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Chapter 1

Introduction

The advent of machine learning continues to significantly impact financial research. In his

seminal book, Mitchell (1997) broadly defines machine learning as the study of "computer

programs that automatically improve with experience" (Mitchell, 1997, XV). In the context

of empirical financial research, Gu et al. (2020) provide a more granular definition by

defining machine learning methods as high-dimensional statistical prediction models,

coupled with regularization methods for model selection and mitigation of overfit as well

as efficient algorithms for finding optimal model specifications.

Machine learning methods are ideally suited for financial research in a lot of ways.

Primarily this is due to two characteristics which many issues in finance share: (1)

information sets are typically large in terms of variables and (2) functional forms are

oftentimes ambiguous and potentially complex (Kelly and Xiu, 2023). Revisiting the

aforementioned definition by Gu et al. (2020), finance hence resembles a fertile soil for

machine learning. Yet, financial machine learning also faces some major challenges such

as datasets containing only a small number of observations, low signal-to-noise ratios

and constantly evolving markets (Israel et al., 2020; Kelly and Xiu, 2023). Nonetheless, a

plethora of studies continues to explore the extent to which machine learning methods

prove to be successful across various topics in financial research, such as return prediction,

analysing risk-return trade-offs, or portfolio optimization (Kelly and Xiu, 2023).

I took this thesis as an opportunity to contribute to that discussion. The first essay of

this thesis provides a general machine learning solution to a central issue in finance, i.e.,

portfolio optimization. Grounded on the seminal work by Markowitz (1952), portfolio

optimization has traditionally involved two separate steps: estimation of moments of the

return distribution and optimization of some utility function involving these moments.



2 CHAPTER 1

Much effort has been put into deriving the moments of the return distribution, for which

machine learning naturally serves as a powerful tool (e.g., Gu et al., 2020). Nonetheless,

even only considering the variances and covariances of stocks in a utility function

implies an excessive amount of moments to be estimated. Moreover, return moments are

generally difficult to estimate (e.g, Merton, 1980) and thus prone to errors, which leads

to sub-optimal portfolio weights when optimizing the respective utility function in the

second step (e.g., Michaud, 1989; Best and Grauer, 1991).

Brandt et al. (2009) introduce a framework which allows for direct optimization of

portfolio weights conditional on an information set, thus circumventing the aforemen-

tioned issues. Their approach originally utilizes a simple linear model mapping a small

set of conditioning variables to portfolio weights. DeMiguel et al. (2020) extend their

approach by introducing a penalized linear model utilizing a larger set of conditioning

variables. My co-authors and I further extend the framework by mapping the condition-

ing information set to portfolio weights via artificial neural networks. This approach,

which we name Deep Parametric Portfolio Policies (DPPP), allows the relation between

conditioning information and portfolio weights to be of arbitrary, possibly non-linear,

functional forms.

We find that the DPPP model outperforms a linear analogue in the spirit of DeMiguel

et al. (2020) by a significant margin and for all types of investors considered. Yet, the

degree to which the DPPP outperforms a simpler linear specification decreases with

increasing risk aversion and realistic portfolio constraints such as e.g., constraints on

leverage. Moving beyond performance evaluation per se, we interpret our approach

via several interpretation techniques. In line with the performance of the DPPP and its

linear analogue converging with increasing risk aversion, we find that the higher the risk

aversion, the less prevalent are non-linearities in our approach. Put differently, the DPPP

and its linear analogue become more similar in terms of predicted portfolio weights.

In line with the literature, we further find that past return-based stock characteristics

are more important than accounting-based stock characteristics, and that importance

becomes more equally distributed among characteristics with increasing risk aversion

(e.g., DeMiguel et al., 2020; Kelly et al., 2024).

The second essay explores the potential of machine learning for forecasting earn-

ings. Traditionally, earnings forecasts have been either derived from analysts or via

simple linear statistical models. More recently, several studies have introduced various
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more complex machine learning techniques (e.g., Cao and You, 2021; Hendriock, 2022;

Van Binsbergen et al., 2023; Jones et al., 2023). However, these studies typically do not

fully exploit the possibility of high-dimensional datasets and Chen et al. (2022) even

conclude that machine learning techniques perform quite poorly in terms of predicting

earnings.1 Moreover, studies in this context provide limited model interpretation, one of

the key issues pertaining to the application of machine learning methods (e.g. Israel et al.,

2020). Our research addresses these gaps by introducing a machine learning framework

for earnings prediction that leverages high-dimensional financial statement data. Fur-

thermore, we offer comprehensive model interpretation, enhancing our understanding of

how precisely future earnings are linked to current fundamental data.

We find that our machine learning framework, an ensemble of several commonly used

methods, outperforms common traditional linear methods by a significant margin and

for all forecast horizons considered. For example, for a 1-year forecast horizon, our model

outperforms the best-performing traditional model by around 12% in terms of forecast

accuracy. Our model also demonstrates superior explanatory power for out-of-sample

variation, surpassing the out-of-sample R2 values of the best-performing traditional

model by approximately 14-19%, depending on the forecast horizon. This superiority in

terms of predictive performance translates into more profitable gross investment returns,

conditional on these earnings forecasts.2

Apart from providing an accurate prediction model, the key contribution of this

study is our extensive model interpretation. By utilizing state-of-the-art interpretation

techniques we derive the importance of variables and groups of variables for earnings

prediction. We find that current income statement data, in particular current earnings,

is the most important group of financial statement predictors. As the forecast horizon

increases, variable importance becomes more equally distributed. More precisely, bal-

ance sheet information gains importance whereas income statement information loses

importance.

In addition to providing an in-depth assessment of predictor importance, we disen-

tangle the effects of non-linearity via surrogate modeling. We find that around 80-90%

of the variation of our models’ prediction can be explained by a linear surrogate model.

The remaining variation in predictions cannot be explained by simple interactions among

1They use this as an argument for predicting the direction of earnings changes using machine learning,
rather than predicting levels.

2I explore this relation more thoroughly in Chapter 4.
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predictions and is hence attributable to non-linearity of the functional form of our model.

Lastly, we assess how the non-linearity is expressed at a variable level. We do so by

examining partial dependencies for a selection of the most important predictor variables.

Our results suggest that the relationship between the variables is approximately linear

for profit firms and approximately linear for loss firms. Yet, the strength of the respective

input-future earnings relationship differs between profit and loss firms.

The third essay digs deeper into the relation between model-based earnings forecast

accuracy and investment returns conditional on forecasted earnings. One of the primary

applications of earnings forecast models is their use in implied cost of capital (ICC)

estimations. In fact, the seminal study of Hou et al. (2012), which may be considered

as marking the beginning of the significant research efforts that have been put into the

development of earnings prediction models, explicitly motivates the development of their

prediction model by its application in ICC computations. Conceptually, ICC resemble

the constant discount rate which links future expected payoffs to current stock prices.

The aforementioned link is provided by some equity valuation model which one needs

to assume. ICC thus denote return expectations implied by the respective model, making

them naturally suitable for use in an investment context. Despite this, there is limited

literature that evaluates ICC in practical investment scenarios.

Literature in this context typically constructs long-short portfolios and evaluates

the resulting gross returns (e.g., Hou et al., 2012; Li and Mohanram, 2014). However,

two key issues pertain to the extant literature on ICC investment performance: first,

transaction costs are typically not explicitly considered, despite possibly significantly

altering findings. A prominent example for the effect of transaction costs is short-term

reversal. The variable predicts returns comparably well, but net of transaction costs, a

short-term reversal investment strategy is not profitable (e.g., Novy-Marx and Velikov,

2016; Chen and Velikov, 2023). This is due to the fact that trading conditional on short-

term reversal induces excessive turnover and thus transaction costs. This exemplifies that

ignoring transaction costs may lead to unrealistic expectations regarding the success of

trading on some return predictor, such as ICC. Two important exceptions which consider

transaction costs in the ICC context are Esterer and Schröder (2014) and Bielstein (2018),

but the authors use only rudimentary transaction cost proxies and rely on analyst

earnings forecasts. This study extends the existing body of literature by being the first

to examine the relationship between model-based earnings forecasts and ICC portfolio
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returns against the background of transaction costs.

Second, existing studies typically only focus on one dimension of accuracy, i.e., the

average (absolute) deviation from the realization.3 However, Hou et al. (2012) note

that analyst earnings forecasts translate into much lower ICC portfolio returns than

model-based earnings forecasts, despite being more accurate in the aforementioned

sense. They attribute this to the fact that analyst forecasts are more biased, i.e., analysts

systematically overestimate earnings. Bias resembles only one type of distortion which

might influence portfolio returns. Other examples include predictions for large firms

being more accurate than for small firms, as shown by e.g., Li and Mohanram (2014). I

denote such characteristics as systematic distortions and propose a novel simulation-based

metric which measures the degree to which a forecast model is subject to such systematic

distortions. Importantly, this metric does not only capture bias, but also differences in

accuracy across subsets of firms. Further, it allows me to separately assess the effects of

general accuracy and systematic distortions on ICC portfolio returns.

My empirical findings are as follows: first, I show that the most accurate earnings

forecast model considered, a machine learning model based on Hess et al. (2024), is

also the least systematically distorted one. Second, the machine learning earnings

forecast model yields statistically significant ICC portfolio returns, both gross and net of

transactions. In contrast, traditional linear earnings forecast models fail to do so. Third,

transaction costs reduce ICC portfolio returns significantly. This stresses the importance

of considering them in any realistic investment analysis. Lastly, exploiting the novel

metric introduced in the study, I show that both general accuracy and the degree of

systematic distortions strongly impact ICC portfolio returns. However, transaction costs

are neither related to general accuracy nor systematic distortions. I conclude that the

absence of additional costs associated with improvements to earnings forecast models in

this context, such as through novel machine learning methods, provides strong motivation

for their further development.

Overall, the three essays explore the potentials of financial machine learning in two

settings, i.e., portfolio optimization and earnings forecasts. More precisely, the first study

provides a general machine learning solution to the portfolio optimization problem. The

second study introduces a high-dimensional machine learning approach for earnings

prediction and provides in-depth interpretation thereof. The third study builds on
3Note that typically, the literature scales this deviation by prices (e.g., Hou et al., 2012; Li and Mohanram,

2014). In the following, I will denote this definition of accuracy as general accuracy.
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the second study and shows that better earnings forecast models translate into higher

investment returns, even in the face of transaction costs.

To conclude the introduction, I outline my contributions to the three essays in this

thesis. The initial research idea for the first essay was proposed by my co-authors. We

collaboratively surveyed the literature and refined the concept through multiple discus-

sions. Together with my co-authors, I developed the empirical model and conducted

parts of the empirical analyses. The first draft of the paper was also jointly written. Lastly,

we jointly revised the study multiple times based on feedback we got from numerous

conferences and seminars that we (independently as well as jointly) presented the study

on. The idea behind the second essay emerged from several discussions between my

co-authors and me. I surveyed the relevant literature, conducted the majority of the

empirical analyses and continuously updated the empirical models based on input from

my co-authors. The first draft of the study was jointly written and revised several times

based on feedback we received. The third study is solo-authored. I came up with the

research idea, conducted the empirical analysis and wrote the paper.



Chapter 2

Deep Parametric Portfolio Policies*

2.1 Introduction

Consider the formidable problem of an investor who wants to choose an optimal asset

allocation within her equity portfolio. The literature provides her with a few options:

she can opt for a traditional Markowitz approach (Markowitz, 1952) which requires

estimating expected returns, variances and covariances, with the number of moments to

estimate increasing rapidly in the number of assets. At the other end of the spectrum, she

might estimate a low-dimensional parametric portfolio policy (PPP) (Brandt et al., 2009)

but a linear model might not provide sufficient flexibility. She can also consult a large

literature that relates characteristics to expected returns but even studies that consider

a multitude of firm-level characteristics (e.g., Gu et al., 2020) only investigate expected

returns and do not speak to risk as perceived by different investors’ objective functions.

We provide a general solution to the portfolio optimization challenge. In short,

we combine the parametric portfolio policy approach that is well-suited to estimate

portfolio weights for any utility function with the flexibility of feed-forward networks

from the machine learning literature. The resulting approach that we label Deep Parametric

Portfolio Policy (DPPP) is well-suited to accommodate flexible non-linear and interactive

relationships between portfolio weights and stock characteristics, to integrate different

*This chapter is based on Simon et al. (2023). We thank Victor DeMiguel, Christian Fieberg, Bryan Kelly,
Alexander Klos, Simon Rottke, Mark Salmon, Fabricius Somogyi (discussant), Bastidon Cécile (discussant),
Heiner Beckmeyer (discussant) and seminar participants at the Research in Behavioral Finance Conference
(RBFC), the Cardiff Fintech Conference, the 2022 New Zealand Finance Meeting (NZFM), the Paris Financial
Management Conference (PFMC), the Theory-based Empirical Asset Pricing Research (TBEAR) Network
Workshop 2023, the University of Liechtenstein, the CEQURA Conference 2023 on Advances in Financial
and Insurance Risk Management, the BVI-CFR Event 2023 as well as the 4th Frontiers of Factor Investing
2024 Conference for helpful comments and suggestions.
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utility functions, to deal with leverage or portfolio weight constraints, and to incorporate

transaction costs.

Our results are fourfold. First, our model significantly improves over a standard linear

parametric portfolio policy, with certainty equivalent gains ranging from about 75 basis

points to 276 basis points, depending on the model specification and the incorporation

of constraints. These gains are not limited to specific time periods, suggesting that the

relationship between firm characteristics and investor utility is non-linear and complex.

Second, although the DPPP consistently outperforms the linear model, the performance

difference decreases with increased risk aversion or realistic portfolio constraints such as

leverage or weight constraints. In particular, the benefit of model complexity decreases

in an investor’s risk aversion, yet remains economically significant even for highly risk-

averse investors. Third, utility gains arise for a variety of investor utility functions. While

our benchmark investor is a classical constant relative risk aversion (CRRA) optimizer, our

setup easily accommodates other utility functions. We also investigate deep parametric

portfolio policies for the case of mean-variance utility and for loss aversion, and we find

substantial utility gains in all cases. Last, past return-based stock characteristics turn

out to be more relevant to the portfolio policy than accounting-based characteristics.

However, in line with the existing literature (DeMiguel et al., 2020; Jensen et al., 2022),

the relevance of return-based characteristics decreases when we model transaction costs

explicitly in the objective function.

The importance of non-linear modeling of portfolio weights becomes evident when

considering an investor who trades off mean return against return volatility. The investor

uses standard one-dimensional portfolio sorting techniques as pictured in Figure 2.1.

Decile portfolios formed on short-term reversal or sales-to-price display monotonically

increasing mean return.1 At the same time, the standard deviations of decile portfolios

are non-linear in deciles, with top and bottom decile portfolios having high standard

deviations. This leads to extreme portfolios having comparatively low Sharpe ratios

relative to decile portfolios in the middle of the distribution. A (long-only) investor would

therefore potentially be indifferent between investing in any portfolio in the upper half

of the short-term reversal distribution, and she would prefer to invest in portfolios in the

middle of the sales-to-price distribution rather than investing in the extreme portfolios.

Non-linear portfolio policies are able to capture these kinds of relationships.
1We picked these two variables for illustrative purposes as these variables are the most important return-

and fundamental-based variables in Gu et al. (2020).
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(a) Short-term reversal
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(b) Sales-to-price

Figure 2.1: Mean returns, standard deviations and Sharpe ratios of one-dimensional portfolio
sorts

Mean returns, standard deviations and Sharpe ratios of decile portfolios sorted on short-term reversal (left
panel) and sales-to-price ratio (right panel). Data is from Chen and Zimmermann (2022) and spans from
1925 to 2021.

To the best of our knowledge, our study is the first to systematically explore how

the benefits of a complex and flexible model vary for investors with different levels

of risk aversion or different utility functions. A natural concern with deep learning

models such as ours is their potential to overfit the historical data. Overfitting leads

to less reliable out-of-sample estimates and higher prediction variance. Since our deep

learning approach maximizes the investor objective function directly as opposed to than

minimizing a statistical objective such as the squared distance between realized and

predicted returns (Moritz and Zimmermann, 2016; Gu et al., 2020), volatility of results

becomes a systematic part of the optimization of the economic objective. As risk aversion

increases, the variance of portfolio returns becomes more important and leans against

overfitting and thus model complexity. We refer to this mechanism as "economic model

regularization" (in contrast to purely statistically motivated regularization techniques),

and document that, in line with the outlined mechanism, the outperformance of our

model over its linear counterpart decreases with increased risk aversion (but remains
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economically meaningful even for high risk aversion).

Our model can be interpreted as a generalization of the linear parametric portfolio

policy approach. More specifically, we allow portfolio weights to be of one of the arguably

most flexible forms - a neural network. This represents a significant conceptual departure

from linear parametric portfolio policies in two ways: first, by replacing the linear

specification with a neural network, we allow the relation between firm characteristics

and weights to be non-linear and we allow for potential interactions of firm characteristics.

Research on using machine learning methods to predict future returns shows that such

flexibility is relevant to model the relationship between firm characteristics and future

returns and can lead to substantial improvements over less flexible specifications (Moritz

and Zimmermann, 2016; Freyberger et al., 2020; Gu et al., 2020). It is conceivable that

such flexibility will also help to model the relation between portfolio weights and firm

characteristics. Second, this flexibility comes at the cost of having to estimate a model with

a high-dimensional parameter vector. This is a deviation from the original motivation of

the parametric portfolio policy literature which aimed to reduce portfolio optimization

to a low-dimensional problem with only a small number of coefficients that need to be

estimated. Our benchmark model has around 5,700 parameters compared to the three

parameters that must be estimated in the application of Brandt et al. (2009). However,

Kelly et al. (2024) argue that model complexity is a virtue for return prediction, and

our approach can be viewed as an exploration of that point in the context of parametric

portfolio policies.

Building on Brandt et al. (2009), we begin with a benchmark case of a largely un-

restricted portfolio policy. In the benchmark case, an investor who optimizes CRRA

utility can take long and short positions with the only restriction that absolute individual

stock positions cannot exceed three percent of the overall portfolio. Other aspects of the

optimization remain unrestricted, in particular, the investor does not take into account

transaction costs or short-selling constraints.

In the benchmark case our network-based portfolio policy improves upon the linear

portfolio policy by 116 to 276 basis points in terms of monthly certainty equivalent return,

depending on the degree of risk aversion. Certainty equivalent differences are larger,

the lower the degree of risk aversion, consistent with the economic model regularization

mechanism outlined above. This suggests that risk aversion serves as an economic

regularization parameter, in the sense that it reduces model complexity, i.e., leads to
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the DPPP being more similar to the (less complex) PPP. P-values for the difference in

certainty equivalent between the two approaches increase with increasing risk aversion.

Nonetheless, all differences are still significant at the 1% level and economically meaning-

ful. The results further indicate that the DPPP induces twice as much monthly turnover

as compared to the PPP. We show that the difference in turnover is due to the DPPP

putting larger weight on past-return based characteristics which imply higher turnover,

such as short-term reversal.

We then explore portfolio strategies based on networks in a more realistic setting,

in which investors are subject to various restrictions. More precisely, we investigate

the effects of transaction costs and leverage constraints on the optimization problem.

We observe that network-based policies generate higher certainty equivalent returns

than linear portfolio policies, with increases ranging from 75 to 124 basis points. The

decrease in certainty equivalent differences can be attributed to the additional constraints.

For constrained portfolio policies, the importance of past return-based characteristics

decreases, although they remain among the most significant predictors. This is in line

with the findings of DeMiguel et al. (2020), who find that more characteristics are taken

into account when transaction costs are present.

Finally, we find that utility gains are not restricted to CRRA utility investors. Our

approach yields similar results when considering mean-variance or loss aversion prefer-

ences. In particular, in both cases (and for various realistic risk/loss aversion parameter

values) we find that a non-linear portfolio policy leads to higher utility than a standard

linear policy. Benefits of model complexity decrease with risk aversion for mean-variance

preferences, while benefits are more stable for loss-averse investors for different values of

loss aversion.

Overall, our contribution can be summarized as providing a general solution to

the parametric portfolio policy problem that combines recent advances in combining

structural economic problems and machine learning methods (Farrell et al., 2021; Kelly

et al., 2024). Our setup seamlessly incorporates non-linearities in parameters and across

firm characteristics. We also demonstrate how constraints on leverage and transaction

costs can easily be added via customization of the statistical loss function and how such

constraints impact portfolios. In particular, although the DPPP consistently outperforms

the linear model, we show that the benefits of a more complex model diminish as the

degree of economic regularization in the form of higher risk aversion and additional
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constraints on the optimization task increases.

2.2 Related literature

Our work relates to four different strands of the literature. First, we add to a growing

literature that explores the potential of machine learning algorithms in finance (e.g.,

Heaton et al., 2017; Bianchi et al., 2020; Gu et al., 2020; Kelly et al., 2024). Studies in

this literature typically consider a prediction task (e.g., predicting stock returns), and

optimize a standard statistical loss function such as the mean squared error (or a related

distance metric) between the actual and predicted values. Predicted values are used

to construct portfolio weights (e.g., Gu et al., 2020). In contrast, we optimize a utility

function instead of a common loss function and model portfolio weights directly as a

function of firm characteristics. The use of machine learning algorithms to estimate

coefficients of structural models (in our case portfolio weights) as flexible functions has

also been proposed recently by Farrell et al. (2021).

Second, we extend the literature on one-step portfolio optimization. Specifically,

we extend the parametric portfolio approach by Brandt et al. (2009). While Brandt

et al. (2009) argue that it may be worthwhile to consider non-linear functions and

interactions in weight modeling, subsequent papers that have implemented and extended

parametric portfolio policies parameterize portfolio weights as a linear function of firm

characteristics (e.g., Hjalmarsson and Manchev, 2012; Ammann et al., 2016). DeMiguel

et al. (2020) incorporate transaction costs, a larger set of firm characteristics, and statistical

regularization but also stay within the linear framework. Our deep parametric portfolio

policy replaces the linear model with a feed-forward neural network that accounts for

both non-linearity and possible interactions of firm characteristics. In addition, we use

a larger set of firm characteristics than previous studies and explore different utility

functions, constraints, and degrees of risk aversion. Alternative, (machine learning-based)

one-step portfolio optimization approaches include Cong et al. (2021), Chevalier et al.

(2022), Jensen et al. (2022), Butler and Kwon (2023) and Uysal et al. (2023). Each of these

differs from ours in one or more aspects. Cong et al. (2021) propose a reinforcement

learning-based approach (as opposed to our feed-forward framework) and connect to a

related literature in computer sciences that puts additional emphasis on more technical

parts of the model implementation. Our study naturally connects to the preceding
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finance literature, and generalizes the approach of Brandt et al. (2009) to explicitly

analyze differences between a linear and non-linear specification for different utility

functions, constraints, and levels of risk aversion. Butler and Kwon (2023) show that it is

possible to integrate regression-based return predictions into the portfolio optimization

by means of a two-layer neural network, one layer resembling the return prediction and

one layer resembling the weight optimization. However, their results are restricted to a

mean-variance setting, while our approach is flexibly applicable to any type of investor

preference. Moreover, our empirical analysis is about modeling portfolios of stocks based

on stock characteristics, whereas they empirically assess their models on simulated data

and commodity future markets. Chevalier et al. (2022) derive optimal in-sample weights

based on investor preferences and subsequently predict these weights conditional on

covariates. This is conceptually different from our approach, primarily because we do

not require the preprocessing step of computing the optimal in-sample weights. Jensen

et al. (2022) take a different approach. They specifically address the issue of integrating

transaction costs into mean-variance portfolio optimization with machine learning. They

assess several approaches, including a one-step ML-based approach. However, instead

of extending the approach by Brandt et al. (2009) as we do, they derive a closed-form

solution to the problem and implement it empirically using random feature regressions,

while we stick to a feed-forward framework. Moreover, while their focus is the derivation

of an efficient frontier including transaction costs, we explicitly analyze how different

types of investor preferences and constraints affect the benefit of complexity in portfolio

optimization.

Third, we contribute to the literature that explicitly analyzes how transaction costs

and possibly other forms of constraints on the optimization impact portfolios (DeMiguel

et al., 2020; Jensen et al., 2022; Detzel et al., 2023). In contrast to Jensen et al. (2022),

who also assess the effect of transaction costs in a one-step optimization setting, we

explicitly analyze how transaction costs and other constraints, such as the level of risk

aversion, affect differences between a linear and a complex non-linear model for portfolio

optimization. Moreover, they compare different approaches to derive a superior frontier

with respect to transaction costs and to study variable importance in this setting. We also

shed light onto how non-linearities contribute to the portfolio optimization, and how risk

aversion regularizes optimization on top of and beyond the effects of transaction costs on

trading behavior.
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Finally, we relate to the literature that examines which firm characteristics are jointly

significant in explaining expected returns (Fama and French, 2008; Green et al., 2017;

Freyberger et al., 2020). While all of these studies focus on cross-sectional regression

models with extensions, Gu et al. (2020) find that neural networks perform best in

predicting mean returns for a large number of firm characteristics. Our portfolio approach

using neural networks considers all moments of the return distribution beyond the

expected return if they are relevant to an investor’s utility function. Most of this literature

ignores various real world constraints such as transaction costs (with Novy-Marx and

Velikov (2016), DeMiguel et al. (2020) and Jensen et al. (2022) being important exceptions)

or weight constraints, whereas we show how our model allows us to seamlessly integrate

transaction costs or other constraints.

2.3 Model

2.3.1 Expected utility framework and Parametric Portfolio Policies

The starting point of our framework is the parametric portfolio policy model in Brandt

et al. (2009). Consider a universe of Nt stocks that an investor can invest in at each month

t ∈ T. Each stock i is associated with a vector of firm characteristics xi,t and a return

ri,t+1 from date t to t + 1. An investor’s objective is to maximize the conditional expected

utility of future portfolio returns rp,t+1:

max
{wi,t}Nt

i=1

Et
[
u(rp,t+1)

]
= Et

[
u

(
Nt

∑
i=1

wi,tri,t+1

)]
, (2.1)

where wi,t is the weight of stock i in the portfolio at date t and u(·) denotes the respective

utility function.

Instead of directly deriving the weights wi,t (as e.g., following the traditional Markowitz

approach), we follow Brandt et al. (2009) and parameterize the weights as a function of

firm characteristics xi,t, i.e.,

wi,t = f (xi,t; θ), (2.2)

where θ is the coefficient vector to be estimated.

The parameter vector θ remains constant across assets i and periods t, i.e., it maximizes

the conditional expected utility at every period t. This necessarily implies that θ also



CHAPTER 2 15

maximizes the unconditional expected utility. Hence, one can estimate θ by maximizing

the unconditional expected utility via the return distribution’s sample analogues:

max
θ

1
T

T

∑
t=1

u
(
rp,t+1(θ)

)
=

1
T

T

∑
t=1

u

(
Nt

∑
i=1

f (xi,t; θ)ri,t+1

)
. (2.3)

The idea behind parametric portfolio policies is that one may exploit firm characteris-

tics in order to tilt some benchmark portfolio towards stocks that increase an investor’s

utility, so that f (·) can be expressed as

wi,t = bi,t +
1

Nt
g(x̂i,t; θ), (2.4)

where bi,t denotes benchmark portfolio weights such as the equally weighted or value

weighted portfolio and x̂i,t denotes the characteristics of stock i, standardized cross-

sectionally to have zero mean and unit standard deviation in each cross section t.2

Brandt et al. (2009) and the subsequent literature (e.g., DeMiguel et al., 2020) restrict

firm characteristics to affect the portfolio in a linear, additive manner, such that

wi,t = bi,t +
1

Nt
θT x̂i,t. (2.5)

In essence, our model can be interpreted as a generalization of the linear parametric

portfolio policy approach, as we allow x̂i,t to enter the model flexibly and non-linearly.

More specifically, we allow g(·) in Equation (2.4) to take arguably one of the most

flexible forms - a feed-forward neural network. As discussed in the introduction, this

represents a significant conceptual deviation from the literature in at least two respects:

first, by replacing the linear specification with a neural network, we allow the relationship

between firm characteristics and weights to be non-linear, and we account for potential

interactions of firm characteristics, in line with the recent literature that finds that such

flexibility can be important to predict returns (Moritz and Zimmermann, 2016; Freyberger

et al., 2020; Gu et al., 2020). Here, our approach explores whether such flexibility also

helps to model the relationship between portfolio weights and firm characteristics. Second,

this flexibility comes at the cost of having to estimate a model with a high-dimensional

2The 1/Nt term is a normalization that allows the portfolio weight function to be applied to a time-
varying number of stocks. Without this normalization, an increase in the number of stocks with an otherwise
unchanged cross-sectional distribution of characteristics leads to more radical allocations, although the
investment opportunities are basically unchanged.
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parameter vector. Thus, it departs from the original motivation of the parametric portfolio

policy literature, which aimed to reduce portfolio optimization to a low-dimensional

problem where only a small number of coefficients need to be estimated. In fact, our

benchmark model has about 5,700 parameters compared to the three parameters that

need to be estimated when following Brandt et al. (2009).

2.3.2 Network architecture

We implement and compare a range of so-called feed-forward networks, a popular

network structure that is commonly used in prediction contexts such as image recognition

but has also recently been applied to stock return prediction. Conceptually, our feed-

forward networks are structured to estimate optimal portfolio weights and as such differ

from networks used in pure prediction contexts in two important ways.

First, the objective of our estimation is to maximize expected utility. Standard use of

predictive modeling (with or without networks) tries to minimize some distance metric

(e.g., mean squared error) between e.g., observed stock returns and predicted stock

returns. For example, Gu et al. (2020) use neural networks to predict stock returns using

a penalized mean squared error as the statistical loss function.

In contrast, we follow Brandt et al. (2009) and directly estimate portfolio weights.

More specifically, we predict portfolio weights by maximizing the unconditional sample

analogue of a utility function as given in Equation (2.3). For example, in our base case,

the loss function L that we aim to minimize with respect to θ is the constant relative risk

aversion (CRRA) utility:

L(θ) = − 1
T

T

∑
t=1

(
(1 + rp,t+1(θ))

1−γ

1 − γ

)
, (2.6)

where γ is the relative risk aversion parameter. Note that minimizing Equation (2.6) is

equivalent to maximizing CRRA utility.

Second, our loss function requires the portfolio return per period t, so that we need

to aggregate our outputs cross-sectionally in each period. To do so, we maintain the

three-dimensional structure of our data, i.e., we do not treat it as two-dimensional as e.g.,

Gu et al. (2020) do. Conceptually, our models can be depicted as shown in Figure 2.2.

In Figure 2.2, the input data on the left form a cube (or 3D tensor) with dimensions

time t, stocks i and input variables k. Input data is fed into networks with different
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Figure 2.2: Neural network structure
This figure presents the core structure of our neural networks. White circles denote the input layer, grey
circles denote the hidden layer and black circles denote the output layer. The data cube on the left depicts
the structure of our data, i.e., we have k variables across i cross-sections in t periods. The rectangle on the
right depicts our output, i.e., weights across i cross-sections in t periods. The output of the neural network
is normalized by 1/Nt and added to the benchmark portfolio b. The final output is labeled O.

numbers of hidden layers.3 In line with Equation (2.4), the output of the neural network

is then normalized by 1/Nt and added to the benchmark portfolio b. The output of the

model O is a two-dimensional matrix with dimensions t × i of portfolio weights for each

stock and time period.

Constructing a neural network requires many design choices, including the depth

(number of layers) and width (units per layer) of the model, respectively. Recent literature

suggests that deeper networks can achieve higher accuracy with less width than wider

models (Eldan and Shamir, 2016). However, for smaller data sets a large number of

parameters can lead to overfitting and/or issues in regards to the optimization process.

Selecting the best network structure is a formidable task and not our main objective.4

Instead, we rely on the results of Gu et al. (2020) and use their most successful model

as our benchmark model. We explore the robustness of our findings to changes in both

network complexity and network structure in Appendix A.2.

As discussed in Section 2.3.1, the network’s output needs to be normalized and

can be interpreted as the deviation from a benchmark portfolio. In our application,

the benchmark portfolio is the equally weighted portfolio in all models. A common

alternative would be a value weighted benchmark portfolio where weights are determined

by a stock’s market capitalization. We stick to the equally weighted benchmark because

of empirical evidence that it outperforms other benchmarks like the value weighted

3Following Feng et al. (2018) and Bianchi et al. (2020) we only count the number of hidden layers while
excluding the output layer in the remainder of this paper.

4In practice, the task is often approximated by comparing a few different structures and selecting the one
with the best performance.
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benchmark for longer periods (DeMiguel et al., 2009).

Lastly, we control for unreasonable results and overfitting in terms of portfolio weights

by ex-ante imposing an upper bound on an individual stock’s absolute portfolio weight

of |3%|, i.e.,

|wi,t| ≤ 0.03. (2.7)

In doing so, we ensure that the model performance does not rely too heavily on particular

stocks. We employ a range of different additional regularization techniques that are

standard in the deep learning literature. We give an outline of these techniques and a

more detailed description of the structure of the model including its hyperparameters in

Appendix A.1.

2.3.3 Data

We use the Open Source Asset Pricing dataset of Chen and Zimmermann (2022). The

dataset contains monthly US stock-level data on 205 cross-sectional stock return predic-

tors, covering the period from January 1925 to December 2020.

We focus on the period from January 1971 to December 2020, since comprehensive

accounting data is only sparsely available in the years prior to that. In addition, we also

only keep common stocks, i.e., stocks with share codes 10 and 11, and stocks that are

traded on the NYSE (exchange code equal to 1) to ensure that results are not driven by

small stocks. We match the data with monthly stock return data from the Center for

Research in Security Prices (CRSP). We drop any observation with missing return, size

and/or a return of less than -100%. We include continuous firm characteristics from Chen

and Zimmermann (2022)’s categories Price, Trading, Accounting and Analyst, respectively.5

Finally, we follow Gu et al. (2020) and replace missing values with the cross-sectional

median at each month for each stock, respectively. Additionally, similar to Gu et al. (2020)

we rank all stock characteristics cross-sectionally. As in Brandt et al. (2009) and DeMiguel

et al. (2020), each predictor is then standardized to have a cross-sectional mean of zero

and standard deviation of one. Note that each predictor is signed so that a larger value

implies a higher expected return.

5All characteristics are calculated at a monthly frequency. For variables that are updated at a lower
frequency, the monthly value is simply the last observed value. We assume the standard lag of six months
for annual accounting data availability and a lag of one quarter for quarterly accounting data availability.
For IBES, we assume that earnings estimates are available by the end date of the statistical period. For other
data, we follow the respective original research in regards to availability.
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Our final dataset contains 157 predictors for a total of 5,154 firms. Each month,

the dataset contains a minimum of 1,213, a maximum of 1,855 and an average of 1,422

firms. Table A.5 in the Appendix lists the included predictors by original paper. The

three columns in the table describe the update frequency of each predictor, the predictor

category and the economic category, both taken from Chen and Zimmermann (2022).

2.3.4 Out-of-sample testing strategy

Following Brandt et al. (2009) and Gu et al. (2020), we use an expanding window strategy

to generate out-of-sample results. More specifically, we split our data into a training

sample used to estimate the model, a validation sample used to tune the hyperparameters

of the model and a test sample used to evaluate the out-of-sample performance of the

model.
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Figure 2.3: Out-of-sample testing strategy
This figure presents our out-of-sample testing strategy. We recursively increase our training window,
presented by the black portion of each bar, while holding the validation and the test window constant,
presented by the grey portions of each bar.

We initially train the model on the first 20 years of the dataset, validate it on the

following five years and evaluate its out of-sample-performance on the 12 months

following the validation window. We then recursively increase the training sample by

one year. Each time the training sample is increased, we refit the entire model while

holding the size of the validation and test window fixed. The result is a sequence of

out-of-sample periods corresponding to each expanding window, in our case 25 in total.

This corresponds to a total out-of-sample period of 300 months. Note that this approach
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ensures that the temporal ordering of the data is maintained. The testing strategy is

depicted graphically in Figure 2.3.

2.3.5 Model interpretation

Machine learning models are notoriously difficult to interpret and neural networks are

no exception. Nevertheless, in our application, understanding the estimated relation

between input (firm characteristics) and output (estimated portfolio weights) is essential

in order to shed light on the relation between firm characteristics and utility. Moreover,

such an understanding allows us to compare our results to the existing literature. We

provide three ways of interpreting the models and of identifying the most important

predictors among the plethora of variables that enter our models.

First, we calculate variable importance in the model as the decrease in model perfor-

mance when a particular variable is missing from the model, as conceptually introduced

by Breiman (2001). That is, for every period, we set all values of the variable of interest

to zero while holding the remaining variables fixed. We then calculate the utility loss

as compared to the original model in every out-of-sample period and take the average

across all models. For the sake of comparability, we scale the average utility losses across

all variables for each model so that they add up to one. As a result, we are able to rank

the variables according to the average utility loss that occurs if they are excluded from

the model.

Second, we evaluate the sensitivity of the model output to each variable. Typically,

partial dependence plots provide an assessment of the variables of interest over a range

of values. At each value of the variable, the model is evaluated while the remaining

variables remain unchanged, and the results are then averaged across the cross-section.

However, since the sum of all weights in each cross-section is equal to one and thus the

mean weight prediction is always the same, applying this method to parametric portfolio

policies does not yield reasonable results. To circumvent this problem, we apply our own

algorithm: when assessing the sensitivity with respect to variable k, we set the values

of the remaining variables to zero, i.e., their median. This means that effectively, we

reduce our input data to the variable of interest. We then predict out-of-sample portfolio

weights based on the estimated model and the manipulated data. Subsequently, we plot

the weights as a function of input variable k. We interpret the behavior of predicted

weights conditional on values of k as the marginal sensitivity of weights (i.e., its partial
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dependence) with respect to k.

Third, we evaluate the extent to which non-linearity contributes to the estimated

DPPP. Put differently, we assess the extent to which different forms of non-linearity play a

role when optimizing portfolios conditional on firm characteristics. To do so, we estimate

a linear surrogate model in which we regress the out-of-sample weight predictions from

the DPPP on all firm characteristics. This allows us to assess the extent to which a simple

linear model is capable of ex-post explaining the predicted weights. In a next step, we

estimate a second surrogate model, this time including all possible two-way interactions,

i.e., allowing for non-linearity in variables. This allows us to assess to which extent

non-linearity in variables plays a role in regards to predicting weights. We attribute the

remaining unexplained portion of predicted DPPP weights to the effect of non-linearity

in functional form.6

2.4 Results

2.4.1 Benchmark case

Table 2.1 reports the empirical results in our benchmark setting, i.e., for a CRRA-

maximizing investor and not accounting for transaction costs or leverage constraints in

the optimization task.7 We compare our DPPP with its linear counterpart for different

degrees of relative risk aversion.8 Analogous to Brandt et al. (2009), we provide results as

follows: we report (1) the monthly certainty equivalent return of the utility generated by

each portfolio strategy, (2) the distributional properties of the monthly portfolio weights,

(3) the distributional properties of the monthly portfolio returns, and (4) the monthly

alphas of the strategies against a Fama-French six-factor model.

Our main finding is that for each level of risk aversion, the DPPP outperforms the

PPP. The guaranteed monthly return across out-of-sample periods that an investor would

require to achieve the same expected utility as the respective portfolio policy, i.e., the

certainty equivalent, is higher for the DPPP than for the PPP for every level of risk aver-

6In addition, we report the portfolio characteristics of the ex-post fitted surrogate models during the
out-of-sample periods in Table A.6 in the Appendix. Inter alia, this enables us to assess to which extent
non-linearity with respect to weight predictions translates into utility differences.

7Results also hold compared against an equally-weighted and a value-weighted portfolio benchmark, are
robust to changing the network architecture, and to the use of a long-only constraint, see Appendix A.2.

8To ensure comparability between the linear and the deep parametric portfolio policy we differ slightly
from Brandt et al. (2009) in that the linear model includes l1-regularization and early stopping, similar to the
deep model. A more detailed description is given in Appendix A.1.
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Table 2.1: (D)PPP for CRRA investors

γ = 2 γ = 5 γ = 10 γ = 20
PPP DPPP PPP DPPP PPP DPPP PPP DPPP

CE 0.0393 0.0669 0.0263 0.0492 0.0063 0.0303 −0.0019 0.0097
p-value(CEDPPP − CEPPP) 0.0001 0.0002 0.0079 0.0065

∑i |wi|/Nt ∗ 100 0.5336 0.6897 0.4972 0.6127 0.3834 0.5211 0.2292 0.3276
max wi ∗ 100 2.1781 1.8474 2.0363 1.7452 1.5531 1.5929 0.9199 1.1676
min wi ∗ 100 −2.3296 −1.8995 −2.1712 −1.8709 −1.6581 −1.7950 −0.9302 −1.2923
∑i wi I(wi < 0) −3.3467 −4.4722 −3.0841 −3.9171 −2.2642 −3.2565 −1.1521 −1.8617
∑i I(wi < 0)/Nt 0.4401 0.4473 0.4351 0.4430 0.4084 0.4317 0.3672 0.4016
∑i |wi,t − w+

i,t−1| 3.8045 8.7876 3.7816 7.8053 2.8497 6.5992 1.6268 4.0840

Mean 0.0489 0.0797 0.0473 0.0711 0.0368 0.0622 0.0212 0.0402
StdDev 0.0982 0.1234 0.0890 0.0982 0.0705 0.0816 0.0437 0.0548
Skew −0.1001 1.8314 −0.1004 0.8169 −0.1539 0.4023 −0.3209 0.3712
Kurt 1.2734 14.0481 1.3766 4.9609 2.0482 1.6333 1.3888 1.8887
SR 1.7233 2.2382 1.8391 2.5101 1.8097 2.6422 1.6789 2.5395
p-value(SRDPPP − SRPPP) 0.0363 0.0077 0.0013 0.0004

FF5 + Mom α 0.0331 0.0648 0.0324 0.0570 0.0244 0.0490 0.0116 0.0303
StdErr(α) 0.0043 0.0065 0.0040 0.0052 0.0032 0.0043 0.0019 0.0028

This table shows out-of-sample estimates of the (deep) portfolio policies optimized for a CRRA investor with relative risk aversion of 2, 5, 10 and 20, using 157 firm
characteristics. The regular portfolio policy is a linear model, while the deep model is a feed-forward neural network with three hidden layers and 32, 16, and 8 nodes,
respectively. We use data from the Open Source Asset Pricing data set (Chen and Zimmermann, 2022) from January 1971 to December 2020. The columns labeled "γ = 2",
"γ = 5", "γ = 10" and "γ = 20" correspond to the respective risk aversions. We closely follow Brandt et al. (2009) in terms of the results presented. The first rows show
the monthly certainty equivalent of the investor as well as the bootstrapped one-sided p-value for the difference in monthly certainty equivalent between DPPP and
PPP. The second set of rows shows statistics on portfolio weights averaged over months t. These statistics include the average absolute portfolio weight, the average
maximum and minimum portfolio weights, the average sum of negative weights in the portfolio, the average proportion of negative weights in the portfolio, and the
turnover in the portfolio. The third set of rows shows the first four moments of the final portfolio return distributions as well as the annualized Sharpe ratios and the
bootstrapped one-sided p-value for the difference in Sharpe ratios between DPPP and PPP. The bottom panel shows the alphas and their standard errors with respect to
the Fama-French five-factor model (Fama and French, 2015), extended to include the momentum factor (Carhart, 1997). Factors are retrieved from Kenneth French’s
website (https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html).

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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sion considered. For example, if we set the risk aversion parameter to two, the certainty

equivalent associated with the DPPP is 276 basis points higher than that of the PPP (0.0669

vs 0.0393). The differences are statistically and economically significant in every case.9

This shows that using a more complex model that accounts for predictor interactions and

non-linearities leads to significant utility gains for investors.

However, the outperformance of the DPPP compared to the PPP decreases with

increasing risk aversion from around 276 (γ = 2) to 116 (γ = 20) basis points. Put

differently, as risk aversion increases, the benefit of model complexity decreases. We

attribute this to the fact that as risk aversion increases, the model’s prediction variance is

penalized to a stronger extent. In a sense, risk aversion serves as an economic regular-

ization parameter that empirically has an effect comparable to statistical regularization

methods, i.e., a reduction in model complexity, by penalizing the variance of outcomes.

We provide empirical evidence for this claim in 2.4.3 when estimating partial dependence

and surrogate models.

Table 2.1 provides further insight into the average distributional characteristics of

portfolio weights. Regardless of the degree of risk aversion we assume, the average

absolute DPPP weights are larger than the PPP weights, e.g. 0.69% versus 0.53% for

γ = 2. However, for investors with a risk aversion of γ = 2 and γ = 5, the absolute

maximum and minimum portfolio weights are lower in the DPPP case, while the opposite

is true for investors with a higher degree of risk aversion. Nevertheless, both PPP and

DPPP portfolio weights become more moderate as risk aversion increases. Consistent

with this finding, portfolio leverage decreases with increasing risk aversion for both

the DPPP (447% for γ = 2 to 186% for γ = 20) and the PPP (335% for γ = 2 to 115%

for γ = 20). However, regardless of investor risk aversion, the DPPP approach results

in higher leverage than the PPP approach. Since we do not impose any constraints

on leverage or transaction costs in our benchmark setting, short-selling and portfolio

turnover are unrealistically high.10 Moreover, the average monthly turnover of the DPPP

is consistently more than twice as large as that of the PPP. However, it decreases with

increasing risk aversion in both cases. More precisely, the average monthly turnover of

9We follow DeMiguel et al. (2022) and construct one-sided p-values from 10,000 bootstrap samples using
the stationary bootstrap method of Politis and Romano (1994) with an average block size of five and the
procedure of Ledoit and Wolf (2008). This method is also used when assessing the statistical significance of
utility and Sharpe ratio differences between the deep and the linear parametric portfolio policy hereafter.

10Turnover is defined as ∑ |wi,t − w+
i,t−1|, where w+

i,t−1 is the portfolio before rebalancing at time t, i.e.
w+

i,t−1 = wi,t−1 ∗ (1 + ri,t).
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the DPPP (PPP) ranges from 879% (380%) for the least risk-averse investor to 408% (163%)

for the most risk-averse investor. We address this in section 2.4.2 by including a penalty

term for transaction costs and a constraint on leverage in our objective function.

Turning to the distribution of out-of-sample portfolio returns, we find that the DPPP

yields 308 to 190 basis points higher average returns than the PPP, depending on the

degree of risk aversion. This comes at the cost of 10-25% higher return volatility than the

PPP. These results translate into annualized Sharpe ratios of the DPPP that are 30-50%

higher than the annualized Sharpe ratios of the PPP, depending on the level of risk

aversion. Regardless of the level of risk aversion, the difference in the annualized Sharpe

ratio is significant at the 5% level. The distribution of DPPP returns is positively skewed,

while the distribution of PPP returns is negatively skewed. Thus, the DPPP has positive

tails while the PPP has negative tails. As the kurtosis indicates, the distribution of DPPP

returns has much fatter tails than that of PPP returns for risk aversions of γ = 2 (14.0481

versus 1.2734) and γ = 5 (4.9609 versus 1.3766). For higher degrees of risk aversion, the

kurtosis of both portfolio return distributions remains at a platykurtic level below three

with thin tails.

The bottom set of rows reports the alphas and their standard errors with respect to

a six-factor model that adds a momentum factor to the Fama-French five-factor model.

Both the DPPP and PPP alphas are highly significant for each level of risk aversion

considered. However, the alphas of the DPPP are significantly larger than those of the

PPP. These large unexplained returns can be partially attributed to the highly levered

nature of the active portfolios. Thus, the alphas of both portfolios consistently decrease

with increasing risk aversion and hence decreasing leverage. More specifically, the PPP

alpha decreases from 3.3% (γ = 2) to 1.2% (γ = 20), and the DPPP alpha decreases from

6.5% (γ = 2) to 3% (γ = 20).

2.4.2 Transaction costs and leverage constraint

In the unconstrained benchmark setting average turnover and leverage are unreasonably

high, both for the PPP and the DPPP. We next compare both approaches in a more

realistic scenario that explicitly accounts for transaction costs and sets a maximum

leverage constraint in the optimization task.

To account for transaction costs, we follow DeMiguel et al. (2020) and add the
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following penalty term to the optimization problem:

TC = Et[
Nt

∑
i=1

|κi,t(wi,t − w+
i,t−1)|], (2.8)

where w+
i,t−1 is the portfolio weight before rebalancing and κi,t are transaction costs for

stock i at time t. Our transaction cost estimates come from Chen and Velikov (2023).11

Thus, we define transaction costs κi,t as the effective half bid-ask spread.

The leverage constraint is constructed analogously to our weight constraint in Equa-

tion (2.7). The penalty is constructed such that the gross leverage cannot exceed 100% in

a single period in model training.12 This constraint is formulated for every period t as

Nt

∑
i=1

wi I(wi < 0) ≥ −1, (2.9)

where I(wi < 0) is a vector in which an element is one if the corresponding portfolio

weight is smaller than zero and zero otherwise.

Table 2.2 shows the results of the constrained optimization process for CRRA investors

with different degrees of risk aversion. Even when imposing realistic constraints, the

DPPP outperforms the PPP, regardless of the level of risk aversion. The difference in

monthly certainty equivalent between the two approaches is reduced to 75 to 124 basis

points, depending on the degree of risk aversion. This suggests that similar to the risk

aversion parameter, the transaction cost penalty and the maximum leverage constraint

can be seen as additional economical regularization terms, which lead to a decrease

in model complexity.13 We provide empirical evidence for this claim in 2.4.3 when

estimating partial dependencies and surrogate models. The p-values of the differences

in monthly certainty equivalent increase as risk aversion increases, and for γ = 20, the

difference is no longer significant at the 1% level. This is consistent with increased risk

aversion leaning against model complexity and serving as an economically motivated

regularization parameter as discussed above. The constraints lead to more realistic

portfolios: leverage is below 100% for all portfolios and turnover is reduced significantly

to 47-54% for the PPP and 111-171% for the DPPP, depending on the degree of risk

11We thank the authors for making an updated version of the data available.
12Ang et al. (2011) show that the average gross leverage of hedge fund companies amounts to 120% in

the period after the financial crisis 2007-2008. We use a slightly more conservative number of a maximum
leverage of 100%.

13Note that we report the certainty equivalent for the expected utility net of transaction costs and hence a
decrease of the respective certainty equivalent trivially follows to some extent.
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Table 2.2: (D)PPP for CRRA investors incl. transaction costs and leverage constraint

γ = 2 γ = 5 γ = 10 γ = 20
PPP DPPP PPP DPPP PPP DPPP PPP DPPP

CE 0.0114 0.0206 0.0084 0.0159 0.0020 0.0107 −0.0125 −0.0001
p-value(CEDPPP − CEPPP) 0.0001 0.0007 0.0018 0.0178

∑i |wi|/Nt ∗ 100 0.1238 0.1809 0.1288 0.1836 0.1195 0.1813 0.1199 0.1764
max wi ∗ 100 0.4423 0.7863 0.4595 0.7337 0.3948 0.7373 0.4010 0.7527
min wi ∗ 100 −0.4000 −1.0246 −0.4337 −1.0098 −0.3671 −0.9559 −0.3538 −0.8031
∑i wi I(wi < 0) −0.3924 −0.8042 −0.4288 −0.8234 −0.3614 −0.8072 −0.3642 −0.7717
∑i I(wi < 0)/Nt 0.2279 0.3242 0.2453 0.3160 0.1974 0.3202 0.2092 0.3446
∑i |wi,t − w+

i,t−1| 0.5201 1.7149 0.5431 1.5699 0.4701 1.3921 0.4989 1.1146

Mean 0.0139 0.0232 0.0133 0.0214 0.0121 0.0200 0.0112 0.0174
StdDev 0.0489 0.0502 0.0424 0.0447 0.0412 0.0402 0.0392 0.0364
Skew −0.6865 −0.4891 −0.9352 −0.7242 −0.8990 −0.6081 −0.9919 −0.7242
Kurt 3.0761 3.0184 2.5399 2.3413 2.1149 1.7382 2.5912 1.8450
SR 0.9825 1.6009 1.0860 1.6609 1.0208 1.7235 0.9871 1.6537
p-value(SRDPPP − SRPPP) 0.0007 0.0032 0.0029 0.0051

FF5 + Mom α 0.0032 0.0116 0.0030 0.0109 0.0034 0.0101 0.0031 0.0084
StdErr(α) 0.0011 0.0017 0.0012 0.0016 0.0013 0.0015 0.0013 0.0015

This table shows out-of-sample estimates of the (deep) portfolio policies with the transaction costs penalty (Equation (2.8)) and leverage constraint (Equation (2.9))
optimized for a CRRA investor with relative risk aversion of 2, 5, 10 and 20, using 157 firm characteristics. The regular portfolio policy is a linear model, while
the deep model is a feed-forward neural network with three hidden layers and 32, 16, and 8 nodes, respectively. We use data from the Open Source Asset Pricing
data set (Chen and Zimmermann, 2022) from January 1971 to December 2020. The columns labeled "γ = 2", "γ = 5", "γ = 10" and "γ = 20" correspond to the
respective risk aversions. We closely follow Brandt et al. (2009) in terms of the results presented. The first rows show the monthly certainty equivalent of the investor
as well as the bootstrapped one-sided p-value for the difference in monthly certainty equivalent between DPPP and PPP. The second set of rows shows statistics
on portfolio weights averaged over months t. These statistics include the average absolute portfolio weight, the average maximum and minimum portfolio weights,
the average sum of negative weights in the portfolio, the average proportion of negative weights in the portfolio, and the turnover in the portfolio. The third set of
rows shows the first four moments of the final portfolio return distributions net of transaction costs as well as the annualized Sharpe ratios and the bootstrapped
one-sided p-value for the difference in Sharpe ratios between DPPP and PPP. The bottom panel shows the alphas and their standard errors with respect to the
Fama-French five-factor model (Fama and French, 2015), extended to include the momentum factor (Carhart, 1997). Factors are retrieved from Kenneth French’s website
(https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html).

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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aversion. Despite its larger turnover, the DPPP yields notably larger returns net of

transaction costs, with similar standard deviations of portfolio returns and significantly

higher Sharpe ratios. The maximum and minimum positions of both approaches are

less extreme than in the unconstrained case and thus also more realistic. The alphas of

the estimated models are much smaller than in the benchmark scenario, but still highly

significant.

The main results in Table 2.1 and Table 2.2 are visually summarized in Figure 2.4,

which shows the cumulative performance of portfolio returns over time for both the

PPP and the DPPP, all degrees of risk aversion, and with and without transaction cost

and leverage constraints. The figure shows that the DPPP consistently outperforms the

PPP by a substantial margin in all specifications. Figure 2.4 also reveals some important

additional insights. Specifically, the benchmark portfolios are more robust than their

traditional counterparts during the dot-com bubble in 2000, the global financial crisis in

2008, and the COVID-19 stock market crash in 2020. Further, we observe that the returns

of the higher risk aversion portfolios are more robust during these periods.

2.4.3 Variable importance, partial dependence and surrogate models

In this section, we analyze the estimated models with the tools discussed in section 2.3.5.

Variable importance

In Figure 2.5 we compare the most important clusters of variables (such as "earnings-

related", or "risk-related") according to the economic category specified in the Open

Source Asset Pricing data set by Chen and Zimmermann (2022).14 The figure displays

the nine most important clusters and subsumes all other clusters under "other" for the

benchmark and constrained case and across all degrees of risk aversion, respectively.15

The size of the area corresponds to the relative importance of the cluster within that

specific model. We report the results for the DPPP and PPP model, respectively.

For the DPPP, we find that in both the unconstrained and the constrained setting,

the majority of the most important predictors are related to past returns. Short-term

reversal is the most important single variable in both models, mirroring the findings in

Moritz and Zimmermann (2016) and Gu et al. (2020), while the momentum cluster is

14Table A.5 in the Appendix shows the economic category of each anomaly variable, based on Chen and
Zimmermann (2022).

15The clusters are ranked according to the importance in the DPPP benchmark model.
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Figure 2.4: Cumulative performance over time for CRRA investors
The left panel shows the cumulative sum of portfolio returns for the benchmark, i.e., unconstrained, DPPP
and PPP. The right panel shows the cumulative sum of portfolio returns net of trading costs for the
transaction cost and leverage constrained DPPP and PPP. We show the results for each of the degrees of
relative risk aversion considered and across all out-of-sample periods.

more important overall.16

In the unconstrained benchmark case, we find that about 75% of the total importance

is associated with the top nine clusters. We also find that momentum and short-term

reversal account for ∼40% of the importance, which is consistent across different degrees

of risk aversion. Overall, we do not find large differences across different degrees of risk

aversion in terms of cluster importance per model.

Turning to the DPPP in the constrained setting, the figure shows that the importance

of short-term reversal is much lower than in the unconstrained benchmark case. This

is an intuitive result, since trading conditional on short-term reversal implies high

turnover. Thus, if turnover is penalized by introducing transaction costs, short-term

reversal inevitably loses some of its importance, consistent with DeMiguel et al. (2020)

and Jensen et al. (2022). Interestingly, other characteristics based on past returns, such as

the momentum cluster, do not lose importance when constraints are included. The other

16Note that the short-term reversal cluster consists of the short-term reversal characteristic only.
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Figure 2.5: (D)PPP variable importance per cluster without and including transaction costs and
leverage constraint

We group the variables into clusters according to the economic category specified in the Open Source
Asset Pricing data set by Chen and Zimmermann (2022). Clusters are then ranked by sum of characteristic
importance within the respective cluster. We display the top nine clusters and subsume all other clusters
within "other". We plot the top clusters in terms of its importance across all benchmark and constrained
DPPP and PPP models for different degrees of risk aversion, respectively. The filled area of a cluster
corresponds to its importance.

clusters also remain similarly important in the constrained model. Again, we do not find

large differences across different degrees of risk aversion in terms of cluster importance

per model.

Next, we turn to the linear PPP. Again, in both settings, we find that the majority
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of the most important predictors is related to past returns. Short-term reversal is the

most important cluster in the unconstrained models, but it becomes the least important

one when constraints are imposed. This is in contrast to the results of the non-linear

DPPP, for which the short-term reversal cluster still bears notable importance in the

constrained setting. We also observe that the importance of the momentum variables

decreases with increasing risk aversion in both settings, albeit stronger in the constrained

one. Moreover, in the constrained setting, the importance of valuation-related variables

increases significantly. This is consistent with valuation-based information being less

volatile than past-return based information.

Finally, Figure 2.6 shows the 40 most important individual characteristics for the deep

and linear models for the benchmark and constrained cases and across all levels of risk

aversion. In line with our results above, the majority of the most important predictors are

related to past returns, with short-term reversal being the most important variable for

both models, and more prominently so in the DPPP case. As past-return based variables

typically imply higher turnover, this is consistent with the higher turnover of the DPPP

as compared to the linear PPP reported above. Moreover, consistent with the results of

DeMiguel et al. (2020), we find that the importance of the variables is generally much

more balanced across variables for the constrained models. Table 2.2 shows that the

constraints lead to a more diversified portfolio, partially reflected by the more evenly

distributed importance of firm characteristics.

Partial dependence

Figure 2.7 depicts the marginal association between DPPP portfolio weights and input

variables for the benchmark setting, the constrained setting and across different risk

aversions, respectively. We examine the sensitivity with respect to three fundamental vari-

ables, namely the book-to-market ratio (BM), liquid assets (cash), and quarterly return on

assets (roaq), as well as an analyst variable, namely earnings forecast revisions per share

(AnalystRevision), and four past return-based variables, namely 12-month momentum

(Mom12m), short-term reversal (STreversal), seasonal momentum (MomSeason), and

intermediate momentum (IntMom). Recall that each predictor is signed, so that a larger

value implies a higher expected return. To assess whether the marginal association of

the deep model is more in line with the actual risk and return associated with each

characteristic than a linear model, we include the overall Sharpe ratio for each decile

portfolio sorted on each of the characteristics.
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Figure 2.6: (D)PPP variable importance without and including transaction costs and leverage constraint
Variable importance for the 40 most influential variables in the PPP and the DPPP across model specifications and risk aversions, respectively. Variable importance is
computed as the average importance over all training samples and normalized to sum to one within each model. The darker the color gradient, the higher the respective
importance.
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Figure 2.7: Marginal associations of DPPP weights and characteristics without and including
transaction costs and leverage constraint

This figure shows the sensitivity of predicted weights (left vertical axis) with respect to values of the
respective variable (horizontal axis) for both the unconstrained and the constrained DPPP models for
different risk aversions (γ). The aforementioned relationship is depicted by curves, smoothed via spline-
regressions. The figure also includes bars, depicting the Sharpe ratio (right vertical axis), per variable decile
(horizontal axis).

In the unconstrained benchmark case, the DPPP weights are mostly non-linearly

related to the characteristics. This is in line with the fact that Sharpe ratios are generally

not linearly increasing in characteristic deciles, as this is indicative for the fact that

utility is not linearly increasing in characteristic deciles. The DPPP captures these

patterns. For example, weights associated with earnings forecast revisions per share

(AnalystRevision) and intermediate momentum (IntMom), as well as the book-to-market

ratio (BM), decrease in higher deciles as the Sharpe ratio decreases. We find a similar

but less pronounced pattern for the other characteristics as well. Turning to differences

across different degrees of risk aversion in the benchmark setting, we find that the degree

of non-linearity in the marginal association between portfolio weights and characteristics

decreases as risk aversion increases. This confirms the reasoning that increasing risk

aversion leads to a decrease in model complexity. In line with the findings in regards
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to importance, short-term reversal exhibits the most pronounced marginal effect, as

indicated by the steepness of the depicted relationship.

When introducing transaction costs and a leverage constraint to the setting, the

marginal relationships turn mostly linear. Again, this confirms the reasoning that addi-

tional constraints serve as regularization parameters which reduce model complexity,

similar to increasing the degree of risk aversion. Notably, differences in the marginal rela-

tionships across different degrees of risk aversion are less pronounced in the constrained

case. Consistent with the findings on importance, the differences in marginal association

are less pronounced across characteristics. This serves as further evidence that more

characteristics matter under transaction costs as also shown by DeMiguel et al. (2020).

In summary, these results confirm that imposing constraints and increasing risk

aversion lead to a convergence of the linear PPP and the more complex DPPP. We

dive deeper into this in the next step, in which we estimate surrogate models to more

thoroughly disentangle the degrees to which (non-)linearity plays a role in the different

settings.

Surrogate model

Surrogate modeling allows us to disentangle the contributions of non-linearity with

respect to the predictions as well as the utility gains of the deep parametric portfolio

policy as compared to the linear parametric portfolio policy. Figure 2.8 shows the

adjusted R2s of a linear surrogate model for the out-of-sample predicted weights of the

DPPP in the different settings on the 50 most important characteristics in each model,

respectively. The surrogate model with interactions is an extension to the aforementioned

surrogate model which additionally includes all possible two-way interactions between

the characteristics included. In line with the previous findings, the results highlight that

the importance of non-linearity is less prevalent for higher degrees of risk aversion. More

specifically, the simple linear surrogate model explains about 60-80% of the variation

in predicted portfolio weights for γ = 20, and between 50-70% for the other degrees

of risk aversion. This underscores that risk aversion acts as an economic regularization

parameter, in that it reduces model complexity. Adding interactions has two effects in

particular. First, the range in-between which the R2 fluctuates becomes smaller, i.e., we

observe less fluctuation across the periods. More importantly, however, we observe an

increase of the R2 of about ∼10% across all degrees of risk aversion.

Since performance of the linear PPP and the non-linear DPPP converges when
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Figure 2.8: DPPP surrogate R2 without and including transaction costs and leverage constraint
This figure depicts the adjusted R2 of the surrogate models for both the unconstrained and the constrained
DPPP models for different risk aversions (γ). More specifically, the lines show the adjusted R2 of a linear
surrogate model in which estimated DPPP weights are regressed on the 50 most important variables across
all out-of-sample periods. Interactions include all possible two-way interactions between the variables.

imposing realistic constraints as shown in 2.4.2, one would expect that a linear surrogate

explains a larger portion of portfolio weight predictions in the constrained setting. In fact,

this is what we find empirically, i.e., the surrogate R2s are generally much higher in the

constrained setting as compared to the unconstrained benchmark case. More precisely,

the simple linear surrogate model explains between 70% and 90% of the weights for

γ = 20, while the R2 ranges between 60% and 80% for the other degrees of risk aversion

considered. Introducing transaction costs and a leverage constraint hence results in an

increase of ∼10% of the simple linear surrogate R2. Analogous to the unconstrained case,
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adding interactions further leads to a surrogate R2-increase of ∼10%. In fact, in 2012 and

for γ = 20, the linear surrogate model including interactions nearly perfectly explains

variation in weight predictions (R2 of 95%).

The analysis stresses the fact that the complexity of the DPPP decreases in a realistic

setting and when increasing risk aversion. Moreover, based on these numbers, we infer

that between 50-90% of the underlying characteristic-weight relationship is of linear

nature, depending on whether we impose constraints and the degree of risk aversion.

About another 10-20% can be captured by interactions, and the remaining 5-30% can be

attributed to the non-linear functional form of the DPPP model.17

2.5 Different investor utility functions

Similarly to varying the degree of risk aversion for a CRRA investor, we can account

for different investor types by changing the utility function that we use to optimize the

models. In particular, we explore linear and deep portfolio policies for an investor with

mean-variance utility defined as

u(rp,t+1) = rp,t+1 −
γ

2

(
rp,t+1 −

1
T

T

∑
t=1

rp,t+1

)2

, (2.10)

where γ is the absolute risk aversion of the investor, and for a loss-averse investor

(Tversky and Kahneman, 1992) with utility defined as

u(rp,t+1) =


−l(W − (1 + rp,t+1))

b if (1 + rp,t+1) < W

((1 + rp,t+1)− W)b otherwise
, (2.11)

where W is a reference wealth level determined in the editing stage, the parameter l

measures the investor‘s loss aversion and the parameter b captures the degree of risk

seeking over losses and risk aversion over gains. For simplicity, we fix the parameters W

and b at one and only change the loss aversion parameter l. We include the constraints

specified in Section 2.4.2 in the optimization process for both preferences.

17Note that a high adjusted R2 does not always translate into a similar certainty equivalent, i.e., a similar
utility. In Table A.6 in the Appendix we analyze the portfolios generated by the respective surrogate
models. The table shows the certainty equivalent of the portfolios generated by the surrogate models and
the corresponding original DPPP. In addition, we report whether the differences between the surrogate and
original certainty equivalents are statistically significant. Results are stratified by model specification and
inclusion of interactions.
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Table 2.3 shows the results for the linear and deep portfolio policies for a mean-

variance investor with different degrees of absolute risk aversion. We report the distri-

butional characteristics of portfolio returns net of transaction costs. Most importantly,

for all degrees of risk aversion, the DPPP yields higher certainty equivalent returns than

the PPP. Generally, the results for the mean-variance investor are similar to those for

the CRRA investor for the DPPP. The model yields similar certainty equivalents, Sharpe

ratios, and weight characteristics. In contrast, the linear model provides significantly

better results for the mean-variance preference across all risk aversions. As a result, the

difference in monthly certainty equivalent returns of 20-50 basis points is smaller than in

the CRRA case, driven by the better performance of the linear model. In line with the

previous results, the outperformance in terms of certainty equivalent difference decreases

with increasing risk aversion.18 The mean-variance utility function perfectly illustrates

that the degree of absolute risk aversion determines the strength of the penalty on the

variance of portfolio returns, i.e., the strength of regularization, since portfolio return

variance is an explicit part of the utility function. This is supported not only by the

decreasing difference in certainty equivalents with increasing risk aversion, but also by

the increasing p-values for the difference. In fact, for γ = 10 we find that the difference

is no longer significant at the 1% level, while for γ = 20 we find the only case where the

difference is not significant for all common levels.

Next, we optimize portfolio policies for the loss-averse investor and report results

in Table 2.4 similar to the mean-variance investor for different levels of loss aversion.

Again, the DPPP outperforms the PPP for all degrees of loss aversion. More precisely,

the outperformance of the DPPP ranges between 61 basis points and 54 basis points

with all differences being significant at the 1% level.19 An interesting feature of the

loss-averse investor’s preference is the fact that she cares about the size of the tail of the

portfolio return distribution, rather than the mean to variance ratio, which is relevant to a

mean-variance investor. The results in Table 2.4 reflect this. Both portfolios display higher

skewness of returns compared to the portfolios optimized conditional on mean-variance

or CRRA preferences. Most importantly, the DPPP yields significantly higher skewness

than the linear analogue, explaining the higher certainty equivalent for the loss-averse

18The outperformance of the DPPP is amplified when we remove transaction costs and the leverage
constraint, analogous to our CRRA benchmark case. We report the results for this in Table A.7 in the
Appendix.

19Again, we show in Table A.8 in the Appendix that these findings are amplified when we remove
transaction costs and the leverage constraint.
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Table 2.3: (D)PPP for MV investors incl. transaction costs and leverage constraint

γ = 2 γ = 5 γ = 10 γ = 20
PPP DPPP PPP DPPP PPP DPPP PPP DPPP

CE 0.0155 0.0205 0.0139 0.0169 0.0095 0.0115 0.0024 0.0041
p-value(CEDPPP − CEPPP) 0.0002 0.0019 0.0445 0.1083

∑i |wi|/Nt ∗ 100 0.1703 0.1813 0.1749 0.1819 0.1777 0.1831 0.1698 0.1807
max wi ∗ 100 0.6604 0.8464 0.6827 0.7866 0.6870 0.7554 0.6496 0.7271
min wi ∗ 100 −0.6442 −0.9616 −0.6817 −0.9814 −0.6921 −1.0005 −0.6387 −0.8684
∑i wi I(wi < 0) −0.7280 −0.8072 −0.7607 −0.8113 −0.7808 −0.8201 −0.7244 −0.8029
∑i I(wi < 0)/Nt 0.3279 0.3348 0.3417 0.3181 0.3455 0.3144 0.3367 0.3263
∑i |wi,t − w+

i,t−1| 0.8275 1.7662 0.9699 1.6756 0.9834 1.6001 0.8911 1.4106

Mean 0.0177 0.0231 0.0183 0.0223 0.0171 0.0202 0.0165 0.0186
StdDev 0.0479 0.0517 0.0422 0.0467 0.0391 0.0417 0.0375 0.0380
Skew −0.6768 −0.6706 −0.9111 −0.7508 −0.9562 −0.6423 −0.9801 −0.7631
Kurt 2.9347 3.3770 2.6367 2.8915 2.5835 1.9170 2.6507 2.0241
SR 1.2811 1.5494 1.5054 1.6560 1.5153 1.6756 1.5215 1.6961
p-value(SRDPPP − SRPPP) 0.0086 0.0499 0.0578 0.0643

FF5 + Mom α 0.0063 0.0113 0.0075 0.0112 0.0069 0.0101 0.0068 0.0092
StdErr(α) 0.0013 0.0017 0.0013 0.0017 0.0014 0.0017 0.0014 0.0015

This table shows out-of-sample estimates of the (deep) portfolio policies with the transaction costs penalty (Equation (2.8)) and leverage constraint (Equation (2.9))
optimized for a mean-variance investor with absolute risk aversion of 2, 5, 10 and 20, using 157 firm characteristics. The regular portfolio policy is a linear model,
while the deep model is a feed-forward neural network with three hidden layers and 32, 16, and 8 nodes, respectively. We use data from the Open Source Asset
Pricing data set (Chen and Zimmermann, 2022) from January 1971 to December 2020. The columns labeled "γ = 2", "γ = 5", "γ = 10" and "γ = 20" correspond
to the respective risk aversions. We closely follow Brandt et al. (2009) in terms of the results presented. The first rows show the monthly certainty equivalent of
the investor as well as the bootstrapped one-sided p-value for the difference in monthly certainty equivalent between DPPP and PPP. The second set of rows shows
statistics on portfolio weights averaged over months t. These statistics include the average absolute portfolio weight, the average maximum and minimum portfolio
weights, the average sum of negative weights in the portfolio, the average proportion of negative weights in the portfolio, and the turnover in the portfolio. The
third set of rows shows the first four moments of the final portfolio return distributions net of transaction costs as well as the annualized Sharpe ratios and the
bootstrapped one-sided p-value for the difference in Sharpe ratios between DPPP and PPP. The bottom panel shows the alphas and their standard errors with respect to
the Fama-French five-factor model (Fama and French, 2015), extended to include the momentum factor (Carhart, 1997). Factors are retrieved from Kenneth French’s
website (https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html).

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 2.4: (D)PPP for LA investors incl. transaction costs and leverage constraint

l = 1.5 l = 2 l = 2.5 l = 3
PPP DPPP PPP DPPP PPP DPPP PPP DPPP

CE 0.0127 0.0188 0.0094 0.0150 0.0057 0.0117 0.0032 0.0086
p-value(CEDPPP − CEPPP) 0.0001 0.0007 0.0009 0.0082

∑i |wi|/Nt ∗ 100 0.1688 0.1806 0.1745 0.1816 0.1755 0.1821 0.1786 0.1838
max wi ∗ 100 0.6587 0.8298 0.6856 0.8486 0.6877 0.8334 0.7004 0.8658
min wi ∗ 100 −0.6328 −0.9735 −0.6719 −0.9619 −0.6744 −0.9578 −0.6948 −0.9557
∑i wi I(wi < 0) −0.7169 −0.8018 −0.7580 −0.8093 −0.7653 −0.8125 −0.7878 −0.8249
∑i I(wi < 0)/Nt 0.3264 0.3285 0.3418 0.3301 0.3435 0.3284 0.3475 0.3365
∑i |wi,t − w+

i,t−1| 0.8454 1.8264 0.9550 1.8575 1.0269 1.8608 1.1131 1.8881

Mean 0.0175 0.0236 0.0180 0.0234 0.0178 0.0233 0.0183 0.0232
StdDev 0.0473 0.0521 0.0430 0.0480 0.0411 0.0460 0.0401 0.0439
Skew −0.6541 −0.6393 −0.8328 −0.6609 −0.9037 −0.5521 −0.8835 −0.5700
Kurt 2.8837 3.2452 2.5963 3.1598 2.3513 2.5513 2.2285 2.2444
SR 1.2806 1.5689 1.4486 1.6887 1.5035 1.7531 1.5821 1.8311
p-value(SRDPPP − SRPPP) 0.0041 0.0222 0.0139 0.0219

FF5 + Mom α 0.0079 0.0147 0.0089 0.0157 0.0092 0.0160 0.0100 0.0166
StdErr(α) 0.0013 0.0017 0.0013 0.0017 0.0013 0.0017 0.0014 0.0017

This table shows out-of-sample estimates of the (deep) portfolio policies with the transaction costs penalty (Equation (2.8)) and leverage constraint (Equation (2.9))
optimized for a loss-averse investor with loss aversion of 1.5, 2, 2.5, and 3, using 157 firm characteristics. The regular portfolio policy is a linear model, while the
deep model is a feed-forward neural network with three hidden layers and 32, 16, and 8 nodes, respectively. We use data from the Open Source Asset Pricing data
set (Chen and Zimmermann, 2022) from January 1971 to December 2020. The columns labeled "l = 1.5", "l = 2", "l = 2.5" and "l = 3" correspond to the respective
loss aversions. We closely follow Brandt et al. (2009) in terms of the results presented. The first rows show the monthly certainty equivalent of the investor as
well as the bootstrapped one-sided p-value for the difference in monthly certainty equivalent between DPPP and PPP. The second set of rows shows statistics on
portfolio weights averaged over months t. These statistics include the average absolute portfolio weight, the average maximum and minimum portfolio weights, the
average sum of negative weights in the portfolio, the average proportion of negative weights in the portfolio, and the turnover in the portfolio. The third set of
rows shows the first four moments of the final portfolio return distributions net of transaction costs as well as the annualized Sharpe ratios and the bootstrapped
one-sided p-value for the difference in Sharpe ratios between DPPP and PPP. The bottom panel shows the alphas and their standard errors with respect to the
Fama-French five-factor model (Fama and French, 2015), extended to include the momentum factor (Carhart, 1997). Factors are retrieved from Kenneth French’s website
(https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html).

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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investor.

In contrast to previous results, we do not find a decrease in certainty equivalent

differences between the DPPP and PPP with increasing loss aversion. Furthermore, mean

return and standard deviation only decrease slightly with increasing loss aversion. In

contrast to the risk aversion parameter γ, the loss aversion parameter l does not regularize

the variance of predictions directly, but rather penalizes low skewness, reducing fat tails

on the left side of the distribution. This does not translate into a similar degree of

economic regularization of model complexity as risk aversion.

In line with the intuition that the investor does not care about the mean to variance

ratio, the p-values of the Sharpe ratios are slightly higher and do not seem to differ

significantly at the 1% level for three out of four loss aversions. Lastly, although the

DPPP yields slightly higher turnover in all cases, the weight distribution of the portfolios

is still very similar to that for other utility functions considered.

The main results in Table 2.3 and Table 2.4 are visually summarized in Figure 2.9,

which shows the cumulative performance of portfolio returns over time for both the PPP

and the DPPP, all degrees of risk aversion or loss aversion, and with transaction cost and

leverage constraints. The figure shows that the DPPP consistently outperforms the PPP

by a substantial margin in all specifications.

2.6 Conclusion

Building on the parametric portfolio policy of Brandt et al. (2009), we show that feed-

forward neural networks can be used to directly optimize portfolios based on a large

number of firm characteristics for different investor preferences. In essence, we do so by

replacing traditional distance loss functions with context-specific utility functions when

optimizing neural networks. Analogous to Brandt et al. (2009), our framework allows for

integration of constraints, such as transaction cost penalties or leverage restrictions.

Our empirical results indicate that neural networks perform significantly better than

linear models in regards to portfolio allocation, suggesting that firm characteristics

are non-linearly related to optimal portfolio weights. This is especially true when the

investor’s utility preference takes into account higher moments of the resulting portfolio

return distribution. Consistent with this hypothesis, we show that linear surrogate

models are not able to fully explain the deep parametric portfolio weight predictions,
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Figure 2.9: Cumulative performance over time for MV and LA preferences
The left panel shows the cumulative sum of portfolio returns net of trading costs for the transaction cost and
leverage constrained DPPP and PPP of investors with mean-variance preferences. The right panel shows the
cumulative sum of portfolio returns net of trading costs for the transaction cost and leverage constrained
DPPP and PPP of investors with loss-aversion preferences. We show the results for each of the degrees of
absolute risk aversion (γ) and loss aversion (l) considered and across all out-of-sample periods.

even when accounting for two-way interactions. We further shed light on the non-linear

relationship between characteristics and predicted weights by depicting the sensitivity of

predicted weights with respect to the input. Again, we find a clearly non-linear relation

between stock characteristics and optimal portfolio weights. We further find that return-

based stock characteristics resemble the most important group of predictors. However,

consistent with DeMiguel et al. (2020), variable importance is more evenly distributed

and puts less weight on past returns when leverage constraints and transaction costs are

explicitly accounted for when deriving optimal portfolios.

Exploring variations in the degree of an investor’s risk aversion and utility function,

we find that a more complex non-linear model yields higher utility than a linear model

in all cases. These differences are not only statistically significant, but also economically

meaningful. However, higher risk aversion is associated with lower gains across all

specifications. In that sense, the level of risk aversion can be seen as a regularization
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parameter that leans against model complexity.

Overall, we show how to generalize the original linear parametric portfolio policy

of Brandt et al. (2009), and our results support the use of neural networks in solving

portfolio choice problems. While other non-linear methods might show success as well,

neural nets are particularly suited because of their ability to comprehensively model

arbitrary functional forms. Highlighting the growing role of machine learning and

non-linear models in finance, our approach thus resembles a comparably simple and

flexible neural network-based model that enables practitioners and researchers alike to

create reasonable portfolio allocations based on firm characteristics and preferences.
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Chapter 3

Interpretive Earnings Forecasts via

Machine Learning: A

High-Dimensional Financial

Statement Data Approach†

3.1 Introduction

Future earnings are of central importance against the background of deriving the intrinsic

value of assets (e.g., Monahan, 2018). In particular, analysts use earnings forecasts to

derive buy/sell recommendations for stocks (e.g., Schipper, 1991; Brown, 1993). Earnings

are also used in corporate decision-making, as they, inter alia, represent one of the

primary financial metrics for external stakeholders in general (Graham et al., 2005).

Lastly, as first shown by Ball and Brown (1968), earnings are assumed to directly relate

to stock returns. One may even derive return expectations directly from predicted

earnings in the form of the implied cost of capital (ICC) of a company (e.g., Gordon and

Gordon, 1997; Claus and Thomas, 2001; Gebhardt et al., 2001; Easton, 2004; Ohlson and

Juettner-Nauroth, 2005).

In general, earnings predictions are usually either retrieved from analysts or from

statistical models. Traditionally, statistical approaches have primarily been of simple,

linear nature (e.g., Hou et al., 2012; Li and Mohanram, 2014).1 With the advent of more

†This chapter is based on Hess et al. (2024).
1Hereafter, we refer to these models as traditional models.
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advanced statistical models, i.e., machine learning approaches in particular, various more

flexible approaches have been proposed by researchers (e.g., Cao and You, 2021; Jones

et al., 2023).

As outlined by Gu et al. (2020) and Israel et al. (2020), machine learning introduces

flexibility in terms of three dimensions: first, it allows for flexibility in terms of functional

form. That is, in contrast to the traditional linear approaches that have been used

to predict earnings, machine learning allows for complex non-linear functional forms.

Second, machine learning allows the use of large conditioning information sets, thereby

enabling researchers to search for relations that have been undetected thus far. Third,

machine learning entails advanced optimization techniques such as regularization to

avoid overfit.

To the best of our knowledge, earnings prediction research has predominantly been

focused on the first dimension so far. Put differently, researchers have proposed the use

of different types of machine learning algorithms to approximate the possibly complex

functional form that relates predictors and future earnings (e.g., Cao and You, 2021).

It is conceivable that in general, more complex machine learning models lead to more

accurate earnings predictions. In fact, Kelly et al. (2024) prove that increasing complexity,

i.e., the ratio of model parameters to data, is always beneficial in terms of out-of-sample

prediction performance for return prediction. They explicitly recommend to use rich

non-linear model specifications rather than simple linear ones. We argue that further

research along this dimension thus bears little additional insights. Moreover, extant

studies on earnings prediction typically only assess a rather limited set of predictor

variables. An important exception is the study by Chen et al. (2022) which exploits the

entirety of Extensible Business Reporting Language (XBRL) data. Yet, they restrict their

analysis to the prediction of earnings changes and do not predict earnings per se.2 The

fact that machine learning allows for the use of large conditioning information sets as

mentioned by Israel et al. (2020) is rather unexploited in this context thus far.

We fill this gap in the research and predict annual earnings per share conditional

on a comprehensive set of variables, i.e., the entire set of financial statement variables

from Compustat. This allows us to thoroughly analyze how fundamental accounting-

2In fact, as an extension to their main analysis, they also predict earnings levels. However, they only use
a set of 24 variables for this and not the high-dimensional XBRL data set which they use for their main
analysis. Surprisingly, their machine learning approach does worse than a simple random walk model. They
conclude that earnings levels are hard to predict and use this as an argument for the fact that they focus on
earnings changes in their primary analysis.
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based information drives and relates to future earnings. To do so, we use a selection

of prominent, flexible machine learning models, namely a random forest model (RF), a

gradient boosted tree model (GBT), a gradient boosted tree model with dropout (DART),

a feed-forward neural network (NN) and an ensemble of the aforementioned models

(ENML).3 We further show how our approach relates to the most widely used traditional

linear approaches, namely a simple model only including earnings as a predictor (L)

(Gerakos and Gramacy, 2012), the HVZ-model (Hou et al., 2012), the EP-model (Li

and Mohanram, 2014), the RI-model (Li and Mohanram, 2014) and an ensemble of the

aforementioned models (ENTD).

Importantly, we also provide extensive model interpretation. The ability to under-

stand the inner workings of prediction models is a fundamental requirement in most

asset management applications (Israel et al., 2020). However, due to their complexity,

machine learning models are hard to interpret. In the machine learning earnings pre-

diction case, model interpretation has thus far been restricted to metrics of variable

importance and partial dependencies. More so, these metrics have usually been applied

to a predetermined, restrictive set of predictor variables as mentioned above. Put dif-

ferently, researchers typically choose or construct a set of predictor variables that they

deem important before estimating the model. After estimating the models, they derive

the extent to which variables from this predetermined set contribute to the predictions

and assess the partial dependencies of predicted earnings in regards to them.

This study aims to broaden the limited scope of model interpretation found in the

existing literature on earnings forecasts: first, we derive the relative importance of

variables using SHAP (SHapley Additive exPlanations) values, an approach based on

cooperative game theory (Lundberg and Lee, 2017).4 Since we do not select only a small

subset of variables or construct variables beforehand as done in comparable studies (e.g.,

Hansen and Thimsen, 2020; Cao and You, 2021), we are able to holistically infer which

out of all the financial statement variables are important from a statistical perspective.

We also derive the relative importance of different groups of financial statement variables,

such as cash flow statement (CF/S) variables, income statement (I/S) variables and

balance sheet (B/S) variables. Importantly, we conduct this analysis for forecast horizons

3The model selection is based on Bali et al. (2023).
4SHAP values are a way of explaining the results of any machine learning model. They are based on a

game-theoretic approach that measures the contribution of each player to the final outcome. In machine
learning, each variable is assigned an importance value that represents its contribution to the model’s
outcome (Lundberg and Lee, 2017).
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of up to five years. This allows us to assess how different (groups of) variables might

vary in terms of their predictive power, depending on the forecast horizon considered.

Second, we analyze non-linearity in the context of earnings prediction. In addition to

partial dependencies that extant studies focus on in that context (e.g., Cao and You, 2021;

Chen et al., 2022), we infer the degree to which different types of non-linearity play a role.

More precisely, we show the degree to which interaction effects across financial statement

variables and other forms of non-linearities, i.e., non-linearity of the functional form, are

important by means of surrogate modeling. This approach is completely transparent,

intuitive and easy to replicate, irrespective of the model or software used. Again, we

conduct these analyses for forecast horizons of up to five years.

Our results can be summarized as follows: first, we find that generally, ensembles of

models perform significantly better than their component models. This holds true both

for traditional linear approaches and the machine learning approaches considered. For

one-year-ahead predictions, for example, the machine learning ensemble yields around

2% more accurate predictions than the best performing component machine learning

model.

In terms of bias, the traditional and the machine learning approaches yield very

similar results. Both types of models yield mostly unbiased predictions for forecasts

horizons of up to three years. For forecasts horizons of four and five years, the models

considered begin to systematically overestimate earnings. However, the machine learning

models are consistently less biased in terms of levels as compared to their traditional

analogues.

Mirroring previous findings on machine learning earnings predictions, we further

show that our machine learning approaches constantly outperform traditional linear

approaches in terms of accuracy (e.g., Cao and You, 2021). For the one-year forecast

horizon, the best performing machine learning model, i.e., the ENML is around 12%

more accurate than the best performing traditional model, i.e., the ENTD. Even for long

forecast horizons of five years, we find that the ENML beats the ENTD in terms of

accuracy by around 7%. The superiority in terms of accuracy holds similarly for both

small and large firms. Furthermore, assessing accuracy differences across out-of-sample

periods shows that model performance converges in the periods following the financial

crisis, and diverges in favor of the machine learning approaches afterwards.

Assessing the degree to which the models are able to explain out-of-sample variation
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in earnings makes an even more convincing case for the ML approaches. In fact, the

average out-of-sample R2 (OOS R2) of the ENML is between 14% and 28% higher than

that of the ENTD for the forecast horizons considered.

Lastly, we show that the more accurate predictions of the machine learning approach

translate into more profitable portfolios based on ICC. Buy-and-hold returns of long-

short portfolios sorted on ICC based on the best-performing machine learning model

(ENML-ICC) surpass the returns of long-short portfolios sorted on ICC based on the

best-performing traditional model (ENTD-ICC). Moreover, while returns stay statistically

significant for portfolios based on ENML-ICC for each buy-and-hold period length

considered, they are only statistically significant for one of three buy-and-hold period

lengths considered in the ENTD-ICC case.

Turning to model interpretation, we find that current I/S variables, especially current

earnings, are the most important group of predictors. With increasing forecast horizon,

however, variable importance becomes more balanced among financial statement types.

For one-year-ahead predictions, I/S variables contribute around 65% while B/S variables

contribute around 20% to total importance. Total importance of these two groups of

variables consistently converges with increasing forecast horizon. More precisely, for t+ 5-

predictions, I/S variables contribute around 47% while B/S variables contribute around

37% to total importance. CF/S variables consistently contribute around 15% to total

importance throughout the forecast horizons considered. Put differently, the longer the

forecast horizon, the more important B/S information. Further disentangling the effects

of different components of financial statement information reveals that certain pieces of

financial statement information dominate others. For example, debt and supplemental

information resemble the most important pieces of B/S information. Turning to the

CF/S, we find that variables related to the operating cash flow are much more relevant

than variables related to either the investing cash flow or the financing cash flow. Lastly,

turning to the I/S, we find that especially the EBIT and the net income are important,

contributing around 14% and 31% to total importance for one-year-ahead forecasts,

respectively. Interestingly, however, the importance of net income consistently declines

with increasing forecast horizon to around 16% for five-years-ahead forecasts, whereas

the importance of the EBIT stays constant. This suggests that information which is less

exposed to accounting manipulation gains relevance for longer-term forecasts.

We further show that for one-year-ahead predictions, a linear surrogate model is able



48 CHAPTER 3

to explain around 80-90% of the variation of earnings predictions across out-of-sample

periods. In contrast to Jones et al. (2023), we find that interactions across financial

statement variables are irrelevant.5 We attribute the remaining 10-20% of unexplained

variation to other types of non-linearities, which are not captured by interactions, i.e., non-

linearity of the functional form. As the forecast horizon increases, the linear surrogate

model approximates the relationship between predictions and inputs slightly worse.

Interestingly, interaction effects across financial statement variables stay irrelevant for all

forecast horizons.

The remainder of this study is structured as follows: in Section 3.2 we outline the

relevant literature that we are contributing to. In Section 3.3 we describe our empirical

approach. We evaluate and compare our approach in Section 3.4. In Section 3.5 we

provide extensive interpretation. Finally, Section 3.6 concludes the study.

3.2 Related literature

Our work relates to three strands of literature in particular. First, we contribute to the

literature on machine learning applications in finance. Machine learning methods have

become the prevalent way of conducting prediction exercises, primarily due to their

superiority in terms of flexibility as compared to traditional econometric methods and

their efficacy in regards to large sets of input data (e.g., Israel et al., 2020; Kelly et al.,

2024). For example, Gu et al. (2020) show how different machine learning approaches

perform in terms of predicting stock returns and Bali et al. (2023) apply machine learning

to the task of predicting option returns. Our study is similar, in the sense that we predict

another financial variable, i.e., earnings, with machine learning.

Second, we apply state-of-the-art techniques to interpret our machine learning predic-

tions, thereby explicitly responding to the "need for interpretability" of financial machine

learning models as formulated by Israel et al. (2020). We hence also contribute to the lit-

erature that aims to foster transparency and understanding of machine learning methods

for prediction in finance research, such as e.g., Bali et al. (2023) who extensively assess

machine learning option return predictions.

Third, we contribute to the literature on model-based earnings forecasts. Traditionally,

researchers have suggested predicting earnings using time-series regression models (e.g.,

5This comes with a word of caution, as our input variables differ from theirs.
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Ball and Watts, 1972; Albrecht et al., 1977; Watts and Leftwich, 1977), cross-sectional

regression models (e.g., Hou et al., 2012; Li and Mohanram, 2014; Harris and Wang, 2019)

or even simple random walk models (e.g., Li and Mohanram, 2014). More recently, how-

ever, several machine learning earnings prediction approaches have been implemented

in the research (e.g., Hansen and Thimsen, 2020; Cao and You, 2021; Chen et al., 2022;

Hendriock, 2022; Campbell et al., 2023; Jones et al., 2023; Van Binsbergen et al., 2023).

However, the extant literature differs from our study in several key aspects which are

outlined in the following. Hansen and Thimsen (2020) also estimate a range of machine

learning methods. They use a more high-dimensional input vector than other studies

on predicting level earnings. However, it is still restrictive in the sense that it is based

on prior research and not as high-dimensional as our data. Moreover, in contrast to our

study, no model interpretation is provided.

The study of Cao and You (2021) also encompasses different machine learning models.

However, they use a more restrictive set of input variables than us and provide only

limited model interpretation. Moreover, Cao and You (2021) validate their models using

traditional cross-validation (and a limited hyperparameter space). This, however, destroys

the temporal structure of the observations and introduces information leakage (Gu et al.,

2020). We preserve the temporal ordering of the observations by using fixed training,

validation and test intervals.

Chen et al. (2022) use a single model (gradient boosted trees) as opposed to our

multi-model approach. Furthermore, they predict binary earnings changes, while we

focus on predicting level earnings.

Hendriock (2022) suggests predicting earnings by predicting the complete conditional

density function. However, he restricts his input variable space to the one as defined by

traditional linear models. Moreover, he does not provide model interpretation.

Campbell et al. (2023) benchmark an extensive range of machine learning model

specifications with the aim of identifying the ones which compare the best to analyst

forecasts. Apart from the fact that their model choices differ from ours, they use

a different, smaller set of inputs, i.e., the Wharton Research Data Services (WRDS)

Financial Suite Ratios extended by some additional variables like e.g., the stock return.

Furthermore, they provide limited model interpretation as their primary focus is on the

aforementioned horse-race between model specifications.

Jones et al. (2023) use a single model, i.e., a gradient boosted tree model algorithm,
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as opposed to our ensemble approach. In contrast to our study, their target variable is

return on net operating assets and they use a set of six ratios as their predictors. Another

crucial difference is that Jones et al. (2023) exclusively forecast earnings (changes) in

t + 1, while we forecast earnings (per share) for horizons t + 1 to t + 5. Finally, to the

best of our knowledge, as the only other study in this context, they assess the impact of

interactions. However, their method of doing so and their predictor variables differ from

ours. Our surrogate modeling approach is easily applicable to any type of model, in any

software and further allows us to explicitly determine the effect of interaction effects and

non-linearity in parameters. Interestingly, our findings in regards to interactions differ

strongly from the ones provided by Jones et al. (2023). They find substantial importance

of interactions, while we find that interactions among financial statement variables are

irrelevant.

Van Binsbergen et al. (2023) use a random forest model to predict earnings condi-

tional on financial ratios, similar to Campbell et al. (2023). In contrast, our approach

involves estimating a spectrum of machine learning models individually and in ensemble

configurations. Moreover, we utilize an entirely distinct set of input data, specifically

the comprehensive Compustat financial statement dataset. Finally, unlike their study,

which primarily assesses analyst biases, our analysis encompasses detailed explanations

of model predictions.

Summing up, to the best of our knowledge, we are the first to predict level earnings per

share for forecast horizons of up to five years using the entirety of available Compustat

financial statement variables. Furthermore, we contribute novel guidance for future

research on earnings (per share) predictions by thoroughly interpreting our state-of-the-

art machine learning approaches using model agnostic and easily applicable methods,

something that has been not done extensively thus far.

3.3 Empirical approach

3.3.1 General setup

We express earnings E of firm i in period t + τ as the expectation in period t plus an

error ϵ:

Ei,t+τ = Et[Ei,t+τ] + ϵi,t+τ. (3.1)
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Every model that aims to predict earnings can be interpreted as an attempt to derive

Et[Ei,t+τ], i.e., the expectation. More precisely, we assume that expected earnings in t + τ

are a function of a vector of inputs X of firm i known at time t:

Et[Ei,t+τ] = f (Xi,t). (3.2)

It becomes evident that modelling expected earnings consists of three crucial parts.

First, one has to determine which inputs enter the model, that is, how X is defined.

Second, one has to decide which functional form f (·) takes on. This corresponds to

the decision about which empirical model to choose from. Lastly, one has to decide

on how to estimate f (·), i.e., which statistical loss function to minimize. The latter is

not the explicit focus of this study and thus we keep it simple. We follow the original

implementations of the traditional models and estimate them using the mean squared

error (MSE). In case of the machine learning models, we follow Gu et al. (2020) and

estimate the models both using the MSE and the mean absolute error (MAE) and report

the predictions based on the loss function that leads to more accurate forecasts according

to the price scaled absolute forecast error (PAFE) at the 1-year horizon.6

Thus, apart from the decision regarding the loss-function, the two contrasting extreme

approaches to predicting earnings are: (1) actively making the decision which variables

and which functional form to assume ex ante, and (2) letting the data speak by selecting

a model that permits flexible functional forms and providing it with the entire data (or at

least a very large set of variables) available. The former corresponds to the traditional

prediction approaches suggested by e.g., Hou et al. (2012). To the best of our knowledge,

the latter has not yet been implemented for earnings per se, a noteworthy exception

being Chen et al. (2022) who employ this approach for (binary) earnings changes. There

are approaches that fall in between (1) and (2). In these approaches, either the functional

form or the input vector is restricted significantly (e.g., Hendriock, 2022; Van Binsbergen

et al., 2023).

Our study focuses on assessing the second, flexible approach (2) and comparing it

to traditional approaches (1). We more thoroughly elaborate on the choice of the input

vector and of the model in 3.3.2 and 3.3.3, respectively.

6To be precise, Gu et al. (2020) choose either the MSE or the Huber loss, depending on which performs
better. We choose either the MSE or the MAE, depending on which performs better.



52 CHAPTER 3

3.3.2 Data

US annual financial statement data is obtained from Compustat. Our sample period

ranges from 1988 to 2021. This is due to the fact that CF/S-data is only sparsely available

prior to 1988. To conduct the ICC portfolio evaluation, we add price and return data from

CRSP to the Compustat data used for model estimation. Moreover, we drop observations

with missing prices, prices smaller than 1$, missing common shares outstanding or

missing earnings. This results in a final sample for model estimation that consists of

191,273 observations.

For our machine learning models, we use the Compustat financial statement items

as predictors. We drop variables with more than 50% of observations missing or no

observations in any of the cross-sections (i.e., estimation years), yielding 192 variables.7

An overview over these variables is given in Table B.3 in the Appendix. Analogous to

Chen et al. (2022), we include lags and first-order differences of these variables, resulting

in a set of 576 predictor variables in total. For the traditional models, we construct input

variables according to the respective models. An overview over these variables is given

in Table B.1 in the Appendix. All our variables, including our target variable, are scaled

by common shares outstanding as of the estimation year and winsorized at the 1% and

99% level, respectively. Finally, since neural networks are sensitive to scale differences

across input variables, we standardize each variable.

3.3.3 Models

We estimate two groups of models. The first group consists of popular simple linear

models that have been introduced in the literature thus far. All of these models assume a

linear additive relation between earnings and some low-dimensional input vector, i.e.,

Et[Ei,t+τ] = βXi,t, (3.3)

where β denotes a vector of coefficients. The models differ in terms of which variables

the input vector consists of. A more detailed description is given in Appendix B.1. A

difference to be noted is that the models also slightly differ in how they define the output.

While the RI and the EP model use earnings per share, the HVZ model uses earnings.

7We also drop variables already scaled by shares. The reason for that is, that we scale all our variables by
shares as mentioned below and hence these variables are redundant. However, this only pertains to five
variables in our study.
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In this study, we define earnings as "income before extraordinary items" (Compustat

variable: ib). As mentioned above, we consistently scale our output as well as our input

variables by common shares outstanding in all of the models. Our forecast horizon, both

for this and the following group of models spans from τ = 1 to τ = 5.

The second group of models consists of flexible models that are able to approximate

arbitrary complex functional forms. Put differently, we do not assume any specific type

of functional form when estimating these models. Analogous to Bali et al. (2023), we

estimate a random forest model (RF), a gradient boosted tree model with (DART) and

without dropout (GBT) and a neural net (NN). Importantly, we try to restrict our input

vector as little as possible. Specifically, we feed the models the 576 variables as outlined

above, including the lags and first-level differences. We argue that this input vector

corresponds to a proxy for the entirety of (relevant) financial statement input variables.

Note that extending the input vector even further implies more computational effort.8

Since studies in other realms of financial forecasting have shown that using an

ensemble of models may prove superior to using single models (e.g., Bali et al., 2023), we

derive the equally weighted average prediction for both groups of models, i.e., we derive

two ensemble model predictions:

E
(En)
t [Ei,t+τ] =

1
J

ΣJ
j=1E

(j)
t [Ei,t+τ], (3.4)

where j ∈ J denotes the respective single model and En denotes the respective

ensemble model.

The ensemble of the traditional models is denoted by ENTD and the ensemble of the

fully flexible machine learning prediction models is denoted by ENML.

3.3.4 Out-of-sample approach

We employ a rolling window strategy to obtain our out-of-sample prediction results.

Specifically, for the machine learning models, we divide our data into training, validation

and test sets. For each forecast horizon τ, the process for generating forecasts as of

t proceeds as follows: we train our models using earnings from t − 11 to t − 2 as

output and corresponding financial statement data lagged by τ as predictors. Next,

8We could have also included other variables like price, analyst forecasts, etc. (e.g., Campbell et al., 2023;
Van Binsbergen et al., 2023). However, the focus of our study is the thorough analysis of the relationship
between fundamental accounting-based information and future earnings.
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we tune the machine learning models using earnings from t − 1 to t as output and

lagged financial statement data by τ as predictors. Tuning involves determining the

optimal hyperparameter values for the model, as detailed in Table B.2 in the Appendix.

Subsequently, earnings predictions for t + τ are derived by inputting variables from t into

the optimized models. This process is repeated recursively, advancing one year at a time.

We follow the approach of Hou et al. (2012) and Li and Mohanram (2014), estimating

models at the end of June each year, under the assumption of a reporting lag of three to

fourteen months for financial statements.9

Traditional linear approaches, on the other hand, do not necessitate a tuning window.

Hence, we only partition the data into training and test sets when estimating these

models. The subsequent steps of the procedure remain unchanged. More precisely, for

each forecast horizon τ, models are trained using earnings from t − 11 to t as output and

corresponding lagged financial statement data by τ as predictors. Earnings predictions

for t + τ are then derived by utilizing predictor variables from t.

3.3.5 Evaluation

We evaluate the predictive performance of the models across a range of evaluation metrics.

First, we compute the error metrics that are common in the earnings prediction literature

(e.g., Hou et al., 2012). For each forecast horizon τ ∈ [1, 2, 3, 4, 5], these include the price

scaled forecast error (PFE) or bias:

PFEi,t+τ =
Ei,t+τ − Êi,t+τ

Pricei,t
, (3.5)

and the price scaled absolute forecast error (PAFE) or accuracy:

PAFEi,t+τ =
|Ei,t+τ − Êi,t+τ|

Pricei,t
, (3.6)

where Ei,t+τ denotes actual earnings for firm i in period t + τ, Êi,t+τ denotes the

respective forecast and Pricei,t is the firm’s stock price at the end of June in the respective

estimation year.

Second, analogous to Gu et al. (2020), we make pairwise comparisons of the individual

as well as the ensemble models using an adjusted version of the Diebold and Mariano

9Specifically, data from April of year t − 1 to March of year t is considered the most recent fiscal year-end
data available as of June in year t, capturing the information as of t.
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(1995) procedure. This procedure allows for a quantitative comparison of the different

forecasts. More precisely, we compare the forecast performance of model (1) and (2)

using the test statistic DM = d̄/σ̂d̄, where

dt+τ =
1

nt+τ
Σnt+τ

i=1 ((PAFE(1)
i,t+τ − PAFE(2)

i,t+τ)
2), (3.7)

with nt+τ being the number of firms in the out-of-sample period t + τ. d̄ and σ̂d̄ then

denote the mean and the Newey-West adjusted standard error (Newey and West, 1987)

of dt+τ over the out-of-sample periods.

Third, we assess the out-of-sample R2 (OOSR2) of each individual as well as the

ensemble forecasts, i.e., for every out-of-sample period we calculate

OOS R2
t+τ = 1 − Σnt+τ

i=1 (Ei,t+τ − Êi,t+τ)
2

Σnt+τ

i=1 (Ei,t+τ − Ēt+τ)2
, (3.8)

for each model. Here, Ēi,t+τ denotes average earnings of firms in period t + τ. Albeit

not commonly used in the earnings prediction literature (e.g., Hendriock (2022) being

an exception), this evaluation metric is of particular importance for the typical use case

of earnings predictions, i.e., long-short ICC portfolios. In this context, predicting cross-

sectional variation is much more important than accurately predicting earnings per se,

since an investor goes long (short) the stocks whose ICC are high (low) in cross-sectional

comparison.

Lastly, we derive the ICC based on the two ensemble forecasts. We follow the

literature and calculate ICC following the methods of Gordon and Gordon (1997), Claus

and Thomas (2001), Gebhardt et al. (2001), Easton (2004) and Ohlson and Juettner-

Nauroth (2005).10 More precisely, our ICC estimates are derived as the average of the

five aforementioned methods using both the ENTD and the ENML earnings predictions.

We then construct equally weighted long-short zero investment portfolios based on ICC

and assess their average performance across the out-of-sample periods.

3.3.6 Interpretation

A primary contribution of this study is the comprehensive interpretation of the machine

learning approach, addressing a key issue in machine learning applications in finance and

accounting (Israel et al., 2020). Our study fills a gap in the existing literature, which either

10A description of the models is provided in Appendix B.3.
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lacks model interpretation entirely or provides only limited insights, as discussed above.

More precisely, we derive the variable importance and the degree to which different

types of non-linearity play a role for our best performing machine learning model, i.e.,

the machine learning ensemble.

Variable importance

We determine the importance of the different variables with respect to the earnings

prediction. To do so, we compute their SHAP values, a state-of-the-art approach for

assessing the importance of input variables which is based on cooperative game theory

(Lundberg and Lee, 2017). In essence, SHAP values approximate how a model’s predic-

tion changes when knowing the value of a respective input variable. The approach is

model-agnostic and allows us to evaluate the importance of input variables irrespective of

the model used. We conduct these analyses at both the individual variable level and the

grouped-variable level. Specifically, we determine the relative importance of predictors

grouped into balance sheet, cash flow statement, and income statement data as well

as predictors grouped into current, lagged, and difference variables. Furthermore, we

provide an in-depth accounting perspective on which specific types of financial statement

information are important by breaking the financial statements down into schematic

components. Importantly, we conduct these analyses per forecast horizon.

Non-linearity

In addition to deriving the variable importance, we also evaluate the extent to which

non-linearity plays a role in our machine learning model. First, we assess the degree to

which non-linearity in terms of variables and non-linearity in terms of functional form

play a role. In a first step, we regress predicted earnings on the 50 most important input

variables using a linear Lasso-penalized regression model.11 We add a Lasso-term to

control for the overfit that would otherwise be induced by the large input vector. In a

second step, we add all possible two-way interactions to the surrogate regression model

from the prior step. Assuming there is some degree of non-linearity present in the fully

flexible model, this allows us to disentangle the degree to which non-linearity in terms

of variables (i.e., interactions across inputs) and non-linearity in terms of functional

form play a role. More specifically, we assess the adjusted in-sample R2s of the two
11We only use the 50 most important variables, because otherwise, including all possible two-way

interactions in the second step requires an excessive amount of computing power.
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surrogate models. The R2 of the first-step surrogate model indicates the degree to which

the predictions are linear. The difference between the R2 of the first-step surrogate model

and the second-step surrogate model indicates the degree to which non-linearity in terms

of variables, i.e., (two-way) interactions across financial statement variables, plays a role.

We attribute the portion that remains unexplained by the second-step surrogate model to

non-linearity in functional form.12

Second, we assess the partial dependence of earnings with respect to the most

important input variables. As typically done in the literature, we evaluate the partial

dependencies graphically via so-called partial dependence plots. To do so, we fit a

non-parametric lowess model (locally weighted linear regression) to the SHAP values of

a predictor value of interest (the output) and the associated predictor values (the input)

and plot the result. This allows us to approximate the effect of the respective predictor

variable on future earnings.

Again, we conduct the surrogate modeling and the partial dependence analyses per

forecast horizon.

3.4 Evaluation

3.4.1 Accuracy and bias

Chen et al. (2022) report that their machine learning approach does worse than a simple

random walk type model when predicting level earnings. They explicitly state that level

earnings are hard to predict and thus resort to the prediction of earnings changes in

their main analysis. In contrast, mirroring findings by e.g., Cao and You (2021) our

flexible machine learning models for earnings (per share) level prediction outperform

the traditional linear models by a significant margin.

Price scaled forecast error

Table 3.1 shows the time-series averages of the median PFE for the four traditional,

the four machine learning and the two ensemble models. The PFE provides insight

into whether the estimated earnings are systematically over- or underestimated (biased)

12Theoretically, the unexplained portion also includes effects of interaction terms of order three and higher.
However, we assume that these can be neglected and find evidence for this assumption in undocumented
analyses.
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relative to actual earnings.

For forecast horizons t + 1-t + 2 neither the traditional ensemble nor the machine

learning ensemble yield statistically significant PFEs. Put differently, neither of the two

ensemble approaches systematically over- or underestimates earnings for these forecast

horizons. This is in line with extant studies on earnings prediction, which report that

earnings predictions by statistical models do not exhibit biases as opposed to those by

analysts (Hou et al., 2012). Nevertheless, the ENML model has a lower bias compared to

the ENTD (0.0003 vs 0.0019 for t + 1 predictions). The traditional ensemble systematically

overestimates earnings in t + 3-t + 5. The same is true for the ENML for t + 4-t + 5, but

the bias is again 41% lower for t + 4 predictions (-0.0082 vs -0.0138) and 37% lower for

t + 5 predictions (-0.0146 vs -0.0230).

The results further show that at the non-ensemble level across horizons t + 1 to t + 3,

some models yield small but statistically significant PFEs, with the most biased machine

learning model for t + 1 being the RF model (0.0045) and the most biased traditional

model for t + 1 being the RI model (0.0047). For t + 4 and t + 5, all non-ensemble

models yield PFEs that are statistically significantly different from zero. However, all non-

ensemble machine learning models score lower PFEs than their traditional counterparts.

Overall, the machine learning models generally exhibit lower bias. Moreover, earnings

prediction models appear to systematically overestimate earnings as the forecast horizon

increases. This effect holds, irrespective of whether we predict earnings using traditional

linear or machine learning methods.

As a robustness check, we stratify our predictions by size and report the resulting

PFEs in Table 3.2. More precisely, at every prediction date t, we split the sample into

two equally sized groups based on their market capitalization as of t. This allows us to

separately assess PFEs for small and large firms, respectively.

For large firms, we find that the all traditional models significantly underestimate the

actual earnings for forecast horizons t + 1-t + 2, while the biases of the machine learning

models are smaller and, with the exception of the RF model, not significantly different

from zero for these horizons. For forecast horizons t + 3-t + 4, no model, except for

the DART model for the t + 4 forecast horizon, is significantly biased. For predictions

in t + 5, most of the non-ensemble models significantly overestimate earnings. Similar

to the full sample case, both ensemble models somewhat equally overestimate actual

earnings in t + 5 (-0.0096 vs -0.0079).
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Table 3.1: Median PFE

Et+1 Et+2 Et+3 Et+4 Et+5

LMSE −0.0031** −0.0065*** −0.0105*** −0.0173*** −0.0254***
HVZMSE 0.0009 −0.0023 −0.0072** −0.0153*** −0.0256***
EPMSE 0.0041*** 0.0019 −0.0023 −0.0096*** −0.0185***
RIMSE 0.0047*** 0.0025 −0.0018 −0.0096*** −0.0191***

ENTD 0.0019 −0.0013 −0.0058* −0.0138*** −0.0230***

RFMSE 0.0045*** 0.0034* −0.0007 −0.0078*** −0.0163***
GBTMAE −0.0020 −0.0035* −0.0049** −0.0088*** −0.0129***
DARTMAE −0.0013 −0.0029 −0.0045 −0.0075** −0.0133***
NNMAE −0.0015 −0.0040* −0.0044 −0.0093*** −0.0140***

ENML 0.0003 −0.0017 −0.0035 −0.0082*** −0.0146***

This table reports the time-series averages of the median price scaled forecasting errors (PFEs) for all models.
Et+1 to Et+5 denote one- to five-year ahead earnings. L is a model with only current earnings as a predictor,
HVZ is the model by Hou et al. (2012), EP and RI are the models by Li and Mohanram (2014), ENTD is an
equally weighted ensemble of L, HVZ, EP, and RI, RF is a random forest model, GBT and DART are gradient
boosted tree models without and with dropout, NN is a neural net, and ENML is an equally weighted
ensemble of RF, GBT, DART, and NN. The superscript MAE (MSE) indicates that the respective model is
estimated using the mean absolute error (mean squared error) as its loss function. We follow the literature
and estimate the traditional models using the MSE. In untabulated results we find that our results are robust
to estimating the traditional models using the MAE. We decide on which loss function to report for the
ML models depending on which one yields more accurate predictions (as indicated by the price scaled
absolute forecast error (PAFE) for the t + 1 horizon). The PFE is calculated as the difference between actual
and forecasted earnings per share, scaled by price at the end of June of the respective estimation year. ***, **,
and * denote statistical significance at the 1%, the 5% and the 10% level, respectively. Standard errors used
for deriving statistical significance are adjusted following Newey and West (1987) assuming a lag length of
three years.

Turning to small firms, the traditional ensemble model overestimates actual earnings

with increasing bias (-0.0045 to -0.0449 from t + 1 to t + 5). The bias is statistically

significant for all horizons. The machine learning ensemble also overestimates actual

earnings, but the biases are much smaller (-0.0019 to -0.0255 from t + 1 to t + 5). The

biases are statistically significant for horizons t + 2 to t + 5. We conclude that the ENML

performs much better than its linear analogue for small firms specifically.

Price scaled absolute forecast error

Turning to the next evaluation metric, Table 3.3 reports the time-series averages of the

median PAFEs for the four traditional, the four machine learning and the two ensemble

models. The PAFE is a measure for the accuracy of a model, with values closer to zero

indicating higher accuracy.

First, we observe a positive effect of model stacking. Overall, among the traditional

models, the best-performing one is the traditional ensemble, while among the machine

learning models, the best-performing one is the machine learning ensemble. In fact, the
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Table 3.2: Median PFE by firm size

Large firms

Et+1 Et+2 Et+3 Et+4 Et+5

LMSE 0.0054*** 0.0048*** 0.0027 −0.0017 −0.0075*
HVZMSE 0.0041*** 0.0029* 0.0006 −0.0041 −0.0104***
EPMSE 0.0058*** 0.0054*** 0.0030 −0.0017 −0.0082*
RIMSE 0.0048*** 0.0038** 0.0009 −0.0047 −0.0116***

ENTD 0.0050*** 0.0043** 0.0018 −0.0031 −0.0096**

RFMSE 0.0047*** 0.0043*** 0.0017 −0.0030 −0.0090***
GBTMAE −0.0004 −0.0010 −0.0016 −0.0033 −0.0063*
DARTMAE 0.0002 −0.0010 −0.0020 −0.0039* −0.0094***
NNMAE 0.0001 −0.0001 0.0008 −0.0026 −0.0052

ENML 0.0012 0.0006 −0.0003 −0.0031 −0.0079**

Small firms

Et+1 Et+2 Et+3 Et+4 Et+5

LMSE −0.0239*** −0.0315*** −0.0378*** −0.0491*** −0.0621***
HVZMSE −0.0049** −0.0116*** −0.0212*** −0.0349*** −0.0508***
EPMSE 0.0003 −0.0048 −0.0127*** −0.0241*** −0.0366***
RIMSE 0.0043** 0.0006 −0.0064* −0.0181*** −0.0310***

ENTD −0.0045** −0.0111*** −0.0195*** −0.0320*** −0.0449***

RFMSE 0.0041** 0.0018 −0.0049 −0.0167*** −0.0293***
GBTMAE −0.0053** −0.0076** −0.0112*** −0.0188*** −0.0241***
DARTMAE −0.0044* −0.0058* −0.0086** −0.0132** −0.0200***
NNMAE −0.0046** −0.0126*** −0.0140*** −0.0208*** −0.0302***

ENML −0.0019 −0.0056** −0.0090*** −0.0169*** −0.0255***

This table reports the time-series averages of the median price scaled forecasting errors (PFEs) for all
models, stratified by firm size. Et+1 to Et+5 denote one- to five-year ahead earnings. L is a model with
only current earnings as a predictor, HVZ is the model by Hou et al. (2012), EP and RI are the models by
Li and Mohanram (2014), ENTD is an equally weighted ensemble of L, HVZ, EP, and RI, RF is a random
forest model, GBT and DART are gradient boosted tree models without and with dropout, NN is a neural
net, and ENML is an equally weighted ensemble of RF, GBT, DART, and NN. The superscript MAE (MSE)
indicates that the respective model is estimated using the mean absolute error (mean squared error) as its
loss function. We follow the literature and estimate the traditional models using the MSE. In untabulated
results we find that our results are robust to estimating the traditional models using the MAE. We decide on
which loss function to report for the ML models depending on which one yields more accurate predictions
(as indicated by the price scaled absolute forecast error (PAFE) for the t + 1 horizon). The PFE is calculated
as the difference between actual and forecasted earnings per share, scaled by price at the end of June of the
respective estimation year. Per out-of-sample period, we classify firms as either small or large, depending
on whether their market capitalization is below or above the median as of the prediction date. ***, **, and *
denote statistical significance at the 1%, the 5% and the 10% level, respectively. Standard errors used for
deriving statistical significance are adjusted following Newey and West (1987) assuming a lag length of three
years.

machine learning ensemble outperforms each of its individual component models for

every forecast horizon. The same is true for the traditional ensemble for the horizons

t + 1 to t + 2. Especially in the traditional case, this result is surprising, since the models

differ very little in terms of the predictor variables. For forecast horizons t + 3 to t + 5,
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Table 3.3: Median PAFE

Et+1 Et+2 Et+3 Et+4 Et+5

LMSE 0.0317*** 0.0409*** 0.0463*** 0.0531*** 0.0606***
HVZMSE 0.0293*** 0.0376*** 0.0429*** 0.0499*** 0.0578***
EPMSE 0.0297*** 0.0375*** 0.0416*** 0.0471*** 0.0535***
RIMSE 0.0293*** 0.0365*** 0.0403*** 0.0453*** 0.0517***

ENTD 0.0282*** 0.0360*** 0.0406*** 0.0467*** 0.0536***

RFMSE 0.0273*** 0.0349*** 0.0402*** 0.0463*** 0.0523***
GBTMAE 0.0274*** 0.0357*** 0.0407*** 0.0460*** 0.0515***
DARTMAE 0.0253*** 0.0342*** 0.0399*** 0.0465*** 0.0531***
NNMAE 0.0257*** 0.0361*** 0.0410*** 0.0451*** 0.0524***

ENML 0.0249*** 0.0335*** 0.0384*** 0.0441*** 0.0498***

ENML - ENTD −0.0033*** −0.0026*** −0.0022*** −0.0026*** −0.0038***

This table reports the time-series averages of the median price scaled absolute forecasting errors (PAFEs) for
all models. Et+1 to Et+5 denote one- to five-year ahead earnings. L is a model with only current earnings as
a predictor, HVZ is the model by Hou et al. (2012), EP and RI are the models by Li and Mohanram (2014),
ENTD is an equally weighted ensemble of L, HVZ, EP, and RI, RF is a random forest model, GBT and DART
are gradient boosted tree models without and with dropout, NN is a neural net, and ENML is an equally
weighted ensemble of RF, GBT, DART, and NN. The superscript MAE (MSE) indicates that the respective
model is estimated using the mean absolute error (mean squared error) as its loss function. We follow the
literature and estimate the traditional models using the MSE. In untabulated results we find that our results
are robust to estimating the traditional models using the MAE. We decide on which loss function to report
for the ML models depending on which one yields more accurate predictions (as indicated by the price
scaled PAFE for the t + 1 horizon). The PAFE is calculated as the difference between actual and forecasted
earnings per share, scaled by price at the end of June of the respective estimation year. ***, **, and * denote
statistical significance at the 1%, the 5% and the 10% level, respectively. Standard errors used for deriving
statistical significance are adjusted following Newey and West (1987) assuming a lag length of three years.

the traditional ensemble performs slightly worse than the best performing traditional

component model (0.0406 vs 0.0403 in t + 3, 0.0467 vs 0.0453 in t + 4 and 0.0536 vs 0.0517

in t + 5). Second, we find that in most cases, all machine learning models, including the

ensemble, outperform all traditional models, including the ensemble, for all prediction

horizons. However, for forecast horizons t + 3 to t + 5, the RI model is more accurate

than some of the machine learning component models. This stresses the benefit of

model averaging for the non-linear machine learning models specifically. The difference

in accuracy between the machine learning and the linear ensemble is at a statistically

significant level between -0.0022 and -0.0038. This translates into a relative difference

of 11.70% for t + 1 to 7.09% for t + 5 predictions. The ENML thus provides not only

statistically significant, but also economically meaningful gains in accuracy over the

traditional models.

Figure 3.1 illustrates the median PAFE of the ENML and ENTD for each out-of-sample

year and for forecast horizons of t + 1 and t + 5, respectively. The plots illustrate that
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the overall PAFE levels strongly increase with increasing forecast horizon. Furthermore,

they reveal that the machine learning ensemble is more accurate in all years and for both

forecast horizons, except for 2009, for which the ENTD yields slightly more accurate t + 5

forecasts than the ENML. In general, the difference between the ENML-PAFE and the

ENTD-PAFE varies across out-of-sample periods.
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Figure 3.1: PAFE across out-of-sample periods
This figure shows the median price scaled absolute forecast errors (PAFEs) of the machine-learning ensemble
(ENML) and the traditional ensemble (ENTD) per out-of-sample period for forecast horizons t + 1 and t + 5.

As a robustness check, we again stratify our predictions into those for small firms

and those for large firms and report the results in Table 3.4. Consistent with the existing

literature, we find that accuracy is generally much higher for large firms than for small

firms (Li and Mohanram, 2014). This holds true for all models considered. Furthermore,

the accuracy superiority of the machine learning ensemble over its traditional analogue

is more pronounced for the small firm sample. For small firms, the accuracy difference

ranges from 14.38% for t + 1 predictions to 11.88% for t + 5 predictions. Nonetheless, for

large firms, the difference still ranges from 13.16% for t + 1 predictions to 2.65% for t + 5

predictions. Moreover, the difference in accuracy is statistically significant for all forecast

horizons in both firm samples. Lastly, similar to the full sample case, we again observe

that the traditional ensemble performs slightly worse than some of its component models

for large forecast horizons.

Diebold and Mariano forecast comparison

Table 3.5 shows the pairwise comparisons of the models using the aforementioned

modified Diebold and Mariano (1995) test statistic. We restrict this analysis to predictions
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Table 3.4: Median PAFE by firm size

Large firms

Et+1 Et+2 Et+3 Et+4 Et+5

LMSE 0.0201*** 0.0266*** 0.0300*** 0.0346*** 0.0390***
HVZMSE 0.0200*** 0.0266*** 0.0304*** 0.0350*** 0.0399***
EPMSE 0.0193*** 0.0258*** 0.0292*** 0.0336*** 0.0381***
RIMSE 0.0190*** 0.0253*** 0.0287*** 0.0331*** 0.0381***

ENTD 0.0190*** 0.0252*** 0.0287*** 0.033*** 0.0377***

RFMSE 0.0182*** 0.0245*** 0.0285*** 0.0329*** 0.0373***
GBTMAE 0.0180*** 0.0246*** 0.0291*** 0.0332*** 0.0377***
DARTMAE 0.0168*** 0.0239*** 0.0285*** 0.0337*** 0.0390***
NNMAE 0.0169*** 0.0250*** 0.0300*** 0.0330*** 0.0389***

ENML 0.0165*** 0.0231*** 0.0277*** 0.0320*** 0.0367***

ENML - ENTD −0.0025*** −0.0021*** −0.0009** −0.0010*** −0.0010*

Small firms

Et+1 Et+2 Et+3 Et+4 Et+5

LMSE 0.0583*** 0.0724*** 0.0802*** 0.0898*** 0.1010***
HVZMSE 0.0474*** 0.0575*** 0.0645*** 0.0742*** 0.0854***
EPMSE 0.0513*** 0.0593*** 0.0631*** 0.0695*** 0.0780***
RIMSE 0.0506*** 0.0580*** 0.0602*** 0.0649*** 0.0734***

ENTD 0.0466*** 0.0554*** 0.0613*** 0.0693*** 0.0791***

RFMSE 0.0443*** 0.0527*** 0.0594*** 0.0677*** 0.0764***
GBTMAE 0.0444*** 0.0545*** 0.0598*** 0.0656*** 0.0728***
DARTMAE 0.0408*** 0.0512*** 0.0588*** 0.0662*** 0.0747***
NNMAE 0.0416*** 0.0555*** 0.0590*** 0.0641*** 0.0733***

ENML 0.0399*** 0.0503*** 0.0559*** 0.0626*** 0.0697***

ENML - ENTD −0.0067*** −0.0051*** −0.0054*** −0.0067*** −0.0094***

This table reports the time-series averages of the median price scaled absolute forecasting errors (PAFEs) for
all models, stratified by firm size. Et+1 to Et+5 denote one- to five-year ahead earnings. L is a model with
only current earnings as a predictor, HVZ is the model by Hou et al. (2012), EP and RI are the models by Li
and Mohanram (2014), ENTD is an equally weighted ensemble of L, HVZ, EP, and RI, RF is a random forest
model, GBT and DART are gradient boosted tree models without and with dropout, NN is a neural net, and
ENML is an equally weighted ensemble of RF, GBT, DART, and NN. The superscript MAE (MSE) indicates
that the respective model is estimated using the mean absolute error (mean squared error) as its loss function.
We follow the literature and estimate the traditional models using the MSE. In untabulated results we find
that our results are robust to estimating the traditional models using the MAE. We decide on which loss
function to report for the ML models depending on which one yields more accurate predictions (as indicated
by the PAFE for the t + 1 horizon). The PAFE is calculated as the difference between actual and forecasted
earnings per share, scaled by price at the end of June of the respective estimation year. Per out-of-sample
period, we classify firms as either small or large, depending on whether their market capitalization is below
or above the median as of the prediction date. ***, **, and * denote statistical significance at the 1%, the
5% and the 10% level, respectively. Standard errors used for deriving statistical significance are adjusted
following Newey and West (1987) assuming a lag length of three years.

for earnings in t + 1 and exclusively use the PAFE. This is because pairwise compar-

isons using the PFE do not yield interpretable results, as a higher (lower) PFE of a

model compared with another model may indicate both better or worse performance
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of the respective model. A positive statistic indicates the column model outperforms

the respective row model. The results confirm the finding that the machine learning

approaches outperform their traditional counterparts. Moreover, the ENML is again the

best performing model, beating every other one except for the DART model.13

3.4.2 Out-of-sample R2

The next metric considered is the out-of-sample R2 (OOS R2). The results are reported

in Table 3.6. The OOS R2 allows us to assess how the models perform in terms of ex-

plaining out-of-sample variation in future earnings. As expected, the OOS R2 decreases

with increasing forecast horizon. Moreover, the results generally confirm the positive

effect of model stacking. Our analysis demonstrates that the machine learning ensemble

consistently outperforms its individual components across all forecast horizons consid-

ered. In contrast, there are instances in which the traditional ensemble exhibits slightly

lower performance than the RI model for specific forecast horizons, i.e., t + 1 and t + 2.

Nevertheless, the traditional ensemble consistently outperforms all of its component

models for the remaining forecast horizons.

Furthermore, our findings validate the notion that machine learning approaches

surpass traditional linear models in terms of predictive performance. To be more specific,

when we compare the OOS R2 of the machine learning models, including the ensemble,

against that of the traditional models, including the ensemble, we find that the machine

learning models outperform the traditional ones in almost every case. In fact, just

assessing the best-performing models, i.e., the ensembles, we find that the machine

learning ensemble beats its traditional counterpart for every forecast horizon. The

difference in OOS R2 between the ensemble models is statistically significant at the 1%

level for forecast horizons t + 1 to t + 4. Further, while the relative PAFE difference

between the ensembles decreases with increasing forecast horizon, the difference in

OOS R2 increases from 14.03% for t + 1 predictions to 18.72% for t + 5 predictions.

Figure 3.2 plots the OOS R2 for the ENML and ENTD for each year and for t + 1

and t + 5, respectively. Again, it is evident that the machine learning ensemble outper-

forms the traditional ensemble in the majority of years and for both forecast horizons.

13Note that we adjust our p-values very conservatively via a multiple comparisons Bonferroni correction.
This significantly increases the hurdles for reaching significance, hence possibly explains why the test
statistic is not statistically significant.
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Table 3.5: Pairwise Diebold-Mariano test statistics

LMSE HVZMSE EPMSE RIMSE ENTD RFMSE GBT MAE DARTMAE NNMAE ENML

LMSE 0.0107*** 0.0098*** 0.0104*** 0.0123*** 0.0168*** 0.0149*** 0.0182*** 0.0170*** 0.0192***
HVZMSE −0.0009 −0.0003 0.0016 0.0061*** 0.0042*** 0.0075*** 0.0062*** 0.0085***
EPMSE 0.0006 0.0024** 0.0070*** 0.0051*** 0.0084*** 0.0071*** 0.0094***
RIMSE 0.0018** 0.0064*** 0.0045*** 0.0078*** 0.0065*** 0.0088***
ENTD 0.0045*** 0.0027** 0.0060*** 0.0047*** 0.0069***
RFMSE −0.0019** 0.0014* 0.0002 0.0024***
GBTMAE 0.0033*** 0.0020*** 0.0043***
DARTMAE −0.0013* 0.0010
NNMAE 0.0023***
ENML

This table reports the Diebold-Mariano (Diebold and Mariano, 1995) statistics for each model comparison. L is a model with only current earnings as a predictor, HVZ is
the model by Hou et al. (2012), EP and RI are the models by Li and Mohanram (2014), ENTD is an equally weighted ensemble of L, HVZ, EP, and RI, RF is a random
forest model, GBT and DART are gradient boosted tree models without and with dropout, NN is a neural net, and ENML is an equally weighted ensemble of RF, GBT,
DART, and NN. The superscript MAE (MSE) indicates that the respective model is estimated using the mean absolute error (mean squared error) as its loss function. We
follow the literature and estimate the traditional models using the MSE. In untabulated results we find that our results are robust to estimating the traditional models
using the MAE. We decide on which loss function to report for the ML models depending on which one yields more accurate predictions (as indicated by the price
scaled absolute forecast error (PAFE) for the t + 1 horizon). Positive numbers indicate the column model outperforms the respective row model. ***, **, and * denote the
Bonferroni-adjusted significance levels at 10%, 5% and 1%, respectively. Standard errors used to derive statistical significance are adjusted following Newey and West
(1987) assuming a lag length of three. P-values are adjusted by applying the Bonferroni procedure.
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Table 3.6: Average out-of-sample R2

Et+1 Et+2 Et+3 Et+4 Et+5

LMSE 0.3959 0.2511 0.1951 0.1251 0.0535
HVZMSE 0.4495 0.3295 0.2662 0.1789 0.0899
EPMSE 0.4450 0.3219 0.2581 0.1650 0.0805
RIMSE 0.4589 0.3439 0.2813 0.1883 0.0966

ENTD 0.4519 0.3382 0.2856 0.2056 0.1298

RFMSE 0.4971 0.3755 0.3165 0.2237 0.1390
GBTMAE 0.4858 0.3498 0.2774 0.2089 0.1135
DARTMAE 0.5091 0.3778 0.3057 0.2085 0.1144
NNMAE 0.4992 0.2075 0.2631 0.2045 0.0736

ENML 0.5153 0.3785 0.3200 0.2390 0.1541

ENML - ENTD 0.0634*** 0.0403** 0.0345*** 0.0332*** 0.0243

This table reports the time-series averages of the out-of-sample R2s (OOS R2s) for all models. Et+1 to Et+5
denote one- to five-year ahead earnings. L is a model with only current earnings as a predictor, HVZ is
the model by Hou et al. (2012), EP and RI are the models by Li and Mohanram (2014), ENTD is an equally
weighted ensemble of L, HVZ, EP, and RI, RF is a random forest model, GBT and DART are gradient boosted
tree models without and with dropout, NN is a neural net, and ENML is an equally weighted ensemble of
RF, GBT, DART, and NN. The superscript MAE (MSE) indicates that the respective model is estimated using
the mean absolute error (mean squared error) as its loss function. We follow the literature and estimate the
traditional models using the MSE. In untabulated results we find that our results are robust to estimating the
traditional models using the MAE. We decide on which loss function to report for the ML models depending
on which one yields more accurate predictions (as indicated by the price scaled absolute forecast error
(PAFE) for the t + 1 horizon). ***, **, and * denote statistical significance at the 10%, the 5% and the 1% level,
respectively. Standard errors used for deriving statistical significance are adjusted following Newey and
West (1987) assuming a lag length of three years. We only test for statistical significance of the difference
between the ensemble models (ENML - ENTD).

Remarkably, the OOS R2 of both ensemble models exhibits a noticeable dip in 2009,

particularly pronounced in forecasts for t + 5. Notably, for t + 5 forecasts, it takes some

years for the OOS R2 to rebound. This result underscores the delayed integration of new

information, such as the financial crisis in this case, into longer-term forecasts. Such

delayed adaptation is inherent in the rolling window approach we employ.

Again, for robustness, we stratify our predictions into those for small firms and large

firms, respectively and report the results in Table 3.7.14 Consistent with our prior findings,

we observe notable disparities in the OOS R2 performance between large and small

firms, with the former exhibiting higher predictive accuracy. Furthermore, our analysis

demonstrates that the ENML model consistently outperforms the ENTD model across all

forecast horizons and for both subsamples. In line with the overarching patterns evident

in our prior results, we find that the differential in performance between the ENML and

ENTD models is more pronounced for small firms. Specifically, our findings indicate

14Note that the OOS R2s of both subsamples are lower than the total OOS R2. This is because the OOS R2

is a non-linear function.
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Figure 3.2: R2 across out-of-sample periods
This figure shows the OOS R2 of the machine-learning ensemble (ENML) and the traditional ensemble
(ENTD) per out-of-sample period for forecast horizons t + 1 and t + 5.

that the ENML model exhibits a 15.16% higher OOS R2 for large firms compared to the

23.37% higher OOS R2 for small firms for t + 1 predictions. This pronounced discrepancy

reaffirms the consistency of our earlier observations and substantiates the argument that

a traditional linear model is inadequate for capturing the intricate nuances in future

earnings, particularly for smaller firms. Interestingly, the relative outperformance of

the ENML in terms of OOS R2 for small firms strictly increases with increasing forecast

horizon to 35.00% for t + 5. In the large firm sample, the relative outperformance of

the ENML as compared to the ENTD also increases to 45.21% for t + 5 predictions. The

OOS R2 difference between the ENML and the ENTD is statistically significant for most

forecast horizons in both subsamples.

3.4.3 Implied cost of capital

A common application of earnings forecasts is the derivation of the implied cost of capital

(ICC), for which earnings predictions serve as a crucial input. We restrict this analysis to

the best performing traditional earnings forecast model, i.e., the traditional ensemble, as

well as the best performing machine learning earnings forecast model, i.e., the machine

learning ensemble.

As typically done in the literature, we evaluate the return expectations in form of ICC

by evaluating the performance of long-short portfolios sorted on ICC (e.g., Hou et al.,

2012; Li and Mohanram, 2014). More specifically, we sort the stocks into deciles according

to ICC in t and assess the realized annual geometric average return of a buy-and-hold
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Table 3.7: Average out-of-sample R2 by firm size

Large firms

Et+1 Et+2 Et+3 Et+4 Et+5

LMSE 0.3808 0.2247 0.1694 0.0999 0.0203
HVZMSE 0.4360 0.3032 0.2379 0.1495 0.0521
EPMSE 0.4285 0.2885 0.2144 0.1090 0.0050
RIMSE 0.4455 0.3131 0.2394 0.1325 0.0225

ENTD 0.4366 0.3073 0.2484 0.1615 0.0712

RFMSE 0.4781 0.3412 0.2822 0.1877 0.0968
GBTMAE 0.4707 0.3167 0.2379 0.1631 0.0575
DARTMAE 0.4972 0.3468 0.2628 0.1559 0.0524
NNMAE 0.4872 0.1570 0.2127 0.1558 0.0074

ENML 0.5028 0.3474 0.2825 0.1962 0.1034

ENML - ENTD 0.0662*** 0.0400** 0.0341*** 0.0347*** 0.0322

Small firms

Et+1 Et+2 Et+3 Et+4 Et+5

LMSE 0.2585 0.0967 0.0224 −0.0514 −0.1111
HVZMSE 0.3255 0.2042 0.1250 0.0320 −0.0439
EPMSE 0.3243 0.2110 0.1500 0.0728 0.0246
RIMSE 0.3372 0.2362 0.1779 0.1042 0.0449

ENTD 0.3322 0.2261 0.1710 0.0991 0.0516

RFMSE 0.3983 0.2831 0.2044 0.1047 0.0311
GBTMAE 0.3761 0.2503 0.1654 0.1097 0.0306
DARTMAE 0.4011 0.2808 0.2099 0.1227 0.0447
NNMAE 0.3861 0.1182 0.1703 0.1071 −0.0028

ENML 0.4098 0.2832 0.2169 0.1405 0.0697

ENML - ENTD 0.0776*** 0.0571*** 0.0459*** 0.0414*** 0.0181

This table reports the time-series averages of the out-of-sample R2s (OOS R2s) for all models, stratified by
firm size. Et+1 to Et+5 denote one- to five-year ahead earnings. L is a model with only current earnings as a
predictor, HVZ is the model by Hou et al. (2012), EP and RI are the models by Li and Mohanram (2014),
ENTD is an equally weighted ensemble of L, HVZ, EP, and RI, RF is a random forest model, GBT and DART
are gradient boosted tree models without and with dropout, NN is a neural net, and ENML is an equally
weighted ensemble of RF, GBT, DART, and NN. The superscript MAE (MSE) indicates that the respective
model is estimated using the mean absolute error (mean squared error) as its loss function. We follow the
literature and estimate the traditional models using the MSE. In untabulated results we find that our results
are robust to estimating the traditional models using the MAE. We decide on which loss function to report
for the ML models depending on which one yields more accurate predictions (as indicated by the price
scaled absolute forecast error (PAFE) for the t + 1 horizon). Per out-of-sample period, we classify firms
as either small or large, depending on whether their market capitalization is below or above the median
as of the prediction date. ***, **, and * denote statistical significance at the 1%, the 5% and the 10% level,
respectively. Standard errors used for deriving statistical significance are adjusted following Newey and
West (1987) assuming a lag length of three years. We only test for statistical significance of the difference
between the ensemble models (ENML - ENTD).

portfolio that goes long the highest ICC decile and short the lowest ICC decile in t.

Table 3.8 shows that long-short ICC portfolios based on the ENML predictions

outperform those based on the ENTD predictions for each buy-and-hold period length
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considered. A buy-and-hold long-short ICC portfolio based on ENML predictions yields

(geometric) average annual returns of 8.45%, 9.14% and 6.80% for buy-and-hold periods

of one, two and three years, on average. The linear analogue yields corresponding average

annual returns of 7.15%, 7.75% and 5.89%. Moreover, while the portfolio returns based

on the ENML model are statistically significant for every buy-and-hold period length, the

portfolio returns based on the ENTD model are only statistically significant when holding

stocks for three years. We conclude that the improved accuracy of machine learning

predictions translates into more profitable investment strategies, thereby stressing the

practical importance of earnings prediction accuracy.

Table 3.8: Long-short ICC portfolio performance

ENTD ENML
κ Decile ICC Realized ICC Realized

1
1 0.0301 0.0809 0.0249 0.0660
10 0.2609 0.1524 0.2631 0.1505
10-1 0.2308 0.0715 0.2382 0.0845*

2
1 0.0301 0.0899 0.0249 0.0819
10 0.2609 0.1673 0.2631 0.1732
10-1 0.2308 0.0775 0.2382 0.0914**

3
1 0.0301 0.0990 0.0249 0.0933
10 0.2609 0.1583 0.2631 0.1621
10-1 0.2308 0.0589* 0.2382 0.0680**

This table reports the average implied cost of capital (ICC) estimates as well as the average realized annual
returns of buy-and-hold portfolios sorted conditionally on them for buy-and-hold periods of κ ∈ [1, 2, 3]
years as indicated by the first column. Annual realized returns are derived as the geometric average of
portfolio returns over the respective buy-and-hold period. ENTD refers to the traditional ensemble and
ENML refers to the machine learning ensemble. The 10-1 rows denote the long-short portfolios, in which an
investor goes short the lowest ICC decile and long the highest ICC decile, equally weighting stocks in each
decile. We test for significance of the realized buy-and-hold return of this portfolio. ***, **, and * denote
statistical significance at the 1%, the 5% and the 10% level, respectively. Standard errors used for deriving
statistical significance are adjusted following Newey and West (1987) assuming a lag length of three years.

3.5 Interpretation

3.5.1 Variable importance

As outlined above, we assess the degree to which financial statement variables matter in

the machine learning ensemble by computing their SHAP values.15 More precisely, we

compute SHAP values per out-of-sample period and derive their respective averages for

each variable.
15We focus on the ensemble model as it is the best performing machine learning approach.
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Figure 3.3: Variable importance for the machine learning forecast ensemble
This figure depicts the absolute SHAP values of the 20 most important variables for the machine learning
ensemble, averaged over out-of-sample periods and scaled so they sum up to one within each forecast
horizon. In this context, importance is defined as the ranking of the respective variable according to the
aforementioned metric for forecast horizon t + 1.

Figure 3.3 shows the mean absolute SHAP values of the ENML, averaged over all

out-of-sample periods and scaled so that variable importance per forecast horizon sums

to one. We show the twenty most important variables for predicting earnings in t + 1

and sort them according to their importance.16 The higher the SHAP value, the more

important the variable. For t + 1 predictions, ib, i.e., current earnings, is the most

important variable by far.17 This comes as no surprise, considering that a simple model

including only current earnings as a predictor performs comparably well in predicting

future earnings.

16The variable definitions are provided in B.3
17Note that this is the earnings definition that we use as our target variable. Further note that all of our

variables are scaled by common shares outstanding. Thus, strictly speaking, we refer to earnings per share
when talking about ib.
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A striking finding is that the remaining 19 most important variables are primarily

different definitions of earnings. For example, the second most important variable oiadp

resembles "operating income after depreciation" and the third most important variable

ibcom resembles "earnings before extraordinary items - available for common". The only

top-twenty variables that do not originate from the income statement are oanc f and seq.

However, they resemble comparably low importance.

In general, six to seven variables dominate across forecast horizons t + 1 to t + 5.

Another finding regarding the different forecast horizons is that the significance of ib

gradually diminishes with increasing horizon. Instead, oiadp, another earnings variable,

emerges as the most important variable. Moreover, the top-twenty variables not stemming

from the income statement, i.e., oanc f and seq, become increasingly important with

increasing forecast horizon.

Lastly, the results suggest that current data is more important than lagged data or

first order differences. We revisit this claim below.

We now explore whether the most important predictor variables act as substitutes

or complements. This assessment is conducted by examining the absolute Pearson

correlation coefficients of the top-twenty variables reported in Figure 3.4. If the variables

are substitutes, one would expect high coefficient values. In general, we find mixed

results. ibcom, pi, ibadj, ni and niadj are correlated quite strongly with ib and each other.

All of these are variations of earnings definitions which do not differ strongly from

each other. This observation leads us to consider these variables as substitutes for ib,

indicating that they do not necessarily possess significant independent predictive power.

Other variables, that are not as closely related to ib, either because they explicitly exclude

major income statement items, such as oiadp, or because they are not income statement

items at all, such as oanc f , do not correlate as strongly with earnings. We interpret this as

evidence that these items are complements to ib and hence possess stand-alone predictive

power.

3.5.2 Group importance

Table 3.9 reports variable importance per group. More precisely, we group the variables

according to the financial statement they originate from (Panel A), whether they are

current, lagged or change information (Panel B), and according to the two aforemen-

tioned categories (Panel C). Grouping the variables according to the financial statement
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Figure 3.4: Correlation heatmap for the most important variables
This figure shows the absolute Pearson correlation coefficients for the 20 most important variables for the
machine learning ensemble.

they originate from reveals that income statement (I/S) variables are the most important

variables. On average, for one-year-ahead predictions, I/S variables contribute approxi-

mately 65% to the total importance, while balance sheet (B/S) variables and cash flow

statement (CF/S) variables contribute around 20% and 15%, respectively. This finding

aligns with the analysis of the most important variables, indicating that I/S variables

significantly outweigh others in importance for predicting earnings. However, we also

find that I/S variables become less important with increasing forecast horizon. In fact,

the importance of I/S variables decreases to around 47% for t + 5 forecasts. In contrast,

B/S variables become more important with increasing forecast horizon (around 37% for

t + 5 predictions) while CF/S variables stay at a constant level.

Grouping variables according to whether they are current, lagged or difference

variables in Panel B reveals that current data is by far the most important group out

of these categories, contributing around 71% of total importance for t + 1 predictions.

Lagged and difference data each contribute around 14 − 15% to total importance for
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Table 3.9: Variable importance per financial statement × variable type group

Panel A: Financial statement type
Et+1 Et+2 Et+3 Et+4 Et+5

B/S 0.2023 0.2497 0.3010 0.3437 0.3733
CF/S 0.1517 0.1620 0.1619 0.1557 0.1545
I/S 0.6460 0.5883 0.5371 0.5006 0.4723

Panel B: Variable type
Et+1 Et+2 Et+3 Et+4 Et+5

Current 0.7123 0.6701 0.6506 0.6462 0.6228
Lagged 0.1422 0.1933 0.2109 0.2164 0.2472
Change 0.1455 0.1366 0.1385 0.1374 0.1299

Panel C: Financial statement type × variable type
Et+1 Et+2 Et+3 Et+4 Et+5

B/S current 0.0923 0.1196 0.1493 0.1767 0.2034
B/S lagged 0.0443 0.0654 0.0848 0.0973 0.1027
B/S change 0.0657 0.0648 0.0669 0.0697 0.0671
CF/S current 0.0942 0.0958 0.0928 0.0856 0.0828
CF/S lagged 0.0293 0.0392 0.0408 0.0401 0.0446
CF/S change 0.0282 0.0269 0.0284 0.0300 0.0271
I/S current 0.5258 0.4547 0.4086 0.3840 0.3366
I/S lagged 0.0687 0.0887 0.0854 0.0790 0.0999
I/S change 0.0516 0.0449 0.0432 0.0377 0.0357

Panel A reports the relative variable importance per financial statement group. B/S , CF/S and I/S denote
balance sheet, cash flow statement and income statement, respectively. The variables are grouped according
to Table B.3 in the Appendix. Panel B reports the relative variable importance per variable type. Panel C
reports the relative variable importance per financial statement type × variable type group. Importance
per group in each panel is defined as the fraction that the respective group contributes to total importance,
measured as the sum of absolute SHAP values.

t + 1 predictions. Again, importance becomes more evenly distributed among the groups

with increasing forecast horizon. More precisely, current variables become less important

while lagged variables become more important. This might be the case because short-

term forecasts are heavily influenced by current information due to their sensitivity to

recent developments. Longer-term forecasts benefit from a combination of current and

lagged information to capture the interplay of short-term dynamics and longer-term

trends.

Further breaking down the groups according to the two aforementioned categories

stresses the findings above. Overall, current I/S variables contribute around 53% to total

importance for t + 1 forecasts and hence represent the most important group of variables

by a significant margin. This is intuitive and supports the finding that simple earnings

forecasts models only considering current earnings items, like the L model or the EP

model, perform comparably well in predicting future earnings.

We conclude our variable importance assessment by more thoroughly analyzing
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the variable importance per financial statement type in Table 3.10. More precisely, we

assess the importance of each financial statement type per schematic financial statement

component, such as e.g., current assets, fixed assets or equity, in the B/S case. This

analysis provides an intuitive accounting perspective on which components of financial

statements are important and how the importance might change across forecast horizons.

Table 3.10: Variable importance per financial statement component

Panel A: Balance sheet
Et+1 Et+2 Et+3 Et+4 Et+5

Current assets 0.0302 0.0372 0.0445 0.0542 0.0589
Fixed assets 0.0214 0.0243 0.0259 0.0300 0.0326
Total assets 0.0046 0.0076 0.0105 0.0118 0.0177
Debt 0.0513 0.0604 0.0709 0.0828 0.0925
Equity 0.0367 0.0474 0.0558 0.0613 0.0610
Total debt & equity 0.0028 0.0034 0.0052 0.0074 0.0077
Supplemental 0.0553 0.0695 0.0881 0.0963 0.1028

Sum B/S importance 0.2023 0.2497 0.3010 0.3437 0.3733

Panel B: Cash flow statement
Et+1 Et+2 Et+3 Et+4 Et+5

Operating cash flow 0.1083 0.1087 0.1049 0.0999 0.1005
Investing cash flow 0.0146 0.0188 0.0204 0.0190 0.0214
Financing cash flow 0.0245 0.0297 0.0309 0.0317 0.0284
Total cash flow 0.0042 0.0047 0.0057 0.0051 0.0043

Sum CF/S importance 0.1517 0.1620 0.1619 0.1557 0.1545

Panel C: Income statement
Et+1 Et+2 Et+3 Et+4 Et+5

Sales 0.0061 0.0102 0.0135 0.0140 0.0167
Operating expenses 0.0121 0.0163 0.0199 0.0245 0.0261
EBITDA 0.0335 0.0361 0.0350 0.0322 0.0347
Depr. & Amort. 0.0078 0.0066 0.0070 0.0089 0.0123
EBIT 0.1355 0.1355 0.1414 0.1326 0.1279
Interest expenses 0.0600 0.0516 0.0453 0.0393 0.0377
EBT 0.0517 0.0514 0.0308 0.0237 0.0178
Tax expenses 0.0224 0.0259 0.0262 0.0297 0.0306
Net income 0.3063 0.2403 0.2006 0.1812 0.1555
Dividends 0.0106 0.0145 0.0174 0.0146 0.0128

Sum I/S importance 0.6460 0.5883 0.5371 0.5006 0.4723

This table reports the relative variable importance per financial statement group. B/S , CF/S and I/S denote
balance sheet, cash flow statement and income statement, respectively. EBITDA denotes earnings before
interest, taxes and depreciation and amortization. EBIT denotes earnings before interest and taxes. EBT
denotes earnings before taxes. The variables are grouped according to Table B.3 in the Appendix. Importance
per financial statement component is defined as the fraction that the respective component contributes to
total importance, measured as the sum of absolute SHAP values.

The table provides several key insights: first, assessing the B/S, we find that the debt

and supplemental items are the most important pieces of B/S information, with both

contributing around 5-6% to total importance for t + 1 forecasts. Moreover, all pieces of
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B/S information consistently increase in importance with increasing forecast horizon.

Second, variables associated with the operating cash flow resemble the most important

category of CF/S variables. This comes as no surprise, since the operating cash flow

closely relates to earnings. The relevance of the investing cash flow slightly increases

with increasing forecast horizon. However, overall, the differences are minor.

Third, different definitions of earnings, i.e., EBITDA, EBIT, EBT and net income,

resemble the most important I/S categories. Out of these categories, EBIT and net

income are the most important categories with around 14% and 31% share in total impor-

tance, respectively. Interestingly, the importance of the EBIT stays somewhat constant

throughout forecast horizons, whereas the importance of the net income consistently

declines with increasing forecast horizon to around 16% for t + 5 forecasts. This dynamic

might be attributable to the fact that net income is more strongly exposed to accounting

manipulation than EBIT and hence less reliable in the long-term. Moreover, we find that

while sales contribute very little overall, they consistently increase in importance with

increasing forecast horizon. This supports the notion that items which are less exposed

to discretionary accounting gain predictive value when considering longer forecast hori-

zons. Revisiting the aforementioned finding that operating cash flow variables maintain

consistent importance across forecast horizons further reinforces this notion. Unlike

earnings, cash flows include no discretionary accrual items and are hence not exposed to

earnings management (e.g., Jones, 1991). Consequently, their predictive value does not

decrease for longer-term forecasts.

In summary, these findings suggest that the variations in importance across forecast

horizons are primarily driven by the presence of earnings management. Future research

endeavors could offer additional insights into these dynamics.

3.5.3 Non-linearity

We now shed light on the degree to which non-linearity of the functional form and non-

linearity of variables, i.e., interactions among financial statement variables considered,

play a role in predicting earnings.

Surrogate model

We find that for our flexible ENML approach, around 89% of the variation in predicted

earnings can be explained by a linear surrogate model for t + 1 predictions on average.

This does not change when including two-way interactions, suggesting that interaction
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effects play virtually no role in predicting earnings using raw financial input data.

Interestingly, this stands in stark contrast to the results by Jones et al. (2023) who find

that interactions among the ratios which they use as predictors contribute substantially

to the prediction. Apart from the fact that our target variables differ, this might be

attributable to the fact that we use a significantly larger set of inputs, which might

directly capture interactions among variables of a more limited set of variables. The

remaining unpredictable portion of the ENML can be attributed to non-linearity of the

functional form.18
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Figure 3.5: Surrogate models
This figure shows the adjusted R2 of the surrogate models that we fit to our machine learning ensemble
predictions for forecast horizons t + 1 and t + 5. The linear model (linear) is a simple linear model in which
we regress the respective predictions on the 50 most important predictor variables according to their average
absolute SHAP values for t + 1 forecasts. The linear model including interactions (linear incl. interactions) is
a linear model in which we use the same set of predictors as well as all possible two-way interactions.

We depict this graphically in Figure 3.5. The figure shows the adjusted in-sample R2

per out-of-sample period, derived by regressing predicted earnings on a linear surrogate

model and a linear surrogate model including two-way interactions. The figure also

includes the surrogate model for predictions for t + 5. In fact, assessing the surrogate

model for t + 5 reveals that even for longer forecast horizons, interaction effects across

financial statement variables do not play a role. With increasing horizon, a slightly larger

portion of the earnings-predictor relation can be attributed to non-linear functional form.

Nonetheless, the linear surrogate model still explains around 87% of the predictions for

t + 5 on average.

18Theoretically, it can also be attributed to higher-order interactions. However, in undocumented results,
we find that this is not the case.
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Partial dependence plots

We now turn to how the aforementioned degree of non-linearity is expressed at the

variable-level. Figure 3.6 shows the partial dependence plots for ib, oiadp, ibcom and

oanc f for all forecast horizons.19
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Figure 3.6: Partial dependence plots
The panels show the sensitivity of expected future earnings to the respective variable for all forecast horizons.
More specifically, we fit a nonparametric lowess model (locally weighted linear regression) to the SHAP
values of the respective variable.

The partial dependence measures the sensitivity of the predicted earnings to the

individual financial statement variables. The upper-left panel shows that the ib effect

is the strongest, i.e., the steepest. Remarkably, the sensitivity appears to be linear for

19We plot the partial dependence of the three most important variables and the most important variable
not stemming from the income statement.
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both positive and negative values of ib. However, there is a distinction in the slope

of the line for positive and negative values, suggesting varying sensitivities of future

earnings to current earnings for profit and loss firms, respectively. This may explain

why the EP model and the RI model by Li and Mohanram (2014) yield comparably good

forecasting results, especially for short forecast horizons. The two models include a

dummy for negative earnings and the interaction between earnings and the negative

earnings dummy, which essentially allows for different slopes of ib for profit and loss

firms.

For ibcom in the lower-left panel we find a similar trend as for ib. For oiadp, there is

also a difference in slopes between profit and loss firms, especially for longer forecast

horizons. However, the kink appears slightly below zero. In contrast oanc f is essentially

linearly related to future earnings across all forecast horizons.

3.6 Conclusion

We show that earnings per share predictions based on state-of-the-art machine learning

approaches using high-dimensional financial statement data are more accurate than

those based on traditional linear approaches. These improvements hold across all

evaluation metrics assessed, i.e., commonly used error metrics, the OOS R2 as well as the

performance of long-short ICC portfolios based on the predictions.

Importantly, we provide an intuitive breakdown of how important the different pieces

of fundamental accounting information are for predicting earnings. We find that current

I/S variables, especially current earnings, are the most important predictors. However,

with increasing forecast horizon, variable importance becomes more balanced. More

precisely, B/S information becomes much more important whereas I/S information

becomes less important with increasing forecast horizon. Thoroughly disentangling the

different financial statements suggests that this dynamic may be attributable to earnings

management.

As the first study to thoroughly decompose the effects of non-linearity in the earnings

prediction context we find that especially for short term-horizons, the relationship as

approximated by the best performing machine learning model, i.e., the machine learning

ensemble, can still be described by a linear surrogate model to a large extent. More

precisely, we find that on average around 84-89% of the variance in predictions can be
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explained by a linear model, depending on the forecast horizon. Interactions between

financial statement variables play virtually no role, implying that non-linearity of the

functional form resembles the non-linear part of the model. As the forecast horizon

increases, the linear surrogate R2 decreases slightly. Nevertheless, interactions across

financial statement variables remain irrelevant, thus implying that non-linearity of the

functional form becomes more important with increasing forecast horizon.

Our findings provide important guidance for future research. First, we show that

machine learning approaches are an excellent tool for earnings predictions. We hence

argue that research which uses (model) earnings predictions in some way or another

should resort to machine learning methods, if high accuracy is desired. Second, we show

which financial statement variables and groups thereof are important. Future research

may build upon that when building models and deciding which variables to include.

Importantly, this includes the differences in terms of variable importance across forecast

horizons. For example, if one is interested in an earnings prediction model including only

a small number of variables for computation-related reasons, employing distinct (small)

sets of variables for different forecast horizons might be beneficial. Lastly, we show that

interactions among financial statement variables bear no predictive power. Again, future

research may build upon this finding when deciding on an earnings prediction model.
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Chapter 4

Model-Based Earnings Forecast

Accuracy and Implied Cost of Capital

Portfolio Returns‡

4.1 Introduction

Implied cost of capital (ICC) hold a pivotal role in the finance and accounting literature.

They resemble the internal rate of return that relates expected future payoffs to current

observable prices. Put differently, ICC are return expectations given current market prices

and expected future payoffs. In contrast to ICC, which are inherently forward looking,

alternative common methods of deriving return expectations, such as characteristic-based

or factor-based approaches, typically rely on past return realizations. However, research

suggests that return expectations derived from realized returns are prone to substantial

noise (e.g., Fama and French, 1997; Elton, 1999). ICC serve as a conceptually different

way of deriving expected returns, aimed at tackling this issue (Gebhardt et al., 2001).

Unsurprisingly, the academic literature provides a plethora of different ICC models

describing how exactly future expected payoffs are related to current prices and the

discussion on the validity of these ICC models is still ongoing. For example, Callen

and Lyle (2020) show that the term structure of cost of capital is not flat for most

time periods, thereby questioning the assumption of constant cost of capital, which

ICC models typically rely on. Importantly, ICC also heavily rely on the accuracy of

‡This chapter is based on Simon (2024). I thank Dieter Hess, Simon Wolf and participants at the Finance
Research Seminar at the University of Cologne for helpful comments and suggestions.
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the earnings predictions in particular (Richardson et al., 2010). Studies have typically

predicted earnings via analyst forecasts (Hou et al., 2012). However, a large body of

literature documents biases of analyst earnings forecasts and analyst firm coverage is

limited.1 To circumvent these shortcomings, Hou et al. (2012) suggest to use model-based

earnings forecasts for ICC estimation. Since then, numerous studies have proposed

different earnings forecast models, aiming to achieve higher forecast accuracy (e.g., Li

and Mohanram, 2014; Hess and Wolf, 2022). Originally only covering simple linear

approaches, several more complex approaches have been introduced recently (e.g., Cao

and You, 2021; Van Binsbergen et al., 2023).

Despite their limitations and the ongoing pursuit of the most accurate earnings

prediction model, ICC have been extensively utilized in empirical studies. For example

ICC have been used to study the relationship between risk and returns (e.g., Botosan and

Plumlee, 2005; Pástor et al., 2008) and return predictability (e.g., Li et al., 2013). Another

stream of literature employs ICC to study various issues in corporate finance, such as the

impact of corporate governance on cost of capital (e.g., Botosan, 1997; Francis et al., 2005;

Ashbaugh-Skaife et al., 2009), the relation between earnings attributes and cost of capital

(Francis et al., 2004), the impact of accounting restatements on cost of capital (Hribar and

Jenkins, 2004), and the relationship between investment and cost of capital (Frank and

Shen, 2016).

Considering ICC serve as a proxy for expected returns, they may also be used for

investment purposes. However, there is only little literature that explicitly focuses on the

investment aspects of ICC. Typically, studies that aim to improve model-based earnings

forecast accuracy in the context of ICC estimation briefly cover long-short portfolio

strategies based on ICC and show that the more accurate earnings forecast model

translates into higher average spread returns (e.g., Hou et al., 2012; Li and Mohanram,

2014; Hess and Wolf, 2022). However, these studies do not account for transaction costs,

a factor that is crucial when evaluating actual investment performance (e.g., Chen and

Velikov, 2023; Detzel et al., 2023). Notable exceptions are Esterer and Schröder (2014)

and Bielstein (2018), but these studies resort to analyst earnings forecasts and only use

rudimentary transaction cost proxies. This study aims to fill this gap in the literature

by revisiting the relationship between model-based earnings forecast accuracy and ICC

investment performance while accounting for transaction costs. More precisely, I provide

1See e.g., Kothari et al. (2016) for an extensive review of the literature.
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an answer to the following novel research question: What is the relationship between

model-based earnings forecast accuracy and ICC portfolio performance against the background of

transaction costs?

In addition to explicitly accounting for transaction costs, one of the key contributions

of this study is the fact that I consider two dimensions of accuracy, or more generally

- model performance, separately: general accuracy and the degree to which forecasts

are exposed to systematic distortions. In general terms, I define general accuracy as the

absolute deviation of earnings forecasts from earnings realizations. General accuracy is

thus captured by standard error metrics such as e.g., the mean squared error (MSE) or

the mean absolute error (MAE). I define systematic distortions as deviations of the actual

forecast error distribution from a corresponding distribution of forecast errors with mean

zero and constant standard deviation which yields the same level of general accuracy.2

Systematic distortions hence include forecast characteristics like bias, i.e., a distribution of

forecast errors with mean unequal to zero, and accuracy differences for different subsets

of firms, i.e., varying mean/standard deviation of error terms across subsets of firms.

Existing studies typically focus on improving general accuracy as measured by e.g., the

price scaled absolute forecast error (PAFE). Some studies also shed light onto the degree

to which specific forms of systematic distortions are present in the respective forecast

model. One example is given by Hou et al. (2012), who show that their model forecasts

are less accurate, but also less biased than analyst forecasts. Despite being less accurate,

their model forecasts translate into more profitable ICC portfolios. They attribute this

to the difference in bias. Another example of such a systematic distortion is provided

by e.g., Li and Mohanram (2014), who show that model-based earnings forecasts are

less accurate for smaller firms. They do not, however, explicitly relate this characteristic

to portfolio returns. I summarize all such distortions by denoting them as systematic

distortions and provide a novel way of measuring them using the Kolmogorov-Smirnov

test statistic. In addition to measuring systematic distortions of a forecast model, I follow

the literature and measure general accuracy via the PAFE.

I start off the empirical analysis by estimating a selection of common earnings forecast

models. First, I predict earnings using common linear traditional approaches. More

precisely, I employ the well-known models by Hou et al. (2012) and Li and Mohanram

(2014). Second, I predict earnings using a nonlinear machine learning (ML) model based

2Furthermore, I assume that forecast errors of undistorted forecasts are normally distributed.
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on Hess et al. (2024).3 Consistent with findings from Hess et al. (2024), I confirm that

the ML model attains the highest general accuracy. Furthermore, utilizing the novel

metric introduced in this study, I demonstrate that the ML model also showcases the

least amount of systematic distortions.

Turning to ICC portfolios based on the different model forecasts, I find that the less

accurate and more distorted models fail to produce statistically significant average gross

long-short spread returns. In contrast, the ML model leads to statistically significant

positive average return spreads. These findings remain robust across varying quantile

sizes, aligning with existing literature suggesting that higher earnings forecast accuracy

generally corresponds to higher gross return spreads (e.g., Hou et al., 2012; Li and

Mohanram, 2014; Hess and Wolf, 2022; Hess et al., 2024). Consistent with the literature

on the effect of transaction costs on return anomalies (e.g., Novy-Marx and Velikov,

2016; Chen and Velikov, 2023; Detzel et al., 2023), I demonstrate that the introduction

of transaction costs substantially reduces ICC portfolio returns, attributable to high

turnover levels, even with just an annual rebalancing frequency. This bears important

implications for studies that evaluate ICC long-short portfolio return spreads as it shows

that transaction costs significantly alter results. Nonetheless, the ML portfolio still yields

statistically significant spread returns and clearly outperforms the portfolios based on

less accurate earnings forecast models.

Since the ML forecasts are both more accurate and less distorted, it is not possible

to explicitly attribute return gains to either of these two characteristics. In fact, existing

studies typically only cover general accuracy, while some studies also assess specific

systematic distortions like bias or accuracy differences across subsets of firms (e.g., Hou

et al., 2012; Li and Mohanram, 2014). However, to the best of my knowledge, no study

explicitly disentangles the two dimensions of model performance and their effect on

portfolio performance. By introducing simple simulation frameworks, I separately assess

the impact of general forecast accuracy and systematic distortions. First, I assess the

impact of completely mitigating systematic distortions versus achieving perfect accuracy.

I then dig deeper into the underlying dynamics and assess how changes in systematic

distortions while keeping general accuracy constant impacts portfolio returns, and vice

versa. More precisely, I show how e.g., improving the general accuracy by 50% while

keeping the level of systematic distortions constant affects ICC portfolio returns.
3I argue that this model serves as a proxy for the most accurate class of models which the literature in

this context currently provides, i.e., nonlinear ML-based approaches utilizing a large input vector.
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The results reveal that both general accuracy and systematic distortions correlate

with investment performance. In fact, completely mitigating systematic distortions

while maintaining the same level of general accuracy improves average gross (net)

portfolio returns by around 81% (88%) to 213% (261%), depending on the model, i.e., the

level of general accuracy, and the quantile split considered. Achieving perfect general

accuracy improves average gross (net) portfolio returns by another 17% (18%) to 33%

(35%). The assessment of how isolated changes of general accuracy and the level of

systematic distortions affect ICC portfolio returns further stresses that both aspects of

model performance are correlated with average returns, but not with transaction costs.

Overall, the contribution of this study can be summarized as showing that generally,

improving model-based earnings forecasts translates into higher ICC portfolio returns.

More precisely, I show that both aspects of forecast performance, i.e., general accuracy

and the degree to which forecasts are systematically distorted, are related to portfolio

returns. Importantly, transaction costs significantly reduce portfolio returns in general,

but do not strongly correlate with either aspect of predictive performance considered.

These findings provide strong motivation for future research endeavors focused on

enhancing earnings forecast models. They specifically underscore the potential benefits

of mitigating systematic distortions, thereby highlighting promising directions for further

model improvements.

The remainder of this study is structured as follows: in Section 4.2 I review the

literature that this study contributes to. In Section 4.3 I describe the empirical research

design underlying the core part of this study. I then summarize the empirical results of

this part in Section 4.4. In Section 4.5 I propose simple simulation frameworks which

highlight the different effects of earnings forecast model improvement on portfolio

performance. Finally, Section 4.6 concludes the study.

4.2 Related literature

This study primarily relates to two strands of literature. First, it contributes to the

literature which empirically evaluates ICC as an expected return proxy. Research that

adds to this literature stream typically analyzes the extent to which ICC predict future

realized returns (e.g., Gebhardt et al., 2001; Gode and Mohanram, 2003; Easton and

Monahan, 2005; Guay et al., 2011; Hou et al., 2012; Li et al., 2013; Li and Mohanram,
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2014; Ang and Aadka, 2017; Callen and Lyle, 2020). The rationale for investigating

this relationship is grounded in the notion that a reliable expected return proxy should

correlate with future realized returns, considering that any unexpected shock is not

predictable by definition (Lee et al., 2020). These studies use various different ICC

models, different methods of deriving the crucial ICC input, i.e., expected earnings,

different samples and assess returns on different levels, including firm-, portfolio-, or

market-level analyses. However, generally, the evidence on the relation between realized

returns and ICC is mixed. Some studies find a positive relationship (e.g., Gode and

Mohanram, 2003; Hou et al., 2012; Li et al., 2013; Li and Mohanram, 2014; Callen and

Lyle, 2020), some studies find no significant relationship (e.g., Gebhardt et al., 2001;

Easton and Monahan, 2005; Guay et al., 2011) and Ang and Aadka (2017) even find

a negative relationship. On a different note, Hou et al. (2012) show that less biased

earnings forecasts translate into more accurate return predictions via ICC. They generate

such forecasts by deriving earnings predictions via a statistical model instead of using

analyst forecasts. Building on Hou et al. (2012), several studies have shown more accurate

model-based earnings forecasts lead to more accurate ICC return predictions. In fact,

yielding better expected return proxies is oftentimes the primary motivation behind

deriving more accurate earnings forecast models.

Since finance theory generally predicts a positive relationship between risk and return

(Pástor et al., 2008), other studies evaluate ICC as an expected return proxy by assessing

their relation to risk and risk factors, both in the cross-section (e.g., Botosan and Plumlee,

2005; Hou et al., 2012; Li and Mohanram, 2014; Lee et al., 2020) and in the time series

(e.g., Pástor et al., 2008).

In yet another conceptually different attempt at evaluating, inter alia, ICC, Lee et al.

(2020) propose a theoretically grounded testing framework for expected return proxies in

general. The framework builds on a simple decomposition of returns and is primarily

constructed such that the respective expected return proxy is evaluated with respect to

its usefulness for deriving treatment effects. Empirically applying their framework shows

that ICC outperform characteristic- and factor-based expected return proxies in the time

series, while characteristic-based proxies perform best in the cross-section.

This paper falls into the first of the aforementioned categories, i.e., it complements

literature that evaluates the predictive capabilities of ICC. More precisely, I evaluate the

impact of model-based earnings forecast accuracy on the predictive capabilities of ICC. I
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extend the findings by Hou et al. (2012) and similar studies in two key aspects: first I

revisit the earnings forecast-ICC-future return relationship against the background of

transaction costs. Existing research in this body of literature typically does not take into

account transaction costs when assessing ICC investment performance (e.g., Hou et al.,

2012; Li and Mohanram, 2014).4 Second, I differentiate between two aspects of accuracy,

i.e., general accuracy and systematic distortions, such as bias or accuracy differences

across firms.

The second major literature stream I contribute to is the discussion regarding the

effects of transaction costs on investment performance in general. This literature has

gained particular traction recently, since transaction costs significantly alter findings

regarding return anomalies (e.g., Novy-Marx and Velikov, 2016; DeMiguel et al., 2020;

Chen and Velikov, 2023; Detzel et al., 2023) and lead to a different, actually implementable

efficient frontier (Jensen et al., 2022). However, to the best of my knowledge, neither

the effect of transaction costs on ICC investment performance, nor the relationship

between model-based earnings forecast accuracy and transaction costs associated with

the respective ICC long-short portfolios have been studied extensively thus far. The two

notable exceptions are Esterer and Schröder (2014) and Bielstein (2018). Yet, these studies

do not shed light on the latter of the aforementioned points of interest. Moreover, both

studies employ rather rudimentary transaction cost proxies and resort to analyst earnings

forecasts.

4.3 Empirical approach

4.3.1 Implied cost of capital

The central metric of this study are the ICC. Conceptually, ICC solve

Pi,t =
∞

∑
τ=1

Et(Xi,t+τ)

(1 + ICCi,t)τ
, (4.1)

where Pi,t denotes the market value of equity of firm i at time t, Et(Xi,t+τ) is the

conditionally expected pay-off of firm i τ periods ahead, and ICC is the implied cost of

equity. Note that the ICC varies for each i and t, but not across τ. Put differently, for a

4Important exceptions are Esterer and Schröder (2014) and Bielstein (2018), but they do not explicitly
assess the impact of earnings forecast accuracy on ICC and ICC-based investment performance.
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given firm i at time t, one assumes constant cost of equity throughout future periods.5

As such, ICC are an ex ante measure of equity return expectations of the market,

under the assumption that the respective assumed relation between future payoffs and

current prices holds.6 ICC thus represent an alternative to other methods of deriving the

cost of equity capital, such as factor-based or characteristic-based proxies, which typically

rely on return realizations. Many issues with using realized returns for cost of capital

computation have been documented in the literature (e.g. Elton, 1999), highlighting ICC

as a potential conceptual enhancement in this regard.

The literature provides numerous models to estimate ICC.7 Following e.g., Echterling

et al. (2015), these models may be grouped into those derived from dividend discount

models (DDMs), residual income models (RIMs) and abnormal earnings growth models

(AEGs). Yet, under the assumptions inherent to all of them, the models simply resemble

algebraic reformulations of each other (Hendriock, 2022).

I follow the literature and compute ICC as the average of commonly used ICC models

(e.g., Hou et al., 2012; Li and Mohanram, 2014; Hess et al., 2019). More specifically, I

estimate one DDM, namely the GG model by Gordon and Gordon (1997). I further

estimate two RIMs, namely the GLS model by Gebhardt et al. (2001) and the CT model

by Claus and Thomas (2001). Lastly, the two AEGMs estimated in this study are the

MPEG model by Easton (2004) and the OJ model by Ohlson and Juettner-Nauroth (2005).

I exclude ICC below 0% and above 100%. Furthermore, I drop observations for which

any of the composite ICC values is missing due to the aforementioned constraint.8

An overview over the models is given in Appendix C.1. In addition to prices, which

are observable, the crucial input to all of these models are expected earnings. The

methodology employed to derive these expectations is detailed in the next subsection.

4.3.2 Earnings forecasts and model estimation

Earnings forecasts

I cover a selection of different earnings forecast models. First, I predict earnings using

5This is quite a restrictive assumption. In fact, Callen and Lyle (2020) show that the term structure of ICC
is not flat throughout most periods. In this context, Penman et al. (2023) argue that ICC are similar to the
yield-to-maturity for bonds and do not necessarily quantify the return for risk. However, a critique of ICC
per se is beyond the scope of this study.

6Note that despite being called implied cost of capital, ICC exclusively relate to equity capital.
7See e.g. Echterling et al. (2015) for an overview.
8This ensures an equal amount of ICC estimates per forecast model. However, in undocumented results I

confirm that the results remain robust even when this constraint is not imposed.
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the three most common traditional linear models, namely the HVZ model (Hou et al.,

2012), the EP model (Li and Mohanram, 2014) and the RI model (Li and Mohanram,

2014).9 All of these models are simple linear models of the following form:

Et[Ei,t+τ] = βXi,t, (4.2)

where Et[Ei,t+τ] denotes expected τ-period ahead earnings of firm i, β denotes a

vector of coefficients and Xi,t denotes a vector of predictor variables of firm i at time t.

The models differ in terms of which variables the input vector consists of. However,

in all three cases, it is low-dimensional, i.e., only a few predictor variables are utilized.

An overview over the models and their respective input variables is given in Table C.2 in

the Appendix.

In addition, I predict earnings using a flexible machine learning approach based on

multiple models. The models used in this study allow for complex functional forms f (·)
and high-dimensional input vectors. Formally, the models may generally be described as

follows:

Et[Ei,t+τ] = f (Xi,t). (4.3)

More precisely, I estimate an equally weighted ensemble of a random forest (RF),

a gradient-boosted tree model (GBT) and a gradient-boosted tree model with dropout

(DART).10 Crucially, these models leverage a broader and more extensive set of inputs

compared to traditional linear approaches. Closely following Hess et al. (2024), I provide

the models with the complete financial statement data from Compustat.11 An overview

over these financial statement items is given in Table C.4 in the Appendix.

Note that although a random walk type forecasting approach achieves similar accuracy

as many of the models employed in the literature (e.g., Gerakos and Gramacy, 2012;

Li and Mohanram, 2014), I do not include such a model in this study.12 The reason

behind this lies in its conceptual mismatch for ICC calculation. To elaborate, random

9These models are named traditional models hereafter.
10I exclusively resort to tree-based methods in this study due to their ease of implementation and

restrictions regarding computational power. Building on, inter alia, Hess et al. (2024), who show that model
averaging leads to increases in model performance and on the literature which uses tree-based models to
proxy for ML approaches in general (e.g., Van Binsbergen et al., 2023), I argue that this tree-based ensemble
approach resembles a valid proxy for flexible ML models.

11Note that certain restrictions apply. A comprehensive discussion is provided in section 4.3.5 below.
12A random walk model equates earnings forecasts for any forecast horizon with current earnings.
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walk forecasts remain constant across forecast horizons, consequently impeding any

possibility of earnings growth (Li and Mohanram, 2014).

Model estimation

I employ a rolling window strategy to estimate the models and retrieve out-of-sample

earnings predictions which are then used to compute ICC. More specifically, in the case

of the ML approaches, I split the data into training, tuning and test data. For each

forecast horizon τ, the procedure for generating forecasts t + τ is as follows: I train the

models using earnings from t − 11 to t − 2 as output and respective financial statement

data lagged by τ as input. I then tune the models using earnings from t − 1 to t as

output and respective financial statement data lagged by τ as input. By tuning, I refer

to finding the set of model-specific hyperparameter values that correspond to the best

predictions for the tuning data. A summary of these model-specific hyperparameters is

given in Appendix C.3. I subsequently derive earnings predictions for t + τ by feeding

the optimized models the input variables from t. I then move forward one year and

repeat the procedure. Importantly, I follow Hou et al. (2012) and Li and Mohanram (2014)

and estimate the models at the end of June each year, assuming a three to fourteen month

reporting lag for financial statements.13

The traditional linear approaches do not require hyperparameter tuning. In these

cases, I only split the data into training and test data. The rest of the procedure remains

the same. More precisely, for each forecast horizon τ, I train the models using earnings

from t − 11 to t as output and respective financial statement data lagged by τ as input. I

subsequently derive earnings predictions for t + τ by feeding the estimated models the

input variables from t.

4.3.3 Predictive performance

One of the key contributions of this study is that I differentiate between general accuracy

and systematic distortions. The latter includes attributes such as bias or varying accuracy

across subsets of firms.14 In the following, I describe how I measure general accuracy

and the degree to which systematic distortions are present in a model forecast.

13More precisely, data from April of year t − 1 to March of year t is considered to be the most recent fiscal
year-end data available as of June in t and hence comprises the information as of t.

14Existing studies typically only focus on specific forms of systematic distortions. For example, Hou et al.
(2012) only determine the bias of their forecast model.
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General accuracy

I define general accuracy as the price scaled absolute forecast error (PAFE), the

primary method of evaluating earnings forecasts in the literature (e.g., Hou et al., 2012;

Li and Mohanram, 2014; Hess et al., 2019). The PAFE is calculated as follows:

PAFEi,t+τ =
|Ei,t+τ − Êi,t+τ|

Pricei,t
, (4.4)

where Ei,t+τ denotes actual earnings for firm i in period t + τ, Êi,t+τ denotes the

corresponding forecast as of t and Pricei,t is the firm’s stock price at the end of June in

the respective estimation year. I compute the general accuracy of a given forecast model

as its median PAFE across all out-of-sample periods.

Systematic distortions

To determine the degree to which forecasts are exposed to systematic distortions, I

propose a novel, simulation-based metric. Generally, the metric captures the difference

between the forecasts of the respective model and corresponding forecasts which exhibit

zero systematic distortions and the same level of general accuracy. I derive the undistorted

forecasts via simulation. More precisely, I simulate such earnings forecasts as follows: let

Ei,t+τ denote earnings to be predicted for firm i in future period t+ τ. Moreover, consider

some median PAFE denoted by ˆPAFE
model
t+τ .15 This PAFE resembles the respective model’s

median PAFE which the corresponding undistorted forecasts should match. I then draw

from a normal distribution centered around 0 with standard deviation σ, repeating

the process for each firm i and each forecast period t + τ. Importantly, σ depends on

the desired median accuracy ˆPAFE
model
t+τ . More precisely, for a given level of general

accuracy, I solve for the respective σ leading to ˆPAFE
model
t+τ via numerical optimization.

This yields firm/forecast period specific deviations Γi,t+τ. I then derive undistorted

earnings predictions Êud
i,t+τ for a given level of general accuracy by setting

Êud
i,t+τ = Ei,t+τ + Γi,t+τ. (4.5)

Note that this method ensures equal treatment of every firm, as the deviation dis-

tribution remains consistent across all firms, while matching the general accuracy of

the respective forecast model considered. In essence, each firm, regardless of size or

other characteristics, is expected to exhibit the same level of general accuracy. Moreover,

15The method is agnostic towards the evaluation metric used. Hence, one may also use, e.g., the OOS R2.
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since the deviation distribution’s mean is zero, there is no inherent bias, eliminating

any systematic tendencies toward overestimation or underestimation. Consequently,

the forecasts are absent of any form of systematic distortion, as each forecast is equally

unbiased and reliable across the entire spectrum of firms.

Equipped with a set of undistorted forecasts with equal general accuracy as the

respective forecast model of interest, I derive the degree to which a forecast is exposed

to systematic distortions via the Kolmogorov-Smirnov (KS) test for two samples. More

specifically, I measure the difference between the distribution of model forecasts and

the corresponding distribution of undistorted forecasts with the same level of general

accuracy by deriving the two-sample KS test statistic for these two sets of forecasts. The

larger the size of the KS test statistic, the more dissimilar the forecasts, i.e., the larger the

degree of systematic distortions. In the following, I will refer to the KS test statistic for

the difference between actual forecasts and corresponding undistorted forecasts as SYSD.

4.3.4 Portfolio analysis and transaction costs

Following the literature, I construct long-short portfolios conditional on ICC to evaluate

the investment performance (e.g., Hou et al., 2012; Li and Mohanram, 2014; Hess et al.,

2019).16

More precisely, the procedure is as follows: at the end of June in a given year, I derive

the cross-section of ICC. I then sort firms according to their ICC and go long the highest

quantile and short the lowest quantile of stocks, equally weighting each stock within the

respective quantile. To enhance the robustness of the results, I evaluate various common

quantile splits, including decile, quintile, and tercile splits. Finally, I observe the realized

returns in the following year, i.e., from July in the respective year to (including) June of

the following year. The procedure is then repeated in the following year, such that the

investment portfolio is rebalanced annually at the end of June. In total, this procedure

leads to 42 out-of-sample investment periods.

In contrast to the majority of existing studies, I explicitly account for transaction costs.

Transaction costs (TC) associated with the rebalancing of the weight w of stock i in period

t are derived as follows:

16Note that one can use ICC as an expected return proxy in any alternative approach. For example,
Bielstein (2018) uses ICC in a Markowitz portfolio optimization scenario.
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TCi,t = κi,t|wi,t − (1 + ri,t−1)wi,t−1|, (4.6)

where ri,t−1 is the return that stock i generated in period t − 1 and κi,t is a transaction

cost parameter.

Following Brandt et al. (2009), Hand and Green (2011) and DeMiguel et al. (2020), I

define the transaction cost parameter κi,t associated with stock i at time t as

κi,t = ytzi,t, (4.7)

where zi,t = 0.006 − 0.0025mei,t, with mei,t as the cross-sectionally normalized market

capitalization of firm i at time t. yt is a vector consisting of values which decrease linearly

from 3.3 in January 1980 to 1.0 in January 2002, and remain 1.0 afterwards. Compared to

Esterer and Schröder (2014) and Bielstein (2018), who use flat percentages, this represents

a more granular and realistic approach of modeling transaction costs that is in line with

the current literature.

4.3.5 Data

The sample resembles an intersection of Compustat and CRSP data. Earnings as well as

other financial statement items used to derive earnings forecasts and ICC are retrieved

from Compustat. Returns and prices are retrieved from CRSP. The sample covers

securities with share codes 10 or 11 which are listed on the NYSE, Amex or Nasdaq.

I drop observations with missing or < 1$ price, missing common shares outstanding

or missing earnings. The Compustat data spans from 1969 to 2021. Considering the

assumed reporting lag mentioned above, this implies that the most recent estimation

date for ICC is June 2022. As returns are collected in the year following the respective

ICC estimation and hence portfolio formation date, the CRSP data extends to 2023.

The ML model is estimated using the Compustat financial statement items that remain

after dropping variables with more than 50% of observations missing or no observations

in any of the cross-sections (i.e., estimation years).17 I also include the subset of traditional

model variables which is not included in the aforementioned group of financial statement

variables. In total, this amounts to a predictor set of 109 variables which the ML model

17I also drop variables already scaled by shares. The reason for that is, that I scale all variables by shares
and hence these variables are redundant. Further, due to computational restrictions, I do not include lags
and first-order differences in contrast to the approach taken by Hess et al. (2024).
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utilizes. An overview over these variables is given in Table C.4 in the Appendix. An

overview over the variables used to estimate the traditional models is given in Table C.2

in the Appendix.

To ensure consistency, earnings are defined as Compustat income before extraordinary

items and discontinued operations (ib), irrespective of the earnings forecast model.18 All

variables, including the target variable, are scaled by common shares outstanding and

winsorized at the 1% and 99% level, respectively.

4.4 Results

4.4.1 Evaluating earnings forecasts

The results in regards to predictive performance are reported in Table 4.1. The ML

model outperforms the traditional models in terms of general accuracy and degree to

which systematic distortions are present. For t + 1 predictions, for example, the ML

model achieves a median PAFE which is around 10% lower than that of the second-best

performing model, i.e., the RI model. Interestingly, the second-best performing model

in terms of SYSD is the HVZ model, which the ML model beats by around 14%. The

percentage differences in median PAFE show a slight decrease as the forecast horizon

increases. Furthermore, the percentage differences in SYSD converge towards zero with

increasing forecast horizon. In other words, for longer-term forecasts, all models display

similar levels of systematic distortions. These results indicate that the performance of

earnings forecast models converges with increasing forecast horizon in terms of both

dimensions of accuracy considered.

Overall, the results stress that the ML model is not only generally more accurate, but

also exhibits a lower amount of systematic distortions than common traditional earnings

forecast models. It hence improves over common traditional models in both aspects of

predictive performance considered. However, forecast performance converges as the

forecast horizon increases.

4.4.2 Implied cost of capital

Table 4.2 gives an overview over the ICC estimates based on each forecast model con-

sidered. In general, the traditional models and the ML model lead to similar ICC in

18Note that this might lead to deviations from the original models.
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Table 4.1: Model-based earnings forecast accuracy

Et+1 Et+2 Et+3 Et+4 Et+5

HVZ PAFE 0.0318*** 0.0453*** 0.0547*** 0.0638*** 0.0733***
SYSD 0.1497*** 0.2386*** 0.2978*** 0.3451*** 0.3815***

EP PAFE 0.0308*** 0.0435*** 0.0524*** 0.0608*** 0.0696***
SYSD 0.1520*** 0.2403*** 0.2988*** 0.3457*** 0.3813***

RI PAFE 0.0307*** 0.0427*** 0.0507*** 0.0580*** 0.0664***
SYSD 0.1498*** 0.2362*** 0.2928*** 0.3383*** 0.3737***

ML PAFE 0.0277*** 0.0392*** 0.0476*** 0.0554*** 0.0621***
SYSD 0.1283*** 0.2153*** 0.2832*** 0.3367*** 0.3789***

This table reports the general accuracy as well as the level of systematic distortions for each model
considered. General accuracy is measured as the median price scaled absolute forecast error (PAFE).
Systematic distortions are measured as the Kolmogorov-Smirnov test statistic of the comparison between
simulated forecasts exposed to no systematic distortions and actual model forecasts exposed to systematic
distortions (SYSD). The simulated forecasts are derived such that their general accuracy (measured via the
median PAFE) is equal to the general accuracy of the actual model forecasts for each forecast horizon. Et+1
to Et+5 denote one- to five-year ahead earnings. HVZ is the model by Hou et al. (2012), EP and RI are the
models by Li and Mohanram (2014), and ML is the machine learning approach based on Hess et al. (2024).
***, **, and * denote statistical significance at the 1%, the 5% and the 10% level, respectively. Standard errors
used for deriving statistical significance of the median PAFE are adjusted following Driscoll and Kraay
(1998) assuming a lag length of three years.

terms of descriptive statistics. ICC estimates of each model considered have an average

of 10.07-10.93% and a standard deviation of 6.73-7.87%. The remaining statistics also

exhibit minimal variation across the forecast models under consideration.

Table 4.2: Implied cost of capital: descriptive statistics

N Mean Std Min 25% 50% 75% Max

HVZ 212 434 0.1093 0.0787 0.0005 0.0608 0.0894 0.1317 0.9933
EP 212 434 0.1037 0.0733 0.0004 0.0593 0.0838 0.1234 0.9968
RI 212 434 0.1007 0.0673 0.0000 0.0599 0.0841 0.1201 0.9532
ML 212 434 0.1012 0.0684 0.0001 0.0583 0.0849 0.1230 0.9822

This table reports descriptive statistics of the ICC based on the different earnings forecast models for the
period during 1981-2022. The ICC are derived as the average of the GG model (Gordon and Gordon, 1997),
the GLS model (Gebhardt et al., 2001), the CT model (Claus and Thomas, 2001), the MPEG model (Easton,
2004) and the OJ model (Ohlson and Juettner-Nauroth, 2005). HVZ refers to ICC based on HVZ model
earnings forecasts (Hou et al., 2012), EP and RI refer ICC based on EP and RI model earnings forecasts (Li
and Mohanram, 2014), and ML refers to ICC based on ML model earnings forecasts (Hess et al., 2024). The
table reports the number of ICC estimated (N), the average ICC (Mean), the standard deviation of ICC (Std),
the minimum (Min), the 25%-percentile (25%), the median (50%), the 75%-percentile (75%) as well as the
maximum (Max) of the ICC estimates.

In Figure 4.1 I plot the time-series of the ICC estimates based on the different forecast

models. It becomes evident that all ICC move in similar patterns, i.e., they react similarly

to different market states. This is expected, as all forecast models share the most

important future earnings predictor, i.e., current earnings. Mirroring the findings by Hou
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et al. (2012), the ICC estimates generally seem to decrease over the periods considered.
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Figure 4.1: Time-series of ICC
This figure plots the average ICC estimates per estimation year and per earnings forecast model considered.
The ICC are derived as the average of the GG model (Gordon and Gordon, 1997), the GLS model (Gebhardt
et al., 2001), the CT model (Claus and Thomas, 2001), the MPEG model (Easton, 2004) and the OJ model
(Ohlson and Juettner-Nauroth, 2005). HVZ refers to ICC based on HVZ model earnings forecasts (Hou et al.,
2012), EP and RI refer ICC based on EP and RI model earnings forecasts (Li and Mohanram, 2014), and ML
refers to ICC based on ML model earnings forecasts (Hess et al., 2024).

I quantify the fact that ICC behave similarly by reporting the Pearson correlation

coefficients in Table 4.3. ICC based on the three traditional models correlate strongly with

each other, with correlation coefficients ranging from around 0.85 to 0.88. Conversely,

ICC based on the ML model display lower correlation with those based on the other

models, with correlation coefficients ranging from approximately 0.69 to 0.71.

Table 4.3: Implied cost of capital: Pearson correlation coefficients

HVZ EP RI ML

HVZ 1.0000
EP 0.8590 1.0000
RI 0.8462 0.8811 1.0000
ML 0.6998 0.6854 0.7146 1.0000

This table reports the Pearson correlation coefficients of the ICC based on the different earnings forecast
models. The ICC are derived as the average of the GG model (Gordon and Gordon, 1997), the GLS model
(Gebhardt et al., 2001), the CT model (Claus and Thomas, 2001), the MPEG model (Easton, 2004) and the OJ
model (Ohlson and Juettner-Nauroth, 2005). HVZ refers to ICC based on HVZ model earnings forecasts
(Hou et al., 2012), EP and RI refer ICC based on EP and RI model earnings forecasts (Li and Mohanram,
2014), and ML refers to ICC based on ML model earnings forecasts (Hess et al., 2024).
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4.4.3 Portfolio returns

I now turn to the main research focus of this study by assessing the relation between fore-

cast model performance and ICC portfolio returns against the background of transaction

costs.

Table 4.4 reports average returns of the long-/short-legs as well as the long-short

spread returns of the three different quantile splits with equal weighting within the

respective leg. In the following, I will refer to the ICC long-short portfolio based on the

respective earnings forecast model as model portfolio. For example, the ICC long-short

portfolio based on the HVZ model is simply referred to as the HVZ portfolio.

Table 4.4: Average returns of portfolio sorts on implied cost of capital

HVZ EP RI ML

Deciles

1 0.1188 0.1139 0.1133 0.0850
10 0.1476 0.1474 0.1528 0.1515
10-1 0.0288 0.0335 0.0394 0.0665**
10-1 net 0.0149 0.0192 0.0253 0.0520*

Quintiles

1 0.1124 0.1110 0.1093 0.0994
5 0.1410 0.1392 0.1458 0.1502
5-1 0.0287 0.0282 0.0365 0.0509**
5-1 net 0.0160 0.0152 0.0237 0.0376*

Terciles

1 0.1159 0.1146 0.1123 0.1097
3 0.1410 0.1428 0.1462 0.1492
3-1 0.0252 0.0282 0.0339* 0.0395**
3-1 net 0.0140 0.0169 0.0226 0.0280

This table reports both the average gross and net returns per ICC long-short portfolio. I consider three
quantile splits, i.e., decile splits, quintile splits, and tercile splits. Transaction costs are accounted for
following Brandt et al. (2009), Hand and Green (2011) and DeMiguel et al. (2020). HVZ refers to the ICC
portfolio based on HVZ model earnings forecasts (Hou et al., 2012), EP and RI refer to ICC portfolios based
on EP and RI model earnings forecasts (Li and Mohanram, 2014), and ML refers to the ICC portfolio based
on ML model earnings forecasts (Hess et al., 2024). ***, **, and * denote statistical significance at the 1%, the
5% and the 10% level, respectively. Standard errors used for deriving statistical significance are adjusted
following Newey and West (1987) assuming a lag length of three years. Statistical significance is only derived
for the long-short returns.

Irrespective of the number of quantiles chosen, the ML portfolio outperforms the

other portfolios by a significant margin, both gross and net of transaction costs.

Gross of transaction costs, the ML portfolio achieves a statistically significant average

annual spread return of 6.65% in the decile split scenario. It consistently outperforms the

other portfolios by a margin ranging from 2.71 to 3.77 percentage points. This translates

into the ML portfolio achieving between 68.78% and 130.93% higher average gross return

spreads compared to the other portfolios. The remaining portfolios achieve statistically
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insignificant average gross return spreads of 2.88-3.94%.

Upon factoring in transaction costs, the rankings of the portfolios in terms of average

return spread remain unchanged. Yet, returns decline by a significant margin. The ML

portfolio still clearly outperforms the other portfolios, achieving a statistically significant

average net return spread of 5.20%. In absolute terms, the percentage differences decrease

only slightly, with differences as compared to the other portfolios ranging from 2.67 to

3.71 percentage points.

Turning to the quintile as well as the tercile split scenarios reveals two key insights.

First, the bigger the quantile, the lower the average return spread, both gross and net of

transaction costs. The average gross ML portfolio return, for example, decreases to 5.09%

in the quintile case and to 3.95% in the tercile case. The same dynamic holds true for the

remaining portfolios. Second, the ML portfolio clearly outperforms the other portfolios

for each quantile size considered. However, the ranking among the other portfolios

changes with changing quantile size. More precisely, the EP portfolio is the third-best

performing portfolio in the decile as well as the tercile split scenario, but falls short of

the HVZ portfolio in the quintile scenario. The ML portfolio demonstrates statistically

significant gross and net returns in both the decile as well as the quintile split scenario,

and statistically significant gross returns in the tercile split scenario. With the exception of

gross returns of the tercile RI portfolio, the remaining portfolios fail to yield statistically

significant average returns.

Assessing the returns across the out-of-sample periods in Figure 4.2 reveals additional

insights and stresses the economic dimensions of the aforementioned differences in

portfolio performance.

First, as the results regarding average performance suggest, the ML portfolio clearly

outperforms the other portfolios. When considering decile splits, the ML portfolio

achieves a cumulative gross return of more than 610% throughout out-of-sample periods,

clearly outperforming the traditional model portfolios, which achieve cumulative returns

of around 23-108% by the end of the out-of-sample time frame. Second, the less granular

the split approach, the lower the margin by which the ML portfolio outperforms the other

portfolios. This suggests that the ML-based ICC relate particularly well to future returns

in the most extreme quantiles, i.e., the very highest and the very lowest next-period

returns. Yet, even when considering tercile splits, the ML portfolio still outperforms the

second best portfolio, i.e., the RI portfolio, by more than around 69 percentage points
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Figure 4.2: Cumulative gross returns
This figure plots the cumulative annual gross returns of the ICC long-short portfolios. I consider three
quantile splits, i.e., decile splits, quintile splits, and tercile splits. HVZ refers to the ICC portfolio based
on HVZ model earnings forecasts (Hou et al., 2012), EP and RI refer to ICC portfolios based on EP and RI
model earnings forecasts (Li and Mohanram, 2014), and ML refers to the ICC portfolio based on ML model
earnings forecasts (Hess et al., 2024).

in terms of cumulative returns. Third, irrespective of the quantile split scenario, the

portfolios are at similar and comparably low cumulative return levels up until 2000.

Afterwards there is a sharp increase in cumulative returns up until 2010, before they stay

on somewhat similar levels and even decrease at the end of the out-of-sample time-frame.

Figure 4.3 shows that the net return time-series patterns are identical to the gross

return patterns. However, cumulative portfolio returns diminish significantly upon the

inclusion of transaction costs. For instance, the ML portfolio achieves a cumulative return

of around 295% in the decile split scenario. The other models yield cumulative returns of

around zero or even below zero. Once again, this stresses the importance of considering

transaction costs when assessing ICC portfolios, as it significantly influences results.

Notably, this also means that the gap between the ML portfolio and the second-best

portfolio narrows to around 281 percentage points when considering decile splits. This is

attributable to the fact that the exponential effect of compounding necessarily leads to
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a convergence of cumulative returns when overall return levels decrease. Interestingly

and contrary to the gross return scenario, the cumulative net returns of the traditional

model portfolios increase with increasing quantile size. This is attributable to decreasing

turnover levels with increasing quantile size, as I show below. Moreover, this stresses that

the portfolio split considered can strongly influence cumulative returns via transaction

costs. In the case of the ML portfolio, cumulative net returns once again decrease with

increasing quantile size.

To summarize, I find that the best-performing forecast model in terms of median PAFE

and SYSD leads to the highest ICC long-short portfolio returns. Moreover, transaction

costs significantly impact portfolio performance. However, the results suggest that

transaction costs do not strongly vary between different ICC portfolios on average.
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Figure 4.3: Cumulative net returns
This figure plots the cumulative annual net returns of the ICC long-short portfolios. I consider three quantile
splits, i.e., decile splits, quintile splits, and tercile splits. HVZ refers to the ICC portfolio based on HVZ
model earnings forecasts (Hou et al., 2012), EP and RI refer to ICC portfolios based on EP and RI model
earnings forecasts (Li and Mohanram, 2014), and ML refers to the ICC portfolio based on ML model earnings
forecasts (Hess et al., 2024). Transaction costs are accounted for following Brandt et al. (2009), Hand and
Green (2011) and DeMiguel et al. (2020).
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4.4.4 Return spread differences through a factor lense

At the very heart of finance lies the question of how risk and return are related. Con-

sequently, it becomes compelling to scrutinize the systematic risk factors driving the

differences in return spreads. To this end, I regress the return spread differences on the

five factors posited by Fama and French (2015). More precisely, I focus on the return

spread differences between the ML portfolio and each of the remaining portfolios.

Table 4.5 summarizes the results and reveals several key insights. First, in terms

of risk loadings, no stark differences between gross and net return differences across

different quantile split scenarios exist. Second, the ML portfolio differs from the other

portfolios in terms of risk factor loadings. More precisely, the portfolios based on

traditional forecast models exhibit stronger small-minus-big (SMB) and conservative-

minus-aggressive (CMA) factor loadings than the ML portfolio. The corresponding

coefficients are negative and statistically significant in almost every case.19 In contrast,

the ML portfolio loads stronger on the robust-minus-weak-profitability (RMW) as well

as the high-minus-low (HML) factor. The corresponding coefficients are positive and

statistically significant in every case.

In sum, the results indicate that systematic differences between the ML portfolio and

the other portfolios in terms of risk (factor loadings) exist. The ML portfolio appears to

load more heavily on the RMW as well as the HML factor, whereas the other portfolios

load more heavily on the SMB as well as the CMA factor, in comparison.

4.4.5 Dissecting transaction costs

In general, the comparison between gross and net returns suggests that there are no

significant differences among the portfolios in terms of transaction costs. However, the

ML portfolio appears to incur a slightly higher amount of transaction costs on average.

Panel A in Table 4.6 confirms these results. The Panel gives an overview of the average

transaction costs per long-/short-leg as well as the respective sum.

Generally, average annual transaction costs range from around 1.12-1.15% for the

tercile portfolios to around 1.39-1.45% for the decile portfolios. Considering the return

levels of the portfolios, these are quite large values. Remarkably, in each quantile split

scenario examined, the ML approach consistently incurs the highest average transaction

19The SMB coefficients are statistically significant in every case. The CMA coefficients are statistically
significant for every decile portfolio difference and most quintile portfolio differences.
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Table 4.5: Factor loadings of ICC portfolio return differences

α βMKT βSMB βHML βRMW βCMA Adj. R2

Deciles

∆HVZ 0.0171 0.0091 −0.6856*** 0.2007** 0.6117*** −0.3588* 0.4662
∆HVZ,net 0.0165 0.0085 −0.6858*** 0.2008** 0.6113*** −0.3564* 0.4673
∆EP 0.0115 −0.0036 −0.9435*** 0.3574*** 0.6878*** −0.5040** 0.5277
∆EP,net 0.0113 −0.0042 −0.9429*** 0.3572*** 0.6871*** −0.5025** 0.5278
∆RI 0.0093 0.0056 −0.5225*** 0.1536* 0.5455*** −0.3235* 0.4545
∆RI,net 0.0090 0.0055 −0.5217*** 0.1537* 0.5449*** −0.3228* 0.4541

Quintiles

∆HVZ 0.0042 0.0419 −0.4937*** 0.2782*** 0.4681*** −0.4174** 0.5203
∆HVZ,net 0.0036 0.0420 −0.4926*** 0.2778*** 0.4684*** −0.4164** 0.5214
∆EP 0.0035 0.0207 −0.6627*** 0.3304*** 0.3913*** −0.2418 0.5657
∆EP,net 0.0032 0.0205 −0.6609*** 0.3300*** 0.3914*** −0.2420 0.5654
∆RI 0.0017 −0.0005 −0.4398*** 0.2451*** 0.4217*** −0.3761** 0.5761
∆RI,net 0.0013 −0.0006 −0.4387*** 0.2453*** 0.4216*** −0.3768** 0.5772

Terciles

∆HVZ 0.0046 0.0148 −0.3261*** 0.1913*** 0.2354*** −0.2078 0.4079
∆HVZ,net 0.0042 0.0150 −0.3257*** 0.1908*** 0.2357*** −0.2068 0.4080
∆EP −0.0047 0.0100 −0.5464*** 0.2270*** 0.3083*** −0.1176 0.5516
∆EP,net −0.0047 0.0097 −0.5455*** 0.2267*** 0.3084*** −0.1176 0.5512
∆RI −0.0069 0.0318 −0.3128*** 0.1509** 0.2338*** −0.1361 0.4376
∆RI,net −0.0071 0.0320 −0.3125*** 0.1506** 0.2337*** −0.1354 0.4381

This table reports regression results for the return differences between the ML portfolio and the other portfolios on the factors provided by Fama and French (2015).
Factors are retrieved from Kenneth French’s website (https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html). I consider three
quantile splits, i.e., decile splits, quintile splits, and tercile splits. Transaction costs are accounted for following Brandt et al. (2009), Hand and Green (2011) and DeMiguel
et al. (2020). HVZ refers to the ICC portfolio based on HVZ model earnings forecasts Hou et al. (2012), EP and RI refer to ICC portfolios based on EP and RI model
earnings forecasts Li and Mohanram (2014), and ML refers to the ICC portfolio based on ML model forecasts Hess et al. (2024). Return differences are derived by
subtracting the respective portfolio return from the ML portfolio return. Each row refers to one return difference regression. For example, ∆HVZ (∆HVZ,net) refers to the
regression of gross (net) return differences between the ML portfolio and the HVZ portfolio on the factors provided by Fama and French (2015). ***, **, and * denote
statistical significance at the 1%, the 5% and the 10% level, respectively. Standard errors used for deriving statistical significance are adjusted following Newey and West
(1987) assuming a lag length of three years.

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 4.6: Transaction costs of portfolio sorts on implied cost of capital

Panel A: Average transaction costs

HVZ EP RI ML

Deciles
1 0.0069 0.0072 0.0071 0.0074
10 0.0070 0.0071 0.0070 0.0071
10-1 0.0139 0.0142 0.0141 0.0145

Quintiles
1 0.0063 0.0065 0.0065 0.0068
5 0.0063 0.0064 0.0064 0.0064
5-1 0.0126 0.0130 0.0128 0.0133

Terciles
1 0.0057 0.0058 0.0058 0.0061
3 0.0055 0.0056 0.0055 0.0054
3-1 0.0112 0.0114 0.0113 0.0115

Panel B: Average turnover

HVZ EP RI ML

Deciles
1 0.7443 0.7771 0.7753 0.7993
10 0.7778 0.7828 0.7766 0.7932
10-1 1.5221 1.5599 1.5519 1.5925

Quintiles
1 0.6742 0.7045 0.6949 0.7296
5 0.6976 0.7095 0.7044 0.7179
5-1 1.3718 1.4140 1.3993 1.4475

Terciles
1 0.5987 0.6150 0.6169 0.6388
3 0.5995 0.6141 0.6046 0.6009
3-1 1.1982 1.2290 1.2216 1.2397

Panel C: Average transaction cost estimate

HVZ EP RI ML

Deciles
1 0.9007 0.8992 0.9009 0.9048
10 0.9087 0.9084 0.9080 0.9080
10-1 0.9047 0.9038 0.9045 0.9064

Quintiles
1 0.9016 0.9007 0.9017 0.9040
5 0.9078 0.9080 0.9073 0.9070
5-1 0.9047 0.9044 0.9045 0.9055

Terciles
1 0.9016 0.9015 0.9023 0.9036
3 0.9069 0.9071 0.9066 0.9059
3-1 0.9043 0.9043 0.9045 0.9047

This table reports and dissects the average annual transaction costs per (long/short leg of the) ICC long-short
portfolio. I consider three quantile splits, i.e., decile splits, quintile splits, and tercile splits. HVZ refers to the
ICC portfolio based on HVZ model earnings forecasts (Hou et al., 2012), EP and RI refer to ICC portfolios
based on EP and RI model earnings forecasts (Li and Mohanram, 2014), and ML refers to the ICC portfolio
based on ML model earnings forecasts (Hess et al., 2024). Panel A shows the average annual transaction
costs per (long/short leg of the) ICC long-short portfolio. In a given year, the transaction costs are derived
as the sum of the products of stock-specific turnover times the respective stock-specific transaction costs.
Stock-specific transaction costs are estimated following Brandt et al. (2009), Hand and Green (2011) and
DeMiguel et al. (2020). Values are denoted in decimals, i.e., 0.01 denotes 1%. Panel B shows the average
annual turnover per (long/short leg of the) ICC long-short portfolio. In a given year, turnover is derived as
the absolute sum of stock weights minus the respective lagged stock weights, adjusted for the respective
returns. Values are denoted in decimals, i.e., 0.01 denotes 1%. Panel C shows the average annual transaction
costs per stock included in the respective (long/short leg of the) ICC long-short portfolio. Stock-specific
transaction costs are estimated for following Brandt et al. (2009), Hand and Green (2011) and DeMiguel et al.
(2020). Values are denoted in percentage points, i.e., 1 denotes 1%.
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costs. This suggests that while the ML model achieves accuracy gains, these come at the

expense of slightly elevated transaction costs. However, these differences compared to

the other models are minimal, with a maximum deviation of only around 0.06%. The

table further shows that in general, the transaction costs are slightly more concentrated

in the short-legs of the portfolio strategies.

Total transaction costs are the product of turnover and the respective cost parameter.

Breaking them down accordingly helps to determine the causes of differences and reveals

potentially important insights in general. Panel B in Table 4.6 shows average annual

turnover per portfolio. Turnover decreases with quantile size, from around 152-159%

for the decile portfolios to around 120-124% for the tercile portfolios.20 Regardless

of the quantile split examined, the ML portfolio consistently experiences the highest

average annual turnover, exhibiting differences of approximately 3.26-7.04 percentage

points compared to the other portfolios in the decile split scenario. Panel C in Table

4.6 contains the average transaction cost parameter estimates. Interestingly, the overall

average transaction cost parameter of the ML portfolio is the highest for each quantile

split considered. As outlined above, the parameter is a function of time and firm size.

Trivially, time does not vary among quantiles or portfolios. Any differences in average

cost estimates are thus due to differences in firm sizes. Consequently, the results imply

that the ML portfolio invests into smaller firms to a larger extent than the other portfolios,

on average.

Overall, the results of the empirical analysis stress the fact that more accurate and

less distorted forecasts lead to more profitable ICC investment strategies. Importantly,

however, this holds true, even when accounting for transaction costs. In fact, the portfolio

based on the best performing forecast model, the ML portfolio, only incurs a minor

increase in transaction costs as compared to the other portfolios based on less accurate

and more distorted earnings forecast models on average.

4.5 Extending the empirical analysis

4.5.1 The idea

Consistent with prior studies, I observe a positive relationship between the predictive

performance of model-based earnings forecasts and the performance of the resulting

20Both the long- and the short-leg of a portfolio can incur 100% turnover each.
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ICC portfolio. Notably, this relationship persists even after accounting for transaction

costs. Nevertheless, it is important to acknowledge limitations in the analysis, primarily

stemming from the fact that the main empirical analysis of this study does not differen-

tiate between the relation of general accuracy and portfolio returns and the relation of

systematic distortions and portfolio returns. The ML model beats the traditional models

in both aspects, making it impossible to disentangle the effects. To provide an example

which clarifies the difference: one of the key advantages of model-based forecasts over

analyst-based forecasts is the fact that they are less biased (Hou et al., 2012). Studies

further show that despite being less accurate than analyst-based forecasts, model-based

forecasts translate into significantly more profitable gross return spreads (e.g., Hou et al.,

2012; Hess and Wolf, 2022). This shows that it is not only general accuracy, but also other

characteristics of forecasts that determine the success of investment strategies conditional

on them. One further well-known example of such a characteristic of (model-based)

earnings forecasts which might impact portfolio performance, is that they are far less

accurate for small firms than for large firms.

Some studies developing earnings forecast models cover specific forms of systematic

distortion such as bias or the aforementioned accuracy difference between small and

large firms in addition to general accuracy (e.g., Hou et al., 2012; Li and Mohanram,

2014). However, to the best of my knowledge, no study aims to measure systematic

distortions and their impact on portfolio performance in general. I aim to fill this gap and,

based on a simulation framework, study the effect of achieving both zero median PAFE

(perfect general accuracy) and a SYSD of zero (no systematic distortions) on ICC portfolio

returns.21 This analysis indicates the return-decreasing effects that both dimension of

accuracy have and shows how completely mitigating them would theoretically affect ICC

portfolio performance.

By introducing a second simulation framework, I then dig deeper into the relations

between the two dimensions of model performance and ICC portfolio returns. More

precisely, I approximate the effect of gradually de-/increasing the median PAFE while

holding the SYSD constant, and vice versa. By doing so, I do not only examine how

achieving perfect accuracy along either of the two dimensions, but also how e.g., reducing

21de Azevedo (2018) also assesses ICC portfolios based on perfect forecasts. However, first and foremost,
he does not consider transaction costs and their relation to accuracy. Second, he only considers perfect
general accuracy and does not assess perfectly undistorted forecasts. Third, he analyzes such portfolios in
the context of deriving the effect of analyst forecast errors on ICC. In contrast, this study is concerned with
the effect of model-based forecast performance on ICC.
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the median PAFE by 50% while holding the SYSD constant impacts ICC portfolio returns.

In sum, these analyses provide evidence for how exactly the two dimensions of

accuracy, i.e., general accuracy and systematic distortions, relate to ICC portfolio returns.

4.5.2 Systematic distortions versus general accuracy

I propose a straightforward methodology for determining the impact of completely

mitigating systematic distortions versus achieving perfect general accuracy.22 In a first

step, I generate earnings forecasts that exhibit uniform accuracy and no bias across

all types of firms. More precisely, for each of the four forecast models considered, I

generate a set of forecasts which matches the respective level of general accuracy for

each forecast horizon, but exhibits zero systematic distortions. I do so by following the

same procedure as in the case of the newly introduced metric measuring systematic

distortions above (SYSD). I then assess the average spread returns of ICC portfolios based

on these forecasts. The disparity in spreads between portfolios derived from actual model

forecasts and their corresponding undistorted forecasts, which align with comparable

levels of general accuracy, illustrates the potential enhancement in portfolio performance

attainable through the complete mitigation of systematic distortions, while maintaining

consistent levels of general accuracy.

In a second step, I derive forecasts which are not exposed to systematic distortions

and resemble perfect general accuracy. Trivially, these are the actual future earnings

realizations. I again compute the average returns of ICC portfolios based on these

forecasts. The difference between these average returns and the average returns based on

undistorted forecasts with some level of general accuracy present indicates the increase in

portfolio performance that may be achieved by completely mitigating general inaccuracies

while holding the level of systematic distortions constant (at a level of zero).

In sum, I disentangle the effects of achieving perfect accuracy while holding the

degree of systematic distortions constant, and vice versa. An important consideration

is that this substantially alters the sample for which ICC can be computed. This stems

from the necessity of future earnings data for simulating earnings forecasts with both

zero SYSD and zero median PAFE. However, I address this concern in my subsequent

comparison by restricting the analysis to firm-year observations for which simulated

forecasts exist. Put differently, I reduce my actual model forecast sample to the firm-year

22Note that the latter implies the former, but the former does not imply the latter.
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observations for which simulated forecasts exist. This ensures a fair and meaningful

comparison while mitigating any potential biases introduced by the alteration in the

sample composition.

Figure 4.4 depicts the result.23 The figure shows the average ICC portfolio return

spreads based on the actual forecasts, based on simulated undistorted forecasts that

replicate the median PAFE of the respective actual forecast model for each forecast

horizon, and based on undistorted and perfectly accurate forecasts. First, it becomes

evident that the aforementioned sample change influences average return spreads. In fact,

return spreads based on actual earnings forecasts increase significantly as compared to

the spreads for the original sample. This is attributable to the survivorship bias that the

simulation introduces. Surprisingly, the ML portfolio is not the most profitable portfolio

anymore. However, this does not devalidate the results in section 4.4, as the sample in

this exercise is unrepresentative and biased. More so, it implies that the ML forecast

model did particularly well for those firms that are excluded in the simulation sample.

Second, albeit general return levels are distorted due to the sample changing, the

results reveal an important insight: systematic distortions of model-based forecasts,

such as imbalanced accuracy across firm sizes or bias, exert a substantial influence on

investment performance. When simulating undistorted earnings forecasts with the same

level of general accuracy as their respective actual forecast counterparts, gross (net)

average return spreads increase by around 81% (88%) to 213% (261%), depending on the

model, i.e., the level of general accuracy, and the quantile split considered. This effect is

very pronounced for every forecast model, making it conceivable that it translates into

an unbiased sample.24 Achieving perfect general accuracy yields an additional gross

(net) average return spread increase of around 17% (18%) to 33% (35%). Lastly and

importantly, transaction costs do not change significantly when completely mitigating

systematic distortions or when achieving perfect general accuracy.

In line with the findings by Hou et al. (2012) regarding the impact of forecast bias,

the results illustrate the major impact of systematic distortions on ICC portfolio returns.

Model forecasts which exhibit some median PAFE but are not systematically distorted,

i.e., exhibit no bias and perform equally for every type of firm, lead to stellar ICC

23Table C.5 in the Appendix provides a tabular summary of the results.
24This is an assumption which I consider conceivable due to the strength of the effect and its consistency

across models. Unfortunately, there is no way to test this for an unbiased sample. Apart from developing
actual models that exhibit the same exact general accuracy of existing models while not being affected by
systematic distortions, going the simulation route is the only way to empirically test this.
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portfolio improvements. In fact, such forecasts come close to perfect forecasts in terms of

ICC portfolio performance based on them.
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Figure 4.4: No systematic distortions versus perfect general accuracy
This figure illustrates the effect of forecasting earnings with zero systematic distortions (SYSD) versus zero
median price scaled absolute forecast error (PAFE) on both gross and net long-short ICC portfolio returns
based on the respective set of forecasts. The sample only includes observations for which simulated ICC are
available. I consider three quantile splits, i.e., decile splits (10-1), quintile splits (5-1), and tercile splits (3-1).
HVZ refers to the ICC portfolio based on HVZ model earnings forecasts (Hou et al., 2012), EP and RI refer
to ICC portfolios based on EP and RI model earnings forecasts (Li and Mohanram, 2014), and ML refers to
the ICC portfolio based on ML model earnings forecasts (Hess et al., 2024). Transaction costs are accounted
for following Brandt et al. (2009), Hand and Green (2011) and DeMiguel et al. (2020). The undistorted
forecasts are derived by simulating forecasts which match the respective model’s median PAFE for each
forecast horizon. The undistorted and fully accurate forecasts are derived by simulating forecasts which are
equivalent to the future earnings realizations for each forecast horizon.

4.5.3 Approximating the relations

The effect of both completely mitigating systematic distortions and achieving perfect

general accuracy is consistent across all forecast models considered. However, apart from

being simulation-based, the analysis above faces the drawback of only comparing two

scenarios for both dimension of accuracy: general accuracy and systematic distortions

on some model-level and perfect general accuracy and/or zero systematic distortions,
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respectively. In other words, I only assess the effect of theoretically being able to com-

pletely mitigate either or both types of inaccuracies. However, this does not necessarily

reveal how e.g., decreasing the median PAFE or the SYSD by 20% affects ICC portfolio

returns. I provide a simple framework which allows me to approximate the exact relation

between general accuracy as well as systematic distortions and ICC portfolio returns.

More precisely, I simulate earnings forecasts with varying median PAFE while holding

the SYSD constant, and vice versa.

To achieve varying median PAFEs while fixing the SYSD, I simulate forecasts as above,

i.e., I simulate forecasts with SYSD of zero and some fixed median PAFE. More precisely,

I simulate zero SYSD forecasts with median PAFEs matching the ML median PAFEs for

each forecast horizon multiplied by a weighting scalar w1 ∈ [0.0, 0.2, 0.4, 0.6, 0.8, 1.0].25

The weight w1 is linearly related to the median PAFE. Thus, if e.g., w1 = 0.5, I simulate

earnings forecasts that exhibit half of the median PAFE of the ML model for forecast

horizons τ = 1 to τ = 5. Note that by construction, every simulated forecast has a SYSD

of zero. Put differently, the SYSD is fixed at a level of zero, while I gradually increase

median PAFE from zero to a level which is equal to that of the ML model.26

The results are depicted in Figure 4.5.27 The simulation suggests that the average

ICC portfolio return is somewhat linearly related to the level of general accuracy of the

respective earnings forecast model. In fact, if the median PAFE increases by 1 percentage

point, the average gross (net) ICC portfolio return spread decreases by around 0.06 (0.06)

to 0.07 (0.07) percentage points, depending on the split scenario considered. Again, the

results indicate that transaction costs do not correlate with general accuracy.

To achieve varying SYSDs while fixing the median PAFE, I simulate forecasts as

follows: let Êml
i,t+τ denote the ML model forecast for firm i and period t + τ, and let

Êud
i,t+τ denote the corresponding undistorted forecast, derived via simulation as outlined

above.28 I then derive earnings forecasts with varying degrees of systematic distortions

while fixing the median PAFE at the ML model level (Êsysd
i,t+τ) by setting

Êsysd
i,t+τ = w2Êml

i,t+τ + (1 − w2)Êud
i,t+τ. (4.8)

25I choose a model median PAFE and multiply it with some scalar to simulate a realistic relative median
PAFE increase for increasing forecast horizons. However, the choice of which model to use as a baseline, in
this case the ML model, is arbitrary.

26Using this approach, I can only fix the SYSD at zero. This might be a limitation as the relation between
the median PAFE and ICC portfolio returns might change for different SYSD levels.

27Table C.6 in the Appendix provides a tabular summary of the results.
28The results are robust across earnings forecast models, i.e., fixing the median PAFE at different levels.
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Figure 4.5: General accuracy and average returns
This figure shows both gross and net average return spreads of ICC long-short portfolios based on simulated
forecasts with varying median PAFEs and fixed SYSD. The sample only includes observations for which
simulated ICC are available. I consider three quantile splits, i.e., decile splits, quintile splits, and tercile splits.
Straight (dashed) lines resemble average gross (net) returns. Transaction costs are accounted for following
Brandt et al. (2009), Hand and Green (2011) and DeMiguel et al. (2020). The simulated forecasts are derived
by simulating undistorted forecasts which match the median ML model PAFE for each forecast horizon,
multiplied by a scalar w1. The relationship between w1 and the median PAFE is linear. For example, if
w1 = 0.5, the respective simulated model median PAFEs are half of the median PAFEs of the ML model.
Since each of the simulated forecasts is undistorted by construction, the SYSD is fixed at zero.

w2 ∈ [0.0, 0.2, 0.4, 0.6, 0.8, 1.0] denotes the weight that I put on the ML model forecast.

In Table C.6 in the Appendix I show that the weight w2 and SYSD are approximately

linearly related. In other words, setting w2 to, for instance, 0.5, results in a SYSD which

is around half the SYSD of the respective forecast model considered.29

The results are depicted in Figure 4.6.30 The relationship appears to be concave.

This might be attributable to the fact that the median PAFE is convexly related to w2.

Nonetheless, the results once again stress that systematic distortions have a significant

impact on ICC portfolio returns. More precisely, the figure suggests that not only

complete mitigation, but also partial reduction of systematic distortion yields substantial

ICC portfolio return gains. Importantly, transaction costs do not appear to correlate with

the degree of systematic distortions.

In summary, the simulation exercise yields two key findings: first, improving earnings

forecasts both in terms of general accuracy and systematic distortions substantially

improves ICC portfolio returns. Put differently and as the findings by Hou et al. (2012)

suggest, general accuracy of earnings forecasts is not the only forecast characteristic

which matters in the ICC portfolio context. And second, transaction costs are neither

29The median PAFE is also only approximately constant due to the positive effect of model stacking. To be
precise, the median PAFE of a linear combination of two models with the same median PAFE is equal to or
lower than a corresponding linear combination of the two respective median PAFEs. Put differently, the
relationship between the weight w2 and the median PAFE is slightly convex. However, the effect is negligible
in this context.

30Table C.6 in the Appendix provides a tabular summary of the results.
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Figure 4.6: Systematic distortions and average returns
This figure shows both gross and net average return spreads for the portfolios based on simulated forecasts
with varying SYSD and (approximately) fixed median PAFE. The sample only includes observations for
which simulated ICC are available. I consider three quantile splits, i.e., decile splits, quintile splits, and
tercile splits. Straight (dashed) lines resemble average gross (net) returns. Transaction costs are accounted for
following Brandt et al. (2009), Hand and Green (2011) and DeMiguel et al. (2020). The simulated forecasts
are derived by computing a weighted average of the actual ML model forecast and the corresponding
simulated undistorted forecast with matching median PAFE for each forecast horizon. The weight given
to the ML model forecast is equal to w2 and the weight given to the corresponding undistorted forecast is
equal to 1 − w2. The relationship between w2 and SYSD is approximately linear. For example, if w2 = 0.5,
the respective simulated model SYSD is approximately half of the SYSD of the ML model. The relationship
between the median PAFE and w2 is slightly convex to due to the effect of model stacking.

related to general accuracy nor systematic distortions.

These results bear important implications for research efforts aimed at improving

earnings forecasts against the background of using them for investment strategies. First,

improving earnings forecast models is a promising research direction, as such improve-

ments translate into significant investment performance gains. Second, researchers

should assess the degree to which models are exposed to systematic distortions, as this

appears to be a core driver behind the success of ICC long-short portfolios. Unsupervised

learning methods, such as clustering, and subsequent separate model estimation for

each of these clusters, might prove useful in mitigating systematic distortions. However,

it has to be noted that systematic distortions are not necessarily mitigable to the full

extent. This is because e.g., accuracy differences across different subsets of firms may not

occur due to the model being systematically flawed but due to different subsets of firms

exhibiting different degrees of unpredictable noise in future earnings.

4.6 Conclusion

This study is the first to provide a detailed assessment of the relation between model-

based earnings forecast accuracy and ICC investment performance against the back-
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ground of transaction costs.

I explicitly differentiate between two aspects of model accuracy, i.e., general accuracy

and systematic distortions, providing a novel metric for measuring the latter. The results

of the empirical analysis reveal that the most accurate earnings forecast model, a ML

model, is also the least systematically distorted model. In line with the extant literature

on earnings forecast models, the best performing earnings forecast model yields the

highest gross return spreads. Importantly, this holds true even when accounting for

transaction costs. Nevertheless, in line with the extant literature on return anomalies,

transaction costs lead to significantly lower average return spreads, thereby stressing

the importance of incorporating transaction costs to future research which involves ICC

portfolios (e.g., Chen and Velikov, 2023). Interestingly, transaction costs do not strongly

differ between the portfolios based on the different earnings forecast models.

By leveraging simple simulation frameworks, I assess the effect of general accuracy

and systematic distortions separately. The analysis reveals that both systematic distor-

tions of model-based earnings forecasts and general accuracy strongly impact average

investment performance. In other words, improvements along both dimensions of model

performance lead to substantial ICC portfolio return gains. Mirroring the aforementioned

results, the findings further indicate that transaction costs do not change with varying

levels of systematic distortions or general accuracy.

To conclude, the study provides strong evidence for the fact that better earnings

forecast models translate into more profitable investment strategies. Furthermore, I show

that not only general accuracy, but also systematic model distortions such as unequal

accuracy across subsets of firms or systematic over- or underestimation of future earnings,

strongly influence investment performance conditional on earnings forecasts. Transaction

costs significantly alter investment performance in general, but are neither correlated

with general accuracy nor systematic distortions.
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Appendix to Chapter 2

A.1 Neural network configuration

Our benchmark model consists of an input layer, three hidden layers and an output layer.

We apply the geometric pyramid rule (Masters, 1993), i.e., the first hidden layer consists

of 32 nodes, the second hidden layer consists of 16 nodes and the third hidden layer

consists of eight nodes. We consider different network architectures in Appendix A.2.

At each node of the network, a linear transformation of the preceding outputs is fed

into an activation function. We choose to use the leaky rectified linear unit (leaky ReLU)

activation function at every node (e.g., Jarrett et al., 2009):

R(z) =


z if z > 0

αz otherwise
, (A.1)

where z denotes the input and α denotes some small non-zero constant, in our case 0.01.

ReLU is the most popular activation function because it is cheap to compute, converges

fast and is sparsely activated. The disadvantage of transforming all negative values to

zero is a problem called "dying ReLU". A ReLU neuron is "dead" if it is stuck in the

negative range and always outputs zero. Since the slope of ReLU in the negative range is

also zero, it is unlikely that a neuron will recover once it goes negative. Such neurons

play no role in discriminating inputs and are essentially useless. Over time, a large part

of the network may do nothing. Leaky ReLU fixes this problem because it has small slope

for negative values instead of a flat slope. Moreover, we shift the activation function at

every node in every hidden layer by adding a constant. This is commonly referred to as
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bias in the machine learning literature.

Our benchmark network is estimated by minimizing the loss function (utility function)

given in Equation (2.6). To do so, we apply the commonly used ADAM stochastic gradient

descent optimization technique developed by Kingma and Ba (2014).

To control for the non-linearity and heavy parametrization of the model, we employ

different regularization techniques to prevent overfitting: first, as mentioned above, we

impose a constraint on an individual stock’s absolute portfolio weight of |3%|.
Second, we add a Lasso (l1) penalty term to the loss function to be minimized. Adding

the penalty implies a potential shrinkage of coefficients towards 0. This in turn reduces

the variance of the prediction, i.e., prevents overfit of the model.

Third, we employ early stopping on the validation data. Early stopping refers to a

very general regularization technique. At each new iteration, predictions are estimated

for the validation sample, and the loss (utility) is derived. The optimization is terminated

when the validation sample loss starts to increase by some small specified number

(tolerance) over a specified number of iterations (patience). Typically, the termination

occurs before the loss is minimized in the training sample. Early stopping is a popular

regularization tool because it reduces the computational cost.

Fourth, we implement a dropout layer before the first hidden layer (Srivastava et al.,

2014). As Srivastava et al. (2014) state, the basic idea of dropout is to randomly remove

neurons (and their connections) from the neural network during training. This promotes

individual feature learning and the network becomes less sensitive to specific neuron

weights. When generating predictions, the neuron weights are scaled down by the

dropout rate, i.e., the chance by which neurons are randomly getting dropped out, to

account for the fact that each neuron essentially gets trained less due to dropping them

out randomly. The combination of a dropout layer, l1-regularization and early stopping

tremendously helps to reduce overfitting and model complexity.

Fifth, we adopt an ensemble approach in training our neural network (e.g., Hansen

and Salamon, 1990). In particular, we initialize five neural networks with different

random seeds and construct predictions by averaging the predictions from all networks.

This reduces the variance across predictions since different seeds produce different

predictions due to the stochastic nature of the optimization process.

Finally, we adopt our own version of the batch normalization method by Ioffe and

Szegedy (2015). In general, training deep neural networks is complicated by the fact
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that the distribution of inputs to each layer changes during training as the parameters

of the previous layers change. This is referred to as internal covariate shift and can be

remedied by normalizing the layer inputs. The standard batch normalization following

Ioffe and Szegedy (2015) makes this normalization part of the model architecture and

performs it for each training mini-batch. Batch normalization allows much higher

learning rates to be used and less care to be taken in initialization of the network (Ioffe

and Szegedy, 2015). Brandt et al. (2009) standardize characteristics cross-sectionally to

have zero mean and unit standard deviation across all stocks at date t. Hence, the model

predictions represent deviations from the benchmark portfolio. However, applying the

aforementioned activation function destroys this structure. In our model each observation

can be interpreted as a complete cross-section (e.g., a batch size of 12 refers to 12 complete

cross-sections of data). The model of Brandt et al. (2009) hence requires normalization

on a cross-sectional level instead of a batch level. To account for that, we standardize

cross-sectionally after applying the activation function in each hidden layer, such that

the output of each node in the hidden layer has zero mean and unit standard deviation

across all stocks at the respective date t. Thus, the output of each node in each hidden

layer can also be interpreted as a deviation from the benchmark portfolio. We provide a

summary of the relevant hyperparameters in Table A.1.

Table A.1: Hyperparameters

PPP DPPP

L1 penalty l1 ∈ {0, 10−5, 10−3} l1 ∈ {0, 10−5, 10−3}
Learning rate 0.001 0.001
Dropout 0 D ∈ {0, 0.2, 0.4}
Batch size 12 12
Epochs 200 200
Patience 20 20
Ensemble 0 5
Leaky ReLU − 0.01

This table gives the hyperparameters that we tune. The first column shows the hyperparameters for the
linear parametric portfolio policy (PPP). The second column shows the hyperparameters for the deep
parametric portfolio policy (DPPP).
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A.2 Robustness checks

A.2.1 Benchmark comparison

For robustness, we compare the (D)PPP for a CRRA investor with a relative risk aversion

of γ = 5 to an equally (EW) and value-weighted (VW) benchmark portfolio.

Table A.2 presents the comparison between the different portfolios based on their

utility, weights and return characteristics. The first row reports the certainty equivalent

of the realized utility across out-of-sample periods for a CRRA investor with relative risk

aversion of five. The equally weighted and value weighted portfolio yield a certainty

equivalent of 0.0015 and 0.0022, respectively. The standard PPP substantially outperforms

the simple portfolios, yielding a certainty equivalent of 0.0263. However, the DPPP yields

a certainty equivalent of 0.0492, almost twice as large as the certainty equivalent derived

from the PPP.

The next set of rows gives insight into the distribution of the respective portfolio

weights. The active portfolios take comparably large positions, with the average absolute

weight of the deep portfolio policy being almost nine times as large as in the case of the

equally weighted and value weighted portfolio, respectively. However, due to the weight

constraint shown in Equation (2.7) these positions remain below 3% in absolute terms.

As Ang et al. (2011) show, average gross leverage of hedge fund companies amounts to

120% in the period after the financial crisis 2007-2008. This indicates that both the linear

and the deep portfolio policies are rather unrealistic in the benchmark case. We address

this in Section 2.4.2 by including a penalty term for transaction costs and a constraint for

leverage in our objective function.

The monthly mean returns of 4.7% and 7.1% in the linear and deep policy case

are much higher than the mean returns of around 1.1% in the equally weighted and

value weighted portfolio cases due to their highly levered nature. In fact, both models

substantially outperform the market porfolios with more than twice as large Sharpe

ratios. In terms of skewness and kurtosis the DPPP stands out as compared to the other

portfolios. In particular, the portfolio exhibits a positive skewness (0.82) and high kurtosis

(4.96). The bottom set of rows reports the alphas and its standard errors with respect to a

six-factor model that appends a momentum factor to the Fama-French five-factor model.

The market portfolio alphas are both not significantly different from zero. The linear

policy alpha is 3.2%. The deep policy alpha is even higher, amounting to 5.7%. Both
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alphas are highly statistically significant. These large unexplained returns can partially

be attributed to the highly levered nature of the active portfolios, as we show in the

following sections.

Table A.2: (D)PPP versus market portfolios

EW VW PPP DPPP

CE 0.0015 0.0022 0.0263 0.0492
p-value(CEDPPP − CEPPP) 0.0002

∑i |wi|/Nt ∗ 100 0.0694 0.0694 0.4972 0.6127
max wi ∗ 100 0.0704 0.1113 2.0363 1.7452
min wi ∗ 100 0.0704 0.0410 −2.1712 −1.8709
∑i wi I(wi < 0) 0.0000 0.0000 −3.0841 −3.9171
∑i I(wi < 0)/Nt 0.0000 0.0000 0.4351 0.4430
∑i |wi,t − w+

i,t−1| 0.0931 0.0779 3.7816 7.8053

Mean 0.0110 0.0105 0.0473 0.0711
StdDev 0.0587 0.0552 0.0890 0.0982
Skew −0.3716 −0.5039 −0.1004 0.8169
Kurt 3.6591 3.3455 1.3766 4.9609
SR 0.6461 0.6609 1.8391 2.5101
p-value(SRDPPP − SRPPP) 0.0075

FF5 + Mom α −0.0002 −0.0003 0.0324 0.0570
StdErr(α) 0.0007 0.0006 0.0040 0.0052

This table shows out-of-sample estimates of the (deep) portfolio policies optimized for a CRRA investor
with relative risk aversion of five, using 157 firm characteristics. The regular portfolio policy is a linear
model, while the deep model is a feed-forward neural network with three hidden layers and 32, 16, and
8 nodes, respectively. We use data from the Open Source Asset Pricing data set (Chen and Zimmermann,
2022) from January 1971 to December 2020. The columns labeled "EW", "VW", "PPP" and "DPPP" show
the statistics of the equal-weighted portfolio, value-weighted portfolio, parametric portfolio policy, and
deep parametric portfolio policy, respectively. We closely follow Brandt et al. (2009) in terms of the results
presented. The first rows show the monthly certainty equivalent of the investor as well as the bootstrapped
one-sided p-value for the difference in monthly certainty equivalent between DPPP and PPP. The second
set of rows shows statistics on portfolio weights averaged over months t. These statistics include the
average absolute portfolio weight, the average maximum and minimum portfolio weights, the average
sum of negative weights in the portfolio, the average proportion of negative weights in the portfolio, and
the turnover in the portfolio. The third set of rows shows the first four moments of the final portfolio
return distributions as well as the annualized Sharpe ratios and the bootstrapped one-sided p-value for
the difference in Sharpe ratios between DPPP and PPP. The bottom panel shows the alphas and their
standard errors with respect to the Fama-French five-factor model (Fama and French, 2015), extended
to include the momentum factor (Carhart, 1997). Factors are retrieved from Kenneth French’s website
(https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html).

A.2.2 Long-only

A large majority of equity portfolios face restrictions on short selling. We incorporate

short-sale constraints as in Brandt et al. (2009), i.e., we truncate portfolios weights at zero

(and still keep the cap of 3% per stock). In particular, to make sure that portfolio weights

still sum up to one, we add the following portfolio rebalancing term to the end of our

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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optimization process:

w∗
i,t =

max[0, wi,t]
Nt

∑
j=1

max[0, wi,t]

. (A.2)

Table A.3, shows results from estimating a long-only portfolio for CRRA investor with

relative risk aversion of γ = 5. Again, the deep parametric portfolio policy yields the

highest certainty equivalent, although it is markedly lower than in the unconstrained case.

Still, the certainty equivalent of the deep parametric portfolio policy is around five times

higher than the certainty equivalent of the market portfolios and around 43% higher than

the certainty equivalent of the linear parametric portfolio policy. The difference between

the utility of the deep and the linear parametric portfolio policy is statistically significant

at the 0.1% level.

Both active portfolios result in a much higher turnover than the market portfolios,

and the deep portfolio policy produces a higher turnover than the linear portfolio policy

(124% versus 60%). Different from the unconstrained benchmark results in Table A.2,

here we report the fraction of weights that are equal to zero. Interestingly, on average the

deep portfolio policy does not include 10% of stocks, while the linear portfolio policy

does not include 27% of the available stocks. Thus, the deep portfolio policy invests

in more stocks but also has a higher individual maximum weight (1.57% vs 0.36%),

indicating that many weights are possibly very low.

The DPPP yields higher expected returns than the PPP, with a moderate increase

in volatility resulting in a Sharpe ratio that is around 20% higher than the Sharpe ratio

of the linear portfolio policy. This difference is statistically significant at the 0.1% level.

Interestingly, the third and fourth moments of all portfolio policies are similar and the

portfolio return distributions are not heavily skewed or tailed. Lastly, the alphas of the

Fama-French model are a lot smaller compared to the benchmark models, while still

being highly significant in both the linear and the deep portfolio policy case. Without the

ability to take (potentially extreme) short positions, the estimated parametric portfolios

appear to be much more realistic. Nonetheless, the deep portfolio policy still outperforms

the other portfolios in terms of realized out-of-sample utility.

A.2.3 Model complexity

Our benchmark model is a relatively shallow neural net with only three hidden layers. It

is conceivable that a more complex model can achieve even higher utility gains over a
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linear model. For example, Goodfellow et al. (2016) observe that neural nets with more

hidden layers tend to outperform neural nets with fewer hidden layers but more nodes

per layer. Kelly et al. (2024) report evidence in support of complex models in the context

of forecasting aggregate stock market returns.

We extend our benchmark model to include between two and five hidden layers. All

models start with 32 nodes in the first hidden layer and then halve the number of nodes in

each subsequent layer. The number of parameters across models therefore varies between

5,600 and 5,768. Additionally, we increase the number of hyperparameters by adding

different possible learning rates to our hyperparameter tuning and increasing the number

of epochs and patience for early stopping, to account for the different complexities of the

models and to ensure that more complex models also reach their respective potential.

More specifically, the learning rate is now given by LR ∈ {0.0001, 0.001, 0.01}, the number

of maximum epochs for which we train is set to 300, and the patience is increased to 30.

Table A.4 shows the results. The second model is our original benchmark model that

we added for comparison.1 The remaining columns contain results based on networks

with two, four or five hidden layers. We observe that reducing the number of hidden

layers to two reduces the certainty equivalent. This reduction in certainty equivalent

is significant at the 5% level. In contrast, increasing the number of hidden layers to

four or five, respectively, does not yield statistically significant differences in certainty

equivalent. We thus conclude that in general, reasonable complexity adjustments in

terms of the number of hidden layers do not lead to significantly different outcomes.

However, we note that the testing of more hyperparameter specifications may lead to

significant improvements of the DPPP.

1Note that the certainty equivalent is higher compared to our benchmark in Section 2.4.1. This is due
to the aforementioned fact that we add different possible learning rates as well as increase the number
of epochs and patience for early stopping. We do so not only for the model variations, but also for our
benchmark to ensure consistency across models.
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A.3 Supplementary tables
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Table A.3: Long-only (D)PPP

EW VW PPP DPPP

CE 0.0015 0.0022 0.0075 0.0107
p-value(CEDPPP − CEPPP) 0.0008

∑i |wi|/Nt ∗ 100 0.0694 0.0694 0.0694 0.0694
max wi ∗ 100 0.0704 0.1113 0.3578 1.5865
min wi ∗ 100 0.0704 0.0410 0.0000 0.0000
∑i wi I(wi < 0) 0.0000 0.0000 0.0000 0.0000
∑i I(wi = 0)/Nt 0.0000 0.0000 0.2667 0.0972
∑i |wi,t − w+

i,t−1| 0.0931 0.0779 0.6019 1.2433

Mean 0.0110 0.0105 0.0145 0.0200
StdDev 0.0587 0.0552 0.0506 0.0583
Skew −0.3716 −0.5039 −0.6840 −0.3391
Kurt 3.6591 3.3455 3.1303 4.3683
SR 0.6461 0.6609 0.9931 1.1871
p-value(SRDPPP − SRPPP) 0.0007

FF5 + Mom α −0.0002 −0.0003 0.0043 0.0095
StdErr(α) 0.0007 0.0006 0.0007 0.0012

This table shows out-of-sample estimates of the (deep) portfolio policies including a long-only constraint
optimized for a CRRA investor with relative risk aversion of five, using 157 firm characteristics. The regular
portfolio policy is a linear model, while the deep model is a feed-forward neural network with three hidden
layers and 32, 16, and 8 nodes, respectively. We use data from the Open Source Asset Pricing data set
(Chen and Zimmermann, 2022) from January 1971 to December 2020. The columns labeled "EW", "VW",
"PPP" and "DPPP" show the statistics of the equal-weighted portfolio, value-weighted portfolio, parametric
portfolio policy, and deep parametric portfolio policy, respectively. We closely follow Brandt et al. (2009)
in terms of the results presented. The first rows show the monthly certainty equivalent of the investor
as well as the bootstrapped one-sided p-value for the difference in monthly certainty equivalent between
DPPP and PPP. The second set of rows shows statistics on portfolio weights averaged over months t. These
statistics include the average absolute portfolio weight, the average maximum and minimum portfolio
weights, the average sum of negative weights in the portfolio, the average proportion of negative weights in
the portfolio, and the turnover in the portfolio. The third set of rows shows the first four moments of the
final portfolio return distributions as well as the annualized Sharpe ratios and the bootstrapped one-sided
p-value for the difference in Sharpe ratios between DPPP and PPP. The bottom panel shows the alphas and
their standard errors with respect to the Fama-French five-factor model (Fama and French, 2015), extended
to include the momentum factor (Carhart, 1997). Factors are retrieved from Kenneth French’s website
(https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html).

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table A.4: (D)PPP with different numbers of hidden layers

Layer 2 Layer 3 Layer 4 Layer 5

CE 0.0386 0.0633 0.0674 0.0647
p-value(CELi − CEL3) 0.0364 0.1716 0.3402

∑i |wi|/Nt ∗ 100 1.2431 1.1550 1.1395 0.8481
max wi ∗ 100 2.2951 2.1522 2.3668 2.2394
min wi ∗ 100 −2.3218 −2.1872 −2.3921 −2.2716
∑i wi I(wi < 0) −8.4616 −7.8263 −7.7149 −5.6143
∑i I(wi < 0)/Nt 0.4757 0.4717 0.4675 0.4568
∑i |wi,t − w+

i,t−1| 15.5297 14.2088 14.4381 11.0562

Mean 0.1102 0.1108 0.1260 0.1063
StdDev 0.1604 0.1428 0.1695 0.1497
Skew 0.2956 0.3956 1.1144 1.8729
Kurt 1.7233 1.1903 4.5579 10.5177
SR 2.3813 2.6886 2.5756 2.4600
p-value(SRLi − SRL3) 0.0003 0.1130 0.0460

FF5 + Mom α 0.0923 0.0927 0.1091 0.0934
StdErr(α) 0.0088 0.0078 0.0095 0.0086

This table shows out-of-sample estimates of the (deep) portfolio policies with different numbers of hidden
layers optimized for a CRRA investor with relative risk aversion of five, using 157 firm characteristics.
The deep models are feed-forward neural networks with two (32, 16), three (32, 16, 8), four (32, 16, 8, 4)
and five (32, 16, 8, 4, 2) hidden layers (nodes), respectively. We use data from the Open Source Asset
Pricing data set (Chen and Zimmermann, 2022) from January 1971 to December 2020. The columns
labeled "Layer 2", "Layer 3", "Layer 4" and "Layer 5" show the statistics of the deep parametric portfolio
policy with two, three, four and five hidden layers, respectively. We closely follow Brandt et al. (2009)
in terms of the results presented. The first rows show the monthly certainty equivalent of the investor
as well as the bootstrapped one-sided p-value for the difference in monthly certainty equivalent between
the model with three layers and the other models. The second set of rows shows statistics on portfolio
weights averaged over months t. These statistics include the average absolute portfolio weight, the average
maximum and minimum portfolio weights, the average sum of negative weights in the portfolio, the
average proportion of negative weights in the portfolio, and the turnover in the portfolio. The third set
of rows shows the first four moments of the final portfolio return distributions as well as the annualized
Sharpe ratios and the bootstrapped one-sided p-value for the difference in Sharpe ratios between the
model with three layers and the other models. The bottom panel shows the alphas and their standard
errors with respect to the Fama-French five-factor model (Fama and French, 2015), extended to include
the momentum factor (Carhart, 1997). Factors are retrieved from Kenneth French’s website (https:
//mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html).

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table A.5: Predictor variables for the (D)PPP

Acronym Description Author(s) Year, Journal Frequency Cat. data Cat. economic

ChInvIA Change in capital inv (ind adj) Abarbanell and Bushee 1998, AR yearly Accounting investment growth

GrSaleToGrInv Sales growth over inventory growth Abarbanell and Bushee 1998, AR yearly Accounting sales growth

GrSaleToGrOverhead Sales growth over overhead growth Abarbanell and Bushee 1998, AR yearly Accounting sales growth

IdioVolAHT Idiosyncratic risk (AHT) Ali, Hwang, and Trombley 2003, JFE monthly Price volatility

EarningsConsistency Earnings consistency Alwathainani 2009, BAR yearly Accounting earnings

Illiquidity Amihud’s illiquidity Amihud 2002, JFM monthly Trading liquidity

BidAskSpread Bid-ask spread Amihud and Mendelsohn 1986, JFE monthly Trading liquidity

grcapx Change in capex (two years) Anderson and Garcia-Feijoo 2006, JF yearly Accounting investment growth

grcapx3y Change in capex (three years) Anderson and Garcia-Feijoo 2006, JF yearly Accounting investment growth

betaVIX Systematic volatility Ang et al. 2006, JF monthly Price volatility

IdioRisk Idiosyncratic risk Ang et al. 2006, JF monthly Price volatility

IdioVol3F Idiosyncratic risk (3 factor) Ang et al. 2006, JF monthly Price volatility

CoskewACX Coskewness using daily returns Ang, Chen and Xing 2006, RFS monthly Price risk

Mom6mJunk Junk Stock Momentum Avramov et al 2007, JF monthly Price momentum

OrderBacklogChg Change in order backlog Baik and Ahn 2007, Other yearly Accounting accruals

roaq Return on assets (qtrly) Balakrishnan, Bartov and Faurel 2010, JAE quarterly Accounting profitability

MaxRet Maximum return over month Bali, Cakici, and Whitelaw 2010, JF monthly Price volatility

ReturnSkew Return skewness Bali, Engle and Murray 2015, Book monthly Price risk

ReturnSkew3F Idiosyncratic skewness (3F model) Bali, Engle and Murray 2015, Book monthly Price risk

CBOperProf Cash-based operating profitability Ball et al. 2016, JFE yearly Accounting profitability

OperProfRD Operating profitability R&D adjusted Ball et al. 2016, JFE yearly Accounting profitability

Size Size Banz 1981, JFE monthly Price size

SP Sales-to-price Barbee, Mukherji and Raines 1996, FAJ yearly Accounting valuation

EP Earnings-to-Price Ratio Basu 1977, JF monthly Price valuation

InvGrowth Inventory Growth Belo and Lin 2012, RFS yearly Accounting profitability

Continued on next page
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Table A.5: Predictor variables for the machine learning model (continued)

Acronym Description Author(s) Year, Journal Frequency Cat. data Cat. economic

BrandInvest Brand capital investment Belo, Lin and Vitorino 2014, RED yearly Accounting investment

Leverage Market leverage Bhandari 1988, JFE monthly Price leverage

ResidualMomentum Momentum based on FF3 residuals Blitz, Huij and Martens 2011, JEmpFin monthly Price momentum

Price Price Blume and Husic 1972, JF monthly Price other

NetPayoutYield Net Payout Yield Boudoukh et al. 2007, JF monthly Price valuation

PayoutYield Payout Yield Boudoukh et al. 2007, JF monthly Price valuation

NetDebtFinance Net debt financing Bradshaw, Richardson, Sloan 2006, JAE yearly Accounting external financing

NetEquityFinance Net equity financing Bradshaw, Richardson, Sloan 2006, JAE yearly Accounting external financing

XFIN Net external financing Bradshaw, Richardson, Sloan 2006, JAE yearly Accounting external financing

DolVol Past trading volume Brennan, Chordia, Subra 1998, JFE monthly Trading volume

FEPS Analyst earnings per share Cen, Wei, and Zhang 2006, WP monthly Analyst profitability

AnnouncementReturn Earnings announcement return Chan, Jegadeesh and Lakonishok 1996, JF monthly Price earnings

REV6 Earnings forecast revisions Chan, Jegadeesh and Lakonishok 1996, JF monthly Analyst earnings

AdExp Advertising Expense Chan, Lakonishok and Sougiannis 2001, JF monthly Accounting R&D

RD R&D over market cap Chan, Lakonishok and Sougiannis 2001, JF monthly Accounting R&D

CashProd Cash Productivity Chandrashekar and Rao 2009, WP yearly Accounting profitability

std_turn Share turnover volatility Chordia, Subra, Anshuman 2001, JFE monthly Trading liquidity

VolSD Volume Variance Chordia, Subra, Anshuman 2001, JFE monthly Trading liquidity

retConglomerate Conglomerate return Cohen and Lou 2012, JFE monthly Price delayed processing

RDAbility R&D ability Cohen, Diether and Malloy 2013, RFS yearly Accounting other

AssetGrowth Asset growth Cooper, Gulen and Schill 2008, JF yearly Accounting investment

EarningsForecastDisparity Long-vs-short EPS forecasts Da and Warachka 2011, JFE monthly Analyst earnings

CompEquIss Composite equity issuance Daniel and Titman 2006, JF monthly Accounting external financing

IntanBM Intangible return using BM Daniel and Titman 2006, JF yearly Accounting long term reversal

IntanCFP Intangible return using CFtoP Daniel and Titman 2006, JF yearly Accounting long term reversal

IntanEP Intangible return using EP Daniel and Titman 2006, JF yearly Accounting long term reversal

Continued on next page
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Table A.5: Predictor variables for the machine learning model (continued)

Acronym Description Author(s) Year, Journal Frequency Cat. data Cat. economic

IntanSP Intangible return using Sale2P Daniel and Titman 2006, JF yearly Accounting long term reversal

ShareIss5Y Share issuance (5 year) Daniel and Titman 2006, JF monthly Accounting external financing

LRreversal Long-run reversal De Bondt and Thaler 1985, JF monthly Price long term reversal

MRreversal Medium-run reversal De Bondt and Thaler 1985, JF monthly Price long term reversal

EquityDuration Equity Duration Dechow, Sloan and Soliman 2004, RAS yearly Price valuation

cfp Operating Cash flows to price Desai, Rajgopal, Venkatachalam 2004, AR yearly Accounting valuation

ForecastDispersion EPS Forecast Dispersion Diether, Malloy and Scherbina 2002, JF monthly Analyst volatility

ExclExp Excluded Expenses Doyle, Lundholm and Soliman 2003, RAS quarterly Analyst composite accounting

ProbInformedTrading Probability of Informed Trading Easley, Hvidkjaer and O’Hara 2002, JF yearly Trading liquidity

OrgCap Organizational capital Eisfeldt and Papanikolaou 2013, JF yearly Accounting R&D

sfe Earnings Forecast to price Elgers, Lo and Pfeiffer 2001, AR monthly Analyst valuation

GrLTNOA Growth in long term operating assets Fairfield, Whisenant and Yohn 2003, AR yearly Accounting investment

AM Total assets to market Fama and French 1992, JF yearly Accounting valuation

BMdec Book to market using December ME Fama and French 1992, JPM yearly Accounting valuation

BookLeverage Book leverage (annual) Fama and French 1992, JF yearly Accounting leverage

OperProf operating profits / book equity Fama and French 2006, JFE yearly Accounting profitability

Beta CAPM beta Fama and MacBeth 1973, JPE monthly Price risk

EarningsSurprise Earnings Surprise Foster, Olsen and Shevlin 1984, AR quarterly Analyst earnings

AnalystValue Analyst Value Frankel and Lee 1998, JAE monthly Analyst valuation

AOP Analyst Optimism Frankel and Lee 1998, JAE monthly Analyst other

PredictedFE Predicted Analyst forecast error Frankel and Lee 1998, JAE monthly Accounting earnings

FR Pension Funding Status Franzoni and Marin 2006, JF monthly Accounting composite accounting

BetaFP Frazzini-Pedersen Beta Frazzini and Pedersen 2014, JFE monthly Price other

High52 52 week high George and Hwang 2004, JF monthly Price momentum

IndMom Industry Momentum Grinblatt and Moskowitz 1999, JFE monthly Price momentum

PctAcc Percent Operating Accruals Hafzalla, Lundholm, Van Winkle 2011, AR yearly Accounting accruals

Continued on next page
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Table A.5: Predictor variables for the machine learning model (continued)

Acronym Description Author(s) Year, Journal Frequency Cat. data Cat. economic

PctTotAcc Percent Total Accruals Hafzalla, Lundholm, Van Winkle 2011, AR yearly Accounting accruals

tang Tangibility Hahn and Lee 2009, JF yearly Accounting asset composition

Coskewness Coskewness Harvey and Siddique 2000, JF monthly Price risk

RoE net income / book equity Haugen and Baker 1996, JFE yearly Accounting profitability

VarCF Cash-flow to price variance Haugen and Baker 1996, JFE monthly Accounting cash flow risk

VolMkt Volume to market equity Haugen and Baker 1996, JFE monthly Trading volume

VolumeTrend Volume Trend Haugen and Baker 1996, JFE monthly Trading volume

AnalystRevision EPS forecast revision Hawkins, Chamberlin, Daniel 1984, FAJ monthly Analyst earnings

Mom12mOffSeason Momentum without the seasonal part Heston and Sadka 2008, JFE monthly Price momentum

MomOffSeason Off season long-term reversal Heston and Sadka 2008, JFE monthly Price momentum

MomOffSeason06YrPlus Off season reversal years 6 to 10 Heston and Sadka 2008, JFE monthly Price momentum

MomOffSeason11YrPlus Off season reversal years 11 to 15 Heston and Sadka 2008, JFE monthly Price momentum

MomOffSeason16YrPlus Off season reversal years 16 to 20 Heston and Sadka 2008, JFE monthly Price momentum

MomSeason Return seasonality years 2 to 5 Heston and Sadka 2008, JFE monthly Price momentum

MomSeason06YrPlus Return seasonality years 6 to 10 Heston and Sadka 2008, JFE monthly Price momentum

MomSeason11YrPlus Return seasonality years 11 to 15 Heston and Sadka 2008, JFE monthly Price momentum

MomSeason16YrPlus Return seasonality years 16 to 20 Heston and Sadka 2008, JFE monthly Price momentum

MomSeasonShort Return seasonality last year Heston and Sadka 2008, JFE monthly Price momentum

NOA Net Operating Assets Hirshleifer et al. 2004, JAE yearly Accounting asset composition

dNoa change in net operating assets Hirshleifer, Hou, Teoh, Zhang 2004, JAE yearly Accounting investment

EarnSupBig Earnings surprise of big firms Hou 2007, RFS quarterly Accounting delayed processing

IndRetBig Industry return of big firms Hou 2007, RFS monthly Price delayed processing

PriceDelayRsq Price delay r square Hou and Moskowitz 2005, RFS monthly Price delayed processing

PriceDelaySlope Price delay coeff Hou and Moskowitz 2005, RFS monthly Price delayed processing

PriceDelayTstat Price delay SE adjusted Hou and Moskowitz 2005, RFS monthly Price delayed processing

STreversal Short term reversal Jegadeesh 1989, JF monthly Price short-term reversal

Continued on next page
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Table A.5: Predictor variables for the machine learning model (continued)

Acronym Description Author(s) Year, Journal Frequency Cat. data Cat. economic

RevenueSurprise Revenue Surprise Jegadeesh and Livnat 2006, JFE quarterly Accounting sales growth

Mom12m Momentum (12 month) Jegadeesh and Titman 1993, JF monthly Price momentum

Mom6m Momentum (6 month) Jegadeesh and Titman 1993, JF monthly Price momentum

ChangeInRecommendation Change in recommendation Jegadeesh et al. 2004, JF monthly Analyst recommendation

OptionVolume1 Option to stock volume Johnson and So 2012, JFE monthly Trading volume

OptionVolume2 Option volume to average Johnson and So 2012, JFE monthly Trading volume

BetaTailRisk Tail risk beta Kelly and Jiang 2014, RFS monthly Price risk

fgr5yrLag Long-term EPS forecast La Porta 1996, JF monthly Analyst earnings

CF Cash flow to market Lakonishok, Shleifer, Vishny 1994, JF monthly Accounting valuation

MeanRankRevGrowth Revenue Growth Rank Lakonishok, Shleifer, Vishny 1994, JF yearly Accounting sales growth

RDS Real dirty surplus Landsman et al. 2011, AR yearly Accounting composite accounting

Tax Taxable income to income Lev and Nissim 2004, AR yearly Accounting tax

RDcap R&D capital-to-assets Li 2011, RFS yearly Accounting asset composition

zerotrade Days with zero trades Liu 2006, JFE monthly Trading liquidity

zerotradeAlt1 Days with zero trades Liu 2006, JFE monthly Trading liquidity

zerotradeAlt12 Days with zero trades Liu 2006, JFE monthly Trading liquidity

ChEQ Growth in book equity Lockwood and Prombutr 2010, JFR yearly Accounting investment

EarningsStreak Earnings surprise streak Loh and Warachka 2012, MS monthly Accounting earnings

NumEarnIncrease Earnings streak length Loh and Warachka 2012, MS quarterly Accounting earnings

GrAdExp Growth in advertising expenses Lou 2014, RFS yearly Accounting investment

EntMult Enterprise Multiple Loughran and Wellman 2011, JFQA monthly Accounting valuation

CompositeDebtIssuance Composite debt issuance Lyandres, Sun and Zhang 2008, RFS yearly Accounting external financing

InvestPPEInv change in ppe and inv/assets Lyandres, Sun and Zhang 2008, RFS yearly Accounting investment

Frontier Efficient frontier index Nguyen and Swanson 2009, JFQA yearly Accounting valuation

GP gross profits / total assets Novy-Marx 2013, JFE yearly Accounting profitability

IntMom Intermediate Momentum Novy-Marx 2012, JFE monthly Price momentum

Continued on next page
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Table A.5: Predictor variables for the machine learning model (continued)

Acronym Description Author(s) Year, Journal Frequency Cat. data Cat. economic

OPLeverage Operating leverage Novy-Marx 2010, ROF yearly Accounting other

Cash Cash to assets Palazzo 2012, JFE quarterly Accounting asset composition

BetaLiquidityPS Pastor-Stambaugh liquidity beta Pastor and Stambaugh 2003, JPE monthly Price liquidity

BPEBM Leverage component of BM Penman, Richardson and Tuna 2007, JAR monthly Accounting leverage

EBM Enterprise component of BM Penman, Richardson and Tuna 2007, JAR monthly Accounting valuation

NetDebtPrice Net debt to price Penman, Richardson and Tuna 2007, JAR monthly Accounting leverage

PS Piotroski F-score Piotroski 2000, AR yearly Accounting composite accounting

ShareIss1Y Share issuance (1 year) Pontiff and Woodgate 2008, JF monthly Accounting external financing

DelDRC Deferred Revenue Prakash and Sinha 2012, CAR yearly Accounting investment

OrderBacklog Order backlog Rajgopal, Shevlin, Venkatachalam 2003, RAS yearly Accounting sales growth

DelCOA Change in current operating assets Richardson et al. 2005, JAE yearly Accounting investment

DelCOL Change in current operating liabilities Richardson et al. 2005, JAE yearly Accounting external financing

DelEqu Change in equity to assets Richardson et al. 2005, JAE yearly Accounting investment

DelFINL Change in financial liabilities Richardson et al. 2005, JAE yearly Accounting external financing

DelLTI Change in long-term investment Richardson et al. 2005, JAE yearly Accounting investment

DelNetFin Change in net financial assets Richardson et al. 2005, JAE yearly Accounting investment

TotalAccruals Total accruals Richardson et al. 2005, JAE yearly Accounting investment

BM Book to market using most recent ME Rosenberg, Reid, and Lanstein 1985, JF monthly Accounting valuation

Accruals Accruals Sloan 1996, AR yearly Accounting accruals

ChAssetTurnover Change in Asset Turnover Soliman 2008, AR yearly Accounting sales growth

ChNNCOA Change in Net Noncurrent Op Assets Soliman 2008, AR yearly Accounting investment

ChNWC Change in Net Working Capital Soliman 2008, AR yearly Accounting investment

ChInv Inventory Growth Thomas and Zhang 2002, RAS yearly Accounting investment

ChTax Change in Taxes Thomas and Zhang 2011, JAR quarterly Accounting tax

Investment Investment to revenue Titman, Wei and Xie 2004, JFQA yearly Accounting investment

realestate Real estate holdings Tuzel 2010, RFS yearly Accounting asset composition

Continued on next page
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Table A.5: Predictor variables for the machine learning model (continued)

Acronym Description Author(s) Year, Journal Frequency Cat. data Cat. economic

AbnormalAccruals Abnormal Accruals Xie 2001, AR yearly Accounting accruals

FirmAgeMom Firm Age - Momentum Zhang 2004, JF monthly Price momentum

The table shows all available characteristics used, the author(s), the year and the journal of publication. In addition, this table shows the update frequency, the data
category as well as the economic category.
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Table A.6: DPPP (CRRA) surrogate models

γ = 2 γ = 10 γ = 10 γ = 20

R2 0.5513 0.5537 0.5561 0.6914
Sur. CE 0.0477 0.0342 0.0200 0.0008
Orig. CE 0.0669 0.0492 0.0303 0.0097
p-value(CEDPPP − CEPPP) 0.0001 0.0001 0.0003 0.0004
incl. TC No No No No
incl. interactions No No No No

R2 0.7606 0.7712 0.7706 0.8472
Sur. CE 0.0548 0.0382 0.0202 0.0004
Orig. CE 0.0669 0.0492 0.0303 0.0097
p-value(CEDPPP − CEPPP) 0.0001 0.0001 0.0001 0.0008
incl. TC No No No No
incl. interactions Yes Yes Yes Yes

R2 0.6762 0.6841 0.7415 0.8039
Sur. CE −0.1009 −0.0841 −0.0669 −0.0489
Orig. CE −0.1218 −0.0980 −0.0756 −0.0536
p-value(CEDPPP − CEPPP) 0.0001 0.0001 0.0017 0.0387
incl. TC Yes Yes Yes Yes
incl. interactions No No No No

R2 0.8454 0.8395 0.8757 0.9081
Sur. CE −0.1154 −0.0949 −0.0739 −0.0516
Orig. CE −0.1218 −0.0980 −0.0756 −0.0536
p-value(CEDPPP − CEPPP) 0.0001 0.0001 0.0014 0.2514
incl. TC Yes Yes Yes Yes
incl. interactions Yes Yes Yes Yes

This table compares the monthly certainty equivalents of the linear surrogate models presented in Section
2.4.3 to the corresponding deep portfolio policies optimized for a CRRA investor with relative risk aversion
of 2, 5, 10 and 20, respectively. The deep models are the feed-forward neural networks presented in Section
2.4.1 and Section 2.4.2, respectively. We use data from the Open Source Asset Pricing data set (Chen and
Zimmermann, 2022) from January 1971 to December 2020. The columns labeled "γ = 2", "γ = 5", "γ = 10"
and "γ = 20" correspond to the respective risk aversions. The rows represent the mean adjusted R2 across
all periods, the resulting monthly certainty equivalent of the weights predicted by the surrogate model, the
monthly certainty equivalent of the corresponding deep model and lastly, the p-value for the difference in
the certainty equivalents. The next two rows "incl. TC" and "incl. interactions" stratify the results across the
model specification and the inclusion of interactions in the surrogate model.
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Table A.7: (D)PPP for MV investors

γ = 2 γ = 5 γ = 10 γ = 20
PPP DPPP PPP DPPP PPP DPPP PPP DPPP

CE 0.0392 0.0662 0.0267 0.0469 0.0140 0.0290 −0.0017 0.0053
p-value(CEDPPP − CEPPP) 0.0001 0.0002 0.0066 0.1182

∑i |wi|/Nt ∗ 100 0.5361 0.6749 0.5060 0.6057 0.4373 0.5295 0.2939 0.3847
max wi ∗ 100 2.1772 1.8125 2.0748 1.7260 1.8184 1.6331 1.1825 1.2971
min wi ∗ 100 −2.3513 −1.8523 −2.2097 −1.8370 −1.8924 −1.8039 −1.2239 −1.3872
∑i wi I(wi < 0) −3.3646 −4.3656 −3.1475 −3.8665 −2.6527 −3.3171 −1.6188 −2.2737
∑i I(wi < 0)/Nt 0.4402 0.4451 0.4334 0.4411 0.4204 0.4344 0.3761 0.4171
∑i |wi,t − w+

i,t−1| 3.8594 8.5704 3.9370 7.6984 3.5980 6.7283 2.2396 4.8273

Mean 0.0489 0.0786 0.0468 0.0701 0.0430 0.0628 0.0303 0.0482
StdDev 0.0987 0.1115 0.0897 0.0965 0.0764 0.0824 0.0566 0.0656
Skew −0.1627 1.3035 −0.1451 1.0537 −0.0254 0.3598 −0.0473 0.5061
Kurt 1.5433 8.2253 1.8391 6.5084 2.0479 0.9416 3.0808 1.3940
SR 1.7149 2.4408 1.8070 2.5170 1.9518 2.6402 1.8548 2.5443
p-value(SRDPPP − SRPPP) 0.0035 0.0077 0.0014 0.0012

FF5 + Mom α 0.0332 0.0626 0.0323 0.0559 0.0299 0.0492 0.0193 0.0368
StdErr(α) 0.0043 0.0058 0.0040 0.0051 0.0035 0.0043 0.0026 0.0033

This table shows out-of-sample estimates of the (deep) portfolio policies with 157 firm characteristics optimized for a mean-variance investor with absolute risk aversion of
2, 5, 10 and 20, using 157 firm characteristics. The regular portfolio policy is a linear model, while the deep model is a feed-forward neural network with three hidden
layers and 32, 16, and 8 nodes, respectively. We use data from the Open Source Asset Pricing data set (Chen and Zimmermann, 2022) from January 1971 to December 2020.
The columns labeled "γ = 2", "γ = 5", "γ = 10" and "γ = 20" correspond to the respective risk aversions. We closely follow Brandt et al. (2009) in terms of the results
presented. The first rows show the monthly certainty equivalent of the investor as well as the bootstrapped one-sided p-value for the difference in monthly certainty
equivalent between DPPP and PPP. The second set of rows shows statistics on portfolio weights averaged over months t. These statistics include the average absolute
portfolio weight, the average maximum and minimum portfolio weights, the average sum of negative weights in the portfolio, the average proportion of negative weights
in the portfolio, and the turnover in the portfolio. The third set of rows shows the first four moments of the final portfolio return distributions as well as the annualized
Sharpe ratios and the bootstrapped one-sided p-value for the difference in Sharpe ratios between DPPP and PPP. The bottom panel shows the alphas and their standard
errors with respect to the Fama-French five-factor model (Fama and French, 2015), extended to include the momentum factor (Carhart, 1997). Factors are retrieved from
Kenneth French’s website (https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html).

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table A.8: (D)PPP for LA investors

l = 1.5 l = 2 l = 2.5 l = 3
PPP DPPP PPP DPPP PPP DPPP PPP DPPP

CE 0.0406 0.0738 0.0332 0.0631 0.0266 0.0574 0.0194 0.0476
p-value(CEDPPP − CEPPP) 0.0005 0.0001 0.0002 0.0001

∑i |wi|/Nt ∗ 100 0.5354 0.6784 0.5069 0.6630 0.5034 0.6468 0.4940 0.5899
max wi ∗ 100 2.2067 1.8606 2.0872 1.7858 2.0743 1.7618 2.0345 1.6638
min wi ∗ 100 −2.3124 −1.8713 −2.1707 −1.8517 −2.1577 −1.7841 −2.1116 −1.6680
∑i wi I(wi < 0) −3.3600 −4.3905 −3.1542 −4.2795 −3.1290 −4.1627 −3.0616 −3.7529
∑i I(wi < 0)/Nt 0.4403 0.4524 0.4332 0.4509 0.4307 0.4490 0.4286 0.4467
∑i |wi,t − w+

i,t−1| 3.7083 8.7386 3.6546 8.5511 3.7464 8.3677 3.7305 7.6941

Mean 0.0490 0.0824 0.0478 0.0789 0.0473 0.0783 0.0458 0.0721
StdDev 0.0977 0.1575 0.0906 0.1329 0.0871 0.1359 0.0829 0.1108
Skew 0.0347 3.5193 0.1242 1.8141 0.0996 3.5153 0.1404 1.3095
Kurt 1.0871 32.9589 0.9407 13.0823 0.8451 33.2542 0.7114 7.6654
SR 1.7375 1.8130 1.8270 2.0574 1.8789 1.9963 1.9149 2.2548
p-value(SRDPPP − SRPPP) 0.4763 0.1878 0.4242 0.0916

FF5 + Mom α 0.0336 0.0658 0.0338 0.0633 0.0338 0.0624 0.0327 0.0578
StdErr(α) 0.0043 0.0076 0.0041 0.0065 0.0040 0.0067 0.0039 0.0056

This table shows out-of-sample estimates of the (deep) portfolio policies optimized for a loss-averse investor with loss aversion of 1.5, 2, 2.5, and 3, using 157 firm
characteristics. The regular portfolio policy is a linear model, while the deep model is a feed-forward neural network with three hidden layers and 32, 16, and 8 nodes,
respectively. We use data from the Open Source Asset Pricing data set (Chen and Zimmermann, 2022) from January 1971 to December 2020. The columns labeled "l = 1.5",
"l = 2", "l = 2.5" and "l = 3" correspond to the respective loss aversions. We closely follow Brandt et al. (2009) in terms of the results presented. The first rows show
the monthly certainty equivalent of the investor as well as the bootstrapped one-sided p-value for the difference in monthly certainty equivalent between DPPP and
PPP. The second set of rows shows statistics on portfolio weights averaged over months t. These statistics include the average absolute portfolio weight, the average
maximum and minimum portfolio weights, the average sum of negative weights in the portfolio, the average proportion of negative weights in the portfolio, and the
turnover in the portfolio. The third set of rows shows the first four moments of the final portfolio return distributions as well as the annualized Sharpe ratios and the
bootstrapped one-sided p-value for the difference in Sharpe ratios between DPPP and PPP. The bottom panel shows the alphas and their standard errors with respect to
the Fama-French five-factor model (Fama and French, 2015), extended to include the momentum factor (Carhart, 1997). Factors are retrieved from Kenneth French’s
website (https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html).

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Appendix to Chapter 3

B.1 Traditional earnings prediction models

Table B.1: Traditional earnings models

Panel A: Traditional model specifications

Name Model Source

L Et[Ei,t+τ ] = β0 + β1Ei,t Gerakos and Gramacy (2012)

HVZ
Et[Ei,t+τ ] = β0 + β1Ei,t + β2 Ai,t + β3Di,t + β4DDi,t

+β5NegEi,t + β6 ACCi,t

Hou et al. (2012)

EP Et[Ei,t+τ ] = β0 + β1Ei,t + β2NegEi,t + β3NegEi,tEi,t Li and Mohanram (2014)

RI
Et[Ei,t+τ ] = β0 + β1Ei,t + β2NegEi,t + β3NegEi,tEi,t

+β4Bi,t + β5 ACCi,t

Li and Mohanram (2014)

Panel B: Traditional model variables

Variable Definition

E Income before extraordinary items (ib) / Common shares outstanding (csho)

A Total assets (at) / csho

D Dividends total (dvt) / csho

DD 1 if dvt > 0; 0 else

NegE 1 if ib < 0; 0 else

Continued on next page
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Table B.1: Traditional earnings models (continued)

Variable Definition

ACC (ib - Operating activities - net cash flow (oancf)) / csho

B Common/ordinary equity- total (ceq) / csho

Panel A reports the traditional earnings models estimated. Et[Ei,t+τ ] denotes the expectation for earnings E
of firm i in period t + τ as of t. β0-β5 are the model coefficients. Panel B reports the variable definitions for
the traditional models. Compustat variable names are provided in parentheses. Note the slight changes as
opposed to the original papers. More precisely, we scale all variables by common shares outstanding and
use a consistent earnings as well as accruals definition.
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B.2 Machine learning earnings prediction models

Table B.2: Hyperparameters for the machine learning models

RF, GBT & Dart

Maximum number of trees 512
Learning rate ∈ [0.001, 0.01, 0.1, 1]
Maximum depth Uint(2, 10)
Maximum number of leaves Uint(2, 512)
L1-regularization U(0, 0.1)
L2-regularization U(0, 0.1)
Feature fraction U(0.25, 1)
Bagging fraction U(0.25, 1)
Bagging frequency ∈ (1, 10, 50)

Dart Dropout rate ∈ (0.05, 0.1, 0.15)
Dart Probability of skipping dropout ∈ (0.25, 0.5)

NN

Learning rate ∈ [0.001, 0.01, 0.1, 1]
L1-regularization U(0, 0.1)
Dropout U(0, 0.5)
Number of hidden layers ∈ [1, 2, 3, 4, 5]
First layer size ∈ [32, 64, 128]
Batch size ∈ [211, 212, 213, 214]

This table gives the hyperparameters that we tune and their respective boundaries. U (Uint) means drawing
from a uniform (integer-wise uniform) distribution. Our choice of hyperparameters and their respective
boundaries is based on Bali et al. (2023). We use the Ray Python framework to efficiently optimize the
hyperparameters (Liaw et al., 2018).
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Table B.3: Predictor variables for the machine learning models

Variable Compustat description Financial statement Component

1 aco Current assets - other - total Balance sheet Current assets

2 acox Current assets - other - sundry Balance sheet Current assets

3 act Current assets - total Balance sheet Current assets

4 am Amortization of intangibles Income statement Depreciation and amortization

5 ao Assets - other Balance sheet Fixed assets

6 aoloch Assets and liabilities - other - net change Cash flow statement Operating cash flow

7 aox Assets - other - sundry Balance sheet Fixed assets

8 ap Accounts payable - trade Balance sheet Liabilities

9 apalch Accounts payable and accrued liabilities - increase/(decrease) Cash flow statement Operating cash flow

10 aqc Acquisitions Cash flow statement Investing cash flow

11 aqi Acquisitions - income contribution Income statement Interest and other

12 aqs Acquisitions - sales contribution Income statement Sales

13 at Assets - total Balance sheet Total assets

14 caps Capital surplus/share premium reserve Balance sheet Equity

15 capx Capital expenditures Cash flow statement Investing cash flow

16 capxv Capital expend property, plant and equipment schd v Cash flow statement Investing cash flow

17 ceq Common/ordinary equity - total Balance sheet Equity

18 ceql Common equity - liquidation value Balance sheet Supplemental

19 ceqt Common equity - tangible Balance sheet Supplemental

20 ch Cash Balance sheet Current assets

21 che Cash and short-term investments Balance sheet Current assets

Continued on next page
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Table B.3: Predictor variables for the machine learning models (continued)

Variable Compustat description Financial statement Component

22 chech Cash and cash equivalents - increase/(decrease) Cash flow statement Total cash flow

23 cld2 Capitalized leases - due in 2nd year Balance sheet Supplemental

24 cld3 Capitalized leases - due in 3rd year Balance sheet Supplemental

25 cld4 Capitalized leases - due in 4th year Balance sheet Supplemental

26 cld5 Capitalized leases - due in 5th year Balance sheet Supplemental

27 cogs Cost of goods sold Income statement Operating expenses

28 cstk Common/ordinary stock (capital) Balance sheet Equity

29 cstkcv Common stock-carrying value Balance sheet Supplemental

30 cstke Common stock equivalents - dollar savings Income statement Interest and other

31 dc Deferred charges Balance sheet Fixed assets

32 dclo Debt - capitalized lease obligations Balance sheet Liabilities

33 dcpstk Convertible debt and preferred stock Balance sheet Supplemental

34 dcvsr Debt - senior convertible Balance sheet Liabilities

35 dcvsub Debt - subordinated convertible Balance sheet Liabilities

36 dcvt Debt - convertible Balance sheet Liabilities

37 dd Debt - debentures Balance sheet Liabilities

38 dd1 Long-term debt due in one year Balance sheet Liabilities

39 dd2 Debt - due in 2nd year Balance sheet Liabilities

40 dd3 Debt - due in 3rd year Balance sheet Liabilities

41 dd4 Debt - due in 4th year Balance sheet Liabilities

42 dd5 Debt - due in 5th year Balance sheet Liabilities

43 dlc Debt in current liabilities - total Balance sheet Liabilities

Continued on next page
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Table B.3: Predictor variables for the machine learning models (continued)

Variable Compustat description Financial statement Component

44 dltis Long-term debt - issuance Cash flow statement Financing cash flow

45 dlto Other long-term debt Balance sheet Liabilities

46 dltp Long-term debt - tied to prime Balance sheet Liabilities

47 dltr Long-term debt - reduction Cash flow statement Financing cash flow

48 dltt Long-term debt - total Balance sheet Liabilities

49 dm Debt - mortgages and other secured Balance sheet Liabilities

50 dn Debt - notes Balance sheet Liabilities

51 do Discontinued operations Income statement Interest and other

52 dp Depreciation and amortization Income statement Depreciation and amortization

53 dpact Depreciation, depletion and amortization (accumulated) Balance sheet Fixed assets

54 dpc Depreciation and amortization (cash flow) Cash flow statement Operating cash flow

55 dpvieb Depreciation (accumulated) - ending balance (schedule vi) Balance sheet Supplemental

56 ds Debt-subordinated Balance sheet Liabilities

57 dudd Debt - unamortized debt discount and other Balance sheet Liabilities

58 dv Cash dividends (cash flow) Cash flow statement Financing cash flow

59 dvc Dividends common/ordinary Income statement Dividends

60 dvp Dividends - preferred/preference Income statement Dividends

61 dvpa Preferred dividends in arrears Balance sheet Supplemental

62 dvt Dividends - total Income statement Dividends

63 dxd2 Debt (excl capitalized leases) - due in 2nd year Balance sheet Supplemental

64 dxd3 Debt (excl capitalized leases) - due in 3rd year Balance sheet Supplemental

65 dxd4 Debt (excl capitalized leases) - due in 4th year Balance sheet Supplemental

Continued on next page
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Table B.3: Predictor variables for the machine learning models (continued)

Variable Compustat description Financial statement Component

66 dxd5 Debt (excl capitalized leases) - due in 5th year Balance sheet Supplemental

67 ebit Earnings before interest and taxes Income statement EBIT

68 ebitda Earnings before interest Income statement EBITDA

69 esub Equity in earnings - unconsolidated subsidiaries Income statement Interest and other

70 esubc Equity in net loss - earnings Cash flow statement Operating cash flow

71 exre Exchange rate effect Cash flow statement Total cash flow

72 fatb Property, plant, and equipment - buildings at cost Balance sheet Supplemental

73 fatc Property, plant, and equipment - construction in progress at cost Balance sheet Supplemental

74 fate Property, plant, and equipment - machinery and equipment at cost Balance sheet Supplemental

75 fatl Property, plant, and equipment - leases at cost Balance sheet Supplemental

76 fatn Property, plant, and equipment - natural resources at cost Balance sheet Supplemental

77 fato Property, plant, and equipment - other at cost Balance sheet Supplemental

78 fatp Property, plant, and equipment - land and improvements at cost Balance sheet Supplemental

79 fiao Financing activities - other Cash flow statement Financing cash flow

80 fincf Financing activities - net cash flow Cash flow statement Financing cash flow

81 fopo Funds from operations - other Cash flow statement Operating cash flow

82 gp Gross profit Income statement Operating expenses

83 ib Income before extraordinary items Income statement Net income

84 ibadj Income before extraordinary items - adjusted for common stock equivalents Income statement Net income

85 ibc Income before extraordinary items (cash flow) Cash flow statement Operating cash flow

86 ibcom Income before extraordinary items - available for common Income statement Net income

87 icapt Invested capital - total Balance sheet Supplemental

Continued on next page
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Table B.3: Predictor variables for the machine learning models (continued)

Variable Compustat description Financial statement Component

88 idit Interest and related income - total Income statement Interest and other

89 intan Intangible assets - total Balance sheet Fixed assets

90 intc Interest capitalized Income statement Interest and other

91 intpn Interest paid - net Cash flow statement Operating cash flow

92 invch Inventory - decrease (increase) Cash flow statement Operating cash flow

93 invfg Inventories - finished goods Balance sheet Current assets

94 invo Inventories - other Balance sheet Current assets

95 invrm Inventories - raw materials Balance sheet Current assets

96 invt Inventories - total Balance sheet Current assets

97 invwip Inventories - work in process Balance sheet Current assets

98 itcb Investment tax credit (balance sheet) Balance sheet Liabilities

99 itci Investment tax credit (income account) Income statement Taxes

100 ivaco Investing activities - other Cash flow statement Investing cash flow

101 ivaeq Investment and advances - equity Balance sheet Fixed assets

102 ivao Investment and advances - other Balance sheet Fixed assets

103 ivch Increase in investments Cash flow statement Investing cash flow

104 ivncf Investing activities - net cash flow Cash flow statement Investing cash flow

105 ivst Short-term investments - total Balance sheet Current assets

106 ivstch Short-term investments - change Cash flow statement Investing cash flow

107 lco Current liabilities - other - total Balance sheet Liabilities

108 lcox Current liabilities - other - sundry Balance sheet Liabilities

109 lct Current liabilities - total Balance sheet Liabilities

Continued on next page
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Table B.3: Predictor variables for the machine learning models (continued)

Variable Compustat description Financial statement Component

110 lifr Lifo reserve Balance sheet Supplemental

111 lo Liabilities - other - total Balance sheet Liabilities

112 lse Liabilities and stockholders equity - total Balance sheet Total liabilities and equity

113 lt Liabilities - total Balance sheet Liabilities

114 mib Noncontrolling interest (balance sheet) Balance sheet Liabilities

115 mii Noncontrolling interest (income account) Income statement Interest and other

116 mrc1 Rental commitments - minimum - 1st year Balance sheet Supplemental

117 mrc2 Rental commitments - minimum - 2nd year Balance sheet Supplemental

118 mrc3 Rental commitments - minimum - 3rd year Balance sheet Supplemental

119 mrc4 Rental commitments - minimum - 4th year Balance sheet Supplemental

120 mrc5 Rental commitments - minimum - 5th year Balance sheet Supplemental

121 mrct Rental commitments - minimum - 5 year total Balance sheet Supplemental

122 msa Marketable securities adjustment Balance sheet Supplemental

123 ni Net income (loss) Income statement Net income

124 niadj Net income adjusted for common/ordinary stock (capital) equivalents Income statement Net income

125 nopi Nonoperating income (expense) Income statement Interest and other

126 nopio Nonoperating income (expense) - other Income statement Interest and other

127 np Notes payable - short-term borrowings Balance sheet Liabilities

128 oancf Operating activities - net cash flow Cash flow statement Operating cash flow

129 oiadp Operating income after depreciation Income statement EBIT

130 oibdp Operating income before depreciation Income statement EBITDA

131 pi Pretax income Income statement EBT

Continued on next page
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Table B.3: Predictor variables for the machine learning models (continued)

Variable Compustat description Financial statement Component

132 ppegt Property, plant and equipment - total (gross) Balance sheet Fixed assets

133 ppent Property, plant and equipment - total (net) Balance sheet Fixed assets

134 ppeveb Property, plant, and equipment - ending balance (schedule v) Balance sheet Supplemental

135 prstkc Purchase of common and preferred stock Cash flow statement Financing cash flow

136 pstk Preferred/preference stock (capital) - total Balance sheet Equity

137 pstkc Preferred stock - convertible Balance sheet Equity

138 pstkl Preferred stock - liquidating value Balance sheet Supplemental

139 pstkn Preferred/preference stock - nonredeemable Balance sheet Equity

140 pstkr Preferred/preference stock - redeemable Balance sheet Equity

141 pstkrv Preferred stock - redemption value Balance sheet Supplemental

142 re Retained earnings Balance sheet Equity

143 rea Retained earnings - restatement Balance sheet Supplemental

144 reajo Retained earnings - other adjustments Balance sheet Supplemental

145 recch Accounts receivable - decrease (increase) Cash flow statement Operating cash flow

146 recco Receivables - current - other Balance sheet Current assets

147 recd Receivables - estimated doubtful Balance sheet Current assets

148 rect Receivables - tota Balance sheet Current assets

149 recta Retained earnings - cumulative translation adjustment Balance sheet Supplemental

150 rectr Receivables - trade Balance sheet Current assets

151 reuna Retained earnings - unadjusted Balance sheet Equity

152 revt Revenue - total Income statement Sales

153 sale Sales/turnover (net) Income statement Sales

Continued on next page
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Table B.3: Predictor variables for the machine learning models (continued)

Variable Compustat description Financial statement Component

154 seq Stockholders equity - parent Balance sheet Equity

155 siv Sale of investments Cash flow statement Investing cash flow

156 spi Special items Income statement Interest and other

157 sppe Sale of property Cash flow statement Operating cash flow

158 sppiv Sale of property, plant and equipment and investments - gain (loss) Cash flow statement Operating cash flow

159 sstk Sale of common and preferred stock Cash flow statement Financing cash flow

160 tlcf Tax loss carry forward Balance sheet Supplemental

161 tstk Treasury stock - total (all capital) Balance sheet Equity

162 tstkc Treasury stock - common Balance sheet Equity

163 tstkp Treasury stock - preferrred Balance sheet Equity

164 txach Income taxes - accrued - increase/(decrease) Cash flow statement Operating cash flow

165 txc Income taxes - current Income statement Taxes

166 txdb Deferred taxes (balance sheet) Balance sheet Liabilities

167 txdc Deferred taxes (cash flow) Income statement Operating cash flow

168 txdfed Deferred taxes-federal Income statement Taxes

169 txdfo Deferred taxes-foreign Income statement Taxes

170 txdi Income taxes - deferred Income statement Taxes

171 txditc Deferred taxes and investment tax credit Balance sheet Liabilities

172 txds Deferred taxes-state Income statement Taxes

173 txfed Income taxes - federal Income statement Taxes

174 txfo Income taxes - foreign Income statement Taxes

175 txo Income taxes - other Income statement Taxes

Continued on next page
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Table B.3: Predictor variables for the machine learning models (continued)

Variable Compustat description Financial statement Component

176 txp Income taxes payable Balance sheet Liabilities

177 txpd Income taxes paid Cash flow statement Operating cash flow

178 txr Income tax refund Balance sheet Current assets

179 txs Income taxes - state Income statement Taxes

180 txt Income taxes - total Income statement Taxes

181 txw Excise taxes Income statement Taxes

182 wcap Working capital (balance sheet) Balance sheet Supplemental

183 xacc Accrued expenses Balance sheet Liabilities

184 xi Extraordinary items Income statement Interest and other

185 xido Extraordinary items and discontinued operations Income statement Interest and other

186 xidoc Extraordinary items and discontinued operations (cash flow) Cash flow statement Operating cash flow

187 xint Interest and related expense - total Income statement Interest and other

188 xopr Operating expenses - total Income statement Operating expenses

189 xpp Prepaid expenses Balance sheet Current assets

190 xpr Pension and retirement expense Income statement Operating expenses

191 xrent Rental expense Income statement Operating expenses

192 xsga Selling, general and administrative expense Income statement Operating expenses

This table reports the input variables used in our machine learning models. We also report the Compustat description, the financial statement group as well as the financial
statement component group we assign to the respective variable. EBITDA denotes earnings before interest, taxes, depreciation and amortization. EBIT denotes earnings
before interest and taxes. EBT denotes earnings before taxes. We scale all variables by common shares outstanding.
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B.3 Implied cost of capital models
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Table B.4: Implied cost of capital models

Name Model/Description

GLS Pt = Bt + Σ11
τ=1

Et [(ROEt+τ−ICCGLS)·Bt+τ−1]
(1+ICCGLS)τ + Et [ROEt+12−ICCGLS)·Bt+11]

(1+ICCGLS)11·ICCGLS

This model is given by Gebhardt et al. (2001). Pt denotes the stock price as of the
estimation date in t, ICCGLS denotes the implied cost of capital (ICC), Bt+τ−1 denotes
the book value of equity per share in t + τ − 1 and ROEt+τ is the (forecasted) return
on equity in t + τ. Bt+τ−1 is calculated using the clean surplus relation following Hou
et al. (2012). ROEt+τ is calculated by dividing earnings per share forecasts for t + τ
by Bt+τ−1. For ROEt+τ up to τ = 3 we use the respective models earnings per share
forecast. Afterwards, we assume ROEt+τ to revert to the historical industry median by
τ = 11 (e.g., Hou et al., 2012). The industry median of ROE is derived using 10 years of
data while excluding loss firms (e.g., Gebhardt et al., 2001). We expect ROEt+τ to be
constant after τ = 11.

CT Pt = Bt + ∑5
τ=1

Et [(ROEt+τ−ICCCT)·Bt+τ−1]
(1+ICCCT)τ + Et [(ROEt+5−ICCCT)·Bt+4]·(1+g)

(1+ICCCT)5·(ICCCT−g)

This model is given by Claus and Thomas (2001). Pt denotes the stock price as of the
estimation date in t, ICCCT denotes the implied cost of capital (ICC), Bt+τ−1 denotes
the book value of equity per share in t + τ − 1, ROEt+τ is the (forecasted) return on
equity in t + τ and g is the perpetuity growth rate. Bt+τ−1 is calculated using the clean
surplus relation following Hou et al. (2012). ROEt+τ is calculated by dividing earnings
per share forecasts for t + τ by Bt+τ−1. g is calculated as the current risk-free rate minus
3% (e.g., Hou et al., 2012).

OJ
Pt =

Et [Et+1]·(gst−(γ−1))
(R−A)−A2 , with

A = 0.5((γ − 1)Et [Et+1]·payout
Pt

), gst = 0.5(Et [Et+3]−Et [Et+2]
Et [Et+2]

− Et [Et+5]−Et [Et+4]
Et [Et+4]

)

This model is given by Ohlson and Juettner-Nauroth (2005). Pt denotes the stock price as
of the estimation date in t, ICCOJ denotes the implied cost of capital (ICC), Et+τ denotes
(forecasted) earnings in t+ τ, gst is the short-term growth rate, γ is the perpetual growth
rate and payout is the current payout ratio. gst is calculated as the mean of forecasted
earnings growth in τ = 3 and τ = 5 (e.g., Hou et al., 2012). γ is the current risk-free rate
minus 3% (e.g., Hou et al., 2012). payout is calculated as dividends divided by earnings
for profit firms and as dividends divided by 0.06 · total assets for loss firms (e.g., Hou
et al., 2012).

MPEG Pt =
Et [Et+2]+(ICCMPEG ·payout−1)·Et [Et+1]

ICC2
MPEG

This model is given by Easton (2004). Pt denotes the stock price as of the estimation date
in t, ICCMPEG denotes the implied cost of capital (ICC) and Et+τ denotes the (forecasted)
earnings per share in t + τ. payout is derived as dividends divided by earnings for
profit firms and as dividends divided by 0.06 · total assets for loss firms (e.g., Hou et al.,
2012).

GG Pt =
Et [Et+1]
ICCGG

This model is given by Gordon and Gordon (1997). Pt denotes the stock price as of the
estimation date in t, ICCGG denotes the implied cost of capital (ICC) and Et+1 denotes
the (forecasted) earnings per share in t + 1.

This table shows implied cost of capital (ICC) models that we base our composite ICC on. The presentation
of the models closely follows the one provided by Hess and Wolf (2022). For simplicity, we drop the firm
index i. The composite ICC that we use is derived as the average of these ICCs.
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Table C.1: Implied cost of capital models

Name Model/Description

GLS Pt = Bt + Σ11
τ=1

Et [(ROEt+τ−ICCGLS)·Bt+τ−1]
(1+ICCGLS)τ + Et [ROEt+12−ICCGLS)·Bt+11]

(1+ICCGLS)11·ICCGLS

This model is given by Gebhardt et al. (2001). Pt denotes the stock price as of the
estimation date in t, ICCGLS denotes the implied cost of capital (ICC), Bt+τ−1 denotes
the book value of equity per share in t + τ − 1 and ROEt+τ is the (forecasted) return
on equity in t + τ. Bt+τ−1 is calculated using the clean surplus relation following Hou
et al. (2012). ROEt+τ is calculated by dividing earnings per share forecasts for t + τ by
Bt+τ−1. For ROEt+τ up to τ = 3 I use the respective models earnings per share forecast.
Afterwards, I assume ROEt+τ to revert to the historical industry median by τ = 11 (e.g.,
Hou et al., 2012). The industry median of ROE is derived using 10 years of data while
excluding loss firms (e.g., Gebhardt et al., 2001). I expect ROEt+τ to be constant after
τ = 11.

CT Pt = Bt + ∑5
τ=1

Et [(ROEt+τ−ICCCT)·Bt+τ−1]
(1+ICCCT)τ + Et [(ROEt+5−ICCCT)·Bt+4]·(1+g)

(1+ICCCT)5·(ICCCT−g)

This model is given by Claus and Thomas (2001). Pt denotes the stock price as of the
estimation date in t, ICCCT denotes the implied cost of capital (ICC), Bt+τ−1 denotes
the book value of equity per share in t + τ − 1, ROEt+τ is the (forecasted) return on
equity in t + τ and g is the perpetuity growth rate. Bt+τ−1 is calculated using the clean
surplus relation following Hou et al. (2012). ROEt+τ is calculated by dividing earnings
per share forecasts for t + τ by Bt+τ−1. g is calculated as the current risk-free rate minus
3% (e.g., Hou et al., 2012).

OJ
Pt =

Et [Et+1]·(gst−(γ−1))
(R−A)−A2 , with

A = 0.5((γ − 1)Et [Et+1]·payout
Pt

), gst = 0.5(Et [Et+3]−Et [Et+2]
Et [Et+2]

− Et [Et+5]−Et [Et+4]
Et [Et+4]

)

This model is given by Ohlson and Juettner-Nauroth (2005). Pt denotes the stock price as
of the estimation date in t, ICCOJ denotes the implied cost of capital (ICC), Et+τ denotes
(forecasted) earnings in t+ τ, gst is the short-term growth rate, γ is the perpetual growth
rate and payout is the current payout ratio. gst is calculated as the mean of forecasted
earnings growth in τ = 3 and τ = 5 (e.g., Hou et al., 2012). γ is the current risk-free rate
minus 3% (e.g., Hou et al., 2012). payout is calculated as dividends divided by earnings
for profit firms and as dividends divided by 0.06 · total assets for loss firms (e.g., Hou
et al., 2012).

MPEG Pt =
Et [Et+2]+(ICCMPEG ·payout−1)·Et [Et+1]

ICC2
MPEG

This model is given by Easton (2004). Pt denotes the stock price as of the estimation date
in t, ICCMPEG denotes the implied cost of capital (ICC) and Et+τ denotes the (forecasted)
earnings per share in t + τ. payout is derived as dividends divided by earnings for
profit firms and as dividends divided by 0.06 · total assets for loss firms (e.g., Hou et al.,
2012).

GG Pt =
Et [Et+1]
ICCGG

This model is given by Gordon and Gordon (1997). Pt denotes the stock price as of the
estimation date in t, ICCGG denotes the implied cost of capital (ICC) and Et+1 denotes
the (forecasted) earnings per share in t + 1.

This table reports the ICC models which I employ to derive the composite ICC estimate. The presentation of
the models closely follows the one provided by Hess and Wolf (2022). For simplicity, I drop the firm index i.
The composite ICC that I use is derived as the average of these ICC.
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C.2 Traditional earnings prediction models

Table C.2: Traditional earnings models

Panel A: Traditional model specifications

Name Model Source

HVZ Et[Ei,t+τ ] = β0 + β1Ei,t + β2 Ai,t + β3Di,t + β4DDi,t
+β5NegEi,t + β6 ACCi,t

Hou et al. (2012)

EP Et[Ei,t+τ ] = β0 + β1Ei,t + β2NegEi,t + β3NegEi,tEi,t Li and Mohanram (2014)

RI Et[Ei,t+τ ] = β0 + β1Ei,t + β2NegEi,t + β3NegEi,tEi,t
+β4Bi,t + β5 ACCi,t

Li and Mohanram (2014)

Panel B: Variable definitions

Variable Definition

E Income before extraordinary items (ib) / common shares outstanding (csho)

A Total assets (at) / csho

D Dividends total (dvt) / csho

DD 1 if dvt > 0; 0 else

NegE 1 if ib < 0; 0 else

ACC
∆(Current assets (act) - cash and cash equivalents (che))
- ∆(current liabilities (lct) - debt in current liabilities - total (dlc) - income taxes payable (txp))
- depreciation and amortization (dp)

B Common/ordinary equity - total (ceq) / csho

Panel A reports the traditional earnings models estimated. Et[Ei,t+τ ] denotes the expectation for earnings E
of firm i in period t + τ as of t. β0-β5 are the model coefficients. Panel B reports the variable definitions for
the traditional models. Compustat variable names are provided in parentheses. Note the slight changes
as opposed to the original papers. More precisely, I scale all variables by common shares outstanding and
use a consistent earnings as well as accruals definition. All models are estimated by minimizing the mean
squared error.
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C.3 Machine learning earnings prediction model

Table C.3: Hyperparameters for the machine learning model

RF, GBT & DART

Loss function Mean absolute error
Maximum number of trees 512
Learning rate ∈ [0.001, 0.01, 0.1, 1]
Maximum depth Uint(2, 10)
Maximum number of leaves Uint(2, 512)
L1-regularization U(0, 0.1)
L2-regularization U(0, 0.1)
Feature fraction U(0.25, 1)
Bagging fraction U(0.25, 1)
Bagging frequency ∈ (1, 10, 50)

DART Dropout rate ∈ (0.05, 0.1, 0.15)
DART Probability of skipping dropout ∈ (0.25, 0.5)

This table reports the hyperparameters that I tune and their respective boundaries. U (Uint) means drawing
from a uniform (integer-wise uniform) distribution. The choice of hyperparameters and their respective
boundaries is based on Bali et al. (2023). I use the Ray Python framework to efficiently optimize the
hyperparameters (Liaw et al., 2018).



A
PPEN

D
IX

C
151

Table C.4: Predictor variables for the machine learning model

Variable Compustat description Financial statement Component

1 aco Current assets - other - total Balance sheet Current assets

2 acox Current assets - other - sundry Balance sheet Current assets

3 act Current assets - total Balance sheet Current assets

4 ao Assets - other Balance sheet Fixed assets

5 aox Assets - other - sundry Balance sheet Fixed assets

6 ap Accounts payable - trade Balance sheet Liabilities

7 at Assets - total Balance sheet Total assets

8 caps Capital surplus/share premium reserve Balance sheet Equity

9 capx Capital expenditures Cash flow statement Investing cash flow

10 capxv Capital expend property, plant and equipment schd v Cash flow statement Investing cash flow

11 ceq Common/ordinary equity - total Balance sheet Equity

12 ceql Common equity - liquidation value Balance sheet Supplemental

13 ceqt Common equity - tangible Balance sheet Supplemental

14 ch Cash Balance sheet Current assets

15 che Cash and short-term investments Balance sheet Current assets

16 cogs Cost of goods sold Income statement Operating expenses

17 cstk Common/ordinary stock (capital) Balance sheet Equity

18 cstke Common stock equivalents - dollar savings Income statement Interest and other

19 dc Deferred charges Balance sheet Fixed assets

20 dclo Debt - capitalized lease obligations Balance sheet Liabilities

21 dcpstk Convertible debt and preferred stock Balance sheet Supplemental

Continued on next page
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Table C.4: Predictor variables for the machine learning models (continued)

Variable Compustat description Financial statement Component

22 dcvt Debt - convertible Balance sheet Liabilities

23 dd Debt - debentures Balance sheet Liabilities

24 dd1 Long-term debt due in one year Balance sheet Liabilities

25 dlc Debt in current liabilities - total Balance sheet Liabilities

26 dlto Other long-term debt Balance sheet Liabilities

27 dltt Long-term debt - total Balance sheet Liabilities

28 dn Debt - notes Balance sheet Liabilities

29 do Discontinued operations Income statement Interest and other

30 dp Depreciation and amortization Income statement Depreciation and amortization

31 dpact Depreciation, depletion and amortization (accumulated) Balance sheet Fixed assets

32 ds Debt-subordinated Balance sheet Liabilities

33 dudd Debt - unamortized debt discount and other Balance sheet Liabilities

34 dvc Dividends common/ordinary Income statement Dividends

35 dvp Dividends - preferred/preference Income statement Dividends

36 dvt Dividends - total Income statement Dividends

37 ebit Earnings before interest and taxes Income statement EBIT

38 ebitda Earnings before interest Income statement EBITDA

39 esub Equity in earnings - unconsolidated subsidiaries Income statement Interest and other

40 gp Gross profit Income statement Operating expenses

41 ib Income before extraordinary items Income statement Net income

42 ibadj Income before extraordinary items - adjusted for common stock equivalents Income statement Net income

43 ibcom Income before extraordinary items - available for common Income statement Net income

Continued on next page
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Table C.4: Predictor variables for the machine learning models (continued)

Variable Compustat description Financial statement Component

44 icapt Invested capital - total Balance sheet Supplemental

45 idit Interest and related income - total Income statement Interest and other

46 intan Intangible assets - total Balance sheet Fixed assets

47 intc Interest capitalized Income statement Interest and other

48 invt Inventories - total Balance sheet Current assets

49 itcb Investment tax credit (balance sheet) Balance sheet Liabilities

50 itci Investment tax credit (income account) Income statement Taxes

51 ivaeq Investment and advances - equity Balance sheet Fixed assets

52 ivao Investment and advances - other Balance sheet Fixed assets

53 ivst Short-term investments - total Balance sheet Current assets

54 lco Current liabilities - other - total Balance sheet Liabilities

55 lcox Current liabilities - other - sundry Balance sheet Liabilities

56 lct Current liabilities - total Balance sheet Liabilities

57 lo Liabilities - other - total Balance sheet Liabilities

58 lse Liabilities and stockholders equity - total Balance sheet Total liabilities and equity

59 lt Liabilities - total Balance sheet Liabilities

60 mib Noncontrolling interest (balance sheet) Balance sheet Liabilities

61 mii Noncontrolling interest (income account) Income statement Interest and other

62 ni Net income (loss) Income statement Net income

63 niadj Net income adjusted for common/ordinary stock (capital) equivalents Income statement Net income

64 nopi Nonoperating income (expense) Income statement Interest and other

65 nopio Nonoperating income (expense) - other Income statement Interest and other

Continued on next page
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Table C.4: Predictor variables for the machine learning models (continued)

Variable Compustat description Financial statement Component

66 np Notes payable - short-term borrowings Balance sheet Liabilities

67 oiadp Operating income after depreciation Income statement EBIT

68 oibdp Operating income before depreciation Income statement EBITDA

69 pi Pretax income Income statement EBT

70 ppegt Property, plant and equipment - total (gross) Balance sheet Fixed assets

71 ppent Property, plant and equipment - total (net) Balance sheet Fixed assets

72 ppeveb Property, plant, and equipment - ending balance (schedule v) Balance sheet Supplemental

73 pstk Preferred/preference stock (capital) - total Balance sheet Equity

74 pstkc Preferred stock - convertible Balance sheet Equity

75 pstkl Preferred stock - liquidating value Balance sheet Supplemental

76 pstkn Preferred/preference stock - nonredeemable Balance sheet Equity

77 pstkrv Preferred stock - redemption value Balance sheet Supplemental

78 re Retained earnings Balance sheet Equity

79 recco Receivables - current - other Balance sheet Current assets

80 rect Receivables - tota Balance sheet Current assets

81 rectr Receivables - trade Balance sheet Current assets

82 revt Revenue - total Income statement Sales

83 sale Sales/turnover (net) Income statement Sales

84 seq Stockholders equity - parent Balance sheet Equity

85 spi Special items Income statement Interest and other

86 tlcf Tax loss carry forward Balance sheet Supplemental

87 tstkp Treasury stock - preferrred Balance sheet Equity

Continued on next page
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Table C.4: Predictor variables for the machine learning models (continued)

Variable Compustat description Financial statement Component

88 txc Income taxes - current Income statement Taxes

89 txdb Deferred taxes (balance sheet) Balance sheet Liabilities

90 txdi Income taxes - deferred Income statement Taxes

91 txditc Deferred taxes and investment tax credit Balance sheet Liabilities

92 txfed Income taxes - federal Income statement Taxes

93 txp Income taxes payable Balance sheet Liabilities

94 txr Income tax refund Balance sheet Current assets

95 txt Income taxes - total Income statement Taxes

96 wcap Working capital (balance sheet) Balance sheet Supplemental

97 xacc Accrued expenses Balance sheet Liabilities

98 xi Extraordinary items Income statement Interest and other

99 xido Extraordinary items and discontinued operations Income statement Interest and other

100 xint Interest and related expense - total Income statement Interest and other

101 xopr Operating expenses - total Income statement Operating expenses

102 xpp Prepaid expenses Balance sheet Current assets

103 xpr Pension and retirement expense Income statement Operating expenses

104 xrent Rental expense Income statement Operating expenses

105 xsga Selling, general and administrative expense Income statement Operating expenses

This table reports the input variables used for the machine learning model. I also report the Compustat description, the financial statement group as well as the financial
statement component group we assign to the respective variable. EBITDA denotes earnings before interest, taxes, depreciation and amortization. EBIT denotes earnings
before interest and taxes. EBT denotes earnings before taxes. I scale all variables by common shares outstanding. In addition to these variables, the machine learning
model includes the traditional variables which are not already included in this list. The traditional variables are defined in Table C.2.
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C.4 General accuracy versus systematic distortions
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Table C.5: General accuracy versus systematic distortions: simulation I

HVZ HVZud EP EPud RI RIud ML MLud PERF

Deciles 10-1 0.1569*** 0.3174*** 0.1794*** 0.3241*** 0.1532*** 0.3249*** 0.1318*** 0.3356*** 0.3929***
10-1 net 0.1415*** 0.3007*** 0.1636*** 0.3075*** 0.1375*** 0.3083*** 0.1157*** 0.3190*** 0.3767***

Quintiles 5-1 0.1112*** 0.2625*** 0.1294*** 0.2674*** 0.1084*** 0.2684*** 0.0973*** 0.2747*** 0.3395***
5-1 net 0.0971*** 0.2474*** 0.1149*** 0.2523*** 0.0941*** 0.2533*** 0.0826*** 0.2596*** 0.3249***

Terciles 3-1 0.0832*** 0.2104*** 0.0973*** 0.2109*** 0.0855*** 0.2124*** 0.0694*** 0.2169*** 0.2792***
3-1 net 0.0706*** 0.1973*** 0.0844*** 0.1978*** 0.0728*** 0.1993*** 0.0565*** 0.2038*** 0.2664***

This table reports both the average gross and net returns of the ICC long-short portfolios based on actual model forecasts and corresponding simulated undistorted
forecasts with the same general accuracy. The sample only includes observations for which simulated ICC are available. I consider three quantile splits, i.e., decile splits,
quintile splits, and tercile splits. Transaction costs are accounted for following Brandt et al. (2009), Hand and Green (2011) and DeMiguel et al. (2020). HVZ refers to the
ICC portfolio based on HVZ model earnings forecasts (Hou et al., 2012), EP and RI refer to ICC portfolios based on EP and RI model earnings forecasts (Li and Mohanram,
2014), and ML refers to the ICC portfolio based on ML model earnings forecasts (Hess et al., 2024). The superscript ud denotes the undistorted forecast which matches the
level of general accuracy of the respective model forecast for each forecast horizon. PERF is the perfect forecast with zero systematic distortions and perfect general
accuracy. ***, **, and * denote statistical significance at the 1%, the 5% and the 10% level, respectively. Standard errors used for deriving statistical significance are adjusted
following Newey and West (1987) assuming a lag length of three years.
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Table C.6: General accuracy versus systematic distortions: simulation II

Panel A: Varying median PAFE
w1 PAFE SYSD 10-1 10-1 net 5-1 5-1 net 3-1 3-1 net

0.0 0.0000 0.0000 0.3929*** 0.3767*** 0.3395*** 0.3249*** 0.2792*** 0.2664***
0.2 0.0093 0.0000 0.3932*** 0.3770*** 0.3356*** 0.3210*** 0.2731*** 0.2603***
0.4 0.0185 0.0000 0.3866*** 0.3702*** 0.3235*** 0.3086*** 0.2586*** 0.2457***
0.6 0.0278 0.0000 0.3741*** 0.3576*** 0.3061*** 0.2911*** 0.2436*** 0.2306***
0.8 0.0371 0.0000 0.3581*** 0.3416*** 0.2911*** 0.2761*** 0.2319*** 0.2189***
1.0 0.0463 0.0000 0.3356*** 0.3190*** 0.2747*** 0.2596*** 0.2169*** 0.2038***

Panel B: Varying SYSD
w2 PAFE SYSD 10-1 10-1 net 5-1 5-1 net 3-1 3-1 net

0.0 0.0460 0.0265 0.3356*** 0.3189*** 0.2776*** 0.2625*** 0.2194*** 0.2064***
0.2 0.0405 0.0344 0.3253*** 0.3087*** 0.2710*** 0.2559*** 0.2165*** 0.2034***
0.4 0.0387 0.0576 0.3212*** 0.3046*** 0.2598*** 0.2447*** 0.2078*** 0.1947***
0.6 0.0388 0.0902 0.2850*** 0.2686*** 0.2350*** 0.2200*** 0.1859*** 0.1728***
0.8 0.0408 0.1246 0.2254*** 0.2091*** 0.1861*** 0.1713*** 0.1457*** 0.1327***
1.0 0.0464 0.1480 0.1224*** 0.1062*** 0.0894*** 0.0746*** 0.0664*** 0.0534***

This table reports both the average gross and net returns of the ICC long-short portfolios based on simulated forecasts with varying median PAFE and fixed SYSD, and
vice versa. The sample only includes observations for which simulated ICC are available. I consider three quantile splits, i.e., decile splits, quintile splits, and tercile
splits. Transaction costs are accounted for following Brandt et al. (2009), Hand and Green (2011) and DeMiguel et al. (2020). The PAFE and SYSD columns in both
panels show the averaged median PAFE and averaged SYSD computed across forecast horizons t + 1 to t + 5 of the respective simulated forecast. ***, **, and * denote
statistical significance at the 1%, the 5% and the 10% level, respectively. Standard errors used for deriving statistical significance are adjusted following Newey and West
(1987) assuming a lag length of three years. I only test for statistical significance of the portfolio returns. Panel A reports average portfolio returns based on simulated
forecasts with varying median PAFE and constant SYSD of zero. The forecasts are derived by simulating undistorted forecasts which match the ML model PAFEs for each
forecast horizon, multiplied by a scalar w1. Panel B reports average portfolio returns based on simulated forecasts with varying SYSD and (approximately) constant
median PAFE equal to that of the ML model for each forecast horizon. The forecasts are derived by computing a weighted average of the actual ML model forecast and
the corresponding simulated undistorted forecast with the same median PAFE. The weight given to the ML model forecast is given by w2 and the weight given to the
corresponding undistorted forecast is given by 1 − w2.
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