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Summary 

The cornea is physiologically devoid of blood and lymphatic vessels. 

However, severe inflammation can result in a secondary ingrowth of both vessel 

types, a process termed “corneal neovascularization”. Macrophages seem to play 

an important role in this process, although the underlying mechanisms are not well 

defined. Corneal blood vessels lead to reduced visual acuity when they grow into 

the optical center, and lymphatic vessels contribute to corneal transplant rejection, 

dry eye disease, or ocular allergy. In this regard, lymphatic vessels facilitate antigen 

presenting cell trafficking to the lymph nodes, where accelerated sensitization 

against allo- or autoantigens occurs. Thus, persistent corneal neovascularization is 

considered as harmful, and anti(lymph)angiogenic therapy has recently emerged as 

a novel approach in the treatment of several inflammatory corneal diseases.  

One aim of this work was to identify targets for anti(lymph)angiogenic therapy 

at the cornea and to identify effective anti(lymph)angiogenic compounds, which 

might be used to treat corneal neovascular diseases. Using a mouse model of 

sterile corneal inflammation, we found that glucocorticosteroids are strong inhibitors 

of corneal (lymph)angiogenesis. Glucocorticosteroids suppressed macrophage 

infiltration into the cornea and inhibited pro-inflammatory cytokine expression in 

macrophages. Furthermore, we identified insulin receptor substrate-1 (IRS-1) as a 

mediator of inflammatory corneal (lymph)angiogenesis. IRS-1 was expressed by 

corneal macrophages, and inhibition of IRS-1 reduced vascular endothelial growth 

factor (VEGF)-A, VEGF-C and VEGF-D expression in these cells. Consistently, 

treatment of inflamed corneas with GS-101, an antisense oligonucleotide directed 

against IRS-1, strongly inhibited inflammatory corneal (lymph)angiogenesis.  
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Another aim of this study was to analyze whether corneal lymphangiogenesis 

might also have beneficial functions, as studies in extraocular tissues had 

demonstrated that lymphatic vessels are also important to terminate inflammatory 

responses. However, studies showing similar functions for corneal lymphatic 

vessels were missing and the mediators of this putative anti-inflammatory process 

were unknown. Here, we analyzed the role of Interleukin-10 (IL-10), a primarily anti-

inflammatory cytokine, in the regulation of inflammatory corneal lymphangiogenesis. 

IL-10 was expressed in inflamed corneas by infiltrating macrophages. Furthermore, 

macrophages treated with IL-10 upregulated pro-lymphangiogenic VEGF-C 

expression, which is known to induce lymphatic vessel growth. IL-10 deficiency or 

conditional ablation of IL-10 signaling specifically in myeloid cells lead to reduced 

inflammatory corneal lymphangiogenesis and prolonged corneal inflammation, 

whereas treatment with IL-10 promoted lymphangiogenesis and faster egress of 

macrophages from inflamed corneas. These results collectively indicate that IL-10 

indirectly regulates corneal lymphangiogenesis and resolution of corneal 

inflammation via macrophages, which is the first report of a beneficial function of 

corneal lymphangiogenesis in (sterile) corneal inflammation.   

Taken together, we have identified novel anti(lymph)angiogenic compounds, 

which mainly affect the contribution of macrophages to inflammatory corneal 

lymphangiogenesis. Furthermore, we have described a novel anti-inflammatory role 

for corneal lymphangiogenesis, which is mediated by macrophages. Our work 

highlights the importance of macrophages for corneal lymphangiogenesis, and 

might contribute to future immunomodulatory therapeutic strategies promoting 

corneal repair or preventing disease.  
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Zusammenfassung 

Die Hornhaut enthält physiologisch keine Blut- und Lymphgefäße. Schwere 

Entzündungen können allerdings zu einem sekundären Einwachsen von Blut- und 

Lymphgefäßen in die Hornhaut führen. Korneale Blutgefäße reduzieren die 

Transparenz der Hornhaut, wenn sie in das optische Zentrum einwachsen, und 

korneale Lymphgefäße tragen zu Abstoßungsreaktionen nach Hornhaut-

transplantation, dem trockenen Auge oder der okulären Allergie bei. Hierbei 

erleichtern Lymphgefäße die Migration von Antigen-präsentierenden Zellen in die 

Lymphknoten, wo es zu einer Sensibilisierung gegenüber Allo- oder Autoantigenen 

kommt. Daher werden korneale Blut- und Lymphgefäße in der Regel als nachteilig 

angesehen, und anti(lymph)angiogene Therapie scheint ein neuer Ansatz bei der 

Behandlung verschiedener entzündlicher Hornhauterkrankungen zu sein. 

Ein Ziel dieser Arbeit war, Zielstrukturen für eine anti(lymph)angiogene 

Therapie und wirksame Therapeutika zu identifizieren, die zur Therapie von 

neovaskulären Hornhauterkrankungen genutzt werden könnten. Wir konnten 

zeigen, dass Glukokortikosteroide potente (Lymph)angiogenese-Inhibitoren sind. 

Glukokortikosteroide unterdrücken die Rekrutierung von Makrophagen und hemmen 

die pro-inflammatorische Zytokin-Expression dieser Zellen. Darüber hinaus konnten 

wir zeigen, dass insulin receptor substrate-1 (IRS-1) eine wichtige Rolle bei der 

kornealen (Lymph)angiogenese spielt. IRS-1 wird u.a. von Makrophagen exprimiert, 

und eine Hemmung von IRS-1 reduziert die Expression von vascular endothelial 

growth factor (VEGF)-A, VEGF-C und VEGF-D in diesen Zellen. Eine Behandlung 

entzündeter Hornhäute mit GS-101, einem Antisense-Oligonukleotid der gegen IRS-

1 gerichtet ist, inhibiert die entzündliche (Lymph)angiogenese an der Hornhaut. 
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Weiteres Ziel dieser Arbeit war es zu analysieren, ob korneale Lymphgefäße 

auch positive Funktionen haben können, wie es in Arbeiten an extraokulären 

Geweben bereits gezeigt wurde. Dabei scheinen Lymphgefäße wichtig für das 

Beenden von Entzündungsreaktionen zu sein. Studien, die ähnliche Funktionen an 

der Hornhaut zeigen, fehlten bisher und die Mediatoren dieser vermeintlich anti-

entzündlichen Funktion waren unbekannt. Wir untersuchten daher die Rolle des 

anti-inflammatorischen Zytokins Interleukin-10 (IL-10). Wir konnten zeigen, dass IL-

10 während einer Entzündungsreaktion durch infiltrierende Makrophagen exprimiert 

wird, welche nach Stimulation mit IL-10 die Expression von VEGF-C steigern. Das 

Fehlen von IL-10 oder eine Blockade des IL-10 Signalweges in myeloischen Zellen 

führt zu einer reduzierten Lymphangiogenese und einer persistierenden 

Entzündungsreaktion, während eine Stimulation mit IL-10 Lymphangiogenese 

induziert und zu einem schnelleren Austritt von Makrophagen aus der Hornhaut 

führt. Somit konnten wir zeigen, dass IL-10 indirekt über Makrophagen die korneale 

Lymphangiogenese und die Auflösung von Entzündungsprozessen reguliert. Dies 

ist der erste Nachweis einer positiven Funktion kornealer Lymphgefäßen. 

Zusammenfassend haben wir neue anti(lymph)angiogene Therapeutika 

identifiziert, die Ihren Effekt überwiegend durch Modulation von Makrophagen 

erzielen. Darüber hinaus haben wir eine neue, anti-entzündliche Rolle für korneale 

Lymphgefäße aufgezeigt, die durch Makrophagen vermittelt wird. Unsere Arbeit 

betont die Bedeutung von Makrophagen für die korneale Lymphangiogenese und 

kann dazu beitragen, künftige immunmodulatorische Therapiestrategien zur 

Förderung von Reparaturprozessen oder zur Verhütung von Krankheiten an der 

Hornhaut zu entwickeln.  
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1. Introduction 

1.1. The cornea  

The cornea is the outermost part and the major refractive element of the eye. 

It is physiologically transparent, about 550 µm thick and consists of five layers: 1) a 

multi-layered squamous non-keratinized epithelium at the outside; 2) the subjacent 

basement membrane-like Bowman's layer; 3) a middle stromal layer which is 

sparsely populated with resident tissue cells and mainly consists of collagen fibrils; 

and the inner layers of 4) Descemet´s membrane and 5) corneal endothelium 

(Figure 1). The corneal epithelium is covered by the tear film, which contains an 

aqueous phase secreted by the lacrimal glands, a mucinous phase built by the 

globlet cells of the conjunctiva, and a lipid phase secreted by the meibomian glands 

at the lid margin. The tear film and the corneal epithelium form an important barrier 

to the outside environment and guard the eye from microbial invasion, chemical and 

toxic damage and foreign bodies, to which the cornea is constantly exposed due to 

its anatomical position. The corneal stroma, which underlies the epithelium and 

comprises approximately 80 to 90% of the cornea´s total thickness, shows a highly 

periodical distribution of its collagen fibrils to minimize light scattering. In addition, 

continuous dehydration of the stroma by the carbonic anhydrase activity of the 

corneal endothelial cells results in compactly packed collagen lamellae that ensures 

transparency.  
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Figure 1: Eye anatomy and corneal histology. A. Schematic diagram of the human eye. B. 
Histology section of H&E stained human cornea; EP: epithelium, BM: Bowman's layer, ST: stroma, 
DM: Descemet´s membrane, EN: endothelium (modified from (Leal and Pearlman 2012)) 
 
 
1.2. Corneal (lymph)angiogenic privilege 

The cornea is one of the very few tissues of the organism that is devoid of 

blood and lymphatic vessels (Cursiefen 2007). This absence of blood and lymphatic 

vessels, termed “corneal (lymph)angiogenic privilege” is not a passive condition but 

is rather actively maintained. Recently, several mechanisms that contribute to this 

privilege have been identified. In this regard, the corneal epithelium plays a pivotal 

role in maintaining corneal avascularity, as it expresses soluble forms of the 

vascular endothelial growth factor (VEGF) receptors (sVEGFR-1, sVEGFR-2, 

sVEGFR-3), which function as decoy receptors for the key (lymph)angiogenic 

growth factors VEGF-A, VEGF-C and VEGF-D (Albuquerque et al. 2009; Ambati et 

al. 2006; Singh et al. 2013). In addition, the corneal epithelium expresses (non-

vascular) membrane-bound VEGFR-3 (mVEGFR-3), which is also able to trap 

VEGF-C and VEGF-D (Cursiefen et al. 2006). Further potent anti(lymph)angiogenic 

molecules expressed in the cornea are angiostatin, endostatin, pigment epithelium-
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derived factor, thrombospondin-1, and thrombospondin-2, which all exhibit multiple 

inhibitory functions such as direct inhibition of vascular endothelial cell migration 

and proliferation as well as indirect interference with growth factor mobilization and 

binding (Armstrong and Bornstein 2003; Cursiefen et al. 2011; Cursiefen et al. 2004; 

Lin et al. 2001). Especially thrombospondin-1 is a crucial molecule for corneal 

alymphaticity, as it has been shown to inhibit the expression of VEGF-C by corneal 

inflammatory cells. Accordingly, thrombospondin-1 deficient mice show increased 

corneal VEGF-C expression and also higher inflammatory cell numbers, which 

result in spontaneous and isolated ingrowth of lymphatic vessels into the cornea 

(Cursiefen et al. 2011). Another antiangiogenic mechanism of the cornea is the 

expression of the inhibitory PAS domain protein (IPAS), which negatively regulates 

hypoxia-induced upregulation of VEGF and thereby maintains corneal avascularity 

even under hypoxic conditions (Makino et al. 2001).  

Despite of its avascular and alymphatic nature, the cornea also relies on 

blood components to remain healthy. Delivery of nutrients and subsequent 

clearance of metabolites are carried out by the tear film from the corneal surface, 

the aqueous humour from the anterior chamber and at the limbus from the lateral 

margin. The limbus is a transition zone where the cornea fades into the opaque and 

vascularized sclera and overlying conjunctiva. In contrast to the cornea, the limbus 

is physiologically vascularized: limbal blood vessel arterioles originate from the 

anterior ciliary arteries, sprout towards the corneal border and form small 

pericorneal arcades. The lymphatic vasculature of the limbus also consists of a ring 

shaped network which is connected to the conjunctival lymphatic vessels. Limbal 

lymphatic vessels do not form arcades but rather consist of a main circumferential 
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lymphatic vessel with blind ending extensions directed towards the cornea (Figure 

2).  

 

Figure 2: Vascular anatomy of the cornea. Whole mounts of healthy murine corneas stained with 
CD31 (blood vessels; left panel) or LYVE-1 (lymphatic vessels, right panel; arrowheads indicate 
centrally oriented vascular extensions from the main limbal lymphatic vessel). Blood and lymphatic 
vessels terminate at the limbal border (modified from (Hos et al. 2013)).  
 

1.3. Pathological corneal (lymph)angiogenesis 

Corneal avascularity and alymphaticity are not invulnerable. Whereas minor 

inflammatory vascular stimuli are buffered by the corneal (lymph)angiogenic 

privilege and do not induce an angiogenic response, severe tissue damage and 

inflammation can result in a strong upregulation of pro(lymph)angiogenic growth 

factors, which might “overwhelm” the cornea’s anti(lymph)angiogenic mechanisms 

and lead to an ingrowth of blood and clinically invisible lymphatic vessels from the 

limbus into the cornea (corneal [lymph]angiogenesis) (Cursiefen 2007). Diseases 

that can result in corneal (lymph)angiogenesis include infectious (e.g. bacterial, 

viral, or fungal keratitis), inflammatory (e.g. ocular pemphigoid, Lyell-Syndrome, 

Stevens-Johnson Syndrome, Graft-versus-Host Disease, corneal graft rejection), 
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hypoxic (e.g. extended wear of contact lenses), and traumatic/toxic diseases (e.g. 

chemical or physical burns). Diseases that lead to a loss of limbal barrier function 

(e.g. limbal stem cell deficiency) are also frequently accompanied by corneal 

(lymph)angiogenesis. Blood and lymphatic vessels mostly grow in parallel into the 

cornea and it seems that the degree of corneal hemangiogenesis generally 

correlates with the degree of corneal lymphangiogenesis (Cursiefen et al. 2006; 

Cursiefen et al. 2002). 

Corneal (lymph)angiogenesis after tissue damage possibly has several 

important functions including supply of components of cellular and humoral 

immunity to combat infections, supply of additive oxygen and growth factors to 

promote the healing response, and drainage and removal of debris and cells from 

the injured site. However, this process might also cause loss of transparency in 

case of blood vessel growth into the optical zone, which can lead to light scattering 

or obscuration. Furthermore, also secondary effects such as fluid and lipid 

deposition through immature capillaries and exuberant influx of inflammatory cells 

might contribute to corneal edema, loss of corneal compactness and opacification 

(Cursiefen 2007). Therefore, after the repair response is completed and barrier 

function has been achieved, corneal blood vessels must resolve rapidly to restore 

corneal transparency and thereby functionality. However, under certain pathologic 

conditions and chronic inflammatory diseases, corneal blood vessels regress only 

very slowly or may even persist and permanently impair vision (Figure 3). Whereas it 

is well accepted that persisting pathological corneal blood vessels contribute to loss 

of corneal transparency, the contribution of clinically invisible lymphatic vessels to 

corneal diseases was less apparent. Recently, however, several experimental 
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studies provided evidence for the contribution of corneal lymphatic vessels to ocular 

pathologies, such as transplant rejection and dry eye disease (Dietrich et al. 2010; 

Goyal et al. 2010). To date, corneal lymphangiogenesis is therefore considered as 

pathological and undesirable. However, it is well known that in extraocular tissues, 

lymphatic vessels exert important physiological functions during the inflammatory 

response. Lymphatic vessels regulate tissue pressure and allow the drainage of 

debris and egress of inflammatory cells from the injured site (Oliver and Detmar 

2002). In particular, it has been shown that lymphatic vessels seem to be important 

for the termination of inflammatory responses and recent studies show that the 

inhibition of lymphangiogenesis might lead to chronic inflammation and edema, 

whereas the specific activation of lymphatic vessels can ameliorate these conditions 

(Huggenberger et al. 2011; Huggenberger et al. 2010). However, studies 

demonstrating similar beneficial functions for lymphatic vessels at the cornea are 

still missing.  

 

 

 

Figure 3: Corneal neovascularization. 
Clinical picture of a patient with pathological 
corneal blood vessels secondary to recurrent 
herpetic ulcerative keratitis. Blood vessels 
originate from the limbus and grow centrally 
towards the cornea. Note secondary central 
corneal scar (from (Hos et al. 2016)). 
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1.4. Corneal (lymph)angiogenesis as a risk factor f or corneal graft rejection 

Corneal transplantation is the oldest, most common and the most successful 

form of (tissue) transplantation (Streilein et al. 1999). The reason for this 

extraordinary success is that the cornea is considered to be an immune-privileged 

anatomical structure, as it: 1) contains only very low numbers of MHC class II 

positive antigen presenting cells (APCs) in the corneal centre; 2) shows generally 

reduced expression of MHC class I; and 3) expresses Fas ligand (CD95L) and 

programmed death ligand 1 (PD-L1), which inhibit T cell responses. Another 

important mechanism responsible for the corneal immune privilege is the 

phenomenon of anterior chamber-associated immune deviation (ACAID), which 

causes antigen-specific systemic immune tolerance characterized by 

downregulation of delayed-type hypersensitivity and cytotoxic T cells responses 

(Niederkorn 2010; Niederkorn 1999; Streilein et al. 1999). Interestingly, it has been 

shown that the corneal immune privilege depends, at least partially, on its intact 

(lymph)angiogenic privilege (Cursiefen 2007).  

When corneal transplantations are performed because of non-inflammatory 

and non-vascular diseases with intact (lymph)angiogenic and immune privilege, e.g. 

because of corneal (endothelial) dystrophies, more than 75% of corneal grafts 

survive for longer than 5 years, even without previous HLA-matching and without 

any systemic immunosuppressive therapy (Williams and Coster 2007). However, 

when severe inflammatory processes have overcome the cornea´s 

(lymph)angiogenic and immune privilege and donor corneas are grafted into 

prevascularized recipients, transplant survival rates significantly decrease, even 

under aggressive systemic immunosuppression. Therefore, vascularization of the 
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cornea prior to transplantation is considered as one of the most important risk 

factors for immunological graft rejection (Dana and Streilein 1996; Sano et al. 1995). 

Preclinical evidence suggests that the reason for decreased graft survival rates in 

prevascularized corneas is due to an enhanced facilitation of allogenic immune 

responses: via preexisting corneal lymphatic vessels, donor and antigen-loaded 

recipient APCs have direct and immediate access to the regional lymph nodes, 

where increased and accelerated allosensitization occurs (Cursiefen et al. 2003; 

Hos and Cursiefen 2014). Subsequently, via preexisting corneal blood vessels, 

immune effector cells, such as alloreactive T cells, can easily reach and 

subsequently reject the graft (Figure 4).  

 
 
Figure 4: The role of blood and lymphatic vessels i n corneal transplant rejection. Schematic 
drawing illustrating the role of blood and lymphatic vessels in corneal transplantations performed in 
pathologically prevascularized recipients. (1) Magnification of the host-graft interface: blood (red) and 
lymphatic vessels (green) reach the host-graft interface. Antigen-presenting cells (APCs) and antigen 
(Ag) can leave the cornea via corneal lymphatic vessels (2) and reach the regional lymph nodes (3); 
after stimulation of alloreactive T cells, these and other effector cells can reach the graft via corneal 
blood vessels (4) (from (Cursiefen et al. 2003)  
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As persistent pathological blood and lymphatic vessels play such an 

important role in the development of corneal graft rejection, several groups have 

analyzed the impact of a pharmacological inhibition of corneal (lymph)angiogenesis 

in the context of corneal transplantation. Importantly, blockade of corneal hem- and 

lymphangiogenesis significantly promoted corneal graft survival in the experimental 

setting (Cursiefen et al. 2004; Hos et al. 2008). Moreover, using specific 

pharmacological drugs or adenoviral vectors that modulate lymphangiogenesis 

without affecting hemangiogenesis, it was demonstrated that lymphatic vessels - 

which ease the connection between the graft and the secondary lymphatic organs - 

play a superior role in the mediation of graft rejection when compared to blood 

vessels (Albuquerque et al. 2009; Dietrich et al. 2010) (Figure 5). Thus, 

antilymphangiogenic therapy at the cornea has recently emerged as a novel 

therapeutic concept to reduce corneal graft rejection, and recent efforts aim to 

identify effective anti(lymph)angiogenic compounds which might potentially be used 

in the clinic in the near future (Bock et al. 2013).  

 

Figure 5: Lymphatic vessels define 
the high risk status of transplants 
in prevascularized corneal hosts. 
(a) Kaplan-Meier survival curve 
showing that absence of lymphatic 
vessels in the recipient cornea prior 
to transplantation improves graft 
survival in the experimental setting;(b 
to d) corneal whole mounts stained 
with CD31 (blood vessel; green) and 
LYVE-1 (lymphatic vessels, red) in 
different recipient beds (from (Hos et 
al. 2014)).  
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1.5. The role of corneal lymphangiogenesis in dry e ye disease 

Dry eye disease is one of the most frequent diseases in ophthalmology. It is 

generally accepted that it is not only a condition with reduced tear quantity, but 

rather a complex, multifactorial disorder of the ocular surface where chronic 

inflammation plays an important role and where influx and activation of inflammatory 

cells results in disturbed tear production, abnormal tear composition and 

subsequent damage of the ocular surface (Barabino et al. 2012; De Paiva et al. 

2009). Recent evidence suggests that also the adaptive immune system is involved 

in maintaining ocular surface inflammation in dry eye disease (Stern et al. 2013; 

Stevenson et al. 2012). Interestingly, it has been shown in several mouse models 

that in this disease, an isolated ingrowth of lymphatic but not blood vessels into the 

cornea can be observed (Cursiefen et al. 2011; Goyal et al. 2010). These corneal 

lymphatic vessels seem to serve as conduits that enable easier autoantigen-

transport and accelerated trafficking of activated APCs from to the ocular surface to 

the lymph nodes (Goyal et al. 2010; Stevenson et al. 2012). Furthermore, it has 

been shown that inhibition of corneal lymphangiogenesis significantly improves the 

clinical course of dry eye, at least in the experimental setting (Goyal et al. 2012). 

Therefore, antilymphangiogenic therapy might offer a promising approach not only 

to prevent graft rejection after corneal transplantation, but also to treat dry eye 

disease.  

 

1.6. The contribution of macrophages to corneal (ly mph)angiogenesis 

Macrophages are derived from blood monocytes, which originate in the bone 

marrow and are released into blood circulation. Thereafter, pro-inflammatory stimuli 
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can cause the recruitment of monocytes to injured peripheral sites, where 

differentiation into (inflammatory) macrophages occurs. Recent evidence suggests 

that there is also another distinct population of macrophages, which seem to 

develop independently from the bone marrow but rather from progenitor cells 

generated in the yolk sac (Schulz et al. 2012). These macrophages represent the 

resident tissue macrophage population and are important for maintaining tussue 

homeostasis during “steady-state”. However, to which extent this also accounts for 

corneal tissue macrophages is so far undetermined.  

Substantial preclinical evidence indicates that macrophages are essential 

mediators of corneal (lymph)angiogenesis after injury (Chung et al. 2009; Cursiefen 

et al. 2004). It is known that macrophages are able to secrete VEGF-A, VEGF-C 

und VEGF-D and thereby induce vascular endothelial cell proliferation and migration 

(Cursiefen et al. 2004). In addition, macrophages also express the respective 

receptors (VEGFR-1 and VEGFR-3), which mediate chemotactic effects and 

thereby amplify the inflammatory (lymph)angiogenic response (Cursiefen et al. 

2004). Furthermore, under certain, so far still poorly understood conditions, 

macrophages are able to express lymphendothelial markers and integrate into 

newly formed corneal lymphatic vessels or even generate primitive lymphatic 

vessel-like structures de novo (Maruyama et al. 2005). Moreover, macrophages are 

frequently localized in close proximity to already formed blood and lymphatic 

vessels, suggesting a continuing interaction with these (Maruyama et al. 2005). The 

crucial role of macrophages in mediating corneal (lymph)angiogenesis is further 

supported by the fact that macrophage depletion, e.g., by clodronate liposomes, 
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almost completely prevents inflammatory corneal (lymph)angiogenesis (Cursiefen et 

al. 2004).  

Macrophages are a heterogeneous, highly plastic cell population and various 

functional phenotypes have been described (Gordon and Taylor 2005; Sica and 

Mantovani 2012). One current conceptual model classifies macrophages into at 

least two subpopulations (paradigm of M1/M2 polarization). In this model, 

“classically activated” (also called M1-polarized) macrophages are considered to 

exert pro-inflammatory activities, promote type I immune responses and are 

involved in the eradication of invading microorganisms. In contrast, “alternatively 

activated” (also called M2-polarized) macrophages, which are hyporesponsive to 

pro-inflammatory stimuli, are mainly involved in debris scavenging, tissue 

remodeling and the resolution of inflammatory responses (Gordon and Martinez 

2010). Classical macrophage activation is mediated by pro-inflammatory stimuli, 

such as IFN-γ or TNF-α, followed by a microbial trigger (e.g. lipopolysaccharide). 

Mediators of alternative macrophage activation are IL-4 and IL-13, or IL-10 (Gordon 

and Taylor 2005). By now, however, it is becoming clear that the paradigm of 

M1/M2 polarization is an oversimplification and reflects two extremes of 

macrophage polarization, and that in tissues a broad spectrum of activation states 

exists in parallel (Martinez and Gordon 2014). Although macrophage biology is an 

extensively studied research field, there are still numerous unaddressed questions. 

In the context of corneal inflammation for instance, it is so far unknown whether 

specific macrophage subpopulations occur and which macrophage subpopulations 

mediate corneal (lymph)angiogenesis. It is also unclear whether macrophages exert 
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a different (lymph)angiogenic potential during the various stages of corneal 

inflammation.  

Taken together, macrophages are known to be importantly involved in 

inflammatory corneal (lymph)angiogenesis. However, the specific mechanisms are 

not yet identified. Thus, more detailed analysis of corneal macrophage activation 

and polarization is required, before macrophages can be considered as a potential 

tool to control corneal physiology or disease. On the one hand, inhibition of pro-

(lymph)angiogenic macrophage subsets would be an interesting therapeutic option 

to modulate corneal (lymph)angiogenesis, e.g. in the context of cornea 

transplantation or dry eye disease. On the other hand, if corneal lymphangiogenesis 

and pro-lymphangiogenic macrophages would be involved in physiological wound 

healing responses in the cornea, specific activation of these would be of great 

interest to promote corneal repair.  

 

1.7. Aims of the thesis 

Persistent corneal lymphatic vessels contribute to the development of 

detrimental corneal pathologies, such as corneal graft rejection or dry eye disease.  

Antilymphangiogenic therapy at the cornea has emerged as a promising approach 

to treat these inflammatory diseases. Therefore, this study aimed to identify effective 

antilymphangiogenic compounds, which might potentially be used to treat patients 

at risk for corneal graft rejection or with dry eye disease. In addition, this work aimed 

to find novel potential targets for antilymphangiogenic therapy at the cornea.  

In the first part of this thesis, we analyzed the impact of glucocorticosteroids 

on inflammatory corneal lymphangiogenesis and investigated the potential 
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underlying mechanisms. This was of particular interest, as glucocorticosteroids are 

widely used as the standard anti-inflammatory treatment at the cornea and have 

also been shown to reduce the risk of corneal graft rejection and to ameliorate dry 

eye disease (Nguyen et al. 2007). However, little was known about the ability of 

these drugs to suppress corneal lymphangiogenesis.  

In the second part of this work, we analyzed whether inflammatory corneal 

lymphangiogenesis is regulated by insulin receptor substrate-1 (IRS-1).  IRS-1 is a 

cytosolic scaffolding protein that interacts with the VEGFR complex, and it was 

recently shown that IRS-1 plays a role in blood vessel development (Andrieu-Soler 

et al. 2005; Miele et al. 2000). However, it was unclear whether IRS-1 is also 

involved in lymphatic vessel development and whether IRS-1 is a potential target to 

treat corneal lymphangiogenesis. 

In contrast to the role of corneal lymphatic vessels under pathological 

conditions, a physiological function for corneal lymphatic vessels has not been 

described so far. Studies in extraocular tissues have demonstrated that 

lymphangiogenesis might also be important to terminate inflammatory responses 

(Huggenberger et al. 2011). However, studies showing similar beneficial functions 

for corneal lymphatic vessels are missing and the mediators of this putative anti-

inflammatory lymphangiogenesis are unknown.  

Therefore, in the third part of this thesis, we analyzed the role of Interleukin-

10 (IL-10), a primarily anti-inflammatory cytokine, in the regulation of inflammatory 

corneal lymphangiogenesis. We determined the impact of IL-10 on macrophages, 

inflammatory corneal lymphangiogenesis and the resolution of corneal inflammation.  
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2. Results 

2.1. Suppression of inflammatory corneal lymphangio genesis by 

application of topical corticosteroids. 

Deniz Hos, Daniel R. Saban, Felix Bock, Birgit Regenfuss, Jasmine Onderka, 

Sharmila Masli, Claus Cursiefen 

 

Objectives: To analyze whether topical application of corticosteroids inhibits 

inflammatory corneal lymphangiogenesis and to study the potential underlying 

antilymphangiogenic mechanisms. 

Methods:  Inflammatory corneal neovascularization was induced by suture 

placement, and the corneas were then treated with topical fluorometholone, 

prednisolone acetate, or dexamethasone sodium phosphate. After 1 week, the 

corneas were stained with lymphatic vessel endothelial hyaluronan receptor 1 for 

detection of pathological corneal lymphangiogenesis. The effect of these 

corticosteroids on macrophage recruitment was assessed via fluorescence-

activated cell sorting analysis. The effect of these corticosteroids on 

proinflammatory cytokine expression by peritoneal exudate cells was tested via real-

time polymerase chain reaction. Furthermore, the effect of steroid treatment on the 

proliferation of lymphatic endothelial cells was assessed via enzyme-linked 

immunosorbent assay. 

Results: Treatment with corticosteroids resulted in a significant reduction of 

inflammatory corneal lymphangiogenesis. The antilymphangiogenic effect of 

fluorometholone was significantly weaker than that of prednisolone and 

dexamethasone. Corneal macrophage recruitment was also significantly inhibited by 
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the application of topical steroids. Treatment of peritoneal exudate cells with 

corticosteroids led to a significant downregulation of the RNA expression levels of 

tumor necrosis factor and interleukin 1β. Additionally, proliferation of lymphatic 

endothelial cells was also inhibited. 

Conclusions: Corticosteroids are strong inhibitors of inflammatory corneal 

lymphangiogenesis, with significant differences between various corticosteroids in 

terms of their antilymphangiogenic potency. The main mechanism of the 

antilymphangiogenic effect seems to be through the suppression of macrophage 

infiltration, proinflammatory cytokine expression, and direct inhibition of proliferation 

of lymphatic endothelial cells. 

Clinical relevance: Steroids block corneal lymphangiogenesis, the main risk factor 

for immune rejections after corneal transplantation. The different 

antilymphangiogenic potency of these drugs should be taken into account when 

using steroids in clinical practice (e.g., after keratoplasty). 

 

Own contribution to publication 1: 

I performed all in vivo inflammatory corneal neovascularization assays, 

treated all animals with the respective drugs and subsequently performed all whole 

mount immunohistochemical stainings and vessel analyses (Figure 1). I also 

performed the in vivo experiments and treatments for the FACS analysis and 

assisted in FACS data acquisition and interpretation (Figure 2). I further isolated the 

peritoneal macrophages, carried out all in vitro treatments and performed and 

analyzed the quantitative real-time PCRs (Figure 3). In addition, I performed and 

analyzed the lymphatic endothelial proliferation assays (Figure 4). All images 
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illustrating my experimental data were generated by me. I wrote the manuscript and 

handled the revision phase of this project.  

 

Contribution of co-authors to publication 1: 

Dr. Daniel R. Saban established, performed and analyzed the FACS 

experiments (Figure 2). Dr. Felix Bock and Dr. Birgit Regenfuss provided help in 

analyzing the in vivo angiogenesis data (Figure 1), provided valuable general 

suggestions and critically read the manuscript. Jasmine Onderka assisted and 

provided support in lymphatic endothelial culture and in vitro proliferation assays 

(Figure 4). Dr. Sharmila Masli provided help in isolation and culture of peritoneal 

macrophages (Figure 3). Prof. Claus Cursiefen conceptualized and coordinated the 

project and wrote the manuscript. 
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2.2. Blockade of insulin receptor substrate-1 inhib its corneal 

lymphangiogenesis. 

Deniz Hos, Birgit Regenfuss, Felix Bock, Jasmine Onderka, Claus Cursiefen 

 

Purpose: To analyze whether insulin receptor substrate (IRS-1) is involved in 

lymphatic vessel development and whether IRS-1 blockade can inhibit 

lymphangiogenesis in vivo. 

Methods:  The impact of IRS-1 blockade by GS-101 (Aganirsen), an antisense 

oligonucleotide against IRS-1, on lymphatic endothelial cell (LEC) proliferation was 

assessed by ELISA. Furthermore, the effect of IRS-1 blockade on 

prolymphangiogenic growth factor expression by LECs and macrophages 

(peritoneal exudate cells) was tested by real-time PCR. The mouse model of 

inflammatory corneal neovascularization was used to analyze the effect of IRS-1 

blockade in vivo: after corneal suture placement, mice were treated with GS-101 

eye drops (twice daily afterwards for 1 week, 5 µL per drop; 50, 100, or 200 µM). 

Afterward, corneal wholemounts were prepared and stained for blood and lymphatic 

vessels. 

Results: Blockade of IRS-1 by GS-101 inhibited LEC proliferation dose dependently. 

GS-101 led to decreased VEGF-A expression levels in LECs, whereas VEGF-C, 

VEGF-D, and VEGFR3 showed no significant change. In macrophages, VEGF-A 

expression levels were also inhibited by IRS-1 blockade. Additionally, GS-101 

strongly inhibited macrophage-derived VEGF-C, VEGF-D, and VEGFR3 expression. 

In vivo, corneal hemangiogenesis was significantly inhibited when used at a 

concentration of 200 µM (by 17%; P < 0.01). Corneal lymphangiogenesis was 

significantly inhibited when used at a dose of 100 µM (by 21%; P < 0.01), and the 
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highest used dose (200 µM) showed an even stronger inhibition (by 28%; P < 

0.001). 

Conclusions: Blockade of IRS-1 inhibits not only hemangiogenesis but also 

lymphangiogenesis. To the authors' knowledge, this is the first evidence that IRS-1 

is involved in the molecular pathway leading to lymphangiogenesis. 

 

Own contribution to publication 2: 

I performed and analyzed all lymphatic endothelial proliferation assays 

(Figure 1). Furthermore, I performed and analyzed all real-time PCRs with lymphatic 

endothelial cells (Figure 2). I also isolated the peritoneal macrophages, carried out 

all in vitro treatments and performed and analyzed the real-time PCRs (Figure 3).  

The in vivo inflammatory corneal neovascularization assays, all treatments and 

whole mount immunohistochemical stainings with subsequent vessel analyses were 

carried out by me (Figure 4). In addition, I performed the corneal macrophage 

stainings (Figure 5). All images illustrating my experimental data were generated by 

me. I wrote the manuscript and handled the revision phase of this project.  

 

Contribution of co-authors to publication 2: 

Dr. Birgit Regenfuss provided help in establishing the real-time PCR 

protocols (Figure 2 and 3). In addition, Dr. Birgit Regenfuss and Dr. Felix Bock 

supported me in analyzing the in vivo angiogenesis data (Figure 4), provided 

general suggestions and corrected the manuscript. Jasmine Onderka assisted in 

lymphatic endothelial culture, in vitro proliferation assays (Figure 1) and histological 

stainings (Figure 5). Prof. Claus Cursiefen conceptualized and coordinated the 

project. 
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2.3. IL-10 Indirectly Regulates Corneal Lymphangiog enesis and 

Resolution of Inflammation via Macrophages. 

Deniz Hos, Franziska Bucher, Birgit Regenfuss, Marie-Luise Dreisow, Felix Bock, 

Ludwig M. Heindl, Sabine A. Eming, Claus Cursiefen 

 

The role of IL-10, a primarily anti-inflammatory cytokine, in the regulation of 

inflammatory lymphangiogenesis is undetermined. Herein, we show that IL-10 

modulates corneal lymphangiogenesis and resolution of inflammation. IL-10 was not 

expressed in healthy corneas but was up-regulated in inflamed corneas by 

infiltrating macrophages. Macrophages up-regulated the expression of 

prolymphangiogenic vascular endothelial growth factor-C upon stimulation with IL-

10. Consistently, corneal inflammation resulted in reduced expression of vascular 

endothelial growth factor-C and decreased corneal lymphangiogenesis in IL-10-

deficient mice (IL-10(-/-)). The effect of IL-10 on lymphangiogenesis was indirect via 

macrophages, because IL-10 did not directly affect lymphatic endothelial cells. The 

expression of proinflammatory cytokines and the numbers of infiltrating 

macrophages increased and remained elevated in inflamed corneas of IL-10(-/-) 

mice, indicating that IL-10 deficiency led to more severe and prolonged 

inflammation. The corneal phenotype of IL-10 deficient mice was mimicked in mice 

with conditional deletion of Stat3 in myeloid cells (lysozyme M Cre mice Stat3(fl/fl) 

mice), corroborating the critical role of macrophages in the regulation of 

lymphangiogenesis. Furthermore, local treatment with IL-10 promoted 

lymphangiogenesis and faster egress of macrophages from inflamed corneas. 

Taken together, we demonstrate that IL-10 indirectly regulates inflammatory corneal 
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lymphangiogenesis via macrophages. Reduced lymphangiogenesis in IL-10(-/-) and 

lysozyme M Cre Stat3(fl/fl) mice is associated with more severe inflammatory 

responses, whereas IL-10 treatment results in faster resolution of inflammation. IL-

10 might be used therapeutically to terminate pathological inflammation. 

 

Own contribution to publication 3: 

I conceptualized, performed and analyzed all experiments. In particular, I 

performed all real-time PCR experiments (Figure 1A, Figure 2, Figure 4A and 4B, 

Figure 5A and 5B, Figure 6A and 6B, Figure S1B and S1C). I performed the 

immunhistochemical stainings on cryosectioned mouse corneas (Figure 1B; Figure 

3). I performed the lymphatic endothelial proliferation assay (Figure S1A). Protein 

isolation of inflamed murine corneas and the subsequent VEGF-C protein ELISA 

was carried out by me (Figure 4C). In addition, I performed the subconjunctival 

injections of recombinant IL-10 (Figure 7). Furthermore, the in vivo angiogenesis 

assays and whole mount immunohistochemical stainings with subsequent cell and 

vessel analyses were carried out by me (Figure 4D to 4I, Figure 5C to 5I, Figure 6C 

to 6H, Figure 7). All images illustrating my experimental data were generated by me. 

I wrote the manuscript and handled the revision phase of this project.  

 

Contribution of co-authors to publication 3: 

Dr. Franziska Bucher helped in performing parts of the in vivo assays (Figure 

4D to 4H, Figure 5C to 5H) and critically read the manuscript. Dr. Birgit Regenfuss 

provided help in establishing parts of the real-time PCR protocols (Figure 3). In 

addition, Dr. Birgit Regenfuss analyzed parts of the in vivo angiogenesis data 

(Figure 4D to 4I), provided valuable general suggestions and critically read the 
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manuscript. Marie-Luise Dreisow helped in mice genotyping and cryosectioned the 

corneas for immunhistochemical stainings (Figure 1B, Figure 3). Dr. Felix Bock 

analyzed parts of the in vivo angiogenesis data (Figure 4D to 4I), provided valuable 

general suggestions and critically read the manuscript. Prof. Ludwig M. Heindl 

provided suggestions and critically read the manuscript. Prof. Sabine A. Eming 

provided the Lysozyme M Cre and floxed Stat3 mice (Figure 6), provided valuable 

general suggestions and critically read the manuscript. Prof. Claus Cursiefen 

conceptualized and coordinated the project and wrote the manuscript. 
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3. Discussion 

3.1. Main findings of the three presented studies i n summary 

1. Glucocorticosteroids are not only inhibitors of inflammatory corneal hem-, 

but also lymphangiogenesis. Glucocorticosteroids strongly suppress macrophage 

infiltration into the inflamed cornea and inhibit the expression of proinflammatory 

cytokines in macrophages. In addition, glucocorticosteroids also directly reduce 

lymphatic endothelial cell proliferation.  

 

2. Corneal macrophages express insulin receptor substrate -1 (IRS-1), and 

inhibition of IRS-1 reduces macrophage-derived expression of 

pro(lymph)angiogenic VEGF-A, VEGF-C and VEGF-D. Topical application of GS-

101 (Aganirsen), an antisense oligonucleotide directed against IRS-1, strongly 

inhibits inflammatory corneal hem- and lymphangiogenesis.  

 

3. IL-10 is expressed in inflamed corneas by infiltrating macrophages. 

Stimulation of macrophages with IL-10 upregulates the expression of pro-

lymphangiogenic VEGF-C. IL-10 deficiency results in less corneal 

lymphangiogenesis and prolonged corneal inflammation. Local treatment with IL-10 

promotes corneal lymphangiogenesis and faster egress of macrophages from 

inflamed corneas, leading to the resolution of inflammation.  
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3.2. Novel anti-(lymph)angiogenic treatment strateg ies for corneal 

neovascular diseases 

A variety of clinical indications exist for anti(lymph)angiogenic treatment at 

the cornea, e.g., to reduce sight-threatening neovascularization after inflammation, 

to improve graft survival after corneal transplantation or to treat dry eye disease 

(Bock et al. 2013).To date, glucocorticosteroid therapy is the standard anti-

inflammatory treatment for these diseases and glucocorticosteroids have been 

shown to reduce the risk of corneal graft rejection and to ameliorate dry eye disease 

(Marsh and Pflugfelder 1999; Nguyen et al. 2007). This may largely be attributable 

to the fact that glucocorticosteroids are very potent anti-inflammatory substances. 

However, whether these drugs are also able to suppress corneal 

lymphangiogenesis, which crucially contributes to corneal graft rejection and dry eye 

disease, was unknown. We demonstrated that glucocorticosteroids are strong 

inhibitors of inflammatory corneal hem- and lymphangiogenesis in vivo. The fact that 

glucocorticosteroids are also able to inhibit inflammatory corneal lymphangiogenesis 

may lead one to conclude that both the anti-inflammatory effects and the anti-

lymphangiogenic properties contribute to the beneficial effects of these substances 

in the treatment of corneal graft rejection or dry eye disease.  

Corneal flow cytometry analyses revealed that glucocorticosteroids strongly 

suppress macrophage infiltration into the inflamed cornea. Furthermore, 

glucocorticosteroids also inhibit the expression of pro-inflammatory cytokines, such 

as TNF-α and IL-1β in macrophages. We tested several glucocorticosteroids, 

namely fluorometholone, prednisolone and dexamethasone, and observed that the 

anti-inflammatory effects correlated with the anti-lymphangiogenic effects. This 



30 

 

supports the fact that macrophages are very important mediators of inflammatory 

corneal lymphangiogenesis. However, our work does not fully allow the conclusion 

that the impact of glucocorticosteroids on corneal lymphangiogenesis is solely 

mediated via the modulation of macrophages, as we demonstrated that 

glucocorticosteroids also directly reduce lymphatic endothelial cell proliferation. 

Nevertheless, the strong correlation of the anti-inflammatory and anti-

lymphangiogenic effects of glucocorticosteroids suggests a very close interrelation 

between corneal inflammation, macrophages and (lymph)angiogenesis.  

The use of glucocorticosteroids in the management of neovascular corneal 

diseases remains controversial because of the adverse effects associated with this 

type of therapy. Although glucocorticosteroids are very potent and useful 

compounds, the (prolonged) use of these drugs might lead to delayed epithelial 

wound healing, elevated intraocular pressure, cataract, or increased risk of 

infections (Becker 1964). Furthermore, although glucocorticosteroids suppress the 

formation of new vessels in progressive corneal neovascular diseases, clinical 

experience shows that these drugs are less effective in regressing already present, 

mature vessels. Furthermore, especially in highly inflamed settings, 

glucocorticosteroids are not sufficient to fully block corneal neovascularization, even 

when used at high dosage (Cursiefen et al. 2001). Thus, there is still need for 

alternative, more specific anti(lymph)angiogenic therapeutic approaches at the 

cornea.  

Recently, several specific angiogenesis inhibitors have been approved by the 

US Food and Drug Administration for the treatment of pathologic neovascularization 

at the posterior part of the eye. Ranibizumab (Lucentis), an antibody fragment 
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directed against VEGF-A, and Aflibercept (Eylea), which targets VEGF-A and 

placenta growth factor (PlGF), are both approved for the treatment of age related 

macular degeneration, diabetic macular edema, and macular edema following 

retinal vein occlusion. Bevacizumab (Avastin), a humanized antibody directed 

against VEGF-A, is approved for the treatment of several cancer entities and is also 

widely used off-label to treat vaso-proliferative retinopathies. In contrast to the 

posterior part of the eye, however, there is no specific angiogenesis inhibitor, which 

is used to treat neovascularization at the anterior segment of the eye. Therefore, 

recent efforts try to identify novel targets for anti(lymph)angiogenic therapy at the 

cornea and test potential (lymph)angiogenesis inhibitors in preclinical models. One 

promising candidate is insulin receptor substrate-1 (IRS-1), a cytosolic adapter 

protein that has been shown to interact with the VEGF-receptor complex (Miele et 

al. 2000). Although no study had analyzed the contribution of IRS-1 to lymphatic 

vessel growth, it was previously shown that hypoxia regulates IRS-1 expression in 

endothelial cells and that hypoxic retinal blood vessel growth is reduced in IRS-1 

deficient mice (Jiang et al. 2003). Furthermore, it was demonstrated that IRS-1 is 

also expressed in the cornea, pointing to a potential role of IRS-1 signaling also in 

corneal neovascularization (Andrieu-Soler et al. 2005). Here, we demonstrate that 

IRS-1 is expressed by corneal macrophages, and that treatment with GS-101 

(Aganirsen, Gene-Signal), an antisense oligonucleotide that blocks the expression 

of IRS-1, leads to reduced VEGF-A, VEGF-C and VEGF-D levels in these cells. 

Consistently, topical application of Aganirsen eye drops significantly reduced 

inflammatory corneal hem- and lymphangiogenesis in treated mice. The anti-

(lymph)angiogenic polarization of macrophages by Aganirsen and the fact that it 
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was previously shown that this compound also decreases the number of 

macrophage recruitment to inflamed sites (Andrieu-Soler et al. 2005) further 

supports the fact that macrophages are essentially involved in the process leading 

to corneal lymphangiogenesis. However, it is known that IRS-1 is not only 

expressed by macrophages, and additional effects of Aganirsen on non-

inflammatory cells might also contribute to the anti(lymph)angiogenic effect of this 

inhibitor. Indeed, we also observed a direct modulation of lymphatic endothelial cell 

proliferation by inhibition of IRS-1 signaling. Importantly, our study provides the first 

evidence that IRS-1 signaling modulates macrophage-derived (lymph)angiogenic 

growth factor expression and contributes to lymphatic vessel growth.  The blockade 

of IRS-1 by Aganirsen is therefore a promising approach to treat corneal 

neovascular diseases, and Aganirsen has now been introduced in the clinical 

setting and is currently tested as eye drops in phase II and phase III trials. Initial 

results show that Aganirsen eye drops are able to inhibit progressive corneal 

neovascularization (Cursiefen et al. 2009). Furthermore, Aganirsen eye drops 

reduce the need for corneal transplantations in patients with herpetic keratitis-

associated corneal neovascularization (Cursiefen et al. 2014). Aganirsen might be 

the first anti(lymph)angiogenic drug that will be approved for the topical treatment of 

corneal neovascularization.  

 

3.3. An anti-inflammatory role of lymphatic vessels  at the cornea?  

It is generally accepted that corneal lymphatic vessels play a critical role in 

the induction and maintenance of various inflammatory diseases at the ocular 

surface, such as corneal graft rejection, dry eye disease, and, as we could recently 
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demonstrate, also in ocular allergy (Dietrich et al. 2010; Goyal et al. 2010; Lee et al. 

2015). Therefore, corneal lymphangiogenesis is mostly considered as pathological, 

and the majority of corneal immunology and lymphvascular research is directed 

towards blocking lymphatic vessels (Bock et al. 2013; Hos et al. 2014). In contrast 

to this unfavorable role of corneal lymphatic vessels, a physiological, potentially 

beneficial function for corneal lymphatic vessels was not been described so far. 

Several studies in extraocular tissues had demonstrated that lymphatic vessels also 

exert important physiological functions during inflammatory reactions, because 

lymphatic vessels regulate tissue pressure and allow the drainage of debris and 

egress of inflammatory cells from the inflamed site (Oliver and Detmar 2002). In this 

context, lymphatic vessels have also been shown to contribute to the termination of 

ongoing inflammatory responses, and studies in the skin for instance indicate that 

the blockade of lymphangiogenesis might result in increased inflammatory edema 

formation and inflammatory cell accumulation, whereas the specific activation of 

lymphatic vessels might limit acute inflammation under certain circumstances 

(Huggenberger et al. 2011; Huggenberger et al. 2010). Here, we show for the first 

time that similar functions exist also for corneal lymphatic vessels, and that IL-10 is 

an important mediator of this putative anti-inflammatory lymphangiogenesis. Our 

results indicate that mainly anti-inflammatory polarized, IL-10 expressing 

macrophages display pro-lymphangiogenic properties. In addition, we have further 

demonstrated that inflammatory corneal lymphangiogenesis was reduced in IL-10 

deficient mice and mice with conditional deletion of Stat3 in myeloid cells, which 

further supports our hypothesis that IL-10 regulates corneal lymphangiogenesis via 

macrophages. The pro-lymphangiogenic polarization of anti-inflammatory 
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macrophages, which seem to occur at later stages of the inflammatory response, 

could be an additional clearance mechanism to support the resolution of corneal 

inflammation: pro-lymphangiogenic macrophages might enhance the growth and 

draining capacity of lymphatic vessels, which in turn, support the egress of 

inflammatory cells and the termination of the local inflammatory response. 

Consistently, local treatment of inflamed corneas with IL-10 promoted the faster 

resolution of corneal inflammation. Taken together, our work provides evidence that 

IL-10 regulates corneal lymphangiogenesis, and that its effect is indirectly mediated 

through VEGF-C expressing corneal macrophages. Furthermore, our work supports 

the hypothesis of a novel beneficial and therapeutically applicable role of corneal 

lymphangiogenesis, which seems to be driven by anti-inflammatory macrophages.  

 

3.4. Concluding remarks  

During the past decade, anti(lymph)angiogenic treatment at the cornea has 

emerged as a reasonable and promising approach to treat a variety of inflammatory 

diseases of the ocular surface, e.g. corneal transplantation, dry eye disease, and 

ocular allergy (Bock et al. 2013). In these disease entities, lymphatic vessels seem 

to enable accelerated exit of APCs and antigen from the cornea, thereby facilitating 

the connection between the ocular surface and the regional lymph nodes, where 

accelerated allo- or autosensitization occurs (Hos and Cursiefen 2014; Stevenson et 

al. 2012). In this context, we and other groups investigated the impact of a 

“molecular lymphadenectomy”, namely a pharmacological blockade of lymphatic 

vessels, on disease outcome. Indeed, specific blockade of corneal 

lymphangiogenesis was sufficient to improve graft survival after corneal 
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transplantation or to ameliorate dry eye disease or ocular allergy, at least in the 

experimental setting (Dietrich et al. 2010; Goyal et al. 2012; Lee et al. 2015). 

Although glucocorticosteroid therapy is still widely used as the standard anti-

inflammatory and also anti-(lymph)angiogenic treatment at the cornea, studies 

testing more specific anti-(lymph)angiogenic therapeutics have recently been 

translated into the clinic. In this regard, Bevacizumab is already widely used (off-

label) in a variety of corneal neovascular diseases in patients and GS-101 

(Aganirsen) eye drops have already entered phase III clinical trials (Bock et al. 

2008; Cursiefen et al. 2014; Koenig et al. 2009).  

The majority of corneal (lymph)vascular research indicates that corneal 

lymphangiogenesis is mostly undesirable. Thus, efforts are generally directed 

towards blocking lymphatic vessels. However, almost all studies showing a negative 

impact of corneal lymphangiogenesis on disease outcome dealt with ocular surface 

pathologies where the adaptive immune system is critically involved in disease 

induction or progression (such as corneal graft rejection, dry eye disease and ocular 

allergy). In these diseases, it is plausible that immunological processes in the 

secondary lymphoid organs contribute to disease outcome, and that inhibition of 

APC trafficking to the regional lymph nodes by anti-lymphangiogenic therapy is 

beneficial. However, we have shown here that corneal lymphangiogenesis might 

also have beneficial functions under certain circumstances, for instance in the 

termination of (sterile) inflammation. As the resolution of physiological inflammatory 

responses in the cornea seems to be fostered by the – possibly transient – 

presence of corneal lymphatic vessels, activation of corneal lymphangiogenesis, 

e.g. by pro-lymphangiogenic macrophages would open up a completely new 



36 

 

approach to promote corneal healing. Nevertheless, the specific mechanisms and 

mediators how macrophages contribute to corneal (lymph)angiogenesis and the 

functional consequences of this process are still not fully understood and require 

more detailed analysis, before macrophages can be used as specific targets to 

promote corneal repair and disease control.  
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Suppression of Inflammatory Corneal
Lymphangiogenesis by Application
of Topical Corticosteroids
Deniz Hos, MD; Daniel R. Saban, PhD; Felix Bock, PhD; Birgit Regenfuss, PhD;
Jasmine Onderka, MTLA; Sharmila Masli, PhD; Claus Cursiefen, MD

Objectives: To analyze whether topical application of
corticosteroids inhibits inflammatory corneal lymphan-
giogenesis and to study the potential underlying anti-
lymphangiogenic mechanisms.

Methods: Inflammatory corneal neovascularization was
induced by suture placement, and the corneas were then
treated with topical fluorometholone, prednisolone ac-
etate, or dexamethasone sodium phosphate. After 1 week,
the corneas were stained with lymphatic vessel endothe-
lial hyaluronan receptor 1 for detection of pathological
corneal lymphangiogenesis. The effect of these cortico-
steroids on macrophage recruitment was assessed via fluo-
rescence-activated cell sorting analysis. The effect of these
corticosteroids on proinflammatory cytokine expres-
sion by peritoneal exudate cells was tested via real-time
polymerase chain reaction. Furthermore, the effect of ste-
roid treatment on the proliferation of lymphatic endo-
thelial cells was assessed via enzyme-linked immuno-
sorbent assay.

Results: Treatment with corticosteroids resulted in a sig-
nificant reduction of inflammatory corneal lymphangio-
genesis. The antilymphangiogenic effect of fluorometho-
lone was significantly weaker than that of prednisolone

and dexamethasone. Corneal macrophage recruitment was
also significantly inhibited by the application of topical
steroids. Treatment of peritoneal exudate cells with cor-
ticosteroids led to a significant downregulation of the RNA
expression levels of tumor necrosis factor and interleu-
kin 1�. Additionally, proliferation of lymphatic endo-
thelial cells was also inhibited.

Conclusions: Corticosteroids are strong inhibitors of in-
flammatory corneal lymphangiogenesis, with signifi-
cant differences between various corticosteroids in terms
of their antilymphangiogenic potency. The main mecha-
nism of the antilymphangiogenic effect seems to be
through the suppression of macrophage infiltration, pro-
inflammatory cytokine expression, and direct inhibi-
tion of proliferation of lymphatic endothelial cells.

Clinical Relevance: Steroids block corneal lymphan-
giogenesis, the main risk factor for immune rejections
after corneal transplantation. The different antilymphan-
giogenic potency of these drugs should be taken into ac-
count when using steroids in clinical practice (eg, after
keratoplasty).

Arch Ophthalmol. 2011;129(4):445-452

T HE HEALTHY CORNEA IS DE-
void of both blood and lym-
phatic vessels and actively
maintains its avascular-
ity.1-3 However, a variety of

inflammatory conditions can lead to a break-
down of this “angiogenic privilege.” This
leads to the outgrowth of blood as well as
lymphatic vessels from the limbus into the
avascular cornea, reducing transparency and
visual acuity.4-6 Furthermore, corneal neo-
vascularization is also the most important
risk factor for graft rejection after corneal
transplantation; in particular, lymphangio-
genesis has been shown to be essential in
mediating immune reactions after corneal
grafting.4,7-9 By use of the murine model of
corneal transplantation, it has recently been
shown that inhibition of corneal neovascu-

larization after low- and high-risk corneal
transplantation promotes graft sur-
vival.10-13 Thus, antiangiogenic therapy is a
very reasonable approach for reducing cor-
neal complications secondary to inflamma-
tion and also for preventing immune rejec-
tions after corneal transplantation.

Recently, several specific angiogen-
esis inhibitors have been approved by the
US Food and Drug Administration for the
treatment of pathologic neovasculariza-
tion in the eye. Ranibizumab (Lucentis;
Genentech, South San Francisco, Califor-
nia) and pegaptanib (Macugen; OSI Phar-
maceuticals, Farmingdale, New York) were
both approved for the treatment of age-
related macular degeneration. Bevaci-
zumab (Avastin; Genentech, South San
Francisco, California), approved for co-
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lorectal cancer and nonsmall cell lung cancer treat-
ment, is also widely used off-label to treat age-related
maculopathy, proliferative retinopathies, and neovascu-
lar glaucoma.14 In contrast, no specific angiogenesis in-
hibitor against neovascularization at the anterior seg-
ment of the eye has been approved by the US Food and
Drug Administration so far.15

However, many older, established drugs also have an-
tiangiogenic properties in addition to their known ac-
tivities. For instance thalidomide, spironolactone, non-
steroidal anti-inflammatory drugs, and corticosteroids are
well-known drugs with known toxicity profiles, and it
has been shown that these substances can inhibit angio-
genesis in various immune and inflammatory diseases,
including those of the eye.16-21 Corticosteroids are po-
tent anti-inflammatory drugs widely used for the treat-
ment of macular edema and choroidal and retinal neo-
vascularization.22 To date, corticosteroid therapy is also
the standard anti-inflammatory and antiangiogenic treat-
ment for patients with corneal neovascularization, espe-
cially after corneal transplantation.15,23,24

Although it has been established that corticosteroids are
able to inhibit corneal hemangiogenesis,15,21,23,25 little is
known about their ability to suppress corneal lymphan-
giogenesis.26,27 Nakao and colleagues21 showed that sys-
temic application of dexamethasone sodium phosphate was
able to inhibit interleukin 1� (IL-1�)–induced corneal
hemangiogenesis. However, to our knowledge, it has not
been shown whether corticosteroids are also able to in-
hibit corneal lymphangiogenesis. Therefore, the aims of our
study were to assess whether topical application of corti-
costeroids is able to inhibit inflammatory corneal lymphan-
giogenesis and to compare the antilymphangiogenic
potential of various clinically used corticosteroids (fluo-
rometholone, prednisolone acetate, and dexamethasone).
Furthermore, we analyzed the effect of steroids on inflam-
matory cell recruitment and proinflammatory cytokine ex-
pression by macrophages, which are known to be crucial
mediators of inflammatory corneal lymphangiogenesis.28

In addition, we investigated whether steroids are also able
to directly suppress the proliferation of lymphatic endo-
thelial cells (LECs).

METHODS

ANIMALS AND ANESTHESIA

All animal protocols were approved by the local animal care com-
mittee and were in accordance to the Association for Research in
Vision and Ophthalmology’s Statement for the Use of Animals
in Ophthalmology and Vision Research. Mice were anesthetized
with an intraperitoneal injection of a combination of 8 mg/kg of
ketamine hydrochloride and 0.1 ml/kg of xylazine hydrochlo-
ride. All mice were female BALB/c mice, aged 6 to 8 weeks (pur-
chased from Charles River Laboratories, Sulzfeld, Germany).

SUTURE-INDUCED, INFLAMMATORY CORNEAL
NEOVASCULARIZATION ASSAY

The mouse model of suture-induced inflammatory corneal neo-
vascularization was used as previously described.13,28,29 Prior to
corneal neovascularization, each animal was deeply anesthe-

tized. The cornea actively maintains its avascularity; in par-
ticular, the corneal epithelium contains antiangiogenic mol-
ecules such as soluble vascular endothelial growth factor receptor
1 and membrane bound vascular endothelial growth factor re-
ceptor 3.2,3 Therefore, to obtain higher angiogenic and inflam-
matory response rates, the central cornea was marked with a
2.0-mm diameter trephine and de-epithelialized before suture
placement. Three 11-0 nylon sutures (Serag Wiessner, Naila,
Germany) were then placed intrastromally with 2 stromal in-
cursions extending over 120° of corneal circumference each.
The outer point of suture placement was chosen near the lim-
bus, and the inner suture point was chosen near the corneal
center equidistant from limbus to obtain standardized angio-
genic responses. Sutures were left in place for 7 days. Treat-
ment groups were as follows: fluorometholone, prednisolone,
and dexamethasone (each at a dosage of 1 mg/mL, 3 eye drops
daily, 5 µL per drop). It has previously been shown that when
fluorometholone, prednisolone, and dexamethasone are all for-
mulated at a concentration of 0.1%, the intraocular penetra-
tion of these steroids is almost identical.30 Therefore, we de-
cided to use all steroids at a concentration of 0.1%, although
prednisolone is clinically used at a concentration of 1%. Con-
trol mice received equal amounts of saline solution. After 1 week,
mice were killed and corneas were prepared. The corneal neo-
vascularization assay included 12 mice per group.

CORNEAL WHOLE MOUNTS AND
MORPHOLOGICAL DETERMINATION OF

LYMPHANGIOGENESIS AND HEMANGIOGENESIS

The excised corneas from the corneal neovascularization assay
were rinsed in phosphate-buffered saline (PBS) and fixed in ac-
etone for 30 minutes. After 3 washing steps in PBS and blocking
with 2% bovine serum albumin in PBS for 2 hours, the corneas
were stained overnight at 4°C with rabbit anti–mouse lymphatic
vessel endothelial hyaluronan receptor 1 (1:500; AngioBio Co,
Del Mar, California) and rat anti–mouse CD31-FITC (1:50; Ac-
ris Antibodies GmbH, Hiddenhausen, Germany). On day 2, the
tissue was washed 3 times; lymphatic vessel endothelial hyaluro-
nan receptor 1 was then detected with a Cy3-conjugated second-
ary goat anti–rabbit antibody (1:100; Dianova, Hamburg, Ger-
many). After 3 additional washing steps in PBS, all corneas were
moved to Superfrost slides (Menzel-Gläser, Braunschweig, Ger-
many) and covered with Dako fluorescent mounting medium
(Hamburg, Germany) and stored at 4°C in the dark.

Stained whole mounts were analyzed with a fluorescence mi-
croscope (BX51; Olympus Optical Co, Hamburg, Germany), and
digital pictures were taken with a 12-bit monochrome charge-
coupled device camera (F-View II; Soft Imaging System, Mün-
ster, Germany). Each whole-mount picture was assembled out
of 9 pictures taken at 100� magnification. The areas covered with
lymphatic and blood vessels were detected with an algorithm es-
tablished in the image-analyzing program cell^F (Soft Imaging
System, Münster, Germany): prior to analysis, gray-value im-
ages of the whole-mount pictures were modified by several fil-
ters, and vessels were detected by threshold setting, including the
bright vessels and excluding the dark background. A detailed ex-
planation of this method was described previously.31 The mean
vascularized area of the control whole mounts was defined as being
100%, and the vascularized areas were then related to this value.

FLOW CYTOMETRIC ANALYSIS
OF INFLAMMATORY CORNEAL

CELL RECRUITMENT

Corneal inflammation was induced by suture placement, and
corneas were then treated with topical fluorometholone, pred-
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nisolone, dexamethasone (each at a dosage of 1 mg/mL, 3 eye
drops daily, 5 µL per drop), or saline solution (control). On
days 2 and 5 after suture placement, corneas (3 per group) were
harvested and pooled. Single-cell suspensions were prepared
from corneal samples using collagenase digestion, as previ-
ously described.32 Briefly, corneal buttons were removed and
minced into small fragments, followed by digestion with 2
mg/mL of type IV collagenase (Sigma-Aldrich, St Louis, Mis-
souri) and 0.05 mg/mL of deoxyribonuclease I (Roche, Basel,
Switzerland) for 1 hour at 37°C with agitation. The suspen-
sion was then triturated through a 10-mL syringe to homog-
enize the remaining tissue and filtered through a 70-µm cell
strainer. Once in single-cell suspension, all samples under-
went Fc receptor blockade via incubation with �-CD16/CD32
(BD Pharmingen, San Diego, California) at 4°C in 0.5% bo-
vine serum albumin (Sigma-Aldrich). Subsequent antibody la-
beling included �-CD11b (BD Pharmingen) and �-F4/80 (BD
Pharmingen). All antibodies were analyzed with the appropri-
ate isotype controls.

COLLECTION, CULTURE, AND TREATMENT
OF PERITONEAL MACROPHAGES

Thioglycollate-induced macrophages were collected from the
peritoneal cavity (peritoneal exudate cells) of 8-week-old fe-
male mice as described previously.33 Peritoneal exudate cells
were washed, resuspended, and cultured at 37°C in RPMI-
1640 medium containing 10% fetal calf serum, 10mM HEPES,
1mM nonessential amino acids, 1mM sodium pyruvate, 2mM
L-glutamine, 100-U/mL penicillin, and 100-mg/mL streptomy-
cin. After adhesion, nonadherent cells were removed by wash-
ing with culture medium, and adherent cells were then used
as macrophages. Cells collected by this method are F4/80�
(�90%) and CD11b� (�99%).33,34

Cells were incubated in RPMI-1640 medium containing 25
nmol/L of fluorometholone, prednisolone, or dexamethasone
for 24 hours, followed by RNA isolation. To analyze RNA
expression under higher inflammatory conditions, 50 ng/mL
of tumor necrosis factor (TNF; Biomol GmbH, Hamburg, Ger-
many) was added in some experiments, and cells were then
incubated for 24 hours with or without 25 nmol/L of dexa-
methasone.

RNA ISOLATION AND REAL-TIME POLYMERASE
CHAIN REACTION

RNA from cultured peritoneal macrophages was isolated with
the RNeasy Micro kit (Qiagen, Hilden, Germany). Comple-
mentary DNA was synthesized with random hexamers using
reverse transcriptase (SuperScript III; Invitrogen, Darmstadt,
Germany) according to the manufacturer’s recommendations.
Real-time polymerase chain reaction (PCR) was performed using
TaqMan Universal PCR Mastermix and preformulated
primers for TNF (assay Mm99999068_m1), IL-1� (assay
Mm00434228_m1), and GAPDH (assay Mm99999915_g1);
FAM-MGB dye-labeled predesigned primers were used for TNF,
IL-1�, and GAPDH (Applied Biosystem, Foster City, Califor-
nia). The results were analyzed by the comparative threshold
cycle method and normalized by GAPDH as an internal
control.

The relative messenger RNA (mRNA) level in the un-
treated group was used as the normalized control for the treat-
ment groups. All assays were performed in duplicate; a non-
template control was included in all of the experiments to
evaluate DNA contamination of the reagents used. Experi-
ments were conducted twice.

LEC PROLIFERATION ENZYME-LINKED
IMMUNOSORBENT ASSAY

The LEC proliferation enzyme-linked immunosorbent assay
(ELISA) was used, with slight modifications, as previously de-
scribed.13 Human lymphatic microvascular endothelial cells
(Cambrex Bio Science, Walkersville, Maryland) were cultured
in EGM2-MV full medium (Cambrex Bio Science) according
to the manufacturer’s instructions; EGM2-MV full medium con-
tains endothelial cell growth factors such as vascular endothe-
lial growth factor and basic fibroblast growth factor. For this
ELISA, cells were seeded in a 96-well plate in EGM2-MV me-
dium at a density of 4�103 cells per well. After 6 hours, the
medium was replaced with a serum-free medium, 10 µL/mL of
5-bromodeoxyuridine (BrdU; Cell Proliferation ELISA, BrdU,
Roche, Penzberg, Germany), and the corticosteroids (25 nmol/L
of fluorometholone, prednisolone, or dexamethasone) were
added. Cells were fixed and stained after 48 hours according
to the manufacturer’s instructions. Colorimetric analysis was
performed with the ELISA reader SLT Spectra (SLT Labinstru-
ments Deutschland GmbH, Crailsheim, Germany). The mean
extinction of the control wells was defined as being 100%, and
extinction of all wells were then related to this value (LEC pro-
liferation ratio).

STATISTICAL ANALYSIS

Statistical analyses were performed using by Microsoft Excel
2000 (Microsoft Corp, Redmond, Washington) and InStat
version 3.06 (GraphPad Software Inc, San Diego, California).
Statistical significance was determined using the 1-way analy-
sis of variance test. P� .05 was considered statistically sig-
nificant. Graphs were drawn using Prism4 version 4.03
(GraphPad Software Inc).

RESULTS

INHIBITORY EFFECT OF TOPICAL TREATMENT
WITH CORTICOSTEROIDS ON CORNEAL

LYMPHANGIOGENESIS AND
HEMANGIOGENESIS IN VIVO

Treatment with corticosteroids resulted in a significant
reduction of inflammatory corneal lymphangiogenesis
in vivo. In comparison with controls, lymphangiogen-
esis was inhibited by 33% via topical fluorometholone
treatment (mean [SD], 67% [19%]; P� .001), by 53%
via topical prednisolone treatment (mean [SD], 47%
[17%]; P� .001), and by 55% via topical dexametha-
sone treatment (mean [SD], 45% [13%]; P � .001).
The inhibitory effect of fluorometholone was signifi-
cantly weaker than the inhibitory effect of predniso-
lone or dexamethasone (P� .01). Every tested steroid
showed very similar effects on corneal hemangiogen-
esis: In comparison with controls, blood vessel growth
was inhibited by 30% via fluorometholone treatment
(mean [SD], 70% [9%]; P� .001), by 50% via topical
prednisolone treatment (mean [SD], 50% [12%];
P � .001), and by 57% via topical dexamethasone
treatment (mean [SD], 43% [7%]; P � .001). The
inhibitory effect of fluorometholone was again signifi-
cantly weaker than the inhibitory effect of predniso-
lone or dexamethasone (P� .01) (Figure 1).
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INHIBITORY EFFECT OF TOPICAL TREATMENT
WITH CORTICOSTEROIDS ON INFLAMMATORY

CELL RECRUITMENT IN VIVO

To examine the effect of topical corticosteroid treatment
on suture-induced macrophage infiltration, we quantified
the number of F4/80�CD11b� cells using flow cytom-
etry. Fluorescence-activated cell sorting analysis showed
that topical treatment with corticosteroids resulted in a sig-
nificant reduction of inflammatory cell recruitment in vivo.
Although, in control corneas, the percentage of F4/
80�CD11b� macrophages per corneawas 23.58% at 2days
after corneal suture placement and 27.14% at 5 days after
corneal suture placement, treatment with fluorometho-
lone reduced the amount of F4/80�CD11b� cells to 2.07%
at day 2 and 13.57% at day 5. Treatment with predniso-
lone reduced the amount of F4/80�CD11b� cells to 4.51%
at day 2 and 10.44% at day 5, and treatment with dexa-
methasone reduced the amount of F4/80�CD11b� cells
to 1.88% at day 2 and 11.86% at day 5. All of the steroids
used led to a stronger inhibitory effect on macrophage re-
cruitment on day 2 than on day 5 (Figure 2).

SUPPRESSIVE EFFECT OF CORTICOSTEROIDS
ON PROINFLAMMATORY CYTOKINE

EXPRESSION BY MACROPHAGES IN VITRO

Peritoneal exudate cells were incubated with 25-nmol/L
fluorometholone, prednisolone, or dexamethasone for 24
hours, and mRNA expression levels of the proinflamma-
tory cytokines TNF and IL-1� were then measured via
real-time PCR. In vitro treatment of resting peritoneal exu-
date cells with corticosteroids led to a significant inhi-
bition of mRNA expression levels of TNF and IL-1�. Fluo-
rometholone treatment inhibited mRNA expression levels
by 83% (TNF) and 68% (IL-1�), whereas prednisolone
treatment suppressed mRNA expression levels by 79%
(TNF) and 50% (IL-1�). Dexamethasone was the stron-
gest inhibitor of proinflammatory cytokine expression:
TNF expression was reduced by 88%, and IL-1� expres-
sion by 73%. With respect to TNF expression levels, there
were no significant differences detectable between fluo-
rometholone treatment and prednisolone treatment
(P� .05) or between fluorometholone treatment and dexa-
methasone treatment (P� .05). However, treatment with
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Figure 1. Suppressive effect of corticosteroids on inflammatory corneal lymphangiogenesis in vivo. A, Corneal whole mounts, stained with lymphatic vessel
endothelial hyaluronan receptor 1; B, corneal whole mounts, stained with CD31; and C, quantification of lymphangiogenesis and hemangiogenesis. Both
lymphangiogenesis and hemangiogenesis were significantly inhibited by topical application of fluorometholone, prednisolone acetate, or dexamethasone sodium
phosphate.
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dexamethasone showed a statistically stronger inhibi-
tion of TNF mRNA expression than did treatment with
prednisolone (P� .05). The assessment of IL-1� mRNA
levels revealed that both fluorometholone and dexameth-
asone had a stronger inhibitory effect on IL-1� expres-
sion than did prednisolone (P� .01), with the effect of
fluorometholone and dexamethasone being compa-
rable (P� .05).

To analyze whether steroids can also inhibit TNF and
IL-1� expression under higher inflammatory condi-
tions, peritoneal exudate cells were incubated with 50
ng/mL of TNF. The addition of this inflammatory stimu-
lus led to a strong upregulation of proinflammatory cyto-
kine expression (a 4.6-fold increase in TNF expression
and a 4.4-fold increase in IL-1� expression). However,
further treatment with dexamethasone could still sup-
press proinflammatory cytokine expression, even under
this inflammatory stimulation (a 0.3-fold decrease TNF
expression and a 0.4-fold decrease IL-1� expression)
(Figure 3).

SUPPRESSIVE EFFECT OF CORTICOSTEROIDS
ON LEC PROLIFERATION IN VITRO

To assess whether corticosteroids have a direct effect on
LECs as well, we studied their effect on LEC prolifera-
tion in vitro. Treatment with corticosteroids (dose, 25
nmol/L) significantly suppressed the proliferation of LECs.
Compared with controls, application of fluorometho-
lone resulted in an inhibition of LEC proliferation by 42%
(P� .001), application of prednisolone resulted in an in-
hibition of LEC proliferation by 30% (P� .001), and ap-
plication of dexamethasone resulted in an inhibition of
LEC proliferation by 51% (P� .001). Between the ana-

lyzed steroids, prednisolone had the weakest effect on
LEC proliferation (prednisolone vs fluorometholone
[P� .01]; prednisolone vs dexamethasone [P� .001]).
Dexamethasone was the strongest inhibitor of LEC pro-
liferation (dexamethasone vs fluorometholone; P� .05)
(Figure 4).

COMMENT

The experiments performed in our study demonstrate the
following: (1) Corticosteroids are potent inhibitors of
inflammation-induced lymphangiogenesis andhemangio-
genesis in vivo. (2) Significant differences exist between
differentcorticosteroidswith respect to their antilymphan-
giogenicandantihemangiogenicproperties. Ingeneral, the
stronger the anti-inflammatory effect, the stronger the in
vivo antilymphangiogenic and antihemangiogenic effect.
This fits well with the known close interrelation between
inflammationandangiogenesis.(3)Corticosteroidsstrongly
block inflammatorycell recruitment into the inflamedcor-
nea. It has already been shown that systemic application of
dexamethasonewasabletoinhibit therecruitmentofCD11b
single positive cells after IL-1� pellet implantation.21 We
analyzed the effect of topical steroid treatment on F4/
80�CD11b�double-positivecellsaftercornealsutureplace-
ment inorder toprimarily focusontheroleofmacrophages,
because various leukocyte populations (eg, granulocytes
and natural killer cells) also express CD11b, whereas F4/
80 seems to be mainly expressed by macrophages.35,36 Fur-
thermore, compared with pellet implantation, the suture-
inducedneovascularizationmodelusedinourstudyisknown
to induce a strong inflammatory response. The inhibition
ofF4/80�CD11b� macrophage infiltrationbysteroidsaf-
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ter suture placement allowed us to conclude that, even un-
dertheseveryhighinflammatoryconditions,corticosteroids
stronglyblockmacrophage recruitmentafter topical appli-
cation. (4) Invitro,corticosteroidssignificantly inhibitpro-
inflammatorycytokineexpressionbymacrophages. It iswell
established that both TNF and IL-1� mediate corneal neo-
vascularization.37,38 In particular, TNF expressed by mac-
rophages is known to be an important factor that induces
angiogenesis.39 Wecouldshowthat steroidsareable tosup-
pressproinflammatorycytokineexpression,bothunderrest-

ing and inflammatory conditions. Therefore, blockade of
macrophage-derived expression of TNF and IL-1� levels
by steroids likely contributes to the strong antilymphan-
giogenic effect of these substances. (5) Moreover, cortico-
steroidsalsosuppressLECproliferation, indicating that the
antilymphangiogenic effect of these substances is due not
only to anti-inflammatory properties but also partly to di-
rect anti-proliferative properties.

Fluorometholone,theweakestofthe3anti-inflammatory
corticosteroids tested, had the least effect on corneal lym-
phangiogenesis in vivo; however, it did have a stronger
inhibitory effect than did prednisolone in vitro. Pred-
nisolone had significantly stronger inhibitory effects in
vivo; however, it had the weakest inhibitory effect in vitro.
Therefore, additional properties (eg, tissue and cell pen-
etration and substance half-life) also seem to be respon-
sible for the overall inhibitory effect in vivo. Indeed, it
has been shown that fluorometholone has a relatively short
half-life and rapid metabolism.40 Dexamethasone was the
most potent inhibitor in almost all conducted experi-
ments. The different antilymphangiogenic potentials of
these 3 corticosteroids should be taken into account when
using them in clinical practice (eg, after keratoplasty).
Also, however, the risk of adverse effects seems to de-
crease in parallel with the anti-inflammatory potency of
the particular steroid. For example, it has been estab-
lished that fluorometholone increases intraocular
pressure less frequently than does prednisolone or dexa-
methasone. The benefit of a steroid with higher anti-
inflammatory and, as shown in our study, also higher
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antiangiogenic properties surely has to be weighed against
its increasing risk of adverse effects in patients.

A plethora of clinical indications exist for antiangio-
genic treatment of the cornea (eg, to stop sight-
threatening neovascularization after inflammation or to
improve graft survival after corneal transplantation).4,41-45

To date, steroid therapy is the standard anti-inflam-
matory and antiangiogenic treatment for patients with
corneal neovascularization, especially after corneal trans-
plantation.15 Furthermore, it is widely accepted that topi-
cal steroid treatment protects against immunologic graft
rejections after corneal transplantation.23,24 This protec-
tion may largely be attributable to the fact that cortico-
steroids are very potent anti-inflammatory substances.
The fact that these substances are also able to inhibit lym-
phangiogenesis, as shown in our study, and that lym-
phangiogenesis has been shown to be an important risk
factor regarding graft rejection after corneal transplan-
tation4,7 may lead one to conclude that both the anti-
inflammatory effects and the antilymphangiogenic prop-
erties of these substances can result in a better outcome
for patients after corneal transplantation.

However, the use of steroid therapy in the manage-
ment of eye diseases remains controversial because of the
adverse effects associated with this type of therapy.23,46

Alternative therapeutic approaches are necessary; for ex-
ample, specifically blocking angiogenesis by targeting vas-
cular endothelial growth factor appears to be a very rea-
sonable and promising approach with less adverse
effects.14,47 In fact, initial successful results were ob-
tained using specific antiangiogenic drugs at the cornea
(eg, bevacizumab eye drops and GS-101 antisense oli-
gonucleotide eye drops).48,49
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Blockade of Insulin Receptor Substrate-1 Inhibits
Corneal Lymphangiogenesis

Deniz Hos,1,2 Birgit Regenfuss,2 Felix Bock,2 Jasmine Onderka,2 and Claus Cursiefen1,2

PURPOSE. To analyze whether insulin receptor substrate (IRS-1)
is involved in lymphatic vessel development and whether IRS-1
blockade can inhibit lymphangiogenesis in vivo.

METHODS. The impact of IRS-1 blockade by GS-101 (Aganirsen),
an antisense oligonucleotide against IRS-1, on lymphatic endo-
thelial cell (LEC) proliferation was assessed by ELISA. Further-
more, the effect of IRS-1 blockade on prolymphangiogenic
growth factor expression by LECs and macrophages (perito-
neal exudate cells) was tested by real-time PCR. The mouse
model of inflammatory corneal neovascularization was used to
analyze the effect of IRS-1 blockade in vivo: after corneal suture
placement, mice were treated with GS-101 eye drops (twice
daily afterwards for 1 week, 5 �L per drop; 50, 100, or 200
�M). Afterward, corneal wholemounts were prepared and
stained for blood and lymphatic vessels.

RESULTS. Blockade of IRS-1 by GS-101 inhibited LEC prolifera-
tion dose dependently. GS-101 led to decreased VEGF-A ex-
pression levels in LECs, whereas VEGF-C, VEGF-D, and VEGFR3
showed no significant change. In macrophages, VEGF-A ex-
pression levels were also inhibited by IRS-1 blockade. Addition-
ally, GS-101 strongly inhibited macrophage-derived VEGF-C,
VEGF-D, and VEGFR3 expression. In vivo, corneal hemangio-
genesis was significantly inhibited when used at a concentra-
tion of 200 �M (by 17%; P � 0.01). Corneal lymphangiogenesis
was significantly inhibited when used at a dose of 100 �M (by
21%; P � 0.01), and the highest used dose (200 �M) showed
an even stronger inhibition (by 28%; P � 0.001).

CONCLUSIONS. Blockade of IRS-1 inhibits not only hemangiogen-
esis but also lymphangiogenesis. To the authors’ knowledge,
this is the first evidence that IRS-1 is involved in the molecular
pathway leading to lymphangiogenesis. (Invest Ophthalmol
Vis Sci. 2011;52:5778–5785) DOI:10.1167/iovs.10-6816

L ymphangiogenesis, the development and growth of lym-
phatic vessels, occurs under a variety of pathologic condi-

tions, such as chronic inflammation and graft rejection, and
plays a crucial role in cancer growth and dissemination.1–3 This
process is driven by the production of prolymphangiogenic
growth factors and proinflammatory cytokines such as VEGF-A,
VEGF-C, VEGF-D, FGF, TNF-�, and IL-1�.4–9 Subsequent bind-

ing of these factors to their receptors initiates complex signal-
ing cascades, and the involvement of numerous molecules and
many different cell types makes it challenging to fully under-
stand the process of lymphatic vessel development but also
offers many therapeutic targets to interfere with and inhibit
lymphangiogenesis.

Insulin receptor substrate (IRS-1) is a cytosolic adapter pro-
tein without intrinsic kinase activity.10 The main function of
this protein is to recruit other proteins to their receptors and
induce the organization of intracellular signaling cascades.
IRS-1 was originally isolated as an insulin receptor substrate but
has since been shown to work as a proximal scaffold protein in
a broad variety of growth hormone and cytokine receptor
signaling cascades.10 The role of IRS-1 in angiogenesis seems to
be through its interaction with the VEGF-receptor complex.11

Furthermore, it has been shown that IRS-1 is able to interact
with integrins, multifunctional proteins also involved in lymp-
hangiogenesis.12–14

Several studies have investigated the role of IRS-1 signaling
in hemangiogenesis.15–17 IRS-1 expression in endothelial cells
is upregulated under angiogenic conditions.17 Furthermore,
hypoxic retinal neovascularization is reduced in IRS-1 knock-
out mice.15 Moreover, IRS-1 is also expressed in the cornea,
and it has recently been shown that GS-101 (Aganirsen), an
antisense oligonucleotide that blocks the expression of IRS-1,
inhibits corneal hemangiogenesis, both in experimental and
clinical settings.16,18 Studies addressing the underlying antian-
giogenic mechanisms showed that GS-101 inhibited endothe-
lial tube-like structure formation and VEGF-A and IL-1� expres-
sion by endothelial cells.17

However, it is thus far unclear whether IRS-1 signaling is
involved in the molecular pathway leading to lymphatic ves-
sels. Therefore, the aim of this study was to investigate
whether the blockade of IRS-1 signaling by GS-101 is also able
to suppress lymphangiogenesis. We analyzed the impact of
IRS-1 blockade on lymphatic endothelial cell (LEC) prolifera-
tion and prolymphangiogenic factor expression by LECs and
macrophages, which have been shown to be essential media-
tors of lymphangiogenesis.19,20 Finally, we analyzed the effect
of GS-101 eye drops on inflammatory corneal lymphangiogen-
esis in vivo.

METHODS

Lymphatic Endothelial Cell Culture, Treatment,
and Proliferation ELISA

LEC proliferation ELISA was used, with slight modifications, as previ-
ously described.21 Briefly, human lymphatic microvascular endothelial
cells (Cambrex Bio Science, Walkersville, MD) were cultured in
EGM2-MV full medium (EGM 2-MV full medium contains endothelial
cell growth factors such as VEGF and bFGF). For ELISA, cells were
seeded in a 96-well plate in EGM2-MV medium at a density of 4 � 103

cells/well. Six hours after seeding, medium was replaced with
EGM2-MV minimal medium (without growth factors), BrdU (10 �L/mL;
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Cell Proliferation ELISA, BrdU, Roche, Indianapolis, IN), and GS-101 at
various concentrations were then added. Cells were fixed and stained
after 48 hours according to manufacturer’s instructions. Colorimetric
analysis was performed with an ELISA reader (Multiskan Spectrum;
Thermo Electron Corporation, Waltham, MA). The mean extinction of
the control wells was defined as 100%; the extinction of all wells was
then related to this value (LEC proliferation ratio). For RNA expression
analyses, LECs were incubated in EGM2-MV full medium containing
various concentrations of GS-101 for 24 hours, followed by RNA
extraction.

Collection, Culture, and Treatment of
Peritoneal Macrophages

Thioglycollate-induced peritoneal exudate cells (PECs) were collected
from the peritoneal cavities of 8- to 10-week-old female mice, as
described previously.22 PECs were washed, resuspended, and cultured
at 37°C in RPMI 1640 medium containing 10% FCS, 10 mM HEPES, 1
mM nonessential amino acids, 1 mM sodium pyruvate, 2 mM L-glu-
tamine, 100 U/mL penicillin, and 100 mg/mL streptomycin. After
adhesion, nonadherent cells were removed by washing with culture

medium, and adherent cells were then used as macrophages. Cells
collected by this method are F4/80� (�90%) and CD11b� (�99%).20,22

For RNA expression analyses, cells were incubated in RPMI 1640
medium containing various concentrations of TNF-�, IL-1� (both 10
ng/mL), or GS-101 for 24 hours, followed by RNA isolation.

RNA Isolation and Real-Time PCR

RNA from LECs and PECs was isolated with an RNA purification kit
(RNeasy Micro Kit; Qiagen, Valencia, CA). Complementary DNA
(cDNA) was synthesized with random hexamers using reverse tran-
scriptase (SuperScript III; Invitrogen, Carlsbad, CA). Primer (MWG
Biotech, Ebersberg, Germany) was designed using Primer3 software
and BLAST (Basic Local Alignment Search Tool, National Center for
Biotechnology Information). PCR reactions (20 �L) contained 10 to 20
ng cDNA (depending on the analyzed gene), 0.4 �M of each forward
and reverse primer, and master mix (SsoFast EvaGreen Supermix;
Bio-Rad, Hercules, CA). Real-time PCR was performed under the fol-
lowing conditions: initial denaturation step of 95°C for 2 minutes, 40
cycles of 95°C for 5 seconds and of 56°C to 62.4°C (depending on the
analyzed gene) for 15 seconds, followed by an additional denaturation

TABLE 1. Primers Used for Real-Time PCR

Gene
Product Size

(bp)
Annealing

Temperature (°C) Sequence (5�–3�)

HPRT1 (human) 162 56 F: CCTGGCGTCGTGATTAGTG
R: GCCTCCCATCTCCTTCATC

VEGF-A (human) 167 56 F: ACAGGTACAGGGATGAGGACAC
R: AAGCAGGTGAGAGTAAGCGAAG

VEGF-C (human) 163 56 F: GCCTGTGAATGTACAGAAAGTCC
R: AATATGAAGGGACACAACGACAC

VEGF-D (human) 97 56 F: CCGCCATCCATACTCAATTATC
R: CCATAGCATGTCAATAGGACAGAG

VEGFR3 (human) 109 56 F: GGTACATGCCAACGACACAG
R: CTCAAAGTCTCTCACGAACACG

HPRT (mouse) 163 58.5–62.4 F: GTTGGATACAGGCCAGACTTTGTTG
R: GATTCAACTTGCGCTCATCTTAGGC

IRS-1 (mouse) 122 58.5 F: GACGCTCCAGTGAGGATTTAAG
R: GGATTTGCTGAGGTCATTTAGG

VEGF-A (mouse) 184 60 F: CATGGATGTCTACCAGCGAAG
R: CATGGTGATGTTGCTCTCTGAC

VEGF-C (mouse) 219 60 F: AGAACGTGTCCAAGAAATCAGC
R: ATGTGGCCTTTTCCAATACG

VEGF-D (mouse) 86 62.4 F: ATGGCGGCTAGGTGATTCC
R: CCCTTCCTTTCTGAGTGCTG

VEGFR3 (mouse) 94 60 F: GTCCCTCTACTTCCAACTGCTTC
R: CACTCCTCCTCTGTGACTTTGAG

HPRT1 (human) 162 56 F: CCTGGCGTCGTGATTAGTG
R: GCCTCCCATCTCCTTCATC

VEGF-A (human) 167 56 F: ACAGGTACAGGGATGAGGACAC
R: AAGCAGGTGAGAGTAAGCGAAG

VEGF-C (human) 163 56 F: GCCTGTGAATGTACAGAAAGTCC
R: AATATGAAGGGACACAACGACAC

VEGF-D (human) 97 56 F: CCGCCATCCATACTCAATTATC
R: CCATAGCATGTCAATAGGACAGAG

VEGFR3 (human) 109 56 F: GGTACATGCCAACGACACAG
R: CTCAAAGTCTCTCACGAACACG

HPRT (mouse) 163 58.5–62.4 F: GTTGGATACAGGCCAGACTTTGTTG
R: GATTCAACTTGCGCTCATCTTAGGC

IRS-1 (mouse) 122 58.5 F: GACGCTCCAGTGAGGATTTAAG
R: GGATTTGCTGAGGTCATTTAGG

VEGF-A (mouse) 184 60 F: CATGGATGTCTACCAGCGAAG
R: CATGGTGATGTTGCTCTCTGAC

VEGF-C (mouse) 219 60 F: AGAACGTGTCCAAGAAATCAGC
R: ATGTGGCCTTTTCCAATACG

VEGF-D (mouse) 86 62.4 F: ATGGCGGCTAGGTGATTCC
R: CCCTTCCTTTCTGAGTGCTG

VEGFR3 (mouse) 94 60 F: GTCCCTCTACTTCCAACTGCTTC
R: CACTCCTCCTCTGTGACTTTGAG

F, forward; R, reverse.
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step of 95°C for 60 seconds and a subsequent melt curve analysis to
check amplification specificity. All PCR products were analyzed by gel
electrophoresis on a 2% agarose gel and were visualized by ethidium
bromide staining. Primer sequences, product sizes, and respective
annealing temperatures are summarized in Table 1.

Real-time PCR results were analyzed by the comparative threshold
cycle method with human HPRT1 (or mouse HPRT, respectively) as
the endogenous reference gene for all reactions. The relative messen-
ger RNA (mRNA) level in the untreated group was used as the normal-
ized control for the treatment groups. All assays were conducted three
times and performed in triplicate; a nontemplate control was included
in all the experiments to evaluate DNA contamination of the reagents
used.

Animals and Anesthesia

All animal protocols were approved by the local animal care committee
and were conducted in accordance with the ARVO Statement for the
Use of Animals in Ophthalmic and Vision Research. Mice were anes-
thetized with intraperitoneal injection of a combination of ketamine
(Ketanest S; 8 mg/kg) and xylazine (Rompun; 0.1 mL/kg). All mice
were 8- to 10-week-old females (purchased from Charles River Labo-
ratories, Wilmington, MA).

Suture-Induced, Inflammatory Corneal
Neovascularization Assay

The mouse model of suture-induced inflammatory corneal suture
placement was used as previously described.19 Before corneal neovas-
cularization, each animal was deeply anesthetized. The healthy cornea
actively maintains its avascularity, and, especially, the corneal epithe-
lium contains antiangiogenic molecules such as soluble VEGF receptor
1 and membrane-bound VEGF receptor 3.23,24 Therefore, to obtain
higher angiogenic responses, the central cornea was marked with a
2-mm diameter trephine and deepithelialized before suture placement.
Three 11–0 nylon sutures (Serag Wiessner, Naila, Germany) were then
placed intrastromally, with two stromal incursions each extending
over 120° of corneal circumference. The outer point of suture place-
ment was chosen near the limbus, and the inner suture point was
chosen near the corneal center equidistant from the limbus to obtain
standardized angiogenic responses. Sutures were left in place for 7
days. Treatment groups received GS-101 eye drops (twice daily for 1
week, 5 �L per drop; 50, 100, or 200 �M). Control mice received equal
amounts of saline solution. After 1 week, mice were killed and corneas
were prepared. The corneal neovascularization assay included 18 mice
per group.

Corneal Wholemounts and Morphologic
Determination of Hemangiogenesis
and Lymphangiogenesis

The excised corneas from the corneal neovascularization assay were
rinsed in PBS and fixed in acetone for 20 minutes. After washing and
blocking with 2% bovine serum albumin (BSA) in PBS for 2 hours,
corneas were stained overnight at 4°C with a rabbit anti-mouse LYVE-1
antibody (AngioBio, Del Mar, CA) and FITC-conjugated rat anti-mouse
CD31 antibody (Acris Antibodies, Herford, Germany). On day 2,
LYVE-1 was detected with a Cy3-conjugated secondary goat anti-rabbit
antibody (Dianova, Barcelona, Spain). Corneas were moved to slides
(Superfrost; Thermo Scientific), covered with fluorescent mounting
medium (Dako, Carpinteria, CA) and were stored at 4°C in the dark.

Stained wholemounts were analyzed with a fluorescence micro-
scope (BX51; Olympus Optical Co., Tokyo, Japan), and digital pictures
were taken with a 12-bit monochrome CCD camera (F-View II; Soft
Imaging System, Münster, Germany). Each wholemount picture was
assembled from nine pictures taken at 100� magnification. The area
covered with blood and lymphatic vessels was detected with an algo-
rithm established in an image analyzing program (CellF̂; Soft Imaging
System). Before analysis, gray value images of the wholemount pictures

were modified by several filters, and vessels were detected by thresh-
old setting including the bright vessels and excluding the dark back-
ground. A detailed explanation of this method was described previ-
ously.25 The mean vascularized area of the control wholemounts was
defined as 100%; vascularized areas were then related to this value
(vessel ratio).

Corneal Staining for Macrophages and IRS-1

Naive corneas were deepithelialized, excised, and fixed in acetone for
20 minutes. After washing and blocking with 2% BSA in PBS for 2
hours, corneas were stained overnight at 4°C with a rabbit anti-mouse
IRS-1 antibody (Abcam, Cambridge, MA) and FITC-conjugated rat anti-
mouse CD11b antibody (Serotec, Raleigh, NC). On day 2, IRS-1 was
detected with a Cy3-conjugated secondary goat anti-rabbit antibody
(Dianova). Corneas were moved to slides (Superfrost), covered with
fluorescent mounting medium (DAKO), and stored at 4°C in the dark.

Statistical Analysis

Statistical analyses were performed (Excel 2000]Microsoft, Redmond,
CA] and InStat 3 Version 3.06 [GraphPad Software Inc., San Diego,
CA]). Statistical significance was determined using the Student’s t-test.
For the comparison of more than two groups or the analysis of dose-
dependent responses, statistical significance was determined using
one-way analysis of variance test (ANOVA). P � 0.05 was considered
statistically significant. Graphs were drawn using biostatistics/curve
fitting/scientific graphing software (Prism4, version 4.03; GraphPad
Software Inc).

RESULTS

IRS-1 Signaling Blockade by GS-101 Inhibits
Lymphatic Endothelial Cell Proliferation

We analyzed the impact of IRS-1 signaling blockade on LEC
proliferation in vitro. LECs were exposed to increasing con-
centrations of GS-101; proliferation was then assessed by
ELISA. Incubation with GS-101 significantly suppressed LEC
proliferation dose dependently. GS-101 (10 �M) inhibited LEC
proliferation by 19% (P � 0.001), whereas 20 �M GS-101 led to
an inhibition of LEC proliferation by 46% (P � 0.001). Higher

FIGURE 1. IRS-1 blockade by GS-101 inhibits LEC proliferation in vitro.
LECs were exposed to increasing concentrations of GS-101, an anti-
sense oligonucleotide against IRS-1; proliferation was then measured
by ELISA. Treatment of LECs with GS-101 significantly suppressed cell
proliferation. 10 �M GS-101 inhibited LEC proliferation by 19%,
whereas 20 �M GS-101 led to an inhibition of LEC proliferation by 46%.
Higher concentrations had no additional inhibitory effect (40 �M
GS-101, inhibition by 48%; 20 �M vs. 40 �M; P � 0.05; ***P � 0.001;
data are expressed as mean � SEM).
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concentrations had no additional inhibitory effect (40 �M GS-
101, inhibition by 48% [P � 0.001]; 20 �M vs. 40 �M, not
significant [P � 0.05]; Fig. 1).

Blockade of IRS-1 in LECs Impairs Expression of
VEGF-A but Not of VEGF-C, VEGF-D, or VEGFR3

LECs were incubated with various concentrations of GS-101 for
24 hours. mRNA expression levels of VEGF-A, VEGF-C, VEGF-D,
and VEGFR3 were then measured by real-time PCR. VEGF-A
expression was inhibited dose dependently: 10 �M GS-101 led
to an inhibition of VEGF-A mRNA levels by 14% (P � 0.05),
and 20 �M inhibited VEGF-A expression by 34% (P �
0.001; Fig. 2A). However, VEGF-C and VEGF-D expression
levels presented no significant change. VEGF-C expression
levels showed a slight, but not yet significant, decrease (10 �M,
reduction by 14% [P � 0.084]; 20 �M, reduction by 13% [P �
0.063]; Fig. 2B), and VEGF-D levels, which were very low,
remained unaffected (10 �M, P � 0.41; 20 �M, P � 0.31; Fig.
2C). VEGFR3 levels also remained unaltered (10 �M, P � 0.85;
20 �M, P � 0.34; Fig. 2D).

IRS-1 Is Significantly Involved in
Pro(lymph)angiogenic Growth Factor Expression
by Macrophages

To analyze whether macrophages express IRS-1 and whether
IRS-1 is regulated under inflammatory conditions, PECs were
incubated in medium alone or with the addition of the proin-
flammatory cytokines TNF-� or IL-1�. PCR analyses revealed
that IRS-1 indeed is expressed in PECs, but the addition of
neither TNF-� nor IL-1� led to a considerable change in IRS-1
expression levels. However, the addition of GS-101 signifi-
cantly suppressed IRS-1 expression in PECs (Fig. 3A).

To analyze the potential involvement of IRS-1 signaling in
macrophage-derived growth factor expression, PECs were in-
cubated with GS-101. mRNA expression levels of VEGF-A,
VEGF-C, VEGF-D, and VEGFR3 were then measured by real-
time PCR. Because our experiments had shown that IRS-1
seems not to be upregulated in PECs under inflammatory con-
ditions, we decided to analyze the effect of IRS-1 blockade only
on basal growth factor expression by PECs without previous

FIGURE 2. Blockade of IRS-1 in LECs impairs expression of VEGF-A, but not of VEGF-C, VEGF-D, or VEGFR3. LECs were incubated with 10 or 20
�M GS-101. mRNA expression levels of VEGF-A, VEGF-C, VEGF-D, and VEGFR3 were then measured by real-time PCR. (A) VEGF-A expression was
inhibited dose dependently (10 �M, inhibition by 14%, P � 0.05; 20 �M, inhibition by 34%, P � 0.001). (B–D) VEGF-C, VEGF-D, and VEGFR3
expression levels presented no significant change (all P � 0.05). Data are expressed as mean � SEM. *P � 0.05; ***P � 0.001.
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stimulation. Treatment with GS-101 inhibited VEGF-A expres-
sion dose dependently: 10 �M GS-101 inhibited VEGF-A mRNA
levels by 11% (P � 0.05), and 20 �M GS-101 inhibited VEGF-A
expression by 23% (P � 0.01; Fig. 3B). Notably, VEGF-C ex-
pression levels were strongly inhibited by IRS-1 blockade: 10
�M GS-101 led to a decrease in VEGF-C expression levels by
70% (P � 0.001), and 20 �M of GS101 inhibited VEGF-C
expression by 64% (P � 0.001; Fig. 3C). VEGF-D expression
was also inhibited, albeit only when GS-101 was used at a dose
of 10 �M (reduction by 27%; P � 0.01). The inhibition of
VEGF-D expression was no longer detectable when GS-101 was
used at the higher dose of 20 �M (P � 0.05; Fig. 3D). VEGFR3
expression levels also showed a decrease: 10 �M GS-101 led to
a reduction of VEGFR3 expression by 33% (P � 0.05), and the
addition of 20 �M GS-101 led to an inhibition by 50%, P �
0.001; Fig. 3E).

Blockade of IRS-1 Signaling Inhibits
Hemangiogenesis and Lymphangiogenesis
In Vivo

The healthy cornea lacks both blood vessels and lymphatic
vessels, but it can secondarily be invaded by both vessel types
after severe inflammation. For that reason, the cornea is widely
used to study mechanisms of hemangiogenesis and lymphan-
giogenesis.26–28 To analyze the value of IRS-1 signaling in vivo,
we used the suture-induced corneal neovascularization assay as
a well-established and accepted model for induction and anal-
ysis of inflammatory corneal hemangiogenesis and lymphangio-
genesis.19,29,30 Blockade of IRS-1 after suture placement led to
a significant reduction of inflammatory corneal neovasculariza-
tion in vivo. When GS-101 was used at the highest dose of 200
�M, corneal hemangiogenesis was significantly inhibited (by

FIGURE 3. Macrophage-derived
growth factor expression is re-
duced after blockade of IRS-1. PECs
were incubated with TNF-�, IL-1�,
or various concentrations of GS-
101. mRNA expression levels of
IRS-1, VEGF-A, VEGF-C, VEGF-D and
VEGFR3 were then analyzed by
real-time PCR. (A) TNF-� or IL-1�
led to no significant change in IRS-1
expression levels, whereas the ad-
dition of GS-101 significantly sup-
pressed IRS-1 expression. (B–E)
Furthermore, blockade of IRS-1 ex-
pression by GS-101 led to a signifi-
cant downregulation of angiogenic
growth factor expression by PECs.
Data are expressed as mean � SEM.
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17% in comparison with control animals; P � 0.01). Lower
concentrations of GS-101 eye drops had no significant effect on
blood vessel growth (P � 0.05). Corneal lymphangiogenesis
was already significantly inhibited by 21% when used at a dose
of 100 �M (P � 0.01), and the highest dose (200 �M) showed
an even stronger inhibition (26% less; P � 0.001). When used
at the lowest dose of 50 �M, GS-101 eye drops did not show a
significant inhibition of corneal lymphangiogenesis (P � 0.05;
Fig. 4).

Corneal Macrophages Express IRS-1

We stained corneas for CD11b and IRS-1 to analyze whether
corneal macrophages also express IRS-1. Figure 5 shows that
some, but not all, corneal CD11b� cells express IRS-1. The

expression of IRS-1 by corneal macrophages in vivo, together
with the impact of IRS-1 blockade on macrophage-derived
growth factor expression in vitro, led us to the conclusion that
the inhibition of macrophage-derived IRS-1 expression by GS-
101 might indeed be one of the mechanisms contributing to
fewer corneal lymphatic vessels in vivo.

DISCUSSION

Research on lymphangiogenesis is an emerging field, and our
knowledge of the mechanisms underlying the formation of
new lymphatic vessels is steadily expanding. However, the
importance of all molecules involved in this process is still not
fully understood. Several studies have investigated the role of

FIGURE 4. Blockade of IRS-1 leads to reduced corneal hemangiogenesis and lymphangiogenesis in vivo. After suture placement, both corneal
hemangiogenesis and lymphangiogenesis were significantly inhibited by topical application of GS-101 eye drops. Corneal hemangiogenesis was
significantly inhibited when used at a dose of 200 �M (by 17%; P � 0.01). Corneal lymphangiogenesis was significantly inhibited when used at a
dose of 100 �M (by 21%; P � 0.01), and the highest used dose (200 �M) showed an inhibition of 28% (P � 0.001). Top: corneal wholemounts
stained with CD31 (green). Middle: corneal wholemounts stained with LYVE-1 (red). Bottom: quantification of hemangiogenesis and lymphan-
giogenesis. Data are expressed as mean � SEM. **P � 0.01; ***P � 0.001.

IOVS, July 2011, Vol. 52, No. 8 IRS-1 and Lymphangiogenesis 5783



IRS-1 in hemangiogenesis,15–18 but the value of IRS-1 in lymph-
angiogenesis was thus far not clear. We showed in this study
that IRS-1 signaling is also involved in the development of new
lymphatic vessels and that the blockade of IRS-1 expression by
GS-101 inhibits not only corneal hemangiogenesis but also
lymphangiogenesis in vivo.

Inhibition of hemangiogenesis by GS-101 started at a dose of
200 �M, whereas inhibition of lymphangiogenesis started at
even lower concentrations, beginning at 100 �M. The signifi-
cant inhibition of corneal lymphatic vessel growth by GS-101
let us conclude that IRS-1 also has an important role in lymph-
angiogenesis, with an even stronger impact of its downregula-
tion on lymphatic vessel growth than on blood vessel growth.

It has previously been shown that GS-101 is able to inhibit
endothelial tube-like structure formation in human umbilical
vein endothelial cells.17 However, the impact of GS-101 on
direct proliferation of lymphatic endothelial cells was thus far
not addressed. Blockade of IRS-1 expression by GS-101 inhib-
ited LEC proliferation dose dependently, with maximal inhibi-
tion at 20 �M. There was no additional benefit of higher
concentrations, which probably indicates a saturation of IRS-1
inhibition. This is in line with previous results showing that 20
�M GS-101 is sufficient to minimize IRS-1 expression in endo-
thelial cells.17 Additionally, it was previously shown that IRS-
1�/� mice develop only 40% less hypoxia-induced retinal neo-
vascularization,15 demonstrating that IRS-1 is notably involved,
but not essential, for angiogenesis.

Furthermore, GS-101 leads to reduced expression levels of
VEGF-A and IL-1� in endothelial cells.17 Besides VEGF-A, we
analyzed the effect of GS-101 on the expression levels of
VEGF-C, VEGF-D, and VEGFR3 in lymphatic endothelial cells.
We could also detect a dose-dependent inhibition of VEGF-A
expression. However, neither VEGF-C nor VEGF-D expression
was significantly affected by IRS-1 blockade. VEGF-C expres-
sion levels showed a slight, but not yet significant, decrease,
and VEGF-D levels remained unaffected. This could have been
due to different regulatory pathways among the various VEGF
members. However, VEGF-A is the VEGF member with the
highest expression levels even in lymphatic endothelial cells,
and it is known that VEGF-D in particular is just barely detect-
able in endothelial cells.31 Therefore, we cannot rule out the
possibility that we could not identify inhibition caused by
already low growth factor levels.

In addition to endothelial cells, macrophages also strongly
contribute to lymphangiogenesis.19,20 It was shown that
CD11b� cells are able to form vessel-like tubes and to integrate
into preexisting lymphatic vessels.20 Furthermore, a multitude
of proangiogenic growth factors are secreted by macrophages,
leading to a strong augmentation of both hemangiogenesis and
lymphangiogenesis.19 It was previously shown that downregu-
lation of IRS-1 signaling seems to be associated with a decrease
in the number of infiltrating macrophages.16 However, the
effect of IRS-1 blockade on pro(lymph)angiogenic factor pro-

duction by macrophages was not investigated. We could detect
a significant downregulation of VEGF-A expression after treat-
ment of macrophages with GS-101. Additionally, VEGF-C ex-
pression was strongly suppressed by GS-101, and expression
levels of VEGF-D decreased, albeit only after treatment with 10
�M GS-101. Surprisingly, when GS-101 was used at the higher
dose of 20 �M, inhibition was no longer detectable. Several
studies have reported differential and even paradoxical regula-
tions of the various VEGF members. Moffat et al.32 demon-
strated that tumor cells underexpressing VEGF-A showed
higher levels of VEGF-D. On the other hand, O-charoenrat et
al.33 showed that several growth factors that upregulate
VEGF-A lead to a downregulation of VEGF-D expression levels.
This could also be in line with our results: high doses of GS-101
might reduce VEGF-A expression below a certain threshold,
which then possibly antagonizes the (direct) impact of GS-101
on VEGF-D and, therefore, leads to a subsequent loss of inhi-
bition. Certainly, further investigation is needed to provide
evidence for this rather speculative hypothesis.

Altogether, we conclude that IRS-1 blockade seems to sup-
press a variety of processes leading to the development of new
lymphatic vessels. One of the early steps in GS-101 action
appears to be inhibition of the number of infiltrating macro-
phages, as described previously.16 It is known that macro-
phages promote lymphangiogenesis in two different ways,
either by stimulating preexistent lymphatic endothelial cells or
by transdifferentiating and directly forming new lymphatic
vessels. This decisive role of infiltrating macrophages, espe-
cially in the development of lymphatic vessels, could be a
possible explanation of the earlier inhibition of lymphangio-
genesis (starting at a dose of 100 �M) rather than of heman-
giogenesis (starting at a dose of 200 �M) observed in our in
vivo experiments. It is also known that GS-101 diminishes the
overall expression of several angiogenic growth factors in the
cornea.16 Moreover, as shown in our study, the quantity of
growth factors expressed per macrophage also decreases after
IRS-1 blockade. This might be another explanation for a stron-
ger inhibition of lymphangiogenesis given that macrophages
are known to secrete several factors specific for lymphangio-
genesis but not for hemangiogenesis, namely VEGF-C and
VEGF-D, whereas most of the factors leading to blood vessel
growth also promote lymphatic vessel growth, such as VEGF-A.
Additionally, IRS-1 directly impairs endothelial cell function. It
is the task of further investigation to analyze whether lym-
phatic endothelial cells are more susceptible than blood endo-
thelial cells to IRS-1 blockade.

In summary, we have shown that the blockade of IRS-1
expression by GS-101 inhibits not only corneal hemangiogen-
esis but also lymphangiogenesis. The effects of GS-101 action
seem to occur through its direct interaction with lymphatic
endothelial cells, namely proliferation inhibition and VEGF-A
expression. Furthermore, IRS-1 blockade impairs lymphangio-
genesis indirectly by reducing macrophage-derived growth fac-
tor expression (VEGF-A and, especially, VEGF-C). This is, to our
knowledge, the first evidence that IRS-1 signaling is involved in
the molecular pathway leading to lymphangiogenesis.
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This Month in AJP
Periostin and Exocrine Pancreatic Tissue

Despite known functions of the extracellular matrix mole-
cule periostin in chronic pancreatitis and pancreatic cancer,
its role in acute pancreatitis remains unclear. Hausmann et al
(Am J Pathol 2016, 186:24e31) studied its function in
pancreatic exocrine regeneration following severe acute
pancreatitis (AP). Severe AP was induced in adult mice with
and without global periostin ablation. Detailed histological
analysis revealed similar pancreatitis severity in the acute
inflammatory phase in all mice. However, in periostin-
deficient mice the recovery of the exocrine pancreas was
vastly impaired, and acinar-to-adipocyte differentiation as
well as expression levels of pancreatic and acinar differen-
tiation markers were disturbed. Periostin regulates acinar
cell fate decision and restores pancreatic tissue integrity
following AP.

Granzyme B Mediates Cardiac Fibrosis

The serine protease Granzyme B (GzmB) contributes to
several fibrosis-related cellular processes, but a direct link
with cardiac fibrosis is missing. Using fibrotic human hearts
and an established angiotensin II (Ang II)einduced cardiac
fibrosis mouse model, Shen et al (Am J Pathol 2016,
186:87e100) studied the role of GzmB in the pathogenesis
of cardiac fibrosis. GzmB was up-regulated in both fibrotic
human and murine hearts. In mice, GzmB deficiency pro-
tected against Ang IIeinduced cardiac hypertrophy and
cardiac fibrosisdindependent of perforindby reducing
microhemorrhage, inflammation, and fibroblast accumulation.
In vitro, GzmB directly cleaved the endothelial junction protein
VE-cadherin, disrupting barrier function. Targeting extracel-
lular GzmB may halt the progression of cardiac fibrosis.

Mast CelleDerived Histamine Promotes
Cholangiocarcinoma

Mast cells (MCs) contribute to the pathogenesis of chol-
angiocarcinoma (CCA) by releasing inflammatory factors that
support tumor progression. Using in vitro and in vivo models,
Johnson et al (Am J Pathol 2016, 186:123e133) dissected the
role of MCs in the pathophysiology of CCA. MC infiltration
into the CCA microenvironment and the expression of MC

markers were observed in human biopsies and mouse tumors.
Blocking MC-derived histamine decreased tumor growth,
proliferation, angiogenesis, epithelial-mesenchymal transition,
and extracellular matrix degradation via inhibition of c-Kit/stem
cell factor. Preventing MC migration may be an important
target for CCA therapy.

IL-10 Regulates Inflammatory Corneal
Lymphangiogenesis

How the anti-inflammatory cytokine IL-10 regulates inflam-
matory lymphangiogenesis is unknown. Using an established
mouse model, Hos et al (Am J Pathol 2016, 186:159e171)
determined the impact of IL-10 on inflammatory corneal
lymphangiogenesis and the resolution of corneal inflammation.
IL-10 was detected in inflamed, but not healthy, corneas
and was expressed by infiltrating macrophages. In vitro
IL-10 stimulation up-regulated the expression of pro-
lymphangiogenic vascular endothelial growth factor-C in
macrophages but did not affect lymphatic endothelial cells.
In vivo IL-10 deficiency reduced corneal lymphangio-
genesis and prolonged corneal inflammation. Local treat-
ment with IL-10 promoted lymphangiogenesis and faster
egress of macrophages from inflamed corneas. IL-10 may
be useful therapeutically to resolve pathological inflam-
mation in the cornea.

Ab Precedes p-Tau in Alzheimer Disease
Synapses

The detailed time course of amyloid-b (Ab) and hyper-
phosphorylated tau (p-tau) accumulation in Alzheimer
disease (AD) patient synapses is unclear. Bilousova et al
(Am J Pathol 2016, 186:185e198) investigated this
sequence using patient samples and a transgenic rat model.
Ab and p-tau were quantified across AD disease stages
(including non-demented high ADerelated pathology
controls) in parietal cortex. Ab accumulated in the earliest
plaque stages as well as in late-stage AD dementia whereas
p-tau appeared essentially in late-stage disease. Synapse-
associated soluble oligomers of Ab were linked to the
onset of dementia. p-tau was elevated in individual Ab-
positive synaptosomes in early AD, arguing for an amyloid
cascade hypothesis driving p-tau accumulation.
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The role of IL-10, a primarily anti-inflammatory cytokine, in the regulation of inflammatory lym-
phangiogenesis is undetermined. Herein, we show that IL-10 modulates corneal lymphangiogenesis and
resolution of inflammation. IL-10 was not expressed in healthy corneas but was up-regulated in
inflamed corneas by infiltrating macrophages. Macrophages up-regulated the expression of prolym-
phangiogenic vascular endothelial growth factor-C upon stimulation with IL-10. Consistently, corneal
inflammation resulted in reduced expression of vascular endothelial growth factor-C and decreased
corneal lymphangiogenesis in IL-10edeficient mice (IL-10�/�). The effect of IL-10 on lymphangio-
genesis was indirect via macrophages, because IL-10 did not directly affect lymphatic endothelial cells.
The expression of proinflammatory cytokines and the numbers of infiltrating macrophages increased and
remained elevated in inflamed corneas of IL-10�/� mice, indicating that IL-10 deficiency led to more
severe and prolonged inflammation. The corneal phenotype of IL-10 deficient mice was mimicked
in mice with conditional deletion of Stat3 in myeloid cells (lysozyme M Cre mice Stat3fl/fl mice),
corroborating the critical role of macrophages in the regulation of lymphangiogenesis. Furthermore,
local treatment with IL-10 promoted lymphangiogenesis and faster egress of macrophages from
inflamed corneas. Taken together, we demonstrate that IL-10 indirectly regulates inflammatory corneal
lymphangiogenesis via macrophages. Reduced lymphangiogenesis in IL-10�/� and lysozyme M Cre
Stat3fl/fl mice is associated with more severe inflammatory responses, whereas IL-10 treatment results
in faster resolution of inflammation. IL-10 might be used therapeutically to terminate pathological
inflammation. (Am J Pathol 2016, 186: 159e171; http://dx.doi.org/10.1016/j.ajpath.2015.09.012)

The lymphatic vasculature, also termed the second vascular
system, is involved in fundamental physiological functions,
such as fluid and lipid homeostasis, blood pressure regulation,
inflammation, and immune surveillance.1,2 Moreover, dysre-
gulation of the lymphatic vascular system also contributes to
several pathological conditions, such as lymphedema, cancer
metastasis, transplant rejection, and chronic wounds.2,3 Dis-
secting the cellular and molecular mechanisms that regulate
lymphangiogenesis in physiology and pathology is therefore
crucial for the development of efficient therapeutic approaches
to prevent disease and to promote cure.

The cornea, which is the transparent windscreen of the
eye, is one of the rare tissues of the organism that is
physiologically devoid of lymphatic vessels.4,5 Corneal

avascularity is not a passive condition but is actively
maintained by several redundantly organized anti(lymph)
angiogenic mechanisms.6e10 Minor inflammatory stimuli, to
which the cornea is continuously exposed because of its
anatomical position, usually do not induce corneal lym-
phangiogenesis. Severe inflammation, however, can result
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in a strong up-regulation of prolymphangiogenic growth
factors that overcome the cornea’s antilymphangiogenic
barriers and result in a secondary ingrowth of lymphatic
vessels into the cornea.5 In this context, macrophages have
been identified as essential mediators of inflammatory
corneal lymphangiogenesis. It is well established that mac-
rophages are able to secrete a variety of prolymphangiogenic
growth factors, such as vascular endothelial growth factor
(VEGF)-C and VEGF-D, thereby inducing lymphatic endo-
thelial cell (LEC) proliferation.11,12 Various functional
macrophage phenotypes exist, which have, for a long time,
been classified into at least two polarized macrophage sub-
populations13,14: classically activated, M1-polarized macro-
phages are considered to exert proinflammatory activities,
eradicate invading microorganisms, and promote type I
immune responses. Alternatively activated, M2-polarized
macrophages are hyporesponsive to proinflammatory stim-
uli, and are involved in debris scavenging, tissue remodeling,
and the resolution of inflammatory responses.13,15,16 How-
ever, in view of recent research, it has become clear that the
paradigm ofM1/M2 polarization is an oversimplification that
reflects only two extremes of macrophage polarization and
that in tissues a broad spectrum of activation states exists in
parallel.17,18 Although it is known that macrophages
contribute to corneal lymphangiogenesis,11,12 the underlying
mechanisms and especially the involvement of specific
macrophage subpopulations remain to be elucidated.

Recently, it has been demonstrated that corneal lymphatic
vessels play a critical role in the induction and maintenance
of various inflammatory diseases at the ocular surface, such
as dry eye disease, ocular allergy, and immune-mediated
graft rejection after corneal transplantation.19e21 Thus,
corneal lymphangiogenesis is mostly considered as patho-
logical. In contrast, physiological functions for lymphatic
vessels in the cornea have not been described so far.
However, studies in extraocular tissues (eg, the skin)
demonstrate that lymphatic vessels also exert physiological
functions during inflammatory reactions, because lymphatic
vessels regulate tissue pressure and allow the drainage of
debris and egress of cells from the inflamed site.22 In
particular, lymphatic vessels seem to be important for the
termination of ongoing inflammatory responses, and recent
studies indicate that the blockade of lymphatic vessels can
result in chronic inflammation and edema formation,
whereas the specific activation of lymphatic vessels can
ameliorate these conditions.23,24 Thus, lymphangiogenesis
and inflammation are closely linked. Furthermore, both
processes appear to be, at least partially, regulated by the
same molecules and cytokines.9,11,25e27

IL-10 is a multifunctional cytokine that is well-known for
its anti-inflammatory and immunoregulatory effects.28

Generally, IL-10 is considered to inhibit immune re-
sponses, but under certain circumstances may also have
activating properties (eg, on macrophages).13,29 In addition
to its wide-ranging immune-modulatory functions, IL-10
also regulates hemangiogenesis, the development of blood

vessels. Several studies demonstrate that IL-10 has anti-
hemangiogenic properties,30,31 whereas other studies indi-
cate a prohemangiogenic effect of IL-10.32,33

In contrast to previous studies addressing the impact
of IL-10 on hemangiogenesis,30e33 no single study has
analyzed the role of IL-10 in lymphangiogenesis so far. We
therefore used the cornea as a well-established model sys-
tem to study lymphangiogenesis and determined the impact
of IL-10 on inflammatory corneal lymphangiogenesis and
the resolution of corneal inflammation. Our results provide
evidence that IL-10 regulates corneal lymphangiogenesis,
and that its effect is possibly indirectly mediated through the
expression of VEGF-C by macrophages. Furthermore, our
experiments demonstrate a crucial role for IL-10 in the
termination of inflammatory responses at the cornea.

Materials and Methods

Animals

All animal protocols were approved by the local animal care
and use committee and were in accordance with the Associa-
tion for Research in Vision and Ophthalmology’s Statement
for the Use of Animals in Ophthalmology and Vision
Research. The following 8- to 12-week-old mice were used:
C57BL/6 wild-type mice (WT), IL-10 homozygous knockout
mice (IL-10�/�), and lysozyme M Cre mice (LysMCre)
crossed with loxP-flanked Stat 3 mice (Stat3fl/fl).34,35 Geno-
typing of IL-10 mice was performed using the following
primers: 50-CTTGCACTACCAAAGCCACA-30, 50-GTTA-
TTGTCTTCCCGGCTGT-30, and 50-CCACACGCGTCA-
CCTTAATA-30. Product sizes of IL-10 WT and knockout
alleles were 137 and 312 bp, respectively. The following
primers were used for genotyping of LysMCre mice: 50-
CTTGGGCTGCCAGAATTTCTC-30, 50-TTACAGTCGG-
CCAGGCTGAC-30, and 50-CCCAGAAATGCCAGATTA-
CG-30. Product sizes of LysM WT and LysMCre alleles were
350 and 700 bp, respectively. Genotyping of Stat3fl/flmicewas
performed using the following primers: 50-CCTGAA-
GACCAAGTTCATCTGTGTGAC-30 and 50-CACACAAG-
CCATCAAACTCTGGTCTCC-30. Product sizes of the Stat3
WT and floxed Stat3 alleles were 200 and 350 bp, respectively.

Mouse Model of Suture-Induced Corneal Inflammation
and Neovascularization

The mouse model of suture-induced corneal inflammation
and neovascularization was performed as previously
described.11,36,37 Before surgery, mice were anesthetized
with an i.p. injection of a combination of ketamine and
xylazine hydrochloride. Three 11-0 nylon sutures (Serag
Wiessner, Naila, Germany) were then placed intrastromally
into the right cornea, with two incursions each extending
over 120� of the total corneal circumference. The outer point
of suture placement was chosen near the limbus, and the
inner suture point was chosen near the corneal center. The
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suture model is a well-established procedure known to result
in severe corneal inflammation with recruitment of inflam-
matory cells and subsequent development of corneal blood
and lymphatic vessels, which peaks after 2 weeks.37,38 Su-
tures are usually removed after 2 weeks, and inflammation
and blood and lymphatic vessels then begin to decline.38 In
indicated experiments, mice were treated with repeated
subconjunctival injections of recombinant murine IL-10
[100 ng in 10 mL of phosphate-buffered saline (PBS),
every other day; R&D Systems, Wiesbaden, Germany] after
suture removal for 1 week. Control mice received equal
amounts of PBS.

mRNA Isolation and Real-Time PCR

Total RNA from murine corneas (three to five corneas per
analyzed time point, excised without the limbus), perito-
neal exudate cells (PECs), or LECs were isolated by
RNeasy Micro Kit (Qiagen, Valencia, CA), and cDNA
(500 ng per group) was synthesized with random hexamers
using reverse transcriptase (SuperScript III; Invitrogen,
Carlsbad, CA). Primers (MWG Biotech, Ebersberg,
Germany) were designed using Primer3 software version
4.0.0 and Basic Local Alignment Search Tool (National
Center for Biotechnology Information, Bethesda, MD).
PCR reactions (25 mL) contained 50 ng of cDNA, 0.4

mmol/L of each forward and reverse primer, and master
mix (SsoFast EvaGreen Supermix; Bio-Rad, Hercules,
CA). Real-time PCR was performed under the following
conditions: initial denaturation step of 95�C for 2 minutes,
40 cycles of 95�C for 5 seconds and 60�C to 63�C
(depending on the analyzed gene) for 15 seconds, followed
by an additional denaturation step of 95�C for 60 seconds
and a subsequent melt curve analysis to check amplifica-
tion specificity. All PCR products were analyzed by gel
electrophoresis on a 2% agarose gel and visualized by
ethidium bromide staining. Real-time PCR results were
analyzed by the comparative threshold cycle method with
hypoxanthine-guanine phosphoribosyltransferase (HPRT)
(mouse)/HPRT1 (human) as the endogenous reference
gene for all reactions. The relative mRNA level of WT/
PBS-treated corneas or untreated PECs/LECs was used as
normalized control. All assays were performed in tripli-
cate, and a nontemplate control was included in all
experiments to exclude DNA contamination. Primer
sequences, product size, and respective annealing temper-
atures are summarized in Table 1.

Corneal Immunohistochemistry

Suture placement was performed in WT, and sutures were left
in place for 2 weeks. Eyes were then enucleated and embedded

Table 1 Primer Used for Real-Time PCR

mRNA Product size (bp) Annealing temperature (�C) Sequence

HPRT (mouse) 163 60e63 F: 50-GTTGGATACAGGCCAGACTTTGTTG-30

R: 50-GATTCAACTTGCGCTCATCTTAGGC-30

TNF-a (mouse) 87 63 F: 50-AGGACTCAAATGGGCTTTCC-30

R: 50-CAGAGGCAACCTGACCACTC-30

IL-1b (mouse) 176 62.4 F: 50-GTCCTGTGTAATGAAAGACGGC-30

R: 50-CTGCTTGTGAGGTGCTGATGTA-30

IL-10 (mouse) 151 63 F: 50-CAGTACAGCCGGGAAGACAATA-30

R: 50-GCATTAAGGAGTCGGTTAGCAG-30

Arginase-1 (mouse) 126 60 F: 50-GCAGAGGTCCAGAAGAATGG-30

R: 50-GTGAGCATCCACCCAAATG-30

CD163 (mouse) 153 60 F: 50-GGCACTCTTGGTTTGTGGAG-30

R: 50-GCCTTTGAATCCATCTCTTGG-30

LYVE-1 (mouse) 198 60 F: 50-GGAAGAATGGCAAAGGTGTC-30

R: 50-CAGGGGATGAAGCCAAGTAG-30

VEGF-A (mouse) 184 60 F: 50-CATGGATGTCTACCAGCGAAG-30

R: 50-CATGGTGATGTTGCTCTCTGAC-30

VEGF-C (mouse) 219 60 F: 50-AGAACGTGTCCAAGAAATCAGC-30

R: 50-ATGTGGCCTTTTCCAATACG-30

VEGF-D (mouse) 86 62.4 F: 50-ATGGCGGCTAGGTGATTCC-30

R: 50-CCCTTCCTTTCTGAGTGCTG-30

HPRT1 (human) 162 60 F: 50-CCTGGCGTCGTGATTAGTG-30

R: 50-GCCTCCCATCTCCTTCATC-30

VEGF-C (human) 163 60 F: 50-GCCTGTGAATGTACAGAAAGTCC-30

R: 50-AATATGAAGGGACACAACGACAC-30

LYVE-1 (human) 138 60 F: 50-GCTTGCTCTCCTCTTCTTTGG-30

R: 50-GCCTTCTCCTCCTTTACTACTTTG-30

F, forward; HPRT, hypoxanthine-guanine phosphoribosyltransferase; LYVE, lymphatic vessel endothelial hyaluronan receptor; R, reverse; TNF, tumor necrosis
factor; VEGF, vascular endothelial growth factor.
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in OCT Tissue Tek Compound and cryosectioned (8 mm
thick). Cryosections were fixed with acetone, blocked in 2%
bovine serum albumin in PBS, and stained overnight with the
respective primary antibodies. Used primary antibodies were
as follows: unconjugated antieIL-10 (Abcam, Cambridge,
UK), fluorescein isothiocyanateeconjugated anti-CD11b
(Serotec, Raleigh, NC), unconjugated antieVEGF-C
(Novus Biologicals, Abingdon, UK), or unconjugated antie
lymphatic vessel endothelial hyaluronan receptor (LYVE)-1
(AngioBio, Del Mar, CA). On the next day, (unconjugated)
primary antibodies were detected with Cy3-conjugated
(Dianova, Barcelona, Spain) or Alexa 488econjugated (Life
Technologies, Carlsbad, CA) secondary antibodies. DAPI was
used for nuclear counterstaining. Images were taken with
a fluorescence microscope (Olympus BX53; Olympus,
Hamburg, Germany).

Generation and Culture of Peritoneal Macrophages

Thioglycollate-induced PECs were collected from the peri-
toneal cavity of WT or LysMCre Stat3fl/fl 3 days after 2 mL
i.p. thioglycollate injection, as previously described.36,39

PECs were washed, resuspended, and cultured at 37�C in
RPMI 1640 medium containing 10% fetal calf serum,
10 mmol/L HEPES, 1 mmol/L nonessential amino acids,
1 mmol/L sodium pyruvate, 2 mmol/L L-glutamine, 100
U/mL penicillin, and 100 mg/mL streptomycin. After
adhesion, nonadherent cells were removed by washing with
culture medium, and adherent cells were then used as
macrophages. Cells collected by this method are F4/80þ

(>90%) and CD11bþ (>99%).12,40 For RNA expression
analyses, cells were incubated in RPMI 1640 medium
containing 100 ng/mL recombinant murine IL-10 (R&D
Systems) for 24 hours, followed by RNA isolation and
real-time PCR.

LEC Culture and Proliferation ELISA

Human adult LECs (PromoCell GmbH, Heidelberg,
Germany) were cultured in EGM2-MV medium containing
5% fetal calf serum. For cell proliferation analysis, a
5-bromo-20-deoxyuridineebased proliferation enzyme-
linked immunosorbent assay (ELISA) was used, as previ-
ously described.36,39,41 Briefly, cells were seeded in a
96-well plate at a density of 4 � 103 cells per well (n Z 6
wells per group) and cultured overnight before medium was
replaced with EGM2-MV medium, 5-bromo-20-deoxyur-
idine, 100 ng/mL VEGF-C, 100 ng/mL IL-10, or a combi-
nation of both. After 48 hours, cells were fixed and stained
according to the manufacturer’s instructions. Colorimetric
analysis was performed with an ELISA reader (Epoch
Microplate Spectrophotometer; BioTek, Bad Friedrichshall,
Germany). The mean extinction of the control wells was
defined as 100%, and the extinction of all wells was then
related to this value (proliferation index). The experiment
was performed twice.

VEGF-C ELISA

Total protein from naive and inflamed corneas of WT and
IL-10�/� mice (four corneas per group, excised without the
limbus) was isolated by Qproteome Mammalian Protein
Prep Kit (Qiagen, Valencia, CA). Protein concentrations
were determined with Pierce BCA Protein Assay Kit
(Thermo Fisher Scientific, Schwerte, Germany). VEGF-C
ELISA was subsequently performed in triplicates with
a mouse VEGF-C ELISA Kit (USCN Life Science
Inc., Wuhan, China), according to the manufacturer’s
recommendations.

Analysis of Inflammatory Corneal Hemangiogenesis
and Lymphangiogenesis

For the assessment of inflammatory corneal hemangio-
genesis and lymphangiogenesis, corneal suture placement
was performed in WT, IL-10�/�, Stat3fl/fl, LysMCre Stat3fl/fl,

Figure 1 IL-10 expression is up-regulated in CD11bþ cells during
corneal inflammation. A: IL-10 mRNA expression after corneal suture
placement. IL-10 mRNA is not detectable in naive, but only in inflamed,
corneas (IL-10 mRNA level on day 2 after suture placement was chosen as the
normalized control for following time points). IL-10 expression decreases
after suture removal (2 weeks after placement; arrow). B: IL-10 protein
expression in corneal CD11bþ cells. Cryosection of inflamed corneas (2 weeks
after suture placement) shows colocalization of CD11b (green) and IL-10
(red). Blue, DAPI nuclear staining. ***P < 0.001. Scale bar Z 40 mm (B).
En, corneal endothelium; Ep, corneal epithelium; St, corneal stroma.
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and WT treated with recombinant murine IL-10 or PBS.
After the indicated time points, corneas (n Z 5 to 10 per
group) were excised, fixed in acetone, blocked with 2%
bovine serum albumin in PBS, and stained overnight with a
LYVE-1 antibody (AngioBio, Del Mar, CA) and in indicated
experiments with a fluorescein isothiocyanateeconjugated
CD31 antibody (Acris Antibodies, Herford, Germany). On
the next day, LYVE-1 was detected with a Cy3-conjugated
secondary antibody (Dianova). Whole mount images were
assembled automatically from 9 to 12 images taken at �100
magnification with a fluorescence microscope (Olympus
BX53). Afterward, the area covered with blood and
lymphatic vessels was detected with an algorithm estab-
lished in the image analyzing program Cell^F (Olympus
Soft Imaging Solutions GmbH, Münster, Germany), as
previously described.42 Briefly, before analysis, gray value
images of the whole mount images were modified by several
filters, and vessels were then detected by threshold setting,
including the bright vessels and excluding the dark back-
ground. The mean vascularized area of control corneas was
defined as 100%, and vascularized areas were then related to
this value.

Analysis of Corneal Immune Cell Infiltration

For the assessment of immune cell infiltration into the
inflamed cornea, corneal suture placement was performed in
WT, IL-10�/�, Stat3fl/fl, LysMCre Stat3fl/fl, and WT treated
with recombinant murine IL-10 or PBS. After the indicated
time points, corneas (n Z 5 per group) were excised and
fixed in acetone, blocked with 2% bovine serum albumin
in PBS, and stained overnight at 4�C with a fluorescein
isothiocyanateeconjugated CD11b antibody (Serotec).
Images of the central cornea were taken at �200 magni-
fication with focus on the subepithelial corneal layer
(Olympus BX53), and CD11bþ cells were then counted.

Statistical Analysis

Statistical analyses were performed with Microsoft Excel
2010 (Microsoft Corp., Redmond, WA) and InStat version
3.06 (GraphPad Software Inc., San Diego, CA). Statistical
significance was determined using the t-test. P < 0.05 was
considered statistically significant. Graphs were drawn
using Prism4 version 4.03 (GraphPad Software Inc.).

Figure 2 Gene expression pattern of macrophages after IL-10 stimulation indicates anti-inflammatory and prolymphangiogenic phenotype and autocrine
amplification cascade. Thioglycollate-activated peritoneal macrophages were incubated with 100 ng/mL IL-10. After 24 hours, mRNA expression of IL-1b (A),
tumor necrosis factor (TNF)-a (B), IL-10 (C), arginase-1 (D), CD163 (E), lymphatic vessel endothelial hyaluronan receptor (LYVE)-1 (F), vascular endothelial
growth factor (VEGF)-A (G), VEGF-C (H), and VEGF-D (I) was analyzed. IL-1b expression remains unaltered, whereas TNF-a expression is significantly reduced by
IL-10. Expression levels of IL-10, arginase-1, CD163, and LYVE-1 are significantly up-regulated after stimulation with IL-10. VEGF-A expression decreases,
whereas VEGF-C expression is significantly up-regulated by IL-10. VEGF-D expression remains unchanged. **P < 0.01, ***P < 0.001.
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Results

IL-10 Expression Is Up-Regulated in CD11bþ Cells
during Corneal Inflammation

It is unclear whether IL-10 is involved in inflammatory
responses at the cornea. We therefore analyzed the
expression of IL-10 in healthy and inflamed corneas after
corneal suture placement in mice, which is a well-defined
and established model to induce sterile corneal inflamma-
tion dominated by the influx of macrophages.12,37,39 In
healthy corneas, IL-10 mRNA was not measurable. How-
ever, 2 days after suture placement, IL-10 mRNA was
induced in inflamed corneas and was further up-regulated
during the time course of the inflammatory response
(1 week: �9.1, P < 0.001; 2 weeks: �29.5, P < 0.001)
(Figure 1A). After suture removal (2 weeks after place-
ment), IL-10 mRNA expression declined and was compa-
rable to uninflamed corneas (1 week after suture removal:
�0.7) (Figure 1A). To further verify IL-10 expression on
protein level and to identify the IL-10eexpressing cell type,
we additionally performed immunohistochemistry on
corneal sections obtained after suture placement. IL-10
protein expression colocalized with CD11b, which is
mainly expressed by leukocytes, such as macrophages
(Figure 1B). Thus, IL-10 is absent in healthy corneas, but is
highly expressed during corneal inflammation in infiltrating
macrophages.

Gene Expression Pattern of Macrophages after IL-10
Stimulation Indicates Anti-Inflammatory and
Prolymphangiogenic Phenotype and Autocrine
Amplification Cascade

We hypothesized that IL-10 expressed by macrophages
might have an autocrine effect and therefore determined
the impact of IL-10 on peritoneal macrophages (PECs)
in vitro. Stimulation of PECs with recombinant IL-10 did
not affect IL-1b expression, as determined by real-time
PCR analysis (�1.1; P Z 0.4293) (Figure 2A), whereas
tumor necrosis factor (TNF)-a expression was signifi-
cantly reduced (�0.6, P < 0.001) (Figure 2B). IL-10
expression was significantly increased after IL-10 stimu-
lation (�2.5, P < 0.001) (Figure 2C), indicating a positive
feedback loop. Furthermore, arginase-1 and CD163,
markers for anti-inflammatory macrophages, were signifi-
cantly up-regulated after IL-10 stimulation (arginase-1:
�9.6, P < 0.001; CD163: �4.6, P < 0.001) (Figure 2, D
and E). Likewise, we also detected a significant up-
regulation of LYVE-1 (�2.0, P < 0.01) (Figure 2F),
which is usually expressed by lymphatic vascular endo-
thelial cells and by an incompletely defined macrophage
subpopulation implicated in inflammatory hemangio-
genesis and lymphangiogenesis.12,43 In addition, we
determined the expression of VEGF-A, a mainly prohe-
mangiogenic growth factor, and VEGF-C and VEGF-D,

which predominantly induce the growth of lymphatic
vessels. After IL-10 stimulation of PECs, VEGF-A expres-
sion decreased (�0.7, P < 0.001) (Figure 2G).
Interestingly, expression of the major prolymphangiogenic
growth factor VEGF-C was significantly up-regulated
by IL-10 (�1.6, P < 0.001) (Figure 2H). VEGF-D
expression in PECs was low and remained unchanged
after IL-10 stimulation (�1.0, P Z 0.9805) (Figure 2I).
Thus, IL-10 leads to an anti-inflammatory, antiheman-
giogenic, but surprisingly prolymphangiogenic phenotype
of macrophages.

IL-10þ Corneal Macrophages Coexpress VEGF-C and
LYVE-1

We next analyzed whether IL-10þ macrophages also
express prolymphangiogenic factors in the cornea. Immu-
nohistochemical stainings on inflamed corneas 2 weeks after
suture placement showed that IL-10 expression colocalized
with VEGF-C and LYVE-1 expression (Figure 3, A and B).
Thus, IL-10þ corneal macrophages might be able to
contribute to corneal lymphangiogenesis via expression of
these factors.

Figure 3 IL-10þ corneal macrophages coexpress vascular endothelial
growth factor (VEGF)-C (A) and lymphatic vessel endothelial hyaluronan
receptor (LYVE)-1 (B). Cryosections of inflamed corneas (2 weeks after suture
placement) show colocalization of IL-10 with VEGF-C and LYVE-1. A: IL-10
(red), VEGF-C (green); additional VEGF-C positivity is detectable in the
corneal epithelium. B: IL-10 (red), LYVE-1 (green); additional LYVE-1 posi-
tivity is detectable in corneal lymphatic vessels. Blue indicates DAPI nuclear
staining. Scale barZ 30 mm (A and B). En, corneal endothelium; Ep, corneal
epithelium; St, corneal stroma.
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IL-10eDeficient Mice Show Less Prolymphangiogenic
Growth Factor Expression and Reduced Corneal
Lymphangiogenesis after an Inflammatory Stimulus

We next sought to test the prolymphangiogenic effect of IL-10
in vivo and therefore performed corneal suture placement
in mice deficient in IL-10 (IL-10�/�). Naive corneas of
IL-10�/� mice showed similar mRNA expression levels of
VEGF-A and VEGF-C when compared with WT littermates
(VEGF-A: �1.1; VEGF-C: �1.2) (Figure 4, A and B). After
suture placement, IL-10�/� showed an increase in corneal
VEGF-A levels that was comparable to WT (IL-10�/�:
�2.8 versus WT: �2.7) (Figure 4A). However, the increase
of corneal VEGF-C mRNA expression after suture place-
ment was significantly lower in IL-10�/� mice when
compared with WT (IL-10�/�: �1.9 versus WT: �2.4;
P < 0.01) (Figure 4B). Consistently, the increase of corneal
VEGF-C protein expression after suture placement was also

reduced in IL-10�/� when compared with WT (IL-10�/�:
mean m Z 114.1 pg/mL versus WT: mean Z 332.1 pg/
mL; P < 0.01) (Figure 4C). In addition, morphometric
analysis of corneal whole mounts after suture placement
revealed that hemangiogenesis was not altered in IL-10�/�

mice (mean Z þ8.7%, SD Z 34.3%) (Figure 4, DeF),
whereas lymphangiogenesis was significantly reduced in
inflamed corneas of IL-10�/� mice (mean Z �28.0%,
SD Z 24.2%; P < 0.05) (Figure 4, GeI). Therefore, loss of
IL-10 results in less corneal VEGF-C expression, leading to
reduced corneal lymphangiogenesis after an inflammatory
stimulus.

IL-10 Does Not Directly Affect Proliferation of LECs

Our results point to an indirect regulation of inflammatory
corneal lymphangiogenesis by IL-10 via macrophages. To
analyze whether IL-10 also directly regulates LECs, we

Figure 4 Inflammatory corneal hemangiogenesis and lymphangiogenesis in IL-10edeficient mice. A and B: Vascular endothelial growth factor (VEGF)-A
and VEGF-C mRNA expression in naive and inflamed corneas (2 weeks after suture placement) was assessed in wild-type (WT) and in IL-10edeficient mice
(IL-10�/�). After suture placement, IL-10�/� shows an increase in corneal VEGF-A mRNA levels that is comparable to WT, whereas the increase in corneal VEGF-
C mRNA levels is significantly lower in IL-10�/� compared with WT. C: VEGF-C protein levels are significantly reduced in IL-10�/� compared with WT after
suture placement. DeI: Two weeks after suture placement, corneal hemangiogenesis (DeF) is not altered, whereas corneal lymphangiogenesis (GeI) is
significantly reduced in IL-10�/� compared with WT [corneal whole mounts; blood vessels stained with CD31 (green) and lymphatic vessels stained with LYVE-1
(red)]; Arrowheads in G and H indicate corneal lymphatic vessels. *P < 0.05, **P < 0.01. Scale bar Z 1 mm (D, E, G, and H).
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incubated LECs with VEGF-C, IL-10, or a combination of
both, and measured cell proliferation by ELISA. VEGF-C
significantly increased LEC proliferation (mean Z 19.7%,
SD Z 18.2%; P < 0.01), whereas IL-10 showed no effect
(mean Z 2.2%, SD Z 8.4%). Furthermore, IL-10 did not
affect the VEGF-Cemediated increase in LEC proliferation
(mean Z 16.8%, SD Z 14.6%; P < 0.01) (Supplemental
Figure S1A). In addition, we also determined whether IL-10
regulates VEGF-C and LYVE-1 expression in LECs.
Incubation of LECs with IL-10 did not result in significant
VEGF-C and LYVE-1 mRNA expression changes, as deter-
mined by real-time PCR (VEGF-C: �1.0; LYVE-1: �1.2)
(Supplemental Figure S1, B and C). Incubation of LECs with
VEGF-C also had no significant effect on VEGF-C and
LYVE-1 expression (VEGF-C: �0.9; LYVE-1: �1.1)
(Supplemental Figure S1, B and C). Therefore, we concluded
that IL-10 has no direct effect on the proliferation of LECs and
does not directly affect VEGF-C and LYVE-1 expression in
LECs.

IL-10 Deficiency Leads to Persistent Corneal
Inflammation in Vivo

Studies in several extraocular tissues, such as the skin, the in-
testine, and cartilage, have shown that lymphatic vessels play an
important role in the resolution of inflammatory responses,
and that inflammation persists in absence of lymphatic
vessels.23,44,45 We therefore hypothesized that modulation
of lymphangiogenesis by IL-10 might also influence the

inflammatory state of the cornea, because fewer lymphatic
vessels might lead to retention of inflammatory cells within the
cornea. Therefore, we compared the expression of proin-
flammatory cytokines and the numbers of inflammatory cells of
IL-10�/� and WT corneas. Naive corneas of IL-10�/� mice
showed similar expression levels of IL-1b and TNF-a when
compared with WT littermates (IL-1b: �1.4; TNF-a: �0.9)
(Figure 5, A and B). However, after suture placement, IL-1b
and TNF-a expression increased to significantly higher levels in
IL-10�/� compared with WT (IL-1b: IL-10�/�:�225.4 versus
WT: �123.4; P < 0.001; TNF-a: IL-10�/�: �4.7 versus WT:
�3.0; P < 0.001) (Figure 5, A and B). After suture removal,
IL-1b and TNF-a expression levels persisted on significantly
higher levels in IL-10�/� when compared with WT (IL-1b:
IL-10�/�: �2.5 versus WT: �1.0; P < 0.01; TNF-a:
IL-10�/�: �1.4 versus WT: �1.0; P < 0.05) (Figure 5, A
and B). In addition, the numbers of corneal CD11bþ cells in
naïve IL10�/� and WT corneas were similar (IL-10�/�:
mean Z 61.5, SD Z 11.9 versus WT: mean Z 56.8,
SD Z 4.6, cells per visual field) (Figure 5, C and D).
However, after suture placement, the numbers of corneal
CD11bþ cells increased to a significantly higher extent in
IL-10�/� compared with WT (IL-10�/�: mean Z 232.8,
SDZ 26.3 versusWT: meanZ 194.2, SDZ 15.1, cells per
visual field; P < 0.05) (Figure 5, E, F, and I). Moreover, 1
week after suture removal, corneal CD11b numbers per-
sisted on significantly higher levels in IL-10�/� compared
with WT (IL-10�/�: meanZ 131.8, SDZ 16.0 versus WT:
mean Z 96.8, SD Z 17.0, cells per visual field; P < 0.01)

Figure 5 Persistent corneal inflammation in
IL-10edeficient mice. A and B: IL-1b (A) and
tumor necrosis factor (TNF)-a (B) mRNA expres-
sion in naive and inflamed corneas (2 and 3 weeks
after suture placement) was assessed in wild-type
(WT) and IL-10 deficient mice (IL-10�/�). After
suture placement, IL-1b and TNF-a expression in-
creases to significantly higher levels in IL-10�/�

compared with WT. Furthermore, after suture
removal (2 weeks after placement), IL-1b and TNF-
a expression levels persist on significantly higher
levels. C and D: Corneal CD11bþ cell numbers in
naïve IL-10�/� (D) and WT (C) are comparable. E
and F: Two weeks after suture (a.s.) placement,
corneal CD11bþ cell numbers increase to a signif-
icantly higher extent in IL-10�/� (F) compared
with WT (E). G and H: One week after suture
removal (2 weeks after placement), corneal CD11b
numbers persist on significantly higher levels in
IL-10�/� (H) compared with WT (G). I: Quantifi-
cation of CD11b numbers during corneal inflam-
mation. Arrows in A, B, and I: Suture removal was
performed after 2 weeks. *P < 0.05, **P < 0.01,
and ***P < 0.001. Scale bar Z 20 mm (CeH).
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(Figure 5, GeI). Thus, IL-10 deficiency leads to a more
severe inflammatory response at the cornea, which even
persists after the inflammatory stimulus has been removed.

Conditional Deletion of Stat3 in Myeloid Cells Leads to
Decreased Corneal Lymphangiogenesis and Increased
Corneal Inflammation

It has previously been shown that Stat3 plays an important
role in IL-10 signaling.28,34,46 To analyze whether the pro-
lymphangiogenic effect of IL-10 in macrophages also de-
pends on Stat3, we used macrophages isolated from mice in
which Stat3 is conditionally deleted in the myeloid cell

lineage (LysMCre Stat3fl/fl). IL-10 treatment of PECs isolated
from LysMCre Stat3fl/fl did not result in a significant up-
regulation of the mRNA expression of VEGF-C and
LYVE-1 (VEGF-C: �1.0, LYVE-1: �1.2) (Figure 6, A and
B), indicating that the stimulatory effect of IL-10 on VEGF-C
and LYVE-1 expression depends on Stat3. In addition, we
performed corneal suture placement in LysMCre Stat3fl/fl and
Stat3fl/fl. Importantly, LysMCre Stat3fl/fl showed less corneal
lymphangiogenesis when compared with control Stat3fl/fl

(meanZ�25.4%, SDZ 10.6%; P< 0.01) (Figure 6, CeE).
Furthermore, LysMCre Stat3fl/fl showed higher inflammatory
cell numbers when compared with control Stat3fl/fl (LysMCre
Stat3fl/fl: mean Z 220.0, SD Z 14.4 versus Stat3fl/fl:

Figure 6 Conditional ablation of Stat3 in myeloid cells leads to decreased corneal lymphangiogenesis and increased corneal inflammation. A and B: Absent
up-regulation of prolymphangiogenic factors in lysozyme M Cre (LysMCre) Stat3fl/fl macrophages. Thioglycollate-activated peritoneal macrophages isolated from
LysMCre Stat3fl/fl mice were stimulated with 100 ng/mL IL-10. After 24 hours, mRNA expression levels of vascular endothelial growth factor (VEGF)-C (A) and
lymphatic vessel endothelial hyaluronan receptor (LYVE)-1 (B) remain unchanged when compared with unstimulated macrophages. C and D: Two weeks after
suture placement, corneal lymphangiogenesis is significantly reduced in LysMCre Stat3fl/fl (D) compared with Stat3fl/fl (C) (corneal whole mounts; lymphatic
vessels stained with LYVE-1). E: Quantification of corneal lymphangiogenesis. F and G: Two weeks after suture placement, corneal CD11bþ cell numbers increase to
a significantly higher extent in LysMCre Stat3fl/fl (G) compared with Stat3fl/fl (F). H: Quantification of corneal CD11b numbers. **P < 0.01. Scale bars: 1 mm
(C and D); 20 mm (F and G). PEC, peritoneal exudate cell.
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mean Z 190.4, SD Z 13.0, cells per visual field; P < 0.01)
(Figure 6, FeH). Thus, our results show that the prolym-
phangiogenic polarization of macrophages by IL-10 depends
on Stat3. Furthermore, specific deletion of Stat3 in macro-
phages is sufficient to resemble the corneal phenotype of
IL-10�/�mice, confirming the crucial role of IL-10 signaling
in macrophages for the regulation of corneal lymphangio-
genesis and inflammation.

Local Treatment with IL-10 Promotes
Lymphangiogenesis and the Resolution of Corneal
Inflammation

Because we had demonstrated that IL-10 regulates corneal
lymphangiogenesis and corneal inflammation, we next inves-
tigated whether its effects can be used therapeutically to pro-
mote the resolution of the inflammatory response at the cornea.
For this purpose, we placed corneal sutures in WT mice, which
were left in place for 2 weeks until the inflammatory and
lymphangiogenic response was reported to reach its
maximum.37,38 Subsequently, sutures were removed and mice
were treated with repeated subconjunctival injections of re-
combinant IL-10. After 1 week of treatment, the amounts of
corneal lymphatic vessels and inflammatory cells were deter-
mined. Corneal lymphangiogenesis increased in IL-10etreated
corneas when compared with PBS-treated corneas, although it
reached no significance (mean Z 22.2%, SD Z 35.6%)

(Figure 7, AeC). Moreover, CD11bþ cell numbers signifi-
cantly decreased in IL-10etreated corneaswhen comparedwith
PBS-treated corneas (IL-10 treated: meanZ 130.0, SDZ 27.9
versus PBS treated: meanZ 177.0, SDZ 18.7, cells per visual
field; P < 0.05) (Figure 7, DeF).
Thus, local treatment with IL-10 seems to modulate

lymphangiogenesis and leads to higher egress of inflam-
matory cells from the cornea, resulting in a faster resolution
of corneal inflammation.

Discussion

Herein, we determined the role of IL-10 in inflammatory
lymphangiogenesis and the resolution of inflammation using
the cornea as a model system. Our results show that IL-10 is
not detectable in healthy, but only in inflamed, corneas, and
that IL-10 is expressed by infiltrating CD11bþ cells, which
are mainly corneal macrophages.12,37,39 It is well known
that IL-10 results in an anti-inflammatory macrophage
phenotype.13,29 We therefore analyzed changes in gene
expression in IL-10estimulated macrophages. Consistent
with previous studies,47e49 we found that IL-10 reduced the
expression of the proinflammatory cytokine TNF-a and up-
regulated the expression of arginase-1 and CD163, which
are markers for anti-inflammatory macrophages. VEGF-A
expression was reduced in IL-10estimulated macrophages.

Figure 7 Local treatment with IL-10 promotes lymphangiogenesis and the resolution of corneal inflammation. Two weeks after suture placement in wild-
type mice, sutures were removed and mice were treated subconjunctivally with recombinant murine IL-10. A and B: Corneal lymphangiogenesis is slightly
increased in IL-10etreated corneas (B) when compared with phosphate-buffered saline (PBS)etreated corneas (A), although reaching no significance [corneal
whole mounts; lymphatic vessels stained with lymphatic vessel endothelial hyaluronan receptor (LYVE)-1]. C: Quantification of corneal lymphangiogenesis
after IL-10 treatment. D and E: After 1 week of treatment, CD11b numbers are significantly lower in IL-10etreated corneas (E) when compared with
PBS-treated corneas (D). F: Quantification of CD11b numbers after IL-10 treatment. *P < 0.05. Scale bars: 1 mm (A and B); 20 mm (D and E).
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Interestingly, expression of the major prolymphangiogenic
growth factor VEGF-C was up-regulated in IL-10etreated
macrophages. Furthermore, LYVE-1 was also up-regulated,
which is particularly interesting because LYVE-1þ macro-
phages seem to be capable to transdifferentiate and integrate
into preexisting lymphatic vessels.12,43,50 In addition, it is
possible that expression of LYVE-1, which is a hyaluronan
receptor,51 might facilitate migration of LYVE-1þ macro-
phages through hyaluronan-rich extracellular matrices and
might contribute to the generally increased tissue motility of
anti-inflammatory macrophages.52,53 In addition, it was
recently demonstrated that LYVE-1 interacts with fibroblast
growth factor-2, a potent prolymphangiogenic growth fac-
tor.54,55 The interaction of LYVE-1 with fibroblast growth
factor-2 might also affect the migration of macrophages
through fibroblast growth factor-2erich extracellular
matrices. Nevertheless, the exact role of LYVE-1 in the
regulation of macrophage motility is still undetermined. So
far, studies analyzing LYVE-1 function have mainly focused
on LYVE-1 expression in LECs and only to a lesser extent
on LYVE-1 expression in macrophages. In this context, it is
also unknown whether LYVE-1 contributes to tissue homing
of macrophages. Nonetheless, LYVE-1eexpressing macro-
phages have recently been detected in a variety of tissues and
organs,43,56e58 and a better understanding of LYVE-1 func-
tion in macrophages is expected for the near future.

We demonstrated that inflammatory corneal lym-
phangiogenesis was reduced in IL-10�/� after corneal suture
placement, further supporting our hypothesis that IL-10 has
prolymphangiogenic properties in vivo. LEC proliferation or
LEC gene expression was not directly affected by IL-10,
indicating that the effects of IL-10 on lymphangiogenesis
are mainly indirect via VEGF-Cesecreting, anti-
inflammatory macrophages. This is strongly supported by
the reduction of corneal lymphangiogenesis in LysMCre
Stat3fl/fl, where IL-10 does not result in up-regulation of
VEGF-C expression in macrophages. IL-10estimulated
prolymphangiogenic macrophages might promote lym-
phangiogenesis to support their egress from the inflamed
site via lymphatic vessels. Consistent with this hypothesis,
we observed increased inflammatory cell numbers and more
severe inflammation in corneas of IL-10�/� and LysMCre
Stat3fl/fl, whereas local treatment with IL-10 resulted in
decreased corneal inflammatory cell numbers. On the basis
of our findings, we propose that during the corneal inflam-
matory response, IL-10 leads to an anti-inflammatory, pro-
lymphangiogenic polarization of macrophages that induces
the activation and growth of lymphatic vessels, which, in
turn, support the egress of inflammatory cells and the
termination of the local inflammatory response. Because
IL-10 stimulation leads to a further up-regulation of IL-10 in
macrophages, there seems to be an autocrine amplification
cascade incited by IL-10, leading to the termination of
inflammation. Nonetheless, our experiments cannot fully
rule out that the observed changes in inflammatory cell
numbers might also occur independent of lymphatic vessels.

So far, corneal lymphangiogenesis has mainly been
investigated in the context of dry eye disease, ocular allergy,
and graft rejection after corneal transplantation.19e21 In
these inflammatory diseases, lymphatic vessels grow
secondarily into the cornea and seem to enable effective
access of antigen-presenting cells to regional lymph nodes,
where accelerated antigen sensitization occurs.5,59 Thus,
corneal lymphangiogenesis is mostly considered as harmful,
which has led to the development of antilymphangiogenic
treatment strategies as a rational and important therapeutic
concept in ocular surface diseases.37,60 In contrast, a physio-
logical, nonpathological function for corneal lymphatic
vessels has not been described so far. However, studies in
extraocular tissues implicate that lymphatic vessels are
important for the termination of physiological inflammatory
responses, and that lymphatic vessel activation can
ameliorate eg, skin or intestinal inflammation.24,61 Like-
wise, our results indicate that lymphatic vessels also have
physiological functions at the cornea and also affect the
course of corneal inflammation. Therefore, prolym-
phangiogenic agents might be therapeutically used to
stimulate corneal lymphatic vessels and thereby the faster
resolution of corneal inflammation. For this purpose, local
treatment with IL-10 might be considered as a promising
option to promote lymphangiogenesis to terminate inflam-
matory responses at the cornea.

In summary, we have demonstrated that IL-10 indirectly
regulates corneal lymphangiogenesis and the resolution of
inflammatory responses via prolymphangiogenic polarized
macrophages. This may further support the egress of mac-
rophages from the inflamed tissue via lymphatic vessels and
help to terminate an ongoing inflammatory response. IL-10
might be used therapeutically to terminate pathological
corneal inflammation.
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