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Zusammenfassung 

 

Das Trockene Auge ist eine der häufigsten Erkrankungen der Augenoberfläche, die vor allem ältere 

Menschen betrifft. Patienten, die an einem trockenen Auge leiden, berichten von Symptomen wie 

Trockenheit, Reizung, und einer verschlechterten Sehschärfe, die mit einem Verlust der 

Lebensqualität einhergeht. Auch wenn die Immunpathogenese in den letzten Jahren intensiv 

diskutiert wurde, kann auf Grund der vielen verschiedenen Auslöser und der Komplexität der 

Erkrankung noch immer keine kausale Therapie angeboten werden. Somit ist die Identifizierung 

neuer Behandlungsstrategien von wesentlicher Bedeutung.  

Neuere Daten lassen vermuten, dass das antiangiogene Privileg, welches die Transparenz der 

Hornhaut und somit die Sehschärfe bewahrt, im Verlauf der Erkrankung gestört wird und es zu 

einer selektiven und spontanen kornealen Lymphangiogenese kommt. Diese pathogene 

Veränderung ist bereits als Risikofaktor im Bereich der Hornhauttransplantation identifiziert 

worden. Dabei stellen die Lymphgefäße den afferenten Arm eines Immunreflexbogens dar, indem 

sie den Transport von antigenem Material und Antigen-präsentierenden Zellen zu den 

drainierenden Lymphknoten ermöglichen.  

In Bezug auf das trockene Auge gibt es erste Hinweise die korneale Lymphangiogenese als die 

mögliche Verbindung zur adaptiven Immunantwort angenommen, so dass Strategien, die die 

Lymphangiogenese modulieren, eine Chronifizierung verhindern bzw. den Krankheitsverlauf 

verbessern können. Eine erste Studie, in der der pro-lymhangiogene Faktor VEGF-C mit Hilfe eines 

prä-klinischen Medikaments inhibiert wurde, zeigte sowohl eine verminderte Entzündung als auch 

eine geringere Epitheliopathie. 

Im Zuge dieser Arbeit wurde diese Hypothese weiter untersucht. Dazu wurde das bereits 

zugelassene Medikament Aflibercept hinsichtlich seiner Effizienz, die korneale Lymphangiogenese 

sowie die T-Zell-vermittelte Immunantwort im Mausmodell des trockenen Auges zu modulieren, 

getestet. Es wurden zwei verschiedene experimentelle Modelle des trockenen Auges, welche die 

zwei klinischen Hauptklassen widerspiegeln, verwendet: dass akut induzierbare Desiccating Stress 

Model, welches durch Umweltfaktoren induziert wird, und das neue, chronische 

Autoimmunmodell, welches durch eine autoimmune Exokrinopathie der Tränendrüsen induziert 

wird. Letzteres musste neu etabliert und entwickelt werden und ahmt nicht vollständig die 

menschliche Pathologie des Sjögren‘s Syndrom nach, spiegelt jedoch die autoimmun getriebene 

Entzündung und die entstehende Infiltration der Tränendrüsen wieder. Damit wurde ein neues 

„subklinisches“ Modell des trockenen Auges etabliert. Aflibercept wurde dementsprechend nur im 

etablierten Desiccating Stress-Modell getestet. Die vorgestellten Ergebnisse lassen vermuten, dass 

die korneale Lymphangiogenese keine übliche phänotypische Veränderung zu sein scheint, da es in 

keinem der Experimente mit dem Modell des trockenen Auges induziert werden konnte. Trotz 

allem führte die Behandlung mit Aflibercept zu einer veränderten, z.T. abgeschwächten 

Immunantwort. Die vorliegende Arbeit kann die Hypothese einer wichtigen neuen Rolle der 
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pathologischen kornealen Lymphangiogenese in der Pathogenese des trockenen Auges nicht 

bestätigen. Es wird jedoch ein neues subklinisches Modell des autoimmunen trockenen Auges 

etabliert und die grundsätzliche Machbarkeit einer Immunmodulation beim trockenen Aue durch 

anti-VEGF Therapie gezeigt. Damit ergeben sich zukünftig möliche neue Therapieansätze bei 

Patienten mit trockenem Auge. 
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Abstract 

 

Dry eye disease (DED) is one of the most common ocular surface diseases, affecting millions of 

individuals. Over the last years it became a public health disorder, concerning especially the elderly. 

Patients who suffer from dry eye, report symptoms like dryness, irritation and decreased visual 

acuity leading to a loss of life’s quality.  

Even if the underlying immunopathogenesis has been verified in recent years more and more 

accurately, no causal treatment is available due to the various factors triggering dry eye disease and 

its self-intensifying viscious circle. Artificial tears and anti-inflammatory eye drops are nowadays the 

conventional therapy. Thus the identification of new treatment strategies is essential.  

Recent data suggest that the anti-angiogenic privilege, which maintains the transparency of the 

cornea and preserves high visual acuity, is disturbed in DED leading to a selective and spontaneous 

outgrowth of lymphatic vessels. These vessels are known as risk factor for corneal graft rejection 

representing the afferent arm of the immune reflex arc and are shown to enable the access of 

antigenic material and antigen presenting cells (APCs) to the corneal draining lymph nodes. Thus, 

with respect to dry eye disease, corneal lymphangiogenesis is speculated to represent the potential 

link to the adaptive immune response and strategies modulating the lymphangiogenesis could 

preserve a normal phenotype or improve the disease outcome. A first study, testing blockade of 

pro-lymphangiogenic VEGF-C by a subclinical drug, revealed a suppressed inflammation and 

epitheliopathy associated with DED. 

Hence, adopting this approach, we tested the hypothesis whether the already approved anti-VEGF 

compound Aflibercept can modulate corneal lymphangiogenesis as well as the T-cell mediated 

immune response occurring in dry eye disease. Therefore, two different experimental models, 

reflecting two major classes of clinical dry eye were contemplated to be used: the reproducible 

acute inducible desiccating stress model induced due to environmental stress and the novel 

experimental autoimmune Dry eye model induced due to a specific autoimmunological 

exocrinopathy of the lacrimal glands.  

Regarding the latter, a new self-generated protocol had to be established to induce a “subclinical” 

model of experimentally autoimmune dry eye. Since it is beyond the frame of this work to show the 

whole establishment, only the last attempts are shown and discussed concerning the induction of 

dry eye. The described protocol does not fully mimic the human pathology seen in Sjögren’s 

Syndrome dry eye, but reflects the autoimmunological destruction and the inflammatory infiltration 

of the lacrimal glands. Thus, testing Aflibercept was only performed in the desiccating stress model. 

The results presented provide evidence, that corneal lymphangiogenesis does not seems to be a 

common phenotypical event in DED as it could not be induced in any of the experiments. However, 

treatment with Aflibercept leads to an altered immune response.  

In summary, this work does not confirm the hypothesis of an important pathogenic role of corneal 

lymphangiogenesis in inflammatory dry eye disease, at least in the desiccating stress model. 
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Nonetheless, anti-VEGFs strategies allow for modulation of the immune response in dry eye disease 

thus opening new treatment avenues for future therapy of dry eye patients.  
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1. Introduction 

 

Dry eye disease (DED) is one of the most common ocular surface diseases, affecting millions of 

individuals. With a prevalence of about 5-35% and an incidence of 21.6% [1], dry eye increasingly 

becomes a public health disorder with a high financial burden [2], concerning especially the elderly 

[3] [4] [5]. 

Dry eye disease is defined as a disorder of the lacrimal functional unit (LFU) [6] [7]; a more 

specialized subunit of the ocular surface system [8] [9]. It can be triggered by several multifactorial 

factors and manifests itself with several symptoms and severity levels. Thereby the underlying 

immune reaction is amplified by a self-intensifying vicious circle [9]. Beside symptoms of dryness, 

irritation and decreased visual acuity, patients suffering from dry eye undergo a loss of life’s quality.  

Despite the increased understanding of the underlying pathogenesis, no causal treatment is 

available. Artificial tears are the conventional and first-line treatment nowadays. Therefore, the 

identification of new approaches and potential therapeutics is essential. 

In the following sections of the introduction, the anatomical structures and the ocular immune 

privilege of the ocular surface are discussed. Furthermore, the definition, the classification, the 

current treatment strategies and the state of the research regarding dry eye are summarized. 

Furthermore, the used therapeutic Aflibercept is described.  

 

 

1.1. The ocular surface system  

 

The ocular surface system is described as an integrated system, including the “wet-surfaced and 

glandular epithelia of the cornea, conjunctiva, lacrimal gland, accessory lacrimal glands, 

nasolacrimal duct and meibomian gland, and their apical and basal matrices, linked as a functional 

system by both continuity of epithelia, by innervation, and the endocrine and immune systems “[8] 

[9].  

Based on the direct system’s exposition to the environment, including desiccation, injury and 

pathogens, several protective mechanisms are provided by the ocular surface system to maintain 

its integrity. As the smooth wet surface is responsible for most of the refractive power, the 

protection and maintenance of its components is the primary function of the ocular surface system. 

Thus its name is linked to its primary function [9].  

Within the ocular surface system, a more specialized unit can be defined: the lacrimal functional 

unit “comprising lacrimal glands, ocular surface (cornea, conjunctiva and meibomian glands) and 

lids, and the sensory and motor nerves that connect them” [6] [7]. Its overall function is to maintain 

the clarity of the ocular surface, which in turn depends on surface homeostasis and the integrity of 

the tear film which provides lubrication and a proper environment for epithelial cells [10]. Defined 

by Stern et al. the lacrimal functional unit “controls the major components of the tear film in a 
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regulated fashion and responds to environmental, endocrinological, and cortical influences.” [6] [7] 

[11]. Stimulation of the corneal nerve endings of the sensory afferent nerves triggers impulses 

which integrate in the central nervous system through the ophthalmic branch of the trigeminal 

nerve; in turn generating efferent impulses terminating the optimal tear quantity and composition 

(see Fig. 1). 

 
Fig. 1: Schematic illustration of the lacrimal functional unit. Stimulation of the corneal nerve endings triggers afferent 

impulses which integrate through the ophthalmic branch of the trigeminal nerve (V1, V2, V3) into the central nervous 

system. This in turn generates efferent impulses that stimulate the secretion of a healthy tear film, terminating the 

optimal tear quantity and composition. Illustration adapted from Beuermann et al. The lacrimal functional unit in Dry 

eye and Ocular Surface Disorders [7] [11]. 

 

 

Damage to any components of the lacrimal functional unit results in an unstable and unrefreshed 

tear film leading to e.g. tear film break-up causing optical aberrations, reduced tear volume, 

elevated tear osmolarity, and a reduced clearance of proinflammatory mediators and proteases.  

Despite disturbance of the tear film, dysfunctional corneal and conjunctival cells are the most 

common reasons for ocular surface disorders and their pathological changes [12].  
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1.2. Anatomical components of the lacrimal functional unit  

 

1.2.1. The cornea  

 

The cornea consists of five different layers which are arranged anterior to posterior as follows: the 

squamous non-keratinized epithelium, the anterior limiting lamina (Bowman’s layer), the corneal 

stroma (substantia propria), the posterior limiting lamina (Descement’s membrane) and the corneal 

endothelium (see Fig. 2). The outer mucous layer of the corneal epithelium thereby acts as a border 

to the external environment, whereas the corneal endothelium acts as an internal border to the 

anterior chamber.  

To enable the light to proceed through the eye onto the retina the cornea has to be transparent, 

thus it is devoid of blood and lymphatic vessels. This is referred as “angiogenic privilege” of the eye 

[13] and will be discussed in a separated chapter (see 1.3.4)  

 

 
Fig. 2: Histological section of a healthy cornea. It consists of five different layers: the corneal epithelium (EP), the 

Bowman’s layer (B), the stroma (S), the Descement’s membrane (D) and the corneal endothelium (ED).  

 

 

The corneal epithelium is composed of five to six cell layers, 50 - 60 µm thick in humans and the 

superficial cells are flattened and enucleated [14] [15] [16]. In healthy eyes it is devoid of 

melanocytes and immunocompetent cells are only located at the outer edge. Desmosomes hold the 

adjacent cells together whereas the cells of the underlying basal lamina are held together by 

hemidesmosomes and anchoring filaments [16]. The anterior surface, exposed to the environment, 

has a specialized structural framework of microvilli and microplicae whose layer of secreted mucus 

(glycocalyx) support the interaction with several factors like immunoglobulins [17]. Further on, it 
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enables the aqueous phase of the tear film to attach to the hydrophobic non-wettable corneal 

epithelium [18]. 

As maintaining the integrity of the ocular surface is essential for vision, cell replication on the 

cornea is managed rapidly by mitotic activity. New cells from the limbal basal layer are recruited by 

the amoeboid movements of the cells in the wounded area, whereby the regenerative response is 

correlated to severity of damage. [19] [20]. 

 

 

1.2.2. The limbal area  

 

The intervening transition area between the bulbar conjunctiva/sclera and the cornea is called 

corneal limbus or limbal area. It is the anatomical structure wherein the corneal epithelium 

becomes continuous with the conjunctival epithelium and the corneal stroma becomes continuous 

with the sclera (corneoscleral junction). Descement´s membrane and Bowman´s layer of the cornea 

end at this region. 

Loops and arcades of the conjunctival blood and lymphatic capillaries appear throughout this tissue, 

leading to the involvement in multiple processes like nourishment of the peripheral cornea, 

immunosurveillance, and hypersensitivity responses. Furthermore, the corneoscleral region 

accommodates ocular surface progenitor cells (stem cells) in its basal epithelium [21] [22]. 

 

 

1.2.3. The conjunctiva 

 

The conjunctiva is a thin translucent mucous membrane fusing the epithelium of the eyelids at their 

margin with the corneal epithelium at the limbal area. Until the limbal area it covers up the sclera 

where the transition towards the corneal epithelium begins.  

Goblet cells, integrated in the conjunctival epithelium, are responsible for the production of 

gel-forming mucins [18] providing the adherence of the tear film to the corneal and conjunctival 

epithelium.  

Intraepithelial dendritic (Langerhans) cells function as sentinels, whereas the subepithelial 

vascularized tissue contains immunocompetent cell e.g. mast cells, lymphocytes, eosinophils and 

plasma cells.  

 

 

1.2.4. The lacrimal glands  

 

The lacrimal gland is a branched tubuloacinar exocrine gland. It secrets electrolytes, proteins, 

mucins and water into the tear film whereby its right composition and amount is essential for a 
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healthy ocular surface. In humans it is located in the bony orbit of the eye. It is divided into two 

lobes, a small palpebral and the large orbital portion. The orbital portion has fine interlobular ducts 

which unite to form three to five main excretory ducts, transversing the palpebral lobe. It consists 

of acinar, ductal and myoepithelial cells and the lobules are separated by interlobular fibrovascular 

tissue [23]. Due to external environmental influences and the adaptive needs of the surface 

epithelia, the lacrimal gland must be able to quickly adjust the composition of the tear film. This is 

accomplished by afferent sensory nerves which transmit the stimuli of the cornea and the 

conjunctiva to the central nervous system from where it is forwarded via the efferent 

parasympathetic and sympathetic nerves to the lacrimal glands [24].  

 

 

1.2.5. The corneal tear film 

 

In a simplified way, the corneal tear film is composed of three layers secreted by lacrimal and 

meibomian glands as well as the corneal and conjunctival epithelia (see Fig. 3).  

The superficial lipid layer is secreted by the meibomian glands. It consists of nonpolar lipids 

covering amphipathic polar lipids [25]. The former provides a barrier function at the air interface 

whereas the latter are in contact with the intermediate aqueous layer of the tear film providing 

structural stability. This layer is secreted by the lacrimal glands and contains electrolytes, ions, 

water and several antimicrobial proteins (further described in the following section). The deep 

hydrophilic mucin layer of the tear film is secreted by the goblet cells and also the corneal and 

conjunctival epithelial cells [26]. This layer is not wiped away by blinking. As mentioned before, 

membrane spanning mucins interact with the glycocalyx of the corneal epithelium enabling the tear 

film to stick on the hydrophobic non-wettable cornea [8] [16]. 

 
Fig. 3: Scheme of the corneal tear film, composed of three layers: the superficial lipid layer, the intermediate aqueous 

layer and the deep hydrophilic mucin layer. 
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1.3. Ocular immune privilege 

 

The eye including all its tissues and compartments of the visual axis has to be transparent to enable 

light’s passage on the retina where visual response is initiated. Thus, challenges from external 

environment have to be recognized and processed in a way that transparency is not affected.  

To balance the amount of inflammation to clear pathogens and the amount of tissue destruction 

the eye possesses a unique ocular immune privilege [27] which is maintained by anatomical and 

physical barriers, an immunoregulatory and immunosuppressive microenvironment, the anterior 

chamber associated immune deviation (ACAID) and the angiogenic privilege.  

Thereby site- and tissue-specific mechanisms regulate both, the induction and the expression of 

innate and adaptive immune response. 

 

 

1.3.1. Anatomical and physical barriers of the eye 

 

The anterior segment of the eye which is highly vulnerable to pathogens is protected by a 

multilayer barrier system including the corneal epithelium and the tear film. Numerous 

antimicrobial proteins (lysozyme, lactoferrin, defensins, secretory IgG and complement factors C3 

and C4) in the tear film provide a passive innate response while Toll-like receptors (TLR’s) on 

corneal and retinal epithelial cells provide an active innate immune response.  

Furthermore, the blood: retina barrier and the absence of lymphatic vessels in the cornea prevents 

the fast migration of immunopathogenic cells into and from the eye, regulating the adaptive 

immune response.  

 

 

1.3.2. Immunoregulatory and immunosuppressive microenvironment  

 

The immune-privileged microenvironment of the eye consists of several constitutive expressed 

soluble and cell-bound immunoregulatory and immunosuppressive factors that mediates both, 

innate and adaptive immunity.  

Soluble factors secreted into the aqueous humor (AqH) directly inhibit the activation of innate 

immunity: Transforming growth factor β (TGF-β) [28] and soluble Fas ligand (FasL) are shown to 

inhibit neutrophil activation; macrophage migration inhibitory factor (MIF) is shown to inhibit 

natural killer cells (NK cells) activity [29] [30]; calcitonin gene-related peptide is demonstrated to 

inhibit macrophages [31] and complement regulatory factors (CD46, CD55, CD59) are shown to 

inhibit complement activation [32].   

With regard to the adaptive immunity it could be demonstrated that AqH inhibits T cell activation 

and differentiation in vivo without affecting lysis by fully functional cytotoxic T cells [33]. In addition, 
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it is demonstrated that immunopathogenic T cells passing through the cornea, the iris pigment 

epithelium (IPE) or the retinal pigment epithelium (RPE) are neutralized by apoptosis due to direct 

cell contact with membrane bound FasL [34] [35] or converted in their immunological function to 

regulatory T cells by constitutively expressed TGF-β or CD86 [36] [37].  

 

 

1.3.3. ACAID 

 

Despite the local features mentioned above, the eye possesses an actively regulated deviant 

systemic immune response against eye-derived antigens; the so called anterior chamber associated 

immune deviation (ACAID). This specialized immune response is characterized by the suppression of 

CD4+ T helper 1 (TH1) and TH2 cells as well as a suppressed generation of B cells which would secrete 

complement fixing antibodies. Elimination of pathogens is achieved by primed CD8+ cytotoxic 

T cells and B cells producing non-complement fixing antibodies in the absence of inflammation 

while antigen-specific regulatory T cells (Tregs) inhibit the induction of T cell-mediated immunity.  

Based on animal studies ACAID is shown to arise because indigenous intraocular APCs (e.g. 

macrophages and dendritic cells distributed in the stroma and the anterior chamber surrounding 

structures (iris and ciliary body)) [38] [39] capture eye-derived antigens and migrate through the 

blood stream to the thymus and the marginal zone of the spleen [40] [41] [42]. Within the thymus 

they evoke the induction of natural killer T cells (NKT cells) which also migrate to the spleen. At this 

site, ocular APCs as well as NKT cells [43] [44], marginal zone B cells [45] [46] and naive antigen 

specific CD4+ and CD8+ T cells congregate. Together, they create a microenvironment that is rich in 

the cytokines TSP1 [47], TGF-β [48] and interleukin 10 (IL10) [49].  

Within these cell clusters two distinct populations of Tregs emerge [50] [51]: CD4+ Tregs, which 

inhibit the initial induction of naive T cells into TH1 cells and CD8+ Tregs, which suppress the 

TH1-mediate immunity, such as delayed-type hypersensitivity (DTH). Thus, CD4+ Tregs act at the 

afferent arm of the ACAID in the secondary lymphoid compartment, whereas CD8+ Tregs act at the 

efferent arm of the ACAID in the periphery, including the eye.   

Accordingly, ACAID results in a prolonged acceptance of corneal allografts [52] and solid tissue in 

the anterior chamber as well as the induction of a systemic tolerance to eye-derived antigens.  

 

 

1.3.4. Angiogenic privilege of the cornea 

 

To assure visual acuity the healthy cornea is transparent and devoid of blood and lymphatic vessels. 

This phenomenon is highly conserved in all vertebrates and actively maintained by the so called ‚ 

angiogenic privilege [13] [53] [54] [55] [56].  
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It was demonstrated that corneal epithelium cells express soluble forms of the three major vascular 

endothelial growth factor (VEGF) receptors (sVEGFR-1, sVEGFR-2, sVEGfR-3) acting as a decoy 

receptor for the hem- and lymphangiogenic factors VEGF-A, VEGF-C, and VEGF-D [57] [58] [59] [60].  

In addition endothelial cells of the cornea serve as pumps which remove fluid from the corneal 

stroma to the aqueous humor to keep the cornea dehydrated [61]. Fluid influx and storage in the 

stroma would cause irregulations in the tightly packed collagen lamellae and keratocyte network 

leading to increased light scatter [62] and gaps where vessels could grow in-between the lamellae 

[63] [64]. 

Further on several endogenous antiangiogenic factors like endostatin and thrombospondin, located 

at the epithelial basement membrane, as well as plasminogen derived angiostatin and serine 

protease inhibitor pigment epithelium derived factor (PEDF) maintain the corneal angiogenic 

privilege [65] [66] [67] [68] [69] [70] [71] [72] [73]. Endostatin causes endothelial cell cycle arrest in 

G1, blocks vascular endothelial growth factor (VEGF) induced mitogenic and motogenic activities in 

endothelial cells [65] [66], and was recently demonstrated to have an effect on lymphangiogenesis 

[74]. Thrombospondin exerts a strong anti-angiogenic effect via several mechanism [67] [68] and is 

also important for corneal alymphaticity [75] [76]. Angiostatin was shown to inhibit and regress 

corneal neovascularization [70]. Furthermore, it is involved in corneal avascular wound healing and 

downregulates endothelial cell proliferation and migration [69] [71]. PEDF is responsible for 

excluding vessels from invading the cornea, the vitreous and the retina [73]. 

Moreover the generated avascularity acts as an anatomical barrier suppressing both arms of the 

immune reflex arc [77] [78] maintaining the ocular immune privilege. Blood vessels providing a 

route of entry for immune effector cells (efferent arm) as well as lymphatic vessels enabling the 

effective access of antigens and APCs to the regional lymph nodes (afferent arm) are physically 

separated from the cornea, ending at the limbal area (see 1.2.2) [79].  

 

 

1.4. Dry eye disease  

 

1.4.1. Definition, classification, therapy 

 

2007, on a follow-up consensus meeting of the International Dry Eye Workshop (DEWS 2007), the 

original definition of dry eye by Lemp [80] was updated to a more broaden definition reflecting not 

only the newest research but also the multifaceted aspects of the disease: 

“Dry eye is a multifactorial disease of the tears and the ocular surface that results in symptoms of 

discomfort, visual disturbance, and tear film instability with potential damage to the ocular surface. 

It is accompanied by increased osmolarity of the tear film and inflammation of the ocular surface.” 

[9]. 
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In accordance to that dry eye is recognized as an disturbance of the lacrimal functional unit (LFU), 

with tear hyperosmolarity and tear film instability as the main driving forces in the self-intensifying 

vicious circle of DED [9]. Tear hyperosmolarity leads to the activation of inflammation on the ocular 

surface, followed by the release of inflammatory molecules into the tears [81] [82] [83]. As a 

consequence, the ocular surface epithelium is damaged, characterized by cell death due to 

apoptosis [84], loss of goblet cell density [85], and disturbance of mucin expression [86]. The 

following tear film instability exacerbates the ocular surface hyperosmolarity and completes the 

vicious circle (see Fig. 4).  

 

 

 
Fig. 4: Schematic mechanism of DED. Tear hyperosmolarity and tear film instability are the main forces in the 

self-intensifying vicious circle of dry eye. The core mechanisms are shown on the right. Tear hyperosmolarity leads to 

the activation of inflammation and the subsequent release of inflammatory molecules into the tears. The following 

corneal epithelium damage is characterized by cell death due to apoptosis, loss of goblet cell density, and disturbance 

of mucin expression. This in turn leads to tear film instability, which exacerbates ocular surface hyperosmolarity and 

completes the vicious circle. Possible risk factors are represented in the outer red circles. Adapted from DEWS (2007) 

[9].  

 

 

Risk factors for the development of dry eye have a wide variety, resulting either in tear 

hyperosmolarity or in tear film instability or both. Aging, androgen deficiency, systemic drugs and 

local inflammatory reactions could have a direct influence on the lacrimal flow rate whereas due to 
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refractive surgery or wearing contact lenses a neurosensory blockade of the lacrimal flow could be 

induced. Environmental conditions like low humidity and high air flow as well as a deficient or 

unstable lipid layer due to meibomian gland dysfunction (MGD) leads to a high evaporation of the 

tear film. All these conditions lead to an increased tear osmolarity. In addition, several etiologies, 

like ocular allergy or topical preservative use, could initiate tear film instability without the prior 

occurrence of a tear film hyperosmolarity. 

 

Classification of dry eye disease can either be performed by severity, since different severities need 

different treatment regime or by etiopathological factors, reflecting the secretory elements 

involved in disease induction. Using the latter, dry eye disease can be classified in two main groups: 

aqueous tear-deficient dry eye (ADDE) and evaporative dry eye (EDE) [9]. 

ADDE arises through a failure of lacrimal gland function, resulting in a reduced tear secretion and 

volume. This in turn leads to a tear hyperosmolarity, inducing inflammatory responses of the 

epithelial cells. Due to the underlying immune response, ADDE is divided in two subclasses: 

Sjögren’s syndrome dry eye (SSDE) and non-Sjögren’s syndrome dry eye (NSSDE). SSDE is caused by 

an exocrinopathy in which lacrimal and salivary glands are targeted by an autoimmune reaction. 

Autoreactive T and B cells infiltrate the lacrimal and salivary glands, inducing cell death of acinar 

and ductual cells. As a result of the local inflammation, autoantigens are expressed by epithelial 

cells [87] and tissue specific T cells are retained [88]. NSSDE proceeds without any autoimmune 

features. Lacrimal gland deficiency mostly occurs due to age-related conditions, like decreased tear 

volume and flow, increased osmolarity [89], decreased tear film stability [90] or an alteration in the 

lipid layer [91].  

In contrast, EDE is characterized by a normal lacrimal secretory function with a coupled excessive 

evaporation rate. Thereby intrinsic causes like meibomian gland dysfunction or extrinsic causes like 

contact lenses are described to induce EDE. 

 

Patient who suffer from DED are likely to report symptoms of dryness, irritation, decreased visual 

acuity, contrast sensitivity and a loss of quality of life. Further on, compensatory responses like 

increased reflex tearing, blinking and meibomian gland secretion are reported.  

Patients suffering aqueous tear deficiency have decreased tear film stability and tear volume. These 

individuals have several therapeutic options in form of artificial tears. They are applied topically to 

the ocular surface and viscosity, retention time and adhesion to the ocular surface of the artificial 

tears are determined by the polymers they based on. Common polymers are hyaluronic acid, 

cellulose esters, polyvinyl alcohol, povidone and carbomers. As chronic forms of DED remain due to 

an immune-based inflammation, topically applied corticosteroids are prescribed as effective short-

term therapeutics. They block inflammatory pathways, including proinflammatory cytokine and 

chemokine secretion, synthesis of matrix metalloproteinases and prostaglandins as well as cell 

adhesion molecule expression. Cyclosporine-A (Restasis®, Allergan; Ikervis®, Santen) are the only 
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FDA approved therapeutics used for DED. Cyclosporine is a fungal-derived peptide, which inhibits 

nuclear translocation of cytoplasmic transcription factors and the production of inflammatory 

cytokines. But, however, so far no causal therapies are available to cure DED.  

 

 

1.4.2. Current research  

 

Based on the current knowledge, non-Sjögren’s Syndrome dry eye is understood as a chronic 

inflammatory disorder, wherein the innate as well as adaptive immunity of the ocular surface are 

activated.  

As mentioned above, increased evaporation or tear hyperosmolarity causes ocular surface 

inflammation. Due to the osmotic stress to the ocular surface epithelium, early innate effectors are 

activated, representing the afferent arm of the immune response.  

Natural killer cells are shown to accumulate by 1 day of desiccating stress, representing an early 

source of Interferon γ (IFN-γ), IL-6, IL-23 and IL-17 [92] [93]. IFN-γ upregulates the expression of the 

intracellular adhesion molecule 1 (ICAM-1) on epithelial and endothelial cells and together with 

IL-17 it contributes to corneal barrier disruption [94] [95] [96].  

Due to elevated epithelial apoptosis Toll-like receptor (TLR) activation is induced, and mitogen-

activated protein kinase (MAPK) pathways and NFκB signaling are activated in epithelial cells [81] 

[97] [98] [99]. MAPK activation stimulates these cells to produce several proinflammatory 

cytokines; e.g. IL1-β, TNF-α and IL-8, as well as several MMPs (MMP-1, -3, -9, -10 and -13) [81] [100] 

[98].  

IL1-β and TNF-α are demonstrated to amplify the innate immune response by upregulating the 

expression of costimulatory molecules like CD80/86, MHC class II antigens and CC chemokine 

receptor 7 (CCR7) on resident APCs, like dendritic cells (DCs) and macrophages [101]. In addition, 

both promote the expression of several chemokines (e.g., CCL3, CCL4, CCL5, CXCL9, CXCL10) [102] 

[103] [104] [105] as well as of ICAM-1 on epihelial cells [106] [107].  

Activated antigen-bearing APCs represent the link between innate and adaptive immune response, 

since they migrate toward the draining lymph nodes where they stimulate cognate naive T cells, 

reflecting the efferent arm of the immune response. APC trafficking is dependent on CCR7 signaling 

[108] and seems to be enhanced by isolated corneal lymphangiogenesis demonstrated to occur in 

experimental induced non-Sjögren’s Syndrome dry eye [109] [110] [111] as well as in Sjögren’s 

Syndrome dry eye [76].   

CD4+ TH1, CD4+ TH17 T cells as well as CD8+ T cells are nowadays understood as the primarily 

effector cells of the immunopathogenesis [112] [113], which additionally is associated with an 

inefficient function of regulatory T cells (Tregs) [114]. While Treg homeostasis is not affected, their 

potential to suppress effector T cells is reduced and restricted to the TH1 T cell subpopulation [114]. 

Migration out of the lymphoid compartment of activated T cells toward the site of inflammation is 
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shown to be primarily mediated by CCR5 as well as CXCR3 [113]. T cell infiltration is facilitated by 

elevated expression of lymphocyte function-associated antigen 1 (LFA-1) on these T cells coupled to 

the increased expression of its binding partner ICAM-1 on epi- and endothelial cells [96] [106] [107]. 

At the ocular surface, these cells secret IFN-γ (TH1 T cells) and IL-17 (TH17 T cells). Increased 

expression of both derivates has been reported on human and murine ocular surface and are 

demonstrated to correlate with epithelial cell apoptosis, increased corneal permeability and 

squamous metaplasia of the corneal surface [94] [95] [112] [115] [116].  

In addition, dry eye could manifest itself as an inflammatory autoimmune disorder, known as 

Sjögren’s Syndrome dry eye [9]. In this case it is described as an autoimmune epithelitis, wherein 

the exocrine glands (salivary and lacrimal glands) are infiltrated by lymphocytic and plasma cells as 

well as monocytic inflammatory cells [117] [118], leading to a glandular destruction of the tissue. 

Thereby, the underlying exocrinopathy can be encountered alone, like in the primary Sjögren’s 

Syndrome dry eye or in association with other autoimmune disorders, like rheumatoid arthritis 

(secondary Sjögren’s Syndrome dry eye) [9].  

Regarding possible autoantigens, itself little is known. Putative autoantigens have been identified in 

sera of patients suffering from Sjögren’s Syndrome dry eye including type 3 muscarinic 

acetylcholine receptor, ribonucleoprotein Ro52 and 60 (anti-Sjögren’s Syndrome antigen A, 

(SS-A/Ro)), La 48 (anti-Sjögren’s Syndrome antigen B, (SS-B/LA)) and αFodrin [119] [120] [121] 

[122]. Nonetheless, a specific initiating autoantigen is still not identified.  

 

 

1.4.3. Dry eye disease and corneal lymphangiogenesis 

 

Only recently, experimental studies in a desiccating stress model of non-Sjögren’s Syndrome dry 

eye as well as in an autoimmune model reflecting Sjögren’s Syndrome dry eye revealed the isolated 

ingrowth of lymphatic vessels, but not blood vessels, into the physiologically avascular cornea [109] 

[110] [111] [118] [76].  

It was demonstrated that the lymphatic area was increased 14 days after desiccating stress while 

lymphangiogenic VEGF-D and VEGFR-3 levels were increased earliest on day 6. In addition, an 

increased homing of mature CD11b positive APCs to the corneal draining lymph nodes as well as an 

increased recruitment of CD11b positive monocytic cells to the cornea was detectable [109].  

Furthermore, using the mouse cornea micropocket assay, IL17, one of the predominantly secreted 

inflammatory cytokines in DED, was demonstrated to directly induce corneal lymphangiogenesis 

[123]. Thus, the corneal angiogenic privilege [13] which maintains the transparency of the cornea 

and preserves high visual acuity is disturbed in DED. 

As lymphatics were conduits that provide the access of APCs and antigenic material from the 

cornea to the draining lymph nodes [124] [125] it is assumed that strategies modulating 

lymphangiogenesis could preserve a normal phenotype or improve the disease outcome. 
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First studies that have adopted this approach, revealed a significantly reduced corneal 

lymphangiogenesis, a weakened immune response and disease progression. Thus in vivo blockade 

of IL17 in the desiccating stress model demonstrated a significantly decreased corneal 

lymphangiogenesis and epitheliopathy [123]. Same results were reached by systemically blockade 

of VEGF-C, leading to a significant reduction in lymphatic vessels, epitheliopathy and CD11b positive 

monocytic cells in the cornea [110].  

Despite these findings, corneal lymphangiogenesis is shown to be the primary risk factor for corneal 

allograft rejection [126] and inhibiting lymphangiogenesis before and after keratoplasty significantly 

increases the outcome of corneal transplantation [127] [128] [129]. Coincident, cervical 

lymphadenectomy (the surgical excision of draining lymph nodes) results in 90% graft survival after 

high-risk keratoplasty [130]. 

Hence, anti-lymphangiogenic therapies may be a novel effective therapeutic tool to diminish 

severity of DED.  

 

 

1.5. Aflibercept 

 

Aflibercept is a recombinant fusion protein with a molecular weight of approximately 115 kilo 

Daltons. It is composed of the Fc portion of human IgG1 fused to portions from the human 

extracellular VEGFR 1 and 2 domains [131]. It serves as a soluble decoy receptor binding VEGF-A, -B, 

and placenta growth factor (PIGF) [132]. As an ophthalmic agent, it is FDA-approved for neovascular 

age-related macular degeneration, macular edema and diabetic retinopathy. Human safety profile 

and efficacy studies demonstrated a good tolerance without any drug-related ocular or systemic 

adverse events and due to its high affinity blocking properties (between 0.36 and 39 pM) it allows 

an extended dosing interval up to 8-week interval. Further on, Aflibercept is shown to bind murine 

VEGF-A with a KD of 0.5 pM [132], making it a suitable compound used in several murine 

experimental models.  

Thus, Aflibercept is already shown to suppress choroidal and subretinal neovascularization by 

subconjunctival and intravitreal administration [133] [134]. Furthermore, it is demonstrated to 

inhibit both, corneal hem- and lymphangiogenesis by systemically application in the murine 

inflammatory suture-induced neovascularization model as well as after keratoplasty [127] [128] 

[129] [135] [126]. Furthermore, a sufficient penetration through the cornea of topical administered 

Aflibercept was demonstrated in the model of corneal neovascularization induced by chemical burn 

in rats [136].  
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1.6. Scope of the thesis 

 

Recent data indicate that the anti-angiogenic privilege of the cornea is disturbed in DED, leading to 

a selective and spontaneous lymphangiogenesis. Lymphatic vessels were already shown to be the 

primarily risk factor for corneal graft rejection in animal models of corneal transplantation [126], 

representing the afferent arm of the immune reflex arc enabling the access of antigenic material 

and APCs to the corneal draining lymph nodes.  

Our hypothesis was that anti-lymphangiogenic compounds could interfere in the vicious circle of 

dry eye disease by modulating the lymphangiogenesis as well as the T cell mediated immune 

response, thereby preserving a normal phenotype or improving the disease outcome.  

To test this, 2 different models reflecting the two major classes of dry eye were contemplated to be 

used: 

1) the novel, herein developed experimental autoimmune Dry eye model induced due to a 

specific autoimmunological exocrinopathy of the lacrimal glands reflecting Sjögren’s 

Syndrome dry eye. 

2) the established acute desiccating stress model induced due to environmental stress 

reflecting non-Sjögren’s Syndrome dry eye. 

 

In both models the efficiency of Aflibercept to modulate dry eye related lymphangiogenesis was 

contemplated to be tested by topical as well as systemic application. Therefore, clinical evaluation 

of epitheliopathy and tear secretion, immunohistochemical analysis of corneal neovascularization 

as well as flow cytometry analysis of corneal lymph nodes were performed. 
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2. Material  

 

2.1. Reagents  
 

Tab. 1 

Reagents Manufacturer 

Acetone Carl Roth GmbH & CO KG 

Albumin bovine fraction V BDH chemicals 

Bovine serum albumin, 2% (w/v) Carl Roth GmbH & Co KG 

Collagenase from Clostridium histolyticum, Type IA Sigma-Aldrich Chemie GmbH 

DAKO® fluorescent mounting medium DAKO Diagnostic 

Eosin G 1% (v/v) Carl Roth GmbH & CO KG 

Ethanol 70%(v/v) Otto Fischar GmbH und Co. KG 

Formaldehyde, 5% (v/v) Otto Fischar GmbH und Co. KG 

Fluorescein Alcon® 10% (w/v) Alcon Pharma GmbH 

Freund’s Adjuvant, Complete Sigma-Aldrich Chemie GmbH 

Freund’s Adjuvant, Incomplete Sigma-Aldrich Chemie GmbH 

Hematoxylin Morphisto 

Hanks‘Balanced Salt solution gibco® by life technologies™ 

Hepes Buffer, BioWhittaker®, 1M Lonza 

Medium, DMEM (1X) + GlutaMAX™ gibco® by life technologies™ 

Mycobacterium Tuberculosis H37 Ra, Desiccated BD Difco™ 

Neo-Mount® mounting medium, anhydrous Merck Millipore 

Pertussis toxin from Bordetella pertussis Sigma-Aldrich Chemie GmbH 

Phosphate buffer saline (PBS)  

Red blood cell lysis buffer Sigma-Aldrich Chemie GmbH 

Sodium chloride (NaCl), 0.9% (w/v) B. Braun Melsungen AG 

(−)-Scopolamine hydrobromide trihydrate Sigma-Aldrich Chemie GmbH 

Xylene Carl Roth GmbH & Co KG 
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2.2. Consumables and Equipment  

 

Tab. 2 

Consumables and Equipment Manufacturer 

Autoclave, Labklav 25 SHP Steriltechnik AG 

Anesthesia machine, UNO UNO BV 

Precision balance, Sartorius M-pact AX6202 Sartorius AG 

Analytical balance, Sartorius, Competence CP64 Sartorius AG 

Culture plates, CELLSTAR®, 6-well 
Greiner Bio One International 

GmbH 

Cell strainer, EASYstrainer™, 40 µm 
Greiner Bio One International 

GmbH 

Centrifuge, Refrigerated Benchtop, Sigma® 4K15C Sigma Laborzentrifugen GmbH 

Centrifuge, Refrigerated Benchtop, Heraeus® 16 Thermo Fisher scientific 

Centrifuge, Benchtop, Galaxy MiniStar VWR International GmbH 

Cover slip Carl Roth GmbH + Co KG, 

Counting chambers according to Neubauer 

0.1 mm depth, 0.0025 mm² 
Karl Hecht GmbH&Co KG,  

Cold light source KL 1500 LCD Schott AG 

Digital camera ColorView III 
Olympus, Soft Imaging Solutions 

GmbH 

Digital camera XM10 Olympus 

Flow cytometer, guava easyCyte™ HT, benchtop Merck Millipore 

Flow cytometer, Canto BD 

Fluorescence microscope BX51 Olympus Optical Co., Hamburg,  

Freezer, Forma 906, -86°C Thermo Fisher scientific 

Fridge, G 521008, -20°C 
Liebherr International 

Deutschland GmbH 

Fridge, UK1720, 4°C 
Liebherr International 

Deutschland GmbH 

Glassware Schott AG 

Gloves, Peha-soft® nitrile powderfree Paul Hartmann AG 

Homogeniser, Precellys® 24 Bertin Technologies 
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Instrument cleaning Fluid; Guava ICF® Merck Millipore 

Illuminator Intensilight C-HGFI Nikon Instruments Europe B.V. 

Magnetic stirrer, heatable, VMS-A VWR International GmbH 

Microscope Illumination, Stereo, KL1500 compact Schott AG 

Microscope slides, Superfrost Ultra Plus® Thermo scientific 

Microscope, Primovert Carl Zeiss Microscopy, LLC 

Microtom, Microm HM400 Histo Serve 

Needle, Eclipse ™ ,23G 1“ (0.6 x 25 mm) Becton, Dickinson and Company 

Needle, Sterican®, 30G 1/2“ (0.3 x 12 mm) B. Braun Melsungen AG 

Ocular sticks, Pro-ophta®, 5 mm ø 
Lohmann & Rauscher GmbH & 

Co. KG 

Papertowels, Kolibri igeia 

Phenol red threads, Zone Quick® Showa Yakuhin Co., LTD 

Pipette controller, accu-jet®pro Brand GMBH + CO KG 

Pipettes, Eppendorf® Research plus  Eppendorf 

Pipettes, Glass Pasteur Brand GMBH + CO KG 

Pipettes, serological (5 ml, 10 ml, 25 ml) Sarstedt AG 

Pipette tips Sarstedt AG 

Precellys Ceramik-Kit 1.4 / 2.8 mm PEQLAB Biotechnologie GmbH 

Scalpel, disposable, No.11 FEATHER Safety Razor Co., Ltd. 

Spectrophotometer, Epoch Microplate reader Bio-Tek 

Stereomicroscop, SMZ168TP Motic Deutschland GmbH 

Syringe, Dispomed®, fine dosing, 1 ml Dispomed Witt oHG 

Tubes, Flow cytometry, 5 ml Sarstedt AG 

Tubes, micro (1.5 ml, 2 ml) Sarstedt AG 

Ultrasonic processor, Vibra cell™ 72434 Bioblock scientific 

Vortex Mixer, analog VWR International GmbH 
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2.3. Antibodies  

 

Tab. 3 

Antibodies/Isotype Controls Manufacturer 

rat anti mouse CD4 APC conjugated eBioscience 

rat anti mouse CD8b FITC conjugated Biolegend 

armenian hamster anti mouse CD11c FITC conjugated Biolegend 

rat anti mouse CD11b FITC conjugated AB Serotec 

rat anti mouse MHC2  PE conjugated BD Bioscience 

rat anti mouse CD45 PE conjugated BD Bioscience 

rabbit anti mouse Lyve-1 unconjugated AngioBio 

rat anti mouse CD31 FITC conjugated BD Bioscience 

goat anti rabbit Cy3 Dianova 

rat IgG2aκ  APC conjugated eBioscience 

rat IgG2bκ  FITC conjugated eBioscience 

armenian hamster IgG  FITC conjugated Biolegend 

rat IgG2b FITC conjugated BD Bioscience 

rat IgG 2a κ  PE conjugated eBioscience 

7-AAD Viability staining solution Biolegend 

rat anti mouse CD16/CD32 (Mouse BD Fc Block™) BD Bioscience  

Aflibercept (Eylea®), 40 mg / ml Bayer AG 

 

2.4. Commercially available Kits 

 

Tab. 4 

Kits Manufacturer 

Pierce™ BCA Protein Assay Kit Thermo Fisher Scientific 

Nuclear extract Kit Actif motif ® 

 

 



Material 

  23 

2.5. Surgical instruments 

 

Tab. 5 

Surgical instruments Manufacturer 

Scissor, Metzenbaum F.S.T., Heidelberg, Germany 

Spring scissor, Student Vannas, straight F.S.T., Heidelberg, Germany 

Forcep, Sudent Dumont #5  F.S.T., Heidelberg, Germany 

 

 

2.6. Animals 

 

For all animal experiments, female C57BL/6NCrl mice from Charles River Laboratories, Germany 

aged 6-8 weeks were used. All animal protocols were approved in accordance with the Association 

for Research in Vision and Ophthalmology’s Statement for the Use of Animals in Ophthalmology 

and Vision Research. 

 

 

2.7. Software 

 

Tab. 6 

Software Manufacturer 

Cell Sense Olympus Soft Imaging solutions GmbH 

FlowJo Version 10.0.7 FlowJo 

Gen5™ Datenanalyse-Software  Biotek 

Guava Easy Cyte, Version 3.7.4 Merck Millipore 

InStat 3, Version 3.10 GraphPad Software Inc. 

Prism6, Version 6.05 GraphPad Software Inc. 
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3. Methods 

 

3.1. Animal experimental techniques  

 

The local animal care committee in accordance with the Association for Research in Vision and 

Ophthalmology’s Statement for the Use of Animals in Ophthalmology and Vision Research approved 

all animal protocols. As mice were purchased from external sources, they were housed for one or 

two weeks to acclimate.  

 

 

3.1.1. Experimental autoimmune Dry eye model 

 

First, Complete Freund’s adjuvant (CFA, 1 mg / ml, Sigma-Aldrich Chemie GmbH) was adjusted to a 

concentration of 2.4 mg / ml by adding desiccated Mycobacterium tuberculosis (BD Difco™). Next, 

equal volumes of lacrimal gland homogenate (240 µg / 100 µl per mouse, for preparation see 3.6.1) 

and CFA (240 µg / 100 µl per mouse) were sonificated on ice to form an emulsion.  

After mice were deeply anesthetized (see 3.1.3) each mouse received 200 µl of the emulsion in 

total: 100 µl were injected subcutaneous (s.c.) on the base of the tail and 50 µl were injected s.c. in 

each flank. Furthermore, to increase immune onset mice received 2 µg Pertussis toxin (PTX, 

Sigma-Aldrich Chemie GmbH) intraperitoneally (i.p.). Control mice received an emulsion consisting 

of adjusted CFA mixed only with PBS. All mice were kept under standard animal housing.  

On day 7 mice received a booster injection (BI). Therefore, equal volumes of lacrimal gland 

homogenate (240 µg / 100 µl per mouse) or PBS were mixed with Incomplete Freund’s adjuvant 

(IFA) and sonificated on ice to form an emulsion. Under anesthesia each mouse received 200 µl of 

the emulsion in total: 100 µl were injected s.c. on the base of the tail and 50 µl were injected s.c. in 

each flank. 

Short-term analysis (until day 14) (see Fig. 5) as well as long-term analysis (until day 56) (see Fig. 6) 

of immunization were performed. Short-term analysis comprise clinical evaluation of epitheliopathy 

and tear secretion on day 0, 3, 7, 10 and 14. Morphometric analysis of corneal neovascularization, 

flow cytometry analysis of corneal draining lymph nodes as well as the lacrimal glands were 

performed on day 7, 10 and 14. Long-term analysis comprise clinical evaluation of epitheliopathy 

and tear secretion on day 14, 21, 28, 35, 42, 49, and 56. Morphometric analysis of corneal 

neovascularization, flow cytometry analysis of corneal draining lymph nodes as well as the lacrimal 

glands were performed on day 14, 28, 42, and 56. Histochemical analysis of inflammatory infiltrates 

in lacrimal gland sections were performed on day 56. 
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Fig. 5: Scheme of short-term immunization. Initial immunization on day 1 and booster injection on day 7 are 

indicated by syringes. Clinical evaluation (epitheliopathy and tear secretion; CE) was performed on day 0, 3, 

7, 10 and 14. On day 7, 10 and 14 organs required for subsequent analysis were collected (organ sampling; 

OS). 

 

 

 

Fig. 6: Scheme of long-term immunization. Initial immunization on day 1 and booster injection on day 7 are 

indicated by syringes. Clinical evaluation (epitheliopathy and tear secretion; CE) was performed on day 14, 

21, 28, 35, 42, 49, and 56. On day 14, 28, 42 and 56 organs required for subsequent analysis were collected 

(organ sampling; OS). 

 

 

3.1.2. Desiccating stress model  

 

Acute non-Sjögren’s Syndrome dry eye was induced in mice as described below. The used 

experimental setup is adapted from Dursun et al [137]. C57BL/6 mice were placed in a controlled-

environment chamber (CEC) with a relative room humidity maintained at about 30% and a constant 

temperature of 21 to 23°C. The evaporation of the tear film leads to ocular surface lesions 

mimicking pathologies found in dry eye patients [112] [138]. To maximize ocular dryness, mice 

received 100 µl subcutaneous (s.c.) injections of the anti-cholinergic agent scopolamine 

hydrobromide twice a day, alternating between the left and right flanks with a concentration of 

10 mg / ml. This hampers amongst mucosal secretion [137]. 

 

To determine the effect of the anti-lymphangiogenic compound Aflibercept in acute non-Sjögren’s 

Syndrome dry eye two experimental setups were used:  

A) mice were treated topical beginning on day one for 14 consecutive days (see Fig. 7) while 

dessicating stress. Topical administration was performed three times a day (40 mg / ml Aflibercept, 

each 3 µl). Concentrations of the compound was chosen in concordance with the off label 

concentration used in the clinic. 
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Control group received an equal volume of saline solution (NaCl, 0.9% (w/v)) and naive mice serve 

as control for the induction of dry eye. Clinical evaluation (CE) (see 3.2) of epitheliopathy and tear 

secretion was performed on day 0, 3, 7, 11 and 14 and on final day mice were euthanized and 

organs required for subsequent analysis collected (organ sampling; OS) (see 3.3).  

 
Fig. 7: Scheme of topical administration. Eye drops (3 µl) were administered three times a day (40 mg/ml 

Aflibercept). Clinical evaluation (epitheliopathy and tear secretion; CE) was performed on day 0, 3, 7, 11 and 

14. On final day mice were euthanized and organs required for subsequent analysis collected (organ 

sampling; OS). 

 

 

B) mice were treated systemically by two different experimental setups. In the prevention trial mice 

received intraperitoneally (i.p.) Aflibercept injections on day 1, 3, and 7 while mice were sitting in 

CEC for 14 days (see Fig. 8). In the therapy trial mice received i.p. Aflibercept injections on day 11 

and 13 during dessicating stress. On day 15 mice were transferred to standard animal housing 

conditions till day 24, receiving i.p. injection on day 17 (see Fig. 9). Mice received 50 µl Aflibercept 

(25 mg/kg bodyweight) whereas the control group received an equal volume of saline solution 

(NaCl 0.9% (w/v)). Concentrations of the compounds were chosen in concordance with the off label 

concentration used in the clinic and previous corneal transplantation experiments performed with 

Aflibercept. Clinical evaluation (see 3.2) of epitheliopathy and tear secretion was performed on day 

0, 3, 7 and 14 in the prevention trial whereas clinical evaluation in the therapy trial was performed 

on day 0, 7, 11, 13, 17, and 24. On final day mice were euthanized and organs required for 

subsequent analysis collected (organ sampling; OS) (see 3.3).  
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Fig. 8: Scheme of systemically administration regarding prevention. 50 µl Aflibercept (25 mg/kg bodyweight) 

were injected i.p. on day 1, 3, and 7 during desiccating stress (indicated by syringes). Clinical evaluation 

(epitheliopathy and tear secretion; CE) was performed on day 0, 3, 7 and 14. On final day mice were 

euthanized and organs required for subsequent analysis collected (organ sampling; OS). 

 

 

 
Fig. 9: Scheme of systemically administration regarding therapy. 50 µl Aflibercept (25 mg / kg bodyweight) 

were injected i.p. on day 11 and 13 during desiccating stress and on day 17 under standard animal housing 

conditions (indicated by syringes). Clinical evaluation (epitheliopathy and tear secretion; CE) was performed 

on day 0, 7, 11, 13, 17 and 24. On final day mice were euthanized and organs required for subsequent 

analysis collected (organ sampling; OS). 

 

 

3.1.3. Anesthesia 

 

Prior to immunization, mice were deeply anesthetized by mean of the UNO anesthesia machine 

(UNO BV). First, animals were placed in the induction chamber by a flow rate of 0.7 µl / min and a 

concentration of 4.5% (v/v) isoflurane. After two min mice were kept out of the chamber and the 

desired depth of anesthesia maintained with a face mask by a flow rate of 0.25-0.3 µl / min and a 

concentration of 3% (v/v) isoflurane.  
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3.2. Clinical evaluation  

 

To monitor disease severity, clinical evaluation by measuring corneal epitheliopathy and tear 

secretion was performed. Both, fluorescein staining scores and phenol red thread test were 

validated clinical readouts used in human diagnostics and animal experiments [139] [137]  

 

 

3.2.1. Fluorescein staining score 

 

Corneal epitheliopathy was measured by staining of epithelial surface defects with a biomicroscope 

(Illuminator Intensilight C-HGFI (Nikon Instruments Europe B.V)) under cobalt blue light. Two min 

after topical application of 1% (w/v) fluorescein to the corneal surface, the excessive fluid was 

removed and the spotted staining recorded with the adapted standard National Eye Institute 

grading system (NEI, Bethesda, MD) of 0 to 2 for each of the five areas of the cornea – central, 

superior, inferior, nasal and temporal. Measurements were performed for both eyes and averaged 

for statistical analysis.  

 

 

3.2.2. Schirmer test 

 

Measurement of the tear secretion was done by Schirmer test, using cotton phenol red threads 

(Zone Quick®) which were applied to the lateral canthus of the mouse eye for 15 seconds [140].  

Wetting of the threads leads to a change in color and on a millimeter scale, amount of tear 

secretion was measured. Measurements were performed for both eyes and averaged for statistical 

analysis.  

 

 

3.3. Organ sampling  

 

Anatomical dissection of the required organs (cornea, lymph nodes, and lacrimal glands) was 

performed post mortem. Dependent on the subsequent analysis organs were placed in PBS, 

DMEM-medium (gibco® by life technologies™) or formaldehyde (5% (v/v), Otto Fischar GmbH und 

Co. KG).  

 

For morphometric analysis of corneal neovascularization corneal wholemounts were excised by 

carefully cutting the cornea beneath the limbal area. Thereby the limbus is not damaged and can be 

used for subsequent analysis as the outermost edge. Corneal wholemounts were stored in PBS until 

immunohistochemical staining (see 3.5.1).  
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Corneal draining cervical lymph nodes used for flow cytometry analysis were dissected, connective 

tissue and adhering fat was completely removed and after washing in PBS lymph nodes were stored 

in DMEM-medium at 4°C until preparation of the single cell suspension (see 3.7.1.1). Lymph nodes 

were either pooled per group or analyzed per animal.  

As lacrimal glands were used for both, flow cytometry analysis (see 3.7.1.2) and paraffin sections 

staining (see 3.5.2), they were stored in medium at 4°C or in 5% (v/v) formaldehyde. Making a skin 

incision below the ear, the exorbital lacrimal gland which is located posterior to the eye, is exposed. 

By cutting the fascia laying around the lacrimal gland it could be dissected, washed in PBS and 

stored in the required solution. 

 

 

3.4. Paraffin processing of organ samples 

 

Organs preserved in formaldehyde (5% (v/v), Otto Fischar GmbH und Co. KG) were washed in tap 

water for 2 to 3 hours (h), replacing the water every 15 min. Afterwards organs were placed in 70% 

(v/v) alcohol for 60 min, followed by a renewal of the alcohol. For further dehydration and the final 

infiltration with liquid paraffin, samples were putted in the Leica TP1020 tissue processor (Leica 

Biosystems Nussloch GmbH) according to manufacturers’ guidelines. Tissues were sectioned using 

the Microtome Microm HM400 (Histo Serve) and 5 to 7 µm sections were obtained. Sections were 

dried over night at 37°C and stored at room temperature (rT) until immunohistochemical staining 

(see 3.5.2).  

 

 

3.5. Immunohistochemical methods  

 

3.5.1. Corneal wholemount immunostaining 

 

Corneal wholemounts were prepared as described previously [141]. Briefly, corneas were excised, 

rinsed in PBS and fixed in acetone for 30 min. After three washing steps with PBS corneas were 

blocked with 2% (w/v) BSA in PBS for 2 h at rT. Afterwards corneal wholemounts were stained with 

rabbit anti mouse LYVE-1 antibody (AngioBio) and FITC-conjugated rat anti mouse CD31 (BD 

Bioscience) diluted in PBS (1:200) over night at 4°C. Next day corneal tissue was washed in PBS and 

LYVE-1 was detected with a Cy3-conjugated secondary antibody (rabbit anti mouse; 1 : 500; 

Dianova). 

After a final washing step in PBS corneal wholemounts were transferred to Superfrost Ultra Plus® 

microscope slides (Thermo Fisher) and covered with DAKO fluorescent mounting medium (DAKO 

Diagnostic). Stained wholemounts were stored at 4°C in the dark until analysis with a fluorescence 

microscope (see 3.8.2). 
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3.5.2. Paraffin section staining with hematoxylin and eosin 

 

For paraffin section staining microsections were first deparaffinised in a descending series of 

alcohol (100%, 96%, 70% (v/v) alcohol; for 5 min each), starting with xylene (Carl Roth GmbH & Co 

KG). After washing for 5 min in aqua dest. Nuclei were stained by hematoxylin (Morphisto) for 

10 min and washed in running tap water for 10 min. Afterwards connective tissue was 

counterstained with 1% (v/v) Eosin G (Carl Roth GmbH & Co KG) for 2 min with a following washing 

step in tap water. Finally, the slides were dehydrated in an ascending series of alcohol (70%, 96%, 

100% (v/v); for 2 min each) ending with a 10 min washing step in xylene. Slides were covered with 

Neo-Mount® mounting medium (Merck Millipore) and stored at 4°C prior to analysis with a light 

microscope (see 3.8.1).  

 

 

3.6. Enzymatic methods   

 

3.6.1. Lacrimal gland homogenate  

 

Lacrimal gland homogenate was prepared by means of the Precellys® 24 Homogeniser (Bertin 

Technologies) and the adapted Nuclear Extract Kit lysis buffer (Active Motif). Dissected and washed 

lacrimal glands (see 3.3) were weighted and put into an ice cold Precellys tube containing a mixture 

of 1.4 mm and 2.8 mm ceramic beads. After adding lysis buffer A (Tab. 7) tubes were shaken three 

times for 10 sec by 5500 rpm 3D speed motion. To avoid reaching of protein-denaturation heat 

level, tubes were always placed on ice between the shaking steps. After the last shaking step lysis 

buffer B (Tab. 8) was added and tubes incubated at rT for 2 h with in-between vortexing.  

Total protein concentration of the homogenate was quantified by adjusted Pierce BCA Protein 

assay (Thermo Fisher Scientific) (see 3.6.2).  

 

Tab. 7 

Lysis buffer A µl per 1 mg tissue 

10x hypotonic buffer 0.4 µl 

Protease Inhibitor Cocktail 0.04 µl 

Phosphatase Inhibitor Cocktail 0.4 µl 

dH2O 3.125 µl 
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Tab. 8 

Lysis buffer B µl per 1 mg tissue 

1M DTT 0.004 µl 

Detergent 0.004 µl 

Precellys Lysis buffer 0.0445 µl 

 

 

3.6.2. Quantitation of total protein concentration 

 

Quantitation of total protein was performed by the Pierce™ BCA Protein Assay. Manufacturers’ 

protocol was adapted to our needs. For the colorimetric detection the spectrophotometer (Epoch 

Microplate reader, Bio-Tek) was set on 562 nm. 2 µl of each standard or unknown sample was 

mixed with 98 µl BCA working reagent (98 µl BCA Reagent A mixed with 2 µl BCA Working 

Reagent B) and pipetted into a microplate well. Standard was used in a range from 2 to 20 mg / ml. 

After incubating the plate for 30 min at 37°C, it was cooled down to rT and the absorbance 

measured.  

 

 

3.7. Flow cytometry analysis 

 

3.7.1. Single cells suspension  

 

To maintain cell surface marker, preparations of single cell suspensions for flow cytometry analysis 

were performed immediately after dissecting the tissues. All preparations were performed on ice.  

During the complete cell separation FACS-medium (DMEM-medium containing 10% (v/v) FCS) was 

used. For counting and subsequent staining, cells were resuspended in FACS-buffer (HBSS 

containing 2% (v/v) FCS and 10 mM Hepes). 

 

 

3.7.1.1. Lymph nodes  

 

Corneal draining cervical lymph nodes, dissected from the animals, were pressed through a 40 µm 

cell strainer using the plunger of a 3 ml syringe in a 6-well plate containing 3 ml FACS-medium. After 

rinsing the cell strainers with 2 ml medium, cell suspensions were transferred to 15 ml falcon tubes 

and centrifuged at 4°C, 300 g for 7 min. Supernatants were removed and 1 ml ice-cold red blood 

cell lysis buffer (Sigma-Aldrich Chemie GmbH) added to lyse erythrocytes. Suspensions were mixed 
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for 1 min by gently resuspending on ice. Reaction was stopped by adding 10 ml FACS-medium and 

cells were spinned down again at 4°C, 300 g for 7 min. After decanting supernatants cells were 

resuspended in 1 ml FACS-buffer. Single cell suspensions were stored on ice until counting 

(see 3.7.2). 

 

 

3.7.1.2. Lacrimal glands  

 

Dissected lacrimal glands stored in medium were minced into 1-2 mm² pieces using a scalpel 

(disposable, No.11, FEATHER Safety Razor Co., Ltd.). Afterwards lacrimal gland pieces were 

transferred into small cups and 3 ml of 0.1% (w/v) collagenase 1 (Sigma Aldrich) added. Using a tiny 

stir bar lacrimal gland pieces were digested for 8 min at rT. Supernatants were transferred into 

15 ml falcon tubes containing 5 ml FACS-medium and centrifuged at 4°C, 300 g for 7 min. After 

spinning down the supernatants were removed and again 5 ml FACS-medium added into the 15 ml 

falcon tubes. Meanwhile fresh amount of 0.1% (w/v) collagenase 1 (Sigma Aldrich) was added to 

the lacrimal gland pieces and incubated. After 8 min supernatants were collected again and 

transferred into the 15 ml falcon tubes containing FACS-medium and cells from the first run. This 

procedure was repeated a third time, ending with a total volume of 9 ml (0.1% (w/v) collagenase 1, 

Sigma Aldrich) used for each lacrimal gland.  

After the final centrifugation step cells were resuspended in 2 ml FACS-medium and filtered 

through a 70 µm cell strainer. Cell strainers were rinsed with 2 ml FACS-medium, cell suspensions 

transferred to a fresh 15 ml falcon tubes, spinned down (4°C, 300 g, 7 min) and cells resuspended in 

1 ml FACS-buffer. Single cell suspensions were stored on ice until counting (see 3.7.2). 

 

 

3.7.2. Cell count  

 

Resuspended cells were counted after staining with trypan blue using the counting chamber 

according to Neubauer (0.1 mm depth, 0.0025 mm², Karl Hecht GmbH&Co KG) 

 

 

3.7.3. Immunofluorescence labeling of cells 

 

Flow cytometry was used to detect inflammation typical biomarkers depending on the source of 

cells. All antibodies used are directly coupled with a fluorophore (see 2.3). As control unstained cells 

and the appropriate isotype controls were used.  
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As different setups of markers on different cells were used specific information on the biomarkers 

used for staining can be found in the results section whereas the basic protocol of the staining is 

described below.  

To block unspecific binding 2 µl rat anti mouse CD16/CD32 (Mouse BD Fc Block™, BD Bioscience) 

was added in each tube before an appropriate number of cells (ca. 200000 cells) were added. After 

adding the required antibodies, test tubes were incubated for 30 min at 4°C in the dark. To wash 

cells 2 ml FACS-buffer were added and the cells spinned down at 4°C, 300 g for 7 min. The 

supernatant was decanted, cells resuspended in 200 µl FACS-buffer and 1 µl 7-AAD Viability staining 

solution (Biolegend) pipetted in the single stain control tubes and the combination tubes. Finally, 

cell suspensions were transferred in a 96-well plate for flow cytometry acquisition. 

 

 

3.7.4. Flow cytometry settings  

 

Cells were analyzed on a BD FACS Canto I™ (BD bioscience) or a Guava easyCyte™ HT flow 

cytometer (Merck Millipore) with the associated software. For further analysis, the FlowJo v10.0.7 

software was used.  

 

 

3.8. Morphometrically analysis by image acquisition  

 

3.8.1. Morphometric analysis of paraffin sections by light microscopy  

 

Image acquisition of paraffin sections stained with hematoxylin and eosin was performed with light 

microscope and digital pictures were taken with a 12-bit monochrome CCD camera (ColorViewIII, 

Olympus Soft Imaging Solutions GmbH). Pictures were taken at 20x magnification.  

 

 

3.8.2. Morphometric analysis of corneal hem- and lymphangiogenesis by fluorescence microscopy 

 

Image acquisition of double stained wholemounts was performed with a fluorescence microscope 

(BX51, Olympus Optical Co.) and digital pictures were taken with a 14-bit monochrome CCD camera 

(XM10, Olympus Soft Imaging Solutions GmbH).  

For complete cornea acquisition the full automatic image software CellSense (Olympus Soft Imaging 

Solutions GmbH) was used whereby cornea was assembled by 24 to 34 pictures taken at 

100x magnification. To detect the corneal area covered with blood and lymphatic vessels a 

semiautomatic image analysis as described previously was used [141]. 
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Briefly, based on the image analysis program CellSense a macro was designed consisting of 

5 steps: converting into a grey value picture, differential contrast enhancement, erosion filter, 

gradient filter and contrast adjustment. Afterwards vessel detection and quantification was 

performed by setting a threshold whereby bright vessels were included and the dark background 

excluded. The innermost blood or lymphatic vessel of the limbal arcade was outlined as the border 

for the region of interest (ROI) and the area covered by vessels was calculated in percentage.  

 

 

3.9. Statistical analysis 

 

Statistical analysis included Mann-Whitney-U-Test for unpaired, non-normal distributed data; 

Student t-Test for unpaired normally distributed data with equal variances, and Welch-Test for 

unpaired normally distributed data with non-equal variances. Furthermore, two-way ANOVA (Two-

way analysis of variance) with Bonferroni’s Multiple Comparison Post-test was performed. The 

Gaussian distribution was analyzed by Kolmogorov-Smirnov test.  

Statistical analysis was conducted using Graph Pad Prism 6, v6.05 and Graph Pad Instat 3, v3.10.  

Graphs were drawn using GraphPad Prism 6, v6.05. GraphPad’s definition of p-values is shown 

below.   

 

p value asterisks 

≥ 0.05 ns 

0.01 to 0.05 * 

0.001 to 0.01 ** 

0.0001 to 0.001 *** 

< 0.0001 **** 
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4. Results  

 

4.1. Development of a novel experimentally autoimmune Dry eye model similar to 

Sjögren’s Syndrome dry eye 

 

Purpose of these experiments was to induce a specific autoimmunological lesion of the lacrimal 

glands, leading to an insufficient tear production resulting in a secondary inflammation of the 

cornea similar to Sjögren’s Syndrome dry eye. 

The initial experimental protocol was provided by our cooperation partner Prof. Dr. Masli, 

Department of Ophthalmology, Boston University Medical Center, Boston, Massachusetts, USA. 

Thereby, dry eye should be induced by immunization of C57BL/6 mice with an emulsion consisting 

of syngeneic lacrimal gland homogenate mixed 1:1 (v/v) with complete Freund’s adjuvant (CFA). 

Phenotypically changes of the corneal surface, including a decreased tear production and an 

increased corneal fluorescein staining was reported on day 14 (data not published).  

Experiments carried out on the basis of this protocol did not lead to an induction of dry eye seen by 

the working group in Boston. Therefore, this protocol was modified multiple times in consultation 

with the cooperation partner. After the reproducibility still could not be reached, a completely new 

protocol was established. In addition, as autoimmune driven Sjögren’s Syndrome dry eye is 

characterized by inflammatory infiltrates in the lacrimal glands [117] [118], preparing lacrimal gland 

single cell suspension for subsequent flow cytometry analysis was established (see 3.7.1.2). Since it 

is beyond the frame of this work to show all experiments, only the last attempts with the self-

generated experimental setup (see 3.1.1) are shown. 

 

Short-term analysis (until day 14) was performed three times (day 7 and day 10: n = 18 mice; day 

19: n = 13 mice) while long-term analysis was performed one time (n = 5 mice all timepoints 

studied). As the administered CFA/IFA and PTX leads to an induction of the innate immune 

response, control mice receive CFA/IFA mixed with PBS as well as PTX to identify specific 

immunological reaction.  

Common clinical features implying the quantification of corneal epitheliopathy by fluorescein 

staining scores and the quantification of the tear secretion by Schirmer test (see 3.2) were 

performed to determine the phenotype. Furthermore, corneal hem- and lymphangiogenesis was 

determined on different time points (see 3.8.2) to investigate a possible neovascularization as 

described in experimental DED [109] [110] [111] [76]. Flow cytometry analysis of corneal draining 

lymph nodes (see 3.7) regarding expression frequencies of CD4, CD8, CD11b/MHC2 and 

CD11c/MHC2 were performed to analyze the cellular immune response induced by immunization. 

In addition, as systemic autoimmune driven Sjögren’s Syndrome dry eye is characterized by 

inflammatory infiltrates in the lacrimal glands, flow cytometry analysis of the lacrimal glands 
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(see 3.7) were performed regarding CD45, CD4 and CD8 expression frequencies. Further on, H&E 

staining of paraffin embedded lacrimal gland sections (3.8.1) were performed, and viewed 

regarding inflammatory infiltrates of monocytic cells.  

 

 

4.1.1. Short-term analysis of experimental induced autoimmune DED  

 

4.1.1.1. Quantification of clinical evaluation after induction of autoimmune DED  

 

Corneal epitheliopathy and tear secretion was analyzed on day 0, 3, 7, 10 and 14. Quantification of 

both revealed no differences in immunized mice compared to control mice at all time points 

studied (see Fig. 10).  

 

     
Fig. 10: Quantification of corneal epitheliopathy and tear secretion in control mice (blue bars) and immunized mice 

(green bars). Statistical analysis of corneal epitheliopathy (depicted on the left) as well as tear secretion (depicted on 

the right) revealed no significant differences in the immunized group at day 3 (n = 40 mice), day 7 (n = 40 mice), day 10 

(n = 27 mice) and day 14 (n = 14 mice) when compared to the control group (day 3, n = 40 mice; day 7, n = 27 mice; 

day 10, n = 27 mice; day 14, n = 14 mice). Statistical evaluation was done by 2-way analysis of variance (ANOVA) with 

Bonferroni multiple comparison post test. Significance levels are indicated (p - values: ns = p > 0.05). Data are shown as 

differences of the means ± SD.  
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4.1.1.2. Morphometric analysis of corneal neovascularization  
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Fig. 11: Quantitative analysis of neovascularization after immunization on day 7, 10 and 14. Representative micrographs 

(original magnification x 100) of corneal whole mounts on days analyzed (depicted from left to the right) stained for 

lymphatic vessels with LYVE-1 (A) and blood vessels with CD31 (B) in control mice and immunized mice are shown (from 

top downwards). The region of interest for subsequent analysis of vessel area appears as white line. (C) Quantitative 

analysis of relative corneal neovascularization revealed no significant differences in lymphangiogenesis at all time points 

studied (day 7: 100% ± 26% (n = 13 eyes) for control mice vs. 112% ± 41% (n = 13 eyes) for immunized mice; day 

10: 100% ± 33% (n = 13 eyes) for control mice vs. 82% ± 43% (n = 13 eyes) for immunized mice; day 14: 100% ± 39% 

(n = 14 eyes) for control mice vs. 87% ± 41% (n = 14 eyes) for immunized mice). Analysis of hemangiogenesis also 

revealed no significant differences in immunized mice compared to control mice on day 7 (100% ± 33% (n = 13 eyes) for 

control mice vs. 115% ± 37% (n = 13 eyes) for control mice) and day 14 (100% ± 28% (n = 14 eyes) for control mice vs. 

112% ± 47% (n = 14 eyes) for immunized mice), expect of day 10 (100% ± 36% (n = 13 eyes) for control mice vs. 

59% ± 17% (n = 13 eyes) for immunized mice). Statistical analysis of lymph- and hemangiogenesis was assessed using 

Mann-Whitney U-test for non-parametric analysis; or student’s t-test for parametric analysis. Significance levels versus 

control mice are indicated (p-values: ** p < 0.001). Data are shown as mean ± SD.  

 

 

The outgrowth area of both, corneal lymphatic and blood vessels was quantitatively analyzed on 

day 7, day 10 and day 14 (see Fig. 11). Representative wholemounts stained for lymphatic vessels 

(see Fig. 11 A) and blood vessels (see Fig. 11 B) showed no different extent for lymph- and 

hemangiogenesis. Quantification of the relative lymph vasculature (see Fig. 11 C) revealed no 

significant differences between the groups on day 7 (100% ± 26% (n = 13 eyes) for control mice vs. 

112% ± 41% (n = 13 eyes) for immunized mice), on day 10 (100% ± 33% (n = 13 eyes) for control 

mice vs. 82% ± 43% (n = 13 eyes) for immunized) and on day 14 (100% ± 39% (n = 14 eyes) for 

control mice vs. 87% ± 41% (n = 14 eyes) for immunized mice).  

Expect of day 10 (100% ± 36% (n= 13 eyes) for control mice vs. 59% ± 17% (n= 13 eyes) for 

immunized mice) analysis of the relative blood vessel area (see Fig. 11 C) revealed no significant 

differences between the groups (day 7:100% ± 33% (n = 13 eyes) for control mice vs. 115% ± 37% 

(n = 13 eyes) for immunized mice; day 14: 100% ± 28% (n = 14 eyes) for control mice vs. 

112% ± 47% (n = 14 eyes) for immunized mice). 

 

 

4.1.1.3. Quantification of the immune response by flow cytometry analysis of corneal draining 

lymph nodes 

 

The frequencies of CD4, CD8, CD11b/MHC2 and CD11c/MHC2 positive cells in the corneal draining 

lymph nodes were analyzed by flow cytometry (see Fig. 12 A) on day 7, day 10 and day 14. 

Experiment was performed three times and analysis was performed for every single mouse per 

group (n = 13 mice) and relative percentages of positive stained cells are indicated (see Fig. 12 B).  
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Fig. 12: Flow cytometry analysis of corneal draining lymph nodes on day 7, day 10 and day 14. (A) Representative 

histograms of cell surface expression of CD4, CD8, CD11b/MHC2 and CD11c/MHC2 (from the top downwards) in control 

(blue bars, n = 13 mice) and immunized mice (green bars, n = 13 mice) are shown. The proportion of the cells stained 

positively is indicated as percent positive cells in the gated region. Quantification of the relative percentage of positive 

stained cells per group (n = 13 mice) for all days studied is presented on the right (B). Significantly decreased expression 

frequency of CD4 positive cells on day 7 and less detectable frequencies on the other time points studied in immunized 

mice when compared to control mice were detectable, while CD8 positive cells were not affected. Compared to control 

mice, analysis of CD11b/MHC2 and CD11c/MHC2 positive cells revealed amplified expression frequencies on day 7 and 

day 10 in immunized mice. Values represent mean ± SD. Significance levels versus control mice are indicated 

(p-values: ** = p > 0.001).  

 

 

Quantitative analysis revealed a significantly decreased expression frequency of CD4 positive cells 

on day 7 and less detectable frequencies on the other time points studied in immunized mice when 

compared to control mice, while CD8 positive cells were not affected.  

In addition, amplified expression frequencies of CD11b/MHC2 and CD11c/MHC2 positive cells in 

immunized mice compared to control mice on day 7 and day 10 were detectable. 

 

 

4.1.1.4. Quantification of the immune response by flow cytometry analysis of lacrimal glands 

 

The frequencies of CD45, CD4 and CD8 positive cells in the lacrimal glands were analyzed by flow 

cytometry (see Fig. 13 A) on day 7, day 10 and day 14. Experiment was performed three times and 

analysis was performed for every single mouse per group (n = 13 mice) and relative percentages of 

positive stained cells are indicated (see Fig. 13 B).  

Regarding the expression frequency of CD45 positive cells a significant increase of these cells on 

day 7 and day 14 in immunized mice compared to control mice could be observed, while amplified 

expression frequency is detectable on day 10. 

In addition, analysis of CD4 positive cells in immunized mice compared to control mice revealed 

increased amount of these cells in the lacrimal glands at all time points studied, while on day 10 a 

significant difference could be observed. CD8 expression frequency analysis in the lacrimal glands 

revealed no significant differences. 

 

 



Results 

  41 

 
Fig. 13: Flow cytometry analysis of lacrimal glands on day 7, 10 and 14. (A) Representative histograms of cell surface 

expression of CD45, CD4 and CD8 (from the top downwards) in control mice (green bars) and immunized mice (blue 

bars) are shown. The proportion of the cells stained positively is indicated as percent positive cells in the gated region. 

Quantification of the relative percentage of positive stained cells per group (day 7, day 10: n = 13 mice per group, day 

14: n = 14 mice per group) for all days studied is presented on the right (B). Analysis of CD45 expression frequency in 

immunized compared to control mice revealed a significant increase on day 7 and day 14, while an amplified expression 

frequency is detectable on day 10. Analysis of CD4 positive cells in immunized mice compared to control mice revealed 
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increased amount of these cells in the lacrimal glands at all time points studied, while on day 10 a significant difference 

could be observed. CD8 expression frequency analysis revealed an amplified amount of these cells on day 7, while no 

significant differences were detectable on the other days. Values represent mean ± SD. Significance levels versus 

control mice are indicated (p-values: * p < 0.05).  

 

 

To sum up, short-term analysis of experimental induced autoimmune DED provide evidence for a 

successful induction of a “subclinical” model of DED. Even if clinical evaluation of epithelial defects 

and tear secretion as well as quantification of corneal neovascularization revealed no differences 

between control mice and immunized mice, flow cytometry analysis of corneal draining lymph 

nodes and lacrimal glands revealed an altered immune response in immunized mice, reflecting a 

specific, but not yet chronically immune response.  

 

 

4.1.2. Long-term analysis of autoimmune induced dry eye 

 

4.1.2.1. Quantification of clinical evaluation after experimentally induced autoimmune DED  

 

     
Fig. 14: Quantification of corneal epitheliopathy and tear secretion in control mice (blue bars) and immunized mice 

(green bars). Statistical analysis of corneal epitheliopathy (depicted on the left) as well as tear secretion (depicted on 

the right) revealed no significant differences in the immunized group at day 14 (n = 20), day 21 (n = 15 mice), day 28 

(n = 15 mice), day 35 (n = 10 mice), day 42 (n = 10 mice), day 49 (n = 5 mice) and day 56 (n = 5 mice) when compared to 

the control group (day 14, n = 20 mice; day 21, n = 15 mice; day 28, n = 15 mice; day 35, n = 10 mice; day 42, n = 10 

mice; day 49, n = 5 mice; day 56, n = 5 mice). Statistical evaluation was done by 2-way analysis of variance (ANOVA) 

with Bonferroni multiple comparison post test. Significance levels are indicated (p - values: ns = p > 0.05). Data are 

shown as differences of the means ± SD.  
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Corneal epitheliopathy as well as tear secretion was measured on day 0, 14, 21, 28, 35, 42, 49 and 

56. Quantification of both revealed no significant differences in immunized mice compared to 

control mice at all days studied (see Fig. 14).  

 

 

4.1.2.2. Morphometric analysis of corneal neovascularization  

 

The outgrowth area of both, corneal lymphatic and blood vessels was quantitatively analyzed on 

day 14, 28, 42 and 56 (see Fig. 15). Representative wholemounts stained for lymphatic vessels (see 

Fig. 15 A) and blood vessels (see Fig. 15 B) showed no different extent for lymph- and 

hemangiogenesis. Quantification of the relative lymph vasculature (see Fig. 15 C) revealed 

non significant differences between the groups on all days studied (day 14: 100% ± 33% (n = 5 eyes) 

for control mice vs. 77% ± 42% (n = 5 eyes) for immunized mice; day 28: 100% ± 35% (n = 5 eyes) 

for control mice vs. 107% ± 33% (n = 5 eyes) for immunized; day 42: 100% ± 23% (n = 5 eyes) for 

control mice vs. 93% ± 40% (n = 5 eyes) for immunized mice; day 56: 100% ± 32% (n = 5 eyes) for 

control mice vs. 104% ± 17% (n = 5 eyes) for immunized mice).  

Analysis of the relative blood vessel area (see Fig. 15 C) also revealed no significant differences 

between the groups at all days analyzed (day 14: 100% ± 28% (n = 5 eyes) for control mice vs. 

80% ± 13% (n = 5 eyes) for immunized mice; day 28 :100% ± 41% (n = 5 eyes) for control mice vs. 

89% ± 12% (n = 5 eyes) for immunized mice; day 42: 100% ± 26% (n = 5 eyes) for control mice vs. 

103% ± 12% (n = 5 eyes) for immunized mice; day 56: 100% ± 8% (n = 5 eyes) for control mice vs. 

93% ± 12% (n = 5 eyes) for immunized mice). 
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Fig. 15: Quantitative analysis of neovascularization after immunization on day 14, 28, 42 and 56. Representative 

micrographs (original magnification x 100) of corneal whole mounts (depicted from left to the right) stained for 



Results 

  45 

lymphatic vessels with LYVE-1 (A) and blood vessels with CD31 (B) in control mice and immunized mice are shown. (C) 

Quantitative analysis of relative corneal neovascularization revealed no significant differences in lymphangiogenesis at 

all time points studied (day 14: 100% ± 33% (n = 5 eyes) for control mice vs. 77% ± 42% (n = 5 eyes) for immunized 

mice; day 28: 100% ± 35% (n = 5 eyes) for control mice vs. 107% ± 33% (n = 5 eyes) for immunized mice; day 42: 

100% ± 23% (n = 5 eyes) for control mice vs. 93% ± 40% (n = 5 eyes) for immunized mice; day 56: 100% ± 32% (n = 

5 eyes) for control mice vs. 104% ± 17% (n = 5 eyes) for immunized mice). Analysis of hemangiogenesis also revealed no 

significant differences in immunized mice compared to control mice on all analyzed days (day 14: 100% ± 28% 

(n = 5 eyes) for control mice vs. 80% ± 13% (n = 5 eyes) for immunized mice; day 28: 100% ± 41% (n = 5 eyes) for control 

mice vs. 89% ± 12% (n = 5 eyes) for immunized mice; day 42: 100% ± 26% (n = 5 eyes) for control mice vs. 103% ± 12% 

(n = 5 eyes) for immunized mice; day 56: 100% ± 8% (n = 5 eyes) for control mice vs. 93% ± 12% (n = 5 eyes) for 

immunized mice). Statistical analysis of lymph- and hemangiogenesis was assessed using Mann-Whitney U-test for 

non-parametric analysis; or student’s t-test for parametric analysis. Significance levels versus control mice are indicated 

(p-values: ns = p > 0.05). Data are shown as mean ± SD.  

 

 

4.1.2.3. Quantification of the immune response by flow cytometry analysis of corneal draining 

lymph nodes 

 

The frequencies of CD4, CD8, CD11b/MHC2 and CD11c/MHC2 positive cells in the corneal draining 

lymph nodes on day 14, 28, 42 and 56 were analyzed by flow cytometry (see Fig. 16 A). Analysis was 

performed for every single mouse per group (n = 5 mice) and relative percentage of positive stained 

cells are indicated (see Fig. 16 B). 

Quantitative analysis revealed significant differences for CD4 and CD8 positive cells on day 56 as 

well as CD11b/MHC2 positive cells on day 28. CD11c/MHC2 positive cells were amplified on day 28 

but no significant level was reached. 
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Fig. 16: Flow cytometry analysis of corneal draining lymph nodes on day 14, 28, 42 and 56. (A) Representative 

histograms of cell surface expression of CD4, CD8, CD11b/MHC2 and CD11c/MHC2 (from the top downwards) in control 

mice (green bars) and immunized mice (blue bars) are shown. The proportion of the cells stained positively is indicated 

as percent positive cells in the gated region. Quantification of the relative percentage of positive stained cells per group 

(n = 5 mice) for all days studied is presented on the right (B). CD4 and CD8 positive cells were significantly increased in 

immunized mice on day 56 and CD11b/MHC2 positive cells were significantly increased on day 28 while analysis on all 

other time points studied revealed no significant differences. Significance levels versus control mice are indicated 

(p-values: * p < 0.05, ** p < 0.001). Values represent mean ± SD. 
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4.1.2.4. Quantification of the immune response by flow cytometry analysis of lacrimal glands 

 

The frequency of CD45, CD4 and CD8 positive cells in the lacrimal glands on day 14, day 28, day 42 

and day 56 were analyzed by flow cytometry (see Fig. 17 A). Analysis was performed for every single 

mouse per group (n = 5 mice) and relative percentage of positive stained cells are indicated (see 

Fig. 17 B). 

 

 
Fig. 17: Flow cytometry analysis of lacrimal glands on day 14, day 28, day 42 and day 56. (A) Representative histograms 

of cell surface expression of CD45, CD4 and CD8 (from the top downwards) in control mice (blue bars) and immunized 

mice (green bars) are shown. The proportion of the cells stained positively is indicated as percent positive cells in the 

gated region. Quantification of the relative percentage of positive stained cells per group (n = 5 mice) for all days 

studied is presented on the right (B). A significant increase in CD45 positive cells as well as CD8 positive cells on day 14 
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in immunized mice compared to control mice was detectable, while expression frequency of CD45 was also amplified 

on day 28. In addition, analysis of CD4 positive cells also revealed an amplified expression frequency on day 14 and day 

28. Significance levels versus control mice are indicated (p-values: * p < 0.05). Values represent mean ± SD. 

 

 

Quantification revealed a significant increase in CD45 positive as well as CD8 positive cells on day 14 

in immunized mice compared to control mice, while expression frequency of CD45 was also 

amplified on day 28. In addition, analysis of CD4 positive cells also revealed an amplified expression 

frequency on day 14 and day 28.  

 

 

4.1.2.5. Histological examination of lacrimal gland infiltrates 

 

Histological examination of lacrimal gland infiltrates was performed on serial paraffin sections for 

day 56 (n = 5 mice per group). Lacrimal gland infiltrates were detectable in all immunized and in 

two control mice, each one small infiltrate, whereby infiltrates were more distinctive in immunized 

mice (see Fig. 18).  

 

 
Fig. 18: Histological examination of lacrimal gland infiltrates by H&E staining in serial paraffin sections on day 56. (A) 

Representative lacrimal gland sections from control and immunized mice are depicted. Lacrimal gland infiltrates (white 

arrows) were detectable in all immunized mice and two control mice, whereby infiltrates were more distinctive in 

immunized mice.  
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To sum up, long-term analysis supports the successful induction of an “subclinical” model of DED. 

Clinical evaluation of epithelial defects and tear secretion as well as quantification of corneal 

neovascularization revealed no differences between control mice and immunized mice, while flow 

cytometry analysis of lacrimal glands revealed an altered immune response in immunized mice 

lasting over a longer periode. Furthermore, inflammatory infiltrates in lacrimal glands of immunized 

mice were detectable, representing autoimmune driven exocrinopathy occurring in Sjögren’s 

Syndrome dry eye. 
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4.2. Effect of topically applied Aflibercept in a desiccating stress model reflecting non-

Sjögren’s Syndrome dry eye  

 

Purpose of these experiments was to determine the effect of topically administered Aflibercept in a 

desiccating stress model reflecting non-Sjögren’s Syndrome dry eye. Mice exposed to desiccating 

stress receiving NaCl as eye drops serve as control group to determine the effect of the compound 

while naive mice serve as control group for the induction of dry eye as well as lymphangiogenesis. 

The experiment was performed three times, ending up with total number of 25 naive mice, 24 mice 

exposed to desiccating stress receiving NaCl eye drops and 25 mice exposed to desiccating stress 

receiving Aflibercept eye drops. 

Clinical evaluation implying the quantification of corneal epitheliopathy by fluorescein staining 

scores and the quantification of the tear secretion by Schirmer test (see 3.2) were performed. 

These are common clinical features to determine the phenotype as well as the disease progression. 

Furthermore, corneal hem- and lymphangiogenesis was quantified post mortem (see 3.8.2) on day 

14, as lymphangiogenesis is shown to peak at this timepoint [109] representing the assumed link to 

the adaptive immune response we want to disturb. In addition, flow cytometry analysis of corneal 

draining lymph nodes (see 3.7.1) were performed to analyze the inflammatory response (see Fig. 

19). As mainly CD4 positive and CD8 positive T cells are involved in the underlying immune response 

[112] [113] [114] and while CD11b and CD11c positive cells are shown to activate T cells in the 

lymphoid compartment, we were interested in the surface expression frequencies of CD4, CD8, 

CD11b and CD11c.  

 

 
Fig. 19: Scheme of topical administration. Eye drops (3 µl) were administered three times a day (40 mg/ml 

Aflibercept). Clinical evaluation (epitheliopathy and tear secretion; CE) was performed on day 0, 3, 7, 11 and 

14. On final day mice were euthanized and organs required for subsequent analysis collected (organ 

sampling; OS). 

 

  



Results 

  51 

4.2.1. Quantification of clinical evaluation regarding the effect of topically applied Aflibercept  

 

Quantification of clinical evaluation revealed an increased corneal epitheliopathy coupled to a 

decreased tear secretion in mice exposed to desiccating stress (see Fig. 20). While naive mice 

(n = 25 mice) showed no changes in corneal fluorescein staining scores, except of day 14, mice 

exposed to desiccating stress receiving NaCl (n = 24 mice) or Aflibercept (n = 25 mice) as eye drops 

showed significantly elevated corneal fluorescein staining scores. Concurrently tear secretion 

significantly decreased in both groups receiving NaCl or Aflibercept as eye drops, from day 3 

through the end of the observation period. Thus, induction of dry eye was successful. Regarding the 

effect of Aflibercept as topically applied therapeutic no improvement of the clinical phenotype was 

detectable in comparison to the NaCl group.  

 

     
Fig. 20: Quantification of corneal epitheliopathy and tear secretion in naive mice (grey bars, n = 25 mice) and mice 

exposed to desiccating stress receiving topical application of NaCl (blue bars, n = 24 mice) or Aflibercept (green bars, 

n = 25 mice). Corneal epitheliopathy (depicted on the left) is significantly increased in both treatment groups over the 

entire duration. Concurrently tear secretion (depicted on the right) is significantly decreased from day 3 in both 

treatment groups over the entire duration. Thus receiving Aflibercept as eye drops does not improve clinical 

phenotype. Statistical evaluation was done by 2-way analysis of variance (ANOVA) with Bonferroni multiple comparison 

post test. Significance levels are indicated (p - values: ** p < 0.01, *** p < 0.001, **** p < 0.0001). Data are shown as 

differences of the means ± SD.  

 

 

4.2.2. Morphometric analysis of neovascularization after topical application of Aflibercept 

 

The outgrowth area of corneal lymph- and blood vessels was quantitatively analyzed post mortem 

on day 14 (see Fig. 21 C). Representative whole mounts stained for lymphatic vessels (see Fig. 21 A) 

and blood vessels (see Fig. 21 B) showed the outgrowth of vessels from the limbus to the center of 

the cornea to a different extent. Quantification of the relative lymph vessel area revealed non-
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significant differences: 100% ± 24% (n = 24 eyes) for naive mice, followed by mice exposed to 

desiccating stress receiving NaCl eye drops with 113% ± 24% (n = 24 eyes) and mice exposed to 

desiccating stress receiving topical applied Aflibercept with 103% ± 25% (n = 25 eyes) (see Fig. 21 C). 

Analysis of the relative blood vessel area also revealed no significant differences: 100% ± 22% 

(n = 24 eyes) for naive mice; 99% ± 16% (n = 24 eyes) for mice exposed to desiccating stress 

receiving NaCl as eye drops and 87% ± 20% (n = 25 eyes) for mice exposed to desiccating stress 

receiving Aflibercept eye drops (see Fig. 21 C). 
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Fig. 21: Quantitative analysis of lymph- and hemangiogenesis after topical application of NaCl or Aflibercept post 

mortem on day 14. Representative micrographs (original magnification x 100) of corneal whole mounts stained for 

lymphatic vessels with LYVE-1 (A) and blood vessels with CD31 (B) in naive mice and mice exposed to desiccating stress 

treated with NaCl or Aflibercept are shown (depicted from left to the right). The region of interest for subsequent 

analysis of vessel area appears as white line. (C) multiple comparison revealed non-significant differences in relative 

lymphangiogenesis (100% ± 24% (n = 24 eyes) for naive mice; 113% ± 24% (n = 24 eyes) for mice exposed to desiccating 

stress receiving NaCl as eye drops and 103% ± 25% (n = 25 eyes) for mice exposed to desiccating stress receiving 

Aflibercept as eye drops), and relative hemangiogenesis (100% ± 22%, (n = 24 eyes) for naive mice; 99% ± 16%, 

(n = 24 eyes) for mice exposed to desiccating stress receiving NaCl as eye drops and 87 ± 20%, (n = 25 eyes) for mice 

receiving Aflibercept as eye drops. Statistical analysis was assessed with One-way ANOVA with Bonferroni multiple 

comparison post test. Data are shown as mean ± SD.  

 

 

4.2.3. Quantification of the immune response by flow cytometry analysis of corneal draining lymph 

nodes after topical application of Aflibercept 

 

Using flow cytometry, the frequencies of CD4, CD8, CD11b and CD11c positive cells in the corneal 

draining lymph nodes were analyzed (see Fig. 22 A). As the experiment was performed three times 

(n = 3), each time with pooled lymph nodes from each group, relative percentages of positive 

stained cells are indicated (see Fig. 22 B). Quantification of positive stained cells revealed no 

significant differences for all analyzed cell markers. Nevertheless, analysis of CD4 and CD8 positive 

cells revealed diminished expression frequencies while analysis of CD11b and CD11c positive cells 

revealed amplified expression frequencies in mice exposed to desiccating stress treated with 

Aflibercept in comparison to naive mice.  
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Fig. 22: Flow cytometry analysis of corneal draining lymph nodes. (A) Representative histograms of cell surface 

expression of CD4, CD8, CD11b and CD11c (from the top downwards) in naive mice (grey bars) and mice under 

desiccating stress treated with topical applied NaCl (blue bars) or Aflibercept (green bars) are shown (depicted from left 

to the right). The proportion of the cells stained positively is indicated as percent positive cells in the gated region. The 

experiment was performed three times and quantification of the relative percentage of positive stained cells is 

presented on the right (B). No significant differences were detectable for all surface markers analyzed in mice exposed 

to desiccating stress treated with Aflibercept in comparison to naive mice.  Values represent mean ± SD. 

 

 

To sum up, topically applied Aflibercept does not ameliorate clinical symptoms of dry eye disease. 

While corneal neovascularization was not affected, marginally effects on mainly involved immune 

cells were detectable. Thus, CD4 and CD8 positive T cells were diminished while CD11b and CD11c 

expression frequencies were amplified.  
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4.3. Effect of systemically applied Aflibercept in a desiccating stress model reflecting 

non-Sjögren’s Syndrome dry eye  

 

Purpose of these experiments was to determine the effect of systemically applied Aflibercept on 

non Sjögren’s Syndrome dry eye. Unlike the local topical application hereby the whole immune 

system would be affected. As the induction of dry eye was shown to be successful within our 

experimental setup and we are interested if Aflibercept has a benefit on the disease outcome, mice 

exposed to desiccating stress receiving NaCl serve as control group.  

Systemically application was performed by two different experimental setups: Aflibercept-injections 

were performed during desiccating stress representing a prevention trial (see Fig. 23) or after the 

induction of desiccating stress representing a therapy trial (see Fig. 24).  

Both experimental setups were performed two times, ending up with a total number of 20 mice 

exposed to desiccating stress receiving NaCl injection and 14 mice exposed to desiccating stress 

receiving Aflibercept injections in the prevention trial and 20 mice per group in the therapy trial. 

 

Again, common clinical features implying the quantification of corneal epitheliopathy by fluorescein 

staining scores and the quantification of the tear secretion by Schirmer test (see 3.2), were 

performed to determine the phenotype as well as the disease progression. Corneal hem- and 

lymphangiogenesis was determined post mortem to investigate the effect of Aflibercept on 

neovascularization (see 3.8.2). Furthermore, flow cytometry analysis of corneal draining lymph 

nodes (see 3.7.1) regarding expression frequencies of CD4, CD8, CD11b and CD11c were 

performed, to analyze the effect of Aflibercept on these mainly involved cell types.  

 

 
Fig. 23: Scheme of systemically administration regarding prevention. 50 µl Aflibercept (25 mg/kg 

bodyweight) were injected i.p on day 1, 3, and 7 during desiccating stress (indicated by syringes). Clinical 

evaluation (epitheliopathy and tear secretion; CE) was performed on day 0, 3, 7 and 14. On final day mice 

were euthanized and organs required for subsequent analysis collected (organ sampling; OS). 
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Fig. 24: Scheme of systemically administration regarding therapy. 50 µl Aflibercept (25 mg / kg bodyweight) 

were injected i.p on day 11 and 13 during desiccating stress and on day 17 under standard animal housing 

conditions (indicated by syringes). Clinical evaluation (epitheliopathy and tear secretion; CE) was performed 

on day 0, 7, 11, 13, 17 and 24. On final day mice were euthanized and organs required for subsequent 

analysis collected (organ sampling; OS). 

 

 

4.3.1. Preventive effect of systemically applied Aflibercept on DED  

 

4.3.1.1. Quantification of clinical evaluation  

 

Quantification of clinical evaluation revealed an increased corneal fluorescein staining score as well 

as a decreased tear secretion in mice exposed to desiccating stress independent from their 

treatment with NaCl (n = 14 mice) or Aflibercept (n = 20 mice) over the entire duration (see Fig. 25). 

As clinical signs changed in both groups in the same amount no improvement of the phenotype by 

systemically applied Aflibercept was detectable.  

 

     
Fig. 25: Quantification of corneal epitheliopathy and tear secretion after systemically application of Aflibercept in the 

prevention trial. Analysis of corneal epitheliopathy (depicted on the left) revealed no significantly differences between 



Results 

  57 

mice exposed to desiccating stress receiving NaCl injections (blue bars, n= 14 mice) and mice exposed to desiccating 

stress receiving Aflibercept injections (green bars, n= 20 mice). Meanwhile tear secretion (depicted on the right) is 

decreased in both groups in the same mass. Statistical analysis was assessed by 2-way ANOVA with Bonferroni multiple 

comparison post test (p - values: ns = p > 0.05). Data are shown as differences of the means ± SD.  

 

 

4.3.1.2. Morphometric analysis of neovascularization  

 

The outgrowth area of both, corneal lymphatic and blood vessels was quantitatively analyzed post 

mortem on day 14 (see Fig. 26 C). Representative wholemounts stained for lymphatic vessels 

(see Fig. 26 A) and blood vessels (see Fig. 26 B) showed mild ingrowths of both vessel types in mice 

exposed to desiccating stress receiving Aflibercept injections.  
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Fig. 26: Quantitative analysis of neovascularization after systemic application of NaCl and Aflibercept post mortem on 

day 14. Representative micrographs (original magnification x 100) of corneal whole mounts stained for lymphatic 

vessels with LYVE-1 (A) and blood vessels with CD31 (B) in mice exposed to desiccating stress receiving NaCl injections 

or Aflibercept injections (depicted from left to the right) are shown. The region of interest for subsequent analysis of 

vessel area appears as white line. C, Quantitative analysis revealed no significant differences in lymphangiogenesis 

(100% ± 20% (n= 14 eyes) for mice exposed to desiccating stress receiving NaCl injections vs. 116% ± 35% (n = 20 eyes) 

for mice exposed to desiccating stress receiving Aflibercept injections), while hemangiogenesis in Aflibercept treated 

mice was significantly increased compared to the control group (1.2-fold; *, p < 0.05). Statistical analysis of 

lymphangiogenesis was assessed using Mann-Whitney U-test for non-parametric analysis; statistical analysis of 

hemangiogenesis was assessed using student’s t-test. Significance levels versus control mice are indicated (p-values: 

* p < 0.05). Data are shown as mean ± SD.  

 

 

Quantification of the relative lymph vasculature revealed non-significant differences between the 

groups (100% ± 20% (n = 14 eyes) for mice exposed to desiccating stress receiving NaCl injections 

vs. 116% ± 35% (n = 20 eyes) for mice exposed to desiccating stress receiving Aflibercept 

injections), while analysis of the relative blood vessel area resulted in a significant increase ( 1.2 fold 

increase) of blood vessels in mice exposed to desiccating stress receiving Aflibercept injections 

(100% ± 17% (n = 13 eyes) vs. 117% ± 20% (n = 20 eyes)) (see Fig. 26 C). 

 

 

4.3.1.3. Quantification of the immune response by flow cytometry analysis of corneal draining 

lymph nodes 

 

The frequencies of CD4, CD8, CD11b and CD11c positive cells in the corneal draining lymph nodes 

were analyzed by flow cytometry (see Fig. 27 A). As the experiment was performed two times 

(n = 2), each time with pooled lymph nodes from each group, relative percentages of positive 

stained cells are indicated (see Fig. 27 B). 

Quantitative analysis revealed diminished expression frequencies of CD4 and CD8 positive cells 

while CD11b and CD11c positive cells revealed also a diminished amount of these cells, in contrast 

to the topical application experiment.  
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Fig. 27: Flow cytometry analysis of corneal draining lymph nodes on day 14 after systemic applied NaCl or Aflibercept in 

the prevention trial. (A) Representative histograms of cell surface expression of CD4, CD8, CD11b and CD11c (from the 

top downwards) in mice under desiccating stress receiving NaCl or Aflibercept injections during induction of DED are 

shown. The proportion of the cells stained positively is indicated as percent positive cells in the gated region. The 

experiment was performed two times and quantification of the relative percentage of positive stained cells is presented 

on the right (B). Quantitative analysis revealed diminished expression frequencies of CD4 and CD8 positive cells while 

CD11b and CD11c positive cells revealed also a diminished amount of these cells in mice exposed to desiccating stress 

treated with Aflibercept (green bars) in comparison to mice under desiccating stress receiving NaCl injections (blue 

bars). Values represent mean ± SD. 
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4.3.2. Therapeutic effect of systemically applied Aflibercept on DED 

 

4.3.2.1.  Quantification of clinical evaluation  

 

Quantification of clinical evaluation revealed no significant differences in corneal epitheliopathy and 

tear secretion for the entire duration of the experiment (see Fig. 28). Corneal fluorescein staining 

increased during desiccating stress (till day 14) and decreased to baseline under standard animal 

housing conditions (day 15 till day 24) in both groups (n = 20 mice) in the same amount. 

Quantitative analysis of the tear secretion shows a similar pattern: while desiccating stress (till day 

14) tear secretion goes down and returned to normal level under standard animal housing 

conditions (day 15 till day 24).  

 

     
Fig. 28: Quantification of corneal epitheliopathy and tear secretion after systemically application of Aflibercept in the 

therapy trial. Analysis of corneal epitheliopathy (depicted on the left) and tear secretion (depicted on the right) 

revealed no differences between mice receiving NaCl injections (blue bars, n = 20 mice) and mice receiving Aflibercept 

injections (green bars, n = 20 mice). Both groups show the same clinical disease outcome with a recovery to baseline 

after desiccating stress. Statistical analysis was assessed by 2-way ANOVA with Bonferroni multiple comparison post 

test (p - values: ns = p > 0.05). Data are shown as differences of the means ± SD.  

 

 

4.3.2.2. Morphometric analysis of neovascularization  

 

The outgrowth area of lymphatic and blood vessels was quantitatively analyzed post mortem on day 

24 (see Fig. 29 C). Representative wholemounts stained for lymphatic vessels (see Fig. 29 A) and 

blood vessels (see Fig. 29 B) showed no different extent for lymph- and hemangiogenesis. 

Quantification of the relative lymph vasculature revealed no significant differences between the 

groups (100% ± 33% (n = 20 eyes) for mice exposed to desiccating stress receiving NaCl injections 

vs. 105% ± 33% (n = 20 eyes) for mice exposed to desiccating stress receiving Aflibercept 
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injections), while analysis of the relative blood vessel area resulted in a significant decrease in mice 

exposed to desiccating stress receiving Aflibercept injections (94% ± 11% (n = 20 eyes) vs. 100% ± 

19% (n = 20 eyes)) (see Fig. 29 C, D).  

 

 
Fig. 29: Quantitative analysis of lymph- and hemangiogenesis after systemic application of NaCl or Aflibercept post 

mortem on day 24. Representative micrographs (original magnification x 100) of corneal whole mounts stained for 

lymphatic vessels with LYVE-1 (A) and blood vessels with CD31 (B) in naive mice and mice exposed to desiccating stress 

treated with Aflibercept injections (depicted from left to the right) are shown. The region of interest for subsequent 

analysis of vessel area appears as white line. (C) Quantitative analysis of the relative lymphangiogenesis revealed no 

significant differences between the groups (100% ± 33% (n = 20 eyes) for mice exposed to desiccating stress receiving 

NaCl injections vs. 104% ± 33% (n = 20 eyes) for mice exposed to desiccating stress receiving Aflibercept injections), 

while relative hemangiogenesis in Aflibercept treated mice was significantly decreased compared to the control group 

(1.3-fold; *, p < 0.05). Statistical analysis of relative lymphangiogenesis was assessed using student’s t-test; statistical 

analysis of relative hemangiogenesis was assessed using Mann-Whitney U-test for non-parametric analysis. Significance 

levels versus control mice are indicated (p-values: * p < 0.05). Data are shown as mean ± SD.  
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4.3.2.3. Quantification of the immune response by flow cytometry analysis of corneal draining 

lymph nodes 

 

The frequencies of CD4, CD8, CD11b and CD11c positive cells in the corneal draining lymph nodes 

were analyzed by flow cytometry (see Fig. 30 A). As the experiment was performed two times 

(n = 2), each time with pooled lymph nodes from each group, relative percentages of positive 

stained cells are indicated (see Fig. 30 B).  

 

Fig. 30: Flow cytometry analysis of corneal draining lymph nodes on day 24 after systemic applied NaCl or Aflibercept in 

the therapy trial. (A) Representative histograms of cell surface expression of CD4, CD8, CD11b and CD11c (from the top 

downwards) in mice receiving NaCl or Aflibercept injections at the end of the desiccating stress induction are shown. 

The proportion of the cells stained positively is indicated as percent positive cells in the gated region. The experiment 

was performed two times and quantification of the relative percentage of positive stained cells is presented on the right 

(B). Analysis revealed diminished frequencies of CD4 and CD8 positive T cells, while expression frequencies of CD11b 

and CD11c positive cells are amplified in mice exposed to desiccating stress receiving Afliberceot injections (blue bars) 

compared to mice receiving NaCl injections (green bars). Values represent mean ± SD. 
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Quantitative analysis revealed no significant results for all analyzed cells markers in mice exposed to 

desiccating stress treated with Aflibercept in comparison to control mice. Just as in the topical 

experiments, analysis revealed a diminished frequency of CD4 and CD8 positive T cells while 

expression frequencies of CD11b and CD11c positive cells are amplified in mice exposed to 

desiccating stress compared to control mice. 

 

To sum up, systemically applied Aflibercept has an effect on the immune repsonse depending on 

the day of application. Thus, injection of Aflibercept starting with desiccating stress has no effects 

on clinical signs as well as on corneal neovascularization, but expression frequencies of CD4, CD8, 

CD11b and CD11c positive cells in corneal draining lymph nodes were diminished. Starting 

injections of Aflibercept after the induction of DED leads to effects similar to those seen by topically 

application. Clinical evaluation as well as analysis of corneal neovascularization revealed no 

differences between control mice and mice treated with Aflibercept, while flow cytometry analysis 

of corneal draining lymph nodes revealed diminished expression frequencies of CD4 and CD8 

positive T cells as well as amplified frequencies of CD11b and CD11c positive cells.  
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5. Discussion 

 

5.1. Novel experimental autoimmune Dry eye model similar to Sjögren’s Syndrome 

dry eye representing a sub-clinical model 

 

Dry eye is not only induced by environmental stress, like in the desiccating stress model reflecting 

the non-Sjögren’s Syndrome dry eye, but also manifest itself as an inflammatory autoimmune 

disorder. In this case it is described as an autoimmune epithelitis, wherein the exocrine glands 

(salivary and lacrimal glands) are infiltrated by lymphocytic and plasma cells [110] [111] [118], 

leading to a glandular destruction of the tissue. Thereby, the underlying exocrinopathy can be 

encountered alone, like in the primary Sjögren’s Syndrome dry eye or in association with other 

autoimmune disorders, like rheumatoid arthritis (secondary Sjögren’s Syndrome dry eye) [9].  

Thus, the establishment of an experimental autoimmune mouse model is an essential need to 

further delineate the role of autoimmunity in dry eye disease. In such a model, the exocrinopathy 

would be induced due to an autoimmunological lesion of the lacrimal glands, leading to an 

insufficient tear production. The following secondary inflammation of the cornea should be similar 

to Sjögren’s Syndrome dry eye. 

As already mentioned before, first experiments were performed using a protocol provided by our 

cooperation partner Prof. Dr. Masli, Department of Ophthalmology, Boston University Medical 

Center, Boston, Massachusetts, USA. In this experimental setup mice were immunized with a 

syngeneic emulsion of lacrimal gland homogenate and CFA (mixed 1:1 (v/v), lacrimal gland 

homogenate: 240 µg / µl protein concentration). As the provided protocol was not reproducible, a 

new self-generated protocol had to be established and short-term analysis after 14 days as well as 

long-term analysis after 56 days was performed (see 3.1.1). 

Short-term analysis was carried out in accordance to the reported induction of dry eye, including 

increased epitheliopathy and decreased tear secretion, seen by the working group in Boston and 

long-term analysis was performed as chronic autoimmune disorders manifest itself over a long time 

more pronounced.  

The common phenotypically features like epitheliopathy as well as decreased tear secretion were 

not seen in any of my experiments (see Fig. 10, Fig. 14). Short-term as well as long-term analysis 

revealed no differences neither in epithelial defects nor in tear secretion at all time points studied. 

Furthermore, corneal lymphangiogenesis was also not induced in any of the experimental setups at 

any time point studied (see Fig. 11, Fig. 15). But however, while clinical manifestation was not seen 

during the investigated period, an immunological reaction due to the immunization was detectable.  

Flow cytometry analysis of corneal draining lymph nodes (see Fig. 12) in the short-term experiment 

revealed amplified expression frequencies of CD11b/MHC2 and CD11c/MHC2 positive cells in 

immunized mice compared to control mice on day 7 and day 10. Although the differences do not 
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reach a significant level an increased migration of mature APCs and an induction of the immune 

reaction could be assumed. CD4 positive cells were significantly decreased on day 7 and less 

detectable on the other time points studied in mice immunized, while CD8 positive cells were not 

affected. However, as Sjögren’s Syndrome dry eye manifests itself by an exocrinopathy and the 

infiltration of monocytic cells in the lacrimal glands, the flow cytometric analysis of the lacrimal 

glands represents a more interestingly read out parameter (see Fig. 13). Regarding the expression 

frequencies of CD45 positive cells a significant increase of these cells on day 7 and day 14 in 

immunized mice compared to control mice could be observed. On day 10 differences reached no 

significant level but the increasing tendency was clearly recognizable. In addition, analysis of CD4 

positive cells in immunized mice compared to control mice revealed increased amount of these 

cells in the lacrimal glands at all time points studied, while on day 10 a significant difference could 

be observed. With respect to the analysis of the corneal draining lymph nodes and the diminished 

amount recognized, the migration of CD4 positive cells from the corneal draining lymph nodes to 

the lacrimal glands could be assumed. CD8 expression frequency analysis in the lacrimal glands 

revealed no significant differences. 

Long-term analysis starting at day 14 revealed similar results for this day, as seen in the short-term 

analysis. Thus, CD4 and CD8 expression frequencies in the corneal draining lymph nodes of 

immunized mice were diminished compared to control mice (see Fig. 16), while CD11b/MHC2 and 

CD11c/MHC2 expression frequencies were increased (see Fig. 17) in the corneal draining lymph 

nodes of immunized mice compared to control mice. The less pronounced differences could be due 

to a comparatively small number of animals per group. Further on, the significant increase in CD45 

positive cells in the lacrimal glands as well as the amplified expression frequencies of CD4 and CD8 

positive cells in the lacrimal glands in immunized mice compared to control mice were 

reproducible, while the increase in CD8 expression frequencies reached a significant level (see Fig. 

17).  

Regarding expression frequency analysis of CD4 and CD8 positive cell in the corneal draining lymph 

nodes at the other time points studied, no differences where detectable, expect of day 56 revealing 

a significant increase of these cells in immunized mice (see Fig. 16). Analysis of CD11b/MHC2 and 

CD11b/MCH2 expression frequencies revealed no differences, expect of day 28, on which both cell 

types were increased. Lacrimal gland flow cytometry analysis at the other days investigated, 

revealed increased expression frequencies for CD45 and CD4 positive cells on day 28, while other 

days revealed no significant differences (see Fig. 17). Thus, it may well be the immunological 

reaction initiated due to the immunization has not reached a chronic autoimmune state.  

However, lacrimal glands of immunized mice were not only enlarged (data not shown) but also 

inflammatory infiltrates were detectable in all immunized mice (see Fig. 18). Small infiltrates were 

also found in two control mice, but infiltrates detectable in immunized mice were more 

pronounced (see Fig. 18). Thus, specific autoimmunological infiltrates in the lacrimal glands as 
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described in humans [117] [110] [111] [112] and other experimental Sjögren’s Syndrome dry eye 

models [118], are detectable.  

Hence, the described protocol does not fully mimic the human pathology seen in Sjögren’s 

Syndrome dry eye, but reflects the autoimmunological destruction and the inflammatory infiltrates 

in the lacrimal glands. It may well be, that the period investigated was not long enough for the 

manifestation of the clinical signs, as the secondary inflammation of the corneal surface would start 

after the altered tear secretion induced due to the destruction of the lacrimal glands. Corneal 

lymphangiogenesis, described in experimental dry eye models, would also be a secondary 

phenotype, which may be needs elongated inflammation of the corneal surface to be initiated.  

Further experiments over a longer time period may lead to phenotypica changes and corneal 

lymphangiogenesis as the autoimmunological destruction of the lacrimal glands would be 

strengthened. Furthermore, experiments using a specific antigen, already identified for Sjögren’s 

Syndrome dry eye, would be a possibility to intensify the specificity of the immunological reaction 

against the lacrimal glands leading to a more chronic state of the disease.  

Nonetheless this novel “subclinical” model may be of great use in the future to study the also 

usually subclinical course of most milde forms of DED in patients. 

 

 

5.2. Topically applied Aflibercept as novel treatment strategy for non-Sjögren’s 

Syndrome dry eye 

 

At its simplest, non-Sjögren’s Syndrome dry eye is a chronic inflammatory ocular surface disorder 

characterized by tear hyperosmolarity and surface symptoms. Almost all experimental induced 

models are characterized by an increased corneal fluorescein staining and a decreased aqueous 

tear secretion mimicking clinical features [112] [137] [140]. As epitheliopathy increased over time 

meanwhile tear secretion decreased over time (see 4.2.1) in all mice exposed to desiccating stress, 

it can be considered that the induction of DED was successful in the study presented here (see Fig. 

20). 

Even if nowadays a more comprehensive understanding of the pathophysiology of dry eye exist, the 

first line therapy of dry eye are artificial tears that moisturize the ocular surface, reduce tear 

osmolarity and protect from further desiccation [142] [143] [144] [145]. There is a general 

consensus that the use of this preparations ameliorates clinical symptoms and improves patient’s 

condition [146]. For more severe forms of dry eye, anti-inflammatory therapies like corticosteroids-, 

cyclosporine- and autologous serum- eye drops are known to improve clinical symptoms and ocular 

surface dye staining [147]. In the study presented here, it was expected that NaCl, mimicking a 

simple lubricant, has no effect on the clinical signs, while Aflibercept could maybe ameliorate 

clinical signs due to the disruption of the vicious circle by inhibiting lymphangiogenesis assumed as 



Discussion 

  67 

the link to the adaptive immunity [109]. But interestingly, the data obtained revealed no 

improvement in the clinical phenotype in the Aflibercept treated group (see Fig. 20).  

Moreover, no secondarily invasion of lymphatic vessels in the control group exposed to desiccating 

stress receiving NaCl as eye drops was detectable (100 ± 24% for naive mice, 113 ± 24% for mice 

exposed to desiccating stress receiving NaCl as eye drops) (see Fig. 21). As NaCl should have no 

direct influence on the underlying molecular mechanisms relating to lymphangiogenesis, a massive 

increase in lymphangiogenesis still would have to take place in mice receiving NaCl. But however, 

no increased lymphangiogenesis was measured in any experimental induced DED during my 

research period. Thus the data are inconsistent with the prevailing assumption that dry eye disease 

is a prolymphangiogenic condition [109] [110] [111]. They are much more likely to agree with the 

recent publication demonstrating no secondary lymphangiogenesis in dry eye disease [148]. 

Despite the assumption that corneal lymphangiogenesis is maybe not a common feature of DED, 

several reasons could be taken into account: i) mice’s genetic background and ii) state of corneal 

neovascularization prior the experiment. Regarding mice’s genetic background a strain-dependency 

in the murine corneal lymphangiogenesis was already demonstrated [149] [150]. It may also well 

be, that there are differences in the same strain between different continents, due to the different 

breeding strategies. Further on, the state of corneal vascularization prior the experiment has an 

effect on neovascularization. If mice grow up under non-perfect conditions regarding the room 

humidity, corneal neovascularization could be induced due to the desiccating stress. These mice 

then already suffer from an elevated lymphangiogenesis by delivery, which no longer allows the 

experimental induction and the inhibition of lymphangiogenesis by any compound. As only a few 

limited studies are available on secondarily lymphangiogenesis occurring in DED, further 

investigations have to clarify if a selective lymphangiogenesis occurs in experimental induced dry 

eye independent from the mice’s genetic background, their age or their corneal predisposition. 

Further on, no significant inhibition on corneal lymphangiogenesis (113% ± 24% for mice exposed to 

desiccating stress receiving NaCl as eye drops and 103% ± 25% for mice exposed to desiccating 

stress receiving Aflibercept as eye drops) as well as hemangiogenesis (99% ± 16% for mice exposed 

to desiccating stress receiving NaCl as eye drops and 87% ± 20% for mice exposed to desiccating 

stress receiving Aflibercept eye drops) was detectable by topical application of Aflibercept during 

desiccating stress (see Fig. 21). In the suture induced inflammatory neovascularization model [135] 

[126] as well as after keratoplasty [127] [128] [129] systemically applied Aflibercept is shown to 

reduce both, lymph- and hemangiogenesis. In addition, a good penetration of topically applied 

Aflibercept is demonstrated in the chemical burn-induced neovascularization model [136], wherein 

the corneal epithelial barrier function is reduced to a minimum. But however, it may be that the 

integrity of the ocular surface is not enough disrupted after 14 days of desiccating stress, leading to 

an insufficient penetration. Therefore, further investigations regarding the ability for entering the 

cornea during desiccating stress has to be performed. 
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With respect to the purpose of the study presented here, the potential effect of Aflibercept on the 

immunopathogenesis was examined by flow cytometry analysis of the corneal draining lymph 

nodes (see Fig. 22). As it is shown that mainly CD4 positive and CD8 positive T cells are involved in 

the underlying immune response [112] [113] [114] and that CD11b and CD11c positive cells lead to 

the activation of autoreactive T cells in the lymphoid compartment, we were interested in the 

surface expression frequencies of CD4, CD8, CD11b and CD11c (see 4.2.3).  

A decreasing tendency for CD4 as well as CD8 positive T cells in both treatment groups compared to 

naive mice could be observed. Schaumburg et al demonstrated a significantly increase in CD4 

positive as well as CD8 positive T cells in mice exposed to desiccating stress on day 10 compared to 

naive mice [151]. In comparison to mice exposed to desiccating stress on day 7 the amount of these 

cells was lower [151]. Thus it might well be that the decreasing tendency is continued due to the 

started migration of these cells toward the corneal surface. 

Furthermore, as already published by Goyal et al., an increased homing of mature CD11b positive 

cells in the corneal draining lymph nodes of mice exposed to desiccating stress occurs [109]. Thus, 

the data received in this study are in line with this report and an increased presentation of ocular 

antigens could be assumed. Nevertheless, it is quite surprisingly that mice receiving Aflibercept had 

a higher expression frequency as mice receiving NaCl. Further on, CD11c expression frequencies for 

mice exposed to desiccating stress receiving NaCl as eye drops revealed a decreasing tendency 

consistent with the report by Schaumburg et al. [151]. Therein, a decrease of CD11c positive cells in 

the corneal draining lymph nodes on day 10 was demonstrated.  

Regarding the CD11c expression frequency of mice exposed to desiccating stress receiving 

Aflibercept as eye drops no difference compared to the naive group but a slightly increase in 

comparison to the control group could be demonstrated. In terms of tumor diseases, VEGF-A was 

demonstrated to exhibits immunosuppressive properties like the inhibition of dendritic cell as well 

as macrophage maturation [152] [153]. Transferring this to the obtained data, the increased 

frequencies of CD11b positive cells in the Aflibercept treated group could be due to the prevented 

inhibitory effect of VEGF-A on the maturation of these cells. Furthermore, as the maturation of 

dendritic cells (CD11c) could also not be inhibited by VEGF-A, the amount of these cells could be 

higher as in the control group leading to an increased expansion of these cells in the corneal 

draining lymph nodes. Nevertheless, it has to be kept in mind, that pooled lymph nodes for each 

group were used for flow cytometry analysis which in turn does not allow to perform statistically 

analysis. Further experiments including a group of mice exposed to desiccating stress without any 

treatment and investigations on different timepoints, e.g. day 10 and day 16, would allow more 

information about the effect of topically applied Aflibercept with a better insight on the 

immunopathogenesis.  

Taken together the data obtained herein revealed a successful induction of the desiccating stress 

model reflecting non-Sjögren’s syndrome dry eye. Furthermore, the data provide evidence that 

topical administered Aflibercept does not ameliorate clinical symptoms of dry eye, because no 
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lymph- and hemangiogenesis takes place. It was assumed that inhibiting lymphangiogenesis 

interfere with the vicious circle by inhibiting the access of antigenic material to the regional lymph 

nodes providing a better outcome of the disease. Now, it is quite unclear if trapping VEGF-A due to 

topical application of Aflibercept leads to a weaker immune response improving disease outcome. 

Nevertheless, our data do not support the hypothesis of a significant role of pathological corneal 

lymphangiogenesis in DED induction and maintenance. 

 

 

5.3. Systemically applied Aflibercept as novel treatment strategy for non-Sjögren’s 

Syndrome dry eye 

 

As already mentioned before, non-Sjögren’s Syndrome dry eye is characterized by increased 

epithelial defects as well as an decreased tear volume [112] [140] [137]. In both experiments, 

performing systemical application of Aflibercept, these typically clinical signs in mice exposed to 

desiccating stress independent from their treatment were induced. Thus, the induction of dry eye 

was successful in the studies presented here. Nevertheless, again no improvement of the clinical 

phenotype was reached by systemically application of Aflibercept during desiccating stress (see  Fig. 

25., Fig. 28). Furthermore, fluorescein staining scores as well as tear secretion recovered to baseline 

after desiccating stress in both groups in the same amount (see Fig. 28). Thus, systemic Aflibercept 

neither seems to have an inhibiting effect on the development of clinical signs nor an accelerating 

effect on the recovery of the clinical signs.  

Regarding corneal lymphangiogenesis, again in both treatment regimes no decrease of the lymph 

vasculature in mice exposed to desiccating stress receiving Aflibercept was detectable (therapy 

trial: 100% ± 20% for mice exposed to desiccating stress receiving NaCl injections and 116% ± 35% 

for mice exposed to desiccating stress receiving Aflibercept injections; prevention trial: 100% ± 32% 

for mice exposed to desiccating stress receiving NaCl injections and 104% ± 33% for mice exposed 

to desiccating stress receiving Aflibercept injections) (see Fig. 26, Fig. 29). Thus the 

anti-lymphangiogenic properties of Aflibercept [135] [126] [127] [128] [129] once more were not 

reproducible, maybe due to a missing induction of lymphangiogenesis as seen in the topical 

experiments.  

Interestingly, quantification of hemangiogenesis revealed an adverse impact of systemically applied 

Aflibercept in the two experimental setups (see Fig. 26, Fig. 29). Application of Aflibercept starting 

simultaneously with desiccation stress leads to an increased hemangiogenesis (100% ± 16% for 

mice exposed to desiccating stress receiving NaCl injections and 117% ± 20% for mice exposed to 

desiccating stress receiving Aflibercept injections) contrarily to the demonstrated anti-

hemangiogenic effect of Aflibercept, while application of Aflibercept after the induction of DED 

leads to a decrease of hemangiogenesis (100% ± 18% for mice exposed to desiccating stress 

receiving NaCl injections and 94% ± 10% for mice exposed to desiccating stress receiving Aflibercept 
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injections) (see Fig. 26, Fig. 29). It may well be that the local inflammatory stimuli on the corneal 

surface induce endogenous VEGF-A expression, like by the corneal epithelium [154]. This in turn 

could lead to the induction of corneal hemangiogenesis. In contrast, as the mice are no longer 

exposed to desiccating stress in the therapy trial, the local inflammatory stimuli are no longer 

furthered and the endogenous expression of VEGF-A would be stopped. Application of Aflibercept 

in this period may result in a decreased hemangiogenesis. 

Furthermore, quantification of the flow cytometry analysis revealed a decreasing tendency for CD4 

positive T cells as well as CD8 positive T cells for Aflibercept treated mice in both systemically 

treatment regimes (see Fig. 27, Fig. 30). Therefore, a decreased expansion of these cells as well as 

an already started migration towards the corneal surface could be possible explanations.  

In addition, regarding CD11b and CD11c expression frequencies, adverse results for the different 

treatment regimes were observed. Systemically application of Aflibercept starting with desiccating 

stress leads to diminished expression frequencies, while systemically application of Aflibercept after 

the induction of DED leads to amplified expression frequencies (see Fig. 27, Fig. 30). 

VEGF-A is shown to mobilize hematopoietic stem cells from the bone marrow to the peripheral 

circulation under steady state conditions [155] [156]. In addition, VEGFR-1 signaling is 

demonstrated to promote the mobilization of macrophage lineage cells [157], whereas VEGFR-2 

signaling is involved in the accumulation of myeloid precursor cells in the bone marrow [158]. Thus, 

it could be concluded that trapping VEGF-A simultaneously with the induction of DED, when 

inflammatory state is not reached yet, leads to a repressed immune response due to the missing 

recruitment of the precursor cells. The data obtained by systemically Aflibercept injections after the 

induction of DED, when the immune response is already initiated, looks quite similar to those 

obtained by topical application of Aflibercept. The observed increasing tendencies of CD11b and 

CD11c positive cells in mice exposed to desiccating stress receiving Aflibercept in topical treatment 

regime are more pronounced in this experiment. Thus, the systemically application after the 

induction of the immune response, again appears to prevent the reported inhibitory effect of 

VEGF-A on the maturation of CD11b and CD11c positive cells [152] [153], thereby leading to an 

increased activation and expansion of those cells in the corneal draining lymph nodes [107]. In 

addition, the decreasing tendency of hemangiogenesis reached a significant level by this treatment 

regime. Thus, it looks like the effect of topical local applied Aflibercept is amplified by this 

systemical application. Nevertheless, it has to be kept in mind, that again only pooled lymph nodes 

for each group were used for flow cytometry analysis which in turn does not allow to perform 

statistically analysis. Additionally, due to the missing naive group no final conclusion could be given.  

Taken together, the data obtained herein provide evidence that systemically administered 

Aflibercept does not ameliorate clinical symptoms of dry eye at any treatment regime. 

Nevertheless, the findings of this study for the first time provide indications that VEGF-A has 

immunoregulatory properties, including immunosuppressive as well as immunosupporting 

properties, eligible for dry eye. Further experiments including a group of mice exposed to 
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desiccating stress without any treatment and investigations on different timepoints, e.g. day 10 and 

day 16, would allow more information about the effect of systemically applied Aflibercept with a 

better insight on the immunopathogenesis.  
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7. Abbreviation Index 
 

α anti 

Ag antigen 

ANOVA  analysis of variance 

APCs antigen presenting cells 

BSA bovine serum albumin 

C57BL/6 C57BL/6NCrl 

ca. circa 

CD cluster of differentiation 

CEC controlled environment chamber 

DC dendritic cell 

e.g.  for example 

FBS  Fetal bovine serum 

Fig. figure 

h hours 

HA hemangiogenesis 

i.p. intraperitonial 

kg  Kilogram 

l liter 

LA lymphangiogenesis 

Li limbus 

LYVE-1 Lymphatic Vessel Endothelial hyaluronan Receptor 1 

μg  microgram 

mg  milligram 

MHC  major Histocompatibility Complex 

min minute 

µl microliter 

mm millimeter 

n.s.  not significant 

NV neovascularization 

p  p-value 

PBS phosphate-buffered saline solution 

PBSA phosphate-buffered saline (PBS), containing 2% (w/v) BSA 

PFA  paraformaldehyde 

ROI  region of interest 

rpm rounds per minute 

rT  room temperature 

S  stroma 

SD standard deviation 

s.c. subcutaneous 
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Tab.  table 

t-Test students t-Test 

VEGF vascular endothelial growth factor  

VEGFR vascular endothelial growth factor receptor 

vs versus. 
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