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Abstract

The quantum Hall effect, in which the transverse conductance of a two-
dimensional (2D) electron gas in an applied magnetic field becomes quantized
to multiples of e2/h, has fascinated physicists for over forty years. In the last
decade, the quantum-Hall research field has expanded with the discovery of 2D
topological insulators (i.e. the quantum spin Hall effect in 2007) and magnetic
topological insulators (i.e. the quantum anomalous Hall effect in 2013). The
later effect, typically abbreviated as ‘QAHE’, is of particular technological
interest, as its quantization can be observed in macroscopic devices and does
not require the application of an external magnetic field. Hence, the QAHE is
expected to supplant conventional quantum Hall systems in many applications,
e.g. as the resistance standard for the international system of units (SI).

The hallmark of the QAHE is its dissipationless chiral 1D state running along
the edge of the quasi-2D magnetic-topological-insulator thin film, resulting
in a vanishing longitudinal resistance and quantized Hall resistance equal to
h/e2. However, when reducing the device dimensions or increasing the current
density, an abrupt breakdown of the dissipationless state occurs with a relatively
small critical current, limiting the applications of the QAHE. In this thesis,
the mechanism of this breakdown is studied in multi-terminal devices and the
electric field created between opposing chiral edge states is identified as the
driving force. It is well-known that Coulomb disorder plays a strong role in
compensated topological-insulator crystals as a consequence of the random
distribution of the charged donor and acceptor impurities. In regions with large
uncompensated charge, metallic n- or p-type ‘puddles’ are formed. In this thesis,
the electric-field-driven percolation of such 2D charge puddles in the gapped
surface states of the quantum-anomalous-Hall-insulator (QAHI) thin films is
proposed as the most likely cause of the breakdown of the QAHE. Namely, the
hopping transport between the 2D charge puddles causes an electrical short
between the opposing chiral edge states across the width of the sample, which
leads to a loss of edge potential. This results in a nonzero longitudinal resistance
and a Hall resistance smaller than h/e2.
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iv ABSTRACT

Although generally it is desirable to avoid breakdown of the QAHE, the chiral
nature of the edge states gives rise to rectification (nonreciprocal) effects in
the longitudinal resistance when the ideal QAHI-state is lost with increasing
probe current, or by tuning the chemical potential away from the charge-
neutrality-point into the 2D valence or conduction band. In this thesis, the
nonreciprocal charge transport in QAHIs is studied over a large parameter space
of different temperatures, applied magnetic fields, electrostatic gate-potentials,
and probe currents. Two distinct regimes are identified. At high currents
and/or temperatures where Coulomb disorder only plays a minor role, the
current-voltage relation follows the well-known quadratic current-dependence of
nonreciprocal systems. However, at ultra-low temperatures (< 100 mK) when
the current amplitude is decreased to only slightly exceed the critical current for
breakdown, the description of the nonreciprocal charge transport becomes more
complex. In this regime, the finite nonreciprocal response when the chemical
potential lies inside the exchange gap is argued to be determined by the majority
2D charge puddles (either n- or p-type) resulting from an imperfect charge
compensation. The largest rectification (∼20%) is found in this regime close to
breakdown, which has remained unexplored so far.

Since electrostatic gating is an efficient way to switch between the ideal
and broken-down QAHI-states, the system constitutes a unique ‘quantum
circuit element’ offering both dissipationless transport and rectification, as
well as a quantized transverse resistance of h/e2. The thesis advances the
understanding of the current-induced breakdown of the QAHE in magnetically
doped topological insulators, and its findings are relevant to the fundamental
research in QAHI systems, as well as its potential applications.



Beknopte Samenvatting

Het kwantum-Hall-effect, waarbij de transversale geleidbaarheid van een twee-
dimensionaal (2D) elektronengas in een magnetisch veld wordt gekwantiseerd
tot veelvouden van e2/h, fascineert natuurkundigen al meer dan veertig jaar.
In het afgelopen decennium is het kwantum-Hall-onderzoeksveld uitgebreid
met de ontdekking van 2D topologische isolatoren (i.e. het kwantum-spin-
Hall-effect in 2007) en magnetische topologische isolatoren (i.e. het kwantum-
afwijkende-Hall-effect in 2013). Dit laatste effect, meestal afgekort als ‘QAHE’
verwijzend naar zijn Engelse naam, is van bijzonder technologisch belang,
omdat de kwantisering kan worden waargenomen in macroscopische monsters
en daarvoor geen extern magnetisch veld vereist is. Daarom wordt verwacht
dat het QAHE conventionele kwantum-Hall-systemen in veel toepassingen
zal vervangen, b.v. als weerstandsnorm voor het internationale systeem van
eenheden (SI).

Het kenmerk van het QAHE is de dissipatieloze chirale 1D-toestand die zich
op de rand van de quasi-2D magnetische-topologische-isolator dunne laag
bevindt. Deze chirale randtoestand zorgt dat de longitudinale weerstand
verdwijnt en de Hall-weerstand gekwantiseerd wordt tot h/e2. Bij het
verkleinen van de monsterafmetingen of het vergroten van de stroomdichtheid
treedt echter een abrupte ineenstorting van het dissipatieloze transport op
voor een relatief kleine kritische stroom, wat de mogelijke toepassingen
van het QAHE inperkt. In dit proefschrift wordt het mechanisme van
deze ineenstorting bestudeerd in monsters met meerdere meetterminals en
wordt het elektrische veld dat wordt gecreëerd tussen tegengestelde chirale
randtoestanden geïdentificeerd als de drijvende kracht. Het is bekend
dat Coulomb-stoornis een sterke rol speelt in gecompenseerde topologische
isolatoren als gevolg van de willekeurige verdeling van de geladen donor- en
acceptoronzuiverheden. In gebieden met grote ongecompenseerde lading worden
metalen n- of p-type ‘ladingsplassen’ (‘charge puddles’ in het Engels) gevormd.
In dit proefschrift wordt de percolatie van dergelijke 2D-ladingsplassen in
de geopende oppervlaktetoestanden van de kwantum-afwijkende-Hall-(QAH)
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vi BEKNOPTE SAMENVATTING

isolator aangewezen als de meest waarschijnlijke oorzaak van de ineenstorting
van het QAHE. Het hoppende elektronentransport tussen de 2D-ladingsplassen
veroorzaakt namelijk een elektrische kortsluiting tussen de tegenoverliggende
chirale randtoestanden over de breedte van het monster. Dit leidt tot een verlies
van randpotentieel, wat resulteert in een longitudinale weerstand die niet langer
nul is en een Hall-weerstand kleiner dan h/e2.

Hoewel het over het algemeen wenselijk is om de ineenstorting van het QAHE
te voorkomen, geeft de chirale aard van de randtoestanden aanleiding tot
rectificatie (niet-reciproke) effecten in de longitudinale weerstand wanneer de
ideale QAH-toestand verloren gaat met toenemende stroomdichtheid, of door
de chemische potentiaal van het ladingsneutraliteitspunt weg te sturen tot in
de 2D-valentie- of geleidingsband. In dit proefschrift wordt het niet-reciproke
ladingstransport in QAH-isolatoren bestudeerd over een grote parameterruimte
van verschillende temperaturen, externe magnetische velden, elektrostatische
poortpotentialen en stroomdichtheden. Er worden twee verschillende regimes
waargenomen. Bij hoge stromen en/of temperaturen waar de Coulomb-stoornis
slechts een ondergeschikte rol speelt, volgt de stroom-spanningsrelatie de
bekende kwadratische stroomafhankelijkheid van niet-reciproke systemen. De
beschrijving van het niet-reciproke ladingstransport wordt daarentegen echter
complex wanneer bij ultra-lage temperaturen (< 100 mK) de stroomamplitude
wordt verkleind tot slechts een paar nanoampère boven de kritieke stroom voor
de ineenstorting. In dit regime wordt de niet-reciproke respons wanneer de
chemische potentiaal in de geopende oppervlaktetoestanden ligt, toegeschreven
aan de 2D-ladingsplassen (n- of p-type) die in de meerderheid zijn, als gevolg
van een onvolledige ladingscompensatie. De grootste rectificatie (∼20%) wordt
waargenomen in dit regime dicht bij het instortingspunt, dat tot nu toe nog
niet onderzocht werd.

Aangezien een elektrostatische poort een efficiënte manier is om tussen de
ideale en ineengestorte QAH-toestand te schakelen, vormt het QAH-systeem een
uniek ‘kwantum-circuitelement’ dat zowel dissipatieloos transport als rectificatie
biedt, evenals een gekwantiseerde Hall-weerstand van h/e2. Het proefschrift
vordert het begrip van de stroomgeïnduceerde ineenstorting van het QAHE in
magnetisch gedoteerde topologische isolatoren, en de bevindingen zijn relevant
voor het verder fundamenteel onderzoek in QAH-systemen, evenals de mogelijke
toepassingen ervan.
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Chapter 1

Introduction

“ Even truth needs to be clad in new garments if it is to appeal to
a new age. ”

Georg C. Lichtenberg

In 1879, the American physicist Edwin Hall discovered the Hall effect while
working on his doctoral thesis. He found that when an electric current flows
through a conductor and a magnetic field is applied perpendicular to the current
direction, a potential difference (the ‘Hall voltage’) is created between the
opposite sides of the conductor, perpendicular to both the applied current and
magnetic field [57, 58].

A century later, in 1980, the German physicist Klaus von Klitzing discovered
the integer quantum Hall effect (QHE). By studying the Hall resistance of a
two-dimentional electron gas (2DEG) as a function of gate voltage at 1.5 K in
a magnetic field of 18 T [182], he found that when the Fermi level is tuned to
lie between Landau levels (where the longitudinal resistance vanishes), the Hall
resistance is given by

RH = h

ie2 , i = 1, 2, 3, . . . (1.1)

where h is the Planck constant, e the elementary charge, and i the filling factor.
A historic review by von Klitzing about his unexpected discovery of the QHE
and his early measurement results can be found in Ref. [180]. Figures 1.1(a-b)
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(a) (b)

Figure 1.1: The integer quantum Hall effect (QHE), measured at a temperature
of 0.3 K. The longitudinal and Hall resistance, Rxx and RH respectively, are
shown as a function of (a) the gate voltage for a Si-MOSFET in 13.8 T, and
(b) the applied magnetic field B for a GaAs/AlxGa1-xAs heterostructure. When
the Fermi level lies between two Landau levels (where Rxx vanishes), RH is
quantized to h/(ie2). Figures (a) and (b) are reprinted from Ref. [73]. © IOP
Publishing. Reproduced with permission. All rights reserved.

show more recent measurements of the longitudinal and Hall resistance, Rxx
and RH respectively, for a Si-MOSFET as a function of the gate voltage, and a
GaAs/AlxGa1-xAs heterostructure as a function of the applied magnetic field
[73]. The precise quantization of the Hall resistance shows that the electronic
resistance can be defined in terms of fundamental constants, even in disordered
samples [181].

In 2018, in Versailles (France), 60 countries made the unanimous vote to revise
the international system of units (SI) to be based on seven fundamental constants
of nature, see Fig. 1.2(a). The idea being that if the numerical values of the
fundamental constants {h, c,∆νCs, e, kB, NA,Kcd} are defined, the properties
of entities expressed in the seven basic units {kg, m, s, A, K, mol, cd} can
be evermore accurately measured. Hence, defining the fundamental constants
alleviates the need to update their numerical values with every technological
improvement in metrological accuracy. While the new definition of the ampere
does not imply any particular experiment for its practical realization, it is the
combination of the quantum Hall and Josephson effect (acting as the resistance
and voltage standard, respectively), which yields the smallest uncertainty
[43], see Fig. 1.2(b). Note that single electron transport offers an elegant
direct realization of the ampere; however, its implementation still has technical
limitations and often yields larger relative uncertainties [43].
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Figure 1.2: (a) The international SI logo, showing the seven basic units and the
fundamental constants they are based on. (b) The metrological triangle relating
the three quantum electrical effects via Ohm’s law. Figure (a) is reprinted with
permission from Ref. [43], while Fig. (b) is based on Ref. [73].

The potential advancements in metrology were apparent immediately after the
discovery of the QHE [182], sparking intense investigations to determine the
physical limits of the effect [127]. A sudden breakdown of the near dissipationless
state of the QHE was observed if the applied current exceeded a certain limit.
Figure 1.3 shows that at this critical current, the system becomes unstable
with the longitudinal resistance Rxx increasing abruptly by several orders of
magnitude. Moreover, the value of the critical current decreases linearly as the
magnetic field B moves away from the center of the QH plateau, as shown in
Fig. 1.4(a) for i = 2. If the critical Hall field Ec = (Ic/W )RH at the plateau
center, on the other hand, is plotted for different values of B (and i), a B3/2-
dependence for Ec is found, as shown in Fig. 1.4(b). This B-dependence of Ec
holds true for semiconductors [46, 74, 81] as well as for graphene [2], indicating
it is an universal property of the breakdown of the QHE, independent of the
details of the 2DEG system.

Various mechanisms have been proposed to explain the breakdown phenomenon
(see Ref. [127] for a comprehensive review), most of which rely on inter-Landau-
level transitions of electrons in the highest occupied Landau level into the lowest
unoccupied level due to the large Hall field. In this context, the natural scale
for Ec is the Zener field

EZ ≈ ~ωc/elB
√
i, (1.2)

where ωc = eB/m* is the cyclotron frequency, lB =
√
~/eB the magnetic

length, and m* the effective mass [45, 199]. Generally, such an inter-Landau-
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Figure 1.3: The current-induced breakdown of the QHE in a GaAs/AlxGa1-xAs
heterostructure. The current-voltage characteristic is plotted as the longitudinal
electric field Ex versus the current density jx. The data were recorded at 1.4 K,
at filling factor i = 2 for an applied magnetic field of 4.7 T, as shown in the
upper inset. The dotted curve shows a magnification of the pre-breakdown
region by a factor of 5 × 104. The lower inset shows the sample geometry.
This figure is reprinted from Ref. [46]. © IOP Publishing. Reproduced with
permission. All rights reserved.

level tunneling process would be subject to a large momentum mismatch [44].
However, this problem can be circumvented assuming impurity-assisted or
phonon-mediated quasi-elastic inter-Landau-level scattering (QUILLS) [33, 45].
Notice that Eq. 1.2 yields the experimentally observed B3/2-dependence shown
in Fig. 1.4(b), but fails to correctly reproduce the dependence on the filling
factor i. Moreover, if Eq. 1.2 is used to calculate the critical current density
for the GaAs/AlxGa1-xAs device shown in Fig. 1.3, one obtains jc ≈ 36 A/m
(with m* = 0.07me, where me is the electron mass), which is approximately
two orders of magnitude too large when compared with the experimental value.

In general, the QUILLS model yields values for the critical field Ec which are
much larger than those observed experimentally. As a result, the leading
explanation for breakdown shifted to a thermal instability caused by the
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(a)

(b)

Figure 1.4: The magnetic-field dependence of the breakdown of the QHE.
(a) Critical current Ic = jcW (with a sample width of W = 400 µm) as a
function of the magnetic field B for filling factor i = 2. The dashed line is a
guide to the eye. (b) Critical Hall field Ec at the plateau center as a function
of the magnetic field B. Data on Hall-bar devices reported by different authors:
• W = 400 µm for filling factor i = 2, 4 [74], � W = 380 µm for i = 2 [46], and
4 W = 400 µm for i = 2, 4 [81]. The lines on the log-log plot have a slope of
3/2. Note that the apparent B3/2-dependence does not depend on the filling
factor i. Figures (a) and (b) are reprinted from Ref. [73]. © IOP Publishing.
Reproduced with permission. All rights reserved.
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imbalance between the energy gained by electrons in an electric field and
the phonon relaxation [91]. This thermal instability is thought to eventually
lead to an avalanche-type electron–hole pair multiplication, giving rise to a
jump in the electron temperature of the QHE system [90] (a more detailed
discussion is given in chapter 4). In this ‘bootstrap electron heating’ (BSEH)
model the critical electric field is given by

EBSEH =
√

2~
m*τ B, (1.3)

where τ is the relaxation time over which the energy of the hot electrons is
released to the lattice [90]. Notice that Eq. 1.3 is independent of the filling
factor i. Moreover, Komiyama and Kawaguchi [90] argued that

1/τ ≈ B/(1 T)× (1 ns)−1, (1.4)

which would reproduce the observed B3/2-dependence shown in Fig. 1.4(b).
Using this approximation, the critical current density for the GaAs/AlxGa1-xAs
device shown in Fig. 1.3 becomes jc ≈ 0.40 A/m, which is surprisingly close to
the experimental value.

The BSEH model, in general, gives good agreement with the experimentally
observed breakdown values. Moreover, when comparing the critical current
densities for the best performing GaAs devices (∼1 A/m [73, 141]) with graphene
(∼10 A/m [2, 9]), graphene’s better breakdown characteristics can be explained
by its much shorter energy relaxation time τ consistent with the BSEH model
[2, 9]. Nevertheless, a complete understanding of the breakdown phenomenon
of the QHE is still missing, and the debate on the breakdown mechanism seems
far from settled [2, 9, 55, 73, 90, 91, 127, 141, 198, 199], even after four decades
of research into the QHE!

Having introduced the breakdown of the QHE, let us now turn to the
subject of this thesis, i.e. the breakdown of the quantum anomalous Hall effect
(QAHE). The hallmark of the QAHE is the dissipationless longitudinal transport
accompanied by a quantized Hall resistance of h/e2. This is similar to the QHE
at filling factor i = 1 (cf. Eq. 1.1), although the underlying physics is very
different [210], as will be explained in chapter 2. Moreover, the QAHE does not
require the application of an external magnetic field, unlike the QHE.

In 2013, the QAHE was achieved in thin films of the topological insulator (TI)
material (BixSb1-x)2Te3 doped with the transition-metal ion Cr [30]. Soon after,
full quantization was achieved in V-doped thin films in 2015 [32]. Interestingly,
the QAHE was recently also realized in the intrinsic magnetic TI MnBi2Te4 [42],
in MnBi2Te4/Bi2Te3 superlattices [41], as well as in twisted bilayer graphene
[164] and MoTe2/WSe2 moiré heterobilayers [107]. This thesis focuses on
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Figure 1.5: The quantum anomalous Hall effect (QAHE), measured in Hall-bar
device A (W = 100 µm) at 10 mK. (a) The magnetic-field dependence of
the longitudinal sheet and Hall resistance, ρxx and ρyx, respectively. The DC
probe-current was 80 nA, which is less than the critical current for breakdown.
(b) I-V characteristic at 0 T (after training the sample at +2 T to align all
the magnetic domains), showing the current-induced breakdown of the QAHE.
Above a current density of ∼1.6 mA/m, the longitudinal voltage Vx and the
transverse voltage Vy show deviations from the ideal QAHE. Notice that Vx
was normalized by the Hall-bar width W and voltage-contact spacing L for a
fair comparison. The dashed lines in (a) and (b) are a guide to the eye.

the prototypical and most established QAH material, which relies on the
substitutional doping of a TI with Cr or V. At low temperature (. 20 K),
spontaneous magnetization in these systems gives rise to a ferromagnetic (FM)
ground state with an out-of-plane easy-axis [210]. The broken time-reversal
symmetry (TRS) together with the non-trivial band topology of the system gives
rise to a chiral dissipationless edge state, and consequently the quantization
of the Hall resistance. Figure 1.5(a) shows the longitudinal sheet and Hall
resistance, ρxx and ρyx respectively, as a function of the magnetic field for a
V-doped (BixSb1-x)2Te3 thin film grown as part of this thesis. ρxx is zero for
all values of the magnetic field with the exception of a peak at the coercive
field Hc, where the QAHE is lost over a narrow field range upon magnetization
reversal. Similarly, ρyx shows a square hysteresis loop with a plateau transition
between +h/e2 and −h/e2 at ±Hc. Figure 1.5(b) shows the corresponding I-V
characteristic for the QAH film. Above a current density of ∼1.6 mA/m, both
the longitudinal voltage Vx and the transverse voltage Vy show deviations from
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the ideal QAHE. The loss of the zero-resistance state marks the critical current
density jc for the breakdown of the QAHE. The breakdown mechanism, as well
as the limitations it imposes on QAH systems, are the subject of this thesis and
will be addressed in chapters 4 and 5.

The quantized Hall response of the QAHE could potentially replace the QHE
as the reference standard of resistance [43]. The QHE requires very low
temperatures, as well as the application of a high magnetic field. The latter is not
needed for the realization of the QAHE, as the sample’s remanent magnetization
ensures the quantization at zero-applied magnetic field. This opens up the
possibility to integrate the QAHE and Josephson effect into one low-temperature
set-up, creating a quantum current generator in line with the new SI definition
of the ampere [26, 43], see Fig. 1.2. The precise quantization of the QAHE has
already been verified down to an error of about 10−6 in uniformly doped TI
thin films [17, 50, 54], and down to 10−8 in magnetic heterostructures [132, 133].
However, the QHE is currently still unparalleled with an error of about 10−10

[40, 73], which is the consequence of the 2–3 order of magnitude lower current
densities the QAHE can sustain before breakdown [Fig. 1.5(b)], as compared to
the QHE [Fig. 1.3].

The QAHE is not only interesting because of its potential merits to the field of
metrology; it also offers a promising platform for novel quantum phenomena
[24], such as chiral topological superconductivity [145, 189]. When a QAH
sample is proximitized by an s-wave superconductor (SC), the sample’s edges
are predicted to host chiral Majorana fermion modes [145]. A more detailed
discussion will be given in chapter 2. Majorana fermions, which were proposed
by the Italian physicist Ettore Majorana in 1937 [119], are spin-1/2 particles
with the peculiar property of being their own antiparticle. If so-called Majorana
zero modes, a 0D realization of these Majorana fermions, could be realized in
a QAH-SC heterostructure [1, 13, 59], their non-Abelian braiding properties
could potentially lead to the realization of topological qubits, paving the way
to fault-tolerant quantum computation [85, 162].

The research objectives of this thesis are to identify the experimental parameters
influencing the critical current density jc for the breakdown of the QAHE, as
well as to evaluate the consequences of breakdown for different measurement
set-ups and geometries. Based on the dependencies of jc on these parameters
the most likely breakdown mechanism will be postulated for the QAHE.

The content of this thesis is structured into several chapters: Chapter 2
provides the reader with a concise theoretical background on (magnetic)
topological insulators and the intriguing physics expected to occur in QAH-SC
heterostructures, while chapter 3 gives an overview of the most important
experimental techniques used in this thesis. In chapter 4, magneto-transport
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measurements in multi-terminal Hall-bar devices are addressed in both local
and nonlocal measurement geometries to gain insights into the current-induced
breakdown mechanism of the QAHE. The detailed nonlocal transport data allow
not only the dismissal of additional dissipative edge states contributing to the
charge transport, but also the identification of the transverse electric field Eyx as
the driving force for the breakdown. Moreover, electric-field-driven percolation
of 2D charge puddles is proposed as the most likely cause of the abrupt onset
of dissipation at the critical current density jc, contrary to BSEH or QUILLS
believed to cause the breakdown of the QHE. In chapter 5, the broken-down
QAH state is investigated further by studying the second Fourier (or ‘second
harmonic’) component of the AC resistance. The interplay between the 1D
chiral edge state and the 2D surface state is shown to give rise to a nonreciprocal
(diode-like) contribution to the measured longitudinal resistance. Moreover, the
nonreciprocal response is studied for the first time near the current-induced
breakdown point, deepening the understanding of the nonreciprocity in the
QAHI system. Lastly, open research questions and a summary of the most
important results of the thesis are given in chapter 6, while a brief outlook for
QAH material systems is given in chapter 7.





Chapter 2

Theoretical Background

“ One shouldn’t work on semiconductors, that is a filthy mess;
who knows if they really exist! ”

Wolfgang Pauli

The Nobel prize in physics for 2016 was awarded to David J. Thouless, F. Duncan
M. Haldane, and J. Michael Kosterlitz “for theoretical discoveries of topological
phase transitions and topological phases of matter”. Their seminal work
ultimately lead to the discovery of topological insulators (TIs), which form the
building blocks for the quantum anomalous Hall insulator (QAHI), covered in
this chapter. The role of Coulomb disorder in compensated (magnetic) TI thin
films will be addressed. It will be shown that Pauli’s words hold true for these
‘topological semiconductors’ as well, where the long-range nature of the Coulomb
interaction gives rise to the formation of electron and hole puddles in both their
2D and 3D band structures. Perhaps these issues will be overcome just as they
were for semiconductors, opening up the possibility of another technological
revolution. Lastly, the intriguing physics of a QAH heterostructure proximitized
by an s-wave superconductor will be briefly discussed.

11



12 THEORETICAL BACKGROUND

2.1 Topological Insulators

The continuum Dirac Hamiltonian in 2 + 1 dimensions, the corresponding tight-
binding lattice model, and the evaluation of the Chern number will be introduced
in the context of the time-reversal invariant 2D topological insulator, i.e. the
quantum spin Hall insulator (QSHI). It will become apparent that in essence a
QSHI consists of two time-reversal copies of a QAHI, which will be useful when
discussing the model Hamiltonian for magnetically doped topological insulators
in section 2.2. The 3D topological insulators will be briefly discussed as well,
before moving on to address the effect of Coulomb disorder in compensated TI
crystals and thin films.

2.1.1 2D Topological Insulators

As a consequence of the nontrivial topology of the band structure of 2D-
TIs, the insulating band gap has to close at the interface with an ordinary
insulator (including the vacuum) [3], see Fig. 2.1. This gives rise to two counter-
propagating, spin-polarized edge states, which lie inside the bulk band gap
[16, 146]. These helical edge states form Kramers’ pairs and time-reversal
symmetry (TRS) is preserved in the system. As a result, the Hall conductance
is zero. Moreover, the absence of elastic backscattering of the helical edge states
gives rise to dissipationless edge transport (at least for distances smaller than

(a) (b)

Figure 2.1: Illustration of the helical edge states of a 2D topological insulator
in real space (a), and reciprocal space (b). The spin degeneracy is lifted for
the energy dispersion of the edge state forming a 1D Dirac cone at the Γ-point.
Figures (a) and (b) are reprinted with permission from Ref. [3]. © (2013) The
Physical Society of Japan.
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the inelastic mean-free-path) [93]. These transport phenomena are collectively
known as the quantum spin Hall effect (QSHE), and were proposed to occur in
graphene [80], as well as in semiconductors [15, 16, 38, 146]. Unfortunately, the
gap opened by the spin-orbit interaction in graphene was shown to be of the
order ∼1 µeV [122, 200], making the experimental observation of the QSHE in
graphene unrealistic. However, Bernevig et al. predicted that the QSHE can
be achieved in CdTe-HgTe-CdTe quantum wells (QWs) [15], which lead to its
experimental realization in 2007 by König et al. [93].

The bulk energy bands of HgTe and CdTe (Γ6 and Γ8), as well as the subbands
(E1 and H1), near the Γ-point are shown in Fig. 2.2. Note that the E1 subband is
formed from the linear combination of |Γ6,mj = ± 1

2 〉 and |Γ8,mj = ± 1
2 〉 states,

whereas the H1 subband is formed from |Γ8,mj = ± 3
2 〉 states (see Ref. [15] for

details). As shown in Fig. 2.2, CdTe has a normal band order with Γ6 > Γ8,
whereas HgTe has an inverted band order with Γ6 < Γ8. For d < dc, the QW
is in the ‘normal’ regime, where the CdTe band order is predominant (E1 >
H1). For d > dc, on the other hand, the HgTe layer is thick and the QW is
in the ‘inverted’ regime (E1 < H1). Hence, as the thickness of the HgTe QW
is increased, the E1 and H1 subbands must cross at the critical thickness dc,
which turns out to be ∼6.3 nm [93].

The low-energy effective Hamiltonian near the Γ-point [15], where the band
crossing between the subbands E1 and H1 occurs, is given by

H =
[
H(k) 0

0 H∗(−k)

]
H(k) = ε(k) +

∑
i

di(k)σi (2.1)

with the basis of |E1 ↑〉, |H1 ↑〉, |E1 ↓〉, and |H1 ↓〉, where ↑ and ↓ represent the
spin up and down states, respectively. Here, σi are the Pauli matrices for spin,
and

d1 + id2 = A(kx + iky) ≡ Ak+, (2.2)

d3 = M −B(k2
x + k2

y), (2.3)

ε(k) = C −D(k2
x + k2

y), (2.4)

where A, B, C, and D are material specific constants [15], with B being negative
in HgTe QWs [93]. This model is called the Bernevig-Hughes-Zhang (BHZ)
model, and shows that the QSH phase in HgTe QWs can be described by two
copies, H(k) and H∗(−k), of the (2 + 1)-dimensional Dirac Hamiltonian (plus
an ε(k)-term), where the form of H∗(−k) is determined by TRS [15].
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(a)

(b)

∆C = 1

Figure 2.2: (a) Band diagram near the Γ-point for a CdTe-HgTe-CdTe
heterostructure. The HgTe QW is in the normal regime E1 > H1 for d < dc
and in the inverted regime E1 < H1 for d > dc. (b) Schematic of the Meron
configurations of the vector d̂ = d(k)/|d(k)| near the Γ-point. The change in
Meron number ∆C for the E1 and H1 subband crossing at dc is exactly equal
to 1. Figures (a) and (b) are taken from Ref. [15]. Reprinted with permission
from AAAS.

At the critical thickness dc, where the E1 and H1 subbands cross, the mass
M in Eq. 2.3 changes sign between the two sides of the transition [15]. It is
instructive to discuss the effect of the sign change of M on H(k). When H(k)
is expressed in terms of the vector d(k) = [d1(k), d2(k), d3(k)]T , the Chern
number [144, 147] can be defined as

C = 1
4π

∫∫
d̂ ·
(
∂d̂
∂kx
× ∂d̂
∂ky

)
dkxdky. (2.5)

where d̂ = d(k)/|d(k)|, and the integral is taken over the first Brillouin zone
(BZ). Note that the low-energy effective Hamiltonian describes only the band
structure near the Γ-point; and is not on a lattice (kx, ky →∞). While it is not
possible to determine the Chern number of the full system by analyzing only a
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small part of the band structure in the BZ, it is possible to calculate the change
in Chern number upon closing and reopening the gap by focusing only on the
vicinity of the point where the transition happens [14]. Let us first consider the
simple case of the continuum Dirac Hamiltonian d(k) = [Akx, Aky,M ]T up to
linear1 terms in k. Integrating Eq. 2.5 to infinity, yields the well-know result
[14]:

C = 1
2 sign(M). (2.6)

The unit vector d̂ = d(k)/|d(k)| with d(k) = [Akx, Aky,M ] is shown as a
function of k in Fig. 2.2(b) for M > 0 and M < 0. The d̂ vector has a Meron
configuration (i.e. half of a Skyrmion) with d̂ pointing up or down at the origin
(d3 = ±M), and with d̂ pointing in-plane and away from the origin for large
values of k [14]. Hence, closing and reopening the gap, which corresponds to the
sign-inversion ofM , gives rise to a change in the Chern number by ∆C = 1. This
means that the band crossing between the subbands E1 and H1 with increasing
QW-thickness is a topological phase transition (see Fig. 2.2). However, by solely
examining the continuum Dirac Hamiltonian, it is not possible to identify which
regime, normal (d < dc) or inverted (d > dc), corresponds to the topologically
nontrivial phase.

The Chern number is only an integer if the base manifold (the BZ) is compact,
whereas for the continuum Dirac Hamiltonian the momentum runs over a
noncompact manifold (i.e. the infinite Euclidean plane) [14]. Hence, in order
to obtain a precise determination of the Chern number for the QSH system,
it is instructive to consider a simple tight-binding model for the E1 and H1
subbands:

d1 + id2 = A [sin(kx) + i sin(ky)] , (2.7)

d3 = −2B
[
2− M

2B − cos(kx)− cos(ky)
]
, (2.8)

ε(k) = C − 2D [2− cos(kx)− cos(ky)] . (2.9)

This is identical2 to the continuum Dirac Hamiltonian in Eqs. 2.2–2.4 when
expanded around the Γ-point [14, 15]. The tight-binding model is fully gapped
except for certain values of M at high-symmetry points in the BZ. Namely,

1In order to get the result shown in Eq. 2.6 the quadratic term B(k2
x + k2

y) of d3 was not
included. This quadratic term should be thought of as a correction near the Γ-point (k = 0),
and hence would leads to an erroneous Chern number if integrated to infinity.

2Notice that the quadratic term B(k2
x + k2

y) of d3 follows naturally from the Taylor
expansion of the cosine near k = 0 in the tight-binding model (Eq. 2.8).
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Figure 2.3: The first observation of the quantum spin Hall effect (QSHE). The
four-terminal longitudinal resistance R14,23 ≡ V23/I14, measured at T = 30 mK
in B = 0 T, is shown for several HgTe QW devices, in the normal (d = 5.5 nm,
device I) and inverted regime (d = 7.3 nm, devices II, III, and IV) as a function
of the normalized gate voltage (Vg−Vthr), where Vthr corresponds to the voltage
for which R14,23 is largest. The inset shows the schematic of the gated Hall-bar
device. The contacts are labeled 1 to 6, and the gray shaded region indicates the
top-gate electrode. The red and blue arrows represent the counter-propagating,
spin-polarized edge channels of the QSHI. The Hall-bar sizes are 20.0 × 13.3 µm2

for devices I and II, 1.0 × 1.0 µm2 for device III, and 1.0 × 0.5 µm2 for device IV.
This figure is taken from Ref. [93]. Reprinted with permission from AAAS.

the (0, 0) point becomes gapless at M/2B = 0, the (0, π) and (π, 0) points
become gapless at M/2B = 2, whereas the (π, π) point becomes gapless at
M/2B = 4 (see Ref. [14] for details). Integrating this lattice model over the
BZ yields: C = 0 for M/2B < 0 and C = 1 for 0 < M/2B < 2, which are the
experimentally relevant conditions with M/2B = 2.02× 10−4 for the inverted
regime at d = 7 nm, and M/2B < 0 for the normal regime [15]. Hence, the
inverted band structure for d > dc ≈ 6.3 nm is the topologically nontrivial
regime supporting the QSHE.

Until now, only the upper 2 × 2 block H(k) of the low-energy effective
Hamiltonian (Eq. 2.1) was considered. TRS dictates that C(H) = −C(H∗);
hence, the total Chern number of the system vanishes and so too does the
Hall conductance σxy = Ce2/h. However, in the QSH phase the charge current
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flows through two counter-propagating 1D edge states [Fig. 2.1(a)], and their
quantized h/(2e2) signature can be measured in two- and four-terminal transport
measurements. Here, it is important to point out that each metal contact leads
to the equilibration of the two helical edge channels with opposite spin, since
the metal contacts themselves are not spin sensitive [93]. As a result, there will
be a quantized voltage drop h/(2e2)I, not only at the source and drain contacts,
but at each metal contact.

Figure 2.3 shows the four-terminal longitudinal resistance R14,23 as a function
of the gate voltage for several QW devices. Here, the first index denotes
the current probes (1–4), while the second index denotes the voltage probes
(2–3). The Fermi level could be scanned through the bulk band gap for all QW
devices, as evidenced by the low-resistance regions at large positive (n-type)
and negative (p-type) gate voltages. Device I is in the normal regime with
d = 5.5 nm (< dc ≈ 6.3 nm), whereas devices II, III, and IV have the inverted
band structure with d = 7.3 nm. Inside the bulk gap, the conductance (denoted
by ‘G’ in Fig. 2.3) is close to zero for device I, while for device III and IV it is
very close to the quantized value 2e2/h expected for two helical edge channels.
Notice that the conductance of device III and IV does not scale with the width
of the Hall-bar, which is consistent with the current flowing predominately
through the 1D edge channels. For the large device II, the conductance is no
longer quantized G = 0.3e2/h, which indicates the inelastic mean-free-path lin
is in the range 1 µm < lin < 20 µm at the measurement temperature of 30 mK.

2.1.2 3D Topological Insulators

The concept of a 2D-TI can be readily expanded to three dimensions, where
the bulk-boundary correspondence leads to 2D surface states at the interface
of the 3D-TI and an ordinary insulator [3], see Fig. 2.4(a). For time-reversal
invariant 3D-TIs, the nontrivial band topology is protected by TRS and the spin
degeneracy is lifted, giving rise to a 2D Dirac cone with helical spin polarization,
as shown in Fig. 2.4(b). The 2D surface states can be described by the effective
Hamiltonian

H(k) = vF (kyσx − kxσy), (2.10)

where vF is the Fermi velocity and σi are again the Pauli matrices for spin [144,
147]. As seen from Eq. 2.10, the spin is locked perpendicular to the momentum.
Moreover, this helical spin polarization prohibits elastic backscattering between
the states at k and −k, as long as TRS is not broken. Figure 2.5(a-b) show
the electronic band structure of the 3D-TI Bi2Se3 measured by angle-resolved
photoemission spectroscopy (ARPES) [36]. The 2D surface state of Bi2Se3
shows an almost ideal Dirac cone with only slight convex hexagonal warping near
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(a) (b)

Figure 2.4: Illustration of the helical surface states of a 3D topological insulator
in real space (a), and reciprocal space (b). The spin degeneracy is lifted for the
energy dispersion of the surface state forming a 2D Dirac cone at the Γ-point.
Figures (a) and (b) are reprinted with permission from Ref. [3]. © (2013) The
Physical Society of Japan.

(a) (b) (c)

Figure 2.5: Electronic band structure of Bi2Se3 measured by ARPES. (a) The
2D surface-state band (SSB) forms a Dirac cone at the Γ-point, whereas the bulk
conduction band (BCB) and bulk valence band (BVB) are well separated. The
position of the Fermi level (EF), the bottom of the BCB (EB), and the Dirac
point (ED) are indicated. (b) The corresponding constant-energy contours of
the band structure showing the SSB evolution to a hexagonal shape near EB.
(c) The spin-resolved pump-probe ARPES spectrum along the Γ-K direction,
showing the spin texture of the topological surface state (TSS). The spectrum
is plotted with a 2D color-scale, with the horizontal axis corresponding to the
intensity and the vertical axis corresponding to the spin polarization along the
ky-axis. The spectrum also shows an unoccupied surface resonance (USR) with
a helical spin texture opposite to that of the TSS. Figures (a-b) are taken from
Ref. [36]. Reprinted with permission from AAAS. Figure (c) is taken from
Ref. [78], and reproduced with permission from SNCSC.
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the bulk conduction band. Figure 2.5(c) shows the spin-resolved pump-probe
ARPES spectrum for the surface state of Bi2Se3 along the Γ-K direction [78].
The helical spin polarization is clearly visible with states at kx and −kx showing
a spin polarization along ky and −ky, respectively.

An in-depth discussion of all the properties of 3D (and 2D) TIs, as well as
the Z2 topological classification, falls outside the scope of this thesis, and the
reader is directed to Refs. [3, 14, 144, 147, 196] for a comprehensive review
of the topic. Before moving to the next section, it is interesting to remark
that ever since the early experimental works on TIs [66, 67, 93, 131, 160, 172],
the field of TI materials has grown exponentially. While a topological band
structure was initially thought to be a peculiar exception to the rule, Bernevig
et al. have demonstrated in recent years that 52.65% of all known nonmagnetic
materials are topological at the Fermi level, whereas 87.99% contain at least
one topological band in their band structure [23, 177, 179]. Of course only very
few materials will show such a clean topological phase as for instance Bi2Se3 in
Fig. 2.5. The inverted band gaps can be very small, or the topological surface
states could be masked by a large number of trivial surface or bulk bands at the
Fermi level. The (re)discovered ‘topologically derived surface states’ in Au and
other noble metals [195] are a good example of this omnipresence of topological
bands in nature. In summary, it is fair to say that band topology constitutes a
new paradigm in condensed matter physics, which will inspire researchers for
years to come.

2.1.3 Charge Compensation & Puddles

Until now, the band structures of 2D and 3D TIs were addressed without
paying much attention to the position of the Fermi level EF. Returning to
the surface states of Bi2Se3 shown in Fig. 2.5, one can see that EF lies deep
in the bulk conduction band. This is certainly beneficial for ARPES which
probes the occupied electronic states, and hence will resolve the 2D Dirac cone
of Bi2Se3 across the full bulk band gap (without the need for surface doping or
pump-probe techniques). However, the bulk bands will dominate the electrical
conductivity in magneto-transport measurements masking the contribution of
the 2D surface states, unless EF lies inside the bulk band gap. In fact, the
binary chalcogenide TI materials – Bi2Se3, Bi2Te3, and Sb2Te3 – always show
a large bulk conductivivity due to charge carriers stemming from naturally
occurring crystalline defects.

In order to tune EF into the bulk band gap, and hence obtain ‘bulk-
insulating’ TIs, a band engineering approach relying on the ternary compound
(BixSb1-x)2Te3 was proposed [92, 213]. Since Bi2Te3 and Sb2Te3 have the
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(a) (b) (c)

Figure 2.6: (a) The tetradymite crystal structure of the topological insulator
(BixSb1-x)2Te3. The Bi and Sb atoms occupy random cation positions. (b-c)
The schematic band structure of pure Bi2Te3 (b) and Sb2Te3 (c). The helical
surface states are represented by red and blue lines. For pure Bi2Te3 the Dirac
point (DP) is buried in the bulk valence band (BVB), whereas for Sb2Te3 the DP
lies within the bulk band gap. Hence, by fine-tuning the Bi/Sb composition ratio
in (BixSb1-x)2Te3 charge compensation can be achieved, while simultaneously
moving the Dirac point position into the bulk band gap. Figures (a-c) are taken
from Ref. [213], and reproduced with permission from SNCSC.

same crystal structure with close lattice constants [211], the ternary compound
(BixSb1-x)2Te3 is stable over the full composition range x [92, 213]. Figure 2.6(a)
shows the crystal structure of (BixSb1-x)2Te3 with Bi and Sb randomly
occupying the cation positions, while Figs. 2.6(b-c) show the schematic band
structures of pure Bi2Te3 and Sb2Te3. For Bi2Te3, EF lies in the bulk conduction
band due to the n-type bulk carriers induced by Te vacancies [213]. For Sb2Te3,
on the other hand, the p-type bulk carriers induced by Sb–Te anti-site defects
cause EF to lie in the bulk valence band [213]. Moreover, for Bi2Te3 the Dirac
point is buried in the bulk valence band, whereas for Sb2Te3 it lies within the
band gap. As shown in Ref. [213] for thin films and in Ref. [92] for bulk crystals
and flakes, one can simultaneously achieve charge compensation and tune the
Dirac point position by changing the Bi/Sb composition ratio. In principle,
this band engineering approach via isostructural (and isovalent) alloying can be
extended to ternary compounds, e.g. (BixSb1-x)2(TeySe1-y)3 [152, 161]. However,
care needs to be taken to avoid a topological phase transition to the trivial
phase, e.g. pure Sb2Se3 is topologically trivial [211].
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The problem of the high concentration of n-type (Donor, N+
D ) and p-type

(Acceptor, N−A ) crystalline defects in (BixSb1-x)2Te3 might seem solved now.
Namely, the degree of charge compensation K = N−A /N

+
D can be tuned to

K = 1 (i.e. ‘perfect compensation’) by simply varying the Bi/Sb composition
ratio. For K = 1, EF lies in the middle of the bulk band gap and the most
insulating state for the TI is realized [169]. However, it is important to consider
the effect of the random spatial distribution of the charged impurities on both
the bulk and surface properties of 3D-TIs.

For perfect compensation (K = 1), the donors give their electrons to the
acceptors, resulting in positively charged empty donors and negatively charged
occupied acceptors [20]. As a result, the average concentration of electrons in the
bulk (n = N+

D −N
−
A ) vanishes, and the random spatial fluctuations of N−A and

N+
D , i.e. the spatial charge fluctuations, are poorly screened due to the limited

amount of free charge carriers [169]. In a volume of size R3, these random
fluctuations lead to an uncompensated charge3 of ∼ e

√
NdefR3 with Ndef =

N−A = N+
D for K = 1, and a Coulomb potential of ∼ e2√NdefR3/(4πε0εR),

where ε is the dielectric constant [20]. Hence, the fluctuations in the Coulomb
potential grow as ∼

√
R, and will bend the conduction and valence band edges.

The potential fluctuations will, in some regions, reach an amplitude of Eg/2
(i.e. half the bulk band gap), causing the band edges to cross EF. This results
in the creation of electron and hole puddles [see Fig. 2.7(a)], which in turn
nonlinearly screen the random potential [169]. The characteristic length scale
for this process is given by

Rp =
(
Eg
Edef

)2
ddef

8π , (2.11)

where ddef = N
− 1

3
def is the average defect separation and Edef is the Coulomb

interaction between neighboring defects [20, 167]. Assuming Eg = 0.3 eV,
Ndef = 1020 cm−3, and ε = 200 [20], the characteristic length scale becomes
Rp ≈ 690 nm. The distance Rp is related to the average puddle size, as shown
in Fig. 2.7(a), and is much larger than ddef ≈ 2.2 nm, meaning we are dealing
with a long-range potential.

At relatively high temperatures T , the resistivity ρ of 3D-TI crystals is dominated
by the thermal activation of bulk carriers:

ρ = ρ0 exp
(

∆a

kBT

)
, (2.12)

3The uncompensated charge makes a random walk in one-dimension over the integer
numbers Z. Hence, the expected ‘translation distance’ after x steps is of the order of

√
x.
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Figure 2.7: Schematic of the 3D real-space band structure of a completely
compensated (K = 1) TI crystal (a), and a strongly compensated (1−K � 1)
TI crystal (b). The Fermi level EF , as well as the unperturbed conduction band
bottom EC and valence band top EV , are represented by the solid straight lines.
The meandering lines, on the other hand, represent the deformed band edges in
the presence of the long-range Coulomb potential, resulting from the random
spatial fluctuations of the charged impurities. The electron and hole percolation
levels, Ee and Eh, are shown by the dashed lines. The shaded regions indicate
the electron and hole charge puddles. The size of the characteristic length scale
Rp, average defect separation ddef, bulk band gap Eg, and activation energy ∆a

are shown by the arrows. Figures (a) and (b) are taken from Ref. [169], and
reproduced with permission from SNCSC.
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where ∆a is the activation energy, and kB is the Boltzmann constant. Naively,
one would expect ∆a = Eg/2. However, as shown in Fig. 2.7(a), ∆a is
significantly smaller than Eg/2. In fact, Skinner et al. predicted ∆a ≈ 0.15Eg for
K = 1 [167], which is consistent with the small activation energies measured in
transport experiments [152]. These small activation energies can be understood
as the electrons and holes inside the puddles being thermally excited to their
corresponding percolation levels (Ee and Eh in Fig. 2.7) in the conduction and
valence band, rather than electrons from the valence band being thermally
excited to the conduction band [169]. In other words, the thermal energy kBT
causes electrons to hop between the nearest-neighbor sides at the Fermi level,
i.e. between neighboring puddles.

Figure 2.7(b) shows a schematic of the 3D band structure of an n-type TI crystal
close to perfect compensation (1 −K � 1). As 1 −K increases, the average
concentration of electrons n = N+

D −N
−
A (� N+

D ) increases as well, resulting in
better screening of the Coulomb potential. The Fermi level EF will move towards
higher energy, causing the hole puddles to shrink and eventually disappear, but
the electron puddles remain [169]. Moreover, as EF increases, the activation
energy ∆a will decrease. Chen et al. predicted that ∆a ≈ 0.3(EC − EF ) for
n-type crystals and ∆a ≈ 0.3(EF − EV ) for p-type crystals close to perfect
compensation (1−K � 1) [35].

At sufficiently low temperatures, the electrons and holes can hop or tunnel
directly between the puddles, and the activated transport gives way to a variable-
range-hopping (VRH) temperature dependence of the resistance [169]. This
crossover was also observed experimentally [152], giving further evidence of the
puddle physics in TI crystals. Moreover, by comparing the optical and electrical
conductivity, Borgwardt et al. clearly demonstrated the presence of 3D puddles
in the bulk-insulating TI crystal BiSbTeSe2 at low temperatures, as well as
their disappearance (‘evaporation’) with increasing temperature [20].

It is important to comment on the effect of Coulomb disorder on the surface
potential as well. Close to the surface of the TI crystal, the Coulomb potential
is strongly screened by the metallic surface states. As a result, the amplitude
of the potential fluctuations might not reach Eg/2, suppressing the formation
of 3D charge puddles near the surface [19, 168]. However, the screening by the
metallic surface states is achieved by the redistribution of the Dirac-like charge
carriers, which results in fluctuations of the surface potential (i.e. EF versus
the Dirac-point position). Scanning tunneling microscopy (STM) experiments
revealed surface potential fluctuations of ∼8–14 meV in compensated BiSbTeSe2
crystals over a characteristic length scale of 40–50 nm [86]. Since the surface
states are gapless (as long as TRS is preserved), any finite variation of the
surface potential will lead to the creation of 2D electron and hole puddles on
the TI surface.
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Figure 2.8: Schematic of the electric field lines emanating from a positively
charged impurity inside a TI thin film with thickness d and dielectric constant
εf . If εf � (ε1 + ε2)/2, the electric field E channels through the high-ε film
for a distance rTI before escaping into the low-ε environment. For comparison,
r0 ≈ εf

ε1+ε2
d indicates the larger distance electric field lines would travel before

escaping a topologically trivial film, due to the absence of the screening provided
by the metallic surface states. Reprinted figure with permission from Ref. [69].
© Copyright (2021) by the American Physical Society.

Lastly, one might naively expect that the Coulomb disorder plaguing TI
crystals, disappears when working with TI thin films instead. Indeed, the defect
concentration for a film with thickness d would be small (Ndefd). Moreover,
for sufficiently thin films the potential fluctuations in the bulk are screened
simultaneously by the metallic surface states on the top and bottom surfaces.
However, Huang et al. recently showed that due to the large dielectric constant
of TI materials relative to the low-dielectric environments of typical device
architectures (see Fig. 2.8), the electric field lines emanating from charged
defects are trapped inside the TI film for a distance rTI before escaping outside
[69]. As a result, the fluctuations of the Coulomb potential decay slowly in
space, leading to significant fluctuations of the surface potential even for small
defect concentrations Ndefd [69]. For thicknesses as small as several nanometers,
Huang et al. predicted surface fluctuations of tens of meV, which are values
comparable to those found on the surfaces of TI crystals [69].

2.2 Magnetic Topological Insulators

In this section, the role of an out-of-plane magnetic field or magnetization on
the 2D surface states of a TI thin film will be discussed, and the realization of
the QAH phase in a magnetically doped TI in the presence of significant charge
and magnetic disorder will be addressed.
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Figure 2.9: Illustration of a quantum anomalous Hall insulator (QAHI). (a) A
thin slab of a magnetic TI can be considered as a quasi-2D material as the
3D bulk conduction band (BCB) and bulk valence band (BVB) are well
separated in energy, and the topological surface states (TSS) on the size
surfaces gap out due to the confinement effect (see section 4.9 for details).
The spontaneous magnetization of the magnetic impurities, represented by the
yellow arrows, break time-reversal symmetry (TRS) on the top and bottom
surface. (b) Illustration of the energy spectrum of a QAHI. The 2D TSS on
top and bottom surface are gapped due to broken TRS, but this exchange gap
closes at the sample’s edges where the chiral edge state connects the upper and
lower branches.

2.2.1 The Quantum Anomalous Hall Effect

The QAHE is realized in thin films of magnetically doped TIs, where the
combined effect of broken TRS on the top and bottom surface gives rise to a
spinless chiral 1D edge state, see Fig. 2.9. To understand the underlying physics,
it is instructive to discuss the low-energy effective Hamiltonian describing the
TI system and include an exchange field M along the z-axis to represent the
ferromagnetic (FM) ordering of the magnetic dopants. Note that in a 3D-TI
Eq. 2.10 describes the topological surface state on the top surface, which can
be rewritten as

HTop = vF (kyσx − kxσy) =
[

0 ivF k−
−ivF k+ 0

]
, (2.13)

using k± = kx±iky. Similarly, the bottom surface hosts a surface state described
by

HBottom = −vF (kyσx − kxσy) =
[

0 −ivF k−
ivF k+ 0

]
, (2.14)
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where the minus sign ensures the spatial inversion-symmetry relation between the
top and bottom surface. The 3D bulk conduction and valence band [Fig. 2.9(b)]
are well separated and not considered in this low-energy model. Now, the 4× 4
effective Hamiltonian for the 2D system [188, 210], can be written as

HSS +HZeeman =


0 ivF k− m∗k 0

−ivF k+ 0 0 m∗k
mk 0 0 −ivF k−
0 mk ivF k+ 0



+


gM 0 0 0
0 −gM 0 0
0 0 gM 0
0 0 0 −gM

 , (2.15)

with the basis |t↑〉, |t↓〉, |b↑〉, and |b↓〉, where t, b denotes the surface states on
the top and bottom surfaces, while ↑, ↓ represents the spin up and down states,
respectively. Note that tunneling between the top and bottom surface states
is allowed via the mass term mk, which can be expanded up to second order4

as mk = m0 +B(k2
x + k2

y). HZeeman describes the Zeeman splitting due to the
exchange field ±gM , where g is the effective g-factor.

It is convenient to rewrite the Hamiltonian (Eq. 2.15) in terms of the symmetric
and antisymmetric combinations of the surface states on the top and bottom
surfaces [188, 210], i.e. |±↑〉 = (|t↑〉 ± |b↑〉)/

√
2 and |±↓〉 = (|t↓〉 ± |b↓〉)/

√
2,

which yields

H̃SS + H̃Zeeman =


mk + gM ivF k− 0 0
−ivF k+ −mk − gM 0 0

0 0 mk − gM −ivF k+
0 0 ivF k− −mk + gM


=
[
hk + gMσz 0

0 h∗k − gMσz

]

=
[
H̃+(k) 0

0 H̃−(k)

]
, (2.16)

with the new basis |+↑〉, |−↓〉, |+↓〉, and |−↑〉. The expression can be written
more concisely using hk = mkσz + vF (kyσx − kxσy).

4Notice that the mass term mk differs slightly from the mass term in the BHZ model
(Eq. 2.3) which has a minus sign in front of B.
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(a)

(b)

Figure 2.10: Band diagram for a QAHI, showing the evolution of the subbands
with increasing exchange field. The solid (dashed) lines denote the subbands
with even (odd) parity at the Γ-point, while the red (blue) color denotes the spin
up (down) electrons. (a) The initial subbands are not inverted (m0B > 0). A
strong enough exchange field causes one pair of subbands (red dashed and blue
solid line) to invert. (b) The initial subbands are already inverted (m0B < 0).
The exchange field lifts the band inversion in one pair of subbands (red solid
and blue dashed line) and increases the band inversion in the other pair (red
dashed and blue solid line). Lastly, the degeneracy at the band crossings is
lifted by turning on the spin-orbit coupling (SOC) interaction, giving rise to
an insulating state with a topologically nontrivial band structure characterized
by a finite Chern number. This figure is taken from Ref. [210]. Reprinted with
permission from AAAS.
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Notice that Eq. 2.16 is similar to the BHZ model discussed in section 2.1.1.
Namely, the system will be in the QSH phase if m0B < 0 [210]. However,
whether the system is initially in the topologically nontrivial phase or not, a
strong enough exchange field gMσz will change the Chern number of one of
the two blocks of the effective Hamiltonian realizing the QAH phase [210], as
shown in Fig. 2.10.

Suppose the four-band system is initially in the topologically trivial phase
[m0B > 0, Fig. 2.10(a)], the exchange field will push the two subbands of the
upper block H̃+(k) farther apart, while inducing a band inversion between the
two subbands of the lower block H̃−(k). If the system, on the other hand, is
initially in the QSH phase [m0B < 0, Fig. 2.10(b)], the band structure of both
blocks are inverted. In this case, the exchange field will undo the band inversion
between the two subbands of the upper block H̃+(k), while further increasing
the band inversion of the lower block H̃−(k). Hence, in both cases the upper
(lower) block acquires a (non)trivial band structure. Obviously, the situation is
reversed for the opposite magnetization direction.

Here, it is prudent to point out the importance of the fact that the realization
of the QAH phase is independent of the underlying topology of the 2D system
(QSHI or trivial). Namely, Liu et al. showed that the crossover regime from
a 3D-TI to 2D-TI (with QSHE) occurs in an oscillatory fashion as a function
of the layer thickness, alternating between topologically trivial and nontrivial
2D phases [114]. On the other hand, the growth of thin films of Cr/V-doped
(BixSb1-x)2Te3, the prototypical QAH material system, is always accompanied
by considerable roughness [cf. Fig. 3.5(b)]. Hence, if the underlying topology of
the 2D system would have been important, the realization of an uniform QAH
phase throughout the whole thin film of Cr/V-doped (BixSb1-x)2Te3 might
have been impossible. Details on the growth of QAH thin films will be given in
chapter 3.

Next, let us rewrite the Hamiltonian in Eq. 2.16 in term of the Pauli matrices:

H̃± = vF (kyσx ∓ kxσy) + (mk ± gM)σz =
∑
i

d±,i(k)σi. (2.17)

However, in order to get a better understanding of the topology of H̃±, and to
show that the Chern number of the blocks can indeed change for sufficiently
large exchange fields, it is better to consider the corresponding tight-binding
model for the QAHE [146]:

d±,1 + id±,2 = vF [sin(ky)∓ i sin(kx)] , (2.18)
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Figure 2.11: The configuration of d̂+ = d+/|d+| in the first Brillouin zone
with vF = 1, |m0 + gM |= 1, and B = 0.5. The vector d̂+ acquires a trivial
(zero) winding number for m0 + gM > 0 (a), whereas a Bloch-type Skyrmion
configuration is obtained for m0 + gM < 0 (b). The color scale shows the
amplitude along the kz-direction.

d±,3 = 2B
[
2 + m0 ± gM

2B − cos(kx)− cos(ky)
]
. (2.19)

Notice that this tight-binding model for H̃± is identical to the tight-binding
model of the QSHI (Eqs. 2.7–2.8) up to a rotation.5 In the following we will
take B > 0. Figure 2.11 shows the configuration of d̂+ = d+/|d+| in the first
Brillouin zone. It is immediately clear from the figure, that for m0 + gM > 0
the winding number is trivial [Fig. 2.11(a)], while for m0 + gM < 0 the vector
d̂+ has a Skyrmion configuration [Fig. 2.11(b)].

Using Eq. 2.5, the Chern number of H̃±(k) is found to be either ∓1 or 0,
depending on whether the Dirac mass is inverted (m0 ± gM < 0) or not
(m0 ± gM > 0) at the Γ-point [188]. The total Chern number of the system6

5Notice that Eqs. 2.18–2.19 for the QAHE give rise to a Bloch-type Skyrmion configuration
(see Fig. 2.11), whereas Eqs. 2.7–2.8 for the QSHE define a Néel-type Skyrmion configuration.

6In principle, the total Chern number in Eq. 2.20 for the tight-binding model (Eqs. 2.18–
2.19) has an upper-limit given by the gap closure at the (0, π) and (π, 0) points for (m0 ±
gM)/2B = −2. However, Wang et al. showed that higher energy bands need to be considered
for large exchange fields [186].
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Figure 2.12: Magnetic-field dependence of σxy and σxx. (a) Sketch of σxy
and σxx as a function of the applied magnetic field H. The hysteresis loop of
σxy shows a zero-conductance-plateau, while σxx shows two peaks around the
coercive field. (b) Temperature dependence of the zero-conductance-plateau
σxy = 0 with T1 < T2 < T3. (c) The corresponding curves for σxx. Reprinted
figure with permission from Ref. [188]. © Copyright (2014) by the American
Physical Society.

can than be summarized as

C =
{
gM/|gM |, for |gM |> |m0|
0, for |gM |< |m0|

. (2.20)

Hence, the Hall conductance σxy = Ce2/h is quantized and depends only on
the magnetization direction as long as the exchange field gM is large enough to
change the band ordering of H̃±(k). Note that the Chern number changes by 1
at gM = ±m0, which can give rise to a pronounced zero-conductance-plateau
in σxy at the coercive field Hc for thin QAH films with a sizable hybridization
gap m0 [82, 95], see Fig. 2.12. However, the QAHI films used in this thesis are
rather thick (∼8 nm), and hence did not show such a zero-conductance-plateau.

A Chern number of C = ±1 implies the existence of a 1D chiral gapless edge state
at the boundary of the QAHI and an ordinary insulator (including the vacuum),
see Fig. 2.9(b). Let us focus on H̃−(k) which is topological for gM > m0, and
assume the edge of the QAHI is perpendicular to the y-direction. The localized
wave-function of the chiral edge state along the y-direction can then be found
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by solving the eigenvalue equation:

[(m0 −B∂2
y − gM)σz − ivFσx∂y]ψ(y) = 0, (2.21)

which yields:

ψ(y) = C
(
e−λ+y − e−λ−y

)
(i|+↓〉+ |−↑〉) , (2.22)

λ± =
vF ±

√
v2
F + 4B(m0 − gM)

2B , (2.23)

where C is a normalization factor [214]. Notice that the wave-function ψ(y) of
the chiral edge mode consists of an equal superposition of |+↓〉 and |−↑〉, and
hence is spinless. Surprisingly, this means that the chiral edge state of the QAH
phase in a magnetic 3D-TI has no spin polarization. Only when the inversion
symmetry between the top and bottom surfaces is broken, does the edge state
obtain a small spin polarization along the in-plane y-direction [214].

Lastly, since the QSHI consists of two spin-polarized, time-reversal copies of
the QAHI,7 it begs the question: “Why has the QAHE not been realized in
magnetically doped HgTe QWs?”. The QAH phase has indeed been proposed
for Hg1-xMnxTe QWs [112]. Experimentally, however, Mn doping leads to
paramagnetism,8 rather than ferromagnetism. That being said, Shamim et al.
showed that applying an out-of-plane magnetic field of only ∼50–85 mT to
Hg1-xMnxTe QWs with the inverted band order can induce an i = −1 quantum
Hall plateau (cf. Eq. 1.1 with i the filling factor) in the transverse resistance,
depending on the position of the Fermi level [165]. The underlying physics,
however, is very different from the QAHE.9

2.2.2 Magnetic Disorder, Charge Compensation, and 2D
Puddles

The QAHE can be realized by substitutional doping of the topological insulator
(BixSb1-x)2Te3 with the transition metal ions Cr or V, which leads to a insulating
FM ground state with an out-of-plane easy-axis [30, 32]. The nature of the FM
interaction between the dopants is still not well understood. The Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction can be ruled out when the Fermi

7Unlike the spinless QAH phase in a magnetic 3D-TI (Eq. 2.22), the two time-reversal
blocks H(k) and H∗(−k) in Eq. 2.1 each describe a spin-polarized QAHI [112].

8Some Hg1-xMnxTe crystals also displayed a transition to a (frustrated) antiferromagnet
at low temperature [129].

9Note that the initial claim on arXiv of the realization of the “Quantum anomalous Hall
effect in Mn doped HgTe quantum wells” was never published [27].
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level lies inside the exchange gap due to the negligible amount of free carriers
[79]. Initially, the sizable spin susceptibility in the insulating state, stemming
from Van Vleck paramagnetism, was proposed to facilitate the FM ordering
of the magnetic dopants [106, 210, 212]. More recent studies, on the other
hand, point to a Zener-type pd-exchange interaction mediated by the Sb/Te 5p
states [173, 178, 206, 207]. In addition to the uncertainty about the exchange
interaction [170], the magnetic order in a macroscopic QAH system might also
be rather complicated, with reports of superparamagnetism [53, 98, 99]. In
particular, Lachman et al. demonstrated that instead of long-range ferromagnetic
order, a superparamagnetic phase forms in Cr-doped (BixSb1-x)2Te3 thin films
as a consequence of the inhomogeneous spatial distribution of the magnetic
impurities, resulting in weakly interacting magnetic domains of a few tens of
nm in size [98, 99], see Fig. 2.13.

Such an inhomogeneous spatial distribution of the magnetic impurities will
induce strong local fluctuations in the size of the exchange gap. Nevertheless,
the band engineering approach relaying on fine-tuning the Bi/Sb composition
ratio (see section 2.1.3) has proven very successful in tuning the Fermi level
into the exchange gap of Cr/V-doped (BixSb1-x)2Te3 thin films. Indeed, the
high degree of charge compensation has lead to the precise quantization of the
transverse resistance to within an error of about 10−8 [133], and a longitudinal
sheet resistance as low as 1–2 mΩ [50, 133]. One might expect an even better
charge compensation for magnetically doped (BixSb1-x)2(TeySe1-y)3 thin films.
However, adding Se atoms is not straightforward as demonstrated by Zhang
et al., who observed a quantum phase-transition (QPT) from a magnetic TI
to a paramagnetic trivial insulator for Bi1.78Cr0.22(SexTe1-x)3 when increasing
the Se content above x & 0.63 [212]. The observed QPT is caused by the loss
of SOC strength due to the combined effect of substituting Bi with Cr and Te
with Se [77], whereas the loss of the FM state was explained by the Van Vleck
mechanism [210]. Hence, the V/Cr-doped (BixSb1-x)2(TeySe1-y)3 system has
a rich topological and magnetic phase diagram as a function of its chemical
composition.

As discussed in section 2.1.3, the random spatial distribution of the charged
donors and acceptors, leads to 3D charge puddles in TI crystals, as well as 2D
charge puddles on the surface of TI crystals and thin films. In QAHI films, the
tendency to form 2D puddles would be strong, because little surface carriers are
available to screen the Coulomb potential, since EF lies inside the 2D surface gap
[Fig. 2.9(b)]. Hence, screening can only occur nonlinearly through the formation
of 2D electron and hole puddles [169]. In chapter 4, the consequences of 2D
charge puddles on the QAHE will be discussed, and the electric-field-driven
percolation of these puddles will be put forward as the most likely cause of the
current-induced breakdown of the QAHE.
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Figure 2.13: Scanning SQUID image of the out-of-plane magnetic field Bz above
the sample surface of a Cr-modulation-doped (BixSb1-x)2Te3 thin film. The
measurement of Bz was performed over an area of 8 × 4 µm2 at 300 mK in
an applied field of 166.4 mT, which is slightly higher than the coercive field
(µ0HC = 137 mT). The dotted line indicates the edge of the sample. The red
and blue colored regions, with positive and negative values of Bz respectively,
are interpreted as weakly coupled superparamagnetic domains. This figure is
taken from Ref. [98], and reproduced with permission from SNCSC.

2.3 Topological Superconductivity in QAH Hybrid
Structures

Let us end the chapter by briefly addressing the intriguing physics of a QAHI
proximitized by an s-wave superconductor. Using Eq. 2.15 (with H0 = HSS +
HZeeman), the Bogoliubov-de Gennes (BdG) Hamiltonian [189] becomes

HBdG = 1
2
∑
k

Ψ†kHBdGΨk, (2.24)

HBdG =
[
H0(k)− µ ∆k

∆†k −H∗0 (−k) + µ

]
, (2.25)

∆k =
[
i∆1σy 0

0 i∆2σy

]
, (2.26)

where Ψk = [(ctk↑, ctk↓, cbk↑, cbk↓), (c
t†
−k↑, c

t†
−k↓, c

b†
−k↑, c

b†
−k↓)]T . Here, µ denotes the

chemical potential, while ∆1 and ∆2 are the pairing gap functions for the top
and bottom surface state, respectively.
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For the special case of ∆1 = −∆2 ≡ ∆ and µ = 0, HBdG can be block-
diagonalized (see appendix A for details), yielding:

H̃BdG =
[
H̃1(k) 0

0 H̃2(k)

]
, (2.27)

where

H̃1(k) =


mk + gM + ∆ ivF k− 0 0
−ivF k+ −mk − gM −∆ 0 0

0 0 −mk − gM + ∆ −ivF k+
0 0 ivF k− mk + gM −∆

 ,

H̃2(k) =


mk − gM −∆ −ivF k+ 0 0

ivF k− −mk + gM + ∆ 0 0
0 0 −mk + gM −∆ ivF k−
0 0 −ivF k+ mk − gM + ∆

 .

The BdG Hamiltonian H̃BdG(k) decouples into two models, H̃1(k) and H̃2(k),
with opposite chirality [189]; while each model describes two copies of a spinless
px ± ipy superconductor [51, 150, 189]. Moreover, notice the similarity between
H̃1(k), H̃2(k) and H̃SS +H̃Zeeman (Eq. 2.16). Hence, the Chern number (Eq. 2.5)
of H̃1(k) and H̃2(k) depends only on the sign of the mass term at the Γ-point:

N1 =


−2, for |∆| < −m0 − gM
−1, for |∆| > |m0 + gM |
0, for |∆| < m0 + gM

, (2.28)

N2 =


2, for |∆| < −m0 + gM

1, for |∆| > |m0 − gM |
0, for |∆| < m0 − gM

, (2.29)

and the total Chern number of the system is N = N1 +N2 [189].

Figure 2.14 shows the phase diagram of the QAHI-SC system with ∆1 =
−∆2 ≡ ∆ and µ = 0; the phase boundaries are defined by the straight lines:
∆ ±m0 ± gM = 0. For ∆ = 0, the critical points at gM = ±|m0| separate
the QAH phase with C = ±1 from the normal insulator (NI) with C = 0.10

For ∆ > 0, on the other hand, the QAH phase is driven into the N = ±2
topological superconductor (TSC) phase, while a N = ±1 TSC phase emerges

10Remember, that this topological phase transition from the QAH phase with C = ±1 to
the NI phase with C = 0 gives rise to the zero-conductance-plateau in σxy at the coercive
field Hc, see Fig. 2.12.
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Figure 2.14: Phase diagram of the QAH-SC hybrid system for the special case
of ∆ = ∆1 = −∆2 and µ = 0. The diagram shows the SC gap ∆ versus the
exchange field λ = gM . The phase boundaries are determined by the condition:
∆±m0 ± gM = 0. Note that ∆ and λ are in units of |m0|. Reprinted figure
with permission from Ref. [189]. © Copyright (2015) by the American Physical
Society.

in the regions near the QAH-NI transition. Moreover, for ∆1∆2 < 0 with zero
exchange field gM = 0, a helical TSC phase emerges with helical Majorana
edge states (see Ref. [189] for details), as depicted by the red line in Fig. 2.14.
Note that the phase diagram shown in Fig. 2.14 is qualitatively similar to the
phase diagram derived by Qi et al. in Ref. [145]. However, the authors only
considered a single spin-momentum-locked 2D surface state, which means that
the dependence on the hybridization gap m0 is missing. Moreover, it should be
noted that the effect of an exchange field on the proximitized surface state of a
TI was already commented on in the seminal work by Fu and Kane [51].

Until now, we have focused on the special case of ∆ = ∆1 = −∆2 (and µ = 0),
whereas this scenario might not be easily achieved in an experimental set-up.
Wang et al. calculated the phase diagram for general values of ∆1 and ∆2, and
for finite µ [189]. If the symmetry between the top and bottom surface states is
preserved, i.e. ∆ = ∆1 = ∆2, the Chern number can only change by ±2 between
the N = ±2 TSC phase and the N = 0 normal superconductor (NSC) phase,
as shown in Fig. 2.15(b). On the other hand, if ∆2 is made to decrease, the
N = ±1 TSC phase emerges and becomes the widest for ∆2 = 0 [Fig. 2.15(a)],
i.e. only the top surface is proximitized [189]. Figures 2.15(c-d) show two cases
with finite doping µ 6= 0, where the SC proximity effect will be enhanced by the
increased density of states at the Fermi level [145]. Comparing Fig. 2.15(a) to
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Figure 2.15: Phase diagram of the QAH-SC hybrid system, as a function of
the SC gap ∆ and the exchange field λ = gM for: (a) ∆1 = ∆, ∆2 = 0, and
µ = 0. (b) ∆1 = ∆2 = ∆ and µ = 0. (c) ∆1 = ∆, ∆2 = 0, and µ = 0.7.
(d) ∆1 = −∆2 = ∆ and µ = 0.7. Note that ∆1, ∆2, µ and λ are in units of
|m0|. Reprinted figure with permission from Ref. [189]. © Copyright (2015) by
the American Physical Society.

2.15(c), and Fig. 2.14 to 2.15(d), it is clear that the phase space of the N = ±1
TSC state near the region of ∆ = 0 is larger for the case of finite doping µ 6= 0.

Using a simple low-energy effective Hamiltonian, it was shown that a QAHI in
proximity to an s-wave SC realizes the chiral TSC phase with Chern numbers
N = ±1, or ±2. The N = 1 TSC phase is of particular interest, as it is
expected to host a Majorana zero mode in the vortex core [51, 150]. Moreover,
TSCs with Chern number N have N topologically-protected gapless chiral
Majorana edge modes, which can be thought of as a superconducting analogue
of the quantum (anomalous) Hall edge states [51, 145, 189]. While definitive
proof of the realization of a TSC phase in QAH-SC heterostructures is still
lacking, several experiments have aimed at studying the SC proximity effect
at QAH-SC interfaces [84, 166]. It should be noted that He et al. claimed to
have observed the Chern-number transitions N = −2↔ −1↔ 0↔ 1↔ 2 [cf.
A–A’ in Fig. 2.14] in the hysteresis loop of the two-terminal conductance when
the external magnetic field is swept [63]. Half-integer quantized conductance
plateaus e2/(2h) were observed near the magnetization reversals, which were
claimed to correspond to the N = ±1 TSC states [63]. However, the data came
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under immediate scrutiny [12, 68, 75]. Moreover, Kayyalha et al. showed that
the observation of e2/(2h) is consistent with a trivial electrical short caused by
the superconducting Nb strips used in the experiments [84]. The publication by
He et al. [63] was ultimately retracted under suspicion of scientific misconduct.

Recently, intriguing new experiments have been proposed relying on the creation
and fusion of edge vortices (π-phase domain walls) at Josephson junctions in
a TSC to braid Majorana zero modes [1, 13, 59]. The proposed experiments
are highly innovative and well-suited to the QAH-SC platform. Unfortunately,
as will be discussed in chapter 4, the current-induced breakdown of the QAHE
becomes worse for reduced device dimensions, which means special care will
have to be taken to avoid or mitigate breakdown in mesoscopic QAH devices.

2.4 Summary

In this chapter, it was shown that the low-energy effective Hamiltonians describ-
ing the QSHE, QAHE, and the proximity effect in QAH-SC heterostructures
can be block-diagonalized into (2 + 1)-dimensional Dirac Hamiltonians, using
clever basis transformations. Consequently, the topological phase transitions
for these systems are fully captured by the sign-change of the Dirac mass.

Moreover, it is important to reiterate that:

(i) the QAHE can be realized in narrow-gap semiconductors with sizable
SOC (described by Eq. 2.16) for a large enough Zeeman field, irrespective
of whether the initial system is topological or trivial;

(ii) while the QSHI can be thought of as two time-reversal copies of a QAHI,
the QAH edge state in a magnetic 3D-TI is rather special due to the lack
of a (sizable) spin polarization;

(iii) in charge-compensated magnetically-doped (BixSb1-x)2Te3 thin films, the
inhomogeneous spatial distribution of the magnetic dopants (V or Cr) will
lead to spatial fluctuations of the exchange gap size, whereas the random
distribution of the charged donor and acceptor crystalline defects will
result in the formation of 2D charge puddles as the Fermi level EF locally
crosses the 2D band edges of the exchange gap;

(iv) even for thick QAH films, where an s-wave SC proximitizes only the top
surface of the film (i.e. ∆1 = ∆ and ∆2 = 0 in Eqs. 2.24–2.26), the
N = ±1 TSC phase is still predicted to emerge over a large region of the
phase diagram.





Chapter 3

Experimental Techniques

“ Never underestimate the joy people derive from hearing some-
thing they already know. ”

Enrico Fermi

For the research performed in this PhD thesis, thin films of V-doped
(BixSb1-x)2Te3 were grown on InP(111)A substrates using the molecular beam
epitaxy (MBE) technique. The crystal quality and morphology were verified
using X-ray diffraction (XRD) and atomic force microscopy (AFM). The
thicknesses of the thin films were extracted by fitting the Kiessig fringes measured
in X-ray reflectometry (XRR) or around film peaks in the XRD spectra.

After the structural characterization verified the quality of the V-doped
(BixSb1-x)2Te3 thin films, the charge-carrier concentration, mobility, and Curie
temperature were determined by magneto-transport in a physical property
measurement system (PPMS) by cooling the sample down to 2 K. Only the
samples with an anomalous Hall (AH) amplitude > 18 kΩ at 2 K, together with
a downturn in the longitudinal resistance, were selected for the study of the
QAHE in this thesis.

The selected high-quality films were patterned into multi-terminal Hall-bar
devices using conventional clean-room techniques. The breakdown of the QAHE
and the nonreciprocal charge transport, in chapters 4 and 5 respectively, were
investigated by magneto-transport experiments carried out using standard AC
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lock-in and DC methods at a base temperature of ∼10 mK in a dry dilution
refrigerator equipped with an 8 T superconducting magnet.

Below a brief description of the MBE growth, device fabrication, and ultra-low-
temperature magneto-transport measurements is given. Representative AFM,
XRD, and PPMS measurements of the V-doped (BixSb1-x)2Te3 thin films are
included in this chapter, as well as a list of the devices.

3.1 Molecular Beam Epitaxy

MBE is a versatile thin film growth technique, where thermally generated
molecular or atomic beams are deposited on a heated substrate in an ultra-high-
vacuum (UHV) environment. Of crucial importance are the choice of growth
substrate, substrate temperature and deposition rate.

3.1.1 Choice of Growth Substrate

As the name implies the aim of MBE is the epitaxial growth of a single-crystal
thin film on top of a single-crystal substrate. In order to achieve this the crystal
structure, lattice constant, and surface orientation of the substrate have to be
carefully chosen to match the crystal lattice of the thin film to be grown. The
lattice mismatch between the film and substrate is defined as

εm = af − as
as

, (3.1)

where af and as are the in-plane lattice constants of the film and substrate [65],
respectively. A distinction has to be made between homoepitaxy, where the
substrate and film are the same material (εm = 0), and heteroepitaxy, where
the elemental composition and/or crystal structure of the film are different.
If the atomic arrangement of the film and substrate crystal structures at the
interface do not match well or εm is simply too large, the film and substrate are
incommensurate. This means the film-substrate interface will contain a large
numbers of defects, and the grown film may be textured1 or polycrystalline,
rather than monocrystalline.

The crystal structure of the ternary compound (BixSb1-x)2Te3 was already shown
in Fig. 2.6(a). This tetradymite structure has rhombohedral symmetry and the
space group is R3̄m [29, 52]. The crystal structure consists of stacked covalently-
bonded quintiple layers (QLs) of (Te1)–(Bi/Sb)–(Te2)–(Bi/Sb)–(Te1), with

1The alignment between the substrate and film has a single fixed axis [149].
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(a) (b)

Figure 3.1: The tetradymite crystal structure of the ternary compound
(BixSb1-x)2Te3, along the c-axis showing two QLs and the VdW gap (a), and in
the a–b plane showing the hexagonal symmetry (b). The cations (Bi, Sb) are
shown in blue, while the anions (Te) are shown in yellow. This figure is taken
from Ref. [52], and reproduced with permission from MDPI.

neighboring QLs being held together by Van-der-Waals (VdW) bonds [29, 52],
see Fig. 3.1. Due to these weak VdW bonds, an epilayer of (BixSb1-x)2Te3
immediately starts growing with its own lattice constant, forming only weak
VdW bonds with the growth substrate. Hence, strain relaxation at the film-
substrate interface via the nucleation of dislocations does not occur [149], and
the lattice matching condition is drastically relaxed for this kind of MBE growth,
called ‘Van-der-Waals Epitaxy’ (VdWE) [87, 88, 89], allowing the growth of
highly lattice-mismatched systems with only a small amount of defects.

In this thesis, the hexagonal (111)A surface of zincblend InP was chosen as
the growth substrate, after insightful discussions with Y. Tokura, M. Kawasaki,
and R. Yoshimi from RIKEN, Japan. InP(111)A is a proven substrate for
the realization of the QAHE [83, 125, 132]. It matches the hexagonal (001)
Te-terminated surface of the QL of (BixSb1-x)2Te3 with a lattice mismatch
of εm ≈ +4.9% (Eq. 3.1). Other candidate substrates are Al2O3(001) (εm ≈
−8.5%), SrTiO3(111) (εm ≈ −21.2%), Si(111) (εm ≈ +13.4%), and GaAs(111)
(εm ≈ +8.9%). While high-quality thin films of (BixSb1-x)2Te3 are regularly
grown on c-plane Al2O3 in our research group [18], we were unable to reach
full quantization of Ryx when V or Cr dopants were added. SrTiO3 is also a
proven substrate for the growth of QAH thin films [30, 32, 215], and has the
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added benefit that it can serve as a high-κ dielectric, allowing for back-gating
of the grown thin films. However, scanning transmission electron microscopy
(STEM) and XRD studies have shown that the large lattice mismatch with
SrTiO3 leads to a poor crystal quality of the first QLs of (BixSb1-x)2Te3
grown on top of SrTiO3 [139, 153, 154]. While QAH films were successfully
grown on top of Si(111) [49, 54, 193], XRD studies showed that the crystal
quality of (BixSb1-x)2Te3 thin films grown on Si(111) substrates is inferior when
compared to the other growth substrates [138, 154]. Moreover, atom probe
tomography (APT) revealed Sb accumulation at the film-substrate interface,
which potentially dopes the surface of the Si substrate, since Sb is a well-known
n-type dopant in Si [100]. Lastly, it should be noted that GaAs(111)B substrates
yield excellent QAH films as well [50, 63, 94, 95]. Moreover, STEM images of
Cr-doped (BixSb1-x)2Te3 thin films on InP(111)A [153] and GaAs(111)B [94]
showed atomically sharp and well-ordered interfaces.

For a comprehensive overview of the epitaxial relationship of MBE-grown V/Cr-
doped (BixSb1-x)2Te3 thin films on various substrates, the reader is directed to
Refs. [153, 154], and the references therein.

3.1.2 MBE Growth

The main MBE system used in this work, the Octoplus 400 from Dr. Eberl
MBE-Komponenten GmbH, is shown in Figs. 3.2 and 3.3. The set-up consists
of the main chamber, the buffer chamber, and the load-lock chamber. The
chambers are isolated from each other by gate valves. The main chamber, where
the MBE growth takes place, is pumped by a cryo and ion getter pump to
a base pressure of about 5 × 10−11 mbar. The buffer chamber is pumped by
an ion getter pump yielding a base pressure of about 5 × 10−10 mbar. The
annealing station in the buffer chamber is used to clean the growth substrates
prior to introducing them into the MBE chamber. The load-lock chamber is
only pumped by a turbo-molecular pump and is regularly vented with N2 to
introduce or take out samples. While the load-lock ensures that a good base
pressure can be maintained in the system, the sample cleaning in the buffer
chamber allows for a time-efficient operation of the MBE system.

The materials to be deposited on the growth substrates are loaded in their
elementally pure form into separate crucibles. In this work, Bi and Te were
evaporated by Joule heating from a ‘Knudsen effusion cell’, see inset of Fig. 3.3.
Sb, on the other hand, was evaporated from a cracker source, in which the
large Sbx molecules evaporating from the heated crucible are dissociated by a
thermal cracker stage to form a molecular beam containing mainly Sb2. An
electron-beam evaporator was used for the magnetic dopant V due to its very
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Figure 3.2: Technical drawing of the molecular beam-epitaxy-vacuum chamber
(top view). The set-up consists of the MBE main chamber, the buffer chamber,
and the load-lock chamber. Each chamber has its own dedicated pumps
as indicated in the figure. The transfer rods and wobblesticks are used to
manipulate the samples inside the UHV environment. The quadrupole mass
spectrometer (QMS) monitors the residual gas molecules in the MBE chamber.
The reflection high-energy electron diffraction (RHEED) set-up is a powerful
tool that allows to in-situ study the growth process. Figure courtesy of Dr. Eberl
MBE-Komponenten GmbH.

high melting point of 1910◦C. All the evaporators are mounted at the bottom of
the MBE chamber as shown in Fig. 3.3, and their molecular beams are focused
at the growth substrate. Figure 3.4 shows an illustration of the MBE deposition
process. The cells containing the source materials are heated to produce the
molecular beams, while shutters in front of the cells and substrate are used to
regulate which species are arriving on the surface of the growth substrate. The
amount of evaporated material is determined by the beam-equivalent-pressure
(BEP) which is measured by placing an ion gauge (i.e. the beam flux monitor
in Fig. 3.2) in front of the substrate position in the direct path of the molecular
beams. In the UHV environment the mean-free-path of the gas molecules, as
well as in the molecular beams themselves, is several orders of magnitude greater
than the source-to-sample distance [65]. Hence, no gas phase reactions occur
and the species impinge on the substrate unreacted which is a requisite for
MBE growth as will be explained below.

https://www.mbe-komponenten.de
https://www.mbe-komponenten.de
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Figure 3.3: Technical drawing of the molecular-beam-epitaxy vacuum chamber
(side view). The grey shaded areas indicate the positions of the evaporators.
The inset shows a picture of a Knudsen effusion cell. The top of the white
PBN crucible, in which the source material is mounted, can be seen in the
picture. The source material is evaporated by Joule heating of the crucible,
using a Ta coiled heating element. The power supply and thermocouple cables
are lead through the bottom flange and connected externally. Figures courtesy
of Dr. Eberl MBE-Komponenten GmbH.

A key parameter in MBE growth is the choice of the substrate temperature. If
chosen too high all arriving species will desorb and no deposition will take place,
while a too low substrate temperature will result in a poor surface mobility and
rapid incorporation of the arriving species into the grown film. This will lead
to an amorphous or polycrystalline growth, rather than the desired epitaxial
single-crystal film. Hence, a compromise between the deposition rate and
growth temperature has to be found. For multi-element crystals, a limiting
and abundant species is identified [65]. In the example of Bi2Te3 in Fig. 3.4,
Bi due to its higher melting point will act as the limiting species, while the
easier to evaporate Te will be supplied in excess. The substrate temperature
is chosen in such a way that if only one of the elements were evaporated, the
Bi atoms would stick to the substrate, while the Te atoms would be fully
re-evaporated. However, if Bi and Te are deposited together, the impinging Bi
atoms will bind to the abundantly available Te, and form the desired Bi2Te3

https://www.mbe-komponenten.de


MOLECULAR BEAM EPITAXY 45

Sb

Substrate

Shutter

Holder

Heater

Evaporators filled with source material

Figure 3.4: Illustration of the molecular-beam-epitaxy growth process. The
evaporators are filled with elementally pure source material and heated to
produce molecular beams. When the shutter of a particular evaporator is
opened, the molecular beam of said material reaches the substrate; e.g. Bi and
Te in the figure. The substrate is rotated to yield a uniform distribution of the
arriving species and heated to promote surface diffusion. The crystal structure
of the substrate acts as the nucleation site for crystal growth of the thin film;
in this case Bi2Te3.

crystal structure. Since the substrate temperature is too high to deposit pure
Te, the stoichiometric growth of Bi2Te3 is ensured.

In this work, the InP(111)A substrates were annealed at 550◦C in the buffer
chamber to thermally desorb the surface oxide layer. After transferring the InP
substrates into the MBE chamber, they were kept at 190◦C while V, Bi, Sb,
Te were co-evaporated for 40 min to produce uniform films with a thickness of
∼8 nm. The Bi, Sb, and Te cell temperatures were 440◦C, 444.4◦C, and 278◦C,
respectively. Te was supplied in excess, while Bi and Sb acted as the limiting
species. The BEP ratio of Bi+Sb:Te was 1:20. The V electron-beam source was
operated with an acceleration voltage of 6 kV and an electron-beam current of
72 mA. The V-flux was too small to be measured with the beam flux monitor,
and did not influence the growth rate significantly.
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As explained in chapter 2 (section 2.1.3), the chemical potential is determined
by the Bi:Sb ratio x/(1 − x) of the (BixSb1-x)2Te3 crystal. A BEP ratio for
Bi:Sb of 1:4 was found to yield the most insulating behavior at low temperature;
this corresponds to an x-value of ∼0.3 as determined by energy-dispersive
X-ray (EDX) spectroscopy. A detailed discussion of the growth parameters falls
outside the scope of this thesis; the reader is directed to the PhD dissertation
of A. Bliesener [18].

3.2 Basic Characterization & Sample Screening

Immediately after taking the thin films out of the load-lock of the MBE system
(. 3 min), they were covered with a 3-nm Al2O3 capping layer using atomic layer
deposition (ALD) to protect the films from degradation in air. Subsequently,
the films were characterized by AFM and XRD. Figure 3.5(b) shows an AFM
image representative for the QAH films grown in this work. Small, but well-
pronounced ∼1 nm high terraces are observed, corresponding to 1 QL steps in
the film thickness. The film is continuous with a rms-roughness of ∼0.7 nm
over a scan area of 1× 1 µm2.

Figure 3.5(a) shows an XRD spectrum for a thick V-doped (BixSb1-x)2Te3 film
grown by MBE under similar conditions as the QAH films. Only the (003n)
reflections2 of (BixSb1-x)2Te3 are observed, indicating the epitaxial growth of
the hexagonal (001) crystal surface of V-doped (BixSb1-x)2Te3 on top of the
hexagonal (111) surface of the zincblende InP substrate.

Figure 3.6(a) shows the temperature dependence of the sheet resistance of a
high-quality V-doped (BixSb1-x)2Te3 thin film from room temperature down to
2 K. The sample was field-cooled in 2.5 mT. At the Curie temperature TC ≈ 20 K
the transverse resistance ρyx becomes nonzero and starts to increase towards
h/e2, while the longitudinal sheet resistance ρxx starts to vanish. Figure 3.6(b)
shows the magnetic-field dependence of ρyx at 2 K. The 2D bulk states of QAH
film are n-type, as can be seen from the negative slope of the ordinary Hall
effect.

Only continues epitaxial thin films of V-doped (BixSb1-x)2Te3 with an AH
amplitude > 18 kΩ at 2 K and a downturn in the longitudinal resistance below
TC were selected for the study of the QAHE in this thesis.

2Note that in literature it is customary to use the hexagonal indexing scheme, where the
(00n) reflections are along the (111) direction of the rhombohedral unit cell [153].
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Figure 3.5: Structural characterization of the MBE grown films. (a) Cu
K-α XRD spectrum (with Ni filter) of a thick V-doped (BixSb1-x)2Te3 film
(deposition time ∼20 hours). The raw XRD spectrum was divided by a smooth
background. (b) AFM image of a QAH thin film (thickness ∼8 nm).
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Figure 3.6: (a) Temperature dependence of the longitudinal sheet resistance
ρxx and transverse resistance ρyx of Hall-bar device C (see table 3.1 for details).
The sample was field-cooled in 2.5 mT. (b) Magnetic-field dependence of the
transverse resistance ρyx at 2 K. The negative slope of the ordinary Hall effect
shows the n-type character of the 2D bulk of the V-doped (BixSb1-x)2Te3 thin
film.
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(b) Spin-coat Photoresist

Laser Beam

(a) Film + Substrate

(c) Photolithography (d) Develop in TMAH

(e) Etch in 3:1 solution of H2SO4:H2O2 (f) Clean in Acetone & Isopropanol

Figure 3.7: Schematic of the microfabrication steps for an etched Hall-bar
structure. (a) The V-doped (BixSb1-x)2Te3 thin film (white) on top of the InP
substrate (blue). (b) Positive photoresist (green) is spin-coated on the sample.
(c) Photolithography of the Hall-bar structure. (d) After developing in TMAH,
the exposed regions of the photoresist are dissolved. (e) After etching the film in
H2SO4:H2O2, the regions not covered by the photoresist are removed. (f) The
etched Hall-bar structure after cleaning off the photoresist.
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3.3 Device Fabrication

After the screening process, the high-quality V-doped (BixSb1-x)2Te3 thin films
were patterned into multi-terminal Hall-bar devices, using conventional clean-
room techniques. Below a brief description of the fabrication details is given, as
well as a list of all the Hall-bar devices used in this thesis.

3.3.1 Microfabrication

Most Hall-bar devices in this thesis relied on two photolithography steps. In the
first step, the Hall-bar structure were etched into the V-doped (BixSb1-x)2Te3
thin film, as shown in Figs. 3.7(a-f). In the second step, the contact arms of the
Hall-bar were metalized by sputtering 5 nm Pt + 45 nm Au, and performing a
lift-off process, as shown in Figs. 3.8(a-f).

First, a layer of positive photoresist (AZ 1505 from MicroChemicals) was spin-
coated on the sample at 4500 rpm. The photoresist was baked at 100◦C for 1 min,
after which the sample was loaded into the lithography machine (Heidelberg
µPG 101), see Figs. 3.7(a-b). Here, the Hall-bar design was written into the
photoresist layer by a 10 mW laser beam operating at 35%, see Fig. 3.7(c).
After the ‘exposure’, the sample was post-baked at 120◦C for 30 s.

The AZ 1505 photoresist used in this work consists of a polymerized phenolic
resin (Novolak) and photosensitive Diazonaphthoquinone sulfonic acid esters
(DNQ sulphonates). The DNQ sulphonates reduce the alkaline solubility of the
pure phenolic resin by one or two orders of magnitude [121]. However, when
exposed to the appropriate wavelengths, the DNQ sulphonates are converted
into carboxylic acids, which leads to a three to four orders of magnitude
increase of the alkaline solubility of the pure phenolic resin [121]. Hence, the
exposed parts of the photoresist layer, shown in light green in Fig. 3.7(c),
could be selectively removed by ‘developing’ the photoresist layer in an aqueous
alkaline solution, while the unexposed areas of the photoresist remained on
the sample, protecting the film from being etched in the alkaline solution. In
this work, a Tetramethylammonium hydroxide (TMAH) solution (AZ 326 from
MicroChemicals) was used for the development (20 s) of the lithographic pattern,
see Fig. 3.7(d). The sample was subsequently rinsed in deionized (DI) water for
30 s. It is important to point out that the TMAH solution, not only removes
the exposed photoresist, but also attacks the 4-nm-thick Al2O3 capping layer,
as well as the V-doped (BixSb1-x)2Te3 film underneath.
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(b) Spin-coat Photoresist

Laser Beam

(a) Etched Hall-bar Structure

(c) Photolithography (d) Develop in TMAH

(e) Sputter 5 nm Pt + 45 nm Au (f) Lift-off in NMP

Figure 3.8: Schematic of the microfabrication steps for the metalization of the
contacts. (a) The etched Hall-bar structure in the V-doped (BixSb1-x)2Te3 thin
film (white) on top of the InP substrate (blue). (b) Positive photoresist (green) is
spin-coated on the sample. (c) Photolithography of the contact pads. (d) After
developing in TMAH, the exposed regions of the photoresist are dissolved. (e) A
metal layer consisting of 5 nm Pt + 45 nm Au is sputter-deposited on top of
the sample. (f) Lift-off process in NMP. The photoresist is dissolved, removing
the Pt/Au layer everywhere except in the contact regions.
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Next, the (remainder of the) V-doped (BixSb1-x)2Te3 film not protected by the
photoresist, was etched in an ‘inverted piranha’ solution3 consisting of 1 part of
concentrated sulfuric acid (1 mol/L) and 3 parts of 35 wt.% hydrogen peroxide
solution, see Fig. 3.7(e). The sample was subsequently rinsed in DI water for
1 min, and the photoresist was cleaned off in acetone (5 min) and isopropanol
(1 min). The etched Hall-bar structure (white) on top of the InP substrate
(blue) is shown in Fig. 3.7(f).

Before the second photolithography step, 30 nm of Al2O3 was deposited by
ALD at 80◦C, which will protect the contact areas of the Hall-bar during
the developing step in the TMAH solution. Next, the positive photoresist
was spin-coated on the sample, and the metal contacts were written by the
photolithography tool, as shown in Figs. 3.8(a-c). Afterwards, the pattern was
developed in the TMAH solution for 20 s, which is a too short time to completely
etch through the 30-nm-thick Al2O3 layer. The remainder of the thick Al2O3
layer was etched in Transene Aluminum Etchant type-D (Transene D) at 50◦C
for 1 min. The sample was subsequently rinsed in DI water for 30 s. Note that
Transene D was found to show excellent selectivity towards Al metal and Al2O3,
and TI thin films were not noticeably affected even after being submerged for
45 min at 50◦C.

The film was quickly transferred to our (MANTIS) UHV sputtering chamber, to
reduce the V-doped (BixSb1-x)2Te3 surface in the contact areas being exposed
to air. Here, a 5-nm Pt sticking layer, followed by 45 nm of Au were deposited
on top of the sample covering the photoresist as well as the exposed Hall-bar
contact areas, see Fig. 3.8(e). Next, the sample was submerged in N-methyl-
2-pyrrolidone (NMP) for 45 min. NMP is an excellent solvent and completely
dissolved the photoresist layer underneath the Pt/Au layer. Next, the Pt/Au
layer was ‘lifted-off’ by mild agitation, and only the Pt/Au in the contact regions
directly contacting the V-doped (BixSb1-x)2Te3 film remained, see Fig. 3.8(f).
A picture of a 26-terminal Hall-bar device is shown in Fig. 3.9.

Lastly, for some Hall-bar devices a third lithography step was performed to define
a Pt/Au gate electrode on top of the thick Al2O3 layer (in this case 45 nm was
deposited instead of 30 nm) above the center of the Hall-bar. Here, the electron-
beam-lithography (EBL) machine had to be used, not for its much higher
resolution, but because the EBL resist, Polymethyl methacrylate (PMMA), is
developed in an isopropanol–DI water solution. If instead photolithography were
used the quality of the Al2O3 gate dielectric would have strongly deteriorated
due to direct contact with the TMAH developer.

3A typical piranha solution consists of a 3:1 mixture of H2SO4:H2O2.
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3.3.2 List of Devices

The data of thirteen Hall-bar devices are shown in this thesis. Devices A, B,
and C are 26-terminal Hall-bar devices, as shown in Fig. 3.9. Devices D, E, F1,
F2, G1, G2, H, I, J, and K are regular 6-terminal Hall-bar devices; a picture
of device D is included in Fig. B.1 of the appendix. Devices A and B were
fabricated on the same V-doped (BixSb1-x)2Te3-InP wafer, as well as devices
F1, F2, G1, G2, H, and I. The other devices were fabricated on separate wafers.
A top-gate electrode was fabricated on devices F1, F2, G1, G2, H, I, J, and K.
Sadly, the gate dielectric was leaking for devices F2, G2, and I, which made the
devices not gate tune-able. However, all devices (A–I) showed a clean QAHE
without the need for gating; their details are listed in table 3.1. Unless stated
otherwise, data for devices F1, G1, H, J, and K are presented at zero gate
voltage.

3.4 Ultra-low-temperature Magneto-transport

Heike Kamerlingh Onnes was the first person to liquefy helium on 10 July
1908, which led to his 1913 Nobel Prize in Physics “for his investigations on
the properties of matter at low temperatures which led, inter alia, to the
production of liquid helium”. While his studies at a temperature of ∼1.5 K were
an extraordinary feat of engineering at the time, currently mK-temperatures
are readily available for magneto-transport experiments. For this thesis, a dry
dilution refrigerator (Oxford Instruments Triton 200), equipped with an 8 T
superconducting magnet, was used at a base temperature of ∼10–65 mK. Below
a brief description of dilution refrigeration is given, as well as a discussion of
the AC and DC measurement techniques employed in this thesis.

3.4.1 Dilution Refrigeration

Dilution refrigeration is based on the enthalpy of mixing of 3He and 4He.
Figure 3.10(a) shows the phase diagram of the 3He/4He mixture. 4He is a spin-
zero boson, while 3He is a spin-1/2 fermion. Pure 4He undergoes a transition
from a normal liquid phase to a superfluid at 2.17 K [4]. For pure 3He, on the
other hand, the superfluid transition occurs around 2.7 mK [4] (not shown in
Fig. 3.10(a)), and the underlying physics is much more complicated.4

4In 3He spin fluctuations lead to an attractive pairing potential between 3He atoms,
akin to the formation of ‘Cooper pairs’ in the Bardeen-Cooper-Schrieffer (BCS) theory of
superconductivity [4]. The exchange interaction in 3He is ferromagnetic, which results in
spin-triplet, p-wave pairing and a rich superfluid phase diagram at ultra-low temperatures [4].
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(a) (b)

Figure 3.10: (a) Phase diagram of the 3He/4He mixture, and (b) schematic of a
dilution refrigerator. Below 867 mK, the 3He/4He mixture phase separates into
two liquid phases with the 3He-rich (or ‘concentrated’) phase shown in orange
floating on top of the heavier 4He-rich phase (the ‘dilute’ phase) shown in dark
blue. Figure (a) is taken from Ref. [140], and reproduced with permission from
SNCSC. Figure (b) is taken from Ref. [10], courtesy of Oxford Instruments plc.

When the 3He/4He mixture is cooled below 867 mK, it phase separates into two
liquid phases with the 3He-rich (or ‘concentrated’) phase floating on top of the
heavier 4He-rich phase (the ‘dilute’ phase) [10]. At ultra-low temperatures, the
concentrated phase is nearly pure 3He, whereas the solubility of 3He in the dilute
phase remains finite (∼6.4%) down to 0 K. Figure 3.10(b) shows a schematic of
a ‘dry’ dilution refrigerator. The sample to be measured is mounted in thermal
contact to the ‘mixing chamber’. The orange regions represent the nearly pure
3He phase, while the dark blue regions are the dilute phase.

A distiller (‘still’) pulls the dilute phase from below the phase boundary in the
mixing chamber, and using a heater distills the 3He from the 4He due to the
difference in vapor pressures. As the 3He vapor is pumped away from the still
reservoir, the 3He concentration of the dilute phase in the still will decrease.
The difference in 3He concentration between the still and the mixing chamber
results in an osmotic pressure gradient along the connecting tube, which causes
3He to diffuse from the mixing chamber to the still [10]. Next, the 3He vapor
from the still passes through a room temperature gas handling system and
compressor which sends pressurized 3He back into the return line. The returning



ULTRA-LOW-TEMPERATURE MAGNETO-TRANSPORT 55

3He passes through a heat exchanger with the 3He vapor leaving the still. The
high pressure (∼0.5–2.5 bar) is maintained up to the impedance, after which the
Joule-Thompson expansion liquefies the 3He [10]. Next, the 3He liquid passes
through several more types of heat exchangers, which further precools the 3He
before reaching the mixing chamber. Here, the 3He crosses the phase boundary
into the dilute phase to replenish the 3He which is continuously diffusing away
towards the still, and the 3He concentration is kept constant at ∼6.4%.

The associated cooling power Q̇ is determined by the enthalpy difference ∆H(T )
between 3He in diluted 4He and pure liquid 3He multiplied by the 3He flow
rate ṅ: Q̇ = ṅ∆H(T ) [10]. The 3He atoms in liquid 4He behave as a Fermi gas.
As a result, the enthalpy of 3He in 4He is higher than for pure liquid 3He [10].5
The cooling power [10] can be described by:

Q̇ = ṅ(95T 2
MC − 11T 2

Ex), (3.2)

where TMC and TEx are the temperature of the mixing chamber and the last
heat exchanger, respectively. Note that TEx has to be included in Eq. 3.2,
because the 3He entering the mixing chamber is always slightly warmer than
the 3He leaving to the still due to non-ideal heat exchangers, which reduces the
maximum achievable cooling power.

Lastly, it is important to point out that evaporative cooling is limited by the
exponential dependence of the vapor pressure on the temperature [10]. The
solubility of 3He in 4He, on the other hand, is nearly temperature independent
at ultra-low temperatures [Fig. 3.10(a)]. For the dilution process, the lowest
achievable temperature is instead limited by the T 2-dependence of the enthalpy
[10]. This is the key advantage of dilution refrigeration over evaporative cooling.

3.4.2 AC and DC Measurement Techniques

The DC data presented in chapters 4 and 5 were measured using standard
DC techniques with Keithley 2182A nanovoltmeters and a Keithley 2450
current source, whereas the AC data were measured using standard AC lock-in
techniques with a low frequency (3–7 Hz) using NF Corporation LI5640 and
LI5645 lock-in amplifiers. For the AC technique, the peak current amplitude at
which the measured voltage/resistance started to deviate from the dissipationless
state gave a good measure of the breakdown current Ic; note that the peak
current value is

√
2 times larger than the root-mean-square (rms) current value.

To avoid confusion in chapters 4 and 5, it is instructive to briefly explain noise
filtering and Fourier components for the AC lock-in technique.

5This is analogous to the cooling power stemming from the enthalpy difference between
3He gas and 3He liquid in an evaporation refrigerator.



56 EXPERIMENTAL TECHNIQUES

Noise Filtering

In order to perform a lock-in measurement, a frequency reference ωr is needed.
Typically, the sample in the experiment is excited at a fixed frequency and
the lock-in detects the sample’s response at this reference frequency. In what
is known as a ‘phase-locked-loop’, the lock-in tracks the external reference
frequency ωr and equates the frequency ωl of its internal oscillator to it [171].
This allows the lock-in to generate a sine wave with ωl = ωr and a fixed phase
shift of θl with respect to the reference. Let’s assume θl = 0 for simplicity.

A generic response of the sample can be written as Vs sin(ωst+ θs). The lock-in
amplifies this signal and multiplies it by the lock-in reference Vl sin(ωrt) using
a phase-sensitive detector (PSD) or multiplier [171], yielding:

VPSD = VsVl sin(ωst+ θs) sin(ωrt)

= 1
2VsVl cos ((ωs − ωr)t+ θs) + 1

2VsVl cos ((ωs + ωr)t+ θs) (3.3)

Hence, the PSD output is the sum of two AC signals, one at the difference
frequency (ωs − ωr) and the other at the sum frequency (ωs + ωr). The PSD
output is subsequently passed through a low-pass filter which removes both AC
signals [171], unless ωs = ωr (= ω):

VPSD+low-pass = 1
2VsVl cos(θs). (3.4)

Hence, all noise signals with ωs 6= ωr are filtered out, and the ‘in-phase’ response
at the selected reference frequency ωr is recorded (more details below).

The First & Second-Fourier Components

In chapter 5, it will be shown that the four-terminal I-V characteristic of a
QAHI (at high currents and/or temperatures) follows the relation:

VL/R = R0I(1 + γ̃cL/Rnp/nM̂I), (3.5)

where VL/R is the voltage drop measured along the left/right edge, I the
excitation current, R0 the Ohmic resistance term, γ̃ the rectification coefficient,
cL/R the measured sample edge (cL = +1 and cR = −1 for the left and right
edge, respectively), np/n the 2D charge-carrier type (np = +1 and nn = −1
for a p- and n-type 2D bulk, respectively), and M̂ the magnetization direction
(M̂ = +1 and M̂ = −1 for an upward and downward, out-of-plane magnetization,
respectively) [201].
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In the experiments an AC excitation current is applied to the sample and
the voltage response is recorded using a lock-in amplifier as a PSD. The AC
excitation current is a sine wave:

IAC = I0 sin(ωt), (3.6)

with the excitation amplitude I0(=
√

2Irms), frequency ω, and time t. Inserting
Eq. 3.6 into Eq. 3.5 gives the sample’s voltage response to the excitation current
IAC:

VL/R = R0IAC +R1I
2
AC,

= R0I0 sin(ωt) +R1I
2
0 sin2(ωt),

= R0I0 sin(ωt) +R1I
2
0

(
1 + sin(2ωt− π/2)

2

)
, (3.7)

where R1 = γ̃R0cL/Rnp/nM̂ . Notice that Eq. 3.7 yields a term ∼ sin(2ωt−π/2).
Hence, the I2

AC-term in Eq. 3.5 generates a ‘second-harmonic’ response at twice
the excitation frequency.

The lock-in amplifier in our experiments is phase-locked to the frequency of the
excitation current IAC. For the first-harmonic measurement, the phase-sensitive
detection of the lock-in converts the signal into an ‘in-phase’ X- and ‘quadrature’
Y -component by multiplying the signal by sin(ωt) and cos(ωt), respectively,
and performing a low-pass integration:

Xω = 2
T
√

2

∫ T

0
VL/R(t) sin(ωt)dt ≈ R0Irms, (3.8)

Y ω = 2
T
√

2

∫ T

0
VL/R(t) cos(ωt)dt ≈ 0, (3.9)

where the averaging time T is large compared to the signal period. The first-
harmonic voltage is in-phase and determined by the Ohmic resistance R0, as
expected. Notice the

√
2 in the denominator of Eqs. 3.8-3.9, which ensures the

X- and Y -components are expressed in rms-voltages as is the convention for
most lock-in amplifiers.

Since a lock-in amplifier multiplies the input signal with a pure sine and cosine
wave, it actually measures the Fourier components of the signal at the reference
frequency ω. Similarly to Eqs. 3.8-3.9, the Fourier components of the second
harmonic at 2ω can be measured by multiplying the input signal by sin(2ωt)
and cos(2ωt).
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The low-pass integration than yields:

X2ω =
√

2
T

∫ T

0
VL/R(t) sin(2ωt)dt ≈ 0, (3.10)

Y 2ω =
√

2
T

∫ T

0
VL/R(t) cos(2ωt)dt ≈ − 1√

2
R1I

2
rms. (3.11)

Hence, the second-harmonic voltage only shows up in the Y -component and
depends on R1 = γ̃R0cL/Rnp/nM̂ , the nonreciprocal resistance.

It is useful to derive the relation between the nonreciprocal resistance observed
in DC and AC measurements. Equation 3.5 can be used to directly describe the
DC voltage drop along the right and left edge of the sample. Switching between
forward and reverse current flow, while keeping the polarity P ≡ cL/Rnp/nM̂
the same, yields a DC resistance difference of

∆RDC = 2γ̃R0IDC. (3.12)

For the second-harmonic voltage Y 2ω, on the other hand, the Ohmic contribution
is already removed via the integration in Eq. 3.11. Hence, the relation between
the AC and DC nonreciprocal response is simply:

∆RDC = −2
√

2R2ω. (3.13)

Moreover, in chapter 5 it will sometimes be instructive to compare the resistance
difference between the right and left edges for the same 2D charge-carrier type
np/n, magnetization M̂ , and current direction. In this case, the second-harmonic
resistance difference is simply ∆R2ω = 2R2ω, and

∆RDC = −
√

2∆R2ω. (3.14)

Note that Eq. 3.14 also holds when comparing the difference in resistance
between the opposite magnetization directions, for the same edge and current
direction. In this case M̂ , rather than cL/R, causes the sign change.

3.5 Summary

In this chapter, the MBE growth of V-doped (BixSb1-x)2Te3 thin films was
discussed. The stoichiometric composition was ensured by supplying an over-
pressure of Te and choosing the substrate temperature above the sticking
temperature of Te, whereas by tuning the Bi:Sb BEP ratio near perfect charge
compensation was achieved. Moreover, it was argued that GaAs(111)B and
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InP(111)A are the best growth substrates. In the next chapter, it will be shown
that QAH films grown on these substrates also yield the highest breakdown
currents.

With regards to the device fabrication process, it is important to emphasize
that the successful fabrication of Ohmic metal contacts relied on the excellent
selectivity of the etchant Transene D. Namely, Transene D completely removed
the protective Al2O3 capping layer, while leaving the ∼8 nm QAH film
unaffected.

Lastly, the principles of dilution refrigeration and magneto-transport were
discussed. It was shown that an I2-contribution to the I-V relation gives rise
to a second-harmonic component of the AC resistance, which will be important
for chapter 5.





Chapter 4

The QAH Breakdown
Mechanism

“ Crystals are like people, it is the defects in them which tend to
make them interesting! ”

Colin Humphreys

In this chapter, the current-induced breakdown of the QAHE will be studied
in both local and nonlocal measurement geometries. A toy-model describing
the breakdown process will be presented, and the transverse electric field will
be identified as the driving force for breakdown. Lastly, different possible
breakdown mechanisms for the QAHE will be discussed.

4.1 Breakdown of the QAHE

To elucidate the breakdown mechanism of the QAHE it is beneficial to study the
magneto-transport in multi-terminal Hall-bar devices.1 Figure 4.1(a) shows a
schematic of a 26-terminal Hall-bar device2 with the current flowing from contact

1In appendix B, it is shown that regular 6-terminal Hall-bar device are not well-suited for
nonlocal transport measurements.

2A microscope picture of such a device is shown in Fig. 3.9 of chapter 3.

61
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Figure 4.1: Regular Hall-bar configuration for the 26-terminal Hall-bar device B.
(a) Schematic of the potential distribution in the chiral edge state forM > 0; red
(blue) color signifies the source (drain) potential when current flows from contact
0 to 25. The arrow heads signify the direction of the current flow. Note that the
chirality of the edge state inverts for M < 0. (b) Temperature dependence of
the longitudinal and transverse resistance, R0-25,1-5 and R0-25,6-5, respectively.
The curves were measured from 140 K to 40 mK, with a DC current of 50 nA.
(c) Magnetic-field dependence of R0-25,1-5 and R0-25,6-5 measured at 40 mK with
a DC current of 30 nA, showing an ideal QAHE. The dashed lines in (a) and
(b) are guides to the eye.
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0 to 25; namely, a voltage is applied to contact 0 and contact 25 is grounded.
For an upward, out-of-plane magnetization (M > 0), the bottom edge of the
Hall-bar (colored red) is at the source potential, while the top edge (colored
blue) is at the drain potential, as a consequence of the dissipationless transport
in the QAH phase. Figure 4.1(b) shows the temperature dependence of the
QAHE from 140 K to 40 mK. The four-terminal resistance R0-25,6-5 corresponds
to the transverse resistance; here, the first index denotes the current probes
(0–25), while the second index denotes the voltage probes (6–5). Similarly,
R0-25,1-5 corresponds to the longitudinal resistance measured between contact
1 and 5. R0-25,6-5 remains zero till the Curie temperature3 (TC ≈ 18 K), after
which it quickly increases with decreasing temperature becoming equal to the
von Klitzing constant h/e2 at 40 mK. Starting from 140 K, R0-25,6-5 increases
with decreasing temperature, showing an insulating temperature dependence
until ∼18 K; here the 2D (and 3D) bulk states dominate the charge transport.
Below ∼18 K, R0-25,6-5 quickly drops to zero, as the chiral edge becomes the
dominant transport channel.

Figure 4.1(c) shows the corresponding magnetic-field dependence of R0-25,1-5
and R0-25,6-5 at 40 mK. R0-25,1-5 is zero for all values of the magnetic field
with the exception of a peak at the coercive field HC , where the QAHE is
lost over a narrow field range upon magnetization reversal. Similarly, R0-25,6-5
shows a square hysteresis loop with a transition between +h/e2 and −h/e2 at
the coercive field ±Hc. Figures 4.2(a-b) show the coercive field peaks in the
longitudinal resistance R0-25,1-x with x = {5, 9, 11, 13, 17, 21} measured between
different contact pairs. The linear relation between the peak value of R0-25,1-x
at Hc and the contact spacing L is indicative of 2D diffusive transport through
the bulk of the sample when the magnetic exchange gap is closed at Hc.

Figure 4.2(c) shows the current-induced breakdown of the QAHE for the same
contact pairs. The longitudinal voltage V1-x shows a broad plateau at 0 V
up to ∼0.16 µA, above which a sharp increase signifies the breakdown of the
dissipationless state. Note that this breakdown current density (∼1.6 nA/µm)
is among the highest reported so far [50, 54, 83, 133].4 The Hall voltage V6-5
follows the expected linear behavior of the QAHE, V6-5 ≈ (h/e2)I, with only a
small deviation at high current values. Hence, the breakdown in the transverse
voltage Vy is much less pronounced than in the longitudinal voltage Vx, see
Fig. 4.3(b) for a fair comparison. This is consistent with the earliest studies of

3In this thesis, the temperature at which an apparent long-range ferromagnetic order
shows up in the QAH films, will be referred to as the ‘Curie temperature’ TC. However, as
discussed in section 2.2.2, this may actually be the ‘superparamagnetic blocking temperature’
instead. Nevertheless, since no scanning SQUID experiments were performed on any of our
QAH films, the magnetic order (long-range FM or superparamagnetism) is not known.

4As shown later in Fig. 4.14, the critical current density in our samples can be further
increased by electrostatic gating to ∼4.16 nA/µm.
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Figure 4.2: Length dependence of the longitudinal resistance of the QAHI,
measured on the 26-terminal Hall-bar device B at 40 mK. (a) Longitudinal
resistance R0-25,1-x near the coercive field µ0Hc = 1.09 T, measured with respect
to different contacts x = {5, 9, 11, 13, 17, 21} with IDC = 30 nA. (b) The peak
values of R0-25,1-x at the coercive field Hc as a function of the voltage-contact
spacing L. (c) Plots of the longitudinal voltage V1-x vs I0-25, measured at +2 T.
The breakdown of the QAHE occurs at ∼0.16 µA. The transverse voltage V6-5
is shown as well, for comparison. (d) The value of V1-x/I0-25 at 0.3 µA as a
function of L.
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Figure 4.3: (a) Illustration of the energy spectrum: The bulk conduction band
(BCB) and bulk valence band (BVB) are well separated. The 2D topological
surface states (TSS) have an exchange gap at the Γ-point, but the gap closes at
the sample’s edges where the chiral edge state connects the upper and lower
branches. (b) Current-induced breakdown in device A, measured at 10 mK
in 0 T (after training the sample at +2 T to align all the magnetic domains).
Above ∼160 nA, both the longitudinal voltage Vx and the transverse voltage
Vy show deviations from the ideal QAHE. Notice that Vx was normalized by
the Hall-bar width W and voltage-contact spacing L for a fair comparison.

the QAHE, where the transverse resistance was close to h/e2, while having a
sizable longitudinal resistance of several kΩ [30]. The procedure used in this
thesis to extract the value of the critical current Ic is given in appendix C.

Figure 4.2(d) shows the longitudinal resistance value at IDC = 0.3 µA as a
function of L. A linear dependence on the contact spacing is found, similar to
that in Fig. 4.2(b). This linear dependence seems to indicate that the dissipative
state above breakdown is also governed by 2D diffusive transport through the
bulk of the sample. Hence, for small probe currents the system behaves as an
ideal QAHI in which the chiral edge states are the only transport channels [see
Fig. 4.3(a)], whereas for large probe currents the 2D surface states also seem
to carry a fraction of the current. It was suggested that the large transverse
electric field gives rise to a small leakage current through the 2D bulk states
across the width of the Hall-bar, leading to the breakdown of the QAHE [50, 83].
In the next section, it will be shown using the Landauer-Büttiker formalism [28]
that such a leakage current crossing the width of the Hall-bar indeed affects
the longitudinal resistance, while leaving the Hall resistance unchanged.
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4.2 Landauer-Büttiker Description of Breakdown

In this section, the effect of the current-induced breakdown of the QAHE on
the measured resistance is described using the Landauer-Büttiker formalism
[28]. The simplistic model by no means describes the physics of the current-
induced breakdown fully. However, as will be shown throughout the chapter,
it does capture the key feature of the breakdown mechanism, namely, the loss
of the edge current from the high-potential branch of the chiral edge state to
the low-potential branch. Below, the effect of such a leakage current on the
measured four-terminal and three-terminal resistances is addressed. Here, the
Landauer-Büttiker treatment will be limited to a 6-terminal Hall-bar; several
more complicated models for a 12-terminal Hall-bar are included in appendix D.

4.2.1 Four-terminal Measurement Geometry

Figure 4.4(a) shows a schematic of a 6-terminal Hall-bar device for an upward,
out-of-plane magnetization (M > 0). The current flows from contact 1 to 4,
and the chiral edge state runs counterclockwise along the sample edge. The
high- and low-potential branches of the chiral edge state are separated by the
width of the Hall-bar. To describe the fraction of the current leaking from
the high- to the low-potential branch, the scattering probabilities α, β, γ are
introduced, as depicted in Fig. 4.4. In the Landauer-Büttiker formalism [28],
the current-voltage relation is given by

Ii = e2

h

∑
j

(TjiVi − TijVj), (4.1)

where Vi is the voltage on the ith contact, Ii is the current flowing through
the ith contact into the sample, and Tji is the transmission probability from
the ith to the jth contact. Consider the edge channel running from contact 6
to 5; there is a T56 = (1− β) probability of reaching contact 5 and a T26 = β
probability of scattering to contact 2. Similarly, the other nonzero transmission
coefficients can be found to be:

T11 = T62 = α, T12 = T61 = (1− α),

T26 = T53 = β, T23 = T56 = (1− β), (4.2)

T35 = T44 = γ, T34 = T45 = (1− γ).
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Figure 4.4: Schematic of the edge transport in a 6-terminal Hall-bar device
for M > 0, with the ‘leakage’ between opposing edges parametrized by the
scattering probabilities α, β, and γ. Contact 1 acts as the source, while contact 4
is the drain. The high- and low-potential branches of the chiral edge state are
represented by the red and blue arrows, respectively.

Using V4 = 0, I1 = −I4 = I and I2 = I3 = I5 = I6 = 0, Eq. 4.1 gives a set of
equations which can be solved for I and Vi. The four-terminal longitudinal and
transverse resistances then become:

Rxx = V2 − V3

I
= V6 − V5

I
= β

1− β
h

e2 , (4.3)

Ryx = V6 − V2

I
= V5 − V3

I
= h

e2 , (4.4)

where Rxx only depends on β, the scattering probability between the voltage
contacts, as expected. Notice that Ryx remains quantized in our simple model.5
This is clearly not the case for a real device where Ryx starts to deviate from h/e2

with increasing temperature or probe current. However, despite the simplicity
of the model, it shows that Rxx is more strongly affected by breakdown than
Ryx, in agreement with the measured I-V characteristic shown in Fig. 4.3(b).

5Some authors choose to include an additional scattering probability δ in the Landauer-
Büttiker model, which directly shorts the transverse contact pairs [49, 50], i.e. contact 2 to 6
and 3 to 5 in Fig. 4.4. This solves the issue of Ryx remaining quantized in a broken-down QAHI
(α, β, γ, δ 6= 0). However, with an increasing amount of scattering probabilities describing the
2D leakage paths, it is probably more instructive to move to a finite-element or tight-binding
model on a 2D grid to better describe the breakdown process.
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(a) (b)

Figure 4.5: (a-b) Schematics of the edge transport in a 6-terminal Hall-bar
device for M > 0 (a) and M < 0 (b), with the ‘leakage’ between opposing edges
for a wide and narrow contacts parametrized by the scattering probabilities α
and β, respectively. Contact 1 acts as the source, while contact 6 is the drain.
The high- and low-potential branches of the chiral edge state are represented
by the red and blue arrows, respectively.

4.2.2 Three-terminal Measurement Geometry

Figure 4.5 shows a schematic of a 6-terminal Hall-bar device for M > 0 and
M < 0. The current flows from contact 1 to 6. Contacts 3, 4 and 5 are spatially
separated from the current contacts in this nonlocal configuration. To describe
the breakdown in the current contacts, the scattering probabilities α and β
between the high- and low-potential branches near contacts 1 and 6, respectively,
are introduced. The nonzero transmission coefficients for M > 0 then become:

T11 = α, T12 = (1− α), T51 = β(1− α),

T66 = β, T56 = (1− β), T62 = α(1− β), (4.5)

T23 = T34 = T45 = 1, T52 = αβ, T61 = (1− α)(1− β).

The transmission coefficients for M < 0 are related via Tij(M < 0) = Tji(M >
0). Using V6 = 0, I1 = −I6 = I and I2 = I3 = I4 = I5 = 0, Eq. 4.1 can be
solved for I and Vi. The three-terminal resistance R1-6,5-6 then becomes:

R1-6,5-6 = V5 − V6

I
=
{

β
1−β

h
e2 for M > 0,

1
1−β

h
e2 for M < 0,

(4.6)

where R1-6,5-6 only depends on β, the breakdown in the small contact arm, as
one would expect.
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Moreover, taking the difference between both magnetization directions yields:

R1-6,5-6(M < 0)−R1-6,5-6(M > 0) = h

e2 . (4.7)

Hence, the breakdown near the source/drain contact will result in a constant
offset of the hysteresis loop in the magnetic-field dependence of the three-
terminal resistance. Note that all nonlocal resistances are equal, i.e. R1-6,2-6 =
R1-6,3-6 = R1-6,4-6 = R1-6,5-6, as there are no leakage channels in the nonlocal
region (see appendix D for the inclusion of nonlocal leakage paths). Lastly, if the
three-terminal resistance is measured with respect to contact 1, an expression
similar to Eq. 4.6 is found, which only depends on α instead of β.

4.3 Nonlocal Transport & Breakdown

To clearly disentangle dissipative bulk current paths from the chiral edge channel,
the transport properties of the QAHE were studied in a nonlocal measurement
geometry. In the measurement shown in Figs. 4.6(b-d), the current flowed
from contact 1 to 14. From the point of view of local/nonlocal transport,
contacts 0 to 14 belong to the ‘local’ transport region, while contacts 15 to
25 are in the ‘nonlocal’ region. The four-terminal resistance R1-14,6-10 and
R1-14,6-5 correspond to the longitudinal and transverse resistance, respectively.
As can be seen from Figs. 4.6(b-d), the sample shows an ideal QAHE for a
probe current of 10 nA. The nonlocal resistance R1-14,17-21 shows a near perfect
zero resistance throughout the magnetic-field sweep. This indicates either a
near-perfect nonlocal (and dissipationless) edge transport or the absence of
current flow in the nonlocal region. If the latter is the case, the potential of
contact 25 would always be equal to the drain potential of contact 14, and
hence R1-14,0-25 would be zero for M < 0. However, the observed R1-14,0-25 is
quantized to −h/e2 for M < 0, meaning that the potential of contact 25 is
equal to the source potential of contact 1. This proves that the nonlocal edge
transport is realized.

Having demonstrated an ideal QAHE and nonlocal transport, the breakdown
of the QAHE with increasing probe current will be addressed next. Figure 4.7
shows the voltages appearing at three different contact pairs as a function of the
DC probe current I1-14 for the same configuration as shown in Fig. 4.6(a). While
the breakdown is clearly observed in the local transport region, dissipationless
edge transport is maintained in the nonlocal region: As shown in Fig. 4.7, V17-21
remains zero beyond ∼0.16 µA up to the maximum current employed (0.4 µA),
to within the accuracy of our DC measurement (∼1 µV). This is in agreement
with our simple Landauer-Büttiker model shown in Fig. 4.5, and points to the
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Figure 4.6: Local and nonlocal transport measured below the breakdown current
in device A. (a) Schematic picture of the 26-terminal Hall-bar device with a
width of 100 µm. The red (blue) line shows the high (low) potential portion
of the chiral edge state for a downward, out-of-plane magnetization (M < 0)
when current flows from contact 1 to 14. (b-d) Magnetic-field dependence of the
resistance measured between contacts 6-5 (b), 6-10 and 17-21 (c), and 0-25 (d),
showing the QAHE in the local and nonlocal regions at 15 mK, measured with
a DC current of 10 nA. The small peaks near µ0H ≈ 0 T are heating artifacts
in the dilution refrigerator, resulting from a temporary increase of the sample
temperature when inverting the magnetic-field orientation of the SC magnet.

large transverse electric field as the driving force for breakdown, as was also
suggested in Refs. [50, 83]. Such a large electric field is absent in the nonlocal
region where the edge potential is constant (see appendix E for additional data);
as a result there is no loss of edge current and no dissipation in the nonlocal
region (see appendix D for a detailed Landauer-Büttiker treatment).

A possible trivial explanation for the apparent absence of breakdown in the
nonlocal region would be that once breakdown occurs in the local transport
region, most or all of the current reaches the drain (contact 14) through
dissipative channels rather than the chiral edge state. To address this question,
Fig. 4.8(b) shows the three-terminal rms-voltage Vrms as a function of the AC
rms-current Irms,1-12, which flows from contact 1 to 12. For an upward, out-of-
plane magnetization (M > 0), the chiral edge state runs counterclockwise along
the sample edge, as shown in Fig. 4.8(a). Hence, V5-12 and V6-12 correspond to
the low- and high-potential branches of the chiral edge state, respectively. Their
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Figure 4.7: Four-terminal current-voltage characteristics in the local and
nonlocal transport regions for the same configuration as shown in Fig. 4.6(a),
measured at 15 mK in +2 T. The breakdown of the QAHE occurs only in
the local transport region (V6-10) at ∼0.16 µA, whereas dissipationless charge
transport persists in the nonlocal region (V17-21).

difference approximately follows the relation ∼ (h/e2)Irms,1-12. It is important
to note here that Fig. 4.8(b) was measured using the AC lock-in technique,
hence Vrms is integrated over the AC probe current up to the peak-current
amplitude Ipeak,1-12 =

√
2Irms,1-12. As a result, the features of Fig. 4.8(b) are

slightly smoothened as compared to a DC I-V characteristic.

At Irms,1-12 ≈ 60 nA, a dent can be seen in the curves for V5-12 and V6-12 in
Fig. 4.8(b). This corresponds to the breakdown of the QAHE in the ‘local’
100-µm-wide section of the Hall-bar; namely, the peak-amplitude of the probe
current Ipeak,1-12 ≈ 85 nA becomes equal to the breakdown current Ic. Moreover,
V5-12 and V6-12 are not zero below Irms,1-12 ≈ 60 nA due to a second resistance
contribution stemming from the breakdown of the QAHE in the 20-µm-wide
drain contact 12 [see Fig. 3.9(b) for schematics]. The voltage V19-12 is nonlocal
and corresponds to the low-potential branch of the chiral edge state for M > 0;
as a result, its value is entirely determined by this second resistance contribution
stemming from the breakdown in the drain (contact 12). In other words, V5-12
is equal to V19-12 up to ∼60 nA where the Hall-bar (with the exception of the
source and drain regions) is in the zero-resistance state. Above ∼60 nA, V5-12
(and V6-12) acquire a larger slope due to the breakdown in the local region of
the Hall-bar, while the nonlocal voltage V19-12 does not show an abrupt change
in slope.
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Figure 4.8: Local and nonlocal transport measured above the breakdown current
in the 26-terminal Hall-bar device C. (a) Schematic of the high (red) and low
(blue) potential portions of the chiral edge state for M > 0; arrow heads signify
the direction of the current flow. The geometry is the same as in Figs. 4.6 and
4.7 with the slight difference that contact 12 is grounded instead of contact 14,
and that M is reversed. (b) Three-terminal rms-voltages V5-12, V6-12, and V19-12
vs the AC rms-current Irms,1-12 measured at 20 mK in +2 T with respect to the
20-µm-wide contact 12. (c) Magnetic-field dependencies of the three-terminal
resistances R1-12,5-12 (blue), R1-12,6-12 (red), and R1-12,19-12 (green) measured
at 20 mK with an AC rms-current of 200 nA. (d) Symmetric and antisymmetric
components of R1-12,5-12, R1-12,6-12, and R1-12,19-12.
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Figure 4.8(c) shows the magnetic-field dependence of the corresponding three-
terminal resistances R1-12,5-12, R1-12,6-12, and R1-12,19-12. In the ideal case (i.e. β
= 0 in Eq. 4.6), a zero to h/e2 transition upon magnetization reversal is expected
for R1-12,5-12, R1-12,6-12, and R1-12,19-12. Since the three-terminal resistances are
measured with an AC rms-current of 200 nA, which is well above breakdown,
R1-12,5-12 and R1-12,6-12 acquire a large longitudinal resistance contribution from
the broken-down QAH state in the local region of the Hall-bar. Additionally,
R1-12,5-12, R1-12,6-12 and R1-12,19-12 also pick up a second resistance contribution
stemming from the breakdown of the QAHE in the 20-µm-wide drain contact 12,
as discussed above.

Figure 4.8(d) shows the symmetric and antisymmetric components of R1-12,5-12,
R1-12,6-12, and R1-12,19-12. The symmetric components of R1-12,5-12 and
R1-12,6-12 are equal to the resistance contribution from the broken-down QAHI
state, while their antisymmetric component shows a square hysteresis loop with
the resistance value equal to ∼ 0.48h/e2. This corresponds to the expected
zero to h/e2 transition upon magnetization reversal for this configuration. The
deviation of ∼4% from h/e2 is a consequence of the broken-down QAH state
in the local Hall-bar region. Notice that the antisymmetric component of
R1-12,19-12 overlaps with the hysteresis loop of R1-12,5-12 and R1-12,6-12. Hence,
no loss of the edge potential occurs in the nonlocal region. The observed
magnetic-field dependence of R1-12,19-12 speaks against the trivial explanation
mentioned above, proving the presence of the QAH edge current in the nonlocal
region even above the current-induced breakdown of the QAHE. Based on
the transport data measured below and above breakdown (Figs. 4.7 and 4.8,
respectively) it can be concluded that the breakdown of the QAHE, to be
understood as the loss of the dissipationless edge transport, solely occurs in the
local transport region of the Hall-bar device.

4.4 Spurious Contributions to the Three-terminal
Resistance

In the previous section, it was already shown that breakdown plays a strong role
near the source and drain contacts, where the high- and low-potential branches
of the chiral edge state come together. However, the measurement shown in
Fig. 4.8 is rather complicated. Hence, it is instructive to briefly address the
breakdown in narrow contacts, and show that it can lead to a large spurious
contribution to the measured three-terminal resistance.
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Figure 4.9: Breakdown of the QAHE in narrow contacts. (a) The three-
terminal current-voltage characteristic of device B for contact 0 (100 µm,
blue) and contact 1 (20 µm, red) with contact 25 as reference, measured
at 40 mK in +2 T (M > 0). Insets show the measurement configurations.
(b) Corresponding differential resistance for contacts 0 and 1. The curve for
dV25-0/dI1-0 is magnified by a factor of 10 for clarity.

In the 26-terminal Hall-bar devices used in this thesis, contacts 1 to 24 are made
via a 20-µm-wide section of the magnetic TI film, while contacts 0 and 25 are
made along the full width (100 µm) of the device [see Fig. 3.9(b) for schematics].
To elucidate the adverse effect of a narrow contact on the breakdown, the
three-terminal measurement geometry is used involving contacts 0, 1, and
25. Figure 4.9 shows the three-terminal I-V characteristics and corresponding
differential resistance for two configurations with M > 0. The voltage V25-0
was measured with contact 0 as the drain (I1-0). Since the edge current flows
counterclockwise for M > 0, contact 25 was at the drain potential in this
measurement. Indeed, the differential resistance dV25-0/dI1-0 is approximately
zero with an upturn at ∼0.16 µA due to the breakdown of the QAHE. Hence,
there is no additional resistance associated with contact 0.

On the other hand, V25-1 was measured with contact 1 as the drain (I0-1).
Now contact 25 is at the source potential, and hence dV25-1/dI0-1 should be
equal to h/e2. However, dV25-1/dI0-1 immediately deviates from h/e2 for any
value of the current IDC [see the red curve in Fig. 4.9(b)]. As demonstrated in
section 4.2 using the Landauer-Büttiker formalism [28], this can be explained
by the large electric field appearing in the narrow contact arm, causing an
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Figure 4.10: The three-terminal resistance of the 20-µm-wide contact 2 of
the 26-terminal Hall-bar device B measured at 40 mK. (a) Schematic of the
high (red) and low (blue) potential branch of the chiral edge state at µ0H =
−2 T with the measurement-circuit configuration (top), corresponding I-V
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potential at µ0H = +2 T with the measurement-circuit configuration (top),
corresponding I-V characteristics (middle), and the corresponding differential
resistances (bottom).
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immediate breakdown and enhancing the three-terminal resistance (see Eq. 4.6).
This demonstrates the necessity to avoid a three-terminal configuration with
a narrow contact to minimize the breakdown effect. For example, in a recent
study using a ∼200-nm-wide Nb electrode on top of a QAHI film, the breakdown
of the QAHE was the dominant contribution to the measured conductance [84],
making it difficult to detect the Andreev reflection at the Nb/QAHI interface.

To gain further insight into the effect of the current-induced breakdown near
the source/drain contacts, the magnetic-field dependence of the three-terminal
resistance of the 20-µm-wide contact 2 is shown in Fig. 4.10. The resistances
R1-2,0-2 and R1-2,25-2 are measured with contact 2 as the drain. For an upward,
out-of-plane magnetization (M > 0), R1-2,0-2 represents the high-potential
branch of the chiral edge state, while R1-2,25-2 represents the low-potential
branch. In the absence of breakdown, the hysteresis loop of R1-2,0-2 (R1-2,25-2)
should go from zero (h/e2) at M < 0 to h/e2 (zero) at M > 0, see Eqs. 4.6–4.7.
For the 20-µm-wide contact 2, however, the hysteresis loop is offset by about
∼31 kΩ. When the difference ∆R = R1-2,0-2 − R1-2,25-2 is taken, both the
resistance peaks at the coercive field and the offset due to breakdown disappear
[green curves in Fig. 4.10(b)]. The ∆R curves show an ideal hysteresis loop
from +h/e2 to −h/e2, as expected for a four-terminal Hall measurement of
the QAHE below breakdown. This demonstrates that the breakdown affecting
the three-terminal measurement is confined to the region with the shortest
separation between the high- and low-potential branches of the chiral edge state,
i.e. at the source/drain contacts.

4.5 Width Dependence of the Critical Current

To investigate the scaling of the critical current Ic on the edge state separation
W , four types of 6-terminal Hall-bar devices F, G, H, I were fabricated on
the same V-doped (BixSb1-x)2Te3-InP wafer (see table 3.1 for details) with
their Hall-bar (contact) widths equal to 100 µm (30 µm), 150 µm (40 µm),
200 µm (50 µm), and 250 µm (60 µm), respectively. Figures 4.11(a-b) show
representative three- and four-terminal I-V characteristics for devices F2, G2,
H, and I. By employing both the three-terminal and four-terminal geometries,
the dependence of breakdown on the edge state separation could be probed over
a range of 30 to 250 µm. One can see an approximately linear dependence of Ic
on W in Fig. 4.11(c), which corroborates the assumption that the transverse
electric field governs the breakdown process.
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Figure 4.11: Current-voltage characteristics showing the current-induced
breakdown of the QAHE at 25 mK in 0 T (after training at +2 T), measured
for various widths of the sample in the three-terminal (a) and four-terminal
(b) geometries. The specified widths in panels (a) and (b) correspond to the
contact and Hall-bar widths, respectively, of devices F2, G2, H, and I (cf. table
3.1). The devices were fabricated on the same wafer. (c) Corresponding width
dependence of the critical current Ic. The black solid line is a linear fit through
both data sets, yielding a slope of ∼0.85 nA/µm.
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Namely, breakdown occurs at a particular value of the nominal critical current
density

jc ≡
Ic

W
∼ e2

h
Eyx, (4.8)

independent of the device dimensions, as one can infer from Figs. 4.2(c-d) and
4.11(c). The procedure used in this thesis to extract the value of the critical
current Ic is given in appendix C.

4.6 Temperature Dependence of Breakdown

Now we turn to the temperature dependence of the breakdown effect. The
6-terminal devices D and E were measured in the regular four-terminal Hall-bar
geometry. Figure 4.12(a) shows a 2D mapping of the longitudinal voltage Vx as
functions of temperature T and probe current IDC; the plots of Vx vs IDC at
selected temperatures are shown in Fig. 4.12(b). A well-extended zero-voltage
plateau is seen up to ∼100 mK, while a linear I-V relation is slowly restored at
higher temperatures. The temperature dependence of the current density jc,
which tends to saturate towards lower T , is plotted in Fig. 4.12(c).

Figure 4.12(d) shows the longitudinal and transverse sheet conductance, σxx
and σxy, calculated using the relations:

σxx = ρxx
ρ2
xx + ρ2

yx

, σxy = ρyx
ρ2
xx + ρ2

yx

, (4.9)

where ρxx = Rxx(W/L) and ρyx = Ryx are the longitudinal and transverse
sheet resistance, respectively. The longitudinal conductance σxx is fitted well
by

σxx = σ0e
−T0/T , (4.10)

at high temperature, showing that the thermal activation of charge carriers
determines the conductance above ∼100 mK with a small activation energy
of kBT0 ≈ 40 µeV (i.e. T0 ≈ 0.5 K). This value is comparable to the values
∼17–121 µeV found in previous transport studies [17, 31, 50, 83, 137, 159].
It is worthwhile to note that this activation energy is much smaller than the
exchange gap of ∼14–28 meV observed in scanning tunneling spectroscopy
[37, 101], hinting at the role of disorder.
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Figure 4.12: Temperature dependence of the QAHE in 0 T after training at
+2 T. (a) 2D color mapping of the longitudinal voltage |Vx| as functions of T
and IDC for the 100-µm-wide device E. (b) Vx vs IDC at 18, 100, 125, 150, 175,
and 200 mK, showing the evolution of the current-induced breakdown curve.
(c) Plot of the critical current density jc as a function of T ; the dashed line
is a guide to the eye. (d) Arrhenius plot of the longitudinal conductance σxx
and transverse conductance σxy of device D, measured with an AC rms-current
of 10 nA. The black solid line is a fit of Eq. 4.10 to the linear regime of σxx,
yielding T0 ≈ 0.5 K.
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Figure 4.13: (a-b) The gate-voltage dependence of Rxx = R1-4,2-3 (a) and
Ryx = R1-4,6-2 (b) at different temperatures T = 30, 100, 150, 200, 250, 300,
400, 500, 600, 700, and 800 mK for device F1, measured with IDC = 10 nA in 0 T
(after training at +2 T). Rxx is normalized by the Hall-bar width W = 100 µm
and voltage-contact spacing L = 350 µm for a fair comparison. (c) Gate-voltage
dependence of the activation temperature T0, extracted by fitting Eq. 4.10,
with ρxx = dVx/dIDC(W/L) and ρyx = dVy/dIDC obtained from the differential
resistance measurement with an AC excitation of Irms = 1 nA. (d) Picture of the
6-terminal Hall-bar device F1 with top-gate electrode. The device was measured
in the regular four-terminal Hall-bar geometry with the current flowing from
contact 1 to 4.
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4.7 Gating Dependence of the QAHE

Until now the breakdown of the QAHE has been studied at zero gate voltage.
However, due to fluctuations in the experimental conditions as-grown QAH
films do not have the Fermi level located exactly in the middle of the exchange
gap [Fig. 4.3(a)]. Hence, electrostatic gating will help to improve the breakdown
current Ic of QAH films, and allow the investigation of Ic as the Fermi level
is swept across the exchange gap. Figure 4.13 shows the VGate-dependence of
Rxx and Ryx at different temperatures for the 100-µm-wide Hall-bar device F1
with top-gate. A well-pronounced zero-resistance (quantized) plateau for Rxx
(Ryx) is seen over a large gate-voltage range up to ∼150 mK, after which Rxx
and Ryx start to deviated from the ideal QAHE. Using Eq. 4.10, the activation
temperature T0 can be extracted as a function of VGate, see Fig. 4.13(c). As
expected, T0 reaches a maximum in the middle of the zero-resistance plateau,
corresponding to the Fermi level being on average in the middle of the exchange
gap. Note that the sample quality (at VGate = 0 V) of device F1 is comparable
to device D shown in Fig. 4.12, i.e. kBT0 ≈ 45 µeV. This activation energy
increases to ∼120 µeV in the middle of the plateau, but is still significantly
smaller than the expected size of the exchange gap of ∼14–28 meV [37, 101].

Next, the same experiment is shown in Figs. 4.14(a-b), but now the VGate-
dependence of Rxx and corresponding differential resistance dVx/dIDC were
recorded for different values of the current IDC on the 150-µm-wide Hall-
bar device G1. A zero-resistance plateau is maintained up to 600 nA, after
which breakdown occurs at the charge-neutrality-point (VCNP = +14 V) at
Ic ≈ 625 nA (i.e. jc ≈ 4.16 nA/µm), see the I-V characteristics at different
VGate in Fig. 4.14(c). Moreover, notice the small difference in the resistance
values between the Rxx and dVx/dIDC curves at the same value of IDC, which
is the consequence of the nonlinear I-V relation. The VGate-dependence of
the critical current density jc, which shows a peak at the CNP, is plotted in
Fig. 4.14(d).

Lastly, it is important to comment on the gating efficiency. The activation energy
at the CNP is about ∼120 µeV, and the zero-resistance plateau spans about
∼38 V (assuming the size of the plateau is symmetric around VCNP = +14 V).
This means the gating efficiency corresponds to only a few µeV/V. This is
surprisingly low, if one compares it to the gating efficiency of the (BixSb1-x)2Te3
nanowires (with a rectangular cross-section of thickness ∼16 nm and width
∼200 nm) reported by Legg et al. [103], which have a nearly identical gate
stack (40-nm Al2O3 dielectric covered with a 5/40 nm Pt/Au electrode), and
were fabricated in the same clean room. Legg et al. could tune the Fermi level
through the 2D surface Dirac cone, effectively moving from the 3D valence band
to the 3D conduction band (∼300 meV), using only a gate voltage range of
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Figure 4.14: (a-b) The gate-voltage dependence of Rxx = R1-4,6-5 (a) and the
corresponding differential resistance dVx/dIDC (b) at different DC current values
IDC = 10, 50, 100, 200, 300, 400, 500, 600, 700, and 800 nA for device G1,
measured at 30 mK in 0 T (after training at +2 T). The dVx/dIDC curves were
measured using an AC excitation of Irms = 1 nA. Both Rxx and dVx/dIDC are
normalized by the Hall-bar width W = 150 µm and voltage-contact spacing
L = 350 µm. (c) Four-terminal current-voltage characteristics, measured in
steps of 2 V between VGate = −6 and +20 V. At the CNP (VCNP = +14 V),
the breakdown of the QAHE occurs at ∼625 nA. (d) Plot of the current density
jc as a function of VGate; the orange data points were extracted from (b), and
the purple data points from (c). The dashed line is a guide to the eye.



MAGNETIC-FIELD DEPENDENCE OF BREAKDOWN 83

about ∼15 V. Moreover, resistance oscillations close to the CNP with a period of
about ∼0.3–0.5 V were identified as subband crossings in the quantum-confined
TI nanowire [103]. Note that the corresponding subband spacing is on the order
of a few meV. Hence, the gating efficiency of the (BixSb1-x)2Te3 nanowires,
as compared to the V-doped (BixSb1-x)2Te3 QAH films, is several orders of
magnitude higher. Hence, the Fermi level of the QAH films seems to be pinned
in the exchange gap, hinting at a huge (but localized) density of states in the
gap. Quantum-capacitance measurements are ideally suited to give further
insight here, as it allows for the direct measurement of the density of states and
Fermi-level position as a function of the gate voltage without a priori knowledge
of the band structure. Such studies were already performed on 2D- and 3D-TIs
[39, 71, 72, 96, 194], and are scheduled on our QAH films in collaboration with
Prof. Bocquillon in the near future.

4.8 Magnetic-field Dependence of Breakdown

In chapter 1, it was shown that the critical current for the breakdown of the
QHE follows an universal B3/2-dependence on the applied magnetic-field B (see
Fig. 1.4). For the QAHE, the magnetic-field dependence is very different as
shown in Fig. 4.15. The applied magnetic field decreases the current needed to
break the QAHE, as evidenced by the reduction of the zero-resistance plateau
as a function of both the gate voltage and DC current, see Figs. 4.15(a-b). This
is contrary to the magneto-transport data of the first realization of the QAHE,
where the transverse resistance was quantized to h/e2, but the longitudinal
resistance was several kΩ [30]. In this study, increasing the magnetic-field above
10 T lead to the suppression of the dissipative states in the sample, and a
significant reduction of the longitudinal resistance [30]. However, it seems if the
zero-resistance state is already realized in the absence of a magnetic field, then
applying/increasing the magnetic field actually decreases the critical current
density jc, as shown in Fig. 4.15(c). The data points follow an approximate
linear dependence at the CNP, with jc decreasing by ∼0.5 nA/µm per Tesla.

Recall the low-energy effective Hamiltonian for the QAHE (Eq. 2.16) discussed
in chapter 2. In this model the spin-splitting increases by applying a magnetic-
field in addition to the exchange field, and the result is a more stable QAH
phase. Orbital effects, however, were not considered. Liu et al. calculated that
the 3D bulk gap of (nonmagnetic) Bi2Se3 decreases by a significant amount
of ∼160 meV at 5 T due to the formation of Landau levels [113], which might
decrease the overall insulating state of the system. Moreover, Böttcher et
al. calculated a critical orbital field at which the zeroth Landau level of the 2D
surface states crosses the Fermi level, and causes a quantum-phase transition
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Figure 4.15: Magnetic-field dependence of breakdown, measured at 40 mK.
(a) The gate voltage dependence of Rxx = R1-4,6-5 at different values of the
magnetic-field µ0Hc = 0 T (trained at −2 T), −2 T, −4 T, and −6 T for device
F1, measured with IDC = 10 nA. Rxx is normalized by the Hall-bar width
W = 100 µm and voltage-contact spacing L = 350 µm. (b) The corresponding
four-terminal current-voltage characteristics, measured at VCNP = +13 V.
(d) Plot of the current density jc at the CNP as a function of the applied
magnetic-field. The grey dashed line is a linear fit through the data points,
yielding a slope of ∼0.5 nA/(Tµm).

from the QAH phase to a trivial insulator [21, 22].6 Nevertheless, the bulk
mobility in our QAH films is only a few hundred cm2/(Vs), and orbital effects
are not expected. Hence, the peculiar magnetic-field dependence of the critical
current [Fig. 4.15(c)] is not easily explained by considering orbital and Zeeman
contributions to the band structure, and for now remains an open question.

4.9 Absence of Additional Quasi-helical Edge States

Before discussing the different breakdown mechanisms proposed for the QAHE,
it is prudent to first comment on the possibility of additional quasi-helical
edge states, as predicted by Wang et al. [187]. These quasi-helical edge states
can be thought of as the remnants of the 2D topological surface states on the
side surfaces of a 3D magnetic TI when reducing the thickness to form the
quasi-2D QAHI films, see Fig. 4.16. Wang et al. predicted an exponential
length dependence of the edge potential in case these quasi-helical edge states

6The models in Refs. [21, 22] assume an infinite coercive field for the QAHI, which makes
their main claim of ‘the violation of the Onsager relation’ a trivial statement (cf. Fig. 4 in the
supplementary material of Ref. [22]). Nevertheless, the calculation of the critical orbital field
might have been experimentally relevant, were it not for the low bulk mobility of our QAH
films.
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(a) 3D magnetic TI (b) Quasi-2D magnetic TI

Figure 4.16: Illustration of quasi-helical edge states in a QAHI. (a) A 3D
magnetic TI, with the magnetic impurities (yellow arrows) randomly distributed
throughout the bulk. The magnetization M is pointing upward. For the top
and bottom surfaces, M is out-of-plane breaking TRS and opening an exchange
gap in the 2D Dirac cone of the top and bottom surface states (green cones).
For the side surfaces, M is in-plane and the 2D Dirac cone of the side surface
states remains gapless (red cones). The QAHE cannot be observed, since the
side surfaces offer parallel metallic conduction channels to the chiral QAH edge
state. (b) A quasi-2D magnetic TI, where the Dirac surface states on the side
surfaces are transformed into gapped ‘quasi-helical’ 1D edge modes due to the
confinement effect with decreasing sample thickness. The chiral QAH edge state
is shown by the black line crossing the exchange gap; the quasi-helical 1D edge
states (red parabola) form a minigap on the side surfaces.

are coexisting with the chiral edge state of the QAHE [187]. The model is
reproduced in appendix D (see Eqs. D.14-D.15) for the nonlocal configuration
shown in Fig. 4.6(a), and indeed leads to a nonzero and position-dependent
edge potential in the nonlocal region of the Hall-bar.

Nevertheless, as seen in Fig. 4.7, no sign of dissipation was observed in the
nonlocal region (see appendix E for additional data). Moreover, when the
I-V characteristics were recorded for different voltage contact spacings L [see
Figs. 4.2(c-d)], a clear linear dependence of Rxx on L was observed above
breakdown. This too does not fit the expected length dependence of Eqs. D.14-
D.15. The absence of a nonlocal position-dependent edge potential, together
with the linear relation of Rxx on L, point to 2D diffusive transport as the
origin of dissipation and speak against the presence of additional dissipative
edge states as was proposed in Refs. [31, 94, 187].
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4.10 The QAH Breakdown Mechanism

In this section, different breakdown mechanisms for the QAHE will be discussed.
Fox et al. attributed the breakdown to bootstrap electron heating (BSEH)
[50, 90]. However, it will be argued that the heating effect in QAHI films is
too small. The percolation of the chiral edge state via magnetic domains and
Landau-Zener tunneling between 2D charge puddles will be dismissed as well,
as possible breakdown mechanisms. Rather, it will be argued that electric-
field-driven percolation of 2D charge puddles in the gapped surface states of
the compensated QAH films is the most likely cause of the current-induced
breakdown.

4.10.1 Bootstrap Electron Heating

First, let us discuss the role of electron heating in the breakdown process. It is
obvious that an abrupt increase in the longitudinal resistance will lead to heating,
and that the resulting increase in the electron temperature would accelerate the
breakdown process. However, the assumption that electron heating itself lies
at the origin of the breakdown of the QAHE is doubtful. In the BSEH model
[90], which was discussed in chapter 1 for the integer QHE, the breakdown is
attributed to runaway electron heating and described by the balance equation:

ρxx(Tel)j2 = ε(Tel)− ε(TL)
τ

, (4.11)

with j the current density, ε(T ) the energy of the system at temperature T , Tel
and TL the electron and lattice temperature, respectively, and τ the relaxation
time of the heated electrons [90]. Upon increasing the current, the energy
gained by electrons, ρxx(Tel)j2, causes Eq. (4.11) to become unstable and a new
equilibrium is found at a higher Tel. The model is in good agreement with the
experimentally observed critical current values of the QHE [90, 127]. Moreover,
it is quite generic and independent of the microscopic details of the samples.
Hence, the BSEH model can be easily employed to describe the breakdown of
the QAHE as well [50].

However, by comparing the critical current density jc at which breakdown occurs
for both the QHE (∼1–10 A/m [2, 9, 73, 141]) and the QAHE (∼1–4 mA/m), it
is clear that the heating effect differs by several orders of magnitude. Even if one
considers the much smaller excitation energy of the QAHE (∼40–120 µeV in our
samples) compared to the QHE (~ωc ≈ 10 meV at 10 T, with ωc the cyclotron
frequency), runaway electron heating seems unlikely. Moreover, if one compares
the shape of the breakdown curve of the QHE [Fig. 1.3] to that of the QAHE
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[Fig. 1.5(b)], the large vertical jump in the longitudinal resistance at jc in the
QHE case, attributed to the jump in Tel, is absent in the QAHE breakdown
curves. Hence, while electron heating would accelerate the breakdown of the
QAHE, it does not seem to be its origin.

4.10.2 Percolation of the Edge State via Magnetic Domains

In chapter 2, the magnetic disorder in Cr/V-doped (BixSb1-x)2Te3 thin films was
discussed, and a scanning SQUID image (Fig. 2.13) of the out-of-plane magnetic
field above the surface of a magnetic TI thin film was shown [98]. Rather than
a long-range ferromagnetic order, Fig. 2.13 is indicative of a superparamagnetic
phase with magnetic domains of a few tens of nm in size [98, 99]. Moreover,
Lachman et al. reported that even if the sample demonstrates full quantization of
the transverse resistance, still a significant fraction of up to 5% of the magnetic
domains can be found with the opposite magnetization direction [98].

Figure 4.17 shows a schematic picture of a QAH film with a sizable hybridization
gap m0 (see Eqs. 2.15–2.16) and magnetic disorder (i.e. spatial fluctuations in
the size of |gM |). In the schematic, the sample consists of isolated magnetic
domains/islands with |gM | > |m0| and Chern number C = ±1 in a trivial
insulating background with |gM | < |m0| and C = 0 (see Eq. 2.20). Each
magnetic domain constitutes a tiny QAHI with its own chiral ‘edge’ state, while
the macroscopic QAH phase is established via the percolation of these chiral
states across the sample. Such a network model was initially proposed by Wang
et al. to describe the critical behavior of the QAH-plateau transitions near the
coercive field (see Fig. 2.12), where magnetic disorder is large [188]. However,
in light of the reports of superparamagnetism in Cr-doped (BixSb1-x)2Te3 thin
films [98, 99], such a percolation picture with strong magnetic disorder might
not only be appropriate for the description of the QAH-plateau transitions near
the coercive field [82, 95], but may govern the entire magnetic field range [53].
In this case, the tunneling between the chiral edge states of the small QAHI
islands causes a finite leakage current across the width of the sample, resulting
in the breakdown of the zero-resistance state.

Let us examine whether such a network model fits the current-induced
breakdown of the QAHE in our V-doped (BixSb1-x)2Te3 thin films. In section 4.8,
it was shown that the application of a magnetic field decreases the critical
current density for breakdown (see Fig. 4.15). This finding is incompatible with
the scenario shown in Fig. 4.17. Namely, with increasing magnetic field the
fraction of the magnetic domains with the opposite magnetization direction
would decrease, reducing the overall magnetic disorder. Moreover, the applied
magnetic field would align the spins in the regions of the film with a low
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Figure 4.17: Percolation of the chiral edge state at the coercive field, or in the
superparamagnetic phase. The magnetic domains with a downward (upward)
magnetization direction with |gM |> |m0| (see Eq. 2.20) are denoted by the
symbol + (−) and cover the gray (white) colored regions. The shaded area
denotes the region where |gM |< |m0|. The arrows represent the chiral ‘edge’
states circling the individual magnetic domains, and the dashed circles enclose
the tunneling points between the chiral states causing a percolation path across
the sample. Reprinted figure with permission from Ref. [188]. © Copyright
(2014) by the American Physical Society.

V-concentration, which make up the paramagnetic (and trivial insulating)
background of the superparamagnetic phase (shaded area in Fig. 4.17), possibly
causing a toplogical phase transition to the QAH phase if |gM |> |m0| is satisfied.
Hence, the ‘correctly-aligned’ QAHI islands (the magnetic domains) are expected
to grow with increasing magnetic field, leading to a more robust macroscopic
QAHI. Lastly, it is important to note that the hybridization gap m0 in our
V-doped (BixSb1-x)2Te3 thin films is small due to the relatively large film
thickness of ∼8 nm. Hence, the condition |gM |< |m0| would lead to a trivial
insulator with a very small band gap, and the shaded area in Fig. 4.17 would
most likely be metallic, rather than insulating as proposed be Wang et al. [188].
In the former scenario, the macroscipic QAHE would not be observed as the
transport in the thin film would be fully dominated by the trivial metallic
background.
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In summary, the observation of superparamagnetism in thin films of Cr/V-
doped (BixSb1-x)2Te3 [53, 98, 99] suggests that the magnetic disorder is large,
and the size of the local exchange gap fluctuates strongly across the sample’s
surface. Nevertheless, the observation of an ideal QAHE with a well-pronounced
zero-resistance state in our thick V-doped (BixSb1-x)2Te3 thin films indicates
that the magnetic disorder (away from the coercive field) is not large enough
to cause a significant fraction of the sample to undergo a topological phase
transition to a trivial insulator. Hence, the network model shown in Fig. 4.17
is not applicable for the description of the current-induced breakdown of the
QAHE. However, local reductions in the exchange gap size due to magnetic
disorder may lead to the formation of metallic puddles in the sample, which
may play an important role as will be discussed in detail in the next section.

4.10.3 Electric-field-driven Percolation of 2D Charge Puddles

To understand the origin of the breakdown, as well as the strongly reduced
activation energy, it is useful to consider the role of charge puddles appearing
in compensated TI materials [20, 25, 86]. As discussed in chapter 2, it is
well established that the puddle formation in 3D compensated TIs is an
unavoidable consequence of the long-range nature of the Coulomb interaction
[35, 167, 169]. While the 3D bulk puddles are strongly suppressed near the
surface due to the screening by the metallic surface states [19, 168], 2D surface
puddles are predicted to show up in compensated TI thin films [69]. In this
regard, (BixSb1-x)2Te3 is a solid-solution of n-type Bi2Te3 and p-type Sb2Te3,
achieving a charge compensation that results in a vanishing 2D surface carrier
concentration at low temperature [92, 213]. In the QAHI films, the tendency
to form 2D puddles would be strong, because the averaged chemical potential
is tuned into the gap opened at the Dirac point [Fig. 4.3(a)]. In such a case,
little surface carriers are available to screen the Coulomb potential and the
screening can only occur nonlinearly through the formation of 2D electron
and hole puddles [169], as illustrated in Fig. 4.18(a). In addition, the large
dielectric constant of TI films slows down the decay of the Coulomb potential
in space and greatly enhances the puddle formation [69]. Indeed, signatures
of puddle formation have been observed in the resistivity of ultra-thin films of
(BixSb1-x)2Te3 [130].

In light of the likely existence of 2D puddles in compensated TI thin films, we
propose that the breakdown occurs via the formation of metallic percolation
paths connecting these 2D puddles across the width of the sample. The QAHI
films can be thought of as an insulating background containing isolated metallic
puddles, as shown in Fig. 4.18(c). In analogy to Ref. [176] for the QHE, we
propose that at high enough source potential, the insulating regions separating
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Figure 4.18: Illustration of puddles in compensated QAHI films and their
response to an electric field. (a) The spatial variation of the energy spectrum of
the gapped 2D surface state. The meandering lines represent the 2D conduction
and valence band edges, EC and EV , respectively, in the presence of Coulomb
disorder. When the Fermi level µ crosses the band edges, electron and hole
puddles (shaded regions) are created. (b) The situation close to the breakdown
of the QAHE. The arrows depict thermally activated or hopping transport.
(c) The growth of the charge puddles with increasing electric field Eyx until
breakdown occurs at Eyx = EBD, based on Ref. [176]. The critical current Ic is
reached when the source potential produces the electric field EBD between the
two opposing edge states causing a metallic short to form across the width of
the sample. The shaded regions correspond to electron and hole puddles in an
insulating background (white region).
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two adjacent electron or hole puddles break down due to the high transverse
electric field created across the width of the sample. Since the local potential
is constant within the metallic puddles, the electric field is confined to the
insulating regions. As the puddles grow with increasing source potential, the
local electric field in-between the puddles increases rapidly, facilitating further
puddle growth in a non-linear manner, see Fig. 4.18(b-c). At the critical value
of the source potential (corresponding to the critical current Ic), the growth
becomes unstable and leads to an avalanche process [176], so that the metallic
paths percolate from one edge of the sample to the other and causes an abrupt
onset of dissipation.

The puddle breakdown mechanism proposed here also sheds new light on the very
low temperature required to observe the QAHE, which is much lower than that
expected from the Curie temperature TC (∼15–20 K) or the spectroscopically-
resolved exchange gap (∼14–28 meV) [37, 101]. In the presence of charge
puddles, electrons are not excited across the 2D exchange gap; rather, electrons
and holes are thermally excited from the puddles to the percolation levels [169].
As demonstrated already for 3D bulk puddles in compensated TIs, this reduces
the activation energy for thermally-activated transport [35, 167, 169]. Moreover,
at low temperature the electrons and holes may hop or tunnel directly between
puddles, possibly giving rise to a crossover from activated transport to variable-
range-hopping (VRH) behavior [169], as was observed in some transport studies
on QAHI films [50, 83]. The puddle scenario is also consistent with the bulk
dissipation observed in a Corbino geometry [49, 158].

4.10.4 Zener Tunneling between 2D Charge Puddles

Lastly, Landau-Zener tunneling between neighboring electron-hole puddles
is discussed as a possible breakdown mechanism. Estimates of the tunneling
probability for such a process in ultrathin TI films possessing a hybridization gap
in the 2D surface state spectrum were made in Refs. [69, 130]. Assuming a defect
density of Ndef ≈ 1019 cm−3, an insulating state in our QAHI films is expected
to be realized for a gap ∆ > 10–60 meV at the Dirac point. This is exactly the
range of exchange gap sizes found for magnetically-doped (BixSb1-x)2Te3 thin
films [37, 101]. Note that in the presence of charge puddles, the application of
an electric field is not required to induce Zener tunneling, because the disorder
potential provides the required local electric field and band bending. In other
words, in the presence of puddles, Zener tunneling would provide a finite bulk
short even at infinitesimally small currents. As a result, no sudden onset of
Zener tunneling at some critical current is expected.
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It is prudent to mention that an estimate based on Refs. [69, 130] would
predict a sizable Zener tunneling in our films. However, a near-dissipationless
QAHI state has been experimentally observed, at least for low probe currents,
with a longitudinal sheet resistance as low as 1–2 mΩ [50, 133]. This speaks
against any major role of Zener tunneling in compensated QAHIs. Nevertheless,
Zener tunneling might be relevant to the small, non-vanishing resistance in the
pre-breakdown regime.

4.11 Summary

It was demonstrated that the breakdown of the QAHE occurs in the region with
the shortest separation between the high- and low-potential branches of the
chiral edge state, while it is absent in nonlocal transport regions. This indicates
that the transverse electric field is responsible for the breakdown and gives a
guiding principle for minimizing the breakdown effect. Moreover, it was argued
that the charge puddles play a key role in the breakdown mechanism for the
QAHE and govern the diffusive transport through the 2D bulk states.

This chapter (w/o sections 4.7, 4.8, and 4.10.2) was published as:
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Chapter 5

Nonreciprocal Charge
Transport

“ If you have a lemon, make a lemonade. ”
Dale Carnegie

In the previous chapter, the current-induced breakdown of the QAHE was
studied in a negative light, as something to be avoided for QAHIs to be
implemented as a novel resistance standard or as a platform to generate Majorana
fermions. However, the interplay between the 1D and 2D electronic states
for current densities above breakdown can lead to interesting nonreciprocal
(diode-like) contributions to the edge potentials in a QAHI. In this chapter,
the nonreciprocity in the edge potential will be investigated for high and low
excitation currents, and their potential different origins will be discussed.

5.1 Nonreciprocity in the Edge Potential

Nonreciprocal charge transport, or rectification in plain language, is the
phenomenon by which the resistance R has a different amplitude, depending on
whether the current flows in the ‘forward’ or ‘reverse’ direction, i.e. R(+I) 6=
R(−I). The most common example is a semiconductor-diode, consisting of a

93
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pn-junction. When a material or heterostructure lacks inversion symmetry, and
time-reversal symmetry (TRS) is additionally broken by applying a magnetic
field, an effect known as the ‘magnetochiral anisotropy’ (MCA) can occur
[156, 174]. The MCA takes the form of a second-order correction to Ohm’s law
[156], such that:

V = R0I(1 + βH2 + γHI), (5.1)

where V is the applied voltage, R0 the Ohmic resistance term, I the current,
β describes the normal magneto-resistance, H the magnitude of the magnetic
field, and γ the rectification coefficient. Such nonreciprocal charge transport
has been reported in various quantum materials, see table G.1 in the appendix.
Moreover, its superconducting (SC) counterpart, known as the ‘SC diode effect’,
has become an exciting new research topic in recent years as well [11, 102, 174].

Yasuda et al. were the first to demonstrate nonreciprocal charge transport in
Cr-modulation-doped (BixSb1-x)2Te3 thin films1 at high temperatures and for
excitation currents well above the breakdown of the QAHE [201]. The I-V
characteristic was shown to obey:

VL/R = R0I(1 + γ̃cL/Rnp/nM̂I), (5.2)

where VL/R is the voltage drop measured along the left/right edge, I the
excitation current, R0 the Ohmic resistance term, γ̃ the rectification coefficient,
cL/R the measured sample edge (cL = +1 and cR = −1 for the left and right edge,
respectively), np/n the 2D charge-carrier type (np = +1 and nn = −1 for a p-
and n-type 2D bulk, respectively), and M̂ the magnetization direction (M̂ = +1
and M̂ = −1 for an upward and downward out-of-plane magnetization).2

Notice that γ in Eq. 5.1 for the MCA of a nonmagnetic material in an applied
magnetic field has the units A−1T−1. On the contrary, γ̃ for a QAHI has the
unit A−1, as it is the remanent magnetization which determines the amplitude
of the nonreciprocal response. Hence, no linear dependence on the applied
magnetic field is expected for a QAHI, unlike for the family of materials showing
MCA. Moreover, an intriguing distinction can be made for the broken-down
QAH state with respect to other material systems displaying nonreciprocal
charge transport (see tables G.1 and G.2 in the appendix). In a QAHI it is the
chiral edge state itself that breaks the inversion symmetry [201], whereas the
QAH system as a whole preserves inversion symmetry, i.e. VL + VR = 0.

1In modulation-doped magnetic TI thin films, the Cr/V dopants are located in a delta-layer
close to the top and bottom surfaces of the film and stabilize the QAH phase, while the bulk
of the thin film consists of undoped (BixSb1-x)2Te3 [125].

2Equation 5.2 was already discussed in chapter 3 (section 3.4.2) in the context of the
second-harmonic measurement.
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For large current amplitudes in the broken-down QAH state (I � Ic), the
current flows through both the 2D bulk and 1D edge states, see Fig. 5.1(a).
Moreover, the high-potential branch of the chiral edge state is losing current
to the 2D state, while a fraction of the current flowing through the 2D state
scatters into the low-potential branch of the chiral edge state. In the simple
Landauer-Büttiker model presented in chapter 4 (section 4.2), the current lost
from the high-potential branch was assumed to be equal to the current gained
in the low-potential branch. However, with a significant fraction of the current
flowing from the source to the drain through the 2D bulk, the 2D states can act
as a source or sink of current. Hence, the potential difference along the left and
right edge of the sample no longer need to be equal (VL 6= VR), giving rise to
the nonreciprocity in the longitudinal voltage described by Eq. 5.2. To explain
this difference in ‘leakage’ rates between the left and right edges, Yasuda et
al. argued that asymmetric skew scattering between the chiral 1D edge and
gapped 2D surface states can lead to differing rates for edge-to-surface (WE→S)
and surface-to-edge (WS→E) scattering processes [201], see Fig. 5.1(a).

While Yasuda et al. studied the nonreciprocal charge transport in the broken-
down QAH state at elevated temperatures (0.5–40 K) and in the high-current
limit (1–100 µA) [201], the question remains how the nonreciprocity evolves
as the QAHI recovers the zero-resistance state (i.e. no 2D surface conduction)
at low excitation current (. 200 nA) and temperatures (. 100 mK). In this
chapter, the nonreciprocal charge transport will be first studied in the high-
current limit, and the data will be compared to Eq. 5.2. Next, the nonreciprocal
response will be studied for current values near the breakdown transition, and
it will be shown that Eq. 5.2 no longer holds.

5.2 The Nonreciprocal Response at High Current

There are two methods to measure the nonreciprocal response. The most
straightforward approach is to measure the ‘total’ longitudinal voltage/resistance
using standard DC techniques. This has the advantage that it shows the
‘full picture’, but the method is generally limited by the requirement of a
very high current as the Ohmic term R0 otherwise completely dominates the
signal. The second approach is to measure the second Fourier component (or
‘second harmonic’), using standard AC lock-in techniques. The second-harmonic
signal has the advantage that it filters out the inversion-symmetry breaking
contribution to the measured voltage/resistance (see section 3.4.2 for details).
First the DC results will be briefly shown, before addressing the detailed AC
data sets.
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Figure 5.1: Nonreciprocal charge transport of the chiral edge states in the
high-current limit. (a) Illustration of the interplay between the 1D chiral edge
state and the gapped 2D surface states (for nn = −1 and M̂ = +1). The
energy spectrum is shown for the left and right edge of the Hall-bar device.
The yellow spheres represent electrons. The chemical potentials of the edge
states differ from that in the surface state, since the scattering rate between
the edge and surface states is much smaller than that within the surface state
[201]. This image is taken from Ref. [201], and reproduced with permission from
SNCSC. (b) Schematic picture of the 26-terminal Hall-bar device C. The red
(blue) line shows the high-(low-)potential branch of the chiral edge state for a
upward, out-of-plane magnetization (M̂ = +1). The current flows from contact
0 to 25; the left/right edge is defined looking along the conventional current
direction. (c-d) Magnetic-field dependence of the DC longitudinal resistance
measured between contact pairs 5-9 (‘Left’) and 6-10 (‘Right’) at 3.5 K with
IDC = +30 µA (c) and IDC = −30 µA (d). The coercive-field peaks reach
∼155 kΩ, and are not fully shown in the graphs.
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5.2.1 The Nonreciprocal Response in DC Transport

The 26-terminal Hall-bar device C was measured in the regular four-terminal
Hall-bar configuration with the current flowing from contact 0 to 25, see
Fig. 5.1(b). Rather than distinguishing between the high/low-potential branches
of the chiral edge state, it will instead be more convenient for the description of
the nonreciprocal charge transport to differentiate between the right/left edges
of the Hall-bar. Note that the choice of the contact labeling in the 26-terminal
devices makes it easy to recognize the even and odd contact pairs as belonging
to the right and left edges, respectively.

To investigate whether Eq. 5.2 also holds for uniformly V-doped (BixSb1-x)2Te3
thin films, a DC current well above the critical current for breakdown (Ic ≈
85 nA, see table 3.1) is applied to the sample. Figures 5.1(c-d) show the DC
longitudinal resistance for the right and left edge of the device as the applied
magnetic field is increased from −2 T to +2 T for a current of IDC = +30 µA
and −30 µA. The sample is highly resistive, far from the ideal QAH state.
Notice the splitting of the curves for Rxx for the right and left edge; this is
the nonreciprocal charge transport of the QAH edge states. The inversion
between the amplitude of Rxx for the right and left edge at the coercive field,
as well as with the change of current direction is in agreement with Eq. 5.2 and
signifies the importance of the chirality of the 1D edge state for the observed
nonreciprocity. The 2D charge carriers in this QAH thin film (device C) are
n-type (see Fig. 3.6 in chapter 3). Hence, the polarity (P ≡ cL/Rnp/nM̂) of
the observed nonreciprocal response is fully consistent with Eq. 5.2, e.g. Rxx of
the right edge (cR = −1) > left edge (cL = +1) for an n-type 2D surface state
(nn = −1) at +2 T (M̂ = +1) for +30 µA.

Figures 5.2(a-b) show the longitudinal voltage Vx for the right and left edge as a
function of IDC. The nonreciprocity in Vx is very small and is only clearly visible
when inspecting the insets showing the splitting of Vx near ±30 µA between the
opposite magnetization directions (M̂ = ±1). The quadratic I-V relation can be
made apparent by taking the difference ∆VR-L ≡ VRight−VLeft between the right
and left edges, as shown in Fig. 5.2(c). In this case the dominant Ohmic term
R0IDC is removed. The corresponding resistance difference ∆RR-L [Fig. 5.2(d)]
demonstrates a linear dependence on IDC in the range ∼5–30 µA. Fitting Eq. 5.2
to the I-V characteristics of Fig. 5.2 yields R0 ≈ 112 kΩ and γ̃ ≈ 177 A−1.
Similarly, by extracting ∆Rxx(IDC) = Rxx(+IDC)−Rxx(−IDC) = 2γ̃R0IDC ≈
1.07 kΩ (with R0 ≈ 105 kΩ) from Figs. 5.1(c-d) yields γ̃ ≈ 169 A−1.

Calculating the current-direction-dependent resistance-ratio ∆R/R = 2γ̃IDC
at IDC = 30 µA yields ∆R/R ≈ 1% for the uniformly V-doped (BixSb1-x)2Te3
thin films at 3.5 K close to the CNP. This is about one order of magnitude
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Figure 5.2: I-V characteristic for the 26-terminal Hall-bar device C at 3.5 K in
±2 T, with the current flowing from contact 0 to 25 [see Fig. 5.1(b)]. The left
and right edges correspond to contact pairs 5-9 (a) and 6-10 (b), respectively.
The insets (i-iv) show the splitting of Vx near ±30 µA between the opposite
magnetization directions. (c) The I2-dependence of the voltage difference
between the right and left edge, ∆VR-L ≡ VRight − VLeft. (d) The corresponding
resistance difference ∆RR-L = ∆VR-L/IDC.
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smaller than the amplitudes reported by Yasuda et al. for Cr-modulation-
doped (BixSb1-x)2Te3 thin films [201], see column ‘∆R/R/i’ in table G.2 of the
appendix for a fair comparison.

5.2.2 The Nonreciprocal Response in AC Transport

For small values of the current (< 5 µA), the nonreciprocal signal could no
longer be resolved with standard DC techniques. Hence, it was beneficial to
switch the set-up to AC lock-in amplifiers and measure the second-harmonic
response to an AC excitation ∼ I0 sin(ωt). Using Eq. 5.2, the second-harmonic
voltage and resistance then become:

V 2ω
x = − 1√

2
(cL/Rnp/nM̂)γ̃R0I

2
rms, (5.3)

R2ω
xx = V 2ω

x /Irms, (5.4)

respectively, with V 2ω
x ≡ Y 2ω and Irms = I0/

√
2, see chapter 3 (section 3.4.2) for

details. Notice that for the same polarity (P ≡ cL/Rnp/nM̂), the nonreciprocal
response picks up a minus sign for the AC voltage (Eq. 5.3) as compared to the
DC measurement (Eq. 5.2). Moreover, while Eq. 5.3 gives the impression that
the measured second-harmonic signal solely depends on the nonreciprocity in the
edge potential of the QAHI, in reality the lock-in amplifiers will pick up sizable
nonreciprocal contributions from unintentional rectification in the measurement
circuit. As a result, it is customary to antisymmetrize the second-harmonic
data in the magnetic field (Eq. 5.1), or in our case the magnetization (Eq. 5.2).
Note that for a QAHI antisymmetrizing by taking the difference in potential
between the left and right edges is also possible, since the QAHI as a whole
preserves inversion symmetry.

Figure 5.3(a) shows the VGate-dependence of R2ω
xx (antisymmetrized in M̂)

at different temperatures for Hall-bar device F1. The corresponding (first-
harmonic) Ryx curves are shown in Fig. 5.3(b) for comparison. The CNP is
located at VGate ≈ 15 V with Ryx ≈ 21.8 kΩ at 2 K. Figure 5.3(a) shows
that the amplitude of R2ω

xx for the left and right edge vanishes near the CNP,
and switches sign when the 2D state changes from n- to p-type, consistent
with Eq. 5.3 (np/n = ±1). This dependence on the 2D charge-carrier type
clearly indicates that 2D conduction is required to observe the nonreciprocal
transport in a QAHI at high excitation currents. The same sign-inversion is
seen when comparing the I-V 2ω

x characteristics at VGate = 0 V (p-type) and
VGate = 25 V (n-type) shown in Figs. 5.3(c) and 5.3(d), respectively. Notice
that V 2ω

x follows an approximate I2-dependence as expected from Eq. 5.3. It
is important to note here that since the I-V 2ω

x relations were measured by
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Figure 5.3: Gate-voltage, temperature, and rms-current dependencies of the
nonreciprocal charge transport in the high-current limit for Hall-bar device F1.
The current flows from contact 1 to 4; the left (right) edge corresponds to the
contact pairs 2-3 (6-5), see Fig. 4.13 for a picture. (a) The VGate-dependence
of R2ω

xx for the left and right edges, measured with Irms = 1 µA at T = 2 K,
5 K, 10 K, 15 K, 20 K, and 25 K. (b) The corresponding (first harmonic)
Ryx-curves. The CNP is located at VGate ≈ 15 V, with Ryx ≈ 21.8 kΩ at
2 K. (c-d) V 2ω

x as a function of Irms for the left and right edges at 2 K for
VGate = 0 V (c) and VGate = 25 V (d). All data were measured in ±0.1 T
(after training in ±2 T) to prevent demagnetization over time; the second-
harmonic data were antisymmetrized in the magnetization and magnetic-field,
i.e. V 2ω

x = [V 2ω
x (+M̂,+0.1T)− V 2ω

x (−M̂,−0.1T)]/2.
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increasing the AC excitation current, V 2ω
x at a given Irms is actually integrated

from zero up to the peak-current amplitude Ipeak =
√

2Irms. As a result, the
features of the curves in Figs. 5.3(c-d) are slightly smoothened as compared
to a DC I-V characteristic [Fig. 5.2(c)]. For completeness, Fig. 5.4 shows the
(antisymmetrized) magnetic-field dependencies of R2ω

xx for the left and right edge
for different gate voltages. A hysteresis loop is seen with R2ω

xx changing sign
when crossing the coercive field. The sign-inversions of R2ω

xx between the left
and right edges and with the 2D charge-carrier type are clearly seen as well.

Before discussing the temperature dependence, it is important to point out
that the observed sign-inversion of R2ω

xx with the 2D charge-carrier type (np/n)
excludes leakage through the lock-in amplifiers as a possible trivial origin for the
observed nonreciprocal behavior of the edge potential in a QAHI. Namely, the
observed sign-inversions of R2ω

xx between the left and right edge (cL/R), for the
opposite magnetization (M̂) and current directions (±I), could also be explained
by current leaking from the high-potential branch of the chiral edge state to
ground through the leads of the lock-in amplifiers. Since the low-potential
branch of the chiral edge state is at the ground potential, no leakage would take
place on this edge. Hence, the leakage would only occur on one of the edges
of the Hall-bar, resulting in a trivial nonreciprocal response. Since changing
the magnetization or current directions swaps the high- and low-potential
branches of the chiral edge state between the left and right edges of the Hall-bar,
the trivial nonreciprocal response would change sign accordingly. However,
Figs. 5.3(a) and 5.4 clearly demonstrate that the nonreciprocal response can
be switched off by tuning the sample to the CNP. At the CNP, Ryx reaches
a maximum [Fig. 5.3(b)] meaning the potential difference between the high-
potential branch of the chiral edge state and the ground is maximum as well.
As a consequence, the leakage current, and hence the trivial nonreciprocal
response, would also be maximized at the CNP. This is exactly opposite to the
VGate-dependence observed for R2ω

xx, which rules out the trivial origin for the
nonreciprocal response.

Lastly, we turn to the temperature dependence of R2ω
xx at high current (Irms =

1 µA). Figure 5.3(a) already showed the gate-voltage dependencies for R2ω
xx at

different temperatures, whereas Fig. 5.5(a) shows the temperature dependence
when the sample is heated from 2 K to 50 K at VGate = 0 V. Figure 5.5(b)
shows the temperature dependence of Rxx and Ryx for comparison; the dashed
lines in (a) and (b) mark the Curie temperature TC ≈ 12 K. In the absence
of an applied magnetic field R2ω

xx vanishes at TC, as indicated by region ‘I’ in
Fig. 5.5(a). This is consistent with the findings of Yasuda et al., indicating that
the 1D chiral edge state is a requisite for nonreciprocal charge transport [201].
Additional data in appendix F show the hysteresis loop of R2ω

xx as a function of
the magnetic field slowly closing upon reaching TC, see Fig. F.6. However, in a
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Figure 5.4: Magnetic-field and gate-voltage dependencies of the nonreciprocal
charge transport in the high-current limit (Irms = 1 µA) for Hall-bar device F1
at 2 K. The current flows from contact 1 to 4; the left (right) edge corresponds to
the contact pairs 2-3 (6-5), see Fig. 4.13 for a picture. (a-c) The magnetic-field
dependence of R2ω

xx for the left edge, measured at VGate = 0 V (a), 12.5 V (b),
and 25 V (c). (d-f) The corresponding magnetic-field dependence of R2ω

xx for
the right edge. The R2ω

xx curves were antisymmetrized in the magnetization and
magnetic-field, i.e. R2ω

xx = [R2ω
xx(+M̂,+µ0H)−R2ω

xx(−M̂,−µ0H)]/2.
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Figure 5.5: Temperature dependence of the nonreciprocal charge transport and
anomalous Hall effect in the high-current limit for Hall-bar device F1 at VGate =
0 V. The current flows from contact 1 to 4; the left (right) edge corresponds
to the contact pairs 2-3 (6-5), see Fig. 4.13 for a picture. (a) Temperature
dependencies of R2ω

xx for the left and right edge from 2 K to 50 K, measured
with Irms = 1 µA in 0 T (after training in ±2 T) marked as ‘I’, and in ±2 T
marked as ‘II’. The R2ω

xx curves were antisymmetrized in the magnetization (and
magnetic-field), i.e. R2ω

xx = [R2ω
xx(+M̂,+µ0H)−R2ω

xx(−M̂,−µ0H)]/2. (b) The
corresponding temperature dependence for Ryx (green curve) and Rxx (orange
curve) in 0 T. The red symbols show the field-induced AH effect, obtained from
(c-d) after subtracting the linear ordinary Hall contribution. The dashed lines in
(a) and (b) are a guide to the eye, and mark the Curie temperature TC ≈ 12 K.
(c-d) Magnetic-field dependence of Ryx at different temperatures below TC (c):
2 K, 5 K, 10 K, and above TC (d): 15 K, 20 K, 25 K, 30 K, 40 K, and 50 K.
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magnetic-field strength of 2 T, R2ω
xx remains nonzero up to about 30–40 K, as

seen for region ‘II’ in Fig. 5.5(a). Figure 5.6 shows the magnetic-field dependence
of R2ω

xx for the left and right edge at different temperatures above TC; the light
and dark curves are the back and forward field-sweeps and show no hysteresis
loop. The field-sweeps at 20 K, 25 K, and 30 K show a linear dependence on
the applied-magnetic-field strength, consistent with Eq. 5.1 for an MCA. The
shape of the field-sweep at 15 K corresponds to a crossover from the hysteresis
loop below TC (Fig. F.6) to the linear dependence above TC (Fig. 5.6).

The temperature dependence of the nonreciprocal response matches the
anomalous Hall (AH) amplitude above TC when an out-of-plane magnetic
field is applied to the sample. Below TC, Ryx shows a hysteresis loop with the
AH amplitude and the coercive field Hc decreasing with increasing temperature
[Fig. 5.5(c)], and both quantities become zero at TC. However, by applying a
magnetic field an AH amplitude is induced in the thin film above TC (alongside
with the ordinary Hall effect), see Fig. 5.5(d). By subtracting the linear
contribution from the ordinary Hall effect, the field-induced AH amplitude can
be plotted as a function of temperature, see the red data points in Fig. 5.5(b).
The field-induced AH amplitude follows the same temperature dependence as
R2ω
xx above TC, vanishing at ∼30 K. This indicates that the so-called ‘intrinsic’

(Berry-phase) contribution to Ryx determines the (Q)AH effect both below
and above TC [128], with the observation of nonreciprocal transport giving
direct evidence of edge-state physics [201] even when Ryx is far below the
quantized value of h/e2. Nevertheless, when comparing R2ω

xx to Rxx in Fig. 5.5,
the second-harmonic resistance is small (γ̃ ≈ 226 A−1 at 2 K), see table G.2 of
the appendix for details.

5.3 The Nonreciprocal Response near Breakdown

In the previous section, the nonreciprocal response was always very small when
compared to the longitudinal resistance. However, since Vx vanishes for low
values of the excitation current in a QAHI, one might expect the ratio V 2ω

x /V 1ω
x

to become relatively large near the current-induced breakdown transition. All
the data in the remainder of the chapter were measured using the AC lock-in
technique (first & second harmonic), since DC measurements could not resolve
the nonreciprocal charge transport for excitation currents below ∼5 µA.
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Figure 5.6: Magnetic-field dependence of the nonreciprocal charge transport at
VGate = 0 V at different temperatures above TC: (a) 15 K, (b) 20 K, (c) 25 K,
(d) 30 K, (e) 40 K, and (f) 50 K. A current of Irms = 1 µA flowed through
Hall-bar device F1 (see Fig. 4.13 for a picture) from contact 1 to 4. The left
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xx = [R2ω
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xx(−M̂,−µ0H)]/2.
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Figure 5.7: Gate-voltage dependence of the second-harmonic voltage and
the longitudinal resistance, measured with different excitation currents for
Hall-bar device J at 60 mK. The current flows from contact 1 to 4; the
left (right) edge corresponds to the contact pairs 2-3 (6-5). (a) Gate-
voltage dependence of V 2ω

x for the left and right edges, measured in ±2 T
using different excitation currents Irms = 1 µA, 2 µA, 3 µA, and 4 µA.
The V 2ω

x curves were antisymmetrized in the magnetization and magnetic-
field, i.e. V 2ω

x = [V 2ω
x (+M̂,+2T) − V 2ω

x (−M̂,−2T)]/2. (b) The longitudinal
resistance Rxx as a function of VGate, measured in +2 T using different excitation
currents Irms = 10 nA, 50 nA, 100 nA, 250 nA, 375 nA, 500 nA, 750 nA, 1 µA,
2 µA, 3 µA, and 4 µA.

5.3.1 Gate-voltage and Excitation-current Dependencies

Figures 5.7(a) and 5.8 show V 2ω
x as a function of VGate, measured at 60 mK with

different excitation currents Irms from 4 µA down to 10 nA for Hall-bar device J.
Figure 5.7(b) shows the corresponding curves of Rxx for comparison. For high
excitation currents the CNP is at VGate ≈ 4 V and V 2ω

x is consistent with
Eq. 5.3, inverting its sign when the 2D charge carriers change from p- to n-type.
However, for Irms = 750 nA [Fig. 5.8(a)] the crossing point between V 2ω

x (Right)
and V 2ω

x (Left) no longer corresponds to the CNP, but has moved towards
lower gate voltages (VGate ≈ 1 V). This trend continues with decreasing Irms,
with V 2ω

x (Left) becoming larger than V 2ω
x (Right) across the full VGate-range

at Irms = 100 nA, see Fig. 5.8(e). At Irms = 10 nA, the sample recovers the
zero-resistance state for a certain VGate-range [Fig. 5.7(b)], and V 2ω

x becomes
zero near CNP [Fig. 5.8(g)].
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Figure 5.8: Gate-voltage dependence of the second-harmonic voltage at 60 mK,
measured with different excitation currents Irms = 750 nA (a), 500 nA (b),
375 nA (c), 250 nA (d), 100 nA (e), 50 nA (f) and 10 nA (g) for Hall-bar
device J at 60 mK. The current flows from contact 1 to 4; the left (right) edge
shown in blue (red) corresponds to the contact pairs 2-3 (6-5). The V 2ω

x curves
were measured in ±2 T, and were antisymmetrized in the magnetization and
magnetic-field, i.e. V 2ω

x = [V 2ω
x (+M̂,+2T)− V 2ω

x (−M̂,−2T)]/2.
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Figure 5.9: Current dependence of the nonreciprocal charge transport near
breakdown for the 26-terminal Hall-bar device C, with the current flowing
from contact 0 to 25, see Fig. 5.1(b) for a schematic of the device. (a) The
second-harmonic voltage V 2ω

x , measured between contact pairs 5-19 (Left)
and 6-20 (Right) at 10 mK in 0 T after training in ±2 T. The V 2ω

x curves
were antisymmetrized in the magnetization, i.e. V 2ω

x = [V 2ω
x (+M̂, 0T) −

V 2ω
x (−M̂, 0T)]/2. The dashed line marks Irms = 0.2 µA. (b) Zoom of (a)

up to 200 nA, showing V 1ω
x (in mV) and V 2ω

x (in µV). The current-induced
breakdown of the QAHE occurs at Irms ≈ 60 nA, i.e. at a peak-current
value of I0 ≈ 85 nA. (c) The DC voltage V a

x at 3.5 K, measured between
contact pairs 5-9 (Left) and 6-10 (Right) in ±2 T. The data were taken
from Fig. 5.2, and antisymmetrized in the magnetization and magnetic-field,
i.e. V a

x = [Vx(+M̂,+2T)− Vx(−M̂,−2T)]/2. (d) The ratio V 2ω
x /V 1ω

x , reaching
a maximum of ∼10% at Irms ≈ 60 nA.
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For excitation currents below Irms = 100 nA, V 2ω
x no longer changes sign when

sweeping the chemical potential across the CNP, and the nonreciprocal charge
transport seems to no longer depend on the 2D charge-carrier type (np/n). This
behavior was reproduced in several devices on different wafers, see Fig. F.10 in
the appendix for similar measurements on device K. However, for the 6-terminal
Hall-bar devices J and K the amplitude of V 2ω

x is low, since the separation
between the voltage contacts is small. To confirm whether the nonreciprocal
response indeed becomes independent of np/n, it is beneficial to return to the
26-terminal Hall-bar device C shown in Fig. 5.1 as the amplitude of V 2ω

x will
be larger for large contact-pair separations. The disadvantage with this device
is the lack of a top-gate.3 Figures 5.9(a-b) show V 2ω

x (Right), V 2ω
x (Left) and

V 1ω
x as a function of the excitation current Irms for device C. Notice that V 2ω

x

inverts sign at Irms ≈ 1.65 µA. This is consistent with the sign-inversion with
decreasing excitation current, observed in Figs. 5.8 and F.10 for any p-type
gate voltage. The QAH film of device C, however, is n-type (see Fig. 3.6 in
chapter 3). Hence, the sign-inversion of V 2ω

x with decreasing Irms can occur
on either the n- or p-type side of the CNP, meaning that the polarity of the
nonreciprocal response at low excitation currents is sample dependent.

In addition, the quadratic I-V relation is lost for small excitation currents
near the breakdown of the QAHE; only at much higher current values is the
I2-dependence recovered. This can be clearly seen by comparing Figs. 5.9(a) and
5.9(c) for the AC and DC measurements on device C, respectively. Remember
that V 2ω

x picks up a minus sign (Eq. 5.3) as compared to the (antisymmetrized)
DC voltage V a

x . Hence, after the sign-inversion at Irms ≈ 1.65 µA, the polarities
for V 2ω

x and V a
x are consistent. Lastly, while V 1ω

x is generally about 3 orders
of magnitude larger than V 2ω

x [Fig. 5.9(b)], the ratio V 2ω
x /V 1ω

x becomes ∼10%
at Irms ≈ 60 nA near the breakdown transition [Fig. 5.9(d)]. This yields a
conservative estimate for the current-direction-dependent resistance-ratio of
∆R/R ≈ 20%, and ∆R/R/i ≈ 3 × 104. These values are among the highest
reported nonreciprocal responses when compared to the other material systems
in the literature, see tables G.1 and G.2 in the appendix. Note that it is no
longer possible to define a rectification coefficient γ̃ due to the highly nonlinear
I-V relation near breakdown.

3The fabrication of a top-gate electrode on the 26-terminal Hall-bar devices was not
possible, as its large area always gave rise to a sizable leakage current through the gate
dielectric.
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5.3.2 Temperature Dependence

Next, the temperature dependence of the nonreciprocal response will be
investigated near breakdown. Figure 5.10(a) shows V 2ω

x for Hall-bar device K
as a function of VGate at 60 mK for an excitation current of Irms = 100 nA.
The sample is in the zero-resistance state between VGate ≈ 2 V and 19 V,
where V 2ω

x (Left) and V 2ω
x (Right) coincide. The nonzero V 2ω

x -values in this
VGate-range can be attributed to slight drifts in the experimental conditions, as
well as hysteresis in the gate electrode when sweeping VGate, which give rise to
the slight distortion after antisymmetrization. Notice that for Irms = 100 nA
the nonreciprocal response in device K is seemingly independent of the 2D
charge-carrier type (np/n), since V 2ω

x (Left) > V 2ω
x (Right) for all values of VGate.

Figures 5.10(a-f) show the evolution of V 2ω
x measured at Irms = 100 nA for

increasing temperatures up to 1 K; the amplitude of V 2ω
x decreases sharply with

temperature and becomes zero before 500 mK.

Figures 5.11(a-f) show V 2ω
x as a function of VGate at the same temperatures,

but for an excitation current of Irms = 2 µA. For this higher current amplitude,
the nonreciprocal response in device K does depend on np/n, as evidenced by
the sign-inversion of V 2ω

x across the CNP. Notice that the curves for V 2ω
x in

Figs. 5.11(a-f) are nearly identical. Hence, the nonreciprocal response does not
show a strong temperature dependence at high excitation currents, and V 2ω

x

only decreases sharply when approaching the Curie temperature of the thin film
in zero-applied magnetic field, as was shown in Fig. 5.5(a).

The strong temperature dependence of V 2ω
x at low excitation currents is

reproduced for the 26-terminal Hall-bar device C, see Fig. F.3 in the appendix.
The fact that the nonreciprocal response at low excitation currents seems
to become independent from the 2D charge-carrier type, together with the
strongly differing temperature dependencies for low and high excitation currents,
may indicate that a different nonreciprocal mechanism emerges and becomes
dominant at low excitation currents near breakdown. A detailed discussion will
be given below in section 5.4.
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Figure 5.10: Gate-voltage dependence of the second-harmonic voltage, measured
with Irms = 100 nA at different temperatures T = 60 mK (a), 100 mK (b),
250 mK (c), 500 mK (d), 750 mK (e), and 1 K (f) for Hall-bar device K. The
current flows from contact 1 to 4; the left (right) edge corresponds to the contact
pairs 2-3 (6-5) and are shown in blue (red). The V 2ω

x curves were measured
in ±2 T, and were antisymmetrized in the magnetization and magnetic-field,
i.e. V 2ω

x = [V 2ω
x (+M̂,+2T)− V 2ω

x (−M̂,−2T)]/2.
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Figure 5.11: Gate-voltage dependence of the second-harmonic voltage, measured
with Irms = 2 µA at different temperatures T = 60 mK (a), 100 mK (b), 250 mK
(c), 500 mK (d), 750 mK (e), and 1 K (f) for Hall-bar device K. The current
flows from contact 1 to 4; the left (right) edge corresponds to the contact
pairs 2-3 (6-5) and are shown in blue (red). The V 2ω

x curves were measured
in ±2 T, and were antisymmetrized in the magnetization and magnetic-field,
i.e. V 2ω

x = [V 2ω
x (+M̂,+2T)− V 2ω

x (−M̂,−2T)]/2.
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5.3.3 Reproducibility of the Nonreciprocal Amplitude at Low
Excitation Currents

Thus far, it was shown that for devices J and K the sign-inversion at constant
VGate occurs on the p-type side of the CNP when decreasing the excitation
current (Figs. 5.8 and F.10, respectively), while for device C the sign-inversion
takes place on the n-type side (Fig. 5.9). It is prudent to verify whether
the amplitude and polarity of this ‘np/n-independent’ nonreciprocal response
dominant near breakdown is stable and reproduced along the full edge of a
given Hall-bar device. To this end, the nonreciprocal response of device C was
measured for excitation currents below the sign-inversion [Irms < 1.65 µA, see
Fig. 5.9(a)], between different contact pairs with varying contact separations,
see Figs. F.4 and F.5 in the appendix. The amplitude |V 2ω

x | extracted at
Irms = 200 nA is shown in Fig. 5.12 as a function of the contact spacing L.
Figures F.4, F.5, and 5.12 show that the amplitude of the nonreciprocal response
scales linearly with the length as expected, and its polarity is maintained along
the full length of the 26-terminal Hall-bar device C. Notice that the |V 2ω

x |-
amplitudes extracted from magnetic-field sweeps are slightly smaller than those
obtained from I-V curves, as operating the magnet in the dilution refrigerator
resulted in slight heating of the sample.

5.4 Discussion

Yasuda et al. proposed a mechanism for the nonreciprocal charge transport in
which the 2D bulk channels act as a source/sink for the current, and hence the
potential lost due to scattering from the high (source) potential 1D edge state to
the 2D bulk differs from the potential gained due to scattering from the 2D bulk
to the low (drain) potential 1D edge state [201], see Fig. 5.1(a). The I-V relation
of the broken-down QAHI was shown to follow Eq. 5.2. However, their study
was limited to relatively high temperatures (0.5–40 K) and currents (1–100 µA).
In this chapter, the nonreciprocal response of a QAHI was investigated over
a much larger temperature range. Equation 5.2 was shown to hold from the
Curie temperature of the QAH thin films down to ∼10 mK for large excitation
currents (& 1 µA).

While the work in this thesis supports the results of Yasuda et al. for high
excitation currents [201], the observed nonreciprocal response below ∼1 µA
deviates significantly from Eq. 5.2. Firstly, the signature I2-dependence is lost
[Fig. 5.9]. Secondly, upon decreasing the excitation current the nonreciprocal
response seemingly becomes independent of the 2D charge-carrier type (i.e. np/n
in Eq. 5.2), as evidenced by the crossing point of V 2ω

x (Left) and V 2ω
x (Right) in



114 NONRECIPROCAL CHARGE TRANSPORT

0 1 2 30

5

1 0

1 5

|V 2ω
 

x
| (µ

V)

L  ( m m )
Figure 5.12: Length dependence of the second-harmonic voltage |V 2ω

x | for
different contact pairs on the right and left edge of the 26-terminal Hall-bar
device C, measured with Irms = 200 nA at 15 mK. The N data points were
extracted from the I-V curves shown in Fig. F.4, while the • data points were
extracted from the magnetic-field sweeps shown in Fig. F.5. The large error
bar for the N data point at 1.8 mm originates from the dip in the curves near
200 nA in Fig. F.4(d), which is most likely an artifact originating from the
antisymmetrization and a slight drift in the experimental conditions. The
dashed line is a linear fit through both data sets, yielding a slope of ∼6.2 mV/m.

the VGate-dependence moving away from the CNP [Fig. 5.8]. Whether V 2ω
x (Left)

is larger or smaller than V 2ω
x (Right) in the np/n-independent regime depends

on an unknown parameter and seems to be sample dependent. Moreover, the
amplitude of the np/n-independent nonreciprocal response at low currents is
strongly suppressed with increasing temperature [Fig. 5.10], contrary to the
nonreciprocal response at high currents which survives up to TC [Fig. 5.5(a)].

As explained in chapters 2 and 4, the formation of charge puddles in the gapped
2D surface states of QAH thin films is expected due to the spatial fluctuations
of the Coulomb potential as a result of the random distribution of donor and
acceptor defects in compensated TIs (Fig. 4.18). When breakdown of the QAHE
occurs, the large Hall electric field causes conduction to take place through
the 2D bulk via the percolation of the 2D charge puddles (Fig. 4.18). If the
contributions of the n- and p-type puddles to the nonreciprocal response are
equal, than V 2ω

x is expected to vanish when the chemical potential lies in the
exchange gap. However, in magnetic TIs it is not realistic to achieve perfect
charge compensation, and the QAH thin films will always have a slight majority



DISCUSSION 115

of either n- or p-type puddles. The resulting unequal contribution of the n-
and p-type puddles to the nonreciprocal charge transport then gives rise to
a finite value for V 2ω

x when the chemical potential lies in the exchange gap.4
Moreover, note that the gating efficiency is very low in our QAH thin films
(only a few µeV/V), as explained in detail in chapter 4 (section 4.7). Hence,
when inspecting the VGate-dependencies of V 2ω

x presented in this chapter, it is
important to keep in mind that the Fermi level is pinned, and hence only moves
a few tens of µeV with respect to its zero-gate-voltage position. This might
explain why the values for V 2ω

x (Left) and V 2ω
x (Right) are independent of the

gate voltage at low temperatures and excitation currents.

At high excitation currents and/or high temperatures, the Coulomb disorder
profile no longer strongly influences the 2D conduction. At high excitation
currents, for instance, the current is directly injected into the valence or
conduction band of the gapped 2D surface states. Note that for a current
of ∼1 µA the source-drain potential difference is eVS-D = h

e Irms ≈ 26 meV,
which matches the local exchange gap size of ∼14–28 meV measured in scanning
tunneling spectroscopy experiments [37, 101]. Hence, for current values above
& 1 µA, the band bending due to VS-D is large enough for a current to flow
through the 2D surface states without the need for electrons or holes to hop
or tunnel between charge puddles. Instead of the chiral edge states interacting
with the n- and p-type puddles (as is the case for low excitation currents), the
nonreciprocal response originates from the chiral edge states interacting with
the majority carriers of the 2D source-drain current. As a result, V 2ω

x depends
on np/n and undergoes a sign-inversion at the CNP.

For completeness, it is prudent to briefly comment on two other possible origins
of the np/n-independent nonreciprocal response near breakdown. Firstly, the
anomalous Nernst effect (ANE) can give rise to a second-harmonic response.
Namely, the ANE induces a longitudinal voltage proportional to j2(M ×∇T )
[6], when a transverse thermal gradient ∇Ty is present across the Hall-bar
device. Nevertheless, since the np/n-independent nonreciprocal response is only
observed near breakdown (i.e. for very small current densities), Joule heating is
minimal. Hence, no sizable thermal gradient ∇T is realized. Secondly, Yasuda
et al. demonstrated a large unidirectional magnetoresistance (UMR) in bilayers
consisting of a magnetic Cr-doped (BixSb1-x)2Te3 and undoped (BixSb1-x)2Te3
layer [203]. However, this UMR does not fit the data presented in this chapter,
because in order to observe the UMR an external magnetic field has to be
applied to force an in-plane magnetization perpendicular to the direction of
current flow.

4For devices J and K the n-type puddles are dominant, while for device C the p-type
puddles seem to dominate.
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5.5 Summary

The nonreciprocal response of a QAHI was investigated over a vast parameter
space (T , H, VGate, I). For high excitation currents, the I-V relation is described
well by Eq. 5.2. However, at ultra-low temperatures (< 100 mK) when the
current amplitude is decreased to only slightly exceed the critical current for
breakdown, the nonreciprocal charge transport seems to become independent
of the 2D charge-carrier type (np/n), and the I2-dependence is lost. The finite
nonreciprocal response when the chemical potential lies inside the exchange
gap, is most likely caused by an imperfect charge compensation in the QAHI
thin films, which leads to a majority of either n- or p-type 2D charge puddles.

This chapter is in preparation to be published as:
Lippertz, G., Uday, A., Bliesener, A., Pereira, L. M. C., Taskin,
A. A., and Ando, Y. Nonreciprocal charge transport on the edges of a
quantum anomalous Hall insulator.
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input from all authors.



Chapter 6

Conclusion

“ Nature’s music is never over; her silences are pauses, not
conclusions. ”

Mary Webb

In this thesis, the current-induced breakdown of the QAHE was addressed. When
the current density flowing through a QAHI was increased, or the width of the
transport region was constricted, an abrupt breakdown of the dissipationless
state occurred. The sample resistance was found to scale linearly with the
length of the transport channel, indicating that the dissipative state above
breakdown was governed by 2D diffusive transport through the bulk of the
sample. In addition, the critical current Ic was found to depend linearly on
the separation between the chiral edge states, and breakdown was shown to be
absent in nonlocal measurement geometries. This proved that the large Hall
electric field was the driving force for the breakdown process. Since the gapped
2D surface states in the QAH thin films possessed charge puddles as a result
of the Coulomb disorder, the electric field was confined to the small insulating
regions in between the puddles. As the transverse electric field was increased by
increasing the current or constricting the sample dimensions, the increased band
bending caused the 2D charge puddles to grow. At the critical electric field the
growth of the puddles became unstable and lead to an avalanche process. This
caused a metallic percolation path to form from one edge of the sample to the
other. This was the cause of the sudden onset of dissipation.

117
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The interpretation of the breakdown process as the formation of a metallic short
across the sample’s width was further substantiated by a Landauer-Büttiker
treatment of the measurement configurations used in the experiments. Other
breakdown mechanisms, such as the bootstrap electron heating (BSEH) model
and the percolation of the chiral edge state via magnetic domains, were also
covered in this thesis. However, it was shown that both models were unable to
explain the breakdown of the QAHE. Estimates for the Landau-Zener tunneling
between 2D charge puddles were given, and it was argued that such tunneling
events might explain the small but finite resistance in the pre-breakdown regime.

Next, the nonreciprocal charge transport was studied in the broken-down QAH-
state. For large current amplitudes (I � Ic), the current flowed through both
the 2D bulk and 1D edge states. Due to the large transverse electric field,
the high-potential branch of the chiral edge state was losing current to the 2D
state, while a fraction of the current flowing through the 2D state scattered into
the low-potential branch of the chiral edge state. Since a significant fraction
of the current was flowing from the source to the drain through the 2D bulk,
the 2D states acted as a source or sink of current. Since the scattering rates
between the chiral 1D edge and gapped 2D surface states were different for
edge-to-surface and surface-to-edge processes [201], the potential differences
along the left and right edge of the sample were not equal, which gave rise
to the observed nonreciprocity in the longitudinal voltage. Hence, while the
breakdown of the QAHE is generally a detrimental effect, it nevertheless can
lead to interesting nonreciprocal (diode-like) features in transport experiments.

In this thesis, two distinct nonreciprocal regimes were identified: (i) At high
excitation currents and/or temperatures, the nonreciprocal response followed
the well-known quadratic current-voltage relation for nonreciprocal systems.
Moreover, the amplitude of the nonreciprocal response showed a sign-inversion,
when the out-of-plane magnetization direction was inverted, or the 2D charge
carriers were tuned from n- to p-type. The nonreciprocal charge transport
in this regime was not affected by the Coulomb disorder, as either the band
bending due to the applied current or the thermal energy kBT were much larger
than the activation energy for the percolation of the 2D charge puddles. (ii) At
low excitation currents and temperatures, on the other hand, the signature I2-
dependence was lost, and the nonreciprocal response was found to be independent
of the electrostatic gate potential. Near the breakdown transition disorder played
a strong role. In this thesis, it was argued that the finite nonreciprocal response
when the chemical potential lay inside the exchange gap, was most likely caused
by an imperfect charge compensation in the QAHI thin films, which lead to a
majority of either n- or p-type 2D charge puddles. This also explained why the
polarity of the nonreciprocal response was sample-dependent near breakdown.
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In this thesis, both the current-induced breakdown and the nonreciprocal
transport at low currents and temperatures were attributed to puddle dynamics
in the gapped 2D surface state of the QAHI. Theoretical work is needed to
further clarify the important role Coulomb disorder plays in QAH systems,
and to simulate the puddle formation for realistic experimental conditions.
In addition, more experimental studies on the topic are needed to support
and/or verify the universality of the claims made here. In particular, STM,
optical conductivity, and quantum capacitance measurements could provide
valuable insights into the formation of puddles (with decreasing temperature),
the puddle size, their spatial distribution, as well as the localized density of
states in the exchange gap. Moreover, while the thesis focused on uniformly
V-doped (BixSb1-x)2Te3 thin films, it would be of great interest to compare
uniformly- and modulation-doped heterolayers, and perform similar studies
on other QAH platforms, such as MnBi2Te4, twisted bilayer graphene, and
MoTe2/WSe2 moiré heterobilayers.

The results presented in thesis advance the understanding of the current-induced
breakdown of the QAHE, and offer guiding principles for its mitigation in future
experiments and applications. Focusing on the latter, topological materials have
long been proposed for low-power electronics. While the so-called ‘topological
protection’ from backscattering of the spin-momentum-locked surface carriers
in 3D-TIs should indeed suppress dissipation over length scales smaller than
the inelastic mean-free-path, QAHIs do not suffer from this limitation. As
shown in this thesis, near-dissipationless edge transport is readily available in
QAHIs over macroscopic length scales, with only a quantized voltage drop of
(h/e2)I at the source/drain electrodes. This quantization of the resistance is
also of great interest for the field of metrology. Since the QAHE (contrary
to the QHE) does not require the application of an external magnetic field,
the QAHE and Josephson effect can be integrated into one low-temperature
set-up, creating a quantum current generator which can act as a reference
standard for the ohm, volt, and ampere within the international system of
units (SI). Lastly, QAHIs when combined with s-wave superconductors may
allow for the realization of so-called ‘flying qubits’, which if demonstrated
would give an intriguing alternative to the currently envisioned route maps
towards quantum computation. However, this thesis makes the case that these
applications will only come to fruition with further improvements in: (i) the
material quality, which should aim at the reduction of Coulomb and magnetic
disorder. (ii) the design of the devices/experiments, which should aim at
mitigating the breakdown of the QAHE, by spatially separating the high- and
low-potential branches of the chiral edge states.





Chapter 7

Outlook

“ Any knowledge that doesn’t lead to new questions dies out: it
fails to maintain the temperature required for sustaining life. ”

Wislawa Szymborska

In this thesis, the focus lay on the dissipation mechanisms in QAH thin
films at ultra-low temperatures in order to understand what determines the
maximum current density the QAHI can sustain before breakdown occurs, and
to propose strategies to improve it. Other research groups instead have focused
on maximizing the temperature at which the transverse resistance is quantized.
Figure 7.1 shows a timeline of the zero-field quantization temperature of the
QAHE (TQAHE) for different material systems. It is apparent that the majority
of QAH systems realized in the past decade rely on magnetic doping or proximity
coupled heterostructures of (BixSb1-x)2Te3 (‘BST’ in Fig. 7.1) [115]. The QAHE
was first realized in Cr-doped (BixSb1-x)2Te3 at 30 mK in 2013 [30], and two
years later in V-doped (BixSb1-x)2Te3 at 120 mK [32]. Modulation-doping
of the (BixSb1-x)2Te3 thin films, where the Cr dopants were confined to a
delta-layer below the top and bottom surface, pushed the upper quantization
temperature up to 2 K [125], owing to its larger saturation magnetization.
However, in these modulation-doped samples there seems to be a trade-off
between the current density for breakdown at ultra-low temperatures and the
upper quantization temperature. Namely, the very high Cr/V-concentration
in the delta-layer yields the desired larger saturation magnetization at the
cost of an increased defect density (in the delta-layer) and a deterioration
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Figure 7.1: Timeline of the upper quantization temperature of the QAHE
(TQAHE) in different material systems, based on Ref. [115]. Here, (BixSb1-x)2Te3
is abbreviated by ‘BST’. The first realization of the QAHE was in Cr-doped
(BixSb1-x)2Te3 (‘Cr-BST’) thin films at 30 mK in 2013. The upper quantization
temperature TQAHE, however, rapidly increased to 2 K in modulation-doped
heterostructures in 2015, and later to 3 K in twisted bilayer graphene in 2020.
In parallel with the increase in TQAHE, the novel material platforms also gave
rise to new topological phenomena, such as the axion-insulator phase (2017),
the topological/geometric Hall effect (2020), and higher-Chern-number (C > 1)
QAH superlattices (2020).

of the insulating state. Recent Cr-modulation-doped thin films displayed a
critical current density of only ∼0.125 nA/µm at the CNP [132], compared
to ∼4.16 nA/µm at the CNP in our uniformly V-doped (BixSb1-x)2Te3 thin
films [see Fig. 4.14(d)]. Interestingly, when Okazaki et al. decreased the Cr-
concentration of the Crx(BiySb1-y)2-xTe3 delta-layer from x = 0.36 [132] to
x = 0.15 [133], the critical current density increased from ∼0.125 nA/µm to
∼7.5 nA/µm, respectively. Hence, for Cr/V-modulation-doping concentrations
similar to those found in uniformly Cr/V-doped QAH films, modulation doping
actually results in lower defect densities and enhanced breakdown characteristics.

In 2017, the axion-insulator phase was realized in modulation-doped QAH thin
films when the magnetization of the top and bottom surface were aligned out-of-
plane and in the opposite direction to one-another [123, 124]. Axion insulators
are an exciting new phase of quantum matter in their own right, and are
predicted to exhibit the topological magnetoelectric effect [126, 144, 185, 192].
In 2018, the QAHE was observed in uniformly (Cr,V)-co-doped (BixSb1-x)2Te3
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thin films at 1.5 K [137], whereas in 2019 the first proximity-coupled QAH
heterostructures at 100 mK were realized in (Zn,Cr)Te/(Bi,Sb)2Te3/(Zn,Cr)Te,
in which (Zn,Cr)Te is a ferromagnetic insulator (FMI) [191]. Moreover, recent
Cr2Si2Te6/(Bi,Sb)2Te3/Cr2Si2Te6 heterostructures showed an anomalous Hall
resistance of ∼ 0.8h/e2 at 60 mK [120], and may soon become the second
proximity-coupled QAH material platform. Although no values for the critical
current density at ultra-low temperatures were reported for these material
systems, proximity-coupling a TI to a FMI may circumvent the trade-off between
the saturation magnetization and the critical current density, if a good epitaxial
relationship can be found between the TI and FMI crystal structures, leading
to QAH heterostructures with low defect densities.

In 2020, the QAHE was realized in several new material systems: twisted
bilayer graphene up to 3 K [34, 142, 164, 175], flakes of the magnetic TI
MnBi2Te4 at 1.4 K [42], and flakes containing superlattices of MnBi2Te4/Bi2Te3
at 1.9 K [41]. In the same year, a well-quantized QAHE with a tunable Chern
number (up to C = 5) was realized in superlattices consisting of alternating
Cr-doped and undoped (BixSb1-x)2Te3 layers (TQAHE = 25 mK) [215], and the
topological/geometric Hall effect was observed in Cr-modulation-doped QAHE
heterostructures (TQAHE = 400 mK) [76], possibly indicating the presence of
magnetic Skyrmions [48, 64, 111, 183, 204]. In 2021, the QAHE was also realized
in MoTe2/WSe2 moiré heterobilayers at 2.5 K [107].

The strong dissimilarity between the novel QAH material systems reported in
recent years suggests this may only be the ‘tip of the iceberg’, with a multitude
of material realizations waiting to be discovered, which instills hope of one day
realizing robust topological phases at room temperature. In addition, moiré
engineering has proven to be a powerful tool to create new band structures by
combing and twisting existing VdW materials. Here, after the realization of the
QAHE in twisted bilayer graphene and MoTe2/WSe2 moiré heterobilayers, the
next big milestone would be the fractional quantum anomalous Hall effect
(FQAHE), which has been theoretically predicted for both moiré systems
[104, 116, 151]. Moreover, Yang et al. have recently predicted the QAHE
for a twisted Sb2 monolayer on top of a Sb2Te3 thin film [197], which would
eliminate the need for magnetic dopants or proximity-coupled FMI layers in
the (BixSb1-x)2Te3 QAH platform altogether.

In the meantime, however, the current (BixSb1-x)2Te3-based systems offer a
rich playground for studying topological matter; in particular the modulation-
doped heterostructures, which under the right conditions can display the
QAHE [125], the axion-insulator phase [123, 124], the topological/geometric
Hall effect [76, 204], as well as give rise to nonreciprocal charge transport
[201, 202, 203] (as discussed in chapter 5). MnBi2Te4 is ideally suited to
study the axion electrodynamics as well. Namely, the Mn atoms order



124 OUTLOOK

ferromagnetically within the MnBi2Te4 VdW layers of the crystal structure, but
couple antiferromagnetically between the stacked VdW layers [105, 135, 136],
leading to a QAHI (axion-insulator) phase for an odd (even) number of VdW
layers [42, 110]. Moreover, MnBi2Te4 shows a rich magnetic phase diagram
[8, 163], encouraging further research into the interplay between magnetism
and band topology. Uniformly V/Cr-doped (BixSb1-x)2Te3 thin films, on the
other hand, remain relevant for ultra-low temperature experiments, such as the
study of the superconducting proximity effect [84, 166], as well as the possible
manipulation of chiral Majorana fermions in the future [1, 12, 13, 59].



Appendix A

Spinless Basis for the
Bogoliubov-de Gennes
Hamiltonian

The Bogoliubov-de Gennes (BdG) Hamiltonian for a QAHI proximitized by an
s-wave superconductor (Eqs. 2.24–2.26) are reproduced here for convenience:

HBdG = 1
2
∑
k

Ψ†kHBdGΨk, (A.1)

HBdG =
[
H0(k)− µ ∆k

∆†k −H∗0 (−k) + µ

]
, (A.2)

∆k =
[
i∆1σy 0

0 i∆2σy

]
, (A.3)

where Ψk = [(ctk↑, ctk↓, cbk↑, cbk↓), (c
t†
−k↑, c

t†
−k↓, c

b†
−k↑, c

b†
−k↓)]T . Here, µ denotes the

chemical potential, while ∆1 and ∆2 are the pairing gap functions for the top
and bottom surface state, respectively.

For the special case of ∆1 = −∆2 ≡ ∆ and µ = 0, HBdG (Eq. A.2) can be
block-diagonalized using two consecutive basis transformations [189].
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A.1 First Basis Transformation

The first basis transformation yields two models, H̆1(k) and H̆2(k), with opposite
chirality:

H̆BdG =
[
H̆1(k) 0

0 H̆2(k)

]
, (A.4)

where

H̆1(k) =


mk + gM ivF k− 0 ∆
−ivF k+ −mk − gM −∆ 0

0 −∆ −mk − gM −ivF k+
∆ 0 ivF k− mk + gM

 ,

H̆2(k) =


mk − gM −ivF k+ 0 −∆
ivF k− −mk + gM ∆ 0

0 ∆ −mk + gM ivF k−
−∆ 0 −ivF k+ mk − gM

 ,

with the new basis (ctk↑+cbk↑, c
t
k↓−cbk↓, c

t†
−k↑+cb†−k↑, c

t†
−k↓−c

b†
−k↓)T /

√
2 for H̆1(k)

and (ctk↓ + cbk↓, c
t
k↑ − cbk↑, c

t†
−k↓ + cb†−k↓, c

t†
−k↑ − c

b†
−k↑)T /

√
2 for H̆2(k).

A.2 Second Basis Transformation

The second basis transformation further block-diagonalizes H̆1(k) and H̆2(k),
yielding:

H̃BdG =
[
H̃1(k) 0

0 H̃2(k)

]
, (A.5)

where

H̃1(k) =


mk + gM + ∆ ivF k− 0 0
−ivF k+ −mk − gM −∆ 0 0

0 0 −mk − gM + ∆ −ivF k+
0 0 ivF k− mk + gM −∆

 ,

H̃2(k) =


mk − gM −∆ −ivF k+ 0 0

ivF k− −mk + gM + ∆ 0 0
0 0 −mk + gM −∆ ivF k−
0 0 −ivF k+ mk − gM + ∆

 .
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with the new spinless basis

1
2


ctk↑ + cbk↑ + ct†−k↓ − c

b†
−k↓

ctk↓ − cbk↓ + ct†−k↑ + cb†−k↑
−ctk↓ + cbk↓ + ct†−k↑ + cb†−k↑
−ctk↑ − cbk↑ + ct†−k↓ − c

b†
−k↓

 for H̃1(k),

1
2


ctk↓ + cbk↓ + ct†−k↑ − c

b†
−k↑

ctk↑ − cbk↑ + ct†−k↓ + cb†−k↓
−ctk↑ + cbk↑ + ct†−k↓ + cb†−k↓
−ctk↓ − cbk↓ + ct†−k↑ − c

b†
−k↑

 for H̃2(k).

Notice that H̃1(k) and H̃2(k) each describe two copies of a spinless px ± ipy
superconductor [51, 150, 189].





Appendix B

Why Long Multi-terminal
Hall-bar Devices?

Chang et al. were the first to demonstrate clean nonlocal transport of the QAH
edge states. The devices consisted of scratched, mm-size 6-terminal Hall-bar
devices. While the current flowed through neighboring contacts, the magnetic-
field dependence of the three-terminal resistances were recorded [31]. Here,
similar nonlocal measurements are shown for a µm-size 6-terminal Hall-bar
device.

Figure B.1 shows the four-terminal resistance of our µm-size 6-terminal Hall-bar
device D. The transverse resistance R1-3,6-2 and the longitudinal resistance
R1-3,6-5 show the quantized hysteresis loop and near-dissipationless state of
the QAHE, respectively. Note that R1-3,5-2 = R1-3,6-2 − R1-3,6-5, as expected.
The resistance R1-3,5-4 measures a nonlocal transport and should remain zero
for any value of the magnetic field. However, small resistance peaks at the
coercive field, corresponding to 2D diffusive transport, are clearly visible. As a
result, when the Hall-bar dimension is reduced from mm- to µm-size, the simple
6-terminal device is no longer suitable for nonlocal transport measurements.
For this reason, the Hall-bar in the main text was elongated and extra contacts
were added to allow for length-dependent measurements.

Figure B.2 shows the three-terminal resistance measured in the same nonlocal
geometry as in Refs. [31, 94]. The nonlocal resistances R1-2,x-2 with x =
{3, 4, 5, 6} show the quantized hysteresis loop superimposed with resistance
peaks at the coercive field. The additional component is due to the small
V-doped (BixSb1-x)2Te3 sections of the µm-size source/drain contacts, which
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Figure B.1: (a) Schematic of the high (red) and low (blue) potential portions of
the chiral edge state for M > 0 (top), and a picture of the 6-terminal Hall-bar
device D having the width 100 µm and the contact separation 350 µm (bottom).
(b-d) Magnetic-field dependencies of the ‘local’ resistances R1-3,6-2, R1-3,5-2 and
R1-3,6-5, measured at 30 mK with an AC probe current of 10 nA. (e) Magnetic-
field dependence of the nonlocal resistance R1-3,5-4.
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Figure B.2: (a) Schematics of the high (red) and low (blue) potential portions of
the chiral edge state for M > 0 and M < 0. (b-e) Magnetic-field dependencies
of the resistances R1-2,x-2 with x = {3, 4, 5, 6}, measured at 30 mK with an AC
probe current of 10 nA.

add a diffusive contribution to the ‘nonlocal’ three-terminal resistance. Note
that for a probe current of 10 nA, no breakdown of the QAHE is observed near
the 50 µm-wide drain contact 2 (i.e. β = 0 in Eq. 4.6). A detailed analysis of
the breakdown of the QAHE, using the Landauer-Büttiker formalism [28], is
given in chapter 4.



Appendix C

Procedure to Extract the
Critical Current

In this appendix, the procedure that was used to extract the critical current for
breakdown in this thesis will be explained.

In the first report of the breakdown of the QAHE by Kawamura et al., the
four-terminal current-voltage characteristics did not show a clear zero-voltage
plateau [83]. The authors extracted a value for the critical current (denoted here
by I0) by extrapolating the approximately linear part of the I-V characteristics
and defining the intercept with the IDC-axis as I0. This procedure is shown
in Fig. C.1(a) for the I-V characteristic of device G1 at VGate = +2 V [see
Fig. 4.14(c) for the full data set]. The red curve, which fits the linear region
at high probe currents, intersects the IDC-axis at I0 ≈ 276 nA. Note that this
definition of the critical current clearly yields values for I0 that do not coincide
with the abrupt onset of dissipation due to breakdown, and as a result this first
procedure is not adopted in this work.

Instead of evaluating the critical current from the I-V characteristic, it is
instructive to perform differential resistance measurements, see Fig. C.1(b). The
curves for dVx/dIDC show a clear jump in the resistance when the breakdown
of the QAHE occurs. The red curve shows a linear fit to this near vertical jump
in dVx/dIDC at the breakdown point. The intercept with the IDC-axis is taken
as the critical current Ic ≈ 151 nA.1 This second procedure is performed to
obtain the Ic-values stated in this thesis.

1This Ic-value of 151 nA corresponds to the purple data point (jc ≈ 1 nA/µm) at
VGate = +2 V in Fig. 4.14(d) for the 150-µm-wide Hall-bar device G1.

131



132 PROCEDURE TO EXTRACT THE CRITICAL CURRENT

0
1
2
3
4
5
6
7

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 00
1
2
3
4
5
6
7

V x 
(m

V)

I 0  =  2 7 6  n A

( a )

dV
x/d

I DC
 (k

Ω
)

I D C  ( n A )

I c  =  1 5 1  n A  

( b )

Figure C.1: Two procedures to extract a critical current value for breakdown.
(a-b) The four-terminal current-voltage characteristic of Vx = V2-3(I1-4) [black
curve] and V6-5(I1-4) [green curve] (a), and the corresponding IDC-dependence
of the differential resistance dVx/dIDC (b) for device G1, measured at 30 mK
in 0 T (after training at +2 T) with VGate = +2 V. The dVx/dIDC curves were
measured using an AC excitation of Irms = 1 nA. In panel (a), the approximately
linear part of the I-V characteristic is extrapolated [red curve] and the intercept
with the IDC-axis gives one measure for the critical current, denoted here by
I0. Clearly the value for I0 ≈ 276 nA does not coincide with the loss of the
zero-resistance state. In panel (b), a clear jump in dVx/dIDC is observed when
the zero-resistance state is lost. In this thesis, this jump in dVx/dIDC is fitted
by a linear curve [red curve] and the intercept with the IDC-axis is taken as the
definition of the critical current Ic.



Appendix D

Landauer-Büttiker Treatment
of Additional Leakage Paths

In chapter 4, it was shown that the current-induced breakdown of the QAHE,
which is caused by a loss of edge current from the high-potential branch of the
chiral edge state to the low-potential branch, can be described using a simple
Landauer-Büttiker toy-model. Such a simplistic model by no means describes
the physics of the current-induced breakdown accurately, but it can provide
qualitative expressions for the observed resistances for currents exceeding the
critical current for breakdown. While in chapter 4 the model was limited to
simple four- and three-terminal geometries in a 6-terminal Hall-bar device, here
the calculation is repeated for a 12-terminal Hall-bar device with the same
nonlocal configuration as shown in Fig. 4.6. Moreover, four possible leakage
paths in the nonlocal region will be addressed. The results further strengthen
the claim that dissipationless charge transport persists in the nonlocal transport
region of the Hall-bar, even for values of the current at which the QAHI state
is broken down in the local region.

D.1 Nonlocal Leakage across the Hall-bar Width

First, we discuss the extension of the Landauer-Büttiker treatment to the
nonlocal regime by considering the situation shown in Fig. D.1, which
schematically models a 12-terminal Hall-bar device for M < 0 with the current
flowing from contact 0 to 6. The scattering probabilities α, β, and γ describe
the fraction of the current leaking between the opposite edge states in the local
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Figure D.1: Schematics of the edge transport in a 12-terminal Hall-bar device
for M < 0, with the ‘leakage’ between opposing counter-propagating edges
parametrized by the scattering probabilities α, β, and γ. The contact spacing
between neighboring contacts are chosen to be equal, i.e. L0-1 = L1-3 = L3-5 =
L5-7 = L7-9 = L9-11.

region, nonlocal region, and in the current contact 6, respectively. Note that
the spacing between neighboring contacts are chosen to be equal for simplicity,
since α, β, and γ are length dependent. The Landauer-Büttiker formula [28]
to describe the current-voltage relation was already shown in chapter 4 (as
Eq. 4.1), but is reproduced here for convenience:

Ii = e2

h

∑
j

(TjiVi − TijVj) , (D.1)

where Vi is the voltage on the ith contact, Ii is the current flowing through
the ith contact into the sample, and Tji is the transmission probability from
the ith to the jth contact. The full set of transmission coefficients Tji are best
expressed as a matrix (see Eq. D.5); which is shown on the next page.

Using V6 = 0, I0 = −I6 = I and Ii = 0 for all other contacts, Eq. D.1 can
be solved for I and Vi, which allows us to calculate the longitudinal (Rxx),
transverse (Ryx), and nonlocal (RNL) resistances as follows:

Rxx = R0-6,1-3 = R0-6,2-4 = R0-6,3-5 = α

1− α
h

e2 , (D.2)

Ryx = R0-6,2-1 = R0-6,4-3 = − h

e2 , (D.3)

RNL = R0-6,5-7 = R0-6,5-8 = · · · = 0 . (D.4)
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Note that RNL is the resistance between any pair of contacts in the nonlocal
region (contacts 5, 7, 8, 9, 10, 11) for the current flowing from contact 0 to 6.
The results for Rxx and Ryx are the same as those for the simple four-terminal
geometry discussed in chapter 4, cf. Eqs. 4.3–4.4. The result RNL = 0 means that
additional resistive channels in the middle of the nonlocal region (represented
by β) do not carry any non-equilibrium current, as they are short-circuited by
the dissipationless chiral edge channel.

Similarly, the three-terminal resistances can be obtained from the solution of
the Landauer-Büttiker formula for the case of Fig. D.1:

R0-6,0-1 = α

1− α
h

e2 , R0-6,0-2 = 1
1− α

h

e2 , (D.6)

R0-6,4-6 = α− 2αγ + γ

(1− α)(1− γ)
h

e2 , R0-6,8-6 = 1
1− γ

h

e2 . (D.7)

Note that the resistances shown in Figs. 4.9 and 4.10 correspond to the case of
γ � α.

D.2 Forced Nonlocal Leakage across the Hall-bar
Width

To gain a deeper understanding of the possible role of coexisting dissipative
channels in the nonlocal region, it is useful to consider a slightly modified
network model shown in Fig. D.2, where β is now chosen to be nonreciprocal.
In this case, a fraction β of the current in the top edge is forced to ‘leak’ into
the bottom edge. The nonzero transmission coefficients for contact 8, 10 and 11
now become

T4,8 = (1− α)γ, T5,8 = αγ, T6,8 = γ, T8,10 = T10,11 = 1, (D.8)

resulting in a position-dependent edge potential in the nonlocal region:

V7 = V8 = (1− β)V5, (D.9)

V9 = V10 = (1− β)2V5, (D.10)

V11 = (1− β)3V5, (D.11)

which decreases towards contact 11. Namely, as β increases, the nonlocal
voltage contacts are slowly ‘cut out’ from the circuit, becoming essentially
floating contacts. Hence, if some non-equilibrium currents were flowing between
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Figure D.2: Schematics of the edge transport in a 12-terminal Hall-bar device
for M < 0, with the ‘leakage’ between opposing counter-propagating edges
parametrized by the scattering probabilities α, β, and γ, where β is chosen to
be nonreciprocal. The contact spacing between neighboring contacts are chosen
to be equal, i.e. L0-1 = L1-3 = L3-5 = L5-7 = L7-9 = L9-11.

the opposite edge states in the nonlocal region, the measured nonlocal voltages
would be non-zero. This is clearly not the case, as can be seen in Figs. 4.7, E.1,
and E.3, where the nonlocal edge potential remains zero. It is interesting to note
that one could imagine a scenario as presented in Fig. D.2 to become relevant
for very small edge channel separations where the opposite edge states start
to hybridize. Such hybridization in very narrow voltage contacts, for example,
would lead to a reduction of the measured voltage by ∼ (1− β), even though
there is no large local electric field present. The smallest contacts in this work
(see table 3.1) had a width of 20 µm with no sign of hybridization, meaning
that the edge states were always well separated in the experiments.

D.3 Nonlocal Leakage to the Drain Contact

Next, let us consider resistive channels in the nonlocal region, which leak to
the drain contact (instead of leaking across the Hall-bar width), as shown in
Fig. D.3. Notice that the contact numbering is modified, which will allow more
concise expressions for the edge potential. One can imagine the leakage in
the nonlocal region to take place through the 2D state. Moreover, there is an
electric field present in this scenario to drive the breakdown, consistent with
our percolation model (see section 4.10.3). In this case, β should in principle
become smaller as the voltage probes are farther from the drain contact, but
for simplicity, let us take the scattering probability β to be uniform throughout
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Figure D.3: Schematics of the edge transport in a 12-terminal Hall-bar device
for M < 0, with the current flowing from contact 0 to 9. Notice that the contact
numbering now runs clockwise around the Hall-bar device. The contact spacing
between neighboring contacts are still chosen to be equal, i.e. L0-1 = L1-2 =
L2-3 = L3-4 = L4-5 = L5-6. The ‘leakage’ between opposing counter-propagating
edges is parametrized by the scattering probabilities α and γ. Additionally, the
scattering probability β describes the leakage of the edge state in the nonlocal
region of the Hall-bar to the drain contact 9. The leakage of the edge state in
the local region of the Hall-bar to the drain contact 9 is not considered as it is
negligible compared to the leakage path described by α.

the nonlocal region. The transmission coefficients now become:

T0,0 = T1,11 = T2,10 = T10,2 = T11,1 = α, T3,8 = α(1− β)γ,

T0,11 = T1,0 = T2,1 = T3,2 = T11,10 = 1− α, T9,8 = 1− (1− β)γ, (D.12)

T9,3 = T9,4 = T9,5 = T9,6 = T9,7 = β, T9,8 = (1− α)(1− β)γ,

T4,3 = T5,4 = T6,5 = T7,6 = T8,7 = 1− β,

where all Tj,9 were omitted since they drop out of Eq. D.1, because V9 = 0. The
resulting edge potential in the nonlocal region, given by

Vi = (1− β)i−3V3, i = 4, 5, 6, 7, 8 (D.13)

is nonzero and position-dependent, again in disagreement with our experimental
observations.
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D.4 Dissipation through Additional Quasi-helical
Edge States

Lastly, let us consider the presence of additional quasi-helical edge states as
proposed in Ref. [187] and employed in Refs. [31, 94] to explain their non-ideal
nonlocal measurements in 6-terminal Hall-bar devices. Note that these ‘quasi-
helical’ edge states are thought of as the remnants of the 2D topological surface
states on the side surfaces of a 3D magnetic TI when reducing the thickness to
form the quasi-2D QAHI films, see Fig. 4.16 for an illustration.

Figure D.4 shows the same schematic of the 12-terminal Hall-bar device for
M < 0 with the current flowing from contact 1 to 9. This time, however, the
current is not only carried by the chiral edge state of the QAHI, but also by
two counter-propagating quasi-helical edge states (shown in purple and green
in Fig. D.4). In accordance with Ref. [187], let us assume perfect transmission
through the chiral edge channel, i.e. Ti+1,i = 1, while for the quasi-helical states
we assume Ti+1,i = α and Ti,i+1 = β. Unlike the case of the helical edge states
in the quantum spin Hall effect (QSHE) where α = β = 1, these ‘quasi-helical’
states are not protected from backscattering (α, β < 1). The total transmission
coefficients then become Ti+1,i = 1 + α and Ti,i+1 = β.

The voltages appearing in the Hall-bar for M < 0 can be expressed concisely
by using r ≡ β/(1 + α) as

Vi = 1− r9−i

1− r9 V0 (for 0 6 i 6 8), (D.14)

Vi = 1− r9−i

1− r−3 V0 (for i = 10, 11), (D.15)

which is in agreement with the expressions derived by Wang et al. in Ref. [187]
for a 6-terminal Hall-bar device. Note that when moving clockwise along the
edge of the Hall-bar, the voltage decreases from contact 0 to 9 on the red-colored
edge, whereas the voltage increases from contact 9 to 0 on the blue-colored
edge. Moreover, there is no distinction in this model between local and nonlocal
transport. Since our QAHI films are rather thick (∼8 nm), the presence of
additional (dissipative) edge states certainly seems possible. Nevertheless, as
explained in chapter 4 (section 4.9), we did not observe any signatures of
quasi-helical edge states in our transport experiments.
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Figure D.4: Schematics of the edge transport in a 12-terminal Hall-bar device
for M < 0, with the current flowing from contact 0 to 9. Notice that the contact
numbering now runs clockwise around the Hall-bar device. The contact spacing
between neighboring contacts are still chosen to be equal, i.e. L0-1 = L1-2 =
L2-3 = L3-4 = L4-5 = L5-6. The high and low potential branches of the QAH
edge state are shown in red and blue, respectively. Two counter-propagating
‘quasi-helical’ edge states are added in this model, they are shown in purple and
green.

D.5 Summary

If in the nonlocal region resistive channels in the 2D bulk are allowed to carry
some leakage current to the drain contact, or additional, dissipative quasi-helical
edge states are included in the model, a position-dependent expression for the
edge potential in the nonlocal region is obtained. However, experimentally
we found a linear length dependence for the breakdown in the local region of
the Hall-bar [see Figs. 4.2(c-d)], while the nonlocal voltages always remained
zero, as can be seen in Figs. 4.7, E.1, and E.3. This clearly indicates that
no edge current is lost in the nonlocal region through such leakage paths and
the dissipationless edge transport is maintained in the nonlocal region. This
is consistent with the statement that the transverse electric field governs the
breakdown process.



Appendix E

Additional Nonlocal Transport
Data

In this appendix, the transport data are shown for three additional nonlocal
configurations for the 26-terminal Hall-bar device:

Figure E.1 shows the ‘90◦-rotated’ Hall-bar configuration, with the current
flowing from contact 5 to 6. The transverse resistance R5-6,0-25 is quantized,
demonstrating that the chiral edge state runs along the edge of the sample.
Figure E.1(c) shows the resistances R5-6,a-b with a-b being the contact pairs
{1-2, 9-10, 13-14, 17-18, 21-22, 17-21}. R5-6,a-b remains essentially zero for any
value of the magnetic field, showing near-dissipationless nonlocal edge transport.
Moreover, R5-6,a-b shows no exponential length dependence as proposed for
additional quasi-helical edge states that are not protected from backscattering
[187], see Eqs. D.14–D.15. It should be noted, however, that the large nonlocal
device geometry used here might not be best suited to study these proposed
dissipative edge states, as their observation might be limited by the phase
coherent length Lφ and the proposed features in Ref. [187] would be strongly
suppressed for our large probe separations of 300 µm.

Figure E.2 shows the ‘left-edge’ Hall-bar configuration, with the current flowing
from contacts 1 to 9. The transverse resistance R1-9,6-5 is quantized at
40 and 500 mK. The resistances R1-9,5-x, with the voltage contact x being
{13, 14, 17, 18, 21, 22, 25}, demonstrate a quantized hysteresis loop at 40 mK as
well, but acquire an additional offset at 500 mK due to a nonzero longitudinal
resistance at this elevated temperature. Notice that the hysteresis loops of
R1-9,6-5 and R1-9,5-x are opposite, since the polarity of the voltage contacts is
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Figure E.1: ‘90◦-rotated’ configuration for the 26-terminal Hall-bar device A,
measured at 30 mK with IDC = 80 nA. (a) Schematic of the potential distribution
in the chiral edge state for M > 0. (b) Magnetic-field dependencies of R5-6,a-b
with a-b = {1-2, 9-10, 13-14, 17-18, 21-22, 17-21} and the transverse resistance
R5-6,0-25. (c) Magnified plot of R5-6,a-b vs H.

switched. Both the offset and the peaks at the coercive field originate from
2D diffusive transport between contacts 1 and 9. R1-9,5-x remains the same for
all voltage contact x of {13, 14, 17, 18, 21, 22, 25}, and hence there is no length
dependence in the nonlocal region. Moreover, the reported ‘nonlocal hysteresis
loop’ (and its temperature dependence) assigned to the existence of additional
quasi-helical edge states in Refs. [31, 94] was not observed.

Figure E.3 shows the ‘middle-edge’ Hall-bar configuration, with the current
flowing from contact 9 to 13. The current dependence of V1-5 and V17-21,
measured nonlocally, shows no sign of breakdown. The voltage V1-21, on the
other hand, includes both V1-5 and V17-21 as well as the small local region
in-between. This V1-21 shows the breakdown of the QAHE at ∼0.16 µA,
demonstrating again that the breakdown only occurs in the local transport
region.
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Figure E.2: ‘Left-edge’ configuration for the 26-terminal Hall-bar device A,
measured with IDC = 80 nA. (a) Schematic of the potential distribution in the
chiral edge state for M > 0. (b-c) Magnetic-field dependencies of R1-9,5-x with
x = {13, 14, 17, 18, 21, 22, 25} and the transverse resistance R1-9,6-5 measured at
40 mK (b) and at 500 mK (c).
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Figure E.3: ‘Middle-edge’ configuration for the 26-terminal Hall-bar device B,
measured at 40 mK in +2 T. (a) Schematic of the potential distribution in the
chiral edge state for M > 0. (b) I-V characteristics for V1-5, V17-21, and V1-21
with I9-13. The voltages V1-5 and V17-21 are nonlocal, while V1-21 includes the
‘local’ contribution from the portion between contacts 9 and 13. The breakdown
of the QAHE occurs at ∼0.16 µA.



Appendix F

Additional Nonreciprocal
Transport Data

The nonreciprocal charge transport was studied using four Hall-bar devices (C,
F1, J, and K). The most important results were discussed in chapter 5. In this
appendix, additional data are provided for the devices, such that each device
possesses a complete data on its own.

F.1 26-terminal Hall-bar Device C

The nonreciprocal charge transport in device C was measured using AC and
DC techniques. The DC data were discussed in chapter 5 (Figs. 5.1 and 5.2);
below additional AC data are provided for device C.

F.1.1 Excitation-current Dependence

The excitation-current dependence of the second-harmonic voltage V 2ω
x ,

antisymmetrized in the magnetization and magnetic field, was already shown
in Fig. 5.9 of chapter 5. Figure F.1 shows the same data, but presented as the
second-harmonic voltage difference ∆V 2ω

R-L = V 2ω
x (Right)− V 2ω

x (Left) between
the right and left contact pairs. Note that the large V 2ω

x /V 1ω
x ratio ∼10% near

breakdown is reproduced, regardless of the method of antisymmetrization.
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Figure F.1: Current dependence of the nonreciprocal charge transport near
breakdown for the 26-terminal Hall-bar device C, with the current flowing
from contact 0 to 25, see Fig. 5.1(b) for a schematic of the device. (a) The
second-harmonic voltage difference ∆V 2ω

R-L = V 2ω
x (Right)− V 2ω

x (Left) between
the right (6-20) and left (5-19) contact pairs at 10 mK, shown for zero field
after training in ±2 T. The dashed line marks Irms = 0.2 µA. (b) Zoom of (a)
up to 200 nA, showing V ωx (in mV) and ∆V 2ω

R-L (in µV). The current-induced
breakdown of the QAHE occurs at Irms ≈ 60 nA, i.e. at a peak-current value
of I0 ≈ 85 nA. (c) The DC voltage difference ∆VR-L between the right (6-10)
and left (5-9) contact pairs at 3.5 K in ±2 T. The data set is reproduced from
Fig. 5.2(c). (d) The ratio ∆V 2ω

R-L/(2*V ωx ), reaching ∼10% at Irms ≈ 50–60 nA.
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F.1.2 Magnetic-field Dependence

Figure F.2 shows the magnetic-field dependence of V 2ω
x for the left and right

edge for different current values near the breakdown of the QAHE. As the
current is increased past the critical value for breakdown, a hysteresis loop
opens up in V 2ω

x . The sign-inversion of the nonreciprocal response is observed
between the left and right edge, as well as when the magnetization is reversed
when crossing the coercive field.

A double peak feature is observed at the coercive field for 20, 70 nA, and 2.5 µA.
These peaks are consistent with the closing of the exchange gap in the 2D
surface state as the net magnetization passes through zero at the coercive field.
Namely, as the size of the exchange gap reduces, the insulating QAH state is
lost, leading to a finite amplitude of V 2ω

x . However, when the exchange gap
closes entirely, the chiral 1D edge states is lost and V 2ω

x becomes zero at the
coercive field. As the exchange gap reopens and a 1D edge state of opposite
chirality is formed, V 2ω

x displays a second inverted peak, which disappears again
when the exchange gap is large enough to form the insulating QAH state.

Lastly, as explained in chapter 5, V 2ω
x undergoes a sign-inversion at Irms ≈

1.65 µA (see Fig. 5.9 or F.1). This sign-inversion is also observed when
comparing Figs. F.2(c,g) for Irms = 200 nA with Figs. F.2(d,h) for Irms = 2.5 µA,
respectively.

F.1.3 Temperature Dependence

Figure F.3(a) shows the temperature dependence of the nonreciprocal response
near breakdown, measured at Irms = 200 nA below the sign-inversion at Irms ≈
1.65 µA. The data points were extracted from magnetic-field sweeps. Contrary
to the temperature dependence of the nonreciprocal response at high-current
values (see Figs. 5.5 and 5.11), the amplitude of V 2ω

x at Irms = 200 nA vanishes
quickly with increasing temperature. Figure F.3(b) shows the temperature
dependence of Rxx and Ryx for comparison, measured with Irms = 200 nA.
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Figure F.2: Magnetic-field dependence of the nonreciprocal charge transport
for different excitation currents near breakdown at 15 mK. In the 26-terminal
Hall-bar device C the current flowed from contact 0 to 25, see Fig. 5.1(b) for
a schematic of the device. (a-d) The magnetic-field dependence of V 2ω

x for
the contact pair 5-19 (left edge), measured with Irms = 20 nA (a), 70 nA
(b), and 200 nA (c), and 2.5 µA (d). (e-h) The corresponding magnetic-field
dependence of V 2ω

x for the contact pair 6-20 (right edge). The V 2ω
x curves

were antisymmetrized in the magnetization and magnetic-field, i.e. V 2ω
x =

[V 2ω
x (+M̂,+µ0H)− V 2ω

x (−M̂,−µ0H)]/2.
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Figure F.3: Temperature dependence of the nonreciprocal charge transport in
the low-current limit (Irms = 200 nA) for the 26-terminal Hall-bar device C,
with the current flowing from contact 0 to 25, see Fig. 5.1(b) for a schematic of
the device. (a) The temperature dependence of the second-harmonic voltage
V 2ω
x , measured between contact pairs 5-19 (Left) and 6-20 (Right) in 0 T after

training in ±2 T. The V 2ω
x curves were antisymmetrized in the magnetization,

i.e. V 2ω
x = [V 2ω

x (+M̂, 0T) − V 2ω
x (−M̂, 0T)]/2. The dashed line is a guide to

the eye. (b) The temperature dependence of the longitudinal and transverse
resistance, Rxx and Ryx respectively, shown for comparison and measured with
Irms = 200 nA in +2 T.

F.1.4 Length Dependence

In chapter 5, Fig. 5.12 shows the length dependence of |V 2ω
x | measured using

different contact pairs. The data points were extracted from I-V curves and
magnetic-field sweeps. Figures F.4 and F.5 show representative V 2ω

x curves
used to construct Fig. 5.12. The |V 2ω

x | amplitudes extracted from the magnetic-
field sweeps tend to be slightly smaller than those obtained from the I-V 2ω

characteristics as sweeping the magnet in the dilution refrigerator resulted
in slight heating of the sample. As can be seen from Figs. F.4 and F.5, the
nonreciprocal response is reproduced for all measured contact pairs, and the
same polarity is maintained along the full length of the 26-terminal Hall-bar
device C.
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Figure F.4: I-V 2ω
x characteristics for different contact pairs of the 26-terminal

Hall-bar device C, measured at 15 mK in ±2 T. An approximate linear length
dependence is observed for V 2ω

x . The V 2ω
x curves were antisymmetrized

in the magnetization and magnetic field, i.e. V 2ω
x = [V 2ω

x (+M̂,+2T) −
V 2ω
x (−M̂,−2T)]/2.
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Figure F.5: Magnetic-field dependence for different contact pairs of the 26-
terminal Hall-bar device C, measured at 15 mK with Irms = 200 nA. An
approximate linear length dependence is observed for V 2ω

x . The V 2ω
x curves

were antisymmetrized in the magnetization and magnetic field, i.e. V 2ω
x =

[V 2ω
x (+M̂,+µ0H)− V 2ω

x (−M̂,−µ0H)]/2.
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F.2 6-terminal Hall-bar Device F1

The nonreciprocal response in device F1 was measured between 2 K and 50 K
in the high-current limit, see chapter 5 (section 5.2.2). Figure 5.5(a) shows the
temperature dependence of R2ω

xx from 2 K to 50 K at VGate = 0 V. Figure F.6
shows the corresponding magnetic-field sweeps for R2ω

xx at different temperatures
up to ∼ TC. The hysteresis loop in R2ω

xx becomes smaller with increasing
temperature, with R2ω

xx vanishing at the Curie temperature TC ≈ 12 K in zero
magnetic field.

F.3 6-terminal Hall-bar Device J

The gate-voltage dependence of the nonreciprocal response in device J, measured
at 60 mK for different excitation currents, was shown in Figs. 5.7 and 5.8
of chapter 5. Figures F.7(a) and F.7(b) show the corresponding I-V 2ω

x

characteristics on the p-type (VGate = −10 V) and n-type (VGate = +15.5 V)
side of the CNP, respectively. Simularly, Figs. F.8(a) and F.8(b) show the
magnetic-field dependence of V 2ω

x on the p-type (VGate = −15 V) and n-type
(VGate = +20 V) side of the CNP, respectively.

F.4 6-terminal Hall-bar Device K

The gate-voltage dependencies of the nonreciprocal response in device K,
measured at different temperatures with Irms = 100 nA and Irms = 2 µA,
were shown in Figs. 5.10 and 5.11 of chapter 5, respectively. Figure F.9(a) shows
the longitudinal and transverse resistance at Irms = 2 µA for comparison. The
CNP is located at VGate ≈ +10 V, while the crossing point between the curves
for V 2ω

x (Right) and V 2ω
x (Left) occurs at VGate ≈ +6 V. Hence, at Irms = 2 µA

the crossing point of V 2ω
x has already moved away from the CNP. This shift with

decreasing excitation current continues till Irms = 100 nA, after which the curves
for V 2ω

x (Right) and V 2ω
x (Left) no longer cross and V 2ω

x (Right) > V 2ω
x (Left),

see Fig. F.10. Moreover, notice that for Irms = 100 nA [Fig. F.10(f)],
V 2ω
x (Right) and V 2ω

x (Left) coincide near the CNP (VGate ≈ +10 V), where
the QAH film recovers the zero-resistance state below breakdown. Lastly,
Figs. F.9(c) and F.9(s) show the corresponding I-V 2ω

x characteristics on the p-
type (VGate = −30 V) and n-type (VGate = +30 V) side of the CNP, respectively.
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Figure F.6: Magnetic-field dependence of the nonreciprocal charge transport at
different temperatures up to TC ≈ 12 K: (a,d) 2 K, (b,e) 5 K, and (c,f) 10 K. A
current of Irms = 1 µA flowed through Hall-bar device F1 from contact 1 to 4,
see Fig. 4.13 for a picture. The left edge (a-c) and right edge (d-f) correspond
to the contact pairs 2-3 and 6-5, respectively. The 2D charge carriers are p-type,
since VGate = 0 V. The R2ω

xx curves were antisymmetrized in the magnetization
and magnetic-field, i.e. R2ω

xx = [R2ω
xx(+M̂,+µ0H)−R2ω

xx(−M̂,−µ0H)]/2.
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Appendix G

Comparison of Nonreciprocal
Response to Other Material
Systems

Here, the amplitude of the nonreciprocal response of the V-doped (BixSb1-x)2Te3
thin films studied in chapter 5 is compared with other material platforms.
Table G.1 lists the materials for which a large magnetochiral anisotropy
(MCA) has been reported, whereas table G.2 gives an overview of magnetic
materials/heterostructures displaying sizable nonreciprocal charge transport.
For the MCA, the different material platforms are benchmarked by comparing
their γ-values (or γ′ = γA, with A the cross-sectional area), see Eq. 5.1. However,
since for magnetic systems time-reversal symmetry (TRS) is spontaneously
broken (rather than by the application of a magnetic field), their nonreciprocal
responses are not classified as ‘MCA’. Moreover, the amplitude of the
nonreciprocity does not scale linearly with the magnetic-field strength, which
means that the rectification coefficient γ in units of A−1T−1 is not well-defined.

When comparing the ‘raw’ rectification ∆R/R (expressed in %) in tables G.2
and G.2, it is clear that the nonreciprocal response of QAHIs outperforms most
material platforms by a large margin. One might argue that such a comparison is
not justified, since ∆R/R scales linearly with the current density i (and applied
magnetic field H in the MCA). Nevertheless, for any possible implementation of
these rectification phenomena, the performance would depend on the maximum
achievable ∆R/R for the largest possible i (and H) the material system or
application can sustain.
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