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Zusammenfassung

Mittels normaler Seshadri-Stratifizierungen erhielten Chirivi, Fang und Littelmann eine
Standardmonomentheorie (SMT) auf dem homogenen Koordinatenring bestimmter einge-
betteter projektiver Varietdten, d.h. eine Basis aus sogenannten Standardmonomen.
Im Fall von Schubert-Varietiten wurde eine SMT bereits kombinatorisch von Laksh-
mibai, Musili und Seshadri entwickelt. Wir verallgemeinern den Begriff der Seshadri-
Stratifizierung auf abgeschlossene Untervarietiten in einem Produkt projektiver Rdume
und konstruieren solche Stratifizierungen auf Schubert-Varietéten in jedem Dynkin-Typ.
Unter Verwendung des Littelmann-Pfadmodells zeigen wir, dass diese Stratifizierungen
eine geometrische Erklarung fiir die SMT von Hodge und Young durch semistandard
Young-Tableaus liefern, sowie fiir die SMT von Lakshmibai, Musili und Seshadri und
allgemeiner, fiir eine SMT, die durch Sequenzen von LS-Pfaden indiziert wird.

Abstract

Via normal Seshadri stratifications, Chirivi, Fang and Littelmann obtained a standard
monomial theory (SMT) on the homogeneous coordinate ring of certain embedded
projective varieties, that is to say a basis of so called standard monomials. In the case of
Schubert varieties such a SMT was already developed combinatorially by Lakshmibai,
Musili and Seshadri. We generalize the notion of a Seshadri stratification to closed
subvarieties in a product of projective spaces and construct such stratifications on
Schubert varieties in every Dynkin type. Using the Littelmann path model, we show that
these stratifications provide a geometric explanation of the SMT of Hodge and Young
indexed by semistandard Young tableaux, the SMT of Lakshmibai, Musili and Seshadri
and more general, of a SMT indexed by sequences of LS-paths.
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1. Introduction

In the 1940s, Hodge described a basis of the homogeneous coordinate ring of a Grassmann
variety Gr(d,n) via certain products of Pliicker coordinates ([Hod], [HP]). The basis
vectors correspond to semistandard Young tableaux with exactly d rows and entries in
{1,...,n}. This is the first example of what is known as a standard monomial theory
(SMT). However there still exists no clear definition what a standard monomial theory
really is, this term rather refers to specific examples, which usually come from the
representation theory of semisimple algebraic groups or Lie algebras. Given an algebra
generated by a finite set S, the set of all monomials in S generate this algebra as a vector
space. One tries to extract a basis from this generating set via combinatorial methods.
The basis vectors are then called standard and every monomial in S not belonging to
this basis is called non-standard.

In their series of papers (|Sesl|, [LS2], [LMS3], [LMS4], [LS5], ...) Lakshmibai, Musili
and Seshadri generalized the work of Hodge to Schubert varieties in classical Dynkin
types. They found a standard monomial basis of the multihomogeneous coordinate ring
of the Schubert variety X with respect to the embedding

X = [[PVw).

where w; are certain fundamental weights. This basis is indexed by sequences of Weyl
group cosets, which can be lifted to a weakly decreasing sequence in the Weyl group,
called defining chain.

The path model of Littelmann — more specifically the path model of LS-paths —
developed in [Lit94] and [Lit95] provided a suitable language for this index set, such
that the SMT of Lakshmibai, Musili and Seshadri could be generalized to arbitrary
Dynkin types |[Lit96]). To each LS-path one associates a function called path vector,
which Littelmann constructed in [Lit98] using quantum Frobenius splitting. Standard
monomials in these path vectors are indexed by sequences of LS-paths which admit a
weakly decreasing lift to the Weyl group. This leads to the notion of what we call an
LS-tableau (see Section 4.2), a generalization of Young tableaux.

Since the discovery of this combinatorially defined standard monomial basis, it has
attracted much attention and a large amount of citations and applications. As the
multihomogeneous coordinate ring is an algebraic-geometric object, it is a natural
question whether the SMT can also be derived using geometric methods. This leads to
the main theorem of this thesis.

Theorem (Theorem 5.11 and Proposition 5.5). There exists a quasi-valuation V with at
most one-dimensional leaves on the multihomogeneous coordinate ring K[X| of X, such
that the elements in the image of V correspond to certain standard LS-tableaux.



2 1 Introduction

We now explain the meaning of the objects appearing in this theorem. Note that
there may exist different quasi-valuations on K[X], which therefore give geometrical
interpretations of different SMTs.

The geometric interpretation of LS-tableaux is based on the connection between
standard monomial theory and the vanishing ideals of unions of Schubert varieties. This
connection was formalized by Chirivi, Fang and Littelmann in [CFL] and [CFL2]. They
introduced the concept of a Seshadr: stratification on an embedded projective variety
X CP(V). It consists of a family (X,),ea of closed subvarieties X,, C X indexed by a
graded poset A and a homogeneous function f, in the homogeneous coordinate ring K[X]
of X (called extremal function) for each p € A. Every variety X, has to be irreducible
and smooth in codimension one. The grading on A needs to be compatible with the
dimensions of the subvarieties, i.e. X, is a divisor in X, if and only if ¢ < p is a covering
relation in A.

Seshadri stratifications use a web of subvarieties in contrast to the Newton-Okounkov
theoretical approach (|[KK]|, [LM]), which uses a flag of subvarieties. By taking successive
vanishing multiplicities along this web, every Seshadri stratification induces a quasi-
valuation V : K[X]\{0} — Q4 which can be thought of as a filtration of the homogeneous
coordinate ring K[X]. In general, the quasi-valuation V is not quite canonical, as it
depends on the choice of a total order >! linearizing the partial order on A. The
subquotients (called leaves) of the filtration on K[X] are at most one-dimensional and
they are indexed by the image I' of V, which is a union of finitely generated semigroups
I'¢ over all maximal chains € in the poset A. Hence I' is called the fan of monoids to the
stratification. The projective variety X degenerates into a reduced union of the toric
varieties to these semigroups I'¢ via a Rees algebra construction. To each semigroup
I'¢ one can also associate a Newton-Okounkov body, which turns out to be a simplex.
Hence for Seshadri stratifications, the Newton-Okounkov body of a flag of subvarieties is
replaced by a simplicial complex.

For each normal Seshadri stratification, i.e. every semigroup I'¢ is saturated, the fan
of monoids I' defines a standard monomial theory on the homogeneous coordinate ring
K[X]. Every element in I' can be uniquely decomposed as a sum of indecomposable
elements. When choosing a function z, for each indecomposable element a € I' then all
monomials in these functions generate K[X] as a vector space and a monomial 41 - - - s

is standard, if and only if a' + --- + a® is contained in T'.

In both [CFL2| and [CFL4|, Chirivi, Fang and Littelmann already constructed a normal
Seshadri stratification on every Schubert variety X, embedded into a projective space
over a Demazure module. Hence they obtain a SMT on the associated homogeneous
coordinate ring. Note that the SMT by Lakshmibai, Musili and Seshadri mentioned
above, gives rise to a basis of a different coordinate ring, namely the multihomogeneous
coordinate ring of X, with respect to the embedding into the product [ P(V (w)), where
w runs over certain fundamental weights. This raises the following question.



Question. Is there a normal Seshadri stratification on X, with respect to the multipro-
jective embedding, such that one obtains the SMT of Lakshmibai, Musili and Seshadri,
or more general, the SMT indexed by LS-tableaux?

In this thesis we show that such a stratification exists under certain combinatorial
conditions. We now give an overview over the different chapters in this thesis. Answering
the question above first requires generalizing the notion of a Seshadri stratification to
projective varieties X embedded into a product [];", P(V;) of projective spaces, which we
call multiprojective varieties. In the first chapter, we therefore introduce multiprojective
Seshadri stratifications. In contrast to the ordinary Seshadri stratifications in [CFL],
the variety X, need not be a subvariety of X itself, but of a projection X;, of X into
a product [].. I P(V;) indexed by a non-empty subset I, C {1,...,m}. The collection
T ={l, | p € A} of these sets is called the index poset of the stratification, which
is an additional structure not visible for ordinary stratifications. By taking the affine
multicones Xp of the stratum X, one can still view Xq as a closed subvariety of Xp,
if and only if ¢ < p. The extremal functions f, are chosen to be multihomogeneous
elements of the multihomogeneous coordinate ring K[X].

For multiprojective stratifications one can still define a quasi-valuation V : K[X]\{0} —
Q" inducing a filtration on K[X] with at most one-dimensional leaves and a fan I" of
finitely generated monoids. The big difference to the original Seshadri stratifications lies
in the Newton-Okounkov theory. Instead of a simplicial complex, we obtain a family of
polytopal complexes, which is parametrized by the elements d € N*. Each semigroup I'¢
to a maximal chain € in A defines a polytope A(@d) and its faces correspond to certain
subchains of €. Almost all of these polytopal complexes carry information about the
variety X, e.g. its dimension, but in certain edge cases the dimension of the polytopal
complex can be smaller than dim X. Similar to [CFL, Theorem 13.6], the volume of
these polytopal complexes with respect to certain lattices computes the leading term of
the multivariate Hilbert polynomial.

In chapter 3 we construct a multiprojective Seshadri stratification on each partial
flag variety in Dynkin type A using the combinatorial ideas from [LMS4| and [Ses2|. As
expected, the elements in the fan of monoids I" correspond to certain semistandard Young
tableaux. In addition, the stratification is normal and balanced, i.e. I' does not depend
on the choice of the total order > on the poset A. The resulting standard monomial
theory coincides with the classical Hodge-Young theory of standard monomials in Pliicker
coordinates (see [Ses2, Chapter 2|).

We attempt to generalize this construction in chapter 4 to Schubert varieties X, C G/Q
in arbitrary Dynkin types. To achieve this, we define the tableau model of LS-tableaux,
which we hope to find in the associated fan of monoids to the stratification. These
tableaux depend on two choices: First, a sequence A = (Aq,..., \,;,) of dominant weights
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which fixes the multiprojective embedding
X = [JPV(N))
i=1

and second, a subposet Z of the power set poset P({1,...,m})\{@}, ordered by inclusion.
One can think of the elements in Z as the possible shapes of the columns in the LS-
tableaux. Each column 7,..., 7, is an LS-path and their shapes need to follow a weakly
decreasing sequence Iy O --- D I, in Z. To get the classical Young tableaux for the
group SL, (K) one would choose the poset Z of all sets {1,...,i} fori =1,...,n— 1.
The shapes of the columns in a Young tableau correspond to their length, so the set
{1,...,1} represents a column of length i. Semistandard Young tableaux are generalized
in the following way: An LS-tableau is called 7-standard, if one can lift the Weyl group
cosets of its columns to a defining chain, i.e. a weakly decreasing sequence in W/Wj,.

To a fixed choice of A and Z we associate a graded poset D (A, 7), called defining chain
poset, which can hopefully be used as the underlying poset for the desired Seshadri
stratification. This poset is constructed from the idea that every defining chain of a
T-standard LS-tableau should be contained in a chain of D(), 7). However, only certain
index posets Z induce a well-defined stratification. First, every two non-comparable
elements need to satisfy the condition (4.2) assuring the existence of specific covering
relations. Second, the poset is required to be 7-standard. These are exactly the index
posets, where the 7-standardness of an associated LS-tableau can be verified locally, by
comparing consecutive columns (which is known as weak standardness).

Theorem (Theorem 4.30). If Z is 7-standard and satisfies the condition (4.2), then there
exists a multiprojective Seshadri stratification on X, with underlying poset D (A, 7) and
index poset Z.

Fortunately, there always exists a 7-standard poset Z, namely the full power set
P({1,...,m})\ {9}, but this is a rather unwieldy choice for computations. The author
was not able to find an combinatorial characterization of 7-standard posets in full
generality. When 7 is the unique maximal element in W/Wy, then 7-standardness
is characterized by the existence of certain paths in the Dynkin diagram of G (see
Theorem 4.24). If the Dynkin diagram is a line (i.e. in the types A, B, C, F and G), one
can always choose a totally ordered poset Z and the associated model of LS-tableaux is
similar to classical Young tableaux. We give an example for 7-standard posets for the
partial flag varieties in all Dynkin types (Section 4.4).

In the last chapter, we compute the fan of monoids I' for the previously constructed
stratifications. The elements in I' correspond to LS-tableaux, where the shapes of their
columns follow a weakly decreasing sequence in Z. To each of these tableaux we associate a
monomial in the path vectors defined by Littelmann. The set of monomials corresponding
to T-standard LS-tableaux form a basis of the multihomogeneous coordinate ring of X.



2. Multiprojective Seshadri stratifications

Throughout this chapter we fix an algebraically closed field K and a multiprojective
variety X, i.e. a (Zariski-)closed subset X C P(V}) x --- x P(V},,), where Vi,...,V,, are
finite-dimensional vector spaces over K. We included a section about multiprojective
varieties in the Appendix A.2, but for the most part they behave analogously to embedded
projective varieties.

2.1. Definitions and examples

The multicone X of X is a closed subvariety of the affine space V =V; x --- x V,,. Let
R = K[X] = K[X] be the multihomogeneous coordinate ring of X. We write [k] for the
set of all integers between 1 and k € N. Each subset I C [m] comes with the two natural
projections

m: [PV - [[P(Vi) and #: [ Vi~ []Vi (2.1)

i€[m] iel i[m] icl

as well as the multiprojective variety X; = 7;(X). Note that the multicone X; of X;
coincides with the image of X under the map 7;. The surjection X —» X/ induces an
embedding of the multihomogeneous coordinate ring K[X;| onto a graded subalgebra
of R, namely the direct sum of all homogeneous components R; C R for tuples d =
(di,...,dm) € Nj* where d; =0 for all j ¢ I.

Analogous to the definition of a Seshadri stratification in [CFL]|, we fix a finite set
A, a collection {X, | p € A} of irreducible projective varieties, which are smooth in
codimension one, and a collection of functions {f, € R | p € A} called extremal
functions. The main difference to the original definition is that X, no longer needs to be
a subvariety or even a subset of X. Instead we fix a third collection {I, C [m] | p € A}
of non-empty subsets of [m] and require that X, is a closed subvariety of X; = m (X).

If we view the affine space [[..; Vi as a closed subvariety of V' via the linear embedding

i€l
[Lc L Vi < V, then X, can be seen as a closed subvariety of X. This allows us to equip
the set A with the partial order <, such that ¢ < p if and only if Xq C Xp. The function
fp needs to be non-constant, multihomogeneous and included in the subring K[X; ] C R.

Definition 2.1 (Multiprojective Seshadri stratification). These three collections of
varieties, extremal functions and index sets are called a (multiprojective) Seshadri
stratification, if there exists an element ppa. € A with I, . = [m] and X, = X and
the following three conditions are fulfilled:

max

(S1) If ¢ < p is a covering relation, then Xq C Xp is a codimension one subvariety (where
both are seen as subvarieties of V');

(S2) The function f, vanishes on Xp, if ¢ £ p;
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(S3) For each p € A holds the set-theoretic equality

{zeX|flx)=0tnX,={0}u |J X, (2.2)

P covers ¢

Notice, that for m = 1 the notion of a multiprojective Seshadri stratification coincides
with notion of a Seshadri stratification introduced in [CFL]. In this case all strata X, for
p € A are closed subvarieties of X, since I, = {1}.

The affine multicone X C V of X is the affine cone of a projective variety X C P(V).
Hence every multiprojective Seshadri stratification on X C [];, P(V;) can also be seen
as a Seshadri stratification on X. Therefore one can informally say that every result in
loc. cit., where the grading on R is not involved, does also hold in the multlprOJectlve
case. As a first example: The poset A is a graded poset of length dim X = dim X — 1,
that is to say all maximal chains have length dim X. The rank of an element peEAis
given by r(p) = dim Xp — 1.

Proposition 2.2. Every multiprojective variety X C P(V}) x --- x P(V,,) admits a
Seshadri stratification.

Proof. We embed the variety X into the projective space over W =V} ® - - - ® V,,, via the
Segre embedding, so we have two different coordinate rings of X: The multihomogeneous
coordinate ring R = K[X] and the homogeneous coordinate ring S of the embedding
X — P(W). Now choose any Seshadri stratification of X C P(W), which exists by
|CFL, Proposition 2.11]. Hence for each p € A we have the closed, irreducible subvariety
X, € X which is smooth in codimension one and the extremal function f, € S. This
function can be pulled back to a multihomogeneous function in R and its degree is
a multiple of (1,...,1). Clearly the conditions (S2) to (S3) are preserved under the
pullback. We also need to define a subset of [m] for all p € A: Here we take I, = [m].

However, for m > 2 we do not obtain a multiprojective Seshadri stratification on X
in this way, as the dimension of the multicones Xp for p € A minimal is greater than 1.
Indeed, this multicone Xp is of the form

X, =L x - x LY,

®) ;

where L;” is a one-dimensional linear subspace of V;. Therefore we need to extend the

graded poset A by m — 1 additional ranks. Set-theoretically this extension is of the form
z:AU{Lgp) X e XLZ(-p) | p € A minimal and 1 <i <m — 1}.

For each ¢ € A\ A of the form L(p) >< L( we define the subset I, = [i] and the
projective variety X, = P(Lgp)) - X IP’(L ) C Xi,. Note that we mentioned at the
beginning that in general X, does not need to be a subvariety of X, but there exists a
subset I C [m] such that X, is a closed subvariety of X; = 7;(X). This case did not
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occur so far because the stratification is induced by an ordinary Seshadri stratification
(as it was defined in [CFL]). The variety X, only consists of one point, so it is irreducible
and smooth in codimension one. The affine variety ¢ is the multicone over X,. The
partial order on A is now determined by the equivalence of ¢ < p and X'q C Xp.

It remains to define the extremal functions for the elements in A\ A. Let £; be the set
of all lines L ) for p € A minimal. For each i € [m — 1] and L € £; we choose a linear
function h; € V;* which vanishes on L and that does not vanish on all other lines in £;.
To an element ¢ € A\ A of the form L¥ x -+ x L¥ we then associate the function

T

jeli] LeLy
L Lip)
This definition ensures that both conditions (S2) and (S3) are fulfilled. The extremal

functions f, for p € A also vanish on all varieties Xq for ¢ € A\ A. We therefore have
constructed a multiprojective Seshadri stratification on X. O

Example 2.3. Let X be the image of the closed diagonal embedding P — P(V;) x P(V3)
for V; = V5 = K2 The coordinate ring K[V| = K[xg, 21, yo, y1] of V =V} x V4 is graded
with degzq = degz; = (1,0) and degyo = degy; = (0, 1) and the vanishing ideal of X is
equal to Ip(X) = (zoy1 — 1Yo). We write I(—) and Ip(—) to distinguish between affine
and projective vanishing ideals (see Appendix A.2). Analogously, we differentiate between
the affine vanishing set V(—) and the projective vanishing set Vp(—). The multicone X
of X is given by the vanishing set V (zoy; — z1%0) C V = A% x A%, We define a poset A
via the Hasse-diagram

/\
/\/\

and choose the following index sets, strata and extremal functions:

peA I, X, fp
X {12} X CP(V;) x P(V3) -
01 {1} P(11) ToTq
00 {1,2}  Ve(ar) x Ve(y1) CP(VA) x P(Va)  zoyo
1 {1} Ve(z0) € P(V1) )
0 {1} Ve(z1) € P(V1) o
0 {2} Ve(y1) € P(V2) Yo

This data defines a Seshadri stratification on X, which can be summarized by a diagram
of all multicones X, and f, for p € A:
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<

- $1y0)7 Yy

N\

A% x {0}, zory V(z1) x V(y1), zoyo

(ioy

[y
[y

V(o) x {0}, 21 V(1) x {0}, zo {0} x V(y1), w0

Example 2.4. Of course, for each multiprojective variety there can exist many different
Seshadri stratifications. For example, there is another stratification on the variety
X = Vep(zoy1 — 7190) C P! x P! with underlying poset

(KSK/////GE\\\\\\*1T
‘\O/’\\J/

that is defined via the following diagram of multicones and extremal functions:

V(zoy1 — 21%0), Yot

k///////// l \\\\\\\\\3

V(lj) X V y1 A? x {O} Lol l‘o X V(y())

\/\/

21) x {0}, m0  V(wo) x {0}, 2

In contrast to the Seshadri stratifications introduced in [CFL]|, their multiprojective
generalizations have an additional underlying structure, namely the poset

T={I,C[m|pe A}, (2.3
which is ordered by inclusion. We call it the index poset.
Lemma 2.5. The map A — Z, p — I, is monotone and has the following properties:

(a) Let g < p be a covering relation in A. Then I, \ I, contains at most one element.
In the case I, # I, it holds mr, (X)) = X,.

(b) If p € A is a minimal element, then I, is a one-element set.

In particular, T is a graded poset of length m — 1.
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Proof. The map A — Z is monotone, since for all ¢ < p in A we have the inclusion
X, € X, of their multicones and this implies I, C I,.

(a) Let ¢ < p be a covering relation and suppose that I, is a proper subset of I,. For
every subset J C I, we have the natural linear projection 7, (see (2.1)). If

I,=JoChC---CJ=1,

is a chain in Z then we have the closed, irreducible subvarieties

A~ A A

X, C 7a'Jo(Xp) G- C 7ATJS(Xza) = Xy,
which we see as subvarieties of V. As Xq is of codimension one in Xp, it follows
I\ I, = {i} for some i € I, and X, = 7, (X,), because their dimensions agree.

(b) The condition (S3) implies, that an element p € A is minimal, if and only if the
vanishing set of f, inside of Xp is just the point 0 € V, because this is the only
point in Xp, that does not belong to a projective subvariety of X; for some non-
empty J C I,. But as f, is multihomogeneous and non-constant, its vanishing set

V(f,) C X is a multicone (i.e. stable under the (K*)™ -action) and its irreducible
components have codimension one in X. Hence V(f)N X can only be zero, when
dim X, = 0 and |[,| = 1. It now follows from (a) and (b) that every maximal chain
in Z contains exactly m elements, so Z is graded of length m — 1. ([l

For multiprojective stratifications we have the following new kind of covering relations
in A which do not appear for m = 1.

Lemma 2.6. Let ¢ < p be a covering relation in A with I, \ I, = {i}.

(a) The algebra K[X,] can be seen as an N -graded subalgebra of K[X,] and it holds

X = P KX,y and 1(X,) =P KX

deNg? deNg®
d;=0 d; >o

(b) The vanishing multzplzczty of a multihomogeneous function g € K[ »I\{0} along the
prime divisor Xq - Xp s equal to the i-th component of deg g € Ni'. In particular,
the i-th component of deg f, is non-zero.

Proof.  (a) This first statement is immediate from the equality X, = 77 (X},).

(b) The discrete valuation ring Og ¢ C K(X,,) is isomorphic to the localization of

K[X,] at the prime ideal I(X,). By viewing g as an element of Ok, %, 2 K[X,],

one can characterize the vanishing multiplicity of g along Xq as the unique integer
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n € Ny with (¢g) = m”™, where m denotes the unique maximal ideal in (9va %, As

the algebra K[X,] is generated in total degree one, it follows

m" = P K[X,)a € Og «..

deNg?
d;>n

Let degg = (c1,...,¢p). Clearly we have (g) € m% but (g) € m%*'. Hence
(g9) = m% since every ideal of Oy x, is a power of m. O

2.2. The quasi-valuation and its associated graded algebra

We summarize some constructions and results from [CFL], since they are crucial for this
thesis. Among these results are the quasi-valuation 1V and the properties of the associated
graded algebra. It is strongly recommended to read the original papers, as we cannot do
justice to their results on just a few pages and this section mainly serves as a reminder
for all the notation introduced for Seshadri stratifications.

We fix the following notation: If K is any field of characteristic zero and S is a finite
set, then we write K for the vector space over K with basis {e, | s € S} indexed by S.
Let N be the monoid generated by these basis elements and Z° C K* be the smallest
group containing Ng . For each element © = > _ xse, € K S with coefficients x; € K
the set

ses

suppz = {s € S| zs # 0}

is called the support of x.

By definition, the multicone Xq is a prime divisor of Xp for every covering relation
q < pin A. If one extends the poset A by a unique minimal element p_; with associated
index set [, | = &, then the multicone Xpﬂ = {0} is a prime divisor of X, = A! for
each minimal element p € A. To each covering relation p > ¢ in the extended poset
A= AU{p_1} we have an associated valuation, namely the discrete valuation

Vp,q - K(Xp) \ {0} — Z,

sending a non-zero, rational function ¢ to its vanishing multiplicity at the prime divisor
X, C X,. Its value

bpq = Vp,q<fp}j(p) eN

at the extremal function f, is called the bond of the covering relation ¢ < p. If p is
minimal in A, then b,, , coincides with the total degree |deg f,|, which is the sum of all
entries in the degree deg f, € Ni".

Every Seshadri stratification gives rise to a collection of valuations on R, one for each
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maximal chain € in A. Let p, > --- > pg be the elements of €. To a regular function
g € R\ {0} one associates a sequence g¢ = (g, - - ., go) of rational functions inductively
via g, = g and

bpi’pi—l
; = 7’— >
gl_l szwpi_l(gi) ~ € K<Xpi—1)‘
fp Xpi—l

i

for i =r,..., 1. Further one defines the element

Z p_j7pj 1 g] j c QQ:.
Hk =jJ pkvpk 1

By this definition, each extremal function f, for p € € is mapped to the vector Ve(f,,) = e,.
We equip the abelian group Q% with the lexicographic order induced by the total order on
the maximal chain €, i.e. for all elements a = Y ;_, a;ep,, b= i, biep, in QF it holds

a>b <= a=bora; > b for the maximal index i € {0,...,r} with a; # b;.

Then the map Ve : R\ {0} — QY is a valuation. Chirivi, Fang and Littelmann also gave
another, equivalent definition in [CFL|, which we do not use here, as it is less suited for
computations. Note that, by its definition, V; takes values in the lattice

LY = {(ay,...,a0) € Q% | b, -+ biy1bja; € ZVi=0,...,7}. (2.4)

In general, the lattice L$; generated by the valuation monoid V¢(X) = {Ve(g) € Q% | g €
R\ {0}} is not equal to the lattice L. With the following results from [CFL| one can
determine the lattice LY.

Proposition 2.7 ([CFL, Lemma 6.12, Propositions 6.13 and 6.14]). There exist rational
functions F,, ... Fy € K(X ) \ {0}, such that their valuations are of the form

.
Fy) = § aijep,;
=0

with coefficients a;; € K, a;,; = b;] pi_1 Qi =0 foralli> j. For each such choice of
functions F,, ..., Fy the matriz (a; ;)i jo,.., s invertible and the entries of its inverse
matriz Be are integers. Furthermore, an element v = aye,, +---+ape,, € Q¢ is contained

in the lattice LY, if and only if
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Remark 2.8. Every element p € A induces a Seshadri stratification on the multiprojective
variety X, C [[,c; P(Vi) via the poset A, = {g € A| ¢ < p}, where we take the same
strata, extremal functions and index sets as in the stratification on X. By its definition,
the valuation Vg is compatible in the following sense with the valuation Ve, of the induced
stratification along the maximal chain €, = €N A,: For every g € R\ {0}, that does
not vanish identically on X, the valuation Ve, (9] X,,) € Q% coincides with Ve(g), when

extended by zeros to an element of Q.

The collection of all valuations Vi define a quasi-valuation V, which respects the
structure of the whole poset A, not just of one maximal chain. A quasi-valuation is
defined similar to valuation, only the condition V(gh) = V(g) + V(h) for all g, h € R with
gh # 0 is replaced by the inequality V(gh) > V(g) + V(h). To obtain this quasi-valuation
one needs to extend Ve to a valuation R\ {0} — Q% < Q4, such that all valuations
take values in the same abelian group. In order to make sense of this, we need a total
order on Q4 such that each linear inclusion Q% < Q4 is monotone. In general, there is
no natural candidate for this total order. For this reason, one needs to choose and fix
a total order > on A linearizing the partial order, i.e. for each elements p,q € A the
relation p > ¢ implies p >* ¢. This total order induces the lexicographic order on Q4
and each map Ve : R\ {0} — Q* is a valuation. One obtains the quasi-valuation V by
taking their minimum with respect to this total order on Q“:

V:R\{0} = Q% g+ min{Ve(g) | € maximal chain in A}.

Hence the quasi-valuation depends on the choice of this total order >! on A.

There is also the following inductive way of describing the quasi-valuation V. Let
p be any element in A, g € K(Xp) be a non-zero rational function. We write V, for
the quasi-valuation on the induced Seshadri stratification on X, with underlying poset

A,={q€ A|q<p}. Then it holds

Vpa(9) 1 g'r
pbq b_vq( Vp,q(9) ‘Xq)’
P, g fp

(2.5)

where ¢ is the unique minimal element covered by p with respect to the total order >¢,
such that it holds

Vp.a(9) — min {VPL@ ' q¢ € A covered by p} .
bpq bp.qr

The quasi-valuation V has the following important properties, which we use many
times throughout this thesis without mention (see [CFL, Section §|).

e The values of V have non-negative entries, i.e. the quasi-valuation V(g) of every
function g € R\ {0} is contained in the non-negative orthant Q4.
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e One can characterize combinatorially for which maximal chains € the quasi-valuation
attains its minimum. For each g € R\ {0} it holds V¢(g) = V(g), if and only if the
support supp V(g) C A lies in €. As a consequence: If g, h € R are non-zero and
there exists a maximal chain € containing both supp V(g) and supp V(h), then the
quasi-valuation is additive, i.e. we have V(gh) = V(g) + V(h).

e Every extremal function f, for p € A has the quasi-valuation V(f,) = e,, so the
support is given by supp V(f,) = {p}. In particular: If py,...,ps € A are contained
in a chain in A and nq,...,ns € Ny, then it follows

S
V( ;7411 ... ;L;) _ Zniem'
i=1

Example 2.9. The regular function g = zoy; € K[X] in the Seshadri stratification from

Example 2.4 has the quasi-valuation V(g) = %e x + %em, independent of the choice of
the total order >!. To see this, we choose the following three parametrizations of open

subsets of X = V(zoyr — x190):

G K* xK* x K = X, (2,y,1) — ((2,t2), (y. ty)),

do1 KX xK* xK— X, (2,y,t) — ((2,y), (tz, ty)),

o KX K x K= X, (2,y,0) — ((tz,2), (ty,y)).
They are defined such that ¢,(K* x K* x {0}) is equal to the intersection of the image
of ¢, with the multicone X, for each covering relation ¢ < X in A. The vanishing

multiplicity of g at the divisor Xq then agrees with the exponent of ¢ in the Laurent
polynomial g o ¢, € K[z*!, y*! t]. We therefore have

VX706<9) 1 VX,01(9) _ i VX,H(Q)

1
== =1.
bX,oﬁ bx ,01 2 bx,ﬁ

By the characterization of the quasi-valuation V from equation (2.5) it now follows
V(g) = 3ex + 2Voi(g1), where gy is the rational function

_ (g"w) _ (x%y%)
g1 = =\—-—
Ix Lo1 YoU1

on X01- As gy is the restriction of the extremal function fy; to X01, we have Vy1(g1) = €o1-

= Tox1
Xo1

The image of the quasi-valuation is denoted by I' = {V(g) € Q4 | g € R\ {0}}. For
each (not necessarily maximal) chain C' in A the subset

I'c={a€l'[suppa C C}
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is a finitely generated monoid. In [CFL] this was only shown if C' is a maximal chain,
but it implies that I'¢ is finitely generated as well, since its elements have non-negative
entries. The set I' is called the fan of monoids of the Seshadri stratification, since it is
the union of all monoids I'c and the cones in R# generated by these monoids form a fan.

The quasi-valuation V : R\ {0} — Q™ induces a filtration on R by the subrings

B>y ={g € R\ {0} [ V(g9) = a} U {0}

for a € T'. Since V(g) only has non-negative entries for all g € R\ {0}, these subrings are
ideals in R. The quotient of R>, by the ideal R, = {g € R\ {0} | V(g9) > a} U {0} is
one-dimensional for every a € I'. They are called the leaves of the quasi-valuation V. Let

gryR = @ REQ/R>Q

ael’

be the associated graded algebra. For each chain C' in A it contains the subalgebra

gry ot = @ R>q/R>a € gry R,

a€lc

which is isomorphic to the semigroup algebra K[['¢| as a I'c-graded algebra. It is a
finitely generated integral domain, so it gives rise to a toric variety Spec gry, o R. The fact
that the associated graded algebra is the union of all these subalgebras gry, o R = K[['¢]
suggests that there is also a combinatorial way of describing the associated graded algebra
by gluing the semigroup algebras K[I'¢| into the fan algebra of T'. Tt is defined as the
algebra

K[l = K[zq | a € T]/I(T),
where I(T") is the ideal generated by all elements of the form

{xaxb — Zgyp, if there exists a chain C' in A containing supp a and supp b,

TaTp, else

with a,b € I'. For each chain C' in A the fan algebra contains the subalgebra

@ Kz, C KL,

a€l'c

which is isomorphic to the semigroup algebra K[I'¢].

Since the leaves of the quasi-valuation V are at most one-dimensional, choosing a
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regular function g, € R with V(g,) = a for each a € T yields a basis
B={g.|ael}

of R as a vector space over K and the elements g, from a basis of the associated graded
algebra gry, R.

Theorem 2.10 (|[CFL, Theorem 11.1]). There exist scalars ¢, € K* such that the map
K[I'] = gryR, x4 cag,

is an isomorphism of algebras.

The concepts of normal and balanced Seshadri stratifications were introduced in [CFL,
Sections 13, 15]. They can also be used in the multiprojective case.

Definition 2.11. A multiprojective Seshadri stratification is called

(a) normal, if 'y is saturated for every maximal chain €, i.e. it is equal to the
intersection of the lattice £% generated by I'¢ with the positive orthant @go;

(b) balanced, when the fan of monoids I' is independent of the choice of the total
order >*t.

Every normal Seshadri stratification defines a standard monomial theory on R in the
sense of the next proposition. When the stratification is balanced as well, then the
normality and its associated standard monomial theory do not depend on the choice if
the total order >!.

An element a € I is called decomposable, if it is 0 or it can be written in the form
a = a' + a? for two elements a',a? € T'\ {0} with minsupp @' > maxsuppa?. Otherwise
a is called indecomposable. Note that the minima and maxima exist, since the support of
each element in I' is totally ordered. Let G be the set of all indecomposable elements
in I'. For each a € G we fix a regular function z, € R\ {0} with V(z,) = a and let
Ggr = {z, | a € G} be the set of these functions.

We assume that the stratification is normal. In this case every element a € I" has a
unique decomposition into a sum a = a' + - - - + a* of indecomposable elements a* € T,
such that minsupp a® > maxsupp a**! holds for all k = 1,...,s — 1. With the choice of
the set Gy one can therefore associate a regular function to every element a € I" via

Tg = Tgl "+ Tgs € R

A monomial in the functions in G is called standard, if it is of the form z, for some
element a € T'.

Proposition 2.12 (|[CFL, Proposition 15.6]). If the stratification is normal and Gg and
x, are chosen as above, then the following statements hold:
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(a) The set Gg generates R as a K-algebra.
(b) The set of all standard monomials in Gg is a basis of R as a vector space.

(c) Ifa = a' + -+ a® is the unique decomposition of a into indecomposables, then
Ty = Tgl -+ Tgs 08 a standard monomial with V(z,) = a.

(d) For each non-standard monomial T, --- x4 in Gg there exists a straightening
relation

"Igs = E UQIQ

bel

expressing it as a linear combination of standard monomials, where u, # 0 only if
b>'a' 4+ +a”.

Example 2.13. The monoid I'¢ to a maximal chain € always contains the set N§, as
every extremal function f, for p € € has the quasi-valuation e,. The stratification is
called of Hodge type, if all its bonds b, , are equal to 1. In this case every monoid
['¢ coincides with N7, since ¢ is contained in the lattice L® = Z% from equation (2.4).
For instance, the stratlﬁcatlon we defined in Example 2.3 is of Hodge type. Seshadri
stratifications of Hodge-type are always normal and balanced. More of their properties
can be found in [CFL, Section 16].

Example 2.14. We return to the Seshadri stratification from Example 2.4. It has the
following bonds:

V(zoy1 — T1%0), Yoy1

i T

V(z1) x V(y1), vo A? x {0}, oz1 Vi(xo) x V(yo),y

\/\/

x {0}, xo x {0}, 2

There are four maximal chains in A, which we denote by €, &,, €3, &, from left to right.
In two of these chains all bonds are equal to 1. By Example 2.13 we get the associated
monoids T'¢, = N§' and T'¢, = N§*. The monoid T'g, is contained in the intersection of
the lattice

L¢2 = {aXeX + ap1€o01 + ap€p ’ ax,ax + aop1, ax + ap1 + Qo c %Z} = (%Z)QQ

with the positive orthant @?0
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Using Proposition 2.7 one can even find a smaller lattice containing I'¢,. We choose the
regular functions Fy, = xoy1, F1 = fo1 and Fy = fy. Two of those are extremal functions
and we already computed the quasi-valuation of F5 in Example 2.9. Then the matrix By
in Proposition 2.7 is given by

2
Be= | -1
0

S = O

0
0
1
It thus follows that I'¢, is contained in the lattice

<
LV = {aXeX + ap1€o1 + Ap€o ‘ 2ax,a01 — ax, 0y € Z}

On the other hand, every element in £%2N QSQO actually lies in I'¢,, since it can be written
as a sum of the elements ex, eg, €g, %e x + %601 € I'¢,. Analogously, one can determine
the monoid I'¢,. Summarizing our computations, we have:

Ie, = {aex + begg + ceo | a,b,c € No},
I'e, = {aex + beoy + ceg | a,b € 5Ny, ¢ € No,a+ b € No},
e, = {aex + begr +ceq | a,b € %No,c € Ng,a+b e Ny},
e, = {aex + beys + ceq | a, b, ¢ € Ny}

As all these monoids are saturated, the stratification is normal. It also is balanced: Every
element in I' is a sum of the elements e, for p € A and V(F3) = %ex + %em and the
quasi-valuation of F} is independent of the choice of the total order >' (see Example 2.9).

2.3. Multidegrees and multigradings

The Nj*-grading on the multihomogeneous coordinate ring R = K[X] corresponds to an
action of the torus 7' = (K*)™ on the multicone X C V by scaling in each factor V;.
This also induces an T-action on the multihomogeneous coordinate ring itself: If g is a
function in R and ¢t € T, then gt := ¢ - g is defined by (¢t)(z) = g(t™' - x) for all z € X.

Lemma 2.15.
(a) For all g € R\ {0} and t € (K*)™ it holds Ve(t - g) = Ve(g)-
(b) If h = ZdeNgﬂ ha € R is the decomposition of h # 0 into its multihomogeneous

components hg € Rq, then

Ve(h) = min{Ve(hg) | d € N{* such that hg # 0}.

Proof. The statements can be proved analogously to [CFL, Lemma 6.15]. One has to
replace the K*-action by the (K*)™-action and use Lemma A.12. O
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Definition 2.16. We define the degree map to be the Q-linear map

deg: Q* — Q™, e, degf,

and call dega the degree of an element a € Q4.
Lemma 2.17. If g € R\ {0} is multihomogeneous, then deg g = degV(g).

Proof. Let € : p,. > --- > pg be a maximal chain in A with Ve(g) = V(g). We write V(g)
in the form a,e,. + ---+ ape,, with coefficients a; € Q and fix a positive integer N, such
that NV(g) € Z%. Then we have

r

V(g") = NV(g) = V(] T £

=0

Suppose that ¢" and f =[], féiv % have different multidegrees. Since the leaves of
the quasi-valuation are one-dimensional, the quasi-valuation of the non-zero function
h = gV — f is strictly larger than NV(g). On the other hand, h consists of the two
multihomogeneous components g%V and f, so Lemma 2.15 implies V(h) = NV(g), which
contradicts our assumption. Thus ¢"¥ and f have the same multidegree and it therefore
follows:

T

1 T Na,
degg = Ndenggal = Zai deg fp, = deg V(g). O
i=0

i=1

For every chain C in A the degree map deg : I' — Nf’ defines an N{'-grading on the
monoid I'c via the subsets I'c 4 of all elements of degree d. We write I'; for the elements
in I' of degree d. This induces an Nj/’-grading on gry,R by the subgroups

(gryR)a = @ R>o/Rsa.

aely

For each chain C in A, gry, o R is a graded subalgebra of gr,R. The fan algebra K[I']
also carries a grading by Ni* induced by the degree map and there exists an isomor-
phism gr|,R = K[I'] of Nj'-graded algebras. This follows from the construction of the
isomorphism on basis elements (see Theorem 2.10).

Let z¢ = Hpec fp € R be the product of all extremal functions along a maximal chain
¢ in A and Is C gry,R be the annihilator of the element 7y € gry,R. It was shown in
|CFL, Corollary 10.8] that there exists an isomorphism of algebras

gryR/le = gry o R (2.6)

and the intersection of all ideals I is the minimal prime decomposition of the zero ideal
in gr,R. As the associated graded algebra gry, R is finitely generated and reduced, its
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corresponding variety Specgry, R therefore is the scheme-theoretical union of the toric
varieties Spec gry, 12, each of which is irreducible and of dimension dim X. Using the
language of Multiproj schemes, which can be found in Appendix A, we can conclude
an analogous statement about the scheme Multiproj(gr,,R). Its irreducible components,
however, are only schemes, not necessarily projective varieties. We have already looked
at an example where this happens: The stratification from Example 2.3 is of Hodge
type and the algebra gry, , R = K[I'¢] associated to the maximal chain € : X > 00 > 0 is
isomorphic to the algebra from Example A.3 as an NZ-graded algebra. Hence it induces
a non-separated scheme.

Corollary 2.18. The scheme Multiproj(gry,R) is the scheme-theoretical union of the
closed, integral subschemes Multiproj(gry, ¢ RR), where € runs over all mazimal chains in
A. FEach of these subschemes is integral and of dimension dim X .

Proof. All the statements follow directly from Corollary 10.8 in [CFL] in combination
with the Lemmas A.4 and A.5. To use these lemmas we require the ideal Iy C gry, o R
to be homogeneous and prime, which holds by the isomorphism (2.6). We also need to
show that the degrees of the homogeneous elements in gry, o R generate a sublattice of
Z™ of full rank, i.e. the image of the degree map I'¢ — Z™ generates a group of rank m.
It contains the degrees of all extremal functions f, for p € €. A suitable subset of size m
of these degrees is linearly independent, as they can be arranged in an upper triangular
matrix with non-zero diagonal (up to permutation of the rows). This can be seen via
Lemma 2.6 (b). O

2.4. Semi-toric degeneration

Every Seshadri stratification on an embedded projective variety Y C P(V') induces a
degeneration of Y into an union of projective toric varieties. We generalize this result
using an analogous approach to the construction in [CFL, Chapter 12| via Rees algebras.

Let J be the image of the map I' — Nj* x I', a +— (dega,a) and let > be the
lexicographic order on Nyj* x I For each (d,a) € Nj* x I' we define the following
multihomogeneous ideals in R:

T (40) = (g € R | g multihomogeneous and (deg g,V(9)) = (d,a)),
T (40) = (g € R | g multihomogeneous and (deg g,V (g)) > (d,a)) .

Their quotient is given by

{0}, if (d,a) & T,

I a :Z’- a) —
t(dp)/ m {R>a/R>a> if (d’ Q) €J.
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By fixing an isomorphism of posets 7 : (Ng, >) — (J, =) we get a descending filtration
R=1,21,21,D ...

where we write Z; = Z,(;) for j € Ny. Since each ideal Z; is multihomogeneous, the Rees
algebra

A= .. ORCPORIOROTt 'Lt ?® ...

to this filtration is an Ni'-graded subalgebra of R[t,t™'] = ey Ralt. t7'].

As a submodule of R[t,t7!], the algebra A is a torsion free module over a Dedekind
domain, hence flat over K[t]. Additionally the inclusion K[t] < A maps to degree 0.
These two properties imply that the induced morphism ¢ : Spec A — A is flat and
(K*)™-equivariant (with the trivial action on A'). In particular, it induces a morphism
¢ : Multiproj A — A!. By Corollary 2.2.11 (iv) in |Gro|, ¢ inherits the flatness of ¢,
because the morphism Spec A\ V(A ) — Multiproj A is surjective (set-theoretically) as
a geometric quotient.

The general fiber of ¢ at ¢ # 0 is isomorphic to the multicone X, because A/(t—b) = R
for all b € A\ {0}. On the other hand we have

Al()= P I;/Ti = gryR,

Jj€Ng
so the special fiber is isomorphic to Spec(gry, R).

Corollary 2.19. The general fiber of the flat morphism 1) : Multiproj A — Al is isomor-
phic to Multiproj R = X and its special fiber at t = 0 is isomorphic to Multiproj(gr,R).

2.5. The Newton-Okounkov polytopal complexes

In [CFL] a Newton-Okounkov theoretical object was associated to a given Seshadri
stratification. For each maximal chain € one obtains a simplex, such that its lattice
points describe the rate of growth for the dimensions of the graded components of gry, ; R.
These simplices fit together to form a simplicial complex Ay,. The dimension of X is
equal to the dimension of the simplicial complex and the degree of X C P(V') can be
extracted via the volume of Ay, with respect to certain lattices.

In the multiprojective setting the simplices generalize to polytopes. However, we
obtain not just one polytopal complex, but a polytopal complex Ag,d) for each multidegree
d € Nj'. This structure is not visible for m = 1 since the polytopal complexes are scaled
versions of each other in this case. For most values of d the complex Ag,d) has the same
dimension as the variety X, but in some edge cases it can collapse to a smaller dimension.

Throughout this section let r := dim X. For multiprojective varieties there also exists a
Hilbert polynomial Hg € Q[z1, ..., x,]. We refer to the Appendix A.2 for its properties
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and the definition of the multidegrees of X. Let

deg,,(X)
Ggr= — 22 gk gk
R ;/ﬁ!--.km! ! m
be the homogeneous component of highest total degree in Hg. Since the leaves of the
quasi-valuation V are at most one-dimensional, there exists a basis B of R as a vector
space over K, such that B — I', g — V(g) is a bijection. In particular:

The equality
dim R,
Gr(d) = lim —2'd
n—00 n’

for all d € Nj* suggests that we should examine the Veronese subalgebras

grg)R = @ (gryR)na

neNp

of the associated graded algebra gry,R. First we need to fix some notation. For each
chain C in A, the algebra gr](,d)R contains the Veronese subalgebra

d d
grgz)cR = grg;)R N grv,CR

of gry, «R. The fan of monoids contains the Veronese subfan I'¥ = | J I')q and for

n€Ng
each monoid I'c we have the Veronese submonoid F(g) =TI'cNT'@. By Theorem 2.10
there are again isomorphisms of Ny-graded algebras:

g/ R=K[I'P] and grfl.R =K.

In general, the fan of monoids I and the Veronese-fan of monoids I'® have different
combinatorial structures. Whereas the poset of all monoids I'¢, ordered by inclusion,
is isomorphic to the poset A(A) of all chains in A, different chains can have the same

Veronese monoid F(Cd)

. For this reason we now define a map

A(A) = A(A), Cw— Cy,

so that Fg) = F(Dd) is equivalent to Cy = Dy for all chains C, D C A. The chain Cy
depends on the cone

oc = Cone{dega |a € T'c} CR™. (2.8)
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Regarding (rational) polyhedral cones and (lattice) polytopes, we use the language of
Cox, Little and Schenck from [CLS|. On polyhedral cones and polytopes, we always use
the standard euclidean topology. The cone in R4 spanned by I'c is generated by the
vectors e, € R for p € C, as T € QY. Therefore o is a rational polyhedral cone with
respect to the lattice Z™ C R™. -

If d ¢ oc then we set C; = @. Now assume d € o¢. Since every polyhedral cone is
the disjoint union of the relative interiors (i.e. the interior in its closure) of its faces,
there exists a unique face 7 of o with d € relint 7. This is also the unique minimal face
containing d. Now each convex cone, which is generated by a finite set S is generated by
its edges, i.e. its one dimensional faces, and every generating set of the cone contains at
least one non-zero element from each edge. As o¢ is generated by the set of all deg f,
with p € C, every edge of o¢ is of the form Rxge, for p € C. We then define

Cy={p € C|Rxspe, is an edge of 7}.

Since T = o¢,, it is immediate that the image A@(A) of the map A(A) — A(A), C — Cy
is equal to

AD(A) ={C € A(A) | d € relint o} U {27}
Lemma 2.20.
(a) For any two chains C, D € A(A) it holds F(Cd) C F%), if and only if Cy C Dy.
(b) The map A(A) — AD(A), C +— Cy4 is monotone.
(c) The following map is an isomorphism of posets:

AD(A) 5 TP | Cc e A(A)}, C+—TW

Proof. For each C' € A(A) the monoids I’(g) and I’(Cdd) coincide. Indeed, if a is an element

of Fg), then dega € Nd lies in the face 7 C o defined by Cy. For every p € C'\ Cy with
p € supp a we can write the degree of @ in the form

dega = cdegfp—l—Zchegfq

qeC

with real numbers ¢, > 0 and ¢ > 0. All elements deg f, for ¢ € C' lie in o¢ but deg f, is
not contained in the face 7. This is impossible, as dega € 7.

Let C, D be two chains in A. If Cy C Dy, then we clearly have Fg) - F%). Now suppose
that F(Cd) - F%i) and fix an element p € Cy. By the definition of Cy, the multidegree
deg f, lies in the relative interior of the face 7 corresponding to Cy. This allows us to
use the following argument, which appears multiple times throughout this section: By
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the properties of the relative interior, there exists an element in the intersection of the
translated cone deg f, +7 C R™ with the set Nd. This holds for every convex polyhedral
cone. As the cone o¢ is generated by lattice points in Z™ C R™, we can therefore find
non-negative, rational numbers a, € Q and N € N, such that

Nd = deg f, + Z a, deg f,.

qECi

By multiplying with a common denominator of all a,, we can assume that these rational
numbers are non-negative integers. Hence we see that

a d d
V(fp- H fe7) =ep+ Z aq€q € F(CJ = F%ia

qEC’i qECi

which implies Cy C Dy. Finally, the parts (b) and (c) follow from the first statement. [
Lemma 2.21. The monoid F(Cd) 15 finitely generated for each chain C C A and d € Nj'.

Proof. Choose finitely many generators a'V), ..., a'® € I'c and consider the map

¢ 1 —Z"]2d, (ny,...,ng)—> an deg a™.

=1

It is sufficient to show, that the monoid M = Nj N ker¢ C 7Z° is finitely generated,
since its image under Nj — L coincides with F(g) , where £¢ C Q4 denotes the lattice
generated by I'c. The set RZ, N spang(ker ¢) is a rational polyhedral cone w.r.t. the
lattice ker ¢. The intersection of this cone with the kernel of ¢ is exactly M. By Gordan’s
Lemma, M is finitely generated. 0

Analogous to Corollary 2.18, the irreducible components of the projective variety
Proj (grg)R) are determined by the maximal elements in the poset A@(A). Clearly,
every maximal element in A@(A) is of the form €, for a maximal chain € € A(A), but
the converse is false. There can also exist two different maximal chains € and © in A
with ¢, = ©,. Fortunately, in most cases, the maximal elements in A (A) are easy to
describe: When d does not lie on the boundary of the cone o¢, then ¢; is maximal in
AW (A), if and only if d € 0.

Lemma 2.22. The projective variety Proj(grg)R) 15 scheme-theoretically the irredundant
union of the toric subvarieties Proj(grg)cR), where C' runs over all mazimal elements in

the poset A (A).

Proof. The proof of this statement is mostly analogous to the proof of Proposition
10.7 in [CFL]. Recall that for each maximal chain € in A we defined the product
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z¢ = [[,ee fp € R of all extremal functions along € and the annihilator /¢ C gry, R of the
element Z¢ € gry,R. In loc. cit. it was shown that the ideal [¢ is given by

@ RZQ/R>Q'

a€l\l'g
The intersection [éd) =1IsN grg)R is a prime ideal in grg)R and it can be written as
= @ Rew/Bo (2.9)
aelr@\re

It follows that the intersection of the ideals [, é ) over all maximal chains is equal to the
zero ideal. On the other hand, I 9 Joes not depend on € but only on the monoid F
Hence we can choose a subset C of all maximal chains in A, which maps bijectively to
the maximal elements in A@(A), such that

& = (0).

¢eC

This intersection is 1rredundant since the Veronese fan of monoids I'@ is the irredundant
union of the mon01ds F 9 over all maximal elements C' € A J(A). By (2.9), we have
(grv R)/I(d = grv cR for every € € C.

@ is a minimal prime ideal in ng)R forall € e C. If

Finally, we need to show that I
I was an ideal properly contamed in Ié , then there exists a non-zero function g € R
with V(g) ¢ FQ and g € I \I Then we have §-T¢ = 0 in gr,R. We now wish to

multiply T with a suitable element h € gry, ¢ R such that their product lies in grg,)R.
Then I cannot be prime since both § and Z¢h are non-zero in grg) R/I, but their product
is zero. The multidegree of z¢ lies in the cone o¢ = 0¢, and the tuple d is contained in
its relative interior. Therefore we can find natural numbers ny, p € €, such that

deg(ze - [[ fi7) = deg e + > m;deg f, € Nd,

peC pel€

which gives us the desired function h = > 0J

pEC

Example 2.23. Let d = (0,1) in the Seshadri stratification from Example 2.14. The
Veronese submonoids are given by

F(éll) = Npex + Noeoﬁa F(é) - F(C?, Noex, F(élx) = Noex + Noeﬁ.

Hence the set C = {€;,&,} in the proof of Lemma 2.22, so the projective variety
Proj (grg) R) is the irredundant union of the two irreducible components Proj (grgj%)clR)

and Proj (grg)&R). For d = (dy, ds) with dy,dy > 1, however, every maximal chain in A
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is maximal in A@(A) and Proj (grg)R) consists of four irreducible components.

In the same way Kaveh and Khovanskii associate a Newton-Okounkov convex body to
a pair of a semigroup and an admissable rational half-space (see |[KK]), we define the set

AY =|J Lrcpg C R

neN

for the monoid Fg) and the half-space of all elements of degree R>(d in its span. When

we extend the degree map to R4 — R™, A(g) can be written in the form

AW =R N {a € R | dega = d}. (2.10)

Remember that RS, is exactly the cone spanned by I'c. To see this equality (2.10), it
suffices to show that every rational conical combination a of elements in I'c with dega = d
lies in A(Cd). So let @ € R be of degree d and of the form a = A\ja + - -+ + \,a®® with
Ai € Q>0 and a9 € T'c. Since I'¢ is a subset of ng, there exists a natural number N,
such that Na is a Z-linear combination of the unit vectors e, € RY with non-negative
coefficients. In particular, Na is contained in I'c and a € Ag). The other inclusion is
immediate from the definition of A(Cd).

The cone generated by I'¢ is also compatible with the Veronese submonoids:
Cone F(g) = Conel'c N {z € RY | degx € Rd}

Again, one can show this equality by looking at the rational conical combinations of I'¢
and taking the closure. In particular, the set A(Cd) can be described by all elements of
degree d in Cone Fg:i).

We denote the lattice generated by I'c by £¢ C Q4 and the lattice generated by F(C%l)
by £&@ C Q4. Equation (2.10) implies that A(Cd) is a polytope and we will see shortly
that its vertices are contained in the Q-span of the lattice £&@ . Clearly this lattice is
contained in £¢, but in general not every element a € £¢ with dega € Zd is contained

in L@, However, this statement is true if C is an element of A@(A).

Lemma 2.24. For each chain C in A and d € Ni' the lattice LD s equal to the d-th
Veronese sublattice of L :

LOD = (g € £% | dega € Zd}.

If d € o¢, then it is of rank |Cy| — dimog, + 1. Additionally, this number is bounded
from above by r +1 = dim X + 1.

Proof. The statement is trivial when d is not contained in o¢. Now let d € os. Since
the lattice £L&@ does not change, when we replace C' by Cy, we can assume that d lies
in the relative interior of oc.
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Clearly £¢@ is contained in {a € LY | dega € Zd}. To show the other inclusion, let a
be an element of £¢ with dega € Zd. We can write a in the form b—c for b, ¢ € I'c. Since
d € relint oo, again we can use an argument similar to the proof of Lemma 2.20: There
exists an element ' € ['c such that deg(b+b') € Nod. Then we have a = (b+10") — (c+V)
and since dega € Zd, the degree of ¢ + ' is a multiple of d as well. Hence a € £5@.

Therefore the lattice L@ coincides with the kernel of the map ¢ : L& — Z™/Zd,
a + dega + Zd. The image of the degree map L& — Z™ is free and its rank is equal
to the dimension of the cone oc. This implies that the rank of £%@ is given by
rank(£Y) — (dimoc — 1). We get the desired formula, as the lattice £¢ is of rank |C|,
because it contains all unit vectors e, for p € C.

Finally, the rank of the lattice £%@ is at most r + 1. To see this, let € be a maximal
chain containing C'. Of course, we have

£0@ ¢ £8@) C {q € £ | dega € Zd}.

By a similar argument, the lattice on the right hand side is of rank |€| — dim o¢ + 1. We
have seen in the proof of Corollary 2.18, that the degrees of the extremal functions along
¢ span a group of rank m, so the dimension of ¢ is equal to m and it follows

rank £5@ < |¢] —dimog+1=dimX —m+1=dim X + 1. O

Example 2.25. The polytope A(Cd) of a chain C' is of a particularly nice form, namely a
product of simplices, when the support of deg f, is a one-element set for each p € A. In
this case, we get a partition of the poset A into the subsets

A, ={pe A|degf, € Ne;}.

We fix a chain C' € A(A) and a degree d = (dy, . ..,d,,) € Nj*. For each i € [m] we have
the subchain C; = C'N A; and by equation (2.10), A(g) is equal to the direct product of

the polytopes
P={r¢e Rgg | suppx C C}, (degx); = d;}

where (degx); denotes the i-th component of degx. We write |¢| = ¢; + -+ + ¢, for
the total degree of a tuple ¢ € Ni'. We show that each of these polytopes is given by
d;A¢, € R4 with

Conv{mep pECZ-}, it O 4 2,
Ac, = ¢ {0}, if C; = @ and d; = 0,
@, 1fCZ:®anddl>0

For C; = @, we clearly have P, = d;A¢,. If C; # &, then each point x € P, can be
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written in the form
d;
P Sy P
peci | deg fp‘

with coefficients A\, € R>(. Since d; = degx = ZpECi Apd;, this is a convex combination
of elements in d;A¢,. The other inclusion d;A¢, C P, is immediate from the definition of
the two polytopes.

Now let us return to the general case. We are ready to describe the face lattice of the
polytope A(Cd), i.e. the poset

LAY) = {F | F face of A}

ordered by inclusion. It is well known that L(Ag)) is a graded lattice of length dim A(Cd) +1.
Proposition 2.26. The following statements hold for each mazimal chain &€ in A:
(a) For any two subchains C, D C € we have A(Cd) C A%l), if and only if Cy C Dy.

(b) The map
FO {CeAD)|Ccce} - LAY, CrAY
1s an isomorphism of posets.

(c) For all C C € the face A(g) is of dimension |Cq| — dimog, and its vertices lie in
the Q-span of the lattice L.

Proof. For each p € € the set A(g\){p} = A(f) N{r € R* | p ¢ suppz} is a face of A(g). As

an intersection of these faces, A(Cd) is a face as well for each C' C €. By Lemma 2.20 it
s - (d)
coincides with the face Ag .

a) For any two subsets C, D C € the polytopes AW and AW agree if Cy = Dy.
c D d d
Conversely, suppose that A(Cd) C A%). We have seen in the proof of Lemma 2.20

that the monoid F(Cd) contains an element a® with p € supp a® for every p € Cy,
which implies C; C D,.

(b) First, we prove that every face of A(g) is induced by a subchain C' C €. We set

D = ¢,;. By part (a), we have Ag) = A(é[) and A%ii{p} is a facet of A%) for all

p € D, i.e. a face of codimension 1. Let F' be any facet of Ag). Clearly it holds

FC GA%D C U {z € RY, | p ¢ suppz}.

peD
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If K is any convex set in RQO and x,y € K, then there is a point z € K on the line
through x and y with supp z = supp x U supp y. This implies that there must exist
an element p € D with

FCA®{zeRY | p¢suppa) =AY, .

and since A%{ (py 18 a facet of Ag), it follows F' = A%{ (p}- Because every face of

a polytope is an intersection of facets, each face of A(g) is equal to A(Cd) for some
C' C €. Hence the map FQ@ is surjective. By (a), it is injective as well.

(¢) Fix a subchain C' C €. We know that the polytope A(Cd) is given by the intersection
of a cone with an affine hyperplane of codimension one:

A%l) = Cone F(Cg) N{z e spanR(I’g)) | degx = d}.
In particular, Lemma 2.24 implies:
dim AY = dim Cone thi) — 1 =rank £9@ — 1 = |Cy| — dim 0y

The vertices of A(Cd) are of the form A%) for a subchain D C C. By the definition
of these polytopes, we have A(g) = {%Q} for each element g € F(Dd) of degree nd.

Hence the vertices of A(Cé) lie in the rational span of the lattice £&(@). 0

As the face lattice of every polytope is a graded poset, it follows that A@(A) is
the union of graded posets. In general, not all maximal chains in A@ have the same
length, but there still exists a rank function r : A@(A) — Ny, where the rank of a chain
C € AD(A) is given by

r(C) = rank L@ = |C| — dimo¢ + 1.

Definition 2.27. A polytopal complex in a finite-dimensional real vector space W is
a set IC of polytopes in W that satisfies the following properties:

(a) If P € K and @ is a (possibly empty) face of P, then Q) € K;
(b) the intersection of any two polytopes P,Q € K is a face of both P and Q.

Definition 2.28. Let d € Njj'. We define the Newton-Okounkov polytopal complex
of the Veronese subalgebra R C R as the union

(&

running over all maximal chains € in A.
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By the description of the polytopes from equation (2.10) we have A(Cd) N A%i) = A(Cd% I

for all chains C, D C A. Therefore the set

Ky ={AY | ¢ e AD(A)

is a polytopal complex. Technically, Ag,d) is not a polytopal complex, but rather the
geometric realization of the polytopal complex Cy,.

Remark 2.29. The Newton-Okounkov polytopal complex Ag) can also be interpreted
as a slice of the fan of cones:

Ag,d) = < U Conef‘¢> N {x c R | degx :c_i}-
¢cA
max. chain
In the literature, the cone generated by I'¢ is known as the global Newton-Okounkov body
of the algebra gry, o R as it captures the behaviour of the Newton-Okounkov bodies of all
its Veronese subalgebras. These global bodies were examined in [CMM]| and [LM].

Let € be a maximal chain in A. The semigroup
f(f) = £%9 N Cone F(f) = £%9 N ConeTe

is called the saturation of T’ (g), as it is equal to the monoid of all a € £%@ such that
there exists a natural number k with ka € F(g). Gordan’s Lemma implies that the
saturation is finitely generated. By definition, its elements are given by the lattice points

in the scaled polytopes nA(él):
C&), ={a e T | dega =n} =nA@ N LD, (2.11)

This links our problem of describing the leading function G'g of the Hilbert polynomial
to Ehrhart theory. The growth rate of an Ehrhart polynomial is determined by the
dimension and the volume of the polytope. But as A(@d) is not full-dimensional in the
span of the lattice £&@ we first need to find a suitable rational structure.

Definition 2.30. Let P be a polytope in a real vector space R?. An integral structure
(respectively rational structure) on P is an affine embedding ¢ : P < RY™? together
with a collection of subsets P(n) C P for all n € N, such that the following conditions
are fulfilled:

(a) The vertices of ¢(P) have integral (respectively rational) coordinates;

(b) for each n € N it holds

L(P(n)) = {x € «(P) | nx € Z9™7}.
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Having a rational structure on a given polytope P allows the use of Ehrhart theory,
even if P is not full-dimensional in its ambient space: The cardinality

[P(n)| = [«(P) N 325 ] = |nu(P) N 257

then is a quasi-polynomial in n of degree dim P and its leading coefficient is a constant
equal to the standard Euclidean volume of ¢(P).

The main obstacle for constructing a rational structure for the polytope A(g) are the
degrees appearing in the lattice £&@. To proceed, we need to show that £&@ is not
empty in degree 1. Unfortunately, this statement can actually be wrong in certain edge
cases, as we show in the example below. However, when d lies in the relative interior of
oe, then £5@ has elements of degree 1: By Lemma 2.24, the lattice £&@ is the d-th
Veronese sublattice of £%, hence we only need to check whether £¢ has an element of
degree d. This serves as the motivation for the next two lemmas.

Example 2.31. Consider the maximal chain € = €, : X > 01 > 0 in the Seshadri
stratification from Example 2.4 and the degree d = (0,1) € NZ. By Lemma 2.24, the
lattice L@ is generated by the monoid to the subchain ¢4 = {X}. It follows from our
computations in Example 2.14 that every element a € I with suppa C {X} is a multiple
of ex. Hence L@ is generated by ex and this element is of degree 2d.

Lemma 2.32. For each non-zero rational function g € K(X ) and every maximal chain
¢ there exists a regqular function h € K[X] with supp V(gh*) C € for all k € N.

Proof. Let p,. > --- > py be the elements of the chain €. For each covering relation g < P
in A we have the discrete valuation v, : K(X,) \ {0} = Z of the prime divisor X, C X,,
and the bond b,, = v, ,(f,) € N.

The function h can be constructed inductively over the length of the poset A. The
statement of this lemma is trivial, when the length is zero. Otherwise, let B be the
set of all ¢ € A\ {p,_1} which are covered by p,. For each element ¢ € B we choose a
regular function h, € K[X], such that h, is the zero function on X, and does not vanish
identically on X

p_1- Oince v, ,(h,) > 1, we can choose natural numbers n,, ¢ € B,

fulfilling the following inequalities:

Mg Vp,,q(g) S Vp pr1(9) _ Vp..a(9)
b ) '

Dr,q PryPr—1 bpr q

We now define the regular function

h=]]hp e KX].

qeB

As all functions h, do not vanish identically on prl, we get vy, p,. (gh) = Vp, p, 1 ().
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The choice of the number n, implies

Vpalgh) 1 (

a0) 4 3 1)) 2 1 (,0) + 1)

bpr,q bpmq peEB Pr,q
> Vp,pr—1(9) B Vp,pr_r (GH)
bpmprfl bprvprfl

By the construction of the quasi-valuation, its values can be computed inductively using
the induced Seshadri stratification on X, , with the underlying poset {g € A | ¢ < p,_1}.
Let V,,_, denote its quasi-valuation. Then we have

V
V(gh) _ I/pmpr—l (g> epr + pr—l<gl>7

pr yPr—1 Pr;Pr—1

where g; is the rational function

(gh)er o1
fyprypr_1 (gh) >

p Pr—1

g1 =

Here we used the alternative description of the quasi-valuation from Remark 6.5 in [CFLJ.

A~

By induction, there exists a non-zero function hy € K[X,, ] with suppV,. ,(g1hf) C

A~

@\ {p,} for all k € N. We choose any lift h; of h; in K[X]. Note that we still have

VPTﬂ‘](‘ghkh’f) > VPmPr—l(Q) _ va‘yprfl(ghkhlf)

pr:q pr‘ yPr—1 bp'r‘ sPr—1

The quasi-valuation of gh*h¥ is equal to

V(ghkhlf) _ Vp,,pr_1 (g) ep, + Vpr71 <91)7

Pr,Pr—1 Pr,Pr—1

for the regular function

__ (gh*hf)Perer—

kbpr,pT71
g1 = h .

e~ 2 7 0 =g -
VPraprfl(ghkhlf) e g 1
o P

In particular, supp V(gh*hY) is contained in € for every k € N. O
Lemma 2.33. The degree map L® — Z™ is surjective for each mazimal chain € in A.

Proof. Again, we prove this statement via induction over the length of A. When it is
zero, then A only consists of one element, m = 1 and X is a line. Any linear function g
on the multicone has the property deg V(g) = 1, which implies the surjectivity.

Now suppose that the length of A is non-zero. Let p, > --- > pg be the elements of the
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chain €. If the index set I, _, is equal to [m], then £ — Z™ is surjective by induction.
Otherwise [m] \ I, , contains exactly one element, which we denote by j. By Lemma 2.5
the multicone X, , is equal to

~

Xpr—1 :{<U17-~7Um) EX | v, e V; Vi € [mLUj :O}_

Using the projection map X — X,, | we view K[X,,_,] as the graded subring

~ A

P K[X], € KIX].

We choose any non-zero linear function ¢ € V. By induction, each tuple d € Z™ with
d; = 0 lies in the image of £L® — Z™. Our goal is to construct a function g € K[Xm_l]
with supp V(gf) C €. Then, by Lemma 2.15, we can assume that g was multihomogeneous
of degree d € Ni' with d; = 0 and it follows from Lemma 2.17 that the j-th component

of deg V(gl) is equal to 1. As V(gf) € T'¢, the map £% — Z™ must be surjective.

Let B be the set of all ¢ € A\ {p,_1} covered by p,. For every ¢ € B the intersection
X,N X, ={(v1,...,vm) € X, | v; € V; Vi € [m],v; =0}

is a proper subvariety of Xp otherwise this would imply p,_1 < ¢q. Hence we can

choose a non-zero regular function h, € K[Xprfl], which restricts to the zero function on
X,NX,, .. Seen as a function on X, h, vanishes on the whole multicone X,. Similar to

the proof of Lemma 2.32 we choose n, € N with

Vp'mpr—l (g)

bpr yPr—1

r—17

n
— Vpa(hg) >

bpraq

and define the regular function

g = H th € K[Xprfl]'

qeEB

By the choice of the number n, we get

¢ ¢
Vpr,q(hq) > Vpbr,pr1< ) _ l/pgprl(g )7

Pr,Pr—1 Pr,Pr—1

Vp,.q(90) > Tq
b )

Pr,q Pr,q

so pr—1 lies in every maximal chain ® C A with supp V(¢gf) C ©. But in general
supp V(g¥) is not contained in €. To achieve this, we need to multiply g¢ by another
suitable function, which we get from Lemma 2.32: There exists a regular function
h € K[X,, ] with suppV, _,(g1h*) € €\ {p,} for all k € N, where g, is the rational
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function

(g)°ermr

91 = Vp, 0) | .
fppT pr—1(90) o
Then we have
v 14 V hberpr—1
V(ghf) _ pgpr—l(g ) ep, + pr—l(gl )’
Pr;pr—1 Pr,Pr—1
so the support of V, ,(ght) is contained in €. This completes the proof. O

With the help of the last lemma, we can now construct a rational structure on the
polytope A(@d). The equation (F(cd))n = 554 N Cone 'y suggests that these structures
should be compatible for different d in the following sense.

Proposition 2.34. For each maximal chain € in A there exists a linear map pr : R — R"
with the following property: For each d € relint o¢ the subsets

AD ) ={la]ae (¥),} cald

forn € N form a rational structure on A(g) together with the map A(cd) — R -5 R".
Proof. By Lemma 2.33, we can choose elements l_)(l), - ,b(m) € L% with degl_)(i) = ¢;.
They define a group homomorphism

LY = L5, arra— Zcib(i) for dega = (c1,...,cm).
i=1

Note that the lattice £§ of degree 0 elements in L¢ is of rank |€] —m = r. We extend
the above map to an R-linear map pr : R® — Uy, where Uy is the real span of £§ = Z"
in R®. For each d € relint ¢ the affine subspace Uy == {z € R® | degx = d} contains
the polytope A(@d) and both are of dimension r. By construction, pr induces a bijection
LS — L5, a s pr(a), so the composition ¢ : A(@d) — R® — U is an affine embedding.
Furthermore it maps the set

AL = [ = A nee
bijectively to 14(AY) N LE. Since nAY = ALY for all n € N, it follows
(A () = wa(HALY N L) = 2D N L] = wa(AL) N 2L,

Lastly, we have seen in Proposition 2.26 that the vertices of A(@@ lie in the Q-span of £°.
As the map pr is compatible with the lattices, ¢4 defines a rational structure on A(@d). 0]
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Proposition 2.35. For each mazimal chain € in A we fix a map pry : RE — R" as in
Proposition 2.34. If d € Ni* does not lie on the boundary of o¢ for any maximal chain €,
then it holds

Gr(d) =Y vol(pre(AF)),

where the sum runs over all maximal chains in A.

Proof. As R is finitely generated in total degree 1, its Veronese subalgebra R@ is finitely
generated in degree one, so the Hilbert quasi-polynomial of R@ is a polynomial. By
(2.7) it coincides with the Hilbert quasi-polynomial H'@ of grg)R. We have seen in
Lemma 2.22 that the associated projective variety of this degenerated algebra is the
irredundant union of its irreducible components Proj (grg)CR), where C' runs over the set
C of all maximal elements in A@(A). Since d does not lie on the boundary of o¢, we
know that C consists exactly of the maximal chains € in A with d € o¢.

By Lemma 2.24 the component Proj (gr%i,)gR) for € € C is a projective toric variety of
dimension |€| — dim o¢ = r. In particular,

Gr(d) = lim M
n—oo N’
computes the coefficient a of the monomial 2" in H@ € Q[z]. It is zero, when C is empty,
otherwise it is the leading coefficient of H@.

For € € C let Hg) denote the Hilbert quasi-polynomial of grg)gR = K[F(@d)]. Then a
is given by the sum of the leading terms a¢ of all quasi-polynomials Héd). Using the
arguments from the Lemmas 9.9 and 9.10 in [CFL], one can prove that a¢ is the leading
term of the Hilbert quasi-polynomial of K[f(@d)], induced by the saturated monoid. By
Proposition 2.34 this quasi-polynomial is an Ehrhart quasi-polynomial, so a¢ is constant
and equal to the volume of the embedded polytope pre(A(f) ). This completes the proof,
as A(él) is the empty polytope for all maximal chains € C A not in C. O

Example 2.36. In the Seshadri stratification of Hodge type from Example 2.3 there are
the four maximal chains €y, ..., €, from left to right.

A2 x {0}, zor1 V(1) x V(y1), %Yo

SN N

V(xo) x {0}, 21 V(x1) x {0}, o 10} x V(y1), o
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For a tuple dNj in the interior of o¢, = R the vertices of the polytope A(cdl) are given
by dieq + dsex and %dlem + dyex. By fixing the element b = ¢y of degree (1,0)
and b? = ey of degree (0,1) we get an integral structure on A(@dl) via the proof of
Proposition 2.34. It identifies the vertices with the points 0 and d;(3e01 — o) in the
lattice £§' = Z - (eo1 — 2¢0). The volume of the resulting polytope in the linear span of
this lattice is equal to %dl.

In the same way one can compute an integral structure on A%’? with volume %dl. For
the third maximal chain €3 we again have o¢, = R2,. We fix the elements b'") = ¢, of
degree (1,0) and b® = ex of degree (0,1) for the integral structure. For d € N2 in the
interior of this cone, one needs to distinguish between two cases. If d; > ds, then the
polytope A(@ds) has the vertices die; + deex and (d; — dg)ey + daeyg, which correspond to
the points 0 and dy(—e; + eg5 — ex) in L' = Z - (—ey + g5 — ex). Hence we get the
volume dy. Analogously, we have the volume d; in the case dy > d;.

The cone of the last maximal chain €, is spanned by (1, 1) and (0, 1). For every d € N3
not contained in this cone, the polytope A(&) is empty. Otherwise A(é) has the vertices
dyegs + (dy — dy)eg and dyegg + (da — dy)ex. Via the elements bV = eg5 — eg and b® = e5
we get the volume dy — d;.

With these volumes, we can now compute the leading term of the Hilbert polynomial:

G(d)— %d1+%d1+d2, fOfd1>d2>0 —di+d
e %d1+%d1+d1+(d2—d1), for do > dy >0 ' >

The multidegrees of X are therefore given by deg )(X) = deg g 1)(X) = 1. Indeed, the
multiprojective coordinate ring R = K[xq, 1, 0, y1|/(zoy1 — £1y0) has a basis consisting
of all monomials z¢z%ySy{ with a,b, c,d € Ny and be = 0. Hence the graded component
Ry is of dimension (dy + 1) 4+ (d2 +1) — 1 = dy 4+ dy + 1. This is already a polynomial in
d and its leading term agrees with the function G we computed above.

2.6. Seshadri stratifications of LS-type

For suitable choices of extremal functions, the polytopes A(@@ are products of simplices
for all d, e.g. when the support of deg f, is a one-element set for each p € A (see
Example 2.25) or when I, = I, € T is equivalent to deg f, = deg f, for all p,q € A (see
below). One might ask if there exists a rational structure as in Proposition 2.34, that
is compatible with this decomposition into simplices, i.e. the map pry : R® — R" is a
product of rational structures, one for each simplex. In general, this idea is too naive: It
already fails for the stratification we examined in Example 2.31, since the lattice £% to
the maximal chain @ : X > 01 > 0 does not decompose into the product £{%01} x £1X},
However, when all the monoids I'¢ are so-called LS-monoids, then such a decomposition
does exist and one can compute the volumes of the polytopes explicitly via the bonds in
the stratification.
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Definition 2.37. Let C' be a chain of covering relations in A, i.e. it consists of elements
ps > - -+ > po such that p; covers p;_; for each i = 1,...,s. The Lakshmibai-Seshadri-
lattice (short: LS-lattice) associated to C' is the lattice

LSC = {Z Qi€p, S QC
=0

and its intersection LSY = LSc N QY with the positive orthant is called the LS-monoid
to the chain C.

bpzwpz‘1<ai+"'+as)EZViG[S],Clo+"'+a5€Z}.

Every LS-lattice is generated by its LS-monoid, since one can shift each element in LS~
into the positive orthant via the vectors e,, € LSc. LS-lattices are also compatible with
subchains: If D C C are two chains of covering relations, then we have LS. N QP = LSp.
This has the following consequences: If the monoid I'¢ is an LS-monoid for every maximal
chain €, then the Seshadri stratification is normal. The set G C I' of all indecomposable
elements is finite and for every u = >_ _, uye, € G the coefficients u, add up to 1 (this
follows from the proof of Lemma 3.3 in [CFL3]).

Definition 2.38. We call a Seshadri stratification on X C [\~ P(V;) of LS-type, if
the following conditions are fulfilled:

a) Each component of the multidegree deg f,, € Ny* is at most 1 for all p € A;
p 0
(b) if I, = I, for any two elements p, ¢ € A, then deg f, = deg f;
(c) the fan of monoids I is equal to the union | J, LS{ over all maximal chains € in A.

The next remark implies that this definition generalizes the notion of a Seshadri
stratification of LS-type from [CFL3, Definition 2.6]. For m = 1 both definitions agree.

Remark 2.39. For every stratification of LS-type, the monoid I'¢ agrees with the LS-
monoid LS;r for each maximal chain in A: We clearly have LS&r CTI'NQ% =T¢. For the
reverse inclusion, let p, > --- > pg be the elements in € and b; = by, ,. , be the bond
to the covering relation p; > p;_; for all j =0,...,r. By the definition of an LS-lattice,

each element ) = Le, —Le, | is contained in LSe C £¢. Hence one can find rational
J J

functions F., ..., Fy € K(X)\ {0} with V(F;) = a¥ for all j = 1,...,7. We can now use
Proposition 2.7: The matrix B¢ is given by

b0 e e 0\ b0 e e 0
bt b 5 br—1 b1

B¢ = 0 —b;_ll = o
: byt 0 b b - b 0

0 0 - =bt bt bo b0 -+ Do Do
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Therefore £¢ is contained in LS¢ and by intersecting with @go we get I'e C LS{.

Until the end of this section we fix a Seshadri stratification of LS-type on a multipro-
jective variety X. The poset Z defines a partition of A into the subsets

A ={peAll =1}

for I € 7. By definition, all extremal functions in A; have the same multidegree. We see
in the next lemma that this degree is always given by

6[:Z€Z’€N6n

icl

for a subset I C I characterized by the covering relations in the index poset Z: If [ is
a minimal element in Z then it holds I = I, otherwise [ is the union of all sets I\ J,
where J C [ is a covering relation in Z.

Example 2.40. If 7 is totally ordered, one can assume w.l.o0.g. that it consists of the
sets [i] for all ¢ € [m]. In this case, we have [i] = {i}.

To give another example, consider the poset Z with the elements I = {2}, J = {1,2},
K =1{2,3} and L = [3]. Here I = {2}, J ={1}, K = {3} and L = {1, 3}.
Lemma 2.41. For all p € A it holds deg f, = ey, .
Proof. We fix an element I € 7 and let d = (dy,...,d,) be the multidegree of any
extremal function f, for p € A;. For all ¢ € I there exists a covering relation ¢ < p in A
with I, \ I, = {i} and we have d; # 0 by Lemma 2.6 (b).

Conversely, let d; = 1 for some ¢ € I and let p be any element of A;. Then the
subvariety

Y:{(vl,...,vm)GXP|UjE\/jVjE[m],vz-:()}

of Xp is irreducible, contained in the vanishing set of f, and the codimension of Y in Xp

is at least one. If codimy (X,) = 1, then ¢ € I. Otherwise there exists an element ¢ € A;
with ¢ < p and Y C X, and we can proceed by induction over the codimension of Y. [

Fix a maximal chain € in A with associated maximal chain [; C --- C I, = [m] in Z.
It defines a decomposition of € into the subchains

Q:j:{p€€|]p:]j}'

The covering relation min €; > max €;_; has bond 1 by Lemma 2.6 (b). It follows from
the definition of LS-lattices, that they decompose into a product of sublattices along
covering relations with bond 1:

LS@ = LS¢1 X X LS@m - Qg.
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Therefore £¢ is equal to the product of the sublattices £% C Q% generated by [g,. Of
course, this is compatible with the monoids as well: T'¢ = I'¢, X --- X I'¢,,. We define
the m x m-matrix My with entries in Z, such that its j-th column consists of the degree
vector ey, € Ni'. Its follows from Lemma 2.6 (b) that this matrix is invertible over Z, so
its inverse gives rise to a group isomorphism

2" = 7™, dw Mg'd

identifying o¢ N N{* with Ng*. For j € [m] let ¢]¢- : Z"™ — 7 be its projection onto the
j-th component. This allows us to show

LD = (g € £%| dega € Zd} (2.12)

for all d € o¢. Each element a € £% with dega € Zd can be written as ¢ = b — ¢ for
b,c € T'¢. Using the isomorphism ¢ one can find an element a’' € Zp€€ Noe,, such that

deg(b+ a') € Zd. Then both b+ @ and ¢+ d’ lie in the Veronese monoid F(cd) and we
have @ € £L%@,

Let r be the dimension of X. The Newton-Okounkov polytopes of a stratification of
LS-type decompose into products of simplices: For each maximal chain € and d € o¢ we
: (d) ;
can write the polytope Ay’ in the form

A(f) =R$,N{z € R® | degz = d}

T ¢ | T A (65 @er,)
:HRZOO{xER% |degx:¢j¢(d)ejj}:HA¢j 7,
=1

Jj=1
d) . .. .
Hence A(g) is a multisimplex, since we have

(6% (d)er,)

ACJ- - = ¢]€(C—Z)A¢J7

where Ag; is the convex hull of all vectors e, for p € &;. For fixed j € [m]let p, > --- > pg
be the elements of the subchain €; and by, ;1 be the bond of the covering relation py > pr_1
in A for k=1,...,s. We define the linear map

0, if i =0,

Ple; - RY = R*, e i e
D iy kp—rer, ifi>1.

Proposition 2.42. For each k € N the map Pre, and the sets

(kAe,)(n) = {a|a € Te, i}

Jorm an integral structure on the scaled polytope kAg; C R%.
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Proof. The lattice £% is graded by Z = Ze 1;- Analogous to the proof of Proposition 2.34
any element b € L% of degree 1 defines a linear map pry : R® — Uj sending an element
a € L% of degree d € Z to a — db, where Uy is the linear span of the lattice Egj of degree
zero elements in £%. The restriction of this map to any affine subspace

Ug={z €RY | degx = d}

for d € Z is bijective and identifies db + £y’ = £% N U, with £y’. For every n € N
the polytope knAg; is contained in Uy,, hence Pry, maps the subset (kAg,)(1) onto

Pre, (kAg;) N L. Tt follows

DTe, ((Ae,)(n)) = Dre, (£ (knAe,)(1)) = £ (PTe, (knAe,) N Lg?)
= pr, (kAe,) N 1LY .

As all vertices of kA, are contained in the lattice L% the map PTe, defines an integral
structure on this polytope.
For our purposes we choose b = e, so that the composition of DPTe, with

¥ Uy > RY 29 R

coincides with pre,. By the definition of Pre, and the defining conditions of an LS-lattice,

the map 9 restricts to a group homomorphism 1 : ng — Z°. To finish the proof, we
need to show that 1 is an isomorphism. Its image is equal to the set of all elements
pre,(a) with @ € £%. The lattice L% contains the elements

. 1 1
(@) — o
& bii—1 p:

€.
pi—1
bii—1 ™

fori =1,...,s. The image of a under the map 1 is of the form e; + Z;;ll Zey,, so these
images form a basis of Z* and 1) is surjective. This also implies that its kernel has rank
ZE€ro. 0]

The proposition immediately has the consequence that the product map
Pre = Prg, X -+ X PTg, :R® - R’

forms an integral structure on the polytope A(@d) for each d € relint o¢ together with the
subsets

d
A () =[[{rala € le e} = {haa € Lena}
j=1
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Since 'Y = £8@ 1 Cone My = T'? follows from equation (2.12), the Veronese monoid
r (le) is saturated. Therefore the map pr, meets the requirements from Proposition 2.34.

The volume of pr (Ag;) is equal to the product [[;_, by 1 of all bonds in the subchain
¢;. Let be = H;l b;i—1 denote the product of all bonds in €. As all bonds connecting
the chains €; are equal to 1, we get

vol (pre(AF)) = be - ﬁ 6% ()1 (2.13)

for every d € relint o¢. As the polytope A(@d) is empty for d ¢ o¢, one needs to take care
which maximal chains to consider when computing the leading term Gi of the Hilbert
polynomial via Proposition 2.35.

The coefficients of G contain the multidegrees of X. One can compute them explicitly
in the case when the poset Z is totally ordered. W.l.0.g. we can then rearrange the
numbering of the projective spaces P(V;) such that the following situation applies.

Corollary 2.43. Suppose that the poset T consists only of the sets [i] fori € [m]. Then the
multidegree of the variety X C [~ P(Vi) to a tuple k € Ni* with ky + -+ - + ky, = dim X
18 given by

deg(X) =kl - k! Y be,
¢

where the sum runs over all mazimal chains € in A, which contain exactly k; +1 elements
from A; ={p € A| I, = [i|]} for each i =1,...,m and be denotes the product of all
bonds in €.

Proof. For any maximal chain € in A the matrix My we defined earlier is the identity
matrix and o¢ coincides with the positive orthant RZ,. For all d € Ni* we have ¢ (d) = d;
for all d € Nj*. Using equation (2.13) we therefore get

Gr(d) = bed(™ 7o aler 1.
¢

This implies the claimed formula, since the coefficient of the monomial d¥' - - - d*= is equal
to the multidegree deg, (X) divided by ki!--- k! O
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3. Multiprojective stratifications on flag varieties in
type A

In this chapter we construct a multiprojective Seshadri stratification on every (partial)
flag variety G/@ in Dynkin type A. This stratification is normal and balanced and the
resulting standard monomial theory (as of Proposition 2.12) is the classical Hodge-Young
theory (see [Hod| and [HP]) of products of Pliicker coordinates indexed by semistandard
Young tableaux. This stratification on G/Q is a special case of the stratification we
define in Chapter 4.

Throughout this chapter we fix the simple group G' = SL,(K) over an algebraically
closed field K of characteristic zero, the torus T' of diagonal matrices in G and the Borel
subgroup B of all upper triangular matrices with determinant 1, which contains T". The
Weyl group W = Ng(T)/Cq(T) can be identified with the symmetric group S, since
Cq(T) = T and the normalizer of T' consists of the matrices which have exactly one
non-zero entry in every row and each column. Let ¢; : T" — K* be the character of T,
where ¢;(t) is equal to the i-th entry on the diagonal of t € T'. The root system ® of G
is given by all characters ¢; — ¢; for ¢ # j in [n| and the choice of the Borel subgroup
corresponds to the set @1 of positive roots and the set A of the simple roots a; = &; — ;41
for i € [n — 1]. Let A denote the weight lattice of the root system ® and A*™ be the
monoid of all dominant weights. To each i € [n — 1] there is the associated fundamental
weight w; = 1 + -+ + & € AT and the maximal parabolic subgroup P, = BWp B,
where Wp C W is the stabilizer of w;. It is generated by the simple reflections s, for
ae A\ {wo;}.

Every weight A € A can be uniquely written in the form A\ = ¢je1 + -+ - 4+ 161
with coefficients ¢; € Z. Then A is a dominant weight, if and only if ¢; > --- > ¢,_1 > 0.
In this way, each dominant weight A\ corresponds to a partition p(\) = (¢1,...,¢,-1) of
n — 1 parts (which are potentially zero). The partition p(\) is usually visualized via a
Young diagram (we use the English notation) having exactly ¢; boxes in its i-th row. For
each i =1,...,n — 1 it contains exactly (A, a;’) columns of length i.

Definition 3.1. For each A € A™ and its corresponding partition p(\) we define:
(a) The set YT(A) of all Young tableaux of shape p(A) with entries in [n];

(b) The subset SSYT(A\) C YT(A) of all semistandard Young tableaux 7' € YT()), i.e.
the entries of T" increase weakly along each row (from left to right) and strictly
along each column (from top to bottom).

The Grassmann varieties G/P; fori =1,...,n — 1 can be embedded into the projec-
tivized fundamental representation P(V (w;)) = P(/\' K") via the usual Pliicker embedding:

G/Pi > P(N'K"), gP—[g-(er A Ne)l.
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This representation is minuscule, that is to say the Weyl group acts transitively on the
set of its weights. Hence all weight spaces are one-dimensional and the weights are in
bijection to the elements of the Bruhat poset W/Wp, = S,,/(S; x S,—;). They correspond
to subsets J C [n] of size ¢ and can also be identified with semistandard Young tableaux
in SSYT(w;). The weight space in V' (w;) of weight § € W/Wp, is generated by the vector
eg =ej A---Nej, € NK?, where j; < --- < j; are the elements of the subset J C [n]
corresponding to . The dual basis vectors py € V (w;)* are known as Pliicker coordinates.
It is well known that Pliicker coordinates fulfill the conditions (S2) and (S3) on a Seshadri
stratification (see [Ses2, pp. 1.2.10, 1.4.11]). In fact, the Grassmann varieties were one of
the motivating examples for the development of Seshadri stratifications (|FL]|).

Proposition 3.2. There exists a Seshadri stratification on G/P; with underlying poset
W/Wp., where the strata Xy are given by the Schubert varieties in G/ P; and the extremal
functions fg = pg by Pliicker coordinates.

We now go over to arbitrary parabolic subgroups. Until the end of this chapter we fix
the partial flag variety X = G/@Q to a parabolic subgroup

Q=P,N--NP,.

with strictly ascending indices 1 < ky < --- < k,, < n — 1. Every parabolic subgroup
containing B can be uniquely written in this way. Since we work with many parabolic
subgroups at the same time, we have included a short chapter about Weyl groups and its
parabolic subgroups in the appendix, in which we define the notation we use throughout
this thesis, for example the lifting maps ming and maxg and the notions of ()-minimal
and ()-maximal elements. To reduce the number of indices, however, we write 7; instead
of mp, and W; instead of Wp, , when working in type A.

Let R denote the multihomogeneous coordinate ring of G /@ with respect to the Pliicker
embedding

G/Q — HG/P,% — HP(V(wki)). (3.1)

It is well known that this ring R contains a lot of information about the representation
theory of GG. It carries the structure of a G-representation and the graded component
R4 C R of degree d € N is isomorphic to the dual representation V'(1)* to the dominant
weight u = djwg, + -+ + dpwy,, € AT

We view the Pliicker coordinates in V (wg,)* as elements of R via the pullback along
the projection [[7", V(ws;) — V(wy,). For each element (6,7) in the disjoint union
W =T11%, W/W; x {i} we therefore have an associated Pliicker coordinate p(p;) € R and
R is clearly generated by these functions as a K-algebra. Hence the monomials/products
of Pliicker coordinates form a generating system of R as a vector space. Each of these
monomials is either called standard or non-standard and the set of standard monomials is
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a basis of R. Using only combinatorial methods one can determine whether a monomial
is standard. This is typically called a standard monomial theory. For G/Q it was
shown in [Ses2, Chapter 2| that this basis is given by semistandard Young tableaux
in the following sense. Let pg = ps,,i,) - P6,,i,) be a product of Pliicker coordinates
with ¢, > --- > 4. Since each element 0; € VV/VVZ7 can be interpreted as a tableau in
SSYT(w;; ), the product py corresponds to the Young tableau

(91, e ,eg) c YY’I‘(Wle —+ 4 wig),
such that its j-th column is given by 0;.

Theorem 3.3 ([Ses2, Proposition 2.3.1, Theorem 2.6.1]). The multihomogeneous coordi-
nate ring R = K[G/Q)] has a basis consisting of the products p, i,) - P(o,5,) 0f Pliicker
coordinates with iy > -+ > iy, such that the corresponding Young tableau (01, ...,0,) is
semistandard.

It is our goal to construct a multiprojective stratification on G/@Q, such that the
associated fan of monoids is in bijection to semistandard tableaux with columns in
W. In order to construct such a stratification, we first need a suitable candidate for
the underlying poset. Notice that the entries of every Young tableau, which only
contains columns from the set W, are already strictly increasing along each column, by
definition. Therefore semistandardness can be seen as a local property: Such a tableau
is semistandard, if and only if every two consecutive columns are semistandard (as a
tableau of just 2 columns). This induces a partial order on the set .

Definition 3.4. We define a relation > on the set W = [, W/W; x {i} via
(0,i) > (¢,j) <= i< j and maxg(f) > ming (o). (3.2)
for all (6,4), (¢, ) € W.

With the interpretation of the elements of W as Young tableaux, we show in Corol-
lary 3.8 that the relation > can be written as

by bi |aq

a

Vv

< i<j and |—}— is semistandard. (3.3)
LA,

(3

ag,
by

J

br..

J

In particular, this implies that the relation > is a partial order. However, as we do
not show this characterization of the relation right now, we carefully avoid using the
transitivity of > (the reflexivity and antisymmetry are immediate from the definition).
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Figure 1: Hasse-diagrams of W for ) = B

Using the underlying poset W we now define a multiprojective Seshadri stratification
of the partial flag variety X = G/Q with respect to the Pliicker embedding (3.1). For
this purpose we choose the following objects for each element (6,i) € W:

e The subset [(g;) = {3,...,m} of [m],

e the Schubert variety XmaXQZ_ 0 € G/Qi = X{i,..my as the stratum Xg;), where @Q;
is the parabolic subgroup Q; = (/_; P,

e the extremal function fg: = P,

Note that, if ) is a maximal parabolic subgroup, then G /@ is a Grassmann variety and
we already know that these definitions give rise to a Seshadri stratification, namely the
stratification from Proposition 3.2 of all Schubert varieties and Pliicker coordinates.

We write X(Qﬂ;) for the multicone of Xyyax, (9), viewed as a subvariety of T2, Vi(ws,)-
It coincides with the intersection

m

Xéf) = Xgﬂ{(vl,...,vm) = Hv<wkj) ’ U= " =V-1= 0}’

j=1

where Xg is the multicone of the Schubert variety Xz C G/Q to the element 0 =
ming omaxg,(6).

We usually write a permutation o : [n] — [n] in the Weyl group W =2 S, in the one-line
notation ¢ = (1) - - - o(n). Similarly, we write an element cWp, € W/Wp, for i € [n] in
the form o(1)---o(i). With this notation the stratifications of G/B in the types A, and
A3 are shown in Figure 2.

It is well known, that the Bruhat order on W/Wp, can be characterized via the one-line
notation: For a tuple j = (ji,..., ;) of natural numbers, we write ZS for the permuted
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Figure 2: Stratifications of G/B

tuple with weakly increasing entries (from left to right). For all ¢ = ¢(1)---¢(i),0 =
6(1)---6(i) € W/Wp, we then have
p<b0 <=

0())%,

where the tuples on the right hand side are compared component-wise. The one-line

(6(1),..., ()= < (8(1),...

notation can also be used to describe the Bruhat order on W, as ¢ < 7 € W is equivalent
tomp (o) <mp(r)foralli=1,...,n—1.

Theorem 3.5. The varieties X g, for (0,i) € W together with the extremal functions
fo.0) form a Seshadri stratification on X = G/Q — [[;~, P(V(wy,;))-

Before we are able to prove this theorem, we need to show, that > is indeed a partial
order on W and establish a good understanding of this poset and its covering relations.
The key ingredient is the following innocent looking lemma. Although it can be shown
more abstractly, we stick to a prove using methods of type A for simplicity. A more
general statement can be found in [LMS4, Lemma 12.4].

Lemma 3.6. If 0 € W/Wy, is Py,-maximal, then 7q,(0) is Py,-mazimal for all j > i.

Proof. The Py -maximality of 6 is equivalent to the Pj,-maximality of its maximal
representative o = maxp(f) in W. We write 0 = o(1) - --o(n) and 7 := maxp o7, () =
7(1)---7(n) in one-line notation. The parabolic subgroups Py, ..., P, partition the
set [n] into m + 1 subsets Iy = {ks+ 1,...,ksy1} for s =0,..., m, where we set kg = 0
and kp41 = n. Since Q; = U;n:] P, the one-line notations of o and 7 agree up to
permutation in the blocks Iy U --- U I; and in each I, for s > j. As 7 is the maximal
representative of mg (€), we have 7s,, < 7 for all £ € [n]\{k;, ..., kn}, hence the numbers
7(r) are strictly decreasing in Io U --- U I; and in all I; for s > j. Additionally the
Py-maximality of o implies, that the numbers o(r) are strictly decreasing in Iy U---U [;
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and in ;11 U---U [,,. By combining these observations, we get o(r) = 7(r) for all
j +1 <r <n and the numbers 7(r) are strictly decreasing in [;;1 U---U I,,. But this
just means, that 7 is P ;-maximal. U

Lemma 3.7. For all (0,1),(¢,j) € W the relation (0,i) > (¢, ) holds, if and only if

1 < 7 and any one of the following equivalent statements is fulfilled:
(a) mj o maxq,(0) = ¢;

(b) there exists a parabolic subgroup Q C Q" C Py, N Py, and lifts 0,6 W/Wq of 0
and ¢ respectively, such that 0 > ¢ in W/ Wy

(¢) ming o maxg, (#) > ming o maxq,(¢) in W/Wy.

Proof. By the definition of the partial order on W, it suffices to show the following:
For any two elements (0,1), (¢,7) € W with ¢ < j the inequality maxg(#) > ming(¢) is
equivalent to each of the three conditions (a), (b) and (c). We assume the relation i < j
for the inclusion @; C Q;.

Let Q" be a parabolic subgroup contained in P, NP, containing Q). Clearly condition (b)
is equivalent to maxg(#) > ming(¢) and (b) follows from (c). Furthermore maxg(6) >
ming(¢) implies (a), since m; 0 maxg,(#) = m; o maxg(#) > m; o ming(¢) = ¢

It remains to show, that (c) follows from (a). We write 6 = ming omaxg,(f) and
¢ = ming omaxg, (¢). Since both elements are @;-minimal, it is enough to prove the
inequality 6 > ¢ in W/W,. As the element maxg, (6) is Py, -maximal, its projection to
W/Wq, is Py,-maximal by Lemma 3.6, hence we have the equality mg, o maxq, () =
max, om; 0 maxq, (). But this implies

maxg, () > ming, omg, 0 maxg, () = ming, o maxg, om; o maxg, ()

> ming, o maxgq, (¢),

where we used condition (a) for the last inequality. This completes the proof. 0

Corollary 3.8. The characterization (3.3) of the relation on W is fulfilled. In particular,
the relation is a partial order.

Proof. Let (0,1),(¢,j) be two elements in W written as tableaux with one column
and entries ay, ..., a, and by, ..., by, respectively. The first k; numbers in the one-line
notation of § := ming o maxg,(0) = 6, - - - 6, are strictly increasing and therefore 65 = a,
for all s = 1,...,k;. The last n — k; numbers are strictly decreasing. The analogous
statement holds for the one-line notation of (E = ming omaxg,(¢) = ¢1- - Pn.

Ifi < jand by < as holds forall s = 1,..., k;, then we have by - - - by, = Wj(g) < wj(ﬁ) =
ay - ag, O, 41 - ij, because the last k; — k; numbers are the largest numbers missing
in aj - --ag,. This implies (0,7) > (¢, j) by Lemma 3.7 (a). Conversely, if (6,7) > (¢, 7),
then ¢ < 7 and 52 ¢. Hence we have by < a, for all s =1,...,k;, as the first k; numbers
in their one-line notation are increasingly ordered. 0
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We are now able to fully understand the covering relations of W. If (6,4) covers (¢, j),
then we either have i = j and 6 > ¢ is a covering relation in W/W; or we have i < j. In
the second case we have (6, i) > (m, omaxg(f),r) > (¢, ) for each i < r < j, so it follows
j =i+ 1. Additionally, the lifts § = ming o maxg,(f) and ¢ = ming omaxg, (¢) agree,
which we can show in the quotient W/Wq, = W/Wp, N W/Wq, by using Lemma B.1.
Since 6 > (5 holds by the previous lemma, we have

(6,7) = (m:(8),4) > (mi(),i) > (¢,j) and

0,1) > (m;(0),7) > (m3(0),5) = (¢, ),

hence 6 and 5 are equal in W/ Wp,, and in W/ Wij‘ This yields

mo,(¢) = maxq,(¢) = maxg, om;(f) = maxg, o P, © max, ().

But by Lemma 3.6 the element 7, o maxg, () is Fj,-maximal, so the right hand side is
equal to Tq; o maxg,(f) = ﬂQj(g). Therefore 6 = 6.

In particular, if (0,4) > (¢, j) is covering relation in W, then X(qﬁ,j) is of codimension
one in X(Q,i). Therefore the condition (S1) on a Seshadri stratification is fulfilled and
the relation (6,7) > (¢, j) implies )A((m) C )A((g,i). Conversely if X, C )A((W), then the
Schubert variety Xmaij () € G/Q; is contained in XﬂQjomain (9)- Hence maxg,(¢) <
T, 0 maxg,(f), which implies (¢,j) < (f,i) by Lemma 3.7 (a).

Lemma 3.9. Let (6,i) € W and 6 = ming omaxg,(0). Then the following equality holds
foralli <3 <m:

{(?Jl, .. ,Um) € X(gyi) | Vy =" =0Vj_1 = O} = X(ﬂ'j(g)d)'
Proof. Let v = (v1,...,0) € X((%i) with v; = --- = v;_1 = 0. We choose a non-zero
vector w, € V(wy, ) for all r =4,... m with v, € Kw,, such that ([w],...,[wy]) is an

element of the Schubert variety
X0,i) = Xmaxg,(0) C HP(V(%T»
Because of the following commutative diagram, ([wj],...,[w;,]) lies in the Schubert

variety to the element mg, o maxg,(0) € W/Wy,:

Xrg,0) — [TLP(V(wy,))

| }

Xrg,0) — [LZ; P(V(wg,))

TI'Q]
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But by Lemma 3.7 we have mg, o maxg, (/) = maxg, om; o maxq, (#) = maxg, om;(0), so
v is contained in the multicone X (3 (B).4)"
J )

Conversely, every element of the multicone X (73 (8).) lies in the stratum X, (6,i) because
of the surjectivity of the map XmaXQi @) — XWQJ_ omaxg, (6) = XnQ]. @ O

Proof of Theorem 3.5. 1t is well known, that Schubert-varieties are smooth in codimen-
sion one (see e.g. |CFL2, Corollary 3.5]). Their multicones X, C [IZ, V(ws,) are
closed, irreducible subvarieties and they are smooth in codimension one as well by
Corollary A.11.

We already proved condition (S1) and the equivalence of (¢, j) < (6,4) and the inclusion
)A((m-) C X(g’i) of their multicones. Next, we show (S2). Let (¢,7) £ (6,4) in W. We
need to prove, that the Pliicker coordinate p(4 ;) vanishes identically on X(gvi). This is
trivial, if j < i. Now we assume j > i and set k = 7, o maxg,(#) € W/W;. Note that
the affine cone X, C V(wg,) of the Schubert variety X, C G/F,; coincides with the
projection of X(gﬂ') to V(wkj). Now Schubert varieties and Pliicker coordinates form a
Seshadri stratification on G/ P, by Proposition 3.2, hence (S2) is fulfilled in this case.
Therefore the function p4;) vanishes on X (6,), if and only if ¢ £ Kk = m; omaxg, (). By
Lemma 3.7 (a) this is equivalent to (¢,7) £ (6,1).

Lastly, we prove (S3). We fix an element (0,7) € W. The function p; vanishes on
all multicones X (0.j) for (¢,7) < (6,4). This is clearly true for j > 4, otherwise it follows
from (S3) for the stratification on G/ P, .

Conversely, let v = (vq,...,v,) € )A(((M) such that pe ;) (v) = 0. In the case of v; = 0,
the element v is contained in the multicone X, ) for j =i+ 1 and ¢ = 7; 0 maxg, (6) by
Lemma 3.9 and we have (¢, j) < (6,17). For v; # 0, its projective class [v;] can be viewed as
an element of the Schubert variety Xy C G/Py,. Again, using the Seshadri stratification
on G/ Py, we see that [v;] is contained in the Schubert variety X, to an element ¢ < 6 in
W/W;. For each r = 1i,...,m we choose a non-zero vector w, € V(wg,) with v, € Kw,
and w = ([wi, ..., [wn]) € X,). Then w lies in a Schubert cell C, C G//Q; for a unique
element o € W/Wy,. It satisfies m;(0) < ¢ < 0, so 0 < maxg, om;(0) < maxg,(¢). Hence
v is contained in X (ms(o),i)» Which completes the proof. O]

Remark 3.10. For a fixed index i € [m] the set of lifts
{ming omaxg,(0) € W/Wq | (0,i) € W}

coincides with the set of all elements in W/Wg, which are Q;-minimal and Q’-maximal
for the parabolic subgroup Q' = ﬂ;zl Py,. We skip the proof of this statement, as it is
rather lengthy and we show it in a more general setting anyway in Section 4.4.

Let SSYT, be the set of all semistandard Young tableaux with entries in [n], where
only columns of length k1, ..., k,, may appear. Equivalently, this is the union of the sets
YT(u) over all p € Nowy, + - -+ + Nowg,,. A Young tableau is contained in this union, if
and only if all columns come from elements in W.
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Corollary 3.11.

(a) The following map is a bijection:

SSYTqg — T, ((01,31),...,(0p,10)) — €(0r,i1) T+ T+ €04,i0)-

(b) The Seshadri stratification on G/Q is normal and balanced.

(c) The set G of all indecomposable elements in I' coincides with the set

(1) ={a el ||dega| =1} = {ewy | (0,1) € W}

of all elements of total degree 1 in T.

(d) Let G be the set of all Pliicker coordinates pwy for (0,i) € W. Then the standard

monomial basis from Proposition 2.12 agrees with the basis from Theorem 3.3.

Proof.  (a) For a tableau T € SSYTq with columns (6y,41), ..., (6s,ir) consider the

regular function fr = pe, i) - - P(9,.i,)- Since T' is semistandard, it follows from the
equivalence (3.3) that there exists a maximal chain in W containing all elements
(61,41), ..., (0, i¢). Hence fr has the quasi-valuation V(fr) = e, i) + - + €@,.i,),
so the map SSYTy — I is well-defined. The injectivity is already contained in the
definition of this map, since one can reconstruct the semistandard tableau from
the coefficients of the vectors e,, p € W. We also know from Theorem 3.3 that the
functions fr for ' € SSYT( form a basis of R. Therefore the map SSYTg — I is
surjective as well.

The quasi-valuation of extremal functions does not depend on the choice of the
total order > on the poset W and every element in I' is the quasi-valuation of a
product of extremal functions in a common maximal chain. Hence the stratification
is balanced. By part (a), the monoid I'¢ to a maximal chain € in W coincides with
N§, which clearly is saturated. So the stratification is also normal.

This statement is a consequence of part (a).

Let @ € T" and T be its corresponding tableau in SSYTy. Then part (d) follow
from the fact, that the unique decomposition a = a' + ... a* into indecomposables
with minsupp a* > maxsuppa**! for all k =1,...,s — 1 is given by the columns
of T', where a' corresponds to the rightmost and a® to the leftmost column. [l

We show in Lemma 4.32 that the bond to a covering relation (6,7) > (¢,7) in W is
equal to 1 for i # j, otherwise it is given by b = |(¢(wy,), 57)|, where [ is the unique
positive root with sz - ming(¢) = ming(#). We have b < 1, since all fundamental weights

are minuscule in type A. Hence the stratification is of Hodge type.
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It is not possible to get a multiprojective Seshadri stratification for Schubert varieties
in the exact same manner, since Pliicker coordinates have the wrong vanishing sets.
As an example, let us take the Schubert variety X, C SL3(K)/B for 7 = 312. The
Pliicker coordinate ps, 1) on the multicone X315 C V(wy) x V(wq) vanishes on the two
subvarieties X213 and X132, which are both of codimension one. Therefore 213 and 132
should be covered by 312 in the underlying poset of the stratification. Analogously, pe1)
vanishes on X123 - Xglg, so 213 covers 123. But both 123 and 132 should have the
same associated extremal function p(; 1), which is impossible due to condition (S2) on a
Seshadri stratification.
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4. Multiprojective stratifications on Schubert varieties

4.1. Choices and definitions

We fix a connected, simply-connected, simple algebraic group G over an algebraically
closed field K of characteristic zero as well as a maximal torus 7" C G and a Borel
subgroup B C G containing T'. Let A be the set of all simple roots corresponding to
the choice of B. The associated weight lattice shall be denoted by A and the monoid of
dominant weights by A™. Let W be the Weyl group and W) C W be the stabilizer of a
weight A € A.

Let X, be the Schubert variety to a Weyl group coset 7 € W/Wy,, where Q C G
is a parabolic subgroup containing B. The flag variety G /@ can be embedded into a
projective space by choosing a dominant weight A, such that (\, o) = 0, if and only
if the simple reflection s, is contained in Wg. Equivalently, the stabilizer of W, C W
coincides with the subgroup Wg. Let vy be any highest weight vector in the irreducible
representation V() of G. Then the parabolic subgroup @ is the stabilizer of the highest
weight space Kvy and one obtains a closed embedding

G/Q—=P(V(A), 9Qwr[g-ul.

For each element o € W/W, the weight space in V(\) of weight () is one-dimensional.
Up to a non-zero scalar, one can therefore associate a unique weight vector vy(n) € V/(A)
of weight o()). The linear span of the orbit B - v.(y) is known as the Demazure module
associated to A and 7, which we denote by V()),. As the Schubert variety X, can be
written as the closure of the B-orbit B - [v;y] € P(V())), one can embed X as a closed
subvariety of P(V(A),).

It was shown by Chirivi, Fang and Littelmann in [CFL2|, that X, C P(V()),) admits
a Seshadri stratification via its Schubert subvarieties and representation-theoretically
defined extremal functions. The underlying poset A = {o € W/Wy | ¢ < 7} is induced
by the Weyl group and the stratum to ¢ € A is the Schubert variety X, C G/Q
associated to . The extremal functions are given by extremal weight vectors in the dual
representation V' (A)*: If one chooses a weight vector ¢, € V(A)* of weight —o(\) for
each 0 € A (which are unique up to a non-zero scalar), then the extremal function f, is
defined as the restriction of ¢, to X, C P(V(\),). It was proved in [CFL2| that this data
forms a normal and balanced Seshadri stratification of LS-type and that one can interpret
the elements of degree d € Ny in the associated fan of monoids I" via the Littelmann path
model B(d\) of Lakshmibai-Seshadri-paths (LS-paths) of shape d\. The path model was
originally introduced by Littelmann in |Lit94] and then further developed in [Lit96] and
[Lit95]. We can also recommend the appendix of [CFL2| as an introduction to LS-paths,
which is adapted to the language of Seshadri stratifications.

The stratification on X, of course depends on the choice of the dominant weight .
However, one can also consider a decomposition A = A; +- - -+ )\, into a sum of dominant
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weights, as this gives rise to the closed embedding
G/Q%HP(V(AZ)% QQH ([g'vz\J:'--a[g'vz\mbw (41)
i=1

where v), is a highest weight vector in V(});). The most well-known example is the
Pliicker embedding of a partial flag variety in type A into a product of fundamental
representations, which we covered in the previous chapter. In view of the connection of
the stratification on X, C P(V'(\),) to LS-paths, one can hope that there also exists a
multiprojective stratification such that its fan of monoids is determined by LS-paths to
the weights Ay, ..., A,,. Unfortunately, such a stratification does not always exist, as it
requires a totally ordered index poset Z. We discuss the obstacles in Section 4.3.

In order to generalize both the stratification on G/Q from Chapter 3 and the stratifi-
cation on X, C P(V(A),;) to multiprojectively embedded Schubert varieties in arbitrary
Dynkin types we have to consider other, possibly non totally-ordered index posets Z.
Therefore we choose the following objects for our construction:

e A dominant weight A € AT and a sequence A = (A, ..., \,,) of dominant weights,
that sum up to A,

e a Schubert variety X, C G/Q for an element 7 € W/Wy, where () = BW, B is the
parabolic subgroup associated to the stabilizer Wy C W,

e and a subposet Z of the power set poset P({1,...,m})\ {&}, such that Z is a
graded poset of length m — 1 and it holds

JCI = JCI VJIeT. (4.2)

The subset J C J is defined as in Section 2.6: If J is minimal in Z, then J = J,
otherwise J is the union of all J \ K, where K C J is a covering relation in Z.

The combinatorial requirement (4.2) on the poset Z is necessary for the condition (S2)
on a Seshadri stratification (see the proof of Theorem 4.30). We want to remark that
there are two important cases, where this requirement is automatically satisfied, namely
when Z is totally ordered or equal to the full poset P({1,...,m})\ {&}.

Regarding Weyl groups, we use the notation in Appendix B, namely the projection
maps 7 and the lifting maps ming and maxg. For every i € [m] we define the parabolic
subgroup

P, = BW, B

and the projection 7; = 7wp,(7) of 7 to W/Wp,. As the Schubert variety X, is the closure
of the B-orbit through w,Q € G/Q for a representative w, € Ng(T') of 7, the map (4.1)
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induces an embedding of X into a product of projective spaces over Demazure modules:
X, = [[X = [[PV(N)-).
i=1 i=1

Here X, denotes the Schubert variety in G/P; to the element 7; € W/Wp.. This is the
embedding we use for the multiprojective stratification on X,. To obtain the construction
from Chapter 3, one needs to choose the sequence A = (wy, ;. . ., wg, ) of dominant weights
and the index poset Z = {[i] | i € [m]}.

We need to fix some notation for the following chapters. For a tuple d € Nj* we define

d-N=d M+ +dph, € AT,
To each index set I € Z we associate

e the degree e; = >, e; € N7,

e the dominant weight \; = e;- A € AT
e and the parabolic subgroup Py = BW),B = N F;.

It may not be intuitive to index these objects by I instead of I, but helps to simplify
the notation. The parabolics P; take the role of the maximal parabolic subgroups
Py, ..., Py, from the construction in type A and the tuple e; is the multidegree of all
the extremal functions for strata associated to the index set I.

Let @), be the unique parabolic subgroup containing (), that is maximal with the
property that 7 is (),-maximal. This parabolic subgroup exists: The element 7 is Q'-
maximal for a parabolic subgroup @', if and only if ¢(7s) < ¢(7) holds for all simple
reflections s € Wy (see Corollary 2.4.5 in [BB]). Therefore @, is equal to the subgroup
which is generated by all parabolic subgroups )’ containing (), such that 7 is (-maximal.

We can now define the parabolic subgroups

Qr={P and Q'=Q.n[) Py, (4.3)
JeT JET
JCI JOI

which generalize the subgroups from Remark 3.10.
Lemma 4.1. The following properties hold for all I € T:
(a) Q1 = Nier Py and Wy, is the stabilizer of Y, ; \i;
(b) if J C I is a covering relation in L, then PrNQy = Qyp;

(c) QiNQ' = Q.
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Proof.  (a) The definition of the index sets J for J € Z implies

Uz=1

JeT

JCI
In particular, we have QQ; = N;erFP;. The Weyl subgroup Wy, thus is the intersection
of the stabilizers W, over all i € I, which is equal to the stabilizer of ), , A;.

(b) If J C I is a covering relation, the Weyl subgroup Wp,g, is the stabilizer of
Zz’ELUJ Ai = Y ;er A and it therefore coincides with Weg,. Hence Pr N Q; = Q.

(c) The equality Wy, ngr = W, follows from the fact that the subgroup Wg,nor €W
is the intersection of W, with the stabilizers W), over all indices in the set

ULzu UZ=1[ml O

JCI JoI

4.2. Lakshmibai-Seshadri-tableaux

To generalize the stratification from Chapter 3 we first need a suitable candidate for
the underlying poset. It should again be motivated by a combinatorial model which
parametrizes basis of Demazure modules. Such a model was developed by Lakshmibai,
Musili and Seshadri (|[LMS4], [LS5], [Ses2|) via certain sequences of Weyl group cosets,
that admit a so called defining chain. A few years later, Littelmann generalized their
tableaux to arbitrary Dynkin types using his path model of LS-paths (see [Lit96]).
However, we use a slightly different notation than in loc. cit.: Instead of concatenations
we consider tuples of LS-paths, and we call them LS-tableaux instead of LS-monomials.
Recall that an LS-path 7 of shape v € AT is an element

= (0, > >01;0,dp,...,dy = 1),

where 0, > .-+ > oy is a chain in W/W, and 0 < d, < --- < d; = 1 is a sequence
of rational numbers, such that there exists a (d;,v)-chain in W/W, from o; to 0,4
for each © = 2,...,p. By definition, this is a chain o; = k; > -+ > Ky = 0;_1 of
covering relations in W/W, with the following integrality property: For every j =1,...,¢
the number d;(x;(v), 3/) is an integer, where §3; is the unique positive root of G' with
sp; ming(k;_1) = minpg(r;). The Weyl group coset o, is called the initial direction of w
and is denoted by ().

The set B(v) of all LS-paths of shape v can be interpreted in terms of the Littelmann
path model (see |Lit94| or [CFL2, Appendix A]). The corresponding path model B(m,)
is generated by the straight-line path 7, : [0,1] = A ®z R, t — tv.

We fix a sequence p = (i1, - - -, it5) of dominant weights with sum p = py + -+ + ps.
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Definition 4.2. A Lakshmibai-Seshadri-tableau (short: LS-tableau) of shape pu
is a sequence ™ = (my,...,ms) of LS-paths m; € B(y;), called the columns of 7. Let
o > ... > o!¥ be the chain of cosets in W/W,, for the LS-path 7, k € [s]. For a fixed
element 7 € W/W, the LS-tableau = is called

(a) T-standard, if there exists a weakly decreasing sequence

— —(1 —(s —(s
0}(011)2...205)2...2 I()k)z...zag)

in W/W,, such that & 'W,, = o\’ € W/W,, holds for all i = 1,...,s and

j=1,...,p;. Such a sequence is called a defining chain.

(b) weakly T-standard, if the LS-tableau (g, mx+1) of shape (g, pr+1) is 7-standard
foreach k=1,...,s — 1.

Note that defining chains are not unique, there can exist different defining chains for a
given LS-tableau. As long as there is at least one defining chain, the tableau is T-standard.
For every parabolic subgroup @' of G with Wy C W,,, defining chains can also be lifted
via the maps ming and maxg to weakly decreasing sequences in W /W consisting of
lifts of the columns. As the defining chain in W/W, is bounded by T, its lifts to W/W
are bounded by maxg (7). Conversely, assume we have a weakly decreasing sequence in
W /W consisting of lifts of the columns and bounded by max¢/ (7). Such a chain clearly
projects to a defining chain in W/W, via W/Wgy — W/W,. Hence W, is the largest
subgroup of W, where a defining chain is well-defined, as W, = W, n---NW,,.

When 7 is equal to the unique maximal element w,W, € W/W,, we often omit 7 and
just talk about (weakly) standard LS-tableaux.

Example 4.3. Consider the group G = SL4(K) and let P, and w; be defined as in
Chapter 3. We also use the one-line notation from this chapter for elements of W/Wp,
and of W. As all fundamental representations in type A are minuscule, LS-paths of
shape w; correspond to Weyl group cosets in W/Wp,. The tuple 7 = (13,124, 3) is an
LS-tableau of shape (wq,ws,w;). The stabilizer of p = wy + w3 + wy is trivial, hence
W/W, = W. This tableau x is not standard: The element 3124 is the unique minimal
lift of 3 € W/Wp,. By Deodhar’s Lemma B.3 we have unique minimal lift of 124 that is
greater or equal to 3124, namely 4123. But the unique maximal lift 3142 of 13 is not
greater or equal to 4123, hence there exists no defining chain for 7. However, 7 is weakly
standard, since the tableaux (13,124) and (124, 3) have the defining chains 1324 > 1243
and 4123 > 3124 respectively.

Let m,, : [0,1] = A ®z R, t — tp; be the straight-line path to p; and B(m,, *--- *7,,)
be the path model induced by the concatenation m = 7, *---*m, , i.e. it is the smallest
set of piecewise linear paths which contains 7 and is stable under the root operators.
This path model is the connected component of the concatenation B(w,,) * - - - * B(m,,)
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of the LS-path models. As the path 7 = 7, *--- % m, and the straight-line path
7,0 [0,1] = A ®z R, t — tu both have the same end point 7(1) = = m,(1) and their
images stay in the dominant Weyl chamber, there exists a unique isomorphism of crystal
graphs ¢ : B(m,, - - -*m, ) = B(m,) with ¢(7) = 7, (see [Lit95]). Using this isomorphism,
Littelmann proved the following connection between 7-standard LS-tableaux and path
models.

Proposition 4.4 ([Lit96, Theorems 7, 8]). An LS-tableau m = (1, ..., 7,) of shape p
is T-standard, if and only if the path ™ = m * --- % s is contained in the connected
component B(m,,, *---xm, ) CB(u1)*---*B(us) and the initial direction i(¢(m)) of the
LS-path ¢(7) € B(p) is smaller or equal to .

It was also proved in |[Lit96] that LS-tableaux give rise to a character formula for the
Demazure modules.

Theorem 4.5 ([Lit96, Corollary 4|). Let B(u). denote the set of all T-standard LS-
tableaux of shape p. Then the character of the Demazure module V (1), is given by

char V(p), = Z erM), (4.4)

TeB(p)r

where w(1) denotes the end point (71 * - - - x7s)(1) of the concatenation of all paths in the
LS-tableau w = (my, ..., 7).

In the Appendix C we explain how LS-tableaux can be seen as a generalization of
classical Young tableaux and of the Young diagrams of admissable pairs, which were
defined by Lakshmibai, Musili and Seshadri (see [LMS4], [LS5]).

We have seen that the tableaux appearing in the fan of monoids to the stratification
in Chapter 3 have a specific shape, which is determined by the parabolic subgroups
Py, ..., Py, and the order k,, > --- > k;. For the stratification on X the allowed shapes
are be defined by the index poset Z.

Definition 4.6. A LS-tableau of type (A, Z) is an LS-tableau 7 of shape (A, ..., L),
where I} O --- D I is a (possibly empty) weakly decreasing sequence in Z. We call the
tuple degm = ey, + - + e, € Ni the degree of 7.

Remark 4.7. For for each d = (di,...,d,,) € Nj there exists a weakly decreasing
sequence [} O --- D I in Z, such that the LS-tableaux of shape (A, ..., A;,) have degree
d: This is clearly true for m = 1. If m > 2, we choose an index i € [ for I = [m], where
d; is minimal. As the i-th entry of d — d;e; is zero, we can find a weakly decreasing
sequence I; D --- D I, with "7 _, e, = d — d;e; by induction. If we append [m] exactly
d; times to the start of this sequence, we thus get a sequence for d.

It is not obvious that this sequence I} O --- D I is uniquely determined by d. This
follows later via Corollary 5.12. Note that the LS-tableaux for each fixed sequence to a
degree d € Nj* give rise to a character formula for the Demazure module V(d - \).
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Definition 4.8. We define the following posets and monotone maps:

(a) Let W(A,7) be the direct product of the posets {oc € W/Wqg |0 < 7} and Z, i.e.
the order relation is given by

6,1)> (¢,J) <= IDJ and 6>¢

for all (0,1),(¢p,J) € W(A, 7).

(b) Let W(A, 7) = [[;ez{0 € W/Wp, | 0 < mp, (1)} x {I} be the poset, which partial
order is given by the transitive hull of the following relation:

0,1)>(¢,J) <= [2J and maxg(f) > ming(¢) (4.5)

for all (6,1), (¢, J) € W(A, 7). We also denote the order of W (A, 7) by >.

(¢) Furthermore, we define the map 7p, : W(A, 7) — W(A, 1), (6,1) — (7p,(0),1),
which is clearly monotone.

(d) Let @ be a chain in W (A, 7) of elements (0, I;) > -+ > (6o, Iy). We say that @ is 7-
standard, if it has a defining chain, that is to say a chain (,, I;) > --- > (6o, o)
in W(A,7) with 7p,(0k, It) = (0k, I) for all k=0,... L.

Lemma 4.9. For (0,1),(¢,J) € W(A, 7) with J C I the condition maxg(6) > ming(¢)
in (4.5) is equivalent to each of the following:

(a) Tp, © MaxXQ, (0) > ¢;

(b) there exists a parabolic subgroup Q C Q' C Py N Py and lifts 6 and ¢ in W/Weq of
0 and ¢ respectively, such that 0 > ¢ in W/We.

Proof. The inclusion J C I implies P; C @;. Projecting the condition maxg(f) >
ming(¢) to W/Wp, yields mp, omaxg, () > ¢ and this inequality in W/Wp, lifts back to
maxg(f) > maxg omp, o maxg, () > maxg(¢) > ming(¢). Clearly, maxg(6) > ming(¢)
implies condition (b). Conversely, the relation § > ¢ of lifts in W /W gives rise to the
inequality maxg: (0) > 6 > ¢ > ming/(¢), which in turn lifts to maxg(#) > ming(¢). O

Let m = (my,...,ms) be an LS-tableau of type (A,Z) and let o) > agk) denote
the sequence of elements in W/Wp, of the LS-path m; € B(A,) for each k € [s]. Then
weak 7-standardness can be described using the poset W (A, 7):

m is weakly 7-standard <=
(0. 1) 2 2 (01 1) 2 o 2 (o) 1) 2+ 2 (o)), L) in W(A7)  (46)

The LS-tableau x is 7-standard, if and only if it is weakly 7-standard and the chain one
obtains from (4.6) by erasing all duplicates is T-standard.
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Figure 3: Hasse-diagram of W (A, 7) in type As.

The poset W (A, 7) generalizes the poset W from Chapter 3. The relation (4.5) is
again reflexive and antisymmetric, but not transitive in general. As an example, consider
the sequence A\ = (wy,ws,wy) of fundamental weights in Dynkin type Az, the unique
maximal element 7 = wy in W and the index poset Z = {[1],[2],[3]}. Then we have
(12,[3]) > (124,[2]) and (124, [2]) > (4,[1]) but (12,[3]) # (4,[1]). Here we used the
notation from Chapter 3 for elements in W/Wp,. The complete poset W (A, 7) is shown
in Figure 3. Note that it cannot be the underlying poset A of a multiprojective Seshadri
stratification on X = G/B, since the length ¢ =9 of the poset does not coincide with
dimX —1 =8,

4.3. The defining chain poset

In this section we construct a poset D(A, 7), which serves as the underlying poset A for
the multiprojective stratification on X,. This construction heavily relies on Theorem 4.12,
but before we can state and prove it, we need a few more results about defining chains.

Lemma 4.10. Every 7-standard chain 0 : (04, 1) > -+ > (0o, Iy) in W(A,7) has a
unique maximal and a unique minimal defining chain

—max —min —min

0" (07 L) > > (00 1) and 0™ (07U I) > > (B0 1),
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—min

>0, >0, for

—max

i. e. for every defining chain 0 : (04, 1;) > --- > (0o, Io) of 8 it holds 6,
alk=0,... 1.

Proof. We only proof the statements about the unique maximal defining chain, the
other statement follows analogously. Since 6 is 7-standard, there exists a defining chain
(0, 1) > -+~ > (00, Io). In particular, we have 7 > 6, so via Deodhar’s Lemma B.3
we can choose a unique maximal lift gglax € W/Wg of 0, that is smaller or equal to
> @, Forall k=¢—1,...,1 we now iteratively choose a lift 521@(7 such

—max

7. Then 0,
that gzlax > f,. Since we have gzlﬁ > §k+1 > @, there exists a unique maximal lift

6, € W/Wq of 8, with éznff >0, and this lift fulfills 6, ~ > ). By construction, we
thus obtain the unique maximal defining chain of 6. O

Lemma 4.11. Let 6 : (60,, 1) > -+ > (6o, 1y) be a T-standard sequence in W (A, 7) and
(00, 1)) > --- > (g, 1) be a defining chain for §. For each k € {0,...,¢} we define the
parabolic subgroups

l k
Q*=Q.n(\P, and Qv=[)P,
r==k r=0

as well as the following elements:

0, = maxg omor(0))  and 0, = ming omg, (k).

Then (5?,]4) > > (53,10) and (gz,lg) > > (gg,lo) are also defining chains for
satisfying @,ﬁ > 0, > 5: for each k € {0,...,0}. In particular, the lift of (0, Ix) in the
unique maximal/minimal defining chain of 0 is Q*-maximal /Qy-minimal respectively.

Proof. Again, we only prove the statements about the chain @?, L) > - > @é ,Ip).
Since Q* C Py, , the element 92 is still a lift of 0 in W/Wy, and by definition we have
@,ﬁ > 0. The relation 7 > 6, together with the fact, that 7 is Q%maximal, implies
T = maxg omge (T) > maxgomqe(f;) = 6,. By monotony of the maps maxq and 7o,
and the inclusion Q*~' C QF we get

9,? = maxq omgr, (0)) > maxq omgr, (fx—1) > maxq omr,_, (Op_1) = 92_1.

Therefore (8, ,1;) > --- > (8, I,) is a defining chain for 6. O

Notice, that the parabolic subgroup ()5 in Lemma 4.11 coincides with the group )y,
for every k = 0,...,¢. The analogous statement does not hold for Q*. In general, one
just has the inclusion Q* C Q*.

Theorem 4.12. Fvery mazximal T-standard chain 6 : (0y, 1) > -+ > (0, Iy) in W (A, 7)
has a unique defining chain (04, 1;) > --- > (0o, Iy) and this chain is a mazimal chain in
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W (A, 7). Additionally, the element 8), € W/Wq is Qp-minimal and Q*-mazimal (using
the parabolic subgroups from Lemma 4.11).

Proof. Let (6;,1;) > --- > (Ao, Iy) be the unique maximal defining chain of §. The largest
element (6y, Iy) in @ is equal to (7, [m]), otherwise (7p,  (7),[m]) > (0p, Le) > -+ > (0o, Io)
would be a longer 7-standard chain.

By Lemma 4.11 every lift ), is Q*-maximal. We first prove by descending induction
over k =(,...,0, that 0, is Q,-minimal as well. The element 6, = 7 is Q,-minimal, since
Q: = Q. Now suppose that 6 is Qi-minimal for some k < ¢. We show, that 6;_; is
Qr—1-minimal. In order to keep indices to a minimum, we write I = [}, and J = [;_1.
We need to differentiate between two cases: [ = J and [ # J.

First, suppose that [ = J. Let B = [0, ming omg, (fx_1)] be the Bruhat interval of all
o € W/Wq with 8, > o > ming omg, (f_1). The image of B via 7p, is exactly {0}, 01 }.
Otherwise there exists an element ¢ € 7p,(B) and a lift ¢ of ¢ in W/Wy such that
0p > ¢ > 01 and ), > ¢ > ming omg, (0x_1). By inserting (¢, I) between (6, I) and
(Or—1,1) we get a longer chain in W (A, 7), which is still 7-standard, since we can use
Lemma 4.11 to construct the following defining chain:

o, 1) > -+ > (0, 1) > (¢, 1) > (ming omgy, Br_1), I) > (0,4, L) > -+ > (64, o).

The image of B under the projection mg, is equal to the Bruhat interval [, (04 ), g, (Ox_1)]
in W/Wg,, because both 0, and ming omg, (0;_1) are Q-minimal. The element 7o, (f)_1)
is the unique maximal lift of 6),_; in W/Wy,, which is less or equal to mg, (f)). Otherwise
there would exist a lift 1 € W/Wy, of ), such that mq,(0;) > ¢ > g, (0x_1). Taking
the (Q-maximum yields:

gk = maxg omQg, (gk) > HlaXQ(w) > maxg omg;, (Hk,l) > gkfl.

But this is a contradiction to the construction of 6j_; as it is the unique maximal lift of
Or—1 in W/Wy such that 0p1 < 0.

Combining our observations, wee see that the only element in ¢, (A), which does not
project to 6y, is 7, (fr_1). Using Lemma B.4 on 7, (0;) > 7o, (f_1) it now follows, that
this is a covering relation in W/W,. It lifts to the covering relation 8 > ming omg, (f_1)
in W/W¢ and since 6,_; lies in between them, it is Q;-minimal.

It remains the case I # J. Let K C I be a covering relation in Z such that J C K. Then
we have J = K and 0;_, = 0, since 6 is maximal 7-standard and the inequalities (6, 1) >
(7P (O1), K) > (041, J) in W (), 7) can be lifted to (0, 1) > (04, K) > (041, J).

The images of the two elements ming omg, (6;) and 0 are equal in W/Wp,. Otherwise
we could extend the chain  to the longer 7-standard chain

(gg,fg) > e > (Qk,f) > (7TP] ominQ O’]TQJ(gk),[) > (Gk_l, J) > e > (90,[0)
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as it has the following defining chain:
B, 1)) > -+ > (Op, 1) > (ming omg, (Br), 1) > (0,1, J) > -+ > (8, , Io).

The images of the two elements ming omg, (%) and 6}, are also equal in W/Wy,, hence
we can lift this equality to 7g, o ming omg, (0x) = 7o, (0)) by Lemma B.1. Both elements
ming omg, (Gk) and 0, are Q;-minimal. The former is even @ -minimal and the latter is
@ -minimal by induction. Therefore ming omg, (6x) = ), as they are equal in W/Wy,,
which shows that 6}, is @ -minimal.

We still need to prove, that ¢ has a unique defining chain and compute its length.
We know that there is a unique minimal defining chain (8, ,I;) > --- > (Hmm Iy)
and a unique maximal defining chain (6, ,1;) > --- > (8, 1) for 8. It is easy to
see, that 6 ends at the element 0, = idWp, . Its lift in the maximal defining chain

. . . —max —min . .
is QQo-minimal, hence 8, = idWy = 6, . We can now work ourselves inductively

through the two defining chains, showing 0, R g:nn for k=1,...,¢. It always holds

@I,:fl( > kafll > Qzun = Q?ax. If I+ = Ii, then 52?1( > gzlax is a covering relation and
Hzlfi # Gmm For Iy # I;; we have 92;1 =6, In both cases it follows 6, +1 = Hkmfi

As the minimal and maximal defining chain coincide, there is exactly one defining chain
for 6. Its first element is 7 and its last element is idWW,. In between we only have covering
relations and m — 1 equalities representing the change of the subset W/Wp, C W(A, 7).
So the chain 6 is of length r(7) + m — 1, where (7) denotes the rank of 7 in W/Wg,
hence 6 is a maximal chain in W (A, 7). O

Definition 4.13. The defining chain poset D(\,7) C W (A, 7) consists of all elements
(0,1) € W(A, 7), which are contained in the unique defining chain of a maximal 7-standard
chain in W (A, 7). The order relation = on D(A, 7) is given by

0,1) = (¢,J) <= (0,1) > (¢,J)in W(A, 7) and there exists a maximal
r-standard chain in W(A, 7), such that (6, 1) and (¢, J)

are contained in its unique defining chain.

Remark 4.14. For two elements (0, 1), (¢, J) € D(A, 7) the relation (0,1) = (¢, J) is
equivalent to the existence of a Pz-chain from (0, I) to (¢, J), by which we mean a chain
of covering relations in W (A, 7) from (6,1) to (¢, J), which projects to a chain of the
same length via the map 7p,. In particular, the relation > is reflexive, antisymmetric
and transitive.

Example 4.15. As a first example consider the group G = SL3(K), 7 = 312, A = (w2, w1)
and Z = {[1], [2]}. The poset W (A, 7) looks as follows in this case:

(3, 12]) — (2, [2)) — (1, [2)) — (13, [1]) — (12, [1])
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Figure 4: Defining chain poset from Example 4.15

The maximal 7-standard chains have length 4 by Theorem 4.12, so they contain all but
one element of W (A, 7). This element can only be (2, [2]) or (13, [1]). In total, we get the
defining chain poset from Figure 4.

Example 4.16. If the sequence A = (\) only consists of one element, then we have the
index poset Z = {[1]}, the parabolic subgroup ) = Pj;j and the defining chain poset

DA, 7) = WA, 1) =W (A7) ={0 € W/Wq |0 <7}

Hence we obtain the underlying poset of the Seshadri stratification on X, C P(V(A),)
constructed in [CFL2|, which we mentioned in the beginning of this chapter.

We now examine the covering relations in D(A, 7). By definition, D(), 7) is a graded
poset and of the same length as W (A, 7), so every covering relation (6,1) > (0,J) in
D(), 7) is also a covering relation in W (A, 7). Therefore (0, I) covers (¢, J) in D(A, 7) if
and only if these elements are of one of the following two forms:

e J=1,0> ¢is a covering relation in W/Wy and 7p,(6) > mp,(¢);
e J C I is a covering relation in 7 and 6 = ¢ in W/Wj,.

Remark 4.17. The defining chain poset is compatible with restriction: For every
(0,1) € D(A, T) the subposet

DA, 7). = {(0,7) € DA, 7) [ (6,7) = (0, 1)}

is also a defining chain poset in the following sense. Let m’ be the number of elements in
I and let & : [m/] — I be a bijection. We define the sequence A = (Ay1y, ..., Aumy)) and
the index poset I’ = {x~*(J) | J € Z,J C I'}. Then the map

D(A, 7)5(0,1) - D(Alv TQr (0))’ (07 J) = (ﬂ-QI (0)7 /{_1(‘]))
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is well-defined and monotone, where D()',7g,(c)) is the defining chain poset with
respect to the index poset Z'. Since 6 is Q-minimal for each (6, J) € D(A, 7)<(.1), the
map is injective. It is also surjective and its inverse map is monotone, because every
maximal g, (0)-standard chain can be extended to a maximal 7-standard chain by using
a maximal chain from (7, [m]) to (o, 1) in D(), 7).

Lemma 4.18. The following are equivalent for every (6,1) € W(\, 7):
(i) (0,1)€ DA T);
(i1) 0 is Qr-minimal and there exists a Pr-chain from (1,[m]) to (0,1);

(111) 0 is Qr-minimal and there exists a Pr-chain from an element (¢, J) = (0,1) in
D\, 7) to (0,1).

Proof. The implication (ii) = (iii) is obvious and (i) = (ii) follows from Theorem 4.12,
since (7, [m]) is contained in every unique defining chain of a maximal 7-standard chain in
W(A, 7). Now suppose, that 6 is Q;-minimal and there exists an element (¢, J) € D(A, T)
and a Pr-chain from (¢, J) to (0,1). We choose a maximal chain Iy C --- C [, =1inT
from a minimal element I; € Z to I. Since the element 07 := ming omg,  (0) is less or
equal to 6, there exists a chain § =6, > --- > 6y = 0" of covering relations in W/Wj,.
Both ¢ and 67 are @;-minimal and 7o, (0%) = mq, (). Since Qr = Q1,_, N P,
Lemma B.1 implies 7p, (0;) > mp,(0x—1) for all 1 < k < r. Hence we get the Pr-chain
(0p, 1) > -+ > (00,1) > (bp,J) in W(A, 7). Analogously, we can continue this procedure
by constructing Pr-chains from (ming omg, (0), ;) to (mingomg, (0),I;—1) for all
k=s—1,...,2. The element ming omg, (¢) is minimal w.r.t. Qr, = Py, so there is
a Pr-chain in W(A, 7) from this element to (idWg, ;). There also exists a Pr-chain
from (7, [m]) to (¢, J), as (¢, J) € D(A, 7). In total, we can now glue the chain from
(7, [m]) to (¢, J) with the chain from (¢, J) to (0, I) and all of our constructed chains, to
obtain a Pr-chain #, which also is a maximal chain in W (), 7). Its projection to W (A, 7)
is a maximal 7-standard chain and @ is its unique defining chain. Therefore, we have
(0,1) € D(A, 7). O
Corollary 4.19. For all J C I inT and (0,1) € D(A, T) the element (ming omg,(6), J)
lies in D(A,T) and is less or equal to (0,1).
Proof. Follows from the proof of Lemma 4.18. U
Lemma 4.18 also gives an inductive procedure to compute the defining chain poset.
For every r = r(7) + m — 1,...,0 we construct the set D, of all elements in D(A, 1) of

rank r, starting with the largest rank, where we clearly have D, = {(7,[m])}. If D, is
known for some r > 0, then D,_; is the union of the sets

D,_1(6,1) ={(0,J) | 0 is @ ;-minimal and I covers J} U
{(¢,1) | ¢ is @Q;-minimal, 8 covers ¢ in W/Wq and 7p,(0) > wp,(¢)}
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Figure 5: D((wq,ws,wsq), wp) in type A3 for Z = {[1], 2], [3]}

over all (6,1) € D,. Using this procedure, we compute another example of a defining
chain poset, drawn in Figure 5.

The time complexity of this inductive procedure, however, scales linearly with the
number of covering relations in W (A, 7), which can get out of hand quickly. Fortunately,
the computation can be significantly accelerated, when 7 = wyWj, is the unique maximal
element in W/Wg. In this case the defining chain poset can be computed directly.

Proposition 4.20. Suppose T = woW, is the unique mazimal element in W/Wq. Then
an element (8,1) € W(A, 1) lies in D(A,7), if and only if 0 is Qr-minimal and there
exists a chain [ =1, C --- C I,,, = [m] of covering relations in I, such that 0 is maximal
w. r. t. the parabolic subgroup Q" = ﬂ;n:r Py, from Lemma 4.11 (since Qr = Q).

Proof. Let 6 € W/Wg be Qr-minimal and I = I, C --- C I,,, = [m] be a chain of covering
relations in Z with the above property. We define the parabolic subgroups Q* = ik Py,
for k = r,...,m. If k < m we have maxg omgr+1(f) > maxq omgr(#) in W/Wq and
by a proof, which is completely analogous to parts of the proof of Lemma 4.18, we
can construct a Pr-chain between (maxg omge+1(0), [r4+1) and (maxg omge(6), I;). Since
Q™ = Py there also is a Pz-chain between (7, [m]) and (maxg omgm (6), [m]). Hence (0, 1)
lies in D(A, 7) by Lemma 4.18. The other implication follows from Theorem 4.12. [

Although the defining chain poset can be defined in this full generality, it is not always
a reasonable candidate for the underlying poset A of a Seshadri stratification on X,. The
extremal function of an element (0, I) € D(A, 7), we wish to use, is a generalization of the
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Pliicker coordinates in Type A and it only depends on the image p(6,I) € W (A, 7), where
p denotes the (monotone) composition D(\, 7) < W (A, 7) — W (A, 7). In combination
with the condition (S2) on a Seshadri stratification, this forces us to only consider those
defining chain posets, where p is injective, such that no two elements in D(), 7) have the
same extremal function.

Definition 4.21. We say the poset Z is T7-standard, if the monotone map
p: DA T) = WA T), (0,1) (7p(6),1)
is an isomorphism of posets.

The map p : D(A,7) - W (A, 7) is automatically an isomorphism, if it is injective.
Indeed, if (6,1) > (¢,J) in W(A, 7), then this is a 7-standard chain, which we can
therefore extend to a maximal 7-standard chain. Its unique defining chain contains
the preimages of (0, ), and (¢, J) under p, because of the bijectivity of p (it is always
surjective), hence these preimages are comparable in D(A, 7).

There always exists at least one 7-standard poset Z, namely Z = P({1,...,m}) \ {9}.
Here the map p is injective, since P; = 7 holds for every I € 7.

Proposition 4.22. The poset T is T-standard, if and only if every weakly T-standard
LS-tableau of type (A, Z) is T-standard. In this case the relation (4.5) is transitive.

Proof. The notions of weakly 7-standard and 7-standard LS-tableaux coincide, if and
only if every chain in W (A, 7) is 7-standard. This follows from the equivalence (4.6) and
the fact that each element (0,1) € W (A, 7) defines an LS-path in B(\;), namely the
straight-line path from the origin to 0(\;) € AT.

If 7 is 7-standard and 6 : (0, 1)) > --- > (6o, lp) is a chain in W (A, 7), then its
unique preimage via p is a defining chain for § as D(A, 7) = W(A, 7). Additionally
the relation (4.5) is transitive by Lemma 4.9, since chains in W (A, 7) can be lifted to
W/Wq via p. Conversely, if Z is not 7-standard, then there are two different preimages
0,1),(0,1) € D()\, 7) of an element (§,1) € W(),7), w.l.o.g. the rank of (4,1) in
D(),7) is less or equal to the rank of (¢, I). We choose chains of covering relations

(7—7 [m]) = (Uralr) I (O'j+1,fj+1) > (5, I) and
(@, 1) = (0j-1,1;-1) = -+ > (00, L)

in D(A, 1), where (09, Iy) is a minimal element. By projecting both chains to W (A, 7)
and gluing them together at their shared element, we get a chain  in W (A, 7) containing
(0,1). Its length is equal to the length of D(A, 7). In the case where (6,1) and (¢, 1)
have different ranks in D (A, 7), the chain @ certainly is too long to be 7-standard.

If the ranks are equal, suppose that 8 is 7-standard. Then there exists an unique
defining chain by Theorem 4.12. The beginning of this defining chain must agree with
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(or, 1) = -+ > (0j4+1,1;41) and its end agrees with (o;_1,1;—1) > -+ > (09, 1p). The
element in between would be a lift of (0, I) via p. It is equal to (0, I), as @ is the unique
maximal lift of §, which is less or equal to ¢;41. Analogously this lift is equal to (@, 1),
which is impossible. 0

Example 4.23. Even in type A there are elements 7 € W/W, where no totally ordered,
T-standard poset Z exists. One of the easiest examples is 7 = 3412 for G = SL4(K)
and A = (w1, ws,ws). Here we use the notation from Chapter 3. The reason for this
is the following: When Z is totally ordered, then Pz is equal to a maximal parabolic
subgroup P; for i € [3]. We can write 7 in the form 7%7p, for 7' € WF and 7p, € Wp,
(see Appendix B). Then the element (075, [3]) lies in the defining chain poset for every
o € WF with o < 7%. But for each i € [3] there is a covering relation ¢’ < 7, such that
7p,(0') < mp,(7) is not a covering relation: 1432 < 3412 for ¢ = 1,2 and 3214 < 3412 for
i = 3. Hence (7p,(¢’),[3]) has multiple preimages under p.

Let Z be a 7-standard index poset for 7 = 3412. We show that there are only two
possible choices for Z. Suppose that Pg3 = P, N P or P3 = PN P In the first
case the defining chain poset would contain the chains (3412, [3]) = (1432,[3]) and
(3412, [3]) = (2413,[3]) = (1423,[3]). But 1432 = 1423 in W/Wp,np,, so T is not 7
standard. Similarly, in the second case we have the chains (3412, [3]) > (1432, [3]) >
(1342, [3]) and (3412, [3]) = (3142, [3]) with 1342 = 3142 in W/Wp,p,.

Therefore the parabolic Pz is either equal to P, N P53 or to B. If P = B, then
the requirement (4.2) implies that Z is equal to the poset Z = P({1,2,3}) \ {&}. If
Pg = Py N P3, the index poset T contains I = {1,2} and J = {2,3}. Then the
following elements lie in the defining chain poset: (3412, I), (3214, [3]), (3214, 1), (3412, J),
(1432, [3]) and (1432, J). Since 3412 = 3214 in W/Wp,, the set I cannot be equal to {1}.
As I ¢ J, we have 2 € I by (4.2). Therefore I = I. Analogously, one can show J = J.

Hence 7 is given by Z = {{1}, {2}, {3}, {1, 2}, {2, 3}, [3]}.

For a general element 7 it is difficult to tell, which posets Z are 7-standard. However, if
T = woWy is the unique maximal element in W/Wy, then the injectivity of p translates
into the absence of certain paths in the Dynkin diagram of G. To state this criterion, we
define the set Ay = {a € A | s, € Wy} of simple roots for every parabolic subgroup
Q CG.

Theorem 4.24. For 7 = woWq the poset I is T-standard, if and only if one of the
following equivalent conditions holds for each I € T and every chain [ =1, C --- C I, =
[m] of covering relations in Z. Here Q" = (}_, Py,

(1) The element (idWp,, I) has exactly one preimage via p : D(A, 1) — W(A, 7);
(1) ming o maxg, (iIdWp,) = maxg o ming- (idWp,);

(iii) Wp, N WO C Wor NWE.
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(iv) The two parabolic subgroups Q and Q" generate P; and every path in the Dynkin
diagram of G (not visiting the same vertex twice) connecting a vertex of Ag, \ Agr
with a vertexr of Agr \ Ag, contains a vertex not in Ap,.

Proof. The poset Z is 7-standard, if and only if statement (i) is fulfilled for every
I € 7. We remark, that this equivalence also holds for every 7 # woWyg. Indeed if p
is not bijective, then there exist two different lifts (0, I), (', 1) € D(),7) of an element
0,1) € W(A, 7). We write ming(f) = 6770p, and ming(0) = 6770 p, for 671 €¢ W
and Op,,0 p, € Wp,. Since there are Pr-chains from (6, I) to (§p,Wq,I) and from (6, 1)
to (0p,Wo, I), both (0p,Wq,I) and (6'p,Wo, I) are two different lifts of (idWp,, ) in
D(A,7) by Lemma 4.18.

Next we show the implication (i) = (ii), by proving that both o = ming o maxg, (idWp,)
and ¢’ = maxg o ming- (idWp,) are @Q;-minimal and ()"-maximal lifts of (idWp,,I). It
then follows o = ¢’ from Proposition 4.20. The element o is ();-minimal by definition
and maps to (maxg, (idWp,), mgr(0)) via the map W/Wgy — W/Wq, x W/Wgr. On the
other hand, maxg omgr(0) maps to (¢, mgr(0)) for some lift ¢ € W/Wq, of idWp,. We
clearly have maxg, (idWp,) > ¢. As Q;NQ" = Q, = Q, it now follows o > maxg omgr(0)
from Lemma B.1. In particular, ¢ is Q"-maximal. Analogously, one can show the
@ -minimality of o’

Part (iii) follows from (ii): Since Wp, N WO C W% we only need to prove the
inclusion Wp, N W% C Wyr. Every element ¢ € Wp, N W@ is smaller or equal to o ==
ming o maxg, (idWp,) since both are @;-minimal and ¢pWq, < maxg,(idWp,) = cWy,.
By statement (ii) we now have

mor(¢) < mor(0) = Tgr © ming o maxg o ming- (IdWp,) = ming: (1dWp,) = idWe-

and this inequality is equivalent to ¢ € Wr.

We close the first circle of implications via (iii) = (i): Let (o,1) € D(A,7) be any
preimage of (idWp,,I) via p. Then by Proposition 4.20 there exists a chain I = I, C
-+« C I, = [m] of covering relations in Z, such that o is @;-minimal and @"-maximal
(w.r.t. this chain). By assumption we have Wp, N W& C Wy N W€, Notice, that the
other inclusion Wy N we C Wp, N W is always fulfilled, even if Z is not 7-standard:
Here Wor N W@ C W, follows from Q" C P and the Q-minimality of every element in
Qo N WE can again be shown via the embedding W/Wg — W/Wg, x W/Wqr.

By the bijection in (B.1) the set W can be decomposed into the product

WO =W . (Wor nWe) =W . (Wp, "W). (Wgor "W).

The element ming(c) is contained in Wp, "W and can therefore be (uniquely!) written
in the form ming (o) = id-0-¢ for § € Wp, "W and ¢ € Wor NW?. As ming(o) is Q-
maximal, ¢ is equal to the unique maximal element in the poset Wor "W = Wp, "W I,
But since ming(c) is also an element of W91 = W . (Wp, N W), it follows 6 = id.
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Therefore o is uniquely determined: It is the maximal element of Wp, N W% and this is
independent of the choice of the chain [ =1, C --- C I, = [m].

Next we show (iii) = (iv). For each simple root & € Ap, not contained in Ag, or Agr,
Sq is an element of Wp, N W but does not lie in We-. Hence Q; and Q" generate P;.

Now suppose that there exists a path a3 — --- — «; in the Dynkin diagram of G,
such that ay,...,ap € Ap,, g € Ag, \ Agr and a; € Agr \ Ag,. Then 0 = 54, - - - 54,
is an element of Wp, and we claim, that o also lies in W97, When we have shown this
@Qr-minimality, it then follows o € Wp, N W@, But o ¢ Wgr, since oy ¢ Agr.

The @;-minimality of o is equivalent to osg > o for all B € Ag,. First, let § € Ag,
be a simple root, which in not contained in our chosen path. In this case s4, - - - 54,58
is in reduced decomposition by Lemma B.2, so gsg > 0. Now let 8 = a; € Ag,
for an index 1 < ¢ < k. Suppose that s,, - - S4,53 is not in reduced decomposition.
Then there exists an index j, such that osg = s4, -+ Sa; =+~ S, (saj is omitted). Thus
0 =S4, """ Sa; " Sa;Sp- The simple reflections occuring in a reduced decomposition are
always uniquely determined (not counting with multiplicity), hence we have § = «; and

Say """ Sap, = Say " Sa; " SapSa,- Hence s, commutes with s, -+ S,,. The simple

.-
reflection s,, commutes with all s,, for £ > j + 1, since Dynkin diagrams contain no
cycles and we have a path from «; to aj. Therefore s,; and s,;,, must commute, but
this contradicts to edge between «; and ;41 in the Dynkin diagram. The decomposition
0S3 = Sq, * " Sa,, 53 thus is reduced and osg > 0.

Finally, (iv) implies (iii). Suppose that o is an element in Wp, N WS but not in
Wor NWC. Since W% C W@, we thus have o ¢ Wg-. To each reduced decomposition
0 = Say ** * Sa, We NOW associate a pair (p, ¢) of natural numbers in the following way.
Since @ and Q" generate Py, all simple roots ay, ..., ax lie in Ag, or Agr. As o ¢ W,
there exists a maximal index 1 < p < k with a, € Ag, \ Agr. The simple root oy, is
not contained in Ag, by the @);-minimality of 0. Hence there exists a minimal number
qge{p,....k} with oy € Agr \ Ag,.

We can assume, that 0 = s,, - - - 54, 1s a reduced decomposition, such that the associated
pair (p, q) is maximal with respect to the total order

(p.q)>(.¢d) <= p>p o (p=p and ¢g—p<q —Yp)

on Z x Z. We now partition the set J = {p, ..., q} by fixing numbers p =py < p; < --- <
pt < ¢, such that for all p +1 < j < ¢ the simple roots a;;_; and «; are disconnected in
the Dynkin diagram if and only if there exists a non-zero index ¢ € {1,...,t} with j = p;.
Set pyy1:=q+ 1. For alli =0,...,t we define the set J; ={j € J | p; < j < pis1}, the
associated set A; = {a; | j € J;} of simple roots and the subword o; = [[, ;. Sa;, where
the product is taken is ascending order. Let s € {0,...,t} be the smallest integer, such
that the union UE:S A; is connected in the Dynkin diagram.

By the assumption (iv), every path connecting o, and «a, contains a simple root
B ¢ Ap,. Therefore the number s is at least 1 and by the definition of s we have
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04 1050y = 0s--0:0s_1. Hence, for s > 2, the number ¢ — p was not minimal and
for s = 1 the number p was not maximal, which contradicts our choice of the reduced
decomposition of o. U

Remark 4.25. For () = B the condition (iv) simplifies as follows: The two parabolic
subgroups (J; and )" generate P; and there is no edge in the Dynkin diagram of G
connecting the two subsets Ag, and Agr.

4.4. Sequences of fundamental weights

In this section we consider the special case where 7 = woWy is the unique maximal
element in W/Wq and the sequence A = (kywi, ..., knw.,) is given by pairwise distinct
fundamental weights wy,...,w,, of G and natural numbers k1,...,k,, € N. For a fixed
parabolic subgroup ) C G one can always choose a sequence consisting of the fundamental
weights w with (w,a") = 0 for all @ € Ag. In practice, one would most likely choose
ki =+ =k, =1, so that the LS-tableaux of type (A, Z) give rise to a character formula
for the irreducible representation V' (u) to every dominant weight p of the parabolic
subgroup @, i.e. for each u € Now; + - - - + Now,,, (see Remark 4.7).

Let a; € A denote the simple root with (w;, ;) =1 for all i € [m]. Then the following
criterion is just a reformulation of Theorem 4.24 (iv).

Corollary 4.26. The poset I is T-standard, if and only if the following two conditions
hold for every I € T and each chain I = 1. C --- C I, = [m] of covering relations in I:

(i) The intersection of the two sets [ and I' =\J~ I, is equal to I.

j=r L

(11) All paths from {oy | i€ I\ I} to {c |ie€I'\ I} contain a vertex o; fori € I.

We have seen that it has some advantages when the index poset Z is totally ordered.
For example, the cone o¢ to every maximal chain € is equal to RZ,, and for stratifications
of LS-type one can compute the multidegrees of the variety more easily. However, there
might not exist a poset Z, which is 7-standard and totally ordered at the same time.

Corollary 4.27. There exists a T-standard, totally ordered index poset I, if and only
if there is a path in the Dynkin diagram of G containing all vertices from the set

A\ Ag ={o,...,an}.

Proof. First we consider the index poset of the form Z = {[i] | i € [m]}. Then the first
condition in Corollary 4.26 is automatically fulfilled for each I = [i]| € Zas I' = {i,...,m}.
Hence the Corollary implies:

7 is 7-standard <= for each i € [m] all paths from {ay,...,a;_1}

to {1, ..., } contain q;. (4.7)
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Let Z = {[i] | € [m]} be totally ordered and 7-standard. W.l.o.g. it consists of all
sets [i] for i € [m]. Then there exists a path containing {ay,...,a,,}: It is given by the
unique path 7 from a; to «,,. Dynkin diagrams of simple algebraic groups are connected
and contain no cycles, hence 7 is unique. It also contains the roots aw, . .., a;,—1 by (4.7).

Conversely, let us assume there is a path 7 containing aq, ..., a,,. We can rearrange
the indices, such that this is also the order in which 7 visits these simple roots. Then
the poset Z = {[i] | i € [m|} is 7-standard, by the equivalence in (4.7). O

We give an example of a 7-standard poset Z for every flag variety G/@ in each Dynkin
type. The cases, where the vertices in A\ Ay are all contained in one path in the
Dynkin diagram, are already covered. Here we can choose a totally ordered poset Z. This
of course always happens in the types A, B, C, F and G. In particular for the sequence
A= (Wk,,, - wk, ) we used in Chapter 3 the poset Z = {[i] | i € [m]} is woW-standard.
In combination with Proposition 4.20 this also proves Remark 3.10.

Next we look at the remaining type cases in type D, where we cannot choose a totally
ordered poset 7.

(&3]

O—e—oO @
Qm a3
[€%]
We can assume, that the roots aq, ..., a,, not belonging to Ag are numbered as above.

Then the following poset satisfies the condition (4.2) and is T-standard:

[m] ——[m —1] e 3] 2]

In type E we can take the same poset (with suitable numbering of the roots aq, ..., @),
if in the graph one obtains by erasing the vertex of degree 3 from the Dynkin diagram
there is at most one connected component, which contains two or more simple roots

Qai, ..., Q. In the most complicated case
Ial
o—0 OCO—0 O @
o) as Qy Qs

we again include all [i] in Z for i > 3 as well as {1, 2} and {2,3}. However, Corollary 4.26
and the requirement (4.2) force us to take all possible rank one elements {1}, {2} and
{3}. In total, the following poset is T-standard:
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4.5. The multiprojective stratification

From now on we assume that 7 is 7-standard. Let R denote the multihomogeneous
coordinate ring of X = X, w.r.t. the embedding fixed by the sequence \.

Lemma 4.28. There exists a graded isomorphism of B-modules:

K[X,)= P KX, Ja= P V(d- M

deNg deNg

Proof. Fix a tuple d € Ni* and let Q" = [,c; Pi be the parabolic subgroup associated
to the set I = {i € [m| | d; # 0}. It suffices to work with the Schubert variety
Xy CG/Q for 7 = gy (7), as the surjection X, — X,/ induces an isomorphism of B-
modules K[XT/]QI — K[X,]4 between the graded components of their multihomogeneous
coordinate rings of degree d and d; = (d;)e;.

We define the G-equivariant, linear map ¢ : V(d-\) = @i, V(A\)®% sending a
highest weight vector vy, € V(d - ) to the product vf’ldl ®-® vf\?jm of highest weight
vectors vy, € V(\;). Every weight vector v, € V(d- ) of weight 7(d - \) is mapped to the
tensor product v&% ® - - - @ V2% of weight vectors v,, € V/();) of weight 7();). Therefore
¢ induces a morphism

¢ P(V(d-N),) = P(@ V(A\)2D).

It is well known that ¢ is injective for char K = 0 (which we assumed in the beginning),
S0 ¢, is injective as well.
We have the following commutative diagram of closed, B-equivariant embeddings:

X, « > P(V(d-N)-)

[ s (4.8)

[T PV = TLes BOVA)R)" —— (R, V(A)EH)

Here 0 is the diagonal embedding. This diagram implies that the image of the multicone
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X, in @, V(A)2% is contained in V(d- ), € @,c; V(Ai)E%. Hence there is an induced

~

morphism ¢ : X;» — V(d - A),, such that the following diagram commutes:

X L » V(d- M-

[ j (4.9)

[Le: VA)n — Tlies V(A —— Ricr V()‘i)gdi

Ti

The comorphism of the bottom row in this diagram induces a surjection from the dual
space (®;c; V(X)2%)* to the space K[[,c; V(Xi)r]a,- We therefore get the diagram of
B-invariant surjective maps

~

K[X+g, ¢——— VI(d-A);

I I

K([Lier VA)rla, — (Qier V(N)Z")

The top row of this diagram is an isomorphism: Since all maps in (4.9) are B-equivariant,
the Demazure module V' (d - A); is (linearly) spanned by the image of «. O

For every element I € 7 the poset
D()\[,TI) = {8 & W/Wpl ’ 0 < T]}

is the defining chain poset to the (one-element) sequence (\;) and 7; = 7p, (7). Since the
index poset is T-standard, the restriction of the monotone map

D\, 1) — D(Ar, 1), (6,1) — 7p,(0)

to the subset D;(A,7) = {(6,J) € D(A,7) | J = I} is an isomorphism of posets. It is
also compatible with covering relations: A relation (6,1) > (¢, I) is a covering relation
in D;(A,7), if and only if 7p, (6) > mp,(¢) is a covering relation in D(Af, 7).

As described in the beginning this chapter, there is a Seshadri stratification on each
Schubert variety X, C P(V(\;),,) with underlying poset D;(A, 7). The strata in the
subset D;(A, 7) for the multiprojective stratification should be Schubert varieties in
G/Qr and also be compatible with the strata for X,, C P(V(\;),) in the sense that
X(o,1) should project to X, (9 C G/ Py via the map G/Q; — G/P;. Hence we define
the stratum X ) of an element (0,1) € D(A,7) to be the Schubert variety

X, = Xrg, 0 C HP(V()%)TZ-)-

i€l

For each index 7 = 1,...,m we also have a Seshadri stratification on the Schubert
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variety X, € P(V(\;),,) with the underlying poset
D()\iaTi) = {0 € W/WP, | 0 S Ti}-

Its extremal functions fy can be pulled back to the multicone X, via the linear projection

m

[TV - = vVid..

j=1

Hence we can use the same extremal functions for the multiprojective stratification as
well: For every i € [m] and ¢ € D(\;, 7;) we choose a T-eigenvector £, of weight —@(\;)
in the irreducible G-representation V();)*. The extremal function f( ) shall then be
defined as the product

fony = ] ter,0)

el

It is of multidegree e; and by Lemma 4.28 it can also be interpreted as a weight vector
of weight —6(\;) in the representation V/(Ar)*.
Notice that this construction is a generalization of the following two stratifications:

(a) When choosing the one-element sequence A = (\) one obtains the original stratifi-
cation on X, C P(V(\),) from [CFL2].

(b) Let @ = Py, N---N Py, be a parabolic subgroup in type A as in Chapter 3.

By Corollary 4.27, the index poset Z = {[1],...,[m|} is 7-standard for A =
(Whyps - - - Wiy ) and 7 = woWg. Hence the defining chain poset D(A, 7) is isomorphic
to W(A,7) = W

Lemma 4.29. For all J C I inT and (0,1) € D(A,T), we have

{(Ul, . ,Um) c X(@J) | V; = 0 Vi€ I\J} = X(miHQOWQJ(G),J)'

Proof. By Corollary 4.19, the element (ming omg,(6), J) indeed lies in the defining chain
poset. Let v = (vy,...,v) € X1y and choose w; € V(X)) \ {0} with v; € Kuw; for all
1 € I. As the diagram

XWQ,(G) D Hz‘el P(V()‘i>n)

! |

XWQJ(G) R— Hie] ]P)(V()‘Z)Tz)

commutes, the tuple ([w;]);es € [[;c;P(V()))r;) can be viewed as an element of G/Q;
and lies in the Schubert variety XWQJ((;). When v; = 0 holds for all i € '\ J, we have
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v E X(me omq, (0),] . Conversely, if v € X(me omq, (6),0), We choose a preimage via the
projection X, 0, (0 ) —» XWQJ(Q) and set all coordinates in J \ J to zero. Hence v lies in the

multicone X p. O

Theorem 4.30. Suppose that the poset I we chose in Section 4.1 is T-standard. Then
the varieties X g 1y and extremal functions f ) defined at the beginning of this section
form a (multiprojective) Seshadri stratification on X = X,. The defining chain poset
A = D(A, 1) is the underlying poset of this stratification and T is its index poset.

Proof. Tt is well known, that Schubert-varieties are smooth in codimension one (see e. g.
[CFL2, Corollary 3.5]). Their multicones X(gy[) C T2, V(M) are closed, irreducible
subvarieties of X, as well as smooth in codimension one (Corollary A.11).

The relation (6,1) = (¢,J) in D(A, 1) is equivalent to the inclusion X(g n 2 X(¢ )
of their corresponding multicones. Clearly X(G,I) ) X( 5y holds for every covering
relation (0,1) = (¢,J) in D(A, 7). Conversely if X(gJ X(¢J then X(minQ orq, (6),7)
lies in between these two multicones. In particular, mg,(0) > mg,(¢). Because of the
()-minimality of ¢ we can lift this to § > ming omg, () > ming omg,(¢) = ¢, which
implies p(0,1) > p(¢,J). Thus (0,1) = (¢, J) since p is an isomorphism.

We now check the requirements (S1)-(S3) for a Seshadri stratification: The defining
chain poset is a graded poset and the rank of an element (0, ) € D(), 7) is equal to the
length of the subposet W (A, 7)<(,1). By Theorem 4.12 and Remark 4.17 this length is
given by 7(6) + |I| — 1, which is the dimension of the multicone X, (0,1)- Therefore (S1) is
fulfilled.

Let (0,1),(¢,J) be two elements in D(A,7) and v = (v4,...,v,) be a point in the
multicone X (o,1)- By its definition, the extremal function f(4 ) vanishes on the point v,
if and only if Eij (6) vanishes on v; for some j € J. The vanishing behaviour of prj (@)
can be described via the Seshadri stratification on X, C P(V();),,) with underlying
poset D(\;,7;) = {0 € W/Wp, | 0 < 7;}. Since (S3) holds for this stratification and
v; € X,rpj (0), it follows:

fon(v) =0 <= v € X, for some j € J and ¢ < mp,(0) in W/Whp,. (4.10)

For condition (S2) we assume (¢, J) £ (0,1). If J € I, then f, ;) vanishes on X(g 1
by definition of the strata and the requirement (4.2) on the poset Z. Now let J C I.
We have 7p, (¢) £ mp,(6), otherwise ming omp,(¢) < ming omp,(#) < 6 < maxg orp, (6)
would be a contradlctlon to p(¢, J) % p(6,I). By the definition of P; and Lemma B.1
there exists an index j € J, such that 7p, (¢ ) £ mp,(0), where P; C G is the parabolic
subgroup associated to the dominant weight A;. Using the equivalence (4.10) we see that
f(4,;) vanishes on X 0.1)-

Lastly we show (S3). The function f ) vanishes on every point v € X(¢7 gy for
0,1) = (¢,J) € D(A, 7). This is clearly the case for J C I. If J = I, there exists an
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index i € I, such that 7p,(¢) < 7p, (), since 7p,(¢) < 7p, (). Hence f(y,1) vanishes on v
by (4.10).

Conversely we assume, that fe ;) vanishes on v. Hence there exists an index i € I
and an element ¢ € W/Wp, with v; € X, and ¢ < 7p,(f). First we consider the case
v; = 0. If [ is minimal in Z, then v = 0 is automatically contained in the right hand
side of (2.2). Else, by Corollary 4.19 and Lemma 4.29, the point v lies in the stratum to
(ming omg, (), J) for J = I'\ {i} and this element is strictly smaller than (6, I) in D(A, 7).
It remains the case v; # 0. For each k € I we choose an element wy, € V(i) \ {0}, such
that vy € Kwy. The tuple ([wg])rer lies in a unique Schubert cell C, for o € W/Wg,,
viewed as a locally closed subvariety of [[,.;P(V(A)7,). This element o is strictly
smaller than 7o, (6), since v; € X, and ¢ < 7p, (). By Lemma B.4 there now exists
Y € W/Wgq, covered by mg, (), such that 7g, () > ¢ > o and 7wp,(8) > wp,(¢) > 7p,(0).
Hence (v, I) lies in the defining chain poset, is strictly smaller than (0, 7) and v € X (1)
is contained in the right hand side of (2.2). O

Corollary 4.31. For 7 = woWy the stratification from Theorem 4.30 is a (multipro-
jective) Seshadri stratification on X = G/Q. One can determine combinatorially which
posets I are T-standard via Theorem /.24 and therefore give rise to such a stratification.

Similar to the Seshadri stratification on X, C V(\); constructed in [CFL2|, the bonds
of the multiprojective stratification can be described via the root system combinatorics
of G. In order to prove the next lemma, we therefore need more notation for root
subgroups. For every root «a in the root system ® let U, denote the associated root
subgroup of G (see [Hum, Section 26.3|). Let G, denote the additive algebraic group
(K,+). Up to a scalar multiple, there exists an unique isomorphism ¢, : G, — U,, such
that te,(x)t ™1 = e,(a(t)x) holds for all t € T and x € G,.

Lemma 4.32. The bond to a covering relation (0,1) = (¢, J) in D(A,T) is given by
R (L CON DI
(0,0),(¢,J) 1, i1+,

where [ is the unique positive root with sz - ming(¢) = ming(0) € W in the case I = J.

Proof. The case I # J is covered by Lemma 2.6. Now let I = J and d € Nj* be the sum
of all vectors e; for i € I. We fix a weight vector v; in the Demazure module V(d - \), of
weight ¢(d - A) and a weight vector v; € V(\;), of weight ¢();) for each i € I. Our proof
relies on [CFL2, Lemma 3.3|: It states that the map

f: Uy xU_g—=>PV(d-N);), (u,v)— uv- v,

is an isomorphism onto an open subvariety of Xy C P(V(d - A);), where U, C G is a
direct product of root subgroups. The explicit construction of U, does not matter for



76 4 Multiprojective stratifications on Schubert varieties

this proof. It only matters the fact that it is generated by root subgroups to positive
roots. For each i € I we also have a well defined morphism f; : Uy x U_g = P(V/(\)r),
(u,v) — uv - [v;]. Together, they induce the morphism

fiUsxU_g = [[P(V(N)).

icl

Since all maps in (4.8) are B-equivariant, we have the commuting diagram

f
U(b X U—ﬂ - Hie[ P(‘/()‘i)n)

/

dl
P(V(C_l : A)'r) — P(@ie[ V(Ai)n)

It thus follows that f is an isomorphism onto an open subvariety of Xy C [[,; P(V (\i)-)
as well. In this subvariety the divisor )A((d,, 1y of X(g, 1y is given by the subset Uy x {1}.

As the extremal function fig ;) can be seen as a linear function on ), ; V (i), we
have to project to the smaller index set I C I. Each weight vector v; € V(\;), of weight
(A7) defines a morphism

fi: Uy xU_g = P(V(A);), (u,v)— uv- v

and the following diagram commutes:

Us x U_pp L TLies POVOA)n) — [Lie, P(V(N)-)

T l

PV(Ar)r) ——— P(Qic; V(Ni)7)

We choose a parametrization of the affine spaces U, and U_g by parameters ¢, € K for
v € CD;Z and tg € K respectively. The action of the root subgroup U_g = G, on the
weight vector vy € V(er - A); is given by the polynomial

tg-vl:vl+t5w1+t%w2—l—---+t%wb,

where b = [(¢(Ar), 8Y)] and w; is a weight vector in V' (\;), of weight ¢(A;) —if for all
i =1,...,s (this was discussed in the proof of Proposition 27.2 in Humphreys’ book
[Hum|). Using the coordinates ¢, and ¢, the elements in the image of f; are of the form

[thws + sum of weight vectors in V/(A;), of greater weights than 6(A)], (4.11)

because Uy is unipotent and generated by positive root subgroups. By the construction
of the extremal function fg ), it is a dual vector to the extremal weight space in V (A7),
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of weight 8(Ar) = sg(p(Ar)) = ¢(Ar) —bS. Applying this to the elements in (4.11) implies
that the vanishing multiplicity of f(y ;) at the divisor X4 r) is equal to b. 0
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5. The LS-fan of monoids

5.1. LS-monoids and LS-tableaux

Throughout this chapter, we fix a multiprojective Seshadri stratification on a Schubert
variety X, as in Theorem 4.30. Recall that the defining chain poset D(A, 7) is the
underlying poset A of this stratification. In particular, we assume that the index poset 7
chosen in Section 4.1 is 7-standard. We show that the stratification is balanced and of
LS-type and the elements in the fan of monoids I' correspond to 7-standard LS-tableaux
of type (A7)

The stratification on X, was built by gluing the Seshadri stratifications on the Schubert
varieties X, C P(V(\;),,) for I € Z. The disjoint union of their underlying posets

D()\[,T[):{QGW/WPI IGST[}

form the defining chain poset D(A, 7). It was shown in both [CFL2| and |[CFL4| that
the stratification on X, is of LS-type: For each maximal chain € in D(\;, 77) the lattice
L% generated by the monoid I'¢ coincides with the LS-lattice LSy, of the chain € and
the monoid T'¢ is given by the LS-monoid LS, = LS, N QS,. The associated fan of
monoids shall be denoted by LS;(I. We should therefore expect that the multiprojective
stratification is of LS-type as well. For this reason we define the following.

Definition 5.1. For every maximal chain € in D(A,7) let LS¢, be the associated
LS-lattice and let LS;{A =LSepa N ng denote its LS-monoid. The set-theoretic union

LS} = U LSE,
¢

over all maximal chains € in D(A, 7) is called the Lakshmibai-Seshadri-fan of monoids
corresponding to to A, 7 and Z.

Even though the LS-fan LS} does not only depend on the sequence A but also on the
coset 7 € W/W¢ and the index poset Z, we usually do not index the LS-fan by 7 and Z
to simplify the notation.

By identifying each poset D(A;,77) with Dy(A\,7) = {(0,J) € DA\, 7) | J = I}, we
can uniquely decompose the elements a € LSy into a sum a = Y, ., a!) of elements
aD e LSy NnQP (A7) The definition of the LS-fan LSy suggests that these elements a'l
lie in the LS-fan LSy . -

Lemma 5.2. For each I € T the intersection LS;r NQPAL™) coincides with the LS-fan
LS}, of the stratification on X, CP(V(A[),).

Proof. We fix a maximal chain € in D(\, 7) and let [; C --- C [, = [m] be the associated
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maximal chain in Z. As explained in Section 2.6, the LS-lattice to € decomposes into

LSex = [ [LSea N QY,

J=1

for the subchains €; = {(0,1) € € | I = I;}. This follows from the fact that all bonds
connecting the subchains €; are equal to 1.

For fixed j € [m] let J = I;, (6,J) > (¢, .J) be a covering relation in €; and  be the
unique positive root with sz - ming(¢) = ming(¢). By Lemma 4.32, the corresponding
covering relation mp,(0) > 7p,(¢) in the poset D(A;,7;) has the bond [(¢(A)),BY)].
Hence the bonds inside €; agree with the bonds in the corresponding chain in D(\;, 7).
Since LS-lattices only depend on the bonds, the sublattice LSg, N Q% C LSg ) coincides
with the LS-lattice LSe, x, C LSy, to the chain &€; C D(A;, 7).

For each I € 7 it now follows the equality LS;r N QPX ) = LS;\FI: For every maximal
chain € in D(A, 7) we have

LS{, NQPO™ = LSe ) N Q4 N QP ™) = LSe », N QY C LSY,

for the chain €; = € N D(Ar,77). Conversely, each maximal chain € in D(A7, 77) is
contained in a maximal chain © in D(), 7). Hence LS{, is a subset of LS, C LS}, O

Consider the degree map QP& — Q™ from Definition 2.16. By the above lemma,
we can decompose any element a € LS} into a sum of elements a'!) € LS}, over I € T.
As LSY is the fan of monoids of the stratification on X, € P(V(A;)-,), we also have
the degree map deg; : QP — Q. By Lemma 2.17, the degree deg; a'?) is a non-
negative integer. We write LSj{I(d) for the elements of degree d € Ny in LS;\FI. Therefore
dega = >,y deg;(a")e; is an element of N'. This provides two partitions of the
LS-fan of monoids LS} into the subsets

LS;(d) = {a € LS} | dega =d} and LS{(d)={a € LS} | |degal| = d}

for d € N’ or d € Ny respectively.

Lemma 5.2 also implies that the LS-fan of monoids LS;r is completely determined by
the decomposition over the index poset Z and the defining chain poset:

LSy = {Q = (aM)jer € HLSL Jmax. chain € C D(A, 7): suppa C Q:}. (5.1)

Iel

This decomposition is also compatible with the degrees: For every d € Ny and I € Z we
have the inclusion LSy (d) C LS} (de;).

To each element ¢ in the LS-fan LS;r one can associate a dominant weight. If ag ) € K
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is the coefficient in a of the basis vector e(g ), then we define

wta = Z ag,n - Q(AI)GA@)ZQ

(0,1)eD(A,1)

By its definition, this element only lies in the rational span of the weight lattice A, but
it follows from the bijections in Proposition 5.5 that wta is actually contained in A™:
Let d be the degree of a and & = (my,...,7s) € B(A, Z),4 be the unique LS-tableau with
O4(m) = a. By the construction of the maps ©,4 and 9;1), the element wt a is equal to
the end point (my * - - - % 7s)(1), which is a dominant weight.

Remark 5.3. The LS-fan of monoids is compatible with the induced stratification
on X for a fixed (0,1) € D(A,7) in the following sense: For each J € T with
J C I we have an induced stratification on the Schubert variety Xy, C P(V(A;)g,) to
0; = mp,(6) with the underlying poset D(A;,0;) = {¢p € W/Wp, | ¢ <8,;}. We include
additional indices to differentiate between the LS-fan LS} _ C QP77 associated to
the stratification on X ., and the LS-fan LSJr 0, to the stratification on Xy,. Then LS)\ 0,
.-, Via the linear map QPWs01) s QPO ”).
An element a € LSj{”J is contained in thls subset, if and only if it is zero or the maximal
element in its support is less or equal to 7 in D(A7, 77). Analogously, the LS-fan

can naturally be seen as a subset of LS}

LSy,=qac H LSy, ¢, | 3max. chain € C D(A,7) : (A, 1) € €, suppa € €

JET
JCI

to the stratification on X4 ) can be seen as a subset of the LS-fan LSZT to the stratification
on X, (see Remark 4.17). This subset contains exactly those elements, which are either
zero or the maximal element in their support is less or equal to (0,1) € D(A, 7).

Analogous to the stratification from Chapter 3, the fan of monoids LSj{I also has an
interpretation in terms of LS-tableaux. For every d € Ny let

B(dAr)r, = {(0p,...,01;0,ap,...,a1 = 1) € B(d\[) | 0, < 77}

be the set of all LS-paths in B(d\), such that their initial direction is bounded by 7;.
Using the language of LS-tableaux: This can be viewed as the set of all 7;-standard
LS-tableaux of shape (d\;). It was proved in [CFL2, Proposition A.6| that the map

0 B(d\1),, = LSY.(d), (0p,...,01;0,ap,...,a1 =1) Z —aj1)de,, (5.2)

is a bijection, where a4, = 0.
It is known that every LS-path m € B(dA;),, can be uniquely decomposed (up to a
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reparametrization) into a concatenation m = my * - - - * w4 of LS-paths 7, € B(A\7),, with
min supp 7 > maxsupp mgyq for all k =1,...,d — 1. The support supp 7 of an LS-path
7= (0p,...,01;0,a,,...,a1 = 1) is the set suppm = {0,,...,00}. The bijections @EID
translate this decomposition to the fan of monoids (see [CFL2, Proposition A.5, Lemma
A.8]): Every element a € LSj{I(d) can be uniquely decomposed into a sum a = a'+- - -+a?
of elements a* € LS;\FI(l), such that minsupp a® > maxsupp a***! holds in D(\;, 77) for
all k =1,...,d — 1. This property is passed to the LS-fan LS as well.

Lemma 5.4. Fvery element a € LS;r has a unique decomposition a = a' + --- + a® into
elements a* € Urer LSj\LI(l) C LSX, such that minsupp a* > maxsupp a**! holds for all
j=1,...,5—1.

Proof. Let Iy D --- D I; be the (unique) chain in Z containing exactly those I € Z where
the component a'¥) of a is non-zero. Then we have minsupp a 1, = maxsuppay,  for all
k=1,...,r—1. Therefore the existence and uniqueness of the claimed decomposition of
a follows from the decomposition in each fan LSj{I. U

Proposition 5.5. Let B(\,Z). 4 be the set of all T-standard LS-tableaux of type (A, T)
and degree d € Ng'. Then the map

O4: B\ L), g — LSS (d), (m....,7m) = O (m) +-- + 0 (x,)

is a bijection, where (7, ..., 7s) is of shape (A, ..., A1,) for a weakly decreasing sequence
L D2---DI,inT.

Proof. By the bijections in (5.2) and the 7-standardness of the tableaux, the image of
Oy is indeed contained in LS} (d), so the map 6, is well-defined.

Now let a = (a;)rez € LS;r d) with the unique decomposition ¢ = a' + - -+ + a® from
Lemma 5.4. Every element a* corresponds to an LS-path 7, € B(Ag,) for some I, € 7.
The associated LS-tableau 7% = (m, ..., m,) has degree > ;_ e, = dega = d and is

T-standard, since the support of a lies in a maximal chain of D(A, 7). The resulting map
@; LS{(d) = B(AT)rg, a—>m*

is inverse to ©4: By construction, @' 00, is the identity, so O, is injective. Furthermore,
every element a € LS} (d) is contained in its image, as O4(x%) = a. O

5.2. Filtrations of Demazure modules

In order to show that the fan of monoids of the multiprojective stratification on X,
coincides with the LS-fan LSY, we use a special set of functions called path vectors, which
forms a basis of the leaves Rs,/Rs, associated to the quasi-valuation V. In this section
we summarize the definition of path vectors and some of their important properties
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(see the appendix in [CFL2]). We adapt the notation to our specific situation and only
consider dominant weights of the form d\; for a fixed degree d € Ny and index set
I € T. There exists a canonical filtration on the Demazure module V (dA;),, and its dual
space V(dA;)%,, both indexed by the set LSY (d). We refer to loc. cit. for an explicit
construction of the vectors v, we mention below and the existence of path vectors.

We define a relation > on LS;“I(d) in the following way: Let a,b be two elements in
LSj{I(d), o1 > -+ > 0, be the elements in suppa and k1 > --- > K, be the elements in
supp b. The relation > then is defined by

a>b <= 01>k or(o; =k and a,, > by, ) or
(01 = k1 and a,, = b,, and 09 > Ky) or

(01 = k1 and a,, = b,, and 09 > Ky and a,, = by,) or ....

We write a &> b if a = b or a > b. This relation coincides with the definition from |[CFL2,
Definition 6.1].

Recall that the quasi-valuation V of the stratification on X, depends on the choice of a
total order >* on D(), 7) linearizing the partial order »=. We also denote the associated
lexicographic order on QPA7) by >*. Note that the relation > has the following property
for all a,b € LS;\FI(d): If a > b, then we have a >! b for every possible choice of the total
order > on D(A, 7).

To each element @ € LS} (d) and a reduced decomposition ¢ of the unique maximal
element ¢ in the support of a one can associate a vector v,, € V(dAr),, of weight
wta. As o is not an element of the Weyl group itself, a reduced decomposition of o is
a decomposition ming(o) = s, - Sq;, into simple reflections with ¢ minimal. When
fixing a reduced decomposition g% of max supp a for each element a € LSj{I (d), then the
set {vgga | @ € LS (d)} is a basis of the Demazure module V' (dA;),,. This basis does
depend on the chosen reduced decompositions, but there is a canonical filtration on
V(dAr)., via the subspaces

V(dAr) 7,20 = <Ub,g | be LSS\F, (d), a>
V(dA1)r;,aa = (Voo | b € LSS (d), at>

b, o reduced decomposition of max supp l_)>K,

b

b, o reduced decomposition of max supp Q>K.
For each a € LS} (d) the subquotient V (dA;)r; <q/V (dA1)r;,<q is one-dimensional.

The language of path vectors gives rise to a similar filtration on the dual space V (dAr)z. .

Definition 5.6 (|CFL2, Definition 6.4]). A path vector to an element a € LS} (d) is a
weight vector p, € V(dA;)}, of weight (—wta), such that

(a) there exists a reduced decomposition g of o = maxsupp a with p,(v,,) = 1;

(b) for each ¢’ € LS} (d) and all reduced decompositions ¢’ of ¢’ = maxsuppd/,
Pa(Vy o) # 0 implies @’ > a.
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In [Lit98], Littelmann used quantum Frobenius splitting to associate a canonical
function to every element a € LSL(d), which he called path vector. It satisfies the above
conditions, hence the definition we use here is more general and there exists a path vector
to each element in LS} (d).

Again, one obtains a basis of the dual module V' (dA;);, by fixing a path vector to each
element a € LSY (d) and the subspaces

V(dAr)% =g = (Po | Py Path vector to some b € LS} (d) with b > Q>K,
V(dA1)%, oo = (po | Py Path vector to some b € LS} (d) with b > Q>K
define a filtration on V(dA;)%,, such the subquotient V(dA;):, ,/V (dAr)%, ., is one-

dimensional for each a € LSj\rI(d). Any path vector p, to a defines a non-zero element of
this subquotient.

5.3. The quasi-valuation of a path vector

Throughout this section we use the notation from Remark 5.3 for the LS-fans LS}\L“QI C
LSy, ,, of an induced stratification. By Lemma 4.28, every path vector to an element
a € LS (d) can be seen as a multihomogeneous function in R = K[X,| of degree de;.

Their vanishing behaviour can be described combinatorially in the following way.

Lemma 5.7. A path vector p, to an element a € LSj\rI(l) vanishes identically on the
multicone )A((W) to (¢,1) € DA, 1), if and only if the unique mazimal element 0 in
suppa C D(Ar, 77) is not less or equal to ¢r = wp, ().

Proof. It suffices to prove this statement for the affine cone X¢ C V(Ar)r, instead of
the multicone X(¢>, n C ITZ, V(X)r. The same equivalence then also follows for the
multicone via the diagram (4.9) for d = ejy.

The Demazure module V(Ar)y is equal to the linear span of the affine cone X¢. Since
the path vector p, is linear, it vanishes identically on X¢,, if and only if it vanishes on
every vector of the form vy o € V(A1) for o’ € LSy, , (1) and a reduced decomposition
o’ of 0/ = maxsuppd'.

If & < ¢;, then the vector v, is contained in LS 4, (1) for every reduced decomposition
0 of 6. Hence p, does not vanish on X¢. Conversely, if p,(vy4) # 0 for some element
a e LSj{I’ s, (1), then we have a' > a by the definition of a path vector, i.e. the maximal
element o’ in supp @’ is larger or equal to 6. But as a’ € LSL%, it follows ¢y > o/ > 6. [

For each total order >* on D (), 7) and every fixed element (6, 1) € D(), 7) we have an
induced total order on the underlying poset D(A, 7)<, of the stratification on X(& -
Let V(g,1) denote the associated quasi-valuation on K[X )]. Path vectors are compatible
with the induced stratification, which allows the use of inductive arguments.
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Lemma 5.8. Let p, be a path vector to an element a € LSy (1) € LSS (e;) and (0,1) =

maxsuppa € D(A, 7). Then the restriction of p, to the multicone X(QJ) s a path vector
to the element a € LS, , (1) and it holds

V(pa) = Vion(pal,, )

Proof. By Lemma 6.6 in [CFL2|, the restriction of p, € V(A;)*, to V(A)g is a path
vector associated to a € LS} , (1). The corresponding function in K[X (0,1)) coincides
with the restriction of the function p, € K[XT] to the subvariety X(@ n C X.. This can
be shown via the diagram (4.9).

If 0, is any reduced decomposition of 6; € W/Wp,, then v,p, lies in the Demazure
module V (\;)g,. Hence p, restricts to a non-zero element in K[X )] and we have

Vo, (p@|X(97[)) = min{Ve(p,) | € max. chain in D(\, 7),(0,1) € €}

by the definition of the quasi-valuation.

Let € be any maximal chain in D (A, 7) and (¢, J) be the minimal element in €, such that
the path vector p, does not vanish identically on X4 7). This means that the coefficient
of the basis vector ey, sy in Ve(p,) is positive. We now show (¢, J) = (6,1), since this
implies Ve(pa) =" Vio,1) (pa % I)) for every choice of the total order >*. Therefore the
quasi-valuation is given by V(p,) = Vio,n) (pg| f((e,z))'

A~

As p, has degree e; in K[X,], this implies I C J, hence we have I C J by the
requirement (4.2) on the poset Z. By Corollary 4.19, the element (¢¥, 1) with ¢V =
ming omg, (¢) is less or equal to (¢, J) in D(A, 7). The elements ¢ and ¢" are equal in
W/Wp,, hence the images of the multicones X (¢,7) and X (47,1) under the projection map

icJ el

coincide. We assumed that p, does not vanish identically on X (6,7), S0 it does not vanish
identically on X4v 5y as well. It now follows (6,1) = (¢",I) from Lemma 5.7. This
completes the proof. O

Proposition 5.9. Let p, € R be a path vector to an element a € LS} (1) for some I € T.
Then V(p,) = a holds independent of the chosen total order >' on D(A, 7).

Proof. We prove the statement by induction over the rank r of (7, [m]) in the defining
chain poset. The case r = 0 is trivial. If » > 1, we consider two cases. First, when the
maximal element (6, 1) in the support of a is strictly smaller than (7, [m]), we use the
induced stratification on X (o.r) and Lemma 5.8 to conclude

V(pa) = Vio.y(pal,, ) = @
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by induction. Notice, that this holds independent of the chosen total order >*.

Now suppose that (7, [m]) is the maximal element in supp a. Here we have I = [m)].
Fix a positive integer N € N with Nu € N, where u € Q> is the coefficient of the basis
vector e(r )y in a. We use Corollary C.13 in [CFL2| on the element a € LS} : It states
that pg is — up to multiplying by a non-zero scalar — equal to pN'p, € V(NALL,
pr is a weight vector in V(A;)* of weight —7(A;) and p, is a path vector associated to
the element

where

b= Na— Nue,, € LS (s)

of degree s = Nd — Ndu. The pullback of p, to the multicone X, is the extremal
function f(; ) (up to a non-zero scalar), so we have V( f(ff[‘m])) = Nu e(r,m]), which holds

independent of the choice of >*.
For s = 0 the path vector pj is constant and it follows

1 1 ;
V(pa) = 5V(00) = V() = veim) = a-

Now we assume s > 1. As the element b might not be of degree one, we have to write it in
terms of path vectors of degree one to use the induction. Therefore we fix a path vector
P, to each ¢ € LS} (1). This defines a function g, for every element ¢ € LS} (s): To
each c* in the unique decomposition ¢ = ¢! + - - - + ¢* from Lemma 5.4 we have the path
vector px. It was shown in [CFL2, Proposition C.10] that the product g, =P, - - - P, in
(S V(/\I)TI restricts to a path vector associated to ¢, up to multiplying b;} a root of
unity.

Using the filtration of V(sAr);, via the subspaces V(sA;)}, ., we can write the path
vector p, as a linear combination py = g, + >_ ., dc g over elements ¢ € LS} (s) with
c¢>b. We now show

V(ge) > V(gp) for all c>b. (5.3)

Let ¢/ = maxsupp ¢ and 0 = maxsuppb. We need to distinguish between two cases.

If 0/ = 0 we have maxsupp c¢® < (0,1) < (7, [m]) for each k € [s] and thus V(p.) = ¢
by induction. Because the union of all supp ¢* for k € [s] lies in a maximal chain of
D(), 7), the quasi-valuation is additive:

k

V(gg) :V(]_?QI"']_?QS):Ql—|—..._|_g9:g

This is independent of the choice of >*. Analogously, we see V(g,) = b. Since ¢ > b, it
holds V(g.) = ¢ =" b= V(gs) for every choice of the total order > on D(), 7).

In the remaining case o’ # o we have 0’ > o, as c>b. It follows from Lemma 5.7 that g,
does not vanish identically on X (o,1), but it restricts to the zero function on the multicone
X(¢7 n for each ¢ < ¢’ in D(A;,77). The function g, also vanishes identically on every
multicone X((M) for (¢,J) < (¢/,1) in D(A,7) and J C I, because g, is homogeneous of
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degree ey and I ¢ J. Hence (0’,1) lies in the support of V(g.). Analogously, one can
show that o is the maximal element in supp V(g;). Therefore V(g.) > V(gs)-

Using the inequality (5.3) we can now conclude V(py) = V(g,) = b. Hence the set
{(7,[m])} Usupp V(p) lies in a maximal chain of D(), 7) and it follows

1 1 1
V(pa) = NV(P{&V) = Nv(fg,?m])Pg) = N(V(f(]:—[,l[bm])) +V(m))

= U €(r,[m]) + (Q — ue(ﬂ[m})) = a.

This is independent of the choice of the total order >t. OJ

5.4. Standard monomial theory

For every I € 7 the indecomposable elements in the fan LSL are exactly the elements of
degree one. In case of our generalized stratification, however, not every indecomposable
element in I' needs to be of total degree one. Instead, it follows from Lemma 5.4 that
the set of indecomposables in the LS-fan LS} is equal to

G = JLsf (1).

1€

We therefore fix a path vector p, € R to each element a € G and let Gg = {p, | a € G}
be the set of all these functions.

Definition 5.10. A monomial p,: - --p,s € R of path vectors in Gp is called standard,
if min supp a* > maxsupp a®*! holds for all k =1,...,5 — 1.

Another way to characterize standardness comes from the language of LS-tableaux:
Let pg1 - - - pas be a monomial of path vectors in G with ¢* € LSy (1). Each element o
corresponds to an LS-path 7, of shape A7,. The monomial p,1 - - - p,s is standard, if and
only if the LS-tableau w = (7, ..., 7s) is of type (A, Z) and 7-standard.

By Lemma 5.4 we have an associated standard monomial

pg = pgl .o 'pQS

to every element a € LS;\F, where @ = a'+- - -+a°® is the unique decomposition into elements
a € G with minsupp a* > maxsupp a*** holds for all k = 1,...,s— 1. Conversely, every
standard monomial in Gg is of the form p, for some a € LS}. The monomial p, is a
multihomogeneous function in R of degree > ;_, dega® = deg a.

Theorem 5.11.

(a) For each a € LSY holds V(p,) = a. Additionally, the set of all standard monomials

A~

in Gg forms a vector space basis of R = K[X,].
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(b) The fan of monoids to this Seshadri stratification coincides with the LS-fan LSX.

The stratification is balanced and of LS-type. In particular, it is normal.

Proof. (a) For each standard monomial, the set suppa! U --- U suppa® is contained in

a maximal chain of D(), 7), so the quasi-valuation is additive and Proposition 5.9
implies

V(p@)zv(pgl”'py):Q1+'--+QS:Q,

Now fix a tuple d € NJ'. The set {p, | @ € LSy (d)} is linearly independent in
the graded component K[XT]Q, since the quasi-valuation V is injective on it. By
Lemma 4.28, the cardinality of this set is therefore bounded by the dimension of the
Demazure module V(d - A),. On the other hand, we have seen in Proposition 5.5,
that there is a bijection between LS (d) and the set B(),Z)., 4 of all 7-standard LS-
tableaux of type (A, Z) with degree d. The degree of an LS-tableau is determined by
its shape and there always exists at least one shape to each degree (see Remark 4.7).
For each subset of LS-tableaux in B(),Z), 4 of a fixed shape (Af,,..., A5 ), we have
the Demazure-type character formula from equation (4.4), so the size of this subset

is equal to the dimension of V(d - \A),. In total, we get the following inequalities:
dim V(d- A)r < B, T)ral = LS} ()] < dim V(d- M), (5.4)

Therefore the standard monomials of degree d form a basis of K[X,],.

As the standard monomials in G form a basis of R, their image under V agrees with
the fan of monoids T, hence I' = LS} This also implies that the stratification is of
LS-type, since the other two requirements are fulfilled by construction. Furthermore,
we have seen that the quasi-valuation V(p,) = a of each standard monomial p,
does not depend on the choice of the total order >* on D(), 7), so the stratification
is also balanced. O

Corollary 5.12.

(a) To each d € NJ' there exists exactly one weakly decreasing sequence Iy O -+ D I

in L with Y ,_, er, = d.

(b) For every I € T and d € Ny it holds LSy (d) = LSy (de;).

Proof. Statement (a) follows immediately from the inequalities in (5.4) and we have
already seen the inclusion LS;FI(d) - LSX(deI). For the reverse inclusion let a be an
element in LSX(deI) and write it in the form @ = a¥") +- .- 4+am) where I; C --- C I,,, is

a maximal chain in 7 and a'%9) € LSj{I_ for all j € [m]. There exist non-negative integers
J

b, ...

, km such that a'%?) is of degree k; in LSy, . Since > ity kjer, = de; it now follows
J

from part (a) that I = I; for some j € [m] and k; = d. Hence a = a%) € LSS (d). O
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This completes the goal of this thesis. We have seen that there exists a normal
and balanced Seshadri stratification on each multiprojective Schubert variety X,. The
elements in its fan of monoids correspond to 7-standard LS-tableaux of type (A,Z). All
tableaux of a fixed degree d € NJ* have the same shape (A, ..., Ar,). The decomposition
of a € LSX(C_Z) into indecomposable elements corresponds exactly to the columns 7, €
B(\;,), k € [s], in the corresponding LS-tableau to a. We have a standard monomial
theory on K[X,] determined by the indecomposable elements G. Each non-standard
monomial in G can be written as a linear combination of standard monomials via a
straightening relation as in Proposition 2.12.

Remark 5.13. In [CFL, Theorem 15.12| it was also shown that standard monomials are
compatible with all strata in the stratification, in our case with all Schubert varieties
X1 for (0,I) € D(A, 7): A standard monomial p, to a € LS} does not vanish on the
multicone X, (0,1), if and only if maxsuppa = (6, ). These monomials are called standard

on X g,y and their restrictions to X(g ) form a basis of the multihomogeneous coordinate
ring K[ X ..

Corollary 5.14. Let B(\,Z).4 be the set of all T-standard LS-tableauz 7 of type (A, T)
and degree d € Ng'.

(a) The standard monomials in Gg of degree d € Ni' form a basis of the module
V(C_Z : A)*: indered by B(A? I)T,d'

(b) Suppose that the fized path vectors p, for a € G are constructed as in [Lit98] via
quantum Frobenius splitting. Then the standard monomial basis from part (a)
coincides with the standard monomial basis from Section 6 in loc. cit..

Proof. The first statement is a consequence of Theorem 5.11 and Proposition 5.5. To
show the second statement, we fix the unique weakly decreasing sequence I; O --- D I in
T with ef, + -+ - + er, = d. Then every LS-tableau in B(\,Z), 4 is of shape (Ar,,..., Ar).
We abbreviate these dominant weights by Ay = M. For each LS-path 7 € B(\;),
k € [s], let pr € V(Ax)X denote the path vector constructed via quantum Frobenius
splitting (see [Lit98, Section 3|). By Proposition 4.4, a monomial p,, - - - p,, in these path
vectors is standard in the sense of loc. cit., if and only if it is standard in the sense of
Definition 5.10. O



89

Appendices

A. Multiproj-schemes

A.1. The Multiproj-construction

Let R = @,.;m R4 be a (commutative) ring, which is graded by the group Z™. An
element r € R is called (multi-)homogeneous, if it is contained in a subgroup R,. In this
case degr = d is its (multi-)degree. 1deals generated by homogeneous elements are called
(multi-)homogeneous ideals.

There is a similar construction to the Proj-construction for Ny-graded rings, which
associates a scheme Multiproj R to the multigraded ring R. In general, this scheme does
not have all the nice properties of the usual Proj-scheme, for example it need not be
projective or separated. To introduce these schemes, we follow the construction from
Brenner and Schréer in [BS]. The grading on R corresponds to an action of the m-torus
Spec Z[ti', ..., t5!] on Spec R. There exists a quotient Quot(R) of Spec R with respect
to this action in the category of ringed spaces. However, this quotient is not a quotient
in the category of schemes in general.

An element f € R is called relevant, if it is homogeneous and the degrees of the
homogeneous elements g € R, which divide some power f* for k € Ny, generate a subgroup
of Z™ of finite index. For every relevant f € R the morphism Spec Ry — Spec Ry is
a geometric quotient (in the sense of GIT), where R(s) denotes the subring of Ry of
all elements of multidegree zero. Therefore we have an open subset D, (f) C Quot(R)
isomorphic to Spec R(¢). The Multiproj-scheme of R is then defined as the locally ringed
space

Multiproj R = | ] D(f) € Quot(R). (A1)

fER
relevant

Let R, be the ideal in R generated by all relevant elements. It is called the irrelevant
ideal. The induced morphism

Spec R\ V(R,) — Multiproj R

is then a geometric quotient with respect to the torus action.

There is also another way of realizing the scheme Multiproj R, which directly generalizes
the usual Proj-construction. We denote this scheme by Multiproj R as well. Set-
theoretically it is given by

Multiproj R = {P C R | P multihomogeneous prime ideal, R, ¢ P}
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and the closed subsets are those of the form
V(I) = {P € MultiprojR | P D I},

where [ is a multihomogeneous ideal in R. For each P € Multiproj R let R(p) denote
the subring of homogeneous elements of multidegree 0 in the localization Rp. For an
open subset U C Multiproj R we define the ring O(U) of functions

f:U—>HR(p),

pPcU

which are locally given by a quotient of elements in R: To each P € U there exists an
open neighborhood V' of P in U and multihomogeneous elements r, s € R of the same
multidegree, such that f(P) =% € Rp).

The topological space Multiproj R together with the sheaf O forms a locally ringed
space and the stalk at a point P € Multiproj R is canonically isomorphic to the local
ring R(py. For every relevant element f € R we have an isomorphism between the open
subset D, (f) = {P € Multiproj R | f ¢ P} and Spec R(y), topologically given by

xf: Dy(f) = Spec R(y), P — (¢7(P)) N Ry,

where ¢; denotes the natural map R — Ry and (¢¢(P)) is the ideal generated by
¢¢(P). This can be seen as follows: First of all, one can use ¢ to construct an
isomorphism Multiproj Ry — D4 (f) of locally ringed spaces. On the other hand, the
inclusion ¢y : Ry = Ry induces an isomorphism Multiproj Ry — Spec R(y). We can

write the inclusion ¢; as the composition of the embedding Ry — Rpti', ... t5!]
and a ring homomorphism Ry (t', ...t — Ry sending t; to a homogeneous unit

in Ry of multidegree e; (which exists, since f is relevant). Both maps are graded
ring homomorphisms, when we set degt; = e;. The first map induces an isomorphism
Multiproj Ry [tlﬂ, .., — Spec Ry and the second map is an isomorphism of graded
rings. In total, we get the desired isomorphism D, (f) = Spec R(;. Note that the
product fg of two relevant elements f, g € R is relevant as well and the inclusions we
just constructed are compatible in the sense that the following diagram commutes:

Spec R(sq) < Spec Ry

[ [

Spec Ry — Multiproj R.

In particular, we see that Multiproj R is a scheme, which is isomorphic to the scheme
defined in (A.1). The structure morphism Spec R\ V(R,) — Multiproj R maps every
homogeneous prime ideal not containing R, to itself.
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Lemma A.1. Let A:7Z™ — 7™ be an injective group homomorphism.

(a) For every ring homomorphism ¢ : R — S between two Z™-graded rings with
#(Rq) C Sag for all d € Z™, the morphism Spec S — Spec R induces a morphism

(Multiproj S) \ V({(¢(R4+))) — Multiproj R. (A.2)

(b) The inclusion of the graded ring

R(A): @RA@)QR

dezm

into R induces an isomorphism Multiproj R — Multiproj R™.

Proof. Since A is injective, the image of a relevant element f € R under ¢ is relevant in
S. The map R(s) — S(s)) induces a morphism Spec Siy()) — Spec R(y). For f,g € R
relevant these morphisms can be glued along the inclusion Spec Ry, < Spec Ry).
They therefore define the desired morphism in (A.2) because the subsets D (¢(f)) C
Multiproj S for f € R relevant cover the scheme (Multiproj S) \ V({(¢(R4))).

By part (a) the inclusion R < R induces a morphism

Multiproj R \ V((R{")) — Multiproj R“.
First, we show V((R(f)» = @. Let P € Multiproj R be a homogeneous prime ideal
containing RSFA) and f € R be a relevant element. We fix homogeneous divisors g; | f™
(for i = 1,...,m), such that deg gy, ..., deg g,, generate a subgroup of Z™ of finite index.
Since A(ey),...,A(e,) € Z™ generate Q™ as a vector space, the degree d of f can be
expressed in the form

d= 32 A

for some p; € Z and ¢; € N. We set N = ¢y ... ¢n. Therefore fV lies in the subring R“).
In the same way we get natural numbers N; with glN i€ R, Then gZN Ni divides friNVNi

NNi still generate a subgroup of Z™ of finite index. These degrees

and their degrees deg g
lie in the image of A. Using the injectivity of A we see that fV is relevant in R“). So
the ideal P contains fV and since P is prime, it contains f as well. Hence R, C P.

If f € R¥W is relevant, then f is also relevant in R and the induced map RE?)) — Ry
is a ring isomorphism. This proves that Multiproj R — Multiproj R is an isomorphism

of schemes. m

Example A.2. The algebra R = K]z, y] over K with the grading degz = (1,0) and
degy = (1,1) shows, that for N{'-graded rings the irrelevant ideal does not need to agree
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with the ideal R/, generated by all homogeneous elements of degrees d with d; > 1 for
all i. By Lemma A.1 we can regrade R via the group homomorphism A : Z? — Z2,
(dy,dy) + (dy + dy, d3) and obtain an isomorphism Multiproj R = Multiproj R, The
irrelevant ideal of R is equal to (zy) and Multiproj R is isomorphic to a point. On
the other hand R/, is generated by y and there are two multihomogeneous prime ideals
in R not containing y: (0) and (z).

Example A.3. Consider the algebra R = K[z, y, z| over K with the grading deg x = (1,0),
degy = (0,1) and deg z = (1,1). Its irrelevant ideal is generated by the relevant elements
xy,xrz and yz, hence the three open subsets defined by these elements cover Multiproj R.
We have

K[LL’, Y, Z](J:y) = K[%] = K[J}, Y, Z] (z2) and K[l’, Y, Z] (yz) = K[ - ]

zy
The corresponding affine schemes are glued along their intersections

~J Ty 4

K[ZE, Y, Z](xy-xz) = K[‘Ta Y, Z](;ty-xz) - K[ZL’, Y, Z](wy-xz) = K[?a z_y]

via the obvious inclusions. Therefore Multiproj R is a non-separated projective line with
two points at infinity.

Lemma A.4. Let I,J C R be multihomogeneous ideals.

(a) The map R — R/I induces a closed immersion Multiproj R/I — Multiproj R.
Topologically its image coincides with the closed subset V(I). If I is prime, then
Multiproj R/I is an integral scheme.

(b) The scheme-theoretic intersection of V(I) and V(J) is given by V(I + J).
(¢) The scheme-theoretic union of V(I) and V(J) is given by V(I N J).

Proof. All three statements can be checked in the open subschemes Spec Ry for f € R
relevant. They are compatible with the projection R — R/I as the scheme Multiproj R/I
is covered by all D, (f +I) for f € R\ [ relevant.

Let f € R be relevant and ¢; be the natural map R — R;. The second and third
statement follow from the analogous statement for affine schemes and the fact that

X : {homogeneous ideals in R} — {ideals in Rz}
L' {op(1)) N Ry

preserves sums and intersections: x(I+J) = x(I)+x(J) and x(INJ) = x(I)Nx(J). O

Lemma A.5 ([KU, Lemma 3.6]). If R is an integral domain and the degrees of its non-
zero, homogeneous elements span a subgroup of maximal rank in Z™, then Multiproj R is
an integral scheme of dimension dim Spec R — m.
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Lemma A.6. If R is an N'-graded, noetherian, reduced ring, that is finitely generated
in total degree 1 as an Ry-algebra, then Multiproj R is a separated, reduced scheme of
finite type over Ry.

Proof. We fix homogeneous generators sy, ...,s; of R as an Ry-algebra of total degree 1.
The irrelevant ideal is equal to the direct sum R/, of all subgroups Ry with d; > 1 for all
i=1,...,m: As R is Nj'-graded, every relevant element is contained in R/, . Conversely

each monomial in the generators si,...sy, that lies in R’ , is relevant and therefore

+
R, = R_. This ideal is generated by the finite set S of all monomials in the generators
S1, ... 8k of degree (1,...,1), hence Multiproj R is covered by the open subsets D, (f) for
f € S. Using Proposition 3.3 in [BS| we see that Multiproj R is separated. Furthermore
Proposition 2.5 in loc. cit. implies, that the morphism Multiproj R — Spec Ry is of finite
type. Finally, since every localization of R is reduced, Multiproj R is covered by reduced

affine schemes and thus is reduced itself. O

A.2. Multiprojective varieties

In this section we summarize some properties of multiprojective varieties, i.e. closed
subvarieties X of a product P := P(V7) x- - - xP(V},,) of projective spaces, where Vi, ..., V,,
are finite-dimensional vector spaces over an algebraically closed field K. It is rather
difficult to find the theory of multiprojective varieties in the literature, as it is a direct
generalization of the theory of embedded projective varieties Y C P(V).

We fix a closed subvariety X C P. The multicone X CVix---xV,of X isthe
closure in P of the preimage of X under the morphism

m (Vi {0}) x5 (Vi \ {0}) = P(V1) - X P(V).

A point (vy,...,v,) € V] X---xV,, is contained in the multicone, if and only if there exist
non-zero vectors w; € V; such that v; € Kw; and 7(wy, ..., w,) € X. The coordinate
ring K[X] = K[X] of the multicone is called the multihomogeneous coordinate

ring of X. Its prime spectrum is isomorphic to X. Note that the multihomogeneous
coordinate rings of two multiprojective varieties may not be isomorphic, even if the
varieties are isomorphic, so K[X] does depend on the embedding of X into a product
of projective spaces. The Np-grading on the polynomial ring K[Vi] = .y, Sym? V;*
induces an Nj'-grading on

K[P] = K[W1] ®k - - - @k K[V},.],
which corresponds to the (K*)™-action given by component-wise scalar multiplication:

(tl,...,tm) . (Ul,...,’Um) = (tlvl,...,tmvm)
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~

for all ¢,...,t, € K< and v; € V;. The (affine) vanishing ideal I(X) C K[P] is
multihomogeneous, hence K[X] also graded by NZ".

For the rest of this section let R = K[X]. Every multihomogeneous element f € R
defines the closed subset of all z € X with f(z) = 0 and each closed subset of X is of

the form
Ve(I) ={z € X | f(z) =0 for all f € I multihomogeneous}

for a multihomogeneous ideal I C R. Conversely, every closed subset Y C X defines the
multihomogeneous ideal

Ip(Y) = ({f € R| f multihomogeneous and f(Y) = 0}) C R.

In this notation the multicone of X is equal to the (affine) vanishing set V (Ip(X)).
The projective Nullstellensatz can also be generalized to the multiprojective setting.
It involves the ideal quotient

(I:J)={reR|rJCI}

of two ideals I, J C R. We say [ is J-saturated, if (/ : J) = I. As we have seen in the
proof of Lemma A.6, the irrelevant ideal of R is given by

R.= P Ru

m
deNg

d;>1vi
Proposition A.7 (Multiprojective Nullstellensatz, [FM, Section 1.8]). If I C R is a
multihomogeneous ideal, then

Is(Va(1)) = (VI : Ry).

In particular, we have a bijection Y +— Ip(Y) between the closed subvarieties Y C X
and all R, -saturated, multthomogeneous radical ideals in R, which do not contain R .
Irreducible closed subvarieties of X correspond to multihomogeneous prime ideals in R
not containing Ry (as they are automatically R -saturated).

Remark A.8. If R is an Nj'-graded, reduced K-algebra, that is finitely generated by
elements of total degree 1, then R is isomorphic to the multihomogeneous coordinate
ring of a multiprojective variety X and Multiproj R = X.

It was shown in [HHRT| that multiprojective varieties also have an associated Hilbert
polynomial: There exists a unique polynomial Hg € Q|x1, ..., Z,], such that Hg(d) =
dim K[X], holds for all d > d' (component-wise comparison) for some d' € N7'. Here it
is essential that the algebra K[X] is generated by elements of total degree one, otherwise
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the Hilbert polynomial is replaced by a function, which is only a quasi-polynomial on
certain cones and glued together along their facets. The total degree deg Hg of the
Hilbert polynomial is equal to the dimension of X and it can be uniquely written in the

D= 3 (d1 ;1 kl) (dm;—nkm)

keNm

form

with coefficients a; € Z. For ky + --- + k,, = deg Hr these numbers are called the
multidegrees of X and they are non-negative. We denote them by deg, (X) = a;. There
is a useful criterion proved in [CCL+| for determining which multidegrees are non-zero
and thus actually appear in the Hilbert polynomial. It states that deg, (X)) is positive, if
and only if N

iel
holds for all subsets I C [m], where 7; : T[", P(V;) — [[,c; P(V;) is the natural projection.

Remark A.9. Let k € Ni* with ky +--- + k;,, = dim X. The multidegree deg,(X) can
also be interpreted as the number of points in the intersection of X in [[;*, P(V;) with
a subspace P(Ly) x -+ x P(L,,) in general position, where L; C V; is a non-zero linear
subspace of codimension k;.

The homogeneous component G of the Hilbert polynomial Hg € Q[z1, ..., x,,] of the
highest total degree it equal to

degE(X) L )
GR:zk:kll-..kjm!xll”‘xm ’

where the sum runs over all £ € Nj* with k1 +--- + k,;, = dim X. The value of G at a
point d € Ni* can also be written as

. dim Rnd
Grld) = 0
This function G : Nj' — R is sometimes called the volume function of R. Its connection
to convex geometry via global Newton-Okounkov bodies was studied in [CMM] and we
use the ideas of this paper for the Section 2.5 on Newton-Okounkov complexes.

Lemma A.10 (Multiprojective Jacobi-criterion). We identify the multihomogeneous
coordinate ring of P == [[;~, P™ with the polynomial ring S = K[z;; | (i,5) € J] for
J={(,7) e N2 |1 <i<m0<j<n}. Let X CP be a closed subvariety and
fi,-.., fr be multihomogeneous generators of the vanishing ideal Ip(X) C S. Then a
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point x = ([v1], ..., [vm]) € X with v; € K%\ {0} is smooth, if and only if the rank of
the Jacobian matriz of
(a (v, ... ,vm)) (A.3)
Li,j k=1,...rjcJ

15 at least nqy + -+ - + ny, +m — dim X.

Proof. Define the affine space V' = [[; K"*!. We can assume w.l.o.g. that x is
contained in the affine patch

U={(u,...,un) € V]zio(u) = = Tmolun) = 1}.

Let ¢ : U < V be the inclusion. The (affine) coordinate ring of U can be identified with
the polynomial ring S" = K[z, ; | (i,7) € J']for J' = {(4,7) e N3 |1 < i <m,1 < j <n}.
The ideal I(X NU) C 5" is the dehomogenization of Ip(X), i.e. the image under the
comorphism ¢* : S — S’ of +. As the smoothness of = can be checked locally in U, the
affine Jacobi-criterion implies that x is smooth, if and only if the rank of the matrix

A= (M(L@») k=1,...r e’

8xi,j

Since ¢* commutes with the partial derivatives in a coordinate of J’, this is a submatrix
of the matrix A in (A.3). The columns not contained in this submatrix are linearly
dependent to the columns of A’, as

jzoxi,j o deg(f)i - f

0]

holds for every multihomogeneous polynomial f € S. Therefore x is smooth if and only
if rank A =rank A’ > dimV —dim(X NU) =n; + -+ + ny, + m — dim X. O

Corollary A.11. Let X C [[*,P(V;) be a closed subvariety. Then X is smooth in
codimension one, if and only if its affine multicone X is smooth in codimension one.

Proof. Let V=V x .-+ x V,, and Z; C V be the preimage of {0} C V; under the linear
projection 7; : V. — V;. The open subvariety U = V' \ (U;~, Z;) is the preimage of
[1:%, P(V;) under the natural morphism

W:Hvi\{()}%np(w).

By Lemma A.10, a point = € X NU is smooth, if and only if its corresponding projective
point 7(z) € X is smooth, since the rank of the Jacobian matrix in (A.3) is independent
of the (K*)™-action.
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Now suppose that X is smooth in codimension one and let S be an irreducible
component of the subvariety Sing(X) of singular points in the multicone X. If SNU # @
then S N U is an irreducible component of X NU. Hence dimS = dimSNU =
dim7(SNU)+m < dim X —2+4m = dim X — 2, since Sing(X) has at least codimension
2 in X. Thus X is smooth in codimension one.

Conversely if X is smooth in codimension one and S is an irreducible component of the
subvariety Sing(X) of singular points in X, then 7=!(S) is contained in an irreducible
component S’ of Sing(X). Therefore dim S = 71(S) —m < dim X —2 —m = dim X —2
and X is smooth in codimension one. 0

We close this section with a lemma which is useful for computing the quasi-valuation
of a Seshadri stratification via the decomposition of R into its homogeneous components.
The action of the torus (K*)™ on X induces an action on R, where an element ¢ € (K*)™
acts on g € R via the left translation ¢ - ¢ =: ¢%, where ¢* is the regular function on X
with gt(z) = g(t™" - z) for all z € X.

Lemma A.12. For every h € R, the linear subspace generated by the multihomogeneous

components hq, d € NI, of h coincides with the linear subspace, which is spanned by all
function ht for t € (K*)™.

Proof. It suffices to show this statement for X = [, P(V;). By choosing a basis of
every vector space V;, we identify R with the polynomial ring in the variables z; ; for
ie{l,...,m}and j €{0,...,n;}, where n; = dimV; — 1. The torus (K*)™ acts as
scalars on each subspace Ry, d € Nj'. Hence every function At for t € (K*)™ can be
written as a linear combination of the multihomogeneous components h,4. It remains to
show the other inclusion of vector spaces.

For ¢ = (c1,...,¢m) € NJ" let R, C R be the linear subspace of all h € R, such that
ha # 0 only if di < ¢; holds for all k = 1,...,m. We prove by induction over m, that
for all ¢,d € Ny there exists a finite set S C (K*)™, such that the multihomogeneous
component hg of every h € R, can be written as hg = Y, ¢ a;ht, where the scalars a; € K
are independent of h. .

The induction base m = 0 is trivial. So now let m > 1 and fix a primitive c,,-th
root of unity ( € K*. Let B, be the basis of the algebra R, = K[z,,; | 1 < j <
of all monomials in the variables z,,; and let h € R., which we write in the form
h=>" geB,, Jo - 9, where fg lies in the ring R’ of polynomials in the variables z; ; for
ie{l,...,m—1}and j € {1,...,n;}. We define h;, j € Ny, to be the sum of all f, - g,
where g is of degree j in R,,. For every i =0, ..., ¢, we have

Cm,
p (L 1iCY) Z Cijhj-
§=0

As the matrix A = (¢¥); j—o, ¢, is a Vandermonde-matrix and its determinant is non-zero
by the choice of ¢, we get (h(1=+1¢) | i =0,... ek = (hj |1 =0,...,cm)x.
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Fix a tuple d € NJ* and let d' = (dy, ..., d,,_1). By induction the following equation
holds for a finite set S" C (K*)™ !

ha = Z (fo)rg = Z Z aﬁ’(fg)ﬁlg = Z Qg Z (fy - g)(§/71)

g€EBmM gEBm s'eS’ s’'eS’ gEBm
deg(g)=dm deg(g)=dm deg(g)=dm
S
E s’ 1) § E s, ¢t
- a§, (hdm ) (1) - a§, aih(7 ¢
s'es’ s'eS’ i=0

The scalars a; are the entries in the d,,-th row of the inverse matrix of A. We see that
the products aya; only depend on the choice of ¢ and d. O

B. Weyl groups

This section contains a brief summary of the notation in this thesis and a loose collection
of lemmata. All statements which we do not prove here are well known and can be found
in any classical text book about Coxeter groups, for example in [BB|.

We fix a semisimple algebraic group G with Weyl group W, a maximal torus 7" of G
and a Borel subgroup B containing T'. For each parabolic subgroup () C G — by which
we mean a closed subgroup containing B — with Weyl subgroup Wy C W and 0 € W,
there is a (unique) smallest element 0% € W in the coset cWg. It has the property
0(097) = £(0?) + £(7) for all T € Wg. We denote the set of these smallest elements by

We={ocW|ocecW}

Thus the product map W@ x Wg — W is a length-preserving bijection. More general:
For any two parabolic subgroups () C @' the product map

W x (W nW? =W (0,7)— o1 (B.1)

is a length-preserving bijection. The quotient W/Wq, is a graded poset, i.e. all maximal
chains have the same length. The rank function  : W/Wg — Ny maps a coset 8 € W/Wj,
to the length £(6%) of its unique representative 9 € W, i.e. the smallest number
¢ € Ny such that there exists a decomposition 9 = s; - - - s, into simple reflections. Such
a minimal decomposition is usually called a reduced decomposition.

To every inclusion ) C @’ of two parabolic subgroups there is the monotone surjection

TQ,Q" " W/WQ —» W/WQ/, O’WQ — O’WQ/,

where we typically write m¢ instead, if the source is clear. Every element 6 € W/W,
has a unique minimal preimage ming(¢) and a unique maximal preimage maxg(f) in
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W/Wq under . The corresponding two maps

ming: W/Wg — W/Wg, 6 — ming(f) and
maxq: W/ Weq — W/Wq, 0 — maxg(0),

are isomorphisms of posets onto their image. We say an element oWy € W/W, is
Q’-minimal /Q’-maximal, if it lies in the image of ming or max respectively.

Lemma B.1 (|BB, Theorem 2.6.1|). Let (Q;)icr be a finite family of parabolic subgroups
over B and Q = (\,c; Qi- Then the following map is an isomorphism of posets onto its
mmage:

W/Wo = [[W/Wa,, o= (mq.(0))ier

el

Lemma B.2. If s1,...,s, € W are pairwise distinct simple reflections, then s1--- s, is
in reduced decomposition.

Proof. 1f sq - -+ s, was not reduced, then there are indices 1 <7 < j <r with s;---s, =
S1--+8---8;---s, (where the hat indicates, that s; and s; are omitted). By induction
over r, the prefix sy - - - s,_1 is reduced, hence j = r. It follows 1 8,1 =81+ 8;*++ Sp.
Both sides of this equation are in reduced decomposition. As si,...,s, are pairwise
distinct and the set of simple reflections appearing in a reduced decomposition is unique,

we conclude s; = s,., which is impossible. O

The following lemma by Deodhar is used many times throughout this thesis. Our
version of this lemma follows directly from [LMS4, Lemma 11.1, Lemma 11.1°] or [LG,
Lemma 12.8.9] by projecting the unique lift in W to W/Wj,.

Lemma B.3 (Deodhar’s Lemma). Let QQ C Q' be two parabolic subgroups containing B,
0 > ¢ be two elements of W/Wy.

(a) If 0 € W/Wq is a lift of 0, then there is a unique mazimal lift € W/Wq of ¢
such that ¢ > 0.

(b) If ¢ € W/Wyq is a lift of ¢, then there is a unique minimal lift § € W/Wq of 0
such that 6 > &.

Lemma B.4. Let () C P be two parabolic subgroups of G and 6 > ¢ € W/Wq, such that
wp(0) > mp(¢). Then there exists a covering relation 0 > 1 in W/Wq, such that ¥ > ¢

and wp(0) > wp().

Proof. We show the statement by induction over difference d = r(0) — r(¢) of ranks
in W/Wg. For d = 1 there is nothing to prove. Now let d > 2 and ¢ be the unique
maximal lift of 7p(¢) in W/Wy, that is less or equal to mg (). If mo(0) > ¢ is already
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a covering relation, then we can take ¢ = ¢. Otherwise we look at the Bruhat interval
[0,6] = {c € W/Wqg | § > o > ¢}. Suppose that every element in this interval except
¢ projects to mp(f). By Deodhar’s Lemma (B.3) there exists a unique minimal lift
0 € W/Wq of mp(#) with 6 > ¢. Hence there is exactly one element covering ¢ in [0, @].
But this is false for Bruhat intervals of two elements, which lengths differ by more than
1. A proof of this statement can be found in [BB, Lemma 2.7.3|.

Therefore there exists an element ¢ € W/Wg, such that mo(0) > ¢ > ¢ and
7p(0) > mp(¢') > mp(¢). Using the induction on ¢’ instead of ¢ we get an element
Y € W/Wq covered by 0 with 7p(0) > mp() and o > ¢' > ¢ > ¢. O

C. Young tableaux and other tableau models

The LS-tableaux from Section 4.2 are a generalization of more well known tableau
models, like the ones of Hodge-Young in type A and of Lakshmibai-Musili-Seshadri in
the types B, C and D. We fix a connected, simply-connected, simple algebraic group
(G, a maximal torus T and a Borel subgroup B containing 7. Let A be the set of all
simple roots corresponding to the choice of B. For each Dynkin type we order the
fundamental weights wy,...,w, of G (equivalently, the simple roots) in the same way
as in |[Bou, Plates I to IX]. Each fundamental weight w; corresponds to the maximal
parabolic subgroup P; stabilizing the highest weight space in V' (w;). Furthermore, we
fix a dominant weight y = ajwy + - - - + a,w, for ay,...,a, € Ny. There exists a unique
sequence p = (wj,, . ..,w;,) of fundamental weights, such that w;, + -+ w;, = p and
1<ip<- <ig<n.

Type A,: Let w; and «; be defined as in the beginning of Chapter 3. We write s; instead
of s,,. Since all fundamental representations in type A are minuscule, each LS-path model
B(w;), for i € [n], can be set-theoretically identified with W/Wp, and thus with the set
SSYT(w;) of all semistandard Young tableaux consisting of one column with exactly 4
boxes. Therefore the set LS-tableaux of shape u can be interpreted as the set YT (u) of
all Young tableaux of shape p (see Definition 3_1) Notice that the order of the columns
is reverted under this bijection. For example, the LS-tableau (my, m, 73, m4) with the
columns

T = (8281Wp1; 0, 1), Trg = (5382Wp2; O, 1), T3y = (8182WP2; O, 1), Ty = <S3WP3; 0, 1)

corresponds to the Young tableau
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A Young tableau T is semistandard, if and only if its corresponding LS-tableau is standard.
We proved this in Lemma 3.7 (cl Let @ be the intersection of all maximal parabolic
subgroups P, ..., P;,. The lifts § = ming omaxg,(#) in W/Wy of the columns (6,7) in

T are linearly ordered (from left to right), if and only if the columns (6,7) themselves

17°

are linearly ordered and we know from Corollary 3.8 that is this equivalent to 7" being
semistandard. In particular, the notions of standard and weakly standard LS-tableaux
agree for Young tableaux.

Types B,, and C,,: Instead of Young tableaux, we obtain the tableau model developed
by Lakshmibai, Musili and Seshadri (see [LMS4]| and |[LS5]). For a maximal parabolic
subgroup P; they defined certain pairs of elements in W/Wp, called admissable pairs.
For each # € W/Wp, let [Xy| denote the element in the Chow ring of G/P; induced by
the Schubert variety Xy. Let H be the unique Schubert variety of codimension one in
G/P,;. By a formula of Chevalley from |[Dem]| (see also [Ses2, Section 4.5|) it holds

(Xo) - [H] = dy[X,]
P

in the Chow ring, where the sum is taken over all elements ¢ € W/Wp, covered by 6. The
number dy is given by [(¢(w;), 3)|, where § is the unique positive root with sz’ = 6%
and ¢% (respectively 67%) is the unique minimal representative of ¢ (respectively ) in
the Weyl group W. This number d, is called the (intersection) multiplicity of X4 in Xy
(sometimes also Chevalley multiplicity).

A pair (0,¢) of cosets 0,¢ € W/Wp, is called an admissable pair, if either 6 = ¢
or there exists a chain § = ¢; > --- > ¢, = ¢ covering relations in W/Wp,, such
that for every j = 2,...,k the Schubert variety X, C G/P, is a divisor of X, _, with
intersection multiplicity 2. Note that these chains are a special case (for a = %) of
a-chains defined by Littelmann in [Lit94, Section 2.2|, which play an important role in
the definition of LS-paths. An admissable pair (6, ¢) with 6 > ¢ thus corresponds to
the LS-path (§ > ¢;0,1,1) € B(w;) and an admissable pair (6, 6) corresponds to the
LS-path (0;0,1) € B(w;). Every LS-path in B(w;) is of one of these two forms, since the
fundamental weights w; in the types B and C are classical, i.e. [{w;, 8¥)] < 2 holds for all
roots 3 in the root system of GG. Equivalently, the intersection multiplicity of X, C Xj is
at least 2 for each covering relation 6 > ¢ in W/Wp,.

A Young diagram of type (ay,...,a,) in the sense of [LS5| can be seen as a sequence
of admissable pairs (0, ¢;) with j =1,...,s and 0;,¢; € W/Wpij. Hence these Young
diagrams correspond to LS-tableaux of shape . Under this correspondence the notions
of standard Young diagrams and standard LS-tableaux agree, as both are given via the
existence of a defining chain. Lakshmibai and Seshadri even allowed other orderings
of the fundamental weights, but for the explicit ordering we defined above, Littelmann
showed in the Appendix of [Lit90] that one can interpret their Young diagrams via certain
classical Young tableaux with entries in {1,...,2n}.
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Type D,: Since the fundamental weights in type D are classical as well (see above), the
Young diagrams from the types B and C can also be used in type D and these diagrams
still correspond to LS-tableaux. For the ordering of the fundamental weights we chose
above, these tableaux can again be identified with certain Young tableaux, but their
explicit combinatorial description is noticeably more difficult than in the types B and C.
It can be found in [Lit90, Appendix A.3].

The main difference in type D is the fact that there exists no ordering of the fundamental
weights, such that the notions of weakly standard LS-tableaux and standard LS-tableaux
coincide (see Proposition 4.22 and Corollary 4.27). Therefore standardness cannot be
verified locally by just considering consecutive columns.

Other Types: In the exceptional types not every fundamental weight is classical.
There is a list of all classical fundamental weights in [LR, Section A.2.3|. Since higher
intersection multiplicities can occur, one needs to replace admissable pairs by admissable
quadruples for fundamental weights w; with [(w;, 8¥)| < 3 for all roots 5. The resulting
tableau model was described in [Lit90, Section 3|. Again, the admissable quadruples
correspond to LS-paths (0,,...,01;0,dp,...,d; = 1) with p < 4 different directions.
This shows the power of LS-paths, as they provide a language suited for all intersection
multiplicities.
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List of notations

maxQ
ming

supp a

path model of LS-paths to A € AT

bond of a covering relation p > ¢

convex cone generated by a set S

convex hull generated by a set S

set of simple roots of G

multicone of embedded projective variety X
sum of all unit vectors e; for i € [

fan of monoids

monoids associated to a chain C C A

Veronese submonoid of I'c

associated graded algebra to V

subalgebra of gr|,R

Veronese subalgebra of gry, o R

subset of I defined by covering relations (p. 37)
lattice generated by I'¢

monoid of dominant weights of G

weight lattice of G

sum of all weights \; for 2 €

set {1,...,k} for ke N

maximal lift (p. 99)

minimal lift (p. 99)

projection map (p. 98)

parabolic subgroup to the weight \;

parabolic subgroup to I € Z

lower parabolic subgroup to I (p. 53)

upper parabolic subgroup to I (p. 53)

largest parabolic over @), where 7 is (),-maximal (p. 53)
rank function in a graded poset

cone of multidegrees of I'¢

support of an element in some Q4 (p. 10)
projection of 7 € W/Wq to W/Whp,

projection of 7 € W/Wq to W/Whp,

total degree of d € N

ambient affine space of the stratification
stabilizer of A in the Weyl group

set of all minimal representatives of W/Wy in W
Weyl subgroup of )

projection of a multiprojective variety X to the factors in I

Schubert variety in G/Q to 8 € W/W,
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