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Abstract 

Protists, unicellular eukaryotes, are one of the most diverse (if not the most diverse) 

group of organisms on the planet and are widely distributed over the eukaryotic tree 

of live. They exhibit a ubiquitous distribution upon many terrestrial and aquatic 

ecosystems. Additionally, their ecological roles span across many different trophic 

modes, from phototrophic primary producers like phytoplankton, to parasites, 

symbionts and predators, significantly involved into ecological nutrient cycling. In 

recent years, molecular techniques have unveiled an impressive array of previously 

unknown protists, changing our perception of their ecological roles and diversity in 

global ecosystems. The primary aim of the present study was to explore the diversity 

with regard to taxonomic and functional composition. By combining amplicon 

sequencing with modern taxonomic methods such as cultivation-based approaches 

and microscopy, our objective was to expand knowledge of protist diversity in 

brackish and freshwater habitats. This included exploring the protist communities 

in their entirety as well as investigating two specific communities closely associated 

with amphibian species. We selected two regions in the southern Baltic Sea differing 

in several abiotic factors (Fehmarnbelt and Oderbank), as a model for studying 

benthic protist communities in brackish-water environments. The study offered 

novel insights into brackish-water communities, that have not been investigated in 

this magnitude and might hint at potential correlations between specific protist 

groups and environmental parameters. This study also has an applied aspect as it 

was intended to serve as a baseline study to monitor the effect of ground fishing in 

future. Using a very strictly filtered amplicon sequencing dataset, we found no 

overlap in taxonomic composition between the two selected regions. While ciliates 

exhibited remarkable diversity in both regions, marine alveolates belonging to the 

MALV group displayed the highest read abundances. Previous studies have shown 

that this group of organisms, with an assumed parasitic life style, is highly abundant 

in marine environmental datasets, but have not yet been recorded from 

brackishwater habitats. However, as they are mostly uncultured, not much is known 

abouth their ecology. In freshwater environments but also in amphibian hosts, 

protist parasites and commensals are known to be common. As an example, we 

wanted to get more insight into the trophic mode of parasitism by investigating the 

presence of Batrachochytrium dendrobatidis (Bd) and other amphibian parasites 
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in the green toad (Bufotes viridis) and syntopic amphibians. Therefore, we 

combined DNA metabarcoding with a qPCR survey. The results revealed the 

presence of Bd in green toad populations, highlighting the potential threat of this 

deadly pathogen to amphibian populations in the investigated region. Additionally, 

the study identified other parasitic organisms, mainly protists, inhabiting the gut of 

the amphibians. As an antagonist to the detrimental effects of the presence of 

protists in connection with amphibians, we were interested in the occurrence of the 

unicellular alga Oophila in German breeding waters of Rana dalmatina. The alga is 

known for its close association with various amphibians, forming a kind of 

mutualistic relationship. Our study offers valuable insights into the diversity of 

micro-eukaryotes, with a particular focus on green algae, inhabiting amphibian 

clutches. Through DNA metabarcoding, we uncovered a wide array of protist taxa 

colonizing these amphibian egg masses, highlighting the ecological complexity of 

this specific habitat. Importantly, the study revealed substrate-specific preferences 

among these protists - clutches are inhabited by a unique protist community. 

Additionally, we aimed to disentangle parts of the uncertain taxonomy of Oophila, 

showing that a certain clade is exceptionally frequent in amphibian clutches, also in 

our investigated specimens. These results emphasize how taxonomic studies play a 

crucial role in enhancing the accuracy and reliability of public databases used in 

environmental sequencing studies. Modern taxonomy provides essential reference 

points for researchers to correctly classify and interpret the vast diversity of genetic 

sequences encountered in various ecosystems. To highlight this aspect further more, 

we investigated two taxonomic groups in more detail, to revise and/or expand their 

taxonomy. The genus Goniomonas (sensu lato) is not only the single taxon of 

cryptophytes without a plastid, it also shows a deep genetic divergence between the 

freshwater and marine strains. Even though it is a very frequently observed 

heterotrophic flagellate, only few species have been described yet, mainly on the 

basis of morphologic observations. The objective of our study was to revise the genus 

Goniomonas and offer a suitable Neotype. In the course of the study it became 

evident that the genus had be be split into several new genera. We based the 

introduction of Limnogoniomonas gen. nov., Goniomonas and Aquagoniomonas 

gen. nov., Neptunogoniomonas gen. nov., Marigoniomonas gen. nov, 

Thalassogoniomonas gen. nov., Poseidogoniomonas gen. nov. and 

Cosmogoniomonas gen. nov. on both morphological and phylogenetic 
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investigations. The taxonomy of the bicosoecid Cafeteria has been recently revised. 

With our study we aimed to resolve the species diversity of the genus furthermore, 

additionally by adding autecological experiments into an integrative taxonomic 

approach. In this way, we were able to describe several new species of Cafeteria 

including one from the Baltic Sea. As those sequences are or will deposted in public 

databases, this thesis shows the close connection between modern taxonomy and 

environmental sequencing. 
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General Introduction 

 

Prostists – diversity and ecology 
 

Protists are renowned as the most abundant and diverse group of eukaryotic 

organisms on our planet, serving as the foundation for all multicellular life. They are 

widely distributed throughout the eukaryotic tree of life (Adl et al., 2019; Burki et 

al., 2020; Parfrey et al., 2006, Fig. 1). Within those phylogenetically diverse lineages, 

protists occupy a wide range of trophic modes covering heterotrophy, phototrophy, 

saprotrophy, mutualism and parasitism (Worden et al., 2015). Especially 

heterotrophic protists, feeding on bacteria, are essential in microbial food webs, 

from marine to terrestrial habitats (Singer et al., 2021; Worden et al., 2015).  

 

Figure 1 The eukaryotic tree of life after Burki et al. 2020, (modified by the author) based on a consensus of 
recent phylogenomic studies. While current super groups are highlighted through colors, unresolved branching 
orders are represented as multifurcations and dashed lines reflect lesser uncertainties about the monophyly of 
certain highlighted groups. Taxa that that were considered supergroups in earlier versions of the tree are marked 
with an asterisk, circles show major lineages that had no molecular data when the supergroup model emerged. 

 

Through processes like carbon remineralization (referred to as the microbial loop), 

they can serve as connections to higher trophic levels, as demonstrated by Azam et 
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al. (1983). Historically, protists were primarily examined using microscopes, and 

their, often unassuming, morphology resulted in a significant underestimation of 

their true diversity. Although the morphogroups previously defined (flagellates, 

ciliates, and amoeba) are still commonly used as a general categorization, they do 

not represent the true global diversity, which is currently estimated to be between 

26,000-74,000 (Pawlowski et al., 2012) up to 300,000 species (Foissner, 2007). Of 

this immense number, only a very small fraction is scientifically known or described. 

As molecular techniques became more and more advanced, immense datasets have 

been produced through amplicon sequencing. In the marine habitat, however, most 

studies have focused on expanding inventories of planktonic protist diversity and 

tended to leave benthic communities untouched or focus on specific environments 

such as the deep sea and hydrothermal vents (Edgcomb et al., 2002; López-García 

et al., 2003). But especially the benthic protist communities have important key 

functions in aquatic ecosystems, as they control the bacterial and 

microphytobenthic masses and are therefore of great ecological importance. In 

terms of protist diversity marine sediments furthermore always contain a mixture 

of the actually active occurring community, free DNA and dormant stages, partly 

also from planktonic organisms (Marcus and Boero, 1998; Rodríguez-Martínez et 

al., 2020). Besides the focus on pelagic protist communities, “real” marine 

environments are much more frequently sampled in terms of protist diversity than 

e.g. brackish waters. This stands in contrast with the hypothesis that protist species 

richness is highest in the horohalinicum, meaning a salinity between 5-8 PSU 

(Telesh et al., 2011a, 2011b). Apart from salinity, also other abiotic factors can have 

a strong effect on the composition of the protist community. In sediments, physical 

properties determine the structure of the sediment pores/interstitial. It has been 

found that grain size seems to have a strong effect e.g. on the ciliate community 

(Hamels et al., 2005, 2004) and especially on their functional diversity (Xu et al., 

2018). 

Besides the substrate, oxygen availability is a strong factor shaping the protist 

community. While some taxa have a large tolerance for changing conditions, some 

are sensitive for high or low concentrations or even the absence of oxygen (Fenchel 

and Finlay, 2008; Priya et al., 2019). Especially for ciliates, it is known that some 

taxa have adapted to anaerobic conditions (Fenchel and Finlay, 1991). Apart from 

sediment associated taxa, especially gut parasites are adapted to the absence of 
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oxygen like Giardia (Lindmark, 1980), Entamoeba or Trichomonas (Carvaho-de-

Araujo et al., 2023). But also temperature (Liu et al., 2013), direct and indirect 

physicochemical factors play roles in shaping the composition of protist 

communities (Bock et al., 2020; Duarte et al., 2000). 

 

Trophic varieties of protists 
 

The large phylogenetic diversity of protists and their ability to adapt to many 

different environments is connected with a variety of successful trophic modes or 

feeding types. In the oceans, phototrophy performed by marine protists (algae) 

serves as a major ecosystem service. Marine algae, in the form of phototrophic 

protistan phytoplankton account for 50Pg C year -1 (Field et al., 1998). Phototrophic 

diatoms stand at the basis of the marine food web as a grazing source for micro- and 

mesozooplakton (Sarthou et al., 2005) and in this way form the foundation of ocean 

fisheries (Armbrust, 2009)(Fig.2A). Those algae can serve as a food for other 

protists, as predation is a highly successful and well-studied heterotrophic mode. 

Micro- and nanozooplankton (<200 µm) can be responsible for the consumption of 

up to of 62 % of the daily algal production (Schmoker et al., 2013). While some forms 

such as ciliates, radiolarians and foraminiferans can feed on other heterotrophs, 

sometimes even including metazoans (Sherr and Sherr, 2002; Swanberg and Caron, 

1991), many heterotrophic flagellates are most prominently known as important 

consumers of bacteria (Massana et al., 2009). As controllers for bacterial biomass, 

heterotrophic flagellates fulfil an important step within the microbial loop, by 
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channelling carbon to higher trophic levels (Azam et al., 1983; Fenchel, 2008).

 

Figure 2 A) Possible trophic modes of protists exemplified in the marine food web, including phototrophy, 
mixotrophy and predation, B) an example for the parasitism of protists, shown in the life stages of pathogenic 
chytrid fungi (adapted from Swafford, 2020), C) a case of symbiotic interactions between protists and 
vertebrates exemplified for the unicellular green alga Oophila and amphibian larvae, including the life stages of 
the algae (after the findings of Kim et al., 2014). 

 Many heterotrophic protists have also successfully discoverd parasitism as a source 

of nutrition. In marine environments, this role is presumably fulfilled, among 

others, by marine alveolates, knowns as MALVs (Guillou et al., 2008). These 

organisms belong to the dinoflagellate group of Syndinales, of which several forms 

are known to act as parasites. While many of these remain uncultured and therefore 

poorly understood, in freshwater ecosystems two aquatic fungi have garnered 

significant attention in the last decade. They have been identified being responsible 

for Chytridiomycosis (Fig. 2B), a disease affecting amphibian skin that has resulted 

in a substantial decline in amphibian biodiversity (Scheele et al., 2019). Not long 

after the disease was discovered in Australia (Berger et al., 1998), Batrachochytrium 

dendrobatidis was identified as the cause and scientifically described (Longcore, 

1999). Around fifteen years later B. salamandrivorans was described for beeing 

responsible for mass die offs of Dutch fire salamanders (Salamandra 

salamandra)(Martel et al., 2013). Both species were traced to their origin in Asia 
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(O’Hanlon et al., 2018) from where they were spread globally (Castro Monzon et al., 

2020). Apart from those, amphibians can be infected with many other protist 

parasites like Balantidium, Entamoeba or Tritrichomonas (Baker, 2008), to name 

only a few. As an antagonist to the parasitic lifestyle, protists can also be involved 

into mutualistic/symbiotic relationships. Very well known is e.g. the relationship 

between cnidarians and the endosymbiont Symbiodinium (Fransolet et al., 2012; 

Lampert, 2016) responsible for structuring coral reefs. But protists can also be 

involved in symbiotic interactions with vertebrates, as known from the unique 

relationship between the green alga Oophila amblystomatis and the North 

American salamander Ambystoma maculatum as well as other amphibians (Kim et 

al., 2014). While not all aspects of this relationship have undergone comprehensive 

investigation, there are indications that Oophila cells within amphibian egg capsules 

play a role in elevating partial oxygen pressure (Fig. 2C). They also appear to 

assimilate some of the embryo's nitrogenous waste, and there is evidence of 

photosynthate transfer from the algae to the amphibian (Bachmann et al., 1986; 

Goff and Stein, 1978; Graham et al., 2014; Kerney, 2011; Pinder and Friet, 1994). 

Those aspects seem to be benefitial for the embryo (Gilbert, 1944, 1942). Some algal 

cells even seem to enter the host tissue (Kerney et al., 2011), representing a unique 

form of endosymbiosis. To expand the list of protist abilities, some protists are not 

limited to either photo- or heterotrophy, but can perform both. Mixotrophy is 

successful mode for otherwise phototrophic organsims, when e.g. light intensity is 

low (Flöder et al., 2006). 

 

Assessing protist biodiversity  
 

The idea of DNA barcodes (Hebert et al., 2003), short gene sequences that are 

distinct enough to identify a single species (Purty and Chatterjee, 2016), has boosted 

the world of the decription of molecular diversity und is one of the the backbones of 

today’s biodiversity research. Especially for protists, which often show little 

characteristic morphology, Sanger sequencing of DNA is essential for robust 

taxonomy. 

Next generation sequencing, in form of amplicon sequencing or metabarcoding 

studies, has revolutionized the view and knowledge that we have on microbial 

communities in almost all kinds of habitats by revealing a so far unknown taxonomic 



General Introduction 
 

9 
 

diversity (e.g. De Vargas et al., 2015). While many studies aim to reflect the 

community as a whole (through the use of universal eukaryotic primers, (e.g. Dünn 

and Arndt, 2023), others focus on specific taxonomic groups (e.g. Fiore-Donno et 

al., 2019; Singer et al., 2023) depending on research question and habitat. The gene 

of choice for most protist metabarcoding studies is a fraction of the 18S rDNA, as it 

offers the largest reference databases (Pawlowski et al., 2012). Over the years, 

techniques have evolved, making Next Generation Sequencing more and more 

affordable and accessible, but also regarding data analysis, different methods have 

been developed. The choice between utilizing OTUs (operational taxonomic units), 

which involves quality filtering and sequence clustering, and ASVs (amplicon 

sequence variants), a technique that considers error profiles and claims to produce 

genuine sequences, has sparked a debate. This discussion has been explored 

extensively in recent literature (e.g. Chiarello et al., 2022; Jeske and Gallert, 2022), 

because both approaches offer unique benefits but also introduce their own inherent 

biases. The method of choice seems to be of personal preference, however, analysing 

data for ASVs is currently viewed as the state-of-the-art technique. 

While environmental sequencing seems to have emancipated biodiversity 

assessment of protist communities from cultivation-based approaches, the latter 

remain crucial for accurately identifying taxa. Modern day amplicon sequencing 

does heavily rely on correct, comprehensive and thus, curated databases. Some 

studies were able to map faceless sequences to morphology (Schiwitza and Nitsche, 

2020) and were able to show a direct connection between both methods. It therefore 

makes sense to combine both methods for most surveys.
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Aims 
The main objective of this study was to gain insight into the enormous diversity 

of protist communities that is represented in environmental metabarcoding 

datasets and which factors might shape taxonomic and functional 

composition. As environmental datasets always comprise the community as a 

whole and combine all sorts of trophic modes, we were additionally interested 

to gain insight into two communities in detail that are depending on the 

connection and trophic interaction with other organisms. Furthermore, we 

wanted to emphasize the importance of taxonomic studies as the backbone of 

reference databases and contribute to their constant quality improvement by 

resolving uncertainties in two taxonomic groups. In this way, this thesis 

addresses the following questions: 

1) How is the community composition of benthic protists in a brackish 

water system differing between different geographic regions and what 

might be the potential factors shaping it?  

2) Can metabarcoding and cultivation studies serve as tools to assess the 

diversity of protists living in close association (parasitic/symbiotic) 

with metazoans? 

3) How are taxonomic studies connected to metabarcoding and what 

could be done to further resolve and expand protist taxonomy and 

reference databases? 

 

In order to address these questions, we conducted sampling under different 

environmental conditions. To obtain a comprehensive understanding of 

benthic protist communities in their entirety, we collected samples from two 

distinct regions of the southern Baltic Sea (Chapter 1) and used an amplicon 

sequencing approach to capture the full spectrum of protist diversity present. 

These samples can serve as a representation of naturally existing benthic 

protist communities, encompassing the diverse range of trophic modes 

exhibited by protists. To get thorough insight into the trophic mode of 

parasitism, we tested faecal samples obtained by various amphibians and 

ambient environments to get an overview of specifically parasitic protist 

species, again over amplicon sequencing of the 18S rDNA (Chapter 2). As an 
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antagonist to the parasitic mode, we collected the egg clutches of Rana 

dalmatina, as well as the surrounding spawning waters to gain insight into the 

occurring micro-eukaryotic community (Chapter 3). In this context the 

unicellular green algae of the genus Oophila is assumed to live in mutualistic 

connection with the amphibian larvae within the egg capsule. While the 

taxonomic situation of Oophila is not fully resolved, we tried to support 

previous taxonomic assumptions with our ecological data. Moreover, we 

wanted to address the fact that cryptic species are highly frequent in 

metabarcoding datasets, as reference databases often lack comprehensiveness 

and can only reflect a fraction of the diversity. This is connected to the 

extensive diversity of protists that in large parts remains taxonomically 

unresolved. With two additional taxonomic studies we wanted to exemplify 

how frequent cryptic species occur even in well-known genera such as 

Cafeteria and Goniomonas, and we wanted to analyse whether those genera 

still leave room for expansion. Additionally, we would like to emphasise the 

importance of modern taxonomical work to refine genera and stock reference 

databases (Chapter 4, 5).  
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Summary of Chapters 
 

 

Part 1 Metabarcoding analyses of protist communities in 

dependence of environmental factors and special trophic 

modes 
 

Chapter 1: Benthic heterotrophic protist communities of the southern 

Baltic analyzed with the help of curated metabarcoding studies 

 

The Baltic Sea represents the largest brackish environment on earth. While several 

studies have assessed the planktonic protist community in this unique habitat, 

benthic protist communities have not yet been a topic of larger metabarcoding 

approaches. Our study, as part of a baseline project evaluating the impact of bottom 

trawling on the benthic biocoenosis aims to give first insight into benthic protist 

communities of two regions in the southern Baltic Sea. We achieved this by 

analyzing metabarcoding data derived from sediment samples. The study revealed 

substantial differences in community composition between those regions and 

indicates a potential specificity of brackish water communities; which may require 

specific measures to protect benthic communities as a whole. Published in Biology, 

doi: 10.3390/biology12071010 

 
Chapter 2: Evidence of Batrachochytrium dendrobatidis and other 

amphibian parasites in the Green toad (Bufotes viridis), syntopic 
amphibians and environment in the Cologne Bay, Germany 

 
The chytrid fungi Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans 

(Bsal) are responsible for the most exorbitant loss in amphibian wildlife and 

diversity worldwide. But also, other unicellular parasites associated with 

amphibians exist that are far less studied. Within the frame work of a nature 

conservation project that aims to find the root of the population declines of the 

Green Toad, Bufotes viridis in the Cologne area, we analysed skin swaps for Bd and 

Bsal. Additionally, we analysed data derived from cloacal swabs and environmental 

samples to examine possible infections with other protist parasites. We found that 

Bd was present at all sampled locations, with high prevalence and partly with high 

individual infection load. Bsal could not be detected in our samples, but several 

potentially harmful pathogens were detected in faecal and environmental samples. 

While no clear clinical infection signs were visible, the influence on the amphibians 

remains unclear. Published in Salamandra, 2020, 56 (3) 
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Chapter 3: Diversity and substrate‑specificity of green algae and other 

micro‑eukaryotes colonizing amphibian clutches in Germany, revealed 

by DNA metabarcoding. 

 

Apart from the unicellular green algae Oophila, that is frequently found in 

amphibian egg clutches, only few studies tried to capture the occurrence and role of 

microorganisms within the capsular chamber of amphibian eggs. Through 

metabarcoding of multiple marker genes, we aimed to depict not only the 

community composition of micro-eukaryotes within the egg capsules of the agile 

frog (Rana dalmatina) but also of the surrounding environment of the spawning 

waters including water, sediment and tree leaves. The analysis revealed that the 

community composition of protists is strongly determined by the substrate. This is 

especially the case for the egg capsule, that is inhabited by a distinct community of 

multiple algae, diatoms and ochrophytes. An additional phylogenetic analysis 

showed that algae assigned to Oophila form two distinct clades, of which we assume 

that only one represents the true Oophila. Published in The Science of Nature, doi: 

10.1007/s00114-021-01734-0 

 

 

Part 2 Case studies on phylogeny and autecology of protists 

for two sediment associated taxonomic groups 
 

 

Chapter 4: Cryptic cryptophytes – revision of the genus Goniomonas 

As the only plastid lacking cryptomonad, the genus Goniomonas has a special 

phylogenetic position and most likely represents an ancient pre-endosymbiont 

cryptophyte. Despite this fact, the genus seems not well resolved and under-split 

from a taxonomical point of view, as earlier studies have already found a deep 

divergence between freshwater and marine species. Based on morphological and 

phylogenetic data (18S rDNA) we propose a restructuring of the genus into 

Goniomonas sensu strictu and present a suitable Neotype for the genus, as well as 

splitting the genus into several new genera which leads to the formation of the 

freshwater genera Limnogoniomonas gen. nov., Goniomonas and 

Aquagoniomonas gen. nov. and the marine genera Neptunogoniomonas gen. nov., 

Marigoniomonas gen. nov, Thalassogoniomonas gen. nov., Poseidogoniomonas 

gen. nov. and Cosmogoniomonas gen. nov. Published on bioRxiv, doi: 

https://doi.org/10.1101/2024.07.17.603845  
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Chapter 5: Cafeteria in extreme environments: investigations on C. 

burkhardae and three new species from the Atacama Desert and the 

deep ocean 

 

To expand the taxonomical and ecological knowledge on the bicosoecid genus 

Cafeteria we isolated and cultivated ten strains from various environments 

including the deep sea, Baltic Sea and hypersaline waters in the Atacama Desert. 

Especially, the investigations of the Baltic were part of the present work. Via 

molecular analyses of the 18S and 28S rDNA we could identify four new strains of 

Cafeteria burkhardae from the Altlantic Ocean, one new species (Cafeteria baltica 

sp. nov.) from the Baltic Sea and and two new species from the salt flats of the 

Atacama Desert (C. atacamiensis sp. nov and C. paulosalfera sp. nov.). While 

Cafeteria displays a rather similar morphology for all species, the strains were 

clearly separated on molecular level. Additionally, we conducted experiments to test 

the strains for their salt tolerance. Only the marine strains were able to survive 

higher salinities (up to 150 PSU). Published in European Journal of Protistology, 

doi: 10.1016/j.ejop.2022.125905 
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Conclusive Summary and Perspectives 

Next Generation Sequencing has truly revolutionized and enlarged the knowledge 

that we have of protist diversity today. The overarching objective of this thesis was 

to extend the present knowledge on protist diversity in sediments and amphibian 

associated habitats. This also includes a special focus on trophic interactions 

between amphibian and unicellular organisms that can be derived from their 

cooccurrence in certain habitats. The work includes several novelties on the 

knowledge of benthic protists in brackish waters, as well as on potential protist 

parasites in several amphibian populations as well as on the clutch associated protist 

communities of Rana dalmatina. It additionally aimed to resolve some taxonomic 

uncertainties with regards to the unicellular green algae Oophila and the 

goniomonad cryptophytes as well as enlarges knowledge on species belonging to the 

genus Cafeteria. By adding the latter three studies, we wanted to highlight the direct 

connection between modern taxonomic and Next Generation Sequencing studies, 

as diversity can only be reflected correctly and completely with the correct 

references in databases and a continuous curation of those. 

As the accessibility and affordability of high throughput sequencing has been much 

more facilitated in recent years, techniques of data analysis have changed. OTUs 

(operational taxonomic units) represent a cluster of sequences, summed by a given 

identity threshold. ASVs (amplicon sequence variants), that are exact sequence 

variants, without a clustering method are based on error models that are connected 

to the sequencing quality. Both methods have their pros and cons. Whereas OTUs 

reduce the impact of sequencing errors, as erroneous sequences might disappear in 

the cluster (Eren et al., 2013), ASVs may have a higher sensitivity but a lower 

specificity (Prodan et al., 2020). Recently, a strong shift towards the analysis via 

ASVs has been visible, with the DADA2 pipeline found to offer the highest resolution 

(Prodan et al., 2020). This thesis includes both studies with OTU and ASV datasets, 

as it expanded over the course of several years, consistently trying to offer state of 

the art analyses. 

Using the Baltic Sea as a model region we wanted to gain insight into benthic protist 

communities in their entirety (Chapter 1). Two distinct regions in the southern 

Baltic Sea were chosen to highlight differences and similarities in community 

composition. The Baltic Sea offers a unique habitat as it is not only fed by the saline 
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inflows of the North Sea but also by freshwater riverine runoffs. This composition 

leads to a stratification of waters and changing salinities – both vertically and 

horizontally. The two chosen sampling regions (Fehmanbelt-FB and Oderbank – 

OB) do vary not only in salinity (FB – 19 PSU; OB – 8 PSU) but also in median grain 

size of the sediment (FB - 55 µm; OB – 178 µm) and water depth at the sampling 

stations (FB ~ 23 m; OB ~ 15 m). We employed amplicon sequencing on protists 

extracted from sediment samples to assess their diversity by targeting the V9 region 

of the 18S rDNA and, in part, rRNA. Based on RNA we found significant differences 

in taxonomic composition of the protist communities between the two regions. 

While those might be connected to the factors water depth, salinity and depth of the 

sediment layer that the samples originated from also other factors, such as fishing 

intensity may have an influence on the taxonomic composition of the benthic protist 

community. As the study itself is part of a larger project investigating the latter, 

further studies might be able to resolve the reason for those differences further. 

 While we used strong filtering criteria for our dataset (based on the use of a mock 

community), it may be assumed that the measured differences are potentially based 

on those criteria. Individually chosen read thresholds per library preparation are on 

the one hand an objective measure to reduce the number of noisy ASVs (Dünn and 

Arndt, 2023) but may on the other hand be responsible for a loss in low abundant 

ASVs, leaving only the peaks of the community. Hence, we investigated whether 

adopting a softer ASV table filter would yield comparable outcomes. We applied a 

method that considered only ASVs with a minimum of three reads (referred to as 

the three-read filter)(Lennartz et al., 2023; Schoenle et al., 2021). Prior studies have 

also explored data sets using both strict and soft filtering criteria, (e.g. Dünn and 

Arndt, 2023; Lennartz et al., 2023) demonstrating the persistence of general trends 

across various filtering approaches. Our repetitive analysis of RNA samples for 

comparing sampling stations in the Fehmarnbelt and Oderbank regions, showed 

only a small overlap of 10% in protist communities (Fig. 2), when applying the three-

read filter. 
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Figure 3 A) Upset plot showing the number of shared and unique ASV per region and sediment depth. 
Connected dots show ASVs shared between different depth and regions. The bar chart on the left shows 
total number of ASVs per depth. B) Venn diagram showing the percentage of shared ASVs between the 
Fehmarnbelt and Oderbank region in total. Both plots originate from a dataset that takes only ASVs 
into account where at least three reads were recorded (three read filter). 

 

This indicates that eventhough our filtering criteria may be strict, they still 

accurately reflect the observed differences. 

Regarding the number of ASVs, Ciliophora was the most dominant group in our 

dataset from the Baltic Sea. Earlier studies have shown, that ciliate species seem to 

thrive in the brackish environment leading to high species richness (Xu et al., 2018). 

However, in terms of read abundance, the MALV-I group, a clade of marine 

Syndiniales, had by far the highest numbers. Organisms of the MALV clade are 

known to appear in high numbers in marine environmental studies, yet, as most of 

them are uncultured, they remain rather enigmatic (Guillou et al., 2008). Their 

dominance may partly be reasoned by the fact that they have high copy numbers of 

rDNA (Weber and Pawlowski, 2013) but could also be seen as a indication that the 

parasitic life style is a very successful trophic mode for protists. This assumption is 

underlined by our study to monitor how frequent amphibians in the Cologne area 

were infected with the chytrid fungi Batrachochytrium dendrobatidis (Bd) and B. 

salamandrivorans (Bsal) as well as with other mainly unicellular parasites or 

commensals (Chapter 2). This question was integrated into the overall goal of 
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finding out why the populations of the green toad (Bufotes viridis) have declined so 

much despite various conservation measures. In this study, we combined skin swabs 

analyzed by qPCR with cloacal swabs and environmental samples analyzed over a 

metabarcoding approach from 5-9 sampling sites in the Cologne area. While Bsal 

could not be detected, the prevalence for Bd was high – depending on the sampling 

site with up to 70 % of the samples. Additionally, we were able to find the OTUs of 

nine other, potentially harmful organisms in the cloacal swabs. Using a different 

principle and bioinformatic pipeline for the analysis of the metabarcoding samples, 

we set a threshold of >500 reads per OTU as an unambiguous identification of the 

organism. While any set threshold is artificial, we also included findings that were 

under this detection border. In this way, we found e.g. ~27 % (>500 reads/OTU and 

sample) resp. ~69 % (<500 reads/OTU and sample) of amphibians to be infected 

with the metamonad Tritrichomonas augusta. How and if both the infection with 

Bd and other parasites may affect the tested hosts, and if those are responsible for 

the dwindling populations of Bufotes viridis in specific, remains unclear as the 

animals appeared to be in good health. Species like the heterotrophic flagellate 

Tritrichomonas augusta can affect the host, if they are present in high densities. 

Unfortunately, metabarcoding analyses do not allow to draw conclusions on 

infection loads. Chytridiomycosis (caused by Bd and Bsal), the disease that is 

responsible for an unprecedented loss of amphibian diversity worldwide (Scheele et 

al., 2019), affects the epidermis and leads to a loss of function that can be lethal. We 

found partially high loads of Bd on the skin of the tested animals, but so far, no signs 

of infection. Still, it may be speculated that all sorts of infections might cause a silent 

decline over the loss of juvenile individuals that may be more sensible to infections 

(Pasmans et al., 2018). Meanwhile, no further studies have been published 

adressing these particular circumstances. However, it has been speculated (personal 

communication with NABU) that the decline of Bufotes viridis populations might 

also be attributed to the influence of global warming and other environmental 

factors. Several studies have indicated that amphibian fitness can be impacted by 

mild winters, which in turn disrupts their hibernation period (Griffiths et al., 2010; 

Reading, 2007). To support conservation measures, the Cologne Zoo has 

additionally started a successful conservation breeding program for the green toad 

(Ziegler et al., 2022).  
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Whereas the first two studies of this thesis refer to individual aspects of either the 

distribution or the trophic interaction of protists, the third study can be seen as a 

combination of both or as a transition to the second part of the thesis. Chapter 1 

investigated benthic protist diversity and community composition in the southern 

Baltic Sea, Chapter 2 concentrated on a group of organisms united by a certain 

trophic mode. Chapter 3 again concentrates on a special community that stands in 

close connection with other organisms but is also investigating taxonomic matters. 

Within small pond waterbodies of the Elm, a region near Braunschweig, we sampled 

three different ponds and different substrates (water, sediment, sunken tree leaves 

and clutches of Rana dalmatina) with the intention to get an overview on the protist 

community with a special focus on the green microalga Oophila and its distribution. 

Oophila is known for its mutualistic relationships. The taxonomic identity of 

Oophila is still unsure. Within the discussion which lineage may represent the “true” 

Oophila basically two opinions can be found in literature. Nema et al. (2019) have 

created two major clades (A and B) and therefore found Oophila to be 

phylogenetically diverse, claiming that clade A represents the true Oophila as they 

isolated new strains of this clade from amphibian clutches. The majority of other 

studies consistently considers isolates from clade B as the original Oophila (Jurga 

et al., 2020; Kerney et al., 2019; Kim et al., 2014; Muto et al., 2017) as they all belong 

to one clade of green algae and where found to be the numerically most abundant 

algae in egg clutches of two American salamander species (Jurga et al., 2020; Kerney 

et al., 2019). By isolating samples directly from the clutches of Rana dalmatina as 

well as an additional multigene phylogenetic analysis, we wanted to contribute to 

the solution of this question. To analyse the protist community with the different 

substrates, we divided the metabarcoding analysis between the rbcl gene and the 

18S rDNA gene. Our analyses revealed a unique community within the egg clutches 

both for rbcl and 18S data that contained 16.3% unique OTUs for rbcl data and 

56.9% unique OTUs for 18S data. Within the rbcl data OTUs with the highest read 

abundance were Chlamydomonas, Nitzschia and Oophila. The substrate had the 

most significant influence on the community composition in both datasets. But also 

within the clutch samples, we found significant differences between sampling sites, 

developmental stage and sampling date, depending on the statistical method used. 

Other than previous metabarcoding studies targeting the eggs of North American 

salamander Ambystoma maculatum (Jurga et al., 2020), we found that the egg 
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masses of Rana dalmatina were not exclusively colonized by Oophila, but also by 

other algae, which may be due to their looser structure and contamination by taxa 

from the environment. While the breeding waters of Rana dalmatina are rather 

nutrient rich due to many decaying leaves, they may favour a larger diversity both 

in algal and protozoological diversity. Still, we found the clutch habitat to be quite 

distinct from the other sampled pond substrates. Phylogenetically, our analysis of 

the 18S rDNA of the available Oophila sequences revealed, that sequences from 

Rana dalmatina cluster within clade B, which is the first molecular proof that 

Oophila is present in Central Europe respectively globally present in the Holarctic 

region. We were also able to identify sequences that cluster within clade A from our 

samples. Still, as those sequences from clade A are scarce both in our and other 

metabarcoding data sets, we assume that beneficial interactions may rather refer to 

organisms from clade B. Yet, it was interesting to see, that strains from clade A are 

also widely geographically distributed, but this fact may also speak against a 

mutualistic interaction. Overall, our findings support the assumption that the 

original Oophila is much rather assigned to clade B but suggest, that the clade itself 

might need a more comprehensive taxonomic revision. In conclusion, the study 

supports our findings, that the surrounding conditions are highly decisive for the 

structure of the inhabiting protist community (including algae) and that they are 

also influenced by their complex organismic interactions (Bock et al., 2020). On the 

other hand, the study also emphasizes the importance of correct taxonomy as a basis 

of metabarcoding studies. In this case, it is especially relevant since the accurate 

identification of the taxon is essential to derive information about its ecological and 

trophic functions. The root of this and similar issues is mostly due to the fact that in 

earlier times many organisms were described exclusively in morphological terms. 

Through molecular investigations, especially the inclusion of DNA sequence data 

and the use of electron microscopy, it became possible to make even the smallest 

differences visible. However, this underscores that earlier described species usually 

contain not just one but multiple, cryptic species. Modern taxonomists therefore 

often pursue an integrative approach and combine morphological, molecular and 

also ecological information in order to be able to differentiate species as well as 

possible (Rybarski et al., 2021; Schiwitza et al., 2018; Zivaljic et al., 2020). The genus 

Goniomonas is a well-known representative of the Cryptophyta and is commonly 

found in marine and freshwater habitats. Despite this and its special position within 
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the Cryptophyta as the only representative lacking a chloroplast, it is surprising that, 

only 5 species (G. truncata, G. amphinema, G. pacifica, G. avonlea and G. 

brasiliensis) have been scientifically described so far. Earlier studies have found a 

deep divergence between freshwater and marine species (Kim and Archibald, 2013; 

Von Der Heyden et al., 2004), but did not make the effort to resolve the genus, 

eventhough the differences between the species are as high as between certain 

different genera (Von Der Heyden et al., 2004). Aggravating as in the case of 

Oophila is, that there is no genetic type material. Apart from G. avonlea, the most 

recently described species, no exact genetic reference material is available for all 

other species, meaning that descriptions are only based on morphology. Especially 

for G. amphinema and G. pacifica, their morphology has been used to discriminate 

them from each other (as both can be found in marine environments). Additionally, 

the original descriptions for those two are based on light microscopy only. In this 

way, many sequences have been deposited in GenBank under one of the species 

names, partly with large genetic differences to each other, e.g. accession numbers 

LC674566 and AF508277, both under the name G. pacifica, but with 2.57 % pairwise 

distance to each other. Our study has shown, that several other, genetically distinct 

strains display rather similar morphological traits, which makes a genetic approach 

for species determination inevitable (Chapter 4). To revise the genus, we therefore 

proposed a split into several new genera and added and described ten new species 

from our own culture collection. Within those, and with the help of electron 

microscopy we were able to determine shared traits within those newly designated 

genera. To create a new basis for the genus Goniomonas sensu strictu we chose a 

strain isolated from the river rhine as a Neotype for Goniomonas truncata, as we 

assume that the original strain of G. truncata was also isolated in Germany. The 

genus Goniomonas would then further on be limited to freshwater environment. 

The marine species, G. amphinema and G. pacifica would be newly assigned to the 

genus Cosmogoniomonas gen. nov., taking the elaborate description of former G. 

aff. amphinema (Martin-Cereceda et al., 2010) as a type description for 

Cosmongoniomonas amphinema sp. nov.. Goniomonas as well as Oophila 

demonstrate how important it is to designate new type material as all parts of 

research, even non-taxonomic studies, rely on a correct taxonomic assignment. 

Similar to Goniomonas the bicosoecid Cafeteria, especially the species Cafeteria 

burkhardae is a very frequently found heterotrophic flagellate (Atkins et al., 2000; 
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Massana et al., 2021; Schoenle et al., 2020). Cafeteria has been recently revised by 

Schoenle et al. (2020) revealing that many deposited sequences were wrongly 

assigned under the name C. roenbergensis, which represents the type of this genus. 

Schoenle et. al. (2020) also expanded the genus for several new species, showing 

that this type of flagellate can occur in marine surface waters but also in deep-sea 

sediments and seems to represent a rather robust generalist. With our study 

(Chapter 5) we aimed to resolve the species diversity of the genus furthermore and 

investigate strains from different, rather extreme habitats as hypersaline salars of 

the Atacama Desert, deep and surface waters of the North Atlantic Ocean and the 

brackish waters of the Baltic Sea (Fehmarnbelt area). For an in-depth 

characterisation of the new strains, we combined morphological observations with 

a multigene phylogenetic approach and autecological salt tolerance experiments. 

We were able to describe three new species, two from the Atacama Desert (C. 

atacamiensis sp. nov. and C. paulosalfera sp. nov.) and one from the Baltic Sea (C. 

baltica sp. nov.) and obtain four new strains of C. burkhardae from the Atlantic 

Ocean. Similar to Goniomonas, Cafeteria species show only small morphological 

differences on basis of high-resolution microscopy. The phylogenetic analysis 

showed how multigene analyses can refine molecular results. Whereas C. baltica 

sp.nov. and C. burkhardae show only minor differences on the 18S and 28S rDNA 

gene level, they differ highly in the ITS region (18S+ITS: 4.1 % pairwise distance). 

The strains from the Atacama Desert showed high genetic distance to all other 

Cafeteria species. Regarding salt tolerance, C. burkhardae showed highest 

tolerances, underlining the fact that it is a cosmopolitan species with a highly 

adaptive character. But also C. baltica sp. nov. showed high tolerances, making it 

possible to survive under a variety of salt concentrations in the Baltic Sea. Additional 

to our findings, we were able to recover C. baltica sp. nov with 100 % identity from 

our dataset in Chapter 1, from the samples of the Fehmarnbelt area as well as in the 

dataset from several stations sampled during the Tara Ocean circumglobe 

expedition (De Vargas et al., 2015). This underlines our hypothesis that C. baltica 

sp. nov is a highly adaptive species, but it also emphasizes the deep connection 

between modern taxonomy and next generation sequencing approaches. Overall, 

this thesis gave novel insights into the composition and diversity of protist 

communities in large environmental datasets as well as in regards to specific trophic 
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interactions. The in-depth taxonomic analysis of protist strains showcases how 

complex and cryptic their diversity can be and how important further studies are.  
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