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Abstract

Abstract

The conjugating green algae (Zygnematophyceae) inhabit a wide range of freshwater fed systems
worldwide — including lakes, rivers, ephemeral ponds and moorlands. Some species even thrive in
extreme habitats, for example, on terrestrial surfaces or glacial ice. Zygnematophytes have a rather
simple cellular organization and have been traditionally divided into three morphologically defined
groups: the placoderm desmids (semi-symmetrical unicells with ornamented cell walls), the saccoderm
desmids (rod-shaped unicells with smooth cell walls), and the filamentous forms (also with smooth cell
walls). Surprisingly, the Zygnematophyceae were found to be the closest relatives of land plants
(Embryophyta) — despite their rather simple organization. Since this discovery, the number of studies
on zygnematophytes has increased rapidly, and they are now very popular study objects for
understanding the evolution of land plants. And yet, the evolutionary relationships between major
zygnematophyte groups are unclear and the zygnematophyte taxonomy is outdated. In particular, the
saccoderm desmids are under-studied and consist of only a few polyphyletic genera, for example
Mesotaenium and Cylindrocystis. Interestingly, these algae colonize various extreme habitats and have
been reported to accumulate colorful specialized compounds, whose inducing factors, biological
function and chemical identity remain largely unknown.

During this doctoral study, saccoderm desmids were isolated from freshwater and terrestrial
habitats, resulting in axenic laboratory cultures. Based on these cultures, the cell morphology as well as
vegetative and sexual processes were studied with different microscopy techniques. In addition,
established marker genes (rbcL and 18S rRNA) were used to localize the new strains in the tree of
zygnematophytes by molecular phylogenetics. Furthermore, available datasets from 46 taxonomically
diverse zygnematophytes were used to infer a multigene phylogeny (326 nuclear loci) of the
Zygnematophyceae in a collaborative effort. To study the colorful specialized compounds, species of
the two genera Ancylonema (with vacuolar pigments) and Serritaenia (with extracellular pigments) were
subjected to light and nutrient experiments as well as to analytical methods. Additionally, comparative
transcriptomics was employed to investigate the cellular responses of the selected zygnematophyte
Serritaenia testaceovaginata to ultraviolet radiation.

The morphological studies combined with the single-gene phylogenies revealed twelve distinct
lineages of Mesotaenium-like algae, including four new lineages. This allowed the introduction of a
provisional nomenclature to facilitate communication and highlight the diversity of these
morphologically plain zygnematophytes. The well-resolved phylogenomic tree provided a clear
separation of major zygnematophycean lineages and a basis for the establishment of a new five-order
system for these algae. Furthermore, a new species of the genus Ancylonema, A. palustre sp. nov., was
discovered and described. It is the first known mesophilic relative (from moorlands) of common glacier
algae. The well growing, axenic cultures of A. palustre enabled the full reconstruction of vegetative and
sexual reproductive processes as well as the experimental induction of reddish, vacuolar compounds.

Another major contribution was the rediscovery of saccoderm desmids, here assigned to the new genus
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Serritaenia (formerly Mesotaenium), which produce pigmented extracellular mucilage. Experimental
work on Serritaenia testaceovaginata provided the evidence for a sunscreening function of the
pigmented mucilage. This included the specific induction by ultraviolet B radiation, a broad absorbance
with a maximum in the ultraviolet B waveband, and a perfect cellular localization for shielding. The
comparative RNA-seq analysis of S. testaceovaginata revealed a plant-like UVB perception system and
specialized metabolite pathways (shikimate and phenylpropanoid biosynthesis) that were regulated
during pigment production. Furthermore, several extracellular oxidative enzymes, which are known to
act on phenolic compounds, as well as ATP-binding cassette transporters, which are known to transport
phenolics across membranes, were highly upregulated in S. testaceovaginata upon UVB exposure.
Together with the chemical properties of the pigmented mucilage, these results suggest a polyphenolic
nature of Serritaenia's sunscreen compound.

Overall, this thesis presents perspectives for studying and understanding the diversity and
cellular adaptations of the saccoderm desmids from high-light habitats. In particular, the novel sunscreen
strategy of Serritaenia is discussed in a broader context and compared to known sunscreen compounds
from plants, cyanobacteria and fungi. Finally, the potential of combining biodiversity research and

functional characterization of non-model organisms is discussed.
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Die Jochalgen (Zygnematophyceae) besiedeln weltweit eine Vielzahl von SiiBwassersystemen, darunter
Seen, Fliisse, ephemere Gewisser und Moore. Einige Arten leben sogar in Extremhabitaten,
beispielsweise auf terrestrischen Oberflichen oder Gletschereis. Die Organisation der Jochalgen ist
relativ einfach und sie wurden traditionell in drei Gruppen eingeteilt: Placoderme einzellige Formen
(spiegelsymmetrische Algen mit ornamentierten Zellwédnden), saccoderme einzellige Formen
(stdbchenformige Algen mit glatten Zellwénden) und filamentése Formen (mit glatten Zellwénden).
Trotz ihrer eher einfachen Organisation, erwiesen sich die Jochalgen als die ndchsten Verwandten der
Landpflanzen (Embryophyta). Seitdem hat die Forschung an Jochalgen rasant zugenommen und heute
sind sie beliebte Studienobjekte fiir das Verstindnis der Landpflanzenevolution. Die evolutiondren
Beziehungen zwischen den groferen Jochalgengruppen ist aktuell jedoch weitgehend ungeklart und die
Taxonomie ist veraltet. Besonders die saccodermen Formen sind schlecht untersucht und bestehen nur
aus wenigen polyphyletischen Gattungen, zum Beispiel Mesotaenium und Cylindrocystis.
Interessanterweise, besiedeln die saccodermen Formen eine Reihe extremer Lebensrdume, in welchen
sie farbige Substanzen akkumulieren. Die Induktion, biologische Funktion und chemische Identitét
dieser Substanzen sind noch weitestgehend unbekannt.

Im Rahmen dieser Doktorarbeit wurden saccoderme Jochalgen aus aquatischen und
terrestrischen Habitaten isoliert. Mittels bestimmter Aufreinigungsmethoden wurden aus diesen Zellen
axenische Kulturen fiir Laboruntersuchungen etabliert. Sowohl die Zellmorphologie als auch vegetative
und sexuelle Prozesse wurden mithilfe verschiedener Mikroskopietechniken untersucht. Um die neuen
Staimme phylogenetisch einzuordnen, wurden etablierte Markergene (rbcL und 18S rRNA) verwendet.
In einer kollaborativen Arbeit, wurden zudem verfligbare Datensétze von 46 taxonomisch diversen
Jochalgen verwendet und eine Multigen-Phylogenie (326 Gene) der Jochalgen berechnet. AuBerdem
wurden die nichtphotosynthetischen Pigmente der beiden Gattungen Ancylonema (mit vakuoldren
Pigmenten) und Serritaenia (mit extrazelluliren Pigmenten) mittels Licht- und Néhrstoffexperimenten
induziert und mit analytischen Methoden untersucht. Mit vergleichender Transkriptomik wurden zudem
die zelluldren Reaktionen der ausgewdhlten Jochalge Serritacnia testaceovaginata auf Ultraviolett-
Strahlung studiert.

Die morphologischen Studien kombiniert mit den Einzelgen-Phylogenien zeigten zwolf
verschiedene Linien Mesotaenium-éhnlicher Algen, darunter vier neue Linien. Dies ermdglichte die
Einfiihrung einer vorldufigen Nomenklatur, welche die Kommunikation erleichtert und die Vielfalt
dieser morphologisch einfachen Jochalgen gebiihrend reflektiert. Die Multigen-Phylogenie ermoglichte
die Etablierung eines neuen Systems aus fiinf Ordnungen fiir die Jochalgen. Des Weiteren wurde eine
neue Art der Gattung Ancylonema, A. palustre sp. nov., entdeckt und beschrieben. Es ist der erste
bekannte mesophile Verwandte (aus Moorgebieten) der ansonsten ausschlieBlich auf Eis lebenden
Ancylonema-Arten. Die gut wachsenden, axenischen Kulturen von A. palustre ermoglichten die

Rekonstruktion vegetativer und sexueller Fortpflanzungsprozesse sowie die experimentelle Induktion
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rotlicher, vakuoldrer Substanzen. Ein weiterer wesentlicher Beitrag war die Wiederentdeckung von
Jochalgen, die hier der neuen Gattung Serritaenia (friiher Mesotaenium) zugeordnet werden und
pigmentierten, extrazelluldren Schleim produzieren. Die experimentellen Arbeiten an Serritaenia
testaceovaginata lieferten den Nachweis, dass der pigmentierte Schleim den Algenzellen als
Sonnenschutz dient. Dies beinhaltete die spezifische Induktion durch Ultraviolett-B-Strahlung, eine
breite Absorption mit einem Maximum im Ultraviolett-B-Bereich sowie eine perfekte zelluldre
Lokalisation zur Abschirmung. Die vergleichende Transkriptomstudie von S. testaceovaginata zeigte
die Présenz eines pflanzendhnlichen Rezeptorsystems fiir Ultraviolett-B-Strahlung sowie spezieller
Stoffwechselwege (Shikimat- und Phenylpropanoid-Biosynthese), die wéihrend der Pigmentproduktion
reguliert werden. Weiterhin wurde eine Hochregulierung von ABC-Transportern, welche phenolische
Substanzen durch Membranen transportieren konnen, festgestellt. Ahnliche Reaktionen wurden auch
von mehreren extrazelluldren, oxidativen Enzymen beobachtet, die phenolische Substanzen umsetzen
koénnten. In Kombination mit den chemischen Eigenschaften des pigmentierten Schleims, deuten diese
Ergebnisse auf eine polyphenolische Natur des Sonnenschutzpigments von Serritaenia hin.

Die vorliegende Arbeit weist Perspektiven auf, wie in Zukunft die Diversitit und die zelluldren
Anpassungen der saccodermen Jochalgen aus sonnenexponierten Lebensrdumen besser untersucht und
verstanden werden konnen. Insbesondere die neuartige Sonnenschutzstrategie von Serritaenia wird in
einem breiteren Kontext diskutiert und mit bekannten Sonnenschutzsubstanzen aus Pflanzen,
Cyanobakterien und Pilzen verglichen. In der Schlussbetrachtung wird das Potenzial der Kombination

von Biodiversitétsforschung und funktioneller Charakterisierung von Nicht-Modellorganismen erortert.
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Introduction

The green lineage: Spotlight on the algal relatives of land plants

Green algae have an interesting evolutionary position. They are part of the Archaeplastida and derive
from a primary endosymbiosis (Bhattacharya & Medlin, 1998; Irisarri et al., 2022). During this event, a
heterotrophic eukaryote took up a cyanobacterium, which developed into a semiautonomous organelle,
the chloroplast. It led to the emergence of phototrophic eukaryotes, which performed oxygenic
photosynthesis and eventually resulted in the green algae, the red algae, and the glaucophytes
(Bhattacharya & Medlin, 1995; Cavalier-Smith, 2000; McFadden & van Dooren, 2004). Within the
green algae, there is an early divergence of two clades, the two divisions Chlorophyta and Streptophyta
(Fig. 1; Bierenbroodspot et al., 2024; Leliaert et al., 2012; Lemieux et al., 2007). The Streptophyta
include green algae from freshwater and terrestrial habitats as well as the land plants (Embryophyta)
(Becker & Marin, 2009; Bierenbroodspot et al., 2024). Most subgroups of the Streptophyta are not
particularly diverse, but the land plants are a notable exception with ~ 450,000 species (Leliaert et al.,
2012; Pimm & Joppa, 2015). Besides the land plants, six different groups of algae belong to the
Streptophyta, namely the  Charophyceae,  Coleochactophyceae,  Klebsormidiophyceae,
Chlorokybophyceae, Mesostigmatophyceae and Zygnematophyceae (Irisarri et al., 2021; Wodniok et
al., 2011). As the streptophyte green algae form a paraphyletic group from which land plants evolved,

they are important for understanding the transition from algae to plants.
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Fig. 1: Schematic phylogeny of the green algae depicting major forms of organization. Note that the shown relationship of
the Zygnematophyceae and plants does not reflect the current state of knowledge (see main text); figure kindly provided
by Frederik Leliaert (Meise Botanic Garden, Belgium).
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The exact topology of the streptophyte tree was unclear for a long time, and the question of the closest
relative of land plants was unresolved (Hall et al., 2008; Lemieux et al., 2007; Turmel et al., 2006). Early
hypotheses were based on the concept that morphological complexity increases in evolutionary derived
groups. Therefore, the Charophyceae and Coleochaetophyceae, which form relatively complex,
multicellular thalli, were favored as the closest relatives of land plants (Graham et al., 2000; Karol et
al., 2001; Kranz et al., 1995). However, early multigene phylogenies suggested that the
Zygnematophyceae are the closest relatives to the embryophytes (Timme et al., 2012; Wodniok et al.,
2011). More recently, this was confirmed by several phylogenomic analyses (Cheng et al., 2019;
Gitzendanner et al., 2018; Irisarri et al.,, 2021). The Zygnematophyceae have a rather simple cell
morphology with vegetative non-flagellated unicells or filaments. Unlike other streptophyte green algae,
they lack centrioles and flagellated stages, and are characterized by a special mode of sexual
reproduction known as conjugation (Hall & McCourt, 2017; Tsuchikane & Sekimoto, 2019). During
conjugation the contents of two vegetative haploid cells are transformed into amoeboid gametes, which
fuse to form a resistant diploid zygospore (Permann, et al., 2022; Pickett-Heaps & Fowke, 1971;
Sekimoto, 2000). Due to their special mode of genetic recombination, the Zygnematophyceae are also
referred to as “conjugating green algae”. Overall, the Zygnematophyceae are morphologically very
different from the land plants and it was proposed that these algae underwent a secondary reduction
during evolution (De Vries & Archibald, 2018; Delwiche & Cooper, 2015; Wickett et al., 2014).
However, despite their simple growth form, zygnematophytes exhibit a great ecological diversity. Many
species grow benthic, some planktonic and some have a terrestrial lifestyle (Hall & McCourt, 2017).
Some species from the genera Mougeotia and Spirogyra can be considered nuisance algae which form
pond scum in eutrophic waters (McKernan & Juliano, 2001; Zohary et al., 2019). However, many
unicellular species are key organisms for peatlands (Neustupa et al., 2023), and some thrive in extreme
habitats, for example on glacial ice (Remias et al., 2009). The glacier algae of the genus Ancylonema
can form blooms on the ice surfaces in alpine and polar regions, and thereby contribute to increased
glacial melting rates (Di Mauro et al., 2020; Lutz et al., 2014).

The zygnematophytes have a long taxonomic history. They have been studied since the 19"
century and comprise likely more than 4,000 described species (de Bary, 1858; Hall & McCourt, 2017,
Kiitzing, 1843). Traditionally, the class was divided into two orders, based primarily on differences in
cell wall structure: The Zygnematales, unicells and filaments characterized by smooth, non-ornamented
cell walls, and the Desmidiales, unicells with cell wall pores and a rather complex cell wall. The
Desmidiales, also known as “placoderm desmids”, are also characterized by two symmetrical cell halves
(semicells) that are connected by a narrow bridge (isthmus) (Gerrath, 1993; Gontcharov, 2008; Mix,
1972). In contrast, the unicellular representatives of the Zygnematales, have a rather simple cell
morphology (mainly rod-shaped) and are referred to as “saccoderm desmids” (Fig. 2; Gerrath, 1993;
Gontcharov, 2008; Kadlubowska, 1984; Prescott, 1972). Molecular phylogenetics revealed that the

Desmidiales are indeed a monophyletic group, while the Zygnematales are paraphyletic (Besendahl &
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Bhattacharya, 1999; Gontcharov et al., 2003, 2004; McCourt et al., 2000). As in many other protist
groups, the exclusive use of morphological characters proved to be unsuitable for drawing evolutionary
conclusions in the Zygnematophyceae (Gontcharov & Melkonian, 2008, 2011; Hall et al., 2008;
Schiwitza & Nitsche, 2021; Zhao et al., 2016). The phylogenetic analyses were mainly based on nuclear
rRNA genes, the mitochondrial cox3 (subunit III of the cytochrome c oxidase) gene and the chloroplast
rbcL (large subunit of the ribulose-bisphosphate carboxylase) gene. Based on these marker genes it was,
however, not possible to resolve the deep nodes of the zygnematophycean tree. Hence, the true

relationships between major zygnematophycean groups are still unresolved.
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Fig. 2: Three morphologically defined groups of the Zygnematophyceae; from Busch & Hess, 2022b, modified.

The definition of species in the Zygnematophyceae is another prevailing problem. For example,
the members of certain genera of placoderm desmids (e.g. Cosmarium, Micrasterias) have distinct
genetic sequences, but show only minor morphological differences. This makes it difficult to define
taxonomic units on the basis of morphology, a problem called pseudocryptic diversity (Gontcharov &
Melkonian, 2008; Nemjova et al., 2011). Furthermore, some other zygnematophyte species show
phenotypic plasticity. This is the expression of specific cellular characteristics in a species, depending
on environmental conditions (Chia et al., 2015; Neustupa et al., 2008). This had exactly the opposite
effect and led to the description of redundant species names (Kouwets, 2008). The saccoderm desmids
are particularly affected by these circumstances. Their plain morphology and the difficulties in
distinguishing species and genera have led to numerous unverified synonyms and misclassifications.
These algae currently consist of only a few poorly defined and polyphyletic genera, for example
Mesotaenium and Cylindrocystis (Gontcharov, 2008; Gontcharov et al., 2003). Hence, the taxonomy
of the phylogenetically diverse saccoderm desmids is still confusing and their true diversity
remains unrecognized.

The Zygenmatophyceae are the closest algal relatives of land plants and important subjects to
study evolutionary transitions (Gitzendanner et al., 2018; Wodniok et al., 2011). Land plants evolved
around 500 million years ago and led to a dramatic change of life on earth (Benton et al., 2022; Morris
et al., 2018). The colonization of the terrestrial habitat by plants, a process known as “terrestrialization”,
could only be achieved through a successful adaptation to certain abiotic stress factors (also referred to

as stressors). In terrestrial habitats, organisms can be exposed to prolonged drought, extreme temperature
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fluctuations (including freezing) and increased solar radiation. It is assumed that the ecophysiological
adaptations of the first land plants included osmoregulation and osmoprotection, desiccation and frost
tolerance as well as heat resistance (Dadras et al., 2023; Delaux et al., 2012; Jiao et al., 2020; Nishiyama
et al., 2018; Rensing et al., 2008). Some authors even suggest that the ancestors of streptophyte green
algae were pre-adapted to a life on land in terms of their cellular and metabolic properties (Becker &
Marin, 2009). To learn more about how the common ancestor of land plants and zygnematophytes coped
with terrestrial stress factors, it is interesting to compare the cellular toolbox of these algae with that of
land plants. This way, it is possible to identify characteristics that are exclusive to land plants and those
that were probably already present in the algal ancestor. So far, only relatively few zygnematophyte
species (e.g. from the genera Mesotaenium, Mougeotia, Penium, Spirogloea, Zygnema) have been
subjected to in-depth genomic or transcriptomic analyses (Cheng et al., 2019; Dadras et al., 2023; Feng
et al., 2024; Fiirst-Jansen et al., 2021; Jiao et al., 2020; Rieseberg et al., 2023). These analyses revealed
adaptations, which were previously thought to be specific to plants. Some examples are specific stress
responses (de Vries et al., 2020; Holzinger et al., 2014), homologues of phytohormone receptors (de
Vries et al., 2018; Sun et al., 2019), and key enzymes of the phenylpropanoid pathway (de Vries et al.,
2017). Interesting insights were further gained from the genome of the saccoderm desmid Spirogloea
muscicola. It revealed an expansion of certain genes (GRAS and PYR/PYL/RCAR), which are known
to increase the resistance to biotic and abiotic stressors in land plants. These genes were likely gained
via horizontal gene transfer from soil bacteria (Cheng et al., 2019). However, the genomic analyses also
reveal significant taxon-specific differences, which reflects the vast diversity of the zygnematophytes
and their lifestyles (Rieseberg et al., 2023). To understand how the algal progenitor of land plants
adapted to terrestrial conditions, we need to learn more about terrestrial zygnematophytes and

how they cope with abiotic stressors.

Zygnematophytes and their adaptations to terrestrial stressors

Algae that live in terrestrial habitats derive from different eukaryotic supergroups. This includes
members of the chlorophyte and streptophyte green algae (Rindi et al., 2009) as well as xanthophytes
(Rybalka et al., 2020), eustigmatophytes (Neustupa & Némcova, 2001), euglenophytes (Ashley et al.,
1985), cryptophytes (Paulsen et al., 1992), dinophytes (Kutovaya et al., 2012) and bacillariophytes
(Foets et al., 2021). Furthermore, numerous cyanobacterial genera can be found in terrestrial habitats
(Gaysina et al., 2018). Terrestrial algae are specialists and require specific environmental conditions to
survive and grow. Under suitable conditions terrestrial algae can form blooms that are visible to the
naked eye as colorful biofilms (e.g. green, brown, red). Such biofilms can be composed of a single or
several algal species (Baumann et al., 2018; Liu et al., 2012; Williamson et al., 2018). In multi-species
biofilms, it has been shown that different taxa occupy well-defined areas depending on their competitive
strength and ecophysiological preferences (Jung et al., 2019; Oren et al., 1995). The dominant algal
groups on land belong to the cyanobacteria and green algae (Broady, 1979; Biidel et al., 2016; Leliaert
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et al., 2012; Lin et al., 2013; Rybalka et al., 2023). Most of the terrestrial green algae stem from to the
Chlorophyta, including the common photobionts of lichens (Honegger, 2009). In fact, chlorophytes and
the widespread streptophyte genus Klebsormidium are among the best studied terrestrial green algae, as
they can be easily isolated and cultivated (Hodac¢ et al., 2012, 2016; Mikhailyuk et al., 2008, 2015). In
contrast, terrestrial zygnematophytes are underexplored and there is no recent literature on their diversity
and identification. This might be due to the fact that these algae are very sticky and difficult to isolate.
Furthermore, some of them have very low growth rates and are easily overgrown by chlorophyte green
algae. And yet, zygnematophytes colonize various terrestrial surfaces, including tree bark, deadwood,
bare soil, various types of rock as well as bryophytes (de Bary, 1858; Fucikova et al., 2008; Pichrtova
et al., 2016). In these habitats, the algal cells are attached to the substrate and can be exposed to long
periods of drought. Additionally, zygnematophytes colonize other extreme habitats, that may not be
strictly terrestrial, but are dominated by terrestrial stressors. For example, on glacier surfaces, water is
abundant, but the algal cells are exposed to freezing temperatures and high levels of solar radiation
(Prochazkova et al., 2021; Remias et al., 2012). Furthermore, shallow and temporary bodies of water,
such as puddles, are colonized by certain zygnematophyte species. Such water bodies can dry up or have
semi-moist margins (Aigner et al., 2013; Pichrtova et al., 2016).

All of these habitats present a “high-stress” environment for microalgae. There are three primary
stressors to consider: desiccation, extreme temperature fluctuations and high solar radiation (Karsten et
al., 2007; Karsten & Holzinger, 2014; Permann et al., 2022). All of these conditions can lead to cell
damage, which can be fatal if no protection is in place. Drought leads to a loss of membrane fluidity,
the disintegration of organelles and the irreversible aggregation of macromolecules (i.e. proteins, nucleic
acids, membrane lipoproteins) (Holzinger & Karsten, 2013; Liittge et al., 2011). In addition, reactive
oxygen species (ROS) are generated, in particular, when cells dehydrate in the light. In this situation,
photosynthetic pigments are excited, but the energy cannot pass the photosynthetic electron transport
chain due to damaged proteins (Rothschild & Mancinelli, 2001; Smirnoff, 1993). The resulting ROS
can damage DNA, cause conformational changes in proteins, and lead to lipid peroxidation (Halliwell,
1987; Kranner & Birti¢, 2005). The diversity of cellular damage demonstrates, that terrestrial algae must
have evolved strategies to cope with dry conditions. In zygnematophytes, most research on adaptive
strategies has been done on a few filamentous representatives, for example polar and alpine Zygnema
species. Adaptive strategies against drought can be classified into two groups, namely those that prolong
periods of hydration and those that alter the cells to survive dehydration. One strategy, which prolongs
the period of hydration is the production of extracellular mucilage. Under dry conditions, Zygnema
filaments have been shown to form massive mucilaginous sheaths, that protect the alga from excessive
water loss (Fuller, 2013; Pichrtova, 2015; Pichrtova et al., 2014). In fact, zygnematophytes in general
are well known for their ability to produce large amounts of extracellular mucilage (Domozych &
Domozych, 2008). This mucilage can be complex in composition, with polysaccharides being the major

component and may also contain uronic acid and proteins (Kiemle et al., 2007). The extracellular
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mucilage of Zygnema circumcarinatum, for example, contains arabinogalactan proteins, which have
been demonstrated to facilitate cell-cell and cell-surface adhesion (Palacio-Lopez et al., 2019). Another
mechanism to prolong periods of hydration, is the synthesis and accumulation of organic osmolytes such
as sugars and sugar alcohols. These substances can lower the osmotic potential within the cell and
thereby prevent excessive water loss (Holzinger & Karsten, 2013; Nagao et al., 2008). In Zygnema
sucrose-synthesizing enzymes are upregulated during desiccation, and the analysis of osmolytes from
alpine Zygnema samples revealed that sucrose is the dominant substance (Hawes, 1990; Rippin et al.,
2017). Mechanisms that enable cells to survive dehydration include modifications to the plasma
membrane and cell wall to maintain fluidity and flexibility. Zygnematophytes of the genera Penium and
Zygnema modify their plasma membrane and cell wall composition in response to water scarcity
(Domozych et al., 2021; Herburger et al., 2019). In one Zygnema species, for example, the pectic
substance homogalacturonan accumulates during desiccation and increases desiccation resistance
(Herburger et al., 2019). Moreover, a variety of cellular repair proteins are upregulated upon dehydration
to counteract cell damage. These include DNA repair proteins, ROS scavenging enzymes, chaperones,
and aquaporins that facilitate water flux across the plasma membrane (Rieseberg et al., 2023; Rippin et
al., 2017).

Extreme temperatures can lead to heat denaturation of biomolecules, on one hand, and to
structural destruction by ice crystals, on the other (Lepock et al., 1993; Tan et al., 2021). At high
temperatures, the fluidity of membranes can increase to a lethal level, chlorophyll degrades (at 70-80
°C) (Lipova et al., 2010), and proteins (>40°C) (Lepock et al., 1993) and nucleic acids (>85°C) (Rice &
Doty, 1957) denature. In response to a rapid short-term increase in temperature, the two filamentous
zygnematophytes Mougeotia and Spirogyra, show upregulation of heat shock proteins and aquaporins,
remodeling of the photosynthetic apparatus, and a change in amino acid metabolism. However, each
species showed its own, individual gene expression profile, which suggests species-specific differences
(de Vries et al., 2020). At cool temperatures, membrane fluidity decreases and the rate of metabolic
reactions slows down. This also leads to slower repair processes (Queiroz et al., 1998; Roos & Vincent,
1998). Exposure to sub-zero temperatures damages the plasma membrane, in particular (Steponkus &
Lynch, 1989). Antarctic Zygnema species have been shown to survive repeated freeze-thaw cycles with
very fast recovery rates (Hawes, 1990; Pichrtova et al., 2016), indicating that psychrophilic
zygnematophytes must have cellular mechanisms to survive freezing temperatures. Currently, the
research on the adaptations of zygnematophytes to extreme temperatures is limited, and the underlying
mechanisms are not yet fully understood. However, a very recent study suggests that the psychrophilic
zygnematophyte Ancylonema nordenskioeldii may be protected from freeze-thaw injury by an ice-
binding protein (Prochazkova et al., 2024).

Sunlight is essential for algae to carry out photosynthesis, grow and reproduce. However,
extreme solar radiation interferes with biological processes. High levels of PAR (photosynthetically

active radiation: 400-700 nm) result in damage of the photosynthetic apparatus (Franklin & Forster
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1997) and ultraviolet radiation (UV) can damage a variety of biomolecules. Ultraviolet A radiation
(UVA, 315-380 nm) causes the formation of ROS and ultraviolet B radiation (UVB, 280-315 nm)
damages DNA and proteins directly. UVB leads to the dimerization of pyrimidine bases in DNA and
destroys tryptophan residues in proteins (Hargreaves et al., 2007; Pattison & Davies, 2006; Vincent &
Neale, 2000). In terrestrial algae, UV- and light-absorbing specialized compounds (also referred to as
secondary pigments) protect the cells from strong solar radiation. One example is the secondary
carotenoid astaxanthin, which is accumulated by a number of chlorophyte green algae in sun-exposed
habitats and acts as a photoprotective agent (Bidigare et al., 1993; Gao & Garcia-Pichel, 2011; Lemoine
& Schoefs, 2010). Common and well-studied UV-screening compounds are the colorless mycosporine-
like amino acids (MAAs) found in various algal groups, including certain chlorophyte and streptophyte
green algae (Garcia-Pichel & Castenholz, 1993; Hartmann et al., 2020; Kitzing & Karsten, 2015). In
Zygnematophyceae, however, no MAAs could be detected (Aigner et al., 2013; Remias et al., 2012).
Instead, there are indications of colorless, phenolic compounds with presumed screening ability in the
cytoplasm of some Zygnema species (Holzinger et al., 2018; Pichrtova et al., 2013). Furthermore,
reddish, water-soluble compounds have been described in the vacuoles of several zygnematophytes from
glacial and alpine environments (Fig. 3; Barcyté et al., 2020; Gardufio-Solérzano et al., 2021; Nedbalova
& Sklenar, 2008; Remias et al., 2012; Stancheva et al., 2014). The vacuolar reddish pigments of the ice-
inhabiting alga Ancylonema alaskanum were isolated from natural material and identified as a
glycosylated purpurogallin derivative by nuclear magnetic resonance spectroscopy. The isolated
compound absorbed visible light as well as ultraviolet radiation, suggesting a role in photoprotection
(Remias et al., 2012). However, the cultivation of zygnematophytes from extreme habitats is challenging
—if possible at all — (Remias & Prochéazkova, 2023), which makes experimental studies on the formation
of these vacuolar compounds
difficult. =~ The  extracellular
mucilage of zygnematophytes
has been suggested to have a role
in sun protection as well (Liitz et
al., 1997). Moreover, there are
sporadic reports of pigmented
extracellular mucilage in certain
Mesotaenium species (de Bary,

« - | 1858; Fucikova et al., 2008).
F1g 3 Habltat and cell morphology of ice- 1nhab1t1ng Ancylonema species:

A. alaskanum (upper right) and 4. nordenskioeldii (lower right); from Busch & However, we currently lack any
Hess, 2022b, modified, original images were kindly provided by Daniel Remias.
Scale bars: 10 pm.

understanding of their formation,
identity and biological function.
Although many zygnematophyte species inhabit sun-exposed habitats, their photoprotective

strategies remain poorly understood. Sunscreening compounds which are known from other algae (e.g.
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MAAs, secondary carotenoids) do not seem to play a major role. Zygnematophytes accumulate poorly
known specialized compounds, which might represent novel biological sunscreens. As
zygnematophytes are the closest relatives of land plants, there is a high interest in learning more

about these photoprotective strategies.

Aims of this thesis

The principal objective of this thesis is to investigate the phylogeny, morphological traits, life histories
and cellular adaptations of saccoderm desmids traditionally ascribed to the polyphyletic genus
Mesotaenium. The results will facilitate our understanding of the diversity of these poorly studied life
forms, paving the way for their taxonomic revision. This will also provide a more detailed account of
zygnematophyte diversity in general. Special emphasis is placed on species from sun-exposed habitats
and their cellular responses to UV radiation, a dominant terrestrial stressor. Specifically, I pose the

following questions:

1) Are there major undiscovered zygnematophyte lineages in terrestrial habitats, and how
do they differ in terms of their morphology and cellular adaptations?

2) Which environmental factors induce the colorful specialized compounds found in
zygnematophytes, and what is the biological function of these substances?

3) What is the metabolic origin of zygnematophycean secondary pigments, and how is their

biosynthesis triggered on a molecular level?

To address these questions, freshwater and terrestrial habitats were sampled and screened for saccoderm
desmids. The found algae were isolated and axenic cultures were established. In addition, available
strains of saccoderm desmids were ordered from public culture collections and purified. The resulting
cultures were studied concerning their cell morphology as well as vegetative and sexual reproduction.
By using established marker genes (rbcL and 18S rRNA), the studied strains were phylogenetically
placed in the tree of zygnematophytes and their evolutionary history reconstructed.

Light and nutrient limitation experiments were performed to induce and study the colored
specialized compounds found in the two genera Ancylonema and Serritaenia. Controlled laboratory
experiments and analytical techniques such as microspectrophotometry were used to determine the
physicochemical and physiological properties of the specialized compounds and the algal cells.

Based on the established laboratory setup, a comparative RNA-seq analysis was performed to
investigate the response of a selected terrestrial zygnematophyte (S. festaceovaginata) to UV radiation.
To functionally annotate gene sequences, the sequence data was compared with database entries from
plants, especially the model plant Arabidopsis thaliana. These comparisons were also used to draw
evolutionary conclusions. In addition, I was involved in a collaborative study, in which we used
multigene phylogenies to resolve the deep branches of the zygnematophyte tree, creating the framework

for future taxonomic advancements.
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Scientific contributions

Chapter I: Sunscreen mucilage: a photoprotective adaptation found in terrestrial green algae

(Zygnematophyceae)

Short summary: In this study, we describe and analyze an extracellular sunscreen in a new genus of
zygnematophyte green algae. A similar phenomenon was only known from cyanobacteria and is unique
within the zygnematophytes. The study provides evidence for a sunscreening function, namely the
induction based on UVB radiation, a broad absorbance with a maximum in the UVB portion, and a
perfect localization for shielding (outside of the cell). We establish the new zygnematophyte genus

Serritaenia and reveal a so far hidden diversity within the genus.

Author contribution: The author of this doctoral thesis took natural samples, isolated single cells from

natural material, established axenic cultures, and performed laboratory experiments (except micro-
spectrophotometry: done by external facility). Data analysis, manuscript writing and figure design were
performed by the author. Results and preliminary manuscript versions were discussed with the last
author (S. Hess). A part of the sampling and laboratory experiments was done during the author's master
thesis, while the analysis of the data and the preparation of the manuscript were done during the doctoral

studies.

Publication: Busch A., Hess S. (2022): Sunscreen mucilage: a photoprotective adaptation found in
terrestrial green alga (Zygnematophyceae). European Journal of Phycology 57: 107-124.
https://doi.org/10.1080/09670262.2021.1898677

Chapter II: Comparative transcriptomics elucidates the cellular responses of an aeroterrestrial

zygnematophyte to UV radiation

Short summary: Using comparative transcriptomics, the cellular reaction of an aeroterrestrial

zygnematophyte (Serritaenia testaceovaginata) to UV radiation was studied. While the cellular
reactions of land plants to UV radiation have been studied very well, it is the first study of this kind on
their closest algal relatives, the Zygnematophyceae. Our results reveal a plant-like UVB perception
system in zygnematophyte green algae and point to a phenolic origin of Serritaenia's sunscreen
compound, whose synthesis might be extracellular and oxidative. Comparing our results with the vast
information on land plants, it appears that the reaction of zygnematophyte green algae towards UV
radiation is similar to land plants in terms of photosynthesis, DNA repair, ROS scavenging and light
perception. The specialized (=secondary) metabolite pathway, however, does not seem to correspond
exactly to that of land plants and probably harbors other enzymes and pathways, which await future

characterization.
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Author contribution: The author of this doctoral thesis co-designed the study and performed laboratory

experiments. The author independently performed bioinformatic analyses after an introduction to
comparative transcriptomics by one of the co-authors (J. Gerbracht). Data interpretation, manuscript
writing and figure design were performed by the author. Results and preliminary manuscript versions
were discussed with the co-authors U. Hocker, K. Davies and S. Hess. The whole study was performed

during the doctoral studies.

Publication: Busch A., Gerbracht J. V., Davies K., Hoecker U., Hess S. (2024). Comparative
transcriptomics elucidates the cellular responses of an aeroterrestrial zygnematophyte to UV radiation.

Journal of Experimental Botany: erael31. https://doi.org/10.1093/jxb/erae131

Chapter III: A diverse group of underappreciated zygnematophytes deserves in-depth

exploration

Short summary: Unicellular zygnematophytes with a rather simple cell morphology, traditionally

referred to as “saccoderm desmids”, have a broad geographic distribution and are ecologically diverse.
However, these life forms are understudied and harbor several polyphyletic genera. To study these
organisms in more detail, diverse freshwater and terrestrial habitats were sampled, interesting candidates
were isolated and axenic cultures were established. The study highlights the morphological, genetic and
ecophysiological diversity of Mesotaenium-like zygnematophytes, and reveals twelve genetically
distinct lineages, four of which have not been recognized before. The different lineages vary in their cell
morphology, growth form and lifestyle. Furthermore, the study indicates that a significant proportion of
these algae colonize terrestrial surfaces and display intriguing cellular adaptations to their natural

habitat, including the production of colored specialized compounds.

Author contribution: The author of this doctoral thesis took natural samples, isolated single cells from
natural material, established axenic cultures, and performed laboratory experiments. Data analysis,
manuscript writing and figure design were performed by the author. Results and preliminary manuscript
versions were discussed with the last author (S. Hess). Some of the data on algal strains were collected
during the author's master thesis. Data analysis and manuscript writing was done during the doctoral

studies.

Publication: Busch A., Hess S. (2022): A diverse group of underappreciated zygnematophytes deserves
in-depth exploration. Applied Phycology 3: 306-323. https://doi.org/10.1080/26388081.2022.2081819
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Chapter IV: A mesophilic relative of common glacier algae, Ancylonema palustre sp. nov.,

provides insights into the induction of vacuolar pigments in zygnematophytes

Short summary: The zygnematophyte green algae of the genus Ancylonema colonize glacier surfaces in
many different areas on the planet. In their natural habitat, the cells display a phenolic, intracellular
pigment of reddish color, whose induction and biological function is unknown. These algae are true
psychrophiles, which impairs research on this group, as they depend on low temperatures and are
difficult to cultivate. In our study, we describe a mesophilic Ancylonema species, A. palustre sp. nov.,
which shows unique autecological and photophysiological characteristics. We studied its vegetative and
sexual processes and identified nutrient limiting conditions to induce zygospore formation, providing
the first detailed account of sexual processes in the genus Ancylonema. Moreover, we found that nutrient
limiting conditions combined with UVB radiation result in the production of the reddish, vacuolar

pigment, which supports a function in photoprotection.

Author contribution: The author of this doctoral thesis co-designed the study. The laboratory

experiments (except pulse amplitude modulation fluorometry: done by D. Remias and L. Prochazkova)
and data analysis were conducted by the author and E. Slominski (bachelor student co-supervised by the
author). Manuscript writing and figure design were performed by the author. Results and preliminary
manuscript versions were discussed with the co-authors: D. Remias, L. Prochazkova, S. Hess. The whole

study was performed during the doctoral studies.

Manuscript under review: Busch A., Slominski E., Remias D., Prochazkova L., Hess S. A mesophilic

relative of common glacier algae, Ancylonema palustre sp. nov., provides insights into the induction of

vacuolar pigments in zygnematophytes. Environmental Microbiology (under review).

Chapter V: A phylogenomically informed five-order system for the closest relatives of land

plants

Short summary: Due to their interesting phylogenetic position, the Zygnematophyceae have attracted
increasing attention in recent years. The internal zygnematophyte phylogeny, however, is largely
unknown. We conducted a phylogenomic analysis (326 nuclear loci) for 46 taxonomically diverse
zygnematophytes. Moreover, we studied a filamentous green alga representing Mougeotiopsis
calospora PALLA, which was described 120 years ago, but never subjected to molecular analyses. We
found, that M. calospora lacks discernible pyrenoids and that it branches with unicellular species. It
represents another zygnematophycean lineage with filamentous growth, which was not known before.
Furthermore, we propose a new five-order system for the Zygnematophyceae based on our well-
supported phylogenomic tree and provide evidence for five independent origins of true filamentous

growth within the Zygnematophyceae.
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Author contribution: The study was designed by S. Hess and J. de Vries. The author of this doctoral

thesis established the axenic culture of Mougeotiopsis calospora, studied the strain with conventional
light microscopy and confocal laser scanning microscopy, and interpreted the data in a taxonomic
context. Furthermore, the author provided the morphological description of M. calospora and the Figure
1A-E for the manuscript, and reviewed the latter before submission. This work was done during the

doctoral studies.

Publication: Hess S., Williams,S. K., Busch A., Irisarri 1., Delwiche,C. F., de Vries S., Darienko T.,
Roger A. J., Archibald J. M., Buschmann,H., von Schwartzenberg,K., de Vries J. (2022): A
phylogenomically informed five-order system for the closest relatives of land plants. Current Biology

32: 4473-4482. https://doi.org/10.1016/j.cub.2022.08.022
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ABSTRACT

Terrestrial microalgae evolved a variety of photoprotective strategies enabling a life on land. This includes the production of
sunscreen compounds, which shield cells from excess radiation. Here, we report a new genus of conjugating green algae,
Serritaenia gen. nov., whose members produce extracellular mucilage with a striking pigmentation. This phenomenon is
very unusual for eukaryotic algae and poses cell biological and functional questions. So far, extracellular sunscreen pigments
are exclusively known from cyanobacteria, while eukaryotic algae typically contain intracellular sunscreens. We demonstrate
that pigmented mucilage in Serritaenia spp. can be induced by experimental exposure to UVB in an intensity-dependent
manner, and that it strongly absorbs deleterious wavebands. Microscopic details of UVR-treated cells suggest that the
directional secretion of pigmented mucilage is responsible for the defined and well-oriented pigment layers observed in
natural material. Even though the chemical nature of the pigment remains to be elucidated, several pieces of evidence
suggest that the ‘sunscreen mucilage’ of Serritaenia represents an elaborate photoprotective adaptation, unprecedented in

eukaryotic algae.
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Introduction

Microalgae from diverse evolutionary lineages have
a terrestrial lifestyle and colonize natural as well as
anthropogenic surfaces on land (Fritsch, 1922;
Hoffmann, 1989; Rindi & Guiry, 2004; Karsten et al.,
2007; Ettl & Girtner, 2014). Compared with their aqua-
tic relatives, terrestrial microalgae face increased levels
of solar radiation, which is considered a major stress
factor (Rozema et al, 2002; Wynn-Williams &
Edwards, 2002; Karsten, 2008; Kitzing & Karsten,
2015). In particular, the ultraviolet radiation (UVR) of
sunlight is harmful: ultraviolet A (UVA, 315-400 nm)
causes the formation of free radicals and reactive oxy-
gen species, while ultraviolet B (UVB, 280-315 nm) can
damage DNA and proteins directly (Vincent & Neale,
2000; Pattison & Davies, 2006; Hargreaves et al., 2007).
There are a number of cellular and physiological fea-
tures of terrestrial microalgae that are expected to have
a photoprotective function. This includes non-
photochemical quenching, self-shading (exposed cell
layers protect underlying cells), and the production of
sunscreen compounds, which strongly absorb harmful
wavebands (Karsten, 2008; Gao & Garcia-Pichel, 2011;
Karsten & Holzinger, 2014). Algal sunscreen com-
pounds are chemically diverse and can be found in
eukaryotic as well as prokaryotic microalgae. They
comprise mycosporine-like amino acids (MAAs, e.g.
in the cytoplasm of chlorophytes, streptophytes,

rhodophytes, dinoflagellates and cyanobacteria; Garcia-
Pichel & Castenholz, 1993; Karsten et al., 1998; Jeffrey
et al., 1999; Rezanka et al, 2004; Hotter et al., 2018;
Hartmann et al., 2020), secondary carotenoids (e.g. in
extraplastidic lipid droplets of chlorophytes; Bidigare
et al, 1993; Remias & Liitz, 2007), and the non-
photosynthetic pigments scytonemin and gloeocapsin
in the extracellular mucilage of cyanobacteria (Garcia-
Pichel & Castenholz, 1991; Storme et al, 2015).
Whereas the colourless MAAs absorb only UVR,
‘sunscreen pigments’ such as carotenoids, scytonemin
and gloeocapsin show broader absorbance spectra
(including visible light) that lead to their colourful
appearance. Some algal sun-screen pigments still
require a chemical and physiological characterization,
and it is not always certain that they represent a single
compound (e.g. gloeocapsin).

Here, we report unicellular ‘conjugating green algae’
(Zygnematophyceae, Streptophyta), traditionally lumped
in the polyphyletic genus Mesotaenium Nageli, that can
form mass developments in terrestrial habitats and dis-
play a striking pigmentation of their extracellular muci-
lage. The Zygnematophyceae are the likely sister clade to
land plants (Wodniok et al., 2011; Timme et al., 2012;
Wickett et al, 2014), and their adaptations to
the terrestrial environment have gained much attention
in recent years (Gitzendanner et al., 2018; de Vries et al.,
2018; Cheng et al., 2019; Philippe et al., 2020). Although
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several species live on land, this group of algae seems to
lack the well-known sunscreen compounds mentioned
above (Remias ef al., 2012a; Aigner et al., 2013). Instead,
there are accounts of reddish pigments in the vacuoles of
some representatives (Nedbalovd & Sklendr, 2008;
Holzinger et al, 2010; Remias et al, 2012a, b;
Garduno-Soldrzano et al., 2020) and of colourless, phe-
nolic compounds (Pichrtova et al., 2013; Holzinger et al.,
2018), both of which absorb UVR and presumably have
photoprotective roles.

The colourful, mucilaginous capsules studied here
differ fundamentally from these intracellular com-
pounds and are unusual for eukaryotic microalgae
in general. Instead, a similar phenomenon is known
from terrestrial cyanobacteria, which accumulate
extracellular sheath pigments (e.g. scytonemin) in
response to UVR (Garcia-Pichel & Castenholz, 1991;
Garcia-Pichel et al., 1992; Ehling-Schulz et al., 1997).
This resemblance found across two domains of life
raises the question of whether the extracellular pig-
mentation of the Zygnematophyceae reported here
serves as a sunscreen as well. So far, pigmented
mucilage in Mesotaenium species was only sporadi-
cally reported (de Bary, 1858; Fucikova et al., 2008),
and we lack any understanding of its formation and
biological function.

During this study we sampled unicellular
Zygnematophyceae with extracellular pigmentation
from several sites in Europe and North America and
explored their diversity with molecular and morphologi-
cal methods. Based on these data, we introduce the new
genus Serritaenia gen. nov. for this widespread and dis-
tinctive group of unicellular Zygnematophyceae, taking
a step towards an unambiguous taxonomy of evolutiona-
rily interesting green algae. Using bacteria-free laboratory
cultures of Serritaenia established in this study, we suc-
cessfully induced pigmented mucilage with artificial
UVR, determined its spectral properties, and studied its
formation. We present several pieces of evidence that the
pigmented capsules of Serritaenia represent an elaborate
photoprotective adaptation.

Materials and methods
Sampling, isolation and maintenance of algae

Algal material was collected at several sites in Western
Germany and in the Great Smoky mountains (North
Carolina, USA) listed in Supplementary table SI.
Blackish crusts (dry) or gelatinous masses (wet) on
bryophytes and from rock surfaces were transferred to
the lab, if necessary rehydrated with distilled water and
stored at 4-15°C in dim light (14/10 h light/dark cycle,
PAR 3-15 pmol photons m™ s™'). To determine pH
values of substrates (plant litter, bryophytes) from our
main study site (Wohlsberg, Wiehl, Germany), seven
samples were mixed with 100 ml distilled water each,

incubated for a few hours and then measured with
a SevenEasy” pH meter (Mettler-Toledo GmbH,
Germany). Algal samples were photo-documented (for
details see below), then diluted with distilled water and
ultrasonicated on ice (max. 10 s) with the ultrasonicator
XL-2000 (Misonix Inc., New York, USA) to liberate cells
from the mucilage. Resulting cell suspensions were
sprayed with pressurized air onto agar plates with soli-
dified culture medium Waris-H (with 1.5% agar;
McFadden & Melkonian, 1986) and incubated at 16°C
and dim light until bacterial colonies appeared.
Bacteria-free algal cells from these plates were trans-
ferred into liquid growth medium Waris-H and grown
at 16°C under a 14/10 h light/dark cycle with a photon
fluence rate of 30 umol photons m™ s™' (PAR), giving
rise to the clonal and axenic cultures used in this study.
For long-term maintenance of cultures, about 2 ml of
arunning culture was transferred to fresh medium every
2 months. Algal strains are available through the corre-
sponding author and the ‘Central Collection of Algal
Cultures’ (CCAC; https://www.uni-due.de/biology/
ccac/).

Light microscopy and confocal laser scanning
microscopy (CLSM)

Regular  brightfield microscopy and  photo-
documentation of experimental cultures were done
with the Zeiss Axiovert 200M inverted microscope
equipped with the Zeiss AxioCam ICc5 camera. For
high-resolution imaging, the Zeiss IM35 inverted
microscope equipped with the objective lenses Plan
40x/0.65 and Planapochromat 63x/1.4 (Carl Zeiss,
DE), electronic flash, and the digital single lens reflex
camera Canon EOS 6D were used. Colour balance and
contrast of light micrographs were adjusted with
Photoshop CS4 (Adobe Inc., California, USA).
Confocal laser scanning microscopy was done with
a Zeiss LSM 710 and the Zen software (Carl Zeiss,
DE). Algal cells from actively growing cultures were
collected by centrifugation (3000 g 5 min), mixed
with 0.1% Calcofluor White (CFW) in distilled water
and used for conventional preparations sealed with
Vaseline to prevent evaporation. The plastid morphol-
ogy was visualized using chlorophyll autofluorescence
(excitation: 458 nm; emission: 651-707 nm) and the
algal cell wall by cellulose-bound Calcofluor White
(excitation: 405 nm; emission: 410-502 nm). Z-stacks
were recorded with a step size of 0.42 um and processed
with the software ZEN lite (Carl Zeiss, DE) and the
image processing package Fiji (Schindelin et al., 2012).

DNA sequencing, alignment and molecular
phylogenetics

Algal material from 2 ml of an axenic culture was
collected by centrifugation (5000 g, 5 min), resuspended
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in sterile water, and lysed by ultrasonication on ice
(5 x 5 s) with the ultrasonicator XL-2000 (Misonix
Inc., New York, USA). Insoluble debris was pelleted
by centrifugation (5000 g, 1 min) and the supernatant
was used as template for PCR (details below). For the
morphotype GSM.5.thick, which did not grow under
our culture conditions, single colonies were isolated
from the natural sample, photo-documented and
crushed with a sterile coverslip to liberate DNA. The
coverslip was then removed, the cell debris diluted with
10 ul sterile water, supplemented with 10 pl PCR-buffer
(10x), heated at 95°C for 5 min and then used as
template for PCR. The chloroplast encoded gene for
the RuBisCO large subunit (rbcL) was amplified by
a semi-nested PCR with the primers MaGolF,
MaGo2F and MaGo3R (Gontcharov et al., 2004) and
Invitrogen Taq DNA Polymerase (Thermo Fisher
Scientific, Massachusetts, USA), using the following
protocol: Initial denaturation (3 min at 94°C), then 34
cycles of denaturation (45 s at 94°C), annealing (1 min
at 47°C), and extension (2 min at 72°C), then final
extension (5 min at 72°C). PCR products were subjected
to commercial Sanger sequencing at the McGill
University and Génome Québec Innovation Centre
(Montreal, Canada) with the primers MaGo2F and
MaGo3R. The rbcL gene sequences were assembled
from the two overlapping partial reads using the pro-
gram AlignIR™ 2.0 (LI-COR Biosciences, Nebraska,
USA) and manually added to a comprehensive align-
ment of zygnematophycean sequences (plus sequences
of streptophyte outgroup taxa) with the alignment edi-
tor SeaView 4.5.4 (Galtier et al., 1996; Gouy et al., 2010).
The generated rbcL gene sequences have been deposited
in GenBank under the accession numbers MW159369-
MW159377 (see also Supplementary table S1). After
pre-analyses with varying taxon sampling, a refined
dataset with 43 zygnematophycean rbcL gene sequences
(including all codon positions) was subjected to
phylogenetic inference with Neighbour-joining (NJ),
Maximum-parsimony (MP) and Maximum-likelihood
(ML) methods using MEGA software version X (Kumar
et al, 2018). NJ (distances computed with the
Maximum composite likelihood method) and MP
(with the Subtree-pruning-regrafting (SPR) algorithm)
were done with the ‘complete deletion option’ resulting
in 1033 remaining sites. The ML analysis was done with
full alignment (1211 sites) using the GTR+I+G model
(discrete Gamma distribution; 5 categories). To assess
support of the branches, we performed 1000 bootstrap
repetitions for every analysis and added the resulting
values to the NJ topology shown in the results.

UV-PAR exposure experiments

Algae used for UV-PAR exposure experiments (strains
GSM.5.thin and OBE.1) were grown under ‘PAR only’
conditions as detailed above to a sufficient density,
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mixed with fresh culture medium Waris-H (ratio 1:1),
dispensed in six-well multi-titre plates or 60 mm Petri
dishes (both Fischer, Germany), and then exposed to the
experimental conditions with varying UV-PAR intensi-
ties (14/10 h light/dark cycle) but stable temperature of
16°C (in triplicate). During these experiments treated
algae were analysed with respect to extracellular pigmen-
tation, presence/absence of mucilage, colony formation,
and the number of dead cells. To test for the effects of
different UV-PAR intensities on the algae, cells were
exposed to the Arcadia D3+ Reptile Lamp T5 with
12% UVB (Arcadia, UK) in five irradiance settings
adjusted by distance to the lamp (see Results for details),
and observed and photo-documented over 14 days
(7 days for replicates). The effect of specific wavebands
on the production of extracellular pigment was assessed
with algal material exposed to optimal UV-PAR inten-
sities for pigment production (as determined before) but
covered by optical filters that block UVB (longpass filter
WG-320, Schott, Germany) or total UVR (longpass filter
GG-385, Schott, Germany; 6 mm polycarbonate sheets
Makrolon®, Covestro AG, Germany). Transmission
spectra of used filters and consumables were recorded
with the Epoch Microplate Spectrophotometer (BioTek
Instruments Inc., Vermont, USA) and are shown in the
results. In two further experiments, cells of strain
GSM.5.thin were exposed to UVB from (1) the UVB
Broadband TL fluorescent tube lamp, and (2) the UVB
Narrowband TL fluorescent tube lamp, respectively
(both 20W, Philips, the Netherlands). The UVB treat-
ments of 0.8-3 W m™ were for 4 h per day and supple-
mented with 30-100 pmol photons m™ s PAR
(14 h per day from SunLike LEDs, 5000 K, Seoul
Semiconductor, Korea). To study the effects of high
‘PAR only’ intensities on the algae, cells were exposed
to a 25 W SunLike high-power LED (5000 K; Seoul
Semiconductor, Korea) with photon fluence rates of
200, 300, 400, 600, 700 and 1000 pumol photons m2s™*
and a 14/10 h light/dark cycle and observed for 7 days.
PAR intensities were measured with the MQ-500 Full-
Spectrum Quantum Sensor (Apogee Instruments Inc.,
Utah, USA), UVA and UVB intensities with the digital
UV radiometers Solarmeter® Model 4.2 and Solarmeter®
Model 6.2, respectively (both Solar Light Company Inc.,
Pennsylvania, USA).

Microspectrophotometry

The absorbance spectra of pigmented and non-
pigmented mucilage of S. testaceovaginata (strain
GSM.5.thin) from the light experiments detailed above
(UV-PAR and PAR only) were recorded with a CRAIC
QDI 2010 UV-VIS-NIR Microspectrophotometer
(CRAIC Technologies Inc., California, USA) in
transmission mode at the NanoScale Fabrication and
Characterization Facility at the University of Pittsburgh,
USA. Algal cells were analysed in conventional wet
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mounts with UV-transparent quartz glass coverslips
and microscope slides (both Ted Pella Inc., California,
USA). Using a 36x mirror objective (numerical aperture
0.5), the absorbance of defined areas (15 x 15 um) was
sampled over 200-1600 nm in sub-nanometer intervals.
We made 54 measurements of pigmented mucilage and
15 measurements of non-pigmented mucilage. Each
measurement contained 25 averaged sample scans.
The absorbance spectra obtained from the regions out-
side of the colonies (only culture medium) served as
reference. Digital micrographs of the analysed speci-
mens documenting the sampling area were taken with
the DFK 41AF02 colour industrial camera (The
Imaging Source Europe GmbH, Germany).

Pigment extraction attempts

Cells of S. testaceovaginata (strain GSM.5.thin) with
strongly pigmented mucilage (induced under UVR as
detailed above) were concentrated by centrifugation
(3000 g, 8 min), washed with distilled water, collected
by centrifugation (10000 g 5 min), frozen in liquid
nitrogen, and lyophilized with the Christ Alpha 1-4
LSC freeze-dryer (Christ, Germany). Freeze-dried
cells were suspended in acetone, methanol, acidic
methanol (with 0.5% concentrated HCI = 0.05 N),
diethyl ether, trichloromethane, n-hexane, respec-
tively, and incubated at room temperature for at
least 72 h. Cells and their mucilage were then exam-
ined for pigment loss under the Motic AE2000
inverted microscope (Motic Deutschland GmbH,
Germany).

Results and Discussion

Serritaenia species with pigmented mucilage colonize
various terrestrial substrates

In several forests of Western Germany (listed in
Supplementary table S1) we observed macroscopic, gela-
tinous crusts composed of unicellular conjugating green
algae, which resembled Mesotaenium braunii de Bary
(and similar species) and are here described as
Serritaenia spp. (taxonomic details below). The forests
comprise spruce monocultures (Picea) and deciduous
trees (e.g. Fagus, Quercus, Betula), and harbour
a prominent bryophyte flora (Fig. 1) due to the warm
‘oceanic’ climate (Cfb after Koppen-Geiger) and signifi-
cant rainfall (www.climate-data.org). At several sites in
the studied areas, the algae formed mass developments,
which appeared as dry, black crusts during summer,
covering decomposing tree logs, tree bark, plant litter
and bryophytes (Fig. 2). Pleurocarpous and acrocarpous
mosses, and leafy liverworts have been found heavily
colonized by the algae, and, in some instances, entire
plants appeared black due to the algal biofilm (Fig. 3).

We assume that such algal mass developments have
unrecognized, detrimental effects on bryophytes, similar
to those of well-known fungal infections (Fenton, 1983;
Davey & Currah, 2006; Tamura et al., 2019; Rosa et al.,
2020).

As revealed by hydrated material, the crusts were
either formed by homogeneous populations of
Serritaenia species, or by more complex assemblages
comprising other gelatinous algae as well (e.g. chloro-
phytes resembling Coccomyxa). Even if macroscopic
crusts were absent, seemingly unaffected bryophyte
plants were frequently found colonized by such algae,
e.g. in the form of microscopic colonies on the leaflets
(Figs 4, 5). These colonies represented nearly spherical,
gelatinous clusters of cells, each cell bounded by
a mucilaginous capsule. As indicated by the hierarchical
mucilage layers surrounding subgroups of cells, the
Serritaenia colonies emerged from serial cell divisions
and secretion of copious mucilage. In algae from all
study sites, we observed a striking pigmentation of
extracellular mucilage, ranging from blackish-violet to
red-brown (Figs 5-9). The strength of pigmentation
varied from a diffuse tint to intensely pigmented zones.
Interestingly, the pigment distribution was not homo-
geneous, and we frequently observed a prominent, uni-
lateral pigmentation of the mucilaginous capsules
(Figs 6-8). Furthermore, a single natural sample could
contain algal mucilage of different colour (Figs 6, 7) as
well as pigmented cells of different sizes (Fig. 9), indicat-
ing a yet unrecognized diversity of Zygnematophyceae
with extracellular pigmentation.

We also sampled the type locality of Mesotaenium
testaceovaginatum, a species reported to have brick-red
mucilage (Fucikova et al, 2008). This alga was
described from the ‘wet walls’ in the Great Smoky
Mountains National Park (North Carolina, USA),
a vertical, exposed rock surface with acidic water,
harbouring a diversity of prokaryotic and eukaryotic
microalgae (Fig. 10; Furey et al, 2007; Lowe et al.,
2007). We found red-brown biofilm (Fig. 11), which,
surprisingly, contained two Mesotaenium-like algae
with reddish mucilage (morphotypes ‘GSM.5.thin’
and ‘GSM.5.thick’; here assigned to Serritaenia). Both
formed irregular, mucilaginous colonies, but differed
consistently in cell diameter (15 vs. 20 um) and the
strength of extracellular pigmentation (Figs 12, 13).
There might be physiological differences as well, as
we were not able to cultivate GSM.5.thick (several
attempts), while GSM.5.thin grew well under our cul-
ture conditions. The original description of
M. testaceovaginatum was probably based on cells of
both morphotypes (see Supplementary text for details)
and requires an emendation (see below).

In fact, all species of the ill-defined genus
Mesotaenium that match the studied algae were
described on a purely morphological basis (Kiitzing,
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Figs 1-9. Habitat of Serritaenia species in western Germany, macroscopic appearance and microscopic details of natural
material. Fig. 1. Exposed slope in spruce monoculture (Wiehl, DE) with black crusts formed by Serritaenia sp. (dashed square).
Fig. 2. Close-up of dry crusts covering dead plant litter and bryophytes. Fig. 3. Pleurocarpous and acrocarpous mosses covered
by black algal crusts. Fig. 4. Hydrated algal colonies (dashed square) on the leaflets of Polytrichum formosum. Fig. 5. Serritaenia
colonies with brown pigmentation (arrows) next to other gelatinous green algae (Chlorophyta) on a leaflet of Polytrichum
formosum. Figs. 6, 7. Serritaenia cells with extracellular pigmentation of different colour (arrowheads) found in the same sample
(Wiehl, DE). Fig. 8. Serritaenia sp. (Bad Kreuznach, DE) showing intense, unilateral pigmentation of the mucilaginous capsules
(arrowhead). Fig. 9. Small-celled Serritaenia species (asterisk) co-occurring with a large-celled species (Wiehl, DE). Both species
exhibit zones of brown mucilage (arrowheads). Scale bars: 10 pm.

1845; de Bary, 1858; Fucikova et al., 2008) (see
Supplementary text for details). Hence, there is no
information about the true diversity of these micro-
algae and their relationships. Specifically, the varia-
tion observed in natural populations (cell size,
mucilage colour) poses the question of whether the
different colours found in the extracellular mucilage
of the studied algae are caused by species-specific

compounds, or are a result of varying environmental
conditions.

Serritaenia comprises genetically diverse
microalgae with subtle morphological differences

We subjected natural material and cultivated Serritaenia
strains to genetic and morphological analyses (listed in
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Figs 10-13. ‘Wet walls’ near Clingmans Dome in the Great Smoky Mountains National Park (North Carolina, USA) and the two
Serritaenia morphotypes found in this habitat. Fig. 10. Sampling area at ‘wet walls’ (left side). Fig.11. Red-brown biofilm on rock
surface containing various microalgae, including two Serritaenia morphotypes. Fig. 12. Cells of morphotype GSM.5.thin loosely
arranged in copious, reddish mucilage. Fig. 13. Colony of morphotype GSM.5.thick with well-defined, intensely pigmented capsules.
Note the difference in cell width to cells shown in (12). Scale bars: 20 pm.

Supplementary table S1). The rbcL gene sequences gen-
erated from nine cultures and three individual colonies
of the Serritaenia morphotype GSM.5.thick (picked
from samples) were analysed in the framework of the
Zygnematophyceae with phylogenetic methods. As
known from previous studies (McCourt et al., 2000;
Gontcharov et al., 2004), the molecular phylogeny
based on the rbcL gene was not able to resolve the deeper
branching patterns within the conjugating green algae
but resolved genus-level clades. We recovered six
distinct lineages with unicellular Zygnematophyceae
currently assigned to the genus Mesotaenium
(Supplementary fig. S1), exemplifying once more that
the structurally simple, yet diverse ‘saccoderm desmids’
(traditionally Mesotaeniaceae) are still heavily under-
studied (Gontcharov et al, 2004; Gontcharov &
Melkonian, 2010). However, these phylogenetically
diverse life forms show clear cell morphological differ-
ences (Gontcharov, 2008) and, recently, gained impor-
tance for evolutionary inferences (Bonnot et al., 2019;
Cheng et al., 2019; Liang et al.,, 2019; Xu et al., 2019;
Philippe et al., 2020), so that a taxonomic revision of
these algae is desirable.

The Serritaenia strains formed a well-supported clade
with considerable genetic distance from other Zygne-
matophyceae (Fig. 14). It was most closely related to

strain SAG 12.97 that was previously referred to as
‘Mesotaenium endlicherianum’ (Gontcharov et al., 2003,
2004; Gontcharov, 2008; Matasci et al., 2014; Cheng et al.,
2019), but does not meet the original description of that
species (already noticed by Gontcharov et al., 2003). The
Serritaenia clade displayed a so far undetected genetic
diversity comprising eight genotypes falling into three
subclades (Fig. 14). The members of different subclades
showed a divergence of 2-7% in the rbcL gene, which
compares to interspecific distances found in many other
algal and embryophyte genera (Chase et al, 2005;
Newmaster et al., 2006; Hall et al, 2010). The three
sequences derived from individual colonies of
Serritaenia morphotype GSM.5.thick (natural material)
were identical, but differed clearly from that of strain
GSM.5.thin (in 13 nucleotides). This aligns well with
the observed phenotypic and physiological differences
between the two Serritaenia morphotypes, and suggests
that they represent different biological entities.

In terms of morphology, the studied Serritaenia
strains displayed a set of common cellular details,
which - in combination - are characteristic for these
algae. During interphase, cells of all strains were cylind-
rical, i.e. with parallel sides, and exhibited roundish (not
truncated) cell poles (Fig. 15). Each cell contained a single
plate-like chloroplast situated in the cell’s centre, not
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Figs 14-18. Phylogeny of the genus Serritaenia and cellular details of representative strains. Fig. 14. Unrooted Neighbour-
joining phylogeny of 43 zygnematophycean rbcL gene sequences (partially collapsed) displaying the genetic diversity of the genus
Serritaenia. Support values are shown on the respective branches (NJ/ML/MP) when > 50%, and branches with maximum
support (100/100/100) are bold. The scale bar represents 0.02 nucleotide substitution per site and branches marked with //* were
reduced in length to 40%. The cell width of the strains is shown on the right side of the diagram (purple dots = mean, purple
lines = size range; n = 20). The asterisk indicates the sequence of the type species. Fig. 15. Cell morphology of six Serritaenia
strains illustrating the variability of the genus. Fig. 16. Large-celled Serritaenia species (strain DEL.1) in side view (left, focal
series), top view (two top right micrographs) and shortly after cell division (bottom right). Fig. 17. Cells of a small-celled
representative (strain OBE.sm2) in side view. Bottom micrograph displays cells shortly after division. Fig. 18. CLSM data of
a large-celled Serritaenia strain (OBE.1) revealing the complexity of the chloroplast and its serrated edges (arrowhead). The
middle image displays a section through the cell in two channels (orange = chlorophyll autofluorescence; cyan = Calcofluor
White fluorescence), the bottom image shows a 3D-model of the chloroplast. Scale bars in micrographs: 10 pm.

view’ and ‘profile view’ (compare the top two cells in
Fig. 17). Under laboratory conditions, in particular, the
chloroplasts of all studied strains frequently exhibited one

parietal (Figs 16, 17). The chloroplast extended for the
length of the entire cell and, depending on its orientation
to the observer, could create two typical appearances, ‘top
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or more additional ridges, giving the chloroplast a more
complex morphology (Figs 16, 17). Serritaenia chloro-
plasts were always characterized by serrate or crenate
edges (Figs 16-18) and a single circular or elliptical pyr-
enoid in the chloroplast centre (Figs 15-17). Each cell
contained a rather inconspicuous nucleus with a central
nucleolus, displaced towards the cell wall, while the chlor-
oplast occupied the cell's centre (Figs 16, 17).
Furthermore, the somewhat asymmetric daughter cells
resulting from cell division showed an ‘angled’ arrange-
ment (Figs 16, 17) that differed from the patterns
found in many other unicellular Zygnematophyceae
(including strain SAG 12.97). Taken together, the studied
algae differ fundamentally from the type species of the
genus Mesotaenium (M. endlicherianum Nageli, see
Supplementary text for details), and form a morphologi-
cally coherent clade, well-separated from other sacco-
derm desmids.

To assess the phenotypic diversity within the
Serritaenia clade, we performed a comparative mor-
phological analysis with cells of axenic cultures grown
under controlled abiotic conditions (16°C, medium
Waris-H, 30 pmol photons m™ s™' PAR). In fact,
there are reports of phenotypic plasticity in some uni-
cellular Zygnematophyceae (Brook, 1981; Neustupa
et al., 2008; Cernd & Neustupa, 2010), and we also
found some variability concerning the presence of
additional chloroplast ridges and the abundance of
colourless globules in Serritaenia, especially in natural
material. The cell width, however, was rather constant
within strains, and turned out to be a clear distinguish-
ing character for some Serritaenia genotypes
recognized in our rbcL phylogeny (Fig. 14). This is in
line with recent findings about cell width stability in
genotypes of the structurally similar saccoderm desmid
Cylindrocystis (Barcyté et al., 2020). Interestingly, the
strains DEL.1 and KH.1 with identical rbcL gene
sequences showed marked differences in cell width as
well (Fig. 14), which might point to some hidden
diversity, not resolved by the rbcL gene. Delimitation
of biological entities in the Zygnematophyceae remains
difficult and integrative species-level taxonomy is still
in an early stage (Kouwets, 2008; Neustupa et al., 2011;
Stastny et al, 2013; Schagerl & Zwirn, 2015). We
conclude that a fine-grained taxonomy of Serritaenia
species should be ideally based on more variable
genetic markers, and on extended sampling in nature.
Hence, we refrain from introducing new species at this
point, but establish new combinations for former
Mesotaenium species: Serritaenia braunii comb. nov.
and Serritaenia testaceovaginata comb. nov. (see
below). S. testaceovaginata is defined as the type spe-
cies of the new genus and assigned to a specific geno-
type (strain GSM.5.thin; Fig. 14). This genotype was
sampled at the type locality of M. testaceovaginatum
and closely matches the original description of the
latter (see Supplementary text for details). As the

other members of the Serritaenia clade are genetically
more diverse than expected, we postpone the decision
about the reference strain for S. braunii until original
material of M. braunii de Bary or new samples from its
type locality are analysed. Due to the excellent descrip-
tion of M. braunii by de Bary (1858) there is no doubt
that this species belongs to Serritaenia (compare
Supplementary fig. S2 and our micrographs), warrant-
ing a new combination. Contrary to the information
found in several monographs (e.g. Lenzenweger, 2003;
Coesel & Meesters, 2007; Brook & Williamson, 2010;
Ettl & Girtner, 2014), M. braunii should not be
treated as a heterotypic synonym of Mesotaenium
macrococcum (first described as Palmogloea macro-
cocca Kiitz.). Unpublished observations on the holo-
type of P. macrococca (Germany: Oberharz, nearby
Auerhahn, 1845, coll. Kiitz., 1L.3940277 (L)) revealed
that this species more resembles M. braunii var. minus
de Bary in size. However, an in-depth (ideally genetic)
analysis of respective type material is required before
these names can be considered for certain Serritaenia
strains. This also applies to Palmogloea macrococca var.
nigrescens C.Cramer, while M. macrococcum var. lager-
heimii Willi Krieg. and M. macrococcum var. trunca-
tum (West & G.S.West) Willi Krieg. can be excluded
due to gross morphological differences from
Serritaenia (see Supplementary text for further details
on relevant taxa). Based on our taxonomic assessment
and the phylogenetic results, we here make a start on
revising the genus-level taxonomy of Mesotaenium-like
algae and introduce the genus Serritaenia gen. nov.
with two new combinations.

Serritaenia A.Busch & S.Hess, gen. nov.

Description

Cells cylindrical, with rounded or slightly pointed
apices and smooth cell wall. Chloroplast axial,
extending for entire length of cell, plate-like or
more complex due to additional ridges, typically
with serrate, dentate or crenate edges, exhibiting
a single, central pyrenoid. Nucleus displaced towards
cell wall (never central), with distinct nucleolus.
Cytoplasm colourless, with varying numbers of opa-
que globules, sometimes obscuring chloroplast
details. Cells form colonies with confluent mucilage
or well-defined, sometimes lamellated capsules.
Mucilage colourless or pigmented (reddish, brown,
blackish or violet). Arrangement of daughter cells
shortly after cell division angled, never chain-like.
TYPE (here designated): S. testaceovaginata (Fucikova
et al.) A.Busch & S.Hess, comb. nov.

ETYMOLOGY: The generic name Serritaenia is
derived from Latin serra, -ae, f. [saw] and taenia, -ae
f. [band], referring to the chloroplast morphology.
PhycoBank ID: http://phycobank.org/102647.
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Serritaenia testaceovaginata (Fulikova et al.)
A.Busch & S.Hess, comb. nov.

= Mesotaenium testaceovaginatum Fuclikova, ].D.Hall,
J.R.Johans & R.L.Lowe. Bibliotheca Phycologica, 113:
31, PL. VI, figs 6, 26-28. 2008 (basionym).

Emended Description: Cells with characters of the
genus, on average about 14-15 pm wide, 18-30 pm
long. Nucleus 5-7 um, nucleolus about 2 pm.
Pyrenoid circular to slightly elliptic, 4-5 x 3-4 um.
LECTOTYPE (here designated): [icon!] Fucikova
et al., Bibliotheca Phycologica, 113: pl. VI, fig. 6.
2008; oml trf. (reproduced in Supplementary fig. S3).
EPITYPE (here designated): Permanent slide with fixed
material of strain GSM.5.thin deposited in Herbarium
Berolinense (Botanic Garden and Botanical Museum
Berlin), accession B 40 0001077, locality: ‘Wet walls’
on the way to Clingmans Dome, Great Smoky
Mountains, North Carolina, USA; 13 September 2017,
leg. A. Busch and S. Hess.

Notes: The holotype (fixed sample) was lost and likely
contained more than one taxon. We select a here
cited illustration, as part of the original material pub-
lished along with the original description as lectotype.
In addition, we designate an epitype that supports the
lectotype and is associated with DNA sequence data.
REFERENCE SEQUENCE: MW159377 (rbcL gene
sequence of strain GSM.5.thin).

PhycoBank ID: http://phycobank.org/102650.

Serritaenia braunii (de Bary) A.Busch & S.Hess,
comb. nov.

= Mesotaenium braunii de Bary, Unters. Conjugaten:
74. 1858 (basionym).

TYPE: Schwarzwald (Black Forest, Germany)
PhycoBank Id: http://phycobank.org/102648.

UVB induces extracellular pigmentation in Serritaenia

All Serritaenia strains lost their extracellular pig-
mentation under our standard culturing conditions
with PAR at about 30 pmol photons m™? s
Treatment of our experimental strain GSM.5.thin
(S. testaceovaginata) with the SunLike high-power
LED (5000 K, 25 W, see Fig. 19 for spectrum) at 200,
300, 400, 600, 700, and 1000 pmol photons m™ s~
for 7 days, still resulted in healthy, dividing cells but
no extracellular pigmentation. Exposure of the algae
to the Arcadia D3+ fluorescent tube lamp, which
emits PAR, UVA and UVB (see Fig. 19 for spec-
trum), caused clear cellular reactions depending on
the five irradiance settings used (Fig. 20). Over 14
days under settings 1-3, cells remained in colonies,
showed growth, and formed purple mucilage, which
was already visible 3-5 days after starting the experi-
ment. The extracellular pigmentation correlated
with the applied irradiance and was especially
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pronounced under settings 2 and 3 (Fig. 20). Algal
colonies treated with higher intensities (settings 4
and 5) disintegrated and the cells bleached, demon-
strating the deleterious effect of the applied UVR
(this never happened with PAR only). After 14 days
of exposure, more than 40% of the cells were dead
and bleached under setting 4, more than 95% under
setting 5.

To identify the waveband of the Arcadia D3+
fluorescent tube lamp which induces pigment for-
mation, we used longpass filters that block UVB and
total UVR, respectively (see Fig. 21 for transmission
spectra). Colonies of S. testaceovaginata (strain
GSM.5.thin) exposed to conditions optimal for pig-
ment production (setting 3) but covered by filters
blocking total UVR (SCHOTT GG-385, Makrolon®
polycarbonate) did not show any sign of extracellu-
lar pigmentation after 7 days, while the control
(without filter) contained colonies with strongly
pigmented mucilage (Fig. 22). Algal colonies
covered by a filter that reduces the UVB irradiance
to 0-20% (SCHOTT WG-320) resulted only in very
few slightly pigmented colonies; the vast majority of
colonies still displayed colourless mucilage (Fig. 22).
We then treated the same algal strain with the
Philips UVB ‘Broadband’ and ‘Narrowband’ fluor-
escent tube lamps at different intensities (see Rizzini
et al., 2011 for spectra), and confirmed the pigment-
inducing effect of UVB in our experiments. In the
case of both light sources, pigmentation was clearly
visible in a range of 1.5-3 W m ™ UVB after 2 weeks
of treatment.

We have to acknowledge that light experiments in
the laboratory are highly artificial, since the spectral
power distribution of the used lamps clearly differs
from sunlight. Therefore, it cannot be excluded that
other wavebands at higher intensities, or light with
other spectral ratios can trigger similar reactions in
the algae. However, UVB is already known to induce
the production of screening compounds, especially
MAAs, in diverse microalgae (Ehling-Schulz et al.,
1997; Portwich & Garcia-Pichel, 2000; Sinha et al.,
2001, 2003a, b; Groniger & Hader, 2002; Klisch &
Hider, 2002), and it is probably of special relevance
for Serritaenia as well. There are indications of UVB-
photoreceptors in cyanobacteria and eukaryotic
algae, but the molecular basis of UV perception in
these life forms remains largely unknown (Portwich
& Garcia-Pichel, 2000; Kribs et al., 2002; Singh et al.,
2010). In land plants and chlorophyte green algae,
UVB is perceived by the UVR8 photoreceptor and
induces photoprotective mechanisms (Rizzini et al.,
2011; Allorent et al., 2016; Clayton et al., 2018).
Homologues of UVR8 were also identified in tran-
scriptome data of several Zygnematophyceae includ-
ing Serritaenia sp. (strain CCAC 0155, formerly
referred to as ‘Mesotaenium braunii’), but not yet
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Figs 19-22. Effect of irradiance and light quality on the production of extracellular pigmentation in Serritaenia testaceovaginata
(strain GSML.5.thin). Fig. 19. Relative spectral power distribution of the Arcadia D3+ fluorescent tube lamp (violet) and the
SunLike LED (green), and relative transmittance of the polystyrene lids of the used multiwell plates (dashed blue line). Fig. 20.
Brightfield images of Serritaenia cells after 14 days of exposure to the Arcadia D3+ lamp under five different irradiance settings
(1-5). Algal colonies under settings 2 and 3 exhibit marked extracellular pigmentation. Fig. 21. Relative transmittance of the
applied longpass filters (lines), and relative spectral power distribution of the used lamp (light grey). Fig. 22. Brightfield images of
Serritaenia cells after 7 days of exposure to the Arcadia D3+ lamp (setting 3 in (20)), but covered by different longpass filters.
A control sample without longpass filter is shown as well (‘No filter’). Scale bars: 100 pm.

functionally characterized (Han et al., 2019). It thus
remains an open question whether the induction
of Serritaenia’s extracellular pigment is based on
such a photoreceptor or on other effects of UVB

(e.g. cell damage). In any case, Serritaenia with its
pronounced reaction to short-wavelength UVR
might be a valuable laboratory model for future
experimentation.
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Pigmented mucilage absorbs deleterious radiation effect. Transmission data of pigmented mucilage from
and can change colour S. testaceovaginata (strain GSM.5.thin) revealed absor-
bance over the entire UV-PAR spectrum (n = 54) com-
pared with non-pigmented mucilage (n = 15; Figs 23,
24). As illustrated by three representative measurements

So far, we did not succeed in extracting the pigment
from the mucilage using a number of solvents and acidic
hydrolysis (see Methods for details), which is not unu- (sample 1-3), the absorbance spectra showed
sual considering the diversity of difficult-to-dissolve,  , onsistent pattern with two maxima at ~300 nm and
wall-bound pigments in plants, especially bryophytes 580 nm (Fig, 23; see Supplementary figs S2-S4 for all
(Mértensson & Nilsson, 1974; Hooijmaijers & Gould,  spectra recorded). The absolute maximum was always at
2007). Hence, we used microspectrophotometry to  290-320 nm, corresponding to UVB and far UVA, the
determine the absorbance spectra of pigmented muci-  most harmful wavebands of terrestrial sunlight. In
lage in vivo, enabling a direct assessment of the shielding ~ this spectral range the pigmented mucilage from

2

A uve UVA Photosynthetically active radiation (PAR)

G4 sample 3

T~ sample 2
~
~

4

Figs 23-25. UV-VIS absorbance of pigmented and non-pigmented mucilage of Serritaenia testaceovaginata (strain GSM.5.thin),
microscopic appearance of the sampled spots, and pH-dependent colour changes of pigmented mucilage. Fig. 23. Absorbance
spectra of pigmented mucilage (violet lines; samples 1-3) and non-pigmented mucilage (green lines, 15 samples) determined by
microspectrophotometry. Fig. 24. Brightfield micrographs displaying the spots (dashed squares, 15x15 um) analysed for samples
1-3 shown in (23) as well as a representative sampling spot in non-pigmented mucilage. Fig. 25. Colour of pigmented mucilage of
S. testaceovaginata (strain GSM.5.thin) at different pH values. Scale bar: 20 um.
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experimental cultures blocked up to 60% of incoming
radiation, representing UVB-screening factors compar-
able to those estimated for other algal sunscreens, e.g.
scytonemin and MAAs of cyanobacteria (Garcia-Pichel
& Castenholz, 1993). Differences in overall absorbance
between the individual sampling spots clearly correlated
with the degree of pigmentation visible in the corre-
sponding light micrographs (Fig. 24). At this point, we
cannot exclude the possibility that Serritaenia secretes
more than one compound into the mucilage and that the
observed spectra are a sum thereof. Some cyanobacteria
of the genus Nostoc, for example, accumulate two com-
plementary sunscreens (scytonemin and oligosacchar-
ide-linked MAAs) in their extracellular glycan sheath,
thereby extending the spectral range of photoprotection
(Bohm et al., 1995; Ferroni et al., 2010). The observed
correlation of UVR absorbance and visible pigmentation
(also apparent from the spectral curves), however, lets us
assume that the intensely coloured capsules of
Serritaenia cells found in nature provide an effective
broadband-screening including the UV waveband.
Interestingly, the pigmented mucilage of S. testaceova-
ginata (strain GSM.5.thin) formed under experimental
conditions always showed a violet-blue colour, while this
species was found with reddish mucilage in nature

(compare Figs 12 and 24). Experimental changes of the
pH value of the medium resulted in reversible colour
changes of the pigmented mucilage, from violet-blue
under alkaline and neutral conditions to black and red-
dish-brown under acidic conditions (Fig. 25). These col-
our changes can explain the reddish-brown tones
frequently observed in mucilage from natural material.
Both the ‘wet walls’ in the Great Smoky Mountains as well
as the substrates (bryophytes, plant litter) at our main
study site (Wohlsberg, Wiehl, Germany) showed acidic
reactions, pH 4.4 (Furey et al., 2007) and pH 4.3-4.8 (n
= 7), respectively. We assume that different Serritaenia
species produce the same compound, which can show
different colours depending on the chemical conditions
of the substrate. Consequently, mucilage colour seems to
be a trait of poor taxonomic value (which applies to
gloeocapsin-containing cyanobacteria as well) and
should not be used for species descriptions as done for
Mesotaenium testaceovaginatum (Fucikova et al., 2008).

How do the pigmented capsules form?

With very few exceptions such as the MAAs deposited in
the silica frustules of planktonic diatoms (Ingalls et al.,
2010), most (putative) sunscreen compounds from

Figs 26-30. Microscopic details of extracellular pigmentation in Serritaenia species induced under setting 3 for 14 days. Fig. 26.
Colony of S. testaceovaginata (strain GSM.5.thin) with pigmentation in outermost layer of the mucilaginous capsules (arrow).
Fig. 27. Cells of Serritaenia sp. (strain OBE.1) exhibiting several pigment layers (arrowheads) and a pigment accumulation between

recently divided cells (asterisk). Fig. 28. Dark, polar inclusions in the cells of Serritaenia sp. (strain OBE.1) associated with zones of

intensely pigmented mucilage. Fig. 29. Detail of lens-like pigment inclusion at the cell pole of Serritaenia sp. (strain OBE.1). Fig. 30.
Two cells of Serritaenia sp. (strain OBE.1) surrounded by mucilaginous capsules with intensely pigmented zones. The assumed
trajectory of secretion is indicated by dashed lines. Scale bars: Fig. 26, 20 um; Figs 27, 28, 30, 10 pum; Fig. 29, 5 um.
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eukaryotic microalgae have an intracellular localization.
They can accumulate in the cytoplasm (e.g. MAAs;
Garcia-Pichel & Castenholz, 1993), in vacuoles (e.g. pur-
purogallin-derivatives; Remias et al., 2012a), or in lipid
droplets (e.g. carotenoids; Bidigare et al, 1993). Since
some of these substances might be involved in physiolo-
gical processes as well (carotenoids, MAAs), their pri-
mary role as sunscreen is not always established. The
Serritaenia pigment, instead, is often found in distant
layers of extracellular mucilage, which is an ideal locali-
zation for effective shielding of the entire cell, including
the cell periphery and plasma membrane. Furthermore,
Serritaenia capsules from nature showed a striking uni-
lateral pigmentation (Fig. 8), suggesting a directed (‘eco-
nomic’) deposition of a sunscreen. Based on our
microscopic data from experimentally treated cells, we
can infer some aspects of the formation of pigmented
capsules by Serritaenia. Two strains from distinct sub-
clades, GSM.5.thin and OBE.l, produced pigmented
mucilage upon exposure to moderate UV-PAR intensi-
ties (setting 3, Fig. 20), but showed different patterns of
mucilage secretion. In strain GSM.5.thin the outermost
regions of the mucilaginous capsules exhibited an intense
pigmentation, often forming a thin, discrete pigment
layer (Fig. 26). The pigmentation in these layers was
not always evenly distributed and occasionally concen-
trated in zones of increased density (Fig. 26, arrow),
reminescent of the unilateral pigmentation observed in
natural material. Strain OBE.1 frequently produced sev-
eral nested pigmented layers within the capsules (Fig. 27,
arrowheads) as well as pigmentation at the site of cell
division and between recently divided cells (Fig. 27,
asterisk). Furthermore, cells of this strain exhibited
dark, lens-like inclusions at the cell poles, situated
between the plasma membrane and the cell wall
(Figs 28, 29). These inclusions were often associated
with confined zones of intensely pigmented mucilage
located well outside the cells (Fig. 28). In some instances,
it became clear that these pigmented zones are in fact
part of otherwise colourless or faintly pigmented, extra-
cellular capsules (Fig. 30). We assume that the lens-like
inclusions correspond to secreted mucilage, which nor-
mally travels through the cellulosic mesh work of the
wall, but — under the experimental conditions — accumu-
lated underneath the wall (maybe due to a sudden
overreaction of the cell). It is well known from other
Zygnematophyceae (e.g. Closterium, Micrasterias,
Netrium, Penium) that gel-like exopolymers such as pec-
tic substances are secreted through the existing cell wall
after fusion of secretory vesicles with the plasma mem-
brane (Oertel et al., 2004; Eder & Liitz-Meindl, 2010;
Domozych et al., 2014). We conclude that the colourful
capsules of Serritaenia are likely formed by the secretion
of pigmented exopolymers, and not by the release of
pigments into existing capsules. This idea is supported
by the radial pigment gradients and hierarchical pigment
layers often found in natural material. These layers can
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be easily explained by the initial deposition of pigmented
mucilage followed by the secretion of (less-pigmented)
mucilage that pushes the pigmented layer apart from the
cell. Furthermore, the pigmented inclusions found at the
cell poles in experimental material demonstrate that the
secretion of pigmented mucilage can be local. We there-
fore assume that Serritaenia cells in the natural habitat
(i.e. when the colonies are stuck to a substrate in a fixed
position) are able to form well-oriented ‘sunshades’ by
the directed secretion of pigmented mucilage.

Several pieces of evidence support a role as
a sunscreen

Sunscreen compounds of microbes and plants are
expected to meet a number of criteria which are rele-
vant to their function (Cockell & Knowland, 1999; Gao
& Garcia-Pichel, 2011). This includes (1) a sensible
(cellular) localization for effective shielding of sensitive
structures, (2) the effective absorption of deleterious
radiation, especially UVR and (3) the synthesis of the
compound in response to elevated levels of deleterious
radiation, or during life history stages which typically
experience such conditions. Our microscopic and
experimental data demonstrate that these criteria are
met by the pigmented capsules of Serritaenia species.
Ideally, there is also experimental evidence for resis-
tance to harmful doses of respective wavebands gained
by the accumulation of the compound. Indeed, we
occasionally observed strongly pigmented colonies sur-
viving the adverse conditions in our experiments (Fig.
20, setting 4), but could not undoubtedly prove the role
of the pigmentation. In poorly known non-model
organisms such as Serritaenia clear evidence for
a cause-effect relationship is difficult to obtain, since
the cells can potentially react in several unknown ways
at the same time; e.g. on a physiological level or with
repair mechanisms (Garcia-Pichel et al., 1993; Cockell
& Knowland, 1999). However, some additional evidence
for effective UV-screening by the pigmented Serritaenia
capsules comes from the observed correlation of the
strength of pigmentation and the applied UVB irradi-
ance, pointing to self-regulatory pigment accumulation:
Higher intensities of UVR require higher concentra-
tions of the extracellular sunscreen compound to
attenuate below the response threshold of the cell. An
important requirement for this self-regulative effect is
that the action spectrum of sunscreen synthesis aligns
with the absorbance spectrum of the sunscreen to some
extent, as is known from some MAAs and scytonemin
(Ehling-Schulz et al., 1997; Cockell & Knowland, 1999).
Indeed, the pigment-inducing waveband in Serritaenia
matches the main absorbance peak of pigmented muci-
lage very well (both in the UVB/far UVA range). Self-
regulatory pigment production could also explain the
hierarchical pigment layers frequently found in larger
Serritaenia colonies from natural populations. Repeated
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cell division and capsule formation during colony
growth likely results in stretching of the outer mucilage,
thereby reducing the thickness (= optical path length)
and absorbance of the outer pigment layer. Due to the
diminished screening effect (and increased UV-
exposure), the cells are triggered to form additional,
interior pigment layers to restore full photoprotection.
Taken together, the pigmented capsules of Serritaenia
strongly absorb deleterious short-wavelength radiation
and can be induced by the same stressor. The extra-
cellular pigment is deposited in a sunshade-like pattern,
ideal to shield entire cells from excess radiation, but
unlikely to play additional physiological roles (as for
example known from intracellular screening com-
pounds such as carotenoids). All this points to
a primary function in photoprotection.

In addition, the secretion of light-absorbing mucilage
as a strategy aligns very well with the ecology of the
studied algae. Serritaenia species are found predomi-
nantly in terrestrial habitats, where they are exposed to
a large range of environmental conditions, including
freezing temperatures, drought, heat and increased solar
radiation. The high concentrations of the extracellular
pigment observed in field material suggest that the extra-
cellular mucilage of Serritaenia not only extends the
active phases of this alga by its water-holding capacity,
but also represents an effective ‘broadband’ sunscreen.
The pigmented mucilage shields the entire cells in the
active (hydrated) and inactive (desiccated) state. This
might be of particular relevance during summer, when
the Serritaenia cells survive in desiccated crusts and lack
the ability to react on the cellular level (e.g. with non-
photochemical quenching or repair mechanisms).

Serritaenia’s sunscreen mucilage in an
evolutionary context

Among eukaryotic microalgae, members of the new
genus Serritaenia stand out by their ability to form heavily
pigmented extracellular mucilage. This phenomenon dif-
fers drastically from the photoprotective strategies
already known from other Zygnematophyceae, e.g. the
reddish, water-soluble pigments found in the vacuoles of
representatives from alpine and glacier environments
(Remias et al., 2012a, b; Aigner et al., 2013; Herburger
et al., 2016; Gardufo-Solérzano et al., 2020). It seems that
members of different zygnematophycean lineages that
colonize high-light habitats evolved different solutions
for the same problem, demonstrating once more that
these algae are exciting candidates for studying terrestria-
lization processes in a comparative way.

A stunning analogy to Serritaenia’s sunscreen cap-
sules, however, can be found in the world of prokar-
yotes. Terrestrial cyanobacteria of the Chroococcales
form extracellular capsules with reddish layers con-
taining gloeocapsin, a pigment which (similar to scy-
tonemin) is believed to act as an extracellular UV-

screen (Storme et al., 2015). The pigmented, extracel-
lular capsules of Serritaenia and Chroococcales display
a remarkable resemblance regarding the pattern of
pigment deposition, and we assume that similar evolu-
tionary pressures resulted in the evolution of very
similar photoprotective adaptations. These adapta-
tions, however, must be based on a very different cell
biological background, and represent a prime example
for convergent evolution across two domains of life.

The closest potential homologies to Serritaenia’s
sunscreen mucilage might be found among the colour-
ful cell walls of plants (e.g. various bryophytes) and their
algal relatives. Topologically, cell walls correspond to
the same cellular compartment as secreted mucilage,
namely the extracellular space (apoplast). The cell
walls of Zygnematophyceae are typically colourless,
but some representatives of the genera Spirogyra,
Zygnema and Zygnemopsis form zygospores with blue,
brown or reddish spore walls (Stancheva et al., 2012,
2013; Pichrtova et al, 2018; Takano et al, 2019).
Although there are no physicochemical data about
these zygospore pigments, a photoprotective role in
these propagules of aquatic Zygnematophyceae is not
unlikely. In future, modern molecular and analytical
techniques (e.g. transcriptomics and metabolomics)
applied to non-model organisms like Serritaenia and
relatives might provide deeper insights into the physiol-
ogy and evolution of photoprotective strategies found
in the ‘green lineage’ of life.
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Supplementary information

‘Sunscreen mucilage: a photoprotective adaptation found in

Supplementary Table S1: Studied Serritaenia strains and associated data (collection sites and

terrestrial green algae (Zygnematophyceae)’

Busch & Hess, 2021

accession numbers of the Central Collection of Algal Cultures (CCAC) and rbcL. gene sequences).

Strain Taxonomy Collection site / coordinates Sample information CCAC rbeL

DEL.1 Serritaenia sp. Dellbriick, Cologne (DE) Blackish bryophytes on tree bark (forest) CCAC 9318 MW159370
50.974429, 7.091823

KH.1 Serritaenia sp. Frei-Laubersheim, Bad Kreuznach (DE) Blackish bryophytes on dead wood (foresty ~ CCAC 9319 MW159371
49.806280, 7.882115

OBE.1 Serritaenia sp. Monsau, Wiehl (DE) Blackish forest soil and bryophytes CCAC 9320 MW159369
50.958607, 7.581137

CCAC 0155  Serritaenia sp. Strohner Maarchen, Strohn (DE) Slurry with various desmids CCAC 0155  FM992358
50.122289, 6.928597

OBE.sm2 Serritaenia sp. Wohlsberg, Wiehl (DE) Blackish bryophytes on dead wood (foresty ~ CCAC 9321 MW159373
50.961667, 7.578056

OBE.sm1 Serritaenia sp. Wohlsberg, Wiehl (DE) Blackish bryophytes on dead wood (foresty ~ CCAC 9322 MW159372
50.961667, 7.578056

CCAC 3781  Serritaenia sp. Naafbachtal (DE) Epiphytic bryophytes on tree bark CCAC 3781 MW159374
n/a

GSM.5.thin 8. testaceovaginata  Clingmans Dome Rd, Great Smoky Mountains, NC (USA)  Red-brown biofilm on wet rock surface CCAC 9324 MW159377
35.568104, -83.481939

GSM.5.thick  Serritaenia sp. Clingmans Dome Rd, Great Smoky Mountains, NC (USA)  Red-brown biofilm on wet rock surface n/a MW159376
35.568104, -83.481939

GSM.4.4 Serritaenia sp. Forney Ridge Trail, Great Smoky Mountains, NC (USA) Bryophytes with brown mucilage CCAC 9323 MW159375

35.556917, -83.497417
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Supplementary Fig. S1: Unrooted Neighbour-Joining phylogeny of 43 zygnematophycean rbcL gene
sequences displaying the polyphyly of Mesotaenium (red) and the position of the new genus Serritaenia
(green). Support values are shown on the respective branches (NJ/ML). Branches with maximum
support (100/100) are bold. The scale bar represents 0.02 nucleotide substitution per site.
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Supplementary Figs S2 and S3: Illustrations published with the original descriptions of Mesotaenium
braunii (S2: A, 1-8), M. braunii var. minus (S2: 4, 9-11), and M. testaceovaginatum (S3). The illustration
of M. testaceovaginatum (S3) is designated as lectotype for this species.

S2
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Supplementary Figs S4-S6: Microspectrophotometric measurements taken from the mucilage of
Serritaenia testaceovaginata (strain GSM.5.thin) over a spectral range of 200—1600 nm. S4 and S5
display absorbance spectra of mucilage with varying degree of pigmentation from two independent wet
mounts with 21 and 33 measurements, respectively. S6 displays 15 absorbance measurements of non-
pigmented mucilage for comparison.
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Supplementary Text:

Rationale for the new genus Serritaenia and taxonomy of its members

The studied algae resemble certain species of the ill-defined and polyphyletic genus Mesotaenium
NAGELI, which — according to AlgaeBase — contains 29 recognised species and 39 infraspecific taxa
(Guiry & Guiry, 2020). As revealed by former molecular inferences (Gontcharov et al., 2004;
Gontcharov & Melkonian, 2010) and shown in our rbcL phylogeny as well, some of these Mesotaenium
species fall in several (at least four) not directly related evolutionary lineages of the Zygnematophyceae.
Although the members of these lineages exhibit clear differences in cellular details (Gontcharov, 2008),
all of them are — until now — referred to as Mesotaenium, and a taxonomic revision of these algae is
pending.

The following species resemble the algae studied in this work (with homotypic synonyms; =):
M. braunii DE BARY

M. braunii var. minus DE BARY
= M. macrococcum var. minus (DE BARY) COMPERE
= Palmogloea macrococca var. minor (DE BARY) RABENHORST

M. macrococcum (KUTZ.) JJROY & BISSET
= Palmogloea macrococca KUTZ.

M. testaceovaginatum FUCIKOVA, J.D.HALL, J.R.JOHANS. & R.L.LOWE

Common defining characters of these species and our strains are cylindrical cells, a length-to-width ratio
of maximum 2-3 (depending on the species), and a plate-like chloroplast in the centre of the cell (not
parietal) with serrate or crenate edges. Furthermore, the cells are typically surrounded by mucilage (often
in form of layered capsules) and thrive in terrestrial habitats (de Bary, 1858; West & West, 1904;
Fucikova et al., 2008). With that, these algae differ fundamentally from M. endlicherianum NAGELI (the
type species of the genus Mesotaenium), whose cells are more slender (length-to-width ratio 3—4),
contain a chloroplast with smooth margins, and seem to lack conspicuous extracellular mucilage
(Nageli, 1849). In addition, M. endlicherianum is not reported to show the angled cell arrangement
observed in our strains shortly after cell division, and, instead, divides in a chain-like manner.

Unfortunately, at present there is no algal strain available that closely matches the description of
M. endlicherianum. This also applies to strain SAG 12.97 (the closest known relative of the algae
studied here), which was probably misidentified and repeatedly referred to as ‘M. endlicherianum’
(Gontcharov et al., 2003, 2004; Gontcharov, 2008; Matasci et al., 2014; Cheng et al., 2019). Hence, we
lack important phylogenetic information about the type species of Mesotaenium and cannot place this
generic name with certainty. However, the marked phenotypic differences between M. endlicherianum
NAGELI and the algae studied here justify a separate genus name for the latter. In the context of potential
genus names, it also has to be noted that Mesotaenium macrococcum was first described as Palmogloea
macrococca KUTZ. (Kiitzing, 1845). The genus Palmogloea, however, was established earlier (Kiitzing,
1843) with P. protuberans (SM.) KUTZ. as the only species, which hence represents the type species of
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the genus. This type species is considered a chlorophycean green alga (Fott & Novakova, 1971), so that
the genus Palmogloea is not appropriate for zygnematophyceaen algae. Consequently, the studied algae
require a new genus name and we here introduce Serritaenia gen. nov. (see main text for formal
description).

The morphologically ‘simple’ Mesotaenium species have mostly been described on the basis of the cell
shape and size of vegetative material. The lack of meaningful original descriptions in several cases and
the resulting uncertainties led to a convoluted taxonomic history with a high number of infraspecific
taxa and synonyms (Guiry & Guiry, 2020). At present there are a few names used for Zygnematophyceae
that are here included in the genus Serritaenia. As detailed below, the available information about these
taxa varies, and there are still some questions to be solved. Based on a careful comparison of our
Serritaenia strains with published taxa (including original material), we follow a conservative approach
and form only two new combinations (Art. 6.10. and 41 in Turland et a/., 2018) in this study. As the
holotype of one species (M. testaceovaginatum) was evidently lost, we designate a cited illustration
published along with the original description as lectotype (Art. 7.3. and 9.3. in Turland et a/., 2018) and
provide a supporting epitype connected to genetic information (Art. 9.9. in Turland et al., 2018). Some
details about relevant species follow.

Mesotaenium macrococcum (KUTZ.) J.ROY & BISSET is a widely accepted name for Zygnemato-
phyceae that closely resemble Serritaenia species (Lenzenweger, 2003; Coesel & Meesters, 2007;
Brook & Williamson, 2010; Ettl & Girtner, 2014). As already mentioned above, it is a nomenclatural
synonym of Palmogloea macrococca KUTZ., a rather ill-defined species that caused much debate about
its identity (Archer 1864, 1866; Hicks 1864). As far as we know, the question whether P. macrococca
is a zygnematophycean green alga is still not solved, but the name M. macrococcum found its way in
contemporary taxonomic literature. The current circumscription of this taxon in monographs and
identification guides is quite broad and probably based on a variety of biological species as indicated by
the stated cell sizes (e.g. cell width of 5-19 pm in Ettl & Gartner, 2014). We here show that genetically
separate Serritaenia strains have a relatively narrow and stable cell width range, emphasising the need
to reflect the observed phenotypic diversity on the taxonomic level. Unfortunately, the description of
P. macrococca is fairly meagre (Kiitzing, 1845), and the associated drawing difficult to interpret
(Kiitzing, 1847). To assess whether P. macrococca is a Serritaenia-like alga and can be considered for
a new combination, we studied the original material of that species (deposited at the Naturalis
Biodiversity Center in Leiden, NL). Based on our microscopic examination alone, we cannot solve this
question with certainty (genetic work in progress), so that we refrain from establishing a new
combination of P. macrococca at this point. However, the cells of P. macrococca turned out to be
markedly smaller than expected (about 10 um wide) and, thus, are not identical with M. braunii (cells
15-19 um wide). Consequently, the synonymy of these taxa seems to be unjustified and the name
M. braunii becomes relevant for the large-celled representatives of the Serritaenia-clade.

Mesotaenium braunii DE BARY (illustrated in Supplementary Fig. S2) was established in a very detailed
description and there is little doubt that this species belongs to the Serritaenia-clade. De Bary clearly
depicted the chloroplast morphology, the mucilage capsules, and even mentioned the presence of an
extracellular (violet) pigment (de Bary, 1858). The stated cell dimensions of M. braunii (15-19 pm)
closely match those of our Serritaenia strains DEL.1, KH.1 and OBE.1. Here, we introduce a new
combination, Serritaenia braunii comb. nov., but for now refrain from selecting a reference strain, as
there might be the option to study original material of M. braunii in future (currently inaccessible to us).
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Mesotaenium braunii var. minus DE BARY (illustrated in Supplementary Fig. S2) was described as a
smaller variety that reaches only half the size of M. braunii (= cell width 8-9.5 pm). Thus, it conforms
with the small-celled Serritaenia strains OBE.sm1, OBE.sm2, CCAC3781 and GSM4.4, which show
marked genetic distances to the large-celled Serritaenia strains. The small-celled strains are, however,
not monophyletic, complicating the application of the name M. braunii var. minus. In addition, we found
that the type material of Palmogloea macrococca resembles M. braunii var. minus in size, questioning
the justification of the latter name due to priority (in case these organisms are indeed identical; pending
genetic analyses). Because of this uncertainty, we refrain from creating any new combination at this
point. M. braunii var. minus is also known under its homotypic synonyms M. macrococcum var. minus
(DE BARY) COMPERE and Palmogloea macrococca var. minor (DE BARY) RABENHORST.

Mesotaenium testaceovaginatum FUCIKOVA, J.D.HALL, J.R.JOHANS. & R.L.LOWE (illustrated in
Supplementary Fig. S3) was most recently described from the Great Smoky Mountains National Park
(North Carolina, USA) on a purely morphological basis (Fucikova et al., 2008). In search of this species
at its type locality, we found two morphotypes* (GSM.5.thin and GSM.5.thick), which differed in
morphology, rbcl. gene sequence, and their ability to grow under laboratory conditions. Both
morphotypes matched the original description of M. festaceovaginatum to some extent: The cell
dimensions provided in the written description (cell width 12—14 um) and the drawing (Fig. 6 on p. 55
in Fucikova et al., 2008) correspond to GSM.5.thin, while the cells depicted in the micrographs (Figs
26-28 on p. 55 in Fucikova et al., 2008) rather resemble GSM.5.thick. As confirmed by one of the
authors, a mix-up of the two co-occurring morphotypes in the description is, indeed, possible (pers.
comm. K. Fuc¢ikova). Unfortunately, the holotype of M. testaceovaginatum, the aldehyde-fixed natural
sample GSM 10/23/04 J5A4 (John Carroll University, Ohio), was lost. Furthermore, the holotype is very
likely to contain both morphotypes, along with other algal taxa, so that the designation of a lectotype
from the cited illustrations (as part of the original material) seems reasonable (Art. 9.3. in Turland et al.,
2018). In agreement with the cell dimensions given in the written description, we designate the drawing
(Fig. 6 on p. 55 in Fucikova et al., 2008; reproduced in Supplementary Fig. S3) as lectotype (see also
Art. 9.14. in Turland et al., 2018), and fixed cells of strain GSM.5.thin as supporting epitype. In addition,
we establish a new combination, Serrifaenia testaceovaginata comb. nov., and emend the written
description of that species (see main text). As S. testaceovaginata currently has the most detailed (and
unambiguous) description, we designate it as the type species of the genus Serritaenia.

Furthermore, there are some infraspecific taxa to be discussed. M. macrococcum var. micrococcum
(KUTZ.) WEST & G.S. WEST, synonymous with M. micrococcum (KUTZ.) KIRCHN., is not considered
for inclusion in the genus Serritaenia. Although these names were sometimes regarded as synonyms of
M. braunii var. minus (Krieger, 1937), they are clearly based on Palmogloea micrococca KUTZ. (see
West & West 1904). The latter species, however, differs drastically from the algae studied here and
rather represents Coccomyxa (Trebouxiophyceae, Chlorophyta) or relatives (Kiitzing, 1847, 1849). The
varieties M. macrococcum var. lagerheimii WILLI KRIEG. and M. macrococcum var. truncatum (WEST
& G.S. WEST) WILLI KRIEG. both display major morphological differences to Serritaenia and are not
considered for inclusion in this genus as well. Finally, there is evidence of a species named Palmogloea
macrococca var. nigrescens C. CRAMER in the Index Nominum Algarum database (Silva Center for
Phycological Documentation, The University Herbarium at UC Berkeley, USA), but we were unable to
locate its original description so far. Given the meaning of the name (Latin: nigrescens = blackening,
darkening), it might be possible that Cramer’s variety is a Serritaenia-clade member (name pointing to
blackish extracellular pigmentation?). Future in-depth studies may shed some light on these orphan taxa.

* The term ,morphotype* is here used in the broad sense and does not denote a taxonomic level.
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Abstract

The zygnematophytes are the closest relatives of land plants and comprise several lineages that adapted to a life
on land. Species of the genus Serritaenia form colorful, mucilaginous capsules, which surround the cells and block
harmful solar radiation, one of the major terrestrial stressors. In eukaryotic algae, this ‘sunscreen mucilage’ repre-
sents a unique photoprotective strategy, whose induction and chemical background are unknown. We generated a
de novo transcriptome of Serritaenia testaceovaginata and studied its gene regulation under moderate UV radia-
tion (UVR) that triggers sunscreen mucilage under experimental conditions. UVR induced the repair of DNA and the
photosynthetic apparatus as well as the synthesis of aromatic specialized metabolites. Specifically, we observed
pronounced expressional changes in the production of aromatic amino acids, phenylpropanoid biosynthesis genes,
potential cross-membrane transporters of phenolics, and extracellular, oxidative enzymes. Interestingly, the most
upregulated enzyme was a secreted class lll peroxidase, whose embryophyte homologs are involved in apoplastic
lignin formation. Overall, our findings reveal a conserved, plant-like UVR perception system (UVR8 and downstream
factors) in zygnematophyte algae and point to a polyphenolic origin of the sunscreen pigment of Serritaenia, whose
synthesis might be extracellular and oxidative, resembling that of plant lignins.

Keywords: Lignin, peroxidase, phenolics, phenylpropanoid, streptophyte algae, UV radiation, UVR8, Zygnematophyceae.

Introduction

The conjugating green algae (Zygnematophyceae) represent an  deadwood) and even glaciers. Hence, these algae display a wide
algal class of ~4000 described species, which inhabit diverse ecological variation, and, at the same time, relatively simple
freshwater-fed systems (Hall and McCourt, 2015). They colo-  growth forms (unicells or filaments). It appears that their eco-
nize standing waters, from eutrophic lakes to dystrophic moor-  logical variation is likely to be underpinned by physiological
lands, but also thrive on terrestrial surfaces (e.g. rocks, bark,and  specialties that evolved in distinct zygnematophyte taxa.

© The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Experimental Biology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
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Furthermore, the zygnematophytes are the key to under-
standing the evolution of plant metabolism and the process
of terrestrialization, as these algae represent the sister clade
of the land plants (Wodniok et al., 2011; Timme et al., 2012;
Ruhfel et al., 2014; Wickett et al., 2014; Leebens-Mack et al.,
2019). Indeed, the zygnematophytes are gaining increasing at-
tention by various biological disciplines. Well-studied aspects
include cell wall synthesis and composition (Domozych,
2014; Domozych et al., 2014), physiological reactions to abi-
otic stressors and metabolic networks (Pichrtova et al., 2014;
de Vries et al., 2020; de Vries and Ischebeck, 2020; Permann
et al., 2022), genome evolution (Cheng et al., 2019), and phy-
logenetics (Gontcharov et al., 2004; Gontcharov, 2008; Hess
et al., 2022). Overall, it is thought that algal (pre-)adaptations
concerning various cellular and metabolic traits might have
paved the way for the evolution of the land plants (de Vries and
Archibald, 2018; Jiao et al., 2020). However, so far, relatively
few zygnematophyte species (e.g. from the genera Mesotaenium,
Mougeotia, Spirogloea, Penium, and Zygnema) have been sub-
jected to in-depth genomic or transcriptomic analyses (Cheng
et al., 2019; Jiao et al., 2020; Fiirst-Jansen et al., 2021; Dadras
et al.,2023a; Feng et al., 2023, Preprint). These revealed taxon-
specific differences (e.g. the triploid genome of Spirogloea) and
showed that our picture of the zygnematophyte specialized
metabolism, perception of environmental factors, and signaling
is still fragmentary. This is not surprising given the enormous
diversity of zygnematophytes and their lifestyles. Hence, we
need data of various species to tell apart common and species-
specific traits, and to gain insights into how certain zygnemato-
phyte lineages adapted to their specific environments.

Aeroterrestrial zygnematophytes are of particular interest
as they cope with abiotic stressors that might have been cru-
cial during the evolution of land plants, namely limited water
supply, frequent desiccation, high temperature amplitudes, and
intense sunlight. Interestingly, several distinct zygnematophyte
lineages exhibit a terrestrial lifestyle or thrive in otherwise ex-
treme habitats such as glaciers and alpine lakes (Remias et al.,
2012a; Aigner et al., 2013; Garduno-Solérzano et al., 2021;
Busch and Hess, 2022). Under these conditions, high light ex-
posure is a serious stressor as UV radiation (UVR) damages
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nucleic acids and proteins, and thus can disturb vital metabolic
functions (Karentz et al., 1991; Lao and Glazer, 1996; Buma
et al., 2003). It appears that some zygnematophyte lineages
evolved photoprotective strategies that reduce cellular damage
under high light conditions. For example, representatives of
the distantly related genera Ancylonema, Temnogametum, and
Zygogonium produce colorful intracellular compounds that are
thought to be sunscreens (Newsome and van Breemen, 2012;
Remias et al., 2012b; Aigner et al., 2013; Garduno-Solérzano
et al., 2021). It has been established that these compounds,
identified as purpurogallin derivates or gallic acid polymers,
have a phenolic origin and effectively absorb light and UVR.
However, the biosynthesis of these pigments is still unknown,
as zygnematophytes from extreme habitats are difficult to cul-
tivate (Remias and Prochazkova, 2023) and no associated ge-
nomic and metabolomic data are available (but see Bowles
et al., 2023, Preprint).

A very different photoprotective strategy can be found in
the genus Serritaenia, whose members inhabit forests, moor-
lands, and heathlands in temperate regions of Europe and
North America (Busch and Hess, 2021). These unicellular
zygnematophytes form gelatinous colonies that stick to plant
and rock surfaces, and produce a colorful extracellular pigment
(Fig. 1). The pigment is often secreted in a directional manner
and, as shown by microspectrophotometry, effectively blocks
UVR. So far, Serritaenia is the only known zygnematophyte
lineage able to produce this extracellular ‘sunscreen mucilage’,
and hence represents a unique organismal system. The clos-
est analogy can be found in the photoprotective sheath pig-
ments (gloeocapsin and scytonemin) of cyanobacteria (Proteau
et al., 1993; Storme et al.,2015), which, however, have different
properties and are unlikely to occur in eukaryotic algae. They
can be readily extracted with methanol/ethyl acetate mixtures
or acetone, while the sunscreen pigment of Serritaenia appeared
to be resistant to various solvents and harsh acidic hydrolysis
(Busch and Hess, 2021), and was intractable to standard chem-
ical analyses. However, Serritaenia species can be cultivated in
the laboratory and triggered by artificial UVR to produce
their extracellular pigmentation. Thus, these algae are excellent
laboratory models to study the reaction of zygnematophytes to

Fig. 1. Phylogenetic affinity and aeroterrestrial lifestyle of Serritaenia species. Serritaenia belongs to the Zygnematophyceae, which have a key position
in the streptophyte phylogeny. Several Serritaenia species colonize bryophytes (arrow) and form pigmented ‘sunscreen mucilage’ (inset). Topology of the

phylogenetic tree according to Wickett et al. (2014).
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UVR and to gain insights into the formation of the sunscreen
mucilage by transcriptomic methods.

Here, we generated a de novo transcriptome of Serritaenia
testaceovaginata and explored the transcriptional reactions of
this species to moderate UVR exposure. Besides general cel-
lular processes such as DNA repair, photosynthesis, and reactive
oxygen species (ROS) scavenging, we examined the photo-
receptor systems and the specialized metabolism of aromatic
compounds. A special focus is set on highly regulated oxidative
enzymes known from lignin formation in higher plants, whose
functions in zygnematophytes are still unknown.

Materials and methods

Experimental set-up

Algae were pre-grown in tissue culture flasks in liquid culture medium
KW (Supplementary Table S1) at 30 pmol m™ s~ photosynthetically
active radiation (PAR) (LinearZ SunLike LEDs, 5700 K, Lumitronix,
Hechingen) with a 14/10 h light/dark cycle for 4 weeks. Before the start
of the light experiment, the cells were transferred to Petri dishes with
fresh medium and acclimatized to higher PAR conditions (120 umol m™
s7,14/10 h) for 10 d. During the experiment, the algae were exposed to
the above-mentioned LEDs and the UVB Broadband TL fluorescent tube
lamp (20 W, Philips, Hamburg), resulting in 120 umol m™ s™' PAR, 400
W em™ UV-B (280-315 nm), and 150 uW cm > UV-A (315-400 nm).
While PAR was applied in the regular 14/10 h photoperiod, UVR was
applied for 4 h at noon. Control cells were covered with a Makrolon®
polycarbonate plate that blocks UVR <390 nm (Busch and Hess, 2021).
The experiment was run in triplicate for 3 d at 16 °C. After the third
UVR exposure, when the algae displayed slight extracellular pigmenta-
tion, all samples were subjected to RNA isolation. Brightfield microscopy
and photo-documentation of experimental cultures were carried out with
the Motic AE2000 inverted microscope (Motic, Hong Kong) equipped
with a MikroLive 6.4MP CMOS camera (MikroLive, Oppenau).

RNA isolation and RNA sequencing

Algal cells were collected by centrifugation (500 ¢, 5 min), lysed as
described in Gerbracht ef al. (2022), and subjected to RNA isolation
with the TRIzol Reagent (Thermo Fisher Scientific Inc., Waltham, MA,
USA) according to the manufacturer’s protocol. The RNA samples (see
Supplementary Fig. S1 for gel picture) were submitted to the Cologne
Center for Genomics (Cologne, Germany) for paired-end mRNA library
preparation (Ilumina TruSeq mRNA stranded, Illumina, San Diego, CA,
USA) and RNA sequencing (RNA-seq; ~20 million reads/sample) on a
NovaSeq 6000 platform (Illumina).

Transcriptome assembly

K-mer-based error correction was done with R-Corrector version 1.0.4
(Song and Florea, 2015), and quality and adapter trimming with Trim
Galore version 0.6.6 (https://github.com/FelixKrueger/ TrimGalore).
Processed reads from all conditions were pooled (267 756 958 reads in
total) and assembled de novo with Trinity version 2.0.6 (Grabherr et al.,
2011) in the strand-specific mode. To detect potential contaminants, the
resulting transcriptome was blasted against the nt database (megablast,
version 2.20.1), and sequences with a length >100 nucleotides and >95%
identity with ribosomal, bacterial, or viral sequences were removed.
ORFs were predicted with Transdecoder version 2.1.0 (https://github.
com/TransDecoder/ TransDecoder). Transcriptome assembly statistics

were obtained with Trinity toolkit utilities (TrinityStats.pl) and BUSCO
version 4.0.6 (Seppey et al., 2019).

Functional annotation

The predicted ORF sequences were compared with the nr database
(release 2020_06) using DIAMOND blastp version 2.0.7 (Buchfink
et al., 2021) with an e-value cut-off of 1 X 107°. Furthermore, we ap-
plied EggNOG mapper version 2.1.7 (Cantalapiedra et al., 2021)
for a gene ontology (GO) annotation in the DIAMOND mode.
InterProScan version 5.22-61.0 (Blum et al., 2021) was used run-
ning the following analyses: CDD-3.14, Coils-2.2.1, Gene3D-3.5.0,
Hamap-201605.11, MobiDBLite-1.0, PANTHER-11.1, Pfam-30.0,
PIRSF-3.01, PRINTS-42.0, ProDom-2006.1, ProSitePatterns-20.119,
ProSiteProfiles-20.119, SFLD-2, SignalP_EUK-4.1, SMART-7.1,
SUPERFAMILY-1.75, TIGRFAM-15.0, and TMHMM-2.0c. The
knumbers were annotated using KAAS annotation (Moriya et al., 2007)
in SBH (single-directional best hit) mode using defined organisms as ref-
erence (organism abbreviations: ath, boe, gmx, rcu, pop, qsu, vvi, sly, psom,
osa, zma, mus, ppp, cre, mng, apro, olu, mpp, cme, ccp, mdm, spen, nta, and
to). Furthermore, Ghost Koala version 2.2 (Kanehisa et al., 2016) was used
with the KEGG (Kyoto Encyclopedia of Genes and Genomes) database
‘genus_prokaryotes+family_eukaryotes’ and Kofam Koala version 101.0
(Aramaki ef al., 2020) with an e-value cut-off of 0.01.To get the most
complete picture (see UpSet plot in Supplementary Fig. S2), retrieved
knumbers from KAAS, Ghost Koala, and Kofam Koala were merged
and the resulting dataset was used for KEGG pathway mapping using
Arabidopsis thaliana as a reference (Kanehisa and Sato, 2020; Kanehisa et al.,
2022). Transmembrane domains and signal peptides were predicted for
selected protein sequences with DeepLoc 2.0 (Almagro Armenteros ef al.,
2017; Thumuluri et al., 2022) in high-quality mode, DeepTMHMM
(Hallgren et al., 2022, Preprint), and SignalP 6.0 (Teufel et al., 2022).
Binding sites and the active site of class III peroxidase were predicted by
conserved domain search on NCBI (Lu et al., 2020). Furthermore, for the
first 50 upregulated genes, the predicted ORF sequences were compared
with the refseq_protein database (15 January 2024) using blastp version
2.15.0 (Altschul et al., 1990) with an e-value cut-off of 1 X 107" The hit
with the lowest e-value with functional information from eukaryotes was
chosen, while annotations from plants and green algae were preferred.

Homology searches of specific protein groups

Homologs of enzymes scavenging ROS and class III peroxidases were
searched in the output files of EggNOG mapper and InterProScan by EC
number and protein name searches. Homologs of photosynthesis proteins
and enzymes of specialized metabolite pathways were searched by knum-
ber annotation (see above) and KEGG pathway mapping (map00195,
map00940,map00941, map00942, map00944, map00943,and map00965).
Furthermore, photosynthesis-associated proteins (from A. thaliana
and  Chlamydomonas reinhardtii), jasmonate pathway-related proteins
(from A. thaliana and Glycine max), photoreceptors and photoreceptor-
associated proteins (from A. thaliana, C. reinhardtii,and Mougeotia scalaris) ,and
proteins related to the biosynthesis of scytonemin and mycosporine-like
amino acids (from cyanobacteria) were used to search for homologs in S.
testaceovaginata by blastp searches (Altschul ef al., 1990). For blastp searches,
only putative homologs with an e-value <1 X 107", a percentage iden-
tity >30%, and a minimal alignment length >50% of the query sequence
were chosen.

Differential expression analysis

The processed reads were mapped to the de novo transcriptome with bow-
tie2 version 2.4.1 (Langmead and Salzberg, 2012), and transcript abundance
was quantified with Salmon version 1.14.1 in the alignment-based mode
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(Patro et al., 2017). Transcript-level abundances, estimated counts, and tran-
script lengths were imported with tximport version 1.18.0 (Soneson ef al.,
2016) and summarized into a matrix. Only contigs with a counts per mil-
lion (CPM) >1 in two or more samples were kept. The differential expres-
sion analysis was carried out with DESeq?2 version 1.30.0 (Love ef al.,2014).

Global enrichment analyses

GO term enrichment analysis was performed with GOseq version
1.42.0 (Young et al., 2010). The sequence lengths required for the anal-
ysis were computed with the script ‘fasta_seq_length.pl’ from the Trinity
toolkit utilities. GO terms were retrieved by EggNOG mapper version
2.1.7 (Cantalapiedra et al., 2021). The adjusted P-value was set to <0.01
and log2fold change (FC) >1 (upregulated) or <1 (downregulated).
Upregulated genes within the term ‘Response to UV’ were assigned to
putative homologs based on EggNOG and InterProScan descriptions,
and blastp searches against the UniProtKB/Swiss-Prot database (per-
formed in May 2022). For blastp searches, only putative homologs with
an e-value <1 X 107, a percentage identity >30%, and a minimal align-
ment length >50% of the query sequence were chosen.

Protein structure predictions and phylogenetic analyses

Protein structure predictions were performed with I-TASSER (Yang
and Zhang, 2015) and visualized with iCn3D (J. Wang et al., 2020). For
phylogenetic analysis of class III peroxidases, we created a multiple se-
quence alignment with streptophyte sequences (all algae and selected
embryophytes) from RedOxiBase (Savelli et al., 2019), published
sequences from Morgenstern et al. (2008), two selected sequences from
the RCSB protein data bank (3HDL, 1BGP), and homologs from the
algal transcriptomes and genomes listed in Supplementary Table S2.The
latter homologs were extracted by Blast searches (e-value <1 X 10717,
length >250 amino acids, percentage identity >30%) with the sequence
of StesPRX01 (TRINITY_DN14219) as query. The sequences were
aligned with MAFFT version 7.471 (Katoh and Standley, 2013) in ‘auto’
mode and trimmed with trimAl version 1.4.rev15 (Capella-Gutiérrez
et al., 2009) using the ‘automated1’ setting. The substitution model with
the best fit was determined by the ModelFinder function of IQ-TREE
version 4.5.1 (Minh et al., 2020), and maximum likelihood phylogenies
were inferred with IQ-TREE. After manually reducing sequence re-
dundancy, a final phylogenetic analysis (124 sequences, 248 sites; align-
ment in Supplementary Dataset S1) was run with the substitution model
Q.pfam+R7 and 1000 bootstrap replicates.

Supporting phylogenetic analyses for shikimate and betalain pathway-
related genes were conducted within the Geneious Prime sequence
analysis software package (Biomatters, New Zealand). The candidate
transcriptome sequences were hand-annotated and then translated to
provide the deduced amino acid sequences, which were aligned using
ClustalOmega or MUSCLE, and the alignments manually adjusted as
necessary. Phylogenetic trees were inferred from conserved regions using
MrBayes (Ronquist ef al., 2012) with an outlier sequence and the de-
fault parameters. For assisting with assigning putative function, the trees
contained sequences of confirmed function from land plants, along with
related sequences from other species of interest. Sequence accession num-
bers are given within the phylogenies.

Results and discussion

Capturing the reaction of Serritaenia to UV radiation by
RNA-seq

Based on previous observations on the visible reactions of S.
testaceovaginata to UVR (Busch and Hess, 2021), we treated

the algae with two well-defined conditions over 3 d (Fig. 2A).
Control cells experienced a daily 14 h photoperiod of PAR,
with a continuous spectrum provided by sun-mimicking LEDs
(Fig. 2B). The UVR treatment was characterized by the same
PAR spectrum but supplemented with UVR for 4 h per pho-
toperiod (Fig. 2A). The applied UVR had its main emission
in the UV-B and far UV-A region, plus a narrow secondary
peak at 365 nm (Fig. 2C). While the mucilage of control cells
remained colorless (Fig. 2D), cells under the UVR treatment
displayed a faint bluish pigmentation after the third photope-
riod of the experiment (Fig. 2E). This indicated the ongoing
formation of Serritaenia’s typical photoprotection triggered by
UVR (Busch and Hess, 2021). At this stage, Serritaenia cells
from both conditions were processed for Illumina RNA
sequencing. As there was no reference genome of Serritaenia
available, we assembled a de novo transcriptome from read data
of both conditions (six samples). The transcriptome was 77.9%
complete according to the BUSCO analysis (Benchmarking
Universal Single-Copy Orthologs; Seppey et al.,2019) with the
Viridiplantae dataset as reference (Fig. 2F). We also checked the
completeness of the >60 000 predicted ORFs and found that
>60% of them were annotated as complete protein sequences
(Fig. 2F).The number of predicted ORFs might seem high, but
roughly aligns with the inferred gene numbers of other zygne-
matophytes (this varies strongly across species from ~11 000 to
>50 000 genes; Feng et al., 2023, Preprint). However, it has to
be noted that the ORFs of a de novo assembled transcriptome
cannot be equated to the gene content of the organism. Yet,
our de novo transcriptome of S. testaceovaginata should provide
a fairly complete picture of the relevant transcriptomic land-
scape in this species, and served well for the differential expres-
sion analysis. As shown by a principal component analysis, the
replicates of the two experimental conditions grouped in two
tight and distinct clusters (Fig. 2G), indicating that the experi-
mental set-up led to consistent reactions of the algae under the
chosen conditions.

UV radiation triggers cellular reprogramming, repair,
and unexpected signaling components

We identified GO terms that were significantly enriched in
upregulated genes under the UVR treatment. The majority of
these enriched GO terms were related to RNA processing, pro-
tein degradation (ubiquitination),and protein modification (Fig.
3A, left). This indicates major expressional changes and a pro-
nounced reprogramming of the cells under UVR.The enriched
GO term ‘Response to UV’ contained 27 upregulated genes
and was of particular interest as it allows for some comparisons
with other well-studied systems (Fig. 3A, right; Supplementary
Table S3). Several genes with a known function in DNA repair
and chromatin remodeling were upregulated, indicating that
the applied UVR caused damage to the DNA of Serritaenia
during this early phase of sunscreen production. In partic-
ular, this included factors of the eukaryote nucleotide excision
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Fig. 2. Experimental set-up and de novo transcriptome assembly of Serritaenia testaceovaginata. (A) PAR/UVR exposure of cells under the two
experimental conditions over the course of 3 d. (B) Relative spectral power distribution under the PAR-only treatment (‘Control’). (C) Relative spectral
power distribution under the PAR+UVR treatment (‘UVR treatment’). (D and E) Cells of S. testaceovaginata from the control (D) and the UVR treatment
(E) at harvest. Scale bars 50 um. (F) BUSCO assessment of the assembled transcriptome (top) and completeness of the predicted ORFs (bottom).

The BUSCO analysis was performed with the ‘Viridiplantae’ dataset. The absolute numbers of single-copy orthologs for the categories S (complete

and single-copy), D (complete and duplicated), F (fragmented), and M (missing) are shown in brackets. The absolute numbers of ORFs (bottom) for the
categories C (complete), P (partial), and | (internal) are also shown in brackets. (G) Principal component analysis (PCA) based on the expression level of all
transcripts for each replicate included in the experiment.
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Fig. 3. Gene ontology (GO) enrichment analysis, and gene regulation of the photosynthetic machinery and anti-ROS factors. (A) Enriched GO terms
associated with upregulated genes under the UVR treatment. GO terms are ranked according to the —log10 false discovery rate (FDR)-corrected
P-value. Only terms with an FDR-corrected P-value <0.05 are shown. The numbers in the circles indicate the number of contigs of upregulated genes



Chapter II: Cellular responses of an aeroterrestrial zygnematophyte to UV radiation

Responses of an aeroterrestrial zygnematophyte to UV radiation | Page 7 of 19

associated with the listed GO terms. The color of the circles indicates the ontology of the respective term: turquoise (biological process, BP), yellow
(cellular component, CC), orange (molecular function, MF). Functionally annotated genes of the GO term ‘Response to UV’ are shown in detail with their
upregulation under the UVR treatment (log2FC depicted by violet stars). (B) Regulation of the photosynthetic machinery under the UVR treatment versus
the control illustrated by color-coded proteins/boxes: red (upregulated, log2FC >1, adjusted P-value <0.001), blue (downregulated, log2FC <1, adjusted
P-value <0.001), white with black letters (no significant regulation, log2FC -1 to 1, adjusted P-value <0.001). Proteins with gray letters could not be
recovered in the transcriptome. (C) Detected anti-ROS factors with their expression levels under the two conditions in transcripts per million (TPM) and
predicted cellular localization. Red and blue arrowheads indicate upregulation (log2FC =1, adjusted P-value <0.001) and downregulation (log2FC <1,
adjusted P-value <0.001), respectively, with the log2FC of the respective gene. Cellular localizations predicted on the basis of partial ORFs are indicated
by asterisks. The gray box highlights the class Ill peroxidase StesPrx01, which might have other functions (biosynthesis of phenylpropanoids; see main

text).

repair pathway (Supplementary Fig. S3), namely DDB2, XPC,
XPB, TFIIH2, XPF and ERCCI1 (global genome repair, GGR);
and CSB, UVSSA, POLR2, XPG, and RPA (transcription-
coupled repair, TCR). This pathway is responsible for the
removal of various types of DNA damage caused by UVR
exposure and other damaging agents (Kimura and Sakaguchi,
2006). Most genes of the eukaryote base excision repair and
mismatch repair pathways, which are known to remove dam-
aged bases and erroneous base mutations that arise during DNA
replication and recombination (Kimura and Sakaguchi, 2006),
did not show significant regulation (Supplementary Figs S4,
S5). There were also pronounced reactions related to protein
degradation and folding, especially factors with chaperone-like
functions. This includes homologs of the mitochondrial GrpE2
protein and ABC transporter 1 (Cardazzo et al., 1998), both
of which were shown to be triggered by UV-B in plants and
algae such as A. thaliana (Hu et al., 2012) and Volvox carteri
(Razeghi and Kianianmomeni, 2019), respectively. A specific
search for differentially expressed heat shock protein (HSP)
sequences in the Serritaenia transcriptome revealed 11 upregu-
lated HSP genes (Supplementary Table S4), all predicted to act
as molecular chaperones assisting in a wide range of folding
processes of proteins (Mayer and Bukau, 2005; Qiu ef al., 2006;
Guo et al., 2020). Beneficial effects of HSPs under UV-B stress
were reported for plants and algae, such as A. thaliana (Swindell
et al.,2007), the marine diatom Odontella sinensis (DShler et al.,
1995), and the cyanobacterium Synechocystis sp. (Balogi et al.,
2008). Furthermore, chloroplastic factors associated with UVR
responses in higher plants were upregulated in Serritaenia (Fig.
3A, right). Two Chl a/b-binding proteins (ELIP, early light-
induced protein; and SEP2, stress enhanced protein 2), for ex-
ample, accumulate upon UV-B exposure in vascular plants and
prevent excess accumulation of free chlorophyll, thereby pro-
tecting against photo-oxidative damage (Heddad and Adamska,
2000; Hutin ef al., 2003; Savenstrand ef al., 2004). These factors
have also been found in chlorophyte green algae such as I/
carteri (Razeghi and Kianianmomeni, 2019) and C. reinhardtii
(Allorent and Petroutsos, 2017), and might represent a uni-
versal mechanism in the green chloroplasts of the Viridiplantae
at least. Similar to these other organisms, Serritaenia has sev-
eral ELIP genes, most of which, however, were not upregu-
lated. All in all, these results reveal that the zygnematophyte
Serritaenia has a UVR -responsive toolkit dedicated to repair

and protection that in many ways reflects that of higher plants.
The GO terms enriched in the downregulated genes included
those for signaling, chloroplast restructuring, phosphor-related
processes, sugar metabolism, and cell cycle-related processes
(Supplementary Fig. S6), suggesting that Serritaenia under
UVR stress slows down some energy-costly processes such as
cell growth and multiplication.

A surprising finding was upregulated components of the
GO term ‘Jasmonic acid mediated signaling pathway’. In vas-
cular plants, the hormone jasmonic acid (JA) functions in de-
fense, growth, and stress response, and in A. thaliana JA levels
were shown to increase upon UV-B exposure (Mackerness
et al., 1999). So far, JA has not been reported to be involved
in UVR- or stress-related signaling cascades in streptophyte
green algae. In fact, recent studies suggest that JA signaling
evolved in land plants and is absent in algal relatives (Rieseberg
et al., 2022). Overall, the pattern of detected proteins involved
in JA synthesis, transport, and perception is patchy in strepto-
phyte algae (Holzinger and Becker, 2015; S. Wang et al., 2020).
In Serritaenia, we found homologs of digalactosyldiacylglycerol
synthase 1 (DGD1; chloroplast), OPDA reductases (OPR2 and
OPR3, chloroplast), ‘Novel Interactor of JAZ’ (NINJA; nu-
cleus),and NAC transcription factors (NAC019, NACO055, and
NACO072; nuclear) to be upregulated. However, given the lack
of other important JA-related factors (Supplementary Tables
S5, S6), the functions of these proteins in Serritaenia and other
zygnematophytes remain elusive.

Responses of the photosynthetic machinery and anti-
ROS factors

We also analyzed the regulation of genes associated with the
photosynthetic machinery in Serritaenia in response to UVR
(Fig. 3B; Supplementary Table S7). Almost all components of
PSI and PSII, light-harvesting complexes, the cytochrome bgf
complex, and photosynthetic electron transport were down-
regulated or not differentially expressed. A marked exception
were the four genes encoding PsbA (D1), PsbD (D2), PsbC
(cp43), and PsbB (cp47) in the reaction center of PSII, which
were upregulated under the UVR treatment. It is known from
plants that UV-B radiation or strong PAR exposure leads to
the inactivation of PSII, by damaging first the oxygen-evolving
complex followed by the reaction center (Ohnishi ef al., 2005).
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The damaged proteins are then replaced by de novo synthesis
(Hakala et al., 2005). This appears to be a quite common ef-
fect in photosynthetic organisms, as even cyanobacteria lose
D1 and D2 after the exposure to moderate levels of UV-B
(Wu et al., 2011). Hence, the upregulation of D1, D2, cp43,
and cp47 points to a specific degradation of the PSII reaction
center of Serritaenia, which is compensated by the de novo syn-
thesis of the damaged components. By contrast, PSI seems not
to be affected by UVR in that way, which is in accordance
with observations on plants (Iwanzik et al., 1983; Kulandaivelu
and Noorudeen, 1983). However, two important components
of the cyclic electron flow at PSI, PGR5 and PGR 5-like, were
upregulated. As in higher plants, the cyclic electron transport
in Serritaenia might eliminate excess electrons (potentially
accumulating due to the damage on PSII), and thereby reduce
chlorophyll excitation and oxidative damage. Taken together,
under the UVR treatment, the photosynthetic machinery of
Serritaenia seems to be specifically damaged by UV-B at the
reaction center of PSII, which might be compensated by the
replacement of broken proteins and cyclic electron flow. Other
factors known to be involved in photoprotective quenching in
algae and land plants, for example CONSTANS, LHCSR, and
PSBS (Sudrez-Lopez et al., 2001; Serrano-Bueno et al., 2009;
Alboresi ef al.,2010; Furukawa et al., 2019;Tokutsu et al.,2019),
were not upregulated, indicating that the chloroplast experi-
ences specific damage rather than typical light stress.

Elevated PAR and harmful wavebands such as UV-B are
known to initiate the formation of ROS within the cell. ROS
can play a regulatory role in gene expression as a response to
UV-B radiation (Green and Fluhr, 1995; Surplus et al., 1998;
Mackerness ef al., 1999), but also cause cell damage by the deg-
radation of various biomolecules (Czarnocka and Karpifiski,
2018).To prevent high concentrations of ROS, organisms con-
tain a plethora of enzymes from different families which elim-
inate the different forms of reactive oxygen. In the Serritacnia
transcriptome, we found homologs of all of these typical ROS
scavengers and predicted their cellular localization (Fig. 3C;
Supplementary Table S8). Most of the 27 candidates were
downregulated or not differentially expressed, including fac-
tors such as ascorbate peroxidases (APXs), glutathione reduc-
tases, and a glutathione peroxidase, which in A. thaliana were
found upregulated under UVR stress (Ulm et al., 2004). It
appears that glutathione-associated ROS scavenging does
not play a marked role in Serritaenia under the UVR treat-
ment. However, the downregulation of superoxide dismutases
(SODs), dehydroascorbate reductases (DHARs), and APXs
in the algae reflects the situation of UVR-treated A. thaliana
(Ulm et al., 2004). Only two putative ROS scavengers were
highly expressed and upregulated under the UVR treatment,
namely a cytoplasmic catalase and an extracellular class I1I per-
oxidase (StesPrx01) (Fig. 3C, StesPrx01 highlighted by a gray
box). While catalases have a clear function as ROS-scavenging
enzymes catalyzing the dismutation of hydrogen peroxide
(H,O,) into water (H,O) and oxygen (O,), class III peroxidases

can have various biological roles, including the biosynthesis
of polyphenols such as lignin in the apoplast. Although lignin
is unlikely to occur in zygnematophytes, class III peroxidases
might have biosynthetic functions in Serritaenia as discussed
below. Both the specific reaction of the photosynthetic ma-
chinery and the limited upregulation of typical ROS scaven-
gers indicate that Serritaenia under UVR' treatment was not in
a stage of broad physiological stress.

How does Serritaenia sense light and UV radiation?

We identified components of all major plant photoreceptor
systems in Serritaenia, including the red-light phytochrome
(PHY) system, the blue-light phototropin (PHOT), cryp-
tochrome (CRY), and ZEITLUPE (ZTL) systems, and the
UV RESISTANCE LOCUS 8 (UVRS) system (Fig. 4A;
Supplementary Table S9). With the exception of the photo-
tropins, components of all photoreceptor systems showed
expressional changes upon UV-B treatment (Fig. 4A, right).
The interpretation of their functions in microalgae remains
difficult, as several molecular components have mainly been
studied in higher plants and are associated with processes such
as germination and flowering (Kevei ef al., 2006; Paik and Hugq,
2019). However, we know that the photoprotective reaction in
Serritaenia, namely the synthesis of its extracellular sunscreen
pigment, can be specifically triggered by UV-B radiation
(Busch and Hess, 2021). Our de novo transcriptome of Serritaenia
contained homologs of all components of the UVRS photore-
ceptor system (Fig. 4A), which is known to perceive UV-B in
land plants (Rizzini ef al.,2011) and might have a similar func-
tion in the distantly related chlorophyte algae (Tilbrook et al.,
2016). The UVRS8 homolog of Serritaenia showed a 65% se-
quence identity with the UVRS receptor of A. thaliana, and its
amino acid sequence contained all sequence motifs necessary
for UV-B absorption (tryptophan residues at W233,W285, and
W337) and interaction with regulatory factors [a valine—pro-
line (VP) domain at the C-terminus] (Lau et al., 2019) (Fig.
4B). Furthermore, the in silico predicted tertiary structure of the
UVRS8 homolog of Serritaenia is similar to the crystal structure
of the UVRS of A. thaliana (Wu et al., 2012) (Fig. 4C), and its
closest hit in the RCSB protein data bank (TM score 0.976) was
the cryo-EM structure of the UV-B-activated UVRS8 in com-
plex with CONSTITUTIVE PHOTOMORPHOGENIC 1
(COP1) from A. thaliana (entry 7VGG). While the putative
UVRS receptor of Serritaenia did not show significant expres-
sional changes under the UVR treatment, two components of
the UVRS signaling network, COP1 and REPRESSOR OF
UV-B PHOTOMORPHOGENESIS (RUP), were clearly
upregulated (Fig. 4D). In plants, UVRS8 dimers split into
monomers upon UV-B exposure, which then interact with
the E3 ubiquitin ligase COP1. This reduces the ubiquitin-
mediated breakdown of the transcription factor ELONGATED
HYPOCOTYL 5 (HY5) by COP1, and thus mediates the
transcription of UV-B-responsive genes responsible for UV-B
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Fig. 4. Presence and regulation of putative photoreceptor systems in S. testaceovaginata, with details on UVR8. (A) Schematic illustration of detected
photoreceptors (left) and gene regulation of these photoreceptor systems including associated proteins (right). Regulation under the UVR treatment
versus the control is indicated by colored arrowheads: red (upregulated, log2FC >1, adjusted P-value <0.001), blue (downregulated, log2FC <1,
adjusted P-value <0.001), white (no significant regulation, log2FC -1 to 1, adjusted P-value <0.001). Numbers in parentheses below the arrowheads
indicate the number of annotated ORFs (blastp, e-value cut-off of 1 x 107'%. PHY, phytochromes; PIFs, PHYTOCHROME INTERACTING FACTORS;
PHOT, phototropins; NEO, neochromes; NPH3, NONPHOTOTROPIC HYPOCOTYL 3; CRY, cryptochromes; CRY-DASH, Drosophila, Arabidopsis,
Synechocystis, human (DASH)-type cryptochromes; aCRY, animal-like cryptochromes; CIBs, CRYPTOCHROME2-INTERACTING-BASIC-HELIX-LOOP-
HELIX proteins; BICs, blue-light inhibitors of cryptochromes; COP1, CONSTITUTIVE PHOTOMORPHOGENIC 1; SPA, SUPPRESSOR OF PHYA-105;
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HY5, ELONGATED HYPOCOTYL 5; HYH, HY5-HOMOLOG; ZTL, ZEITLUPE; LKP2, LOV KELCH PROTEIN 2; CDF, CYCLIC DOF FACTORS; FKF1,
FLAVIN-BINDING, KELCH REPEAT, F-BOX 1; UVR8, UV-RESISTANCE LOCUS 8; RUP, REPRESSOR OF UV-B PHOTOMORPHOGENESIS; BEST,
BRI1(BRASSINOSTEROID INSENSITIVE 1)-EMS (EXTRA MICROSPOROCYTES)-SUPRESSOR 1; BIM1, BES1-INTERACTING MYC-LIKE 1; WRKY36,
WRKY DNA-BINDING PROTEIN 36. (B) Scheme of the UVR8 photoreceptor from S. testaceovaginata with the three conserved tryptophan motifs (W233,
W285, and W337) responsible for UV-B sensing and the VP domain responsible for the interaction with COP and RUP. (C) In silico structure prediction

of the UVR8 photoreceptor from S. testaceovaginata next to the resolved crystal structure of the UVR8 from A. thaliana (pdb entry 4DNU) (Wu et al.,
2012). (D) Scheme of the UVR8 signaling cascade triggered by UV-B radiation. Components upregulated under the UVR treatment are marked by red

arrowheads.

acclimation (Oravecz et al., 2006; Tilbrook et al., 2013; Liang
et al., 2019). RUP, in contrast, maintains the photoequilibrium
when the UVRS dimer/monomer cycling rate increases by
facilitating the re-dimerization of UVRS, and thereby reduces
again the transcription of UV-B-responsive genes (Liao ef al.,
2020). This negative feedback loop can be understood as a
counterbalancing reaction to UV-B-induced signaling. The
existence of a UVRS8 homolog with conserved functional sites
and the pronounced regulation of COP1 and RUP as part of
the UVRS8 signaling network suggest that the zygnematophyte
Serritaenia has a functional UVRS system that may be a central
component of its cellular reaction to harmful wavebands.

Specialized metabolite pathways and their reaction to
UV radiation

One of the most interesting questions is the metabolic origin of
the extracellular sunscreen pigment of Serritaenia. A similar but
probably analogous phenomenon can be found in the world
of prokaryotes. Cyanobacteria produce sheath pigments such
as scytonemin and gloeocapsin, which are formed and depos-
ited in the extracellular matrix (Proteau et al., 1993; Storme
et al.,2015).The biosynthesis of the well-studied scytonemin is
based on the cyanobacterial ‘Scytonemin gene cluster’ (Soule
et al., 2007, 2009; Bennett and Soule, 2022). In Serritaenia, we
did not detect most of these scytonemin-related genes, except
potential homologs of trpA-E, aroB, and aroG, and a tyrosinase
(Supplementary Table S10). Only one of the latter (trpE) was
upregulated under the UVR' treatment. As expected due to
the vast evolutionary distance of streptophyte green algae and
cyanobacteria, and their fundamental differences in cellular or-
ganization, it seems unlikely that the sunscreen compound of
Serritaenia is related to scytonemin biosynthesis. Another well-
known group of sun screening compounds of algae are the col-
orless mycosporines and mycosporine-like amino acids (MAAs).
They have been found in phylogenetically diverse phototrophs,
including cyanobacteria, green algae, rhodophytes, dinoflagel-
lates, and diatoms (Garcia-Pichel and Castenholz, 1993; Karsten
et al., 1998; Rezanka et al., 2004; Hotter ef al., 2018; Hartmann
et al., 2020). However, so far, there is no evidence of these
compounds in zygnematophytes. We screened the Serritaenia
transcriptome for MAA biosynthesis genes known from cy-
anobacteria (Balskus and Walsh, 2010; Singh et al., 2020), and
found potential homologs of Ava3855, Ava3857, Ava3859, and
NpR5599. Except Ava3859, these genes were not upregulated

under UVR treatment (Supplementary Table S11), and other
relevant factors of MAA biosynthesis (Ava3856, Ava3858,
NpR5597, and NpR5598) were not detected at all. It might
well be that the Zygnematophyceae do not possess a functional
MAA biosynthesis pathway.

In the world of higher plants, most UVR-screening com-
pounds have an aromatic origin and are derived from the
shikimate pathway (Ferreyra et al., 2021; Davies et al., 2022).
Zygnematophytes have also been shown to contain phenolic
compounds, some of which are enriched under enhanced
UVR and/or PAR levels (Aigner et al., 2013; Pichrtova et al.,
2013; Holzinger et al., 2018). However, the biosynthesis of
such zygnematophycean compounds, including the colorful
vacuolar gallic acid derivates (Remias et al., 2012b; Newsome
and van Breemen, 2012), remains unknown. Interestingly, the
GO term ‘Cellular aromatic compound metabolic process’ was
enriched in Serritaenia under UV-B treatment (Fig. 3A). Hence,
we studied the presence and regulation of candidate sequences
for enzymes from diverse plant specialized metabolite pathways
in Serritaenia upon UV-B radiation, with a focus on aromatic
compounds.The shikimate pathway was fully recovered and the
subsequent synthesis of aromatic amino acids (phenylalanine
and tyrosine) from chorismic acid was strongly upregulated
(Fig. 5A; Supplementary Table S12), indicating an enhanced
production of specialized metabolites derived from these ar-
omatic amino acids. Aromatic amino acids are the primary
building blocks for the phenylpropanoid pathway, which also
leads to flavonoids such as anthocyanins, isoflavonoids, sphag-
norubins, and auronidins, and to lignins (Vanholme ef al., 2019;
Davies et al., 2022). The colorful sphagnorubins and auroni-
dins, in particular, are known from non-vascular plants, namely
mosses (sphagnorubins) and liverworts (auronidins), and typi-
cally accumulate in the cell wall (Rudolph and Vowinkel, 1969;
Rudolph et al., 1981; Berland et al., 2019). However, there were
few components of the canonical plant polyphenolic metab-
olite pathways leading to flavonoids and anthocyanins in the
transcriptome, and these pathways are probably not functional
in Serritaenia (Fig. 5A). The few genes putatively assigned to
these pathways were all downregulated and may, in fact, also
not be flavonoid related. In our protein phylogenies, the pu-
tative CHS homologs branch clearly outside the polyketide
synthases from land plants that are known to be involved in
phenylpropanoid biosynthesis (e.g. chalcone synthase, biben-
zyl synthase, and stilbene synthase). Instead, one of the two
candidate genes is nested in oxoalkylresorcinol synthases of
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Fig. 5. Regulation of specialized metabolite pathways and details on ABC transporters and class Ill peroxidases. (A) Scheme of the shikimate pathway
and downstream specialized metabolite pathways. Presence, absence, and regulation under the UVR treatment are indicated by the design and color
of arrows (see key). The numbers in parentheses indicate the number of detected versus total knumbers of the respective pathway as a measure of
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completeness. PAL, phenylalanine ammonia-lyase; PTAL, phenylalanine/tyrosine ammonia-lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate-CoA
ligase; CCR, cinnamoyl-CoA reductase; C3H, 4-coumarate 3-hydroxylase; CAD, cinnamyl-alcohol dehydrogenase; CSE, caffeoylshikimate esterase-
like; COMT, catechol-O-methyltransferase; F&H, ferulate-5-hydroxylase; HCT, hydroxycinnamoyl CoA:shikimate/quinate hydroxycinnamoyltransferase;
CCoAOMT, caffeoyl-CoA O-methyltransferase; ACoS, acyl-CoA synthetase; PRX I, class Ill peroxidase. Scale bars: 10 um. (B) Top 10 most highly
expressed ABC transporters under the UVR treatment with their expression levels in transcripts per million (TPM). Red and blue arrowheads indicate
upregulation (log2FC >1, adjusted P-value <0.001) and downregulation (log2FC <1, adjusted P-value <0.001), respectively, with the log2FC of the
respective gene. (C) Scheme of the highly upregulated class Ill peroxidase StesPrx01 (log2FC 10.7) depicting the signal peptide (SP), heme-binding
site, active site, substrate-binding site, and calcium-binding site. (D) Section of the phylogenetic tree of class Il peroxidases with genes of the genera
Serritaenia, Mougeotiopsis, and Mesotaenium (the full tree is given in Supplementary Fig. S16). Ultrafast bootstrap values are shown at the branches,
except when 100% (bold branches). Asterisks highlight potential gene duplication events in the genus Serritaenia, and colored arrowheads indicate
upregulation (log2FC >1) and downregulation (log2FC <1) under the UVR treatment with the log2FC.

bryophytes (Supplementary Fig. S7). The other one, which was
strongly upregulated during UVR treatment, did not branch
with anything known. The Serritacnia gene annotated as CHI
branches in the clade of fatty acid-binding protein b (FAPD),
and not with the flavonoid enzyme clades of CHI and CHI-
Like (Supplementary Fig. S8). Overall, the candidates anno-
tated using KEGG as CHS, CHI, and UDP-glycosyltransferases
(UGT) are not closely related to known genes with defined
functions in flavonoid synthesis (Fig. 5A; Supplementary Figs
S7-S9). Nevertheless, multiple flavonoid compounds were
detected in the model zygnematophyte Penium margaritaceum
and, as already suggested (Jiao ef al., 2020), this could be based
on cryptic activities of known enzymes, novel enzymes, or even
alternative biosynthetic routes such as that discovered for fungi
that produce flavonoids (Zhang et al., 2023). The synthesis of
betalains from tyrosine branching of the shikimate pathway
appears to be absent in Serritaenia, since the genes mapped to
this pathway did not branch close to betalain-related genes of
land plants (Supplementary Fig. S10). This is not surprising as
betalains are only known from a single order of land plants
(Caryophyllales) and some fungi (Stintzing and Schliemann,
2007; Babos ef al.,2011; Timoneda ef al., 2019).

However, Serritaenia expressed a number of genes that may
encode enzymes that in land plants function in the core phenyl-
propanoid pathway and lignin biosynthesis. In agreement with
previous studies (de Vries et al., 2021; Rieseberg et al., 2022;
Dadras et al., 2023b), these land plant-based pathways are only
fragmentarily recovered in streptophyte green algae, and some
important enzymes such as phenylalanine ammonia-lyase (PAL),
cinnamate 4-hydroxylase (C4H), 4-coumarate 3-hydroxylase
(C3H), and ferulate-5-hydroxylase (F5H) could not be detected
in the Serritaenia transcriptome. The lack of these enzymes in
zygnematophytes (e.g. Penium and Zygnema) is known, but it is
uncertain whether these algae perform the metabolic steps in
question with different enzymes or evolved alternative path-
ways for phenylpropanoid synthesis. Overall, there is compel-
ling evidence that zygnematophytes should be able to produce
such compounds, as indicated by reports of the occurrence
of flavonoids and phenylpropanoids in a wide range of green
algae including chlorophytes (Aigner et al., 2013; Pichrtova
et al., 2013; Goiris et al., 2014; Jiao et al., 2020). Specifically,
we detected genes annotated as caffeoylshikimate esterase-like

(CSE), hydroxylcinnamoyl-CoA:shikimate hydroxycinnamoyl
transferase (HCT), cinnamyl-alcohol dehydrogenase (CAD),
cinnamoyl-CoA reductase (CCR), 4-coumarate-CoA ligase
(4CL), catechol-O-methyltransferase (COMT), caffeoyl-CoA
O-methyltransferase (CCoAOMT), and class III peroxidases,
most of which show significant regulation in response to
UVR (Fig. 5A). For some candidates (e.g. CSE and HCT),
the true activity remains unknown, as in our gene phylogenies
they occupy distant positions to characterized plant enzymes
(Supplementary Figs S11, S12), or are in a clade that also
contains land plant genes with different activities (CAD and
CCR; Supplementary Fig. S13; see also (de Vries ef al. (2021).
Furthermore,some core monolignol biosynthetic enzymes have
related homologs that are involved in the primary metabolism,
which makes functional annotation in phylogenetically distant
organisms difficult (Weng and Chapple, 2010).Yet, the upregu-
lated acetyltransferase (HCT-annotated) and methyltransferase
(CCoAOMT-annotated; Supplementary Fig. S14) sequences
might encode proteins that act on hydroxycinnamic acids and
thus are part of the phenylpropanoid pathway. The 4CL ho-
molog branches with credible reference genes of other strep-
tophytes as well (Supplementary Fig. S15). The CCoAOMT
homologs, in particular, are interesting candidates as they show
similarities in functional residues for ligand binding with plant
enzymes and originated at the base of the Phragmoplastophyta
(including Charophyceae, Coleochaetophyceae, Zygnematophyceae,
and embryophytes) (de Vries ef al., 2021). We still require both
further transcriptomic profiling of zygnematophyte represent-
atives and experimental studies on such protein candidates to
shed light on their functions in unicellular green algae. Certainly,
we cannot exclude that the enzymes encoded by some of the
weakly annotated metabolic genes of Serritaenia are involved
in other, as yet unknown pathways, which are not present in
higher plants and, hence, not represented in current databases.
These major discrepancies on the level of specialized metabo-
lism clearly illustrate the deep evolutionary split between land
plants and their closest algal relatives.

Oxidative enzymes in the extracellular space

In plants, the products of the lignin-related phenylpro-
panoid  pathway—the lignin precursors (monolignols,
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monolignol-ferulate ester, and flavone tricin)—are synthe-
sized in the cytoplasm and transported to the apoplast (Barros
et al., 2015). Several mechanisms of transport, namely passive
diffusion, active transport via G-family ATP-binding cassette
(ABC) transporters, and secretion via vesicle-membrane fusion
(especially for glucosylated monolignols), have been debated,
but the relative contribution of these routes in the secretion of
phenylpropanoids is still poorly understood (Barros et al., 2015;
Perkins et al., 2019; Xin and Herburger, 2021). The ABCG
transporters form a large, gene-rich family and transport var-
ious substrates, especially hydrophobic organic compounds
(e.g. cutin monomers, lipids, wax components, and fatty acids),
with varying specificity (Grife and Schmitt, 2021; Xin and
Herburger, 2021). In streptophyte algae, such transporters
are underexplored and uncharacterized, and their substrates
might differ from those in land plants. Yet, these proteins may
have important roles in the secretion of known and unknown
algal specialized metabolites. We screened the transcriptome
of Serritaenia for ABC transporters and found 28 genes that
were upregulated under the UVR treatment. Two candidates,
both annotated as ABCG22, showed extreme upregulation and
expression (Fig. 5B; Supplementary Table S13). Interestingly,
transporters of this family have been suspected to be in-
volved in lignification in A. thaliana, as they were co-expressed
with AtABCG29, which evidently transports monolignols
(Alejandro et al., 2012), and other lignification-associated fac-
tors (Takeuchi ef al., 2018a). In fact, several homologs of the
ABCG transporters from A. thaliana have been associated with
lignification and the transport of phenylpropanoids on the
basis of expression patterns, for example ABCG30, ABCG33,
ABCG34, and ABCG37 (Takeuchi et al., 2018b). However,
experimental evidence for most plant ABCG transporters is
still lacking and the evolutionary significance of their diver-
sity is unknown. As already proposed by plant biologists (Xin
and Herburger, 2021), the study of algal ABC transporters
might be an informative, complementing approach. The two
ABCG22 homologs found to be strongly expressed during
UVR-induced pigment production in Serritaenia might be in-
teresting candidates.

The final part of the lignin-related phenylpropanoid
pathway in plants is the oxidative polymerization of lignin
precursors in the apoplast. This reaction is performed by ex-
tracellular enzymes such as heme-containing peroxidases of
class III (Marjamaa et al., 2009; Fagerstedt ef al., 2010). These
enzymes are secreted into the extracellular space and catalyze
the reduction of H,O, by transferring electrons from various
donor molecules, such as phenolic compounds, lignin precur-
sors, auxin, or secondary metabolites, and can also function
as generators of ROS (Weng and Chapple, 2010; Shigeto and
Tsutsumi, 2016). The KEGG annotations of the Serritaenia
transcriptome revealed the presence of a class III peroxidase
(Fig. 5A), which turned out to be the gene with the highest
upregulation (log2FC=10.7) in the transcriptome. The hypo-
thetical protein of 340 amino acids contains a signal peptide

(likelihood 0.99) and is predicted to be localized in the extra-
cellular space (probability 0.8) according to SignalP 6.0 (Teufel
et al.,2022) and DeepLoc 2.0 (Thumuluri et al., 2022), respec-
tively. Blast annotations with the RedOxiBase dataset (Savelli
et al.,2019) confirmed its affinity for plant class III peroxidases;
the three closest hits from A. thaliana were AtPrx30, AtPrx53,
and AtPrx54. Despite the relatively low sequence identity with
plant homologs (<50%), the Serritacnia peroxidase contains res-
idues predicted to bind heme, calcium ions, and the substrate
ferulic acid (Fig. 5C). We also performed an in silico structure
prediction with I-TASSER (Yang and Zhang, 2015), which
confirmed the heme- and calcium-binding sites (C-scores 0.77
and 0.03, respectively). The most similar hits from the RCSB
protein data bank were a highly glycosylated peroxidase from
the royal palm tree Roystonea regia [RPTP (3HDL); TM score
0.865] and peroxidase A2 from A. thaliana [AtPrx53 (1PA2);
TM score 0.862]. The RPTP is an extracellular enzyme with
superior stability (Zamorano et al., 2008), which showed high
activity on ferulic acid, a central phenolic compound in the
phenylpropanoid pathway (Sakharov et al., 2001, 2002). The
peroxidase A2 (AtPrx53) from A. thaliana was suggested to
have a role in lignification, as this protein was highly expressed
in lignifying cells and tissues, and the substrate-binding site
was predicted to bind and oxidize lignin precursors, especially
p-coumaroyl and coniferyl alcohols (Ostergaard et al., 2000).
However, class III peroxidases are involved in various biolog-
ical processes and have a broad substrate spectrum. Hence, it is
not possible to assign specific functions on the basis of annota-
tions or sequence homology.

Class IIT peroxidases have already been detected in strepto-
phyte green algae (Buschmann and Holzinger, 2020; Mbadinga
Mbadinga et al., 2020), but the algal homologs are still vastly
underexplored and uncharacterized. We collected peroxidase
sequences from 23 streptophyte algae (including 15 zygne-
matophytes) and performed phylogenetic inferences to assess
the diversity of these proteins and to understand the evolu-
tion of the peroxidases of Serritaenia (Fig. 5D). Even though the
deeper branches are not well resolved due to limited phyloge-
netic signal, we observed a number of algal peroxidase clades
with pronounced diversification of these proteins in several
taxa, especially in the genera Chaetosphaeridium and Coleochaete
(Supplementary Fig. S16). The facts that (i) the algal clades are
nested within the embryophyte peroxidases and (ii) the per-
oxidases of a single algal species occur at different positions in
the tree, suggest that a certain degree of diversification hap-
pened well before the evolution of land plants. The class 11
peroxidases of the zygnematophyte order Serritaeniales form
a single well-supported clade, reflecting the phylogeny of the
organisms (Hess et al., 2022). We added information of three
other Serritaenia strains (two sequenced in this study), which
represent the phylogenetic diversity of the genus. The perox-
idases of the Serritaenia strains were closely related and stem
from a single ancestor. According to our phylogeny, there were
up to four potential gene duplication events, some of which
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may have occurred before the diversification of the Serritacnia
species. However, only one of the four homologs (StesPrx01)
found in S. festaceovaginata displayed massive upregulation and
pronounced expression upon UVR exposure, indicating that
the class III peroxidases differ in function and/or biological
relevance (Fig. 5D). This is the first report of UVR-related
upregulation of a secreted class III peroxidase in a streptophyte
alga, similar to the reaction of vascular plants such as Nicotiana
tabacum (Racz et al., 2018), Helianthus annuus (Yannarelli et al.,
2006), and A. thaliana (Rao et al., 1996). This finding, along
with some highly upregulated multicopper oxidase domain-
containing proteins (Supplementary Table S14), points to
increased oxidative reactions in the cell wall and/or mucilage of
Serritaenia when exposed to UVR. In land plants, such enzymes
perform various important roles, including ROS scavenging,
signaling, and the polymerization of extracellular phenolics
(McCaig et al., 2005; Shigeto and Tsutsumi, 2016). Just recently,
the multicopper oxidase-like enzymes of the SKS family have
been shown to be required for coumaroylation of sporopollenin
in pollen (Xu ef al.,2023). While phenolic polymers, referred to
as ‘lignin-like substances’, have been detected in other strepto-
phyte green algae (Coleochaete and Nitella; Delwiche et al., 1989;
Ligrone et al., 2008), there is currently no evidence for them
in the zygnematophytes. Given the pronounced regulation of
phenylpropanoid-related enzymes, ABCG transporters, and ox-
idative enzymes predicted in the extracellular environment, it
might well be that polymeric phenylpropanoids enriched in
the algal mucilage fulfill the remarkable sunscreen function in
Serritaenia. The connection between extracellular (cuticular)
phenolics and the ‘pre-lignin’ pathway was already established
for bryophytes (Renault et al.,2017).With this study, we provide
expression data and sequence information of UVR-responsive
candidate genes, that will enable us to experimentally test the
role of such a ‘pre-lignin’ pathway and its products in the closest
algal relatives of land plants.

Conclusion

With comparative transcriptomics, this study sheds some light
on the cellular changes of a non-model zygnematophyte with
a unique sunscreen mechanism. Overall, the data suggest that
fundamental processes such as photosynthesis and light/UVR
perception are relatively conserved and react similarly to what
is known from land plants. However, the plant-based special-
ized metabolism was only fragmentarily recovered, which
reflects the large evolutionary split between plants and zyg-
nematophytes, and points to a major lack of knowledge con-
cerning algal metabolic processes. Two important specialized
metabolite pathways (flavonoid biosynthesis, including fla-
vones and flavonols, or anthocyanins), which in plants have sig-
nificant roles in UVR protection, do not appear to play a role
in Serritaenia’s reaction to UV-B. Instead, we discovered marked
regulation of enzymes mapped on the shikimate and phenyl-
propanoid pathway, potential cross-membrane transporters of

phenolics, and oxidative enzymes targeted to the extracellular
space. Plant homologs of the latter are known to act on ex-
tracellular phenolics to form polymeric lignin in the apoplast,
which is mainly associated with the mechanical properties of
plant tissues. However, given the substrate promiscuity of class
III peroxidases and the extent of uncharacterized homologs,
these enzymes might produce many more extracellular com-
pounds of varying function in plants and algae. The extracel-
lular pigment of Serritaenia is surprisingly resistant to solvents
and hydrolysis, and, despite its different function, might share a
common origin with plant lignins.
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Fig. S1 RNA samples used for sequencing. RNA denaturing gel of isolated RNA from Serritaenia
testaceovaginata under condition 1 (NK) and condition 2 (UV) in triplicates.
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Fig. S2 UpSet plot of knumber annotations. UpSet plot showing the number of ORFs (intersection
size) annotated by the indicated annotation tools and databases and their combinations.
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Fig. S3 KEGG pathway nucleotide excision repair. Presence and regulation in S. testaceovaginata are

indicated by the color of the boxes.
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Fig. S4 KEGG pathway base excision repair. Presence and regulation in S. testaceovaginata are
indicated by the color of the boxes.
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by the color of the boxes.

Fig. S5 KEGG pathway mismatch repair. Presence and regulation in S. testaceovaginata are indicated
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Fig. S6 GO terms enriched in downregulated genes.
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Fig. S7 Phylogenetic tree of CHS.
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Fig. S8 Phylogenetic tree of CHALCONE ISOMERASE (CHI) and CHI-Like (CHIL).
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Fig. S9 Phylogenetic tree of UGT.
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Fig. $10 Phylogenetic tree of ligB genes.
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Fig. S11 Phylogenetic tree of caffeoylshikimate esterases.

MONOACYLGLYCEROL LIPASES (MAGLS)/ESTERASE FAMILY
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Fig. S12 Phylogenetic tree of BAHD acyltransferases.
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Fig. S13 Phylogenetic tree of NAD(P)H-dependent reductases (CAD and CCR-like).
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Fig. S14 Phylogenetic tree of O-methyltransferases.
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4-COUMAROYL COA: LIGASE

Fig. S15 Phylogenetic tree of 4-Coumaroyl CoA: ligase (4CL).
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Fig. S16 Phylogenetic tree of class Ill peroxidases (PRXIII) from streptophyte representatives (algae,
bryophytes, ferns and flowering plants). Sequences of streptophyte algae are highlighted in red and ultrafast
bootstrap values are shown at the branches. Scale bar = number of expected substitutions per site.
annotation stems from RedOxiBase (samples were wrongly annotated in the 1kp dataset and might originate

from Zygnema sp.)
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Table S1 Recipe of algal culture medium KW. One milliliter of each stock solution is added to one
liter of demineralized water. The pH should be around 6.

Components Stock solution
HEPES 238.1 g/l dH,O
KNOs 100 g/ 1 dH2O
MgS0O4 x 7 H,O 20 g/l dH,O
NaH,PO4 x H,O 0.69 g/50 ml
Na,HPO, x 2 H,O 0.89 g /50 ml
CaCl, x 2 H,O 14.7 g/l dH,O
P-II Metals stock solution
EDTA (Titriplex III) 3.00 g/l dH20
H;BOs3 1.14 g/l dH20
MnCl x 4 H,O 144.00 mg/l dH20
ZnSO04 x 7 H,0 21.00 mg/1 dH20
CoCly x 6 H,O 4.00 mg/1 dH20
Fe-EDTA stock solution
EDTA (Titriplex II) 5.22 g/1dH20
FeSO4 x 7 H,0O 4.98 g/ 1dH20
IN KOH 54.00 ml /1dH20
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Table S2 Streptophyte green algal transcriptomes and genomes screened for class Il peroxidases.

Transcriptome Aul

Delwiche, 2016

Strain Data type Source of data Data availability

Penium Transcriptome 1kp project https://www.onekp.com/public_data.html

margaritaceum AEKF

Chaetosphaeridium Transcriptome lkp project https://www.onekp.com/public_data.html

globosum DRGY

Netrium digitus FFGR Transcriptome lkp project https://www.onekp.com/public_data.html

Klebsormidium Transcriptome 1kp project https://www.onekp.com/public_data.html

subtile FQLP

Spirogyra sp. HAOX Transcriptome 1kp project https://www.onekp.com/public_data.html

Cylindrocystis Transcriptome lkp project https://www.onekp.com/public_data.html

cushleckae JOJQ

Spirotaenia Transcriptome lkp project https://www.onekp.com/public_data.html

minuta NNHQ

Coleochaete Transcriptome 1kp project https://www.onekp.com/public_data.html

irregularis QPDY

Cosmarium Transcriptome 1kp project https://www.onekp.com/public_data.html

ochthodes STKJ

Coleochaete Transcriptome 1kp project https://www.onekp.com/public_data.html

scutata VQBJ

Mesotaenium Transcriptome 1kp project https://www.onekp.com/public_data.html

endlicherianum WDCW

Roya obtusa XRTZ Transcriptome 1kp project https://www.onekp.com/public_data.html

Cylindrocystis Transcriptome lkp project https://www.onekp.com/public_data.html

brebissonii YOXI

Mougeotia sp. ZRMT Transcriptome lkp project https://www.onekp.com/public_data.html

Mesotaenium Genome Cheng et al., https://figshare.com/articles/dataset/Genom

endlicherianum 2019 es_of subaerial Zygnematophyceae provi
de insights into land plant evolution/991
1876/1

Spirogloea muscicola Genome Cheng et al., https://figshare.com/articles/dataset/Genom

2019 es_of subaerial Zygnematophyceae provi

de insights into land plant evolution/991
1876/1

Chaetosphaeridium Transcriptome | Cooper and https://figshare.com/articles/dataset/Green

globosum SAG26.98 Delwiche, 2016 algal transcriptomes_for phylogenetics a
nd comparative genomics/1604778

Coleochaete orbicularis | Transcriptome | Cooper and https://figshare.com/articles/dataset/Green

Delwiche, 2016 algal transcriptomes_for phylogenetics_a

nd comparative genomics/1604778

Klebsormidium Transcriptome | Cooper and https://figshare.com/articles/dataset/Green

faccidum UTEX 321 Delwiche, 2016 algal transcriptomes_for phylogenetics a
nd comparative genomics/1604778

Mougeotia scalaris Transcriptome | Cooper and https://figshare.com/articles/dataset/Green

SAG164.80 Delwiche, 2016 algal transcriptomes_for phylogenetics a
nd comparative genomics/1604778

Nitella mirabilis Transcriptome | Cooper and https://figshare.com/articles/dataset/Green

transcriptomes of Delwiche, 2016 algal transcriptomes_for phylogenetics_a

lower and upper tissues nd comparative genomics/1604778

Penium Transcriptome | Cooper and https://figshare.com/articles/dataset/Green

margaritaceum SAG22. Delwiche, 2016 algal transcriptomes_for phylogenetics a

82 nd comparative genomics/1604778

Spirogyra pratensis Transcriptome | Cooper and https://figshare.com/articles/dataset/Green

UTEX 921 Delwiche, 2016 algal transcriptomes_for phylogenetics a
nd comparative genomics/1604778

Spirogyra sp. Transcriptome | Cooper and https://figshare.com/articles/dataset/Green

algal transcriptomes_for phylogenetics a
nd comparative genomics/1604778
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Serritaenia sp. Transcriptome | This study https://www.ebi.ac.uk/ena/browser/view/P

OBE.sml RJEB72628

Serritaenia sp. OBE.1 Transcriptome | This study https://www.ebi.ac.uk/ena/browser/view/P
RJEB72628

Cylindrocystis crassa Transcriptome | This study https://www.ebi.ac.uk/ena/browser/view/P

SAG23.97 RJEB72628

Mesotaenium Transcriptome | Dadras et al., https://mesotaenium.uni-

endlicherianum 2022 goettingen.de/download.html

SAG12.97

Mougeotiopsis Transcriptome | Hess et al., 2022 | https://www.ncbi.nlm.nih.gov/Traces/wgs/

calospora MZCHS580

?7val=GJZNO1
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ABSTRACT

The conjugating green algae (Zygnematophyceae) are the closest relatives of land plants and
hence are of great evolutionary interest. Besides the popular placoderm desmids and the filamen-
tous species, there is an underappreciated diversity of unicellular zygnematophytes with a much
“simpler” morphology and smooth cell walls - traditionally referred to as “saccoderm desmids”.
These saccoderm desmids have a broad geographic distribution and are ecologically diverse. Many
species inhabit terrestrial habitats such as dead wood, rock surfaces and glacial ice. Furthermore,
several of the saccoderm genera have turned out to be highly polyphyletic and are typically poorly
captured by environmental sequencing approaches. One of these genera is Mesotaenium Nageli,
with ~70 described species and infraspecific taxa united only by a relatively simple (plate- or
ribbon-like) chloroplast structure. Here, we shed some light on these inconspicuous yet important
members of the algal flora and present an updated rbcL gene phylogeny of the conjugating green
algae, including several new lineages of Mesotaenium-like zygnematophytes. We depict the subtle
morphological differences among these lineages and discuss our updated phylogeny in the light of
ecology and cell biology. In addition, we review published knowledge on photoprotective strate-
gies of zygnematophytes, the latest insights into their evolutionary innovations, and address some
technical challenges in exploring this elusive group of microalgae. Some new observations of
saccoderm desmids in undersampled habitats and of their microbial associates (e.g., parasites)
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point to interesting avenues for future research.

Introduction

It is now well established that the conjugating green
algae (Zygnematophyceae , Streptophyta) represent the
sister clade of all land plants (Figure 1(a); Cheng et al.
(2019); Timme, Bachvaroff, & Delwiche (2012); Wickett
et al. (2014); Wodniok et al., 2011). Hence, these algae
are of special interest as they can provide information
on how members of the “green lineage” (Viridiplantae)
became multicellular and conquered the land in
a process termed “terrestrialization” (Delaux, Nanda,
Mathé, Sejalon-Delmas, & Dunand, 2012; Gerrienne,
Servais, & Vecoli, 2016). The sequence of evolutionary
events and the physiological adaptations that might
have paved the way to a “life on land” represent an
exciting and timely field of research that has already
led to some view-changing insights (Cannell et al.,
2020; Cheng et al., 2019; de Vries, Curtis, Gould, &
Archibald, 2018; Wang et al., 2021). Several cellular
and metabolic features that were initially known only
from land plants have also been found in streptophyte
green algae. This includes a number of specific stress
responses (de Vries et al., 2020; Holzinger et al., 2014),

homologues of phytohormone receptors (de Vries et al.,
2018; Sun et al., 2019), and key enzymes of the phenyl-
propanoid pathway (de Vries, de Vries, Slamovits, Rose,
& Archibald, 2017). Furthermore, the evolutionary
importance of the zygnematophytes was demonstrated
in a genomic study that revealed horizontal gene trans-
fer from soil bacteria to unicellular, terrestrial represen-
tatives of this algal class, most notably genes encoding
homologues of GRAS transcription factors and PYR/
PYL/RCAR-like abscisic acid receptors, which might
have had roles in the terrestrialization of these algae
(Cheng et al., 2019).

The Zygnematophyceae are stunningly diverse in terms
of cellular organization, physiology and ecology (Brook &
Williamson, 2010; Coesel & Meesters, 2007; Ettl &
Girtner, 2014; Guiry, 2013; Hall & McCourt, 2015). They
probably encompass far more than the ca. 4,000 described
species (Gerrath, 1993; Gontcharov, 2008; Stastny &
Kouwets, 2012), which are traditionally divided into three
groups: the placoderm desmids, the saccoderm desmids
and the filamentous forms (Figure 1(b)). Most in-depth
studies on cell biology, ecology and genetics have been on
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Figure 1. Evolutionary history of the Zygnematophyceae and depiction of the three morphologically defined groups of these algae. (a)
Schematic phylogenetic tree of the Streptophyta showing the sister relationship of the Zygnematophyceae and land plants, and the
internal diversity of zygnematophytes. Note that the saccoderm desmids plus the filamentous forms (traditionally referred to as
“Zygnematales”) are paraphyletic. Most of the internal phylogeny is unresolved except the deepest-branching position of Spirogloea.
(b) Three traditional groups of zygnematophytes defined by gross cell morphology: filamentous zygnematophytes (Spirogyra spp.),
placoderm desmids (Micrasterias sp.) with isthmus and obvious symmetry, and saccoderm desmids without isthmus and cell wall

ornamentations (strain SAG 12.97, for details see main text).

the beautiful placoderm desmids, which are characterized
by two symmetrical semi-cells, and on the filamentous
species (e.g., de Vries et al, 2018; Hainz, Wober, &
Schagerl, 2009; Holzinger & Pichrtova, 2016; Kawai et al,
2022; Liitz-Meindl, 2016; Stastny, Skaloud, Langenbach,
Nemjova, & Neustupa, 2013; Zhou, Wilkens, Hanelt, &

von Schwartzenberg, 2021). The unicellular, structurally
much simpler saccoderm desmids have not had as much
attention in the more recent past — probably due to their
relatively plain appearance and the difficulties in differen-
tiating species and genera. In fact, the saccoderm desmids
have turned out to be highly polyphyletic (Gontcharov,
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2008; Gontcharov, Marin, & Melkonian, 2003, 2004).
However, they are still lumped into a few ill-defined gen-
era, most importantly Mesotaenium and Cylindrocystis
(Guiry & Guiry, 2021), and their true diversity remains
largely unrecognized (see also Mollenhauer, 1986). This is
an impediment to science, as the saccoderm desmids vary
greatly in ecology and cellular adaptations. They show
a wide geographic distribution (including polar regions)
and occur in habitats that vary strongly in temperature,
chemical conditions and water availability (e.g., Busch &
Hess, 2021; West & West, 1904; Williamson et al., 2020).
Most notably, many saccoderm desmids colonize terres-
trial habitats (Brook & Williamson, 2010; Ettl & Girtner,
2014; Fucikovd, Hall, Johansen, & Lowe, 2008) and might
be valuable for exploring adaptive strategies to terrestrial
stressors (Cheng et al., 2019).

In this work, we explored saccoderm desmids of the
Mesotaenium type, i.e., unicellular zygnematophytes
with a ribbon- or plate-like chloroplast, and provide
an updated molecular phylogeny with 12 distinct
lineages of these algae. A new, provisional clade nomen-
clature emphasizes the true genetic diversity of these
organisms and enables unambiguous communication
about them. Based on this system, we summarize the
structural and ecological variations found in
Mesotaenium-like zygnematophytes and discuss their
photoprotective adaptations, which we trust will inspire
future research on these underappreciated microalgae.

Material and methods

Sampling, isolation and maintenance of algal
strains

Natural samples (mostly algal biofilms on surfaces) were
collected at several sites in Germany and in the Great
Smoky Mountains, USA, as listed in Supplementary
table S1. The samples were suspended in water, and
single algal cells were isolated with a micropipette,
washed in sterile water and transferred into the liquid
growth medium Waris-H (McFadden & Melkonian,
1986). After several weeks of growth under artificial
light (white LEDs, photon fluence rate 30 pmol m™>
s”', 14:10 h light-dark cycle) at 16°C, the resulting
cells were ultrasonicated on ice (max. 10 s) with the
XL-2000 ultrasonicator (Misonix Inc., USA) or the
UW 2070 ultrasonicator (Bandeline electronic, DE) to
liberate cells from the mucilage and sprayed onto soli-
dified culture medium Waris-H (1.5% agar) with pres-
surized air. After a few days of incubation at 16°C,
bacteria-free cells picked and transferred to liquid cul-
ture medium were used as sources of the axenic cultures
used in this study. Very homogeneous natural samples

APPLIED PHYCOLOGY (&) 3

of Mesotaenium-like zygnematophytes were directly
ultrasonicated and spray-plated as detailed above. The
liquid cultures were maintained at a photon fluence rate
of 30 umol m™> 57", a 14:10 h light-dark cycle, at 16°C,
and were subcultured about every 2 months. Cultures
on agar slants (solidified Waris-H) were maintained at
10°C and subcultured every 6 months. As indicated in
Supplementary table S1, several of the studied strains
were obtained from public culture collections, namely
the Culture Collection of Algae at the University of
Cologne (CCAC, now Central Collection of Algal
Cultures in Essen, Germany), Culture Collection of
Algae at Gottingen University (SAG, Germany) and
the Coimbra Culture Collection of Algae (ACOI,
Portugal). The strains isolated during this study can be
obtained from the corresponding author (SH) upon
request.

Light microscopy and photography

Images of algal growth types were taken with a Nikon
D3100 digital single-lens reflex camera (Nikon, Tokyo,
Japan) equipped with RAYNOX Macro Conversion
Lenses (Yoshida Industry Co., Ltd., Tokyo, Japan).
Regular brightfield microscopy and photodocumenta-
tion of cultures used the Motic AE2000 inverted micro-
scope (Motic Hong Kong Limited, Hong Kong)
equipped with a MikroLive 6.4MP CMOS camera
(MikroLive, Oppenau). For high-resolution imaging,
the Zeiss IM35 inverted microscope (Carl Zeiss,
Oberkochen, Germany) equipped with the objective
lenses Plan 40x/0.65 and Planapochromat 63x/1.4, elec-
tronic flash and the Canon EOS 6D digital single-lens
reflex camera (Canon, Tokyo, Japan) was used, or the
Zeiss Axio Observer inverted microscope equipped with
the objective lenses Plan-Neofluar 40x/1.3 and Plan-
Neofluar 100x/1.3 and the Axiocam 512 colour (Carl
Zeiss, Oberkochen, Germany) was used. The colour
balance and contrast of micrographs were adjusted
with Photoshop CS4 (Adobe Inc., California, USA).

DNA sequencing, alignment and molecular
phylogenetics

Algal material from 2 ml of a running culture was
collected by centrifugation (5,000 g, 5 min), resus-
pended in sterile water and lysed by ultrasonication on
ice (5 x 5 s) with the XL-2000 ultrasonicator or by
grinding in liquid nitrogen. In the case of ultrasonicated
material, insoluble debris was pelleted by centrifugation
(5,000 g, 1 min) and the supernatant was used directly as
a template for PCR (details below). The ground material
was subjected to Chelex extraction as follows: 1-10 pl of
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the algal suspension/frozen material was mixed with
50 pl Tris-HCI buffer (10 mM; pH 8.5), Chelex 100
beads (5%; Sigma-Aldrich) and 2 pl proteinase
K (20 mg ml'; Thermo Fisher Scientific,
Massachuesetts, USA), then incubated at 56°C for
45 min and finally at 98°C for 20 min. The samples
were centrifuged at 17 000 g for 3 min, and the super-
natant was used for PCR. The chloroplast-encoded gene
for the large chain of the ribulose bisphosphate carbox-
ylase (rbcL) was amplified by a semi-nested PCR with
the primers MaGolF, MaGo2F and MaGo3R
(Gontcharov et al.,, 2004) and Invitrogen Taq DNA
Polymerase (Thermo Fisher Scientific, Massachuesetts,
USA) or the repliQa HiFi ToughMix (Quanta Bio,
Massachuesetts, USA), sequenced and assembled as pre-
viously described (Busch & Hess, 2021). The generated
rbcL gene sequences have been deposited in GenBank
under the accession numbers OM241454-OM241471.
The sequences were manually aligned with rbcL gene
sequences of other Zygnematophyceae (alignment from
Busch & Hess, 2021) using the SeaView 4.5.4 alignment
editor (Galtier, Gouy, & Gautier, 1996; Gouy, Guindon,
& Gascuel, 2010). The resulting dataset of 92 sequences
and 1295 sites (including all codon positions) was sub-
jected to phylogenetic inferences with neighbour joining
(NJ) and maximum likelihood (ML) methods using
MEGA software version X (Kumar et al., 2018). For
ML analyses, we applied the GTR+I +G model (discrete
Gamma distribution; five categories). Branch support
was assessed with 1000 bootstrap repetitions.

Results and discussion

Genetic and phenotypic diversity of
Mesotaenium-like zygnematophytes

The structurally simplest zygnematophytes have mainly
been assigned to the genus Mesotaenium. These incon-
spicuous, unicellular algae are characterized by
a smooth cell wall and a more or less ribbon-like plastid
(Nageli, 1849). According to AlgaeBase, the genus
Mesotaenium contains 29 recognized species and 39
infraspecific taxa (including synonyms; Guiry & Guiry,
2021), most of which were described on the basis of
gross morphological characters such as the cell shape
and size of vegetative material. Unfortunately, the lack
of meaningful original descriptions has complicated
species identification of these life forms, which is
reflected in the conflicting information in different
monographs about desmids (e.g., Brook & Williamson,
2010; Coesel & Meesters, 2007; Ettl & Girtner, 2014;
Lenzenweger, 2003). Molecular sequence information
for a few of these species revealed that the genus

Mesotaenium is polyphyletic and that Mesotaenium-
like zygnematophytes form at least six separate lineages
within the conjugating green algae (Busch & Hess, 2021;
Gontcharov, 2008; Gontcharov & Melkonian, 2010).
Despite the available phylogenetic information, most
of these lineages have not been studied in detail and
we lack proper genus names for them. This leads to
a general underappreciation of their actual genetic and
ecological diversity. However, exceptions are the
Mesotaenium-like zygnematophytes of the genera
Ancylonema Berggren and Serritaenia A.Busch &
S.Hess, which have recently been subjected to a more
detailed characterization and a taxonomic treatment
(Busch & Hess, 2021; Prochézkovd, Rezanka,
Nedbalova, & Remias, 2021). Increasing amounts of
data for certain strains on the genomic, cell biological
and ecological levels necessitates a clear nomenclatural
separation of distinct phylogenetic lineages to avoid
a mix-up in evolutionary interpretations. The genome-
sequenced strain SAG 12.97, for example, has repeatedly
been referred to as “Mesotaenium endlicherianum”
(Cheng et al., 2019; Gontcharov, 2008; Gontcharov
et al., 2003, 2004; Matasci et al., 2014), although, in
our opinion, it does not match the original description
of that species very well (Nageli, 1849). Even though
taxonomic problems will take much more time and
effort to be resolved (e.g., by assessing original material
from several species in question), an unambiguous nam-
ing system for the different lineages of Mesotaenium-
like zygnematophytes and more biological data on them
is desirable.

To further explore the diversity of Mesotaenium-like
zygnematophytes, we sampled various aquatic and ter-
restrial habitats (see below for details) and obtained
additional strains from public and private culture col-
lections. In total, we studied 31 strains (listed in
Supplementary table S1) and inferred a phylogenetic
tree of the Zygnematophyceae based on the most widely
available genetic marker for that algal class, the gene for
the large chain of the ribulose bisphosphate carboxylase
(rbcL gene). As shown in several published phylogenies,
this gene is unable to resolve the deepest branches
within the phylogeny but was well suited to differentiate
new zygnematophycean lineages at the genus level
(Figure 2). Our culture-based approach resulted in the
identification of 12 lineages of Mesotaenium-like zygne-
matophytes, which are phylogenetically distinct; several
of them could be distinguished by morphology as well
(see below for details). Two lineages are credibly
assigned to existing genera, namely the Ancylonema
lineage and the Serritaenia lineage (Figure 2; Busch &
Hess, 2021; Prochazkova et al., 2021). Taxonomic
assignment of strains from other lineages will need
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Figure 2. Maximum likelihood phylogeny of the Zygnematophyceae inferred from rbcL gene sequences revealing 12 lineages of
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NJ), except for those with full support (100%; bold branches) or support below 50% with the ML inference (omitted). New sequences
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adaptations (see legend at the bottom of the figure) of Mesotaenium-like algae and some other zygnematophytes. The scale bar

represents 0.05 expected substitutions per site.

careful re-evaluation, as detailed in the lineage-specific
sections below. For these lineages, we introduce
a provisional nomenclature from “Meso-1” to “Meso-
10” (Figure 2). Similar approaches have been used to
name phylogenetic clades in other groups of microbial

eukaryotes, e.g., in the rhizarians (e.g., Bass & Cavalier-
Smith, 2004; Bass et al., 2009), alveolates (e.g., Guillou
et al., 2008) and stramenopiles (e.g., Massana et al.,
2004; Massana, Del Campo, Sieracki, Audic, &
Logares, 2014). Some lineages in our phylogeny are
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directly related to each other but still have distinct
designations (e.g., Meso-1, Meso-2 and the Serritaenia
lineage). This is based on clear-cut phenotypic differ-
ences and marked genetic distances.

An overview of the morphological diversity of
Mesotaenium-like zygnematophytes from different
lineages is given in Figure 3. All cells have a smooth
cell wall and no isthmus but vary largely in size. While
some strains are smaller than 10 pum, others exceed
100 um in length (compare Meso-1 and Meso-10 in
Figure 3). Important diagnostic characters include the
cell shape, chloroplast number in interphase,

chloroplast morphology and position, pyrenoid mor-
phology and position of the nucleus. Cell shapes can
be roughly categorized as cylindrical (e.g., Serritaenia,
Meso-1), elliptical (e.g., Meso-7) or elongate with
rounded (e.g., Meso-6), conical (e.g., Meso-3, Meso-9)
or truncate (e.g., Meso-2) cell ends. The chloroplasts
range in number from one (Serritaenia, Meso-1 and
Meso-2) to two (Meso-4, Meso-5 and Meso-7) and can
occupy a parietal (e.g., Meso-2, Meso-6 and Meso-7) or
axial position (e.g., Serritaenia, Meso-3 and Meso-8).
True ribbon-like, axial chloroplasts as described for
the type species of the genus Mesotaenium

Figure 3. Morphological diversity of Mesotaenium-like zygnematophytes (differential interference contrast). (a) Strain GSM.5.thin
(Serritaenia testaceovaginata). (b) Strain KH.2.sm (lineage Meso-1). (c) Strain SAG 12.97 sometimes referred to as “M. endlicherianum”
(lineage Meso-2). (d) Strain E.1 (lineage Meso-3). (e) Strain GSM.2.16.s2 (lineage Meso-8). (f) Strain SAG 230-1 (lineage Meso-9). (g)
Strain GSM.2.16.| (lineage Meso-5). (h) Strain SAG 1.88 (lineage Meso-4). (i) Strain LM.24 (lineage Meso-6). (j) Strain CCAC 2215 (lineage
Meso-7). (k) Strain UTEX 1025 (lineage Meso-10). Scale bar in (a) is 10 um and applies to all panels.
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(M. endlicherianum Négeli) have so far only been found
in the lineages Meso-3 and Meso-9, suggesting that the
genus Mesotaenium might belong to one of these
lineages. However, currently, there is no strain that
clearly matches the original description of
M. endlicherianum, so that this important genus name
cannot be applied with certainty. More common are
lenticular (e.g., Meso-1 and Meso-7) and channel-like
chloroplasts (Meso-2). Almost all lineages have chloro-
plasts with smooth margins, with the exception of
Serritaenia (serrate/dentate margins) and Meso-2
(undulating margins). Pyrenoids are present in all
lineages and vary in shape (circular or lentiform), size
and conspicuousness. The nuclei of all studied strains
are fairly inconspicuous but can be identified by the
central spherical nucleolus. The position of the nucleus
within the cell is of great diagnostic value. It is either
central, i.e., on the longitudinal cell axis (often nested
between the chloroplasts: Meso-5, Meso-6, Meso-7 and
Meso-8), or displaced by the chloroplast (Serritaenia,
Meso-1 and Meso2). It is important to note that some
characters, especially chloroplast morphology, can vary
with environmental conditions (e.g., Serritaenia species
develop additional chloroplast ridges in laboratory cul-
ture; Busch & Hess, 2021) and that chloroplasts can be
largely obscured by colourless globules (depending on
the physiological state of the cells). Hence, cultures
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grown under defined conditions can have advantages
in assessing the morphology of Mesotaenium-like zyg-
nematophytes. This also applies to the chloroplast num-
ber, which doubles before cell division.

Mesotaenium-like zygnematophytes show also var-
ious “growth forms” in laboratory cultures, which prob-
ably result from differences in cell division and mucilage
secretion. In liquid culture, cells can be solitary (Figure 4
(a); e.g., Meso-6, Meso-7), or form chains (Figure 4(b);
e.g., Meso-2, Meso-5), gelatinous films on submerged
surfaces and/or discrete gelatinous “colonies” (Figure 4
(c); e.g., Serritaenia, Meso-1). Colony morphology and
colour on solid media show marked differences as well.
While some lineages form irregular gelatinous masses
(e.g., Serritaenia), others produce flat, film-like plaques
with even (Figure 4(d); Meso-4) or erose (Figure 4(e);
Meso-3) margins or raised colonies with irregular sur-
face (Figure 4(f); Meso-1). All these observations on cell
morphology and growth forms indicate profound bio-
logical variation in the 12 lineages of Mesotaenium-like
zygnematophytes identified in this study. Short summa-
ries of each of these lineages are provided in the
following.

The Serritaenia lineage is the sister lineage of Meso-1
in our phylogeny with robust bootstrap support (99/99).
The separation of the two lineages is based on clear-cut
morphological differences and significant genetic

Figure 4. Growth forms of Mesotaenium-like zygnematophytes in culture. (a) Single cells in liquid culture, strain GSM.2.3.s (lineage
Meso-7). (b) Cell chains in liquid culture, strain KM.19b (lineage Meso-5). (c) Colony-like mucilaginous aggregates in liquid culture,
strain GSM.5.thin (Serritaenia testaceovaginata). (d) Shiny, smooth plaque with even margins on agar, strain SAG 1.88 (Meso-4) (e)
Rough plaque with erose margins on agar, strain ACOI 127 (Meso-3). (f) Raised colonies with irregular surface on agar, strain KH.2.sm
(Meso-1). Scale bars 100 ym in (a)-(c); 1 mm in (d) and (e); 5 mm in (f).
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distance (Figures 2 and 3). The genus Serritaenia
encompasses strains that were formerly associated with
the species names Mesotaenium macrococcum,
M. braunii and M. testaceovaginatum, but correct appli-
cation of the two first names needs additional taxo-
nomic research on difficult-to-obtain original material
(for details see Busch & Hess, 2021). Interphase cells of
Serritaenia species are mostly cylindrical with rounded
cell ends (Figure 3(a)), while cells shortly after division
are ovoid and show a typical angled arrangement. Chain
formation was never observed in Serritaenia. The single
chloroplast is an axial plate with serrated or indented
margins (Figure 3(a)). The chloroplast can develop one
or two additional ridges and thereby become more
complex. In liquid laboratory cultures, Serritaenia cells
can form irregular, gelatinous colonies (Figure 4(c)) or
confluent mucilage films. However, the mucilage can be
dissolved under certain environmental conditions, and
the cells become solitary. Serritaenia species are most
prominent in terrestrial habitats and are known from
central Europe, the United Kingdom, North America
and South America. Some species can form mass devel-
opments in the form of gelatinous biofilms on various
substrates (dead wood, leaf litter, soil, and bryophytes).
Furthermore, Serritaenia represents the only known
lineage of the Zygnematophyceae whose members pro-
duce an extracellular sunscreen pigment (Busch & Hess,
2021). Despite some (questionable) statements in the
older literature, intracellular (pinkish) pigments have
never been observed by the authors of this study (poten-
tially these statements are based on confusion with line-
age Meso-7).

Lineage Meso-1 contains two strains which have
identical rbcL gene sequences (Figure 2). The cells mea-
sure <15 um in length and are cylindrical with rounded,
rather flat cell ends. The plate-like or lenticular chlor-
oplast with smooth margins is mostly parietal, rarely
axial (Figure 3(b)). Both strains were isolated from
bryophytes on dead wood in temperate forests of
Germany. In these habitats, cells of lineage Meso-1 are
entirely embedded in mucilage (which can form tube-
like structures) and can co-occur with Serritaenia spe-
cies. The cells of lineage Meso-1 resemble Mesotaenium
macrococcum var. lagerheimii Willi Krieg. to some
extent (Krieger, 1933).

Lineage Meso-2 includes two strains characterized by
elongated cells with flat, almost truncated cell ends
(Figure 3(c)). The single chloroplast can be plate-like
but is frequently parietal with folded lateral sides, result-
ing in a channel-like morphology. The chloroplast bears
undulate margins and rather prominent, lentiform pyr-
enoids. In culture, cells of lineage Meso-2 readily form
chains through cell division and terminal mucilage

secretion (Figure 3(c)). Both strains were isolated from
aquatic habitats, from freshwater plankton in Portugal
(SAG 12.97) and from a brook in Spain (ACOI 2703).
The genome-sequenced strain SAG 12.97 has been of
interest (e.g., Bonnot et al., 2019; Cannell et al., 2020;
Cheng et al., 2019; Donoghue & Paps, 2020; Wang et al.,
2021) and was repeatedly referred to as Mesotaenium
endlicherianum, but this designation is probably based
on a misidentification as suggested by major morpho-
logical differences to the original description of that
species (Nageli, 1849).

Lineage Meso-3 comprises three strains, which
match the description of Mesotaenium caldariorum
(Lagerheim) Hansgirg (Hansgirg, 1886) and are listed
under this name in public culture collections (see
Supplementary table S1 for strain names). The cells are
elongated with conical cell ends and contain an axial,
ribbon-like chloroplast with clearly visible circular pyr-
enoids (Figure 3(d)). In the top view, the chloroplast
matches the shape of the cell (i.e., with tapered ends),
while in the side view, it appears as a thin ribbon. The
strains ACOI 127 and ACOI 898 were isolated from
moist soil (Portugal) and flowing water (Madeira,
Portugal), respectively. Strain E.1 derives from wet
moss from a waterfall (Germany). Interestingly, the
lineage Meso-3 is morphologically indistinct from line-
age Meso-9 but shows a high genetic divergence
(Figure 2). Whether Meso-3 and Meso-9 are sister
lineages remains to be solved by multigene phylogenies.

Lineage Meso-4 contains two strains, whose cells are
cylindrical, sometimes slightly bent, with rounded cell
ends (Figure 3(h)). Each cell contains two parietal,
plate-like chloroplasts situated at opposing lateral sides
of the cell. Some cells can have four chloroplasts (before
cell division). The strain SAG 1.88 derives from the
Signy Islands (Antarctica) and was isolated from bare
mineral soil (Broady, 1976). For the strain JH0031, no
sampling information is available. Strain SAG 1.88 was
previously assigned to the genus Fottea (Fottea pyrenoi-
dosa; Broady, 1976), which, however, belongs to the
chlorophytes (with its type species F. cylindrica
Hindak). Hence, the species was transferred to the
genus Mesotaenium (Petlovany, 2014) and is currently
named Mesotaenium pyrenoidosum (P.A. Broady)
Petlovany (Guiry & Guiry, 2021; Petlovany, 2014).
However, the morphology of strain SAG 1.88 is cer-
tainly in conflict with that of the type species of
Mesotaenium (M. endlicherianum).

The Ancylonema lineage contains three sequences,
two of which are from the ice-dwelling species
Ancylonema nordenskioeldii and Ancylonema alaska-
num (here the epithet of the latter species is corrected
in gender according to Articles 62.2 (c), 23.5 and 32.2;
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see Turland et al.,, 2018). The latter species was formerly
known as Mesotaenium berggrenii (Prochazkova et al.,
2021). For the third rbcL gene sequence, no strain
information is available (Fig 2). The cells are cylindrical
or elongated with broadly rounded cell ends. They have
one or two parietal, lenticular or cup-shaped chloro-
plasts with a circular pyrenoid and a central nucleus
(Remias, Holzinger, & Liitz, 2009, 2012). As far as we
know, there are no cultivated strains available, despite
several attempts to cultivate these glacier algae (Remias
et al., 2009, 2012) (see below for geographic informa-
tion), where they can form blooms (Prochazkova et al.,
2021; Remias et al., 2012; Williamson et al., 2020).
Despite their close relationship, the two Ancylonema
species differ drastically in cell size and shape. Cell
chain formation is known in A. nordenskioeldii. Both
A. nordenskioeldii and A. alaskanum contain red-brown
vacuolar pigments, suspected sunscreen compounds
(see below for details).

Lineage Meso-5 is closely related to the filamentous,
terrestrial green alga Zygogonium ericetorum, with full
bootstrap support (Figure 2). The lineage comprises two
strains, which cannot be assigned to an existing species
with certainty, but show some similarities to the species
Mesotaenium truncatum West & G.S.West (West &
West, 1904). The cells are elongated with rather flat,
almost truncated cell ends and contain a parietal plate-
like chloroplast with a marked central indentation. This
creates the impression of two chloroplasts, but there is
a bridge between the two lobes. The nucleus is situated
in the central region between the two chloroplast lobes
(Figure 3(g)). Both strains readily form cell chains and
floating films at the air-water interface in liquid culture.
They were isolated from moist and acidic terrestrial
surfaces in Germany (strain KM.19b) and Tennessee,
USA (strain GSM.2.16.]).

Lineage Meso-6 contains three strains, which are
morphologically similar to Mesotaenium chlamydos-
porum De Bary (De Bary, 1858). The cells are elongated
with broadly rounded cell ends and contain one or two
shovel-like chloroplasts, which are always parietal
(Figure 3(i)). The cytoplasm often contains small, gran-
ular inclusions that can cover the nucleus and the chlor-
oplast (Figure 3(i)). The three strains derive from
terrestrial samples (Germany).

Lineage Meso-7 contains six strains, which are mor-
phologically similar to Mesotaenium mirificum
W. Archer (Archer, 1864). Except for the elliptical
shape, the cells are similar to those of lineage Meso-6
(compare Figure 3(i, j)). The parietal, shovel-shaped
chloroplasts and the nucleus are often surrounded by
small granules (Figure 3(j)). The strains were isolated
from different freshwater and terrestrial habitats in
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Germany, Poland, the Great Smoky Mountains (USA),
and Ontario, Canada (see Supplementary table S1 for
details). Members of this lineage were found with
copious mucilage in their natural habitats, which, how-
ever, is often lost in liquid culture. Strain GSM.5D.r was
observed with pink cell content in its natural habitat
(wet rocks, Great Smoky Mountains, Tennessee, USA).

Lineage Meso-8 contains two strains and has not been
detected before (Figure 2). The cells are cylindrical or
slightly elongated with round cell ends (Figure 3(e)).
There are two parietal, shovel-shaped chloroplasts per
cell, and the cytoplasm contains numerous small gran-
ules, often surrounding the nucleus in the form of a chain.
Both strains were isolated from black-greenish mucilage
on soil in the Great Smoky Mountains (Tennessee, USA).

Lineage Meso-9 is represented by three strains, which
have identical rbcL gene sequences (Figure 2). The
strains are morphologically similar to Mesotaenium cal-
dariorum (Lagerheim) (Hansgirg, 1886) and are also
named as such in culture collections and in published
phylogenies (e.g., Surek, Beemelmanns, Melkonian, &
Bhattacharya, 1994). As mentioned above, lineage
Meso-9 is morphologically indistinct from lineage
Meso-3 (compare Figure 3(d, f)) but shows high genetic
divergence (Figure 2). The cells are elongated with con-
ical cell ends and contain a central ribbon-like chloro-
plast with clearly visible, circular pyrenoids (Figure 3
(f)). The strains were isolated from moist terrestrial
surfaces, a boggy meadow in Austria (SAG 150.80) and
a wet brick in the Czech Republic (SAG 648.1). For SAG
230-1, no sampling information 1is available.
Furthermore, the plastid movement and phytochromes
of the strain SAG 648-1 (=UTEX 41) were studied
intensively (see below for details).

Lineage Meso-10 is represented by one strain (UTEX
1025), which is morphologically similar to Mesotaenium
kramstai (Lemmermann, 1896) and also named as such
in culture collections as well as in published phylogenies
(e.g., Gontcharov et al., 2003). The cells are long, rod-
shaped with rounded cell ends, and the chloroplast is
a ribbon with folded margins (Figure 3(k)). The chlor-
oplast is, however, quite variable in shape. The strain
derives from Texas (USA) from “air”. It is the largest
known zygnematophyte associated with the genus
Mesotaenium.

The updated rbcL phylogeny reveals massive poly-
phyly of the genus Mesotaenium and, furthermore,
reveals a so far hidden diversity of small, unicellular
zygnematophytes. Probably, there are still many more
new lineages to discover. As we show here,
Mesotaenium-like algae are morphologically diverse,
and specific cellular details can be used to distinguish
some but not all lineages of these algae.
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Distribution and ecology of Mesotaenium-like
zygnematophytes

Mesotaenium-like zygnematophytes appear to be dis-
tributed over the whole globe as indicated by accounts
from all over Europe, Africa, North and South America,
Australia, certain areas in Asia, as well as the Arctic and
Antarctic (e.g., De Bary, 1858; Hansgirg, 1886; Krieger,
1937; Ling & Seppelt, 1990; Remias et al., 2012; West &
West, 1904). They inhabit various aquatic and terrestrial
habitat types, including extreme habitats such as glacial
ice (details below). Hence, different Mesotaenium-like
zygnematophytes appear to vary strongly in their ecol-
ogy. The phylogenetic tree in Figure 2 gives a rough
overview of the habitat preferences of the 12 lineages
defined in this study. The strains labelled as “aerophy-
tic” were isolated from terrestrial surfaces that are sub-
jected to periodic desiccation, while those associated
with the term “submerged” come from flowing or stand-
ing waters that ensure permanent supply of water. All
except two of the 12 lineages contain aerophytic strains,
with seven lineages exclusively known from terrestrial
habitats. Hence, a “life on land” appears to be very
common among Mesotaenium-like zygnematophytes.

The habitats of representatives with a submerged life-
style such as strains of the lineages Meso-2 and Meso-3
include puddles, boggy pools, brooks and streamlets
(Gontcharov et al., 2004; West & West, 1904). Strain
E.1 of lineage Meso-3 was isolated from wet moss in
a waterfall, which is also considered a submerged habitat
(Figure 5(a)). Blooms of suspended cells seem to be rare,
but in certain cases, Mesotaenium-like zygnematophytes
can form a skin on the water surface as reported for an
aquatic species determined as M. endlicherianum
(Hansgirg, 1886).

The aerophytic strains of lineages Meso-1, Meso-5,
Meso-7, Meso-8 and Serritaenia from temperate zones
colonize tree bark (Figure 5(b)), dead wood (Figure 5
(c)), rock surfaces (Figure 5(d)), soil and bryophytes.
There are also accounts of Mesotaenium-like zygnema-
tophytes on damp soil in heathers and warm houses
(Hansgirg, 1886; West & West, 1901), and it seems
that most species occur on acidic substrates. They are
often part of multi-species communities, e.g., inter-
mingled with chlorophyte green algae, cyanobacteria
or moss protonema. However, Serritaenia species and
the members of lineage Meso-7 can also form uni-algal,
gelatinous patches that are visible with the naked eye
(Busch & Hess, 2021; De Bary, 1858; West & West,
1904). In some instances, we observed mass develop-
ments of Serritaenia species that covered relatively large
areas in moist German spruce forests and Molinia-
dominated heathland (Figure 5(e) and Busch & Hess,

2021). In these areas, Serritaenia can overgrow entire
bryophytes (e.g., various acrocarpous and pleurocar-
pous mosses) with severe effects on the plants
(Figure 5(f, g)). Similar mass developments were
reported for M. chlamydosporum and M. mirificum
(Hansgirg, 1886; West & West, 1901), which might
belong to the lineages Meso-6 and Meso-7, respectively.
Furthermore, one Serritaenia strain (not yet sequenced)
was isolated from a rock in an Araucaria forest in the
Nahuelbuta National Park, Chile (Figure 5(h)).
According to the collectors, the algal material was
extracted from cracks in the rock, suggesting
a chasmoendolithic lifestyle (pers. comm. Tatyana
Darienko).

Mesotaenium-like zygnematophytes also colonize
extreme habitats and are especially well known from
glacial ice and snow in alpine or polar regions (e.g.,
Prochézkova et al., 2021; Yallop et al., 2012). The two
cryophilic algal species Ancylonema nordenskioeldii and
Ancylonema  alaskanum  (formerly known as
Mesotaenium breggrenii) were found in the Arctic (e.g.,
Harding, Jungblut, Lovejoy, & Vincent, 2011; Uetake,
Naganuma, Hebsgaard, Kanda, & Kohshima, 2010;
Williamson et al., 2020), Alaska (Takeuchi, 2001), the
Antarctic (Izaguirre & Pizarro, 1997; Ling & Seppelt,
1990), on a Himalayan glacier (Yoshimura, Kohshima,
& Ohtani, 1997), a Chilean glacier (Takeuchi &
Kohshima, 2004) and in the European Alps
(Prochédzkova et al, 2021). In these habitats,
Ancylonema species can bloom in the ice, which results
in large, grey or brown areas (Figure 5(i)). This darken-
ing caused by a reddish-brown, intracellular pigments
(details below) leads to increased absorption of solar
radiation and melting rates of glacial ice (Takeuchi,
Kohshima, & Seko, 2001; Williamson et al., 2018, 2020).

Despite their broad distribution and ecological ver-
satility, Mesotaenium-like zygnematophytes are poorly
captured by environmental sequence data, and most of
the known diversity stems from culture-based
approaches. Large environmental sequencing studies
have been conducted in the open oceans and the pelagic
zone of lakes (e.g., Boenigk et al., 2018; de Vargas et al.,
2015), which are typically not very rich in zygnemato-
phytes. Studies on terrestrial samples and microbial
communities on trees often focus on bacteria, fungi
and heterotrophic protists (e.g., Heger et al., 2018;
Nacke et al, 2011; O’Brien, Parrent, Jackson,
Moncalvo, & Vilgalys, 2005; Walden et al.,, 2021).
There are, however, several environmental sequencing
studies on biological soil crusts in dry polar regions and
on glacial ice, which detected zygnematophycean ampli-
cons, including those of the cryophilic Ancylonema nor-
denskioeldii (Biidel, Duli¢, Darienko, Rybalka, & Friedl,
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Figure 5. Habitats and biotic interactions of Mesotaenium-like zygnematophytes. (a) Waterfall with wet moss cushions (near Nohn,
Eifel, Germany) inhabited by a species of lineage Meso-3. (b) Tree trunk with black algal crust (nature reserve “Heiliges Meer”, Recke,
Germany). (c) Decaying dead wood with green, mucilaginous layer (nature reserve “Schwarzes Wasser”, Wesel, Germany). (d) Rock
surface of “wet walls” colonized by various microalgae, including species of Serritaenia and Meso-7 (Great Smoky Mountains, North
Carolina, USA). (e) Molinia caerulea (purple moor grass) in a Molinia-dominated degeneration phase of a heathland is heavily colonized
by Serritaenia species (nature reserve “Heiliges Meer”, Recke, Germany). (f) Undetermined pleurocarpous moss almost entirely covered
by a black crust (Wiehl, Germany). (g) Same moss plant as shown in (f) after rehydration in water. The moss is heavily colonized by
a Serritaenia species that forms globular colonies. (h) Araucarian forest (Nahuelbuta National Park, Chile) with rocks colonized by
a potentially chasmoendolithic Serritania species (courtesy of T. Darienko). (i) Glacial ice inhabited by Ancylonema species (Morteratsch
Glacier, Switzerland; courtesy of D. Remias). (j) Vampyrellid amoeba extracting the content of a Serritaenia species shown during
feeding (brightfield; courtesy of H. Schulp). (k) Digestive cyst of the same vampyrellid species shown in (j) next to two perforated and
emptied algal cells (brightfield; courtesy of H. Schulp). (I) Gelatinous colony of Serritaenia testaceovaginata with (fungal?) hyphae
(differential interference contrast). (m) Cell of Serritaenia testaceovaginata from the population shown in (I) penetrated by the
filamentous, fungus-like parasite (differential interference contrast). Scale bars 10 um in (I) and (m), not available for (j) and (k).

2016; Garcés-Pastor et al., 2019; Lutz, Anesio, Edwards,  surfaces in temperate forests, heathers and moorlands,
& Benning, 2017; Rippin, 2018; Rippin, Lange, Sausen,  remain undersampled. Based on our microscopic obser-
& Becker, 2018; Samolov et al., 2020). The typical habi-  vations and the historical literature, we expect that
tats of mesophilic saccoderm desmids, i.e., various  environmental sequencing directed towards algal
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biofilms in temperate zones will be a useful method to
further expand our phylogenetic knowledge about uni-
cellular zygnematophytes and reveal more of their eco-
logical preferences.

Furthermore, there are observations that point to
interesting biotic interactions between Mesotaenium-
like zygnematophytes and other microbes. An uniden-
tified, potentially undescribed vampyrellid amoeba
(Vampyrellida, Rhizaria) was documented to extract
the cellular contents of Serritaenia cells in a terrestrial
sample (Figure 5(j, k)). These “protoplast feeders” often
have a narrow prey range (Hess & Suthaus, 2022), and
the undersampled microhabitats mentioned above
might contain their own heterotrophic microfauna. In
addition, we repeatedly observed (fungal?) hyphae run-
ning through the gelatinous colonies of Serritaenia spe-
cies from different geographic localities in Europe and
North America (Figure 5(1), arrowheads). These poten-
tially biotrophic parasites penetrate algal cells and even-
tually lead to cell death (Figure 5(m)). So far, we know
almost nothing about these heterotrophic associates of
terrestrial microalgae, but our first attempts to isolate
them promise to change this situation.

Cellular adaptations of Mesotaenium-like
zygnematophytes to environmental factors

As shown above, various Mesotaenium-like zygnemato-
phytes have a terrestrial lifestyle (Figure 2). Hence, they
face strong fluctuations in water availability and tem-
perature and increased exposure to sunlight.
Mesotaenium-like zygnematophytes certainly have cel-
lular adaptations to these abiotic stressors, for instance,
the excessive mucilage secretion observed in Serritaenia
and lineage Meso-7 that probably results in an increased
water-holding capacity and extended photosynthetic
periods. However, the cellular reactions of
Mesotaenium-like zygnematophytes to desiccation are
unstudied, in contrast to those of the filamentous forms.
We know that Zygnema and Zygogonium accumulate
osmolytes (sucrose), upregulate aquaporins and stress-
related molecules (early light-inducible proteins, cha-
perones, late embryogenesis abundant proteins and
DNA repair proteins), and they alter the thickness and
composition of their cell walls (de Vries et al., 2018;
Fuller, 2013; Herburger & Holzinger, 2015; Herburger,
Remias, Holzinger, & Elster, 2016; Herburger, Xin, &
Holzinger, 2019; Holzinger, Tschaikner, & Remias,
2010; Rippin, Becker, & Holzinger, 2017; Serensen
et al.,, 2011). In natural material of Mesotaenium-like
zygnematophytes, one can observe pronounced cellular
changes as well, which deserve future analysis.

Three remarkable photoprotective strategies have
been studied in Mesotaenium-like zygnematophytes:
(i) rotary chloroplast movement, (ii) vacuolar pigmen-
tation and (iii) sunscreen mucilage. As shown in our
phylogeny, these strategies are not necessarily limited to
a single lineage but can also be found in other, even
filamentous members (Figure 2). Rotary chloroplast
movement was intensely studied in strain SAG 648-1
(referred to as Mesotaenium caldariorum) of lineage
Meso-9 and in the filamentous zygnematophyte
Mougeotia scalaris, both of which have a similar, rib-
bon-like chloroplast morphology (Haupt & Scheuerlein,
1990; Wada, Grolig, & Haupt, 1993). Depending on the
light conditions, these algae re-arrange the chloroplast
within the cell by axial rotation and alter the chloroplast
surface that faces the light source between maximum
(chloroplast in top view) and minimum surface (chlor-
oplast in profile view). In both algae, an interplay of two
photosensory receptors, phytochromes and crypto-
chromes, was found to trigger this photo-orientation
of the chloroplast, and it has been hypothesized that
the movement is mediated by the actin cytoskeleton
(Haupt, 1991; Klein, Wagner, & Blatt, 1980; Kraml,
Biittner, Haupt, & Herrmann, 1988; Wagner, Haupt, &
Laux, 1972). However, research on chloroplast rotation
in unicellular zygnematophytes ceased more than
20 years ago, and we suspect that there is much more
to explore. Relatively recently, time-lapse microscopy of
Spirogloea muscicola revealed an oscillating rotation of
its helical chloroplast (Cheng et al., 2019), but it is yet
unknown whether this relates to photoprotection (e.g.,
through rotational self-shading of the chloroplast).

The two cryophilic species of the Ancylonema lineage
are well known for their intense, intracellular pigmentation
(Remias, Holzinger, Aigner, & Liitz, 2012; Remias et al.,
2009). The water-soluble, red-brown pigments are loca-
lized in one or more vacuoles of the cell and can largely
obscure other cellular details (Figure 6(a, b)). The pigment
of A. alaskanum was isolated from natural material and
identified as a glycosylated purpurogallin derivative by
nuclear magnetic resonance spectroscopy (Remias et al.,
2012). The isolated substance was shown to absorb both
ultraviolet radiation and visible light, suggesting a function
as an intracellular sunscreen (Remias et al., 2012). Another
study corroborated the strong UV absorbance of the abun-
dant Ancylonema pigments and revealed their pronounced
effect on overall cellular energy absorption (increased 50-
fold by phenolic pigments; Williamson et al., 2020). This
enables Ancylonema species to withstand the extreme solar
irradiance present in glacier environments, while the
chloroplasts are still low-light adapted (Williamson et al.,
2020). The absorbed short-wavelength radiation is con-
verted to heat and leads to melting of the glacier ice. This
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Figure 6. Non-photosynthetic pigments of Mesotaenium-like algae and other zygnematophytes. (a) Ancylonema alaskanum with dark-
red vacuolar contents (Morteratsch Glacier, Switzerland; courtesy of D. Remias). (b) Ancylonema nordenskioeldii with red cellular
contents (Morteratsch Glacier, Switzerland; micrograph from Prochazkova et al., 2021). (c) Cells of lineage Meso-7 with rose cellular
contents (Wet walls, Great Smoky Mountains, North Carolina, USA). (d) Zygogonium ericetorum with pink vacuolar contents (Streamlet,
Schoenwieskopf, Tyrol, Austria; micrograph from Aigner et al., 2013). (e) Temnogametum iztacalense with purple vacuolar contents
(Lake La Luna, Nevado de Toluca, Mexico; courtesy of G. Gardufio Solorzano). (f) Serritaenia sp. with purple-blue pigment in
extracellular mucilage (from moss shown in Fig 5(f,g)). Scale bars 10 pm, scale information for (c) not available.

has severe impact on the integrity of the Greenland Ice
Sheet, which experiences blooms of Anyclonema species
(Williamson et al., 2018, 2020; Yallop et al., 2012).
However, vacuolar pigments are not limited to the cryo-
philic species of the Ancylonema lineage but have been
observed in several other zygnematophytes that colonize
habitats of increased solar radiation (e.g., sun-exposed
dead wood, ground in heathlands and shallow high moun-
tain lakes). This includes members of lineage Meso-7
(Figure 6(c)), Cylindrocystis brebissonii f. cryophila (no
genetic information available) and the filamentous zygne-
matophytes Zygogonium ericetorum (Figure 6(d)) and
Temnogametum iztacalense (Figure 6(e)) (Aigner,
Remias, Karsten, Holzinger, & Bassi, 2013;
Garduifio-Solérzano et al., 2021; Nedbalova & Sklendr,
2008). Hence, the production of intracellular pigments
occurs in  several distinct lineages of the
Zygnematophyceae (Figure 2), and differences in colour
(red-brown vs. purple) indicate variations in chemical
structure and physical properties. In fact, the purple pig-
ment of Zygogonium ericetorum might be a highly
branched polymer of glucose with traces of ester-linked
polyphenolic moieties (e.g., gallic acid) that form
a colourful complex with ferric iron (Newsome & van
Breemen, 2012). In addition, Holzinger et al. (2010)
detected two water-soluble compounds that mainly absorb
UV light, suggesting that the chemical photoprotection of
zygnematophytes can be composed of several compounds.

Another sunscreen strategy, which appears to be
unique among zygnematophytes, is found in the
genus Serritaenia. These algae produce mucilaginous
capsules with an extracellular, insoluble pigment that
may function as external sunscreen (Figure 6(f)). The
pigmented mucilage occupies a perfect position to
shade the entire cell and was shown to effectively
absorb over the UV-vis range, with a peak at about
300 nm (Busch & Hess, 2021). The synthesis of
Serritaenia’s sunscreen mucilage is not constitutive
and can be specifically induced by UVB radiation
under laboratory conditions. The colouration of the
mucilage varies in nature (bright red, brown, black
and blue), which is (partially) influenced by the pH
value of the surrounding medium. All Serritaenia
species tested so far produce blueish mucilage under
our culture conditions. The chemical structure of the
pigment involved is as yet unknown.

All three photoprotective strategies found in the zyg-
nematophytes (chloroplast movements, intracellular
and extracellular pigments) provide interesting analo-
gies to phenomena known from land plants, e.g., chlor-
oplast avoidance movement (Kasahara et al., 2002),
vacuolar anthocyanins (Steyn, Wand, Holcroft, &
Jacobs, 2002) and cell walls with potentially photopro-
tective pigments (Hooijmaijers & Gould, 2007;
Martensson & Nilsson, 1974). Yet, most of the cellular
and biochemical background of such adaptations in
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zygnematophytes is still unresolved, and the unicellular
Mesotaenium-like zygnematophytes might be useful
laboratory models for future research.

Perspectives for future research

The available cultures of diverse Mesotaenium-like zyg-
nematophytes enable various experimental studies.
Ecophysiological comparisons concerning light prefer-
ences, freezing and drought tolerance may provide
explanations for the unexpected diversity of these other-
wise inconspicuous algae. A very obvious difference
between the lineages is the varying propensity to form
extracellular mucilage and the varying properties of the
latter (e.g., confluent, capsular, hierarchical layers and
terminal mucilage pillows). The mucilaginous, extracel-
lular polymers of zygnematophytes have mainly been
studied in Penium, Micrasterias, Netrium and several
filamentous forms (e.g., Domozych, 2014; Eder & Liitz-
Meindl, 2010; Eder & Liitz-Meindl, 2008; Palacio-Lopez,
Tinaz, Holzinger, & Domozych, 2019; Pfeifer et al,,
2021), leaving the exopolymers of unicellular, terrestrial
zygnematophytes biochemically unexplored. The
sophisticated experiments performed on the studied
zygnematophytes already revealed how complex the
extracellular polymers of these algae are, containing
pectic substances, hemicelluloses, arabinogalactan-
proteins and rhamnogalactan proteins (Domozych
et al., 2014; Palacio-Lépez, Tinaz, Holzinger, &
Domozych, 2019; Pfeifer et al., 2021; Serensen et al.,
2011 and references therein). It would certainly be
very interesting to extend such studies to some terres-
trial members of the Mesotaenium-like algae.

Despite the numerous phylogenetic studies performed
on zygnematophytes, the deeper branches of this algal
class are still unresolved (e.g., Gontcharov, 2008; Hall,
Karol, McCourt, & Delwiche, 2008). In addition, we
demonstrated that with manageable effort, one can find
zygnematophycean lineages that have not been detected
before. To better understand the evolution of the zygne-
matophytes, we need increased sampling and cultivation
(including cells that look similar to known strains/spe-
cies) as well as genomic or transcriptomic data from all
relevant lineages. The latter can be used for multigene
phylogenies, which, hopefully, will better resolve the
branching pattern of major zygnematophycean clades in
the future. At the moment, such data from Mesotaenium-
like zygnematophytes are still scarce, limited to four out
of 12 lineages (Serritaenia, Meso-2, Meso-9 and Meso-10;
see stars in Figure 2). However, next-generation sequen-
cing data from additional lineages are in progress.

The in-depth analysis of genomic and transcrip-
tomic data also provides information on molecular
innovations that might relate to major evolutionary
transitions. The genomic analysis of strain SAG 12.97
(lineage Meso-2), for example, revealed expanded
orthogroups that likely evolved in the common ances-
tor of the zygnematophytes and land plants. This
includes genes for transcription factors, phytohor-
mone signalling and genes involved in the biosynth-
esis and remodelling of the cell wall (Cheng et al.,
2019). An interesting gene expansion was discovered
for the GRAS transcription factor family, with
a potential origin from soil bacteria by horizontal
gene transfer (Cheng et al., 2019). Another interesting
example is small RNA pathway-related genes that
possibly contribute to pathogen defence and antibac-
terial immunity, a topic poorly explored in unicellular
algae (Wang et al,, 2021). To really understand the
evolution of such mechanisms, dense genomic sam-
pling at a phylogenetic level will be essential. Hence,
biodiversity exploration is crucial, including incon-
spicuous life forms such as desmids of the
Mesotaenium-type.
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A mesophilic relative of common glacier algae,
Ancylonema palustre sp. nov., provides insights into the
induction of vacuolar pigments in zygnematophytes

Under review in Environmental Microbiology
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Abstract

The zygnematophyte green algae of the genus Ancylonema are common colonizers of glaciers in several
distinct regions around the globe. In their natural habitat they exhibit a remarkable reddish-brown
pigmentation due to vacuolar compounds related to gallic acid. Blooms of these algae result in glacier
darkening and enhanced melting rates. The currently known Ancylonema species are true psychrophiles,
which impairs experimental work and limits our functional understanding of these algae. For example,
the biosynthesis, inducing factors and biological function of Ancylonema’s secondary pigments are not
known. Here, we report a mesophilic Ancylonema species, A. palustre sp.nov. from temperate
moorlands, which forms the sister lineage to all known psychrophilic strains. Despite its morphological
resemblance to the latter, it shows unique autecological and photophysiological characteristics, and let
us describe vegetative and sexual cellular processes in great detail. Furthermore, we experimentally
tested for abiotic factors that induce the secondary pigments of zygnematophytes and found that low
nutrient conditions combined with ultraviolet B radiation result in vacuolar pigmentation, indicating a
sunscreening function. Our well-growing, bacteria-free cultures of 4. palustre will facilitate
comparative genomic studies of meso- and extremophilic zygnematophytes and might hold the key in

understanding how Ancylonema species colonized the worlds glaciers.

Key words: Conjugatophyceae, peat bog, phenolic compounds, photoprotection, streptophyte algae,
UV radiation, Zygnematophyceae
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Introduction

The conjugating green algae (Zygnematophyceae) comprise about 4,000 described species with rather
simple growth forms, ranging from non-flagellated unicells to filaments (Brook & Williamson, 2010;
Coesel & Meesters, 2007; Hall & McCourt, 2015). As revealed by several phylogenomic studies, these
algae are the closest relatives of the land plants and hence important research subjects to understand the
transition from aquatic to terrestrial life (Timme et al., 2012; Wickett et al., 2014; Wodniok et al., 2011).
Of particular interest are physiological adaptations to terrestrial conditions that potentially predated the
origin of the land plants and thereby facilitated their evolution (de Vries et al., 2017, 2020; Fiirst-Jansen
etal., 2020). Most zygnematophytes thrive in freshwater-fed systems of various trophic levels, including
ponds, lakes and moorlands. However, some lineages colonize more extreme habitats such as rock
surfaces, deadwood, tree bark, and even glacial ice (Busch & Hess, 2022a; Remias et al., 2009). Only
very few known zygnematophytes adapted to the freezing temperatures and high solar radiation existent
on glaciers. The two most widespread zygnematophyte species inhabiting such extreme habitats are
Ancylonema nordenskioeldii and A. alaskanum (Prochézkova et al., 2021). They have been found on
glaciers of the European Alps, Greenland, Alaska, Svalbard, the Altai Mountains, the Himalaya and
Antarctica (Kol, 1942; Ling & Seppelt, 1990; Remias et al., 2009; Takeuchi, 2001; Takeuchi et al., 2006,
2019; Williamson et al., 2018; Yoshimura et al., 1997), and occasionally grow at high densities. In the
recent years, glacier algae gained much attention, since their blooms have detrimental effects on glaciers.
A dark cover of algal cells, anthropogenic black carbon and mineral debris reduces the albedo of glacial
ice surfaces, absorbs solar radiation and thereby accelerates glacial melting during summer (Cook et al.,
2020; Stibal et al., 2017; Williamson et al., 2018, 2019; Yallop et al., 2012). The coloration caused by
Ancylonema blooms results, in part, from reddish-brown, non-photosynthetic pigments, which
accumulate in vacuoles of the algal cells (Remias et al., 2009). These secondary pigments are of phenolic
origin, and a main compound from A. alaskanum was previously identified as purpurogallin carboxylic
acid-6-O-B-d-glucopyranoside, which shows a broad absorbance the UV-VIS portion of sunlight
(Remias, Schwaiger, et al., 2012). In the natural habitat, these phenolics equip the algal cells with a
remarkable, dark brown coloration. Hence, several biological functions of Ancylonema’s secondary
pigments have been proposed, including a function as sunscreen, chemical defense agent, and ice-
melting agent (Remias, Schwaiger, et al., 2012). A photoprotective function seems most likely, as these
compounds very effectively absorb UVR and VIS and are supposed to shade the low-light-adapted
chloroplasts (Williamson et al., 2020). However, this hypothesis was never experimentally tested as the
psychrophilic nature of the known Ancylonema species is a hurdle for experimental research. The
recently established cultures depend on low temperatures (< 5 °C), grow very slowly and are not axenic
(Jensen et al., 2023; Remias & Prochazkova, 2023). So far, we lack any knowledge about the
biosynthetic pathway of intracellular pigments of zygnematophytes and the environmental factors that

trigger their biosynthesis.
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In the temperate moorlands of Germany, we discovered mesophilic Ancylonema strains, which
showed a remarkable resemblance to their psychrophilic relatives, including the reddish-brown
intracellular pigmentation. We established well-growing, axenic cultures, which were used to pinpoint
the evolutionary origin of these algae by molecular phylogenetics, and to characterize the vegetative cell
cycle and sexual processes, including zygospore formation. Furthermore, we studied the photosynthetic
performance of the mesophilic strains and tested abiotic factors (nutrient conditions, light regimes) for
their effect on the biosynthesis of secondary pigments. Overall, this is the first report and detailed
characterization of a mesophilic Ancylonema species, here described as A. palustre sp. nov., setting the

ground for future comparative genomic and ecophysiological studies.

Experimental procedures

Collection and cultivation of algae

Natural samples were collected at two moorlands in Germany (see Table S1 for detailed sampling
information) and screened for algal cells. Single cells were isolated with a micropipette under visual
control with a Motic AE2000 inverted microscope (Motic, Hong Kong), washed in sterile water, and
transferred into the liquid growth medium Waris-H (McFadden & Melkonian, 1986). The isolated cells
were incubated at low, artificial light from white LEDs (< 30 pmol photons m? s), which resulted in
well grown cultures. These cultures were used to establish bacteria-free strains by spray-plating as
previously described (Busch & Hess, 2022a). The bacteria-free cultures were grown at 15 °C under a
14/10 h light/dark cycle with a photon fluence rate of about 30 umol photons m? s photosynthetically
active radiation (PAR) supplied by LinearZ SunLike LEDs (5700 K, Lumitronix, Hechingen; see Figure
1A for spectral power distribution). The established algal strains, N3 and V5, are available through the
senior author (S.H.) of this study.

Light and scanning electron microscopy

Time-lapse microscopy and photodocumentation of experimental cultures were done with the Motic
AE2000 inverted microscope (Motic, Hong Kong) equipped with a MikroLive 6.4MP CMOS camera
(MikroLive, Oppenau). For high-resolution imaging, the Zeiss Axio Observer inverted microscope
equipped with the objective lenses Plan-Neofluar 40%/1.3 and Plan-Neofluar 100%/1.3 and the Axiocam
512 color (Carl Zeiss, Oberkochen) was used. For scanning electron microscopy, cells were collected
by sedimentation, fixed with 2.5% glutaraldehyde and 1% osmium tetroxide in MT buffer (30 mM
HEPES, 15 mM KCl, 5 mM EGTA, 5 mMMgSO04, pH 7), dehydrated in a graded series of ethanol:water
mixtures, transferred into hexamethyldisilazane, and finally dried in the fume hood as previously
described (Moye et al., 2022). The dry samples were sputter-coated with gold and examined with a
ZEISS Neon 40 scanning electron microscope at 2.5 kV acceleration voltage (Carl Zeiss, Oberkochen).

Brightness and contrast of micrographs were adjusted with Photoshop CS4 (Adobe Inc., Dublin).

108



Chapter IV: Vacuolar pigments in Ancylonema palustre

DNA sequencing, alignment and molecular phylogenetics

Algal material from 15 ml of an axenic culture was collected by centrifugation (500 g, 10 min), washed
twice with sterile, ultrapure water, and again collected by centrifugation. The resulting pellet was snap
frozen in liquid nitrogen and lyophilized with the freeze-drying system BETA 1-8 LD plus (Christ,
Osterode am Harz). Twenty SiLibeads Type ZY 6.0 of about 3 mm (Sigmund Lindner GmbH,
Warmensteinach) were added to each sample, followed by mechanical lysis of the freeze-dried cells in
a TissueLyser II (QIAGEN, Hilden). The samples were subjected to two minutes of shaking with a
frequency of 30 min'. To extract DNA, the samples were further processed with the DNeasy
PowerLyzer PowerSoil Kit (QIAGEN, Hilden) according to the manufacturer’s instructions. The
chloroplast encoded gene for the RuBisCO large subunit (rbcL) was amplified by a semi-nested PCR
with the primers MaGolF, MaGo2F and MaGo3R as previously described (Busch & Hess, 2022a;
Gontcharov et al., 2004). The nucleus-encoded gene for the 18S rRNA was amplified with the universal
eukaryotic primers EukA and EukB (without terminal polylinker; (Medlin et al., 1988)) after the
following protocol: initial denaturation (95 °C, 180 s), followed by 35 cycles of denaturation (95 °C, 45
s), annealing (55 °C, 60 s), and elongation (72 °C, 180 s). All PCRs were done with the Taqg DNA
Polymerase (Invitrogen, Waltham, MA, USA) according to the manufacturers protocol. The PCR
products were subjected to commercial Sanger sequencing (Eurofins Genomics, Ebersberg) with the
primers MaGo2F and MaGo3R (rbcL gene) and EukA and EukB (18S rRNA gene). The nearly complete
rbcL and 18S rRNA gene sequences were assembled from two overlapping reads using the AlignIR™
2.0 software (LI-COR Biosciences, Lincoln, US) and deposited at GenBank
(https://www.ncbi.nlm.nih.gov/genbank/) under the accessions PP555606, PP555607, PP555608 (rbcL
gene) and PP544794, PP544795 (18S rRNA gene). The sequences were manually aligned with available
gene sequences of other Zygnematophyceae using the SeaView 4.5.4 alignment editor (Galtier et al.,
1996; Gouy et al., 2010). For the rbcL gene, we used an existent alignment (Busch & Hess, 2022a),
while 18S rRNA gene sequences were retrieved from the National Center for Biotechnology Information
(https://www.ncbi.nlm.nih.gov/). This resulted in two final datasets: (1) 35 zygnematophycean rbcL
gene sequences with 1,290 sites, (2) 15 zygnematophycean 18S rRNA gene sequences with 1,675 sites.
They were subjected to phylogenetic inferences with maximum likelihood (ML), neighbour joining (NJ)
and maximum parsimony (MP) methods using the MEGA11 software (Tamura et al., 2021). The ML
analyses were done with the GTR+I+G model (discrete Gamma distribution; 5 categories), NJ analyses
with the P-distance model with the “partial deletion” option, and MP analyses with the Subtree-pruning-
regrafting (SPR) algorithm. To assess statistical support of the branches, we performed 1,000 bootstrap
repetitions for every analysis and added the resulting values to the ML topology shown in the results
and the supplements. A pairwise distance analysis of six selected rbcLL gene sequences was performed
with 1,304 sites. All codon positions were included, but ambiguous positions were removed for each

sequence pair (pairwise deletion option).
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Pulse—amplitude modulated fluorometry

Cells of strains N3 and V5 were grown in Waris-H medium under the standard culturing conditions (see
above) and then acclimated to two light conditions (12/12 h light/dark cycle), here termed “low light”
(PAR: 19-22 pumol photons m? s, UVA: 0.05-0.06 W m, UVB: 0.005-0.006 W m™) and “high light”
(PAR: 140-170 pmol photons m™? s, UVA: 0.3 W m™, UVB 0.02-0.03 W m™) for one week. During
acclimatization the cells were kept at 15 °C and agitated by shaking at 150 rpm. After harvest by
sedimentation, the cells were subjected to pulse—amplitude modulated fluorometry with a Walz PAM
2500 in a KS-2500 suspension cuvette (0.4 ml) at 15 °C. To determine the relative electron transport
rates (TETR) of photosystem II, the apparent quantum yield for electron transport (o) and the light
saturation point (Ix), we performed rapid light curve (RLC) measurements with photon flux densities
(PFD) of 5, 34, 67, 104, 201, 366, 622, 984, 1389, 1666 and 2018 umol photons m 2 s! for 30 s each.
For each density, four independent replicates were measured. Data analysis was done as previously

described (Prochazkova et al., 2018).

High PAR treatments

Algal material (strain N3) was suspended in fresh KW medium (see Table S2 for recipe) and distributed
to 35 mm suspension tissue culture dishes (Sarstedt, Niimbrecht). The cells were then exposed to the
SunLike high-power LED (5,000 K, 50 W, Seoul Semiconductor, Ansan) in a 14/10 h light/dark cycle
(see Figure 1B for spectral power distribution). Different irradiance settings (100-1,300 pmol photons
m? ™) were realized by adjusting the distance to the lamp. The algal cells were observed and photo-
documented over at least 14 days. PAR irradiance was measured with the MQ-500 Full-Spectrum
Quantum Sensor (Apogee Instruments Inc., Utah) through the lids of the used Petri dishes. The

experiments were done in triplicates.

UVR treatments

Algal material (strain N3) was suspended in fresh KW medium (see Table S2 for recipe) and distributed
to 100 mm tissue culture dishes (VWR international, Darmstadt). The “UVA treatment” was achieved
with the TL-D Blacklight Blue fluorescent tube lamp (18 W, Philips, Hamburg), the “UVB treatment”
with the UVB Broad Band TL (20 W, Phillips, Hamburg). For both treatments, cells were exposed for
4 h during the light phase of a 14/10 h light/dark cycle with PAR emitted by LinearZ SunLike LEDs
(5,700K, Lumitronix, Hechingen) (see Figure 1C,D for spectral power distribution). Different irradiance
settings (1-8 W m™ for UVA, 0.2-2.0 W m™ for UVB) were realized by adjusting the distance to the
lamps. The algal cells were observed and photo-documented over at least 14 days. UVA and UVB
irradiances were measured with the digital UV radiometers Solarmeter® Model 4.2 and Solarmeter®
Model 6.2, respectively (Solar Light Company Inc., Pennsylvania) through the lids of the Petri dishes.

The experiments were done in triplicates.

Nutrient limitation treatments
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We designed three variations of the KW medium, which were limited in nitrate (-N), phosphate (-P) or
both (-P-N) (see Table S2 for recipes). Well-growing material of strain N3 was suspended in these
media, distributed in six-well tissue culture plates (VWR international, Darmstadt), and subjected to
different light regimes. The latter included a treatment with moderate/high PAR (200 pmol photons m*
251, UVA at 8 W m?, and UVB at 0.6 W m™ (selected on the basis of our previous experiments with
varying irradiances). The experiments were done in triplicates and cells were photo-documented over at

least 14 days.

Results

Habitat characteristics and natural material

Two monoclonal and axenic strains of Ancylonema palustre (N3 and V5) were established in this study.
Both strains derive from moorlands in western Germany (Figure 2A). The strain N3 was isolated from
squeezed Sphagnum moss of a waterlogged area in the spring bog of Neuenhéhnen, Waldbrél, Germany
(Figure 2B,C). The strain V5 was found in the organic, oxygenated sediment of a shallow bog pond with
acidic, brown water, close to a disturbed raised bog system of the moorland Grofles Veen, Hamminkeln,
Germany (Figure 2D). Cells from this site displayed reddish-brown cytoplasm (Figure 2E), which was
lost during cultivation. The climate of both sampling sites is temperate/oceanic (annual temperature
average: Neuenhdhnen 9.4 °C, Hamminkeln 10.8 °C) with considerable rainfall (>850 mm/year),
classified as Ctb after Koppen (Geiger, 1954).

Morphology and cell division

Vegetative cells from laboratory cultures were bright green and rod-shaped with rounded cell poles
(Figure 3A). Cells of both strains were very similar in size, with a cell width of around 7 um and a cell
length ranging from 16 to 34 pm (n=100, see Figure S1 for boxplots). While the cell width appeared to
be relatively uniform, the cell length varied considerably due to cell growth between cell divisions. At
interphase, each cell contained a single nucleus of about 3.6 pm in diameter (n=40) with a spherical
nucleolus of about 1.7 um (n=40). The nucleus was located in the cell’s center between two chloroplasts
(Figure 3A,B). These chloroplasts were mostly parietal and shovel-shaped with smooth margins, and
there was no sign of a connecting bridge between them (Figure 3B). Each of the chloroplasts typically
contained a single, circular or slightly elliptic pyrenoid of about 2.5 pm in diameter (n=80; Figure 3B).
Only rarely, we observed additional smaller pyrenoids. Time-lapse microscopy revealed the sequence
of cellular events during the cell cycle (Figure 3C, Movie S1). The cell division started with the
duplication of the pyrenoids, which was followed by nuclear division (Figure 3D, stages 1-3). The two
new nuclei then migrated into the cell’s halves and subsequently a cross wall was formed in the center
of the cell, starting with an increased vesicle movement (Figure 3D, stages 4, 5). Once the cross wall
became more defined, the chloroplasts started to divide. The nearly synchronous divisions of the cell

and the chloroplasts resulted in two firmly attached daughter cells with two chloroplasts each (Figure
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3D, stage 5). The daughter cells separated slowly and attained the typical rod-shaped morphology by
subsequent longitudinal cell growth (Figure 3D, stages 6, 1). We did not observe any pronounced

formation of cell chains.

Molecular phylogeny

Figure 4A displays the best bcL gene phylogeny (ML topology) of the genus Ancylonema plus selected
outgroup lineages (Meso-4 — Meso-7 and Zygogonium ericetorum). Our new strains N3 and V5 are
closely related to an available rbcL sequence (FM992361) of an alga isolated from wet rock in a forest
of the Eifel, Germany (A. Gontscharov, pers. comm., no strain information available, Prochazkova et
al., 2021). This alga might be identical to an uncharacterized algal strain of the Central Collection of
Algal Cultures (CCAC2248), which was also sequenced in this study. Together, the four sequences of
mesophilic algae form a highly supported clade (100/100/99), whose members are here assigned to the
new species A. palustre. The A. palustre clade shows a sister relationship to the known sequences from
psychrophilic Ancylonema strains. This grouping is very robust as well (100/100/99), so that we include
the new, mesophilic strains in the genus Ancylonema. The subclade of psychrophilic representatives
contains sequences from recently established cultures (0Q222865, OQ584255- 0Q584267) as well as
from field material (0Q202166, MW922839, MW922839). They stem from the Greenland ice sheet
(violet circles) and the Alps (blue squares), and do not group according to their geographic origin. The
rbcL gene phylogeny further reveals that the sequence MW922840, previously assigned to the species
A. alaskanum (Prochazkova et al., 2021) is not identical or directly related to the cultivated 4. alaskanum
strain WP251 (Remias & Prochazkova, 2023). This points to some prevailing taxonomic problems
concerning the species concepts of 4. alaskanum and A. nordenskioeldii.

The mesophilic strains N3 and V5 showed only minor genetic differences in the rbcL gene.
Pairwise distance analysis revealed a difference < 0.5 % between the four A. palustre sequences, while
the genetic difference between these sequences and those of A. alaskanum (0Q222865) and A.
nordenskioeldii (MW922839) were 2.8 and 3 %, respectively (see Table S3 for details). Overall, we
recognize two genetically distinct subclades of the genus Ancylonema, which correlate with the
ecological preferences of the strains (psychrophilic vs. mesophilic). We also generated sequence data of
the 18S rRNA gene and inferred an 18S rRNA gene phylogeny. Even though the taxon sampling was
not as broad and the phylogenetic signal of the 18S rRNA gene relatively weak, we observed a split of

psychrophilic and mesophilic Ancylonema species in two subclades as well (Figure S2).

Photophysiology of laboratory cultures

For both strains (N3, V5), we collected rapid light curves of cells acclimated to “low light” and “high
light” conditions, respectively (Figure 4B,C). The maximum electron transport rate (ETRmax) was
markedly higher in the high light adapted cells, which also showed a slightly higher light saturation
point (Ix). The low-light utilization efficiency a ranged from 36 to 42 in both strains, with higher values
in low light adapted cells. Both strains showed signs of photoinhibition irrespective of the

acclimatization conditions. In strain N3 the onset of photoinhibition was at about 200 umol photons
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m? s, in strain V5 it was somewhat earlier at about 100 umol photons m?s™'. Overall, short-term
acclimatization of A. palustre cells to higher light conditions resulted in lower a, higher Ix and enhanced

ETRmax.

Cellular reactions to different light and nutrient conditions

Under our standard laboratory conditions (30 pmol photons m? s™'; 15 °C, Waris-H medium) the cells
of A. palustre lost their reddish-brown, intracellular pigmentation. However, in very old cultures we
observed the sporadic occurrence of slightly reddish cells, pointing to an effect of the nutrient
availability on the production of secondary pigments. Furthermore, it is already established that other
saccoderm desmids (Serritaenia spp.) can be triggered to form other dark sunscreen pigments
(extracellular) by experimental UVB exposure (Busch & Hess, 2022b). To test whether the production
of vacuolar pigments in A. palustre can be experimentally induced, we subjected cells of strain N3 to
different light and nutrient conditions.

The cells were exposed to three different spectral power distributions, termed “High PAR”,
“UVA” and “UVB” (Figure 1B-D), at varying irradiances, and showed distinct cellular reactions (Figure
5A-1). All three spectral ranges triggered the formation of vacuolar pigments (referred to as
“pigmentation” in the following) after two to seven days, but with very different effectiveness. While
high PAR (> 200 pmol photons m? s™) and UVA (> 1 W m™) resulted in very faintly pigmentated cells
(Figure 5C,F), UVB at > 0.2 W m™? led to a marked vacuolar pigmentation (Figure SH,I). The varying
extent of the dark pigmentation was confirmed with high resolution brightfield microscopy (Figure 6A-
C). Furthermore, we observed a significant shrinkage of the chloroplasts under very high PAR and UVB
conditions (Figure 5C,I). High PAR (> 500 pmol™” s') had clearly adverse effects on the cells, including
the deformation and bleaching of the chloroplasts, the formation of unusual pigment inclusions
(vacuoles of reddish-brown color), and cell death (Figure 5C). The formation of pigment inclusions was
also observed under very high UVA exposure (> 8 W m?, Figure S2).

Limitation of nitrate (-N) and phosphate (-P) in the culture medium showed clear effects on the
cells of 4. palustre under standard light conditions. While the absence of phosphate in the medium alone
did not have any visible effect on the cells (Figure 5J), nitrate limitation led to the formation of large
colorless globules within the cytoplasm (Figure 5K). The strongest effect was observed under combined
phosphate/nitrate limitation (-P-N), including the formation of colorless globules and reddish cytoplasm.
These effects were already apparent after four days of treatment, but increased further with time (Figure
5L,M). High resolution microscopy also revealed a pronounced shrinkage of the chloroplast under P-N-
limitation (Figure 6D).

Finally, we tested the cumulative effects of -P-N limitation and three light conditions that
triggered the intracellular pigments, but did not harm the cells (PAR: max. 200 pmol photons m™? s™,
UVA: max. 8 W m?, UVB: max. 0.6 W m?). All combinations led to pigmented cytoplasm (Figure 5N-
P), which was most intense under the UVA and UVB treatments. After 45 days of treatment, cells under

-P-N limitation and UVB exposure displayed strongly colored cytoplasm and relatively small but green
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chloroplasts, resembling the Ancylonema cells found in nature (Figures 5Q, 6E). Under all tested

conditions the intracellular secondary pigments had a reddish color.

Formation and morphology of zygospores

Under -N limitation and -P-N limitation both A. palustre strains formed roundish zygospores by
conjugation of monoclonal cells, leaving behind two empty parental cell walls (Figure 6F). These cell
walls exhibited a roundish hole with a dilatated margin of porous/fibrillar texture (Figure 6G). Mature
zygospores measured 13—-21 um (n=20) and had a multifaceted morphology with three discernible cell
walls (Figure 6H). The latter may correspond to the exo-, meso- and endospore of other
Zygnematophyceae (Permann et al., 2023). The inner zygospore wall (endospore) had a round outline
and tightly surrounded the protoplast, while the middle wall (mesospore) created the polyhedral
appearance by folds and/or ribs (Figure 6H). In scanning electron micrographs, it became apparent that
the polygonal faces of the zygospores were not flat but rather represented depressions (Figure 61). Most
of the zygospores were likely to have 12 faces, as most observed faces had five adjacent faces
(comparable to a dodecahedron). The surface of the polyhedral wall (mesospore) was granular due to
fine warts, but in many cases partially covered by a smooth, skin-like envelope, the potential exospore
(Figure 6J). This envelope appeared to be ruptured and displayed fairly long fibrils (potentially
cellulose) at the edges (Figure 6J, inset). Time-lapse microscopy of the zygospore maturation revealed
that the zygospores of A. palustre started as spherical cells with a smooth cell wall, which then increased
in thickness and was subsequently slightly deformed by another secondary cell wall (Figure 6K, Movie
S2). This secondary cell wall grew bigger and produced the polyhedral geometry of the zygospore. On
top of this secondary wall were some remains of a smooth cell wall, which may correspond to the
ruptured, skin-like layer observed in the scanning electron microscope. The formation of a third cell
wall, which tightly surrounds the spherical protoplast could not be captured very well, but this is likely

to be the last event during zygospore maturation (compare with Figure 6H).

Discussion

Until now, Ancylonema species have only been known from glacial ice (rarely snow) and represent the
best studied psychrophilic streptophyte algae. Hence, the discovery of mesophilic Ancylonema strains
from temperate moorlands raise the question of how they differ from the known species. From the
morphological point of view, they appear similar at first glance. Both the psychrophilic species (4.
alaskanum, A. nordenskioeldii) and the new mesophilic species form rod-shaped cells with rounded cell
poles, and contain shovel-shaped chloroplasts with smooth margins and circular pyrenoids. However,
our morphological analysis revealed distinct differences concerning the cell width, the number of
observed chloroplasts, conjugation and zygospore morphology. In the saccoderm desmids, the cell width
appears to be a relatively stable character of taxonomic significance. This character can differ between

genetically distinct strains, but was shown to remain unaltered in natural vs. cultivated material (Barcyté
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et al., 2020; Busch & Hess, 2022b). The new species 4. palustre is more slender than the cultivated
strain of 4. alaskanum (7 vs. 8,5 um) and the natural material of A. nordenskioeldii (>10 pm)
(Prochazkova et al., 2021; Remias & Prochazkova, 2023). Our time-lapse studies on 4. palustre revealed
that this species (in culture) has always two chloroplasts per cell throughout the cell cycle. This is
because the division of the chloroplasts coincides with the formation of a new cross wall. In natural and
cultivated material of A. alaskanum, cells with only one chloroplast have frequently been documented
(Prochazkova et al., 2021; Remias et al., 2009; Remias & Prochazkova, 2023). Of course, cell cycle
processes might be influenced by environmental conditions and future in-depth studies on cultivated
glacier species have to complete our picture. Under nutrient-poor conditions (esp. nitrate limitation), A.
palustre forms zygospores by conjugation of monoclonal cells, which exit the parent cell walls during
the process and form a spherical zygote. This effect of nitrate limitation is consistent with published
observations on other genera, e.g. Mesotaenium, Spirogyra, and Closterium (Hogetsu & Yokoyama,
1979; Tiflickjian & Raybum, 1986; Yamashita & Sasaki, 1979; Zwirn et al., 2013). The zygote of 4.
palustre develops into a zygospore with three cell wall layers, which correspond to the endo-, meso- and
exospore layers (Permann et al., 2023). The relatively thick mesospore of A. palustre exhibits a
remarkable multifaceted morphology, most closely resembling a dodecahedron. In some other species
(e.g. Spirogyra, Mougeotia) the mesospore was shown to contain lipids and aromatic compounds and is
thought to be responsible for the high resistance of zygospores against environmental factors (Permann
et al., 2022; Permann, Herburger, Felhofer, et al., 2021; Permann, Herburger, Niedermeier, et al., 2021).
Furthermore, the mesospore represents a defining character of taxonomic value, as it can vary in color
(e.g. brown, yellow, purple), shape and ornamentation depending on the species (Pichrtova et al., 2018;
Poulickova et al., 2007; Takano et al., 2019). As far as we know, mature zygospores have not been
documented for the psychrophilic Ancylonema species. However, Remias et al. (Remias, Holzinger, et
al., 2012) found conjugating 4. nordenskioeldii cells, which apparently do not exit the parent cells and,
thereby, produce more irregular zygotes with a prominent conjugation bridge. There is another account
for zygospores of psychrophilic Ancylonema strains from continental Antarctica (Ling & Seppelt, 1990).
These algae, referred to as “Mesotaenium berggrenii’, lack any genetic information and show a
conspicuous variation in cell sizes, potentially pointing to more than one species. In contrast to 4.
nordenskioeldii, the documented zygotes are spherical. As they have a smooth cell wall and no
discernible mesospore, they might be immature and further studies have yet to show whether these
psychrophilic strains form multifaceted mesospores similar to those of A. palustre.

The molecular phylogenies of two marker genes (rbcL, 18S rRNA) confirm the separation of
mesophilic and psychrophilic Ancylonema species, which form two distinct clades and show clear
genetic divergence in the rbcL gene (> 2.8%). Hence, we are confident in proposing a new species for
the three mesophilic Ancylonema strains (N3, V5, CCAC2248), accepting minor genetic differences (<
0.5%) among them, as we did not recognize any marked phenotypic differences. The taxonomic

situation in the psychrophilic clade appears to be more difficult. Both psychrophilic morphospecies 4.
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nordenskioeldii and A. alaskanum are part of a genetically shallow branch of sequences from
environmental samples and crude cultures, that still lack a sound taxonomic treatment (Jensen et al.,
2023). Furthermore, two separate isolates assigned to A. alaskanum occupy distinct positions, being
non-monophyletic (MW922840 and sequences of WP251). The sequences derived from the same
Austrian glacier, but were sampled in different years (2017 and 2020). Overall, the genetic variation
visible in the psychrophilic clade indicates that the actual diversity of these algae might be greater than
reasonably represented by only two described species. The morphological variability of Ancylonema
cells in the field, e.g. the range of cell width (4-12 pm) observed by different authors for cells assigned
to A. alaskanum (Remias et al., 2009), supports this hypothesis, and just recently Remias et al. (Remias
et al., 2023) recognized another undescribed species in glacier ice samples from Svalbard, the Alps of
Switzerland and Austria, and Sweden by environmental ITS2 sequencing (reference ITS2 sequence:
PP138441). We conclude that the genus Ancylonema probably hides more species than currently
recognized, which deserve to be characterized by integrative taxonomy and ecophysiological studies in
the future.

The strains of the two main Ancylonema clades occur in very different habitats. While glacial
habitats are characterized by low temperatures close to the freezing mark, moorlands (including ponds)
in the sampled zones can warm up considerably during summer (the maximum ambient temperatures in
these zones are well above 15 °C). This climatic difference is reflected by the preferred temperatures of
the available Ancylonema cultures. While A. alaskanum dies at temperatures above 10 °C (unpubl.
observation, D. Remias), 4. palustre grows well at 15 °C and higher. Furthermore, the two habitat types
differ strongly in the level of solar radiation experienced by the algae. The lower altitudes of the sampled
moorlands, potential shading by plants, debris and sediment, and absorbance by the water column
(especially when humic substances are present), should reduce light and UV irradiances considerably
(as compared to glacier surface habitats).

Our photophysiological measurements show that the two mesophilic Ancylonema strains (N3
and V5) reacted partly similar at higher irradiances, if grown under “low light” conditions: The onset of
photoinhibition (a decline in rETR) was noticed. This happened at relatively low light levels, when
compared to the Ancylonema strain from glacier ice (< 200 vs. 366 pmol photons m? s™'; (Remias &
Prochéazkova, 2023)). Consistently, a typical low-light (i.e. reduced I, increased alpha) or high-light
(i.e. increased Ik, reduced alpha) acclimation of the photosystems was noticed. There are, however,
significant differences between the photosynthetic performance of the glacier ice alga 4. alaskanum and
the two mesophilic strains, if grown under high light: First, the light saturation point of the psychrophile
was one magnitude higher (Ix=472; (Remias & Prochazkova, 2023)) when compared to the mesophiles.
Second, the psychrophile reached the highest rETR at very high light levels (tETR of 42 at 1500-2100
umol photons m? s'; (Remias & Prochazkova, 2023)). Third, the glacier ice alga showed very low
utilization efficiency at low light (alpha = 0.09; (Remias & Prochazkova, 2023)). In contrast, the

mesophiles showed no chlorophyll fluorescence from 1000 umol photons m™ s on, but were able to
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keep a high utilization efficiency at low light levels, irrespective of the acclimation conditions. Overall,
these differences indicate that Ancylonema strains from the two very different habitat types (moorlands
vs. glaciers) display pronounced ecological adaptations.

Interestingly, the mesophilic Anyclonema strains produce a secondary pigmentation, which is
surprisingly similar to that found in the glacier species. Based on the visual resemblance of the
pigmented cells and the phylogenetic proximity of the algae, we assume that the pigmentation is based
on the same or similar phenolic compounds as those detected in 4. alaskanum, namely purpurogallin
derivates (Remias, Schwaiger, et al., 2012). Even though a role of these substances as sunscreen is likely,
other functions have been proposed as well. For example, antimicrobial effects and a thawing function
through heat dissipation (Remias, Schwaiger, et al., 2012). Most of the currently known
zygnematophytes that produce striking intracellular pigments (e.g. Zygogonium ericetorum,
Temnogametum iztacalense, psychrophilic Ancylonema species) are either uncultivated or difficult to
grow, as they occur in extreme habitats in terms of temperature and/or nutrient composition (Aigner et
al., 2013; Gardufio-Soldérzano et al., 2021; Remias et al., 2009). Here, we used our well-growing cultures
of A. palustre to test for abiotic inducing factors of intracellular zygnematophycean pigments and found
that both nutrient availability and radiation influence the secondary pigment biosynthesis. It might seem
remarkable that -N-P limited conditions alone lead to a slight reddish pigmentation in 4. palustre (esp.
over longer periods of time), while this was not regularly observed in richer media (e.g. Waris-H).
However, the habitats of A. palustre were oligotrophic (strain N3) or dystrophic (strain V5), so that a
culture medium poor in nitrate and phosphate might better reflect natural nutrient conditions and favor
a close-to-natural metabolism — including the production of phenolic pigments. A very strong induction
was observed under ultraviolet radiation, in particular UVB, which suggests that the reddish-brown
pigments in Ancylonema are indeed specific reactions to harmful wavebands. Even though we cannot
exclude that the strong vacuolar pigmentation has other functions, especially in psychrophilic strains
(e.g. thawing agent to create liquid water), the occurrence of these pigments in mesophilic strains and
their induction by UVB support a primary function in photoprotection.

With these experiments we optimized the experimental production of the intracellular phenolics
of zygnematophytes and were able to create strongly pigmented cells with a close-to-natural phenotype
in the laboratory. This paves the way for molecular and analytical follow-up studies on how these
pigments are composed and synthetized. In particular, the application of genomic techniques, which
often depend on high cell numbers, will be applicable to A. palustre and may help to answer the question

of how psychrophiles evolved in one particular lineage of zygnematophytes.
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Taxonomy

Class Zygnematophyceae Round ex Guiry 2013

Genus Ancylonema Berggren, 1872

Ancylonema palustre sp. nov.

Description: Cells rod-shaped, 6-8 um wide and 16-34 um long, with rounded apices. Two parietal or
axial chloroplasts per cell, with smooth edges and a single more or less circular pyrenoid per chloroplast
of about 2.5 um. Nucleus vesicular, about 3.6 pm in diameter, often located in the cell’s center between
the chloroplasts, with spherical nucleolus of about 1.7 um. Cytoplasm colorless or reddish due to
secondary pigments. Zygospores form outside of parent cells, with three cell walls including a
multifaceted (dodecahedron-like), colorless mesospore, 13-21 um in diameter.

Etymology: The species name is derived from paluster (neuter palustre) [Latin] = living in the swamp;
referring to the natural habitat.

Type (here designated): Permanent slide with fixed material of strain N3 deposited in Herbarium
Berolinense (Botanic Garden and Botanical Museum Berlin), accession B 40 >>To be added after
review<<, locality: Neuenhdhnen, North Rhine-Westphalia, Germany; collected 2020, leg. S. Hess.
Reference sequence: PP555607 (rbcL gene sequence of strain N3).

PhycoBank ID: >>To be added after review<<

Acknowledgements

This work was funded by the German Research Foundation through the Emmy Noether program, grant
417585753, and the individual research grant 491244984, both to S.H. We acknowledge the permission
to sample in the Fauna-Flora-Habitat (FFH) Area “Quellmoor bei Neuenhihnen” granted by the
environmental office of the Oberberg district (Germany), and thank Ruth Bruker (University of
Cologne) for assistance with scanning electron microscopy. L.P. was supported by Charles University
Research Centre program No. UNCE/24/SCI/006 and acknowledges the Czech Science Foundation
(GACR), project 24-10019S. D.R. was supported by the Austrian Science Fund (FWF), grant P34073.

Author Contributions

Conceptualization: A.B., S.H.; investigation: all authors; writing — original draft: A.B.; writing — review

& editing: all authors; visualization: A.B., L.P.; funding acquisition: S.H.



Chapter IV: Vacuolar pigments in Ancylonema palustre

References

Aigner, S., Remias, D., Karsten, U., & Holzinger, A. (2013). Unusual phenolic compounds contribute
to ecophysiological performance in the purple-colored green alga Zygogonium ericetorum
(Zygnematophyceae, Streptophyta) from a high-alpine habitat. Journal of phycology, 49(4),
Article 4.

Barcyté, D., Pilatova, J., Mojzes, P., & Nedbalova, L. (2020). The arctic Cylindrocystis
(Zygnematophyceae, Streptophyta) green algae are genetically and morphologically diverse and
exhibit effective accumulation of polyphosphate. Journal of Phycology, 56(1), Article 1.

Brook, A. J., & Williamson, D. B. (2010). A monograph on some British desmids. The Ray Society.
London: UK, 364.

Busch, A., & Hess, S. (2022a). A diverse group of underappreciated zygnematophytes deserves in-depth
exploration. Applied Phycology, 1-18.

Busch, A., & Hess, S. (2022b). Sunscreen mucilage: A photoprotective adaptation found in terrestrial
green algae (Zygnematophyceae). FEuropean Journal of Phycology, 57(1), 107-124.
https://doi.org/10.1080/09670262.2021.1898677

Coesel, P. F. M., & Meesters, K. J. (2007). Desmids of the Lowlands: Mesotaeniaceae and
Desmidiaceae of the European Lowlands. BRILL.

Cook, J. M., Tedstone, A. J., Williamson, C., McCutcheon, J., Hodson, A. J., Dayal, A., Skiles, M.,
Hofer, S., Bryant, R., McAree, O., McGonigle, A., Ryan, J., Anesio, A. M., Irvine-Fynn, T. D.
L., Hubbard, A., Hanna, E., Flanner, M., Mayanna, S., Benning, L. G., ... Tranter, M. (2020).
Glacier algae accelerate melt rates on the south-western Greenland Ice Sheet. The Cryosphere,
14(1), 309-330. https://doi.org/10.5194/tc-14-309-2020

de Vries, J., de Vries, S., Curtis, B. A., Zhou, H., Penny, S., Feussner, K., Pinto, D. M., Steinert, M.,
Cohen, A. M., von Schwartzenberg, K., & Archibald, J. M. (2020). Heat stress response in the
closest algal relatives of land plants reveals conserved stress signaling circuits. The Plant
Journal, 103(3), 1025-1048. https://doi.org/10.1111/tpj.14782

de Vries, J., de Vries, S., Slamovits, C. H., Rose, L. E., & Archibald, J. M. (2017). How Embryophytic
is the Biosynthesis of Phenylpropanoids and their Derivatives in Streptophyte Algae? Plant and
Cell Physiology, 58(5), 934-945. https://doi.org/10.1093/pcp/pcx037

Fiirst-Jansen, J. M. R., de Vries, S., & de Vries, J. (2020). Evo-physio: On stress responses and the
earliest land plants. Jowrnal of Experimental Botany, 71(11), 3254-3269.
https://doi.org/10.1093/jxb/eraa007

Galtier, N., Gouy, M., & Gautier, C. (1996). SEAVIEW and PHYLO WIN: Two graphic tools for
sequence alignment and molecular phylogeny. Bioinformatics, 12(6), Article 6.

Gardufio-Solorzano, G., Martinez-Garcia, M., Scotta Hentschke, G., Lopes, G., Castelo Branco, R.,
Vasconcelos, V. M. O., Campos, J. E., Lopez-Cano, R., & Quintanar-Zuiiga, R. E. (2021). The
phylogenetic placement of Temnogametum (Zygnemataceae) and description of
Temnogametum iztacalense sp. Nov., from a tropical high mountain lake in Mexico. European
Journal of Phycology, 56(2), 159—173. https://doi.org/10.1080/09670262.2020.1789226

Geiger, R. (1954). Klassifikation der klimate nach W. Koéppen. In Landolt-Bornstein: Zahlenwerte und
Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik (Bd. 3, S. 603-607).
Springer.

Gontcharov, A. A., Marin, B., & Melkonian, M. (2004). Are combined analyses better than single gene
phylogenies? A case study using SSU rDNA and rbc L sequence comparisons in the
Zygnematophyceae (Streptophyta). Molecular biology and evolution, 21(3), Article 3.

Gouy, M., Guindon, S., & Gascuel, O. (2010). SeaView version 4: A multiplatform graphical user
interface for sequence alignment and phylogenetic tree building. Molecular biology and
evolution, 27(2), Article 2.

Hall, J. D., & McCourt, R. M. (2015). Chapter 9—Conjugating Green Algae Including Desmids. In J.
D. Wehr, R. G. Sheath, & J. P. Kociolek (Hrsg.), Freshwater Algae of North America (Second
Edition) (S. 429—-457). Academic Press. https://doi.org/10.1016/B978-0-12-385876-4.00009-8

Hogetsu, T., & Yokoyama, M. (1979). Light, a nitrogen-depleted medium and cell-cell interaction in
the conjugation process of Closterium ehrenbergii Meneghini. Plant and Cell Physiology, 20(4),
811-817. https://doi.org/10.1093/oxfordjournals.pcp.a075873

119



Chapter IV: Vacuolar pigments in Ancylonema palustre

Jensen, M. B., Perini, L., Halbach, L., Jakobsen, H., Haraguchi, L., Ribeiro, S., Tranter, M., Benning,
L. G., & Anesio, A. M. (2023). The dark art of cultivating glacier ice algae. Botany Letters,
0(0), 1-10. https://doi.org/10.1080/23818107.2023.2248235

Kol, E. (1942). The Snow and ice algae of Alaska. THE SMITHSONIAN INSTITUTION, 101(16).

Ling, H. U., & Seppelt, R. D. (1990). Snow algae of the Windmill Islands, continental Antarctica.
Mesotaenium berggrenii (Zygnematales, Chlorophyta) the alga of grey snow. Antarctic Science,
2(2), Article 2. https://doi.org/10.1017/S0954102090000189

McFadden, G. 1., & Melkonian, M. (1986). Use of Hepes buffer for microalgal culture media and
fixation for electron microscopy. Phycologia, 25(4), Article 4.

Medlin, L., Elwood, H. J., Stickel, S., & Sogin, M. L. (1988). The characterization of enzymatically
amplified eukaryotic 16S-like rRNA-coding regions. Gene, 71(2), 491-499.
https://doi.org/10.1016/0378-1119(88)90066-2

Moye, J., Schenk, T., & Hess, S. (2022). Experimental evidence for enzymatic cell wall dissolution in a
microbial protoplast feeder (Orciraptor agilis, Viridiraptoridae). BMC Biology, 20(1), 267.
https://doi.org/10.1186/s12915-022-01478-x

Permann, C., Gierlinger, N., & Holzinger, A. (2022). Zygospores of the green alga Spirogyra: New
insights from structural and chemical imaging. Frontiers in Plant Science, 13.
https://doi.org/10.3389/1pls.2022.1080111

Permann, C., Herburger, K., Felhofer, M., Gierlinger, N., Lewis, L. A., & Holzinger, A. (2021).
Induction of Conjugation and Zygospore Cell Wall Characteristics in the Alpine Spirogyra
mirabilis (Zygnematophyceae, Charophyta): Advantage under Climate Change Scenarios?
Plants, 10(8), Article 8. https://doi.org/10.3390/plants 10081740

Permann, C., Herburger, K., Niedermeier, M., Felhofer, M., Gierlinger, N., & Holzinger, A. (2021). Cell
wall characteristics during sexual reproduction of Mougeotia sp. (Zygnematophyceae) revealed
by electron microscopy, glycan microarrays and RAMAN spectroscopy. Protoplasma, 258(6),
1261-1275. https://doi.org/10.1007/s00709-021-01659-5

Permann, C., Pichrtova, M., Soljakova, T., Herburger, K., Jouneau, P.-H., Uwizeye, C., Falconet, D.,
Marechal, E., & Holzinger, A. (2023). 3D-reconstructions of zygospores in Zygnema vaginatum
(Charophyta) reveal details of cell wall formation, suggesting adaptations to extreme habitats.
Physiologia Plantarum, 175(4), €13988. https://doi.org/10.1111/ppl.13988

Pichrtova, M., Holzinger, A., Kulichova, J., RySanek, D., Soljakové, T., Trumhova, K., & Nemcova, Y.
(2018). Molecular and morphological diversity of Zygnema and Zygnemopsis
(Zygnematophyceae, Streptophyta) from Svalbard (high Arctic). European journal of
phycology, 53(4), Article 4.

Pouli¢kova, A., Zizka, Z., Hasler, P., & Benada, O. (2007). Zygnematalean zygospores: Morphological
features and use in species identification. Folia Microbiologica, 52(2), 135-145.
https://doi.org/10.1007/BF02932152

Prochazkova, L., Remias, D., Rezanka, T., & Nedbalova, L. (2018). Chloromonas nivalis subsp. tatrae,
subsp. nov. (Chlamydomonadales, Chlorophyta): Re—examination of a snow alga from the High
Tatra Mountains (Slovakia). Fottea (Praha), 18(1), 1-18. https://doi.org/10.5507/f0t.2017.010

Prochazkova, L., Rezanka, T., Nedbalova, L., & Remias, D. (2021). Unicellular versus Filamentous:
The Glacial Alga Ancylonema alaskana comb. et stat. nov. and Its Ecophysiological Relatedness
to Ancylonema nordenskioeldii (Zygnematophyceae, Streptophyta). Microorganisms, 9(5),
Article 5. https://doi.org/10.3390/microorganisms9051103

Remias, D., Holzinger, A., Aigner, S., & Liitz, C. (2012). Ecophysiology and ultrastructure of
Ancylonema nordenskioldii (Zygnematales, Streptophyta), causing brown ice on glaciers in
Svalbard (high arctic). Polar Biology, 35(6), Article 6.

Remias, D., Holzinger, A., & Liitz, C. (2009). Physiology, ultrastructure and habitat of the ice alga
Mesotaenium berggrenii (Zygnemaphyceae, Chlorophyta) from glaciers in the European Alps.
Phycologia, 48(4), Article 4. https://doi.org/10.2216/08-13.1

Remias, D., & Prochazkova, L. (2023). The first cultivation of the glacier ice alga Ancylonema
alaskanum (Zygnematophyceae, Streptophyta): Differences in morphology and
photophysiology of field vs laboratory strain cells. Journal of Glaciology, 69(276), 1080—1084.
https://doi.org/10.1017/jog.2023.22

Remias, D., Prochazkova, L., Nedbalova, L., Benning, L. G., & Lutz, S. (2023). Novel insights in cryptic
diversity of snow and glacier ice algae communities combining 18S rRNA gene and ITS2

120



Chapter IV: Vacuolar pigments in Ancylonema palustre

amplicon sequencing. FEMS  Microbiology Ecology, 99(12), fiad134.
https://doi.org/10.1093/femsec/fiad134

Remias, D., Schwaiger, S., Aigner, S., Leya, T., Stuppner, H., & Liitz, C. (2012). Characterization of an
UV-and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly
abundant in M esotaenium berggrenii (Z ygnematophyceae, Chlorophyta), an extremophyte
living on glaciers. FEMS microbiology ecology, 79(3), Article 3.

Stibal, M., Box, J. E., Cameron, K. A., Langen, P. L., Yallop, M. L., Mottram, R. H., Khan, A. L.,
Molotch, N. P., Chrismas, N. A. M., Cali Quaglia, F., Remias, D., Smeets, C. J. P. P., van den
Broeke, M. R., Ryan, J. C., Hubbard, A., Tranter, M., van As, D., & Ahlstrem, A. P. (2017).
Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet. Geophysical
Research Letters, 44(22), 11,463-11,471. https://doi.org/10.1002/2017GL075958

Takano, T., Higuchi, S., Ikegaya, H., Matsuzaki, R., Kawachi, M., Takahashi, F., & Nozaki, H. (2019).
Identification of 13 Spirogyra species (Zygnemataceae) by traits of sexual reproduction induced
under laboratory culture conditions. Scientific reports, 9(1), Article 1.

Takeuchi, N. (2001). The altitudinal distribution of snow algae on an Alaska glacier (Gulkana Glacier
in the Alaska Range). Hydrological ~ Processes, 15(18), 3447-3459.
https://doi.org/10.1002/hyp.1040

Takeuchi, N., Tanaka, S., Konno, Y., Irvine-Fynn, T. D. L., Rassner, S. M. E., & Edwards, A. (2019).
Variations in Phototroph Communities on the Ablating Bare-Ice Surface of Glaciers on
Broggerhalvoya, Svalbard. Frontiers in Earth Science, 7.
https://doi.org/10.3389/feart.2019.00004

Takeuchi, N., Uetake, J., Fujita, K., Aizen, V. B., & Nikitin, S. D. (2006). A snow algal community on
Akkem glacier in the Russian Altai mountains. Annals of Glaciology, 43, 378-384.
https://doi.org/10.3189/172756406781812113

Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis
Version 11. Molecular Biology and Evolution, 38(7), 3022-3027.
https://doi.org/10.1093/molbev/msab120

Tiflickjian, J. D., & Raybum, W. R. (1986). Nutritional Requirements for Sexual Reproduction in
Mesotaenium  Kramstai  (chlorophyta) 1. Journal of Phycology, 22(1), 1-8.
https://doi.org/10.1111/5.1529-8817.1986.tb02508.x

Timme, R. E., Bachvaroff, T. R., & Delwiche, C. F. (2012). Broad phylogenomic sampling and the sister
lineage of land plants. PLoS one, 7(1), Article 1.

Walsby, A. E. (1997). Modelling the daily integral of photosynthesis by phytoplankton: Its dependence
on the mean depth of the population. Hydrobiologia, 349(1), 65-74.
https://doi.org/10.1023/A:1003045528581

Wickett, N. J., Mirarab, S., Nguyen, N., Warnow, T., Carpenter, E., Matasci, N., Ayyampalayam, S.,
Barker, M. S., Burleigh, J. G., & Gitzendanner, M. A. (2014). Phylotranscriptomic analysis of
the origin and early diversification of land plants. Proceedings of the National Academy of
Sciences, 111(45), Article 45.

Williamson, C. J., Anesio, A. M., Cook, J., Tedstone, A., Poniecka, E., Holland, A., Fagan, D., Tranter,
M., & Yallop, M. L. (2018). Ice algal bloom development on the surface of the Greenland Ice
Sheet. FEMS Microbiology Ecology, 94(3), fiy025. https://doi.org/10.1093/femsec/fiy025

Williamson, C. J., Cameron, K. A., Cook, J. M., Zarsky, J. D., Stibal, M., & Edwards, A. (2019). Glacier
Algae: A Dark Past and a Darker Future. Frontiers in Microbiology, 10.
https://doi.org/10.3389/fmicb.2019.00524

Williamson, C. J., Cook, J., Tedstone, A., Yallop, M., McCutcheon, J., Poniecka, E., Campbell, D.,
Irvine-Fynn, T., McQuaid, J., Tranter, M., Perkins, R., & Anesio, A. (2020). Algal
photophysiology drives darkening and melt of the Greenland Ice Sheet. Proceedings of the
National Academy of Sciences, 117(11), 5694-5705. https://doi.org/10.1073/pnas. 1918412117

Wodniok, S., Brinkmann, H., Gléckner, G., Heidel, A. J., Philippe, H., Melkonian, M., & Becker, B.
(2011). Origin of land plants: Do conjugating green algae hold the key? BMC Evolutionary
Biology, 11(1), Article 1.

Yallop, M. L., Anesio, A. M., Perkins, R. G., Cook, J., Telling, J., Fagan, D., MacFarlane, J., Stibal, M.,
Barker, G., Bellas, C., Hodson, A., Tranter, M., Wadham, J., & Roberts, N. W. (2012).
Photophysiology and albedo-changing potential of the ice algal community on the surface of

121



Chapter IV: Vacuolar pigments in Ancylonema palustre

the Greenland ice sheet. The ISME  Journal, 6(12), 2302-2313.
https://doi.org/10.1038/ismej.2012.107

Yamashita, T., & Sasaki, K. (1979). Conditions for the induction of the mating process and changes in
contents of carbohydrates and nitrogen compounds during the mating process of Spirogyra.
Journal of the Faculty of Science, Hokkaido University, 11, 279-287.

Yoshimura, Y., Kohshima, S., & Ohtani, S. (1997). A Community of Snow Algae on a Himalayan
Glacier: Change of Algal Biomass and Community Structure with Altitude. Arctic and Alpine
Research, 29(1), 126—137. https://doi.org/10.1080/00040851.1997.12003222

Zwirn, M., Chen, C., Uher, B., & Schagerl, M. (2013). Induction of sexual reproduction in Spirogyra
clones—Does an universal trigger exist? Fottea, 13(1), 77-85.
https://doi.org/10.5507/f0t.2013.007

122



Chapter IV: Vacuolar pigments in Ancylonema palustre 123

Figures:

A o B soo00
16000 50000
— Standard cultivation "PAR only"
>
@ 12000 £ 40000
s c
£ 10000 2
£ £ 30000
o )
2 8000 =
< S 20000
[5] [7)
2 6000 e
4000 10000
2000
0 0
250 350 450 550 650 750 250 350 450 550 650
Wavelength [nm] Wavelength [nm]
D o000
40000
35000 "UVA" 25000 "UVB"
30000
> > 20000
2 25000 a
2 i}
E 20000 ‘ag) 15000
2 2
S 15000 & 10000
& &
10000
5000
5000
0 0
250 350 450 550 650 250 350 450 550 650
Wavelength [nm] Wavelength [nm]

Figure 1. Spectral emittance of the applied light sources. (A) Standard cultivation (LinearZ SunLike
LEDs, 5,700 K). (B) “PAR only” treatment (SunLike high-power LED 5,000 K, 50 W). (C) “UVA”
treatment (TL-D Blacklight Blue fluorescent tube lamp, 18 W + LinearZ SunLike LEDs, 5,700 K). (D)
“UVB” treatment (UVB Broad Band TL, 20 W + LinearZ SunLike LEDs, 5,700 K).
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Figure 2. Collection sites of the studied Ancylonema palustre strains. (A) Map of Germany showing the
two moorlands from which the algal strains (N3 and V5) were isolated. (B, C) Spring bog of
Neuenhdhnen, Germany. White arrow denotes waterlogged area with Sphagnum (shown in (C)), from
which strain N3 was isolated. (D) Shallow bog pond with brownish water of the Grofles Veen,
Hamminkeln, Germany. Strain V5 was isolated from the oxygenated sediment. (E) Natural material of
A. palustre from the pond shown in (D) with pronounced secondary pigmentation.
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Figure 3. Morphology and cell division of Ancylonema palustre. (A) Cells of strain N3 under standard
cultivation conditions. The nucleus (nuc) lies between two well-separated chloroplasts (chl), each of
which contains a circular pyrenoid (pyr). (B) 4. palustre cell (strain N3) shown in three focal planes.
(C) Time series of cell division in strain N3 (time shown in mm:ss). (D) Generalized scheme of cell
division in 4. palustre. Scale bars: 10 pm.
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Figure 4. Phylogenetic position and photophysiology of 4. palustre. (A) Maximum likelihood
phylogeny of 35 zygnematophycean rbcL gene sequences displaying the relationships within the genus
Ancylonema. Sequences from psychrophilic Ancylonema strains stem either from the Greenland ice
sheet (violet circles) or the European Alps (blue squares). Support values > 70% from different analyses
(ML/NJ/MP) are shown on the respective branches. Branches with maximum support (100/100/100) are
bold. The scale bar represents 0.02 nucleotide substitutions per site. (B, C) Rapid light curves of A.
palustre strains N3 (B) and V5 (C), and deduced parameters (rETR = relative electron transport rate, o
= low light utilization efficiency, and Ix = light compensation point). Both strains were measured after
acclimatization to “high light” (HL; green circles and red diamonds) and “low light” (LL; blue triangles
and violet squares). Values are means of four replicate measurements and the datapoints were fitted to
the photoinhibition model of Walsby (Walsby, 1997).
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Figure 5. Phenotypic characteristics of 4. palustre (strain N3) after ten days of incubation (if not stated
differently) under different light regimes and nutrient conditions. (A-C) Three selected irradiance levels
of the “PAR only” treatment. (D-F) Three selected irradiance levels of the “UVA” treatment. (G-I)
Three selected irradiance levels of the “UVB” treatment. (J) KW medium without phosphate (-P). (K)
KW medium without nitrate (-N). (L, M) KW medium without phosphate and nitrate (-P-N). (N-Q) -P-
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Figure 6. Phenotypes of 4. palustre under different cultivation regimes and details of zygospore
formation and structure. (A-E) Representative cells from cultures of strain N3 exposed to “PAR only”
(see Figure 5C), “UVA” (see Figure 5F), “UVB” (see Figure 51), -P-N limitation (see Figure SM), and -
P-N limitation combined with “UVB” (see Figure 5Q). (F) Mixed culture of strains N3 and V5 with
mature zygospores, which are sometimes attached to empty parent cell walls (black arrows). (G)
Scanning electron micrograph of an empty cell (strain V5) with a nearly circular hole after release of
the gamete. (H) Mature zygospore (strain V5) with three distinctive cell walls, namely exospore (exo0),
mesospore (meso), and endospore (endo). (I) Scanning electron micrograph of two mature zygospores
(strain V5) revealing the dodecahedron-like morphology. (J) Scanning electron micrograph of a
zygospore (strain N3) with ruptured exospore (exo). (K) Time series of zygospore maturation in strain
V5 (time shown in mm:ss). Scale bars: 5 ym in A-E, G-J; 10 pm in F, K.
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Supplementary Data

A mesophilic relative of common glacier algae, Ancylonema palustre
sp. nov., provides insights into the induction of vacuolar pigments in
zygnematophytes
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Table S1. Studied strains with sampling sites including coordinates, and sampling dates.

Strain | Location

Coordinates Sampling date

V5 Pond, GroBies Veen, Hamminkeln, Germany

51.712889, 6.560639 | March 2021

N3 Wet Sphagnum, Neuenhdhnen, Waldbr6l, Germany | 50.840533, 7.534120 | November 2020

Table S2. Recipe of algal culture medium KW. One milliliter of each stock solution is added to one
liter of demineralized water. The pH should be around 6. For the -P treatment, NaH,PO4 x H,O and
Na,HPOs x 2 H,O were omitted. For the -N treatment, KNO3; was omitted. For the -P-N treatment,
NaH,PO4 x H,O, Na,HPO4 x 2 H,O and KNO;3 were omitted.

Components Stock solution
HEPES 238.1 g/l dH,O
KNO:s 100 g/ 1 dH2O
MgSO4 x 7 H,O 20 g/l dH,O
NaH,PO4 x H,O 0.69 g/50 ml
NazHPO4 x2 Hzo 0.89 g /50 ml
CaCl, x 2 H,O 14.7 g/1 dH,O
P-II Metals stock solution
EDTA (Titriplex III) 3.00 g/l dH20
H;BOs3 1.14 g/l dH20
MnCl x 4 H,O 144.00 mg/l dH20
ZnS04 x 7 H0 21.00 mg/l dH20
CoCl, x 6 H,O 4.00 mg/l dH20
Fe-EDTA stock solution
EDTA (Titriplex II) 5.22 g/1dH20
FeSO4x 7 H20 4,98 g/1dH20
IN KOH 54.00 ml /1dH20
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Table S3. Percentage of base differences between rbcL sequences of selected Ancylonema strains. All
codon positions were included, ambiguous positions were not considered (pairwise deletion option).

MW922839 A. nordenskioeldii

0Q222865 A. alaskanum WP251 strain

A. palustre V5

A. palustre 3N_|FM992361 A. palustre

0Q222865 A. alaskanum WP251 strain 1,104417671

A. palustre V5 2,985074627 2,911646586

A. palustre 3N 2,885572139 2,81124498 0,385505012

FM992361 A. palustre 2,985074627 2,911646586 0,077160494 0,537221796

A. palustre CCAC2248 2,997002997 2,822580645 0 0,461538462 0,076982294

Figure S1. Boxplots showing the cell width (A) and cell lengths (B) of the two A. palustre strains N3
(blue) and V5 (orange); n = 100.
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Figure S2. Maximum likelihood phylogeny of 15 zygnematophycean 18S rRNA gene sequences.
Support values are shown on the respective branches (ML/NJ/MP) when > 40%. The scale bar
represents 0.002 nucleotide substitutions per site.
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Figure S3. Cells (strain N3) with shrunken/deformed chloroplasts and pigment inclusions; brightfield.
(A, B) High PAR treatment, > 500 umol photons m?s™'. (C, D) UVA treatment, > 8 W m™.
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SUMMARY

The evolution of streptophytes had a profound impact on life on Earth. They brought forth those photosyn-
thetic eukaryotes that today dominate the macroscopic flora: the land plants (Embryophyta).1 There is
convincing evidence that the unicellular/filamentous Zygnematophyceae—and not the morphologically
more elaborate Coleochaetophyceae or Charophyceae—are the closest algal relatives of land plants.?™®
Despite the species richness (>4,000), wide distribution, and key evolutionary position of the zygnemato-
phytes, their internal phylogeny remains largely unresolved.”® There are also putative zygnematophytes
with interesting body plan modifications (e.g., filamentous growth) whose phylogenetic affiliations remain un-
known. Here, we studied a filamentous green alga (strain MZCH580) from an Austrian peat bog with central or
parietal chloroplasts that lack discernible pyrenoids. It represents Mougeotiopsis calospora PALLA, an enig-
matic alga that was described more than 120 years ago® but never subjected to molecular analyses. We
generated transcriptomic data of M. calospora strain MZCH580 and conducted comprehensive phyloge-
nomic analyses (326 nuclear loci) for 46 taxonomically diverse zygnematophytes. Strain MZCH580 falls in
a deep-branching zygnematophycean clade together with some unicellular species and thus represents a
formerly unknown zygnematophycean lineage with filamentous growth. Our well-supported phylogenomic
tree lets us propose a new five-order system for the Zygnematophyceae and provides evidence for at least
five independent origins of true filamentous growth in the closest algal relatives of land plants. This phylogeny
provides a robust and comprehensive framework for performing comparative analyses and inferring the evo-
lution of cellular traits and body plans in the closest relatives of land plants.

RESULTS AND DISCUSSION 22 um, n = 80), and usually contain a single chloroplast. The chlo-

roplast lacks visible pyrenoids and has a variable shape ranging

Morphology and phylogenetic position of a fillamentous
zygnematophyte without pyrenoids

Strain MZCH580 forms unbranched filaments with smooth cell
walls and rounded tips (Figures 1A and 1B). Infolded cross walls
(“replicate walls”) or rhizoids known from some filamentous zyg-
nematophytes'® were not observed in our cultures. The filaments
of strain MZCH580 tend to fragment as the cultures age, but cells
divide and grow back into new filaments when fresh medium is
added (Figures 1C and 1D). Interphase cells are 10-15 um
wide (mean = 12 ym, n = 40) and 12-55 um long (mean =

from an off-center straight plate (Figure 1D) to a more parietal
morphology, like a channel or half-pipe (Figures 1A and 1B).
The 3D reconstruction of confocal fluorescence data reveals a
common intermediate morphology (Figure 1E). The lateral sides
of half-pipe-shaped chloroplasts display clear indentations,
which are rare in filamentous green algae with chloroplasts of
similar morphology (Figures 1A and 1B, arrows)—Entransia fim-
briata (Klebsormidiophyceae), for example, has fimbriate or
lobed chloroplasts, but of much more irregular morphology.'"
The nucleus is spherical (4-6 um in diameter, n = 40) with a

Current Biology 32, 1-10, October 24, 2022 © 2022 The Author(s). Published by Elsevier Inc. 1
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Morphology, cell division, and ultrastructure of Mougeotiopsis calospora strain MZCH580

(A) Filaments with cells of varying length; differential interference contrast (DIC). Note the indented chloroplast margins (arrows), the prominent nuclei (nuc) and
the large vacuoles (asterisk).

(B) Filament with rounded tip; DIC.

(C) Single cell after fragmentation with cell wall remnants (arrowheads); DIC.

(D) Two-celled filament with smooth tips; DIC. Note the prominent nuclei (nuc) and the large vacuoles (asterisks).

(E) Three-dimensional reconstruction of the chloroplasts based on their autofluorescence; confocal microscopy.

(F) Time series of a dividing cell shows ingrowing cross wall; DIC.

(G) Ultrathin section through a dividing cell reveals the ingrowing cell wall (see plasma membrane) and the chloroplast in division.

(H) Ultrathin section through vegetative filament showing the position of the nucleus (nuc), peroxisome (p), chloroplasts (chl) and vacuoles (asterisks).
(I) Ultrathin section of starch grains (st) between the thylakoids of the chloroplast.

(legend continued on next page)
2 Current Biology 32, 1-10, October 24, 2022
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prominent central nucleolus (1-3 um in diameter, n = 40), and al-
ways closely associated with the chloroplast (Figures 1A and 1D;
nuc). Both chloroplast and nucleus are surrounded by a thin
sheath of cytoplasm and opposed to or surrounded by a large
vacuole (Figure 1D; asterisks).

Cell division is intercalary and involves the centripetal forma-
tion of a cross wall (Figure 1F; Videos S1 and S2). We did not
observe any phragmoplast-like structure as known from many
streptophyte algae.'”'* Instead, ingrowing cell wall material
seemed to pinch off the chloroplast (Figure 1F and Videos S
and S2), which is corroborated on the ultrastructural level (Fig-
ure 1G). It appears that the chloroplast does not divide before
the inset of cytokinesis, and that the cell division in strain
MZCH580 largely depends on furrowing (cleavage, thus centrip-
etal cell wall ingrowth). However, we cannot exclude the exis-
tence of a phragmoplast and our ultrastructural data of late
stages of cytokinesis seem compatible with phragmoplast-like
structures as known from many streptophyte algae, including
other zygnematophytes (e.g., Spirogyra and Mougeotia'*"'*).

Our ultrastructural data confirm that the chloroplasts of strain
MZCHS580 lack pyrenoids but contain numerous lentiform starch
grains (up to ~1 um) interspersed between the thylakoids
(Figures 1H and 1l). This is a very unusual chloroplast configura-
tion. Pyrenoids are found in all other known zygnematophytes
(and most green algae) and are considered important compart-
ments for carbon concentration. That said, hornworts have
frequently gained and lost pyrenoids—a phenomenon that does
not correlate with atmospheric CO, concentration or lifestyle
changes.'” Mougeotiopsis appears to compensate for the lack
of pyrenoid-based carbon concentration by an extremely high
expression of homologs of ribulose-1,5-bisphosphate carbox-
ylase/oxygenase small subunit 2 (rbcS2) and rubisco activase
(rca); in fact, with transcripts per million (TPM) values of 44002
and 15238, they were, respectively, the highest and fourth highest
expressed transcript in the whole transcriptome. In contrast, in the
transcriptomes of the pyrenoid-bearing alga Mougeotia sp.
MZCH240, rbcs and rca homologs never ranged among the top
100 most abundant transcripts (see de Vries etal.'® and Fiirst-Jan-
sen et al.'”). The ecophysiological consequences of the absence
of pyrenoids in Mougeotiopsis are currently obscure.

Other noteworthy ultrastructural characteristics of strain
MZCH580 are a giant peroxisome situated between the nucleus
and the chloroplast (Figure 1J), and the occurrence of macrotu-
bules (~44 nm in diameter; 44.02 nm + 2.4 nm, n = 446) in cells
with incomplete cytokinesis likely promoted by environmental
factors (Figures 1K, 1L, and S1); the occurrence of macrotubules
has been described in land plant tissues—for example, in cells
of root tips but with a distinct mean diameter'® (35 nm). A
single peroxisome of similar localization was also reported for
Klebsormidiophyceae such as Klebsormidium, Hormidiella,
and Streptosarcina,'®*? and the Zygnematophyceae Zygogo-
nium,”* suggesting that this is a rather widespread character in
streptophyte algae. However, the filamentous zygnematophytes

¢? CellPress
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Mougeotia, Spirogyra, and Zygnema contain numerous, much
smaller peroxisomes, which do not exceed 1 um in our TEM sec-
tions (Figure S2).

Based on taxonomic comparisons (see Table 1 and STAR
Methods for details), we apply the name Mougeotiopsis calospora
to strain MZCH580. However, as we did not observe any sexual
processes (conjugation, flagellated gametes), zoospores, or apla-
nospores in our cultivated material, the suspected affinity to the
zygnematophytes remained uncertain. While analysis of the rbcL
gene (coding for the large chain of ribulose-1,5-bisphosphate
carboxylase/oxygenase) placed strain MZCH580 within the strep-
tophytes, a robust phylogenetic placement was not possible. To
scrutinize the phylogenetic position of strain MZCH580, we gener-
ated RNA-seq data by lllumina sequencing and performed a de
novo transcriptome assembly. The resulting transcriptome has a
completeness of 96.3% (benchmarked universal 272 single-
copy orthologs) and contains 52,188 predicted open reading
frames (ORFs). We built a comprehensive multigene dataset of
326 conserved proteins (see STAR Methods) from streptophyte
algae, land plants, and select chlorophyte algae as outgroup,
with 84 taxa in total (see species and deposited data in STAR
Methods). Our phylogenomic inferences with a sophisticated
site-heterogeneous model of protein sequence evolution (LG+-
PMSF(C60)+F+T') resulted in a well-supported phylogeny, whose
overall topology is in line with current knowledge about strepto-
phyte evolution (cf. Figure S3 and One Thousand Plant Transcrip-
tomes Initiative®). To scrutinize this, we performed an approxi-
mately unbiased (AU) test under the best-fit model LG+C60+F+I"
with 10,000 multiscale bootstrap replicates. Our dataset rejected
the topology of the One Thousand Plant Transcriptomes Initiative®
(AU test p = 0.000). This, however, only concerned some relation-
ships within Desmidiales, and neither their monophyletic arrange-
ment nor any other aspect of the gross topology, thus also having
no effect on any trait inferences below. Strain MZCH580 groups
within the Zygnematophyceae with full nonparametric bootstrap
support and forms a deep-branching lineage with the unicellular
Serritaenia sp. (strain CCAC 0155) and “Mesotaenium endlicheria-
num” (strain SAG 12.97). Hence, strain MZCH580, referred to as
Mougeotiopsis calospora hereafter, is clearly distinct from other
filamentous genera (Mougeotia, Spirogyra, Zygnema, and Zygne-
mopsis), and represents a new lineage of zygnematophytes with
filamentous growth.

Phylogenomics support a five-order taxonomy of the
Zygnematophyceae

Previous phylogenies based on single (or few) marker genes
have suggested that the traditional taxonomic separation into
the two orders Desmidiales and Zygnematales does not reflect
the evolutionary relationships of the Zygnematophyceae.”"
Yet, the taxonomy of this important algal class remains unre-
solved, in part due to the lack of robust phylogenetic data. Our
multigene phylogeny clearly demonstrates that the Zygnema-
tales as previously defined (all filamentous members plus

(J) Ultrathin section of the nucleus (nuc) with nucleolus, the large, elongate peroxisome (p), and mitochondria (mit). The vacuolar space is marked by the asterisk.
(K) Ultrathin section of bundled macrotubules in cross section (left) and longitudinal section (right).

(L) Detail of macrotubules in cross section.

Scale bars 10 pm in (A) (applies also for B-D); 5 pm in (G) and (H); 500 nm in (I)~(K); 100 nm in (L).

See also Figures S1, S2, and S4.
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Table 1. Five-order taxonomy of the Zygnematophyceae

Order Serritaeniales

S.Hess & J.de Vries ord. nov.

Diagnosis: comprises unicells and filaments with smooth sidewalls, cells with axial or parietal chloroplasts, and simple cell walls (no pores and
ornamentations), phylogenetically closely related to the type species (Serritaenia testaceovaginata; rbcL. MW159377).

Type: Serritaeniaceae S.Hess & J.de Vries fam. nov.

Family Serritaeniaceae S.Hess & J.de Vries fam. nov.

Diagnosis: with characteristics of order Serritaeniales; unicells and filaments with smooth sidewalls, cells with axial or parietal chloroplasts, and
simple cell walls (no pores and ornamentations), embedded or not in the mucilage.

Type: Serritaenia A.Busch & S.Hess 2021.

Comment: Currently the Serritaeniales includes a single family, the Serritaeniaceae with the genera Serritaenia and Mougeotiopsis.

Order Zygnematales

Bessey emend. S.Hess & J.de Vries

Emended description: Comprises unicells and unbranched and uniseriate filaments with smooth side walls, cells with stellate, plate- or ribbon-like
chloroplasts and simple cell walls (no pores and ornamentations), phylogenetically closely related to strains SAG 698-1a (Genbank transcriptome
shotgun assembly GFYA00000000).

Type: Zygnema C.Agardh, 1817, nom. et typ. cons.

Comment: Currently the Zygnematales includes a single family Zygnemataceae with the genera Cylindrocystis, Mesotaenium (current assumption,
pending discovery of type species), Mougeotia, Zygnema, and Zygnemopsis. No culture is available from the type species of Zygnema.

Order Desmidiales

Bessey emend. S.Hess & J.de Vries

Emended description: Comprises unicells and chain-like filaments. Cell walls and morphologies of diverse complexity, including the “placoderm
desmids" with cell wall pores, ornamentations and clear isthmus, and species with smooth cell walls and without isthmus. Phylogenetically closely
related to strain Desmidium aptogonum (RNA-seq ERX2100155).

Type: Desmidium C.Agardh ex Ralfs, 1848.

Comment: Currently the Desmidiales includes a single family Desmidiaceae with the genera Bambusina, Closterium, Cosmarium, Cosmocladium,
Desmidium, Euastrum, Micrasterias, Netrium, Nucleotaenium, Onychonema, Penium, Phymatodocis, Planotaenium, Pleurotaenium, Staurastrum,
Staurodesmus, Xanthidium, and more. No culture is available from the type species of Desmidium.

Order Spirogyrales

Clements emend. S.Hess & J.de Vries

Emended description: Comprises filaments with smooth side walls, cells with one or more helical chloroplast and smooth cell walls without pores or
ornamentation. Phylogenetically closely related to strain Spirogyra pratensis strain MZCH10213 (RNA-seq data: NCBI BioProject PRINA543475,
TSA GICF00000000).

Type: Spirogyra Link, 1820, nom. cons.

Comment: Currently the Spirogyrales includes only the genus Spirogyra. The closely related genus Sirogonium Kitzing may also belong to this
order, but this needs to be confirmed by phylogenomic studies. No culture is available from the type species of Spirogyra. The order Spirogyrales
was originally validated by Clements (1909: 12); his description specified “Typically one-celled or filamentous algae, without zoospores; sexual

reproduction by the conjugation of similar gametes; two fungous families.” No fungi are currently included in this order.

unicells that are not placoderm desmids) are paraphyletic.
Instead, the Zygnematophyceae comprise at least five deep-
branching clades that we feel can be treated at the level of orders
(Figure 2).

We introduce a new, phylogenomically informed five-order tax-
onomy of the Zygnematophyceae, by reinterpreting existing
ordinal names and introducing a new order for Mougeotiopsis
and its unicellular relatives (see Table 1). The Serritaeniales ord.
nov. currently comprises the name-giving genus Serritaenia (uni-
cells with a plate-like chloroplast and a mostly aerophytic life
style”), the genome-sequenced strain SAG 12.97 (often referred
to as “Mesotaenium endlicherianum”°; unicells with half-pipe-
like chloroplasts and an aquatic lifestyle) and Mougeotiopsis calo-
spora, strain MZCH580. Although these species differ markedly in
growth form (unicells versus filaments), their chloroplasts are all
characterized by indented or undulated margins”>*® that are
otherwise rare in zygnematophytes. Yet, Mougeotiopsis calospora
is the only known zygnematophyte that lacks pyrenoids.

Our data corroborate the position of the Spirogloeales, consist-
ing of the unicellular Spirogloea muscicola (formerly Spirotaenia

4 Current Biology 32, 1-10, October 24, 2022

muscicola), as sister lineage to all other Zygnematophyceae.””
For the remaining part of the phylogenomic tree, we redefine three
traditional orders. The Zygnematales are now limited to a morpho-
logically diverse clade comprising unicellular zygnematophytes
currently assigned to Cylindrocystis and Mesotaenium, plus three
distinct branches of filamentous members (Mougeotia, Zygnema,
and Zygnemopsis); the recovered topology demonstrates the pol-
yphyly of the unicellular genera belonging to that order (Cylindro-
cystis and Mesotaenium), which require a taxonomic revision in
the future. Chloroplasts of the Zygnematales are either stellate
(Cylindrocystis, Zygnema, and Zygnemopsis) or ribbon/plate-like
with smooth margins (Mesotaenium and Mougeotia).

The Spirogyra species with their characteristic helical chloro-
plasts form another, deep-branching clade, which is here defined
as Spirogyrales Clements 1909 (Figure 2 and Table 1). This order
was initially introduced to include algae of yellow-green appear-
ance (including Spirogyra) and some fungal families.”” We limit
the concept of the Spirogyrales to those zygnematophycean
algae that form the sister clade of the Desmidiales in our phylog-
eny. The latter order mainly comprises symmetric unicells with a
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Figure 2. Position of strain MZCH580 in a well-resolved zygnematophycean phylogeny based on 326 genes

Section of the phylogenomic tree limited to zygnematophytes and embryophytes. Support values from three analyses (SH-aLRT/aBayes/nonparametric
bootstrapping) are shown at the corresponding branches, except for branches with maximum support (marked by dots); large colored dots correspond to the (full)
support recovered for the higher-order clades labeled on the right. The Zygnematophyceae comprise five deep-branching clades, which are here defined as
orders. Gray symbols highlight zygnematophytes that form chain-like filaments (see micrograph of Desmidium) and bona fide filaments (see micrographs of
Spirogyra, Mougeotia, Zygnema, and Mougeotiopsis); scale bars in all micrographs are 50 um.

Scale bar for phylogeny is 0.2 expected substitutions per site. The entire phylogenomic tree with all streptophyte taxa is shown in Figure S3. Asterisk: a recent
study by Feng et al.”* found that SAG698-1a might be Z. cylindricum instead of Z. circumcarinatum.

pronounced central constriction (isthmus) and ornamented cell
walls. However, at the base of the clade containing these typical
placoderm desmids are three genera (Netrium, Nucleotaenium,
and Planotaenium), which display a much simpler morphology
(no cell wall ornamentations and no isthmus) and were formerly
classified with the Zygnematales (in the family Mesotaeniaceae).”®
Interestingly, the same arrangement was previously recovered by
combined analyses of three genes (nuclear SSU rRNA, rbcL, and
chloroplast LSU rRNA),”? and is here confirmed by phylogenom-
ics. It appears that the desmids with elaborate cell shapes and
complex cell walls (e.g., Cosmarium, Penium, Micrasterias, and
Xanthidium) descended from unicellular ancestors with a simpler
structure. Hence, the genera Netrium, Nucleotaenium, and

Planotaenium are here formally included in the order Desmidiales.
The internal phylogeny and taxonomy of the Desmidiales, howev-
er, needs to be resolved by extended taxon sampling in the future,
as many classically recognized desmid genera (e.g., Cosmarium,
Penium, and Staurodesmus) are not monophyletic.

On the unicellularity of the ancestral zygnematophyte

Our robust phylogenetic framework of the zygnematophytes
now enables comparisons of species in an evolutionary context;
thus assessment of evolutionary scenarios with great confidence
are feasible. It is remarkable that the majority of zygnematophy-
cean species are unicellular,’® as most of their streptophyte
relatives (Embryophyta, Coleochaetophyceae, Charophyceae,
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regarding the possibilities/hypotheses for the homology of growth types: yellow, unicellular; blue, multicellular sensu lato (including filamentous growth); orange,
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Klebsormidiophyceae, and Chlorokybophyceae) display some
kind of multicellularity, from sarcinoids to three-dimensional tis-
sues.”’ However, some zygnematophycean lineages exhibit
more developmental complexity such as the formation of fila-
ments, sometimes even with rhizoids or branched cells.®’**
Traditionally these filamentous members have been bundled in
the family Zygnemataceae,”® but a close relationship of them
was not recovered in previous phylogenies.”®

Our fully supported phylogenomic tree reveals at least five
separate lineages that contain true filaments, found in three or-
ders (Figure 2): Spirogyra (Spirogyrales), Mougeotia, Zygnema,
Zygnemopsis (all Zygnematales), and Mougeotiopsis (Serritae-
niales). Other filamentous taxa (e.g., Temnogametum iztacalense
and Zygogonium ericetorum) await genomic/transcriptomic
sequencing and phylogenomic placement®*** The cells of all
these filamentous species have straight and relatively simple
cell walls, no central constrictions, and display an intimate
cell-cell contact (i.e., typical cross walls)—yet without plasmo-
desmata.”® At the same time, there are also filamentous
desmids (e.g. Desmidium, Bambusina, Onychonema, and

6 Current Biology 32, 1-10, October 24, 2022

Phymatodocis®®), which differ markedly from the aforemen-
tioned lineages in their cellular details and filament morphology
(see also Hall et al.*”). The cells of Desmidium, Bambusina, Ony-
chonema, and Phymatodocis display the typical characters of
desmid cells (e.g., central constriction and cell wall ornamenta-
tion) and rather appear as cell chains. Together with the fact
that the filamentous desmids are nested within the unicellular
desmids, it is conceivable that there are distinct types of
filamentous growth in the Zygnematophyceae, which evolved
independently; we account for this possibility in our analyses
(see Figure 3 and below). The Zygnematophyceae as a whole
are nested within a clade of mostly multicellular streptophytes,
the Phragmoplastophyta, with the most morphologically elabo-
rate (the Embryophyta) as sister clade. Previous studies have
therefore noted that the streamlined body plans of extant
zygnematophytes—down to unicellularity—might have arisen
by reductive evolution from a morphologically more complex
ancestor.”***' Based on our current phylogeny, it seems
most parsimonious that the last common ancestor of the zygne-
matophytes was unicellular—thus having already experienced a
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reduction in its body plan. This scenario goes along with five in-
dependent origins of bona fide filaments; the alternative would
require at least seven losses of multicellularity.

In an attempt to infer the body plan of the common ancestor of
zygnematophytes, we performed ancestral character state re-
constructions (ACSR) with various data coding strategies con-
cerning the types of multicellularity (Figure 3). Irrespective of
how the growth types were coded, a unicellular zygnematophyte
ancestor was consistently inferred by our analyses, albeit with
varying support (posterior probability [PP] = 0.58-0.93). Hence,
we infer up to five tentative independent origins of true filamen-
tous growth, and two additional independent origins of chain-like
filaments (in the Desmidiales) (unicellular ancestors have PP =
0.80-1.00); under this scenario, the last common ancestor of
the Zygnematophyceae and land plants was likely filamentous
or multicellular (PP = 0.91-0.93), whereas the last common
ancestor of Zygnematophyceae was likely unicellular (PP =
0.58-0.89). Given the effect of character coding in these ana-
lyses, we conclude that expanding our knowledge about the ho-
mology of the various types of multicellular and filamentous body
plans in the green algae is essential.

Filamentous growth as observed in the Zygnematophyceae
can be considered the least elaborate type of multicellularity.*”
Yet, the cellular and molecular traits underpinning this growth
type remain obscure. The multiple growth type transitions in
the zygnematophytes are consistent with parallel evolution
from a common molecular machinery, but the relative simplicity
of filamentous growth renders convergent evolution equally
plausible. The hypothetical unicellular lynchpin at the base of
the Zygnematophyceae is an attractive hypothesis: it could
explain why zygnematophytes lack plasmodesmata (e.g.,
Brunkard and Zambryski’®), why the cross walls often look
distinct from other streptophytes, and perhaps even why the
group as such returned to a cleavage-like cell division mecha-
nism (see Buschmann and Zachgo'“). Future research on the
different filamentous lineages will need to establish a deeper un-
derstanding of the molecular machinery underpinning their com-
mon morphology.

In addition, recent culture-based efforts to explore terrestrial
zygnematophytes indicated a high diversity of unicellular line-
ages,”® which are not yet covered by genomic/transcriptomic
sequencing and might change the evolutionary picture. Biased
taxon sampling is indeed a serious problem for ACSR,**** and
thus genomic sequencing of further zygnematophytes is an impor-
tant task for the future. The fossil record for Zygnematophyceae is
sparse. Several of the ordinal lineages of Zygnematophyceae are
potentially several hundreds of millions of years old (estimations
based on molecular clock results presented in Morris et al.*").
Hence, important information might be obscured by extinction
events and new discoveries of living or fossil taxa could easily
lead to new interpretations. For now, our phylogenomic data
demonstrate that the zygnematophytes comprise multiple transi-
tions of their body plan, and also enable the selection of relevant
species for comparative cell biological research.

Conclusion

The identification of the Zygnematophyceae as the sister line-
age to land plants was surprising, in part because of their rela-
tively simple body plans. The study of zygnematophycean trait
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evolution is a challenge because of their species richness,
diverse morphologies, and unresolved phylogeny. We have
provided a phylogenomic backbone and a congruent classifi-
cation system for the closest algal relatives of land plants.
Looking at algal growth types through the lens of phylogenom-
ics reveals dynamic emergence and formation of filamentous
and unicellular growth among the Zygnematophyceae—traits
whose evolutionary history might also feature reductive evolu-
tion from a more complex ancestor of Zygnematophyceae
and land plants.
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Mougeotiopsis calospora transcriptome assembly This study GenBank: GJZN0O0000000.1
Mougeotiopsis calospora transcriptome reads This study Sequence Read Archive: SRR19751296

Nephroselmis pyriformis CCMP 717 transcriptome

Netrium digitus CCAC 0148
transcriptome, 1KP Code FFGR

Nitella mirabilis transcriptome

Nitella mirabilis transcriptomes of
lower and upper tissues

Nucleotaenium eifelense M3006
transcriptome, 1KP Code KMNX

Oedogonium cardiacum UTEX
LB40 transcriptome

Oltmansiellopsis unicellularis SCCAP
K-0250 transcriptome

Onychonema laeve CCAC 0151
transcriptome, 1KP Code GGWH

Oryza sativa Nipponbare genome v7.0
Ostreococcus lucimarinus genome v2.0

Penium exiguum CCAC 0142
transcriptome, 1KP Code YSQT

Penium margaritaceum SAG22.82
transcriptome

Phymatodocis nordstedtiana SVCK
327 transcriptome, 1KP Code RPQV

Physcomitrium patens genome v3.3
Picea abies genome

Planotaenium ohtanii M2697
transcriptome, 1KP Code SNOX

Pleurotaenium trabecula CCAC 0163
transcriptome, 1KP Code MOYY

Salvinia cucullata genome
Selaginella moellendorffii genome

Sphagnum fallax v0.5 genome

Spirogloea muscicola CCAC 0214
transcriptome, 1KP Code TPHT

Cooper and Delwiche™

Carpenter et al.””

Juetal.”

Cooper and Delwiche™

Carpenter et al.”’

Cooper and Delwiche™

Cooper and Delwiche™

Carpenter et al.””

Kawahara et al.””

Palenik et al.””
Carpenter et al.”’

Cooper and Delwiche™

Carpenter et al.””
Lang et al.”
Nystedt et al.*®
Carpenter et al.””

Carpenter et al.””

Lietal.*
Banks et al.”®

Obtained from Phytozome

with permission
Carpenter et al.”’

https://figshare.com/articles/dataset/
Green_algal_transcriptomes_for_
phylogenetics_and_comparative_
genomics/1604778

http://www.onekp.com/public_data.html

https://www.ncbi.nim.nih.gov/Traces/
wgs/wgsviewer.cgi?val=-GBST01
&search=GBST01000000&display=
scaffolds
https://figshare.com/articles/dataset/
Green_algal_transcriptomes_for_
phylogenetics_and_comparative_
genomics/1604778
http://www.onekp.com/public_data.html

https://figshare.com/articles/dataset/
Green_algal_transcriptomes_for_
phylogenetics_and_comparative_
genomics/1604778

https://figshare.com/articles/dataset/
Green_algal_transcriptomes_for_
phylogenetics_and_comparative_
genomics/1604778

http://www.onekp.com/public_data.html

https://phytozome.jgi.doe.gov/pz/
portal.html#linfo?alias=Org_Osativa

https://phytozome.jgi.doe.gov/pz/
portal.html#linfo?alias=0rg_Olucimarinus

http://www.onekp.com/public_data.html

https://figshare.com/articles/dataset/
Green_algal_transcriptomes_for_
phylogenetics_and_comparative_
genomics/1604778

http://www.onekp.com/public_data.html

https://phytozome.jgi.doe.gov/pz/portal.
html#linfo?alias=Org_Ppatens

https://plantgenie.org/FTP?dir=Data%2
FConGenlE%2FPicea_abies%2Fv1.0

http://www.onekp.com/public_data.html
http://www.onekp.com/public_data.html

https://www.fernbase.org

https://phytozome-next.jgi.doe.gov/info/
Smoellendorffii_v1_0

https://phytozome-next.jgi.doe.gov/info/
Sfallax_v0_5

http://www.onekp.com/public_data.html
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Spirogyra pratensis MZCH10213 transcriptome

Spirogyra pratensis UTEX 921 transcriptome

Spirogyra pratensis UTEX 928 transcriptome

Spirogyra sp. M1810 transcriptome,
1KP Code HAOX

Spirogyra sp. Transcriptome Au1l

Staurastrum sebaldi M1129
transcriptome, 1KP Code ISHC

Staurodesmus convergens M2558
transcriptome, 1KP Code WCQU

Staurodesmus omearii M0751
transcriptome, 1KP Code RPRU

Tetraselmis striata transcriptome

Tetraselmis suecica transcriptome

Ulva mutabilis genome
Volvox carteri genome v2.1

Xanthidium antilopaeum M1229
transcriptome, 1KP Code GBGT
Zygnema circumcarinatum SAG698-1a
transcriptome

Zygnema sp.-B M1384 transcriptome
1KP Code WGMD

Zygnema sp. transcriptome

1KP Code FMRU

Zygnemopsis sp. CCAP 699/1
transcriptome 1KP Code MFZO

de Vries et al.’®

Cooper and Delwiche™®
Juetal.”®
Carpenter et al.””

Cooper and Delwiche™

Carpenter et al.””

Carpenter et al.””
Carpenter et al.”®

53

Cooper and Delwiche

Cooper and Delwiche™

De Clerck et al.””
Prochnik et al.®®
Carpenter et al.””
de Vries et al.””
Carpenter et al.””

Carpenter et al.””

Carpenter et al.””

https://www.ncbi.nlm.nih.gov/Traces/
wgs/wgsviewer.cgi?val=GICF00000000.
https.//figshare.com/articles/dataset/
Green_algal_transcriptomes_for
phylogenetics_and_comparative_
genomics/1604778
https://www.ncbi.nlm.nih.gov/Traces/
wgs/wgsviewer.cgi?val=GBSM01000000
http://www.onekp.com/public_data.html|

https://figshare.com/articles/dataset/
Green_algal_transcriptomes_for_
phylogenetics_and_comparative_
genomics/1604778

http://www.onekp.com/public_data.html

http://www.onekp.com/public_data.html

http://www.onekp.com/public_data.html

https://figshare.com/articles/dataset/
Green_algal_transcriptomes_for_
phylogenetics_and_comparative_
genomics/1604778
https://figshare.com/articles/dataset/
Green_algal_transcriptomes_for_
phylogenetics_and_comparative_
genomics/1604778
https://bioinformatics.psb.ugent.be/
orcae/overview/Ulvmu
https://phytozome.jgi.doe.gov/pz/
portal.html#linfo?alias=0rg_Vcarteri
http://www.onekp.com/public_data.html

https://www.ncbi.nim.nih.gov/Traces/
wgs/wgsviewer.cgi?val=GFYA00000000
http://www.onekp.com/public_data.html

http://www.onekp.com/public_data.html

http://www.onekp.com/public_data.html

Experimental models: Organisms/strains

Mougeotiopsis calospora MZCH580

Mougeotia sp. MZCH240

Spirogyra pratensis MZCH10213

Zygnema circumcarinatum MZCH10230

Obtained from Microalgae and
Zygnematophyceae Collection
Hamburg (MZCH)
Obtained from Microalgae and
Zygnematophyceae Collection
Hamburg (MZCH)
Obtained from Microalgae and
Zygnematophyceae Collection
Hamburg (MZCH)
Obtained from Microalgae and
Zygnematophyceae Collection
Hamburg (MZCH)

maintained at Microalgae and
Zygnematophyceae Collection
Hamburg (MZCH)

maintained at Microalgae and
Zygnematophyceae Collection
Hamburg (MZCH)

maintained at Microalgae and
Zygnematophyceae Collection
Hamburg (MZCH)

maintained at Microalgae and
Zygnematophyceae Collection
Hamburg (MZCH)
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Software and algorithms

BUSCO v.5.0.0 Seppey et al.*” https://busco.ezlab.org

FASTQC Babraham Institute www.bioinformatics.babraham.
ac.uk/projects/fastqc

IQ-Tree v1.5.5 and v1.6.12 Nguyen et al.”® http://www.igtree.org

MAFFT v7.310 Katoh and Standley’" https://mafft.cbrc.jp/alignment/software/

Phytools Revell’ https://cran.r-project.org/web/packages/
phytools/index.html

Posterior Mean Site Frequency Profiles Wang et al.”® Implemented in IQ-Tree
http://www.iqtree.org

Re-routing method according to Yang 1995 Yang’* N/A

Trimal v1.4.rev15 Capella-Gutierrez et al.”® http://trimal.cgenomics.org

Transcdecoder v.5.5.0 Brian J. Haas https://github.com/TransDecoder/
TransDecoder/releases

Trimmomatic v0.36 Bolger et al.”® http://www.usadellab.org/cms/?

page=trimmomatic

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Jan de
Vries (devries.jan@uni-goettingen.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability

o RNA-seq data have been deposited at the NCBI under the BioProject accession PRINA849386 and the Sequence Read
Archive (SRA) under the accession SRR19751296; all data are publicly available as of the date of publication. Accession
numbers are additionally listed in the key resources table.

® Atranscriptome assembly has been deposited at NCBI Transcriptome Shotgun Assembly Sequence Database (TSA) under the
accession GJZN00000000. The version described in this paper is the first version, GJZN01000000. The assembly is publicly
available as of the date of publication. The accession number is additionally listed in the key resources table. The alignment
has been uploaded to Zenodo: https://doi.org/10.5281/zenodo.6805950

o No original code was used; all computational analyses were performed with published tools and are cited in the STAR Methods
section.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Algal strains

Mougeotiopsis calospora (strain MZCH580), Mougeotia sp. (MZCH240), Spirogyra pratensis (strain MZCH20213) and Zygnema cir-
cumcarinatum (MZCH10230) were obtained from the Microalgae and Zygnematophyceae Collection Hamburg (MZCH)"”"® and
grown in WHM medium’® or Waris-H medium®° at 20°C and under full-spectrum fluorescent lamps or white LEDs (30-50 umol pho-
tons m2 s7'; 16h:8h light-dark cycle), if not stated otherwise in the experimental details (see below).

METHOD DETAILS

Rationale for the application of the name Mougeotiopsis calospora to strain MZCH580

In terms of its gross morphology, strain MZCH580 resembles members of the genera Klebsormidium (Klebsormidiophyceae), Ulo-
thrix (Ulvophyceae) and Mougeotia (Zygnematophyceae), all of which form unbranched filaments and have plate-like or parietal plas-
tids. However, the absence of pyrenoids in strain MZCH580 is a major distinguishing character, as algae from the three mentioned
genera (and classes) typically have prominent pyrenoids surrounded by a sheath of starch grains. There are, however, two historical
descriptions from the late 19" century that describe pyrenoid-lacking, filamentous green algae with plate like chloroplasts:
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Mougeotiopsis calospora Palla, 1894 and Mesogerron fluitans Brand, 1899. Mougeotiopsis is a putative zygnematophyte, as scalar-
iform conjugation and the formation of zygospores was clearly documented.® Instead, Mesogerron was only described on the basis
of vegetative material, and first suspected to be related to Ulothrix (Ulvophyceae, Chlorophyta). Based on the marked resemblance in
their vegetative characters (filament width of 15-18 um, cell architecture, and chloroplast morphology), Mougeotiopsis and Meso-
gerron were later treated as heterotypic synonyms (Krieger, 1941%"). Strain MZCH580 matches both descriptions concerning the
varying cell length (including cells that are shorter than wide), cell architecture (plastid-associated nucleus) and chloroplast
morphology (plate-like to parietal with pronounced lateral indentations), but it has somewhat smaller cells (filament width of 10—
15 um). The morphological similarity, however, is compelling, and variation in filament width is known for many closely related strains
or species of green algae. We were unable to locate the type material of Mougeotiopsis calospora, but studied original material of
Mesogerron fluitans (collected by F. Brand in 1899 and provided by the Herbarium of the Academy of Natural Sciences of Philadel-
phia). The dried filaments of that species were morphologically similar to those of strain MZCH580, especially in the marked variation
in cell length observed in the filaments (Figure S4). Amplification of genetic material from this sample did not work.

Rationale for establishing a new order, Serritaeniales ord. nov.

In our phylogeny, the branch in question comprises three distinct groups of organisms: Mougeotiopsis calospora (one strain known),
the genus Serritaenia (several strains known”®), and strain SAG 12.97, a unicellular zygnematophyte that is often referred to as “Mes-
otaenium endlicherianum”. Currently, there is only one existent ordinal name that is based on the mentioned taxon names, namely
Mesotaeniales Fritsch. However, the phylogenetic position of the genus Mesotaenium is still uncertain, as the designation of strain
SAG 12.97 is potentially based on misidentification. In the opinion of some authors (S.H. and A.B.), the morphology of SAG 12.97
does not conform with the description of the type species M. endlicherianum Nageli. This problem was already recognized by other
specialists for zygnematophycean algae who studied strain SAG 12.97.%>*° Hence, we are hesitant to reuse the name Mesotaeniales
and instead introduce a new ordinal name based on the well-studied and credible genus Serritaenia. Descriptions of the zygnema-
tophycean orders defined in this study are provided in Table 1.

Light microscopy, time-lapse photography, and confocal imaging

High-resolution imaging of Mougeotiopsis calospora was done with the Zeiss IM35 inverted microscope (Carl Zeiss, Oberkochen,
Germany) equipped with the objective lens Planapochromat 63 x/1.4, electronic flash, and the Canon EOS 6D digital single-lens re-
flex camera (Canon, Tokyo, Japan). Time lapse imaging was performed on a Leica DM5000B microscope (Leica Microsystems Wet-
zlar GmbH, Wetzlar, Germany) controlled by the Micromanager software at six frames per minute, shown as 10 FPS. Color balance
and contrast of micrographs were adjusted with Photoshop CS4 (Adobe Inc., CA, USA). Confocal laser scanning microscopy was
done with a Leica TCS SPE system (SP5) and the Leica LCS software (Leica Microsystems Wetzlar GmbH, Wetzlar, Germany). Chlo-
rophyll was excited with a wavelength of 635 nm and the emission of 646-782 nm was recorded. Confocal z stacks were processed
and converted to three-dimensional data with the image processing package Fiji.**

Transmission electron microscopy

Algal filaments were fixed with 2 % glutaraldehyde in 75 mM cacodylate buffer (pH 7.0) for 1 h at RT, rinsed with 75 mM cacodylate
buffer, and postfixed with 1 % osmium tetroxide in 75 mM cacodylate buffer overnight at 4 °C. After rinsing in cacodylate buffer, the
samples were dehydrated in a graded acetone series and embedded according to Spurr.®® The resulting TEM blocks were sectioned
on an Ultracut E ultramicrotome (Leica-Reichert-Jung, Vienna, AU), stained with 2 % uranyl acetate and 2 % lead citrate. Sections
were then examined with the LEO 906E transmission electron microscope (LEO, Oberkochen, Germany) and imaged with a
MultiScan Typ 794 CCD camera and the Digital Micrograph 3.4.4 software (both Gatan Inc., Pleasanton, USA).

RNA isolation, sequencing and phylogenomics

For the isolation of total RNA, Mougeotiopsis calospora was grown on a modified freshwater F/2 medium?®® with 1% agar at 22°C. An
LED light source provided photosynthetically active radiance at 120 pmol photons*m2*s™" under a 12:12 h light/dark photocycle. Har-
vesting, RNA extraction and transcriptome sequencing was carried out as described by de Vries et al.'® In brief, filaments of a
growing algal culture were harvested and directly transferred into Trizol (Thermo Fisher, Waltham, MA, USA). The algal sample
was homogenized using a Tenbroek tissue homogenizer and all following steps were performed in accordance to the manufacturer’s
instructions. To remove possible residual DNA, RNA samples were treated with DNAse | (Thermo Fisher). Adequate RNA quality was
verified using a formamide agarose gel. Samples were shipped on dry ice to Genome Québec (Montreal, Canada), where additional
RNA quantification and quality assessments were performed using a Bioanalyzer (Agilent Technologies Inc., Santa Clara, CA, USA).
Library construction was performed using the NEB mRNA stranded Library preparation kit (New England Biolabs, Beverly, MA, USA).
Sequencing of the libraries was carried out on the NovaSeq 6000 (lllumina), yielding 28188133 paired end reads of 101 base pairs in
length. Quality of the reads was assessed using FastQC version 0.11.7. Reads were trimmed using Trimmomatic version 0.36"°,
applying settings for quality trimming and adapter removal (ILLUMINACLIP:Adapters.fa:2:30:10:2: TRUE HEADCROP:10 TRAILING:3
SLIDINGWINDOW:4:20 MINLEN:36). The transcriptome was assembled de novo with Trinity.?” Transcriptome completeness was
assessed with BUSCO v.5.0.0°° using the viridiplantae_odb10 database in the transcriptome mode. Open reading frames (ORFs)
were predicted with Transdecoder v.5.5.0.
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We downloaded 83 transcriptomes and genomes of Streptophyta and Chlorophyta (see key resources table). Using a previously
constructed phylogenomic dataset, we searched the selected sequencing data for orthologs of the 351 highly conserved proteins.®®
After alignment and trimming using MAFFT v7.310”" and trimal v1.4.rev15,”® careful inspection of single-protein phylogenies esti-
mated with IQ-TREE v1.5.5 under the LG4X model was undertaken to remove contaminants and paralogs. Once the data set was
refined, orthologs that were missing in over 50% of taxa were removed; that said, we retained all orthologs that were present in Mou-
geotiopsis (overwriting the aforementioned 50% filtering). We estimated a maximum likelihood phylogeny based on the concate-
nated alignment of a final set of 326 translated proteins (cumulative maximum of 115,424 sites; see alignment on Zenodo, https://
doi.org/10.5281/zenodo.6805950;) the final set of proteins/protein-coding genes was: AAP, ABHD13, Actin, ADK2, AGB1, AGX,
AKTIP, ALG11, ALIS1, AMP2B, AOAH, AP1S2, AP3M1, AP3S1, AP4M, AP4S1, APBLC, ar21, arf3, ARL6, ARP2, ARP3, arpct,
ARPC4, ATEHD2, ATG2, atp6, ATP6VOA1, ATP6VOD1, ATPDIL14, ATSAR2, Atub, BAT1, Btub, C160rf80, C220rf28, C3H4, calr,
capz, CC1, CCDC113, CCDC37, CCDC40, CCDC65, cct-A, cct-B, cct-D, cct-E, cct-G, cct-N, cct-T, cct-Z, CDK5, CLAT, COP-
beta, COPE, COPG2, COPS2, COPS6, COQ4-mito, CORO1C, crfg, CRNL1, CS, CTP, D2HGDH-mito, DCAF13, DHSA1, DHSBS3,
DHYS, DIMT1L, DNAI2, DNAJ, DNAL1, DNM, DPP3, DRG2, ECHM, EF2, EFG-mito, EFTUD1, EIF3B, EIF3C, EIF3I, EIF4A3,
EIF4E, ERLIN1, ETFA, FA2H, FAH, FAM18B, FAM96B, FAM, fh, fibri, FOLD, fpps, FTSJ1, GAS8, GCST, gdi2, GDI, glcn, GLGB2,
GMPP3, gnb2l, gnbpa, GNL2, grc5, GRWD1, GSS, Gtub, H2A, H2B, h3, h4, HDDC2, HGO, HM13, hmt1, HSP70C, hsp70mt,
HSP90, HYOU1, if2b, if2g, if2p, if6, IFT46, IFT57, IFT88, IMB1, IMP4, ino1, IP5PD, IPO4, IPO5, KARS, KDELR2, 110a, I112e-D,
LRRC48, mat, mcm-A, mcm-B, mcm-C, mcm-D, mcm-E, metap2, METTL1, MLST8, MMAA-mito, mral, MTHFR, MTLPD2,
MYG1, NAA15, NAE1, NAPA, ndf1, NDUFV2-mito, NFS1-mito, NMD3, NMT1, NOP5A, NSA2, nsf1-C, nsf1-E, nsf1-G, nsf1-H,
nsfi-l, nsf1-d, nsf1-K, nsfi-L, nsf1-M, nsf2-A, nsf2-F, ODB2, ODBA, ODBB, ODO2A, ODPA2, ODPB, oplah, orf2, osgep,
PABPC4, pace2-A, pace2B, Pace2C, pace5, PCY2, PELO, PGM2, PIK3C3, PLS3, PMM2, PMPCB, PPP2R3, PPP2R5C, PPX2,
PR19A, PSD11, PSD7, psma-A, psma-B, psma-C, psma-E, psma-F, psma-G, psma-H, psma-J, psmb-K, psmb-L, psmb-M,
psmb-N, PSMD12, PSMD6, psmd, PURA, PYGB, rac, rad23, Rad51A, ran, RBX1, rf1, rla2a, rla2b, RPAC1, RPF1, rpl11, rpl12,
Rpl13A, Rpl13e, Rpli4de, Rpl15, rpl17, Rpl18, rpl19, rpl20, rpl21, Rpl24A, rpl26, rpl27, Rpl2, rpl30, rpl31, rpl32, rpl33, rplI35, Rpl3,
rpl43, rpld4, Rpldb, Rpl5, rpl6, Rpl7a, rpl9, RPN1B, rpo-A, rpo-B, rpo-C, RPPK, rppO, rps10, rpsi1, rps12, rpsi4, rpsi15, rpsi16,
rps17, rps18, rps20, rps23, rps26, rps27, rps2, rps3, rps4, rpsb, rps6, rps8, RPTOR, RRAGD, RRM1, s15a, s15p, sap40, SCO1-
mito, SCSB, SEC23, SF3B2, SND1, SPTLCH1, sra, srp54, STXBP1, suca, SYGM1, SYNJ, tfiild, TMOSF1, TMS, topo1, trs, UBAS,
ubc, UBE12, UBE2J2, Ubq, VAPA, VARS, vata, vatb, vatc, vate, VBP1, VPS18, VPS26B, WBSCR22, WD66, wd, wrs, xpb, YKT6.
This tree was used as a guide to infer the final phylogeny under the LG+PMSF(C60)+F+I" model”® of evolution; this is in line with
the results of ModelFinder,® which determined from 144 protein models LG+F+|+Gé4 as best-fit model according to Bayesian Infor-
mation Criterion. Bootstrap analysis was conducted with 100 nonparametric bootstrap replicates using this model.

Ancestral character state reconstruction

Ancestral character state reconstruction was performed with Phytools (Revell’®), which implements Yang’s’* re-rooting method to
infer marginal ancestral state estimates for the internal nodes in the tree (Figure 3). We performed two independent analyses
assuming 2-, and 4-character states in order to understand the effect of character coding on the inferred ancestral character states.
The 2-state model used (1) unicellular and (2) multicellular sensu /ato (filamentous or multicellular); the 4-state model differentiated
between (2) bona fide filamentous algae excluding desmids, (3) chain-like filamentous desmids, and (4) multicellular sensu stricto
(embryophytes, Coleochaetophyceae, Charophyceae, Volvox, Ulva). All models assumed unordered states (equal rates of change).

QUANTIFICATION AND STATISTICAL ANALYSIS

For the quantification of the average diameter of macrotubules, 446 sections of macrotubules were examined with the LEO 906E
transmission electron microscope (LEO, Oberkochen, Germany) and imaged with a MultiScan Typ 794 CCD camera; all 446 counts
of the diameter were obtained with the Digital Micrograph 3.4.4 software (both Gatan Inc., Pleasanton, USA).

After inspection of single-protein phylogenies estimated with IQ-TREE v1.5.5 under the LG4X to remove contaminants and paral-
ogs, the data set was refined: orthologs that were missing in over 50% of taxa were removed; that said, we retained all orthologs that
were present in Mougeotiopsis (overwriting the 50% filtering). The final phylogeny was inferred under the LG+PMSF(C60)+F+I"
model”® of evolution; this is in line with the results of ModelFinder,*® which determined from 144 protein models LG+F++G4 as
best-fit model according to Bayesian Information Criterion. Bootstrap analysis was conducted with 100 nonparametric bootstrap
replicates using this model; approximate likelihood ratio test (SH-aLRT) was carried out with 1000 replicates and additionaly approx-
imate Bayes (aBayes) test was carried out.

For the Approximately Unbiased test of the phylogenetic tree, we compared our phylogenomic hypothesis with that previously pro-
posed by the One Thousand Plant Transcriptomes Initiative® (main ASTRAL tree in Figure 2 based on 410 loci), which differed with
ours in the relative position of a few species within Desmidiales. We performed an Approximately Unbiased test (AU test)®® under
best-fit LG+C60+F+I" model with 10,000 multiscale bootstrap replicates using IQ-TREE v.1.6.12.
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Mougeotiopsis calospora
MZCH580

Figure S1: Macrotubule formation as detected in TEM sections of Mougeotiopsis calospora cells with
incomplete cytokinesis, related to Figure 1. Overview showing three cells with incomplete cytokinesis and
partial cross walls. Arrow indicates bundle of macrotubules.
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Figure S2: Peroxisomes of filamentous zygnematophytes, related to Figure 1. A: Transmission electron
micrograph of a DAB-stained peroxisome of Mougeotiopsis calospora, strain MZCH580. B: Transmission
electron micrograph of DAB-stained peroxisomes of Mougeotia sp., strain MZCH240. C: Sizes of peroxisome
sections of four filamentous zygnematophytes as measured in transmission electron micrographs. The
number of analysed cells/peroxisomes are shown in square brackets, and the average number of peroxisome
cross sections per cell in the red circles. Scale bars, 0.5 um.
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Figure S3: Multigene phylogeny of 84 Viridiplantae, related to Figure 2. Phylogenomic tree that shows the
relationship of all streptophyte species analysed; the tree was rooted with the clade of chlorophytes. Scale
bar, 0.2 substitutions per site. Support values from three analyses (SH-aLRT/aBayes/nonparametric
bootstrapping) are shown at the corresponding branches, except for branches with maximum support
(marked by dots); colored dots correspond to the (full) support recovered for the higher-order clades labeled
on the right.
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Figure S4: Destructive sampling of Mesogerron fluitans collected by Brand and morphological
characteristics of the material, related to Figure 1. A and B: Specimen in the Herbarium of the Academy of
Natural Sciences of Philadelphia (PH). C: Removal of dried algal material. D-F: Rehydrated algal filaments of
the sample. Note the varying cell length and the chloroplast morphology resembling that of strain MZCH580.
Images in A—C: courtesy of Richard McCourt. Scale bars, 10 um.
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Perspectives for understanding the diversity of saccoderm desmids

The Zygnematophyceae have received considerable attention due to their ubiquity in freshwater
ecosystems, their interesting evolutionary position, and the beauty of the placoderm desmids (e.g
Gerrath, 1993; Brook & Williamson, 2010; de Vries et al., 2017, 2018, 2020). Yet, their internal
relationships and their taxonomy have not been appropriately clarified. The delimitation of species
within the zygnematophytes is challenging, and despite a long history of research, a stable taxonomic
system of the major groups which reflects their phylogeny was lacking (Cheng et al., 2019; Gontcharov
et al., 2004; Gontcharov & Melkonian, 2008, 2011; Hall et al., 2008). Numerous species concepts have
been proposed to define species boundaries (e.g. biological, morphological, phylogenetic, ecological
species concepts) (Novarino, 2012). However, when considered in isolation, each of these concepts has
certain limitations, and the extent to which they can be applied to different organisms varies considerably
(Guiry, 2012). For example, the biological species concept relies on reproductive isolation as a defining
character. In microorganisms, however, not all groups mate and mating experiments are difficult to
perform (Caron & Hu, 2019; Schlegel & Meisterfeld, 2003). Hence, the biological species concept alone
cannot be applied to many microorganisms.

In this thesis, an integrative taxonomic approach was used to delimit taxonomic units within the
Zygnematophyceae. Integrative taxonomy is a method of species delimitation that combines a variety
of data, including molecular, phenotypic, behavioral and ecological data, in order to provide a
comprehensive understanding of the diversity within a given group (Cicero et al., 2021). In this thesis,
a combination of molecular, phenotypic and ecological data was used. Phylogenetic inferences were
based on rbcL and 18S rRNA gene sequences. In the Zygnematophyceae, the 18S rRNA gene turned
out to be too conserved to draw evolutionary conclusions at the genus and species level. The rbcL gene-
based phylogenies, in contrast, resolved genus-level clades well and can differentiate intra-genus
diversity. Furthermore, the rbcL gene is the most commonly used genetic marker for the
Zygnematophyceae, resulting in the best possible coverage of different zygnematophyte taxa in
molecular analyses (Busch & Hess, 2022b, 2022a). Nevertheless, based on the rbcL gene phylogenies,
the distinction between species is not entirely clear in all genera. For example, certain strains of the
genus Serritaenia showed marked differences in cell morphology besides identical rbcL gene sequences
(Busch & Hess, 2022b). In the future, a detailed taxonomy of species (e.g. in the genus Serritaenia)
could be based on more variable genetic markers, such as the internal transcribed spacers (ITS-1 and
ITS-2) of the rRNA operon. This approach has been successfully employed in other streptophyte green
algal groups (Mikhailyuk et al., 2008, 2018; Remias et al., 2023).

The phylogenetic analyses were combined with morphological studies based on axenic cultures.
The comparability of the morphological studies was ensured by well-defined culture conditions (e.g.
light regime, nutrient composition of the culture medium, and temperature), which turned out to be very
important due to phenotypic plasticity within the Zygnematophyceae. Based on my own observations

in the saccoderm desmids, phenotypic plasticity can relate to chloroplast morphology, growth form and
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the presence of colored specialized compounds (Busch & Hess, 2022b). Furthermore, in certain
placoderm desmids (e.g. Micrasterias, Staurastrum) the cell shape and size was shown to change in
relation to the pH and temperature (Cerné & Neustupa, 2010; Neustupa & Woodard, 2024). The selected
methodology led to the identification of taxonomically valuable characters, which are suited to
distinguish several of the twelve lineages of Mesotaenium-like algae. These morphological
characteristics include the cell shape, chloroplast shape and number during interphase, pyrenoid shape
as well as nucleus position (Busch & Hess, 2022a). Moreover, the cell width turned out to be a valuable
character to distinguish between genotypes (possible species) of a given lineage of saccoderm desmids,
as for example shown in the genera Serritaenia (Busch & Hess, 2022b), Ancylonema (Chapter [V: Busch
et al., under review), and Cylindrocystis (Barcyté et al., 2020). Moreover, the full vegetative life history
(incl. cell division) and zygospore development was studied with time-lapse microscopy. The full
reconstruction of the vegetative life history allowed an optimal evaluation of cell morphological
characters, since chloroplast number and shape as well as the cell length vary during the different life
history stages (Chapter IV: Busch et al., under review). In addition, the morphology of the zygospore is
valuable for the identification of species in the Zygnematophyceae. The zygospores of the different
zygnematophyte taxa exhibit considerable variation in morphology, and have been used traditionally to
differentiate species of placoderm desmids and filamentous zygnematophytes (Brook, 1981; Brook &
Williamson, 2010; Permann et al., 2021; Takano et al., 2019). However, conjugation and zygospore
formation cannot be always observed in natural material. In the laboratory, these processes have been
successfully induced in a few cases, e.g. Spirogyra species (El-Sheekh et al., 2017), Closterium
peracerosum-strigosum-littorale complex (Tsuchikane et al., 2012), and Mesotaenium kramstai
(Tiflickjian & Raybum, 1986). The successful induction of conjugation in 4. palustre by nutrient
limitation now encourages to test other new zygnematophyte strains as well. If successful, this can add
another layer of taxonomically valuable information for the future delimitation of saccoderm desmids.
With respect to the ecological versatility of the group, an ecological characterization should be part of
an integrative approach as well. The optimal growth temperature as well as photophysiological
parameters varies between strains, and is certainly related to their evolution and natural distribution.
Members of the genus Ancylonema for example show clear differences in growth temperature as well
photosynthetic capacity (Chapter IV: Busch et al., under review). Extended information on the
ecophysiology of the described species might help us to understand the remarkable pseudo-cryptic
diversity observed within certain genera (e.g. Serritaenia) and the ecological niches these algae occupy.

While standard genetic markers such as the rbcL gene are well suited to resolve recent
evolutionary splits, the deep nodes of the zygnematophycean phylogeny cannot be resolved (Busch &
Hess, 2022a; Gontcharov et al., 2004). However, this is important to understand the evolution of
characters within the group. The zygnematophytes comprise filamentous forms, rather simple rod-
shaped cells as well as the symmetric placoderm desmids (Busch & Hess, 2022a). Placoderm desmids,

for example, exhibit a diversity of cell wall ornamentations (spines, pores, warts), whose biological
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functions are so far unknown (Kouwets, 2008). Furthermore, it was unknown how the filamentous forms
(e.g. Spirogyra, Mougeotia, Zygnema) are related to each other and how the trait of simple
multicellularity arose during evolution (Cheng et al., 2019; Gontcharov, 2008; Gontcharov et al., 2004;
Hall et al., 2008). A modern approach to resolve such questions is phylogenomics. In a collaborative
approach, we inferred a multigene phylogeny of the Zygnematophyceae with 326 nuclear loci. Based
on this well-supported phylogenomic tree, we could resolve the major zygnematophycean groups very
well, and established a new five-order system of the Zygnematophyceae. Furthermore, the
phylogenomic tree revealed that filamentous growth evolved at least five times independently within
the zygnematophytes (Hess et al., 2022). However, the tree only captured a fraction of the existent
zygnematophyte diversity and many of the saccoderm desmids studied in this thesis were not available
at the time. In fact, my single gene trees reveal a much greater diversity of these morphologically plain
zygnematophytes, which is currently not reflected in multigene phylogenies and higher-level
systematics (Busch & Hess, 2022a). In the future, I aim to include these lineages in new phylogenomic
studies and to further develop the taxonomy of zygnematophytes, in particular of the polyphyletic genera

Mesotaenium and Cylindrocystis.

Deciphering the molecular background of a new photoprotective strategy in
zygnematophytes

Although many members of the Zygnematophyceae live in high-light habitats, not much is known about
their photoprotective mechanisms (Fucikova et al., 2008; Pichrtova et al., 2016; Remias, Holzinger, et
al., 2012). Given that these algae are the closest relatives of land plants, it is reasonable to assume that
their adaptive strategies are similar to those of plants (Cheng et al., 2019; de Vries et al., 2017, 2018;
De Vries & Archibald, 2018). Many plants synthesize specialized compounds of the flavonoid family
in response to various abiotic stressors, including UVB radiation (Ferreyra et al., 2021). For example,
the well-known anthocyanins, water-soluble compounds of red to blue color that accumulate in
vacuoles, originate from the flavonoid biosynthetic pathway (Barcelo et al., 1994; Davies et al., 2022).
Furthermore, auronidins and sphagnorubins, which derive from the same pathway, are known from
bryophytes of sun-exposed habitats. These reddish to violet pigments accumulate in the plant cell wall
(Berland et al., 2019; Davies et al., 2022; Rudolph et al., 1981; Rudolph & Vowinkel, 1969). Earlier
studies already indicated that the prominent secondary pigments of some zygnematophytes differ
markedly from those of land plants. In members of the two genera Ancylonema and Zygogonium, the
intracellular, reddish compounds were identified as purpurogallin derivatives and gallic acid polymers,
respectively (Newsome & van Breemen, 2012; Remias et al., 2012). These compounds are thought to
originate directly from the shikimate biosynthetic pathway, and, hence, stem from a metabolic route

different to those of the mentioned plant sunscreens.
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In this thesis, I studied a group of saccoderm desmids which exhibit an unusual pigmentation of
their extracellular mucilage. This phenomenon was documented more than 150 years ago in a species
named Mesotaenium braunii (de Bary, 1858), and more recently in Mesotaenium testaceovaginatum
(Fucikova et al., 2008) - both now belong to the new genus Serritaenia introduced during my doctoral
studies (Busch & Hess, 2022b). However, the formation and ecological function of the extracellular
pigments in these algae remained unknown. In my work, I established axenic cultures and developed an
experimental setup to trigger the pigment biosynthesis in the laboratory. This was the basis for providing
the evidence that the extracellular pigments have a sunscreen function, and for identifying some relevant
molecular components through comparative transcriptomics (Busch et al., 2024; Busch & Hess, 2022b).
To qualify as a microbial ultraviolet sunscreen, a compound has to meet certain criteria: 1) The
compound must exhibit a high absorption coefficient in the UV range. 2) The natural concentration of
the compound must be sufficient to cause a significant reduction in the UV dose received. 3) The
compound should be produced specifically during sensitive life cycle stages and/or in response to UV
exposure. 4) The compound should be deposited in a conformation that is optimal for screening (e.g. in
tegumentary layers) (Gao & Garcia-Pichel, 2011). The pigmented mucilage of Serritaenia fulfills all of
the aforementioned criteria and has been demonstrated to block up to 60% of the incident UVB radiation,
which compares to the estimated UVB screening factors of cyanobacterial mycosporine-like amino acids
(Busch & Hess, 2022b; Garcia-Pichel & Castenholz, 1993). Overall, the “sunscreen mucilage” of
Serritaenia clearly represents a photoprotective strategy, which is unique among the known
zygnematophytes — maybe even among all green algae.

The closest analogies of Serritaenia's sunscreen mucilage can be found in the world of
prokaryotes (Fig. 4). Cyanobacteria accumulate photoprotective pigments in their gelatinous sheaths or
capsules. Two compounds have been identified, namely scytonemin (e.g. in Scytonema species; yellow
color) (Garcia-Pichel & Castenholz, 1991; Proteau et al., 1993) and gloeocapsin (e.g. in Gloeocapsa
species; red color) (Storme et al., 2015). The synthesis of scytonemin begins in the cytoplasm, later
reactions likely occur in the periplasm (cyanobacteria are gram-negative), yielding scytonemin, which
then accumulates in the extracellular
sheath (Gao & Garcia-Pichel, 2011;
Soule et al., 2009). However, as
shown in this thesis, the compounds
in the sunscreen mucilage of
prokaryotic and eukaryotic algae are

different. While scytonemin absorbs

light with a maximum in the UVA
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Fig. 4: Gloeocapsa sp. (left) and Serritaenia sp. (right) with pigmented waveband (Garcia-Pichel &
extracellular mucilage; from Storme et al., 2015 and Busch & Hess, 2022a, C hol 1991 Serri .y
modified. Scale bars 10 pm (left) and 20 pum (right). Left: The publisher astenholz, ), Serritaenia's

for this copyrighted material is Mary Ann Liebert, Inc. publishers. sunscreen mucilage has its
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absorbance maximum in the UVB waveband (Busch & Hess, 2022b). Furthermore, the cyanobacterial
sheath pigments can be readily extracted with methanol/ethyl acetate mixtures or acetone (Garcia-Pichel
& Castenholz, 1991). In contrast, Serritaenia's sunscreen pigment is resistant to a variety of solvents as
well as harsh acid hydrolysis, and so far, was not accessible to standard chemical analyses such as
chromatographic methods coupled with mass spectrometry (Busch & Hess, 2022b). Given all these
differences and the considerable evolutionary divergence between Serritaenia and Cyanobacteria, it is
unlikely that the pigmentation observed in Serritaenia corresponds to that of cyanobacteria. It is likely
to be a sunscreen compound new to science.

In order to approach the question of its chemical nature from a different perspective, I have
explored the metabolic pathways that are induced during the synthesis of Serritaenia's sunscreen
mucilage with comparative transcriptomics. For most general cellular processes, including the
perception of UV radiation, I identified clear homologues from land plant model systems. The finding
of a relatively complete and conserved UVRS receptor system, which senses UVB radiation in higher
plants, was very interesting (Busch et al., 2024). This suggests that the perception systems for ubiquitous
terrestrial stressors are likely old and conserved in the green lineage (Tilbrook et al., 2016; Zhang et al.,
2022). In contrast, the specialized metabolite pathways of Serritaenia diverged notably from those of
plant model systems. While the enzyme repertoire of the shikimate pathway was complete, the
phenylpropanoid biosynthesis was only fragmentarily recovered, and the flavonoid biosynthesis
pathways (including anthocyanin biosynthesis) seemed not functional in Serritaenia (Busch et al.,
2024). However, there are reports of phenolic compounds and flavonoids, detected by mass
spectrometry, in members of the Zygnematophyceae (Holzinger et al., 2018; Jiao et al., 2020).
Furthermore, phenolic polymers, that were referred to as “lignin-like substances”, have been detected in
other streptophyte green algae, namely Coleochaete and Nitella (Delwiche et al., 1989; Ligrone et al.,
2008). As the known biosynthetic pathways for polyphenols and flavonoids are fragmentary in
zygnematophytes, the presence of such substances may be explained by novel enzymes that currently
cannot be annotated, cryptic activities of known enzymes, or alternative biosynthetic routes that are yet
to be explored.

Despite these knowledge gaps, Serritaenia's response to UV radiation points to the regulation
of enzymes, which are part of the plant phenylpropanoid pathway. In addition, the data revealed some
enzymes with exciting functionalities, which are highly upregulated under UV exposure. This includes
extracellular oxidative enzymes, such as a class III peroxidase and multicopper oxidases, as well as
ABCG transporters (Busch et al., 2024). In plants, ABCG transporters were shown to transport phenolics
across the plasma membrane (Alejandro et al., 2012; Takeuchi et al., 2018). Class III peroxidases and
multicopper oxidases subsequently facilitate the polymerization of such phenolic moieties, resulting in
the formation of phenolic polymers within the apoplast (McCaig et al., 2005; Ostergaard et al., 2000;

Sakharov et al., 2001). Altogether the results gained with comparative transcriptomics point to a
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polyphenolic nature of Serritaenia's sunscreen pigment, whose synthesis might be extracellular and
oxidative.

This hypothesis aligns very well with the observations made during the attempts to purify
Serritaenia's sunscreen pigment. The precipitation under acidic conditions and the destruction under
strong alkaline treatment are typical for other, well-known phenolic polymers (Butler & Day, 1998; de
Ascensao & Dubery, 2003; Garcia et al., 2009). In fact, phenolic polymers are common in
phylogenetically diverse organisms, where they have various biological functions. For example, lignins
are a class of phenolic polymers of vascular plants (tracheophytes) with the main building blocks:
coniferyl alcohol, sinapyl alcohol, and p-coumaryl alcohol. Lignins are formed by monolignol
polymerization via free radical coupling in the plant cell wall, where they enhance the hydrophobic
properties and rigidity (Vanholme et al., 2019). Melanins constitute another group of polyphenols, which
are well-known as sunscreens in animals (incl. humans). These brown to black pigments have been
found in members from various higher-level taxa in the prokaryotes and eukaryotes (Plonka &
Grabacka, 2006). In fungi, melanins are localized in the cell wall and supply protection against high
radiation, drought and extreme temperatures (Butler & Day, 1998). However, the defined composition
of lignins, which are primarily composed of the three aforementioned monolignols, and the black to
brown color of melanins (independent of the pH value) make it unlikely that the sunscreen pigment of
Serritaenia belongs to one of these organic compounds. In the future, the sequence data generated
(transcriptomics) will be complemented by analytical data (metabolomics) in order to decipher the
precursor molecules and monomers from which the sunscreen is made. In addition, mass spectrometry
imaging (MSI) may offer a potential solution to circumvent the purification hurdle. The technique could
be used to identify specialized compounds and proteins enriched in the pigmented mucilage of
Serritaenia.

The present studies have paved the way for a detailed characterization of interesting proteins in
Serritaenia, whose plant homologues have important functions in the transport and synthesis of
specialized compounds. So far, the function of these proteins in the Zygnematophyceae remained
completely unknown. In the future, interesting protein candidates identified in the Serritaenia
transcriptome can be expressed in heterologous expression systems, e.g. in the yeast Pichia pastoris.
The class 11l peroxidase and multicopperoxidases of Serritaenia, for example, could be tested for their
activity on phenolic compounds. Vesicles from yeast expressing Serriatenia's ATP-binding cassette
transporters, could be isolated and tested for their transport activity on different compounds (as done for
the monolignol transporter AtABCG29 from A. thaliana). Another approach is to use plant knockout
mutants for rescue experiments. Here, homologs identified in Serritaenia (e.g. the ABCG transporters)
can be tested for phenotype rescue in corresponding knockout lines, e.g. the AtABCG29 knockout
mutant in A. thaliana (Alejandro et al., 2012). By establishing the actual activities of Serritaenia's

extracellular oxidative enzymes and ATP-binding cassette transporters, we will be able to further
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uncover the cellular processes that protect Zygnematophytes in high-light habitats. Overall, such studies

will broaden our view, which was long focused on model plants.

Biodiversity meets functional characterization: new avenues to explore

Over the last decade, genomes and transcriptomes have become increasingly available from a wide range
of organisms, including over 200 assembled algal genomes. (Hanschen & Starkenburg, 2020). The
application of “omics”-techniques (i.e. genomics and transcriptomics) find wide applications in different
biological disciplines. This includes cell biology, ranging from physiology and metabolism to
development and life cycles to questions of evolutionary biology (Anderson, 2022). The application of
phylogenomics, for instance, contributes to the understanding of evolutionary trends and significant
evolutionary processes, including terrestrialization, primary endosymbiosis events, and the origin of
eukaryotic life on earth (Burki et al., 2020; De Vries & Archibald, 2018; Eme et al., 2011; Irisarri et al.,
2022). Another powerful tool is the application of comparative transcriptomics to get a global snapshot
of expressed genes under defined conditions in an organism. Most importantly, de novo transcriptome
assemblies offer the potential to study cellular behavior on a molecular scale in non-model organisms,
which lack genome data and an established transformation system. This approach enables the transfer
of knowledge from reference organisms to less well-characterized systems (Blaby-Haas & Merchant,
2019; Cordoba et al., 2021; Geng et al., 2021). The method, however, also has its limitations as
functional annotations rely heavily on the available data from model organisms in the databases. In
S. testaceovaginata, for example, 20 of the 50 most upregulated genes could not be functionally
annotated using the NCBI RefSeq database (National Library of Medicine reference sequences database)
(Busch et al. 2024). Whole genome assemblies of other algal groups contain a similarly high proportion
of genes that cannot be functionally annotated. For instance, over 30% of the predicted proteins in the
genome of the streptophyte green alga Klebsormidium nitens lacked a Pfam domain and could not be
assigned to any of the nearly 1.2 million orthologous groups defined in the EggNOG database (Blaby-
Haas & Merchant, 2019). This illustrates the extent of the genes and functional capabilities of non-model
organisms that remain to be discovered.

Streptophyte green algae are poorly characterized on the genetic level. The majority of protein
functional annotations are derived from sequence similarity searches against one or more databases. In
contrast, in A. thaliana, the most extensively studied photosynthetic eukaryote, 30% of functional
annotations are associated with experimental evidence (Blaby-Haas & Merchant, 2019; Hanschen &
Starkenburg, 2020). Due to the relatively close relationship of zygnematophytes and land plants, most
predicted proteins in Serritaenia were functionally annotated with potential homologs from the model
plant A. thaliana. However, these annotations must be interpreted with caution. Although the
Zygnematophyceae are the sister clade of land plants, it is important to note that there is still a significant

evolutionary distance between these algae and the well-studied flowering plants. Hence, predicted
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homologs do not necessarily have the same function. To further evaluate a putative homology of certain
proteins and their function, protein phylogenetics are a powerful tool. This also applies to the in silico
analysis of protein domains and protein structure predictions (Busch et al., 2024). However, the available
bioinformatic tools for functional annotation cannot fully replace wet-lab studies on proteins. In the
future, it will be necessary to conduct experimental research on enzymes and molecular factors of
underrepresented organisms. This will help us to make much more accurate functional predictions on
the basis of genetic data.

Biodiversity exploration and functional studies on the cellular level have long been separate
disciplines in biology. My doctoral study on a poorly-known subgroup of zygnematophyte algae
combines both. It illustrates how this combination leads to an understanding of the cellular functions
and ecology of a group of organisms, and provides evolutionary insights as well. In this approach,
genomes and transcriptomes are valuable resources as they provide a window into the functional
potential of non-model organisms. Especially protist research profits enormously from
“omics”-techniques. We now gain a much deeper understanding of the molecular basis of biological
phenomena — from the cellular to ecosystem level (Anderson, 2022). In the future, the combination of
biodiversity and functional research will extend the databases with phylogenetically diverse datasets.
Furthermore, the in vitro characterization of non-model factors will likely reveal novel metabolic routes,

and deepen our understanding of speciation and ecosystem functioning.
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