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Abstract

Quantum feedback control is a field of research that deals with the manipulation of quantum
systems towards a goal, based on continuous observation of the systems. These control strate-
gies have been identified as an essential part of the development of future quantum technologies.
An example of this is the formulation of quantum error correction strategies for fault-tolerant
quantum computing. The design of control strategies is a challenging task, however, as incom-
plete descriptions of the quantum system at hand and external noise factors often introduce
uncertainties into the system, leading to performance degradation. In this thesis, we focus
on the use of machine learning based approaches to find quantum control feedback strategies.
These approaches have demonstrated the ability to find near-optimal and robust strategies.

In a first study, we develop a control strategy for quantum error correction on topological
surface codes in the form of a hierarchical decoder. Using a combination of machine learning and
combinational decoding, we were able to demonstrate scalable decoding. We achieved nearly
linear-time scaling, while still maintaining a high precision decoding comparable to state-of-the-
art conventional decoding strategies. The robustness of the decoding strategies is demonstrated
through performing tests on different error models including depolarizing noise and faulty
syndrome measurements, as well as by changing the underlying error correction code to the
rotated surface code. Analyzing the correction applied by the hierarchical decoder provides
us with insight into the learned strategies and identifies possible strengths and weaknesses of
the decoder, allowing for possible further developments of machine learning and algorithmic
decoders based on these findings.

In a second study, we investigate the use of reinforcement learning for quantum feedback
control. Since reinforcement learning encompasses model-free approaches, it is a prime can-
didate for finding robust strategies that are not hindered by unknown uncertainties in the
experimental system. A well-known problem of reinforcement learning is the sometimes unsta-
ble training, caused by the encountered “exploration versus exploitation” dilemma during the
process. Therefore, we have implemented a toy model, the quantum cartpole, designed to serve
as a benchmark environment for the development of reinforcement learning based quantum
feedback strategies. Based on weak measurements, the implemented control strategies have to
deal with partial observability and measurement induced feedback. We provide benchmarks for
three different variations of the system, including linear and nonlinear systems, using the clas-
sical control theory algorithm, linear quadratic Gaussian control, and a reinforcement learning
based control strategy. By examining these results, we show the importance of state estimation
techniques as part of the control process, and demonstrate the ability of reinforcement to find
novel strategies that outperform conventional control strategies in highly nonlinear systems.
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Outline

This thesis presents the numerical results of quantum feedback control strategies applied in the
field of quantum computing using machine learning as principal underlying method. Quantum
feedback control describes the manipulation of quantum states towards a certain goal. The
feedback is determined based on continuously performed measurements on the system.

In the introductory Chapter 1, we start with a general discussion of quantum control and its
importance for the development of quantum technologies. Here we set a focus on its influence in
the field of quantum computing, by highlighting concrete applications. In addition, we shortly
discuss the advantages of using machine learning to develop control strategies. Chapter 2
discusses machine learning algorithms, giving a short overview of their historic development
and introducing all techniques which are used in this thesis to develop control strategies. This
includes basic constructs like artificial neural networks, found in all deep learning algorithms,
and two different kinds of machine learning algorithms. The first being supervised learning and
the second reinforcement learning.

In Chapter 3, we take a look at error correction for quantum computing. We start the dis-
cussion, by introducing the task of error correction in classical computing and how redundancy
is used to increase the fidelity of a bit. Going to quantum computing, we discuss the unique
challenges posed by the no-cloning theorem and the fact that only indirect measurements can
be used. As framework to construct quantum error correcting code we discuss the stabilizer for-
malism. This formalism is used to construct the toric code and rotated surface code. Chapter
4 follows up by discussing decoders for the surface codes as well as the numerical methods used
to quantify the behavior of the decoders. The decoders include two well-known algorithmic
decoders used as comparison and a machine learning based hierarchical decoder. The decoders
are then tested for speed and precision using the toric code and rotated surface code for differ-
ent underlying noise models. In addition, we perform an investigation to analyze the decoding
strategies learned by the hierarchical decoder.

In Chapter 5, we discuss quantum feedback control, starting with the classical version of
the problem. We then discuss how feedback control changes in the quantum case, discussing
notion of measurements and how they interact with a quantum system. Then we discuss the
application of a classical control algorithm, which we transfer to the quantum case. Chapter
6 takes the previous discussed definition of the quantum feedback problem and converts it into
a benchmark environment for reinforcement learning. We provide benchmark values for the
classical and reinforcement learning strategies, comparing them on different variations of the
system, including linear and non-linear variations. Finally, we investigate the learned strategies
of the reinforcement control strategies.

In Chapter 6, we summarize our results and discuss future lines of research.
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Introduction
Chapter

1
Quantum control is a research area focused on manipulating and controlling quantum systems
towards a set goal. The unique properties of a quantum system, such as entanglement and
coherence, pose challenges to the field, which do not occur in classical mechanical systems. As
a result, classical control theory is inadequate, which necessitates the development of a specific
quantum control theory.

The earliest application of quantum control can be traced back to the laser development in
the 1960s [1], where initial trials to create and break particular molecular bonds were conducted.
Even though these first experiments failed at the time, a successful realization was managed
in the 1980s, where, using femtosecond laser pulses, a chemical reaction could be controlled,
determining the final product [2]. Ever since the field of quantum control theory has increased
rapidly [3], making noticeable contributions to physical chemistry and quantum optics as well
as contributing to our understanding of fundamental aspects of quantum mechanics [4].

This trend of growing interest is unlikely to stop, as in recent years the development of the
general principles of quantum control theory has been recognized as an essential requirement
for the future application of quantum technologies [5]. The development of these technologies
are driven by two main factors. The first is the constant miniaturization of hardware until
length scales are reached where quantum effects become visible. The second is the creation of
quantum states with taylor-made designed properties, enabling new developments in the field
of computing, communications or sensing. Being applicable to a wide range of different fields,
it is not surprising that it is at the center of public attention, with government-funded pro-
grammes around the world investing billions of euros, to advance the development of quantum
technology, such as the European Quantum Flagship initiative [6]. The same is true in the
private sector, where global companies such as Google, IBM and Microsoft are investing in
quantum technologies.

In this thesis we want to focus on the application of quantum control to the field of quantum
computing. Therefore, in this introductory chapter, we want to give the reader a brief intro-
duction to quantum control theory, and contextualize it in the field of quantum computing by
highlighting areas of application and the goal towards which it is working. This chapter has
been written on the basis of Refs. [3, 7, 8], which are recommended for further reading.

1.1 Quantum control models

Quantum control is a broad field which encompasses the engineering and manipulating of quan-
tum system to desired outcome. The algorithms that determine the applied control are called
control strategies and generally, but not exclusively, are described by applying modification to
the Hamiltonian

H(t) = H0 +Hc(t), (1.1)
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1 Introduction

where H0 describes the dynamics of the bare system and the Hc describes the added con-
trols. Taking an arbitrary closed quantum system |ψ(t)〉, the system evolves according to the
Schrödinger equation [9]

ih̄
∂

∂t
|ψ(t)〉 = H0|ψ(t)〉, |ψ(t = 0)〉 = |ψ0〉, (1.2)

where H0 is the Hamiltonian of the system and the initial state of the system obeys |ψ0|2 =
〈ψ0|ψ0〉 = 1.

In the case of a closed quantum system, the control of the system is often described by
the bilinear model. There Hc can be realized using a set of control functions uk (t) ∈ R,
which are coupled to the system via time-independent Hermitian interaction Hamiltonians
Hk (k = 1, 2, ...). This yields the total Hamiltonian

H (t) = H0 +
∑
k

uk(t)Hk (1.3)

and the time evolution is determined by

ih̄
∂

∂t
|ψ(t)〉 =

[
H0 +

∑
k

uk(t)Hk

]
|ψ(t)〉. (1.4)

Here the origin of the name becomes apparent, as the total Hamiltonian is independently linear
in both H0 and Hc, and therefore bilinear. This Hamiltonian generally allows one to tackle the
typical control problem of finding a set of control uk(t) and a final time T > 0, which takes the
initial state |ψ0〉 to a desired target state |ψf 〉. The total Hamiltonian determines the unitary
time evolution operator U(t), which describes the transition from the initial state |ψ0〉 to |ψ(t)〉
as shown in

|ψ(t)〉 = U(t)|ψ0〉. (1.5)

Substituting Eq. (1.5) into Eq. (1.4) shows that U(t) has to satisfy the differential equation

ih̄U̇ =

[
H0 +

∑
k

uk(t)Hk

]
U(t), U(0) = I. (1.6)

This allows the description of closed systems such as spin systems in nuclear magnetic resonance,
allowing the formulation of control strategies to improve the sensitivity of the system in the
presence of relaxation [10–12].

In the case that one wants to control a quantum system over an indefinite amount of time,
it is necessary to chose controls depending on the current state of the system. This requires
knowledge about the state and therefore requires observation of the system. These systems are
often described using their density matrix

ρ =
∑
j

pj |ψj〉〈ψj |, (1.7)

where 〈ψj | = (|ψj〉)† and
∑

j pj = 1. The evolution of a system, which is continuously measured
in the observable X, can be described with stochastic master equations (SME) [13]

dρ = − i

h̄
[H, ρ] dt+ H [X] ρdW + D [X] ρdt (1.8)
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1.2 Control strategies

Figure 1.1 – Controller design in quantum control theory. (a) The open-loop controller directly acts on the
system, based on a predetermined scheme. (b) The closed-loop controller decides its action depending on
measurement results from the system. Figures inspired by [16].

where the Hamiltonian is given as H = H0 +Hc, with H0 describing the dynamic and Hc the
applied control. The second term in the equation is the measurement superoperator,

H[X]ρ = Xρ+ ρX† − Tr
[(
X +X†

)
ρ
]
ρ (1.9)

describing the resulting change in the state of the syste, when performing a measurement. Here
the term superoperator refers to the fact that H[X] operates on ρ from both sides. The variable
dW associated with the measurement refers to a Wiener increment, which returns a random
value based on zero-mean Gaussian and width equal to dt. Performing the measurement then
gives the measurement result

dy = Tr
[(
X +X†

)
ρ
]
dt+ κdW, (1.10)

where κ is some factor related to the measurement strength. Based on the measurement results
one chooses Hc accordingly. The third term of the SME is a Lindblad superoperator [14]

D [X] = XρX† − 1

2

(
X†Xρ+ ρX†X

)
(1.11)

describing the effect of noise due to the environment.
It has to be pointed out that the SME in 1.8 is only a typical representation of SME’s and

can change depending on different measurement processes [15].

1.2 Control strategies

Even if one has a quantum system that can be described by one of the mentioned control
models, it is still necessary to find a suitable control strategy to fulfil a given goal e.g. finding
uk in the bilinear model. These strategies can be separated into two different classes: open-
and closed-loop control.

Open-loop control In the case of open-loop control, the control strategy has been designed
before the experiment and will be executed without modification as demonstrated in Fig. 1.1
(a). These strategies are based on the knowledge previously attained, and are often described
using the bilinear model [3]. As the controls are set in the beginning, it is necessary to either
know H0 exactly or approximately, in order to formulate the control strategies. Therefore
open-loop control strategies have shown success in case of simple closed quantum system, but
can run into trouble for more complex systems, as unknown parts of the Hamiltonian or noise
sources causes degradation of the performance of the control strategy [17, 18].

13



1 Introduction

Closed-loop control In contrast to the open-loop system, the closed-loop systems utilize mea-
surement results from the system in order to determine the best control strategy as shown
in Fig. 1.1. The best example for these strategies is quantum feedback control, where sys-
tems are continuously measured and subjected to control actions, whose form depends on these
measurement results.

To help us discover these control strategies, different methods have been developed that
focus on different aspects of controlling a system. One of these methods, that is often used
in open-loop systems, is optimal control. The idea of this is to choose a set of controllers uk
that can achieve a goal while minimizing a cost function. This cost function determines the
realized control strategy and can be chosen according to the problem at hand. Typical cost
functions are the minimization of the time to reach the target [19], the control energy [20] or
the error between the final state and the target state. Even the combination of these costs
is possible. Since the cost function can be chosen freely, it follows that there is generally no
globally optimal strategy. Even if the underlying problem is the same, the optimal strategy for
minimizing the required time or for minimizing the control energy are two distinct strategies.

As the name suggests, it may seem that any designed control strategy should be an optimal
strategy. But in an actual implementation or in a complex system, trying to achieve an optimal
strategy can be either nearly impossible or even counterproductive. As for quantum systems, it
is inevitable to encounter uncertainties and perturbations of the system [21], which increase the
difficulty of designing a control strategy. The same is true when only incomplete information
about the system is available, causing a difference between the assumed and the actual model.
In particular, open-loop strategies suffer from these additional difficulties, since the strategies
are set in advance and cannot react to unexpected influences. Therefore, the robustness of
control strategies, defined as how sensitive the reached state is to deviations in the parameter
space of the Hamiltonian, has been identified as an important factor for practical application
in quantum systems [22]. Naturally closed-loop strategies have been recognized as candidates
for implementing robust control, as they can use information about the state of the system to
negate unwanted influences caused by external noise.

Here we want to take a closer look at closed-loop strategy quantum feedback control, as it
is designed to constantly observe a system and apply feedback accordingly. This strategy has
already been successfully used preventing entanglement decay in optical quantum computing
systems as well as making it robust against signal lost [23] or in state purification of supercon-
ducting quantum systems [24]. The difficulty in quantum feedback control is the acquisition of
information, as every information gain also introduces a disturbance to the system, following
the Busch’s theorem [25]. Since continuous measurements of a quantum system are inherently
noisy [26], the formulation of a control strategy often involves a filtering step, which estimates
the actual observable from the measurement results.

Thanks to the rapidly increasing accessibility of computational resources, machine learning
techniques have proven to be a promising candidate in realizing quantum feedback control,
allowing the automatic learn of control strategies based on available data. This leads to robust
control strategies, as demonstrated for the example of learning error mitigation strategies [27].

In particular, reinforcement learning (RL) techniques are prime candidates for quantum
feedback control, as their innate algorithms are already based on receiving feedback depending
on performed action. As RL is a model-free learning technique, it requires no prior knowledge
of the system, and is able to learn the underlying dynamics and noise sources, thereby reducing
the error introduced by approximating the system. RL based control has been shown to be able
to achieve performance superior to conventional methods [28, 29]. In the context of quantum
computing, precise control of qubits [28, 30] and quantum gates [31] has been successfully

14



1.3 Promises of fault-tolerant computing

demonstrated. It has also been used to construct error-correcting codes [32] and to find decoding
strategies [33]

ML not only provides robust control strategies at the end of development, but has also shown
advantages in the search for control strategies. It has demonstrated to be a flexible approach,
as learned control strategies can be easily transferred between similar task without the need
to modify the underlying approach [34]. Often it is enough top perform a short training on
the new task to receive a top performing control strategy. Additionally ML has also shown its
ability to approximate already existing control strategy, achieving similar performance, while
using less computational resources [35].

As this thesis sets a focus on implementing ML based control strategies, a detailed introduc-
tion to machine learning is given in Ch. 2.

1.3 Promises of fault-tolerant computing

The development of quantum technologies offers exciting opportunities both in scientific re-
search and in various applied fields. Some of these potential applications could be transforma-
tive for the respective field. Here we want to take a closer look at the example of quantum
computing.

Under the premise of having achieved fault-tolerant quantum computing, it promises to
implement algorithms which provide polynomial and superpolynomial speed up compared to
the most efficient known classical algorithms, allowing the solution of problems that even the
best supercomputers cannot solve. The first example of this computational advantage was
shown in the form of the Deutsch algorithm [36]. Assuming a function acting on an n-bit string
returning either 0 or 1 for each value in the string, promising [37] that the resulting output is
either constant (all values 0 or 1) or balanced (one half has the value 0, the other has value
1). The task of the Deutsch algorithm is to determine whether a function f is constant or
balanced. For a classical computer it takes at worst O(n) steps to solve this problem, whereas
quantum computers would be able to solve it within a single step. This was the first example
to demonstrate a deterministic quantum advantage.

Probably the most impactful example of a speed-up achieved by a quantum algorithm was
presented by Shor in 1994 [38, 39]. He introduced a quantum algorithm, for the prime factoriza-
tion of large numbers in polynomial time, demonstrating an almost exponential speedup1 over
the best known classical algorithm.This discovery had significant implications as the factoriza-
tion of large numbers is an intentionally hard problem at the core of public key cryptography
and is implemented in the RSA algorithm [42]. Decrypting an RSA2048 key, which would take
a classical computer billions of years, could be solved by a quantum computer in a matter of
hours. This discovery was an early example of the usefulness of a quantum computer and a
strong motivator for research in this field.

Besides being a security risk, quantum computing promises exciting possibilities for scien-
tific research as well as industrial application. In the perspective of research the simulation
of quantum mechanics has long been acknowledged as a challenging problem, as the needed
computational resources scale exponentially due to the exponential growth of the Hilbert space.
While this exponential explosion can be counter acted by approximation methods like Monte
Carlo, these are not always available, depending on the exact nature of the underlying problem,

1Shor algorithm is able to factor an integer N in O
(
(logN)2 (log logN)

)
[40] in its fastest implementation,

while the fastest classical algorithm takes O
(

exp
[
1.9(logN)1/3(log logN)2/3

])
[41].
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and also face their own limitations. The solution for this problem was proclaimed by Feynman
in 1981 in his seminal lecture with his famous words “Nature isn’t classical dammit, and if you
want to make a simulation of nature you better make it quantum mechanical, and by golly it’s
a wonderful problem because it doesn’t look so easy” [43]. As the Hilbert space of the quantum
computer grows exponentially with the number of physical resources, it is a natural candidate
to simulate these systems.

For the industry, quantum computing might revolutionize the manufacturing of fertilizers by
studying the nitrogen-fixing FeMo cofactor [44], which is an enzyme converting nitrogen N2

into ammonia (NH3). The enzyme is able to accomplish the transformation of the molecule
at ambient conditions, whereas the current production method needs high temperatures and
pressures [45]. In 2019, this process has consumed 1% of the global energy production [46], so
unraveling the chemical process behind the FeMo cofactor could lead to a large scale application
and significantly reduce the required energy. Or it could help the field of drug development,
which is a notoriously known to be an expensive line of research as the development of new
drug takes between 12-15 years and approximately 80% fail in development [47]. By simulating
relevant molecules, desired and undesired effects can be predicted, thereby speeding up the
development process [48].

While all these promises of quantum computing sound fantastic, unfortunately it requires
fault-tolerant quantum computing, which has yet to be realized and will take some years of
development. The difficulty comes from the fact that noise sources introduce errors into the
system. Because quantum systems are inherently fragile, it is necessary to isolate them from the
environment as much as possible, but at the same time it is necessary for the quantum system
to interact strongly with each other in order to process information. This is why quantum
computers are built inside dilution refrigerators [49], which cool the computing chips down
to near zero Kelvin, minimizing external noise. But even the remaining noise can be more
than enough to threaten the integrity of the qubits, so quantum control techniques are used to
combat the noise and make quantum computing possible.

1.4 Quantum control application in quantum computing

A variety of control strategies have been developed to combat noise and errors occurring in
quantum computing. The control strategies can be divided into three different groups called
error suppression, mitigation and correction. Here we want give a short description of the
different branches, and put them into a contextual frame of quantum control theory by providing
examples of state-of-the-art applied control strategies.

Error suppression Error suppression is the most basic level of handling error, which aims to
reduce the probability of errors occurring in the first place. These techniques are commonly
open-loop designs, where the knowledge of undesired effect allows the implementation of mod-
ification to avoid or negate their negative effects. Mostly error suppression is considered at a
hardware level and consists of adding or altering control signals.

A class of of this application are dynamic decoupling (DD) techniques [50], such as the spin
echo, which utilizes pulses to qubits in order reset their value to their initial state. The basic
theory of DD is as follows. Considering a time independent Hamiltonian with is respective time
evolution over a duration τ

H = HS +HB +HSB fτ = U (τ) = exp (−iτH) , (1.12)
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1.4 Quantum control application in quantum computing

where HS and HB describe the system and bath respectively and HSB describes the interaction
between the two. The system Hamiltonian can be further divided into HS = H0 + H1 where
H1 describes an undesired behavior of the system. Together with the system bath interaction
the error Hamiltonian is written Herr = H1 +HSB representing the term DD wants to remove.

In order to do that, a time-dependent control Hamiltonian is added to the system to com-
pensate for Herr:

H(t) = HS0 +HB +Herr +Hc(t). (1.13)

Assuming an ideal pulse sequence the control Hamiltonian is given by a sum of instantaneous
error free Hamiltonians {Ω0HPk

}nk=1 generating pulses at corresponding time intervals {τk}nk=1

with Ω0 being the peak value of the pulse. According to the bilinear model from Eq. (1.3), the
control Hamiltionan and corresponding unitary evolution are given as

Hc(t) = Ω0

n∑
k=1

δ (t− tk)HPk
, Pk = exp

(
−iπ

2
HPk

)
, (1.14)

where tk =
∑k

j=1 τj . The total time evolution of the system is given as

U(T ) = fτnPn · · · fτ2P2fτ1P1 (1.15)

with T =
∑

n τn is the total time sequence and the pulses are assumed top be instantaneous.
The goal of control theory to determine the optimal sequence of pulses to decouple the system
from the bath. This is an example of open-loop control as the pulse sequence is determined
beforehand and does not take in any feedback. In the optimal control case the pulse sequence
will completely decouple the system from the bath environment. In realistic settings only
approximate decoupling is reached, so reducing the error further is a highly active field of
research, while taking increasingly more realistic physical scenarios into consideration.

Error mitigation In contrast to the error suppression, error mitigation is a post-processing
closed-loop control method, trying to eliminate the noise in estimating expectation values,
based on measurement results.

Considering a circuit, the goal is to determine the expectation value of some observable X.
In a noiseless circuit, this can be done by running the circuit a number of times, producing the
perfect output state ρ0, but since a noiseless circuit is still a distant dream, a noisy state is
reached ρnoise allowing only an approximation of the expectation value Xest based on a noisy
measurement of the expectation value Xnoise. The ultimate goal of error mitigation is therefore
to reduce the difference between the estimated and actual expectation value, typically given by
the mean square error (MSE)

MSE [Xest] = E
[
(Xest − Tr [Xρ0])2

]
, (1.16)

as Tr [Xρ0] is generally unknown, the MSE is usually estimated via numerical methods or
physical experiments by applying them to some specific use case. To minimize the MSE different
techniques have been developed, which generally make use of additional runs of the circuit at
the same or higher noise level. Therefore error mitigation is a closed-loop control method, as
measurements results are needed to formulate a control strategy. An example of this is zero
noise exploration, which uses the measurement results at different noise levels {(λm,Tr [Oρλm ])}
to estimate the expectation value at zero noise using a function f (λ, θ), that depends on the
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noise level λ and is determined by its parameters θ. The error-mitigated estimation value is
therefore given by

E [Oest] = f (0, θ∗) , (1.17)

where θ∗ indicates the optimal parameters of the function. Research in this field is working on
finding suitable control strategies, not only depending on the quality of estimation, but also
the numbers of data point needed.

Error correction Quantum error correction (QEC) is the long term goal to realize fault-
tolerant quantum computing. It aims at building a quantum error correcting code (QECC) by
introducing redundancies in the system, enabling the correction of errors that occur in order to
preserve the logical information. This is based on the quantum threshold theorem [51], which
states that when operating below a certain physical error rate, which determines the probability
that errors occur, scaling up the quantum code suppresses the logical error rate. The current
quantum computers are still to noisy to implement active error correction, as single qubit error
rates are still around 10−3 [52, 53], while the threshold theorem requires an error rate around
10−4 [54].

Quantum error correcting is an example of quantum feedback control as continuous mea-
surements are used to apply correction onto the system according to a chosen control law.
Therefore it naturally belongs to closed-loop control just like error mitigation. Here we give a
short explanation of error correction, a more detailed description can be found in the dedicated
chapter Ch. 3.

Continuous quantum error correction can naturally be expressed using stochastic master
equation 1.8. A straightforward example of this can be demonstrated using a three qubit
system α|000〉 + β|111〉, follwing [55], where each qubit may be affected by an error. In this
case, a bit flip error would be represented by an X operator. The qubits evolve according to
the noise term

dρnoise = γ (D [XII] + D [IXI] + D [IIX]) ρ dt, (1.18)

where γ is the probability of a bit flip error occurring in the time interval [t, t+ dt]. The goal
is to correct an error as soon as it occurs, meaning that after identifying an bit flip error, it
would be corrected applying by a X operator on the respective qubit. Therefore the feedback
Hamiltonian is given by

Hc = λ1XII + λ2IXI + λ3IIX, (1.19)

where λk are the control parameters determining which correction are applied. In order to
choose the appropriate λk it is necessary to locate the error on the bit flip code. For this
neighboring qubits are projectively measured, using the observables

M0 = ZZI (1.20)
M1 = IZZ. (1.21)

This tells us whether an error occurred on one of the measured qubit, but not on which one.
Expressing the measurement using the SME formalism results in

dρmeas =
√
κ (H[ZZI]dW1 + H[IZZ]dW2) ρ (1.22)

dy1 = 2κ〈ZZI〉dt+
√
κdW1 (1.23)

dy2 = 2κ〈IZZ〉dt+
√
κdW2, (1.24)

18
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where dyk are the measurement results, κ is the measurement strength and dWk are Wiener
increments. The task of the control strategy is finding suitable λk based on the received dyk.

After each correction, new errors may occur, requiring a continuous process of measurement
correction. In the optimal case, this will allow us to secure quantum information over arbitrary
time. The control strategy that determines the correction must satisfy several conditions. The
most obvious is the precision of the proposed correction, as it directly affects the fidelity of the
logical qubit. The second is the operation time needed to determine the correction, since new
errors can occur during this time. Finally, the robustness of the strategy is also important, as
noise sources may not be uniformly distributed over the qubits and may vary over time [56].

1.5 Noisy intermediate scale

As the development of quantum computing is pushed further to realize the desired fault-tolerant
computing some day, the current state of quantum computing is described as the noisy inter-
mediate scale quantum (NISQ) era [8]. The intermediate scale here refers to the number of
experimentally realized qubits which is loosly set as up to a few hundred [8] and the noisy part
refers to the quality of said qubits, which are still prone to noise and errors. While this number
is not large enough to realize the promising quantum algorithms like Shors algorithm, it has
been enough to demonstrate examples of quantum advantage.

During the NISQ era, numerous achievements in quantum computing have been achieved.
The most prominent example is likely Google’s experiment, where they claimed to have demon-
strated the first quantum advantage, using their 53 qubit Sycamore processor. Quantum ad-
vantage refers to the solving of a problem, which cannot be solved by state-of-the-art super-
computers in any feasible amount of time, irrespective of the usefulness of the problem. This
was demonstrated as the Sycamore computer completed a calculation in about 200s which
would have taken 10,000 years on the then best supercomputers [57]. This result was heavily
discussed in the quantum computing community [58], as it was later demonstrated, that using
newly developed classical algorithms the Sycamore task could also be solved in 15 hours using
an array of 512 GPUs [59], showing that the concept of quantum advantage heavily depends on
the availability of classical methods. Nevertheless this was a crucial proof of concept, demon-
strating that the coherent control of the states of a 253 computational space over an extended
period of time is possible.

Recently IBM has claimed to have reached the next step in quantum advantage, dubbed as
quantum utility [60], by demonstrating the ability to solve problems at a scale beyond brute
force classical simulation for a practical application [61]. Using a 127-qubits quantum processor
with 60 layers of 2 qubits gates. As benchmark they have used the Trotterized time evolution of
a 2d transverse Ising field. One of the key factors in reaching this milestone was the integration
of error mitigation strategies in form of zero noise exploration [62] as well as probabilistic error
cancellation [63]. Most recently they followed these successes by unveiling their newest quantum
processor Condor, housing 1,121 superconducting qubits, pushing the limit of the intermediate
scale definition.

At the moment, unfortunately, QEC has not been realized for computational tasks2, not only
because current error rate are still to high, but also the overhead introduced by QEC itself is too
big. Even in the currently leading implementation, the surface code [65], the required number

2An experiment, implementing QEC on a d = 7 surface code, claims that their logical encoding has surpassed
the fidelity of the physical qubits [64]. At the time of writing this dissertation, the results are still being
discussed and have yet to pass the peer review phase.
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of qubits scales with O
(
d2
)
, where d is the code distance and relates to the number of error

that can be corrected. In order to reach fault-tolerance, the code distance must be chosen high
enough to compensate the noise level of the system. With the current error rates, this would
result in an unrealistic number of needed qubits. In IBM’s roadmap of quantum computer
development, the first demonstration of real-time error correction is scheduled for 2026 [66],
while in 2029 error correction should be implemented as a standard. Still, first implementations
d = 3 and d = 5 surface codes have delivered a proof of concept by demonstrating an increased
logical fidelity with increasing code distance [52] and successful preservation of logical states
over multiple error correcting cycles in a d = 3 surface code [67]. Thereby giving hope for
fault-tolerant implementation of quantum computing.
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Machine learning
Chapter

2
The origin of machine learning in its modern sense started in 1957 as the psychologist Frank
Rosenblatt created a machine implementing the perceptron [68] for recognizing the letters of
the alphabet. This was the prototype of the artificial neural networks, which are a key element
of today utilized machine learning techniques. Unfortunately, the development of this field
slowed down as it was shown in 1969 that perceptron are limited in the complexity of solvable
problems and are unable to represent logical functions like XOR or NXOR [69]. Until the 1980s
the machine learning field entered a time period called the first AI winter [70]. It was only
with the proposal of multilayered neural network structures [71] and successful training via
backpropagation [72] that hope for future success in this field rekindled. However, real success
remained less then expected causing the interest and investment once again to die down in the
early 1990s. This marks the start of the second AI winter [70].

The turning point for machine learning came in early 2010 as the invention of deep machine
learning algorithms promised exciting new applications, while at the same time the necessary
hardware became available as the cost of parallel computing and memory dropped, and the
realization was drawn that GPUs could be used for machine learning purposes[70]. This was
all fueled by the interest of the growing big data industry. This all led to a rapid development
in the machine learning field which still has not stopped until today and has already found its
way into our daily life. Be it as autonomously driving cars [73], generative AI like ChatGpt
[74] or facial recognition software [75].

With the rising capabilities of ML algorithms, they naturally found their way into the sci-
entific world, driven by the dream of achieving automated science [76, 77]. The first example
of successful application of ML in the field of condensed matter physic was demonstrated by
Carassquilla et al. [78], where a ANN was trained to identify the phase transitions of differ-
ent Hamiltonians. Similarly, in the field of quantum computing R. Melko and G. Torlai have
demonstrated that a simple stochastic neural network model can be trained to construct a
general error-correcting protocol [79]. Since many different approaches to construct and train
these neural decoders have emerged, one of the most common approaches is to utilize the ML
capabilities of pattern recognition via convolutional networks [80] and supervised learning [81].

Another promising field of machine learning for quantum control are reinforcement learn-
ing RL based techniques, which are able to explore solution to a given task autonomously.
This strength of these techniques has been demonstrated by achieving performance beyond
human expertise in complex games [82–84]. Recently, these techniques have found their way
into the field of quantum control, where they have demonstrated their capability to provide
experimental control by being able to precisely control qubits [28] or even help at a higher level
by designing error correcting codes [85]. So RL techniques could help realize fault-tolerant
quantum computing.

In this chapter, we give a concise introduction to machine learning, explaining the funda-
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Figure 2.1 – Visual representation of a neuron. A singular neuron is defined by the innate bias b and
the weights wi, where each input is assigned its own weight. The output at the end is transformed using an
activation function σ. If one chooses the Heaviside step function Θ(x) as activation, the neuron takes on the
special form of the perceptron.

mental building blocks as well as the advanced techniques utilized in this thesis. Here we have
made the pedagogical decision to write the chapter in a self-contained manner, so that no prior
knowledge of the topic is required and all implemented ML algorithms can be understood.

2.1 Artificial neural networks

The key element that allows machine learning take a leap forward are artificial neural networks
(ANNs). The first ANN was introduced in 1943 by Warren McCulloh and Walter Pitts [86],
who published a general theory of information processing based on networks of binary decisions.
The elements of the network are called neurons, based after their inspiration, the biological
neurons. The first actual implementation was done by F. Rosenblatt in 1958 [68], where they
coined the name perceptrons, as the name of their specific neuron implementation. As shown
in Fig. 2.1, each perceptron can take an input vector of arbitrary size x ∈ Rn and in return
gives a binary output of f(x) ∈ [0, 1], which is a weighted linear combination of the inputs

f (x) = Θ

(∑
i

wixi + b

)
, (2.1)

where wi are the specific weights of the inputs, b is the bias of the perceptron and Θ being
the Heaviside function. The weights and biases are then tuned so that the perceptron returns
the desired output. The perceptrons were then assembled into a network, called multi layer
perceptron MLP, by using the output of one layer of perceptrons as the input for the next
layer. The first MLP consisted of three layers. To describe the MLP, the nomenclature was
introduced to refer to the first layer as the input layer, the last layer as the output layer and
all layers in between as hidden layers, as shown in Fig. 2.2.

2.1.1 Backpropagation

The first deep learning algorithm for MLP, meaning that all weights and biases can be modified,
was published in 1966 [87]. This made it possible to train a MLP with any number of hidden
layers by training the network layer by layer. This laid the foundation for the learning method
commonly used today, called backpropagation [72]. The process of backpropagation can be
divided into three steps. The first step is the forward propagation in the MLP, where an input
is fed into the network and passed through all the layers until an output is received at the end.

The second step is the calculation of a loss function L(y, ỹ), which measures the discrepancy
between the output y of the MLP and the target output ỹ, and the calculation of partial
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2.1 Artificial neural networks

Figure 2.2 – Artificial neural network. The network can be divided into three separate parts. The first layer
(green) is the input layer, which receives the initial data, whereas the last layer is the output layer (orange)
that returns the output, after the data propagated through the whole network. All layers in between of these
two are called hidden layers.

derivatives of the loss function ∂L
∂wi

j,k
and ∂L

∂bij
. While the exact form of the loss function can

be chosen freely, depending on the underlying task, it must fulfill certain conditions: It must
be able to be written as an average L = 1

n

∑
x Lx over the training inputs x and must be a

function of the output of the MLP L(y) [88]. The computation of the derivatives of the loss
function follows the chain rule, whereby we start here with the simpler case of the biases of the
MLP:

∂L

∂blj
=

∂L

∂σ(zlj)

∂σ(zlj)

∂blj

=
∂L

∂σ(zlj)

∂σ(zlj)

∂zlj

∂zlj

∂blj

= δli,j ,

(2.2)

where we introduce the intermediate quantity zlj =
∑

k w
l
jka

l−1
k + blj and can therefore use

∂zlj
∂blj

= 1. We also have introduced

δlj =
∂L

∂σ(zlj)

=
∂L

∂σ(zlj)

∂σ(zlj)

∂zlj

(2.3)

as a neural error associated with the j-th neuron l-th layer. When the error approaches zero,
it indicates optimality of the neuron [88].

We repeat this process with the weights of the network, resulting in the derivatives

∂L

∂wli,j
=

∂L

∂σ(zli)

∂σ(zli)

∂wli,j

=
∂L

∂σ(zli)

∂σ(zli)

∂zli

∂zli
∂wli,j

= δljσ(zl−1
k ),

(2.4)
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where we can see a dependence on the preceding layer, which was missing in Eq. (2.2).
Now that we have expressed both partial derivatives by the neural error δlj , we examine the

connection with the error of the next layer δl+1
j . Using zl+1

k =
∑

j w
l+1
kj σ(zlj) + bl+1

k we obtain
the relation

δlj =
∂L

∂zli

=
∑
k

∂L

∂zl+1
k

∂zl+1
k

∂zkl

=
∑
k

δl+1
k

∂zl+1
k

∂zkl

=
∑
k

wl+1
kj

σ(zlj)

∂zlj
δl+1
k ,

(2.5)

which is the central equation of backpropagation. Here we can see that the calculation of the
neural errors starts at the last layer and then propogates backwards. Since the loss function
depends directly on σ(zLk ), the neural error of the last layer δLj can be calculated directly using
Eq. (2.3).

But there is also a problem in this backpropagation method. Since each neural error δlj
depends on the neural error in the next layer δl+1

j and, assuming small errors here, the learning
progress of the layer l is slower then of the l + 1 layer. With each backward pass, the training
of neurons in the layers is impeded, ultimately causing a decline in performance when a large
number of hidden layers are utilized. This issue is commonly referred to as the vanishing
gradient problem [89].

Conversely, the exploding gradient presents the opposite problem where the gradient grows
increasingly large with each layer, rendering the network incapable of learning.

2.1.2 Activation functions

The activation function of a neuron defines the output that a neuron can give, where it is
necessary for the backaction that the function and its derivatives can be evaluated efficiently.
In addition, non-linear functions should be chosen, as they allow networks to solve non-trivial
problems with a small number of hidden nodes. It has been shown that a two-layer neural
network with a nonlinear activation function is a universal function approximator [90].

For the network of the neural decoder we will utilize two different activation functions, these
being the sigmoid and rectified linear unit ReLU [91] activation functions.

The sigmoid function [92] is defined by

f(x) =
1

1 + e−x
=

ex

ex + 1
(2.6)

and, because of its range of [0, 1] as depicted in Fig. 2.3 a), is often used to predict probabilities
as output. Often the generalized version of the sigmoid function is used, called the softmax
function [93]

σ(z)i =
ezi∑
j e

zj
, (2.7)
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2.1 Artificial neural networks

Figure 2.3 –
Illustration of activation functions. The three func-
tions shown are commonly used activation functions in
neural networks, all of which fulfill the requirement of
nonlinearity. The sigmoid (red) and tanh (green) func-
tions are similar to each other by having finite limits
ysigmoid ∈ [0, 1] and ytanh ∈ [−1, 1], respectively, and
being continuous functions, whereas the ReLU function
(blue) is not differentiable at x = 0 and the output is a
left closed interval yReLU ∈ [0,∞). −2 0 2

x

−1

0

1

2

y

1
1+e−x

max (0, x)

tanh (x)

where σ(z)i is the output of the i-th neuron. This forces the output of the neural network to
be
∑

i σ(z)i = 1 and is therefore a natural choice in multi-class classification problems, to learn
the probability distribution.

The ReLU activation function is defined as the positive part of its argument

f(x) = max(0, x) =

{
x if x > 0

0 else.
f ′(x) =

{
1 if x > 0

0 if x < 0.
(2.8)

as shown in Fig. 2.3 b). Compared to the sigmoid activation function it has advantages of
efficient computation since only one comparison operation is needed, and it suffers less from
the vanishing gradient problem [94]. These advantages allows the ReLU function to train
deep neural networks more efficiently [94], and therefore has been the most popular activation
function for deep neural networks [95].

2.1.3 Convolutional neural networks

A specific architecture of neural networks are the convolutional neural networks CNN’s. These
networks are designed to extract locally confined features by sliding filters across the input data
and condensing relevant information into a feature map. Therefore, CNNs are widely used in
the application of image recognition and processing [96].

CNN’s are usually constructed using different types of layers in the network, including pooling
layers and fully connected layers, the first being the signature convolutional layers, which is the
origin of the networks name. And here we want to focus on this particular layer. In this layer
an input tensor is taken and divided into sub-regions. These regions are then fed into a single
neuron, giving the output

zlj,k = σ

(
K∑

l=−K

K∑
m=−K

wll,mz
l−1
j+l,k+m + bl

)
. (2.9)

Here zl−1
j+l,k+m is the input of the convolutional layer, and K is the size of the kernel. The same

kernel with the same weights w and biases b is applied to each of these sub-regions. The output
is then collected into a feature map as shown in Fig. 2.4, which can then be further processed
by applying pooling, fully connected or additional convolutional layers next. As the kernel is
moved around the input data, special consideration must be given to the boundaries of the
input and the possibility that part of the kernel may lie outside of the input data. The solution
to this is either to keep the kernel always inside the boundaries at all times, or to use padding
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Figure 2.4 – Illustration of the convolution operation in a convolutional layer. Here the input is rep-
resented by a 5 × 5 matrix and the feature map (orange) by a 3 × 3 matrix. The feature map is shifted
around the input, returning the sum of the element-wise multiplication of a subregion (blue) as a value. If
the feature map is shifted to a position, where parts of the subregion (green) are not part of the input matrix,
the outlying values are set to 0.

techniques. This means that the parts of the kernel that lie outside the input are filled with,
for example, 0’s in the case of zero-padding [97], as shown in Fig. 2.4.

This structure of the CNN leads to advantages over regular fully connected networks. First,
using the kernel as input allows for a reduction in the number of free parameters in the networks.
For example, assuming an input shape of 100 × 100, a fully connected layer would result in
10000 weights per neuron. However, a convolutional layer with a 5×5 kernel, would only require
25 weights per feature map [88]. This makes it easier to avoid problems in the training process
caused by exploding or vanishing gradients, and makes it more robust against overfitting.
Second, sharing the weights of the filters results in a translation-equivariant feature map [98].

2.2 Supervised learning

To train the neural decoder, we have chosen to use supervised learning as the training method.
This means that we choose a loss function L(y, ỹ) that depends on the output of the neurons y
and the desired output ỹ. The desired output ỹ is created together with the input of a training
batch and is therefore commonly referred to as the labels of the training data.

2.2.1 Optimizer

The network is tuned using the stochastic gradient descent method SGD [99], an iterative
optimization algorithm for finding local minima of differential functions. The idea is that in
iteration takes a step in the opposite direction to the gradient of the current point, as shown
in Fig. 2.5. At the end of this, a local minimum of the function will be found. The adjustment
of the weights and biases is given by

θi+1 = θi − η∇θL(y, ỹ), (2.10)

where θi is the target parameter in the i-th iteration and η is the learning rate that determines
the step size of the SGD. The gradient of the loss function can be calculated using Eq. (2.4)
and 2.2 from the backpropagation algorithm.
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2.2 Supervised learning

Figure 2.5 –
Visualization of the training process of a neural
network in a loss landscape. At the beginning of the
training the ANN starts at a random point in the land-
scape and with each iteration it moves against the local
gradient according to the SGD algorithm. This ‘rolling
downhill’ like movement continues until the network is
being trapped in a minimum. This figure was inspired
by [100].

The learning rate η generally determines the speed of the learning process, where the larger
the learning rate, the faster the learning converges, while smaller learning rates reduce fluctua-
tion during the training process and are therefore generally able to achieve higher accuracies in
the fitting process. However, both learning rate extremes have also their own set of problems,
small rates can more easily get stuck in local minima, while larger rates are more easily af-
fected by the exploding gradient problem [88]. Therefore, modern ML techniques use adaptive
learning rates that change over time.

One example for this is the ADAM optimizer [101]. This algorithm combines two different
extensions of the SGD. The first is the introduction of momentum [102] into the update scheme.
This means that the last update ∆θ is kept and used to update the next step, which is then a
linear combination of the ∆θ and ∇L(yL, ỹ).

m
(t+1)
θ = β1m

(t)
θ + (1 − β1)∇L(t)

m̂θ =
m

(t+1)
θ

1 − β1
,

(2.11)

with β1 being the forgetting factor of the gradient. This allows for faster convergence towards
a local minimum [103].

The second being an adaptive learning rate, which is set specifically for each parameter by
dividing it by a running average of the magnitude of the recent gradient of the parameter [104]

v
(t+1)
θ = β2v

(t)
w + (1 − β2)

(
∇θL

(t)
)2

v̂θ =
v

(t+1)
θ

1 − βt2
,

(2.12)

where β2 is the forgetting factor of the second moments of the gradient. Putting these two
methods together gives the update scheme

θ(t+1) = θ(t) − η
m̂θ√
v̂θ + ε

(2.13)

2.2.2 Loss function

As described in the previous section, the exact form of the loss function can vary and is therefore
chosen to suit the problem. The two loss functions used in this thesis are the mean square error
MSE [105] and the categorical cross entropy CCE [106].
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2 Machine learning

Figure 2.6 –
Faulty training of a neural network for a training
data set (red dots). The overfitting case (blue curve) fits
the function well to the training data, but fails to rep-
resent the actual underlying relation (red curve). Con-
versely, in the underfitting case (green curve), the fit-
ted curve displays significant errors in comparison to the
training data.
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The MSE loss is given by the square sum of the difference between the labels and the
predictions of the ANN

LMSE =
1

n

∑
n

(yn − ỹn)2 . (2.14)

Due to its mathematical convenience, the MSE is one of the most commonly used loss functions
in machine learning and the de facto standard setting. While the MSE is able to produce
acceptable results for most problems, it has the disadvantage of heavily weighting outliers due
to the quadratic term.

The CCE is a loss function specifically for multi-class classification problems, meaning that
the output of the network returns the probabilities over C classes. It is assumed that the labels
are represented in a one-hot fashion, so that only a single element in the label vector is non-zero
and instead one. The CCE is given by

LCCE = − log

(
eỹp∑C
j e

yj

)
, (2.15)

where the index p is determined by the non-zero element of the label vector. The advantage of
this loss function is that it has a smooth and convex shape, which makes it easier for gradient-
based optimizers to find the global minimum. The main disadvantage is the same as for the
MSE, in that it is sensitive to outliers.

There are several challenges in training an ANN, one of which is the initialization of the
weights and biases. The initial starting point of the training can determine whether the algo-
rithm will converge at all [93], and if it does converge, the starting point can determine how
fast the convergence is achieved and whether it is in a local or global minimum. An important
requirement for the initialization, is the symmetry breaking of parameters between different
nodes. If two hidden nodes with the same activation function are connected to the same inputs
and have the same parameters, then a deterministic learning algorithm will constantly update
both nodes in the same way.

The standard way of initialization is to draw values from a Gaussian distribution, where the
actual choice of the Gaussian distribution doesn’t seem to matter much [93].

An additional issue arises with overfitting or underfitting of data, as demonstrated in Fig-
ure 2.6. Overfitting occurs when the ANN produces near-perfect predictions on the trained
data, but fails to do so with new data. This indicates that the model has not learned the fun-
damental underlying relationship, but rather has simply ”memorised” the correct data. This
may occur due to insufficient sample size for training, presence of noise in data, or a model
with excessive complexity. Underfitting is the similar but opposite scenario, where the model is
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Figure 2.7 – Visualization of the agent-environment interaction loop. For an arbitrary timestep the
agent receives an observation ot based on the state st of the environment, along with a reward rt that assesses
the quality of the state. The agent then takes an action at that affects the environment and changes the
state. The loop then starts again by returning the new state st+1 and the corresponding reward rt+1 to the
agent.

also unable to learn the underlying relationship, resulting in high prediction error rates. This
often results from incomplete training or a model lacking sufficient complexity [93].

2.3 Reinforcement learning

The alternative machine learning method that will be employed is reinforcement learning RL.
RL consists of two primary components, the agent and the environment. The environment
refers to the agent’s surrounding world, wherein it encounters and interacts with the problem,
while setting the problem’s rules. The agent is integrated into the environment and receives
a form of observation ot of the environment’s state st. Based on this observation, the agent
selects an action at that modifies the environment, causing a change. Upon a new state being
achieved in the environment, the agent receives rewards, which is a measure for the quality of
the environment’s state.

Due to the straightforward design of the environment-agent interaction loop, it is possible to
construct such a loop for almost any problem. This could be a basic physical toy model, such
as the classical cartpole issue [107], which will be discussed in Section 6.1, or a complicated
game like Go [83].

2.3.1 General terminology

Lets start with a clarification of the general terminology used in RL. The state st ∈ S of the
environment is a complete description of the world at time step t, where no information is
missing. It is typically represented as a real-valued vector, matrix or higher-order tensor. The
observation ot ∈ O is a partial description of the state St that is passed to the agent. In the
case where the environment is fully observed we have ot = st

1. The agent chooses an action at
from an initially defined action space at ∈ A. Depending on the environment, one can choose
to define a discrete action space with a limited number of actions, e.g. possible moves in a
game of Go, or a continuous action space.

1In much RL literature the state symbol s is used interchangeably with the observation o, even when we have
only partially observed environments. In this thesis, we follow the notation of [108] and therefore choose to
use the state st.
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How the agent chooses the action is guided by a set of rules called policy. The policy
is the mathematical construct behind turning an observation to an action and can be either
deterministic or stochastic,

at = µ(st), at ∼ π (at|st) . (2.16)

While it is possible to describe the policy using any form of mapping from observation space
to action space, such as lookup tables, deep reinforcement learning requires a parameterised
policy πθ that utilizes a computational function depending on a set of parameters θ. These
parameters can be adjusted with an optimization algorithm. A suitable function choice is the
previously discussed ANN 2.1.

The sequence of states s and actions a are called trajectories2 τ

τ = (s0, a0, s1, a1, . . . ) . (2.17)

The initial state, denoted as s0, is selected randomly from a start state distribution provided
by the environment. The transition between two subsequent states is determined by the laws of
the environment and solely relies on the prior state and action taken by the agent. Analogous
to the policy, this transition may be either deterministic or probabilistic.

st+1 = f (st, at) st+1 ∼ P (·|st, at) . (2.18)

Based on the trajectories we can define the reward and return in the context of reinforce-
ment learning. The reward is given by a reward function

rt = R (st, at, st+1) , (2.19)

depending on the chosen action and the state before and after the action was applied. The
reward function lacks an explicit form but is initially chosen according to the environment and
learning objectives. In many cases, this means simplifying the function so it only relies on the
current state, denoted as tt = R (st). The return, R (τ), is the sum of all rewards collected over
the course of a trajectory

R (τ) =

inf∑
t=0

γtrt, (2.20)

where γ ∈ (0, 1) is the discount factor. The discount factor here is a mathematical trick to
make an infinite sum finite, by allowing the sum to converge. This corresponds to the intuitive
idea that rewards received now are preferable to rewards in the future.

2.3.2 Value functions

One important concept in RL is assigning a state or state-action pair a value, which reflects the
quality of the state considering the future of the environment. This gives rise to the On-Policy
Value Function

V π (s) = E
τ∼π

[R (τ) |s0 = s] , (2.21)

which gives the expected return assuming one starts in the state s0 and always follows the
policy π.

2Alternatively used terms for trajectories are episodes or rollouts. We have opted for the trajectory term to
keep the notation in line with [108].

30
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Similar to this function one can define the Action-Value Function

Qπ (s, a) = E
τ∼π

[R (τ) |s0 = s, a0 = a] , (2.22)

which additionally takes into account that one also starts with the action a0 = a. This starting
action is arbitrary chosen and does not need to align with the policy π, unlike all following
actions.

Both of these two functions can be combined together into the Advantage Function

Aπ (s, a) = Qπ (s, a) − V π (s) . (2.23)

The intuition behind this function is that it is not necessary to describe exactly how good an
action is, only what its relative advantage is over other actions. In many cases, the Value-
Function is estimated using an ANN [109].

Kinds of RL Different types of RL algorithms are defined according to generally accepted core
concepts. The significant distinction is between model-free and model-based RL, which de-
termines whether the agent has access to (or learns) a model of the environment. Since the
model of the environment is generally not available to the agent, it must learn it completely
from experience, which presents a challenging problem. Therefore, model-free techniques are
generally more popular and more extensively researched.

The training of model-free RL is based on either the optimization of the policy π or learning
of an optimal action-value function Q(s, a). Comparing both methods, policy optimization
is generally more stable and reliable, while Q-learning is more sample efficient [108]. In the
following we will focus on policy optimization for model-free RL.

2.3.3 Policy optimization

The central idea behind the training of an RL agent is to find the optimal policy π∗, which
maximizes the expected return J (π). In order to calculate this return value one needs to know
the probabilities over the trajectories. In case of a stochastic environment and a stochastic
policy the probability of a single trajectory is given by the product of the policy and state
transition probability

P (τ |π) = ρ0 (s0)
T−1∏
t=0

P (st+1|st, at)π (at|st) , (2.24)

where ρ0 is the probability of starting in the state s0. With this the expected return follows
immediately as

J (π) =

∫
τ
P (τ |π)R (τ) = E

τ∼π
[τ ] . (2.25)

The optimal policy can therefore be defined as

π∗ = arg max
π

J (π) . (2.26)

To reach this optimal policy, the parameters of the policy will be adjusted incrementally using
stochastic gradient ascent SGA

θk+1 = θk + α∇θJ (πθ) |θk . (2.27)
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This technique is analogous to the SGD in Sec. 2.2, with the slight difference of an sign switch,
instead of minimizing a cost function the goal is here to maximize the expected return. The
similarity can be extended even further, since most modern RL techniques also incorporate the
improved optimizer algorithms like the ADAM optimizer.

In order to calculate the gradient of the expected return, we have to rewrite the function in
a form, where it can be numerically approximated. This can be accomplished by following this
approach

∇θJ (πθ) = ∇θ E
τ∼πθ

[R (τ)]

= ∇θ

∫
τ
P (τ |θ)R (τ)

=

∫
τ
∇θP (τ |θ)R (τ)

=

∫
τ
P (τ |θ)∇θ logP (τ |θ)R (τ)

= E
τ∼πθ

[∇θ logP (τ |θ)R (τ)]

= E
τ∼πθ

[
T∑
t=0

∇θ logπθ (at|st)R (t)

]
,

(2.28)

where in the end, we obtain an expectation as an expression that we can estimate numerically by
calculating the average over a set of N trajectories D = {τi}i=1,...,N consisting of N trajectories

ĝ =
1

|D|
∑
τ

T∑
t=0

∇θ logπθ (at|st)R (t) . (2.29)

The different trajectories are obtained by letting the agent act on the environment according
to the policy πθ.

A special property of the resulting equation for the expected return is that we can modify the
expectation value using any function b(s), which only depends on the state of the environment,
resulting in the expression

∇θJ (πθ) = E
τ∼πθ

[∇θ logπθ (at|st) (R (τ) − b (st))] . (2.30)

This modification is made possible through the expected Grad-Log-Prob Lemma showing

E
at∼πθ

[∇θ logπθ (at|st) b (st)] = 0, (2.31)

the derivation of this lemma is shown in App. A.1.
A common choice for a the function b is the advantage function Aπ (st, at). Taking a step in

the policy gradient direction should enhance the likelihood of selecting an above-average action
and subsequently reduce the selection of below-average actions. Since the advantage function,
which is defined as Aπ (s, a) = Qπ (s, a) − V π (s), aims to determine whether the action was
preferable to the default policy behavior, it is a natural choice to use it for the gradient in
Eq. (2.30), so that it only points in the direction of increased π if the advantage is positive
A > 0. In theory, using the advantage function yields the lowest possible variance [110], while
in practice the advantage function is not known and has to be approximated.
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This is done by approximating the value function V with an ANN and defining the temporal
difference residual of V with discount

δVt = rt + γV (st+1) − V (st), (2.32)

which can be considered as an estimate of the advantage function of the action at [108]. From
this the generalized advantage estimator GAE [110] is derived as an exponentially-weighted
average of the residuals

Â
GAE(γ,λ)
t =

∞∑
l=0

(γλ)l δVt+1. (2.33)

The GAE makes an compromise between bias introduced by V π,γ and variance of the GAE for
0 < λ < 1, controlled by the parameter λ.

While there are different methods to estimate the value function, the chosen method in this
work is the sometimes called Monte Carlo approach [108] of estimating. The value function is
represent by an ANN and optimized via SGD minimizing the mean-squared error

φk+1 = arg min
φ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(Vφ (st) −Rt)
2 , (2.34)

where R̂t is the discounted sum of rewards as given is Eq. (2.20) and Dk is a collected set of
trajectories τ .

2.3.4 Proximal policy optimization

Among the diverse reinforcement learning techniques at our disposal, we will focus on the
implementation of proximal policy optimisation PPO [111]. PPO belongs to the category
of model-free RL techniques and acts as an on-policy algorithm that can be applied to both
discrete and continuous action spaces.

The aim of this particular RL technique is to make the greatest possible improvement while
avoiding a decline in performance. To achieve this, the policy update in the PPO is defined as
follows

θk+1 = arg max
θ

E
s,a∼πθk

[L (s, a, θk, θ)] , (2.35)

where multiple steps of SGD over mini batches are performed to maximize the objective. Here
L is given by

L (s, a, θk, θ) = min
(
πθ (a|s)
πθk (a|s)

Aπθk (s, a) , g (ε, Aπθk (s, a))

)
, (2.36)

and where

g (ε, A) =

{
(1 + e)A A ≥ 0

(1 − e)A A < 0
. (2.37)

To gain a better understanding of the role of function g (ε, A), it is useful to consider the two
potential scenarios.
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Figure 2.8 – Clipping of the surrogate function. The plots show the values of the surrogate function L
for a single time step depending on the probability ratio, where (a) shows the case for a positive advantage
function A > 0 and (b) for a negative advantage function A < 0. The red dot on the curve indicates the
beginning of the optimization process.

Positive advantage If we assume that the advantage function returns a positive value, the
function (2.36) reduces to

L (s, a, θk, θ) = min
(
πθ (a|s)
πθk (a|s)

, (1 + ε, )

)
Aπθk (s, a) , (2.38)

which has the consequence that the objective L increases, when the action a becomes more likely
(when πθ (a|s) increases). This growth is then stopped by the min-function when πθ (a|s) >
(1 + ε)πθk (a|s), only allowing a maximum value (1 + ε)Aπθk (s, a)) as illustrated in Fig. 2.8 a).

Negative advantage The same process can be followed, when the advantage function returns
a negative value. The function (2.36) then reduces to

L (s, a, θk, θ) = max
(
πθ (a|s)
πθk (a|s)

, (1 − ε, )

)
Aπθk (s, a) , (2.39)

which has the consequence that the objective L now decreases, when the action a becomes
less likely (when πθ (a|s) decreases). This fall is then stopped by the max-function when
πθ (a|s) < (1 − ε)πθk (a|s), only allowing a minimum value of (1 + ε)Aπθk (s, a)) as illustrated
in Fig. 2.8 b).

So as it can be seen, this clipping function g (ε, A) serves as a regulator by removing the in-
centives for new policies to strive far away from the old policies, independent from the direction.
The hyperparameter ε controls the allowed distance between the policies.

2.3.5 Challenges in reinforcement learning

While reinforcement learning offers flexibility in learning various problems, it comes with in-
creased difficulties in the training process. Because ANNs are used to approximate the desired
function, RL carries the same problems as supervised learning and can suffer from overfitting,
initialization problems, and the exploding and vanishing gradient.

Additionally it also has its own set of problems caused by the agent learning through a
process of trial and error and generating its own training data set to learn from. This creates
the problem, that the agent is dependent on a monotonic improvement during the training
process, which can lead to a quick performance degradation [112].
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As long as the agent is improving, it supplies itself with useful and relevant data. However,
if the performance drops, it will also affect the generated data, which may then be insufficient
for the agent to recover quickly. This, in turn, causes the performance of the agent to drop and
starts a cycle which that can lead to complete failure of the training process.

In order to avoid this, it is necessary to avoid initial performance degradation that can
be caused by errors in the function approximation [113–115], poor exploration [116–118] or
even supoptimal hyperparameters [119, 120]. To reduce these potential errors, an extensive
optimization of hyperparameters and training algorithms is often necessary, but even then
performance can degrade due to the stochastic nature of the training process. Therefore,
it is common practice to train agents in parallel on the environments [121] or use transfer
learning [34, 122] to stabilize the training process.
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Quantum error correcting codes
Chapter

3
This chapter introduces quantum error correcting codes as a method to protect a logical qubit
over time in order to achieve fault-tolerant computing. The chapter commences with a review
of classical error correction and provides a grounding in terminology, core concepts for encoding
information, and a brief discourse on error correcting code quality assessment. This continues in
the field of quantum error correction, assessing transferable concepts from the classical field and
discussing new challenges and how to deal with them. Subsequently, we detail a general way to
construct a quantum error-correcting code using the stabilizer formalism introduced by [123].
In the final section of this chapter, we examine topological codes, which are a type of stabilizer
codes that are particularly advantageous for experimental implementation. In addition to
defining their general properties, we discuss two concrete examples of implementation, namely
the toric code introduced by Kitaev [124] and the rotated surface code [125].

3.1 Classical versus quantum error correction

For classical technologies data is represented using binary encoding. Information is stored by
stringing bits of values {0, 1} together, forming the logical information one wants to store. Due
to external influences, these bits can be perturbed and information can be lost. Therefore, to
keep the information stable over an extended period of the time, error correction is needed.
The basic principle of error correction is to introduce redundancy to the system, by encoding
information into multiple bits, mapping the logical information onto multiple qubits {0, 1} →
{c1, c2 ∈

(
C2
)n}, where c1, c2 are called codewords and being strings of n bits representing the

logical states of the encoded bit. The encoding follows a set of rules described as the error
correction code ECC. It is important to note that a bit spans the entire space C2, while the
codewords only form a subspace of

(
C2
)n called codespace C. Therefore, if some noise occurs

that corrupts the information and takes a bit string from a codeword to some other string c /∈ C,
it is possible to decode the string back to initial codeword and thus preserve the information.

Classical coding theory mostly concentrates on linear codes [123]. They are a subclass of
ECC’s defined by the relation between the initial logical information and the encoded redun-
dancy. Assuming that we have k bits, which can be represented as a binary vector v, that
we want to encode using n bits, then the encoded data given by linear code is an n vector
s = Gv, where G is the n× k generator matrix G (with entries from Z2) representing the code.
The columns of the generator matrix form a basis for the k-dimensional coding subspace of
the n-dimensional binary vector space. The resulting initial information is now encoded as a
codeword in the form of the vector s.

After the encoding of some codeword, we can now consider that t bit-flip errors occur. These
errors can be described as an error vector e with the same dimension as the codeword. The
new state is given by s′ = s+e. Since we typically do not know what kind of error has occured,
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we perform a measurement using a so called parity matrix P , returning an error syndrome Ps′.
The parity matrix is the dual matrix of the generator matrix and therefore has the property
Ps = 0, which simplifies the error syndrome

Ps′ = P (s+ e) = Pe (3.1)

to be only dependent on the error and not the initial codeword. From the resulting syndrome, a
decoding strategy performs a recovery operation r to return the vector to a codeword P (e+r) =
0. If one gets back to the initial codeword, the decoding was successful.

An example of a classical error correcting code is the three-bit repetition code, where infor-
mation is encoded by copying the value of each bit onto two extra bits {0, 1} → {000, 111},
with {000, 111} being the codewords. Assuming that we want to encode two bits at the same
time, the generator matrix of this code is given as

G =



1 0
1 0
1 0
0 1
0 1
0 1

 . (3.2)

Decoding is the performed following the majority rule, which when applied will set the value
of all bits to the most common value. This way that the original information is preserved, even
if there is an error on a single bit e.g.

v =

(
0
1

)
s=Gv−−−−→
encode



0
0
0
1
1
1


s′=s+e−−−−→
noise



0
1
0
1
0
1


s′+r−−−−→
decode

v =

(
0
1

)
. (3.3)

Following the ECC it is easy to see that errors on two or more bits will lead to the destruction
of the original information

v =

(
0
1

)
s=Gv−−−−→
encode



1
1
0
0
0
1


s′=s+e−−−−→
noise



1
1
1
0
0
0


s′+r−−−−→
decode

(
1
0

)
. (3.4)

Here one can intuitively see, that increasing the numbers of bits used for encoding would de-
crease the probability of incorrect decoding, as more errors are needed to overturn the decoding
majority rule. This is described by the Hamming distance [126], which describes the distance
between two vectors as the minimum number of bit-flips needed to transform one vector into
another. So assuming t single bit flip errors occur on a codeword, it takes the vector a distance
t away from its original value. In order to be able to correct an error, the distance between two
codewords has to be at least 2t + 1. The distance between two codewords is also called code
distance d and represents a rough measure for the error correcting capabilities of the code.
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Figure 3.1 –
Bloch sphere representation of a qubit.
Any pure state of a two level quantum sys-
tem |Ψ〉 (violet) can be represented a point
on a sphere where the north pole represents
the state |0〉 (blue) and the south pole the
state |1〉 (red). The position on the sphere is
defined via the angles ψ and θ, which follow
from the linear coefficients of a pure state.
Taken from [128] under CC0 1.0 licence.

A general description of error correcting codes is given by the [n, k, d] notation, where n is
the number of bits used to represent a codeword, k is the number of encoded logical bits and d
is the code distance. Following this notation the three-bit repetition code would be described
as a [6,2,6] code.

Now that we have discussed how ECC are constructed and function, we need some measures
to compare the quality of different codes. For this, the threshold theorem [51] comes into mind.
Given an ECC with n physical bits and some physical error rate of p, to be considered a viable
code, there must be a probability threshold pth ≤ 1

2 , such that the logical error rate plog satisfies
the condition

plog (n, p) ≤ ce−αd ∀p ≤ pth, (3.5)

where it is assumed that d scales with n. This implies that as long as the physical error rate
is below threshold, it is possible to scale up the ECC towards infinity and thereby decreasing
the logical error to zero lim

d→∞ plog → 0. The actual error threshold depends on the ECC, as well
as the utilized decoder, where generally a threshold as high as possible is desired.

Closely related to this is the pseudothreshold [127], which gives a practical limit for whether
it is advantageous to deploy the ECC or not. By setting the pseudothreshold as the point where
the logical error rate plog equals the physical error rate p, it marks the limit for which the ECC
still manages to reduce the error rate. Going above the pseudothreshold actually increases the
logical error rate compared to the physical rate. The pseudothreshhold value depends on the
code distance and, in the limit of large code distance, recovers the error threshold

lim
d→∞

ppseudo (d) = pth. (3.6)

Now, when we move on to quantum computing and construct quantum error correcting codes
(QECC), the basic block of information changes from a bit into a qubit, which is a normalized
vector of a two-dimensional Hilbert space H2. While bits are in either the ’0’ or ’1’ state, qubits
can exist in coherent superposition of the two states, which are denoted using the Dirac bra-ket
notation as |0〉 and |1〉.

|Ψ〉 = α|0〉 + β|1〉, (3.7)

where α and β are complex numbers and satisfy the condition |α|2 + |β|2 = 1. Measuring the
qubit will project it onto the state |0〉 or |1〉 state with probability |α|2 or |β|2, respectively.
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3.1.1 Quantum errors

In classical systems the only errors that can appear are bit flip errors, which takes a ’0’ state
to a ’1’ state and vice verse. This changes in the quantum case, since the qubit can take on
continuous values for α and β as defined in Eq. (3.7) and therefore has a continuum of states.
It immediately follows that we can have an infinite number of different errors, which takes a
qubit from one possible state to another. This behavior can be illustrated using a geometrical
representation called the bloch sphere [128], where the qubit state is described as

|Ψ〉 = cosθ
2
|0〉 + eiψsinφ

2
|1〉. (3.8)

Using this representation the state of a qubit can now be represented as a point on the surface
of a sphere, specified by the angle θ and φ, as shown in Fig. 3.1. Now looking at qubit errors,
the simplest form is coherent errors, which take a qubit from one point of the bloch sphere to
another. These errors can be described using an unitary operator U(δθ, δφ), which evolves the
qubit state

U(δθ, δφ)|Ψ〉 = cosθ + δθ

2
|0〉 + eiψsinφ+ δφ

2
|1〉, (3.9)

to a new point on the bloch sphere given by the coordinates θ + δθ and φ + δφ, furthermore
highlighting the existence of continuous errors.

This creates a challenge for developing error correcting codes, since the theory of classical
ECC are based on discrete values and thereby wouldn’t be applicable in this situation. To
circumvent this problem it is necessary to digitize the errors, reducing them to a finite set. For
this we want to rewrite the coherent noise 3.8, by expanding it in the Pauli basis. Here we use
the notation

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (3.10)

With this the coherent noise can always be rewritten as a linear combination of the Pauli
matrices [129] and the 2 × 2 identity matrix I

U(δθ, δφ)|Ψ〉 = αII|Ψ〉 + αXX|Ψ〉 + αY Y |Ψ〉 + αZZ|Ψ〉, (3.11)

where αI,X,Y,Z are the linear coefficients. Now, performing a non disruptive measurement over
what type of error has occurred, will cause the superposition to collapse into |Ψ〉 with probability
|αI |2, or X|Ψ〉, Y |Ψ〉, Z|Ψ〉 with probability |αX,Y,Z| [123]. This measurement preserves the
logical state and will described more closely in Sec. 3.3. In any case the previously continuous
error has been reduced to a single error.

X errors The Pauli X errors acts by mapping X|0〉 = |1〉 and X|1〉 = |0〉 and therefore the
action on a general quibt state is given by

X|Ψ〉 = αX|0〉 + βX|1〉 = α|1〉 + β|0〉, (3.12)

because of this, X errors are regarded as the quantum counterpart to the classical bit flip error,
and therefore also generally referred to as bit flip errors.
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Z errors In comparison to the X errors before, the Pauli Z errors do not have a classical
comparison. They act by mapping Z|0〉 = |0〉 and Z|1〉 = −|1〉 and the action on the general
qubit state is

Z|Ψ〉 = αZ|0〉 + βZ|1〉 = α|0〉 − β|1〉. (3.13)

They are generally refereed to as phase flip errors.

Y errors Pauli Y errors can be expressed as a bit flip and phase flip error occurring at the
same time Y = iXZ, resulting in

Y |Ψ〉 = αiXZ|0〉 + βiXZ|1〉 = i (α|1〉 − β|0〉) , (3.14)

which only differs by a global phase shift of i, which cannot be distinguished in quantum
mechanics, since the measurement results are the same [51].

3.1.2 Quantum challenges

Thanks to the digitization of the errors we are able to apply theories from classical coding theory
to develop quantum error correcting code. But compared to the classical case there are some
additional challenges, which prevent us from simply taking a classical error correcting code. the
occurrence of the unique error type phase flip error, as previously discussed. Furthermore, we
also have to deal with wavefunction collapse and the no-cloning theorem for quantum states.

No-cloning theorem The theorem states that there is no unitary operator Uclone, which evolves
a state in the way that

Uclone (|Ψ〉 ⊗ |0〉) → |Ψ〉 ⊗ |Ψ〉, (3.15)

where |Ψ〉 is the state to be reproduced [130]. This makes it impossible to just replicate states
to introduce redundancy in the system, and therefore classical error correcting codes like the
3-bit repetition code cannot be used in the quantum case. But it is still possible to introduce
redundancy into the system, by entangling multiple physical qubit into a single logical qubit

|0〉 → |0〉 = |00〉 = |0〉 ⊗ |0〉 (3.16)

|1〉 → |1〉 = |11〉 = |1〉 ⊗ |1〉, (3.17)

where |0〉, |1〉 are denoted as the logical qubits and |00〉, |11〉 are the respective codewords.
This does not violate the no-cloning theorem, since an arbitrary codeword will be a linear
superposition of these two states and does not carry a cross term.

|Ψ〉L = α|0〉 + β|1〉 6= (α|0〉 + β|1〉)⊗2 (3.18)

Wave collapse In classical computing, it is a simply task to measure a desired bit to determine
its state without compromising it. In the quantum case it is more difficult, since measurement
of the state of a qubit will cause a wavefunction collapse and will erase the encoded informa-
tion. [123]. So we are unable to determine the state of a qubit during the error correcting process
and have to carefully choose measurements, that do not cause a collapse of the wavefunction,
while providing information useful for error correction.

So in order to create a working quantum correcting code, we need to introduce redundancy
via entangling of qubits and perform indirect measurements to detect errors. Assuming we
have three entangled qubits and only consider bit flip errors creating the 3-qubit code, we can
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Error Z ⊗ Z ⊗ I Z ⊗ I ⊗ Z I ⊗ Z ⊗ Z

X ⊗ I ⊗ I -1 -1 +1
I ⊗X ⊗ I -1 +1 -1
I ⊗ I ⊗X +1 -1 -1

Figure 3.2 – Parity measurement for a three qubit code. On the left side the table shows all possible
parity measurement results for single bit flip errors on three bit qubit code. On the right two data qubits are
entangled with an ancilla qubit, which will be measured. The measurement will detect even parity, returning
a +1 eigenvalue if measured and -1 in cases of uneven parity.

perform a projective measurement of the form ZiZj to determine whether the measured state
is part of the codespace |Ψ〉 ∈ C = span{|000〉, |111〉} or in an error subspace |Ψ〉 ∈ F . This
measurement is called a parity measurement and returns a ±1 eigenvalue

Z1Z2|Ψ〉L = Z1Z2 (α|000〉 + β|111〉) = (+1) |Ψ〉L (3.19)
Z1Z2|Ψ〉 = Z1Z2 (α|100〉 + β|011〉) = (−1) |Ψ〉 (3.20)

depending whether the two investigated qubits have an even/uneven parity. The returned
eigenvalues are called the syndrome of the code and tells us if an error has occurred. Since we
measure the parity of the qubit pair, it indicates a bit flip of one of the qubits, without telling
us which qubit. The table in Fig. 3.2 shows the different possible parity measurements and
their respective syndromes for all the possible single bit flip errors for the three qubits code.

In actual experiments the parity measurement is performed by adding an ancilla qubit, which
is prepared to be in state |0〉 and is entangled via a CNOT gate to the two qubits of the parity
measurement as depicted in Fig 3.2. After entangling a projective measurement is performed
on the ancilla qubit to return the ±1 eigenvalue.

This example can be seen as a simple (and not necessarily nonsensical) QECC and, similar
to classical error correcting codes, the properties can be described using the same [[n,k,d]]
formalism. The difference is now that double square brackets are used to indicate a QECC
instead of a classical one. So our example would be a [[3,1,3]] code, since n = 3 qubits are used
to encode k = 1 logical state with a code distance of d = 3, since it needs at least three bit flip
errors to go from one logical state to another. It is important to note that this only applies to
bit flip noise, since phase flip errors cannot be detected in the 3-qubit code.

With these techniques it is possible to create a QECC, which allows active error correction
for both bit and phase flip errors. The first conceived QECC of this kind was the Shor code
or 9 qubit code, which was introduced in a seminal paper in 1996 by Calderbank, Shor and
Smolin [131]. As the name suggest, the code utilizes 9 qubits in order to be able to correct a
single bit flip, phase flip or one of each, occurring on any of the 9 qubits.

3.2 Physical noise

After defining which errors can occur and how they can be detected, we want to define how
they occur, which is defined by an underlying noise model. In this work we will generally only
consider independent and identically distributed (iid) noise models. So we assume that the
noise affects on every qubit individually. In general, the error models are structured in a way
that there is a probability of perr, that an error of any kind appears on a qubit.

We consider three different noise models, which belong to this definition. The first one being
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the bit flip noise, which can be express in operator sum formalism [132] as

ρ→ (1 − perr) perr (XρX) , (3.21)

here perr is the probability that an bit flip error occurs on a qubit and ρ is the density operator.
While this error model is not always a good assumption compared to actual error noises in
experiments, it is extensively used in benchmarking and designing decoders, due to its simplicity.

The second error model is the depolarizing noise model, which also includes phase flip errors
and Y errors, instead of just bit flip errors

ρ→ (1 − perr)
perr
3

(XρX + Y ρY + ZρZ) . (3.22)

As one can see the different error types are equally distributed, each having a chance of perr
3 to

occur. Since Y errors can occur, this model is described as a correlated noise model.
The final noise model is the a combination of depolarizing noise and additional syndrome

measurement errors. As shown in Fig. 3.2 b), the measurement of syndromes involves an
additional ancilla qubit, which can also be subjected to errors. Therefore, it is possible to receive
a false-positive or false-negative measurement. For this error model we use a phenomenological
noise model, where the ancilla qubits are also subjected to depolarizing noise, but propagation
of errors between data and ancilla qubits are neglected.

3.3 Stabilizer codes

Now we want to generalize the procedure we introduced in the last chapter in order to design
QECC more efficiently. This generalization was done by David Gottesman [123] by introducing
a subgroup of QECC called stabilizer codes. This well-studied class of QECC is expected to
play a big part in realizing fault-tolerant quantum computing, especially since the surface code
belongs to this class of QECC [65]. Stabilizer codes introduce operators called stabilizers Si,
and are defined by the following properties.

First one being, that all stabilizers must return an eigenvalue of +1 when applied to a logical
state |Ψ〉L. This means that each stabilizer has the action Si|Ψ〉L = +1|Ψ〉L for every possible
state of |Ψ〉L ∈ C. This is generally described as the operators stabilizing the logical state.

Second one being, that stabilizers are elements of the Pauli group Si ∈ Gn, where Gn is
the Pauli group over n-qubits. Therefore, as a property of the Pauli group, two elements
Gα, Gβ ∈ P either commute [Gα, Gβ] = 0 or anti-commute {Gα, Gβ}. If the elements anti
commute they also share an eigenbasis. From this follows that if a stabilizer anti-commutes
with an error {S,E} = 0, it would return an eigenvalue of -1

Si (E|Ψ〉L) = −ESi|Ψ〉L = −E|Ψ〉L, (3.23)

indicating the existence of an error, whereas if the stabilizer and error commute [S,E] = 1, an
eigenvalue of +1 is returned

Si (E|Ψ〉L) = ESi|Ψ〉L = E|Ψ〉L (3.24)

and no error is detected.
And finally, all stabilizers have to commute with each other, so that [Si, Sj ] = 0 for all i and

j. This allows simultaneous measurement of stabilizers. With these properties the stabilizers
form an Abelian subgroup Sn ⊂ Gn.

43



3 Quantum error correcting codes

So from this follows that for a [[n,k,d]] QEC we can measure m = n− k stabilizers, since the
number of measurements is determined by the redundancy of the system, ergo the number of
ancilla qubits m. This now presents us with the task to construct the stabilizer operators in a
way that we get a minimal representation of the stabilizer group

S = 〈S1, S2, ..., Sm〉 , (3.25)

so that no stabilizer Si can be expressed as a product of the other elements Sj . Applying these
stabilizer measurements, then again returns a syndrome of the size m.

Based on these properties the previously introduced parity measurement would be a stabilizer
operator S1 = Z1 ⊗ Z2 and S2 = Z2 ⊗ Z3 for the [[3,1,3]] code. It fulfills all conditions,
since it consists solely of Pauli operators, stabilizes all logical states and commutes with itself
[S1, S2] = 0.

Additionally, we can define operators which act on the logical states of the code. An [[n,k,d]]
code has 2k logical Pauli operators, since for each logical qubit, there exist a logical Pauli Xi

and Zi operator. Each pair of logical operators commute with all code stabilizers S and at the
same time they anti commute with each other so that,[

Xi, Zi
]
+

= XiZi + ZiXi = 0, (3.26)

for all logical qubits i.
Since the logical operators commute with the stabilizers, it immediately follows that any prod-
uct of a logical operator Li and a stabilizer Sj will also be a logical operator, this is clear from
the fact, that a stabilizer maps a logical state onto its +1 eigenspace. Therefore

LiSj |Ψ〉L = Li|Ψ〉L, (3.27)

meaning that the logical operators are not uniquely defines.

3.4 Topological surface codes

While we now have a general description for the construction of QECC, the challenge is finding
a commuting set of stabilizers that enable the detection of errors without disturbing the encoded
information. Finding these sets is a non-trivial problem and requires special code construction
to find the stabilizers.

To this end we are going to discuss topological surface codes [124], which belong to the
stabilizer codes and use two dimensional qubit lattices to protect the quantum information.
This is achieved by defining topological (non local) logical operators, so that code space solely
depends on the topology of the lattice, resulting in a code distance equal to the lattice size
d = L.

Additionally, these codes only use local stabilizers, meaning that the stabilizer only use
nearest-neighbour interactions. This allows for easier implementation in the case of surface
codes [65] and has already been implemented, as shown by Google’s Sycamore processor [57],
which implemented nearest neighbour interaction to ensure forward compatibility with surface
codes, and also the IBM processors’ implementation is based on a hybrid surface/Bacon-Shor
code [133]. In this section we will discuss the two examples of topological surface codes, these
being the toric code and the RSC.
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Figure 3.3 – Topology of the toric code. The logical qubits are encoded as non-trivial loops running around
the torus (a). On the lattice the qubits (white circles) are placed on the links of a square lattice with periodic
boundary conditions allowing the definition of 4 different logical operators (b), spanning from one side of the
lattice to the other. These being two Pauli-X operators (blue) and two Pauli-Z operators (red). Stabilizers
consist of 4 Pauli operators, forming either a plaquette (blue) or a vertex (red) on the lattice (c). Plaquette
and cross operators commute with each other, since they can only overlap on two qubits (blue/red).

3.4.1 Toric code

The toric code was the first example of such a topological surface code and was introduced in
1998 by Kitaev [124]. The name stems from the fact, that it is defined on a square lattice forming
a torus, which is just a square lattice with periodic boundary conditions. As a topological
surface code, the logical qubits correspond to non-local degree of freedom [124] and can be
understood as non-trivial loops around the torus as seen in Fig. 3.3 a). Since we can draw two
non-trivial loops around the torus (one around and one trough the hole), we can encode two
logical qubits in the toric code.

The qubits to encode the logical state are placed on the links of the lattice, so that a lattice
of size L would contain 2L2 qubits as depicted in Fig.3.3 b).
The stabilizer operators of the toric code are locally defined and consist of a product of 4
operators, these being either 4 X operators to form a vertex operator SV or 4 Z operators for
a plaquette operator SP and are defined as

SV = Xu ⊗Xd ⊗Xl ⊗Xr, (3.28)

SP = Zu ⊗ Zd ⊗ Zl ⊗ Zr, (3.29)

where u, d, rl, r stand for up, down, left, right, respectively. The names of the operators are
given based on the geometric pattern they display on the lattice as shown in Fig. 3.3 c). Based
on the lattice we can define L2 different plaquette and cross operators.

To make sure that we actually get a stabilizer code, we have to confirm that all stabilizer
operators commute with each other. Since X operators and Z operators commute trivially with
themselves [Xi, Xj ] = [Zi, Zj ] = 0 for all i, j, it immediately follows that all plaquette and
vertex operators commute with themselves [Pi, Pj ] = [Vi, Vj ] = 0. This leaves the commutation
of the plaquette and vertex operators, which also becomes trivial in the case, that the operators
do not overlap since [Xi, Zj ] = 0 for i 6= j. The other case is that the operators coincide on
a qubit, causing it to pickup a -1 from the anticommutation of the Pauli operators [Xi, Zi],
but since the plaquette and vertex can only overlap on two qubits at the same time, the sign
cancels out. Therefore we have 2L2 commutable stabilizer operators, which define our code.

Now that we have defined the stabilizers, one can define the logical operators of the toric
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3 Quantum error correcting codes

Figure 3.4 – Trivial and non-trivial loops on the toric code. Applying stabilizer operators on the lattice
can cause the destruction (red) or creation (blue) of trivial loops. Conversely, non-trivial loops can only be
deformed by the stabilizer operator. In all cases, applying stabilizers will preserve the same logical state.

code as the product of strings of Pauli operators on the lattice.

X1 =
∏

horizontal

Xi Z1 =
∏
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Zi (3.30)
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vertical

Xi Z1 =
∏

vertical

Zi (3.31)

It is necessary for these logical operators to commute with the stabilizers, which follows
directly from the commutation relation already shown before. Applying a stabilizer to a logical
operator can be denoted as a deformation of the loop as shown in Fig. 3.4, which returns a
loop with the same topological property. So using this behavior it is possible to dissolve trivial
loops, while non-trivial loops always remain. This means that the representation of the logical
operator is not unique and also that trivial loops do not change our logical code space. The
minimal logical operators that can be defined contain L Pauli operators, therefore giving the
toric code a code distance of L and defining it as a [[2L2, 2, L]] code.

Now we can introduce some bit and phase flip errors on the toric code, and as explained in
Section 3.3 we apply syndrome measurement based on the stabilizers to detect these errors.
Depicting the errors with the associated syndromes on the lattice, one can clearly see that
syndromes are formed at the ends of error strings as seen in Fig. 3.5, since stabilizers in the
middle of the string always measure two errors at once and therefore do not return a syndrome.
This also means, that we cannot measure error strings forming loops. This does not pose a
problem for the correction problem, as we have seen before that trivial loop do not change the
logical state and therefore do not require correction in the first place. The other possibility
would be errors forming non-trivial loops, thereby immediately changing the logical state. Since
this would require error strings of length ≥ d, they are suppressed as the probability that these
errors occur decreases with code distance pderr according to the threshold theorem Eq. (3.5).

As mentioned in the error correction chapter, based on the measured syndrome, one would
apply a decoding algorithm that returns a recovery operation to correct the errors and maintains
the logical state.

RE|Ψ〉L = |Ψ〉L (3.32)

Since we do not know how the error string is actually located, in many cases the correction
will introduce loops on the torus as seen in Fig. 3.5, where introducing a trivial loop does not
change the logical state, whereas if a non-trivial loop is introduced, the logical state changes
and the correction has failed. Therefore it is important to find a decoding strategy, which is
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Figure 3.5 – Recovery operation on the toric code. Errors on the QEC form error strings (blue) returning
eigenvalues of -1 (filled) at their ends during syndrome measurements, while the remaining syndromes return
eigenvalues of +1 (empty). To correct the error, a recovery operator (orange) in the form of an Pauli string
going from one square to another is applied. If the error and recovery string form a trivial loop (a) the
decoding process was successful, and if a non-trivial loop has formed (b) the logical state has changed and
the decoding has failed.

able to find the most probable correct recovery operation. Specific examples of decoding will
be discussed in the following chapter.

3.4.2 Rotated surface code

While the toric code is a good theoretic model for topological error correcting codes, the
periodic boundary conditions are not suitable for practical implementation. So by replacing
the periodic boundary condition with open boundaries, the toric code is transformed into the
surface code [65, 134]. The stabilizers of the code still remain as in the toric code, carrying over
the plaquette and vertex stabilizers. But one has to be careful at the boundary, since some
stabilizers will now only consist of 3 physical qubits as shown in Fig. 3.6. Constructing this
code with a code distance d, d2 + (d− 1)2 qubits are needed, instead of the 2d2 qubits in the
toric code. This comes with the limitation that we can only define a single logical qubit on the
lattice, making the surface code a [[d2 + (d− 1)2 , 1, d]] code. The loss of one logical qubit is a
consequence of the boundary of the code. Focusing on the logical X1 operator we can define
it as a string running from the top to the bottom border of the lattice, fulfilling the condition
in Eq. (3.27). Trying to define a similar logical operator X2 running from the left to the right
border (like in the toric code) would now introduce errors in the code and would no longer
convert a logical state into another X2|Ψ〉 6= |Ψ〉. So the logical operators can only be defined
as a string going from one smooth border to another as shown in Fig. 3.6 a).

This version of the surface code was then further developed by considering a rotated version of
the code called the rotated surface code RSC. This version has the advantage of removing qubits
at the edges of the surface code, reducing the number of needed qubits, while still having the
same code distance d. One even can achieve an higher pseudothreshold under deploarizing noise
compared to the surface code [125], because of the data qubits and syndrome measurements.
While the RSC still utilizes the same stabilizer operators as the toric code and the surface code,
they can be visually represented as a checkerboard on the code as shown in Fig. 3.6 b). Also
looking at the border of the code, the smooth border from before remains, while the rough
borders have transformed and now consists of 2-qubits stabilizers. This allows us to define the
same logical operators as before and to classify the RSC as a [[d2, 1, d]] quantum code.

Since the RSC still carries the advantages of a topological surface code of only utilizing nearest
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Figure 3.6 – Surface code representation on the square lattice. Removing the periodic boundary conditions
from the toric code leaves smooth and rough boundaries on the surface code (left). This causes the X
stabilizer (blue) to only contain 3 qubits in the parity measurement at the upper and lower border, while still
having 4 qubit stabilizers at the left and right border. The same is true for the Z-stabilizer (red), but with
the rough border being the left and right. Cutting out a square from this code (violet) and rotating it by 45◦

returns the RSC (right). The stabilizers are represented as the checkerboard with X stabilizer containing 2
qubits at the upper and lower border and Z stabilizers with 2 qubits at the left and right border.

neighbors, while also having no periodic boundary conditions and only needing a relatively small
number of physical qubit per logical qubits, this QEC is the most prominent candidate for an
actual implementation for fault-tolerant quantum computing and has already been implemented
on actual hardware to suppress quantum errors [52].
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Error correction on topological
surface codes

Chapter

4

With the topological surface code now established, we can encode a logical qubit by utilizing
several physical qubits arranged on a lattice. We are also capable of extracting information
about potential errors in the form of a syndrome. The subsequent step involves decoding the
measured syndrome to perform a recovery operation as indicated in Eq. (3.32). Numerous
decoding algorithms have been developed for this purpose, varying in accuracy and speed of
the decoding process.

In this chapter, our focus is on comparing the effectiveness of various decoding strategies
on surface codes. To achieve this goal, we will begin with a brief discussion of the numerical
methods used to extract the decoding accuracy and decoding speed from a chosen decoding
algorithm, as well as how to extract the error threshold and pseudothreshold in the following.

Although various decoding strategies exist, we will concentrate on three decoders for surface
codes. These being the minimum-weight perfect matching (MWPM) and union find (UF) de-
coders and the hierarchical decoder. The MWPM and UF decoders are well-known algorithmic
decoders in the field of QEC and, therefore, serve as benchmarks. Conversely, the hierarchical
decoder presents a two-step decoding process. The initial phase of error reduction is accom-
plished by a decoder based on machine learning. This step drastically minimizes the size of the
error. Subsequently, an algorithmic decoder completes the error correction process.

In the first step, these decoders are tested under optimized conditions on the toric code
under depolarizing noise. The decoding accuracy of various decoders is established by utilizing
the error threshold, whereas the decoding performance at small code distances is reported
by using the pseudothreshold. Additionally, the decoding speed is explored in terms of time
scaling with the code distance. This problem is further extended by including faulty syndrome
measurements in the noise model, as well as changing the QECC from the toric code to the
RSC for a more realistic scenario.

While the decoding strategies of the algorithmic decoders are well-known from their initial
design, the hierarchical decoder carries the ‘black box’ problem of ANNs [135]. From the results,
we can see that the hierarchical decoder has successfully learned a decoding strategy, but we
do not know what kind of strategy it has learned. To further investigate this issue, we examine
applied corrections and perform case studies focused on correcting specially designed errors. It
should be noted that this chapter draws heavily on a previous publication by the author of this
thesis [P1].
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4.1 Numerical methods

To evaluate the performance of different decoders, it is necessary to be able to compute different
observables for a given physical error rate perr and code distance d. The observable can be
obtained via Monte Carlo methods [136], enabling us to gather statistics by generating random
syndrome-error pairs repeatedly.

Errors can be efficiently generated by using direct sampling [137] based on the investigated
noise model. The corresponding syndrome can then be obtained via matrix multiplication of
errors with the generator matrix as described in Sec. 3.1. For each error syndrome pair, we
apply the decoding algorithm to perform a correction and check whether all logical operators
return 0. If this is not the case, the correction has failed, as the logical state has changed
compared to before. The original logical state is not relevant for the decoding process, as
the syndrome only depends on the errors, as shown in Eq. (3.1). Thus, it only matters if
the logical state has changed. After correction, the measured outcomes of the error syndrome
pairs, denoted by yi, are recorded. The estimated value of the observable y and the respective
standard deviation follows as

y =

∑
yi

N
∆y =

1

N

√√√√ N∑
i=1

(y − yi)
2. (4.1)

Observables of interest include the logical error rate plog, decoding speed, and number and type
of applied corrections.

To determine the error threshold, we must first determine the logical error rate for a wide
range of physical noise and code distances. For surface code with local error models, the error
threshold rate can be mapped to zero-temperature phase transition of a three-dimensional
random-plaquette gauge model on classical spins [54]. Therefore, the behavior of the logical
error rate corresponds to critical behavior of that spin model [138] and can be described by

plog ∝ (perr − pth) d1/ν0 , (4.2)

where ν0 is the scaling exponent corresponding to the universality class of the model. It is easy
to see that if the physical error rate is equal to the threshold error rate, the returning logical
error rate is independent from the code distance, indicating a crossing of all measured logical
error rates at that point. To account for systematic finite size scaling effects, we can fit our
data using some scaling function f̃ and the ansatz

pl = dζ/ν0 f̃
(

(p− pth) d1/ν0

)
, (4.3)

and thereby extracting the critical exponents. According to the ansatz, plotting f̃
(
(p− pth) d1/ν0

)
against pld−ζ/ν0 would result in a data collapse, plotting all data onto a single curve. The fitting
and data collapse is done using the fssa package [139].

The final step involves identifying the pseudothreshold, which necessitates locating the point
where perr = plog. These points are approximately determined by finding the crossing point
between the functions describing the logical error rate and the identity line. The logical er-
ror function is approximated as polynomial of first degree running through the data point
encompassing the crossing point. The crossing point is then given

ppseudo =

(
p2

err,1 − p2
err,2

)
−
(
perr,1plog,2 − perr,2plog,1

)
plog,1 − plog,2 − perr,1 + perr,

, (4.4)
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Figure 4.1 – Decoding process of the MWPM on the toric code. In (a) a toric code of size d = 5 with
measured X syndromes (filled squares) is visualized. The MWPM extracts the syndromes to construct a
fully connected network between them, as shown in (b), where each edge has a weight corresponding to the
Hamming distance between the syndromes. The recovery operation is achieved by selecting the edges with
the smallest total sum of weights as shown in (c).

where plog,i are the logical error rates of the points left and right of the crossing point and perr,i
are their respective error rates.

4.2 Minimum-weight perfect matching

One method of decoding is the minimum-weights decoding, which seeks to identify the smallest
error associated with the measured syndrome. For general quantum codes, this minimum
decoding has no known solution, since it is known to be NP-complete [140–142]. For topological
codes, the Edmond’s blossom algorithm [143] can efficiently calculate the minimum matching.
This algorithm constructs a fully connected graph structure from the measured syndromes and
identifies a perfect matching of the syndromes with the minimum-weight, which is illustrated
in Fig. 4.1. Therefore, the decoder is referred to as the minimum-weight perfect matching
(MWPM) decoder.

A straight forward implementation of the blossom algorithm can find a perfect matching in
O(n2m) time [144], where n is the number of nodes in the graph and m the number of edges,
in case of a complete graph the number of edges would be m = n(n−1)

2 allowing us to write the
scaling as O(n4). Since the node of the graph are formed by the measured syndromes and the
number of syndromes in a surface code is generally ∝ d2, we can write the scaling depending
on the code distance as O(d8).

Thanks to improved implementation of the Blossom algorithm, could be gradually reduced.

Figure 4.2 –
Maximum probability vs minimum-weight. 2D
toric code example with 4 measured syndromes (filled
squares). Two possible recovery operations are shown
with different homology classes. Both recovery opera-
tions are build from two recovery strings with the total
length l = 5. One of the recovery operations consists
of the recovery strings l = 3 and l = 2 (orange) and
the other operation of l = 4 and l = 1 (blue). Both
operations are degenerate and are visualized with an
example chain (filled circle). Other possible recovery
chains can be freely chosen from inside the highlighted
areas (semitransparent rectangles).
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Figure 4.3 – Performance of the MWPM decoder under bit flip noise. In (a) the plot shows the logical
error rate depending on the physical noise for varying code distances. The blue curve shows the logical error
rate in the thermodynamic limit. The insert shows the data collapse of the threshold plot data. In (b) the
plot shows the decoding time for perr = 0.1 depending on the number of qubits. The decoding time is shown
for PyMatching version 0.7 and 2.1.

In this thesis we will utilize the MWPM implementation called PyMatching, examining the
two distinct versions, namely v0.7 [145] and v2.1 [146]. The former was employed for data
generation during the initial stages of this dissertation, while the latter promised a significant
reduction in decoding time while preserving the same error threshold.

We determine the error threshold of this decoder by generating 105 error-syndrome pairs
under bitflip noise for perr ∈ [0.05, 0.15] and d ∈ [7, 127] as shown in Fig. 4.3 (a). Using the
finite size ansatz 4.2 this returns pth = 0.1032 for the PyMatching v.2.1, which is consistent with
the literature threshold value for MWPM [147]. Doing the same calculation for PyMatching
v0.7 as seen in App. B, Fig. B.1, returns the same error threshold of pth = 0.1032. This value is
close to the optimal threshold popt = 0.1094 [148], which is determined by the critical point of
the two-dimensional Random Bond Ising Model on the Nishimori Line. The difference between
the value comes from the fact, that the MWPM does not account for error degeneracy. In
some rare cases, two different homology classes of errors producing the same syndrome have
the same minimum error length, but are not equally likely to occur. Therefore, the MWPM
might not chose the most likely error [149]. An example of this can be seen in Fig. 4.2, where
two different corrections for a syndrome are presented, one made out of a l = 2 and l = 3
chain and the other one made out of a l = 1 and l = 4 chain. For the MWPM both options
have the same total weight of 5, so it would choose one of them randomly. Looking closer
at the degeneracy of the recovery operations, it shows that the 3-2 length recovery operation
has a 3-folded degeneracy, while the 4-1 length recovery operation has a 6 folded degeneracy.
Since there are more configurations available for the correction, the 4-1 correction has a higher
probability to be the right one.

After specifying the error thresholds, we will compare the decoding speed. Fig. 4.3 (b) depicts
a decoding speed comparison between PyMatching v0.7 and v2.1. Both curves demonstrate a
polynomial scaling of time, scaling almost linear with the number of qubits. Specifically, the
time scaling is O1.01 and O1.15 for version 0.7 and 2.1 of PyMatching, respectively. Additionally,
PyMatching v2.1 offers a notable decoding speed increase, surpassing v0.7 by a factor of ≈ 13
at d = 127 and ≈ 2 at d = 7. These time benchmarks were generated using the Intel Xeon
Platinum 8168 CPU with two sets of 24 cores, running at 2.7 GHz.
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4.3 Union find

Figure 4.4 – Union find decoding process visualized on the toric code. It starts with the initialization stage
(a), where every single syndrome (filled blue squares) is initialized as a cluster (orange). This is followed
by the growth stage, where every cluster grows by half an edge (b). This is repeated until all clusters are
merged into clusters with even numbers of syndromes. Then a peeling decoder is applied to the clusters (c),
removing all edges until only a recovery operation (blue edges) remains.

4.3 Union find

Another decoder used in this dissertation is the union find decoder (UF) [150], which utilizes
the key insights from Union-Find data-structure algorithm [151, 152] to design a decoder that
has near-linear running time in the worst case given by O (nα (n)). Here α is the inverse of the
so called Ackermann function [152]. If the number of qubits used is smaller then the number
of atoms in the universe, then α (n) ≤ 3 and can be considered as a constant [150].

The general idea of the UF can be described as a cluster growth algorithm. In the initial
state every syndrome will be marked as the root of its own cluster. The next step is the growth
step, where every cluster will grow over time. If the connection from one syndrome to the next
is considered as a single edge, then the connection between syndrome and a qubit will be a
half edge. During the growth step every cluster with an odd number of syndrome inside will
expand by a half step. If two different clusters become connected, they will merge into a single
cluster and therefore stop growing. If no more even clusters remain, all full grown edges are
collected and passed to the peeling decoder [153].

The peeling decoder will start by choosing an arbitrary spanning tree of the cluster, which
contains no cycles and spans all vertices. This tree is then being systemically reduced, starting
at a leaf edge (u, v), according to the following rule. Erase the edge from the cluster and if
u = 1 then set the edge value to 1 and flip the value of v. In case the value of u = 0, then just
the edge value is set to 0.

We have implemented a weighted version of the Union Find decoder [S1], which always
grows the cluster with the smallest boundary and compare it to the PyMatching Decoder.
Performing the same threshold analysis as for the PyMatching decoder reveals an error threshold
of pth = 0.098 as shown in Fig. 4.5 (a) matching the literature [150], which is about 5% below
the PyMatching threshold. Comparing the decoding speed in Fig. 4.5 (b), the UF decoder
returns an almost linear scaling with O(d2) which is almost the same scaling as the PyMatching.
Comparing the decoding speed directly, UF beats the MWPM by a factor of ≈ 1.4 for d = 3,
while being slower at d = 127 by a factor of ≈ 1.6.
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Figure 4.5 – Performance of the UF decoder under bit flip noise. In (a) the plot shows the logical error
rate depending on the physical noise for varying code distances. The blue curve shows the logical error rate
in the thermodynamic limit. The insert shows the data collapse of the threshold data. In (b) the plot shows
the decoding time for perr = 0.1 is shown depending on the numbers of qubits. The decoding time is shown
for the UF decoder (red) and the PyMatching v2.1 (blue).

4.4 Hierarchical decoder

The basic idea of a neural decoder is using the syndromes as an input and returning an ap-
propriate correcting scheme. In the case of the toric code, the input would therefore be the
two-dimensional image of the syndrome measurement, and as output one would expect similar
the two-dimensional map of the correction. Because of this structure, this problem can be
viewed as an image classification problem, a common field for machine learning application.

The idea of a neural decoder is well established and uses different approaches and network
architecture. It has by shown that neural decoder are able to increase the error threshold
compared to classical decoders, especially when decoding on correlated noise. However, a
common disadvantage is that these neural decoders only work on small code distances [79–81],
which is easily understood as a training problem.

Considering a neural decoder on a toric code with bit flip noise that takes the whole syndrome
as input and gives a correction for every single qubit, then it has to learn the correct pairing
between the syndrome space of 2d and the correction space of 22d. Even considering that the
network realistically only needs to learn small parts of it, the increasing difficulty leads to the
need for longer training times and larger networks, until the training completely fails due to
training problems like the vanishing gradient described in Sec. 2.1.1.

This then automatically limits the application range of the decoders, since it is desirable
to increase the code distance as much as possible in order to achieve fault-tolerant quantum
computing. Because of this we designed a neural decoder with the goal of full scalability in
mind. This means a machine learning based decoder, which can be trained once on a small
code distance and then be applied on arbitrary large systems.

4.4.1 Implementing scalability

First, the difficulties in designing a fully scalable neural decoder are considered. At the core of
the decoder is a neural network, a structure that cannot be scaled on its own without having
to retrain the network. As soon as the input or the output changes in size, a fully connected
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4.4 Hierarchical decoder

Figure 4.6 – Translational property of the toric code, showcasing that two different syndromes have
a certain probability of occurrence, if the error generating the syndrome only differs by some translation
operation Tδ.

network has to be retrained, which is associated with the problem of exponentially increasing
syndrome and correction space.

As seen in Sec. 2.1.3, convolutional layers themselves are translation invariant regarding the
input and can therefore be applied to any input size, where the output in form of a feature also
scales with the dimension of the input. This makes them a prime candidate to realize a scalable
decoder. The problem is that while the convolutional layers themselves are scalable, the CNN’s
normally are not. As soon as the convolutional layer is connected to a fully connected layer,
the network loses the translation invariance.

So in order to avoid that, we first want to exploit the translation invariance of the toric
code. This means that error strings F which only differ by a translation of T have the same
occurrence probability if the respective syndromes differ by the same translation T

pS(F) = pTδS′
(
TδF ′) . (4.5)

So by exploiting the translation invariance it is possible to reduce the syndrome and correction
space and therefore be able to train for higher code distances [154]. But this is not enough to
achieve a scalable decoder, since the input and output still scale with the code distance.

Because of this we want to set our training goal for the neural decoder to learn the marginal
probability of a single qubit, instead the whole correction string

pF (Xj) =
∑

i∈E(Xj)

p (Ei) . (4.6)

The probability that a specif error occurs on a selected qubit is given by the sum of all prob-
abilities of the error for all suitable error strings. This means that we reduce the difficulty of
learning the entire correction string space of 42L2 to learning a suitable correction of a single
qubit with the 4 possible corrections of I,X,Z, Y . Once we have learned the probability dis-
tribution for a single qubit, we can transfer this learned knowledge thanks to the translation
invariance of the toric code.

Now that the output size is fixed in space, we have to take care of the input space of the
decoder. Since the goal is to operate quantum computing devices far away from the error
threshold, we assume that long range correlation between syndromes are suppressed. This
allows us to limit the input of the decoder to a 2-dimensional mask around the selected qubit.
The mask can then be shifted around to collected the correction probabilities of all qubits in
the system, making the network scalable. For the neural network at the core of the decoder,
we then simply use a fully connected ANN, as shown in Fig. 4.7
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Figure 4.7 – Construction of the input data and neural network, demonstrated on a toric code with
a random syndrome. Measured X/Z syndromes (filled blue/red) are assigned the values +1/-1 and not
measured syndromes (empty squares/crosses) are assigned 0. Selecting a single qubit adjacent to a measured
syndrome, all syndromes in the vicinity (violet square) are used as input. Passing the input to an ANN
returns the probability values for all 4 possible correction values for the selected qubit. Taken and modified
from [P2].

This structure is equivalent to using multiple convolutional hidden layers, where the kernel
of the first layer is given by the mask and all further kernels have size of 1x1. The final output
corresponds to 4 feature map containing the correction probabilities of every single qubit.

A detail to consider is that the toric code has a unit cell with a basis of two. So while the
translation properties of the toric code allows us to easily shift between qubits of the same
basis, this does not apply to qubit of different basis indices. This can be easily understood
by looking at the syndromes of an Y error on the qubits of different basis indices as shown in
Fig. 4.8. When using these syndromes around these qubits, the order of the X and Z errors
would be switched. This problem is solved by assigning the X & Z syndromes values of +1&-1
respectively. With this our decoder should be able to distinct the two different cases and learn
the corresponding output.

4.4.2 Decoding process

We now have an ANN that we can train on an arbitrary code distance and then deploy it on
any other code distance, as long as the code distance is larger then the input area.

When deploying the ANN as a decoder the marginal probability of the correction of every
single qubit is evaluated and collected. Afterwards, a correction is applied to the qubits based
on the highest correction probability. This is done in a one-shot fashion, meaning that all the

Figure 4.8 – The basis of the toric code. Placing an Y error (blue/red) on the first qubit of the basis
(a) results in measured X syndromes (blue) left and right from the qubit and measured Z syndromes (red)
above and below the qubit. Placing an Y error on the second qubit (b) of the basis results in a switch of the
measured syndromes with the X syndromes being above and below and the Z syndromes left and right from
the qubit.
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Figure 4.9 – Applied recovery operation from the neural decoder. On the left side syndromes on the
toric code are shown, containing X (blue) and Z (red) syndromes. Using the neural decoder part of the
hierarchical decoder returns a recovery operation which is applied in one-shot to the QEC. The applied X
(blue) and Z (red) corrections are presented on the qubits (filled circles). Two error chains of l = 1 and l = 2
are corrected completely leaving no syndromes behind, while the error chain with l = 3 has been reduced to
a chain of l = 1, resulting in a new syndrome.

correction of every single qubit is applied at the same time.
This decoding process does come with two disadvantages. First of all, since the ANN only

learns the marginal probabilities of the corrections, it has problems with learning syndromes
with multiple shortest recovery paths. When evaluating a syndrome that has two shortest paths
of recovery as shown, the marginal probability would split into pI = 0.5 and pX = 0.5. This
means that the output of the ANN depends on random symmetry breaking in the training and
would favor and slightly favors one probability over the other. This means that it could learn
to always correct the lower qubit or, since the probability are independent from each other, to
correct all the qubits and thereby failing to correct the error.

This problem becomes more apparent when looking at syndromes with 3 or more shortest re-
covery paths. Considering only the two measured syndromes, the degeneracy can be calculated
as
(
l
lv

)
, where l is the length of the correction chain and lv is the number of vertical links inside

the correction chain. Then the most probable correction of the qubits not directly adjacent to
the syndrome is the identity operation. This means that the ANN should always learn not to
perform any correction on these qubits and therefore is not able to correct these errors.

Because of this, it is not necessary to evaluate every single qubit in system, instead we can
focus on only trying to correct qubits, which have an inherently high probability of carrying
an error, these being qubits directly adjacent to syndromes. This allows us to speed up the
decoding process since we only need to evaluate a fraction of the actual qubits, but also limits
us to only correcting error strings of l = 2.

This is now part of the second problem, namely that after applying the recovery operation
given by the neural decoder, it is not necessarily guaranteed that a logical code word is recovered
as shown in Eq. (3.32). In order to correct error strings of length three or more, we could run
the neural decoder multiple times, trying to shorten the error in every iteration. But even then,
the decoder could have failed to learn to correct syndrome with two equally probable recovery
strings. These syndromes persist through every application iteration of the decoder. So instead
we will apply a classical decoding algorithm, like the MWPM or UF decoder, which guarantees
that a logical code word is returned. No special choice is needed for the second decoder, since
the updated syndrome S′ follows directly from the applied first correction

S′ = PR + S, (4.7)

with P being the parity matrix and S the initial syndrome. Any decoder which can be used to
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training parameters
batch size 512

epochs 106

learning rate 0.001
optimizer ADAM

loss function categorical cross-entropy
training code distance dtrain 7

Table 4.1 – Hyperparameters used to train the hierarchical decoder on the toric code. An epoch corresponds
to the number of generated training batches for the training.

decode the toric code is suitable as a secondary decoder. Since we apply two different decoder
one after the other, we call it hierarchical decoding and refer to the first part as a neural decoder.

Lazy decoder We will additionally introduce another primary decoder for the hierarchical
decoder, based on the Lazy Decoder [155]. This lazy decoder will sweep over the lattice and
apply all possible corrections of l = 1 and leave all other syndromes alone. Therefore, a
secondary decoder is still needed. The lazy decoder will decode the X and Z errors separately,
so it will not take Y errors into account. The idea of this decoder is to correct these short
range errors as fast as possible, reducing the work of the secondary decoder. The increase of
the decoding speed comes with the trade-off an decrease in the logical accuracy.

4.4.3 Training of the decoder

The training of the decoder is done in a supervised learning fashion following Sec. 2.2, utilizing
the ADAM optimizer. Because we have reduced the output of the ANN to the probabilities
of the different possible errors, which is a classification problem, we use the categorical cross
entropy loss function 2.15.

Because the generation of error syndrome pairs is computational cheap, we can train the
network on newly generated trainingsdata for every training step instead of creating one fixed
training batch. This reduces the chance of overfitting significantly, as it then only depends
on the size of the mini-batches. The exact parameters of the training are listed in Tab. 4.1.
These parameters were used to train various decoders under the same conditions and have been
determined via grid search.

It is important to note, that the training batches have been carefully constructed to contain
a significant amount of non-trivial correction labels. This is done because using all qubits to
generate the input would result in a training batch with an average of perrNbatchsize non-trivial
correction labels. This can lead to underfitting in the training process, where the network just
learns to always apply the trivial correction.

Therefore, we choose to only include qubits in the training data that are directly adjacent
to measured syndromes. As each syndrome is a product of four qubits, this guarantees us that
at least on qubit carries an error. Combining this with only taking into account the qubits
connected to one randomly chosen syndrome per generated error-syndrome pair, we achieve a
non-trivial recovery operation rate of > 25% in the batches.
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Figure 4.10 – Benchmark measurement for different controllers. In each panel the logical accuracy is
plotted against the error probability of the depolarizing noise. The curves are colorcoded for the code
distance with the blue curve showing the thermodynamic limit. The inserts show the data collapse of the
threshold plot data. The 4 different decoders showcased are the MWPM (a), UF (b) and their hierarchical
decoder counterparts ML(5) + MWPM (c) and ML(5) + UF (d).

4.5 Depolarizing noise toric code

After defining the decoders of interest, we want to test their performance under depolarizing
noise 3.22. For this we first compare the performance defining observables of the decoders,
namely the error threshold, pseudothreshold and decoding speed. Then we will tackle the black
box problem of the neural networks and investigate the decision making of the hierarchical
decoder, trying to understand how it chooses the actual corrections.

4.5.1 Benchmarking of the decoding accuracy

We are going to determine the depolarizing error threshold for the MWPM and UF thresholds
as well as different combinations of the hierarchical decoder. For this we train two different
neural decoders, the first one has am input mask of size l = 5 and the second one of l = 7.
Because of this the neural decoders will be denoted as ML(5) and ML(7), respectively. The
ML(5) consists of 3 hidden layers, with 128 hidden nodes each, resulting in 40,068 tuneable
parameters. The ML(7) consists of 5 hidden layers with 512 hidden nodes each, resulting in
more then > 106 free parameters. As the decoding capabilities should increase with the size of
the ANN, the ML(7) aims to increase the threshold as far as possible, while the ML(5) tries to
find a trade off between decoding accuracy and speed. The exact structure of the networks is
listed in Tab. 4.2. Additionally, we will also benchmark the Lazy + UF hierarchical decoder.

The performance of the decoder is tested by calculating the logical error rate using Monte
Carlo methods described in Eq. (4.1) over 105 error syndrome pairs for every data point and
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` = 5 network parameters (optimal wall-clock time)
hidden layers 3

hidden nodes per layer 128
total number free parameter 40 068

activation functions hidden layer Relu
activation functions output layer Softmax
` = 7 network parameters (optimal error threshold)

hidden layers 5
hidden nodes per layer 512

total number free parameter 1 103 364
activation functions hidden layer Relu
activation functions output layer Softmax

Table 4.2 – Depolarizing noise networks. The upper panel lists the detailed network architecture for
optimizing wall-clock time based on a 5×5 input mask. The lower panel shows the structure for an optimized
error threshold using a 7 × 7 mask. The table was taken and modified from [P2].

in a range from perr ∈ [0.1, 0.2].
To give a reference for the thresholds, the theoretical best possible threshold one can achieve

for depolarizing noise on the toric code was inferred to be at popt = 0.189(3) by mapping the
decoding problem to a classical disordered eight-vertex model [156].

In Fig. 4.10 the thresholds of the decoders are showcased. Firstly, it is notable that for
every single decoder the logical error rate plog goes towards 0 for perr → 0 and the other way
around that plog = 15

16 for perr → 0.5. The limit of the high noise case is expected as a result
of the numbers of logical operators on the toric code. For depolarizing noise 4 different logical
operators X1, X2, Z1, Z2 are used to determine the logical state. In the limit of high noise,
the initial logical state is immediately destroyed by the noise and any attempt at correction
results in the toric code being shifted into a random code space. This chance of choosing one
of the wrong states is given by the number of different combinations of the logical operators,
so plog = 1 − 1

24 = 15
16 .

First, comparing the MWPM with the Union Find decoder, one can see that the MWPM
decoder with a threshold of pth = 0.1539 has a threshold about ≈ 5% higher than the UF with
a threshold of pth = 0.1461. This result is to be expected, since the MWPM takes long range
connections between the syndromes into account compared to the UF. Combining MWPM
and UF with the ML(5) neural decoder, in each case the threshold increases by up to 11%
to pth = 0.1625 of the UF and pth = 0.1642 for the MWPM. Using the ML(7) as primary
decoder further increases the thresholds to pth = 0.1670 and pth = 0.1671, as seen in Fig. B.2.
Looking at the hierarchical decoder variation, the Lazy + UF decoder, in Fig. B.3 a threshold
of pth = 0.1319 is returned, the lowest threshold yet.

Comparing the depolarizing noise thresholds of UF and MWPM with the previously deter-
mined bit flip noise thresholds, one can see a general increase. This is a consequence of the
definition of the depolarizing noise and the fact that UF and MWPM are correcting the X
and Z syndromes separately. Looking at only one error type, e.g. X errors, the probability of
occurrence is pX = 2

3perr under depolarizing noise. Because of this bit flip error threshold can
be derived by multiplying the depolarizing threshold by a factor of 2

3 . This results in

2

3
pdepolth,MWPM = 0.102(6)

2

3
pdepolth,UF = 0.097(4), (4.8)

which matches previously determined error thresholds up to an error.

60



4.5 Depolarizing noise toric code

Figure 4.11 –
Comparison of pseudothresholds
on the 2D toric code. The pseu-
dothreshold is plotted against the code
distance for the MWPM (light blue)
and UF (blue) decoder, as well as
the hierarchical decoder counterparts
ML(5) + MWPM (light red) and ML(5)
+ UF (red).
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The other measure that we want to compare is the pseudothreshold. Fig. 4.11 shows the
pseudothreshold plots for all four decoders. By comparing these curves it is now easier to
see that, even in small code distances regime, the hierarchical decoder has an advantage over
pure algorithmic decoders. At d = 15 the pseudothreshold lies about 8% above the MWPM
pseudothreshold and 15% of the UF. This shows that using the hierarchical decoder not only
increases the threshold, but also the logical accuracy at small error rates.

4.5.2 Time scaling of decoding

Now we have established that the hierarchical decoder increases the decoding accuracy, but the
question about the speed of the decoding process is still open. In Fig. 4.12 we have plotted the
average time needed to decode a single syndrome measurement against the code distance of the
toric code. The average time was determined using 106 samples per data point, benchmarked
on:

• Intel Xeon CPU E5-2699A v4 @ 2.40 GHz Cpus

• SXM2 GPU: Nvidia Tesla V100

This was done for the 4 error rates perr ∈ [0.01, 0.05, 0.1, 0.1461] to get snapshots of the per-
formance for the different error regime. In order to compare the decoding speeds, we plot
the average decoding time of the hierarchical decoder against the UF decoder, since it has an
almost linear time scaling and a comparatively high decoding threshold.

Looking at the benchmark curves of the UF the decoding time has a seemingly linear scaling
as expected even when testing up to a code distance of d = 255 measured at the error threshold.
In comparison, the hierarchical decoder has seemingly different scaling behavior depending on
the code distance and error rate. For pUF

th and d > 63 it seems that the decoding time of the
hierarchical decoder has the same scaling as the UF, as both curves evolve in parallel. It also
manages to achieve an improvement in decoding time by ≈ 70%. The same behavior can be
seen for perr = 0.01 and d > 127 with an improvement of decoding time of ≈ 40% for d = 255.

Now looking at the other side of these mentioned limits, the hierarchical decoder converges
against a constant decoding time. Investigating the cause of the behavior has shown, that for
small code distances and error rates the decoding time is dominated by the time needed to
transfer and initialize the data on the GPU. We have determined the minimum time needed for
this process by using empty arrays as input and a minimal neural network, which only consists
of the input and output layer. The determined time was then denominated as kernel time.
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Figure 4.12 – Comparison of decoding times of the hierarchical decoder (blue) and UF decoder (orange)
for various physical error rates. Shown is the average decoding time measured as wall-clock time. The kernel
adjusted time represents the ML(5) + UF with a subtracted constant to compensate kernel launch times.
The figure was taken and modified from [P2].

To get a clearer picture of the scaling, we subtract the kernel time1 from the measured
decoding time, and assume that it would be considered in an actual hardware implementation.
The resulting curves are deemed as kernel adjusted and show a more clearer scaling behavior.
The most notable change occurred in perr = 0.01, where the linear scaling behavior is now
observable for d > 63 instead of d > 127. For the kernel adjusted time, the hierarchical decoder
achieves a speed improvement for d ≈ 31 at the UF threshold and d ≈ 45 for perr = 0.01.

Similar benchmarks were performed for different network structures of the neural decoder
as well as different combinations of decoders. The results are summarized in the Table 4.3,
where have listed two different neural network structures, which are indicated as ML(5) and
ML(7). This notation corresponds to an input size of l = 5 and l = 7, respectively. The ML(7)
was constructed with the purpose of achieving the highest possible threshold, while the ML(5)
is designed with the decoding speed vs decoding accuracy trade off in mind. These networks
have been combined together with UF and two different version of the PyMatching MWPM
implementation. Looking at the determined thresholds, the highest values are returned by the
ML(7) hierarchical decoder with either UF or MWPM as secondary decoder. Both thresholds
are equal up to the error margin. Now comparing the measured average decoding times, it
is notable that using the PyMatching v0.7 as secondary decoder, results in time one order of
magnitude higher then using other secondary decoders. Even when adding the neural decoder
beforehand, and thereby cutting the decoding time in half for perr=0.01, it cannot compete to just

1When subtracting the kernel time, we have an additional factor (1 − perr)2d2

that takes into account the
probability that no error has occurred. If this is the case, then no data is transferred to the GPU in the first
place.
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4.5 Depolarizing noise toric code

depolarizing noise (d = 255)

algorithm pth tp=0.01 tp=0.05 tp=0.1 tp=0.1461

ML(7) + UF 0.167(0) 10.5 25.1 43.4 78.6
ML(5) + UF 0.162(5) 6.7 12.8 26.2 56.2
Lazy + UF 0.131(9) 6.9 20.7 51.1 —

UF 0.146(1) 8.4 22.5 44.9 92.8
ML(5) + PyMatching v2.1 0.163(5) 7.5 20.1 33.9 56.8

PyMatching v2.1 0.154(3) 5.6 22.4 49.0 154.2
ML(7) + PyMatching v0.7 0.167(1) ∼ 210 ∼ 530 ∼ 650 ∼ 980
ML(5) + PyMatching v0.7 0.163(8) ∼ 270 ∼ 510 ∼ 650 ∼ 970

PyMatching v0.7 0.154(2) ∼ 560 ∼ 840 ∼ 1100 ∼ 1300

Table 4.3 – Decoding performance overview. Comparing the error threshold and average decoding time
for various combinations of hierarchical decoder for depolarizing noise. The decoding time is reported in
milliseconds and was measured for d = 255 and various error rates, where the highest investigated error rate
was chosen to be the threshold of the UF decoder pUF

th = 0.1461.

using the UF decoder. Comparing the UF with PyMatching v2.1, it seems that PyMatching
allows for slightly faster decoding in low error rates, where as UF has the advantage at higher
error rates.

Now looking at the hierarchical decoder, the lowest decoding time was achieved by the
combination of ML(5) + UF at all error rates, with the exception of perr = 0.01, where
PyMatching v2.1 achieved the lowest time. As seen before ML(5) + UF outperformed the
UF, but is also outperformed the combination of a lazy decoder + UF. In this combination lazy
decoder quickly sweeps over the lattice and corrects all syndromes corresponding to an error
chain with the length of l = 1. This combination allows for faster decoding times for the price
of lowering the decoding accuracy. Comparing to ML(5) + PyMatching v2.1, both hierarchical
decoders achieve similar decoding times, so one might consider choosing the PyMatching v2.1
version for the slight increase in decoding accuracy.

Now we have established that the hierarchical decoder can decrease the decoding time, we
want to determine the actual time scaling of the decoder. In Fig. 4.13 (a) the hierarchical
decoder demonstrates a seemingly linear scaling in decoding time, but to understand this
better, we also take a look at the time scaling of just the neural decoder. In Fig. 4.13 (b) the
time measured shows a clear linear scaling. This is to be expected, since by construction the
input and the neural network stay the same size independent of the code distance. Therefore
the time needed to obtain the correction of a single input remains constant. Therefore only
the number of input given to the neural decoder increases with error rate and code distance
according to O (perrN), resulting in a linear scaling.

Now we also have to consider that some syndromes remain and are taken care of by the
secondary decoder. As shown previously the number of remaining syndromes can be described
by an effective error rate, therefore reducing the decoding time by some constant factor, while
retaining their original scaling. This means the time scaling of the hierarchical decoder is given
by max

(
O (N) ,O

(
NXsecondary

))
the larger time scaling of both part. In the case of the UF

and MWPM as secondary decoders, we retain the original scaling of O (αN) and O
(
N1.19

)
respectively.

While the scaling of the decoding time is dominated by the secondary decoder, for the
small code distances the actual decoding time is dominated by the neural decoder. Since the
calculation of the neural decoder is just an ANN the forward pass through an ANN, it can
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Figure 4.13 – Scaling behaviour of the hierarchical decoder. In (a) the decoding time measured as wall-clock
time is plotted against the number of qubits for the ML(5) + UF decoder for different error rates. In (b)
the measured ANN calculation time is displayed for different GPUs measured for the physical noise rate
perr = 0.1.

significantly profit from specialized hardware like GPUs. Using the resources at hand we made
an comparison of ANN computation time depending on the number of qubits as shown in
Fig. 4.13 (b). Here we test three different Nvidia GPU cards, which can therefore be used as a
measure of the improvement of the calculation power. we compare the following graphic cards

• Nvidia Tesla P100 PCIe

• Nvidia Tesla V100 SXM2

• Nvidia A100 Tensor Core-GPU.

Comparing the P100 and V100 card, it is notable that both converge at the same minimum
kernel time, which is most likely a result from the having the same connection hardware since
both cards come from the same supercomputer environment CHEOPS. Increasing the number
of qubits, the V100 card shows a reduction of computation time by ≈ 28% compared to the
P100. Now taking also the A100 hard into account, it is notable that the minimum kernel
time is roughly halved. This flat reduction in compute time is also carried to to higher number
of qubits, as it shows the same linear scaling as the V100, but still reduces computation time
further by ≈ 30%.

4.5.3 Interpretation of decoding strategies

Seeing that the hierarchical decoder can improve the decoding accuracy at all error rates, it
is still open about how much of the decoding is done by the neural and secondary decoder.
To judge this relation we will introduce an effective error rate peff as measure. This measure
calculates the matching error rate based on the average numbers of remaining syndrome using

peff =
N syn

44
3d

2
, (4.9)

this conversion is based on the assumption of depolarizing noise in the low error rate regime,
which is dominated by error chains of length l = 1. Using this conversion the effective error
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4.5 Depolarizing noise toric code

Figure 4.14 –
Neural decoder effectiveness. The graph
shows the effective error (blue) and effective
error rate (red) of the neural decoder ML(5)
depending on the physical error rate. These
values are measured for d = 63, but remain
invariant under changing the code distance.
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rate is shown in Fig.: 4.14, that the neural decoder is able to reduce the effective error rate
by two orders of magnitude in the low error regime. For the lowest investigated error rate of
perr = 0.01 the error rate is being decreased by a factor of ≈ 150 to peff = 0.00008, showcasing
that the neural decoder is able to correct almost all occurring errors. Looking at the other
end of the spectrum at an error rate close to the threshold, the effective error rate increases at
faster then the increase of the error rate, resulting in a drop of the improvement factor. Still
even close to threshold, we achieve an improvement by a factor of ≈ 6. These results show that
most errors are taken resolved by the neural decoder and the secondary decoders only have to
deal with a small amount of remaining errors. It should be noted though, that the effective
error rate is based on the assumption, that the leftover errors still follow the distribution of
the initial error rate, which isn’t necessarily true. Since the neural decoder has a bias towards
correcting specific errors and by design is unable to correct long error chains, the remaining
errors are no longer equally distributed. So the effective error rate should only be taken as
an approximation of the number of remaining errors, without information about which errors
remain.

We now examine what the neural decoder understands in order to achieve an increase in
decoding performance. For this purpose, we apply only the first part of the hierarchical decoder
and collect the performed correction over 104 correction samples. Fig. 4.15 (a) shows the
percentage of the correction type depending on the error rate. The displayed correction types
are limited to X,Y,Z corrections, excluding the I correction, in order to make the graph more
readable. It is important to note, that the rate of applied corrections are displayed, without
considering if the correction was successful or not. In the regime of small error noise, all
correction types converge against the same value of ≈ 4.5%. Since the small error regime is
dominated by errors chains of length l = 1, it is to be expected that the neural decoder can learn
to correct the errors appropriately. Furthermore, since we examine an independent, uniformly
distributed noise model, all three types of errors occur equally often. The limit of 4.5% is a
result from the implementation of the neural decoder as described in Sec. 4.4.2. Since we only
use qubits adjacent to measured syndromes as input, we always observe more qubits without
errors then with errors. In case of a single X or Z error the resulting input for the network
would consist of the mask of 7 different qubits, from which one is carrying the error. This
results from measuring 2 syndromes, each having 4 adjacent qubits, with one being shared by
both. In the case of an Y error, we have 9 input qubits with one carrying the error. Assuming
that only errors of length l = 1 occur and that the decoder is able to perfectly correct them,
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Figure 4.15 – Correction type analysis. Graph (a) shows the percentage part of the X/Y/Z corrections
(blue/red/green) for the ML(5) neural decoder, plotted against the physical error rate. The black dashed
line shows the theoretical limit for perfectly correcting errors in the low error regime. The same corrections
are presented in (b) by their collected total number.

the theoretical ratio of a single correction type is given by

ptype =
1

3

1(
72

3 + 91
3

) ≈ 0.0435, (4.10)

matching the observed limited. If the error rate is now increased, this will of course lead to an
increase in corrections, as shown in Fig. 4.15 (b). Initially, the number of corrections applied
increases steadily until the increase in X and Y stagnates, while the Y corrections are still
increasing. At the peak of the x/z correction, roughly 70% more Y corrections are applied
then X or Z. There are two factors which can contribute to this distribution. As the error
rate increases the average length of the error chain also increases, increasing the difficulty for
the neural decoder to correct the errors. In the case of Y errors, there are four syndromes
available, allowing for easier identification and making it more robust against long error chains.
For example, assuming the extreme case, that an Y error is combined with multiple X errors
causing one of the X syndromes to be located outside of the mask, the Y error can still be
successfully corrected on the basis of the three remaining syndromes. The same does not apply
if there is only a single X or Z syndrome. The other factor is that the increased error density
and therefore syndrome density can lead to incorrect Y correction due to the proximity of X
and Y syndromes. Furthermore, it can be seen that the neural decoder has difficulty finding
the right corrections as it approaches the error threshold. This becomes clear in 4.15 (a),
as the percentage of all three correction types starts to decrease near the threshold, meaning
that the number of I corrections increases. This is most likely due to having increasingly long
range syndrome pairs. Because of syndrome error degeneracy, the neural decoder tends to
have difficulties suggesting an appropriate correction, when there are multiple equally probable
corrections, as mentioned in 4.4.3. With a higher error rate, differences in the rates of X and
Z corrections also occur, varying which correction is applied more often. Since the noise model
is independent, there is no reason for either the X or Z error to be decoded more successfully
then the other, so the fluctuation are results from the training process of the decoder.

After this high-level analysis of the applied correction, we want to take a closer look at what
the neural decoder has learned by feeding it specially constructed syndromes and looking at
the resulting outputs. In Fig. 4.16, the measured syndromes are visually represented and the
correction with the highest probability is shown on directly connected qubits.
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4.5 Depolarizing noise toric code

Figure 4.16 – Learned behavior. In the graphics the actions of the ML(5) neural decoder are visualized for
selected measured syndromes. At the qubits of interest the percentage of performing the correct recovery
operation is displayed, where the color of the qubits indicates the correction type with X (blue), Z (red) and
Y (blue/red).

We start with two examples which should be easily correctable for the neural decoder. In (a)
the syndrome of an Y error results with an appropriate Y correction with a probability of 1. In
(b) a bit flip error chain of l = 2 is measured, which is the longest error chain that the neural
decoder can theoretical completely correct. Applying the decoder returns bit flip correction
probability of 96% and 90% and therefore successfully corrects the error. Since the input for
both qubits only differs by some rotation, both corrections should have the same probability,
assuming the network has been trained perfectly.

Similar to the previous error chain in (c) a bit flip error chain of length l = 2 with a two folded
degeneracy is measured. The output of the neural network shows a probability of correction
between 39% and 69% for the four possible qubits. Since for three qubits three is a probability
of > 50%, bit flip corrections was applied to all of them. In this case, the original error chain
would not have been corrected successfully, but would only have been reduced to l = 1. Since
all 4 qubits have a chance of 50% to be part of the minimum-weight correction, the applied
correction of the neural decoder depends only on random symmetry breaking in the training
progress. After training, corrections might be applied to 0-4 of these qubits.

The next examples tests the neural decoder to distinguish between lazy and non-lazy cor-
rections. In (d) the combination of an Y and X error is shown, which is solved with certainty
by the neural decoder. It is important to note, that the decoder did not try to lazy correct a
Z error in place of the Y error, since a pair of Z syndromes and only a single X syndrome are
directly adjacent. Similar in (e) two bit flip error chains l = 1 in close proximity to each other
are investigated. Both error chains are corrected appropriately as expected, but also there is no
correction applied to the qubit in between both chains, which could have been mistaken for a
lazy correction. Finally (f) mimics a syndrome similar to (d), where a qubit is directly adjacent
to 2 Z syndromes and one X syndrome, but this time two independent X and Z errors are
generated. The neural decoder is able to distinguish between both cases, based on the position
of the second X syndrome and only applies X and Z corrections.

This shows that the decoder is able to learn the probability distributions of the error and
does not attempt to solely apply lazy corrections. This has also the consequence that it does
struggle with error chain, that have a degeneracy of > 1. Tests to mitigate false corrections by
applying stochastic corrections instead of deterministic, have shown no advantage in the low
error regime and a decrease in performance at higher error rates, as shown in App. B.2.

67



4 Error correction on topological surface codes

Figure 4.17 – Faulty syndrome measurements. Adding faulty syndrome measurements to the toric code
means that multiple measurements has to be performed to observe the actual syndrome. This will cause the
syndromes to propagate in time. This is shown here for a 1D toric code with only bit flip errors (blue) and
faulty syndrome measurements (red crosses). This allows for representing the error strings in d+1 dimension.
This figure was inspired by [157]. This necessitates to extend the input mask into the third dimension (b).
The chosen shape is an octagon around the investigated qubits (green). All syndromes contained inside the
octagon are used as input for the mask.

4.6 Faulty syndromemeasurement toric code

Now that we have discussed the correction of the toric code under depolarizing noise extensively,
we take the next step and look at a phenomenological noise model, where we introduce addi-
tionally faulty syndrome measurements into the system. Now, every time a stabilizer operation
is performed, there is a chance of psyn that the resulting outcome is flipped. This noise model
neglect the possibility of error propagation between data and ancilla qubit, while capturing the
essential challenge of fault-tolerant error correction, where the measurement of the errors is
inherently faulty.

Because syndromes can no longer be trusted, the syndrome extraction is repeated multiple
times adding a time dimension to the toric code, as shown in Fig. 4.17. By looking only at the
syndrome changes in time, this corresponds to a 3D toric code [54], therefore by assuming that
the faulty syndrome rate psyn and the depolarizing error rate pdepol are equally distributed, it
simplifies the problem to decoding a 3D toric code under depolarizing noise.

While the size of the time dimension can be arbitrarily chosen, we assume that the formed
3D toric code resembles a cube with dx = dy = dt. One difference to the regular 2D code
is that we do not have a periodic boundary condition in the time direction. This could lead
to the problem that an uneven amount of syndromes are measured. This is a problem for
the MWPM and UF decoders, which require an even number of syndromes to perform the
correction process. To remedy the situation we assume that the last syndrome measurement is
without fault. This guarantees that all error chains are closed at the end and an even number
of syndromes remains.

To apply our hierarchical decoder we have to adjust it to the new setting, as it currently does
not consider the 3D structure. While the general concept stays the same, we change the input
mask from a square to an octahedron, incorporating all syndromes l steps away from the qubit,
as shown Fig. 4.17 (b). At the time, borders the mask would stick out at the top or bottom of
the QEC. In this case, we apply zero padding as described in Sec. 2.1.3 and set all syndromes
lying outside to zero.

At first, we apply the pure MWPM and UF algorithm to the new noise model setting the
benchmark values of pMWPM = 0.0434 and pUF = 0.038. As before the MWPM achieves a
higher threshold compared to the UF, as shown in 4.18, but compared to the previous results
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4.6 Faulty syndromemeasurement toric code

` = 3 network parameters (optimal wall-clock time)
hidden layers 3

hidden nodes per layer 128
total number of free parameter 43,396

activation functions hidden layer Relu
activation functions output layer Softmax

Table 4.4 – Network architecture for depolarizing noise with faulty syndrome measurements. The table
shows the detailed parameters of a wall-clock time optimized network, adapted for the 3D version of the toric
code. The table was taken and modified from [P2].

the overall threshold values have lowered to about 1/4 of the previous values. This is an expected
development, since with the addition of the faulty syndrome measurement, the overall noise
level has increased and thereby the performance of the decoders has decreased.

We use a neural decoder with an input size of l = 3, denoted as ML(3) and build from
3 hidden layers with 128 hidden nodes each, resulting in 43,396 free parameters as listed in
Tab. 4.4. The calculation of the threshold values comparing the algorithmic decoders with
to the hierarchical counterpart, again shows an improvement in the error thresholds. For the
MWPM decoder the threshold only increases by ≈ 2% to pML(3)+MWPM = 0.0445, showing a
smaller improvement rate compared to before. In the case of the UF, the threshold improves
by ≈ 14% to pML(3)+UF = 0.0434, achieving same threshold up to the error margin as the pure
MWPM decoder, making it once again the better choice.

Looking at the extended benchmark tests, presented in Tab. 4.5, one can see that the highest
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Figure 4.18 – Depolarizing noise with syndrome measurement noise thresholds. The threshold plots
for the MWPM (top left) and UF (top right) are shown, as well as their hierarchical counter parts ML(3) +
MWPM (bottom left) and ML(3) + UF (bottom right). The blue curves show the thermodynamic limit of
the curves and the inserts demonstrate the data collapse of the threshold data.
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depolarizing noise + syndrome errors (d = 31)

algorithm pth tp=0.01 tp=0.02 tp=0.03 tp=0.0378

ML(3) + UF 0.043(4) 12.1 13.5 15.4 17.8
Lazy + UF 0.031(3) 11.1 12.8 16.6 —

UF 0.037(8) 11.5 13.4 15.7 18.9
ML(3) + PyMatching v2.1 0.044(3) 3.7 4.9 6.4 8.8

PyMatching v2.1 0.043(5) 3.0 5.7 9.2 13.2
ML(3) + PyMatching v0.7 0.044(5) 14.6 25.8 81.5 229

PyMatching v0.7 0.043(7) 211 239 273 294

Table 4.5 – Depolarizing noise + faulty syndrome measurement benchmarks. For various decoders
we show the measured benchmarks for the decoding times in milliseconds as well as the error thresholds.
Here, the ML(3) represents the neural decoder with l = 3 input mask. The decoding times are measured
as wall-clock times in milliseconds for code distance d = 31 and error rates perr = [0.01, 0.02, 0.03, 0.0378],
where the last error rate is taken from the UF threshold value. The bold entries highlight the best performing
values of the respective columns.

decoding time is still given by the combination of ML(3) + PyMatching v0.7, while the lowest
decoding time is now achieved in the low error regime perr < 0.03 by PyMatching v2.1 and in
the high error regime perr ≥ 0.03 by the combination ML(3) + PyMatching v2.1. Compared to
the depolarizing noise case, the ML(3) + UF is no longer able to achieve decoding times rivaling
the PyMatching v2.1 decoders. The ML(3) + UF decoder reports an increase in decoding time
by almost a factor of 3 in the low error regime compared to the ML(3) + PyMatching v2.1
decoder. Therefore the choice of which decoder to use, falls to the PyMatching hierarchical
decoder, as it is able to demonstrate the highest error threshold hold, while also outperforming
the algorithmic decoders in most error regimes.

Now, to better understand the performance of the hierarchical decoder, we once again con-
sider the effective error rate. First we have to adjust the calculation of the effective error rate
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Figure 4.19 – Faulty syndrome measurements decoding performance. The decoding performance of
the MWPM (light blue) and UF (blue) decoders as well as their ML counterparts ML(3) + MWPM (light
red) and ML(3) + UF (red) are visualized using the pseudothreshold depending on the code distance (a).
Using only the neural decoder for decoding and measuring the numbers of remaining syndromes allows the
representation using an effective error rate (b). This effective error rate (blue) and the improvement factor
to the initial error rate (red) are shown depending on the initial error rate.
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4.7 Rotated surface code

Figure 4.20 – Neural decoder application on the RSC. At the boundary of the RSC a padding technique
has been applied (a), so that the input mask (violet square) get filled with values of 2 (green) for parts outside
of the RSC. After a measurement of a single syndrome at the top or bottom border (b), the probability of
the four adjacent qubits is returned.

for the phenomenological noise, which is given as

peff =
4

3
6d3. (4.11)

Looking at the results showcased in Fig. 4.19 (a), it is once again evident that for small error
rates the decoder reduces the errors rate by a factor of 40, decoding almost all occurring errors.
Compared to the depolarizing noise, this factor has reduced to a third as before, showcasing
that it is more difficult for the neural decoder to handle the phenomenological noise than the
depolarizing noise.

4.7 Rotated surface code

Lastly, we also want to take a look at how the decoders perform on the rotated surface code.
In general, the error threshold of the RSC is the same as the toric code [54], as for the thermo-
dynamic limit L→ ∞ the RSC is equivalent to the toric code with the caveat of only encoding
a single logical qubit.

4.7.1 Modifying the hierarchical decoder

In order to apply the MWPM and UF, small adaptions have to made to the algorithm since
they need an even number of syndromes to pair up and due to the boundary condition it is
possible to measure an odd number of syndromes. There, UF and MWPM have to be able to
pair syndromes with the boundaries. In Fig. 4.21 we can see the threshold plot for the 2D RSC
under depolarizing noise for UF decoder and the MWPM decoder. As we can see, the error
threshold is consistent with the error threshold recorded in Tab. 4.3.

While the hierarchical decoder does not have the limitation of needing even numbers of
syndromes in the input mask, it is still necessary to adapt the decoding algorithm. In order
to be able to place the input mask centered on a qubit near the borders, we apply a padding
technique as described in Sec. 2.2 to fill the entire outside area with constant values of two, as
shown in Fig. 4.20 (a) for a mask of size l=3. It is important to choose a padding value beside
the values {−1, 0, 1} as they are reserved for measured Z syndrome, no syndrome and measured
X syndrome. Although it might seem natural to choose a zero padding, as outside the RSC no
syndromes are ”measured”, this does not allow the hierarchical decoder to recognize the border
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Figure 4.21 – Error thresholds on the RSC. Here, the threshold plots for the MWPM, UF, ML(5) + MWPM
and ML(5) + UF decoders are shown. The blue curve shows the logical error rate in the thermodynamic
limit. The inserts show the data collapse of the threshold data.

and therefore it looses the ability distinguish between a lone syndrome on the top or bottom
border, as shown in Fig. 4.20 (b). For both syndromes, the ANN returns the same probability
values, as they share the input mask. Therefore all four qubits are equally likely to carry the
error, causing the hierarchical decoder to not correct any qubit.

But adding now some other constant padding allows the ANN to differentiate between both
sides and to recognize that qubits further away from the border are less likely to carry the
error, as shown in Fig. 4.20 (c). This then still leaves with the problem that both qubits at
the border are equally probable to carry the error, causing the hierarchical decoder to always
correct one of the qubits, or both, or neither, depending on the random symmetry breaking in
the training.

4.7.2 Benchmark measurements

We train neural decoder with an input mask of size l = 3, and 3 hidden layers with 128 hidden
nodes per layer, thereby using the same network structure as the wall-clock time optimized
network in Tab. 4.2. The only difference is that we choose a training code distance of dtrain = 17
in order to minimize finite size effects from the borders. Applying the hierarchical decoder to
the RSC using MWPM and UF as secondary decoders returns the error threshold pth = 0.163
and pth = 0.160, showing similar improvements as the toric code.

Looking at the pseudothreshold one can see that the hierarchical decoder not only improves
the error threshold, but also improves the pseudothreshold by about 13% for the UF at d = 9,
while compared to the MWPM the pseudothreshold decreases by roughly 2% as shown in
Fig. 4.22. Comparing the pseudothreshold between the RSC and the toric code shows that the
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Figure 4.22 – Pseudothreshold comparison. Extracted from the threshold data, the pseudothresholds
depending on the code distance are shown for the MWPM, UF, ML(5) + MWPM and ML(5) + UF decoders.
One comparison is drawn on the 2D RSC between all four decoder variations (a) and one is drawn between
the RSC and the toric code (b) for the UF and ML(5) + UF decoders.

RSC UF has a somewhat smaller pseudothreshold than its TSC counterpart, approximately
≈ 6% smaller. The two ML(5) + UF decoders on the other hand show almost the same exact
pseudothresholds, with only the RSC having marginally lower pseudothresholds at both ends
of the code distances.

Next, we want to take a closer look at the performance of the neural decoder in the hierarchical
decoder. Once again we look at the effective error rate to measure how many errors were
corrected by the neural decoder. The calculation of the error rate is similar to Eq. (4.9),
but the rough boundary has to be considered, where errors only generate singular syndromes.
Correcting this terms results in

peff =
N syn

4
3(1 + d(d−2)

d2 )d2
. (4.12)

In Fig. 4.23 we present the calculated effective error rate depending on the physical noise. We
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Figure 4.23 – Performance analysis on the RSC. From the number of remaining syndromes after applying
the neural decoder, the effective error (b) and the error rate improvement (c) are calculated. Both observables
are plotted for multiple code distances against the initial error rate.
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Figure 4.24 – Applied correction analysis. Performing decoding on the RSC and applying the neural
decoder, the suggested corrections are counted. The number of corrections depending on the type of correction
are plotted as percentage (a) and total numbers (b) against the initial error rate.

overlaid the curves for different code distances, showcasing some finite size effects, which weren’t
observable on the toric code. Looking at low error rates, the effective error rate decreases with
code distance, indicating that the neural decoder has trouble with the errors at the border.
The same can be seen for the improvement rate, which varies between 3.75 and 5.5 for perr =
0.1. Comparing these results with the 2D toric code, showing an significant decrease in the
improvement rate.

Now looking at the different error type corrections performed on the RSC, we can see that
for low error rates the three correction percentages of the three different layers are between
4-5%, which are similar values to these for the toric code. It can also be observed that the
correction of the three different error types is closer to each other and gives the same value.
But different to the toric code, the Y correction still remains above the other two.

Looking at the total number of the different corrections, it naturally increases of number
physical errors, as shown in Fig. 4.24. The increase follows the same behavior as for the toric
code, as that the Y correction increases more rapidly then the X and Z corrections and as one
approaches the error threshold the number of X and Z corrections actually starts to drop again.

4.7.3 Robustness of the decoding strategies

After the initial performance test on the RSC, we also want to test the robustness of the
learned control strategies. For this we are going to test the robustness in two different aspects,
robustness regarding the training lattice size and training error rate. To judge the robustness
of the system, we are going to use the pseudothreshold for the ML(5) + UF version of the
hierarchical decoder.

We start with the training lattice size. As we have previously seen in Fig. 4.22 the pseu-
dothreshold of the hierarchical decoder declined towards the small code distances, as the hierar-
chical decoder did not learn how to correctly factor in the border of the system. In Fig. 4.25 (a)
we show the pseudothreshold of the ML(5) + UF decoder, where every iteration of the decoder
was trained with the same hyperparamters except the training lattice size, which was varied
between d = 3 and d = 9, as well as the previously determined pseudothreshold at d = 17 for
comparison. It is appeared that at d = 3 the hierarchical decoder has difficulties learning a
decoding strategy, as the pseudotrehshold is below the previously determined pseudothreshold
at any point. This changes for the d = 5, as the performance at small code distances increases
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Figure 4.25 – Robustness of the control strategy for the ML(5) + UF hierarchical decoder on the RSC.
The robustness is visualized using the pseudothreshold for differently trained neural decoders. In (a) the code
distance of the trainings RSC was varied between dtrain = 3 and dtrain = 9, whereas in (b) only a single model
was used trained at ptrain to determine the pseudothreshold. Both graphs have also included the previously
determined results (red), with individually trained model for each error rate and trained at dtrain = 17.

significantly and spikes at the trained lattice size, being on par with the best performing ver-
sions of the hierarchical decoder. Although afterwards the pseudothreshold drops instantly
when going to higher code distances, showing a similar performance as the d = 3 trained de-
coder. The remaining two decoders, trained at d = 7 and d = 9, achieve the same decoding
performance as the d = 17 decoder. The only exception is the application at d = 3, where all
three decoders experience a loss of performance. As the performance of the d = 7 decoder lies
between the d = 9 and d = 17, it seems that the performance is not depending on the trained
lattice size at that point, but on the individual training results instead. In total we can observe
that the hierarchical decoder at d ≥ 7 it demonstrates robustness toward the application on
higher and smaller code distances with the exception of d = 3.

Now we turn to the robustness regarding the error rate. Until now we have always trained
individual decoders for each error rate. In actual experimental application, the error rate may
vary with time or is not uniformly distributed on all qubits. Therefore, it is necessary for
the hierarchical decoder to be able to successfully decode syndromes generated at different
error rates. In Fig. 4.25 (b) the different pseudothresholds are shown for hierarchical decoders
trained at different error rates, which have then been applied to every other error rate, as
well as the previously determined pseudothreshold. The models are taken from the previously
trained models used in Sec. 4.7. We can see that the best performing model is the one trained
at ptrain = 0.1, achieving the same performance as decoder trained individually at every error
rate. Increasing or decreasing the training error rate leads to a degradation in performance,
where the ptrain = 0.01 decoder lies significantly below the other decoder.

An explanation for the difference in performance would be that it depends on whether the
decoder was able to encounter all necessary syndromes during the training. At ptrain = 0.01,
the decoder will mostly see syndromes of single qubit errors and is therefore not able to learn
the correct decoding strategy when encountering syndromes of multi qubit errors. The same is
true in reverse for the ptrain = 0.16 error rates, where there are most likely problems with the
correct decoding of small errors. However, if an intermediate error rate is chosen for training,
the decoder apparently encounters a sufficient number of small and large errors during training
to be able to correct both types of errors. This means that the hierarchical decoder can also
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show robustness with regard to the applied error rates, which further means that it can cope
with time-varying error rates.

Additionally, when comparing the pseuodthreshold curves of both plots in Fig. 4.25, the
curves of the single error rate training show a much smoother curve progression. This stems
from the fact, that only a single trained model is used per curve in that case, eliminating
fluctuation caused by training differences.

4.8 Summary

Throughout this chapter, we have used different decoding algorithms to investigate their perfor-
mance on topological surface codes. The focus of this investigation is the comparison between
the algorithmic decoders MWPM and UF and the newly introduced hierarchical decoder. The
hierarchical decoder involves a pre-decoding step followed by the application of an algorithmic
decoder. By implementing a neural decoder during the pre-decoding step, we have demon-
strated the ability of scalable machine learning based decoding that is able of easily decoding
codes with a code distance up to d = 255, thus solving the common issue of neural decoders
working only on small code distances [79–81, 158–160].

We examine the performance of the hierarchical decoder in terms of error threshold, pseu-
dothreshold, and decoding speed compared to algorithmic decoders. Examining these observ-
ables on the toric code when depolarizing noise is applied indicates that the hierarchical decoder
considerably increases the error threshold. Additionally, in combination with the UF decoder,
it surpasses the pure MWPM decoder in terms of error threshold, albeit with a slightly lower
threshold when compared to the ML(5) + MWPM decoder. The performance at smaller error
rates and code distances is also compared using the pseudothreshold. The hierarchical decoder
outperforms the algorithmic decoders, yet does not exhibit a significant discrepancy in perfor-
mance, depending on whether UF or MWPM is used as the secondary decoder. Examination
of the corrections applied shows that the decoding advantage comes from the neural decoders’
ability to correct the correlated Y errors, rather than decoding X and Z errors separately as
the UF and MWPM decoders do.

These results hold considerable significance, particularly when factoring in decoding speed.
For depolarizing noise, the ML(5) + UF decoder combination demonstrated the lowest decoding
time, while maintaining a high logical accuracy, making it a good candidate for implementation.
However, it must be noted that the decoding speed benefits were exclusively observed at greater
code distances of at least d = 31, and only close to the error threshold. Optimally, the goal is to
perform quantum computing in error regimes far from the error threshold, where the advantage
in decoding time was only seen at even higher code distances. These numbers can be compared
to IBM’s projected development of quantum computing [161], which aims to build a 10k-100k
qubit system as early as 2026, where the hierarchical decoder could display its advantages.
Whereas currently, the largest system - Condor - has only 1121 qubits [60], where the use of
algorithmic decoders seems more sensible.

While it may appear that the hierarchical decoder is too slow for current implementation
in the near future, we were limited by the hardware available to us. In the experimental
implementation of QEC, the decoding algorithm would not be run by simple CPUs and GPUs,
but instead by specialized FPGAs [162, 163]. This allows for the minimization of overhead
caused by hardware and software, as demonstrated by the implementation of a variation of
the UF decoder on an FPGA [164]. A comparable implementation of the hierarchical decoder
could result in a significant improvement in decoding speed, especially since ANNs can be
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easily parallelized to achieve faster than linear scaling of parallel time with code distance [165].
Analogous parallel implementations have been examined for minimum-weight perfect matching
(MWPM) [166], although these concepts are currently only theoretical and have not been
implemented on physical hardware. This is not applicable to the UF algorithm, as at the time
of composing this dissertation, no parallelized version of it has been found.

This demonstrated, as proof of concept, that the hierarchical decoder could be a potential
choice for a real decoding algorithm, and we further solidified this by extending the noise model
to include erroneous syndrome measurements. Despite using a more realistic noise model, the
hierarchical decoder achieved a similar increase in decoding accuracy as previously observed.

As the toric code is an optimized quantum error-correcting code which is not experimentally
feasible, we also tested the decoder on the RSC. The hierarchical decoder faces a hurdle in
that translation invariance is broken due to the disappearance of periodic boundary conditions.
The results of the error threshold demonstrate that scalability remains intact and is capable
of increasing decoding accuracy. Comparing the effective error rates between the TC and the
RSC, the performance is almost identical in the limit of large code distances. This result is
anticipated, as the boundaries of the RSC become less significant with greater code distance.
In contrast, the performance of the hierarchical decoder drops comparatively at small code
distances. This flaw is due to the inherent problem in the neural decoder, which struggles
to deal with syndromes having multiple possible recovery options. This is a consequence of
utilizing supervised learning. At the border, each singular measured syndrome has two equally
probable options to be connected with the boundary, causing confusion for the neural decoder.
As a result, the effective error rate decreases, leading to the secondary decoder having more
errors to correct and hence an increase in overall decoding time. While there is potential for
further improvement in the future, the hierarchical decoder has shown its ability to improve
decoding accuracy at small code distances, as shown in the pseudothreshold.
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Quantum feedback control
Chapter

5
In this chapter, we will address quantum feedback control, in which individual quantum systems
are observed and manipulated over extended periods. Similar to QEC, we will now examine
the time evolution of quantum systems and consider the impacts of measurements.

This starts with a look at the standard formalism of classical feedback control, which can be
generalized as a dynamical system being observed, which is subject to noise, making the actual
state of the system unknown. Contrary to the quantum case the observation does not influence
the state of the system.

For the quantum case, we first discuss the process of gaining information from the system
using quantum measurements. First, we introduce the general formalism and properties asso-
ciated with quantum measurements, followed by discussing projective and weak measurements,
where the latter provides information of the system without collapsing the state. Using these
measurements, a formalism comparable to the classical feedback control can be established for
the quantum system, using the stochastic master equation to describe the system (SME) and
derive the equation of motions.

With this in mind, we will examine the linear quadratic Gaussian control (LQGC) algo-
rithm, a popular classical control algorithm. It possesses the valuable property of being able
to optimally control a classical linear system and achieve high performance even in nonlinear
cases. This makes the algorithm a suitable performance baseline, against which later control
algorithms can be compared.

5.1 Classical feedback control

In this section we want to start with exploring the classical feedback problem [7]. As this is
a broad topic we limit ourselves to discussing of discrete systems with Gaussian noise, as the
effect of quantum measurement can be modeled as such.

The classical feedback problem works as follows: A dynamical system affected by noise,
resulting in fluctuations in the state and measurement results, is driven by some inputs with
the goal of influencing the system towards a desired state. These inputs are described by a
function that depends on the measurement results. The dynamics can be written as

~st+1 = f(st, ut) +G(st, ut)wt, (5.1)

where ~st is the n-dimensional state vector containing all information describing the state of
the investigated object e.g. position, momentum, acceleration, angle, etc, and ut is an m-
dimensional control vector describing the external action performed on the system. The time
evolution of the system is given by the function f , which depends on the state and control input,
and wt is a set of Wiener elements [167] in vector form representing the Gaussian noise. The
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matrix G determines how the system is affected by the noise. In the control theory literature,
this noise is often referred to as the process noise driving the system, which we will adopt as
our preferred terminology.

While this describes the dynamics of the system, we also need a description of the observation.
The observation process is usually written in the form

yt = h(st) +R(t)vt, (5.2)

where the measurement is described by the function h, which returns the n-dimensional mea-
surement vector yt, and vt is the observation noise1, described by another set of Wiener ele-
ments.

Since the actual state of the system is unknown during the whole process, the control problem
is now given by the task of finding a function c(Yt) based on the returned measurements, which
returns a set of inputs ut for every time step t. This involves defining a cost function associated
with the system, thereby specifying the desired behavior of the system.

A special simplified case of this scenario is the Gaussian linear system, which reduces the
state equations to

st+1 = Ast +But + wt (5.3)
yt = Cst + vt, (5.4)

where A,B,C are now linear matrices and both noise vectors are described by zero-mean Gaus-
sian noise, together with their covariances

wt ∼ N (0, σdyn) e
[
wkw

′
k

]
= Rk (5.5)

vt ∼ N (0, σmeas) e
[
vkv

′
k

]
= Qk. (5.6)

For this system it is known that it can be optimally controlled using Linear Quadratic
Gaussian Controller (LQGC). This controller itself consists of two distinct algorithms, i.e.
the state estimator called Kalman Filter [168, 169] and the control algorithm linear quadratic
regulator (LQR) [170].

5.2 From classical to quantum feedback control

The formulation of an equivalent quantum problem brings with it the difficulty of measuring
the system. As before in the case of QEC, direct measurement will lead to the collapse of the
state. Therefore, an indirect measurement is essential, providing information while maintaining
the quantum state. Performing measurements in this manner always incurs an information-
gain-disturbance tradeoff [25], whereby the more accurate the information, the stronger the
disturbances in the quantum system. An example of such measurements are the weak mea-
surements [171].

5.2.1 Quantummeasurements

A fundamental aspect of implementing quantum feedback control is information extraction
through measurements. These measurements can be generally described as a collection {Mm}

1To avoid confusion, in control theory the system is generally used to describe all parts of the control problem,
including the dynamics, measurements, noise sources and control inputs. Therefore, system noise is also often
used to refer to all the noise sources in the control problem.
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of measurement operators [172]. These operators act on the state space of a quantum system
and return the measurement result m. The probability to measure the result m when acting
on the system |ψ〉 is given by

p(m) = 〈ψ|M †
mMm|ψ〉. (5.7)

These measurement operators have to fulfill the completeness equation∑
m

M †
mMm = I, (5.8)

equivalently, this equation can be expressed using the Born rule [9] to obtain the measurement
probabilities ∑

m

〈ψ|M †
mMm|ψ〉 =

∑
m

p(m) = 1, (5.9)

enforcing that the probabilities over all possible measurement results sum to one.
In the classical case, performing a measurement does not influence the system, whereas in

the quantum case it results in a backaction on the system and thereby changing the state.
Performing a measurement Mm results in the post measurement state

|ψ′〉 =
Mm|ψ〉√

〈ψ|M †
mMm|ψ〉

. (5.10)

As one can see from this, the backaction on the system depends on the measurement result m.
While we previously examined the overall formalism of quantum measurement, we now want

to look at an important special case of quantum measurement, the projective measurement.
The projective measurement is described by an observable M, which is a Hermitian operator
acting on the state space. The spectral decomposition of the operator is given by

M =
∑
m

mPm, (5.11)

where Pm is the projector onto the eigenspace of M with the eigenvalues m. The projector itself
is a Hermitian operator defined as

Pm = |m〉〈m|, (5.12)

with |m〉 being an eigenvector of M with eigenvalue α and forming an orthonormal basis. From
this follow that two projectors are orthonormal to each other PiPj = δijPi. Using this relation
and the fact that the projectors are Hermitian operators, they fulfill the completeness relation
Eq. (5.8) for quantum measurement∑

m

P †
mPm =

∑
m

PmPm =
∑
m

Pm = I (5.13)

Following directly from Eq. (5.9), the probability of the measurement results is

p(m) = 〈ψ|Pm|ψ〉 (5.14)

and similarly the post measurement state of the system is given by the eigenstate |m〉 following
Eq. (5.10) as

|ψ′〉 = |m〉〈m|ψ〉 = m|m〉 (5.15)

with 〈m|ψ〉 = m, which is also known as the projection postulate [173].
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Now suppose that we have system a |ψ〉 and want to perform repeated projective measure-
ments in order to gain information. The first measurement returns the measurement result m
and leaves the system in the post measurement state |ψm〉 = (Pm|ψ〉) /

√
〈ψ|Pm|ψ〉). Apply-

ing another projective measurement directly after the first one does not change the state as
Pm|ψm〉 = |ψm〉 and therefore we have 〈ψm|Pm|ψm〉 = 1. This means that the second mea-
surement will return the same measurement result m, with the same being true for any further
measurements.

This shows that the projective measurement collapses the system onto an eigenstate [174]
and is therefore not viable for quantum feedback control, as repeated non-destructive measure-
ments are needed. Nevertheless, projective measurements still play an important task in the
construction of non-constructive measurements called weak measurements.

5.2.2 Weak measurements

In order to get information of the quantum system without disturbing it we choose to perform
weak measurements on the system. The idea is to couple the system wavefunction |ψ〉 with an
ancilla wavefunction

|φ〉 =
1

(2πσ2)

∫
dm′ exp

[
−m′2/

(
4σ2
)]

|m′〉, (5.16)

where σ determines the width of the wavefunction, via the interaction term Hint = A ⊗ p,
where A is an arbitrary Hermitian operator with an continuous spectrum of eigenvalues α.
With |Ψ〉 = |ψ〉 ⊗ |φ〉 being the combined initial state, the time evolution is given by

|Ψ′〉 = U (t) |Ψ〉 (5.17)
= exp (−ixtHint) |Ψ〉 = exp (−ixtA⊗ p) |Ψ〉 (5.18)

= U (t) |Ψ〉 = exp
[
−iλ

(
−iα ∂

∂m

)]
|Ψ〉, (5.19)

where x is the interaction strength. It is assumed here, that the time evolution is dominated
by the interaction during the interaction time t. We express both these parameters via a
single parameter λ = xt characterizing the interaction strength of both systems. After the
interaction time we perform a projective measurement on the ancilla wavefunction, where the
measurement action is described by

∏
m = I ⊗ |m〉〈m|, resulting in the conditional state after

the measurement

|Ψm〉 =

∏
m |Ψ′〉√

〈|Ψ′|
∏
m |Ψ′〉

=
M |ψ〉√

〈|ψ|M †
mMm|ψ〉

⊗ |m〉. (5.20)

The operator Mm is the so-called Kraus operator of the measurement and follows from the
ancilla wavefunction 5.16 as

Mm =

∫
dα

1

(2πσ2)1/4
exp

[
−(λα−m)2/

(
4σ2
)]

|α〉〈α|, (5.21)

using the spectral representation of the operator A =
∫
dαα|α〉〈α|.

After performing the measurement, the ancilla wavefunction is no longer correlated to the
system wavefunction and just records the measurement result. By taking the trace over it, we
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regain the conditional state of the system wavefunction recovering the post measurement state
as in Eq. (5.10)

|ψm〉 =
Mm|ψ〉√

〈|ψ|M †
mMm|ψ〉

. (5.22)

With this we can see that the post measurement state of the system depends on the measure-
ment result of the weak measurement. Therefore, it is necessary to determine, the probability
density p(m) of the measurement result m. With |ψ〉 =

∫
dαψ (α) |α〉 the probability density

follows as P (m) = Tr
[
M (m)†M (m) |ψ〉〈ψ|

]
, which we can write as

P (m) =
1√
2πσ

∫ ∞

−∞
dα |ψ (α) |2e−(λα−m)2/

(
2σ2

)
. (5.23)

Using the probability density we can calculate the uncertainty of the measurement σm =
〈m2〉 − 〈m〉2. First, we will calculate the expectation value 〈m〉

〈m〉 =

∫ ∞

−∞
dmmP (m) (5.24)

=
1√
2πσ

∫ ∞

−∞

∫ ∞

−∞
dmdαm|ψ (α) |2e−(λα−m)2/

(
2σ2

)
(5.25)

=
1√
2πσ

∫ ∞

−∞

∫ ∞

−∞
dx dα (λα− x) |ψ (α) |2e−(x)2/

(
2σ2

)
(5.26)

=
1√
2πσ

∫ ∞

−∞

∫ ∞

−∞
dx dα (λα) |ψ (α) |2e−(x)2/

(
2σ2

)
(5.27)

=

∫ ∞

−∞
dα |ψ (α) |2λα (5.28)

= λ〈A〉, (5.29)

where we have substituted x = λα − m and used the solutions of the Gaussian integrals∫∞
−∞ dx e−ax

2
=
√

π
a and

∫∞
−∞ dxxe−ax

2
= 0. The expectation value of the measurement is

then given by the expectation value of the operator A with the additional factor λ. We can do
the same process for 〈m2〉

〈m2〉 =

∫ ∞

−∞
dmm2P (m) (5.30)

=
1√
2πσ

∫ ∞

−∞

∫ ∞

−∞
dmdαm2|ψ (α) |2e−(λα−m)2/

(
2σ2

)
(5.31)

=
1√
2πσ

∫ ∞

−∞

∫ ∞

−∞
dx dα (λα− x)2 |ψ (α) |2e−(λα−m)2/

(
2σ2

)
(5.32)

=

∫ ∞

−∞
dα |ψ (α) |2

[
2σ2 + λ2α2

]
(5.33)

= 2σ2 + λ2〈A2〉. (5.34)

Here we have used the same tricks as before with the additional Gaussian integral
∫∞
−∞ dxx2e−ax

2
=√

π
a

1
2a . Combining both results yields

σ2
m = λ2〈α2〉 + 2σ2 − λ2〈α〉2 (5.35)

= λ2σ2
α + 2σ2. (5.36)
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This result allows us to write the measurement result as a stochastic quantity

m = λ〈A〉 + ∆W, (5.37)

where ∆W is a Wiener increment describing a zero mean Gaussian N
(
0, λ2σ2

α + 2σ2
)
.

From this we can see that in the case λ = 1 and σ → 0, the uncertainty of the measurement
reduces to the uncertainty of the system wavefunction. Therefore, using weak measurements
returning the measurements outcomes m,n of two observables, obeying the canonical commu-
tation relations [α, β] = ih̄, the known limit of the uncertainty principle is recovered

σ2
mσ

2
n = σ2

ασ
2
β ≥ 1

4
. (5.38)

Considering the case with λ = 0, we have no interaction between the system and ancilla wave-
function, and the uncertainty of a measurement reduces the variance of the ancilla wavefunction
to σ2

q = 2σ2.

5.2.3 Quantum system

Having a quantum system that evolves in time and is observed using continuous weak mea-
surements, suffices to setup up a formalism for quantum feedback control. Using the previously
formulated weak measurements of the observable A we can write down the respective SME

dρ = − i

h̄
[A,H] − kλ2

4
[A, [A, ρ]]dt+

√
kλ

2
(Aρ+ ρA− 2〈A〉ρ)dW (5.39)

dy = λ〈A〉 + dW, (5.40)

where we recover the general SME form of Eq. (1.8). A detailed derivation of the equation can
be found in App. C.1.

Looking at the measurement results in Eq. (5.40), we can already see a comparison to the
classical feedback formalism, as it only depends on the actual state and a Wiener increment.
But in order to compare both cases with each other it is still necessary to extract the equation
of motion from the master equation. We can obtain the equation of motion for the expectation
value of the operator B using d〈B〉 = Tr [Bdρ]. From this we get the equation of motion

d〈B〉 = − i

h̄
〈B,H]〉dt

+
kλ2

4

〈
ABA− 1

2

(
A2B +BA2

)〉
dt

+

√
kλ

2
(AB +BA− 2〈B〉〈A〉)dW.

Contrary to the measurement results, this term does not look similar to the structure of the
classical equation of motions. So let us examine a more concrete example by investigating a
quantum system with an Hamiltonian with an inverse quadratic potential and a controllable
time dependent force F , which is observed using position weak measurements.

H = H +Hc (5.41)

=
p2

2m
− k

2
x2 − Fx (5.42)
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Using Eq. (5.41) the position and momentum moments under time evolution are described via

d〈x〉 =
〈p〉
m
dt+

√
κλ2CxxdW (5.43)

d〈p〉 = (−k〈x〉) + F ) dt+
√
κλ2CxpdW, (5.44)

with Cxx = 〈x2〉 − 〈x〉2 and Cxp = 1
2〈xp + px〉 − 〈x〉〈p〉. By expressing the equation using the

state vector ~st = (〈x〉, 〈p〉)T and the control vector ~ut = (0, F )T we are able to recover the
structure given by the classical state equation in Eq. (5.1). This suggest that it is possible
to successfully apply control techniques designed for classical systems to quantum systems [3].
But compared to the classical system, there are two differences,which can be observed. The
first one is that the applied noise is now correlated, as the measurement and process noise
both depend on the same dW , which form is determined by the applied weak measurement.
The second difference is the process noise clear dependence on the covariances Cxx and Cxp.
The covariances are determined by the form of the system, and are therefore subject to change
over time, meaning that the process noise has gained a time dependence. So when applying a
classical control strategy, these two factor have to be considered.

In the following we want to discus one control technique, which is a standard technique for
classical system, but has also seen successful application in quantum systems.

5.3 Linear quadratic Gaussian control

Having formulated the description of the feedback control problem for both the classical and
quantum cases, we turn to the active control part. Based on the observation of the system,
the control algorithm chooses a suitable control input. As a control algorithm we introduce
the well-known technique called linear quadratic Gaussian control LQGC, which allows for
optimal control in classical linear system under Gaussian noise [175]. This algorithm is split
into two separate algorithms. The first being a renowned state estimation technique called
(Kalman Filter) [175]. This filter allows the control even in the presence of statistical noise
and has therefore found a wide range of applications, the most notable example being its
incorporation into the navigation computers of the Apollo program [176] and spacecraft docking
at the International Space Station [177]. The second algorithm is the linear quadratic regulator
(LQR) [178], which returns the control input based on the state of the system.

5.3.1 Kalman filter

We start the description of the LQGC by looking at the fist step, the state estimation done by
the Kalman filter. The process of the state estimation can be described as calculating the most
probable state based on the measurement and the previous state.

Linear system The first case we consider is a linear Gaussian system as described in Eq. (5.3).
It is assumed that the system dynamics A, B, C, as well as the covariance matrices R, Q
are known. While these matrices can possibly be time dependent, meaning that the system
can be time dependent and the noise non-stationary, we will assume here that they are time
independent. This does not change the derivation of the Kalman Filter, and all conclusions
for the time independent case are also true for the time dependent case. Additionally, the
initial state s0 is generally unknown, but is sampled from a Gaussian distribution with known
mean and variance. It is assumed that the initial state and the two noise sources (system and
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5 Quantum feedback control

Figure 5.1 –
Kalman Filter step. Assuming a one-
dimensional state described by the variable
s in a linear system, a Kalman Filter step
can be visualized via the probability density
function p(s) of the state and state estima-
tions. Based on the latest known estimate
(red) the next state (blue) can be predicted
based on the dynamics A and input ut of the
system. Together with the measurement of
the new state (violet) the new estimate can
be calculated (green).

measurement) are mutually independent from each other. This assumption corresponds to the
linear Gaussian (LG) assumption.

Below we use the following notation for the conditional mean

ŝj|k := E
[
sj |Y k

]
, (5.45)

where
Y k := {yi, i ≤ k} (5.46)

denotes the sequence of observations available at the time step k. From this we can differentiate
between the three distinct cases of the state:

• estimate of the state if j = k

• smoothed value of the state if j < k

• predicted value of the state if j > k

As the goal of estimator is to calculate the estimates of the state, the goal will be to minimize
the estimation error

s̃j|k := sj − ŝj|k. (5.47)

Additionally we define the conditional convariance matrix of sk given the data history Y k

Pj|k := E
[(
sj − ŝj|k

) (
sj − ŝj|k

)′ |Y k
]

(5.48)

= E
[
s̃j|ks̃

′
j|k|Y

k
]
. (5.49)

The task of the Kalman filter is therefore to map the conditional mean of the current time
step ŝt,t and associated covariance matrix Pt|t onto the next time step, namely ŝt+1|t+1 and
Pt+1|t+1, based on the measurements taken up to this point Y t.

The predicted state follows from applying the state estimation Eq. 5.3 to the estimation of
the current state ŝt|t. Since the noise sources are all zero mean Gaussians, the predicted state
and the associated state prediction covariance are given by

ŝt+1|t = Aŝt|t +But (5.50)
Pt+1|t = APt|tA

T +Q. (5.51)
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Using the same procedure, we calculate the predicted measurement ŷt+1|t and the measurement
prediction covariance St+1|t

ŷt+1|t = Cŝt+1|t (5.52)
St+1 = CPt+1|tC

T +R. (5.53)

From the calculated covariance follows the Kalman gain K as

Kk+1 := Pt+1|tC
TS−1

k+1. (5.54)

The Kalman Filter then allows us to determine the updated state estimate and state covari-
ance

ŝt+1|t+1 = x̂t+1|t +Kk+1ẑk+1 (5.55)
Pt+1|t+1 = (I −Kt+1C)Pt+1|t, (5.56)

where z (t+ 1) := yt+1 − ŷt+1|t = ỹt+1|t is the measurement residual.
From Eq. 5.55 it follows that the Filter is proportional to the state prediction variance, while

it is inversely proportional to the measurement residual variance. This leads to the intuitive
interpretation of the filter that an inaccurate state prediction (large variance) and an accurate
measurement (small variance) lead to a large Kalman Filter. This indicates a rapid response
in updating the state prediction based on the measurement, allowing large steps between two
state predictions. The other way around we have a small Kalman Filter for accurate state
predictions and inaccurate measurements. Therefore, the state prediction only changes slowly
based on the measurement.

To complete the description of the Kalman Filter cycle, we have to look at the first time
step. It is assumed that the mean and covariance of the initial state are known

E
[
s0|Y 0

]
= ŝ0|0 (5.57)

cov
[
s0|Y 0

]
= P0|0 (5.58)

and therefore can be inserted into Eq. (5.50) & Eq. (5.51).
The computational cost of the Kalman filter is reported to be (

(
N3
)
, where N = max(n,m)

is determined by the dimension of the state and control vector [169].

5.3.2 Kalman filter with same time step correlated noise

Normally it is assumed that the linear system has uncorrelated process and measurement noise.
But since we want to apply the LQGC for quantum feedback control, we have to assume
correlated system and measurement noise in order to compensate for the weak measurements
backaction depending on the measurement results.

Therefore, we now take a look on how to compensate for correlated noise in the Kalman
Filter. We consider cross-correlated noise at the same time defined by

E
[
vkv

′
j

]
= Qδjk (5.59)

E
[
wkw

′
j

]
= Rδjk (5.60)

E
[
vkw

′
j

]
= Uδjk, (5.61)
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where the cross correlation between the process and measurement noise is indicated by Eq. 5.61.
It has to be noted that these correlations only occur in the same time step, as indicated by the
Kronecka Deltas.

To account for this cross correlation it is necessary to rewrite the state equation, in such a
form that it has a new process noise, which is uncorrelated from the measurement noise [169].
Using an arbitrary matrix T , we transform the system to

st+1 = Ast +But + wt + T [yt − Cst − vt] (5.62)
= (A− TC)st +But + wt + Tyt − Tvt (5.63)
= A∗st + u∗t − w∗

t , (5.64)

with the new transition matrix A∗ = (A−TC), new known input u∗t = But +Tyt and the new
noise w∗

t = wt+Tvt. The resulting equation is completely equivalent to 5.3, as yt−Cst−vt = 0.
Now the matrix T is chosen, by setting the correlation between the new system noise and

the measurement noise to zero

E[w∗
t v

′
t] = E[[wt + Tvt]v

′
t] = S − TR = 0, (5.65)

which yields
T = SR−1. (5.66)

From this follows the covariance of the new process noise as:

Q∗ = Q− SR−1S′ (5.67)

Using the new state Eq. 5.64 and covariance 5.67, the Kalman gain can be calculated in the
usual way, following the steps laid out previously in Sec. 5.3.1

5.3.3 Extended Kalman filter

In the cases discussed previously, the Kalman filter was applied only to linear systems. Now we
want to include non-linear dynamics as well as nonlinear measurements, as described in Eq: 5.1
& 5.2, turning the Kalman filter into the extended Kalman filter EKF.

In this case, the system is no longer described by the matrices A, B, C, but instead by the
nonlinear functions f (st, ut) and g (st) for the dynamics and measurement, respectively. What
still stays the same is, that the system is afflicted with additive Gaussian noise.

The basic principle of the Kalman filter remains unchanged as it calculates the predicted state
through recursive computation of the conditional means and covariances. In the nonlinear case,
the previous assumption of the conditional mean in Eq. (5.45) is no longer exact, but is instead
an approximation ŝt|t ≈ E

[
st|Y t

]
and with the associated covariance matrix Pt|t

2. For the
EKF this is achieved by linearization of the nonlinearities in the dynamics and measurements
using first order-series expansions, resulting in

At =
∂f

∂s
|ŝt,ut (5.68)

Ct =
∂g

∂s
|ŝt (5.69)

2Strictly speaking Pt|t is no longer the covariance matrix but instead the MSE matrix, since ŝt|t is only an
approximation of the conditional mean.

88



5.3 Linear quadratic Gaussian control

where A,C are now the Jacobians of their respective functions, linearized around ŝt, ut. The
calculation of the Jacobian occurs at the beginning of every cycle, and from then on the EKF
follows the same procedure as the standard Kalman filter in Sec. 5.3.1. First, the predicted
state and associated covariance is calculated

ŝt+1|t = f(st, ut) (5.70)
Pt+1|t = AtPt|tA

T
t +Q, (5.71)

and then the same is done for the measurement

ŷt+1|t = g(ŝt+1|t) (5.72)
St+1 = Ct+1Pt+1|tC

T
t+1 +R. (5.73)

From the state and measurement covariance we then calculated the Kalman filter

Kk+1 = Pt+1|tC
T
t+1S

−1
k+1. (5.74)

At the end we can again calculate the estimated state and covariance of the next time step

ŝt+1|t+1 = ŝt+1|t +Kk+1ẑk+1 (5.75)
Pt+1|t+1 = (I −Kt+1Ct+1)Pt+1|t, (5.76)

where ẑt+1 = yt+1 − ŷt+1|t is again the measurement residual.
The biggest difference in the calculation of the EKF compared to the Kalman filter is the

added evaluation of the Jacobian of the state and measurement functions. Because of this,
the calculation of the covariances is no longer decoupled from the state estimation calculation,
since the state prediction in Eq. (5.70) has to be performed before evaluating Ck+1, as this is
required in Eq. (5.73). As a consequence, this covariance calculation can generally not be done
offline, meaning that they cannot be calculated beforehand.

It is also important to point out that the EKF is not an optimal decoder for the nonlinear
Gaussian system, because of the approximation of the dynamic and measurement functions.
It has been demonstrated that the advantage in estimating the covariance Pt|t using optimal
nonlinear estimation compared to the best possible linear estimator can range from 1% for
inaccurate measurements to 6% for accurate measurements [169]. The largest difference was
achieved somewhere between these two extremes, where the improvement was 15%, demon-
strating that the EKF can still achieve high performance in controlling nonlinear systems.

5.3.4 Linear quadratic regulator

The second part of the LQGC consists of the linear quadratic regulator LQR, a control algorithm
designed to operate a system at minimum cost [170]. In the case where the dynamics are
described by a linear system, subjected only to measurement noise, and the cost is defined by
a quadratic function, the LQR is able to optimally control the system [178].

We start the derivation of the LQR for a linear system given by

st+1 = Ast +But, (5.77)

where st is once again the state vector, ut the control vector and the matrices A, B define the
dynamics of the system. Compared to the previously defined system for the LGC problem in
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Figure 5.2 – LQGC flowchart representation. At each time step the Kalman filter determines the most
probable state ŝt+t|t+1, which is passed to the LQR. Based on the estimate, the LQR applies a control input
ut+1 to the system. The combination of the Kalman filter and LQR forms the LQGC (blue). The system
evolves in time according to the dynamics, control input and process noise wt. The following measurement
under the influence of the measurement noise vt is passed to the Kalman filter. Together with the last
estimate and control input, the Kalman filter then calculates the next estimate.

Sec. 5.3.1, we are missing the additive Gaussian noise and assume that we are able to observe
the state directly, without measurement.

The cost of the system is given by the quadratic function

J =
∑
t

(
sTt W1st + uTt W2ut + 2sTt Weut

)
, (5.78)

where the matrices W1,W2,W3 are the weighting matrices, which can be arbitrarily set in order
to match the underlying problem. Here we can see that the LQR tries to solve an optimal control
problem, as the strategy depends on the predefined cost, as shown in Sec. 6.1.3.

Based on the quadratic cost, the LQR returns the controlling law

ut = −Ktst, (5.79)

which minimizes the cost function, where K is given by

Kt =
(
R+BTPB

)−1 (
BTPA+NT

)
. (5.80)

The matrix P is the solution to the discrete time algebraic Riccati equation DARE [179]

Pk−1 = ATPA−
(
ATPB +N

) (
R+BTPB

)−1 (
BTPA+NT

)
+Q (5.81)

In the case that we have nonlinear dynamics and linear added controls given by

st+1 = f (st) +But, (5.82)

we perform similar actions as in the EKF and approximate the nonlinearities using the first
order extensions, therefore replacing the dynamic matrix A with the Jacobian

At =
∂f

∂s
|st . (5.83)

Now the Kalman filter and LQR can be combined to obtain the LQGC simply by replacing
the state vectors used in Eq. (5.79) with the state estimates calculated in either Eq. (5.55) or
Eq. (5.75), as illustrated in Fig. 5.2.
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Reinforcement learning quantum
feedback control

Chapter

6

In the previous chapter we formulated the system equations for a generic quantum feedback
model. Now we want to use the similar structure between the feedback control loop and
the reinforcement learning structure to reformulate the system as an RL environment. This
approach allows the use of an RL-based controller that can learn the underlying dynamics and
uncertainties without any prior knowledge. While the potential of reinforcement learning as
a technique for quantum system control is significant, it is not a straightforward application.
Specialized agents and training techniques are necessary to ensure their efficacy in quantum
control. The development of these agents is a time consuming and complex process, even
in the case of classical systems. For this reason, it is standard practice to first developed
and test new agents on simple benchmark environments, allowing for fast research and better
understanding. Our goal here is to design a simple quantum benchmark environment, creating
the desired testing ground for quantum systems.

The quantum environment that we are going to implement is the quantum cartpole, a
term coined by Zhikang T. Wang et al. in [180]. In this chapter, we will discuss the construc-
tion of this environment, both conceptually and numerically, based on the classical cartpole
environment proposed by [107]. We will also examine the significance of weak measurements in
this system and their interaction with it. This allows us to translate the quantum model into
a classical model mimicking its behavior.

Afterwards we discuss the controllers which will be used for stabilization of the system.
Namely the previously introduced LQGC as well as some RL based controllers. While for the
RL controllers we have to discuss their explicit design and training regarding the environment,
the LQGC has to be adapted to be applicable to a quantum system, as it is originally designed
for a classical system.

We begin testing the environment by comparing controller performance on a linear classical
system. Next, we compare the classical model with the quantum model for the same controllers
and potentials. We then vary the potential, changing the system from linear to nonlinear, and
benchmark the controllers against each other.

This is followed by an analysis of the control strategies employed by the controller, with
a focus on extracting the strategy of RL-based controllers. Subsequently, a discussion of the
results is presented. It should be noted that this chapter draws heavily on a previous publication
by the author of this thesis [P2].
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6 Reinforcement learning quantum feedback control

6.1 Quantum benchmark environment: The quantum cartpole

Our goal is to create a straightforward quantum environment in which agents can be easily
created and tested. We draw inspiration from the most popular classical benchmark environ-
ment, the cartpole environment [107]. In this environment, a pole is positioned on top of a cart
and tips towards the right or left side based on the gravitational potential. The objective is to
maneuver the cart to the left and right to counteract the movement of the pole and balance it
upright on the cart as shown in Fig. 6.1 a). Failure occurs when the pole surpasses a specific
angular threshold.

We will use these simple ideas to create a quantum version of this, called the quantum cartpole
environment [P1, 180]. In this environment, we intend to replicate the balance by replacing
the pole with a free particle, which will be initialized as a Gaussian wavepacket

|ψ〉 =
1√

2πσsys

∫
dx e

−(x−x0)2

4σ2sys e−ixp. (6.1)

This wavefunction is then placed on top of an inverted potential V (x) as shown in Fig. 6.1. As
the system undergoes unitary dynamics governed by the Hamiltonian

Ĥ =
p̂

2m
+ V (x̂) (6.2)

the wavepacket will move to either direction of the potential. As the wavefunction is defined over
the whole position space, the termination condition differs from that of the classical cartpole.
To ensure termination is still achieved even when the wavepacket has shifted far from the center,
the condition is set to trigger as soon as at least 50% of the wavefunction’s probability density
has surpassed a specific threshold value x. To prevent the wavefunction from exceeding the
threshold, active feedback control is sued based on the measured values of 〈x〉 and 〈p〉 of the
wavefunction. This is accomplished through the use of weak measurements, as described in
Sec. 5.2.1. Following the measurement results, a controlling algorithm, which may be either
classical or machine learning-based, applies a force to the system in the form of a unitary ”kick
operator” uF . This kick operator is implemented using a shift operator e−iF x̂, which adds
momentum to the system. We have decided to impose a maximum force limit of |F | < Fmax
on the system to be closer to actual experimental setups.

There is an additional problem that arises from the quantum nature which is not observed
in classical cases. Once the wavefunction is placed on the potential, it begins to delocalize,
independent of any applied unitary force uF . To counteract this problem, it is necessary to
apply state reduction to the system, maintaining its shape over time. Fortunately, the weak
measurement already has the ability to keep the wavefunction stable over time.

Under the condition that our wavefunction is in form of a Gaussian probability distribution,
the post-measurement state follows from Eq. (5.10) to be the product of two Gaussian prob-
ability distribution which is again a Gaussian probability distribution. Assuming that λ = 1,
the resulting variance is given as

σpost =

(
σ2

sysσ
2
anc

σ2
sys + σ2

anc

)1/2

〈x〉post =
〈x〉σ2

anc +mσ2
sys

σ2
sys + σ2

anc
, (6.3)

where σsys represents the initial variance of the system wavefunction and σsys is the width of
the ancilla wavefunction. From this follows, that the resulting width has to be σpost ≤ σsys,
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Figure 6.1 – Cartpole environment for classical and quantum system. For the classical cartpole, a pole
is placed on top of a cart, which is movable in one dimension. Based on some random initial deviation, the
pole will drop to one of the two sides. The observer has perfect information about the angle and velocity of
the pole and can therefore apply a force on the cart to keep the pole in an upright position. In the quantum
case, a wavefunction is placed on some inverted potential (a), with the goal to keep it inside the selected
area [−xth, xth] marked by the red signs. Once > 50% of the probability distribution move outside, the run
is considered failed and reset. To avoid this periodic measurements are performed on the wavefunction with
active control to stabilize the wavefunction inside.

demonstrating the state reduction in the position space. A similar derivation leading to the
resulting measurement can be obtained by applying a momentum measurement

σpost = 2

 4
σ2

sys
σ2

anc
4
σ2

sys
+ σ2

anc

−1/2

〈p〉post =
〈p〉σ2

anc +m 4
σ2

sys
4
σ2

sys
+ σ2

anc
. (6.4)

This now shows a state reduction in the momentum space and therefore σpost ≥ σsys after the
momentum measurement, thereby working against the state reduction of the position weak
measurement. As the magnitude of the state reduction varies depending on the σsys and σanc,
the state reduction of both measurements generally does not cancel itself out. The difference be-
tween the initials and post position width after sequentially applying both weak measurements
to the wavefunction is shown in 6.2. The heatmap shows ∆σsys = σpost−σsys depending on σsys
and σsys. The white line marks the area, where the pre and post-measurement wavefunctions
have the same width, therefore stabilizing the wavefunction to constant shape. Looking at the
areas further away shows that the resulting state reduction moves the wavefunction closer to
the white line, until it is stabilized. So depending on the applied potential, the stabilized shape
of the wavefunction differs, but the wavefunction will be stopped from delocalzing over time.
A more detailed derivation can be found in Ap. D.1.

While this describes the general function of the environment, we need to formulate it correctly
in terms of a RL environment as defined in Sec. 2.3. The system’s state is determined by the
wavefunction |ψ〉, which is initialized at the center of the potential with a random momentum
〈p〉init, sampled from a zero mean Gaussian distribution if the width σp = 0.1. The wavepacket
is also initialized with a width of σsys = 1.0. The wavepacket forms the state s(t) of the RL
environment as it completely describes the system.

The interaction with the environment at every time step ∆t consists of the following three
parts:

• The unitary evolution based on the Hamiltonian from Eq. (6.2) for the time intercal ∆t

• The sequential application of the weak position and momentum measurement, and the
therefore resulting backaction on the system
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6 Reinforcement learning quantum feedback control

Figure 6.2 –
Weak measurement based state reduction. The
heatmap demonstrates the change in the width of the
wavefunction ∆σsys, when applying a position weak mea-
surement followed by a momentum weak measurement.
Both weak measurements use the same ancilla wavefunc-
tion with σanc, and the initial wavefunction has a width
of σsys. The white line marks ∆σsys = 0.
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• The application of a controlling force via the kick operator uF

The force applied is determined by some control algorithm or RL agent, where we first have
to provide some information about the system. While in RL often the state s(t) is used as input
information, which here is the wavefunction, in actual experimental setups this information is
not available. Therefore we use the observation o(t) provided by the weak measurements.

Here we also want to introduce another technique called framestacking [82]. This technique
provides the option of performing multiple measurements to obtain mean values of the position
and momentum observables. The idea behind this technique is that by performing multiple
measurements, the observation passed to the agent appears less noisy, which would allow for
an easier and more stable training process of the agent, but at the cost of a longer waiting time
before an action can be taken.

In a system without measurement backaction, with the time step dt → 0 between two
measurements, performing multiple measurements of a noisy observable described by σnoise is
the same as performing a single measurement of the observable with

σ′noise =
σnoise√
N
, (6.5)

where Nmeas is the number of measurements. In actual applications this state is merely an
approximation, as the system, and therefore the observables, change because of time evolution
and backaction of the measurement. While this technique was taken from the RL world, it
is also possible to see this in light of feedback control theory, as it can be viewed as a simple
state estimation technique. Therefore, the observation passed to the control algorithm will be
described via o = (xest, pest) as shown in Fig. 6.3. The action returned is the force used by the
kick operator, and based on the state of the system a reward is returned to the agent. The
exact shape of the reward will be discuss in detail in Sec. 6.1.3.

6.1.1 Classical surrogate model

As our goal is to create a benchmark environment for quantum systems, it is necessary to give
a context for provided benchmarks. This is why we previously discussed the LQGC, as it is
known to be optimal on the linear classical system. When applied to a quantum system, it
can still achieve high performance [181], but the optimality statement is no longer preserved.
Thus, we cannot accurately judge the performance based on the quantum version alone and
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6.1 Quantum benchmark environment: The quantum cartpole

Figure 6.3 –
Quantum cartpole environment. In the actual sim-
ulation (b) this cycle is discretized in time steps dt, which
starts with the time evolution of the wavefunction over
the time dt. Then, the position and weak measurements
are applied sequentially. This block is repeated Nmeas
times. Afterwards, the measurement means xmeas, pmeas

are passed to the state estimator, which in turn returns
xest and pest to the control algorithms and an appropri-
ate force F is chosen to apply a kick to the wavefunction.
Then the cycle starts anew. Figures taken and resized
from [P1].

have therefore decided to create a classical surrogate model for comparison, which behaves as
closely as possible to quantum system.

The surrogate model can be described using a combination of the classical formulation for
feedback control for linear Eq. (5.3) and nonlinear system Eq.5.1. The model is described by
the equation

st+1 = f(st) +But + wt (6.6)
yt = Cst + vt, (6.7)

where f(st) is determined by the chosen potential of the system V (x) and can very well be a
nonlinear function1. On the other hand the matrices B, C are fixed in the form

B =

(
0 0
0 ∆t

)
C =

(
λ 0
0 λ

)
. (6.8)

As the control matrix B is designed to mimic the kick operator, it only alters the momen-
tum depending on the selected force. Likewise, the measurement matrix C produces the initial
state multiplied by the factor λ, based on the weak measurement results specified in Eqs. 5.29
and 5.34. This approximation assumes that position measurement-induced backaction is neg-
ligible for momentum measurement.

Now both Wiener increments wt and vt have to be defined in a way to capture the measure-
ment uncertainty of the weak measurement and the backaction of the system, while still being
a zero mean Gaussian. As the backaction depends on the measurement, the Wiener increments
relation is now given by

E
[(
wt
vt

)(
wTt′ vTt′

)]
=

(
Q S
ST R

)
δtt′ , (6.9)

where Q and R are the process and measurement covariance matrices and S is the crosscovari-
ance matrix.

Starting with the measurement covariance matrix, the Wiener increment follows directly
from Eq. (5.34), allowing it to be described as

R =

[
σ2

anc 0
0 σ2

anc

]
. (6.10)

1Actually, the quantum cartpole is more closely related to the inverted pendulum environment, but the quantum
cartpole term was coined by [180]
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As the process noise should replace the backaction and its actual value depends on the
measurement result, we express the process noise Wiener increment with the measurement
Wiener increment

dw =

(
〈dwx〉
〈dwp〉

)
=

(
mxx mxp

mpx mpp

)(
dvx
dvp

)
= Mdv. (6.11)

Based on Eq. (6.3) and Eq. (6.4), we know that the resulting backaction is also dependent on the
width of the wavefunction. Depending on the potential and current position of the wavepacket
inside it, σsys fluctuates around some fixed value. Therefore, when creating the surrogate model,
we perform 106 measurements on the quantum system, recording the measurements outcomes
xmeas, pmeas as well as the resulting change in position and momentum dx, dp. From this we can
approximate M by fitting the backaction as a linear combination of the measurement results
with the factors mi,j .

From this the process covariance and crosscovariance matrices follows as

Q =

[
(mx,x +mx,p)σ

2
anc (mx,xmx,p +mp,xmp,p)σ

2
anc

(mx,xmx,p +mp,xmp,p)σ
2
anc (mp,x +mp,p)σ

2
anc

]
(6.12)

S =

[
mx,xσ

2
anc mp,xσ

2
anc

mx,pσ
2
anc mp,pσ

2
anc

]
(6.13)

based on covariance calculations for linear combinations.

6.1.2 Numerical realization

The task is now the numerical implementation of the previously described system. Starting
from the RL interaction loop, the dynamics will be discrete in time steps ∆t. Every time step
consists of three different parts, the time evolution of the wavefunction based on the potential,
the weak measurement on the system and the feedback application on the system. It is possible
to formulate this problem as QSDE as shown Eq. (5.43). However it is not only necessary to
calculate the equation of motion for 〈x〉 and 〈p〉, but also for the covariances of the system
Cxx, Cxp, Cpp, since the backaction and measurement results of the weak measurement depends
on this. These derivations are non-trivial and depend heavily on the chosen potential. Since
we want to create a benchmark environment, that can be used with an arbitrary potential, we
will instead use some numerical algorithms to calculate the dynamics of the wavefunction.

The first step is the approximation of the dynamics based on the potential. The dynamics
are guided by the Hamiltonian in Eq. (6.2), which leads to the Schrödinger equation

−ih̄ ∂
∂t
ψ = Hψ (6.14)

from which the unitary time evolution follows

ψ(t+ dt) = e−iHdtψ(t). (6.15)

This can be viewed as an initial value problem of the form dy
dt = f(t, y), y(t0), which can be

approximately solved using Runge-Kutta methods [182]. For this it is necessary to discretize
the wavefunction in the space and time. This results in the second-order position derivatives

∇2ψ(xj , t
n) ≈

ψnj+1 + ψnj−1 − 2ψnj
∆t2

, (6.16)
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where we use the second-order numerical differentiation method, with j being the position
index and n the time index.

Using the most widely known representation of the Runge-Kutta method, often referred to
as RK4, the next time step is given by

ψn+1
j = ψnj +

∆t

6
(k1 + 2k2 + 2k3 + k4) , (6.17)

with ∆t being the time step size and ki are defined as

k1 = f(tn, ψn)

k2 = f(tn +
∆t

2
, ψn + ∆t

k1

2
),

k3 = f(tn +
∆t

2
, ψn + ∆t

k2

2
),

k4 = f(tn + ∆t, ψn + ∆tk3).

Based on the Schrödinger equation Eq. (6.14) and the numerical differentiation Eq. (6.16) we
can express the function f as

f(tn, ψn) =
i

2mh̄

ψnj+1 + ψnj−1 − 2ψnj
∆t2

− i

h̄
Vnψ

t
n (6.18)

and are able to numerically simulate the time evolution.
The Runge-Kutta method is a fourth order method, meaning that the local truncation error

is of order O
(
∆t5

)
with the total error being of order O

(
∆t5

)
[182]. By selecting a reduced

time step size for the Runge-Kutta simulation, which is a fraction of the environmental time
step ∆tRK4 = 1

N∆tenv where N ∈ Z, we can reduce the numerical uncertainty, but at the cost
of increased computation time.

The application of the kick operator can be done exactly, as the unitary kick operator sim-
plifies to a diagonal matrix. Therefore, it is possible to perform this evolution as a simple
vector-vector multiplication.

The calculation of a weak measurement is performed in two steps. First, we have to determine
the measurement result, which can be sampled as a Gaussian distribution N (λ〈A〉, 2σ2

anc),
based on Eq. (5.29) and Eq. (5.34), assuming that λ is small so that λ2 is negligible. Since
σanc is known and constant in time, as the ancilla wavefunction has to be reinitialized for every
measurement, only 〈A〉 has to be determined. In the numerical simulation we have access to
the complete wavefunction. Therefore we can calculate the expectation value of the position
via

〈x〉 =

∫
dxψ∗xψ (6.19)

≈
∑

∆xψ∗xψ, (6.20)

with ∆x being the step size used to discretize the position space. The same can be done for
the momentum as

〈p〉 =

∫
dxψ∗

(
−ih̄ ∂

∂x
ψ

)
(6.21)

≈
∑

−ih̄∆xψ∗ψ′. (6.22)
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After sampling of the measurement result, we can calculate the post-measurement state of
the wavefunction according to Eq. (5.10). Using that λ is small we perform a series expansion
of 5.17

U = I ⊗ I − iλH − 1

2
λ2H2 +O

(
λ3
)

(6.23)

≈ I ⊗ I − iλA⊗ p− 1

2
λ2A2 ⊗ p2, (6.24)

which is cut off after λ2. Here the operator A represents either the position or momentum
operator. Performing the projective measurement on the ancilla wavefunction will return the
conditional state

|Ψq〉 =
I〈q|φ〉 − iλA〈q|p|φ〉 − 1

2λ
2A2〈q|p2|φ〉

N
|ψ〉 ⊗ |q〉, (6.25)

where N is the normalization. The post-measurement state of the wavefunction is returned by
tracing of combined state, returning

|ψq〉 =
I〈q|φ〉 − iλA〈q|p|φ〉 − 1

2λ
2A2〈q|p2|φ〉

N
|ψ〉. (6.26)

We can easily calculate this expression, as the terms 〈q|φ〉, 〈q|p|φ〉 and 〈q|p2|φ〉 simply corre-
spond to the different derivations of the ancilla wavefunction φ (q) , −ih̄φ′ (q) and −h̄2φ′′ (q).
These functions can be determined analytically beforehand based on Eq. (5.16). Similary, the
two remaining terms A|ψ〉 and A2|ψ〉 can be calculated via vector multiplication or numerical
differentiation, depending whether the position or momentum weak measurements are used.

6.1.3 Control strategies

After defining the quantum environment as well as the classical surrogate, it is still necessary
to define the control algorithms. The control algorithms can be generally differentiated based
on their approach, thereby separating them into classical and RL-based algorithms, as well as
their area of application, which includes state estimation and feedback control. This structure
allows us to combine different state estimation techniques with different feedback control.

Classical control algorithm For classical algorithm controller, we use the LQGC algorithm
described in Sec. 5.3, which is made up from the Kalman filter as well as the LQR.

The Kalman filter provides the state estimation part and in the case of the surrogate model,
can be applied following the steps provided in Sec. 5.3.1, as all the dynamics and covariances
are known. However, it is necessary to adopt the same step correlation extensions provided in
Sec. 5.3.2 and, depending on the chosen potential, use either the Kalman or Extended Kalman
model. In the case of the quantum model, we assume that the classical surrogate model is an
accurate description of the quantum model and therefore apply the Kalman filter based on the
surrogate dynamics.

A similar procedure is used for the LQR. In the surrogate model, the LQR can be implemented
based on its description in Sec. 5.3.4, as all of the necessary information is known. In the
quantum case, we apply the LQR based on the Kalman filter. This leaves us with the quadratic
cost function of the LQR, which we want to model after the Hamiltonian, so that the LQR
minimizes |V (x)| + T , with T being the kinetic energy. This means that in the beginning, we
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6.1 Quantum benchmark environment: The quantum cartpole

set the weights W2,W3 to zero, as we do not want to penalize the application of the controlling
force. This leaves only W1, which we define as

W1 =

[ |V (x)|
x2 |x=xmeas 0

0 1
2m

]
, (6.27)

where the potential is evaluated based on the latest measurement.

Reinforcement learning control As the LQGC optimal only in the case of classical linear sys-
tem, we want to create a RL-based control algorithm that can achieve comparable or better
performance. The main advantage of RL control would be the model-free nature. While LQGC
requires extensive knowledge of system dynamics and noise sources, RL can be trained solely
on measurement results while observing the runtime of the wavefunction.

Taking inspiration from the design of the LQGC, we will split the RL controller into two
parts. The first part is the reinforcement learning controller RLC, which takes on the task to
convert state estimates into a controlling force. The other part is the reinforcement learning
estimator RLE, which calculates the most probable state based on the measurements. For
both agents we will utilize the PPO algorithm, introduced in Sec. 2.3.4.

The RLC is trained with the goal of giving the most optimal control force based on the
input, which can either be the raw measurement results xmeas, pmeas or be the estimate giving
by some state estimation technique xest and pest. The output of the agent is the controlling
force uF in the range [−Fmax, Fmax]. Both the observation and action space are defined as
continuous spaces. In order to allow the agent to find a control strategy without experiencing a
bias based on the implementation, we use a reward function which punishes if the wavefunction
is pushed outside the thresholds without offering any rewards for keeping the wavefunction
inside a certain area. The reward function is given as

rt =

{
0 if

∫ xth
−xth

dx|ψ (x) | > 0.5

−1 else
. (6.28)

The disadvantage of this is an increased difficulty in training the agents, since it is necessary to
run multiple completed runs to get sensible statistics for the agent. Consequently, training times
are considerably increased for environments where the wavefunction survives for an extended
period of time. Additionally, the agents are more likely to experience performance degradation
and get stuck in local minima, as discussed in Sec. 2.3.5.

Now switching to the RLE, whose goal is to mimic the Kalman filter by copying its input and
output. Therefore, the observation space contains the state estimation xest,t1 , pest,t−1 from the
previous time steps, the current measurement results xmeas and pmeas and the last used control
force Ft−1. In return, the output is given by a new state estimation xest,t, pest,t. Compared
to the LQGC, the RLE has the increased difficulty of learning the system dynamics, noise
covariances, as well as the Kalman filter functionalities.

The reward function chosen for this problem is

rt = −
∑

(ymeas − sest) , (6.29)

based on [183].
The results of training and testing the RLE in combination with the RLC can be seen in

Fig. 6.4 b). Showcasing the performance depending on the Nmeas, it is visible that the RLC +
RLE has a similar behavior as the LQR + Kalman, as the maximum performance is reached
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at Nemas. This shows that the RLE is able to learn some state estimation, but since there is a
performance difference of ≈ 50% to the LQR + Kalman, the RLE is not able to reliable predict
the most probable state.

More details about the training process as well as the used hyper parameters can be found
in D.2.

6.2 Controlling the quantum cartpole

Applying different controlling algorithms, we try to quantify their performance via the average
termination time ttermination. This observable is determined by simulating N runs and recording
the time step when the termination condition is fulfilled. Since each individual run is inde-
pendent from each other, the average termination time is simply expressed by a mean and its
standard error

ttermination =
1

N

∑
N

ttermination ∆t =
1

N

√∑
N

(
ttermination − ttermination

)2
. (6.30)

In the case of RL agents, we are able to observe a variation in the performance between
agents, overshadowing the errors of the simulation. In order to minimize these training induced
errors, we train a number of different agents on the same set of environmental parameters
and training hyperparameters and only pick the M best performing agents to calculate the
performance of the RL controller. It is important to mention that the training of these agents
is performed completely independent of each other. This follows the argument that even if
training might be volatile and produces agents with a wide range of performance, only the best
performing agent will actually be deployed later and the rest will be discarded. Because of this,
we have to amend the calculation of the average termination time to

ttermination =
1

M

M∑
i=1

tm ∆ttermination =
1

M

√∑
M

σ2
m

N
. (6.31)

In the following, all results were created using this standard set of environmental parameters
as listed in Tab. 6.1, unless otherwise specified.

6.2.1 Linear surrogate system

Using the surrogate model, we want to run some initial test to evaluate the performance of the
controllers depending on the measurement noise level as well as to investigate the influence of
the framestacking technique.

For this, we will test different control algorithms on a linear system with an inverse quadratic
potential V (x) = −k

2x
2 with k = π. For the first test, we compare the performance of the LQR

against the RLC for different values of σmeas and vary the number of weak measurements
Nmeas performed per action. The results are shown in Fig. 6.4 a), where every single datapoint

∆t m h̄ σsys 〈p2〉init xth Fmax
0.01/π 1

π 1 1.0 0.1 8 8π

Table 6.1 – Quantum cartpole environmental parameters. This set of parameters is chosen for compa-
rability to [180] and all units were set to 1.
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Figure 6.4 – Importance of state estimation. Testing the LQR (dashed) against the RLC (solid) on the
classical surrogate model with measurement noise varying from σnoise = 0.7 to σnoise = 1.0 (a) by comparing
the average runtime ttermination against the number of measurements performed to obtain the position and
momentum observables. Fixing the measurement noise to σnoise = 0.8 (b) and adding state estimation in form
of the Kalman filter (blue) and RLE (red) to the LQR and RLC, respectively. All four different combinations
are compared based on the average termination time against the number of measurements. This figure was
taken and modified from [P1].

was determined using 105 individual runs of the surrogate model and, in case of RL based
controllers, the 10 best performing agents were used to determine the results.

Starting with the LQR, one can see based on the ttermination at Nmeas = 1 that the algorithm
on its own struggles to stabilize the wavefunction for a meaningful amount of time. Increasing
the number of measurements according to the framestacking technique allows the LQR to
increase the performance by more than a factor of three, reaching a maximum at Nmeas = 25.
This shows the importance of state estimation when process noise is present in the system.
Increasing the number of measurements further the performance starts to drop again, which
can be seen as a consequence of the increasing delay between taking controlling actions to
stabilize the system. Furthermore this behavior can be seen independently of the level of
measurement noise applied to the system, where, as expected, the performance drops when the
measurement noise is increased.

Looking at the performance of the RLC for the same environment, it follows the same per-
formance behavior as the LQR, but is able to increase the top performance by up to ≈ 20% for
σmeas = 0.7. This increase in performance is most likely a result of the framestacking returning
not the most probable state, but only an approximation of it. The LQR is designed to work
with the most probable state, whereas the RLC can adopt to the suboptimal input given.

Now we also want to include the Kalman filter as well as the RLE on the same setting
to compare the performance when proper state estimation techniques are used. The results
are shown for σmeas = 0.8 in Fig. 6.4 b), where the previous results for the LQR and RLC
are included for comparison. Starting again with the classical control algorithm, the LQR +
Kalman filter, it is evident that the peak performance has increased by a factor of ≈ 3 compared
to the LQR, and as well that the maximum has shifted to Nmeas = 1. Here the LQGC is known
to be an optimal controller, therefore it is expected to achieve the highest performance at that
point. When increasing the number of measurements, the same statements regarding LQR also
apply to the LQR + Kalman filter. The performance drops due to the delay between actions
as well as the approximation introduced by performing multiple measurements. Therefore, it
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Figure 6.5 –
Comparison of the surrogate and quantum envi-
ronment. The plots show the ttermination of the LQR
+ Kalman controller for different numbers of measure-
ments. The controller was applied for both the classical
surrogate environment (blue) and the quantum environ-
ment (red).
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is important to note that the LQR + Kalman filter is not optimal for Nmeas ≥ 2. This is also
shown by the fact that for Nmeas > 30 other controlling algorithms are able to outperform it.

In the case of the RL variant of the LQGC, the RLE + RLC controller also shows a maximum
at Nmeas = 1, but only achieves approximately 50% performance compared to LQGC at that
point, while also staying below the LQGC at all times.

6.2.2 Linear quantum system

Now we want to turn our attention to the quantum environment and first establish the compa-
rability between the quantum case and the surrogate model. For this, we are going to continue
to use the inverted quadratic potential with σanc = σmeas = 0.7 specifying the width of the
ancilla wavefunction and the measurement noise for both systems, and apply LQGC as the
control algorithm. The decision to use LQGC is made to eliminate the possibility of perfor-
mance difference based on agent training. In Fig. 6.5, the LQGC algorithm’s performance on
the surrogate and quantum systems can be observed. The LQGC is able to demonstrate a
similar performance on the quantum system as it does on the surrogate models, by exhibiting
a maximum at Nmeas = 1, followed by a continuous decline of performance with increasing
measurements. This suggest that the surrogate model is a good approximation to the quantum
cartpole. Still, because of the inherently differences between the classical and quantum envi-
ronment discrepancies in performance can be observed, and therefore for the quantum system
we lose the statement that LQGC is optimal, even at Nmeas = 1.

After showcasing the ability of LQGC to still work in the quantum environment, we also
want to quantify the behavior of the RL based model, namely the RLC and RLC + RLE. For
this, we determine the ttermination for the inverted quadratic potential for varying Nmeas and
σanc. As we now perform weak measurements in the quantum system, the measurement noise
and measurement strength are both controlled by σmeas. In Fig. 6.6 (a), the results for the RLC
are presented in the form of a heatmap, where every point represent 105 runs of the quantum
environment, equally spread out on the ten best performing agents. Similar to the surrogate
model we can observe the tradeoff between performing multiple measurements and waiting to
long to take an action. Additionally, it shows how the control of the system becomes unfeasible,
if the measurement is too weak, as for σanc = 1.0 seemingly no tradeoff can be observed and the
termination time converges against the same value for all measurement numbers. By adding
an estimator in form of the RLE, Fig. 6.6 b) shows once again that the maximum shifts to
Nmeas = 1, similar to the surrogate model. This reinforces the statement that the surrogate
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Figure 6.6 – State estimation on quantum environment. The figures show the performance of the RLC (a)
and RLC + RLE (b) control algorithms tested on the quantum system with an inverted quadratic potential.
The different simulation runs are varied in numbers of measurements and width of the ancilla wavefunction
σancilla, thereby changing the strength of the measurements. The white line indicates an average run time of
ttermination = 103. The plot was taken and resized from [P1].

model is a good approximation of the quantum environment.

6.2.3 Potential variation

Up to this point, only linear systems with the inverse quadratic potential have been examined,
but now we want to examine nonlinear systems by varying the used potential. The potentials
we now additionally consider are

• A cosine potential V (x̂) = k1 (cos (πx̂/k2) − 1)

• An inverted quartic potential V (x̂) = −kx̂4,

where we use k1 = 67 and k2 = 12 for the cosine potential and k = π
100 for the quartic potential.

Fig. 6.7 shows these potentials together with the inverted quadratic potential. The quadratic
and quartic potential use the definition introduced in [180].

Comparing the potential one can see that the cosine potential was chosen to be similar to
the inverted quadratic potential, only differing by small margins inside the [−xth, xth] and
terminating at the same level as the quadratic potential. The inverted quartic potential on the
other hand shows a completely different course and will be used as a stress test for the control
algorithms to deal with nonlinear potentials.

Using these three potentials, we test the different control algorithms. Compared to previous
tests we now only consider control algorithms with the state estimation technique, so excluding
the pure LQR and RLC algorithms. Instead, we now also allow for mixing the classical control
algorithms with the RL techniques. These results can be seen in Fig. 6.8, where the performance
of 3 different controllers are shown, compared to the performance of the LQR + Kalman
controller. The investigated controllers are the RLC + RLC, LQR + RLE and RLC + Kalman
filter. The raw measurement data as well as the benchmark measurement on the surrogate
model can be found in Ap. D.3.

Starting with the inverted quadratic potential in panel a), one can see that the RLC +
Kalman controller is able to achieve a performance equal to the LQR + Kalman filter. This
is a notable result, as the LQGC is not guaranteed to achieve optimal performance in the
quantum case, but this indicates that LQGC is close to the optimal control case as the RLC
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Figure 6.7 –
The different potentials used
in benchmarking the controllers.
The inverted quadratic (blue) is
used to benchmark the controllers
for linear system and the cosine
and inverted quartic (green, red)
are used for nonlinear systems. At
the left and right side of the plot,
the threshold values are indicated.
This plot was taken and resized
from [P1].
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+ Kalman filter converges against the same value. Looking at the other controllers, the pure
RL based controller (RLC + RLE) is not able to catch up to the performance of the LQGC
only achieving ≈ 50% of the LQGC at Nmeas = 1. Only at Nmeas ≈ 40, the controller is able to
converge to similar performance of the LQGC and even surpassing it in some instances. These
results reflect the previously seen results on the surrogate model in Fig. 6.4 b). The RLE +
LQR controller consistently underperforms and is unable to catch up with the other controllers,
demonstrating a poor synergy between the state estimation provided by the RLE and the LQR.

Going to the cosine potential in panel b), we now consider a nonlinear system. We can
observe that the RLC + Kalman is now able to outperform the LQGC by a small margin.
As both controllers utilize the Kalman filter for state estimation, this suggests that the LQR
controller has lost some of its performance because of the nonlinearity, while the RLC is able
to adapt to it. Similar the RLE + RLC is able to close the gap in performance, showcasing
≈ 70% of the performance of the LQGC. Because of the machine learning nature of the agents,
it is difficult to determine, to what extent the performance increase can be attributed to the
RLC or RLE.

The advantage of the RL becomes clear in panel c), where the inverted quartic case is
displayed. Now every single controller combination outperforms the LQGC controller for mea-
surements up to Nmeas = 20. The combination of the RLC + Kalman still reigns supreme
achieving an increase of ≈ 60% to the LQGC, while the RLC + RLE is able to achieve a
performance only slightly below it. Even the LQR + RLE is able to increase the performance
by ≈ 50% compared to the LQGC.

Transfer learning In addition to the mixed classical and RL-based controller, we are also
investigating the use of controllers trained on the classical surrogate and then applied to the
quantum model. The results are presented alongside the other controllers in Figure 6.8. It
is evident that the controllers achieve comparable performance to these trained directly on
the quantum environment. This further demonstrates that the surrogate model is a reliable
approximation of the quantum environment, even for nonlinear systems.

6.2.4 Control strategy interpretation

To further elucidate the control strategies used by the control algorithms, we investigate the
output of RLE based on the measurement, as well the distributions of position 〈x〉 and mo-
mentum 〈p〉 expectation values.
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Figure 6.8 – Improvement rate of different control algorithm performances compared to the LQR + Kalman
controller on the quantum environment. These control algorithm include three different combinations of RL
based controllers, namely the RLC + Kalman (solid red), RLC + RLE (transparent red) and LQR + RLE
(transparent blue). Additionally, some transfer learning versions (dashed) of RLC + Kalman (black) and
RLC + RLE (transparent black) are included, where the RL agents were trained on the classical surrogate
and then applied it to the quantum system. The investigated potentials include the inverted quadratic (a),
cosine (b) and inverted quartic (c) potential. This plot was taken and resized from [P1].

Understanding what an ANN has learned is usually a difficult task. However, interpreting
the ANN of the RLC is comparatively easier since the input space is two-dimensional, while
the output space is only one-dimensional. This allows us to map all possible outcomes based
on the input to a heat map, as shown in Fig. 6.9. As our potentials are all symmetric we can
assume that an optimal control strategy can be described as an odd function and therefore has
the property of

F (−xest,−pest) = −F (xest, pest). (6.32)

If the agents have learned an optimal strategy, this property should be reflected in the ANN.
We have chosen the top performing RLC agents for each of the three potential, trained for

Nmeas = 1 and fed them state estimations between [−2, 2] for both the xest and xest. The first
agent was trained using the inverted quadratic potential, and it is evident that it attempts
to return the wave packet to the center of the potential when it is too far away or when the
momentum is too high. This behavior is indicated by the yellow or dark blue areas where the
agent applies the maximum force allowed. More interesting are the areas, where the agent
chooses F = 0. We can see that this is the case when xest ≈ pest, so showing a behavior
of always counter acting the highest input value. Therefore, it nearly fulfills the condition in
Eq. (6.32).

A different behavior can be seen for panel (b) and (c), where agents for the cosine and
inverted quartic potentials are shown. For both agents the F = 0 line is pushed far away from
the origin, so that F (0, 0) = Fmax. This result is counter-intuitive as it suggests that the agent
is intentionally pushing the wavepacket away from the center. Instead, it seems like it tries
to balance the wavepacket on the side of the potential. This assumption is bolstered by the
fact that the agent b) and c) show the same behavior only on different sides of the potential.
Because of the symmetry of the potentials, there is no incentive for the agents to stabilize the
wavepacket on one side over the other. Therefore, the chosen side only depends on the random
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Figure 6.9 – RLC output. Output of RLC agent trained on the surrogate model with an inverted quadratic
potential for Nmeas = 1. The agent is fed measurement values between [−1, 1] for both the position and
momentum. For each input pair, the corresponding output is visualized in the heatmap, showcasing a
seeming linear mapping. The white line indicates the F = 0.

symmetry breaking in the training.
In the case of the RLE or the combination of the RLC + RLE, we cannot use the same

technique to interpret what the agents have learned. Instead, we will try to get some indirect
hint about it by looking at the distribution of 〈x〉 and 〈p〉 over time. The distributions were
taken by collecting the position and momentum of the wavefunction over 106 time steps, but
in order to avoid measurement artifacts from the initialization of the wavefunctions, only data
from t = 300 and onward were taken.

The measured distributions are shown in Fig. 6.10 for the RLC + RLE as well as LQGC for
comparison. For the LQGC, the distributions are symmetric and centered around 0 for both
〈x〉 and 〈p〉. This shows that the controller tries to balance the wavefunction in the middle of
the potential. Comparing the quadratic and cosine potentials, the distributions are similar, but
the cosine distributions have a greater width. This is most likely due to the cosine potential
flattening near the threshold, allowing the wave packet to be kept near the threshold for longer.
The quartic potential has by far the sharpest distribution, showing that it is unable to recover
the wavepacket, once it approaches thresholds. Especially the potential distribution shows that
once the wavepacket picks up to much momentum, the run will be terminated shortly after.

Now looking at the distributions of the full reinforcement learning case, the RLE + RLC
controller, we can firstly see that the position distributions are not centered around 0 nor are
they symmetric. As the agents are not forced to learn this behavior based on their received
rewards, this, combined with the probabilistic nature of the training, can result in the agents
learning to stabilize the wavepackets at any point. This can be seen especially for the quadratic
and quartic potentials, where the distributions have their peak left and right from the center.
The momentum distributions, on the other hand, are seemingly symmetric and centered around
zero. This shows that the agents are actually trying to stabilize the wavepacket and not just
pushing it outside in one preferred direction. The cosine potential also shows a unique behavior
in the position distributions as is has a broad plateau instead of a clear peak. This indicates
that the controller can stabilize the wavepacket far away from the center.

6.3 Summary

In this chapter we have designed a quantum benchmark environment that allows for the rapid
development of RL agents that can be used for quantum feedback control, while at the same
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Figure 6.10 – Distribution of position and momentum of the stabilized wavepacket on the quantum
system for the three different potentials: (I) quadratic, (II) cosine, (III) quartic. The position 〈x〉 (top
row) and momentum 〈p〉 (bottom row) are traced over 106 time steps for the LQR + Kalman (red) and RLC
+ RLE (red) controllers and converted into histogram of the probability p (〈x〉). This plot was taken and
modified from [P1].

time providing flexibility in the quantum problem by allowing any potential to be used for
testing.

We have started this chapter with the discussion of the implementation of the quantum
cartpole environment as an example of generic quantum feedback control. There we have
introduced the numerical approximation for applying sequential weak position and momentum
measurements to the system as well as the approximation for the time evolution and control
input. At the same time we have also discussed the development of a classical surrogate for
comparison. This allows the use of algorithmic control strategies developed for classical systems
to set some RL independent benchmarks. We have tested these classical control algorithms
as well as reinforcement learning based controllers on both environments as well as different
potentials. From this we were able to obtain three notable results.

The first result is that it is possible to replace classical control algorithms in a quantum
system, using RL based control algorithms. In the case of the RLC + Kalman filter controller,
it was able to successfully replace the LQR algorithm, achieving the same or better performance
for every potential. Even the pure RL based controller (RLC + RLE) was able to demonstrate at
least 50% of the performance of the LQGC or even surpass it in the case of the quartic potential
by finding new novel strategies as shown in Fig. 6.10. This is particularly remarkable when
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considering that the RL controller only had access to information based on weak measurements,
as opposed to the complete dynamics and noise covariances of the system, which most likely
would not be available in an experiment.

The second result is that we were able to create a surrogate model which is able to faithfully
mimic the quantum model. This has allowed us to train RL agents on the classical system and
then transfer them to the quantum system while preserving their ability to control the system.
This can be used to improve and speed up the training of the RL agents by training on the
surrogate environment in the first step and then performing a final training on the quantum
environment.

The third result is that using a frame stacking technique in the form of performing multiple
measurements can be helpful in the training of the agents and can be used as a primitive
state estimator which works without knowledge about the noise covariances. Although, if this
knowledge exists, using an estimator utilizing this information causes the framestacking to lose
its advantage.
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Summary and outlook
Chapter

7
In this thesis, we have investigated the use of quantum feedback control to stabilize quantum
systems over extended periods of time using quantum error correction as an example. As
quantum error correction is necessary to achieve fault-tolerant computing, it is important to
attain control strategies that are naturally described by the field of quantum feedback control.

Using machine learning as the basis to obtain these control strategies, we present numerical
results demonstrating the ability of ML to learn control strategies which are able to perform
comparably or better in terms of precision, speed, and robustness compared to algorithmic
decoders.

Our first study focused on the problem of quantum error correction, where the idea of a
machine learning decoder has been established and shown to achieve high accuracy decoding.
However, a common problem in these cases is that ML approaches have difficulty dealing with
large input and output spaces of the decoding problem, leading to either training failures for
large code distances [33, 79] or an exponential increase in decoding time [80]. By designing a
hierarchical decoder, which uses a neural decoder in the first step and a classical decoding algo-
rithm in the second step, we were able to demonstrate an application of the ML based decoding
for code distances up to d = 255 while having an almost linear scaling of the computational
time.

Studies on the decoding accuracy of the hierarchical decoder revealed improved performance
on both the toric code and RSC. The increase in performance on the latter was established
even at code distances as low as d = 7, where early tests of active error correction on RSC
implemented on actual hardware [52, 184] were conducted. Upon studying the behavior of
the hierarchical decoder, it has been revealed that the decoding advantage stems from the
neural decoder’s capability to decode correlated errors. This exhibits the decoder’s capacity
to acquire novel strategies that have not been realized in classical algorithms such as UF and
MWPM, demonstrating the flexibility of the ML approach. Furthermore we have investigated
the robustness of the hierarchical decoder, by mismatching the training and test systems in
regards to the error rate and code distance. We were able to show that even under these
condition the hierarchical decoder was able to provide high accuracy decoding. This suggests
that the hierarchical decoder could be used in experimental settings, where the noise varies
with time.

Besides the many advantages of the hierarchical decoder, we also identified its problems in
dealing with apparently simple errors, which show a high degree of degeneracy with regard to the
most probable correction. We have linked this problem to the supervised training approach,
which trains the decoder to learn the recovery operation that eliminates all errors, without
taking into account equally valid recovery operations. Thus, training bias inhibits the trained
model.

This bias can be mitigated through RL techniques which train the ML algorithm solely
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based on the final outcome rather than the actions taken to achieve it. This allows for bias-
free strategy development, while also being a viable option for training the algorithm in an
experimental setting where the information necessary to create appropriate labels may not be
available. However, this approach does pose increased training difficulties.

This leads us to our second study, the creation of a quantum benchmark environment which
enables the development of RL agents and techniques to be deployed across a wide range of
applications. To this end, we have implemented the quantum cartpole environment, a quantum
system based on the field of quantum feedback control. By freely varying the potential, it is
possible to closely match a specific problem.

In order to establish a benchmark independent of the RL, we introduced a classical surrogate
model to mimic the quantum model as closely as possible. This allowed us to transfer classical
control algorithms to the quantum environment, while maintaining most of their performance.
Using this performance as a benchmark, we trained our own RL agents, where we divided the
controlling task between two separate RL agents. One agent learns the state estimation while
the other learns the control algorithm. Testing the different agents on linear and nonlinear
examples of the quantum environment has shown that the RL agents are able to match or
outperform the classical algorithms. When investigating what the RL agents have learned, we
showed that they were able to learn novel strategies.

In addition to the performance advantage shown, the RL agent was able to achieve this
performance without any knowledge of system dynamics or noise covariance, both of which
were available to the LQGC. Furthermore, the RL agent used the same underlying structure
and training process for all variations of the environment, unlike the LQGC, which has to be
modified depending on the system and noise. The robustness and flexibility of the RL approach
was demonstrated by the fact, that for every single potential the RL control strategies were able
to achieve high performances without modifying the underlying approach. LQGC, on the other
hand, had to be modified depending on whether the system had a linear or non-linear potential
and even then it failed to achieve meaningful control in the case of the quartic potential.

An interesting line of research for the future would be to reformulate the hierarchical decoder
using RL. This could allow an increase in performance in the neural decoder part, as it could
learn to correct errors with degeneracy with respect to the most probable correction, and thus
potentially resolve the correction bottleneck at the boundary of the RSC. In addition, an in-
crease in performance would automatically lead to an increase in computational speed, as the
subsequent classical decoder would have less to correct, while the neural decoder’s computa-
tional time would remain unchanged. Another interesting direction would be to develop an RL
agent or RL training technique that achieves high stability during training and is able to cope
with long RL runs.

The quantum cartpole environment could also be further extended to allow a wider range
of agent development. This could include generally extending the RL agent’s capabilities by
giving it the option to decide when to measure or with what measurement strength, or providing
the agent with the raw measurements instead of just the mean values. Similar, the extension
of the environment itself could be an interesting direction. This could include time-depending
potentials, non-Markovian noise or interacting systems.

In parallel to our work, a variant of machine learning error correction has been developed
that exploits the rational symmetry of the toric code [154]. This could also be implemented on
top of the hierarchical decoder to reduce the input space and thus stabilize the training process.
The latter would be even more important if implemented as an RL problem.

Another interesting line of research that has opened up is the use of machine learning in high-
level control of quantum computing. IBM demonstrated this by using generative ML based on
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large language models [185] to automate the development of quantum code for Qiskit [186] or
by using RL for circuit compilation, claiming to reduce the needed two-qubit gates by 20-50%
compared to heuristic methods [66].

To improve the transparency of the thesis, the presented data has been published [S2, S3]
under open source licenses. Additionally, to contribute to the active development of machine
learning applications in the field of quantum control, the quantum cartpole environment has
been published [S4] and made compatible with the OpenAI Gym framework [187], allowing
for easy use and attracting a large audience. The same has been done with the UF decoder
implementation, which is freely available at [S1]. The syntax of the UF decoder is based on the
PyMatching implementation [145], for ease of use.
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Appendix

A
A.1 Expectation Grad-Log-Prob lemma

Here we want to give a short proof following [108] showing that the expectation value of the
gradient of a probability is given by

E
x∼Pθ

[∇θ logPθ (x)] = 0, (A.1)

where Pθ (x) is parametrized over the random variable x.
For this we remember that the probability distribution is normalized∫

x
Pθ (x) = 1. (A.2)

Applying the gradient to both sides of the equation results in

∇θ

∫
x
Pθ (x) = ∇θ1 = 0. (A.3)

Then we can use the log derivative trick to rewrite the equations

0 = ∇θ

∫
x
Pθ (x) (A.4)

=

∫
x
∇θPθ (x) (A.5)

=

∫
x
Pθ (x)∇θ logPθ (x) (A.6)

= E
x∼Pθ

[∇θ logPθ (x)] . (A.7)
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Appendix

B
B.1 Supplementing error threshold plots

In Sec. 4.2, we have presented the MWPM decoder based on the PyMatching implementation.
In Fig. B.1, we present the error threshold plot for the PyMatching v0.7, used to determine the
error threshold. Fig. B.2 shows the error threshold plot of the hierarchical decoder, optimized
for the highest possible threshold, using UF as the secondary decoder.

Fig. B.2 shows the error threshold plot of the hierarchical decoder, optimized for the highest
possible threshold, using UF and MWPM as secondary decoder. The threshold plots are shown
for depolarizing on the toric code. Fig. B.3 shows the error threshold plot of the hierarchical
decoder variant using lazy decoding as primary decoder and UF as secondary.

Figure B.1 –
PyMatching v0.7 threshold. Showcase of the er-
ror threshold using PyMatching v0.7 as decoder. The
blue line shows the thermodynamic limit and the insert
showcases the data collapse.
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Figure B.2 – Threshold optimized hierarchical decoder. Both graphs show the threshold plot for the hier-
archical decoder with an input size of l = 7 on the toric code for code distances up to d = 127. As secondary
decoder either the MWPM (left) or UF (right) decoder was used. The blue shows the thermodynamic limit
and the insert the data collapse used to determine the threshold.
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Figure B.3 – Lazy hierarchical decoder. The graphs show the error threshold plots for the hierarchical
decoder using the Lazy decoder as primary decoder and the UF as secondary decoder. The decoder was
tested on the 2D (left) and 3D (right) toric code. The blue line shows the thermodynamic limit and the
insert shows the data collapse used to determine the threshold value.

B.2 Stochastic neural decoder

Here we look at the comparison between a deterministic and stochastic neural decoder. For this
comparison, both neural decoders utilize the exact same underlying ANN given by the wall-
clock time optimized hierarchical decoder in Tab. 4.2. The stochastic neural decoder samples
the applied correction based on the returned probabilities instead of applying the correction
with the highest probability. In Fig. B.4 the threshold plots of the stochastic decoder on the
toric code with depolarizing noise are shown, returning an error threshold of pth = 0.14(7),
which is ≈ 10% below the threshold of the deterministic neural decoder given in Tab. 4.3.

In Fig. B.5, the difference in decoding performance is further illuminated by comparing the
effective error rates of both decoders. In the low error rate regimes, both decoders converge
against seemingly the same value, showcasing the same decoding performance. This is expected
as the appearing errors are dominated by errors of length l = 1, which can be corrected with
absolute certainty. Increasing the physical error rate, the difference between both decoders
starts to form, as the stochastic decoder is unable to match the performance of the deterministic

116



B.2 Stochastic neural decoder

Figure B.4 –
Stochastic error threshold. The graph shows the
threshold plot for the hierarchical decoder with MWPM
as secondary decoder and an input size of l = 5. The
blue line shows the thermodynamic limit and the insert
shows the data collapse used to determine the threshold
value.
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decoder. Moving closer to the error threshold of the stochastic decoder, the decoder reduces
the initial error rate by a factor of ≈ 2.8, while the deterministic decoder reduces it by a factor
of ≈ 6.1. This showcases that the possibility of correcting degenerate syndromes is outweighed
by the loss of performed correction.
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Figure B.5 – Comparison between stochastic and deterministic corrections. The plots compare the
corrections applied via the effective error rate (left) and the error rate improvement (right). The same ANNs
were used for both the deterministic and stochastic decoders.
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B.3 Robustness
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Figure B.6 – Robustness regarding to the training code distance. Error threshold plots of the ML(5)
+ UF decoder applied on the RSC. The different panels show the results of the decoder being trained on
different code distances. The blue line indicates the thermodynamic limit and the insert shows the data
collapse of the plots.
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Figure B.7 – Robustness regarding to the training error rate. Error threshold plots of the ML(5) + UF
decoder applied on the RSC. The different panels show the results of the decoder being trained on different
error rates. The blue line indicates the thermodynamic limit and the insert shows the data collapse of the
plots.
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Appendix

C
C.1 SME calculation

Here we show the derivation of the SME for the weak measurement introduced in Sec. 5.2.1.
Following the approach provided in [13], continuous weak measurements are constructed by
setting the strength of the measurement, determined by the width of the ancilla wavefunction,
proportional to the measured time interval σ2 = 1

κ∆t . Substituting this into Eq. (5.21) and
Eq. (5.37) yields

Mm = N exp
[
−κ∆t

4
(λA−m)2

]
(C.1)

m = λ〈A〉 +
∆W√
κ∆t

, (C.2)

∆W is now a Wiener increment of a zero mean Gaussian with variance ∆t. Applying the Kraus
operator to the system and expanding the term gives

|ψ(t+ dt)〉 ∝ exp
[
−κ∆t

4
(λα−m)2

]
|ψ(t)〉 (C.3)

∝ exp
[
−κ∆t

4
λ2α2 +

κ∆t

2
λAm

]
|ψ(t)〉 (C.4)

∝ exp
[
−κ∆t

4
λ2A2 +

κ∆t

2
λ2A〈A〉 +

√
κ

2
λA∆W

]
|ψ(t)〉, (C.5)

where all terms independent of A are considered to be part of some pre-factor. Now, the
exponential term is expanded in the first order of ∆t, which gives

|ψ(t+ ∆t)〉 ∝
[
1 − κ∆t

4
λ2A2 +

κ∆t

2
λ2A〈A〉 +

√
κ

2
λA∆W +

κ

8
λ2A2∆W 2

]
|ψ(t)〉. (C.6)

Note that we have kept a second order term in ∆W . This is because in the infinitesimal limit
∆t→ dt, ∆W 2 → dW 2 = dt. Applying this limit to the equation results in

|ψ(t+ δt)〉 ∝
[
1 − κδt

4
λ2A2 +

κδt

2
λ2A〈A〉 +

√
κ

2
λAδW +

κ

8
λ2A2δt

]
|ψ(t)〉 (C.7)

∝
[
1 − κδt

8
λ2A2 +

κδt

2
λ2A〈A〉 +

√
κ

2
λAδW

]
|ψ(t)〉. (C.8)

As we have not included the pre-factors of the Kraus operator, the current equation does not
preserve the norm of the wavefunction. We can correct this by normalizing |ψ(t + dt)〉 and
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expanding the results in the first order of dt again. Writing down the result in the form
|ψ(t+ dt)〉 = |ψ(t)〉 + d|ψ〉 gives the stochastic differential equation

d|ψ〉 =

[
−κλ

2

8
(A− 〈A〉)2dt+

√
κλ

2
(A− 〈A〉)dW

]
|ψ(t)〉. (C.9)

Now we only have to rewrite the equation using the density matrix, where we use ρ(t+ dt) =
ρ(t) + dρ(dt), giving us the SME:

dρ = (d|ψ〉)〈ψ| + |ψ〉(d〈ψ|) + (d|ψ〉)(d〈ψ|) (C.10)

= − κλ2

8
(A− 〈A〉)2ρdt+

√
κλ

2
(A− 〈A〉)dWρ

− ρ
κλ2

8
(A− 〈A〉)2dt+ ρ

√
κλ

2
(A− 〈A〉)dW

+
κλ2

4
(A− 〈A〉)ρ(A− 〈A〉)dW 2

(C.11)

= − κλ2

8
A2ρdt+

√
κλ

2
(Aρ− 〈A〉ρ)dW

− κλ2

8
A2ρdt+

√
κλ

2
(ρA− 〈A〉ρ)dW

+
κλ2

4
AρAdt

(C.12)

= −κλ
2

4

(
AρA− 1

2
(A2ρ+ ρA2)

)
dt+

√
κλ

2
(Aρ+ ρA− 2〈A〉ρ)dW (C.13)

= −κλ
2

4
[A, [A, ρ]]dt+

√
κλ

2
(Aρ+ ρA− 2〈A〉ρ)dW. (C.14)

It has to be noted that we have done this derivation without any consideration of a Hamiltonian
acting on a system. Including a Hamiltonian does not change the derivation and adds the
− i
h̄ [H, ρ]dt at the end.
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Appendix

D
D.1 Sequential weak measurements

Here we give a short proof for the post measurement variance and mean describing the system
given in Eq. (6.3) and Eq. (6.4). Starting with the position measurement, the wavefunction
and Kraus operator follow the description of Eq. (6.1) and Eq. (5.21) as

ψ(x) =

(
1

2πσsys

)1/4

e
− (x−〈x〉)2

4σ2sys e−ix〈p〉

Mm(x) =

(
1

2πσanc

)1/4

e
−(x−m)2

4σ2anc .

Here we have set λ = 1 in the Kraus operator. The post measurement state follows

ψ′(x) =
1

N
Mm(x)ψ(x) (D.1)

=
1

N

(
1

2πσanc

)1/4( 1

2πσsys

)1/4

e
− (x−m)2

4σ2anc
− (x−〈x〉)2

4σ2sys e−ix〈p〉, (D.2)

where N is some normailization. As we are only interested in σpost and 〈x〉post, there is no
need to further specify the normalization. The two quantities are determined by the combined
exponent of the exponential function

β =
−σ2

sys (x−m)2 − σ2
anc (x− 〈x〉)2

4σ2
sysσ

2
anc

. (D.3)

Expanding this equation and sorting for x yields

β =

(
σ2

sys + σ2
anc
)
x2 − 2

(
〈x〉σ2

anc +mσ2
sys
)
x+ 〈x〉2σ2

anc +m2σ2
sys

4σ2
sysσ

2
anc

. (D.4)

Dividing the fraction by
(
σ2

sys + σ2
anc
)

so that x2 is isolated

β =
x2 − 2

(
〈x〉σ2

anc+mσ2
sys

)(
σ2

sys+σ2
anc

) x+
〈x〉2σ2

anc+m2σ2
sys(

σ2
sys+σ2

anc
)

4
σ2

sysσ
2
anc(

σ2
sys+σ2

anc.
) (D.5)

The resulting term in the numerator almost looks like a square binomial theorem. We complete
by adding some constant factor ε

ε =

(
〈x〉σ2

anc+mσ2
sys

σ2
sys+σ2

anc

)2

−
(
〈x〉σ2

anc+mσ2
sys

σ2
sys+σ2

anc

)2

4
σ2

sysσ
2
anc(

σ2
sys+σ2

anc
) = 0. (D.6)
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Adding it to the exponent and reshuffling the equation yields

β =
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Inserting the exponent back to the post measurement wavefunction results in the new form of

ψ′(x) =
A

N
exp


(
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here we have expressed the second exponent term as the factor A, since it is independent of x.
Now σpost and 〈x〉post follow immediately from calculating the probability density |ψ′(x)|2 as

σpost =

(
σ2

sysσ
2
anc

σ2
sys + σ2

anc

)1/2

〈x〉post =
〈x〉σ2

anc +mσ2
sys

σ2
sys + σ2
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, (D.9)

The same calculation can be performed for the momentum weak measurement, where we
first have to transform the wavefunction into momentum space representation and update the
Kraus operator with the momentum operator

ψ(p) =
(σ
π

)1/4
e−

σ2
sys
2

(p−〈p〉)2

e−i(p−〈p〉)〈x〉 (D.10)

Mm(p) =

(
1

2πσanc

)1/4

e
−(p−m)2

4σ2anc (D.11)

Afterwards, the calculation follows the same steps as laid out before, with the final results of

σpost = 2

 4
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sys
4
σ2

sys
+ σ2
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(D.12)

D.2 Training process

The training of the agents follows the general description in 2.3.4. As we train two different
types of agents, the hyperparameters vary between training. The parameters are listed in
Tab. D.1 and were determined via extensive grid search. In both cases we utilize tanh function
as activation function as the input and output used are normalized. This is a straightforward
process regarding the controlling force, as the normalization maps [−Fmax, Fmax] to [−1, 1].
As the measurement can very well lay outside the allowed area, we chose to normalize the
measurement and state estimation by a factor of 1

2xth
.

The RLC are always trained in combination with the used state estimation technique, in order
to adapt to the provided input. This means in the case of the RLC + RLE decoder, the RLE
have to be trained before the RLC. During the training process using the RLE or Kalman Filter
as state estimator, we have noticed that with a small number of measurements, the training
process often gets stuck early during the training or experiences performance degradation,
which out being able to recover. This resulted in performance nowhere comparable to the

124
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Reinforcement Learning Parameters
Parameter RLE RLC

learning rate 2e-05 ·Nmeas 3e-05
clipping rate 0.7 0.5

epochs 1000 10000
steps per epoch 100000 200000

batchsize 2048 1024
nepochs 20 10

action network [32, 32] [32, 32]
value network [32, 32] [32, 32]

activation function tanh tanh

Table D.1 – Hyperparameters of the reinforcement learning approach, specifying the initialization of
the RLC and RLE agents and their respective training processes. This table was taken from [P1].

LQGC. As this effect didn’t occur as often for higher number of measurements, we deployed
transfer learning in the training process. This approach is based on the assumption that the
optimal agents of two environments, with only slight differences from each other, also differ only
slightly from each other [34]. This approach is implemented by starting the training process
at the highest number of investigated measurements Nmeas = 48. After the training process
is completed, the training is moved to the next smaller number of measurements, keeping the
previously trained agent as starting point. This is repeated until Nmeas = 1.

In Fig. D.1 (a) the average performance of the trained agents are shown using ttermination.
The agents are tested on the quantum system with an inverse quartic potential. Additionally
to the transfer learning approach, we also trained multiple agents in parallel. It turns out that
for large measurement numbers the training of the agents has a high success rate, as all agents
show a similar performance. As the number of measurement increases, the training process
becomes more and more unstable and the difference between agents starts to grow. Finally,
at Nmeas = 1, a large spectrum of performance can be seen, where the best performing agent
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Figure D.1 – Training stability. The training process of the RLC and RLE differs from each other as the
RLC showcases a more volatile training compared to the RLE. For the RLC, 48 different agents are trained
for each number of measurements. The performance of these agents (a) is tested on the quantum system
with an inverse quartic potential. For visual clarity the agents are color coded based on the performance.
For the RLE (b) the training is visualized using the accumulated rewards

∑
i ri per epoch.
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Figure D.2 – Improvement rate of different control algorithm performances compared to the LQR + Kalman
controller on the classical environment. These control algorithms include three different combinations of RL
based controllers, namely the RLC + Kalman (solid red), RLC + RLE (transparent red) and LQR + RLE
(transparent blue). The investigated potentials are the inverted quadratic (a), cosine (b) and inverted quartic
(c) potentials. This plot was taken and resized from [P1].

surpasses the worst performing agent by a factor of ≈ 5.
Now when we consider the training process of the RLE, it is important to note that the

training of the agent does not depend on a following controller. Therefore, we have opted to
apply force randomly to the wavefunction during training. This approach ensures that the
agent can explore the entire observation space. In contrast to the training of the RLC, the
RLE training exhibits a rapid convergence towards the maximum reward value, as indicated
in D.1 b).

D.3 Extended benchmarks

In this section we present additional data taken from the benchmark measurement for different
potentials in Sec. 6.2.3. In Fig. D.2 the benchmarking results comparing the different decoders
on the classical surrogate are shown. Similar to the results on the quantum system, the RLC
+ Kalman controller manages to match the performance of the LQGC for the quadratic and
cosine potential, while increasing the performance in the quartic performance by a factor of 3.
The other two decoders, RLC + RLE and RLE + LQR, are unable to perform a similar feat
and fall behind the LQGC for the quadratic and cosine potentials. There the RLC + RLE
controller only achieves a similar performance when performing 40 or more weak measurements
per input. In the quartic potential, both controllers are able to surpass the LQGC by at least
a factor of 2 for Nmeas = 1, while the RLC + RLE decoder is able to show almost the same
performance as the RLC + Kalman decoder.

In Fig. D.3 the collected raw measurement benchmarking results are shown, where the results
of the classical surrogate are shown in the left row, where as the middle and right rows show
results from the quantum system. The results in the middle row were gathered by training the
agents on the classical surrogate and then applying them on the quantum system.

The first column presents the benchmarking results on the inverted quadratic potential,
showing a complete match between the performance of the LQGC and the RLC + Kalman
decoder for both the classical and quantum systems. As the LQGC controller is proven op-
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Figure D.3 – Raw benchmark measurement results of the four decoder combinations: LQGC (blue), RLC
+ Kalman (red), RLE + LQR (light blue) and RLC +RLE (light red). The results are sorted according to
the different potentials and used environments. The three rows represent from top to bottom the quadratic,
cosine and quartic potential, the columns showcase the different system types, namely the classical, transfer
and quantum system from left to right. Here the transfer system indicates the performance of the agents
trained on the classical system and then applied on the quantum system.

timal in case of Nmeas = 1 of the linear classical system, the results suggest that the LQGC
performance is close to optimal even for a different number of measurements and for the quan-
tum system. Comparing the overall maximum average terminations between the classical and
quantum environments, the quantum system reports a termination time about 1000 time steps
lower, showing that there are still difference between the quantum and classical system.

A similar, but more exaggerated, behavior can be seen in the quartic potential, where the
maximum average termination time is less than half of the classical case. The opposite is true for
the cosine potential, where the classical system has less than half the maximum performance of
the quantum system. We suspect that these differences results from the fact that the wavepacket
extends over the position space, whereas in the classical case we have a point mass. This allows
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Figure D.4 – Distribution of position and momentum of the stabilized wavepacket on the classical
surrogate system for the three different potentials: (I) quadratic, (II) cosine, (III) quartic. The position
〈x〉 (top row) and momentum 〈p〉 (bottom row) are traced over 106 time steps for the LQR + Kalman (red)
and RLC + RLE (red) controllers and converted into a histogram of the probability p (〈x〉). This plot was
taken and modified from [P1].

the wavefunction to be influenced by the potential outside the threshold boarder. In the case
of the cosine potential, the potential forms a minimum outside the border, which influences the
wavefunction and helps in stabilizing the wavepaket close to the thresholds.

D.4 Classical strategy analysis

Fig. D.4 shows the probability distribution of 〈x〉 and 〈p〉 for the LQGC and RLC + RLE con-
troller and the classical surrogate system. Similar to the results shown for the quantum system
in Fig. 6.10, the LQGC shows a perfectly symmetrical distribution for the position and mo-
mentum, independent from the sued potential, while the RLC + RLE decoder shows a slightly
asymmetrical distribution, best seen in the position distribution of the inverted quadratic po-
tential.

A notable difference to the quantum environment behavior is shown by the RLC + RLE
decoder in the cosine potential. While in the quantum system the position probability showed
a wide plateau, indicating the ability to stabilize the potential near the threshold, here the po-
sition shows a clear maximum at the center of the potential. This reinforces the argument that
in the quantum case the wavefunction is influenced by the potential outside of the threshold.
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D.4 Classical strategy analysis

Most interestingly, the LQGC is unable to stabilize the wavepacket in the center of the
potential for the inverted quartic potential, but instead tries to stabilize it left and right from
it. Together with the momentum distribution, being a sharp peak, this is a hint that the LQGC
is no longer able to properly control the wavepacket. Based on the results from Fig. D.3 in the
classical system, where the RLC + Kalman control delivers the highest average termination
time, we can deduce that the LQR forms the bottleneck in the LQGC.
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