the fitness flux equals the fitness variance in the population of circulating strains, �(t) = VarF (t),
which is Fisher’s fundamental theorem.

Fitness models

In a fitness model, we write the absolute fitness of a clade as a sum of components that represent
different molecular traits relevant for growth and can be quantified by independent input data. Here
we use a simple two-component form

F↵(t) = F
ag
↵ (t) + F

in
↵ . (18)

The antigenic fitness component, F ag
↵ (t), is generated by the cross-immunity built up in the population

by previous infections and vaccinations and is, therefore, explicitly time- and history-dependent. The
intrinsic fitness component, F in

↵ , collects the effects of other molecular traits that are relevant at
specific points of the infection cycle. For example, changes in protein stability or host receptor binding
affect the intra-host replication of the virus. Such changes are, in general, time-independent. In some
of the literature, only the intrinsic fitness component is referred to as fitness, which is somewhat
misleading. The total fitness, not any single of its components, enters Fisher’s theorem and governs
the dynamics of clade frequencies. Specifically, as detailed below, the relative fitness (16) computed
from the fitness model (18) can be compared to the empirical relative fitness (4) inferred from tracked
frequency trajectories.
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Antigenic fitness

At the core of any predictive model is antigenic fitness, which has been a long-term driver of evolution
in all human influenza lineages (and has recently become dominant in SARS-CoV-2 as well [5]). Here
we use the explicit inference of population immunity described above to evaluate this fitness component:
the clade-specific antigenic fitness cost of the viral population is proportional to the immunity profile
C̄↵(t) of the host population,

F
ag
↵ (t) = ��ag

X



c

↵ r(t), (19)

where c

↵ = H(T 

↵ ) is given by equation (11). This form of the antigenic fitness contains the breakdown
of C̄↵(t) by immune classes, as given by equation (13). It reflects the clade-specific reduction of
susceptible hosts and can be derived [1, 5] from an underlying multi-strain epidemiological model [88].
The antigenic fitness model is grounded upon the biophysics of molecular host-pathogen interactions,
and it inherits the “thermodynamic” nonlinearity in the relation between titers and cross-immunity
(section 3.3). The proportionality factor �ag sets the speed of evolution and is a free model parameter.

Given antigenic data from a human population sample, Tn
↵ (n = 1, . . . , N), we can also evaluate the

biophysical model of antigenic fitness from individual-based cross-immunity profiles sampled around a
given time t,

F
ag
↵ (t) = ��ag

N

NX

n=1

c
n
↵, (20)

using the sigmoid map (14) and the approximation of the population immunity profile C̄↵(t) as a
sample average, equation (15). This approach has first been used to infer viral fitness for SARS-CoV-2,
again breaking down the data into likely immune classes (see Note 3) [5]. For influenza, the correlation
of C̄↵(t) with subsequent clade growth has been shown in ref. [111].

Alternatively, antigenic fitness can be estimated from the HA protein sequence. Specifically,
we can write the antigenic titer drop between a reference clade  and a viral clade ↵ as a sum
of mutational effects in antigenic epitopes, �T↵ =

P
m2Mep

↵,
"m, where M

ep
↵, is the set of epitope

mutations separating clades ↵ and ; this additive form has been corroborated in ref. [2]. Assuming
uniform mutational effects, antigenic fitness retains the biophysical form (19) with a sequence-based
approximation of the cross-immunity matrix, c↵ = H(Dep

↵,), where D
ep
↵, is the amino acid distance in

HA epitope sequence between clades ↵ and . In this approximation, equation (19) reduces to the
antigenic fitness model introduced in ref. [1].

Genome-based models with position-specific effects can be informed by DMS data. In recent work,
this method has been used to map immune escape from human antisera [25, 26] and from monoclonal
antibodies isolated from convalescent individuals [27]. Inferring neutralization titers T

n
↵ from the

escape scores of individual mutations [107], DMS data can be fed into the biophysical model (20)
of antigenic fitness [5, 112]. In other recent work, DMS escape scores have been directly related to
empirical fitness differences between circulating clades [26]. This implies a linear sequence-fitness map,
F

ag
� ⇠

P
k "(ak,↵, ak,�), where ↵ is the clade of the backbone strain and � labels clades containing

escape mutations. A common problem of additive sequence-based approximations is that epistatic
effects between specific escape mutations present in a circulating strain are not systematically taken
into account. See also Note 4.
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Intrinsic fitness

Intrinsic fitness effects are a second component of fitness models. In sequence-based estimates, we can
write the mutational load accumulated by HA protein changes again as a sum of mutational effects,

F
in
↵ (t) =

X

k

s
in
k (a↵,k). (21)

In the simplest approximation, we count all recent amino acid changes outside antigenic epitopes with
uniform deleterious effects, F in

↵ = �inD
ne
↵,A(↵), where A(↵) is a recent ancestor sequence of clade ↵ [1].

Again, this estimate of mutational load can be improved by position- and amino-acid-specific effects
measured in a DMS experiment [113]. In a recent deep learning approach, antigenic and intrinsic
fitness effects have been jointly inferred solely from HA protein sequence data [53]. See also Note 5.

Model calibration

In a second step, we calibrate the model-based fitness by comparison with empirical fitness data.
By equation (4), we obtain clade- and region-specific trajectories of empirical fitness, f̂↵,r(t), in a
representative set of regions r where clades are in direct competition (see section 3.1). We define a
new, calibrated fitness model F c by

F
c
↵,r(t) = F↵,r(t) + �F↵. (22)

The calibration combines clade- and region-specific trajectories of the primary model, here the two-
component model F↵,r(t) = F

ag
↵,r(t) + F

in
↵ computed with region-specific immune weights, and a

clade-specific global correction term, �F↵. Relative fitness computed from the calibrated model,
f
c
↵,r(t), is then used as input for predictions.

The calibration algorithm operates by minimizing an error score over a suitable period up to the
prediction baseline,

S =
X

↵,r

Z t0

(f̂↵,r(t)� f
c
↵,r(t))

2
Yr(t) dt, (23)

where f
c
↵,r(t) = F

c
↵,r(t) �

P
� F

c
�,r(t)x

�
r (t) and Yr(t) = Nr(t)/

P
r0 Nr0(t) is the fraction of sequences

collected from region r at time t. We use a suitable prior to constrain non-zero corrections to few,
significant values.

The calibration of model-based and empirical fitness serves three purposes: (1) The correction
term systematically screens the set of trajectories for significant fitness effects that are not contained
in the explicit fitness model. The specific calibration scheme given in equation (22) identifies global,
time-independent mismatches of model-based and empirical fitness; examples are occasional positive
fitness effects caused by intrinsic changes. Another example of potential mismatches are antigenic
effects of neuraminidase changes, which are not mapped by HI assays. (2) The calibration yields
optimal values of model parameters, here �ag and �in. (3) A variant of this method without primary
model input and without prior can be used as a standalone inference method of empirical fitness
from tracking data. This provides global, model-free fitness estimates f̂↵(t) from regional frequency
trajectories. The data partitioning by region is key for correct output, because the inference of relative
fitness from global trajectories is confounded by differences in absolute growth between regions [5].
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Evolutionary predictions

Clade frequency predictions require frequency tracking, x↵(t), and a fitness model F↵(t) informed
by data up to a prediction baseline at time t0 (we suppress the index c for calibrated models). The
corresponding relative fitness serves to predict the most likely future frequency trajectories,

x
↵(t) = x

↵(t0) exp

Z t

t0

f↵(t
0)dt0

�
, (24)

over a limited time interval into the future of the prediction baseline. This relation follows by integration
of equation (17) in the deterministic limit. Frequency tracking gives the initial condition x

↵(t0), the
fitness model determines the future changes of the predicted trajectories.

The precise genetic changes that spawn new variants have a stochastic origin and may difficult to
predict. The antigenic characteristics of successful emerging variants are more predictable, because
the population immunity profile constrains of antigenic evolution. Specifically, as shown in ref. [5],
temporal windows of strong antigenic selection in a given immune class  is generated when high
population immunity coincides with high expected loss of cross-immunity on the steep flank of the
landscape H(T ) given by equation (11). Therefore, tracking of population immunity trajectories C

↵(t)
can give important information on the direction of the next antigenic escape mutations.

A dedicated web platform, Previr (https://previr.app), reports continuously updated tracking and
and fitness predictions obtained by the computational pipeline described here for human influenza
A(H3N2), A(H1N1)pdm09, B(Vic), as well as SARS-CoV-2. See Note 6.

Model validation

Given a set of historical predictions, each based on data collected before a specific baseline t0, we can
compare the predicted trajectories with their posterior tracked counterparts. In this way, we can test
prediction methods and quantify the so-called prediction horizon ⌧ ; that is, the characteristic temporal
range of reliable predictions [1, 114, 115]. Care is to be taken that predictions are solely computed
from data in the period up to t0; for example, a strain tree computed from input and validation data
would violate this requirement by propagating posterior information back into the training period.

We can quantify the quality of prediction by the predictive information, a probabilistic measure of
how much a given model reduces the uncertainty about future trajectories [1, 114, 115]. Importantly,
this measure separates the information obtained by tracking, which constrains the starting point of
future evolutionary paths at time t0, from the contribution of the fitness model, which explains a part
of the evolutionary change from t0 to t0 + ⌧ . It also serves to define the prediction horizon as the
characteristic time scale on which predictions show diminishing information return.

The prediction horizon of current predictions is limited due to the emergence of new variants.
Historical predictions based on a two-component fitness model of the form (18) have a prediction time
span of order 1 year [1, 114]. Alternatively, the empirical fitness inferred from recent growth data
before the prediction baseline, f̂↵(t0), can be used as a standalone method for short-term predictions
[6]. This method is independent of the specific assumptions of a fitness model, but it does not capture
the non-linearities and time-dependence of antigenic fitness [74]. Recent method developments on
predicting antigenic characteristics of new mutations can potentially increase the prediction horizon.
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3.5 Vaccine protection

Evolutionary predictions as described above can be combined with antigenic data to select the vaccine
composition for influenza, and in a similar way for SARS-CoV-2. Predictive modelling is essential for
this decision, because the vaccine strain needs to pre-empt the most likely future viral population.
Here we derive measures of vaccine protection against present and future viral populations that serve
to rank candidate vaccines. These measures can be computed from tracked or predicted trajectories of
viral evolution and population immunity.

Naive protection profiles

In analogy to the cross-protection by primary infections (section 3.3), we define the (cross-)protection
of a vaccine as the relative reduction in the susceptibility to infections after vaccination. Resolving
protection at the level of clades, we compute the protection profile of a given vaccine from antigenic
data,

c
vac
↵ = H(T vac

↵ ), (25)

using the nonlinear map (11). This profile applies to a population of otherwise naive hosts, because we
single out vaccination as the only source of primary immunization. If the vaccine protection wanes
over time (as comprehensively recorded in SARS-CoV-2 [116, 117]), the protection profile c

vac
↵ refers

to infections shortly after vaccination, after full immune memory has built up but before substantial
waning sets in. Given the protection profile for a given vaccine, we can also define the mean protection
against circulating strains at a given time,

c̄
vac(t) =

X

↵

x
↵(t)cvac↵ . (26)

Importantly, this measure is time-dependent because clade frequencies evolve over time.

Figure 5A shows the protection profile c
vac
↵ computed by equation (25) for two successive vac-

cine components for influenza A(H3N2). The vaccine component based on the reference strain
A/Cambodia/e0826360/2020 has been recommended for the Northern Hemisphere (NH) 21/22 season,
the updated vaccine component based on the strain A/Darwin/6/2021 for the Southern Hemisphere
(SH) 22 and 23 seasons and the NH 22/23 and 23/24 seasons [118] (these strains are marked by syringes).
The protection profile of the A/Cambodia/e0826360/2020-like strain shows the partial escape of later
circulating strains from vaccine protection, the updated A/Darwin/6/2021-like vaccine restores this
protection. In Fig. 5B, we show another example, the protection profiles of the successive vaccine
components A/Hawaii/70/2019 (NH 20/21 season) and A/Wisconsin/588/2019 (SH 21 and 22 seasons,
NH 21/22 and 22/23 seasons) for influenza A(H1N1)pdm9. These vaccine strains have complementary
protection profiles: the A/Hawaii/70/2019-like strain protects against the strains predominant before
2021, the A/Wisconsin/588/2019-like strain against later strains. In both examples, the corresponding
mean protection trajectories, c̄vac(t), of the successive vaccine components show an opposite time
dependence (Fig. 5C,D). All of these protection estimates are computed retrospectively and are based
on ferret data, which measure vaccine protection without pre-existing immunity.

Differential protection profiles

We can also consider the protection profile of a given vaccine, defined again as the relative reduction in
the susceptibility to ↵-infections after vaccination, in a population with pre-existing immunity. This
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Figure 5. Cross-protection of successive vaccine strains. (A) Protection profiles, cvac↵ , of the influenza
A(H3N2) A/Cambodia/e0826360/2020-like (left) and A/Darwin/6/2021-like (right) vaccine compo-
nents, mapped onto the strain tree. Shading from yellow to red indicates decreasing cross-protection;
vaccine strains are marked on the tree by syringe symbols. (B) A(H1N1)pdm09 A/Hawaii/70/2019-
like (left) and A/Wisconsin/588/2019-like (right) vaccine components. (C,D) Corresponding trajec-
tories of mean vaccine protection, c̄vac(t). Based on ferret antigenic data for influenza A(H3N2)
from ref. [24].

measure, the differential protection profile �c
vac
↵ (t), is computed as

�c
vac
↵ (t) = max

⇥
c
vac
↵ � C̄↵(t), 0

⇤
, (27)

where c
vac
↵ is the naive vaccine protection given by equation (25) and C̄↵(t) the pre-vaccination

population immunity profile given by equation (13) or (15). Here we assume that the immuno-dominant
repertoire component activated in response to an infecting strain ↵ is induced by the vaccination
or by previous immunizations, whichever component generates the stronger cross-immunity. The
resulting differential vaccine protection of individuals, �c

vac,n
↵ (t) = max[cvac↵ � c

n
↵, 0], depends on their

immunization history; the population average (27) then follows by equation (15). The underlying
immuno-dominance assumption is consistent with a recent biophysical model of lineage activation in an
acute infection that predicts a correlation between antigen binding and clone size for antigen-responding
antibody lineages [119]. The specific form of complex immune responses remains to be tested in future
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Figure 6. Differential protection of vaccines. (A) Influenza A(H3N2) population immunity profile, C̄↵(t)
(left); protection profile c

vac
↵ of the A/Massachusetts/18/2022-like vaccine component (center);

resulting differential vaccine protection profile �c
vac
↵ (t) (right). (B) Influenza A(H1N1)pdm09

population immunity profile, C̄↵(t) (left); protection profile c
vac
↵ of the A/Wisconsin/588/2019-

like vaccine component (center); resulting differential vaccine protection profile �c
vac
↵ (t) (right).

(C,D) Trajectories of mean population immunity, C̄(t) (green), mean vaccine protection, c̄vac(t)
(blue) and differential mean vaccine protection, �c̄

vac(t) (red). Based on ferret antigenic data for
influenza A(H3N2) from ref. [24].

studies. The resulting differential mean protection against circulating strains,

�c̄
vac(t) =

X

↵

x
↵(t)�c

vac
↵ (t), (28)

quantifies the added value of vaccination over population immunity. This measure is time-dependent for
two reasons: population immune dynamics affect C̄↵(t) and viral evolution propagates the frequencies
x
↵(t). Notably, a good vaccine is expected to decrease in differential protection over time, as population

immunity builds up against viral clades ↵ covered by the vaccine.

By relating the differential mean protection to the total pre-vaccination population immunity
C̄(t) =

P
↵ x

↵(t) C̄↵(t), we obtain a computational estimate of vaccine effectiveness (VE) [120, 121] in
the population: the expected case numbers of vaccinated and unvaccinated individuals are proportional
to 1� C̄(t)� �c̄

vac(t) and 1� C̄(t), respectively, which gives

VE (t) =
�c̄

vac(t)

1� C̄(t)
. (29)
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Importantly, vaccine effectiveness is seen to be a dynamical quantity: it can increase when the naive
protection c̄

vac(t) increases and decrease when population immunity against clades covered by the
vaccine builds up. In a similar way, we can compute estimates of vaccine efficacy as measured in
clinical trials, by calibrating the mean protection C̄(t) to known characteristics of the trial cohort.

In Fig. 6A, we compare the protection profile c
vac
↵ of the A/Massachusetts/18/2022-like vaccine

component (SH 24 season, NH 24/25 season) with the underlying population immunity profile C̄↵(t)
of influenza A(H3N2). These profiles result in the differential protection profile �c

vac
↵ (t), as given

by equation (27). In this case, the population immunity profile is broader but weaker than vaccine-
induced protection, which generates added protection peaked around the vaccine clade (marked by
a syringe). The corresponding analysis of the A/Wisconsin/588/2019-like vaccine component for
influenza A(H1N1)pdm09 is shown in Fig. 6B. In the season 2021-22, population immunity and vaccine
induced immunity cover complementary viral clades; the vaccine adds protection specifically against
clades subject to weak population immunity. We can also track the corresponding trajectories of mean
population immunity, C̄(t) =

P
↵ x

↵(t)C̄↵(t), and vaccine protection, c̄vac(t) and �c̄
vac(t) (Fig. 6C,D).

In both examples, the differential vaccine protection shows a diminishing added value over time, in
parallel to the buildup of population immunity against newer viral clades.

Pre-emptive ranking of candidate vaccines

The mean naive and differential protection, c̄vac(t) and �c̄
vac(t), are directly related to viral fitness. By

equations (19) and (26), the mean naive protection c̄
vac(t) is proportional to the vaccine-induced drop

of the mean viral population fitness in a naive human population. The mean differential protection
�c̄

vac(t), equation (28), measures the analogous drop of viral fitness in a population with pre-existing
immunity. Hence, �c̄

vac(t) is an explicitly co-evolutionary measure, which depends on the distribution
of circulating viral strains and on the distribution of human immunity. Here we have established a
general method to compute estimates of vaccine protection for a rapidly changing population of viral
strains and population immunity states. The specific evaluation of these measures is likely to undergo
changes, as new types of input data become available.

The vaccine protection measures c̄
vac(t) and �c̄

vac(t) can be used to rank available candidate
vaccines for a given influenza season: higher naive and differential mean protection is predicted to
induce lower viral growth in vaccinated population segments without and with previous immunity,
respectively. Both measures change over time, underscoring the role of predictive analysis for vaccine
strain selection. By using predicted clade frequencies, x↵(t), and predicted immune profiles, C̄↵(t),
we can optimize vaccines in a pre-emptive way, taking into account the likely viral evolution and
population immune dynamics up to the season when the vaccine will be used. The protection profiles
shown in Fig. 5 and 6 provide a more detailed picture than the mean protection, highlighting viral
clades with maximal escape from vaccine-induced and pre-existing population immunity.

4 Notes

1. Due to intense sequencing efforts during the past decade, over 100,000 influenza and several
million SARS-CoV-2 genomes have become available to the scientific community. Keeping track of
the genetic variation observed in sequenced viral samples is a bioinformatic bottleneck [122]; the
challenges for computational analysis will increase with time. Two recently published methods,
MAPLE [123] and USHER [124], overcome the bioinformatic bottleneck using efficient algorithmic
solutions within a maximum-parsimony framework. These approaches do not include the inference
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of ancestral sequences and the timing of internal nodes, which represents a second computationally
expensive process. To address the high computational demand of maximum-likelihood approaches,
a common procedure is to subsample available data to a few thousand sequences. This method is
adequate for displaying major clades of the evolving viral population, but subsampling may miss
clades at small population frequency, including recently emerged, fast-growing clades. Here we
implement a maximum-likelihood inference procedure for a subtree partitioning of the global
tree, which avoids the need for subsampling.

2. Glossary of antigenicity measures. (1) Cross-neutralization matrix, T 
↵ : average neutralization

titers of antisera from immune class  against viral strains from clade ↵. (2) Cross-immunity
matrix, c↵: expected cross-protection, or reduction of susceptibility, of an individual from immune
class  against viral strains from clade ↵. (3) Population immunity trajectories, C

↵(t): population
immunity, or reduction of viral growth, for strains of clade ↵ induced by previous infections
by strains from clade . (4) Population immunity profile, C̄↵(t): total population immunity
against strains from clade ↵. (5) Average population immunity, C̄(t): net population immunity
against the population of circulating strains. (6) Vaccine protection profile, cvac↵ : cross-protection,
or reduction of susceptibility, against viral strains from clade ↵ induced by a given vaccine
(vac) in a naive host. Results in a time-dependent mean protection, c̄vac(t), against circulating
strains. (7) Differential vaccine protection profile, �c

vac
↵ (t): cross-protection, or reduction of

susceptibility, against viral strains from clade ↵ induced by a given vaccine (vac) in a population
with pre-existing immunity profile C̄↵(t). Results in a time-dependent differential mean protection,
�c̄

vac(t), against circulating strains.

3. The established animal model for influenza uses ferrets that are immune-naive against influenza
prior to the infection with a reference strain. Neutralization tests of these ferret antisera capture
vaccination-induced cross-protection against test strains without confounding effects of pre-
existing immunity. The use of ferret data in fitness models for viral evolution in humans depends
on a heuristic extrapolation: cross-immunity c


↵ computed from ferrets infected with a strain from

clade  is a good proxi for humans who had their last immunization (infection or vaccination)
by a strain from the same clade. An important role of the last immunization in the response to
future exposures has been established [103], but older exposures may also be relevant in specific
population segments [125, 25]. Another instance of more complex immunisation histories is
combinations of a recent infection and vaccination; such cases can be modelled by composite
immune classes,  = (1,2) [5]. The impact of immune complexity on viral dynamics has
recently been studied in ref. [74].

4. Deep mutational scanning (DMS) [29, 27] and high-throughput in-vitro evolution [54, 55] are
emerging as promising data sources for predictions of viral evolution. These data map the
genomic distribution of high-fitness mutations and can inform antigenic and intrinsic components
of genome-based fitness models. Using specific additivity assumptions, antigenic escape scores
of individual point mutations can be processed to fitness estimates for strains with multiple
mutations, including variants that have not yet been observed as circulating strains or have not
yet been phenotypically characterized. However, this construction of fitness landscapes neglects
epistasis between specific escape mutations. Other challenges in applying DMS data to predictive
analysis of influenza evolution include the choice of the backbone strain from which the mutant
library is constructed, as well as the choice of representative antisera driving the escape dynamics.

5. Key intrinsic fitness components, including protein stability and binding to human receptors,
depend on protein structure. Computational models hold promise for a high-throughput evaluation
of structure-based phenotypic and fitness effects [51, 52, 50, 48, 49]. A recent model combines
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computational estimates of such effects with deep learning to predict the genetic evolution
of influenza and SARS-CoV-2 [53]. Machine-learning tools to predict protein structures, like
AlphaFold [46], can also inform predictions [47], but a successful application of these methods to
evolutionary analysis requires sufficient accuracy in distinguishing wild-type and mutated protein
structures [126, 127, 128].

6. The effective application of this prediction pipeline depends on comprehensive surveillance of
influenza sequence evolution, antigenic evolution, and epidemiology. The collaborative efforts of
researchers, national public health institutions, and the global WHO surveillance and response
system are key to maintain global surveillance under comparable standards. The timely availability
of sequence and antigenic data is key to flag new variants of concern early in their trajectory, or
even before their appearance [5]. Surveillance is also necessary to support DMS and laboratory
evolution experiments, to allow updating of backbone strains and of reference antisera generating
immune pressure, in tune with the evolving viral population.
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Chapter 5

Discussion

In this thesis, I have analysed how three different pathogens evolve under immune
pressure exerted by neutralizing antibodies. The interaction between the virion
and antibody is ultimately biophysical: the binding of the antibody to the virus
is described by a sigmoidal curve that is characterised by a binding affinity. Anti-
genic mutations decrease this binding affinity, and thereby reduce the probability
of binding. How antigenic mutations are subsequently selected for, depends
on the pathogen. For the escape evolution of HIV-1, the selection pressure
depends directly on the concentration of the broadly neutralizing antibody in
the blood. This concentration decays after the infusion of the antibody, creating
a time-dependent fitness landscape. Over the course of the antibody therapy,
the fitness ranking between different variants changes multiple times, creating
complex escape patterns in the frequency trajectories of the different variants.
For SARS-CoV-2 and influenza, the antigenic selection pressure is determined
by the immune classes on the level of the host population. An immune class
is a group of hosts with a homogeneous immune protection due to a common
immune history. Each immune class is characterised by a protection profile
against viral clades, which can be measured in neutralisation assays. Population
immunity, which determines antigenic fitness, is the sum over these protection
profiles, weighed by the sizes of the immune classes. As individuals are immunised
through infections and vaccinations, the distribution of immune classes in the
host population changes over time in a computable way. The distribution of
immune classes shapes the fitness seascape, on which SARS-CoV-2 and influenza
evolve.

The presented work highlights the predictability of antigenic evolution. In
the escape evolution of HIV-1, escape mutants in different with HIV-1 infected
individuals were modelled with universal fitness parameters. The short-term
escape from the antibody depends only weakly on the host environment and
the genomic background of the virus, which differed between hosts. This short-
term predictability is important for the design of antibody therapies [26]. The
timing, composition, and strength of the antibody therapy need be tuned to
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durably suppress the virus, taking the evolutionary response into account [70, 71].
Limitations to this predictability are the initial mutant frequency, which varied
between hosts, and the pre-selection of hosts infected with sensitive viruses.
Genetic data of the viral population in combination with an escape map from
the broadly neutralizing antibody are therefore necessary to predict escape
evolution [72, 73]. For SARS-CoV-2 and influenza, we show that clade frequency
trajectories are predictable for short-term evolution. When immunity is the
dominant driver of evolution, clade fitness is computable from antigenic and
epidemiological data. On longer time scales, the stochastic nature of mutations
reduces the predictability of evolution. Clonal interference and the feedback
of circulating variants on population immunity decrease the fitness of initially
adaptive mutations [30, 74, 75]. Therefore, the long-term success of emerging
viral clades often depends on whether future adaptive mutations arise in a nested
fashion, or drive competing clades. The relative fitness of a viral clade is thus
time-dependent, yet at each moment informative of the short-term evolution.

Predicting adaptive mutations before they arise in the population is an active
area of research. High-throughput methods, such as deep mutational scanning,
can experimentally map out the fitness landscape around a backbone strain. Using
specific additivity assumptions, deep mutational scanning outputs escape scores
from an immune serum for individual point mutations [76, 23]. Alternatively,
genetic methods can scan the genealogical tree for adaptive mutations that did
not yet spawn a clade that reached significant frequency. Using the integrated
analysis presented in chapter 3, the phenotypic characteristics of future mutations
can be predicted: population immunity constrains the likely antigenic evolution
to mutations that most strongly reduce protection in the immune classes that
are dominant. Can these methods also predict in what clade future adaptive
mutations arise? Adaptive mutations might not have an equal chance to arise
in all viral clades. The antigenic effect of an adaptive mutation depends on
the genomic background on which it appears, an effect known as epistasis [77].
However, also the position of the ancestral clade in the antigenic landscape of the
immune classes modifies the antigenic effect of the mutation, in a mechanism more
similar to global epistasis [78]. The analysis presented in chapter 3, combined
with high-throughput or genetic methods, may be most informative to rank viral
clades with the highest future escape potential.

Vaccination in SARS-CoV-2 and influenza elicits an immune response that is
relatively narrow. Antigenic drift typically reduces the protection of the vaccine
within a few years, requiring yearly vaccination with an updated composition.
In HIV-1, broadly neutralizing antibodies are able to neutralize a wide range of
viruses [41]. These antibodies are isolated from elite neutralisers, individuals with
HIV-1 that naturally have developed potent and broad neutralizing antibodies.
The main goal of HIV vaccine discovery is to elicit such broadly neutralizing
antibodies [39, 40]. Also for SARS-CoV-2 and influenza, broadly neutralizing
antibodies have been isolated from elite neutralisers [79, 80]. Such antibodies
target conserved parts of the virus and can protect against a diverse set of viruses,
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even of different subtypes. A promising target of broadly neutralizing antibodies
against influenza is the HA stem, which is evolutionary relatively conserved [81].
Vaccine design focuses on eliciting an immune response against the HA stem,
for example through HA stem-fragment immunogens or sequential vaccination
with chimeric HA protein [82, 83]. Recent developments in mRNA vaccines
also allowed for a multivalent approach that elicited cross-reactive antibodies to
multiple influenza A and B subtypes [84]. How the immune system reacts to a
multivalent challenge of antigens at intermediate antigenic distance is still an
open problem. Development of a vaccine that elicits a broad reponse against
influenza and SARS-CoV-2 strains could in theory replace the need to update the
vaccination every year. However, the complexity of the immune response makes
the development of a vaccine that elicits broadly neutralizing antibodies difficult.
The challenges include overcoming the immunodominance of viral epitopes, the
imprinting of immune memory, and steering the selection and growth of B-cell
clones from the B-cell repertoire [85].

Similar challenges arise for reconstructing the cross-immunity matrix between
immune classes and viral clades. The antigenic distance between viral clades, as
measured in the difference in neutralisation of a serum, depends on the immune
class from which the serum is collected [86]. This creates a squared complexity
for the cross-immunities: for each immune class, there exists a protection profile
over the whole genealogical tree. For different age cohorts, for example, the first
exposure to an influenza virus shapes the immune landscape, an effect known
as original antigenic sin [87, 88]. Other studies, however, suggests that the last
immunisation is dominant in shaping the protection profile [89]. Another example
of class-specific antigenic distances is the lack of symmetry in cross-immunity:
the serum from an individual recovered from infection with an antigenic variant
often cross-protects against ancestral variants, but the reverse is not true for a
serum of an individual recovered from infection with the ancestral variant [90].
Assymmetry in the cross-immunity prevents antigenic evolution from revisting
variants from the past and could be explained by the immune history of individuals.
In chapter 3, these effects are accounted for in an approximate way, by using
neutralisation data from human sera with different immune histories. A more
mechanistic understanding of the immune response upon challenge with varying
pathogens could further help reconstruct the cross-immunity matrix for immune
classes with varying immune histories.

To understand better how immune histories affect cross-immunity, immunity
need to be better understood on multiple levels. First, antigenic neutralisation
assays are performed on polyclonal sera. These sera consist of multiple clones
of B-cells that may target different epitopes of the virus. Measurements of
polyclonal sera need to be decomposed onto the clonal structure, on which
antigenic mutations have a computable effect. Second, given a clonal structure
of the B-cell memory of an individual, the effect of a reinfection needs to be
learned. In contrast to neutralisation measurements, the immune protection
of an individual exposed to a pathogen is a non-equilibrium process driven by
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antigen proliferation in the host [91]. To learn how reinfection changes immunity,
we need to consider the activation of the memory repertoire, the interaction
with clones recruited from the naive repertoire, and the affinity maturation and
selection of the B-cells during the infection. Finally, using epidemiological data
the number of immunisations with each variant can be reconstructed. However,
we do not know the immune class of the individuals that are infected, and thus
the corresponding clonal structure of the immune repertoire that is challenged.
A method to compute which immune class is most likely to be infected needs to
be implemented to correctly track the epidemiology of the virus. Future work
will still much improve our understanding of how immunity shapes antigenic
evolution and how, in turn, viral circulation shapes immunity.
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