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Summary 

Aging clocks have emerged as powerful tools in the field of aging biology. These clocks utilize various 

biomarkers to estimate the biological age, overall health status, and pace of aging of an organism. 

Unlike chronological age, which measures linearly the time elapsed since birth, biological age considers 

factors such as genetics, lifestyle, and environmental exposure that affect the aging process and lead 

to inter-individual differences. By providing an assessment of an organisms’ health status, aging clocks 

can aid personalized healthcare, and accelerate aging research by giving surrogate endpoints in clinical 

trials for the identification and evaluation of geroprotective interventions. Currently, the field primarily 

focuses on three key areas of research: 1.) the search and validation of accurate biological aging clocks 

is still ongoing, with various clocks being built for different species and data modalities. 2.) The 

underlying mechanisms and interpretation of aging clocks is under debate with no clear consensus on 

what aging clocks are measuring. 3.) And lastly, the use of aging clocks in the identification and 

evaluation of geroprotective interventions. This is currently largely constrained to their use as 

surrogate endpoints of clinical trials, limiting their applicability. 

In this thesis, we first developed an accurate transcriptomic aging clock based on the novel concept of 

binarization (BitAge). Transcriptomic aging clocks faced limitations due to the inherent variability and 

age-dependent increase in variation of transcriptomic data, leading to their relative underperformance 

compared to epigenetic aging clocks. Here, I show that binarizing transcriptomic data enables the 

usage of transcriptomic data for training aging clocks that rival epigenetic aging clocks. Leveraging 

existing lifespan data for the nematode Caenorhabditis elegans for temporal rescaling, moreover, 

allowed highly accurate predictions, not only of the chronological, but especially the biological age.  

In the second part of this thesis, we investigated the underlying mechanisms of aging clocks and what 

they ultimately might be measuring. We show that accumulating stochastic variation is sufficient to 

build aging clocks that accurately predict the chronological and biological age. All tested epigenetic 

aging clocks, including the most recent pan-mammalian clock, and our own transcriptomic aging clock, 

correlate with the amount of artificially added stochastic variation to a biological ground state. 

Surprisingly, we found that an aging clock can be built using just one biological sample and artificially 

induced stochastic variation accumulation. Even clocks trained with only one biological sample enabled 

highly correlated predictions with the chronological age and revealed significant differences among 

samples subjected to lifespan interventions. 

In the last part of this thesis, we applied our aging clocks to a pseudo-bulk dataset of neuronal cell 

classes of the nematode Caenorhabditis elegans. We identified almost two-fold aging rate differences 
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between the youngest and oldest predicted neuron classes, and showed that these biological age 

differences are associated with neurodegeneration in vivo. We then used the predicted age of all 

neuronal cell classes to identify transcriptomic trajectories over the predicted age (NeuronAge). We 

show that enriched pathways of genes that are correlated with NeuronAge are conserved in human 

and mice, thereby bringing the field of cross-species aging transcriptome comparisons to species as far 

evolutionary apart as Caenorhabditis elegans and humans. Lastly, we performed an in silico drug 

screen and identified known and novel neuroprotective small molecule compounds that could be 

validated in vivo, demonstrating that our identified hits do decelerate the age-related 

neurodegeneration in Caenorhabditis elegans. 
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1 Introduction 

1.1 Aging Theories 

Understanding the biology of aging, a key factor to the loss of physiological integrity, organ decline, 

and diseases, as well as defining the scope of what constitutes aging, remains one of the biggest 

challenges1–3. Numerous aging theories have emerged to explain the underlying causes and 

consequences, with over 300 theories reviewed as early as 1990 by Medvedev4. These theories can be 

broadly classified into three categories: programmed aging 5–11, the evolutionary theory of aging 12–15, 

and the damage accumulation theory of aging16–18.  

1.1.1 Programmed Aging Theories  

Programmed aging 11, also termed phenoptosis19, was first proposed by Weismann in 1882 as a genetic 

process evolved to benefit future populations by clearing frail individuals and freeing up resources10. 

This theory therefore implies that aging is favored by natural selection, adaptive, and determined by 

specific genes5. Indeed, there are examples in nature where a rapid programmed degeneration, 

especially following reproduction, can be found. Semelparity, a reproductive strategy characterized by 

a single reproductive event followed by death, exemplifies this20. Salmon species die after first 

reproduction21,22, which can be abrogated by castration23. And there is evidence that the nematode 

Caenorhabditis elegans degrades its own intestine to feed yolk to the next generation24. It has been 

suggested that senescence and death is beneficial for evolutionary adaptability25. And the adaptive 

senescence theory proposes that aging has several beneficial roles in preventing overpopulation, 

accelerating evolution by faster generation turnover, and to prevent penalties by pathogen 

exposure19,26,27. 

1.1.2 Evolutionary Aging Theories 

The non-programmed evolutionary theories of aging started with the mutation accumulation theory 

from Medawar, who proposed that aging is caused by various harmful mutations that are deleterious 

late in life12. The antagonistic pleiotropy hypothesis suggests the existence of pleiotropic genes with 

beneficial effects early in life but deleterious effects later in life13. As the organism ages, selective 

pressure decreases, especially once it reaches reproductive maturity. Beneficial early-life traits play a 

significant role in driving reproductive success, while detrimental late-life effects have less impact, 

potentially leading to the selection for antagonistic pleiotropic genes13. The disposable soma theory 

offers another perspective, suggesting that evolutionary resources are divided between reproduction 

and somatic maintenance28. According to this theory, organisms must balance investment in 

reproduction against investment in maintaining somatic tissues, which might affect longevity and 
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health-span28. All three theories have in common that they only consider individual selection, in 

contrast to programmed aging theories, which rely on group selection, a highly controverse concept 

and mostly disregarded by evolutionary biologists29–31. For some genes pleiotropic effects have been 

suggested, while there is currently no evidence for any gene that evolved to induce aging32,33. The 

existence of antagonistic pleiotropic genes suggests that aging may be adjustable, and supports 

program-like features, i.e. not an evolved program, but a side effect of the main genes’ function34. 

1.1.3 Damage Accumulation Theories of Aging 

Due to the inherent imperfections in nature’s physical properties, biochemical processes and 

ultimately all biological processes are prone to errors18. Additionally, stochastic DNA damage can arise 

from both endogenous sources, such as metabolic byproducts and oxidative stress, as well as 

exogenous sources, including exposure to environmental factors like radiation and chemical toxins16. 

To maintain proper cell function and genomic integrity, repair mechanisms are essential35. Imperfect 

DNA repair of these damages leads to mutations36, or unrepaired lesions16. Unrepaired transcription 

blocking lesions have been proposed to shape the aging transcriptome and explain why long genes are 

downregulated with progressing age37–40. Somatic mutations are detrimental41 and have been shown 

to scale with lifespan42. As the ability of the cell to function not only depends on its intact genomic 

information, but also on the interplay of the proteome, accumulation of translation errors has been 

proposed to play a role in the aging process as well43. The accumulation of these errors might be one 

driver of the observed stoichiometry loss of protein complexes44. These small errors, while often not 

immediately detrimental to cell survival, gradually diminish the stability of the regulatory network over 

time45. In postmitotic cells, the accumulation of these errors can disrupt crucial cellular functions, 

leading to dysfunction, senescence, or cell death34. Cell division can effectively dilute damage, making 

it potentially sufficient to handle most forms of damage34. However, mutations and epimutations are 

exceptions as they can persist despite cell division46,47. The accumulation of these deleterious age-

related changes on all levels has been termed the deleteriome and proposed to drive the aging 

process34 
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1.2 Biological Age Prediction 

While chronological age serves as the universal measure of time elapsed since birth, biological age 

refers to an individual’s health and functional status relative to their chronological age, considering 

factors such as genetics, lifestyle, and environmental exposures that influence the aging process48. The 

difference between biological and chronological age was already explored in Benjamin’s 1947 study49. 

He used subjective measurements to quantify the biological age of a person, without, however, 

validating against mortality or other measures of functional age49. If biological age can be measured, 

it will be an important tool for informed clinical decisions and could potentially accelerate aging 

research and geroprotective drug discovery50. The hypothesis that ionizing radiation induces a general 

age-acceleration process51 motivated studies aiming to quantify biological age acceleration in survivors 

of the Hiroshima atomic bomb compared to age-matched control groups52–54. First studies of irradiated 

and nonirradiated subjects in skin53 and erythrocytes54 showed no evidence for age acceleration, but 

led to the first study trying to compute the biological age (physiological or functional age) with a 

multiple regression model52,i.e.: 

𝐵𝑖 = 𝑏0 +  ∑ 𝑏𝑗 ∗ 𝑥𝑗𝑖
𝑚
𝑗=1  , 

where 𝐵𝑖  is the biological age of the i-th subject, 𝑏0 is the intercept, 𝑏𝑗 is the coefficient for the j-th 

biomarker and 𝑥𝑗𝑖 is the j-th biomarker value for the i-th subject. The coefficients are computed via the 

method of least squares52. It was proposed that the biomarkers 𝑥𝑗 for the regression should be chosen 

such that they strongly correlate with chronological age to get insights into the “clock” and accelerate 

experimental gerontology55. Validation of multiple regression models based on clinical variables 

showed that subjective health56, and hypertension57 can be distinguished by biological age differences 

from the chronological age, i.e. age acceleration. These early successes, however, were surrounded by 

controversy and skepticism, particularly concerning the feasibility of accurately predicting biological 

age58,59. It was argued that there is neither a single underlying aging process, nor a general (linear) 

aging rate making biological age predictions unfeasible, and that differences between the predicted 

and chronological age are rather due to individual differences, diseases, measurement errors, or 

regression-to-the-mean59,60. Additionally, it was emphasized that the strength of association between 

the chronological age and a biomarker is not a good selection criterion for a “clock”, as biomarkers 

with perfect correlations would not allow for any measurement of aging rate differences59,61, or might 

not be causally related to aging, e.g. the degree of baldness62. Nevertheless, amidst the debate, 

proponents of biological aging measurements argued for continued research in the field61,63.  
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1.2.1 Hochschild’s Method 

Hochschild proposed a new method for biological age prediction aiming to alleviate some of the 

criticism, especially:  

1)  The use of the strength of association with the chronological age as a selection criterium. 

2) The regression-to-the-mean of multiple linear regression62, and  

3) The lack of biological age validation64.  

He proposed to:  

1.) Avoid multiple linear regression by instead using multiple simple regressions, each involving 

one biomarker, and 

2.) To reverse the regression (i.e. predict the biomarker level by the chronological age, instead of 

predicting chronological age by biomarker level) to then convert the resulting regression 

coefficients for a measure of biological age62.  

For each non-multicollinear biomarker 𝑥𝑗 he calculates the intercept 𝑏𝑗,2 and the slope 𝑏𝑗,3 on 

chronological age (𝐶): 

𝑥𝑗 = 𝑏𝑗,2 +  𝑏𝑗,3 ∗ 𝐶 . 

The predicted age 𝑃𝑗 according to the j-th biomarker 𝑥𝑗 is: 

𝑃𝑗 = 𝑏𝑗,0 +  𝑏𝑗,1 ∗ 𝑥𝑗. 

To compute the needed intercept 𝑏𝑗,0 and slope 𝑏𝑗,1 he algebraically converts the coefficients: 

𝑏𝑗,0 =  −
𝑏𝑗,2

𝑏𝑗,3
 

𝑏𝑗,1 =  
1

𝑏𝑗,3
 

This biological age measure was compared with mortality risk factors, revealing small to moderate 

effects64. Subsequently, the Hochschild method was adapted by including chronological age in an 

orthogonal regression, motivated by the fact that chronological age is the strongest indicator of 

biological age, further improving, albeit artificially, the correlation between the predicted and the 

chronological age65. 
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1.2.2 Principal Component Analysis (PCA) 

Nakamura et al. advocated to first calculate a principal component analysis (PCA) to then use multiple 

linear regression not on chronological age, but on the first principal component of the biomarker data 

and subsequently transforming the predictions to years. This largely alleviated the regression-to-the-

mean problem and predicted significant older ages in diabetic or hypertensive subjects66, and Down’s 

syndrome patients67. Alternatively, the principal components of the biomarker data can be used to 

calculate a multiple linear regression on chronological age68. The latter has the advantage that PCA 

transforms the data into a new set of orthogonal and uncorrelated variables (principal components). 

1.2.3 Klemera and Doubal’s Method (KDM) 

Klemera and Doubal recognized the need for a more mathematically formalized definition of biological 

age and a method (denoted as KDM) that does not rely on multiple linear regression69. Their method 

is similar to  Hochschild’s method in the use of single-biomarker regression, but proposes a 

mathematically optimal way to compute biological age given six assumptions69:  

1.) The pace of the natural aging process is varying across species and to some degree within 

species.  

2.) The average biological age (𝐵) of a population is the chronological age (𝐶)  and differences 

correspond to differences in the pace of aging: 𝐵 = 𝐶 + 𝑅𝐵(0; 𝑠𝐵
2), where 𝑅𝐵 is a random 

variable with zero mean and the variance (𝑠𝐵
2). 

3.) The individual pace of aging affects all biomarkers similarly.  

4.) Biological age biomarker can be affected by independent random effects.  

5.) All biomarkers are functionally uncorrelated.  

6.) The biomarkers are approximately linear with respect to age. 

The biomarker 𝑥 can then be expressed as: 

𝑥 = 𝐹𝑥(𝐵) + 𝑅𝑥(0; 𝑠𝑥
2), 

 with 𝐹𝑥 being the biomarker-specific function over the biological age (𝐵), and 𝑅𝑥(0; 𝑠𝑥
2) the random 

variable depicting the age-independent random effects. KDM then estimates the biological age by 

minimizing the distance between the 𝑚 regression lines (for the 𝑚 biomarkers with slopes 𝑘 and 

intercepts 𝑞) and the  𝑚 biomarker points for an individual in an  𝑚-dimensional space with the optimal 

estimate 𝐵𝐸 given at69: 
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𝐵𝐸 =

∑ (𝑥𝑗 − 𝑞𝑗)
𝑘𝑗

𝑠𝑗
2

𝑚
𝑗=1

∑ (
𝑘𝑗

𝑠𝑗
)𝑚

𝑗=1

2   

Where 𝑠𝑗 is the standard deviation of the random variable indicating the linear regression residual of 

the j-th biomarker 𝑥𝑗: 

𝑅𝑗(0; 𝑠𝑗
2) =  𝑥𝑗 − (𝑘𝑗𝐵 + 𝑞𝑗) 

As the biological age is not known, Klemera and Doubal give an estimation of 𝑠𝑗 with the assumption 

that the correlation coefficients for all biomarker are the same. The accuracy of 𝐵𝐸 is highly dependent 

on the number of biomarkers and complex to compute. To alleviate this problem KDM was extended 

to include chronological age (𝐶) scaled by the variance (𝑠𝐵
2) of the biological age  69: 

𝐵𝐸𝐶 =

∑ (𝑥𝑗 − 𝑞𝑗)
𝑘𝑗

𝑠𝑗
2 + 

𝐶
𝑠𝐵

2
𝑚
𝑗=1

∑ (
𝑘𝑗

𝑠𝑗
)𝑚

𝑗=1

2

+ 
1

𝑠𝐵
2

  

With the caveat that (𝑠𝐵
2) is not known and needs to be estimated69. Despite several assumptions, 

estimation of parameters and complex computations, KDM (𝐵𝐸𝐶  ) outperformed multiple linear 

regression and the Hochschild method in simulation studies69. However, especially assumption 5.), the 

requirement of functionally uncorrelated biomarkers, hinders its application. Cho et al., therefore, 

extended the method (denoted as KDM2) by first calculating a PCA to use the uncorrelated principal 

components of the biomarkers as the variables 𝑥𝑗 and further reduced the complexity of KDM (𝐵𝐸𝐶  )  

by substituting 𝑠𝑗 with the mean squared residuals of the regression on chronological age, instead of 

biological age68. KDM2 is easier to compute, more broadly applicable, and was shown to perform as 

well as the original KDM (𝐵𝐸𝐶  ) when comparing its biological age predictions with the work ability 

index health questionnaire68, and mortality70. Conversely, Mitnitski et al. showed that KDM is 

predicting mortality to a lower accuracy than chronological age on its own, and this independent on 

whether chronological age was included into the biological age prediction (𝐵𝐸𝐶) or not (𝐵𝐸) 71. 
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1.2.4 PhenoAge 

To overcome limitations in the accuracy of mortality prediction, Levine et al. replaced the regression 

on chronological age with a Cox penalized regression on mortality72. The mortality score (defined as 

the 120-month mortality risk) is defined as: 

𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 = 1 −  𝑒
−(𝑒𝛾∗120−1)∗𝑒𝑥𝑏

𝛾  

Where 𝛾 is a parameter that needs to be estimated, and  𝑥𝑏 is the linear combination of the 𝑚 

biomarkers (including chronological age), i.e.: 

𝑥𝑏 = 𝑏0 + ∑ 𝑏𝑗𝑥𝑗

𝑚

𝑗=1

 

The mortality score is then transformed into a biological age (𝐵) estimate in years72: 

𝐵 ≈ 141.5 +
ln (−0.0055 ∗ ln (1 − 𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒))

0.09
 

The resulting biological age estimator (PhenoAge) is mostly used as a surrogate measure of phenotypic 

age that is then subsequently predicted with DNA methylation data72, as outlined in the DNA 

methylation clock section below. 

1.2.5 Homeostatic Dysregulation 

The homeostatic dysregulation method tries to measure multi-system physiological dysregulation by 

calculating the Mahalanobis distance (MHBD)73 of multivariate joint distributions of biomarkers74. The 

MHBD is a statistical distance measuring how rare a specific combination of biomarkers is relative to a 

reference population, i.e. an individual with higher MHBD would be more distant from the population 

mean, be potentially more physiologically dysregulated, and have a higher mortality risk74,75. The 

method assumes multivariate normality, which is a conservative assumption for aging biomarker and 

might therefore lead to underperformance of the method. 
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1.2.6 DNA Methylation Aging Clocks 

Epigenetic modifications encompass chemical alterations to DNA, such as methylation of cytosine 

residues, and modifications to chromatin structure, such as histone acetylation or methylation. These 

modifications result in changes in gene expression76 and can impact the accessibility of the 

maintenance machinery, such as DNA repair mechanisms, thereby influencing genome stability77. The 

modifications are known to change with age and are hypothesized to causally contribute to the aging 

process78–80. In 1973 Vanyushin et al. demonstrated that global DNA methylation levels decrease with 

age in multiple tissues of rats81, which was supported in 1983 by Wilson & Jones demonstrating that 

DNA methylation decreases in aging fibroblasts, with mouse cells exhibiting a quicker decline than 

human cells, while immortal cell lines displayed a more stable DNA methylation pattern82. Subsequent 

studies showed distinct methylation patterns in specific CpG islands with aging. For instance, the 

oestrogen receptor 5’ CpG island, which are hypermethylated with aging83, while others like 

transposable element CpG islands are hypomethylated with aging84. Hypermethylation was found to 

be especially associated with bivalent chromatin domain promoters85, loci within CpG islands86, and at 

Polycomb-target genes87. The significance of age-dependent epigenetic alterations was further 

highlighted in a comparative study involving young and old monozygotic twins88, and a longitudinal 

twin study during childhood 89. These studies revealed that younger twins were epigenetically more 

similar than older twins, suggesting that the genetic background alone cannot account for the 

observed differences. Noteworthy though, already early longitudinal studies suggested that 

methylation maintenance is partly under genetic control, shedding light on the interplay between 

genetic factors and epigenetic changes during aging90.  

These findings of age-related epigenetic changes motivated the first epigenetic predictor of age (aging 

clock) based on saliva samples of 34 pairs of identical twins between 21 and 55 years of age91. While 

this initial study lacked validation in independent data, Hannum et al. subsequently demonstrated that 

an aging clock could be built using whole blood DNA methylation data from a mixed population of 656 

individuals between 19 to 101 years, which was validated in an independent cohort92. Although many 

epigenetic age-related alterations are tissue-specific93, Koch & Wagner identified 5 CpG sites 

facilitating age predictions across different tissue types94. Later, Horvath significantly improved the 

chronological age predictions and demonstrated that a human pan-tissue aging clock can be built and 

validated in a broader range of tissues95. Subsequently, numerous DNA methylation aging clocks have 

emerged, with first generation aging clocks focusing on predicting the chronological age. Single tissue 

first generation epigenetic aging clocks have been developed and fine-tuned for whole blood96–99, 

breast tissue100, saliva101, and the human cortex102 to improve the chronological age prediction 

accuracy. Similarly, pan-tissue first generation aging clocks have been improved by using deep 
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learning103,104, or fine-tuning predictions to a subset of tissues105, and cancer types106, and have been 

developed for a variety of species such as mice107,108, rats109, and naked mole rats110. Moreover, a first 

generation DNA methylation aging clock tailored for single-cell data has been developed111. Although 

first-generation aging clocks are trained to predict chronological age, studies suggested that the 

difference between the predicted age  and the chronological age, i.e. delta age, can be predictive of 

all-cause mortality112,113, is associated with frailty114, and diseases such as Down’s syndrome115, or 

neuropathological measurements116.  This association with mortality is attenuated with higher 

chronological age prediction accuracy, limiting the usage of first-generation aging clocks for biological 

age prediction117. 

Second-generation aging clocks aim to improve this mortality and disease-risk association by using 

variables indicative of health. Conceptionally, first generation aging clocks may exclude CpG sites that 

are relevant for the biological age, but don’t show a strong age-dependent trajectory. Recognizing this 

limitation, PhenoAge72 and GrimAge118 are not trained on chronological age, but a surrogate measure 

via a two-step method. PhenoAge first used a Cox penalized regression model to regress the hazard of 

mortality based on clinical markers and chronological age. The epigenetic clock was then trained to 

predict this phenotypic age, which led to significant improvements in mortality and health-span 

prediction72. Similarly, GrimAge defined surrogate biomarkers with smoking pack-years and mortality-

associated plasma proteins, which are then used to predict time-to-death. Finally, the prediction is 

transformed into a biological age estimate118. DunedinPoAm diverges from the conventional 

chronological or biological age predictors by quantifying the rate of aging in a two-step approach119. 

First, they define the reference rate of aging in a longitudinal dataset of young adults between 26 and 

38 years based on 18 blood-chemistry biomarkers120, and then use whole-genome methylation data 

from the same individuals at age 38 to predict the pace of aging, which is significantly associated with 

mortality and physical function119. Subsequently, DunedinPACE included further data and improved 

the reliability of the aging pace predictions121. 

Noticing that some CpG sites in technical replicates are highly variable122, and that most sites measured 

with different methylation arrays are not correlated (median correlation of 0.15 between Illumina 

450K and EPIC BeadChips in blood samples)123, Higgins-Chen et al. investigated the reliability of 

epigenetic clocks124. Specifically, they tested both first- and second-generation aging clocks and found 

up to 8.6 years deviation between predictions of technical replicates. To address this issue, they 

proposed using principal components to minimize the effect of technical variation by extracting age-

related covariance, and retrained the first- and second-generation aging clocks to improve reliability124. 

Similarly, Kriukov et al. recognized uncertainty in the prediction outcomes, specifically out-of-

distribution uncertainty due to a covariate shift in the dataset, and proposed an uncertainty-aware 
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clock with a Gaussian Process Regressor125. Moqri et al. instead used a biologically-informed set of CpG 

sites that are highly bound by Polycomb repressive complex 2 (PRC2) and are low-methylated in young 

organisms to define a biomarker that is assay-agnostic, robust to site-specific technical variability and 

conserved across species126. 

The conservation of PRC2-bound aging clock CpG sites across species was also found in the first third-

generation aging clock that demonstrated that a pan-mammalian clock can be built and predict the 

relative age of 185 species to a high accuracy127. Subsequently, pan-mammalian maximum lifespan, 

average gestation time, and age at sexual maturity predictors have been built128. Notably, all first-, 

second-, and third-generation aging clocks mentioned so far are correlative, and not causative, which 

explains why many aging clocks can be found throughout the epigenome and only limited information 

can be gained by analyzing clock sites129. Recognizing this short-fall, Mendelian-randomization was 

used to identify CpG sites that are causal to aging-related traits and defined a causality-enriched clock, 

which might allow for more causal biomarkers of aging130. However, despite these advancements in 

identifying causal CpG sites130 and recent more mechanism-based models131, the biological 

interpretation of epigenetic aging clocks remains limited.  

1.2.7 Transcriptomic Aging Clocks 

In contrast, transcriptomic aging clocks offer potentially easier interpretability by directly measuring 

gene expression levels132. In addition, age-related changes in the abundance of genes potentially 

integrate age-related changes in DNA methylation133,134, histone modifications135,136, the 3D genome 

organization137, and RNA polymerase stalling due to potential transcription blocking lesions37. Even 

before the advent of epigenetic aging clocks, first transcriptomic clocks in the nematode 

Caenorhabditis elegans based on microarray data of single worms demonstrated that chronological 

age predictions are possible138,139. Subsequently, it was shown that a transcriptomic clock for 

Caenorhabditis elegans can predict biological age140, and microarray-based transcriptomic aging clocks 

for human blood samples141, muscle142, and brain tissues143 were built. To overcome limitations of 

microarray platforms, e.g. detection of only a subset of the transcriptome, RNA-seq data from the 

Genotype-Tissue Expression (GTEx) project144 were used to build tissue age predictors145,146. A clock 

based on a human fibroblast dataset derived from cell culture of healthy donors enabled chronological 

age predictions and showed accelerated aging in samples from patients with Hutchinson-Gilford 

progeria syndrome147. To improve accuracy and interpretability biologically-informed deep neural 

networks have been applied148, and a hypothesis-driven clock based on repetitive element expression 

has shown accurate age predictions in human samples and Caenorhabditis elegans149.  And recently, 

single-cell RNA-seq data has been used to build cell-type specific aging clocks in mouse150 and 

humans151. Although the accuracy and interpretability of transcriptomic clocks were steadily 
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improving, they were limited by training and predicting chronological age, thereby limiting their 

usability. Recently, a neuronal single-cell clock for mice used the proliferative fraction of cells as a 

biological age score, thus improving the predictions beyond chronological age152. 

1.2.8 Proteomic Aging Clocks 

Proteomic aging clocks face greater limitations compared to DNA methylation or transcriptomic clocks. 

This is primarily due to the scarcity of available data and the absence of a standardized approach in 

generating proteomics data. With different techniques detecting diverse subsets of proteins, ensuring 

consistency becomes challenging153. Nevertheless, proteomic aging clocks have been developed, with 

the first clock being based on human blood plasma proteins, achieving a prediction accuracy for 

chronological age with an  r2 of 0.88 154, which was later improved to an r2 of 0.94 155. A longitudinal 

dataset of human blood proteins was used to predict the chronological age with a Pearson correlation 

of 0.88, and identified multiple common health conditions that increased the predicted age156. The 

combination of diverse human proteomic datasets, spanning various tissues and proteomic 

techniques, identified 85 common age-associated proteins, leading to the development of an aging 

clock with a Spearman correlation of 0.88 153. This was later improved by including more datasets to a 

chronological age predictor with a Pearson correlation of 0.96 157, which was subsequently replicated 

in a novel dataset158. A longitudinal blood immunome proteomics dataset measured systemic 

inflammation and its predictions associated with multimorbidity, frailty, and cardiovascular aging159. A 

recent preprint predicted all-cause mortality with a penalized Cox regression to improve biological age 

predictions160, while another recent preprint argued that proteomic aging clocks can be trained on 

chronological age and remain strong predictors of mortality, multimorbidity, and frailty161. Following 

up on the latter, it was demonstrated that blood plasma proteome data could even be used to not only 

build a blood aging clock, but multiple clocks for different organs. Importantly, this study revealed that 

these organ-specific clocks facilitated organ-specific risk assessment162. 

1.2.9 Other Aging Clocks 

Over the years a manifold of data aside DNA methylation, transcriptomic, and proteomic data has been 

used to build aging clocks: Chromatin accessibility based on ATAC-seq data163; cell-free DNA 

nucleosome distance, and cell-free DNA fragment size164; microbiome data165,166;physical activity167; 

facial images168–170; lipidomics171,172; glycans173–175; metabolomics176–178; histone modification ChIP-seq 

data179; or a combination of multiple OMICs data180,181. 
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1.3 Aims of this Thesis 

As outlined above, a variety of aging clocks based on various biomarkers have been described. While 

DNA methylation aging clocks have been widely used due to their accuracy and applicability, 

transcriptional aging clocks have lagged behind. In Aim 1, the goal was to improve the accuracy of 

transcriptomic aging clocks to match that of established DNA methylation aging clocks and develop a 

second-generation aging clock predicting biological age. 

While transcriptomic aging clocks are easier to interpret than DNA methylation aging clocks, 

understanding the causal relationships underlying the aging process remains challenging. Moreover, 

since most aging clocks are trained on chronological age, highly accurate clocks might lose any insights 

into the causal factors of aging. In Aim 2, we aimed to investigate current aging clocks and identify the 

underlying mechanism enabling accurate age predictions irrespective of the dataset used. 

Aging clocks serve as valuable endpoints in intervention studies, facilitating the discovery of anti-aging 

compounds and treatments. In Aim 3, we explored the potential of the clock developed in Aim 1 not 

as an endpoint, but as an in silico screening tool for identifying novel compounds that counteract age-

related neurodegeneration. 

The studies for Aim 1 and 2 have been published, as indicated in the chapters below. The study for Aim 

3 has been submitted for publication.   
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Abstract
Aging clocks dissociate biological from chronological age. The estimation of biologi-
cal age is important for identifying gerontogenes and assessing environmental, nu-
tritional, or therapeutic impacts on the aging process. Recently, methylation markers 
were shown to allow estimation of biological age based on age-dependent somatic 
epigenetic alterations. However, DNA methylation is absent in some species such as 
Caenorhabditis elegans and it remains unclear whether and how the epigenetic clocks 
affect gene expression. Aging clocks based on transcriptomes have suffered from 
considerable variation in the data and relatively low accuracy. Here, we devised an 
approach that uses temporal scaling and binarization of C. elegans transcriptomes to 
define a gene set that predicts biological age with an accuracy that is close to the the-
oretical limit. Our model accurately predicts the longevity effects of diverse strains, 
treatments, and conditions. The involved genes support a role of specific transcription 
factors as well as innate immunity and neuronal signaling in the regulation of the aging 
process. We show that this binarized transcriptomic aging (BiT age) clock can also be 
applied to human age prediction with high accuracy. The BiT age clock could therefore 
find wide application in genetic, nutritional, environmental, and therapeutic interven-
tions in the aging process.

K E Y W O R D S
aging, aging clock, biological aging, biomarkers, Caenorhabditis elegans, RNA sequencing, 
transcriptome

1  |  INTRODUC TION

Aging is the driving factor for several diseases, the declining organ 
function, and overall progressive loss of physiological integrity. Aging 
biomarkers that predict the biological age of an organism are import-
ant for identifying genetic and environmental factors that influence 
the aging process and for accelerating studies examining potential 
rejuvenating treatments. Diverse studies tried to identify biomark-
ers and predict the age of individuals, ranging from proteomics, 

transcriptomics, the microbiome, frailty index assessments to neu-
roimaging, and DNA methylation (Galkin et al., 2020). Currently, the 
most common predictors are based on DNA methylation. The DNA 
methylation marks themselves might influence the transcriptional 
response, but aging also affects the transcriptional network by alter-
ing the histone abundance, histone modifications, and the 3D orga-
nization of chromatin. The difference in RNA molecule abundance, 
thereby, integrates a variety of regulation and influences resulting in 
a notable gene expression change during the lifespan of an organism 
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(Lai et al., 2019). These changes sparked interest in the identification 
of transcriptomic aging biomarkers, an RNA expression signature 
for age classification, and the development of transcriptomic aging 
clocks.

Peters et al. extended previous classification approaches to a 
regression, which allows the computation of the predicted age and 
developed a transcriptional aging clock based on whole-blood mi-
croarray samples for half of the human genome and reported an r2 
of up to 0.6, an average difference of 7.8 years, and an association of 
the predicted age to blood pressure as well as smoking status (Peters 
et al., 2015). Similarly, Mamoshina et al. build a transcriptomic aging 
clock of human muscle tissue. A deep feature selection model 
performed best with an r2 of 0.83 and a mean absolute error of 
6.24 years (Mamoshina et al., 2018). However, microarray data have 
the drawbacks of a limited range of detection, high background lev-
els, and the detection of just a subset of the transcriptome. Instead, 
by applying an ensemble of linear discriminant analysis classifiers on 
RNA-seq data, a model with an r2 of 0.81, a mean absolute error of 
7.7 years, and a median absolute error of 4.0 years were obtained in 
a dataset derived from cell culture of healthy donors (Fleischer et al., 
2018). The same model also predicted an accelerated age in 10 pa-
tients with the premature aging disease Hutchinson-Gilford progeria 
syndrome (HGPS).

While a large variety of data, techniques, and analyses have been 
used to identify aging biomarkers and aging clocks in humans, issues 
remain with regard to pronounced variability and difficulties in repli-
cability. Indeed, a recent analysis of gene expression, plasma protein, 
blood metabolite, blood cytokine, microbiome, and clinical marker 
data showed that individual age slopes diverged among the partici-
pants over the longitudinal measurement time and subsequently that 
individuals have different molecular aging pattern, called ageotypes 
(Ahadi et al., 2020). These interindividual differences show that it is 
still difficult to pinpoint biomarkers for aging in humans.

Model organisms, instead, can give a more controllable view on 
the aging process and biomarker discovery. Caenorhabditis elegans 
has revolutionized the aging field and has vast advantages as a model 
organism. Even isogenic nematodes in precisely controlled homoge-
nous environments have surprisingly diverse lifespans; however, the 
underlying causes are still incompletely understood. Several predic-
tive biomarkers of C. elegans aging have been described, and a first 
transcriptomic clock of C. elegans aging using microarray data of 104 
single wild-type worms predicted the chronological age with 71% 
accuracy (Golden et al., 2008). When the prediction was based on 
modular genetic subnetworks inferred from microarray data with 
support vector regression, the age of sterile fer-15 mutants at 4 
timepoints was predicted with an r2 of 0.91. The same approach on 
the 104 individual N2 wild-type worms yielded an r2 of 0.77 indicat-
ing that for microarray data subnetworks of genes result in better 
prediction compared with single gene predictors, likely due to the 
noisiness of the data type (Fortney et al., 2010). Although the ac-
curacy of this model is reasonable, it is limited by the fact that no 
lifespan-affecting genotypes or treatments were tested and that the 
validation dataset, although tested on single worms, resulted in an 

increased prediction error. Recently, an initial age prediction based 
on microarray data predicted 60 RNA-seq samples with a Pearson 
correlation of 0.54 and was improved to an r of 0.86 when the 
chronological age was rescaled by the median lifespan of the corre-
sponding sample (Tarkhov et al., 2019). Even though this model in-
stead of chronological age predicted the biological age of a variety of 
C. elegans genotypes, it is limited by the accuracy of the prediction. 
Moreover, the biological age is not reported in days, but as a variable 
with values between 0 and ~2.5, which makes it harder to interpret.

To date, no aging clock for C. elegans has been built solely on 
RNA-seq data and been shown to predict the biological age of di-
verse strains, treatments, and conditions to a high accuracy. In this 
study, we build such a transcriptomic aging clock that predicts the bi-
ological age of C. elegans based on high-throughput gene expression 
data to an unprecedented accuracy. We combine a temporal rescal-
ing approach, to make samples of diverse lifespans comparable, with 
a novel binarization approach, which overcomes current limitations 
in the prediction of the biological age. Moreover, we show that the 
model accurately predicts the effects of several lifespan-affecting 
factors such as insulin-like signaling, a dysregulated miRNA reg-
ulation, the effect of an epigenetic mark, translational efficiency, 
dietary restriction, heat stress, pathogen exposure, the diet-, and 
dosage-dependent effects of drugs. This combination of rescaling 
and binarization of gene expression data therefore allows for the 
first time to build an accurate aging clock that predicts the biolog-
ical age regardless of the genotype or treatment. Lastly, we show 
how our binarized transcriptomic aging (BiT age) clock model has 
the potential to improve the prediction of the transcriptomic age of 
humans and might therefore be universally applicable to assess bi-
ological age.

2  |  RESULTS

2.1  |  Temporal scaling and transcriptome data 
binarization allow precise biological clock predictions

We downloaded and processed 1,020 publicly available RNA-seq 
samples for adult C. elegans out of which for 972 samples corre-
sponding lifespan data were available (Table S1). 900 samples were 
used for the training and testing of the model, the remainder for vali-
dation purposes (Figure 1). Out of the 900 samples most (409) were 
wild-type N2 worm populations. A significant portion of 171 sam-
ples contained reads of temperature-sensitive sterile strains such as 
glp-1 or fem-1 or double mutants thereof. 59 samples contained a 
mutation in the insulin-like growth factor 1 receptor daf-2 and 45 
a mutation in the dietary-restriction mimic strain eat-2 either as a 
single or as a combination with a different mutation. 216 samples 
did not cluster in one of the mentioned groups and contain a variety 
of different strains. 112 of the samples span 14 different RNAis in 51 
samples and 61 empty vector controls. Slightly more than half of the 
samples (486) were sequenced from a population that was undergo-
ing a treatment (excluding RNAi or empty vector) that is different 
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from the standard treatment of an Escherichia coli OP50 diet at 20°C. 
The convoluted circle plot on the right side of Figure 1 shows the 
overlap of the different possible combinations of strains, RNAi, and 
treatments in our training samples.

We only downloaded and processed data for which the corre-
sponding publication reported a median lifespan. The lifespan data 
are required to make strains with vastly different lifespans compa-
rable. Without rescaling, an RNA-seq sample of a long-lived nema-
tode beyond the normal lifespan of a wild-type worm would not be 
comparable to a wild-type sample, since no sample would be able to 
be generated. Lifespan-altering manipulations, for example, a tem-
perature shift, a daf-2 mutation, or oxidative damage, were shown to 
just shift the lifespan curve by stretching or shrinking it (Stroustrup 
et al., 2016). One interpretation would be that all lifespan-affecting 
interventions converge on similar pathways, which affect the risk 
of death in a similar pattern, just at different velocities. Moreover, 
there have been descriptions of a transcriptional drift during C. ele-
gans aging (Hastings et al., 2019; Tarkhov et al., 2019), which might 
be due to a (dys-)regulation of single transcription factors (Mann 
et al., 2016) and the suppression of this transcriptional drift might 
slow down the aging process (Rangaraju et al., 2015). Notably, age 
prediction could be improved by rescaling the chronological age by 
the median lifespan (Tarkhov et al., 2019).

We, therefore, employed a strategy similar to Tarkhov et al. and 
rescaled the lifespan by the corresponding median lifespan of the 
sample. We set the median lifespan of a standard wild-type N2 worm 
to µ = 15.5 days of adulthood. Using this standard lifespan, we calcu-
lated a correction factor to determine the biological age of a sample. 
For example, the correction factor of a strain with a measured me-
dian lifespan of 31 days would be µ/31 = 0.5 and thereby assuming 

a uniform aging rate reduction of 50%. This correction factor would 
be applied to each RNA-seq sample of the same strain and exper-
iment. A sample sequenced, for example, at day 10 of adulthood, 
would be corrected to 10*0.5 = 5 days of biological age. Applying 
the individual correction factors for each RNA-seq sample allows us 
to build a classifier of the biological, instead of the chronological age. 
Importantly, by defining a standard lifespan of 15.5 days we are able 
to predict the biological age in days instead of a variable between 0 
and 2.5 as reported by Tarkhov et al.

Owing to the fact that the public data were generated in mul-
tiple laboratories with different protocols and sequencers (see 
Table S1 for details), we expected noisy data with a strong batch 
effect. Indeed, the results of an elastic net regression (see Methods 
for details) on the raw counts-per-million (CPM) reads resulted in a 
mediocre model with an r2 of 0.78, a Pearson correlation of 0.89 
(p = 2.82e-304), a Spearman correlation of 0.86 (p = 9.97e-258), a 
mean absolute error (MAE) of 1.02 days, a median absolute devia-
tion (MAD) of 0.71 days, and a root-mean-square-error (RMSE) of 
1.51 days. Figure S1a shows the comparison of the rescaled biolog-
ical age of the strains on the x-axis and the age predicted by the 
elastic net regression on the y-axis. Interestingly, the overall abso-
lute error and the variance in the absolute error of the prediction 
increase strongly after ~5 days (Figure S2).

In order to mitigate this increase in variance, we developed a 
novel approach and binarized the transcriptome data by setting the 
value of each gene to 1, if the CPM is bigger than the median CPM of 
the corresponding sample and 0 otherwise (see Methods for details), 
thereby reducing the noise, but retaining the information whether 
a gene is strongly transcribed or not. After this binarization, we 
trained an elastic net regression model with nested cross-validation 
to obtain the best parameter setting and optimal set of genes (see 
Methods for details) that predict the biological age remarkably 
well with an r2 of 0.96, a Pearson correlation of 0.98 (p<1e-304), 
a Spearman correlation of 0.96 (p<1e-304), a mean absolute error 
of 0.46 days, a median absolute error of 0.33 days, and a RMSE of 
0.66 days (Figure S1b).

Interestingly, especially the increased variance in older samples, 
as seen in our initial analysis in Figure S1a, diminished and showed a 
strong improvement in overall accuracy. Comparison of the absolute 
error terms of the raw CPM and the binarized data prediction shows 
that the absolute error of the binarized prediction is lower than the 
prediction based on the raw CPMs regardless of the biological age of 
the worms. Furthermore, while the initial prediction on the raw data 
starts to get especially inaccurate starting from day 5, the increase in 
the binarized data is far less pronounced (Figure S2a). Interestingly, 
also the variance of the absolute error terms stays more stable in the 
binarized data than the raw data and thereby demonstrating a more 
robust prediction regardless of the true age of the worms (Figure 
S2b).

These results show that the binarization approach strongly im-
proves the prediction, especially in older samples, which have been 
shown to contain a noisier transcriptome. Indeed, this age-dependent 
noisiness so far hindered the identification of proper aging biomarkers. 

F I G U R E  1 Data overview. Overview of the processed published 
data utilized in the training of the model. Pie charts show the 
distribution of different genotypes (blue), treatments (brown), 
and RNAis (green). The convoluted pie chart on the right shows 
the overlap of the three classes. The partition “Sterile” contains 
multiple different genotypes that cannot give rise to progeny and 
daf-2, as well as eat-2, might contain additional mutations. For a 
more detailed view, see Table S1
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The binarization therefore might facilitate the identification by reduc-
ing the noise, while retaining the important information. To verify our 
prediction further, eight independent datasets, not used in the nested 
cross-validation for optimization of the parameter and gene set, were 
predicted with an r2 of 0.91, a Pearson correlation of 0.97 (p = 2.43e-
58), a Spearman correlation of 0.91 (p = 6.58e-38), a mean error of 0.92 
d, a median error of 0.53 d, and a RMSE of 1.40 d (Figure S1c).

The results show that the overall prediction is highly accurate; 
however, although lower than the increase in deviation in the raw 
data, the binarized data as well show a decrease in accuracy in sam-
ples with an older biological age (see also Figure S2). This might be 
due to the lower sample size of older animals, but might also be 
influenced by the nature of bulk RNA sequencing itself. Figure S3a 
shows a standard lifespan curve of C. elegans. Until ~day 8, 100% of 
non-censored worms are alive. Starting from day 8, the first worms 
die, until the median lifespan is reached at ~15.5 days and the max-
imum at ~24 days. We can assume that the biological age of worms 
at the same chronological age follows a normal distribution (Figure 
S3b). In other words, in a plate of synchronized worms at day 8 
we would expect to see that most worms are also at a biological 
age of 8 days. However, some worms will be healthier while others 
are already close to death and will therefore be the worms that 
start dying early. While the peak of this bell curve will therefore 
be the chronological age of the worm population, some worms will 
be biologically younger and some older (Figure S3b). Starting from 
the next day, the first part of the worm population will die (Figure 
S3c). Assuming the normal distribution of the biological age of the 
worms and a hypothetical maximum biological age as shown with 
the dotted line in Figure S3d, we can hypothesize that the biolog-
ically older worms will die off first and thereby truncate the bio-
logical age distribution on the right side of the curve (Figure S3d). 
This truncation will shift the true median biological age toward the 
left side, as indicated by the green line. This becomes more notice-
able at the median lifespan of 15.5 days, where by definition 50% 
of the population is dead (Figure S3e). Following the same reason-
ing from above, we see that the right half of the biologically older 
worms died, while the younger half of the population stayed alive. 
However, this clearly skews the distribution, since the oldest 50% 
of the population is dead and therefore will not contribute to the 
average biological age anymore. Indeed, the median biological age 
will be the median of the remaining, alive worms, that is, the left 
part of the curve. This will result in a shift of biological age, espe-
cially for chronologically older populations (Figure S3f). In consid-
eration of this biological age shift, an RNA-seq sample sequenced 
at 15.5 days will have a younger true population-median biological 
age, which will introduce a bias into the regression model. The bias 
will be not as pronounced in younger samples, since most of the 
population will still be alive (Figure S3b).

To alleviate this bias, we calculated a second correction term 
that takes into consideration the hypothetical biological age distri-
bution of the sequenced population (methods for details). Applying 
this correction before the optimization of the regression resulted 
in an improved prediction model, especially for the independent 

dataset. The new model utilizes 576 genes (Table S2) and predicts 
the full dataset slightly better, with an r2 of 0.96, a Pearson correla-
tion of 0.98 (p<1e-304), a Spearman correlation of 0.96 (p<1e-304), a 
mean error of 0.45 d (−1.63% compared with pre-correction model), 
a median error of 0.32 d (−2.15%), and a RMSE of 0.64 d (−3.47%) 
(Figure 2a). The independent dataset is now predicted with an r2 of 
0.94, a Pearson correlation of 0.98 (p = 1.13e-62), a Spearman cor-
relation of 0.92 (p = 6.24e-38), a mean error of 0.76 d (−17.45%), a 
median error of 0.53 d, and a RMSE of 1.01 (−28.28%) (Figure 2b). 
These data indicate that it might be worthwhile including a correc-
tion for the survival bias of worms in older populations. The com-
parison to the prediction on the unbinarized validation data after 
applying the second correction term showed a strong improvement 
in accuracy upon binarization with a 48.27% reduction in the mean 
error (Figure S4a, Table S3).

To confirm that not every gene set of 576 genes results in a simi-
lar prediction, we randomly sampled 576 genes and recorded the re-
sulting absolute errors and r2 values. The boxplot in Figure 2c shows 
the distribution of r2 values centering around the mean of 0.488 with 
a standard deviation of 0.117. The blue dot shows the result of our 
predicted gene set as a clear outlier at 0.96. The MAE and MAD are 
centered around 1.27 d and 0.911 d with a standard deviation of 
0.066 and 0.063, respectively (Figure S4b).

To assess the precision of the age prediction, we next probed 
how close this model approaches the theoretical limit of a biological 
clock. The datasets are annotated in whole days alive from adult-
hood and thereby including a variance of ±12 h to the actual chrono-
logical age. Random sampling of this error alone gives a mean error 
of 0.236 (±0.006) d, a median error of 0.187 (±0.006) d, and a r2 of 
0.986 (±0.002). However, since lifespan assays, even done under the 
same conditions in the same laboratory, will vary, we can assume 
that the reported median lifespan, used for the temporal rescaling, 
will also be including an inherent experimental error. Indeed, it has 
been shown that lifespan assays are heavily affected by the num-
ber of animals and less, but substantially, by the scoring frequency, 
thereby indicating that many lifespan studies are underpowered and 
often driven by stochastic variation (Petrascheck & Miller, 2017). 
Computing the mean and SD of lifespan assays for one genotype 
with the same treatment for several publications shows that the 
variation is indeed on average ~7% for one standard deviation from 
the mean with a range between 5.44% and 8.83% (Table S3). An as-
sumption of a moderate 5% deviation between assays increases the 
mean error to 0.302 (±0.007) d, the median error to 0.244 (±0.008) 
d, and reduces the r2 to 0.98 (±0.002). These theoretical optima, 
shown as dotted lines in the boxplots in Figure 2c and Figure S4b, 
clearly display the quality of our prediction. We conclude that the 
prediction based on the set of 576 genes is close to the theoretical 
optimum.

Next, we compared our model to a previous model (Tarkhov 
et al., 2019) that described three sets of aging-associated genes. 
The first set, consisting of 327 genes, was generated by a meta-
analysis of publicly available microarray data, the second con-
sists of 902 age-associated genes generated by the analysis of 60 
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    |  5 of 17MEYER and SCHUMACHER

RNA-seq samples, and finally, a sparse subset with only 71 genes 
that Tarkhov et al. used for their biological age prediction. The 
gene set derived from microarray data performed worst on the 

prediction of the 900 RNA-seq samples with an r2 of 0.52 and a 
mean error of 1.33 d (195.18% increase compared with our final 
model). The gene set of 902 genes performed similarly, with an 
r2 of 0.57 and a mean error of 1.40 d (210.37% increase). Finally, 
the sparse predictor provided an r2 of 0.57 and a mean error of 
1.36 d (202.07% increase) (Figure S5a–c; for further quality mea-
surements, see Table S3). Remarkably, binarization improves the 
prediction of these three gene sets as well to an r2 of 0.74, 0.78, 
and 0.62, respectively (Figure S5d,e, Table S3). Although the r2 
of the sparse predictor increased to 0.62, the MAE and MAD in-
creased and thereby also show that a single quality assessment is 
not enough to give a good evaluation (Figure S5f).

Next, we also evaluated the prediction of the independent data-
sets from Figure 2b with the three previously published gene sets. 
The gene set of 71 genes performed worst with an r2 of 0.35 and a 
MAE of 1.95 d (+156.07% compared with our final model). The gene 
set derived from microarray data and the gene set with 902 genes 
performed better with an r2 of 0.44 and a MAE of 2.20 d (+188.11%), 
respectively, an r2 of 0.43 and a MAE of 2.31 d (+203.24%) (Figure 
S6a–c; for further quality measurements, see Table S3). Remarkably, 
the binarization could also improve the prediction in this case to an 
r2 of 0.87 for the gene set derived from microarray data, 0.85 for 
the gene set of 902 genes, and 0.72 for the sparse predictor (Figure 
S6d–f; for further quality measurements, see Table S3).

These comparisons indicate that binarization is improving 
the quality of regression models overall and that our new model 
consisting of 576 binarized genes predicts the biological age of 
C. elegans to a high accuracy and superior to previously existing 
models.

F I G U R E  2 Biological age prediction. (a) Results of the biological 
age prediction computed by cross-validation. The x-axis shows the 
rescaled biological age in days starting from adulthood additionally 
corrected by the second rescaling approach. The y-axis shows the 
predicted age computed by the elastic net regression after the 
second rescaling approach on binarized gene expression data. Every 
blue dot displays one RNA-seq sample. The regression line with 
the 95% confidence interval is shown in blue, and the dotted line 
shows the perfect linear correlation. The distribution of the data 
is shown on the side of the plot. r2 = coefficient of determination, 
Pearson = Pearson correlation, Spearman = Spearman correlation, 
MAE = mean absolute error in days, MAD = median absolute 
deviation in days, RMSE = root-mean-square-error in days. (b) 
Prediction of the model on eight independent datasets consisting 
of 94 samples at different time points. The x-axis shows the 
rescaled biological age in days starting from adulthood additionally 
corrected by the second rescaling approach. The y-axis shows the 
predicted age computed by the elastic net regression after the 
second rescaling approach on binarized gene expression data. For 
more details on the data, see Table S1. (c) The y-axis shows the r2 
of a given prediction. The box plot displays 1,000 random models 
with 576 genes. The prediction by our final model with an r2 of 
0.96 is shown as a blue dot and indicated by the arrow. The dotted 
line shows the theoretical limit of prediction given by the limit of 
accuracy in the chronological age annotation as well as variance in 
the lifespan data used for rescaling
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2.2  |  Transcriptomic clock correctly predicts 
multiple lifespan-affecting factors

Since our model is able to predict the biological age to a high ac-
curacy, we next tested the capability of the model to predict the 
effect of multiple lifespan-affecting factors. We used the previously 
determined 576 predictor genes and trained an elastic net regres-
sion on the 900 RNA-seq samples, excluding the data for the respec-
tive publication. This is thereby a different cross-validation approach 
where we excluded a whole experimental dataset at a time.

First, we tested the well-known effect of insulin-like signaling 
on the biological age and saw that a daf-2 mutation reduces the 
predicted biological age compared with the WT strain of the same 
experiment by 41.3% in 4-day adult C. elegans (Figure 3a). The even 
longer-lived daf-2; rsks-1 double mutant is accordingly predicted 

to be even younger with a significant reduction of 56.8% in 4-day 
adults (Figure 3b).

To determine whether short-lived mutants can also be predicted 
correctly, we next tested mir-71, which has been shown to regulate 
the global miRNA abundance during aging and to directly influence 
lifespan (Inukai et al., 2018). Compared to WT, mir-71 mutants are 
predicted to be 56% older in 5-day adults (Figure 3c). In addition, 
samples of a gain-of-function skn-1 mutation, that is, detrimental for 
lifespan, are predicted to be 77.2% older than wild-type worms at 
day 2 (Figure 3d). Interestingly, this adverse effect can be rescued 
by a loss-of-function mutation in wdr-5 and the subsequent abolish-
ment of the epigenetic mark H3K4me3 (Nhan et al., 2019), which 
is remarkably also reflected in our prediction. Loss of protein ho-
meostasis decreases overall fitness and is a hallmark of aging. In C. 
elegans, the loss of uridine U34 2-thiolation in tut-1; elpc-1 double 

F I G U R E  3 Biological age prediction of short- and long-lived mutants. The box plots show the predicted biological age in days on the 
y-axis. Assuming the properties of a uniform temporal rescaling, a lower predicted age will equal a longer lifespan. The corresponding 
whole dataset was set aside for the training of the final model for the corresponding plot. Blue dots display single RNA-seq samples. (a) The 
lifespan-extending daf-2(e1370) strain is predicted to be biologically younger than WT samples of the same chronological age (4.5 days). 
Note that the WT strain in this publication had a longer lifespan (19.4 days) than the standard 15.5 days and is thereby also predicted to be 
biologically younger than its chronological age. Data from GSE36041. (b) Dietary restriction (DR) and the long-lived double mutant daf-
2(e1370); rsks-1(ok1255) are predicted to be significantly younger than WT samples of the same chronological age (4 days). Data from GSE11​
9485. (c) The lifespan-shortening mir-71(n4115) mutation significantly increased the predicted biological age compared to samples of the 
same chronological age (5 days). Data from GSE72232. (d) The gain-of-function mutant skn-1(lax188) significantly increased the biological 
age, while an additional mutation in the epigenetic regulator wdr-5 rescues the biological age back to WT levels (2 days). Data from GSE12​
3531. (e) The double mutant tut-1(tm1297); elpc-1(tm2149) significantly increases the biological age (chronological age of 1 day). Data from 
GSE67387. *p < 0.05, **p ≤ 0.01, ***p ≤ 0.001, independent two-sided t tests were used for comparisons in (a), (c), and (e). One-way ANOVA 
with a post hoc Tukey test was used in (b) and (d). Table S3 contains more detailed statistics
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F I G U R E  4 Biological age prediction of a variety of treatments and stressors. The box plots show the predicted biological age in days on 
the y-axis. Assuming the properties of a uniform temporal rescaling, a lower predicted age will equal a longer lifespan. The corresponding 
whole dataset was set aside for the training of the final model for the corresponding plot. Blue dots display single RNA-seq samples. (a) 
Heat shock induces a strong increase in the predicted biological age at a chronological age of 3 days in WT. Data from PRJNA523315. (b) 
Pathogen infection by Pseudomonas aeruginosa at 25°C at a chronological age of day 1 increases significantly the predicted age. Data from 
GSE12​2544. (c) Pathogen infection by S. aureus at 25°C at a chronological age of day 1 increases significantly the predicted age. Data from 
GSE57739. (d) The bacterial strain-dependent effect of metformin is resembled in the prediction. The box plots show wild-type worm 
populations at a chronological age of day 2 with either a standard OP50 E. coli diet or a Metformin-resistant OP50 (OP50-MR) strain with 
or without 50 mM Metformin. A two-way ANOVA showed a significant treatment effect (p = 0.004). Data from E-MTAB-7272. (e) The 
dosage-dependent effect of Mianserin is resembled in the prediction. The box plots show wild-type worm populations at a chronological age 
of day 10 either treated with water or 50 µM Mianserin on day 3 or day 1. A one-way ANOVA showed significance (p = 0.0008). Data from 
GSE63528. (f) The effect of drug combinations at the chronological age of 6 days is resembled in the prediction. A one-way ANOVA showed 
significance (p = 0.02). Data from GSE10​8263. (g) An independent dataset without a reported lifespan sequenced at the chronological age 
of day 1. Wild-type worms were treated with either 10 µM or 20 µM of the proteasome inhibitor Bortezomib (BTZ), or RNAi against the 
proteasomal subunit rpn-6. Data from GSE12​4178. (h) An independent dataset without a reported lifespan sequenced at the chronological 
age of day 3. Data from GSE12​1920. The predicted median lifespan reduction of 35.7% is similar to the reported lifespan reduction of 
33.5% (Pang & Curran, 2014). (i) An independent dataset without a reported lifespan sequenced at the chronological age of day 2. Data from 
GSE15​8729. The predicted median lifespan reduction of 63.96% is similar to the reported lifespan reduction of 50%–60.69% (Ratnappan 
et al., 2014). *p < 0.05, **p ≤ 0.01, ***p ≤ 0.001, independent two-sided t tests were used for comparisons in (a), (b), (c), (h), and (i). One-way 
ANOVA with a post hoc Tukey test was used in (e), (f), and (g). Two-way ANOVA with a post hoc Tukey test was used in (d). Table S3 contains 
more detailed statistics
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mutants has been shown to have a negative impact on the efficiency 
of translation and to promote protein aggregation (Nedialkova & 
Leidel, 2015). Strikingly, this effect on translational efficiency is also 
reflected in the transcriptomic aging clock for day 1 adults, which 
are predicted to be 196% older than their wild-type counterpart 
(Figure 3e).

These data show that the BiT age clock can effectively predict 
the biological age of a variety of mutants and pathways, ranging from 
the insulin pathway, miRNAs, and the epigenetic mark H3K4me3 to 
translational efficiency.

Since both, long-lived and short-lived strains, are predicted with 
the correct pattern, we next asked whether we could predict the 
effect of dietary restriction (DR) on the biological age. Although the 
effect was slight, the dietary-restricted worms are predicted to be 
12.9% younger than their normal-fed counterpart at day 4 of adult-
hood (Figure 3b). DR-induced longevity was shown to depend on 
the PMK-1/p38 signaling-regulated innate immune response. In C. 
elegans, sek-1 is part of the PMK-1/p38 signaling cascade and re-
quired for longevity in dietary-restricted worms (Wu et al., 2019). 
Noticeably, the same trend can be observed in our prediction for 
day 6 adults (Figure S7a). A two-way ANOVA showed a significant 
interaction between the effects of the strain and dietary restriction 
(p = 0.004), which indicates that the effect of DR is dependent on 
sek-1 activation. Although in this dataset, the adjusted p-value of 
the effect of DR in WT worms is not significant (p  =  0.057), it is 
interesting to note that the dietary-restricted worms are on aver-
age 32% younger than the ad libitum fed WT worms. This biological 
age reduction is thereby showing a stronger effect than the 12.9% 
reduction in Figure 3b. This could be due to strain differences in the 
different laboratories or suggest that positive effects of DR add up 
over time.

Next, we decided to test whether different lifespan-shortening 
stressors can be predicted correctly. Both heat stress (Figure 4a) and 
pathogen exposure to either P. aeruginosa or S. aureus (Figure 4b,c) 
showed a strong increase in the predicted biological age. Heat stress 
increased the prediction by 169.3% in day 3 adults. Pseudomonas 
aeruginosa increased the predicted age by 421.4%. And S. aureus in-
creased the biological age prediction by 101%, in day 1 adults.

While heat or pathogen exposure can lead to a quick demise of 
the animals, we wondered whether more subtle changes in lifespan 
by different diets and subsequent nutrient metabolism could also 
be detected. It was shown that an E. coli K12 variant's indole se-
cretion extends fecundity and overall healthspan and lifespan in C. 
elegans, while an isogenic E. coli strain (K12tnaA) with a deletion in 
the indole-converting gene does not have these benefits. This effect 
on healthspan was reported to be not yet visible in worms on day 8, 
but showed a significant difference only at the next tested timepoint 
on day 15 (Sonowal et al., 2017). Intriguingly, the same pattern can 
be observed in RNA-seq samples of day 3 and day 12 (Figure S7b). A 
two-way ANOVA showed a significant treatment effect (p = 0.034) 
indicating the sensitivity of the approach. Moreover, in accordance 
with the published results, a subsequent post hoc Tukey test showed 
no difference between the diets on day 3 (adjusted p = 0.9), while day 

12 showed a 15.3% increased biological age in the K12tnaA diet (ad-
justed p = 0.0506). Consistent with the link between diet-dependent 
changes in nutrient metabolism and lifespan, it has been shown that 
the lifespan-extending effect of Metformin is, at least partially, reg-
ulated by a bacterial nutrient pathway (Pryor et al., 2019). A two-
way ANOVA of the predicted biological age of day-2 adults, grown 
on either E. coli OP50 or a Metformin-resistant OP50 strain, with 
or without Metformin showed as well a significant bacteria effect 
(p = 0.045) as a significant drug effect (p = 0.004). A subsequent post 
hoc Tukey test showed a significant reduction in the biological age of 
Metformin-treated wild-type worms grown on OP50 (−34.5%), but 
no significant effect in worms grown on Metformin-resistant OP50 
(Figure 4d).

Next, we asked whether the effect of the duration time of a drug 
might be reflected on the transcriptomic age. The antidepressant 
Mianserin has been shown to extend the lifespan of C. elegans by 
inhibiting serotonergic signals, which is lessening the age-dependent 
transcriptional drift. This effect is more pronounced in animals that 
were treated starting from day 1, compared to starting the treat-
ment from day 3 (Rangaraju et al., 2015). Our prediction of day 10 
adults resembles this conclusion; a one-way ANOVA showed a sig-
nificant difference (p = 0.0008) and an ensuing post hoc Tukey test 
revealed statistical significance between all three cases, with the 
biggest effect in worms treated from day 1 (Figure 4e).

An interesting and challenging question is whether the combi-
nation of different lifespan-extending drugs might have a synergis-
tic effect. Admasu et al. reported that not all combinations of drugs 
have an additive effect. While the combination of Rapamycin with 
Allantoin had no effect on the lifespan of wild-type worms, the 
triple combination with Rifampicin surprisingly had the biggest ef-
fect (Admasu et al., 2018). Interestingly, while the administration 
of rifampicin, rapamycin, and allantoin significantly reduced the 
predicted age by 17.7% (Figure 4f), the double combination of rapa-
mycin and allantoin did not change the predicted lifespan, which is in 
accordance with the published lifespan results.

Lastly, we decided to check the biological age prediction of inde-
pendent validation data and downloaded three datasets for which 
no direct lifespan data (i.e., in the same publication) were published 
and which contained treatments and strains that were not included 
in any of the analyses and nested cross-validations above. We first 
tested the effect of proteotoxic stress on the transcriptional age 
with samples of two different dosages of the proteasome inhibitor 
bortezomib (BTZ) and the knockdown by RNAi of the proteasomal 
subunit RPN-6.1 and saw a significant increase in the biological age 
of all three samples (Figure 4g). Notably, the effect of BTZ shows a 
dose dependency. rpn-6.1 RNAi has been shown to strongly reduce 
the lifespan of WT worms (Vilchez et al., 2012), and BTZ suppos-
edly mimics the effects by directly blocking the proteasome and has 
been shown to dramatically reduce the lifespan of starved worms 
(Webster et al., 2017). Moreover, although no direct lifespan data 
are available for normal-fed worms, 10 µM BTZ leads to an early 
death starting from day 3 (Finger et al., 2019), while 25 µM even in-
creased mortality (Fabian Finger, personal communication). Next, we 
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tested samples with a mutation in alh-6 (Yen et al., 2020), which re-
sulted in a 35.7% reduction in the predicted lifespan (Figure 4h). This 
is remarkably close to the previously reported 33.5% lifespan reduc-
tion in alh-6(lax105) (Pang & Curran, 2014). Lastly, we tested glp-1 
and nhr-49; glp-1 samples for which no direct lifespan measurement 
was available. A mutation in nhr-49 was previously reported to de-
crease the lifespan in a glp-1 background by 50–60.69% (Ratnappan 
et al., 2014), which is in line with the predicted mean 63.96% de-
crease (Figure 4i).

These results demonstrate that the nested cross-validation was 
sufficient to prevent overfitting, that our model extends beyond the 
data described here and that even lifespan-affecting stressors un-
known to the model, for example, proteasomal stress, are correctly 
predicted.

We next wondered how well the aging clock that is measured at 
one specific timepoint could predict the median lifespan. The predic-
tion of the median lifespan from the biological age assumes a uniform 
lifespan shift. In other words, if the biological age ratio of two strains 
or treatments stays constant, we are able to compute the predicted 
median lifespan. For example, if a sample is twice as long lived as its 
control, we assume a uniform 50% reduction in the biological age 
compared with the control, regardless of the timepoint of sequenc-
ing; that is, the biological age will be half regardless of the chrono-
logical age. The aforementioned intrinsic biases in the chronological 
age and lifespan assays, however, limit the precision of the predicted 
median lifespan, especially in chronologically younger samples as 
here the intrinsic experimental error of ±12 h has a greater influence 
(Figure S8). Nonetheless, the predicted median lifespan is within the 
theoretical error bounds in most of the tested samples, indicating 
that not only biological age but also median lifespan could be pre-
dicted by the transcriptomic clock (Table S4).

Nonetheless, the aforementioned 41.3% biological age reduc-
tion in daf-2 in 4-day adults corresponds to a 1.71-fold lifespan ex-
tension. This daf-2 strain is reported to be 2.6-fold longer-lived than 
its control; however, even with the theoretically optimal prediction, 
the predicted lifespan effect will vary due to the aforementioned 
intrinsic biases to around 2.6 ±0.5-fold. Since the WT sample of this 
dataset (Zarse et al., 2012) was already longer lived than our stan-
dard 15.5 days, we also computed the comparison against 15.5 days 
which resulted in a 2.31-fold increase in lifespan for daf-2.

In addition, it cannot be excluded per se that some mutations or 
treatments might affect the lifespan non-uniformly over time, which 
would result in an additional bias in the model (Table S4). Indeed, our 
analysis of the 2 DR datasets (Figure 3b and Figure S7a) might indi-
cate such a bias (even though all values are within the lifespan error 
bounds). The 12.9% reduction in biological age at day 4 (Figure 3b) 
corresponds to a 1.15-fold lifespan extension (in comparison with 
the theoretical 1.36 ± 0.26-fold extension). The samples on two ad-
ditional days of DR (Figure S7a), however, are predicted to be 1.47 
times longer lived (theoretical 1.61 ± 0.22-fold extension).

In conclusion, we demonstrated that the BiT age clock of C. ele-
gans is highly accurate and versatile usable. We showed that it cor-
rectly predicts the effects of insulin-like signaling, a modified miRNA 

regulation, the effect of an aberrant active transcription factor, and the 
reversal of this effect by an epigenetic mark, translational efficiency, 
dietary restriction, and the requirement of the intact innate immune 
system on its lifespan-extending effect, heat stress as well as pathogen 
exposure, and the effects of diet-depending metabolites. Lastly, we 
also showed that the predictor is able to correctly identify the effect 
of Metformin through the host's microbiota, the dosage-dependent 
effect of drugs, and the counterintuitive fact that the combination 
of lifespan-extending drugs might not be necessarily synergistic. 
Strikingly, our model extends beyond the data used for the nested 
cross-validation and is able to correctly predict the biological age of 
worms, for which no direct lifespan data were available. The BiT age 
clock could thus facilitate the assessment of pro- and anti-aging effects 
of genetic, metabolic, environmental, or pharmacological interventions 
as it determines the biological age and predicts median lifespan.

2.3  |  The predictor genes are enriched in age-
related processes, the innate immune response, and 
neuronal signaling

For the final model, we calculated the regression coefficients of the 
576 genes based on all the 900 training samples for which lifespan 
data were available (Figure 1, Table S1). The final regression model 
utilizes 576 genes, out of which 294 have a negative coefficient and 
thereby are mostly expressed in young worms, while 282 genes have 
a positive coefficient and thereby increase the predicted age if ac-
tive (the genes with the corresponding regression coefficients can 
be found in Table S2). Intriguingly, the protein-coding genes with a 
negative coefficient were enriched on the X-chromosome and are 
significantly less expressed from chromosomes I and II (Figure S9a). 
Protein-coding genes with a positive coefficient show a opposite 
trend and are significantly enriched on chromosomes I and II, while 
depleted from chromosome IV (Figure S9b,c). Interestingly, a gene 
set enrichment analysis of the genes with a negative coefficient, so 
those that are associated with younger samples, is enriched in age-
related categories that are downregulated with aging (Figure 5a). 
Moreover, the 294 genes are enriched in the pmk-1, elt-2, pqm-1, 
and daf-16 transcription factor target category (Figure 5b). A motif 
search at the promoter regions of the genes with a negative coef-
ficient corroborates this finding and shows a significant enrichment 
in the GATA transcription factors PQM-1 and ELT-3 (Figure S10a). 
Although the gene set enrichment analysis with WormExp did not 
show a significant enrichment of transcription factors in the gene set 
with a positive coefficient, the motif search also identified the GATA 
motif enriched at the promoter regions (Figure S10b). Notably, the 
GATA transcription factor elt-6 is within the top 30% of genes with 
a positive coefficient in our gene set and thereby correlated with 
older worms and has been shown to increase during normal aging 
and to increase the lifespan upon knock down by RNAi (Budovskaya 
et al., 2008). Interestingly, genes associated with younger worms 
are also enriched in genes that are upregulated in germline-ablated 
animals (Figure 5c), which in general exhibit an increased lifespan. 
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10 of 17  |     MEYER and SCHUMACHER

Genes with a positive coefficient on the other hand are enriched in 
categories that show an increase with age (Figure 5d).

A subsequent functional enrichment analysis (s. methods) re-
vealed a strong enrichment of signal peptides (i.e. proteins that 
are targeted to the secretory pathway by their signal sequence), 
transporter activity, and neuropeptides, which suggest that espe-
cially systemic responses influence the aging process (Figure 5e). 
Neurotransmitters, although not directly enriched in the GO-term 
analysis, might as well play an important role: hic-1 is one of the genes 
with the strongest increase in predicted age of our gene set. It has 
been previously shown to be present at the presynaptic terminal of 
cholinergic neurons and to regulate the normal secretion of acetyl-
choline neurotransmitter and Wnt vesicles (Tikiyani et al., 2018). In 
the same manner, the dopamine receptor dop-4 is in the top 25% of 
genes with a negative coefficient and has been shown to promote 
healthy proteostasis and the innate immunity as well as detoxification 
genes (Joshi et al., 2016). Interestingly, the innate immune response 
and cytochrome P450 enrichment in our gene set might indicate a 
role of a general stress response, detoxification, and drug metabolism 
during the aging process. Consistent with a general stress response, 
we also find csa-1 in the list of genes with a positive coefficient, which 
might indicate an increased DNA damage load in older worms.

To conclude, these results further validate the genes used for the 
age prediction and indicate that the aging process might be driven 

by the dysregulation of single transcription factors (Figure 5b) and a 
systemic signal transmitted by secreted peptides (Figure 5e).

2.4  |  Improved Human age prediction by the BiT 
age clock

To demonstrate that our novel approach is also usable for other or-
ganisms, we employed a recent human dermal fibroblast RNA-seq 
dataset generated from cell culture of 133 healthy individuals with 
ages between 1 and 94, and 10 patients with Hutchinson-Gilford 
progeria syndrome (HGPS) with ages between 2 and 9 (Fleischer 
et al., 2018). Fleischer et al. showed that an LDA ensemble approach 
can predict the age of the 133 healthy patients with a r2 of 0.81, a 
mean error of 7.7 years, and a median error of 4.0 years. Moreover, 
they find a statistical increase in the predicted biological age of 
HGPS patients, as would be expected from a premature aging dis-
ease. However, as they mention, the ensemble method has some 
limitations, that is, the discretization of age, the computational cost, 
and the difficult interpretation of the influence of gene expression 
changes on the predicted age.

Our regression-based method is fast to compute, does not re-
quire the discretization of age, and directly allows the effect in-
terpretation of the activity of single genes on the predicted age. 

F I G U R E  5 Functional analysis of the 
predictor genes. (a–d) WormExp gene set 
enrichment analysis for the 576 predictor 
genes. The x-axis displays the −log10 of 
the adjusted p-value. Only statistically 
significant (adjusted p < 0.05) enrichments 
are shown. (a–c) Gene set enrichment 
analyses for the genes with a coefficient 
≤0 for the Development/Dauer/Aging 
category (a), the TF Targets category (b), 
and the Tissue category (c). (d) Gene set 
enrichment analyses for the genes with 
a coefficient >0 for the Development/
Dauer/Aging category. (e) Functional 
enrichment analysis for the 576 predictor 
genes by String and geneSCF. The x-axis 
displays the −log10 of the FDR. The red 
line displays an FDR of 0.05. Different 
enrichment categories are color-coded
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Using the elastic net regression on the unbinarized data resulted in 
a model of 132 predictor genes and in a similar prediction quality 
as the elastic net regression by Fleischer et al. (Figure S11a), and 

similarly, the HGPS samples are not predicted to be biologically 
older (Figure S11b). However, binarization of the data before cal-
culating the elastic net regression improved the results dramati-
cally to an r2 of 0.92, a Pearson correlation of 0.96 (p = 7.87e-73), a 
Spearman correlation of 0.96 (p = 9.31e-73), a MAE of 6.63 years, 
a MAD of 5.24  years, and a RMSE of 8.41  years (Figure 6a). 
Moreover, our model predicts the HGPS patients to be signifi-
cantly older (Figure 6b). This new model contains 141 predictor 
genes (Table S5), out of which 25 are significantly enriched in the 
biological process regulation of cell death. Interestingly, among 
the predictor genes the forkhead transcription factor FOXO1—a 
regulator of the aging process in C. elegans and mammals—is posi-
tively correlated with age thus further supporting the evolutionary 
conservation of transcriptionally regulated longevity mechanisms 
(Martins et al., 2016).

To summarize, these data indicate that elastic net regression on 
binarized gene expression data is not only usable in the nematode C. 
elegans, but also in more complex organisms like humans.

3  |  DISCUSSION

The molecular understanding of aging on the genetic, epige-
netic, transcriptomic, proteomic, and metabolomic level has made 
steady progress over the recent years. Since the initial discovery 
of genetic mechanisms that determine longevity, C. elegans has 
remained an important model system not only for the genetics 
of aging but also for devising molecular intervention strategies. 
However, up to date no single model could predict the biological 
age of any organism to a high accuracy in diverse strains, treat-
ments, and conditions. In our study, we show that the binarization 
of gene expression data allows a biological age prediction of C. 
elegans to an unprecedented accuracy and for the first time the 
prediction of a variety of lifespan-affecting factors. Additionally, 
we show that the binarization approach, even without the biologi-
cal rescaling, might be applicable to and improving the predictions 
in other organisms. This is in contrast to the currently most widely 
used epigenetic clocks, which are limited to organisms with DNA 
methylation marks. Moreover, our results suggest that especially 
the innate immune system and neuronal signaling are important 
for an accurate prediction and therefore also might play an essen-
tial role in the aging process.

Binarization of the gene expression data hugely improved the 
predictability of the biological age. Interestingly, the biggest de-
viation from the true biological age is in the samples treated with 
heat shock or in mir-71, eat-2, and skn-1 (gof) mutants. Heat-shock 
treatment and an eat-2 mutation have been shown to exhibit a dif-
ferent aging trajectory and to diverge from the temporal scaling ap-
proach proposed by Stroustrup (Stroustrup et al., 2016). Similarly, 
skn-1 (gof) and mir-71 display a sharp drop in lifespan (Inukai 
et al., 2018; Nhan et al., 2019) that cannot totally be accounted 
for with our median lifespan-rescaling approach. Incorporating 
the whole lifespan curve could therefore improve the prediction 

F I G U R E  6 Transcriptomic human aging clock. (a) Results of the 
age prediction computed by cross-validation on human fibroblast 
gene expression data. The x-axis shows the chronological age 
in years. The y-axis shows the predicted age computed by an 
elastic net regression on binarized gene expression data. Every 
blue dot displays one RNA-seq sample. The regression line with 
the 95% confidence interval is shown in blue, and the dotted line 
shows the perfect linear correlation. The distribution of the data 
is shown on the side of the plot. r2 = coefficient of determination, 
Pearson = Pearson correlation, Spearman = Spearman correlation, 
MAE = mean absolute error in years, MAD = median absolute 
deviation in years, RMSE = root-mean-square-error in years. Data 
from GSE11​3957. (b) Box plots of age predictions of samples from 
Hutchinson-Gilford progeria syndrome patients (red) and predictions 
of age-matched healthy controls (blue) by the elastic net regression 
of binarized gene expression data. Progeria samples are predicted to 
be significantly older than age-matched healthy controls. Data from 
GSE11​3957. **p ≤ 0.01, calculated by an independent two-sided t 
test. Table S3 contains more detailed statistics
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even further. In this regard, it is also noteworthy that the utilized 
bulk-sequencing data introduce several biases that might not be 
reflected in a simple rescaling approach. We tried to alleviate 
some of the potential biases with our second rescaling approach, 
which should reduce the error that is introduced by the fact that 
especially the biologically older part of a population dies off first. 
However, it has been published that C. elegans dies of at least two 
different types of death (Zhao et al., 2017): either an early death 
with a swollen pharynx, induced by an increased bacterial content, 
or a later death with an atrophied pharynx. This might introduce a 
different bias, since the initial transcriptional response close to an 
early death might be different from the response to a later death. 
Nevertheless, even with these limitations our model predicts the 
biological age of worms remarkably well.

The increasing error and increase in variance of the age predic-
tor in older worms is especially visible in the unbinarized model. This 
might be due to the known age-dependent increase in transcriptional 
variety that limits the ability of the regression model to pick an ac-
curate subset of genes. Different hypotheses have been proposed 
that try to explain this transcriptional noise. In C. elegans, it might be 
partially regulated by a microRNA feedback loop that is dependent 
on mir-71 (Inukai et al., 2018), serotonergic signals (Rangaraju et al., 
2015), and the decline of the GATA transcription factor ELT-2 during 
aging (Mann et al., 2016). One interesting possibility is the idea that 
the increasing noise is driven by accumulating somatic mutations over 
the course of aging. Indeed, Enge et al. demonstrated an increase in 
the transcriptional noise as well as an age-dependent accumulation of 
somatic mutations in single human pancreatic cells; however, they did 
not find any support for a causal relationship between exonic muta-
tions and transcriptional dysregulation (Enge et al., 2017).

3.1  |  Transcription factors

Similar to Tarkhov et al., we find an enrichment in targets of DAF-
16, the GATA transcription factors PQM-1 and ELT-2, and PMK-1 
in our predictor gene set. DAF-16 is known to be involved in a va-
riety of stress responses and longevity pathways (Sun et al., 2017). 
GATA transcription factors have been found to be relevant for a 
variety of tissue-specific stress responses and to have a functional 
role in the aging process (Budovskaya et al., 2008). Moreover, de-
activation of elt-2 has been described as a major driver of normal 
C. elegans aging (Mann et al., 2016) and pqm-1 has been shown to 
decline with age and to be involved in daf-2-mediated longevity 
(Tepper et al., 2013). The p38 MAPK family member pmk-1 is an 
important gene in the nematode's pathogen defense system and 
innate immunity.

3.2  |  Innate immune response

The innate immune system of C. elegans has been linked to sev-
eral lifespan-affecting pathways (Ermolaeva & Schumacher, 2014). 

Schmeisser et al. (2013), for example, showed that dietary restriction 
(DR)-dependent lifespan extension requires a limited neuronal ROS 
signaling via a reduced mitochondrial complex 1 activity that activates 
PMK-1/p38. Furthermore, it has been shown that the intestinally pro-
duced and secreted innate immunity-related protein IRG-7 can lead 
to the activation of the p38-ATF-7 pathway and is required for the 
longevity in germlineless nematodes (Yunger et al., 2017). Apart from 
long-lived mutants, PMK-1 expression was also observed to decline 
with normal age, leading to an innate immunosenescence in C. elegans 
that has been proposed to be a driving factor of the aging process 
(Youngman et al., 2011). This immunosenescence and the overall in-
volvement of the innate immune system in aging has also been shown 
in other model organisms and might demonstrate an evolutionary 
conservation. Our work falls in line with these reports and supports 
an important role of the innate immune response in C. elegans aging.

3.3  |  Neuronal signaling

Our model also shows an enrichment in neuropeptide signaling. 
Neuronal communication is important for the organism's homeo-
stasis when responding to different stressors and a changing envi-
ronment and has been implicated in the aging process. It has also 
recently been shown that the suppression of excitatory neurotrans-
mitter and neuropeptide signaling is partially required for the lon-
gevity of daf-2 mutants (Zullo et al., 2019) and similarly a glia-derived 
neuropeptide signaling pathway that affects the aging rate and 
healthspan of worms has been described and shows the potential 
for neuropeptide involvement in the aging process (Yin et al., 2017). 
In line with this, we find hic-1 and dop-4 in our predictor gene set. 
hic-1 is important for the regulation of acetylcholine neurotransmit-
ter (Tikiyani et al., 2018) and might therefore indicate a role of hic-1 
in the locomotion defect that occurs with aging (Glenn et al., 2004). 
Besides the role of dop-4 in the innate immune response (Joshi et al., 
2016), it has also been implicated in the slowing down of habitua-
tion (Ardiel et al., 2016). Older worms have been shown to exhibit 
a greater habituation and a slower recovery from it (Beck & Rankin, 
1993). The fact that dop-4 has a negative coefficient in our age pre-
diction suggests that it is less transcribed in older worm populations, 
thereby making it an interesting target for the cause of increasing 
habituation with age.

3.4  |  Human data

Lastly, we demonstrated that binarized gene expression data also allow 
building an accurate human age prediction. Currently, the analysis is 
limited by the data amount and future studies should include more 
high-quality data from different cohorts with different environments 
and populations. Optimally, the data would be generated with biopsies 
from different tissues of living donors without the need of cell culture. 
Nevertheless, we demonstrated that binarization improves the level 
of prediction beyond the current standard and that it also allows for a 
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prediction by an elastic net regression, which results in an easy inter-
pretable gene set. Interestingly, we found a significant enrichment in 
the biological process regulation of cell death, including FOXO1, which 
indicates that certain age-related pathways, such as insulin signaling, 
are indeed relevant for multiple species and evolutionarily conserved.

4  |  CONCLUSIONS

The binarized expression of our 576 genes is sufficient to predict the 
biological age of C. elegans independent of the underlying genetics or 
environment with an accuracy near the theoretical limit. Our analysis 
suggests that the innate immune response, neuronal signaling, and sin-
gle transcription factors are major regulators of the aging process inde-
pendent of the strain and treatment. Although the temporal rescaling 
approaches will not be applicable in humans, we have also shown how 
the binarization approach improves the chronological age prediction of 
a recent human dataset. Our work establishes that an accurate aging 
predictor can be built on binarized transcriptomic data that extends 
beyond the training data, predicts lifespan effects across diverse ge-
netic, environmental, or therapeutic interventions, is employable in 
distinct species, and might thus serve as a universally applicable aging 
clock.

5  |  MATERIAL S AND METHODS

5.1  |  Data processing

The quality of the data was checked with FastQC, and the data were 
preprocessed with Fastp with the following parameters: -g to trim 
polyG read tails caused by sequencing artifacts, -x to trim polyX, -q 
30 for base quality filtering, and -e 30 to filter for an average quality 
score. Paired-end samples were processed together. After preproc-
essing, the samples were mapped with STAR-2.7.1a with the follow-
ing parameters: --outFilterType BySJout --outFilterMultimapNmax 
20 --alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --outFilter​
MismatchNmax 999 --outFilterMismatchNoverReadLmax 0.04 
--alignIntronMin 20 --alignIntronMax 1000000 --alignMatesGapMax 
1000000 --quantMode GeneCounts.

The genome directories were generated with the ce11 
genome, WBcel235.96 without rRNA and the parame-
ter –genomeSAindexNbases 12 for C. elegans and the hg38 
genome, GRCh38.97 without rRNA, and the parameter 
–genomeSAindexNbases 14 for human data. The parameter 
–sjdbOverhang was set to the read length of the sample −1.

The validation samples with the IDs GSE10​6079, GSE12​
7917, GSE13​8129, and GSE14​1041 were mapped with Salmon-1.1 
with a k-mer length of 31 and the following parameters: -l A 
–validateMappings –gcBias –seqBias.

The raw counts for the validation samples with the IDs GSE93826 
and GSE13​8035 were directly downloaded from the gene expres-
sion omnibus.

The counts for unstranded RNA-seq were merged into one csv 
file, and edgeR was used to generate count per millions (CPM).

Functional enrichment analysis was done with String v.11 and 
geneSCF, and the gene set enrichment analysis with WormExp.

5.2  |  Binarization

To binarize the data first zero CPMs were masked by NaN. For the 
remaining data, the median for each sample was calculated and 
genes bigger the median were set to 1, while genes smaller or equal 
to the median were set to 0, finally genes masked by NaN were set 
to 0 as well.

5.3  |  Temporal rescaling

For the temporal rescaling, we set the median lifespan of a standard 
worm to 15.5 days of adulthood. We calculated a correction factor 
for every sample by dividing this standard lifespan by the median 
lifespan reported by the publication of the corresponding sample. 
We restricted the training data to this subset of samples for which 
a lifespan was reported in the associated publication, because even 
a wild-type worm under standard conditions can show dramatically 
different median lifespans in between different laboratories. For 
example, the median lifespan of N2 wild-type worms at the same 
standard conditions in the datasets we used ranges from 15 days in 
GSE11​2753 to 24 days in PRJNA508378, which increases to a range 
from 14 days (GSE65765) to 30.55 days (GSE92902) just by includ-
ing FUDR-treated worms. Without requiring the lifespan data from 
the same publication and just setting the lifespan to the standard 
15.5 days, we would introduce a twofold bias in the rescaled biologi-
cal age, which would reduce the prediction of the model accordingly. 
The chronological age of each sample is multiplied with this correc-
tion factor to result in the approximated biological age of the sample. 
The chronological age, correction factor, and biological age for every 
sample can be seen in Table S1.

The datasets GSE10​6079 and GSE93826 were not associated 
with any publication and thereby no lifespan data were available. 
However, both datasets consist of a time course of C. elegans aging 
and would therefore be valuable validation data. Since the strains 
used in both datasets should not show strong deviations in the me-
dian lifespan from wild-type worms, we assumed that the lifespan 
is 15.5 days in both cases. Since this lifespan is approximated and 
should therefore include a bias as shown above, we would expect 
the prediction error to be higher than usual.

5.4  |  2nd rescaling approach

For the 2nd rescaling of the biological age, we set the maximum bio-
logical age of the worm to 15.5 days. Assuming a normal distribution 
of biological age around the chronological age of a worm population 
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and further assuming that, on average, worms will die according to 
their biological age, we can assume that the maximum biological age 
of a worm is the median lifespan of 15.5 days. Worms living longer 
than the median lifespan were biologically younger and therefore did 
not cross the line of 15.5 days (see Figure S3). Since the first wild-
type worms under standard conditions start dying at around 9 days 
of adulthood, the oldest worms at day 8 should be biologically around 
15.5 days old. Therefore, we approximated the standard deviation to 
be 8/3. Centering a normal distribution at 8 days with a SD of 8/3 will 
contain 99.73% of the area under the curve within day 0 to day 16.

Next, we approximated that the biological age distribution is not 
changing over time and that the SD over 8/3 stays stable. To cal-
culate the median of the data after trimming the data at the maxi-
mum age of 15.5 days, we first need to calculate how much data are 
trimmed. We approximate this by utilizing the error function:

implemented in the SciPy library.
The approximation of the percentage p of data that is remaining 

on the left side from the maximum lifespan of 15.5 days on the bio-
logical age x is as follows:

Here, 15.5− x

8∕3
 calculates how many SDs the biological age is apart from 

the maximum age of 15.5 days. And erf
�

15.5 − x

8∕3√
2

�
 calculates the per-

centage of the area under the bell curve for the calculated number of 
SDs. If the biological age would be one SD away from the maximum 
age of 15.5 days, that is, 8/3 days, the area under the curve would be 
~68.2%. However, this value corresponds to the area on the left and 
the right of the median. Since we are only interested in one side, we 
have to divide the area by 2 and add 50%, that is, 0.5, for the oppo-
site side. With this, p will approximate the area under the curve that 
is remaining after trimming the right side from the maximum lifespan 
of 15.5 days.

To get the approximation of the new median percentage for the 
trimmed bell curve, we can divide p by 2. This new median percentage 
can be used to calculate the median in days by reverting the calcula-
tion. First, we subtract the new median percentage from 0.5 to get the 
deviation from the original median percentage, that is, 0.5, and use 
the inverse error function to approximate s, the number of standard 
deviations that the new median is shifted to the left of the old median:

The new median m, in other words the new rescaled biological 
age, can then be calculated by the following:

where 8/3 is the standard deviation that we set in the beginning and x 
the biological age, that is, the original median.

5.5  |  Model fitting—Parameter search

The age prediction models use an elastic net regression as imple-
mented by Pythons’ sklearn. The random_state was set to 0, the max_
iter to 1,000, and positive=False. The best parameter settings for 
alpha and the L1/L2 ratio were selected using a parameter grid search 
with a nested cross-validation approach. To avoid overfitting during 
the training, we split the data into multiple partitions. Every sample 
of the same genetic background, with the same treatment, and RNA 
interference of the same rounded biological age to days was consid-
ered to be one partition. This makes sure that samples with a similar 
transcriptome are taken out together during the process. The elastic 
net regression is trained on the remaining data, and the partition that 
got taken out will be predicted. To get an overview of the accuracy of 
the model, this process is repeated for the partitions in the dataset. In 
the end, every sample will be predicted exactly once, which allows the 
comparison of the predicted with the true biological age.

A simple cross-validation like this gives an overview of the ac-
curacy of the model; however, to select the best parameter setting, 
a nested cross-validation is required, since otherwise information 
may leak into the model and introduce another type of overfitting. 
Therefore, after splitting the data into the test and the train parti-
tions (the outer loop), the latter will be split again into an inner test 
and train partition (the inner loop). This inner cross-validation will be 
computed for every parameter set to compute the average of the 
absolute error for each parameter setting.

This will be done for every partitioning in the outer loop to 
select the most stable parameter set. The parameters selected 
by this approach for the binarized data are alpha  =  0.075 and 
l1_ratio = 0.3.

5.6  |  Model fitting—Optimal gene set

To obtain the optimal gene set without overfitting, a similar ap-
proach was taken. Instead of looping over different parameter set-
tings, the cross-validation for the gene set loops over a list of the 
genes with the highest absolute coefficients. First, for every train-
ing partition in the outer loop the full model with alpha = 0.075 
and l1_ratio = 0.3 is computed. This will result in a model, where 
every gene is annotated with a coefficient. In the binarized model, 
the sum of the coefficients for all genes that are 1 in the sam-
ple added to the intercept equals the predicted age. Therefore, a 
negative coefficient will result in a younger predicted age, while a 
positive coefficient will increase the predicted age. Next, we loop 
over different subsets of the top genes to identify the approxi-
mately optimal and smallest gene set for the given partition. For 
every gene set, the inner cross-validation loop is computed and 
the gene set with the smallest average absolute error is saved. This 

erf (z) =
2√
�

z

∫
0

e
− t2dt

p =
1

2
erf

⎛
⎜⎜⎝

15.5− x

8∕3√
2

⎞
⎟⎟⎠
+ 0.5

s = erf
− 1

�
0.5 −

p

2

�√
2 ∗ 2

m = x − s ∗
8

3
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will be done again for every partition in the outer loop to gain mul-
tiple gene sets. Similar to the parameter search, the most stable 
gene set is taken by retaining only those genes that were used by 
every partition. This stable gene set selected by this approach for 
the binarized data after the second rescaling are the 576 genes 
described in Table S2. This final model starts at an intercept of 
103.55 hrs (4.31 days).

5.7  |  Using the clock

To predict the biological age of new data, one has to start with binariz-
ing the transcriptome as described above. The elastic net coefficients 
(column 2 in Table S2) are added up for all of the 576 genes with a 
value of 1 after binarization. Finally, the intercept of 103.55 hr has to 
be added to get the final prediction of the biological age in hours. The 
code is included in https://github.com/Meyer​-DH/Aging​Clock/

5.8  |  Motif search

The set of genes with a coefficient >0, respective ≤0, was used as 
input for the findMotifs function of Homer-4.9.1–6 with the pa-
rameters -len 8,10 -start −300 -end 100. To make sure that the 
maximum number of genes got recognized by Homer, we first con-
verted the Wormbase IDs to the sequence name with WormBase's 
SimpleMine and added “CELE_” in front of it. These identifiers were 
then searched in the “worm.description” file of Homer to gain the 
corresponding RefSeq IDs that are recognized by the program. The 
p-values were calculated with a hypergeometric test.

5.9  |  Median lifespan fold change prediction

The median lifespan fold change can be predicted by the biologi-
cal age of the strain of interest and its control, assuming a uniform 
age effect. The median lifespan of each strain can be computed by 
dividing the chronological age by the biological age and multiplying 
it by 15.5 days. To compute the fold change, the median lifespan of 
interest is divided by the control lifespan, or easier, the biological age 
of the strain of interest can be divided by the biological age of the 
control, if the chronological age is the same.

The theoretical range of lifespan fold change predictions in Figure 
S8 was calculated with the Python package Uncertainties. The chrono-
logical age bias was set to 0.5 days and the lifespan assay bias to 5%. 
The code is included in https://github.com/Meyer​-DH/Aging​Clock/

5.10  |  Figure details

All plots were done with Seaborn-0.9.0. Boxplots: The center line 
represents the median; the box limits the bottom, and top quartiles 
of the data and the whiskers show the 1.5x interquartile range.

5.11  |  Statistics

ANOVA and t tests were computed with Python's pingouin li-
brary v.0.3.3. post hoc Tukey test were computed with Python's 
Statsmodels library v.0.10.1.

5.12  |  Citations of the age predictors 
from the literature

Because currently no general consensus of quality assessment exists 
and different measurements are being reported, we state the meas-
urements as reported in the cited paper in the introduction. Some of 
the most common used assessments are as follows:

1.	 Mean absolute error (MAE): the mean of the absolute differ-
ence in predicted and true age.

2.	 Root-mean-square-error (RMSE): the square root of the average 
squared differences. Larger errors have a larger effect on the 
RMSE than on MAE.

3.	 Median absolute deviation (MAD): the median absolute differ-
ence in predicted and true age.

4.	 Pearson correlation (r): measurement of how the predicted and 
true age changes together. Evaluates linear relationships.

5.	 Spearman correlation (r): similar to Pearson correlation, but evalu-
ates the monotonic relationship. Other than Pearson correlation, 
the variables do not need to change at a linear rate.

6.	 Coefficient of determination (r2): the fraction of the variance that 
is predictable with the model. Often the r2 is the square of the 
correlation coefficient; however, this is not true in the general 
case. The value can get negative if the model fits worse than a 
horizontal line.
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Supplementary materials and methods 

Programs and methods citations 

The following programs and methods have been used in this study: 

FastQC (Andrews et al. 2010), Fastp (Chen et al. 2018), STAR-2.7.1a (Dobin et al. 2013), Salmon-1.1 

(Patro et al. 2017), edgeR (Robinson et al. 2009), String v.11 (Szklarczyk et al. 2019), geneSCF 

(Subhash & Kanduri 2016), WormBase’s SimpleMine (Harris et al. 2020), Homer-4.9.1-6 (Heinz et al. 

2010), WormExp (Yang et al. 2016). 

The following Python libraries have been used: 

pingouin v.0.3.3 (Vallat 2018), Statsmodels v.0.10.1 (Seabold & Perktold 2010), Scipy-1.5.1 (Virtanen 

et al. 2020), sklearn-0.23.1 (Varoquaux et al. 2011), Uncertanties-3.1.1 (Lebigot n.d.), seaborn-0.9.0 

(Waskom et al. 2018) 

Datasets have been downloaded from the gene expression omnibus (Edgar et al. 2002). 
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Supporting Information Legends 

Figure S1. Alternative models 

(A) Results of the biological age prediction computed by cross-validation. The x-axis shows the 

rescaled biological age in days starting from adulthood. The y-axis shows the predicted age computed 

by an elastic net regression on unbinarized CPMs. Every blue dot displays one RNA-seq sample. The 

regression line with the 95 % confidence interval is shown in blue and the dotted line shows the 

perfect linear correlation. The distribution of the data is shown on the side of the plot. r²= coefficient 

of determination, Pearson= Pearson correlation, Spearman= Spearman correlation, MAE= mean 

absolute error in days, MAD= median absolute deviation in days, RMSE= root-mean-square-error in 

days. 

(B) Results of the biological age prediction computed by cross-validation. The x-axis shows the rescaled 

biological age in days starting from adulthood. The y-axis shows the predicted age computed by an 

elastic net regression on binarized gene expression data. Every blue dot displays one RNA-seq sample. 

The regression line with the 95 % confidence interval is shown in blue and the dotted line shows the 

perfect linear correlation. The distribution of the data is shown on the side of the plot. r²= coefficient 

of determination, Pearson= Pearson correlation, Spearman= Spearman correlation, MAE= mean 

absolute error in days, MAD= median absolute deviation in days, RMSE= root-mean-square-error in 

days. 

(C) Prediction of the model on 8 independent datasets consisting of 94 samples at different time 

points. The x-axis shows the biological age in days starting from adulthood before the second rescaling 

approach. The y-axis shows the predicted age computed by an elastic net regression on binarized gene 

expression data. For more details on the datasets see the Table S1. 

Figure S2. Comparison of the binarized and unbinarized model error 

(A) The absolute error distribution between the predicted and true biological age is plotted for either 

the unbinarized (red) or binarized (blue) data. The x-axis shows the true biological age in days. The y-

axis the absolute error in days. While the unbinarized model strongly increases the absolute prediction 

error with age, the increase is less pronounced with the binarized model. 



(B) The bar plots show the standard deviation of the absolute prediction errors in days. The x-axis 

shows the true biological age in days. While the binarized model stays relatively stable over age, the 

unbinarized model increases the variance in the prediction error. 

Figure S3. Explanation of the 2nd rescaling 

(A, C, E) Standard lifespan curves of C. elegans with a median lifespan of 15.5 days. The X mark the 

chronological age for which we show the hypothetical age distributions in (B, D, F) respectively. (B, D, 

F) show the biological age distribution around the chronological age marked by the X. The biggest 

portion of the age-synchronized worm population will be as old as the chronological age. However, 

assuming a normal distribution of the biological age, we can assume that a part of the population is 

biologically younger, respective older. The green lines indicate the median biological age of the living 

worm population. The dotted line displays the maximum lifespan. 

(A, B) All non-censored worms are still alive in the population, i.e. no worm crossed the maximum 

lifespan line. The population age median is equal to the peak of the distribution. 

(C, D) The first (biologically older) worms died, leading to a truncation of the alive distribution of 

biological age in the population. This has the consequence that the true median of the alive fraction 

of the worms will be shifted to the left, away from the peak of the distribution. 

(E, F) At the median lifespan, 50 % of the population has died. Assuming a uniform shift of the 

biological age distribution results in the truncation of the right half of the distribution. The true 

population median is therefore even further shifted to the left. 

Figure S4. Comparison of the model with unbinarized data, random genes and the 

theoretical limit 

(A) Prediction of the 8 independent datasets consisting of 94 samples at different time points. The x-

axis shows the rescaled biological age in days starting from adulthood additionally corrected by the 

second rescaling approach. The y-axis shows the predicted age computed by an elastic net regression 

on unbinarized CPMs. For more details on the data see the Table S1. (B) The y-axis shows the mean 

absolute error (MAE), respective the median absolute deviation (MAD) of a given prediction in days. 

The box plots display the results of 1000 random models with 576 (binarized) genes. The prediction 

by our final model with a MAE of 0.45 and a MAD of 0.32 is shown as the blue dots and indicated by 



arrows. The dotted lines show the theoretical limit of prediction given by the limit of accuracy in the 

chronological age annotation as well as variance in the lifespan data used for rescaling. 

Figure S5. Comparison of our gene set to published gene sets 

Results of the biological age prediction computed by cross-validation based on different gene sets 

predicted by Tarkhov et al.(Tarkhov et al. 2019). The x-axis shows the rescaled biological age in days 

starting from adulthood additionally corrected by the second rescaling approach. The y-axes show the 

predicted age computed by an elastic net regression on unbinarized (A, B, C) or binarized (D, E, F) gene 

expression data. Every blue dot displays one RNA-seq sample. The regression lines with the 95 % 

confidence intervals are shown in blue and the dotted lines show the perfect linear correlation. The 

distribution of the data is shown on the side of the plot. r²= coefficient of determination, Pearson= 

Pearson correlation, Spearman= Spearman correlation, MAE= mean absolute error in days, MAD= 

median absolute deviation in days, RMSE= root-mean-square-error in days. 

(A) Prediction based on the unbinarized CPMs of 327 genes generated by a meta-analysis of publicly 

available microarray data. 

(B) Prediction based on the unbinarized CPMs of 902 age-associated genes generated by an RNA-seq 

experiment. 

(C) Prediction based on the unbinarized CPMs of a sparse subset with 71 genes. 

(D) Prediction based on the binarized CPMs of the 327 genes generated by a meta-analysis of publicly 

available microarray data shown in (A). 

(E) Prediction based on the binarized CPMs of the 902 age-associated genes generated by an RNA-seq 

experiment shown in (B). 

(F) Prediction based on the binarized CPMs of the sparse subset with 71 genes shown in (C). 

Figure S6. Comparison of our gene set to published gene sets on the validation data 

Prediction of the 8 independent datasets consisting of 94 samples at different time points based on 

different gene sets predicted by Tarkhov et al.(Tarkhov et al. 2019). The x-axis shows the rescaled 

biological age in days starting from adulthood additionally corrected by the second rescaling 

approach.  The y-axes show the predicted age computed by an elastic net regression on unbinarized 



(A, B, C) or binarized (D, E, F) gene expression data. Every blue dot displays one RNA-seq sample. The 

regression lines with the 95 % confidence intervals are shown in blue and the dotted lines show the 

perfect linear correlation. The distribution of the data is shown on the side of the plot. r²= coefficient 

of determination, Pearson= Pearson correlation, Spearman= Spearman correlation, MAE= mean 

absolute error in days, MAD= median absolute deviation in days, RMSE= root-mean-square-error in 

days. 

 (A) Prediction based on the unbinarized CPMs of 327 genes generated by a meta-analysis of publicly 

available microarray data. 

(B) Prediction based on the unbinarized CPMs of 902 age-associated genes generated by an RNA-seq 

experiment. 

(C) Prediction based on the unbinarized CPMs of a sparse subset with 71 genes. 

(D) Prediction based on the binarized CPMs of the 327 genes generated by a meta-analysis of publicly 

available microarray data shown in (A). 

(E) Prediction based on the binarized CPMs of the 902 age-associated genes generated by an RNA-seq 

experiment shown in (B). 

(F) Prediction based on the binarized CPMs of the sparse subset with 71 genes shown in (C). 

Figure S7. Biological age prediction of additional samples 

(A) The genotype-dependent effect of dietary restriction (DR) is resembled in the prediction of 

chronologically 6-day adults. A two-way ANOVA shows a significant interaction effect (p=0.004) 

between the genotype and the diet. AL = ad libitum fed. Data from GSE92909. 

(B) The change in diet from K12 to K12∆tnaA E. coli shows an increasing trend, especially in 

chronologically older population, as indicated by the different colors. A two-way ANOVA shows a 

significant diet effect (p=0.03) and almost significant interaction effect (p=0.067). Data from 

GSE101910. 

Figure S8. Theoretical error in the prediction of the median lifespan from the biological 

age 



This plot visualizes the intrinsic random error that propagates from the biological age calculation to 

the fold-change. The x-axis shows the chronological age in days starting from adulthood. The y-axis 

shows the calculated fold-change between 2 lifespan curves. 3 lifespan comparisons are shown (color-

coded). The control median lifespan is always set to 15.5 days, while the second lifespan is variable at 

8 days(blue), 15.5 days(orange), and 31 days (green). The same intrinsic biases as in Fig. 2c and Fig. 

S4b are considered, i.e. a chronological age reporting error of +/- 12 h and a moderate 5 % lifespan 

variation. For each chronological age point the biological age was calculated with error propagation. 

The 2 biological age points were then used to approximate the lifespan fold-change for the 3 examples 

shown. The lines show the average fold-change, e.g. if both lifespans were at 15.5 days (orange), the 

expected fold-change is at 1.0, i.e. no change. The random error especially introduces a potential bias 

in the prediction based on chronologically younger samples, i.e. the shadow around the lines.  

Figure S9. Chromosome enrichment 

(A) Chromosome distribution of the 286 protein-coding predictor genes with a coefficient <=0 in blue 

and the number of protein-coding genes that would be expected if the genes were randomly 

distributed among the chromosomes in red. 

(B) Chromosome distribution of the 260 protein-coding predictor genes with a coefficient >0 in blue 

and the number of protein-coding genes that would be expected if the genes were randomly 

distributed among the chromosomes in red. 

(C) Differences of the observed to the expected numbers in percent for the protein-coding genes with 

a coefficient >0 in blue and with a coefficient <=0 in red. 

*p<0.05, **p<=0.01, ***p<=0.001, Hypergeometric tests were performed and the resulting p-values 

were corrected with the Benjamini-Hochberg procedure. Table S3 contains more detailed statistics. 

Figure S10. Motif enrichment nearby the TSS 

Results of a motif enrichment analysis for the region -300 bp to +100 bp from the transcription start 

site of the genes with a coefficient <=0 (A) and genes with a coefficient >0 (B). The columns show the 

name of the transcription factor in the first column with the known motif in the second column. 

Column 3 and 4 show the percentage of target genes, respective background genes, containing the 



motif in the described region. Column 5 shows the fold change enrichment, column 6 the 

corresponding Hypergeometric p-value and the last column the Benjamini-Hochberg adjusted q-value. 

Figure S11. Unbinarized human data 

(A) Results of the age prediction computed by cross-validation on human fibroblast gene expression 

data. The x-axis shows the chronological age in years. The y-axis shows the predicted age computed 

by an elastic net regression on unbinarized gene expression data. Every blue dot displays one RNA-

seq sample. The regression line with the 95 % confidence interval is shown in blue and the dotted line 

shows the perfect linear correlation. The distribution of the data is shown on the side of the plot. r²= 

coefficient of determination, Pearson= Pearson correlation, Spearman= Spearman correlation, MAE= 

mean absolute error in years, MAD= median absolute deviation in years, RMSE= root-mean-square-

error in years. Data from GSE113957. 

(B) Box plots of age predictions of samples from Hutchinson–Gilford progeria syndrome patients (red) 

and predictions of age-matched healthy controls (blue) by the elastic net regression of unbinarized 

gene expression data. Progeria samples show no significant increase in the predicted age compared 

to age-matched healthy controls. Data from GSE113957. 

The p-value was calculated by an independent two-sided t-test. Table S3 contains more detailed 

statistics. 

Supplementary Tables 

The following supplementary tables can be found at: 

https://onlinelibrary.wiley.com/doi/full/10.1111/acel.13320  

Table S1. Data overview 

Table S2. C. elegans age prediction gene set 

Table S3. Statistics 

Table S4. Lifespan Prediction 

Table S5. Human age prediction gene set 
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Aging clocks have provided one of the most important recent breakthroughs in the biology of aging 9 

and may provide indicators for the effectiveness of interventions in the aging process and preventive 10 

treatments of age-related diseases. The reproducibility of accurate aging clocks has reinvigorated 11 

the debate on whether a programmed process underlies aging. Here, we show that accumulating 12 

stochastic variation in purely simulated data is sufficient to build aging clocks, and that first and 13 

second-generation aging clocks are compatible with the accumulation of stochastic variation in DNA 14 

methylation or transcriptomic data. We find that accumulating stochastic variation is sufficient to 15 

predict chronological and biological age, indicated by significant prediction differences in smoking, 16 

calorie restriction, heterochronic parabiosis and partial reprogramming. Moreover, we demonstrate 17 

that the pan-mammalian clock can be recapitulated through stochastic variation. While our 18 

simulations may not explicitly rule out a programmed aging process, our results suggest that 19 

stochastically accumulating changes in any set of data that have a ground state at age zero are 20 

sufficient for generating aging clocks.  21 

Introduction 22 

Weismann’s 1881 proposition suggested an aging program to benefit species by freeing up resources 23 

from older individuals1. This hypothesis was later largely rejected2–5, for a range of reasons such as the 24 

circularity of the argument and the assumption of group selection. Evolutionary theories of aging 25 

realized the vanishing force of natural selection post-reproductively,  notably stated in the disposable 26 

soma, the mutation accumulation, and the antagonistic pleiotropy theories of aging2,6.  Mutations that 27 

abruptly limit post-reproductive life are observed in semelparous species, while iteroparous species 28 

typically show a gradual functional decline due to insufficient maintenance and repair mechanisms, 29 

leading to stochastic damage accumulation with aging7. Progress on aging clocks has revived the idea 30 

of a potential aging program8, questioning whether aging is primarily a stochastic entropy-driven 31 

event, whether aging clocks could show a causal relationship9,10, and whether it involves programmatic 32 

aspects11–16. Intrinsic flaws in a software code of life17, an adaptive pathogen control program11,18, or 33 
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developmental processes13,15 were suggested to cause aging. Age-dependent selective mortality may 34 

depend not only on remaining fertility, but also on intergenerational resource transfer, explaining a 35 

quantity-quality tradeoff, and potentially allowing a programmed process to affect aging19.  36 

Epigenetic drift, observed during aging, was assigned to imperfect maintenance of epigenetic marks20,  37 

reducing methylation differences between genomic regions that are defined during development over 38 

time21. It has been proposed that age-coupled stochastic methylation changes are highly genome 39 

context specific22, and that an information-theoretic view of DNA methylation pattern explains the 40 

observed stochasticity in line with context-specific maintenance energy consumption23. Differential 41 

equations showed that CpG methylation sites can be modelled based on maintenance rates, defining 42 

CpG site-specific equilibria24,25. Horvath’s epigenetic clock was suggested to result from an imperfect 43 

epigenetic maintenance system26 and increased DNA methylation entropy was observed in older 44 

individuals27. This stochastic epigenetic drift is conserved across species and attenuated upon caloric 45 

restriction28. Age-related variably methylated positions are reproducible, not driven by cell-type 46 

composition, linked to developmental and DNA damage response genes, enriched at polycomb 47 

repressed regions, and associated with expression of polycomb repressive complex 229. Moreover, 48 

~30% of the mouse genome might be affected by age-related epigenetic disorder, which are enriched 49 

in the Petkovich clock30, and a clock using these biological disorder measurements could be built31. 50 

To deepen the mechanistic understanding of epigenetic aging clocks, CpG sites from 12 clocks were 51 

deconstructed into distinct modules some of which might be driven by entropic alterations that regress 52 

to a methylation state of 0.5, while most modules change systematically with time32. Recently, it was 53 

demonstrated that initializing CpG values at either 0 % or 100 % could accurately predict the simulated 54 

age in single-cell simulations, irrespective of stochastic, co-regulated, or a combined simulation. 55 

Starting every CpG site at 0 % or 100 %, they could either remain unchanged or regress towards 0.533, 56 

suggesting that a single stochastic variable could track entropic aging34. 57 

Here, we show that datasets that contain accumulating stochastic variation, and are normalized 58 

between 0 and 1, can be used to build an age predictor suggesting that any set of biological 59 

measurements could be used to build accurate aging clocks. The pace of predicted aging is primarily 60 

set by the degree of stochastic variation, where increased stochasticity accelerates while reduced 61 

stochastic variation decelerates the predicted age. We validated our findings in transcriptomic datasets 62 

of C. elegans, and determined that predictions of the transcriptomic aging clock and the amount of 63 

added stochastic variation correlate significantly. The predictive results of simulated transcriptomic 64 

data with accumulating stochastic variation significantly correlates with the chronological age. 65 

Epigenetic aging clocks measure how much stochastic variation accumulated, and the predictive 66 

results of a model trained on simulated data with accumulating stochastic variation correlates 67 
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significantly with the chronological age of human DNA methylation samples. We validated and 68 

replicated our results on data from the Mammalian Methylation Consortium35, showing that a variety 69 

of mammalian species and interventions can be correctly predicted. We establish that accumulation 70 

of stochastic variation is enabling the construction of pan-mammalian clocks, which are capable of 71 

detecting biological age deceleration and acceleration15, and the rejuvenation trajectory over a 72 

reprogramming time-course in human cells. Our analyses suggest that aging clocks could be based on 73 

any biological parameter with stochastic age-related alterations for precise measurements of aging, 74 

without the need for a deterministic process. 75 

Results 76 

Data-type independent predictions 77 

To investigate whether a stochastic process is sufficient to build an age predictor of any dataset, we 78 

simulated random data with an age range between 0-100. We used 2000 random data points (features) 79 

uniformly distributed between 0 and 1 as the ground state. The ground state is motivated by the 80 

proposed ground zero of organismal aging36. Features in prediction models can be any quantifiable 81 

data type normalized to values between 0 and 1. To test if accumulating normal-distributed stochastic 82 

variation over time enables building an age predictor, we independently added such variation to all 83 

features in the ground state 1 to 100 times (Extended Data Figure 1A, see methods for details). We 84 

simulated 6 sets of samples, applying stochastic variation from once to 100 times, reflecting a potential 85 

lifespan range. Note that the range from 1-100 was chosen arbitrarily. Using 3 sets of 100 samples we 86 

trained an Elastic net regression that predicts the simulated age, i.e. the number of times stochastic 87 

variation was added. To validate the model, we used the 300 independent validation samples, starting 88 

with the same ground state but that adding independent stochastic variation from the same 89 

distribution (Extended Data Figure 1B). Although the stochastic variation application makes the data 90 

noisier in each time-step and appears to be countable, no predictor can be built as the validation 91 

samples lack any trend in the data (Extended Data Figure 1C, Pearson correlation: -0.05). Stochastic 92 

variation contains negative and positive values equally likely thus on average canceling out the 93 

variation precluding a trend or a prediction. When, however, we used the same approach as above but 94 

constrained the values between 0 and 1 after adding the stochastic variation, we observed an almost 95 

perfect prediction with a Pearson correlation of the independent validation data of 0.99 (p-value<1e-96 

16, full statistics of all analyses can be found in Source Data) (Extended Data Figure 1D). Thus, the 97 

model found pattern in the simulated data allowing the prediction of how often stochastic variation 98 

was added to the ground state (simulated age) even in independent validation data. Importantly, this 99 

will potentially work for any dataset, since our simulated starting point (ground state) consists of 100 
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uniformly random data between 0 and 1, and the stochastic variation added at each time-step is 101 

randomly chosen from a normal distribution, i.e. does not require any regulation or program.  102 

To account for the non-normal distribution of values that are bounded by 0 and 1, we transformed the 103 

values before adding stochastic variation using the logit transform and transformed the data back via 104 

the expit (inverse-logit) transformation (Figure 1A). A predictor built on these transformed data 105 

replicates the model in Extended Data Figure 1D, further establishing the validity of accumulating 106 

stochastic variation in predicting age independent from whether a data transformation was used or 107 

not (Figure 1B, Pearson correlation: 0.95). 108 

The prediction accuracy of the independent validation data was robust to the distribution from which 109 

stochastic variation was sampled for the training and validation samples (Figure 1C, Extended Data 110 

Figure 1E). The logit transformed data require a slightly higher data range from which the stochastic 111 

variation is sampled (Figure 1C). Even predictions in which the age-related stochastic variation per 112 

time-step was smaller than the stochastic variation with which we varied the ground state for each 113 

sample (𝑁(µ = 0, 𝜎2 = 0.012)), showed high accuracy, e.g. the model trained on stochastic variation 114 

sampled from 𝑁(µ = 0, 𝜎2 = 0.0052) per time-step still had a median R² of 0.79 for the prediction of 115 

the independent validation data (Extended Data Figure 1E). This indicates, that even a small amount 116 

of accumulating stochastic variation per time-step is enough for an accurate prediction.  117 

During training, Elastic net regression assigns a coefficient to each of the 2000 features that then can 118 

be used to predict novel independent samples. The Elastic net regression coefficients for the 2000 119 

features in our simulation in Figure 1B and Extended Data Figure 1D are reproducible in between 120 

independent runs with the same ground state (Figure 1D, Extended Data Figure 1F), indicating that 121 

even random stochastic variation pattern allow for robust predictions. The prediction is possible due 122 

to a regression to the mean, which is to be expected from a stochastic process with a data range limit 123 

(Figure 1E, Extended Data Figure 1G). Features starting close to 0 tend to increase after stochastic 124 

variation addition resulting in a positive Elastic net coefficient, while features close to 1 tend to 125 

decrease resulting in a negative coefficient. Features starting around 0.5 in the ground state are more 126 

noise sensitive since the added stochastic variation is equally likely to move in either direction leading 127 

on average to a cancellation of noise (Figure 1E, Extended Data Figure 1G).  128 

The prediction accuracy of the amount of normal-distributed stochastic variation plateaus after ~2000 129 

features at an R² value around 0.97, showing that even models with a limited number of features are 130 

highly accurate (Figure 1F, Extended Data Figure 1H). Of note, Elastic net regression shrinks 131 

coefficients of some features to 0 and thereby further reduces the number of features. These results 132 

show that reproducible predictions are possible with less than 2000 features, i.e. much less than is 133 

usually available in biological datasets involving any omics approaches, as long as there is accumulating 134 
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stochastic variation and the data can be normalized between 0 and 1, i.e. predictions are not limited 135 

to DNA methylation or transcriptomic data. 136 

We next wondered how a model trained on stochastic variation sampled from 𝑁(µ = 0, 𝜎2 = 0.22) 137 

would predict samples with different stochastic variation distributions. Choosing a standard deviation 138 

twice as large (σ=0.4), also doubles the interval from which ~99.7 % of stochastic variation values are 139 

sampled, which increases the amount of stochastic variation added in each time step. Testing the 140 

model on data simulated with more stochastic variation per time step resulted in a faster increase and 141 

plateau of the prediction, while a reduced stochastic variation level decreased the slope of the 142 

prediction (Figure 1G, Extended Data Figure 1I). Samples with more stochastic variation per time step 143 

reach their maximum simulated age earlier. This analysis suggests that an increase in stochastic 144 

variation accelerates, while a decrease in stochastic variation decelerates the predicted aging process. 145 

Transcriptomic biological age prediction 146 

We next wondered whether an age predictor based on gene expression data applied to data with 147 

accumulation of stochastic variation would show a comparable correlation result. We have recently 148 

developed a highly accurate biological age predictor of C. elegans with the Binarized Transcriptome 149 

Aging (BitAge) clock37. We defined the ground state as the biologically youngest adult RNA-seq sample 150 

(GSM291634438) in our dataset and simulated stochastic variation similarly as explained in Extended 151 

Data Figure 1A, i.e. with (non-empirically estimated) normal distributed variation. In accordance with 152 

our results in Figure 1B and Extended Data Figure 1D, BitAge predictions as well correlate linearly with 153 

the amount of stochastic variation in the data (Figure 2A, Pearson correlation: 0.81). The correlation 154 

is robust to the amount of stochastic variation added in each time-step, with a peak in Pearson 155 

correlation of 0.81 at stochastic variation sampled from a normal distribution with a standard deviation 156 

of 0.01 (Extended Data Figure 2A). This indicates that the predicted transcriptomic age of C. elegans 157 

correlates with age-dependent stochastic variation in the data.  158 

Next, we wondered whether a stochastic data-based clock could predict the biological age of biological 159 

samples. The stochastic data-based clock predictions significantly correlated (Pearson correlation: 160 

0.72) with the biological age of 993 independent C. elegans RNA-seq samples from 61 independent 161 

public datasets for which the biological age could be calculated (Figure 2B, Supplement Table 1, see 162 

methods for details). This prediction is robust to the number of features, i.e. genes, used in the 163 

simulation (Extended Data Figure 2B). A permutation of the biological age does not correlate with the 164 

predicted simulated age (Extended Data Figure 2C).  165 

To test whether a stochastic age predictor could identify age acceleration and deceleration across a 166 

wide spectrum of aging interventions, we divided the 993 transcriptome samples into long-lived (>20d 167 
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median lifespan), normal-lived, and short-lived (<8d median lifespan). Plotting the predictions against 168 

the chronological age shows small but significant differences. A multivariate linear regression with the 169 

chronological age, the median lifespan, and its interaction term, shows a significant median lifespan 170 

effect with a negative coefficient, i.e. a longer lifespan leads to a lower prediction based on the 171 

stochastic data-based clock (p=0.015) (Figure 2C). This indicates that accumulating stochastic variation 172 

scales mostly with the chronological age, but also shows a significant lifespan effect, i.e. biological age 173 

prediction. A lifespan extending treatment that was shown to reduce transcriptional drift (a measure 174 

of transcriptomic variance) is the anticonvulsant Mianserin39. Consistent with limiting gene expression 175 

variation, we found that Mianserin dose-dependently decreases the predicted age with the stochastic 176 

data-based clock in independent data (Figure 2D, one-way ANOVA p-value: 0.006, post hoc Tukey test 177 

50M Mianserin vs. Control p-value: 0.03). 50M Mianserin shows a (non-significant) lower slope as 178 

well as generally lower predicted values over a time-course (p-value=7.3e-04) compared to control 179 

samples (Figure 2E). These results indicate that the stochastic transcriptomic data-based clock 180 

predictions of C. elegans can predict the chronological age and the biological age deceleration of a 181 

pharmacological intervention affecting transcription drift.  182 

Single-cell DNA methylation simulations 183 

The most well-established aging clocks in mammals including humans are based on age-related 184 

changes of epigenetic CpG sites. We assessed whether simulations based on accumulating stochastic 185 

variation might be applicable to epigenetic data. Adding normally distributed stochastic variation once 186 

in the simulation in Figure 1 did not change the simulated sample much from the ground state 187 

(Extended Data Figure 3A), while adding stochastic variation 100 times lead to a uniform distribution 188 

of features (Extended Data Figure 3B). However, CpG methylation sites are typically under higher 189 

maintenance and less noisy. Comparing biological DNA methylation data of young and old subjects 190 

shows that the methylation sites, starting close to the extremes (0 or 1) show indeed less variance 191 

(Extended Data Figure 3C). 192 

We next simulated instead of bulk data between 0 and 1, “single-cell” data for which each feature is 193 

binary, i.e. either methylated (1) or unmethylated (0) (Figure 3A). Note that this is a simplification for 194 

diploid organisms, however, this should not affect the results, as in theory the different alleles could 195 

be represented as different features in the simulations. It has been shown that bulk methylation 196 

pattern at single CpG sites can be modelled with differential equations containing a methylation 197 

maintenance efficiency (𝐸𝑚) (the probability that a methylated site stays methylated), and a de novo 198 

methylation efficiency (𝐸𝑑) (the probability that an unmethylated site gets methylated; 1 − 𝐸𝑑  is the 199 

maintenance efficiency of the unmethylated state (𝐸𝑢))24. These maintenance efficiencies describe the 200 

rate by which a CpG site does not alter per time-step. We simulated single-cell DNA methylation 201 
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changes in a stochastic system over time as depicted in Figure 3A using a variety of maintenance 202 

efficiencies, i.e. site-specific efficiencies that are either estimated from data, randomly chosen, or 203 

universal efficiencies that are fixed to one value for all CpG sites.  204 

First, we tested how a universal maintenance efficiency rate, i.e. the same rate for all 500 features 205 

would affect the accuracy of the model (Figure 3B). A high maintenance (𝐸𝑚=99.9 %, 𝐸𝑑=0.01 %, i.e. 206 

𝐸𝑢=99.9 %) yielded almost perfect simulated age predictions (R² =0.999) on the independent validation 207 

data (Figure 3B, C). A simulated age of 100 shows minimal deviation from the ground state, 208 

demonstrating high accuracy with small effect sizes (Extended Data Figure 3D). Even maintenance 209 

rates of up to 99.995 % resulted in a prediction with an R² of 0.78 (Figure 3B). The predictor is robust 210 

in the number of features allowing for highly accurate age predictions with small feature sizes, whose 211 

accuracy cap after around 32 features (Figure 3D). Training the model on 𝐸𝑚=99.9 % and testing it on 212 

data simulated with lower, respectively higher 𝐸𝑚, showed that less maintenance accelerates, while 213 

higher maintenance decelerates the aging clock (Figure 3E). These results indicate that even a high 214 

maintenance rate yields accurate age predictions, and that an increased maintenance decelerates, 215 

while a decrease in maintenance accelerates the predicted age. 216 

A maintenance rate of 99.9 % for methylated as well as unmethylated sites leads to a regression to the 217 

equilibrium (0.5). Starting the simulation at the equilibrium and 𝐸𝑚=99.9 % did not allow for a 218 

prediction of the simulated age, since no regression to the equilibrium state is possible (Extended Data 219 

Figure 3E, Pearson correlation: 0.05). However, a slight deviation to 0.51 for all starting values in the 220 

ground state led to an accurate simulated age prediction via a regression to the equilibrium state 221 

(Extended Data Figure 3F, Pearson correlation: 0.95). 222 

Similar to the universal maintenance model (Figure 3B-D), accurate simulated age predictions are 223 

possible if 𝐸𝑚 and 𝐸𝑑  are empirically estimated from data (see Methods) (Figure 3F, Pearson 224 

correlation: 0.81). The predictions cap off earlier than in Figure 3C due to lower maintenance rates, 225 

leading to a quicker convergence to the site-specific equilibria (see also Extended Data Figure 3E).   226 

Site-specific 𝐸𝑚 and 𝐸𝑑  values allow accurate simulated age prediction even when starting at 0.5 227 

(Extended Data Figure 3G, Pearson correlation: 0.99). Such a site-specific regression away from the 228 

mean is still in line with stochasticity and entropic alterations. While the site-specific maintenance 229 

rates give a framework in which each feature will change, the change itself is purely stochastic. 230 

Stochastic variation after 100 times-steps shows less variation in features starting close to 0 or 1 than 231 

those starting close to 0.5 (Extended Data Figure 3H), resembling the comparison of young and old 232 

human DNA methylation datasets (Extended Data Figure 3C). Without site-specific stochastic variation 233 

predictions were driven by the regression to the mean (Figure 1E, Extended Data Figure 1G), while 234 

site-specific stochastic variation showed no correlation (Extended Data Figure 3I), suggesting a 235 
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regression away from the mean could be explained via a stochastic process, arguing against a recent 236 

report that suggested clock sites starting around 0.5 couldn’t be entropic32.  237 

In conclusion, accurate age predictors can be built by simulating DNA methylation changes purely with 238 

stochastic variation based on the maintenance efficiency rates of methylated and unmethylated sites. 239 

In addition, DNA methylation sites can have equilibria unequal to 0.5, allowing for a stochastic 240 

regression away from the mean, and even sites close to the site-specific equilibria can confer 241 

information for the aging clock. 242 

Public aging clocks 243 

Next, we were wondering whether published DNA methylation aging clocks might also mainly measure 244 

stochastic variation. Horvath’s pan-tissue DNA methylation clock26 predicts a linear increase of the 245 

amount of stochastic variation generated based on empirically estimated 𝐸𝑚 and 𝐸𝑑  values until it 246 

caps off at an predicted age around ~60 years (Extended Data Figure 4A, Pearson correlation: 0.91). 247 

The time-steps in our simulations are arbitrary and not directly comparable to the predicted age, since 248 

our simulated age tracks how often we added stochastic variation, and the predicted age is epigenetic 249 

age in years. We wondered whether we could estimate the range-limits of the site-specific 𝐸𝑚 and 𝐸𝑑  250 

such that the epigenetic age prediction of our simulated data would be as accurate as possible 251 

regarding the simulated age. We tested multiple combinations of limits for 𝐸𝑚 and 𝐸𝑑  and calculated 252 

the R² as a measure of accuracy between the predicted and the simulated age (Figure 4A). Horvath’s 253 

epigenetic clock has the highest accuracy in predicting the simulated age with the limits  97% < 𝐸𝑚 ≤254 

100% and 0% ≤ 𝐸𝑑 < 5%, suggesting higher site-specific maintenance with a narrower range for 𝐸𝑚 255 

and 𝐸𝑑  than previously assumed (Figure 4A). Indeed, the prediction with Horvath’s epigenetic clock 256 

caps-off later with these new limits (Figure 4B, Pearson correlation: 0.91, compare Extended Data 257 

Figure 4A). These results suggest that the site-specific maintenance rates are sufficient to explain the 258 

predictability of Horvath’s aging clock.   259 

Randomly choosing 𝐸𝑚 and 𝐸𝑑  within the limits 97% < 𝐸𝑚 ≤ 100% and 0% ≤ 𝐸𝑑 < 5% allowed 260 

simulations with highly significant Pearson correlations as well (Median Pearson correlation: 0.89, 261 

Extended Data Figure 4B). The same is even true if instead of site-specific maintenance rates all CpG 262 

sites were simulated with a universal maintenance efficiency of 99 % that was not inferred from a 263 

biological sample and could therefore not be confounded (Figure 4C, Pearson correlation: 0.97). The 264 

Pearson correlations are robust to the universal methylation maintenance efficiency, but peak at 99% 265 

(Extended Data Figure 4C). A low maintenance efficiency of 90 % reduces the Pearson correlation 266 

(Extended Data Figure 4C) since the features reach the equilibrium faster and therefore cap off quicker 267 

(compare Figure 3B). A high maintenance efficiency of 99.95 % reduces the Pearson correlation due to 268 
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the reduced speed of convergence (Extended Data Figure 4C). Notably, Horvath’s clock predicts an old 269 

age of 69.4 years for a dataset with DNA methylation levels of 0.5 for all CpG sites. These results suggest 270 

that no biologically inferred maintenance rate is required but instead indicates that stochastic variation 271 

is sufficient for age prediction. 272 

Next, we tested the second generation aging clock PhenoAge40 (Figure 4D-F, Extended Data Figure 4D-273 

F). The previously assumed limits for 𝐸𝑚 and 𝐸𝑑  led to a similar linear increase, and early cap-off of 274 

the predicted PhenoAge (Extended Data Figure 4D, Pearson correlation: 0.89). Improved limits (Figure 275 

4D,E), coincide with those estimated for Horvath’s clock. PhenoAge significantly correlates with the 276 

simulated age of samples simulated with random 𝐸𝑚 and 𝐸𝑑  within the limits (Median Pearson 277 

correlation: 0.84, Extended Data Figure 4E), or a universal maintenance efficiency of 99% (Figure 4F, 278 

Pearson correlation: 0.94), which as well was robust to the maintenance efficiency chosen (Extended 279 

Data Figure 4F). 280 

We next tested how ground states defined at different ages might affect the age simulations. Starting 281 

the ground state with a sample from a 16-year-old and simulating the addition of up to 100 stochastic 282 

variations results in the linear increase in predicted age (Extended Data Figure 4G, Pearson correlation: 283 

0.89). Starting from a 37-year-old, starts the prediction higher, shows a smaller linear increase in the 284 

predicted age, and leads to a quicker arrival and longer time at the cap (Extended Data Figure 4H). 285 

Starting from an 81-year-old, does not show a difference in the prediction upon stochastic variation, 286 

indicating that the ground state is already containing as much stochastic variation as we would expect 287 

at the cap-off (Extended Data Figure 4I, Pearson correlation: 0.09). These results affirm that our 288 

simulations are robust to the choice of the ground state and that the predictions are scaled accordingly. 289 

All tested first generation aging clocks41–43 and the second generation aging clock GrimAge44, 290 

significantly correlated with the simulated age irrespective of whether empirically estimated, random, 291 

or universal maintenance rates were assumed (Extended Data Figure 5A-H).  292 

Employing the Gillespie algorithm45 for event-based simulations, where time-steps are not uniform but 293 

the time until the next event is calculated, recapitulates our results (Extended Data Figure 5I, Pearson 294 

correlation: 0.98), indicating that our simulations are robust to the method used.  295 

Stochastic data-based aging clock 296 

We next aimed to address whether a clock built on simulated DNA methylation data (see Methods) 297 

could predict the chronological age of mammalian biological samples. A simulated training dataset 298 

with the CpG sites from Horvath’s epigenetic clock led to a significant Pearson correlation of 0.87 (p-299 

value <1e-16) of chronological age and the predicted simulated age (Extended Data Figure 6A).  This 300 

linear correlation holds for randomly chosen CpG sites, and is robust across different feature sizes 301 
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(Extended Data Figure 6B), while randomly permuting the chronological age of samples leads to non-302 

significant correlations (Extended Data Figure 6C).  303 

To exclude any potentially confounding effects of cell-type heterogeneity 46, we estimated the cell-304 

type composition to subsequently correct the biological samples to obtain cell-type heterogeneity-305 

adjusted CpG beta-values. Using cell-type corrected data did not affect the performance of the 306 

stochastic data-based clock (Figure 5A, Pearson correlation 0.87, p<1e-16), and an additional cell-type 307 

correction of the simulated samples still showed a Pearson correlation of 0.81 (p<1e-16) indicating 308 

highly correlated predictions of the biological samples (Extended Data Figure 6D). Additionally, we 309 

used a multivariate linear regression of the form 310 

 𝐴𝑔𝑒 ~ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐴𝑔𝑒 + 𝐶𝑒𝑙𝑙𝑇𝑦𝑝𝑒𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠. 311 

This multivariate linear regression approach also showed a significant Predicted Age variable (p<1-e16, 312 

Source Data) for the predictions of the stochastic data-based clock. These results indicate that cell-313 

type heterogeneity does not have a major role in the predictive power of stochastic variation 314 

accumulation.  315 

We further probed for potential confounding effects by expanding the analysis to 11,146 independent 316 

whole blood or peripheral blood leukocyte samples from 15 different datasets. Stochastic data-based 317 

prediction of those samples still resulted in a Pearson correlation of 0.57 (p<1e-16) (Extended Data 318 

Figure 6E).  319 

When instead of an adolescent ground state, we initiated the stochastic data-based clock with a fetal 320 

sample the Pearson correlation improved to 0.72 (Figure 5B), with 9 out of 15 datasets reaching 321 

correlations >= 0.8 (Extended Data Figure 7). By comparison, Horvath’s original clock predicts the same 322 

samples with a Pearson correlation of 0.85, and 10 out of 15 datasets with a correlation >=0.8 323 

(Extended Data Figure 8). 324 

In conclusion, our analysis shows that simulating epigenetic stochastic data starting from one young 325 

biological sample with site-specific maintenance rates, allows significantly correlated predictions with 326 

the chronological age of independent biological samples.  327 

Biological age prediction 328 

Recently, a pan-mammalian clock suggested that instead of stochastic damage accumulation, aging 329 

might be a consequence of a developmental process as the clock sites were associated with genes 330 

implicated in developmental gene regulation15. To assess whether stochastic variation accumulation 331 

might also allow a prediction of the biological age, we next investigated the predictive power of a 332 

stochastic data-based clock on the data from the Mammalian Methylation Consortium 15,35,47.  333 
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We used 4 stochastic clocks starting from the youngest blood sample from Tursiops truncatus with 334 

different maintenance rates (see Methods). All 4 clocks are on average highly significantly correlated 335 

with independent data, even from different species (Figure 5C, Extended Data Figure 9A), 336 

demonstrating that even one biological sample alone with simulated stochastic variation accumulation 337 

is sufficient to build aging clocks that are strongly correlated with the relative age of a variety of 338 

mammalian species. 339 

Lu et al. further validated their clock on interventions that are known to slow biological age15. Applying 340 

our stochastic data-based clocks (Clock 1-4) on independent intervention data predicts significant age 341 

deceleration for growth hormone receptor knock-out (GHRKO), mutant Tet3, or calorie restricted (CR) 342 

mice after multiple test correction (Figure 5D, Extended Data Figure 9B-D). Each intervention group 343 

showed on average strong effect sizes for all 4 clocks (see Source Data for full statistics). GHRKO liver 344 

samples have a Cohen’s d of 1.96 for Clock 1 (Extended Data Figure 9B), Tet3 mutant Cerebral Cortex 345 

samples have a Cohen’s d of 3.7 for Clock 1 (Extended Data Figure 9C), and calorie restricted liver 346 

samples have a Cohen’s d of 1.65 (Extended Data Figure 9D). In a dataset of human smokers, previous 347 

smokers, and never smokers our stochastic clocks predict a significant age acceleration trajectory in 348 

the smokers over the study course as calculated by a multivariate regression analysis (Figure 5D, 349 

Extended Data Figure 9E). We further validated our 4 clocks on an independent dataset on parabiosis 350 

in young and old mice48. A multivariate regression analysis showed that the predictions of Clock 1-4 351 

are all highly significantly correlated with the chronological age (Figure 5E p-value: 7.8e-18, Extended 352 

Data Figure 9F-H p-values: 6.1e-12, 5.6-09, 1.3e-06 respectively). Clock 1 and 2 additionally showed a 353 

significant interaction term, indicating that heterochronic parabiosis in old mice leads to a younger 354 

predicted age compared to isochronic parabiosis, while there is no difference in young mice. These 355 

results further validate the chronological age prediction in independent datasets and corroborate that 356 

biological age is robustly predictable with accumulating stochastic variation. 357 

To assess the effect of the ground state on predictions we build clocks for 12 different species orders, 358 

resulting on average in highly significantly correlations with  values ranging from 0.6 for Clock 1 starting 359 

from a Monotremata sample to 0.85 for Clock 1 starting from a Artiodactyla sample (Figure 6A, 360 

Extended Data Figure 10A-B). Clock 2-4 show similar results (Extended Data Figure 10C-E). A clock 361 

built from the ground state of one order does not improve the prediction accuracy of species within 362 

the same order on average (Figure 6A).  363 

To assess whether ‘age-reversal’ could be measured by a stochastic data-based clock, we applied it to 364 

an independent reprogramming time-course of human dermal fibroblasts49. Despite differences in 365 

species, tissue-type and platform, a rejuvenation trajectory became evident, with a decreasing 366 

predicted age starting from 11 days of intermediate reprogramming and reaching the final lowest 367 
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predicted age at 28 days (Figure 6B, one-way ANOVA p-value: 8.4e-09). These results show that the 368 

stochastic data-based clock could identify study-/tissue- and platform-independent signatures of age 369 

and captures biological aging as shown by the gradual decrease of the predicted age over the 370 

reprogramming time-course, as well as correctly predicted biological age-differences in interventions. 371 

Discussion 372 

During aging a range of biomolecular parameters show increased ‘noise’ such as stochastic DNA 373 

methylation drifts, degrading transcriptional networks in mouse muscle stem cells50, and increased 374 

cell-to-cell gene expression variation51. Transcriptomic variation can result from intrinsic (biochemical 375 

fluctuations and transcriptional bursting)52 and extrinsic noise like stochastic DNA damage53. 376 

Predominantly affecting long genes54, transcription-blocking DNA lesions might explain the age-377 

associated systemic transcript-length imbalance55,56. The role of stochasticity in transcription remains 378 

subject to debate as a recent study reported a lack of evidence for increased transcriptional single-cell 379 

noise in aged tissues57.  380 

Stochastic changes occur during DNA methylation site copying or maintenance, like DNA repair and 381 

subsequent Dnmt1 recruitment58, or DNA replication59 as replication timing during S-phase itself has 382 

been shown to affect methylation maintenance levels60. The information-theoretic view of the 383 

epigenome23 suggests that higher maintenance, and therefore lower information loss, consumes more 384 

energy and is focused on more crucial regions of the genome.  385 

The increased entropy with aging has been associated with higher hemi-methylation23, is correlated 386 

with chronological age, and longer-lived mice showed a lower entropy at age-related CpGs61, which 387 

are enriched in transcription factors and regulators of development and growth62. The epigenetic 388 

maintenance system (EMS) theory26 postulates that age-related epigenetic changes are the footprint 389 

of an imperfect maintenance system, leading to an increase in errors over time. CpG maintenance in 390 

genomic regions that are important for development might become less relevant during aging, leading 391 

to faster stochastic variation accumulation. It was suggested that only 10 % of CpG sites are driven by 392 

biological stochastic variation63. Our single-cell simulation results, in contrast, are in line with a recent 393 

report that showed a majority of CpG sites change stochastically33 even though only ~500 CpG sites 394 

could be analyzed due the low coverage of single-cell data64.  395 

The most trivial model of a stochastic process that can potentially be used for an age prediction, is a 396 

process that starts at a ground state of all 0’s and has a certain low probability to switch to 1. Such a 397 

system will inevitably accrue changes, i.e. 1’s, over time. If the probability to switch from 0 to 1 is high 398 

enough for an accumulation over the timeframe of a lifespan, the sum of 1’s can be used as the 399 

simplest predictor of age. The accumulation of DNA mutations could be seen of one example of this 400 
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simplest case. Similarly, simulated stochastic changes in single-cell DNA methylation using an 401 

exponential decay approach starting with either 0 or 1 for all sites before applying stochastic changes, 402 

allowed for accurate predictions of the simulated age, in line with the regression-to-the-mean model, 403 

since each site starts at the extreme and can only diverge from it33.  404 

In contrast to a multiplicative model, which models a gradual slowdown of methylation change over 405 

time33, we modeled the stochastic variation accumulation in an additive manner, i.e. without a 406 

dependency of the random variation on the state of the system. We show that stochastic data-based 407 

clocks also predict chronological age and lifespan effects in transcriptome data of C. elegans and could 408 

measure the age deceleration resulting from reduced transcription drift through Mianserin 409 

treatment39.  410 

First as well as second generation DNA methylation aging clocks significantly correlate with the amount 411 

of stochastic variation in the data, suggesting that chronological and biological aging clocks are 412 

measuring stochastic variation. The prediction of all tested clocks caps off after a certain amount of 413 

stochastic variation, possibly indicating an approach to site-specific equilibria. Cell-type composition 414 

was shown to change with age and to affect clock predictions65,66. While this is an important aspect for 415 

the interpretation of clocks and the analysis of differentially methylated regions, correcting for cell-416 

type composition did not change our results, and our DNA methylation simulations incorporating fixed 417 

or random maintenance rates cannot be confounded by a composition change over age. In line with 418 

this, age-related variably methylated positions are suggested to not  be driven by variations in cell type 419 

composition29,67.  Publicly available clock predictions significantly correlate with the simulated age even 420 

if the same constant maintenance rate for all CpGs, or even random maintenance rates, are used. A 421 

cell-type corrected stochastic data-based clock maintains accurate predictions of independent cell-422 

type corrected biological samples, underscoring that cell-type composition is not critical for the 423 

predictive power of stochastic variation accumulation. While estimating 𝐸𝑚 and 𝐸𝑑  values is imperfect 424 

and likely cell-type dependent, our stochastic simulations are robust regardless of whether 425 

maintenance rates are estimated, randomly chosen, or fixed to a universal value.  426 

We replicated our results on data from the Mammalian Methylation Consortium 35. Contrary to 427 

previous proposals that age-related CpG sites were not stochastic marks accrued with age13–15, our 428 

results show that a stochastic process and one single biological sample as ground state are sufficient 429 

to (1) build predictors significantly correlated with the relative age in various mammalian species, and 430 

(2) predict the age-accelerating or decelerating effects of interventions such as growth hormone 431 

receptor knockout, calorie-restriction, or smoking.  432 

OSKM reprogramming has been suggested to revert cellular aging by resetting the DNA methylation 433 

landscape via de-differentiation68. The predictions with a stochastic data-based clock of a 434 
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reprogramming time-course indeed follows the expected rejuvenation trajectory. Our work suggests 435 

that interventions (potentially even rejuvenation) could reduce and perhaps reverse stochastic 436 

variation. 437 

The fact that aging clocks strongly correlate with the amount of stochastic variation cautions with 438 

regards to the identification of causal effects. CpG sites that show faster stochastic variation 439 

accumulation are likely less efficiently maintained and less important for cell survival or homeostasis, 440 

making aging clock CpG sites unsuitable for the development of novel geroprotectors10. Indeed, many 441 

chronological aging clocks can be built from DNA methylation data and clock CpG sites might have 442 

limited value for understanding biology or anti-aging interventions69. 443 

Stochastic data-based aging clocks demonstrate the compatibility of precise measures of the pace of 444 

aging with entropy-driven stochastic variations in biological processes such as age-associated damage 445 

accumulation. These results emphasize that a precise aging pace measure does not require a 446 

programmed process, but is consistent with a stochastic nature of the molecular alterations. While we 447 

show that accumulation of stochastic variation is sufficient to build aging clocks, the limitation of our 448 

study is that a deterministic aging trajectory could also be measured by a programmed clock. Thus, our 449 

results do not completely rule out the existence of deterministic processes. In certain species 450 

deterministic processes regulate the aging process, as seen in the monarch butterfly’s aging rate 451 

variation  with migration routes70. Maintenance and repair mechanisms were selected during evolution 452 

for early but not indefinite somatic maintenance, as for instance the limitation of somatic DNA repair 453 

capacities by the DREAM complex in C. elegans71. Somatic proteostasis  declines rapidly in nematodes, 454 

as the heat shock response is repressed during reproduction onset via programmed jmjd-3.1 reduction, 455 

which can be alleviated by removing the germline consistently with the disposable soma theory72. The 456 

genetically programmed limitations of such maintenance and repair capacities could then result in the 457 

age-dependent accumulation of stochastic damage. 458 

Stochastic errors might start accumulating from conception, in line with the suggestion that aging 459 

starts from mid-embryonic development 73. This might start a vicious spiral, since every additional error 460 

could disturb the intricate regulatory networks including maintenance systems thus allowing for more 461 

errors to be made74. It will be interesting to explore in how far a tightening of regulatory mechanisms 462 

could slow the aging process, consistently with the epigenetic maintenance system (EMS) theory 26.  463 

We propose that in addition to methylation clocks, any set of biological measures, whether molecular 464 

or physiological, could in principle be used for building aging clocks, as long as the data have a range 465 

limit and experience accumulating stochastic variation. The sufficiency of stochasticity for building 466 

aging clocks unifies the exact determination of age and the reduced maintenance of homeostatic 467 

processes driving the aging process. Indeed, our analysis predicts that the level of such stochasticity 468 
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sets the pace of aging. Reinstating regulatory tightness could therefore provide opportunities for aging 469 

decelerating therapies.   470 

 471 

Methods 472 

Bulk Simulations 473 

A ground state was generated with 2000 (or indicated otherwise) random features between 0 and 1. 474 

From this ground state 6 independent sets of 100 samples each (one sample per age from 1-100) were 475 

generated. Each of these 600 samples started from the same ground state with slight deviations, i.e. 476 

each sample started with stochastic variation generated from 𝑁(µ = 0, 𝜎2 = 0.01²) added to the 477 

ground state to simulate biological variation. To model age-dependent stochastic variation 478 

accumulation, random noise was generated from a normal distribution 𝑁(µ = 0, 𝜎2) with 479 

random.randn() from Numpy v.1.18.5 75.  The standard deviation 𝜎 used for generation of stochastic 480 

variation that is applied at each time-step is indicated in the figure legends. The simulated age of each 481 

sample defined how often stochastic variation generated from 𝑁(µ = 0, 𝜎2) was independently added 482 

to the ground state. For example, for a sample with simulated age 2, stochastic variation would be 483 

added twice to the ground state. The stochastic variation addition was performed independently from 484 

all other samples, i.e. ground state + 2x stochastic variation independently sampled from the normal 485 

distribution. A sample with simulated age 10 is simulated by taking the ground state and adding, 486 

independently sampled, normal-distributed stochastic variation 10 times (Extended Data Figure 1A).  487 

After stochastic variation addition values were kept between 0 and 1, by setting values bigger 1 to 1 488 

and values smaller 0 to 0 (except for the results in Extended Data Figure 1C, where no limits where 489 

applied). To train a predictor of the simulated age we used 3 sets of 100 independent samples for 490 

training of an Elastic net regression model with ElasticNetCV from sklearn v.0.23.1 76 with the following 491 

parameter: l1_ratio=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]. The remaining 3 sets of 100 independent 492 

samples were used as a hold-out validation dataset. 493 

Logit transform 494 

Analysis done with the logit transform were processed the following way. The ground state was first 495 

transformed with logit() from Scipy 77. Stochastic variation was generated and applied as described 496 

above and added to the logit-transformed ground state. After stochastic variation addition values were 497 

transformed back with the inverse-logit transform expit() from Scipy 77. 498 

Human single-cell simulations 499 
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The ground state of single-cell simulations consists of 2000 (or indicated otherwise) randomly chosen 500 

CpG sites of the youngest sample in GSE41037 78 (GSM1007467). For the clock starting from a fetal 501 

sample, a umbilical cord blood sample in GSE154915 (GSM4682890) was chosen.  Each of the features 502 

(CpG sites) is a number between 0 and 100 % and used to generate 1000 cells with binary values for 503 

each feature. A ground state value of 0.13, i.e. 13 % methylated, generates 1000 cells for which 130 504 

are 1 (methylated), and 870 are 0 (unmethylated). One sample therefore consists of 2000 (or indicated 505 

otherwise) features with each 1000 simulated cells with binary values of either 1 or 0. Note that our 506 

ground state is derived from bulk sequencing and not single-cell data, since single-cell omics come with 507 

large technical problems and drawbacks including the sparsity of sequencing coverage, which make it 508 

unfavorable as a starting point for our simulations64.  Next, for each feature a methylation maintenance 509 

efficiency 𝐸𝑚 and de novo methylation efficiency 𝐸𝑑  was generated. As indicated in the figure legends, 510 

we either simulated data with a universal maintenance efficiency for all features, random efficiencies, 511 

or we estimated 𝐸𝑚 and 𝐸𝑑  from empirical data. For the empirical maintenance estimation, we set the 512 

site-specific DNA methylation equilibrium to be the value of the oldest sample in the dataset 513 

(GSM1007832 78), as DNA methylation trends towards the equilibrium over time 24,25 and estimated 514 

𝐸𝑚 and 𝐸𝑑  from the equation given by Pfeifer et al. 24: 515 

 
𝑀𝑒𝑞 =  

𝐸𝑑

1 + 𝐸𝑑 − 𝐸𝑚
 

[1] 

 
 516 

, where 𝑀𝑒𝑞 is the equilibrium of the methylation state. Several groups suggested a biological range 517 

for 𝐸𝑚 and 𝐸𝑑 values, with  𝐸𝑚 to be on average ~99.9 % and 𝐸𝑑  to be ~ 5 % 24, 𝐸𝑚 to be ~95 % and 518 

for many sites bigger than 99 % 25, or 𝐸𝑚 to be between 95-98 % and 𝐸𝑑  to be maximally 23 % 79. These 519 

limits guide our simulations, ensuring both 𝐸𝑚 and 𝐸𝑑  are within biologically meaningful regions ( 520 

95% < 𝐸𝑚 ≤ 100% and 0% ≤ 𝐸𝑑 < 23%).  Note that the values inferred by those 3 publications 521 

only serve as an estimation of the biologically meaningful regions (95% < 𝐸𝑚 ≤ 100% and 0% ≤522 

𝐸𝑑 < 23%), but not for the estimation of the site-specific values itself.  Due to the nature of this 523 

empirical estimation either 𝐸𝑚 or 𝐸𝑑  are fixed, allowing the other to be estimated from data. Note, 524 

that it is unlikely that all sites will have reached their equilibria with old age. This is therefore only a 525 

rough approximation of the site-specific equilibria, and that multiple 𝐸𝑚 and 𝐸𝑑  values will regress to 526 

the same equilibrium over time (compare equation 1). The lower the limit for 𝐸𝑚, respective the higher 527 

the limit for 𝐸𝑑, the higher the stochastic variation per time-step on average, since each site (feature) 528 

is potentially less well maintained, leading to a quicker regression to the equilibrium (the perfect 529 

maintenance would be 𝐸𝑑=0%, and 𝐸𝑚=100%). For example, CpG sites with 𝐸𝑚=99% and 𝐸𝑑=1% will 530 

regress towards 0.5 slower than CpG sites with 𝐸𝑚=90% and 𝐸𝑑=10%.  Next, we randomly altered the 531 

state of every single-cell CpG site based on the respective 𝐸𝑚 and 𝐸𝑑  values for each time step., i.e. 532 
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for each time-step we flip a coin with the probabilities 𝐸𝑚 (to stay methylated) and 𝐸𝑑  (to de novo 533 

methylate) for each CpG site in each cell. 100 (or indicated otherwise) age steps, i.e. stochastic 534 

variation applications, from 0 to 99 (or indicated otherwise) were simulated. The simulations for 535 

GrimAge needed 450k Human Methylation Beadchip data and started from the youngest human blood 536 

sample in GSE40279 (GSM990528) 80. The maintenance rates were estimated from the oldest sample 537 

(GSM989863). For training and validating a predictor, we again computed the average bulk 538 

methylation levels for each site and time-point. The training and validation process of the Elastic net 539 

regression is the same as described in Extended Data Figure 1B. 540 

Cell-type correction 541 

The cell-type composition was first estimated with EpiDISH 81 with the parameter 542 

ref.m=centDHSbloodDMC.m and method=’RPC’ in R-4.3. The estimated cell-type composition was 543 

subsequently used in a regression-based correction approach82. Briefly, a linear model is fit for every 544 

CpG site using the cell-type composition values via lm(x~B+NK+CD4T+CD8T+Mono+Neutro+Eosino) to 545 

estimate the variance in the data that is predicted by the blood cell-type proportions. The remaining 546 

residuals depict the variance that is cell-type independent and can be added to the mean methylation 547 

value for each site to obtain the adjusted beta values82. Additionally, we calculated a multivariate linear 548 

regression model of the form 549 

 Age ~ PredictedAge + CellTypeFractions 550 

which gives p-values for each of the variables, i.e. also whether the predicted age is significantly 551 

associated with the chronological age when also correcting for cell-type fractions. 552 

Public aging clocks 553 

We downloaded the Elastic net regression coefficients for Horvaths pan-tissue clock26, Vidal-Bralo’s 554 

blood aging clock 41, Lin’s 99-CpG clock 42, Weidner’s 3-CpG clock43, and Levine’s PhenoAge40 clock and 555 

applied them to simulated data. The data were simulated as defined above, with the difference that 556 

we only used the clock-specific CpG sites as the features in the ground state, and we started the 557 

arbitrary simulated age at 16, i.e. the age of the subject of the ground state sample. Stochastic variation 558 

was simulated either with a universal maintenance efficiency for all CpG sites, or with empirically 559 

estimated maintenance rates as defined above. For GrimAge 44 predictions we uploaded the simulated 560 

datasets to the webpage: https://dnamage.genetics.ucla.edu/. 561 

Human stochastic data-based clock 562 

The stochastic data-based clock was computed based on simulations described above. The scale and 563 

units of the simulated age are arbitrary since we do not know when or in which time-steps the noise 564 
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increases, and are therefore different from the chronological age of biological samples. We found that 565 

a rescaling of the simulated age before training and testing the model is beneficial. First, we rescaled 566 

via min-max scaling the simulated age to be within 0 and 1, multiplied it by 400 and subtracted 120. 567 

Note that this transformation on the arbitrary time-steps will not interfere with the correlation 568 

analyses. For the correlation analyses, we excluded the youngest (GSM1007467, or GSM4682890; from 569 

which the ground state was sampled), and the oldest (GSM1007832; from which the maintenance 570 

efficiencies were estimated as described above) to not confound the correlation between the 571 

chronological age of samples in GSE41037 78, and the predicted age. To train a predictor of the 572 

simulated age we used 1 set of 1 independent sample per age step from 1 to 73 for training of an 573 

Elastic net regression model with ElasticNetCV from sklearn v.0.23.1 76 with the following parameter: 574 

l1_ratio=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9], alphas=[1]. The clock was validated on 11,146 575 

independent whole blood or peripheral blood leukocyte samples from the Illumina Infinium 450k 576 

Human Methylation Beadchip and the Illumina Infinium MethylationEPIC Beadchip (GSE84727, 577 

GSE87571, GSE80417, GSE40279, GSE87648, GSE42861, GSE50660, GSE106648, GSE179325, 578 

GSE210254, GSE210255, GSE72680, GSE147740, GSE55763, GSE117860).  579 

Pan-mammalian clocks 580 

The pan-mammalian stochastic data-based clocks (Clock 1-4) are built on the youngest blood sample 581 

from Tursiops truncatus as the ground state (or stated otherwise) from the Illumina 582 

HorvathMammalianMethylChip40 BeadChip platform. Clock 1 used empirically estimated 583 

maintenance efficiency rates from the oldest sample of the same tissue and species as the ground 584 

state for all CpG sites of Lu’s pan-mammalian relative age-clock. Clock 2 uses the same CpG sites, but 585 

non-empirically estimated 99% maintenance rate for all sites (or stated otherwise). Clock 3 is the same 586 

as Clock1 but utilizes all 37554 CpG sites. Clock 4 is the same as Clock2 but utilizes all 37554 CpG sites. 587 

To train a predictor of the simulated age we used 1 set of 1 independent sample per age step from 1 588 

to 67 for training of an Elastic net regression model with ElasticNetCV from sklearn v.0.23.1 76 with the 589 

following parameter: l1_ratio=[0.01, 0.001], alphas=[1]. The predictor was trained to predict -log(-590 

log(SimulatedAge/MaxAge)) as described by Lu et al. 15, where MaxAge is the number of age steps 591 

simulated, i.e. 67. To get the relative age back, the predictions are transformed back via exp(-exp(-592 

PredictedAge). Lu et al. employed leave-one-fraction-out and leave-one-species-out cross-validation 593 

to get an unbiased estimate of the clock’s accuracy15. Since the stochastic data-based clock only needs 594 

one biological sample as a ground state we directly applied the clock to all samples, thereby further 595 

reducing the risk of an accuracy bias. To calculate the Pearson correlation of the predicted and relative 596 

age of species, only species with at least 5 samples (or stated otherwise) were taken. Note that the 597 

species have distinct age ranges, which is affecting the Pearson correlation values. For the validation 598 

of our stochastic data-based clocks on interventions with known lifespan effects for growth hormone 599 
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receptor-knockout, Tet3 knockout, or calorie restricted mice, we calculated the adjusted FDR and used 600 

the t-value of a two-sided t-test for the color gradient (Control vs. experimental mice; a positive value 601 

indicating a younger predicted age in the experimental mice). 602 

The statistics for the liver samples of the parabiosis dataset (GSE224361) and the slope difference of 603 

smoking individuals (GSE50660) were calculated with Python’s 604 

statsmodels.regression.linear_model.OLS and the following regression models: 605 

Parabiosis (GSE224361): 606 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐴𝑔𝑒 ~ 𝐶ℎ𝑟𝑜𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝐴𝑔𝑒 + 𝐻𝑒𝑡𝑒𝑟𝑜𝑐ℎ𝑟𝑜𝑛𝑖𝑐𝑃𝑎𝑟𝑎𝑏𝑖𝑜𝑠𝑖𝑠 + 𝐶ℎ𝑟𝑜𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝐴𝑔𝑒607 

∗ 𝐻𝑒𝑡𝑒𝑟𝑜𝑐ℎ𝑟𝑜𝑛𝑖𝑐𝑃𝑎𝑟𝑎𝑏𝑖𝑜𝑠𝑖𝑠 608 

Where HeterochronicParabiosis is a binary variable indicating whether the parabiosis was 609 

heterochronic or isochronic. 610 

Smoking (GSE50660): 611 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐴𝑔𝑒 ~ 𝐶ℎ𝑟𝑜𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝐴𝑔𝑒 + 𝐸𝑥𝑆𝑚𝑜𝑘𝑒𝑟 + 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑚𝑜𝑘𝑒𝑟 + 𝐶ℎ𝑟𝑜𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝐴𝑔𝑒612 

∗ 𝐸𝑥𝑆𝑚𝑜𝑘𝑒𝑟 + 𝐶ℎ𝑟𝑜𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝐴𝑔𝑒 ∗ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑚𝑜𝑘𝑒𝑟 613 

Where ExSmoker and CurrentSmoker are binary variables indicating the smoking status of the 614 

sequenced individuals. The significant interaction term 𝐶ℎ𝑟𝑜𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝐴𝑔𝑒 ∗ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑚𝑜𝑘𝑒𝑟 615 

indicates a steeper slope, i.e. faster aging trajectory, and is shown as negative values in Figure 5D. The 616 

smoking dataset and the reprogramming time-course dataset of human dermal fibroblasts (GSE54848) 617 

49  were generated with the Illumina Infinium HumanMethylation450 BeadChip array and was 618 

converted by the Array Converter Algorithm of the Mammalian Methylation Consortium before 619 

predicting the samples 15.  620 

Gillespie algorithm 621 

For the simulations we adapted the code from83. We modelled each CpG site with 2 different 622 

equations, one for the methylation, one for the demethylation. The probability of switching the state 623 

from one to the other was set to 0.1 for both equations. tmax was set to 5 and nrmax to 8000. The 624 

arbitrary time-steps (of 0-5) were scaled to be within the same range of the predicted age. Note that 625 

this does not affect the Pearson correlation results. 626 

Public RNA-seq processing 627 

All 994 public RNA-seq samples were downloaded and processed the same. First, we preprocessed 628 

samples with Fastp v0.20.0 84 with the following parameters -g -x -q 30 -e 30. After preprocessing, the 629 

samples were mapped with Salmon v1.1 85 and the parameters –validateMappings –seqBias and for 630 
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paired-end samples additionally –gcBias. The decoy-aware index for Salmon was generated with the 631 

WS281 transcriptome build from Wormbase 86. The results of Salmon were combined to the gene-level 632 

with tximport v1.14.2 87. Raw counts were log10-transformed after the addition of one pseudo-count, 633 

each sample was min-max normalized to bring each sample within the data range 0-1, and genes 0 in 634 

all 994 samples were filtered out.  To binarize the data zeroes were masked by NaN, the median was 635 

calculated, and genes bigger than the median were set to 1, and all other genes to 037. 636 

Transcriptomic stochastic variation simulation 637 

The ground state consists of all (or indicated otherwise) gene counts (normalized as described above) 638 

of the biologically youngest sample (GSM2916344 38). From this ground state 10 independent samples 639 

for each time-step (from 1 to 16) were generated (based on the distribution that resulted in the best 640 

correlation with BitAge (Extended Data Figure 2A)) and used to train an Elastic net regression as 641 

described above (see Bulk simulations). Note that the simulated age range is arbitrary, and the scale 642 

and unit not directly comparable to the biological age.  Similar to the epigenetic stochastic-data based 643 

clock we found a rescaling of the arbitrary simulated time-steps by 2 to be beneficial, i.e. we multiplied 644 

the simulated age by 2 before training and testing the data. The Elastic net regression model was then 645 

used to predict the biological age of the 993 remaining (excluding the youngest sample which was used 646 

for the ground state) C. elegans samples. The biological age is calculated by temporal rescaling of the 647 

chronological age by the median lifespan. Briefly, we set a reference lifespan of a standard worm 648 

population to 15.5 days of adulthood and calculate a rescaling factor for every sample by dividing this 649 

reference lifespan by the median lifespan reported by the publication of the corresponding sample. 650 

This rescaling factor is multiplied with the chronological age of the sample 37. 651 

Statistics & Reproducibility 652 

All indicated public data were used for validation, except for samples used as the ground state or to 653 

estimate maintenance rates as indicated. No statistical method was used to predetermine sample size. 654 

Stochastic variation accumulation simulations were done at least N=3 times as indicated in the figure 655 

legends and can be reproduced with the public code. Data analyses were not performed blinded. 656 

Statistical tests used, are indicated in the figure legends. Full statistics can be found in the Source Data 657 

File. All data plots were done with Seaborn-0.11.0 88 and Matplotlib-3.3.0 89. Boxplots are shown with 658 

the center line depicting the median, the box limits the bottom, respective top quartiles, and the 659 

whiskers the 1.5x interquartile range. Scatterplots showing a linear regression model fit are shown 660 

with a 95% confidence interval. Pearson correlations were computed with Scipy-1.5.1’s stats.pearsonr 661 

function 77 and two-sided tests. Effect sizes (Cohen’s d and Hedges g) for pair-wise comparisons were 662 

computed with Pingouin-0.3.6’s compute_effsize function90. 663 
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Data availability statement 665 

The human DNA methylation data is available at NCBI GEO (accession code GSE84727, GSE87571, 666 

GSE80417, GSE40279, GSE87648, GSE42861, GSE50660, GSE106648, GSE179325, GSE210254, 667 

GSE210255, GSE72680, GSE147740, GSE55763, GSE117860, GSE41037, GSE54848,      GSE223748, and 668 

GSE224361). The accession codes for all 994 public C. elegans RNA-seq samples can be found in 669 

Supplementary Table 1. The WS281 transcriptome version of C. elegans was downloaded from 670 

Wormbase86. 671 

Code availability statement 672 

The code for the simulations can be found in a supplementary file and at https://github.com/Meyer-673 

DH/StochasticAgingClock. The BiT age clock code can be found at https://github.com/Meyer-674 

DH/AgingClock. The Gillespie algorithm can be found at https://github.com/karinsasaki/gillespie-675 

algorithm-python/blob/master/build_your_own_gillespie_solutions.ipynb. The 676 

ArrayConverterAlgorithm can be found at 677 

https://github.com/shorvath/MammalianMethylationConsortium/tree/main/UniversalPanMammali678 

anClock/R_code/ArrayConverterAlgorithm 679 
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Tables 695 

Supplementary Table 1 – List of the 994 RNA-seq samples used 696 

Figure Legends 697 

Figure 1 – Normal-distributed stochastic variation accumulation simulations enable aging clock 698 

construction for simulated data. (A) Sample generation explanation with logit transform. (B) 699 

Accumulating stochastic variation in logit transformed data enables accurate simulated age 700 

predictions. The x-axis shows the number of times stochastic variation was added to the ground state. 701 

The y-axis shows the prediction of the independent validation data (n=300). (C) The predictions of the 702 

independent validation data are robust to the stochastic variation distribution. The x-axis shows the 703 

standard deviation of the normal distribution from which the stochastic variation was sampled. The y-704 

axis shows the R² value of the independent validation data predictions (N=3 independent repeats; each 705 

with n=300 independent samples). (D) Coefficients of independent models are highly correlated if 706 

trained on samples starting from the same ground. Shown are the coefficients of N=2000 features. (E) 707 

The prediction in (B) is possible due to a regression to the mean. The x-axis shows the starting values 708 

of the 2000 features of the simulated ground state, the y-axis the Elastic net regression coefficients for 709 

the model in (B) (trained on n=300). (F) The accuracy of predictions caps off after ~2000 features in the 710 

ground state. The x-axis shows how many features were randomly sampled for the ground state. The 711 

y-axis shows the R² as a measure of model accuracy. (N=10 independent repeats for Features 712 

Sizes<1000, N=3 independent repeats otherwise; each with n=300, 3 independent samples per time 713 

point). (G) The amount of stochastic variation sets the pace of aging. The Elastic net regression model 714 

was trained with stochastic variation sampled from 𝑁(µ = 0, 𝜎2 = 0.2²) and tested on independent 715 

samples generated from the same ground state, but with varying degrees of stochastic variation (color-716 

coded, as indicated in the panel). All simulated datasets consist of n=300 independent samples. 717 

Boxplots in Figure 1 C,F are shown with the center line depicting the median, the box limits the bottom, 718 

respective top quartiles, and the whiskers the 1.5x interquartile range. 719 

Figure 2 - Normal-distributed stochastic variation accumulation simulations enable aging clock 720 

construction for transcriptomic data. (A) The simulated age (x-axis), and BitAge37 predictions (y-axis) 721 

significantly correlate (Pearson correlation of 0.81, p-value 5.99e-41, two-sided test). n=160, 10 722 

independent samples per time point. Variation was sampled with a SD of 0.01. (B) The predictions of 723 

a transcriptomic stochastic data-based clock (y-axis) correlates significantly (Pearson correlation 0.72, 724 

p-value  5.7e-150, two-sided test) with the biological age (x-axis) of the n=993 independent RNA-seq 725 

from 61 independent public datasets (Supplement Table 1). (C) There is a significant association 726 

between the median lifespan and the predicted age of the clock used in (B) (median lifespan coefficient 727 

p-value= 0.015, full statistics in Source Data). The regression model fit with a 95% confidence interval 728 
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(shadowed area) is shown for Long-lived (>20d median lifespan in blue), Short-lived (<8d median 729 

lifespan in green) and Normal-lived (orange). (D) Mianserin shows a dose-dependent decrease of the 730 

predicted age of the clock used in (B). ANOVA (p-value: 0.006) with a two-sided Tukey post-hoc test 731 

was used (50M Mianserin vs. Control adjusted p-value 0.026, full statistics in Source Data). Boxplots 732 

are shown with the center line depicting the median, the box limits the bottom, respective top 733 

quartiles, and the whiskers the 1.5x interquartile range. (E) 50M Mianserin shows a lower predicted 734 

age over the whole time-course (2-way ANOVA treatment p-value: 7.3e-04, full statistics in Source 735 

Data). The regression model fit with a 95% confidence interval (shadowed area) is shown for worms 736 

receiving 50M Mianserin (orange) and Control worms (blue). 737 

Figure 3 – Single-cell DNA methylation stochastic variation accumulation simulations enable aging 738 

clock construction for simulated data. (A) Explanation of single-cell simulations. (B) The accuracy of 739 

the model is dependent on the methylation maintenance efficiency rate. A stochastic data-based clock 740 

was trained with 500 features and universal maintenance efficiencies 𝐸𝑚 and 𝐸𝑑  and used to predict 741 

the simulated age of 300 independent validation samples. The x-axis shows the methylation 742 

maintenance efficiency 𝐸𝑚 in %. The y-axis shows the R². N=3 independent experiments with different 743 

ground states are shown for each maintenance efficiency. Boxplots are shown with the center line 744 

depicting the median, the box limits the bottom, respective top quartiles, and the whiskers the 1.5x 745 

interquartile range. (C) Single-cell simulation of DNA methylation sites with 𝐸𝑚 and 𝐸𝑢 of 99.9 % allows 746 

to build a clock with highly accurate predictions (R²=0.999) of independent validation data (n=300). 747 

The x-axis shows the true simulated age.  (D) The accuracy of predictions with a universal maintenance 748 

efficiency rate of 99.9 % caps off after ~32 features with an R² of 0.99. The x-axis shows the amount of 749 

features of the stochastic data-based clock. The y-axis shows the R². N=10 independent repeats for 750 

Features Sizes<1000, N=3 independent repeats otherwise; each with n=300, 3 samples per time point. 751 

Boxplots are shown with the center line depicting the median, the box limits the bottom, respective 752 

top quartiles, and the whiskers the 1.5x interquartile range. (E) The maintenance efficiency rate sets 753 

the pace of aging. The stochastic data-based clock was trained with a maintenance efficiency of 754 

𝐸𝑚=𝐸𝑢=99.9 %, and tested on independent samples generated from the same ground state, but with 755 

varying maintenance efficiencies (color-coded, as indicated in the panel). All simulated datasets consist 756 

of n=300 independent samples. (F) Biologically estimated maintenance rates allow for highly accurate 757 

predictions. Site-specific 𝐸𝑚 and 𝐸𝑢 values were estimated from data (see methods for details). The 758 

simulations were done the same as in C) but with site-specific maintenance rates. (n=300). 759 

Figure 4 – Epigenetic aging clock predictions correlate significantly with the amount of stochastic 760 

variation. (A) The methylation maintenance efficiency limits affect the simulation and subsequent 761 

prediction with Horvath’s epigenetic clock 26. The x-axis shows the limit of 𝐸𝑚. Color-coded is the limit 762 
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of 𝐸𝑑. The y-axis shows the R² between the predicted epigenetic age by Horvath’s epigenetic clock 26 763 

and the simulated age. N=3 independent repeats, each consisting of n=73 independent samples. 764 

Boxplots are shown with the center line depicting the median, the box limits the bottom, respective 765 

top quartiles, and the whiskers the 1.5x interquartile range. (B) Horvath’s epigenetic age prediction26 766 

of samples simulated based on biologically estimated maintenance rates with the limits  𝐸𝑚 > 97 % 767 

and 𝐸𝑑  < 5 % , correlates significantly with the simulated age. N=73 independent samples. (C) Horvath’s 768 

epigenetic age prediction26 of samples simulated based on a universal maintenance efficiency rate of 769 

99 % for all features, correlates significantly with the simulated age. N=73 independent samples. (D) 770 

The methylation maintenance efficiency limits affect the simulation and subsequent prediction with 771 

PhenoAge40. The x-axis shows the limit of 𝐸𝑚. Color-coded is the limit of 𝐸𝑑. The y-axis shows the R² 772 

between the predicted epigenetic age by PhenoAge40 and the simulated age. N=3 independent 773 

repeats, each consisting of n=73 independent samples. Boxplots are shown with the center line 774 

depicting the median, the box limits the bottom, respective top quartiles, and the whiskers the 1.5x 775 

interquartile range. (E) Biological age prediction with PhenoAge40 of samples simulated based on 776 

biologically estimated maintenance rates with the limits  𝐸𝑚 > 97 % and 𝐸𝑑  < 5 %, correlates 777 

significantly with the simulated age. N=73 independent samples. (F) Biological age prediction with 778 

PhenoAge40 of samples simulated based on a universal maintenance rate of 99 % for all features, 779 

correlates significantly with the simulated age. N=73 independent samples. 780 

Figure 5 - Single-cell DNA methylation stochastic variation accumulation simulations enable aging 781 

clock construction for pan-mammalian chronological and biological age predictions. (A) The 782 

predictions of a stochastic data-based clock, correlates significantly (Pearson correlation 0.87, p-783 

value<1e-16, two-sided test) with the chronological age of the cell-type corrected independent healthy 784 

biological  validation samples (GSE41037, n=392)78.  (B) The validation of the stochastic data-based 785 

clock starting from a fetal sample (GSM4682890) on 11,146 independent samples from 15 786 

independent datasets (GSE84727, GSE87571, GSE80417, GSE40279, GSE87648, GSE42861, GSE50660, 787 

GSE106648, GSE179325, GSE210254, GSE210255, GSE72680, GSE147740, GSE55763, GSE117860) 788 

shows a significant correlation (Pearson correlation 0.72, p-value<1e-16, two-sided test). (C) A circle 789 

plot showing the Pearson correlation between the relative age of blood samples of the corresponding 790 

species and the predictions of Clock 1 as a green line around the circle. Species are shown for which at 791 

least 5 blood samples were available in the dataset GSE223748. The colors within the circle show the 792 

taxonomic order of the corresponding species, as listed on the left side. (D) Validation of Clock 1-4 on 793 

interventions with known lifespan effects in mouse and humans. Age-matched growth hormone 794 

receptor-knockout (GHRKO) with 30 normal (12 liver, 12 kidney, 6 cerebral cortex) and 29 GHRKO (11 795 

liver, 12 kidney, 6 cerebral cortex) mice 15. Tet3 knockout mice with 28 normal (14 striatum, 14 cerebral 796 

cortex) and 16 Tet3 (8 striatum, 8 cerebral cortex) mice 15. 36 calorie restricted (CR) mice with 59 797 
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normal mice 15. The effect of smoking on human aging 91.  The color gradient for mice is based on the 798 

sign of the t-test, the color of the human data is based on the interaction coefficient.  The annotated 799 

values show the adjusted FDR, full statistics in Source Data. (E) Independent validation of Clock 1 on 800 

parabiosis in young and old mice (GSE224361). Liver samples of mice that received either isochronic 801 

(orange) or heterochronic (blue) parabiosis are shown. A multivariate regression shows a significant 802 

age variable (p<1-e16), and interaction variable (p=1.22e-03), full statistics in Source Data. The 803 

regression model fit with a 95% confidence interval (shadowed area) is shown. 804 

Figure 6 - Single-cell DNA methylation stochastic variation accumulation simulations enable 805 

predictions for various species and reprogramming. (A) Heatmap showing median Pearson 806 

correlations of species within the same taxonomic order between the predicted age of Clock 1 trained 807 

on the youngest blood sample from species of the corresponding taxonomic order in the columns 808 

(Artiodactyla: Tursiops truncatus, Carnivora: Odobenus rosmarus divergens, Lagomorpha: Oryctolagus 809 

cuniculus, Monotremata: Tachyglossus aculeatus, Perissodactyla: Equus caballus, Pilosa: Choloepus 810 

hoffmanni, Proboscidea: Loxodonta africana, Rodentia: Marmota flaviventris, Sirenia: Trichechus 811 

manatus, Suidae: Sus scrofa, Tubulidentata: Orycteropus afer) and the relative age for all species in the 812 

rows. Values are shown for tissues and species for which at least 5 samples were available. (B) The 813 

stochastic data-based clock in Figure 5C was used on an independent reprogramming time-course 814 

dataset of human dermal fibroblasts (GSE54848) 49. The x-axis shows the time in days of 815 

reprogramming, the y-axis shows the predicted simulated age. 1-way ANOVA p=8.36e-09 (Statistics in 816 

Source Data). The lineplot shows the mean values with a 95% confidence interval (shadowed area). 817 
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Extended Data Figure Legends 

Extended Data Figure 1 – Normal-distributed stochastic variation accumulation simulations with value 

limits enable aging clock construction for simulated data 

A) Sample generation explanation. One time-step is defined as the addition of one-time 

stochastic variation, i.e. random noise, to each feature of the ground state that is sampled 

from a normal distribution centered at 0 (Top). Samples with different simulated ages are 

generated starting from the same ground state, but independently from each other (Bottom). 

A sample of age 1 adds normal-distributed stochastic variation once to the ground state, a 

sample of age 2 twice independently, and so on.  

B) Model training and validation explanation. For training and validation 3 sets of independent 

samples are generated from the same ground state as explained in Extended Data Figure 1A. 

3 sets comprising the whole age-range, e.g. 1-100, are used as an input for an Elastic net 

regression to train a predictor that predicts the simulated age of a sample, i.e. how often 

stochastic variation was added to the ground state. The 3 independent datasets are used to 

validate the model and assess the accuracy. 

C) Unlimited stochastic variation does not allow for any prediction. All samples within the training 

and validation dataset started from the same ground state of 2000 uniformly randomly 

sampled features between 0 and 1. For every whole simulated age step from 1 to 100, normal-

distributed stochastic variation sampled from 𝑁(µ = 0, 𝜎2 = 0.05²) was added. n=300 

samples (3 independent samples per age step) were used for training of the Elastic net 

regression model to predict the simulated age, and n=300 independent samples were used for 

validation. The x-axis shows the true simulated age, i.e. the number of times random stochastic 

variation was added to the ground state. The y-axis shows the prediction of the Elastic net 

regression model of the independent validation data (n=300, 3 independent samples per time 

point). The sides show the distribution of the samples. 

D) Same as C), but after addition of stochastic variation the values were kept within the range of 

0-1, e.g. values bigger to 1 were set to 1 (n=300, 3 independent samples per time point). 

Limiting the values after stochastic variation application allows to build highly accurate 

predictors of the simulated age. 

E) The predictions of the independent validation data are robust to the stochastic variation 

distribution. The samples were simulated the same as in D) with different stochastic variation 

distributions (n=300, 3 independent samples per time point). The x-axis shows the standard 

deviation of the normal distribution from which the stochastic variation was sampled, i.e. 



𝑁(µ = 0, 𝜎2 = 0.005²) has a narrow noise distribution with 99.7 % of the sampled data within 

the range [-0.015, 0.015], while 𝑁(µ = 0, 𝜎2 = 0.01²)  has a wide distribution with 99.7 % of 

the sampled data within the range [-0.3, 0.3]. The y-axis shows the R² value between the 

simulated age and the predicted age of the independent validation data (N=3 independent 

repeats; each with n=300, 3 samples per time point). Boxplots are shown with the center line 

depicting the median, the box limits the bottom, respective top quartiles, and the whiskers the 

1.5x interquartile range. 

F) Independent Elastic net regression models are highly correlated if trained on samples starting 

from the same ground state (consisting of N=2000 uniformly randomly sampled features 

between 0 and 1). The x-axis shows the coefficients of the Elastic net regression of D), and the 

y-axis shows the coefficients of an independent Elastic net regression on samples that started 

with the same ground state, but with independent stochastic variation application (trained on 

n=300, 3 samples per time point). 

G) The prediction in D) is possible due to a regression to the mean. The x-axis shows the starting 

values of the 2000 features of the simulated ground state, the y-axis the Elastic net regression 

coefficients for the model in D) (trained on n=300, 3 samples per time point). Features starting 

close to 0 have a positive coefficient, indicating an increase over the simulated time period, 

while features close to 1 have a negative coefficient, indicating a decrease. Features close to 

0.5 are more sensitive to random changes and are closer to 0. 

H) The accuracy of predictions caps off after ~1000 features in the ground state. The x-axis shows 

how many uniformly randomly features were sampled for the ground state that was used to 

build and validate an Elastic net regression model the same as in D) (trained on n=300, 3 

samples per time point). The y-axis shows the R² as a measure of model accuracy. Of note, the 

Elastic net regression will shrink coefficients of features to 0 and thereby reduce the features 

relevant for the prediction further. (N=10 independent repeats for Features Sizes<1000, N=3 

independent repeats otherwise; each with n=300, 3 samples per time point). Boxplots are 

shown with the center line depicting the median, the box limits the bottom, respective top 

quartiles, and the whiskers the 1.5x interquartile range. 

I) The amount of stochastic variation sets the pace of aging. The Elastic net regression model was 

trained the same as in D) with stochastic variation sampled from 𝑁(µ = 0, 𝜎2 = 0.05²)  

(n=300, 3 samples per time point). Color-coded are different independent validation samples, 

generated from the same ground state, but with stochastic variation from different normal 

distributions. Samples with stochastic variation from a distribution with a narrower standard 

deviation (𝑁(µ = 0, 𝜎2 = 0.025²)) accumulate less noise and are predicted to age slower, i.e. 

the slope of the prediction is lower. Samples with stochastic variation from a distribution with 



a wider standard deviation (𝑁(µ = 0, 𝜎2 = 0.1²), 𝑁(µ = 0, 𝜎2 = 0.2²)) accumulate noise 

faster, have a steeper slope of prediction, and reach the maximum age faster. The x-axis shows 

the true simulated age, i.e. the number of times stochastic variation was added to the ground 

state. The y-axis shows the prediction of the Elastic net regression model of the independent 

validation data. All 4 simulated datasets consist of n=300, 3 samples per time point. 

Extended Data Figure 2 – The effect of the feature size and the amount of stochastic variation on 

transcriptomic stochastic variation accumulation simulations 

A) The BitAge predictions in Figure 2A are robust to the distribution from which the stochastic 

variation is sampled. The x-axis shows the standard deviation of the normal distribution 

(centered at 0) from which stochastic variation for the simulations is sampled. The y-axis 

shows the Pearson correlation between the BitAge prediction of the simulated samples 

and the number of stochastic variation additions of the samples. Stochastic variation 

sampled from a normal distribution centered at 0 and a standard variation of 0.01 shows 

the highest Pearson correlation. N=5 independent experiments are shown. Boxplots are 

shown with the center line depicting the median, the box limits the bottom, respective top 

quartiles, and the whiskers the 1.5x interquartile range. 

B) The feature size is largely irrelevant for the model in Figure 2B). Predictions of Elastic net 

regression models trained on more than 100 features are significantly correlated with the 

biological age of C. elegans samples. The x-axis shows the number of randomly selected 

features, i.e. genes, for the ground state, which were subsequently used to generate data 

based on stochastic variations (see methods for details). These simulated samples were 

used to train the Elastic net regression. The y-axis shows the Pearson correlation between 

the biological age of the 993 independent samples (excluding the sample from which the 

ground state was sampled) and the prediction of the independent stochastic-data based 

model. N=10 independent experiments are shown. Boxplots are shown with the center 

line depicting the median, the box limits the bottom, respective top quartiles, and the 

whiskers the 1.5x interquartile range. 

C) Verification of Extended Data Figure 2B). Using the same approach as in Extended Data 

Figure 2B, but with randomly shuffled biological ages of the C. elegans samples shows no 

significant correlation, indicating that biological age, and not a confounding variable is 

correlated with the predictions of the model based on simulated data. The x-axis shows 

the number of randomly selected features, i.e. genes, for the ground state, which were 

subsequently used to generate data based on stochastic variations (see methods for 

details. These simulated samples were used to train the Elastic net regression. The y-axis 



shows the Pearson correlation between the biological age of the 993 independent samples 

(excluding the sample from which the ground state was sampled) and the prediction of 

the stochastic-data based model. N=10 independent experiments are shown. Boxplots are 

shown with the center line depicting the median, the box limits the bottom, respective top 

quartiles, and the whiskers the 1.5x interquartile range. 

Extended Data Figure 3 – DNA methylation stochastic variation accumulation simulations 

A) Comparison between the ground state on the x-axis, and the ground state (N=2000 uniformly 

randomly sampled features between 0 and 1) after applying stochastic variation from 

𝑁(µ = 0, 𝜎2 = 0.05²), i.e. Gaussian noise, once on the y-axis. 

B) Comparison between the ground state on the x-axis, and the ground state (N=2000 uniformly 

randomly sampled features between 0 and 1) after applying stochastic variation from 

𝑁(µ = 0, 𝜎2 = 0.05²), i.e. Gaussian noise, 100 times on the y-axis. 

C) Comparison of human blood DNA methylation data of the youngest (x-axis= GSM1007467) and 

oldest (y-axis= GSM1007832) subjects in the public dataset GSE41037 78. Every dot depicts a 

DNA methylation site (n=21389). Values close to 0 and 1 show less variation than values closer 

to 0.5. 

D) Comparison of the ground state on the x-axis (2000 randomly sampled features from the 

youngest healthy sample (GSM1007467 78)) and the ground state after applying 100x single 

cell stochastic variation steps with a universal maintenance efficiency rate of 99.9 %, i.e. the 

maintenance efficiency rate is fixed to be the same for all features (y-axis).   

E) Starting single-cell simulations with a ground state consisting of 2000 features at 0.5 with a 

universal maintenance of 99 % allows no prediction. An Elastic net regression model was 

trained on n=300 samples (3 samples per time point) starting from the same ground state in 

which all features were set to 0.5, and universal maintenance efficiencies 𝐸𝑚 and 𝐸𝑢 of 99 %. 

The x-axis shows the true simulated age, i.e. the number of times stochastic variation was 

added to the ground state. The y-axis shows the prediction of the Elastic net regression model 

of the independent validation data (n=300, 3 samples per time point). The sides show the 

distribution of the samples. 

F) Starting single-cell simulations with a ground state consisting of 2000 features at 0.51 with a 

universal maintenance of 99 % allows for an accurate age prediction. The training and 

validation were done the same as in B) with the difference that all features in the ground state 

started at 0.51. (n=300, 3 samples per time point). 

G) Starting single-cell simulations with a ground state consisting of 2000 features at 0.5 with 

biologically estimated maintenance rates allows for an accurate prediction. The training and 



validation were done the same as in B) with the difference that 𝐸𝑚 and 𝐸𝑢 values were 

estimated from biological data (see methods for details). (n=300, 3 samples per time point). 

H) Comparison of the ground state on the x-axis (2000 randomly sampled features from the 

youngest healthy sample (GSM1007467 78)) and the ground state after applying 100x single 

cell stochastic variation steps (y-axis) with empirically estimated maintenance efficiency rates 

with the limits  𝐸𝑚 > 95 % and 𝐸𝑑  < 23 %.   

I) The prediction in Figure 3F) is not due to a regression to the mean, different to Figure 1. The 

x-axis shows the starting values of the 2000 randomly sampled features from the youngest 

healthy sample (GSM1007467 78) as the ground state, the y-axis the Elastic net regression 

coefficients for the model in Figure 3F) (n=300, 3 samples per time point). All ground state 

features can have positive as well as negative coefficients, indicating that the prediction is not 

based on a regression to the mean.  

Extended Data Figure 4 – Epigenetic aging clock predictions correlate robustly with the amount of 

stochastic variation  

A) Horvath’s epigenetic age prediction26 of samples simulated based on biologically estimated 

maintenance rates with the limits  𝐸𝑚 > 95 % and 𝐸𝑑  < 23 %   starting from biological data from 

a young human blood sample (GSM1007467) 78, correlates significantly with the simulated age, 

i.e. how often stochastic variation was applied to the ground state. N=73 independent 

samples, one per age step from 16 to 88 are shown. 

B) Horvath’s epigenetic age prediction26 of samples simulated based on random maintenance 

rates within the limits  97% < 𝐸𝑚 ≤ 100% and 0% ≤ 𝐸𝑑 < 5% starting from biological data 

from a young human blood sample (GSM1007467) 78, correlates significantly with the 

simulated age, i.e. how often stochastic variation was applied to the ground state. The y-axis 

shows the Pearson correlation between the simulated age and Horvath’s age prediction. N=30 

independent experiments with each n=73 independent samples. Boxplots are shown with the 

center line depicting the median, the box limits the bottom, respective top quartiles, and the 

whiskers the 1.5x interquartile range. 

C) Pearson correlation of Horvath’s epigenetic age prediction26 of simulated data and the true 

simulated age for different universal methylation maintenance efficiencies. 5 independent 

experiments (each containing n=73 independent samples, one per age step from 16 to 88) with 

different ground states are shown for each maintenance efficiency. Boxplots are shown with 

the center line depicting the median, the box limits the bottom, respective top quartiles, and 

the whiskers the 1.5x interquartile range. 

D) Biological age prediction with PhenoAge40 of samples simulated based on biologically 

estimated maintenance rates with the limits  𝐸𝑚 > 95 % and 𝐸𝑑  < 23 %    starting from biological 



data from a young human blood sample (GSM1007467) 78, correlates significantly with the 

simulated age, i.e. how often stochastic variation was applied to the ground state. N=73 

independent samples, one per age step from 16 to 88 are shown. 

E) Biological age prediction with PhenoAge40 of samples simulated based on random 

maintenance rates within the limits  97% < 𝐸𝑚 ≤ 100% and 0% ≤ 𝐸𝑑 < 5% starting from 

biological data from a young human blood sample (GSM1007467) 78, correlates significantly 

with the simulated age, i.e. how often stochastic variation was applied to the ground state. 

The y-axis shows the Pearson correlation between the simulated age and PhenoAge’s age 

prediction. N=30 independent experiments with each n=73 independent samples.  The boxplot 

is shown with the center line depicting the median, the box limits the bottom, respective top 

quartiles, and the whiskers the 1.5x interquartile range. 

F) Pearson correlation of biological age predictions with PhenoAge40 of simulated data and the 

true simulated age for different universal methylation maintenance efficiencies. 5 

independent experiments (each containing n=73 independent samples, one per age step from 

16 to 88) with different ground states are shown for each maintenance efficiency. Boxplots are 

shown with the center line depicting the median, the box limits the bottom, respective top 

quartiles, and the whiskers the 1.5x interquartile range. 

G) Horvath’s epigenetic age prediction26 of samples simulated based on biologically estimated 

maintenance rates with the limits  𝐸𝑚 > 97 % and 𝐸𝑑  < 5 %    starting from biological data from 

a young human blood sample age 16 (GSM1007467) 78, correlates significantly with the 

simulated age, i.e. how often stochastic variation was applied to the ground state. The 

simulation is the same as in Extended Data Figure 4A, but with a simulated age range from 0-

99 for an easier comparison with Extended Data Figure 4H,I. N=100 independent samples, one 

per age step from 0 to 99 are shown. 

H) Horvath’s epigenetic age prediction26 of samples simulated based on biologically estimated 

maintenance rates with the limits  𝐸𝑚 > 97 % and 𝐸𝑑  < 5 %    starting from biological data from 

a middle-aged human blood sample age 37 (GSM1007384) 78, still correlates significantly with 

the simulated age, i.e. how often stochastic variation was applied to the ground state. The 

predicted age starts at a later time-point than the predictions in Extended Data Figure 4G, and 

reaches the cap-off earlier. N=100 independent samples, one per age step from 0 to 99 are 

shown. 

I) Horvath’s epigenetic age prediction26 of samples simulated based on biologically estimated 

maintenance rates with the limits  𝐸𝑚 > 97 % and 𝐸𝑑  < 5 %    starting from biological data from 

an old human blood sample age 81 (GSM1007791) 78, does not correlate significantly with the 

simulated age, i.e. how often stochastic variation was applied to the ground state. Starting the 



ground state at an old age does not allow for a correlation between the predicted epigenetic 

age and the amount of stochastic variation in the data, since the prediction already starts in 

the cap-off. N=100 independent samples, one per age step from 0 to 99 are shown. 

Extended Data Figure 5 – All tested epigenetic clock predictions correlate significantly with the amount 

of stochastic variation 

A) Vidal-Bralo’s epigenetic age prediction41 of samples simulated based on biologically estimated 

maintenance rates with the limits  𝐸𝑚 > 97 % and 𝐸𝑑  < 5 % starting from biological data from 

a young human blood sample (GSM1007467) 78, correlates significantly with the simulated age, 

i.e. how often stochastic variation was applied to the ground state. N=73 independent 

samples, one per age step from 16 to 88 are shown. 

B) Vidal-Bralo’s epigenetic age prediction41 of samples simulated based on a universal 

maintenance rate of 99 % for all features (CpG sites) starting from biological data from a young 

human blood sample (GSM1007467) 78, correlates significantly with the simulated age, i.e. how 

often stochastic variation was applied to the ground state. N=73 independent samples, one 

per age step from 16 to 88 are shown. 

C) Lin’s epigenetic age prediction42 of samples simulated based on biologically estimated 

maintenance rates with the limits  𝐸𝑚 > 97 % and 𝐸𝑑  < 5 %     starting from biological data from 

a young human blood sample (GSM1007467) 78, correlates significantly with the simulated age, 

i.e. how often stochastic variation was applied to the ground state. N=73 independent 

samples, one per age step from 16 to 88 are shown. 

D) Lin’s epigenetic age prediction42 of samples simulated based on a universal maintenance rate 

of 99 % for all sites starting from biological data from a young human blood sample 

(GSM1007467) 78, correlates significantly with the simulated age, i.e. how often stochastic 

variation was applied to the ground state. N=73 independent samples, one per age step from 

16 to 88 are shown. 

E) Weidner’s epigenetic age prediction43 of samples simulated based on biologically estimated 

maintenance rates with the limits  𝐸𝑚 > 97 % and 𝐸𝑑  < 5 % starting from biological data from 

a young human blood sample (GSM1007467) 78, correlates significantly with the simulated age, 

i.e. how often stochastic variation was applied to the ground state. N=73 independent 

samples, one per age step from 16 to 88 are shown. 

F) Weidner’s epigenetic age prediction43 of samples simulated based on a universal maintenance 

rate of 99 % for all sites starting from biological data from a young human blood sample 

(GSM1007467) 78, correlates significantly with the simulated age, i.e. how often stochastic 

variation was applied to the ground state. N=73 independent samples, one per age step from 

16 to 88 are shown. 



G) GrimAge’s epigenetic age prediction44 of samples simulated based on biologically estimated 

maintenance rates with the limits  𝐸𝑚 > 97 % and 𝐸𝑑  < 5 % starting from biological data from 

a young human blood sample generated with the 450k Human Methylation Beadchip 

(GSM990528) 80, correlates significantly with the simulated age, i.e. how often stochastic 

variation was applied to the ground state. N=20 independent samples are shown.  

H) GrimAge’s epigenetic age prediction44 of samples simulated based on a universal maintenance 

rate of 99 % for all sites starting from biological data from a young human blood sample 

generated with the 450k Human Methylation Beadchip (GSM990528) 80, correlates 

significantly with the simulated age, i.e. how often stochastic variation was applied to the 

ground state. N=20 independent samples are shown. 

I) Horvath’s epigenetic age prediction26 of samples simulated with Gillespies’s algorithm with a 

universal maintenance efficiency rate of 90 % for all features (CpG sites) starting from 

biological data from a young human blood sample (GSM1007467) 78, correlates significantly 

with the simulated age, i.e. how often stochastic variation was applied to the ground state. 

Since the ground state was starting from a sample of a 16-year-old human, we set the starting 

point of the simulated age to 16. The time-steps in Gillespie’s algorithm are not fixed, in total 

N=15999 simulations were computed. 

Extended Data Figure 6 – Human stochastic data-based clock predictions correlate significantly with 

the chronological age 

A) The predictions of an Elastic net regression model based on simulated data, correlates 

significantly (Pearson correlation 0.87, p-value<1e-16, two-sided test) with the 

chronological age of the independent healthy biological  validation samples (GSE41037, 

n=392) 78 .  The simulated data is based on biologically estimated maintenance rates 

starting with Horvath’s epigenetic clock CpG sites from biological data from a young 

human blood sample. The x-axis shows the chronological age of the subjects from which 

blood DNA methylation data was processed. The y-axis shows the predicted simulated age, 

i.e. the prediction how often stochastic variation was added to the ground state and is 

therefore on a different scale and unit than the x-axis. 

B) The feature size is largely irrelevant for stochastic data-based models in Extended Data 

Figure 6A. Predictions of Elastic net regression models trained on more than 500 random 

CpG sites (features) are significantly correlated with the chronological age. The x-axis 

shows the number of randomly selected features, i.e. CpG sites, for the ground state, 

which were subsequently used to generate data based on stochastic variations (see 

methods for details). These simulated samples were used to train the Elastic net 

regression. The y-axis shows the Pearson correlation between the chronological age of the 



n=392 healthy samples in GSE41037 78 (excluding the sample from which the ground state 

was sampled, and the oldest sample from which maintenance efficiencies were estimated)   

and the prediction of the independent stochastic-data based model. N=5 independent 

experiments are shown. Boxplots are shown with the center line depicting the median, the 

box limits the bottom, respective top quartiles, and the whiskers the 1.5x interquartile 

range. 

C) Verification of Extended Data Figure 6B). Using the same approach as in Extended Data 

Figure 6A, but with randomly shuffled chronological ages shows no significant correlation, 

indicating that chronological age, and not a confounding variable is correlated with the 

predictions of the model based on simulated data. The x-axis shows the number of 

randomly selected features, i.e. CpG sites, for the ground state, which were subsequently 

used to generate data based on stochastic variations (see methods for details). These 

simulated samples were used to train the Elastic net regression. The y-axis shows the 

Pearson correlation between the  permuted chronological age of healthy samples in 

GSE41037 78 (excluding the sample from which the ground state was sampled, and the 

oldest sample from which maintenance efficiencies were estimated)  and the prediction 

of the stochastic-data based model. N=3 independent experiments are shown. Boxplots 

are shown with the center line depicting the median, the box limits the bottom, respective 

top quartiles, and the whiskers the 1.5x interquartile range. 

D) The same analysis as in Figure 5A, but the simulated stochastic data were additionally cell-

type corrected and then used to train the clock (Pearson correlation 0.81, p<1e-16, two-

sided test). 

E) The validation of the stochastic data-based clock in Figure 5A on 11,146 independent 

samples from 15 independent datasets (GSE84727, GSE87571, GSE80417, GSE40279, 

GSE87648, GSE42861, GSE50660, GSE106648, GSE179325, GSE210254, GSE210255, 

GSE72680, GSE147740, GSE55763, GSE117860) shows a highly significant correlation 

(Pearson correlation 0.57, p-value<1e-16). 

 

Extended Data Figure 7 – Human stochastic data-based clock predictions correlate significantly with 

the chronological age of independent validation data 

 

The validation of the stochastic data-based clock starting from a fetal sample (GSM4682890) 

on 11,146 independent samples from 15 independent datasets A) GSE106648, B) GSE84727, C) 

GSE87571, D) GSE80417, E) GSE40279, F) GSE87648, G) GSE179325, H) GSE50660, I) GSE42861, J) 



GSE210254, K) GSE210255, L) GSE72680, M) GSE147740, N) GSE55763, O) GSE117860. See Figure 5B 

for a combined plot. The Pearson correlation and its p-value, calculated with a two-sided test, are 

shown in the figure panels. 

Extended Data Figure 8 – Horvath’s epigenetic age prediction results for the same 15 datasets 

Horvath’s epigenetic age prediction on the same 11,146 samples from 15 independent 

datasets used in Extended Data Figure 7. A) GSE106648, B) GSE84727, C) GSE87571, D) GSE80417, E) 

GSE40279, F) GSE87648, G) GSE179325, H) GSE50660, I) GSE42861, J) GSE210254, K) GSE210255, L) 

GSE72680, M) GSE147740, N) GSE55763, O) GSE117860. Note that GSE40279 and GSE42861 were used 

during test and training in Horvath’s original publication. Similar to Extended Data Figure 7 GSE87648 

and GSE147740 do not show any correlation between the predicted and the chronological age. The 

Pearson correlation and its p-value, calculated with a two-sided test, are shown in the figure panels. 

 

Extended Data Figure 9 – Stochastic data-based clock predictions correlate significantly with the 

chronological and biological age of pan-mammalian data 

A) The same circle plot as in Figure 5C, but for Clock 2-4. The Pearson correlation of the 

relative age of all blood samples of a given species and their predicted age of the stochastic 

data-based clocks are shown as lines around the circle. Species are shown for which at 

least 5 blood samples were available. The species are clock-wise sorted by maximum 

lifespan, starting with Rattus norvegicus (3.8 years) in the center right, and ending with 

Homo sapiens (122.5 years). The colors within the circle show the taxonomic order of the 

corresponding species, as listed on the right side. Clock 2 (99% maintenance rate for all 

CpG sites used in Lu’s pan-mammalian relative age clock 15), Clock 3 (CpG site-specific 

empirically estimated maintenance rates from the oldest sample of Tursiops truncatus for 

all 37554 CpG sites), and Clock 4 (99% maintenance rate for all 37554 CpG sites) correlate 

on average highly significantly. 

B) Example comparison for Figure 5D. Predictions of Clock 1 for GHRKO (n=11 biologically 

independent samples) vs. WT (n=12 biologically independent samples)  liver samples show 

significantly lower values for GHRKO samples (two-sided adjusted p-value 2.15e-04, full 

statistics in Source Data 1). Boxplots are shown with the center line depicting the median, 

the box limits the bottom, respective top quartiles, and the whiskers the 1.5x interquartile 

range. 

C) Example comparison for Figure 5D. Predictions of Clock 1 for Tet3 (n=8 biologically 

independent samples)   vs. WT (n=44 biologically independent samples) cerebral cortex 



samples show significantly lower values for Tet3 samples (two-sided adjusted p-value 

2.16e-12, full statistics in Source Data 1). Boxplots are shown with the center line depicting 

the median, the box limits the bottom, respective top quartiles, and the whiskers the 1.5x 

interquartile range. 

D) Example comparison for Figure 5D. Predictions of Clock 1 for calorie restricted (CR) (n=59 

biologically independent samples) vs. normal fed (n=36 biologically independent samples)   

liver samples show significantly lower values for CR samples (two-sided adjusted p-value 

3.06e-11, full statistics in Source Data 1). Boxplots are shown with the center line depicting 

the median, the box limits the bottom, respective top quartiles, and the whiskers the 1.5x 

interquartile range. 

E) Example comparison for Figure 5D. Current-smoker vs. ex-smoker vs. never-smoker aging 

trajectories are color-coded. The lines show the linear regression model fit of Seaborn’s 

lmplot function 88, and the shadow around the lines the 95% confidence interval. Current-

smoker show a steeper aging trajectory (slope) compared to never- or ex-smoker. 

F) The same as Figure 5E, but for Clock 2. A multivariate regression of chronological age, the 

parabiosis treatment, and the interaction shows a significant age variable (p=6.11e-12), 

and interaction variable (p=1.13e-02). The regression model fit with a 95% confidence 

interval (shadowed area) is shown. 

G) The same as Figure 5E, but for Clock 3. A multivariate regression of chronological age, the 

parabiosis treatment, and the interaction shows a significant age variable (p=5.6e-09). The 

regression model fit with a 95% confidence interval (shadowed area) is shown. 

H) The same as Figure 5E, but for Clock4. A multivariate regression of chronological age, the 

parabiosis treatment, and the interaction shows a significant age variable (p=1.29e-06). 

The regression model fit with a 95% confidence interval (shadowed area) is shown. 

Full statistics can be found in Source Data 1. 

Extended Data Figure 10 – Stochastic data-based clock predictions for pan-mammalian data are robust 

to the choice of the ground state species 

A) Heatmap showing Pearson correlations between the predicted age of Clock 1 trained on 

the youngest blood sample from species of the corresponding taxonomic order in the 

columns (Artiodactyla: Tursiops truncatus, Carnivora: Odobenus rosmarus divergens, 

Lagomorpha: Oryctolagus cuniculus, Monotremata: Tachyglossus aculeatus, 

Perissodactyla: Equus caballus, Pilosa: Choloepus hoffmanni, Proboscidea: Loxodonta 

africana, Rodentia: Marmota flaviventris, Sirenia: Trichechus manatus, Suidae: Sus scrofa, 

Tubulidentata: Orycteropus afer) and the relative age for all species in the rows. The 



Artiodactyla column corresponds to Figure 5C. Values are shown for tissues and species 

for which at least 5 samples were available. 

B) The box-plots show the distribution of Pearson correlation values of Extended Data Figure 

10A. Clock 1 trained on samples starting from a Monotremata ground state with 

accumulating variation show on average a lower accuracy. For each of the 12 clocks (based 

on a different ground state as shown on the x-axis) the n=57 biologically independent 

species orders (as indicated in Extended Data Figure 10A) are shown as dots. Boxplots are 

shown with the center line depicting the median, the box limits the bottom, respective top 

quartiles, and the whiskers the 1.5x interquartile range. 

C) The same as Extended Data Figure 10B but for Clock 2 trained with 99.99% maintenance 

rate for all sites of Lu’s pan-mammalian relative age-clock. For each of the 12 clocks (based 

on a different ground state as shown on the x-axis) the n=57 biologically independent 

species orders (as indicated in Extended Data Figure 10A) are shown as dots. Boxplots are 

shown with the center line depicting the median, the box limits the bottom, respective top 

quartiles, and the whiskers the 1.5x interquartile range. 

D) The same as Extended Data Figure 10B but for Clock 3 trained on empirically estimated 

maintenance rates from the species specified in Extended Data Figure 10A for all 37443 

CpG sites. For each of the 12 clocks (based on a different ground state as shown on the x-

axis) the n=57 biologically independent species orders (as indicated in Extended Data 

Figure 10A) are shown as dots. Boxplots are shown with the center line depicting the 

median, the box limits the bottom, respective top quartiles, and the whiskers the 1.5x 

interquartile range. 

E) The same as Extended Data Figure 10B but for Clock 4 train with 99.99% maintenance rate 

for all 37443 CpG sites. For each of the 12 clocks (based on a different ground state as 

shown on the x-axis) the n=57 biologically independent species orders (as indicated in 

Extended Data Figure 10A) are shown as dots. Boxplots are shown with the center line 

depicting the median, the box limits the bottom, respective top quartiles, and the whiskers 

the 1.5x interquartile range. 
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 14 

Different types of neurons show distinct susceptibility to age-dependent functional decline and 15 

degeneration and are linked to different types of neurodegenerative disorders. The underlying 16 

reasons for different aging trajectories of distinct neuron types are poorly understood. Here, we 17 

employ aging clocks to assess whether distinct neurons differ in their biological age trajectory in 18 

C. elegans where the identity of each single neuron is known. We find that specifically ciliated 19 

sensory neurons with high neuropeptide expression show the most rapidly progressing biological 20 

age. The more rapidly aging neurons show a reduction of mitochondrial respiration and elevated 21 

protein translation gene expression. Reducing protein translation with cycloheximide effectively 22 

protected fast aging neurons. We show that the C. elegans neuronal aging pattern are highly 23 

correlated with human brain aging and contrasted by geroprotective interventions. We performed 24 

an in silico drug screen and identified known and novel neuroprotective small molecule compounds. 25 

We show that the natural occurring plant metabolite syringic acid and the piperazine derivative 26 

vanoxerine delay neuronal degeneration and propose that they could serve as neuroprotective 27 

interventions. We also identify neurotoxins that accelerate neurodegeneration indicating that this 28 

approach could reveal interventions as well as risk factors for neuronal aging. 29 

 30 

 31 

  32 



Introduction 33 

Age-related diseases are the leading causes of death in high-income countries with the highest 34 

prevalence of ischemic heart disease, Alzheimer’s Disease (AD) and other dementias, cancer of the 35 

respiratory system, intestinal cancer, kidney failure, and diabetes mellitus1. The distinctive types of 36 

chronic diseases of aging indicate that different organs can become the weak-point of an organism that 37 

will cause its death and it was reported that nearly 20% of the population show accelerated aging in 38 

single organs compared to the rest of their body2. In mice, molecular changes across multiple tissues 39 

occurring with aging have been described and unique molecular aging trajectories were identified3–5. 40 

Indeed, different organs age at different and individual paces2,6,7. How distinct cell types are differing 41 

in their susceptibility to age-related functional decline is largely unexplored.  42 

Aging is also the highest risk factor for the development of neurodegenerative diseases like AD or 43 

Parkinson’s Disease (PD). The distinct neurodegenerative diseases are triggered by the functional 44 

decline of distinct neuron types. For instance, in AD, the first tissues degenerating are the 45 

parahippocampal gyrus and the olfactory bulb, followed by the degeneration of the hippocampus, 46 

leading to the characteristic clinical dementia symptoms8–11. PD in contrast, affects mostly the 47 

dopaminergic innervation of the mid brain and, according to more recent studies, also the cerebellum,  48 

resulting in the perturbation of motility and the induction of tremor syndromes12,13. Why and how 49 

distinct brain regions are differently affected in neurodegenerative diseases and whether different 50 

neuron classes would show intrinsically different aging trajectories is poorly understood. In order to 51 

identify neuron-specific aging trajectories, we employed the nematode Caenorhabditis elegans as 52 

experimental model with a well characterized neuronal system of 302 neurons in total, and ≥ 128 53 

different neuron classes14. Importantly, the nematode system uniquely allows the assessment of the 54 

integrity of individual neurons during the normal aging process in vivo.   55 

Aging trajectories are being increasingly well determined by aging clocks, which are predictive models 56 

of molecular signatures that estimate an individual’s chronological, and recently also biological age. 57 

Aging clocks based on DNA methylation or transcriptome data could predict biological age differences, 58 

resulting from genetic age acceleration or deceleration as well as lifespan-affecting treatments2,15,16. 59 

Cellular heterogeneity and tissue composition might affect the prediction accuracy and interpretation 60 

of bulk aging clocks17, and recent single-cell transcriptomic clocks highlight cell-type specific aging 61 

pattern18. Still, aging clocks relying on bulk data provide a solid reference because they capture broader 62 

aging trajectories, summarizing molecular profiles from diverse cell types, and averaging-out outlier 63 

profiles, thus providing general insights into aging patterns and dynamics. While aging clocks have been 64 

used to identify biological aging differences across individuals, among distinct treatments, and recently 65 

also distinct organs, they have not been used to identify differences among distinct cell types. 66 



Here, we asked whether distinct aging trajectories could be identified among the different and well 67 

characterized neuron types in C. elegans. We show that individual neuron types in young adult animals 68 

show a distinct biological age prediction that we find to correspond to the pace of their degeneration 69 

in vivo. Neuron types with a higher predicted age show the earliest neurodegeneration during 70 

adulthood while predicted young neuron types remain intact. The transcriptomic differences between 71 

fast and slow aging neuron types suggest protein translation as a crucial driver of the biological aging 72 

process. Slowing down translation with the established translation inhibitor cycloheximide (CHX) 73 

reduced the neuronal degeneration of fast aging neurons. We determined that the transcriptional 74 

pattern of biological age difference among these neuronal cell types are correlated with transcriptional 75 

pattern of human and mouse brain aging and anti-correlated with anti-aging interventions supporting 76 

the general validity of our approach. Using a transcriptomic resource incorporating thousands of 77 

different compounds in human cell lines (CMAP)19, we identified pharmacological compounds that we 78 

show to prolong the integrity of neurons in vivo. We demonstrate that the natural occurring plant 79 

metabolite syringic acid and the piperazine derivative vanoxerine delay neuronal degeneration and 80 

propose that they could serve as neuroprotective interventions. In reverse, our approach can also 81 

identify neurotoxins that accelerate neurodegeneration thus serving as risk assessment. Our data 82 

suggest that the mechanisms underlying neuron-type specific aging rates allow the identification of 83 

therapeutic interventions that could slow neuronal aging and prevent neurodegeneration. 84 

 85 

Results 86 

To investigate whether different neuron classes age differently within an organism we applied our 87 

previously developed binarized transcriptomic biological age predictor (BitAge) 16 on pseudo-bulk data 88 

from the C. elegans Neuronal Gene Expression Map & Network (CeNGEN) dataset 20, which comprises 89 

128 distinct neuron classes from young adult worms. The BitAge clock is trained on the biological age 90 

of isogenic whole worm populations and highly accurately predicts not only the chronological age but 91 

especially the biological age. The 128 neuron age predictions range from ≈ 98 h in FLP neurons to 92 

≈ 177 h in ADL neurons (Figure 1 A) suggesting that different neurons might indeed show an almost 93 

two-fold biological age difference in young adult worms. We independently confirmed the different age 94 

predictions of the neuron types in the neuronal pseudo-bulk data from young adult worms in a recent 95 

cell atlas of C. elegans aging (Calico) 21 which contains 67 of the 128 neuron classes from the CeNGEN 96 

dataset. Also, the Calico dataset of day 1 adult worms exhibits the same predicted age distribution 97 

(Supplement Figure 1A), and the BitAge predictions on both datasets are significantly correlated to 98 

each other (Supplement Figure 1B, Pearson correlation 0.64, p-value = 5.92e-09). The youngest and 99 

oldest 10% of the 67 neuron classes (as predicted in the CeNGEN dataset) show a stronger correlation 100 



(Pearson correlation 0.75, p-value = 2e-03), while the middle group has a higher prediction variance. 101 

These results indicate that BitAge is able to predict age differences across different datasets robustly 102 

and that neurons indeed show biological age differences on the transcriptome level in young adult 103 

worms. 104 

Next, we sought to replicate the neuronal age predictions with a method that is not based on the 105 

assumption of directed transcriptome changes but stochastic variation accumulation instead. Recently, 106 

we showed that all current aging clocks might be driven by accumulating stochastic variation, and that 107 

for biological age predictions almost no biological data is required 22. Instead, simulating the aging 108 

process by adding stochastic variation to a biological ground state is sufficient to build a predictor that 109 

is enabling chronological, as well as biological age predictions. We have shown that for transcriptomic 110 

data of C. elegans one biological sample as the starting point and stochastic variation drawn from a 111 

normal distribution is sufficient for accurate age predictions. This stochastic clock is thereby trained on 112 

a different concept than BitAge, which is trained to find biological age pattern in biological samples. 113 

Also, the predictions with this stochastic clock are significantly correlated with the BitAge predictions 114 

on the CeNGEN dataset (Supplement Figure 1C, Pearson correlation 0.65, p-value = 5.5e-17). Similar 115 

to Supplement Figure 1B, the 10% youngest and oldest 10% of the 128 CeNGEN neurons show a 116 

stronger correlation (Pearson correlation 0.87, p-value = 1.15e-08), while the middle group has a higher 117 

prediction variance. These results corroborate the biological age prediction differences, especially in 118 

the youngest and oldest neuron groups. 119 

The aging transcriptome in species ranging from C. elegans to mice was recently shown to exhibit a 120 

gene length dependent transcriptional decline (GLTD), where long genes are downregulated with age, 121 

while short genes are upregulated 23–25. The reduced expression of long genes likely results from the 122 

heightened susceptibility of long genes to accrue transcription-blocking DNA damage. In line with this 123 

feature of the aging transcriptome, the marker genes of the 10 % oldest predicted neurons are 124 

significantly shorter than expected by chance (adjusted p-value = 0.013), while the marker genes of the 125 

10 % youngest neurons are significantly longer than expected (adjusted p-value = 0.037) (Figure 1B). 126 

These results indicate that even in chronologically young, but biologically old neurons a gene-length 127 

dependent transcriptome imbalance can be observed. 128 

Taken together, biological and stochastic aging clock measurements and GLTD all suggest specific 129 

neuron types to age more rapidly than others. 130 

 131 

Neuron specific age predictions are associated with differential degeneration  132 

To assess whether the predicted neuron-specific age differences are associated with different degrees 133 

of neuron-specific cellular degeneration, we next chose three young (I2, OLL, PHC) and three old (ASI, 134 



ASJ, ASK) predicted neurons (Figure 2A) and scored their degeneration over the chronological age 135 

(Figure 2B). Green fluorescent protein (GFP) was expressed under promoters specific for those neurons 136 

(ASI, ASJ, ASK, and OLL) or, alternatively, under promoters specifically expressed in a subset of neurons 137 

to make identification and segmentation of the selected neurons easier (I2 and PHC) (Figure 2A). 138 

Macroscopic aberrations on the neurites were counted and subsequently, neurons were classified as 139 

healthy, damaged, or severely damaged. In accordance with our predictions, the three young predicted 140 

neurons show less degeneration than the old predicted neurons at all analyzed timepoints (Figure 2C). 141 

On the first day of adulthood, that is closest to the age of the nematodes used for transcriptomics and 142 

subsequently for our prediction, I2, OLL, and PHC exhibit a minimal degeneration offset between 10 – 143 

20% of all nematodes analyzed. Upon aging, there is a slight, non-significant increases of the fraction 144 

of nematodes displaying degeneration (up to ≈ 35%) for the young predicted neurons. This fraction of 145 

degeneration is consistent with our previous observation of approximately 35% degeneration at day 7 146 

of adulthood in URY neurons 26, which we here predict to belong to the top 10 youngest neurons (Figure 147 

1A). 148 

The ASI, ASJ, and ASK neurons, which are predicted to be biologically older, exhibit >45% damaged 149 

neurons already on the first day of adulthood. Interestingly, there is a significant increase of 150 

neurodegeneration in ASI (p-value=0.027, Cohen's h=-1.02, i.e. a large effect) and ASK (p-value=0.049, 151 

Cohen’s h=-0.6, i.e. a medium effect) neurons upon aging which is in stark contrast to the young 152 

predicted neurons where no such elevated degeneration levels could be observed. These results 153 

suggest that the predicted biological age differences of the youngest, respective oldest neurons are 154 

biologically meaningful and can serve as a predictor of neuronal degeneration already at day 1 of 155 

adulthood. 156 

 157 

Environmental exposition could be a discriminator for premature aging in neurons 158 

Next, we aimed to understand potential commonalities among the youngest, as well as among the 159 

oldest neurons. For this, we adapted a hierarchical whole-animal connectome for C. elegans 27 with a 160 

rough anatomical correspondence on the x-axis and directional flow of neuronal signaling on the y-axis 161 

and color-coded it with the predicted biological age (Figure 3A). The predicted oldest neurons cluster 162 

in the top middle part of the network and consist mostly of sensory neurons, while the youngest 163 

neurons cluster further to the right. 6 out of the 10 oldest neurons are amphid neurons (ADL, ASJ, ASK, 164 

ASG, ADF, ASI), the primary chemosensory organ of C. elegans, which is mostly ciliated28. Indeed, 165 

comparing the 14 amphid neurons of the CeNGEN dataset with the remaining 114 neurons shows a 166 

significant increased biological age (Figure 3B, p-value=1.8e-07), which can be replicated in the Calico 167 

dataset (Supplement Figure 2A, p-value=4.2e-08), and with the stochastic data-based clock predictions 168 



(Supplement Figure 2B, p-value=7.2e-22). Amphid neurons, as part of the sensory system, express a 169 

variety of neuropeptides, neurotransmitters, receptors, and innexins to transmit the sensed cues. The 170 

number of expressed neuropeptides and receptors are significantly higher in amphid neurons 171 

(Supplement Figure 2C,D), while the number of neurotransmitter or innexins is not significantly 172 

changed (Supplement Figure 2E,F) 29. Moreover, the number of neuropeptides and the number of 173 

receptors per neuron are significantly positively correlated with the predicted biological age in the 174 

CeNGEN dataset (Supplement Figure 2G,H), the Calico dataset (Supplement Figure 2I,J), and the 175 

predictions with the stochastic data-based clock (Supplement Figure 2K,L). Depletion of unc-31 leads 176 

to reduced neuropeptide release and exhibits a mild, but significant reduction of degeneration in ASI 177 

neurons (Supplement Figure 2M, p-value=0.03, Cohen’s h=0.36). The number of innexins and number 178 

of total synapses per neuron do not show a significantly positive, and potentially rather a negative 179 

correlation with the predicted ages (Supplement Figure 2N-S). 180 

Amphid neurons are part of the ciliated neuron classes; comparing all 28 ciliated neurons with the 181 

remaining 100 neurons also shows a significant increased biological age (Figure 3C, p-value=0.0006), 182 

which can be replicated in the Calico dataset (Supplement Figure 2T, p-value=9e-05), and with the 183 

stochastic data-based clock predictions (Supplement Figure 2U, p-value=2.3e-14). The ciliated neurons 184 

can be further divided into five distinct classes dependent on where its cilia terminate28. Neurons with 185 

cilia exposed to the environment show the highest predicted biological age (Figure 3D, 1-way ANOVA: 186 

8.8e-06), while the other ciliated neuron classes are not significantly different from not-ciliated 187 

neurons. A similar effect can be observed in the Calico dataset (Supplement Figure 2V, 1-way ANOVA: 188 

1.8e-08), and the predictions with the stochastic data-based clock (Supplement Figure 2W, 1-way 189 

ANOVA: 6.6e-18). These results indicate that the oldest neurons are functionally related and mostly 190 

consist of ciliated sensory neurons; that contact to the environment; and the production, potentially 191 

the translational load, of neuropeptides are associated with more rapid biological age progression. 192 

 193 

Transcriptional Clustering identified reduced translation efficacy as potential driver of neuronal aging 194 

We next sought to identify the age-related transcriptional patterns and signatures underlying the 195 

biological age distinctions across the 128 neuron classes. To mitigate data variance and extract 196 

overarching trends, we initially categorized the neurons into five distinct groups based on their 197 

predicted age, followed by a fuzzy clustering analysis. We identified 4 transcriptional clusters (Figure 198 

4A, Supplement Figure 3A): Cluster 1 shows a general increase over the predicted age and is enriched 199 

for stress-induced pathways including DNA repair, response to DNA damage stimulus, transcription-200 

related pathways, and synthesis of ribosomal components, while oxidative phosphorylation is under-201 

represented (Figure 4B). Cluster 2 shows the highest expression in the youngest age group, generally 202 



declines over the predicted age time-course, and is enriched in mRNA processing, active translation, 203 

and oxidative phosphorylation. Cluster 3 is showing an increase until the last age group, in which it 204 

sharply declines, and is enriched in ribosomal genes and proteasome core complex genes. Cluster 4 is 205 

especially increased in the oldest age group and is enriched in cilia, immune response, and 206 

neuropeptide genes. Conversely, translation-related pathways and oxidative phosphorylation are 207 

under-represented. As shown above, the oldest age group is enriched in amphid neurons (ADL, ASJ, 208 

ASK, ASG, ADF, ASI, AWA, ASEL), which are mostly ciliated28 and exposed to the environment (Figure 209 

3). The strong enrichment of translation-related pathways (Cluster 1) in the highly expressed genes in 210 

the most rapidly aging neurons and the lower translation-related pathways (Cluster 4) in the most 211 

slowly aging neurons is consistent with recent studies on transcriptional changes with chronological 212 

age in the brain of different organisms30–32.  213 

 214 

Inhibition of translation alleviates neurodegeneration in fast aging neurons 215 

Based on the enrichment of active protein biosynthesis processes in the accelerated aging neurons, we 216 

aimed to test whether translational activity contributes to neurodegeneration. Hence, we treated 217 

nematodes for 24 h with the translation inhibitor cycloheximide (CHX) and scored neurite degeneration 218 

in ASK and ASJ neurons (from the group of old predicted neurons), as well as in I2 and OLL neurons (as 219 

representatives of the young predicted neurons). In the young predicted neurons, no effect of CHX or 220 

a DMSO-control treatment was observed (Figure 4C). In contrast, old predicted neurons exhibited 221 

significantly less neurite deterioration upon CHX-treatment, with a Cohen’s h of 1.4, i.e. large effect 222 

size, for the ASI, and a Cohen’s h of 0.79, i.e. medium to large effect size for the ASK neuron. These 223 

results indicate that translational activity in the old predicted neurons is responsible for the premature 224 

neurodegeneration that was observed. 225 

 226 

Comparison with mammalian brain aging 227 

In order to see whether the biological age-related transcriptional patterns of chronologically young 228 

adult C. elegans neurons (NeuronAge) might be conserved to higher organisms, we next compared the 229 

conserved KEGG pathway enrichments of NeuronAge with mouse and human datasets. We computed 230 

age-correlations of z-score normalized gene counts for all human brain regions in the GTEx dataset33, 231 

the Tabula Muris Senis (TMS) dataset5, and an additional mouse Hypothalamus aging cohort 232 

(GSE157025). Similarly, we calculated the enriched pathways for several “anti-aging” treatments like 233 

young serum injections34, the platelet factor PF435, sport in humans36, and krilloil in C. elegans37. An 234 

unbiased clustering analysis revealed that the aging-trajectories of C. elegans, mouse, and humans 235 

cluster together. We validated the clustering of NeuronAge by including the conserved pathway 236 



enrichments for NeuronAge on the Calico dataset. The trajectories of the anti-aging interventions 237 

formed a separate cluster that negatively correlates with the brain aging, irrespective of the organism 238 

(Figure 5). These results indicate that neuronal transcriptomic aging trajectories are conserved from 239 

nematodes to mice and humans and that known anti-aging treatments largely anti-correlate with the 240 

aging datasets supporting their geroprotective effectiveness.  241 

 242 

Identification of drugs preserving neuronal function 243 

As the NeuronAge trajectories cluster together with human neuronal aging trajectories, we sought to 244 

use transcriptome data to identify small molecule compounds that could delay neuronal aging. We 245 

used the transcriptome resource CMAP consisting of 470k transcriptomes of 19,841 different 246 

pharmacological compound treatments in human cell lines19. We focused on the 3,566 samples for the 247 

terminally differentiated neuronal cell line NEU, consisting of 2,467 different molecules (Figure 6A,B). 248 

Based on the NeuronAge prediction, this analysis identified both negatively correlated compounds 249 

(potentially neuro-protective / anti-aging active) and positively correlated compounds (potentially 250 

neuro-toxic / pro-aging active). Pathways enriched upon CHX treatment compared to control are 251 

significantly negatively correlated with pathways enriched in NeuronAge (Pearson Correlation -0.22), 252 

indicating that the beneficial effect of CHX that we saw is mirrored in the transcriptome. To identify 253 

neuro-protective small molecule compounds, we ranked the enriched pathways for all 170 molecules 254 

that remained after filtering and before using an absolute correlation threshold of 0.25 (see Source 255 

Data). The top anti-NeuronAge compound hits contain several (9 out of 16) for which a protective effect 256 

for neurons has been previously documented, thus validating our approach (Figure 6B). The glycogen 257 

synthase kinase 3 (GSK3) inhibitor AR-A014418 was shown to inhibit beta-amyloid induced 258 

neurodegeneration38; the selective serotonin reuptake inhibitor fluoxetine protects against 259 

neurotoxicity and neurodegeneration39–41; the PPAR-alpha activator gemfibrozil exhibits 260 

neuroprotective effects via upregulating pro-survival factors and suppressing inflammation42; the 261 

kinase inhibitor sorafenib protects against neurodegeneration in C. elegans 43; the selective aryl 262 

hydrocarbon receptor modulator 3,3'-diindolylmethane (DIM) is neuroprotective and promotes brain-263 

derived neurotrophic factor (BDNF) 44,45; the insulin-sensitizing agent rosiglitazone exhibits 264 

neuroprotective effects in the eye and the brain 46–48; the p38 MAPK inhibitor SB202190 was shown to 265 

reduce hippocampal apoptosis and rescue spatial learning as well as memory deficits in rats49; 266 

dibutyryl-cAMP-Na (dBcAMP) elevates cAMP levels and protects against neurodegeneration in stab 267 

wound or kainic acid injuries50–52; and the catecholamine-O-methyltransferase inhibitor tolcapone was 268 

shown to improve cognitive function53. 269 



 2 out of 15 “pro-NeuronAge” compounds were shown to be detrimental, while 2 are potentially 270 

protective. BAY-K8644 is known to be neurotoxic54; and amiodarone induces neuronal apoptosis55 and 271 

is known to induce adverse neurological effects56. Tacedinaline/CI-994 is a class I histone deacetylase 272 

inhibitor correlates positively with NeuronAge, was shown to promote functional recovery following 273 

spinal cord injury57, and to enhance synaptic and structural neuroplasticity58. Of note, this effect might 274 

be due to a hormetic response59–61. Likewise, resveratrol is potentially neuroprotective62 due to a 275 

hormetic response63. More than half of the top hits have, however, not been tested in neurons. It is 276 

conceivable that a short-term “pro-NeuronAge” effect might be hormetic and anti-aging after more 277 

time has passed, potentially explaining the effect of resveratrol and tacedinaline.  278 

In summary, 11 out of 31 compounds have neuroprotective evidence, out of which 9 are predicted to 279 

revert NeuronAge, i.e. “anti-NeuronAge”, with our in-silico approach, while 2 out of 31 compounds are 280 

known to be neurotoxic, both of which are predicted correctly to be “pro-aging”, giving weight to the 281 

potential that an in-silico screen has to identify novel compounds.  282 

 283 

Identification of neuro-protective molecule compounds 284 

Next, we aimed to determine whether compounds that we predicted to be anti-NeuronAge, i.e. 285 

neuroprotective, could indeed prevent the age-related functional decline of aging neurons. We chose 286 

two compounds, that were among the most strongly anti-correlated with NeuronAge patterns, BRD-287 

K13195996 and vanoxerine (Figure 6B). The chemical identity of the phenolic compound BRD-288 

K13195996 is 3-Hydroxy-4,5-dimethoxybenzoic acid, which is related to 4-Hydroxy-3,5-289 

dimethoxybenzoic acid that is known as syringic acid. Syringic acid is a naturally occurring secondary 290 

compound derived from edible plants and fruits, among those olives, walnuts, and grapes – and 291 

furthermore red wine and honey 64. A correlation between the anti-oxidative properties of syringic acid 292 

and reduced neurotoxicity following bisphenol A insult has recently been shown65, yet no clear 293 

mechanism is reported so far66. Given the dietary availability of syringic acid, we chose to test its effect 294 

on rapidly aging neurons in C. elegans. Vanoxerine is a potent dopamine uptake inhibitor and has been 295 

developed as cocaine-abuse medication 67, and, moreover, vanoxerine was observed to impede 296 

colorectal cancer stem cell functions by repressing G9a expression 68. Vanoxerine was so far not 297 

reported to exhibit neuroprotection or anti-aging effects. 298 

We applied either compounds to nematodes for a 24 h short-term treatment. We assessed neurite 299 

degeneration in ASJ and ASK neurons (exemplarily for the old predicted neurons) and observed a 300 

significantly reduced deterioration for both compounds, with Cohen’s h ranging from 0.8 to 0.97, i.e. 301 

large effect sizes (Figure 6C). Applying either of the compounds to nematodes showed no significant 302 

adverse effects an OLL neurons (Supplement Figure 4A). This indicates that both compounds interfere 303 



with the physiological degeneration process of the old predicted neurons and are able to restore a 304 

healthy neuron state.  305 

Next, we assessed whether our NeuronAge compound predictions could also identify neurotoxic 306 

compounds and hence serve for compound risk assessment. We tested the 5-HT1A serotonin receptor 307 

antagonist WAY-100635, for which so far no adverse effects on neuron health have been reported, in 308 

nematode I2 and OLL neurons (as representatives of healthy young neurons). We observed that WAY-309 

100635 induced significant neurite deterioration in I2 (p-value=0.02, Cohen’s h=-0.76) but not in OLL 310 

(p-value=0.08, Cohen’s h=-0.34) neurons (Figure 6C). This indicates that WAY-100635 does not have an 311 

indiscriminate effect on all neurons but is more selective, potentially depending on surface receptor 312 

expression, presentation, or specific neuronal metabolism patterns.  313 

Taken together, we could validate the anti-NeuronAge compound prediction method by identifying 314 

known neuroprotectors as well as discovering previously unknown neuroprotective molecules. In 315 

reverse, a positively correlated NeuronAge prediction could identify neurotoxic compound properties. 316 

 317 

Discussion 318 

Why distinct neuron types exhibit different susceptibility to age-dependent degeneration and the 319 

associated neurodegenerative diseases has remained largely unclear. While differences in inter-320 

individual aging are commonly known, differential aging of organs within the same organism, and aging 321 

variance between cells of the same tissue have recently been observed 2–5. Here, we aimed to 322 

understand the aging pace of distinct neuron types to elucidate whether and why specific neurons age 323 

faster than others. We employed an aging clock approach to predict the age of distinct neuron types. 324 

Aging clocks are increasingly useful for measuring biological age and hold the promise to assessing an 325 

individual’s biological age. Employing the ‘BiT age’ and the ‘stochastic aging clock’ on the single neuron 326 

transcriptomics dataset (CeNGEN) we predicted the biological age of the 128 distinct neuron types in 327 

C. elegans. We observed that the youngest predicted neurons' biological ages were roughly the 328 

chronologic age of the nematodes, while the oldest predicted neurons’ biological ages were about 1.5-329 

fold as old. The age dependent decline of long gene expression confirmed the distinct biological age of 330 

certain cell types at the same chronological age of the animal. The nematode model provides the 331 

distinct advantage that the integrity of single neurons could be followed during aging in live animals. 332 

We indeed observed that the age-dependent degeneration of specific neurons corresponds to the 333 

prediction of the aging clocks evidencing their reliability in identifying neuron-type specific aging 334 

trajectories.  335 

In the nematode the identity and connectivity of each individual neuron is known, thus allowing to 336 

address how their distinct biological age is linked to their biological function. We found that particularly 337 



ciliated sensory neurons show an accelerated age trajectory. This might be linked to their exposure to 338 

the environment but could also indicate their functional requirement during larval development where 339 

the sensing of environmental condition, for instance for deciding to enter dauer stage amid food 340 

scarcity or overcrowding, is pivotal for survival. Similar to the exposed ciliated neurons in the 341 

nematode, olfactory neurons in the nose of higher organisms are constantly exposed to the 342 

environment. Indeed, in humans olfactory capacity is known to decline with age and olfactory 343 

dysfunction is an early sign of neurodegenerative diseases69. Our results shed light on the possibility 344 

that this exposure to the environment might lead to a faster pace of aging and subsequent 345 

neurodegeneration. 346 

We show that the neuron-type specific biological age differences can be used to determine 347 

neuroprotective transcriptome compositions. We identify distinct transcriptional patterns over the 348 

neuronal biological aging course and predicted that reduction of the translational load might reduce 349 

the pace of neuronal aging. Age-related changes in the translational machinery and the translation rate 350 

can be observed across various species and downregulation of translation has been shown to extend 351 

lifespan and healthspan parameters as evidenced by dietary restriction studies, downregulation of 352 

mTOR, or CHX treatment 70. Recently, it has been shown that stochiometric changes of the ribosome 353 

are prominent in the aging brain of Nothobranchius furzeri, leading to enrichment in protein aggregates 354 

in old brains 30, which is in line with the over-enrichment of ribosomal proteins in the insolublome of 355 

old C. elegans 71. Consistent with prediction and literature, we observed that transient inhibition of 356 

translation by CHX treatment is sufficient to reduce degeneration of the fast-aging neuronal cell types.  357 

As neuron function is highly conserved from nematode to human, we tested whether age-dependent 358 

transcriptome changes might be similar. Indeed, we found that the transcriptional patterns of 359 

nematode neuronal biological age differences are significantly correlated with mouse and human brain 360 

aging trajectories, and anti-correlated with known anti-aging interventions such as young plasma 361 

treatment or sport. This conservation shows the potential of identifying conserved mechanisms that 362 

underlie the aging trajectories and might determine the susceptibility of specific neuron types to 363 

undergo degeneration and potentially contribute to specific neurodegenerative diseases.   364 

We used the conservation of transcriptome age-trajectories to in silico screen for novel compounds 365 

using the human CMAP dataset 19. Such approaches are highly valuable as recent studies employed a 366 

transcriptome-based approach for drug screening using the CMAP resource to successfully identify 367 

geroprotective compounds that either induce a ‘youthful’ state as predicted through an age-368 

classification approach leveraging the GTEx 33 transcriptomic dataset 72, by mimicking longevity FOXO3 369 

overexpression 73, or a “youthful” matreotype 74. Here, we extended this approach further and used 370 

transcriptomic data from C. elegans to compare to the CMAP resource to identify neuro-protective 371 



small molecule compounds. This approach successfully picked up nine known geroprotective 372 

interventions and also identified molecule compounds whose effect on neuroprotection was previously 373 

unexplored. By testing the top scoring compounds, we indeed found that they extend the integrity of 374 

fast aging neurons indicating a biological age-deceleration. Conversely, the pro-aging prediction 375 

revealed neurotoxic effects of compounds and could thus be highly valuable in risk assessment.  376 

As proof of concept, we determined that syringic acid and vanoxerine effectively preserved the integrity 377 

of fast aging neurons. Syringic acid indeed has been suggested to exert neuroprotective effects through 378 

its antioxidant properties66. Both vanoxerine and WAY-100635 have been developed to treat cocaine 379 

addiction but our data indicate starkly contrasting effects on neuronal aging. The high-affinity 380 

dopamine reuptake inhibitor vanoxerine was initially developed as antidepressant and has entered 381 

clinical trials for treatment of cocaine addiction75 and, based on its property as ion channel blocker, for 382 

atrial fibrillation or atrial flutter76. The 5-HT1A serotonin receptor antagonist WAY-100635 has been 383 

tested preclinically for cocaine addiction77 and treatment of depressive disorders78. We propose that 384 

NeuronAging clocks and the aging-associated gene expression responses we determined here could be 385 

useful in risk assessment given the strong similarities we show between the C. elegans neuronal aging 386 

trajectories and human brain aging   387 

Taken together, we here define the biological basis for the distinct susceptibility of neurons to undergo 388 

age-dependent degeneration. We establish the utility of employing aging clocks to identify neuron-389 

type specific aging rates and based on their transcriptome profiles reveal conserved aging pattern also 390 

present in human brain aging. We show that this approach is suitable for identifying neuroprotective 391 

molecules and propose that they could be useful in delaying neuronal aging and protect from age-392 

associated degeneration. 393 

 394 

  395 



Methods 396 

C. elegans culture.  397 

Nematodes were cultured on nematode growth medium (NGM) agar plates at 20 °C under standard 398 

conditions unless stated otherwise. All age statements given in in this publication consider the first 399 

day of adulthood as day 1. A complete strain list can be found in the supplement.  400 

 401 

Neurite imaging 402 

Nematodes were synchronized by L4 picking and grown on standard NGM for one day, four days, or 403 

seven days. For imaging nematodes were placed in a drop of 250 mM NaN3 on a 2% agarose pad. 404 

Imaging was performed on a Zeiss Imager.M2 at 400fold magnification. Z-Stacks of nematode heads / 405 

tails were acquired employing 2 µm step width. Acquisition time was set between 300 ms to 3 s per 406 

plane to achieve a good signal to noise ratio and was strongly depending on the imaged expression 407 

strain. 408 

 409 

Scoring of neurite degeneration 410 

Recorded Z-stack images of neurons were analyzed by hand, counting blebs, large spherical 411 

outgrowths, branching, breaks, and necrosis on the dendrites of the analyzed neurons. Images were 412 

classified according to the degree of aberration: necrotic neurons, broken or truncated neurons, 413 

neurons with ≥ 10 blebs, or ≥ 3 outgrowths were scored as ‘severely damaged’; neurons with 5 – 9 414 

blebs, or 2 outgrowths were classified as ‘mildly damaged’; and neurons with less < 5 blebs or < 2 415 

outgrowths were classified as ‘healthy’. See Figure 2B for exemplary images. 416 

 417 

Compound treatment 418 

Standard NGM plates seeded with OP50 were coated with compounds by dropwise adding compounds, 419 

dissolved in 300 – 1000 µl medium, directly to the plate’s surface. Plates were dried for at least 1 h 420 

before transferring L4 stage nematodes onto them. Nematodes were incubated with the compounds 421 

for 24 h and then used for neurite imaging. Final concentration of compounds was: Cycloheximide – 422 

2 mM; Syringic acid – 2.5 mM; Vanoxerine – 10 nM; WAY-100635 – 25 nM. Control nematodes were 423 

incubated on appropriate solvent control coated plates (either water or ≤ 5 ‰ DMSO). 424 

 425 

BitAge prediction 426 



The BitAge clock16 was used as described previously. Briefly, each sample was binarized, i.e. genes 427 

higher than the median expression value within each sample after removing genes with zero counts, 428 

were set to 1, and the remaining genes to 0. The BitAge coefficients for the 576 clock genes are added 429 

up for all genes in a given sample that is 1 after binarization. After adding the BitAge intercept the 430 

results show the predicted biological age. 431 

 432 

Stochastic-data based clock 433 

The stochastic-data based clock was used as described previously22. Briefly, each sample was log10-434 

transformed after the addition of one pseudo-count. Subsequently, the samples were min-max 435 

normalized to bring each sample within the range [0,1], and then binarized as described above. The 436 

normalized counts were then added up for all 1010 stochastic-data based clock genes (see Source 437 

Data). Note that the stochastic clock might result in slightly different genes every-time a clock is trained. 438 

 439 

Gene length analysis 440 

First, we downloaded the differential expressed genes for each neuron and all other cells in the 441 

CeNGEN20 dataset (https://cengen.shinyapps.io/CengenApp/) with the statistical test “Wilcoxon on 442 

single cells”. This gives a list of genes with log fold changes, and percentage expression in the specific 443 

neuron and all other cells. We further filtered this list of significant genes by requiring that the gene is 444 

expressed in at least 90% of cells of the specific neuron and at most 10% in all other cell types. 39 445 

neurons had no genes with these requirements, i.e. 89 neurons were used for further analysis. Next, 446 

we used the marker genes of the 10% oldest (31 genes), respective 10% youngest neurons (33 genes) 447 

and calculated the density distribution of the log10-normalized gene lengths. To calculate a two-sided 448 

permutation test, we calculated the median log10 gene length of the genes and compared it to the 449 

100.000 permutation median. The permutation for the old marker genes used 31 genes, the 450 

permutation for the young marker genes 33 genes out of all marker genes of the 89 neurons (303 451 

genes). 452 

 453 

Neuronal connectome mapping 454 

We downloaded and adapted the Cytoscape file from Cook et al.27 by adding head neurons, deleting 455 

non-neuronal cell-types, and color-coding neurons by their predicted Age with BitAge on the CeNGEN 456 

dataset. 457 



Median total number of synapses calculation 458 

The NeuroType.xlsx file was downloaded from https://www.wormatlas.org/neuronalwiring.html. For 459 

each of the 128 neuron classes we summed up the median total number of synapses in the head, tail, 460 

and mid-body. 461 

 462 

Fuzzy clustering 463 

To cluster general trajectories over the predicted age, we first summarized the gene expression into 5 464 

bins: 1) [97-110], 2) (110,120], 3) (120,130], 4) (130,140], 5) (140, 180]. Within each bin, we computed 465 

the median expression level for each gene. To make the genes comparable and bring them onto the 466 

same scale we calculated the z-score across the 5 bins for each of the 9950 genes with non-zero 467 

standard deviation. Next, we used fuzzy clustering with Mfuzz v2.58.0 79 to identify trajectories across 468 

the predicted age bins. The elbow method was computed with the Dmin function of Mfuzz and 469 

indicated an optimal number of 4 clusters. The genes belonging to each cluster were subsequently used 470 

for a pathway enrichment analysis with clusterprofiler v4.9.2.002 80, with maxGSSize=500 and the list 471 

of all 9950 genes as the background gene list.  472 

 473 

Heatmap 474 

We processed several public datasets for the heatmap: 475 

1. TPM normalized gene expression values for human brain tissues from the GTEx v8 data81 476 

release (i.e. Amygdala, Anterior Cingulate Cortex, Caudate Basal Ganglia, Cerebellar 477 

Hemisphere, Cerebellum, Cortex, Frontal Cortex, Hippocampus, Hypothalamus, Nuclear 478 

Accumbens Basal, Putamen Basal Ganglia, Substantia Nigra) were correlated with the 479 

chronological age (the midpoints of the publicly available age bins). 480 

2. The mouse aging time-course for Hypothalamus data from GSE157025 was downloaded and 481 

a gene-wise correlation with the chronological age calculated. 482 

3. Whole brain data from the Tabula Muris Senis (GSE132040) was downloaded and edgeR 483 

v3.40.2 82 to calculate normalized expression values. The normalized expression values were 484 

correlated to the chronological age. 485 

4. Differentially expressed genes for mouse Hippocampus data treated with the platelet factor 486 

PF4 or saline control were downloaded from GSE173254. We multiplied the logFCs by -1 to 487 

always compare treatment vs. control, instead of control vs. treatment. 488 

https://www.wormatlas.org/neuronalwiring.html


5. Differentially expressed genes for mouse Hippocampus data treated with young serum or 489 

sham were downloaded from GSE234667. 490 

6. C. elegans whole worm data treated with Krill oil from GSE207152.  We used edgeR v3.40.2 82 491 

to calculate normalized expression values and calculated z-scores for each gene over all 492 

samples. The z-score normalized expression values were used for a regression model: 493 

𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =  𝛽0 + 𝛽1 ∗ 𝐴𝑔𝑒 + 𝛽2 ∗ 𝐾𝑟𝑖𝑙𝑙𝑜𝑖𝑙 + 𝛽3 ∗ (𝐴𝑔𝑒 ∗ 𝐾𝑟𝑖𝑙𝑙𝑜𝑖𝑙), where 𝛽0 is the 494 

intercept term, 𝛽1 is the coefficient for the Age variable, 𝛽2 is the coefficient for the Krilloil-495 

treatment variable, and 𝛽3 is the coefficient for the interaction between Age and Krilloil, i.e. 496 

the difference in the slope over age.  497 

7. Differential expressed genes upon physical activity were downloaded from the supplementary 498 

data from PMID: 30927700.  499 

The Pearson correlation values of all genes of 1.) - 3.), the logFC of all genes for 4.)-5.), the 𝛽3 500 

coefficients for 6.)  were used to calculate enriched pathways analysis with fgseaMultilevel from the 501 

fgsea R package83 with nPermSimple=1000 for all conserved KEGG pathways between C. elegans, 502 

mouse, and humans. For 7.) the “anti-aging/AD” genes were split into genes that are up-, respective 503 

down-regulated upon exercise. Both gene sets were used for an enrichment analysis with enricher from 504 

enrichplot v1.18.0 with maxGSSize=500, minGSSize=5, and the all genes quantified in the 505 

supplementary data from PMID: 30927700 as the background gene list. For both enrichment analyses 506 

the enrichment fold change, i.e. number of observed genes per pathway divided by the number of 507 

expected genes per pathway, was calculated. Finally, the fold changes were combined, i.e. pathways 508 

with a bigger fold change enrichment in the downregulated genes were multiplied by -1. 509 

The clustering was done on the normalized enrichment scores for 1.)-6.) and the fold change 510 

enrichment score for 7.) with the Ward method and a correlation distance matrix. 511 

 512 

CMAP 513 

The CMAP resource uses the L1000 array, which measures 978 landmark transcripts, which can be used 514 

to infer most of the remaining transcriptome with high accuracy19. Here we used all available L1000 515 

datasets for a human differentiated neuronal cell line. Despite only measuring a subset of landmark 516 

genes and inferring the rest, the CMAP resource has shown to be highly valuable for drug screens.  We 517 

downloaded the aggregated level 5 L1000 Connectivity Map19 data from GSE92742 and did a pathway 518 

enrichment analysis with fgseaMultilevel from the fgsea R package83 with nPermSimple=1000 and the 519 

conserved KEGG pathways between human and C. elegans for each of the samples in the level 5 520 

dataset. To compare it to the NeuronAge trajectory, we first calculated the z-score of each gene that 521 



has at least some gene counts across the 128 neurons of the CeNGEN dataset. We correlated these z-522 

score normalized genes with the biological age prediction from BitAge. The resulting Pearson 523 

correlation values for all genes were used for a pathway enrichment analysis with fgseaMultilevel and 524 

the conserved KEGG pathways between human and C. elegans. To identify whether any compound 525 

might revert the NeuronAge gene expression trajectory on the pathway level, we correlated the 526 

normalized enrichment scores (NES) of the NeuronAge KEGG pathway enrichment analysis with all NES 527 

that we calculated from the CMAP dataset. Next, we filtered for only compounds that were tested in 528 

the neuronal cell line (“NEU”). Compounds had to be tested at least twice, with all measurements 529 

resulting in correlations in the same direction. Additionally, we filtered for compounds that were 530 

measured at 24h and 6h and took only those compounds that showed a stronger correlation into the 531 

same direction at the 24h timepoint compared to the 6h timepoint. Lastly, we filtered out those 532 

compounds that had no information available at PubCHEM and used a correlation threshold of 0.25, 533 

respective -0.25. 534 

 535 

Statistics 536 

All data are presented as mean ± SD. Number of cohorts (ℕ), individuals (n), and technical replicates 537 

(N) is stated in the figures and their respective figure legends. The applied statistical tests are 538 

mentioned in the figure legends and the respective p-values are directly reported in the diagrams. All 539 

statistics were done two-sided if not stated otherwise. Independent t-tests were calculated with 540 

Python’s Scipy 84 v1.5.1 stats.ttest_ind function. Kruskall-Wallis tests were calculated with Python’s 541 

Scipy v1.5.1 stats.kruskall() function. One-way ANOVA’s were calculated with Python’s pingouin 542 

85v0.3.6 anova function and the parameter ss_type=2. Cohen’s h 86 as a measure of effect size was 543 

calculated by hand with Python’s numpy 87 v1.18.5. Plots were generated with Python’s seaborn 88 544 

v.0.11.0, matplotlib 89 v.3.3.0, or GraphPad Prism 9.  Boxplots are shown with the center line depicting 545 

the median, the box limits the bottom, respective top quartiles, and the whiskers the 1.5x interquartile 546 

range. Scatterplots showing a linear regression model fit are shown with a 95% confidence interval. 547 

 548 

Data availability 549 

The unfiltered TPM counts and the Cell Marker list was downloaded from the CENGEN dataset were 550 

assessed at https://cengen.shinyapps.io/CengenApp/ . 551 

The Calico dataset was downloaded from https://c.elegans.aging.atlas.research.calicolabs.com/data . 552 

The neuron-specific information was assessed at https://www.wormatlas.org/ . 553 

https://cengen.shinyapps.io/CengenApp/
https://c.elegans.aging.atlas.research.calicolabs.com/data
https://www.wormatlas.org/


The gene length information was downloaded from https://wormbase.org/ . 554 

The CMAP data were downloaded from GSE92742. 555 

Data for the heatmap were downloaded either from the GEO database: GSE157025, GSE132040, 556 

GSE173254, GSE234667, GSE207152. From the Supplementary data from PMID: 30927700. Or the 557 

GTEx v8 database: https://gtexportal.org/home/downloads/adult-gtex/bulk_tissue_expression    558 

 559 
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Figure Legends 583 

Figure 1 584 

A) Distribution of transcriptomic age predictions. The 128 neurons of the CeNGEN dataset were 585 

predicted with BitAge and sorted by their predicted age. The x-axis shows the rank of the 586 

prediction is ascending order, the y-axis the predicted age. The ten youngest neurons and their 587 

respective age predictions are outlined in blue; the ten oldest neurons and their respective age 588 

predictions are displayed in orange. 589 

B) The marker genes of neurons in the CeNGEN dataset show a gene length dependent 590 

transcriptional decline. The log10 gene length (x-axis) of the marker genes of the 10% youngest 591 

neurons (blue), and of the 10% oldest neurons (orange) are compared to random permutation 592 

of all marker genes with the same number of genes. The two-sided permutation test compared 593 

the median log10 gene length. The y-axis shows the probability density of the values on the x-594 

axis. 595 

 596 

Figure 2 – Predicted neuron age and degeneration onset and progression correlate  597 

A) Representative fluorescence images of the analysed neurons grouped by prediction age – I2, 598 

OLL, and PHC in blue; ASI, ASJ, and ASK in orange. Small schematic images taken from 599 

WormAtlas. 600 

B) Representative fluorescence images (Z-stack maximum projections) of nematodes expressing 601 

neuronal volume markers, classified according to the severity of observed degeneration. 602 

Orange arrows indicate blebs, red arrow heads indicate spheric outgrowths. Nematode heads 603 

are outlined by a dashed line. Scale bar represents 50 µm. 604 

C) Fraction-plots displaying the fraction of nematodes expressing neuronal volume markers in 605 

different neurons categorized as ‘healthy’, ‘mildly damaged’, and ‘severely damaged’. Three to 606 

four cohorts were analysed, comprised of 10 – 30 individual nematodes, for every timepoint 607 

indicated. Kruskal-Wallis-test was employed to test for significant differences upon aging within 608 

the neuron classes. 609 

 610 

Figure 3 – Environment-exposed ciliated neurons are old predicted 611 

A) We adapted a previously published connectome of C. elegans27. Only neuronal cells are shown 612 

in a largely directional information flow on the vertical axis, with sensory neurons (triangles) 613 

on top, interneurons (hexagons) in the middle, and motor neurons (circles) on the bottom27. 614 

The horizontal axis roughly shows the anatomical orientation with the head region on the left, 615 



and posterior neurons on the right. Chemical synapses and gap junctions are indicated as fade 616 

grey lines. The size of the neurons indicates the number of cells within this neuron class. The 617 

predicted age (BitAge based on the CeNGEN dataset) is color coded from blue (young) to 618 

orange (old). The oldest neurons cluster in the middle top part and are largely sensory neurons.  619 

B) Dot/Box-plot showing BitAge predictions grouped by Amphid neurons / non-amphid neurons. 620 

Two-sided t-test was performed to test for significant age differences. 621 

C) Dot/Box-plot showing BitAge predictions grouped by ciliated neurons / non-ciliated neurons. 622 

Two-sided t-test was performed to test for significant age differences. 623 

D) Dot/Box-plot showing ciliated neurons’ age predictions divided into 5 classes depending on 624 

where its cilia terminate. ANOVA + Tukey post hoc test was performed to test for significant 625 

differences. 626 

 627 

Figure 4 – Fuzzy clustering reveals translation dynamics as potential driver of neuron aging 628 

A) Fuzzy clustering on z-score normalized genes over the predicted aging course of the 128 629 

CeNGEN neurons identified four clusters. The 128 neurons were merged into five age-630 

prediction bins (1) 97-110h, (2) 110-120h, (3) 120-130h, (4) 130-140h, (5)140-180h.  631 

B) Pathway analysis of the four clusters shows age-related pathways. The log fold change (logFC) 632 

of the pathway enrichment is color-coded (from blue = under-represented to red = over-633 

represented). Circle size displays the -log10 false discovery rate (-log10FDR), for ease of 634 

interpretation the circle size legend displays the values as the FDR. The number of genes (n) in 635 

each cluster is annotated. 636 

C) Fraction-plots displaying the fraction of nematodes expressing neuronal volume markers in 637 

different neurons categorized as ‘healthy’, ‘mildly damaged’, and ‘severely damaged’ that were 638 

treated with 2 mM cycloheximid (CHX) for 24 h. Three to four cohorts were analysed, consisting 639 

of 10 – 30 individual nematodes. Mann-Whitney-test was employed to test for significant 640 

differences. 641 

 642 

Figure 5 - Neuronal aging trajectories are conserved across C. elegans, mice, and humans 643 

A) The normalized enrichment scores of the conserved KEGG pathways for the indicated aging 644 

trajectories or treatment-effects were used for an unbiased clustering analysis. The matrix is 645 

color-coded according to the Pearson correlation between the indicated comparisons, non-646 

significant correlations are colored white. The colors on the side indicate the species and 647 

whether it was an aging trajectory or an anti-aging treatment. 648 

 649 



Figure 6 – Compound prediction algorithm identifying neuro-protective / neurotoxic compounds 650 

A) Flowchart explaining the in silico drug screening. We computed and correlated the conserved 651 

KEGG pathway enrichments for NeuronAge and all compounds from the CMAP dataset that 652 

are measured on the neuronal cell line NEU. To obtain a manageable list of compounds we 653 

filtered for compounds that were measured at least twice, show consistent correlations in all 654 

measurements, have a stronger correlation at the 24h timepoint compared to the 6h 655 

timepoint, have information in PubCHEM, and at least an absolute correlation value of 0.25. 656 

B) The top anti-NeuronAge and pro-NeuronAge compounds after the filtering steps ranked 657 

according to their Pearson corrlelation. Previously published neuro-protective (blue) or 658 

neurotoxic (orange) compounds are indicated. Three, in regards to their effect on neuronal 659 

health, uncharacterized compounds are highlighted by black arrows and their structural 660 

formula is given. 661 

C) Fraction-plots displaying the fraction of nematodes expressing neuronal volume markers in 662 

different neurons categorized as ‘healthy’, ‘mildly damaged’, and ‘severely damaged’ that were 663 

treated with 2.5 mM syringic acid (SA), 10 nM vanoxerine (VX), or 25 nM WAY-100635 (WAY) 664 

for 24 h. Three to four cohorts were analysed, consisting of 10 – 25 individual nematodes. 665 

Mann-Whitney-test was employed to test for significant differences. 666 

 667 

 668 
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Supplementary Figure Legends 1 

Supplementary Figure 1 2 

A) Distribution of transcriptomic age predictions. The 67 neurons of the Calico day 1 dataset were 3 

predicted with BitAge and sorted by their predicted age. The x-axis shows the rank of the 4 

prediction is ascending order, the y-axis the predicted age. 5 

B) BitAge predictions on the CeNGEN and the Calico day 1 dataset are highly correlated (Pearson 6 

correlation 0.64, p-value 5.8e-09). The x-axis shows the BitAge predictions of the CeNGEN 7 

dataset, the y-axis BitAge predictions of the Calico day 1 dataset. 67 neurons are plotted. The 8 

regression model fit with a 95% confidence interval (shadowed area) is shown. 9 

C) Predictions with BitAge and a stochastic data-based clock on the CeNGEN dataset are highly 10 

correlated (Pearson correlation 0.65, p-value 5.5e-17). The x-axis shows the BitAge predictions 11 

of the CeNGEN dataset, the y-axis stochastic data-based clock predictions of the CeNGEN 12 

dataset. All 128 neurons are plotted. The regression model fit with a 95% confidence interval 13 

(shadowed area) is shown. 14 

Supplementary Figure 2 15 

A) Amphid neurons are predicted to be significantly older than non-amphid neurons in the Calico 16 

day 1 dataset. Two-sided t-test p-value: 4.2e-08. 17 

B) Amphid neurons are predicted to be significantly older than non-amphid neurons in the 18 

CeNGEN dataset with a stochastic data-based clock. Two-sided t-test p-value: 7.2e-22. 19 

C) Amphid neurons express significantly more neuropeptides than non-amphid neurons. Two-20 

sided t-test p-value: 5.95e-12. 21 

D) Amphid neurons express significantly more receptor genes than non-amphid neurons. Two-22 

sided t-test p-value:8.45e-09 23 

E) The number of neurotransmitters is not significantly different in amphid and non-amphid 24 

neurons. Two-sided t-test p-value: 0.94 25 

F) The number of innexins is not significantly different in amphid and non-amphid neurons. Two-26 

sided t-test p-value: 0.053 27 

G) The number of expressed neuropeptides (y-axis) is significantly correlated (Pearson correlation 28 

0.26, p-value 3e-03) with the predicted age by BitAge in the CeNGEN dataset. The regression 29 

model fit with a 95% confidence interval (shadowed area) is shown. 30 

H) The number of expressed receptor genes (y-axis) is significantly correlated (Pearson correlation 31 

0.22, p-value 1.2e-02) with the predicted age by BitAge in the CeNGEN dataset. The regression 32 

model fit with a 95% confidence interval (shadowed area) is shown. 33 



I) The number of expressed neuropeptides (y-axis) is significantly correlated (Pearson correlation 34 

0.34, p-value 4.4e-03) with the predicted age by BitAge in the Calico day 1 dataset. The 35 

regression model fit with a 95% confidence interval (shadowed area) is shown. 36 

J) The number of expressed receptor genes (y-axis) is significantly correlated (Pearson correlation 37 

0.42, p-value 4.7e-04) with the predicted age by BitAge in the Calico day 1 dataset. The 38 

regression model fit with a 95% confidence interval (shadowed area) is shown. 39 

K) The number of expressed neuropeptides (y-axis) is significantly correlated (Pearson correlation 40 

0.43, p-value 4.8e-07) with the predicted age by a stochastic data-based clock in the CeNGEN 41 

dataset. The regression model fit with a 95% confidence interval (shadowed area) is shown. 42 

L) The number of expressed receptor genes (y-axis) is significantly correlated (Pearson correlation 43 

0.39, p-value 6.9e-06) with the predicted age by a stochastic data-based clock in the CeNGEN 44 

dataset. The regression model fit with a 95% confidence interval (shadowed area) is shown. 45 

M) Fraction-plots displaying the fraction of nematodes expressing neuronal volume markers in the 46 

ASI neuron categorized as ‘healthy’, ‘mildly damaged’, and ‘severely damaged’. Three to four 47 

cohorts were analysed, comprised of 10 – 30 individual nematodes, for every timepoint 48 

indicated. Kruskal-Wallis-test was employed to test for significant differences. 49 

N) The number of expressed innexin genes (y-axis) is significantly anti-correlated (Pearson 50 

correlation -0.19, p-value 3.7e-02) with the predicted age by BitAge in the CeNGEN dataset. 51 

The regression model fit with a 95% confidence interval (shadowed area) is shown. 52 

O) The number of expressed innexin genes (y-axis) is not-significantly anti-correlated (Pearson 53 

correlation -0.2, p-value 1.1e-01) with the predicted age by BitAge in the Calico day 1 dataset. 54 

The regression model fit with a 95% confidence interval (shadowed area) is shown. 55 

P) The number of expressed innexin genes (y-axis) is not-significantly anti-correlated (Pearson 56 

correlation -0.12, p-value 1.9e-01) with the predicted age by a stochastic data-based clock in 57 

the CeNGEN dataset. The regression model fit with a 95% confidence interval (shadowed area) 58 

is shown. 59 

Q) The number of total synapses (y-axis) is not-significantly anti-correlated (Pearson correlation -60 

0.04, p-value 6.6e-01) with the predicted age by BitAge in the CeNGEN dataset. The regression 61 

model fit with a 95% confidence interval (shadowed area) is shown. 62 

R) The number of total synapses (y-axis) is not-significantly anti-correlated (Pearson correlation -63 

0.21, p-value 1.3e-01) with the predicted age by BitAge in the Calico day 1 dataset. The 64 

regression model fit with a 95% confidence interval (shadowed area) is shown. 65 

S) The number of total synapses  (y-axis) is not-significantly anti-correlated (Pearson correlation -66 

0.07, p-value 4.6e-01) with the predicted age by a stochastic data-based clock in the CeNGEN 67 

dataset. The regression model fit with a 95% confidence interval (shadowed area) is shown. 68 



T) Ciliated neurons are predicted to be significantly older than non-ciliated neurons in the Calico 69 

day 1 dataset. Two-sided t-test p-value: 9.04e-05 70 

U) Ciliated neurons are predicted to be significantly older than non-ciliated neurons in the 71 

CeNGEN dataset with a stochastic data-based clock. Two-sided t-test p-value: 2.29e-14 72 

V) Ciliated neurons are divided into 5 classes depending on where its cilia terminate. Neurons 73 

with exposed cilia are significantly older than non-ciliated neurons or neurons which cilia 74 

terminate in the cuticle or behind the cuticle in the Calico day 1 dataset (one-way ANOVA p-75 

value: 1.79e-08, with a post-hoc Tukey test). 76 

W) Ciliated neurons are divided into 5 classes depending on where its cilia terminate. Neurons 77 

with exposed cilia are significantly older than non-ciliated neurons or neurons which cilia 78 

terminate in the cuticle or behind the cuticle in the CeNGEN dataset with a stochastic data-79 

based clock (one-way ANOVA p-value: 6.6e-18, with a post-hoc Tukey test). 80 

 81 

Supplementary Figure 3 82 

A) Output of the Dmin function of the Mfuzz R package. Soft clustering for cluster numbers 83 

ranging from 2-12 (x-axis) were calculated with Dmin. For each cluster number, Dmin calculates 84 

the distance between the centroids of the clusters (centroid distance) and reports the 85 

minimum centroid distance across 3 repetitions (y-axis). The optimal cluster number is 86 

estimated from the “elbow” of the plot (indicated by a dashed line), i.e. the cluster number 87 

which shows a sharp decline in the minimum centroid distance (cluster number=4). 88 

 89 

Supplementary Figure 4 90 

A) Fraction-plots displaying the fraction of nematodes expressing neuronal volume markers in the 91 

OLL neuron categorized as ‘healthy’, ‘mildly damaged’, and ‘severely damaged’ that were 92 

treated with 2.5 mM syringic acid (SA) or 10 nM vanoxerine (VX) for 24 h. Three to four cohorts 93 

were analysed, consisting of 10 – 25 individual nematodes. Kruskal-Wallis-test was employed 94 

to test for significant differences. 95 

 96 

 97 
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5 Discussion 

5.1 Aging Clocks 

Currently, the aging clock field faces three major ongoing challenges: 

1.) Constructing and validating accurate biological aging clocks 182 

2.) Understanding their underlying mechanisms183,184  

3.) Utilizing them in identifying and evaluating longevity or health-span interventions50  

5.1.1 Constructing and Validating Accurate Biological Aging Clocks 

Aging clocks, and more broadly aging biomarkers, should be highly accurate in predicting biological 

age, robust against technical and biological variability, and ideally transfer to different populations and 

potentially even species182. Currently, they are mostly limited by the usage of cross-sectional data185, 

highlighting the urgent need for more longitudinal studies182. To assess their validity and robustness 

they should be validated in diverse datasets182. Genomics data is known to lack diversity, with a 

disproportional amount of data coming from Caucasian populations186, leading to potentially lower 

generalizability and biases against unrepresented populations187–189. Similarly, sociodemographic and 

socioeconomic characteristics are currently mostly overlooked190. In addition to the lack of validation 

in these groups, recent validation efforts have revealed that most epigenetic aging clocks are affected 

by technical variation (with variations up to 8.6 years in replicates)124 and unwanted biological variation 

associated with the circadian rhythm191.  

With BitAge192 we developed the first highly accurate biological age predictor for transcriptomic data 

(Chapter 2). We introduced the concept of binarization to remove unwanted variation in the data to 

subsequently improve the prediction accuracy. By leveraging existing lifespan data with temporal 

rescaling and survivor-bias correction for Caenorhabditis elegans RNA-seq data, we demonstrated that 

biological age prediction of an organism with transcriptomic data is highly accurately possible.  

A survivor-bias correction is not only relevant for whole-worm populations of Caenorhabditis elegans, 

but also generally for aging clocks that are built on chronological age. With advancing age there is a 

positive selection for individuals with higher physiological capacities, as more frail subjects die 

earlier193, leading to biases in first-generation aging clocks. Even second-generation aging clocks that 

are trained on the biological age or mortality data from a variety of datasets might still contain a similar 

bias. PhenoAge72, for example, first built a Cox penalized regression model on blood biochemistry data 

from NHANES III194, and then used this model on data from the InCHIANTI study195. The NHANES III 

data were collected between 1988 and 1994, while the InCHIANTI data were collected between 1998 

and 2000. Subjects of the same chronological age of the InCHIANTI study were therefore up to 12 years 
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younger at the time of NHANES III data collection. This temporal difference suggests that subjects of 

the InCHIANTI study may have been exposed to beneficial factors, i.e. medical progress, for a relatively 

longer time period than subjects of the same chronological age in the NHANES III cohort48. 

Consequently, the subjects of the NHANES III cohort might be at a greater hazard risk, because they 

were born earlier, compared to subjects of the same chronological age in the InCHIANTI study48. It is 

not known whether this second type of bias has a strong impact on the prediction accuracy, but it 

shows potential accuracy limits of clocks built on various datasets potentially generated over decades 

apart.  

Our BitAge clock has been independently used and validated in a variety of studies: BitAge was 

retrained and applied to a human transient reprogramming time-course dataset, indicating a 

rejuvenation trend196. It identified positive effects of krill oil on the predicted biological age, mirroring 

measured health-span benefits197. The human fibroblast BitAge clock failed to predict an aging 

trajectory in peripheral blood mononuclear cell RNA-seq data from healthy people or people with 

HIV198, possibly due to cell-type differences. It identified an increased transcriptomic age of 

Caenorhabditis elegans worms expressing human Aβ and Tau as a model of Alzheimer’s disease199. It 

predicted a significantly higher transcriptional age of hlh-30 mutants in an adult diapause model of 

Caenorhabditis elegans that could be rescued by an additional daf-1 mutation, mirroring the 

detrimental effects of a loss of hlh-30 that can be partially rescued by a daf-1 mutation200. And lastly, 

binarization of gene expression has been adapted and demonstrated to improve single-cell age 

classification201. These results corroborate that the Caenorhabditis elegans BitAge clock is a robust 

predictor of the biological age and that the concept of binarization is something to explore as a 

preprocessing step in machine learning approaches. Despite these corroborating results more 

extensive validation on newly generated data would be needed to see whether all possible aging 

trajectories have been faithfully covered. We trained the Caenorhabditis elegans clock using all 

available adult RNA-seq data paired with corresponding lifespan data available at the time of 

publication. This dataset encompassed a wide range of mutants, gene knockdowns, and treatments. 

However, it is important to acknowledge that unknown aging trajectories might exist that are not 

captured by the current model, leading to inaccurate predictions. Further validation efforts will help 

identify potential mis-predicted conditions, offering valuable insights into novel aging trajectories. 

Future research might also improve BitAge to further strengthen its generalizability:  

1.) New RNA-seq samples with corresponding lifespan data after the submission of the original 

BitAge publication should be included. 

2.) The effect of RNA-seq library size on binarization should be investigated and potentially all 

samples should be subsampled before binarization. 
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3.) The effect of different library preparation methods, i.e. polyA enrichment vs. riboMinus 

depletion of rRNA vs. total RNA, should be investigated and potentially only samples from one 

preparation method should be included. 

4.) A clock version without any acute treatments, e.g. without heat shock or pathogen exposure, 

might be beneficial for “natural” aging prediction. 

5.) A clock without minimizing the number of genes might reduce overfitting. 

6.) The second correction step that we apply to correct for a possible survivor-bias is currently 

approximated by a complicated function and could be improved, both in clarity and potentially 

accuracy with a simulation approach. 

7.) The model assumption for the second correction step, i.e. that biological age is normally 

distributed with the same standard deviation irrespective of the chronological age, should be 

tested with single worm RNA-seq and could lead to adaptations and improvements of the 

correction. 

8.) The current proof-of-principle human BitAge clock needs more training data and should be 

extended to other cell- and tissue-types. 

The stochastic data-based clocks on the other hand were initially not developed as tools for measuring 

the biological age of organisms or individuals, but rather as a tool to elucidate the underlying 

mechanism of aging clocks (Chapter 3)202. However, we demonstrated that the idea of accumulating 

stochastic variation enables the construction of aging clocks across organisms and data modalities. 

Importantly, the concept of accumulating stochastic variation could enable the development of aging 

clocks even in scenarios where limited data is available, potentially requiring as little as a single 

biological sample.  

We have validated both the transcriptomic stochastic data-based clock and BitAge on pseudo-bulk 

data from a neuronal Caenorhabditis elegans single-cell RNA-seq dataset, indicating that our clocks are 

robust and even single neuron biological age predictions are possible (Chapter 4).  

Cell-type composition changes are a confounding factor in the development of aging clocks203,204. If 

BitAge were cell-type confounded one could expect that neurons that degenerate earlier would be 

predicted younger, as the cell-type specific genes of the fast-degenerating neurons would potentially 

cease to be expressed in older worms. In Chapter 4 we scored neurodegeneration by macroscopic 

aberrations on the neurites, which might not coincide with a complete transcriptional stop of these 

cells. Nevertheless, we saw faster degeneration of older neurons indicating that BitAge identified a 

more general aging trajectory that is not cell-type confounded. The stochastic data-based clock is not 

directly trained on biological data (except the ground state/starting point of the simulations) and is 

therefore less likely to be affected by cell-type composition changes. Indeed, the transcriptomic 
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stochastic data-based clock predictions correlated significantly with the BitAge predictions and 

neurodegeneration in Chapter 4. For the stochastic DNA methylation clock, we additionally 

demonstrated that correcting for cell type composition changes does not affect the resulting Pearson 

correlations strongly.  

In conclusion, both BitAge and the stochastic data-based clock have been validated in several ways, 

indicating their robust predictions, which enable their usage in a variety of settings. 

5.1.2 Understanding Their Underlying Mechanisms 

The underlying mechanisms of aging clocks are a current focus of research. A recent study used several 

epigenetic clocks to investigate whether specific aging hallmarks affect the predicted age in multiple 

cell types183. Interestingly, the results indicate that damage-induced senescence, and DNA double 

strand breaks might not affect the epigenetic age, while mitochondrial function and Rapamycin 

treatment did183. Conversely, a study applying an epigenetic clock on four different progeroid mouse 

models (Ercc1, LAKI, Polg, and Xpg) suggested that progeroid mice with deficiencies in DNA repair 

(Ercc1, or Xpg), but not mice suffering from lamina defects (LAKI) or mitochondrial DNA mutation 

accumulation (Polg) showed an increased epigenetic age205. This result would suggest a connection 

between stochastic DNA damage and epigenetic drift. The recent pan-mammalian clock study, on the 

other hand, found a set of conserved CpG sites that gain methylation with age, are enriched in 

Polycomb repressive complex 2 (PRC2) -binding sites, and involved in the regulation of developmental 

gene expression127. The authors argue that the deterministic features of these age-related changes are 

evidence that aging is not only a consequence of random cellular damage, but the continuation of 

developmental processes127. In Chapter 3 we showed, however, that the pan-mammalian clock results 

are largely reproducible with our stochastic data-based clocks and that accumulating stochastic 

variation is sufficient to build a clock, whose predictions are correlated with the chronological as well 

as biological age across species. Our results therefore support the theory that random cellular damage 

and variation is sufficient for aging. Our results are also in line with the epigenetic maintenance system 

theory, i.e. that the tightness of maintenance corresponds to the tick rate of aging clocks95. While the 

tightness of the maintenance system at birth is genetically determined, we propose that the aging 

process is not driven by the continuation of any (developmental) process, but rather the implications 

of an imperfect maintenance system, i.e. a passive consequence. Species that evolved later sexual 

maturity must also have evolved a maintenance system that is sufficient to ensure reproduction at a 

later time. This improved maintenance leads to a slower accrual of damage, e.g. epimutations, less 

stochastic noise, thereby a slower ticking of the clock, longer-lasting regulatory tightness, and 

ultimately longer lifespan. In Chapter 5.2 I will go into more detail of stochastic noise in biological 

systems and ways to measure it. 
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5.1.3 Utilization in Identifying and Evaluating Longevity Interventions 

Aging clocks hold immense promise in advancing personalized healthcare and are critical tools in 

speeding up the identification and evaluation of longevity interventions50. It has been suggested that 

a validated aging clock can serve as a surrogate endpoint for clinical trials, expediting the identification 

of potential geroprotective treatments50. Several clinical trials are ongoing with epigenetic clocks as a 

surrogate endpoints50. One limitation of using an aging clock as the surrogate endpoint is that it is not 

possible to estimate the biological age of the whole organism from one datatype of one organ alone, 

as was already noted in 1947 49. Different datatypes (DNA methylation data, transcriptomics, 

proteomics etc.) might capture different aspects of the biological age and different organs will age at 

different rates in different individuals206,207. The recent plasma proteomics clock that allowed organ-

specific risk assessments is an important step for improving applicability of aging clocks162. While it is 

a strength of this study to be able to assess organ-specific health risks from blood plasma, providing 

valuable insights, it may not fully capture aging rate differences observed across diverse tissues and 

cannot directly measure the biological age of different cell types. While not being discussed in the 

publication, I speculate that the organ-specific aging clocks measure the rate of organ-specific cell 

death. It is conceivable that an unhealthy organ might exhibit higher rates of cell death, leading to the 

release of more organ-specific proteins into the bloodstream208. A healthy individual with well-

functioning organs might have fewer non-blood organ-specific proteins present in blood plasma. As 

the function of organs generally decreases with age, this differential protein release may enable the 

aging clocks to capture organ-specific aging signatures, similar to the reported identification of tissue-

specific cell death using cell-free DNA methylation pattern in blood samples209. 

We have shown that BitAge can predict biological age differences not only in bulk whole-worm 

population RNA-seq data, but also in neuronal cell-type specific pseudo-bulk data (Chapter 4). We 

applied our BitAge clock on a pseudo-bulk dataset of single neuron classes from Caenorhabditis 

elegans and identified biological age differences of almost 2-fold between the youngest and oldest 

predicted neurons. We validated these cell-type specific predictions in vivo and observed that neurons 

with a predicted older age at the first day of adulthood degenerate faster throughout adulthood. 

Importantly, we demonstrated that BitAge captured biological age differences despite the fact that it 

was not trained on single-cell RNA-seq data, but whole-worm populations. 

We used the identified transcriptomic neuronal aging trajectories to identify novel neuro-protective 

compounds in an in silico drug screen that we validated in vivo. This demonstrates that aging clocks 

can be used not only as a surrogate endpoint but also as a screening strategy. This underscores the 

versatility and the potential of aging clocks in accelerating the discovery and evaluation of 

interventions aimed at promoting health-span and longevity. 
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5.2 Stochastic Biological Variation 

Biochemical systems, such as enzymatic reactions, are inherently stochastic in nature, driven by 

random movement and collisions between molecules210,211. Despite this, most developmental 

processes are deterministic212, with gene regulatory networks213 and epigenetic memory214 playing a 

key role for the cells to ignore stochasticity and act in a deterministic fashion. Importantly, stochastic 

cell fate decisions, such as olfactory receptor gene expression in the mouse olfactory sensory 

neurons215, exist216. Aside these stochastic cell fate decisions that are due to overwhelming number of 

choices, e.g. olfactory receptor genes, generating cell-to-cell variability in isogenic cell populations is 

important for the ability to respond to different environmental cues217. It was suggested that 

pluripotent cells will be noisier than differentiated cells to enable higher plasticity and flexibility, and 

that noise should be highest during cell fate transitions217. However, this is not entirely consistent with 

previous reports demonstrating increased cell-to-cell variability with age218. Indeed, it has been shown 

that strong chromatin regulation can lead to plasticity without noise219, and that noise and plasticity 

are largely independent traits for core cellular components220. 

5.2.1 Stochastic Epigenetic Variation 

Age-related stochastic DNA methylation drift could even restrict plasticity and lead to phenotypes such 

as stem cell exhaustion46, and it has been suggested to be a determinant of mammalian lifespan221,222.  

Early work defined this epigenetic drift as a deficient methylation metabolism (similar to an imperfect 

maintenance system)223. Subsequent definitions included age-related changes due to environmental 

or stochastic causes88,224. While epigenetic drift is often defined to be the stochastic component due 

to an imperfect maintenance system, and global decrease in stability and precision of DNA methylation 

with age46, it has also been defined as the collection of changes that are not common across 

individuals225. Both definitions are indeed used inter-changeably225,226, and it has been argued that 

these sites affected by stochasticity are not useful for epigenetic clocks225. However, as we have shown 

in Chapter 3, stochastic changes indeed do allow for consistent pattern in the data that can be learned 

by an age predictor and thereby allow the prediction of the chronological and biological age.  

In bulk DNA methylation samples, environmental and stochastic changes overlap, further complicated 

by different sources of heterogeneity within the samples227: cell-type heterogeneity or contamination 

and potential cell-type composition changes228,229, and allele-specific methylation230,231. Several 

methods have been defined to distill specific sources of within-sample heterogeneity227:  

1.) The proportion of discordant reads (PDR) method quantifies locally disordered 

methylation as the number of discordant reads, i.e. reads where not all CpG sites where 
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either methylated or unmethylated, divided by the total amount of reads232. It quantifies 

variation within a read, especially induced by stochastic effects.  

2.) Epipolymorphisms are computed with the Tsallis entropy of epiallele frequency for 4-CpG 

windows to measure variation among reads233.  

3.) Similarly, methylation entropy quantifies variation among reads and is computed by 

Shannon entropy (a specific case of Tsallis entropy)234.  

4.) The proportion of disordered neighbor pairs (regional disorder) method quantifies within 

each read the proportion of CpG neighbors with differing methylation state and averages 

this across a 200bp window.235  

5.) The fraction of discordant read pairs (FDRP) method is employed to quantify heterogeneity 

at each individual CpG site by measuring the similarity of DNA methylation patterns in 

pairwise read comparisons227. 

6.) MeConcord uses Hamming distance and similar to FDRP quantifies discordant read pairs 

but enables the usage of higher sequencing coverage236.  

Each of these methods has its own strengths and application scenarios227. The proportion of discordant 

reads, epipolymorphisms, methylation entropy, and regional disorder are increasing with age, 

suggesting stochastic processes underlying age-related DNA methylation changes92,237–240. Conversely, 

an analysis with MeConcord on an aging and a replicative senescence dataset found a higher 

proportion of disordered reads in young, respective non-senescent, cell populations, while the fraction 

of uniformly/ordered regions increased with age and senescence236. Similarly, a longitudinal between-

sample analysis of DNA methylation heterogeneity suggested that only 10% of CpG sites might be 

stochastically changing with age, while the trajectories of the remaining 90% are determined by 

genetics and environment241. It is important to note for the latter analysis that CpG sites were defined 

as stochastic if the signal-to-noise ratio of an individual over the aging-time-course is lower than the 

signal-to-noise ratio for all individuals and timepoints pooled together. The signal-to-noise ratio for 

individuals was defined as the average over the time-course of the ratio of a regressed methylation 

level of a linear regression model and the absolute residuals of the same model241. The signal-to-noise 

ratio of the pooled dataset was defined as the average ratio of all individuals of the average 

methylation value over a 10-year sliding window and the deviation from it241. By definition the pooled 

signal-to-noise ratio is therefore expected to be lower, as the deviation from each individual from the 

average methylation value of a 10-year window is expected to be higher than the residuals computed 

for each year from a regression model. It is therefore not surprising that most CpG sites are found to 

be non-stochastic with this definition. Indeed, a recent single-cell DNA methylation analysis found that 

92% of the 502 age-related CpG sites for which sufficient coverage was available, behaves 

stochastically, as defined by the Pearson inter-cell correlation coefficient242. 
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The approach we took in Chapter 3 is different from these methods in that we first used artificially 

accumulating stochastic variation to build an age predictor that then was applied to biological samples. 

We do not calculate the disorder or entropy within a region or between reads, as described above. 

Instead, we quantify biological age directly by using a clock that learned the artificially induced 

accumulation of stochastic variation pattern.  Interestingly, regional disorder, calculated by the 

proportion of disordered neighbor pairs method, has recently been used to build an epigenetic aging 

clock for a small mouse dataset, reaching similar accuracy as standard DNA methylation clocks235, and 

it was shown that the rate of the age-related regional disorder increase associates negatively with 

maximum lifespan of species243. This result corroborates our analyses, as regional disorder is thought 

to be largely induced by stochastic processes235. While both approaches quantified biological age using 

patterns of stochasticity our method has the advantage that it works on an individual CpG-level and 

only requires one single biological sample as the starting point of the simulations for the training data, 

as it is trained to predict how often stochastic variation was added to the ground state. Our biologically-

hypothesis-driven simulations are based on the imperfect maintenance system and stochastic 

epimutations, and are therefore also alleviating potential problems with cell-type composition changes 

in the training data. By directly modeling this imperfect maintenance system, our approach may 

provide deeper insights into the underlying mechanisms of aging clocks, and aging-related epigenetic 

changes, especially stochastic epimutations. 

It has been suggested that stochastic epimutations reflect errors during stem cell division, that species-

specific rates of methylation drift reflect stem cell turnover differences, and that inflammation 

increases, while caloric restriction decrease this rate244. Interestingly though, there is evidence that 

human embryonic stem cells preserve their epigenetic state not by copying epigenetic information 

during replication, but by balancing methylation turnover rates245. Somatic cells on the other hand 

transmit more epigenetic memory during replication, which leads to higher persistence of random 

epimutations and subsequently DNA methylation drift245. Somatic cells have lower methylation 

turnover rates than stem cells, but are highly context-specific with methylation loss rates being 

dependent on replication timing, while methylation gain rates being correlated with nucleosome 

occupancy and lamina-associated sites245. Earlier work has modeled site-specific maintenance rates, 

revealing that average DNA methylation levels can be modeled using these rates and that site-specific 

rates for methylation loss and gain exist, contributing to our understanding of epigenetic 

dynamics246,247. Indeed, random epimutations, the balance of these site-specific maintenance rates 

and clonal transmission of epigenetic memory gives an explanation for age-related hypomethylation 

in late replicating domains248, and hypermethylation in Polycomb-bound CpG islands245,249. Polycomb-

bound regions are cell-composition-change-independently enriched in age-related variably 

methylated positions (aVMPs) in blood250. This cell-composition-independent site-specific increase in 
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epigenetic stochasticity is in line with an information-theoretic view outlining context-specific energy-

requirements and supply for epigenetic maintenance251. 

Polycomb repressive complex 2 (PRC2) is an important maintenance enzyme that is involved in 

establishing and stabilizing cell fates252, and has a complex relationship with DNA methylation in CpG 

islands253,254. Actively transcribed genes are unmethylated at the promoter, but might additionally be 

methylated at flanking regions and the gene body to prevent repressive PRC2 binding. Conversely, 

inactive genes have a methylated promoter, or are bivalently repressed by PRC2-binding at 

unmethylated promoter regions253. This bivalency has been shown to be important for maintaining 

epigenetic plasticity by protecting against irreversible silencing255. The age-dependent increase of 

methylation in these bivalent CpG sites is a universal biomarker of cellular aging126, and the average 

rate of methylation change in especially these bivalent promoter regions is negatively associated with 

maximum lifespan of a species256. The state of these unmethylated PRC2-bound bivalent promoters 

has to be copied with every cell division, i.e. the methylation status of all CpGs, PRC2-binding itself, 

and the bivalent chromatin state (H3K4me3 and H3K27me3) has to be maintained257. As no 

maintenance system is 100% accurate, it is therefore conceivable that with mitosis gradually errors 

occur that will lead to a slow but steady loss of bivalency, increase of methylation and decrease of 

PRC2-binding. Interestingly, PRC2 is recruited to DNA double-strand breaks which might additionally 

put strains of the faithful maintenance of bivalent promoter sites258. More generally, unwanted 

stochastic DNA methylation changes are potentially induced every-time the epigenome has to be 

maintained. During replication, adaptation to an external stimulus, or repair of DNA damage. It has 

also been suggested that somatic mutations lead to epimutations not only at the mutated site, but 

broadly within 10 kilobases around the mutated DNA base259. As we have shown in Chapter 3, these 

unwanted stochastic DNA methylation changes underly current epigenetic clocks and are the footprint 

of the potential underlying cause of aging, i.e. stochastic damage and a imperfect maintenance system. 

Our results suggest that the clock genes or CpG sites themselves might not be causally related to aging, 

and might indeed be rather unimportant, as potentially those sites most strongly affected by 

accumulating stochastic variation are those least well maintained and therefore potentially those that 

are less relevant for survival.  Our results don’t rule out that causal clock genes or CpG sites exist. 

Indeed, a recent study leveraged epigenome-wide Mendelian randomization to identify CpG sites that 

are potentially causal for aging-related traits and used these to inform a new epigenetic aging clock130. 

Our results do, however, suggest that (passive imperfect-maintenance driven) accumulation of 

stochastic variation is sufficient to construct aging clocks and that the maintenance system and 

regulatory tightness of especially also DNA methylation are prime targets for aging decelerating 

therapies. 
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5.2.2 Stochastic Transcriptomic Variation 

In addition to the role of CpG methylation in modulating transcriptional variability, transcriptomic 

noise can be affected by various factors260. Transcriptomic variation stems from both cell-extrinsic and 

cell-intrinsic noise261,262. Cell-extrinsic noise is driven by external signaling263,264, or cellular state 

variations in volume265,266, mitochondrial content267, or nuclear shape268. This cellular context can be 

used to predict transcript variability, demonstrating the impact cell-extrinsic noise has on gene 

expression269. Cell-intrinsic noise arises from the inherent stochastic nature of biochemical 

fluctuations262,270, and transcriptional bursting271. Cell-intrinsic noise is assumed to be Poisson 

distributed, i.e. an increase in the mean expression reduces noise, whereas a decrease in mean 

expression increases noise272. Constitutive expressed housekeeping genes, however, have been shown 

to exhibit a sub-Poissonian stochasticity due to mRNA degradation mechanics, which reduces the 

amount of noise further273. Additionally, nuclear retention is reducing cytoplasmic variations, by 

mitigating cell-intrinsic noise in mammalian cells269,274. Both noise components have different 

consequences dependent on the context: well-regulated cell cycle genes have high extrinsic noise, i.e. 

different cellular contexts or external signaling should affect expression levels. However, these genes 

should exhibit low intrinsic noise, meaning that under the same cellular state and context, the 

expression levels should be stable275. 

Similar to epigenetic stochasticity, stochastic gene expression can offer advantages to cells by 

providing flexibility in adaptation and balancing cell fate260,270. Transcriptome-wide transcriptional 

noise increases during developmental stages276. And, interestingly, the base excision repair machinery 

increases cell-intrinsic transcriptional noise, without altering mean expression values, to increase 

cellular responsiveness to fate specification signals277. Conversely, cell-extrinsic stochastic variation 

induced by DNA damage is decidedly disadvantageous16. The potential effects of an increasing number 

of transcription-blocking lesions can be especially observed in long genes37, leading to the observed 

age-associated gene-length-dependent transcription decline38–40. A fuzzier and less-well-regulated 

nucleosome landscape, potentially induced by stochastic epigenetic changes, has been proposed as 

the underlying cause of a distinct type of transcriptional noise characterized by a conserved age-

associated increased RNA Polymerase II speed, which subsequently  might contribute to  an increase 

of circular RNAs, erroneous splicing,  and increased number of mismatches278. Of note, it has been 

suggested that an aging-induced histone depletion and subsequent less-well-regulated chromatin 

structure in yeast might lead to a reduction of cell-intrinsic transcriptional noise until a short 

catastrophe phase with increased noise right before death279.  
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Indeed the age-dependent increase in transcriptional noise remains a subject of debate due to  various 

definitions and measurement methods280,281, and difficulties in dissecting the cell-intrinsic and cell-

extrinsic components275.  

Most methods define transcriptional noise based on single-cell RNA-seq:  

1.)  The ratio between biological variation, defined as a distance from each cell to the cell cluster 

mean, and technical variation, defined as a spike-in based distance282. 

2.) The mean of the Euclidean distance of each cell to the cell cluster mean282. 

3.) Global coordination level as a measure of the dependency between random gene sets within 

a single cell283. 

4.) An integrated Bayesian hierarchical model that filters out technical variation of single-cell RNA-

seq via spike-ins284. 

5.) The spearman correlations of the residuals of per-gene regression models with age285. 

6.) The difference from the median (or overdispersion) method, defined as the distance between 

the squared coefficient of variation of normalized read counts and the median expression 

value286. 

7.) Scallop: A membership score for each cell based on its cluster assignment consistency across 

multiple bootstrapped iterations281. 

8.) The mutual information between pairs of transcription factors and target genes, as a measure 

of communication efficiency within the network287. 

9.) Allele-specific sequencing with previously262 derived formulas for intrinsic- and extrinsic noise 

components dissection275. 

Using these methods various studies have demonstrated an age-dependent increase in transcriptional 

noise in: mouse cardiomyocytes218; hematopoietic stem cells283; multipotent progenitors283; 

lymphocytes288; muscle stem cells133; liver cells289; dermal fibroblasts290; drosophila brain cells283, 

human pancreatic endocrine cells282; and senescent fibroblasts291. Mutual information of transcription-

factor : target-gene pairs is decreasing with age, in line with increasing entropy in the same muscle 

samples287. Note, however, that the expression level of transcription factors is not equivalent to its 

activity292, thereby biasing this analysis. 

In addition to these single-cell RNA-seq measures of transcriptional noise, transcriptional drift, defined 

as the variance of the log-fold changes for genes within each functional group or pathway in bulk RNA-

seq, is increasing with age293. And a network entropy measure incorporating protein-protein 

interaction network information with bulk RNA-seq gene expression data from humans, showed a 

small but significant increase with age from 25-80 years, however, a significantly smaller network 
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entropy for the oldest age group (92-97 years)294.  Interestingly, a slightly adapted version of this 

network entropy measure saw a similar pattern in mice muscle tissue, with entropy increasing from 

young (3-6 months) to old (21-24 months) mice, to then slightly decrease again in the oldest age group 

(27-29 months) 295. 

Several studies, however, detected no or a more nuanced age-dependent effect on transcriptional 

noise: early quantitative reverse transcription-polymerase chain reaction experiments in mouse 

hematopoietic stem cells, lymphocytes, and granulocytes did not show a significantly increased 

noise296; most, but not all single-cell RNA-seq lung cell populations (including lung-resident immune 

cells) showed increased transcriptional noise297; transcriptional variation estimated with the 

overdispersion method and the distance of each cell to the cell cluster mean method resulted in 

different outcomes dependent on the cell type in  kidney, lung, and spleen cells298; the coefficient of 

variation in mouse brain cell types showed no clear uniform increase in variation299. Moreover a 

comparative analysis of five of the above mentioned methods on seven published datasets did not 

results in conclusive results, with some datasets showing opposite results depending on the method 

being used281.  

These non-conclusive results were mostly generated on the whole-transcriptome level. It was already 

described that certain gene groups, e.g. housekeeping genes, can suppress their cell-intrinsic 

transcriptional noise to a sub-Poissonian level as discussed above273. And that cell-cycle genes, for 

example, should generally show higher cell-extrinsic noise275. In line with an information-theoretic 

view outlining context-specific energy-requirements for maintenance251, it is therefore conceivable, 

that a specific subset of genes accumulates stochastic variation at a faster rate than others. Indeed it 

has been shown that genes lacking CpG islands (CGI- genes) change with age and potentially even drive 

age-related physiological degeneration300. These CGI- genes are getting noisier with age due to their 

increased euchromatinization and subsequent increased susceptibility to transcription factor 

binding300. Interestingly, this age-related increase in transcriptional noise was especially observed in 

CGI- genes, while genes with CpG islands (CGI+ genes) did not change with age or potentially even 

showed a decrease in noise300. CGI+ genes in this study were defined as those with transcription start 

sites surrounded by both experimentally validated CpG islands and with a GC content ≥ 50% for at least 

200 bp300. CGI+ genes overlap with PRC2 target genes301, but the link between PRC2 and CGI+, as well 

as the mechanism of cell-type and context-specific regulation remain subject of debate302. It is puzzling 

why CGI- genes, i.e. genes less likely to be bound by PRC2, show an age-dependent transcriptional 

noise increase, while CGI+ genes, i.e. genes that are enriched in PRC2-binding, are not showing the 

same transcriptomic age-related stochastic variation accumulation300. DNA methylation changes at 

PRC2-bound bivalent promoter regions are a universal aging biomarker126,256, and as we have proposed  
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in Chapter 3, these age-related changes are potentially due to stochastic variation accumulation due 

to an imperfect maintenance system. Why, therefore, are the age-related (stochastic) changes not 

translated to the transcriptional level?  

While the answer to this is elusive, I propose two non-exclusive hypotheses: First, it could lie within 

the complex interplay of PRC2-binding and DNA methylation: PRC2-bound CGI+ genes are 

unmethylated and repressed253, stochastic accumulation of DNA methylation at these promoter 

regions will therefore lead to a gradual loss of bivalency, but potentially still to a repression of the 

regulated genes. Conversely, methylated CGI+ promoter regions that stochastically loose DNA 

methylation over time become more susceptible to PRC2-binding253, potentially leading to increased 

bivalency, but still a predominantly repressive environment. CGI- promoter regions on the other hand, 

which are not enriched in PRC2-binding, do not have this regulation buffer, e.g. unmethylated active 

genes that gain stochastic DNA methylation with age are progressively getting repressed and as the 

DNA methylation increase is stochastic the gene repression will be as well, leading to the increased 

noise and therefore potentially explaining the difference in CGI- and CGI+ genes.  

However, it is important to note that while this hypothesis might provide a plausible explanation for 

the observed differences between CGI- and CGI+ genes, there is some data that may contradict it. 

While the study showing the age-dependent transcriptional noise increase of CGI- genes, did not divide 

PRC2-bound and PRC2-unbound CGI+ genes, it showed, however, that the PRC2-associated gene 

repression histone modification H3K27me3 is not changing global levels300. Interestingly, however, a 

single-cell chromatin modification profiling study revealed that especially PRC2-mediated histone 

modifications like H3K27me3 are showing significant increases in single-cell variability in older 

subjects303. This PRC2-mediated H3K27me3 age-dependent noise subsequently leads to higher 

transcriptional noise in older subjects303. Bringing both studies together, it seems that, while no global 

H3K27me3 level changes can be observed, their deposition variability is changing with age. 

Subsequently, especially PRC2 target genes show higher transcriptional noise with aging. This 

contradicts the above proposed hypothesis, but could potentially be explained by the additional 

requirements of H3K27me3 deposition aside from the regulation of CpG methylation.  

This noise increase of PRC2 target genes might be masked by the broader CGI+ category of the first 

study, i.e. the subset of PRC2-bound genes that increase transcriptional variation might not be enough 

to lead to a significant increase of transcriptional noise of the whole CGI+ gene set.  

A (non-exclusive) alternative is that transcription of genes with CpG-dense regions, like CpG islands, is 

less impacted by single stochastic epimutations, thereby allowing for a buffer of stochasticity and more 

stable gene expression. This epigenetic buffer and potentially stricter regulation may also underlie the 
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observed correlation between higher CpG-density at promoter regions and extended lifespan across 

species304,305. 

It is essential to consider several caveats though. First, one study was conducted in mouse kidneys300, 

while the other focused on human immune cells303. Additionally, the studies employed different 

methods to compute transcriptional noise, and as described earlier, the outcomes of these methods 

might yield contrasting results. It remains interesting to see what causes the differences and what role 

CpG density, DNA methylation, PRC2-binding, and histone modifications play.  

Moreover, these two studies underscore the importance of the specific gene sets examined in 

transcriptional noise analyses, as they are highly relevant to the outcome. Potentially interesting 

pattern might be overlooked if studied on the whole transcriptome level. Future studies should 

compare several transcriptional noise methods not only on the whole transcriptome, but especially 

also subsets like CGI-, CGI+, or PRC2-bound genes. 

In Chapter 3 we have demonstrated a novel method for measuring biological aging in an organism 

using artificially noisy data. By repeatedly adding normal distributed noise to a bulk RNA-seq dataset 

of a young Caenorhabditis elegans sample, we developed a predictor that shows a significant 

correlation with the chronological age and is capable of distinguishing lifespan differences. This 

approach highlights the potential utility of artificially induced noise accumulation in biological age 

predictions and in assessing biological aging processes. Our method offers a distinct approach to 

measuring age-related transcriptional noise compared to the above-mentioned methods. Especially, 

the Elastic Net Regression approach that is used to train the stochastic data-based clock reduces the 

number of genes used for the age prediction to a smaller subset of predictor genes, i.e. it does not use 

the whole transcriptome in the final clock. The clock therefore only retains those predictor genes that 

it found to be most important for the accuracy of the predictions. This might alleviate part of the 

problem of the non-conclusive results mentioned above, i.e. that a gene-set-specific transcriptional 

noise increase might be masked by the whole transcriptome. Anecdotally, the stochastic data-based 

clock predictor genes used in Chapter 4, show especially a significant overlap with H3K27me3-bound 

regions in data from the ChIP-Atlas database306. This is in line with the results showing that especially 

H3K27me3 variability and subsequent transcriptional variability is observed in older humans303. As 

training the stochastic data-based clock will result in slight changes in the predictor genes after every 

training process, it will be interesting to see how robust these enrichments are in a more systematic 

analysis. 
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5.3 Cross-Species Transcriptome Comparisons 

In Chapter 4 we predicted the biological age of single neuron classes with BitAge (Chapter 2) and our 

stochastic data-based clock (Chapter 3). We used these predictions to identify correlations between 

genes and the neuronal transcriptomic aging trajectories. 

The enriched pathways for these correlations are significantly correlated with human and mice brain 

aging trajectories and conversely anti-correlated with anti-aging treatments. These results indicated 

the conservation of brain aging trajectories even in species as far evolutionary apart as Caenorhabditis 

elegans and humans. 

Cross-species analyses provide a powerful approach to uncover conserved biological mechanisms and 

pathways associated with longevity and diseases307,308. Several studies have identified common aging 

trajectories across mammalian species and determinants of maximum lifespan, and consistently 

identified DNA repair, metabolism, and stress-related pathways. An early cross-species meta-analysis 

of microarray datasets from mice, rats, and humans identified common signatures of aging 

characterized by an upregulation of inflammation and lysosomal genes, and a downregulation of 

collagen and mitochondrial genes309. A comparison of 33 mammalian species identified DNA repair and 

stress-related pathways to be enriched with lifespan variation310. This was replicated in a study on 

humans, naked mole rats, and mice, indicating a higher DNA repair gene expression in longer lived 

species311. Similarly, cultured fibroblast cells of 13 rodents, 2 bats, and one shrew identified expression 

of DNA repair to be upregulated, and proteolysis pathways to be downregulated in longer lived 

species312. The comparison of 3 long-lived whale species, and 5 additional mammals with a novel 

pathway-ranking method confirmed higher expression of DNA maintenance and repair, and immune 

response genes in longer lived species313.  The longevity signature of 41 mammalian species was 

confirmatory enriched in translation, DNA repair, and anti-correlated with oxidative phosphorylation 

and proteolysis314. And a comparison of 103 mammalian species identified organ-specific 

maintenance-related transcription and translation fidelity pathways, as well as DNA repair to be 

essential for longevity315. Bats have evolved exceptional longevity and certain species live over ten 

times longer than expected from their body size316,317. The extended health-span of bats and their 

body-size-independent longevity has been linked to a unique age-related expression pattern involving 

DNA repair, autophagy, immunity, and tumor suppression, as observed in cross-species comparisons 

of bats with humans, mice, and wolves317. It was suggested that mammalian transcriptomic aging 

signatures and signatures of maximum lifespan exhibited significant similarity318. Focusing on 26 

Rodentia and Eulipotyphla species, the negative correlation between maximum lifespan and 

inflammation and metabolism, as well as the positive correlation between DNA repair expression and 

maximum lifespan was again confirmed. However, while energy metabolism does show an overlap to 

an aging signature, most pathways were anti-correlated. Especially DNA repair and inflammation 
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showed opposite trends between the effect on maximum lifespan and aging, e.g. DNA repair is higher 

expressed in longer lived species, but gets downregulated with age319. This was corroborated by an 

analysis of human, rat, and mouse aging signatures, which were shown to coincide in downregulation 

of DNA repair and oxidative phosphorylation, and in upregulation of inflammation, lysosomes, and 

ribosomes314.  A cross-vertebrae aging trajectory transcriptome comparison of humans, mice, zebrafish 

Danio rerio, and killifish Nothobranchius furzeri suggested that the aging transcriptome might shift 

away from cancer-associated signatures, i.e. downregulation of replication and DNA repair, and 

towards signatures of chronic degenerative diseases, i.e. upregulation of inflammation and 

lysosomes320. The identification of possible determinants of maximum lifespan is still in its early stages 

and relies on cross-species comparisons. The evidence thus far highlights the pivotal role of DNA repair 

and maintenance pathways, which is in line with the central role of DNA damage and genome 

instability in the aging process16, and the fact that somatic mutation rates scale inversely with 

lifespan42. Notably, stricter DNA repair and maintenance would potentially lead to a slower accrual of 

stochastic variation, thereby explaining why long-lived species accrue stochastic variation at a slower 

rate (Chapter 3). Recently, we have shown that the DREAM complex is the master regulator of somatic 

DNA repair321. It will be interesting to see, whether long-lived species have distinct mutations in the 

DREAM complex, or varying levels of DREAM complex activity. 

In Chapter 4 we have extended the cross-species comparison to Caenorhabditis elegans, mouse, and 

human data, indicating that even species as different as Caenorhabditis elegans and humans share 

conserved neuronal transcriptomic aging trajectories on the pathway level. We used this conservation 

of aging-dependent pathways changes to identify compounds that counteract neurodegeneration in 

the nematode system. Our cross-species comparison not only enabled the identification of these 

compounds but also underscores the vast potential of inter-species analyses in uncovering therapeutic 

avenues. 
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6 Conclusion 

To conclude, in this thesis I 1.) have used novel techniques to build a highly accurate transcriptomic 

biological age predictor for the nematode Caenorhabditis elegans; 2.) identified that accumulating 

stochastic variation is the common underlying feature of current aging clocks; 3.) demonstrated that 

aging clocks can be built with as little as one biological sample and still capture significant biological 

age differences; and 4.) used these biological, and stochastic aging clocks to identify different aging-

rates in neuronal cell classes of the nematode Caenorhabditis elegans, which I then used to infer 

conserved cross-species aging pathways, and subsequent to in silico screen compounds that could be 

validated in vivo to delay neurodegeneration. 
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