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Abstract 
Regulated cell death is an essential process in multicellular organisms, necessary for 

development and critical for pathogen responses. Apoptosis, justifiably the most 

studied regulated cell death process, rids the body of old and damaged cells via the 

ordered activity of caspases. These proteases can activate the pore-forming protein 

Gasdermin E, which switches the normally immunologically silent apoptosis to 

pyroptosis. Pyroptosis is a Gasdermin-mediated type of regulated cell death 

characterised by lytic death of the cell, the release of pro-inflammatory factors and 

subsequent recruitment of immune cells. Defects in cell death signalling are a common 

cause of several diseases, leading to exacerbated cell death or nullifying its activation. 

Resisting cell death is an essential hallmark of Cancer, as regulated cell death 

prevents tumour formation. Lung cancer is the leading cause of cancer-related deaths 

worldwide per year with over 1.8 million deaths annually. Small Cell Lung Cancer 

(SCLC) is a recalcitrant subtype of lung cancer with dismal survival rates of only 7% 

after 5 years. In this study, we manipulated the apoptotic circuitry by using small 

molecules to block the Cyclin-dependent Kinase 9 (CDK9) activity, which is necessary 

for RNA transcription. We showed that the inhibition of CDK9 leads to the decrease of 

short-lived proteins, particularly of anti-apoptotic proteins, thus triggering apoptosis in 

SCLC cells. We found that, unlike non-SCLC cells, SCLC cells are unable to adapt 

their apoptotic signalling upon CDK9 inhibition and are therefore primed to undergo 

apoptosis. SCLC cells that are resistant to chemotherapy were found to be sensitive 

to CDK9 inhibition, bypassing their acquired insensitivity. We also found that CDK9 

inhibition exerts anti-tumoral effects in autochthonous and syngeneic SCLC mouse 

models and that the tumour inhibitory effect is dependent on immune cells. We next 

studied the role of Gasdermin E in the tumour biology of SCLC and found that, 

although it does not influence tumour initiation and progression, it clearly modulates 

the sensitivity of SCLC cells to the induction of apoptosis. SCLC cells lacking 

Gasdermin E were less sensitive to chemotherapy and CDK9 inhibition treatments. 

Taken together, our study demonstrates that inhibiting CDK9 is a viable treatment 

option for SCLC. Additionally, we show that the expression of Gasdermin E reduces 

the threshold necessary for the induction of cell death. In this thesis, we harnessed 

the vulnerabilities in the apoptotic pathway of cancer cells to treat SCLC. 



Zusammenfassung 
Der regulierte Zelltod ist ein wesentlicher Prozess in multizellulären Organismen, der 

für die Entwicklung notwendig und für die Reaktion auf Krankheitserreger 

entscheidend ist. Die Apoptose, der zu Recht am meisten untersuchte regulierte 

Zelltodprozess, befreit den Körper durch die aufeinander abgestimmte Aktivität von 

Caspasen von alten und geschädigten Zellen. Diese Proteasen können das 

porenbildende Protein Gasdermin E aktivieren, wodurch die normalerweise 

immunologisch stille Apoptose in die Pyroptose übergeht. Die Pyroptose ist eine durch 

Gasdermin vermittelte Form des regulierten Zelltods, die durch den lytischen Tod der 

Zelle, die Freisetzung entzündungsfördernder Faktoren und die anschließende 

Rekrutierung von Immunzellen gekennzeichnet ist. Defekte in Zelltod-Signalkaskaden 

sind eine häufige Ursache für verschiedene Krankheiten, die zu verstärktem Zelltod 

führen oder dessen Aktivierung aufheben. Der Widerstand gegen den Zelltod ist ein 

wesentliches Merkmal von Krebs, da ein regulierter Zelltod die Tumorbildung 

verhindert. Lungenkrebs ist mit über 1,8 Millionen Todesfällen pro Jahr weltweit die 

häufigste Ursache für krebsbedingte Todesfälle. Das kleinzellige Bronchialkarzinom 

(Small Cell Lung Cancer, SCLC) ist eine schwer zu behandelndeUnterart von 

Lungenkrebs mit einer geringen Überlebensrate von nur 7 % nach 5 Jahren. In dieser 

Studie manipulierten wir den apoptotischen Kreislauf, indem wir kleine Moleküle zur 

Blockierung der Aktivität der Cyclin-abhängigen Kinase 9 (CDK9) einsetzten, die für 

die RNA-Transkription notwendig ist. Wir konnten zeigen, dass die Hemmung von 

CDK9 zu einer Verringerung von kurzlebigen Proteinen, insbesondere von anti-

apoptotischen Proteinen, führt und so die Apoptose in SCLC-Zellen auslöst. Wir 

fanden heraus, dass SCLC-Zellen im Gegensatz zu Nicht-SCLC-Zellen nicht in der 

Lage sind, ihre apoptotischen Signale nach einer CDK9-Hemmung anzupassen, und 

daher für die Apoptose gerüstet sind. SCLC-Zellen, die gegen eine Chemotherapie 

resistent sind, erwiesen sich als empfindlich gegenüber einer CDK9-Hemmung und 

überwanden so ihre erworbene Unempfindlichkeit. Wir fanden auch heraus, dass die 

CDK9-Hemmung in autochthonen und syngenen SCLC-Mausmodellen antitumorale 

Wirkungen hat und dass die tumorhemmende Wirkung von Immunzellen abhängig ist. 

Als nächstes untersuchten wir die Rolle von Gasdermin E in der Tumorbiologie von 

SCLC und fanden heraus, dass das Protein zwar keinen Einfluss auf die 



Tumorinitiation und -progression hat, aber eindeutig die Empfindlichkeit von SCLC-

Zellen gegenüber der Induktion von Apoptose moduliert. SCLC-Zellen, denen 

Gasdermin E fehlte, waren weniger empfindlich gegenüber Chemotherapie und 

CDK9-Hemmungen. Insgesamt zeigt unsere Studie, dass die Hemmung von CDK9 

eine praktikable Behandlungsoption für SCLC ist. Darüber hinaus zeigen wir, dass die 

Expression von Gasdermin E die Schwelle senkt, die für die Auslösung des Zelltods 

überschritten werden muss. In dieser Arbeit haben wir uns die Schwachstellen im 

apoptotischen Signalweg von Krebszellen zunutze gemacht, um SCLC zu behandeln. 
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General Introduction 

1.1 Regulated cell death 

Regulated cell death (RCD) is a fascinating and complex phenomenon that serves 

many critical roles in multicellular organisms, from development to pathogen 

containment, including tissue homeostasis and acting as a barrier against cell 

transformation (1). Our understanding of RCD in mammals has been expanding over 

the decades, revealing its implication in many physiological and pathological 

processes (2-4). What was once believed to be only three modes of RCD, has evolved 

into a myriad of death circuits, each with its unique regulatory mechanisms: apoptosis, 

autophagy, necroptosis, pyroptosis, anoikis, ferroptosis, cuproptosis, parthanatos, 

NETosis, oxeiptosis (5-14), all playing a crucial role in regulating cell death. Many of 

these RCDs are activated as a response to pathogens, underscoring the crucial role 

of RCD in the defence strategies of multicellular organisms. This variability in RCD 

activation provides an effective strategy to defend against pathogens. These RCD 

circuits typically induce the release of pro-inflammatory factors from the dying cells, a 

signal that recruits the immune system to the tissue affected by the pathogens. Other 

RCD pathways serve physiological functions, such as retiring old cells during tissue 

homeostasis, and are therefore immunologically silent. 

The factors initiating RCD can be both extrinsic and intrinsic. The best and most 

studied example of this is apoptosis. 

1.1.1 Apoptosis 

Apoptosis was first described on the basis of morphological features of the cell, where 

the main observations distinguished a condensation of the nucleus, vacuolisation 

within the cytoplasm and the formation of small, round, encapsulated cell fragments; 

a consequence of cell “blebbing” (15). It is justifiably the most studied RCD circuit; 

apoptosis takes place normally during development and aging, and is the main 

mechanism for maintaining cell numbers in tissues. Apoptosis is also a defence 

mechanism against invasive pathogens and is a key component of immune responses 
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(16). As such, it is tightly regulated, as exacerbated apoptosis can be deadly to the 

organism, and reduced apoptosis would lead to developmental issues and the 

emergence of diseases like cancer. The signalling initiating cellular apoptosis can be 

of extrinsic or intrinsic origin, but both converge on the activation of the executioner 

proteins Caspase 3 and Caspase 7 by their respective initiator Caspases (Caspase 8 

and Caspase 9 for extrinsic and intrinsic apoptosis, respectively). Caspases are a 

family of signalling cysteine-aspartic proteases with a regulatory N-terminal domain 

followed by large and small catalytic subunits that together form the protease domain 

(Fig. 1) (17). The regulatory domain in initiator caspases contains a Caspase 

Recruitment Domain (CARD) or Death Effector Domain (DED) that promotes and 

allows their recruitment to multiprotein complexes. Caspases 3 and 7 are activated 

upon apoptosis and result in the cleavage of hundreds of protein targets (18). These 

cleavages lead to the dismantling of the cell and prepare it for phagocytic engulfment. 

For example, the cleavage of the inhibitor of caspase-activated deoxyribonuclease 

(ICAD) by Caspase 3 or 7 releases the caspase-activated deoxyribonuclease (CAD) 

to mediate DNA fragmentation (19). This is in concert with the cleavage and 

inactivation of poly (ADP-ribose) polymerase-1 (PARP), which normally handles the 

routine repair of DNA (20), enabling CAD to degrade the DNA. Caspase 3 will also 

cleave the protein Gelsolin, which will, in turn, cleave Actin filaments, disrupting the 

cytoskeleton, intracellular transport and signal transduction (21, 22). Another example 

is the proteolytic activation of the scramblase XK-related 8 (XKR8), which leads to the 

exposure of phosphatidylserine (PS) on the outer side of the cellular membrane, an 

“eat me” signal for phagocytes (23). Phagocytosis is critical for maintaining the “non-

inflammatory” status of apoptosis. In the later stages of apoptosis, the cell turns into 

“apoptotic bodies” to facilitate phagocytosis. However, if the cells are not “eaten”, they 

will eventually develop membrane damage, which leads to cell bursting and 

inflammation. This is also known as secondary necrosis and will be explained in a later 

section.  
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Figure 1. Apoptotic caspase activation. During extrinsic apoptosis, caspase 8 proteins are brought together via their 
DED domains, generating a proximity-induced cleavage of the proteins at Asp384, releasing the small catalytic 
subunit. This p10 fragment will bind the large catalytic domain of caspase 8 to prompt cleavages at Asp210 and 
Asp216, which release the now mature and active Caspase 8 from the DED domains into the cytoplasm (24). Upon 
extrinsic apoptosis, caspase 9 is concentrated at the apoptosome via its CARD domain, where the caspase 
undergoes proximity-induced cleavage at Asp315. The released p10 fragment then binds to the large catalytic 
subunit of Caspase 9, forming the mature and active Caspase 9 (25). When the initiator caspases reach full 
maturity, they cleave the effector caspases at Asp175 (Caspase 3) or Asp198 and Asp206 (Caspase 7). The 
resulting catalytic subunits bind at a 2:2 ratio and cleave their downstream targets to execute apoptosis.  

 

As mentioned before, the stimuli that engage apoptosis can be internal or external, 

thus sub-categorizing apoptosis into two groups: Extrinsic and Intrinsic Apoptosis. 

However, it is worth noting that their pathways are not fully independent, as there is 

interconnectivity in their downstream signalling, and both converge on the activation 

of the effector Caspases 3 and 7.  
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1.1.1.1 Intrinsic apoptosis 

Intrinsic apoptosis can be initiated by different stimuli, such as genotoxic stress (e.g 

DNA damage from chemotherapeutic agents (26)), damage to organelles (ER stress 

(27)), or lack of pro-survival growth factors, hormones or cytokines. These events 

directly impact the balance of the BCL-2 family of proteins, which determine the cell's 

fate by preventing or inducing the permeabilisation of the mitochondrial outer 

membrane. This permeabilisation results in the loss of mitochondrial potential and 

allows the release of the mitochondrial proteins Cytochrome C and the second 

mitochondria-derived activator of caspases (SMAC), among others. Cytochrome C 

interacts and activates the protein APAF-1 in the cytoplasm, promoting the assembly 

of the apoptosome complex, which recruits pro-Caspase 9 through homotypic CARD-

CARD interactions between APAF-1 and pro-Caspase 9 (28-30). This clustering of the 

protease induces its self-cleavage at Asp315, converting pro-Caspase 9 into the 

mature form of Caspase 9 (Fig. 2). Mature Caspase 9 will then trigger the execution 

phase of apoptosis by cleaving and activating Caspase 3 (21).  

 

Figure 2. A) BAX and BAK, or BOK, oligomerization in the mitochondria induce Mitochondrial Outer Membrane 
Permeabilization (MOMP), releasing SMAC and Cytochrome C (Cyt C) into the cytoplasm of the cell. Cyt C binds 
to Apaf-1, which oligomerises and recruits pro-caspase 9, forming the apoptosome. Here, Caspase 9 becomes 
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active after undergoing self-cleavage at Asp315. The mature form of Caspase 9 will continue the caspase cascade 
and cleave and activate Caspase 3, ensuring apoptosis execution. B) The decision to induce MOMP is mediated 
by BCL-2 protein family members. Activator BH3-only proteins bind to and lead to the oligomerization of the Effector 
proteins BAX and BAK (31). The anti-apoptotic proteins sequester both Activator and Effector proteins, preventing 
Effector oligomerisation. Sensitizer BH3-only proteins compete for binding to Anti-apoptotic proteins with Activator 
and Effector proteins, thus releasing them from their sequestered state and allowing them to interact with each 
other (32, 33). 

 

The BCL-2 protein family determines the decision to enter apoptosis by mitochondrial 

outer-membrane permeabilisation (MOMP). The induction of generalised MOMP in a 

cell is the critical step at which it commits to undergo apoptosis (30, 34). Hence, this 

process is tightly regulated by a complex system within the BCL-2 protein family. This 

protein group is divided into four categories: the anti-apoptotic proteins, the BH3-only 

sensitisers proteins, the BH3-only activator proteins, and the pro-apoptotic effector 

proteins. The pro-apoptotic effectors are BAX, BAK and BOK, with BOK acting 

independently from BAX and BAK and being the only one not affected by the pro-

survival BCL-2 proteins (35, 36). BOK, in turn, is inhibited by gp78, a ubiquitin ligase 

that targets it for degradation (37). Details on BOK activation and oligomerization 

require further research (36). These effector proteins induce MOMP by oligomerising 

upon activation and forming pores in the mitochondrial outer membrane, thus 

releasing internal mitochondrial contents (e.g. SMAC and Cytochrome C) (30, 31, 36). 

BAX and BAK are activated by the BH3-only activator proteins (BID, BIM, PUMA) by 

binding to them and inducing conformational changes that lead to their oligomerisation 

(38-40). The anti-apoptotic proteins (BCL-2, BCL-xL, BCL-W, MCL-1 and BFL1/A1) 

act by directly binding and sequestering the activator proteins and the effectors BAX 

and BAK, thus preventing apoptosis (41). In fact, neutralising the function of the anti-

apoptotic proteins can be enough to trigger this RCD (42). Finally, the BH3-only 

sensitiser proteins (BAD, HRK, BIK, NOXA and BMF) do not interact directly with BAX 

and BAK, but exert their pro-apoptotic effect by competing for binding to the anti-

apoptotic protein group, releasing the activator and effector proteins (43). The affinity 

among the proteins in these groups is selective, although sometimes overlapping. For 

example, HRK selectively binds to BCL-xL (thus releasing BH3-only activator and 

effector proteins), and BAD inhibits BCL-xL, BCL-2 and BCL-W (44). This allows the 

system to be regulated through different pathways controlling the expression of one 
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or more of the BCL-2 protein family members (Fig. 2). One classic example is the 

induction of MOMP by p53.  

 

Normally, cells induce the proteasomal degradation of P53 by the E3 ligase MDM2 

(45, 46). Upon different stress stimuli, such as DNA damage or activation of certain 

oncogenes, the levels of P53 rise dramatically because these stresses converge on 

the inhibition of MDM2 (47). P53 will then regulate the expression of ~500 genes (48-

52). Among these set of genes, P53 will drive the expression of the effector BAX, the 

BH3-only activator PUMA, and the BH3-only sensitiser NOXA (53, 54), all of which 

push the system to induce MOMP and engage in apoptosis. This, of course, makes 

P53 mutations very frequent in cancer, as its inactivation prevents cell death upon 

several stresses and promotes the survival of said cells. Interestingly, two members 

of the p53 protein family share similarities in function with P53: p63 and p73. Both 

respond to cellular and genomic stresses by promoting the expression of genes 

involved in DNA repair, cell cycle arrest and apoptosis (55, 56). Moreover, p63 has 

been shown to induce apoptosis via PUMA and NOXA (57).  

Intrinsic apoptosis rids the body of old and damaged cells and prevents the 

transformation of normal cells guided by internal sensing and signalling. However, 

external stimuli can also unleash apoptosis, which we call extrinsic or death receptor-

mediated apoptosis. 

 

1.1.1.2 Extrinsic apoptosis 

Extrinsic apoptosis is triggered by extracellular ligands that engage the membrane-

bound Death Receptors on the surface. The most studied of these ligand-receptor 

pairs are Tumour Necrosis Factor (TNF) with TNF receptor 1 (TNFR1), FAS ligand 

(FASL/CD95L) with FAS/CD95/Apo1, and TNF-related apoptosis-inducing ligand 

(TRAIL) with TRAILR1 and/or TRAILR2 (in humans) (29, 58, 59). Although it is in their 

name, Death Receptors do not exclusively signal for cell death. They are also capable 

of activating the mitogen-activated kinase (MAPK) and the nuclear factor κB (NF-κB) 

signalling pathways that induce the expression of pro-survival and pro-inflammatory 

genes (29). TRAIL and FASL trigger the formation of the Death Inducing Signalling 



 

 

7 
 

 

Complex (DISC) by recruiting FADD and Caspase 8, among other regulatory proteins 

(59). The formation of the DISC typically results in the induction of apoptosis or another 

more inflammatory type of RCD named Necroptosis. However, the DISC can release 

itself from the receptor and promote NF-κB mediated pro-survival and inflammatory 

gene activation. For example, TRAIL will bind to TRAIL-R1 and/or TRAIL-R2, inducing 

the recruitment of FADD to the receptor. FADD, in turn, will recruit RIPK1, Caspase 8, 

Caspase 10, and the Linear Ubiquitin Chain Assembly Complex (LUBAC), among 

others, forming the DISC (Fig. 3) (59). When Caspase 8 is at high levels in relation to 

other proteins of the complex, it will rapidly bind to the DEDs of FADD and other 

Caspase 8 proteins, forming filaments. The proximity between Caspase 8 

homodimers, promoted by ubiquitination by Culin 3, induces the cleavage and 

activation of the protease, which will activate apoptosis via Caspase 3 (59). Cells can 

be classified depending on their direct response to TRAIL. In type 1 cells, such as 

thymocytes and mature lymphocytes, Caspase 8 is activated and induces apoptosis 

via Caspase 3. In type 2 cells, including pancreatic β cells, hepatocytes and most 

cancer cells, effector Caspase 3 activation is inhibited by X-linked inhibitor of apoptosis 

(XIAP). Instead, Caspase 8, rather than directly activating Caspase 3, cleaves its 

substrate BID, which in its truncated form (tBID) binds and activates the pro-apoptotic 

effectors BAX and BAK. This will release Cytochrome C, activating Caspase 9 as 

described before, and the protein SMAC, a natural antagonist of XIAP, therefore 

counteracting Caspase 3 inhibition. 
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Figure 3. TRAIL signalling and DISC formation. When TRAIL binds to TRAIL receptors 1 or 2 (TRAIL-R1/2), it 
causes them to trimerize and recruit FADD through their Death Domains (DD). Receptor and downstream proteins 
follow a 3:1:9 stoichiometry for TRAIL-R1/2:FADD:Caspase 8 (60). When Caspase 8 is in low levels relative to 
RIPK1, RIPK1 is capable of binding to the DD of FADD, allowing self-phosphorylation by RIPK1, which recruits 
RIPK3 and MLKL. Phosphorylation of MLKL by RIPK3 then triggers death by Necroptosis. This RCD is inhibited 
by LUBAC and Caspase 8. When Caspase 8 is expressed in high levels relative to RIPK1, it will bind to the Death 
Effector Domain (DED) of FADD and other Caspase 8 proteins, where proximity-induced cleavages occur to mature 
Caspase 8. This maturation can be inhibited by LUBAC, TRAF2 and cFLIP, as cFLIP harbours DED domains, thus 
competing with other Caspase 8 proteins and preventing their cleavage. However, Cullin 3 promotes Caspase 8 
self-cleavage and maturation, releasing the active Caspase 8 to cleave BID into tBID and Caspase 3 into its mature 
form. tBID binds to BAX and BAK, inducing their oligomerization and MOMP, further activating Caspase 3 and 
apoptosis (59). 
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NF-κB can be activated by the receptor-bound, also known as complex I of TNFR1, or 

the cytoplasmic DISC complex, also known as complex II or FADDosome. The protein 

complex LUBAC, present in both, is able to restrain Caspase 8 activity and to recruit 

the IκB kinase (IKK) complex and the TAB/TAK, activating NF-κB and MAPK signalling 

(61-63). 

1.1.2 Necroptosis 

Apart from activating pro-survival genes and causing apoptotic cell death, TRAIL can 

also induce the caspase-independent RCD known as necroptosis. Necroptosis is 

mediated by the previously mentioned RIPK1, RIPK3 (2, 64-67), and the executioner 

Mixed Linkage Kinase domain-like pseudo-kinase (MLKL) (10, 68, 69), resulting in 

pore and membrane-disrupting structures, causing cell bursting (70, 71). TRAIL-

dependent necroptosis is thought to be triggered by the FADDosome (10, 72, 73), 

which retains FADD, Caspase 8, LUBAC and RIPK1 (4). Caspase 8 is known to inhibit 

necroptosis by cleaving RIPK1 and RIPK3, and its absence, or blocked activity, 

unleashes necroptosis, showing direct regulation of this RCD (4). LUBAC also limits 

the formation of the necrosome complex (RIPK1 and RIPK3) (63), thus restricting 

TRAIL-induced necroptosis (62). If necroptosis occurs, intracellular pro-inflammatory 

Damage-Associated Molecular Patterns (DAMPS) are released from the dying cell, 

inducing inflammation and immune recruitment (73). DAMPs can also trigger another 

type of RCD, pyroptosis, hence the need for tight regulation of necroptosis (2). 

1.1.3 Pyroptosis  

Pyroptosis is defined by the formation of gasdermin pores in the plasma membrane 

and is related to innate immunity (1). Pyroptosis is morphologically characterised by 

cell swelling and bursting. It generally relies on the activation of the inflammatory 

Caspases 1, 4, and 5 in humans or 1 and 11 in mice, each causing pyroptosis by 

cleaving Gasdermin D. The resulting N-terminal fragment of Gasdermin D 

oligomerises in the cell membrane, promoting cell lysis and allowing the free flow of 

ions and water (Fig. 4). This inevitably leads to an influx of water to the cell, resulting 

in swelling (also termed “ballooning”) and culminating in ninjurin 1 (NINJ1)-dependent 

plasma membrane rupture and the release of intracellular pro-inflammatory DAMPS, 
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such as High Mobility Group Box 1 (HMGB1) and Lactate Dehydrogenase (LDH). 

Interestingly, some small DAMPs, such as Interleukin 1 beta (IL-1β) and interleukin 18 

(IL-18), can be released through the Gasdermin D pores. Given the highly pro-

inflammatory nature of these two Interleukins, their maturation (cleavage) is restricted 

to Caspase 1 and partially to Caspase 8. 

 

Figure 4. Canonical NLRP3 mediated pyroptosis. A) Step 1: priming. LPS sensing by TLR4 receptors leads to 
the expression of NF-κB and IRF3 target genes. These include NLRP3, among other type 1 Interferon chemokines 
(IRF3) and pro-inflammatory cytokines (NF-κB). B) Step 2: activation. Different factors can trigger the activation of 
NLRP3 through potassium (K+) efflux, including extracellular ATP, the bacterial toxin Nigericin, and other pore-
forming toxins. The K+ efflux is sensed by NLRP3, triggering the formation of the inflammasome and the activation 
of Caspase 1. This inflammatory Caspase will cleave Gasdermin D, releasing the pore-forming N terminal domain 
to form pores in the mitochondria and in the cellular membrane. C) Apoptotic activation of pyroptosis. Upon 
extrinsic lethal stimuli of death ligands (TNF, FASL, TRAIL), Caspase 8 becomes active, cleaving both BID to form 
tBID and Caspase 3 into its active form. tBID, as do intrinsic lethal stimuli, induce MOMP, thus activating Caspase 
9 and, in turn, Caspase 3. The effector Caspase will cleave Gasdermin E at Asp270, releasing the inhibitory C-
terminal domain and freeing the pore-forming N-terminal fragment. The N-terminus of Gasdermin E first 
oligomerises and forms pores in the mitochondria, releasing internal molecules and promoting further Caspase 3 
maturation through the CytC-APAF1-Caspase 9 axis. Gasdermin E then permeabilizes the cellular membrane, 
allowing the free flow of ions and water, which causes cell swelling and NINJ1-mediated bursting.  
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Caspase 1 is recruited to cytoplasmatic complexes called inflammasomes, where it 

becomes active by proximity-induced autoproteolytic cleavage (74). Different 

inflammasomes are formed upon activation of Pattern Recognition Receptors (PRR) 

engaged directly by DAMPs or Pathogen-Associated Molecular Patterns (PAMPs) or 

indirectly by detecting perturbations in the cell elicited by DAMPs or PAMPs (75). 

Cytoplasmatic double-stranded DNA triggers inflammasome formation when detected 

by AIM2 (76), potassium efflux from the cell triggers the formation of NLRP3 

inflammasome (77), NLRC4 inflammasome is activated by bacterial flagellin and type 

III secretion components (78), NRLP6 inflammasome senses lipoteichoic acid from 

Gramm-positive bacterial cell wall (79), and NLRP7 senses acylated lipopeptides, a 

bacterial cell wall component (80). By contrast, Caspases 4 and 5 (and Caspase 11 in 

mice) become active by directly binding to cytosolic bacterial LPS, without the need 

for intermediary PRRs (81). These non-canonical inflammasome complexes also 

trigger Gasdermin D-dependent pyroptosis, including mature IL-1β release (11, 82, 

83). Cells of the innate immune system are better prepared to trigger pyroptosis.  

While the pyroptotic process is essential for host defence, the elicited response must 

be tightly regulated to prevent collateral damage to the host (75). This control is 

achieved by PRRs (e.g. Toll-like Receptor proteins), which regulate the expression of 

the factors needed for inflammasome formation and pyroptosis execution via NF-κB 

activation. One of the more studied inflammasomes is the NLRP3 inflammasome, 

which involves a priming and activation step for unleashing pyroptosis. In the first step, 

inflammatory factors, such as the Toll-like receptor 4 (TLR4) agonist LPS, induce the 

NF-κB mediated expression of NLRP3, pro-caspase 1 and pro-IL-1β (84). Then, 

DAMPs such as extracellular ATP, or PAMPs such as the bacterial toxin Nigericin, 

cause potassium efflux, which triggers NLRP3 phosphorylation and recruitment of 

Nek7 to the autoinhibitory domain LRR (Leucine-Rich Repeat) of NLRP3 (85). NLRP3 

contains 3 main domains: the C-terminal LRR domain, the central NACHT domain 

(domain present in NAIP, CIITA, HET-E and TP1), and the N-terminal Pyrin domain 

(PYD). The release of the LRR domain from the NACTH domain by Nek7 allows the 

self-association of NLRP3 through its NACHT domain (86), and recruitment of the 

Apoptosis-associated Speck-like (ASC, also known as PYCARD) adaptor protein 
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through its PYD (Pyrin domain). The NLRP3-ASC filaments coalesce into a single 

macromolecular structure, known as an ASC speck (85). The ASC protein also 

contains a CARD domain, which recruits pro-caspase 1 via its own CARD domain and 

enables proximity-induced Caspase 1 self-cleavage and activation (85). 

Gasdermin D is one of six of the Gasdermin family members, along with Gasdermin 

A, Gasdermin B, Gasdermin C, Gasdermin E, and Gasdermin F (PJVK) (87). 

Gasdermins owe their nomenclature to their high expression pattern along the 

gastrointestinal tract and skin (dermis) (88). All gasdermins have a conserved N-

terminal pore-forming domain that is held in check by the C terminus, with the 

exception of Gasdermin F (87). Caspases and Granzymes cleave gasdermins in the 

linker region (Table 1), releasing the inhibitory C-terminal domain and allowing the N 

terminus to oligomerise and form pores in the membrane of organelles, plasma 

membrane, or the outer membrane of bacteria (89-91). Thanks to their pore-forming 

nature, activated Gasdermins can quickly induce cell bursting and release DAMPs that 

recruit the immune system and cause inflammation.  

 

Table 1. Gasdermin family members and their activator proteins. Gasdermin F is not included as its activator is 
yet to be identified, and it does not possess pore-forming activity. 

Gasdermin Activator 

Gasdermin A SpeB (Streptococcus pyogenes (92)) 

Gasdermin B Granzyme A (93) 

Gasdermin C Caspase 8, 6 (94) 

Gasdermin D Caspase 1, 4/5, 8, Cathepsin G (87, 95) 

Gasdermin E Caspase 3, Granzyme B  (96) 

 

Gasdermin E is typically cleaved and activated during apoptosis by Caspase 3 at 

Asp270 (96). Like Gasdermin D and the other family members (97), it mediates pore 

formation in the mitochondria and cellular membrane, leading to inflammatory cell 

death. Upon cleavage by Caspase 3, the C-terminal inhibitory domain of Gasdermin 



 

 

13 
 

 

E is released from the N-terminal fragment. This pore-forming domain first 

oligomerises on the outer membrane of the mitochondria, permeabilising it in a BAX- 

and BAK-independent manner and allowing the release of mitochondrial content such 

as Cytochrome C (89). At this stage, Gasdermin E promotes further activation of 

Caspase 3 via the CytC-APAF1-Caspase 9 axis (89). Activated Gasdermin E also 

forms pores in the cellular membrane, thus leading to cell ballooning, bursting and the 

release of internal content, including DAMPS (Fig. 4). This phenomenon, termed 

“secondary necrosis,” occurs via Gasdermin E when cells undergo apoptosis in vitro 

with no macrophage of phagocytic cells capable of clearing them (96). As secondary 

necrosis has only been observed in vitro, it is considered a somewhat “artificial” 

process holding no physiological function. However, taking into consideration the 

absence of phagocytic cells in the proximity of a dying cell, Gasdermin E activation 

leads to the release of internal cell content, making the death more inflammatory, 

recruiting immune cells, such as macrophages, which would clear the remains of the 

dying cells.  

 

1.1.4 Cancer and resistance to cell death 

The accumulation of DNA damage, protein-altering mutations, and hyperactive 

oncogenes induce apoptosis, which acts as a natural barrier against cancer 

development and progression. Malignant cell transformation is a multistep process 

typically initiated by mutational activation of driver oncogenes and/or inhibition of 

tumour suppressor genes. Normally, cells detecting irreparable DNA damage activate 

intrinsic apoptosis (e.g. via p53). However, when these mutations interfere with any 

step of this process, they enable the cell to survive and accumulate more DNA 

damage. These cells eventually acquire proliferation and survival advantages, for 

which the different gained phenotypes have been termed the Hallmarks of Cancer: 

acquired complementary and distinctive capabilities crucial for tumour growth and 

metastatic dissemination (98, 99). As our understanding of cancer grows, we now have 

sufficient evidence to classify them into 8 core hallmark capabilities, including 

“avoiding immune destruction”, “tumour-promoting inflammation”, and “activating 

invasion and metastasis” (99). It comes as no surprise that one of the Hallmarks is 
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“resistance to cell death”. Cancers achieve this hallmark by different means, but a 

common event is the inactivation of TP53, the most frequently mutated gene in human 

cancers (100). Most of the empirically discovered cancer treatments act by blocking 

DNA synthesis, inhibiting DNA replication, or damaging DNA (101). These treatments 

select malignant cells that happen to have a higher threshold for activating intrinsic 

apoptosis (e.g. cells with dysfunctional p53) in a process akin to Darwinian evolution 

(102).  

Malignant cells also influence their protein expression patterns to prevent the induction 

of intrinsic and extrinsic apoptosis. Overexpression of pro-survival BCL-2 proteins, 

loss of BH3-only activators (particularly BIM or PUMA), or combined loss of BAX and 

BAK can render malignant cells resistant to conventional chemotherapeutics (103-

106).  Moreover, treatment with chemotherapy or radiation selects cancer cells that 

happen to have a higher threshold for triggering intrinsic cell death. This process of 

selection can enable the emergence of resistance to treatment in the tumour as the 

percentage of resistant clones increases (107).  

Cancer cells can also be signalled to die via extrinsic apoptosis by the immune system. 

Upon activation, T-cells and NK cells can kill by death ligands (108, 109) or by 

secreting perforins, which permeabilise the membrane of the target cells to allow the 

cytosolic incorporation of granzymes, proteases that activate Caspases and 

Gasdermins (93, 110-112). Cytotoxic T-cells become activated when they recognise 

mutated peptides presented by the cancer cell on its Major Histocompatibility Complex 

Class I (MHC-I) surface protein. Cancer cells can downregulate their expression of 

MHC-I, but at a risk, as low presence of MHC-I in a cell activates NK cell killing (113). 

Malignant cells can also avoid death by cytotoxic T-cells by expressing immune 

checkpoint ligands, such as Programmed cell Death Ligand 1 (PD-L1), which prevent 

effector functions in the affected T-cell (114).  

Even though the body has natural defences against cancer development through 

apoptosis induction, cancer cells evolve mechanisms to resist this cell death. 

Understanding these resistance pathways is crucial, as many current cancer therapies 

work by inducing apoptosis. However, different cancers exhibit varying mutations and, 
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thus, vulnerabilities. In the next section, we will explore Lung cancer, the main focus 

of this thesis. 

 

1.2 Lung cancer 

 

Lung cancer is the leading cause of cancer-related deaths worldwide, with over 1.8 

million deaths per year, as stated by the World Health Organization (115). Based on 

histopathological and clinical features, two major groups of the disease can be 

distinguished: Non-Small Cell Lung Cancer (NSCLC), further divided into the sub-

groups Lung Adenocarcinoma, Lung Squamous Cell Carcinoma and Large Cell 

Undifferentiated Carcinoma, and Small Cell Lung Cancer (SCLC). The major 

differences between SCLC and NSCLC reside in their cell size and appearance, their 

cells of origin, and driver mutations. SCLC mainly presents loss-of-function mutations 

in TP53 and Retinoblastoma 1 (RB1) genes (116, 117). RB1 normally prevents cell 

cycle progression from G1 to S phase until the cell is ready to divide by binding and 

inactivating the E2F transcription factors responsible for expressing the necessary 

proteins to progress through the cell cycle (118, 119). The repressor activity of RB1 is 

reverted by phosphorylation by the Cyclin-Dependent Kinases (CDKs) 2, 4 and 6, thus 

allowing the expression of the E2F transcription targets (120). RB1 is frequently 

inactivated by complex genomic translocations that lead to its inactivation (121), which 

leads to unchecked cell cycle progression. Conversely, NSCLC typically 

overexpresses the Epithelial Growth Factor Receptor (EGFR) and harbours EGFR-

activating mutations (122, 123). EGFR (also known as HER1 or ErbB1) activation 

leads to the activation of pathways with important roles in proliferation, tumorigenesis 

and apoptosis (122-124). Kirsten Rat Sarcoma viral oncogene homolog (KRAS) is 

another frequently mutated protein in NSCLC. These mutations (the majority of which 

are substitutions in G12, G13 and Q16) result in constitutive KRAS activation and 

downstream signalling, leading to proliferation, migration and survival (125-127).  

These gain of function mutations have positioned EGFR and KRAS as attractive 

targets for NSCLC treatment, with major breakthroughs achieved in recent years. The 
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EGFR Tyrosine Kinase Inhibitor (EGFR TKI) osimertinib has already been approved 

as first-line treatment for patients harbouring the more common mutations in this gene 

(Ex19del and L858R) in NSCLC (128), and sotorasib and adagrasib are both used in 

the treatment of G12D KRAS mutant NSCLC tumours (129, 130). All three treatments 

have prolonged the survival of patients with NSCLC (127). However, SCLC lacks 

effective targeted therapies with similar clinical efficacy. 

 

1.2.1 SCLC 

 

SCLC is a neuroendocrine carcinoma which accounts for 15-18 % of all lung cancer 

diagnoses. Symptoms include cough, haemoptysis (coughing up blood) and difficulty 

breathing. Upon diagnosis, two-thirds of patients have metastatic disease. Common 

metastatic niches include the liver, the brain, adrenal glands, bone and the 

contralateral lung. It is a disease linked to heavy smoking (defined as at least 30 packs 

per year). This recurring exposure to mutagens leads to a very high accumulation of 

mutations in the cells of the lung. This is further reflected in the Tumour Mutational 

Burden (TMB) of SCLC, placing it as one of the cancers with the highest TMB, second 

only to Melanoma.  

The disease's name comes from its histological features: small cells with scant 

cytoplasm and an oat-shaped morphology. Other histopathological characteristics 

include finely granular nuclear chromatin, absent nucleoli, high mitotic rate (average 

of 60 mitoses per mm2), frequent nuclear moulding due to the close proximity of the 

cells, numerous apoptotic figures and extensive necrosis (117). All these pathological 

characteristics are used in the diagnosis of SCLC.  

As mentioned before, SCLC exhibits loss-of-function mutations in the TP53 and RB1 

genes. The loss of the activity of these two proteins in neuroendocrine cells of the lung 

is enough to initiate SCLC tumour formation, as has been proven in genetically 

modified mouse models (131). SCLC has long been assumed to initiate from 

neuroendocrine cells from the lung. However, studies in mouse models suggest that 

other lung epithelial cells may serve as cells of origin for SCLC (132-135).  
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Neuroendocrine cells are cells found at the intersection between neurons and 

endocrine cells. Pulmonary Neuroendocrine Cells (PNECs) act as airway sensors, 

particularly sensitive to changes in oxygen levels. They quickly transmit this 

information to sensory neurons via serotonin and other signalling molecules when 

detecting hypoxia. They also regulate the immune response in the lungs and thus play 

a role in allergies (136). The cell of origin can determine the subtype of the original 

tumour of SCLC. The subtypes are currently divided into four groups: SCLC-A 

(ASCL1), SCLC-N (NEUROD1), SCLC-P (POU2F3), and SCLC-Y (YAP1). SCLC-A 

and SCLC-N are neuroendocrine subtypes, given their upregulation of the 

neuroendocrine transcription factors ASCL1 and NEUROD1, respectively. SCLC-P 

and SCLC-Y are considered non-neuroendocrine as they lack typical neuroendocrine 

markers, such as NCAM (CD56). SCLC-P is thought to originate from the 

chemosensory Tuft cells of the lung, while the three remaining subtypes are believed 

to originate from PNECs (137). The malignant transformation of PNECs leads to 

SCLC-A tumours, which can undergo reprogramming mediated by MYC to switch to 

SCLC-N and finally lose its neuroendocrine features to transform into SCLC-Y (137). 

SCLC-Y is also a topic of discussion among researchers as scientists are divided 

between those who recognise YAP1 expression as a marker for this subtype and those 

who fail to observe a clear signature of YAP1 expression, focusing instead on the 

expression of type I IFN response genes, or “triple negative” immunohistochemistry 

staining of the tumour (tumour tissue negative for ASCL1, NEUROD1 and POU2F3) 

(138-144). One recent study went as far as stating that YAP1 cell lines with mutated 

SMARCA4 are actually not SCLC, as xenograft tumours from said cell lines resemble 

Thoracic SMARCA4-deficient Undifferentiated Tumours in terms of transcriptional 

expression and pathological characteristics (144). While the classification of the fourth 

subtype is still in debate, we will refer to this subtype as SCLC-Y for simplicity.  

 

1.2.1.1 The standard of care in SCLC  

SCLC is treated as soon as a positive diagnosis is confirmed. The stage of SCLC is 

typically divided into Limited Stage (LS), where the tumour is not detectable outside of 

the lungs, and Extensive Stage (ES), where the tumour has metastasised outside the 
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lungs. However, it is worth noting that around 70% of patients have metastasis at the 

time of diagnosis (145). First-line treatment for LS consists of surgery and 

chemotherapy (platinum-based compounds such as cisplatin or carboplatin, and 

etoposide) in combination with radiation (117). First-line treatment for ES-SCLC 

maintains the chemotherapy and radiation treatment with the addition of anti-PD1 

(atezolizumab) (117). First-line treatment has a success rate of 70%, as assessed by 

complete or partial response and stable disease rates (145). However, tumour 

recurrence with acquired resistance is the norm, reflected in its decrease in success 

rate among patients upon second-line treatment to only 22% (145). There is no 

established second-line treatment (146), but the majority include a combination of 

topotecan with a second agent, the choice of which depends on the sensitivity of the 

patient to the first-line treatment (145-147).  

Chemotherapy and radiotherapy both induce DNA damage, which proves more lethal 

in cancer cells due to their rapid proliferation rates. Cisplatin acts by crosslinking the 

DNA, preventing DNA replication and activating DNA repair signalling pathways. If the 

damage persists, the cell will induce the activation of intrinsic apoptosis. Etoposide is 

an inhibitor of topoisomerase II, a protein responsible for releasing the torque tension 

accumulated in the DNA strands during the unravelling of the DNA upon replication. 

The resulting increased tension leads to double-strand breaks. Radiotherapy makes 

use of ionising radiation to generate DNA damage in the location of the cancer cells. 

These genotoxic agents would typically induce intrinsic apoptosis mediated by p53. 

However, in the case of SCLC, p53 is universally mutated, preventing it from 

increasing the expression of BAX, PUMA and NOXA, which would induce MOMP 

(121). This comes in contrast to the good response SCLC patients have to first-line 

chemotherapy. As previously mentioned, p63 and p73 can also induce intrinsic 

apoptosis upon DNA damage, albeit not as efficiently as p53. A recent study also found 

that DNA damage in cancer cells triggers p53-independent intrinsic apoptosis by 

ribosomal stalling, although the specific activator BCL-2 proteins engaged remain 

unclear (148). 

Atezolizumab is a Programmed cell Death 1 (PD1) inhibitor and does not directly target 

the cancer cells. PD1 is primarily expressed by T-cells and can inhibit the cytotoxic 

activity of T-cells. Cancer cells can evolve the capacity to overexpress the ligand for 
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PD1, PD-L1, thus inactivating cytotoxic T-cells and avoiding the induction of extrinsic 

apoptosis. Blocking PD1 prevents the inhibition of the killing activity of T-cells, 

therefore enhancing the tumour clearance by the immune system. Nonetheless, 

despite these treatments, SCLC cells can evolve and bypass these mechanisms of 

action. This acquired resistance, on top of the rapid metastatic capacity of SCLC, all 

add up to a dismal outlook of 5-year survival of only 7% (149), urgently calling for 

therapies capable of overcoming this acquired resistance.  
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Chapter 1 – Inhibiting CDK9 for the 

Treatment of SCLC 
 

1.3 Introduction 

1.3.1 Cyclin-dependent kinases 

In the search for novel treatments to target cancer cells, Cyclin-Dependent Kinases 

(CDKs) have emerged as interesting candidates with great therapeutic potential. 

CDKs can only exert their function in the presence of their Cyclin counterparts and can 

be divided into two groups: those involved in cell cycle regulation (e.g. CDKs 1, 2, 4 

and 6) and those in charge of transcriptional homeostasis (e.g. CDKs 7 and 9) (150). 

CDKs regulate the cell cycle by controlling the passage to and progress of the different 

stages. They are regulated by phosphorylation and CDK Inhibitor (CDKI) proteins.  

During Mitosis, progression through the four phases (G0/G1, S G2, and M) is mediated 

by CDKs to ensure faithful DNA replication and prevent chromosomal instability (151). 

As normal cells exit cellular division, they enter the reversible (or permanent) quiescent 

state (G0 phase) regulated by CDK3/cyclin C. Different extracellular signals lead to 

the synthesis of Cyclin D, which stimulates CDKs 4 and 6, promoting entry into the cell 

cycle (151). Active CDK4/6 complexes phosphorylate the RB protein, removing its 

repression of the E2F transcription factors, and allowing the expression of Cyclins E, 

A and B, and many other genes required for the S phase. Cyclin E binds to CDK2, 

further phosphorylating RB, inducing the start of the S phase and initiating DNA 

synthesis. Nearing the end of the S phase, Cyclin A replaces Cyclin E within CDK2, 

forming a new complex which terminates the S phase and drives the cell into the G2 

phase (151). This complex also activates CDK1 by Cyclin A, transitioning the cell to 

the M phase (Mitosis). Upon Mitosis, Cyclin A is replaced by Cyclin B within CDK1, 

maintaining the CDK activity. The controlled degradation of Cyclin B and CDK1 

enables chromosomal separation and the completion of Mitosis (151). 
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Cell cycle progression and regulation by CDKs and Cyclins ensures cells can fulfil all 

the requirements necessary to progress to the next cell cycle stage. CDKs not only 

regulate this essential process but also play a critical role in transcription. 

 

1.3.2 CDKs and transcriptional homeostasis 

 

CDKs regulate transcription initiation and elongation. CDK7 is a key component in the 

Transcription Factor II H (TFIIH), while CDK9 is part of the Positive Transcription 

Elongation Factor b (P-TEFb) complex  (152-154). This complex allows the elongation 

of mRNA transcripts. Transcription is a multi-step process consisting of initiation, 

promoter clearance, elongation, processing of nascent transcripts, termination, mRNA 

cleavage, and polyadenylation (pA) (152).  

Transcription is initiated when the RNA pol II pre-initiation complex (PIC) is recruited 

by transcription factors and the Mediator Complex (co-activator that links transcription 

factors with the RNA pol II) at the promoter to the transcription starting site (TSS). RNA 

pol II requires phosphorylation at Ser5 of its C-terminal tail by CDK7 (from the TFIIH) 

for clearance from the promoter (152, 153). Next, the capping enzyme (CE) adds a 7-

methylguanosine “cap” to the 5’ end of the nascent transcript, protecting it from 

nuclease digestion. After copying 20-100 nucleotides, the RNA pol II becomes arrested 

and remains attached to the DNA template because of negative transcription 

elongation factors (NTEFs) (153). These include 5,6-dichloro-1-b-D-

ribofuranosylbenzimidazole sensitivity-inducing factor (DSIF) and the negative 

elongation factor (NELF) (155). The release of RNA pol II is mediated by P-TEFb, 

which contains cyclins T1, T2 and CDK9 (154). When recruited to the paused RNA pol 

II, CDK9 phosphorylates the C-terminal tail of RNA pol II at Ser2 and the NTEFs NELF 

and DSIF (Fig. 5). NELF dissociates after phosphorylation, and DSIF is converted to 

a positive elongation factor, remaining with RNA pol II. The protein phosphatase 2A 

(PP2A) and PP4 antagonize the P-TEFb-dependent release of RNA pol II (156). When 

released, the phosphorylated C-terminal tail serves as a docking site for splicing 
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regulators (SR) and poly-A machineries. As such, P-TEFb is the critical factor that 

releases the arrest of RNA pol II and promotes transcription elongation (152). 

 

Figure 5. Transcription initiation. A) Formation of the Pre-initiation Complex (PIC). Transcription factors (TF) recruit 
RNA pol II via the Mediator complex (MC) to the Transcription Starting Site (TSS). B) TFIIH is recruited to RNA pol 
II and phosphorylates the Ser2 of the C-Terminal Domain (CTD), releasing the protein from the promoter. C) the 
negative transcription elongation factors (NTEFs) DSIF and NELF arrest the polymerase after 20-100 nucleotides 
from the TSS. This allows for the Capping Enzyme to add a 7-methylguanosine “cap” to the 5’ end of the RNA 
transcript. The release from this arrested state is mediated by P-TEFb (D), where the complex phosphorylates the 
CTD at Ser2 and the NTEFs, dissociating NELF from the polymerase and turning DSIF into a positive transcription 
elongation factor. The phosphatases PP2A and PP4 antagonize the activity of P-TEFb, preventing the release of 
P-TEFb (152). 

 

1.3.3 CDK inhibition in cancer 

While CDKs are rarely mutated, cancer cells can enhance their activities by 

overexpressing Cyclins and losing CDKI expression. As such, CDKs are attractive 
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targets for hampering cancer cell proliferation. While essential for mRNA transcription, 

P-TEFb is known to bind to different transcription factors, such as NF-κB (157) and 

cMYC (158, 159). Cancer cells depend on continuously activated gene expression for 

survival. This, in combination with the fact that CDKs are rarely mutated, has made 

CDK9 a therapeutic target for cancer treatment.  

Since the development of the drug Flavopiridol (Alvociclib), originally designed to 

target CDK4 and 6 (160), it has been used as a standard for the development of new 

CDK9 inhibitors, as it was found to have stronger CDK9 inhibition than CDKs 4 or 6 

(160). Since then, many CDK9 inhibitors have been developed, of which are worth 

mentioning: SNS-032, dinaciclib and NVP-2. SNS-032 inhibits CDKs 2, 7 and 9, and 

it has been shown that inhibition of CDK9, combined with the death ligand TRAIL, 

proved deadly in a broad range of cancers, including NSCLC and Colorectal cancer 

(161). Dinaciclib, an inhibitor of CDKs 1, 2, 5 and 9, was also shown to have a 

synergistic effect on a broad range of cancers upon combination with TRAIL (162). 

Dinaciclib has also advanced clinically onto several clinical trials, including a phase III 

trial in refractory Chronic Lymphocytic Leukaemia (CLL) (163). NVP-2 on the other 

hand, specifically inhibits CDK9 (164). All these drugs target the hinge region of CDK9, 

the binding pocket of ATP, thus competing with the molecule, preventing the 

phosphorylation of the Ser2 of RNA pol II and inhibiting the formation of new mRNA 

transcripts. Studies with SNS-032 and dinaciclib showed that CDK9 inhibition, indeed, 

the lack of mRNA production, leads to the decrease of short-lived proteins, particularly 

the anti-apoptotic proteins cFLIP, MCL-1 and cIAP1/2 (162, 163). This shift in the levels 

of anti-apoptotic proteins sensitised the cells to the death ligand TRAIL, facilitating the 

induction of cell death by the DISC. However, the inhibition of CDK9 alone was not 

enough to induce extensive cell death in the different cancer cell lines tested.  

One study focused on the combination of dinaciclib with Immune Checkpoint Inhibitors 

(ICI), targeting PD1 in colorectal and bladder cancer (165). Their results showed an 

improved overall quality of the immune response generated, with increased Dendritic 

Cell activation and CD8 T cell recruitment in the tumours (165). Since one of the main 

issues with SCLC is the acquired resistance to treatment, targeting different pathways 

can bypass the resistance mechanism. In the case of CDK9 inhibition, since it 

decreases short-lived anti-apoptotic proteins, we could also think of a re-sensitisation 
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to chemotherapy. In line with this, some preliminary experiments have been conducted 

in SCLC, only showing synergy with dinaciclib and the BCL-2 inhibitor navitoclax in 

SCLC cell lines (166). However, this study was not as extensive as we show in this 

chapter. Here, we will test and characterise the use of CDK9 inhibitors, both known 

(dinaciclib and NVP-2) and novel (VC-1), for the treatment of SCLC. We will delve into 

their mechanism of action and their activity against SCLC cell lines both in vitro and in 

vivo. Finally, we will combine our results with the current literature to set the stage for 

the future steps needed to tackle SCLC effectively and, hopefully, help the lives of 

patients. 
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1.4 Aims – Chapter 1 

SCLC is an aggressive disease with dismal survival rates. Patients generally respond 

positively to first-line treatment. However, they invariably relapse with acquired 

resistance to treatment, highlighting the need for novel and alternative therapies (117). 

In this Chapter, we aim to address this gap in treatment by the: 

1. Assessment of the effectiveness of CDK9 inhibition for the induction of cell 

death in SCLC as compared to NSCLC cells. 

2. Identification of the molecular cell death pathways engaged upon CDK9 

inhibition. 

3. Characterisation of the effect of CDK9 inhibition in subcutaneous and 

autochthonous in vivo models of SCLC. 

 

1.5 Results 

1.5.1 CDK9 Inhibition as an effective therapy for 

small-cell lung cancer 

With the known literature as a foundation and our understanding of cell death 

mechanisms, we extensively investigated CDK9 inhibition in SCLC to provide more 

effective options to patients with this disease. Here, we report our findings and 

observations, showing the potential of CDK9 inhibition for reducing the 

aggressiveness of this cancer. 

The majority of the results presented in this section are part of a recently published 

publication in the Cell Death and Disease journal. This study was accomplished thanks 

to the collaboration of Vichem Chemie Ltd., the creators of VC-1; AG Lindermann and 

AG Sos, who provided insight and scientific contribution; AG Tovari, who performed in 

vivo inoculations of VC-1; AG Montero, who performed and provided insight into the 

Dynamic BH3 profiling experiments; and AG Walczak, who provided material 

resources.  
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1.5.2 CDK9 effectively kills mouse and human SCLC 

cells while having no significant impact on NSCLC 

cells 

To evaluate the effect of dinaciclib on SCLC, we employed a range of human cell lines 

and mouse cells derived from the autochthonous mouse model of SCLC (RP). This 

model features lung-specific mutations in Rb1 and Trp53 (131). Treatment with 

dinaciclib significantly reduced viability and induced cell death in a dose-dependent 

manner across SCLC cell lines (Fig. 6a-c), with IC50 values spanning from 44 to 124 

nM for mouse cell lines and 5 to 20 nM for human cell lines (Fig. 6d, e).  

 

Figure 6. A) Viability of mouse SCLC cell lines as measured with Cell TiterGlow (CTG, Promega) expressed as % 
of the untreated control (100%) after a 30-hour treatment with different concentrations of dinaciclib: 1, 5, 10, 20, 
25, 30, 50 and 100 nM. Mean + SD, n=3. B)  Viability of human SCLC cell lines after 30-hour treatments of 1, 5, 
10, 30, 50 and 100 nM of dinaciclib. Mean + SD, n=3. C) Percentage of PI-positive cells after treatment with 50 nM 
dinaciclib as measured by Incucyte with Cell-by-cell analysis. Mean + SD, n=3. D) IC50 (nM) of mouse SCLC. 
Mean + SD, n=3. E) and human SCLC cell lines. Mean + SD, n=3. Adapted from Valdez Capuccino et al. CDDis, 
2024. 



 

 

27 
 

 

We corroborated the inhibition of CDK9 by dinaciclib un murine SCLC cells by 

checking the decrease of phosphorylated RNA pol II through immunoblotting. 

Moreover, a reduction in the expression of the reported targets anti-apoptotic proteins 

MCL-1 and cFLIP, alongside an induction of caspase-3 cleavage, was observed in the 

three cell lines examined at 18-, 24- and 30 hours post-treatment (Fig. 7a). Notably, 

dinaciclib treatment led to changes in c-Myc expression, showing an increase in the 

longer isoform. Similar changes in protein expression were observed in human SCLC 

cells treated with dinaciclib, which also showed abrogation of c-MYC, downregulation 

of BCL-xL and increased levels of cleaved Caspase-3 and PARP, indicative of 

apoptosis activation upon treatment (Fig. 7b). Indeed, caspase inhibition completely 

abrogated cell death induced by dinaciclib (Fig. 7c), while minimal changes in cell 

cycle progression were observed after 24 hours of treatment (Fig. 7d). Thus, dinaciclib 

induces caspase-dependent cell death in SCLC cells at nanomolar concentrations. 
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Figure 7. A) Mouse SCLC cells were lysed with RIPA buffer after 18, 24 and 30 hours of treatment with dinaciclib 
(50 nM) or vehicle. Representative blots of 3 independent experiments. B) Human SCLC cells were lysed with RIPA 
buffer after 18 hours of treatment with dinaciclib (50 nM) or vehicle. Representative blots of 3 independent 
experiments. p- = phospho-; cl. = cleaved. C) Percentage of PI-positive cells after treatment with 50 nM dinaciclib 
and 5 µM emricasan (EM) as measured by Incucyte. Mean + SD, n=3. D) Cell cycle distribution was assessed by 
permeabilising the cells and staining with PI after 24 hours of treatment with 50 nM of dinaciclib. Mean +SD, n=3. 
Adapted from Valdez Capuccino et al. CDDis, 2024. 

Next, we investigated whether a more specific CDK9 inhibitor would yield analogous 

cytotoxic effects in SCLC. We used NVP-2, a compound known to selectively target 

CDK9 without affecting the other CDKs targeted by dinaciclib (167). Treatment of 

mouse SCLC cells with NVP-2 resulted in cell death akin to that observed with 

dinaciclib (Fig. 8a) with IC50s in the nanomolar scale (Fig. 8b). Concurrently, we 
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observed suppression of RNA pol II phosphorylation, leading to reduced levels of 

MCL-1 and cFLIP, as well as an increase in cleaved caspase 3 (Fig. 8c). 

 

Figure 8. A) Viability, as measured by CTG, expressed as percentage of the untreated control (100%) after a 30-
hour treatment with different concentrations of NVP-2 (10, 25, 50, 100, 250, 500 and 1 000 nM). Mean + SD, n=3. 
B) IC50 of NVP-2 for each cell line. Mean + SD, n=3. C) Cells were lysed with RIPA buffer after 30 hours of treatment 
with NVP-2 (50 nM) or vehicle. Representative blots of 3 independent experiments. p- = phospho; cl. = cleaved. 
Adapted from Valdez Capuccino et al. CDDis, 2024. 

Previous reports have highlighted the downregulation of pro-apoptotic proteins by 

dinaciclib in NSCLC. However, dinaciclib monotherapy does not induce significant 

cytotoxicity in NSCLC cells (161, 162). This prompted us to conduct a direct 

comparative analysis of the cytotoxic potential of dinaciclib in SCLC versus NSCLC. 

To this end, we employed human and mouse cells derived from the Kras and Trp53 

(KP) model for NSCLC (168). Compared to SCLC, dinaciclib had a modest impact on 

the viability of NSCLC cells (Fig. 9a, b). Notably, the higher sensitivity of SCLC cells 

to dinaciclib was more pronounced in the panel of human SCLC cells than in human 

NSCLC cell lines (Fig. 9c). 
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Figure 9. A) Viability of mouse NSCLC cell lines after a 30-hour treatment at 50 nM and 100 nM of dinaciclib. Mean 
+ SD, n=3. B)  Viability of human SCLC and NSCLC cell lines after 30-hour treatments of 1, 5, 10, 30, 50 and 100 
nM of dinaciclib. Mean + SD, n=3. C) Viability of mouse SCLC compared to NSCLC after a 30-hour treatment with 
50 nM of dinaciclib. Mean + SD, n=3. Adapted from Valdez Capuccino et al. CDDis, 2024. 

To further elucidate the underlying difference in sensitivities between SCLC and 

NSCLC to dinaciclib, we conducted dynamic BH3 profiling (DBP). DBP relies on the 

assessment of Cytochrome C release following 16-hour incubation with the drug of 

interest (in this case, dinaciclib) and one additional hour with either sensitizing 

peptides, BAD, HRK and MS1, or the activating peptide BIM (169). BIM binds directly 

to Bax and Bak, thereby allowing their oligomerization and inducing mitochondrial 

outer membrane permeabilization (MOMP) and Cytochrome C release, making it the 

perfect positive control (170). After the incubation with the peptides, Cytochrome C is 

measured by Flow Cytometry, which indicates the levels of MOMP reached. We use 

alamethicin to measure the total release of Cytochrome C and report the measured 

release on the other conditions as the percentage of priming (% Priming). We compare 

the % Priming for each peptide with or without the dinaciclib pre-treatment and show 

the difference between these percentages as delta % Priming (Δ% Priming).  

NSCLC cells treated with BIM and BIM + dinaciclib showed no statistically significant 

difference in their mitochondrial membrane permeabilization (Fig. 10a), thus indicating 

no contribution from dinaciclib to prime NSCLC cells to death. Moreover, the addition 

of dinaciclib to the sensitizer peptides BAD, HRK and MS1 showed a high Δ% Priming, 

demonstrating that NSCLC cells don’t become more primed to death by dinaciclib but 

are able to adapt to the treatment by increasing their dependency to anti-apoptotic 

proteins. BAD targets both Bcl-2 and Bcl-xL; HRK targets Bcl-xL; and MS1 targets 

Mcl-1. By knowing this, we can understand that H1975 most likely becomes dependent 
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on Bcl-xL. The cell line PC9, however, had relatively high Δ% priming with all three 

peptides, suggesting that it becomes reliant on Mcl1 and Bcl-xL to prevent cell death 

by dinaciclib. SCLC cells, on the other hand, had significantly higher Δ% priming with 

the BIM peptide, meaning that SCLC cells are primed to death upon treatment with 

dinaciclib. Interestingly, dinaciclib had a low (H526) or no statistically significant impact 

(H2171) on the % priming of the sensitiser peptides. This indicates that, contrary to 

NSCLC, SCLC cells become primed to death when treated with dinaciclib. Altogether, 

we are able to show that the difference in the response to dinaciclib is due to the 

inability of the drug to prime NSCLC cells to death, and the inherent capacity of these 

cells to undergo an “apoptotic adaptation” upon treatment. 

 

 

Figure 10. A) Dynamic BH3 profiling after 96ௗh incubation with 25 nM dinaciclib with the indicated peptides BIM, 
BAD (BCL-2, BCL-xL, BCL-W dependence), HRK (BCL-xL dependence) and MS1 (MCL-1 dependence). Results 
expressed as ∆% priming, representing the increase in priming compared to non-treated cells. Values indicate 
mean ±ௗSEM from at least three independent experiments. Paired t- test of dinaciclib treated vs. ctrl in each 
condition, **pௗ<ௗ0.01 and *pௗ<ௗ0.05. Experiments performed by collaborator AG Montero. Adapted from Valdez 
Capuccino et al. CDDis, 2024. 

Thus, while NSCLC cells demonstrate pro-survival adaptations, SCLC cells appear 

less proficient in doing so. Consequently, whereas CDK9 inhibition by dinaciclib is 

enough to induce apoptosis in SCLC cells, NSCLC cells exhibit greater resistance due 

to lower overall apoptotic priming and greater plasticity for rapid adaptation through 

anti-apoptotic proteins to promote survival. Consequently, SCLC cells exhibit a lesser 

capability to counteract the cytotoxic activity of dinaciclib, resulting in a robust 

apoptotic induction. 
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1.5.3 Dinaciclib has no additive effect with TRAIL or 

chemotherapy but potently kills chemotherapy-

resistant SCLC cells 

 

As dinaciclib treatment led to the reduction of anti-apoptotic proteins MCL-1, BCL-xL, 

and cFLIP, we next aimed to assess its potential synergy with therapies targeting either 

intrinsic or extrinsic cell death pathways. Previous studies have reported the high 

efficacy of combining CDK9 inhibition with TRAIL treatment across various tumour 

types, including NSCLC and pancreatic cancer (161, 162, 171). Consequently, we 

hypothesised that the combination of dinaciclib and TRAIL treatment would have 

similar efficacy in SCLC. However, contrary to NSCLC cells, the combined therapy of 

dinaciclib and TRAIL failed to exhibit a synergistic or additive effect in SCLC cells (Fig. 

11a). Consistent with this finding, the combination treatment was unable to induce 

caspase-8 cleavage in H1694 SCLC cells, while it successfully did so in NSCLC cell 

lines (Fig. 11b). Notably, the expression of caspase-8 in H2171 SCLC cells was 

considerably lower compared to NSCLC, consistent with prior reports indicating a 

generally reduced expression of caspase-8 in SCLC (121, 172, 173). 
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Figure 11. A) Viability, as measured by CTG, expressed as a percentage of the untreated control (100%) after a 
30-hour treatment with dinaciclib (4 nM, 20 nM) and TRAIL (10 ng/µl, 100 ng/µl). Mean + SD of at least 3 
independent experiments. B) Cells were lysed with RIPA buffer after 6 and 12 hours of treatment with 50 nM 
dinaciclib and/or 100 ng/µl of TRAIL. Representative blots of 3 independent experiments. Adapted from Valdez 
Capuccino et al. CDDis, 2024. 

To evaluate the potential synergy between dinaciclib and standard-of-care 

chemotherapy, we treated SCLC cells with dinaciclib in combination with cisplatin and 

etoposide. Co-treatment at a fixed concentration of cisplatin and etoposide with 

varying doses of dinaciclib, and vice versa, revealed no synergistic or additive effect 

within the tested concentration range (Fig. 12a-d). Among the human cell lines tested, 

H2171 exhibited increased tolerance to cisplatin and etoposide, requiring higher doses 

of chemotherapeutic agents to achieve reductions in viability comparable to the other 

cell lines tested. However, its response to dinaciclib was consistent with other SCLC 

cell lines (Fig. 6b).  
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Figure 12. A) Mouse SCLC cells were treated with increasing doses of dinaciclib (1, 5, 10, 25, 50 and 100 nM) for 
30 hours in the presence or absence of a combination of cisplatin (5 µM) and etoposide (10 µM). Mean + SD, n=3. 
B) Mouse SCLC cells were treated with increasing doses of cisplatin and etoposide for 30 hours in the presence 
or absence of 10 nM dinaciclib. Mean + SD, n=3. C) Human cell lines were treated with increasing doses of 
dinaciclib (1, 5, 10, 25, 50 and 100 nM) for 30 hours in the presence or absence of a combination of cisplatin and 
etoposide. H526: Cis 0.5 µM, Et 1 µM. H1694: Cis 1 µM, Et 0.5 µM. H2171: Cis 40 µM, Et 75 µM. Mean + SD, n=3. 
Viability was measured by CTG and expressed as a percentage of the viability of control. D) Human cell lines were 
treated with increasing doses of cisplatin and etoposide for 30 hours in the presence or absence of 4 nM dinaciclib. 
Mean + SD, n=3. Adapted from Valdez Capuccino et al. CDDis, 2024. 

Next, we assessed the kinetics of caspase cascade kinetics downstream of 

mitochondrial damage following dinaciclib alone or in combination with chemotherapy 

(cisplatin and etoposide). Immunoblotting showed enhanced activation of caspase-9 

and caspase-3 as early as 6 hours of dinaciclib treatment, albeit with lower activation 

in chemotherapy treatment alone (Fig. 13a). Interestingly, the combination of dinaciclib 
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and chemotherapy increased the activation of these caspases at 6 hours. However, 

this increase in caspase cleavage was no longer observed at later time points. 

Additionally, although the triple combination showed higher caspase activity at 6 hours 

than that of the single agents, there was no accelerated kinetics of cell death compared 

to dinaciclib alone (Fig. 13b). This was consistent with comparable levels of PARP 

cleavage between cells treated with dinaciclib or the triple combination at early and 

late time points (Fig. 13a). Further investigation into the potential additive effect of the 

CDK9 specific inhibitor NVP-2 and chemotherapy yielded no further decrease in 

viability upon combination in SCLC cells (Fig. 13c), as observed with dinaciclib. 

 

Figure 13. A) SCLC cells were lysed with RIPA buffer after 6 and 12 hours of treatment with either 25 nM dinaciclib 
and/or cisplatin and etoposide. H526 & H1694: Cis 20 µM, Et 50 µM. H2171: Cis 40 µM, Et 100 µM. Representative 
blots of 3 independent experiments. Cis = cisplatin, Et = etoposide. cl. = cleaved. B) Percentage of PI-positive cells 
as measured by Incucyte after treatment with 25 nM dinaciclib and/or cisplatin & etoposide. H526 & H1694: Cis 
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1.25 µM, Et 3.125 µM. H2171: Cis 40 µM, Et 100 µM. Mean + SD. Representative graphs of 3 independent 
experiments. C) Mouse SCLC cells were treated with 25 nM NVP-2, 5 µM cisplatin and/or 10 µM etoposide for 30 
hours. Viability was measured by CTG and expressed as a percentage of the viability of control. Mean + SD, n=3. 
Adapted from Valdez Capuccino et al. CDDis, 2024. 

Given the high killing activity of dinaciclib alone, we assessed its efficacy in cells 

rendered resistant to chemotherapy through chronic exposure. H1694 cells cultured 

with increasing doses of cisplatin or etoposide over time developed tolerance to 4 and 

3 µM of the drug, respectively. We corroborated this acquired resistance by treating 

the cells with different doses of the chemotherapy agents (Fig. 14a,b). Exposing the 

resistant cells to dinaciclib showed comparable sensitivity to the inhibitor as the naïve 

parental cell line (Fig. 14c). Furthermore, there was no synergism observed between 

dinaciclib and cisplatin or etoposide in the corresponding resistant cells (Fig. 14d-g). 
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Figure 14. A) SCLC cells with acquired resistance to cisplatin (Cis R) and the naïve parental cell line (N) were 
treated with increasing doses of cisplatin (0.5, 1, 2.5,10, 25, 50 and 75 µM) for 30 hours. Mean + SD, n=3. B) SCLC 
cells with acquired resistance to etoposide (Et R) and the naïve parental cell line (N) were treated with increasing 
doses of etoposide (1, 2, 5, 20, 50 and 100 µM) for 30 hours. C) Resistant and naïve cell lines were treated for 30 
hours with increasing doses of dinaciclib (1, 5, 10, 25, 50 and 100). Mean + SD, n=3. Viability was measured by 
CTG and expressed as a percentage of the viability of control. Two-way ANOVA with Geisser-Greenhouse 
correction. * = p-adj<0.05, ** = p-adj<0.01.  D) and E) SCLC cells with acquired resistance to cisplatin (Cis R) were 
treated with increasing doses of cisplatin (0.5, 1, 2.5,10, 25, 50 and 75 µM) for 30 hours with or without dinaciclib 
2nM (D), or increasing doses of dinaciclib (1, 5, 10, 25, 50, and 100 nM) with or without cisplatin 10 µM (E). F) and 
G) SCLC cells with acquired resistance to etoposide (Et R) were treated with increasing doses of etoposide (1, 2, 
5, 20, 50 and 100 µM) for 30 hours with or without dinaciclib 4nM (F), or increasing doses of dinaciclib (1, 5, 10, 
25, 50, and 100 nM) with or without etoposide 2 µM (G). Viability was measured by CTG and expressed as a 
percentage of the viability of control. Mean + SD, n=3. Adapted from Valdez Capuccino et al. CDDis, 2024. 

In summary, while dinaciclib treatment did not synergise with TRAIL or chemotherapy, 

it effectively targeted chemo-resistant cells, potentially offering an alternative 

therapeutic approach in cases where this resistance arises. 

 

1.5.4 Evaluating a novel and specific CDK9 inhibitor 

To understand if CDK9 inhibition is responsible for the killing capacity of dinaciclib, we 

used a novel inhibitor, VC-1, that specifically inhibits CDK9 but not other CDKs (Fig. 

15a). This molecule was designed to target the hinge region of the kinase, which is 

responsible for binding to ATP. The affinity and specificity of VC-1 to CDK9 were 

determined by the collaborators that generated the compound as follows: VC-1 binding 

affinity to CDK9 was assessed using a competitive fluorescence polarization assay, 

which showed an IC50 of 7 nM (174). To further evaluate the selectivity of VC-1, they 

utilized a radiometric profiling assay against a panel of 16 CDK/Cyclin pairs. This 

analysis revealed high specificity, with only the CDK9/CyclinT1 complex 

demonstrating significant inhibition and a high affinity compared to 15 other CDK-

cyclin pairs (174). 

We then evaluated the cytotoxic effects of VC-1 in both mouse and human SCLC cells. 

Consistent with our observations with dinaciclib, VC-1 induced a dose-dependent 

reduction in viability in both normal SCLC cells and chemotherapy-resistant cell lines 

(Fig. 15b, c). Furthermore, VC-1-induced cell death was prevented by caspase 

inhibition (Fig. 15d) and had no effect on the cell cycle of the cells (Fig. 10e). 

Immunoblotting revealed that VC-1 treatment led to a marked decrease in both total 

and phosphorylated RNA pol II, alongside reductions in cFLIP, MCL-1, and BCL-xL 

levels (Fig. 15e). Moreover, increased cleavage of caspase-3 and PARP was observed 
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in all cell lines except for H2171, which exhibited only a slight increase in active 

caspase 3 and cleaved PARP. This goes in line with the viability results from Fig. 15c, 

where we observe H2171 maintained higher viability compared to other cell lines at 

the tested concentration (1 µM of VC-1). 
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Figure 15. A) Chemical structure of the compound VC-1. B) and C) Viability was measured by CTG and expressed 
as a percentage of the viability of Control after a 30-hour treatment with different concentrations of VC-1 (100, 200, 
400, 600, 800, 1 000 and 1 400 nM) Mean + SD, n=3. D) Percentage of PI-positive cells after treatment with 1 000 
nM VC-1 and 5 µM emricasan (EM) as measured by Incucyte. Mean + SD, n=3. E) Cell cycle distribution was 
assessed by permeabilising the cells and staining with PI after 24 hours of treatment with 1 µM of VC-1. Mean 
+SD, n=3 F) Human SCLC cells were lysed with RIPA buffer after 18 hours of treatment with 1 000 nM VC-1 or 
vehicle. Representative blots of 2 independent experiments. Adapted from Valdez Capuccino et al. CDDis, 2024. 

Notably, SCLC cell lines displayed greater sensitivity to VC-1 treatment compared to 

NSCLC cells (Fig. 16a), mirroring our findings with dinaciclib. This remained true when 

expanding the panel of SCLC and NSCLC cell lines, as evidenced by their lower IC50 

values (Fig. 16b). These results show that VC-1 efficiently inhibits CDK9 and triggers 

apoptosis in SCLC cells. 

 

Figure 16. A) Viability was measured by CTG and expressed as a percentage of the viability of Control after a 30-
hour treatment with different concentrations of VC-1 (100, 200, 400, 600, 800, 1 000 and 1 400 nM). Mean + SD, 
n=3. B) IC50 [μM] of twelve SCLC and eleven NSCLC human cell lines after 72 hours of treatment with VC-1. 
Unpaired t-test NSCLC vs. SCLC **p=0.0034. Adapted from Valdez Capuccino et al. CDDis, 2024. 

 

1.5.5 Inhibition of CDK9 reduced tumour growth and 

extended survival of mice. 

Next, we sought to assess the effectiveness of CDK9 inhibition in vivo using a 

syngeneic subcutaneous model. We chose dinaciclib, as it has been extensively 

evaluated in clinical trials and is closer to clinical application than other counterparts 

(175-178),  including VC-1. Given the comparable efficacy of CDK9 inhibition with and 

without chemotherapy observed earlier, we evaluated dinaciclib as a potential single 

treatment. To this end, we subcutaneously injected mouse-derived SCLC cells in the 
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flank of C57BL/6 and initiated treatment once palpable tumours were detected until 

reaching the defined endpoint size. This experimental setup would allow us to 

determine whether dinaciclib treatment impacts the survival of mice. We tested two 

cell lines, 1380 and 424.3, and found that dinaciclib treatment led to delayed tumour 

growth (Fig. 17a, c) and improved survival (Fig. 17b, d) compared to vehicle controls. 

Of note, mice injected with cell line 424.3 exhibited ulcerations, prompting the 

premature termination of the experiment (Fig. 17a, b). Importantly, no significant 

changes in body weight were observed between vehicle and dinaciclib-injected mice 

(Fig. 17e, f). 
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Figure 17. A) 424.3 mouse cells were injected subcutaneously on the flank of C57BL/6 mice. Treatment began 16 
days after injection with either dinaciclib (20mg/kg) or vehicle (10% Hydroxypropyl Beta Cyclodextrin) twice per 
week, followed by a week of drug holiday. Tumours were measured three times a week. N=9 per group. B) Survival 
curve of mice from (A). Log-rank (Mantel-Cox) test. C) 1380 mouse cells were injected subcutaneously on the flank 
of C57BL/6 mice. Treatment began upon tumour establishment with either dinaciclib (30mg/kg) or vehicle. Tumours 
were measured two times a week. N=10 per group. D) Survival curve of mice from (C). Log-rank (Mantel-Cox) test. 
*p = 0.0494. E) Weight of mice from (A & B). Mean + SD. E) Weight of mice from (C & D) since injection with 1380 
cells. Mean + SD. Adapted from Valdez Capuccino et al. CDDis, 2024. 

To further bolster the preclinical rationale for the efficacy of dinaciclib treatment, we 

evaluated its anti-tumour properties in the well-established autochthonous RP-SCLC 

model. Briefly, genetically modified RP mice (Rb1flox/flox; Trp53flox/flox) were subjected to 

inhalation of non-replicative Cre-expressing Adenovirus, which induces the deletion of 
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Rb1 and Trp53 and the formation of SCLC as a consequence (131). Encouragingly, 

dinaciclib treatment significantly prolonged survival and reduced tumour burden, as 

confirmed by MRI scan assessment (Fig. 18a-c). 

 

Figure 18. A) Survival curve for tumour-bearing mice treated with dinaciclib. Log-rank (Mantel-Cox) test. *p = 
0.0405. Treatment began upon tumour establishment with either dinaciclib (30mg/kg) or vehicle (10% 
Hydroxypropyl Beta Cyclodextrin) twice per week, followed by a week of drug holiday until endpoint criteria were 
met (tumour volume >800mm3). Tumours were measured every 14 days. Vehicle treated N=6, dinaciclib treated 
N=8.  B) Volume of autochthonous SCLC tumours as measured by MRI and the Horus software. C) Representative 
images of MRI scans of vehicle and dinaciclib-treated mice since tumour volume reached >1mm3 and 45 days 
after. Adapted from Valdez Capuccino et al. CDDis, 2024. 

We next investigated the potential of the VC-1 inhibitor as an anti-tumour agent in vivo 

as a proof of concept for its potential clinical application. Firstly, we assessed the 

toxicity of the drug upon chronic or acute administration. Encouragingly, our findings 

revealed that VC-1 exhibited no adverse effects in mice, as evidenced by its negligible 

impact on liver or body weight (Fig. 19a, b). With the safety of VC-1 confirmed, we 

proceeded to evaluate its anti-tumour efficacy in a syngeneic subcutaneous model, 

this time for a defined time period. This particular set-up, now optimized for tumour 

engraftment, allowed us to assess whether VC-1 has a similar anti-tumour activity as 

dinaciclib. Remarkably, three weeks of VC-1 treatment led to a significant reduction in 

tumour growth, comparable to the anti-tumour effect observed with dinaciclib (Fig. 19c, 



 

 

45 
 

 

d). Throughout the experiment, there were no differences in body weight among the 

different treatment groups (Fig. 19e). Therefore, our findings suggest that CDK9 

inhibition, by treatment with either dinaciclib or VC-1, reduces SCLC tumour growth 

and improves survival of tumour-bearing mice. Furthermore, both drugs, particularly 

VC-1, are well tolerated in vivo.   

 

Figure 19. A) Weight of C57BL/6 mice treated with a single i.p. injection of 40mg/kg of VC-1 (Acute) or three 
injections per week of 20mg/kg (Chronic). B) Percentage of liver weight with respect to the body weight of each 
mouse on day 14 of (A). C) 1380 cells were injected subcutaneously on the flank of C57BL/6 mice. Treatment 
consisted of either VC-1 (20mg/kg), dinaciclib (30mg/kg) or vehicle (10% Hydroxypropyl Beta Cyclodextrin) three 
times per week (VC-1) or twice per week, followed by a week of drug holiday (dinaciclib). Tumours were measured 
three times per week. N=7 for each group. D) Individual tumour volumes of (C) at day 21 expressed as fold change 
from day 0. One-way ANOVA, Dunnet’s multiple comparison test. *p-adj. < 0.05. E) Body weight of mice from (C) 
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since the first day of treatment. Mean + SD. Experiments conducted by collaborator AG Tovari. Adapted from Valdez 
Capuccino et al. CDDis, 2024. 

 

 

1.5.6 The Anti-tumour effect of CDK9 inhibition is 

dependent on the adaptive immune system. 

 

In Figure 19, we clearly observe the anti-tumour effect of CDK9 inhibition in a 

syngeneic subcutaneous mouse model. We conducted another in vivo subcutaneous 

experiment using human SCLC cell lines to investigate further whether dinaciclib also 

reduces tumour growth in a human setting. For this experiment, we utilized NOD-SCID 

mice, whose mutational background prevents the development of NK, B, and T cells 

(179)The immunocompromised mice also allow us to understand whether the in vivo 

anti-tumour effect of CDK9 inhibition requires the immune compartment. Human cells 

were injected into the flanks of the mice, and upon tumour establishment (volume 50-

100 mm3), treatment commenced and concluded as described in the previous 

experiment. 

Interestingly, no tumour growth inhibition was observed in these immunocompromised 

mice (Fig. 20a, b). Treatment with either dinaciclib or VC-1 did not affect the weight of 

NOD-SCID mice (Fig. 20c). The lack of difference between the vehicle and treated 

tumours suggests a significant contribution of the immune system to the in vivo anti-

tumoral effect of CDK9 inhibition and warrants further investigation. 



 

 

47 
 

 

 

Figure 20. A) H526 cells were injected subcutaneously on the flank of NOD-SCID mice. Treatment consisted of 
either VC-1 (20mg/kg), dinaciclib (30mg/kg) or vehicle (10% Hydroxypropyl Beta Cyclodextrin) three times per 
week (VC-1) or twice per week, followed by a week of drug holiday (dinaciclib). Tumours were measured three 
times per week. N=7 for each group. B) Individual tumour volumes of (A) at day 21 expressed as fold change from 
day 0. One-way ANOVA, Dunnet’s multiple comparison test. *p-adj. < 0.05. C) Body weight of mice from (A) since 
the first day of treatment. Mean + SD. 

 

 

Overall, our results clearly show that CDK9 inhibition is a valid approach to kill SCLC 

cells. The inhibitor dinaciclib primes SCLC cells to death while also inducing caspase-

dependent cell death in SCLC cells in vitro. CDK9 inhibition also reduced tumour 

growth and improved the survival of tumour-bearing mice, with strong evidence for a 

critical role for the immune system in this anti-tumour activity. 
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1.6 Discussion 

1.6.1 CDK9 inhibition in the treatment of SCLC 

In an effort to offer alternative treatments, we assessed the efficacy of dinaciclib and 

VC-1 as promising anti-tumour agents. The results align with multiple studies reporting 

that the cell death induced by dinaciclib is mainly due to the decrease of antiapoptotic 

proteins in malignant cells (166, 180-182). Here, we show that CDK9 inhibition is very 

effective against SCLC. We also demonstrated that the cell death induced by dinaciclib 

and VC-1 is caspase-dependent, and dinaciclib does so by inducing caspase 9 

activation. It is a valid concern whether the readout we observe is due to an inhibition 

of cell growth, as the Celltiter Glo kit estimates viability as a direct measure of the ATP 

present in the cells, meaning that what we read as a reduction in viability can be due 

to cell death or cell cycle arrest. However, our results did not show any significant 

alterations to the cell cycle upon the treatments (Fig. 7d, Fig. 15e). Moreover, the 

increase in Caspase 9 and 3 cleavage are a clear indication that the treatments are 

activating the mitochondrial apoptotic pathway. These results clearly indicate that 

CDK9 inhibition efficiently kills SCLC cells without major changes in the cell cycle.  

We consistently observed a lower sensitivity to CDK9 inhibition from NSCLC when 

comparing them to SCLC cells. To understand this difference, we analysed the 

activation of caspases after dinaciclib treatment by immunoblotting the protein content 

of both SCLC and NSCLC cells. We used a combination of TRAIL + dinaciclib as a 

positive control of caspase 8 cleavage, as the co-treatment has been shown to activate 

extrinsic apoptosis consistently (161, 162, 171). In NSCLC cells, the positive control 

worked as expected. Strikingly, our results showed no activation of the extrinsic 

pathway in SCLC cells. In contrast, dinaciclib alone did not engage in apoptosis in the 

first 12 hours of treatment in NSCLC cells, contrary to what we have seen with SCLC 

cells. This differential pathway activation drove us to look deeper into the possible 

cause, for which we turned to dynamic BH3 profiling (DBP). The results showed us 

that the difference in the response to dinaciclib is due to the inability of the drug to 

prime NSCLC cells to death, and the inherent capacity of these tumour cells to 

undergo an “apoptotic adaptation” upon treatment. This adaptation prevents dinaciclib 
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from activating the intrinsic apoptotic pathway, likely by overexpressing Bcl-2 family 

proteins, but the inhibition of CDK9 sensitises NSCLC to the death receptor pathway 

by reducing the levels of FLIP (161, 162, 171). This explains why dinaciclib treatment 

alone is not as efficient in NSCLC as in SCLC, but the combination with TRAIL is 

effective. We also show that SCLC cells do become primed for cell death upon 

dinaciclib treatment and are unable to adapt to it. The lack of response to TRAIL and 

its combination with dinaciclib can be explained by the basally low expression of 

Caspase 8, although other death-receptor agonists could be tested. It has been shown 

that TRAIL doesn’t activate cell death in SCLC cells and, on the contrary, induces cell 

proliferation (183). This was shown to be dependent on the Death receptor 5 (DR5), 

also known as TRAIL Receptor 2 (TRAIL-R2), and the low expression of caspase 8. 

Interestingly, IFN-gamma treatment induced the expression of caspase 8 and led to 

apoptosis upon TRAIL. One could think of a possible treatment where IFN-gamma is 

given prior to a CDK9 inhibitor and TRAIL, maximizing the killing potential of these 

agents. Altogether, we now understand more in terms of the different responses of 

NSCLC and SCLC cells to CDK9 inhibition, although the root of the difference is yet 

unclear.  

We present dinaciclib as a possible alternative to the standard of care treatment when 

resistance arises. The first-line treatment for SCLC has changed little in the past 30 

years, with the FDA approving the PD-L1 inhibitor atezolizumab 6 years ago. However, 

clinical trials with this Immune Checkpoint Inhibitor (ICI) along with standard-of-care 

chemotherapy only led to an increase in overall survival of 2 months (149, 184). We 

tested the combination of dinaciclib with the first-line chemotherapy agents, finding no 

interaction between the drugs in vitro. Delving deeper, we saw that the kinetics of 

caspase 9 cleavage was faster in the triple combination in one of the cell lines, but the 

activity of caspase 3 (assessed by PARP cleavage) becomes equivalent as time 

progresses. Nonetheless, we believe that the complete first-line treatment of 

chemotherapy and ICI in combination with CDK9 inhibition is worth researching. We 

propose that by combining it with dinaciclib, SCLC patients could benefit from this 

multi-component treatment regimen. The suggestion stems from the different results 

observed in Figures 19 and 20, where SCLC cells injected in C57BL/6 mice showed 

a good response to CDK9 inhibition, whereas SCLC cells injected in 
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immunocompromised mice had no response at all. This is a strong indicator of the 

important role played by the immune system in CDK9 treatment. One obvious question 

would be why the killing effect we observe in vitro, with absent immune cells, does not 

translate in vivo. We must look at dinaciclib pharmacokinetics studies to answer this. 

The work performed by Nemunaitis et al. shows that the concentrations of dinaciclib 

in the plasma of patients after a 2-hour intravenous (IV) administration of the drug at 

a 14 mg/m2 dose decrease rapidly from ∼2000, 200 and 100 nM at 2, 4 and 6 hours, 

respectively, since starting the infusion (185). By comparison, the work performed by 

Booher et al. in mice shows that after a 40 mg/kg i.p. injection of dinaciclib, plasma 

levels in mice are ∼330, 65 and 30 nM at 2, 4 and 6 hours, respectively (166). As seen 

in Figure 13, 6 hours only begins to activate caspase 3 in human SCLC cells, not 

reaching full-fledged activation until at least 12 hours. Not only that but in Figure 13, 

no cell line shows advanced cell death at 6 hours. These results suggest that while 

dinaciclib does not massively activate cell death in SCLC tumours, it is both killing 

enough cancer cells to recruit immune cells and priming the cancer cells to die by the 

hand of the immune system. This conclusion goes in line with previous studies 

showing that dinaciclib treatment induces the expression of type I interferon (IFN) 

response genes and the release of damage-associated molecular patterns (DAMPs) 

from tumour cells (165, 186). These events play a crucial role in immune recruitment 

and recognition. Indeed, in vivo studies with combined dinaciclib/PD-1 therapy in triple-

negative breast and colorectal cancers have shown increased infiltration and 

activation of CD8+ T and dendritic cells (165, 186). Therefore, it would be exciting to 

investigate the possible synergy between CDK9 inhibition and ICI in SCLC. 

The concept of combining dinaciclib with specific inhibitors has been proposed before, 

also in SCLC cells, where co-treatment of dinaciclib with the BCL-2, BCL-xL, and BCL-

w inhibitor Navitoclax was found to exhibit synergistic effects (166). The combined 

impact of reducing MCL-1 levels by dinaciclib alongside the inhibition of the remaining 

members of the BCL-2 family by Navitoclax has proven highly effective in SCLC. This 

efficacy stems from the known dependence of SCLC cell lines on BCL-2, BCL-xL, or 

MCL-1 for survival (181). However, our observations indicate a lack of synergism with 

drugs that induce DNA damage (e.g., cisplatin, etoposide) and activate apoptosis 

through BCL-2 family members. This discrepancy may be attributed to the loss of P53 
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in SCLC, which alters the cellular response to DNA damage. Furthermore, the 

absence of synergy can also be explained by the fact that both therapies exclusively 

activate mitochondrial apoptosis in SCLC, characterized by robust early cleavage of 

caspase-9 and -3, with no activation of caspase-8. The elevated apoptosis priming 

observed in SCLC cells upon dinaciclib treatment alone might further contribute to the 

lack of synergy with chemotherapy, as both treatments fully engage apoptosis in these 

cells. Consequently, it is conceivable that dinaciclib treatment saturates the apoptotic 

response, and based on inefficient apoptotic adaptation in certain SCLC cell lines, 

there is no additional sensitization upon treatment with agents targeting mitochondrial 

cell death. However, this conclusion does not go in line with studies demonstrating a 

synergistic effect between dinaciclib and Navitoclax, as discussed earlier. The 

variability in response observed between different SCLC cell lines could indeed be 

attributed to the diverse characteristics of these cell lines. It is evident from our 

findings, and that of others (166), that not all SCLC cell lines exhibit equivalent 

responses to dinaciclib or show similar apoptotic adaptation. Specifically, our results 

indicate that while SCLC cells generally display lower overall adaptation compared to 

NSCLC, H526 SCLC cells exhibit slight yet statistically significant sensitivity to BH3 

peptides, whereas H2171 cells do not. This underscores the necessity for 

personalized medicine approaches and emphasizes the importance of profiling 

tumour-derived cells for treatment stratification. Moreover, the study highlights a 

significant finding: dinaciclib demonstrates efficacy not only in eradicating treatment-

naïve SCLC cells but also in targeting cells with intrinsic and acquired resistance to 

chemotherapy. This discovery holds particular significance because resistance to 

chemotherapy upon relapse represents a major challenge in SCLC treatment (121, 

187). Studies suggest that transcriptional inhibitors can suppress the emergence of 

resistant cells when in combination with other therapeutic agents (188, 189). 

Therefore, our findings highlight the potential of dinaciclib as a promising therapeutic 

option for overcoming and possibly preventing chemotherapy resistance in SCLC 

patients. 

Further acquired resistance to dinaciclib is a valid concern, and c-Myc overexpression 

has been proposed as a resistance mechanism to sustained CDK9 inhibition in 

different cancer cell lines, however, not including SCLC (190). Moreover, what the 
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authors refer to as “sustained” is a single 8-hour treatment with a CDK9 inhibitor, not 

a regimen where resistance to the treatment can properly arise. Furthermore, our 

results show changes in c-Myc at 18 hours of treatment in the mouse cell lines. C-Myc 

has 2 main isoforms, c-Myc1 (long isoform) and c-Myc2 (shorter isoform) (191). There 

is a decrease in the shorter isoform c-Myc2 and an increase in the long isoform c-

Myc1 upon dinaciclib treatment in the mouse-derived SCLC cells (Fig. 7a). c-Myc2 

promotes cell proliferation and colony formation and is thought to promote tumour 

growth through the activation of oncogenic pathways (192). In comparison, the longer 

isoform c-Myc1 inhibits cell growth when in high levels, and its loss is beneficial for 

tumour growth (192-194). We also analysed the levels of c-Myc in the human SCLC 

cell lines. However, only H2171 exhibited expression of c-MYC, which was lost entirely 

upon dinaciclib treatment (Fig. 7b). This last result goes in line with a previous study 

where dinaciclib treatment reduced c-MYC levels in aggressive MYC-driven 

lymphomas (180). Aberrant Myc expression is present in >70% of cancers and has 

been related to poor prognosis and aggressive tumour phenotypes (195-198). In 

SCLC, MYC family genes have been found to be amplified (121) and play a major role 

in driving tumour plasticity and evolution (137, 199, 200). A recent comprehensive 

whole-exome, genome and transcriptome sequencing study on patients at different 

time points before and after treatment revealed that first-line treatment clears the main, 

rapidly growing population of cancer cells that dominates the tumour prior to treatment 

and induces the expansion of a multitude of subclones with increased acquired 

mutations (138). This heterogeneity induced by first-line treatment shapes clinical 

relapse (138). Our data only brushes upon c-MYC changes upon dinaciclib treatment. 

However, knowing that dinaciclib abolishes c-MYC expression in SCLC cells, it would 

be extremely interesting to investigate whether MYC family proteins play a role in the 

post-treatment tumoral diversification observed by George et al. (138) and whether it 

can be prevented by CDK9 inhibition. 

CDK7 is worth mentioning as it is required for the release of RNA pol II from the 

promoter during transcription, similar to CDK9 function within the P-TEFb (153). The 

CDK7/Cyclin H pair is part of the TFIIH complex, which phosphorylates Ser5 of the 

CTD of RNA pol II, releasing it from the Transcription Starting Site (TSS) (152). CDK7 

inhibition has been tested in SCLC, where it showed potent killing activity both in vitro 
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and in vivo (201-203). Inhibition of CDK7 in combination with anti-PD-1 proved 

synergistic in SCLC, supporting the hypothesis that ICI therapies benefit from 

transcriptional initiation inhibition in this cancer.   

In this study, we also characterise the anti-tumour activity of VC-1, a novel and highly 

specific CDK9 inhibitor. VC-1 demonstrated potent inhibition of SCLC cell viability, with 

IC50 values in the nanomolar range. With an IC50 against CDK9 of 7nM (174), VC-1 

represents an effective and alternative tool to NVP-2 for investigating CDK9 inhibition. 

Moreover, its demonstrated anti-cancer activity in vivo positions VC-1 as an exciting 

candidate for SCLC treatment along with dinaciclib. We anticipate that the use of 

CDK9-specific inhibitors such as VC-1 may lead to fewer adverse effects resulting 

from the inhibition of other CDKs, such as is the case with dinaciclib and CDK1, 2, and 

5 (175, 176, 204-207). However, it is necessary to acknowledge that while VC-1 may 

offer advantages in terms of specificity, it may not necessarily address the issue of 

resistance development to CDK9 inhibition, as the target region of CDK9 by VC-1 and 

dinaciclib is equivalent, meaning their main interactions with CDK9 are hydrogen 

bonds to the same amino acid (174).  

The work conducted in this thesis sets the ground for the use of dinaciclib and CDK9 

inhibitors in the treatment of SCLC, hopefully prolonging patients' survival. Follow-up 

studies should focus on finding successful combinations of CDK9 inhibition with ICI 

and first-line treatment, maximizing antitumour effects while minimizing toxicity. 

Nonetheless, this work not only focused on the treatment of SCLC but also on its 

biology. More particularly, the relationship between Gasdermin E and the response to 

treatment and tumourigenesis of SCLC.  
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Chapter 2 – The role of Gasdermin E 

in the biology and drug response of 

Small Cell Lung Cancer 

1.7 Introduction 

1.7.1 Cell Death Proteins in SCLC 

Cancer cells modify their expression of cell death-related proteins as this enhances 

their chances of survival. A clear example is the overexpression of BCL-2, which owes 

its name to B-cell lymphomas, where it was first identified thanks to its high levels in 

the tumour cells, SCLC is no exception. Analysis from patient samples comparing bulk 

tumour vs normal tissue show a strong downregulation of extrinsic apoptotic and 

necroptosis transcripts. TRAIL, FASL and Caspase 8 were all downregulated when 

compared to normal lung, suggesting a shut-down of this pathway (172). Caspase 8 

downregulation can lead to the induction of necroptosis by leaving RIPK1 unchecked. 

However, the necroptotic effector protein MLKL is also downregulated in the tumour 

tissue, likely preventing the induction of necroptosis (172). Among the proteins 

assessed, Gasdermin E also showed a decrease in expression in tumour cells (172). 

Gasdermin E clearly plays an important role in apoptotic activation. Its forward-

activating loop lowers the threshold of initially active Caspase 3 needed to commit the 

cell to apoptosis. Gasdermin E levels also determine whether active Caspase 3 will 

trigger the immunologically silent apoptosis or the inflammatory pyroptosis (112, 208). 

Upregulation of Gasdermin E in cancer cells inhibits cell proliferation and tumour 

growth while sensitising the cancer cells to treatment (209, 210). As such, it is no 

surprise that its expression is decreased in SCLC and other cancers. However, studies 

have also found cancers with increased Gasdermin E (211, 212). This suggests that 

the protein holds cell-death-independent functions that have yet to be unravelled. 

There has been progress in this regard, with studies finding interactions between 
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Gasdermin E and mTOR signalling (213) and EGFR signalling (214) in different 

cancers. This indicates that Gasdermin E has biological roles capable of influencing 

tumour growth.  

During tumour evolution, cells which evade inflammatory cell death are selected and 

survive to promote tumour growth. Because of the resulting inflammatory nature of the 

cell death unleashed by Gasdermin E pores, this gasdermin is typically found 

downregulated by, for example, promoter methylation (215-218). However, this is not 

always the case, as it has been shown that some cancers actually upregulate their 

expression of Gasdermin E (219). In NSCLC, Gasdermin E upregulation has been 

shown to promote cell proliferation and NSCLC development by interacting with the 

Epithelial Growth Factor Receptor (EGFR) and facilitating its activation (214). 

Furthermore, a pan-cancer study revealed the pro- and anti-tumoral roles of 

Gasdermin E across several cancer types, and this was confirmed for all Gasdermin 

family proteins (219). Expression of Gasdermin E in particular, was found to be 

decreased in 4 different cancers and increased in 7 cancers in this study (Table 2) 

(219). When assessing the overall survival of patients, Gasdermin E expression is a 

risk factor for Kidney renal clear cell carcinoma (KIRC), Liver hepatocellular carcinoma 

(LIHC) and Stomach adenocarcinoma (STAD), while it plays a protective role in 

Adrenocortical carcinoma (ACC) (219). Unfortunately, the study did not evaluate 

Gasdermin E's effect on SCLC. Its role in this disease remains an open question and 

warrants further investigation.  

Table 2. Gasdermin E expression in different cancers as compared to normal tissue. Adapted from Huo et al. Sci 
Rep 2022. (219) 

Cancer 
Gasdermin E expression 

compared to normal tissue 

Breast invasive carcinoma (BRCA) Decreased 

Kidney cancer (KICH) Decreased 

Prostate adenocarcinoma (PRAD) Decreased 

Uterine corpus endometrial carcinoma (UCEC) Decreased 



 

 

56 
 

 

Cholangiocarcinoma (CHOL) Increased 

Glioblastoma multiforme (GBM) Increased 

Head and neck squamous cell carcinoma (HNSC) Increased 

Kidney renal papillary cell carcinoma (KIRP) Increased 

Liver hepatocellular carcinoma (LIHC) Increased 

Lung adenocarcinoma (LUAD) Increased 

Lung squamous cell carcinoma (LUSC) Increased 

 

Without an established role in SCLC, we aimed to determine its impact on the biology 

of this disease. We compared the response to different treatments between cell lines 

with relatively high and low Gasdermin E expression. We assessed the susceptibility 

to cell death in Gasdermin E knockout cells in comparison to their wild-type parental 

counterparts. Finally, we investigated changes in tumorigenesis and tumour growth in 

vivo using an autochthonous mouse model of SCLC. 
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1.8 Aims – Chapter 2 

Gasdermin E's modulation of the apoptotic to pyroptotic cell death switch makes it an 

interesting study focus in the cancer context. SCLC was found to downregulate this 

protein, suggesting a role for Gasdermin E in this disease. In this chapter, we aim to: 

1. Determine the role of Gasdermin E in the susceptibility of SCLC cells to cell 

death. 

2. Assess the impact of Gasdermin E loss in the tumorigenesis of SCLC. 

 

1.9 Results 

1.9.1 Gasdermin E is activated upon chemotherapy in 

SCLC cells. 

As described in the introduction, Gasdermin E levels are decreased in naïve SCLC 

when compared to normal lung (172). To confirm this observation, we used a panel of 

SCLC cell lines. For this, we examined the levels of Gasdermin E in mouse and human 

SCLC cell lines by immunoblotting. We found that Gasdermin E expression was quite 

heterogeneous among the cell lines (Fig. 21a). We then studied whether Gasdermin 

E could play a role in response to chemotherapy agents used in first-line treatment 

and dinaciclib in mouse SCLC cells, given that they induce apoptosis in these cells. 

Indeed, Gasdermin E is cleaved upon treatment of SCLC cells with cisplatin or 

etoposide, but less so with dinaciclib (Fig. 21b). We also observed that Gasdermin E 

cleavage can be prevented by the addition of the pan-caspase inhibitor Z-VAD-FMK 

(zVAD) (Fig. 21c). This blocking of caspases hindered Gasdermin E cleavage and, 

interestingly, led to phosphorylation of MLKL, a hallmark of necroptosis. 
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Figure 21. A) Mouse and human SCLC cell lines were lysed in RIPA buffer under normal conditions. B) Mouse 
SCLC cell lines were lysed with RIPA buffer after a 30-hour treatment of dinaciclib (50 nM), cisplatin (20 µM) or 
etoposide (50 µM). Representative blots of 3 independent experiments. C) Cells were treated with zVAD (150 µM) 
and/or etoposide (100 µM) and cisplatin (20 µM) and lysed with RIPA buffer after 30 hours of treatment. D) 
Percentage of PI-positive cells after treatment with 10 µM cisplatin and 30 µM etoposide as measured by Incucyte 
with Cell-by-cell analysis. Treatments are grouped by expression levels as observed in (A). Mean + SD, n=3. 

Next, we compared the cell death kinetics of these cell lines, grouping them by 

Gasdermin E expression levels. The results showed that the cell line with the lowest 

expression of Gasdermin E also responded the least to the cisplatin & etoposide 

treatment (Fig. 21d). This is indicative that Gasdermin E may play a role in the extent 

by which cells respond to chemotherapy. Altogether, these results suggest that 

Gasdermin E is potentially involved in tumour response to treatment.  

 

1.9.2 Gasdermin E modulates response to treatment 

in vitro 

To investigate whether Gasdermin E plays a role in therapy response, we silenced 

Gasdermin E with siRNA transfection in the mouse cell line 424.3, which expresses 

the protein, and assessed its response to treatment. We observed that the Knock 



 

 

59 
 

 

Down (KD) of the protein was efficient but not complete (Fig. 22a). When comparing 

the percentages of cell death, we observed that there was a slight difference between 

the scramble-RNA (scrRNA) and the Gasdermin E small interfering RNA (siRNA) 

transfected cells when treated with etoposide (Fig. 22b). Since we could still observe 

Gasdermin E in the KD cells, we proceeded to knock out the protein by CRISPR cas9, 

this time in two different cell lines. The cells were infected with non-replicative lentiviral 

particles to express a Cas9 protein fused to GFP along with a guide RNA (gRNA) 

directed to Gasdermin E or no gRNA. We sorted infected cells using the GFP-tagged 

Cas9 and confirmed the loss of Gasdermin E expression by immunoblotting (Fig. 22c), 

and we proceeded to treat the cells with the etoposide and dinaciclib. This time, the 

difference between Gasdermin E expressing and KO cells became more evident than 

in the silencing experiment, showing a slower cell death kinetic and reduced overall 

cell death upon treatment with dinaciclib (Fig. 22d) and etoposide (Fig. 22e) upon 

Gasdermin E loss. We also observed that the proliferation of the cells was not 

significantly affected by Gasdermin E loss (Fig. 22f), ruling out a potential role of this 

gasdermin in SCLC proliferation.  



 

 

60 
 

 

 



 

 

61 
 

 

Figure 22. A) Mouse SCLC cells were lysed with RIPA buffer 48 hours after transfection with either scramble 
(scrRNA) or Gasdermin E targeted small interfering RNA (siRNA). B) Percentage of PI-positive cells after treatment 
with 100 µM etoposide as measured by Incucyte with Cell-by-cell analysis. Mean + SD, n=3. C) CRISPR-
expressing mouse SCLC cells were lysed with RIPA buffer to corroborate the efficiency of KO. Percentage of PI-
positive cells after treatment with 100 nM of dinaciclib (D) or 100 µM etoposide (E) as measured by Incucyte with 
Cell-by-cell analysis. Representative graphs of 3 independent experiments. F) Cell Growth measured across time 
as confluency percentage. Mean + SD, n=3. 

Since Gasdermin E activation leads to pore formation in the cellular membrane and a 

pyroptotic death largely associated with LDH release upon cell bursting, we assessed 

the release of LDH from the cells with and without Gasdermin E. As expected, 

Gasdermin E KO cells released less LDH when treated with dinaciclib or etoposide 

(Fig. 23a). Cell bursting is known to release several intracellular pro-inflammatory 

factors, and Gasdermin E is known for allowing the release of the highly inflammatory 

interleukin IL-1β (220).  Therefore, we decided to test whether cytotoxic treatment 

would induce the release of IL-1β among these pro-inflammatory factors, and if this is 

affected by the loss of Gasdermin E. To this end, we performed an ELISA with the 

supernatant of etoposide- and dinaciclib-treated Gasdermin E wt and KO cells. As a 

positive control, we used supernatant from mouse bone-derived macrophages 

(BMDMs) exposed to inactivated mycobacterium tuberculosis to trigger pyroptosis 

and, therefore, the release of IL-1β to the supernatant. The ELISA results with our 

treated cells show that there is no release of IL-1β upon dinaciclib or etoposide in any 

of the cell lines tested (Fig. 23b). This means SCLC cells do not engage pyroptosis 

upon the treatments, independently of Gasdermin E. 
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Figure 23. A) Percentage of LDH release from Gasdermin E wt and KO cells after a 24-hour treatment of 50 nM 
dinaciclib or 100 µM etoposide. Mean + SD, n=3 (424.3), n=2 (1380). B) Concentration of IL-1β from the 
supernatant of vehicle, 50nM dinaciclib, or 100 µM etoposide. Mean + SD, n=3. 

These results show that Gasdermin E modulates treatment response in vitro, and its 

absence proves beneficial for tumour cells in this context. 

 

1.9.3 Gasdermin E has no effect on the survival of the 

autochthonous SCLC model 

Finally, following our results where Gasdermin E promotes the release of LDH from 

the cells, we studied whether the loss of Gasdermin E would confer an advantage to 

tumour growth in vivo. To this end, we made use of the autochthonous RP mouse 

model described in section 2.1.4, which we crossed with mice bearing Gasdermin E 

KO alleles to generate SCLC tumours in mice lacking Gasdermin E expression. We 

inhaled the mice with a non-replicative Cre-expressing Adenovirus to induce tumour 

formation in the lung. Due to changing animal regulations, tumour volume assessment 

could only be carried out 7 months after the viral inhalation. This led to an incomplete 
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assessment of tumour initiation and growth (Fig. 24a). In spite of the setback, we can 

safely say that, from the day of inhalation, there is no difference between the survival 

of Gasdermin E KO and wt mice (Fig. 24b). However, with the available data, it is still 

unclear if tumour latency and tumour development is affected by the absence of 

Gasdermin E.   

 

Figure 24. A) Survival curve of Gasdermin E wt and KO counting from the day of inhalation. B) Tumour volume of 
mice since inhalation day, starting from the first possible MRI scan. Volume calculated from MRI images using the 
Horos software. Wt N = 10, KO N = 7. 

 

Overall, our data suggests that Gasdermin E does not, in principle, affect tumour 

development and progression of the untreated disease in the autochthonous mouse 

mode. Yet, it could play a role in the cells' response to therapy. Further research into 

this relationship would be of great benefit to patient treatments.  

 

1.10 Discussion 

1.10.1 The role of Gasdermin E in SCLC  

It is established by now that Gasdermin E is implicated in cell death as a Caspase 3 

substrate (221). Its cleavage by this caspase leads to the release of the auto-inhibitory 

C-terminal domain, allowing the pore-forming fragment to permeabilize the 

mitochondria and the cellular membrane (89). The pores in the mitochondria allow the 

release of Cytochrome C, enhancing the apoptotic signalling, whereas the pores in the 

cellular membrane lead to cell bursting and the release of inflammatory DAMPS.  
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Our expression assessment in SCLC cell lines proved similar to the results seen in the 

pan-cancer analysis, with heterogeneous expression across the different cell lines 

(219). Focusing on the role of Gasdermin E in cell death, we Knocked Out the protein, 

finding differences in the death induced in response to treatment, but no changes to 

the cell growth of the cells. Complete loss of Gasdermin E rendered the cells more 

resistant to drug treatments. Hence, treatments that induce or boost the expression of 

Gasdermin E could benefit SCLC, in particular in combination with chemotherapy. 

Xuzhang et al. focused on this idea and explored it in a recent study where they 

collected samples from patients with metastatic SCLC. First, they showed that in the 

patient cohort of their study, SCLC patients with high Gasdermin E expression had 

improved progression-free survival (PFS), both with chemotherapy alone or with 

immunochemotherapy (222). Next, they proceeded to Knock Out and overexpress 

Gasdermin E in SCLC cells, where they observed, in congruency with our results, that 

loss of Gasdermin E leads to a decreased sensitivity to cisplatin (222). As we 

hypothesised, overexpression of Gasdermin E leads to increased cell death induced 

by cisplatin (222). Moreover, they go on to show that activation of Gasdermin E by 

cisplatin treatment leads to more immunologically active tumours by increasing the 

number of infiltrating CD4 effector memory T cells. When treating with 

chemoimmunotherapy (atezolizumab plus cisplatin and etoposide), IL-12 was found 

as the intermediary protein linking Gasdermin E and the anti-tumour effect of the 

treatment (222). IL-12 is an interleukin mainly secreted by dendritic cells (DC), 

macrophages and monocytes (223-225). It is required for Th1 cell differentiation from 

naïve T cells (226), and it stimulates the production of INF-γ and TNF from T cells and 

NK cells (225-227). Therefore, their study indicates that SCLC cells dying by 

Gasdermin E activation stimulate the production of IL-12 from the already infiltrated 

immune cells, and this, in turn, stimulates the production of IFN-γ and TNF that further 

induces the production of IL-12 from DC (by IFN-γ), and favours immune cell 

recruitment and a pro-inflammatory tumour-microenvironment (TME) (222). 

Importantly, they showed that this improves the efficacy of anti-PD-L1 treatment in vivo 

(222).  

The previous study is a really encouraging one, identifying a vulnerability in SCLC for 

therapies already active in the clinic. This also further emphasizes the need for a more 
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personalised approach in the treatment of this disease (139, 228-234); in Xuzhang’s 

et al. case in particular, treating Gasdermin E high patients with chemotherapy and 

anti-PDL1. One problem raised by Xuzhang et al. is defining what is considered a 

“high” expressing tumour; which the authors defined as the top 50% expressing 

tumours as “high”.  

The drawback of the approach of using “high” Gasdermin E as a vulnerability marker 

is that it does not offer new treatment options for “low” expressing tumours. As 

mentioned before, cancers with decreased Gasdermin E achieve this by methylating 

its promoter and preventing its transcription (215-218). One interesting research path 

would be to investigate if this methylation can be reversed with epigenetic drugs to 

restore the expression of Gasdermin E in SCLC. With this in mind, our group 

conducted a preliminary experiment which showed an increase of Gasdermin E mRNA 

upon 72-hour treatments with the methyl-transferase inhibitor decitabine, thus 

providing encouraging evidence to pursue this epigenetic approach for increasing 

Gasdermin E levels. 

Epigenetic drugs have been approved for haematological malignancies as early as 

2004 (235). Their effectiveness as monotherapy in solid tumours, however, has been 

less successful, mainly due to excessive toxicity and low antitumour activity (236, 237). 

Nonetheless, combination therapies reduced the onset of adverse effects and proved 

more beneficial in clinical trials (238). This same approach could be undertaken in 

SCLC tumours with low Gasdermin E in an attempt to re-express the protein so the 

tumours respond better to the first-line chemoimmunotherapy. 

Another approach would be to target proteins modulating Gasdermin E expression 

levels. Reported up-regulators of this gasdermin are Specificity protein 1 (Sp1), Signal 

transducer and activator of transcription 3 (STAT3) and Zinc finger E-box binding 

homeobox 1/2 (ZEB1/2) (239-241). However, available small molecules capable of 

targeting these proteins act as inhibitors of their activity (e.g. Napabucasin for STAT3), 

thus decreasing Gasdermin E levels. Targeting proteins responsible for reducing 

Gasdermin E expression is, therefore, a more practical approach. Interestingly, a study 

in SCLC from Wu et al. claims that Gasdermin E expression is decreased by the 

expression of a constitutively active YAP1 (242, 243). This is most intriguing given 
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YAP1s proposed role as a SCLC subtype marker (228, 234, 244). Wu et al go on to 

suggest that acquired chemoresistance is a result of a YAP1 increase leading to a 

reduction of Gasdermin E expression, which induces a switch from pyroptosis-like cell 

death to apoptosis upon chemotherapy (242). Indeed, Gasdermin E has been defined 

as the executor protein responsible for inducing pyroptosis upon chemotherapy 

treatment (96, 221, 242). This positions YAP1 as a possible target for the re-

expression of Gasdermin E to increase the benefit from the first-line treatment. 

Agreeing on targeting YAP1, in vitro assays by Chen et al. demonstrated that YAP1 

activity induces PD-L1 expression in SCLC cells (245). PBMC co-culture with SCLC 

cell lines showed that YAP1 also suppresses the cytotoxic activity of CD8ௗ+ௗT cells and 

the activation of immune cells, and the authors claim the protein induces apoptosis of 

T cells by increasing the levels of FAS in the immune cells (245). The inhibition of 

YAP1 led to a reversion of such immunosuppression. Moreover, YAP1 inhibition 

combined with first-line chemoimmunotherapy led to a significant increase in the 

efficacy of the treatment (245). Thus, Chen et al. conclude that high YAP1 expression 

is linked to an immunosuppressed TME and a worse prognosis for patients with SCLC 

(245). However, another study by Owonikoko et al. is partially in discordance with the 

conclusions from Chen et al.  

Owonikoko et al. observed that SCLC-Y patients correlated with a high T-cell Inflamed 

Gene Expression Profile (GEP) and with prolonged survival (244). GEP is a biomarker 

for anti-PD1 immunotherapy response (246-248). While Chen et al. report that YAP1 

suppresses CD8+ T cells (245), Owonikoko et al. link YAP1 to a higher T-cell Inflamed 

gene expression profile (244). Chen's conclusions came from using PBMC co-culture 

in vitro, while Owonikoko et al. retrospectively analysed patient samples (only treated 

with chemotherapy), so while both studies have their downsides, we could consider 

Owonikoko’s observation as more valid as it is taken directly from patients. The studies 

also disagree on another important aspect. Chen et al. also analysed the survival of a 

group of patients with SCLC, and a worse survival was attributed to SCLC-Y tumours, 

while Owonikoko et al. showed the contrary with the patients they studied, albeit not 

statistically significant. These differences could be attributed to the low number of 

patient samples in each study, which translates to even lower YAP1 high tumours and 

low power to make statistical conclusions. Still, Chen et al. point to YAP1 as the 
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inducer of PD-L1 expression and T-cell dysfunction, while Owonikoko et al. correlate 

YAP1 to an inflammatory TME. Nonetheless, both studies agree that patients with 

SCLC-Y tumours are the most likely to benefit from immunotherapies. 

One interesting observation from Owonikoko et al. was that the long survival outlier 

patients (top decile of survivors) consistently upregulated IFN-γ response genes, some 

of which are part of the T-cell Inflamed GEP (244). This brings us back to the 

observations from Xuzhang et al. As mentioned before, in their study they link 

Gasdermin E to the release of IL-12, which in turn induces the production of IFN-γ by 

DCs, promoting the tumours' response to chemoimmunotherapy. They also found that 

Gasdermin E high tumours also had a high T-cell Inflamed GEP (222). Taking this into 

consideration, one could look at Owonikoko et al.’s and Xuzhang et al.’s work side by 

side and suggest that YAP1 tumours upregulate Gasdermin E by as of yet unknown 

factors; in dying cells, Gasdermin E leads to the release of IL-12, which induces the 

production of IFN-γ, increasing the T-cell Inflamed GEP in the TME, and the response 

of the tumours to chemoimmunotherapy. Contrarily, the previously discussed work of 

Wu et al. goes against this affirmation, as they observed that using a constitutively 

active mutant of YAP1 led to a decrease in Gasdermin E and an increase in 

chemotherapy resistance. They did not assess changes in gene expression, so it 

remains unclear how this affected IFN-γ response genes and how it relates to the 

observations of Xuzhang et al. and Owonikoko et al. regarding the T-cell Inflamed 

GEP. It is still likely that the effects on the T-cell Inflamed GEP are not dependent on 

Gasdermin E in some cases, and this would require further research. While each study 

provides insight into the roles of these proteins from their respective models, a unifying 

view of their functions becomes hard to achieve. 

To unravel the specific relationship between Gasdermin E and YAP1, one could use 

Gasdermin E-low and YAP1-high cells and inhibit YAP1 to corroborate the re-

expression of Gasdermin. Since Xuzhang et al. showed Gasdermin E needs to be 

activated by chemotherapy treatment to induce IL-12 production and the expression 

of inflammatory genes, testing the inhibition of YAP1 in combination with 

chemoimmunotherapy in relevant models (co-culture with PBMCs, humanized NSG 

mice) would show if it leads to an increase in activation of Gasdermin E. Changes in 

the T-cell Inflamed GEP with and without YAP1 inhibition should also be assessed. 
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Lastly, to properly confirm that Gasdermin E is key in determining an inflammatory 

signature in the TME, the previous experiment should also be performed with 

Gasdermin E-deficient cells and compare them to Gasdermin E-proficient cells. 

Finding the intermediary protein responsible for the downregulation of Gasdermin E 

by YAP1 would also provide us with a new target to attempt a re-expression of this 

gasdermin, and a re-sensitization to chemoimmunotherapy. This could be achieved by 

inducing YAP1 overexpression in cell lines, expecting it to lead to a downregulation of 

Gasdermin E, as Wu et al. showed and performing RNA-seq to determine upregulated 

proteins that could be potential targets. These proteins could then be validated as 

targets by performing CRISPR Knock Outs and finding which ones do not 

downregulate Gasdermin E upon YAP1 overexpression. 

While YAP1’s role in SCLC is still undeciphered, these studies place Gasdermin E as 

a key player in chemoimmunotherapy response due to its role in inflammatory cell 

death. Further research elucidating the master regulators of its expression could 

majorly impact how we treat this disease and, more importantly, improve the survival 

of the patients.  
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Conclusion 
 

The work carried out in this thesis had a major focus on understanding how to better 

treat SCLC. First, we found that Dinaciclib and CDK9 inhibition proved to be effective 

tools for the treatment of this cancer, with great synergy potential with first-line 

chemoimmunotherapy and capable of overcoming one of SCLCs' deadliest hallmark, 

its acquired resistance to chemotherapy. Second, we identified Gasdermin E as a 

potentially targetable vulnerability that modulates the response to treatment. Although 

we are yet to fully understand the underlying mechanism of its regulation, harnessing 

Gasdermin E’s expression would prove crucial to enhancing current and future 

therapies. This thesis follows the work of many scientists and clinicians calling for a 

more personalized approach to SCLC treatment. Technological advances have gained 

us a deeper understanding of the molecular dependencies of this disease, bringing 

with it novel and targeted drugs and treatments. It is time for the clinic to start reflecting 

this by taking into account all the recent advances in clinical trials. It is also worth 

mentioning that SCLC is strongly linked to heavy smoking (249-252) (with only 16% 

of diagnoses arising from never-smokers (250)), and the most effective course of 

action is prevention. Nonetheless, were the disease to develop, the science carried 

out in this work, and the work of many other scientists, will lead to the improvement of 

the survival of the patients and, hopefully one day, to the complete cure of this 

recalcitrant disease. 
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Materials and Methods 

1.10.2 Cell Lines and Cell Culture 

Cells were grown in their required media. The mouse non-small cell lung cancer 

(NSCLC) cell lines KP-1, KP-2, KP-3, and KP-5 were generously provided by A. 

Montinaro. The small cell lung cancer (SCLC) cell lines 404.2, 424.3, 424.2G, and 

428.1 were derived directly from lung tumours of the RP mouse model for SCLC, 

characterized by the loss of Trp53 and Rb1. The 1380 cell line was similarly derived 

from the RP model but was further developed by injecting it into the lungs of a 

C57BL/6J recipient mouse and re-isolating it after successful in vivo growth. All cell 

lines, except for 1380, were maintained in DMEM (Gibco | Thermo Fisher Scientific, 

Billings, MT, USA, cat# 10566016) with 10% Fetal Bovine Serum (FBS) (Gibco, cat# 

10270106). The 1380 cell line was cultured in RPMI 1640 (Gibco, cat# 21875034) with 

10% FBS. The H526, H2171, H1975, PC-9, HEK, H358, and H1694 cell lines were 

cultured according to the supplier's specifications. All media were supplemented with 

the antibiotic Primocin (Invivogen, San Diego, CA, USA, cat# ant-pm-1) (174). 

Cells were grown in T25, T75 and T175 sterile flasks (Sarstedt, ref# 83.3910.002, 

83.3911.002, 83.3912.002, respectively), using autoclaved 2 ml, 5 ml, 10 ml and 25 

ml discardable pipets (Greiner Bio-One, ref# 710180, 606180, 607180, 760180, 

respectively), 10 µl, 200 µl and 1 000 µl tips (Starlab, ref# S1110-3000, S1111-0000, 

S1111-6001, respectively) and 1.5 ml and 2 ml Eppendorf tubes (Eppendorf, ref# 0030 

120.086, 0030 120.094, respectively) as required. 

 

1.10.3 Buffers 

Buffer Composition 

Phosphate-buffered saline 

(PBS) 

137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, and 1.8 mM 

KH2PO4 

Radioimmunoprecipitation 

assay buffer (RIPA) 

Sodium Chloride 150mM, Tris-HCl 50mM pH 8.0, NP-40 1%, 

Sodium deoxycholate 0.5%, SDS 0.1% 
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Membrane Extraction Buffe 

(MEB) 

150 mM mannitol, 10 mM Hepes-KOH pH 7.5, 150 mM KCl, 1 mM 

EGTA, 1 mM EDTA, 0.1% BSA, 5 mM succinate 

SDS running buffer 25 mM Tris HCl, 0.192 M Glycine and 0.1% (w/v) Sodium Dodecyl 

Sulfate (SDS); pH 8.3 

Tris-buffered saline Tween 

(TBS-T) 

20 mM Tris, 150 NaCl mM, 0.1% (w/v) Tween® 20, pH 7.4 

Super Optimal Broth (SOB) 2% tryptone, 0.5% yeast extract, 0.05% NaCl, 250 μM KCl, pH 

7.0 

Lysogeny Broth (LB)  10g/L Tryptone, 5g/L Yeast extract, 5g/L NaCl, pH 7.0 (Carl Roth, 

ref# X964.1) 

Table 3. Buffers and their compositions. 

 

1.10.4 Drugs  

Target Company Catalogue number 

Dinaciclib Selleck-Chemicals S2768 

NVP-2 Selleck-Chemicals S8981 

Cisplatin Selleck-Chemicals S1166 

z-VAD-FMK Selleck-Chemicals S8102 

Etoposide Absource Diagnostic S1225-0100 

Propidium Iodide Sigma-Aldrich P4864 

Table 4. Drugs used and their suppliers. 

Recombinant iz-huTRAIL was generously provided by H. Walczak. VC-1 was 

generated and provided by Vichem Chemie Research Ltd. (Budapest, Hungary) (174). 

Antibodies 

Target Company Catalogue number 

RNA pol II RBP1 p-Ser2 Biolegend 920204 

RNA pol II Biolegend 904001 
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MCL-1 Cell Signaling 5453 

cFLIP Cell Signaling 56343 

C-MYC Cell Signaling 5605 

PARP BD Biosciences 556362 

Caspase 9 Abcam ab202068 

Caspase 8 Cell Signaling 9746 

Cleaved Caspase 3 Cell Signaling 9664 

Gasdermin E Abcam ab215191 

β-Actin Sigma-Aldrich A1978 

Tubulin Sigma-Aldrich T9026 

GAPDH Sigma-Aldrich G8795 

Rabbit IgG SouthernBiotech 4050-05 

Mouse IgG SouthernBiotech 1031-05 

Table 5. Antibodies used and their suppliers. 

 

1.10.5 Cell viability and cell death assays 

Adherent cells were plated the day before the experiment at a density of 6,000 cells 

per well in a black 96-well plate (Nunc MicroWel 96 Wells, Thermo Scientific, Ref# 

137101). The next day, cells were treated with the specified drugs for 30 hours. For 

suspension cells, 10,000 cells per well were plated and treated concurrently in a 96-

well plate (Nunc MicroWell 96-Well, Thermo Scientific, Ref# 167008) for 30 hours. Cell 

viability was measured using the CellTiter-Glo assay (Promega, Madison, WI, USA, 

Cat# G7571) following the manufacturer's instructions. Luminescence was recorded 

using a Tecan Infinite M-plex (Tecan, Männedorf, Switzerland). For IC50 determination 

of VC-1, the compound was pre-printed using the D300e Digital Dispenser (Tecan). 

Viability was assessed after 72 hours using CellTiter-Glo. The cell lines tested 

included: NSCLC: A549, HCC827, HCC4006, H2172, H1568, H1299, H2110, HCC15, 
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PC9, H23, H522; SCLC: H196, H69, GLC2, H82, H1092, H2029, H526, H524, GLC8, 

H1048, H841, GLC1 (174). 

The IncuCyte™ Live-Cell Imaging system was employed to monitor cytotoxicity 

through PI uptake. A 96-well plate (Nunc MicroWell 96-Well, Thermo Scientific, Rwf# 

167008) was seeded with 20,000 (human SCLC cell lines), or 8,000 (mouse cell lines) 

cells per well, with treatments specified in each figure. Images were captured every 3 

hours, and the percentage of dead cells was determined by quantifying PI-positive 

cells using the Cell-by-Cell function of the IncuCyte analysis software. 

 

1.10.6 LDH release assay 

Released LDH was assessed using the Cytotoxicity Detection Kit (LDH) (Roche, Ref# 

11644793001). Cells were seeded at a density of 8,000 cells per well in a 96-well plate 

(Nunc MicroWell 96-Well, Thermo Scientific, Rwf# 167008) and were seeded a day 

prior to treatment with the drugs indicated in the figure or figure legend for 24 hours. 

The 100% LDH release was induced with the “lysis solution” from the LDH-Glo 

Cytotoxicity Assay kit (Promega, ref# J2380). After 24 hours of treatment, plates were 

centrifuged at 300 g for 5 minutes to sediment all cells and debris, and the supernatant 

was collected. Next, instructions for the kit were followed as per the manufacturer's 

instructions, reading absorbance using a Tecan Infinite M-plex (Tecan, Männedorf, 

Switzerland) at 492 nm with 610 nm as the reference wavelength.  

 

1.10.7 IL-1β ELISA 

The ELISA was carried out using the Mouse IL-1 beta/IL-1F2 DuoSet ELISA (R&D 

Systems, ref# DY401) supplemented with the DuoSet ELISA Ancillary Reagent Kit 2 

(R&D Systems, ref# DY008B). Plates were coated and prepared according to the 

manufacturer's instructions and stored at -20 °C until used. For the ELISA assay, the 

coated plates were placed at room temperature for 30 minutes prior to the start of the 

procedure, which was carried out following the manufacturer’s instructions. The 

positive control consisted of supernatant from mycobacterium tuberculosis-infected 
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macrophages, which was kindly provided by Dr. Hamid Kashkar. Absorbance was 

measured using a Tecan Infinite M-plex (Tecan, Männedorf, Switzerland) at 450 nm 

with 540 nm as the reference wavelength.  

 

 

1.10.8 Dynamic BH3 profiling 

Dynamic BH3 profiling was performed as previously described (169, 174). Briefly, 3 × 

105 cells were incubated with targeted therapies (or DMSO for the control condition) 

for 16 hours at 37°C. After incubation, cells were stained with the viability marker 

Zombie Violet (423113, BioLegend, Koblenz, Germany) for 10 minutes at room 

temperature, then washed with PBS and resuspended in 330 µl of MEB buffer. 

Meanwhile, 12 different peptide solutions were prepared in MEB with 0.002% digitonin 

(D141, Sigma-Aldrich). The final concentrations of the peptide solutions were: 10, 3, 

1, 0.3, 0.1, 0.03, and 0.01 µM of BIM BH3 peptide; 10 µM of BAD BH3 peptide; 100 

µM of HRK BH3 peptide; 10 µM of MS1 BH3 peptide; 25 µM of alamethicin (BML-A 

150-0005, Enzo Life Sciences, Lörrach, Germany); and DMSO as the control. 

Subsequently, 25 µl of the cell suspensions were incubated with 25 µl of each peptide 

solution in a 96-well plate (3795, Corning, Madrid, Spain) for 1 hour at room 

temperature, followed by fixation with formaldehyde and staining with cytochrome c 

antibody (Alexa Fluor® 647—6H2.B4, 612310, BioLegend). Individual DBP analyses 

were performed 16 hours after dinaciclib treatment (25 nM) in triplicates for DMSO, 

alamethicin, various concentrations of BIM BH3, and BAD, HRK, and MS1 BH3 

peptides. The analyses were conducted using a high-throughput Cytek® Aurora 

Spectral Flow cytometer (Cytek Bioscience, Fremont, CA, USA). The % priming 

represents the maximum percentage of cytochrome c released following BH3 peptide 

exposure, and Δ% priming indicates the maximum difference between treated and 

untreated cells (174). 
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1.10.9 Cell cycle analysis 

1.25 × 106 (H526, H1694, and H2171) or 3 × 105 (H526 and H1975) cells were treated 

with dinaciclib (50 nM). After 24 hours, the cells were collected, centrifuged for 5 

minutes at 500 g, washed with PBS, fixed and permeabilized by transferring the cells 

to 70% ethanol, and stained with Propidium Iodide (PI) for 20 minutes at room 

temperature. The fluorescence intensity was measured with BD FACSymphony A3 

Flow Cytometer (BD Biosciences, Germany), and cell cycle distribution was assessed 

by analyzing DNA content using FlowJo v10.10 software (BD Biosciences) (174). 

 

1.10.10 Western blot analysis 

Suspension cells were treated as specified, placed in ice, and centrifuged at 500 g for 

5 minutes. The supernatant was discarded, and the cells were then lysed in RIPA lysis 

buffer containing 1x cOmplete Protease Inhibitor Cocktail (Sigma-Aldrich, cat# 

11697498001) and 1x PhosSTOP (Roche, Basel, Switzerland, cat# 4906837001).  

Adherent cells were treated as specified and placed in ice, and their media and PBS 

used to wash the remaining unattached cells were collected. The collected media and 

PBS were centrifuged at 500 g to separate the media from the dead/dying cells. The 

attached cells were lysed with RIPA buffer as described before being scraped with Cell 

Scrappers (Sarstedt, cat# 83.3951). Lysates were incubated for 30 minutes with 0.4 

µl of Pierce™ Universal Nuclease at 37 °C (Thermo Scientific, ref # 88700) to rid the 

viscosity brought by free DNA from the lysed cells. After the incubation, lysates were 

centrifuged at 4 °C for 10 minutes at 20,000 g and transferred to new tubes without 

the pelleted debris and undissolved particles. Following the manufacturer's 

instructions, protein concentration was assessed using a Pierce™ BCA Protein Assay 

Kit (Thermo Scientific, ref# 23227). 

Proteins were separated on 4–15% Mini- or Midi-PROTEAN® TGX™ gels (Bio-Rad, 

Hercules, CA, USA, cat# 4561086, cat# 5671085) using SDS running buffer. The 

separated proteins were transferred onto Mini- or Midi- 0.2 µm nitrocellulose 

membranes (Bio-Rad, cat# 1704158, cat# 1704159) with the Trans-Blot® Turbo™ 

Transfer System (Bio-Rad). Membranes were blocked with 5% BSA (Bovine Serum 



 

 

76 
 

 

Albumin Fraction V, heat shock, fatty acid-free; Roche, ref# 03117057001) TBS-T 

solution for one hour before washing with fresh TBS-T and incubating overnight at 4 

degrees in a rotating tube with the primary antibody at the recommended dilution by 

the manufacturer. Primary antibodies were diluted in TBST-T with 2.5% BSA, and 0.02 

% NaN3. After the overnight incubation, membranes were washed 3 times with TBS-T 

prior to incubation with secondary antibody (anti-Mouse or anti-Rabbit, as required), 

diluted 1:10,000 in TBST with a spoonful of dissolved Non-fat dried milk powder (ITW 

Reagents, ref# A0830). 

 

1.10.11 siRNA mediated silencing 

For small interfering RNA (siRNA)-mediated knockdowns, 5,000 cells were seeded in 

a 96-well plate in 100 μl of antibiotic-free media the day before transfection. 9.5 μl of 

Opti-MEM (Thermo Scientific, 31985070) and 0.5 μl of Dharmafect Reagent I 

(Dharmacon, T-2001-02) were mixed on one side for each well of the 96-well plate, 

and 0.5 μl of siRNA (stock 20 μM) was mixed with 9.5 μl of Opti-MEM on the other. 

Both solutions were incubated for 5 minutes at Room Temperature (RT). Both solutions 

were mixed carefully by pipetting and incubated at RT for 20 more minutes. After the 

incubation period, 80 μl of antibiotic-free Opti-MEM was added to the 20 μl mix to 

make the Transfection mix. 

Media was removed from the cells and replaced with 100 μl of the Transfection mix. 

The knocked-down cells were incubated for 48 hours before being used in 

experiments. 

 

 

1.10.12 siRNA sequences 

Target Sequences Catalogue number 

DFNA5 GGGCAAUUCCAGUGCGUUC; 

GGUCAGCGCACUAGCAGAA; 

L-041196-01-0020 Dfna5 

(54722) ON-TARGETplus 
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GCUUCGAGCAUGAGAGGAA; 

UCUUGCAGCUGGUGGGAUA 

siRNA – SMARTpool, 

Dharmacon 

Non-targeting 

(scramble/scrRNA) 

UAAGGCUAUGAAGAGAUAC D-001210-02-20 siGENOME 

Non-Targeting siRNA #2, 

Dharmacon 

Table 6. siRNA sequences and suppliers. 

 

1.10.13 Plasmid construction for CRISPR gRNA 

Lyophilized oligonucleotides were purchased from Eurofins Genomics. 

Gasdermin E gRNA oligonucleotide Forward: 

CACCGGCAGATAAAATCTGGTACT 

Gasdermin E gRNA oligonucleotide Reverse: 

AAACAGTACCAGATTTTATCTGCC 

The lyophilized oligonucleotides were reconstituted in autoclaved, distilled water to a 

concentration of 100 μM. Primers were incubated with T4 ligation buffer (NEB, ref# 

B0202S) and T4 PNK (NEB, ref# M0201S). The mixture was incubated for 30 minutes 

at 37°C, followed by a 5-minute incubation at 95°C, and then allowed to slowly cool 

down to room temperature at a rate of 5°C per minute. 

The cloning of the gRNA to the backbone plasmid lentiCRISPRv2 (Addgene, ref# 

52961) was done using the Golden Gate method (253, 254) and the restriction enzyme 

Bsmb1-v2 (NEB, ref# R0580). The gRNA was cloned to the plasmids using a T4 DNA 

Ligase (Thermo Scientific, ref# EL0011) following the manufacturer’s instructions. 

 

1.10.14 E. coli competence preparation and 

transformation 

To prepare chemo-competent cells, E. coli stbl3 (kindly provided by Dr. Alessandro 

Annibaldi) were first streaked on an antibiotic-free LB agar plate and allowed to grow 



 

 

78 
 

 

overnight at 37°C. The next day, a single clone was picked and cultured overnight in 

5 mL of SOB medium with freshly added 25 mM MgCl2 at 37°C with shaking at 150 

RPM. The following day, 240 mL of SOB medium were inoculated with 1 mL of the 

overnight culture and grown at 18°C until the OD600 reached 0.6. 

The culture was then cooled on ice for 10 minutes, centrifuged at 3,000 RPM for 10 

minutes at 4°C, and the pellet was resuspended in 10 mL of cold transformation buffer 

(10 mM PIPES, 15 mM CaCl2, 250 mM KCl, pH 6.7, 55 mM MnCl2). After adding 7% 

DMSO, the bacteria were aliquoted into 100 μL portions in 1.5 mL tubes and stored at 

-80 °C. 

After thawing the competent E. coli DH5α cells on ice, 1 μl of plasmid DNA was added 

to 50 μl of the cells. The mixture was incubated on ice for 5 minutes. Following the 

incubation, the transformed cells were plated onto prewarmed LB agar plates 

containing ampicillin (100 μg/ml) and incubated overnight at 37 °C. 

 

1.10.15 Transfection of HEK cells for viral production 

4.85 μg of the transfer plasmid (lentiCRISPRv2 with or without gRNA), 3.65 μg of 

pSPAX and 1.5 μg of pMD2.G plasmids were combined with 500 μl of Opti-MEM. 30 

μl polyethylenimine (PEI) was mixed on a second tube with 470 μl of Opti-MEM. After 

5 minutes, both solutions were mixed and incubated for 15 minutes before adding 

dropwise to the plate. The cells were left under normal culture conditions after shaking 

to properly distribute the mix in the dish. Media was changed after 24 hours, and 

collected and filtered after 72 hours.  

 

1.10.16 Infection of target cells 

424.3 cells were infected using sterile filtered virus-containing supernatant from 

transfected HEK cells. Cells were plated at approximately 30% confluence, and the 

virus-containing supernatant was added for three consecutive days. To enhance 

transduction efficiency by reducing the repulsion between cell surface charges and 
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virions, 8 μg/ml polybrene (Hexadimethrine bromide) was added to the virus 

suspension (255). 

Positive cells were sorted using the INFLUX cell sorter (BD Biosciences), using the 

green channel to identify infected cells by the expression of the eGFP-tagged Cas9. 

Single cells were sorted into a 96-well plate for clonal amplification and confirmed by 

Immunoblotting. Cells were then used for the stated experiments. 

 

1.10.17 In vivo toxicity assessment of VC-1 

To evaluate the safety of VC-1, both acute and chronic toxicity were assessed. A single 

injection of 40 mg/kg (n = 3) for the acute toxicity study was administered 

intraperitoneally (i.p). For the chronic toxicity study, animals received three injections 

per week for two weeks (n = 3). Control animals (n = 1) were injected with the vehicle. 

The animals were monitored three times per week for general conditions, including 

body weight and behaviour. On day 14, the mice were sacrificed by cervical 

dislocation, and liver weight was measured (174). 

1.10.18 In vivo tumour studies 

Adult C57BL/6 mice (6–8 weeks old) were housed in individually ventilated cages 

(IVC) systems with ad libitum access to food and water. The animal facility maintained 

a temperature of 23°C with a 12-hour light/dark cycle. Three models of small cell lung 

cancer (SCLC) were used, as described below: 

1.10.18.1 Autochthonous mouse model:  

Mice harbouring LoxP sites flanking the Rb1 Trp53 (RP model) were used to induce 

small cell lung cancer (SCLC). In Chapter 2, RP mice were crossed with Gasdermin 

E KO mice to generate the RP Gasdermin Ewt/wt and RP Gasdermin EKO/KO used in the 

experiments. For induction of lung tumours, 8–12-week-old mice were anaesthetized 

with Ketamine (100 mg/kg) and Xylazine (10 mg/kg) by intraperitoneal injection, 

followed by intratracheal inhalation of replication-deficient adenovirus expressing Cre 

(Ad5-CMV-Cre, 2.5 × 107 PFU, University of Iowa). Tumor formation was monitored 

bi-weekly using magnetic resonance imaging (MRI) five months (RP, Chapter 1) or 7 
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months (RP GsdmE, Chapter 2) after inhalation. MRI was performed using a 3.0 T 

Philips Achieva clinical MRI system (Philips Best, the Netherlands) with a dedicated 

mouse solenoid coil (Philips Hamburg, Germany). T2-weighted MR images were 

acquired in the axial plane using a turbo-spin echo (TSE) sequence (repetition time 

(TR) = 3819 ms, echo time (TE) = 60 ms, field of view (FOV) = 40 × 40 × 20 mm3, 

reconstructed voxel size = 0.13 × 0.13 × 1.0 mm3, number of averages = 1) under 

2.5% isoflurane anaesthesia. MR images (DICOM files) were analyzed blindly by 

determining and calculating regions of interest (ROIs) using Horos software (174).  

Chapter 1: Once tumours reached a minimum volume >1 mm3, mice were randomized 

into two groups and treated twice per week, every 2 weeks, with either the vehicle HP-

β-CD 10% (Hydroxypropyl Beta Cyclodextrin; Sigma, #C0926-5G) or dinaciclib at 30 

mg/kg (MedChemExpress, #HY-10492, Lot#120243). Treatment continued until 

tumours reached a size of 800 mm3, at which point mice were sacrificed (174). 

Chapter 2: Tumour volumes were monitored until they reached a size of 1,500 cm3, at 

which point the mice were sacrificed. Tumour growth speed and survival were 

assessed. 

1.10.18.2 Syngeneic mouse model by subcutaneous injection of 

mouse SCLC cells:  

The 424.3 cell line was used to generate tumours by injecting 5 × 106 cells in 100 µl 

PBS subcutaneously into the flanks of 8-week-old female C57BL/6N mice (Charles 

River, Wilmington, MA, USA). Mice were randomized into either vehicle or treatment 

groups once tumours reached a minimum size of 2 × 2 mm. Tumour dimensions were 

measured blindly using callipers, and volume was calculated using the formula π/6 × 

length × width2, where length is measured perpendicular to the width and length > 

width. Treatment was administered twice a week, every other week, until endpoint 

criteria were met. The treatment regimen consisted of dinaciclib (Insight 

Biotechnology, #HY-10492, Lot#14761 and Lot#120243) at a dose of 20 mg/kg, 

formulated in 10% HP-β-CD (Hydroxypropyl Beta Cyclodextrin; Sigma, #C0926-5G) 

(174). 
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The 1380 cell line was used to generate tumours by injecting 3 × 106 cells in 100 µl of 

Matrigel (Corning, Corning, NY, USA, cat# 354234) subcutaneously into the flanks of 

either 8-week-old female C57BL/6N mice obtained from the core facility of the CECAD 

research centre (Fig. 17c, d, f), or 16-week-old female C57BL/6 mice (Fig. 19) 

obtained from a specific-pathogen-free (SPF) colony of the Department of 

Experimental Pharmacology, National Institute of Oncology (Budapest, Hungary) 

(174).  

Mice were randomly assigned to vehicle or treatment groups 10 days after cell 

injection when the average tumour size reached 50-100 mm3. Treatment and tumour 

measurement were carried out as previously described for dinaciclib 

(MedChemExpress, #HY-10492, Lot#14761, and Lot#120243) at a dose of 30 mg/kg, 

formulated in 10% HP-β-CD (Hydroxypropyl Beta Cyclodextrin; Sigma, #C0926-5G) 

(174). 

For VC-1, treatment consisted of three intraperitoneal (i.p.) injections per week at a 20 

mg/kg dose. VC-1 was resuspended in MilliQ water along with 10% HP-β-CD 

(Hydroxypropyl Beta Cyclodextrin; Cyclolab, Budapest, Hungary, #CY2005.2) (174). 

 

1.10.18.3 Xenografts of human SCLC cells in 

immunocompromised mice 

1x106 H526 cell was inoculated in 100 µl solution (M199 medium:Matrigel 1:1 mixture) 

(Corning, #356234) in the right flank of 16-week-old NOD-SCID females. Mice were 

randomly assigned to vehicle or treatment groups 10 days after the cell injection when 

the average tumour size reached 50-100 mm3. Treatment and tumour measurement 

were carried out as mentioned before for dinaciclib and VC-1.  

NOD-SCID mice are characterized for having an absence of functional T cells and B 

cells, hypogammaglobulinemia, a normal hematopoietic microenvironment, and 

lymphopenia. Prkdcscid mice (DNA-dependent protein kinase catalytic subunit), known 

as SCID (severe combined immunodeficiency), exhibit a DNA repair defect and 

impaired rearrangement of genes responsible for antigen-specific receptor formation 

on lymphocytes. The majority of homozygous SCID mice lack detectable levels of IgM, 
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IgG1, IgG2a, IgG2b, IgG3, or IgA antibodies. Their thymus, lymph nodes, and splenic 

follicles also typically lack lymphocytes. Some SCID mice spontaneously develop 

partial immune reactivity with age and are considered “leaky”. NOD (non-obese 

diabetic) mice have been used extensively for type 1 diabetes research, however, 

when crossed with SCID mice, the diabetic phenotype from the NOD background is 

lost, as is the spontaneous immune activity from the “leaky” SCID background. As 

such, NOD-SCID mice are a favourable environment for xenografts. 

 

 

1.10.19 Ethical approval 

Animal experiments from Fig. 17, 18 and 27 were approved by the local authorities 

(LANUV, North-Rhine-Westphalia, Germany) and performed under licence numbers 

81-02.04.2019.A491 (Fig. 17, 18) and 81-02.04.2021.A102 (Fig. 27). Animal 

experiments from Fig. 20 were conducted at the Department of Experimental 

Pharmacology, National Institute of Oncology (Budapest, Hungary). The animals 

involved in these studies were cared for in accordance with the "Guiding Principles for 

the Care and Use of Animals" based on the Helsinki Declaration, and all protocols 

were approved by the local ethical committee. Animal housing density adhered to 

regulations and recommendations outlined in directive 2010/63/EU of the European 

Parliament and of the Council of the European Union concerning the protection of 

animals used for scientific purposes. The studies were conducted under the following 

permission licenses for breeding and performing experiments with laboratory animals: 

PEI/001/1738-3/2015 and PE/EA/1461–7/2020. Personnel involved in animal 

experiments received prior training and have obtained the necessary personal 

licensing course (FELASA-B). All animal experiments were performed in compliance 

with international and institutional ethical guidelines on animal  
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1.10.20 Statistical analyses 

Statistical analyses were carried out using GraphPad Prism 8 v8.0.2. (GraphPad 

Software Inc., San Diego, CA, USA) IC50s were calculated by non-linear regression 

comparing normalised response (null hypothesis) vs. normalised response – variable 

slope and choosing the better model in each case. Log-Rank (Mantel-Cox) analysis 

was used to compare survival. 
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