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Summary 
The term protist describes an informal grouping of unicellular eukaryotic organisms that do not form 

tissues. With a tremendous diversity in morphology and ecology, they represent the vast majority of 

eukaryotic heterogeneity of which only a small fraction is yet known. Ubiquitously dispersed in 

marine, freshwater and terrestrial habitats they occupy various ecological niches as e.g. primary 

producers, osmotrophs, bacterivores, fungivores, algivores, omnivores, predators or parasites of e.g. 

animals and plants. However, methodological drawbacks in culturing impeded research of protists. 

Research focused on the easily culturable taxa, especially bacterivores and algae, leading to a skewed 

image of protist diversity and many ‘unculturable’ protist taxa are still unknown to science.  

Therefore we focused on protists with unusual feeding types (in particular bacterivorous sit-and-wait 

predators and eukaryvorous predators) in the phylum Cercozoa. The Cercozoa CAVALIER-SMITH 

1998, were discovered to be closely related based on molecular analyses although being highly 

divergent in morphology and ecology. Molecular surveys revealed a high genetic diversity in the 

Cercozoa of which only a small fraction can yet be linked to morphological data. Based on culture 

material, cell morphology, feeding processes and life history stages of several cercozoan amoebae 

have been studied by us. This was achieved by using mainly light microscopy and time-lapse 

photography but also ultra structure data was obtained. Genetic markers, e.g. SSU rDNA and LSU 

rDNA were subjected to phylogenetic analyses to draw conclusions on cercozoan evolution.  

Based on six isolates from German and Spanish soils a novel lineage of bacterivorous amoebae was 

described. Kraken carinae gen. nov. sp. nov. is an amoeba distinguished by a scale bearing cell body 

(usually <10 µm in diameter) and a network of filopodia (up to 0.5 mm in diameter). K. carinae is one 

of the few known sit-and-wait predators in the Cercozoa, preying on bacteria that get in contact with 

its large filopodia network. Unlike other cercozoan amoebae that usually use the filopodia to drag 

prey to their cell bodies for ingestion, K. carinae ingests bacteria directly at the point of contact and 

transports them through the filopodia to the cell body for digestion. SSU rDNA phylogeny showed an 

affinity to the order Cercomonadida in the class Sarcomonadea with only weak support, but a 

concatenated approach, by combining SSU rDNA and LSU rDNA sequences, confirmed the results 

with higher (though still moderate) support, in particular with the family Paracercomonadidae. 

However, Kraken carinae still remains incertae sedis as ultrastructure revealed the presence of 

scales, a morphological character predominantly known from the class Imbricatea, contradicting the 

phylogenetic results.  

By combining literature research with phylogenetic examination focusing on Lecythium (HERTWIG et 

LESSER, 1874) and its family the Chlamydophryidae (DE SAEDELEER 1934) we were able to clarify the 

confusing taxonomy of genera like Plagiophrys, Lecythium, Rhizaspis and others. All of these 

amoebae bear a flexible organic theca, branching and anastomosing filopodia. However, they differ 

in cell shape and show species (or strain) specific feeding preferences. SSU rDNA phylogenies 

reflected the phenotypic differences between those genera but also revealed surprising results: The 

genera Lecythium (Novel Clade 4) and Rhizaspis (Tectofilosida) were polyphyletic and had to be 

separated, resulting in a secession of Fisculla gen. nov. (Tectofilosida) from Lecythium and Sacciforma 

gen. nov. (Cryomonadida) from Rhizaspis.  
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As these thecofilosean amoebae, similar to the predominantly known eukaryvores in the Cercozoa, 

the Vampyrellida, have been shown to be eukaryvorous, we further focused on eukaryvorous protists 

in terrestrial habitats, by investigating (a) their feeding preferences (b) their physiological 

requirements to consume eukaryotic prey and (c) their dispersal in terrestrial and freshwater 

systems. This was achieved by conducting thorough sampling, observing individuals in their unaltered 

sample (if possible) and performing experiments on feeding preference, chemical sensing, and 

enzyme production with several omnivorous or eukaryvorous Cercozoa. In laboratory experiments, 

we could show that the eukaryvorous protist Fisculla terrestris is able to sense and select its 

preferred prey and produce a battery of enzymes needed to digest cell wall compounds of 

eukaryotes, such as chitin. F. terrestris preferred fungal prey (in particular Saccharomyces cerevisiae) 

and only fed to a small extend on algae. To get more insight into the dispersal of eukaryvorous 

protists in terrestrial systems, we screened metatranscriptomes of different terrestrial habitats for 

the eukaryvorous Vampyrellida and Grossglockneriidae, showing high dispersal, since they were 

present in all screened habitats, with up to 3% of total reads. 

The phenotypic, phylogenetic and ecologic data on the investigated cercozoan amoebae resulted in a 

comprehensive characterization of the Thecofilosea and the novel lineage Krakenidae. Based on 

intensive literature research and a critical evaluation of it, first steps for a phylogeny-based taxonomy 

of these cercozoan lineages were made. Finally, this thesis provides an evaluation of the hidden 

diversity of eukaryvorous Cercozoa in terrestrial and freshwater habitats.  
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Zusammenfassung 

Der Begriff Protist beschreibt einzellige, eukaryotische Organismen die kein Gewebe ausbilden. Mit 

einer enormen Mannigfaltigkeit in Morphologie und Ökologie repräsentieren sie die Mehrheit der 

eukaryotischen Diversität, von der bisher nur ein kleiner Teil bekannt ist. Weltweit verbreitet, in 

marinen, limnischen und terrestrischen Habitaten, besetzen sie unzählige ökologische Nischen, z. B. 

als Primärproduzenten, Osmotrophen, Bakterivoren, Fungivoren, Algivoren, Omnivoren, Prädatoren 

oder Parasiten z. B. von Tieren und Pflanzen. Probleme im Kultivieren von Protisten sorgten 

allerdings für eine bevorzugte Erforschung von Bakterivoren und Algen, was zu einem verzerrten 

Abbild der Protistendiversität führte. Viele „nicht kultivierbare“ Protisten Taxa sind der Forschung  

noch immer unbekannt. 

Deshalb befassten wir uns mit Protisten mit unüblichen Ernährungsweisen (insbesondere bakterivore 

Lauerjäger und eukaryvore Räuber) in den Cercozoa. Die Cercozoa CAVALIER-SMITH 1998, wurden 

aufgrund von molekularen Untersuchungen als phylogenetische Entität entdeckt obwohl sie starke 

Unterschiede in Morphologie und Ökologie aufweisen. Molekulare Untersuchungen deckten eine 

hohe Diversität in den Cercozoa auf, von der bisher nur ein geringer Bruchteil mit morphologischen 

Daten verknüpft werden kann. Auf Basis von angelegten Kulturen wurden Zellmorphologie, 

Ernährungsweise und Zellzyklen von verschiedenen cercozoen Amöben untersucht. Dafür wurden 

hauptsächlich Lichtmikroskopie und Zeitraffer-Mikrofotographie und auch durch 

Ultrastrukturaufnahmen Daten erhoben. Genetische Marker, d. h. SSU rDNA und LSU rDNA, wurden 

sequenziert und für phylogenetische Untersuchungen genutzt, um Rückschlüsse über die Evolution 

der Cercozoa zu ziehen. 

Von einer unbeschriebenen bakterivoren Amöbe wurden sechs Stämme aus deutschen und 

spanischen Böden isoliert. Kraken carinae gen. nov. sp. nov. ist eine Amöbe, unterteilt in einen 

schuppentragenden Zellkörper (normalerweise <10 µm im Durchmesser) und ein Netzwerk aus 

Filopodien (bis zu 0,5 mm im Durchmesser). K. carinae ist einer der seltenen Lauerjäger der Cercozoa, 

sie bewegt sich nur selten und erbeutet Bakterien, die mit ihrem Netzwerk aus Filopodien in Kontakt 

kommen. Anders als andere amöboide Vertreter der Cercozoa, die üblicherweise ihre Filopodien 

nutzen, um ihre Beute zum Zellkörper zu ziehen und dann zu phagozytieren, ingestiert K. carinae 

Bakterien direkt am Kontaktpunkt der Beute mit den Filopodien und transportiert diese dann 

intrazellulär zum Zellkörper um sie dort zu verdauen. SSU rDNA Phylogenie zeigte eine nähere 

Verwandtschaft mit den Cercomonadida auf, wenn auch  nur mit mäßiger statistischer 

Unterstützung. Ein weiterer Anlauf, diesmal mit verketteten SSU rDNA und LSU rDNA Sequenzen, 

bestätigte die Verwandtschaft zu den Cercomonadida, insbesondere mit den Paracercomonadidae, 

mit erhöhter (aber dennoch nur moderater) statistischer Unterstützung. Allerdings bleiben die 

genaue Verwandtschaftsverhältnisse von Kraken carinae immernoch unklar, da die 

Ultrastrukturdaten konträr zu den phylogenetischen Ergebnissen, auf eine nähere Verwandtschaft 

mit den Imbricatea hinweisen, da Kraken carinae genau wie sie Schuppen auf dem Zellkörper trägt. 

Durch die Kombination von intensiver Literaturrecherche mit phylogenetischen Untersuchungen von 

Lecythium (HERTWIG et LESSER, 1874) und seiner Familie, der Chlamydophryidae (DE SAEDELEER 

1934) konnten wir die unklare Taxonomie von Gattungen wie (Plagiophrys, Lecythium, Rhizaspis, …) 

enträtseln. All diese Amöben haben gemeinsam, dass sie eine hyaline flexible Schale tragen und 

verästelnde und anastomisierende Filopodien aufweisen, aber haben auch klare Unterschiede 

zueinander. SSU rDNA Phylogenien haben die phänotypischen Unterschiede zwischen den Gattungen 
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widergespiegelt, bargen aber auch Überraschungen: Die Gattungen Lecythium (Novel Clade 4) und 

Rhizaspis (Tectofilosida) waren beide polyphyletisch und mussten daher geteilt werden. Daher 

wurden Fisculla gen. nov. (Tectofilosida) von Lecythium und Sacciforma gen. nov. (Cryomonadida) 

von Rhizaspis abgetrennt. Weiterhin zeigen diese Schalenamöben, ähnlich wie die meistbekannten 

Eukaryvoren in den Cercozoa, die Vampyrellida, eukaryvores Verhalten. Deshalb führten wir weitere 

Studien über die Ökologie von eukaryvoren Protisten in terrestrischen Habitaten durch. Vor allem 

geben wir Einsicht auf (a) ihre Nahrungspräferenzen, (b) den physiologischen Voraussetzungen, um 

eukaryotische Beute zu konsumieren und (c) ihrer Verbreitung in terrestrischen und limnischen 

Systemen. Dazu wurden umfassende Probenahmen, gefolgt von Experimenten durchgeführt, welche 

Fütterungsversuche und Experimente über die chemische Wahrnehmung und Enzymproduktion  mit 

diversen omnivoren oder eukaryvoren Cercozoa umfassten. Wir konnten zeigen, dass die eukaryvore 

Amöbe Fisculla terrestris fähig ist, die Anwesenheit ihrer bevorzugten Beute (Saccharomyces 

cerevisiae) wahrzunehmen und darauf zu selektieren. Außerdem produzieren sie eine Auswahl an 

Enzymen zum Abbau der Zellwand der Beute, wie z. B. Chitin. Um mehr Einblick auf die Verbreitung 

von terrestrischen Eukaryvoren zu erhalten, durchsuchten wir Metatranskriptom-Datenbanken von 

verschiedenen terrestrischen Habitaten nach den eukaryvoren Vampyrellida und Grossglockneriidae, 

die auf eine weite Verbreitung von Vampyrellida und Grossglockneriidae hinwiesen, da diese  nicht 

nur in allen überprüften Habitaten nachgewiesen werden konnten, sondern auch bis zu 3% der 

absoluten Sequenzen ausmachten.  

Die phänotypischen und phylogenetischen Daten der untersuchten Amöben der Cercozoa resultieren 

in einer umfassenden Charakterisierung der Thecofilosea und der neuen Familie Krakenidae. Auf 

Grundlage einer intensiven Literaturrecherche und einer kritischen Auswertung dieser im Kontext 

der selbstständig durchgeführten Arbeiten wurden erste Schritte in Richtung einer 

phylogeniebasierten Taxonomie gemacht. Diese Doktorarbeit umfasst weiterhin eine Diskussion über 

die noch unerforschte Diversität der Cercozoa in terrestrischen und limnischen Habitaten. 
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Introduction 

Protists 

The term protist defines an informal grouping of unicellular eukaryotes that do not form 

tissues. Protists represent the vast majority of eukaryotic diversity of which only a small 

fraction is yet known. Despite their estimated 60.000 - 300.000 species (Foissner 2008; Mora 

et al. 2011) with a tremendous diversity in ecology and morphology, they were traditionally 

assigned to the same single eukaryotic kingdom, Protista in the Eukaryota, next to plants, 

animals and fungi (Haeckel 1866; Whittaker 1969). The Protista accommodated therefore 

organisms of fundamentally different lifestyles, like autotrophic and mixotrophic algae, 

heterotrophic bacterial grazers and parasites, but also organisms of diverse appearances, 

like ciliates, flagellates, naked amoebae and testate amoebae. That is why protists were 

shared as a field of research among zoologists, botanists and mycologists. The most animal-

like protists (i.e. heterotrophic protists feeding by means of phagocytosis) were called 

protozoa (proto= first; zoa= animals) and studied by zoologists, whereas pigmented protists 

were adopted by the botanists as protophytes (phytes= plants) and fungi-like protists (like 

the fruiting body forming myxomycetes or the osmotrophic filamentous oomycetes) were 

studied by mycologists. Researchers were well aware that even morphological highly similar 

taxa (e.g. the dinoflagellates or euglenids) comprised heterotrophic protists and also 

photosynthetic algae, but were unable to resolve this issue in a widely accepted taxonomy. 

Since the 18th and 19th century where protists were most often studied by light microscopy, 

novel methods were established: In the early 20th century electron microscopical techniques 

were developed to acquire more detailed morphological data for protist taxonomy, in the 

late 20th century molecular methods enabled the comparison of genetic markers for 

phylogeny.  

The molecular methods led finally to a widely accepted consensus in protist taxonomy (Adl 

et al. 2005, Adl et al. 2012, Baldauf 2008). Protists turned out to be paraphyletic, instead of 

being separated kingdoms, with multicellular eukaryotes nestled in between. Although 

ciliates show monophyletic origin (Lynn and Sogin 1988; Sogin and Elwood 1986), flagellates, 

naked and testate amoebae are dispersed all over the eukaryotic tree of life showing 

paraphyly and polyphyly. For instance, testate amoebae evolved independently in at least 

three different lineages, the Amoebozoa, Cercozoa and Stramenopiles (Kosakyan et al. 2016; 
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Nikolaev et al. 2005; Wylezich et al. 2002). The search for the last eukaryotic common 

ancestor is still ongoing and a highly discussed controversy. Currently it is only accepted that 

the eukaryotic ancestor was probably a heterotrophic flagellate of unknown affiliation, but 

concepts differ about the most basal protist taxon (Baldauf 2008; Stechmann & Cavalier-

Smith 2002). Cavalier-Smith (1981) established the Archezoa, but this grouping of lineages 

he believed to be the most basal protists turned out to be an artifact of long branch 

attraction (Philippe and Germot 2000). Based on rare genetic events like gene fusions and 

fissions it is assumed that the eukaryotes are divided into two groups, the unikonts 

(Opisthokonts and Amoebozoa) and bikonts (the remaining eukaryotic diversity). However, 

still no consensus whether to root the eukaryotes in the unikonts or bikonts could be 

achieved (Baldauf 2008). Nevertheless, it is widely accepted that during eukaryotic evolution 

several lineages lost independently their flagella and evolved locomotion by amoeboid 

movement and/ or gained (or secondarily lost again) autotrophy by endocytobiosis, leading 

to the intermingled ecology and physiology, sometimes even between closely related protist 

taxa (Nowack 2014; Rogers et al. 2007; Stechmann & Cavalier-Smith 2002).  

Heterotrophic protists in soil biology and their feeding types 

Protists, especially in soil ecology, were commonly considered to represent the major bacterial 

grazers, thereby channeling the carbon flow to higher trophic levels (Bonkowski 2004, Crotty et al. 

2011, de Ruiter et al. 1995, Hunt et al. 1987).  

However, these assumptions were derived from simple model calculations, based on laboratory 

experiments with few selected species. Although molecular methods gradually revealed the 

enormous phenotypic and genetic diversity of heterotrophic protists, models on protist functional 

roles have not changed in soil biology (Holtkamp et al. 2011, Banašek-Richter et al.  2009). For 

instance Glücksman et al. (2010) and Weisse et al. (2001) showed that prey (bacteria) communities 

have been altered by protist grazing in a species-specific manner, but still by far most information on 

the impact of protist grazing have been obtained in studies either with whole microbial communities 

in which measured effects can not be traced back to the causing species or in abstract assemblages 

with just one or few selected organisms. Moreover, such studies were most often conducted only 

with exclusively bacterivorous protists. The non-bacterivorous protists have been addressed in very 

few, most often taxonomic studies (Bass et al. 2009; Berney et al. 2013; Foissner 1980; Petz and 

Foissner 1985). Their ecology and functional importance is often not known. 
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Heterotrophic feeding in general needs many evolutionary adaptations. The functional 

response of a heterotrophic protist 

is basically composed of search 

time, handling time, ingestion and 

digestion (Fig. 1). The presumed 

most widespread and maybe 

simplest method of preying 

(eukaryotic and prokaryotic) cells is 

the process of phagocytosis: this 

includes the incorporation of the 

whole prey into a food vacuole, 

adjusting the milieu to unsuitable 

conditions (e.g. increased or 

decreased pH; Laybourn-Parry, 1984) and bombarding this environment with a battery of 

enzymes degrading various compounds (Bowers and Korn 1973; Laybourn-Parry, 1984). The 

two most important advantages of this method are a probably low cost for degrading 

enzymes, as they do not have to be excreted, where they would be highly diluted and once 

ingested prey (usually) can be digested while the predator already can search for a novel 

food source. 

Feeding on eukaryotic cells can be viewed as an additional evolutionary hurdle, as it requires 

a series of adaptations: First of all (and maybe most important), food size relative to its own 

is a crucial factor. Many eukaryotic cells have evolved (sometimes inducible) ways to prevent 

their ingestion by increasing their size by the formation of colonies or filaments (Lampert et 

al. 1994; Van Donk et al. 2011).  

The protection of the cell body by a rigid covering is another common defense strategy that 

repeatedly evolved. For instance such coverings are e.g. cell walls (usually completely 

enclosing the cells, composed of chitin or cellulose, being found mainly in green algae), tests 

(usually with one or two openings, most often built by scales or by agglutinated foreign 

materials, like sand grains embedded in an organic cement, most prominently known from 

testate amoebae) or frustules (two rigid, porous, silica-composed and overlapping sections 

covering the cell, found in diatoms). Those coverings may even (a) bear spines, rods or horns 

Figure 1: Simplified feeding process of a heterotrophic protist.  

Extracted from Adl and Gupta 2006 
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which may also prevent the ingestion by predators or (b) be enveloped by mucilage which 

may prevent adhesion of predatory cells or even impede prey recognition (Van Donk et al. 

2011).  

Next to such morphological defense mechanisms, protists also evolved behavioral defense 

strategies that might be inducible and aggressor-specific, like (a) the production of chemical 

compounds, e.g. toxins; (b) flight, often aided by special organelles, like extrusomes or 

trichocysts, that can be ‘fired’ to the possible predator; (d) metabolic movement that 

enables already ingested prey to stretch and burst food vacuoles, like in Euglena mutabilis 

when being consumed by Actinophrys sp. or a yet undescribed species in the Leptophryidae 

(Hausmann 1978; Potin et al. 1999, Van Donk et al. 2011; Hess pers. comm.; own 

observations unpublished). 

Some specialized predators co-evolved strategies to overcome such defense mechanisms. 

These adaptations are often highly specialized: Large cells, like filaments, even with a thick 

cell wall might be an easy prey if the predator is adapted by morphology and behavior, e.g. 

some ciliates (e.g. Grossglockneriidae; Foissner 1980, 1999) are equipped with a feeding 

tubus for the lysis of fungal cell walls; or some cercozoans (e.g. Vampyrellida; 

Viridiraptoridae; Hess et al. 2012, Hess & Melkonian 2013) are able to perforate algal or 

fungal cell walls by extracellular enzymatic degradation. Moreover, trichocysts or 

extrusomes might also be used by attacking cells (Hausmann 1978). 

Research in protistology is astonishing and still full of surprises; we therefore focus in this 

thesis on heterotrophic protists that show interesting and unusual feeding types.   

 

Culturing heterotrophic protists and its difficulties 

In early times of protistology, protists were predominantly studied by direct observations of 

fresh sampled material. Marine and freshwater samples do not require any preparation thus 

being intensively studied (Hertwig & Lesser 1874; Penard 1890). Soils however, due to being 

opaque, can not be observed directly but need preparation like dilution. Diverse methods 

have been developed, like the most probable number (MPN; Darbyshire et al. 1974) or liquid 

aliquot method (LAM; Butler and Rogerson 1995), all of which have advantages and 

disadvantages. Still today, there is no method that enables an objective unbiased view on 
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soil microorganisms and soil protists are mainly studied by indirect observation of cultured 

material extracted from soil samples. Despite the abstract nature of such observations, 

culturing, i.e. the long term maintenance of single species or strains in an artificial and 

controlled environment, enabled researchers to study complex life cycles, for instance the 

amoebozoan genus Pelomyxa GREEFF 1874, comprises about 20 described species of which 

the validity is still highly discussed (Frolov et al. 2004, 2005, 2006 and 2011). It is currently 

not clear whether all described species are just different stages of the life cycle of Pelomyxa 

palustris (the type species of the genus; Chapman-Andresen 1978, 1982), or how many true 

Pelomyxa species exist (2004, 2005, 2006 and 2011). Another example for protists with 

complex life cycles are the fruiting-body forming amoebae where in many cases the identity 

of fruiting bodies and trophozoites can not be assigned to each other (Tice et al. 2016). Even 

in well studied amoebae, like the Acanthamoebidae, novel life history stages (like fruiting-

bodies) can be discovered (Tice et al. 2016). Finally, cultures enable the conduction of 

laboratory experiments, such as an alteration of environmental variables, i.e. biotic or 

abiotic, enabling conclusions about species autecology, i.e. preferred food sources, necessity 

of certain chemical compounds in the environment and in general conclusions might be 

drawn about several biological aspects, such as their physiology and ecology.  

For bacteria it is estimated that barely 1% of their diversity can be cultured (see for instance: 

Ferrer et al. 2009; Lee et al. 2010). Although many (bacterivorous) protist lineages are easily 

culturable by basically transferring single individuals into water with a carbon source, the 

vast majority has highly specific requirements (Page 1976). Therefore it would not be 

surprising to find a similar pattern for protists; and indeed culturing protists differs in the 

degree of difficulty and is strongly depended of the requirements of the targeted species. 

Besides abiotic conditions like medium composition and temperature, it seems obvious that 

heterotrophic protists need a suitable food source in a sufficient concentration: e.g. 

fungivorous protists need fungi; bacterivorous protists need bacteria and so on. Culturing 

bacterivorous protists is often quite easy, often non-toxic strains of bacteria are added or 

maybe even easier, co-transferred bacteria are fed with solved carbon, the bacteria then 

grow fast, even under nutrient limited conditions and subsequently can be grazed by the 

protists.  
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In contrast to often easily culturable and fast growing bacteria as food source, the culturing 

of protists that have to be fed with comparatively slow growing and difficult to maintain 

eukaryotes as food source harbours additional difficulties: At the time of observation of the 

desired protist predator in a natural sample, the required food source has to be already 

available in a suitable concentration that does not only enable the growth of the predator 

but further the sustained growth of the food source. Since eukaryotes are more complex and 

usually larger than bacteria, they grow slow in comparison to many bacteria and can not be 

easily stored by drying, cooling or freezing (although research is currently making progress in 

that field). The amount of cultures maintained by single researchers are therefore very 

limited, this emphasises the importance of culture collections in protistology. Moreover, 

many eukaryotes, like algae and fungi (whether as food source or the desired cultured 

protist itself) produce metabolites that in cultures accumulate and finally may lead to 

extinction of one or more co-cultured eukaryotes; a frequent subcultivation is therefore 

necessary, increasing operating expenses (Andersen 2005).  

However, according to own experiences, it is difficult to find a suitable food source. If the 

process of feeding in a natural sample is not observed, which especially in opaque 

environments like soils is difficult, researchers might not even know what the presumed 

eukaryvorous predator actually feeds on. Knowledge on protist taxonomy and phylogeny 

might enable a ‘good guess’ about the required needs of the desired protist, but often those 

needs are not only lineage specific but furthermore species or strain specific requiring trial 

and error. For instance there are generalists, like Amoeba spp. that feed on bacteria or 

various eukaryotes (Prescott and James 1955) and specialists, like the Vampyrellida, 

Viridiraptoridae or the endobiotic phytomyxids. For instance the SSU-sequences of the 

Vampyrellida reveal, whether the desired protist groups within fungivores, “filamentous 

algae feeders” or “unicellular algae feeders” clades and enables to draw conclusions about 

the feeding preferences of the sequenced Vampyrellida species (Hess et al. 2012); the 

parasitic phytomyxids show co-evolution with their hosts, although host shifts seem to occur 

(Neuhauser et al. 2014); and the monophagous Hatena arenicola feeds not only on a single 

species of Nephroselmis algae but even only on distinct genetic lineages (Okamoto and 

Inouye 2006; Yamaguchi et al. 2014).   
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However, long-time maintained cultures enable research on a professional basis and are 

therefore imperative for taxonomic and autecological research.  

 

Cercozoa 

The first discovered protist phylum Cercozoa CAVALIER-SMITH 1998, accommodates 

morphological and ecological divergent organisms that were found to be closely related 

based on molecular analyses. Together with the Radiolaria and Foraminifera, both with a 

more conserved morphology, they constitute the eukaryotic supergroup Rhizaria (Adl et al. 

2012; Cavalier-Smith 

1998a,b). The 

Radiolaria 

accommodate usually 

floating cells with 

radiating axopodia and 

mineral ‘skeletons’, the 

Foraminifera 

accommodate testate 

amoebae with organic 

tests and reticulate 

granofilopodia (Burki et 

al. 2010).  

 

The divergent Cercozoa consist predominantly of naked amoebae, flagellates and 

amoeboflagellates (Bass et al. 2009a,b; Hess & Melkonian 2013; Hess et al. 2012). Nestling 

between those, it comprises several polyphyletic testate amoeba lineages: e.g. the order 

Euglyphida with tests made of siliceous plates (Cavalier- Smith 1998a, b), the family 

Rhizaspididae (being here renamed Rhogostomidae) with organic thecae (Howe et al. 2011) 

and the family Pseudodifflugiidae with tests composed of agglutinated foreign material 

embedded in an organic cement, the latter branching in the Thecofilosea (Wylezich et al. 

2002). Environmental surveys of terrestrial, limnic and marine systems have shown a high 

genetic diversity of Cercozoa (and particular the little studied Thecofilosea) that can not yet 

Figure 2: Hypothesized and strongly simpflified sketch of cercozoan evolution (after 
Cavalier-Smith and Chao 2003). 
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be connected to morphological and autecological data (Bass and Cavalier-Smith 2004), 

leading to our first hypothesis that there are still many lineages in Cercozoa to be 

discovered.  

The Thecofilosea were established by Cavalier-Smith and Chao (2003) to accommodate 

thecate flagellates and amoebae. On a morphological basis it was assumed that the thecate 

amoeba family Chlamydophryidae might branch as well in the Thecofilosea, but molecular 

data was lacking (Howe et al. 2011).  

The family Chlamydophryidae was established by de Saedeleer (1934) (then as a subfamily of 

Gromiidae) to accommodate genera like Chlamydophrys CIENKOWSKI, 1876 and Lecythium 

HERTWIG ET LESSER, 1874. Species of both genera are all filose amoebae with a hyaline test 

or theca, but they divide in different ways (Meisterfeld 2002; for a discussion see Chapter 3). 

The predominantly bacterivorous Chlamydophrys could easily be cultured and was therefore 

well characterized long ago (Belar 1921). In contrast, no Lecythium (Hertwig and Lesser 

1874) was successfully cultured, leading to sometimes poorly described species and 

therefore a confusing taxonomy. We propose therefore the second and third hypotheses 

that Lecythium, which has been reported to feed on algae, but being unculturable, can be 

cultured with the right techniques and further groups on basis of molecular data in the 

Thecofilosea. 

 

What we know about fungivores and hypothesized evolutional adaptations 

A series of studies has been conducted by Chakraborty et al. (1982, 1983, 1985) showing 

that several omnivorous species of the Amoebozoa are able to feed on spores and yeasts 

and further are even able to reduce the colonization of root by mycorrhizal fungi, suggesting 

that fungi-feeding protists significantly affect the rhizosphere system.  

Only few specialised fungivorous protists have been described (predominantly the 

Grossglockneriidae and terrestrial lineages in the Vampryrellida (Cercozoa); Bass et al. 2009; 

Foissner 1980). Morphology of those lineages is well characterized, but there are only few 

available SSU sequences and nearly nothing is known about their dispersal and feeding 

preferences.  
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The terrestrial Vampyrellida have been repeatedly reported from agricultural fields all over 

the world (predominantly of Germany, Australia and Japan but also reports of Iran and 

Canada; Hess et al. 2012; Homma et al. 1979; Homma and Ishii 1984). Data about their true 

nutrition in the field is scarce. In laboratories the amoebae could be cultured mainly on 

spores of fungi, predominantly with Botryotinia fuckeliania, Gaeumunnomyces graminis and 

Cochliobolus sativus and even on the oomycete Pythium debaryanum (Pakzad 2003; Pakzad 

and Schlösser 1998; Chakraborty and Old 1982; Chakraborty et al. 1983).  

Feeding on hyphae, as they are large filaments that can not be completely enveloped by a 

food vacuole, seems more difficult to achieve. Next to the spore feeding Vampyrellida, some 

have been reported to feed on fungal hyphae, probably by external degradation as found in 

filamentous algae feeding Vampyrellida; Hess et al. 2012; Homma et al. 1979; Homma and 

Ishii 1984). The Grossglockneriidae is a family of ciliates with several described genera 

(Grossglockneria, Mykophagophrys and Pseudoplatyophyra) with specific oral structures 

enabling them to feed on filament forming fungi (Foissner 1980; Lynn et al. 1999; Dunthorn 

et al. 2008). They have been repeatedly studied from Austrian forest litters, out of twelve 

tested fungi Grossglockneria only fed on three: Aspergillus sp., Mucor mucedo and a not 

further determined Mucoraceae sp. (Foissner 1980; Petz et al. 1985). The latter two 

representing typical “sugar fungi”, those fast growing fungi are usually the first to colonize 

novel food sources and as a trade-off produce only few secondary metabolites (Frankland 

1998; Torres et al. 2005).  

Nevertheless, in comparison to the very few studies focussing on fungivores, there are more 

studies, old and recent, targeting especially algivorous protist lineages. The question arises 

why algivores are more intensely studied than fungivores.  

There are two possible explanations: [1] fungivores are just rare, less abundant and less 

diverse than e.g. algivores; [2] soil hampers work with protists and prevents direct 

observation, thus fungivores are just not recognized. Resulting in the forth of our 

hypotheses: Protist functions are understudied in terrestrial systems; especially the 

functional roles of fungivores have been underestimated. 

The few studied terrestrial relatives of algivorous protists most often show fungivorous 

feeding habits. It is therefore likely, that the shift from being a freshwater algivorous protist 
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to a terrestrial fungivorous protist (and maybe vice versa) is accompanied by few and/ or 

simple adaptations.  

The shift from freshwater to terrestrial (soil) habitats might include the following adaptions:  

(1) Since soils are often referred to as harsh environments with a huge variability in 

moisture and therefore salinity, protists should be able to cope with droughts. The 

ability to form cysts (a life history stage that usually is defined as a partial 

dehydration and the secretion of a more or less rigid cell envelope, usually composed 

of cellulose, chitin, proteins or a combination of those) is necessary in terrestrial 

protists as it enables the survival in dry periods or heatwaves that occur frequently 

(see Adl and Gupta 2006).  

The development of tests was seen as an additional adaptation to dry conditions, 

since the test might reduce water loss and therefore represent an advantage to dry 

environments. Accordingly a smaller test opening should be of advantage in drier 

environments. Schönborn (1992) and Bobrov and Mazei (2004) have shown that the 

size of the opening of the test varies and can be adapted to drought within few 

generations. Series of physiological changes are likely, including an adaptation to 

rapid changing osmotic pressure and very different chemical compositions of the 

environment; 

(2) As space is limited in soils many soil protists show a reduction in size compared to 

their freshwater relatives. For instance, Parvularia is smaller than its closest 

freshwater relative Nuclearia (Dirren et al. 2014; Torruella pers. comm.), terrestrial 

Glissomonads are smaller than the freshwater inhabiting Viridiraptoridae (Hess and 

Melkonian 2013). Behavioural adaptations, especially in locomotion, might be of 

advantage when changing to a space limited environment like soils. For instance the 

exclusively limnic Vampyrella predominantly float, whereas the closely related 

Theratromyxa and Platyreta mainly creep (Bass et al. 2009, Hess et al. 2012), similar 

evolutionary process seem to be found in Nuclearia and the closely related Parvularia 

although there is not much data yet (Dirren et al. 2014; Dirren and Posch 2016; 

Torruella pers. comm.), the described Viridiraptoridae show the ability to swim, a 

behaviour not known from the terrestrial glissomonads but one (i.e. Proleptomonas 

faecicola, see Hess & Melkonian 2013). 
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(3) Since most soil systems harbour less algae than fungi (Damon et al. 2012, Cutler et al. 

2013), algivorous protists might take advantage of novel food sources like fungi (i.e. 

becoming fungivorous), this should lead to an alteration of the set of digestive 

enzymes, since fungi mainly build their cell walls from chitin, in contrast to (green-) 

algae that use mainly cellulose, it is likely that the composition of the enzyme cocktail 

needed to degrade cell walls changes either in concentrations of compounds, by 

evolving novel enzymes or by obtaining enzymes by lateral gene transfer from the 

prey itself (Adams 2004; Popper et al. 2011; Xu et al. 2016).  

Accordingly we hypothesize that life in terrestrial habitats requires special adaptations in 

‘aquatic‘ protists, and we may detect adaptations of terrestrial protists, for example in the 

predominantly algivorous Tectofilosida. 



Novel Lineages in Cercozoa and Their Feeding Strategies  Kenneth Dumack 

19 
 

Aims  

The central aim of this thesis was to give insight into eukaryvorous protists, in particular 

Cercozoa, in freshwater and terrestrial systems, in order to contribute to a deepened 

understanding of cercozoan evolution. We cultured, investigated and characterized selected 

‘unculturable’ protists of the phylum Cercozoa in terms of morphology, behaviour and 

phylogeny. 

 

The following hypotheses were proposed: 

1. Many still unknown lineages exist in the Cercozoa.  

2. The algivorous genus Lecythium groups in the Thecofilosea. 

3. Significant culturing efforts are needed to link protist morphotypes and functions to 

environmental sequences. 

4. Protist functions are understudied in terrestrial systems; especially the functional roles of 

fungivores have been underestimated. 

5. Life in terrestrial habitats requires special adaptations in ‘aquatic‘ protists, and we may 

detect adaptations in terrestrial protists that are lacking in closely related freshwater 

inhabitants, for example in the predominantly algivorous Tectofilosida. 
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Chapters in three parts 

Part 1  -  Characterization of the unusual bacterivorous amoeba Kraken carinae. 

Chapter 1: A Novel Lineage of ‘Naked Filose Amoebae’; Kraken carinae gen. nov. sp. nov. 

(Cercozoa) with a Remarkable Locomotion by Disassembly of its Cell Body. 

Chapter 2:  Cercomonad or archaic Imbricatea? On the hunt for the true taxonomy of the 

scale-bearing Kraken (incertae sedis, Cercozoa, Rhizaria): Combining ultrastructure data and 

a two-gene (SSU + LSU) phylogeny. 

 

Part 2  - Eukaryvorous amoebae of the Thecofilosea, Cercozoa. 

Chapter 3:  Description of Lecythium terrestris sp. nov. (Chlamydophryidae, Cercozoa), a Soil 

Dwelling Protist Feeding on Fungi and Algae. 

Chapter 4: A bowl with marbles: Revision of the thecate amoeba genus Lecythium 

(Chlamydophryidae, Tectofilosida, Cercozoa, Rhizaria) including a description of four new 

species and an identification key. 

Chapter 5:  Shedding light on the polyphyletic genus Plagiophrys: The transition of some of 

its species to Rhizaspis (Tectofilosida, Thecofilosea, Cercozoa) and the establishment of 

Sacciforma gen. nov. (Cryomonadida, Thecofilosea, Cercozoa).  

Chapter 6:  Polyphyly in the thecate amoeba genus Lecythium (Chlamydophryidae, 

Tectofilosida, Cercozoa), redescription of its type species L. hyalinum, description of L. 

jennyae sp. nov. and the establishment of Fisculla gen. nov. and Fiscullidae fam. nov. 

 

Part 3 -  Eukaryvorous protists, their capabilities and dispersal. 

Chapter 7: What does it take to eat a fungus? A case study with the eukaryvorous amoeba 

Fisculla terrestris. 

Chapter 8: The soil food web revisited: Diverse and widespread mycophagous soil protists. 
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Chapter 2:  Cercomonad or archaic Imbricatea? On 

the hunt for the true taxonomy of the scale-

bearing Kraken (incertae sedis, Cercozoa, Rhizaria): 

Combining ultrastructure data and a two-gene 

(SSU + LSU) phylogeny. 
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Abstract 

The genus Kraken represents a morphologically distinct lineage of filose amoebae within the 

Cercozoa. Currently only a single species, Kraken carinae, has been described.  SSU phylogeny 

showed an affiliation with the Cercomonadida, branching with weak support at its base, close to 

Paracercomonas, Metabolomonas, and Brevimastigomonas. Light microscopical analyses showed 

several unique morphological and behavioral features of the genus Kraken, but ultrastructure data 

was lacking. In this study, K. carinae has been studied by electron microscopy, this data conjoined 

with a concatenated SSU and LSU phylogeny was used to give more insight into Kraken taxonomy. 

The data confirmed the absence of flagella, but also showed novel characteristics, like the presence 

of extrusomes, osmiophilic bodies, mitochondria with flat cristae and, surprisingly, the presence of 

single-tier scales, which are carried by cell outgrowths, much of what is expected of the last common 

ancestor of the class Imbricatea. The phylogenetic analyses however confirmed previous results, 

indicating Kraken carinae as a sister group to Paracercomonas within the Sarcomonadea with an 

increased but still moderate support of 0.98/63. Based on the unique features of the Kraken we 

establish the Krakenidae fam. nov. that we, due to contradicting results in morphology and 

phylogeny, assign incertae sedis, Cercozoa.  
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Introduction 

Recently, the genus Kraken was described as a new lineage of cercozoan filose amoebae inhabiting 

soil and freshwater (probably sediment) ecosystems (Dumack et al. 2016a). Small subunit (SSU) 

phylogeny indicated with low support an affiliation with Filosa (Cercozoa), in particular to 

Paracercomonas, Metabolomonas, and Brevimastigomonas (Paracercomonadidae, Cercomonadida). 

Cercozoa is a phylum of high morphological diversity, comprising naked amoebae (Hess et al. 2012), 

testate amoebae (Dumack et al. 2016b,c) but also flagellates and amoeboflagellates (Bass et al. 

2009a,b; Hess and Melkonian 2013). The Cercomonadida are a taxon of relatively well studied 

amoeboflagellates with quite conserved morphology (Bass et al. 2009a). They are currently assigned 

to the Sarcomonadea, CAVALIER-SMITH, 1993. The Sarcomonadea are, next to the Thecofilosea and 

Imbricatea, one of the as yet known major classes of Filosa, Cercozoa. The latter two mainly 

accommodate test- or scale-bearing protists, whereas the Sarcomonadea were established to unite 

cercozoan free-living, heterotrophic and naked (amoebo-) flagellates (Cavalier-Smith 1993), although 

they might be of polyphyletic origin (Cavalier-Smith and Karpov 2012). They comprise the orders 

Pansomonadida, Glissomonadida and Cercomonadida (Cavalier-Smith and Karpov 2011). The latter 

two are very common, diverse and abundant in terrestrial and freshwater systems and are commonly 

referred to as the predominant protistan bacteria grazers (Glücksman et al. 2010). 

Light microscopic observation of Kraken did not specifically support the affinity to cercomonads, 

although its dimensions and general appearance was not inconsistent with the diversity of body 

forms within the Cercomonadida (Dumack et al. 2016a). However, all as yet described species of the 

Cercomonadida are biflagellate, naked cells and some may be able to form short filopodia. The 

Kraken in contrast bears no flagella but has instead a huge network of filopodia that exceeds the size 

of the cell body by a factor of 50. Kraken differs therefore markedly from the currently known 

Cercomonadida. Since SSU phylogeny could not resolve its direct affiliation, ultrastructure as well as 

more genetic data, enabling a more detailed comparison with other Cercomonadida and other 

cercozoan amoebae or amoeboflagellates, are desirable.  

Two-gene phylogenies have been shown to resolve low support in some questionable clades of single 

gene phylogenies (Chantangsi et al. 2010; Wylezich et al. 2010). Although there is a considerable 

amount of SSU data of cercozoans available, only few strains have been characterized by additional 

genes, mostly large subunit sequence (LSU) data (Chantangsi et al. 2010; Wylezich et al. 2010). 

Additionally various ultrastructural traits, obtained by SEM (e.g. overall cell shape, scales and tests) 

or TEM (e.g. flagellar apparatus) display group-specific patterns and may reveal valuable 
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morphological characteristics for comparison (Cavalier-Smith and Karpov 2012; Hess & Melkonian 

2014). 

We therefore decided to combine a concatenated SSU and LSU phylogeny with ultrastructure data to 

get more insight into Kraken taxonomy. In particular, two questions arise: Does a concatenated 

(SSU+LSU) phylogeny confirm the phylogenetic placement of Kraken carinae presented in Dumack et 

al. (2016a) and does it further provide an enhanced support? Will ultrastructure data show 

characteristics typical for cercomonads, its class Sarcomonadea or other cercozoans?  

We were in particular interested to find a possible rudimentary flagellar apparatus, and to obtain 

data of the cell (surface) architecture. Our data show the ultrastructure of a very unusual filosan 

amoeba and may lead to a re-interpretation of cercozoan evolution. 

 

Results 

 

Ultrastructure of Kraken carinae 

Cell shape and content 

The light microscopical observations presented in Dumack et al. (2016a) correspond to the 

ultrastructural data. Briefly, the overall shape of the cell body is spherical with an invagination 

(Dumack et al. 2016a called it ‘ring-like structure’) at the basal end from which branching and 

anastomosing filopodia arise (Fig. 1A-E). Cysts and elongated cells (during cell body transport) have 

not been studied in detail and are not presented here. The fragile cells lost filopodia during 

centrifugation and therefore the cell body and filopodia are shown here separately.  

The cells contain a single, eccentric nucleus (2.4 – 3.2 µm), usually located at the basal end of the cell 

body close to the invagination, with a homogenously granular nucleolus in its center (Fig2A-C). The 

invagination reaches usually into the cell body, deforming the nucleus spherical shape. The shape of 

the invagination can be seen in the selected serial sections of a single cell (Fig. 3A-F). Golgi stacks are 

found in association to the nucleus (Fig. 2I, 4A). The cells contain various amounts of spherical 

mitochondria (0.5 - 0.6 µm) with an electron-translucent central matrix (Fig.2A). The plate-like 

(flattened) cristae lie on the internal periphery of the mitochondria (Figs. 4B, 4C). Sections of tips of 

the cristae are sometimes roundish (Fig. 4C, arrow). The contractile vacuole has irregular cell walls 

during systole (Fig. 4D).  
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In the periphery of the cell body extrusomes are located (Fig. 4). The extrusomes are reminiscent of 

the kinetosomes of cercomonads and glissomonads (Mylnikov, 1988; Fig. 4G,I). They are enveloped 

by a small vesicle and consist of a capsule with an internal cylinder. After discharging the cylinder is 

partly exposed (Fig. 4J). 

Additionally to the medium stained extrusomes, the cells contain a huge amount of small vesicles 

which are either electron-translucent, resembling reserve granules (Fig. 4L) or highly stained, 

resembling osmiophilic bodies (Fig. 2A, 2E) and bundles of microfilaments (Figs 5A,B). Kraken cells do 

not contain flagella, kinetosomes or a flagellar root system.  

 

 

The filopodia are more electron-translucent than the cell body. Aggregations of osmiophilic 

amorphous material, small electron-translucent vesicles and microtubules were seen inside the 

filopodia (Figs 5D-G, selected serial sections). Additionally the filopodia contain small vacuoles with 

single bacteria (Fig. 4E). According to light microscopical observations on the feeding process of the 

Kraken, these bacteria were caught immediately before the fixation and were in the process of 

transportation to the cell body. Within the cell body one (rarely two) food vacuoles are located in the 

apical end (for the ejection of such a food vacuole during defecation, see Fig. 4F). No endocytobiotic 

bacteria were observed.  

 

 

Fig. 1. General view of the cells. A-C – light microscopy pictures. Roundish cells forming 

anastomosing reticulopodia. D-F – scanning electron microscopy pictures; D-E cells form branching 

pseudopodia, F – the cell is covered papillae, bc – attached bacterium. Scale bars: A – 5 µm; B-E – 10 

µm; F – 1 µm  
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Cell surface and scales 

The surface of the cell body appears at smaller magnification rough (Figs 1F, 2A-2D). At higher 

magnification pyramidal papillae (outgrowths) covering the cell surface are observable.  Every papilla 

bears a thin unadorned and oval scale (0.3-0.35 µm in width and 0.6 µm in length) and is densely 

filled by ribosomes (Figs 2D-2G). The scales are evenly distributed over the cell body and rarely 

overlap, but were never observed on the filopodia. Probably, the scales are formed in cisternae of 

the Golgi apparatus (Fig. 2I), which lies close to the nucleus and from which they are transported in 

vesicles to the cell surface (Fig. 2H).  

 

 

 

Fig. 2. Cell sections (TEM). A-C – sections of whole cell, nucleus (nu) lies eccentric, close to the 

basal invagination, 1-2 food vacuoles (fv), roundish mitochondria (mi) and osmiophilic bodies (ob) are 

seen. D-E – arrangement of the papillae (pp) and single-tier scales (sc) on the cell surface. F, G - shape 

of the scales (sc). H – location of young scales and extrusomes inside vesicles in cytoplasm. I – 

possible formation of the scale inside cisterns of Golgi apparatus (Ga). Scale bars: A-C- 2 µm; D, G, H, I 

- 0.5 µm, E -0.4 µm; F - 0.1 µm 
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Phylogenetic analyses 

The maximum likelihood tree shows the position of the Kraken within the cercozoan subphylum 

Filosa (Fig. 6). The Filosa comprises currently published sequences of the Monadofilosa and 

Granofilosea and as an outgroup the Chlorarachnea. The Monadofilosa are comprised of the 

Sarcomonadea, Imbricatea and Thecofilosea. As in previous analyses using SSU and LSU rDNA 

sequences for phylogeny, the chlorarachnean outgroup was highly supported, the Granofilosea were 

of moderate support and the Monadofilosa were highly supported (Chantangsi et al. 2010).  

The Sarcomonadea, accommodating the Kraken sequences, separate from the Thecofilosea and 

Imbricatea with full support. Within the Sarcomonadea the three following well known clades were 

resolved: (1) the Glissomonadida HOWE, BASS VICKERMAN CHAO & CAVALIER-SMITH, 2009; (2) the 

Cercomonadidae KENT, 1880; (3) the Paracercomonadidae CAVALIER-SMITH, 2011; all with maximal 

support. The Cercomonadida were not monophyletic in our analysis, similar to previous studies in 

which they were either not monophyletic (Chantangsi et al. 2010) or the monophylum of little 

support (Wylezich et al. 2010). Within the Sarcomonadea, Kraken forms a sistergroup to the 

Paracercomonadidae with moderate support of 0.98/63. The genus Kraken is represented by the 

three currently known (and cultured) different genotypes of the species Kraken carinae. All strains 

formed a monophylum with maximal support. Similar to the SSU phylogenetic analyses (Dumack et 

al. 2016a) the morphologically similar strains KJ0003 and KD0092 grouped closely to each other, and 

the morphologically slightly different (smaller cell body) strain KD0248 basal to both.  
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Fig. 3.Selected serial sections (TEM) of the same  cell showing the location of the groove (gr) as invagination of the nucleus (nu) and cell surface, also 

papillae (pp) and extrusomes (ex) are seen. Scale bar 2 µm. 



Novel Lineages in Cercozoa and Their Feeding Strategies  Kenneth Dumack 

41 
 

Discussion 

Ultrastructure data  

Kraken carinae has very unique ultrastructure. Important ultrastructure characteristics for the 

taxonomy of protists (if present) are: flagella, the flagellar apparatus and the structure of scales 

(Cavalier-Smith & Karpov 2012; Hess and Melkonian 2014; Scoble and Cavalier-Smith 2014). 

However, the complete loss of flagella and the flagellar apparatus in K. carinae prevent the 

comparison with Sarcomonadea.  

The loss of flagella is likely a derived character, since Kraken cells usually feed as a sit-and-wait 

predator and move rarely. We suggest that Kraken inhabits small soil (or sediment) pores and only 

emerges from that with their long filopodia. Kraken has a peculiar way of movement by 

disassembling its own cell body (thereby reducing its cell diameter), possibly used when moving form 

pore to pore. A similar way of movement is known from the chlorarachniophyte Bigelowiella (Ota et 

al. 2007), leading to the question whether this is an ancestral trait or an adaption to life in sediments 

that evolved independently.  

Due to is unique form of the locomotory structures Kraken can not be compared to the group specific 

‘tails’ of ‘other’ Cercomonadida (Bass et al. 2009a).  

Mitochondria with tubular cristae are common in Filosa (Bass et al. 2009a; Cavalier-Smith and Karpov 

2012; Hess and Melkonian 2014; Shiratori et al. 2014). In contrast, K. carinae bears flat cristae. Only 

very few Cercozoa differ from tubular cristae, e.g. anaerobic Cercomonadida with cristae-lacking 

mitochondria or for instance some granofiloseans, such as the genus Limnofila which groups more 

basal in the Cercozoa and bears, similar to the Kraken, flat cristae (Bass 2009b; Cavalier-Smith and 

Chao 2003, Mikrjukov and Mylnikov 1995). Limnofila further shows some remarkable similarities with 

Kraken on the morphological level. Apart from flat cristae, both taxa are slow-moving filose amoebae 

with a huge filopodial network and a uninuclear cell body (Mikrjukov and Mylnikov 1998). Moreover 

the extrusomes which this study found in the Kraken, show similarity to the extrusomes of Limnofila 

which also contain a cylinder that is being exposed when the extrusome is charged (Mikrjukov and 

Mylnikov 1995). However distinct differences of Limofila compared to the Kraken are: A less defined 

form of the naked cell body of Limnofila, granules within the filopodia and flagella (or flagellate 

stages), apart from its well defined phylogenetic position (Bass 2009b).  

Moreover the Kraken bears scales, a character unknown from any Sarcomonadea or Granofilosea 

species.  
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Fig. 4. Some organelles of the cell (TEM). A – Golgi apparatus (Ga) lies close to the nucleus (nu), 

B, C – mitochondria with plate-like cristae (cr), sometimes the roundish profile of the crista tip is seen 

(arrow). D – contractile vacuole (cv) of stage systole. E – small food vacuole (fv) contains bacterium 

(bc) inside reticulopodium. F – ectoproct (ec) eject the content of the food vacuole. G-J – extrusomes 

(ex) (G and I - longitudinal and cross sections, J – extrusome outside of the cell after its discharging). L 

– reserve substance. Scale bars: A, D, E – 0.5 µm; F – 1.0 µm ; B, C – 0.4 µm; G-I - 0.1 µm; L – 0.2 µm 

 

Scales however are predominantly known from the Imbricatea, where the two major orders, the 

Thaumatomonadida and Euglyphida, both (usually) build scales. The Thaumatomonadida bear two-

tier scales, the Euglyphida build whole rigid tests of overlapping single-tier silica scales (for an 

extensive and detailed discussion see Scoble and Cavalier-Smith 2014). However, due to their 

absence in some lineages, e.g. Esquamula or the Spongomonadida, they are considered as a 

paraphyletic character (Scoble and Cavalier-Smith 2014; Shiratori et al. 2012). Whole tests are 

considered as polyphyletic, as they are found in distant related cercozoan taxa, indicating that the 

development of a protective test has evolved multiple times in Cercozoa (Dumack et al. 2016 b,c; 

Kosakyan et al. 2016; Wylezich et al. 2002). 

Scoble and Cavalier-Smith (2014) assumed that the Imbricatean ancestor probably bore unadorned 

oval single-tiered scales; much as the scales of the Kraken. Accordingly, the Kraken might resemble 

an archaic ancestor of the Imbricatea. Since tests apparently evolved multiple times in the Cercozoa, 

it is not unlikely that also scales evolved multiple times. It seems unlikely that the last common 
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ancestor of the Filosa already carried scales, the Thecofilosea may have developed from those their 

organic tests and the Imbricatea further developed two-tier scales (Thaumatomonadida) or whole 

rigid tests composed of scales (Euglyphida), but were lost in most Sarcomonadea, except in the 

possible sarcomonadean Kraken. 

Phylogenetic analyses 

The phylogeny of the Sarcomonadea is still controversial (see Cavalier-Smith & Karpov 2012 for a 

detailed discussion). It is still unclear whether Sarcomonadea are monophyletic, and especially the 

phylogenetic position of the Paracercomonadidae (extremely long branch, changing position in trees) 

contributes to this uncertainty. Since Kraken groups with SSU and concatenated SSU+LSU phylogeny 

next to Paracercomonas, this long branch might (a) interfere with good support or (b) may even 

indicate questionable results due to long branch attraction. Nevertheless the constructed two-gene 

phylogeny confirms the SSU phylogeny published in Dumack et al. (2016a). Although still moderate, 

the phylogenetic support was significantly enhanced (from 0.6/29 to 0.98/63) in this study. Since only 

few cercozoan LSU sequences are currently available we were not able to achieve a highly supported 

phylogeny. With an increase of (a) taxon sampling of Cercozoa and especially the 

Paracercomonadidae (in particular Metabolomonas and Brevimastigomonas) or (b) gene sampling, in 

particular whole transcriptomes the phylogenetic positions of the Kraken and Paracercomonadidae 

within Cercozoa might be resolved.  

The Kraken remains incertae sedis 

The ultrastructure data give some indications that the Kraken resembles a direct descendant of the 

scale-bearing last common ancestor of the Imbricatea. The two-gene phylogeny indicates, however 

with moderate support, an affiliation with the Cercomonadida in the Sarcomonadea. Due to these 

contradicting results we are not able to clearly assign the Kraken to either the class Sarcomonadea or 

Imbricatea.  

The characters of the Kraken have not been found in any other cercozoan family. We therefore 

establish a new family Krakenidae fam. nov., but still hesitate to establish a novel order that should 

be called Krakenida if it will be shown to be necessary in future studies. To resolve this issue, 

ultrastructure data (of e.g. Discomonas), SSU sequencing data (of e.g. Zoelucasa; Nicholls 2012), or 

large scale multi-gene transcriptome analyses are needed in future studies.  
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Fig. 5. Microfilaments and microtubules in the cells (TEM). A, B – arrangement of the 

microfilament bundles (mf) in the cytoplasm, C – microtubules (mt) inside cell, D-F – arrangement of 

the osmiophilic concentration of amorphous material (oc) inside reticulopodia, G – microtubules (mt) 

inside reticulopodia. Scale bar: C – 0.2 µm; A, B, D – G – 0.5 µm 
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Fig. 6. Phylogeny of the Filosa, Cercozoa with Chlorarachnea sequences as outgroup based on 

concatenated SSU rDNA and LSU rDNA sequences. Classes are indicated by vertical bars, the 

Sarcomonadea are highlighted in colour, newly obtained sequences are in bold. The support values 

of the Bayesian and PhyML analyses are shown on the respective branches (BI/ML). Support values 

<50% (bootstrap values) and <0.95 (posterior probabilities) are only shown if necessary for 

interpretation of direct Kraken relationship, otherwise not shown (-). Branches with bootstrap values 

>95% are presented in bold. Interrupted branches (//) show 20% of their original length. The scale 

bars represent 0.02 nucleotide substitutions per site. Given accession numbers refers to the strains 

LSU sequences.  
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Krakenidae Dumack, Mylnikov and Bonkowski fam. nov. 

Diagnosis. Limnic or terrestrial; Cells in the trophic phase form a large web of surface attached 

filopodia (irregular branched, elongate, anastomosing, network-forming). Filopodia thin and 

tapering; originating from the basal end of the cell body; flagella absent. Cell body covered by non-

overlapping oval and unadorned single-tier scales; these are carried by small papillae (outgrowths); 

usually not overlapping. Mitochondria with plate-like cristae in their inner periphery. Extrusomes 

with unknown function contain a capsule and an internal cylinder present. Phagotrophic; 

bacterivorous; bacteria are caught with filopodia at the point of contact and then transported in a 

vacuole through the filopodia to the cell body for digestion. Cysts present, spherical.  

Etymology: Name derived by the type genus. 

Type genus: Kraken Dumack, Schuster, Bass et Bonkowski, 2016 

Other genera included: none 

 

Material and Methods 

For detailed description of the source of samples, the isolation process and culture conditions of 

Kraken carinae, see Dumack et al. (2016). Briefly, K. carinae was isolated from agricultural soils of 

two European countries and cultured in low nutrient medium with co-cultivated bacteria. The cells 

are extremely fragile and die when exposed to slightest mechanical stress, i.e. movement of water 

body by lifting the Petri dish. 

Sequencing 

Phylogenetic analyses were done on one representative strain for each of the three known (and 

cultured) Kraken SSU genotypes; i.e. KJ0003, KD0092 and KD0248 (DSMZ- Registration numbers: 

244502341-KA; 244502023-KA and 244501215-KA, respectively). 15 µl aliquots of the monoclonal 

cultures were transferred to a sterile 200 µl Eppendorf tube and 13 µl ddH2O were added. These 

samples were frozen at −20°C to destroy the protist cells. The PCR was performed with a 50 µl 

reaction mixture containing 5 µl of 0.1 µM forward and reverse primer solution each, 5 µl dNTPs (200 

µM), 5 µl reaction buffer and 1 U DreamTaq DNA-polymerase (Applied Biosystems, Weiterstedt, 

Germany). General eukaryotic primers 184F, 1126R, 1105F and 2018R were used (Van der Auwera et 

al. 1994). The PCR products were purified by adding 0.15 µl of endonuclease I (20 U/µl, Fermentas 

GmbH), 0.9 µl shrimp alkaline phosphatase (1 U/µl, Fermentas GmbH) and 1.95 µl water to 8 µl of 

the PCR products. The mixtures were then heated 30 min at 37°C, and subsequently 20 min at 85°C. 
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The sequencing reaction was done by using the Big Dye Terminator Cycle sequencing kit and an ABI 

PRISM automatic sequencer. 

The sequences were manually checked for sequencing errors, combined to sequence contigs and 

deposited in the NCBI database (KY069275, KY069276 and KY069277). 

 

Phylogenetic analyses 

Publications were screened for SSU and LSU sequences that were obtained from the same strain of 

as many cercozoan lineages as possible. These sequences were manually aligned in SeaView (V4.5.3, 

Gouy et al. 2010). An alignment with 34 sequences and 4,091 unambiguously aligned sites of which 

67.8% were without polymorphisms was used for phylogenetic analyses. The program jmodeltest 

(V.2.1.5, Darriba et al. 2012) was used to determine the best fitting model: GTR+I+G, which was 

selected among 88 models (settings: Substitution schemes 11; add base frequencies +I+G rate 

variation nCat=4, ML optimized NNI as base tree). Phylogenetic trees were constructed using 

maximum likelihood (ML) and Bayesian inference (BI). The support values of the PhyML and the 

Bayesian analyses are given as (ML/BI). 

Maximum likelihood phylogenetic analyses were run in PhyML V3.1 (Guindon and Gascuel 2003) with 

the following settings: GTR model; a proportion of invariable sites and a gamma-shaped distribution 

of the substitution rates across variable sites (GTR+I+G), with four rate categories; BIONJ distance-

based starting tree with all model parameters estimated from the data. The Bayesian analyses were 

run using MrBayes v.3.2 (Altekar et al. 2004; Ronquist and Huelsenbeck 2003) with the following 

settings: five million generations, trees sampled every 100 generations, convergence of the two runs 

was estimated every 500 generations with a final average of the standard deviation of split 

frequencies of <0.01 at the end of the run. Of the sampled trees, 25% were discarded as burn-in. 

 

Electron microscopic analyses  

Electron microscopy was performed on a culture of Kraken carinae (strain KJ0003; DSMZ-Registration 

number 244502341-KA). Cells were maintained in Pratt medium (0.1 g/L KNO3, 0.01 g/L MgSO4
.x 7 

H2O, 0.01 g/L K2HPO4
.x3 H2O, 0.001 g/L FeCl3

.x6 H2O, pH = 6.5-7.5) with the bacterium Pseudomonas 

fluorescens, MIGULA 1895, as food source.  

Light microscopic observations were made with an AxioScope A1 (Carl Zeiss, Germany) using phase 

contrast, 70x water immersion objectives and an AVT HORN MC-1009/S video camera. Video clips 

were digitized using a Behold TV 409 FM tuner. 
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For scanning electron microscopy (SEM), cells from lag and exponential growth phase growing on the 

surface of cover slips were fixed with 2% glutaraldehyde (final concentration) for 15 min at 20 °C. The 

specimens were taken through a graded ethanol dehydration followed by a graded transfer to 

acetone. After critical point drying, the dried cover slips were mounted on aluminum stubs, which 

were coated with gold-palladium and then studied with a JSM-6510LV. 

For transmission electron microscopy (TEM), cells were centrifuged to produce high density pellets. 

The pellets were fixed in a cocktail of 0.6% glutaraldehyde and 2% OsO4 (final concentration) for 20-

60 min at 1 °C and dehydrated in an alcohol series and then in rising acetone concentrations (30, 50, 

70, 96 %; 10-20 minutes in each step). Subsequently, cells were embedded in a mixture of araldite 

and epon (Luft, 1961). Ultrathin sections were obtained with the LKB ultramicrotome. The TEM 

observations were made by using a JEM-1011 (Jeol, Japan) electron microscope. The chemical 

composition of the scales was not studied.  
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Part 2  -  Eukaryvorous amoebae of the Thecofilosea, 

Cercozoa. 
 

 

 

 

Chapter 3:  Description of Lecythium terrestris sp. nov. 

(Chlamydophryidae, Cercozoa), a Soil Dwelling Protist 

Feeding on Fungi and Algae. 
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Chapter 4: A bowl with marbles: Revision of the thecate 

amoeba genus Lecythium (Chlamydophryidae, 

Tectofilosida, Cercozoa, Rhizaria) including a 

description of four new species and an identification 

key. 
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Chapter 5:  Shedding light on the polyphyletic genus 

Plagiophrys: The transition of some of its species to 

Rhizaspis (Tectofilosida, Thecofilosea, Cercozoa) and 

the establishment of Sacciforma gen. nov. 

(Cryomonadida, Thecofilosea, Cercozoa).  
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Title 

Shedding light on the polyphyletic thecate amoeba genus Plagiophrys: Transition of some of its 

species to Rhizaspis (Tectofilosida, Thecofilosea, Cercozoa) and the establishment of Sacciforma gen. 

nov. and Rhogostomidae fam. nov. (Cryomonadida, Thecofilosea, Cercozoa). 

 

Keywords  

Rhogostoma, protist, algivorous, testate amoebae, amoeba, phylogeny 

 

Abstract 

 

For over a century testate amoebae have been a favoured group of interest for protistologists, 

however there is still an endless amount of unanswered questions. The genus Plagiophrys, Claparède 

and Lachmann 1859, is still one of the unresolved mysteries as it comprises species with high 

morphological diversity of which no molecular data are available. To shed light on the phylogeny and 

taxonomy of Plagiophrys we (a) cultured four isolates of three Plagiophrys morphospecies and 

provided morphological observations (b) obtained three new SSU sequences and conducted 

phylogenetic analyses of the Thecofilosea and (c) did intensive literature research, showing that 

Plagiophrys is polyphyletic. We partially untangle this polyphyly by combining several of its species 

with the genus Rhizaspis, Skuja 1948. Furthermore, we establish Sacciforma gen. nov. to 

accommodate P. sacciformis as it groups within the formerly known Rhizaspididae, which do not 
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comprise our isolates of Rhizaspis (and therefore were renamed as Rhogostomidae) as it groups with 

maximum support as a sister-group to the Pseudodifflugiidae. 

 

1. Introduction 

Testate amoebae have been of high interest for protistologists and ecologists since their discovery. 

They show the advantage of having clear morphological traits, making them ideal model organisms 

for protist ecology and evolution. Accordingly the specific ways in which their tests are constructed 

have been intensively studied and were used for testate amoeba identification and taxonomy. The 

tests may be siliceous (e.g. Euglyphids; Cavalier-Smith 1998a,b; Wylezich et al. 2002), organic (e.g. 

Thecofilosea; Dumack et al. 2016a,b; Howe et al. 2011) or composed of agglutinated material, e.g. 

foreign particles, like sand grains or diatom frustules (e.g. Pseudodifflugiidae; Cavalier-Smith and 

Chao 2003; Wylezich et al. 2002). 

However, taxonomy solely based on morphology lead to contradicting taxonomical concepts (de 

Saedeleer 1934; Cash, Wailes and Hopkinson 1915). Testate amoeba taxonomy was therefore for a 

long time confusing and often changed. Phylogenetic approaches finally revealed their polyphyly 

showing independent lineages in the Amoebozoa (e.g. Difflugia, Arcella, ..), Stramenopiles (e.g. 

Amphitrema) and Cercozoa (e.g. Euglyphida, amoeboid Thecofilosea) and enabled the unification of a 

widely accepted consensus (Cavalier-Smith 1998a,b; Kosakyan et al. 2016; Nikolaev et al. 2005).  

The highly diverse phylum Cercozoa established by Cavalier-Smith (1998a,b) consists predominantly 

of naked amoebae, flagellates and amoeboflagellates (Bass et al. 2009a,b; Dumack et al. 2016c; Hess 

& Melkonian 2013; Hess et al. 2012). Nestling between those, it comprises several polyphyletic 

testate amoeba lineages: e.g. the order Eugylphida (Cavalier-Smith 1998a,b), the family 

Rhizaspididae in the order Cryomonadida (Howe et al. 2011) and the families Chlamydophryidae and 

Pseudodifflugiidae in the order Tectofilosida (Cavalier-Smith & Chao 2003; Howe et al. 2011; 

Wylezich et al. 2002).  

Nevertheless, there are still genera lacking molecular data and therefore a phylogenetic placement. 

Some of which include species of high morphological diversity which may even be polyphyletic 

assemblages, like the genus Plagiophrys. It was first described by Claparède and Lachmann (1859) to 

accommodate two species P. cylindrica and P. sphaerica and was assigned to the Actinophryidae. 

They described non-‘armoured’ spherical amoebae with a ‘double-contoured’ flexible ‘skin’ and 

granules in their numerous radiating filopodia. 
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Later Hertwig and Lesser (1874) pointed out that Claparède and Lachmann distinguished between an 

‘armour’ and ‘skin’ and came to the conclusion that what they have described as a ‘skin’ is in fact a 

theca. Hertwig and Lesser therefore added two new species ‘P. scutiformis’ and ‘P. sacciformis’ with 

a ‘double-contoured construct’ (=theca) to the genus, although they differ in major points to P. 

cylindrica and P. sphaerica, as they are lateral compressed and have no granules in their filopodia. 

Since then the genus Plagiophrys caused taxonomic confusion (de Saedeleer 1934; Cash, Wailes and 

Hopkinson 1915). Cash, Wailes and Hopkinson (1915) pointed already out the presumed polyphyly of 

the genus but did not create a new one. 

Penard (1902) and de Groot (1979) added further species to this genus (P. parvipunctata, P. arcuatus 

and P. scutiformis var. marginata) similar to Hertwig and Lessers’ description but not to Claparède 

and Lachmanns’. To make things even more complicated, a phycologist, Skuja (1948) described 

Rhizaspis, a genus highly similar to Plagiophrys sensu Hertwig and Lesser, which we herein discuss 

and combine into one. 

Clearly, molecular data are necessary to untangle the confusing taxonomy of Plagiophrys. We have 

conducted intensive literature research, isolated four ‘Plagiophrys’ strains from freshwater habitats 

of which we conducted light microscopy, SSU rDNA sequencing and phylogenetic analyses. 

 

2. Results 

2.1.  Sampling and culturing 

We were able to find and extract four different strains (i.e. KD1015, KD1016, KD1017 and KD1018) of 

‘Plagiophrys spp.’ out of approximately 30 screened samples. Two of our isolates were morphological 

similar (strain KD1015 and KD1018) the other two strains of unique morphology. Unfortunately two 

of the isolates, KD1016 and KD1015, divided two to three times under our culture conditions, but 

then ceased to grow, leading to the extinction of those cultures. The morphology of KD1015 was well 

characterized, but the SSU sequence could not be obtained.  

   

2.2.  Microscopical observations 

2.2.1. Rhizaspis rugosa sp. nov. 

The cell bodies of strains KD1015 and KD1018 were oval and flattened with a length of 57.51 ± 2.65 

µm, a width of 40.79 ± 6.33 µm and a length-width ratio of 1.44 ± 0.22 (Figs 1, 2 and Table 1; n=10).  
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Figure 1: Cellular features of strain KD1015. A: Cell body as an overview. B: Close-up of the nucleus 

(nu) indicated by arrows. C: Overview of expanding, branched (bf) and anastomosing (af) filopodia. D: 

Lateral fold (fo) in the margins of a compressed theca (t). E: Nucleolus of a compressed cell: several 

more or less ovoid nucleoli (no). F: Granules (g). Scale bars indicate 10 µm. 
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Figure 2: Cellular features of strain KD1018. A: Cell body as an overview, a contractile vacuole (cv) 

and the aperture (a) highlighted. B: Close-up of the nucleus (nu) indicated by arrows. C: Overview of 

expanding and branching filopodia (bf). D: Plasma plate of which filopodia emerge with visible 

cytoskeleton filaments and highlighted anastomosing filopodia (af). E: Lateral fold (fo) in the margins 

of the theca (t). F: Nucleolus: several more or less ovoid nucleoli (no). G: Granules (g). Scale bars 

indicate 10 µm. 
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Table 1: Isolated species and strains with information about, sampling spot and date and corresponding data.  

Species Strain 

SSU rDNA 

accession 

Sequence 

length [nt] Country, City Coordinates 

Isolation 

date Habitat 

R. rugosa 

KD1018 KX580627 1663 Germany, Xanten 

51.691441, 

6.425774 

April  

2016 Quarry pond next to river Rhine 

KD1015 - - 

Germany, Much 

50.936385, 

7.415898 

November 

2015 

Stream Müchelsbach, close to a forest in 

agricultural land S. sacciformis KD1016 KX580629 1685 

April  

2016 

R. transformis KD1017 KX580628 1635 Germany, Cologne 

50.958675, 

7.005476 

May  

2016 Artificial pond in an urban park 
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Several zones characterized the cell body (Fig. 3): The nucleus (Figs 1B, 2B; 12.62 ± 1.45 µm; n=10) 

was located at the apical end of the cell, embedded by numerous granules (1.27 ± 0.41 µm; Figs 1F, 

2G; n=30). It contained a varying amount of nucleoli (3.32 ± 1.16 µm; Figs 1E, 2F). A layer of food 

vacuoles separated this area from several (difficult to detect) contractile vacuoles close to the 

aperture (Figs 1A, 2A, 3). 

 

 

Figure 3: Illustration of the morphological identical strains KD1015 and KD1018. A: Schematic 

drawing of the cell body B+C: Overview of the lateral compressed side. B: Stationary cell; filopodia 

expanded in all directions; cell body upright. C: Locomotive cell; filopodia expanded in direction of 

movement; cell body in dragged position. Scale bar indicates 10 µm. 

 

The cell body was covered by a hyaline, flexible (i.e. stretchable) theca that was most often carried in 

an upright position sometimes drawn after (Figs 3, 4). It exhibited two lateral folds on each side (Figs 

1D, 2E, 3A) that might have only be seen if cells are starving or compressed between glass slides. 

Additionally, smaller randomly dispersed folds could be observed. The aperture itself usually was slit-

like (Figs 4, 5A-C), but showed high flexibility, as it sometimes stretched to different polygon- or 

almost round shapes. The cells crept by filopodia, which originated from the aperture or at a plate of 

cell plasma that by itself originated from the aperture (compare Fig. 1C, D and Fig. 4A, B; see 

Supplementary Video 1). The filopodia branched and anastomosed with a maximum measured 

length of 110 µm (Fig 4). They lacked granules; instead stripes (cytoskeletal filaments) were 

prominent (Fig. 2D). Motile cells usually expanded most filopodia in the direction of movement, non-

moving cells formed filopodia in all directions (Fig. 3). No floating or flagellated cell stages were 

observed. Division was longitudinal. 
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Figure 4: Strain KD1015 taken with an inverse microscope (Ph1). A: Cell with expanded filopodia. B: 

Close-up of the aperture of the cell. Scale bars indicate 50 µm (A) and 10 µm (B). 

 

2.2.2. Rhizaspis transformis 

 

The cell bodies of strain KD1017 were highly metabolic and therefore variable in shape and size with 

a length of 48.15 ± 16.22 µm, a width of 52.53 ± 16.73 and a length-width ratio of 0.92 ± 0.16 (Table 

1; n=10), but were bulky and deformed and never resembled the thin and disc-like shape of Rhizaspis 

rugosa (Fig 5). 

The cell body showed no division in zones as described for Rhizaspis rugosa. The roundish nucleus 

(Fig. 6B; 12.36 ± 1.76 µm; n=10) had a varying amount of nucleoli (Fig. 6I) approximately 1-2.5 µm in 

diameter, which were difficult to observe. Granules quite bulging and various in size (up 0.63 to 3.94 
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µm; Fig. 6J; n=30), food vacuoles and contractile vacuoles were often randomly dispersed; rarely 

their arrangement was similar to the zones described for Rhizaspis rugosa but not as strict (Fig. 5).  

 

Figure 5: Healthy individuals of growing cultures of strain KD1018 and KD1017, taken with 

differential interference contrast (DIC). A-C: KD1018 D-F: KD1017. Note that KD1018 always shows an 

oval cell form with more or less clearly visible zones (granules and nucleus apical, vacuoles basal); in 

contrast KD1017 varies highly in shape and composition. Scale bar indicates 10 µm. a = aperture; nu 

= nucleus; fv = food vacuole; cv = contractile vacuole. 

 

The cell body was covered by a hyaline, flexible (i.e. stretchable) theca that was most often carried in 

an upright position or drawn after (Fig. 7, see also Fig. 3). It exhibited larger lateral folds and smaller 

horizontally ones (Fig. 6G, H). On the basal end of the theca the aperture was located, usually 

between folds. The aperture itself was most-often roundish, but showed high flexibility, as it 

sometimes stretched to different polygon- but mostly oval shapes (Figs 6D, E, 7). The cells crept by 

filopodia that originated from the aperture or at a plate of cell plasma that by itself originated from 

the aperture (Fig. 6C, D; see Supplementary Video 1). The filopodia branched and anastomosed (Fig. 
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6C) with a maximum observed length of 130 µm (Fig. 7). They lacked granules; instead stripes 

(cytoskeletal filaments) were prominent. Additionally within the filopodia various vesicle-like 

structures could be observed (Fig. 6D, E). Motile cells usually extended most filopodia in the direction 

of movement, non-moving cells formed filopodia in all directions (compare Fig. 3).  

 

 

Figure 6: Cellular features of strain KD1017. A: Cell body as an overview, the nucleus (nu) and the 

aperture (a) highlighted. B: Close-up of the nucleus (nu) indicated by arrows. C: Overview of 

expanding branched (bf) and anastomosing (af) filopodia.  D-F: Close-up to vesicle-like structures (vh) 

in filopodia. G: Notches (fo) at the lateral surface of the theca (t). H: Lateral fold (fo) in the margins of 

the theca (t). I: Nucleolus: several more or less ovoid nucleoli (no). J: Granules (g). Scale bars indicate 

10 µm. 
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Cells frequently formed cysts that showed a varying shape and size (38.38 ± 5.39 µm in diameter, 

n=7; Fig. 8; see Supplementary Video 1): The outermost envelope, the theca, was deformed and 

comprised irregular notches (Fig. 8C) or formed a smooth ‘velum’, which might vary in thickness (Fig. 

8A, B). In some cases the usual shape was still noticeable (Fig. 8D). Below the theca, a well-defined 

cyst wall covered the spherical cells; it seemed to be quite constant (i.e. in shape) in all individuals. 

The content of the cysts had a granular appearance, which was homogenous or contained small 

round particles. Additionally, most cysts contained a single conspicuous sphere, usually located in the 

cell center, measuring approximately 12 µm in diameter (Fig. 8D), therefore most likely the nucleus. 

Transferring cysts to fresh medium containing food organisms did not trigger excystment (n=12). 

No floating or flagellated cell stages were observed. Division was longitudinal. 

Multinucleate basolaterally merged individuals were spotted in strains KD1015, KD1018 and KD1017 

(Fig. 9) occurring most often with unsuitable culture conditions. Unlike described for Lecythium, 

those cells originated by an unfinished fission, no fusion of cells observed.  

 

 

Figure 7: Strain KD1017 taken with an inverse microscope (Ph1). A: Cell with expanded filopodia. B: 

Close-up of the aperture of the cell. Scale bars indicate 50 µm (A) and 10 µm (B). 
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2.2.3. Sacciforma sacciformis gen. nov. 

 

The cell bodies of strain KD1016 were oval and flattened with a length of approx. 35 µm, a width of 

approx. 25 µm and a length-width ratio of approx. 1.5 (Table 1, Fig. 10). The nucleus was located at 

the apical end of the cell. Cells contained numerous granules (2.87 ± 0.67 µm; n=10). Close the 

aperture several food vacuoles and contractile vacuoles were located.  

The cell body was covered by a hyaline, flexible (i.e. stretchable) theca that was carried in an upright 

position. On the basal end of the theca the slit-like, non-flexible, aperture was located. The cells crept 

by filopodia which originated of the aperture, cells never showed a large net of filopodia. The 

filopodia lacked granules and branched. No floating or flagellated cell stages were observed. Division 

was longitudinal. 
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Figure 8: Four different cysts of strain KD1017. Note highly varying shape of the outer envelope 

(theca). A: Individual with very difficult to detect theca (t). Note hyaline granules and granules with 

smaller particles. B: Similar cyst in another focus layer. C: Theca clearly visible as it shows many 

notches and folds D: Individual with less compressed theca, former shape is still distinguishable. Note 

the clearly separated theca, cyst wall (cw) and cell membrane (cm). Arrows indicate most likely the 

nucleus (nu). Note close-up to the former aperture. For an animation of cysts, see Supplementary 

Video 1. Scale bars indicate 10 µm. 
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2.3.  Phylogenetic analyses 

 

Nearly full-length SSU sequences were obtained, ranging from 1,635 to 1,685 nucleotides (Table 2). 

No introns were found. The maximum likelihood tree (Fig. 11) revealed the cercozoan subphylum 

Filosa (Cavalier-Smith 1997) and selected sequences of the Endomyxa as out-group. The filosan class 

Thecofilosea was composed of the Phaeodaria, Cryomonadida and Tectofilosida. Thecate amoeba 

lineages sequenced in this study and close relatives within the Thecofilosea are highlighted. Similar to 

previous analyses using SSU rDNA sequence comparisons, many basal branches within the Cercozoa 

were not supported (Bass and Cavalier-Smith 2004; Bass et al. 2009a,b; Howe et al. 2011).  

Sacciforma sacciformis (KD1016), Rhizaspis rugosa and Rhizaspis transformis (KD1017 and KD1018) 

were not monophlyletic. Although Rhizaspis rugosa and Rhizaspis transformis (strain KD1017 and 

KD1018) formed a maximally supported clade within the Tectofilosida, Sacciforma sacciformis 

(KD1016) grouped in the Cryomonadida. The SSU sequences of Rhizaspis rugosa and Rhizaspis 

transformis (KD1017 and KD1018) were to 100% identical and built together with Pseudodifflugia cf. 

gracilis (AJ418794) a sistergroup to Lecythium with a bootstrap support value of 80 (ML) and 

Bayesian posterior probability of 1.0 (BI).  

Sacciforma sacciformis (KD1016) grouped next to Rhogostoma with (96/1.0). The clade has been 

referred to as the Rhizaspididae by Howe et al. (2011) but was here renamed as Rhogostomidae (see 

discussion). 
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Figure 9: Basolaterally adhering cells of strain KD1017 (A+C) and KD1018 (B+D). A: Five active 

basolaterally connected cells. Note the highly deformed thecae (t), one compartment does not bear 

a nucleus, another two.  B: Close-up to the center of the joined cells of strain KD1017. Note that 

thecae only partially are filled with the cell body, therefore revealing the cell membrane (cm). C: 

Three active basolaterally connected cells, apertures highlighted (a). D: Close-up to the center of the 

joined cells apertures highlighted. Scale bars indicate 10 µm. 
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Figure 10: Cells of strain KD1016 as an overview, taken with (A+B) differential interference contrast 

(DIC) and (C+D) an inverse microscope (ph1). A: Focus on filopodia (f). B: Focus on cell body with 

granules (g) and food vacuoles (fv). C: Cell body in dragged position, focus on the side of the cell, 

highlighted are the nucleus (nu) and aperture (a). D: Cell body upright, focus on apical end, note the 

lateral compressed form. See also Supplementary Video 2. Scale bars indicate 10 µm (A+B) and 50 

µm (C+D). 
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Table 2: Isolated species and strains with information about culture conditions and measurements.  

Species Strain 

Cell size [µm] 

Length/ 

Width ratio 

Size of 

granules 

[µm] 

Nucleus size 

[µm] 

Nucleolus 

[µm] Food source in culture Length Width  

R. rugosus 

KD1018 up to 66  53 - 0.8-2.9  - 1.0-2.0 

 Nitzschia communis, Characium sp., 

Saccharomyces cerevisiae 

KD1015 57.51±3.65 40.79±6.33 1.44±0.22 1.27±0.41 12.62±1.45 3.32±1.16 

Navicula sp., Cyclotella meneghiniana, 

Nitzschia communis 

S. 

sacciformis KD1016 

 

 ~35.6 ~23.73 ~1.5 2.87±0.67 - - Characium sp. 

R. rugosus 

var. 

transforma KD1017 48.15±16.22 52.53±16.73 0.92±0.16 1.86±1.02 12.36±1.76 1.86±0.95 

Nitzschia communis, Nitzschia amphibia, 

Pinnularia sp. 



Novel Lineages in Cercozoa and Their Feeding Strategies  Kenneth Dumack 

104 
 

 

 



Novel Lineages in Cercozoa and Their Feeding Strategies  Kenneth Dumack 

105 
 

Figure 11: Reconstructed phylogenetic tree of the Cercozoa. Shown is the maximum likelihood tree 

obtained by the PhyML GTR+I+G analyses including 76 sequences and 1587 unambiguously aligned 

sites. On the respective branches are the support values of the PhyML and the Bayesian analysis 

shown (ML/BI), if higher than 50. Bold lines indicate a support value above or equal 95/0.95. 

Highlighted are the Tectofilosida (blue, orange and yellow) and Rhogostomidae in the Cryomonadida 

(green-colours). 

 

3. Discussion 

3.1.  Untangling Plagiophrys on morphological basis 

 

Skuja (1948) described a species, highly similar to ‘Plagiophrys scutiformis’, only differing in the 

nucleus structure. He described Rhizaspis granulata as an oval and flattened cell with longitudinal 

folds and filopodia, which are used for locomotion by creeping over the surface and may be used for 

floating stages. He even mentioned the zoning of vacuoles and granules. Since he was a phycologist 

and was not familiar with filose amoebae, he saw resemblance in the petalomonads and suggested 

that his isolates completely lost their flagella and evolved therefore filopodia de novo.  

This is highly unlikely and since his description of R. granulata was in all major points (e.g. filopodia 

without granules, aperture being slit-like, cell shape and nourishment) in common with Hertwig and 

Lessers’, we conclude that Skuja unknowingly redescribed ‘Plagiophrys’ sensu Hertwig and Lesser 

(1874). 

 We therefore adopt the name Rhizaspis for ‘Plagiophrys’ sensu Hertwig and Lesser (1874), therefore 

all to us known Plagiophrys species except Plagiophrys sensu Claparède and Lachmann (i.e. 

Plagiophrys cylindrica and Plagiophrys sphaerica) and transfer following species to Rhizaspis: P. 

scutiformis, P. parvipunctata, P. arcuatus and P. scutiformis var. marginata. 

Since pseudopodia structure (i.e. being lobose or filose and granule content) is a morphological 

character of high specificity (Bass et al. 2009a, Dumack et al. 2016a, Nikoleav 2005), it is highly 

unlikely, that these are monophyletic with Plagiophrys sensu Claparède and Lachmann. 

The species described by Claparède and Lachmann (i.e. Plagiophrys cylindrica and Plagiophrys 

sphaerica) show closer morphological affinity to Allogromia, Microgromia or other amoebae with 

prominent granules in their filopodia and therefore might group in the Foraminifera or elsewhere in 
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the Cercozoa (for instance in the Granofilosea), whereas the species described by Hertwig and Lesser 

are presumed to group in the Thecofilosea.  

 

3.2.  Morphological analyses of our isolates 

All our isolates show high similarities with Hertwig and Lessers’ ‘Plagiophrys’. Hertwig and Lesser 

(1874) reported ‘Plagiophrys sacciformis’ as irregular cylindrical (35 µm in length and 25 µm in 

width), just like our measurements of KD1016. We conclude that KD1016 resembled Hertwig and 

Lessers’ Plagiophrys sacciformis.  

Further they describe P. scutiformis as oval, 60 µm in length and 40 µm in width, with an often-

wrinkled surface. They did not describe contractile vacuoles, which are difficult to observe within 

thecate amoebae as (a) thecate amoebae often are thicker than most naked amoebae and other cell 

contents shade the hyaline vacuoles and (b) the vacuoles usually ‘beat’ very slowly compared to 

most naked amoebae. However, Skuja (1948) described them. Both described the withdrawn slit-like 

aperture and clear zones by pointing out that food vacuoles aggregate and granules, in the center of 

the cell, embed the nucleus. These descriptions fit to our observations of strains KD1015 and 

KD1018. 

However, there is one significant difference between their and our descriptions. Opposing to our 

observation Hertwig and Lesser (1874) described the nucleus to be homogeneous, even after 

treatment with acetic acid, no nucleolus could be observed. Skuja (1948) however described his R. 

granulata with one large central nucleolus. In contrast, we could define a varying amount of nucleoli. 

Since nucleus structure is a morphological characteristic of high specificity and importance, we 

conclude therefore, that we need to establish a new species name for our isolates KD1018 and 

KD1015, Rhizaspis rugosa. 

KD1017 resembled in many points Rhizaspis rugosa. But up to now, the highly different and varying 

cell shape of strain KD1017 was never described to this extend for any other ‘Plagiophrys’ or 

Rhizaspis species and never resembled the typical shield-like form of the previously mentioned 

species.  
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3.3. Untangling Plagiophrys on phylogenetic basis 

 

Surprisingly strain KD1016, Rhizaspis rugosa and Rhizaspis transformis are not monophyletic within 

our analyses. Although both group within the Thecofilosea, KD1016 groups close to Rhogostoma, 

Rhizaspis rugosa and Rhizaspis transformis instead as a sistergroup to the Pseudodifflugiidae. We 

therefore cannot adopt the name Rhizaspis for Hertwig and Lessers’ ‘Plagiophrys sacciformis’ and 

therefore establish the new genus Sacciforma gen. nov., comprising exclusively Sacciforma 

sacciformis, yet. 

Howe et al. (2011) established the Rhizaspididae although no Rhizaspis has been sequenced back 

then. They made this assumption based on morphological similarity between Rhogostoma, 

Capsellina and Rhizaspis (i.e. the slit-like aperture, which is, as we could show, highly flexible in 

Rhizaspis). Rhizaspis does not group close to Rhogostoma, although Sacciforma does. Those genera 

can therefore not build a family which bears the name Rhizaspididae. We therefore have to switch 

Rhogostoma and the presumed closely related Capsellina (see Howe et al. 2011) to a new family, 

which includes Sacciforma and should be called Rhogostomidae.  

‘Plagiophrys’ sensu Hertwig and Lesser (=Rhizaspis) was early believed to be closely-related to 

Lecythium (de Saedeleer 1934). We could show that this is the case as R. rugosa and R. transformis 

group within the Tectofilosida. However, they build no direct sistergroup to Lecythium but show a 

closer relationship with the agglutinating testate amoeba Pseudodifflugia. 

Although the morphology of the here described Rhizaspis species clearly differs as they could never 

be confused with each other, surprisingly, their SSU sequences were identical. Several studies 

already highlighted that the SSU gene is a limited marker for diversity of protists. More variable 

genes probably will show genetic differences between Rhizaspis rugosa and Rhizaspis transformis. 

Since the cultures are deposited in a culture collection and are therefore made available to the 

public, genes such as ITS or LSU may be sequenced by us or others in future studies. 

The other described ‘Plagiophrys’ species (P. scutiformis by Hertwig and Lesser 1874, P. 

parvipunctata and P. arcuatus by Penard 1902 and Plagiophrys scutiformis var. marginata by de 

Groot 1979) of which molecular data are still lacking, may also group with Tectofilosida, because of 

their similarity to Rhizaspis rugosa and Rhizaspis transformis. However, this study confirmed that 

assumptions about taxonomy solely based on few morphological characteristics may be incorrect 

and are often confusing. Molecular data are therefore urgently required to shed more light on the 

phylogeny of the highly interesting group of filose thecate amoebae.  
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3.4.  Culture conditions 

 

Although we provide stable long-time maintainable cultures, we were not able to provide cultures of 

two of our four strains (Rhizaspis rugosa (strain KD1015) and Sacciforma sacciformis), as they ceased 

to grow after a couple divisions. In case of R. rugosa, we were not able to culture strain KD1015 with 

a mixture of food sources including yeasts and green algae. We optimized culture conditions by 

adding a variation of different diatoms and excluding yeasts and green algae, making KD1017 and 

KD1018 well culturable (Table 1).  

Nevertheless, strain KD1017 constantly formed cysts (in contrast to KD1018 and many other 

Thecofilosea cultures) which we interpret as a stress response to our culture conditions. Sacciforma 

sacciformis grouped in direct relation to Rhogostoma, an omnivorous amoeba, feeding on eukaryotic 

cells like algae but not culturable without sufficient supply of bacteria as food source (own 

observations, unpublished). We therefore conclude that Sacciforma needs bacteria as food source 

and ceases to grow under our low bacteria conditions, similar to Rhogostoma.  

However, as this study and many other recent studies show (Dumack et al. 2016 a,b; Hess & 

Melkonian 2013; Hess et al. 2012), previously as ‘unculturable’ assigned protists, are culturable if 

cultured under the right conditions.  

 

4. Taxonomic acts 

 

4.1.  Rhizaspis (Skuja 1948)  

 

Revised diagnosis: Thecate amoebae with ventral slit-like, but flexible, cleft that emits filopodia; 

theca thin, flexible, in active cells adherent throughout to cell surface, with exosomes (R. 

parvipunctata) or without (all other species), sometimes deformed by ingested food, often wrinkled 

or folded, consisting of single smooth dense layer outside and scarcely thicker than the plasma 

membrane; thus with bilateral symmetry (ventral flattened). Round nucleus; nucleoli may be visible 

by light microscopy, often one, sometimes several. Cells may be divided in zones (basal to apical): 

several contractile vacuoles, food vacuoles, nucleus embedded by a large number of in size varying 
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granules. Inhabiting freshwaters. Eukaryvorous, mainly feeding on algae, especially diatoms. Division 

longitudinal, binary. Sexual reproduction unknown. 

Type species: R. granulata Skuja 1948 

Other species: R. simplex by Skuja 1948, R. scutiformis comb. nov. by Hertwig and Lesser 1874, R. 

parvipunctata comb. nov. and R. arcuatus comb. nov. by Penard 1902 and R. scutiformis var. 

marginata comb. nov. by de Groot 1979 

 

4.2.  Rhizaspis rugosa  sp. nov. 

Diagnosis: The theca comprises lateral and basal folds. Round nucleus, several roundish nucleoli. Cell 

divided into zones as described for the genus. No floating stages observed. Cysts not observed. In 

cultures cells may occur basolaterally connected in a ring, built through unfinished fission, not fusion. 

Easy to confuse with Rhizaspis scutiformis or Rhizaspis granulata which have different nucleoli.  

Deposited preserved material: A glass slide containing several fixed individuals is deposited in the 

Upper Austrian State Museum Invertebrate Collection (2016/119). 

Type generating strain: KD1018; deposited in the Culture Collection of Algae and Protozoa under the 

accession number CCAP 1267/1  

SSU Sequence of type generating strain: KX580627 

Illustrations of type generating strain: Figs 1, 3, 10, Supplementary Video 1; this material constitutes 

the name-bearing type of this species. 

Type locality: quarry pond next to river Rhine, in Xanten, Germany (51.691441, 6.425774) 

Etymology: rugosa {adj} [Latin] = 1) wrinkled, wrinkly. Referring to the numerous folds in the theca. 
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4.3.  Rhizaspis transformis  sp. nov. 

 

Diagnosis: Similar to Rhizaspis rugosa, with following differences: Highly metabolic and therefore 

varying in shape and size, usually bulky and deformed; never resembled the thin and disc-like shape 

of Rhizaspis rugosa; no clear separation in zones; cysts vary in form: theca builds an envelope around 

the spherical cyst, compressed with notches and protuberances; filopodia with numerous non-

contractile vacuoles. 

Deposited preserved material: A glass slide containing several fixed individuals is deposited in the 

Upper Austrian State Museum Invertebrate Collection (2016/120). 

Type generating strain: KD1017; deposited in the Culture Collection of Algae and Protozoa under the 

accession number CCAP 1267/2 

SSU Sequence of type generating strain: KX580628 

Illustrations of type generating strain: Figs 6, 7, 8, 9, 10; Supplementary Video 1; this material 

constitutes the name-bearing type of this species. 

Type locality: pond in urban park, in Cologne near Mülheim, Germany (50.958675, 7.005476) 

Etymology: transforma –re {verb} [Latin] = 1) (to) transform, (to) reform. Referring to the highly 

variable cell shape.  

 

4.4.  Rhogostomidae fam. nov. 

 

Diagnosis: Thecate amoebae with ventral slit-like and not flexible cleft that emits filopodia; theca 

thin, flexible, in active cells adherent throughout to cell surface, consisting of single smooth dense 

layer outside and scarcely thicker than the plasma membrane; thus with bilateral symmetry. Theca 

with exosomes (Capsellina) or without (Rhogostoma, Sacciforma). Omnivorous (mainly bacteria, also 

yeasts, algae). Electron microscopy of Capsellina and Rhogostoma by Simitzis and Le Goff (1981). 

Division longitudinal, binary. Sexual reproduction unknown. 

Type genus: Rhogostoma Belar, 1921 

other genera: Capsellina (Penard 1909; see Howe et al. 2011) Sacciforma (this study) 
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4.5.  Sacciforma gen. nov. 

 

Diagnosis: Cell body in contrast to the apical-basal compressed Rhogostoma and Capsellina, to which 

it is closely related, elongated (length-width ratio approx. 1.5) and ventral flattened. Freshwater. 

Cysts, floating- or flagellate stages unknown.  

Type species: Sacciforma sacciformis comb. nov., Hertwig and Lesser 1874 

Etymology: saccus {noun} [Latin] = bag; formis {noun} [Latin] = shape; refers to the bag-like shape of 

the cell body, derived from the species name of the type species Sacciforma sacciformis, described as 

Plagiophrys sacciformis by Hertwig and Lesser, 1874. 

 

5.Materials and methods 

5.1.Sampling and isolation 

 

We collected 100-200 ml of sediment or detritus rich water of freshwaters, like ponds and rivers 

(Table 1). Most samples were stored at room temperature over night; few samples were stored at 10 

°C incubation over two to three days before investigation.  

The samples were then shaken to detach surface attached protists and 1 ml was given in each well of 

a 24-well plate (Sarstedt, Germany). The plate was incubated for approx. 20 min to allow small 

organisms to settle. Observation of amoebae was conducted with a light microscope (Nikon Eclipse 

TS100; Ph1; 40x, 100x, 200x and 400x magnification). All samples were scanned for Plagiophrys-like 

cells several times up to three weeks after collection. Promising cells were transferred to Waris-H 

(McFadden & Melkonian 1986) and enriched with a mixture of putative food organisms: Nitzschia 

communis (CCAC 5737 B), Nitzschia amphibia (CCAC 5733 B), Navicula sp. (CCAC 1772 B), Pinnularia 

sp. (CCAC 0222 B), Cyclotella meneghiniana (CCAC 5735 B), Characium sp. and Saccharomyces 

cerevisiae (Table 2). Cells were subcultured every week.  
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5.2.Microscopical observations 

 

Pictures and videos were taken with a Nikon Eclipse TE2000-E (Ph1, up to 400x magnification) Nikon 

Eclipse 90i (DIC, up to 600x magnification), both with the mounted camera Nikon digital sight DS-U2 

(program: NIS-Elements V4.13.04). 

 

5.3. SSU sequencing 

Single cells were starved for two to three days and transferred with approx. 1 µl of medium into 15 

µm ddH2O into PCR-tubes. To this, 5 μl Green Taq Dream Buffer, 5 μl of 2 μM dNTP’s, 5 μl of 1 μM 

forward and reverse primer each and 0.3 μl DreamTaq DNA-polymerase (Thermo Fisher Scientific, 

Dreieich, Germany) were added with additional 14.7 μl ddH2O.  

The SSU sequences were obtained in two successive steps. First the whole SSU was amplified with 

the general eukaryotic primers, RibA and RibB (Cavalier-Smith and Chao 1995; Pawlowski 2000). 

Using one µl of the first PCR as template, a semi-nested re-amplification was conducted with the 

primers RibA+1300R targeting the 5’ part and 590F+RibB targeting the 3’ part of the gene (Quintela-

Alonso et al. 2011).  

PCR conditions were as follows: initial denaturation at 95 ◦C for 5 min, 35 cycles (denaturation at 96 

◦C for 32 s, annealing at 50 ◦C for 36 s, elongation at 72 °C for 2 min), terminal extension at 72 ◦C for 

7 min, and hold at 4 ◦C.  

For sequencing the Big dye Terminator Cycle sequencing Kit and an ABI PRISM automatic sequencer 

were used. 

 

5.4.Phylogenetic analyses 

 

The partial sequences were manually checked for sequencing errors and combined into one 

sequence contig. To create a dataset for phylogenetic analyses they were blasted (blastn 2.3.0) 

against the NCBI GenBank database (last date of accession: 23.06.2016). Sequences with a similarity 

of ≥ 96% were downloaded and manually aligned in SeaView (V4.5.3, Gouy et al. 2010). Additionally 
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representative sequences of the major cercozoan subphyla were added, Endomyxa sequences were 

used as outgroup. An alignment with 76 sequences and 1587 unambiguously aligned sites of which 

46.82% were invariant was used for phylogenetic analyses. The program jmodeltest (V.2.1.5, Darriba 

et al. 2012) was used to determine the best fitting model: GTR+I+G, which was selected among 88 

models (settings: Substitution schemes 11; add Base frequencies +I+G rate variation nCat=4, ML 

optimized NNI as base tree).  

Phylogenetic trees were constructed using maximum likelihood (ML) and Bayesian inference (BI). 

Maximum likelihood phylogenetic analyses were run using PhyML V3.1 (Guindon & Gascuel 2003) 

with the following settings: GTR model; a proportion of invariable sites and a gamma-shaped 

distribution of the substitution rates across variable sites (GTR+I+G), with four rate categories; BIONJ 

distance-based starting tree with all model parameters estimated from the data. The Bayesian 

analyses were run using MrBayes V3.2 (Altekar et al. 2004; Ronquist & Huelsenbeck 2003) with the 

following settings: 5 million generations, trees were sampled every 100 generations, convergence of 

the two runs was estimated every 500 generations. Of the sampled trees, 25% were discarded as 

burn-in. 

 

5.5.Preparation of cells for deposition 

 

Saturated mercury-(II)-chloride solution and 96% ethanol were mixed (ratio 2:1) to obtain a fixing 

solution. It was heated to 70 °C and 30 ml were added to 1.5 ml of a culture in growing phase. The 

mixture was washed in 30 % ethanol once and further fixed in 1 ml osmium tetroxide for one minute. 

Subsequently the cells were dehydrated in eight steps consisting of 20 min incubation in an ethanol 

series of increasing concentration (from 30 to 96%). Cells were then preserved on a microscope slide 

with a drop of glycerine under a cover slide. The slides were deposited in the Upper Austrian State 

Museum; accession numbers pending. 
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Chapter 6:  Polyphyly in the thecate amoeba genus 

Lecythium (Chlamydophryidae, Tectofilosida, 

Cercozoa), redescription of its type species L. hyalinum, 

description of L. jennyae sp. nov. and the establishment 

of Fisculla gen. nov. and Fiscullidae fam. nov. 
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Abstract 

Testate amoebae have been studied and classified for more than 150 years. There are however some 

groups of which little is known, such as the genus Lecythium in the family Chlamydophryidae. 

Recently, five monophyletic species of thecate amoebae within Cercozoa were described, and 

grouped into the genus Lecythium on morphological basis. Since sequences of the type species, 

Lecythium hyalinum Hertwig and Lesser 1874, were lacking these species descriptions were based on 

morphology. To clarify the taxonomy and phylogeny of Lecythium, we screened for L. hyalinum in 

freshwater samples of Germany and the Netherlands. Four different isolates of L. hyalinum and one 

novel species were cultured. We provide (a) light microscopy data, (b) five SSU sequences of the 

genus Lecythium and (c) an updated phylogeny of Lecythium and the Thecofilosea. The data show 

that the genus Lecythium is polyphyletic with the type species L. hyalinum grouping within the ‘Novel 

Clade 4’, which was predominantly composed of environmental sequences. We therefore split this 

genus into Lecythium and Fisculla gen. nov. and establish the Fiscullidae fam. nov. 
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Introduction 

Testate amoebae have been of high interest for protistologists and ecologists since their discovery. 

Since they are one of the few protist groups with clear and easily identifiable morphological traits, 

they represent ideal model organisms for protist ecology and evolution. The specific ways in which 

their tests are constructed have been intensively studied and were used for testate amoeba 

identification and taxonomy. Research solely based on morphology however led to complex 

taxonomical concepts that were often contradicting and thus frequently changed (Cash et al. 1915; 

de Saedeleer 1934). With phylogenetic approaches a widely accepted consensus has been achieved. 

It has been shown that testate amoebae are polyphyletic and belong to different phyla, like 

Amoebozoa and Cercozoa (Cavalier-Smith 1998a,b; Kosakyan et al. 2016; Nikolaev et al. 2005). The 

phylum Cercozoa, established by Cavalier-Smith (1998a,b) is highly diverse in morphology and 

ecology. The Cercozoa consist predominantly of naked amoebae, flagellates and amoeboflagellates 

(Bass 2009; Dumack et al. 2016a; Hess and Melkonian 2013; Howe et al. 2011). Nestling between 

those, it comprises several polyphyletic testate amoeba lineages: e.g. the order Euglyphida with tests 

made out of siliceous plates (Cavalier-Smith 1998a,b; Wylezich et al. 2002) and the classes 

Cryomonadida and Tectofilosida, both in the order Thecofilosea, comprising amoebae with organic 

and agglutinated tests (Dumack et al. 2016b,c; Dumack et al. (in review); Howe et al. 2011; Wylezich 

et al. 2002). 

The Tectofilosida, established by Cavalier-Smith and Chao (2003), contain up to now the testate 

amoeba families Rhizaspididae, Pseudodifflugiidae and Chlamydophryidae (Wylezich et al. 2002; 

Dumack et al. 2016b,c; Dumack et al. 2016d). 

Knowledge about the Chlamydophryidae is scarce. De Saedeleer (1934) established the family 

Chlamydophryidae as a subfamily of the Gromiidae, to accommodate genera such as Lecythium and 

Chlamydophrys, thus containing amoeba species with thin hyaline tests, but until recently no 

molecular data was available. Dumack et al. (2016b,c) shed some light on the Chlamydophryidae by 

culturing and describing several strains of amoebae with spherical organic tests and longitudinal 

division. They showed that these isolates grouped as a sister clade to the Pseudodifflugiidae.  

Nevertheless the type species described by Hertwig and Lesser (1874), could not yet be sequenced, 

leaving the possibility open that the genus Lecythium might be polyphyletic. We therefore decided to 

screen samples for L. hyalinum, isolate it and perform genetic and morphological analyses to clarify 

the existing taxonomy. 

We isolated four strains of Lecythium hyalinum from two central European countries, sequenced 

their SSU sequence and conducted phylogenetic analyses. We show its phylogenetic placement in 
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the Cercozoa and discuss the polyphyly of the genus Lecythium. Additionally, we isolated another 

Lecythium-like amoeba. After morphological observations and intensive literature research, we are 

convinced that this species is new to science, which we herein describe. 

 

Results 

Footnotes: 

1 List of abbreviations: a = aperture; nu = nucleus; no = nucleolus; g = granules; bf = branched 

filopodia; af = anastomosing filopodia; fv = food vacuole; cv = contractile vacuole; fo = folds; vg = 

vacuole with granule; hv = hyaline vacuole; lg = large granule; sg = small granule; c = cyst wall; t = 

theca 

 

Sampling and culturing 

We isolated four different strains of Lecythium-like amoebae from Germany and the Netherlands 

(Table 1). Three cultures of L. hyalinum were not stable and therefore lost during the study. Strains of 

Lecythium reacted highly sensitive on the composition of culture medium and food organisms: 

Strains of L. hyalinum were only viable in WC-Medium (Guillard and Lorenzen 1972), whereas strain 

KD1014 was only cultivable in Waris-H (McFadden and Melkonian 1986). L. hyalinum cultures fed 

only with the green alga Characium sp. (or with a combination of Nitzschia communis and Characium 

sp.) as food source suddenly collapsed after few weeks of culturing. Only the last isolated L. hyalinum 

strain KD1013 which was cultured with a combination of Nitzschia communis (CCAC 5737B), 

Characium sp., Nitzschia amphibia (CCAC 5733B) and Pinnularia sp. (CCAC 0222B) was culturable 

over the whole time of our analyses (~ 5 months). Strain KD1014 was cultured with Nitzschia 

amphibia (CCAC 5733B), Characium sp. and Pinnularia sp. (CCAC 0222B). 
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Table 1: Isolated species and strains with information about phylogenetic analyses, sampling spot and date, and culture conditions 

Species Strain SSU rDNA 

accession 

Sequence 

length 

Sampling spots Coordinates Isolation 

date 

Habitat Observed food 

source in sample 

 

Food source in culture 

Lecythium 

hyalinum 

KD1010 KX580626 

  

1427 Germany, Xanten 51.691441, 

6.425774 

April 2016 Quarry pond next to the river 

Rhine  

Diatoms  Nitzschia communis 

(CCAC 5737B), 

Characium sp. 

KD1011 KX580624 1707 Germany, Cologne 

 

50.926161, 

6.928794 

April 2016 Small urban artificial pond  Diatoms Characium sp. 

KD1012 KX580623 1689 Germany, Cologne 50.922577, 

6.946049 

April 2016 Big urban artificial pond in the 

Volksgarten-Park  

Diatoms Nitzschia communis 

(CCAC 5737B), 

Characium sp. 

KD1013 KX580625 1707 Netherlands, 

s‘Hertogenbosch 

51.715207,  

5.312476 

April 2016 Channel-like urban artificial 

pond in a park 

 

Diatoms Nitzschia communis 

(CCAC 5737B), 

Characium sp., Nitzschia 

amphibia (CCAC 5733B), 

Pinnularia sp. (CCAC 

0222B) 

Lecythium 

jennyae 

KD1014 KX580622 1710 Germany, Cologne 50.958675, 

7.005476 

May 2016 Urban artifical pond in a park Diatoms Nitzschia amphibia 

(CCAC 5733B), Pinnularia 

sp. (CCAC 0222B), 

Characium sp. 
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Morphological observations 

Lecythium hyalinum  

All isolates of L. hyalinum (strains KD1010, KD1011, KD1012 and KD1013) were of similar 

morphology. The amoebae bear a thin and hyaline theca (18-50 µm in length and 24-61 µm in width; 

n=37) of roundish or slightly curved shape and radial symmetry. Around the aperture of the cells, 

small wrinkles and folds may be seen, occurring most often in starving cells (Figs 1E, 2E for individuals 

without wrinkles or folds see: Figs 2F, 3D). The aperture might be retracted into an invagination of 

the test (Fig. 1F). No obvious deformation of the test in consequence of ingested food was detected.  

The nucleus (11.5-21 µm; n= 36; Figs 1B, 2B, 3B) is located at the apical end of the cell (opposite to 

the aperture), most often ellipsoid, sometimes spherical, and a fine marbled structure. The nucleolus 

(4-8 µm; n=36), rarely two nucleoli (Fig 4, Supplementary Video 2), are spherical and exhibit a more 

rough structure, with indentations (Figs 1D, 2D, 3B). The test is carried in an upright position and four 

different zones within the cell body are separated (Fig. 4). From the apical to the basal end: The first 

zone (I) contains the nucleus embedded in hyaline cytoplasm and usually lacks other structures (e.g. 

granules, vacuoles, etc.), the second zone (II) contains granules (0.92-2 µm, n=36). The third zone (III) 

is dominated by food vacuoles and the fourth zone (IV), which lies in front of the aperture and 

therefore outside of the theca, is defined by a highly vacuolated cytoplasm and emerging filopodia. 

The vacuoles are contractile (Supplementary Videos 1), within the theca no contractile vacuoles were 

observed. Thin, often branched and sometimes anastomosing filopodia arise from the vacuolated 

plasma (IV) with a length of up to 100 µm (Figs 1C, 2C, 3C, 5). The filopodia may contain small 

granules (Fig. 1G) which are difficult to observe, but seem to be connected to the cytoskeletal 

filaments, as they move together in the same direction with similar velocity (Supplementary Video 1). 

All isolates harbored in close connection to the cytoplasm at the base of the filopodia ‘dancing 

particles’, possibly ectocytobiotic bacteria (Fig. 5, Supplementary Video 1). Those particles have been 

present in all L. hyalinum isolates and individuals although in variable amounts.  

When transferred to new culture medium with a high food density, most amoebae covered 

themselves by an accumulation of algae, so that only the filopodia could be seen. Swimming stages 

with slowly moving, non-branching and non-anastomosing filopodia were observed with a decline of 

food density or when cultures were older than five days. In one strain (KD1013) clover leaf-shaped 

swimming aggregates (Fig. 2G) as well as large aggregates of individuals forming a feeding 

community were observed (Fig. 2H). Those aggregates may fuse partially in the areas of the 

vacuolated cytoplasm in region IV. No cysts or flagellated cell stages were observed. Division 

longitudinal.  
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Figure 1: Cellular features of Lecythium hyalinum strain KD1010. Scale bars indicate 10 µm, pictures 

were taken with DIC. A: Overview of the cell body. B: Close-up of the nucleus. C: Branching and 

anastomosing filopodia. D: The nucleolus and its structure. E: Close up of the folds surrounding the 

aperture and the vacuolated cytoplasm. F: The aperture seen from the side. G: Small granules within 

the filopodia.  
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Figure 2: Cellular features of Lecythium hyalinum strain KD1013. A-F: Scale bars indicate 10 µm, 

pictures were taken with DIC. G+H: Scale bars indicate 100 µm, pictures were taken with ph1. A: 

Overview of the cell body. B: Close-up of the nucleus. C: Branching and anastomosing filopodia. D: 

The nucleolus and its structure. E: Close up of the folds surrounding the aperture and the vacuolated 

cytoplasm. F: The aperture seen from the side.  G: Three swimming, adhering cells (aggregate) with 

non-branched and non-anastomosing filopodia; H: Feeding cells in a culture. 



Novel Lineages in Cercozoa and Their Feeding Strategies  Kenneth Dumack 

124 
 

 

Figure 3: Cellular features of Lecythium hyalinum strain KD1012. Scale bars indicate 10 µm, pictures 

were taken with DIC. A: Overview of the cell body. B: Close-up of the nucleus with nucleolus. C: 

Branching filopodia. D: The aperture seen from below. 
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Figure 4: Schematic drawing of the cell composition of Lecythium hyalinum. Scale bars indicate 10 

µm. Pictures taken with DIC (A), ph2 (B), ph1 (C) and ph3 (D). 



Novel Lineages in Cercozoa and Their Feeding Strategies  Kenneth Dumack 

126 
 

 

Figure 5: Full overview of Lecythium hyalinum exemplified on strain KD1013 with expanded filopodia 

in a typical and undisturbed shape. Scale bar indicates 50 µm. 
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Lecythium jennyae sp. nov. 

The amoebae bear a thin and hyaline test, carried in an upright position. The theca is roundish or 

slightly curved with 24-42 µm in length and 29-48 µm in width (Fig. 6A, n=16). The theca usually has 

many folds all over the surface (Fig. 6B,D,F; Supplementary Video 3), and they are concentrated 

around the aperture (Fig. 6B,F). The surface can be also smooth (Fig. 6A; Supplementary Video 3), 

usually as a result of large ingested food organisms. 

The nucleus (12.8-19.5 µm; n=12; Fig. 6C) is located at the apical end of the cell (opposite to the 

aperture) and most often ellipsoid, sometimes spherical, with a fine marbled structure. No nucleolus 

was detected. Granules with a size of 0.96-2.9 µm (n=16), vacuoles and contractile vacuoles are 

dispersed all over the cell body, whereas food vacuoles are restricted to the basal region of the cell 

(Fig. 6A, J, Supplementary Video 3).  

The amoebae move with thin often branched and anastomosing filopodia with a measured length of 

maximal 60 µm (Fig. 6B, Supplementary Video 3). No floating or swimming stages were observed. 

Cell division longitudinal.  

 

In cultures often aggregates occurred of usually two, rarely up to six, amoebae (Fig. 6G, 6F; 

Supplementary Video 3). The amoebae adhered at the apertures, but no fusion of the cell bodies was 

detected. After approximately four months of culturing the first cysts appeared in our cultures. They 

were built within the theca that remained as a loose envelope around the cyst wall (Fig. 7). Cysts 

contained granules with smaller particles and hyaline granules (Supplementary Video 3), in their 

center a transparent sphere was located, most probably the nucleus (Fig. 7B). 
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Figure 6: Cellular features of Lecythium jennyae (KD1014). Scale bars indicate 10 µm. A-G: pictures 

were taken with DIC; H: picture was taken with phase contrast. A: Overview of the cell body. B: 

Branching and anastomosing filopodia and many folds around the aperture. C: Close-up of the 

nucleus.  D: Folds in the theca on the lateral side of the cell. E: Surface of the apical end of the cell. F: 

Starving cell seen from the side with folds around the aperture. G: Two adhering cells (aggregate). H: 

Three swimming and adhering (aggregate) cells. 
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Figure 7: Cellular features of Lecythium jennyae in its dormant stage (cyst) provided on two different 

individuals (A+B; C+D) by light micrographs (DIC). Scale bars indicate 10 µm. For an animation of the 

cysts see Supplementary Video 3. 
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Sequencing of cultured amoebae and phylogeny 

Near full length SSU gene sequences were obtained. The sequenced parts ranged from 1427 to 1710 

nucleotides (Table 1). No introns were found. The sequences of all L. hyalinum strains were identical. 

The best maximum likelihood tree (Fig. 8) reveald the cercozoan subphylum Filosa (consisting of the 

Thecofilosea, Sarcomonadea and Imbricatea) and selected sequences of the Endomyxa as outgroup. 

As in previous analyses using SSU rDNA sequence comparisons, some basal branches within the 

Cercozoa were not supported (Bass et al. 2009; Howe et al. 2011). The Thecofilosea are composed of 

the Phaeodaria, Cryomonadida, Tectofilosida and with moderate support of 51/0.97 the Novel Clade 

4 (Bass and Cavalier-Smith 2004). The Novel Clade 4 was highly supported (100/1.00) and composed 

of the four strains of L. hyalinum (KX580623, KX580624, KX580625, KX580626), Lecythium jennyae sp. 

nov. (KX580622), the recently described Trachyrhizium urniformis (Shiratori and Ishida 2016) and two 

marine environmental sequences.  

 

Diagnoses  

Genus Lecythium HERTWIG ET LESSER 1874 emend.  

Emended diagnosis: Filose, radially symmetric amoebae. Cells bear a colourless, thin and organic test 

(theca), carried in an upright position, with one basal opening from which branching and 

anastomosing filopodia arise. Filopodia may show small granules. Nucleus at the apical end of the 

cell. Cells with numerous contractile vacuoles and granules. Might form floating or swimming stages 

(single cells and aggregates) with straight, non-branched and non-anastomosing filopodia. 

Aggregates with fused filopodia or fused vacuolated cytoplasm occur. Cysts are built within the theca 

that then remains as a loose envelope around the cyst wall. No flagellated cells observed. Species 

feed on eukaryotic prey (i.e. algae); ingestion of bacteria not observed. Division: longitudinal, binary. 

Sexual reproduction unknown. 

Etymology: Lecythium [Greek] = flask, jug; referring to the vitreous test 

Type species: L. hyalinum 
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Lecythium hyalinum HERTWIG ET LESSER 1874 emend. 

Emended diagnosis: Lecythium as above. Test: round or spherical in shape, 18-50 µm (length), 24-61 

µm (width), ratio 0.7-1 µm (length/width). Nucleus: ellipsoid or spherical, about 11.5-21 µm in width. 

Nucleolus:one, rarely two adhering, round, 4-8 µm in diameter; central to nucleus. Aperture: 

roundish, vacuolated cytoplasm arises from the aperture. Cells show a clear zonation (apical to 

basal): (I) zone of nucleus (no granules or vacuoles), (II) zone of granules (III) zone of food vacuoles 

(IV) highly vacuolated cytoplasm in front of the aperture (contractile vacuoles) of which branching 

and anastomosing filopodia arise. Locomotion: (i) actively creeping, filopodia rarely extend longer 

than 70 µm; (ii) swimming with extended, non-branched and non-anastomosed and slowly moving 

filopodia. Filopodia with small granules attached to cytoskeletal filaments occur. Prey: unicellular 

algae, no ingestion of bacteria observed. Cell division: longitudinal, binary. 

Etymology: hyalinum [Latin], due to the hyaline test. 

Deposited culture: deposited in the Culture Collection of Algae and Protozoa under the accession 

number CCAP 1943/6 

 

 

Lecythium jennyae MAUSBACH DUMACK ET BONKOWSKI, sp. nov.  

Diagnosis: Lecythium as above. Test: round or spherical in shape, 24-42 µm (length), 29-48 µm 

(width), ratio 0.7-1 (length/width), often deformed due to folds. Nucleus: ellipsoid or spherical, 

marbled structure, about 12.8-19.5 µm, located at the apical end of the cell; nucleolus not 

detectable. Granules: about 0.96-2.9 µm, round, dispersed all over the cell. Vacuoles: contractile 

vacuoles dispersed all over the cell, food vacuoles restricted to the basal end. Aperture: roundish, 

filopodia arise directly from the aperture and not from a vacuolated cytoplasm, like in L. hyalinum. 

Locomotion: actively creeping, filopodia rarely extend longer than 60 µm; Prey: unicellular algae, no 

ingestion of bacteria observed. Cell division: longitudinal, binary. 

Type material (hapantotype): A glass slide containing several fixed individuals is deposited in the 

Upper Austrian State Museum Invertebrate Collection as Inv. Nr. (2016/121); this material 

constitutes the name-bearing type of this species.  

Culture of type generating strain: deposited in the Culture Collection of Algae and Protozoa under 

the accession number CCAP 1943/7 
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Sequence of type generating strain (SSU rDNA): KX580622 

Type locality: urban pond in a park at Cologne-Mühlheim, Germany; 50.958675, 7,005476  

Etymology: jenny- ae, this species is dedicated to Jennifer Schmitz. 

 

Family Fiscullidae DUMACK MAUSBACH ET BONKOWSKI, fam. nov.  

Limnic or terrestrial filose testate amoebae. Test: flexible, organic, round, pyriform or spherical, with 

one basal aperture of which filopodia arise. No flagella or cilia. Surface grazer. Trophic stage: 

incessant creeping with branched and anastomosed, tapering filopodia. Preying on eukaryotes with 

filopodia. Food ingested through aperture, digested in the test. Nucleus round or ellipsoid. Granules 

and vacuoles occur (contractile vacuoles hard to detect). May form cysts or floating stages. No sexual 

reproduction observed. In contrast to Lecythium: no granules in filopodia, cells form aggregates by 

fusion, often between the apical end and the nucleus an additional layer of granules which could not 

be observed in L. hyalinum.  

 

Etymology: Name derived from type genus. 

Type genus: Fisculla 

 

Genus Fisculla DUMACK MAUSBACH ET BONKOWSKI, gen. nov. 

Filose radially symmetric amoebae. Theca often deformed by ingested food, sometimes wrinkled or 

folded. Apical ellipsoid or round nucleus, clear or grainy; round nucleolus sometimes visible by light 

microscopy. One or several contractile vacuoles (hard to see) and food vacuoles, usually basal. 

Granules vary in amount, sometimes in layers, sometimes spread evenly. Cells creep by filopodia, 

which may branch or anastomose but lack granules; cell body carried upright. May form floating 

stages with retracted or expanded filopodia. Cysts formed within the theca, the theca forms a loose 

envelope around the cyst wall. Cells may aggregate basolaterally in a ring, each retaining its nucleus 

and individual shape, or apparently partially fuse basally within one multinucleate lobed theca. 

Eukaryotic prey (yeasts, algae) caught by filopodia; dragged to thecal opening for ingestion. No 

bacterial ingestion observed. At least F. terrestris can form a tubular feeding siphon. Freshwater or 

terrestrial. Division longitudinal, binary. Sexual reproduction unknown. 
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In contrast to Lecythium: no granules in filopodia, cells form aggregates by fusion, often between the 

apical end and the nucleus an additional layer of granules which could not be observed in L. hyalinum 

or L. jennyae. 

Etymology: Fisculla [Latin] = Belittlement of the noun fiscus (= money bag); referring to the bag-like 

shape of the test.  

Type species: F. terrestris 

 

Discussion 

Morphological analysis  

Lecythium hyalinum was first described by Hertwig and Lesser (1874) as a filose testate amoeba with 

a non-flexible, hyaline and almost round test. Penard (1902), Belar (1921) and de Saedeleer (1934) 

provided redescriptions of L. hyalinum which were in accordance with the original description of 

Hertwig and Lesser (1874), but provided further details. They described the length of the test with a 

range of 20-40 µm, which fits in our measurements (18-50 µm). Hertwig and Lesser (1874), Penard 

(1902) and Belar (1921) did not describe any folds in the theca, but de Saedeleer (1934) did and 

described them as restricted to the surroundings of the aperture, as they occurred often in our 

isolates. Since not all our individuals carried folds, these folds might have also not been observed by 

Hertwig and Lesser (1874).  

We observed that the aperture showed a specific form, a neck-like structure reaching out of a notch, 

which was described by Hertwig and Lesser (1874), Penard (1902) and de Saedeleer (1934). Further 

and maybe most important, we could observe a protuberant, vacuolated cytoplasm in front of the 

aperture, from which the filopodia arise. Up to now, this vacuolated cytoplasm was never described 

for any other Lecythium species (Dumack et al. 2016b,c) and is therefore considered by us as the 

most important discrimination factor of L. hyalinum to other species. In accordance to our 

observations, Hertwig and Lesser (1874) also observed a well detectable nucleus with a visible 

nucleolus in a homogenous area of cytoplasm at the apical end of the cell. In this area neither 

granules nor vacuoles appear, which was clearly described by Penard (1902) and de Saedeleer 

(1934).  
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Figure 8: SSU rDNA phylogeny of Filosa with selected Endomyxa as outgroup with focus on the 

Thecofilosea. The Thecofilosea Shown is the maximum likelihood tree obtained by the PhyML 

GTR+I+G analyses including 84 sequences and using 1587 aligned sites. The support levels of the 

PhyML and the Bayesian analysis are shown on the respective branches (ML/BI) in support was over 

50/0.95. Bold lines: Support above 95/0.95. Support under 50% or 0.95 are omitted. In this study 

sequenced amoebae are highlighted.  
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Unfortunately, Hertwig and Lesser (1874), did not give any descriptions of the nucleolus structure but 

Belar (1921) described it either as homogenous or as vacuolated, as we could observe in our isolates. 

In stable cultures, he observed large aggregates moving as a planar, outspread community, what we 

call a feeding community. Similar to our redescription, Belar (1921) observed swimming stages either 

as single cell or as an aggregated, roundish group of amoebae, when, as he states, ‘products of 

metabolism accumulated in cultures’. These swimming groups aggregate basolaterally in a ring or 

sphere. As observed in our isolates, filopodia of the swimming stages were described by Belar (1921) 

as being straight, which rarely branch and never anastomose. We decided to use the word 

‘swimming’ as the filopodia most often show slow but active movement in contrast to many floating 

stages that seem immotile, being inactively carried by the current. 

Accordingly, our morphological analyses confirm that our isolates (KD1010-KD1013) are strains of 

Lecythium hyalinum, especially the highly vacuolated cytoplasm in front of the aperture, the 

presence of the nucleus at the apical end with a vacuolated nucleolus, and the zonation of the cells 

are considered as crucial morphological traits.  

The isolate KD1014 shows differences in several characteristics to L. hyalinum. KD1014 never showed 

a zonation of the cell body as in L. hyalinum. It contained neither an apical zone with the nucleus 

embedded in homogenous cytoplasm, nor any zonation in three areas as described above. Granules 

and vacuoles were dispersed all over the cell body. We never observed of the mentioned vacuolated 

cytoplasm around the aperture. Also a nucleolus was never observed. The test often features 

numerous folds to an extent as it was never seen in L. hyalinum. We therefore conclude that strain 

KD1014 does not resemble L. hyalinum but must be a closely related species. 

There are six other described Lecythium species of which molecular data is lacking and we therefore 

have to compare their morphology with strain KD1014. The species are: L. granulatus (Schulze, 

1875), L. mutabilis (Bailey, 1853), L. spinosum (Penard, 1890), L. curvus (Leidy, 1879), L. kryptosis 

(Chardez, 1972) and L. minutum (de Saedeleer, 1934). The morphology of these species is quite 

different to our isolate (see also identification key provided by Dumack et al. 2016c). L. minutum is 

marine and by far too small to be the same species as our isolate. Due to the almost round test our 

isolate cannot be identified as L. kryptosis, L. curvus, L. spinosum or L. mutabilis. Some similarities are 

detectable between our isolate and L. granulatus (most prominently the occurrence of a ‘large 

amount of granules’, for a discussion of this morphological character see Dumack et al. 2016c), but 

the size difference and perhaps most importantly the absence of a clearly visible nucleolus in our 

isolate are an obvious difference. Finally, we conclude our isolate is a novel species of Lecythium that 

we call from now on L. jennyae. 
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Lecythium phylogeny and taxonomy 

Morphological analysis of the thecofilosean thecate amoebae is a difficult task. Dumack et al. 

(2016b,c) grouped novel species into the genus Lecythium, which we show here was incorrect. As 

discussed in Dumack et al. (2016c), Penard (1902) probably wrongly described L. margaritae as L. 

granulatus, this shows that morphological misidentification of even distantly related species 

occurred even to well trained protistologists. With molecular analyses this problem can be resolved. 

Surprisingly, L. hyalinum and L. jennyae cluster within the Novel Clade 4 which groups as a novel 

lineage with moderate support in the Thecofilosea (Bass and Cavalier-Smith, 2004), and not as 

expected among the recently described ‘Lecythium’ species (Dumack et al. 2016b,c). The Novel Clade 

4, was established by Howe et al. (2011) and until recently exclusively composed of environmental 

sequences. Cavalier-Smith and Chao (2003) established the order Tectofilosida to accommodate next 

to others the Chlamydophryidae. Since Lecythium currently is assigned to the Chlamydophryidae we 

suggest to include the Novel Clade 4 into the order Tectofilosida although SSU phylogenetic support 

in our analyses is only moderate. 

Due to the fact that L. hyalinum is the type species of the genus, we have to provide new taxonomic 

descriptions for the former genus, which we renamed Fisculla. In addition, we had to establish a new 

family, the Fiscullidae. Accordingly, the other described Lecythium species (L. kryptosis, L. curvus, L. 

spinosum, L. mutabilis, L. minutum, L. granulatus) of which molecular data is still lacking, might also 

not group with the morphologically diverse genus Lecythium, but could instead group in the 

Fiscullidae or Rhizaspididae. Until molecular data are provided, their taxonomy cannot be clarified. 

Recently Shiratori and Ishida (2016) described Trachyrhizium urniformis, a small marine thecate 

amoeba that groups within Novel Clade 4. They excluded the possibility, that their isolate resembled 

L. minutum (the only known eukaryvorous marine Lecythium species) on morphological basis, since it 

had granules in the filopodia and a test size of 12.0 µm on average (range: 7.5-17.6 µm). Small 

granules could also be observed in the filopodia of our L. hyalinum isolates despite this character had 

not been described before, possibly because these granules are very small, rare, and therefore hard 

to detect. De Saedeleer (1934) described L. minutum from a single observation of two cells which 

were 9.3-11 µm in size and as he wrote: ‘we may not have been able to get a clear image of the 

whole filopodia network due to the fast movement of the cells’. Although Shiratori and Ishida (2016) 

stated a size difference of T. urniformis to L. minutum, these values lie within their measured 

variation and therefore fit in the size range of T. urniformis. We therefore suggest that T. urniformis 

might resemble L. minutum or a close relative of it.  
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The ‘dancing particles’ of L. hyalinum 

The ‘dancing particles’ on the cell surface of the vacuolated cytoplasm of L. hyalinum might resemble 

ectocytobiotic bacteria. Protists with ectocytobiotic ‘symbionts’ are already described for few 

protists, predominantly studied in the genus Nuclearia (Dirren et al. 2014; Dirren and Posch 2016). 

Further studies will be conducted investigating this possible eukaryotic-prokaryotic ‘symbiosis’. 

Material and methods 

Sampling and identification 

Freshwater samples were collected from lakes, ponds, creeks and rivers in Germany and the 

Netherlands. Plastic bottles were scratched over the bottom to detach detritus, sediment and the 

surface grazing amoebae. Two ml of the sampled 100- 200 ml were given in each well of a 24-well 

plate (Sarstedt, Germany). The samples were screened for L. hyalinum-like cells with an inverse 

microscope (Nikon Eclipse TS100; Ph1; 40x, 100x, 200x and 400x magnification).  

Isolation and cultivation 

Cells were picked with a glass micro pipette and transferred into a new well, containing WC-Medium 

or Waris-H. Additionally, diatoms (Nitzschia communis, CCAC 1762 B; Nitzschia amphibia, CCAC 5733 

B; Pinnularia sp. CCAC 0222B) or green algae (Characium sp.) were provided as food source (Tab 1). 

Cells were sub-cultured approximately every three to ten days.  

Microscopial observations 

Pictures and videos were taken with a Nikon digital sight DS-U2 camera (program: NIS-Elements 

V4.13.04) with a Nikon Eclipse 90i upright microscope (up to 600x magnification, DIC) and a Nikon 

TE2000-E inverse microscope (up to 400x magnification, phase contrast). 

Sequencing of cultured amoebae 

For sequencing, clonal individuals were starved for up to three days in fresh culture medium and with 

approximately 1 µl of medium a single individual was transferred into PCR-tubes, containing 15 µl 

ddH2O. The tubes were frozen at -20 °C for storage. Then 35 µl PCR mixture was added. The mixture 

included 5 µl 0.1 µM forward and 5 µl 0.1 µM reverse primer, 5 µl 200 µM dNTPs, 5 µl Thermo 

Scientific Dream Taq Green Buffer, 0.3 µl Dream Taq polymerase (Thermo Fisher Scientific, Dreieich, 

Germany) and 14.7 µl water. The SSU sequences were obtained in two successive steps. First, the 

whole SSU was amplified with the general eukaryotic primers, EukA and EukB (Medlin et al. 1988). In 

the second step, semi-nested re-amplifications were performed by using primers specifically 
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designed for cercozoans, with the same settings as above and the primer pairs EukA + S963R_Cerco 

(Fiore-Donno, pers. comm.) targeting the 5’ part of the SSU and S616F_Cercomix (Fiore-Donno, pers. 

comm) + EukB for the 3’ part of the gene. One µl of the first PCR product was used as template.  

The PCR products were purified by adding 0.15 μl of Exonuclease, 0.9 μl FastAP and 1.95 μl water to 

8 μl of the second PCR product. Then heated for 30 min at 37 °C, and subsequently for 20 min at 85 

°C. 

The Big dye Terminator Cycle sequencing Kit (Thermo Fisher Scientific, Dreieich, Germany) and an ABI 

PRISM automatic sequencer were used for the sequencing. 

 

Phylogenetic analyses  

The partial sequences were manually checked for sequencing errors before they were assembled 

into one sequence contig. To create a dataset for phylogenetic analyses sequences were blasted 

(blastn 2.3.0) against the NCBI GenBank database (last date of accession: 14.06.2016). 

Representative sequences belonging to the Filosa and to the Endomyxa (outgroup) were downloaded 

and manually aligned in SeaView (V4.5.3, Gouy et al. 2010). 1587 sites were used for the alignment, 

which were to 45.19 % without polymorphism. The best fitting model GTR+I+G was found by using 

the program jmodeltest (V.2.1.5, Darriba et al. 2012), testing 88 different models (settings: 

Substitution schemes 11; add Base frequencies +I+G rate variation nCat=4 resulting in 88 models, ML 

optimized NNI as base tree). With this model phylogenetic trees were calculated in PhyML 3.1 

(Guindon and Gascuel 2003) and MrBayes (settings: mcmc ngen = 10 M, sample freq = 100, print freq 

= 100, diagn freq = 500; Altekar et al. 2004; Ronquist and Huelsenbeck 2003). The sequences were 

submitted in the NCBI database under the accesstion numbers: KX580626, KX580624, KX580623, 

KX580625 and KX580622. 

 

Preparation of the hapantotype  

1.5 ml of culture material was mixed 1:4 with Schaudinn’s fluid and was heated for 5 minutes at 60°C. 

A serial dehydration in an ascending series of ethanol solutions with increasing concentration was 

conducted. Finally, the preserved cells were mixed 1:2 with glycerin, transferred to a glass slide and a 

cover slide was glued on top. 
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Abstract 

Protists are commonly suggested to regulate bacteria abundance in soils, whereas fungi are 

considered to be consumed by arthropods and fungivorous nematodes. Nevertheless, some protist 

taxa have been found to consume fungi and despise bacteria. Since these protists are difficult to 

culture little is known about their (a) ecological impact, e.g. grazing selectivity, growth rates and 

preferred prey organisms and (b) adaptation to fungal food sources, e.g. enzyme production and 

chemical sensing abilities. We demonstrated that the eukaryvorous amoeba Fisculla terrestris senses 

fungal presence and in fungal presence responds with an increased (5-fold) grazing activity. To test 

for grazing selectivity, a food choice experiment including three different prey species: 1) a yeast 

species (Saccharomyces cerevisiae), 2) a green alga (Chlorella vulgaris) and 3) a diatom (Navicula sp.) 

was conducted. Although F. terrestris consumed all offered food sources, the predator selected for 

the yeast and showed the highest growth rate (about 125  40 times increase of cell density over 

three days) and shortest generation time (5.9 1.5 h) when feeding on the fungal food source. In 

addition, F. terrestris produced enzymes specialized to degrade C- and N-sources, i.e. chitinases. We 

conclude that F. terrestris is a eukaryvorous protist with strong preference for fungal cells and should 

therefore be referred to as fungivorous. 
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Importance 

Fungivorous protists have been researched in very few often very basic studies. Especially in soil 

ecology, protists are generally referred to as bacterivores. Nevertheless, as we show, protists occupy 

various ecological niches such as the niche of fungivores. Some protist lineages are specialized and 

harbour potential for enzyme analyses, experiments on chemical sensing and bio regulators for 

potentially harmful fungi. To our knowledge this is the first study giving growth curves, generation 

times, a direct relation of consumed individuals to predator growth and further first evidence for 

chemical sensing in fungivorous protists. Thus enabling more detailed soil system modelling. 

Introduction 

Free-living protists are usually considered to feed on bacteria with low impact on fungal abundance 

(1). Since protists have traditionally been cultivated on bacteria-rich media, those that did not grow 

under these conditions are still poorly studied and probably many of non bacterivorous protists are 

not even known to science yet. Therefore, only very few and often old studies about fungivorous 

protists are available. Those were conducted by taxonomists and most lack ecological data, like their 

grazing selectivity, the resulting growth rates and the mechanisms by which they locate and digest 

their fungal prey (2-5).  

Fisculla terrestris, a small amoeba that was recently isolated from agricultural soils in Eastern 

Germany could not be cultivated on bacteria, but under lab conditions has been shown to feed not 

only on yeasts (e.g. Cryptococcus laurentii), spores of plant pathogen fungi (e.g. Fusarium culmorum) 

but also on unicellular algae (6, 7, Dumack, Mausbach, Hegmann and Bonkowski, submitted for 

publication). According to observations and the assumption that fungal food sources are much more 

abundant in terrestrial habitats than algae (8, 9) Dumack et al. (6) hypothesised that F. terrestris 

feeds primarily on fungi. Selectivity for fungal nutrition should lead to a series of adaptations, e.g. the 

ability to (a) sense fungal cells, (b) identify and select for them as a food source and (c) degrade or 

penetrate chitin since this is the main cell-wall component of fungi. 

Chemical sensing in protists has been reported already more than hundred years ago (10). Since then 

numerous studies identified diverse attractants (e.g. volatile organic compounds (VOCs) and amino 

acids) as well as chemosensory transduction in protists in a range of distantly related taxa (11-13). 

These studies, however, exclusively focused on bacterivorous protists. Chitinase-coding genes have 

been already found in the genome of protists (Amoebozoa: Acanthamoeba, Cercozoa: 

Plasmodiophora; 14, 15) and chitinase activity has been confirmed by direct observation of lysed 

chitin walls or lab experiments for several protist taxa (Amoebozoa: Hartmannella, Cercozoa: 
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Leptophryidae spp.; 5, 16, 17). However, we are not aware of reports on chitinase production in 

Fisculla, its order Tectofilosida or the whole class Thecofilosea. 

Accordingly, we performed (a) chemical sensing experiments with a fungal food source, (b) food 

choice experiments in which we offered one representative of the three dominant possible prey 

groups, a yeast (Saccharomyces cerevisiae), a green alga (Chlorella vulgaris) and a diatom (Navicula 

sp.) and (c) enzyme analyses of intact and homogenized F. terrestris cells.  

  

Materials & Methods 

Preparation of axenic cultures  

 

Cultures of the algae C. vulgaris (strain CCAC 3272) and Navicula sp. (strain CCAC 1772) were 

cultivated axenically in Waris-H+Si medium (18) at room temperature, with a light regime of 14 h 

light to 10 h dark with a light-intensity of about 5 mol photons/m2/sec. The yeast S. cerevisiae was 

cultivated axenically on potato agar plates after the manufacturer’s instructions (Fluka Analytical) 

and incubated for 2-3 days at room temperature. S. cerevisiae cells were subsequently transferred to 

sterile Waris-H+Si medium. With this, a monoxenic (bacteria-free) co-culture of F. terrestris (strain 

CCAP 1943/1) was established by cell sorting as described by Hess & Melkonian (17). F. terrestris was 

also cultivated in Waris-H+Si to control for medium effects. 

 

Set up of the chemical sensing experiment 

Erlenmeyer flasks (n=3) were prepared with (a) axenic S. cerevisiae in Waris-H and (b) sterile Waris-H 

as a control. Both treatments were incubated for 5 days at room temperature and then 15 ml of the 

suspension were subsampled and centrifuged for 1 h by 4,500 U/min (Hettich, Rotina 420R). One ml 

of axenic culture of F. terrestris were transferred into wells of 24-well plates (n=6) and incubated for 

2 hours then the base level of activity was determined by counting inactive cells and active grazing 

cells, giving the activity in percentage. To check a response of F. terrestris in activity, out of each 

Erlenmeyer flask 100 µl of the supernatant was added to the culture, incubated for 30 min and again 

the grazing activity in percent was calculated. 
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Set up of the food choice experiment 

Cell numbers of each of the three food source cultures (Saccharomyces cerevisiae; Chlorella vulgaris 

and Navicula sp.)  were counted in a Neubauer Counting Chamber (Hecht-Assistant, Sondheim 

Deutschland) Based on these values, 10*104 algae and yeast cells were pipetted together with 100 

individuals of F. terrestris into separate wells of a 96-well-plate (n=6). Control treatments contained 

each organism separately as well as the predator with each prey species individually. The final 

volume was adjusted to 200 l Waris-H+Si. Changes in the numbers of cells were monitored by direct 

counting with a Neubauer chamber once a day over the three days run time of the experiment.  

 

Chitinase assay 

A starving culture of F. terrestris (4 weeks of culturing, 14 days of starving) was used for the analyses. 

To control for possible remaining yeast cells, 500 ml of the culture were filtered through a 5 µm pore 

glass fibre filter. The protist cells were resuspended in Waris-H, examined for possible remaining 

yeast cells by light microscopy and incubated for additional 4-5 days before analyses. The 

determination of enzyme kinetics (chitinase) included three treatments, (1) non-treated medium (2) 

starving, but intact cells of protists and (3) starving and homogenized cells of protists. The 

homogenized cells were destroyed by pulsed sonication with 50 J s-1 for 120 s. 

We used 4-methylumbelliferyl N-acetyl-β-D-glucosaminide to determine the enzyme activity of N-

acetyl-β-glucosaminidase (chitinase; EC 3.2.1.52) (18). Aliquots (50 µl) of liquid protist culture (3 

analytical replicates) were withdrawn and dispensed into 96-well microplates (Brand pureGrade, 

black). The 4-methylumbelliferyl N-acetyl-β-D-glucosaminide was dissolved in 300 µl dimethyl 

sulfoxide (DMSO) and then diluted with 80 µl of 0.1 M, pH 6.1 MES to obtain 1 mM of working 

solution (20, 21). A concentration series of 20, 40, 60, 80, 100, 200, 400 µmol was then prepared and 

100 µl of the substrate solution was added to the wells.  

Microplates were kept at 21°C, agitated and measured fluorometrically (excitation 360 nm; emission 

450 nm) after 1 h, 2 h, and 3 h incubation with an automated fluorometric plate-reader (Wallac 1420, 

Perkin Elmer, Turku, Finland).  
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Statistical analyses 

Food choice 

Changes in protist and prey abundances were analyzed by multivariate analysis of variance 

(MANOVA) according to Hurlbert (22). The data were tested for sphericity before the MANOVAs 

were calculated and tested for differences in R (V.3.1.0).  

Day 0 was excluded to correct for a possible adaptation phase of the predator, when the generation 

times of F. terrestris were determined. With S. cerevisiae as food source, F. terrestris reached on the 

third day food limitation, therefore day 3 was also excluded from the calculation, restricting the 

values to the exponential growth phase of F. terrestris.  

 

Chemical sensing  

The data of the chemical sensing experiment were tested for normality (Shapiro Wilk test) and 

variance homogeneity (Levene’s test). Differences between the two treatments and the control were 

calculated in R with the settings described above since requirements for an ANOVA were given.  

 

Chitinase assay 

The substrate-dependent rate of reaction mediated by hydrolytic enzymes, followed Michaelis-

Menten kinetics (20, 21, 23). The parameters of the equation were fitted by minimizing the least-

square sum using GraphPad Version 6 software (Prism, USA). Parameter optimization was restricted 

to the applied model equation as indicated by maximum values of statistic criteria (r2) (19, 20). 

 

Results 

Chemical sensing experiment 

Starving cultures of F. terrestris contained an average of 5.2  3.5% actively grazing cells (Fig. 1). The 

activity did not change significantly after incubation in fresh medium (control), but increased about 

5-fold, to 26  9.6%, when supernatant of yeast cells was added (F[2,9]=18.38; p<0.001). 
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Figure 1: Results of the chemical sensing experiment. Numbers of actively grazing F. terrestris cells 

are shown on the y-axis, the x-axis shows the grazing activity of a starving culture t=0, the activity 

after addition of culture medium (control) and the activity after addition of culture medium from 

yeast cells. 

 

Food choice experiments 

All three food sources in control treatments showed a stable abundance during the run time of the 

experiment (F[3,20]=1.151; p=0.34; not shown). Only the abundance of F. terrestris increased 

marginally about 2.5-fold to initial density, likely due to nutrient and energy reserve (F[3,20]=21.64; 

p<0.001). 

With only one food source offered, F. terrestris consumed each of it (S. cerevisiae: F[3,20]=43.46; 

p<0.001; C. vulgaris: F[3,20]=5.58; p<0.01; Navicula sp.: F[3,20]=4.48; p<0.05; Fig. 2). 
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Figure 2: Results of the monoxenic single food-choice experiments; cell abundance of the food 

sources are shown on the left y axis (grey line: S. cerevisiae; green line C. vulgaris and yellow line 

Navicula sp.), cell abundance of the predator F. terrestris is shown on the right y axis (dotted line: F. 

terrestris + S. cerevisiae; short-dashed dark green line F. terrestris + C. vulgaris and long-dashed 

orange line F. terrestris + Navicula sp.).  

 

Over three days the abundance of S. cerevisiae declined on average to 7.5 4% of initial density. The 

abundance of the algae C. vulgaris and Navicula sp. declined to 78 20% and 65 14% of initial 

density, respectively. The abundance of F. terrestris increased with S. cerevisiae, C. vulgaris and 

Navicula sp. as food source about 125  40, 40  20 and 7.5  1 fold, respectively (F. terrestris + S. 

cerevisiae: F[3,20]=30.41; p<0.001; F. terrestris + C. vulgaris: F[3,20]=25.96; p<0.001; F. terrestris + 

Navicula sp.: F[3,20]=310.19; p<0.001) compared to initial density.  

The mean generation times of F. terrestris were about 5.9 1.5 h, 12.8  3h and 16.9 1.7 h with S. 

cerevisiae, C. vulgaris and Navicula sp. as food source, respectively (Fig. 2). For each division F. 

terrestris was feeding an average 9.05 4.7 yeast cells, 5.71 6.25 green alga cells and 41.65 36.27 

diatom cells, indicating that the average food quality of S. cerevisiae, combined with the low handling 

time lead to the highest growth efficiency. 

When S. cerevisiae and C. vulgaris were offered together (Fig. 3), the abundance of F. terrestris grew 

about 82.5  29 fold in three days. S. cerevisiae declined to 6.8 4% of initial density while C. vulgaris 

stayed constant in density (S. cerevisiae: F[3,20]=49.28; p<0.001; C. vulgaris: F[3,20]=1.39; p=0.276).  
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Figure 3: Results of the double food-choice experiments; cell abundance of the food sources are 

shown on the left y axis (grey line: S. cerevisiae; green dashed line C. vulgaris and yellow dotted line 

Navicula sp.), cell abundance of the predator F. terrestris is shown on the right y axis (black line). (A) 

C. vulgaris + S. cerevisiae as food sources, (B) S. cerevisiae + Navicula sp. as food sources and (C) C. 

vulgaris and Navicula sp. as food sources.  

 

When a mixture of S. cerevisiae and Navicula sp. was offered, both food sources were consumed (S. 

cerevisiae: F[3,20]=123.3; p<0.001; Navicula sp.: F[3,20]=3.85; p<0.05; Fig. 3), and the abundance of F. 

terrestris grew 120  39 fold. When a mixture of C. vulgaris and Navicula sp. was offered, also both 

food sources were consumed (C. vulgaris: F[3,20]=5.47; p<0.01; Navicula sp.: F[3,20]=11.49; p<0.001; Fig. 

3), but the abundance of F. terrestris increased up to 20  4.7 fold. 

When all three different food sources were offered (Fig. 4), F. terrestris fed on all of them (S. 

cerevisiae: F[3,20]=102.01; p<0.001; C. vulgaris: F[3,20]=3.77; p<0.05; Navicula sp.: F[3,20]=4.4; p<0.05) and 

the abundance of F. terrestris had increased after three days about 133  24 fold.  

After three days over 90% of the yeast cells were consumed with only 9  4% S. cerevisiae cells 

remaining, whereas the abundance of the algae C. vulgaris and Navicula sp. slightly decreased to 90 

 9% and 69  20% of initial cell density, respectively.  
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Figure 4: Results of the triple food-choice experiment; cell abundance of the food sources are shown 

on the left y axis (grey line: S. cerevisiae; green dashed line C. vulgaris and yellow dotted line 

Navicula sp.), cell abundance of the predator F. terrestris is shown on the right y axis (black line). 

 

 

Chitinase analyses 

The potential enzyme activity (Vmax) increased by 32% in homogenised samples (F[1,32]=15.95; 

p<0.001; Fig. 5), indicating the production of intra-cellular chitinases. Furthermore, the Km was 40% 

higher when cells were destroyed by sonication compared to intact cells, reflecting lower enzyme 

affinity to the substrate (Fig. 6). The control medium did not show chitinase activity (not shown). 
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Figure 5: Results of the chitinase activity measurements, Enzyme kinetic properties: Vmax (black) and 

Km (grey) are given for intact F. terrestris cells (left) and homogenized ones (right), the difference in 

Vmax is considered as intracellular chitinase. 

 

Figure 6: Chitinase activity in dependence of substrate concentration. The orange line shows the 

homogenized protists, the black line intact F. terrestris cells.  
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Discussion 

Food choice 

F. terrestris preferred yeast cells although being able to grow on all offered eukaryotes. This 

corroborates our hypothesis that F. terrestris as a soil dwelling organism should prefer abundant 

terrestrial food sources such as fungal cells. 

Despite similar cell abundance, size and motility of all offered prey organisms, the growth rates of F. 

terrestris in monoxenic cultures differed drastically. The yeast S. cerevisiae caused the highest 

reproduction of F. terrestris compared to both offered algae, indicating that F. terrestris is well 

adapted to digest fungal cells. 

Algae are known as the main food source of aquatic Fisculla isolates (6, 7). Both algae, C. vulgaris and 

Navicula sp. were consumed under monoxenic conditions which implies that this terrestrial Fisculla 

species has not entirely lost the ability to feed on algae. We consider F. terrestris as an omnivorous 

eukaryote predator with strong preference for fungal cells. Therefore F. terrestris should be referred 

to as fungivorous. Experiments with the terrestrial members of the Leptophryidae have shown that 

these fungivorous protists can also consume algae under experimental conditions (2, 5). 

 

Fungivory in F. terrestris 

How does F. terrestris select for food cells? 

Based on microscopical observation, we suggest that there are at least two steps in prey recognition 

of F. terrestris (see Figure 7):  

Starving F. terrestris cells form immotile resting stages, similar to cysts but without an additional cyst 

wall. After addition of every tested fungal material (including spores of Fusarium spp. and Rhizopus 

sp. or yeast like Cryptococcus spp. and Saccharomyces cerevisiae, for more details see 6) F. terrestris 

started to show active grazing behaviour within minutes. Also some algae triggered this behaviour 

(e.g. Chlorella spp. and Stichococcus bacillaris) others (e.g. Kirchneriella sp. and Chromulina nebulosa) 

did not. We consider this as the first step to recognize suitable prey. No direct contact with the prey 

is needed to cause the induction of activity; we suggest a sensing of water soluble signals by the 

predator as the chemical sensing experiment has shown.  

F. terrestris, after catching potential prey organisms with its filopodia, ‘inspects’ them by contact of 

several seconds to minutes before either ingestion or a release of the potential prey organism takes 
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place (6). This second step in the process of prey recognition might include a direct contact or short 

range sensing of cell wall compounds. 

Moreover, the results exhibited a trade-off between the consumption of optimal and sub-optimal 

food sources. Additional, Supplementary Videos 3+4 (6) showed that less suitable food sources will 

be ingested if too many unsuccessful scanning events have taken place. This explains the small 

proportion of less suitable food sources (e.g. C. vulgaris and Navicula sp.), which is grazed together 

with high amounts of the preferred food sources (e.g. S. cerevisiae and Cryptococcus laurentii).  

 

Figure 7: A simplified, hypothesised hunting cycle of F. terrestris. Inactive resting stages start grazing 

when suitable food is added. The chemical signals serve as long-distance cues that induce this 

behaviour.  
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How does F. terrestris digest its food?  

Fungivorous protists like F. terrestris have to be able to mechanically penetrate (like the 

Grossglockneriidae, 3, 4) or enzymatically degrade (like the Vampyrellida, 24) the protective fungal 

cell wall (1). Since no hints for a mechanical penetration of fungal cells were observed, an enzymatic 

degradation of the fungal cell wall was likely. To our knowledge, this is the first report of catalytic 

properties of chitinases in Filosea. It is likely that many more Cercozoa are able to produce chitinases, 

for example omnivorous cercomonads that occasionally may feed on yeast cells (1).  

Conclusion 

Our results confirmed that F. terrestris is a highly selective grazer and selects for fungal cells. F. 

terrestris produced enzymes, such as chitinases, which are able to performed the degrade for 

instance fungal cell walls to aquire C- and N- sources.  

F. terrestris although being able to multiply to a much lower extend on algae and, therefore must be 

considered as an omnivorous predator of eukaryotic cells, with strong preference for fungi, despite 

other described close relatives are known to feed mainly on algae.  

Therefore, F. terrestris as one of very few known fungivorous soil protists might be an ideal organism 

for chemosensing as well as chemotaxis experiments in fungivorous soil protists.  

With its easily maintained bacteria-free culture, the short generation time (~ 8 h) and the trait to stay 

inactive until food is sensed it provides a convenient opportunity for bioassay experiments that might 

simply be performed by addition of solved compounds in medium, a subsequent filming of the 

culture and counting the percentage of activated individuals per area.  
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Discussion 

Unknown Diversity in Cercozoa 

 

Molecular studies hint a large uncharted diversity that needs to be characterized by 

morphological means (Bass and Cavalier-Smith 2004). We were able to find several of such 

unknown lineages of Cercozoa. The vast majority of Cercozoa of which morphology and 

genetical data are available are bacterivores, most predominantly of the Sarcomonadea, in 

particular the glissomonads and cercomonads (Bass et al. 2009b; Brabender et al. 2012; 

Cavalier-Smith and Karpov 2011).  

The previously undescribed scaled amoebae with a huge network of filopodia turned out to 

be an independent lineage with cercozoan affiliation, Kraken carinae. They group (although 

with only moderate support) within the class Sarcomonadea, CAVALIER-SMITH, 1993. If 

Kraken turns out to be a true sarcomonadean, the discovery of a scale-bearing flagella-

lacking amoeboid with sarcomonadean affiliation contradicts the image of the 

Sarcomonadea and might be a stepstone for a revision of cercozoan evolution. Moreover, 

the discovery of Kraken underlines that morphologically, phylogenetically and ecologically 

distinct lineages remain to be discovered even within groups such as Cercozoa and 

sarcomonads in particular that have been relatively well studied by environmental 

sequencing and culture-based surveys (Bass et al. 2009b; Brabender et al. 2012; Cavalier-

Smith and Karpov 2011; Harder et al. 2016; Howe et al. 2009). 

We further were able to contribute to the known diversity of Cercozoa by the 

characterization of many lineages feeding on eukaryotes. Such protists were common and by 

far not an exception in Cercozoa. In probably 50% of the examined samples we found 

unexplored diversity of Cercozoa feeding on eukaryotes. Thus it seems likely that there are 

still many cercozoan lineages (bacterivorous and eukaryvorous) to discover, thereby 

confirming our first hypothesis.  

During the studies presented in this thesis it turned out that most of the isolated 

eukaryvorous thecate amoeba genera (Lecythium, Rhizaspis, ...) obtained from freshwater 

and terrestrial systems branch in the Thecofilosea, Cercozoa. These findings correspond with 

previously published phylogenies including morphologically similar testate amoeba genera, 



Novel Lineages in Cercozoa and Their Feeding Strategies  Kenneth Dumack 

169 
 

e.g. Pseudodifflugia, Rhogostoma and Capsellina, all of which bear a theca, some with 

accumulated exosomes (foreign materials, like sand grains or diatom frustules agglutinated 

or attached to the theca), which all branch in the class Thecofilosea in the phylum Cercozoa 

although with polyphyletic origin (Howe et al. 2011, Wylezich et al. 2002).  

We therefore can confirm our second hypothesis and moreover, those eukaryvorous strains 

of thecate amoebae now provide the opportunity to improve our understanding of thecate 

amoeba diversity, test evolution, eukaryvorous feeding behaviour and the resulting 

ecological impact.  

Moreover, a stable taxonomic framework was obtained by combining intensive literature 

research with morphological and molecular data of such poorly-known lineages of cercozoan 

diversity. This enables future species descriptions and an easy identification of species by 

others, e.g. ecologists. The connection of molecular data with morphological and 

autecological data is still of fundamental necessity for high throughput sequencing studies 

that can only then be interpreted on a professional basis. Giving information on the genetic 

margins of morphospecies (and vice versa: morphological margins of operational taxonomic 

units (OTUs)) is needed to draw conclusions about the investigated diversity, dispersal and 

ecological function of protists. 

 

Culturing of ‘unculturable’ protists 

Petz et al. (1985) were able to culture an ‘unculturable’ lineage of fungivores with nutrient 

agar that was inoculated with varying fungi and partially submerged with culture medium 

and the desired organism (Grossglockneria acuta). This demonstrated with effort and the 

development of novel techniques even ‘unculturable’ protists with unusual feeding habits 

like fungivores are culturable. 

Recently more and more ‘unculturable’ eukaryvorous protists have been cultured as 

researchers invested more and more effort into protist surveys and the establishment of 

cultures (Bass et al. 2009; Berney et al. 2013; Dirren et al. 2014; Hess et al. 2012; Hess & 

Melkonian 2013). This includes a direct enrichment of freshwater samples with putative food 

organisms (Dirren et al. 2014; Hess et al. 2012; Hess and Melkonian 2013) or the insertion of 

“traps” with “bait” into soils (Pakzad and Schlösser 1998). 
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We were able to culture numerous strains of several cercozoan lineages that previously have 

been (or might have been) declared as unculturable, resulting in the discovery of novel 

lineages and the molecular characterization of already described species, confirming our 

third hypothesis. 

(1) We could show that there is a novel lineage of protists that is extremely fragile and 

slow growing: Weak disturbance (i.e. movement of the water body in the Petri dish) 

leads to damage of the filopodia often followed by cell death. Since compared weak 

mechanical disturbance of the Kraken is most often fatal, the establishment of a 

single clonal Kraken culture was seldom achieved by only few attempts, but most 

often had to be tried up to 20 times. Furthermore, to colonize the surface of a Petri 

dish an actively growing culture required several months under our culture 

conditions. Thus, the establishment of a culture of organisms that easily die off and 

grow only very slowly needed a year of continuous effort and a tremendous amount 

of time that not every researcher has, or is willing to invest. Thus, the key to a long-

time maintenance of culturing the Kraken is therefore immense patience. Moreover, 

those characteristics hampered not only the process of culturing itself but also 

culture based work, i.e. morphological analyses. 

(2) The cultured Thecofilosea showed different characteristics that required a different 

set of equipment and expertise. As they are eukaryvorous, they have to be 

continuously co-cultured (or fed) with a suitable food source. The required culture 

conditions could not be reliably predicted either by their phylogenetic position, the 

type of habitat of which the sample originated from or by thorough investigation of 

the amoebae in natural samples. Although many typical eukaryvorous protists, e.g. 

the vast majority of Vampyrellida species show highly specialized monophagous 

feeding preferences that are also reflected in their phylogeny (Hess et al. 2012, Hess 

pers. comm.), we were not able to find such patterns in the Thecofilosea. For 

instance, Fisculla margaritae and Fisculla cf. margaritae did not feed on fungi 

whereas the closely related (and also limnic) Fisculla asini and Fisculla siemensmai 

could not be cultured without. Moreover, some strains grew steadily over multiple 

years of culturing on a single food source, others ceased to grow after a couple days 

or even months unless being cultured on a variety of (up to four) food organisms.  



Novel Lineages in Cercozoa and Their Feeding Strategies  Kenneth Dumack 

171 
 

Moreover, we were able to establish the first known (and probably the first ever established) 

bacteria-free culture of a thecofilosean amoeba.  

Fisculla terrestris cultures contaminated with bacteria were very easy to handle, but 

bacteria-free cultures of Fisculla terrestris were maintainable but unstable. Bacteria, 

although not consumed, can play an important role in species coexistence in cultures. 

Potential roles of bacteria in cultures are the degradation and/ or metabolisation of 

secondary metabolites produced by eukaryotes, that may either just be waste products or 

even be specifically produced repellents or toxins against eukaryotic predators; or (b) the 

degradation of extracellular enzymes of fungi  that might cause cell death when enriched to 

high concentration (e.g. chitinases, own observations, unpublished).  

 

What is the ecological impact and dispersal of eukaryvorous protists?  

 

Bacterivory in protists has been extensively studied in terms of nutrient flows and trophic 

interactions, eukaryvores have received much less attention. It has been shown that 

eukaryvory plays a dominant role in freshwater systems in terms of carbon flux from primary 

producers to higher trophic levels (Sherr and Sherr 1994; Sherr and Sherr 2002), but little is 

known from eukaryvory in terrestrial systems.  

Hess & Melkonian (2013) demonstrated with time-lapse photography what severe effects 

protist grazing can have on algal cultures. Within few hours to days whole prey populations 

(green algae of the Zygnematales) are eradicated. Our feeding experiments with the 

fungivorous Fisculla terrestris showed similar patterns in fungi, where a starting population 

of 100 predator individuals eradicated prey populations of 100.000 yeast cells in less than 

three days, indicating a importance of fungivores on fungi populations and possibly a top-

down control of those.  

It is important to note, that such a simplified two-species-system misses predators of higher 

trophic levels. Protists are usually preyed on by other protists (often ciliates or large 

omnivorous amoebae), or metazoa (e.g. cladocerans, rotifers, copepods, nematodes; see 

Geisen 2016, Sherr and Sherr 2002). Accordingly, such experiments show what eukaryvores 
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are capable of but lack insight in the real ecological impact of eukaryvores. Molecular 

methods like co-occurence surveys might give insight into inter-specific interactions.  

Direct observations of our freshwater samples and the thecofiloseans (and in particular the 

freshwater Fisculla) within, revealed the freshwater inhabiting Fisculla to feed on algae, 

although some fed in laboratory conditions also on fungi, they were not culturable without 

sufficient algal concentration. Since direct observation of soil protists is not possible, a 

laboratory approach was used to determine feeding preferences of the terrestrial Fisculla. 

By laboratory experiments we were able to show that the terrestrial relatives of the genus 

Fisculla feed on every of the presented fungal cells, are able to sense fungal presence, 

produce chitinases and select for fungi, whereas we with diverse experiments could show 

little (or no) algae ingestion and with different approaches we were not able to detect any 

bacteria ingestion.  

We therefore consider the terrestrial Fisculla as fungivorous, giving example of another 

fungivorous lineage closely related to algivores, which supports our fourth and fifth 

hypotheses. With sampling and a culture based approach, we could show the fungivorous 

Fisculla in two distinct terrestrial habitats. We further showed that very common amoebae 

or amoeboflagellates, like Cercomonas and Acanthamoeba, fed on fungal cells. Moreover a  

metatranscriptome study focussing on fungivorous soil inhabiting protists contribute to our 

understanding of less prominent but probably widespread trophic interactions between 

micropredators and eukaryotic prey like algae and fungi, giving further support to our fourth 

and fifth hypotheses.  

 

Remaining questions and perspective for future investigations 

Although the Kraken was only very recently described, it is already topic of ongoing 

molecular studies (Sapp pers. comm. unpublished), emphasizing that the characterization of 

novel lineages enables new ways to interpret ecological data, which may lead to a more 

comprehensive understanding of nature.   

Culture-based and molecular studies of the Tectofilosida show their diversity and functional 

role of eukaryvores. Such feeding behaviour makes them a valuable target in food web 

studies involving investigations of carbon and nutrient flow studies. It is therefore a 
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necessity to uncover the large uncharted diversity of the Thecofilosea, especially the 

Tectofilosida. Moreover, there are still old descriptions of species, like Lecythium mutabilis, 

Lecythium spinosum, Lecythium curvus and more, of which molecular data is missing. All but 

one of these species descriptions have been made by observing freshwater samples. 

Molecular analyses already revealed a series of OTUs with Tectofilosida affiliation in 

terrestrial and marine habitats (Bass and Cavalier-Smith 2004), clearly showing that there is 

still much to be discovered when further targeting these habitats. These steps will be 

essential to our understanding of the Tectofilosida in ecological context: (a) an increased 

sampling of tectofilosidan amoebae of freshwater, marine and terrestrial habitats; (b) the 

collection of morphological as well as autecological data; (c) the phylogenetic 

characterization, predominantly targeting the SSU-coding gene and; (d) when those steps 

have been conducted to a high extend, molecular studies can be performed to get insight 

into ecological data on a broad scale, including diversity and dispersal surveys and detailed 

food web (co-occurrence) investigations.  

Moreover the Tectofilosida represent a valuable target to study a variety of physiological 

adaptations of eukaryvorous protists: (a) The genus Fisculla comprises eukaryvores feeding 

on algae and fungi, we therefore assume that Fisculla is able to produce a cocktail of 

enzymes needed to digest β-polysaccharides, like in chitin, cellulose and other biopolymers. 

The screening for novel enzymes often basically focuses on macroscopic organisms or 

bacteria (Ferrer et al. 2009; Lee et al. 2010). Distant lineages of protists, like the Tectofilosida 

in the Cercozoa may harbour enzymes highly valuable for applied purposes. A first insight 

might be given by harvesting large amounts of bacteria-free Fisculla terrestris cells and 

performing simple protein extractions; (b) such protein extractions might also give insight 

into testate amoeba evolution as it is still unknown how Fisculla (and other thecofiloseans) 

builds its test. (c) Fisculla terrestris showed to be further highly sensitive for chemical signals 

released by its prey (kairomones). F. terrestris responds visibly in behaviour to those signals 

and can be cultured in bacteria-free conditions, making it a valuable organism for the 

establishment of a bioassay. Bioassays are necessary in chemical ecology to see the 

reactivity of extracted and fractioned chemical compounds. A continuous filming of such a 

culture is very easy and short-timed manageable.  
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Nevertheless there are still plenty other cercozoan lineages or morphotypes of which barely 

something is known. Just to name three very promising lineages of which a doctorial thesis 

could lead to very interesting results: Terrestrial Viridiraptoridae are still not studied, since 

the freshwater Viridiraptoridae feed on algae, their terrestrial relatives could also show 

fungivorous behaviour. If so, further evidence for the fourth of our hypotheses could be 

given. The Clade Y, closely related to the Viridiraptoridae, is still without any morphological 

data. Since the Viridiraptoridae showed surprising unique morphology and ecology, it is easy 

imaginable that the closely related Clade Y shows also parasitoid behaviour of unknown 

extend. All environmental sequences of Clade Y have been obtained from soils, it is 

therefore not unlikely that the organisms of Clade Y parasitize soil inhabiting organisms.  

Also agglutinating testate amoebae of the Cercozoa are a yet uncovered field of research. 

Although there are species known, these morphological descriptions show that 

Pseudodifflugia, Diaphoropodon, Capsellina and more taxa are highly diverse. There are up 

to now only one (maybe two, see Wylezich et al. 2002 and Howe et al. 2011) sequences 

assigned to such genera. It is likely, that these genera of agglutinating testate amoebae will 

be shown to be closely related to the thecate testate amoebae in the Cercozoa, therefore 

probably also showing eukaryvorous or omnivorous feeding behaviour and interesting 

ecology. 
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