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1. Introduction 

 

Chapter 1: 

INTRODUCTION 

 

 
 Rent-seeking is omnipresent. Across different domains of economic and social activities, 

people compete against each other to obtain a favorable position that brings certain monetary or 

non-monetary advantages. However, these advantages are not generated in the course of 

competition, but are rather induced by the re-allocation of resources already present in the 

economic system. This means costly efforts of rent-seeking activities are economically not 

productive from a societal perspective.  

Rent-seeking is not only often observed in markets (e.g., advertising campaigns), but also 

in politics (e.g., electoral campaigns, lobbying), in law practice (e.g., litigation) and in sports 

(see Szymanski 2003 for an extensive overview). Not all rent-seeking is legal (e.g., bribing and 

vote buying).  

Moreover, rent-seeking competition has become more and more frequent in modern 

economies. It is often organized in forms of ‘beauty contests’. In beauty contests, an organizer 

invites proposals that are costly to prepare for participants. In many industries, such as 

consulting, construction or architectural design, such procedures have become common. 

Similarly, in many prestigious sporting events, like the Olympic Games and the Soccer World 

Cup, the host is chosen through a beauty contest between cities or countries. 

The social costs of rent-seeking are difficult to estimate. Scarce empirical literature is 

often based on only fragmentary data. Still, present analyses confirm that rent-seeking activities 

can be very costly (Angelopoulos et al. 2009) and can hamper economic growth (Murphy et al. 

1993). One can argue that resources spent on rent-seeking activities are not necessarily wasted, 

per se – it is possible that they create new jobs, which may have some positive economic 

consequences. Still, it is very likely that this is not the most efficient way to spend resources. 
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Finally, rent-seeking produces inefficiencies in modern job markets. We live in “winner-

take-all” societies (Frank and Cook 1995), in which many job markets are characterized by the 

following remuneration structure: A relatively small number of top performers are paid very well 

and get additional non-monetary benefits, such as fame or prestige. A large proportion of 

mediocre-performers are, however, paid poorly and work under precarious conditions. In such 

markets, a promise of big success attracts a lot of young, talented people who decide to receive 

an education in a certain domain. Since many of them are deemed to fail, they often end up in 

jobs below their qualifications and potential. Entertainment (film industry in particular), sports 

and the arts are the traditional examples of such job markets. A closer look at the higher education 

and research industries reveals that we face a very similar structure of incentives and a similar 

disparity between top-performers and almost top-performers in academia. This inefficiency of 

the misallocation of talents (Frank and Cook 1995, pp. 9-10) may be even more tremendous than 

the one described earlier. However, it is extremely difficult to estimate the magnitude of the 

phenomenon and the monetary consequences of wasted talents and skills.  

 

1.1. The economic research on rent-seeking  

Given how common, costly and inefficient rent-seeking behavior can be, there is no doubt 

that the topic deserves economists’ attention and it is not surprising that it has been studied in 

economics for about fifty years now. Economic research on rent-seeking was pioneered by 

Tullock (1967), Krueger (1974) and Posner (1975). Tullock (1967) was the first who recognized 

that the endogeneity of political decisions on creating monopolies and tariffs increases social 

costs of such regulations beyond the Harberger’s triangle because some resources are wasted in 

the contest between economic actors aiming at becoming the monopolist. Moreover, it became 

rapidly clear that similar situations are frequent in economic and social interactions and that the 

concept of rent-seeking has a much broader application than the context of striving for a 

monopolistic position (Congleton et al. 2008b, p. 1).  

Economic research on rent-seeking behavior has been accelerated by the seminal work 

of Tullock (1980), who provided a simple analytical framework of rent-seeking contests.1 First, 

it reflects a realistic assumption that the winner in such settings is selected by a combination of 

                                                           
1 Note that the Tullock (1980) contest is used not only in rent-seeking settings. However, it is its most important 

application. Therefore, it is common to use the terms “Tullock contests” and “rent-seeking contests” 

interchangeably. So do I in this thesis. 
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merit and luck. Second, its analytical simplicity is a great asset that allows for a tractable game-

theoretic analysis and numerous theoretical extensions. Tullock’s (1980) framework provides 

researchers with neat and clear game-theoretic predictions. In most cases, a Tullock contest is 

characterized by a unique Nash equilibrium in pure strategies (Perez-Castrillo and Verdier 1992; 

Szidarovsky and Okuguchi 1997). 

Empirical investigations of rent-seeking are hampered by the difficulty of obtaining 

reliable data. In many contexts mentioned above, no data is available to research, particularly 

due to its nontransparent nature – e.g., in lobbying, litigation or bribing. This is why economic 

experiments offered an appealing way of providing empirical data. The first experiments on rent-

seeking were conducted in late 1980s (Millner and Pratt 1989, 1991). Since then, rent-seeking 

behavior has been studied in economic laboratories across the world. This led to extensive 

experimental literature on the topic (see recent surveys by Dechenaux et al. 2015 and Sheremeta 

2013). Even though economic experiments have substantially advanced economists’ 

understanding of rent-seeking, several robust results from the laboratories remain puzzling. 

Overbidding (i.e., subjects invest significantly more than the Nash equilibrium predicts) and 

overspreading (i.e., subjects frequently use almost the entire strategy space) have gained the 

most attention (Sheremeta 2013, 2014). 

 

1.2. The scope of the thesis and its findings 

This thesis consists of five studies on rent-seeking and contributes to the behavioral and 

experimental analyses of this phenomenon. Using experimental methods and insights from 

behavioral economics, I test theoretic predictions of standard economics for rent-seeking settings 

and complement standard models by behavioral extensions.  

Chapter 2 (Beliefs and Behavior in Tullock Contests) is joint work with Bettina 

Rockenbach and is the first systematic analysis of beliefs and behaviors in experimental Tullock 

contests. In a series of experiments, we investigate how subjects build their beliefs in repeated 

contests, and, more importantly, how they respond to beliefs. We enrich the standard 

experimental design with the procedure of incentivized belief elicitation. This allows us to test 

the theoretical prediction in new dimensions. Our experimental data provides clean evidence for 

myopic belief formation and thus yields a strong justification for a common assumption in 

contest models. Moreover, we investigate how subjects respond to expected off-equilibrium 

strategies of the competitor. We find that best-responding is rare in general. Instead, subjects 
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tend to match their belief with their own investment. This leads to a linear response function, 

which substantially differs from the game-theoretic prediction, and causes the well-documented 

phenomenon of overbidding. We consider several possible explanations for the revealed 

behavioral regularities. We show that neither limited computational abilities, nor random 

mistakes, nor inequity aversion drive the pattern. An analysis of behavior in asymmetric contests 

brings us to the conclusion that the desire to win is a dominant motive for “matching-behavior”.  

Chapter 3 (On the Reluctance to Play Best Responses in Tullock Contests) is joint work 

with Bettina Rockenbach. We investigate the effect of the matching protocol in repeated 

experimental contests on investment behavior. We test whether the rarity of best responses in 

Tullock contests is due to the inter-temporal dynamics between partners in repeated contests. 

Since subjects’ computational limitations might impair the implementation of intended 

strategies, we also manipulate across treatments the saliency of best responses. We find that the 

matching protocol itself has no effect on the willingness to best-respond. This holds irrespective 

of whether best responses are made very salient to subjects or not. On the other hand, providing 

direct hints at best responses increases their occurrence, albeit to only about 20 percent. 

Chapter 4 (Pushing the Bad Away: Reverse Tullock Contests), joint work with Bettina 

Rockenbach, is a study on behavior in reverse Tullock contests. While most research considers 

rent-seeking for achieving gains, we recognize that contests are often conducted for avoiding 

losses. We show that the equilibrium prediction under standard preferences is robust against such 

a variation. However, prospect theory (Kahneman and Tversky 1979) suggests that contests 

involving negative prizes may be fiercer than traditional contests with positive prizes. We test 

this hypothesis in a new experiment. We find that average investments in reverse contests are 

higher by 15 percent than in conventional contests. However, the effect is statistically not 

significant. 

Chapter 5 (Heterogeneous Effect of Group Identity in Collective Rent-Seeking) 

investigates collective rent-seeking, in which groups instead of individuals compete against each 

other for a prize that is a public good for the winning team. The equilibrium analysis predicts 

that teams in such competition invest as much as individual players. However, Abbink et al. 

(2010) show that investments in collective contests are much higher than in individual contests. 

Moreover, the authors find that within groups, large differences in contributions are very 

persistent. In a new experiment, I replicate Abbink et al.’s results regarding both overbidding 

and behavioral heterogeneity. I explain the large and persistent within-group heterogeneity in 
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behavior with the heterogeneous effect of group identity. Subjects identify themselves with their 

teams to very different extents. Those who report a strong attachment to their groups keep 

investing much, even though their team mates who do not report any attachment to the team 

consequently free-ride. This shows that group identity is an important driver of contest behavior. 

Moreover, it demonstrates that group identity may have detrimental consequences in rent-

seeking settings, as it boosts efforts of a wasteful nature.  

Chapter 6 (Envy in Dynamic Contests), which is joint work with Uta K. Schier, is a 

theoretical and experimental study on the role of envy in dynamic contests. First, we conduct a 

game-theoretic analysis of a set-up with two battles, in which only the winner of both battles is 

awarded a prize. A tie in wins (1:1) leads to the prize not being awarded. We demonstrate that 

the equilibrium predictions under standard preferences, does not hold for subjects that dislike 

lagging behind; that is, subjects who are inequity averse. We show theoretically that envious 

losers of the first battle do not give up in the second battle and try to prevent the competitor from 

winning the prize. We test the theoretical prediction in a laboratory experiment and find clear 

evidence for envy-driven behavior. We observe that the first-battle-losers frequently do not give 

up in the second battle. As a consequence, in 30 percent of the cases the prize is not awarded to 

any contestant. This suggests potential for large inefficiencies.  

 

1.3. Scientific relevance and contribution of the thesis 

This thesis provides new results and insights on rent-seeking behavior relevant from both 

(economic) methodological and political perspectives. Therewith it advances the economic 

analysis of rent-seeking in two important dimensions. 

From the methodological point of view, it contributes to a better understanding of 

behavior in experimental contests. A profound understanding of motives, decision-processes and 

goals in the lab is crucial for researchers to be able to interpret observed behavior correctly. The 

thesis answers several questions important for researchers designing experiments on contest 

behavior, for example: To what extent is the matching protocol important in repeated Tullock 

contests? Is the assumption of myopic beliefs in repeated contests justified? Does a 

computational tool help solve the problem of not following best responses? These insights might 

be useful for future experimental studies on rent-seeking, given the increasing interest in 

experimental evidence on contest behavior. 
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From a policy perspective, the studies presented in this thesis help understand what drives 

competitive behavior in rent-seeking situations and, therefore, offer several implications for 

policy-makers designing contests. They provide at least partial answers to such questions as: 

Why are tie-rules in dynamic contests important and should be chosen carefully? How large is 

the danger of collusion in rent-seeking contests? Are the contests organized to avoid bad 

outcomes different from contests organized to obtain a gain? Why can team contests between 

groups with a strong common identity be dangerous? Moreover, I consider not only conventional 

(i.e., individual and static) contests but also richer and more complex settings. Therefore, the 

findings presented in the thesis better reflect frequent examples of dynamic contests and contests 

between groups. 

Chapters 2 contributes to a vivid discussion in the recent literature on the reasons for 

overbidding in experimental contests – the research question that has dominated the experimental 

investigation of rent-seeking in the last years. Bettina Rockenbach and I demonstrate the crucial 

role of beliefs in explaining overbidding. Anticipation of opponents’ aggressive behavior drives 

higher investments that ends up in well-documented overbidding. This result can be important 

for both researchers designing contests in the lab and policy-makers.  

The data collected in the lab expands the research beyond theoretical considerations and 

proves that the standard game-theoretic analysis based on the homo oeconomicus paradigm 

requires behavioral supplements. On the one hand, I show that standard assumptions are not met: 

Subjects’ rationality is bounded, they face difficulties with computing best responses, and they 

are inequity averse. On the other hand, standard analysis misses important non-monetary 

incentives, such as loss aversion, joy of winning, and group identity.  
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Chapter 2: 

BELIEFS AND BEHAVIOR IN 

TULLOCK CONTESTS 
 

Joint work with Bettina Rockenbach 

 

 

 

 

2.1. Introduction 

Rent-seeking is frequent in politics, markets, sports, education, or in research.1 

It causes tremendous monetary and non-monetary costs and often leads to inefficiencies 

in resource allocations (e.g., Murphy et al. 1993, Stewart and Wu 1997, Angelopoulos 

et al. 2009). Tullock (1980) proposed a simple model of rent-seeking behavior that has 

become a standard analytical framework in economic research on contests.2,3 Since 

observational field data on rent-seeking behavior are only rarely available, economists 

have turned to experimental methods to obtain controlled empirical evidence on rent-

seeking behavior, extending the research beyond the theoretic considerations and 

models. More than 25 years of experimental investigation of rent-seeking (pioneered by 

Millner and Pratt 1989, 1991) has led to an extensive body of literature on experimental 

contests (see Dechenaux et al. 2015 for a comprehensive overview). In the face of a large 

number of studies, it is striking that some very robust phenomena of contest behavior 

observed in laboratories remain unexplained. The main, well-reported (and yet not fully 

                                                           
1 Konrad (2009) discusses a wide range of applications in more detail. 
2 Earlier on, Tullock (1967) and Krueger (1974) already discussed economic consequences of rent-

seeking. 
3 Throughout the paper, the term “contest” refers to Tullock contests. For differences between Tullock 

contests and other canonical models (tournaments or all-pay auctions), see Dechenaux et al. (2015). 
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understood) phenomenon is overbidding: Subjects invest systematically more than 

predicted by the theoretic equilibrium analysis (Sheremeta 2013). Researchers have been 

exploring several mechanisms that possibly drive this result. Among these, bounded 

rationality, utility of winning, other-regarding preferences, or probability distortions 

belong to the most widely considered. Yet in his survey Sheremeta (2013, p. 508) 

concludes that “it remains an open question as to whether some of these factors are 

correlated as if so, which are the most important ones.” 

In this chapter we advance our understanding of contestants’ overbidding by 

providing the first study systematically focusing on contestants’ beliefs about 

competitors’ behavior and their responses to these beliefs. In a series of laboratory 

experiments on contest behavior with incentivized belief elicitation, we vary the salience 

of best-response behavior as well as the presence (and degree) of investment cost 

asymmetry between players.4  

Our findings are extremely clear. With regard to belief formation, we provide 

strong evidence that contestants hold myopic (Cournot) beliefs, i.e., they expect the 

opponent to invest as much as in the previous period. This pattern has been an implicit 

or explicit assumption in several previous studies, e.g., Fallucchi et al. (2013), Lim et al. 

(2014), however, so far without any experimental support. Our main result, however, 

concerns behavioral responses to beliefs. In symmetric contests, we find that subjects 

predominantly invest as much as they believe the competitor does. This leads to 

systematic overbidding. We show that this is not an effect of limited computational 

abilities, as belief matching still prevails when subjects are equipped with a best-reply 

calculator. We can also exclude inequity aversion (Fehr and Schmidt 1999) in realized 

or in expected payoffs as an explanation for the observed behavior. Additionally, we 

show that (almost) linear response functions cannot be captured with statistical models 

involving noise, e.g., quantal response equilibrium (McKelvey and Palfrey 1995, Goeree 

et al. 2005). Finally, with a systematic analysis of contests with asymmetric investment 

costs, we show that belief matching is not driven by striving for equality in winning 

probabilities, but instead is in line with the desire to win. With an increasing cost 

                                                           
4 A very recent study by Sheremeta (2015a) also employs incentivized belief elicitation. However, both 

the belief elicitation procedure and the focus of the paper are different from ours. We became aware of 

Sheremeta’s study when completing our paper. Moreover, Herrmann and Orzen (2008) utilize the strategy 

method (Selten 1967) in experimental contests, which, however, is a substantially different approach from 

the direct response method in our experiment. See also discussion in Section 2.4.  
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asymmetry, low-cost players more and more heavily exploit their advantageous position 

by bidding excessively more than needed to achieve equal winning probabilities, 

whereas high cost players are more likely to surrender.  

The remainder of the chapter is organized as follows. In Section 2.2, we present 

our research agenda. Section 2.3 describes our experimental game and design. In Section 

2.4, we report our results on elicited beliefs and behavioral responses to beliefs. In 

Section 2.5, we study the impact of the bounded computational abilities in experimental 

contests, and in section 2.6, we explore behavior in asymmetric contests. Section 2.7 

concludes. 

 

2.2. Our research agenda 

Scholars have investigated several reasons for overbidding. In general, one can 

classify the examined explanations into those modifying subjects’ preferences and those 

allowing for subjects to make mistakes. Among the first category, social preferences 

(e.g., Herrmann and Orzen 2008), joy of winning (e.g., Sheremeta 2010) and 

evolutionary preferences (e.g., Hehenkamp et al. 2004) are most common. However, 

much attention is also devoted to the hypothesis that subjects make mistakes (see e.g., 

Potters et al. 1998). Sheremeta (2011) applies the Quantal Response Equilibrium (QRE) 

approach (McKelvey and Palfrey 1995) to fit the data from experimental contests and 

finds patterns in line with predictions of the QRE. Similarly, Lim et al. (2014) apply 

logit quantal responses to fit behavior in contest games with different numbers of 

players. The authors report that the average expenditure level does not depend on the 

group size. However, the expenditures are more dispersed in large groups. Lim et al. 

link their descriptive observations to parameter estimates of the QRE-model and 

conclude that for larger groups the parameters depart further from perfect rationality. 

Our research agenda is closely related to the stream of literature striving to 

explain overbidding in experimental contests. We provide new insights into rent-seeking 

behavior by investigating how subjects form their beliefs about the competitors’ 

behavior and how subjects respond to these beliefs. We can organize our research agenda 

into three steps. In the first step, we extend the standard Tullock contest to include belief 

elicitation. Two contestants, endowed with E tokens each, may buy tickets at a cost of 1 

for a lottery with a winning prize of V. A contestant’s winning probability equals the 
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number of one’s own tickets bought as a fraction of the total number of tickets bought 

by both contestants. In our experimental sessions, the same two contestants interact 

repeatedly over 20 periods. Our BASELINE treatment extends this standard design 

through incentivized belief elicitation: Contestants are asked to guess the other 

contestant’s investment and earn more money when their guess is more accurate. We 

find that subjects predominantly hold myopic (Cournot) beliefs: They expect the 

opponent to invest as much as in the previous period. The main finding, however, lies 

in the pattern of responses to beliefs: Subjects predominantly invest the amount they 

believe their competitor invests. A linear reaction function is in stark contrast to the 

theoretic best-response function and results in overbidding (see Section 2.4).  

In the second step (treatment C1), we investigate whether belief matching is 

caused by computational limitations. We modify our BASELINE treatment by providing 

subjects with a computational tool, which allows for unambiguously identifying best 

responses (see Section 2.5). Yet we observe no difference in behavior as compared to 

the BASELINE, either in the average investment levels or in the reaction functions. Thus, 

we can exclude limited computational abilities as a cause for belief-matching 

investments. We can also exclude that observed behavior is driven by inequity aversion 

(Fehr and Schmidt 1999) in realized or in expected payoffs, both in BASELINE and in C1.    

In the third step of our agenda, we introduce investment cost asymmetry between 

contestants to investigate whether matching investments on beliefs is driven by striving 

for equality in investments or for equality in winning probabilities. While in treatment 

C1 both contestants receive 1 ticket per token invested, the asymmetric treatments 

feature a low-cost and a high-cost player. The low-cost player receives 3 (in treatment 

C1.5), 2 (in treatment C2) and 4 (in treatment C4) tickets per token, while the high-cost 

player receives 1 ticket per token invested in C2 and C4 and 2 tickets per token in 

treatment C1.5. Thus, we vary the level of asymmetry, from relatively low to high. We 

find that in the asymmetric contests low-cost players exploit their advantageous position 

by investing even more than they expect from the opponent, resulting in very high 

winning probabilities. In contrast, as cost asymmetry increases, high-cost players are 

more likely to give in and not participate in the contest (see Section 2.6).  

Table 2.1 presents an overview of our experimental treatments and their main 

characteristics. In Section 2.3, we describe our experimental design in more detail. 
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Table 2.1: Overview over the experimental treatments. 

Treat-

ment 

No. of 

subjects 

(indep. 

observ.) 

Belief 

elicit. 

Computa-

tional tool 
Investment costs 

BASE-

LINE 
58 (29) Yes No 

Symmetry: Both players receive 1 

ticket per token 

C1 56 (28) Yes Yes 
Symmetry: Both players receive 1 

ticket per token 

C1.5 58 (29) Yes Yes 

Low Asymmetry: 

Low-cost player receives 3 tickets and 

high-cost player receives 2 tickets per 

token 

C2 60 (30) Yes Yes 

Medium Asymmetry: 

Low-cost player receives 2 tickets and 

high-cost player receives 1 ticket per 

token 

C4 60 (30) Yes Yes 

High Asymmetry: 

Low-cost player receives 4 tickets and 

high-cost player receives 1 ticket per 

token 

 

2.3. Experimental game, design and procedure  

2.3.1. Experimental game 

We design a laboratory environment that employs a two-player rent-seeking 

contest (Tullock 1980) for a monetary prize V. Assume that both contestants �� and �� 

have an endowment E and simultaneously invest in “lottery tickets” for the contest. For 

each unit invested, contestant �� receives �� lottery tickets5, � = 1, 2. If �� invests �� and 

the competitor �� invests ��, player ��  wins the contest with probability:  

�� = �������� + ���� (2.1) 

and has a payoff of: 

�� = � � �� �� = �� = 0� − �� �� �� ���� − �� + � �� �� ���  (2.2) 

 

                                                           
5 Kimbrough et al. (2014, p. 98) refer to the different investment costs as the “conflict strengths.” 
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Player ��’s best reply against contestant ��’s investment �� is: 

������ = �������� − ������  
(2.3) 

 

The unique equilibrium is symmetric with investments:  

��∗ = ��∗ = �����(�� + ��)� 
(2.4) 

Therefore, in the symmetric cost case (�� =  �� > 0), the unique Nash equilibrium under 

money-maximizing preferences is that both players invest one quarter of the prize, i.e., �/4 (Szidarovsky and Okuguchi 1997).  

 

2.3.2. Experimental implementation 

In the experiment, we frame the game as a lottery. We choose an endowment of 

E=20 and a prize of V=20. Hence, in case of symmetric costs, in equilibrium both 

contestants invest 5. In addition to the decision on the investment in the lottery, subjects 

also have to guess what they expect the competitor to invest. We incentivize belief 

elicitation using a quadratic loss function.6 Subjects can earn a bonus of up to 4 tokens 

in every round for their beliefs. The beliefs are rewarded according the following bonus 

function:  Bonus = max-0;  4 − 0.4(Belief − Actual investment)�8.  (2.5) 

 

Thereafter, subjects receive feedback about their own and their competitor’s 

decisions, and the resulting probabilities of winning are provided in numbers and 

represented graphically (as lengths of a segment) on the screen.7 All bought tickets are 

numerated and subjects are informed which numbers correspond to their lottery tickets. 

If no contestant buys any tickets, the lottery is not conducted and nobody wins the prize. 

Otherwise, the computer randomly draws one of the purchased tickets. The ticket holder 

wins the lottery and receives the prize. Both contestants are informed about the winner 

of the lottery and their payoff. 

                                                           
6 For the advantages of the quadratic rules as compared to the linear ones, see e.g., Selten (1998) and 

Palfrey and Wang (2009). We are aware that there is no agreement in economic experimental methodology 

on whether to incentivize beliefs or not (see for example the recent survey by Schlag et al. 2015). 
7 For translation of experimental instructions, see appendix C. 
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Thus, the expected payoff (without a bonus for belief reports) of player �� with 

an investment of �� and a competitor’s investment of �� is given by: 

Π� = 20 − �� + �������� + ���� 20 (2.6) 

In the experiment, the stage game is repeated for 20 periods in partner matching.8 

Every period has the same timing and is payoff-relevant. The experimental tokens are 

exchanged into Euros at the rate 45 tokens=1 Euro. 

 

2.3.3. Experimental procedure 

We conducted the experiment in the spring and fall 2015 in the Cologne 

Laboratory for Economic Research (CLER), Germany. The participants were students 

with various majors and were recruited via ORSEE (Greiner 2015). In total, 292 students 

(59% female) participated in ten experimental sessions split equally between five 

treatments (see Table 2.1).9 Each subject participated only in one treatment. Depending 

on the treatment, experimental sessions lasted between 60 and 90 minutes. On average, 

subjects earned 14.20 EUR. The experiment was programmed and conducted with the 

software z-Tree (Fischbacher 2007).  

 

2.4. Beliefs and behavioral responses 

Figure 2.1 shows the results from our BASELINE treatment (with �� = �� = 1). 

Average investments are 6.48, significantly more than the equilibrium investment of 5 

(p=0.013).10,11 The average magnitude of overbidding (29.7%) is comparable to the 

results from the meta-analysis by Sheremeta (2013). Another robust finding about 

                                                           
8 The horizon of the game is standard; most previous experiments applied between 10 and 30 periods. 

Moreover, in the previous research, both partner and stranger matching have been frequently used (see 

e.g., Table 1 in Fallucchi et al. 2013 for an overview). 
9 We strived for 60 participants in each treatment (i.e., 300 in total). A lower number of subjects in some 

treatments is due to several no-shows. 
10 In all reported tests, we consider a pair of players over 20 periods as one independent observation.  
11 Throughout the paper, whenever we report significance levels in tests for differences, we refer to results 

from a non-parametric two-sided Fisher-Pitman permutation test (with 200,000 runs). Depending on the 

nature of the data, we apply a version for either independent samples or paired replications. Unlike the 

Wilcoxon signed-rank test (which is the most common alternative to the Fisher-Pitman test), the Fisher-

Pitman test does not draw any conclusion about the underlying population. Therefore, it does not depend 

on assumptions about the population (e.g., subjects being randomly drawn and symmetric around the 

median). Moreover, the Wilcoxon test is based on ranks and therefore ignores a substantial part of the 

information in the sample data. The Pitman-Fisher permutation test uses the more powerful approach 

based on the original sample values without transformation (see Kaiser 2007; Selten et al. 2011). Unless 

explicitly noted, all usual significance thresholds hold also under the parametric test (t-test). 
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contest behavior is overspreading: Subjects not only invest “close” to the equilibrium 

prediction of 5 but also use the entire strategy space. This is also the case in our data 

(see Figure 2.10 in appendix A). 

 Figure 2.1: Average investments and beliefs (BASELINE treatment). 

 

 

Result 2.1: In our BASELINE treatment, contestants’ investments are in line with previous 

research and significantly higher than predicted in equilibrium. 
 

2.4.1. Accuracy of beliefs 

More than three quarters (77.9%) of the reported beliefs were rewarded with a 

positive bonus, which means that the absolute inaccuracy was not larger than 3 tokens. 

More than one third (36.7%) of beliefs exactly matched the competitor’s behavior. 

Figure 2.2 (panel A) depicts the distribution of belief inaccuracy. Over time, 

subjects increase their performance in predicting competitor’s behavior. The average 

inaccuracy is 3.13 in the initial five periods of the experiment and 1.81 in final five 

periods. The difference is highly significant (p<0.01). 

 

2.4.2. Myopic beliefs 

Several previous experimental studies on contest behavior analyze observed 

behavior under the assumption of myopic beliefs (e.g., Fallucchi et al. 2013, Lim et al. 

2014). Our data allows us to identify to what extent this assumption is justified. We find 

clear evidence for myopic beliefs under partner matching. Figure 2.2 (panel B) shows 

that 44.2 percent of beliefs are perfectly myopic. In 68.9 percent of cases the difference 

between the reported belief and the myopic belief is not larger than 1. Moreover, the 
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distribution of deviations from the myopic beliefs is symmetric. We can summarize this 

as:  

Result 2.2: Subjects’ beliefs are highly accurate. They predominantly hold myopic 

beliefs or beliefs very close to myopic. 

 

Figure 2.2: Beliefs in BASELINE treatment. 

 

2.4.3. Behavioral response to beliefs 

In the next step, we study how subjects behave when holding certain beliefs. We 

compare the theoretic prediction with the behavioral responses to beliefs observed in our 

experiment. Figure 2.3 depicts the average investments for a given belief about 

competitor’s behavior and contrasts them with the theoretic prediction. Moreover, we 

plot the frequencies of reported beliefs.  

The difference between the theoretic prediction and observed behavior is 

remarkable. Subjects substantially deviate from playing best responses. Instead, their 

behavior can be described with a linear reaction function. Subjects tend to invest as much 

as they expect from the competitor, which means that they match their investments with 

their beliefs. Whereas such behavior is justified in the symmetric equilibrium (both 

players invest 5 tokens), the theoretic best reply is never higher than 5 tokens and 

decreases for beliefs larger than 5. We find that subjects do not follow this rule. As a 

consequence, the discrepancy between theoretic prediction and observed behavior 

becomes larger the more aggressive the competitor is expected to be. The figure 

additionally shows that investment behavior cannot be described by playing a best reply 
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under Fehr-Schmidt-preferences (1999), either in expected or in realized payoffs (for 

more details see appendix B). 

Figure 2.3: Average responses to beliefs (BASELINE treatment). 

 

The matching pattern becomes even more apparent from the investment-belief-

ratio, presented in Figure 2.4. In order to demonstrate that the results are not driven by 

the symmetric equilibrium nor are just an arithmetic phenomenon, we present the 

distribution for all beliefs (Figure 2.4, panel A) and separately the distribution only for 

beliefs larger than 5 (Figure 2.4, panel B). In both cases, the pattern is very similar; we 

observe a significant peak at the value of 1, where the investment exactly matches the 

belief. The significant role of the revealed heuristic is also confirmed in the regression 

analysis (see Table 2.3 in appendix A). We conclude the following:  

 

Result 2.3: Subjects display a pattern of a linear reaction function (matching behavior 

with beliefs), which is in stark contrast to theoretic best replies. 
 

The linear reaction function helps explaining why most previous studies on rent-

seeking behavior report overbidding. It is likely that such results are driven by the 

responses to aggressive competitor’s behavior (or beliefs of high competitor’s 

investment). 
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Figure 2.4: Investment-Belief-Ratio (BASELINE treatment). 
Note: Investment-Belief-Ratio for beliefs different from 0 and censored at 5. 

 
 

We are aware of one previous study that employs elicitation of response 

functions. Herrmann and Orzen (2008) use the strategy method (Selten 1967) in a similar 

fashion as Fischbacher et al. (2001) do for public good games. Our result of a linear 

response function is not quite in line with the evidence reported by Herrmann and Orzen 

(2008), but it also does not strictly contradict their findings. The authors observe that 

about 1/3 of subjects in the repeated interactions display an increasing response function, 

whereas almost ½ of subjects display a hump-shaped response curve (Herrman and 

Orzen 2008, Table 4). Moreover, even for increasing-types, the reaction curve is far 

from linear, especially for lower investments by the competitor (Herrmann and Orzen 

2008, Figure 4). There are several possible design-related sources of these discrepancies 

with our results. The behavioral changes induced by the strategy method (instead of the 

direct responses in our experiment) are certainly one of to the most likely reasons (see 

Brandts and Charness 2011). 

Why do contestants deviate from best replies and match beliefs? Is it possible 

that the observed matching pattern is induced by the procedure of belief elicitation and 

we face a problem of an inverse causality, in which the chosen action induces reported 

beliefs? We can address this concern by comparing our results to previous experiments 

from Abbink et al. (2010) and Ahn et al. (2011), which are very similar in design but 

did not elicit beliefs. Both experimental studies include treatments where two players 

compete repeatedly in partner matching for an exogenously given prize. The main 

difference to our design is the value of the prize and, therefore, the resulting strategy 
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space. In both previous experiments, subjects invested an integer number between 0 and 

1,000 to win a prize of 1,000 tokens. All other main elements are the same as in our 

design.12 We compute average responses to beliefs under the assumption of myopic 

beliefs and present the results in a fashion analogous to Figure 2.3 in appendix A 

(Figures 2.16 & 2.17). Since in the previous experiments the investments were spread 

over a large strategy space, we aggregate them in 50-token increments in order to obtain 

reliable numbers of observations for computing average responses. We see that the 

matching pattern can also be found in the data collected by Abbink et al. (2010), as well 

as Ahn et al. (2011). This strongly speaks against the concern that the matching pattern 

is an artifact of our experimental procedure. 

Another explanation for the observed matching pattern could stem from the 

repeated play. Investment matching could be used as a punitive action to penalize 

aggressive competitors in order to deter their investments in the future. However, such 

motivation should lead to more matching behavior in early rounds and less towards the 

end of the experiment. A panel probit regression provides evidence against this 

explanation (see Table 2.4, Panel A in appendix A). We do not observe less matching in 

the later rounds of the experiment than at the beginning. Moreover, a recent study by 

Schier and Waligora (see Chapter 6) reports a similar linear response function in one-

shot Tullock contests, which also speaks against the role of dynamic interactions in the 

matching behavior. 

 

2.4.4. Observed responses to beliefs in the light of QRE-approach 

Previous studies used the quantal response equilibrium (QRE) model to explain 

experimental data on contests. QRE adds noise to the optimal behavior and helps to 

explain the over-dissipation of rents. We analyze how such an approach fits our results. 

As a statistical equilibrium concept, QRE relies on payoff perturbations and assumes 

that mistakes follow a random process. McKelvey and Palfrey (1995) build their 

approach on the assumption that better actions (in terms of payoffs) are more likely to 

be chosen than worse actions. Both Sheremeta (2011) and Lim et al. (2014) apply the 

QRE-model to their aggregated data and estimate the precision parameter λ. In contrast 

                                                           
12 The only noteworthy difference from our design is the lump-sum endowment in Ahn et al.’s experiment, 

which is different from the per-period endowments in Abbink et al.’s as well as in our experiments. 



 

19 

2. Beliefs and Behavior in Tullock Contests 

to these studies, we do not conduct a complex econometric analysis, but rather apply the 

basic intuition of QRE to our experimental data. 

One of the assumptions underlying QRE is that the probability of a mistake is 

reversely proportional to the foregone payoff. Hence, more costly mistakes are less 

likely. Figure 2.5 presents the distribution of investments in the BASELINE if the reported 

belief equals 10, for which the best response under standard preferences is 4. According 

to the QRE, smaller deviations from the best response should be more frequent than 

large (fairly costly) deviation. Even taking into account the distortive impact of 

prominent numbers (5, 10, 15), one cannot explain with the notion of payoff 

perturbations why a more costly mistake of investing 10 is three times more likely than 

a less costly mistake of investing 5. This clearly contradicts an explanation of the 

matching pattern drawn from QRE. We report similar regularities for other beliefs (see 

Figure 2.15 in appendix A). 

Figure 2.5: Distribution of investments if the reported belief equals 10 (n=138 from 36 

subjects). BASELINE treatment. 

 

2.5. The role of limited computational abilities 

Tullock contests between two players with linear probabilities are characterized 

by a well-defined best-response function (see eq. 2.3). Its algebraic form and its shape 

are, however, neither trivial nor intuitive. In our experimental treatment C1, we test 

whether the matching pattern is induced by subjects’ difficulties in computing 
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probabilities and expected payoffs.13 The only difference between C1 and BASELINE is 

the availability of a computational tool. At the decision stage, the computer mask 

includes a what-if calculator (see Figure 2.21 in appendix C). Subjects can enter the 

expected investment of the competitor, and the calculator displays expected winning 

probabilities and expected payoffs for every possible investment of the subject. Such a 

tool allows easily identification of the investment maximizing subject’s expected payoff 

as well as the one maximizing the expected winning probability, given a certain belief 

on competitor’s behavior. Moreover, subjects can compare their expected payoffs and 

winning probabilities with the expectations for the competitor in various scenarios. 

Subjects are allowed to use the calculator as many times as they want within the given 

decision time limit of 240 seconds in first ten rounds and 120 seconds in consecutive ten 

rounds.  

Our experimental data show that the behavior in treatment C1 is – at the 

aggregate level – very similar to that in BASELINE. Neither investments (mean: 6.855) 

nor beliefs (mean: 7.268) are significantly different from the results reported in the 

previous section (p-values 0.631 and 0.368, respectively). Additionally, Figures 2.10 to 

2.13 in appendix A illustrate that the behavior and reported beliefs in C1 are in several 

other dimensions very similar to those in BASELINE.  

In the next step, we test whether subjects in treatment C1 are more likely to play 

best responses than in the BASELINE treatment. In BASELINE, in 15.43 percent of 

observations, subjects play exactly best responses; in C1 this proportion amounts to 

15.00 percent. The difference is not significant (p>0.9). The same conclusion provides 

the panel data logit regression (see Table 2.4, Panel B in appendix A). 

One obvious reason for no difference between treatments would be that subjects 

do not use the calculator. Therefore, we examine whether participants indeed use the 

tool we provided. Fifty-three out of 56 subjects (94.6 percent) use the calculator in at 

least one period. Figure 2.20 in appendix A depicts that most subjects make use of the 

tool at the beginning of the experiment. In periods 1-3, the average number of entries is 

1.60, but it decreases rapidly, and by period 10 it drops to 0.18. The use of the calculator 

in the first periods is reflected in much longer decision times. Whereas in the BASELINE 

                                                           
13 Note that we call this treatment C1 due to notation we use in asymmetric treatments reported in Section 

2.6 (C stands for “calculator”). 
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subjects in periods 1-3 make their decision on average within 12.18 sec., in C1 they need 

52.34 sec. (see Figure 2.19 in appendix A). The difference is highly significant 

(p<0.001).  

Figure 2.6: Average responses to beliefs (treatment C1). 

 

Figure 2.6 demonstrates that the matching pattern in C1 is even slightly more 

pronounced than in the BASELINE. The regression analysis also confirms that the 

matching pattern is not induced by the limited computational abilities (Table 2.4, Panel 

A in appendix A). The figure additionally shows that, as in BASELINE, investment 

behavior cannot be described by best-reply behavior under Fehr-Schmidt-preferences 

(1999), either in expected or in realized payoffs (for more details see appendix B). 

 

Result 2.4: Subjects use the what-if calculator but still do not play best responses, in 

particular for high beliefs. Instead they tend to match their own behavior with beliefs. 

Thus, limited computational abilities do not seem to be the reason for the matching 

pattern in experimental contests.  

 

2.6. Beliefs and Behavior in Asymmetric Contests 

In order to disentangle whether the observed investment behavior is motivated 

by matching the opponent’s investment or matching the winning probability, we 
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introduce cost asymmetry between contestants.14 In three new treatments we manipulate 

the degree of asymmetry from relatively low to high. This provides richer insights into 

contest behavior and enhances our understanding of it. 

In asymmetric treatments, we vary the number of tickets subjects can purchase 

per token (�� ≥ 1). The symmetric treatment C1, reported in the previous section, 

constitutes our benchmark. Consequently, the decision is framed across treatments as 

the number of tokens that a subject wants to spend on lottery tickets. Table 2.2 

summarizes the ticket costs in the treatments. The treatment name corresponds to the 

ratio tickets per token (�;<=>?<@A B;CDEF/�G�HG>?<@A B;CDEF). Moreover, using eq. (2.4) we 

can compute the theoretic benchmarks of Nash equilibrium.15 

 

Table 2.2: Asymmetric treatments. Overview. 

 Treatment C1 C1.5 C2 C4 

# tickets per 

token spent 

low-cost type 1 3 2 4 

high-cost type 1 2 1 1 

Nash equilibrium (5, 5) (5, 5) (4, 4) (3, 3) 

 

2.6.1. Main behavioral regularities 

In all asymmetric treatments, both low-cost and high-cost players invest 

significantly more than in the Nash equilibrium (all p<0.05). The detailed statistics and 

test results are presented in Table 2.5 in appendix A. 

In order to recognize general behavioral patterns, we analyze in the first step the 

distributions of winning probabilities subjects believed they would achieve when 

making their decisions (see Figure 2.7). Expected winning probability results from own 

investments and reported beliefs. Inter-treatment and -type comparison allows us to 

identify three major behavioral regularities. 

First, we find that under low cost asymmetry (treatment C1.5) both low-cost and 

high-cost types tend to strive for equal or similar winning probability as their competitor. 

                                                           
14 With respect to asymmetric contests, our study is related to previous work by Anderson and Stafford 

(2003), Fonseca (2009), Anderson and Freeborn (2010) and Kimbrough et al. (2014). 
15 Note that we have to take the restriction on the strategy space into account; Subjects are allowed to 

invest integer numbers of tokens. 
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The exact matching is not as pronounced as in the symmetric treatment (C1); this is 

probably partially attributable to exact matching in probabilities not always being 

possible under the asymmetric cost due to restrictions on the strategy space. 

Nevertheless, a great mass of distribution lies around 0.5. This is no longer the case 

under a larger cost asymmetry.  

Figure 2.7: Expected winning probability. Empirical distributions by treatment and cost type. 

 

0
.0

5
.1

.1
5

.2
.2

5
.3

F
ra

c
ti
o
n

0 .2 .4 .6 .8 1
Expected winning probability

BASELINE 

0
.0

5
.1

.1
5

.2
.2

5
.3

F
ra

c
ti
o
n

0 .2 .4 .6 .8 1
Expected winning probability

C1 

0
.0

5
.1

.1
5

.2
.2

5
.3

F
ra

c
ti
o
n

0 .2 .4 .6 .8 1
Expected winning probability

C1.5: Low cost 
0

.0
5

.1
.1

5
.2

.2
5

.3
F

ra
c
ti
o
n

0 .2 .4 .6 .8 1
Expected winning probability

C1.5: High cost 

0
.0

5
.1

.1
5

.2
.2

5
.3

F
ra

c
ti
o
n

0 .2 .4 .6 .8 1
Expected winning probability

C2: Low cost 

0
.0

5
.1

.1
5

.2
.2

5
.3

F
ra

c
ti
o
n

0 .2 .4 .6 .8 1
Expected winning probability

C2: High cost 

0
.0

5
.1

.1
5

.2
.2

5
.3

F
ra

c
ti
o
n

0 .2 .4 .6 .8 1
Expected winning probability

0
.0

5
.1

.1
5

.2
.2

5
.3

F
ra

c
ti
o
n

0 .2 .4 .6 .8 1
Expected winning probability

C4: Low cost C4: High cost 



 

24 

2. Beliefs and Behavior in Tullock Contests 

Second, low-cost types strongly match in investments, which – combined with a 

cost advantage – allows them to achieve high winning probabilities of 60%, 67%, and 

80% for treatments C1.5, C2, and C4, respectively.  

Third, high-cost types are more likely to give in when being highly 

disadvantaged. While the fraction of contestants investing zero is negligible under cost 

symmetry (in BASELINE and C1), it increases with an increasing cost asymmetry between 

contestants. Under high cost asymmetry, about one third of high-cost contestants decide 

to “surrender” by not buying even a single lottery ticket (see Figure 2.7 right panels).  

 

2.6.2. Matching pattern under cost asymmetry 

To answer the question posed at the beginning of this Section, namely whether 

the investment behavior is driven by a desire for equal investments or equal winning 

probabilities, we compare how often subjects follow these behavioral rules. Since exact 

matching under cost asymmetry was not always possible, we slightly weaken the 

definition of matching and allow for a deviation from the described rules by at most one 

token. Figure 2.8 depicts the likelihood of following the matching rule across treatments. 

 

 

Figure 2.8: Likelihood to match in investments (panel A) 

 and in winning probabilities (panel B). 

 

The stronger the cost asymmetry, the lower the likelihood of low-cost players 

matching both in investments and in winning probabilities. However, the decreasing 

trend for the likelihood of matching winning probabilities is much stronger. This is 

confirmed by non-parametric analyses. While the Jonckheere-Terpstra test (JTT) for 
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ordered alternatives indicates an only weakly significant negative trend for likelihoods 

to match investments (p=0.052), it detects highly significant negative trend for the 

likelihood to match in probabilities (p<0.001, JTT). Moreover, the same conclusion 

provides a parametric analysis reported in Table 2.6 panel A in appendix A, where a 

much stronger and more significant effect of cost asymmetry is found for the matching 

in winning probabilities.  

For high cost players, both matching rules become less and less frequent under 

increasing cost asymmetry; JTT indicates in both cases a highly significant negative 

trend (p<0.001). Again, this conclusion is supported by the parametric regression 

analysis (see Table 2.6 panel B in appendix A). As the matching rules become less 

common under cost asymmetry, it is instructive to compare average behavior to the 

considered behavioral benchmarks. We normalize each decision with respect to 

predictions of matching in investments or matching in winning probabilities. A value of 

100% means that the matching behavior is exactly followed, while values over (under) 

100% indicate that a subject invests more (less) than the matching rule requires. The 

average values of normalized behavior are presented in Figure 2.9.16 

 

 

Figure 2.9: Average behavior normalized with respect to matching rules. 

 

In the symmetric treatment C1, subjects invest on average only slightly more 

than required for investment matching. In asymmetric treatments, however, low-cost 

                                                           
16 Note that if the reported belief is 0, the matching rule also predicts 0, which disables the normalization 

of the behavior. In these cases, we replace the benchmark of 0 with the benchmark of 1 and compare 

behavior with it. 
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players invest on average more than matching in investments would require; we observe 

a significant upward trend (p<0.001, JTT). Combined with the cost advantage effect, 

this gives them a rapidly increasing dominance in winning probabilities (p<0.001, JTT).  

High-cost players, in contrast, continue matching in investments even when the 

asymmetry increases, such that we find no significant trend (p=0.413, JTT). Under the 

increasing disadvantageous cost asymmetry, this leads to a significant downward trend 

in probability matching (p<0.001, JTT). 

We close our analysis of behavior in asymmetric contests with patterns of 

average responses to beliefs (see Figure 2.18 in appendix A). Here, again it becomes 

apparent that high-cost players tend to match in probabilities if the cost asymmetry is 

low (C1.5) and the expected opponent’s investment is relatively small. Otherwise, 

average responses follow the matching investment rule. 

We summarize our evidence on behavior in asymmetric contests in the following 

conclusion: 

 

Result 2.5: Subjects strive for equal winning probabilities only if the degree of 

asymmetry is low. Otherwise, low-cost players exploit their position to achieve high 

winning probabilities and often even deter the high-cost competitor from participating 

in the contest. 

 

2.7. Conclusion  

In our study, we extend the standard experimental setting of rent-seeking contests 

from previous research to include incentivized belief elicitation, which allows us to gain 

new insights into contest behavior. We show that our experimental design is not very 

intrusive and allows us to report results consistent with previous findings. However, it 

enriches our understanding of behavior in experimental contests in two significant 

dimensions. First, we find evidence for myopic (Cournot) beliefs; in repeated 

interactions under partner matching, subjects usually expect the competitor to behave 

exactly or similarly as in the last previous period. 

Moreover, the belief elicitation allows us to examine the empirical response 

function and to compare the behavioral responses with theoretic predictions. In stark 

contrast to the game-theoretic best-reply function, which is parabolic with its maximum 
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in the Nash equilibrium, we find a nearly linear response pattern. Subjects tend to match 

the beliefs about competitor’s behavior with their own behavior. Such regularity helps 

to explain why most previous experiments on Tullock contests report overbidding. 

While the best-reply function predicts a gradual surrendering for high beliefs, subjects 

tend to reciprocate aggressive behavior, which leads to costly rent-dissipation and results 

in well-documented overbidding.  

This result has political and economic implications because it reveals that rent-

seeking contests can easily intensify, which results in dissipation of huge amounts of 

resources. When expecting a competitor to behave aggressively, people usually respond 

with similarly aggressive behavior. This is in line with the notion of the proverb existing 

in several languages: “attack is the best form of defense.” However, this is in stark 

contrast to predictions of the game-theoretic analysis. Having found such a systematic 

and clear deviation from the best-reply function, it is not surprising that we do not 

observe Nash equilibrium behavior in rent-seeking experiments. 

The results can be interpreted in a broader context of competitive settings. Our 

study demonstrates how dangerous, costly and welfare-decreasing contests can be. 

People only rarely recognize that giving up is a better strategy than taking part in a very 

fierce competition. They are usually willing to make costly sacrifices to have a chance 

of winning against determined competitors. A prominent example is the educational and 

professional choices to enter a highly discriminating job market, e.g., for professional 

actors/actresses, musicians or scientists. 

To better understand the behavioral pattern of matching, we introduce cost 

asymmetry between contestants in a new series of experimental treatments. This allows 

us to better comprehend motives of matching and investigate whether behavioral 

patterns are robust against asymmetries. We find evidence that subjects strive for an 

equal (or at least similar) winning probability if the degree of asymmetry is small. 

However, under a larger cost asymmetry, low-cost players tend to exploit their favorable 

position by investing excessively more than necessary to achieve equal winning 

probabilities and dominate the contest by successfully deterring high-cost players. 

Observed linearity of the response function seems motivated by the desire to win. 
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2.8. Appendix A. Additional tables and figures 

 

 

 

Table 2.3: Adjustment model (panel regression). 

Dependent variable:  

Inv(t) - Inv(t-1) 
BASELINE C1 

Baseline & C1 

(pooled) 

    

Best response(t) - Inv(t-1) 0.233*** 0.241*** 0.233*** 

 (0.067) (0.045) (0.066) 

Matching(t) - Inv(t-1) 0.361*** 0.422*** 0.361*** 

 (0.080) (0.049) (0.079) 

Calculator   -0.153 

   (0.236) 

Calculator x [Best-response(t) - Inv(t-1)]  0.008 

   (0.080) 

Calculator x [Matching(t) - Inv(t-1)]   0.061 

   (0.093) 

Constant 0.584*** 0.430*** 0.584*** 

 (0.179) (0.157) (0.177) 

Number of observations 1102 1064 2166 

Number of clusters 29 28 57 

Wald Chi-squared 87.88*** 136.16*** 245.76*** 

Notes: Panel regression with random subject effects. In parentheses, robust standard  

errors clustered at pairs of players. Significance levels *** p<0.01, ** p<0.05, * p<0.1. 

 

Comments: 

Our approach is analogous to those adopted by Huck et al. (1999) as well as Fallucchi et al. (2013). We 

investigate which rule (playing best-responses vs. matching) more strongly drives behavior (measured 

with period-by-period adjustments). For details on the approach see the cited studies.  

We find that in both symmetric treatments (BASELINE & C1) the matching rule has a stronger effect on 

the behavior than best replies. Moreover, there is no significant treatment effect of the what-if-calculator. 
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Table 2.4: Panel probit regression for the event of matching behavior with beliefs (Panel A) 

and playing best responses (Panel B). 

A. Dependent variable:  

1[Investment=Belief] 

BASELINE & C1 

 (pooled) 

BASELINE & C1 

 (pooled) 

   

Period 0.016* 0.023** 

 (0.008) (0.011) 

Belief  -0.031 

  (0.029) 

1[Matching in equilibrium]  0.355*** 

  (0.119) 

1[Calculator provided]  -0.118 

  (0.342) 

Period x 1[Calculator provided]  -0.022 

  (0.015) 

Belief x 1[Calculator provided]  -0.005 

  (0.035) 

Constant -0.947*** -0.796*** 

 (0.100) (0.275) 

Number of observations 2280 2280 

Number of clusters 114 114 

Wald Chi-squared 8.51*** 40.21*** 

 

B. Dependent variable:  

1[Investment=Best-reply] 

BASELINE & C1 

 (pooled) 

BASELINE & C1 

 (pooled) 

   

Period  -0.014 

  (0.011) 

Belief  -0.068** 

  (0.032) 

1[Calculator provided] 0.113 -0.124 

 (0.229) (0.384) 

Period x 1[Calculator provided]  0.043** 

  (0.017) 

Belief x 1[Calculator provided]  -0.033 

  (0.046) 

Constant -1.384*** -0.806*** 

 (0.194) (0.277) 

Number of observations 2280 2280 

Number of clusters 114 114 

Wald Chi-squared 0.4 56.79*** 

Notes: Panel probit regression with random subject effects. In parentheses, robust standard 

 errors clustered at pairs of players. Significance levels *** p<0.01, ** p<0.05, * p<0.1. 
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Table 2.5: Summary statistics across treatments and types. 

Treatment Type 
Cost: Ticktes pro 

token 

Equilibrium 

prediction 

Average 

 investment 

Standard 

deviation 

H0:  

Investment = NE 

BASELINE  1 5 6.483 4.391 p=0.013 

C1  1 5 6.855 4.612 p=0.001 

C1.5 Low-cost 2 5 7.007 4.168 p=0.001 

C1.5 High-cost 3 5 6.540 4.781 p=0.013 

C2 Low-cost 2 4 6.529 3.750 p<0.001 

C2 High-cost 1 4 4.970 4.900 p=0.032 

C4 Low-cost 4 3 5.553 3.979 p<0.001 

C4 High-cost 1 3 4.788 5.512 p=0.004 

Notes: p-values from the Fisher-Pitman permutation tests (two-sided) at the level of independent observations. 

 

Table 2.6: Behavior in asymmetric treatments (panel probit regression). 

Dependent 

 variable: 

A. Low cost types 
  Dependent  

variable: 

B. High cost types 

1[surrender] 
1[Match  

investments] 

1[Match  

probabilities]   
1[surrender] 

1[Match  

investments] 

1[Match  

probabilities] 

Cost asymmetry 0.026 -0.121* -0.315***   Cost asymmetry 0.717*** -0.224*** -0.629*** 

 (0.166) (0.064) (0.085)    (0.130) (0.071) (0.082) 

Constant -3.424*** -0.182 -0.137   Constant -3.797*** -0.206 0.174 

 (0.704) (0.154) (0.199)    (0.398) (0.163) (0.181) 

Observations 2900 2900 2900   Observations 2899 2899 2899 

Clusters 117 117 117   Clusters 117 117 117 

Wald Chi-squared 0.03 4.03** 15.34***   Wald Chi-squared 28.02*** 12.30*** 65.43*** 

Notes: Panel probit regression with random subject effects. In parentheses, robust standard errors clustered on pairs. Significance levels *** p<0.01, ** p<0.05, * p<0.1. 
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Figure 2.10: Distribution of investments over treatments. 

 

Figure 2.11: Distribution of beliefs over treatments. 
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Figure 2.12: 

Myopic beliefs over treatments. 

 

Figure 2.13: Belief inaccuracy over treatments. 

Note: Inaccuracy defined as the absolute value of the difference between the belief and the actual competitor’s behavior. 
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Figure 2.14: Average investments over treatments. 

 

 

Figure 2.15: Distribution of investments for a certain belief (BASELINE treatment). 
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Figure 2.16: Average responses to myopic beliefs in the experiment by Abbink et al. (2010). 

Note: We use the data from 1:1-treatment (28 subjects in partner matching, i.e., 14 independent observations, over 20 periods). 

The data is publicly available under: https://www.aeaweb.org/articles.php?doi=10.1257/aer.100.1.420 [last access: July 3, 

2015] 

 

 

 

 

Figure 2.17: Average responses to myopic beliefs in the experiment by Ahn et al. (2011). 

Note: We use pooled data from the first part in treatments baseline, AG, and SG. 

The data was kindly provided by Tim Salmon. 
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 Figure 2.18: Average responses to beliefs. Asymmetric treatments. 
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Figure 2.19: Average decision times over treatments. 

Note: In all treatments, subjects had max. 240 seconds of time for decision in periods 1-10  

and 120 seconds in periods 11-20. 

 

 

 

Figure 2.20: Average number of entries in the what-if-calculator. 
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2.9. Appendix B. Contest behavior under Fehr-Schmidt preferences 

(1999) 

 

We investigate the effect of inequity aversion on behavior in Tullock (1980) 

contests and utilize the standard modeling approach by Fehr and Schmidt (1999). Player 

i’s utility depends on both her own monetary payoff and the equity of payoffs between 

players. I� = �� − J� maxK0; �� − ��L − M� maxK0; �� − ��L 

As noted by Herrmann and Orzen (2008), it is not straightforward how inequity 

aversion works in the studied setting. In general, one can consider two modeling 

approaches: Players suffer from inequity in realized (ex-post) payoffs, or they dislike 

inequity in expected terms. Since both alternatives can be rationalized, we leave open 

which approach is more accurate and consider both. For the sake of simplicity, we 

assume that the inequity parameters (J, M) are symmetric between two contestants and 

common knowledge.  

First, following Herrman and Orzen (2008) we assume that players are inequity 

averse in realized payoffs. Therefore, given our experiment parameters E and V in the 

symmetric treatments BASELINE and C1, contestant ��’s utility is expressed with: 

�NI�O = 20 − �� + ���� + �� P20 − M�20 − �� + ���Q − J ���� + �� �20 − �� + ��� 

Alternatively, if subjects display inequity aversion with respect to expected 

payoffs, ��’s utility is expressed with: 

�NI�O = 20 − �� + ���� + �� 20 − J max R0; �� − ���� + �� 20 + �� − ��S
− M max R0; �� − ���� + �� 20 − �� + ��S 

Taking into account the estimates of the parameters from various experiments 

considered in Fehr and Schmidt (1999) as well as those reported by Blanco et al. (2011), 

we assume in our analysis the following, modest values of the inequity aversion 

parameters: J = 1;  M = 0.25. 

We use the above utility specifications and assumed parameter values to derive 

best replies under the restriction of limited strategy space (integer numbers between 0 

and 20). The results are plotted in Figures 2.3 and 2.6.   
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2.10. Appendix C. Decision screens and experimental instructions 

Figure 2.21: Decision screen in treatment C1 (also part of the written instructions to subjects). 

Translation from German. 

 

Figure 2.22: Feedback screen in treatment C1. Translation from German. 
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Figure 2.23: Contest result screen in treatment C1. Translation from German. 

 

Instructions in treatment C1 (translation from German) 

General information 

Welcome to our experiment! It is important that you carefully read and understand the 

following instructions. If you have a question, please raise your hand. We will then come 

to you and answer it. Communication with other participants before and during the 

experiment is prohibited. If you violate this rule, you will have to leave the experiment 

and will not receive any payment. 

You can earn money in this experiment. You will receive 2.50 EUR for your 

participation. You can earn additional money during the experiment. The amount of 

money you earn depends on your decisions and decisions of other participants in the 

experiment. Your earnings are denoted in tokens. These will be converted in EUR and 

paid out in cash at the end of the experiment. The exchange rate is: 

45 tokens = 1 EUR. 

The experiment consists of several rounds. Tokens you earn in each round are added to 

your tokens account. Your payoff is the sum of the tokens you have earned in all rounds 
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of the experiment. No participant will receive information about your payoff in the 

experiment or your identity. 

Course of the experiment 

In today’s experiment you will interact with another participant. In a minute you will be 

randomly matched with an opponent. In every pair there will be a player A (marked 

blue) and a player B (marked red). The roles are also randomly assigned. The pairings 

as well as the roles remain unchanged for the entire experiment. Information about your 

role will be displayed on the screen before the first round begins. 

The experiment consists of 20 rounds. All rounds proceed in the same way. 

In each round, you and your opponent will compete in a lottery for a prize. 

At the beginning of each round, you receive from us 20 tokens. Then, you can decide 

how many tokens you want to spend on lottery tickets. For one token you can purchase 

one ticket (1 token = 1 ticket). You can purchase as many tickets as you want, but you 

are not allowed to exceed your budget. Tokens that you do not spend on lottery tickets 

are added to your account. 

The prize that you can win in the lottery in each round is 20 tokens. 

Your chance of winning depends only on how many tickets you have bought and how 

many your opponent has bought. The more tickets you have bought, the more likely it 

is that you win. Another way around, the more tickets your opponent has bought, the 

less likely it is that you win. The probabilities with which you win the prize are equal to 

the number of your tickets divided by the number of all tickets bought. This means it is 

computed according to the following rule: 

Your probability of winning =  Number of your ticketsNumber of your tickets +   Number of opponent′s tickets  
 

Your earnings in a single round are as follows: 

Your earnings if you win = 20 – your investment in the tickets + 20 

Your earnings if you lose = 20 – your investment in the tickets  
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If only one player has bought tickets, she/he wins with certainty. If neither of the players 

has bought any tickets, the lottery does not take place and nobody wins the prize. 

 

Each round consists of three steps: 

Step 1 

In the first step, you decide how many tickets you would like to purchase. At the same 

time, your opponent makes the same decision. 

While you make your decision, you can use a what-if-calculator. You can insert a 

hypothetical investment of by your opponent, and the calculator computes the winning 

probabilities and expected payoffs for you and your opponent, subject to your 

investment. 

The expected payoff is computed in the following way: 

 

 

You can use the calculator as often as you want. Please just insert a value in the field the 

opponent’s investment and click on “Compute” (see red field (1) in Figure 1). 

The example in Figure 1 shows the what-if-calculator for a hypothetical investment of 

10. You can see in the table that your probability of winning is 16.67%, and your 

expected payoff equals 21.33 if you invest 2 tokens. If you invest 19 tokens, is your 

winning probability is 65.52% and your expected payoff 14.10.  

In every round you should insert within the given time your final decision in the fields 

on the right-hand side of the screen and confirm with the button “OK” (see red field (2) 

in figure 1). You are asked not only about your investment, but also what investment 

you expect from your opponent. For this you can earn a bonus of maximal 4 tokens. The 

amount of the bonus depends on how good your prediction was. The smaller the mistake 

in your prediction, the higher your bonus. The bonus is computed in the following way. 

Bonus = 4 − 0.4 ∗ Mistake� 

Expected 

payoff 
= 

Payoff if 

you win 
X X Probability that 

you win 
+ Probability that 

you lose 

Payoff if you 

lose 
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The mistake is the difference between your prediction and actual opponent’s 

investment: 

Mistake = |Your prediction − actual opponentbs investment| 
If the mistake is larger than 3, the bonus is 0. This means there is no negative bonus; you 

cannot lose any tokens for your prediction. 

Time for your decision in every round is limited. In the first ten rounds you have 4 

minutes time, in the next 10 rounds 2 minutes. 

Step 2 

In the second step, you get feedback on the opponent’s decision, in other words, how 

many tickets she/he has bought. Probabilities of winning are also computed and 

displayed. All tickets bought are numerated. You get information on which numbers 

correspond to your tickets and which to tickets of your opponent. In order to make it 

clearer, this is also displayed graphically.  

Each ticket is equally likely to be drawn. 

You also receive feedback on how good your prediction about your opponent’s 

investment was and how large your bonus is. 

 

Step 3 

In the last step, the winning ticket is drawn. The computer draws one of bought tickets. 

The number of the winning ticket and the winner are displayed on the screen, as are your 

earnings in the current round. 

 

[Subjects received also a screen shot of the decision stage mask – see Figure 21. The 

only difference is that we marked decision fields with red frames – as described in the 

instructions above.]
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Chapter 3: 

ON THE RELUCTANCE TO PLAY 

BEST RESPONSES IN TULLOCK 

CONTESTS 
 

Joint work with Bettina Rockenbach 

 

 

3.1. Introduction 

Despite a long tradition of experimental investigation of rent-seeking contests 

(Tullock 1980), behavior observed in the lab is still not fully comprehended. As 

summarized by Sheremeta (2013, 2014), several robust findings remain puzzling. Most 

attention has been devoted to overbidding, whereby subjects in experimental contests 

invest on average more than the Nash equilibrium predicts and equilibrium behavior is 

rarely observed in the lab. One could argue that equilibrium behavior is not supported 

by the theory if the opponents play off-equilibrium strategies. In a recent study, 

Rockenbach and Waligora (see Chapter 2) conducted a systematic analysis of beliefs 

and behavior in experimental Tullock contests to answer the question whether best 

responses to off-equilibrium-behavior are more frequently played. They show that the 

average response function observed in the lab is almost linear, which is very different 

from the theoretic prediction. The observed pattern is induced by frequent belief-

matching behavior (i.e., subjects investing as much as they expect from the opponent) 

rather than best-responding. This suggests that best responses are rare in general. 

Furthermore, they do not become more frequent over time in repeated contests. 

In the current study, we strive to understand why best responses in experimental 

contests are rare and investigate the effect of the matching protocol on investment 
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behavior in repeated Tullock contests. Partner matching is a common design feature in 

experiments on contest behavior. However, both theoretical analyses and experimental 

evidence from previous studies prompt us to expect that repeated interactions with the 

same competitor make subjects follow other goals than maximizing expected payoffs 

from the current period. Subjects might attempt to deter the opponent from the 

competition (Selten 1978), they might strive for collusion (Andreoni and Croson 2008; 

Huck et al. 2004), or they can influence opponents’ future behavior in other ways, e.g., 

through punishment (Fehr and Gächter 2000) or reputation building (Kreps et al. 1982; 

Bohnet and Huck 2004).  

Hence, different matching protocols may induce different goals and strategies. 

However, in the context of a rent-seeking contest, subjects may face computational 

difficulties that hamper the implementation of the intended behavior. For instance, the 

best reply function in symmetric two-player contests is neither trivial nor intuitive. 

Therefore, subjects might not best-respond simply because they cannot compute best 

responses. In order to control for potential computational limitations, in our study we 

not only manipulate the matching protocol, but also the saliency level of best responses 

across experimental conditions. 

The results we report here are clear. In our experiment, the matching protocol 

has no significant effect on average investments or the response function. Therefore, we 

find no evidence of strategic non-best-responding. This result holds regardless of 

providing hints at what the best response is. On the other hand, we show that making 

best responses extremely salient increases the willingness to play them. The frequency 

of best response behavior rises from 3 to 22 percent. This means that limited 

computational abilities are at least partially responsible for the rarity of best responses 

in experimental contests.  

The remainder of the chapter is organized as follows. In Section 2, we formulate 

our research questions and review related literature. In Section 3, we briefly sketch the 

theoretical framework. Section 4 describes our experimental design and the research 

hypotheses. We present the results in Section 5, before concluding in Section 6. 
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3.2. Research questions and related literature 

Our study contributes to research on rent-seeking behavior and has both political 

and methodological implications. We investigate whether different matching protocols 

in repeated contests induce different strategies and behavioral patterns. In repeated 

interactions between partners – relying on the argument of backward induction – the 

unique equilibrium prediction of a stage game holds if the number of repetitions is finite 

and known to all players. However, experimental results have shown that actual 

behavior often differs. 

The deviation from the equilibrium prediction may have various causes, like 

information asymmetry or uncertainty about the rationality of the competitor (see Kreps 

and Wilson 1982; Milgrom and Roberts 1982; Kreps et al. 1982) or deterrence strategies 

(Selten 1978): Subjects bid very aggressively in the initial round of the contest to deter 

the opponent from the competition in the later rounds. Moreover, experimental evidence 

suggests that the matching protocol is likely to influence the willingness to cooperate 

despite the horizon of the game being finite. Similar patterns have been shown for 

instance in experiments on public goods provision (see Andreoni and Croson 2008 for 

an overview). 

The question about the role of the matching protocol in bidding behavior is 

relevant for both researchers designing experimental contests and contest designers 

outside of economic laboratories. If repeated interactions between contestants lead to 

systematic behavioral distortions, designers of both experimental and outside-the-lab 

contests shall be more careful about who to let compete with whom in repeated contests 

and whether to provide information about the identity of other competitors. In 

experimental contests, both random stranger and partner matching have been very 

common. However, the evidence on the effects is mixed. In a meta-analysis, Sheremeta 

(2013) compares behavior observed across 30 independent studies finding no systematic 

effect of the matching protocol. By contrast, Baik et al. (2016) who recently investigated 

the effect of the matching protocol and group size in experimental Tullock contests 

report significantly more overbidding in two-player contests under stranger protocol 

than among partners. Not only do we contribute to the discussion on the effect of the 

matching protocol on average bidding behavior, but we also extend this question by a 
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new aspect, investigating how the matching protocol alters choices of strategies, 

particularly considering the willingness to play best responses to reported beliefs. 

The implementation of intended strategies induced with different matching 

protocols might be impaired by computational limitations that subjects face during the 

experiment. This is likely the case because the environment of a Tullock contest can be 

cognitively demanding for subjects in the lab. Two previous studies provide clues on the 

relation between the complexity of the contest environment and behavior. In a cleverly 

designed experiment, Masiliunas et al. (2014) show that making contests cognitively 

simpler for subjects increases the explanatory power of the Nash equilibrium. The 

authors thus conclude that “bounded rationality rather than preference heterogeneity is 

the reason for the typically large behavioral variation in experimental Tullock contests” 

(Masiliunas et al. 2014, p. 21). However, Masiliunas et al. manipulate the ease of 

formulating best responses differently than we do. Rather than providing subjects with 

a computational tool, the authors replace the lottery contest with a share contest, in which 

a prize is divided and distributed to players according to their shares in the total 

investment. Such a variation does not change the equilibrium prediction as an expected 

value of the prize is simply replaced with a realized value of the prize. The authors argue 

that the process of identifying best responses is nevertheless facilitated due to the lesser 

uncertainty of outcomes. Masiliunas et al. show that simply replacing the lottery contest 

with a share contest is insufficient to induce a higher frequency of best responses and 

further simplifications are required (see Masiliunas et al. 2014, Result 2).  

Such a conclusion is additionally supported by a study by Chowdhury et al. 

(2014). The authors also manipulate features of contest design, keeping the equilibrium 

prediction unchanged. Similar to Masiuliunas et al., Chowdhury et al. find that if the 

prize sharing rule is the only manipulation, the magnitude of overbidding does not 

change.1 Accordingly, both studies show that one can induce behavior closer to Nash 

equilibrium when manipulating the contest in at least two dimensions, whereby the share 

rule is one of them. Still, this finding does not answer the question of why best responses 

                                                           
1 Fallucchi et al. (2013) also compare behavior in experimental contests under both the share and the 

lottery rule. However, the focus of their analysis is different and the authors do not report whether the 

difference in average investments between the corresponding treatments is statistically significant. 

Moreover, Shupp et al. (2013) compare behavior across different prize allocation rules. However, the 

authors observe underbidding (i.e., investments significantly smaller than equilibrium prediction), which 

is in stark contrast to rich evidence on overbidding in experimental contests. 
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are so rare in the original form of the contest. The result of more frequent best responses 

in other contests does not explain the rarity of best responses in conventional Tullock 

contests.2 Rather than manipulating the contest rules, we investigate behavior in the 

original form of the Tullock contest and provide subjects with direct information 

concerning what the best response is. This is what makes our study complementary to 

those reported above. 

 

3.3. The theoretical framework 

We consider rent-seeking contests (in a framework due to Tullock 1980) between 

two ex-ante symmetric risk-neutral expected-payoff maximizing players (called A and 

B). Both contestants are budget-constrained with the initial budget of E and compete for 

a single and non-divisible monetary prize V. In the course of the contest, both players 

simultaneously spend monetary resources, which determine their winning probabilities. 

While investments made by both contestants are sunk, the outcome of the competition 

is stochastic. Assume that player A invests �c and player B invests �d. Subsequently, 

the winning probabilities are as follows: 

�c = �c�c + �d  ;     �d = 1 − �c (3.1) 

Therefore, the expected payoff of player � ∈ -f, �8 is: �N��O = � − �� + ��� (3.2) 

One can define this situation as a static game of complete information. It has a 

unique pure strategy Nash equilibrium, in which both players invest V/4 (Szidarovsky 

and Okuguchi 1997). Moreover, the best response function is at its maximum in 

equilibrium and all investments higher than the equilibrium level are strictly dominated.  

 

3.4. The experiment 

3.4.1. Experimental implementation 

The Tullock contest between two subjects is framed in the experiment as a lottery 

for the prize of V=100 tokens. The stage game proceeds always in three steps. First, 

                                                           
2 See Selten (1990, p. 651) for a similar argument in the discussion on the chain-store-paradox, as well as 

Chowdhury et al.’s (2014, p. 233) conclusion from their experiment. 
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subjects are endowed with E=100 tokens, whereby they can decide how many they want 

to spend on lottery tickets. For one token they purchase one ticket. The strategy space is 

restricted to integer numbers. At the same time, subjects report what investment they 

expect from the competitor. Belief elicitation is incentivized, whereby subjects are paid 

according to a quadratic loss function between 20 and 0.3,4 In the second step, subjects 

receive feedback about their opponent’s investment and resulting winning probabilities. 

In step three, the computer randomly draws one of the tickets. The owner of the drawn 

ticket receives the prize and subjects are informed about their payoffs from the game. 

The stage game is repeated for 30 periods. All periods have the same timing and are 

payoff-relevant. The experimental tokens are converted into Euros at the exchange rate 

270 tokens=1 EUR. 

 

3.4.2. Experimental treatments 

We employ a 2x2 factorial design. The treatment variables are the matching 

protocol and the saliency of best responses. In one dimension, we implement either a 

partner matching or a random stranger matching in sub-groups of six subjects. In another 

dimension, we vary the presence of the computational tool in the decision stage. In the 

CALCULATOR treatments, the computer displays several different investment proposals, 

given the subject’s reported belief: 1) investment maximizing the expected payoff; 2) 

investment leading to the same expected payoff as the opponent; and 3) investment 

maximizing the winning probability (see Figure 3.1). Each proposal is placed in a 

separate box, including information on the winning probability as well as payoffs in the 

case of winning and losing. Subjects are also free not to choose any of the displayed 

proposals but rather insert any investment between zero and 100 (see most right box in 

Figure 3.1). In BASE treatments, subjects follow the same two-step decision process 

(state beliefs and then own investment), albeit without being exposed to any investment 

proposals. 

                                                           

3 The applied function is: Bonus for belief = max -0; 20 − 0.5 ∙ (Belief − Actual investment)�8. 
4
 Procedure of incentivizing beliefs always raises the question about possible hedging strategies (see e.g., 

Blanco et al. 2010). Whereas we cannot completely rule out such behavior, we do not recognize any 

behavioral patterns indicating hedging. Moreover, monetary incentives for belief elicitation were 

relatively low in comparison to stakes in the main task. In our experiment, subjects earned on average 

122.6 tokens per period, out of which only 6.3 tokens were bonus for belief. Therefore, the bonus 

amounted to only 5.2% of the total profit, which demonstrates that hedging strategies could not be very 

successful.  
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Figure 3.1: Decision screen in PARTNER_CALCULATOR treatment. Translation from German. 

 

Choosing the first proposal – investments maximizing the expected payoff – 

corresponds to playing a best response to the state belief. Nonetheless, other proposals 

may also be appealing, particularly in repeated play with partners. Rockenbach and 

Waligora (see Chapter 2) show that belief-matching (proposal 2) is a common strategy 

under partner matching. It may be motivated by the unwillingness to give up against an 

aggressive opponent or by inequity aversion. Proposal 3 can be interpreted as an 

implementation of a deterrence or punishment strategy: very aggressive behavior to 

deter the opponent from the contest or punish the opponent for previous play. Moreover, 

such a richer set of alternatives also mitigates the experimenter demand effect (Zizzo 

2010), as subjects are not exposed to a single proposal. Similar computational tools that 

provide information on best responses have been frequently used in experimental studies 

on behavior in Cournot oligopolies (Huck et al. 1999; Raab and Schipper 2009).5  

Two treatment variables interacting with each other lead to the following four 

treatments, as summarized in Table 3.1. 

 

 

                                                           
5 See Table 1 in Requate and Waichman (2011) for an overview. 
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Table 3.1: Experimental treatments. 

 

 

Computational  

tool 

 Matching protocol 

 Partner Stranger 

No 
PARTNER_BASE 

(58/29) 

STRANGER_BASE 

(60/10) 

Yes 
PARTNER_CALCULATOR 

(58/29) 

STRANGER_CALCULATOR 

(60/10) 

Note: In parentheses: (number of subjects / numbers of independent observations). 

 

3.4.3. Hypotheses 

We design the experiment to test several hypotheses concerning the effects of 

the matching protocol and the presence of a computational tool. The null hypotheses 

describe the behavior of homo oeconomicus in games with common knowledge of 

rationality. Based upon previously described considerations, we also formulate 

behavioral alternative hypotheses. 

To investigate the joint effect of the matching protocol, we compare behavior in 

the two BASE treatments. The game-theoretic prediction does not change under the 

assumption of complete information and common rationality. However, if we relax these 

assumptions repeated interactions with the same opponent might induce intertemporal 

dynamics and strategies different from best-responding, i.e., belief-matching or 

aggressive deterrence strategies. The partners can also tacitly collude. Although two 

players cannot share the prize among themselves in a single period, they can do so in 

repeated interactions by agreeing that alternately one of them does not participate in the 

lottery in every second period. Alternatively, players may agree to make the lowest 

positive investment (i.e., 1 token) in every period and thus they both always have a 50 

percent winning chance. 

 

Hypothesis 3.1 (effect of the matching protocol): PARTNER_ BASE vs STRANGER_BASE  

H0: Behavior in PARTNER_BASE and STRANGER_BASE treatments is not systematically 

different.  

HA: In STRANGER_BASE, best responses are more frequent than in PARTNER_BASE 

treatment. 
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The inference about the effect of the matching protocol from the comparison 

between the BASE treatments might be confounded with the effect of limited 

computational abilities. Subjects might strive for best-responding under the STRANGER 

condition, although they may be hampered by difficulties in computing it. Therefore, we 

also test the matching protocol effect in CALCULATOR treatments, in which we provide 

direct hints at best responses. Computational abilities no longer hinder best-responding 

and we can disentangle the two effects. Therefore, hypothesis 3.2 is very similar to 

hypothesis 3.1, although it tests the effect of the matching protocol under a high saliency 

of best responses.  

 

Hypothesis 3.2 (effect of the matching protocol): PARTNER_CALCULATOR vs 

STRANGER_CALCULATOR 

H0: Behavior in PARTNER_CALCULATOR and STRANGER_CALCULATOR treatments is not 

systematically different.  

HA: In STRANGER_CALCULATOR, best responses are more frequent than in 

PARTNER_CALCULATOR treatment. 

A comparison of the treatment effects that we investigate in hypotheses 3.1 and 

3.2 provides additional, complementing evidence on the possible interplay between the 

matching protocol and limited computational abilities. Applying the difference-in-

differences-approach, we test whether the effects of the matching protocol are different 

under low and high saliency of best responses.  

 

Hypothesis 3.3 (Difference-in-differences) 

H0: The matching protocol effect is the same under low (BASE) and high (CALCULATOR) 

saliency of best responses. 

HA: The effect of the matching protocol is stronger in the CALCULATOR condition than 

in the BASE condition. 

Finally, under the stranger matching protocol subjects do not have intertemporal 

incentives to deviate from best responses in the current period. Deterrence strategies, 

collusion, punitive behavior, etc. are not possible. Therefore, a comparison of STRANGER 

treatments allows us to measure the effect of limited computational abilities. Homo 
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oeconomicus does not face any difficulties with identifying best responses. However, it 

is likely that subjects in the lab often cannot compute the optimal response by 

themselves. Hence, we expect that the computational tool will increase the frequency of 

best responses.  
 

Hypothesis 3.4 (the effect of computational abilities): STRANGER_BASE vs 

STRANGER_CALCULATOR 

H0: In STRANGER_CALCULATOR, best responses are as frequent as in STRANGER_BASE. 

HA: In STRANGER_CALCULATOR, best responses are more frequent than in 

STRANGER_BASE. 

 

3.4.4. Procedure 

We conducted the experiment in April and May 2016 at the Cologne Laboratory for 

Economic Research (CLER), Germany. 236 subjects (undergraduate and graduate 

students with various majors; 58% female) were recruited with ORSEE (Greiner 2015) 

and always participated in only one session. The experiment was computerized using z-

Tree (Fischbacher 2007). Experimental sessions lasted between 75 and 90 minutes and 

average earnings amounted to 20.4 EUR, including a 4 EUR show-up fee.6 

 

3.5. Results 

3.5.1. Overbidding and overspreading  

In PARTNER_BASE treatment, as our control condition, we replicate results from 

previous experiments on Tullock contests (e.g., BASELINE treatment in Chapter 2). In 

PARTNER_BASE, subjects invest on average 34.7 tokens, which is more than the Nash 

equilibrium of 25. The difference is statistically significant (p=0.023).7,8 The average 

magnitude of overbidding (38.9%) is comparable to previous studies. Similarly, we find 

overspreading, whereby subjects use the entire strategy space, although prominent 

                                                           
6 After the main part of the experiment, subjects also participated in a short incentivized task eliciting their 

risk-preferences.  
7 Throughout the paper, we report p-values from non-parametric (two-sided) Fisher-Pitman permutation 

tests. Hereafter: FP test. 
8 In treatments with the partner matching protocol, a pair of players over 30 periods constitutes one 

independent observations, while in treatments with stranger matching it is a group of six players over 30 

periods.  



 

53 

3. On the Reluctance to Play Best Responses in Tullock Contests 

numbers (multiples of 5) are more frequently chosen than others (see Figure 3.6 in 

Appendix A). We do not observe any significant time trend, nor learning towards Nash 

equilibrium. Furthermore, we find no noteworthy differences with respect to myopia and 

the precision of reported beliefs. The empirical response function closely resembles that 

one reported in Chapter 2 (see Figure 3.8, panel A in Appendix A). We conclude: 

 

Result 3.1: PARTNER_BASE treatment replicates results reported in previous studies.  

 

3.5.2. The effect of the matching protocol 

In order to test hypothesis 3.1, we compare behavior in the BASE treatments, in 

which subjects are not equipped with the computational tool. Figure 3.2 reveals that the 

bidding behavior is similar. Average investments amount to 34.7 and 38.0 tokens in 

PARTNER_BASE and STRANGER_BASE treatment, respectively. The difference is 

statistically insignificant (p=0.652, FP test). A parametric regression analysis comes to 

the same conclusion (see regression [I] in Table 3.7, Appendix A). This result is 

consistent with Sheremeta’s (2013) meta-analysis. We also compare behavioral 

responses to reported beliefs. Figure 3.8 (panels A and B) in Appendix A reveals that 

the patterns are similar.  

Table 3.2 summarizes strategies applied in BASE treatments. We observe that the 

structures are quite similar in several dimensions. In both treatments, only about 2.5 

percent of investments correspond to best responses. Furthermore, the fractions of 

belief-matching and striving for maximal winning probabilities are not strongly 

different. On the other hand, we observe that collusion between contestants is more 

likely to emerge under partner matching, as we find more of such behavior (15.1% vs 

0.3%).9 When tested non-parametrically, the difference is insignificant (p=0.121, FP 

test), given that all collusive behavior is concentrated in a small number of player-pairs 

(5 out of 29). However, the parametric regression analysis detects, a significant effect of 

the matching protocol on the likelihood of collusion (see regression [III] in Table 3.4). 

We do not find any evidence of deterrence strategies, whereby high investments are not 

more frequent between partners than strangers. Accordingly, we can conclude: 

 

                                                           
9 As described in Section 4.3, we classify the following cases as collusion: Investment=1 & Belief=0; 

Investment=0 & Belief=1; Investment=Belief=1. 
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Result 3.2: We fail to reject the null hypothesis 3.1. In STRANGER_BASE, best responses 

are not more frequent than in PARTNER_BASE. 

Figure 3.2: Average investments over time. BASE treatments. 

We conduct a similar analysis on the effect of the matching protocol when 

providing subjects with direct hints at best responses and compare behavior in the 

CALCULATOR treatments. Average investments in PARTNER_CALCULATOR and 

STRANGER_CALCULATOR are 28.4 and 33.6, respectively. The difference is not 

significant (p=0.180, FP test). Figure 3.4 and Table 3.3 provide a more detailed picture 

of the treatment effect. Table 3 shows that the fraction of best responses is very similar 

in both treatments and amounts to about 20 percent (p=0.995, FP test). We find somehow 

more belief-matching in the PARTNER condition than in the STRANGER condition, 

although the difference is statistically insignificant (p=0.125, FP test). Furthermore, the 

difference in the frequency of the collusive behavior is not significant (p=0.533, FP test). 

In general, the overview of the treatments effects in the CALCULATOR treatments 

resembles the previous analysis for the BASE condition. 

 

Result 3.3: We fail to reject the null hypothesis 3.2. In STRANGER_CALCULATOR, best 

responses are not more frequent than in PARTNER_CALCULATOR.
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Figure 3.3: Beliefs and investments in BASE treatments. 

 

Table 3.2: Structure of behavioral responses to beliefs in BASE treatments. 

A. PARTNER: 

Decision 
Fraction  B. STRANGER: 

Decision 
Fraction 

Best response * 2.8%  Best response * 2.4% 

Matching ** 12.2%  Matching ** 10.7% 

Collusion 15.1%  Collusion 0.3% 

Max winning 

probability 

0.7%  Max winning 

probability 

0.3% 

Other decision 69.2%  Other decision 86.2% 

* Except for Belief=0 & Investment=1. 
 

* Except for Belief=0 & Investment=1. 

** Out of Nash equilibrium and no collusion.  ** Out of Nash equilibrium and no collusion. 
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Figure 3.4: Beliefs and investments in CALCULATOR treatments. 

 

Table 3.3: Structure of behavioral responses to beliefs in CALCULATOR treatments.  

A. PARTNER: 

Decision 
Fraction  B. STRANGER: 

Decision 
Fraction 

Best response * 20.9%  Best response * 22.1% 

Matching ** 15.5%  Matching ** 9.6% 

Collusion 7.1%  Collusion 0.2% 

Max winning 

probability 

0.7%  Max winning 

probability 

1.7% 

Other decision 55.8%  Other decision 66.4% 

* Except for Belief=0 & Investment=1. 
 

* Except for Belief=0 & Investment=1. 

** Out of Nash equilibrium and no collusion.  ** Out of Nash equilibrium and no collusion. 
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3.5.3. Difference-in-differences 

The results 3.2 and 3.3 in the previous section suggest that the matching protocol 

effects are qualitatively similar across conditions of a low or high saliency of best 

responses. We complement this conclusion with a quantitative analysis. The parametric 

probit regressions of the likelihood to follow different strategies confirm that the effect 

of the matching protocol on all of the considered strategies (best-responding, belief-

matching, collusion) is comparable under the BASE and CALCULATOR conditions. In all 

three regressions presented in Table 3.4, the interaction dummy is far from being 

significant. Similarly, Table 3.7 in Appendix A (regression [III]) also reveals that when 

measured with the average investments, there is no significant difference-in-differences. 

This means that the effects of the matching protocol are not only quantitatively similar 

across different informational conditions (BASE vs CALCULATOR), but also the 

magnitudes of these effects are similar. This speaks against any interplay between the 

effects of matching protocol and the saliency of best responses. 

 

Table 3.4: Treatment effects on the frequency of following different strategies. Panel probit 

regression. 

Dependent variable: 

1[Investment 

= best response] 

[I] 

1[Investment 

= belief] 

[II] 

1[Investment 

= collusive behavior] 

[III] 

1[Stranger protocol] -0.274 -0.101 -4.378** 

 (0.330) (0.397) (2.125) 

1[Calculator] 1.423*** 0.192 -0.771 

 (0.211) (0.173) (1.760) 

1[Stranger] x 1[Calculator] 0.221 -0.283 0.023 

 (0.383) (0.221) (2.861) 

Constant -2.393*** -1.381*** -4.256*** 

 (0.166) (0.322) (1.286) 

Number of observations 7080 7080 7080 

Number of clusters 78 78 78 

Wald Chi-squared 105.17*** 8.75** 79.09*** 

Notes: Panel probit regression with random subject effects. In parentheses, robust standard errors 

clustered at independent observations. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Result 3.4: We fail to reject the null hypothesis 3.3. The matching protocol induces 

similar effects under a low (BASE) and high (CALCULATOR) saliency of best responses. 

 

3.5.4. The effect of limited computational abilities 

We compare behavior in two STRANGER treatments to test whether providing 

direct hints at best responses helps to follow this strategy. Panels B of Tables 3.2 and 

3.3 demonstrate that the fraction of best responses indeed increases from 2.4% to 22.1%. 

The difference is highly significant (p<0.001, FP test). Although the effect is large – best 

responses become nine times more likely – the magnitude is lower than one could 

expect. In STRANGER_CALCULATOR, despite being provided with information 

concerning the best response, in more than three-quarters of cases subjects decided not 

to best-respond. Therefore, computational limitations are one important obstacles in 

playing best responses, albeit probably not the only one. 

 

Result 3.5: We reject the null hypothesis 3.4. In STRANGER_CALCULATOR, best responses 

are significantly more frequent than in STRANGER_BASE, whereby their fraction rises 

from 2.4% to 22.1%. 

Additionally, the probit regression [I] in Table 3.4 confirms that the 

computational tool significantly increases best-responding. The effect is not only present 

in the STRANGER condition, but also among partners. The scales of the effect under both 

conditions are strikingly similar (see panels A of Tables 3.2 and 3.3). 

We also investigate whether a lower-than-expected fraction of best responses in 

CALCULATOR treatments is due to the fact that subjects need time to recognize which 

strategy to follow. Figure 3.9 in Appendix A depicts the structure of decisions in 

treatments with the computational tool over time. It becomes clear that the share of best 

responses remains at about 20% throughout the course of the experiment. We cannot 

identify any time trends.  

Finally, we analyze how the increased fractions of best responses impact on the 

response function to beliefs in CALCULATOR treatments. Panels C and D of Figure 3.8 in 

Appendix A shows that the empirical response function remains linear, albeit with a 

slightly lower slope than 45 degrees. The effect of more common best responses is too 

weak to induce a response function resembling the theoretic prediction.   
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Table 3.5: Adjustment models: regression analysis of period-by-period adjustments. 

A. BASE treatments 

Dependent variable  

Inv(t) - Inv(t-1) 

PARTNER 

_BASE 

[I] 

PARTNER 

_BASE 

[II] 

STRANGER 

_BASE 

[I] 

STRANGER 

_BASE 

[II] 

     

Best response(t) - Inv(t-1) 0.424*** 0.181*** 0.145* 0.149** 

 (0.109) (0.049) (0.082) (0.060) 

Matching(t) - Inv(t-1) 0.434*** 0.389*** 0.326*** 0.327*** 

 (0.058) (0.083) (0.057) (0.062) 

Max_win_prob(t) - Inv(t-1) -0.263***  0.005  

 (0.084)  (0.050)  
Constant 23.874*** 2.874*** 1.830 2.214** 

 (7.074) (1.004) (3.762) (1.029) 

Number of observations 1682 1682 1740 1740 

Number of clusters 29 29 10 10 

Wald Chi-squared 128.13*** 46.84*** 117.43*** 98.29*** 

     

B. CALCULATOR 

treatments 

Dependent variable  

Inv(t) - Inv(t-1) 

PARTNER_ 

CALCULATOR 

[I] 

PARTNER_ 

CALCULATOR 

[II] 

STRANGER 

_CALCULATOR 

[I] 

STRANGER 

_CALCULATOR 

[II] 

     

Best response(t) - Inv(t-1) 0.332*** 0.323*** -0.051 0.222*** 

 (0.047) (0.046) (0.207) (0.037) 

Matching(t) - Inv(t-1) 0.403*** 0.402*** 0.243*** 0.287*** 

 (0.084) (0.080) (0.068) (0.074) 

Max_win_prob(t) - Inv(t-1) -0.010  0.321  

 (0.034)  (0.240)  
Constant 2.480 1.691** -21.871 2.302*** 

 (2.363) (0.736) (17.929) (0.580) 

Number of observations 1682 1682 1740 1740 

Number of clusters 29 29 10 10 

Wald Chi-squared 275.19*** 171.93*** 45.81*** 47.56*** 

Notes: Panel regressions with random subject effects. In parentheses, robust standard errors clustered at 

independent observations. Due to a relatively small number of clusters in STRANGER treatments, as a 

robustness check for those treatments we also estimate regressions with cluster-bootstrapped standard 

errors (see Cameron et al. 2008). The inference does not change qualitatively. In particular, 

insignificant regressors are also insignificant with the bootstrapping method. Significance levels:  

*** p<0.01; ** p<0.05; * p<0.1.   
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3.5.5. What if not best responses? 

We find that in CALCULATOR treatments best responses are not played very often. 

Therefore, the question arises: what do subjects play instead? As is typical of 

experiments on rent-seeking behavior, we deal with a large behavioral variation. 

Nevertheless, we attempt to organize the data to identify average tendencies. We use the 

adjustment models that follow the approach by Huck et al. (1999) as well as Fallucchi 

et al. (2013). We investigate which of the three strategies proposed in CALCULATOR 

treatment most strongly drives period-by-period adjustments. The results are reported in 

Table 3.5. In regression specifications [I] we use all three displayed strategies. It 

becomes apparent that maximizing the expected winning probability (i.e., investing the 

entire endowment) is either not significant or has a negative effect, which is difficult to 

interpret. Hence, we also estimate alternative specifications [II], using only two other 

behavioral rules as predictors (best responses and matching beliefs) and interpret these 

results. In all treatments, both behavioral rules have a significant impact on the observed 

investments. Moreover, in all treatments the absolute magnitude of matching beliefs is 

larger than the absolute magnitude of playing best response. However, the parametric 

comparison of regression parameters reveals that the differences are statistically 

insignificant.27 Therefore, we can conclude that both playing best responses and 

matching beliefs drive contest behavior in our experiment significantly and to a similar 

extend. On average subjects tend to choose investments in between best-reply and 

matching beliefs. 

 

3.6. Discussion and conclusion 

We conduct a new series of experiments on rent-seeking in symmetric two-player 

contests to test the effect of the matching protocol on investment behavior in repeated 

interactions. Much previous work in behavioral and experimental economics leads us to 

expect a behavioral effect of the matching protocol. Surprisingly, our results provide 

clear evidence that the matching protocol has no effect on average bidding behavior, nor 

the willingness to play best responses. Accordingly, we can reject strategic motives 

induced by repeated interactions with the same opponent as an explanation for subjects 

                                                           
27 Only in PARTNER_BASE treatment is the difference significant at 10 percent. 
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not best-responding in experimental contests. Manipulation of the matching protocol 

triggers only one noteworthy behavioral difference, whereby we observe somehow more 

collusive behavior among partners rather than strangers. However, the scale of collusion 

remains relatively small and it does not induce differences detectable at the level of 

average investments or the empirical response function.  

Our results confirm the conclusion following from Sheremeta’s (2013) meta-

analysis and complement mixed previous evidence on this question. The study provides 

guidelines for both researchers investigating contest behavior in the lab as well as contest 

designers. On the one hand, we show that the effect of the matching protocol in rent-

seeking experiments is not too large and often negligible. On the other hand, we 

demonstrate that the danger of collusive behavior between contestants facing each other 

repeatedly is only moderate. We observe little collusion between two players, which 

leads us to expect that such behavior would be even more unlikely if we increased the 

number of contestants (Huck et al. 2004). Moreover, the result of no strategic motives 

behind non-best-responding is robust against our experimental variation of a low or high 

saliency of best responses. 

We report evidence that limited computational abilities prevent subjects from 

best-responding. We find that making best responses extremely salient increases 

subjects’ willingness to play them. However, the effect is smaller than one could expect 

(the frequency of best responses increases to 20 percent). This result holds to the almost 

exact extent and magnitude under both tested matching protocols. Moreover, our 

experimental design in which we provide subjects with three possible investments and 

not only with a hint at best responses allows us to argue that the effect is not driven by 

the experimenter demand effect. When exposed to three proposals, we would expect 

subjects to feel obliged to follow them to a similar extent. However, we find that the 

presence of the tool does not raise the likelihood of matching beliefs or maximizing the 

winning probability. This suggests that the increased willingness to follow best 

responses in CALCULATOR treatments is not due to the experimenter demand effect; 

instead, bounded rationality and severe difficulties in identifying best responses seem to 

be the most likely reasons. In this sense, our results complement conclusions from 

Masiliunas et al.’s (2014) work.  
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3.7. Appendix A. Additional tables and figures 

 

 

Table 3.6: Summary statistics of investment behavior across treatments. 

Treatment 
Average 

investment 

Standard 

deviation 

H0: Investment  

= 

Nash equilibrium 

PARTNER_BASE 34.724 28.885 p=0.023 

STRANGER_BASE 38.014 24.523 p=0.008 

PARTNER_CALCULATOR 28.421 18.347 p=0.127 

STRANGER_CALCULATOR 33.613 18.467 p=0.002 

Note: In the last column, we test the null hypothesis of the investments being 

 at the Nash equilibrium level. We report p-values from a two-sided Fisher-Pitman  

permutation test conducted at the level of independent observations. 

 

Table 3.7: Treatment effects on bidding behavior. Panel regression analysis.  

Dependent variable: 

Investment 

BASE 

treatments 

[I] 

CALCULATOR 

treatments 

[II] 

all  

treatments 

[III] 

1[Stranger protocol] 3.291 5.192* 3.291 

 (6.032) (2.836) (5.993) 

1[Calculator]   -6.302 

   (4.532) 

1[Stranger protocol  

   x 1[Calculator]   
1.901 

   
(6.623) 

Constant 34.724*** 28.421*** 34.724*** 

 (4.018) (2.159) (3.992) 

Number of observations 3540 3540 7080 

Number of clusters 39 39 78 

Wald Chi-squared 0.30 3.35* 5.79 

Notes: Panel regression with random subject effects. In parentheses, robust standard  

errors clustered at independent observations. Significance levels: *** p<0.01; ** p<0.05; * p<0.1. 
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Figure 3.5: Average investments over time, plotted by treatment. 

 

 

Figure 3.6: Distribution of investments across treatments. 
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Figure 3.7: Myopic beliefs across treatments. 
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Figure 3.8: Average responses to beliefs across treatments. 
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Figure 3.9: Structure of decisions in CALCULATOR treatments over time. 
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3.8. Appendix B. Decision screens and experimental instructions: 

PARTNER_CALCULATOR treatment 

Note: See Figure 3.1 in the main text for the decision screen. 

 

 

Figure 3.10: Feedback screen in PARTNER_CALCULATOR treatment. Translation from German. 

 

 

Figure 3.11: Contest result screen in PARTNER_CALCULATOR treatment. Translation from German.
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Instructions in PARTNER_CALCULATOR treatment (translation from 

German) 

General information 

Welcome to our experiment! It is important that you carefully read and understand the 

following instructions. If you have a question, please raise your hand. We will then come 

to you and answer it. Communication with other participants before and during the 

experiment is prohibited. If you violate this rule, you will have to leave the experiment 

and will not receive any payment. 

You can earn money in this experiment. You will receive 4 EUR for your participation. 

You can earn additional money during the experiment. The amount of money that you 

earn depends on your decisions and those of other participants in the experiment. Your 

earnings are denoted in tokens. These will be converted in EUR and paid out in cash at 

the end of the experiment. The exchange rate is: 

270 tokens = 1 EUR. 

The experiment comprises several rounds. Tokens that you earn in each round are added 

to your tokens account. Your payoff is the sum of the tokens that you have earned in all 

rounds of the experiment. No participant will receive information about your payoff in 

the experiment or your identity. 

Course of the experiment 

In today’s experiment you will interact with another participant. You will shortly be 

randomly matched with an opponent. In every pair there will be a player A (marked 

blue) and a player B (marked red). The roles are also randomly assigned. The pairings 

as well as the roles remain unchanged for the entire experiment. Information about your 

role will be displayed on the screen before the first round begins. 

The experiment comprises 30 rounds. All rounds proceed in the same way. 

In each round, you and your opponent will compete in a lottery for a prize. 

At the beginning of each round, you receive from us 100 tokens. Then, you can decide 

how many tokens you want to spend on lottery tickets. For one token, you can purchase 

one ticket (1 token = 1 ticket). You can purchase as many tickets as you want, but you 
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are not allowed to exceed your budget. Tokens that you do not spend on lottery tickets 

are added to your account. 

The prize that you can win in the lottery in each round is 100 tokens. 

Your chance of winning only depends on how many tickets you have bought and how 

many your opponent has bought. The more tickets you have bought, the more likely it 

is that you win. The more tickets your opponent has bought, the less likely it is that you 

win. The probabilities with which you win the prize are equal to the number of your 

tickets divided by the number of all tickets bought. This means that it is computed 

according to the following rule: 

Your probability of winning =  Number of your ticketsNumber of your tickets +   Number of opponent′s tickets  
 

Your earnings in a single round are as follows: 

Your earnings if you win = 100 – your investment in the tickets + 100 

Your earnings if you lose = 100 – your investment in the tickets  

If only one player has bought tickets, she/he wins with certainty. If neither of the players 

has bought any tickets, the lottery does not take place and nobody wins the prize. 

Each round comprises three steps: 

Step 1 (Decision) 

In the first step, you decide how many tickets you would like to purchase. At the same 

time, your opponent makes the same decision. 

Figure 1 shows the computer screen in step 1. The decision process takes place in two 

sub-steps.  

Sub-step 1 a (Your prediction about the opponent’s investment) 

First, you are asked what investment you expect from your opponent (see field (a) in 

Figure 1). Please insert your prediction and click “OK”. 

For your prediction, you can earn a bonus of maximal 20 tokens. The amount of the 

bonus depends on how good your prediction was. The smaller the mistake in your 

prediction, the higher your bonus.  
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The mistake is the difference between your prediction and actual opponent’s 

investment: 

Mistake = |Your prediction − actual opponentbs investment| 
The following table shows how large the bonus is: 

Mistake Bonus 

0 20 

1 19,5 

2 18 

3 15,5 

4 12 

5 7,5 

6 2 

larger than 6 0 
 

There is no negative bonus, whereby you cannot lose any tokens for your prediction. 

Sub-step 1b (Your investment) 

After you confirmed your prediction, field (b) appears on the screen (see Figure 1), 

where you are expected to insert your decision on your investment. The example in 

Figure 1 shows the screen if a player predicted that his/her competitor would invest 50 

tokens. 

Based upon your prediction is sub-step 1a, the computer calculates several proposals of 

how much you could invest. 

In every box 1-3 one proposal appears. The winning probability and your payoff if you 

win or lose after having followed the proposals are also displayed.  

Box 1 shows how much you need to invest in order to maximize your expected payoff, 

given your prediction about the opponent’s investment. 

The expected payoff is computed in the following way: 

 

 

Box 2 shows how much you need to invest to obtain the same expected payoff as your 

opponent (given your prediction about the opponent’s investment). 

Box 3 shows how much you need to invest to maximize your winning probability. 

Expected 

payoff 
= 

Payoff if 

you win 
X X Probability that 

you win 
+ Probability that 

you lose 

Payoff if you 

lose 
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In order to follow one of the proposals, simply click the red button at the bottom of the 

respective box. 

You are not obligated to follow any of the proposals; you may also invest any other 

number of tokens. You can do this using box 4. Please insert there your investment and 

confirm with the OK button. The corresponding winning probability and payoffs will be 

computed and appear on the screen. You can repeat this as many times as you want. You 

need to confirm your final decision with the “Confirm another decision” button. 

The time for your decision in every round is limited. In the first ten rounds, you have 90 

seconds time, in the next 20 rounds, 60 seconds. If you do not insert any prediction and 

decision within the given time, your investment in the round will be zero and you will 

receive no bonus.  

 

Step 2 (Feedback) 

In the second step, you receive feedback on the opponent’s decision; in other words, 

how many tickets she/he has bought. The probabilities of winning are also computed 

and displayed. All tickets bought are numerated. You receive information on which 

numbers correspond to your tickets and which to those of your opponent. In order to 

make it clearer, this is also displayed graphically.  

Each ticket is equally likely to be drawn. 

You also receive feedback concerning how good your prediction about your opponent’s 

investment was and how large your bonus is. 

 

Step 3 (Lottery drawing) 

In the last step, the winning ticket is drawn. The computer draws one of bought tickets. 

The number of the winning ticket and the winner are displayed on the screen, as are your 

earnings in the current round. 

[Subjects also received a screen shot of the decision stage mask, see Figure 3.1. The 

only difference is that we marked decision fields with red frames, as described in the 

instructions above.] 
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Chapter 4: 

PUSHING THE BAD AWAY: 

REVERSE TULLOCK CONTESTS 

 

Joint work with Bettina Rockenbach 

 

 

 

 

4.1. Introduction 

Situations of contest are ubiquitous. Under a number of circumstances, people 

compete against each other to obtain some profits or rents. As a result, a stream of 

literature on rent-seeking behavior has arisen (see e.g., Congleton et al. 2008a). Since 

field data on rent-seeking is hardly available, most economic research relies on 

experimental data (see e.g., Dechenaux et al. 2015). However, people not only compete 

against each other to achieve gains. We can think of numerous examples in which people 

exert efforts to avoid something bad coming or to avoid a loss. For instance, imagine 

that in the face of decreasing numbers of children in society at least one of the primary 

schools in a city needs to be closed. To avoid long travel times, different neighborhoods 

will start lobbying against closing their school. Similarly, imagine that two potential 

locations for a waste disposal have been identified and the government needs to decide 

which one to choose. Again, it is very likely that local communities will be ready and 

determined to spend resources to avoid their community being chosen. Even though 

rent-seeking contests for avoiding negative rents are common in practice, such settings 

have not been studied in the literature to date. We strive to close this gap by investigating 

whether contests to avoid the bad induce different behavior than ‘conventional’ contests 
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for achieving gains. In particular, we address the question whether contests for avoiding 

losses are fiercer than those for achieving gains.  

In our theoretical analysis, we introduce negative prizes into the framework of 

Tullock (1980) contests (henceforth called ‘reverse Tullock contests’) and show that 

such a variation does not alter the game-theoretic prediction under standard preferences. 

Nonetheless, prospect theory (Kahneman and Tversky 1979) predicts that behavior in 

reverse contests should be more aggressive because losses induce larger changes in 

utilities than corresponding gains. This suggests that contests for pushing the bad away 

lead to an even larger dissipation of resources than settings traditionally considered in 

the empirical and experimental research.  

Our data show that reverse Tullock contests generate on average 15 percent 

higher investments than conventional contests, although this effect is statistically 

insignificant. Thus, it seems that the insights on behavior in Tullock contests for 

achieving gains may serve as appropriate predictors for contests to avoid losses. 

 

4.2. The theoretical framework of reverse Tullock contests 

We consider Tullock (1980) contests between two symmetric players (called A 

and B). In the conventional contests, players with the initial wealth E compete for a 

single non-dividable prize V. Both players spend resources that determine their winning 

probabilities. If player A invests �c and player B invests �d, the winning probabilities 

are as follows: 

�c = hihijhk ;       �d = 1 − �c (4.1) 

Therefore, th expected payoff for player � ∈ -f, �8 is: 

�N��O = � − �� + ��� (4.2) 

In the reverse contest, contestants enjoy higher initial wealth (E+V). However, 

the prize is negative (−�). Investments in the contest increase the probability of avoiding 

the negative prize (i.e., not being drawn as a recipient of the prize). Thus, player i’s 

probability of receiving the prize is equal to (1 − ��). Hence, the expected payoff for 

player i is: �N��O = � + � − �� − (1 − ��)� (4.3) 
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This can be re-written as: �N��O = � − �� + ��� (4.4)  

Equations 4.2 and 4.4 show that - in expected terms - the contests are equivalent 

(see also Figure 4.1). Neither the best response function nor the equilibrium prediction 

change. In both conventional and reverse Tullock contests, the Nash equilibrium under 

standard preferences prescribes individual investments equal to �clm = �dlm = no 

(Szidarovsky and Okuguchi 1997). 

 

 

Figure 4.1: The equivalence of the contests. 

 

Although the two considered contests are equivalent from the theoretical 

perspective and characterized by the same equilibrium prediction, there are reasons to 

expect different behavior across the two settings. Prospect theory (Kahneman and 

Tversky 1979, 1992) claims that people care more about losses than about gains; they 

are loss-averse. If the perceived value of a loss is larger than the perceived value of a 

monetarily equivalent gain, players competing to avoid a loss should be willing to invest 

more than contestants competing for a gain. This is because the equilibrium analysis 

predicts that a higher (perceived) stake of the contest drives more aggressive bidding 

behavior. Thus, loss aversion predicts that contests for avoiding losses are fiercer than 

those for achieving gains.1 

 

 

 

                                                           
1 Loss aversion has been studied experimentally in a number of domains. Among others, the impact of 

loss aversion has been tested in a competitive environment other than Tullock contests. For instance, 

Delgado et al. (2008) show that framing an auction such that the losses become more prominent increases 

bidding prices. 
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4.3. Related literature 

Even though rent-seeking contests for avoiding losses are common in practice, 

such settings have not been studied in the experimental literature to date.2 Exploiting the 

difference between positive and negative domains has been particularly prominent in 

experimental literature on public goods provision. Andreoni (1995) shows that people 

are more willing to cooperate if the provision of a public good is framed positively. 

Similarly, Sonnemans et al. (1998) investigate whether behavior is different if 

cooperation leads to the provision of a public good versus the prevention of a public bad, 

finding that cooperative behavior is more common in a positive domain (public good 

provision). 

Our project is also related to a recent study by Hong et al. (2015), whose field 

experiment investigates the effects of framing monetary incentives as losses or gains on 

workers’ productivity in a team contest. The authors show that although the framing 

effect measured with the average productivity is statistically insignificant teams 

competing to avoid a loss are significantly more likely to win the contest. There are 

several major differences between Hong et al.’s study and ours. Unlike the authors, who 

test team behavior in tournament-styled contests, we investigate individual investments 

in Tullock contests. Moreover, in our study the prize is symmetrically framed as either 

achieving a gain or avoiding a loss for both contestants, whereas in Hong et al.’s study 

the framing was asymmetric (one team competed for a reward, another for avoiding a 

punishment).  

 

4.4. The experiment 

4.4.1. The experimental design 

In the experiment, the contest between two players is framed as a lottery with a 

positive or negative prize V. In the conventional contest, both players are endowed with 

E=20 tokens and compete for a positive prize V=20 tokens. In the reverse contest players 

with the initial wealth of E+V=40 tokens compete against each other to avoid being 

awarded a negative prize (V= -20 tokens). Players buy lottery tickets for one token each.  

                                                           
2 During the ‘Contest: Theory and Evidence’ conference in May 2016 in Norwich we became aware of a 

similar research project in progress: “Property Rights and Loss Aversion in Contests” by Chowdhury and 

Ramalingam. 
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The contest is repeated for 20 periods in partner matching. Each period proceeds 

in the same way and is payoff-relevant. First, subjects decide how many tokens from 

their endowment they want to spend on lottery tickets.3 At the same time, they report 

which investment they expect from the opponent. The guessing is incentivized, whereby 

subjects are paid according to a quadratic loss function between four and zero tokens.4 

On the decision stage, subjects are also provided with a what-if calculator, which 

computes winning probabilities and expected payoffs, given their belief about the 

opponent’s investment (see Figure 4.6 in Appendix B). In the second step, subjects 

receive feedback on the opponent’s decision, the resulting winning probabilities and the 

amount of bonus for the reported belief. In the third step, the computer draws one of the 

bought tickets and the winner achieves the gain (or avoids the loss). Both contestants 

receive information on their earnings in the current period. If both players do not buy 

any lottery tickets, the lottery is not conducted and nobody achieves a gain (or both 

players experience a loss).  

 

4.4.2. Treatments and hypothesis 

We study two different treatments: Treatment T0 is a conventional Tullock 

contest and treatment T1 is a reverse Tullock contest, i.e., the winner of the lottery avoids 

the negative prize.5 The treatments’ characteristics are summarized in Table 4.1. 

 

                                                           
3 Although endowments are different across treatments, we keep the strategy space unchanged. In both 

treatments, subjects are allowed to invest at most 20 tokens. This also prevents making losses in T1.  
4 The applied function is: max -0;  4 − 0.4(�pq�p� − �rst�q ��upvswp�s)�8. See Selten (1998) and 

Palfrey and Wang (2009) for the advantages of the quadratic rules against the linear ones. We are aware 

of the current discussion in the literature on whether and how to incentivize beliefs (e.g., Schlag et al. 

2015). 
5
 Note that one could implement the “avoiding the bad” condition in at least one alternative way. Rather 

than lobbying for oneself to avoid the bad, contestants could lobby for the opponent to receive the bad. In 

the experimental implementation, players do not buy lottery tickets for themselves, but rather for the 

opponent to increase the opponent’s chance of being drawn and hence receiving the negative prize. 

However, such an implementation has the drawback that in comparison to T0 it not only differs in the rent 

dimension. Additionally, in such an implementation, contestants do not want to win the contest, but rather 

they want the opponent to win. It has been shown that in Tullock contests, players experience some non-

monetary utility from the mere act of winning (Sheremeta 2010, 2013). This joy of winning is present in 

T0 and T1 alike. However, if contestants want the other player to win, they potentially lack the joy of 
winning and we may observe two counteracting effects as compared to T0: loss aversion drives higher 

investments, whereas reduced joy of winning lowers investments. For these reasons, we decided to 

predominantly focus on the implementation of the Tullock contest for avoiding the bad as in treatment 

T1. Nonetheless, we conducted the alternative implementation of buying lottery tickets for the opponent 

as a treatment T2. For details, see Appendix A. 
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Table 4.1: Characteristics of the experimental treatments. 

Treatment Endowment Prize Contest winner… 

T0 20 20 receives the positive prize  

T1 40 -20 avoids the negative prize 

 

As outlined in Section 4.2, we expect subjects to invest more aggressively in T1 

than in T0. 

 

Hypothesis: Reverse Tullock contests in treatment T1 generate higher investments than 

conventional Tullock contests in T0. 
 

 

4.4.3. Sample Size 

We use power calculations to determine the appropriate sample size for our 

study. Convention prescribes that an effect should be detectable at the 5 percent 

significance level with the power of 80 percent (i.e., 8 out of 10 times). To calculate the 

appropriate sample size we have to quantify the expected magnitude of the treatment 

effect and its variance. Since there are no previous studies on reverse Tullock contests, 

we try to come as close as possible by estimating the expected magnitude of the 

treatment effect from previous experiments using a positive and negative frame, albeit 

in a different context (public goods setting). Andreoni (1995) finds that the treatment 

effect between positive and negative framing of the public good provision is 50 percent. 

The author reports that the average cooperation rate increases from 16 percent in the 

negative frame to 34 percent in the positive frame (Andreoni 1995, pp. 7-8). Sonnemans 

et al. (1998) find that framing the game as public goods provision induces a cooperation 

rate of 51 percent, which is significantly more than the cooperation rate of 40 percent in 

the public bad prevention game. The treatment effect amounts to about 25 percent 

(Sonnemans et al. 1998, p. 149).  

It is well documented that experimental contests are characterized by large 

behavioral variation. The phenomenon is known in the literature as overspreading 

(Sheremeta 2013; Masiliunas et al. 2014; Chowdhury et al. 2014). Therefore, in our 

power calculation, we have to take into account the notion that the variation in the data 

from contest experiments is usually larger than in the mentioned public goods 
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experiments. To estimate the coefficient of variation (i.e., the ratio of standard deviation 

to mean), we rely on two prominent studies involving treatments with conventional 

Tullock contests under a similar experimental design to ours (e.g., repeated contest, two 

contestants, partner matching), namely Abbink et al. (2010) and Ahn et al. (2011). Table 

4.5 in Appendix B demonstrates that in both studies the coefficient of variation was very 

similar and amounted to about 36 percent. To be conservative, we assume the higher of 

the two values, namely 0.366. Based upon an expected treatment effect of 25 percent 

and a coefficient of variation of 0.366, we need 28 independent observations to detect a 

one-sided effect at the 5 percent level with the power of 81.02 percent. Thus, in order to 

have sufficient power we aimed to collect 28 independent observations (i.e., 56 subjects 

playing in a fixed partner matching) in each treatment. In T0 we have 28 independent 

observations and in T1 we collected 30 independent observations. Thus, our study has 

sufficient power to detect treatment differences at conventional levels. 

 

4.4.4. Procedure 

The experiment was conducted at the Cologne Laboratory for Economic 

Research (CLER) in Cologne, Germany. Treatment T0 corresponds to treatment C1 

from the study reported in Chapter 2. In all treatments, subjects were recruited with 

ORSEE (Greiner 2015) and participated in only one session. The experiment was 

computerized using z-Tree (Fischbacher 2007). Experimental sessions lasted between 

60 and 75  minutes. Subjects (undergraduate and graduate students, 58% female, average 

age: 22.9)6 earned on average 15.6 EUR. 

 

4.5. Results 

In conventional Tullock contests (T0) subjects invest on average 6.855 tokens, 

which is significantly more than the Nash equilibrium level of 5 (p=0.002, one-sided 

Wilcoxon signed-rank test).7 As expected subjects invest on average more when 

competing to avoid a loss (T1) than when the winner receives a gain (see Figure 4.2). In 

T1 subjects invest on average 7.882, which is 15 percent more than in the baseline (T0). 

                                                           
6 Missing information on one subject (self-reports were voluntary).  
7 A pair of subjects over 20 periods constitutes one independent observation.  
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However, the difference is not statistically significant (p=0.173, one-sided Mann-

Whitney U-test).8 

Figure 4.2: Average investments over time. 

 

Table 4.2: Regression analysis.  

Dependent variable:  

Investment 
[I] [II] 

Belief 0.403***  

 (0.053)  
Period -0.020  

 (0.017)  
1[T1] 0.638 1.027 

 (0.505) (0.827) 

Constant 4.142*** 6.855*** 

 (0.563) (0.526) 

Number of observations 2319 2319 

Number of clusters 58 58 

Overall R-squared 0.286 0.011 

Notes: Panel regression with random subject effects. In parentheses, robust standard 

 errors clustered at independent observations. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 

 

                                                           
8 The difference is also not significant for periods 5-20 (p=0.119, one-sided MWU-test), periods 10-20 

(p=0.123, one-sided MWU-test) and periods 15-20 (p=0.239, one-sided MWU-test). 
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Result: Investments in reverse contests in T1 are on average higher than in conventional 

Tullock contests (T0). However, the difference is not statistically significant. We reject 

our hypothesis.  
 

Our result is confirmed by the insignificant treatment differences in the 

parametric regression analysis presented in Table 4.2. Moreover, in several other 

dimensions, the behavior across the two treatments is fairly similar. The distribution of 

investments (see Figures 4.4 in Appendix B) as well as the pattern of belief-matching 

(see Figures 4.5 in Appendix B) are also similar to those in conventional contests. 

 

4.6. Conclusion 

We are the first to study Tullock contests for avoiding a loss. Prospect theory and 

results from experiments comparing positive and negative framings suggest that 

investments in contests for avoiding losses are higher than in contests for achieving 

gains. Indeed, we find that contests for avoiding losses are fiercer, although the effect is 

statistically not significant. Thus, it seems that behavior in contests for achieving gains 

may be an appropriate predictor for contests for avoiding losses.   
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4.7. Appendix A. Additional treatment T2 

An alternative way of implementing the “avoiding the bad” condition would be that 

rather than lobbying for oneself to avoid the bad, contestants could lobby for the 

opponent to receive the bad. In the experimental implementation, players buy lottery 

tickets not for themselves, but rather for the opponent to increase the opponent’s chance 

of being drawn and hence receiving the loss. However, such an implementation has the 

drawback that in comparison to T0 it not only differs in the rent dimension. Additionally, 

in such an implementation, contestants do not want to win the contest, but rather they 

want the opponent to win. It has been shown that in Tullock contests, players experience 

some non-monetary utility from the mere act of winning (Sheremeta 2010, 2013). This 

joy of winning is present in T0 and T1 alike. However, if contestants want the other 

player to win, they potentially lack the joy of winning and we may observe two 

counteracting effects as compared to T0: loss aversion drives higher investments, 

whereas reduced joy of winning lowers investments. For these reasons we decided to 

predominantly focus on the implementation of the Tullock contest for avoiding the bad 

as in treatment T1. Nonetheless, we conducted the alternative implementation of buying 

lottery tickets for the opponent as a treatment T2 (see Table 4.3). As expected, the 

average investments in T2 are slightly larger than in T0 but smaller than in T1 (see 

Figure 4.3), although the differences are not significant (see Table 4.4). 

 

Table 4.3: Differences in the framing of the reverse contest. 

Treatment Endowment Prize 
Players buy lottery 

tickets for… 

Contest 

winner 

T1 40 -20 themselves avoids prize  

T2 40 -20 the opponent receives prize  

 

Table 4.4: Average investments across treatments. 

Treatment 
No of independent 

observations 
Average investment 

Investment  

difference to T2 

T0 28 6.855 p=0.438 

T1 30 7.882 p=0.210 

T2 30 7.184 n.a. 

Note: In the last column, p-values from the one-sided MWU-test for the null hypothesis  

that investments in T2 are equal to investments in the corresponding treatment. 
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Figure 4.3: Average investments over time (with the control treatment T2). 
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4.8. Appendix B. Additional tables and figures 

 

Table 4.5: Descriptive statistics of behavior in benchmark studies. 

Study 
(1) 

Ind. Obs. 

(2) 

Mean  

(3) 

St. Dev. 

Coefficient  

of variaton 

(2)/(3) 

Abbink et al. (AER 

2010): 

treatment 1:1 

14 512.96 184.94 0.3605 

Ahn et al. (IJIO 2011): 

Baseline treatment 
16 336.93 123.21 0.3657 

Notes: Data from Abbink et al.’s study is publicly available under  

https://www.aeaweb.org/articles?id=10.1257/aer.100.1.420.  

Data from Ahn et al.’s study was kindly provided by Tim C. Salmon. 

 

 

Figure 4.4: Distribution of investments across treatments. 
Note: Corrected p-values from the exact Kolmogorov-Smirnov test for the equality of distributions (at 

the level of independent observations): T0 vs T1: p=0.167; T0 vs T2: p=0.676; T1 vs T2: p=0.536. 

 

 

Figure 4.5: Distribution of Belief-Investment-ratio across treatments. 
Notes: Ratio=investment / reported belief. Values are censored at 5. We present cases, in which beliefs 

equal zero as 5 (since the ratio cannot be computed). 

Corrected p-values from the exact Kolmogorov-Smirnov test for the equality of distributions (at the 

level of independent observations): T0 vs T1: p=0.911; T0 vs T2: p=0.890; T1 vs T2: p=0.958. 
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Figure 4.6: Decision screen in treatment T1 (also part of the written instructions to subjects). 

Translation from German.  
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4.9. Appendix C. Experimental instructions. Treatment T1 

(translation from German) 

 

Note: We report in the following the instructions for treatment T1, of which the 

instructions to T0 and T2 are straightforward variations. In the text, we only indicate the 

differences in the framing of the prize, as the remaining discrepancies are minor. 

Original instructions are available upon request.  

 

General information 

Welcome to our experiment! It is important that you carefully read and understand the 

following instructions. If you have a question, please raise your hand. We will then come 

to you and answer it. Communication with other participants before and during the 

experiment is prohibited. If you violate this rule, you will have to leave the experiment 

and will not receive any payment. 

You can earn money in this experiment. You will receive 4.00 EUR for your 

participation. You can earn additional money during the experiment. The amount of 

money that you earn depends on your decisions and the those of other participants in the 

experiment. Your earnings are denoted in tokens. These will be converted into EUR and 

paid out in cash at the end of the experiment. The exchange rate is: 

40 tokens = 1 EUR. 

The experiment comprises several rounds. Tokens that you earn in each round are added 

to your tokens account. Your payoff is the sum of the tokens that you have earned in all 

rounds of the experiment. No participant will receive information about your payoff in 

the experiment or your identity. 

Course of the experiment 

In today’s experiment, you will interact with another participant. You will shortly be 

randomly matched with an opponent. In every pair, there will be a player A (marked 

blue) and a player B (marked red). The roles are also randomly assigned. The pairings 

as well as the roles remain unchanged for the entire experiment. Information about your 

role will be displayed on the screen before the first round begins. 
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The experiment comprises 20 rounds. All rounds proceed in the same way. 

In each round, you and your opponent will compete in a lottery. 

At the beginning of each round, you receive from us an endowment of 40 tokens. Then, 

you can decide how many tokens you want to spend on lottery tickets. For one token, 

you can purchase one ticket (1 token = 1 ticket). You can purchase as many tickets as 

you want. However, you are not allowed to spend more than 20 tokens in a single round. 

Tokens that you do not spend on lottery tickets are added to your account. 

[T1: The lottery decides who in a given round gets 20 points deducted from the 

endowment. If one of your tickets is drawn, you avoid the deduction.] 

[T0: The prize that you can win in the lottery in each round is 20 tokens.] 

[T2: The lottery decides who in a given round gets 20 points deducted from the 

endowment and you buy the lottery tickets “for your opponent” (tickets of the 

opponent’s color). This means that if you are player A (blue) you buy red tickets, and if 

you are player B (red) you buy blue tickets. If a ticket of your color is drawn, you are 

deducted 20 points.] 

Your chance of avoiding the deduction depends solely on how many tickets you have 

bought and how many your opponent has bought. The more tickets you have bought, the 

more likely it is that you will avoid the deduction. The more tickets your opponent has 

bought, the less likely it is that you will avoid the deduction. The probability with which 

you avoid the deduction is equal to the number of your tickets divided by the number of 

all tickets bought. This means that it is computed according to the following rule: 

Probability of avoiding deduction =  Number of your ticketsNumber of your tickets +   Number of opponent′s tickets  
 

Your earnings in a single round are as follows: 

Your earnings if you win the lottery= 40 – your investment in the tickets 

Your earnings if you lose the lottery = 40 – your investment in the tickets – 20  
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If only one player has bought tickets, she/he wins with certainty and her/his opponent is 

deducted the 20 tokens. If neither of the players has bought any tickets, the lottery does 

not take place and both players get the deduction. 

 

Each round comprises three steps: 

Step 1 

In the first step, you decide how many tickets you would like to purchase. At the same 

time, your opponent makes the same decision. 

While you make your decision, you can use a what-if calculator. You can insert a 

hypothetical investment by your opponent and the calculator computes the probabilities 

of avoiding and obtaining the deduction and corresponding payoffs, subject to your 

investment. The expected payoff is also computed.  

The expected payoff is computed in the following way: 

 

 

You can use the calculator as often as you want. Please simply insert a value in the field 

of the opponent’s investment and click on “Compute” (see red field (1) in Figure 1). 

The example in Figure 1 shows the what-if-calculator for a hypothetical investment of 

10. For instance, you can see in the table that if you invest 2 tokens, your probability of 

avoiding the deduction is 16.67%, whereby your payoff will amount then to 38 tokens. 

You will lose the lottery and obtain the deduction with the probability of 83.33%. In 

such a case, your payoff will be 18 tokens. Your expected payoff will be 21.33 tokens. 

For example, if you invest 19 tokens, you will win the lottery and achieve a payoff of 

21 tokens with a probability of 65.52%, while will lose and achieve a payoff of 1 token 

with a probability of 34.48%. Your expected payoff will be 14.10 tokens.  

In every round you should insert within the given time your final decision in the fields 

on the right-hand side of the screen and confirm with the “OK” button (see red field (2) 

in Figure 1). You are not only asked about your investment, but also what investment 

Expected 

payoff = 
Payoff 

without 

deduction 

X X 
Probability that 

you avoid 

deduction 

+ 
Probability that 

you obtain 

deduction 

Payoff after 

deduction 
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you expect from your opponent. For this you can earn a bonus of maximal 4 tokens. The 

amount of the bonus depends on how good your prediction was. The smaller the mistake 

in your prediction, the higher your bonus. The bonus is computed in the following way. 

Bonus = 4 − 0.4 ∗ Mistake� 

The mistake is the difference between your prediction and actual opponent’s 

investment: 

Mistake = |Your prediction − actual opponentbs investment| 
If the mistake is larger than 3, the bonus is 0. This means that there is no negative bonus, 

whereby you cannot lose any tokens for your prediction. 

The time for your decision in every round is limited. In the first ten rounds you have 3 

minutes time, in the next 10 rounds 2 minutes. If you do not insert any values within the 

given time, your investment in the round will be zero and you will not receive any bonus 

for your prediction. 

 

Step 2 

In the second step, you receive feedback on the opponent’s decision, in other words, 

how many tickets she/he has bought. The probabilities of winning are also computed 

and displayed. All tickets bought are numerated. You receive information on which 

numbers correspond to your tickets and which to those of your opponent. In order to 

make it clearer, this is also displayed graphically.  

Each ticket is equally likely to be drawn. 

You also receive feedback concerning how good your prediction about your opponent’s 

investment was and how large your bonus is. 
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Step 3 

In the last step, the winning ticket is drawn. The computer draws one of the bought 

tickets. The number of the winning ticket and the information about who is awarded a 

deduction are displayed on the screen, as are your earnings in the current round. 

 

[Subjects also received a screen shot of the decision stage mask, see Figure 4.6. The 

only difference is that we marked decision fields with red frames, as described in the 

instructions above.] 
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Chapter 5: 

HETEROGENEOUS EFFECT  

OF GROUP IDENTITY  

IN COLLECTIVE RENT-SEEKING 
 

 

 

 

 

 

5.1. Introduction 

Rent-seeking behavior, ubiquitous in many areas of economics, has usually been 

studied experimentally using the framework of a lottery contest (Tullock 1980; 

Dechenaux et al. 2015). Although rent-seeking behavior is not only pursued by 

individuals but also by groups (e.g., firms or political parties), collective rent-seeking 

has only recently gained attention in experimental economics. Abbink et al. (2010) 

provide the first experimental evidence on contests between teams and compare 

individual and group behavior in Tullock contests. They find that groups do not suffer 

from free-riding problems as much as predicted by game theory and therefore overinvest 

more than single players do. In addition, within teams subjects exhibit substantial and 

persistent heterogeneity in behavior. While some recent studies provide new 

experimental results on collective Tullock contests (e.g., Ahn et al. 2011; Cason et al. 

2012, Leibbrandt and Sääksvouri 2012; see recent survey by Sheremeta 2015b), none of 

them addresses the puzzle of large behavioral heterogeneity within teams. To close this 

gap, in a new experiment I replicate Abbink et al. (2010)’s finding of substantial 

heterogeneity within teams and show that this is explained by the degree to which 

individuals identify with others in their group. 
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5.2. Related literature 

My study relates to several streams of literature in economics and social 

psychology. I study behavior in collective rent-seeking. Theoretical literature on rent-

seeking contests between groups was started by Katz et al. (1990) and Nitzan (1991). 

Experimental investigation on collective rent-seeking (pioneered by Abbink et al. 2010) 

is relatively new and recently summarized by Sheremeta (2015b). 

Since I investigate the effect of group identity, this paper contributes also to the 

psychological and economic literature on group identity and group behavior. Due to its 

long tradition of research on groups, social psychology has profound understanding of 

how group identity emerges and how it changes individual behavior. Experimental 

evidence from the 1970s (e.g., Tajfel et al. 1971) fueled the development of social 

identity theory (Tajfel and Turner 1979) that remains a cornerstone of modern research 

on group behavior. However, psychologists only rarely consider environments involving 

a tension between the self-interest and the interest of others.1 For that reason, recent 

economic investigation of group identity complements previous psychological findings. 

Since Akerlof and Kranton’s (2000) theoretical work that introduced the notion of group 

identity into economics, much experimental evidence on economic implications of 

group identity has been collected. Among others, social identity has been shown to alter 

cooperative behavior (e.g., Eckel and Grossman 2005), social preferences (e.g., Chen 

and Li 2009), coordination behavior (e.g., Chen and Chen 2011), trust and 

trustworthiness (e.g., Heap and Zizzo 2009), or willingness to punish others (e.g., Goette 

et al. 2012). Less attention has been devoted to groups in competitive environments and 

this is where my study makes a contribution. 

 

5.3. The experimental design 

Katz et al. (1990) extend Tullock’s model by introducing groups as contestants 

and the prize being a public good.2 I implement the set-up by Katz et al. and largely 

follow the design of Abbink et al. (2010). 

                                                           
1 Research by Gary Bornstein constitutes an important exception (Bornstein 1992, 2003, Kugler and 

Bornstein 2013). Bornstein experimentally investigated behavior in so-called team games (Bornstein 

2008). However, he did not pay much attention to the group identification process itself. 
2 Note that the prize exhibits public good properties only within a group, i.e., in the case of winning all 

group members receive the same monetary gain. Excludability of non-members is, however, possible 

(Esteban and Ray 2001, p. 664). 



 

92 

5. Heterogeneous Effect of Group Identity in Collective Rent-Seeking 

5.3.1.  The experimental set-up 

In the experiment, randomly created pairs of five player groups (labelled A, B, 

etc.) play a Tullock contest for T=20 rounds. The composition of groups as well as the 

pairing of competing parties are fixed throughout the entire experiment. Each round has 

the same structure and proceeds in three steps. 

At the beginning, each subject i is endowed with 1,000 points and decides how 

many of these she wants to spend on lottery tickets for her group k. One point 

corresponds to one ticket. All players make their decisions simultaneously and then 

feedback is given in two steps. First, the subject learns the aggregated (yz = ∑ ��,z� ) and 

average (
�| yz) investments for her team, as well as the aggregated investment of the 

opposing team (y>z). The probabilities of winning for each team resulting from the 

lottery ticket investments are represented graphically on the screen. Second, the result 

of the lottery contest is presented. The computer randomly picks one of the lottery tickets 

and the group that owns it wins the prize. Subjects’ payoffs in the current round are also 

computed and displayed. After that, the experiment proceeds to the next round. The prize 

(V) is fixed at 1,000 points and does not depend on the number of tickets purchased. If 

neither of the competing groups buys any tickets, however, the lottery is not conducted 

and neither team wins the prize. The expected payoff of subject i belonging to group k 

is:  

�(��,z) = 1000 − ��,z + yzyz + y>z  1000 (5.1) 

 

5.3.2. Hypotheses 

I hypothesize that although not directly induced, group identity arises 

spontaneously in experimental collective contests, facilitated by the between-team 

competition (Eckel and Grossman 2005) and the elements of payoff commonality 

(“either we all win the prize, or none of us”, see Brewer and Kramer 1986). The strength 

of the group attachment may vary from subject to subject, however, not only across but 

also within teams. 

Social group theory (Tajfel and Turner 1979) recognizes social comparison as a 

crucial element of the group identification process. Groups seek for positive 

distinctiveness that should justify or legitimize their existence. In order to accomplish 
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this goal, they are willing to compete against out-groups (Turner 1975). In the course of 

the so-called social competition, groups compete for some scarce resources that have no 

value outside of the context of competition, e.g., rank, status, prestige of winning (Tajfel 

1982). In experimental contests, winning the prize is a natural device of building positive 

distinctiveness of a group against out-groups. This means that winning itself becomes 

important. Therefore, I expect subjects who more strongly identify with their teams to 

invest more than subjects who do not report strong attachment to their teams. 

 

5.3.3. Procedure 

The experiment was computerized and programmed in z-Tree (Fischbacher 

2007). I conducted three sessions in October 2014. Ninety subjects (mostly students with 

various majors, average age: 24.7; 55.1% female3) were recruited with ORSEE (Greiner 

2015) and earned on average 11.30 EUR. The subjects received written instructions, 

which were also read aloud (see Appendix A). Each session lasted about 45 minutes. I 

collected data on the decisions of 18 teams of five players, i.e., nine independent 

observations. 

 

5.4. Results 

In equilibrium, a group should invest a total of V/4 (i.e., 250 points in this 

experiment) regardless of the group’s size. Abbink et al. (2010) find that teams invest 

more than the Nash equilibrium predicts. In their experiment, teams of four invest on 

average 1,035 points. Similarly in my experiment, teams of five also strongly overinvest. 

The average team contribution is 920 points, which is almost four times as much as in 

equilibrium. I focus, however, on another striking behavioral pattern. Like Abbink et al. 

(2010, pp. 431-432), I find substantial behavioral heterogeneity within teams.  

For each team and each period, I identify players contributing the most and the 

least to the team investment. As presented in Figure 5.1, the behavioral heterogeneity is 

not only large but also very persistent. Top contributors invest on average 402.3 points 

in each round (390.9 in the last five rounds), whereas lowest contributors tend to free-

ride on their peers from the beginning on and invest on average only 30.9 points (15.9 

                                                           
3 One subject did not report her/his gender. 
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in the last five rounds). Moreover, top contributors lower their investments only in the 

initial rounds and keep investing twice as much as the average investment (184.0) until 

the end of the experiment. In general, I observe little convergence in behavior within 

teams. Similar to Abbink et al. (p. 432), I conclude that some individuals behave as 

activists and remain so throughout the experiment. 

 

 Figure 5.1: Individual investment behavior and within-group heterogeneity. 

 

To examine the reasons for this persistent behavioral heterogeneity, subjects 

filled out a questionnaire about their motives and behavior in the experiment. One of the 

questions concerned group attachment: “Please state your opinion on a scale from 1 (do 

not agree at all) to 7 (totally agree): In the experiment, I experienced a strong sense of 

a team spirit”. Eighty-nine out of 90 subjects responded to this question. The following 

analysis is based on data from these 89 subjects. 

I classify answers into three categories: 1-2 = no identification; 3-5 = weak 

identification; 6-7 = strong identification. Figure 5.2 depicts mean investments of 

subjects that reported a similar level of group identification. There is a clear pattern: The 

stronger the degree of group attachment the higher the investment in the lottery. 

Behavior of subjects from different groups cannot be directly compared, since they were 

engaged in contests with different dynamics and hence different levels of investments. 

Therefore, I average investments of subjects from the same team, exhibiting similar 

levels of group identification (none, weak, strong). I non-parametrically compare 
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pairwise behavior between the three categories at the group level using a Wilcoxon 

signed-rank test (WSR-test). All differences are statistically significant at the 5 percent 

level. The same significance levels hold if we only consider the data from the last five 

periods.  

The significant effect of group identification is confirmed in a parametric 

regression analysis. As 15.6 percent of the observations show zero investments, I 

estimate Tobit models censored at zero. I consider two specifications (see Table 5.1). In 

model [I], I follow the previously discussed classification of subjects into three 

categories. The group identity effect is captured with two dummies that correspond to 

the conditions of weak and strong group identification (hence, no group identification is 

the reference category). Since such an approach is prone to degrees of freedom in 

specifying the categories, I also test an alternative model [II] that does not involve any 

categorization, but treats team identity as a continuous variable. Regardless of how the 

group identity regressor is defined, its effect remains both statistically significant at the 

5 percent level and sizeable. In model [I], a weak group identification induces an average 

increase in investments of about 52 points. Strong group identification leads to an 

Figure 5.2: Group identity and average investment behavior. 
Notes: Asterisks correspond to results of WSR-test (two-tailed) at the group level. 

Significance levels: *** p<0.01; ** p<0.05. 
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average increase of 79.5 points relative to the reference category, corresponding to 43.2 

percent of the mean investment in the experiment. 

 

Table 5.1: Regression analysis (Tobit models). 

Dependent variable:  

Individual investment(t) [I] [II] 

      

Own investment(t-1) 0.508*** 0.512*** 

 (0.057) (0.061) 

Team investment(t-1) -0.018 -0.018 

 (0.026) (0.027) 

Competitor investment(t-1) 0.066*** 0.065*** 

 (0.010) (0.010) 

1[Team identity weak] 52.383**  

 (21.892)  

1[Team identity strong] 79.453**  

 (28.595)  

Team identity   14.891** 
  (5.399) 

1[Lost(t-1)] -1.722 -1.617 
 (8.399) (8.496) 

Period -0.425 -0.418 
 (0.573) (0.576) 

Constant -8.000 -21.720 
 (26.921) (30.263) 
   

Observations 1691 1691 

No. of subjects 89 89 

Pseudo-R2 0.028 0.027 
 

Notes: Tobit models censored at 0. In parentheses, robust standard errors clustered 

on cohorts (pairs of teams). Significance levels: *** p<0.01,   ** p<0.05. 

 

The focus of the analysis is on the behavioral heterogeneity and not on the 

overinvesting. Nevertheless, the effect of group identity also helps to explain the latter 

phenomenon.4 In equilibrium, two opposite effects of the group size just offset each 

other. On the one hand, the increasing size of the group induces stronger free-riding and 

hence lowers individual investments. On the other hand, it leads to a higher total 

                                                           
4 Here, my evidence is complementary to the study on parochial altruism in collective contests by Abbink 

et al. (2012). 
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investment. Since group identity has been shown to reduce the free-riding incentive 

(Eckel and Grossman 2005), subjects identifying themselves with groups tend to invest 

more than game theory predicts. Despite its significant role, observed group identity is 

fairly weak as teams are randomly created and team members have no prior connection 

to one another. Real groups or organizations would be expected to display higher levels 

of identification, leading to even stronger overinvestment.5 Moreover, depending on the 

context, rent-seeking may be perceived as wasteful from a social viewpoint. If this is the 

case, group identity has a welfare-decreasing effect as it drives higher investments. This 

is in stark contrast to previous results on welfare-enhancing effects of group 

identification.  

 

5.5. Conclusion 

In this paper, I show that group identity and its heterogeneous effect among 

subjects help to explain strong and persistent heterogeneity in behavior within groups 

engaged in experimental contests. The overall effect of group identity also rationalizes 

reported substantial overbidding. I demonstrate that subjects very differently respond to 

the same experimental conditions, which prevents the experimenter from maintaining 

control over the saliency of collective identities in the lab. This echoes the conclusions 

by Riener and Wiederhold (2013), who stress the importance of manipulation checks 

when inducing group identities under laboratory conditions. My results complement 

their findings by stating that such checks are also important in experiments in which 

group identity can arise endogenously and is not exogenously induced by the 

experimenter.    

                                                           
5 In a very recent study, Chowdhury et al. (2016) show in a laboratory experiment that groups built on a 

real identity (race) overinvest more strongly than groups with artificial ad-hoc identities. 
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5.6. Appendix A: Written instructions for subjects (translation from 

German) 

General information 

Welcome to our experiment! It is very important that you carefully read and understand 

the following instructions. If you have any questions please raise your hand. We will 

then come to you and answer them. Communication with other participants before and 

during the experiment is prohibited. If you violate this rule, you will have to leave the 

experiment and will not receive any payments. 

In this experiment you can earn money. You will receive 2.50 EUR for your 

participation. You may earn additional money during the experiment. Your income will 

depend on your decisions and decisions of other participants. During the experiment, 

your earnings will be quoted in points. These will be converted into EUR at the end of 

the experiment at the exchange rate of:  

3000 points = 1 EUR. 

The experiment will consist of multiple rounds. Points that you earn in each round will 

be added to your account. Your income in the experiment will be computed as a sum of 

points earned in all rounds of the experiment. Participants will not get information about 

identity or earnings of other participants.  

Course of the experiment 

In today’s experiment, participants are divided into teams of five. Teams are labeled 

with letters (A, B, …). The assignment to teams is conducted randomly before the first 

round begins. The composition of teams is kept fixed for the entire experiment. Within 

a team, each participant is assigned a player number (1 to 5) and this number is also kept 

fixed. 

Information on your team and number assignment will be displayed before the first 

round begins.  

In the experiment, your team will be assigned to an opponent team, with which your 

team will be interacting. Pairs of teams remain the same for the entire experiment. 

Pairing procedure is explained on an example. 
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Example 

In the example team A is assigned to team B. This means that team A will interact with 

team B (see graph) in all rounds of the experiment.  

 

The experiment consists of 20 rounds. All rounds proceed in the same way. 

In each round, your team and the opponent team will compete in a lottery for a prize. 

At the beginning of each round, you receive from us 1000 points. Then, you can decide 

how many points you want to spend on lottery tickets for your team. For one point you 

can buy one ticket (1 point = 1 ticket). You can buy as many tickets as you want, but 

you are not allowed to exceed your budget. Points that you do not spend on lottery tickets 

are added to your account. 

The prize that your team can win in the lottery in each round is 1000 points for each 

team-member (i.e., 5000 in total for the team). 

Your winning chance depends only on how many tickets your team has bought and how 

many the opponent team has. The more tickets your team has bought the more likely it 

is that your team wins. Another way around, the more tickets the opponent team has 

bought, the less likely it is that your team wins. The probabilities with which your team 

wins the prize is equal to the number of tickets of your team divided by the number of 

all tickets bought. This means it is computed according to the following rule: 

Your probability of winning
=  Number of tickets of your teamNumber of tickets of your team +   Number of tickets of the opponent team 
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Your earnings in a round are as follows: 

Your earnings if your team wins = 1000 – your investment in the tickets + 1000 

Your earnings if your team loses = 1000 – your investment in the tickets  

 

If only one team has bought the tickets, it wins with certainty. If neither of teams have 

bought any tickets, the lottery does not take place and nobody wins the prize. 

 

Each round consists of three steps: 

1. In the first step, you decide how many tickets you would like to buy. At the same 

time all other participants from your team and the opponent team make the same 

decision. 

2. In the second step, you get the feedback on the decisions of your team and the 

opponent team. Probabilities of winning are also computed and displayed. All 

tickets bought are numerated. You get the information which numbers correspond 

to tickets of your team and which to tickets of the opponent team. In order to make 

it clearer, this is also displayed graphically. Each ticket is equally likely to be 

drawn. 

3. In the third step, the winning ticket is drawn. The computer draws one of bought 

tickets. The number of the winning ticket and the winning group are displayed on 

the screen. So are your earnings in the current round. 
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Questionnaire (translation from German) 

 

Please report your age: _________ 

Please report your gender: _________ 

Please report your major of studies: _________ 

Please report for how long you have been studying (number of terms): _________ 

 

Please describe briefly how you were deciding on how many tickets to buy. 

 

___________________________________________________________________ 

 

___________________________________________________________________ 

 

 

Please report your opinion on the following statements: 

In the experiment, I experienced a strong sense of a team spirit.  

(Scale: 1= don’t agree at all, … , 7= totally agree) 

 

My decisions in the experiment were influenced by the fact that we were playing 

against another team.  

(Scale: 1= don’t agree at all, … , 7= totally agree) 

 

In the experiment, it was important to me that my team wins more often that the 

opposite team. 

(Scale: 1= don’t agree at all, … , 7= totally agree) 
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Chapter 6: 

ENVY IN DYNAMIC CONTESTS 
 

Joint work with Uta K. Schier 

 

 

 

6.1. Introduction 

Situations of conflict and rent-seeking are as common as trade and cooperation. 

Therefore, contest and rent-seeking behavior has been extensively studied both 

theoretically (see e.g., Congleton et al. 2008a for an overview) and experimentally (for 

a survey, see Sheremeta 2013 and Dechenaux et al. 2015). Most of this research 

considers static set-ups, in which there is only one round of interaction. Yet in many 

situations (e.g., R&D competition, political election, sports) the winner is determined on 

the basis of more than one round. In order to win the prize or obtain the rent, a contestant 

needs to win a certain number of rounds. In theory, such situations are modeled as multi-

battle contests.1 

This paper focuses on incentives to keep participating in the contest despite 

having lost chance of winning and therefore contributes to the research on pervasiveness 

of dynamic contests.2 We consider a setting with two players. Our theoretic analysis and 

a laboratory experiment show that the contestant who has already lost her chance of 

winning the prize may want to stay in the contest, if she displays other-regarding 

preferences and ties in the number of wins are possible. In other words, the underdog 

may not give up, even though he can no longer win the prize. 

                                                           
1 In this paper, we consider a class of multi-battle contests called races. There are, however, also other 

types of dynamic contests, such as elimination contests or the tug-of-war. See Konrad (2009, Chapter 8). 
2 We recognize that whether pervasiveness of contests is desirable or not depends on the circumstances of 

the contest. Without making any claims on that, we investigate the pervasiveness per se.  
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Our analysis complements previous research on pervasiveness of dynamic 

contests. Konrad and Kovenock (2009) study a generic class of multi-battle contests and 

characterize a unique subgame perfect equilibrium. The authors show that the contest 

remains pervasive only in the presence of intermediate prizes. Pervasive means at all 

points the contest is non-trivial; none of the competitors gives up in any of the battles. 

Therefore, Konrad and Kovenock (2009, p. 266) argue that “intermediate prizes are 

important to avoid the series of battles becoming rather uninteresting once one of the 

players has accumulated a sufficient advantage that the other player gives up.” The 

statement is very intuitive when applied to sporting events, but is also important in other 

contexts, e.g., patent races. Gelder (2014) extends Konrad and Kovenock's (2009) 

framework by introducing monetary penalties for losing. This means pervasiveness is 

achieved by adding financial incentives. However, these are discounted over time so that 

losing later induces smaller monetary consequences than losing earlier, which allows 

the author to rationalize last stand behavior (i.e., reluctance to surrender).  

Our study provides an alternative explanation for why contests can be pervasive. 

Based on social utility models, we show that disadvantageous inequality aversion (i.e., 

envy) can lead to pervasive contests without intermediate prizes or monetary penalties. 

Social utility models have been extensively studied in the literature and suggest that 

utility not only depends on one’s own monetary payoff but also on others’ payoffs (e.g., 

Fehr and Schmidt 1999; Bolton and Ockenfels 2000; Charness and Rabin 2002).  

We consider a framework with two battles, each modeled as a Tullock (1980) 

contest. In order to obtain the prize, one of the two players needs to win both battles. A 

tie in wins (1:1) leads to the prize not being awarded. Such a structure results in a 

straightforward game-theoretic prediction, in which the second battle is trivial, with the 

loser of the first battle (hereafter the “underdog”) surrendering. Envious preferences of 

the players, however, change the theoretic prediction. The second battle is no longer 

trivial, mostly because an envious underdog, left without a chance to win the contest, 

might still invest resources just to harm the other player. This not only influences the 

total dissipation of rents, but might also impact the probability that the prize is awarded.  

In fact, situations in which a tie in wins results in the prize not being awarded are 

frequently observed in markets. For example, blocking (or pre-emptive) patents are an 

increasing threat to many high-tech industries. Consider the prospect of launching a new 
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product that would be innovative in several dimensions. The launching company needs 

to have the patents for all technologies involved. As a result, a company holding a patent 

on one particular (even small) innovation can block other market players from 

commercializing their products (Heller and Eisenberg 1998; Guellec 2012). Such 

situations are often found in sectors of complex technologies, such as software or 

pharmaceuticals. Multiple surveys (Dueget and Kabla 1998; Cohen et al. 2002; Blind et 

al. 2006) suggest that most companies consider defensive blocking an important reason 

for patenting at all.  

We run a laboratory experiment to test predictions from our theoretic analysis 

and find that contestants indeed behave enviously. They are ready to spend considerable 

amounts of their limited resources to prevent their competitor from winning the prize. 

Interestingly, such behavior is not surprising for prospective winners; they expect envy 

and adjust their own investments. Moreover, subjects already anticipate competitive 

behavior in the second battle when investing in the first battle. This means that envy-

driven competition leads to lower investments in the initial round of competition.  

The remainder of the chapter is organized as follows. In Section 6.2 we briefly 

discuss the related literature. Section 6.3 presents our theoretic model and its game-

theoretic analysis under both standard and envious preferences. In Section 6.4 we 

develop an experimental design that allows us to test our theoretic predictions from 

Section 6.3. Finally, we present the experimental results in Section 6.5 and conclude in 

Section 6.6. 

 

6.2. Related literature 

This work contributes to literature on races, which are a type of dynamic 

contests. Harris and Vickers (1985, 1987) opened this theoretic research in the context 

of patent races. They show that under technological uncertainty the leader in a race 

exerts higher efforts than the follower. Moreover, efforts are higher if the gap between 

competitors is small. This research was applied by Klumpp and Polborn (2006) to study 

the dynamics of the US political elections. The authors consider the rationale behind 

sequential (not simultaneous) campaigning in different US states, as a setting of multi-

battle contests. In a more general and context-free approach, Konrad and Kovenock 

(2009) then describe equilibrium behavior in multi-battle (all-pay) contests. This model 
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has recently been extended by Gelder (2014), who introduces monetary penalties for 

losing thereby changing the equilibrium predictions. 

There is little experimental evidence on behavior in dynamic contests. Zizzo 

(2002) is the first to experimentally test Harris and Vickers’ (1987) model and finds only 

limited support for its predictions. More recently, Mago and Sheremeta (2012), as well 

as Irfangolu et al. (2015), compare behavior in sequential and simultaneous multi-battle 

(best-of-three) contests, with battles modeled either as Tullock contests or all-pay 

auctions, respectively. Moreover, Mago et al. (2013) study best-of-three Tullock 

contests and find support for 'strategic' but not 'psychological' momentum. Finally, 

Gelder and Kovenock (2014) examine last stand behavior in best-of-seven contests, 

testing the theoretical predictions of Gelder’s (2014) model, as well as those of the model 

by Konrad and Kovenock (2009). Therefore, their experimental design involves both 

monetary prizes and penalties. In line with Gelder's model, they find that high penalties 

for losing prevent the prospective loser from giving up. No research has so far looked at 

social comparison as a behavioral motive in such settings. Considering that contests 

typically involve interactions between several players, we are interested in how envy 

affects contest behavior.  

Social preferences have already been shown to influence behavior in other 

competitive settings. Besides contests, relevant examples of such environments are 

auctions and tournaments. For instance, Morgan et al. (2003) theoretically study how 

disutility from losing an auction changes equilibrium bidding behavior. The authors 

show that such preferences explain behavior observed in experimental auctions better 

than standard preferences. In particular, they help explain overbidding.3 Kimbrough and 

Reiss (2012) provide experimental evidence on spiteful bidding in second-price 

auctions. The authors show that subjects frequently submit a non-zero bid in order to 

increase the price paid by the competitor. Such behavior could also be explained by 

inequity aversion (i.e., envy). Also tournaments are important contest models in modern 

microeconomics. In tournaments, inequity aversion has also been shown to play a role. 

Grund and Sliwka (2005) game-theoretically analyze behavior in tournaments, assuming 

                                                           
3 Note that Morgan et al. (2003) refer to the modeled deviation from standard preferences as spite. 
Nevertheless, their intuition behind this term corresponds to what we call envy. Both terms are frequently 

used interchangeably in the literature when describing disadvantageous inequity aversion in the mold of 

Fehr and Schmidt (1999). 
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preferences based on the inequity aversion model by Fehr and Schmidt (1999), and 

demonstrate that inequity aversion drives higher efforts. This result has also been 

confirmed by experimental studies. Balafoutas et al. (2012) test in the laboratory the link 

between social preferences and tournament behavior and show that more spiteful 

subjects react more strongly to the competitive condition. In another experimental study, 

Eisenkopf and Teyssier (2013) provide additional evidence that envy drives higher 

efforts in tournaments. Herrmann and Orzen (2008) investigate spite in Tullock contests. 

Our approach is most similar to their study. However, unlike the authors, who examine 

the impact of other-regarding preferences on bidding in standard (static) Tullock 

contests, we investigate dynamic rent-seeking settings. 

Finally, our theoretic framework and experimental investigation are related to 

the literature on armed conflicts. This literature rests on the canonical model of the 

Tullock (1980) contest, but adapted to peculiarities of military contests (e.g., Hirshleifer 

1989, 1991; Skaperdas 1992; see Garfinkel and Skaperdas 2007 for an overview). The 

experimental literature on war behavior is relatively new and limited, but rapidly 

growing. Abbink (2012) surveys experiments on this topic. In this stream of literature, 

our work is related to the recent paper by Lacomba et al. (2014). The authors study how 

post-conflict behavior (e.g., possibility of income destruction) influences conflict 

expenditures and stealing rates. In some experimental treatments, the loser of the conflict 

can lower the winner’s loot by destroying a part (or all) of her own income. While this 

treatment may be similar to our experimental game in expected terms, the settings are 

different in several dimensions. Most importantly, in the experiment by Lacomba et al. 

(2014), the value of the prize is endogenous and results from subjects’ decisions. 

Endogeneity of the prize value (typical for studies on military conflicts) is one of the 

major differences from the set-ups utilized in research on traditional rent-seeking 

contests. 

 

6.3. The theoretical framework 

Previous experiments on dynamic environments of rent-seeking have mostly 

examined best-of-three (or best of 2n+1) contests (Mago and Sheremeta 2012; Mago et 

al. 2013; Irfangoulu et al. 2015). However, in such games one cannot disentangle 

strategically driven behavior from behavior driven by social comparison. In best-of-
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three contexts, the contest only runs as long as of minimum of two contestants have a 

chance of obtaining the rent. Hence, it is not clear to what extent behavior is driven by 

a motive to win the prize or to simply avoid lagging behind. Therefore, we develop a 

new game that allows us to distinguish these motives. 

Moreover, in contrast to Konrad and Kovenock (2009) and Gelder (2014), who 

model battles as all-pay auctions, we define the battles as lottery contests (Tullock 1980). 

In the literature on contest behavior, both approaches are very common, and which 

model is considered more appropriate depends rather on the real-world examples to 

which it is being applied.4 Konrad and Kovenock (2009, p. 258), as well as Gelder (2014, 

p. 444), opt for an all-pay auction model due to analytical convenience. However, for 

testing theoretic predictions in laboratory experiments, a Tullock contest seems to be 

more favorable. Unlike all-pay auctions, where equilibria exist only in mixed strategies 

(Baye et al. 1996), a Tullock contest with two contestants is characterized by a unique 

equilibrium in pure strategies (Perez-Castrillo and Verdier 1992; Szidarovszky and 

Okuguchi 1997).5 Such an equilibrium prediction provides a better behavioral 

benchmark for experimental investigations.  

 

Figure 6.1: Contest structure. 
Note: In parentheses are the numbers of winnings needed to obtain the prize. In the boxes are the prizes 

from the contest. 

                                                           
4 For example, battles have been modeled as lottery contests in previous studies on patent races (Harris 

and Vickers 1987), as well as US presidential nomination campaigns (Klumpp and Polborn 2006). 
5 This holds under the assumption that the parameter r ≤ 2. We use the most standard version of the model, 

with r = 1. See the references for more details. 
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6.3.1. The two-battle contest 

We consider a two-battle contest with two ex-ante symmetric and risk-neutral 

players, each of them initially endowed with E. Let yc and yd denote the total contest 

investments by player A and B, respectively. yc = �c,� + �c,� and yd = �d,� + �d,�, 

where �c,A and �d,A describe investments in battle t. There is a single prize V for the 

winner of both battles. In case of a tie in wins (1:1), neither of the players wins the prize 

(see Figure 6.1). Moreover, we assume that if in one of the battles both players make 

zero investments, no player wins the battle and the prize is not awarded.  

Every battle is a rent-seeking contest (Tullock 1980). The probability that player 

A wins battle t is:  

�c,A = �c,A�c,A + �d,A (6.1) 

Hence, her competitor, player B, wins the battle with probability: �d,A = 1 − �c,A. 
Further, player A’s payoff is as follows:  
 �c = ~� − yc + � �� �q��p� f ���v ��sℎ ��ssqpv� − yc        �sℎp���vp                                       (6.2) 

Player B’s payoff is computed analogously. Both players are informed about the 

outcome of the first battle before the second battle begins.  

 

6.3.2. Equilibrium analysis under standard preferences 

We solve the game by backward induction and find a unique symmetric subgame 

perfect Nash equilibrium (SPNE). 

Battle 2 

Assume player A won the first battle. Player B then has no chance of winning 

the overall contest and therefore gives up for the second battle, with an investment of �d,�∗ = 0. Player A anticipates that her competitor surrenders, invests almost nothing 

(�c,�∗ → 0j) and wins the second battle and therefore the entire contest.6  

Battle 1 

Ex ante, players are symmetric. Therefore, the expected payoff of player A is:  

�N�cO = � − �c,� + �c,��c,� + �d,� � (6.3) 

                                                           

6 For analytic simplicity, we assume in the consecutive analysis that �c,�∗ = 0. 
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First order condition yields:  ��N�cO��c,� = −1 + �d,���c,� + �d,��� � = 0 (6.4) 

Analogously, we can define FOC for player B. In a symmetric equilibrium, both players 

invest:  

�c,�∗ = �d,�∗ = �4 (6.5) 

Thus, the payoffs of the winner (player A) and loser (player B) are in equilibrium: 

�c = � + 34 � ;   �d = � − 14 �      (6.6) 

As such, the game-theoretic prediction for this dynamic contest does not differ 

from the prediction for a conventional Tullock contest. In other words, contestants 

behave in the first battle as if there were only one battle (i.e., a static contest). In the 

equilibrium, 50 percent of the rent is dissipated. 

 

6.3.3. Other-regarding preferences: intuition 

In the next step, we introduce a behavioral extension of the standard analysis. 

Assume that contestants display other-regarding preferences. In particular, assume that 

they are envious (but not compassionate, i.e., display only disadvantageous inequity 

aversion). We adjust the utility function as in Fehr and Schmidt (1999); we assume that 

parameter J ≥ 0 and M = 0.7,8 The utility of player B is therefore now equal to her 

monetary utility and possibly the disutility stemming from the disadvantageous inequity 

aversion:  

Id(�c, �d) = �d − J max -0, �c − �d8 (6.7) 

We restrict our attention to cases in which J is strictly positive, but not larger than 1 

(0 < J ≤ 1).9  

                                                           

7 Note that the intuition would not change if players were compassionate (M > 0), as long as J ≥ M, which 

is assumed by Fehr and Schmidt (1999, p. 822). The “reduced” form of Fehr-Schmidt preferences, 

including only envy (but not compassion), has been applied by Eisenkopf and Teyssier (2013) to derive 

behavioral predictions for their experiment on tournament environments. Moreover, such an approach is 

similar to the one put forward by Bolton (1991). 
8 Moreover, in appendix C we analyze the contest under an evolutionary definition of other-regarding 

preferences. We show that the theoretic predictions are qualitatively very similar and therefore robust 

against a particular modeling approach. 
9 Without a significant loss of generalizability, the assumption makes the analysis more tractable. 
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Let us reconsider the situation of player B in the second battle. We have seen that 

in the subgame perfect Nash equilibrium under standard preferences, he surrenders and 

his investment in the second battle is 0. We show that if player B is envious, such 

behavior is no longer a part of SPNE. We check incentives for the player to deviate from 

the studied equilibrium by making a small but strictly positive investment in the second 

battle: �d,� = � > 0. Then, expected utilities are as follows:  

��Id��d,� = 0� = � − �4 − J� 
(6.8) 

��Id��d,� = � > 0� = � − �4 − � − J� 
(6.9) 

It is straightforward to show that expression (6.8) is smaller than (6.9), if  ��j� > �n. Therefore, under the assumption of a continuous strategy space, a strictly 

positive value of the envy parameter J always leads to a non-zero investment in the 

second battle. If player A (potential winner) sticks to the SPNE, player B has an 

incentive to invest � in the contest. Player B can almost completely avoid the envy-

related disutility for a very low monetary cost. 

 

6.3.4. Equilibrium analysis under symmetric envious preferences 

We have shown that the SPNE from Section 6.3.2 no longer holds if the underdog 

is envious. In the following, we conduct a more systematic analysis of the role of envy 

in the considered set-up. For simplicity, we assume that the value of the envy parameter J is symmetric and common knowledge.10 Moreover, we restrict our attention to cases 

in which behavior in the first round is symmetric (i.e., symmetric equilibria). 

Investments in the first round in a symmetric SPNE are equal (��,�∗ = ��,�∗ ). Therefore, 

investment inequalities can only arise due to asymmetric investment behavior in the 

second battle (��,�∗ ≠ ��,�∗ ).11  

We proceed by backward induction to obtain a new subgame perfect Nash 

equilibrium prediction. 

 

 

                                                           
10 See Herrmann and Orzen (2008) for a similar approach in conventional Tullock contests. 
11 This means that later on we can replace the condition yc ≥ yd with ��,� ≥ ��,�. 
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Second battle 

First, we consider the winner of the first battle (player A). Her expected payoff is:  

�NIcO = ��
�� − yc + �c,��c,� + �d,� � − J �d,��c,� + �d,� (yc − yd) �� yc ≥ yd

� − yc + �c,��c,� + �d,� �                                       �� yc < yd  (6.10) 

Note that player A can experience envy if she loses the second battle and her total 

investment is larger than the investment of her competitor (yc > yd). The first order 

condition, after simplification, is defined by:12  

�d,�� − 2J�d,�� = ��c,� + �d,���  ��yc ≥ yd (6.11a) 

                �d,�� = ��c,� + �d,���  ��yc < yd (6.11b) 

Therefore, under the restriction that the investment cannot be negative, the best reply 

function is given by: 

�c,���d,�� = �max ~0,   ��d,�� − 2J�d,�� − �d,�� �� yc ≥ ydmax K0,   ��d,�� − �d,�L                  �� yc < yd
 

 

(6.12) 

Now, we consider the loser of the first battle. The expected payoff function of 

player B is: 

�NIdO = ��
�� − yd − J �c,��c,� + �d,� (� − yc + yd)                                                       �� yc ≥ yd

� − yd − J �c,��c,� + �d,� (� − yc + yd) −  J �d,��c,� + �d,� (−yc + yd) �� yc < yd  (6.13) 

The loser experiences envy if the winner gets the prize or/and if his total investment was 

higher than the competitor's investment. The first order condition, after simplification, 

gives:13  

J�c,�� − 2J�c,�� = ��c,� + �d,���  �� yc ≥ yd (6.14a) 

                J�c,�� = (1 + J)��c,� + �d,���  �� yc < yd (6.14b) 

Therefore, the best reply function is given by:  

�d,���c,�� =
���
��max ~0,   �J�c,�� − 2J�c,�� − �c,��           �� yc ≥ yd

max R0,   � J1 + J �c,�� − �c,�S                  �� yc < yd
 (6.15) 

                                                           

12 The second order condition for a local maximum is fulfilled if �d,� < n��. 

13 The second order condition is fulfilled as long as �c,� < n�. 
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It can be shown that that �c,�∗ ≥ �d,�∗  for all values of 0 < J ≤ 1.14 

The Nash equilibrium of the second stage is determined by the intersection of the 

two well-defined best-reply functions (eq. (6.12) and (6.15)). In order to find a 

symmetric Nash equilibrium, we need to solve a system of two quadratic equations with 

two variables. The system is defined by eq. (6.11a) and (6.14a). 

A non-trivial (unique) solution in which �c,�, �d,�>0 exists, but its closed form 

solution cannot be easily derived and is not very useful due to its complexity. However, 

using iterative methods we can find a unique solution for particular values of parameters J and V.15 Figure 6.2 depicts equilibrium investments as a function of J. Moreover, 

examples of equilibrium behavior for several values of the envy parameter are presented 

in Table 6.1. It becomes apparent that as long as J ≤ 1, the underdog's investment 

increases with the strength of inequality aversion (envy), but the winner's investment is 

hyperbolic. The total investment made in the second battle increases with J. 

 

First battle 

With regard to the first battle, recall that contestants are ex ante symmetric. When 

we consider player A, we can re-write the expected winner's and loser's utilities in eq. 

(6.10) and (6.13) as −�c,� + I� and −�c,� + I�, respectively. Thus, we can express 

player A's expected utility as: 

�NIcO = � − �c,� + �c,��c,� + �d,� I� + �d,��c,� + �d,� I� (6.16) 

The first order condition simplifies to:  �d,�(�c,� + �d,�)� I� − �d,���c,� + �d,��� I� = 1 (6.17) 

We can derive an analogous condition for player B, which results in a symmetric 

equilibrium. Hence, equilibrium investments in the first battle are equal to: 

�c,�∗ = �d,�∗ = I� − I�4  (6.18) 

Again, a general algebraic solution is not useful. However, for fixed values of J 

and V we can compute the values I� and I� and can therefore estimate equilibrium 

                                                           
14 See Proof 1 in Appendix A. 
15 See Klumpp and Polborn (2006) for a similar approach. 
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investments in the first battle (see Table 6.1). Theoretic predictions are graphically 

displayed in Figure 6.2.  

Figure 6.2b reveals that envious players invest significantly more in the contest 

than non-envious players with standard preferences (the standard Nash equilibrium 

prediction). This is due to positive investments in the second battle, which are zero under 

standard preferences. Investments in the first battle decrease when non-zero investments 

in the second battle are anticipated. However, this effect is only marginal. As a 

consequence, rent dissipation in the SPNE increases with envious players. 

 

  

Figure 6.2: Equilibrium behavior under envious preferences (V=80): 

(a) individual investments; (b) total contest expenditures  
Note: Computed in STATA® (using a non-linear equation system). 

 

6.3.5. Efficiency of equilibrium behavior 

Further, behavior induced by envious preferences has important implications for 

the efficiency of the entire contest. Here, we can identify two sources of inefficiency: 
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rent dissipation due to contest investments (direct effect) and the possibility that the prize 

is not being awarded (indirect effect).  

Figure 6.2b shows that the total investment in the contest increases under 

stronger envy parameters J. Moreover, the probability of the prize not being awarded 

also increases with J. Both aspects lead to less efficient contest outcomes. The last two 

columns of Table 6.1 demonstrate this result. For strong envious preferences, the 

expected overall rent dissipation is larger than the prize.16 In comparison to contests with 

standard preferences, where the prize is always awarded and 50 percent of the rent is 

dissipated in the equilibrium, we can conclude that envy can cause tremendous 

efficiency losses in the setting studied.17  
 

 

Table 6.1: Equilibrium behavior (V=80). 

 

 J 

Static contest   Dynamic contest 

 

 

 

Rent  

dissipation 
 

 

 
 Direct rent  

dissipation 

Prob. 

prize  

awarded 

0.00 20.00 50.00%  20.00 0.00 0.00 50.00% 100.00% 

0.10 20.95 52.38%  18.81 5.80 0.50 54.89% 92.12% 

0.25 22.22 55.56%  18.40 10.48 1.96 61.55% 84.26% 

0.30 22.61 56.52%  18.42 11.52 2.51 63.60% 82.12% 

0.50 24.00 60.00%  18.83 14.27 4.89 71.02% 74.49% 

0.65 24.91 62.26%  19.27 15.24 6.91 75.86% 68.81% 

0.75 25.45 63.64%  19.56 15.40 8.44 78.71% 64.60% 

0.90 26.21 65.52%  19.91 14.69 11.18 82.12% 56.80% 

1.00 26.67 66.67%  20.00 13.33 13.33 83.33% 50.00% 

Notes: Computed in STATA® (using a non-linear equation system). Equilibrium behavior for static 

contests under symmetric envious preferences is described by: �c,�∗ = �d,�∗ = �j��j� n�  (see Herrmann and Orzen 2008, p. 39). 

 

                                                           
16 Denote γ the probability that the prize is awarded. Then, the total dissipation of rent (in expected term) 

is equal to: (1 −  �)� + yc + yd. Note that for instance for α=0.75, total dissipation would amount to 

114.1% (compare Table 6.1). 
17 Note that in certain contexts, additional contest investments may not be considered wasteful. For 

instance, when applying the setting to sporting events, a non-trivial second battle can induce social 

benefits. 

�c,�∗ �d,�∗�c,�∗ = �d,�∗  �c,�∗ = �d,�∗  
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6.4. The experiment 

In order to test our theoretic predictions presented in Section 6.3, we ran a 

laboratory experiment. The general structure of the experiment in the main treatment 

follows a set-up of a dynamic contest with two battles. We framed and organized the 

rent-seeking contests as lotteries.  

 

6.4.1. The experimental implementation18 

In the main treatment, two subjects (called A and B) are symmetrically endowed 

with E=80 tokens and compete for a monetary prize of V=80 tokens. Ten tokens 

correspond to 1 EUR. The entire game consists of two battles, neutrally framed for 

subjects as “stages.” Each stage proceeds in three identical steps. First, subjects are 

allowed to purchase lottery tickets, using their individual endowment (one ticket costs 

one token). Subjects make decisions simultaneously. When deciding how many tickets 

to buy, they can use a customized calculator to compute winning probabilities (see 

Figure 6.11 in Appendix D). After subjects have decided on their investment, they 

receive feedback about the investment decision of their opponent and the resulting 

winning probabilities. In the last step, the computer randomly draws one of the tickets 

bought by both players in that stage.19 Whoever bought that ticket is the winner of the 

stage, which is announced for both players on screen. This three-step procedure is 

repeated for the second stage. Payoffs across both stages for each player are equal to: 

 

� = ~80 − v�p�����v �� q�ssp�� s�r�psv        �� ����p �v ��s ���80 − v�p�����v �� q�ssp�� s�r�psv + 80      �� ����p �v ��� (6.19) 

In our experiment, we investigate one-shot interactions, which are standard for 

studies on social preferences, often involving ultimatum or dictator games. Across all 

treatments, we also elicited beliefs about the behavior of the competitor. This was done 

simultaneously with the investment decision at each stage, and subjects’ estimations 

were incentivized according to a quadratic loss function, capped at 0:  

���tv = max -0; 5 − 0.05(�pq�p� − frst�q �pℎ�u���)�} (6.20) 

                                                           
18 For written instructions, see Appendix D. 
19 Analogous to our assumption in Section 6.3, subjects were told that if no tickets are bought by any 

player in a single stage, the lottery does not take place and nobody wins the stage. However, this actually 

never occurred in the main treatment. 
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6.4.2. Treatments 

In our main treatment, called ENVY, subjects play in pairs the game described in 

Section 6.3, under the implementation presented in Section 6.4.1. They compete against 

each other in two consecutive lotteries. Only subjects who win both lotteries are awarded 

a prize.  

Our experiment aims at testing whether envy drives behavior in the second battle. 

However, envy may not be the only reason that losers from the first battle make a 

positive investment in the second battle. Some of the non-zero investments may be due 

to mistakes (Potters et al. 1998) or experimenter demand effect (Zizzo 2010). Moreover, 

subjects may attribute a non-monetary utility to the mere fact of winning the stage, i.e., 

display joy of winning (Sheremeta 2010, 2014), which can drive non-zero investments 

in the second battle. To disentangle envious behavior from these other non-monetary 

motives, we use the tie-breaking rule as a treatment variable.  

In a control treatment, called NOENVY, we implement an alternative tie-breaking 

rule, which stipulates that if there is a tie in wins, the prize is awarded to the winner of 

the first battle. For example, if player A wins the first battle and player B wins the second 

battle, the prize is awarded to player A. Under such a tie-break rule, the first battle is 

decisive for who wins the prize. The first battle loser has no possibility to prevent this. 

Consequently, envy cannot drive behavior in the second battle, which, by contrast, is 

possible in the ENVY treatment. However, even without scope for envy, subjects in the 

NOENVY treatment can still make mistakes or experience joy of winning or demand 

effects in the second stage. Hence, our treatment variation manipulates only the presence 

of envy motives, and it has no impact on motives other than envy. The comparison 

between the NOENVY and the ENVY treatments will reveal the net effect of envy in the 

considered setting.  

Further, we introduced a static contest as another benchmark treatment (STATIC). 

In this treatment, the contest is reduced to a conventional (one-battle) contest. All other 

parameters remain unchanged. This treatment allows us to test whether subjects indeed 

behave as if there were only one relevant round of contest. The experimental treatments 

are summarized in Table 6.2. 
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Table 6.2: Overview of experimental treatments. 

Treatment Tie-breaking rule Focus 

STATIC n.a. (only one battle) 
Benchmark for as-if 
behavior 

NOENVY 
If 1:1, the first battle winner wins the 

prize 
No envy-driven behavior 

ENVY If 1:1, no one wins the prize Envy effect 

 

6.4.3. Hypotheses 

Based on our theoretic predictions from Section 6.3, we derive four main 

hypotheses for our experiment. The null hypothesis describes behavior of a homo 

oeconomicus player (perfect rationality and selfish preferences), whereas the alternative 

hypotheses specify behavioral players (with bounded rationality and envious 

preferences).  

Following backward induction, we start with behavior in the second stage. Recall 

that a perfectly rational player who maximizes her monetary payoff has no incentive to 

invest in the second battle in the NOENVY treatment because she has already won or lost 

the prize. To understand whether players display any motives other than payoff-

maximization, we formulate Hypothesis 6.1.  

 

Hypothesis 6.1 (Second-stage behavior): Game-theoretic rationality  

H0: In the second stage of the dynamic contest in the NOENVY treatment, both players 

invest 0. 

HA: Both contestants invest more than 0 in the second stage of the contest in the NOENVY 

treatment. 

Moreover, we introduce Hypothesis 6.2 to examine whether envy leads to 

differences in behavior between the ENVY and NOENVY treatments. Remember that 

under selfish preferences, subjects who lost the chance of winning the prize should 

behave the same way in the NOENVY compared to the ENVY condition. 

 

Hypothesis 6.2 (Second-stage behavior): Envy 

H0: Investments of prospective losers in ENVY are as high as those in NOENVY. 
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HA: Investments of prospective losers in ENVY are higher than in NOENVY. 

Furthermore, to investigate whether winners of the first stage anticipate envious 

behavior in the second stage, we compare behavior of the first-stage winner in ENVY 

with the NOENVY treatment. Under selfish preferences of contestants, subjects should 

not expect any investments in the second stage. This also implies that subjects who still 

have a chance of winning the prize (ENVY) behave in the second stage in the same way 

as subjects who have already won the prize (NOENVY). 

 

Hypothesis 6.3 (Second-stage behavior): Anticipation of Envy 

H0: Investments of prospective winners in ENVY are as high as in NOENVY. 

HA: Investments of prospective winners in ENVY are higher than in NOENVY. 

 

Finally, we show in our theoretic analysis that under standard preferences and 

perfect rationality, subjects behave in the first stage as if there were only one stage. Thus, 

our last hypothesis is as follows: 

 

Hypothesis 6.4 (First-stage behavior): Anticipation effect 

H0: Across treatments, investments in the first stage are equal. 

HA: First-stage investments in the static contest are higher than in the dynamic contests. 

 

6.4.4. Experimental procedure 

We conducted a between-subject experiment with three treatments in the 

Cologne Laboratory for Economic Research (Germany) in November 2015. The 

experiment was computerized with z-Tree (Fischbacher 2007), and 212 subjects were 

recruited via ORSEE (Greiner 2015). Subjects were undergraduate and graduate 

students from various faculties (66% female, mean age: 23.1) and earned on average 

13.68 EUR (standard deviation 4.44), including a show-up fee of 4 EUR. 

The experimental sessions lasted between 45 – 60 min and always proceeded in 

the same way across all treatments. At the beginning of the experiment, we elicited risk 

preferences of subjects using a menu of incentivized scenarios, in which subjects had to 
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choose between a lottery or a safe option (similar to Holt and Laury 2002).20 After the 

main part of the experiment, one of the scenarios was randomly drawn, played and paid 

out. The results of risk preferences task were revealed to subjects after the main part.  

 

6.5. Results 

In this section, we present results following our main hypotheses. For the 

analyses, we consider one pair of subjects as an independent observation. We collected 

36 independent observations each in the NOENVY and ENVY treatments, and 34 in the 

STATIC treatment.  

 

6.5.1. Behavior in the second battle 

First, we analyze behavior in the second battle to examine Hypothesis 6.1. As 

can be seen in Figure 6.3 subjects on average invest positive amounts in the second 

battle. Specifically, in the treatment NOENVY, both winners and losers on average make 

positive investments (5.4 and 3.5, respectively), implying that non-envy motives 

(mistakes, joy of winning, experimenter demand) play a role for investments in the 

second stage. In both cases, the behavior is significantly different from zero (both 

p<0.001; Wilcoxon signed-rank test, hereafter WSR-test). Winners tend to invest 

slightly more. The difference is, however, not statistically significant: p=0.539 (WSR-

test). This leads to the first result: 

 

Result 6.1: The total effect of mistakes, joy of winning and experimenter demand is non-

negligible. We reject null Hypothesis 6.1. 

Second, our main experimental question concerns the difference in behavior 

between the NOENVY and ENVY treatments. Looking at the ENVY treatment, losers from 

the first stage invest on average 12.4 tokens, which is more than triple the amount we 

observe in the NOENVY treatment. This difference is statistically significant: p=0.011 

(Mann-Whitney U-test, hereafter MWU-test). Similarly, non-zero investments are more 

frequent in the ENVY treatment than in the NOENVY treatment (61% and 36%, 

respectively). This difference is also significant by a ��-test (p=0.034). The result is also 

                                                           
20 See the experimental screen from z-Tree in Figure 6.10 in Appendix D, as well as the distribution of 

elicited proxy of risk preferences depicted in Figure 6.8 in Appendix B. 
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confirmed in the parametric regression analysis (see column [I] in Table 6.4). The 

treatment dummy is statistically significant in the regression for losers from the first 

battle. They invest on average about 8.5 tokens more in ENVY treatment than in NOENVY 

treatment, which amounts to more than 10 percent of their initial endowment. 

Responses collected in a post-experimental questionnaire provide additional 

evidence that envy is a significant decision-driver. After the experiment, we asked 

subjects to recall how intense their emotions were after they had learned the outcome of 

the first stage. We used an elicitation procedure similar to Bosman and van Winden 

(2002) and Hopfensitz and Reuben (2009), i.e., subjects self-reported their indicated 

emotions on a Likert scale between 1 and 7. Subjects who lost the first battle are in 

general rather reluctant to admit to being envious (the average reported level is 2.9). 

Still, the self-reported level of envy is significantly correlated with the level of 

investment in the second battle (Spearman’s rho 0.350, p=0.039).21 

Zizzo and Oswald (2001) show in their “burning money” experiment that the 

willingness to reduce others’ income depends on the perceived desert of this income 

                                                           
21 Note that the English word “envy” can be translated into German either as “Neid” or as “Missgunst,” 

which correspond to “benign” and “malicious” envy, respectively (see e.g., Smith and Kim 2007). We ask 

subjects to report both. The values reported in the main text describe “Missgunst,” i.e., malicious envy. 
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Figure 6.3: Average investments in the second battle. 

Notes: Asterisks correspond to results of non-parametric tests (WSR-test for the within-

treatment comparison and MWU-test for the between-treatment comparison).  

Significance levels: *** p<0.01; ** p<0.05; * p<0.1; ns p≥0.1. 
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(i.e., whether someone “earned” the income). We do not find such a regularity in our 

setting. Desert of winning the first battle does not matter for envy-driven behavior in our 

experiment. There is no systematic difference in behavior between losers who lost the 

first battle despite having invested more than their competitor (and who therefore may 

perceive the outcome as unfair) from those who lost after having invested less than the 

competitor. 

These results demonstrate that we can summarize the behavior of losers in the 

second battle as follows: 

 

Result 6.2: Envy substantially increases losers’ investment in the second battle. Players 

are willing to invest significant amounts of money to prevent competitors from winning 

the prize. We reject null Hypothesis 6.2. 
 

Third, we examine whether this envy-driven behavior by losers in the second 

battle is expected by winners from the first battle. In other words, do they adjust their 

investments to counteract envy-driven behavior in the second stage? We indeed find a 

highly significant behavioral adjustment. In the ENVY treatment, winners from the first 

stage increase their average investments in the second battle to 17.3, which is more than 

triple the amount that we observe in the NOENVY treatment (p<0.001, MWU-test). The 

parametric regression analysis arrives at the same conclusion (see column [II] in Table 

6.4). The treatment dummy variable is highly significant. Winners invest on average 

almost 12 tokens more in the ENVY treatment than in the NOENVY treatment, which 

corresponds to 15 percent of the initial endowment. We also find evidence that the 

increase in investments is at least partially driven by the anticipation of envy. The 

average reported beliefs about the underdog’s investment increase from 11.4 in NOENVY 

to 17.6 in ENVY. The difference is not statistically significant (p=0.173, MWU-test). 

Nevertheless, the higher beliefs about underdog’s envy-driven investment drive higher 

investments at least to some extent; these two are significantly correlated (Spearman’s 

rho 0.370, p=0.027). 

 

Result 6.3: In the ENVY treatment, first-battle winners expect envy-driven behavior and 

respond by increasing their investments in the second battle (as compared to NOENVY). 

We reject null Hypothesis 6.3. 
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6.5.2. Behavior in the first battle 

In this section, we analyze behavior in the first battle. As derived in Section 6.3, 

given standard preferences, subjects in dynamic two-battle contests should behave as if 

there were only one battle. We test this prediction by comparing the results from the 

ENVY treatment with results from the NOENVY and the STATIC treatment.  

First, in the ENVY condition, subjects correctly anticipate the non-trivial second 

battle and therefore reduce their investments in the first battle (see Figure 6.4). In 

numbers, the average investment in the ENVY treatment of 19.5 is significantly lower 

than 28.5 in the NOENVY treatment (p<0.01, MWU-test). 

We also observe a weak framing effect between the STATIC and NOENVY 

treatments. Note that in both treatments behavior in the first battle completely 

determines the winner of the entire contest. Nevertheless, framing the contest as a two-

battle game may influence the perception of the prize. Therefore, average investments 

slightly decrease from 35.5 in the STATIC treatment to 28.5 in the NOENVY treatment. 

However, this difference is not statistically significant (p=0.112, MWU-test).  

 

Result 6.4: In the ENVY treatment, subjects anticipate envy and competition in the second 

battle and therefore invest less in the first battle than in the NOENVY treatment. We reject 

null Hypothesis 6.4. 

Figure 6.4: Average investments in the first battle. 

Note: Asterisks correspond to results of a non-parametric MWU-test; 

Significance levels: *** p<0.01; ** p<0.05; * p<0.1; ns p≥0.1. 
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 Table 6.3: First battle behavior. Regression analysis. 

Dependent variable: 

Investment 1. battle 
STATIC 

[I] 

STATIC 

[II] 

All 

treatments 

[III] 

All 

treatments 

[IV] 

Belief 

 

0.901*** 

(0.141) 
 

0.737*** 

(0.068) 

1[NOENVY treatment] 

  

-5.680* 

(3.431) 

-0.739 

(2.735) 

1[ENVY treatment] 

  

-16.342*** 

(3.443) 

-5.940** 

(2.873) 

1[Female] 9.409 

(5.937) 

4.339 

(4.650) 

5.074* 

(2.923) 

5.661** 

(2.299) 

Risk preferences (proxy) -1.933 

(1.993) 

-0.655 

(1.552) 

0.421 

(1.085) 

0.560 

(0.853) 

Constant 

  

36.987*** 

(10.175) 

1.702 

(9.592) 

28.746*** 

(5.925) 

1.187 

(5.311) 

Number of observations 62 62 192 192 

R-squared 0.053 0.446 0.119 0.459 

Notes: OLS regressions. In parentheses, standard errors.  

Risk proxy: number of risky choices (integer number between 0 and 10). 

We consider only subjects with consistent risk preferences (i.e., single switching point).  

Significance levels: *** p<0.01; ** p<0.05; * p<0.1. 

 

Table 6.4: Second battle behavior. Regression analysis. 

Dependent variable: 

Investment 2. battle 

LOSERS 

[I] 

WINNERS 

[II] 

1[ENVY treatment] 8.497** 

(3.417) 

11.889*** 

(2.787) 

1[Female] 3.421 

(3.759) 

2.311 

(2.901) 

Constant 

  

1.287 

(3.387) 

3.941 

(2.705) 

Number of observations 

R-squared 

72 

0.103 

72 

0.215 

Notes: OLS regressions. In parentheses, standard errors. 

Significance levels: *** p<0.01; ** p<0.05; * p<0.1.   
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6.5.3. Beliefs and behavior in static Tullock contests (STATIC treatment) 

Aside from inter-treatment comparisons and treatment effects, results from the 

STATIC treatment serve as our benchmark for comparing our results to previous 

experimental evidence on Tullock contests, summarized in e.g., Sheremeta (2013). 

Unlike most previous studies that investigate repeated interactions, we report behavior 

in a one-shot experiment. Still, we replicate two major phenomena prominent in the 

literature. First, we find significant overbidding; subjects invest significantly more than 

predicted by the Nash equilibrium under standard preferences (p<0.001, WSR-test). On 

top, the average amount of overbidding in our study (77.6%) is larger than what has been 

reported in many previous studies with repeated contests.22 We also observe 

overspreading; in contrast to the unique equilibrium in pure strategies, subjects 

frequently use the entire strategy space (see Figure 6.6 in Appendix B).  

Since we elicited subjects’ beliefs, we can compare patterns of behavioral 

responses to beliefs in our static game, using the empirical response functions reported 

by Rockenbach and Waligora (see Chapter 2) in a repeated partner settings. Our results 

suggest that reported beliefs and observed behavior are strongly correlated (Spearman’s 

rho 0.624, p<0.001). Figure 6.7 in Appendix B depicts average responses to beliefs in 

the same fashion as presented by Rockenbach and Waligora (see Chapter 2). We find 

the same linear response function, which contrasts starkly to the theoretic prediction of 

best replies. The linearity of the response function is also confirmed by the regression 

analysis in Table 6.3 (see column [II]), which shows a highly significant and strong 

effect of reported beliefs on contest behavior; the estimated parameter amounts to 0.9. 

 

6.5.4. Efficiency of the rent-seeking 

Finally, we investigate how treatment variation influences the efficiency of the 

contests. We aggregate investments made by both contestants during the entire contest. 

The average values are depicted in Figure 6.5a. Across all treatments, we observe very 

strong overbidding as compared to the theoretic prediction under standard preferences. 

Whereas in the symmetric Nash equilibrium only 50% of the rent is dissipated by the 

investments, in all of our treatments subjects dissipated on average more than 80% of 

                                                           
22 For instance, Rockenbach and Waligora (see Chapter 2) report an average overbidding of 29.7% in 

repeated Tullock contests. 
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the prize. However, we do not find any treatment effects on the dissipation of rents (all 

p>0.5, MWU-tests). 

 

Result 6.5: In the ENVY treatment, subjects predict envy-driven competition in the second 

stage and reduce investments in the first stage (as compared to the NOENVY treatment); 

the total dissipation of rents does not increase due to envy.  

 

 This result is probably driven by the fact that subjects in the ENVY treatment 

reduce their investments in the first stage. This reduction is stronger than predicted by 

the theoretic analysis. However, this is in line with experimental evidence from Mago 

and Sheremeta (2012), who test behavior in sequential three-battle contests. The authors 

Figure 6.5: Efficiency of contests across treatments. 
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find that subjects underinvest in the first battle. Although our experimental design differs 

from Mago and Sheremeta’s study in several ways,23 our results qualitatively suggest 

the same behavioral pattern of players being over-cautious at the beginning of the 

contest. 

As pointed out in Section 6.3.5, rent dissipation is only one of two possible 

efficiency concerns in the considered set-up. Envy-driven behavior may also impact the 

likelihood of the prize being awarded. This effect becomes apparent when looking at 

Figure 6.5b. Whereas in the STATIC and NOENVY treatments the prize is always 

awarded, envy-driven investments in the ENVY treatment lead to the prize not being 

awarded in 30 percent of the cases. Depending on the contest, this may lead to a 

significant social loss.  

 

Result 6.6: Due to envy-driven behavior in the ENVY treatment, the prize is not awarded 

in 30 percent of the cases. 

 

6.6. Conclusion 

In this paper we provide evidence that envy is a significant and strong driver of 

behavior in dynamic contests and often prevents the prospective loser from surrendering. 

As a consequence, the amount of resources spent in the second battle increases, as 

compared to the theoretic benchmark. Such behavior has an impact on the efficiency of 

the contest. We observe that total dissipation of rents does not increase, as players 

anticipate behavior in the second battle and reduce investments in the first battle more 

than equilibrium behavior would predict. However, we observe another source of 

inefficiencies. We find that envy-driven behavior results in the prize/rent not being 

awarded in 30 percent of the cases.  

This study may provide useful insights in the area of patent protection laws. We 

observe that subjects in our experiment are often determined to prevent the opponent 

from winning the prize. It is not unsound to presume that similar behavior can be 

expected from firms competing against each other in markets. If they also engage in 

fierce patent blocking behavior, this may prevent many products from being 

commercialized and consequently reduce social welfare substantially.   

                                                           
23 Most importantly, Mago and Sheremeta (2012) model battles as all-pay auctions. 
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6.7. Appendix A: Proofs 

 

Proof 1: In the ‘symmetric’ equilibrium, if 0 < J ≤ 1 the second battle investment of 
the prospective winner is not smaller than investment of the prospective loser. 

Since we analyze only equilibria in which first battle behavior is symmetric, yc ≥ yd if 

and only if  �c,� ≥ �d,�. Assume now by contrast that �c,� < �d,�, which implies that yc < yd. Then, in equilibrium, it must hold from eq. (11b) that �d,�� = (�c,� + �d,�)�. 

Moreover, from eq. (13b) it must hold that J�c,�� = (1 + J)(�c,� + �d,�)�. From these 

two conditions it follows that �d,� = ��j� �c,� as soon as � ≠ 0. However, if 0 < J ≤ 1 

the expression  ��j� < 1, which implies that �c,� > �d,�. We obtain a contradiction. ∎ 

 

 

6.8. Appendix B: Additional figures 

 

  Figure 6.6: Distribution of investments in the first stage. 
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Figure 6.7: Average responses to beliefs in treatment STATIC. 

 

 

 

Figure 6.8: Distribution of risk proxy (all three treatments pooled). 
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6.9. Appendix C: Theoretic prediction under relative payoff 

maximization 

 

1. Assumption: 

Player’s expected utility depends on the difference between her own payoff and the 

weighted payoff of the opponent (see Sheremeta 2015a). Player’s utility: 

Id��c,  �d� = �d − ��c 

r is relative payoff parameter (r>0 reflects competitive preferences) 

 

2. Incentive to deviate in the second battle [first battle loser] 

Expected payoffs, assuming the equilibrium behavior of the competitor: 

��Id��d,� = 0� = � − �4 − � ¡� + 34 �¢ = (1 − �)� − �4 (1 + 3�) 

��Id��d,� = � > 0� = � − �4 − � − � ¡� − �4¢
= (1 − �)� − �4 (1 − �) − � 

Therefore, there is an incentive to deviate from the equilibrium derived under standard 

preferences. 

 

3. Equilibrium prediction under relative payoff maximization 

We apply backward induction and find second-battle equilibrium behavior. Loser’s 

expected payoff in the second battle is: 

�NIdO = � − �d,� − �d,� − �(� − �c,� − �c,� + �c,��c,� + �d,� �) 

First-order condition gives: ��NIdO��d,� = −1 + � �c,���c,� + �d,��� � = 0 

Analogously, winner’s expected payoff in the second battle is: 

�NIcO = � − �c,� − �c,� + �c,��c,� + �d,� � − �(� − �d,� − �d,�) 

First order condition gives: 

��NIcO��c,� = −1 + �d,���c,� + �d,��� � = 0 
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Combining the two first-order conditions, we obtain that: 

��c,�� = �d,�� 

Inserting this in the first-order conditions and solving for optimal investment levels gives 

us the equilibrium prediction for the second battle: 

 Loser:  �c,�∗ = F(�jF)£ � 

 Winner: :  �d,�∗ = F£(�jF)£ � 

By backward induction, we can find symmetric first battle behavior: 

�c,�∗ = �d,�∗ = I� − I�4  

where  I� = � + n(�jF)£; I� = � − F£n(�jF)£ 

Using the derived predictions, we can depict equilibrium behavior as a function of 

parameter r (see Figure 6.9). 

Figure 6.9: Equilibrium prediction under relative payoff maximization (V=80).  

(a) individual investments; (b) total contest expenditures. 
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6.10. Appendix D: Computer screens and experimental instructions 

 

 

Figure 6.10: Computer mask in the risk elicitation task. Translation from German. 

 

 

 

 

Figure 6.11: Computer mask at the decision stage (treatments ENVY & NOENVY). Translation 

from German.  
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Experimental written instructions: ENVY-treatment (translation from 

German) 

 

General information 

Welcome to our experiment! It is very important that you carefully read and understand 

the following instructions. If you have any questions, please raise your hand. We will 

then come to you and answer them. Communication with other participants before and 

during the experiment is not allowed. If you violate this rule, you will have to leave the 

experiment and will receive no payment. 

You can earn money in this experiment. You will receive 4 EUR for participation. You 

can earn additional money during the experiment. The amount you earn depends on your 

and other participants’ decisions during the experiment. You will be paid in cash at the 

end of the experiment. Your payoff or identity will not be revealed to other participants. 

Today’s session consists of two independent experiments that we call Part 1 and Part 2. 

Your earnings in both will be added up. 

 

Part 1 

In Part 1 you will make a number of decisions, for which you can earn money. How 

much you will earn depends partially on your decisions and partially on luck. 

In a moment, you will see a menu of ten scenarios. In each scenario, there is an Option 

A and an Option B. Please decide which option you prefer.  

After you have made all of your decisions, one of the scenarios will be randomly chosen 

and played out. The corresponding amount of money you earned will be added to your 

payment account. 

Option A is the same in all scenarios. This is a lottery that gives you 2 EUR with 50% 

probability and 0 EUR with 50 % probability. 

Option B differs across scenarios. This is an amount of money you can get with 

certainty (i.e., 100% probability). 

Which scenario was chosen and played out will be revealed to you after you have 

finished Part 2 of today’s experiment. 

<SCREEN 1: see Figure 6.10> 
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Part 2 

Your earnings in this part are denoted in tokens. These will be converted into EUR and 

added to your account. The exchange rate is: 

10 tokens = 1 EUR 

In this part of the experiment you will interact with another participant. You will be 

randomly matched with an opponent in a minute. In each pair, there will be player A 

(marked blue) and player B (marked red). These roles will be assigned randomly. 

Information on whether you are player A or player B will appear on the screen before 

the game begins. 

You and your opponent will compete in a two-stage game for a prize. Each stage is a 

lottery. Both stages (i.e., lotteries) proceed in the same way. Only the player who wins 

both stages wins the prize of 80 tokens. 

For the entire game, you have an endowment of 80 tokens. 

In each stage, you decide on how many points you want to spend on lottery tickets. One 

ticket costs 1 token (1 token = 1 ticket). You can purchase as many tickets as you wish. 

However, you are not allowed to exceed your budget of 80 tokens. In stage 2, you can 

only use tokens you have not spent in stage 1. The tokens you did not spend in either 

stage are added to your account. 

Your probability of winning in a particular stage depends on how many tickets you have 

bought in this stage and how many your opponent has bought. The more tickets you 

bought, the more likely it is that you win the stage. Similarly, the more tickets your 

opponent bought, the less likely it is that you win the stage. The probability that you will 

win the stage is equal to the number of your tickets divided by the number of all tickets 

bought. This means in each stage the probability of winning is computed as follows: 

Your probability of winning =  Number of your ticketsNumber of your tickets +   Number of tickets of the opponent 
If only one player has bought tickets, she/he wins the stage with certainty. If neither of 

the players bought any tickets, the lottery does not take place and nobody wins the prize. 

The prize of 80 tokens is awarded only to the player who wins both stages. 

Your earnings are as follows: 

Your earnings if you win the prize = 80 – your investment in tickets in both stages + 80 

Your earnings if you lose = 80 – your investment in tickets in both stages 



 

134 
 

6. Envy in Dynamic Contests 

Each stage consists of three steps: 

Step 1 

In the first step, you decide how many tickets you would like to purchase. At the same 

time your opponent makes the same decision. 

While you make your decision, you can use a what-if-calculator. You can insert 

hypothetical investments for your opponent and yourself, and the calculator computes 

the probabilities of winning for you and your opponent, according to the formula above. 

You can use the calculator as often as you want. Please just insert in the red field (see 

red field (1) in Figure 1) the opponent’s investment and click on “Compute.” 

You should insert your final decision in the field on the right-hand side of the screen and 

confirm with the button “OK” (see red field (2) in Figure 1). You are not only asked 

about your investment, but also about what investment you expect from your opponent. 

For this, you can earn a bonus of up to 5 tokens. The amount of the bonus depends on 

how accurate your prediction is. The smaller the deviation of your prediction, the higher 

your bonus is. The bonus is computed in the following way. 

Bonus = 5 − 0.05 ∗ Deviation� 

The deviation is the difference between your prediction and the actual opponent’s 

investment: 

Deviation = |Your prediction − actual opponentbs investment| 
It is not important that you understand the formula well. In general, it holds that the 

better you guess the behavior of the opponent, the higher your bonus is. If the mistake 

is larger than 10, the bonus is 0. This means there is no negative bonus; you cannot lose 

any tokens for your prediction. Your bonuses from both stages will be added to your 

account. 

 

Step 2 

In the second step, you get feedback on your opponent’s decision (how many tickets 

she/he has bought). Probabilities of winning are also computed and displayed. All tickets 

bought are numbered. You get information on which numbers correspond to your tickets 

and which to tickets of your opponent. In order to make it clearer, this is also displayed 

graphically.  

Each ticket is equally likely to be drawn. 
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You also receive feedback on how accurate your prediction about the opponent’s 

investment was and how large your bonus is. 

 

Step 3 

In the last step, the winning ticket is drawn. The computer draws one of the tickets that 

were purchased. The number of the winning ticket and the winner are displayed on the 

screen.  

To sum up, the game goes as follows: 

 

 

Before the game starts, we would like you to answer three test questions in order to make 

sure that you have understood the rules. They appear on the screen as first. 

 

Figure 6.12: Figure 1 from the written instructions. Translation from German. 
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