
 
ECONOMETRIC ESSAYS ON PROTECTING, GROWING, AND 

BENEFITING FROM CUSTOMER-BASED BRAND EQUITY 
 
 
 
 
 
 
 
 

Inauguraldissertation 

zur 

Erlangung des Doktorgrades 

der Wirtschafts- und Sozialwissenschaftlichen Fakultät 

der Universität zu Köln 

 

 

2016 

 

 

vorgelegt von 

Diplom-Kaufmann Max Philipp Backhaus  

aus 

Mainz 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Referent: Prof. Dr. Marc Fischer 

Koreferent: Prof. Dr. Franziska Völckner 

Tag der Promotion: 12.01.2017



	
   I 

ACKNOWLEDGEMENTS 

The present dissertation was written during my time as research assistant at the Chair for 

Marketing and Market Research at the Universtity of Cologne. I would like to express my 

sincere gratitude to the holder of the chair, Professor Dr. Marc Fischer, who intruduced me to 

the topic of customer-based brand equity and guided me through this thesis. I highly respect 

his professional instruction and the way how he has pushed me forward.  

I would also like to thank the co-examiner Professor Dr. Franziska Völckner for her careful 

and detailed examination as well as Professor Dr. Reinartz for being the head of the 

examination committee on the day of my disputation. My work has benefitted greatly from 

the suggestions of my colleagues at the Chair for Marketing and Market Research, namely 

Prof. Dr. Alexander Himme, Dr. Thomas Schollmeyer, Dr. Tobias Hornig, Dr. Alexander 

Edeling, Eric Lennartz, Samuel Stäbler, and Birte Terlinden. Thank you for enabling me to 

work in an encouriging and inspiring working environment. I am also very thankful for the 

unlimited support by the very soul of our team Christa Körner.  

Furthermore, I would like to offer some special thanks to all other colleagues of the 

Marketing Area at the University of Cologne. Particularly, to my colleague and friend Maren 

Becker; I highly value the discussions we have had.  

Besides, there are many people who have accompanied me throughout the last 5 years and 

supported me whenever needed. Conducting research is sometimes lonely, but I am happy to 

have people who let me shut down the computer for a while and who also give me something 

else to think about. Therefore, warm thanks to my boys for all the great times we have had 

during the last years. 

There have been days when I have doubted and not had any idea where I will end up with my 

research and this dissertation. Nonetheless during the last ten years of studies and work I have 

always had something stable in my life: a person who believes in me and my abilities, who 

makes me to continue to follow my goals and who gives me faith, strength, and love. My 

most sincere thanks go to that person, Kati. 

Finally, I dedicate this thesis to my parents Barbara and Klaus Backhaus. You give me all the 

opportunities for accomplishing my dreams. I owe my life to your constant love, 

encouragement, and moral support. You have made me who I am today. 

 



	
   II 

CONTENTS 

LIST OF FIGURES ............................................................................................................... VI 

LIST OF TABLES ................................................................................................................ VII 

SYNOPSIS .................................................................................................................................. 1 
1 Overview .......................................................................................................................... 1 
2 Introduction .................................................................................................................... 2 
3 Summary of Dissertation Projects ................................................................................ 5 

3.1 Paper I: Brand Damage From Product Harm And Corporate Social Irresponsibility 
– How Deep And How Long? .................................................................................... 5 

3.2 Paper II: Do Layoffs Hurt a Firm's Brand? - An Event Study With Consumer 
Mindset Metrics ......................................................................................................... 8 

3.3 Paper III: How Do Brands Generate Value For Investors? It’s From New Business 
And Competitive Distinctiveness ............................................................................. 10 

References Synopsis ........................................................................................................... 13 
	
  

PAPER I: BRAND DAMAGE FROM PRODUCT HARM AND CORPORATE SOCIAL 
IRRESPONSIBILITY – HOW DEEP AND HOW LONG? .................................................. 15 

Abstract .................................................................................................................................... 15 
1 Introduction .................................................................................................................. 16 
2 Related Literature ........................................................................................................ 18 
3 Conceptual Framework ............................................................................................... 20 

3.1 Types of Brand Crisis Considered ........................................................................... 20 
3.2 Focal Perfomance Metrics ........................................................................................ 23 
3.3 Conceptual Model .................................................................................................... 24 
3.4 Initial Evidence ........................................................................................................ 29 

4 Data and Method .......................................................................................................... 30 
4.1 Brand Measures ........................................................................................................ 30 
4.2 Brand Crisis Events .................................................................................................. 31 
4.3 Control and Moderator Variables ............................................................................. 32 
4.4 Descriptive Statistics ................................................................................................ 35 
4.5 Method ..................................................................................................................... 36 

5 Modeling and Estimation Issues .................................................................................. 38 
5.1 Measuring the Crisis Effect on Brand Attention and Brand Strength ...................... 38 
5.2 Simultaneity Issues .................................................................................................. 40 
5.3 Heterogeneity ........................................................................................................... 41 
5.4 Measuring the Impact of Moderators on the Brand Damage Effect ........................ 41 



	
   III 

5.5 Why not a Panel ECM Framework? ........................................................................ 42 
6 Results ............................................................................................................................ 43 

6.1 Model-free Evidence: Difference-in-Differences Tests ........................................... 43 
6.2 Testing for Persistent Effects ................................................................................... 45 
6.3 Immediate and Cumulative Effects of Crisis Events on Brand Attention and 

Strength .................................................................................................................... 45 
6.4 Explaining the Magnitude of Crisis Effects ............................................................. 47 
6.5 Assessing the Magnitude of Crisis Effects .............................................................. 49 
6.6 Robustness Checks ................................................................................................... 54 

7 Discussion ...................................................................................................................... 54 
7.1 Conclusions .............................................................................................................. 54 
7.2 Managerial implications ........................................................................................... 56 
7.3 Limitations and Further Research ............................................................................ 57 

References Paper I ............................................................................................................. 59 

Appendix Paper I ............................................................................................................... 63 
Appendix A: Details on the YouGov Brand Metric Measure ......................................... 63 
Appendix B: Construct Validity: Explanatory and Confirmatory Factor Analysis ........ 66 
Appendix C: Reflective and Sticky Brand Metric Structure ........................................... 68 
Appendix D: Collection of Crisis Event Data ................................................................. 70 
Appendix E: Representativeness and Exogeneity of Events ........................................... 71 
Appendix F: Model Free Evidence ................................................................................. 78 
Appendix G: Robustness of Brand Performance Model ................................................. 79 
References Appendix Paper I ....................................................................................... 91 

	
  

PAPER II: DO LAYOFFS HURT A FIRM’S BRAND ? – AN EVENT STUDY WITH 
CONSUMER MINDSET METRICS ...................................................................................... 92 

Abstract .................................................................................................................................... 92 
1 Introduction .................................................................................................................. 93 
2 Conceptual Framework ............................................................................................... 99 

2.1 Focal Brand Performance Metrics ......................................................................... 100 
2.2 Hypotheses Development ...................................................................................... 100 
2.3 Moderators of Brand Performance Effects ............................................................ 102 

3 Data and Descriptives ................................................................................................. 105 
3.1 Data Collection ...................................................................................................... 105 
3.2 Descriptives Statistics ............................................................................................ 109 

4 Event Study Methodology .......................................................................................... 111 
4.1 Premises of Event Studies ...................................................................................... 111 
4.2 Empirical Strategy .................................................................................................. 112 



	
   IV 

5 Results .......................................................................................................................... 123 
5.1 Assessing the Model Fit ......................................................................................... 123 
5.2 Layoff Effects on Consumer Mindsets .................................................................. 123 
5.3 Explaining the Variance in Cumulative Abnormal Returns .................................. 125 
5.4 Robustness Checks ................................................................................................. 130 

6 Discussion .................................................................................................................... 132 
6.1 Conclusion ............................................................................................................. 132 
6.2 Implications ............................................................................................................ 133 

References Paper II .......................................................................................................... 135 

Appendix Paper II ............................................................................................................ 139 
Appendix A: Details on the YouGov Brand Metric Measures ..................................... 139 
Appendix B: Details on Layoff Announcement Data ................................................... 142 
Appendix C: Cross-sectional Brand Dispersion Regression Results ............................ 145 
Appendix D: Robstuness Checks of Event Study Application ..................................... 146 

	
  

PAPER III: HOW DO BRANDS GENERATE VALUE FOR INVESTORS? IT’s FROM 
NEW BUSINESS AND COMPETITIVE DISTINCTIVENESS .......................................... 151 

Abstract .................................................................................................................................. 151 
1 Introduction ................................................................................................................ 152 
2 Background ................................................................................................................. 154 

2.1 Corporate Valuation ............................................................................................... 154 
2.2 Literature on Brand Assets ..................................................................................... 155 

3 Theoretical Framework and Hypotheses ................................................................. 158 
3.1 A Formula Approach to Corporate Valuation ........................................................ 159 
3.2 Theoretical Framework of Value Drivers .............................................................. 160 
3.3 Hypotheses ............................................................................................................. 162 

4 Econometric Model Specifications ............................................................................ 165 
4.1 Modeling Requirements ......................................................................................... 165 
4.2 Specification of Estimation Equations ................................................................... 167 

5 Data and Estimation ................................................................................................... 170 
5.1 Data Sources .......................................................................................................... 170 
5.2 Descriptive Statistics and Model-free Insights ...................................................... 172 
5.3 Estimation Issues .................................................................................................... 174 

6 Empirical Results ........................................................................................................ 176 
6.1 Parameter Estimates Related to CBBE .................................................................. 176 
6.2 Elasticity Estimates: Impact on Value Drivers and Firm Value ............................ 177 
6.3 Robustness Checks ................................................................................................. 183 



	
   V 

7 Conclusion and Limitations ....................................................................................... 187 
7.1 Implications for Researchers .................................................................................. 187 
7.2 Implications for Managers ..................................................................................... 189 

References Paper III ........................................................................................................ 192 

Appendix Paper III .......................................................................................................... 195 
Appendix A: Correlation Matrix, Overview of Symbols and Variable Definitions ..... 195 
Appendix B: Correlation Matrix and Results of Instrument Tests ............................... 197 
Appendix C: Corporate Valuation Model ..................................................................... 199 
Appendix D: Calculation of Elasticities ........................................................................ 202 
Appendix E: Description of Customer-based Brand Equity (CBBE) Measure ............ 207 
Appendix F: Support from Prior Literatures from Control Variables ........................... 208 
Appendix G: Sobel Mediation Test ............................................................................... 209 
Appendix H: Robustness Checks .................................................................................. 210 
References Appendix Paper 3 .................................................................................... 224 

EIDESSTATTLICHE ERKLÄRUNG ................................................................................... VII 

CURRICULUM VITAE ...................................................................................................... VIII 

 
	
    



	
   VI 

LIST OF FIGURES 

SYNOPSIS 

Figure 1:  Conceptual Framework and Classification of Dissertation Projects ......................... 3 

PAPER I:  BRAND DAMAGE FROM PRODUCT HARM AND CORPORATE SOCIAL    

IRRESPONSIBILITY - HOW DEEP AND HOW LONG? 

Figure 1:  Conceptual Framework ............................................................................................ 24 
Figure 2:  Exemplary Time-Series for Brand Attention and Brand Strength ........................... 29 
Figure 3:  Empirical Strategy ................................................................................................... 35 
Figure 4:  Brand Attention Effects (Simulation of Gains and Losses) ..................................... 52 
Figure 5:  Brand Strength Effects (Simulation of Gains and Losses) ...................................... 53 

PAPER II: DO LAYOFFS HURT A FIRM'S BRAND? - AN EVENT STUDY WITH CONSUMER   
MINDSET METRICS 

Figure 1:  Conceptual Framework of the Effect of Layoff Announcements on Consumer  
Brand Perception ...................................................................................................... 99 

Figure 2:  Comparison of Classical and Extended Event Study Approach ............................ 114 
Figure 3:  Classification of Consumer-Related Confounding Events .................................... 115 
Figure 4:  Average Abnormal and Cumulated Average Abnormal Returns For Mindset  

Metrics (Market-Model) ........................................................................................ 131 

PAPER III: HOW DO BRANDS GENERATE VALUE FOR INVESTORS? - IT'S FROM NEW 
BUSINESS AND COMPETITIVE ADVANTAGE  

Figure 1:  Theoretical Framework of Value Drivers .............................................................. 161 
 
  



	
   VII 

LIST OF TABLES 

SYNOPSIS 

Table 1: Overview of Dissertation Projects ............................................................................... 2 

PAPER I:  BRAND DAMAGE FROM PRODUCT HARM AND CORPORATE SOCIAL    

IRRESPONSIBILITY - HOW DEEP AND HOW LONG? 

Table 1: Streams of Research on Real Product-harm and CSI Effects ..................................... 21 
Table 2: Description of Crisis Types ........................................................................................ 22 
Table 3: Variable Definitions and Summary Descriptives ....................................................... 34 
Table 4: Changes in Brand Attention and Brand Strength Compared with Industry        

Average ....................................................................................................................... 44 
Table 5: 2SLS Estimation Results for Error Correction Models .............................................. 47 
Table 6: WLS Estimation Results for Drivers of Brand Effects .............................................. 51 

PAPER II: DO LAYOFFS HURT A FIRM'S BRAND? - AN EVENT STUDY WITH CONSUMER   
MINDSET METRICS 

Table 1: Empirical Research on the Effects of Layoffs on Consumer Mindset Metrics .......... 98 
Table 2: Descriptive Statistics of Layoff Announcements ..................................................... 105 
Table 3: Variable Definitions and Summary Statistics .......................................................... 110 
Table 4: Event Study Results With Respect to Consumer Mindset Metrics  
 (Mean Model) ........................................................................................................... 126 
Table 5: Event Study Results With Respect to Consumer Mindset Metrics                    

(Market-adjusted Model) .......................................................................................... 127 
Table 6: Event Study Results With Respect to Consumer Mindset Metrics 
  (Market Model) ........................................................................................................ 128 
Table 7: Cross-sectional Analysis of Moderator Effects (WLS-Regression) ......................... 129 

PAPER III: HOW DO BRANDS GENERATE VALUE FOR INVESTORS? - IT'S FROM NEW 
BUSINESS AND COMPETITIVE ADVANTAGE  

Table 1: Empirical Research on the Value Relevance of Brands ........................................... 157 
Table 2: Univariate Statistics (2005-2013) ............................................................................. 173 
Table 3: Testing the Differences Between Group Means ....................................................... 174 
Table 4: IV-Estimation Results for Equations 3-6 ................................................................. 178 
Table 4: IV-Estimation Results for Sustainability of Excess Returns (Eq.7) ......................... 179 
Table 6: Elasticities of Value Drivers and Firm Value With Respect to CBBE .................... 184 
Table 7: Elasticities of Value Drivers and Firm Value With Respect to  
 Advertising Investment in CBBE ............................................................................. 185 
Table 8: Elasticities of Value Drivers and Firm Value With Respect to CBBE by  
 Industry ..................................................................................................................... 186 



	
   1 

SYNOPSIS 

1 Overview 

This dissertation thesis is about brands and the value they provide to their firms. Brands 

have been object of a broad stream of research as well as popular literature. Despite these 

facts the brand arena is still under research. We need more insights on how to build, protect, 

benefit, and grow from customer-based brand equity (CBBE). On this background the 

dissertation comprises three research papers, each addressing distinct questions with respect 

to antecedents and outcomes of CBBE. Therefore, the thesis addresses topics of the brand 

research field that are still waiting to be answered. Specifically, two of the three papers 

investigate how firm behavior can endanger tediously built brand values. Paper I examines 

the impact of product-harm and corporate social irresponsibility crises on consumer brand 

attention and brand strength. It also reveals the role of firm- and crisis-specific moderators 

that attenuate or amplify the effect of crises on brands. The second paper assesses whether 

firms’ layoff announcements affect consumer mindset metrics. In addition to brand attention 

and brand strength, the paper also accounts for a volatility-based metric, namely brand rating 

dispersion. Paper III analyzes how CBBE in turn affects different routes of firm value growth 

from the investor’s perspective. That is, it assesses the magnitude of the effects of advertising 

and CBBE on firm value drivers. 

Overall, the dissertation contributes to the scientific knowledge enhancement with 

respect to two fundamental issues of strategic marketing mentioned also as MSI research 

priorities for 2014-2016. First, it refines the understanding of optimal social contracts with 

consumers: “Consumer expectations have risen in terms of what they think firms should be 

doing besides selling their products and services. Violations of these expectations can have 

severe consequences, as many firms are discovering“ (MSI 2014). Paper I and II underline 

the threat of consumer expectations with regard to firms’ social behavior. They also generate 
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insights that facilitate optimal firm reactions in cases when such behavior is discussed 

negatively within the media. Second, the dissertation thesis generates detailed insights into 

how CBBE affects future firm value growth. Thereby, it contributes to the challenge of 

measuring and communicating the value of marketing activities and investments (MSI 2014).   

Table 1 presents an overview of the three articles including author and publication-status 

information. 

Table 1: Overview of Dissertation Projects  

Paper  Title Author(s) Status 

I Brand Damage from Product Harm and 
Corporate Social Irresponsibility – How 
deep and how long? 

Max Backhaus and 
Marc Fischer 

Under review (2nd 

round): Journal of 
Marketing Research  

II Do Layoffs Hurt a Firm’s Brand? – An 
Event Study with Consumer Mindset 
Metrics 

Max Backhaus Prepared to submit 
to: Journal of 
Marketing 

III How Do Brands Generate Value for 
Investors? - It’s from New Business and 
Competitive Distinctiveness 

Marc Fischer, Max 
Backhaus, and 
Tobias Hornig 

Under review (1st 

round): Management 
Science 

 

2 Introduction 

Customer-based brand equity (CBBE) is a central if not the most important intangible 

asset for many firms (Keller 2008). It often takes years and large, specific investments for 

firms to build strong brands. High values in CBBE, which originate in the minds and 

perceptions of consumers (Keller 1993), can assist firms in refining their product-market 

performance and eventually lead to better financial performance (Edeling and Fischer 2016; 

Katsikeas et al. 2016). Consequently, it is of key relevance to (1) understand whether and 

how firms can effectively build and protect CBBE and (2) to investigate how exactly CBBE 

drives the financial-market performance of firms. Accordingly, the present dissertation 

focuses on these two main topics. The conceptual framework in Figure 1 summarizes and 

positions the three econometric studies accordingly. 
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Figure 1: Conceptual Framework and Classification of Dissertation Projects 

	
  
 

On the one hand, (1) brand investments are threatened if brand equity and brand 

perception are endangered to get damaged. That is why companies should know about 

effective mechanism that drive the effects.  Negative news about firm behavior may severely 

harm the trust and confidence consumers place in brands (Ahluwalia, Burnkrant, and Unnava 

2000). The increasing complexity of products, more stringent product-safety legislation, an 

increasing internationalization across the supply chain and production of products combine to 

make corporate, brand, and product crises even more frequent events (Cleeren, van Heerde, 

and Dekimpe 2013). Although academic literature supports a general impact of crises on 

brands, important aspects have largely been ignored (Backhaus and Fischer 2016). First, 

different types of events may have different magnitude in impact. Second, effects may also 

differ with respect to their persistence, and third, crisis situations are commonly at first ex-

post defined as an actual crisis creating a fundamental endogeneity problem. To benefit from 
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marketing investments and high levels in brand value it should, therefore, be the key focus 

for researchers and managers to better understand the threats from negative media coverage 

about firm behavior to consumer brand perceptions. Consequently, an investigation of 

attenuating and amplifying impact drivers is warranted. In order to protect brands firms need 

to react properly to each specific situation and adjust their strategic marketing actions 

accordingly. The first two essays of this dissertation focus on enhancing the understanding of 

the effect of news about firm behavior on consumers. 

The first paper, titled “Brand Damage from Product Harm and Corporate Social 

Responsibility – How Deep and How Long?” is co-authored by Max Backhaus and Marc 

Fischer. It comprises a comprehensive investigation of the dynamic impact of different crisis 

events stemming from product harm and corporate social irresponsibility (CSI) on consumer-

based brand attention and brand strength. The empirical study is based on a unique dataset of 

214 crisis events across 12 industries, 69 brands, and 5 years of weekly brand perception 

data. 

Paper II, titled “Do Layoffs Hurt a Firm’s Brand? – An Event Study with Consumer 

Mindset Metrics” (by Max Backhaus) quantifies the effects of layoff announcements on 

consumer brand perceptions. Here, the author also accounts for a volatility-based metric 

named brand rating dispersion, since heterogeneity in consumer brand perceptions also 

endangers brand values. Furthermore, the study extends the common event study 

methodology to consumer mindset metrics as the dependent variable1 and shows that layoffs 

indeed affect consumer brand perceptions.  

On the other hand, (2) building strong brands requires huge financial resources and 

marketing mangers are under increasing pressure to prove the financial impact of their 

investments (Edeling and Fischer 2016). Specifically, marketing expenditures are among the 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Classical event studies usually focus on abnormal changes in stock returns as the dependent variable. 
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first to be cut when the economic situation worsens as in the recent global economic crisis 

(Van Heerde et al. 2013). However, investment managers are rather looking for credible 

strategies for value-creating growth than for excess cash-payouts by firms (Ghesquieres et al. 

2016). While extant research at the marketing and finance interface demonstrates the value 

relevance of marketing (Srinivasan and Hanssens 2009), we know little about the manner in 

which value is generated. Hence, there is no longer doubt that (successful) marketing 

contributes to firm value, but it is not clear how it generates the value.  

Paper III, titled “How Do Brands Generate Value for Investors? - It’s from New 

Business and Competitive Distinctiveness” is co-authored by Marc Fischer, Max Backhaus, 

and Tobias Hornig. In this study the authors decompose firm value into its core financial 

drivers from an investor perspective to empirically investigate the different routes of value 

generation of marketing expenditures mediated by CBBE based on a sample of 613 firms 

over 9 years.  

The next section summarizes motivation, research objectives, main results, and 

implications of each dissertation project. 

 

3 Summary of Dissertation Projects 

3.1 Paper I: Brand Damage From Product Harm And Corporate Social 

Irresponsibility – How Deep And How Long? 

Brand equity can suffer significantly during a crisis (e.g., product-harm crisis or 

environmental scandal), with profound and enduring effects on subsequent corporate 

performance (Cleeren, van Heerde, and Dekimpe 2013). Samsung’s Galaxy Note 7 recall in 

August 2016 due to battery faults, Volkswagen’s “Dieselgate” in 2015, or BP’s Deepwater 

horizon oil spill in 2010 are only a few examples where companies were discussed negatively 

within the press. The increasing complexity of products, more stringent product-safety 
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legislation, an increasing internationalization across the supply chain and production, as well 

as the growing importance of ethically correct behavior combine to make corporate, brand, 

and product crises even more frequent events (Dawar and Pillutla 2000).  

Managers understand the threat of a product failure to marketing assets and economic 

performance but seem to be less concerned about brand damage from corporate social 

misbehavior such as bribery. Corporate misconduct is not as tangible as a product-harm crisis 

where the operational reliability or product safety is affected. This makes it difficult to infer 

how consumers respond to the breach of rules and moral standards. Nevertheless, behavior-

related crisis are covered in leading media as frequently as product-harm events (Bazerman 

and Tenbrusel 2011). An extensive amount of literature exists that focuses mainly on one 

specific crisis situation, namely product-harm crises, but not much is known about the effects 

of corporate social irresponsibility events (Kang, Germann, and Grewal 2016). Many studies 

simply do not differentiate between different crisis causes and focus on hypothetical crisis 

events in experimental or survey-based settings (Backhaus and Fischer 2016). Although these 

studies offer valuable insights, the external validity is limited by the usual shortcomings of 

experimental research. 

This study fills this research gap by offering a systematic investigation into the dynamic 

effects of brand crisis events relating both to product harm and CSI on consumer mindset 

metrics based on a unique dataset of 214 crisis events (both product failure and social 

misbehavior) in Germany across 12 industry sectors, 69 brands, and 5 years of weekly data. 

The authors aim to learn how strong the effects are, how persistent the damage is, and how 

long they endure. By using an ECM model, they apply a two-stage approach in order to 

estimate the short- and long-term impact of crisis events on brand attention and brand 

strength. Thereafter, the study analyzes drivers that explain why and when such events 

develop into severe brand crises. The principal measures used to analyze the impact and 
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effects of the crises study include YouGov’s Brand Index and advertising spend allocated 

before during, and after the crisis. YouGov’s Brand Index score is particularly sensitive and 

revealing, as it tracks brand perception weekly.  

The papers reveals several interesting findings. First, crisis effects are asymmetric. While 

brand attention increases, brand strength drops. Surprisingly, average brand damage is larger 

for corporate social misbehavior than for product failure. Furthermore, with respect to the 

duration of a crisis the damage may last up to 9 months. Finally, the effect aggravates if the 

firm denies responsibility, the event is a national event, and more media report on the news. 

The findings provide important implications for managers. First and foremost, the results 

should warn against ignoring the risks of corporate socially irresponsible behavior. The study 

offers a clear message that such behavior may have a devastating effect on one of the most 

valuable corporate assets, the brand. There is an asymmetric focus on CSR and cause-related 

marketing activities in research and in practice. In the light of these findings, this partial 

attention is no longer warranted; the more so as the impact of CSR measures is rather modest. 

The results are also valuable to managers because they help understand which events 

have the potential to develop into a deep and long crisis. The authors do not claim that every 

event of corporate social misconduct poses a threat to the brand. But there are conditions 

such as the type of crisis and media coverage that favor the occurrence of a severe crisis. The 

violation of environmental surroundings is very likely to turn into a major crisis. Similarly, 

the more media pick up on the crisis event the greater the chance that it becomes a severe 

crisis. Media coverage essentially has a double jeopardy effect as it also intensifies brand 

attention. Marketing management thus should closely follow the media coverage and 

maintain contact to journalists. The study also shows that denying the responsibility of a 

crisis in the beginning hurts the brand over time. 
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3.2 Paper II: Do Layoffs Hurt a Firm’s Brand? – An Event Study With Consumer 

Mindset Metrics 

In the aftermath of the financial crisis in 2012, every business day in the U.S. on average  

4,000 people were laid off (U.S. Bureau of Labor Statistics 2013). News about downsizing is 

published almost every day and has become particularly prevalent during the last decade. 

These downsizing decisions, which often cost thousands of employees’ jobs, are a regular 

means for companies to reduce costs (Chalos and Chen 2002). In the face of decreasing 

revenues, managers often intend to cut costs in order to improve efficiency. 

However, the effectiveness of downsizing is controversially discussed. Short-term gains 

are possibly set off by long-term losses due to low employee motivation, low service levels, 

and decreasing skill bases (Datta el al. 2010). As a consequence, it is not clear whether, or to 

what extent, downsizing really enhances efficiency and firm performance.  

In order to understand layoff effects researchers have primarily focused on the 

perspective of shareholders (financial performance) and employees (organizational 

performance). With respect to the threat layoff announcements bear towards consumers only 

scarce evidence exits (Habel and Klarmann 2015). A negative effect of downsizing 

announcements on consumer brand perceptions might oppose positive operational 

performance effects and lead to reduced sales in the long run. Therefore, brand effects could 

mediate the effect of layoff announcements on financial performance and provide a possible 

(at least partial) explanation why stock prices regularly plunge after such announcements.  

This paper tries to fill this gap in literature by theoretically and empirically analyzing the 

impact of downsizing announcements on consumer brand ratings. The author investigates 

daily changes in consumer mindset metrics, namely brand attention, brand strength, and 

brand dispersion, immediately after layoff announcements. The customer mindset metrics 

relate to the two key components brand awareness and brand image of Keller’s CBBE 
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framework (1993) but also include brand dispersion to account for  heterogeneity in brand 

perceptions. The empirical analysis is based on an extended event-study framework which is 

applied to a multi-national sample of 179 layoff announcements and 5 years of daily 

consumer mindset data across multiple sectors and firms.  

As a result Paper II generates novel and surprising insights with respect to the effects of 

layoff announcements on consumer mindset metrics. Overall, the results indicate a significant 

but opposing effects on brand attention and brand strength. Layoff announcements have a 

significant positive effect on consumer brand attention but a significant negative effect with 

respect to brand strength. Furthermore, the significance effect in the abnormal changes in 

brand attention diminishes after about a week, whereas the negative effect on abnormal 

returns in brand strength does not. With respect to brand rating dispersion the analysis does 

not reveal any significant abnormal returns. Apparently, layoff announcements do not 

polarize enough between consumers to drive heterogeneity in brand evaluations. This implies 

that the overall effect of layoff announcements is especially driven by the negative effect in 

brand strength. With respect to drivers of the negative effect on brand strength the results 

reveal that on the one hand, the size of a layoff size amplifies the negative effect on consumer 

brand evaluations, on the other hand, a strong brand protects against a loss in brand strength.  

Layoffs are usually undertaken by firms to increase operational efficiency but the 

intrinsic value is often questioned due to negative effects on e.g., employee satisfaction and 

service quality (De Meuse et al. 2004). The contributions of this study to the marketing 

literature are as follows: First, it enhances the understanding of the effect of layoff 

announcements on consumers and their brand perceptions. From a practitioner’s perspective, 

this enables managers to incorporate brand effects into their consideration set to make better 

decisions. Second, the study provides an additional theoretical and empirical explanation of 

negative stock market reactions to layoff announcements, which supports the hypothesis that 
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“hidden costs” may outweigh operational efficiency gains from downsizing measures. As a 

consequence, managers should think twice before deciding to downsize workforce 

significantly. Additionally, the results can also guide investors to better forecast stock market 

reactions to layoff announcements. Finally, by applying an event study approach relating 

actual downsizing events to daily information on consumer mindset metrics the empirical 

analysis comprises a new methodological approach for marketing researchers in order to 

study the effects of marketing actions on consumers. That is, the extended framework for 

event study analysis can serve as a starting point for future research. Marketers can thus use 

the framework accounting for the new data landscape in marketing. 

 

3.3 Paper III: How Do Brands Generate Value For Investors? It’s From New 

Business And Competitive Distinctiveness 

Top managers are increasingly demanding higher transparency on the financial impact of 

their investments. Building a sustainable competitive advantage and generating options for 

future growth is at the very core of marketing (e.g., Hunt and Morgan 1995). Therefore, it 

seems reasonable to assume that investors use marketing signals to update their beliefs about 

future growth and profits. While extant research at the marketing-finance interface 

demonstrates the value relevance of marketing (Srinivasan and Hanssens 2009), we know 

little about the manner in which value is generated and whether marketing impacts each of 

the growth-related value drivers and which of them most (Mizik 2014).  

In this paper, the authors ask to what degree brand equity as an important market-based 

asset impacts these drivers of firm value that result from expected future growth.  The study 

adopts the mental model of finance executives and investors and proposes an approach to 

quantify and estimate the dynamic contribution of marketing to firm value that arises from 

future profit growth. The authors build on a discounted cash flow valuation model of how 
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investors determine the value of a company suggested by many financial studies (Copeland, 

Weston, and Shastri 2005). Based on this model, firm value is decomposed into the value of 

current earnings strength and the value of investments into future growth. The value of future 

growth is driven by four important factors: the return on invested capital, the cost of capital, 

the earnings growth rate, and the time period until the advantage in superior returns has 

eroded by competition (sustainability of excess return).  

 Based on a broad sample of 613 firms across a wide range of industries covering a 

period of 9 years from 2005 to 2013, the authors find that customer-based brand equity has a 

significant impact on three of the four value drivers. A mixed finding is detected with regard 

to the cost of capital. Specifically, for some firms a negative effect and for others a positive 

effect exists, which is in line with previous literature (Bharadwaj, Tuli, and Bonfrer 2011). 

Brand equity positively affects profitability, earnings growth, and the sustainability of excess 

returns. Furthermore, the results exhibit large differences in the responsiveness of the three 

financial value drivers to brand equity. Brand equity exerts its highest impact by improving 

the firm’s ability to secure earnings growth and sustainable excess returns. However, the 

effects of marketing spending through brand equity on the four value drivers are considerably 

smaller in comparison to the substantial brand equity effects. This indicates that firms are, on 

average, operating closer to the optimum with respect to their advertising expenditures 

(Edeling and Fischer 2016).   

 The study extends prior research on the value relevance of brands by opening the 

black box and providing insights into the sources of value creation. Overall, the substantive 

insights into the magnitude of effects of advertising and CBBE on value drivers and 

ultimately firm value are the key contribution of the research project. The findings are 

valuable to both marketing practitioners and financial analysts. First, marketing managers 

benefit from these insights because they help them telling a compelling story about the value 
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growth potential of marketing investments. The results show that brand value significantly 

impacts future firm value and growth expectations, however, managers need to find efficient 

ways for optimizing marketing spending in order to increase customer-based brand value. 

Second, the applied framework helps financial constituencies to think differently about their 

investment decisions. Investors gain a better understanding of how marketing impacts their 

key metrics. Since the research model conceptualizes and quantifies the routes of future cash 

flow generation, financial analysts may use the empirical estimates as a reference point in 

their valuation models. 
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PAPER I: BRAND DAMAGE FROM PRODUCT HARM AND CORPORATE 

SOCIAL IRRESPONSIBILITY – HOW DEEP AND HOW LONG? 

 
Authors:  Max Backhaus and Marc Fischer	
  

 

Abstract 

Brand equity can suffer severely during brand crises. Managers understand the threat of a 

product failure to marketing assets and economic performance but seem to be less concerned 

about brand damage from corporate social misbehavior such as bribery. Academic literature 

is rich on product-harm crises but not much is known about the effects of corporate social 

irresponsibility events. Using an error correction model, we conduct a systematic 

investigation of the dynamic effects of brand crisis events on brand attention and brand 

strength based on a unique dataset of 214 crisis events (both product failure and social 

misbehavior) in Germany across 12 industry sectors, 69 brands, and 5 years of weekly data.  

The crisis effects are asymmetric. While brand attention increases, brand strength drops. 

Surprisingly, average brand damage is larger for corporate social misbehavior than for 

product failure. The damage may last up to 9 months. The effect aggravates if the firm denies 

responsibility, the event is a national event, and more media report on the news. These 

findings help better forecast brand image drops during crises and give guidance to managers 

for appropriate reactions. 

 

Keywords: Brand crises, brand attention, brand strength, product-harm, corporate social 

irresponsibility, error-correction model 
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1 Introduction 

The brand constitutes one if not the most valuable intangible asset for many firms. These 

companies invest heavily in building their brands. A sudden and unexpected crisis event, 

however, poses a major threat to tediously established brand equity and previous investments 

reducing expected future economic performance of the firm (Cleeren, van Heerde, and 

Dekimpe 2013). The past is full of product failure examples. For example, Toyota’s gas pedal 

crisis was broadly covered in the international press in 2009 and 2010. The company heavily 

suffered from its recalls of a total of about 8.5 million cars (Fan, Geddes, and Flory 2013). 

Damages to the brand and firm performance from product/service failure are well known 

to managers. Their reaction often is fast and directed at eliminating the source of the problem 

via product recalls or product improvement since they understand there is a direct link 

between product failure and customer benefit. The academic literature has a long tradition in 

analyzing the causes and effects of product-harm crises.2 Evidence is strong that such a crisis 

may indeed have severe detrimental effects on sales and marketing effectiveness (e.g., Dawar 

and Pillutla 2000; Gijsenberg, van Heerde, and Verhoef 2015; Van Heerde, Helsen, and 

Dekimpe 2007). 

The perception that a firm has acted in a socially irresponsible way may also negatively 

affect the brand. In 2006, for example, Newsweek revealed spying activities at Hewlett 

Packard. The then chairwoman contracted private investigators to spy on board members and 

journalists to identify the source of an information leak. As a consequence of this scandal, she 

had to resign six months later. These kinds of corporate misbehavior tend to be increasingly 

reported in the media (Bonini, Court, and Marchi 2009). Indeed, our analysis of brand crises 

events covered in leading German media between 2008 and 2012 shows that only 50% of 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 In this study, we consider product and service failure together under product-harm crisis, but acknowledge that 

there are important differences between product and service failures (Gijsenberg, van Heerde, and Verhoef 
2015). 
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crisis events relate to product and service failure but the other 50%, in fact, root in corporate 

social misbehavior. 

Although behavior-related crisis events happen as frequently as product-harm events 

they do not attract the same attention of management (Bazerman and Tenbrunsel 2011). 

Managers believe that it is bad publicity for the firm but without significant impact on 

customer behavior. Corporate misconduct is not as tangible as a product-harm crisis where 

the operational reliability or product safety is affected. This makes it difficult to infer whether 

and how consumers respond to the breach of rules and moral standards such as in the HP 

spying scandal. In addition, studies demonstrate a disconnection between stated socially 

responsible (desirable) behavior and actual behavior of customers. For example, consumers 

regularly express their concern about environmental pollution and declare they want to 

consume more of and pay more for ecologically sensitive products. But the market share for 

these products persists at a low level (e.g., Thompson and Arsel 2004). Hence, why should 

violations of corporate social responsibility (CSR) affect customer behavior? 

Unfortunately, the CSR literature does not give much guidance on this question. It rather 

focuses on the meaning of and consequences of CSR than on corporate social irresponsibility 

(CSI) (Lange and Washburn 2012). However, consequences of CSR and CSI are likely not 

the same since losses tend to loom larger than gains (e.g., Gijsenberg, van Heerde, and 

Verhoef 2015). Hence, it is not appropriate to just extrapolate findings from extant CSR 

literature. 

The vast majority of studies of brand crises consider product-harm events. But the 

transfer of findings from product-harm studies is limited since the nature of the crisis event 

and the affected parties usually are very different in corporate misbehavior events. Authors 

have only recently started to study the impact of observed CSI behavior (e.g., Flammer 2013, 

Kang, Germann, and Grewal 2016). These studies demonstrate the detrimental effects on 
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bottom-line metrics but not on brand metrics. Most importantly, we are not aware of work 

that studies both observed product-harm and CSI events together. Many managers probably 

do not have a good feeling about the relative magnitude of these two classes of crisis events.  

In this paper, we investigate the size and the duration of potential brand damage effects 

that result from both product-harm and CSR-related crisis events. We cover all such events 

that appeared in leading German media during the years 2008-2012 and relate them to 

representative weekly measures of brand attention and brand strength (the YouGov 

BrandIndex). This dataset comprises 214 crisis events of 69 involved brands from 12 

industries. 

Our analysis reveals important insights into the magnitude and dynamics of product-

harm and CSI brand crises. Crises effects are asymmetric; while brand attention increases, 

brand strength drops. In addition and surprisingly, we find that the damage of brand strength 

due to CSI crises is deeper and cumulates to a larger total effect over time compared to 

product-harm crises.  

We structure the remainder of this article as follows: First, we briefly review the related 

literature. We then develop our conceptual framework that helps explain differences across 

crisis events. This is followed by the description of our data collection, the research design, 

and the empirical model to estimate dynamic brand effects. We then present our estimation 

results and conclude with a discussion of the study’s implications and limitations. 

 

2 Related Literature 

The prevalence and potential harmfulness of crises has attracted the attention of 

researchers for some time. Consistent with the great emphasis managers put on 

product/service failure events, the vast majority of studies deal with product-harm crises. But 

there is also a growing interest in CSI-related topics (e.g., Kang, Germann, and Grewal 2016; 
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Muller and Kräussl 2011). The crisis literature can be classified into two groups. The first 

group investigates the effects of hypothetical product-harm or CSI events in an experimental 

setting (e.g., Dawar and Pillutla 2000; Lei, Dawar, and Gürhan-Canli 2012). The majority of 

CSI research falls into this category (e.g., Ahluwalia, Burnkrant, and Unnava 2000; Pullig, 

Netemeyer, and Biwas 2006). A drawback of experimental research, however, is that insights 

are obtained under a hypothetical crisis setting. This limits the transfer of results to real, 

dynamic markets. Our study focuses on real product-harm and CSI events and their dynamic 

effects on brand attention and brand strength. 

Table 1 positions our study relative to related prior research within this stream. Prior 

studies investigated the effects of product-harm crises on economic performance such as 

sales (e.g., Rhee and Haunschild 2006), sales response (e.g., Van Heerde, Helsen, and 

Dekimpe 2007), or shareholder value (e.g., Chen, Ganesan, and Liu 2009). Overall, there is 

unanimous evidence that a product-harm crisis may cause a severe drop in economic 

performance. Recent studies also demonstrate that product recalls and service failure events 

harm important intermediate marketing performance measures such as online word-of-mouth 

and perceived (service) quality (Borah and Tellis 2016; Gijsenberg, van Heerde, and Verhoef 

2015). 

Literature that studies the effects of CSI with observed company data in real markets is 

very limited (see Table 1). A recent study by Kang, Germann, and Grewal (2016) finds that 

firms benefit financially from CSR and that they use CSR strategically to offset past CSI. 

However, the penance mechanism does not appear to fully compensate for negative CSI 

effects suggesting the existence of asymmetric CSR and CSI effects. Hence, relative to 

product-harm crises, the effects of real CSI events appear to be underresearched. Our study 

contributes to this emerging research stream. It differs from prior studies in several ways and 

complements prior research on product-harm and CSI effects as Table 1 highlights. 
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Specifically, we investigate product-harm and CSI effects together, which enables us to draw 

conclusions about differences in the effect magnitudes. We focus on important brand-related 

mindset metrics: brand attention and brand strength. We further discriminate between types 

of corporate social misbehavior and study the moderating role of media coverage and 

immediate firm response to accusations in the media. 

 

3 Conceptual Framework 

3.1 Types of Brand Crisis Considered 

We study four types of brand crises. Following the literature (e.g., Ahluwalia, Burnkrant, 

and Unnava 2000; Roehm and Tybout, 2006), we define the origin of a brand crisis as an 

unexpected, well-publicized event that threatens a brand's perceived ability to deliver 

expected benefits with potential negative effects for brand equity. The event is truly 

exogenous as it is a sudden, unexpected shock in the environment of the firm. This is a key 

feature of our identification strategy. To what extent this event eventually turns into a severe 

brand crisis can only be decided ex post. Consumers must become aware of it and change 

their brand perception. The drop of brand strength and possibly other performance measures 

reflects the magnitude of the crisis. 

In this study, we consider two major groups of brand crises that root either in (1) 

product/service failures or (2) unethical firm behavior reflecting corporate social 

irresponsibility (see Table 2). We acknowledge that there may be other events that can cause 

a brand crisis, e.g., scandals associated with a brand testimonial or bad publicity about new 

products. If they are not related to product failure or unethical behavior, however, they are 

beyond the scope of our study. 
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Table 1: Streams of Research on Real Product-harm and CSI Effects 

General research streams 
and key issues Prior research 

Product-
harm 
effects 

studied? 

CSI-harm 
effect 

studied? 

Different 
types of CSI 

studied? 

Effect on 
customer 
mindset 

studied?1) 

Role of 
media 

studied? 

Immediate 
firm 

response 
studied?2) 

Dynamic 
effects 

studied? 

 
Impact of product-harm crises on economic / firm performance metrics 

       
 
Specifically on... 

        
  

...on firm value  • Chen, Ganesan and Liu (2009) Yes - - - - Yes - 

  
  (stock return) • Thirumalai and Sinha (2011)  Yes - - - - - - 

   
• Hsu and Lawrence (2015) Yes - - - - - - 

  
...on sales • Rhee and Haunschild (2006)  Yes - - - - - - 

   
• Cleeren, Dekimpe, and Helsen (2008)  Yes - - - - - Yes 

   
• Zhao, Zhao, and Helsen (2011) Yes - - - - - Yes 

   
• Cleeren, van Heerde, and Dekimpe (2013)  Yes - - - Yes - - 

  
...on sales response • Van Heerde, Helsen, and Dekimpe (2007) Yes - - - - - Yes 

   
• Rubel, Naik and Srinivasan (2011) Yes - - - - - Yes 

   
• Liu and Shankar (2015) Yes - - Yes Yes - Yes 

 
 ...on reliability and firm's 

remedy decision 
• Kalaignanam, Kushwaha, and Eilert (2013) Yes - - - - - Yes 

  
• Liu, Liu, and Luo (2016) Yes - - - - Yes - 

 
Impact of product-harm/service crises on consumer metrics  

 
     

 
Specifically on... 

        
  

...on online WoM • Borah and Tellis (2016) Yes - - Yes Yes - Yes 

  
...on perceived quality • Gijsenberg, van Heerde, and Verhoef (2015) Yes - - Yes - - Yes 

 
Impact of CSI on economic / performance metrics        

   • Muller and Kräussl (2011) - Yes - - - - - 

   
• Flammer (2013) - Yes - - - - - 

   
• Kang, Germann, and Grewal (2016) - Yes - - - - Yes 

 

This study 

 

Yes Yes Yes Yes Yes Yes Yes 
1) We refer to studies that explicitly investigate the effect on customer mindset metrics. We do acknowledge, however, that several studies use mindset metrics as control 
or moderator variables in their design. 
2) By immediate firm reaction we refer to how the firm responds to the accusations in the media. The immediate response encompasses 3 options: deny responsibility, 
accept responsibility, or do not respond. We note that prior studies also considered firms’ reactive behavior in terms of advertising or CSR activities. 
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Product-harm crisis. Product-harm crises are well described in the literature. Underlying 

causes relate to deviations from product quality or inadequate service that lead to product 

defect, production stop, or product recall (Dawar and Pillutla 2000). 

 
Table 2: Description of Crisis Types 

	
  
Product-harm crisis 

 
Corporate Social Irresponsibility (CSI) crisis 

	
  
 

 

Violation of fair 
operating practices  

Violation of human 
rights / working 

conditions  
Environmental 

scandal 

Definition Deviations from 
product quality or 
inadequate service 

 Management 
misconduct relating to 
corporate governance or 
social norms and 
societal rules 

  Violation of compliance 
with human rights and 
conditions of 
employment 

  Violation and 
endangerment of 
environmental 
surroundings 

Event 
types 

• Production stop  
 

• Product defect 
 

• Product recall 
 

• Service failure 

 • Corruption 
- Bribery 
- Breach of trust 
- Money laundering 
- Tax disputes 
- Investment  
  controversy 

 

• Transparency 
violations 

• Consumer fraud with 
regard to 
- Sales practices 
- Pricing policies 

 

 • Human rights 
violations 
 

• Violations of 
employee relations 
with respect to 
- Benefits and wages  
- Local working 

conditions 
- Discrimination 
- Foreign labor issues 
- Diversity standards 

 • Violation and 
endangerment of 
animals / wildlife 
 

• Violation and 
endangerment of 
nature  

Example  Toyota gas pedal/floor 
mat crisis  

  Deutsche Bank tax fraud 
crisis  

  KIK employee scandal    BP Deepwater 
Horizon oil spill  

	
   Over 6 million recalled 
vehicles after reports 
showed that several 
vehicles experienced 
unintended acceleration  
Date: 01/25/2010 

 Deutsche Bank admitted 
criminal wrongdoing 
and agreed to pay $ 554 
million over fraudulent 
tax shelters that 
generated $ 29 billion in 
tax losses. 
Date: 12/20/2010 

 Media reported that 
KIK systematically 
spies on employees, 
pays below minimum 
wages, and exploits 
suppliers  
Date: 09/07/2010 

 Discharge of 4.9 
million barrels of oil 
causing extensive 
damage to marine 
and wildlife habitats 
and fishing and 
tourism industries 
Date: 04/20/2010 

KLD 1) 
issue 
areas	
  

Product2)  Community 
Corporate 
Governance 

 Diversity 
Employee relations 
Human rights  

 Environment  

1) Kinder, Lyndenberg, and Domini (KLD) provides a Social Ratings Database that tracks firm’s strengths and 
concerns in seven issue areas over the year. It has been widely used in academic research. 
2) This dimension includes product safety concerns but also marketing/contracting and antitrust concerns, 
which are rather characteristics of a CSI and less of a product-harm crisis. 
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CSI crisis. A CSI crisis does not originate from product failure but from ethical, social, 

or environmental issues attributed to the brand or the firm (Lange and Washburn 2012). 

These incidents question the brand's ability to deliver symbolic and psychological benefits. 

We distinguish three different categories of socially irresponsible firm behavior: violations of 

fair operating practices, violations of human rights or working conditions, and environmental 

scandals. Table 1 describes the scope of these crisis types and provides examples from our 

later empirical dataset. Our crisis types fully span the issue areas that are covered by KLD’s 

Social Ratings Database, which has been used in prior studies (e.g., Kang, Germann, and 

Grewal 2016). 

We do not exclude the possibility that a product failure may result from unethical 

behavior. A recent example is the massive product recall of Volkswagen cars because of 

manipulated software to hide their pollution level. If these different kinds of information are 

delivered to the public from the very beginning the event is actually a mixture of a product-

harm and CSI crisis. In the vast majority of cases, however, the media initially report solely 

on the product-harm event such as a recall or defect. If at all, unethical behavior leading to 

the product issues is reported only later. We account for ambiguous crisis type assignments in 

our empirical analysis. 

3.2 Focal Performance Metrics 

The brand represents a major asset for many firms. Monitoring and tracking intermediate 

customer mindset metrics such as brand attention and brand strength is crucial to these firms. 

Conceptually, brand metrics are informative and predictive for economic performance 

because they are logically a precursor of customer acquisition and retention that drive sales 

and profits (e.g., Rust, Zeithaml, and Lemon 2004; Stahl et al. 2012). Recent empirical 

studies indeed demonstrate that there is a strong link between mind-set metrics and (future) 

transactions (e.g., Hanssens et al. 2014; Stahl et al. 2012). 
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This study focuses on brand attention and brand strength as brand performance metrics. 

Brand attention measures the level of awareness due to the amount of available positive or 

negative information about the brand. Brand strength is a composite measure that covers 

several image and performance dimensions of a brand as perceived by the customer. 

Conceptually, both brand awareness and brand image are the constituent parts of Keller’s 

(1993) model of customer-based brand equity. We provide more measurement details on 

these metrics subsequently. 

Figure 1: Conceptual Framework 

	
  

 

 

3.3 Conceptual Model 

Figure 1 shows the conceptual model that we use to explain and measure the crisis effect 

on the brand. Our basic premise is that the crisis event has a negative impact on brand 

strength but a positive effect on brand attention. According to Berger, Sorensen, and 

Rasmussen (2010), negative news coverage is also publicity that boosts brand attention, 

Crisis event

• Product-harm event
(Product recall, production stop, 
service failure)

• CSI event
Ø Violation of fair operating 

practices 
Ø Violation of human rights / 

working conditions
Ø Environmental scandal 

• Media coverage

• Immediate firm reaction

• Crisis origin

Crisis characteristics

• Brand advertising

• Industry brand attention

• Industry brand strength

Controls
• Prior brand strength

• Crisis history

• Firm size

• Product type

Brand & firm characteristics

Short- and long-term effects

Customer-based
brand perception
• Brand attention
• Brand strength

Confounding events
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which can even increase sales. Whether negative publicity increases or decreases sales 

depends on existing brand awareness and accessibility. For well-known brands, the effect 

should be negative as shown in several studies (e.g., Basuroy, Chatterjee, and Ravid 2003). A 

rather unknown brand, however, could benefit from the (negative) media hype, particularly if 

attention and publicity valence become dissociated in memory (Berger, Sorensen, and 

Rasmussen 2010). 

The changes in brand attention and strength can be immediate and/or evolve over time. 

The crisis event may even lead to a persistent brand effects. 

Control variables. In an actual market situation, we need to control for other influences 

that might impact the brand metrics. First of all, we control for other events that may 

confound the crisis effect. Such confounding events are new product introductions, quarterly 

earnings announcements, etc. In addition, we consider three control variables: brand 

advertising expenditures, industry brand attention, and industry brand strength. Advertising 

expenditures are a major driver of the brand (Keller 1993). Hence, we expect this variable to 

positively influence brand attention and strength. Industry brand attention and strength are 

important control variables. They incorporate influences within an industry that affect all 

brands together and drive attention and strength. For example, the overall image of banks 

heavily suffered in the aftermath of the great financial crisis. Thus, we expect a positive 

relationship between industry brand attention and strength, respectively, and the focal brand’s 

attention and strength, respectively. 

Moderators of the brand effect: crisis characteristics. Every crisis is different. These 

differences moderate the impact of the crisis event on brand perception. We consider three 

crisis characteristics that have also been discussed in prior research (e.g., Liu and Shankar 

2015), namely media coverage, immediate firm reaction, and crisis origin. 
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Media coverage. In the event of a brand crisis, the role of the mass media in the 

construction of negative publicity is crucial (Liu and Shankar 2015). Negative news from 

media publications serve as an external source of information and, hence, are regarded as 

more trustworthy by consumers than information directly from the owner of the brand. The 

more media report about the crisis event, the larger is the chance that consumers will be 

exposed to the news. Thus, we expect higher media coverage to increase positive effect of a 

crisis event on brand attention and the negative effect on brand strength. 

Immediate firm reaction. The immediate reaction of the firm on the crisis news probably 

plays another important role. There is no common typology of firm reaction in a crisis. We 

adopt a straightforward approach that covers the continuum of possible reactions. 

Specifically, we follow Dutta and Pullig (2011) and consider three immediate firm reactions: 

deny responsibility, accept responsibility, and no reaction. Firms may deny any responsibility 

for the crisis and blame other firms, e.g., their supplier. At the opposite, they might take the 

blame for the crisis, actively apologize and try to rebuild trust in the company 

(accommodating strategy). Finally, as a start, firms often do nothing, i.e. they do not respond 

to the negative publicity at all.  

Intuitively, there may be good reasons to accept responsibility and expect this to be the 

most successful strategy. However, there are also arguments that the effectiveness of any 

response depends on various factors including consumers' expectations of the firm response 

(Dawar and Pillutla 2000), commitment to the brand (Ahluwalia, Burnkrant, and Unnava 

2000), and the nature of the crisis (Lange and Washburn 2012). Chen, Ganesan, and Liu 

(2009), for example, find that an accommodating strategy amplifies the negative effect on the 

firm value compared to a passive strategy. Hence, we do not formulate a-priori expectations 

about the influence of this moderator variable but leave it as an interesting empirical issue. 
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Crisis origin. The origin of a crisis may lie in the country where the observer lives or 

outside this country. Child labor accusations of international companies operating in Asia, for 

example, are discussed in the US and German press, but the event happens far away from 

these consumers’ home country. A crisis occurring on the doorstep of the consumer is 

probably more relevant and personally threatening. In terms of self-preservation, the observer 

processes the effect to be more undesirable that should be avoided (Lange and Washburn 

2012). Therefore, we expect that a crisis originating in the home country to have a stronger 

negative effect on brand strength. We have no expectation for the direction of influence on 

the brand attention effect. 

Moderators of the brand effect: brand & firm characteristics. In addition to the crisis 

event itself, characteristics of the brand and the firm may play a moderating role. We 

consider four moderators: prior brand strength, crisis history, firm size, and product type. 

Prior brand strength. Following Berger, Sorensen, and Rasmussen (2010), we expect a 

negative moderation effect of prior brand strength with respect to brand attention. They argue 

that the gain in awareness due to negative publicity is lower the more known or stronger a 

brand is. People exposed to new information about their preferred brand tend to perceive 

positive news to be more insightful than negative information, as opposed to non-customers 

who tend to put more weight on negative news (Ahluwalia 2002). Put differently, consumers 

process negative crisis information about less known and less preferred brands as primary 

information. In contrast, they discount negative information for their preferred brands to 

avoid inconsistency with their brand knowledge. Product-harm research indeed found that 

product trial probabilities for stronger brands suffer less from the crisis (Cleeren, Dekimpe, 

and Helsen 2008). Hence, we expect brand strength to serve as a protection against the 

negative effect of a crisis event. 
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Crisis history. Crisis history indicates whether the crisis is a one-time event or part of a 

pattern of similar crises. A history of crises suggests an organization has an ongoing problem 

that needs to be addressed. The observer learns that the firm has a tendency to act in this way 

over time, which increases the evidence for causal culpability (Zautra et al. 2005). On the 

contrary, companies without a history of prior brand crises suffer less since consumers are 

more willing to forgive a one-time mistake (Liu and Shankar 2015). Consequently, we expect 

crisis history to amplify the negative effect on brand strength. The effect on the attention 

effect, however, is not clear. 

Firm size. When assessing the firm’s responsibility in the event, observers also consider 

the congruence between size and effect (Lange and Washburn 2012). It is plausible that a 

large firm causes a large effect, but less so for a smaller firm. Therefore firm size should 

amplify the negative effect on brand strength. On the other hand, large firms are also 

established firms that have grown in reputation over time. Similarly to the brand strength 

effect, this reputation might act as a shield against brand damage effects leaving the direction 

of the effect as an empirical issue. Smaller firms are likely to have smaller brands that are 

less known. Following again the line of arguing of Berger, Sorensen, and Rasmussen (2010), 

we expect a negative influence of firm size on the attention effect of crises. 

Product type. The magnitude of the brand effects might also depend on the product type 

that differs in terms of perceived risk, product involvement, or purchase frequency (Nelson 

1970). We distinguish four types: non-durables, durables, services, and retail. Since it is 

difficult to draw well-founded inferences about the role of product type characteristics we do 

not formulate a priori expectations. 
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3.4 Initial Evidence 

Figure 2 shows the time series of brand attention and brand strength for two exemplary 

brands that faced major crisis events within our observation period. The left image portrays 

BP. In the spring of 2010, an oil rig exploded and sank causing a massive pollution of the 

maritime environment (environmental scandal).  

 

Figure 2: Exemplary Time-Series for Brand Attention and Brand Strength 
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In the same year, Toyota faced its largest product recall in history and had to call back 

millions of vehicles due to an unintended acceleration problem (product-harm crisis). The 

right image shows Toyota’s brand evolution in terms of attention and strength. In both 

graphs, the occurrence of the crises events coincides with a heavy spike in the brand time-

series. Brand attention jumps to a new maximum height and brand strength drops to a 

minimum level. This behavior suggests that a crisis event may have a substantial impact on 

both brand metrics. We acknowledge that there are several other spikes in the time-series, 

which may have been caused by other events including additional crisis events. 

 

4 Data and Method 

The crisis event is a temporary, exogenous shock, but not a permanent change. The 

resulting brand crisis is endogenous. We define its depth and length by the ex-post change in 

brand attention and brand strength that is due to the event. Our objective is to estimate and 

explain this effect (see Figure 1 again). To achieve this goal we analyze brand time-series 

data. Specifically, we use five years of weekly data from Germany in the period 2008 to 

2012. 

4.1 Brand Measures 

We have access to a unique database that offers a nationwide measurement of brand 

perception at the weekly level. The YouGov group, a global market research company 

specializing in online panels, collects this data. Their online panel consists of 3 million 

panelists across 11 countries including 170,000 panelists in Germany. Here, YouGov 

monitors the 600 largest brands across all relevant B2C sectors on a daily basis. Brand 

attention represents the number of respondents who are aware of either negative or positive 

news about a brand. Brand strength is measured along six dimensions, which are aggregated 

to the YouGov BrandIndex. These dimensions are perceptions of: brand quality, brand value, 
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brand satisfaction, brand recommendation, brand identification, and brand overall 

impression.3 Details on the exact items and the collection of data are provided in the 

Appendix. 

In the Appendix, we also provide details on construct validation. Specifically, we show 

that the six brand dimensions are indeed reflections of the same underlying brand strength 

construct. Brand strength, however, is distinct from brand attention (correlation = .17, p < 

.01) according to the Fornell/Larcker test. The confirmatory factor analysis model passes all 

common thresholds of model fit and tests on construct validity and item reliability (see 

Appendix). 

The big advantage of the BrandIndex over other brand strength measures such as 

Young&Rubicam’s BAV (e.g., Stahl et al. 2012) is that it is available at the disaggregate 

(weekly) level. This allows for detecting changes in brand perception triggered by single 

events such as press reports on firm misbehavior. 

At the aggregate brand level, brand attention and brand strength scores fall within the 

range of -100 to +100. For brand strength, as an example, the extremes are only realized if all 

respondents agree in their negative or positive perception of the brand relative to its 

competitors. The weekly brand ratings are based on a large sample of at least 700 responses. 

This helps reducing the sampling error. The weekly periodicity also aligns well with the 

measurement of the crisis event. Note that the first media reports do not always appear on the 

same day. In addition, not all consumers receive and process news immediately but with a 

time lag over the next few days. 

4.2 Brand Crisis Events 

Using the Lexis Nexis database, we identified brand crisis events through a 

comprehensive media search in the 15 leading online and offline media sources in Germany.4 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 In 2013, YouGov expanded the number of items in the survey, among them questions on purchase 

consideration and intent. Our observation period ends before this change. 
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For each crisis type (see Table 2 again), we generated a pre-tested list of keywords and 

systematically searched for the keywords in connection with the specific brand (see the 

Appendix for details). We require that a “well-publicized” event must have been reported by 

at least 3 media to ensure it attains a sufficient reach within the German population. We test 

this assumption (see the Appendix). 

We identified a total of 373 brand crisis events within the period of 2008 to 2012. 113 

cases had to be excluded because media coverage was below 3 media sources. We had to 

exclude another 12 cases due to confounding events such as overlapping crisis events, new 

product introductions, etc.  Finally, 34 additional cases are eliminated from the sample 

because of missing information on control variables such as advertising expenditures. Thus, 

our final sample size covers 214 crisis events (see the Appendix for the list of events) across 

12 industries, 69 brands (ca. 12% of brands covered by YouGov), and 5 years of weekly data. 

We define the week, in which the first report was published on the event, as the event date. 

Three coders (one co-author) read every report related to a specific crisis event. Based on 

the conceptual meaning of the four crisis types (see Table 2 again), they assigned each event 

to one type. They also paid attention to situations where an event could be both classified as a 

product-harm and a CSI event. This applies to only a small number of 27 crisis events 

(12.6%). If there was disagreement on the assignment of a crisis type it was solved by 

discussion.  

4.3 Control and Moderator Variables 

We obtain data on control and moderator variables from various data sources. Ebiquity 

provides weekly brand advertising expenditures across several channels. Industry brand 

attention and strength are the averages (excluding the focal brand) for the industry sector. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 For newspapers and online news portals not included in Lexis Nexis, we performed individual searches in the 

respective data archive. 
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Media coverage is based on the press research of brand crisis events and counts the 

number of media sources (Cleeren, Van Heerde, and Dekimpe 2013). Based on the 

information in the media articles, the three coders also determined the immediate firm 

reaction according to the three possible strategies. Coding agreement is greater than 95%. 

Note that a firm’s reaction may change over the course of a crisis. Our measure does not 

account for such change because we focus on the crisis event and the immediate reaction of 

firms. There was virtually no disagreement regarding the origin of a crisis (Germany versus 

foreign country). 

Prior brand strength is the focal brand’s average BrandIndex in the 12 weeks prior to the 

crisis event. Crisis history measures the number of remembered crisis events for the focal 

brand. We apply a time weight to the accumulation to account for the process of forgetting. 

This weighting also alleviates the censoring issue that is associated with this variable. But we 

still note that this measure is not perfect since we do not observe the complete crisis history 

of a brand. Firm size is based on the number of employees and is obtained from Compustat. 

Product type follows the common classification of goods as durables, non-durables, services, 

and retail. Table 3 informs about the details of measurement for each variable. 

Table 3 provides descriptive information about the sample. Panel A informs about the 

variables that enter our subsequent model to measure the brand effects. Brand attention, 

brand strength, and advertising expenditures show strong variation. SD is larger than the 

mean for two variables. This also applies to the distribution of crisis types. 49% of the events 

are product-harm events, 51% are CSI events. This distribution underlines the relevance of 

potential CSI crises. Most of the CSI crisis events were violations of fair operating practices 

(27%), followed by violations of human rights and working conditions (21%) and 

environmental scandals (4%). 
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Table 3: Variable Definitions and Summary Descriptives 
  

 

 

Variable  Description Source N M SD 
Panel A: Time-series data for estimating ECM (see Equation 3) 
Focal variables 

     
Brand attention Index from -100 to +100, relating to the question 

whether respondents have heard anything positive or 
negative about the brand within the last 2 weeks 

YouGov 17,043  23.10 9.77 

Brand strength Index from -100 to +100 aggregated across 6 brand 
perception dimensions: brand quality, brand value, 
brand satisfaction, brand recommendation, brand 
identification, brand overall impression  

YouGov 17,043  12.60 
 
 

17.09 

Crisis types a 
 

    
Product-harm 
crisis 

Dummy for occurrence of crisis event in week t Press 
research 

105 49% 50% 

FOP violation Dummy for occurrence of crisis event in week t Press 
research 

57 27% 44% 

HR / WC 
violation 

Dummy for occurrence of crisis event in week t Press 
research 

44 21% 40% 

Environmental 
scandal 

Dummy for occurrence of crisis event in week t Press 
research 

8 4% 19% 

Controls  Total 214   	
  
Ad expenditures Weekly advertising expenditures in 1,000 € across 

major media channels (television, radio, print, 
outdoor, online) 

Ebiquity 17,163 
 

1,139 1,630 

Industry brand 
attention 

Weekly average brand attention across all brands in 
focal brand’s industry (excluding the focal brand) 

YouGov 17,664 
 

9.68 3.20 

Industry brand 
strength 

Weekly average brand strength across all brands in 
focal brand’s industry (excluding the focal brand) 

YouGov 17,664 
 

5.76 4.51 

Panel B: Cross-sectional data for estimating moderator effects (see Equations 4 and 5) 
Media  
coverage 

Number of newspapers and online news portals that 
reported on the crisis event  

Press 
research 

214 6.50 3.0 

Immediate firm 
reaction a 

Dummy for immediate firm reaction after the event was 
published  

Press 
research 

   

 No reaction: passive to no reaction (=1) if not (=0)  98 46% 50% 
 Deny: deny responsibility (=1) if not (=0)  49 23% 42% 
 Accept: apologize/accept responsibility (=1) if not (=0)  66 31% 46% 
Crisis origina Dummy variable indicating whether geographic origin 

of crisis was international (=0) or national (=1) 
Press 

research 
153 71% 46% 

Product type a Dummy variable for product type of the business MSCI 
GICS 

   
 

 Durables (=1) if not (=0)  12 6% 23% 
 Non-durables (=1) if not (=0)  107 50% 50% 
 Retail (=1) if not (=0)  41 19% 39% 
 Services (=1) if not (=0)  54 25% 44% 
Prior brand 
strength 

3-month average of BrandIndex prior to focal crisis 
event  

YouGov 214 14.41 18.53 

Crisis history Remembered (time-discounted) number of crisis events 
since 2008 until focal crisis event 

Press 
research 

214 1.4 1.5 

Firm size Number of employees (in 1,000)  Compustat   69           123.4    118.3 
a For these variables, we report the percentage of observations having the value of 1. 
Notes: We report the statistics for the dependent variable before the log transformation. FOP = Fair operating 
practices, HR = Human rights, WC = working conditions, GICS = Global Industry Classification Standard. 
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4.4 Descriptive Statistics 

Panel B of Table 3 shows the descriptive statistics for our moderator variables. The 

average crisis event is covered by 6.5 media outlets out of 15. The vast majority of these 

events originate in Germany (71%). Unsurprisingly, media are biased towards reporting 

about national events. Half of the 69 covered brands had two or less crisis events during our 

observation period. The maximum is 15 events (Toyota). The most often immediate firm 

reaction was no reaction (46%), followed by acceptance of responsibility (31%) and denial of 

responsibility (23%). To summarize, the variation in the data is strong supporting the proper 

identification of effects. 

 

Figure 3: Empirical Strategy 

 
 

 

1. Identify product-harm and CSI events

3. Test for conditions of persistent effects

4. If no evidence for persistent effects 
provided, estimate immediate and 
cumulative brand crisis effect

5. Estimate the impact of moderator 
variables on immediate and cumulative 
crisis effects

• Comprehensive press search for relevant articles in 
Germany in 2008-2012

• Exclude crisis events with confounding events

• Test for unit root in brand perception of focal brand and 
industry, brand advertising expenditures, and consumer 
interest

Individual tests: Augmented Dickey-Fuller Test, 
Phillips-Peron test, Kwiatkowski–Phillips–Schmidt–
Shin test 

• Test for cointegration for evolving variables using 
residual-based Pedroni and Kao cointegration tests

• Estimate error-correction model (ECM) for each brand 
time-series

• Obtain immediate and cumulative effects for each brand 
crisis event from parameter estimates

• Regress estimated immediate and cumulative brand-crisis-
event effects on set of moderator variables

2. Test for model free evidence • Conduct difference-in-difference tests with controlled, 
quasi-experimental design
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4.5 Method 

Empirical Strategy. Figure 3 outlines our empirical strategy. We proceed in five steps. 

We already reported on the first step that involved the identification of all potential product-

harm and CSI events that became public in Germany during our observation period. After 

eliminating the confounded events, we test for model-free evidence. Specifically, we use a 

quasi-experimental difference-in-differences test format. A limitation to this design is that we 

can only detect contemporaneous effects but no dynamic effects. We therefore continue with 

time-series modeling and start with testing for the time-series properties in step 3. In 

particular, we check for unit roots in all relevant time-series variables (brand attention, brand 

strength, advertising expenditures). The existence of a unit root is a prerequisite to establish 

persistent crisis effects. Provided we do not find evidence for persistency, we estimate the 

immediate and cumulative effects of the event shock on the focal brand’s attention and 

strength in the third step. We retain the effect estimates for all brand crisis events and regress 

them on the set of moderator variables in the final step. 

Identification. Our identification strategy rests on the assumption that we exploit a large 

number of crisis events, which vary across types of product-harm and CSI events (see Table 

3 again). They represent a random shock to the observed brand time-series. A crisis event can 

be considered truly exogenous because the large population of consumers does not have 

knowledge about the crisis event before it is reported in the media. The endogenous brand 

evaluations are obtained before and after the event in a representative customer survey. We 

also verify our exogeneity assumption in a “Granger-like causality test (see the Appendix). 

Our research design thus follows the idea of the established event study methodology 

(McWilliams and Siegel 1997). For example, Flammer (2013) searched for articles that 

report on eco-friendly and eco-harmful behavior to study the effect of the publication date on 

stock return. Our approach is very similar since we also search for media reports on crisis 
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events and study the effect of that event date on brand attention and brand strength. To rule 

out alternative explanations we carefully check for confounding events around the time of the 

crisis event. 

We also have data on the focal brand variables available for a group of up to 25 

competitive brands. This set establishes a control group. We therefore have a design that 

constitutes a controlled, repeated quasi-experiment. We acknowledge, however, that it is not 

a rigorous, fully randomized experiment since there is no control about which brands undergo 

a crisis – a limitation that we share with all prior research on actual brand crises. 

Sample selection. Another aspect of our study design refers to the selection of brands and 

crisis events. Note that two conditions must be met for a brand to be sampled. First, a 

product/service failure or unethical firm behavior must happen, which may or may not be 

uncovered. Second, media must report on the event. We believe the first condition does not 

create a selection issue. Every firm is likely to run into a product or ethical behavior issue in 

the long run. 

Our observation period of 5 years should be long enough to observe a representative 

sample of these events. In fact, we can show that the brands in our crisis sample do not 

significantly differ along variables such as brand strength, advertising expenditures, and 

industry membership from the YouGov brand universe (see the Appendix). The second 

condition, however, is likely to follow a selection process. Editorial journalists presumably 

choose stories in a strategic way. For example, they might prefer reporting on larger 

companies and better-known brands. However, our findings are not biased if only those 

larger brands are selected in our sample. This is because an unselected but unreported crisis 

event of a small brand does not affect consumers’ brand perception. 
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5 Modeling and Estimation Issues 

5.1 Measuring the Crisis Effect on Brand Attention and Brand Strength 

The YouGov brand metrics are ratio-scaled variables that run from -100 to +100 (for 

details see the Appendix). We focus on brand strength in the following. Brand attention is 

modeled in the same fashion using the same set of predictor and moderator variables. We 

model the evolution of the BrandIndex as follows (Hanssens, Parsons, and Schultz 2001, 

110): 

 ,                                             (1) 

where BIit measures the BrandIndex (= brand strength) of brand i in week t and f(Xit) is a 

function that captures the influence of crisis events and controls, summarized in vector X, on 

the BrandIndex. Equation (1) satisfies the range restriction of our focal variable, with MIN = 

-100 and MAX = +100. As a result, the relation between BI and the predictor variables is 

nonlinear and follows an S-shape. Taking the log and rearranging terms leads to a model that 

is linear in parameters: 

.     (2) 

Note that our log-transformed dependent variable is no longer range-restricted and thus 

satisfies the assumption of a normally distributed error term. Assuming the time-series are 

stationary or at least co-integrated (which we test for), we adopt a parsimonious error 

correction model (ECM) to estimate the immediate and cumulative effects (e.g., Pauwels, 

Srinivasan, and Franses 2007, Van Heerde et al. 2013). Specifically, 
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where Δ is the first difference operator:  . Cikt is a dummy variable that 

measures the occurrence of the kth crisis event for brand i in our observation period, with k ∈ 

Ki. Consistent with the event-study methodology (McWilliams and Siegel 1997), we treat the 

week of first publication of a crisis event as an external shock that potentially impacts brand 

perceptions in the market. The estimated event’s impact on brand strength is our measure of 

the magnitude and duration of a crisis. Hence, the crisis is endogenously defined in our 

framework, i.e. derived from estimated parameters. Empirically, we observe that the vast 

majority of events (>80%) are reported in the first and second week. Results are robust to a 

two-week dummy specification. If media reports for the same brand occur at a later point in 

time (for example, Toyota announced multiple recalls over months in 2009 and 2010 due to 

several reasons; Fan, Geddes, and Flory 2013), we treat them as new crisis events. 

ADV denotes advertising expenditures and IBI denotes the focal brand’s average 

industry brand strength value. Trend measures the time period. Following van Heerde et al. 

(2013), it runs from -1 in the first observation to +1 in the last. 

The ECM is a useful transformation of a VARX model in an error correction format. 

Estimation is not plagued by collinearity among current und lagged variables and model 

parameters are easy to interpret. The α-parameters (αImm, αCum) are trend parameters, the β-

parameters (βImm, βCum) measure the immediate and cumulative effect of the crisis events, the 

λ-parameters (λImm, λCum) refer to the influence of the control variables, and γ is an 

adjustment parameter that measures the speed of adjustment to the (long-term) equilibrium. 

This parameter is especially relevant for measuring the duration of a crisis. In addition, we 

obtain the immediate (superscript Imm) and the cumulative (superscript Cum) effects of a 

crisis and the control variables. Cumulative effects measure the immediate and future 

changes in brand ratings due to the temporary shock of the crisis event. We test for 

persistence before estimating Equation (3). 

   ΔBI! it = BI! it − BI! it−1
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5.2 Simultaneity Issues 

Research on product-harm crises (e.g., Rubel, Naik, and Srinivasan 2011) has shown that 

firms change their advertising expenditures in anticipation of changes in economic 

performance after the occurrence of a crisis event. It can also be argued that if industry brand 

perception affects the perception of the focal brand there might exist spillover effects from 

the focal brand to other brands in the industry, especially in a crisis situation (Lei, Dawar, and 

Lemmink 2008). To address these potential simultaneity issues and reduce the danger of 

biased estimates we treat the change in advertising and in industry brand strength as 

endogenous and employ an instrumental variables approach. 

We follow recent ECM studies (e.g.; Gijsenberg 2014; Van Heerde et al. 2013) and use 

both the first-differenced and lagged advertising expenditures in industries of other product 

types to identify ΔADVit. Specifically, we use durable goods, non-durable goods, services 

and retail as classes (excluding the focal brand’s type). Advertising expenditures changes in 

other industries are likely due to the same underlying cost structures (Van Heerde et al. 

2013), but these structures should not be related to shocks in brand attention/strength in the 

focal brand’s industry. 

We adopt a similar strategy to instrument ΔIBIit. Again, we use the change and lagged 

values of the average brand strength of other product types. The idea is that changes in 

average brand strength of other industries arise from the same source such as a common trend 

or correlations among advertising expenditures due to the same underlying cost structures. 

We follow the same procedure for industry brand attention. 

Since we have more (outside) instruments than possibly endogenous predictors the 

model is overidentified. All other predictors including lagged variables are predetermined 

and serve as their own instruments. We formally assess both the strength (multivariate F-test) 

and the validity of the exogeneity assumption with respect to our instruments (Hausman-
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Sargan test) (see Greene 2012, pp. 249-251). The F-test supports the strength of the 

instruments (p-value of F-test < .05). Additionally, we cannot reject the exogeneity 

assumption (lowest p-value of Sargan test > .14).  

5.3 Heterogeneity 

The effects of crisis events on consumers are likely to vary across brands. We estimate 

the model for each brand time-series and obtain brand-specific estimates for the immediate 

and cumulative effects. We calculate the estimates of the cumulative parameters of interest 

from the initial estimates of the different products of parameters (e.g., ) and derive the 

associated standard errors with the Delta method (Greene 2012, p. 330-331).5 We summarize 

effect sizes of our parameters of interest by Rosenthal’s method of added Zs (Rosenthal 

1991). The effect size of the estimated parameters is the weighted mean response parameter 

across brands, where the weights represent the reliability of the parameter estimates (see Van 

Heerde et al. 2013). 

5.4 Measuring the Impact of Moderators on the Brand Damage Effect 

The estimated brand-crisis-specific immediate and cumulative crisis effects are the 

dependent variables in our moderator analysis. The 214 crisis events determine the sample 

size of these regressions. We estimate four models, one for immediate and one for cumulative 

effects, each for brand attention and brand strength. To account for measurement error in the 

dependent variables and heteroskedastic errors, we weigh each observation with its inverse 

standard error scaled by effect size: 

 (4) 

 
(5) 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 For estimation purposes we multiply the parameter  γ ij

 through with the term in the square brackets from 
Equation (3). Estimating the model, we initially obtain estimates for the different products of parameters. 

  γ iλ1i
Cum

  
β̂ Imm = ν Imm + δ n

Imm Xnn∑ + π n
ImmBnn∑ + ε Imm

β̂Cum =νCum + δn
CumXnn∑ + π n

CumBnn∑ + εCum
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where ,  and are the estimated immediate and cumulative coefficients. Xn, 

represents crisis-specific characteristics (crisis type, media coverage, immediate firm 

reaction, and crisis origin) and Bn are the brand-specific characteristics (brand strength, crisis 

history, firm size, and product type). The parameters δImm , δCum ,and πImm , πCum are the 

respective effects of crisis- and brand-specific characteristics on immediate and cumulative 

crisis impact on our brand metrics. The parameters vImm and vCum are intercepts and εImm and 

εCum  denote the error term, which is assumed to be independently, normally distributed with 

heteroskedastic variance. 

We do allow for error correlation across equations. Note, however, that SUR estimation 

does not offer an advantage. Since the set of predictor variables for Equation (4) and (5) is 

identical OLS or WLS estimation, respectively, is as efficient as SUR (Zellner 1962). 

5.5 Why not a Panel ECM Framework? 

A potential alternative to our estimation procedure could be a one-step Panel ECM that 

accounts for parameter heterogeneity and interactions among moderator variables and crisis 

dummies. The advantages come from efficiency gains by pooling brands in a panel and 

simultaneous one-step estimation. This estimation design, however, is not feasible with our 

data for several reasons. First, note that a typical panel dataset is composed of a large number 

of cross sectional units (brands) and short time-series. Efficiency gains mainly arise from the 

use of cross-sectional variation and by partially imposing homogeneity or distributional 

assumptions on parameters. Quite in contrast, we have long time-series of 256 periods for 69 

brands available. This allows for a reliable estimation of individual parameters. Most 

importantly, we need not only to estimate individual crisis parameters across brands but also 

across crises within brands. This is hard to implement in a Panel ECM estimation framework 

but very easily handled by our equation-by-equation estimation approach. Second, including 

interactions between crisis dummies and moderator variables introduces severe collinearity 

β̂ Imm
  β̂

Cum
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issues that overcompensate any potential efficiency gains from one-step estimation. Hence, 

our estimation procedure appears to be the most efficient approach to obtain the parameter 

estimates. 

 

6 Results 

6.1 Model-free Evidence: Difference-in-Differences Tests 

Table 4 shows the results of mean difference tests. Here, we take the difference of the 

brand attention score and brand strength score, respectively, of the week when the crisis 

event occurred and the week before. We do this for the focal brand and the group of 

competitive brands in the respective industry. These brands form our control group. 

The results are clear. The crisis event leads, on average, to a significant increase in brand 

attention (Δ = 3.24%, p < .01) and a significant drop in brand strength (Δ = -1.99%, p < .01). 

This finding is replicated for each type of crisis. i.e. it holds for product-harm and CSI events 

as well as for the three CSI types. There are, however, differences between brand attention 

and brand strength when we compare changes across the types of crisis events. We find no 

significant differences in the magnitude of changes of brand attention for product-harm vs. 

CSI events (F1,186=2.18, p > .05) and across all four types of events (F3,186=1.17, p > .05). The 

magnitude of changes in brand strength, however, is marginally significant for product-harm 

vs. CSI events (F1,186=3.74, p < .10) and significant across the four crisis types (F3,186=3.75, p 

< .05). It turns out that the drop in brand strength is larger for a CSI event and in particular 

for environmental scandals as well as violations of human rights and working conditions. 

These results provide first evidence on the differential impact of a crisis event on the 

brand. The analysis, however, is limited to contemporaneous effects and does not control for 

differences between crises events other than the type of crisis. We therefore turn to the time-

series analysis. 
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Table 4: Changes in Brand Attention and Brand Strength Compared with Industry Average 

 
                        

 
Brand attention Brand strength 

 
                        

 

Δ Brand attention 1) 

   Δ Focal brand 
      (treatment group) 
− Δ Industry average 
      (control group) 

Difference tests Δ Brand strength 1) 

   Δ Focal brand 
      (treatment group) 
− Δ Industry average 
      (control group) 

Difference tests 

 
Focal 
brand 

Industry 
average Mean (SE) t-value F-value Focal 

brand 
Industry 
average Mean (SE) t-value F-value 

Overall 2.96% -.14% 3.24% (.007) 4.68***   -1.76% .23% -1.99% (.004) -5.45***   

Comparison of product-harm with (average) CSI event                

Product-harm event 1.96% -.23% 2.19% (.009) 2.36*** F1,186 = 2.18 
p = .142 

-.96% .31% -1.27% (.004) -2.90*** F1,186 = 3.74 
p = .055 CSI event 4.17% -.06% 4.23% (.010) 4.18*** -2.52% .16% -2.67% (.006) -4.68*** 

Comparison of all four types of events                   
Product-harm event 1.96% -.23% 2.19% (.004) 2.36*** 

F3,186 = 1.17 
p = .324 

-.96% .31% -1.27% (.004) -2.90*** 

F3,186 = 3.75 
p = .012 

Violation of fair operating 
practices 4.73% -.17% 4.90% (. 013) 3.79*** -1.10% .28% -1.37% (.007) -2.08*** 

Violation of human rights / 
working conditions 3.20% .10% 3.10% (.017) 1.83*** -3.52% .06% -3.57% (.009) -3.82*** 

Environmental scandal 6.42% -.28% 6.70% (.036) 1.84***  -5.71% -.01% -5.70% (.028) -2.07***  
Notes: Brand attention and brand strength as in Equation (2) before log-transformation. *** p < .01, ** p < .05, * p < .10 (one-sided if applicable). 
1) Δ (index measure) = index score at event week – index before event week. 
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6.2 Testing for Persistency 

Persistent effects require non-stationary times-series. Thus, we report on our findings of 

the unit-root tests. Specifically, we test for a unit root in brand attention, brand strength, and 

advertising expenditures at the individual brand level allowing for brand-specific intercepts 

and deterministic trends. Specifically, we apply the Augmented Dickey-Fuller (ADF) test, the 

Phillipps-Perron (PP) test, and the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test (see 

Patterson 2011). While the ADF and PP tests check for the assumption of a unit root (non 

stationary time-series), the KPSS tests against the unit root. If either the ADF or PP test 

suggests a unit root, we apply the KPSS test to check for the alternative assumption. If the 

KPSS test is rejected we take this as strong evidence for non-stationarity. 

We do not find support for the existence of unit roots for any of the three variables in any 

brand time-series (details are available from the authors). Hence, we establish the first 

important result. None of the crisis events that occurred in Germany during the 5-year 

observation period caused a permanent increase in brand attention or a permanent loss in 

brand strength. As a consequence, brand attention and strength eventually return to their pre-

crisis level, controlling for other factors. The long-term parameters of our ECM can be 

interpreted as the cumulative temporary effects on brand ratings. We discuss findings from 

this model estimation next. 

6.3 Immediate and Cumulative Effects of Crisis Events on Brand Attention and 

Strength 

Table 5 presents the overall across-brand parameter estimates of the first stage ECM 

analysis together with the associated added Z-scores (Rosenthal, 1991). The average adjusted 

R2 of .20 is good for a model in first differences. We also checked model fit in a holdout 

sample based on mean absolute deviation (MAD). Out of-sample MAD for brand attention 

(brand strength) amounts to .671 (.482) compared to the in-sample MAD of .528 (.429). 
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Consistent with Berger, Sorensen, and Rasmussen (2010), we find that a crisis event, on 

average (across all four types), has a positive impact on brand attention, both immediately (

 = .035, p < .01) and cumulative ( = .075, p < .01). The average effect on 

brand strength is negative and significant for immediate ( = -.017, p < .01) and 

cumulative ( 
βStrength

Cum = -.044, p < .01) effects. These results are consistent with prior findings 

on consumer attitudinal responses to brand crises (e.g., Ahluwahlia, Burnkraut, and Unnava 

2000; Cleeren, Dekimpe, and Helsen 2008). By using the adjustment parameter in 

combination with the estimated cumulative effect, we obtain an estimate for the duration of 

the effects. Note while the adjustment parameter is brand-specific the βCum-parameters for 

long-term effects in Equation (3) are not. They are crisis-specific. Thus, durations also vary 

across crises within the same brand. The increase in brand attention ranges from .5 months to 

9.5 months in our sample. Its average is 2 months. Brand strength effects last from .5 months 

to 9.25 months. On average, it takes 2.6 months for the brand to recover from the loss. 

The influence of the controls advertising expenditures and industry brand attention 

and strength is as expected. On average, advertising shows positive immediate and long-term 

effects on both brand attention and brand strength. The impact comes out stronger for 

attention. Both brand metrics are also significantly influenced by their industry averages. 

Hence, it is important to control for them. Note that both advertising expenditures and 

industry averages of the two metrics are instrumented to address simultaneity issues. 

 

 

 

 

 

	βAttention
Imm

	βAttention
Cum
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Table 5: 2SLS Estimation Results for Error Correction Models 

    Brand attention  Brand strength 

  Obs Expected 
sign 

Estimated 
average 

coefficient 
Z-Score  Expected 

sign 

Estimated 
average 

coefficient 
Z-Score 

Intercept 
  69 +/- -.1048 -3.20 *** +/- .0166 3.90 *** 
Advertising expenditures 
  Immediate 69 + .0079 5.44 ** + .0002 2.21 ** 
  Cumulative 69 + .0229 6.49 *** + .0014 11.06 *** 

Industry brand attention                   

  Immediate 69 + .0613 27.73 ***   - -   
  Cumulative 69 + .0245 2.46 ***   - -   

Industry brand strength             
 

    
  Immediate 69   - -   + .0224 30.23 *** 
  Cumulative 69   - -   + .0142 3.76 *** 

Crisis event                   

  Immediate 214 + .0350 13.02 *** - -.0166 -33.59 *** 
  Cumulative 214 + .0750 11.02 *** - -.0437 -22.34 *** 

Adjustment 69 -1< g <0 -.5610 -34.26 *** -1< g <0 -.4041 -55.42 *** 
Long-term Trend 69 no -.1147 -14.15 *** no .0072 2.56 *** 
Notes: ** p < .05, *** p < .01 (two-sided).          

 

6.4 Explaining the Magnitude of Crisis Effects 

Brand attention. Table 6 presents the results from estimating the impact of the moderator 

variables on the magnitude of immediate and cumulative brand effects. Both the immediate 

and cumulative attention effect seems to be larger for violations of human rights and working 

conditions compared to product issues. There is no difference in immediate effects for the 

other two CSI crisis types. The cumulative effect for violations of fair operating practices is 

significantly lower than for product issues. Overall, however, there is no consistent difference 

between product-harm events and CSI events. The estimated average CSI crisis effect is not 

significantly different from the effect of product-harm events. Hence, both product-harm and 

CSI events raise brand attention to a similar average level. 
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Among the other moderator variables, we find support for our expectations with respect 

to media coverage and prior brand strength. The attention effect is larger the broader the 

crisis event is covered in the media. The attention effect, however, is smaller for stronger 

brands. Hence, weaker and less-known brands benefit more from the pure attention effect 

(Berger, Sorensen, and Rasmussen 2010). We also find that an immediate acceptance of 

firm’s responsibility reduces the immediate attention effect. The effect, however, is larger in 

the long run if the firm denies responsibility as immediate reaction. 

Brand strength. Consistent with our model-free analysis (see Table 4 again), we find 

support for differences in crisis impact on brand strength depending on the type of the crisis. 

For the immediate effect, the violation of human rights and working conditions and 

environmental scandals lead to a significantly larger drop in brand strength compared to 

product-harm crises. For the cumulative effect, these differences hold and become even 

larger for environmental scandals. Thus, CSI-related crisis events have, on average, a 

stronger immediate and cumulative negative effect on brand strength than product-harm 

events. The estimated average effect across the three CSI crises supports this conclusion (see 

Table 6). 

Table 6 also informs about the role of other crisis and brand/firm characteristics. 

Consistent with our expectation, we find strong support for the role of media coverage and 

crisis origin. Both larger media coverage and a national crisis event increase the immediate 

and cumulative brand strength effects. We also find that the immediate firm reaction has an 

influence on the immediate and cumulative brand effect. Accepting responsibility reduces 

brand strength damage in the short run. But it increases the damage in the long run if the firm 

denies responsibility. 

Brand and firm characteristics primarily drive the cumulative brand damage effect. Here, 

stronger brand strength helps lowering the impact of the crisis event. Similarly, firms benefit 
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from size, i.e. the negative effects on brand strength are less for larger firms. In contrast, if a 

firm has a crisis history the cumulative brand damage becomes larger. 

6.5 Assessing the Magnitude of Crisis Effects 

The practical significance of the estimation results in Table 6 is not obvious. We 

therefore use the parameter estimates of Table 5 and 6 together with model (1) to simulate 

brand effects. Figure 4 and 5 show the results. We first simulate the base scenario. Here, we 

set all variables at their sample mean. In fact, this produces the average increase in brand 

attention and loss in brand strength across all crises and brands. We then change only one 

driver variable. For non-metric variables such as the type of crisis, we set the focal category 

to 1 and all other categories to 0. For the metric variables such as media coverage, the 

equivalent is to increase the value by 100%. Relating this change to the relative change in 

brand attention and brand strength scores produces an arc estimate for the associated 

elasticity. In addition, we compute the implied changes in the duration of the crisis effects. 

Brand attention. The left bar diagram in Figure 4 shows that immediate attention for a 

brand due to a crisis event increases, on average, by 10% in our sample. The increase lasts for 

2.1 months, on average, and builds up to a cumulative increase of 43%. This is a substantial 

effect. Consistent with the results Table 6, there are no significant differences in the effects 

among product-harm and CSI crisis events. Figure 4, however, demonstrates that media 

coverage and immediate firm reaction are important drivers of the attention effect. 100% 

higher media coverage increases attention levels to 44% (immediate effect) and 147% 

(cumulative effect), respectively. As a result, the duration of the attention effect is much 

longer with almost 8 months. A similar strong increase in cumulative brand attention occurs 

if the firm denies responsibility (88%). The higher attention level lasts for 4.6 months in this 

case. 
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Brand strength. As shown by the left bar diagram in Figure 5, on average, a brand in our 

sample looses -13% of its brand strength immediately after the crisis event. If we assume a 

product-harm event, the loss reduces to -7%, but it increases to -19% for a CSI-related event. 

By all means, these are sizeable damage effects to brand strength. The difference between 

CSI and product-harm events is remarkable. The whole extent of the damage becomes 

apparent in the middle bar diagram. It illustrates the cumulative loss of brand strength until 

the brand returns to its equilibrium level. The average brand looses -36% of its brand strength 

in total in a product-harm crisis. For an ethical crisis, this cumulative loss increases to -87%. 

Brands return to their equilibrium strength level after 1.2 months in a product-harm crisis and 

after 3.4 months in a CSI crisis. 

These damages are considerably amplified if more media cover the event, the event is a 

national event, and the brand has a crisis history. Media coverage is again by far the greatest 

driver of the crisis impact. The immediate damage amounts to -21% and the cumulative 

damage to -109% if media coverage doubles. The effect lasts for 4.3 months in this case. 

Note that the loss in brand strength may be greater than -100% because the BrandIndex runs 

from -100 to +100. These figures correspond to elasticities of -.61 (=-20%/-13%-1) and -.84, 

respectively. The second largest driver is firm reaction. If the immediate reaction is to deny 

responsibility, the cumulative loss in brand strength amounts to -86% and lasts for 3.3 

months. Cumulative loss in brand strength reaches -64% for a national event and -74% for a 

larger crisis history. 

There are also drivers that attenuate the damage effect. If firms immediately accept 

responsibility for their wrongdoing they can reduce the immediate damage effect to -2%.  

Moreover, a strong brand helps. It limits the cumulative loss in brand strength to -48%, which 

is equivalent to an elasticity of .19. 
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Table 6: WLS Estimation Results for Drivers of Brand Effects 

 
 Dependent variable: 

 Brand attention  Brand image 

 Estimated  
immediate effect 

Estimated  
cumulative effect 

 Estimated 
 immediate effect 

Estimated  
cumulative effect   

 
Expected 

sign Coefficient Coefficient Expected 
sign Coefficient Coefficient 

Intercept 
 

+/- -.125   (.115) -.983 *  (.514) +/- -.110 ** (.045) -.318   (.244) 
Crisis type Product-harm crisis (base)   -     - -     -   -    -  -      
  CSI (average) +/- .046   (.036) -.072   (.181) +/- -.055 *** (.011) -.238 ** (.108) 

  Violation of fair operating practice +/- .038 
 

(.041) -.478 *** (.138) +/- .002   (.013) -.052   (.067) 

  
Violation of human rights / working 
conditions +/- .132 ***  (.035) .346 **  (.138) +/- -.127 *** (.013) -.128 * (.075) 

  Environmental scandal +/- -.031  (.084) -.084   (.351) +/- -.041 ** (.019) -.526 *** (.153) 
  Product-harm and CSI crisis +/- -.042  (.046) -.380 ** (.155) +/- .008   (.014) .047   (.075) 
Crisis characteristics                             
Media coverage + .030 *** (.004) .097 *** (.014) - -.006 *** (.001) -.035 *** (.008) 
Crisis origin International (base)   -     -       -     -     
  National +/- .029   (.033) .093  (.116) - -.059 *** (.012) -.086 * (.052) 
Immediate firm 
reaction No reaction (base)   -   - -   -   -   - -   - 

  Deny responsibility  +/- -.065  (.040) .395 *** (.127) +/- -.014   (.010) -.156 ** (.068) 
  Accept responsibility  +/- -.056 *** (.028) .058   (.115) +/- .062 *** (.011) .050   (.052) 
Brand & firm characteristics                             
Product type Retail (base) - -   - -   - - -   - -   - 
  Non-Durables +/- -.064   (.062) -.046   (.211) +/- .047 * (.028) .212   (.149) 
  Durables +/- -.016   (.036) .336 ***  (.128) +/- -.025 ** (.011) .034   (.071) 
  Services +/- -.033   (.044) -.309 * (.171) +/- .005   (.015) .250 *** (.093) 
Prior brand strength - -.001 * (.001) -.010 *** (.003) + 3.4x10-4   (2.8x10-4) .004 ** (.002) 
Firm size   - -.003   (.010) .054   (.043) +/- .013 *** (.003) .035 * (.019) 
Crisis history   +/- -.003   (.004) -.021  (.016) - 9.1x10-5   (.001) -.024 *** (.008) 
R2     .552     .300       .677     .261     
N     214     214       214     214     
Note: * p<.1, ** p<.05, *** p<.01. Tests are one-sided if clear directional effects are expected, two-sided if not.  Standard errors in parentheses. 
1)  The coefficient for CSI (average) is the mean of the estimated coefficients for the three CSI-crisis types. The standard error is calculated from the associated variance-
covariance matrix. We also estimated a model that includes a dummy variable for CSI event only (instead of three different types). Results are fully consistent with this table. 
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Figure 4: Brand Attention Effects (Simulation of Gains and Losses) 

 

                                         

Note: Cumulated brand increase cumulates percentage gains in brand attention over the whole period until brand attention returns to pre-crisis level.  
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Figure 5: Brand Strength Effects (Simulation of Gains and Losses) 

 

                                           

Note: Loss in brand strength may even be greater than -100% because the brand strength index runs from -100 to +100. Cumulated brand damage 
cumulates percentage losses in brand strength over the whole period until brand attention returns to pre-crisis level.  
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6.6 Robustness Checks 

We checked the robustness of our results in several ways (see the Appendix for details). 

We estimated Panel ECMs including 2 and 4 crisis dummy variables that are brand-specific. 

We also estimated our model (3) using media coverage instead of the respective crisis event 

dummy. In addition, we estimated model (3) for those crises, which did not pass our 3 media 

outlet threshold. Finally, we added additional moderators to our 2nd-stage equations (4) and 

(5). These are change in firm reaction over time, factual evidence of accusations, and 

organizational depth of responsibility. None of these analyses suggest any different 

conclusions. 

 

7 Discussion 

7.1 Conclusions 

Our study generates novel and surprising insights. First, we conclude that the effect of a 

crisis is asymmetric. It increases brand attention but damages brand strength, both 

immediately and in the long run. This finding is consistent with prior literature that negative 

news raises attention but hurts product evaluation (Chintagunta, Gopinath, and Venkataraman 

2010). 

An important question, however, remains to be answered. What is the ultimate effect on 

economic performance such as sales? Apparently, the net effect should be more detrimental if 

higher attention is paired with news of a negative connotation. Berger, Sorensen, and 

Rasmussen (2010), however, argue that sales might increase for smaller, unknown products 

because awareness and negative publicity valence tend to become dissociated in memory for 

them. Unfortunately, we have no sales data available for our sample of brands to test this 

supposition. But we can check the association between positive crisis attention effects and 
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negative brand strength effects in our sample. The same three events for BP, Toyota, and 

Aral are among the top 5 events for both brand attention and brand strength effects. This 

suggests events that cause the largest damage to brand strength also tend to induce the highest 

brand attention. Indeed, the correlation between cumulative attention and strength effects 

amounts to -.53 (p < .01) in the total sample and strongly supports the negative association. 

Thus, we conclude that the net effect of a crisis event on (economic) brand performance is 

likely to be damaging.6 

Third, there seems to be no systematic difference between the attention effect of a 

product-harm event and a CSI event. But the potential brand damage from CSI-related crises 

is, on average, deeper and cumulates to a larger total effect over time than for product-harm 

crises. This result is surprising and challenges conventional wisdom that unethical firm 

behavior does not impact customer behavior as strong as a product-harm event. 

Fourth, we do not find support for the persistency of brand damage effects – at least 

during our observation period. While we do not want to generalize this to other countries or 

periods, it seems to be consistent with the observation that consumers tend to forget about the 

crisis sooner or later (Vassilikopoulou et al. 2009). There are many examples from food-

poisoning scandals where consumer demand returned to its pre-crises level after a relatively 

short time period. Nevertheless, a crisis event causes brand damage for 2-3 months, which 

may extend to 9 months. 

Finally, there are important conditions that may turn a crisis into a more severe crisis. 

Media coverage generally amplifies the crisis, both in terms of attention and damage to brand 

strength. In contrast, a strong brand, however, protects against the loss in brand strength and 

reduces brand attention. There has been a vivid discussion on which is the best firm response 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6 In a separate analysis, we re-estimated model (3) by using the brand recommendation item of the YouGov 

BrandIndex as dependent variable (see Appendix). The results are very similar to our results for brand strength. 
This suggests that long-term sales effects are likely to suffer from the crisis event since repurchases and sales 
from new customers should be lower if recommendation rates drop.  
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for companies to a crisis (Cleeren, van Heerde, and Dekimpe 2013). Across industries and 

products, our results suggest that denying any responsibility is the worst option. Accepting 

responsibility or at least not responding in a confronting way seems to protect from larger 

brand damage. 

7.2 Managerial Implications 

Our study provides important implications for managers. First and foremost, we warn 

against ignoring the risks of corporate socially irresponsible behavior. Our results offer a 

clear message that such behavior may have a devastating effect on one of the most valuable 

corporate assets, the brand. There is an asymmetric focus on CSR and cause-related 

marketing activities in research and in practice (Lange and Washburn 2012). In the light of 

our findings, this partial attention is no longer warranted; the more so as the impact of CSR 

measures is rather modest. 

While a product-harm crisis often shows an immediate impact on sales and profit since 

product recalls result in extra costs and lost sales (e.g., Van Heerde, Helsen, and Dekimpe 

2007), this does not need to extend to a CSR-related crisis. It is, however, myopic to 

conclude that there are no sales effects. The harm to brand strength translates into a sales loss 

that rather subtly unfolds over time. The use of a mindset-metric model (e.g., Hanssens et al. 

2014) may help in describing and predicting the sales impact of changes in brand strength 

over time. 

Our results are also valuable to managers because they help understand which events 

have the potential to develop into a deep and long crisis. We do not claim that every event of 

corporate social misconduct poses a threat to the brand. But there are conditions such as the 

type of crisis and media coverage that favor the occurrence of a severe crisis. The violation of 

environmental surroundings, which includes in our definition unethical husbandry conditions, 

is very likely to turn into a major crisis. Similarly, the more media pick up on the crisis event 
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the greater the chance that it becomes a severe crisis. Media coverage essentially has a double 

jeopardy effect as it also intensifies brand attention. Marketing management thus should 

closely follow the media coverage and maintain contact to journalists. Given the dangerous 

impact on the brand, this task should not be outsourced to the PR department in the firm. 

While media coverage probably is a universal catalyzer of a crisis, other conditions 

depend on the value system of consumers in a country. We acknowledge that the strong 

impact of environmental crises on the brand is specific to the German consumer and not 

necessarily shared by consumers of other countries. 

Our study also shows that denying the responsibility of a crisis in the beginning hurts the 

brand over time. There is no evidence for one specific dominant strategy of how a firm 

should immediately react to a crisis event. While there is some evidence that brand damage 

can be reduced if the firm accepts or at least does not deny responsibility, we believe that 

there are further crisis characteristics that have to be taken into account. The best response for 

management depends on these conditions. Future research might inform about these 

conditions and derive appropriate strategies. 

7.3 Limitations and Further Research 

While our study offers valuable insights on how different crisis types affect consumers’ 

brand perception, it also has limitations that offer interesting avenues for further research. 

Our empirical application is limited to media analysis and consumer responses in Germany. 

Since, consumer responses might differ due to cultural differences, it would be worthwhile to 

extend our analysis to other countries and cultures. 

Our study focuses on brand metrics as intermediate performance measures. Future 

studies might investigate the effects of CSI-related crises on other performance metrics such 

as satisfaction, loyalty, or sales. 
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Finally, our results apply to those brands that are picked up by media in a potential crisis 

situation. Media are probably selective in their decisions to report on a brand crisis and tend 

to prefer larger and better-known brands. A logical next question would be to ask for the 

criteria and conditions that editorial journalists apply to report on a brand crisis story. Our 

study leaves this question to be answered by future research. 
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Appendix Paper I 

Appendix A: Details on the YouGov Brand Metric Measure 

In the following, we describe the procedure YouGov used from 2008-2012 to collect 

brand attention and brand strength information. The company changed the methodology by 

expanding the set of items in 2013. 

YouGov's BrandIndex is a daily measure of brand strength among the public, tracking 

many brands across multiple consumer sectors simultaneously. For the German market, 

YouGov monitors about 600 brands in 12 industry sectors, which cover the bandwidth of 

B2C industries by surveying approximately 2,000 consumers (panel size of 170,000) daily. 

The BrandIndex consists of six items: perceived brand quality, brand value, brand 

satisfaction, brand recommendation, brand identification, and brand overall impression. 

Additionally, YouGov also asks respondents with respect to a seventh item: brand attention. 

Table A.1 provides details on the exact question for each item.  

The data collection of YouGov can be described as follows: For each item a minimum of 

100 respondents per day are randomly drawn from the panel and provided with a set of up to 

25 brands for a pre-selected industry. To reduce common method bias respondents evaluate 

only one brand item per industry per enquiry. First, respondents select those brands (per 

click) for which they agree with the positive statement of the brand item (e.g., good brand 

quality). Then, they select those brands for which they agree with the negative statement of 

the brand item (e.g., poor brand quality). The aggregate raw brand strength measure (YouGov 

BrandIndex) is calculated by counting the number of respondents who agree with the six 

positive statements (items) and the number of respondents who agree with the six negative 

statements (items) divided by the total number of respondents (=  number of positive + 

negative + neutral respondents) multiplied by 100. As a consequence, the YouGov 

BrandIndex brand strength measure is a ratio-scaled variable and lies within the range of -100 
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to +100. The brand attention metric is calculated by summing up all positive and negative 

responses divided by the total number of respondents (= number of positive + negative + 

neutral responses). 

The collection procedure yields about 600 daily responses across seven brand items, 

which results in 3,000 responses in our weekly aggregation. To ensure representativeness 

individual sampling weights are applied to correct for variations in the probability selection 

of respondents. Although panelists might be re-invited after a period of two weeks, they will 

be blocked for the respective sector and brand item they have answered before for a period of 

at least two months. This is important to eliminate repeated measurement as a source for 

demand effects and serial correlation in brand perceptions. Brand competition effects are also 

controlled for because respondents rate the competing brands within one sector 

simultaneously. 
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Table A1 
ITEMS FOR MEASURING BRAND ATTENTION AND BRAND STRENGTH 

(YOUGOV’s BRANDINDEX) 
 

Dimension Questions 

Brand attention 
About which of the following brands have you recently heard 
anything positive or negative either through media news, advertising, 
or word-of-mouth? 

Brand quality 
Which of the following brands do you think stand for good quality?  

Now, which of the following brands stand for poor quality?  

Brand value 

Which of the following brands do you think provide good value for 
money (or you would be willing to invest parts of your spare time)? † 
Now, which of the following brands do you think provide poor value 
for money (or you would be willing to invest parts of your spare 
time)? †† 

Brand satisfaction 

Choose all brands you are satisfied with or for which you believe you 
would be satisfied if you were a customer? 

Choose all brands you are dissatisfied with or for which you believe 
you would be dissatisfied if you were a customer? 

Brand  
recommendation 

Which of the following brands would you recommend to a friend or 
colleague?  
And which of the following brands would you recommend a friend or 
colleague to avoid?	
  

Brand identification 
Which of the following brands would you be proud of to work for or 
to be associated with? ††† 
Now, which of the following brands would you be embarrassed to 
work for or be associated with? ††† 

Brand overall  
impression 

Overall, of which of the following brands do you have a positive 
impression?  
Now, of which of the following brands do you have an overall 
negative impression?  

Note: Additional explanations provided to the respondent include: 
    † By that we don't mean "cheap," but that the brands offer a customer a lot in return for the price paid. 
  †† By that, we don't mean "expensive," but that the brands do not offer a customer much in return for the 

price paid. 
††† Imagine you (or your friend) were applying for the same sort of role at the following brands that you 

currently have or would apply for. 
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Appendix B: Construct Validity: Exploratory and Confirmatory Factor Analysis  

 First, in order to validate our constructs (brand strength and brand attention) we apply 

exploratory factor with Varimax rotation on the brand items collected by YouGov. 

Correlations between the items are presented in Table B1. The results in Table B2 suggest a 

two-factor solution. Factor 1 includes the six BrandIndex items and encompasses our brand 

strength construct: quality, value, identification, overall impression, satisfaction, and 

recommendation. Factor 2 represents just the single item brand attention. Cronbachs Alpha 

for brand strength is very high with .975. These findings are stable across brands and within 

brands over time. Based on this exploratory analysis, we additionally applied confirmatory 

factor analysis to validate the two factor structure. Models and parameter estimates clearly 

pass the common thresholds (Fornell and Larcker, 1981; Bagozzi and Yi, 1988; Hu and 

Bendtler 1999) for model fit, parameter reliability, and construct validity (see Table B3).   

 
 

Table B1 
CORRELATION OF BRAND DIMENSIONS (YOUGOV) 

N = 17,043  1. Attention 2. Impression 3. Recommendation 4. Identification 5. Quality 6. Value 7. Satisfaction 

1. Attention 1.0 - - - - - - 
2. Impression .12 1.0 - - - - - 

3. Recommendation .19 .97 1.0 - - - - 
4. Identification -.15 .82 .77 1.0 - - - 

5. Quality .08 .93 .91 .86 1.0 - - 
6. Value .19 .90 .92 .67 .80 1.0 - 

7. Satisfaction .21 .95 .95 .74 .89 .93 1.0 
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Table B2 
FACTOR ANALYSIS RESULTS FOR DIFFERENT BRAND DIMENSIONS (YOUGOV) 

    Factor 1 Factor 2 

  
Brand attention Brand strength 

 Dimension   (1.10) (5.37) 

    Brand quality 
 

-.02 .96* 

    Brand value 
 

.38 .87* 

    Brand identification -.30 .89* 

    Brand 
impression 

 
.16 .97* 

    Brand satisfaction .30 .93* 

    Brand recommendation .24 .95* 

    Brand attention .52*. .05 
        
Note: In the parenthesis below the factor we report eigenvalues that 
are > 1 for both factors. * indicates highest loading 

 
 
 

Table B3 
SUMMARY RESULTS FOR CONFIRMATORY FACTOR ANALYSIS  

Reliability of parameters Construct validity Model fit 

Critical ratios  ≥ 1.96 
 
AVEs  ≥ .626 

Construct reliability = .977 
 
Average AVE = .863 
 
φ2 = .029 
 
Discriminant validity 
Fornell/Larcker criterion  
(Average AVE > φ2) = ✓ 

SRMR = .485 
 
TLI = .950 
 
CFI = .967 

Notes:  AVE = Average variance extracted, φ2 = squared factor correlation, SRMR = 
Standardized root mean squared residual, TLI = Tucker-Lewis index, CFI = 
Comparative fit index. 
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Appendix C: Reflective and Sticky Brand Metric Structure  

 
Table C1 

ANALYSIS OF BRAND METRIC STICKINESS 

Model: Xt = a +bXt-1+e Brand attention Brand strength 

Data frequency # of brands N R2 R2 

Weekly 577 94,062 .910 .986 

Quarterly 522 6,942 .950 .990 

Annual 394 1,507 .806 .922 
    

   
Harris Equitrend  

Annual 436 1,669 .813  
Notes: 
1. We include Harris’ Equitrend, for which we have data in another dataset available, 
for comparison purposes. The Equitrend measure has been widely used in academic 
research to measure customer-based brand equity (e.g., Rego, Billet, and Morgan 2009; 
Bharadwaj, Tuli, and Bonfrer 2011). It is only available at the annual level. 
2. The number of brands for the YouGov metrics differ across the temporal aggregation 
level due to missing information. The analysis requires at least 3 succeeding periods. This 
is not the case for 54 brands on the quarterly basis and 183 brands on yearly basis.  
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Figure C1 
EXAMPLES OF EVOLUTION AND VARIATION IN BRAND METRICS 

 
Note: Figures display evolution and variation in brand metrics based on quarterly aggregation of 
data. 
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Appendix D: Collection of Crisis Event Data  

Our data collection process involved a systematic 5-step approach: 

1. In the first step we generated crisis keywords commonly used in news headlines and 

articles with regard to the different crisis events. For this purpose, we conducted three 

30-minute brainstorming sessions with a panel of 4-5 CSI experts and journalists for 

each crisis type (12 sessions in total). Additionally, we expanded and cross-checked 

the keyword list through the Google AdWords “Find related searches” function.  

2. We then pre-tested the keywords (up to 60 keywords per crisis type) on a random 

sample of ten a priori identified events in order to reduce complexity and efficiency 

within the search algorithm. Based on the hit ratio of relevant articles and the total 

number of generated hits we excluded about 50% of all keywords. 

3. Next, we conducted search queries in LexisNexis and additional news archives by 

connecting all brands available from the YouGov database with our keyword list and 

searched for hits within the headlines and lead paragraphs of articles (Example 

LexisNexis: HLEAD(“BRAND X”) AND (“KEYWORD Y1“ OR “KEYWORD Y2“ 

OR “KEYWORD Y3“ OR…). 

4. In a fourth step, three coders (one co-author) individually read all relevant articles and 

categorized crisis events with regard to crisis type, immediate firm reaction 

mentioned in media articles, crisis origin, and further crisis-related information. 

Coding agreement across all variables was greater than 90%. Cases of non-agreement 

were decided by discussion. 	
  

5. Finally, in addition to the original crisis search, we checked for possible confounding 

events for all detected crisis events within the detected media articles, company 

reports, and news published through corporate webpages. 
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Appendix E: Representativeness and Exogeneity of Events  

Table E1 lists the crisis events that are part of our empirical analysis. It shows the brand 

name, the crisis type, and when the crisis event was first published. 

Table E2 compares the 69 brands of our model analysis that experienced a well-

publicized crisis event during our observation period with the brands of the YouGov brand 

universe. We compare the brand crisis sample with the YouGov universe along brand 

metrics, advertising expenditures and industry membership. Due to missing information on 

advertising expenditures and consecutive years, the YouGov universe includes 378 brands. 

The t-test on mean differences suggest that our crisis sample is not systematically different 

from the YouGov brand universe. 

In addition, we show the percentage of new brands with a crisis event from one year to 

the next year. On average, 61% brands are new. This also suggests are random process or at 

least a process that is not driven by the past. 

Finally, we set up a logit model to explain the occurrence of a crisis event based on a 

brand’s history of crisis events and past values for our focal brand metrics, their industry 

averages, advertising expenditures, and firm size. This analysis can be considered a 

“Granger-like” causality test. It is not a strict Granger causality test since our dependent 

variable is non-metric. However, the model follows the spirit of the test and the definition of 

Granger causality. Results in Table E4 show that past values of our focal endogenous metrics 

brand attention and brand strength cannot explain the occurrence of a crisis event in addition 

to past occurrences of a crisis event. Hence, we find no evidence to reject our assumption that 

the crisis events are truly exogenous. 
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Table E1 
CRISIS EVENTS INCLUDED IN EMPIRICAL ANALYSIS  

Year   Week Brand Crisis type 
 

…continued 
2008 14 Adidas Human rights / working 

conditions violation 
 2010 3 Microsoft Product-harm crisis 

2008 8 Aldi Product-harm crisis  2010 11 Microsoft Product-harm crisis 
2008 16 Aldi Human rights / working 

conditions violation 
 2010 30 Microsoft Product-harm crisis 

2008 33 Aldi Fair operating practices 
violation 

 2010 45 Microsoft Product-harm crisis 

2008 14 British Airways Product-harm crisis  2010 2 Postbank Product-harm crisis 
2008 21 Burger King Human rights / working 

conditions violation 
 2010 3 Rewe Fair operating 

practices violation 
2008 36 Deutsche Bahn Fair operating practices 

violation 
 2010 2 Sparkasse Product-harm crisis 

2008 14 Deutsche Bank Product-harm crisis  2010 5 Toyota Product-harm crisis 
2008 19 Deutsche Bank Product-harm crisis  2010 16 Toyota Product-harm crisis 
2008 25 Deutsche Bank Product-harm crisis  2010 26 Toyota Product-harm crisis 
2008 44 Deutsche Bank Product-harm crisis  2010 35 Toyota Product-harm crisis 
2008 52 Deutsche Bank Product-harm crisis  2010 43 Toyota Product-harm crisis 
2008 9 Deutsche Post Human rights / working 

conditions violation 
 2010 25 Volkswagen Product-harm crisis 

2008 15 Deutsche  
Telekom 

Product-harm crisis  2010 51 Volkswagen Product-harm crisis 

2008 22 Deutsche  
Telekom 

Human rights / working 
conditions violation 

 2011 16 Adidas Fair operating 
practices violation 

2008 41 Deutsche  
Telekom 

Human rights / working 
conditions violation 

 2011 33 Aldi Product-harm crisis 

2008 24 e.on Fair operating practices 
violation 

 2011 12 Apple Human rights / 
working conditions 
violation 

2008 52 EnBW Fair operating practices 
violation 

 2011 22 Apple Human rights / 
working conditions 
violation 

2008 36 Google Product-harm crisis  2011 22 Aral Fair operating 
practices violation 

2008 26 IKEA Product-harm crisis  2011 42 BlackBerry Product-harm crisis 
2008 28 L'Oreal Fair operating practices 

violation 
 2011 36 BMW Product-harm crisis 

2008 37 Lidl Human rights / working 
conditions violation 

 2011 45 BMW Product-harm crisis 

2008 48 Lidl Human rights / working 
conditions violation 

 2011 31 Danone Fair operating 
practices violation 

2008 9 Microsoft Fair operating practices 
violation 

 2011 14 Deutsche Bahn Fair operating 
practices violation 

2008 51 Microsoft Product-harm crisis  2011 18 Deutsche Bahn Product-harm crisis 
2008 8 Nokia Human rights / working 

conditions violation 
 2011 21 Deutsche Bahn Product-harm crisis 

2008 8 Porsche Product-harm crisis  2011 7 Deutsche Bank Product-harm crisis 
2008 17 Puma Human rights / working 

conditions violation 
 2011 13 Deutsche Bank Product-harm crisis 

2008 12 Reebok Fair operating practices 
violation 

 2011 19 Deutsche Bank Product-harm crisis 

2008 17 T-Mobile Fair operating practices 
violation 

 2011 32 Deutsche Bank Product-harm crisis 

2008 52 Toyota Product-harm crisis  2011 31 Deutsche 
Telekom 

Fair operating 
practices violation 

2008 17 Vodafone Fair operating practices 
violation 

 2011 20 Facebook Product-harm crisis 
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Year Week Band Crisis type  …continued 
2008 15 Volkswagen Product-harm crisis  2011 47 Facebook Product-harm crisis 
2008 28 Volkswagen Fair operating practices 

violation 
 2011 9 Google Fair operating 

practices violation 
2009 12 Actimel Fair operating practices 

violation 
 2011 23 Google Product-harm crisis 

2009 6 Aldi Human rights / working 
conditions violation 

 2011 26 Google Fair operating 
practices violation 

2009 14 BP Environmental Scandal  2011 35 H & M Human rights / 
working conditions 
violation 

2009 6 Deutsche Bahn Fair operating practices 
violation 

 2011 41 HTC Product-harm crisis 

2009 28 Deutsche Bank Fair operating practices 
violation 

 2011 41 IKEA Product-harm crisis 

2009 25 Deutsche Post Fair operating practices 
violation 

 2011 6 Intel Product-harm crisis 

2009 36 Deutsche  
Telekom 

Fair operating practices 
violation 

 2011 53 Lidl Human rights / 
working conditions 
violation 

2009 47 Deutsche  
Telekom 

Human rights / working 
conditions violation 

 2011 12 Netto Human rights / 
working conditions 
violation 

2009 18 Edeka Fair operating practices 
violation 

 2011 47 Nutella Fair operating 
practices violation 

2009 12 EnBW Human rights / working 
conditions violation 

 2011 51 Opel Product-harm crisis 

2009 42 Ford Product-harm crisis  2011 34 Porsche Product-harm crisis 
2009 6 Google Product-harm crisis  2011 35 Puma Environmental 

Scandal 
2009 52 IKEA Product-harm crisis  2011 2 Renault Human rights / 

working conditions 
violation 

2009 20 Intel Fair operating practices 
violation 

 2011 33 Shell Environmental 
Scandal 

2009 51 Intel Fair operating practices 
violation 

 2011 18 Sony Fair operating 
practices violation 

2009 14 Lidl Human rights / working 
conditions violation 

 2011 21 Sony Product-harm crisis 

2009 44 Lidl Human rights / working 
conditions violation 

 2011 21 Starbucks Human rights / 
working conditions 
violation 

2009 3 Lufthansa Human rights / working 
conditions violation 

 2011 5 Toyota Product-harm crisis 

2009 17 Lufthansa Fair operating practices 
violation 

 2011 9 Toyota Product-harm crisis 

2009 40 Lufthansa Product-harm crisis  2011 23 Toyota Product-harm crisis 
2009 20 Metro Human rights / working 

conditions violation 
 2011 25 United Airlines Product-harm crisis 

2009 15 Microsoft Fair operating practices 
violation 

 2011 10 Volkswagen Product-harm crisis 

2009 29 Microsoft Product-harm crisis  2011 35 Volkswagen Product-harm crisis 
2009 6 Nokia Human rights / working 

conditions violation 
 2011 36 Wiesenhof Environmental 

Scandal 
2009 46 Nokia Product-harm crisis  2011 34 Zara Human rights / 

working conditions 
violation 

2009 17 Opel Product-harm crisis  2012 18 Aldi Human rights / 
working conditions 
violation 
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Year Week Band Crisis type  …continued 
2009 16 Philips Product-harm crisis  2012 21 Aldi Product-harm crisis 
2009 44 Postbank Fair operating practices 

violation 
 2012 27 Aldi Product-harm crisis 

2009 44 Real Product-harm crisis  2012 40 Aldi Product-harm crisis 
2009 22 Shell Human rights / working 

conditions violation 
 2012 12 Apple Product-harm crisis 

2009 27 Sparkasse Fair operating practices 
violation 

 2012 15 Apple Fair operating 
practices violation 

2009 47 T-Mobile Fair operating practices 
violation 

 2012 38 Apple Product-harm crisis 

2009 52 Tchibo Fair operating practices 
violation 

 2012 42 Apple Human rights / 
working conditions 
violation 

2009 5 Toyota Product-harm crisis  2012 46 Apple Human rights / 
working conditions 
violation 

2009 40 Toyota Product-harm crisis  2012 38 BlackBerry Product-harm crisis 
2009 16 Vattenfall Fair operating practices 

violation 
 2012 13 BMW Product-harm crisis 

2009 36 vodafone Fair operating practices 
violation 

 2012 48 C & A Human rights / 
working conditions 
violation 

2010 34 Adidas Human rights / working 
conditions violation 

 2012 43 Commerzbank Product-harm crisis 

2010 34 Aldi Human rights / working 
conditions violation 

 2012 24 Deutsche Bahn Fair operating 
practices violation 

2010 22 Apple Human rights / working 
conditions violation 

 2012 7 Deutsche Bank Product-harm crisis 

2010 26 Apple Product-harm crisis  2012 19 Deutsche Bank Product-harm crisis 
2010 12 Aral Fair operating practices 

violation 
 2012 50 Deutsche Bank Fair operating 

practices violation 
2010 40 BMW Product-harm crisis  2012 45 Deutsche Post Fair operating 

practices violation 
2010 44 BMW Product-harm crisis  2012 10 Facebook Product-harm crisis 
2010 17 BP Environmental Scandal  2012 2 Ford Product-harm crisis 
2010 5 Citroen Product-harm crisis  2012 36 Gazprom Fair operating 

practices violation 
2010 48 Coca-Cola Product-harm crisis  2012 18 Google Fair operating 

practices violation 
2010 2 Commerzbank Product-harm crisis  2012 31 Haribo Fair operating 

practices violation 
2010 18 Deutsche Bank Fair operating practices 

violation 
 2012 18 IKEA Human rights / 

working conditions 
violation 

2010 52 Deutsche Bank Fair operating practices 
violation 

 2012 40 IKEA Human rights / 
working conditions 
violation 

2010 3 Edeka Fair operating practices 
violation 

 2012 2 KiK Human rights / 
working conditions 
violation 

2010 15 Facebook Product-harm crisis  2012 40 Lufthansa Product-harm crisis 
2010 19 Facebook Fair operating practices 

violation 
 2012 21 Microsoft Product-harm crisis 

2010 22 Facebook Fair operating practices 
violation 

 2012 29 Microsoft Fair operating 
practices violation 

2010 31 Facebook Product-harm crisis  2012 38 Microsoft Product-harm crisis 
2010 43 Facebook Human rights / working 

conditions violation 
 2012 44 O2 Fair operating 

practices violation 
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Year Week Band Crisis type  …continued 
2010 51 Ford Fair operating practices 

violation 
 2012 8 Porsche Product-harm crisis 

2010 3 Google Fair operating practices 
violation 

 2012 47 Renault Product-harm crisis 

2010 21 Google Human rights / working 
conditions violation 

 2012 37 Ryanair Product-harm crisis 

2010 30 KiK Human rights / working 
conditions violation 

 2012 50 Ryanair Product-harm crisis 

2010 6 Lexus Product-harm crisis  2012 32 Samsung Human rights / 
working conditions 
violation 

2010 16 Lexus Product-harm crisis  2012 9 Sparkasse Fair operating 
practices violation 

2010 21 Lexus Product-harm crisis  2012 13 Total Environmental 
Scandal 

2010 26 Lexus Product-harm crisis  2012 10 Toyota Product-harm crisis 
2010 4 Lidl Product-harm crisis  2012 31 Toyota Product-harm crisis 
2010 15 Lidl Human rights / working 

conditions violation 
 2012 41 Toyota Product-harm crisis 

2010 45 Lidl Product-harm crisis  2012 46 Toyota Product-harm crisis 
2010 23 McDonald's Product-harm crisis  2012 10 Vattenfall Environmental 

Scandal 
2010 38 Mercedes-Benz Fair operating practices 

violation 
 2012 44 vodafone Product-harm crisis 

2010 42 Mercedes-Benz Product-harm crisis  2012 3 Volkswagen Product-harm crisis 
2010 3 Metro Fair operating practices 

violation 
 2012 45 Volkswagen Product-harm crisis 

2010 19 Metro Human rights / working 
conditions violation 

 2012 10 Wiesenhof Environmental 
Scandal 

2010 34 Metro Human rights / working 
conditions violation 

 2012 17 Wiesenhof Fair operating 
practices violation 
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Table E2 
EXTERNAL VALIDITY OF CRISIS SAMPLE 

  
YouGov brand 

universe Crisis sample 
T-test of 

differences 
between means 

  N = 378 N = 69 p-value 
    Mean Mean 

Brand attention 14.09 23.01 .000 
Brand strength 9.21 12.26 .159 
Advertising expenditures ($) 908,549 1,112,429 .321 
Industry 

   
 

Food, Beverage & Tobacco 20% 9% .027 

 
Telecommunication Services 4% 4% .870 

 
Transportation 7% 9% .652 

 
Software & Services 4% 4% .870 

 
Consumer Services 6% 4% .491 

 
Consumer Durables & Apparel 13% 22% .058 

 

Household & Personal 
Products 6% 2% .108 

 
Automobiles & Components 10% 15% .288 

 
Retailing 10% 9% .747 

 
Utilities 7% 6% .817 

 
Food & Staples Retailing 7% 10% .368 

  Financials 5% 6% .717 
 
 

 

Table E3 
PERCENTAGE OF NEW BRANDS WITH CRISIS IN SUCCEEDING YEAR 

Mean 2008-2009 2009-2010 2010-2011 2011-2012 
61% 55% 52% 70% 67% 
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Table E4 
LOGIT REGRESSION RESULTS FOR TESTING THE EXOGENEITY 

ASSUMPTION OF CRISIS EVENTS –  

Dependent variable:	
   Weekly aggregation Quarterly aggregation Annual aggregation 
Crisis event (Yes=1/No=0)	
  

          
Independent variables Estimated 

coefficient Std. Error Estimated 
coefficient Std. Error Estimated 

coefficient Std. Error 

Constant -2.408 .130 *** -2.503 .382 *** -1.086 .686 
 

Lagged brand attention1) .005 .003 
 

.015 .010 
 

.010 .021 
 

Lagged brand strength1) -.001 .002 
 

.005 .006 
	
  

-.002	
   .011	
  
 

Lagged industry brand 
attention1) -.029 .012  -.060 .036  -.018 .043  

Lagged industry brand 
strength1) .010 .008  .024 .024  -.031 .066  

Lagged ad expenditures1) 6.8x10-9 2. 2x10-8  2.7x10-8 6.8x10-8  4.4x10-8 1.32x10-7  

Lagged number of events2) .112 .011 *** .248 .028 *** .252 .065 *** 
Firm size 1.7x10-7 2.3x10-7 

 
2.0x10-7 7.1x10-7 

 
6.6x10-7 1.3x10-6 

 
          
Log Likelihood  -1041.78 

 
 -460.69 

 
 -135.79 

 N  16,328 
 

 1,230 
 

 223 
 Notes: ** p < .05, *** p < .01 (two-sided).  

1) Variables are measured as the average index/ad expenditures value in the 4 weeks prior to the crisis event 
(weekly aggregation), as the average in the preceding quarter (quarterly aggregation) and the preceding year 
(annual aggregation).  
2) Prior number of events is the sum of crisis events within our sample that the respective brand was exposed to 
prior to the respective crisis event. 
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Appendix F: Model Free Evidence 

Table F1 
MODEL FREE EVIDENCE: SIMPLE DIFFERENCES IN BRAND METRICS 

  Brand attention Brand strength 
1-week (before and after event) 

   
Difference tests 

     
Difference tests 

  Mean Median SD Min Max t-test F-test Mean Median SD Min Max t-value F-test 
Total 4.53% 2.29% .116 -27.1% 81.0% 5.31***   -2.08% -1.51% .044 -24.2% 7.58% -5.96***   
Comparison of product-harm with (average) CSI event 
Product-harm event 3.75% 1.42% .117 -27.1% 81.0% 3.04*** F1,186 = .78 

p = .377 
-1.29% -.79% .038 -19.8% 7.58% -3.20*** F1,186 = 4.02 

p = .046 CSI event 5.26% 3.02% .115 -11.8% 52.8% 4.60*** -2.60% -1.67% .050 -24.2% 6.12% -5.11*** 
Comparison of all four types of events 

   
         

    
Product-harm event 3.75% 1.42% .117 -27.1% 81.0% 3.04*** 

F1,185 = 1.66 
p = .178 

-1.29% -.79% .038 -19.8% 7.58% -3.20*** 

F1,186 = 6.10 
p = .001 

Violation of fair operating 
practices 4.36% 3.73% .073 -11.6% 25.6% 4.02*** -1.15% -1.30% .037 -15.2% 6.12% -4.52*** 

Violation of human rights / 
working conditions 4.83% 1.40% .138 -11.8% 52.8% 2.27*** -3.44% -2.42% .049 -17.2% 4.36% -2.10*** 

Environmental scandal 13.85% 9.00% .146 -.93% 38.9% 2.30*** -6.98% -4.31% .078 -24.2% .98% -2.19*** 

2-week (before and after event)    Difference tests 
     

Difference tests 
  Mean Median SD Min Max t-test F-test Mean Median SD Min Max t-test F-test 

Total 3.57% 1.49% .103 -18.6% 73.5% 4.70***   -1.69% -1.11% .040 -21.9% 7.63% -5.96***   
Comparison of product-harm with (average) CSI event 
Product-harm event 3.75% 1.66% .103 -15.5% 73.5% 2.77*** F1,183 = .481 

p = .489 
-.80% -.66% .035 -21.9% 7.63% -3.20*** F1,183 = 5.54 

p = .020 CSI event 4.08% 1.43% .103 -18.6% 43.0% 3.84*** -2.18% -1.60% .043 -17.7% 4.86% -5.11*** 
Comparison of all four types of events 

   
    

     
    

Product-harm event 3.75% 1.66% .103 -15.5% 73.5% 2.77*** 

F1,183 = 3.27 
p = .022 

-.80% -.66% .035 -21.9% 7.63% -3.20*** 

F1,183 = 7.28 
p = .000 

Violation of fair operating 
practices 2.55% 1.26% .066 -11.1% 22.3% 2.60*** -.84% -.65% .033 -14.9% 4.86% -4.52*** 

Violation of human rights / 
working conditions 3.93% 1.68% .111 -18.6% 36.8% 2.26*** -2.94% -2.20% .042 -14.92% 3.97% -2.10*** 

Environmental scandal 15.09% 11.27% .166 -1.75% 43.0% 2.23*** -6.43% -6.50% .061 -17.66% 2.51% -2.19*** 
Notes: * p < .1, ** p < .05, *** p < .01 (two-sided ). Results are based on percentage changes of the transformed YouGov Brand metrics.  
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Appendix G: Robustness of Brand Performance Model  

Appendix G contains several robustness checks. Table G1 and G2 present the results 

of a Panel ECM specification. In the first model, we specify two crisis dummies for product-

harm and CSI events whose parameters are assumed to be normally distributed across brands. 

We estimate their mean and variance by applying simulated maximum likelihood. The 

second model includes four dummies for the four crisis types. We impose the same 

heterogeneity assumptions on their parameters. In all Panel ECM specifications, we also 

assume and estimate parameter heterogeneity for the intercept, advertising expenditures, 

industry averages of brand attention and brand strength, and the adjustment parameter.  

Table G3 shows model estimations with additional moderator variables.  Table G4 

presents results of ECM when we use media coverage instead of our crisis event dummy 

variables. Technically, we estimate the interaction of media coverage with the crisis event. 

Results are fully consistent with our focal model results.  

Tables G5 and G6 include model estimations with selected brand items as dependent 

variable. Specifically, we consider the brand recommendation items and the average of brand 

value and brand quality items. Results are again consistent with our focal model results. 

Finally, we check our assumption on the media threshold, i.e. a crisis event is only 

included in our analysis if at least three out of the 15 leading media outlets report on it. Table 

G7 shows that there are no crisis event effects for those events that do not pass the threshold. 

The outcome is the same if we just consider media coverage = 2. Table G8 reestimates our 

focal model by including all crisis events. Results are consistent with our focal model results 

but tend to be a bit weaker due to the inclusion of not well-publicized events. 
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Table G1 
RESULTS FOR PANEL ERROR-CORRECTION-MODEL INCLUDING DUMMIES FOR PRODUCT-HARM 

AND CSI CRISIS EVENTS 

  	
    Brand attention   Brand strength   

 	
  
Expected 

sign 
Estimated 
 coefficient 

T-value for 
difference 
to product- 
harm effect 

Expected 
sign 

Estimated 
 coefficient 

T-value for 
difference 
to product-
harm effect 

Intercept   +/- .0895 *** (.0028)   +/- .0009   (.0012)   
Advertising expenditures                     
  Immediate + .0021 ** (.0010)   + -.0008   (.0006)   
  Cumulative + .0056 *** (.0006)   + .0185 *** (.0008)   
Industry brand strength                     
  Immediate           + .0570 *** (.0020)   
  Cumulative           + .0235 *** (.0003)   
Industry brand attention                     
  Immediate + .0439 *** (.0018)     

	
   	
   	
  
  

  Cumulative + .0187 *** (.0005)     
	
   	
   	
  

  
Crisis event               

	
  	
   	
  
  

Product-harm crisis Immediate + .0207 *** (.0040)   - -.0142 *** (.0037)   
  Cumulative + .1689 *** (.0210)   - -.1286 *** (.0345)   
CSI crisis Immediate + .0351 *** (.0054) 2.14*** - -.0322 *** (.0033) -3.65*** 

	
  
Cumulative + .1787 *** (.0219)  .32*** - -.2875 *** (.0310) -3.43*** 

Adjustment   -1< g <0 -.3406 *** (.0032)   -1< g <0 -.1379 *** (.0022)   
Long-term Trend no -.0060 *** (.0021)   no .0005   (.0024)   
Notes: * p < .1,** p < .05, *** p < .01 (two-sided). Standard errors in parentheses.  
We accounted for brand heterogeneity by estimating random coefficients for the constant, advertising expenditures, industry brand strength, industry brand 
attention, the adjustment parameter, and all crisis event variables. We do not report estimated variances of parameters. They may be obtained upon request. 
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Table G2 
RESULTS FOR PANEL ERROR-CORRECTION-MODEL: ALL FOUR CRISIS TYPES 

   Brand attention   Brand strength  

  
Expected 

sign 
Estimated 

 coefficient  

T-value for 
difference 
to product-
harm effect 

Expected 
sign 

Estimated 
 coefficient 

T-value for 
difference to 

product-
harm effect 

Intercept   +/- .0915 *** (.0030)   +/- .0105 *** (.0010)   
Advertising expenditures                     
  Immediate + .0008   (.0010)   + .0038 *** (.0006)   
  Cumulative + .0039 *** (.0006)   + .0092 *** (.0010)   
Industry brand strength                     
  Immediate           + .0571 *** (.0023)   
  Cumulative           + .0137 *** (.0005)   
Industry brand attention                     
  Immediate + .0430 *** (.0020)             
  Cumulative + .0144 *** (.0006)             
Crisis event     

   
            

Product-harm crisis Immediate + .0173 *** (.0047)   - -.0166 *** (.0035)   
  Cumulative + .1177 *** (.0225)   - -.1806 *** (.0414)   
Violation of fair 
operating practice Immediate + .0366 *** (.0070) 2.30*** - -.0204 *** (.0055) -.59*** 
  Cumulative + .1783 *** (.0328) 1.53*** - -.1946 ** (.0781) -.16*** 
Violation of human rights 
/ working conditions Immediate + .0362 *** (.0097) 1.75*** - -.0393 *** (.0062) -3.20*** 
  Cumulative + .2028 *** (.0415) 1.80*** - -.4109 *** (.0887) -2.35*** 
Environmental scandal Immediate + .0338   (.0287)   .57*** - -.0496 *** (.0103) -3.03*** 
  Cumulative + .1661 ** (.0851)   .55*** - -1.145 *** (.1039) -8.66*** 

 
                      

Adjustment   -1< g <0 -.3510 *** (.0050) 
 

-1< g <0 -.1120 *** (.0023) 
 Long-term Trend no -.0045 *  (.0024)   no .0208 *** (.0007)   

Notes: * p < .1,** p < .05, *** p < .01 (two-sided). Standard errors in parentheses.  
We accounted for brand heterogeneity by estimating random coefficients for the constant, advertising expenditures, industry brand strength, industry brand attention, 
the adjustment parameter, and all crisis event variables. We do not report estimated variances of parameters. They may be obtained upon request. 
 



	
   82 

Table G3 
WLS ESTIMATION RESULTS OF BRAND EFFECTS DRIVERS (EXTENDED MODEL)   

 
 
 
 
 

 Dependent variable: 
 Brand attention  Brand strength 
 Estimated  

immediate effect 
Estimated 

 cumulative effect 
 Estimated 

 immediate effect 

Estimated 
 cumulative 

effect   

  Exp. 
sign Coefficient Coefficient Exp. 

sign Coefficient Coefficient 

Intercept   +/- -.138   (.150) -1.10 *  (.648) +/- -.015   (.053) -.259   (.300) 

Crisis type Product-harm crisis (base)           -       - -   -  -   - -    
 CSI (average) +/- .031  (.038) -.026  (.189) - -.077 *** (.011) -.250 *** (.116) 

 
Violation of fair 
operating practice  .022  (.047) -.405 *** (.152) +/- -.038 *** (.015) -.068  (.076) 

 
Human rights / 
working violation +/- .011 ** (.047) .390 ** (.153) +/- -.158 *** (.013) -.144 * (.087) 

 
Environmental 
scandal +/- -.040  (.085) -.062  (.363) +/- -.035 ** (.018) -.540 *** (.154) 

  

Product-harm and 
CSI crisis  
   

+/- -.054  (.050) -.319 * (.170) +/- -.014   (.014) .033   (.083) 

Crisis characteristics                      Media coverage + .030 *** (.004) .094 *** (.014) - -.006 *** (.001) -.035 *** (.008) 
Crisis origin International (base)   -   - -   -  -   - -   - 
  National +/- .028   (.033) .075  (.118) - -.051 *** (.012) -.087 ** (.052) 

Immediate firm 
reaction No reaction (base)  -   - -   -  -   - -   - 

  Deny responsibility  +/- -.062  (.040) .352 ** (.141) +/- .004   (.010) -.153 ** (.072) 

  
Accept 
responsibility  +/- -.050 * (.029) .037   (.118) +/- .063 *** (.011) .048   (.053) 

  
Change of reaction 
over time +/- -   - .107  (.173) +/- -   - -.007   (.008) 

Objectivity of 
claim Accusation (base) 

 
- 

 
- - 

 
- 

 
- 

 
- - 

 
- 

  Fact +/- -.025   (.034) .086   (.114) - -.051 *** (.010) -.020   (.058) 

Responsibility  Single actor (base) - -   - -   -  -   - -   - 
  Corporate action +/- .025  (.082) .082   (.307) - -.031 *  (.021) -.032   (.113) 
Brand & firm characteristics                      
Product type Durables (base) - -   - -   -  -   - -   - 
  Non-Durables +/- .026   (.064) -.040   (.216) +/- .059 ** (.026) .214   (.151) 
  Retail +/- .069 * (.036) .334 ***  (.128) +/- -.020 ** (.011) .034   (.071) 
  Services +/- .064   (.044) -.302  * (.170) +/- -.010   (.015) .244 ** (.095) 

Prior brand strength - -.001 *  (.001) -.011 *** (.003) + 4.3x1
0-4 * (2.7x10-4) .004 *** (.002) 

Firm size   - -.002   (.010) -.049   (.048) +/- .011 *** (.003) .034 * (.020) 
Crisis history   +/- -.003   (.004) -.022 * (.016) - .002   (.001) -.023 *** (.008) 

R2     .580     .320       .737     .310     

N     214     214       214     214     
Notes: * p<.1, ** p<.05, *** p<.01. Tests are one-sided if clear directional effects are expected, two-sided if not.  Standard errors in 
parentheses. 
1)  The coefficient for CSI (average) is the mean of the estimated coefficients for the three CSI-crisis types. The standard error is calculated 
from the associated variance-covariance matrix. We also estimated a model that includes a dummy variable for CSI event only (instead of 
three different types). Results are fully consistent with this table. 
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Table G4 

2SLS ESTIMATION RESULTS (ECM) WITH MEDIA COVERAGE AS CRISIS 
VARIABLE 

    Brand attention  Brand strength 

  Obs Exp. 
 sign 

Estimated 
average 

coefficient 
Z-Score  Exp. 

sign 

Estimated 
average 

coefficient 
Z-Score 

Intercept 69 +/- -.1058 -3.16 *** +/- .0141 2.83 *** 
Advertising expenditures 
  Immediate 69 + .0080 5.45 *** + .0003 .02 

   Cumulative 69 + .0268 9.74 *** + .0017 2.78 *** 

Industry brand strength       
 

    
  Immediate 69   - -   + .0362 27.45 *** 
  Cumulative 69   - -   + .0254 29.00 *** 
Industry brand attention               
  Immediate 69 + .0608 28.23 ***   - -   
  Cumulative 69 + .0332 21.27 ***   - -   

Media coverage  
(in crisis event)         

  
      

  

  Immediate 69 + .0044 8.58 *** - -.0025 -18.39 *** 
  Cumulative 69 + .0125 10.89 *** - -.0101 -16.99 *** 

Adjustment 69 -1< g <0 -.5544 -34.88 *** -1< g <0 -.3944 -47.80 *** 
Long-term Trend 69 no -.1133 -15.08 *** no .0016 .08 

 Note: ** p < .05, *** p < .01 (two-sided).          
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Table G5.1 
2SLS ESTIMATION RESULTS FOR BRAND RECOMMENDATION 

   
Brand  

recommendation 

    Obs Exp. 
 sign 

Estimated 
average 

coefficient 
Z-Score 

Intercept 69 +/- .0286 3.12 *** 
Advertising expenditures   

  
  

  Immediate 69 + .0022 1.58 * 
  Cumulative 69 + .0025   .90  
Industry brand recommendation      

  Immediate 69 + .0303 16.96 *** 

  Cumulative 69 + .0245 20.66 *** 

Crisis event           

  Immediate 214 - -.0036 -3.01 *** 
  Cumulative 214 - -.0407 -11.58 *** 

Adjustment 69 -1< g <0 -.7253 -71.37 *** 

Long-term Trend 69 no -.0169 -5.44 *** 
Note: * p < .1, ** p < .05, *** p < .01 (two-sided). 

 
  



	
   85 

Table G5.2 
WLS ESTIMATION RESULTS OF BRAND RECOMMENDATION 

 

 Dependent variable: 
  Brand recommendation 

  Estimated 
 immediate effect 

Estimated  
cumulative effect   

  Exp. Coefficient Coefficient 

Intercept   +/- .048   (.104) .100   (.191) 
Crisis type PHC (base)   -    - -    - 
  CSI (average) +/- -.062 ** (.001) -.153 *** (.001) 
  Violation of FOP +/- .101 *** (.027) .054   (.052) 
  Violation of HRWC  +/- -.005   (.027) -.095 * (.049) 
  Environm. scandal +/- -.145 *** (.049) -.210 ** (.095) 
  Both types  +/- .187 *** (.029) .335 *** (.062) 
Crisis characteristics             Media coverage - -.010 *** (.004) -.039 *** (.006) 

Crisis origin International (base)   -    - -    - 
National - -.091 *** (.022) -.198 *** (.043) 

Immediate 
firm reaction 

No reaction (base)   -    - -    - 
Deny responsibility  +/- -.105 *** (.024) -.140 *** (.047) 

  Accept responsibility  +/- .075 *** (.021) -.004   (.041) 
Brand & firm characteristics             
Product type Retail (base) - -    - -    - 

Non-Durables +/- .039   (.033) .056   (.089) 
  Durables +/- -.044 * (.024) -.097 ** (.047) 
  Services +/- -.125 *** (.036) .047   (.065) 
Prior brand strength + -.002 *** (.001) .004 *** (.001) 
Firm size   +/- .010   (.008) .014   (.015) 
Crisis history - -.004   (.003) .003   (.006) 
R2     .440     .377     
N     214     214     
Notes: * p<.1, ** p<.05, *** p<.01 (two-sided). Standard errors in parentheses. PHC = Product-harm crisis, 
CSI = Corporate social irresponsibility crisis, FOP = Fair operating practices, HRW = Human rights / Working 
conditions. 
1)  The coefficient for CSI (average) is the mean of the estimated coefficients for the three CSI-crisis types. 
The standard error is calculated from the associated variance-covariance matrix. We also estimated a model 
that includes a dummy variable for CSI event only (instead of three different types). Results are fully 
consistent with this table. 
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Table G6.1 
2SLS ESTIMATION RESULTS FOR BRAND VALUE/QUALITY1) 

   
Brand  

value/quality 

    Obs Exp. 
 sign 

Estimated 
average 

coefficient 
Z-Score 

Intercept 69 +/- .0119 1.97 ** 
Advertising expenditures   

  
  

  Immediate 69 + .0006 .40   
  Cumulative 69 + .0025 4.04 *** 
Industry brand value/quality      

  Immediate 69 + .0317 20.74 *** 

  Cumulative 69 + .0254 24.73 *** 

Crisis event           

  Immediate 214 - -.0173 -17.43 *** 
  Cumulative 214 - -.0416 -13.55 *** 

Adjustment 69 -1< g <0 -.5712 -62.90 *** 

Long-term Trend 69 no .0043 1.69 ** 
Notes: * p < .1, ** p < .05, *** p < .01 (two-sided). 
1) Brand value/quality is a combined measure from the YouGov 
items brand value and brand quality and present items as they are 
closely associated with product-related brand dimensions. 
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Table G6.2 
WLS ESTIMATION RESULTS OF BRAND VALUE/QUALITY1) 

 

 Dependent variable: 
  Brand value/quality 

  Estimated 
 immediate effect 

Estimated  
cumulative effect   

  Exp. Coefficient Coefficient 

Intercept   +/- -.045   (.069) .064   (.219) 
Crisis type PHC (base)   -    - -    - 
  CSI (average)2) +/- -.029 * (.017) -.096   (.090) 

  Violation of FOP +/- .006   (.017) .115 ** (.055) 
  HRW violation +/- -.088 *** (.016) -.164 *** (.051) 
  Environm. scandal +/- -.007   (.036) -.240 *** (.091) 
  Both types  +/- .058 ** (.023) .193 *** (.063) 
Crisis characteristics             Media coverage - -.007 *** (.002) -.032 *** (.006) 

Crisis origin International (base)   -    - -    - 
National - -.102 *** (.015) -.224 *** (.042) 

Immediate 
firm reaction 

No reaction (base)   -    - -    - 
Deny responsibility  +/- -.034 ** (.017) -.189 *** (.052) 

  Accept responsibility  +/- .027 ** (.012) .011   (.044) 
Brand & firm characteristics             
Product type Retail (base) - -    - -    - 

Non-Durables +/- .020   (.026) .045   (.078) 
  Durables +/- -.002   (.015) .030   (.046) 
  Services +/- 4.6x10-5  (.020) .071   (.056) 
Prior brand strength + -9.4x10-4 *** (3.7x10-4) 6.5x10-4   (.001) 
Firm size   +/- .012 ** (.005) .011   (.016) 
Crisis history - -.001   (.002) -.005   (.006 
R2     .479     .399     
N     214     214     
Notes: * p<.1, ** p<.05, *** p<.01 (two-sided). Standard errors in parentheses. PHC = Product-harm crisis, CSI = 
Corporate social irresponsibility crisis, FOP = Fair operating practices, HRW = Human rights / Working conditions. 
1) Brand value/quality is a combined measure from the YouGov items brand value and brand quality and present items 
as they are closely associated with product-related brand dimensions. 
2)The coefficient for CSI (average) is the mean of the estimated coefficients for the three CSI-crisis types. The 
standard error is calculated from the associated variance-covariance matrix. We also estimated a model that includes a 
dummy variable for CSI event only (instead of three different types). Results are fully consistent with this table. 
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Table G7 
2SLS ESTIMATION RESULTS FOR ECM WITH LOW COVERAGE CRISIS EVENTS1)  

    Brand attention  Brand strength 

  Obs Expected 
sign 

Estimated 
average 

coefficient 
Z-Score  Expected 

sign 

Estimated 
average 

coefficient 
Z-Score 

Intercept 
  32 +/- -.1324 -2.30 *** +/- .0505 5.07 *** 
Advertising expenditures 
  Immediate 32 + .0086 3.61 ** + -.0015 -2.01 ** 
  Cumulative 32 + .0379 5.00 *** + .0005 .07   

Industry brand strength             
 

    
  Immediate 32   - -   + .0353 8.47 *** 
  Cumulative 32   - -   + .0219 14.49 *** 

Industry brand attention                   

  Immediate 32 + .0688 20.47 ***   - -   
  Cumulative 32 + .0389 16.85 ***   - -   

Crisis event2)                   

  Immediate 78 + -.0086 -.25   - .0017 .21   
  Cumulative 78 + -.0121 -.21   - .0075 .20   

Adjustment 32 -1< g <0 -.5560 -23.22 *** -1< g <0 -.3884 -29.38 *** 
Long-term Trend 32 no -.1319 -11.77 *** no .0022 .95 *** 
Notes: ** p < .05, *** p < .01 (two-sided).  
1) We only included crisis events with media coverage < 3. 
2) We identified  a total of 103 crisis events with media coverage <3. We had to exclude 17 events 
because of missing information on control variables and 8 events due to confounding events. 
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Table G8.1 
2SLS ESTIMATION RESULTS FOR ECM WITH ALL CRISIS EVENTS (NO CUTOFF) 

    Brand attention  Brand strength 

  Obs Expected 
sign 

Estimated 
average 

coefficient 
Z-Score  Expected 

sign 

Estimated 
average 

coefficient 
Z-Score 

Intercept 
  69 +/- -.1129 -3.63 *** +/- .0194 3.33 *** 
Advertising expenditures 
  Immediate 69 + .0081 6.25 ** + .0002 .20 

   Cumulative 69 + .0265 8.77 *** + .0016 1.41 * 

Industry brand strength             
 

    
  Immediate 69   - -   + .0349 13.81 *** 
  Cumulative 69   - -   + .0241 23.51 *** 

Industry brand attention                   

  Immediate 69 + .0620 28.14 ***   - -   
  Cumulative 69 + .0340 22.50 ***   - -   

Crisis event                   

  Immediate 214 + .0255 10.91 *** - -.0106 -14.54 *** 
  Cumulative 214 + .0531 9.01 *** - -.0280 -10.30 *** 

Adjustment 69 -1< g <0 -.5566 -33.89 *** -1< g <0 -.3943 -43.99 *** 
Long-term Trend 69 no -.1114 -14.34 *** no .0030 .28 *** 
Note: * p<.1,** p < .05, *** p < .01 (two-sided).          
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Table G8.2 
WLS ESTIMATION RESULTS FOR DRIVERS OF BRAND EFFECTS FOR ECM WITH ALL CRISIS EVENTS  

 
 Dependent variable: 

 Brand attention  Brand strength 

 Estimated  
immediate effect 

Estimated  
cumulative effect 

 Estimated 
 immediate effect 

Estimated  
cumulative effect   

 
Expected 

sign Coefficient Coefficient Expected 
sign Coefficient Coefficient 

Intercept 
 

+/- -.076   (.105) -1.051 ** (.447) +/- -.053   (.043) -.337   (.235) 
Crisis type Product-harm crisis (base)                             
  CSI (average) +/- .040 *  (.029) -.075   (.160) - -.017 ** (.010) -.208 ** (.101) 

  
Violation of fair operating 
practice +/- -.004   (.032) -.287 ** (.117) +/- .020   (.012) .006   (.064) 

  Human rights / working violation +/- .139 *** (.028) .170   (.107) +/- -.022 ** (.011) -.021   (.056) 
  Environmental scandal +/- -.016   (.065) -.109   (.293) +/- -.049 ** (.020) -.609 *** (.125) 
  Product-harm and CSI crisis +/- -.059 ** (.030) -.163   (.130) +/- .021   (.014) .190 ** (.079) 
Crisis characteristics                             
Media coverage + .025 *** (.002) .076 *** (.010) - -.011 *** (.001) -.048 *** (.006) 
Crisis origin International (base)   -     -       -     -     
  National +/- .068 *** (.026) .066   (.093) - -.027 *** (.010) -.105 ** (.050) 
Immediate firm 
reaction No reaction (base)   -   - -   -   -   - -   - 
  Deny responsibility  +/- .012   (.029) .068   (.099) +/- -.007   (.012) -.056   (.058) 
  Accept responsibility  +/- .033 * (.019) -.204 ** (.096) +/- .035 *** (.009) .091 * (.052) 
Brand & firm characteristics                             
Product type Retail (base) - -   - -   -   -   - -   - 
  Non-Durables +/- -.012   (.055) -.008   (.191) +/- .064 ** (.026) .239 * (.123) 
  Durables +/- .046   (.028) .277 *** (.101) +/- .026 *** (.010) .031   (.055) 
  Services +/- .038   (.033) -.126   (.122) +/- -.029 ** (.012) .074   (.070) 
Prior brand strength - -.001 ** (.001) -.004 ** (.002) + -9.5x10-4 *** (2.3x10-4) .002 * (.001) 
Firm size   - -.008   (.009) .075 ** (.037) +/- .009 *** (.003) .039 ** (.018) 
Crisis history   +/- .000   (.003) .005   (.013) - -.001   (.001) -.011 * (.007) 
R2     .574     .261       .555     .324     
N     299     299       299     299     
Notes: * p<.1, ** p<.05, *** p<.01. Tests are one-sided if clear directional effects are expected, two-sided if not.  Standard errors in parentheses. 
1) The coefficient for CSI (average) is the mean of the estimated coefficients for the three CSI-crisis types. The standard error is calculated from the associated variance-
covariance matrix. We also estimated a model that includes a dummy variable for CSI event only (instead of three different types). Results are fully consistent with this 
table. 
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PAPER II: DO LAYOFFS HURT A FIRM’S BRAND ? – AN EVENT 

STUDY WITH CONSUMER MINDSET METRICS 

 
Author:  Max Backhaus	
  

 

Abstract 

Layoffs are usually undertaken to increase operational efficiency and financial 

performance but they often also entail negative effects on different stakeholders such as 

employees. Nevertheless, evidence on the dark side of downsizing with respect to decreasing 

consumer perceptions and ultimately decreasing sales and firm performance is scarce. To 

quantify the effects of layoff announcements on consumers this study extends the common 

event study methodology to non-financial performance measures based on a multi-national 

sample of 179 layoff announcements and 5 years of daily consumer mindset data across 

multiple sectors and firms. Results suggest substantial positive effects of layoff 

announcements on consumer brand attention and negative effects on brand strength. 

Moreover, the study identifies drivers that amplify or attenuate the effect on brand 

perceptions such as the number of job cuts, the strategic firm motive, and prior levels in 

brand perception. Hence, the findings provide an additional explanation why layoff decisions 

often do not achieve their strategic dictum to increase efficiency and reveal important drivers 

that moderate the effect of layoff decisions on consumer brand perceptions. 

 

Keywords: Layoffs, consumer brand perception, mindset metrics, event study 
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1 Introduction 

Downsizing decisions often result in cutting thousands of employees’ jobs and are a 

regular means for companies to reduce costs (Chalos and Chen 2002). Layoff announcements 

are published almost every day in leading international, national, business, and public media 

and have become particularly prevalent since the financial crisis. The U.S. Bureau of Labor 

Statistics (2016) recorded on average 1508 annual mass layoff events in the U.S. between 

2003 and 2013. The layoff announcements of Walmart and Schlumberger in the first quarter 

of 2016 comprising job cuts of 17,000 and 12,500 employees, respectively, are only two of 

many recent examples (Long 2016).  

The underlying economic logic for these layoffs is quite simple: by reducing a part of the 

cost factor “labor”, an increase in the company’s competitiveness and profitability is 

triggered (Chen et al. 2001). This in turn leads to an increase in shareholder value and 

consequently a rising stock price. But this effect can only be observed if cost effects are 

independent of revenues. 

Various studies examine whether corporate layoffs are indeed positively correlated to 

firm performance. The results suggest that short-term gains from cost reductions are possibly 

set off by long-term losses due to negative effects from layoffs on organizational 

performance. A reduction in workforce can lead to lower employee motivation (e.g. Brockner 

et al. 1994), decreasing skill bases (e.g. Amabile and Conti 1999), as well as lower service 

levels and product quality (Mishra and Mishra 1994). In fact, these outcomes of decreasing 

operational performance also negatively influence customer satisfaction (Williams, Khan, 

and Naumann 2011; Homburg, Klarmann, and Staritz 2012; Habel and Klarmann 2015). 

Customer satisfaction decreases are mainly driven by customers’ expectations and personal 

experiences regarding product and service quality and lead to a deferred decline in financial 
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performance (Habel and Klarmann 2015). Thus, it is not clear whether, or to what extent, 

layoffs really enhance efficiency and firm performance (Datta el al. 2010). 

One aspect that has been largely ignored by literature is the negative effect layoff 

announcements might entail with regard to their social performance. Firm’s social 

performance provides information about the behavior and characteristics consumers associate 

with and link to brands and firms (Aaker 1997). The announcement of layoffs signals 

information about the company’s value system. Layoffs can be perceived as a breach of the 

psychological contract with stakeholders such as employees or customers (De Meuse et al. 

2004). Therefore, they might violate increasing consumer expectations regarding firms’ 

strategic behavior with respect to corporate social responsibility (Backhaus and Fischer 

2016). Consumers corporate social responsibility associations are reflected in consumer 

brand perceptions (Brown and Dacin 1997). If layoff announcements are perceived as 

negative information about firm behavior they should also negatively affect consumers’ 

identification with their brands and lead to changes in brand perceptions (Bhattacharya and 

Sen 2003). The value relevance of consumer mindset metrics has been proven repeatedly 

(Hanssens et al. 2014; Stahl et al. 2012) Thus, a negative effect of layoff announcements on 

consumer brand perceptions might additionally offset positive operational performance 

effects.  

The few existing studies related to consumer’s mindsets explore the consequences of 

layoffs on corporate reputation (Zyglidopoulus, 2005; Flanagan and O’Shaughnessy 2005; 

Love and Kratz 2009). Overall, results support a negative effect of layoffs on corporate 

reputation but the effect seems to diminish after 1992 (Love and Kratz 2009). Although these 

findings offer valuable insights into the effect of layoffs on firm reputation, no evidence 

exists that the results hold true for times of increasing transparency, digital consumer 

interconnectivity, and rising consumer expectations with regard to corporate social 
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responsibility. Furthermore, prior literature builds its empirical analysis on annual data and 

does not account for an event-specific perspective. The studies also do not give much 

guidance concerning the drivers of the magnitude of layoff announcement effects on 

consumers. Hence, the transferability of findings to today’s business environment has to be 

questioned.  

This study tries to give answers to these questions and thus enhances the understanding 

of layoff decisions by analyzing the effects of real layoff announcements on consumers’ 

mindsets. Table 1 positions the study at hand in comparison to related prior research.7 

Specifically, I investigate daily changes in consumer brand attention, brand strength, and 

brand rating dispersion immediately before and after layoff announcements are published. 

Brand attention and brand strength relate to the constructs of brand awareness and brand 

image as the key components of consumer-based brand equity (Keller 1993). In addition, 

recent studies have demonstrated the value relevance of heterogeneity-based mindset metrics 

(e.g. Luo, Raithel, and Wiles 2012). Hence, I also investigate the effect on brand rating 

dispersion as a volatility-based measure of brand perception. 

Based on a multi-national sample of 179 layoff announcements in the U.S. and Germany 

during the time period 2008-2012 across 7 industry sectors and more than 108 firms, I extend 

the event study methodology to consumer mindset variables as the dependent variables of 

interest. Therefore, I provide a new disaggregate perspective on the daily level. This 

approach allows for the valid identification of effects. In the empirical analysis I also control 

for industry-wide effects, which are usually neglected in previous studies. Layoff decisions 

are regularly triggered by stagnating market demand or industry-wide economic effects. 

Hence, negative consequences from downsizing initiatives might not necessarily lead to 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7 The autor acknlowedges that other studies exist that study layoff effects in survey/interview settings using 
hypothetical events. However, a drawback of such research is that insights are obtained under a hypothetical 
layoff setting. This limits the transfer of results to real, dynamic markets. 
 



	
   96 

weaker competitive positions since the majority of firms might need to cut costs and jobs 

(e.g. the banking industry during the financial crisis). Furthermore, in order to identify  

moderators that intensify or attenuate announcement effects on consumers, in a second step, I 

also perform cross-sectional moderator analysis.  

In summary, the study offers three distinct contributions to the existing findings. First, it 

offers a new perspective and insights into the effects of layoff announcements on consumer 

brand perceptions. The results are valuable to managers because they help understand which 

layoff events have the potential to significantly hurt consumer brand perception. In such 

cases firms should use media and marketing communications to counter brand perception 

drops. Second, the study provides an additional theoretical and empirical explanation of 

negative stock market reactions to layoff announcements, which supports the hypothesis that 

“hidden costs” may outweigh operational efficiency gains from downsizing measures. 

Moreover, the results can inform investors to better evaluate the financial impact of layoff 

decisions and enables them to refine their firm valuations accordingly. Third, I extend the 

existing event study methodology to generate new insights from high frequency consumer 

data. The study sets the grounds to transfer and apply event studies in various non-financial-

related settings accounting for the new data landscape in marketing and market research. In 

particular, I discuss the critical steps of modeling expectations in order to estimate abnormal 

changes in the dependent variable as well as the proper identification of confounding events. 

Market research companies have recently begun to collect, track, and process such 

disaggregate, comprehensive consumer data (Katsikeas et al. 2016). These data are available 

to the majority of B2C firms in many countries all around the globe. Thus, managers and 

researchers can use the theoretical underpinning of the extended event study methodology to 

study the effects of different events with similar data as it is shown to serve as useful 

alternative indicators for changes in brand and financial performance of firms. 
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The results show that layoff announcements cause significant positive abnormal returns 

in the brand attention measure and significant negative abnormal returns with respect to 

brand strength. However, the effect on brand attention diminishes after about a week, 

whereas the negative effect on brand strength does not. No significant effects can be detected 

with respect to brand rating dispersion. That is, the overall effect of layoff announcements is 

especially driven by the negative effect in brand strength. Concerning the drivers of the effect 

on brand strength the size of the layoff and high prior brand attention amplify the negative 

effect of layoff announcements, whereas prior brand strength attenuates the effect. Reactive 

layoffs gain more brand attention by consumers than proactive ones and prior brand attention 

also increases the effect on current brand attention. 
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Table 1: Empirical Research on the Effects of Layoffs on Consumer Mindset Metrics  

Reference Mindset metric Model Dependent 
variable(s) 

Time 
period 

Aggregation 
level Layoff data Moderator 

analysis 
Event 

logic 

Williams, Khan, & 
Naumann (2011) 

Customer 
satisfaction 

Static-group 
comparison 

(t-test) 

Customer satisfaction 
(single-item scale) 

before and after layoff 
2002 Quarterly One-time layoff event 

(N=1) No Yes 

Homburg, 
Klarmann, & 
Staritz (2012) 

Customer 
satisfaction 

Linear 
regression 

Perceived customer 
satisfaction (one-item 

scale) 
n.a. 5 year time 

horizon 
Database search 

(N=109) No No 

Habel & Klarmann 
(2015) 

Customer 
satisfaction 

Linear 
regression 

American Customer 
Satisfaction Index 

(ACSI) 
1994-2007 Annual 

Reduction in 
employees Compustat 

database (N=153)* 
No No 

Zyglidopolous 
(2005) 

Corporate 
reputation 

Linear 
regression 

Fortune's AMAC 
survey 1889, 1991 Annual 

Reduction in 
employees in AMAC 

database (N=145) 
No No 

Flanagan & 
O'Shaugnessy  
(2005) 

Corporate 
reputation 

Linear 
regression 

Fortune's AMAC 
survey 1996-1998 Annual 

Media coverage of 
layoff decisions 

(N=72) 
No No 

Love & Kratz 
(2009) 

Corporate 
reputation 

Rank-ordered 
logistic 

regression 

Fortune's AMAC 
survey 1984-1994 Annual 

Media coverage of 
layoff decisions 

(N=91) 
Yes No 

This study Consumer brand 
perception Event study 

Brand strength, brand 
attention, brand 

dispersion 
2008-2012 Daily 

Media coverage of 
layoff decisions 

(N=179) 
Yes Yes 

Notes: AMAC = America’s Most Admired Companies, ACSI = American Customer Satisfaction Index 
*The authors also include a robustness analysis with media layoff announcements. 
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2 Conceptual Framework  

Figure 1 shows the conceptual framework of my study. I analyze the effects of layoff 

announcements on brand attention, brand strength, and brand rating dispersion. I define 

layoffs as a permanent reduction of a significant number of employees from the payroll of an 

organization (Freeman and Cameron 1993). If business and public media report about a 

planned or conducted downsizing initiative that includes laying off workforce, this incident is 

called layoff announcement. 

 

Figure 1: Conceptual Framework of the Effect of Layoff Announcements on Consumer 
Brand Perception  
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2.1 Focal Brand Performance Metrics  

Brand attention measures the level of awareness due to the amount of available positive 

or negative information about the brand. Brand strength is a composite measure that covers 

several image and performance dimensions of a brand as perceived by the consumer. 

Conceptually, both brand awareness and brand image are the constituent parts of Keller’s 

(1993) model of customer-based brand equity. Beyond the average brand strength, brand 

dispersion offers a new dimension and deeper understanding of a brand’s health reflecting the 

spread between brand haters and brand lovers. Dispersion is the “heterogeneity in brand 

quality ratings, which may reflect inconsistency and polarization into brand lovers and 

haters” (Luo, Raithel, and Wiles 2013, p.400). Higher heterogeneity in consumers’ brand 

evaluations poses a threat to firms because it reduces a firm’s brand equity (Luo, Raithel, 

Wiles 2013). High dispersion thus reveals a stretched, inconsistent brand image among 

consumers. I provide more measurement details on these metrics in the data section and 

Appendix A.  

2.2 Hypotheses Development 

Brand equity theory posits that consumers accumulate experiences and information over 

time which build the basis for brand awareness and brand image (Keller 2008). Layoff 

announcements serve as negative signals to consumers with respect to product and service 

quality (Habel and Klarmann 2015) and trigger decreases in expectations regarding consumer 

orientation (Subramony and Holtom 2012). Moreover, downsizing initiatives resulting in 

mass layoffs can be perceived as a breach of the psychological contract between the firm and 

its employees (De Meuse et al. 2004). Significant layoff announcements are usually covered 

broadly also in public media. News coverage about firm behavior, whether positive or 

negative, is publicity that can increase brand attention (Berger, Sorensen, and Rasmussen 
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2010). Layoff announcements serves as (new) information about a firm’s behavior and 

should impact consumers’ attention towards a firm’s brand. Consequently I formulate   

H1: Layoff announcements increase brand attention. 

Brands serve different functions for consumers (Fischer, Völckner, and Sattler 2010). In 

addition to reducing the risk related to functional benefits (risk reduction function), brands 

can also provide symbolic benefits allowing consumers to project their self image (Levy 

1959). The social demonstrance function of brands can be affected if consumers learn about 

layoff decisions. Given the limited information available that consumers can draw on to build 

their overall perceptions of a firm, layoffs can be perceived as a negative signal concerning a 

firm’s character, credibility, and ethical responsibility (Love and Kratz 2009). If consumers 

evaluate layoffs as unethical and as an act of corporate social irresponsible behavior 

(Zyglidopoulos 2005), layoff announcements can be classified as negative news about firm 

behavior.  Thus, they may severely harm the trust and confidence consumers place in brands 

and lead to decreases in brand strength (Ahluwalia, Burnkrant, and Unnava 2000): 

H2: Layoff announcements have a negative effect on brand strength. 

Finally, consumers interpret new information differently and therefore any new 

information that is relevant to the consumers’ brand perception leads to polarization of 

opinions among consumers (Lord et al 1979). Based on confirmatory bias theory consumers 

evaluate information and move further apart in their evaluations when initial beliefs differ. 

The underlying reason is that individuals tend to process new information with different 

personal and situational processing goals, such as to defend their prior beliefs or to manage 

their impression with others (Ahluwalia 2002). Consequently, a layoff announcement bearing 

new information will increase heterogeneity in consumer brand ratings leading to higher 

brand rating dispersion. It follows that  
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H3: Layoff announcements have a positive effect on brand rating dispersion. 

2.3 Moderators of Brand Performance Effects  

The relation between layoff announcements and brand performance measures might be 

moderated by layoff characteristics since every layoff event is different. I account for 

moderators that have been shown to influence the effects of layoff announcements on other 

mindset metrics such as customer satisfaction or corporate reputation. Specifically, I consider 

the strategic motive of the layoff decision (proactive vs. reactive decision), the timing of the 

layoff (whether the layoff announcement was made during the financial crisis between 2008 

and 2009 or afterwards), the layoff size (the number of employees laid off), and the country 

where the layoff was announced (country of layoff announcement). 

Strategic motive. While some companies reduce their workforce proactively to enhance 

organizational performance, others downsize reactively as a necessary decision to financial 

distress (Chen et al. 2001). I expect that consumers react differently to these different 

motivations. Prior research shows that laying off workforce may act as a strong signal 

regarding a firm’s “character” (Love and Kraatz 2009). Consumers perceive layoffs as 

particularly opportunistic if the company enjoys profits. In contrast, consumers may perceive 

companies that reduce their workforce to counter losses as less unfair and less socially 

irresponsible. Indeed, the negative effect of downsizing on corporate satisfaction is smaller if 

downsizing is a reaction to performance problems of a firm (Habel and Klarmann 2015). In 

summary, I expect stronger negative effects on brand strength in a proactive layoff setting. I 

do not formulate specific expectations since effects are less clear with respect to brand 

attention and brand rating dispersion. 

Timing of layoff. As more firms layoff workforce across the population, the social costs 

of downsizing for any single firm decreases. If a single firm reduces workforce, its deviant 

behavior is likely to draw much attention and social censure (Flannagan & O’Shaugnessy 
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2005). Hence, in times of many overall layoffs such as during the financial crisis from 2008 

to 2009, I expect an attenuated brand attention, brand strength, and brand dispersion effect.  

Layoff size. The number of employees laid off in downsizing situations is crucial. The 

greater the magnitude of a layoff the more information it should convey to consumers. Larger 

layoffs will also be discussed more in the media, as well as in-between consumers offline and 

online. Consequently, I except stronger effects for all three performance measures. 

Country of layoff announcement. Consumer responses to layoff announcements might 

also differ due to cultural differences. Consumer research suggests that country populations 

differ in their value systems (Hofstede 2003). In individualistic cultures personal 

accomplishments, ideas, and goals are emphasized. On the other hand, in collectivist cultures 

the emphasis is on group norms and values and the overall welfare of the society is more 

important than the individual’s welfare. Hence, in collectivistic, as compared to 

individualistic cultures, firm relationships with employees are stronger and valued as more 

important by consumers (Lewin, Biemans, and Ulaga 2010). In my empirical analysis I 

compare reactions of German and U.S. consumers. The U.S. is known as rather 

individualistic society compared to Germany (Fischer, Völckner, and Sattler 2010). Hence, 

German consumers might stronger dislike and blame firms for downsizing initiatives and in 

turn stronger negative brand strength effects. Consequently, I also expect more attention by 

media and consumers for firms that downsize workforce, which leads to higher brand 

attention and greater brand rating dispersion. 

In addition to the layoff event itself, firm-specific moderators such as prior brand 

awareness, prior brand strength, prior downsizing history, industry affiliation, and country of 

origin can aggravate or attenuate the effect of layoffs announcements on consumers. 

Prior brand attention. High brand attention indicates high awareness. If consumers hear 

about brands that they know and usually talk or hear about, they might take notice of the 
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layoff information to adjust brand perceptions. It therefore seems reasonable to expect that 

firms that exhibited higher prior brand attention will be punished and discussed more by 

consumers. On the other hand, high prior brand awareness might lead to smaller attention 

gains since the overall level is already high (marginal returns). Hence, following Berger, 

Sorensen, and Rasmussen (2010), with respect to brand attention I expect a reverse effect. 

With respect to brand rating dispersion I do not formulate a clear directional expectation. 

Prior brand strength. A firm’s prior brand strength should affect consumers’ 

interpretations of its actions (Backhaus and Fischer 2016). To the extent that brand strength is 

a sticky and enduring asset cumulated through a history of making actions, I expect prior 

brand strength to serve as a protection against the negative effect of a layoff event on brand 

strength. Similarly, I also expect prior brand strength to serve as a buffer against rising brand 

rating dispersion. Concerning brand attention, Berger, Sorensen, and Rasmussen (2010) 

argue that the gain in awareness due to negative publicity is lower the stronger a brand is. 

Following their line of argumentation, I expect a negative moderation effect of prior brand 

strength with respect to the effect on brand attention.  

Prior layoff history. Layoff history indicates whether the event is a one-time event or 

part of a pattern of similar crises. A history of layoff announcements suggests an organization 

has an ongoing problem that needs to be addressed. The observer learns that the firm has a 

tendency to act in this way over time, which increases the evidence for causal culpability 

(Zautra et al. 2005). People should be inclined to give the benefit of the doubt to firms with a 

record of “good behavior” and to be less quick to attribute opportunism on the basis of a 

single strategic decision. Therefore, I expect a negative effect on brand strength and a 

positive effect on dispersion from the amount of prior layoffs. The effect on the brand 

attention, however, is not clear.  
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Industry. Some industries have a worse reputation than others among the population in 

general. For example, banks are often depicted as “evil” in the media since the financial crisis 

in 2008/2009. Hence, negative incidents in such industries gain more attention and are 

weighted stronger by consumers than in other industries. On the other hand, consumers might 

have already very low expectation with respect to corporate social performance of financial 

institutions. This would indicate that negative results will be smaller because consumers have 

already considered them to behave badly and layoff information do not really depict new 

information. Since it is difficult to draw well-founded inferences about the role of industry 

characteristics I do not formulate a priori expectations. 

Country of origin. Empirical research shows that more articles are written about a firm 

announcing layoffs when the owners are foreigners, and, on average, more of the words 

written concern downsizing rather than other topics, such as firm performance, and products 

(Friebel and Heinz 2014). Additionally, consumers might attribute more blame to foreign 

firms’ downsizing decisions than domestic ones. I thus expect stronger brand attention and 

brand strength effects for foreign firms. The expectations regarding brand rating dispersion 

are less clear and thus I do not formulate explicit expectations. 

 

3 Data and Descriptives 

3.1 Data Collection 

My objective is to apply the event study methodology to estimate and explain the effect 

of layoff announcements on brands (see Figure 1 again). In order to do so I analyze layoff 

announcements in combination with brand time-series data. Specifically, I draw on five years 

of daily data from the U.S. and Germany in the period 2008 to 2012, which constitutes the 

sample of this study. 
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Consumer mindset metrics.  The consumer mindset data is based on a unique database 

that offers a nationwide measurement of brand perception at the daily level across various 

countries. The YouGov group, a global market research company specializing in online 

panels, collects this data. Their online panel consists of over 4 million panelists across 37 

countries including 2 million panelists in the U.S. and Germany. I obtained data from 2008 to 

2012 for a total of over 2000 brands across twenty different industry sectors in U.S. and 

German market. 

Table 2: Descriptive Statistics of Layoff Announcements  

  
N % 

Total events identified 
 

272 -­‐ 
Company brands 

 
148 -­‐ 

Layoff events per brand 
 

1.84 -­‐	
  
Confounding events 

 
56 21% 

Overlap or missing data in 
estimation window 

 
37 14% 

Final sample 
 

179 - 
Company brands 

 
108 - 

Layoff events per brand 
 

1.66 -­‐	
  
Country 

   United States 
 

50 28% 
Germany 

 
129 72% 

Year 
   2008 
 

26 15% 
2009 

 
43 24% 

2010 
 

18 10% 
2011 

 
31 17% 

2012 
 

61 34% 

 
Company brand examples 

 Industry 
   Consumer staples1 Pepsi, L'Orèal 14 14% 

Consumer appliances Panasonic, Whirlpool 33 33% 
Other consumer discretionary2 Nike, Karstadt 19 19% 
Digital life & media EA Games, Yahoo! 19 19% 
Automotive GM, Shell 26 26% 
Financial services Goldman Sachs, UBS 33 33% 
Non-financial services AirFrance, TNT 35 35% 
Notes: 
1 Includes food & gastronomy, household & personal care, and OTC & healthcare categories 
2 Includes apparel & fashion as well as retailing 
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Brand attention represents the number of respondents who are aware of either negative or 

positive news about a brand. Brand strength is measured along six dimensions, which are 

aggregated to the YouGov BrandIndex. These dimensions are perceptions of: brand quality, 

brand value, brand satisfaction, brand recommendation, brand identification, and brand 

overall impression. 8  Assuming that the negative, neutral, and positive answer options 

represent a 3-point likert scale, brand rating dispersion is calculated as the standard deviation 

of the brand strength measure. Table 3 offers general information on variable definitions, 

measurement, and operationalization. Details on the exact items and the collection of data are 

provided in Appendix A. 

The big advantage of the BrandIndex over other brand strength measures such as 

Young&Rubicam’s BAV (e.g., Stahl et al. 2012) is that it is available at the disaggregate, 

daily level. This allows for detecting changes in brand perception triggered by single events 

such as press reports on layoff announcements in a precise and unique manner. 

At the aggregate brand level, brand attention scores fall within the range of 0 to +100 and 

brand strength scores fall within the range of -100 to +100. For brand strength, as an 

example, the extremes are only realized if all respondents agree in their negative or positive 

perception of the brand relative to its competitors. In order to estimate returns for brand 

strength I rescale the variable to run from 0 to 200. Brand dispersion scores are variance 

measures by definition in this are not range-restricted with respect to a maximum. The daily 

brand ratings are based on a large sample of 100 respondents on average.  

Layoff announcements. I collected data on layoff announcements through an extensive 

media search with regard to the specific events in leading media sources in the U.S. and 

Germany using the Lexis Nexis and ProQuest databases (details on the data collection 

procedure are provided in Appendix B). I generated a pre-tested list of keywords (like 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8 In 2013, YouGov expanded the number of items in the survey, among them questions on purchase 

consideration and intent. The observation period in this study ends before this change. 
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“downsizing”, “layoff”, “job loss”, “cost cutting” etc.) and systematically searched for the 

keywords in connection with the specific brand (see again Appendix B for details). 

Overall the search identified 272 layoff announcements events within the time frame 

from 2008 to 2012 (see Table 3) that match the brands in the YouGov database.9 37 cases had 

to be excluded because there was missing an overlap of events with regard to estimation and 

event window or missing data on control variables (e.g. missing information on layoff size). I 

had to exclude another 56 cases due to confounding events such as new product 

introductions, etc. (see details in the methodology section). Thus, my final sample size covers 

179 layoff announcements (see Appendix B for the list of events) across 10 industries, 108 

brands, and 5 years of daily data. I define the day, in which the first media report was 

published on the event, as the event date. 

Moderator variables. I obtain data for the moderator variables based on the press 

research of layoff announcements and from the YouGov database. For layoff-specific 

moderators three coders read every report related to a specific layoff announcement. The 

number of workers to be laid off (layoff size) is usually provided in the article (> 90% of all 

announcements). Announcements that did not reveal the actual size of the layoff have been 

excluded. The articles also inform about the date when the announcement was made and 

whether it is published in German or U.S. media (country of layoff). Based on the content 

information of the articles the coders also determined whether the layoff can be classified as a 

proactive action, aiming at increases in efficiency, or a reactive action due to bad prior 

financial performance and/or reduced demand (Love and Kraatz 2009). Coding agreement is 

greater than 97% for all coded moderator variables. Remaining disagreements were solved by 

discussion. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9 Since I did not have access to YouGov data from the U.S. before January 2009, layoff announcements in the 
U.S. in 2008 are not included in the empirical analysis. 
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Prior brand attention and prior brand strength are the focal brand’s averages for both 

measures in the estimation window (60 days) before the respective event. Layoff history 

measures the number of remembered announcements for the focal brand. I apply a time 

weight to the accumulation to account for the process of forgetting. This weighting also 

alleviates potential censoring issues that are associated with this variable.  

Country of origin is defined as the location of the headquarters as well as the main listing 

of the firm. Industry classification is determined as a combination of the global industry 

classification standard (GICS) as well as the YouGov industry classification. Table 3 informs 

about the details of measurement for each variable. 

3.2 Descriptives Statistics 

Table 3 provides descriptive information about the sample. Brand attention, brand 

strength, and brand rating dispersions show strong variation. SD is larger than the mean for 

brand strength and relatively high for brand attention and brand rating dispersion compared to 

the mean values. The lower part of Table 3 shows the descriptive statistics for the moderator 

variables. The average layoff size is 4,009 and the majority of the announcements are 

published in German media (71%). 39% of all layoff announcements took place during the 

financial crisis (2008-2009) and 34% were reactive layoffs decisions. 110 layoff 

announcements (62%) concerned domestic companies. Companies for which at least one 

layoff announcements was detected, initiated 1.84 downsizing initiatives within the time 

period of 2008-2012. This results in an average of .78 for layoff history. To summarize, the 

variation in the data is strong supporting the proper identification of effects. 
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Table 3: Variable Definitions and Summary Statistics  

Variable Measure / Operationalization Data sources N M SD 

Layoff 
announcement 

First day a leading newspaper informed about 
the layoff announcement. Dummy variable 
indicating the announcement of layoff (=1 on 
event day; 0 = no event day) 

Press research 
(LexisNexis, 
ProQuest) 

179 - - 

Brand performance measures   Brand attention 
[0;100] 

Index from 0 to +100 aggregated across 6 brand 
perception dimensions: brand quality, brand 
value, brand satisfaction, brand recommendation, 
brand identification, brand overall impression. 
Attention scorei,t = (positivei,t + negativei,t ) / 
(positivei,t+ negativei,t +  neutrali,t)*100 

YouGov 614,008 17.36 12.02 

Brand strength 
[0;200] 

Index relating to the question whether 
respondents have heard anything positive or 
negative about the brand within the last 2 weeks. 
Strength scorei,t = [(positivei,t - negativei,t ) / 
(positivei,t+ negativei,t +  neutrali,t)*100]+100 

YouGov 618,048 114.1 17.90 

Brand rating 
dispersion 

Standard deviation of daily customer brand 
strength score 

YouGov 618,048 .48 .11 

[0;∞]  

Layoff-specific moderators 
Strategic motivea Reactive layoff: the firm justifies the layoff by 

economic downturns or as a reaction to demand 
shifts. Proactive layoff: the firm refers to general 
productivity and efficiency gains independently 
from its' financial status or general economic 
conditions.  
Dummy variable  (=1, if layoff announcement is 
reactive) for firm i at event day t 

Press research  179 .34 .48 

Layoff size  Number of layoff size of firm i at event day t Press research  179 4,009 6,310 
Timing of layoffa  Dummy variable indicating whether the layoff 

announcement was made during the financial 
crisis (=1 if layoff between 2008 and 2009; =0 
otherwise) 

Press research  179 .39 .49 

Country of layoff 
announcementsa 

Dummy variable indicating the country in focus 
(=1 if Germany, =0 if U.S.) 

Press research  179 .71 .45 

Firm/Brand-specific moderators 
Prior brand 
strength 

Level of brand strength prior to the event 
(average brand rating in estimation window) 

YouGov 179 12.10 17.77 

Prior brand 
attention 

Level of attention prior to the event (average 
brand attention in estimation window) 

YouGov 179 18.54 10.03 

Prior layoff 
history 

Remembered (time-discounted) number of layoff 
announcements since 2008 until focal layoff 
event 

Press research  
179 .78 .98 

Industry Dummy variables for industry affiliation based 
on GICS-classification and YouGov industry 
classification. 

Thomson 
DataStream 179 - - 

Country of  
origin a 

Dummy variable indicating whether the 
headquarter and listing of firm is domestic or 
foreign(=1, if domestic; =0 if foreign) 

Press research  
179 .62 .49 

a For these variables, we report the percentage of observations having the value of 1. 

 

  

Dispt ,i = (1− µt ,i )
2 *%negativet , i + (2− µt ,i )

2 *%neutralt , i + (3− µt ,i )
2 *% positivet , i

with µt ,i = 1*%negativet , i + 2*%neutralt , i + 3*% positivet , i
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4 Event Study Methodology 

4.1 Premises of Event Studies 

The event study method is a widespread and frequently used technique to measure the 

effect of an economic event on a firm’s value. Although event studies root in the financial 

literature (Fama et al. 1969), a multitude of applications also exist in marketing research to 

study the effects of marketing-related events such as product innovations (Agrawal and 

Kamakura 1995), internet channel additions (Geyskens, Gielens, and Dekimpe 2002), 

customer satisfaction (Fornell et al. 2006), brand acquisitions and disposals (Wiles, Morgan, 

and Rego 2012), or product recalls (Gao et al. 2015) on stock performance.  

Regardless of the specific research topic, event studies are based on the same principle: 

Since it is only possible to observe returns for the focal firm exposed to the event of interest, 

a counterfactual is needed to interpret the average price reaction to the event. Therefore, 

event studies differentiate between the stock market returns that would have been expected if 

the analyzed event would not have taken place (expected returns) and the returns that were 

caused by the respective event (actual returns; MacKinlay 1997). The difference between the 

actual and the expected returns (abnormal return) indicates whether there is a significant 

effect associated with the unexpected information revealed in the event. This way, a reliable 

conclusion about the price impact of specified events can be drawn (McWilliams and Siegel 

1997).  

The new availability of mindset data has drawn increasing attention by researches and 

practitioners (Katsikeas et al. 2016). These metrics measure the vast amount of non-

transactional data that marketers can collect on individual and aggregate consumer level 

today. Key performance indicators such as brand performance, perceived quality, customer 

satisfaction, or attitudinal loyalty facilitate the economic analysis of consumer behavior (e.g. 

the drivers of customer lifetime value, Kumar and Reinartz 2016). In this context, it is not 
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surprising that consumer mindset metrics have become part of a set of marketing key 

performance indicators that are tracked constantly by marketing research companies. Several 

firms evaluate and track brand performance (e.g., Interbrand, YouGov, Equitrend). This 

means that data availability for many firms for focal and counterfactuals on disaggregated 

time levels is very high, which is a necessary precondition for the successful application of 

event study analyses.  As a result, consumer mindset metrics constitute a particular promising 

application as an integral part of customer-based brand equity and a central construct in 

marketing theory and practice.  

4.2 Empirical Strategy  

While there is no unique structure of an event study, there is a general flow of analysis 

(MacKinlay 1997, McWilliams and Siegel 1997). Figure 2 outlines the step-by-step approach 

of event studies and compares the classical application in a financial market context with the 

extended application to non-financial performance metrics, namely brand strength, brand 

attention, and brand rating dispersion. In the remainder of this chapter I will discuss each step 

in more detail and draw particular reference to the case of layoff announcements. 

1. Definition of Event 

In order to examine the reaction to an event, first the event has to be defined. An event 

can be any new information about a company that is valuable to investors or consumers 

(Brown and Warner 1985). The crucial characteristic is the novelty of the information 

embedded in the event (McWilliams and Siegel 1997). With respect to marketing-based 

performance measures layoff announcements might send negative signals to the consumer 

regarding the corporate social performance of a company but can also lead to an anticipation 

of decreasing service levels and technical efficacy (Love and Kraatz 2009). Usually, layoff 

announcements represent information that consumers cannot anticipate. This is because 

layoff plans do not leak to consumers before the announcement in leading media, which 
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either are the very first to uncover layoff plans or pick up very quickly on information about 

closing of plants or restructuring plans (Friebel and Heinz 2014). Even if consumers 

anticipate a general trend of downsizing due to previous layoffs or the overall economic 

development, these expectations should not be embedded in brand perception measures 

before the announcement.  

2. Event Date and Event Window 

I define the event date as the day when media first reported about the layoff. Friebel and 

Heinz (2014) argue that in case of a layoff announcement all media outlets receive a standard 

notice circulated by central press agencies (e.g., DPA in Germany, AP or Bloomberg News in 

the U.S.). This assures that the majority of media coverage is central and immediately located 

around the day of the detected announcement.10  

Second, the event window is set to the day preceding the announcement [-1; 0] and the 

days immediately following from 1 to a maximum of 10 weekdays [0; 10].11 With respect to 

brand performance measures it seems reasonable that markets are not fully efficient. That is, 

not all consumers receive and process news immediately but with a time lag over the next 

few days. This is also due to the fact that not all media report about news on the exact same 

time; it is rather a dynamic process and usually media report on a specific event of interest 

more than once (Sandman and Paden 1979). Hence, I allow the event to have an effect over 

the two weeks following the first layoff publication. In the Appendix D I also provide results 

on the robustness with regard to a three day pre-event window. Results suggest that there is 

no leakage prior to the day before the first announcement.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
10 In cases where the layoff announcement was published on a Saturday or Sunday, the event date is set to the 
following Monday, since YouGov does not collect brand perception data on weekends. 
11 10 days equals 2 weeks, since YouGov does not collect data on weekends (Saturdays and Sundays).  
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Figure 2: Comparison of Classical and Extended Event Study Approach 

6. Cross-sectional moderator analysis Develop and explain theory for cross-sectional variation in abnormal returns and test for the effects. 

1. Definition of the event of interest  

Empirical strategy 
Extended event study 

(marketing-based performance metric) 

Selection of events bearing information with 
potential impact on consumer mindsets (e.g., 
new product introductions, recalls, channel 
extensions, testimonial signing,…) 

2. Definition of event date and window 

Classical event study 
(stock return / firm value metric) 

Selection of events bearing new information with 
potential impact on firm value (e.g., earnings 
announcements, M&As, macroeconomic 
announcements, new product introductions, 
recalls,... ) 

• Event date: first media publication	
  
• Event window: account for inefficiency in 

consumer response à time frame with 
sufficient periods for consumers to pick up 
and process information through media and 
word-of-mouth	
  

• Event date: when market can anticipate 
news regarding the defined event 	
  

• Event window: market efficiency à short 
time frame before and after the event date 

3. Detection of confounding events and 
exclusion of affected focal events 

Detection of all consumer-relevant (see 1.) 
information with regard to focal firm that is 
published within event window 

Detection of further firm-value (see 1.) 
relevant information with regard to focal firm 
that is published within event window 

4. Estimation of expected normal and 
abnormal returns 

• Assumptions:  
− CBBE framework: prior information 

and expectations are embedded in 
mindset before event	
  

− Event entails unanticipated 
information to consumers 	
  

• Definition of relevant market (Market 
analysis) 
	
  

• Assumptions:  
− Market efficiency and rational 

expectation hypothesis	
  
− Event entails unanticipated 

information to investors	
  
• Definition of relevant market (Stock 

market index) 
 

5. Significance testing of abnormal returns  Application of parametric and/or non-parametric tests accounting for specific assumptions. 
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Figure 3: Classification of Consumer-related Confounding Events  

 
 

 

 

 

 

A) Product-/market-related events Examples from empirical study 

Product 
• New product introductions	
  
• Product recalls	
  

B) Behavioral/organizational-related events 

Corporate social (ir-)responsibility 
• Launch of CSR initiatives	
  
• CSI scandals 	
  

− Violation of fair operating 
practices	
  

− Violation of human rights / 
working conditions	
  

− Environmental scandal	
  

• -	
  

• Launch of new Blackberry 10 
system (Blackberry)	
  

• Presentation of new 5 series Touring 
(BMW)	
  

Price 
• Price increases 	
  
• Price discounts/promotions	
  

• Permanent price increases in 
transportation fairs (Deutsche Bahn)	
  

• Massive price cuts before Christmas 
season (Otto) 	
  Distribution 

• Changes in distribution networks	
   • New openings of shops in rural 
areas (IKEA)	
  

Communication 
• Sponsorship announcements / events	
  
• Testimonial related news 	
  

• Federal fines related to financial 
crisis (Deutsche Bank)	
  

• Corporate spying scandal (Deutsche 
Bahn)	
  

Organizational changes 
• Layoff/Downsizing initiatives	
  
• Management changes	
   • CEO and management change (BP)	
  

• Fukushima earthquake (Panasonic)	
  External shocks 

• -	
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3. Confounding Events 

The event study methodology assumes that researchers are able to isolate the effect of an 

event from the effects of other events. Ignoring to control for confounding events will lead to 

a systematic estimation bias. Consequently, one of the most crucial elements when 

conducting an event study is the control for confounding events (McWilliams and Siegel 

1997). In order to do so, it is necessary to conduct a thorough analysis to detect possible 

confounding events before, on, and after the event date (within the event window). For the 

detection of confounding events in event studies with marketing-based performance the event 

definition from financial research frameworks cannot be applied straight away (see 1.). 

Hence, a new typology of possible confounding events is needed. I provide a list of possible 

confounding events in Figure 3. To capture events that constitute a confounding character 

with respect to consumer perception, I differentiate between (a) product-/market-related 

events (e.g., new product introductions, product recalls, changes in price or distribution 

strategies) and (b) behavioral-/organizational-related events (announcements of corporate 

social irresponsibility initiatives, organizational changes, or external industry shocks). In 

total, my search for confounding events resulted in the detection of 56 confounding events 

during the estimation and event window, which lead to the deletion of the focal event from 

the sample.   

4. Estimating Abnormal Returns 

Event studies aim to determine if there is an abnormal change in the performance 

measure that can be attributed to the specific event. For this, the actual return has to be 

compared to an expected return. The expected return equals the hypothetical return that 

would have occurred in the absence of the focal event. The abnormal return for performance 

measure k (= brand strength, brand attention, and brand rating dispersion) on day t for brand i 

is calculated as the realized return Rkit minus the expected return E[Rkit] 
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        (1) 

with         (2) 

where K is the actual realization (observation) of the performance measure k (see Table 3 

again for the definition of performance metrics). Correct specification of the counterfactual, 

expected return is critical for the successful application of the method (McWilliams and 

Siegel 1997).  To estimate expected returns, I use three methods that are frequently used in 

current event study applications: mean-adjusted returns, market-adjusted returns, and market- 

and risk-adjusted returns (Brown and Warner 1985, Corrado 2011).  

Constant mean returns. The mean return model does not rely on economic theory but 

solely on statistical assumptions (MacKinlay 1997). Thus, it is a pure statistical forecast 

model that builds its expected returns (forecasts) on historical realized returns in the 

estimation period and assumes a constant mean return 

            (3) 

. 

The application is a rather simple comparison of the event date return with pre-event  

mean returns, which are estimated as 

.       (4) 

Hence, the mean return model does not use any firm-specific information from market-

wide information affecting the individual return. In cases where no economic theory is used, 

the best forecast model should minimize forecast errors in the absence of events. However, 

Brown and Warner (1985) show that the simple model fits quite well to stock market data 

and often provides similar results to more sophisticated models.  

 ARkit = Rkit − E Rkit⎡⎣ ⎤⎦

  
Rkit =

Ki,t − Ki,t−1

Ki,t−1

  
Rk ,i,t = µi + ε kit  

  
with E ε kit⎡⎣ ⎤⎦ = 0 and Var ε kit⎡⎣ ⎤⎦ =σε ,ki

  
E Rk ,i,t
⎡⎣ ⎤⎦ = µi
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If alternative performance measures such as consumer mindset metrics exhibit return 

characteristics that are in line with the basic assumptions of event studies (that is, the errors 

are normally independently distributed) the application to marketing-based performance 

measures is straightforward. This is because there is no underlying economic theory to 

consider (MacKinlay 1997). In this study, I include the results of the mean return forecasts 

for comparison.  

Market-adjusted returns. The more common approach in current event studies is to 

compare returns in the focal variable to average market returns (Wiles, Morgan, and Rego 

2012). Hence, these average returns establish a control group of a set of firms that are not 

confronted with the event under investigation. Therefore, this event study design, although 

not completely rigorous and fully randomized, resembles a controlled, repeated quasi-

experiment (Backhaus and Fischer 2016).  

A first approach that includes information from the control group is to use market-

adjusted returns. Here, the expected return for individual i is simply set to the overall market 

return  

            (5) 

with         .         (6) 

As a result, abnormal returns depict the difference of realized returns for individual i  to 

the market return. The application of such a research design is more than common in 

marketing and consumer research (Chen, Ganesan, and Liu 2009). My data set comprises 

brand performance information on the focal brand variables as well as for a group of a 

minimum of 10 and up to 25 competitive brands (see Table 2 for information on industries). 

This set establishes the control group and is used for the calculation of the expected market 

return of brand strength, brand attention, and brand rating dispersion.  

  
Rk ,i,t = Rm,t + ε kit  

  
E Rk ,i,t
⎡⎣ ⎤⎦ = Rm,i
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Market model returns. Market models assume that a stable (linear) relation between 

market-wide factors such as the market return and the individual return exists (MacKinlay 

1997). However, in comparison to the market-adjusted return models they allow for the 

inclusion of specific market factors (beyond the mean market return) and for variation in the 

individual performance metrics (Brown and Warner 1985).  

Many market models only account for one market-related factor which is the mean 

market return. Such one-factor models are applied in the vast majority of marketing-related 

event studies (e.g., Agrawal and Kamakura 1995; Geyskens, Gielens, and Dekimpe 2002; 

Swaminathan and Moorman 2009; Homburg, Vollmayr, and Hahn 2014). In this study  I also 

apply the one-factor model.12 The return of brand strength, brand attention, and brand rating 

dispersion is defined as  

                 (7) 

    , 

where Rm denotes the return on day t for the performance measure of the overall market and 

the parameters ,  specify the linear structure of the market model. The expected return is 

than calculated based on the estimated regression parameter ,   from the estimation 

window: 

.     (8) 

	
  
The economic theory for the application of market models to consumer mindset 

performance measures roots in consumer research. First, structural heterogeneity in consumer 

mindset metrics evolution across brands should be accounted for since brand-specific attitude 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
12 Multi-factor models such as the Fama-French-three- and -four-factor model allow for the inclusion of more 
factors in addition to the market return. In the case of consumer mindset metrics it could for example be useful 
to inlcude factors such as market concentration or industry advertising intensity.   
 

  
Rk ,i,t =α i + βi Rm,it  +ν kit

  
with E ν kit⎡⎣ ⎤⎦ = 0 and Var ν kit⎡⎣ ⎤⎦ =σν ,ki

α β

 α̂  β̂

  
E Rk ,i,t
⎡⎣ ⎤⎦ = α̂ i + β̂i Rm,it  
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responsiveness dominates time-specific dynamics (Hanssens et al. 2014). Second, all brands 

within a market are affected by structural changes in market demand or consumer 

preferences, technological advances, and other external market trends. Market brand metrics 

entail industry-wide effects that affect all brands together and drive individual brand 

measures (Backhaus and Fischer 2016). For example, the overall image of banks heavily 

suffered in the aftermath of the great financial crisis. Thus, in case of a layoff announcement 

during this period of time, one would expect a negative brand strength and positive brand 

attention and dispersion return in comparison to prior levels before the financial crisis. 

However, these returns are rather driven by the positive relationship between market brand 

measures and the focal brand’s strength, attention and dispersion, respectively. Hence, it is 

important to include market returns for a proper identification of effects. Furthermore, brand 

relevance differs significantly across different industries (Fischer, Völckner, and Sattler 

2010). Consumer perceptions (which drive brand strength, brand attention, and brand rating 

dispersion) across markets are structurally different. Consequently, a market return factor can 

capture such effects. Following the market-adjusted model I use the average industry brand 

perceptions as benchmark market returns. 

Estimation window. Given the selection of a performance forecast model, the estimation 

window needs to be defined. The selection of an appropriate estimation window is crucial for 

the proper estimation of expectations (MacKinlay 1997). However, there is no uniform rule 

that can be applied for choosing the correct window length. With regard to my data sample I 

define the estimation window as the three months prior to the event (=60 days), which should 

provide sufficient observations for estimation. I also provide robustness checks with respect 

to longer estimation windows in Appendix D (see robustness section). 

It seems rather implausible that leakage or insider information with respect to consumer 

perception exists on a general basis. However, in line with the traditional event study 
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approach, I account for possible leakage and exclude observations immediately before the 

event and define the estimation window as [-70; -10].  

Aggregation of abnormal returns. In order to draw inferences concerning statistical 

significance and average effect strength of abnormal returns it is necessary to aggregate 

returns over events and over time in the event window. In line with financial event studies 

aggregation across the sample of N events is straightforward and the average abnormal return 

AAR of performance metric k on day t is calculated as 

    .            (9) 

The average abnormal returns are then cumulated over the length of the event window [t1;t2] 

  .            (10) 

Since it is unclear how efficient consumer process new information on firms and brands 

and also how quickly consumer mindset metrics pick up these changes, I leave the length of 

the event window as an empirical issue. However, I define the maximum window length to 

be two weeks after the announcement (=10 days). Furthermore, I account for the effect that 

the diffusion of information through online media has taken place shortly before the first 

offline media publication. Therefore, the event window includes the day prior to the 

announcement. Robustness checks including up to three day prior to the announcement 

support the assumption that there is no further leakage (again see Appendix D). 

Consequently, the event window length varies running from the minimum of one day [-1,-1] 

to the maximum of 12 days [-1,10]. 

5. Significance Testing 

Hypothesis testing is an integral part of event studies to assess whether the abnormal 

effects pertaining to the sample of events are significantly different from zero (Corrado 

2011). That is, they are not the results of pure chance. The choice of the appropriate test 

  
AARk ,t =

1
N

A
i=1

N

∑ Ri,t

  
CAARk t1,t2⎡⎣ ⎤⎦ = A

τ=t1

t2

∑ ARτ
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statistic should be informed by the research setting and the statistical issues the analyzed data 

holds. Specifically, event-date clustering has been identified as central problem leading to (1) 

bias from event-induced volatility changes and (2) cross-sectional correlation of abnormal 

returns (Corrado 2011). In the application to marketing-related performance measures neither 

of both presumptions can be refuted or completely ruled out. Hence, in this study I apply 

parametric and nonparametric tests in order to protect against false inferences. Specifically, I 

apply the Patell-test (Patell 1967), the BMP-test (Boehmer, Musumeci, and Poulsen 1991) 

and the nonparametric sign test proposed by Cowan (1992) with respect to the cumulated 

abnormal returns of my three brand metrics.13   

6. Cross-sectional Moderator Analysis 

The variation in abnormal returns across single events cannot be explained by testing 

only for the significance of abnormal returns (McWilliams and Siegel 1997). Therefore, 

event studies typically apply a second stage multivariate cross-sectional regression (e.g., 

Wiles, Morgan, and Rego 2009, Homburg, Vollmayr, and Hahn 2014). The estimated 

cumulative abnormal returns of the brand strength (CARBS), brand attention (CARBA), and 

brand rating dispersion brand attention (CARBD) of each event j are the dependent variables in 

my moderator analysis:  

      (11) 

with k=(BS,BA,BD) and where Ln represents layoff-specific characteristics (strategic motive, 

layoff size, timing, and country of layoff) and Fn are the firm-specific characteristics (prior 

brand strength, prior brand attention, layoff history, country of origin, and industry). The 

parameters and are the respective effects of layoff- and firm-specific 

characteristics on brand strength and brand attention returns. The parameters and  are 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
13 See Corrado (2011) for a detailed discussion of tests and test-statistics. 
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intercepts and and  denote the error terms.14 The 179 layoff announcements determine 

the sample size of these regressions.  

 

5 Results 

5.1 Assessing the Model Fit 

Comparing the explanatory power and forecast efficiency of my return models to 

traditional financial event studies is not trivial because the necessary information is usually 

not reported by authors. Therefore, I assess the model fit and statistical characteristics of my 

approach to validate the application of the event study methodology to consumer mindset 

metrics. The market model regressions within the estimation window are on average highly 

significant across all 179 events (mean F-value = 7.57, p<.01). Furthermore, the error terms 

of the regressions as well as the absolute returns pass test for being normally distributed. In 

addition, all three expectations models offer robust results with respect to the significance 

and size of abnormal returns during the event window. In conclusion, my results support the 

validity of the event study application to consumer mindset metrics. 

5.2 Layoff Effects on Consumer Mindsets 

Table 4 presents the average cumulative average abnormal returns (CAARs) in the 

investigated mindset metrics based on the constant mean return model for all 179 layoff 

announcements and different time intervals. Table 5 and 6 present the results for the mean-

adjusted model and the market return model, respectively. Figure 4 illustrates the average 

abnormal returns by day (daily and cumulative) for each of the three consumer mindset 

metrics across the sample.  In the following, I discuss the market return model results for 

each consumer mindset metric in turn (Table 6).   

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
14 To account for measurement error in the abnormal returs and heteroskedastic errors, I apply weighted-least-
squares regression and weigth each observation with the inverse of the abnormal returns’ variance from the 
estimation window. 
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Brand attention effects. Consistent with Hypothesis 1 the abnormal returns for brand 

attention are positive on average. However, CAARs are significant only between day 5 to 8 

with respect to all three test statistics (CAARBA[-1;5], = .50%, p < .05 for all tests). 

Interestingly, event windows after day 8 do not show any significant CAARs. This result 

could indicate that the attention affect is rather a pulsing effect that diminishes after a couple 

of days. The largest cumulated effect on day 5 (.50%) is comparable in size to the negative 

effect on brand strength.  

Brand strength effects. I find significant negative CAARs with respect to brand strength 

from the day after the announcement [-1;1]. Until day 5, the results remain consistent 

showing increasing abnormal negative returns at high significance levels for all three tests 

(Patell-, BMH-, and Sign-test, p < .01). Hence, I find strong support for Hypothesis 2. Note 

that the effects of layoff announcements on brand strength are strongest for the one-week 

event window (CAARBS[-1;5] = -.53%, p < .01 for all tests). These results are consistent with 

prior findings on corporate reputation and customer satisfaction research (e.g., Love and 

Kraatz 2009, Habel and Klarmann 2015). The new information takes about a week to be fully 

reflected in the brand strength measure.  

Brand rating dispersion effects. Surprisingly, I do not find any significant effects with 

regard to the abnormal returns in brand rating dispersion which would support Hypothesis 3. 

CAARs for brand rating dispersion fluctuate from positive (CAARBD[-1;1], = .07%) to 

negative (CAARBD[-1;3], = -.35%) and seem to follow a random process. This is supported by 

the graphical illustration of AARs and CAARs over time in Figure 4. Hence, the spread 

between brand haters and lovers does not seem to increase or decrease after a layoff 

announcements   
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5.3 Explaining the Variance in Cumulative Abnormal Returns 

Table 7 presents the results from the cross-sectional regression of moderating variables 

on cumulated abnormal return (CARs) for brand strength and brand attention for the event 

window [-1;5]. I choose this window because the size of the returns is largest both for brand 

strength and brand attention within this time period. Please note that there are no significant 

returns identified for brand rating dispersion and results of the moderator analysis do not 

provide any further insights. Hence, I only report these results in Appendix C. I also could 

not detect any industry effects. As a consequence, because model fit did not change 

significantly, industry dummies are not included in the final regression model. In the 

following, I will discuss the most interesting findings from the moderation analysis for brand 

strength and brand attention. 

Brand attention. The cross-sectional regression with respect to brand attention only 

offers limited insights with an model fit (R2 = .09) and only two significant effects ( p < .05). 

First, when layoffs are communicated to be caused by financial distress, consumer’s attention 

is higher than in a proactive situation (γ1
BA = .170; p < .05). Second, the findings suggest that 

firms with previous high brand attention also receive more attention by consumers in the case 

of a layoff announcement (ω2
BA = .166; p < .01).  
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Table 4: Event Study Results With Respect to Consumer Mindset Metrics (Mean Model) 

A: Constant mean return model (estimation window = 60 days)	
  
Brand attention Brand strength Brand rating dispersion 

Day CAAR  
[-1,x] Pos:Neg1 Patell-test BMP-test CAAR  

[-1,x] Pos:Neg1 Patell-test   BMP-test CAAR  
[-1,x] Pos:Neg1 Patell-

test BMP-test 

-1 -.19% 83:96 .43 
 

-1.66 ** -.05% 94:85 -1.09 
 

-.70 
 

-.21% 84:95 .32 
 

.19 
 0 -.14% 83:96 -1.73 ** -.78 

 
-.15% 80:99* -.85 

 
-1.93 ** -.33% 85:94 .20 

 
-.15 

 1 -.16% 83:96 -.74 
 

-.67 
 

-.30% 74:105** -2.32 ** -3.19 *** .21% 87:92 -.11 
 

.78 
 2 .04% 81:98 -.59 

 
.51 

 
-.46% 70:109*** -3.69 *** -4.26 *** -.21% 86:93 .41 

 
.51 

 3 .25% 93:86 .47 
 

1.47 * -.49% 66:113*** -4.97 *** -4.17 *** -.14% 95:84 .24 
 

.58 
 4 .42% 91:88 1.55 * 1.31 * -.57% 65:114*** -4.64 *** -3.91 *** .79% 100:79* .26 

 
.71 

 5 .49% 106:73** 2.07 ** 2.54 *** -.55% 69:110*** -4.77 *** -3.99 *** .82% 100:79* .80 
 

2.54 *** 
6 .53% 101:78*** 2.25 ** 2.66 *** -.49% 76:103** -4.21 *** -3.34 *** -.18% 87:92 .94 

 
.46 

 7 .43% 93:86 2.31 ** 2.29 ** -.37% 83:96 -3.38 *** -2.44 *** .27% 97:82 .16 
 

1.49 * 
8 .25% 93:86 1.83 ** 1.39 * -.30% 87:92 -2.30 ** -1.98 ** .12% 95:84 .54 

 
.81 

 9 .19% 90:89 1.04 
 

1.08 
 

-.35% 78:101** -1.71 ** -2.34 *** .56% 100:79* .26 
 

1.81 ** 
10 .13% 91:88 1.04 

 
.79 

 
-.32% 80:99* -1.71 ** -1.94 ** .23% 86:93 .26 

 
1.06 

 Notes: *** p < .01; ** p < .05; * p < .1.  Two-sided tests. BMP = Boehmer-Musumeci-Poulsen test. CAAR = Cumulated average abnormal return.                          
1) Significance based on sign test proposed by Cowan (1991).	
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Table 5: Event Study Results With Respect to Consumer Mindset Metrics (Market-adjusted Model) 

B: Market-adjusted return model (estimation window = 60 days)	
  

 Brand attention Brand strength Brand rating dispersion 

Day CAAR 
[-1,x] Pos:Neg1 Patell-test BMP-test CAAR  

[-1,x] Pos:Neg1 Patell-test BMP-test CAAR  
[-1,x] Pos:Neg1 Patell-

test BMP-test 

-1 -.16% 89:90 0.70 
 

-1.68 ** -.02% 91:88 -0.34 
 

-0.74 
 

-.54% 78:101** -0.13 
 
-0.75 

 0 -.11% 82:97 -0.87 
 

-0.57 
 

-.13% 80:99* -0.30 
 

-2.18 ** -.58% 85:94 -0.71 
 
-1.10 

 1 -.10% 86:93 -0.28 
 

-0.45 
 

-.26% 72:107*** -0.93 
 

-3.13 *** .07% 84:95 -0.81 
 

0.32 
 2 .13% 89:90 -0.22 

 
1.01 

 
-.40% 72:107*** -1.24 

 
-3.86 *** -.39% 84:95 0.17 

 
-0.40 

 3 .33% 99:80* 0.49 
 

1.94 ** -.46% 70:109*** -1.64 * -3.63 *** -.52% 82:97 -0.20 
 
-0.71 

 4 .51% 104:75** 1.11 
 

1.70 ** -.53% 66:113*** -1.57 * -3.45 *** .00% 85:94 -0.32 
 
-0.63 

 5 .56% 103:76** 1.39 * 2.97 *** -.53% 61:118*** -1.67 ** -3.84 *** .22% 98:81 0.05 
 

0.89 
 6 .62% 102:77** 1.36 * 3.19 *** -.46% 77:102** -1.50 * -3.11 *** -.47% 86:93 0.34 

 
-0.86 

 7 .51% 97:82 1.46 * 2.72 *** -.36% 82:97 -1.21 
 

-2.61 *** -.17% 95:84 -0.29 
 

0.01 
 8 .32% 96:83 1.14 

 
2.06 ** -.30% 83:96 -0.91 

 
-2.22 ** -.28% 81:98 0.00 

 
-0.52 

 9 .29% 96:83 0.79 
 

2.20 ** -.32% 79:100* -0.69 
 

-2.46 *** -.01% 91:88 -0.18 
 

0.30 
 10 .25% 91:88 0.79 

 
2.10 ** -.28% 82:97 -0.69 

 
-1.86 ** -.36% 81:98 -0.18 

 
-0.43 

 Notes: *** p < .01; ** p < .05; * p < .1.  Two-sided tests. BMP = Boehmer-Musumeci-Poulsen test. CAAR = Cumulated average abnormal return.                          
1) Significance based on sign test proposed by Cowan (1991).  
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Table 6: Event Study Results With Respect to Consumer Mindset Metrics (Market Model) 

C: Market return model (estimation window = 60 days)	
  
Brand attention Brand strength Brand rating dispersion 

Day CAAR 
[-1,x] Pos:Neg1 Patell-test BMP-test CAAR  

[-1,x] Pos:Neg1 Patell-test BMP-test CAAR  
[-1,x] Pos:Neg1 Patell-

test BMP-test 

-1 -.20% 89:90 .37 
 

-1.26 
 

-.04% 92:87 -1.06 
 

-.65 
 

-.52% 81:98  .01 
 

-.56 
 0 -.13% 84:95 -1.28 

 
-.65 

 
-.14% 80:99* -.72 

 
-1.95 ** -.64% 82:97 -.55 

 
-1.11 

 1 -.15% 82:97 -.64 
 

-.54 
 

-.26% 70:109*** -2.17 ** -3.13 *** .07% 87:92 -.81 
 

.29 
 2 .08% 85:94 -.49 

 
.70 

 
-.39% 69:110*** -3.36 *** -3.91 *** -.35% 84:95  .16 

 
-.25 

 3 .27% 90:89 .65 
 

1.31 * -.46% 66:113*** -4.34 *** -4.01 *** -.35% 85:94 -.12 
 

-.19 
 4 .43% 97:82 1.40 * 1.14 

 
-.55% 66:113*** -4.35 *** -3.83 *** .09% 91:88 -.08 

 
-.05 

 5 .50% 101:78** 1.74 ** 2.30 ** -.53% 67:112*** -4.49 *** -3.95 *** .23% 98:81  .21 
 

1.06 
 6 .52% 101:78** 2.08 ** 2.55 *** -.48% 83:96 -4.02 *** -3.29 *** -.26% 90:89  .41 

 
-.17 

 7 .42% 93:86 2.29 ** 2.18 ** -.40% 81:98 -3.25 *** -2.68 *** -.10% 92:87 -.06 
 

.24 
 8 .28% 96:83 1.78 ** 1.41 * -.35% 84:95 -2.41 *** -2.35 *** -.25% 83:96  .09 

 
-.31 

 9 .20% 93:86 1.05 
 

1.07 
 

-.38% 77:102** -1.93 ** -2.60 *** .05% 87:92 -.11 
 

.55 
 10 .16% 87:92 1.05 

 
.60 

 
-.35% 78:101** -1.93 ** -2.15 ** -.24% 85:94 -.11 

 
.04 

 Notes: *** p < .01; ** p < .05; * p < .1.  Two-sided tests. BMP = Boehmer-Musumeci-Poulsen test. CAAR = Cumulated average abnormal return.                          
1) Significance based on sign test proposed by Cowan (1991).  
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Table 7: Cross-sectional Analysis of Moderator Effects (WLS-Regression) 

 
 

  

Brand attention  Brand strength 

  
Expected 

sign 
Standardized 
coefficient 

(Standard 
error) 

Expected 
sign 

Standardized 
coefficient 

(Standard 
error) 

Intercept 
 

+/- -.009 
 

(.008) +/- .003 
 

(.005) 
Layoff-specific moderators 
Strategic motive Proactive (base)  - 

	
    
 - 

	
    
 

Reactive +/- .170 ** (.005) + .105 * (.003) 
Layoff size 

 
+ -.036 

 
(3.3x10-7) - -.254 *** (2.0x10-7) 

Timing of announcement After financial crisis1  -­‐	
  
   -­‐	
  

	
    
	
  

During financial crisis2 +/- .147 * (.006) + .130 * (.004) 
Country of announcement United States (base)  - 

	
     - 
  

 
Germany +/- -.117 

 
(.005) - -.200 ** (.003) 

Firm-specific moderators 
Prior brand strength 

 
+ -.064 

 
(1.2x10-4) + .177 ***	
   (7.2x10-5) 

Prior brand attention 
 

+ .166 ** (2.5x10-4) +/- -.160 ** (1.5x10-4) 
Layoff history 

 
+ .009 

 
(.003) - -.044 

 
(.002) 

Country of origin Domestic (base)          Foreign + .061  (.005) - -.008  (.003) 

R2 
  

.09 
   

.17 
  F-Statistic 

  
2.15 ** 

 
4.36 *** 	
  

N 
  

179 
   

179 
  Notes: Expected returns are based on the market-return model (c); * p<.1, ** p<0.05, *** p<0.01. Tests are one-sided if clear 

directional effects are expected, two-sided if not.  Standard errors in parentheses. WLS regression, weights: standard deviation of 
returns in estimation window. 
1)After financial crisis: 2010-2012; 2) During financial crisis: 2008-2009.	
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Brand strength. Consistent with my expectations I find strong support for differences in 

CARs depending on the size of the layoff. The more employees are affected by a downsizing 

initiative the stronger is the negative effect on consumers’ brand evaluation (γ2
BS = -.254; p < 

.01). Prior brand strength reduces the negative impact of the layoff announcement whereas 

prior brand attention intensifies the negative effect (ω1
BS = .177; p < .01; and ω2

BS = -.160; p 

< .05). Furthermore, differences across cultures exist. Specifically, German consumers tend 

to punish firms more for laying off workforce (γ4
BS = -.200; p < .05). Surprisingly, it seems 

that it does not matter whether the announcing firm is domestic or foreign or which strategic 

motive the company owns.  

5.4 Robustness Checks 

I checked the robustness of my results in several ways (see Appendix D for details). 

First, I used a 100 day estimation window for the mean return and the market return model. 

Results are consistent but the sample size of layoff announcements is reduced significantly 

which limits the application of cross-sectional regression in the second stage. I also estimated 

effects in the dependent variables (brand attention, brand strength, and brand rating 

dispersion) using alternative estimation techniques instead of the outlined return 

specifications (daily changes, relative changes to the market, absolute values).15 Again, the 

results are on average stable and robust with respect to the return model. Finally, I estimated 

cross-sectional regressions for different event windows. None of these analyses suggest any 

different conclusions. 

 

 

 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
15 Results with respect to alternative estimation techniques can be received on request from the author. 
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Figure 4: Average Abnormal and Cumulated Average Abnormal Returns For Mindset 
Metrics (Market-Model) 

 
 Note: CAAR = cumulative average abnormal return, AAR = average abnormal return 
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6 Discussion 

6.1 Conclusion 

This study generates new insights with respect to the effects of layoff announcements on 

consumers. Overall, the findings suggest that consumers indeed notice the announcement of 

layoffs and that firm’s need to incorporate such effects into their decision making. The results 

reveal a significant effect on brand attention and brand strength. Surprisingly, no effects can 

be detected with respect to brand rating dispersion. Apparently, layoff announcements do not 

polarize enough between consumers to drive heterogeneity in brand evaluations. That is, 

consumers perceive layoffs similar and do not disagree about the evaluation of layoff 

announcements. 

The effects on brand strength and brand attention are asymmetric, thus they support my 

Hypotheses 1 and 2. Layoff announcements increase brand attention but weaken brand 

strength. This finding is consistent with prior literature that negative news raise attention that 

might be valued by a firm (Berger, Sorensen, and Rasmussen 2010). However, the effect of 

brand attention diminishes after about a week, whereas the effect on brand strength does not. 

This implies that the overall effect of layoff announcements is especially driven by the 

negative effect in brand strength.  

Furthermore, layoff and firm characteristics can be identified as key drivers of the 

announcement effect on brand attention and brand strength. There is higher brand attention in 

cases when layoffs are communicated to be caused by financial distress. This could be due to 

the fact that firms in financial distress (strategic motive) might generally receive more 

attention which is only triggered by the layoff itself. Moreover, I find that firms with high 

previous brand attention also receive more attention by consumers in the case of a layoff 

announcement. This finding contradicts prior research that suggests that less known brands 

gain relatively more attention from news (Berger, Sorensen, and Rasmussen 2010).  
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With respect to brand strength effects, I find that consistent with prior literature strong 

brands prior to the announcement serve as a buffer in case negative news about downsizing is 

covered in the media (Backhaus and Fischer 2016). Interestingly, German consumers react 

more negatively to layoff announcements than U.S. consumers. Although these results are in 

line with my expectations, they offer new explanations for different investor reactions across 

countries (Lee 1997). Although, reactive layoff announcements gain more attention by 

consumers, surprisingly, the type of layoff does not seem to influence the effects on brand 

strength. When firms proactively downsize they are not punished more by consumers than in 

situations of financial distress.  

6.2 Implications 

This study has implications for researchers and practitioners. Layoff initiatives usually 

aim to increase operational efficiency but short-term efficiency gains might be set off by 

negative effects on e.g., employee satisfaction and service quality (De Meuse et al. 2004). 

Therefore, in this study I provide insights into real-life layoff announcement effects on 

consumer mindset metrics and reveals asymmetric effects on brand strength and brand 

attention. This implies deferred negative financial performance effects (Hanssens et al 2014). 

I do not claim that every layoff has a severe negative effect on consumer brand perception 

but managers should be alert of a potential brand damage effect when announcing layoffs. 

From a practitioner’s perspective, my results are thus valuable because they help understand 

better which announcements when and where have the potential to involve significant 

negative effects on consumers and ultimately firm performance. This enables managers to 

incorporate brand effects into their consideration set to make better decisions. 

Furthermore, my study provides an important insight: although “hidden costs” of 

downsizing regarding employees, consumers, and brands are difficult to measure or estimate, 

investors should anticipate such effects. Hence, the results can guide investors to better 
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forecast stock market reactions to layoff announcements and also help when evaluating the 

costs and benefits from downsizing initiatives.  

Moreover, Hanssens et al. 2014 note that attitudinal metrics have potential, stickiness, 

and responsiveness to marketing. My study underpins the usefulness of disaggregate 

consumer mindset metrics and offers an additional perspective in studying the effect of non-

marketing related firm actions on consumers. Market research companies such as YouGov 

have recently begun to collect, track, and process such data. Managers should be aware to use 

these new data as it is shown to serve as useful alternative indicators for changes in brand and 

financial performance of firms. Managers can make use this new “normal” for their 

advantage in order to build competitive advantages. 

Finally, this study also outlines and discusses the necessary conditions and assumptions 

for extending the event study methodology to consumer mindset metrics. I provide a step-by-

step framework for the application of an extended event study to different performance 

metrics. Particular, I discuss the critical steps of modeling expectations in order to estimate 

abnormal changes in the dependent variable as well as the proper identification of 

confounding events. The results indicate that event studies are indeed a valuable tool in 

analyzing the effects and implications from specific, nonrecurring events on highly frequent 

consumer data. Thus, the extended framework for event study analysis can serve as a starting 

point for future research. It should guide researches through the necessary steps for 

transferring and conducting event studies in very different settings besides calculating 

abnormal stock returns. Although it is probably not possible to provide a fully comprehensive 

set of possible events with a confounding character, Figure 3 can serve as base for future 

event studies with marketing-related performance measures. The discussion of a conceptual 

definition of confounding events should also enrich academic discussion within this 

direction. 
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Appendix Paper II 

Appendix A: Details on the YouGov Brand Metric Measures 

In the following, I describe the data collection YouGov used from 2008-2012 to collect 

brand attention and brand strength (on which also brand rating dispersion is based) 

information. Starting in 2013 the company applies a modified methodology with an expanded 

the set of items. 

YouGov's BrandIndex is a daily measure of brand strength among the public, tracking 

many brands across multiple consumer sectors simultaneously. For the German market, 

YouGov monitors about 600 brands in 12 industry sectors, which cover the bandwidth of 

B2C industries by surveying approximately 2,000 consumers (panel size of 170,000) daily. 

For the U.S. market the company covers over 1,000 brands and 5,000 daily interviews.  

The data collection of YouGov can be described as follows: For each item a minimum of 

100 respondents per day are randomly drawn from the panel and provided with a set of up to 

25 brands for a pre-selected industry. To reduce common method bias respondents evaluate 

only one brand item per industry per enquiry. First, respondents select those brands (per 

click) for which they agree with the positive statement of the brand item (e.g., good brand 

quality). Then, they select those brands for which they agree with the negative statement of 

the brand item (e.g., poor brand quality). The aggregate raw brand strength measure (YouGov 

BrandIndex) is calculated by counting the number of respondents who agree with the six 

positive statements (items) and the number of respondents who agree with the six negative 

statements (items) divided by the total number of respondents (=  number of positive + 

negative + neutral respondents) multiplied by 100. As a consequence, the YouGov 

BrandIndex brand strength measure is a ratio-scaled variable and lies within the range of -100 

to +100. The brand attention metric is calculated by summing up all positive and negative 
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responses divided by the total number of respondents (= number of positive + negative + 

neutral responses). 

The collection procedure yields about 100 daily responses for each of the seven brand 

items. To ensure representativeness individual sampling weights are applied to correct for 

variations in the probability selection of respondents. Although panelists might be re-invited 

after a period of two weeks, they will be blocked for the respective sector and brand item 

they have answered before for a period of at least two months. This is important to eliminate 

repeated measurement as a source for demand effects and serial correlation in brand 

perceptions. Brand competition effects are also controlled for because respondents rate the 

competing brands within one sector simultaneously. 

 The BrandIndex consists of six items: perceived brand quality, brand value, brand 

satisfaction, brand recommendation, brand identification, and brand overall impression. 

Additionally, YouGov also asks respondents with respect to a seventh item: brand attention. 

Table A1 provides details on the exact question for each item.  
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Table A1 
ITEMS FOR MEASURING BRAND ATTENTION AND BRAND STRENGTH AND 

BRAND RATING DISPERSION (YOUGOV’s BRANDINDEX) 
 

Dimension Questions 

Brand attention 
About which of the following brands have you recently heard 
anything positive or negative either through media news, advertising, 
or word-of-mouth? 

Brand quality 
Which of the following brands do you think stand for good quality?  

Now, which of the following brands stand for poor quality?  

Brand value 

Which of the following brands do you think provide good value for 
money (or you would be willing to invest parts of your spare time)? † 
Now, which of the following brands do you think provide poor value 
for money (or you would be willing to invest parts of your spare 
time)? †† 

Brand satisfaction 

Choose all brands you are satisfied with or for which you believe you 
would be satisfied if you were a customer? 

Choose all brands you are dissatisfied with or for which you believe 
you would be dissatisfied if you were a customer? 

Brand  
recommendation 

Which of the following brands would you recommend to a friend or 
colleague?  
And which of the following brands would you recommend a friend or 
colleague to avoid?	
  

Brand identification 
Which of the following brands would you be proud of to work for or 
to be associated with? ††† 
Now, which of the following brands would you be embarrassed to 
work for or be associated with? ††† 

Brand overall  
impression 

Overall, of which of the following brands do you have a positive 
impression?  
Now, of which of the following brands do you have an overall 
negative impression?  

Note: Additional explanations provided to the respondent include: 
    † By that we don't mean "cheap," but that the brands offer a customer a lot in return for the price paid. 
  †† By that, we don't mean "expensive," but that the brands do not offer a customer much in return for the 

price paid. 
††† Imagine you (or your friend) were applying for the same sort of role at the following brands that you 

currently have or would apply for. 
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Appendix B: Details on Layoff Announcement Data 

The data collection process to identify layoff announcements in German and U.S. media 

involved a systematic 5-step approach: 

1. In the first step I generated a list of keywords commonly used in news headlines and 

articles with regard to layoffs or downsizing initiatives. For this purpose, I conducted 

brainstorming sessions with a panel of experts and journalists. Also, I enriched the 

keyword list through the Google AdWords “Find related searches” function.  

2. I then pre-tested the keywords (up to 60 keywords) on a random sample of ten a priori 

identified layoff announcements in order to reduce complexity and efficiency within 

the search algorithm. Based on the hit ratio of relevant articles and the total number of 

generated hits I excluded about 65% of all keywords. 

3. Next, I conducted search queries in LexisNexis and additional news archives by 

connecting all brands available from the YouGov database with our keyword list and 

searched for hits within the headlines and lead paragraphs of articles in leading U.S. 

and German media outlets. 

4. In a fourth step, two coders individually read all relevant articles and categorized 

crisis events with regard to the strategic motive and size of the layoff. Coding 

agreement across all variables was greater than 95%. Cases of non-agreement were 

decided by discussion. 	
  

5. Finally, in addition to the original layoff search, I double checked for possible 

confounding events for all detected layoff events within media articles, company 

reports, and news published through corporate webpages. 

Table B1 presents the layoff events that are part of my empirical analysis. It shows the 

company brand name, country of layoff announcement, and when the announcement was first 

published. 
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Table B1 
LAYOFF ANNOUNCEMENTS INCLUDED IN EMPIRICAL ANALYSIS 

 
ID Company Brand Country Date continued…. 
1 A&P US 8/16/12 46 Deutsche Bank GER 8/31/11 
2 Adidas GER 5/5/09 47 Deutsche Post GER 6/5/09 
3 Aetna US 12/31/09 48 Disney Channel US 6/7/11 
4 Air France US 9/4/09 49 e.on GER 8/27/08 
5 Air France US 6/21/12 50 e.on GER 11/23/10 
6 AirFrance GER 4/15/09 51 e.on GER 8/1/11 
7 AirFrance GER 9/4/09 52 EA Games GER 12/19/08 
8 AirFrance GER 6/25/10 53 EA Games GER 11/10/09 
9 AirFrance GER 5/22/12 54 Ebay GER 9/26/08 

10 Alfa Romeo GER 12/7/12 55 Ebay GER 10/1/09 
11 AMD GER 12/31/08 56 EWE Energy  GER 1/27/12 
12 American Airlines US 6/11/09 57 EWE Telco GER 1/27/12 
13 American Airlines US 2/2/12 58 FedEx GER 2/11/09 
14 American Airlines US 9/18/12 59 Fiat GER 12/7/12 
15 American Apparel US 9/4/09 60 Ford GER 5/30/08 
16 American Eagle US 12/16/11 61 Friendscout GER 6/22/12 
17 American Eagle US 3/22/12 62 Fujitsu GER 11/28/08 
18 American Express US 1/25/11 63 Fujitsu GER 8/31/09 
19 AstraZeneca US 12/7/11 64 Galeria Kaufhof GER 10/6/08 
20 AstraZeneca US 6/13/12 65 Galeria Kaufhof GER 7/17/09 
21 Bank of America US 8/19/11 66 Galeria Kaufhof GER 6/18/10 
22 Bank of America US 9/12/11 67 Galeria Kaufhof GER 4/20/12 
23 Bank of America US 5/1/12 68 Germanwings GER 5/29/12 
24 Bank of Scotland GER 1/19/12 69 Helaba GER 1/17/12 
25 Bank of Scotland GER 9/25/12 70 Hewlett-Packard GER 9/16/08 
26 Barclays Bank GER 12/13/12 71 Hewlett-Packard GER 5/20/09 
27 Bayerische Landesbank GER 6/18/08 72 Hewlett-Packard GER 5/23/12 
28 Bayerische Landesbank GER 2/26/09 73 HP US 6/2/10 
29 BlackBerry US 12/18/09 74 HP US 5/24/12 
30 BlackBerry GER 6/17/11 75 HSBC US 8/1/11 
31 BP GER 5/6/09 76 HTC GER 7/25/12 
32 Bristol-Myers Squibb US 9/24/10 77 ING-DiBa GER 7/1/09 
33 British Airways GER 10/7/09 78 ING-DiBa GER 11/7/12 
34 British Airways GER 8/3/12 79 Intel GER 1/22/09 
35 Canon GER 6/30/09 80 Johnson & Johnson US 11/2/09 
36 Chevron US 3/9/10 81 Kaiser's GER 6/30/10 
37 Citroen GER 11/21/08 82 Karstadt GER 9/2/08 
38 Citroen GER 7/13/12 83 Karstadt GER 7/17/12 
39 Citroen GER 12/12/12 84 KiK GER 6/30/10 
40 Commerzbank GER 7/13/12 85 KLM  US 9/14/09 
41 Continental GER 5/5/10 86 KLM US 6/21/12 
42 Continental GER 9/23/10 85 KLM  US 9/14/09 
43 Deutsche Bahn GER 3/13/09 86 KLM US 6/21/12 
44 Deutsche Bahn GER 9/4/09 87 Kodak US 9/10/12 
45 Deutsche Bank GER 10/21/10 88 L'Oréal GER 2/18/09 
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ID Company Brand Country Date continued…. 
89 Lexmark US 8/29/12 135 Santander  GER 3/27/12 
90 Lufthansa GER 11/18/08 136 Santander  GER 9/3/12 
91 Lufthansa US 5/4/12 137 Sharp US 8/2/12 
92 Lufthansa GER 5/29/12 138 Sharp GER 8/3/12 
93 Max Bahr GER 11/25/11 139 Sharp US 9/25/12 
94 Mazda GER 3/15/12 140 Shell GER 3/4/09 
95 Merck US 3/1/10 141 Shell GER 10/30/09 
96 Merck US 7/29/11 142 Shell US 10/30/09 
97 Merrill Lynch US 8/19/11 143 Shell GER 1/13/11 
98 Merrill Lynch US 9/12/11 144 SolarWorld GER 9/2/11 
99 Merrill Lynch US 5/1/12 145 SolarWorld GER 6/1/12 

100 Metro GER 10/6/08 146 Sony GER 8/24/12 
101 Metro GER 7/17/09 147 Sony US 8/24/12 
102 Metro GER 6/10/11 148 Sparkasse GER 7/16/08 
103 Morgan Stanley US 12/15/11 149 Sparkasse GER 11/12/09 
104 Motorola GER 10/31/08 150 Starbucks GER 7/3/08 
105 Motorola US 8/13/12 151 TNT GER 1/29/10 
106 Nike GER 2/12/09 152 TNT GER 6/28/10 
107 Nissan GER 2/10/09 153 Toshiba GER 4/17/09 
108 Nokia GER 11/12/08 154 Total GER 3/10/09 
109 Nokia GER 11/24/11 155 Total GER 6/19/09 
110 Nokia US 2/8/12 156 Total GER 3/9/10 
111 Olympus US 6/8/12 157 Toyota GER 2/13/09 
112 Otto GER 11/18/08 158 Triscuit US 1/18/12 
113 Otto GER 11/24/11 159 TUIfly GER 8/19/11 
114 Otto GER 4/20/12 160 UBS US 8/24/11 
115 Panasonic GER 12/29/08 161 Unicredit GER 10/19/10 
116 Panasonic GER 5/15/09 162 Unicredit GER 7/27/11 
117 Panasonic GER 4/28/11 163 Unicredit GER 10/10/12 
118 Panasonic US 4/28/11 164 United Airlines GER 6/25/08 
119 Panasonic GER 5/29/12 165 United Airlines GER 7/24/09 
120 Panasonic GER 11/15/12 166 US Airways US 10/28/09 
121 Pepsi GER 10/15/08 167 Vattenfall GER 2/1/12 
122 Peugeot GER 11/21/08 168 vodafone GER 2/24/09 
123 Peugeot GER 10/27/11 169 vodafone GER 1/29/10 
124 Peugeot GER 7/13/12 170 vodafone GER 8/10/12 
125 Peugeot GER 12/12/12 171 Volksbank GER 4/6/09 
126 Philips GER 11/21/08 172 Volksbank GER 10/19/12 
127 Philips GER 10/6/09 173 Volvo GER 6/26/08 
128 Philips GER 10/17/11 174 Whirlpool US 8/28/09 
129 Philips US 10/17/11 175 Whirlpool US 10/28/11 
130 Philips GER 9/11/12 176 Yahoo! GER 10/23/08 
131 Philips US 9/12/12 177 Yahoo! US 11/10/10 
132 Renault GER 7/25/08 178 Yahoo! GER 3/7/12 
133 RWE GER 7/18/12 179 Yahoo! US 4/4/12 
134 Santander  GER 10/12/11 176 Yahoo! GER 10/23/08 
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Appendix C: Cross-sectional Brand Dispersion Regression Results  

TABLE C1 
CROSS-SECTIONAL ANALYSIS OF MODERATOR EFFECTS (WLS-REGRESSION) 

 
 

 

Brand rating dispersion 

  
Expected 

sign 
Standardized 
coefficient 

(Standard 
error) 

Intercept  +/- -4.2x10-4  (.018) 
Layoff-specific 
moderators    
Strategic motive Proactive (base)  - 

  
 

Reactive +/- -.005 
 

(.012) 
Layoff size 

 
+ -.044 

 
(9.6x10-7) 

Timing of announcement After financial crisis1  - 
  

	
  
During financial crisis2 - .120 

 
(.013) 

Country of announcement United States (base)  - 
  

 
Germany + -.057 

 
(.013) 

Firm-specific 
moderators     
Prior brand strength 

 
+/- -.021 

 
(4.4x10-4) 

Prior brand attention 
 

+/- .066 
 

(7.7x10-4) 
Layoff history 

 
+/- .008 

 
(.007) 

Country of origin Domestic (base)      Foreign +/- -.109  (.013) 
R2 

  
.04 

  F-Statistic 
  

.77 
 N 

  
179 

  Notes: Expected returns are based on the market-return model (c); ** p<.05, *** p<.01. Tests are 
one-sided if clear directional effects are expected, two-sided if not.  Standard errors in parentheses. 
WLS regression, weights: standard deviation of returns in estimation window. 
1)After financial crisis: 2010-2012; 2) During financial crisis: 2008-2009.	
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Appendix D: Robustness Checks of Event Study Application 

Appendix D contains several robustness checks with regard to different assumptions 

regarding estimation and event window, and the calculation of abnormal returns. For the 

robustness analysis I focus on the market return model. Results with respect to alternative 

abnormal return models are robust and can be received on request from the author. 

Estimation window. Table D1  reestimates the event study specification using an event 

window with 100 days [-110;-10] for the market return model. Enlarging the event window 

leads to a reduction of layoff announcements that can be included in the final model (N=170).  

Event window. I also tests the robustness of results with respect to possible leakage 

before the layoff announcement. Table D2 presents the results when applying an event 

window of 14 days in total [-3;-10] to the market return model.  

Event window for moderation analysis. For the moderation analysis of the drivers of 

CAARs it is necessary to specify end date of the event window. Table D3 and D4 show the 

results of the cross-sectional analysis with regard to different specifications of the event 

window [-1;3]  and [-1;10].  
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Table D1 

EVENT STUDY RESULTS (MARKET MODEL) – ESTIMATION WINDOW 100 DAYS 

Estimation window = 100 days (market return model)  	
  

 Brand attention Brand strength Brand rating dispersion 

Day CAAR 
[-1,x] Pos:Neg1 Patell-test BMP-test CAAR  

[-1,x] Pos:Neg1 Patell-test BMP-test CAAR  
[-1,x] Pos:Neg1 Patell-

test 
BMP-
test 

-1 -.17% 78:92 .59   -1.65 ** -.05% 89:81 -.86   -.66   -.63% 77:93 -.07   -1.03 
 0 -.16% 75:95* -1.54 * -1.19   -.15% 82:88 -.65   -1.96 ** -.59% 75:95* -.89   -1.10 
 1 -.14% 79:91 -1.04   -.79   -.29% 75:95* -1.94 ** -3.32 *** .04% 90:80 -.72   .05 
 2 .09% 84:86 -.63   .64   -.42% 74:96** -3.11 *** -4.08 *** -.18% 85:85 .03   .10 
 3 .28% 85:85 .53   1.48 * -.47% 70:100** -3.85 *** -3.99 *** -.28% 82:88 .04   -.28 
 4 .42% 92:78 1.43 * 1.38 * -.56% 68:102*** -3.75 *** -3.98 *** .15% 92:78 -.10   -.11 
 5 .48% 98:72** 1.77 ** 2.28 ** -.54% 64:106*** -3.96 *** -3.90 *** .11% 92:78 .13   .57 
 6 .52% 100:70** 1.91 ** 2.40 *** -.49% 72:98** -3.55 *** -3.35 *** -.27% 78:92 .19   -.51 
 7 .43% 93:77 1.98 ** 2.18 ** -.40% 73:97** -2.90 *** -2.57 *** -.12% 90:80 -.14   .05 
 8 .26% 94:76* 1.61 * 1.39 * -.33% 78:92 -2.06 ** -2.09 ** -.31% 77:93 .02   -.57 
 9 .22% 93:77 .93   1.15   -.36% 72:98** -1.55 * -2.30 ** .08% 83:87 -.17   .33 
 10 .16% 84:86 .93   .87   -.33% 82:88 -1.55 * -1.90 ** -.25% 86:84 -.17   -.42 
 Notes: *** p < .01; ** p < .05; * p < .1.  Two-sided tests. BMP = Boehmer-Musumeci-Poulsen test. CAAR = Cumulated average abnormal return.                          

1) Significance based on sign test proposed by Cowan (1991).  
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Table D2 
EVENT STUDY RESULTS (MARKET MODEL) – EVENT WINDOW [-3,x]   

Estimation window = 60 days (market return model)  	
  

 Brand attention Brand strength Brand rating dispersion 

Day CAAR 
[-3,x] Pos:Neg1 Patell-test BMP-test CAAR  

[-3,x] Pos:Neg1 Patell-test BMP-test CAAR  
[-3,x] Pos:Neg1 Patell-

test BMP-test 

-3 -.01% 88:91 -.21 
 

-.23 
 

 .06% 98:81 1.18 
 

1.22 
 

-.58% 91:88 -.76 
 

-.79 
 -2 .00% 86:93 -.05  -.06   .12% 99:80* 1.52 * 1.57 * .01% 87:92 .01  .01  

-1 -.15% 81:98 -.80  -1.05   .08% 95:84 .83  .80  -.50% 89:90 -.32  -.67  
0 -.12% 78:101** -.48 

 
-.58 

 
-.01% 90:89 -.46 

 
-.42 

 
-.60% 78:101** -.47 

 
-1.02 

 1 -.13% 81:98 -.41 
 

-.52 
 

-.14% 84:95 -1.64 * -1.52 * .07% 90:89 .13 
 

.35 
 2 .08% 90:89 .50 

 
.66 

 
-.27% 80:99* -2.66 *** -2.46 *** -.29% 90:89 .00 

 
-.01 

 3 .24% 87:92 1.10 
 

1.34 * -.34% 69:110*** -2.86 *** -2.85 *** -.34% 85:94 -.06 
 

-.17 
 4 .36% 95:84 1.40 * 1.74 ** -.42% 69:110*** -3.12 *** -3.37 *** .17% 99:80* .20 

 
.65 

 5 .44% 101:78** 1.66 ** 2.23 ** -.41% 67:112*** -2.83 *** -3.18 *** .29% 99:80* .38 
 

1.34 * 
6 .50% 97:82 1.85 ** 2.50 *** -.36% 71:108*** -2.22 ** -2.63 *** -.23% 83:96 -.02 

 
-.05 

 7 .41% 97:82 1.48 * 2.19 ** -.28% 77:102** -1.53 * -2.00 ** -.05% 91:88 .15 
 

.48 
 8 .25% 95:84 .89 

 
1.41 * -.23% 82:97 -1.14 

 
-1.62 * -.20% 78:101** -.01 

 
-.04 

 9 .19% 94:85 .62 
 

1.08 
 

-.25% 79:100* -1.30 * -1.90 ** .06% 93:86 .14 
 

.55 
 10 .11% 87:92 .37 

 
.65 

 
-.23% 88:91 -1.06 

 
-1.48 * -.19% 90:89 .03 

 
.13 

 Notes: *** p < .01; ** p < .05; * p < .1.  Two-sided tests. BMP = Boehmer-Musumeci-Poulsen test. CAAR = Cumulated average abnormal return.                          
1) Significance based on sign test proposed by Cowan (1991).  
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Table D3 
CROSS-SECTIONAL ANALYSIS OF  MODERATOR EFFECTS (WLS-REGRESSION) – EVENT WINDOW [-1,3]   

    Brand attention Brand strength Brand rating dispersion 

    
Exp. 
sign 

Standardized 
coefficient 

Exp. 
sign 

Standardized 
coefficient 

Exp. 
sign 

Standardized 
coefficient 

Intercept 
 

+/- .004 
 

(.008) +/- .004 
 

(.008) +/- -.018 
 

(.017) 
Layoff-specific moderators 
Strategic motive Proactive (base)  - 

	
     - 
	
     - 

	
    
 

Reactive +/- -.118  (.005) + .147 ** -.005 +/- .083  (.012) 
Layoff size 

 
- .170 ** (3.4x10-7) - -.324 *** (1.6x10-7) + -.014  (9.2x10-7) 

Timing of 
announcement After financial crisis*  -    -    -   

	
  
During financial crisis* +/- .022  (.006) + .183 *** -.003 - -.087  (.013) 

Country of 
announcement United States (base)  -    -    -   

 
Germany +/- -.059  (.005) - -.146 ** (.003) + .132  (.012) 

Firm-specific moderators 
Prior brand strength 

 
+ .014  (1.2x10-4) + .191 *** (5.9x10-5) +/- .093  (4.2x10-4) 

Prior brand attention 
 

+ -.046  (2.5x10-4) +/- -.208 ** (1.2x10-4) +/- -.010  (7.4x10-4) 
Layoff history 

 
+ .085  (.003) - -.015  (.001) +/- .014  (.007) 

Country of origin Domestic (base)             

 
Foreign + -.010  (.005) - -.103  (.003) +/- -.069  (.013) 

                            
R2 

  
.05 

   
.24 

   
.03 

  F-Statistic 
  

1.15 
 	
    

6.58 *** 
 

.72 
 	
  N 

  
179 

   
179 

   
179 

  Notes: ** p<.05, *** p<.01. Two-sided tests. Standard errors in parentheses. WLS regression, weights: standard deviation of returns in estimation 
window. *After financial crisis: 2010-2012; *During financial crisis: 2008-2009.	
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Table D4 
CROSS-SECTIONAL ANALYSIS OF  MODERATOR EFFECTS (WLS-REGRESSION) – EVENT WINDOW [-1,10]   

    Brand attention Brand strength Brand rating dispersion 

    
Exp. 
sign 

Standardized 
coefficient 

Exp. 
sign 

Standardized 
coefficient 

Exp. 
sign 

Standardized 
coefficient 

Intercept 
 

+/- -.014 ** (.007) +/- .001 
 

(.007) +/- -.010 
 

(.017) 
Layoff-specific moderators 
Strategic motive Proactive (base)  - 

  
 - 

  
 - 

  
 

Reactive + -.015  (.004) + .095  (.004) +/- .176 ** (.012) 
Layoff size 

 
+ .185 *** (3.0x10-7) - -.110 * (2.7x10-7) + -.111  (9.1x10-7) 

Timing of 
announcement After financial crisis*  -    -    -   

	
  
During financial crisis* + .077  (.005) + .026 *** (.005) - -.185 ** (.013) 

Country of 
announcement United States (base)  -    -    -   

 
Germany +/- .112  (.005) - -.155 ** (.005) + -.049  (.012) 

Firm-specific moderators 
Prior brand strength 

 
+ -.037  (1.1x10-4) + -.011  (9.7x10-5) +/- -.049  (4.2x10-4) 

Prior brand attention 
 

+ .124 * (2.2x10-4) +/- -.006  (2.0x10-4) +/- .134  (7.3x10-4) 
Layoff history 

 
+ .085  (.003) - -.049  (.002) +/- -.050  (.007) 

Country of origin Domestic (base)             

 
Foreign + -.029  (.005) - .031  (.004) +/- .003  (.013) 

                            
R2 

  
.07 

   
.04 

   
.08 

  F-Statistic 
  

1.49 
   

.96 
  

1.78 * 
 N 

  
179 

   
179 

   
179 

  Notes: ** p<.05, *** p<.01. Two-sided tests. Standard errors in parentheses. WLS regression, weights: standard deviation of returns in estimation 
window. *After financial crisis: 2010-2012; *During financial crisis: 2008-2009.	
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PAPER III: HOW DO BRANDS GENERATE VALUE FOR INVESTORS? IT’s 

FROM NEW BUSINESS AND COMPETITIVE DISTINCTIVENESS  

 
Authors:  Marc Fischer, Max Backhaus, Tobias Hornig	
  

 

Abstract 

Prior research has shown that brands contribute to firm value. Investors assess the value of a firm 

by forming expectations about four main drivers: profitability, earnings growth, capital cost, and the 

persistence of excess return. There is, however, little knowledge about how exactly brands generate 

value for investors, i.e. which value drivers they influence.  

Based on a broad sample of firms across a variety of industries, the authors measure the impact 

of costumer-based brand equity on the four value drivers and ultimately firm value. The analysis 

produces interesting insights into the sources of value creation from brands. It turns out that brands 

primarily impact investors’ expectations about future earnings growth and the persistence of excess 

returns. The impact on expected profitability, however, is surprisingly small; and there is no uniform 

effect on the cost of capital. Hence, brands generate value for investors by their power to expand the 

business and to establish competitive distinctiveness. 

 

 

Keywords: Brand equity, advertising, corporate valuation, marketing strategy, econometric models 
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1 Introduction 

According to the theory of efficient capital markets, all available information about a 

company is incorporated into its stock price (Fama 1970). The stock price rises if unexpected 

new information arrives that lead investors to increase expectations regarding future cash 

flows. What happens if investors learn about an increase in brand strength? Extant prior 

research (e.g., Mizik and Jacobson 2008; Srinivasan and Hanssens 2009) shows that this is 

likely to result in a higher firm value. However, we do not know which expectations exactly 

investors update when they incorporate new information about brand performance and how 

that translates into higher firm value. Moreover, the magnitude of the impact is not well 

under-stood and only few marketers might have an intuition for that. 

Marketing practitioners typically think about how marketing actions change intermediate 

out-comes such as awareness that drive product-market results, e.g., market share, be it with a 

time lag. They are also increasingly aware of the power of marketing to create market-based 

assets such as brand equity that reflect the potential for future cash flow generation in a 

condensed form (e.g., Srivastava et al. 1998). Marketing managers' mental model is 

predominantly a demand model. In contrast, investors often have a different model in mind. 

Their model derives from corporate valuation. Instead of market share and demand 

responsiveness they focus on the spread between the return on invested capital and capital 

cost (excess return), future earnings growth, the cost of capital, and the persistence of excess 

returns. Of course, both models have multiple connections. A larger return on invested 

capital, for example, may arise from a higher willingness-to-pay (Keller 1993). But the 

connections between marketing investment and these value drivers are not well documented 

and quantified, yet. 

In this work, we attempt to quantify these connections. For this purpose, we adopt the 

established discounted cash flow approach to decompose firm value into the value of current 
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earnings strength and the value of investments into future growth. Mizik (2014) has shown 

that 90 percent of the total financial impact of brand equity is realized in the future and only 

10 percent through current earnings. According to financial theory (e.g., Copeland et al. 

2013), the value of future growth is mainly driven by four factors: the return on invested 

capital (ROIC), the cost of capital (WACC), the earnings growth rate (EGR), and the time 

period until the advantage in superior returns has eroded by competition (S - sustainability of 

excess return). We investigate how changes in advertising expenditures and customer-based 

brand equity (CBBE) impact these drivers of firm value. Specifically, we ask the following 

research questions: 

• How large is the relative impact (measured as elasticity) of CBBE on each of 
the four value drivers and its mediated impact on firm value? 

• Which is the most influential route of value generation for brands, i.e. via im-
proving which value driver? 

• Does the relative impact of CBBE on firm value and value drivers vary across 
firms and industries? 

• How do advertising expenditures impact (measured as elasticity) CBBE, then its 
value drivers, and ultimately firm value? 

• Do advertising investments in CBBE pay off in firm value? 
 

We answer these questions by analyzing a broad sample of 614 firms and more than 

1,200 brands covering a period of 9 years from 2005 to 2013 across a wide range of 

industries. Our database includes retailers, durable and non-durable products, as well as 

services. Though a healthy body of research on the role of brands for value generation exists, 

we cannot use it to answer our questions for two main reasons. First, we are not aware of a 

study that quantifies the impact of brands on the sustainability of excess re-turns, which is a 

key value driver. Second, we need to estimate the impact of CBBE on value drivers and firm 

value for each individual firm before we can aggregate them to generalizable results. This is 

necessary to avoid the aggregation bias from using aggregate market-level information to 
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compute our non-linear effect measures (Christen et al. 1997). Parameter estimates and key 

(financial) variables, however, are typically not available at the firm level from prior studies. 

The substantive insights into the magnitude of the effects of advertising and CBBE on 

value drivers and ultimately firm value are our main contribution. We also contribute to the 

literature by introducing and studying the sustainability of excess returns, which quantifies 

the important but unobservable construct of competitive advantage in financial terms. The 

magnitudes of our focal effects are not easy to predict, neither from theory nor prior 

empirical research. It turns out that brands primarily impact investors’ expectations about 

future earnings growth and the persistence of excess returns. The impact on expected 

profitability, however, is surprisingly small; and there is no uniform effect on the cost of 

capital. Hence, brands generate value for investors by their power to expand the business and 

to establish competitive distinctiveness. 

The remainder of the paper is structured as follows: In the next section we summarize the 

empirical literature on value drivers and the value relevance of brand equity. We then 

develop our modeling framework to decompose firm value and specify the estimation 

equations. The following section informs about the data sample and estimation issues. It is 

followed by a discussion of results. We conclude the paper with implications for further 

research. 

 

2 Background 

2.1 Corporate Valuation 

Many approaches to the valuation of companies exist. It is beyond our scope to review 

the corporate valuation literature in detail (see, for example, Koller et al. 2015; Damodaran 

2012). According to Damodaran (2012), valuation approaches can be broadly categorized 

into two classes of direct and relative valuation. Relative valuation refers to the multiplier 
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analysis where a set of similar companies is identified and their market value is linked to a 

common performance metric such as sales or earnings (EBIT). While widely used in practice, 

a challenge is to find the set of firms that is comparable to the focal firm. Another limitation 

to this approach is that the sources of value generation are not apparent. 

Direct valuation follows the framework of discounted cash flow analysis (DCF). Here, 

the idea is to estimate the intrinsic value of a company based on its fundamentals. It involves 

a projection of future cash flows that are discounted at an appropriate rate that reflects the 

riskiness and the capital structure of the firm. DCF valuation is attractive from both a 

theoretical and practical point of view. It requires being explicit about the input information 

for cash flow projections and coincides with the market value of a firm, at least in theory. 

Moreover, it allows identifying major drivers of value generation, which are (e.g., Copeland 

et al. 2013; Koller et al. 2015): the return on invested capital (ROIC), the cost of capital 

(WACC), the earnings growth rate (EGR), and the sustainability of excess return (ROIC-

WACC > 0). Our interest centers on these four value drivers. 

2.2 Literature on Brand Assets 

Srivastava et al. (1998) introduced the concept of market-based assets and their 

contribution to the creation of firm value.  A large body of research has developed since then. 

Since our focus is on brands we review the stream of related brand studies. This literature can 

be summarized into two groups. The first group of studies (e.g., Barth et al. 1998; Mizik and 

Jacobson 2008) attempts to establish evidence that brands are indeed valuable intangible 

assets, which contribute to shareholder/firm value. Without doubt, there is overwhelming 

support for the value relevance of brands, which is emphasized by Edeling and Fischer 

(2016). Their meta-analysis also reveals moderators of brand-related firm value effects, e.g., 

the state of the economy and competitive intensity. However, the aggregation level of the 

meta-analysis is too high to provide insights into the mediating role of value drivers such as 
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the sustainability of excess return. In addition, Edeling and Fischer (2016) call for more 

research at the firm level that helps understand the heterogeneity in firm value effects 

between industries and firms. We follow this call and extend the literature in this direction.  

Table 1 summarizes relevant studies of the second group, which investigate the role of 

brands for individual components and drivers of firm value. As is evident from the table, the 

majority of these studies (5 out of 10) focus on the relation between brands and risk factors. 

While strong brands appear to reduce the cost of debt, the findings on equity cost, i.e. 

systematic risk, are mixed. Bharadwaj et al. (2011) find a positive relation, but Rego et al. 

(2009) report a negative relation. Two other studies do not show any significant relationship. 

Quite in contrast, the findings on profitability are consistent and suggest that strong brands 

improve profitability. 

 Katsikeas et al. (2016) conclude that research on the impact of brands on profit/earnings 

growth is surprisingly thin. Indeed, we were able to find only one study (Morgan et al. 2009) 

that directly investigates the relationship between brand management capability and profit 

growth. This study finds no significant impact of brands on profit growth, which is against 

our intuition. However, we note that the focal variable is how managers evaluate their own 

brand management capabilities, which is not the same as the brand outcome perceived by 

customers. We acknowledge that growth information is implicitly contained in a sales or 

earnings response model. However, such a model does not capture the important quality of 

brands to create growth from entering new markets (e.g., new categories, new countries). 

This limitation also applies to the CLV modeling frameworks of Rust et al. (2004) and Stahl 

et al. (2012), which explicitly model growth through acquiring new customers but within the 

boundaries of a given market. We were not able to locate a study on the impact of brands on 

the sustainability of excess returns. 
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Table 1: Empirical Research on the Value Relevance of Brands  

Reference Data Brand Metric Model Dependent  
variables 

Key independent 
variables 

Key brand-related 
findings 

Elasticity 
obtainable

? 

Industry-
level 

effects? 
Aaker & Jacobson 
(2001) 

Financial data 
(1988-1994) 

CBBE 
(customer survey) 

Linear regression Stkr, ROE CBBE, ROE CBBE impacts ROE and Stkr 
positively 

Yes No 

Bharadwaj, et al. 
(2011) 

Financial data 
(2000-2005) 

CBBE 
(customer survey) 

Linear regression Stkr, Beta, 
idiosyncratic risk 

CBBE, earnings CBBE impacts Sktr and Beta 
positively, idiosyncratic risk negatively 

No No 

Fischer & Himme 
(2017) 

Financial data 
(2005-2012) 

CBBE (customer 
survey) 

Dynamic, 
simultaneous 
equation system 

Financial resources, 
credit spread, 
financial leverage 

ADV, CBBE ADV impacts CBEE positively, 
CBBE impacts credit spread and 
leverage negatively and financial 
resources positively 

Yes No 

Himme & Fischer 
(2014) 

Financial data 
(1989-2006) 

FBE 
(Interbrand) 

Linear regression Beta, credit spread FBE, customer 
satisfaction, reputation 

FBE impacts spread negatively, no 
impact on Beta and WACC 

No No 

Luo et al. (2012) Financial data 
(2008-2011) 

CBBE 
(customer survey) 

VAR model Stkr, idiosyncratic 
risk, trading volume, 
CBBE, CBBE 
dispersion 

Stkr, idiosyncratic risk, 
trading volume, CBBE, 
CBBE dispersion 

CBBE impacts Stkr positively, CBBE 
dispersion impacts Sktr and risk 
negatively 

Yes No 

Mizik (2014) Financial data 
(2000-2010) 

CBBE 
(customer survey) 

Linear regression Stkr, ROA CBBE, ROA CBBE impacts Stkr and ROA 
positively 

No1) No 

Morgan, et al. 
(2009) 

Manager survey, 
financial data 
(cross-section) 

Brand management 
capability (manager 
survey) 

Linear regression Revenue growth, 
margin growth, profit 
growth 

Capabilities of brand 
management, market 
sensing, CRM 

No impact of brand mgmt. capabilities 
on profit growth, positive impact on 
revenue growth, negative impact on 
margin growth 

Yes No 

Rego, et al. (2009) Financial data 
(2000-2006) 

CBBE 
(customer survey) 

Linear regression, 
ordered logit 
model 

Credit rating, 
systematic and 
nonsystematic risk 

CBBE, ROA CBBE impacts credit ratings positively 
and systematic and nonsystematic risk 
negatively  

Partially No 

Rust, et al. (2004) Consumer survey 
(cross-section) 

CBBE 
(customer survey) 

Choice model Brand choice, 
customer equity 

Brand-related, volume-
related, relationship-
related drivers 

Brand-related drivers impact brand 
choice and customer equity  
positively 

No No 

Stahl, et al. (2012) Company and 
customer data 
(1998-2008) 

CBBE 
(customer survey) 

(Aggregate) 
choice model, 
linear regression 

CBBE, acquisition 
rate, retention rate, 
profit margin, CLV 

ADV, CBBE, 
marketing mix 

ADV impacts CBBE positively, CBBE 
impacts profit margin and CLV 
positively 

Partially1) No 

This study Financial data 
(2005-2013) 

CBBE 
(customer survey) 

Linear regression, 
hazard model 

CBBE, ROIC, EGR, 
WACC, S, FV 

ADV, CBEE, ROIC, 
WACC, S 

ADV with positive impact on CBBE, 
CBBE positively impacts ROIC, EGR, 
S, FV; No effect on WACC 

Yes Yes 

Notes: ADV = advertising, CBBE = customer-based brand equity, FBE = financial brand equity, Stkr = stock return, ROA = return on assets, ROE = return on equity, CRM = customer relationship management, 
WACC = weighted average cost of capital, ROIC = return on invested capital, EGR = earnings growth, S = sustainability of excess returns, FV = firm value.  1) Elasticities cannot be obtained from z-standardized 
variables 



	
   158 

Collectively, prior research on the role of brands for the four value drivers provides 

important insights (see Table 1 again). However, its does not allow answering our research 

questions. First, the literature does not sufficiently cover all four drivers. Second, to be able 

to compare the role of drivers and calculate their ultimate firm value effects we need effect-

size estimates in elasticity format. This information is not always obtainable. Third, if we 

want to derive firm value effects of brands via the four value drivers on an aggregate, 

generalizable basis, we need to estimate them at the firm level. Using aggregate information 

in a non-linear valuation model produces biased results (Christen et al. 1997). Fourth, firm-

level results and industry-specific estimates are usually not available from prior studies.  

 

3 Theoretical Framework and Hypotheses 

We adopt a DCF framework to derive firm value. Generally, valuators follow two 

approaches, often in combination, a formula approach and a spreadsheet approach (Copeland 

et al. 2013). The spreadsheet approach requires estimating free cash flows explicitly for each 

single period of a forecast interval. It usually involves the collection of many detailed 

financial information about the company. The formula approach provides a closed-form 

solution to the valuation task. The big advantage of this approach is that it is compact and 

requires only forecasts of the key value drivers. This simplicity comes at the cost of a lower 

precision of forecasts for earnings. Because explicit earnings forecast are also subject to 

error, which increases in time, both approaches lead to very similar value estimates, 

especially if the time horizon is long.  

For our purpose to produce generalizable results for a large sample of firms, the formula 

approach appears to be the most appropriate. As we show later, it also enables us to estimate 

the sustainability of excess returns from observed market values of companies. 
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3.1 A Formula Approach to Corporate Valuation 

In a discounted cash flow framework, a firm’s value equals the present value of the 

expected future cash flows. When valuing a business, these expected cash flows are usually 

generated from estimated earnings in future periods, which in turn are determined by current 

earnings and the expected growth rate in these earnings (Koller et al. 2015). Thus, firm value 

in period t = 0, FV0, is equal to the sum of discounted future cash flows: 

                    

(1) 

where EBITt denotes earnings before interest and tax in period t, It are investments in 

new capital in period t, WACC is the weighted average of cost of capital, and τ denotes the 

cash tax rate. Note that WACC and τ do not have a time subscript, i.e. they are constant. 

This assumption is not too restrictive and frequently applied in practice (including 

spreadsheet valuations) because these metrics only change due to important exogenous 

shocks, e.g., a recession or a change in tax law, which are hard to predict. 

Copeland et al. (2013, 497ff) show that Equation 1 can be simplified and rearranged in a 

way that it decomposes firm value into two parts (see the Appendix C): 

        (2) 

The first part of Equation 2 collects future cash flows that are generated from the capital 

invested at the time of valuation. It reflects the value of the current earnings strength. The 

second summand reflects the value of growth expectations. ROIC measures the average rate 

of return on new investments that the firm expects to generate from its future projects. EGR 

represents the forecasted average rate by which earnings grow. Note that this growth is only 
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+
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value generating as long as the rate of return exceeds the cost of capital. A fundamental 

assumption of our valuation model is that these excess returns cannot be maintained forever. 

This assumption seems reasonable as no competitor can expand and earn more than the cost 

of capital on the investment in a long-run competitive equilibrium (Demsetz 1982). Only 

firms with a significant competitive advantage can sustain excess return over a longer time 

(Dierickx and Cool 1989). We call the length of this period the sustainability of excess return 

and denote it with S. 

3.2  Theoretical Framework of Value Drivers 

Equation 2 is our core valuation equation. Our interest centers on explaining the relative 

impact brand building has on the value drivers ROIC, EGR, WACC, and S. Figure 1 

summarizes the theoretical framework that guides our empirical analysis. Consistent with 

prior research (e.g., Stahl et al. 2012), we propose that marketing actions such as advertising 

investments contribute to brand building, which we measure in terms of customer-based 

brand equity (CBBE). We assume that an important portion of firm value comes from its 

growth expectations (Ghesquieres et al. 2016). We propose that CBBE potentially impacts 

the value of these growth expectations via its value drivers. 

Based on our valuation model, we set up a system of equations that can be estimated 

with econometric methods. Specifically, we specify five equations that help quantify and 

compare the different routes of value generation that arise from advertising and other 

investments into brands. Figure 1 shows our focal endogenous variables and the associated 

estimation equation. Before we turn to the econometric specifications we briefly discuss our 

rationale for the impact of CBBE on the four value drivers in form of testable hypotheses. 
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Figure 1: Theoretical Framework of Value Drivers 
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3.3 Hypotheses 

Srivastava et al. (1998) suggest various market performance effects that result from 

market-based assets, which then translate into shareholder value because they may accelerate 

and enhance cash flows and reduce the volatility and vulnerability of cash flows. From this 

framework and extant brand literature, we derive arguments for the differential effects of 

CBBE on the four value drivers.  

Strong and differentiated brands enjoy monopolistic power that enables them to 

command a price premium (e.g., Ailawadi et al. 2003). For example, the Porsche Cayenne 

and the VW Touareg result from a joint development initiative and are built on the same 

platform. Manufacturing costs are comparable, but Porsche is able to ask for a higher price 

because of the strength of its brand. Following Keller (1993), high CBBE is also associated 

with a customer base that is more responsive to marketing activities such as advertising and 

promotion. As a result, the marginal cost of marketing and sales are lower. These two effects 

directly improve the profit margin and lead us to our first hypothesis: 

H1: Higher CBBE is associated with higher return on invested capital (ROIC). 

It has long been argued that strong brands offer a higher potential to extend existing 

product lines, expand into related and new product categories, enter international markets, 

and increase revenues by licensing brand names to be used in other categories (e.g., Lane and 

Jacobson 1995; Srivastava et al. 1998). Luxury fashion brands such as Hugo Boss 

demonstrate how the brand name helped expand the business into new categories (e.g., 

women’s wear), open new stores across the world, and license the brand for sunglasses, 

cosmetics, etc. As a result, revenues and share price of the company rose considerably over 

the last 20 years. It is the greater awareness and positive associations potential customers 

hold with respect to a strong brand that reduce entry barriers and result into faster trial, 
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referrals, and adoption and stronger preferences for the new product (Keller 1993). These 

effects in turn lead to higher and faster earnings for the brand. Thus, 

H2: Higher CBBE is associated with higher earnings growth (EGR). 

The effect of CBBE on WACC is more complex and less obvious. To better understand 

the effect it is helpful to decompose WACC into its components. WACC is a capital-structure 

weighted average of the cost of equity and debt. Brands supposedly have an impact on the 

risk components of debt and equity cost and the capital structure (e.g., Fischer and Himme 

2017; Rego et al. 2009).  

Strong brands signal excellent marketing capabilities that ensure high inflow of cash in 

the future. This is an important criterion in the rating process of credit-rating agencies such as 

Standard & Poor’s because it strengthens the firm’s capability to fulfill its liabilities. Hence, 

CBBE should improve the rating, i.e. lower debt cost (Himme and Fischer 2014; Rego et al. 

2009). 

It has also been argued that CBBE lowers the systematic risk or equity risk, respectively 

(Rego et al. 2009). This is because strong brands tend to have more loyal customers, higher 

awareness rates and stronger preferences. In an economic downturn, these factors prevent 

customers from switching to other brands and retailers from delisting the brand reducing the 

volatility of cash flows. On the other hand, Himme and Fischer (2014) and others argue that 

CBBE may also increase systematic risk, in particular in times of economic prosperity. 

Strong brands respond to an upswing with faster growth (see H2). This growth comes with a 

side effect of higher cash flow volatility that increases the systematic risk. 

Finally, Fischer and Himme (2017) suggest that stronger brands are associated with 

lower leverage ratios. Because tangible assets (e.g., property, plant, and equipment) serve as 

collateral, finance theory suggests that firms with a higher ratio of tangible over intangible 

assets (such as brands) issue more debt (Titman and Wessels 1988). In addition, strong 
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brands help firms attracting equity capital because investors expect higher stock returns 

(Mizik and Jacobson 2008). Finance management prefers equity over debt capital because it 

provides them with more flexibility, especially in situations of financial distress. All these 

arguments suggest that firms with stronger brands have a lower debt-to-equity ratio, which in 

turn increases WACC. 

In view of these opposing influences of CBBE on WACC, we do not propose a 

unidirectional relationship. We rather expect that the relation is insignificant or marginally 

significant at best across firms. It seems to be more likely that some firms face a negative 

total effect of CBBE on their WACC and others a positive one, depending on market 

situation and firm characteristics. 

 Excess returns can only be realized if the firm is able to maintain a competitive 

advantage. The resource-based view of the firm posits that a firm reaches a sustainable 

competitive advantage by virtue of unique resources that are rare, valuable, inimitable, and 

non-substitutable, as well as firm-specific (e.g., Makadok 2001). The brand is such a strategic 

market-based asset that protects the company from competition and makes its future cash 

flows less vulnerable (Srivastava, Shervani, and Fahey 1998). Consumers have higher 

preferences for strong brands. These preferences impose switching costs that result into 

greater loyalty (Chaudhuri and Holbrook 2001). The unique position also shields the brand 

against competitive actions along the marketing mix (Mela et al. 1997). Eventually, strong 

brands increase barriers for entry of new competitors (Erickson and Jacobson 1992). Hence, 

H3: Higher CBBE is associated with a longer period of excess returns (S). 
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4 Econometric Model Specifications 

4.1 Modeling Requirements 

Our empirical model includes five key constructs, CBBE and the four value drivers, 

which we assume to be endogenous. We start specifying the CBBE equation followed by the 

equations for profitability, earnings growth, capital cost, and sustainability of excess return. 

Before we turn to the exact specifications, we briefly discuss several requirements our 

equations have to satisfy. Specifically, we need to model expectations and account for 

dynamics, heterogeneity, diminishing returns, and the influence of control variables. 

Expectations. Market valuation of a business is based on investors' expectations about 

the stream of future cash flows. Thus, our focal value driver variables are expectations about 

ROIC, earnings growth, WACC, and sustainability of excess return. Ideally, we may ask 

investors for their expectations. For earnings growth, we have such information from a 

regular survey among analysts available. We derive the expected sustainability of excess 

return from firm market values. We adopt a modeling approach to measure expectations for 

ROIC and WACC. 

Heterogeneity. We pool data from various firms and markets for model estimation. We 

thus need to control for idiosyncratic differences in our focal constructs that arise from firm 

and market differences. We include firm size and market concentration as two observable 

heterogeneity variables. In addition, we specify the intercept in each equation as firm-specific 

and assume that these effects follow a random distribution (e.g., Himme and Fischer 2014). 

By incorporating firm-specific effects, we also effectively control for omitted firm 

characteristics such as management luck or other market-based assets, which we do not 

observe. Since we model the unobserved firm characteristics in a Bayesian fashion as part of 

the intercept they do not appear in the error term. We thus circumvent endogeneity issues that 

may arise when other predictors correlate with unobserved firm characteristics as part of the 
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error term. Finally, we specify the parameters for advertising in the brand equity equation and 

CBBE in all other equations to be heterogeneous. This enables us to measure firm differences 

in their effectiveness of influencing CBBE, the value drivers, and ultimately firm value. 

Dynamics. We include the lagged dependent variable to control for carryover effects. 

This specification corresponds to the established and parsimonious notion of geometrically 

distributed lags (Hanssens et al. 2001). Another advantage is that the impact of other 

predictors can be interpreted more readily as (Granger) causal. It also controls for different 

initial conditions (Tuli and Bharadwaj 2009). We check for other dynamics such as non-

stationary time-series and serially correlated error terms but do not find evidence for these 

characteristics.16 

Diminishing Returns. Marketing investments should be subject to diminishing returns, 

which is also a necessary condition for the existence of an optimal investment level 

(Hanssens et al. 2001). We take the log of advertising and other expenditure variables in the 

brand equity equation, which can be interpreted as our marketing productivity equation. 

Control variables. We include various control variables that are assumed to impact our 

focal constructs. These controls cover strategic variables (e.g., R&D expenditures), financial 

variables (e.g., financial leverage), and variables of operational efficiency (e.g., operating 

margin). Prior research in finance, accounting, marketing, and strategy guides the selection of 

these variables. We also account for economy-wide, period-specific influences by 

incorporating the growth in U.S. GDP. Since our focus is on the effects of CBBE on the 

value drivers, we do not discuss the control variables in detail. Appendix F lists the various 

control variables, assigns the equation where they appear, and provides reference from 

supporting literature. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
16 The test for common factors (Greene 2012) does not suggest serially correlated errors (p > .10). Using panel 

unit-root tests (Fisher-type based on augmented Dickey-Fuller tests; Choi 2001), we cannot reject the null 
hypothesis of non-stationary time-series. 
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4.2 Specification of Estimation Equations 

CBBE Equation. For measuring the impact of advertising investments and other 

variables on CBBE, we specify the following equation 

          (3)  

with ,   

where a denotes the vector of parameters to be estimated, i is an index for firm, t is an index 

for period, and u is an i.i.d. error term. Appendix Table A1 summarizes the symbols and 

abbreviations we use for predictor variables in Equation 3 and the following equations. 

Vector ai includes the parameters that are assumed to be firm specific, where  is the mean 

and wai is a random vector with mean zero and variance matrix equal to an identity matrix. 

We allow the firm-specific parameters a0i and a2i to be correlated. The matrix psi provides the 

correlation and variances in the distribution of ai. We impose the same flexible structure on 

the parameter vectors in all other equations. 

To account for diminishing returns in expenditure variables, such as advertising, we take 

the log of these variables. We measure carryover by the parameter a1. The use of lagged 

values for the predictor variables avoids potential endogeneity issues. Consistent with the 

next equation for ROIC, we can also interpret Equation 3 as a model for expectations on 

CBBE. 

Profitability Equation. Let  measure the expected return on invested capital. We 

assume that investors form their expectations on the basis of the following information set 

   (4.1) 

with , 

  

CBBEit = a0i + a1CBBEit−1 + a2i ln ADVit−1 + a3 ln RDit−1 + a4 lnOEit−1

+a5OPMit−1 + a6EARNit−1 + a7SIZEit−1 + a8CONCit−1 + u1it ,

    
u1it ∼ N 0,σ u1

2( ),   a i = a +Ψawai ,  and Var a i( ) = Ψa ′Ψa

 a

  ROIC! it

   

ROIC! it = b0i + b1ROICt−1 + b2iCBBEit−1 + b3 ADVit−1 + b4RDit−1

+b5OEit−1 + b6LEVit−1 + b7GDPGRt−1 + b8SIZEit−1 + b9CONCit−1 + u2it ,

    
u2it ∼ N 0,σ u2

2( ),   bi = b +Ψbwbi ,  and Var bi( ) = Ψb ′Ψb
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where b denotes the parameter vector to be estimated and all other terms are as defined 

before. Note that investors can only use past information to build expectations about future 

ROIC. In period t, expected  then explains realized ROICit up to an error, which we 

denote with ϕ and assume to be i.i.d. normal distributed. Thus  

  .     (4.2) 

Inserting Equation 4.1 into 4.2 then produces our estimation equation that includes only 

observable quantities and that we take to the data. 

Earnings-Growth Equation. We specify expected earnings growth as follows 

          (5) 
 

 with ,  

where c denotes the parameter vector to be estimated and all other terms are as defined 

before. Earnings growth expectations are available to us from a regular survey among 

analysts. Since the mean is subject to sampling error that depends on the number of analysts, 

it introduces heteroskedasticity into the error variance. We account for this by using the 

number of analysts as a weight when estimating the model. 

Cost-of-Capital Equation. Building on previous research in the marketing-finance 

interface (e.g., Rego et al. 2009, Himme and Fischer 2014), we specify the following 

equation to predict expected cost of capital  

    (6.1)   

 with ,  

  ROIC! it

   ROICit = ROIC! it +ϕ it ,   with Cov u2it ,ϕ it( ) = 0

   

EGR! it = c0i + c1 EGR! t−1 + c2iCBBEit−1 + c3 ADVit−1 + c4RDit−1 + c5OEit−1

+c6EARNit−1 + c7 D _ NEARNit−1 + c8LEVit−1 + c9ROICit−1

+c10IRit−1 + c11GDPGRt−1 + c12SIZEit−1 + c13CONCit−1 + u3it ,

    
u3it ∼ N 0,σ i,u3

2( ),   ci = c +Ψcwci ,  and Var ci( ) = Ψc ′Ψc

   

WACC! it = d0i + d1WACCt−1 + d2iCBBEit−1 + d3OPMit−1 + d4LEVit−1 + d5INTit−1 + d6DIVit−1

+d7 A_ GROWTHit−1 + d8LIQit−1 + d9SIZEit−1 + d10CONCit−1 + u4it ,

    
u4it ∼ N 0,σ u4

2( ),   di = d +Ψd wdi ,  and Var di( ) = Ψd ′Ψd
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where d denotes the parameter vector to be estimated and all other terms are as defined 

before.  Expected  explains realized WACCit in t up to an error, which we denote 

with η and assume to be i.i.d. normal distributed. Thus 

 .     (6.2) 

Inserting Equation 6.1 into 6.2 then produces our estimation equation. 

Sustainability-of-Excess-Return Equation. We now turn to our last estimation equation to 

explain expected sustainability of excess returns. Recall that this variable measures the length 

of the period during which the firm is expected to earn rents above its cost of capital. As a 

result,  is a duration variable that is nonnegative by definition. This requires an appropriate 

distributional assumption and estimation approach, such as a hazard model (Greene 2012). 

Several distributions have been suggested for duration variables including Weibull, Gamma, 

and Lognormal distributions. The Weibull distribution is a very flexible distribution that 

allows for both monotonic and non-monotonic shapes of the marginal distribution and 

encompasses the exponential distribution as a special case (Greene 2012). We adopt this 

distribution but also test whether this assumption is supported by our data (see the Appendix 

Figure H1). 

Note since the duration of superior rents is a unique event that follows a random 

distribution, it is conceptually not apt to include the lagged dependent variable into the 

model. We specify our last equation for expected sustainability of excess returns as follows 

    

(7)      

 with , 

  WACC! it

   WACCit =WACC! it +ηit ,   with Cov u4it ,ηit( ) = 0

  !S

   

f !Sit( ) = λit p( ) λit
!S( )p−1

e− λit
!S( )p

,  for !Sit > 0, λ > 0, p > 0,

with λit = exp −
g0i + g1iCBBEit−1 + g2 ADVit−1 + g3RDit−1 + g4OEit−1
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where describes the density of expected sustainability , λ is the location 

parameter and p is the scale parameter that characterize the moments of the distribution and 

are to be estimated, g denotes the parameter vector to be estimated, and all other terms are as 

defined before. Again, we consider one-period lagged values for all predictor variables to 

account for the fact that investors use prior information levels when forming their 

expectations. We adopt a hazard function approach to estimate the parameters in Equation 7 

(Greene 2012). 

5 Data and Estimation 

5.1 Data Sources 

We collected data on an annual basis from various databases. These databases include 

Harris Poll EquiTrend, COMPUSTAT, Bloomberg's, the Center for Research in Security 

Prices (CRSP), and I/B/E/S. Our data collection covers the years from 2005 to 2013. The 

sample includes 614 companies from major industry sectors, such as financial institutions, 

consumer packaged goods, etc. The total number of observations exceeds 5,000. But, because 

we do not necessarily observe all variables for each firm and period the effective sample size 

is considerably smaller and varies by equation. 

Measures. We use the established EquiTrend data to measure CBBE (e.g., Bharadwaj, 

Tuli, and Bonfrer 2011). The measure is a latent variable scaled to a 0-100 index and 

estimated by using four individual-level consumer variables: familiarity, perceived quality, 

purchase consideration, and distinctiveness (see Appendix E for a detailed description). 

Following prior practice (Rego et al. 2009), we aggregate mean ratings of different brands for 

multi-brand firms. 

We use COMPUSTAT data to construct our ROIC variable. Specifically, we use 

operating cash flow (DATA 308), which is defined as net operating profit after tax, and 

invested capital (DATA 37) to calculate the financial ratio. 

f !S( )   !S
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Our expected earnings growth variable represents the 5-year consensus forecast of 

analysts that is provided by the I/B/E/S database. These analyst forecasts are broadly 

considered by investors (Kothari 2001).  

Bloomberg provides all information we need to calculate WACC. We follow the 

standard approach (e.g., Rego et al. 2009) and estimate firm-specific beta on a yearly basis by 

using daily stock returns for each firm. Together with information on credit spreads, the yield 

of a risk-free bond, and the capital structure, we obtain WACC for each year and firm. 

Sustainability of excess return is a latent construct and not observable. From our DCF 

model, however, we know that it is an inherent part of the valuation process. Assuming 

efficient capital markets, it is implicitly incorporated in a firm’s current market value since 

market capitalization provides an unbiased estimate of the value of the firm. Consequently, 

we solve Equation 2 for  (for details, see the Appendix C): 

,     

(8)     

where firm value FVit is the sum of the average market value of equity over trading days 

of a year and the book value of debt (COMPUSTAT's DATA 9) as of December 31 of the 

respective year. Equations 4 and 6 provide values for and . is based on

the 5-year consensus forecasts by analysts. CRSP and COMPUSTAT deliver the remaining 

information. 

Control variables. Financial data such as leverage, dividend payouts, size, etc. are 

obtained from COMPUSTAT. COMPUSTAT also provides data on marketing and R&D 

expenditures. We compute the C4-concentration index by aggregating the market shares of 
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the four largest firms at the two-digit NAICS level. Appendix Table A2 provides further 

details on the definition and data sources of variables used in our analysis. Note that we do 

not model stock returns but absolute firm value as a result of a corporate valuation model. For 

that reason, we are not concerned with different release periods as all information is properly 

aligned at year-end.  

5.2 Descriptive Statistics and Model-free Insights

Table 2 presents the descriptive statistics for our data. Mean CBBE is 56.29. Mean return 

on invested capital corresponds to .22. Analysts forecast the mean 5-year earnings growth to 

be .13, on average. The mean cost of capital amounts to .09 during the period 2005-2013. 

Investors expect that the average firm in our sample has a sustainability period of 14 years 

during which the firm may enjoy profitable growth (ROIC > WACC). This finding is in line 

with the conclusion by Rappaport and Mauboussin (2001) that a period of at least 10 years is 

required for most listed companies to justify their market valuation. Note we also estimate a 

period of 0 years for 74 out of 491 cases (15%), which reduces the median to 8.4 years. 

Appendix Table B1 shows the correlation matrix for our model variables. There is no 

excessive correlation suggesting collinearity issues, which is also supported by variance 

inflation factors (VIF) statistics below the threshold of 10 and condition indexes below 30 

(Greene 2012). 

We conduct simple mean-difference tests to generate first insights from a model-free 

analysis. Table 3 summarizes the results. Here, we build two groups that include observations 

with low CBBE vs. high CBBE. We then compare the group means for our key performance 

variables. Panel A shows the results if we split the sample based on the median CBBE. In 

Panel B, we compare the means between the lowest and highest quartiles in terms of CBBE. 
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Table 2: Univariate Statistics (2005-2013) 

N Mean Median Std. Dev. 

Firm value ($m) 3,588 32,074.90 10,419.69 61,456.74 
CBBE (0-100) 3,289 56.29 56.68 7.87 
Profitability (ROIC) 4,478 .22 .20 .47 
Earnings growth (EGR) 3,292 .13 .11 .19 
Cost of capital (WACC) 3,364 .09 .09 .03 
Sustainability of excess returns 
(years) 1)

491 14.04 8.39 18.48 

 EBIT (1-τ) ($m) 4,514 2,883.66 826.50 6,730.35 
Advertising expenditures ($m) 2,593 559.87 162.60 1,104.35 
Other expenditures ($m) 4,472 2,658.16 482.86 5,870.54 
R&D expenditures ($m) 5,517 435.57 .00 1,394.34 
Firm size (ln total assets in $m) 4,522 9.25 9.15 2.10 
Financial leverage (ratio) 4,284 2.71 1.11 14.25 
Industry concentration (ratio) 5,517 .34 .33 .14 
Investment rate (ratio) 4,338 .75 .91 12.57 
US GDP growth (ratio) 5,517 .04 .04 .02 
Operating margin (ratio) 4,457 .03 .14 4.55 
Pretax interest coverage (ratio) 4,133 2.87 .07 93.06 
Dividend payout (ratio) 3,882 .51 .14 6.11 
Asset growth (ratio) 4,399 .06 .04 .24 
Liquidity (ratio) 3,894 1.72 1.44 1.36 
1) Sustainability is calculated according to Equation 8 using predicted values for ROIC and WACC from
Equations 4 and 6. The sample size of these regressions explains the low number of observations for 
sustainability. For the univariate statistics, we exclude outliers that are more than 6 standard deviations 
away from the mean (32 cases). 74 out of 491 cases show an expected duration of 0 years. 

Results of the difference test provide first evidence in favor of our hypotheses. There are 

significant differences in terms of firm value, ROIC, earnings growth forecasts, and the 

sustainability of excess return. Firms with stronger brands enjoy higher firm values, profits, 

and earnings growth, as well as a longer period of excess return. Unsurprisingly, these 

differences are more pronounced when we compare the end quartiles of the distribution of 

CBBE. However, we find no significant differences in the cost of capital. 
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Table 3: Testing the Differences Between Group Means 

Expected 
difference 

Observations 
with low CBBE 

Observations with 
high CBBE 

Difference 
(t-statistic) 

N Mean N Mean 

Panel A: Group split based on median CBBE in total sample 

       CBBE = 50.14         CBBE = 62.44  

Firm value High > Low 1,128 37,058 1,186 47,182  3.397 *** 
EBIT (1-τ) High > Low 1,420 3,684 1,405 4,001 1.051  
Profitability (ROIC) High > Low 1,403 .22 1,393 .27  3.425 *** 
Earnings growth (EGR) High > Low 1,031 .12 1,152 .13 .754 
Cost of capital (WACC) ? 954 .09 1,080 .09 1.363 
Sustainability of excess 
returns (S) 

High > Low 116 14.22 336 14.16 .026 

Panel B: Group split based on highest and lowest sample quartiles for CBBE 

              CBBE = 46.03           CBBE = 65.56 

Firm value High > Low 581 38,390 637 45,296  1.736 * 
EBIT (1-τ) High > Low 716 3,512 712 3,553 .095  
Profitability (ROIC) High > Low 706 .21 705 .30  3.919 *** 
Earnings growth (EGR) High > Low 506 .11 606 .14  2.888 *** 
Cost of capital (WACC) ? 507 .09 543 .09 .909 
Sustainability of excess 
returns (S) 

High > Low 46 10.64 185 15.41  1.802 ** 

Notes:  The test for differences between group means is based t-tests that correct for unequal group 
variances if necessary. Tests are one-sided if clear directional effects are expected, two-sided if not. 
Sample sizes differ depending on the available observations for focal variables.  *** p < .01; ** p 
< .05; * p < .1. 

5.3 Estimation Issues

We use a two-step simulated maximum likelihood approach with instrumental variables 

(IVs) for estimation (Fischer et al. 2010). Under the usual regularity conditions, this estimator 

is consistent and asymptotically normal distributed. We use instrumental variables in 

Equations 4-7 to reduce the danger of biased estimates that may result from a potential 

simultaneity between CBEE and the drivers of firm value. It is possible that firms anticipate 
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investors’ expectations for ROIC, as example, that in turn influences their current 

investments in CBBE to meet these expectations.  

Identification. IV estimation requires that we have sufficient and appropriate instruments 

available to identify CBBE. Except for CBBE and the lagged dependent variable, we treat all 

other predictors in an equation as predetermined variables, which we test for, and thus as a 

potential instrument. To properly identify CBBE we need to use information outside the 

equation. Equation 3 provides this information. Here, we assume that CBBE in year t results 

from prior investments in advertising, R&D, and other activities. Brand investments are also 

likely to be higher the larger previous year’s earnings and operating margin are. Since CBBE 

enters the value driver equations 4-7 with a lag of one year we use two-years lagged values of 

the predictors of Equation 3 (excluding lagged CBBE) as instruments (see also Appendix 

Table B2 for details). 

Validity and strength of instruments. IV estimation rests on the assumption that the 

exclusion restriction holds. Though there is no absolute certainty about this we can employ 

several tests to support this assumption. Specifically, we apply three tests to check for the 

validity and strength of our instruments. Details about the instruments used and test results 

for each estimation equation are provided in Appendix Table B2. 

We first apply the Hausman-Wu test (Greene 2012) to check whether the predetermined 

variables in Equations 4 to 7 can be treated as exogenous. The test does not reject the 

exogeneity assumption for these variables. We also test for the exogeneity of CBBE itself. 

These tests suggest that CBBE is endogenous in the expected ROIC equation (p < .05) but 

not necessarily in the other value driver equations (p > .05). To be conceptually consistent, 

however, we treat CBBE as endogenous across all equations. 

Second, we apply the Hausman-Sargan specification test (Greene 2012) to check 

whether the overidentifying restrictions associated with the outside instruments hold. We 
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have up to six potential overidentifying variables available (see Appendix Table B2 again). 

The test is not rejected for any equation (p > .40). Only two variables, two-periods lagged 

industry concentration and firm size, do not pass the test in the WACC equation. 

Consequently, we use the remaining variables to identify this equation. 

Third, we test the strength of our instruments by applying the Angrist-Pischke 

multivariate F test (Greene 2012). Our outside instruments always exceed the threshold of 10 

and do not signal weak instrument issues. To summarize, the various tests provide strong 

evidence for the validity and strength of our instruments. 

Finally, we note that estimation of the carryover coefficient associated with the lagged 

dependent variables in Equations 3 to 7 may cause identification problems (Arellano 2003). 

The lagged dependent does not only accommodate dynamic effects but also tends to pick up 

firm heterogeneity. Following Fischer and Albers (2010), we instrument the lagged values 

with their deviations from the firm-specific mean to isolate the true carryover effect. Note 

that the endogeneity issue associated with the lagged dependent variable in a fixed effects 

model does not apply since we do not estimate fixed effects models but models with a 

random intercept 

6 Empirical Results 

6.1 Parameter Estimates Related to CBBE 

Table 4 summarizes the estimations results for Equations 3-6 on CBBE, expected ROIC, 

expected earnings growth, and expected WACC. Table 5 shows the results for the 

sustainability of excess return equation 7, which we estimate via a hazard model approach. 

Pseudo R2 ranges from .65 (WACC equation) to .91 (CBBE equation). We consider an R2 > 

.50 to be meaningful for explaining variance in a large panel data set. All equations reveal 
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strong heterogeneity of firms as is reflected in the significant standard deviation of the 

intercept term. This suggests there are indeed important firm-specific factors such as 

management quality or other market-based assets that we effectively control for. In addition, 

we find moderate to strong carryover effects across Equations 3 to 6. All significant 

coefficients of the control variables show the expected direction and are in line with prior 

empirical studies. For the sake of brevity, we do not discuss these results in detail but turn our 

focus on the effects associated with CBBE. 

6.2 Elasticity Estimates: Impact on Value Drivers and Firm Value 

An important objective of our study is to understand and compare the relative importance 

of marketing actions and CBBE for influencing value drivers and ultimately firm value. Few 

marketers might have an intuition for that. Since parameter estimates are not directly 

comparable, we transform them into short-term and long-term elasticities. Specifically, we 

use the conditional estimates of firm-specific parameters (which correspond to the posterior 

mean in a Bayesian setting) together with firm-specific means for advertising expenditure, 

CBBE, value drivers, and market value of the firm to compute these elasticities. Appendix D 

provides details on how we calculate each of the elasticities.  

In addition, we report in Appendix G on the Sobel test, which formally tests whether our 

mediation assumption holds. Except for WACC, we cannot reject this assumption. Moreover, 

we find support for a full mediation of the impact of CBBE on firm value via the value 

drivers. We start presenting results for CBBE followed by advertising expenditures. 
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Table 4: IV-Estimation Results for Equations 3-6 

 
 

CBEE (Eq. 3) Profitability (Eq. 4) 
Analyst earnings growth 

forecast (Eq. 5) Cost of capital (Eq. 6) 

 
Expected 

sign 
Coefficient   

(Standard Error)  
Expected 

sign 
Coefficient   

(Standard Error)  
Expected 

sign 
Coefficient   

(Standard Error) 
Expected 

sign 
Coefficient   

(Standard Error) 
 Intercept 

 
50.639 (1.09)*** 

 
.426 (.022)*** 

 
.001 (.083)*** 

 
.128 (.008)*** 

 Estimated SD  .833 (.073)***  .113 (.012)***  .515 (.061)***  .002 (.006)*** 
Carryover  
 Dependent variable (t-1) + .295 (.021)*** + .324 (.001)*** + .713 (.017)*** + .279 (.034)*** 
Marketing constructs 

  IV-CBBE (t-1)
 
  --- + .001 (2.7x10-4)*** + .003 (.001)***    +/- 1) 1.109 (.984)*** 

 Estimated SD 
 

--- 
 

3.5x10-4 (2.1x10-4)***  .001 (9.7 x10-5)*** 1) .631 (.106)*** 
 Advertising expenditures (t-1)  +2) .413 (.061)*** +/-1) .035 (.018)*** +/-1) .302 (.044)***  --- 
 Estimated SD  .446 (.004)***  ---  ---  --- 
Controls  
 R&D expenditures (t-1) +/-2) -.006 (.026)*** +/-1) -.056 (.012)*** +/-1) .166 (.035)***  --- 
 Other expenditures (t-1)  +2) .050 (.028)*** +/-1) .009 (.003)***  +/-

 1) .002 (.010)***  --- 
 Operating margin (t-1) + 1.316 (.389)*** 

 
--- 

 
--- - -.028 (.008)*** 

 Earnings (t-1) 1) + 1.345 (.389)***  --- +/- -.005 (.002)***  --- 
 Negative earnings dummy (t-1)  ---  --- + .108 (.022)***  --- 
 Financial leverage (t-1)

 1)  --- + .182 (.069)*** +/- -1.632 (5.60)*** +/- -.997 (.588)*** 
 Profitability (t-1)  ---  --- + .037 (.045)***  --- 
 Investment rate (t-1) 1) 

 
--- 

 
--- + -4.37 (24.4)***  --- 

 Pretax interest coverage (t-1)
 1) 

 
--- 

 
---  --- - .001 (.001)*** 

 Dividend payout (t-1)1) 
 

--- 
 

--- 
 

--- + -2.821 (11.3)*** 
 Asset growth (t-1) 

 
--- 

 
--- 

 
--- - .005 (.003)*** 

 Liquidity (t-1) 1)   ---   ---   --- + 7.023 (7.20)*** 
 US GDP growth (t-1) 

 
--- +/- .065 (.095)*** +/- -.022 (.477)***  --- 

Observed firm and market heterogeneity 
 Firm size (t-1)

 
 +/- -.303 (.058)*** +/- -.020 (.001)*** -1) 2.990 (55.7)*** - -.003 (.001)*** 

 Industry concentration (t-1) +/- -2.408 (.642)*** +/- -.097 (.017)*** +/- -.096 (.060)*** +/- -.026 (.006)*** 
Sample size 
Pseudo R2  

1,317 
 

1,084  979  649 
  .907   .867   .667   .652 

Notes: Two-sided t-tests. Pseudo R
2
 measures the squared correlation between actual and predicted values of the dependent variable *** p < .01; ** p < .05; * p < .1.  

1) For reading convenience, coefficients are multiplied by 10,000. 2) Variable is log-transformed 
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Table 4: IV-Estimation Results for Sustainability of Excess Returns (Eq.7) 

 

 

Expected 
sign 

Coefficient   
(Standard Error) 

 
 

 Intercept  .961 (.300)***   
 Estimated SD  1.19 (.233)***   
Marketing constructs  

 
  

 IV-CBBE (t-1)
 
 + .011 (.004)***   

 Estimated SD  .005 (3.9x10-4)***   
 Advertising expenditures (t-1)

 1)
 +/- -.229 (.232)***   

Controls  
 
  

 R&D expenditures (t-1)
 1)

 + -.246 (.154)***   
 Other expenditures (t-1)

 1)
 +/- -.260 (.030)***   

 Asset growth (t-1) + .265 (.091)***   
 US GDP growth (t-1) +/- 7.96 (.880)***   
Observed firm and market heterogeneity  

 
  

 Firm size (t-1) +/-  .111 (.026)***   
 Industry concentration (t-1) +/- -.085 (.181)***   
 

 
 

 
  

 Weibull scale parameter 1/p  .460 (.013)***   
    

 
  

 Sample size  417   
 Log Likelihood   -467.5    
 Pseudo R²   .680   
Notes: Two-sided t-tests. *** p < .01; ** p < .05; * p < .1 . 1) For reading convenience, 
coefficients are multiplied by 10,000. 

 

 
 

 

CBBE effects. Table 6 shows the effects of CBBE on value drivers in Panel A and on 

firm value via the value drivers in Panel B. When applicable we differentiate between short-

term and long-term effects. We divide the short-term effect by (1 – carryover) to obtain the 

long-term effect. As we already explained, there is no carryover in the sustainability of 

excess return equation. The derived elasticity therefore relates to the long-term effect. 

Though we do not estimate the effect of CBBE on the earnings level directly, we can infer 

the effect from our earnings growth equation (see Appendix D again). We do not consider a 

long-term effect here because the accumulation of earnings due to a change in CBBE is 
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already captured by the estimated effect on earnings growth. In our discussion, we now focus 

on long-term effects. 

Panel A demonstrates that CBBE has, on average, a substantial influence on all value 

drivers, except for WACC. The largest elasticities are associated with earnings growth 

(=1.78, p < .01) and sustainability of excess returns (=1.22, p < .01). Thus, an increase in 

CBBE translates into a highly elastic response of these two value drivers. The effects are 

inelastic for profitability (=.17, p < .01) and capital cost (=.04, p > .05), whereas the average 

elasticity for capital cost is not significantly different from zero. Note the elasticity does not 

only depend on the firm-specific parameter for CBBE but also on the level of CBBE and the 

respective value driver. 

In Panel B, we show CBBE elasticities with respect to firm value. These elasticities 

reveal the ultimate effect of a change in CBBE on firm value that is mediated by a value 

driver. Note these elasticities cannot be interpreted as sales elasticities because the dependent 

variable, firm value, is a profit measure. Edeling and Fischer (2016) demonstrate that the 

range of firm value elasticities is much larger and frequently includes negative values. A 

negative elasticity occurs if a firm is overinvested in an intermediate performance variable, 

such as CBBE. Put differently, there exists an optimal level for CBBE and that level depends 

on various parameters including the effectiveness of CBBE in driving a value driver. 

The picture for the firm value elasticities corresponds with the value driver elasticities, 

but they are considerably smaller. Again, the average elasticity associated with earnings 

growth (=.91, p < .01) and sustainability of excess returns (=.50, p < .01) are highest though 

they are no longer elastic. The average elasticity for profitability (=.03, p < .01) is much 

lower. It turns negative for cost of capital (-.07, p > .05), but is again insignificant. We also 

present the total firm value elasticity with respect to CBBE in the last row of Table 6. Based 

on our valuation formula (3), this effect considers the simultaneous and potentially synergetic 
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impact of CBBE on firm value via all value drivers. The elasticities are .29 (p < .01, short-

term) and 1.58 (p < .01, long-term). Edeling and Fischer (2016) find an elasticity of .75 for 

perceptual brand metrics in their meta-analysis, which provides strong external support for 

our estimated range of values. 

Advertising effects. We now turn our focus on advertising investments as one of the 

major drivers of CBBE. Table 7 shows all elasticity-based effects on value drivers in Panel A 

and on firm value in Panel B. Again, we focus on long-term elasticities in our discussion. 

The first and most striking difference to CBBE elasticities in Table 6 is that elasticities 

are, on average, much smaller and close to zero. This observation, however, is consistent with 

the meta-analysis by Edeling and Fischer (2016), which also reports advertising elasticities to 

be much lower than marketing-asset elasticities. The major argument by the authors is that 

firms are more experienced in optimizing marketing expenditures and are, on average, close 

to the optimal level. In the optimum, the marginal effect on profit or firm value, respectively, 

must equal zero. 

Comparing the effects by value drivers (see Panel A) reveals again that the impact of 

advertising investments in CBBE is, on average, highest on earnings growth (=.01, p < .01) 

and sustainability of excess return (=.02, p < .01). The average effect on profitability is 

considerably lower (=.001, p < .01). It is not significant with respect to cost of capital 

(=1.4x10-5, p > .05). 

Panel B shows the advertising elasticities with respect to firm value mediated by the 

respective value driver. We find again the largest impact on firm value via earnings growth 

(=.01, p < .01) and sustainability of excess returns (=.01, p < .01), followed by profitability 

(=3.1x10-4, p < .01). The impact via cost of capital is, on average, insignificant (=2.9x10-5, p 

> .05). When we consider all value drivers simultaneously, the average firm value elasticity 

with respect to advertising investment in CBBE amounts to .003 (p < .01) in the short run and 
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.02 (p < .01) in the long run. For comparison, the average advertising elasticity in Edeling 

and Fischer’s meta-analysis is .04. 

Heterogeneity across industries. Finally, we study differences across industries. 

Following the Global Industry Classification Standard (GICS), we assign firms to five 

industry sectors: consumer discretionary, consumer staples, information technology and 

telecommunications, and industrials and others (e.g., transportation). We apply ANOVA to 

check whether there are significant differences in the firm value effects. Our focus is on 

(long-term) firm value elasticities with respect to CBBE that is mediated by the firm value 

drivers (see Table 8). More details on advertising effects and at lower aggregation levels can 

be found in Appendix D. 

Table 8 reveals there is a significant variation of firm value elasticities across industries 

as supported by the F-statistics. The only exception is the effect via ROIC. Here, an 

investment in CBBE improves ROIC and ultimately firm value, but this is not different for 

industries. Firm value elasticities with respect to current earnings strength (EBIT, =.172), 

earnings growth (=3.22), and sustainability of excess returns (=.713) are highest for the sector 

of industrials & others. This sector includes materials, energy, utility, and transportation 

firms. Consumer discretionary firms follow in terms of elasticity sizes for these value drivers. 

Consumer staples and IT & telecommunication firms show the lowest firm value elasticities. 

Interestingly, the CBBE-firm value effect via WACC is very different across industry 

sectors. Further strengthening the brand increases firm value for consumer staples (=1.60) 

and industrials & others (=.199), but it destroys value for consumer discretionary (=-.955) 

and IT & telecommunications (=-.737). The major reason for this negative effect is the 

positive impact of the brand on capital cost. 

As a result of these differences in value driver mediated firm value elasticities, the 

overall effect of CBBE on firm value is also very different across the industry sector. Here 
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again, industrials & others (=3.84) and consumer discretionary firms (=2.25) show the largest 

elasticities, followed by IT & telecommunications (1.16) and consumer staples (=.448).  

6.3 Robustness Checks 

We performed several additional analyses and robustness checks. Specifically, we tested 

how sensitive our results and conclusions are with respect to the distributional assumptions of 

, the omission of other market-based assets such as customer strength, the specification of 

dynamics in the models, the use of alternative estimation approaches, the stability of the 

CBBE parameter over time, and the composition of the sample. For the sake of brevity, we 

do not report on these robustness checks here but refer to the Appendix for full details 

(section H with Figure H1 and Tables H1-H8). 

We obtain large consistency with and support for our focal model results. Hence, we 

conclude that our results are not driven by model assumptions, omission of important 

variables, model specifications, the selection of estimation approaches, and the composition 

of the sample. 

  !S
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Table 6: Elasticities of Value Drivers and Firm Value With Respect to CBBE  
(Based on Distribution of Firm-Specific Elasticity Estimates) 

Panel A: CBBE effect on value drivers 

 
Short-term effect 

 
Long-term effect 

 
Mean Median # Firms Positive 

effects (%) 
Negative 

effects (%)  
Mean Median # Firms Positive 

effects (%) 
Negative 

effects (%) 
Current earnings (EBIT) .069 *** .087 231 74 26  - - - - - - 
Profitability (ROIC) .116 *** .139 246 78 22  .172 *** .205 246 78 22 
Earnings growth forecasts 
(EGR) .510 *** .866 230 74 26  1.776 *** 3.017 230 74 26 

Capital cost (WACC) .026  .076 146 63 37  .035  .105 146 63 37 
Sustainability of excess 
returns (S) -  - - - -  1.220 *** 1.242 126 98 2 

              
Panel B: CBBE effect on firm value mediated by value drivers  

 
Short-term effect  Long-term effect 

 
Mean Median # Firms Positive 

effects (%) 
Negative 

effects (%)  Mean Median # Firms Positive 
effects (%) 

Negative 
effects (%) 

Current earnings (EBIT) .069 *** .087 231 74 26 
 

- - - - - - 
Profitability (ROIC) .023 *** .022 123 89 11 

 
.033 *** .033 123 89 11 

Earnings growth forecasts 
(EGR) .263 *** .137 120 73 26 

 

.914 *** .476 120 73 28 

Capital cost (WACC) -.051  -.174 126 44 56 
 

-.070  -.242 126 44 56 
Sustainability of excess 
returns (S)       -  - - - - 

 

.496 *** .520 125 96 4 

Total effect 1) .293 *** .264 121 66 34 

 

1.578 *** 1.108 121 79 21 
1) The total effect simulates the simultaneous effect of CBBE on firm value via all value drivers. 
Notes: All elasticity calculations are based on firm-specific estimates. We exclude extreme outlier values that are more than 6 standard deviations away from the 
mean. The number of outliers ranges from 1 to 5. 
Significance results are based on two-sided t-tests; *** p < .01; ** p < .05. 
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Table 7: Elasticities of Value Drivers and Firm Value With Respect to Advertising Investment in CBBE  
(Based on Distribution of Firm-Specific Elasticity Estimates) 

Panel A: Advertising investment in CBBE effect on value drivers 

 
Short-term effect 

 
Long-term effect 

 
Mean Median # Firms Positive 

effects (%) 
Negative 

effects (%)  
Mean Median # Firms Positive 

effects (%) 
Negative 

effects (%) 
Current earnings (EBIT) .001 *** 3.0x10-4 227 66 34  - - - - - - 
Profitability (ROIC) .001 *** .001 242 72 28  .001 *** .001 242 72 28 
Earnings growth forecasts 
(EGR) .003 ** .003 226 65 35  .010 ** .011 226 65 35 

Capital cost (WACC) 1.0x10-5  4.6x10-4 143 59 41  1.4x10-5  .001 143 59 41 
Sustainability of excess 
returns (S) -  - - - -  .017 *** .017 123 93 7 

 
             

Panel B: Advertising investment in CBBE effect on firm value mediated by value drivers  

 
Short-term effect  Long-term effect 

 
Mean Median # Firms Positive 

effects (%) 
Negative 

effects (%)  Mean Median # Firms Positive 
effects (%) 

Negative 
effects (%) 

Current earnings (EBIT) .001 *** 3.0x10-4 227 66 34 
 

- - - - - - 
Profitability (ROIC) 2.1x10-4 *** 1.7x10-4 121 83 17 

 
3.1x10-4 *** 2.5x10-4 121 83 17 

Earnings growth forecasts 
(EGR) .002 *** 4.7x10-4 117 67 33 

 

.008 *** .002 117 67 33 

Capital cost (WACC) 2.1x10-5  -3.0x10-4 123 46 54 
 

2.9x10-5  -4.1x10-4 123 46 54 
Sustainability of excess 
returns (S)       -  - - - - 

 

.007 *** .007 122 92 8 

Total effect 1) .003 *** .001 117 60 40 

 

.017 *** .009 117 74 26 
1) The total effect simulates the simultaneous effect of advertising investment in CBBE on firm value via all value drivers. 
Notes: All elasticity calculations are based on firm-specific estimates. We exclude extreme outlier values that are more than 6 standard deviations away from the 
mean. The number of outliers ranges from 1 to 5. 
Significance results are based on two-sided t-tests; *** p < .01; ** p < .05. 
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Table 8: Elasticities of Value Drivers and Firm Value With Respect to CBBE by Industry  

 
       Long-term CBBE effect on firm value mediated by value drivers Total long-term 

CBBE effect on 
firm value     CBBE → EBIT 

→ Firm value 2) 
CBBE → ROIC 
→ Firm value 

CBBE → EGR 
→ Firm value 

CBBE →WACC 
→ Firm value 

CBBE → S 
→ Firm value 

Industry Company brand 
examples 

# 
firms 

Marginal 
mean 

# 
firms 

Marginal 
mean 

# 
firms 

Marginal 
mean 

# 
firms 

Marginal 
mean 

# 
firms 

Marginal 
mean 

# 
firms 

Marginal 
mean 

Consumer  
Discretionary 

GM, Nike, Sony, 
Hilton, Saks 

91 .090 102 .033 92 1.367 63 -.955 50 .620 49 2.254 

Consumer  
Staples 

Safeway, Walmart, 
Coca-Cola, Gillette 

47 -.006 50 .022 47 .040 34 1.597 33 .446 32 .448 

IT & 
Telecommunica
tions 

Google, HP, 
AT&T, Verizon 

40 .092 40 .023 39 .617 27 -.737 22 .254 20 1.161 

Industrials  
& Others1) 

Ashland, BP 22 .172 23 .044 22 3.221 14 .199 13 .713 13 3.844 

Grand mean 
 

231 .074*** 123 .032*** 120 .797*** 126 .029*** 125 .457*** 121 1.34*** 
F-value     4.03***   .166***   6.53***   5.76***   5.84***   7.70*** 
1) Includes brands from GICS categories Transportation, Materials, Energy, and Utility.  
2) CBBE effect on current earnings strength (EBIT) is a short-term effect per definition. 
3) We do not report values for Health Care and Financial Services since the number of elasticity estimates is too small to infer substantial conclusions (N ≤ 8 for 
WACC, S, and firm value elasticities). We report a more detailed split including all industries in Appendix D. 
Notes: *** p < .01; ** p < .05; EBIT = current earnings strength, ROIC = profitability, EGR = earnings growth forecasts, WACC = cost of capital, S = 
sustainability of excess returns. 
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7 Conclusion and Limitations 

Firm value is strongly driven by investors’ expectations about the rate of return on new 

invested capital, the future growth in earnings, the cost of capital, and the length of the period 

during which a firm can sustain competitive advantage. We investigated the role of CBBE 

and advertising investments in CBBE in driving firm value via these four value drivers. 

Our empirical analysis helps answering our research questions. Tables 6 to 8 provide 

answers on the relative impact of CBBE and advertising investment on the value drivers and 

on firm value. From these results, we conclude that the most influential route of value 

generation for brands is via improving earnings growth expectations and increasing the 

expected period of excess returns. Advertising investments in CBBE do pay off in firm value, 

on average. The associated elasticity, however, is close to zero suggesting firms are, on 

average, close to their optimal level. Our findings have the following implications for 

researchers and managers. 

7.1 Implications for Researchers 

By estimating firm-value effects of CBBE via different value drivers, we contribute to 

our understanding of the role of brands for value generation. Based on the rich brand 

literature, most scholars probably agree that brands improve each of the four value drivers. 

However, the relative magnitude of these effects is not well understood. There are probably 

two surprising conclusions from our results. First, there is no unidirectional relation between 

brands and WACC. Second, although we have good arguments for a strong relationship 

between brands and profitability, e.g., price premiums and marketing efficiency advantages, 

the impact is only small. How can this result be explained? We believe that strong brands do 

have this potential, but they also require investments at a constantly high level to sustain their 

strength. Investors seem to factor such resource commitment into their brand-driven 

profitability expectations. 
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Our analysis also has implications for the discussion of the role of brands for capital cost. 

Recall there is no general brand effect on capital cost and thus firm value, which reflects the 

more or less equal number of positive and negative elasticities (see Table 6, Panel B again). 

This finding contradicts with findings from prior studies (e.g., Rego et al. 2009). However, it 

does not mean that these studies are wrong. They simply focused on separate components of 

WACC, such as systematic risk or credit ratings. Our analysis completes the picture and 

suggests that the ultimate impact of brands on WACC is very much depending on market and 

firm characteristics. 

We emphasize that our empirical study extends our knowledge about the drivers of 

sustainable competitive advantage. Based on the valuation model, we suggest an innovative 

way to measure sustainability of excess return that is implicitly incorporated in the market 

capitalization of firms. Consistent with the imperative that marketing is to build unique, non-

substitutable, and valuable assets (Srivastava et al. 1998), we conclude that a strong brand is 

a key source for maintaining sustainable competitive advantage. 

The finding that brand impact is largest on earnings growth and sustainability of excess 

returns offers two important conclusions. First, investors seem to predominantly perceive the 

value of brands in their ability to generate business from expanding into new markets and 

acquiring new customers. This is probably the key feature that distinguishes the brand from 

customer assets, where value is generated via stable cash flows from the base of existing 

customers (Rust et al. 2004). Second, investors also seem to appreciate the ability of brands 

to build a sustainable competitive advantage, which provides a powerful shield against 

competitive attacks. Securing high profitability that exceeds capital cost is more relevant to 

investors than the direct impact of brands on profit margins (Ghesquieres et al. 2016).  

Finally, we note that our findings might also advance the thinking about brand valuation. 

There is still no consensus on the method for brand valuation. Leading commercial vendors 
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such as Interbrand consider the impact of brands on capital cost as an important factor in their 

methodology. However, our results do not support this. They rather emphasize growth of the 

business and competitive advantage as relevant brand-related drivers in the valuation. A 

recent survey among investment managers underlines the practical importance of this aspect: 

investment managers are rather looking for credible strategies for value-creating growth than 

for excess cash-payouts by firms (Ghesquieres et al. 2016). Thus, the findings from this study 

might stimulate the development and refinement of brand valuations methods. 

7.2 Implications for Managers 

Our results offer the potential to advance management practice in several ways. First, we 

extend prior research on the value relevance of brands by opening the black box and 

providing insights into the sources of value creation. Marketing managers benefit from these 

insights because it helps them telling a compelling story about the value growth potential of 

marketing investments. The use of short-term product-market outcomes as a yardstick for 

brand performance can interact in unfortunate ways with the tenure of a brand manager. Our 

study instead provides marketing executives with a richer story to communicate the path of 

firm value growth that is backed up with strong empirical evidence. 

In addition, CEOs and CFOs can improve their communication with the investor 

community. The key is to stay with the mental model of investors who think about ROIC, 

earnings growth, and the sustainability of excess returns. Investors are especially looking for 

companies, which use their resources to improve the fundamental value of their business. 

They see growth as a top priority for management. The new quality in this communication is 

to demonstrate how exactly brand investments impact future firm value and growth 

expectations. 

Second, our study reveals significant differences of brand-related value generation across 

industries. It appears that the potential for value generation is highest for the group of 
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industrials & others, i.e. for typical B2B firms. While not unexpected, this finding 

emphasizes that brands indeed play an important role for B2B customers and investors. Our 

elasticity estimates help B2B brand managers quantify the potential growth in firm value due 

to brand investments that are not limited to advertising. 

Based on the industry analysis, we also conclude that brand investments are probably 

close to their optimum for consumer staples, i.e. FMCG firms such as Coca-Cola and P&G. 

But firms in the consumer discretionary sector such as GM or Nike are still show potential 

for further brand investments to grow firm value. Hence, consumer businesses are not 

saturated, yet. 

Third, our framework helps financial constituencies to think differently about their 

investment decisions. Investors gain a better understanding of how marketing impacts their 

key metrics. Since our model conceptualizes and quantifies the routes of future cash flow 

generation, financial analysts may use the empirical estimates as a reference point in their 

valuation models. Our elasticity estimates are particularly actionable for them. 

Finally, our study could change how brands are strategically managed. Investors 

obviously understand that the value contribution of brands primarily arises from earnings 

growth and sustainability of excess returns. This suggests that they might also expect brand 

management to focus on these dimensions. As a consequence, strategic brand management 

decisions should reflect these expectations by leveraging the brand extension potential and 

sharpening the competitive distinctiveness of the brand. 

Our study has limitations that may stimulate further research. First, our study focuses on 

one important market-based asset, the brand. We effectively control for other assets and test 

the robustness of our results. It would, however, be interesting to study the role of customer 

satisfaction, service quality, etc. in future work. Second, we use the Harris EquiTrend metric 

to measure CBBE, which has been done in prior work (e.g., Bharadwaj et al. 2011). Strictly 
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speaking, our results hold true only for this measure. There are other CBBE metrics (e.g., 

Luo et al. 2012; Stahl et al. 2012) and it would be interesting to replicate our models with 

these metrics. Finally, we acknowledge that brands might also have a direct impact on firm 

value and/or growth expectations that is not covered by their impact on the four value drivers. 

Following the idea of Joshi and Hanssens (2010), future research could study such a direct 

route in more depth. 
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Appendix Paper III 

Appendix A: Correlation Matrix, Overview of Symbols, and Variable Definitions 

Table A1 
OVERVIEW OF SYMBOLS 

Variables 
ADV Advertising expenditures 
CBBE Customer-based brand equity 
CONC Industry concentration  
DIV Dividend payout  
EARN Earnings less tax and before interest (net operating profit less tax) 
EBIT Earnings before interest and tax 
EGR Earnings growth rate 
FV Firm value 
GDPGR Growth rate of the US gross domestic product  
A_GROWTH Asset growth 
I Investments in new capital 
INT Pretax interest coverage 
IR Investment rate  
LEV Financial leverage 
LIQ Liquidity 
D_NEARN Dummy for negative earnings in preceding year (1 = negative) 
OE Other expenditures 
OPM Operating margin 
ROIC Return on invested capital 
RD R&D expenditures 
S Sustainability of excess returns 
SIZE Firm size  
WACC Weighted average cost of capital 
τ Cash tax rate 

Expected realization of a variable 

Indexes 
i Firm index with i = 1,… I (number of firms) 
t Time index with t = 1,… T (number of periods) 

Model parameters 
a, b, c, d, g Regression parameters to be estimated 
u, φ, η Error terms  
σ2 Variance 
ψ Variance-covariance matrix of random parameters 
f ( ) Density function of expected sustainability of excess returns 
λ Location parameter of survival function for 
p Scale parameter of survival function for 
ε Elasticity 

...⎡⎣ ⎤⎦
!

  !S
!S

!S
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Table A2 
VARIABLE DEFINITIONS AND MEASURES  

Variables Definition Measure Source / COMPUSTAT 

Firm value (FV) Market capitalization of 
equity + preferred stock + 
book value of debt + 
minority interest 

  (Yearly average of monthly stock 
prices · outstanding shares) + 
preferred stock + total Liabilities 

CRSP (market capitalization equity) + 
DATA 10 (Preferred stock); DATA 5 
(Current Liabilities) + DATA 9 (Long-
term debt) + DATA 49 (Minority 
interest) 

Customer-based brand 
equity (CBBE) 

Customer-based brand 
equity 

Survey-based index as measure of 
customer-based brand equity (see 
Web Appendix W3 for details) 

Harris Interactive: Poll EquiTrend 

Profitability (ROIC) Net operating profit after 
tax / Invested capital 

EBIT×(1- τ) / Invested capital DATA 308 (Operating cash flow), 
DATA 37 (Invested Capital) 

Earnings growth (EGR) 5y-estimates of earnings 
growth (consensus) 

Arithmetic mean across analysts I/B/E/S 

Earnings (EARN) Net operating profit after 
tax 

EBIT×(1- τ) DATA 308 (Operating cash flow) 

Cost of capital (WACC) Weighted-average cost of 
capital 

[Equity×cost of equity + debt 
×cost of debt×(1-τ)]/Total capital

 

Bloomberg 

Advertising expenditures 
(ADV) 

Advertising expenditures  -

 

DATA 45 (Advertising) 

Other expenditures (OE) Other marketing 
expenditures  

SG&A expense – non-coordinating 
costs (advertising, R&D, bad debt 
expense, provision for doubtful 
accounts, employee benefit 
expenses)  

DATA 189 (SG&A); DATA 45 
(Advertising); DATA 46 (R&D); DATA 
67 (Estimated doubtful receivables); 
DATA 43 (Pension/retirement expense); 
DATA 215 (Stock options) 

R&D expenditures (RD) R&D expenditures - DATA 46 (R&D) 

Firm size (SIZE) Total assets Log of total assets DATA 6 (Total assets) 

Financial Leverage 
(LEV) 

Book value total debt / 
Book value equity + 
preferred stock 

- DATA 5 (Current Liabilities) + DATA 9 
(Long-term debt); DATA 60 (Common 
Equity) + DATA 10 (Preferred stock) 

Industry concentration 
(CONC) 

Four-firm concentration 
index 

Cumulative market share of the top 
four firms in the industry defined 
by two digits of the NAICS 

DATA 12 (Sales) 

Investment rate (IR) (1-cash dividends) / Net 
operating profit after tax 

(1-cash dividends) / [EBIT×(1- τ)] DATA 21 (Cash dividend); DATA 308 
(Operating cash flow) 

Operating margin 
(OPM) 

Operating income before 
depreciation/sales 

Operating income before 
depreciation/sales 

DATA 13 (operating income before 
depreciation); DATA 12 (sales) 

Pretax interest coverage 
(INT) 

EBIT divided by interest 
expense 

(Operating income after 
depreciation + interest 
expense)/interest expense 

DATA 178 (operating income after 
depreciation); DATA 15 (interest 
expense) 

Dividend payout (DIV) Cash dividends/earnings Cash dividends/available income DATA 21 (cash dividend); DATA 20 
(income available for common 
stockholders) 

Asset Growth 
(A_GROWTH) 

Terminal total 
assets/initial assets 

Total assets/total assetst-1 DATA 6 (Total assets) 

Liquidity (LIQ) Current ratio Current assets/current liabilities DATA 4 (current assets); DATA 5 
(current liabilities) 

GDPGR US GDP gross rate (Real US GDPt - Real US GDPt-)/ 
Real US GDPt-1 

Bureau of Economic Analysis (BEA) 
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Appendix B: Correlation Matrix and Results of Instrument Tests 

Table B1 
CORRELATION ANALYSIS 

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 

1. CBBE 1.00 
(3289) 

2. Profitability .05** 1.00 
(2796) (4478) 

3. Earnings growth .03 .40** 1.00 
(2183) (3077) (3292) 

4. Cost of capital .04 .02 .07** 1.00 
(2034) (2998) (2281) (3364) 

5. Sustainability .08 -.12* .02 .21** 1.00 
(452) (491) (491) (485) (491) 

6. Advertising expenditures .04 .04* .03 -.07** -.14** 1.00 
(1702) (2563) (2055) (1727) (487) (2593)  

7. Other expenditures .08** .02 -.05** -.08** -.13** .40** 1.00 
(2794) (4368) (3054) (2986) (487) (2562) (2562) 

8. R&D expenditures .01 .03* .00 -.03 -.14** .47** .35** 1.00 
(3289) (4478) (3292) (3364) (491) (2593) (2593) (4472)  

9. Firm size -.19** .00 -.06** -.22** -.14** .43** .45** ,304** 1.00 
(2826) (4478) (3085) (3012) (491) (2593) (2593) (4410) (4522)  

10. Financial leverage -.07** .01 -.02 -.08** .00 -.03 -.02 -.02 .03* 1.00 
(2668) (4268) (2982) (2893) (485) (2399) (2399) (4167) (4284) (4270) 

11. Industry concentration -.01 .03* -.05** -.04* -.07 .00 .07** .01 .04* -.01 1.00 
(3289) (4478) (3292) (3364) (491) (2593) (2593) (4472) (5517) (4522) (4284) 

12. Investment rate .02 .00 .00 .01 .13** -.01 .00 .00 -.04** .00 .01 1.00 
(2753) (4295) (3071) (2929) (491) (2589) (2589) (4232) (4338) (4336) (4091) (4338) 

13. U.S. GDP growth .04* .02 .03ü -.02 .07 .00 -.02 -.01 -.01 .00 .05** -.02 1.00 
(3289) (4478) (3292) (3364) (491) (2593) (2593) (4472) (5517) (4522) (4284) (5517) (4338) 

14. Operating margin -.02 .11** -.01 -.03 -.17** .03 .01 .01 .07** .00 .00 .00 .00 1.00 
(2796) (4412) (3044) (2987) (491) (2592) (2592) (4358) (4457) (4456) (4205) (4457) (4279) (4457) 

15. Pretax interest coverage .02 .014 .00 .02 .01 .01 -.01 .00 .00 -.01 .00 .00 -.02 .00 1.00 
(2607) (4089) (2789) (2742) (488) (2282) (2282) (4037) (4133) (4130) (3879) (4133) (3958) (4083) (4133) 

16. Dividend payout -.07 .00 -.01 .00 .06 -.01 -.01 -.01 .01 .00 .01 .15** .00 .00 .00 1.00 
(2515) (3839) (3022) (2636) (490) (2583) (2583) (3778) (3882) (3880) (3643) (3882) (3878) (3823) (3507) (3882) 

17. Asset growth .02 .03 .07** .02 .15** -.02 .00 .00 -.02 -.01 .03* -.02 .11** -.05** .01 .01 1.00 
(2758) (4362) (3033) (2948) (491) (2511) (2511) (4294) (4399) (4399) (4164) (4399) (4224) (4335) (4021) (3770) (4399)  

18. Liquidity .07** -.05** .03 .13** .04 -.15** -.12** -.01 -.25** -.07** -.06** -.01 -.01 -.10** .05** -.02 .07** 1.00 
(2458) (3851) (2561) (2588) (491) (2299) (2299) (3851) (3894) (3892) (3666) (3894) (3714) (3886) (3720) (3266) (3779) (3894) 
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Table B2. Results of Instrument Tests 

  

Equation 4 
Dependent variable = 
ROIC 

Equation 5 
Dependent variable = EGR 

 Equation 6 
Dependent variable = WACC 

Equation 7 
Dependent variable = S   

  Variable F-Value  p-value   Variable F-Value p-value   Variable F-Value p-value   Variable F-Value p-value 
                
Hausmann-Wu 
specification test on 
exogeneity assumption 
for predetermined 
variables 

ADV (t-1)  .149 .70 
 

ADV (t-1) 1.036 .31 
 

LEV (t-1) .006 .94 
 

ADV (t-1) .001 .97 
OE (t-1)   .241 .62 

 
OE (t-1) .211 .65 

 
INT (t-1) .644 .42 

 
OE (t-1) 1.076 .30 

RD (t-1) .001 .98 
 

RD (t-1) .001 .97 
 

OPM (t-1) .217 .64 
 

RD (t-1) 1.132 .29 
LEV (t-1) .654 .42 

 
LEV (t-1) 1.635 .20 

 
DIV (t-1) .301 .58 

 
SIZE (t-1) .081 .78 

GDPGR (t-1) .001 .97 
 

EARN (t-1) .360 .55 
 

A_GROWTH (t-1) .175 .68 
 

GDPGR (t-1) .444 .51 
CONC (t-1) 2.258 .13 

 
D_NEARN (t-1) 3.751 >.05 

 
LIQ (t-1) .048 .83 

 
CONC (t-1) .324 .57 

SIZE (t-1) .298 .59 
 

ROIC (t-1) .318 .57 
 

CONC (t-1) 1.557 .21 
 

A_GROWTH (t-1) 1.103 .29 

     
IR (t-1) .002 .96 

 
SIZE (t-1) .331 .57 

    
     

GDPGR (t-1) .401 .53 
        

     
CONC (t-1) 2.137 .14 

             SIZE (t-1) 1.147 .28         
Hausmann-Wu 
specification test on 
exogeneity assumption 
for focal CBBE measure 

4.476 .03   .590 .44   2.430 .12   2.375 .12 

 

Hausman-Sargan 
specification test on 
overidentifying 
restrictions: outside 
instruments and test 
results  

Endogenous: CBBE   Endogenous: CBBE    Endogenous: CBBE   Endogenous: CBBE 

Exogenous:  
ln ADV (t-2) 
ln OE (t-2)  
ln RD (t-2)  
OPM (t-2) 
EARN (t-2  
CONC (t-2) 
SIZE (t-2) 

 Exogenous: 
ln ADV (t-2) 
ln OE (t-2)  
ln RD (t-2)  
OPM (t-2) 
EARN (t-2  
CONC (t-2) 
SIZE (t-2) 

 Exogenous: 
ln ADV (t-2) 
ln OE (t-2)  
ln RD (t-2)  
OPM (t-2) 
EARN (t-2  
 

 Exogenous: 
ln ADV (t-2) 
ln OE (t-2)  
ln RD (t-2)  
OPM (t-2) 
EARN (t-2  
CONC (t-2) 
SIZE (t-2) 

 
χ2(6) = 6.16, p =.41 

 
χ2(6) = 4.05, p =.67 

 
χ2(4) = 3.13, p =.54 

 
χ2(6) = 3.46, p =.75 

 
Strength of outside 
instruments 

       
1st stage regression results R2 

F-
value p-value 

 
R2 F-value p-value 

 
 R2 F-value p-value  R2 F-value p-value 

 
.102 13.83 .00 

 
.091 12.01 .00 

 
 .125 13.27 .00  .111 1012    .00 
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Appendix C: Corporate Valuation Model 

Deriving Equation 2 

In deriving our corporate valuation formula, we closely follow Copeland, Weston, and 

Shastri (2013, 497ff). Consistent with DCF valuation, the value of a company derives from 

its expected future cash flows that are discounted at the company's weighted average cost of 

capital (see also Equation 1 in the paper)17 

FV0 =
EBIT1 × (1−τ )− I1

(1+WACC)
+

EBIT2 × (1−τ )− I2

(1+WACC)2 +
EBIT3 × (1−τ )− I3

(1+WACC)3 + ...        (C.1)

The stream of cash flows can also be expressed as follows 

FV0 =
EBIT1 × (1−τ )− I1

(1+WACC)
+

EBIT1 × (1−τ )+ ROIC1 × I1 − I2

(1+WACC)2

+...+
EBIT1 × (1−τ )+ ROICt

t=1

N−1

∑ × It − IN

(1+WACC)N

(C.2) 

where ROICt × It measures the net cash flows, which are assumed to cover the payments to 

suppliers of capital and the initial investment. Hence, cash flows from each year’s investment 

are sufficient to provide for the necessary replacement investment in the future.  

Ignoring the unreasonable result that a firm has an infinite value, Copeland, Weston, and 

Shastri (2013, 499f) show that the sum in (C.2) has a solution that decomposes firm value 

into the value of current earnings strength and the value of future growth 

      (C.3) 

Note that the firm only generates value from future growth if this growth is profitable, 

i.e. the average rate of return of new invested capital ROIC is greater than the cost of capital 

17 Without loss of generality, we neglect the value contribution of a tax advantage that accrues from debt capital 
valued at market rates, which is not relevant for our derivation (Copeland, Weston, and Shastri (2013, 505). 

FV0 =
EBIT1 × 1−τ( )

WACC
Value of current
earnings strength

! "## $##
× 1+

ROIC −WACC( )× EGR × S
ROIC × 1+WACC( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Value of growth expectations
! "###### $######
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WACC. It is not consistent with competition theory to assume that a firm can earn superior 

rents forever. Competition will eventually drive down ROIC to the level of WACC. Let the 

period of excess return denote with S. Let us further assume that the firm invests a constant 

fraction K of its cash flow into new investments, i.e. It = K×[EBIT (1- τ)]. Under the 

assumption of a limited period of excess returns, expression (C.3) can be restated as follows 

(Copeland, Weston, and Shastri, 502ff) 

FV0 =
EBITt (1−τ )

WACC
1+

K × ROIC −WACC( )
1+ ROIC × K

1+ ROIC × K
1+WACC

⎛
⎝⎜

⎞
⎠⎟

t

t=1

S

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

     (C.4) 

which they further simplify to 

FV0 =
EBITt (1−τ )

WACC
1+

K × ROIC −WACC( )
WACC − ROIC × K

1− 1+ ROIC × K
1+WACC

⎛
⎝⎜

⎞
⎠⎟

S⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (C.5) 

Using the binomial expansion to approximate 

  

1+ ROIC × K
1+WACC

⎛
⎝⎜

⎞
⎠⎟

S

≅ 1− S WACC − K × ROIC
1+WACC

⎛
⎝⎜

⎞
⎠⎟

   ,            (C.6) 

substituting (C6) into (C5) and rearranging terms leads to 

FV0 =
EBITt (1−τ )

WACC
+

EBITt (1−τ )× K × (ROIC −WACC)× S
WACC × (1+WACC)

          (C.7) 

Copeland, Weston, and Shastri (2013) prove that the following identity must hold 

,         (C.8) ROIC × K = EGR
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where EGR measures the growth rate in earnings or cash flows, respectively. 

Substituting K for (C.8) in (C.7) and rearranging terms leads to our valuation formula (2) in 

the paper 

FV0 =
EBITt (1−τ )

WACC
× 1+ EGR × (ROIC −WACC)× S

ROIC × (1+WACC)
⎡

⎣
⎢

⎤

⎦
⎥  .      (C.9) 

Deriving Equation 8 

We use expression (C.9) to obtain our measure of the sustainability of excess return 

(Equation 8 in the paper). Let us first bring EBIT(1-τ)/WACC on the left side of (C.9) 

FV0 −
EBITt (1−τ )

WACC
=

EBITt (1−τ )× EGR × (ROIC −WACC)× S
ROIC ×WACC × (1+WACC)

 .            (C.10) 

It is now straightforward to solve for S 

S = FV0 −
EBITt (1−τ )

WACC
⎛
⎝⎜

⎞
⎠⎟

ROIC ×WACC × (1+WACC)
EBITt (1−τ )× EGR × (ROIC −WACC)

⎛
⎝⎜

⎞
⎠⎟

.         (C.11) 

Since S is defined for ROIC > WACC and takes on only nonnegative values we obtain 

the following expression, which is consistent with Equation 8 in the paper  

!Sit =

Max FV0 −
EBITt (1−τ )

WACC
⎛
⎝⎜

⎞
⎠⎟

ROIC ×WACC × (1+WACC)
EBITt (1−τ )× EGR × (ROIC −WACC)

⎛
⎝⎜

⎞
⎠⎟

,0
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

for ROICit
" −WACCit
" > 0

0 else

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

, (C.12)

and where we use expected values for the value drivers. 



	
  
	
  

 202 

Appendix D: Calculation of Elasticities 

Value driver elasticities 
 
First, consider a linear model of the form 

    y = a + bx + e ,                          (D.1) 

where y is an outcome variable (e.g. ROIC), x is a predictor variable (e.g., CBBE), and a, b, 

and e are impact parameters that are usually to be estimated. The short-term elasticity εST
y,x is 

given by 

                               
  
ε y ,x

ST = b
µx

µ y

,                        (D.2) 

where µ denotes the sample mean of the variable. We apply the specification (D.2) to 

compute the elasticities for the relations: CBBE → ROIC, CBBE → EGR, CBBE → WACC.  

 Second, with respect to the effect of advertising expenditures on CBBE our 

calculation is based on a linear-log relationship 

     y = a + bln x + e ,                          (D.3) 

with the corresponding short-term elasticity  

                                
  
ε y ,x

ST = b
µ y

,                        (D.4) 

Equations D.2 and D.4 measure the short-term elasticity. In a dynamic setting the long-term 

elasticities may be obtained by considering the carryover parameter λ as follows 

                              
  
ε LT = ε ST

1− λ
,                        (D.5) 

In order to estimate the effect of CBBE on the level of earnings we follow the simulation 

approach by Edeling and Fischer (2016). They show that in models with a return variable as 

dependent and a level as independent variable  

                              
  
Rt =

Yt −Yt−1

Yt1

= bxt ,                          (D.6) 
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the level elasticity can be derived by simulation and yields  

                              
  
ε y ,x

ST = b
1+ µR

µx ,                       (D.7) 

Finally, we compute the elasticity for S, the duration variable of Equation 7, as follows 

                              
  
ε y ,x

LT = 1
p
δ1µx ,                       (D.8) 

Note that by definition we cannot separate short- and long-term effects in duration models. 

 

Firm value elasticities 

We theoretically derive the firm value elasticities with respect to our value drivers using our 

firm value equation  

  
FV0 =

EBITt (1−τ )
WACC

× 1+ EGR × (ROIC −WACC)× S
ROIC × (1+WACC)

⎡

⎣
⎢

⎤

⎦
⎥             (D.9) 

 

The elasticity of firm value with respect to one specific value driver x is defined as 

                           
  
ε FV ,x =

ΔFV / FV
Δx / x

= ΔFV
Δx

x
FV

,                   (D.10) 

 

Table D1 summarizes the theoretical firm value elasticities for the respective value 

driver and Table D2 presents information on the distribution of the firm-specific firm value 

elasticity estimations based on the firms from our study sample. Table D3 shows estimated 

advertising elasticities across industries. Please note that for advertising group sizes are too 

small to provide reasonable results with respect to disaggregate industries such as in Table 

D4. Table D4 provides details on individual industry means with respect to the estimated 

effects of CBBE on the value drivers and firm value.  
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Table D1 
 FIRM VALUE ELASTICITIES WITH RESPECT TO VALUE DRIVERS  

Value driver Firm value elasticity 

  Current earnings 
(EBIT) 
 

 
 

Profitability (ROIC) 
 
 

 
 

Earnings growth (EGR) 
 
 

 
 

Cost of capital 
(WACC) 
 
 

 
 

Sustainability of excess 
returns (S) 
 
 

  
 
 

 
 

Table D2 
VALUE DRIVER EFFECTS ON FIRM VALUE (DISTRIBUTION BASED ON FIRM-

SPECIFIC ELASTICITIES) 

 
Elasticity estimates 

 

Mean  Median # Firms Positive 
effects (%) 

Negative 
effects (%) 

Current earnings (EBIT) 1.000 *** 1.000 613 100 0 

Profitability (ROIC) .390 *** .180 126 97 3 

Earnings growth  (EGR) .373 *** .353 126 95 5 

Cost of capital (WACC) -4.426 *** -3.827 126 4 96 

Sustainability 
of excess returns (S) .373 *** .353 126 95 5 

Notes: *** p < .01; ** p < .05 
 

εFV ,Earnings =1

  
ε FV ,ROIC = EBIT (1−τ )× EGR × S

ROIC × FV × 1+WACC( )

  
ε FV ,EGR = EBIT (1−τ )

WACC
× (ROIC −WACC)× S

ROIC × 1+WACC( ) ×
EGR
FV

  
ε

FV ,WACC
=

EBIT (1− τ ) × (EGR × S − ROIC ) ×WACC 2 − 2ROIC ×WACC × (EGR × S + 1) − EGR × S × ROIC − ROIC )⎡⎣ ⎤⎦
WACC 2 × 1+WACC( )2

× FV

  
ε FV ,x =

EBIT (1−τ )
WACC

× (ROIC −WACC)× EGR
ROIC × 1+WACC( ) × S

FV
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Table D3 
ELASTICITIES OF VALUE DRIVERS AND FIRM VALUE WITH RESPECT TO ADVERTISING BY INDUSTRY 

 
     Long-term advertising effect on firm value mediated by value drivers Total long-term 

advertising effect 
on firm value 

mediated by CBBE 
    ADV → CBBE 

→ EBIT2) 
ADV → CBBE→ 

ROIC 
ADV → 

CBBE→ EGR 
ADV → 

CBBE→WACC 
ADV → 

CBBE→ S 

Industry Company brand 
examples 

# 
firms 

Marginal 
mean 

# 
firms 

Marginal 
mean 

# 
firms 

Marginal 
mean 

# 
firms 

Marginal 
mean 

# 
firms 

Marginal 
mean 

# 
firms 

Marginal 
mean 

Consumer  
Discretionary 

GM, Nike, Sony, 
Hilton, Saks 

91 .001 49 2.2x10-4 48 .014 50 -.010 49 .009 49 .025 

Consumer  
Staples 

Safeway, Walmart, 
Coca-Cola, Gillette 

44 -9.3x10-5 31 3.3x10-4 30 -2.7x10-4 31 .021 31 .007 29 .008 

IT & 
Telecommunications 

Google, HP, 
AT&T, Verizon 

39 .001 20 3.5x10-4 20 -2.6x10-4 21 -.006 21 .004 19 .006 

Industrials  
& Others1) 

Ashland, BP 22 .002 13 5.9x10-4 12 .030 13 -.002 13 .010 13 .034 

Grand mean  227 .001*** 121 3.3x10-4*** 117 .005*** 123 .001*** 122 .006*** 117 .012*** 
F-value   

 
5.29*** 

 
.503 

 
7.43*** 

 
3.48*** 

 
3.54*** 

 
7.25*** 

1) Includes brands from GICS categories Transportation, Materials, Energy, and Utility.  
2) CBBE effect on current earnings strength (EBIT) is a short-term effect per definition. 
3) We do not report values for Health Care and Financial Services since the number of elasticity estimates is too small to infer substantial conclusions (N ≤ 8 for WACC, S, and firm value 
elasticities). We report a more detailed split including all industries in the Appendix. 
Notes: *** p < .01; ** p < .05; EBIT = current earnings strength, ROIC = profitability, EGR = earnings growth forecasts, WACC = cost of capital, S = sustainability of excess returns. 
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Table D4 
ELASTICITIES OF VALUE DRIVERS AND FIRM VALUE WITH RESPECT TO CBBE BY SINGLE INDUSTRY 

         Long-term CBBE effect on firm value mediated by value drivers   Total long-term 
CBBE effect on 

firm value   CBBE→ EBIT2) CBBE→ ROIC CBBE→ EGR CBBE→WACC CBBE→ S 

 Industry 
Company brand 
examples 

#Firms Marginal 
mean #Firms Marginal 

mean #Firms Marginal 
mean #Firms Marginal 

mean #Firms Marginal 
mean #Firms Marginal 

mean 

Consumer Discretionary 
 

91 .090 48 .033 48 1.367 50 -.955 49 .620 49 2.254 

 
Automobiles & Components GM, Goodyear 8 .011 3 .058 3 .595 3 .170 3 .671 3 1.742 

 
Consumer Durables & Apparel Nike, Sony 19 .066 11 .022 11 1.017 11 -.361 11 .668 11 1.455 

 
Consumer Services Hilton, McDonald's 21 .120 9 .036 11 1.454 11 .570 11 .614 11 1.793 

 
Media CBS, Walt Disney 8 .071 3 .041 3 -.516 3 -.883 3 .474 3 .011 

 
Retailing Amazon, Saks 35 .108 22 .032 20 1.909 22 -2.176 21 .611 21 3.307 

Consumer Staples  47 -.006 33 .040 32 .040 33 1.597 33 .446 32 .448 

 
Food & Staples Retailing Safeway, Walmart 10 .095 7 .079 7 1.620 7 1.073 7 .499 7 2.381 

 

Food, Beverage & Tobacco Hershey's, Coca 
Cola 

26 -.008 21 .026 20 .080 21 1.959 21 .375 20 .347 

 

Household & Personal Products Gillette, Colgate-
Palmolive 

11 -.093 5 .040 5 -2.330 5 .811 5 .674 5 -1.854 

Health Care GlaxoSmithKline, 
Novartis 

8 -.149 8 .022 7 -1.258 8 -.030 8 .253 7 -1.008 

Financial services Bank of America, 
MetLife 

23 .082 0 -3) 0 -3) 0 -3) 0 -3) 0 -3) 

Information Technology  Google, HP 33 .055 15 .025 15 .287 16 -.836 16 .299 14 .740 
Telecommunication Services AT&T, Verizon 7 .265 6 .020 6 1.440 6 -.471 6 .134 6 2.144 
Transportation Delta Airlines, Hertz  11 .190 7 .006 6 3.658 7 1.388 7 .851 7 3.986 
Industrials & Others1) Ashland, BP 11 .153 6 .088 6 2.785 6 -1.189 6 .552 6 3.679 

Grand mean 
 

231 .069*** 123 .038*** 120 .826*** 126 .002*** 125 .513*** 121 1.44*** 
F-value 
      3.25***   .446***   3.84***   2.23***   2.63***   4.89*** 
1) Includes brands from GICS categories Materials, Energy, and Utility.  
2) CBBE effect on current earnings strength (EBIT) is a short-term effect per definition. 
3) Due to missing information on the liquidity measures in COMPUSTAT, we could not compute firm value effects for firms included in the financials industry sector. 
Notes: *** p < .01; ** p < .05; EBIT = current earnings strength, ROIC = profitability, EGR = earnings growth forecasts, WACC = cost of capital, S = sustainability of excess returns. 
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Appendix E: Description of Customer-based Brand Equity (CBBE) Measure  

Harris Interactive provided the customer-based brand equity metric from their EquiTrend 

brand-equity database. The EquiTrend brand equity score is a consumer survey measure that 

has been collected annually since 1989 for a representative selection of brands in the U.S. 

market. The company conducts annual online surveys of more than 20,000 U.S. consumers 

aged 15 and older that are representative of the entire population, and it calculates brand 

equity scores for more than 1,000 brands. Each respondent is asked to rate a total of 40 

randomly selected brands. Each brand receives approximately 1,000 ratings. CBBE is 

measured by data on perceived quality, which is the primary component of a brand’s image, 

and familiarity, which corresponds to brand awareness. A brand's equity score is determined 

by first combining familiarity, quality, and purchase intent ratings at the individual 

respondent level. Familiarity is assessed by consumer ratings of familiarity with the brand on 

a 5-point scale (1 = “never heard of the brand,” 2 = “just know of the brand,” 3 = “somewhat 

familiar with the brand,” 4 = “very familiar with the brand,” and 5 = “extremely familiar with 

the brand”). Perceived quality is assessed by consumer ratings of the quality of the brand on 

an 11-point scale (0 = “unacceptable/poor,” 5 = “quite acceptable,” and 10 = 

“outstanding/extraordinary”). Purchase consideration is assessed by consumers’ ratings of 

intentions regarding their future relationship with the brand on an 11-point scale (0 = “never 

would purchase the brand,” and 10 = “absolutely would purchase the brand”). Finally, 

distinctiveness is assessed by consumer ratings of the differentiation of the brand on an 11-

point scale (0 = “not distinctive at all,” and 10 = “totally distinctive from others”). The 

brand's total equity score is then aggregated across all respondents with some familiarity with 

the brand, and the result is indexed on a scale from 0 to 10. The top scores are publicly 

announced. 
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Appendix F: Support from Prior Literatures from Control Variables  

Table F1 
CONTROL VARIABLES AND EXPECTED IMPACT IN THE ESTIMATION EQUATIONS 

 
Profitability (Eq. 4) Analyst earnings growth forecast (Eq. 5) Cost of capital (Eq. 6) Sustainability (Eq. 7) 

 Variables 
Expected 

sign 
Support 

Expected 
sign 

Support 
Expected 

sign 
Support 

Expected 
sign 

Support 

Advertising and other 
expenditures 

+ Ailawadi et al. (2003); 
Rao, Bharadwaj 
(2008) 

+ Kim, McAlister (2011); Joshi, 
Hanssens (2010)  

  + Srivastava, et al. (1998); 
Vorhies, Morgan (2009)   

R&D expenditures +/- Bouldin, et al. (1995); 
Erickson, Jacobson 
(1992) 

+/- Geroski et al. (1997); 
Erickson, Jacobson (1992) 

  +/- MacDonald, Ryall 
(2004), Rappaport, 
Mauboussin (2001) 

Firm size - McAfee, McMillan 
(1995)  

- Chan et al. (2003), McAfee, 
McMillan (1995) 

- Beaver, et al. (1970); Blume, 
et al. (1998) 

+/- Acs, Audretsch (1987); 
McAfee, McMillan 
(1995) 

Industry concentration  +/- Demsetz (1982); 
Scherer (1980) 

+/- Demsetz (1982); Scherer 
(1980) 

+/- Hou, Robinson (2006); 
Himme, Fischer (2014) 

+/- Demsetz (1982); 
Lustgarten, Thomadakis 
(1987) 

Financial leverage  + Kemsley, Nissim 
(2002) 

- Myers (1977)  - Beaver, et al. (1970); Rego, et 
al. (2009)  

  

Previous earnings    + Hou, Robinson (2006)      

Negative earnings 
dummy 
 

  +/- Stickel (1990); Matsumoto 
(2002) 

    

Profitability   + Copeland et al. (2013); Myers 
(1977) 

    

Investment rate   + Copeland et al. (2013); Myers 
(1977) 

    

Pretax interest 
coverage 

    - Blume, et al. (1998)   

Operating margin     - Blume, et al. (1998)   
Dividend payout     - Beaver, Kettler, Scholes 

(1970); Himme, Fischer 
(2014)  

  

Asset Growth     + Beaver, et al. (1970)   
Liquidity       - Beaver, et al. (1970)    
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Appendix G: Sobel Mediation Test 

In Table G1, we report on the Sobel test, which formally tests whether our mediation 

assumption with respect to CBBE and the four value drivers holds (Sobel 1986). Except for 

WACC, we cannot reject this assumption. Moreover, we find support for a full mediation of 

the impact of CBBE on firm value via the value drivers since the direct effect of CBBE on 

firm value is not significant. 

 

Table G1 
TESTING THE MEDIATION OF CBBE ON FIRM VALUE BY VALUE DRIVER  

  

Effect of CBBE on 
value driver 

Effect of value driver on 
firm value Sobel test 

  Estimate 
(Standard 

error) Estimate 
(Standard 

error) 
Test  

statistic p-value 

       Profitability .001 (2.7x10-4) 29,149.1 4,624.54 2.39 .02 

Earnings growth .003 (.001) 3,548.6 1,433.20 1.93 .03 

Cost of capital 1.1x10-4 (9.8x10-5) -199,298.0 31,997.98 -1.11 .87 

Sustainability of 
excess returns .011 (.003) 174.4 37.45 2.69 .00 
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Appendix H: Robustness Checks 

Distributional Assumptions of Sustainability of Excess Returns 

We tested alternative distributions of the sustainability of excess returns in Equation 7. 

Specifically, we considered the following distributions: Weibull, inverse Gaussian, Gamma, 

loglogistic, lognormal, and Generalized F. Inspecting the integrated hazard function line 

(Greene 2012) and the Bayesian Information Criterion (BIC), we conclude that the Weibull 

distribution best represents the data (see Figure H1 below for details). 

Omitted Variable Bias 

We acknowledge that CBBE is certainly not the only relevant market-based asset that 

may impact the value drivers and ultimately firm value. If such variables are not controlled 

for they may severely bias our results. We effectively account for customer asset strength and 

other variables across firms by specifying a random intercept. In addition, we check for a 

potential variable omission bias by adding customer asset strength to our equations. 

Specifically, we adopt the customer asset strength measure suggested by Fang et al. (2011). 

Including this variable reduces the sample sizes dramatically by more than 30%. Estimation 

results are consistent with our main results. Most importantly, the size of the CBBE 

coefficients do not differ significantly from each other suggesting that our results are not 

subject to a variable omission bias (see Table H1). 

Model Dynamics 

We estimated several alternative dynamic specifications. We estimated a Koyck 

specification. This requires adding an autocorrelation term to the error although we find no 

evidence for serial correlation. We also estimated a model without the lagged dependent 

variable but with serially correlated errors. We compare these two alternative dynamic 

specifications with our proposed specification in terms of model fit (BIC and Pseudo R2) and 

apply the Davidson/MacKinnon non-nested model specification test (Greene 2012). Based on 
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these test statistics, none of the alternative specifications turns out to be superior to the 

suggested one. The size and significance of our focal estimates in the alternative 

specifications are also similar (see Table H2-H4). 

Alternative Estimation Approaches 

We also checked the stability of results when we apply alternative estimation 

approaches.  First, we add industry dummies to control for trend heterogeneity across 

industries. These dummies turn out to be insignificant and are rejected by nested model tests 

(p > .05). Furthermore, we estimate our equations assuming CBBE to be exogenous, i.e. no 

instrumental variables are used (see Table H5). We then apply 3SLS to a dataset that needs to 

be balanced (see Table H6). 3SLS explicitly accounts for both error correlations across 

equations and endogeneity of CBBE. However, it does not allow for a random constant. 

Despite of these limitations we find much consistency with our estimation results. 

Parameter Stability 

We checked the stability of the CBBE parameter over time. Specifically, we compare 

estimates from the first half of years (2005-2009) with the second half (2010-2013). We do 

not detect any significant change (see Table H7). 

Sample Composition 

Finally, we checked the sensitivity of our results to variations in sample composition. For 

this purpose, we constructed a balanced dataset that includes only identical firm-period 

observations across all equations. This procedure reduces sample size to 486 observations. 

We re-estimated our models with this dataset (see Table H8). The results are in line with our 

focal model results that are based on unbalanced, larger samples.  
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FIGURE H1 
INTEGRATED HAZARD FUNCTION ih(t)=-logS(t) AND BIC FOR DIFFERENT 

DISTRIBUTION ASSUMPTIONS 
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Table H1 
IV ESTIMATION RESULTS INCLUDING CUSTOMER ASSET STRENGTH 

 Profitability (Eq. 4) Analyst earnings growth 
 forecast (Eq. 5) Cost of capital (Eq. 6) Sustainability of excess return 

(Eq. 7) 

  
Expected 

sign 
Coefficient   

(Standard Error) 
Expected 

sign 
Coefficient   

(Standard Error) 
Expecte

d sign 
Coefficient   

(Standard Error) 
Expected 

sign 
Coefficient   

(Standard Error) 
Intercept 

 
.269 (.044)*** 

 
-.032 (.033)*** 

 
.136 (.009)*** 

 
.528 (.426)*** 

Estimated SD 
 

.503 (.032)*** 
 

.414 (.103)*** 
 

.033 (.007)*** 
 

1.13 (.237)*** 
Dependent variable (t-1) + .303 (.016)*** + .769 (.025)*** + .271 (.041)***  --- 

         CBBE (t-1) + .002 (.001)*** + .006 (.003)*** +/-1) 3.20 (2.70)*** + .012 (.004)*** 
Estimated SD 

 
.003 (1.5x10-4)*** 

 
.001 (3.2x10-4)*** 1) .116 (.303)*** 

 
.014 (.001)*** 

Customer asset strength (t-1) + .247 (.189)*** + 1.00 (.482)*** + .064 (.041)*** + .656 (1.69)*** 
Estimated SD 

 
.044 (.020)*** 

 
.027 (.039)*** 

 
.023 (.004)*** 

 
.918 (.095)*** 

Advertising expenditures (t-1)1) +/- .044 (.029)*** +/- .053 (.055)*** 
  

+/- .032 (.269)*** 
R&D expenditures (t-1) 1) +/- .012 (.023)*** +/- .064 (.050)*** 

  
+/- -.296 (.194)*** 

Other expenditures (t -1) 1) +/- .041 (.010)*** +/- -.032 (.027)*** 
  

+/- -.446 (.076)*** 
Operating margin (t -1) 

    
- -.017 (.010)*** 

  Previous year's earnings 1) 
 

+/- -.026 (.026)*** 
    Negative earnings dummy (t-1) 

  
+ -.052 (.035)*** 

    Financial leverage (t-1)
 1) + .001 (.000)*** - -1.70 (6.00)*** +/- -2.10 (.955)*** 

  Profitability (t-1) 
  

+ .027 (.071)*** 
    Investment rate (t-1) 1) 

  
+ .082 (26.8)*** 

    Pretax interest coverage (t-1)
 1) 

   
- 1.0x10-5 (.001)*** 

  Dividend payout (t-1)1) 
    

+ 1.30 (11.8)*** 
  Asset growth (t-1) 

    
- .004 (.004)*** + .499 (.136)*** 

Liquidity (t-1) 1) 
    

+ .857 (.001)*** 
  US GDP growth (t-1) +/- -.007 (.272)*** +/- -.233 (.718)*** 

  
+/- 7.57 (1.17)*** 

Negative earnings dummy (t-1) +/- -.012 (.004)*** - .010 (.011)*** - -.004 (.001)*** +/- .092 (.040)*** 
Financial leverage (t-1)

 1) +/- -.007 (.272)*** +/- -.114 (.080)*** +/- -.029 (.007)*** +/- .912 (.242)*** 

         Sample size   755   571   476   262 
BIC 

 
-1,145.3 

 
-420.9 

 
-2,315.9 

 
679.1 

BIC (base specification see paper) -2,007.3   -711.0   -3,219.8   1013.7 
Difference test for CBBE 
parameter estimates 

t-value p-value t-value p-value t-value p-value t-value p-value 
1.04 .23 .95 .26 .73 .31 .24 .39 

Notes: Two-sided t-tests. e *** p < .01; ** p < .05; * p < .1.  
1) For reading convenience, coefficients are multiplied by 10,000. 
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Table H2 
OVERVIEW OF FIT STATISTICS AND J-TEST RESULTS FOR ALTERNATIVE DYNAMIC SPECIFICATIONS 

 

CBEE (Eq. 3) Profitability (Eq. 4) Analyst earnings  
growth forecast (Eq. 5) Cost of capital (Eq. 6) 

Current specification 
(see the paper) 

Pseudo R2 = .91 
BIC = 5908.18 

Pseudo R2 = .87 
BIC = -2007.3 

Pseudo R2 = .67 
BIC= -711.0 

Pseudo R2 = .65 
BIC= -3219.8 

Current specification 
with autocorrelation 
(Koyck specification) 

Pseudo R2 = .89 

BIC = 5908.24 

J-Test: no decision 

Very similar size/significance of 
focal coefficients 

Pseudo R2 = .77 

BIC = -1530.2 

J-Test: no decision 

Very similar 
size/significance of focal 

coefficients 

Pseudo R2 = .51 

BIC = -349.3  

J-Test: no decision 

Similar size/significance of 

focal coefficients 

Pseudo R2 = .63 

BIC = -2409.4 

J-Test: no decision 

Similar size/significance of 
focal coefficients 

Autocorrelated error 
and no lagged 
dependent variable 

Pseudo R2 = .88 

BIC = 6421.06 

J-Test: no decision 

Similar size/significance of 
focal coefficients 

Pseudo R2 = .77 

BIC = -1482.36 

J-Test: no decision 

Very similar 
size/significance of focal 

coefficients 

Pseudo R2 = .33 

BIC = -255.94 

J-Test: model rejected 

Very similar 
size/significance of focal 

coefficients 

Pseudo R2 = .61 

BIC = -2390.1 

J-Test: no decision 

Similar size/significance of 
focal coefficients: 
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Table H3 
ESTIMATION RESULTS FOR ALTERNATIVE DYNAMIC SPECIFICATIONS – AUTOCORRELATED ERROR STRUCTURE (KOYCK 

SPECIFICATION) 
 

   CBEE (Eq. 3) Profitability (Eq. 4) Analyst earnings 
 growth forecast (Eq. 5) Cost of capital (Eq. 6) 

 

Expected 
sign 

Coefficient   
(Standard Error)  

Expected 
sign 

Coefficient   
(Standard Error)  

Expected 
sign 

Coefficient   
(Standard Error) 

Expected 
sign 

Coefficient   
(Standard Error) 

 
Intercept 

 
53.74 (1.30)*** 

 
.393 (.023)*** 

 
.143 (.002)*** 

 
.127 (.008)*** 

 
Estimated SD 

 
3.15 (.086)*** 

 
.011 (.018)*** 

 
.418 (.002)*** 

 
.022 (.006)*** 

Carryover   

 
Dependent variable (t-1) + .319 (.023)*** + .258 (.014)*** + .998 (.001)***    + 1) .212 (.036)*** 

Marketing constructs   

 CBBE (t-1)   --- + .001 (3.0x10-4)*** + .002 (2.0x10-5)*** +/- 1) -1.08 (1.10)*** 

 Estimated SD  ---  .001 (3.7x10-5)***  .005 (7.2x10-6)*** 1) 2.01 (.122)*** 

 
Advertising expenditures (t-1)  +2) .464 (.072)*** +/-1) .016 (.019)*** +/-1) .199 (.001)***  --- 

 
Estimated SD  .500 (.005)***  ---  ---  --- 

Controls   

 
R&D expenditures (t-1) +/-2) -.071 (.008)*** +/-1) -.041 (.013)*** +/-1) -.027 (.001)***  --- 

 
Other expenditures (t-1)  +2) .011 (.010)*** +/-1) .013 (.003)***  +/- 1)   3.2x10-4 (2.7x10-4)  --- 

 
Operating margin (t-1) + 1.65 (.403)*** 

 
--- 

 
--- - -.032 (.009)*** 

 
Earnings (t-1) 1) + 1.52 (.158)***  --- +/- -.002 (2.8x10-4)***  --- 

 
Negative earnings dummy (t-1) ---  --- + .001 (.001)***  --- 

 
Financial leverage (t-1)   --- + .001 (1.0x10-4)*** +/- 1) -.235 (.008)*** +/- 1) -.528 (.643)*** 

 
Profitability (t-1)  ---  --- + .001 (.001)***  --- 

 
Investment rate (t-1) 1) 

 
--- 

 
--- + -.079 (.722)***  --- 

 
Pretax interest coverage (t-1) 1) --- 

 
--- 

 
--- --- .001 (.002)*** 

 
Dividend payout (t-1)1) 

 
--- 

 
--- 

 
--- + -1.11 (11.4)*** 

 
Asset growth (t-1) 

 
--- 

 
--- 

 
--- - .005 (.004)*** 

 
Liquidity (t-1) 1)  ---  ---  --- + .001 (.001)*** 

 
US GDP growth (t-1) 

 
--- +/- .023 (.113)*** +/- -.030 (.007)***  --- 

Observed firm & market heterogeneity 

 
Firm size (t-1)  +/- -.366 (.063)*** +/- -.018 (.002)***  .005 (1.3x10-4)*** - -.002 (.001)*** 

 
Industry concentration (t-1) +/- -2.43 (.684)*** +/- -.191 (.019)*** +/- .015 (.001)*** +/- -.034 (.006)*** 

Sample size   1033   845   751   486 
Pseudo R2   .898   .777   .512   .630 
Notes: Two-sided t-tests. Pseudo R2 measures the squared correlation between actual and predicted values of the dependent variable *** p < .01; ** p < .05; * p < .1. 1) For reading 
convenience, coefficients are multiplied by 10,000. 2) Log values. 
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Table H4 
ESTIMATION RESULTS FOR ALTERNATIVE DYNAMIC SPECIFICATIONS – AUTOCORRELATED ERROR AND NO LAGGED 

DEPENDENT VARIABLE 

    CBEE (Eq. 3) Profitability (Eq. 4) Analyst earnings growth 
 forecast (Eq. 5) Cost of capital (Eq. 6) 

 

Expected 
sign 

Coefficient   
(Standard Error)  

Expected 
sign 

Coefficient   
(Standard Error)  

Expected 
sign 

Coefficient   
(Standard Error) 

Expected 
sign 

Coefficient   
(Standard Error) 

 
Intercept 

 
49.94 (1.31)*** 

 
.441 (.023)*** 

 
-.099 (.125)*** 

 
.123 (.008)*** 

 
Estimated SD 

 
9.80 (1.23)*** 

 
.092 (.018)*** 

 
.734 (.094)*** 

 
.028 (.007)*** 

Carryover   

 
Dependent variable (t-1)  ---  ---  ---  --- 

Marketing constructs   

 CBBE (t-1)   --- + .001 (3.1x10-4)*** + .004 (.001)***    +/- 1) .002 (1.10)*** 

 Estimated SD  --- 
 

.001 (3.8x10-5)***  .001 (1.4x10-4)*** 1) .562 (.117)*** 

 
Advertising expenditures (t-1)  +2) .568 (.073)*** +/-1) .047 (.002)*** +/-1) .233 (.068)***  --- 

 
Estimated SD  .218 (.004)***  ---  ---  --- 

Controls   

 
R&D expenditures (t-1) +/-2) -.016 (.008)*** +/-1) -.065 (.013)*** +/-1) .228 (.055)***  --- 

 
Other expenditures (t-1)  +2) -.048 (.010)*** +/-1) .012 (.003)***  +/- 1) -.006 (.016)***  --- 

 
Operating margin (t-1) + 1.03 (.328)*** 

 
--- 

 
--- - -.033 (.009)*** 

 
Earnings (t-1) 1) + 1.75 (.161)***  --- +/- -.049 (.027)***  --- 

 
Negative earnings dummy (t-1) ---  --- + -.065 (.061)***  --- 

 
Financial leverage (t-1)   --- + .001 (1.1x10-4)*** +/- 1) -.912 (7.10)*** +/- 1) -1.10 (.688)*** 

 
Profitability (t-1)  ---  --- + .046 (.093)***  --- 

 
Investment rate (t-1) 1) 

 
--- 

 
--- + -.475 (154.3)***  --- 

 
Pretax interest coverage (t-1) 1) --- 

 
---  --- - .001 (.002)*** 

 
Dividend payout (t-1)1) 

 
--- 

 
--- 

 
--- + -2.87 (12.5)*** 

 
Asset growth (t-1) 

 
--- 

 
--- 

 
--- - .007 (.004)*** 

 
Liquidity (t-1) 1)  ---  ---  --- + 2.02 (7.50)*** 

 
US GDP growth (t-1) 

 
--- +/- .113 (.108)*** +/- .111 (.753)***  --- 

Observed firm & market heterogeneity 

 
Firm size (t-1)  +/- -.077 (.062)*** +/- -.022 (.002)*** - -.122 (.104)*** - -.002 (.001)*** 

 
Industry concentration (t-1) +/- -3.78 (.684)*** +/- -.207 (.019)*** +/- -.069 (.112)*** +/- -.034 (.006)*** 

Sample size   1111   815   751   486 
Pseudo R2   .884   .779   .325   .613 
Notes: Two-sided t-tests. Pseudo R2 measures the squared correlation between actual and predicted values of the dependent variable *** p < .01; ** p < .05; * 
p < .1. 1) For reading convenience, coefficients are multiplied by 10,000. 2) Log values.   

 



	
  
	
  

 217 

Table H5 
ESTIMATION RESULTS WITHOUT INSTRUMENTAL VARIABLES (1/2) 

    
Profitability (Eq. 4) Analyst earnings  

growth forecast (Eq. 5) Cost of capital (Eq. 6) 

  
Expected 

sign 
Coefficient   Expected 

sign 
Coefficient   Expected 

sign 
Coefficient   

    (Standard Error)  (Standard Error) (Standard Error) 

 
Intercept 

 
.305 (.022)*** 

 
.051 (.070)*** 

 
.121 (.005)*** 

 
Estimated SD 

 
6.7 x 10-5 (.142)*** 

 
.308 (.046)*** 

 
.006 (.004)*** 

Carryover   

 
Dependent variable (t-1) + .426 (.008)*** + .714 (.016)***    + 1) .259 (.026)*** 

Marketing constructs  

 
CBBE (t-1)

 
 + .001 (2.6 x 10-4)*** + .002 (.001)***    +/- 1) .370 (.594)*** 

 
Estimated SD  .011 (1.5 x 10-4)***  .001 (8.5 x 10-5)*** 

 
.670 (.078)*** 

 
Advertising expenditures (t-1)  +/-1) .041 (.020)*** +/-1) .285 (.038)***  --- 

Controls  

 
R&D expenditures (t-1) +/-1) -.109 (.017)*** +/-1) .177 (.031)***  --- 

 
Other expenditures (t-1)  +/-1) -.020 (.004)***  +/- 1) .002 (.009)***  --- 

 
Operating margin (t-1) 

 
--- 

 
--- - -.001 (.003)*** 

 
Earnings (t-1) 1)  --- +/- -.049 (.014)***  --- 

 
Negative earnings dummy (t-1)  --- + .022 (.020)***  --- 

 
Financial leverage (t-1)

 1) + 3.60 (.687)*** +/- -1.59 (5.70)*** +/- .049 (.473)*** 

 
Profitability (t-1)  --- + .003 (.023)***  --- 

 
Investment rate (t-1) 1) 

 
--- + -.564 (19.0)***  --- 

 
Pretax interest coverage (t-1)

 1) 
 

---  --- - .001 (.002)*** 

 
Dividend payout (t-1)1) 

 
--- 

 
--- + -.001 (.001)*** 

 
Asset growth (t-1) 

 
--- 

 
--- - .003 (.002)*** 

 
Liquidity (t-1) 1)  ---  --- + 3.69 (5.00)*** 

 
US GDP growth (t-1) +/- .096 (.106)*** +/- -.089 (.361)***  --- 

Observed firm & market heterogeneity   

 
Firm size (t-1)  +/- -.015 (.002)*** - -.001 (.005)*** - -.003 (3.4 x 10-4)*** 

 
Industry concentration (t-1) +/- .043 (.018)*** +/- -.082 (.053)*** +/- -.017 (.003)*** 

Sample size   1,317   1,162   1,125 
Pseudo R2   .793   .483   .606 
Notes: Two-sided t-tests. Pseudo R2 measures the squared correlation between actual and predicted values of the dependent variable *** p < .01; ** p < .05; * p < .1. 1) For 
reading convenience, coefficients are multiplied by 10,000.   
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Table H5 
ESTIMATION RESULTS WITHOUT INSTRUMENTAL VARIABLES (2/2) 

  
  

Expected sustainability of excess return 
 (Eq. 7) 

  

Expected 
sign 

Coefficient 
(Standard Error) 

 
Intercept  1.01 (.265)***   

 
Estimated SD  3.41 (.202)***  

Marketing constructs       

 
CBBE (t-1)

 
 + .010 (.003)***   

 
Estimated SD  .013 (4.0x10-4)***  

 
Advertising expenditures (t-1) 1) +/- -.187 (.212)***  

Controls       

 
R&D expenditures (t-1)  1) + -.675 (.140)***   

 
Other expenditures (t-1)  1) +/- -.228 (.027)***  

 
Asset growth (t-1)   + .127 (.024)***  

 
US. GDP Growth +/- 7.02 (.817)***  

Observed firm & market heterogeneity       

 
Firm size (t-1)   +/- .127 (.024)***   

 
Industry concentration (t-1)   +/- -.294 (.169)***  

 
 

 
 

 
 Weibull scale parameter 1/p  .425 (.013)***  
    

 
 

 Sample size  399  
 Log Likelihood   -441.4  
  Pseudo R²   .742   

Notes: Two-sided t-tests. *** p < .01; ** p < .05; * p < .1 . 1) For reading convenience, coefficients are 
multiplied by 10,000.   
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Table H6 
3SLS ESTIMATION RESULTS (BALANCED SAMPLE) (1/2) 

  CBEE (Eq. 3) Profitability (Eq. 4) Analyst earnings growth 
forecast (Eq. 5) Cost of capital (Eq. 6) 

 

Expected 
sign 

Coefficient   
(Standard Error)  

Expected 
sign 

Coefficient   
(Standard Error)  

Expected 
sign 

Coefficient   
(Standard Error) 

Expected 
sign 

Coefficient   
(Standard Error) 

 
Intercept 

 
53.06 (5.21)*** 

 
.345 (.156)*** 

 
-.488 (.192)*** 

 
.125 (.021)*** 

Carryover   

 
Dependent variable (t-1)    + .124 (.137)*** + .464 (.096)*** + .785 (.063)*** + .129 (.069)*** 

Marketing constructs   

 
CBBE (t-1)  --- + .004 (.002)*** + .007 (.003)***    +/- 1) -1.29 (3.30)*** 

 
Advertising expenditures (t-1)    +2) .755 (.321)*** +/-1) .040 (.063)*** +/-1) .210 (.079)***  --- 

Controls   

 
R&D expenditures (t-1) +/-2 .059 (.036)*** +/-1) .109 (.045)*** +/-1) .108 (.059)***  --- 

 
Other expenditures (t-1)  +2) -.085 (.057)*** +/-1) .026 (.010)***  +/- 1) -.052 (.016)***  --- 

 
Operating margin (t-1) + -20.02 (3.73)*** 

 
--- 

 
--- - -.051 (.012)*** 

 
Earnings (t-1) 1) + .451 (.727)***  --- +/- -.046 (.027)***  --- 

 
Negative earnings dummy (t-1)  ---  --- + -.085 (.059)***  --- 

 
Financial leverage (t-1)

 1)  --- + .001 (.001)*** +/-1) -1.44 (10.1)*** +/-1) -3.78 (1.00)*** 

 
Profitability (t-1)  ---  --- + -.035 (.051)***  --- 

 
Investment rate (t-1) 1) 

 
--- 

 
--- + .130 (.045)***  --- 

 
Pretax interest coverage (t-1)

 1) --- 
 

---  --- - .001 (3.8x10-4)*** 

 
Dividend payout (t-1)1) 

 
--- 

 
--- 

 
--- + -.002 (.002)*** 

 
Asset growth (t-1) 

 
--- 

 
--- 

 
--- - .012 (.006)*** 

 
Liquidity (t-1) 1)  ---  ---  --- + .005 (.001)*** 

 
US GDP growth (t-1) 

 
--- +/- -.295 (.328)*** +/- .124 (.392)***  --- 

Observed firm & market heterogeneity 

 
Size (t-1)  +/- -.094 (.438)*** +/- -.029 (.008)*** -1) .008 (.011)*** - -.001 (.001)*** 

 
Industry concentration (t-1) +/- -8.98 (2.74)*** +/- -.053 (.067)*** +/- .028 (.087)*** +/- -.026 (.008)*** 

Sample size   486   486   486   486 
R2   .110   .071   .257   .202 
Notes: Two-sided t-tests. Pseudo R2 measures the squared correlation between actual and predicted values of the dependent variable *** p < .01; ** p < .05; * p < .1. 1) For reading 
convenience, coefficients are multiplied by 10,000.  
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Table H6 
3SLS ESTIMATION RESULTS (BALANCED SAMPLE) (2/2) 

 

 

Expected sustainability of excess return 
(Eq. 7) 

 

 

 

Expected 
sign 

Coefficient   
(Standard Error) 

 
 

 Intercept  1.26 (.944)***   
 Estimated SD  14.32 (.675)***   

Marketing constructs       
 CBBE (t-1) + .029 (.015)***   
 Estimated SD  .010 (.001)***   
 Advertising expenditures (t-1)

 1)
 +/- -.339 (.255)***   

Controls       
 R&D expenditures (t-1)

 1)
 + -.609 (.166)***   

 Other expenditures (t-1)
 1)

 +/- .034 (.033)***   
 Asset growth (t-1) + .986 (.126)***   
 US. GDP Growth +/- .829 (1.29)***   

Observed firm & market heterogeneity       
 Firm size (t-1) +/- -.108 (.030)***   
 Industry concentration (t-1) +/- 1.15 (.252)***   
 

 
 

 
  

 Weibull scale parameter 1/p  .465 (.018)***   
    

 
  

 Sample size  298   
 Log Likelihood   -339.4    
 Pseudo R²   .715   
Notes: Two-sided t-tests. *** p < .01; ** p < .05; * p < .1 . 1) For reading convenience, coefficients are 
multiplied by 10,000. 
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Table H7 
TESTING CBBE PARAMETER STABILITY OVER TIME 

 
 Profitability (Eq. 4) Analyst earnings growth 

forecast (Eq. 5) Cost of capital (Eq. 6) Expected sustainability of excess 
return (Eq. 7) 

 
Expected 

sign 
Coefficient   

(Standard Error)  
Expected 

sign 
Coefficient   

(Standard Error)  
Expected 

sign 
Coefficient   

(Standard Error) 
Expected 

sign 
Coefficient   

(Standard Error) 
 Intercept 

 
.461 (.022)*** 

 
.003 (.083)*** 

 
.129 (.009)*** 

 
.973 (.339)*** 

 Estimated SD  .111 (.011)***  .515 (.061)***  .024 (.006)***  1.15 (.247)*** 
Carryover  
 Dependent variable (t-1) + .331 (.008)*** + .712 (.020)*** + .282 (.036)***  --- 
Marketing constructs 

 
 

 CBBE (t-1) + .001 (2.7x10-4)*** + .003 (.001)*** + .130 (1.30)*** + .973 (.339)*** 
 Estimated SD 

 
.003 (2.3x10-5)*** 

 
.001 (9.8x10-5)***  .650 (.105)*** 

 
1.15 (.247)*** 

 Advertising expenditures (t-1)  +/-1) .042 (.018)*** +/-1) .303 (.044)*** +/-1) --- +/-1) .973 (.339)*** 
    CBBE x Time  -.413 (.830)  -.504 (4.30)    1.5x10-4 (2.4x10-4)***      -.001 (.001)*** *  
Controls  
 R&D expenditures (t-1) +/-1) -.045 (.012)*** +/-1) .177 (.010)***  --- +1) -.250 (.164)*** 
 Other expenditures (t-1)  +/-1) .012 (.003)*** +/-

 1) .002 (.034)***  --- +/- -.188 (.031)*** 
 Operating margin (t-1) 

 
--- 

 
--- - -.028 (.007)***  --- 

 Earnings (t-1)
 1)  --- +/- -.005 (.002)***  ---  --- 

 Negative earnings dummy (t-1) --- + .106 (.027)***  ---  --- 
 Financial leverage (t-1)

 1) + .160 (.072)*** - -1.632 (5.60)*** +/- -.857 (.603)***  --- 
 Profitability (t-1)  --- +/- .037 (.045)***  ---  --- 
 Investment rate (t-1) 1) 

 
--- + -.548 (24.4)***  ---  --- 

 Pretax interest coverage (t-1)
 1) 

 
--- 

 
--- - .001 (.001)***        ---*** 

 Dividend payout (t-1)1) 
 

--- 
 

--- + 1.10 (11.2)***        ---*** 
 Asset growth (t-1) 

 
--- 

 
--- - .005 (.003)*** + .456 (.139)*** 

 Liquidity (t-1) 1)   ---   --- + .001 (.001)***        ---*** 
 US GDP growth (t-1) +/- .071 (.105)*** +/- .065 (.095)***  --- +/- 8.31 (.997)*** 
Observed firm & market heterogeneity 
 Firm size (t-1)

 
 +/- -.025 (.001)*** +/- 2.100 (55.7)*** +/-1) -.003 (.001)*** +/- .072 (.030)*** 

 Industry concentration (t-1) +/- -.100 (.017)*** +/- -.095 (.060)*** +/- -.026 (.006)*** +/- .501 (.221)*** 
Sample size 
Pseudo R2  

1,084 
 

979  649  347 
  .847   .824   .700   .659 

Notes: Two-sided t-tests. Pseudo R
2
 measures the squared correlation between actual and predicted values of the dependent variable *** p < .01; ** p < .05; * p < .1. 1) For reading 

convenience, coefficients are multiplied by 10,000. 
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Table H8 
ESTIMATION RESULTS WITH BALANCED SAMPLE (=IDENTICAL FIRM-PERIOD OBSERVATIONS ACROSS EQUATIONS) (1/2) 
  CBEE (Eq. 3) Profitability (Eq. 4) Analyst earnings growth forecast 

(Eq. 5) 
Cost of capital (Eq. 6) 

 Expected sign 
Coefficient   

(Standard Error)  
Expected 

sign 
Coefficient   

(Standard Error)  
Expected 

sign 
Coefficient   

(Standard Error) 
Expected 

sign 
Coefficient   

(Standard Error) 
 Intercept 

 
44.82 (.174)*** 

 
.360 (.040)*** 

 
-.372 (.177)*** 

 
.100 (.010)*** 

 Estimated SD 
 

5.627 (.129)*** 
 

.068 (.025)*** 
 

.773 (.132)*** 
 

.011 (.008)*** 
Carryover  
 Dependent variable (t-1) + .201 (.031)*** + .225 (.034)*** + .804 (.144)***    + 1) .178 (.062)*** 
Marketing constructs  
 CBBE (t-1)

 
  --- + .002 (2.5x10-4)*** + .005 (.002)***    +/- 1) 2.18 (1.3)*** 

 Estimated SD 
 

--- 
 

.004 (4.2x10-5)***  .001 (1.7x10-4)*** 1) .836 (.128)*** 
 Advertising expenditures (t-1)  +2) .214 (.109)*** +/-1) .047 (.022)*** +/-1) .342 (.073)***  --- 
 Estimated SD  .404 (.007)***  ---  ---  --- 
Controls  
 R&D expenditures (t-1) +/-2) -.054 (.013)*** +/-1) -.109 (.017)*** +/-1) .075 (.065)***  --- 
 Other expenditures (t-1)  +2) .157 (.019)*** +/-1) -.008 (.004)***  +/-

 1) -.015 (.018)***  --- 
 Operating margin (t-1) + -2.44 (1.19)*** 

 
--- 

 
--- - -.055 (.012)*** 

 Earnings (t-1) 1) + .605 (.252)***  --- +/- -.040 (.036)***  --- 
 Negative earnings dummy (t-1)  ---  --- + -.065 (.061)***  --- 
 Financial leverage (t-1)

 1)  --- + .001 (.001)*** +/- -5.03 (14.6)*** +/- -3.808 (1.0)*** 
 Profitability (t-1)  ---  --- + -.044 (.081)***  --- 
 Investment rate (t-1) 1) 

 
--- 

 
--- + .141 (.057)***  --- 

 Pretax interest coverage (t-1)
 1) 

 
--- 

 
---  --- - .001 (.002)*** 

 Dividend payout (t-1)1) 
 

--- 
 

--- 
 

--- + -.001 (.001)*** 
 Asset growth (t-1) 

 
--- 

 
--- 

 
--- - .003 (.005)*** 

 Liquidity (t-1) 1)   ---   ---   --- + .003 (.002)*** 
 US GDP growth (t-1) 

 
--- +/- .106 (.148)*** +/- .008 (.908)***  --- 

Observer firm & market heterogeneity 
 Firm size (t-1)

 
 +/- .903 (.147)*** +/- -.006 (.003)*** -1) .016 (.015)*** - -.001 (.001)*** 

 Industry concentration (t-1) +/- -4.14 (.962)*** +/- -.429 (.022)*** +/- -.069 (.112)*** +/- -.027 (.007)*** 
Sample size 
Pseudo R2  

486   486   486   486 
  .915   .939   .577   .650 

Notes: Two-sided t-tests. Pseudo R
2
 measures the squared correlation between actual and predicted values of the dependent variable *** p < .01; ** p < .05; * p < .1. 1) 

For reading convenience, coefficients are multiplied by 10,000. 2) Log values. 
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Table H8 
ESTIMATION RESULTS WITH BALANCED SAMPLE (=IDENTICAL FIRM-PERIOD OBSERVATIONS ACROSS EQUATIONS) (2/2) 

 

 

Expected sustainability of excess return 
(Eq. 7) 

 

 

 

Expected 
sign 

Coefficient   
(Standard Error) 

 
 

 Intercept  .533 (.421)*** 2.63 (.962)***  
 Estimated SD  2.31 (.336)*** 1.02 (.664)***  

Marketing constructs        

 CBBE (t-1) + .012 (.004)*** .004 (.015)***  
 Estimated SD  .013 (.001)*** .011 (.001)***  
 Advertising expenditures (t-1)

 1)
 +/- -.140 (.260)*** -.318 (.299)***  

Controls        

 R&D expenditures (t-1)
 1)

 + -.187 (.179)*** -.768 (.197)***  
 Other expenditures (t-1)

 1)
 +/- -.204 (.032)*** .195 (.039)***  

 Asset growth (t-1) + .456 (.139)*** .520 (.204)***  
 US. GDP Growth +/- 6.90 (1.40)*** .958 (1.41)***  

Observed firm & market heterogeneity        
 Firm size (t-1) +/- .130 (.035)*** -.062 (.033)***  
 Industry concentration (t-1) +/- -.185 (.220)*** .130 (.276)***  
 

 
 

 
  

 Weibull scale parameter 1/p  .468 (.016)*** .507 (.016)***  
    

 
  

 Sample size  274   
 Log Likelihood   -321.0    
 Pseudo R²   .556     
Notes: Two-sided t-tests. *** p < .01; ** p < .05; * p < .1 . 1) For reading convenience, coefficients are 
multiplied by 10,000. 
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