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Abstract
Investigation of sex differences in the brain connectomes, that is, comprehensive maps
of the underlying structural and functional connections across different regions of the
human brain defined by a specific parcellation scheme, has been an active field of re-
search in neuroscience. There are largely two main approaches to study the complex
dynamics of the brain - empirical neuroimaging techniques and whole brain dynamical
models. The studies in the past, however, have utilized only the empirical brain data
extracted from the neuroimaging techniques in their investigation of sex differences.
The aim of this project, therefore, is to also include the simulated data generated from
the whole brain dynamical models and examine the sex differences in its correlation
with the empirical data, within a given brain parcellation scheme.
The analysis involves 272 subjects from the Human Connectome Project (144 fe-
males). For each individual under 11 brain parcellation schemes, we calculated an em-
pirical structural connectivity (eSC), an empirical functional connectivity (eFC) using
the empirical neuroimaging data and two simulated functional connectivity (sFC) ma-
trices based on the ensembles of coupled phase- (PO) and limit-cycle (LC) oscillators.
The sex difference was then investigated in the goodness-of-fit - the maximal Pearson’s
correlation coefficient between the sFC and the eFC matrices (corr(sFC, eFC)max).
We observed a significantly higher correlation for males within each of the 11 par-
cellation schemes. Since the models utilize the empirical information, we regressed
out the brain size and empirical structure-function relationship, to check if the sex
difference still persists. After the regression, this difference remains significant for 10
and 8 parcellation schemes for PO and LC model, respectively. We speculated that a
potential reason for this could be the differences in the ‘complexity’ of the eFC matrix
between the two sexes, which may in turn negatively influence the quality of their
model fitting, i.e. a higher ‘complexity’ implying a lower fit. We then calculated three
potential ‘complexity’ measures - the Shannon entropy H(eFC), the standard devia-
tion σ(|eFC|) and the area under the eigen value curve A(λeFC) of the eFC matrix,
to not only examine the sex differences in them, but to also investigate their ability to
account for the sex differences in the goodness-of-fit. We found that the first two mea-
sures are significantly higher for males and are, therefore, positively correlated with
the goodness-of-fit. However, the third measure is found to be significantly higher
for females, resulting a negative correlation with the goodness-of-fit. The study was,
therefore, successful in establishing the statistical differences in the goodness-of-fit
and other properties of the eFC matrix between males and females. However, a pre-
cise interpretation of the term ‘complexity’ of a connectome and the validity of our
hypothesis about its negative correlation with the goodness-of-fit demands further
investigation.
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Chapter 1

Introduction

To understand the complex dynamics of a human brain, it is a common practice in
neuroscience to view the brain from the perspective of network theory. The empirical
neuroimaging techniques as well as the dynamical whole brain models follow this ap-
proach, where the brain is represented as a network of distinct, but interacting brain
regions, also referred to as the ‘nodes’ of the network and the ‘edges’ of the network are
represented by the structural or functional connections between the nodes [29] [31].
The structural connections correspond to physical anatomical links between the brain
regions, while the functional connections represent the synchronised co-activation of
any pair of brain regions during a task performance or even the resting state of the
brain. Brain connectomes are, therefore, comprehensive maps of neural connections
in the brain [6] represented through mathematical matrices.

Investigating sex differences in these brain connectomes (both structural and func-
tional) has been an active area of research in neuroscience. Previous studies have,
however, explored only empirical brain data in this aspect. For instance, the study
[40] investigated how the sex differences are encoded differently in the structure and
the function of human brain. That is, for some brain regions, there might be only a
structural or a functional difference between the male and female brain, while some
brain regions may differ both in their structure and their function. As mentioned
earlier, the functional connections across different brain regions exist even when the
brain is in its resting state. Accordingly, some studies such as [32] have shown that
there exist certain specific functionally connected regions (referred to as resting state
networks or RSNs) in the human brain wherein, the resting state connectivity differs
between males and females. Furthermore, a more recent study [39] implemented ma-
chine learning algorithms and successfully classified subjects according to their sex
by utilizing the spatially specific resting state brain connectivity (empirical) data.
In addition, the empirical structure-function correspondence in a male brain is also
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found to be different from that in a female brain [16].

Therefore, the aforementioned studies investigating the sex differences in the orga-
nization of human brain have not included the simulated resting state connectivity of
the human brain in their analysis. Hence, in addition to the empirical data recorded
through the neuroimaging techniques, this project aims to also include the simulated
data generated by whole brain dynamical models and subsequently examine how the
quality of model fit, that is, the correlation between the simulated and the empirical
functional connectomes, differs between males and females.
The following section provides a general background of a few concepts that constitute
the major building blocks of the analysis in this project.

1.1 Background

1.1.1 Brain Parcellation

The human brain is spatially heterogeneous [9]. Different parts of the brain differ
not only in their structure and function (local properties), but also in their connec-
tivity to other parts of the brain (global properties). To understand the organization
and function of the brain, we could consider the brain as a collection of hundred of
thousands of voxels (volume elements) and record the data for each of these voxels.
However, this would result in a very high dimensional data which is not optimal for
our analysis. Brain parcellation is, therefore, a technique to delineate the whole brain
into distinct, yet closely interacting regions, where each region consists of many vox-
els grouped together with respect to similarity in a specific neurobiological measure.
The idea is to create a brain atlas where each region is homogeneous within itself, but
differs from other regions. In this way, the dimension of brain data is reduced from
hundreds of thousands of voxels to a few hundred brain regions or brain parcels [9].

There exist a plethora of possible methods and criteria to parcellate a brain and
this is an open question in neuroscience as to which is the best way among many. Each
parcellation method results in a different number of brain regions, and an example
of this is illustrated in Figure 1.1, where the cortex of the human brain is delineated
into distinct brain regions (represented by each color) and the numbers on the left
represent the number of respective brain regions. The two common criteria based on
which the brain is parcellated into distinct regions are its anatomical and functional
properties. The anatomical properties include cytoarchitecture, myeloarchitecture,
folding properties of the cerebral cortex etc [9] [31]. The Harvard - Oxford atlas,
for instance, is based on parcellating brain cortex into 96 distinct parcels or brain
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Figure 1.1: Illustration of delineation of the cortex of the human brain into distinct
brain regions represented by each color. Each parcellation criteria gives rise to a
different number of brain regions as indicated by the numbers on the left side of the
figure. Figure taken from [3].

regions regions with respect to the cortical folding properties. On the other hand, for
parcellation based on functional properties, the functional connectivity of each voxel
is considered and voxels with similar connectivity (with the rest of the brain) are
grouped together into a brain region through a machine learning (clustering) algo-
rithm [31]. Here, functional connectivity refers to undirected statistical dependencies
between a pair of voxels (either while the brain is at rest or during task performance)
[29]. Examples of atlases defined based on resting state functional connectivity are
Schaefer atlas (which can be further classified into parcellation schemes with 100, 200,
400 or 600 parcels) and Shen atlas (which can have 79, 156 and 232 parcels).

It is important to note that all the methods employed to define a particular brain
atlas/parcellation scheme have inherent assumptions, advantages, and well as limita-
tions. Therefore, neither the anatomical nor the functional properties are in anyway
superior to the other, as each property represents different aspects of brain organisa-
tion [9].
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1.1.2 Empirical Structural and Functional Brain Connectome

A connectome or a connectivity matrix is a comprehensive map of neural connections
across different parts of the brain [6]. These connections can be at micro, meso as
well as macro scales. Once the brain has been partitioned into distinct brain regions
according to a certain criteria of parcellation, neuroimaging techniques are employed
to record the signal from each of these regions either during the resting state of the
brain, or during a cognitive task. Using this data extracted from the neuroimaging
techniques, a structural or a functional connectivity matrix is generated that reflects
anatomical links or statistical dependencies, respectively, between all the possible
pairs of brain regions.

At a macro scale, for a particular choice of brain parcellation scheme, the structural
connectivity (SC) is constructed from streamline tractography inferred from diffusion
weighted magnetic resonance imaging (dw-MRI), which reveals physical anatomical
links (axonal fibre bundles/streamlines) that interconnect the brain regions [31]. In
principle, there are two kinds of SC matrices that can be constructed - empirical
structural connectivity matrix (eSC) where each element corresponds to the number
of streamlines that connect the two brain regions and the empirical path length (ePL)
matrix where each element corresponds to the average length of those streamlines [8].
Besides, for the same parcellation scheme, the empirical functional connectivity ma-
trix (eFC) is constructed by calculating the Pearson’s correlation coefficient between
the blood oxygen level dependent (BOLD) time series signal of all possible pairs of
brain regions, recorded through the functional magnetic resonance imaging (fMRI).
The activity of a brain region is directly proportional to the blood oxygen level (am-
plitude of the BOLD signal) in that region. Since a brain region is made up of
numerous voxels, the BOLD signal recorded for a certain region in the brain is the
average of the BOLD signals of all the constituent voxels and, therefore, reflects the
collective activity of a large population of the underlying neurons. The eFC matrix
constructed, therefore, represents the strength of synchronised co-activation between
distinct regions of the brain [8].

It is should be noted that the structural connectivity matrix (SC) and the func-
tional connectivity matrix (FC), however, do not specify any directionality of the
underlying connections [29] and are, therefore, symmetric matrices.
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1.1.3 Simulated Functional Connectome

One of the efforts to understand the complex dynamics and the activity of the brain,
through the lens of Physics and Mathematics, is to simulate the mean activity of
each of the brain regions using whole brain dynamical models. Similar to empirical
neuroimaging methods, this approach also views brain cortex as a network of nodes
obtained by partitioning the cortex into distinct brain regions (nodes or parcels) de-
fined according to a parcellation criteria [8].

Some whole brain dynamical models are biologically inspired, like the neuronal
mass model, while some oscillatory neuronal models like the phase oscillator model
and the limit cycle model are rather abstract [4] and their neurobiological interpre-
tation is difficult. In general, the mathematical models employed to simulate the
neuronal activity of the brain involve a set of time dependent differential equations
that can be numerically solved. As the brain is viewed as a network of nodes or brain
regions defined by a selected parcellation scheme, the coupling strength between the
nodes is calculated from the eSC matrix, whereas the delay in signal propagation
between them is obtained from the ePL matrix. The models, therefore, utilize the
empirical neuroimaging data in their simulations. The simulation results in a time
series signal corresponding to each node of the network. For the selected parcellation
scheme, the simulated functional connectivity (sFC) matrix (symmetric in nature) is
subsequently constructed by calculating the Pearson’s correlation coefficient between
the simulated time series signal of all possible pairs of nodes or brain regions (similar
to the calculation of the eFC matrix).

1.1.4 ‘Complexity’ of a Connectome

Human brain is a hierarchical and modular (consisting of modules and sub modules
[29]) organisation of different regions that constantly interact with each other, even
when the brain is at rest. The empirical time series signals recorded through the
fMRI technique for each brain region represent the collective dynamics of a large
population of the underlying neurons. Since the dynamics can be periodic, random
or chaotic, the time series signals also exhibit different levels of complexity, which
in-turn introduces complexity in the eFC matrix [19].

The exact definition and quantification of ‘complexity’ of a connectome, however,
remains an open question in neuroscience. In the recent literature, there have been
a few attempts to quantify the ‘complexity’ of brain data. In the context of physio-
logical time series signals, the temporal complexity of an empirical fMRI signal from
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the human brain can be quantified in terms of ‘entropy’ which is a well established
estimate in statistics to assess how complex a dynamical process is [19]. It essentially
measures the lack of temporal order or predictability in the signal [26]. A large value
of any of the entropy, therefore, implies a highly disordered signal and thus indicates
that the underlying system is substantially complex [37] [26] [19]. The classical mea-
sures of entropy, however, are inaccurate in quantifying the complexity of the fMRI
time series signal due to limited number of sampling points [19]. Hence, the more ap-
propriate measures previously employed in the literature with regards to the entropy
analysis of the fMRI data include the ‘sample entropy’ (SampEn) [26] [37] [19] which
measures the rate at which new information is generated in a dynamical process [27],
‘multi-scale entropy’ (MLE) which is sample entropy over multiple time scales [27]
[37] and ‘approximate entropy’ (ApEn) [37] [26](a variant of sample entropy [30]).
Moreover, the study [19] uses SampEn to quantitatively characterize the complexity
within the dynamic functional connectivity (a functional connectome that is time
dependent). Besides, although the study [31] does not exclusively discuss ‘complex-
ity’ of a connectome, it quantifies several properties of the empirical connectome by
computing the data variables for every individual subject using their respective eFC
matrices, in order to account for both intra-parcellation as well as inter-parcellation
variance observed in the modelling results.

Aim of the Project
Specifically, this project considers the activity of a human brain in the absence of a
cognitive task and therefore, both the empirical neuroimaging signals as well as the
simulated time series signals that we considered, exhibit the resting state activity
of the brain. The project aimed at investigating whether the quality of model fit,
that is, the correspondence between the eFC matrix and the sFC matrix, referred to
as the goodness-of-fit, is different for the group of males as compared to the group
of females, within a selected parcellation scheme. Moreover, since the mathematical
models utilize the empirical information, we also aimed to investigate if the sex dif-
ferences persist after the other covariates with sex, like the brain size or the empirical
structure-function correspondence are regressed out from the goodness-of-fit.
Furthermore, since the eFC matrix was used for model validation, the sex differences
in the goodness-of-fit could also possibly be influenced by the presence of sex dif-
ferences in the ‘complexity’ of the eFC matrix. Therefore, an additional aim of the
project was to also quantify the ‘complexity’ of the eFC matrix, assess the statistical
significance of the differences in the quantified measure between the group of males
and females and also examine if the sex differences in the goodness-of-fit can be at-
tributed to the variation in the ‘complexity’ of the eFC matrix between males and
females within a selected parcellation scheme.
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Chapter 2

Materials and Methods

In this chapter, we discuss the characteristics of the empirical data employed in the
project, along with the brain parcellation schemes used, steps involved in the construc-
tion of the eSC, ePL, eFC matrices and whole brain dynamical models implemented
for the construction of the sFC matrix for every individual subject. Furthermore, in
addition to the methods employed for the calculation of ‘complexity’ measures, we
also discuss a few statistical techniques relevant to the analysis.

2.1 Characteristics of the Empirical Data

In this study, we considered 272 healthy and unrelated subjects consisting of 144
females and 128 males. All the subjects belong to the age group of 22-37 years, where
the mean age of the male group is 28.7 ± 3.6 (mean ± std) and that of the female
group is 28.3 ± 3.5. Hence, the average age of both the groups is approximately the
same as shown in Figure 2.1a, where the histograms of the males (in blue) and females
(in red) are superimposed on each other and the respective box plots are not largely
shifted with respect to each other. However, as shown in Figure 2.1b, in case of the
brain sizes or the total intracranial volume (TIV measured in mm3), the histograms
and the box plots of the male group are largely shifted towards higher values as com-
pared to those of the female group. The statistical significance of this difference was
subsequently tested and quantified as described in detail in subsection 3.1.1.

The empirical data for these subjects was obtained from the Human Connectome
Project (HCP) S1200 public release, which has the complete dwMRI data - for the
construction of eSC and ePL matrices, the resting state fMRI (rs-fMRI) data - for
the construction of the eFC matrix and the phenotypical data which includes the
phenotypical features such as sex, age, brain size (TIV), etc of the subjects [31].
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(a)

(b)

Figure 2.1: Illustration of the differences in the phenotypical characteristics between
the group of males (in blue) and the group of females (in red) in the subjects con-
sidered. (a): Sex differences in the age. (b): Sex differences in the brain size or the
Total Intracranial Volume (TIV measured in mm3).
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2.2 Brain Parcellation Schemes

We considered 11 cortical brain parcellation schemes in total which consisted of three
atlas families: the anatomical Harvard-Oxford Atlas defined based on folding prop-
erties of the cortex, and the functional Shaefer Atlas and Shen Atlas which are based
on grouping of voxels according to their similarity in the patterns of their respective
resting state functional connectivity. Each of these families of atlases have several
variations within themselves as follows:

1. Schaefer Atlas with 100, 200, 400 and 600 cortical parcels (referred to as S100,
S200, S400 and S600) [31].

2. Shen Atlas with 79, 156 and 232 cortical parcels (denoted as Shen79, Shen156,
and Shen232) [31].

3. The Harvard Oxford Atlas can be sub-classified based on the threshold of max-
imal probability of a voxel to be included in the parcel. Therefore, this At-
las family has parcellations with 0%, 25%, 35% and 45% (denoted as HO0%,
HO25%, HO35% and HO45%) threshold of maximal probability. For example,
the HO25% parcellation implies that every voxel with maximal probability be-
low 25% will not be included in the parcel or brain region. Thus, the higher the
threshold, the smaller is the size of the resulting brain region.
The HO0%, HO25% and HO35% parcellate the brain into 96 cortical regions
(parcels), however, HO45% results in 95 cortical regions as the left supracal-
carine cortex region is excluded because no voxels within this region meet the
threshold of 45% [31].

2.3 Construction of eSC and ePL Matrices from

dwMRI Data

The connectomes considered in this study are defined at the macro scale. The SC
matrices representing the undirected anatomical links in the brain were constructed
using the dwMRI data which consisted of dwMRI images as well as T1-weighted
images. Firstly, the complete dwMRI data underwent a preprocessing step imple-
mented through an in house developed pipeline consisting of software packages such
as Freesurfer, MRtrix3, ANT and FSL. The preprocessing procedure involves the fol-
lowing tasks: head motion correction and removal of noise and distortions caused by
eddy currents for dwMRI images, image intensity normalization, tissue segmentation
and reconstruction of the cortical surface for T1-weighted images and bias field cor-
rection for both dwMRI and T1-weighted images and registration of dwMRI images
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Figure 2.2: Schematic illustration of the construction of the eSC matrix of an individ-
ual subject for 100 cortical brain regions defined under the S100 parcellation scheme.
A: Streamline tractography of the human brain inferred from diffusion weighted Mag-
netic Resonance Imaging (dw-MRI) scan. B: Schematic representation of the physical
anatomical links between different brain regions. C: Example of the resultant eSC
matrix for 100 cortical brain regions (self connections excluded). The color of each
pixel in the eSC matrix signifies the count of the number of streamlines according to
the color bar.

to the T1-weighted images through transformation function. Thereafter, MRtrix3
package was used to calculate the whole brain tractography through a probabilistic
fiber tracking algorithm. Then, the FSL package was employed to transform the brain
atlas images which were initially sampled in the standard space to the native space
[31] [8]. In the end, using MRtrix3 on the whole brain tractography, the structural
connectivity (SC) was calculated for each of the 11 brain parcellation schemes. This
process yielded two symmetric NxN dimensional SC matrices - the eSC matrix and
the ePL matrix signifying undirected anatomical links across N brain regions defined
under a selected parcellation scheme. As already mentioned, the eSC matrix consists
of the count of the axonal fibre bundles or streamlines connecting all possible pairs
of the brain regions, whereas the ePL matrix consists of the average length of those
streamlines.

Following the aforementioned procedure, we constructed the eSC and the ePL
matrices for every individual subject, under each of the 11 parcellation schemes. A
typical construction of the eSC matrix of a certain subject, for 100 cortical brain
regions defined under the S100 parcellation scheme, is schematically illustrated in the
Figure 2.2, where the process progresses from streamline tractography (extreme left)
to establishing anatomical links between different brain regions (middle) and finally
results in a 100x100 eSC matrix (extreme right).
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2.4 Construction of eFC matrix from rs-fMRI Data

In order to compute the eFC empirical functional connectivity (eFC) matrix in this
study, we considered the resting state fMRI signal (rs-fMRI) from the brain regions,
that is, the fMRI signal was recorded in the absence of a cognitive task.
The rs-fMRI data was initially preprocessed (removal of noise) using the ICA FIX
provided by the HCP repository [31]. For every subject, the preprocessed data con-
sists of the resting state BOLD activity time series signal for all the N parcels (brain
regions) defined under a selected brain parcellation scheme. The time series signal of
each brain region represents its mean activity (at rest) since the signal is the average
of the BOLD signals of all the underlying voxels that constitute that brain region. In
this study, the rs-fMRI data of every subject included data from 4 different scanning
sessions of 1200 time points each, for every brain region defined under a given par-
cellation scheme [31]. The time series data from all the 4 sessions were subsequently
z-scored and concatenated to obtain a signal of 4800 time points in total per brain
regions per subject.

Figure 2.3: Schematic representation of the construction of the eFC matrix of an
individual subject for 100 cortical brain regions defined under the S100 parcellation
scheme. D: The BOLD time series signal recorded for every brain region through
resting state functional Magnetic Resonance Imaging (rs-fMRI) (Figure by Justin
Domhof, Institute of Neuroscience and Medicine - 7, Forschungszentrum Juelich.)
E: Example of the resultant eFC matrix constructed by computing the Pearson’s
correlation coefficient between the time series signal of all possible pairs of 100 cortical
brain regions. The color of each pixel in the eFC matrix signifies the value of the
correlation coefficient according to the color bar.
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The eFC matrix which represents the extent of undirected and synchronised co-
activation [8] (in the resting state) between the brain regions was subsequently con-
structed for individual subject by calculating the Pearson’s correlation coefficient
between the concatenated time series signals of all possible pairs of N brain regions
included in the chosen parcellation scheme, hence, resulting in one NxN dimensional
symmetric eFC matrix per subject with diagonal entries equal to 1.
In this way, we calculated the eFC matrix for every subject, under each of the 11
parcellation schemes. Figure 2.3 illustrates the schematic construction of a typical
eFC matrix of an individual subject for 100 cortical brain regions defined under the
S100 parcellation scheme.

2.5 Whole Brain Dynamical Models

Similar to empirical neuroimaging techniques, the whole brain dynamical models also
view the brain as a network of nodes. In this study, the resting state activity of
the brain cortex was simulated with two slightly different approaches [8] using two
models: The phase oscillator model (also known as the Kuramoto model) and the limit
cycle model. In both of these models, the parcellated brain network is treated as an
ensemble of coupled phase oscillators, that is, each brain region is analogous to a phase
oscillator coupled with other brain regions. For every individual subject, the strength
of this coupling was determined from the respective eSC matrix, while the ePL matrix
was used to calculate the delay in signal propagation between the nodes of the model
network [31]. The mean activity of each of these phase oscillators was subsequently
simulated by numerically solving a system of time dependent differential equations
corresponding to each oscillator. This resulted in a time series signal corresponding to
each of the N nodes (brain regions) that constitute the model network. The difference
between the two models, however, is that in the limit cycle model, the amplitude of
the simulated time series signal is accounted for, whereas, in the phase oscillator
model, it’s not [31]. The time signals thus simulated are then used to calculate the
sFC matrix for every subject, corresponding to each of the two models, under each
of the 11 brain parcellation schemes.

2.5.1 Phase Oscillator Model

Mathematically, the phase oscillator model or the Kuramoto model is represented as:
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θ̇j(t) = 2πfj +
C

N

N∑
n=1

ωjn sin(θn(t− τjn)− θj(t)) + ηj (2.1)

j = 1, 2, ..., N

where, θj(t) is the time dependent phase corresponding to the jth phase oscillator
(brain region) and the time series signal (xj(t)) for the same oscillator is evaluated as
xj(t) = sin(θj(t)). N represents the total number of phase oscillators (brain regions)
under a given brain parcellation scheme, t is the time (considered in seconds) and ηj
represents an independent noise in the system, sampled from the uniform distribution
defined from -0.3 to 0.3. The parameters fj, wjn and τjn were evaluated for individual
subjects from their respective empirical data. fj is the natural frequency (in Hz)
of the uncoupled jth oscillator and was calculated as the frequency of the maximal
spectral peak (excluding frequencies below 0.01 Hz and above 0.1 Hz) of the empirical
BOLD time series signal of the corresponding brain region. To do this,the empirical
BOLD time series signals were transformed to the Fourier space and Welch’s method
was applied [8].
ωjn is the coupling weight and τjn (in secs) is the delay in signal propagation be-
tween the jth and nth phase oscillator. ωjn was calculated from the eSC matrix as
ωjn = kjn/ < kjn > where kjn is the number of streamlines between jth and nth
brain region i.e, the element of the eSC matrix corresponding to the jth row and nth
column and < kjn > is the average of the whole NxN dimensional eSC matrix with
diagonal equal to 0. Similarly, τjn was computed from the ePL matrix as τjn = Ljn/V
where Ljn is the average length of streamlines between jth and nth brain region as
given by the elements of the ePL matrix and V is the average speed with which the
signal propagates between the brain regions.
In the calculation performed above, the diagonal entries of both eSC and ePL matri-
ces were equated to 0 to exclude the self connecting streamlines, that is, wjj = kjj =
Ljj = 0 [31] .

We defined two global parameters: global coupling strength C and global or av-
erage propagation delay τ (in secs) which essentially scale the extent of individual
coupling and signal propagation speed, respectively. The speed V of signal propa-
gation can be expressed in terms of τ as V =< Lij > /τ where < Lij > denotes
the average of the NxN dimensional ePL matrix with 0s on the diagonal. Hence, by
varying τ , we can vary V , which in turn alters the individual propagation delay τjn
[31]. Therefore, for every individual subject, C and τ can be varied such that for
every combination of (C, τ), a new set of time series signals was generated.
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2.5.2 Limit Cycle Model

The limit cycle model is a bit different from the phase oscillator model in the fact
that the amplitude of the simulated time series signal is also taken into account in the
limit cycle model; it is not restricted to [-1, 1] as is the case with the phase oscillator
model.

żj(t) = (aj + i2πfj − |zj(t)|2)zj(t) +
C

N

N∑
n=1

ωjn(zn(t− τjn)− zj(t)) + ξj (2.2)

j = 1, 2, ..., N

zj(t) = xj(t)+iyj(t) is a complex number where the real part xj(t) is the simulated
time series signal corresponding to the jth phase oscillator (brain region). The am-
plitude aj of the jth oscillator reflects the extent of time fluctuation of the empirical
BOLD signal and was, therefore, calculated as the normalised standard deviation of
the empirical BOLD time series signal (std(BOLDj)) from the corresponding brain
region j. The normalisation was performed in such a way that mean and standard
deviation of aj, thus calculated is equal to 0.5 and 0.4, respectively. In the absence
of any coupling between the oscillators, each oscillator in the set up independently
rotates with the natural frequency fj (expressed in Hz) around its origin and spans
a radius of

√
aj. The term ξj represents an independent noise (complex number)

sampled from the uniform distribution defined in the interval [-0.3, 0.3] [31]. The
parameters fj, ωjn, τjn, C and τ carry the same meaning as in the Phase Oscillator
model and were also calculated for every individual subject in the same way as ex-
plained in section 2.5.1.

In both the models, the differential equations were numerically solved using the
Heun method of integration with a fixed time step ∆t = 0.06 secs and each time series
signal used to calculate the sFC matrix was 3500 secs long [31]. Subsequently, we
constructed the simulated functional connectivity (sFC) matrix for every subject by
computing the Pearson’s correlation coefficient between the simulated time series sig-
nal of all possible pairs of N brain regions included in the selected brain parcellation
scheme (similar to the construction of the eFC matrix as illustrated in Figure 2.3).
The sFC matrix is, therefore, symmetric and has NxN dimensions with diagonal en-
tries equal to 1. Since each combination of the global parameters (τ , C) resulted in
a new batch of time series signals, correlating them, therefore, yielded as many sFC
matrices per subject as the total number of combinations of (τ , C) for a given model
and a given brain parcellation scheme.
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2.6 Model Fitting

Under a selected brain parcellation scheme, the similarity between the sFC matrix
and the eFC matrix for each subject was determined by computing the Pearson’s
correlation coefficient - corr(sFC, eFC) between the vectors formed by extracting
the upper triangular parts of the corresponding matrices excluding the diagonal [8].

For each of the two models simulated in this study, we used 64 different values of
global coupling strength C and 48 different values of global delay τ equally spaced
in the interval [0, 0.945] and [0, 94], respectively. Therefore, for a given model and
a chosen brain parcellation scheme, each subject has one eFC matrix, and 3072 sFC
matrices obtained by 64 x 48 different combinations of the global parameters C and
τ , respectively [31]. This, therefore, resulted in 3072 values of corr(sFC, eFC) per
subject, plotted against the corresponding parameters on a 2D parameter plane. An
example of such a parameter plane generated for an individual subject for the phase
oscillator model, under the S200 parcellation scheme is shown in Figure 2.4a. The
horizontal axis on the plane denotes the global delay τ , the vertical axis denotes the
global coupling C and the corresponding corr(sFC, eFC) is represented by a color
according to the color bar.

Subsequently, a grid search was performed on the parameter plane to extract
the best model fit, that is, the maximal coefficient of correlation between the sFC
and the eFC matrix. This maximal value is referred to as the goodness-of-fit or
corr(sFC, eFC)max. An example of the goodness-of-fit extracted for an individual
subject for the phase oscillator model, under the S200 parcellation scheme is shown
as a white circle in Figure 2.4a, where the corr(sFC, eFC)max = 0.48 and the cor-
responding optimal parameters are τopt = 0 and copt = 0.12. The best fit sFC matrix
corresponding to these optimal parameters is shown on the left in the Figure 2.4b,
along with the respective eFC matrix on the right.
Thus, for each model and for each of the 11 parcellation schemes, the value of
corr(sFC, eSC)max was extracted in the above mentioned manner independently
for all the 272 subjects.

2.7 Statistical Methods

This section briefly introduces the statistical techniques employed for the investiga-
tion and quantification of the sex differences in various quantities considered in this
project.
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(a)

(b)

Figure 2.4: (a): Example of the parameter plane of an individual subject for the
phase oscillator model under the S200 parcellation scheme; The horizontal and ver-
tical axes represents the global delay τ and global coupling strength C, respec-
tively, whereas, the color of each pixel represents the corresponding value of the
corr(sFC, eFC) according to the color bar; The white circle indicates the goodness-
of-fit or corr(sFC, eFC)max = 0.48, corresponding to an optimal global delay τopt = 0
and optimal global coupling strength Copt = 0.12. The simulated functional connec-
tivity (sFC) matrix of the same subject corresponding to the aforementioned optimal
model parameters is shown on the left in (b), and on the right is the respective em-
pirical functional connectivity (eFC) matrix, both of which are defined for the S200
parcellation scheme.
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2.7.1 Fisher’s Z Transform

The Pearson’s correlation coefficient r varies from a minimum of -1 to a maximum of 1
and its distribution is often highly skewed if the value of r is close to the two extremes.
This causes a problem in applying the statistical methods such as hypothesis tests
and other general arithmetic operations [14]. Fisher’s Z transformation solves this
issue by transforming the correlation coefficients from the range (-1, 1) to a range
(-∞, +∞) and it also makes the distribution fairly symmetric [14]. The Fisher’s
Z transformation of r is defined as its inverse hyperbolic tangent i.e. tanh−1(r) or
arctanh(r) whose domain and range vary are the open interval (-1, 1) and (-∞, +∞),
respectively. An example of the Fisher’s Z transformation is illustrated in Figure 2.5

In this study, all the correlation coefficients were transformed using the Fisher’s
Z transformation prior to employing them for any arithmetic operations, statistical
tests or regression analysis, except for the calculation of corr(sFC, eFC) where no
Fisher’s Z transformation was performed.

Figure 2.5: Illustration of the Fisher’s Z transformation of a Pearson’s correlation
coefficient r; The plot in blue represents an identity transformation (for comparison),
while the one in orange represents the Fisher’s Z transformation; This plot is inspired
from [14].
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2.7.2 Wilcoxon Rank Sum Test

Wilcoxon rank sum test (also called Mann Whitney U test) is a non parametric sta-
tistical hypothesis testing method used to test the null hypothesis (H0) that the two
independent groups of samples being compared are drawn from the same population
distribution [38]. This test is referred to as a non parametric test or a distribution free
test because it does not assume that the underlying distribution of the two groups
of samples is of a specific kind, as opposed to the parametric Student’s t test, where
the groups being compared must be sampled from a normal distribution [18]. For
our analysis, even though a Fisher’s Z transformation is performed on the correlation
coefficients, the resulting distributions are not exactly normal and, therefore, a non
parametric test is more appropriate.

The Wilcoxon rank sum test requires that the two groups are independent of
each other [24] and the test is based on comparison between the medians of the two
groups [38]. There exist two variations of this test: One-sided test and two-sided
test. One-sided test is used when the speculation a priori (alternative hypothesis) is
that the median of one group is higher than the other. However, if there is no such
prior speculation with regards to positive or negative differences, a two sided test is
employed, as is the case for our analysis. Therefore, the null (H0) and alternative
(HA) hypothesis of the two sided Wilcoxon rank sum test are as follows:

• H0: The two groups of samples being tested, are drawn from the same under-
lying population distributions [24].

• HA: The two groups of samples are drawn from two different population distri-
butions [24].

p-Value
A decision on which of the above mentioned hypothesis should be accepted/rejected is
made based on the p−value deduced from the test. The p−value or the significance
level is a statistical measure defined as the probability of obtaining test results at
least as extreme as the results actually observed, under the assumption that the null
hypothesis is true . If the p− value is too small, then it implies that observing such
results would be very unlikely if the null hypothesis were true [28]. The threshold
for p − value (denoted as α) commonly used in statistics is 0.05, therefore, allowing
a maximum of 5% error in our judgement. If the p− value deduced from the test is
lower than 0.05, it is stated that there is a strong evidence to reject the null hypothe-
sis (H0) in favour of the alternative hypothesis (HA). Otherwise, it is concluded that
there is not enough evidence to reject the null hypothesis (H0) [25].
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In this study, the Wilcoxon’s sum ranks test was implemented through an in-
built function scipy.stats.ranksums(X, Y) from Python’s Scipy library [5]. This
function accepts the data from two samples (X = males and Y = females) as input
and returns two values: a test-statistic which quantifies the difference in the medians
of the two samples, and a p − value which is used to decide whether the difference
observed is of any statistical significance or not.
The sign of the test-statistic depends on the order of the input for the function. In our
case, we used the group of males (X) as the first input and the female group (Y) as
the second input. Thus, a positive and statistically significant test-statistic indicates
that the group of males has a higher value (of the quantity being tested) than that
of the females, whereas a statistically significant negative test-statistic indicates that
female group has a higher value than that of the male group. The conclusions of the
test, however, are only valid at the group level and not on the individual subject level.

2.7.3 Effect Size Measure (ESM)

In the context of performing a two samples null hypothesis test, the effect size is a
statistical measure used to quantify the difference between the two groups of samples
being compared. Traditionally, hypothesis tests only focused on the p − value to
either accept or reject the null hypothesis. However, the p − value does not reveal
any information about the magnitude of difference between the two groups. In the
modern approach, the need to report the corresponding effect size measure, along
with the p− value is gaining importance [35] [23].

The applicability of an effect size measure depends on certain restrictions on the
underlying distributions of the samples being tested. Therefore, the effect size mea-
sures for parametric and non parametric tests are different. The commonly used effect
size measures for parametric tests are Cohen’s D, Hedge’s g or Glass’s Delta because
all of these measures depend on the normality of the distribution and are calculated
using the means and standard deviations of the two samples [23]. The effect size
measures for non parametric tests are not so well established as those for parametric
tests [35]. However, there have been a few suggestions online and in the literature
[35], which include the Cliff’s Delta which is more robust for skewed distributions
[23], Rank Biserial Correlation, “Rosenthal correlation”, etc [1].
The “Rosenthal correlation” used in this study is easy to calculate and interpret, as
it is evaluated by simple dividing the test-statistic (obtained from the Wilcoxon rank
sum test) by the square root of the sum of sample sizes of both the groups (272 in our
case) as shown in Equation 2.3 [1]. The effect size measure thus obtained, is denoted
as ESM and Table 2.1 shows the interpretation of the magnitude of the ESM (|ESM|)
as prescribed by [7].
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ESM =
test-statistic√

Total number of subjects
(2.3)

|ESM| Interpretation

(0.0, 0.2) Very low

[0.2, 0.4) Low

[0.4, 0.6) Moderate

[0.6, 0.8) Strong

[0.8, 1.0) Very strong

Table 2.1: Interpretation of the magnitude (absolute value) of the effect size measure
(|ESM|) according to [7].

The calculation of ESM was implemented in this study through the in-built func-
tion compute effsize from t() from Python’s Pingouin library [36]. This function
takes the test-statistic and the total sample size (272 in our case) as input and returns
the ESM, whose sign is same as that of the test-statistic. Hence, it not only quantifies
the difference, but also indicates which of the two groups has a higher value of the
quantity being tested.

It is now clear that the two major takeaways from a two sample statistical hy-
pothesis test are the ESM and the p − value which report the magnitude of the
difference between the two groups, and the corresponding statistical significance of
the difference, respectively.

2.7.4 False Discovery Rate (FDR) correction

The results of the statistical hypothesis tests are prone to errors where a null hypoth-
esis is rejected even when it is in fact true. These errors are termed as ‘false positives’
or ‘false discoveries’ or ‘type 1 errors’ in the context of statistical hypothesis testing.
In situations where multiple hypothesis tests are performed and compared with each
other, there is an increased probability of the false positives [13]. False Discovery
Rate (FDR) correction is, therefore, a statistical technique to control the rate of the
false discoveries (FDR) in statistical hypothesis tests when multiple comparisons are
performed. Mathematically, the FDR is defined as the ratio of number of false posi-
tives to the total number of times the null hypothesis is rejected. If FP is the number
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of false positives and TP is the number of true positives (situations when the null
hypothesis should be rejected), the FDR is given as [12],

FDR =
FP

FP + TP
(2.4)

In this study, since we conducted the hypothesis testing for 11 different parcellation
schemes and compared them with each other (through p−value plots), in order to mit-
igate the rate of type 1 errors, all the 11 p−values were corrected for the FDR through
the inbuilt python function - statsmodels.stats.multitest.fdrcorrection() [20].

2.7.5 Multiple Linear Regression

Linear Regression is a statistical technique that uses the least squares method to
model the best fit linear relationship of a dependent variable with respect to an in-
dependent variable. When there are multiple dependent variables, this technique is
referred to as Multiple Linear Regression [21] [17]. For the multivariate regression
model to be applicable, the independent variables should not be very highly corre-
lated with each other.

Figure 2.6: Illustration of a univariate linear regression, modelling the relationship be-
tween the dependent variable y and the independent variable y. Each dot corresponds
to the observed value of the dependent variable and the solid black line represents it
regression estimate (ŷ). The residuals (ϵ = y− ŷ) are represented through the orange
bars.
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Let x1, x2 , x3, ....., xn be n independent variables and y be the dependent variable
which contains the information about the observed data. Then, ŷ is a function of the
independent variables and represents the estimated value of the dependent variable
according to the regression equation [17]:

ŷ = α0 + α1x1 + α2x2 + α3x3 + ........+ αnxn (2.5)

where α0, α1, α2, ...., αn are the coefficients estimated through the method of
least squares in the regression analysis. Since ŷ is the estimated outcome and y is the
actual observed outcome, the error in the model is ϵ = y − ŷ, which are also known
as the residuals of the regression model. Figure 2.6 illustrates an example of a typical
univariate regression model, where eat dot represents the observed data (y), the black
solid line corresponds to the line of best fit obtained through linear regression (ŷ) and
the orange bars represent the residuals (ϵ).

Regression of Confounds
In this study, the multiple linear regression is used to regress out the effect of known
confounds from the quantities being tested for sex differences. From literature, we
have identified two confounds as listed below:

1. Brain size: It has been established in the literature that, from a statistical
perspective, the total intracranial volume (TIV measured in mm3) of the brain,
also known as the brain size, is significantly higher in males than it is in females.
In this study, the list of brain sizes for all subjects was obtained from the
phenotypical data in the HCP repository [15] [22] [33].

2. corr(eFC, eSC): Additionally, the empirical structure-function correspondence
(or the corr(eFC, eSC)) is statistically higher in females than in males [16]. To
calculate the corr(eFC, eSC) for each individual subject, we first transformed
the respective eFC matrix using the Fisher’s Z transformation (since the ele-
ments of the eFC matrix are already correlation coefficients), then vectorised
the transformed eFC matrix and the eSC matrix by extracting the correspond-
ing upper triangular parts excluding the diagonal, and finally calculated the
Pearson’s correlation coefficient between the two resultant vectors.

The validity of stated differences in both the confounding variables was also
checked for the data set used in this study (discussed in detail in the subsection 3.1.1).
Since the whole brain dynamical models discussed in section 2.5 utilize the empirical
information, any possible sex differences in the modelling results could potentially be
influenced by the sex differences inherent in the confounds. We, therefore, regressed
out the confounds to check if the sex differences still persist in corr(sFC, eFC)max.
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The sex differences in the brain size (TIV) have been established in the literature
for a long time now, and there are numerous studies strongly supporting this claim
[15] [22] [33]. Hence, as a first step, only the brain size (TIV) was regressed out
of corr(sFC, eFC)max to investigate if the sex differences are preserved after re-
gression. Mathematically, this process is a uni-variate linear regression model and is
represented as:

ŷ = α0 + α1x1 (2.6)

where x1 (independent variable) in our case was the brain size (TIV measured in
mm3), ŷ is the regression estimated value for the goodness-of-fit and it, therefore,
incorporates the effects of brain size. The residuals were calculated by subtracting ŷ
from the actual goodness-of-fit or corr(sFC, eFC)max. Thus, the residuals calculated
are free from the effects of brain size and were subsequently retested for sex differences
through the Wilcoxon rank sum test.

The second confound - corr(eFC, eSC) has been investigated only recently, and
hence, there is not enough evidence in the literature to support the existence of sex
differences in corr(eFC, eSC). As a next step in the regression analysis, we regressed
out both the known confounds - the brain size (TIV) as well as the corr(eFC, eSC)
from corr(sFC, eFC)max. Since corr(eFC, eSC) and corr(sFC, eFC)max are both
correlation coefficients, they were transformed through the Fisher’s Z transformation
prior the regression and the residuals calculated were subsequently back transformed
using inverse Fisher’s Z transformation. We then re-investigated if the sex differences
in the residuals are preserved after regression of both the confounds. Since there
are two variables involved, this case of regression represents a multivariate linear
regression model and is similar to Equation 2.6, except with an extra term x2 on the
RHS, representing the second confound - corr(eFC, eSC) (Fisher’s Z transformed).

ŷ = α0 + α1x1 + α2x2 (2.7)

Here, ŷ is also the regression estimated value for the goodness-of-fit, but it incor-
porates the effects of both the brain size as well as the empirical structure function
correspondence - corr(eFC, eSC). The residuals evaluated in this case are, therefore,
free from the effects of both the confounding quantities. Subsequently, the residuals
were retested for sex differences through the Wilcoxon rank sum test and the ESM
was reported along with its statistical significance (p− value).
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2.8 ‘Complexity’ Measures

Inspired from all the relevant studies mentioned in the context of ‘complexity’ of
brain data, we also proposed a few quantities calculated from the eFC matrices of
individual subjects, as potential ‘complexity’ measures. They are:

1. Shannon entropy of the eFC matrix - H(eFC).

2. Standard deviation of the eFC matrix - σ(|eFC|).

3. Area under the eigen value curve of the eFC matrix - A(λeFC).

2.8.1 Shannon Entropy of the eFC Matrix - H(eFC)

Although the entropy measures in the literature are mostly studied in the context
of time varying signals, the study in reference [19] evaluates the sample entropy of
the dynamic functional connectivity (dynamic eFC) matrix rather than that of the
fMRI time series signal. The dynamic eFC is calculated by considering the time vary-
ing correlations between the signals from individual brain regions across small time
windows [19]. Since the eFC matrix for every subject in this study is evaluated just
once considering all the time points (concatenated time series signal from 4 different
fMRI scans), the eFC matrix is static or time independent. sample entropy (which is
relevant to time varying entities) in this case is, therefore, not applicable. Hence, we
consider the classical ’Shannon entropy’ of the eFC matrix - H(eFC) as a potential
complexity measure.

The information theory defines the Shannon entropy of a random variable X, as
the average level of uncertainty or the lack of predictability associated with the its
possible outcomes x1, x2, ......., xN . If P (xi) is the probability of occurrence of the
outcome xi, the formula for the Shannon Entropy H(X) is given by [11],

H(X) = −
N∑
i

P (xi) ln(P (xi)) (2.8)

In this project, we considered the functional connectivity between the brain regions
as the random variable, and the elements of the eFC matrix as the various possible
outcomes of the functional connectivity. The H(eFC) was calculated separately for
every individual subject under each parcellation scheme by employing the following
steps:

1. Firstly, to simplify the calculation, we vectorised each eFC matrix by extracting
its upper triangular part excluding the diagonal.
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2. The vector obtained in the previous step was converted into a frequency distri-
bution (array of counts) defined in the interval [-1, 1].

3. Lastly, the Shannon Entropy of the resultant frequency distribution was cal-
culated using the in-built Python function - scipy.stats.entropy() and this
measure is denoted as H(eFC).

The uncertainty associated with the possible values of functional connectivity adds
an element of complexity to the connectome. Accordingly, We speculated that a high
value of the H(eFC) corresponds to a more complex eFC matrix.

2.8.2 Standard Deviation of the eFC Matrix - σ(|eFC|)
Among many, one of the data variables considered in [31] is std[aver(eFC)] which is
evaluated by first considering the column-wise averages of the eFC matrix, and then
calculating the standard deviation of those column-wise averages. The relationship
between the std[aver(eFC)] and the Fit(sFC, eFC) is shown in Figure 2.7, where it is
observed that the two quantities are positively correlated and the former can, there-
fore, explain the latter’s variance across subjects within a given parcellation scheme
(colored lines) as well as across different parcellation schemes (solid black line) [31].

Inspired from the data variables evaluated in the study [31], we also calculated a
property of the eFC matrix, that is, the standard deviation of the set of elements of
the matrix. In general, the standard deviation σ of a random variable X measures
the spread of its distribution with respect to the mean µ. A narrow distribution has
a low value of σ, whereas, a high σ value corresponds to a broad distribution [34].
The formula for σ(X) is,

σ(X) =

√∑N
i (xi − µ)2

N
(2.9)

where xi is the ith data point and N is the total number of data points.
Similar to the calculation of H(eFC), we considered the functional connectivity be-
tween the pairs of brain regions as the random variable and the elements of the eFC
matrix as its possible outcomes. For every individual subject under each of the 11
parcellation schemes, to calculate the standard deviation of the eFC matrix, we first
extracted the upper triangular part of the matrix into a vector, transformed it through
the Fisher’s Z transformation, and then evaluated standard deviation of the absolute
values of the resultant vector and back transformed it through the inverse Fisher’s
Z transformation. Henceforth, standard deviation of the eFC matrix is denoted as
σ(|eFC|).
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Figure 2.7: Relationship between the std[aver(eFC)] and goodness-of-fit (denoted as
Fit(sFC, eFC) in the study) for the phase oscillator model. Each dot in the scatter plot
corresponds to an individual subject, and the color represents the various parcellation
schemes examined. The solid black line is obtained by considering the collective data
from all the subjects under all the parcellation schemes. It, therefore, represents the
joint linear regression resulting in a joint correlation coefficient of r = 0.56. Figure
reproduced from [31].

Since the elements of the eFC matrix represent the extent of synchronised co-
activation [8] (synchronicity) between different pairs of brain regions, the standard
deviation of the eFC matrix - σ(|eFC|), therefore, measures the spread in the syn-
chronicity of the brain regions, with respect to the mean of the matrix. A higher value
of σ(|eFC|) implies that the elements of the eFC matrix are broadly distributed and
are, hence, largely dissimilar to each other. This means that there is a large variation
in the extent to which the activities of different pairs of brain regions are synchro-
nised, whereas a low value of σ(|eFC|) results from a narrow distribution and in that
case, the activities of most of the pairs of brain regions are synchronised to a similar
extent. We, therefore, speculated that a higher value of σ(|eFC|) corresponds to a
more ‘complex’ eFC matrix.

2.8.3 Area under the Eigen Value Curve of the eFC Matrix
- A(λeFC)

In linear algebra, a matrix M can be treated as linear transformation which when
operated on an eigen vector V , results in the same vector, but scaled by a factor
λ known as the eigen value of the matrix corresponding to the eigen vector V [10].
Mathematically, the transformation can be expressed as MV = λV and a set of lin-
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Figure 2.8: Illustration of curve obtained by plotting the normalised eigen values of
the eFC matrix (λeFC shown as dots) against a unit interval [0, 1] for an individual
subject under the S100 parcellation scheme. The shaded region represents the area
under the curve denoted as A(λeFC).

early independent eigen vectors form the eigen basis of the matrix M .

In our project, we considered the eFC matrix of every individual subject under
each parcellation scheme, as a linear transformation and evaluated all its eigen values
(λeFC) (without a Fisher Z transformation). Since the dimension of the eFC ma-
trix is NxN, (N is the number of brain parcels (N) under each parcellation scheme)
the matrix has N eigen values, of which some may or may not be degenerate. As
the eFC matrix is real valued and symmetric, all its eigen values are real, and all
the corresponding eigen vectors are mutually orthogonal. The eFC matrix is, there-
fore, diagonalizable. Thereafter, for every individual subject, we calculated the area
(A(λeFC)) under the curve that was obtained by plotting the normalised eigen values
against a unit interval [0, 1]. An example of one such plot for an individual subject
under the S100 parcellation scheme is shown in Figure 2.8, where each dot represents
a normalised eigen value of the eFC matrix for that subject. The trapezoidal rule
used to calculate the A(λeFC) was implemented through Python’s in-built function
scipy.integrate.trapezoid(). Since both the vertical and the horizontal were are
normalised, the magnitude of A(λeFC) directly reflects the shape of the eigen value
curve. A steeper curve has a lower A(λeFC) compared to that of a more gradually
falling curve. In order to understand how the shape of the eigen value curve po-
tentially reveals the ‘complexity’ of the eFC matrix, let us consider an extreme case
where out of N eigen values, only one of them is non zero, while rest are all zero. The
value of A(λeFC) in this case is minimum. Since the eFC matrix is a diagonal matrix
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(DeFC) in its eigen basis, with eigen values on the diagonal, the eFC matrix in its
original vector space can be reconstructed as:

eFC = PDeFCP
−1 (2.10)

where P is a NxN matrix whose columns are the orthogonal eigen vectors of the
eFC matrix. If DeFC has only one non zero diagonal entry, this follows the simplest
case of reconstruction as the contribution from the other diagonal entries is zero.
Hence, the least value of A(λeFC) corresponds to the simplest case. Next, if we con-
sider another extreme where all the eigen values of the eFC matrix are non zero and
equal, the value of A(λeFC) in this case is maximum. Since the all the diagonal entries
in DeFC are non zero and equal, this case indicates the highest complexity as all the
eigen values contribute equally in the reconstruction of the eFC matrix to its original
vector space. Accordingly, we speculated that a high value of A(λeFC) corresponds
to a high ‘complexity’ of the eFC matrix. It is, however, important to note that the
physical or neurobiological interpretation A(λeFC) is not yet clear and the justifica-
tion as to why it can be regarded as a potential ‘complexity’ measure is mathematical.

2.9 Workflow of the Analysis in the Study

A succinct version of the entire methodology followed in the project is illustrated
through a flow chart in Figure 2.9, where for every individual subject under a particu-
lar choice of brain parcellation scheme, we independently calculated one eSC, ePL and
eFC matrix, two sFC matrices and, consequently, two values of corr(sFC, eSC)max

corresponding to the two models analysed. Hence, for each model, this process re-
sulted in a list containing 272 values of corr(sFC, eFC)max for each of the 11 par-
cellation schemes. Similarly, each of the three ‘complexity’ measures described in
section 2.8 were calculated separately for every subject from their respective eFC
matrices, resulting in three such lists (corresponding to three measures) under each
parcellation scheme.

For a chosen model and a chosen brain parcellation scheme, the list containing 272
values of corr(sFC, eSC)max (Fisher’s Z transformed) was subsequently split into
two groups - males (128 subjects) and females (144 subjects). Sex differences were
then investigated between these two groups (within a parcellation scheme) through
the Wilcoxon rank sum test and the magnitude of the difference was quantified in
terms of the ESM. Since we calculated the model parameters for each subject us-
ing their respective empirical structural and functional data, the sex differences ob-
served in the goodness-of-fit could possibly be influenced by the empirical covariates
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with sex, namely the brain size (TIV) and the empirical structure-function corre-
spondence (corr(eFC, eSC)). We, therefore, regressed out the two confounds from
corr(sFC, eSC)max through multiple linear regression in order to check if the sex dif-
ferences in it persist even after eliminating the confounding effects. Despite regression
of the confounds, the sex differences in the goodness-of-fit could also be influenced
by the sex differences in the ‘complexity’ of the eFC matrix that was used for model
validation. Hence, we quantified three potential ‘complexity’ measures in terms of the
properties of the eFC matrix and the sex differences in each of the three measures were
also investigated similar to the procedure followed in case of corr(sFC, eSC)max. In
addition, for a selected model, we also examined the relationship between each of the
‘complexity’ measures and the confound regressed goodness-of-fit by evaluating the
Pearson’s correlation coefficient between the two quantities across individual subjects
within a selected brain parcellation scheme. We, therefore, assessed if the the varia-
tion in the value of corr(sFC, eSC)max between males and females despite regression
of the confounds, within a selected parcellation scheme, could be accounted for, by
the variation in the ‘complexity’ of the eFC matrix. The process was repeated for all
the remaining brain parcellation schemes and for the second model as well.

Figure 2.9: Flow chart summarising the general workflow of the analysis performed
in the study. The main invesitigations of the project are shown in red. This figure is
inspired from [8].
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Chapter 3

Preliminary Analysis, Results and
Interpretation

In this chapter, we discuss the initial analysis performed with regards to the inves-
tigation of sex differences in the goodness-of-fit within each parcellation scheme and
for both the models. We also discuss the results obtained and their interpretation,
which leads us to the main question of the project. The chapter is concluded with
the proposal of an initial hypothesis as a potential reason for the preliminary results
observed.

3.1 Sex Differences in corr(sFC, eFC)max

For a selected brain parcellation scheme and model, the list of 272 values of the
goodness-of-fit or the corr(sFC, eFC)max as extracted from the parameter plane
was separated into two groups consisting of 128 males and 144 females, respectively.
Since the two groups are independent and their population distribution is not normal,
the Wilcoxon Sum Ranks test was implemented on the Fisher’s Z transformed values
of corr(sFC, eFC)max so as to investigate the differences in its value between the
two groups (males and females). Subsequently, the effect size (ESM) was reported
along with its statistical significance (p− value). This procedure was then repeated
for all the remaining 10 parcellation schemes and also for the second model.
The qualitative differences in the value of corr(sFC, eFC)max between the group of
males (in blue) and the group of females (in red) within each of the 11 parcellation
schemes are illustrated in Figure 3.1a and Figure 3.1b for the phase oscillator model
and limit cycle model, respectively. It is observed that the box plots of the male
group are shifted towards higher values of corr(sFC, eFC)max, relative to that of
the female group, and this observation is consistent across all the parcellation schemes.
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(a)

(b)

Figure 3.1: Box plots illustrating the qualitative difference in the value of
corr(sFC, eFC)max between the male group (blue) and that of the female group
(red) within each of the 11 parcellation schemes for (a) the phase oscillator model
and (b) the limit cycle model.
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The Wilcoxon rank sum test performed to statistically test and quantify the dif-
ferences in the value of corr(sFC, eFC)max between the groups of males and females
within a given parcellation and a given model, resulted in a test-statistic, which was
used to quantify the magnitude of the observed difference in terms of the ESM. The
test also yielded a p−value which represents the statistical significance of the observed
difference. The p−values were all corrected for FDR since the analysis involved mul-
tiple comparison of the p − values across different parcellation scheme. The plots
for the ESM and the p − value (FDR corrected) are shown in Figure 3.2a for the
phase oscillator model and in Figure 3.2b for the limit cycle model, where, for both
of the models, the ESM is positive and varies from values close to 0.1 to 0.4, which,
therefore, implies that the magnitude of the effect size measure varies from ‘very low’
to ‘low’ (according to Table 2.1). The highest and lowest ESM was obtained for the
Shen79 and S100 parcellation scheme, respectively, in the case of the phase oscilla-
tor model, whereas, the limit cycle model results in the highest and lowest ESM for
the HO0% and S100 parcellation, respectively. Besides, we also found that all the
p− values (FDR corrected) are below the threshold of α = 0.05, indicating that the
ESMs calculated for all the parcellation schemes and for both the models are statis-
tically significant. The fact that the ESM is not only positive, but also statistically
significant suggests that for both the models, within a selected parcellation scheme,
the group of males has a statistically significant higher value of corr(sFC, eFC)max

than that of the corresponding group of females.

3.1.1 Regression of Confounds

Although we observed sex differences in the value of corr(sFC, eFC)max within a
parcellation scheme, as mentioned earlier, these differences could potentially be in-
fluenced by other covariates with sex like the brain size (TIV) and the empirical
structure-function correspondence (corr(eFC, eSC)) as the models utilize the em-
pirical information in their simulations. We first performed a statistical investigation
of the sex differences in both of the aforementioned confounding variables through
the Wilcoxon rank sum test.

Brain size (TIV in mm3)
As already mentioned and shown in Figure 2.1b, there exists a statistically significant
difference in the TIV between the male and the female group. On performing the
Wilcoxon rank sum test on the TIV data of the two groups, we found that the ESM =
0.65, which is considered ‘strong’ in magnitude and the p−value = 10−27, which is well
below the significance threshold of α = 0.05. The positive and statistically significant
ESM, therefore, indicates that the brain size or the TIV of the considered subjects is
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(a)

(b)

Figure 3.2: Quantification (ESM) and statistical significance (FDR corrected p −
value) of the sex differences in corr(sFC, eFC)max within each of the 11 parcellation
schemes (horizontal axis) for (a) the phase oscillator model (b) the limit cycle model;
The red line indicates a statistical significance threshold of α = 0.05.
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statistically higher for the group of males and the difference is statistically significant.

Empirical structure-function correspondence - corr(eFC, eSC)
The box plots shown in Figure 3.3a illustrate the qualitative differences in the value of
corr(eFC, eSC) between the male group and the corresponding female group within
each of the 11 parcellation schemes. We observed that the plots for the group of
females (in red) are shifted towards higher values relative to the group of males (in
blue). On performing the Wilcoxon Sum Ranks test between the group of males and
females within each parcellation scheme, we obtained the ESM as well as the p−value
as shown in Figure 3.3b. The ESM is negative and varies from values close to -0.1
to -0.3 (‘very low’ to ‘low’). However, the p − value exceeds the threshold of 0.05
for S100 and HO0% parcellation schemes. For the rest of the 9 parcellation schemes,
the negative ESM and also statistically significant as the corresponding p − values
are below the significance threshold. Therefore, the results indicate that within a se-
lected parcellation scheme (except S100 and HO0%), the empirical structure-function
correspondence or the corr(eFC, eSC) is statistically higher for the group of females
as compared to the group of males and the magnitude of the difference is statistically
significant. Our results for both the brain size as well as the corr(eFC, eSC) were,
therefore, in line with the results in the literature [15] [22] [33] [16].

The model parameters in both the models studied were calculated from the in-
dividual empirical data of the subjects. The observed sex difference in the value
of corr(sFC, eFC)max could, therefore, be potentially influenced by the inherent
sex differences in the brain size and the empirical structure function correspondence.
Hence, to eliminate the effects of the two confounds, they must be regressed out from
the corr(sFC, eFC)max. It must be noted that the regression analysis was performed
for each of the 11 parcellation schemes under each of the two models, independently.
As mentioned earlier, since the brain size is a confound with stronger evidence for
sex differences in the literature, we initially regressed out only the TIV from the
corr(sFC, eFC)max. As a second step in the regression analysis, both the TIV as
well as the corr(eFC, eSC) were regressed out from the corr(sFC, eFC)max. Con-
sidering the fact that the corr(sFC, eFC)max and corr(eFC, eSC) are correlation
coefficients, they were transformed through the Fisher’s Z transformation, before the
regression analysis was performed. The residuals hence calculated were back trans-
formed using inverse Fisher’s Z transformation. Subsequently, for a given model, and
a selected brain parcellation scheme, the list of 272 residuals was again split into
two groups of males and females and re-investigated for sex differences through the
Wilcoxon Sum Ranks test. The process was then repeated for the remaining parcel-
lation schemes as well as the second model.
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(a)

(b)

Figure 3.3: (a): Box plots illustrating the qualitative difference in the value of
corr(eFC, eSC) (empirical structure-function correspondence) between the male
group (blue) and that of the female group (red) within each of the 11 parcellation
schemes.
(b): Quantification (ESM) and statistical significance (FDR corrected p− value) of
the sex differences in corr(eFC, eSC) within each of the 11 parcellation schemes (hor-
izontal axis). The red line indicates a statistical significance threshold of α = 0.05.
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Phase Oscillator Model
For the phase oscillator model, Figure 3.4a shows the results after regression of
just the TIV and Figure 3.4b shows the results after both the TIV as well as the
corr(eFC, eSC) have been regressed out from the corr(sFC, eFC)max. The colored
box plots (blue for males and red for females) represent the value of corr(sFC, eFC)max

after regression of the confounds and the dashed box plots (grey) represent its value
prior to the regression. We observed that after regression of just the TIV (Fig-
ure 3.4a), the box plots of corr(sFC, eFC)max shift towards lower values relative
to the those before regression (in grey) for all the parcellation schemes, whereas,
when both the confounds (TIV and corr(eFC, eSC)) were regressed out, a mixed
repositioning of the box plots (with respect to the grey plots) is observed as shown
in Figure 3.4b. However, the relative shift between the box plot of the males and
females within a parcellation scheme, remains intact in both the cases of regression
analysis, with the box plot corresponding to the male group shifted towards higher
values of corr(sFC, eFC)max than that of the corresponding female group.

We retested for the statistical significance and the magnitude of the sex differences
in corr(sFC, eFC)max through the Wilcoxon rank sum test, for each case of regres-
sion and the results for the phase oscillator model are shown in Figure 3.6a. The plot
in blue corresponds to the results before regression of the confounds (for comparison)
and the plot in orange corresponds to the results after regression of only the TIV ,
where we observe that the ESM remains positive, but decreases in magnitude and the
p−value exceeds the threshold of α = 0.05) for the S100 parcellation. The green plot
corresponds to the results after both the TIV and the corr(eFC, eSC) have been
regressed out, and in this case as well, the ESM is positive, but further decreases in
magnitude and the p − value also surpasses the threshold of 0.05 for the S100 par-
cellation. The positive and statistically significant value of ESM, therefore, implies
that within each of the parcellation schemes except S100, the group of males has a
statistically significant higher value of the corr(sFC, eFC)max than the correspond-
ing group of females, notwithstanding the regression of one or both the confounds.

Limit Cycle Model
Similar to the results for the phase oscillator model, even in case of the limit cycle
model, the box plots for both males and females, for all the parcellation schemes
reposition themselves towards lower values of corr(sFC, eFC)max after regression
of the TIV alone as shown in Figure 3.5a. Moreover, when both the TIV as well
as the corr(eFC, eSC) were regressed out, we observed a mixed repositioning of
the box plots relative to the ones before regression (shown in grey) as illustrated in
Figure 3.5b. However, the box plot for group of males remains shifted towards higher
values of corr(sFC, eFC)max relative to that of the group of females within a given

40



(a)

(b)

Figure 3.4: Box plots illustrating the qualitative difference in the value of
corr(sFC, eFC)max between the male group (blue) and that of the female group
(red) within each of the 11 parcellation schemes for the phase oscillator model (a)
after regression of the TIV and (b) after regression of the TIV and corr(eFC, eSC).
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parcellation scheme, despite regression of one or both the confounds.
In order to statistically test and quantify the observed sex differences in the value
of corr(sFC, eFC)max for the limit cycle model, after regression of the confounds,
we performed the Wilcoxon rank sum test between the group of males and females
within each of the 11 parcellation schemes. Figure 3.6b shows the plots for the ESM
and p − value for all the parcellation schemes, before regression (in blue), after re-
gression of just the TIV (in orange) and after regression of the TIV as well as the
corr(eFC, eSC) (in green). For the case where only the TIV was regressed out, we
found that the ESM is still positive, but its magnitude reduces relative to the case be-
fore regressing of the confounds. Moreover, the ESM for all the parcellation schemes
except S100 is rendered statistically insignificant as the corresponding p− value ex-
ceeds the threshold of α = 0.05.
For the case where both the confounds have been regressed out, the ESM remains
positive, but further decreases in magnitude and the p− value increases beyond the
threshold of 0.05 for three parcellation schemes that are S100, S600 and Shen232, ren-
dering the respective ESMs statistically insignificant. The results for the limit cycle
model, therefore imply that from a statistical perspective, the group of males has a
significantly higher value corr(sFC, eFC)max relative to the corresponding group of
females within all parcellation schemes except S100 for the case where only the TIV
was regressed out, and for all parcellation schemes except S100, S600 and Shen232
for the case where both the confounds were regressed out.

Combining the observations from the analysis performed for both the models, the
preliminary results can, therefore, be summarised as: The value of corr(sFC, eFC)max

before the regression of the confounds, is observed to have a statistically significant
higher value for the male group as compared to that of the female group, within all
the 11 parcellation schemes considered, under both the phase oscillator model as well
as the limit cycle model. Nevertheless, regression of the brain size (or TIV) alone,
renders the sex difference statistically insignificant for the S100 parcellation, in case
of both the models studied. After regression of both the confounds i.e. the brain
size (TIV) and the empirical structure-function correspondence (corr(eFC, eSC)),
we observed that the sex differences between the two groups within a parcellation
scheme, are statistically significant, with the group of males having a statistically
higher value relative to the corresponding group of females for all the parcellation
schemes except S100 for the phase oscillator model and S100, S600 and Shen 232
for the limit cycle model. Therefore, for the phase oscillator model, 10 parcellation
schemes (i.e. excluding S100) and for the limit cycle model, 8 parcellation schemes
(i.e. excluding S100, S600 and Shen232) were considered to be of interest with regards
to the presence of sex differences in the confound regressed goodness-of-fit.
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(a)

(b)

Figure 3.5: Box plots illustrating the qualitative difference in the value of
corr(sFC, eFC)max between the male group (blue) and that of the female group
(red) within each of the 11 parcellation schemes for the limit cycle model (a) after
regression of the TIV and (b) after regression of the TIV and corr(eFC, eSC).

43



(a)

(b)

Figure 3.6: Quantification (ESM) and statistical significance (FDR corrected p −
value) of the sex differences in corr(sFC, eFC)max within each of the 11 parcellation
schemes (horizontal axis) for (a) the phase oscillator model and (b) the limit cycle
model, before regression of the confounds (in blue), after regression of the TIV (in
orange) and after regression of both the TIV and corr(eFC, eSC) (in green); The
red line indicates a statistical significance threshold of α = 0.05.
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3.2 Main Question of the Project

The initial question of this study was whether there exist any sex differences in
corr(sFC, eFC)max. Through the preliminary analysis, we observed that for a cho-
sen parcellation scheme and a chosen whole brain dynamical model, there are indeed
sex differences in corr(sFC, eFC)max. The fact that these differences persist for most
parcellation schemes under both the models analysed, despite regressing out the pos-
sible influences of the confounds, indicates that the goodness-of-fit inherently contains
statistically significant sex differences independent of the influence from the sex dif-
ferences in the brain size and empirical structure-function correspondence. Based
on the preliminary results obtained in section section 3.1, the main question of the
project is, therefore, as follows:

For a selected whole brain dynamical model, within a selected brain
parcellation scheme of interest, why does the group of males have a

statistically significant higher value of the goodness-of-fit
(corr(sFC, eFC)max) as compared to that of the group of females, even

after regression of the possible confounds?

3.3 Our Hypothesis

One possible explanation for the relatively higher value of the goodness-of-fit for the
group of males with respect to the group of females, could be the influence of the
sex differences in the ‘complexity’ of the eFC matrix since it is used to validate the
model. For the case of females, the model may not be able to capture the ‘complex’
nature of the eFC matrix and hence results in a sFC matrix that fits poorly to the
eFC matrix, as compared to that of the males. Our hypothesis was, therefore, as
follows:

The higher the ‘complexity’ of the eFC matrix, the lower is the value of
the goodness-of-fit (corr(sFC, eFC)max). Hence, statistically, the group
of females has a more ‘complex’ eFC matrix as compared to that of the

group of males, within a selected brain parcellation scheme.

As per this hypothesis, since the goodness-of-fit is lower for the group of females,
we expect that the ‘complexity’ measures calculated in section 2.8 have a statistically
significant higher value for group of females as compared to that of the group of males
and that the measures negatively correlate with the confound regressed goodness-of-fit
within a selected parcellation scheme of interest (for both the models).
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Chapter 4

‘Complexity’ Analysis and Results

In this chapter, we show the results of the investigation of the sex differences in each
of the three measures of ‘complexity’ and also their relationship with the confound
regressed goodness-of-fit within a parcellation scheme and for both the models.

4.1 Shannon Entropy of the eFC Matrix - H(eFC)

4.1.1 Sex Differences in H(eFC)

Under each of the 11 parcellation schemes, the H(eFC) was calculated for every in-
dividual subject (272 in total) and this list was then split into two groups of males
(128) and females (144) for the investigation of sex differences in the value H(eFC).

The box plots illustrating the qualitative differences in the value of H(eFC) be-
tween the group of males and the corresponding group of females within each of the
11 parcellation schemes for the case before regression of confounds and for the case
where only the TIV was regressed out are included in section 7.1 of the Appendix
(Figure 7.1 and Figure 7.2, respectively) and the box plots corresponding to the case
where both the TIV as well as corr(eFC, eSC)) were regressed out, are shown as col-
ored plots in Figure 4.1, where the grey plots correspond to the case before regression
(for comparison). The observations in all the above three cases are as follows:

1. Before the regression of any confounds, the box plots of the group of males are
shifted towards higher values of H(eFC) relative to those of the corresponding
group of females within each of the 11 parcellation schemes except S100, where
the shift is in the opposite direction (Figure 7.1 - Appendix).

2. After we regressed out only the TIV, we observe a downward repositioning of
all the box plots across all the parcellations schemes except S100. However, the
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Figure 4.1: Box plots illustrating the qualitative difference in the value of H(eFC)
between the male group (blue) and that of the female group (red) within each of the
11 parcellation schemes. The plots in grey correspond to the value of H(eFC) before
regression of the confounds and the colored plots represent its value after regression
of both the TIV and corr(eFC, eSC)

direction of the relative shift between the box plots of the male group and the
female group within a given parcellation scheme remains same as the case before
regression, but with a reduced gap between their respective medians (Figure 7.2
- Appendix).

3. When both the TIV and corr(eFC, eSC) are regressed out from H(eFC)
(Figure 4.1), it is observed that the box plots across all the parcellation schemes
reposition upwards (colored plots) relative to those before regression (in grey).
However, within a selected parcellation scheme, the box plots of the group of
males remain shifted above those of the corresponding group of females, but the
gap between their respective medians further reduces.

The qualitative differences observed through the box plots were subsequently quan-
tified through the Wilcoxon rank sum test between the group of males and females
within each of the 11 parcellation schemes. The test yielded a p − value (statistical
significance) and a test-statistic which was used to calculate the ESM for the corre-
sponding parcellation scheme.

47



Figure 4.2: Quantification (ESM) and statistical significance (FDR corrected p−value
of the sex differences in H(eFC) within each of the 11 parcellation schemes before
regression of confounds (in blue), after regression of the TIV (in orange) and after
regression of both the TIV and corr(eFC, eSC) (in green); The red line indicates a
statistical significance threshold of α = 0.05.

The results of the test are illustrated in Figure 4.2 for the case before regression
of the confounds (in blue), after the regression of just the TIV (in orange) and after
regression of both the TIV and corr(eFC, eSC)) (in green). In all the three cases,
we observed that the ESM for every parcellation scheme except S100 is positive.
However, it reduces in magnitude after each confound is regressed out. On the other
hand, the p− value for each of the parcellation schemes excluding S100, is below the
significance threshold of 0.05 only in the case where no confounds are regressed out.
Regressing of confounds causes the increase of the p − value beyond the threshold.
This implies that the ESM quantifying the sex differences in the value of H(eFC)
with each parcellation scheme is statistically significant (except S100) only before
regression of the confounds. Consequently, it can in turn be concluded that within
each of the parcellation schemes except S100, the group of males has a statistically
significant higher value of H(eFC) than the corresponding group of females only
when the confounds are not regressed out. Therefore, for all the further analysis on
Shannon Entropy of the eFC matrix, we excluded the S100 parcellation scheme and
also considered H(eFC) without regressing out the confounds.
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Parcellation Scheme
Phase Oscillator Model Limit Cycle Model
r p− value r p− value

(FDR corrected) (FDR corrected)

S200 0.13 0.03 0.20 10−4

S400 0.16 10−3 0.26 10−5

S600 0.24 10−5 - -

Shen79 0.36 10−9 0.39 10−11

Shen156 0.31 10−7 0.38 10−11

Shen232 0.30 10−7 - -

HO0% 0.29 10−6 0.33 10−8

HO25% 0.21 10−4 0.25 10−5

HO35% 0.28 10−6 0.30 10−7

HO45% 0.33 10−8 0.35 10−9

Table 4.1: Pearson’s correlation coefficient r between H(eFC) (without regression
of any confounds) and corr(sFC, eFC)max (after regression of both the TIV and
corr(eFC, eSC)) and its statistical significance (FDR corrected p − value) for the
phase oscillator model and the limit cycle model under each of the 11 parcellation
schemes.

4.1.2 Relationship of H(eFC) with corr(sFC, eFC)max

For each of the two models analysed, the relationship between the H(eFC) (without
regression of any confounds) and the corr(sFC, eFC)max (with both the confound
regressed out) was examined within each of the 10 parcellation schemes of interest
(excluding S100) for phase oscillator model and 8 parcellation schemes of interest for
the limit cycle model (excluding S100, S600 and Shen232). The other parcellation
schemes were excluded because within them, the sex differences in the goodness-of-fit
do not survive after regression of both the confounds. Therefore, within a selected
parcellation scheme of interest, the relationship was examined by evaluating the Pear-
son’s correlation coefficient r between the two quantities. We found that for both the
models, the values of r are positive and vary from values close to 0.1 to 0.3. Besides,
they are also statistically significant as the corresponding p−values (FDR corrected)
are well below the significance threshold of 0.05 as shown in Table 4.1.
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For both the models, the highest and lowest statistically significant values of r
are obtained for the Shen79 and the S200 parcellation scheme, respectively. The
relationship for the Shen79 parcellation is illustrated in Figure 4.3a for the phase
oscillator model where the value of r is 0.36 and it is statistically significant as the
corresponding p − value << 0.05. Likewise, Figure 4.3b illustrates the relationship
for the limit cycle model under the Shen79 parcellation scheme with a statistically
significant value of r = 0.39. The plots for all the remaining parcellation schemes of
interest are included in subsection 7.1.1 of the Appendix.

Since we observed a positive correlation, we next examined whether altering the
H(eFC) affects the corr(sFC eFC)max for a given parcellation scheme and we se-
lected the S200 parcellation scheme for this analysis. One of the ways to alter the
H(eFC) for every individual subject is the thresholding procedure (described in sub-
section 4.1.3). In addition, for the same parcellation scheme, the phase oscillator
model was re-simulated for every subject in order to obtain the new goodness-of-fit
that corresponds to best fit between the sFC matrix and the thresholded eFC ma-
trix. Thereafter, the relationship between the altered H(eFC) and the re-simulated
goodness-of-fit was re-investigated across varying thresholds.

4.1.3 Thresholding of the eFC Matrix

In the thresholding process, the elements of the eFC matrix that have a magnitude
(absolute value) below a chosen threshold value, were set to zero. The chosen thresh-
old values were: {0 (no threshold), 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}. The values 0.8
and 0.9 were not considered since most of the elements of the eFC matrix become
zero at those values of the threshold. The resulting eFC matrix that is thresholded
at a particular value of the threshold is denoted as eFCth.

For this process, we considered only the S200 parcellation scheme to simplify the
analysis. Once all the eFC matrices were thresholded, the Shannon entropy was
recalculated for the eFC matrices of the individual subjects at each threshold and,
therefore, denoted as H(eFCth). On plotting the values of H(eFCth) across varying
thresholds, we observed that it monotonically decreases with increasing threshold.
This is evident from the box plots in Figure 4.4a, where the plots are observed to
shift towards lower values of H(eFCth) as the value of threshold is increased. Addi-
tionally, we also observe that for a given value of threshold, the box plot of the male
group is shifted towards higher values of H(eFCth) relative to that of the correspond-
ing female group. This means that although the H(eFCth) for individual subject
decreases with increasing thresholds, the relative difference in its value between the
male group and the corresponding female group remains intact and in the same di-
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(b)

Figure 4.3: Illustration of the linear relationship betweenH(eFC) (without regression
of any confounds) and corr(sFC, eFC)max (after regression of both the TIV and
corr(eFC, eSC)) for the (a) phase oscillator model and (b) limit cycle model under
the Shen79 parcellation scheme; Each dot in the scatter plot corresponds to a subject
(blue for males and red for females) and the solid black line represents the line of
best fit obtained through linear regression; r is the Pearson’s correlation coefficient
between the two quantities, and p− value (FDR corrected) represents its statistical
significance.
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Figure 4.4: (a): Box plots illustrating the monotonic decrease in the value of
H(eFCth) (without regression of any confounds) with increasing threshold (left to
right) and also the qualitative difference in its value between the male group (blue)
and that of the female group (red) at each value of the threshold under the S200
parcellation scheme. (b): Quantification (ESM) and statistical significance (FDR
corrected p− value) of the sex differences in H(eFC) (without regression of any con-
founds) at each threshold under the S200 parcellation scheme; The red line indicates
a statistical significance threshold of α = 0.05.
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rection at all thresholds.

We quantified the observed sex differences within each threshold through the
Wilcoxon rank sum test. We found that the ESM at each threshold is positive and
statistically significant as the corresponding p−values (FDR corrected) are below the
significance threshold of 0.05 as shown in Figure 4.4b. Therefore, it can be concluded
that as the threshold increases, the Shannon entropy of the thresholded eFC matrix
- H(eFCth) monotonically decreases, but at a given threshold, the sex differences
in the value of H(eFCth) between males and females remain statistically significant,
with the group of males having a statistically higher value than the group of females
at all the thresholds.

4.1.4 Re-simulation of the goodness-of-fit at Various Thresh-
olds

In order to examine the effect of the thresholding procedure and in turn the effect of
altering the H(eFC) on the value of corr(sFC, eFC)max, we re-simulated the sFC
matrices for the phase oscillator model under the S200 parcellation scheme and cal-
culated the new goodness-of-fit between the sFC matrix and each of the thresholded
eFC matrix for every individual subject.
However, in addition to examining if the corr(sFC, eFC)max is affected by the
thresholding of the eFC matrix, another aim of the re-simulation was the elimination
of the sex differences induced from the personalisation of models. In the prelimi-
nary analysis, the models were personalised for each subject as the individual model
parameters were calculated from their respective empirical data (eSC, ePL matrices
and fMRI time series signal). Although the two known confounds were regressed
out from corr(sFC, eFC)max, there could possibly be sex differences induced from
the individual eSC, ePL matrices and the fMRI time series signal as well. To elim-
inate this possibility and retain only the eFC matrix as a variant across individual
subjects, we re-simulated the non personalised sFC matrices and re-evaluated the
corr(sFC, eFC)max for every subject.

To fulfill the two aforementioned aims, the corr(sFC, eFC)max was calculated
for every individual subject at each value of the threshold. The process can be sum-
marised as follows:

1. Firstly, the eSC matrices and the ePL matrices were averaged across all the
subjects under the S200 parcellation scheme. This resulted in one averaged eSC
matrix and one averaged ePL matrix for the entire population of 272 subjects.
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2. The parameters of the Phase Oscillator model such as ωjn and τjn were then
calculated from the averaged eSC and ePL matrix, respectively. Therefore, the
parameters ωjn and τjn are constant across all the subjects.

3. The frequencies fj corresponding to the jth oscillator were also averaged across
all subjects. Hence, every subject has the same fj for the respective jth oscil-
lator.

4. Subsequently, for every subject, the sFC matrices were generated for all combi-
nations of global propagation delay τ and global coupling strength C.

5. This resulted in one parameter plane per subject at each value of the threshold.
Following the procedure of model fitting as described in section 2.6, we extracted
the corr(sFC, eFCth)max from the parameter plane for every subject, and at
each value of the threshold. The subscript th represents that the eFC is thresh-
olded at a particular value of the threshold. For example, corr(sFC, eFC0.1)max

represents the goodness-of-fit at the threshold of 0.1.

Figure 4.5: Box plots illustrating not only the variation of the value of
corr(sFC, eFCth)max across thresholds, but also the qualitative difference in its
value between the male group (blue) and that of the corresponding female group
(red) at each threshold. The plots in grey correspond to the case before regression
of the confounds and the colored plots represent the case after regression of both the
TIV and corr(eFCth, eSCavg)
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As a result, at each threshold, corr(sFC, eFCth)max was calculated for ev-
ery individual subject (272 in total) and the list was subsequently split into two
groups of males and females for investigation of the sex differences in the value of
corr(sFC, eFCth)max. We then plotted the box plots of both males and females at
varying thresholds. The results are as follows:

1. Before regression of the confounds (Figure 7.3 - Appendix), we found that the
value of corr(sFC, eFCth)max remains fairly constant upto the threshold of
0.3, but decreases thereafter. However, at each value of the threshold, the the
box plots of the group of males are shifted towards higher values relative to the
corresponding group of females.

2. After regressing out just the TIV (Figure 7.4 - Appendix), we found that all the
box plots shift downwards relative to their position before regression, but there
is a non linear variation of the value of corr(sFC, eFCth)max across thresholds.
Initially there is a slight increase in its value until the threshold of 0.3, then
it remains fairly constant until the threshold of 0.5, and decreases thereafter.
However, the direction of the relative shift between the box plots of males and
females within each threshold remains the same as the case before regression,
but with a reduced gap between their respective medians.

3. As shown in Figure 4.5, regressing out the TIV as well as the corr(eFCth, eSCavg)
(eSCavg refers to the eSC matrix averaged across all individual subjects) also
causes a downward repositioning of all the box plots (in blue and red) relative
to the case before regression (in grey). We also observe that the non linear
variation of the corr(sFC, eFCth)max across thresholds becomes more promi-
nent in this case as the value initially increases until the threshold of 0.3 and
then decreases thereafter. Even in this case, the direction of the relative shift
between the box plots of the male group and the corresponding female group
at each value of the threshold remains the same as the case before regression of
any confounds, but the gap between their respective medians is negligible.

Hence, under the S200 parcellation scheme, for the phase oscillator model, the re-
sults imply that unlike H(eFCth), the value of corr(sFC, eFCth)max, after regression
of both the confounds, does not decrease monotonically with increasing threshold. In-
stead, it has a non linear variation across thresholds. This effect is evident from the
plot shown in Figure 4.6a where the median of H(eFCth) calculated across individ-
ual subjects decreasing with increasing thresholds, whereas the median of confound
regressed corr(sFC, eFCth)max calculated across individual subjects at each thresh-
old has a non linear variation across thresholds. To examine the relationship of the
H(eFCth) (without regressing out the confounds) with corr(sFC, eFCth)max (with
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Figure 4.6: Effect of the thresholding procedure on the value H(eFCth) (without
regression of any confounds) and also on the value of corr(sFC, eFCth)max (with
regression of both the TIV and corr(eFCth, eSCavg)) for the phase oscillator model
under S200 parcellation scheme; (a): Variation of the median of H(eFCth) (cal-
culated across individual subjects at each threshold) with different values at which
the eFC matrix is thresholded; (b): Variation of the median of confound regressed
corr(sFC, eFCth)max (median is calculated across individual subjects at each thresh-
old) with different values at which the eFC matrix is thresholded.
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Figure 4.7: Illustration of the relationship between median of H(eFCth) (without
regression of any confounds) and the median of corr(sFC, eFCth) (after regression
of both the TIV and corr(eFCth, eSCavg) under the phase oscillator model) across
different values at which the eFC matrix is thresholded under the S200 parcellation
scheme. The solid black line represents the line of best fit obtained through linear
regression.

both the confounds regressed out), we calculated the Pearson’s correlation coefficient
r between their respective medians across thresholds. This relationship is illustrated
in Figure 4.7 and we observe that the value of r = 0.63, but since the corresponding
p − value (no FDR correction) is above 0.05, the correlation coefficient r is statisti-
cally insignificant.

Subsequently, the statistical significance and the magnitude of observed sex dif-
ferences in all three cases (before regression of the confounds, after regression of just
the TIV and after regression of both the TIV and corr(eFCth, eSCavg)) and at each
value of the threshold was quantified through the Wilcoxon rank sum test. The re-
sults of the test are shown in Figure 4.8, where we observe that for the case before
regression of any confounds (in blue) the ESM at each threshold is positive, but de-
creases in magnitude as the threshold increases. Additionally, at a given threshold,
the ESM also decreases in magnitude as the confounds are regressed out (in orange
and green) compared to its value before regression (in blue). We also found that
the p− value (FDR corrected) at each threshold before regression (in blue) is below
0.05 (threshold of statistical significance) only till a threshold of 0.4, implying that
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Figure 4.8: Quantification (ESM) and statistical significance (FDR corrected p −
value) of the sex differences in corr(sFC, eFCth)max at each threshold, before re-
gression of confounds (in blue), after regression of only the TIV (in orange) and after
regression of both the TIV and corr(eFCth, eSCavg) (in green); The red line indicates
a statistical significance threshold of α = 0.05.

the ESM is statistically significant only for the threshold values from 0.0 to 0.4. In
both the cases of regressing out the confounds (in orange and green), the p − value
remains below 0.05 only for the threshold of 0 and 0.1. Hence, after the regression
of the confounds, the ESM is statistically significant only for the threshold values of
0 and 0.1, implying that at these two values of the threshold, the difference in the
value of corr(sFC, eFCth)max (with both the confounds regressed out) between the
group of males and the group of females is statistically significant, with a higher value
corresponding to the group of males.

Another important observation is that at the threshold of 0 and 0.1, the sex differ-
ences in the value of corr(sFC, eFC)max are statistically significant inspite of using
non personalised model parameters and regressing out the two known confounds.
Moreover, beyond the threshold of 0.1, the sex differences in the H(eFC) are statis-
tically significant (Figure 4.4b), whereas the differences in corr(sFC, eFC)max (with
both the confounds regressed out) are not (Figure 4.8).
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4.2 Standard Deviation of the eFCMatrix - σ(|eFC|)

4.2.1 Sex Differences in σ(|eFC|)
For a selected parcellation scheme, σ(|eFC|) was calculated for all the subjects (272 in
total) and the list was subsequently split into two groups of males (128) and females
(144). These two groups were then investigated for sex differences - qualitatively
though box plots, and quantitatively through the Wilcoxon rank sum test, which
yielded a p− value as well as a test-statistic that was used to calculate the ESM for
every parcellation scheme.

Figure 4.9: Box plots illustrating the qualitative difference in the value of σ(|eFC|)
between the male group (blue) and that of the female group (red) within each of the
11 parcellation schemes. The plots in grey correspond to σ(|eFC|) before regression
of the confounds and the colored plots represent its value after regression of both the
TIV and corr(eFC, eSC)

Qualitatively, in all three cases - before regression of any confounds (Figure 7.5 -
Appendix), after regression of just the TIV (Figure 7.6 - Appendix) and after regres-
sion of both the TIV and corr(eFC, eSC), we found that within each parcellation
scheme, the box plot of the group of males is shifted relatively above that of the
corresponding group of females. We also found that regression of just the TIV causes
a downward repositioning of all the box plots, indicating a consistent decrease in the
value of σ(|eFC|) across all parcellation schemes. Figure 4.9 shows the case where
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Figure 4.10: Quantification (ESM) and statistical significance (FDR corrected
p−value) of the sex differences in σ(|eFC|) within each of the 11 parcellation schemes
before regression of confounds (in blue), after regression of the TIV (in orange) and
after regression of both the TIV and corr(eFC, eSC) (in green); The red line indi-
cates a statistical significance threshold of α = 0.05.

both the confounds have been regressed out (colored plots) and we observe that all
the box plots reposition upwards relative to those before regression (in grey). How-
ever, as mentioned earlier, even as each confound is regressed out, the direction of
relative shift between the plots of the group of males and the group of females within
a given parcellation scheme stays the same as the case before regression, but with a
reduced gap between their respective medians.
The magnitude (ESM) and statistical significance (p − value) of the observed sex
differences in σ(|eFC|) as evaluated through the Wilcoxon rank sum test both before
(in blue) and after regression of the confounds (in orange and green) are shown in
Figure 4.10, where it can be seen that the ESM evaluated in order to quantify the
difference in the value of σ(|eFC|) between males and females with each parcellation
scheme, is positive, but decreases in magnitude as each confound is regressed out.
Besides, the p− value is below the significance threshold of 0.05 before regression of
any confound (in blue) and also after regression of just the TIV (in orange), implying
that the ESM is statistically significant only in the these two cases. As the p− value
exceeds the threshold of 0.05 after regression of both the confounds (in green) for
all the parcellations schemes, the ESMs corresponding to this case are statistically
insignificant.
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We, therefore, concluded that within each of the 11 parcellation schemes, the
group of males has a statistically and significantly higher σ(|eFC|) than that of
the corresponding group of females both before regression of any confounds and after
regressing out only the brain size (TIV). In order to eliminate the confounding effects,
but retain the statistically significant sex differences in σ(|eFC|), we considered its
value after regression of the TIV alone for our further analysis.

Parcellation Scheme
Phase Oscillator Model Limit Cycle Model
r p− value r p− value

(FDR corrected) (FDR corrected)

S200 0.31 10−7 0.46 10−16

S400 0.27 10−6 0.39 10−11

S600 0.35 10−9 - -

Shen79 0.55 10−23 0.64 10−32

Shen156 0.46 10−16 0.57 10−24

Shen232 0.42 10−13 - -

HO0% 0.38 10−11 0.46 10−15

HO25% 0.29 10−7 0.38 10−11

HO35% 0.34 10−9 0.41 10−12

HO45% 0.39 10−11 0.43 10−14

Table 4.2: Pearson’s correlation coefficient r between σ(|eFC|) (after regression of
the TIV) and corr(sFC, eFC)max (after regression of both the confounds) and its
statistical significance (FDR corrected p− value) for the phase oscillator model and
the limit cycle model under each of the 11 parcellation schemes.

4.2.2 Relationship of σ(|eFC|) with corr(sFC, eFC)max

Within each of the 10 and 8 parcellation schemes of interest under the phase oscil-
lator and limit cycle model, respectively, the relationship between σ(|eFC|) (after
regression of the TIV) and corr(sFC, eFC)max (after regression of both the con-
founds) was examined through the evaluation of the Pearson’s correlation coefficient
r between the two quantities. The various values of r and the corresponding statisti-
cal significance (FDR corrected p − values) for both phase oscillator model and the
limit cycle model under their respective parcellation schemes of interest are shown
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in Table 4.2. We found that for both the models, within each of the parcellation
schemes, the correlation coefficients r are positive and vary from values close to 0.2
to 0.6. Since the corresponding p−values (FDR corrected) are all much lesser than the
significance threshold of 0.05, the correlation coefficients r are statistically significant.

For both the models, the highest value of r is obtained for the Shen79 parcella-
tion scheme. However, the lowest r corresponds to the S400 and HO25% parcellation
scheme under the phase oscillator model and the limit cycle model, respectively. The
relationship for the Shen79 parcellation scheme is illustrated in Figure 4.11a for the
phase oscillator model where we observe that the value of the correlation coefficient is
r = 0.55 and it is statistically significant (p−value << 0.05). Similarly, Figure 4.11b
shows the relationship for the limit cycle model which also displays a statistically
significant correlation coefficient of r = 0.64 for the Shen79 parcellation scheme. The
plots for the remaining parcellation schemes of interest are included in the subsec-
tion 7.2.1 of the Appendix.

4.3 Area under the Eigen Value Curve of the eFC

Matrix - A(λeFC)

4.3.1 Sex Differences in A(λeFC)

The A(λeFC) was calculated for all the 272 subjects within a selected parcellation
scheme and the list was subsequently split into two groups: males and females. The
two groups were then investigated for sex differences in the value of A(λeFC) (both
before and after regression of the confounds) through the wilcoxon’s sum ranks test.

Before regression of any confounds (Figure 7.7 - Appendix), we found that within
a given parcellation scheme, the box plot of the female group is relatively shifted to-
wards higher values of A(λeFC) as compared to that of the corresponding male group.
After regression of just the TIV (Figure 7.7 - Appendix), we observed an upward
repositioning of the box plots of both males and females, indicating an increase in
the value of A(λeFC) across all the parcellation schemes. In Figure 4.12, the colored
box plots show the case where both the TIV and the corr(eFC, eSC) have been
regressed out of A(λeFC) and the grey plots correspond to the case before the regres-
sion of any confounds (for comparison). In this case, it can be seen that except for
the S100 parcellation, there is a consistent decrease in the value of A(λeFC) across all
the parcellation schemes as the box plots reposition themselves towards lower values.
However, in both the cases of regression - after regression of just the TIV and after
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(b)

Figure 4.11: Illustration of the relationship between σ(|eFC|) (after regression of the
TIV) and corr(sFC, eFC)max (after regression of both the confounds) for (a) the
phase oscillator model and (b) the limit cycle model under the Shen79 parcellation
scheme; Each dot in the scatter plot corresponds to a subject (blue for males and red
for females) and the solid black line represents the line of best fit obtained through
linear regression; r is the Pearson’s correlation coefficient between the two quantities,
and p− value represents its statistical significance.
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regression of both the TIV as well as corr(eFC, eSC), within each of the 11 parcel-
lation schemes, the box plot of the group of females remains shifted towards higher
values of A(λeFC) than that of the corresponding group of males, but with a reduced
gap between their respective medians.

Figure 4.12: Box plots illustrating the qualitative difference in the value of A(λeFC)
between the male group (blue) and that of the female group (red) within each of the
11 parcellation schemes. The plots in grey correspond to A(λeFC) before regression
of the confounds and the colored plots represent its value after regression of both the
TIV and corr(eFC, eSC).

The observed sex differences were tested and quantified through the Wilcoxon rank
sum test whose results are shown in Figure 4.13. We found that the ESM is negative
for all parcellation schemes, however, its magnitude decreases each time a confound is
regressed out. The p−value is below the significance threshold both before regression
of the confounds as well as after regression of just the TIV, but surpasses the threshold
once both the known confounds are regressed out of A(λeFC). This implies that the
ESM that quantifies the difference in the value of A(λeFC) between the group of males
and females within a given parcellation scheme, is statistically significant in two cases
- before regression of any confounds and after regression of just the TIV.
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Figure 4.13: Quantification (ESM) and statistical significance (FDR corrected p −
value) of the sex differences in A(λeFC) within each of the 11 parcellation schemes
before regression of confounds (in blue), after regression of the TIV (in orange) and
after regression of both the TIV and corr(eFC, eSC); The red line indicates a
statistical significance threshold of α = 0.05.

It can, therefore, be concluded that, within any selected parcellation scheme, the
value of A(λeFC) for the group of females is statistically and significantly higher in
comparison with the respective group of males, not only before regression of the
confounds, but also after regression of the TIV. Therefore, in all further analysis
involving A(λeFC), we used its value after regression of the TIV.

4.3.2 Relationship of A(λeFC) with corr(sFC, eFC)max

In order to study the relationship between A(λeFC) and corr(sFC, eFC)max, for
a selected parcellation scheme of interest, we determined the Pearson’s correlation
coefficient r between A(λeFC) (after regression of only the TIV) and the respective
corr(sFC, eFC)max (after regression of both the confounds - TIV and corr(eFC, eSC))
for the phase oscillator model as well as the limit cycle model.

For both the models, within their respective parcellation schemes of interest, we
found that the correlation coefficients r are negative (see Table 4.3) and range from
values close to -0.3 to -0.6, with the corresponding p − values (FDR corrected) well
below the significance threshold of 0.05. Consequently, the values of r evaluated are
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statistically significant for both the models and for each of the parcellation schemes.
However, the highest (in magnitude) r is observed for the Shen79 parcellation scheme
for both the models, whereas, the lowest r corresponds to the S400 for the phase
oscillator model and S400 and HO25% (equal values) parcellation schemes for the
limit cycle model.

Under the Shen79 parcellation scheme, Figure 4.14a shows the relationship for the
phase oscillator model, where we observe a statistically significant (p−value << 0.05)
negative correlation coefficient of r = −0.63 and Figure 4.14b shows the relationship
for the limit cycle model with a statistically significant r = −0.70. Similar plots for
the remaining parcellation schemes of interest are included in the subsection 7.3.1 of
the Appendix.

Parcellation Scheme
Phase Oscillator Model Limit Cycle Model
r p− value r p− value

(FDR corrected) (FDR corrected)

S200 -0.41 10−12 -0.55 10−22

S400 -0.32 10−8 -0.43 10−13

S600 -0.41 10−12 - -

Shen79 -0.63 10−31 -0.70 10−41

Shen156 -0.54 10−21 -0.61 10−27

Shen232 -0.46 10−15 - -

HO0% -0.46 10−15 -0.53 10−20

HO25% -0.36 10−10 -0.43 10−13

HO35% -0.41 10−12 -0.46 10−15

HO45% -0.46 10−15 -0.49 10−18

Table 4.3: Pearson’s correlation coefficient r between A(λeFC) (after regression of
the TIV) and corr(sFC, eFC)max (after regression of both the confounds) and its
statistical significance (FDR corrected p− value) for the phase oscillator model and
the limit cycle model under each of the 11 parcellation schemes.
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Figure 4.14: Illustration of the relationship between A(λeFC) (after regression of
the TIV) and corr(sFC, eFC)max (after regression of both the confounds) for (a)
the phase oscillator model and (b) limit cycle model under the Shen79 parcellation
scheme; Each dot in the scatter plot corresponds to a subject (blue for males and red
for females) and the solid black line represents the line of best fit obtained through
linear regression; r is the Pearson’s correlation coefficient between the two quantities,
and p− value (FDR corrected) represents its statistical significance.
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Chapter 5

Discussion

Through this project, we aimed to investigate the possible sex differences that may
exist in the goodness-of-fit, that is, the corr(sFC, eFC)max extracted separately for
all the subjects for the phase oscillator model as well as the limit cycle model under
11 different parcellation schemes. The aim of the project, however, was not to reason
the variation of the goodness-of-fit across parcellation schemes as studied in [8] and
[31]. Instead, we intended to examine the presence of sex differences in the goodness-
of-fit within a selected parcellation scheme and also to investigate if the variation
of the goodness-of-fit between males and females despite the removal of confounding
variables, could be attributed to the variation in the properties of the eFC matrix
since it was employed for model validation. Such an investigation was performed
independently under each of the 11 parcellation schemes and each of the two models.

In the preliminary analysis, we observed that for both the models studied, the
value of corr(sFC, eFC)max within a given parcellation scheme is statistically higher
for the group of males as compared to the corresponding group of females, with the
difference being statistically significant and this observation is persistent in all the
parcellation schemes before regressing out the known confounds. However, when the
two known confounds - the brain size (TIV) and the empirical structure function
correspondence (corr(eFC, eSC)) were regressed out from corr(sFC, eFC)max, the
sex differences remained statistically significant and in the same direction (as before
regressing out the confounds) within all the parcellation schemes except for S100 for
the phase oscillator model and S100, S600 and Shen232 for the limit cycle model.
We, therefore, concluded that despite the elimination of the possible influences from
the confounds, the statistically significant sex differences in the goodness-of-fit persist
for 10 and 8 parcellation schemes of interest for the phase oscillator model and the
limit cycle model, respectively. This implies that for those parcellation schemes, the
sex differences in the goodness-of-fit do not emerge from the sex differences in the
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brain size and the empirical structure-function correspondence. Additionally, partic-
ularly for the S200 parcellation scheme, we re-simulated the phase oscillator model
where the eSC, ePL matrices and the frequencies corresponding to every brain region
were averaged across individual subjects in order to eliminate the sex differences in-
duced due to personalization of models. In this case, we found that the differences
in the value of corr(sFC, eFC)max between the group of males and the correspond-
ing group of females, are statistically significant, with a relatively higher values for
the group of males, inspite of removal of both the confounds as well as implemen-
tation of non personalized model parameters. This is an indication that, at least
for the S200 parcellation scheme, the presence of statistically significant sex differ-
ences in the goodness-of-fit (generated through the phase oscillator model) is not
only independent of the two confounds (brain size and empirical structure-function
correspondence), but also independent of the inter-individual differences that stem
from the personalised model parameters. However, whether implementation of non
personalised models preserves the aforementioned sex differences for the other par-
cellation schemes and also the limit cycle model, needs further investigation.

In order to explain the statistically significant higher value of the goodness-of-fit
for the group of males relative to that of the group of females within a selected par-
cellation scheme, despite the removal of both the confounds, we speculated that a
potential reason for such an observation could be the sex differences in the ‘complex-
ity’ of the eFC matrix used to validate the model, that may in turn affect the quality
of model fitting. We hypothesised that the presence of high ‘complexity’ in the eFC
matrix implies a lower goodness-of-fit and therefore, the eFC matrices corresponding
to the group of females are more ‘complex’ than that of the group of males. To test
our hypothesis, we considered three quantities calculated from the eFC matrices of
individual subjects as potential ‘complexity’ measures and examined if they also ex-
hibited sex differences in them and if the measures were negatively correlated with
the confound regressed goodness-of-fit within a given parcellation scheme, as per our
hypothesis.

On considering the Shannon entropy of the eFC matrix - H(eFC) as a poten-
tial measure of ‘complexity’, we found that, without regressing out any confounds,
the group of males has a statistically significant higher value relative to that of the
group of females within every parcellation scheme except S100, where the difference
is not statistically significant. This implies that within a parcellation scheme (except
S100), the group of males have a higher uncertainty associated with the synchro-
nization of activities between different pairs of brain regions, as compared to that of
the corresponding group of females. Besides, irrespective of whether only the TIV is
regressed out, or both the TIV and corr(eFC, eSC) are regressed out, the sex differ-
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ences in H(eFC) within all the parcellation schemes, turn statistically insignificant.
This implies that the variation of the Shannon entropy of the eFC matrix between
males and females, is not independent of the influence from the other covariates with
sex, namely the brain size and the empirical structure-function correspondence. It
is, therefore, imperative that the confounds are not regressed out from H(eFC), in
order to not only detect statistically significant sex differences in it, but to also use
this measure to account for the sex differences in corr(sFC, eFC)max (from which
both the confounds have been regressed out).
Moreover, for both the models, the H(eFC) (without regression of confounds) pos-
itively, but weakly correlates with the corr(sFC, eFC)max (after regression of both
the confounds) across individual subjects within a selected parcellation scheme of
interest, that is, the Shannon entropy of the eFC matrix, along with the confounds,
can account for a very small percentage of the variation in the confound regressed
goodness-of-fit from one subject to another within a selected parcellation scheme.
The exact percentage of variance explained depends on the model and the parcella-
tion scheme. However, further analysis under the S200 parcellation scheme for the
phase oscillator model revealed that a monotonic decrease in the H(eFC) (without
regression) due to the thresholding process, does not imply a monotonic decrease
in the corr(sFC, eFC)max (with both the confounds regressed out) across varying
thresholds for an individual subject. This is evident from the fact that the correlation
coefficient between the respective medians of the two quantities across varying thresh-
olds is statistically insignificant. A potential reason for the non linear variation in
the goodness-of-fit across varying thresholds could be that besides affecting the Shan-
non entropy of the eFC matrix, the thresholding procedure may also influence other
properties of the eFC matrix, which could collectively cause a non linear variation
in the goodness-of-fit of an individual subject across varying thresholds. Therefore,
if we intend to examine the the effect of altering only the Shannon entropy of the
eFC matrix, on the value of the goodness-of-fit for an individual subject, that is, at
an intra-individual level, the thresholding process may not be the optimal way and
further investigation is required in this aspect.

Furthermore, under the S200 parcellation scheme, we also found that although
the sex differences in the value of H(eFCth) (without regression of confounds) are
statistically significant at all values of the threshold, the sex differences in the value
of corr(sFC, eFCth)max (with both the confounds regressed out) are statistically
significant only at the threshold of 0 and 0.1. Hence, beyond the threshold of 0.1,
the presence of sex differences in the Shannon entropy of the eFC matrix, does not
necessarily mean that the goodness-of-fit (after regression of both the confounds) will
also have sex differences in it. The reason for such an observation is still unclear,
but a reasonable speculation could be that it may be due to the fact that the two
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quantities are weakly correlated (r = 0.13) across individual subjects for the phase
oscillator model, under the S200 parcellation scheme.

The second potential ‘complexity’ measure that we considered was the standard
deviation of the eFC matrix - σ(|eFC|) where we observed that the sex differences
in its value are statistically significant, with the group of males having a statistically
higher value than that of the corresponding group of females, within all the 11 parcel-
lation schemes before regressing out any confounds and also after the regressing out
the TIV, but not when both the TIV and corr(eFC, eSC) are regressed out. This
implies that even after regressing out the brain size, the males have a statistically
higher spread in their respective eFC matrices as compared to that of the corre-
sponding females within a selected parcellation scheme. That is, from a statistical
perspective, there exist some pairs of brain regions whose activities are synchronised
very differently from that of the other pairs for males, whereas, females have a rel-
atively more similar extent of synchronised co-activation between different pairs of
brain regions and that these sex differences observed in the standard deviation of
the eFC matrix are independent of influence from the sex differences in the brain
size (TIV), but are dependent on the influence of the sex differences in the empirical
structure-function correspondence (corr(eFC, eSC)). Therefore, in order to observe
statistically significant differences in the value of σ(|eFC|) between the group of males
and females, or to use it to account for the sex differences in another quantity such
as corr(sFC, eFC)max, the value of σ(|eFC|) cannot be considered independent of
corr(eFC, eSC); the TIV, however, can be regressed out from it. Moreover, for
both the models considered, since the correlation coefficient between σ(|eFC|) (after
regression of the TIV) and corr(sFC, eFC)max (after regression of both the con-
founds) across individual subjects within a selected parcellation scheme of interest is
positive, moderate in magnitude as well as statistically significant, it signifies that a
more broadly distributed eFC matrix implies a better quality of the model fit and
that σ(|eFC|) (after regression of the TIV) accounts for a reasonable proportion of
the variation in corr(sFC, eFC)max (after regression of both the confounds) between
males and females within a selected parcellation scheme. The exact percentage of the
variance explained, however, depends on the model and the parcellation scheme.

The third measure of ‘complexity’ considered in this study was the area under
the eigen value curve of the eFC matrix - A(λeFC). We found that from a statistical
standpoint, this measure is significantly higher for the group of females relative to the
corresponding group of males within all of the parcellation schemes, not only before
regressing out the confounds, but also after regressing out the brain size (TIV). How-
ever, the sex differences become statistically insignificant after regressing out both
the TIV as well as the corr(eFC, eSC). The statistically higher value of A(λeFC)
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for the group of females suggests that the eigen value curve of the eFC matrices of
the females decays at a slower rate (gradual fall), while the curve corresponding to
the males within the same parcellation scheme decays at a much faster rate (steep
fall). In other words, within a selected parcellation scheme, the reconstruction of the
eFC matrix back to its original vector space involves a significant contribution of a
relatively larger number of eigen values in the case of females, as compared to the case
of males. This is true even after the major differentiating factor, that is, the brain
size has been regressed out from A(λeFC). The fact that the sex differences are statis-
tically significant even after regressing out the TIV, but not after regressing out both
the TIV as well as corr(eFC, eSC) implies that similar to the observation in the case
of σ(|eFC|), the difference in the value of A(λeFC) between males and females within
a given parcellation scheme is independent of the influence from the sex differences in
the brain size (TIV), but is influenced by the sex differences in the empirical structure-
function correspondence (corr(eFC, eSC) ). Hence, the observed sex differences in
both σ(|eFC|) as well as A(λeFC) emerge from the sex differences in corr(eFC, eSC)
and, therefore, regressing it out also takes away the statistical significance of the sex
differences from both the measures. Accordingly, to observe statistically significant
difference in the value of A(λeFC) between the group of males and females, or to
use this measure to explain the sex differences in corr(sFC, eFC)max, it must be
considered without regressing out corr(eFC, eSC) from it. Furthermore, unlike the
first two measures of ‘complexity’, the A(λeFC) (with the TIV regressed out) is found
to be negatively correlated with the corr(sFC, eFC)max (with both the confounds
regressed out) within a selected parcellation scheme. In addition to being negative,
the correlation coefficient is also statistically significant and has a moderate to strong
magnitude. This implies that a higher value of A(λeFC) (with the TIV regressed
out) corresponds to a lower value of corr(sFC, eFC)max (with both the confounds
regressed out) and the former accounts for a reasonable percentage of variation in
the latter between the group of males and females for both the models within their
respective parcellation schemes of interest. The exact percentage, however, depends
on the model and the parcellation scheme considered.

Comparing all the three measures, the maximum proportion of the variance in
the corr(sFC, eFC)max (with both the confounds regressed out) across individual
subjects, within a parcellation scheme is explained by the A(λeFC) (with the TIV
regressed out), followed by σ(|eFC|) (with TIV regressed out) and least proportion is
accounted for, by H(eFC) (without regression of any confounds). However, correla-
tion does not imply causation. Therefore, it cannot be claimed that the sex differences
in these three measures cause the variation in the goodness-of-fit between males and
females. Although an attempt was made to test the causality of H(eFC) on the
goodness-of-fit, the thresholding procedure does not assure an alteration of just the
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H(eFC). Therefore, further investigation is required in order to test the causality of
any of the ‘complexity’ measures on the confound regressed goodness-of-fit.

For each of the three potential measures of ‘complexity’ considered in the project,
we speculated that a high value of the measure corresponds to a higher ‘complexity’ of
the eFC matrix, and according to our hypothesis proposed in section 3.3, we expected
the group of females to have a statistically significant higher value of the ‘complexity’
measure relative to the group of males within a given parcellation scheme. Therefore,
the ‘complexity’ measures and the confound regressed goodness-of-fit for both the
models under their respective parcellation schemes of interest were expected to be
negatively correlated with each other. However, it is not straightforwardly clear as
to whether to accept or reject the hypothesis, because in the case of two measures,
namely, H(eFC) and σ(|eFC|), we observed surprising results that are contradictory
to our expectations and A(λeFC) is the only measure (amongst the ones considered)
for which the hypothesis stands validated. The hypothesis proposed by us is, there-
fore, inconsistent across different measures of ‘complexity’ considered in the study.
Furthermore, since the exact definition of ‘complexity’ of a connectome has not been
clearly established yet, it is also unclear as to whether any of the properties of the eFC
matrix that we speculated as “potential measures of complexity” actually reflect the
underlying complexity of the functional connectivity between different brain regions
in a neuro-physiological context. As different measures have different interpretations,
it is difficult to specify which sex has a statistically more ‘complex’ eFC matrix and
whether a lower ‘complexity’ always implies a better model fit.

Essentially, in this project, we were successful in establishing the statistical dif-
ferences in the goodness-of-fit between the group of males and the corresponding
group of females within most parcellation schemes even after regressing out the con-
founds for both of the whole brain dynamical models studied. We identified 10 and
8 such parcellation schemes for the phase oscillator model and the limit cycle model,
respectively. Besides, we also discovered a few properties of the eFC matrix that
display sex differences in them and also account for different proportion of variance
in the confound regressed goodness-of-fit across individual subjects within a selected
parcellation scheme of interest. However, a precise and valid quantification and in-
terpretation of the term ‘complexity’ of a connectome and its correlation (and/or
causation) with the goodness-of-fit remains obscure. The project, therefore, requires
an additional investigation in this aspect.
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Chapter 6

Limitations and Future Prospects

In addition to the aspects of the projects which need further investigation (as dis-
cussed in the previous chapter), the materials and statistical methods implemented in
the project also have their own limitations. In this chapter, we will enumerate some
of those shortcomings and also propose potential future directions of the project.

The parcellation schemes employed in the project are non personalised, that is to
say, they are based on a universal map of the brain defined in the standard space,
rather than the native space of the individual subject. The standard space fixes the
same number of brain regions for all the subjects under a specific parcellation scheme.
Since the level of organization in the brain differs across individuals, fixing the same
number of brain regions for all the subjects may not be the most optimal method.
Besides, standardising the granularity (number of parcels) across individual subjects
may also mitigate the potential inter-individual differences with regards to their re-
spective functional or structural connectomes. It could, therefore, be interesting to
consider personalised delineation of the brain for each subject and then investigate
the sex differences in the properties of their respective connectomes.

In the context of statistical hypothesis tests, although the Wilcoxon rank sum
test does not require the distribution of the data to be of a specific kind (therefore
applicable even in cases of normally distributed data), the Student’s t test is statis-
tically more powerful in cases where the distribution of the data is close to a normal
distribution. In our study, we did not perform a thorough investigation of the na-
ture of the distribution followed by the data in every segment of the analysis and
we, therefore, employed the non parametric Wilcoxon rank sum test so as to remain
consistent throughout the project. However, in order to achieve statistically more
accurate results, the choice of the hypothesis tests should be situation specific.
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Moreover, previous studies have also shown that the p − value depends on the
standard error, which is in turn dependant on the sample size of the data. Increas-
ing the sample size decreases the standard error and, therefore, also decreases the
p − value. The p − value is, therefore, said to be confounded by the sample size
[35]. In our study, it is possible that we obtain a smaller p − value in cases where
the sample size of the data is large, for example, in Figure 3.6a, we see that the
p − value corresponding to the S200 parcellation scheme is lower than that of S100
parcellation scheme. Such a result is observed not only because the parcellation cri-
teria is different between S100 and S200, but also because of a mere increase in the
sample size of the data (increase in dimension of the connectomes from 100x100 to
200x200). Although, we performed the FDR correction on the p − value to correct
for multiple comparison across different parcellation schemes, it is important to note
that the sample size dependence of the p− value cannot be overlooked.

Besides, as already mentioned earlier, we did not apply the Fisher’s Z transfor-
mation on the elements of the eFC matrices (which are themselves correlation coeffi-
cients) prior to the calculation of the quality of model fit, that is, the corr(sFC, eFC).
However, from a strict statistical perspective, all correlation coefficients must techni-
cally be Fisher’s Z transformed prior to any arithmetic or statistical operations. It
could, therefore, be useful to inspect if the implementation of the Fisher’s Z transfor-
mation on the eFC matrix elements prior to the calculation of corr(sFC, eFC) (as
done in a very recent study [2]), affects the magnitude and statistical significance of
the sex differences in it in any way.

In this project, we considered two similar whole brain dynamical models based on
an ensemble of phase oscillators. Although the models are useful in simulating the
resting state activity of the brain regions, other biologically inspired models like the
neuronal mass model [8] can also be additionally considered so as to examine if the sex
differences in the goodness-of-fit persist under the implementation of a conceptually
different model.
Moreover, in both the phase oscillator model as well as the limit cycle model, we op-
timised the goodness-of-fit with respect to just two global model parameters - global
propagation delay τ and global coupling strength C. However, the dimension of the
parameter space can be increased (from 2D) by introducing more global parameters
in the model and the goodness-of-fit can subsequently be optimised with respect to a
higher number of global parameters. This may potentially influence the value of the
goodness-of-fit and consequently influence the magnitude and statistical significance
of the sex differences observed in it.
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Thus far, the connectivity matrices we worked with are whole brain connectomes,
that is, we considered the anatomical or functional connections (empirical and sim-
ulated) between regions defined over the entire brain. However, there have been
previous studies showing that the whole brain can be divided into 6 subnetworks
called Resting State Networks (RSNs) [19] each consisting of a certain number of
brain regions (obtained through a selected parcellation scheme). Therefore, in addi-
tion to the whole brain connectomes, RSN specific connectivity matrices can also be
considered in order to explore if sex differences persist in the goodness-of-fit extracted
between region specific connectomes.

In the segment on ‘complexity’ analysis, although we considered three quantities
derived from the eFC matrices as potential measures of ‘complexity’, other proper-
ties of the eFC matrix can also be considered in order to investigate the existence
of sex differences in them and their ability to account for the sex differences in the
goodness-of-fit. For instance, viewing the eFC matrix from a graph theoretical per-
spective, measures such as the shape and scale parameters of the degree distribution
of the eFC matrix, modularity and clustering coefficient of the eFC matrix, etc can
also be considered as discussed in the study [8].
In addition to examining the various properties of the static eFC matrix, the analysis
can be extended to evaluation of the ‘complexity’ of the dynamic eFC matrix and also
of the BOLD fMRI time series signal that is employed to construct the eFC matrices.
As mentioned earlier, recent studies such as [26], [37], [27], [19] etc. have quantified
the ‘complexity’ of the fMRI time varying signal, or of dynamical functional con-
nectivity matrix in terms of entropy measures like the sample entropy, approximate
entropy, multi-scale entropy etc. Hence, evaluation of such measures in the context
of this study, could potentially provide a deeper understanding of the interpretation
of the complexity of the time series signal, whether and how it is different between
males and females and also its impact (correlation, causation) on the sex differences
in the goodness-of-fit.

The project, therefore, has many prospects to be explored in the future and fur-
ther research in this domain has the potential to furnish great insights into how males
and females differ in their brain dynamics and consequently, in their behaviour.
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Chapter 7

Appendix

In this chapter, we include all the extra plots that support the analysis and results
of the project.

7.1 Shannon Entropy of the eFC Matrix - H(eFC)

Figure 7.1: Box plots illustrating the qualitative difference in the value of H(eFC)
between the male group (blue) and that of the female group (red) within each of the
11 parcellation schemes, for the case before regression of any confounds.
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Figure 7.2: Box plots illustrating the qualitative difference in the value of H(eFC)
between the male group (blue) and that of the female group (red) within each of the
11 parcellation schemes, for the case after regression of only the brain size (TIV).

Figure 7.3: Box plots illustrating not only the variation of corr(sFC, eFCth)max

across thresholds but also the qualitative difference in its value between the male
group (in blue) and that of the female group (in red) at each threshold, for the case
before regressing out any confounds.
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Figure 7.4: Box plots illustrating not only the variation of corr(sFC, eFCth)max

across thresholds but also the qualitative difference in its value between the male
group (in blue) and that of the female group (in red) at each threshold, for the case
where only the TIV was regressed out.

7.1.1 Relationship between H(eFC) and corr(sFC, eFC)max

The following plots illustrate the relationship between the H(eFC) (without regres-
sion of any confounds) and the corr(sFC, eFC)max (after regression of both the TIV
and corr(eFC, eSC)) within a parcellation scheme. Each dot in the scatter plot
corresponds to a subject (blue for males and red for females) and the solid black line
represents the line of best fit obtained through linear regression; r is the Pearson’s
correlation coefficient between the two quantities and the p− value (FDR corrected)
represents its statistical significance. Below, we illustrate the plots for all the par-
cellation schemes of interest for the phase oscillator model followed by the plots for
those of the limit cycle model.

Phase Oscillator Model
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Limit Cycle Model
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7.2 Standard Deviation of the eFCMatrix - σ(|eFC|)

Figure 7.5: Box plots illustrating the qualitative difference in the value of σ(|eFC|)
between the male group (blue) and that of the female group (red) within each of the
11 parcellation schemes, for the case before regression of any confounds.
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Figure 7.6: Box plots illustrating the qualitative difference in the value of σ(|eFC|)
between the male group (blue) and that of the female group (red) within each of the
11 parcellation schemes, for the case after regression of only the brain size (TIV).

7.2.1 Relationship between σ(|eFC|) and corr(sFC, eFC)max

The following plots illustrate the relationship between the σ(|eFC|) (after regression
of just the TIV) and the corr(sFC, eFC)max (after regression of both the TIV and
corr(eFC, eSC)) within a parcellation scheme. Each dot in the scatter plot cor-
responds to a subject (blue for males and red for females) and the solid black line
represents the line of best fit obtained through linear regression; r is the Pearson’s
correlation coefficient between the two quantities and the p− value (FDR corrected)
represents its statistical significance. The plots for both the models are shown below.

Phase Oscillator Model
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Limit Cycle Model
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7.3 Area under the Eigen Value Curve of the eFC

Matrix - A(λeFC)

Figure 7.7: Box plots illustrating the qualitative difference in the value of A(λeFC)
between the male group (blue) and that of the female group (red) within each of the
11 parcellation schemes, for the case before regression of any confounds.
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Figure 7.8: Box plots illustrating the qualitative difference in the value of A(λeFC)
between the male group (blue) and that of the female group (red) within each of the
11 parcellation schemes, for the case after regression of only the brain size (TIV).

7.3.1 Relationship between A(λeFC) and corr(sFC, eFC)max

The following plots illustrate the relationship between the A(λeFC) (without regres-
sion of any confounds) and the corr(sFC, eFC)max (after regression of both the TIV
and corr(eFC, eSC)) within a parcellation scheme. Each dot in the scatter plot
corresponds to a subject (blue for males and red for females) and the solid black line
represents the line of best fit obtained through linear regression; r is the Pearson’s
correlation coefficient between the two quantities and the p− value (FDR corrected)
represents its statistical significance. The plots for both the models are shown below.

Phase Oscillator Model
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Limit Cycle Model
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